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ABSTRACT 

YONG ZHANG: Transdermal Delivery of a DTPA Penta-ethyl Ester Prodrug for Continuous 
Decorporation of Transuranic Elements 

(Under the direction of Prof. Michael Jay, Ph.D.) 

 

The penta-ethyl ester of diethylenetriamine pentaacetic acid (DTPA), a DTPA prodrug 

designated as C2E5, was designed for transdermal delivery for radionuclide decorporation. 

The C2E5 was first screened with a prototype cream formulation and a hydrocarbon base 

ointment. C2E5 experienced rapid degradation in the cream matrix and C2E5 ointment 

formulations underwent phase separation due to components incompatibility. Non-aqueous 

gel matrix comprised of ethyl cellulose/Miglyol 840® was utilized to formulate C2E5. 

The C2E5 non-aqueous gel prepared by direct mixing method failed to yield a uniform 

and pharmaceutically acceptable gel. Solvent evaporation method was conceived and 

applied to prepare the C2E5 non-aqueous gels. The thermal, rheological and in vitro release 

studies of a formulation containing 40% C2E5, 20% ethyl cellulose and 40% Miglyol 840 

prepared using the solvent evaporation method demonstrated that the gel had acceptable 

content uniformity, flow properties and C2E5 release profile suitable for transdermal 

delivery. Topical application of the gel at a 200 mg C2E5/kg dose level in rats achieved 

higher plasma exposures of several active metabolites compared with neat C2E5 oil at the 

same dose level.  

The C2E5 non-aqueous gels comprised of 40% C2E5, 40-45% Miglyol 840 and 15-

20% ethyl cellulose prepared by solvent evaporation method were further evaluated by 

mass balance study and in vivo decorporation study in rodents. When the aforementioned 

C2E5 gels were spiked with [14C]-C2E5 and applied to rat skin at a dose of 200 mg 
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C2E5/kg, over 60% of the applied dose was absorbed within a 24 h period. Radioactivity 

was observed in urinary and fecal excretions for over three days after removal of the gel. 

Using an 241Am wound contamination model, transdermal C2E5 gels were able to enhance 

total body elimination and reduce the liver and skeletal burden of 241Am in a dose-dependent 

manner. The efficacy achieved by a single 1000 mg/kg dose to contaminated rats was 

statistically comparable to the intravenous Ca-DTPA treatment. 

In conclusion, transdermal delivery of the DTPA penta-ethyl ester prodrug achieved 

enhanced decorporation of 241Am in contaminated rats. The effectiveness of this treatment, 

favorable sustained release profile and ease of administration support its use following 

nuclear and radiological emergencies. 
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CHAPTER 1: INTRODUCTION 

 

1.1 GENERAL INTRODUCTION 

 

The United States and many other countries face increasing threats from terrorist 

groups with respect to the use of weapons of mass destruction (WMD) against civilian 

populations. Of particular concern is that some of these groups are intensifying their efforts 

to acquire and develop nuclear and radiological weapons. The Nuclear Trafficking Abstracts 

Database reports an increasing number of incidents in the diversion of nuclear and 

radioactive materials (1). These materials can be used to make Radiation Dispersal Devices 

(RDD) which when spread by means of conventional explosives constitutes what is referred 

to as a “dirty bomb”.  Among the radionuclides of greatest concern that may be incorporated 

in an RDD are isotopes of Americium (Am), Plutonium (Pu) and Curium (Cm). Furthermore, 

the accidents of nuclear power plants and radionuclides such as Chernobyl in April 1986 (2) 

and Goiânia accident in September 1987 (3), as well as Fukushima Daiichi in March 2011 

(4), which all involved the release of a substantial amount of radioactive materials into the 

environment, have heightened the awareness that many nations need to be prepared for 

such cataclysmic events.  

Since radioactivity was discovered by the French scientist Henri Becquerel in 1896 

(5), great progress has been made to harness the power of this phenomenon. Radioactivity, 

also known as radioactive decay or nuclear decay, is the process by which an unstable 

atomic nucleus undergoes spontaneous decay or disintegration accompanied by the 

emission of particles of ionizing radiation. The three major radioactive decay modes are 
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alpha decay, beta decay, and gamma decay. Alpha decay, or α-decay, is a type of 

radioactive decay in which an atomic nucleus emits a helium nucleus (He2+, also known as 

an alpha particle, α particle). Beta decay, or β-decay, is a type of radioactive decay in which 

an atomic nucleus emits a beta particle (an electron or a positron, β particle). Gamma 

decay, γ-decay, is a type of radioactive decay in which an unstable daughter nucleus, which 

is produced from the original atomic nucleus as a result of alpha or beta decay, emits 

photons (γ ray) when it moves from an excited state to a lower energy state. Gamma decay 

from excited states may also be produced as a result of nuclear reactions such as neutron 

capture, nuclear fission, or nuclear fusion. High-energy β particles and γ rays are high in 

penetration depth but low in ionizing power on their travelling path, whereas α particles are 

low in penetration depth but high in ionizing power on their travelling path. Alpha particles 

can cause substantial injury and subsequent health effects only when they are internalized 

because the helium nuclei are not highly penetrating as a result of their relative large size 

and charge. When a human is exposed to a large dose of radiation, be it in the form of direct 

contact in close range or internalized as a result of inhalation, ingestion, injection or 

absorption through intact skin or wound, it could result in the acute radiation syndrome 

(ARS), as well as delayed health effects of radiation exposure. The International 

Commission on Radiological Protection (ICRP) and the National Council on Radiation 

Protection and Measurements (NCRP) have published a series of publications and reports 

on topics such as radiation risk evaluation, recommendations on the limit of radiation 

exposure, and protection against ionizing radiations (6, 7).  
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1.2 DECORPORATION OF INTERNALIZED TRANSURANIC ELEMENTS  

 

1.2.1 Mechanism of Radiation-induced Damage 

 

The radiation-induced damage to biological systems can be classified into two 

mechanisms by which radiation ultimately affect cells, direct and indirect effects (8). Direct 

effects of radiation refer to the fact that radiation interacts with the atoms of the 

deoxyribonucleic acid (DNA) molecule, or some other cellular component critical to the 

survival of the cell, which can lead to cell death and apoptosis in the short term, and 

mutations and cancer in the long term (9-13). Indirect effects of radiation refer to the fact 

that radiation can cause the radiolytic decomposition of water molecules in the cell and form 

reactive oxygen species (ROS) and reactive nitrogen species (RNS), which can interact with 

DNA and other important cellular components and result in cell death, apoptosis, mutations 

and cancer (9-13).  

Radiation-protective agents, which include prophylactic agents that are administered 

before potential radiation exposure, and mitigating agents (mitigators) that are administered 

during or after radiation exposure, have been developed to prevent or reduce radiation-

related damage (14). Because the major damage at the cellular level caused by radiation is 

related to the ROS and RNS generated by ionizing radiation (9, 11), a substance that could 

manage or help to reduce the oxidative stress would alleviate the detrimental effect of the 

radiation (15, 16). This class of substance includes endogenous glutathione (GSH), 

glutamine, catalase (CAT), superoxide dismutase (SOD) and antioxidant nutrients such as 

vitamin C and E, phytochemicals and herbal preparation (17). The history, development, 

and recent progress on radiation-protective agents have been reviewed in detail by Weiss 

and Landauer (17), Seed (18), Xiao and Whitnall (19), Hosseinimehr (20), Mönig and 

colleagues (21). 
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Because alpha particles are low in penetration depth but high in ionizing power on 

their travelling path, they are very dangerous to living cells due to the high relative biological 

effectiveness (RBE) of alpha radiation to cause biological damage only when they are 

internalized. It is estimated that chromosome damage caused by alpha particle emitters 

(such as transuranics or actinides) is an average of about 20 times more detrimental, and in 

some experiments up to 1000 times more damaging, than an equivalent amount of gamma 

or beta radiation (12). Russian dissident and ex-Federal Security Service officer Alexander 

V. Litvinenko was believed to be killed by the powerful alpha emitter polonium-210 in 2006 

(a milligram of 210Po emits as many alpha particles per second as 4.215 grams of 226Ra) 

(22). Internalized transuranic radionuclides impose even greater damage to nearby living 

cells because not only do alphas themselves cause damage, but alpha recoil (the 

phenomenon that the parent nucleus needs to recoil after alpha emission due to the 

conservation of momentum) cause approximately equal ionization along the path. This alpha 

recoil process may in turn be especially damaging to genetic material, since many soluble 

transuranic elements that emit alphas carry positive charge and these positive cations are 

chemically attracted to the net negative charge of DNA, causing the recoiling transuranic 

nucleus to be in close proximation to the DNA (23). 

 

1.2.2 Transuranic Elements 

 

The transuranic elements (also known as transuranium elements) are the chemical 

elements with atomic numbers greater than 92 (the atomic number of uranium). All of these 

elements are unstable and decay radioactively into other elements. The first several 

transuranic elements were discovered at the Radiation Laboratory (now Lawrence Berkeley 

National Laboratory) by Edwin McMillan, Glenn Seaborg, Albert Ghiorso and their 

colleagues during 1945-1974 at the University of California, Berkeley. The transuranic 
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elements of the actinides family, their synthesis and isotopes are presented in Table 1-1 (24, 

25). Due to cost and production difficulties, none of the elements beyond californium (Cf) 

has industrial applications (26). In comparison, isotopes of transuranic elements of Am, Pu 

and Cm have wide applications in nuclear power plants and other fields, such as in smoke 

detectors. As a result of their abundant availability, it makes the isotopes of transuranic 

elements of Am, Pu and Cm among the radionuclides of great concern for incorporation in 

RDD. 

 

1.2.3 Treatment for Internalized Transuranic Elements 

 

After the terrorist attacks on September 11, 2001 in the U.S., a renewed effort has 

been undertaken for the development of medical countermeasures for radiological/nuclear, 

biological, and chemical threats. There is an interest in developing and procuring therapeutic 

agents for national stockpiles. For this purpose, a U.S. research focus has primarily been 

initiated and led by the U.S. Department of Health and Human Services through the National 

Institute of Allergy and Infectious Diseases (NIAID) and the Biomedical Advanced Research 

and Development Authority (BARDA). In 2005, NIH published a Strategic Plan and 

Research Agenda for Medical Countermeasures against Radiological and Nuclear Threats 

that provided the research and development objectives of radionuclide decorporation 

agents. This was followed by the 2007 publication of the “Implementation Plan for Chemical, 

Biological, Radiological and Nuclear Threats” by the Public Health Emergency Medical 

Countermeasures Enterprise (27). The US Food and Drug Administration (FDA) has issued 

several guidance documents to facilitate this effort, including guidelines for a new drug 

application (NDA) for calcium and zinc DTPA products (28), guidelines for the development 

and testing of decorporation agents (29), and guidelines for animal models used to address 
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efficacy under the animal rule (30). These coordinated efforts have resulted in a number of 

reports, books and new drug candidates in the pipeline (31-33).   

 

1.2.3.1 Diethylenetriaminepentaacetic Acid (DTPA)  

 

DTPA (Figure 1.1) is a synthetic polyamino carboxylic acid with eight coordinate bond 

forming sites that can sequester metal ions and form highly stable DTPA-metal ion 

complexes. DTPA has wide industrial and medical applications including control of water 

hardness, medical imaging and decorporation of internally deposited radionuclides (34). In 

August 2004, FDA approved the calcium and zinc salts of DTPA manufactured by Hameln 

Pharmaceuticals GmbH, of Hameln, Germany for treatment of internal contamination with 

americium, curium and plutonium (35), which was based on the extensive experience in the 

treatment of nuclear workers who were contaminated with plutonium or americium and 

treated with Ca-DTPA and Zn-DTPA documented at the Radiation Emergency Assistance 

Center/Training Site (REAC/TS) and other studies (36-38). Ca-DTPA and Zn-DTPA 

treatment has established the usefulness of DTPA treatment in effectively reducing the body 

burden of internalized Pu, Am and Cm isotopes. These drugs are known to form very stable 

chelates with metal ions by exchanging calcium or zinc for a metal with greater binding 

affinity, radioactive actinides in particular. These chelates are then excreted by glomerular 

filtration into the urine. The approved Ca-DTPA and Zn-DTPA products are supplied as 

sterile solutions (dose = 1 g/5 mL). Akorn Pharmaceutical Inc. provides the FDA approved 

DTPA product in the US via an exclusively licensed and supply agreement with Hameln 

Pharmaceuticals GmbH. These products may be obtained from the REAC/TS in the event of 

a nuclear emergency. Over 4,600 doses these drugs have been administered for 

investigational use over the past 45 years. The Medical Preparedness and Response Sub-

Group of the Department of Homeland Security Working Group on Radiological Dispersal 



7 

 

Device (RDD) Preparedness recommends that these drugs be administered in 1 g daily 

unfractionated doses either by slow intravenous push, intravenous infusion, or inhalation in 

a nebulizer (1:1 dilution with water or saline). The package insert states that following 

intravenous administration, these agents are rapidly distributed with almost no accumulation 

in specific organs (39). No significant amounts of Ca- or Zn-DTPA penetrate into 

erythrocytes or other cells and there is little or no binding by the renal parenchyma.  The oral 

bioavailability of these compounds is low. The low permeability of DTPA and Ca-DTPA 

classifies them as Class III compounds (high solubility, low permeability) in the 

Biopharmaceutical Classification System (BCS). 

 

1.2.3.2 Improved DTPA formulations and Other Decorporation Agents under 

Development 

 

NCRP Report No. 65 summarized the treatment options for internalized 

radionuclides (40).  Due to the fact that effective treatments for internal radionuclide 

contamination exist for only a few radionuclides, the Public Health Emergency Medical 

Countermeasures Enterprise has prioritized development of broad-spectrum, and novel or 

improved radionuclide decorporation agents (27). Because DTPA treatment is 

contraindicated for decorporating uranium, as well as unsuitable for a mass casualty 

scenario (31, 41), a pharmaceutical approach to improved DTPA formulations and a 

chemical approach to new classes of decorporation agents have been pursued to solve 

these challenges (31). 

The pharmaceutical approach to improved DTPA formulations focuses on 

development of DTPA formulations suitable for delivery routes other than i.v. or inhalation, 

namely oral or other routes that are convenient to administer, suitable for mass casualty 

scenario and offer significant logistic advantages (42). Our group has developed a series of 
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DTPA prodrugs for enhanced delivery of DTPA via the oral route (31, 43-46), and the 

transdermal route (47, 48). The latter is the focus of this dissertation. The enhanced 

decorporation of transuranic elements by this prodrug approach has been demonstrated in 

an i.v. contamination model (44, 45), simulated wound model (45, 48), and inhalation 

models on rodents (unpublished results). Dr. Gita Shankar and colleagues at SRI 

International (Menlo Park, CA) are developing an orally bioavailable formulation of DTPA 

using gastrointestinal absorption enhancers (49), and demonstrated the enhanced 

decorporation over untreated control in i.v. contamination model on rodents (50). Dr. James 

Talton and colleagues at Nanotherapeutics Incorporated (Alachua, FL) have developed an 

enteric-coated NanoDTPA® formulation for oral delivery and demonstrated enhanced 

decorporation of transuranic elements over untreated control in i.v. contamination model on 

rodents (51, 52). 

The chemical approach to new classes of decorporation agents of transuranic 

elements focuses on the development of new chemical entities (NCE) and currently 

available biomaterials (31). Dr. Scott Miller and his colleagues at University of Utah have 

developed triethylenetetramine-hexaacetic acid based decorporation agents, which are 

structurally similar to DTPA and belong to the class of amphipathic polyaminocarboxylic acid 

compound family, and enhanced decorporation was achieved for the removal of plutonium 

and americium in rodents (53, 54). Siderophore-based actinide-sequestering agents are one 

major class of NCEs under investigation, which siderophore stands for “iron carrier” in Greek 

(55). Dr. Raymond Bergeron and colleagues at University of Florida have developed 

desferrithiocin and its derivatives, which are siderophore analogs, for decorporation of 

uranium isotopes (56, 57). Dr. Kenneth Raymond’s group at University of California at 

Berkeley, along with Patricia Durbin’s group at Lawrence Berkeley National Laboratory, has 

done extensive research in synthesizing novel siderophore-based actinide decorporation 

agents (58-60), and identified two lead hydroxypyridinonate (HOPO) compounds, 
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octadentate 3,4,3-LI-1,2-HOPO and tetradentate 5-LIO-Me-3,2-HOPO, as effective and safe 

decorporating agents for actinides in rodents (61-71). In terms of applying biomaterials for 

radionuclide decorporation, chitosan and its derivatives are currently being developed for 

the decorporation of ingested radionuclides by Dr. Tatiana Levitskaia at the Pacific 

Northwest National Laboratory (31). Dr. Charles Timchalk and colleagues of the Pacific 

Northwest Laboratory have designed a self-assembled monolayer on mesoporous supports 

(SAMMS), which are hybrid materials of mesoporous silica (SiO2), for decorporation 

evaluation of ingested radionuclides and the radionuclides in the systemic circulation (31). 

 

1.3 TRANSDERMAL DRUG DELIVERY 

 

Transdermal drug delivery possesses many advantages over the parenteral and oral 

routes. These include the delivery of a steady-state profile that reduces side effects related 

to fluctuations in plasma drug concentration, reduced dosing frequency, avoidance of first-

pass metabolism, and improved patient compliance due to its convenient and non-invasive 

means of self-administration (72-74). It may also offer benefits to special populations such 

as patients with needle phobia, those who are unconscious or too nauseated to take oral 

medications, pediatric patients and the elderly. The latter two populations are specific areas 

of concern to the FDA related to the development of radionuclide decorporation agents (29). 

The factors that affect transdermal absorption of drugs may include physiological and 

pharmaceutical factors such as the degree of hydration and thickness of the skin, the 

exposure time, skin immunology, the concentration of drug applied and the surface area 

over which the drug is applied (72-76). Also of critical importance are the physicochemical 

properties of drugs such as molecular weight and solubility, and the partition coefficient (log 

P) where the affinity of the drug for the skin must be greater than its affinity for the vehicle in 

which it is delivered. The ideal drug properties for passive transdermal delivery are aqueous 
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solubility > 1 mg/mL, molecular weight < 500 Da and a log P value of 2-4 (depending on 

molecular weight) (72-76). Passive diffusion of a drug across the stratum corneum can 

determined from Fick’s Law (Eq. 1-1). According to the following equation: 

 

 

 

where Jss = steady-state flux (mg/h); D = drug diffusivity (cm2/h); h= membrane thickness 

(cm); Kp = drug’s membrane-vehicle partition coefficient; Cveh = initial drug concentration 

(mg/cm3) in the vehicle; and A = surface area (cm2). According to Fick’s Law, transdermal 

fluxes can be improved by increasing drug diffusivity, partitioning into the stratum corneum, 

the surface area of application and the drug concentration in the formulation. It has been 

demonstrated that for relatively small molecules, e.g., a series of non-steroidal anti-

inflammatory agents, the log P values correlate well with the area under the plasma-time 

curve (AUC) values (77). 

Previous research reports have shown that to be a successful transdermal drug 

delivery candidate, a balance of lipophilicity and hydrophilicity is highly desirable because 

the drug needs to be reabsorbed into an aqueous environment after it penetrates through 

the stratum corneum (75, 76). A recent paper by Mark Prausnitz’s group at Georgia Institute 

of Technology demonstrated that transdermal delivery of molecules is limited by the full 

epidermis, not just the stratum corneum (78). 
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1.4 TRANSDERMAL DELIVERY OF DTPA PRODRUG BY MATCHING BIOKINETICS OF 

INTERNALIZED TRANSURANIC ELEMENTS 

 

Mass contamination scenarios call for effective and prompt medical countermeasures 

for the affected populations. Current DTPA treatment options do not meet the challenge 

imposed by a mass casualty setting in that skilled medical professionals are required to 

administer Ca/Zn-DTPA by i.v. injection and multiple injections may be required due to the 

short plasma half-life of DTPA. Crawley and Haines studied the clearance of 14C-labeled 

DTPA in rats after intravenous administration and observed that the amount of radioactivity 

retained in tissues 24 hours after administration was <1% of the administered radioactivity, 

and that over 99% was excreted up to 9 days after administration (79). Chromatographic 

analysis of the excreted radioactivity demonstrated that 14C-DTPA was intact and had not 

been metabolically degraded.  A separate study was conducted in which plasma and urine 

were analyzed for 14C content following the i.v. administration of 14C-DTPA to human 

subjects. The results showed that DTPA was rapidly distributed in the extracellular fluid 

volume and was cleared through the kidneys by glomerular filtration. Greater than 99% of 

the administered dose was collected in the urine within 24 hours of administration (see 

Figure 1.1 which was obtained from Akorn Inc’s package insert for Pentetate Calcium 

Trisodium Injection) (39). Based on a dose of 1 g/70 kg, we can project the plasma 

concentration of DTPA (Figure 1.2).  From these data, we can calculate that the elimination 

half-life is tri-phasic with a mean of 60 min and that there is very little tissue distribution of 

DTPA after i.v. injection.  Thus, a 1 g dose in 70 kg subject is expected to yield a Cmax of ~ 

142 µg/mL and a blood concentration of 34 ng/mL 12 hours after administration. 

In contrast, the release rates of internalized Am, Pu and Cm contaminants from 

wound sites to the systemic circulation in various animal species range from 0.052 to 6.3% 

of the administered radionuclides per day, a relatively slow and steady transfer process (80). 
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The release profiles of inhaled transuranic material based on ICRP Publication 66 

respiratory tract model and the biokinetic data from the contamination cases are highly 

dependent on the physical and chemical forms of the inhaled transuranic radionuclides, 

varying from highly soluble forms to insoluble forms (81-87). Simulated blood concentration 

profiles following daily i.v. administration of DTPA versus biokinetics of internalized 

transuranic radionuclides could be scenarios as depicted in Figure 1.4 as initially insoluble 

radionuclides (A) and highly soluble radionuclides (B). Furthermore, it has been suggested 

that a chelating agent must be maintained at a concentration of at least 10 to 25 µM in both 

extracellular and intercellular fluids for a sustained duration to ensure an optimal chelation 

effect of transuranic radionuclides (88). In comparing the short half-life and rapid clearance 

of DTPA after i.v. administration to the slow and sustained introduction of radio-actinides 

into the systemic circulation (80), there is a mismatch between the pharmacokinetic profile of 

intravenously administered DTPA and the biokinetic profile of transuranic radionuclides. This 

mismatch leads to a period where DTPA plasma concentrations are below the effective 

concentration required to chelate radionuclides in the systemic circulation and, thus, may 

limit the effectiveness of the current parenteral DTPA treatments. Previous efforts have 

addressed this mismatch and produced encouraging results.  

There are a number of reports in which DTPA salts have been used for the 

decorporation of 241Am in animal models in which the Am is in various chemical forms (89). 

Several studies have demonstrated that if the 241Am can be chelated before it accumulates 

in liver and bone, its decorporation can be greatly enhanced (90). Once in these tissues, 

241Am becomes firmly bound and clears very slowly. The clearance of 241Am from rat liver 

has been approximated using bi-exponential functions with half-lives of 5.8 and 150 days 

(91), which is also a slow and sustained release process. Based on this observation, 

Guilmette and Muggenburg conducted a study in which they used an osmotic pump for the 

continuous infusion of Zn-DTPA in dogs that had been contaminated with the moderately 
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soluble 241AmO2 by inhalation. They compared this treatment to controls as well as to dogs 

that received i.v. daily doses of Ca-DTPA (bi-weekly after the first 4 days) and assessed the 

decorporation efficiency by measuring the % initial pulmonary burden remaining as a 

function of time. The results of this study clearly demonstrated that continuous infusion of 

DTPA was significantly more effective in preventing the translocation of inhaled 241AmO2 

from lung to extra-pulmonary tissues such as liver and bone compared to bi-weekly 

intravenously administered DTPA. The infusion therapy approach led to 60- and 200-fold 

reductions in the absorbed radiation doses to the bone and liver, respectively, and blocked 

over 98% the 241Am that otherwise would have deposited in liver and bone (92). From a 

pharmacokinetic perspective, this is logical as the dissolution rate of 241AmO2 which is 

necessary for its absorption into the circulation, is much less than the clearance of DTPA 

from the circulation (93). DTPA has been entrapped in various liposome formulations for 

prolonged circulation after i.v. administration, and improved decorporation of 238Pu was 

achieved (94, 95). However, these approaches involve parenteral administration, thus 

making them unsuitable for mass casualty scenarios after a major nuclear/radiological 

emergency. As a result, a non-parenteral delivery system which can provide sustained 

levels of chelators in the circulation that match the biokinetic profile of actinides after 

inhalation or wound contamination is an attractive approach to address this problem. 

It is highly desirable to deliver DTPA to the circulation at a zero-order rate to better 

match actinide biokinetic profiles and thus achieve optimal radionuclide decorporation over 

an extended duration, as the results from the previous studies have shown. Due to its low 

partition coefficient (log P = -4.90) and high melting point (219-220ºC), DTPA is not a good 

candidate for transdermal delivery (73, 96). Prodrug strategies have been widely applied to 

drug candidates and compounds with undesirable physicochemical properties and 

absorption permeability, by converting certain functional groups into pro-moieties and thus 

transforming the molecules suitable for oral, topical and transdermal, and other routes of 
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delivery (97-102). Applying the prodrug strategy to the DTPA molecule, the five highly 

ionizable carboxylic groups were converted into 5 ethyl ester groups via Fischer 

esterification reaction (43, 44). The penta-ethyl ester of DTPA, designated as C2E5, was 

designed and synthesized as a new radionuclide decorporation prodrug to overcome the 

limitations of the current DTPA treatments (31, 43, 44). C2E5 possesses physicochemical 

properties suitable for transdermal delivery. It has a molecular weight of 533.6, water 

solubility of 3.0 mg/mL at pH 7.1 and 20.3 mg/mL at pH 5.7, and a log P value of 3.3, and  a 

log D value of 2.2 at pH 6.0., and it is a Newtonian liquid with a viscosity of 175 cP at 25ºC 

(44). The structures of C2E5 as well as its potential degradation products and metabolites 

including DTPA tetra-ethyl ester (C2E4), DTPA tri-ethyl ester (C2E3), DTPA di-ethyl ester 

(C2E2), DTPA mono-ethyl ester (C2E1), and the fully de-esterified DTPA are shown in 

Figure 1.1. Simulated blood concentration profiles following daily i.v. administration of DTPA 

versus biokinetics of internalized transuranic radionuclides are depicted in Figure 1.4 as 

initially insoluble radionuclides (A) and highly soluble radionuclides (B). 

Many prodrugs tested for topical and transdermal delivery were ester prodrugs (102-

107). After permeation through the stratum corneum, the ester prodrugs were metabolized 

by the enzymes in the epidermis and dermis, including mainly esterases and cytochrome 

P450 (108-113). Studies on the esterase distribution of skin have shown that the stratum 

corneum has little or no activity, the epidermis has the highest esterase activity, and the 

dermis has reduced activity relative to the epidermis (114). Selected niacin ester prodrugs 

were able to achieve high blood levels of niacin sufficient to reduce serum cholesterol and 

improve blood lipid profiles and it was evident that esterases in the skin were capable of 

rapidly converting the prodrug to the pharmacologically active niacin (104).  The action of 

skin esterases was also exploited in the development of testosterone esters where it was 

demonstrated that testosterone propionate was rapidly converted to testosterone during the 

skin permeation process (115). Because the transdermal drug delivery is limited by the full 
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epidermis, not just the stratum corneum (78), it’s highly desirable that a lipophilic ester 

prodrug first penetrates through the stratum corneum and then is converted by esterases in 

the epidermis into more hydrophilic metabolites and/or parent drug which need to be 

reabsorbed into an aqueous environment before entering into systemic circulation. 

Preliminary data on C2E5 metabolism suggest that C2E5 molecules undergo step wise de-

esterification in vivo (116, 117), and it’s anticipated that many of the partially hydrolyzed 

C2E5 metabolites could bind internalized transuranic radionuclides (118-122). Relevant 

physicochemical properties of C2E5 and its metabolites are shown in Table 1.2. Anticipated 

blood concentration profiles following transdermal administration of DTPA penta-ethyl 

prodrug versus biokinetics of internalized transuranic radionuclides could be two scenarios 

as depicted in Figure 1.5 as initially insoluble radionuclides (A) and highly soluble 

radionuclides (B). 

If a victim of nuclear terrorism inhaled 241AmO2 and/or was contaminated with 241Am 

particles via wound and the amount of 241Am that diffused into the circulation resulted in an 

average of 1 µCi in the bloodstream, then the concentration of Am in the bloodstream would 

be approximately 2 x 10-10 M. Thus, if we made the over-simplified assumption that the 

circulation was a well-stirred reactor and knowing the stability constant for DTPA binding 

with Am (1022 M), we can calculate the steady-state concentration of DTPA required to 

chelate the Am in the circulation to prevent its uptake into liver and bone. Figure 1.6 shows 

the DTPA/241Am ratio in the circulation as a function of infusion rate of DTPA at steady state, 

where the steady state concentration (Css) is defined as Css = R/Vdk, where R = infusion 

rate, Vd is the volume of distribution and k is the elimination rate constant. The red data point 

on this figure represents the infusion rate Guilmette used in rat studies (30 µmole/kg/day) 

extrapolated to a 70 kg man, i.e., 2.1 mmole/day (~800 mg/day). This figure shows that even 

at infusion rates of 0.1 µmole/hour/70 kg, the DTPA/241Am ratio would be >100 at steady 

state. This represents a daily dose of just only 1 mg/day. Of course, this model does not 
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take into account the physiological complexities of the circulatory system, local pH effects or 

the presence of biomacromolecules (proteins, indirect acids and bases) and other metals. 

Our group has studied the transmetallation between DTPA-lanthanide chelates, which have 

stability constants similar to actinides, and the two most physiologically relevant divalent 

ions, Cu2+ and Zn2+ (Ca2+ and Fe2+ do not compete with Am3+ for DTPA because the KAm-DTPA 

>> KCa-DTPA and KFe-DTPA) (93). Based on these studies, we expect the exchange between 

Am-DTPA and Cu2+ and Zn2+ at physiological concentrations to be ~1% (123). Thus, this 

model can provide initial guidance in the development of formulations for the continuous 

delivery of DTPA and related chelators. The intravenous doses of Ca- and Zn-DTPA are 

large (14.3 mg/kg), however, calculations based on known kinetic parameters indicate that 

delivery rates of the DTPA prodrug required to maintain effective steady state 

concentrations of DTPA may be achieved by much lower daily doses. It is not uncommon for 

10 g of a topical formulation to be applied to the skin for systemic delivery of a therapeutic 

agent, as in the case of AndroGel® (testosterone gel) (105). In addition, there are examples 

where ester prodrugs have been administered topically in relatively large doses for systemic 

delivery of therapeutic agents. Jacobson et al described the topical administration of niacin 

esters in which the dose of the prodrugs, applied as a 1-10% lotion, ranged from 34 to 340 

mg/kg (103). Because DTPA penta-ethyl ester is a liquid oil, formulations containing up to 

50% of the DTPA penta-ethyl prodrug can be prepared and 10-20 g of this semisolid 

formulation can be applied to the skin of an individual that has been contaminated with 

241Am to achieve zero order release of DTPA in bloodstream. 
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1.5 HYPOTHESIS AND SPECIFIC AIMS 

 

1.5.1 Hypothesis  

 

Transdermal administration of DTPA penta-ethyl ester prodrug, designated as C2E5, 

achieves comparable enhanced decorporation of 241Am to i.v. administration of DTPA in rats 

contaminated with intramuscularly injected [241Am]-americium nitrate. 

 

1.5.2 Specific Aims 

 

Aim I: Develop C2E5 Transdermal Formulations with Suitable Stability Profile. 

 

The objective of Specific Aim I is to 1) develop viable transdermal C2E5  

formulations by screening non-proprietary oil-in-water emulsion-based cream and 

hydrocarbon base ointment formulation prototypes, and exploring other semisolid 

formulations; and 2) evaluate the physical and chemical stability of prepared C2E5 

formulations for at least 6 month under storage stability conditions at 25 ± 2°C and 60 ± 5% 

relative humidity and at 4 ± 2°C. 

 

Aim II: Characterize and Evaluate the Candidate C2E5 Transdermal Formulations.  

 

The objective of Specific Aim II is to 1) characterize the candidate C2E5 formulations 

with Differential Scanning Calorimetry (DSC) and Scanning Electron Microscopy (SEC); 2) 

evaluate the rheological properties of the candidate C2E5 formulations; and 3) perform in 

vitro release testing of the selected C2E5 transdermal formulations with Franz diffusion cell. 

. 
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Aim III: Evaluate C2E5 Transdermal Formulations by Pharmacokinetic, Absorption and 

Mass Balance Studies in Rats. 

 

The objective of Specific Aim III is to 1) perform a pharmacokinetic study using the 

selected C2E5 transdermal formulations to determine the pharmacokinetic parameters in 

rats; and 2) perform absorption and mass balance studies with [14C]-labeled C2E5 

transdermal formulation in rats. 

 

Aim IV: Determine Efficacy of C2E5 Transdermal Formulations with Animal Model. 

 

The objective of Specific Aim IV is to determine the efficacies of the selected C2E5 

transdermal formulations using a wound contamination model with [241Am]-americium nitrate 

in rats at different C2E5 dose levels after 241Am contamination. 

 

1.6 SUMMARY 

 

In this dissertation, various C2E5 transdermal formulation prototypes were prepared 

and tested for C2E5 stability under normal storage stability conditions. The non-aqueous gel 

matrix comprised of ethyl cellulose and Miglyol 840® proved to stabilize C2E5 in the matrix. 

In addition, C2E5 non-aqueous gel was characterized by DSC and SEC, and in vitro release 

profile of the formulation was evaluated with Franz diffusion cell. The pharmacokinetic study, 

and absorption and mass balance study, as well as efficacy studies using a simulated 

wound contamination model in rats, were conducted in rats. A graphic description of 

decorporation of [241Am]-americium nitrate contaminated rats with C2E5 transdermal 

formulations is presented in Figure 1.7. The semisolid formulations containing C2E5 are 
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applied to the clipped dorsal skin of rats which have been contaminated with intramuscularly 

injected [241Am]-americium nitrate on the thigh. The C2E5 molecules penetrate through the 

stratum corneum and are converted to its metabolites by esterases in the skin. The C2E5 

metabolites chelate with 241Am to form stable complexes for enhanced elimination from the 

body. Detailed results are discussed in the following chapters. 
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Table 1.1 Transuranic elements, their synthesis and isotopes. 

Element Symbol 
Year of 

Discovery 
Method Isotopes 

Neptunium Np 1940 Bombarding 
238

U by neutrons 
235

Np,
236

Np,
237

Np, 
239

Np 

Plutonium* Pu 1941 Bombarding 
238

U by deuterons 
238

Pu*,
239

Pu,
240

Pu, 
241

Pu,
242

Pu,
244

Pu 

Americium* Am 1944 Bombarding 
239

Pu by neutrons 
241

Am*,
242m

Am, 
243

Am 

Curium* Cm 1944 
Bombarding 

239
Pu by α-

particles 

242
Cm*,

243
Cm,

244
Cm*, 

245
Cm,

246
Cm,

247
Cm, 

248
Cm,

249
Cm,

250
Cm 

Berkelium Bk 1949 
Bombarding 

241
Am by α-

particles 

245
Bk,

246
Bk,

247
Bk, 

248
Bk,

249
Bk 

Californium Cf 1950 
Bombarding 

242
Cm by α-

particles 

248
Cf, 

249
Cf,

250
Cf, 

251
Cf, 

252
Cf, 

253
Cf, 

254
Cf 

Einsteinium Es 1952 
As a product of nuclear 

explosion 

252
Es, 

253
Es, 

254
Es, 

255
Es 

Fermium Fm 1952 
As a product of nuclear 

explosion 

252
Fm, 

253
Fm, 

255
Fm, 

257
Fm 

Mendelevium Md 1955 Bombarding 
253
Es by α-particles 

257
Md, 

258
Md, 

260
Md 

Nobelium No 1965 
Bombarding 

243
Am by 

15
N 

or 
238
U with α-particles 

253
No, 

254
No, 

255
No, 

257
No,

 259
No 

Lawrencium Lr 1961–1971 
Bombarding 

252
Cf by 

10
B or 

11
B 

and of 
243

Am with 
18

O 

254
Lr, 

255
Lr, 

256
Lr, 

259
Lr, 

260
Lr, 

261
Lr, 

262
Lr 

* The common transuranic elements and readily available isotopes are highlighted in bold. 
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Table 1.2 Relevant physicochemical properties of C2E5 and its metabolites. 

Species 

Properties 

Molecular Wt. 
(Dalton) 

Log P or 
Clog P* 

Hydrogen 
bond donor 

Hydrogen 
bond acceptor 

Binding 
sites 

Structurally 
similar common 

chelator 

C2E5 533.61 3.3 0 13 3 IDA 

C2E4 505.56 2.5 1 13 4 NTA 

C2E3 477.50 0.3 2 13 5 N-hydroxyl 
EDTA 

C2E2 449.45 -1.9 3 13 6 EDTA 

C2E1 421.40 -2.4 4 13 7 N/A 

DTPA 393.35 -4.9 5 13 8 DTPA 

* The Clog P values for the C2E5 metabolites were obtained from ChemBioDraw Ultra 12.0; 
IDA: Iminodiacetic acid; NTA: nitrilotriacetic acid; EDTA: ethylenediaminetetraacetic acid; 
DTPA: diethylenetriaminepentaacetic acid, N/A: Not available. 
. 
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Figure 1.1 Structures of DTPA, the prodrug C2E5 and its metabolites. 
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Figure 1.2 Clearance of 14C-DTPA following intravenous administration. 
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Figure 1.3 Estimated blood levels (from Fig 1.2) following a 1 g i.v. dose of DTPA to a 70 kg 
man. 
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Figure 1.4 Simulated Blood Concentration Profiles Following Daily i.v. Administration of 
DTPA vs. Biokinetics of Initially Insoluble Radionuclides (A) and Biokinetics of Highly 
Soluble Radionuclides (B). 
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Figure 1.5 Anticipated Blood Concentration Profiles Following Transdermal Administration of 
DTPA Penta-ethyl Prodrug vs. Biokinetics of Initially Insoluble Radionuclides (A) and 
Biokinetics of Highly Soluble Radionuclides (B). 
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Figure 1.6 Estimated DTPA/241Am ratio in the circulation as a function of infusion rate of 
DTPA at steady state assuming [241Am] = 2 x 10-10 M, k = 0.693 h-1 and Vd = 6 L. 
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Figure 1.7 A graphic description for decorporation of [241Am]-americium nitrate contaminated 
rats with C2E5 transdermal formulations. 

 

 

 

 

 

 

 

 

 

 



 

 

 
 
 
 
 
 

CHAPTER 2: FORMULATION DEVELOPMENT OF PENTA-ETHYL ESTER OF DTPA 
FOR TRANSDERMAL DELIVERY 

 

The penta-ethyl ester of diethylenetriamine pentaacetic acid (DTPA), a DTPA prodrug 

designated as C2E5 intended for transdermal delivery for radionuclide decorporation, was 

first screened with a prototype cream formulation and a hydrocarbon base ointment with 

C2E5 concentration ranging from 1% to 20%. C2E5 experienced rapid degradation in the 

cream matrix and C2E5 ointment formulation underwent phase separation due to 

components incompatibility. Non-aqueous gel matrix comprised of ethyl cellulose/Miglyol 

840® was utilized to formulate C2E5 at different ethyl cellulose and C2E5 content levels. 

Differential Scanning Calorimetry (DSC) and Scanning Electron Microscope (SEM) imaging 

were applied for analysis of the prepared C2E5 gel formulation. C2E5 was stabilized in the 

non-aqueous gel matrix and ethyl cellulose solubilization by dispersion media was confirmed 

by DSC and SEM results. Selected C2E5 non-aqueous gel formulations were evaluated in a 

rodent 241Am wound contamination model at a dose level of 200 mg C2E5/kg. The 

enhanced decorporation over no treatment control on total decorporation, decorporation by 

urine, and decorporation by feces was 142%, 181% and 86%, respectively. The non-

aqueous gel matrix comprised of ethyl cellulose/Miglyol 840 was successfully employed to 

stabilize the hydrolysis prone C2E5. C2E5 was delivered transdermally and achieved 

enhanced decorporation for the proof of hypothesis. 
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2.1 INTRODUCTION 

  

 The United States and many other countries face increasing threats from terrorist 

groups with respect to the use of weapons of mass destruction against civilian populations. 

Of particular concern is that some of these groups are intensifying their efforts to acquire 

and develop nuclear and radiological weapons, such as Radiological Dispersal Devices 

(RDD) which, when spread by means of conventional explosives, constitutes what is 

referred to as a “dirty bomb”. Among the radionuclides of greatest concern that may be 

incorporated in an RDD are isotopes of americium (Am), curium (Cm) and plutonium (Pu). 

Internalization of these radioactive materials may result in acute radiation sickness or 

chronic injuries including an increased risk of developing tumors. 

 The calcium (Ca) and zinc (Zn) trisodium salts of diethylenetriamine pentaacetic acid 

(DTPA) are the only agents that have been approved by the US Food and Drug 

Administration (FDA) as chelating agents for internal contamination by Am, Cm and Pu 

radionuclides. The primary goal of these agents is to chelate those radionuclides before they 

become fixed in tissues such as liver and bone while enhancing their elimination. Due to the 

fact that Ca-DTPA and Zn-DTPA are highly hydrophilic and have a low oral bioavailability of 

2-3% (124), these products must be prepared as sterile injectable solutions. Most sterile 

injectable products are expensive to manufacture and require administration by a skilled 

professional, which render current Ca/Zn-DTPA treatment unsuitable for facile use in a mass 

casualty situation. Furthermore, there is a mismatch between the pharmacokinetic profile of 

intravenously (i.v.) administered DTPA and the biokinetic profile of transuranic radionuclides 

(90, 92, 94). Stevens and colleagues studied the clearance of 14C-labeled DTPA in man 

after i.v. administration and observed that the intravenously administered 14C-labeled DTPA 

was quantitatively excreted intact in urine within 24 hours (125). The total body clearance of 

14C-labeled DTPA in rats 24 h after i.v. injection has been reported to range from 94% to 
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100% with half-lives from 0.28 to 0.53 h with no metabolic degradation (79, 94). In contrast, 

the release rates of internalized Am, Pu and Cm contaminants from wounds sites to the 

systemic circulation in various animal species range from 0.052 to 6.3% of the injected dose 

per day, a relatively slow and steady transfer process (80). It has been suggested that a 

chelating agent must be maintained at a concentration of at least 10 to 25 µM for a 

sustained duration to ensure an optimal chelation effect of transuranic radionuclides, both in 

extracellular and intercellular fluids (88). A sustained DTPA plasma concentration cannot be 

achieved by i.v. Ca/Zn-DTPA and is not readily achievable by conventional sustained-

release oral dosage forms. In addition, there are some patient populations that cannot take 

drugs orally, e.g., patients experiencing severe nausea following radiation exposure and 

very young pediatric patients. 

A zero-order release profile can be achieved via transdermal drug delivery (72, 73). 

Topical and transdermal drug delivery provides many clinical advantages over the oral 

route, such as avoidance of first path metabolism, sustained release of drug with more 

uniform plasma concentration, and improved patient acceptance and compliance (72, 73). 

To be a good topical and transdermal drug delivery candidate, the compound needs to 

possess suitable physicochemical properties, such as a molecular weight generally less 

than 500 Dalton, a partition coefficient (log P) between 1 and 3, and a melting point below 

200ºC (72, 73). DTPA is highly hydrophilic (log P = -4.90) with high melting point (219 - 

220ºC), thus making it unsuitable for transdermal delivery (96). We have reported on the 

preparation of a lipophilic DTPA prodrug, designated as C2E5, in which the 5 carboxylic 

groups on DTPA were esterified with ethanol. C2E5 is a clear, light yellow, slightly viscous 

Newtonian liquid with a viscosity of ~175 cP (175 mPa s) and possesses desirable 

physicochemical properties for transdermal delivery (43, 44). The structures of C2E5 and 

the parent compound (DTPA) are depicted in Figure 1. Transdermal delivery of C2E5 may 

provide a sustained release of DTPA in the circulation following metabolism of the prodrug 
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by esterases present in the skin and plasma. The semisolid dosage forms for topical and 

transdermal drug delivery include creams, ointments, gels, and lotions. Unlike transdermal 

patches which require highly specialized expertise on patch design and sophisticated 

manufacturing systems, semisolid dosage forms can easily be screened in a lab setting. 

Previous reports showed that approximately 68% of C2E5 remained intact for the neat C2E5 

oil containing 0.6% α-tocopherol stored at 25°C/80% relative humidity for three months (46), 

indicating that C2E5 is prone to degradation. The aims of these studies were to screen 

candidate cream, ointment and gel dosage forms to identify a semisolid matrix to stabilize 

and be compatible with C2E5, investigate the relevant physical properties of a lead C2E5 

formulation, and evaluate the decorporation efficiency of the lead C2E5 formulation in a 

simulated 241Am wound contamination model. 

 

2.2 MATERIALS AND METHODS 

 

2.2.1 Materials 

 

Miglyol 812® and Miglyol 840® were gifts from Sasol (Witten, Germany). The 

Capmul MCM® was a gift from Abitec Corp (Columbus, Ohio). Ethylcellulose polymers of 

increasing chain length with ethoxyl content of 48.0-49.5% [ETHOCEL® Std 7 FP Premium 

(EC7), ETHOCEL® Std 10 FP Premium (EC10), and ETHOCEL® Std 100 FP Premium 

(EC100)] were gifts from Dow Chemical (Midland, MI, USA). C2E5 was prepared based on 

the Fischer esterification method by reacting DTPA with ethanol under reflux in the presence 

of a hydrochloric acid catalyst delivery (44). Propylene glycol (USP), sorbitol, 70% solution 

(USP), sorbic acid (NF), butylated hydroxytoluene (NF), simethicone (USP), white 

petrolatum (USP), cetostearyl alcohol (NF), polyoxyethylene (20) cetyl ether (Brij 58®), 

glyceryl monostearate (cosmetic grade), polyethylene glycol 400 monostearate (NF), 
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butylated hydroxyanisole (NF), 1N NaOH solution, acetonitrile, trifluoroacetic acid, 

anhydrous ethanol, and isopropyl alcohol were purchased from VWR International (Radnor, 

PA) and Fisher Scientific (Fairlawn, NJ). [241Am]-Americium nitrate solution for intramuscular 

(i.m.) contamination of adult female Sprague-Dawley (SD) rats was prepared from [241Am]-

Americium chloride (Eckert & Ziegler Isotope Products, Valencia, CA) by dilution with a 

solution of concentrated nitric acid. Double-distilled water was obtained from a Milli-Q 

system (Millipore, Billerica, MA, USA). 

 

2.2.2 Preparation of C2E5 Cream Formulations 

 

The oil-in-water emulsion-based cream formulation was comprised of an aqueous 

phase (85.2% w/w of base cream; Components: distilled water, 79.8% w/w; propylene 

glycol, 3.0% w/w; sorbitol, 70% solution, 2.0% w/w; sorbic acid, 0.2% w/w; butylated 

hydroxytoluene, 0.1% w/w; simethicone, 0.1% w/w) and an oil phase (14.8% w/w of base 

cream, Components: petrolatum, 5.6% w/w; cetostearyl alcohol, 4.4% w/w; Brij 58, 4.0% 

w/w; glyceryl monostearate, 0.2% w/w; polyethylene glycol 400 monostearate, 0.6% w/w). 

The topical cream was prepared by first preparing the aqueous phase in a 200 mL glass jar. 

The ingredients were weighed into the jar and subsequently heated to 70°C in a water bath. 

When all ingredients were fully dissolved, the pH was adjusted to 3.5, 4.5 or 5.5 by addition 

of a 1N NaOH solution. The oil phase was prepared by weighing the various components 

into a 100 mL beaker and then heating at 60°C. The emulsion was formed by decanting the 

melted oil phase into the jar containing the aqueous phase and which was equipped with a 

Caframo BDC1850 mechanical stirrer (Caframo Ltd., Wiarton, ON, Canada). The mixer was 

positioned in the center of the jar approximately 1/3 from the bottom and the stirring speed 

was set at 1000 RPM. The emulsion was stirred for 30 min while heated at 70°C. The 

heating was then stopped and the emulsion was stirred for an additional 2 hours. The final 
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emulsion was prepared by direct addition of C2E5 and subsequent mixing for 5 minutes at 

500 RPM so that the final concentration of C2E5 was 1%, 5%, 10% or 15% w/w. All 

emulsions were sealed in vials with an airtight cap, covered with aluminum foil to protect 

from light, and stored at room temperature for stability testing. 

 

2.2.3 Preparation of C2E5 Ointment Formulations 

 

The non-aqueous hydrocarbon base ointment was comprised of white petrolatum 

(79.9% w/w), Miglyol 812 (15.4% w/w), Capmul MCM (4.6% w/w) and butylated 

hydroxyanisole (0.1% w/w). The base ointment was prepared by liquefying the white 

petrolatum using heat while mixing and then adding the Miglyol 812, Capmul MCM and 

butylated hydroxyanisole; a white ointment was produced upon cooling. C2E5 containing 

ointment formulations with C2E5 concentrations of 5%, and 10% and 20% w/w were 

prepared by adding the C2E5 directly to the base ointment and then mixing for 5 minutes at 

1000 RPM using a Caframo BDC1850 mechanical stirrer with a mixer with 8 points and 1 

inch in diameter. The final C2E5 containing ointment formulations were transferred to 20 mL 

scintillation vials, sealed with an airtight cap, covered with aluminum foil to protect from light, 

and stored at room temperature for subsequent stability testing. 

 

2.2.4 Preparation of C2E5 Non-aqueous Gels 

 

The C2E5 non-aqueous gels were prepared according to a previously described 

method with minor modifications (126). Miglyol 840 and C2E5 were first heated to 60°C, 

followed by the slow addition of the fine particles of EC7, EC10 and EC100 into the solvent 

under constant stirring. The EC, Miglyol 840 and C2E5 mixtures were held under stirring 

until the mixtures turned into clear viscous solutions, typically in 2 to 12 hours. Non-aqueous 
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gels were formed after cooling to ambient temperature. Four formulations were prepared 

from each EC polymer: 7%, 8%, 14% and 16% w/w for EC7, and 7%, 8%, 10% and 12% 

w/w for EC10 and EC100. The non-aqueous gel samples were put under vacuum to remove 

air bubbles trapped in the gels and subsequently crimped with an airtight cap, covered with 

aluminum foil to protect from light, and stored at room temperature for stability testing. 

 

2.2.5 High Pressure Liquid Chromatography (HPLC) Assay for C2E5 

 

The C2E5 concentration in these cream, ointment and non-aqueous gel formulations 

was determined using a Shimadzu Prominence HPLC system equipped with an Alltech 

3300 Evaporative Light Scattering Detector (ELSD). A reverse-phase gradient separation 

was performed using a Chromolith® FastGradient RP-18e column (50 × 2.0 mm) coupled 

with an Alltima Alltech HP All-Guard Cartridge (C18, 5µm particle size, 2.1 x 7.5 mm) at 

40°C and at a flow rate of 0.25 mL/min. The solvents that comprised the mobile phase were 

water with 0.1% trifluoroacetic acid (A) and acetonitrile with 0.1% trifluoroacetic acid (B). The 

linear gradient for the mobile phase mixture (A:B) was first an equilibration phase at 95:5 for 

1 min, then from 95:5 to 5:95 over 9 min, followed by an equilibration phase at 95:5 for 10 

min, and ending with a reversal to 95:5 in 3 min and an equilibration phase of 95:5 for 3 min. 

The ELSD was operated at 40°C with 1.9 L/min nitrogen gas flow and the retention time of 

C2E5 was 9 min. The extraction of C2E5 from the cream, ointment and non-aqueous gel 

samples was followed the method of Tashtoush with minor modifications (127). 

Approximately 50 - 200 mg of the formulation samples were weighed into a 50 mL conical 

centrifugation tube, followed by addition of 20 -30 mL of acetonitrile. The mixture was then 

vortexed for 1-10 minute followed by centrifugation for 5 min at 10,000xg at 20ºC. One mL of 

the supernatant was filtered through a 0.2 μm polyvinylidene difluoride (PVDF) filter into an 

HPLC vial for analysis. A 10 µL injection for each sample was performed. Samples were 
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held at ambient temperature during analysis and analyzed using standard curves over a 

concentration range of 0.05 – 1.00 mg/mL which had a power regression fit of R2 ≥ 0.997. 

 

2.2.6 Viscosity Measurement of C2E5 Non-aqueous Gels 

 

The apparent viscosity of the C2E5 non-aqueous gels were measured at a shear 

rate of 1000 s−1 at 25ºC using an Brookfield R/S Plus rheometer (Brookfield Engineering, 

Middleboro, MA), which was equipped with a 25 mm diameter cone and plate assembly. 

The gel samples were carefully loaded to the lower plate to reduce shearing effects and 

equilibrated for 5 min at 25ºC prior to measurement. Triplicate measurements were 

performed for the formulation and data are reported as mean ± S.D. 

 

2.2.7 Thermal Analysis by Differential Scanning Calorimetry (DSC) 

 

The EC10 polymer particles that had been dried overnight at 60°C before analysis, 

and the C2E5 non-aqueous gel samples were analyzed using a TA Instruments DSC Model 

Q200 (Newcastle, DE, USA) under a nitrogen flow of 50 mL/min.  Samples (5-10 mg) were 

heated in a sealed aluminum pan at a ramp rate of 10°C/min, cooled at a rate of 5°C/min, 

and subsequently heated at 10°C/min in heat/cool/heat mode from -10°C to 160°C. The 

glass transition (Tg), and melting (Tm) temperatures in the third heating cycle were 

determined using TA Universal Software. 

 

2.2.8 Scanning Electron Microscope (SEM) Imaging  

 

The pre-dried EC10 polymer particles and C2E5 non-aqueous gel samples were 

observed and recorded using a Hitachi S-4700 scanning electron microscope at an 
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accelerated voltage of 15kV. All images were taken at a scan rate of 100 millisec per line. 

The EC10 polymer particles and C2E5 non-aqueous gel samples were deposited directly 

over double-sided carbon tape and imaged without further treatment. The C2E5 non-

aqueous gel samples were imaged on the stub which was tilted 45º toward the lower 

scanning election detector for better imaging results. 

 

2.2.9 Americium Decorporation in a Rodent Wound Model of Contamination 

 

All animal studies were conducted according to a protocol approved by the University 

of North Carolina at Chapel Hill Institutional Animal Care and Use Committee (IACUC). Adult 

female SD rats weighing from 200 to 400 g were used in these studies (Charles River Labs, 

Raleigh, NC). Food and water were given ad libitum. The animal room was kept at a 

controlled temperature (23°C) and light cycle (light exposure from 8 AM to 8 PM). For the 

duration of the study, the rats were individually housed in metabolic cages. 

To evaluate the efficacy of transdermal delivery of the C2E5 non-aqueous gel, a 

proof of principle radionuclide decorporation efficacy study was conducted in rats 

contaminated with 241Am. Adult female SD rats were anesthetized with 2-3% isoflurane. 

Dorsal skin between the cervical vertebrae and anterior thoracic vertebrae was clipped with 

caution before all animals were contaminated with [241Am]-Americium nitrate solution (250 

nCi, 0.1 mL) via an i.m. injection in the anterior thigh muscle. Freshly prepared C2E5 non-

aqueous gel formulations containing 30% C2E5, 63% Miglyol 840 and 7% of EC7, EC10 or 

EC100 (formulations N-1, N-5 and N-9 – see Table 2) were applied at a dose of 200 mg 

C2E5/kg (375 µmol C2E5/kg) using a cotton swab to approximately 6-8 cm2 of the clipped 

dorsal region immediately after contamination. The mass of C2E5 gel applied was recorded 

for each animal to permit the actual dose determination. Negative control included animals 

without any treatment. The animals were observed once daily and their body weights 
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recorded at pre-dose and prior to necropsy. Urine and feces were collected daily until the 

animals were euthanized on day 7 at which time the cage washes were collected. As ~35% 

of the decay of 241Am is associated with photon emissions of 59.7 keV, 241Am in samples 

was quantified using a gamma counter (2470 Wizard 2, Perkin Elmer, Waltham, MA, USA).  

The samples were counted for one minute using a 40-80 keV energy detection window and 

were background-corrected. Additionally, 241Am activity was quantified in 2 x 0.1 mL aliquots 

of the dosing solution to determine the initial administered dose of 241Am. For all samples, 

241Am content was expressed as a percentage of the initial injected dose. The percent of 

enhanced decorporation for animals treated with transdermal C2E5 non-aqueous gels 

compared to the no treatment control animals were calculated from Equation 2-1 (90). 

 

Percentage Enhanced Decorporation   
 % ID (Treatment)   % ID ( o Treatment)  

% ID ( o Treatment)
                 

 

In this equation, % ID represents the percent of the initial injected dose. 

 

2.2.10 Statistical Analysis 

 

Comparisons between non-aqueous gel formulations were made using one-way 

analysis of variance (one-way ANOVA). Having determined by one-way ANOVA that gel 

formulation was not a significant effect, two-tailed t-tests were used to compare 

decorporation efficacy between C2E5 treated and untreated animals. All measurements are 

expressed as mean ± standard deviation (S.D.). The level of significance was set at p < 

0.05. 
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2.3 RESULTS  

 

2.3.1 Stability of C2E5 Cream and Ointment Formulations 

 

The composition and stability testing results of C2E5 cream formulations are 

presented in Table 2.1. The base cream is white and the C2E5 containing cream became 

more yellow with increasing C2E5 content. No phase separation was observed for the C2E5 

cream formulations for the 2 month stability testing period at 25 ± 2°C/60 ± 5% relative 

humidity. Because of the high concentrations of C2E5 in these formulations and the fact that 

C2E5 is self-buffering, the final pH of all of the cream formulations was in the range of pH 5 

to 6. Based on the stability testing results of the C2E5 oil-in-water cream-based 

formulations, it indicated that higher C2E5 content in the creams resulted in a better stability 

profile, ranging from 52.6% to 61.6% C2E5 remaining for 1% C2E5 cream formulations, to 

77.1% to 90.6% C2E5 remaining for 16.7% C2E5 cream formulations. The major 

degradants of C2E5 in the cream formulations were partially hydrolyzed products of C2E5, 

such as the tri- and tetra-ethyl esters of DTPA. Although the cream formulations with higher 

C2E5 content showed improved C2E5 stability over lower C2E5 containing cream 

formulations, they failed to deliver an acceptable C2E5 stability profile for a reasonable 

product shelf life. 

  The C2E5 ointment formulations showed a similar trend in terms of physical 

appearance as C2E5 containing cream formulations. The ointment formulation containing 

20% C2E5 underwent phase separation within the first month after storage at 25 ± 2°C/60 ± 

5% relative humidity; the C2E5 ointment formulation with 5% and 10% C2E5 contents 

experiencing phase separation within 3 months under the same storage conditions. 
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2.3.2 Stability of C2E5 Non-aqueous Gels 

 

The composition and stability data of C2E5 non-aqueous gel formulations after 3 

months storage at 25 ± 2°C/60 ± 5% relative humidity are presented in Table 2.2. The C2E5 

non-aqueous gel formulations appeared to be yellow and opaque. During the 3 month 

storage period, no phase separation was observed for the non-aqueous gel formulations. 

The improved C2E5 stability in the non-aqueous gel matrix was achieved over the C2E5 

cream formulations with greater than 93% of the original C2E5 remaining for most of the 

non-aqueous gel formulations stored at the same storage condition for 3 months. Clumps 

were observed for formulations associated with C2E5 non-aqueous gel using EC100 as the 

gelling agent possibly due to EC100’s longer polymer chain and higher molecular weight, 

which make the solubilization of EC100 in C2E5 and Miglyol 840 inadequate. Lack of 

content uniformity in these gels may explain the higher than expected C2E5 concentration 

observed in the formulation of N-10. 

 

2.3.3 Viscosity of C2E5 Non-aqueous Gels 

 

The apparent viscosity measurements of C2E5 non-aqueous gel formulations are 

reported in Table 2.2. An increase in concentration of the ethyl cellulose, the gelling agent, 

resulted in the increase in the apparent viscosity of the non-aqueous gel formed, as well as 

the same trend in the ethyl celluloses with higher molecular weight and polymeric chain 

length, an indication of a stronger gel structure as a result of stronger interaction between 

the ethyl cellulose chains and between the ethyl cellulose chain and the dispersion media 

molecules. This observation is consistent with the result reported by Heng (126). The non-

aqueous gels containing 10% and 12% EC100 failed to yield a stable reading at this shear 

year due to the breakup of the gel samples. 
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2.3.4 Thermal Analysis by Differential Scanning Calorimetry (DSC) 

 

The DSC spectra of pre-dried EC10, C2E5 non-aqueous gel formulation comprised 

of 10% EC10, 30% C2E5 and 60% Miglyol 840 (Formulation N-7) are presented in Figure 

2.2. The DSC spectrum of pre-dried EC10 (Figure 2.2A) showed one minor endothermic 

peak appearing at 63°C and one major endothermic peak at 120°C. The latter peak was 

determined to be the EC10 glass transition temperature (128). The endothermic peak at 

63°C appeared to be glyoxal, which is a major impurity in ethyl cellulose (129), or reaction 

products associated with glyoxal. However, further investigation is necessary for 

confirmation of this peak. The DSC spectrum of the C2E5 non-aqueous gel formulation N-7 

(Figure 2.2B) showed one major endothermic peak appearing at 106°C and one minor 

endothermic peak at 120°C. The presence of a minor EC10 glass transition endothermic 

peak at 120°C indicated that there was nearly complete solubilization of EC10 particles in 

Miglyol 840 and C2E5 and a minuscule amount of partially solubilized EC10 particles 

present in the gel sample was expected. The endothermic peaks at 106°C might be due to 

water trapped in the EC10 material, which could be a result of use of the EC10 that was not 

dried before incorporated in the gel preparation. 

 

2.3.5 Scanning Electron Microscope (SEM) Imaging 

 

Figure 2.3 shows the SEM images of pre-dried EC10 particles and the C2E5 non-

aqueous gel (formulation N-7).  In Figures 2.3A and 2.3B, the SEM images showed tightly 

clumped EC10 particles with a relatively uniform size distribution averaging 1 to 5 µm in 

length. The SEM images of the C2E5 non-aqueous gel (Figure 2.3C and 2.3D) displayed a 

relatively smooth gel surface that was embedded with small particles. The small particles 
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were determined to be residual EC10 material that failed to be completely solubilized by 

Miglyol 840 and C2E5 during the gel preparation process. This assessment is supported by 

the DSC spectrum of the C2E5 non-aqueous gel in which a minor EC10 glass transition 

endothermic peak appeared at 120°C. 

 

2.3.6 Radionuclide Decorporation 

 

The excretion of 241Am in urine and feces after seven days in untreated rats and in 

rats treated with a single 200 mg/kg dose of C2E5 applied topically in different non-aqueous 

gel formulations immediately after radionuclide contamination are summarized in Table 2.3. 

The mean total decorporation observed following treatment with C2E5 non-aqueous gels 

formulated with EC7, EC10 and EC100 was not significantly different (FFormulations(2,3) = 0.15, p 

= 0.87) and clearance in the urine and feces were consistent across all formulations 

(FUrine(2,3) = 0.41, p = 0.70 and FFeces(2,3) = 0.72, p = 0.56), indicating that the type of the ethyl 

cellulose polymers used in formulating C2E5 non-aqueous gels did not affect decorporation 

efficacy in a statistical manner. Therefore, the C2E5 treatment groups were combined into 

one C2E5 treated animal group and compared with untreated animals. The daily excretion 

of 241Am in contaminated animals treated with the C2E5 gel and untreated control animals is 

presented in Figure 2.4. Application of a single dose of the C2E5 gel immediately after 

contamination resulted in enhanced excretion of 241Am for a period of at least 3 days 

compared to untreated animals. Treatment with C2E5 transdermal gels enhanced total 

decorporation compared with untreated controls. The enhanced decorporation was primarily 

due to urinary, but significantly increased fecal decorporation was also observed. The 

enhanced decorporation over no treatment control on total decorporation, decorporation by 

urine, and decorporation by feces was 142%, 181% and 86%, respectively. 
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2.4 DISCUSSION 

 

In the present study, by testing the stability and compatibility of C2E5 in different 

transdermal drug delivery vehicles, we demonstrate that a non-aqueous gel matrix 

comprised of ethyl cellulose/Miglyol 840 can be used to protect a hydrolysis prone 

compound while retaining the drug’s efficacy for transdermal delivery. DSC and SEM results 

confirmed the nearly complete solubilization of ethyl cellulose in the dispersion media. 

As the largest organ of the integumentary system in humans, skin has a surface area 

of about 2 m2 and is involved in many biological functions. One major function of the skin is 

to serve as a protective barrier for xenogenous substances. A highly stratified “brick and 

mortar” lipophilic stratum corneum greatly limits the compounds that can effectively 

penetrate this layer, and only allows absorption of compounds possessing suitable 

physicochemical properties, such as molecular weight generally less than 500 Dalton, 

partition coefficient (log P) between 1 to 3, and melting point below 200ºC (72, 73). 

Furthermore, to be a successful transdermal drug delivery candidate, a balance of 

lipophilicity and hydrophilicity is highly desirable because the drug needs to reabsorbed into 

an aqueous environment after it penetrates through the stratum corneum (75). 

Consequently, many topical and transdermal drugs possess ester or other functional groups 

that increase the lipophilicity of the drug molecules and as a result, render them moisture-

sensitive and prone to a variety of degradation reactions (130, 131). Although C2E5 

possesses suitable physicochemical properties for transdermal delivery, which include a log 

P of 3.3 and a melting point well below 200ºC (44), it suffers from a poor stability profile due 

to hydrolysis and other potential secondary degradation pathways. The pH of the water 

phase for the cream formulations was set at 3.5, 4.5 and 5.5 based on C2E5 pre-formulation 

data which demonstrated that C2E5 degradation in buffered aqueous solution follows a 

pseudo-first order kinetics and C2E5 is most stable at approximately pH 4.2 (44). From the 
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C2E5 cream stability testing results, it suggests that the C2E5 content in the cream plays a 

more important role for the stability of the C2E5 incorporated in the cream matrix than the 

pH of the water phase, with a much higher percent of C2E5 remaining intact in the cream 

formulation with higher C2E5 content. However, the cream formulation failed to stabilize the 

C2E5 incorporated in the cream matrix for sufficient storage stability at 25°C. 

As a consequence of poor stability of the cream formulations, ointment formulations 

comprising white petrolatum, Miglyol 812 and Capmul MCM was developed. The C2E5 

ointment formulations were physically unstable and underwent phase separation within 3 

months after storage at 25 ± 2°C/60 ± 5% relative humidity, which demonstrates the 

instability of C2E5 ointment formulations as a result of incompatibility and lack of interaction 

between the white petrolatum, the main component of the ointment matrix, and the C2E5. 

White petrolatum consists of saturated hydrocarbons with carbon numbers mainly greater 

than 25 (132). In order to maintain the physical stability of ointment structure, interactions 

between petrolatum molecules and dispersion medium molecules are necessary. Because 

the major force existing between petrolatum molecules are hydrophobic-hydrophobic 

interaction, and considerable interactions of this type exist between the C-8 and C-10 chains 

of Miglyol 812 and Capmul MCM, and the petrolatum molecules, addition of the C2E5 

molecules that lack hydrophobic-hydrophobic interaction potential would destabilize the 

ointment matrix, with the expectation that  the higher the C2E5 content in the ointment 

formulation, the faster the ointment formulation would undergo phase separation. The 

limited physical stability of the C2E5 ointment formulations could be well explained by these 

observations. 

Due to the high hydrolytic tendency of the C2E5 ester bonds and incompatibility of 

C2E5 with the hydrocarbon base ointment matrix, the focus of the C2E5 formulation 

development was shifted to select a semisolid dosage form that contains a dispersion 

medium lacking functional groups such as hydroxyl and carboxylic groups that facilitate the 
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hydrolysis of the C2E5 ester bonds and a gelling agent that is compatible with C2E5. 

Furthermore, the process to make this semisolid dosage form should not expose C2E5 to 

harsh conditions that accelerate its degradation. Non-aqueous gel formulations were 

pursued as a viable dosage form candidate to stabilize C2E5 in the delivery vehicles. In 

contrast to extensive research on traditional semisolid dosage forms such as creams, 

ointments and hydrogels, there are far fewer reports on the development of non-aqueous 

gel matrices intended for topical and transdermal drug delivery (126, 133-136). Advantages 

of non-aqueous gel dosage form include matrix components that stabilize the moisture 

sensitive drug substance and candidate non-aqueous gel matrices that possess the suitable 

rheological and mechanical properties for topical and transdermal drug delivery. The Heng 

group reported on non-aqueous gel matrices containing ethyl cellulose and Miglyol 840 by 

directly mixing the ethyl cellulose and Miglyol 840 at 60°C (126). ETHOCEL, an ethyl 

cellulose polymer suitable for pharmaceutical application, contains ~50% hydroxyl content 

on the polymer chain which is not readily available to interact with other molecules 

compared to hydroxyl groups in a small molecule due to steric and rotational hindrance. 

Miglyol 840, a neutral oil mixture of propylene glycol dicaprylate and dicaprate, has excellent 

penetration-promoting, emollient and skin-smoothing properties as well as a high stability 

against oxidation (137). The C2E5 stability profile in the non-aqueous gel formulations 

demonstrated pronounced improvement compared to that of neat C2E5 containing 0.6% α-

tocopherol in which less than 70% of C2E5 remained intact after three months of storage 

under similar conditions (46), as well as that of C2E5 incorporated in the cream 

formulations. The improved stability profile of C2E5 in this ethyl cellulose/Miglyol 840 matrix 

may be attributed to steric and rotational hindrance of the hydroxyl groups on the ethyl 

cellulose polymer backbone resulting in decreased interactions with C2E5 molecules. In 

addition, Miglyol 840 neutral oil is non-hygroscopic, possesses high stability against 

oxidation and contains no free hydroxyl groups. No phase separation observed in the 3 
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month storage period for the C2E5 containing non-aqueous gel formulations indicated that a 

stable and extensive three-dimensional reversible physical crosslinks were formed within the 

gel structures (126). Based on the initial report on the viscosity of the prepared C2E5 non-

aqueous gels and previous studies on an ethyl cellulose/Miglyol 840 non-aqueous gel matrix 

(126, 138, 139), further investigation may focus on the relationship between the viscosity 

and the ratios of the ethyl cellulose, Miglyol 840 and C2E5 could yield the ideal C2E5 non-

aqueous formulations with suitable rheological and mechanical properties for the 

transdermal delivery of C2E5. 

Contrary to the transdermal patches which are viewed as a medical device and 

normally demand highly specialized expertise and multi-step manufacturing process, the 

C2E5 non-aqueous gel is readily prepared by directly mixing the ethyl cellulose with the 

mixture of C2E5 and Miglyol 840. In contrast to the DSC spectrum of the EC10 polymers, 

the DCS spectrum of an EC10 based gel (Figure 2.2B) indicated nearly complete 

solubilization of EC10 by Miglyol 840 and C2E5. The SEM images of the same EC10 based 

gel (Figures 2.3C and 2.3D) confirmed the DSC result in that a relatively smooth EC10 gel 

surface was embedded with residual EC10 particles. To improve the quality of the C2E5 

non-aqueous formulations, procedures such as pre-drying the ethyl cellulose before use to 

remove water and volatile impurities and milling the ethyl cellulose particles before use to 

improve EC10 solubilization were applied. To reduce the potential C2E5 degradation in the 

gel preparation stage, addition of C2E5 after ethyl cellulose/Miglyol 840 gel formation and 

filling the head space of the gel preparation vessel with nitrogen could retard C2E5 

degradation.  

C2E5, applied topically to contaminated rats, in non-aqueous gel formulations at 200 

mg/kg was able to enhance 241Am decorporation. A preliminary pharmacokinetic study 

conducted by this research group on SD rats using a C2E5 non-aqueous gel at a dose of 

200 mg C2E5/kg demonstrated that C2E5 was converted into DTPA in vivo (47), confirming 
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that C2E5 is indeed a prodrug of DTPA. We had previously reported on the enhanced 

decorporation of 241Am after oral delivery of C2E5 (45); decorporation efficacy achieved by 

transdermal delivery of C2E5 at the same dose level is comparable. Analysis of the in vivo 

data showed that changing the ethyl cellulose polymer chain length in the non-aqueous gel 

matrix did not alter C2E5 efficacy. Together, these data suggest that ethyl cellulose based 

non-aqueous gels can be readily optimized to provide effective delivery of C2E5 in a stable 

vehicle. As the first report using ethyl cellulose/Miglyol 840 gel matrix developed by the 

Heng group to incorporate a hydrolytically sensitive drug, we believe this non-aqueous 

delivery vehicle may find useful applications for moisture and hydrolysis sensitive 

compounds intended for topical and transdermal drug delivery. 

 

2.5 CONCLUSION 

 

In summary, C2E5, a DTPA prodrug for transdermal delivery, was formulated in 

cream, ointment and non-aqueous gel delivery vehicles. Due to the hydrolysis labile nature 

of C2E5, it rapidly degraded in a cream matrix comprised of an aqueous phase. 

Incompatibility between hydrophobic petrolatum and C2E5 resulted in the phase separation 

of C2E5 containing ointment formulations. C2E5 was shown to be stable in a non-aqueous 

gel comprised of ethyl cellulose and Miglyol 840. This non-aqueous gel matrix has the 

potential for use with current and future moisture-sensitive drug molecules intended for 

topical and transdermal delivery. Enhanced 241Am decorporation in a wound contamination 

animal model was demonstrated following topical application of C2E5 non-aqueous gels. 

Future studies including pharmacokinetic and dose-dependent decorporation studies are 

being conducted to evaluate this novel treatment option for internal radionuclide 

contamination by transuranic elements. 
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Table 2.1 C2E5 Cream Formulation Composition, Physical Appearance and Stability Results 
after Storage at 25 ± 2°C and 60 ± 5% Relative Humidity for 2 Months 

Formulation 
pH of Base 

Cream 
C2E5 
 (%) 

C2E5 cream 
Appearance 

% C2E5 
Remaining 

C-1 3.5 1.0 White 61.6 

C-2 3.5 4.8 Off-white 72.2 

C-3 3.5 9.1 Pale yellow 77.0 

C-4 3.5 16.7 Yellow 77.1 

C-5 4.5 1.0 White 53.0 

C-6 4.5 4.8 Off-white 71.4 

C-7 4.5 9.1 Pale yellow 80.5 

C-8 4.5 16.7 Yellow 87.3 

C-9 5.6 1.0 White 52.3 

C-10 5.6 4.8 Off-white 76.9 

C-11 5.6 9.1 Pale yellow 81.7 

C-12 5.6 16.7 Yellow 90.6 
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Table 2.2 Ethyl Cellulose-containing C2E5 Non-aqueous Gel Formulation Composition, 
Related Physical Characterization Data and Stability Results after Storage at 25 ± 2°C and 
60 ± 5% Relative Humidity for 3 Months 

Formulation 
EC 

Type 
(%) 

C2E5  
(%) 

Miglyol 
840 (%) 

Gel 
Appearance 

% C2E5 
Remaining 

Apparent 
Viscosity 
(Pa s)* 

N-1 
EC7 
7% 

30 63 
yellow and 

opaque 
94.0 ± 2.6 0.51 ± 0.01 

N-2 
EC7 
8% 

20 72 
yellow and 

opaque 
97.7 ± 7.6 0.55 ± 0.00 

N-3 
EC7 
14% 

30 56 
yellow and 

opaque 
94.8 ± 8.3 3.82 ± 0.04 

N-4 
EC7 
16% 

20 64 
yellow and 

opaque 
84.0 ± 1.1 4.74 ± 0.08 

N-5 
EC10 
7% 

30 63 
yellow and 

opaque 
93.9 ± 7.1 0.72 ± 0.01 

N-6 
EC10 
8% 

20 72 
yellow and 

opaque 
96.7 ± 6.6 0.73 ± 0.01 

N-7 
EC10 
10% 

30 60 
yellow and 

opaque 
92.9 ± 3.4 2.56 ± 0.02 

N-8 
EC10 
12% 

20 68 
yellow and 

opaque 
97.4 ± 5.4 3.26 ± 0.05 

N-9 
EC100 

7% 
30 63 

yellow and 
opaque 

101.0 ± 5.9 2.38 ± 0.02 

N-10 
EC100 

8% 
20 72 

yellow and 
opaque 

106.2 ± 5.1 2.89 ± 0.03 

N-11 
EC100 
10% 

30 60 
yellow and 

opaque 
99.0 ± 7.8 N/A 

N-12 
EC100 
12% 

20 68 
yellow and 

opaque 
102.7 ± 11.1 N/A 

* Apparent viscosity at a shear rate of 1000 s−1; N/A: No stable viscosity reading available. 
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Table 2.3 Distribution of Americium-241 in Excreta 7 Days after Different Treatments 
Immediate Post Contamination at a Dose of 200 mg C2E5/kg 

Treatment 
groups 

Cumulative excretion (% of ID, mean ± S.D.) 

In urine 
Enhanced 

decorp. 
In feces 

Enhanced 
decorp. 

Total 
eliminated 

Enhanced 
decorp. 

Untreated*  
(n = 4) 

4.2 ± 0.6 

181% 

2.9 ± 1.0 

86% 

7.1 ± 1.4 

142% Transdermal 
C2E5 non-
aqueous 

gels 
(n = 6) 

11.8 ± 
2.3*** 

5.4 ± 1.7* 
17.2 ± 
3.5*** 

Significant difference by t-test comparison of means, *p < 0.05, **p < 0.01, and ***p < 0.001 
against no treatment control; *From previously published results (45). 
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Figure 2.1 Structures of DTPA (A) and its prodrug C2E5 (B). 
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Figure 2.2 DSC traces of pre-dried EC10 (A) and a C2E5 non-aqueous gel formulation 
consisting of 10% EC10, 30% C2E5 and 60% Miglyol 840 (B) from -10°C to 160°C at a 
scanning rate of 10°C min-1. 
 

A

 

 

B
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Figure 2.3 SEM images of EC10 particles (A and B) and a C2E5 non-aqueous gel 
formulation consisting of 10% EC10, 30% C2E5 and 60% Miglyol 840 (C and D) at 
magnifications of ~500 X and 3,000 X. 
 

A

 

 

B
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Figure 2.4 Daily excretion of 241Am in excreta after a single dose of topical application of 
40% C2E5 non-aqueous gels (n=6) versus untreated control (n=4) (Data are means ± S.D.). 
(C2E5 gel group,  ● ; untreated control,  ■ )  
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CHAPTER 3: NON-AQUEOUS GEL FOR TRANSDERMAL DELIVERY OF PENTA-ETHYL 
ESTER OF DTPA 

 

Diethylenetriamine pentaacetic acid (DTPA) penta-ethyl ester, designated as C2E5, 

was successfully incorporated into a non-aqueous gel for transdermal delivery. The thermal 

and rheological properties of a formulation containing 40% C2E5, 20% ethyl cellulose and 

40% Miglyol 840® prepared using the solvent evaporation method demonstrated that the gel 

had acceptable content uniformity and flow properties. In vitro studies showed that C2E5 

was steadily released from the gel at a rate suitable for transdermal delivery. Topical 

application of the gel at a 200 mg C2E5/kg dose level in rats achieved significantly higher 

plasma exposures of several active metabolites compared with neat C2E5 oil at the same 

dose level. The results suggest that transdermal delivery of a chelator prodrug is an 

effective radionuclide decorporation strategy by delivering chelators to the circulation with a 

pharmacokinetic profile that is more consistent with the biokinetic profile of transuranic 

elements in contaminated individuals. 

 

3.1 INTRODUCTION 

 

The Fukushima Daiichi nuclear incident in March 2011 attracted world attention to 

currently available radiological countermeasures for such disasters. In addition, the threat of 

nuclear terrorism resulting from detonation of a radiological dispersion device (RDD, “dirty 

bomb”) calls for effective medical countermeasures designed for use in mass casualty 

scenarios. In both of these events, significant release of transuranic radionuclides into the 
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environment could result in human exposure via inhalation, ingestion, or absorption at a 

wound site. The injuries and risks associated with internal deposition of the transuranic 

elements americium (Am), curium (Cm), and plutonium (Pu) can be mitigated by 

administration of radionuclide decorporation agents such as the calcium (Ca) and zinc (Zn) 

trisodium salts of diethylenetriamine pentaacetic acid (DTPA), which are the only agents 

approved by the US Food and Drug Administration (FDA) to treat internal contamination by 

transuranics. DTPA is a synthetic polyamino carboxylic acid with eight coordinate bond 

forming sites that can sequester metal ions and form highly stable DTPA-metal ion 

complexes. DTPA has wide industrial and medical applications including control of water 

hardness, medical imaging and decorporation of internally deposited radionuclides (34). Ca- 

and Zn-DTPA achieve therapeutic efficacy by exchanging the Ca and Zn cations with 

transuranic radionuclides in vivo to form higher-affinity complexes and promoting their 

elimination from contaminated individuals (140). The high aqueous solubility and low 

permeability of these compounds result in poor bioavailability after oral administration (124, 

141, 142). Therefore, these compounds must be administered by slow intravenous (i.v.) 

push, i.v. infusion, or inhalation using a nebulizer (35). The administration of DTPA by i.v. or 

inhalation to those contaminated with transuranic isotopes requires skilled medical 

professionals, which imposes a logistical challenge in a mass casualty setting. As a 

consequence, there is an urgent need for new decorporation treatments that allow patients 

to self-administer in a timely manner after a nuclear disaster. 

Contamination by radioactive Am, Pu and Cm can occur by inhalation, skin 

adsorption, or by entrance through a wound. The transfer of these radioactive elements from 

experimental deep puncture wounds to the systemic circulation is generally a slow, steady 

process and transfer rates ranging from 0.052 to 6.3% of the injected dose per day have 

been observed, depending on the radio-contaminants and the animal species (80). In 

contrast, the total body clearance of 14C-labeled DTPA from rats 24 h after i.v. administration 
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has been reported to range from 94-100% with the half-life ranging from 18.5 to 31.8 min 

(79, 94). Comparison of the short half-life and rapid elimination of DTPA after i.v. injection to 

the slow introduction of radioactive actinide species into the bloodstream reveals a 

mismatch between the pharmacokinetics of DTPA and the biokinetic profiles of the 

actinides, which may limit the effectiveness of the currently available DTPA treatments. 

Transdermal delivery of therapeutic agents provides many advantages over 

parenteral and oral routes such as more uniform plasma drug levels, a longer duration of 

action with a reduced dosing frequency, and improved patient compliance and comfort with 

ease of self-administration (72-74, 102). It is highly desirable to deliver decorporation agents 

including DTPA to the circulation at a zero-order rate to better match actinide biokinetic 

profiles and thus achieve optimal radionuclide decorporation over an extended duration. 

Due to its low partition coefficient (log P = -4.90) and high melting point (219-220ºC), DTPA 

is not a good candidate for transdermal delivery (73, 96). However, the penta-ethyl ester of 

DTPA, designated as C2E5, was designed and synthesized as a new radionuclide 

decorporation prodrug to overcome the limitations of the current DTPA treatments (31, 43). 

The structures of C2E5 as well as its potential degradation products and metabolites 

including DTPA tetra-ethyl ester (C2E4), DTPA tri-ethyl ester (C2E3), DTPA di-ethyl ester 

(C2E2), DTPA mono-ethyl ester (C2E1), and the fully de-esterified DTPA are shown in 

Figure 1. C2E5 possesses physicochemical properties suitable for transdermal delivery. It 

has a log P value of 3.3, a log D value of 2.4 at pH 7.0, its aqueous solubility is 3.0 mg/mL at 

pH 7.0, and it is a Newtonian liquid with a viscosity of 175 cP at 25ºC (44). 

The aim of these studies was to develop C2E5 transdermal formulations and 

evaluate them for sustained delivery of DTPA and other active metabolites in vivo. Cream 

and ointment formulations were initially screened as potential C2E5 delivery vehicles, but 

the results showed that either C2E5 proved to be unstable in the matrices due to 

degradation or the C2E5 formulations underwent phase separation. C2E5 degradation in 



59 

 

buffered aqueous solution follows pseudo-first order kinetics and C2E5 is most stable at a 

pH of approximately 4.2 (44). Due to the high hydrolytic tendency of the C2E5 ester bonds 

in aqueous media, non-aqueous gel formulations were pursued to stabilize the moisture-

labile C2E5 in the delivery vehicles. Many drugs for topical and transdermal drug delivery 

are moisture-sensitive and undergo degradation reactions with water (131). The major 

degradation pathway involved with moisture-sensitive drugs is hydrolysis followed by 

secondary degradation reactions such as polymerization and isomerization (129). In 

contrast to extensive research on traditional semisolid dosage forms such as creams, 

ointments and hydrogels, there are far fewer reports on the development of non-aqueous 

gel matrices intended for topical and transdermal drug delivery (126, 133-136). Ethyl 

cellulose is frequently used as a gelling agent for non-aqueous gel vehicles. A series of non-

aqueous gels with 15 and 20% (% w/w) ethyl cellulose were prepared as topical 

formulations of naproxen (134). Lee and colleagues developed a non-aqueous gel with 3% 

to 10% (% w/w) ethyl cellulose dispersed in an ethanol/tricaprylin (40/60, w/w) mixture (135). 

Lisazo and coworkers heated ethyl cellulose and phthalate ester derivative mixtures to 

180°C and formed a non-aqueous gel during the cooling process (136). The Heng group 

reported on non-aqueous gel matrices containing ethyl cellulose and Miglyol 840®, which is 

a mixture of propylene glycol dicaprylate and dicaprate, obtained by directly mixing the ethyl 

cellulose and Miglyol 840 at 60°C (23). The rheological, mechanical, wettability and 

spreadability properties of the ethyl cellulose/Miglyol 840 non-aqueous gels indicate that 

these matrices possess favorable attributes for transdermal and topical delivery (126, 138, 

139). Here we report on the preparation and characterization of C2E5 non-aqueous gels 

including their physical and rheological properties, determination of the stability of C2E5 in 

the gel, in vitro release properties, and preliminary in vivo pharmacokinetics of the lead 

C2E5 non-aqueous gel formulation. 
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3.2 MATERIALS AND METHODS 

 

3.2.1 Materials 

 

Miglyol 840 was purchased from Sasol (Hamburg, Germany). Ethyl cellulose 

polymers, including ETHOCEL Std 7 FP Premium (EC7), ETHOCEL Std 10 FP Premium 

(EC10), and ETHOCEL Std 100 FP Premium (EC100) with an ethoxyl content of 48.0-

49.5%, were gifts from Dow Chemical (Midland, MI, USA). C2E5 was prepared based on the 

Fischer esterification method by reacting DTPA with ethanol under reflux in the presence of 

a hydrochloric acid catalyst (44). Acetonitrile, trifluoroacetic acid, anhydrous ethanol, 

methanol, isopropyl alcohol, formic acid, iron (III) chloride hexahydrate, ammonium formate, 

tributylamine and acetic acid were purchased from VWR International (Radnor, PA) or 

Fisher Scientific (Fairlawn, NJ). Double-distilled water was obtained from a Milli-Q system 

(Millipore, Billerica, MA, USA). 

 

3.2.2 Preparation of C2E5 Non-aqueous Gels 

 

The C2E5 non-aqueous gels were prepared using the solvent evaporation method. 

The EC10 material was dried at 60°C for ~24 h before use in gel preparations. Pre-dried 

EC10 particles were initially dissolved in anhydrous ethanol (10% w/v of EC10 to ethanol) to 

form an EC10 stock solution. The C2E5 non-aqueous gel was prepared by mixing the EC10 

stock solution, Miglyol 840 and C2E5 to form a homogenous solution, followed by removing 

ethanol under vacuum. When the gel was less than 102% of the theoretical weight, the 

C2E5 non-aqueous gels were transferred to a storage container under nitrogen and sealed 

with an airtight cap, covered with aluminum foil to protect from light, and stored at 4°C for 

later use. 
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The C2E5 concentration in these gel formulations was determined using a Shimadzu 

Prominence High Pressure Liquid Chromatography (HPLC) system equipped with an Alltech 

3300 Evaporative Light Scattering Detector (ELSD). A reverse-phase gradient separation 

was performed using an Alltima C18 column (250 × 2.1 mm I.D., 5 µm) at 40°C and a flow 

rate of 0.25 mL/min. The solvents that comprised the mobile phase were water with 0.1% 

trifluoroacetic acid (A), acetonitrile (B), and isopropyl alcohol (C). The linear gradient for the 

mobile phase mixture (A:B:C) was from 94:4:2 to 25:50:25 over 35 min, followed by a 

change to 0:0:100 in 0.5 min and an equilibration phase of 0:0:100 for 9.5 min, and ending 

with a reversal to 94:4:2 in 0.5 min and an equilibration phase of 94:4:2 for 9.5 min. The 

ELSD was operated at 40°C with 1.9 L/min nitrogen gas flow. Triplicate injections for each 

sample of C2E5 non-aqueous gel dissolved in anhydrous ethanol were performed with a 

volume of 10 µL per injection, and the retention time of C2E5 was 26 min. Samples were 

held at ambient temperature during analysis and analyzed using a standard curve over a 

concentration range of 0.02–2.00 mg/mL which had a power regression fit of R2 = 0.999. 

C2E5 non-aqueous gel samples stored at 4°C for 6 months were monitored for C2E5 

degradation using this HPLC method. 

Physical characterization, in vitro release testing and pharmacokinetic studies were 

performed with a formulation comprised of 20% EC10, 40% C2E5 and 40% Miglyol 840 

prepared using the solvent evaporation method. 

 

3.2.3 Differential Scanning Calorimetry (DSC) 

 

The EC10 polymer particles and the C2E5 non-aqueous gel samples were analyzed 

using a TA Instruments DSC Model Q200 (Newcastle, DE, USA) under a nitrogen flow of 50 

mL/min. Approximately 5 to 10 mg samples were heated in a sealed aluminum pan at a 

ramp rate of 10°C/min, cooled at a rate of 5°C/min, and subsequently heated at 10°C/min in 
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heat/cool/heat mode from -10°C to 160°C. The glass transition (Tg), and melting (Tm) 

temperatures in the third heating cycle were determined using TA Universal Software. 

 

3.2.4 Scanning Electron Microscope (SEM) Imaging  

 

The pre-dried EC10 polymer particles and C2E5 non-aqueous gel samples prepared 

by solvent evaporation method were observed and recorded using a Hitachi S-4700 

scanning electron microscope at an accelerated voltage of 15kV. All images were taken at a 

scan rate of 100 millisec per line. The EC10 polymer particles and C2E5 non-aqueous gel 

samples were deposited directly over double-sided carbon tape and imaged without further 

treatment. The C2E5 non-aqueous gel samples were imaged on the stub which was tilted 

45º toward the lower scanning election detector for better imaging results. 

 

3.2.5 Rheological Measurements 

 

A stress-controlled cone-and-plate rheometer (TA Instruments, Model AR-G2, 

Newcastle, DE, USA) with a cone of 40 mm in diameter and 1° cone angle at controlled 

temperatures of 25 ± 0.5°C and 32 ± 0.5°C was utilized to measure continuous shear 

rheometry of the non-aqueous gels with a formulation comprised of 20% EC10, 40% C2E5 

and 40% Miglyol 840 prepared using the solvent evaporation method. The gel samples were 

carefully loaded to the lower plate to reduce shearing effects and equilibrated for 5 min at 

the designated temperatures prior to measurement. Fresh samples were used for each 

individual measurement, and triplicate measurements were performed for the formulation. 

Data are reported as mean ± S.D.  
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Continuous shear rheometry was obtained by changing the shear rate from 0.1 s-1 to 

40 s-1 over a period of 300 s. The power law equation for simple steady shear (Equation 3-1) 

was used to fit the data obtained from the upward flow curves (27): 

 

                                                               (Eq. 3-1) 
 

where τ = shear stress;   = shear rate; m = consistency index; and n = flow behavior index. 

The estimated yield stress was derived by fitting the data using the Casson model described 

in Equation 3-2 (143): 

 

                                                                      (Eq. 3-2) 

 

where τy = yield stress and η = creep viscosity. The square root of yield stress τy was 

obtained from the plot as the y-axis intercept when  = 0. 

 
3.2.6 In Vitro Release of C2E5 Non-aqueous Gel 

 

An in vitro release study was carried out using a vertical diffusion cell system 

equipped with an autosampler (Hanson Microette Autosampling System, Hanson Research 

Co., USA) to evaluate the non-aqueous gel formulations comprised of 20% EC10, 40% 

C2E5 and 40% Miglyol 840 prepared using the solvent evaporation method. The area for 

permeation was 1.767 cm2, and the receiver compartment volume was 7 mL. The receiver 

medium was 0.1 M phosphate buffer (pH 7.4) maintained at 32°C and continuously stirred at 

400 rpm. A cellulose acetate membrane (25 mm in diameter, with a 0.45 µm pore diameter, 

Whatman®) was first treated by soaking in the receiving medium and then mounted and 

clamped between the receiver and donor compartments of the diffusion cells. Approximately 

300 mg of C2E5 non-aqueous gel was loaded evenly on the surface of the cellulose acetate 
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membrane (n = 5) and covered with a glass disk to exclude air. One mL samples were 

removed from the receiver compartment at 0.5 h, 1 h, 2 h, 4 h, and 6 h which were replaced 

with an equal volume of fresh media. 

The C2E5 content in the collected samples was determined by the HPLC method 

described above. The cumulative amount of C2E5 released per unit membrane area from 

the tested non-aqueous gel was plotted as a function of the square root of time and as a 

function of time. The Higuchi equation (Equation 3-3) dictates the drug release from 

semisolid dosage forms including creams, gels and ointments, and holds true when the 

released drug from the vehicle is below 30% (144, 145): 

  

 

 

where Q = amount of drug released per unit area (mg/cm2); Cveh = initial drug concentration 

(mg/cm3) in the vehicle; D = apparent diffusion coefficient (cm2/h); t = time (h); π   constant. 

The release rate constant k of C2E5 from the non-aqueous gel formulation was determined 

using a simplified form of the Higuchi equation (Equation 3-4): 

  

 
 

where k is the release rate constant which is determined from the slope of the cumulative 

amount of C2E5 released per unit membrane area from the non-aqueous gel versus the 

square root of time. 

Fick’s law (Equation 3-5) has been used as a simple model to describe the steady-

state diffusion of drug through synthetic membranes and skin: 
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where Jss = steady-state flux (mg/h); D = drug diffusivity (cm2/h); h= membrane thickness 

(cm); Kp = drug’s membrane-vehicle partition coefficient; Cveh = initial drug concentration 

(mg/cm3) in the vehicle; and A = surface area (cm2). Jss can be determined from the slope of 

the linear plot in the steady-state region of the cumulative amount of C2E5 permeated (mg) 

per unit diffusion surface (cm2) versus a function of time. 

Throughout the experiment the C2E5 concentration in the receptor compartment was 

kept below 30% of the solubility of C2E5 at pH 7.4, which is about 2.2 mg/mL at room 

temperature (44). Therefore, steady-state flux condition and sink condition were maintained 

for the duration of the experiment. 

 

3.2.7 Absorption of C2E5 Administered as a Neat Oil or as a Non-aqueous Gel 

 

All animal studies were conducted according to a protocol approved by the University 

of North Carolina at Chapel Hill Institutional Animal Care and Use Committee (IACUC). Ten-

week-old adult female Sprague-Dawley (SD) rats weighing 200-300 g were used in these 

studies (Charles River Labs, Raleigh, NC). Food and water were provided ad libitum. The 

animal room was kept at a controlled temperature on a 12 h/12 h light/dark cycle (light 

exposure from 7 AM to 7 PM). For the duration of the study, the rats were individually 

housed in metabolic cages until euthanasia at 24 h after neat C2E5 oil or C2E5 gel 

application. 

In all animals the dorsal skin between the cervical vertebrae and anterior thoracic 

vertebrae of SD rats was carefully clipped prior to drug application to remove hair. C2E5 

non-aqueous gel was applied at a C2E5 dose of 200 mg/kg to a 2 cm x 3 cm region using a 
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cotton swab. For comparison, neat C2E5 oil (200 mg/kg) was applied using a 1 mL syringe 

to the same size area on a control group of rats. For each rat, the mass of the drug and 

applicator was recorded before and after application with the difference being the delivered 

dose. Finally, a jacket with a dermal insert (VWR International, Radnor, PA) was placed on 

the rats to protect the applied treatments. Blood samples (0.4 mL) were collected from the 

tail vein using SurFlash® polyurethane i.v. catheters (Terumo, Somerset, NJ) at either 

before or 0.5 h after treatment, and then at 1 h, 2 h, 4 h, 8 h, 12 h and 24 h after treatment. 

The collected samples were immediately transferred from the syringes into pre-chilled 

sampling tubes containing 5 mg sodium fluoride and 4 mg potassium oxalate (BD 

Vacutainer Product # 367921). The tubes were inverted 8 times per manufacturer’s 

recommendation, and centrifuged (1300 x g for 10 min at 4°C). Plasma samples were then 

portioned into two 1.7 mL Eppendorf tubes, which contained an equal amount of a 20% 

formic acid aqueous solution. These tubes were immediately vortexed and placed on dry ice 

until transfer to storage at -80°C until analysis. The animals were transferred to individual 

housing in metabolic cages after C2E5 treatment. Animals were euthanized 24 h after C2E5 

gel or neat C2E5 oil application. The animals were observed during the study period and the 

body weight of each animal was recorded at pre-dose and prior to necropsy. 

An LC/MS/MS method was developed for the analysis of C2E5 and metabolites 

except for the fully de-esterified metabolite, DTPA, in these samples. Acidified plasma 

samples (100 µL) were first treated with 25 µL of 13C-C2E5 stable-label internal standard 

(1000 ng/mL), followed by precipitation with acetonitrile (400 µL). The supernatant (400 µL) 

was removed, evaporated to dryness and the residue was reconstituted with 500 µL of 

85/15/0.1% water/acetonitrile/formic acid. A 10 µL injection was used for LC/MS/MS 

analysis. Reverse-phase chromatography was performed at 0.3 mL/min on a YMC® ODS-

AM C18 (100 x 2 mm, 3 µm) column with mobile phases A (0.1% formic acid in water) and B 

(0.1% formic acid in acetonitrile) using a 10 min gradient (isocratic at 13% mobile phase B 
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for 1 min, linear gradient to 50% mobile phase B at 6 min, linear gradient to 60% mobile 

phase A at 6.5 min, linear gradient to 90% mobile phase B at 8 min, return to initial 13% 

mobile phase B at 8.1 min, and equilibrate at 13% mobile phase B until 10 min). After 

separation by liquid chromatography, the analytes and internal standard were detected on a 

triple quadrupole mass spectrometer using Heated Electrospray Ionization (HESI-II) 

(Thermo Scientific) in the positive-ion mode. Suitable reference standard material was 

available to provide reliable results for C2E5, C2E4, and C2E2. Although reference standard 

material was not available for C2E3 and C2E1, these analytes were present as trace 

impurities in the reference standards for C2E5, C2E4, and C2E2. The assumption of 

response factors for C2E3 and C2E1 equal to those of the reference standards afforded an 

estimate of the concentrations of C2E3 and C2E1 in calibration standards; this allowed the 

generation of calibration curves for C2E3 and C2E1 that were used to estimate the levels of 

these analytes in samples. Due to lack of pure internal standards for C2E3 and C2E1, the 

plasma concentrations of C2E3 and C2E1 in the samples were considered as estimates. 

The lower limit of quantification (LLQ) for C2E5, C2E4, C2E3, C2E2 and C2E1 were 

determined to be 5.0 ng/mL, 10.0 ng/mL, 1.0 ng/mL, 10.0 ng/mL and 5.0 ng/mL, 

respectively. 

 For detection of DTPA, acidified plasma samples (100 µL) were first treated with 50 

µL of 2 mM iron (III) chloride hexahydrate, followed by addition of 400 µL of 13C-DTPA 

stable-label internal standard (100 ng/mL in 0.1% acetic acid in acetonitrile). This solution 

was vortexed for 5 min and then centrifuged at 3,000 rpm for 10 min. The supernatant (350 

µL) was removed, evaporated to dryness and reconstituted with 100 µL of 0.1% aqueous 

acetic acid. A 10 µL aliquot of the reconstituted sample was used for LC/MS/MS analysis. 

The highly polar nature of DTPA required the incorporation of ion-pairing chromatography to 

produce acceptable LC peak shape and retention. Mobile phase A was 90:10 

water:methanol with 1 mM ammonium formate and 1 mM tributylamine and mobile phase B 
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was 50:50 acetonitrile:(5:95 water:methanol) with 1 mM acetic acid and 1 mM tributylamine. 

A 10 min gradient was used to afford separation (isocratic at 5% mobile phase B for 1 min, 

linear gradient to 80% mobile phase B at 7 min, linear gradient to 90% mobile phase B at 

7.1 min, maintaining at 90% mobile phase B through 8 min, return to initial 5% mobile phase 

B at 8.1 min, and equilibrate at 5% mobile phase B until 10 min). Reverse-phase 

chromatography was performed at 0.3 mL/min on an Advanced Materials Technology 

HALO® Phenyl-Hexyl column (50 x 2.1 mm, 2.7 µm). The analyte and internal standard 

were detected on a triple quadrupole mass spectrometer using HESI-II in the negative-ion 

mode. The LLQ for DTPA was determined to be 10.0 ng/mL. 

For C2E5 and its metabolites in the pharmacokinetic samples, plasma 

concentrations below the limit of quantification were labeled as not detected (ND) and 

assigned a value of zero for the area under the curve (AUC) analysis. The AUCs were 

calculated using the trapezoidal method. 

 

3.2.8 Statistical Analyses 

 

The concentrations of C2E2 and C2E3 in plasma samples collected at different times 

from the two C2E5 dosage forms (neat oil and non-aqueous gel) were compared by 

unbalanced two-way analysis of variance (two-way ANOVA). Analysis of the calculated 

exposure to C2E3 and C2E2 was by two-tailed t-test. All measurements are expressed as 

mean ± standard deviation (S.D.). The level of significance was set at p < 0.05. 
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3.3 RESULTS 

 

3.3.1 Preparation of C2E5 Non-aqueous Gels 

 

The solvent evaporation method was used to prepare the C2E5 non-aqueous gel 

formulations. To maximize C2E5 loading in the gel and achieve desirable rheological and 

mechanical properties, a formulation that contained 40% C2E5, 20% EC10 and 40% Miglyol 

840 was prepared and yielded a slightly yellow translucent gel which was determined to 

have a density of 1.02 g/cm3. Based on the HPLC analysis, the C2E5 content in non-

aqueous gel samples stored at 4°C for 6 months contained 98.2% of the C2E5 content in a 

freshly prepared C2E5 non-aqueous gel, with C2E4 being as the main degradant. 

 

3.3.2 Thermal Analysis by DSC 

 

The DSC thermogram of pre-dried EC10 (Fig. 2.2A) showed one minor endothermic 

peak appearing at 63°C and one major endothermic peak at 120°C. The endothermic peak 

at 120°C is the EC10 glass transition temperature (128). The endothermic peak at 63°C can 

be assigned to glyoxal, an impurity in ethyl cellulose (129). However, further investigation is 

necessary for confirmation of this peak. The DSC thermogram of the C2E5 non-aqueous gel 

(Fig. 3.2) containing 20% EC10, 40% C2E5 and 40% Miglyol 840 prepared using the solvent 

evaporation method showed no prominent endothermic peaks in the range from -10°C to 

160°C. Complete dissolution of the EC10 in ethanol prior to gel formation eliminated the 

EC10 glass transition endothermic peak at 120°C. The impurity in EC10 which showed the 

endothermic peak at 63°C on the DSC thermogram of pre-dried EC10 could possibly have 

been dissolved in ethanol and later removed during the solvent evaporation process, either 

through direct evaporation (the boiling point of glyoxal is 51°C) or by formation of an 
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azeotrope with ethanol. The residual water content in the gel components could also have 

been effectively removed during the solvent evaporation process by formation of an 

azeotrope with ethanol. 

 

3.3.3 Scanning Electron Microscope (SEM) Imaging 

 

Figure 2.3 shows the SEM images of pre-dried EC10 particles and the C2E5 non-

aqueous gel prepared by direct mixing method (formulation N-7 in Chapter 2).  In Figures 

2.3A and 2.3B, the SEM images showed tightly clumped EC10 particles with a relatively 

uniform size distribution averaging 1 to 5 µm in length. The SEM images of the C2E5 non-

aqueous gel (Figure 2.3C and 2.3D) displayed a relatively smooth gel surface that was 

embedded with small particles. The small particles were determined to be residual EC10 

material that failed to be completely solubilized by Miglyol 840 and C2E5 during the gel 

preparation process. This assessment is supported by the DSC spectrum of the C2E5 non-

aqueous gel in which a minor EC10 glass transition endothermic peak appeared at 120°C. 

The C2E5 non-aqueous gel comprised of 20% EC10, 40% C2E5 and 40% PGD prepared 

by the solvent evaporation method exhibited a much smoother gel surface in SEM images 

(Figures 3.3A and 3.3B) which indicated that there were no particle present on the gel 

surface. This was also consistent with the absence of an ethyl cellulose glass transition 

endothermic peak at 120°C on the DSC thermogram. 

 

3.3.4 Rheological Measurement Results 

 

Rheograms derived from continuous shear rheometry (Figure 3.4) demonstrated that 

the C2E5 non-aqueous gel is a typical shear-thinning system at both 25°C and 32°C. The 

shear stress vs. shear rate rheogram exhibits a convex shape and a hysteresis loop. The 
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rheological properties of the 40% C2E5 non-aqueous gel at different temperatures are 

summarized in Table 3.1. The flow behavior index values (n) were below 1 for both the 25°C 

and 32°C measurements, indicating a shear-thinning gel structure under each of these 

temperature conditions (146). Yield stress and hysteresis area are parameters representing 

the rigidity and cohesion between the molecules forming a three-dimensional gel structure 

and the extensiveness of this three-dimensional gel structure (147, 148). 

 

3.3.5 In Vitro Release of C2E5 Non-aqueous Gel 

 

A plot of the cumulative amount of C2E5 released per unit membrane area versus 

the square root of time, for the lead non-aqueous gel (20% EC10, 40% C2E5 and 40% 

Miglyol 840), is presented in Figure 3.5. The cumulative amount of C2E5 released per unit 

membrane area from the lead non-aqueous gel versus the square root of time yielded a 

linear plot with y = 1.57x - 0.78 and R2 = 0.996. The amounts of C2E5 released after 6 h 

from the 5 individual in vitro release runs ranged from 2.89 mg/cm2 to 3.33 mg/cm2, with an 

average value of 3.11 ± 0.17 mg/cm2 (coefficient of variance = 5.5%). The average release 

rate constant k and average steady-state flux Jss per unit area of the 40% C2E5 non-

aqueous gel were determined to be 1.57 ± 0.09 mg/cm2/h0.5 and 0.556 ± 0.031 mg/cm2/h, 

respectively, with both having a coefficient of variance of 5.6%. For each individual run, an 

acceptable linear regression fit was achieved for the release rate constant k per unit area 

(R2 ≥ 0.994) and the steady-state flux Jss per unit area (R2 ≥ 0.969). 

 

3.3.6 Absorption of C2E5 Administered as a Neat Oil or as a Non-aqueous Gel 

 

Following topical application of either the neat C2E5 oil or the 40% C2E5 non-

aqueous gel, the principal circulating metabolites detected in plasma were C2E3 and C2E2. 
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The concentrations of C2E3 and C2E2 detected in the rat plasma samples plotted versus 

time for the neat C2E5 oil and the 40% C2E5 non-aqueous gel groups are presented in 

Figure 3.6 and Figure 3.7. Two-way ANOVA showed that C2E5 dosage form had a 

significant effect on the plasma concentration of both C2E2 (F(1,36) = 13.33, p < 0.001) and 

C2E3 (F(1,36) = 6.91, p < 0.05), the time the plasma was sampled was not a significant effect 

for either metabolite (C2E2, F(7,36) = 1.06, p = 0.41 and C2E3, F(7,36) = 0.84, p = 0.56), and no 

interaction between dosage form and time was observed (C2E2, F(7,36) = 0.84, p = 0.56 and 

C2E3, F(7,36) = 1.04, p = 0.42). The pharmacokinetic parameters of C2E3 and C2E2 after 

application of neat C2E5 oil or 40% C2E5 non-aqueous gel at 200 mg/kg dose (n=4) are 

shown in Table II. We observed a trend for increased exposure to the metabolites C2E3 and 

C2E2 following C2E5 application as a non-aqueous gel compared with application as the 

neat oil; however, this trend did not reach statistical significance for either metabolite alone 

(AUCC2E2, p = 0.073 and AUCC2E3, p = 0.087; both two-tailed t-test). Enhancement ratios 

based on the AUCs for C2E3 and C2E2 were determined to compare the AUC obtained 

from the 40% C2E5 non-aqueous gel group to the neat C2E5 oil group.  

There was only two plasma samples in which C2E5 was detected with a 

concentration above the LLQ among the 56 samples, one from the neat C2E5 oil group 

(28.4 ng/mL at 2 h) and one from the C2E5 non-aqueous gel group (7.2 ng/mL at 24 h). 

There were five plasma samples in which C2E4 was detected with a concentration above 

the LLQ among 56 samples, three from the neat C2E5 oil group (13.5 ng/mL at 0.5 h, 52.7 

ng/mL at 2 h and 45.1 ng/mL at 24 h) and two from the C2E5 non-aqueous gel group (59.9 

ng/mL at 1 h and 83.8 ng/mL at 2 h). 

C2E3 and C2E2 species were consistently detected in the plasma samples from 

both groups throughout the experimental period with the Cmax values ranging from 85.3 

ng/mL to 485.4 ng/mL for C2E3, and from 17.4 ng/mL to 412.6 ng/mL for C2E2, indicating 

that C2E3 and C2E2 are stable C2E5 metabolites in vivo. The concentrations of C2E3 and 
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C2E2 reported in the rat plasma samples versus time figures showed a sustained release 

profile from transdermal neat C2E5 oil and C2E5 non-aqueous gel formulations. Average 

steady-state concentrations (Css) for both C2E3 and C2E2 were between 100 ng/mL and 

200 ng/mL for the C2E5 non-aqueous gel group and between 20 ng/mL and 80 ng/mL for 

the neat C2E5 oil group. Overall systemic exposures to C2E3 and C2E2 were approximately 

2.9-fold and 4.2-fold (based on AUC0-24h) higher for the C2E5 non-aqueous gel group 

compared to the neat C2E5 oil group. 

There was no C2E1 detected above the quantification limit in any rat plasma 

samples for either the neat C2E5 oil group or the C2E5 non-aqueous gel group during the 

experimental period. DTPA was frequently detected in the plasma samples at time points 

after 4 h post-dosing for both the neat C2E5 oil group and the C2E5 non-aqueous gel group. 

Most of the detected DTPA plasma concentrations were in the range of 10 ng/mL to 30 

ng/mL, which is just above the LLQ of DTPA (10 ng/mL). The maximum DTPA concentration 

detected in plasma in the neat C2E5 oil group was 61.4 ng/mL, compared with 692.9 ng/mL 

in the C2E5 non-aqueous gel group. 

 

3.4 DISCUSSION 

 

Non-aqueous gel formulations have been a useful vehicle for moisture-sensitive 

drugs for topical and transdermal application (126, 133-136). Critical components for the 

successful development of a semisolid product for topical and transdermal applications 

include the stability of the active pharmaceutical ingredient (API) in the delivery matrix, 

product uniformity and the release profile of API from the delivery matrix. In this study, we 

report on the development and characterization of a non-aqueous gel formulation that 

stabilizes the hydrolysis-prone API, enhances its percutaneous permeation flux and 

improves its pharmacokinetic profile following topical application to rats. 



74 

 

Candidate non-aqueous gel formulations showed improved stability of C2E5 under 

various storage conditions when compared with the neat API and other tested delivery 

vehicles, such as creams and ointments (149, 150), suggesting a clear benefit of the ethyl 

cellulose based non-aqueous gel for this moisture-sensitive compound. The enhanced 

stability profile of C2E5 in the non-aqueous gel matrix is probably due to decreased 

interactions with the hydroxyl groups on the ethyl cellulose polymer chains. These hydroxyl 

groups are not readily available to interact with other molecules compared to the hydroxyl 

groups in small molecule due to steric and rotational hindrance. The use of Miglyol 840 

neutral oil as a dispersion medium also contributes to the enhanced stability of C2E5 in the 

gel matrix because Miglyol 840 is non-hygroscopic, possesses high stability against 

oxidation and contains no free hydroxyl groups (23). 

Modification of the published direct mixing method for gel preparation (23), by using 

anhydrous ethanol to dissolve the ethyl cellulose before forming the gel and then 

evaporating the ethanol from the gel mixture, resulted in a significant improvement in gel 

uniformity. Although the solvent evaporation method is a commonly used technique for 

making films, microspheres and solid dispersions (151-153), to our knowledge this method 

has not been reported previously for preparation of ethyl cellulose based non-aqueous gels. 

To minimize the amount of solvent used in the gel preparation, EC7 and EC10 were 

selected because much more ethanol is needed to dissolve EC100 than for equal amounts 

of EC7 or EC10. Our method of gel preparation requires simple evaporation of the solvent 

and is suitable for scale up, with ethanol content in the gels readily reduced to below 2% of 

gel weight. The solvent evaporation method was successfully scaled up to prepare 400 g of 

C2E5 non-aqueous gels in one batch. Any residual ethanol present in the gel system would 

not interact with the C2E5 molecules and might possibly retard its hydrolysis. Ethanol is 

approved for human use in commercial topical and transdermal products at relatively high 

concentrations as a basic component and can act as a permeation enhancer by changing 
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the characteristics of the skin (126, 154). A C2E5 formulation screening study was carried 

out and phase separation was observed in gels with low EC content (< 10%) and particularly 

in gels with lower molecular weight EC chains. This phase separation may be due to a 

decrease in the interactions between the gel matrix and the C2E5 dissolved in it (data not 

shown). A C2E5 non-aqueous gel formulation comprised of 20% EC10, 40% C2E5 and 40% 

Miglyol 840 was chosen as a candidate formulation for further physical characterization and 

in vivo pharmacokinetic evaluation. 

The stability study with the 40% C2E5 non-aqueous gel showed that less than 2% of 

C2E5 had degraded after being stored at 4°C for 6 months, suggesting an acceptable 

stability profile of this formulation. As demonstrated by the DSC thermograms, the slightly 

yellow translucent C2E5 non-aqueous gel possessed acceptable uniformity. This was a 

result of EC10 being completely solubilized in ethanol before incorporation into the gel 

matrix and thus eliminating the problems related to residual EC particulates encountered 

when using the direct mixing method. 

The rheological and mechanical properties of the non-aqueous gel matrices 

containing ethyl cellulose and Miglyol 840 were investigated in detail by the Heng group 

(23). The rheological properties of the C2E5 non-aqueous gel comprised of 20% EC10, 40% 

C2E5 and 40% Miglyol 840 (Table I) exhibited characteristics and flow patterns similar to 

non-aqueous gels comprised of ethyl cellulose and Miglyol 840, suggesting that an 

adequate adhesion force to the skin surface for prolonged periods could be maintained, a 

critical property for the sustained delivery of drug substance from the gel (155). Other 

characteristics, such as a 36.6% decrease in viscosity from 176.6 (Pa s) to 129.3 (Pa s) and 

a 116.8% decrease in hysteresis area with a temperature increase from 25°C to 32°C, are 

good indicators that the gel is suitable for application on human skin with a surface 

temperature of 32-34°C. The in vivo pharmacokinetic studies using this gel formulation 

confirmed the predictions based on these physical measurements; the gel spread easily 
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during application and remained at the application site for the entire study. In contrast, neat 

C2E5 oil presented a challenge for application to the skin and retention at the application 

site due to its lower viscosity. 

In vitro release testing is widely used to assess content uniformity and drug release 

from semisolid products, and can also be used to compare performance across different 

batches and after storage or changes in the manufacturing process (156, 157). Although 

transdermal delivery of C2E5 to the systemic circulation is a multistep process, in vitro 

release results suggest that C2E5 is readily released from the non-aqueous gel matrix and 

the steady state flux (0.556 ± 0.031 mg/cm2/h) associated with this release is expected 

provide the required sustained concentration of drug in plasma. The narrow distribution of 

the release rate constant (1.57 ± 0.09, coefficient of variance = 5.6%) confirmed the optimal 

content uniformity of the 40% C2E5 non-aqueous gel prepared by solvent evaporation 

method. 

Pharmacokinetic data obtained from in vivo studies confirmed our observations from 

the in vitro release testing, with metabolites of C2E5 detected in plasma throughout the 

collection period. Additionally, an improved plasma pharmacokinetic profile for drug released 

from the C2E5 non-aqueous gel compared with the neat C2E5 oil suggests that Miglyol 840, 

a major component of the gel, perhaps along with residual ethanol in the gel, are working as 

permeation enhancers (126, 137, 154). The enhanced ratios of systemic exposure to major 

C2E5 metabolites (C2E3 and C2E2) with C2E5 non-aqueous gel were greater than those 

observed with neat C2E5 oil. The pharmacokinetic data also support our hypothesis that the 

mismatch between the biokinetics of transuranic contaminants and the pharmacokinetics of 

DTPA used to treat contamination could be overcome using a transdermal prodrug strategy. 

C2E5 and C2E4 were only detected in concentrations above their respective LLQs in 

less than 10% of all samples; detection of C2E4 suggests that it is a direct metabolite of 

C2E5 in vivo, generated by a stepwise de-esterification process involving esterases in the 
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rat skin and plasma (116, 117). C2E2 and C2E3 were observed as the principal metabolites 

detected in circulation throughout the 24 hour study period, matching the findings of the 

C2E5 in vitro metabolism study (116, 117). C2E1 was not detected above the LLQ in any 

plasma samples throughout the study, but is likely present transiently resulting from the 

stepwise de-esterification of C2E5 to DTPA. Detection of DTPA at low concentrations, close 

to the 10 ng/mL LLQ, was not unexpected as DTPA has a short half-life ranging from 18.5 to 

31.8 min (79, 94).  

In addition to DTPA, other metabolites, such as C2E3, C2E2 and C2E1, may 

effectively sequester transuranic radionuclides and form stable complexes. For example, 

241Am, an abundant transuranic radionuclide, forms complexes with various chelators, 

including DTPA and other  molecules structurally similar to C2E3 and C2E2, with stability 

constants ranging from 10.7 M-1 to 24.0 M-1 (119). Although stability constants for americium 

binding to C2E5 metabolites are not known, the binding of Gd3+ with DTPA mono-propyl 

ester and DTPA di-propyl ester (compounds analogous to C2E1 and C2E2) are reported to 

be 18.91 M-1 and 16.30 M-1 (118). Because gadolinium is viewed as a biochemical analogue 

of americium and  Gd3+ ion is structurally very similar to 241Am3+ (158, 159), comparable 

binding constants and thermodynamic stability can be expected for the binding of 241Am3+ 

with C2E1 and C2E2 in vivo. Furthermore, studies in americium-contaminated rats 

demonstrated that C2E5 administered orally enhanced 241Am decorporation (44, 45). 

 

3.5 CONCLUSIONS 

 

The penta-ethyl ester of DTPA (C2E5) was incorporated into a non-aqueous gel 

comprised of ethyl cellulose and Miglyol 840 using the solvent evaporation method, and was 

characterized by thermal and rheological analysis and in vitro release. A superior 

pharmacokinetic profile of C2E5 metabolites, including DTPA, was achieved when C2E5 
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was administered as a non-aqueous gel as opposed to a neat oil, perhaps as a result of 

permeation enhancement by Miglyol 840 and ethanol. These findings demonstrate that 

transdermal delivery of a chelator prodrug is a viable approach for delivering DTPA and 

other chelating agents to the circulation as a potential treatment of transuranic radionuclide 

contamination, and provide additional understanding of the properties of non-aqueous gel 

formulations as well as their utility in applications requiring transdermal and topical delivery 

of moisture-sensitive drugs. 
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Table 3.1 Rheological properties of a 40% C2E5 non-aqueous gel at different temperatures. 

Temperature 

(ºC) 

Flow behavior 
index, n 

(mean ± SD) 

Consistency 
index, m 
(Pa s

n
) 

(mean ± SD) 

Apparent 
viscosity* 

(Pa s) 

(mean ± SD) 

Yield stress 
(Pa) 

(mean ± SD) 

Hysteresis 
area 

(Pa s
−1

) 

(mean ± SD) 

25 0.407 ± 0.013 691 ± 17 177 ± 1 663 ± 18 16.7 ± 0.7 

32 0.462 ± 0.005 446 ± 13 129 ± 3 381 ± 14 7.71 ± 0.28 

* Apparent viscosity at a shear rate of 10 s−1. 
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Fig. 3.1 Structures of DTPA, the prodrug C2E5 and its metabolites. 
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Fig. 3.2 DSC spectrum of C2E5 non-aqueous gel comprised of 20% EC10, 40% C2E5 and 
40% Miglyol 840 by solvent evaporation method from -10°C to 160°C at a scanning rate of 
10°C min-1. 
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Fig. 3.3 SEM images of (A–B) C2E5 non-aqueous gel comprised of 20% EC10, 40% C2E5 
and 40% Miglyol 840 by solvent evaporation method at three magnifications (~500 X and 
3,000 X). 
 

A

 
 

B
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Fig. 3.4 Continuous shear rheogram showing shear rate vs. shear stress at 25 °C and 32 °C 
of C2E5 non-aqueous gel comprised of 20% EC10, 40% C2E5 and 40% Miglyol 840 
prepared using the solvent evaporation method. 
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Fig. 3.5 Relationship between square root of time and cumulative amount of C2E5 released 
through a cellulose membrane into 0.1 M phosphate buffer after application of C2E5 non-
aqueous gel (n=5). The C2E5 non-aqueous gel consisted of 20% EC10, 40% C2E5 and 
40% Miglyol 840. The release rate constant k is determined from the slope of the cumulative 
amount of C2E5 released per unit membrane area from the tested non-aqueous gel versus 
square root of time defined in Eq. 3-4. 
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Fig. 3.6 Concentration of C2E3 detected in rat plasma versus time after topical 
administration of the neat C2E5 oil and the 40% C2E5 non-aqueous gel (mean ± SD) (n=4). 
 
 

0

50

100

150

200

250

300

350

400

450

0 2 4 6 8 10 12 14 16 18 20 22 24

A
v
er

a
g
e 

C
2
E

3
 C

o
n

ce
n

tr
a
ti

o
n

 (
n

g
/m

L
)

Time Post-dosing (h)

C2E3 from Neat C2E5 Oil

C2E3 from C2E5 Non-aqueous Gel

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



87 

 

Fig. 3.7 Concentration of C2E2 detected in rat plasma versus time after topical 
administration of the neat C2E5 oil and the 40% C2E5 non-aqueous gel (mean ± SD) (n=4). 
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CHAPTER 4: RADIONUCLIDE DECORPORATION: MATCHING THE BIOKINETICS OF 
ACTINIDES BY TRANSDERMAL DELIVERY OF PRO-CHELATORS 

 

The threat of nuclear terrorism by the deliberate detonation of a nuclear weapon or 

radiological dispersion device (‘dirty bomb’) has made emergency response planning a 

priority. The only FDA-approved treatments for contamination with isotopes of the 

transuranic elements Am, Pu and Cm are the Ca and Zn-salts of diethylenetriamine 

pentaacetic acid (DTPA). These injectable products are not well suited for use in a mass 

contamination scenario as they require skilled professionals for their administration and are 

rapidly cleared from the circulation. To overcome the mismatch in the pharmacokinetics of 

DTPA and the biokinetics of these transuranic elements, which are slowly-released from 

contamination sites, the penta-ethyl ester of DTPA (C2E5) was prepared and formulated in 

a non-aqueous gel for transdermal administration. When gels comprised of 40% C2E5, 40-

45% Miglyol® 840 and 15-20% ethyl cellulose were spiked with [14C]-C2E5 and applied to 

rat skin, over 60% of the applied dose was absorbed within a 24 h period. Radioactivity was 

observed in urinary and fecal excretions for over three days after removal of the gel. Using 

an 241Am wound contamination model, transdermal C2E5 gels were able to enhance total 

body elimination and reduce the liver and skeletal burden of 241Am in a dose-dependent 

manner. The efficacy achieved by a single 1000 mg/kg dose to contaminated rats was 

statistically comparable to the intravenous Ca-DTPA treatment. The effectiveness of this 

treatment, favorable sustained release profile of pro-chelators and ease of administration 

support its use following radiological emergencies and for its inclusion in the Strategic 

National Stockpile. 
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4.1 INTRODUCTION 

 

The increasing threat of nuclear terrorism as well as incidents that involved the 

release of radioactive materials into the environment, such as the accident at the Fukushima 

Daiichi power plant in March 2011, has heightened the awareness that many nations need 

to be prepared for such cataclysmic events (32). Detonation of a nuclear weapon or a 

radiological dispersion device (RDD, “dirty bomb”) near densely populated areas could 

result in a large number of individuals being contaminated by radionuclides via inhalation, 

ingestion or through wounds. Internalization of radioactive materials may result in acute 

radiation sickness or chronic injuries including an increased risk of developing cancers (160-

163). Due to their abundance and availability, isotopes of the transuranic elements 

americium (Am), curium (Cm), and plutonium (Pu) are among the radionuclides of greatest 

concern with respect to accidental or deliberate contamination. The injuries and risks 

associated with contamination by these radionuclides can be mitigated by the intravenous 

(i.v.) administration of radionuclide decorporation agents such as the calcium (Ca) and zinc 

(Zn) trisodium salts of diethylenetriamine pentaacetic acid (DTPA). Ca-DTPA and Zn-DTPA 

exert their pharmacological effect by sequestering these radionuclides with high affinity and 

promoting the elimination of the resulting chelate complexes from contaminated individuals. 

DTPA is administered via slow i.v. push, i.v. infusion, or inhalation with a nebulizer (39); 

treatment is most effective when administered shortly after contamination before the 

transuranic radionuclides become fixed in tissues such as liver and bone (90). The efficacy 

of Ca/Zn-DTPA injections has been demonstrated for decades in workers injured in 

accidents in the nuclear power industry (140, 161, 164, 165). 

Mass contamination scenarios call for effective and prompt medical 

countermeasures for the affected populations. Current DTPA treatment options do not meet 
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the challenge imposed by a mass casualty setting in that skilled medical professionals are 

required to administer Ca/Zn-DTPA by i.v. injection; multiple injections may be required due 

to the short circulating half-life of DTPA. Stevens and colleagues studied the clearance of 

DTPA in man and observed that intravenously administered 14C-labeled DTPA was 

quantitatively excreted intact in urine in 24 hours (125). The total body clearance of 14C-

labeled DTPA in rats 24 h after i.v. injection has been reported to range from 94% to 100% 

with half-lives from 0.28 to 0.53 h and with no metabolic degradation (79, 94). In contrast, 

the release rates of internalized Am, Pu and Cm contaminants from wound sites to the 

systemic circulation in various animal species range from 0.052 to 6.3% of the administered 

radionuclides per day, a relatively slow and steady transfer process (Figure 4.1) (80). It has 

been suggested that a chelating agent must be maintained at a concentration of at least 10 

to 25 µM in both extracellular and intercellular fluids for a sustained duration to ensure an 

optimal chelation effect of transuranic radionuclides (88). In comparing the short half-life and 

rapid clearance of DTPA after i.v. administration to the slow and sustained  introduction of 

radio-actinides into the systemic circulation (80), there is a mismatch between the 

pharmacokinetic profile of intravenously administered DTPA and the biokinetic profile of 

transuranic radionuclides. This mismatch leads to a period where DTPA plasma 

concentrations are below the effective concentration required to chelate radionuclides in the 

systemic circulation and, thus, may limit the effectiveness of the current parenteral DTPA 

treatments. Previous efforts have addressed this mismatch and produced encouraging 

results. Guilmette and Muggenburg implanted subcutaneous osmotic pumps to continuously 

deliver Zn-DTPA to dogs that had been contaminated with 241AmO2 by inhalation, and 

achieved enhanced decorporation of 241Am (92). DTPA has been entrapped in various 

liposome formulations for prolonged circulation after i.v. administration, and improved 

decorporation of 238Pu was achieved (94, 95). However, these approaches involve 

parenteral administration, thus making them unsuitable for mass casualty scenarios after a 
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major nuclear/radiological emergency. As a result, a non-parenteral delivery system which 

can provide sustained levels of chelators in the circulation that match the biokinetic profile of 

actinides after inhalation or wound contamination is highly desirable. 

There are several efforts underway to improve the oral bioavailability of Ca/Zn DTPA 

and other actinide decorporation agents (31). DTPA is a synthetic polyamino carboxylic acid 

with eight coordinate bond forming sites for complexing metal ions. Due to the presence of 

five carboxylic acid groups and three nitrogen atoms, DTPA is highly ionic. Thus, Ca-DTPA 

and Zn-DTPA are hydrophilic and are considered Class III compounds (high solubility, low 

permeability) according to the Biopharmaceutical Classification System. While oral 

formulations may provide for sustained blood concentrations of DTPA, a zero-order release 

profile can be achieved via transdermal drug delivery. Because DTPA is hydrophilic (log P = 

-4.90) with a high melting point (219-220ºC), it is not a good candidate for transdermal 

delivery (72, 73). However, esterification of the 5 carboxylic groups on DTPA produces 

lipophilic compounds which possess desirable physicochemical properties for transdermal 

delivery (43, 44). We have prepared the penta-ethyl ester of DTPA, designated as C2E5, 

and successfully incorporated it into a non-aqueous gel formulation comprised of ethyl 

cellulose (EC) and Miglyol 840® with acceptable stability and rheological properties (47). 

The selected 40% C2E5 non-aqueous gel was applied to Sprague-Dawley (SD) rats at a 

dose of 200 mg C2E5/kg and achieved sustained release of C2E5 metabolites in vivo for an 

extended duration (47). 

The aim of the current studies was to evaluate the radionuclide decorporation 

efficacy of transdermal C2E5 non-aqueous gels at different dose levels when applied 24 

hours after contamination using an 241Am wound contamination model. To our knowledge, 

this is the first report of the use of a transdermal formulation for the systemic delivery of a 

radionuclide decorporation agent with the goal of providing a sustained release 
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pharmacokinetic profile of a chelator in order to match the biokinetic profile of internalized 

actinides. 

 

4.2 MATERIALS AND METHOD 

 

4.2.1 Materials 

 

Miglyol 840 was purchased from Sasol (Hamburg, Germany). EC (ethyl cellulose, 

Ethocel Std 10 FP Premium polymer) with an ethoxyl content of 48.0-49.5% was a gift from 

Dow Chemical (Midland, MI, USA). C2E5 was prepared using the Fischer esterification 

method by reacting DTPA with ethanol under reflux in the presence of a hydrochloric acid 

catalyst (44). [14C]-diethylenetriaminepentaacetic acid penta-ethyl ester ([14C]-C2E5; 50 

mCi/mmol) labeled at carbon-1 (carbonyl carbon) was purchased from American 

Radiolabeled Chemicals, Inc. (St. Louis, MO). [241Am]-americium nitrate solution for 

intramuscular (i.m.) contamination of adult female SD rats was prepared from [241Am]-

Americium chloride (Eckert & Ziegler Isotope Products, Valencia, CA) by dilution with a 

solution of concentrated nitric acid. Anhydrous ethanol, isopropyl alcohol, 30% hydrogen 

peroxide solution were purchased from VWR International (Radnor, PA) and/or Fisher 

Scientific (Fairlawn, NJ). Liquid scintillation cocktails Ultima GoldTM and an aqueous based 

tissue solubilizer SolvableTM were purchased from PerkinElmer Life and Analytical 

Sciences (Waltham, MA). 

  

4.2.2 Preparation of C2E5 Non-aqueous Gel 

 

C2E5 non-aqueous gels comprised of 40% C2E5, 15-20% EC, and 40- 45% Miglyol 

840 were prepared using the solvent evaporation method described previously [23]. Briefly, 
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pre-dried EC particles were first dissolved in anhydrous ethanol (10% w/v of EC in ethanol) 

to form a clear solution. This was followed by addition of Miglyol 840 and C2E5 to form a 

homogenous solution under stirring and subsequently removing ethanol under vacuum to 

yield the C2E5 non-aqueous gel. 

[14C]-Labeled C2E5 non-aqueous gel was prepared by adding [14C]-C2E5 (50 

mCi/mmol) into the C2E5 non-aqueous gels followed by mixing. The [14C] content of the 

non-aqueous gel was quantified by adding a fixed quantity of the gel with 10 mL of Ultima 

Gold™ scintillation cocktail and counting directly for radioactivity by liquid scintillation 

counting (LSC) using a Packard TriCarb 3100TR (PerkinElmer Life and Analytical Sciences, 

Waltham, MA) with automatic quench correction. Samples were counted for 10 min or until a 

5% confidence level was achieved. The specific activity of [14C]-labeled C2E5 non-aqueous 

gel was calculated by dividing sample radioactivity by total sample mass. 

 

4.2.3 In vivo Studies 

 

4.2.3.1 Animals 

 

All animal studies were conducted according to a protocol approved by the University 

of North Carolina at Chapel Hill Institutional Animal Care and Use Committee (IACUC). Ten-

week-old adult female SD rats weighing from 200 to 300 g were used in these studies 

(Charles River Labs, Raleigh, NC). Food and water were given ad libitum. The animal room 

was kept at a controlled temperature on a 12 h/12 h light/dark cycle (light exposure from 7 

AM to 7 PM). For the duration of the study, the rats were housed in metabolic cages 

individually with daily urine and feces collection until euthanasia on Day 6 for mass balance 

study and on Day 7 for radionuclide decorporation study. 
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4.2.3.2 Absorption and Mass Balance Study with [14C]-Labeled C2E5 Non-aqueous 

Gels 

 

To evaluate the absorption and mass balance of transdermal delivery of the C2E5 

non-aqueous gel, the [14C]-labeled C2E5 non-aqueous gel was applied to rats at a 200 mg 

C2E5/kg dose level. Six adult female SD rats were anesthetized with 2-3% isoflurane before 

the dorsal skin between the cervical vertebrae and anterior thoracic vertebrae was clipped 

with caution. The [14C]-labeled gel was applied to a 2 cm x 3 cm region using a cotton swap. 

The mass of the gel applied was recorded for each rat to permit actual dose determination, 

and a jacket with a dermal insert (VWR International, Radnor, PA) was placed on the rats to 

protect the area on which the gel was applied. Twenty-four hours after application, the 

remaining gel at the application site and the jacket with the dermal inserts were carefully 

removed, and the recovered C2E5 content was assayed by LSC. The animals were housed 

in metabolic cages individually and were euthanized 6 days after application of the gel. The 

animals were observed once daily and their body weights recorded at pre-dose and prior to 

necropsy. Urine and feces were collected daily until euthanasia on Day 6, when the liver and 

the skin from the application site and surrounding area were also collected. Cage washes 

were collected at the end of each experiment. 

Collected urine samples were added to Ultima Gold™ scintillation cocktail at a ratio 

of 100 µL:10 mL and assayed directly for radioactivity by LSC. For feces samples, the fecal 

pellets were mixed and vortexed with 20 mL of a mixture of acetonitrile and water (1:1 ratio) 

for 10 min followed by a 30 min sonication and subsequently centrifugation at 1,000 x g at 

4°C for 10 min. The supernatant was transferred to a scintillation vial for analysis by LSC 

(100 µL of feces extraction supernatant sample directly dispersed into 10 mL of scintillation 

cocktail). The extraction process was repeated until the sample count was less than 1000 

disintegrations per minute (DPM) per 100 µL of feces extraction supernatant sample. The 
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liquid cage wash samples were processed in a manner similar to the urine samples and 

assayed by LSC; the solid cage wastes were processed as fecal pellets and assayed by 

LSC. For skin and liver samples, tissues were mixed with tissue solubilizer (10% w/v of 

tissue to Solvable) and incubated at 50°C until the tissues became totally solubilized.  One 

mL of the solubilized tissue solution was transferred to a vial, decolorized by incubation with 

0.1 mL of 30% hydrogen peroxide solution for 1 h at 50°C, and then added to 10 mL of 

scintillation cocktail for LSC analysis. 

 

4.2.3.3 Radionuclide Decorporation of Contaminated Rats 

 

To evaluate the efficacy of transdermal delivery of C2E5 in a non-aqueous gel, a 

radionuclide decorporation efficacy study was conducted in rats contaminated with 241Am.  

Adult female SD rats were anesthetized with 2-3% isoflurane. All animals were 

contaminated with [241Am]-Americium nitrate solution (250 nCi, 0.1 mL) via an i.m. injection 

in the anterior thigh muscle. Dorsal skin between the cervical vertebrae and anterior thoracic 

vertebrae was clipped with caution before application of the gel. C2E5 doses of 200 mg/kg, 

600 mg/kg, and 1000 mg/kg were applied 24 h post 241Am contamination to a 6 cm2 (2 cm x 

3 cm) area of the clipped dorsal region using cotton swab. Fick’s law (Equation 4-1) dictates 

the steady-state diffusion of drug through skin: 

 

 

 

where Jss = steady-state flux (mg/h); D = drug diffusivity (cm2/h); h= membrane thickness 

(cm); Kp = drug’s membrane-vehicle partition coefficient; Cveh = initial drug concentration 

(mg/cm3) in the vehicle; and A = surface area (cm2). Keeping all other parameters constant, 
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the flux of the drug (Jss) is proportional to the surface area of drug application. To assess the 

effect of application area, the C2E5 non-aqueous gel was applied at a dose of 600 mg/kg 

dose 24 h post 241Am contamination using cotton swab to an 18 cm2 (3 cm x 6 cm) area of 

the clipped dorsal region. A jacket with plastic dorsal insert was placed on the rats to protect 

the gel application region. The mass of C2E5 gel applied was recorded for each animal to 

permit the actual dose determination. Twenty-four hours after application of the C2E5 gel, 

the remaining gel at the application site and the jacket with the dermal insert were carefully 

removed. The animals were housed in metabolic cages individually and were euthanized 7 

days after contamination. Positive and negative controls included animals administered Ca-

DTPA intravenously at a dose of 14 mg/kg 24 h after contamination, and untreated animals. 

Daily observations and body weights were recorded at pre-dose and prior to necropsy. Urine 

and feces were collected daily until euthanasia, when the liver, kidneys, both femurs, the 

muscle tissue around the femurs, and the pelt around the 241Am injection site were also 

collected. Cage washes were collected at the end of each experiment. As ~35% of the 

decay of 241Am is associated with photon emissions of 59.7 keV, 241Am present in samples 

was quantified using a gamma counter (2470 Wizard 2, Perkin Elmer, Waltham, MA). The 

samples were counted for one minute using a 40-80 keV energy detection window and were 

background-corrected. Additionally, 241Am activity was quantified in 2 x 0.1 mL aliquots of 

the dosing solution. For all samples, 241Am content was expressed as a percentage of the 

injected dose (ID). An estimate of the total skeletal burden was made using the method of 

Volf that was determined by the 241Am burden in the contra-lateral femur multiplied by 20 

(166). The 241Am retained at the wound site was quantified by measuring the 241Am content 

of the muscle surrounding the injection site plus the 241Am content in the femur. An estimate 

of muscle burden was calculated based on the assumption that it represents 45% of the 

body weight (166). The 241Am content of the muscle from the opposite hind leg and animal 

body weight at sacrifice were used to determine the estimated 241Am burden in muscle. 
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Total recovery = Total decorporation + liver 241Am content + kidney 241Am content + 

(Skeleton 241Am content - 241Am in contra-lateral femur) + 241Am content at the wound site + 

muscle 241Am content + 241Am content at the pelt around the 241Am injection site. 

 

4.2.4 Statistical Analysis 

 

All data reported are mean ± standard deviation (S.D.) from a given number of 

observations. Statistical analysis was performed on the data from the efficacy study. To 

assess treatment and dose induced changes in endpoint 241Am data i.e., liver, skeleton, and 

wound site burden as well as total decorporation, one-way A OVA with Tukey’s posttest 

was performed among three C2E5 transdermal treatment groups at 200, 600 and 1000 

mg/kg doses applied to a 6 cm2 application site, an untreated negative control group, and a 

positive control group that received i.v. Ca-DTPA. A second one-way A OVA with Tukey’s 

posttest was performed among all the four C2E5 gel treatment groups, negative untreated 

and positive i.v. DTPA treatment groups. To assess the sustained efficacy of transdermal 

C2E5 treatment, daily 241Am decorporation in the urine and feces was analyzed by repeated 

measures one-way A OVA with Dunnett’s posttest to compare each C2E5 treatment group 

with the untreated control group. For all statistical analysis p < 0.05 was considered 

significant. Statistical analyses were performed using the SAS analysis system (v. 9.3; SAS 

Institute, Inc., Cary, NC). 
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4.3 RESULTS 

 

4.3.1 Preparation of C2E5 Non-aqueous Gels 

 

The structures of C2E5, its potential metabolites, including DTPA tetra-ethyl ester 

(C2E4), DTPA tri-ethyl ester (C2E3), DTPA di-ethyl ester (C2E2), DTPA mono-ethyl ester 

(C2E1), and the fully de-esterified metabolite (DTPA) are depicted in Figure 4.2. C2E5 is a 

clear, light yellow, slightly viscous Newtonian liquid with a viscosity of ~175 cP (44). 

C2E5 non-aqueous gels comprised of 40% C2E5, 15-20% EC, and 40-45% Miglyol 

840 were prepared using the solvent evaporation method described previously (47). The 

C2E5 gels were slightly yellow translucent semisolids with a density of 1.02 g/cm3. C2E5 

non-aqueous gels comprised of 40% C2E5, 15-20% EC, and 40-45% Miglyol 840 were 

radiolabeled with [14C]-C2E5 (specific activity = 0.10 µCi/mg) for a mass balance study. All 

gels were stored at 4°C until applied to experimental animals. 

 

4.3.2 Absorption and Mass Balance of [14C]-Labeled C2E5 Non-aqueous Gels 

 

Significant C2E5 transdermal absorption was achieved after topical application of the 

gels; approximately 31% of the 200 mg/kg C2E5 applied dose was recovered from the skin 

as unabsorbed dose 24 hours after application (Table 4.1). Six days after application, a 14C-

C2E5 mass balance of over 90% was obtained, with approximately 90% of the absorbed 

dose recovered in the excreta and tissues (Table 4.1). Low retention of C2E5 and its 

metabolites was observed at the application site; only 1.5% of the applied dose was present 

in the skin taken from the application site six days after application (Table 4.1). There was 

no significant [14C] radioactivity remaining in the liver 6 days after application of the 



99 

 

radiolabeled gel suggesting that C2E5 and its metabolites had relatively short half-lives in 

plasma and were rapidly metabolized. 

As demonstrated in Figure 4.3, the urinary elimination of [14C] radioactivity peaked 

one day after application and gradually declined to the baseline level by the sixth day; the 

fecal elimination of [14C] radioactivity peaked two days after administration and gradually 

declined after the third day until it reached background levels by the sixth day. 

 

4.3.3 In vivo Radionuclide Decorporation 

 

When C2E5 was applied transdermally one day after animals were contaminated 

with 241Am using the wound contamination model (i.m. injection), the total 241Am 

decorporation over a seven day period was significantly enhanced when compared with 

untreated control animals (Table 4.2). The enhanced decorporation showed a dose 

dependent trend, with a non-significant increase in decorporation between 0 and 200 mg/kg 

dose, followed by significant increases in decorporation between the 200 mg/kg dose and 

the 600 mg/kg dose (p < 0.05) and between the 600 mg/kg dose and the 1000 mg/kg dose 

(p < 0.001). The 1000 mg/kg C2E2 dose achieved decorporation that was comparable to the 

current standard of care, i.v. DTPA. No statistically significant differences were found in the 

241Am contents recovered from the wound sites among all the experimental groups. 

The observed increase in 241Am decorporation was in part due to significant 

reductions in the 241Am burden in the tissues of greatest concern, the liver and skeleton. 

C2E5 significantly reduced liver burden compared with untreated animals at all the doses 

tested. A dose dependent effect of C2E5 treatment was observed, with a decrease in mean 

liver 241Am burden as the applied C2E5 dose increased; this effect was statistically 

significant when the 1000 mg/kg dose was compared with the 200 and the 600 mg/kg doses 

(p < 0.001 and p < 0.05, respectively). The same trend was observed for the mean skeletal 
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burden, with a significant reduction compared with untreated control animals at the 1000 

mg/kg dose. In all tissues examined, the effect of the highest transdermal C2E5 dose on 

241Am reduction was comparable with i.v. DTPA (Table 4.2). The daily excretion of 241Am in 

the urine (Figure 4.4A) and feces (Figure 4.4B) of untreated animals and animals treated 

with different doses of C2E5 further illustrated dose dependent efficacy. Additionally, 

although the residual gel was removed from the skin 24 h after application (the same time 

that the day 2 urine and feces samples were collected), significantly enhanced 

decorporation was detected in the urine and feces at least three days after the gel was 

removed. 

As transdermal drug flux is dependent on the drug application area, the 

decorporation efficacy of a C2E5 dose of 33.3 mg/kg/cm2 applied to a 6 cm2 vs. an 18 cm2 

application area was determined. This threefold increase in application area resulted in 

significantly enhanced decorporation and a significantly reduced liver 241Am burden 

compared with the untreated control (p < 0.001 and p < 0.001, respectively) and 200 mg/kg 

dose treatment groups (p < 0.001 and p < 0.05, respectively) (Table 4.2). The daily 

excretion of 241Am in the urine (Figure 4.4A) and feces (Figure 4.4B) demonstrated that 

elevated 241Am levels in the urine and feces were consistently achieved when the gel was 

applied to an 18 cm2 area compared to untreated controls as well as to animals that were 

treated with C2E5 doses of 200 mg/kg and 600 mg/kg applied over a 6 cm2 area. 

 

4.4. DISCUSSION 

 

Transdermal drug delivery possesses many advantages over other drug delivery 

routes such as parenteral and oral routes. These include the delivery of a steady-state 

profile that reduces side effects related to fluctuations in plasma drug concentration, 

reduced dosing frequency, avoidance of first-pass metabolism, and improved patient 
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compliance due to its convenient and non-invasive means of self-administration (72-74). It 

may also offer benefits to special populations such as patients with needle phobia, those 

who are unconscious or too nauseated to take oral medications, pediatric patients and the 

elderly. The latter two populations are specific areas of concern to the FDA related to the 

development of radionuclide decorporation agents (29). The stringent physicochemical 

requirements for potential transdermal drug candidates have limited the number of 

commercial transdermal drug products on the market (72, 73). The DTPA prodrug, C2E5, 

was synthesized, determined to possess suitable physicochemical properties for 

transdermal delivery (43, 44), and achieved sustained release of C2E5 metabolites when 

applied topically to rats in a non-aqueous gel formulation (47). 

In the present study, the elimination profile for C2E5 was obtained, and dose- and 

area-dependent radionuclide decorporation efficacy profiles following transdermal 

application were demonstrated. The mass balance study using [14C]-labeled C2E5 non-

aqueous gels showed that approximately 62% of the applied C2E5 dose was absorbed in 24 

h and that about half of the absorbed dose was eliminated in the urine. The overall [14C] 

recovery for the study was 93%, a satisfactory end point for a mass balance study using rats 

where at least 90% recovery is defined as acceptable [27]. The small amount of [14C] 

recovered from the skin application site indicated that C2E5 did not reside there for an 

extended period after administration, thus avoiding potential skin irritation and inflammation 

issues associated with drug retention at the application site. The fact that no signs of 

irritation were evident on visual inspection of the application site further confirmed the 

suitability of C2E5 for transdermal delivery. The daily excretion of [14C] radioactivity in urine 

and feces (Figure 4.2) showed sustained excretion of C2E5 and metabolites over 72 h 

following the removal of C2E5 gels from the application site. In addition, the recovery of 

most of the absorbed radioactivity in the excreta and the low residual radioactivity in the liver 

suggests that C2E5 and its metabolites were not retained in tissues. 
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We observed that about half of the absorbed C2E5 dose was eliminated in the urine 

over six days after topical administration. In contrast, i.v. DTPA results in ≥ 90% renal 

clearance within 24 h of administration (79, 94). C2E5 is metabolized by esterases in the 

skin and plasma in a step-wise manner, yielding metabolites such as DTPA, C2E1 and 

C2E2 (47); compounds that are more lipophilic than DTPA are known to shift elimination of 

actinides from a predominantly renal pattern to a pattern with increased fecal excretion (71, 

167). It is anticipated that these partially hydrolyzed C2E5 metabolites (C2E2 and C2E1) 

can form relatively stable chelating complexes with transuranic elements, such as 241Am, 

with log stability constants in the range 16.3 M-1 to 24.0 M-1 (118, 119). Even though such 

complexes are less stable than the 241Am-DTPA complex, they may result in increased 

241Am decorporation consistent with the results observed in the C2E5 gel decorporation 

study.  A strong temporal relationship was observed when the daily excretion of [14C] in the 

urine is compared with the urinary fraction of the 241Am decorporation (Figure 4.5A). The 

relationship between fecal 241Am decorporation and the content of [14C] in the feces (Figure 

4.5B) was less clear possibly due to delayed biliary excretion of the chelation complex and 

intestinal transit time. These observations are consistent with earlier reports, where delayed 

excretion of transuranic radionuclides, such as 238Pu, 239Pu and 241Am, after chelation with 

DTPA or other decorporation agents was observed in dogs and rodents (95, 167, 168). 

Animal models have been developed to facilitate the understanding of the biokinetic 

profiles that are observed following contamination by transuranic elements (80). For the 

model used in this study, a simulated wound contamination with [241Am]-Americium nitrate, 

the 241Am at the intramuscular contamination site initially enters the bloodstream as the 

stable trivalent 241Am3+ form. Once in the circulation, approximately 95% of the 241Am3+ is 

cleared from the plasma in less than 1 h with the majority accumulating in the liver and 

skeleton (91, 169, 170). An adequate concentration of a chelator in the blood can sequester 

the 241Am3+ as a stable chelation complex, reducing the translocation and deposition of 
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radionuclides into the adjacent bone and other tissues. In addition to promote the excretion 

of 241Am3+, Markley reported that intraperitoneally administered DTPA penta-ethyl ester 

successfully reduced the 239Pu content in mouse liver (171). Guilmette et al demonstrated 

that i.v. administration of a series of mono- and dialkyl esters of DTPA (including a form of 

C2E1 and C2E2, respectively) effectively reduced the plutonium burden in the skeleton of 

contaminated rodents (120). Because the biokinetics of 242Cm and 244Cm is very similar to 

that for 241Am (91), the effective decorporation treatment for 241Am would also likely be 

effective in treating individuals contaminated with 242Cm and 244Cm. Thus, the previous 

reports suggest that this C2E5 gel treatment may promote the excretion of several 

transuranic elements. 

In the studies reported here, a well-defined C2E5 dose-dependent increase in 

excretion of 241Am in the urine and feces was observed for animals treated with the C2E5 

gels 24 h post contamination; total body decorporation of 241Am increased by approximately 

2% for every 100 mg/kg of administered C2E5. A similar trend was observed for the 

reduction in the liver 241Am burden; each 100 mg/kg increment of C2E5 dose reduced the 

liver 241Am burden by approximately 1%. Although the reduction in skeleton burden for 24 h 

post contamination C2E5 gel groups did not appear to be dose-dependent, a lower skeletal 

burden was observed in contaminated animals treated with C2E5 gels at all dose levels 

compared to untreated animals. As the liver and bone tissues are key target organs for the 

chronic damage caused by radionuclide contamination (172, 173), this improved ability for 

C2E5 metabolites to remove actinides fixed in liver and bone tissues may result in a 

therapeutic benefit. In addition to demonstrating a dose dependent response to C2E5 

treatment when applied to the same area, we also demonstrated increased efficacy when 

the application area was increased from 6 cm2 to 18 cm2. Based on Fick’s law, the drug flux 

across the skin is directly proportional to the drug application area when all other 

parameters are kept constant. For animals treated with the C2E5 gel at a 1000 mg/kg dose 
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spread over 6 cm2 or at 600 mg/kg dose applied over 18 cm2, the overall efficacy in terms of 

enhancement in decorporation as well as reduction in liver and skeletal burden was 

comparable to that observed for animals intravenously administered Ca-DTPA at the 

standard recommended dose of 14 mg/kg. 

All animals were examined daily during the experimental period for indications of 

disease or abnormalities including morbidity, mortality, and signs of toxicity (no radio-toxicity 

was anticipated due to the low amounts of 241Am employed in these studies). In C2E5 

treated animals, no elevated skin reddening or local skin inflammation was observed at the 

locus where the dose was applied, and gel treatment did not significantly alter animal body 

weights compared with untreated control animals. These preliminary results suggest that the 

C2E5 gel was well tolerated by the animals. The 241Am content at the wound site for all the 

experimental groups was consistent with literature reports (80), and no statistical 

significance was observed in the retained 241Am at wound sites among the different 

treatment groups. The radionuclide decorporation results confirmed the validity of 

maintaining chelator concentrations for an adequate duration to ensure optimal in vivo 

chelation of transuranic radionuclides (88). 

Unlike most new drug candidates, the efficacy of radionuclide decorporation 

therapies has not been systemically evaluated in human clinical trials due to ethical 

concerns involving the contamination of healthy human subjects with radionuclides. The 

“Animal Rule” (21 CFR 314.600) has been implemented by the FDA as a paradigm for the 

approval of drugs that treat radiological, chemical, and biological threats (174, 175). The 

241Am decorporation results in the rodent wound contamination model presented here 

demonstrate that this treatment option can be as effective as the current FDA approved i.v. 

DTPA treatment when administered one day after radionuclide contamination, a realistic 

response timeframe for victims in a mass casualty scenario after a nuclear/radiological 

event. 
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In order to predict an appropriate human dosing regimen for this transdermal gel 

treatment based on rodent efficacy data, interspecies differences in the drug’s 

pharmacokinetics need to be considered. Based on allometric scaling (176), the 6 cm2 

application area used on the ~250 g rats would translate to a gel application area of 

approximately 300 cm2 (a circle with a radius of ~10 cm) for a 70 kg human; this application 

area is within the range of current topical products (177). The renal clearance of chelators 

like DTPA is slower in humans (1.3 mL/min/kg) than in the rat (5.9 mL/min/kg) (178), which, 

for a given dose, would result in a higher steady-state plasma concentration in humans. It 

has also been demonstrated that the DTPA plasma concentration required to quantitatively 

bind 241Am in rat plasma is approximately 3-fold greater than in human plasma (179).  These 

two factors may result in a lower dose being required for human efficacy. The dose may be 

further lowered by increasing the frequency of dosing. 

 

4.5 CONCLUSIONS 

 

To our knowledge, this is the first report which demonstrates that the transdermal 

delivery of a pro-chelator is a viable strategy for delivering chelating agents to the systemic 

circulation, resulting in an effective, mass-casualty-ready treatment option for radionuclide 

contamination. Efficacy was demonstrated by enhancing total body decorporation and 

reducing the liver and skeletal burden of 241Am with a single topical administration of the 

C2E5 gel 24 h after contamination. Enhanced 241Am elimination for at least three days after 

application indicated that the C2E5 non-aqueous gels provided sustained delivery of 

metabolites capable of chelating 241Am. No skin abnormalities or signs of skin irritation were 

observed after administration of the C2E5 non-aqueous gel throughout the entire study 

period. The effectiveness of this treatment option, favorable sustained release profile of pro-

chelators and ease of administration support the use of C2E5 non-aqueous gels following 
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nuclear/radiological emergencies and for its inclusion in the Strategic National Stockpile. We 

expect that this work will be of great interest to the general scientific community and 

especially to researchers in medical countermeasures field, as well as to the government 

agencies in emergency response and preparation. 
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Table 4.1 Percent of administered dose in various tissues 6 days after administration of 
[14C]-labeled C2E5 non-aqueous gels at a dose of 200 mg C2E5/kg (n=6). 

Sample Mean S.D. 

Urine* 29.9  3.2 

Feces 30.6  2.5 

Skin at the application site 1.57  0.28 

Liver 0.11  0.30 

Recovered gel from the 
application site 

30.8  6.6 

Mass Balance 93.0  3.9 

* Include [14C] recovered from cage washes. 
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Figure 4.1 Release-time profile of soluble, colloidal and particulate radionuclides (including 
actinides such as 238Pu, 239Pu, 241Am and 242,244Cm) following i.m. injected in rats. (CIS: 
Colloid & Intermediate State; PABS: Particles, Aggregates & Bound State.). Reprinted with 
permission of the National Council on Radiation Protection and Measurements, 
http://NCRPpublications.org. 
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Figure 4.2 Structures of C2E5 and its metabolites. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



111 

 

Figure 4.3 Daily excretion of radioactivity in urine and feces after topical application of [14C]-
labeled 40% C2E5 non-aqueous gels (Data are means ± SD) (n=6). (Urinary excretion, -■-; 
fecal excretion, -●-) 
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Figure 4.4 Daily excretion of 241Am in urine (A) or in feces (B) after a single dose of the 
decorporation agents at different dose levels and application areas 24 h post contamination. 
Significant (*p < 0.05, **p < 0.01, and ***p < 0.001) by Dunnett’s test. (Untreated control, -■-; 
200 mg/kg applied to 6 cm2, -●-; 600 mg/kg applied to 6 cm2, -♦-; 1,000 mg/kg to 6 cm2, -▲-; 
600 mg/kg to 18 cm2, -■-) 
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Figure 4.5 Daily 14C excretion and 241Am decorporation via urine (A) and feces (B) by C2E5 
gel formulations at 200 mg/kg dose applied 24 h post contamination. (Urinary excretion of 
14C, -■-; fecal excretion of 14C, -●-; Urinary excretion of 241Am, -■-; fecal excretion of 241Am, -
●-) 
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CHAPTER 5: GENERAL CONCLUSIONS AND FUTURE DIRECTION 

 

5.1 GENERAL CONCLUSIONS 

 

The first goal of this research project was to screen the various semisolid dosage 

forms to identify a formulation matrix that can stabilize the C2E5. A non-aqueous gel 

comprised of ethyl cellulose and Miglyol 840 was selected based on its ability to stabilize the 

hydrolysis prone C2E2 molecules over an oil-in-water cream and hydrocarbon based 

ointment matrices. 

The second goal of the study was to characterize the C2E5 non-aqueous gel 

formulations. Thermal analysis by DSC and SEM imaging results showed unsolubilized ethyl 

cellulose particles present in the gel that was prepared by directly mixing ethyl cellulose 

particles with Miglyol 840 and C2E5. Improved gel uniformity was achieved for the C2E5 

non-aqueous gels prepared using solvent evaporation method. Rheograms derived from 

continuous shear rheometry of C2E5 non-aqueous gel comprised of 40% C2E5, 20% EC10 

and 40% Miglyol 840demonstrated that the C2E5 non-aqueous gel is a typical shear-

thinning system rheological properties. The in vitro release testing of this gel formulation 

revealed that C2E5 was readily released from the gel matrix. 

The pharmacokinetic and absorption and mass balance demonstrated that C2E5 

was able to successfully permeate through the skin, to be converted into partially or fully 

hydrolyzed metabolites, and to enter systemic circulation en mass. Decorporation efficacy 

studies proved the validity of the working hypothesis. The efficacy achieved by a single 1000 
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mg/kg dose to contaminated rats was statistically comparable to the intravenous Ca-DTPA 

treatment, currently FDA approved treatment option. The effectiveness of this treatment, 

favorable sustained release profile of pro-chelators and ease of administration support its 

use following radiological emergencies and for its inclusion in the Strategic National 

Stockpile. 

 

5.2 FUTURE WORK 

 

The future work of this project include aspects on decorporation studies with different 

transuranic radionuclides and different contamination models, irritation study and skin 

sensitization study of the gel formulations, and PK/PD model of the C2E5 transdermal 

delivery and radionuclide decorporation.  

It’s important to evaluate the C2E5 non-aqueous gel formulations using the same 

wound contamination model with 238Pu and 242/244Cm species and prove to be efficacious in 

decorporating all the major transuranic elements. Furthermore, C2E5 non-aqueous gel 

formulations will be evaluated using an inhalation contamination model with 241Am, 238Pu 

and 242/244Cm in rats. 

Major side effects of topical and transdermal treatments are associated with irritation 

and skin sensitization reactions. Irritation study in rats will be conducted using selected 

C2E5 non-aqueous gel formulations, a vehicle control and a placebo, followed by a skin 

sensitization study in Guinea pigs. 

A PK/PD model of the C2E5 transdermal delivery and radionuclide decorporation 

needs to be established to understand of the interactions between the chelating agents and 

radionuclides in vivo. A detailed analysis of pharmacokinetic and efficacy study results will 

shed light and provide insight for the PK/PD model.  
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APPENDIX  A   DTPA Derivatives Synthesized for the Dissertation Research  

(A) An isomer of tetra-ethyl ester of DTPA 

(B) An isomer of di-ethyl ester of DTPA 

(C) Penta-amide of DTPA 
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APPENDIX  B   Non-aqueous Gel for the Transdermal Delivery of a DTPA Penta-ethyl Ester 

                          Prodrug 
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Abstract. Diethylenetriamine pentaacetic acid penta-ethyl ester, designated as C2E5, was successfully
incorporated into a nonaqueous gel for transdermal delivery. The thermal and rheological properties of a
formulation containing 40% C2E5, 20% ethyl cellulose, and 40% Miglyol 840® prepared using the
solvent evaporation method demonstrated that the gel had acceptable content uniformity and flow
properties. In vitro studies showed that C2E5 was steadily released from the gel at a rate suitable for
transdermal delivery. Topical application of the gel at a 200 mg C2E5/kg dose level in rats achieved
significantly higher plasma exposures of several active metabolites compared with neat C2E5 oil at the
same dose level. The results suggest that transdermal delivery of a chelator prodrug is an effective
radionuclide decorporation strategy by delivering chelators to the circulation with a pharmacokinetic
profile that is more consistent with the biokinetic profile of transuranic elements in contaminated
individuals.

KEYWORDS: nonaqueous gel; pharmacokinetics; radionuclide decorporation; transdermal drug
delivery.

INTRODUCTION

The Fukushima Daiichi nuclear incident in March 2011
attracted world attention to currently available radiological
countermeasures for such disasters. In addition, the threat of
nuclear terrorism resulting from detonation of a radiological
dispersion device (“dirty bomb”) calls for effective medical
countermeasures designed for use in mass casualty scenarios.
In both of these events, significant release of transuranic
radionuclides into the environment could result in human
exposure via inhalation, ingestion, or absorption at a wound
site. The injuries and risks associated with internal deposition
of the transuranic elements americium (Am), curium (Cm),
and plutonium (Pu) can be mitigated by administration of
radionuclide decorporation agents such as the calcium (Ca)
and zinc (Zn) trisodium salts of diethylenetriamine penta-

acetic acid (DTPA), which are the only agents approved by
the US Food and Drug Administration to treat internal
contamination by transuranics. DTPA is a synthetic poly-
amino carboxylic acid with eight coordinate bond forming
sites that can sequester metal ions and form highly stable
DTPA–metal ion complexes. DTPA has wide industrial and
medical applications including control of water hardness,
medical imaging, and decorporation of internally deposited
radionuclides (1). Ca- and Zn-DTPA achieve therapeutic
efficacy by exchanging the Ca and Zn cations with transuranic
radionuclides in vivo to form higher-affinity complexes and
promoting their elimination from contaminated individuals
(2). The high aqueous solubility and low permeability of these
compounds result in poor bioavailability after oral adminis-
tration (3–5). Therefore, these compounds must be adminis-
tered by slow intravenous (i.v.) push, i.v. infusion, or
inhalation using a nebulizer (6). The administration of DTPA
by i.v. or inhalation to those contaminated with transuranic
isotopes requires skilled medical professionals, which imposes
a logistical challenge in a mass casualty setting. As a
consequence, there is an urgent need for new decorporation
treatments that allow patients to self-administer in a timely
manner after a nuclear disaster.

Contamination by radioactive Am, Pu, and Cm can occur
by inhalation, skin adsorption, or by entrance through a
wound. The transfer of these radioactive elements from
experimental deep puncture wounds to the systemic circula-
tion is generally a slow, steady process and transfer rates
ranging from 0.052% to 6.3% of the injected dose per day

1Division of Molecular Pharmaceutics, UNC Eshelman School of
Pharmacy, University of North Carolina at Chapel Hill, CB# 7362,
120 Mason Farm Rd, Chapel Hill, North Carolina 27599-7362, USA.

2 UNC Lineberger Comprehensive Cancer Center, Carolina
Center for Cancer Nanotechnology Excellence, UNC Institute
for Pharmacogenomics and Individualized Therapy, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina
27599-7295, USA.

3Division of Pharmacotherapy and Experimental Therapeutics, UNC
Eshelman School of Pharmacy, University of North Carolina at
Chapel Hill, Chapel Hill, North Carolina 27599-7569, USA.

4 To whom correspondence should be addressed. (e-mail:
mjay@unc.edu)

The AAPS Journal, Vol. 15, No. 2, April 2013 (# 2013)
DOI: 10.1208/s12248-013-9459-5

523 1550-7416/13/0200-0523/0 # 2013 American Association of Pharmaceutical Scientists
119



have been observed, depending on the radio-contaminants
and the animal species (7). In contrast, the total body
clearance of 14C-labeled DTPA from rats 24 h after i.v.
administration has been reported to range from 94% to 100%
with the half-life ranging from 18.5 to 31.8 min (8,9).
Comparison of the short half-life and rapid elimination of
DTPA after i.v. injection to the slow introduction of
radioactive actinide species into the bloodstream reveals a
mismatch between the pharmacokinetics of DTPA and the
biokinetic profiles of the actinides, which may limit the
effectiveness of the currently available DTPA treatments.

Transdermal delivery of therapeutic agents provides
many advantages over parenteral and oral routes such as
more uniform plasma drug levels, a longer duration of action
with a reduced dosing frequency, and improved patient
compliance and comfort with ease of self-administration
(10–13). It is highly desirable to deliver decorporation agents
including DTPA to the circulation at a zero-order rate to
better match actinide biokinetic profiles and thus achieve
optimal radionuclide decorporation over an extended dura-
tion. Due to its low partition coefficient (log P0−4.90) and
high melting point (219–220°C), DTPA is not a good
candidate for transdermal delivery (12,14). However, the
penta-ethyl ester of DTPA, designated as C2E5, was designed
and synthesized as a new radionuclide decorporation prodrug
to overcome the limitations of the current DTPA treatments
(15,16). The structures of C2E5 as well as its potential
degradation products and metabolites including DTPA tetra-
ethyl ester (C2E4), DTPA tri-ethyl ester (C2E3), DTPA di-
ethyl ester (C2E2), DTPA mono-ethyl ester (C2E1), and the
fully de-esterified DTPA are shown in Fig. 1. C2E5 possesses
physicochemical properties suitable for transdermal delivery.
It has a log P value of 3.3, a log D value of 2.4 at pH7.0, its
aqueous solubility is 3.0 mg/mL at pH7.0, and it is a
Newtonian liquid with a viscosity of 175 cP at 25°C (16,17).

The aim of these studies was to develop C2E5 transder-
mal formulations and evaluate them for sustained delivery of
DTPA and other active metabolites in vivo. Cream and
ointment formulations were initially screened as potential
C2E5 delivery vehicles, but the results showed that either
C2E5 proved to be unstable in the matrices due to
degradation or the C2E5 formulations underwent phase
separation. C2E5 degradation in buffered aqueous solution
follows pseudo-first order kinetics and C2E5 is most stable at
a pH of approximately 4.2 (17). Due to the high hydrolytic
tendency of the C2E5 ester bonds in aqueous media,
nonaqueous gel formulations were pursued to stabilize the

moisture-labile C2E5 in the delivery vehicles. Many drugs for
topical and transdermal drug delivery are moisture-sensitive
and undergo degradation reactions with water (18). The
major degradation pathway involved with moisture-sensitive
drugs is hydrolysis followed by secondary degradation
reactions such as polymerization and isomerization (19). In
contrast to extensive research on traditional semisolid dosage
forms such as creams, ointments, and hydrogels, there are far
fewer reports on the development of nonaqueous gel matrices
intended for topical and transdermal drug delivery (20–24).
Ethyl cellulose is frequently used as a gelling agent for
nonaqueous gel vehicles. A series of nonaqueous gels with 15
and 20% (% w/w) ethyl cellulose were prepared as topical
formulations of naproxen (20). Lee and colleagues developed
a nonaqueous gel with 3–10% (% w/w) ethyl cellulose
dispersed in an ethanol/tricaprylin (40:60, w/w) mixture (21).
Lizaso and coworkers heated ethyl cellulose and phthalate
ester derivative mixtures to 180°C and formed a nonaqueous
gel during the cooling process (22). The Heng group reported
on nonaqueous gel matrices containing ethyl cellulose and
Miglyol 840®, which is a mixture of propylene glycol
dicaprylate and dicaprate, obtained by directly mixing the
ethyl cellulose and Miglyol 840 at 60°C (23). The rheological,
mechanical, wettability, and spreadability properties of the
ethyl cellulose/Miglyol 840 nonaqueous gels indicate that
these matrices possess favorable attributes for transdermal
and topical delivery (23,25,26). Here, we report on the
preparation and characterization of C2E5 nonaqueous gels
including their physical and rheological properties, determi-
nation of the stability of C2E5 in the gel, in vitro release
properties, and preliminary in vivo pharmacokinetics of the
lead C2E5 nonaqueous gel formulation.

MATERIALS AND METHODS

Materials

Miglyol 840 was purchased from Sasol (Hamburg,
Germany). Ethyl cellulose polymers, including ETHOCEL
Std 7 FP Premium (EC7), ETHOCEL Std 10 FP Premium
(EC10), and ETHOCEL Std 100 FP Premium (EC100) with
an ethoxyl content of 48.0–49.5%, were gifts from Dow
Chemical (Midland, MI, USA). C2E5 was prepared based on
the Fischer esterification method by reacting DTPA with
ethanol under reflux in the presence of a hydrochloric acid
catalyst (17). Acetonitrile, trifluoroacetic acid, anhydrous
ethanol, methanol, isopropyl alcohol, formic acid, iron (III)

Fig. 1. Structures of DTPA, the prodrug C2E5, and its metabolites
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chloride hexahydrate, ammonium formate, tributylamine, and
acetic acid were purchased from VWR International (Rad-
nor, PA, USA) or Fisher Scientific (Fairlawn, NJ, USA).
Double-distilled water was obtained from a Milli-Q system
(Millipore, Billerica, MA, USA).

Preparation of the C2E5 Nonaqueous Gels

The C2E5 nonaqueous gels were prepared using the
solvent evaporation method. The EC10 material was dried at
60°C for ∼24 h before use in gel preparations. Predried EC10
particles were initially dissolved in anhydrous ethanol (10%
w/v of EC10 to ethanol) to form an EC10 stock solution. The
C2E5 nonaqueous gel was prepared by mixing the EC10
stock solution, Miglyol 840 and C2E5 to form a homogenous
solution, followed by removing ethanol under vacuum. When
the gel was <102% of the theoretical weight, the C2E5
nonaqueous gels were transferred to a storage container
under nitrogen and sealed with an airtight cap, covered with
aluminum foil to protect from light, and stored at 4°C for
later use.

The C2E5 concentration in these gel formulations was
determined using a Shimadzu Prominence high pressure
liquid chromatography (HPLC) system equipped with an
Alltech 3300 evaporative light scattering detector (ELSD). A
reverse-phase gradient separation was performed using an
Alltima C18 column (250×2.1 mm I.D., 5 μm) at 40°C and a
flow rate of 0.25 mL/min. The solvents that comprised the
mobile phase were water with 0.1% trifluoroacetic acid (A),
acetonitrile (B), and isopropyl alcohol (C). The linear
gradient for the mobile phase mixture (A/B/C) was from
94:4:2 to 25:50:25 over 35 min, followed by a change to 0:0:100
in 0.5 min and an equilibration phase of 0:0:100 for 9.5 min,
and ending with a reversal to 94:4:2 in 0.5 min and an
equilibration phase of 94:4:2 for 9.5 min. The ELSD was
operated at 40°C with 1.9 L/min nitrogen gas flow. Triplicate
injections for each sample of C2E5 nonaqueous gel dissolved
in anhydrous ethanol were performed with a volume of 10 μL
per injection, and the retention time of C2E5 was 26 min.
Samples were held at ambient temperature during analysis
and analyzed using a standard curve over a concentration
range of 0.02–2.00 mg/mL, which had a power regression fit
of R200.999. C2E5 nonaqueous gel samples stored at 4°C for
6 months were monitored for C2E5 degradation using this
HPLC method.

Physical characterization, in vitro release testing and
pharmacokinetic studies were performed with a formulation
comprised of 20% EC10, 40% C2E5, and 40% Miglyol 840
prepared using the solvent evaporation method.

Differential Scanning Calorimetry

The EC10 polymer particles and the C2E5 nonaqueous
gel samples were analyzed using a TA Instruments differen-
tial scanning calorimetry (DSC) Model Q200 under a
nitrogen flow of 50 mL/min. Approximately 5–10 mg samples
were heated in a sealed aluminum pan at a ramp rate of 10°C/
min, cooled at a rate of 5°C/min, and subsequently heated at
10°C/min in heat/cool/heat mode from −10 to 160°C. The
glass transition (Tg) and melting (Tm) temperatures in the

third heating cycle were determined using TA Universal
Software.

Rheological Measurements

A stress-controlled cone-and-plate rheometer (TA
Instruments, Model AR-G2) with a cone of 40 mm in
diameter and 1° cone angle at controlled temperatures of 25
±0.5°C and 32±0.5°C was utilized to measure continuous
shear rheometry of the nonaqueous gels with a formulation
comprised of 20% EC10, 40% C2E5, and 40% Miglyol 840
prepared using the solvent evaporation method. The gel
samples were carefully loaded to the lower plate to reduce
shearing effects and equilibrated for 5 min at the designated
temperatures prior to measurement. Fresh samples were used
for each individual measurement, and triplicate measure-
ments were performed for the formulation. Data are reported
as mean±SD.

Continuous shear rheometry was obtained by changing
the shear rate from 0.1 to 40 s−1 over a period of 300 s. The
power law equation for simple steady shear (Eq. 1) was used
to fit the data obtained from the upward flow curves (27):

t ¼ m gn
�

ð1Þ
where τ0shear stress, g

� ¼ shear rate , m0consistency index,
and n0flow behavior index.

The estimated yield stress was derived by fitting the data
using the Casson model described in Eq. 2 (27):

t1=2 ¼ t1=2y þ η g
�� �1=2

for t � ty ð2Þ

where τy0yield stress and η0creep viscosity. The square root
of yield stress τy was obtained from the plot as the y-axis
intercept when g

� ¼ 0 .

In Vitro Release of C2E5 Nonaqueous Gel

An in vitro release study was carried out using a vertical
diffusion cell system equipped with an autosampler (Hanson
Microette Autosampling System, Hanson Research Co.,
USA) to evaluate the nonaqueous gel formulations com-
prised of 20% EC10, 40% C2E5, and 40% Miglyol 840
prepared using the solvent evaporation method. The area for
permeation was 1.767 cm2, and the receiver compartment
volume was 7 mL. The receiver medium was 0.1 M phosphate
buffer (pH7.4) maintained at 32°C and continuously stirred at
400 rpm. A cellulose acetate membrane (25 mm in diameter,
with a 0.45 μm pore diameter, Whatman®) was first treated
by soaking in the receiving medium and then mounted and
clamped between the receiver and donor compartments of
the diffusion cells. Approximately 300 mg of C2E5
nonaqueous gel was loaded evenly on the surface of the
cellulose acetate membrane (n05) and covered with a glass
disk to exclude air. One-milliliter samples were removed from
the receiver compartment at 0.5, 1, 2, 4, and 6 h, which were
replaced with an equal volume of fresh media.

The C2E5 content in the collected samples was deter-
mined by the HPLC method described above. The cumula-
tive amount of C2E5 released per unit membrane area from
the tested nonaqueous gel was plotted as a function of the
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square root of time and as a function of time. The Higuchi
equation (Eq. 3) dictates the drug release from semisolid
dosage forms including creams, gels, and ointments, and holds
true when the released drug from the vehicle is below 30%
(28,29):

Q ¼ 2Cveh

ffiffiffiffiffiffi
Dt
p

r
ð3Þ

where Q0amount of drug released per unit area (mg/cm2),
Cveh0 initial drug concentration (mg/cm3) in the vehicle, D0
apparent diffusion coefficient (cm2/h), t0time (h), and π0
constant. The release rate constant k of C2E5 from the
nonaqueous gel formulation was determined using a
simplified form of the Higuchi equation (Eq. 4):

Q ¼ k
ffiffi
t

p ð4Þ
where k is the release rate constant, which is determined from
the slope of the cumulative amount of C2E5 released per unit
membrane area from the nonaqueous gel versus the square
root of time.

Fick’s law (Eq. 5) has been used as a simple model to
describe the steady-state diffusion of drug through synthetic
membranes and skin:

Jss ¼ D�Kp

h

� �
�A� Cveh ð5Þ

where Jss0steady-state flux (mg/h), D0drug diffusivity (cm2/
h), h0membrane thickness (cm), Kp0drug’s membrane-
vehicle partition coefficient, Cveh0 initial drug concentration
(mg/cm3) in the vehicle, and A0surface area (cm2). Jss can be
determined from the slope of the linear plot in the steady-
state region of the cumulative amount of C2E5 permeated
(mg) per unit diffusion surface (cm2) versus a function of
time.

Throughout the experiment the C2E5 concentration in
the receptor compartment was kept below 30% of the
solubility of C2E5 at pH7.4, which is about 2.2 mg/mL at
room temperature (17). Therefore, steady-state flux condition
and sink condition were maintained for the duration of the
experiment.

Absorption of C2E5 Administered as a Neat Oil
or as a Nonaqueous Gel

All animal studies were conducted according to a
protocol approved by the University of North Carolina at
Chapel Hill Institutional Animal Care and Use Committee.
Ten-week-old adult female Sprague–Dawley (SD) rats weigh-
ing 200–300 g were used in these studies (Charles River Labs,
Raleigh, NC, USA). Food and water were provided ad
libitum. The animal room was kept at a controlled tempera-
ture on a 12 h/12 h light/dark cycle (light exposure from 7AM

to 7PM). For the duration of the study, the rats were
individually housed in metabolic cages until euthanasia at
24 h after neat C2E5 oil or C2E5 gel application.

In all animals, the dorsal skin between the cervical
vertebrae and anterior thoracic vertebrae of SD rats was
carefully clipped prior to drug application to remove hair.
C2E5 nonaqueous gel was applied at a C2E5 dose of 200 mg/

kg to a 2×3 cm region using a cotton swab. For comparison,
neat C2E5 oil (200 mg/kg) was applied using a 1-mL syringe
to the same size area on a control group of rats. For each rat,
the mass of the drug and applicator was recorded before and
after application with the difference being the delivered dose.
Finally, a jacket with a dermal insert (VWR International,
Radnor, PA, USA) was placed on the rats to protect the
applied treatments. Blood samples (0.4 mL) were collected
from the tail vein using SurFlash® polyurethane i.v. catheters
(Terumo, Somerset, NJ, USA) at either before or 0.5 h after
treatment and then at 1, 2, 4, 8, 12, and 24 h after treatment.
The collected samples were immediately transferred from the
syringes into prechilled sampling tubes containing 5 mg
sodium fluoride and 4 mg potassium oxalate (BD Vacutainer
product number 367921). The tubes were inverted eight times
per manufacturer’s recommendation and centrifuged
(1,300×g for 10 min at 4°C). Plasma samples were then
portioned into two 1.7-mL Eppendorf tubes, which contained
an equal amount of a 20% formic acid aqueous solution.
These tubes were immediately vortexed and placed on dry ice
until transfer to storage at −80°C until analysis. The animals
were transferred to individual housing in metabolic cages
after C2E5 treatment. Animals were euthanized 24 h after
C2E5 gel or neat C2E5 oil application. The animals were
observed during the study period, and the body weight of
each animal was recorded at predose and prior to necropsy.

A liquid chromatography–tandem mass spectrometry
(LC/MS/MS) method was developed for the analysis of
C2E5 and metabolites except for the fully de-esterified
metabolite, DTPA, in these samples. Acidified plasma
samples (100 μL) were first treated with 25 μL of 13C-C2E5
stable-label internal standard (1,000 ng/mL), followed by
precipitation with acetonitrile (400 μL). The supernatant
(400 μL) was removed and evaporated to dryness, and the
residue was reconstituted with 500 μL of 85/15/0.1% water/
acetonitrile/formic acid. A 10-μL injection was used for LC/
MS/MS analysis. Reverse-phase chromatography was
performed at 0.3 mL/min on a YMC® ODS-AM C18 (100×
2 mm, 3 μm) column with mobile phases A (0.1% formic acid
in water) and B (0.1% formic acid in acetonitrile) using a 10-
min gradient (isocratic at 13% mobile phase B for 1 min,
linear gradient to 50% mobile phase B at 6 min, linear
gradient to 60% mobile phase A at 6.5 min, linear gradient to
90% mobile phase B at 8 min, return to initial 13% mobile
phase B at 8.1 min, and equilibrate at 13% mobile phase B
until 10 min). After separation by liquid chromatography, the
analytes and internal standard were detected on a triple
quadrupole mass spectrometer using heated electrospray
ionization (HESI-II) (Thermo Scientific) in the positive-ion
mode. Suitable reference standard material was available to
provide reliable results for C2E5, C2E4, and C2E2. Although
reference standard material was not available for C2E3 and
C2E1, these analytes were present as trace impurities in the
reference standards for C2E5, C2E4, and C2E2. The
assumption of response factors for C2E3 and C2E1 equal to
those of the reference standards afforded an estimate of the
concentrations of C2E3 and C2E1 in calibration standards;
this allowed the generation of calibration curves for C2E3
and C2E1 that were used to estimate the levels of these
analytes in samples. Due to lack of pure internal standards for
C2E3 and C2E1, the plasma concentrations of C2E3 and
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C2E1 in the samples were considered as estimates. The lower
limit of quantification (LLQ) for C2E5, C2E4, C2E3, C2E2,
and C2E1 were determined to be 5.0, 10.0, 1.0, 10.0, and
5.0 ng/mL, respectively.

For detection of DTPA, acidified plasma samples
(100 μL) were first treated with 50 μL of 2 mM iron(III)
chloride hexahydrate, followed by addition of 400 μL of 13C-
DTPA stable-label internal standard (100 ng/mL in 0.1%
acetic acid in acetonitrile). This solution was vortexed for
5 min and then centrifuged at 3,000 rpm for 10 min. The
supernatant (350 μL) was removed, evaporated to dryness,
and reconstituted with 100 μL of 0.1% aqueous acetic acid. A
10-μL aliquot of the reconstituted sample was used for LC/
MS/MS analysis. The highly polar nature of DTPA required
the incorporation of ion-pairing chromatography to produce
acceptable LC peak shape and retention. Mobile phase Awas
90:10 water/methanol with 1 mM ammonium formate and
1 mM tributylamine, and mobile phase B was 50:50
acetonitrile/(5:95 water/methanol) with 1 mM acetic acid
and 1 mM tributylamine. A 10 min gradient was used to
afford separation (isocratic at 5% mobile phase B for 1 min,
linear gradient to 80% mobile phase B at 7 min, linear
gradient to 90% mobile phase B at 7.1 min, maintaining at
90% mobile phase B through 8 min, return to initial 5%
mobile phase B at 8.1 min, and equilibrate at 5% mobile
phase B until 10 min). Reverse-phase chromatography was
performed at 0.3 mL/min on an Advanced Materials
Technology HALO® Phenyl-Hexyl column (50×2.1 mm,
2.7 μm). The analyte and internal standard were detected
on a triple quadrupole mass spectrometer using HESI-II in
the negative-ion mode. The LLQ for DTPA was determined
to be 10.0 ng/mL.

For C2E5 and its metabolites in the pharmacokinetic
samples, plasma concentrations below the limit of quantifica-
tion were labeled as not detected (ND) and assigned a value
of zero for the area under the curve (AUC) analysis. The
AUCs were calculated using the trapezoidal method.

Statistical Analyses

The concentrations of C2E2 and C2E3 in plasma samples
collected at different times from the two C2E5 dosage forms
(neat oil and nonaqueous gel) were compared by unbalanced
two-way analysis of variance (ANOVA). Analysis of the
calculated exposure to C2E3 and C2E2 was by two-tailed t
test. All measurements are expressed as mean±standard
deviation (SD). The level of significance was set at p<0.05.

RESULTS

Preparation of C2E5 Nonaqueous Gels

The solvent evaporation method was used to prepare the
C2E5 nonaqueous gel formulations. To maximize C2E5
loading in the gel and achieve desirable rheological and
mechanical properties, a formulation that contained 40%
C2E5, 20% EC10, and 40% Miglyol 840 was prepared and
yielded a slightly yellow translucent gel, which was deter-
mined to have a density of 1.02 g/cm3. Based on the HPLC
analysis, the C2E5 content in nonaqueous gel samples stored
at 4°C for 6 months contained 98.2% of the C2E5 content in a

freshly prepared C2E5 nonaqueous gel, with C2E4 being as
the main degradant.

Thermal Analysis by DSC

The DSC thermogram of predried EC10 showed one
minor endothermic peak appearing at 63°C and one major
endothermic peak at 120°C. The endothermic peak at 120°C
is the EC10 glass transition temperature (30). The endother-
mic peak at 63°C may be the result of the presence of glyoxal,
an impurity in ethyl cellulose (19), or glyoxal reaction
products. However, further investigation is necessary for
confirmation of this peak. The DSC thermogram of the
C2E5 nonaqueous gel containing 20% EC10, 40% C2E5, and
40% Miglyol 840 prepared using the solvent evaporation
method showed no prominent endothermic peaks in the
range from −10 to 160°C. Complete dissolution of the EC10
in ethanol prior to gel formation eliminated the EC10 glass
transition endothermic peak at 120°C. The impurity in EC10,
which showed the endothermic peak at 63°C on the DSC
thermogram of predried EC10, could possibly have been
dissolved in ethanol and later removed during the solvent
evaporation process, either through direct evaporation (the
boiling point of glyoxal is 51°C) or by formation of an
azeotrope with ethanol. The residual water content in the gel
components could also have been effectively removed during
the solvent evaporation process by formation of an azeotrope
with ethanol.

Rheological Measurement Results

Rheograms derived from continuous shear rheometry
(Fig. 2) demonstrated that the C2E5 nonaqueous gel is a
typical shear-thinning system at both 25 and 32°C. The shear
stress versus shear rate rheogram exhibits a convex shape and
a hysteresis loop. The rheological properties of the 40%
C2E5 nonaqueous gel at different temperatures are

Fig. 2. Continuous shear rheogram showing shear rate versus shear
stress at 25°C and 32°C of C2E5 nonaqueous gel comprised of 20%
EC10, 40% C2E5, and 40% Miglyol 840 prepared using the solvent
evaporation method
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summarized in Table I. The flow behavior index values (n)
were below 1 for both the 25 and 32°C measurements,
indicating a shear-thinning gel structure under each of these
temperature conditions (31). Yield stress and hysteresis area
are parameters representing the rigidity and cohesion be-
tween the molecules forming a three-dimensional gel struc-
ture and the extensiveness of this three-dimensional gel
structure (32,33).

In Vitro Release of C2E5 Nonaqueous Gel

A plot of the cumulative amount of C2E5 released per
unit membrane area versus the square root of time, for the
lead nonaqueous gel (20% EC10, 40% C2E5, and 40%
Miglyol 840), is presented in Fig. 3. The cumulative amount of
C2E5 released per unit membrane area from the lead
nonaqueous gel versus the square root of time yielded a
linear plot with y01.57x–0.78 and R200.996. The amounts of
C2E5 released after 6 h from the five individual in vitro
release runs ranged from 2.89 to 3.33 mg/cm2, with an average
value of 3.11±0.17 mg/cm2 (coefficient of variance05.5%).
The average release rate constant k and average steady-state
flux Jss per unit area of the 40% C2E5 nonaqueous gel were
determined to be 1.57±0.09 mgcm−2h−0.5 and 0.556±
0.031 mgcm−2 h−1, respectively, with both having a
coefficient of variance of 5.6%. For each individual run, an
acceptable linear regression fit was achieved for the release
rate constant k per unit area (R2≥0.994) and the steady-state
flux Jss per unit area (R2≥0.969).

Absorption of C2E5 Administered as a Neat Oil
or as a Nonaqueous Gel

Following topical application of either the neat C2E5 oil
or the 40% C2E5 nonaqueous gel, the principal circulating
metabolites detected in plasma were C2E3 and C2E2. The
concentrations of C2E3 and C2E2 detected in the rat plasma
samples plotted versus time for the neat C2E5 oil and the
40% C2E5 nonaqueous gel groups are presented in Figs. 4
and 5, respectively. Two-way ANOVA showed that the C2E5
dosage form had a significant effect on the plasma concen-
tration of both C2E2 [FFormulation(1,36)013.3, p<0.001] and
C2E3 [FFormulation(1,36)06.91, p<0.05]. The time the plasma
was sampled was not a significant factor for either metabolite
[C2E2, FTime(7,36)01.06, p00.41 and C2E3, FTime(7,36)00.84,
p00.56], and no interaction between dosage form and time
was observed [C2E2, FInteraction(7,36)00.84, p00.56 and C2E3,
FInteraction(7,36)01.04, p00.42]. The pharmacokinetic parame-
ters of C2E3 and C2E2 after application of neat C2E5 oil or
40% C2E5 nonaqueous gel at 200 mg/kg dose (n04) are

shown in Table II. We observed a trend for increased
exposure to the metabolites C2E3 and C2E2 following
C2E5 application as a nonaqueous gel compared with
application as the neat oil; however, this trend did not reach
statistical significance for either metabolite alone (AUCC2E2,
p00.073 and AUCC2E3, p00.087; both two-tailed t test).
Enhancement ratios based on the AUCs for C2E3 and
C2E2 were determined to compare the AUC obtained from
the 40% C2E5 nonaqueous gel group to the neat C2E5 oil
group.

There was only two plasma samples in which C2E5 was
detected with a concentration above the LLQ among the 56
samples, one from the neat C2E5 oil group (28.4 ng/mL at
2 h) and one from the C2E5 nonaqueous gel group (7.2 ng/
mL at 24 h). There were five plasma samples in which C2E4
was detected with a concentration above the LLQ among 56
samples, three from the neat C2E5 oil group (13.5 ng/mL at
0.5 h, 52.7 ng/mL at 2 h and 45.1 ng/mL at 24 h), and two
from the C2E5 nonaqueous gel group (59.9 ng/mL at 1 h and
83.8 ng/mL at 2 h).

C2E3 and C2E2 species were consistently detected in the
plasma samples from both groups throughout the experimen-
tal period with the Cmax values ranging from 85.3 to 485 ng/
mL for C2E3 and from 17.4 to 413 ng/mL for C2E2,
indicating that C2E3 and C2E2 are stable C2E5 metabolites
in vivo. The concentrations of C2E3 and C2E2 reported in

Table I. Rheological Properties of a 40% C2E5 Nonaqueous Gel at Different Temperatures

Temperature
(°C)

Flow behavior
index, n

Consistency
index, m
(Pasn)

Apparent
viscositya

(Pas)
Yield stress

(Pa)
Hysteresis area

(kPas−1)

Mean±SD

25 0.407±0.013 691±17 177±1 663±18 16.7±0.7
32 0.462±0.005 446±13 129±3 381±14 7.71±0.28

aApparent viscosity at a shear rate of 10 s−1

Fig. 3. Relationship between square root of time and cumulative
amount of C2E5 released through a cellulose membrane into 0.1 M
phosphate buffer after application of C2E5 nonaqueous gel (n05).
The C2E5 nonaqueous gel consisted of 20% EC10, 40% C2E5, and
40% Miglyol 840. The release rate constant k is determined from the
slope of the cumulative amount of C2E5 released per unit membrane
area from the tested nonaqueous gel versus square root of time
defined in Eq. 4
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the rat plasma samples versus time figures showed a sustained
release profile from transdermal neat C2E5 oil and C2E5
nonaqueous gel formulations. Average steady-state concen-
trations (Css) for both C2E3 and C2E2 were between 100 and
200 ng/mL for the C2E5 nonaqueous gel group and between
20 and 80 ng/mL for the neat C2E5 oil group. Overall
systemic exposures to C2E3 and C2E2 were approximately
2.9- and 4.2-fold (based on AUC0−24 h) higher for the C2E5
nonaqueous gel group compared to the neat C2E5 oil group.

There was no C2E1 detected above the quantification
limit in any rat plasma samples for either the neat C2E5 oil
group or the C2E5 nonaqueous gel group during the
experimental period. DTPA was frequently detected in the
plasma samples at time points after 4 h postdosing for both
the neat C2E5 oil group and the C2E5 nonaqueous gel group.
Most of the detected DTPA plasma concentrations were in
the range of 10 ng/mL to 30 ng/mL, which is just above the
LLQ of DTPA (10 ng/mL). The maximum DTPA concentra-
tion detected in plasma in the neat C2E5 oil group was
61.4 ng/mL, compared with 693 ng/mL in the C2E5 nonaque-
ous gel group.

DISCUSSION

Nonaqueous gel formulations have been a useful vehicle
for moisture-sensitive drugs for topical and transdermal
application (20–24). Critical components for the successful

development of a semisolid product for topical and transder-
mal applications include the stability of the active pharma-
ceutical ingredient (API) in the delivery matrix, product
uniformity, and the release profile of API from the delivery
matrix. In this study, we report on the development and
characterization of a nonaqueous gel formulation that stabil-
izes the hydrolysis-prone API, enhances its percutaneous
permeation flux, and improves its pharmacokinetic profile
following topical application to rats.

Candidate nonaqueous gel formulations showed im-
proved stability of C2E5 under various storage conditions
when compared with the neat API and other tested delivery
vehicles, such as creams and ointments (34,35), suggesting a
clear benefit of the ethyl cellulose based nonaqueous gel for
this moisture-sensitive compound. The enhanced stability
profile of C2E5 in the nonaqueous gel matrix is probably
due to decreased interactions with the hydroxyl groups on the
ethyl cellulose polymer chains. These hydroxyl groups are not
readily available to interact with other molecules compared to
the hydroxyl groups in small molecule due to steric and
rotational hindrance. The use of Miglyol 840 neutral oil as a
dispersion medium also contributes to the enhanced stability
of C2E5 in the gel matrix because Miglyol 840 is nonhygro-
scopic, possesses high stability against oxidation, and contains
no free hydroxyl groups (23).

Modification of the published direct mixing method for
gel preparation (23), using anhydrous ethanol to dissolve the
ethyl cellulose before forming the gel and then evaporating
the ethanol from the gel mixture, resulted in a significant
improvement in gel uniformity. Although the solvent evapo-
ration method is a commonly used technique for making
films, microspheres, and solid dispersions (36–38), to our
knowledge, this method has not been reported previously for
preparation of ethyl cellulose based nonaqueous gels. To
minimize the amount of solvent used in the gel preparation,
EC7 and EC10 were selected because much more ethanol is
needed to dissolve EC100 than for equal amounts of EC7 or
EC10. Our method of gel preparation requires simple
evaporation of the solvent and is suitable for scale-up, with
ethanol content in the gels readily reduced to below 2% of gel
weight. The solvent evaporation method was successfully
scaled up to prepare 400 g of C2E5 nonaqueous gels in one
batch. Any residual ethanol present in the gel system would
not interact with the C2E5 molecules and might possibly
retard its hydrolysis. Ethanol is approved for human use in
commercial topical and transdermal products at relatively
high concentrations as a basic component and can act as a
permeation enhancer by changing the characteristics of the
skin (23,39). A C2E5 formulation screening study was carried
out and phase separation was observed in gels with low EC
content (<10%) and particularly in gels with lower molecular
weight EC chains. This phase separation may be due to a
decrease in the interactions between the gel matrix and the
C2E5 dissolved in it (data not shown). A C2E5 nonaqueous
gel formulation comprised of 20% EC10, 40% C2E5, and
40% Miglyol 840 was chosen as a candidate formulation for
further physical characterization and in vivo pharmacokinetic
evaluation.

The stability study with the 40% C2E5 nonaqueous gel
showed that <2% of C2E5 had degraded after being stored at
4°C for 6 months, suggesting an acceptable stability profile of

Fig. 4. Concentration of C2E3 detected in rat plasma versus time
after topical administration of the neat C2E5 oil and the 40% C2E5
nonaqueous gel (mean±SD) (n04)

Fig. 5. Concentration of C2E2 detected in rat plasma versus time
after topical administration of the neat C2E5 oil and the 40% C2E5
nonaqueous gel (mean±SD) (n04)
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this formulation.As demonstrated by theDSC thermograms, the
slightly yellow translucent C2E5 nonaqueous gel possessed
acceptable uniformity. This was a result of EC10 being com-
pletely solubilized in ethanol before incorporation into the gel
matrix and thus eliminating the problems related to residual EC
particulates encountered when using the direct mixing method.

The rheological and mechanical properties of the
nonaqueous gel matrices containing ethyl cellulose and
Miglyol 840 were investigated in detail by the Heng group
(23). The rheological properties of the C2E5 nonaqueous gel
comprised of 20% EC10, 40% C2E5, and 40% Miglyol 840
(Table I) exhibited characteristics and flow patterns similar to
nonaqueous gels comprised of ethyl cellulose and Miglyol
840, suggesting that an adequate adhesion force to the skin
surface for prolonged periods could be maintained, a critical
property for the sustained delivery of drug substance from
the gel (40). Other characteristics, such as a 36.6% decrease
in viscosity from 177 (Pas) to 129 (Pas) and a 117% decrease
in hysteresis area with a temperature increase from 25 to 32°
C, are good indicators that the gel is suitable for application
on human skin with a surface temperature of 32–34°C.
The in vivo pharmacokinetic studies using this gel
formulation confirmed the predictions based on these
physical measurements; the gel spread easily during
application and remained at the application site for the
entire study. In contrast, neat C2E5 oil presented a
challenge for application to the skin and retention at the
application site due to its lower viscosity.

In vitro release testing is widely used to assess content
uniformity and drug release from semisolid products and can
also be used to compare performance across different batches
and after storage or changes in the manufacturing process
(41,42). Although transdermal delivery of C2E5 to the
systemic circulation is a multistep process, in vitro release
results suggest that C2E5 is readily released from the
nonaqueous gel matrix and the steady state flux (0.556±
0.031 mgcm−2h−1) associated with this release is expected
provide the required sustained concentration of drug in
plasma. The narrow distribution of the release rate constant
(1.57±0.09, coefficient of variance05.6%) confirmed the
optimal content uniformity of the 40% C2E5 nonaqueous
gel prepared by solvent evaporation method.

Pharmacokinetic data obtained from in vivo studies
confirmed our observations from the in vitro release testing,

with metabolites of C2E5 detected in plasma throughout the
collection period. Additionally, an improved plasma pharma-
cokinetic profile for drug released from the C2E5 nonaque-
ous gel compared with the neat C2E5 oil suggests that
Miglyol 840, a major component of the gel, perhaps along
with residual ethanol in the gel, are working as permeation
enhancers (23,39,43). The enhanced ratios of systemic
exposure to major C2E5 metabolites (C2E3 and C2E2) with
C2E5 nonaqueous gel were greater than those observed with
neat C2E5 oil. The pharmacokinetic data also support our
hypothesis that the mismatch between the biokinetics of
transuranic contaminants and the pharmacokinetics of DTPA
used to treat contamination could be overcome using a
transdermal prodrug strategy.

C2E5 and C2E4 were only detected in concentrations
above their respective LLQs in <10% of all samples;
detection of C2E4 suggests that it is a direct metabolite of
C2E5 in vivo, generated by a stepwise de-esterification
process involving esterases in the rat skin and plasma
(44,45). C2E2 and C2E3 were observed as the principal
metabolites detected in circulation throughout the 24 h study
period, matching the findings of the C2E5 in vitro metabolism
study (44,45). C2E1 was not detected above the LLQ in
any plasma samples throughout the study, but is likely
present transiently resulting from the stepwise de-esterifi-
cation of C2E5 to DTPA. Detection of DTPA at low
concentrations, close to the 10 ng/mL LLQ, was not
unexpected as DTPA has a short half-life ranging from 18.5 to
31.8 min (8,9).

In addition to DTPA, other metabolites, such as C2E3,
C2E2, and C2E1, may effectively sequester transuranic
radionuclides and form stable complexes. For example,
241Am, an abundant transuranic radionuclide, forms
complexes with various chelators, including DTPA and
other molecules structurally similar to C2E3, C2E2, and
C2E1, with stability constants ranging from 10.7 to 24.0 M−1

(46). Although stability constants for americium binding to
C2E5 metabolites are not known, the binding of Gd3+ with
DTPA mono-propyl ester and DTPA di-propyl ester
(compounds analogous to C2E1 and C2E2) are reported to
be 18.91 and 16.30 M−1 (47). Because gadolinium is viewed as
a biochemical analogue of americium and Gd3+ ion is
structurally very similar to 241Am3+ (48,49), comparable
binding constants and thermodynamic stability can be

Table II. Pharmacokinetic Parameters of C2E3 and C2E2 After Application of Neat C2E5 Oil or 40% C2E5 Nonaqueous gel at a C2E5 Dose
of 200 mg/kg (n04) and the Enhancement Ratio of C2E3 and C2E2 Based on the Formula AUC0–24 h (C2E5 gel)/AUC0–24 h (neat C2E5)

C2E3 C2E2

Treatment Cmax

(mean±SD,
μg/mL)

Tmax

(mean±
SD, h)

AUC0-24h

(mean±SD,
h×μg/mL)

Enhancement ratio
(AUC0–24 h (C2E5 gel)/
AUC0–24 h (neat C2E5))

Cmax

(mean±SD,
μg/mL)

Tmax

(mean±
SD, h)

AUC0-24h

(mean±SD,
h×μg/mL)

Enhancement ratio
[AUC0–24 h (C2E5 gel)/
AUC0–24 h (neat C2E5)]

Neat C2E5
oil at 200
mg/kg

0.181±0.097 9.6±10.9 1.21±0.16

2.9

0.059±0.041 17.0±8.2 0.660±0.351

4.240% C2E5
nonaqueous
gel at 200
mg/kg

0.281±0.159 4.5±4.0 3.52±2.26 0.203±0.161 4.5±2.5 2.75±1.89

Cmax maximum plasma concentration during 0–24 h period, Tmax time of maximum plasma concentration during 0–24 h period, AUC0–24 h area
under the curve during 0–24 h period
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expected for the binding of 241Am3+ with C2E1 and C2E2 in
vivo. Furthermore, studies in americium-contaminated rats
demonstrated that C2E5 administered orally enhanced 241Am
decorporation (17,50).

CONCLUSIONS

The penta-ethyl ester of DTPA (C2E5) was incorporated
into a nonaqueous gel comprised of ethyl cellulose and
Miglyol 840 using the solvent evaporation method, and was
characterized by thermal and rheological analysis and in vitro
release. A superior pharmacokinetic profile of C2E5 metab-
olites, including DTPA, was achieved when C2E5 was
administered as a nonaqueous gel as opposed to a neat oil,
perhaps as a result of permeation enhancement by Miglyol
840 and ethanol. These findings demonstrate that transdermal
delivery of a chelator prodrug is a viable approach for
delivering DTPA and other chelating agents to the circulation
as a potential treatment of transuranic radionuclide contam-
ination and provide additional understanding of the proper-
ties of nonaqueous gel formulations as well as their utility in
applications requiring transdermal and topical delivery of
moisture-sensitive drugs.
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Decorporation: Nonaqueous Gel Formulation

Development and In Vitro and In Vivo Assessment
Yong Zhang, Matthew P. Sadgrove, Russell J. Mumper, and Michael Jay*

Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North
Carolina at Chapel Hill, Chapel Hill, NC 27599-7362, USA

Strategy, Management and Health Policy

Enabling
Technology,
Genomics,
Proteomics

Preclinical
Research

Preclinical Development
Toxicology, Formulation
Drug Delivery,
Pharmacokinetics

Clinical Development
Phases I-III
Regulatory, Quality,
Manufacturing

Postmarketing
Phase IV

ABSTRACT The penta-ethyl ester of diethylenetriamine pentaacetic acid (DTPA), a DTPA prodrug
designated as C2E5 intended for transdermal delivery for radionuclide decorporation, was first screened
with a prototype cream formulation and a hydrocarbon base ointment with C2E5 concentration ranging
from 1% to 20%. C2E5 experienced rapid degradation in the cream matrix and C2E5 ointment formulation
underwent phase separation due to components incompatibility. Nonaqueous gel matrix comprised of
ethyl cellulose/Miglyol 840® was utilized to formulate C2E5 at different ethyl cellulose and C2E5 content
levels. Differential scanning calorimetry (DSC) and scanning electron microscope (SEM) imaging were
applied for analysis of the prepared C2E5 gel formulation. C2E5 was stabilized in the nonaqueous gel
matrix and ethyl cellulose solubilization by dispersion media was confirmed by DSC and SEM results.
Selected C2E5 nonaqueous gel formulations were evaluated in a rodent 241Am wound contamination
model at a dose level of 200 mg C2E5/kg. The enhanced decorporation over no treatment control on total
decorporation, decorporation by urine, and decorporation by feces was 142%, 181%, and 86%, respec-
tively. The nonaqueous gel matrix composed of ethyl cellulose/Miglyol 840 was successfully employed to
stabilize the hydrolysis prone C2E5. C2E5 was delivered transdermally and achieved enhanced decorpo-
ration for the proof of hypothesis. Drug Dev Res •• : ••–••, 2013. © 2013 Wiley Periodicals, Inc.

Key words: DTPA; radionuclide decorporation; transdermal drug delivery; nonaqueous gel; Americium

INTRODUCTION

The United States and many other countries face
increasing threats from terrorist groups with respect to
the use of weapons of mass destruction against civilian
populations. Of particular concern is that some of these
groups are intensifying their efforts to acquire and
develop nuclear and radiological weapons, such as radio-
logical dispersal devices (RDDs) which, when spread by
means of conventional explosives, constitutes what is
referred to as a “dirty bomb.” Among the radionuclides
of greatest concern that may be incorporated in an RDD
are isotopes of americium (Am), curium (Cm), and plu-
tonium (Pu). Internalization of these radioactive mate-
rials may result in acute radiation sickness or chronic

injuries including an increased risk of developing
tumors.

The calcium (Ca) and zinc (Zn) trisodium salts of
diethylenetriamine pentaacetic acid (DTPA) are the
only agents that have been approved by the US Food
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and Drug Administration as chelating agents for internal
contamination by Am, Cm, and Pu radionuclides. The
primary goal of these agents is to chelate those radionu-
clides before they become fixed in tissues such as liver
and bone while enhancing their elimination. Because of
the fact that Ca-DTPA and Zn-DTPA are highly hydro-
philic and have a low oral bioavailability of 2–3%
[Stradling et al., 1993], these products must be pre-
pared as sterile injectable solutions. Most sterile inject-
able products are expensive to manufacture and require
administration by a skilled professional, which render
current Ca/Zn-DTPA treatment unsuitable for facile
use in a mass casualty situation. Furthermore, there is a
mismatch between the pharmacokinetic profile of intra-
venously (i.v.) administered DTPA and the biokinetic
profile of transuranic radionuclides [Guilmette et al.,
1979; Guilmette and Muggenburg, 1988; Phan et al.,
2005]. Stevens et al. [1962] studied the clearance of
14C-labeled DTPA in man after i.v. administration and
observed that the i.v. administered 14C-labeled DTPA
was quantitatively excreted intact in urine within 24 h.
The total body clearance of 14C-labeled DTPA in rats
24 h after i.v. injection has been reported to range from
94% to 100% with half-lives from 0.28 to 0.53 h with
no metabolic degradation [Crawley and Haines, 1979;
Phan et al., 2005]. In contrast, the release rates of inter-
nalized Am, Pu, and Cm contaminants from wounds
sites to the systemic circulation in various animal species
range from 0.052% to 6.3% of the injected dose per day,
a relatively slow and steady transfer process [National
Council on Radiation Protection and Measurements,
2007]. It has been suggested that a chelating agent must
be maintained at a concentration of at least 10–25 mM
for a sustained duration to ensure an optimal chelation
effect of transuranic radionuclides, both in extracellular
and intercellular fluids [Ansoborlo et al., 2007]. A sus-
tained DTPA plasma concentration cannot be achieved
by i.v. Ca/Zn-DTPA and is not readily achievable by
conventional sustained-release oral dosage forms. In
addition, there are some patient populations that cannot
take drugs orally, e.g., patients experiencing severe
nausea following radiation exposure and very young
pediatric patients.

A zero-order release profile can be achieved via
transdermal drug delivery [Brown and Langer, 1988;
Chien, 1992]. Topical and transdermal drug delivery
provides many clinical advantages over the oral route,
such as avoidance of first path metabolism, sustained
release of drug with more uniform plasma concentra-
tion, and improved patient acceptance and compliance
[Brown and Langer, 1988; Chien, 1992]. To be a good
topical and transdermal drug delivery candidate, the
compound needs to possess suitable physicochemical
properties, such as a molecular weight generally less
than 500 Dalton, a partition coefficient (log P) between
1 and 3, and a melting point below 200°C [Brown and
Langer, 1988; Chien, 1992]. DTPA is highly hydrophilic
(log P = -4.90) with high melting point (219–220°C),
thus making it unsuitable for transdermal delivery. We
have reported on the preparation of a lipophilic DTPA
prodrug, designated as C2E5, in which the five carboxy-
lic groups on DTPA were esterified with ethanol. C2E5
is a clear, light yellow, slightly viscous Newtonian liquid
with a viscosity of ~175 cP (175 mPa s) and possesses
desirable physicochemical properties for transdermal
delivery [Jay and Mumper, 2011; Sueda et al., 2012].
The structures of C2E5 and the parent compound
(DTPA) are depicted in Figure 1. Transdermal delivery
of C2E5 may provide a sustained release of DTPA in
the circulation following metabolism of the prodrug by
esterases present in the skin and plasma. The semisolid
dosage forms for topical and transdermal drug delivery
include creams, ointments, gels, and lotions. Unlike
transdermal patches that require highly specialized
expertise on patch design and sophisticated manufac-
turing systems, semisolid dosage forms can easily be
screened in a lab setting. Previous reports showed that
approximately 68% of C2E5 remained intact for the
neat C2E5 oil containing 0.6% a-tocopherol stored at
25°C/80% relative humidity for 3 months [Yang et al.,
2013], indicating that C2E5 is prone to degradation.
The aims of these studies were to screen candidate
cream, ointment, and gel dosage forms to identify a
semisolid matrix to stabilize and be compatible with
C2E5, investigate the relevant physical properties of a
lead C2E5 formulation, and evaluate the decorporation

Fig. 1. Structures of DTPA (A) and its prodrug C2E5 (B).
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efficiency of the lead C2E5 formulation in a simulated
241Am wound contamination model.

METHODS AND MATERIALS

Materials

Miglyol 812® and Miglyol 840® were gifts from
Sasol (Witten, Germany). The Capmul MCM® was a
gift from Abitec Corp (Columbus, OH, USA). Ethylcel-
lulose polymers of increasing chain length with ethoxyl
content of 48.0–49.5% (ETHOCEL® Std 7 FP
Premium [EC7], ETHOCEL® Std 10 FP Premium
[EC10], and ETHOCEL® Std 100 FP Premium
[EC100]) were gifts from Dow Chemical (Midland, MI,
USA). C2E5 was prepared based on the Fischer esteri-
fication method by reacting DTPA with ethanol under
reflux in the presence of a hydrochloric acid catalyst
delivery [Sueda et al., 2012]. Propylene glycol (USP),
sorbitol, 70% solution (USP), sorbic acid (NF), buty-
lated hydroxytoluene (NF), simethicone (USP), white
petrolatum (USP), cetostearyl alcohol (NF), polyoxy-
ethylene (20) cetyl ether (Brij 58®), glyceryl monostear-
ate (cosmetic grade), polyethylene glycol 400
monostearate (NF), butylated hydroxyanisole (NF), 1N
NaOH solution, acetonitrile, trifluoroacetic acid, anhy-
drous ethanol, and isopropyl alcohol were purchased
from VWR International (Radnor, PA, USA) and Fisher
Scientific (Fairlawn, NJ, USA. [241Am]-Americium
nitrate solution for intramuscular (i.m.) contamination
of adult female Sprague-Dawley (SD) rats was prepared
from [241Am]-Americium chloride (Eckert & Ziegler
Isotope Products, Valencia, CA, USA) by dilution with a
solution of concentrated nitric acid. Double-distilled
water was obtained from a Milli-Q system (Millipore,
Billerica, MA, USA).

Preparation of C2E5 Cream Formulations

The oil-in-water emulsion-based cream formula-
tion was composed of an aqueous phase (85.2% w/w of
base cream; components: distilled water 79.8% w/w,
propylene glycol 3.0% w/w, sorbitol 70% solution 2.0%
w/w, sorbic acid 0.2% w/w, butylated hydroxytoluene
0.1% w/w, simethicone 0.1% w/w) and an oil phase
(14.8% w/w of base cream; components: petrolatum
5.6% w/w, cetostearyl alcohol 4.4% w/w, Brij 58 4.0%
w/w, glyceryl monostearate 0.2% w/w, polyethylene
glycol 400 monostearate 0.6% w/w). The topical cream
was prepared by first preparing the aqueous phase in a
200 mL glass jar. The ingredients were weighed into
the jar and subsequently heated to 70°C in a water bath.
When all ingredients were fully dissolved, the pH was
adjusted to 3.5, 4.5, or 5.5 by addition of a 1N NaOH

solution. The oil phase was prepared by weighing the
various components into a 100 mL beaker and then
heating at 60°C. The emulsion was formed by decanting
the melted oil phase into the jar containing the aqueous
phase and which was equipped with a Caframo
BDC1850 mechanical stirrer (Caframo Ltd, Wiarton,
ON, Canada). The mixer was positioned in the center of
the jar approximately 1/3 from the bottom and the stir-
ring speed was set at 1,000 rpm. The emulsion was
stirred for 30 min while heated at 70°C. The heating
was then stopped and the emulsion was stirred for an
additional 2 h. The final emulsion was prepared by
direct addition of C2E5 and subsequent mixing for
5 min at 500 rpm so that the final concentration of
C2E5 was 1, 5, 10, or 15% w/w. All emulsions were
sealed in vials with an airtight cap, covered with alumi-
num foil to protect from light, and stored at room tem-
perature for stability testing.

Preparation of C2E5 Ointment Formulations

The nonaqueous hydrocarbon base ointment was
composed of white petrolatum (79.9% w/w), Miglyol
812 (15.4% w/w), Capmul MCM (4.6% w/w), and buty-
lated hydroxyanisole (0.1% w/w). The base ointment
was prepared by liquefying the white petrolatum using
heat while mixing and then adding the Miglyol 812,
Capmul MCM, and butylated hydroxyanisole; a white
ointment was produced upon cooling. C2E5 containing
ointment formulations with C2E5 concentrations of
5%, and 10% and 20% w/w were prepared by adding
the C2E5 directly to the base ointment and then mixing
for 5 min at 1,000 rpm using a Caframo BDC1850
mechanical stirrer with a mixer with 8 points and 1 inch
in diameter. The final C2E5 containing ointment for-
mulations were transferred to 20 mL scintillation vials,
sealed with an airtight cap, covered with aluminum foil
to protect from light, and stored at room temperature
for subsequent stability testing.

Preparation of C2E5 Nonaqueous Gels

The C2E5 nonaqueous gels were prepared
according to a previously described method with minor
modifications [Heng et al., 2005]. Miglyol 840 and
C2E5 were first heated to 60°C, followed by the slow
addition of the fine particles of EC7, EC10, and EC100
into the solvent under constant stirring. The EC,
Miglyol 840, and C2E5 mixtures were held under stir-
ring until the mixtures turned into clear viscous solu-
tions, typically in 2–12 h. Nonaqueous gels were formed
after cooling to ambient temperature. Four formula-
tions were prepared from each EC polymer: 7, 8, 14,
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and 16% w/w for EC7, and 7, 8, 10, and 12% w/w for
EC10 and EC100. The nonaqueous gel samples were
put under vacuum to remove air bubbles trapped in the
gels and subsequently crimped with an airtight cap,
covered with aluminum foil to protect from light, and
stored at room temperature for stability testing.

High Pressure Liquid Chromatography (HPLC)
Assay for C2E5

The C2E5 concentration in these cream, oint-
ment, and nonaqueous gel formulations was deter-
mined using a Shimadzu Prominence HPLC system
equipped with an Alltech 3300 Evaporative Light Scat-
tering Detector (ELSD). A reverse-phase gradient
separation was performed using a Chromolith® Fast-
Gradient RP-18e column (50 ¥ 2.0 mm) coupled with
an Alltima Alltech HP All-Guard Cartridge (C18, 5 mm
particle size, 2.1 ¥ 7.5 mm) at 40°C and at a flow rate of
0.25 mL/min. The solvents that comprised the mobile
phase were water with 0.1% trifluoroacetic acid (A) and
acetonitrile with 0.1% trifluoroacetic acid (B). The
linear gradient for the mobile phase mixture (A : B) was
first an equilibration phase at 95:5 for 1 min, then from
95:5 to 5:95 over 9 min, followed by an equilibration
phase at 95:5 for 10 min, and ending with a reversal to
95:5 in 3 min and an equilibration phase of 95:5 for
3 min. The ELSD was operated at 40°C with 1.9 L/min
nitrogen gas flow and the retention time of C2E5 was
9 min. The extraction of C2E5 from the cream, oint-
ment, and nonaqueous gel samples was followed the
method of Tashtoush with minor modifications
[Tashtoush et al., 2008]. Approximately 50–200 mg of
the formulation samples were weighed into a 50 mL
conical centrifugation tube, followed by addition of 20
-30 mL of acetonitrile. The mixture was then vortexed
for 1–10 min followed by centrifugation for 5 min at
10,000¥g at 20°C. One milliliter of the supernatant was
filtered through a 0.2 mm polyvinylidene difluoride
filter into an HPLC vial for analysis. A 10 mL injection
for each sample was performed. Samples were held at
ambient temperature during analysis and analyzed
using standard curves over a concentration range of
0.05–1.00 mg/mL which had a power regression fit of
R2 � 0.997.

Viscosity Measurement of C2E5 Nonaqueous Gels

The apparent viscosity of the C2E5 nonaqueous
gels were measured at a shear rate of 1,000 s at 25°C
using an Brookfield R/S Plus rheometer (Brookfield
Engineering, Middleboro, MA, USA), which was
equipped with a 25 mm diameter cone and plate

assembly. The gel samples were carefully loaded to
the lower plate to reduce shearing effects and equi-
librated for 5 min at 25°C prior to measurement.
Triplicate measurements were performed for the for-
mulation and data are reported as mean � standard
deviation.

Thermal Analysis by Differential Scanning
Calorimetry (DSC)

The EC10 polymer particles that had been dried
overnight at 60°C before analysis, and the C2E5 non-
aqueous gel samples were analyzed using a TA Instru-
ments DSC Model Q200 (Newcastle, DE) under a
nitrogen flow of 50 mL/min. Samples (5–10 mg) were
heated in a sealed aluminum pan at a ramp rate of
10°C/min, cooled at a rate of 5°C/min, and subse-
quently heated at 10°C/min in heat/cool/heat mode
from -10 to 160°C. The glass transition (Tg), and
melting (Tm) temperatures in the third heating cycle
were determined using TA Universal Software.

Scanning Electron Microscope (SEM) Imaging

The pre-dried EC10 polymer particles and C2E5
nonaqueous gel samples were observed and recorded
using a Hitachi S-4700 SEM at an accelerated voltage of
15 kV. All images were taken at a scan rate of 100 ms
per line. The EC10 polymer particles and C2E5 non-
aqueous gel samples were deposited directly over
double-sided carbon tape and imaged without further
treatment. The C2E5 nonaqueous gel samples were
imaged on the stub which was tilted 45° toward the
lower scanning election detector for better imaging
results.

Americium Decorporation in a Rodent Wound
Model of Contamination

All animal studies were conducted according to a
protocol approved by the University of North Carolina
at Chapel Hill Institutional Animal Care and Use Com-
mittee. Adult female SD rats weighing from 200 to
400 g were used in these studies (Charles River Labs,
Raleigh, NC, USA). Food and water were given ad
libitum. The animal room was kept at a controlled tem-
perature (23°C) and light cycle (light exposure from 8
AM to 8 PM). For the duration of the study, the rats
were individually housed in metabolic cages.

To evaluate the efficacy of transdermal delivery
of the C2E5 nonaqueous gel, a proof of principle
radionuclide decorporation efficacy study was con-
ducted in rats contaminated with 241Am. Adult female
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SD rats were anesthetized with 2–3% isoflurane.
Dorsal skin between the cervical vertebrae and
anterior thoracic vertebrae was clipped with caution
before all animals were contaminated with [241Am]-
Americium nitrate solution (250 nCi, 0.1 mL) via an
i.m. injection in the anterior thigh muscle. Freshly pre-
pared C2E5 nonaqueous gel formulations containing
30% C2E5, 63% Miglyol 840, and 7% of EC7, EC10,
or EC100 (formulations N-1, N-5, and N-9; see
Table 2) were applied at a dose of 200 mg C2E5/kg
(375 mmol C2E5/kg) using a cotton swab to approxi-
mately 6–8 cm2 of the clipped dorsal region immedi-
ately after contamination. The mass of C2E5 gel
applied was recorded for each animal to permit the
actual dose determination. Negative control included
animals without any treatment. The animals were
observed once daily and their body weights recorded at
pre-dose and prior to necropsy. Urine and feces were
collected daily until the animals were euthanized on
day 7 at which time the cage washes were collected. As
~35% of the decay of 241Am is associated with photon
emissions of 59.7 keV, 241Am in samples was quantified
using a gamma counter (2470 Wizard 2, Perkin Elmer,
Waltham, MA). The samples were counted for 1 min
using a 40–80 keV energy detection window and were
background corrected. Additionally, 241Am activity was
quantified in 2 ¥ 0.1 mL aliquots of the dosing solution
to determine the initial administered dose of 241Am.
For all samples, 241Am content was expressed as a per-
centage of the initial injected dose. The percent of
enhanced decorporation for animals treated with trans-
dermal C2E5 nonaqueous gels compared to the no
treatment control animals were calculated from Equa-
tion 1 [Guilmette et al., 1979].

Percentage Enhanced Decorporation

ID Treatment ID No Treatm
=

( ) −% % eent
ID No Treatment

( )
( ) ∗

%
100

In this equation, %ID represents the percent of the
initial injected dose.

Statistical Analysis

Comparisons between nonaqueous gel formula-
tions were made using one-way analysis of variance
(ANOVA). Having determined by one-way ANOVA
that gel formulation was not a significant effect,
two-tailed t-tests were used to compare decorpora-
tion efficacy between C2E5 treated and untreated
animals. All measurements are expressed as mean �
standard deviation. The level of significance was set at
P < 0.05.

RESULTS

Stability of C2E5 Cream and
Ointment Formulations

The composition and stability testing results of
C2E5 cream formulations are presented in Table 1.
The base cream is white and the C2E5 containing
cream became more yellow with increasing C2E5
content. No phase separation was observed for the
C2E5 cream formulations for the 2-month stability
testing period at 25 � 2°C/60 � 5% relative humidity.
Because of the high concentrations of C2E5 in these
formulations and the fact that C2E5 is self-buffering,
the final pH of all of the cream formulations was in the
range of pH 5–6. Based on the stability testing results of
the C2E5 oil-in-water cream-based formulations, it
indicated that higher C2E5 content in the creams
resulted in a better stability profile, ranging from 52.6%
to 61.6% C2E5 remaining for 1% C2E5 cream formu-
lations, to 77.1% to 90.6% C2E5 remaining for 16.7%
C2E5 cream formulations. The major degradants of
C2E5 in the cream formulations were partially hydro-
lyzed products of C2E5, such as the tri- and tetra-ethyl
esters of DTPA. Although the cream formulations with
higher C2E5 content showed improved C2E5 stability
over lower C2E5 containing cream formulations, they
failed to deliver an acceptable C2E5 stability profile for
a reasonable product shelf life.

The C2E5 ointment formulations showed a
similar trend in terms of physical appearance as C2E5
containing cream formulations. The ointment formula-
tion containing 20% C2E5 underwent phase separation
within the first month after storage at 25 � 2°C/
60 � 5% relative humidity; the C2E5 ointment formu-
lation with 5 and 10% C2E5 contents experiencing
phase separation within 3 months under the same
storage conditions.

TABLE 1. C2E5 Cream Formulation Composition, Physical Appear-
ance and Stability Results after Storage at 25 � 2°C and 60 � 5%
Relative Humidity for 2 Months

Formulation
pH of

base cream
C2E5
(%)

C2E5 cream
appearance

% C2E5
remaining

C-1 3.5 1.0 White 61.6
C-2 3.5 4.8 Off-white 72.2
C-3 3.5 9.1 Pale yellow 77.0
C-4 3.5 16.7 Yellow 77.1
C-5 4.5 1.0 White 53.0
C-6 4.5 4.8 Off-white 71.4
C-7 4.5 9.1 Pale yellow 80.5
C-8 4.5 16.7 Yellow 87.3
C-9 5.6 1.0 White 52.3
C-10 5.6 4.8 Off-white 76.9
C-11 5.6 9.1 Pale yellow 81.7
C-12 5.6 16.7 Yellow 90.6

DECORPORATION BY TRANSDERMAL PRODRUG FORMULATION 5

Drug Dev. Res.
134



Stability of C2E5 Nonaqueous Gels

The composition and stability data of C2E5 non-
aqueous gel formulations after 3-month storage at
25 � 2°C/60 � 5% relative humidity are presented in
Table 2. The C2E5 nonaqueous gel formulations
appeared to be yellow and opaque. During the 3-month
storage period, no phase separation was observed for
the nonaqueous gel formulations. The improved C2E5
stability in the nonaqueous gel matrix was achieved
over the C2E5 cream formulations with greater than
93% of the original C2E5 remaining for most of the
nonaqueous gel formulations stored at the same storage
condition for 3 months. Clumps were observed for for-
mulations associated with C2E5 nonaqueous gel using
EC100 as the gelling agent possibly due to EC100’s
longer polymer chain and higher molecular weight,
which make the solubilization of EC100 in C2E5 and
Miglyol 840 inadequate. Lack of content uniformity
in these gels may explain the higher than expected
C2E5 concentration observed in the formulation of
N-10.

Viscosity of C2E5 Nonaqueous Gels

The apparent viscosity measurements of C2E5
nonaqueous gel formulations are reported in Table 2.
An increase in concentration of the ethyl cellulose, the
gelling agent, resulted in the increase in the apparent
viscosity of the nonaqueous gel formed, as well as the
same trend in the ethyl celluloses with higher molecular
weight and polymeric chain length, an indication of a
stronger gel structure as a result of stronger interaction
between the ethyl cellulose chains and between the
ethyl cellulose chain and the dispersion media mol-
ecules. This observation is consistent with the result
reported by Heng et al. [2005]. The nonaqueous gels

containing 10% and 12% EC100 failed to yield a stable
reading at this shear year due to the breakup of the gel
samples.

Thermal Analysis by DSC

The DSC spectrum of pre-dried EC10 showed
one minor endothermic peak appearing at 63°C and
one major endothermic peak at 120°C. The latter peak
was determined to be the EC10 glass transition tem-
perature [Rekhi and Jambhekar, 1995]. The endother-
mic peak at 63°C appeared to be glyoxal, which is a
major impurity in ethyl cellulose [Crowley and Martini,
2000], or reaction products associated with glyoxal.
However, further investigation is necessary for confir-
mation of this peak. The DSC spectrum of the C2E5
nonaqueous gel formulation N-7 showed one major
endothermic peak appearing at 106°C and one minor
endothermic peak at 120°C. The presence of a minor
EC10 glass transition endothermic peak at 120°C indi-
cated that there was nearly complete solubilization of
EC10 particles in Miglyol 840 and C2E5 and a minus-
cule amount of partially solubilized EC10 particles
present in the gel sample was expected. The endother-
mic peaks at 106°C might be due to water trapped in
the EC10 material, which could be a result of use of the
EC10 that was not dried before incorporated in the gel
preparation.

SEM Imaging

Figure 2 shows the SEM images of pre-dried
EC10 particles and the C2E5 nonaqueous gel (formu-
lation N-7). In Figure 2A and B, the SEM images
showed tightly clumped EC10 particles with a relatively
uniform size distribution averaging 1–5 mm in length.

TABLE 2. Ethyl Cellulose-Containing C2E5 Nonaqueous Gel Formulation Composition, Related Physical Characterization Data and Stabil-
ity Results after Storage at 25 � 2°C and 60 � 5% Relative Humidity for 3 Months

Formulation EC type (%) C2E5 (%) Miglyol 840 (%) Gel appearance % C2E5 remaining Apparent viscosity (Pa s)*

N-1 EC7 (7) 30 63 Yellow and opaque 94.0 � 2.6 0.51 � 0.01
N-2 EC7 (8) 20 72 Yellow and opaque 97.7 � 7.6 0.55 � 0.00
N-3 EC7 (14) 30 56 Yellow and opaque 94.8 � 8.3 3.82 � 0.04
N-4 EC7 (16) 20 64 Yellow and opaque 84.0 � 1.1 4.74 � 0.08
N-5 EC10 (7) 30 63 Yellow and opaque 93.9 � 7.1 0.72 � 0.01
N-6 EC10 (8) 20 72 Yellow and opaque 96.7 � 6.6 0.73 � 0.01
N-7 EC10 (10) 30 60 Yellow and opaque 92.9 � 3.4 2.56 � 0.02
N-8 EC10 (12) 20 68 Yellow and opaque 97.4 � 5.4 3.26 � 0.05
N-9 EC100 (7) 30 63 Yellow and opaque 101.0 � 5.9 2.38 � 0.02
N-10 EC100 (8) 20 72 Yellow and opaque 106.2 � 5.1 2.89 � 0.03
N-11 EC100 (10) 30 60 Yellow and opaque 99.0 � 7.8 N/A
N-12 EC100 (12) 20 68 Yellow and opaque 102.7 � 11.1 N/A

*Apparent viscosity at a shear rate of 1,000 s-1; N/A: No stable viscosity reading available.
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The SEM images of the C2E5 nonaqueous gel (Fig. 2C
and D) displayed a relatively smooth gel surface that
was embedded with small particles. The small particles
were determined to be residual EC10 material that
failed to be completely solubilized by Miglyol 840 and
C2E5 during the gel preparation process. This assess-
ment is supported by the DSC spectrum of the C2E5
nonaqueous gel in which a minor EC10 glass transition
endothermic peak appeared at 120°C.

Radionuclide Decorporation

The excretion of 241Am in urine and feces after 7
days in untreated rats and in rats treated with a single
200 mg/kg dose of C2E5 applied topically in different

nonaqueous gel formulations immediately after radio-
nuclide contamination are summarized in Table 3. The
mean total decorporation observed following treatment
with C2E5 nonaqueous gels formulated with EC7,
EC10 and EC100 was not significantly different
(FFormulations[2,3] = 0.15, P = 0.87) and clearance in the
urine and feces were consistent across all formula-
tions (FUrine[2,3] = 0.41, P = 0.70 and FFeces[2,3] = 0.72,
P = 0.56), indicating that the type of the ethyl cellulose
polymers used in formulating C2E5 nonaqueous gels
did not affect decorporation efficacy in a statistical
manner. Therefore, the C2E5 treatment groups were
combined into one C2E5 treated animal group and
compared with untreated animals. The daily excretion
of 241Am in contaminated animals treated with the

Fig. 2. SEM images of EC10 particles (A and B) and a C2E5 nonaqueous gel formulation consisting of 10% EC10, 30% C2E5, and 60% Miglyol
840 (C and D) at magnifications of ~500¥ and 3000¥.

TABLE 3. Distribution of Americium-241 in Excreta 7 Days after Different Treatments Immediate Post Contamination at a Dose of 200 mg
C2E5/kg

Treatment groups

Cumulative excretion (% of ID, mean � standard deviation)

In urine
Enhanced

decorporation In feces
Enhanced

decorporation
Total

eliminated
Enhanced

decorporation

Untreated† (n = 4) 4.2 � 0.6 181% 2.9 � 1.0 86% 7.1 � 1.4 142%
Transdermal C2E5 nonaqueous gels (n = 6) 11.8 � 2.3*** 5.4 � 1.7* 17.2 � 3.5***

Significant difference by t-test comparison of means, *P < 0.05, **P < 0.01, and ***P < 0.001 against no treatment control.
†From previously published results [Sadgrove et al., 2012].
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C2E5 gel and untreated control animals is presented
in Figure 3. Application of a single dose of the C2E5
gel immediately after contamination resulted in
enhanced excretion of 241Am for a period of at least
3 days compared with untreated animals. Treatment
with C2E5 transdermal gels enhanced total decorpora-
tion compared with untreated controls. The enhanced
decorporation was primarily due to urinary, but signifi-
cantly increased fecal decorporation was also observed.
The enhanced decorporation over no treatment control
on total decorporation, decorporation by urine, and
decorporation by feces was 142%, 181% and 86%,
respectively.

DISCUSSION

In the present study, by testing the stability and
compatibility of C2E5 in different transdermal drug
delivery vehicles, we demonstrate that a nonaqueous
gel matrix composed of ethyl cellulose/Miglyol 840 can
be used to protect a hydrolysis prone compound while
retaining the drug’s efficacy for transdermal delivery.
DSC and SEM results confirmed the nearly complete
solubilization of ethyl cellulose in the dispersion media.

C2E5 possesses suitable physicochemical proper-
ties for transdermal delivery [Sueda et al., 2012], but it
suffers from a poor stability profile due to hydrolysis,
which is one of the major degradation pathways for
pharmaceutical formulations [Waterman et al., 2002].
The pH of the water phase for the cream formulations
was set at 3.5, 4.5, and 5.5 based on C2E5 pre-
formulation data which demonstrated that C2E5
degradation in buffered aqueous solution follows a
pseudo-first order kinetics and C2E5 is most stable at
approximately pH 4.2 [Sueda et al., 2012]. From the
C2E5 cream stability testing results, it suggests that the

C2E5 content in the cream plays a more important role
for the stability of the C2E5 incorporated in the cream
matrix than the pH of the water phase, with a much
higher percent of C2E5 remaining intact in the cream
formulation with higher C2E5 content. However, the
cream formulation failed to stabilize the C2E5 incorpo-
rated in the cream matrix for sufficient storage stability
at 25°C.

As a consequence of poor stability of the cream
formulations, ointment formulations comprising white
petrolatum, Miglyol 812 and Capmul MCM was devel-
oped. The C2E5 ointment formulations were physically
unstable and underwent phase separation within 3
months after storage at 25 � 2°C/60 � 5% relative
humidity, which demonstrates the instability of C2E5
ointment formulations as a result of incompatibility and
lack of interaction between the white petrolatum, the
main component of the ointment matrix, and the C2E5.
White petrolatum consists of saturated hydrocarbons
with carbon numbers mainly greater than 25 [Petrola-
tum (White)]. In order to maintain the physical stability
of ointment structure, interactions between petrolatum
molecules and dispersion medium molecules are nec-
essary. Because the major force existing between pet-
rolatum molecules are hydrophobic-hydrophobic
interaction, and considerable interactions of this type
exist between the C-8 and C-10 chains of Miglyol 812
and Capmul MCM, and the petrolatum molecules,
addition of the C2E5 molecules that lack hydrophobic-
hydrophobic interaction potential would destabilize the
ointment matrix, with the expectation that the higher
the C2E5 content in the ointment formulation, the
faster the ointment formulation would undergo phase
separation. The limited physical stability of the C2E5
ointment formulations could be well explained by these
observations.

Because of the high hydrolytic tendency of the
C2E5 ester bonds and incompatibility of C2E5 with
the hydrocarbon base ointment matrix, the focus of the
C2E5 formulation development was shifted to select a
semisolid dosage form that contains a dispersion
medium lacking functional groups such as hydroxyl and
carboxylic groups that facilitate the hydrolysis of the
C2E5 ester bonds and a gelling agent that is compatible
with C2E5. Furthermore, the process to make this
semisolid dosage form should not expose C2E5 to harsh
conditions that accelerate its degradation. Nonaqueous
gel formulations were pursued as a viable dosage form
candidate to stabilize C2E5 in the delivery vehicles. In
contrast to extensive research on traditional semisolid
dosage forms such as creams, ointments, and hydrogels,
there are far fewer reports on the development of non-
aqueous gel matrices intended for topical and transder-
mal drug delivery [Claramonte et al., 1993; Lee et al.,

Fig. 3. Daily excretion of 241Am after a single dose topical applica-
tion of 40% C2E5 nonaqueous gels ( , n = 6) versus untreated
control ( , n = 4; from Sadgrove et al., 2012). Data are
means � standard deviations.
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1995; Lizaso et al., 1999; Heng et al., 2005; Chow et al.,
2008a]. Advantages of nonaqueous gel dosage form
include matrix components that stabilize the moisture-
sensitive drug substance and candidate nonaqueous gel
matrices that possess the suitable rheological and
mechanical properties for topical and transdermal drug
delivery. The Heng group reported on nonaqueous gel
matrices containing ethyl cellulose and Miglyol 840 by
directly mixing the ethyl cellulose and Miglyol 840 at
60°C [Heng et al., 2005]. ETHOCEL, an ethyl cellu-
lose polymer suitable for pharmaceutical application,
contains ~50% hydroxyl content on the polymer chain.
Miglyol 840, a neutral oil mixture of propylene glycol
dicaprylate and dicaprate, has excellent penetration-
promoting, emollient and skin-smoothing properties as
well as a high stability against oxidation [European
Pharmacopoeia, 2002]. The C2E5 stability profile in
the nonaqueous gel formulations demonstrated pro-
nounced improvement compared to that of neat C2E5
containing 0.6% a-tocopherol in which less than 70% of
C2E5 remained intact after 3 months of storage under
similar conditions [Yang et al., 2013], as well as that of
C2E5 incorporated in the cream formulations. The
improved stability profile of C2E5 in this ethyl
cellulose/Miglyol 840 matrix may be attributed to steric
and rotational hindrance of the hydroxyl groups on
the ethyl cellulose polymer backbone resulting in
decreased interactions with C2E5 molecules. In addi-
tion, Miglyol 840 neutral oil is nonhygroscopic, pos-
sesses high stability against oxidation and contains no
free hydroxyl groups. No phase separation observed in
the 3-month storage period for the C2E5 containing
nonaqueous gel formulations indicated that a stable
and extensive three-dimensional reversible physical
crosslinks were formed within the gel structures [Heng
et al., 2005]. Based on the initial report on the viscosity
of the prepared C2E5 nonaqueous gels and previous
studies on an ethyl cellulose/Miglyol 840 nonaqueous
gel matrix [Heng et al., 2005; Chan et al., 2006; Chow
et al., 2008b], further investigation may the relationship
between the viscosity and the ratios of the ethyl cellu-
lose, Miglyol 840 and C2E5 could yield the ideal C2E5
nonaqueous formulations with suitable rheological and
mechanical properties for the transdermal delivery of
C2E5. To improve the quality of the C2E5 nonaqueous
formulations, procedures such as pre-drying the ethyl
cellulose before use to remove water and volatile impu-
rities and milling the ethyl cellulose particles before
use to improve EC10 solubilization were applied. To
reduce the potential C2E5 degradation in the gel pre-
paration stage, addition of C2E5 after ethyl cellulose/
Miglyol 840 gel formation and filling the head space of
the gel preparation vessel with nitrogen could retard
C2E5 degradation.

C2E5, applied topically to contaminated rats, in
nonaqueous gel formulations at 200 mg/kg was able to
enhance 241Am decorporation. A preliminary pharma-
cokinetic study conducted by this research group on SD
rats using a C2E5 nonaqueous gel at a dose of 200 mg
C2E5/kg demonstrated that C2E5 was converted into
DTPA in vivo [Zhang et al., 2013], confirming that
C2E5 is indeed a prodrug of DTPA. We had previously
reported on the enhanced decorporation of 241Am after
oral delivery of C2E5 [Sadgrove et al., 2012]; decorpo-
ration efficacy achieved by transdermal delivery of
C2E5 at the same dose level is comparable. Analysis of
the in vivo data showed that changing the ethyl cellulose
polymer chain length in the nonaqueous gel matrix did
not alter C2E5 efficacy. Together, these data suggest
that ethyl cellulose based nonaqueous gels can be
readily optimized to provide effective delivery of C2E5
in a stable vehicle. As the first report using ethyl
cellulose/Miglyol 840 gel matrix developed by the Heng
group to incorporate a hydrolytically sensitive drug, we
believe this nonaqueous delivery vehicle may find
useful applications for moisture and hydrolysis sensitive
compounds intended for topical and transdermal drug
delivery.

In summary, C2E5, a DTPA prodrug for transder-
mal delivery, was formulated in cream, ointment, and
nonaqueous gel delivery vehicles. Because of the
hydrolysis labile nature of C2E5, it rapidly degraded in
a cream matrix composed of an aqueous phase. Incom-
patibility between hydrophobic petrolatum and C2E5
resulted in the phase separation of C2E5 containing
ointment formulations. C2E5 was shown to be stable in
a nonaqueous gel composed of ethyl cellulose and
Miglyol 840. This nonaqueous gel matrix has the poten-
tial for use with current and future moisture-sensitive
drug molecules intended for topical and transdermal
delivery. Enhanced 241Am decorporation in a wound
contamination animal model was demonstrated follow-
ing topical application of C2E5 nonaqueous gels.
Future studies including pharmacokinetic and dose-
dependent decorporation studies are being conducted
to evaluate this novel treatment option for internal
radionuclide contamination by transuranic elements.
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