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ABSTRACT 

 
Samantha Segall: Characterization of a Functional Comt1 Haplotype in Inbred 

Strains of Mice 
(Under the direction of Tim Wiltshire and Luda Diatchenko) 

 
 

We have pursued a genome-wide approach to examining strain-specific 

variations in gene expression in the brain of 29 inbred strains of mice. The 

highest association was found within the locus of the Catechol-O-

Methyltransferase (Comt1) gene, coding for an ubiquitously expressed enzyme 

that maintains basic biologic functions by inactivating catecholamines. In human 

and mouse, COMT has been associated with multiple behavioral phenotypes, 

including pain sensitivity and stress response. Multiple brain regions in 29 inbred 

strains of mice were analyzed for Comt1 expression levels using a genome wide 

array.  Differential expression levels, validated with qPCR, were observed 

for Comt1.  A B2 Short Interspersed Nucleotide Element (SINE) was identified as 

an insertion in the 3'UTR of Comt1 in 14 strains of a shared haplotype. 

Experiments using mammalian expression vectors of full length cDNA clones 

with and without the SINE element present demonstrate the SINE haplotype 

(+SINE) to have greater Comt1 enzymatic activity.  Within strains examined to 

date, +SINE mice have increased enzymatic function, decreased sensitivity for 

thermal and chemical- induced pain assays and behavioral differences in several 
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anxiety assays. These results suggest that a haplotype, defined by a 3'UTR B2 

SINE element, regulates Comt1 expression and mouse behavior.  
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CHAPTER 1: COMT ENZYME STRUCTURE AND FUNCTION 
 

Introduction 
 

 Dysregulation of catecholamine signaling has been linked strongly to a 

variety of neuropsychiatric disorders (reviewed by Harrison & Tunbridge 2008 

and Lachman 2008). Catechol-O-methyltransferase, or COMT, a gene encoding 

an enzyme of the same name, was among the first candidate genes in anxiety 

studies, as the COMT enzyme reduces the activity of catecholamines.  

Catecholamines are molecules derived from tyrosine, conserved in structure 

from worm to human, and function as neuromodulators or hormones.  

Catecholamines epinephrine and norepinephrine, are the molecules that warn of 

danger, and prepare the organism for immediate action (the fight-or-flight 

response).  Both physiological and psychological stressors induce the release of 

catecholamines (Guyton, 1991).   COMT enzymatic activity regulates the 

amounts of dopamine and norepinephrine in the brain and is associated with 

mood, memory, and other cognitive processes (reviewed by Mannisto & 

Kaakkola, 1999). A decrease of catecholamine metabolism is linked to 

disproportionate anxiety response (Domschke et.al., 2007, Evans et.al., 2009, 

Hettema et.al., 2008), Obsessive-Compulsive Disorder (Pooley et.al., 2007), 

cognition (Sheldrick et.al., 2008) heightened pain perception (reviewed by 

Andersen & Skorpen, 2009), clearly demonstrating wide-ranging implications in 

a number of biological processes.  



!!!!!!! %!

COMT Enzyme Function  

 Julius Axelrod and Robert Tomchick were the first to isolate and describe 

the enzymatic properties of a protein isolated from liver in their seminal paper: 

Enzymatic 0-Methylation of Epinephrine and Other Catechols (Axelrod & 

Tomchick 1958), the first of many discoveries which was recognized by a Nobel 

Prize in Physiology or Medicine for Axelrod in 1970.  In the original paper, 

Axelrod and Tomchick speculated, “that O-methyl transferase is of paramount 

importance in the metabolism of catechol amine hormones and perhaps other 

normally occurring and foreign catechols.”  Indeed, the general function of 

COMT is the elimination of toxic or biologically active catechols and other 

hydroxylated metabolites (Mannisto & Kaakkola 1999).  COMT enzyme is found 

in plants, microorganisms, and animals (Mannisto et.al., 1992). 

 Substrates for COMT include the precursor molecule for the 

catecholamines, L-dopa, and the catecholamines dopamine, epinephrine and 

norepinephrine, their hydroxylated metabolites, catecholestrogens (Ball & 

Knuppen 1980), ascorbic acid, intermediates of melanin, and dietary and 

medicinal products (Mannisto & Kaakkola 1999).  COMT shields the placenta 

and developing embryo in the first trimester of pregnancy from activated 

hydroxylated compounds formed from aryl hydrocarbons by hydroxylases 

(Barnea & Avigdor, 1990).  COMT acts as a detoxifying enzyme between blood 

and other tissues, protecting the body from xenobiotics (Mannisto & Kaakkola 

1999).   

 COMT is a member of the methyltransferase class of enzymes.  The 
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enzymatic action is a transfer of a methyl group from the sulfur of S-adenosyl-L-

methionine (SAMe) to one of the hydroxyls on a catechol structure in the 

presence of Mg2+ ions (Guldberg & Marsden, 1975), shown in Figure 1.1. The 

methyl transfer occurs by a SN2 reaction (Woodard et. al., 1980). In the COMT 

enzymatic reaction, the 3’ or 4’ hydroxyl group of the catechol substrate makes a 

direct nucleophilic attack on the methyl carbon of SAM.  COMT itself does not 

become a methylated enzyme intermediate.   

COMT Expression Profiles 

 Comt1 is widely expressed across a number of tissues.   A comprehensive 

expression profile of Comt1 mRNA in mouse is freely available on the public 

website BioGPS (http://biogps.gnf.org'!Wu et.al., 2009).  Expression is highest in 

mouse in the liver, followed by kidney, likely due to the function of metabolic 

breakdown of catecholamines (Figure 1.2).  In human expression, liver is also 

highest in two of the RNA probe sets, but the expression in other tissues is 

variable between probe sets (data not shown).  

COMT Metabolism in the Brain  

 COMT is likely very important in the brain where regulation of 

catecholamines is critical for many neurological functions. There is considerable 

debate as to where catecholamine metabolism via COMT is most important 

(Professor William Maixner, UNC Center for Neurosensory Disorders, personal 

communication). Presynaptic neurons have no known COMT activity; the 

primary course of halting synaptic action of catecholamines is termed uptake1, 

and occurs in presynaptic nerve terminals where catecholamines are either 
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metabolized by MAO-A or returned to storage vesicles (Huotari et.al., 2002).   

As uptake1 is the primary elimination system (Kopin 1985, Cass et.al., 1993), 

COMT activity under basal conditions is likely low (Huotari et.al., 2002). Glial 

cells provide a less important route of catecholamine clearing, termed uptake2, 

where catecholamines are metabolized by COMT and/or monoamine oxidase 

(MAO)-B (Huotari et.al., 2002).  

COMT Structure: Membrane Bound and Soluble Forms  

 COMT is a single gene with six exons that maps in humans to 

chromosome 22q11.21 (Grossman et.al., 1992).  There are two major isoforms 

of COMT recognized in humans, a membrane bound form MB-COMT and a 

soluble form S-COMT, Figure 1.3 (Assicot & Bohoun 1971, Borchardt, et.al., 

1974, Nissinen 1984, Jeffery & Roth 1985).  Both MB- and S- forms of the 

enzyme are made from the same transcript by two different promoters 

(Tenhunen et.al., 1993). In humans, transcripts from at least one of the two 

forms have been identified in every tissue (Mannisto & Kaakkola 1999). As S- 

and MB- forms are found in different cellular compartments, the contribution of 

the two forms on different substrates possibly depends on not only the kinetic 

properties of the two forms but on the intracellular distribution of the substrates  

(Lotta et.al., 1995). 

 Human MB-COMT transcript has two 5’UTR exons and four coding exons 

(Figure 1.4).  MB-COMT has 271 amino acids.  The first 50 (amino-terminal) 

amino acids are the hydrophobic membrane-anchoring signal.  MB-COMT is 

found intracellularly on the rough endoplasmic reticulum (Lotta et.al., 1995) 
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predominantly expressed in the brain, preferentially catabolizes dopamine, and 

is localized to: astrocytic processes surrounding synapses, postsynaptic 

dendritic spines, and capillary walls (Karhunen et.al.,  1995, Lundstrom et.al.,  

1995, Mannisto & Kaakkola 1999). 

 S-COMT does not have 5’UTR exons or a targeting sequence, and has 4 

exons (Figure 1. 3).  The protein contains 221 amino acids and is the more 

abundant form.  S-COMT is found in cytosol and in the nuclear envelope (Lotta 

et.al.,  1995) highly expressed in liver and kidney, and has much higher affinity 

for epinephrine.  

 While MB- and S- enzymes have been cloned and characterized, other 

COMT transcripts with alternative splicing have been isolated from human 

cadaver brains (Tunbridge et. al., 2007).  It is therefore probable that COMT 

enzyme forms other than MB- or S- exist.  

COMT Sequence in Other Mammals 

 A COMT amino acid sequence from different mammalian species is highly 

similar (Vidgren et.al., 1994).  S-COMT from human is 81% identical with rat 

(Lotta et.al., 1995) and 80% identical with mouse (Segall et.al., 2010) (Figure 

1.4, alignment with publically available software Clustal 2.0.8). RNA secondary 

structure is also highly conserved (Nackley et. al., 2006). However, transcript 

structure between human and mouse for what is presumably S-COMT is not as 

well conserved (Figure 1.3). In mouse, three major isoforms have been 

identified, but from transcript structure, it is unclear which transcripts correspond 

to the S- form, as both have 5’UTRs.   
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COMT Sex-by-Gene Interaction 

 There is a growing body of evidence that COMT’s effects are sexually 

dimorphic (Harrison & Tunbridge, 2008).  Human COMT activity in erythrocytes  

(Boudikova et.al., 1990, Weinshilboum et.al., 1999) and liver (De Santi et.al., 

1998) is lower in females, possibly because it has been shown that estrogens 

down regulate COMT expression (Xie et.al., 1999).  In human postmortem 

prefrontal cortex, COMT activity is 17% lower in females than in males (Chen 

et.al., 2004). In inbred strains of mice, female mice have lower Comt1 RNA 

expression (Segall et.al., 2010).  

The Human Val/Met Polymorphism 

 COMT enzymatic activity is genetically polymorphic in humans.  Family 

studies of erythrocyte (red blood cell) lysates showed a trimodal distribution of 

high, intermediate and low activities and the results of segregation analysis were 

consistent with a Mendelian inheritance pattern of two autosomal codominant 

alleles (Boudikova et.al., 1990, Floderus & Wetterberg 1981, Grossman et. al., 

1992, Jeanjean et.al., 1997, Siervogel et.al., 1984, Spielman & Weinshilboum 

1979, Weinshilboum & Raymond 1977). Furthermore, COMT activity in 

erythrocytes correlated to activity levels in other tissues, such as liver, lung, and 

kidney (Boudikova et.al., 1999, Weinshilboum 1978). As the molecular 

mechanism for the allelic variation had not been identified, COMT was 

designated COMTL and COMTH for low and high activity, respectively.  

Erythrocyte lysates were thermo labile in subjects homozygous for the low 

activity allele, which led to the conclusion that the low activity was due to a 
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structural change in the COMT protein from an alternation in amino acid 

sequence (Boudikova et.al., 1990, Scanlon et.al., 1979, Spielman & 

Weinshilboum 1981).    

 When human S-COMT was sequenced, two sequences differed at amino 

acid residue 108 (G"A, SNP rs4680 at S-COMT 108 or MB-COMT 158).  The 

first published sequence had a Methionine (met) (Bertocci, et. al., 1991) and the 

second published sequence had a Valine (val) at this position (Lundstrom et. al., 

1992).  To determine if either of these sequences were COMTL, human val108 

and met108 S-COMT cDNA was expressed in E. coli to measure catalytic 

activity (Lotta et.al., 1995).  The catalytic activities were basically the same but 

as shown experimentally in human erythrocytes, the met enzyme was more 

thermo labile at physiological temperature of 37oC (Lotta et.al., 1995).  This 

experiment was repeated in COS-1 and HEK293 cell constructs  (Shield et. al., 

2004), which unlike the E.coli transfections, showed a 40% reduction in COMT 

activity in the Met108 construct.  In human tissue samples, a significant 

decrease in immunoreactive protein was found in liver biopsy samples from 

individuals homozygous for the met allele (Shield et.al., 2004).  In postmortem, 

dorso-lateral prefrontal cortex tissue, individuals homozygous for met showed an 

approximately 38% reduction in COMT activity from homozygous val (Chen 

et.al., 2004).   

Effect of Val158Met on Behavioral Phenotypes 

 As a low activity allele presumably would lead to decreased catecholamine 

metabolism, genetic studies have attempted to link val/met rs4680 to an 
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assortment of diseases and personality traits. The first conformation of the low 

activity allele was conducted in liver biopsy with PCR (Lachman et.al.,1995) but 

with the ease of genotyping, a “cottage industry” of hundreds of studies have 

since been published in which the functional SNP rs4680 was examined for 

multiple psychiatric disorders (Lachman, 2008).  The met allele, which is the 

reduced activity allele, has been correlated to better neurocognition in the 

general population (Egan et.al., 2001, Malhotra et.al., 2002) and greater anxiety 

(Drabant et.al., 2006, Meir et.al., 2009, Stein et.al., 2006), possibly through the 

greater bioavailability of dopamine, epinephrine and norepinephrine in these 

individuals.  However, correlations between the val158met polymorphism and 

disease state are often not reproducible (Lachman 2008, Barnett et.al.,  2009.)    

The Three Haplotypes of COMT in Humans  

 Until recently, there was no mechanistic explanation for lowered enzymatic 

efficiency other than the reduced stability of the met allele. Dr. Luda Diatchenko 

and Dr. Andrea Nackley clarified the contribution of rs4680 by revealing three 

major haplotypes, as opposed to two, with the val allele encoding the most and 

least efficient enzyme.   

 Diatchenko and Nackley used pain sensitivity measurements and common 

SNPs in COMT transcript to define COMT haplotypes, and evaluate the 

contributions of common SNPs with rs4680 (Diatchenko et.al., 2005).  Three 

haplotypes were found to be present in 96% of subjects (Figure 1.7 a). These 

haplotypes were analyzed against a universal measure of pain perception to test 

whether they correlated with pain sensitivity. Haplotypes aligned to increasing 
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pain sensitivity and were designated high (HPS), average (APS) and low (LPS) 

pain sensitivity (Figure 1.7b). In addition to pain perception, haplotype status 

also correlated with enzymatic efficacy, with the LPS haplotype producing the 

most efficient enzyme and HPS the least efficient.  A highly efficient COMT 

would limit catecholamine signaling to adrenergic receptors; therefore it was 

reasonable to expect nociceptive pain sensitivity to diminish with high COMT 

activity. However, the LPS and HPS were both val variants, so enzyme stability 

could not be the only explanation for higher activity of the LPS allele.  

 Transcript stability was examined next, with mRNA structure and Gibbs 

free energy predicted for the three haplotypes  (Nackley et. al., 2006). LPS had 

the least stable transcript, and HPS the most stable transcript. Transcript 

stability directly correlated to protein levels, and enzymatic efficacy. Site directed 

mutagenesis of the nucleotide interacting with rs4680 in the HPS transcript 

destroys the stable stem-loop structure and reverted it to the LPS haplotype, 

restoring the high level of translated protein. Thus, a molecular explanation for 

high, average, and low pain sensitivity from nociceptive thermal, pressure and 

ischemic stimuli directly correlates with low, average and high COMT activity.   

 Since all previous linkage studies grouped both val alleles together, it is not 

surprising that studies often were not reproducible, as the haplotype encoding 

for the least and greatest efficient enzyme would be grouped together, if only 

rs4680 were genotyped.  Terminology and haplotype analysis is currently 

changing from val/met, to the haplotypes christened HPS, APS and LPS.  Since 

the haplotypes were discovered, studies have found correlations of haplotype to 
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syndrome or disease of investigation, such as for cognitive function (Barnett 

et.al., 2009) severity of hyperactivity symptoms in adults (Halleland et.al., 2008), 

experimental pain (George et.al., 2010) or pain post-surgical procedure (George 

et.al., 2008).  

COMT and 22q11 Deletion Syndrome  

 COMT is localized to 22q11.2 (Grossman et.al., 1992), within the region 

hemizygously deleted in 22q11 Deletion Syndrome (22q11DS), or DiGeorge 

Syndrome (Driscoll et. al., 1992).  22q11DS is the most common of the rare 

chromosomal disorders, with a frequency rate of 1:4000 (Oskarsdóttir et.al., 

2004).  As 22q11DS individuals have only one copy of COMT, extensive studies 

of the val/met polymorphism have been conducted, although none yet with the 

haplotype as defined by Diatchenko et.al.  However, there is a consistent 

biological theme, which manifests itself in 22q11DS:  low COMT activity (from 

having one copy of the gene) correlates to high anxiety.  The incidence of 

anxiety disorders among 22q11DS individuals is nearly 50% (Baker & Skuse 

2005, Gothelf et.al., 2007, Jolin et.al., 2009, Shashi et.al., 2010).  We will show 

further evidence of the correlation of COMT function and anxiety in Chapter 2.  

COMT activity in other mammals 

COMT activity is variable in inbred and out bred strains of rats (Roth et. 

al., 1990, Goldstein et.al., 1990, Weinshilboum & Raymond 1977) although the 

genetic source of the difference has not yet been identified.  A recent report by 

Masuda et. al. found inter-breed variations of COMT genotypes in five common 

dog breeds (Masuda et.al., 2004).  Although the authors speculated on the 
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affects of the polymorphisms, they did not quantify the relative activities of 

COMT in blood or tissue from the surveyed dog breeds. In inbred strains of 

mice, differences in catecholamine metabolism between C57BL/6J and DBA/2J 

had been reported previously (Eleftheriou 1975).  This study found that COMT1 

activity varies with brain region, age, and stress (Figure 1.6). 

 Other species do not have either a Valine or Methionine at the human 

polymorphic position.  Rat and pig (Salminen et. al., 1990, Malherbe et.al., 1992) 

mouse and monkey (Papaleo et.al., 2008) have Leucine at this position. On the 

Santa Cruz Genome Browser (http://genome.ucsc.edu), the two Neanderthal 

sequences available are Valine at this position, as are the great apes 

chimpanzee and orangutan (Green et.al., 2010, Kent, et.al., 2002, Lander et.al., 

2001, Rhead et.al., 2010).   

 Further comparisons between COMT of different species showed 

experimentally that the first Kozak sequence evolved to favor translation of MB-

form of COMT in the brain (Papaleo et.al.,  2008).  It has been suggested that 

COMT activity has been lowered with evolutionary pressure as higher cortical 

function emerged  (Chen et.al., 2004) and COMT became more important in 

central neurotransmission, in contrast to its original role in peripheral 

detoxification (Papaleo et.al., 2008).  The Neanderthal and Great Ape species 

val at this position support this hypothesis. 

The COMT1 Knockout and Comt-Val-Tg Mouse  

  A strain of mice with the Comt1 gene disrupted has been generated 

(Gogos et. al, 1998). A disrupted Comt1 transcript originally was introduced into 
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a mixed C57BL/6J/129Sv background and has been backcrossed into 

C57BL/6J. The mouse is able to be maintained by homozygous crosses, and is 

normal in appearance.  

 In pharmacological studies, Comt1 deficiency does not affect basal brain 

dopamine and norepinephrine levels, although when Comt1 null and 

heterozygous  (het) mice are challenged with levodopa (the precursor to 

dopamine), the catecholamine metabolites and dopamine accumulate in the 

cortex and hypothalamus (Huotari et. al., 2002).  Figure 1.5 shows levels of 

catecholamines and metabolites in cortex of wild type, heterozygous and null 

Comt1 mice. The effect is Comt1 dosage dependent and specific to brain region.  

Additionally, the effect is sexually dimorphic, as male wt and het mice show 

greater 3- methoxydopa (3-OMD) than female wt and het mice. In Comt1 

knockout mice, frontal cortical dopamine levels are affected in male, but not 

female Comt1 null mice (Gogos et.al., 1998).  Of note: the authors did not find 

any protein differences in basal levels of catecholamine-metabolizing enzymes 

(MAO-A/B, phenyltransferase) or catecholamine synthesizing enzymes (tyrosine 

hydroxylase, dopa decarboxylase, or dopamine #- hydroxylase).  In contrast, 

tyrosine hydroxylase (TH) is up regulated in a transgenic mouse over expressing 

the human COMT-Val variant (COMT-Val-tg) (Papaleo et.al., 2008).  As TH is 

the rate-limiting enzyme in dopamine synthesis, higher TH protein levels in 

COMT-Val-tg mice, which have higher COMT enzymatic activity, would be 

consistent with a compensatory effect from greater dopamine degradation in 

COMT-Val-tg mice (Papaleo et.al, 2008).  
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   Under stressful conditions, COMT1 deficiency reveals behavioral 

phenotypes. Male heterozygous mice are more aggressive (Gogos et. al., 1998). 

Comt1 null and heterozygous mice have an increased stress reactivity, 

increased acoustic startle stimulus, improved working memory and increased 

thermal pain sensitivity (Papaleo et. al., 2008). These phenotypes mirror human 

studies of individuals with a low activity COMT allele.  

 Novel findings regarding the activity and function of Comt1 in inbred strains 

of mice are presented in Chapter 2.  While inbred strains of mice led to our 

Comt1 findings, two other publications in BXD recombinant mice (Li et.al., 2010) 

and HS out bred mice (Kember et.al., 2010) simultaneously mirrored some of 

our findings.   However, there is a large dataset of information, which did not 

coalesce into a paper, which will be presented in subsequent chapters.   
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Figure 1.1 Catecholamine substrates and methylated metabolites of COMT 

(Axelrod & Tomchick, 1958). The most common positions for methylation are 

circled in red. Adapted from catecholamine structures drawn by NEUROtiker, 

2007 and Fvasconcellos, 2007.  
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Figure 1.2 Affymetrix Genechip 430v2 Comt1 coding probe set 1449183_at in a 

variety of mouse tissues and cell lines.  Highest RNA expression in liver.  

Adapted from data deposited onto http://biogps.gnf.org by Wu et.al., 2009. 
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Figure 1.3 Comparison of human and mouse COMT gene structures: One gene 

transcript with splice varients forms the membrane-bound (MB-) or soluble (S-) 

forms of the enzyme.  5’ and 3’ UTR exons are depected in white, coding exons 

are blue.  The first exon in S-COMT has a 5’UTR that is not spliced but 

immediately precedes the AUG start cite. MB- and S- forms of the gene have 

been annotated in human but have not been in mouse. It is not clear which 

isoform in mouse corresponds to the S-COMT identified in human.  
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Figure 1.4 Comparison of amino acid sequence from mouse COMT1 and 

human COMT. *AUG MB- and **AUG S- for human COMT. Yellow highlighted 

amino acid sequence identical between mouse and human.  Red arrow points to 

position of the val/met polymorphism in human. The orthologous residue in 

mouse is Leucine.  Adapted from NCBI Reference Sequence human 

NP_000745.1 and mouse NP_001104532.1 run on publically available 

software, http://www.ebi.ac.uk/Tools/clustalw2/index.html, Thompson et.al., 

1994. 
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Figure 1.5 Metabolite levels in wild-type (WT) Comt1+/+, heterozygous (HET) 

Comt1-/+, and knock-out (NULL) Comt1-/- male mice before (pale orange) and 

after (dark orange) i.p. injections of  levodopa.  Supernatants from cortex 

homogenate levels were analyzed in two separate HPLC runs.  Note: 3-OMD, 

HVA and MHPG levels are undetectable in Comt1-/- mice, a metabolic 

confirmation of the knock-out status. Units are in ng/g of wet tissue. Error bars 

for S.E.M and statistically significant differences are not shown for clarity.  

Enyzmes italicized, COMT1 enzyme is highlighted in red.   Adapted from Huotari 

et.al., 2001.   
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Figure 1.7 The COMT val/met polymorphism redefined by HPS/APS/LPS 

haploblocks. a. Haploblocks and frequency in a European population. b. The 

six haplotypes arranged by experimental pain sensitivity (note absence of Z-

score pain data for rare HPS/HPS homozygotic women who did not complete 

pain study). Adapted from Diatchenko et.al., 2005 
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ABSTRACT   

Catechol-O-methyltransferase (COMT) is an ubiquitously expressed enzyme 

that maintains basic biologic functions by inactivating catechol substrates. In 

humans, polymorphic variance at the COMT locus has been associated with 

modulation of pain sensitivity (Andersen & Skorpen, 2009) and risk for 

developing psychiatric disorders (Harrison & Tunbridge, 2008). A functional  
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haplotype associated with increased pain sensitivity was shown to result in 

decreased COMT activity by altering mRNA secondary structure-dependent 

protein translation (Nackley et al., 2006). However, the exact mechanisms 

whereby COMT modulates pain sensitivity and behavior remain unclear and can 

be further studied in animal models.  We have assessed Comt1 gene expression 

levels in multiple brain regions in inbred strains of mice and have discovered that 

Comt1 is differentially expressed among the strains, and this differential 

expression is cis-regulated.  A B2 Short Interspersed Element (SINE) was 

inserted in the 3'UTR of Comt1 in 14 strains generating a common haplotype that 

correlates with gene expression. Experiments using mammalian expression 

vectors of full-length cDNA clones with and without the SINE element 

demonstrate that strains with the SINE haplotype (+SINE) have greater Comt1 

enzymatic activity. +SINE mice also exhibit behavioral differences in anxiety 

assays and decreased pain sensitivity. These results suggest that a haplotype, 

defined by a 3'UTR B2 SINE element, regulates Comt1 expression and some 

mouse behaviors. 

INTRODUCTION  

Dysregulation of catecholamine signaling has been linked to a variety of 

neuropsychiatric disorders (reviewed by Harrison & Tunbridge, 2008, Lachman, 

2008). The COMT gene encodes an enzyme of the same name and functions to 

eliminate catecholamines. The COMT enzyme catalyzes the transfer of a methyl 

group from S-adenosyl-L-methionine to one of the hydroxyls on a catechol 

structure (Axelrod & Tomchick, 1958) leading to catecholamine inactivation. 
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Catecholamines such as epinephrine and norepinephrine prepare an organism 

for immediate action in response to a perceived threat (the fight-or-flight 

response) and both physiological and psychological stressors induce the release 

of catecholamines (Guyton, 1991). Altered COMT enzymatic activity has been 

linked to disproportionate anxiety responses (Domschke et al., 2007, Evans et 

al., 2009, Pooley et al., 2007), differences in pain perception (Diatchenko et al., 

2005, Emin Erdal et al., 2001, Zubieta et al., 2003) and Attention Deficit 

Hyperactivity Disorder (ADHD), (Deyoung et al., 2010, Palmason et al., 2009, 

Qian et al., 2003) in humans. 

COMT is highly conserved between mouse and human, with nearly 80% 

amino acid homology.  Several Comt1 mouse models have been developed.  A 

knockout of the mouse gene, Comt1 (Gogos et al., 1998) and a transgenic line 

expressing human COMT (Papaleo et al., 2008) were engineered to provide a 

model for understanding catecholamine processing. Experiments with the 

knockout and transgenic lines demonstrated that COMT activity affects stress 

and pain responses in a manner consistent with human studies. Comt1 null and 

heterozygous mice have increased sensitivity to thermal nociception and 

increased stress reactivity (Papaleo et al., 2008).  Transgenic mice over-

expressing the human gene have higher COMT enzymatic activity and a blunted 

thermal pain response (Papaleo et al., 2008). Differences in catecholamine 

metabolism between C57BL/6J and DBA/2J mice has also been reported 

(Eleftheriou, 1975).  This study found that COMT enzymatic activity varies with 

age and brain region and also with stress.  
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In the present study, we measured behavioral phenotypes and brain gene 

expression in 29 common inbred strains of mice. We use a method called 

Haplotype Association Mapping (HAM) (McClurg et al., 2007, McClurg et al., 

2006, Pletcher et al., 2004) to correlate genotypic differences with gene 

expression in an effort to identify regions of the genome, expression quantitative 

trait loci  (eQTL), that contribute to inbred strain variation.  This genome-wide 

analysis revealed Comt1 to be differentially expressed among strains and cis-

regulated.  At least four haplotypes exist at the Comt1 locus but the defining 

polymorphic feature is the presence of an insertion of a SINE element in the 

3’UTR of the gene.  The presence of this SINE element correlates with 

differential gene expression and an increase in enzymatic activity. Thus, the 

natural allelic variations that alter COMT1 protein levels or enzyme function, in 

common inbred strains of mice are of potential interest for behavioral studies. 

MATERIALS AND METHODS 

Animal Husbandry 

All experiments conformed to the guidelines in the National Institutes of 

Health (NIH) Guide for the Care and Use of Laboratory Animals.  Behavioral 

measurements and gene expression data were collected at the Genomics 

Institute of the Novartis Research Foundation (GNF) and all procedures were 

approved by the GNF Institutional Animal Care and Use Committee.  Animals 

were housed in an SPF barrier colony and were maintained on a 12-h light: 12-h 

dark cycle, housed in groups of 2–4 in standard high efficiency particulate air-

filtered polycarbonate mouse cages containing a layer of Bed-o-cob bedding and 
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one cotton nestlet. Food (Pico rodent chow 20; Purina, St Louis, MO, USA) and 

water were made available ad libitum. Animals used for q-PCR and ELISA 

experiments were housed under similar conditions as those described above and 

sacrificed according to guidelines set by the Institutional Animal Care and Use 

Committee (IACUC) at UNC Chapel Hill. 

Inbred Strains 

The 29 strains tested were: 129S1/SvImJ, A/J, AKR/J, BALB/cByJ, BTBR T+ 

tf/J, BUB/BnJ, C3H/HeJ, C57BL/6J, C57BR/cdJ, C58/J, CBA/J, CE/J,  DBA/2J, 

FVB/NJ, I/LnJ, KK/HIJ, MA/MyJ, MRL/MpJ, NOD/LtJ, NON/LtJ, NZO/HILTJ, 

NZW/LacJ, P/J, PL/J, RIIIS/J, SJL/J, SM/J, SWR/J, and WSB/EiJ. 

Behavioral Testing 

Animals. Six to eight week old male and female mice of each strain were 

purchased from the Jackson Laboratory (Bar Harbor, ME, USA). The mice were 

habituated in quarantine for approximately 6 weeks until they were transferred to 

the main barrier colony. Mice were habituated to the main colony holding room 

for at least one week prior to behavioral testing. All behavioral testing was 

conducted during the light part of the light/dark cycle and occurred between the 

hours of 8:00AM – 12:00PM. On the day of testing, mice were transported to a 

quiet anteroom adjacent to the testing room and acclimated for at least one to 

two hours prior to the start of testing. All testing equipment was cleaned with a 

light bleach solution (0.1%) in between each animal. Mice were tested in two 

behavioral cohorts that each went through a separate series of tests. One group 

of mice were tested in the open field and a second group were tested on the 
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elevated plus maze and light/dark test.  Mice were experimentally naïve for both 

open field and elevated plus maze testing. Animals tested in the light/dark assay 

had previously been tested in the elevated plus maze.  

 Open Field Assay (OF). The open field is a 17" " 17" " 13" arena with a 

white Plexiglas floor and clear Plexiglas walls (ENV-515-16; Med Associates, St 

Albans, VT, USA), which is surrounded by infrared detection beams on the x-, y- 

and z-axes that track the animals' position and activity over the course of the 

experiment. The apparatus is isolated within a 73.5 " 59 " 59 cm testing 

chamber fitted with overhead fluorescent lighting (lux level 14). Animals were 

removed from their home cage, immediately placed in the corner of the open field 

arena and allowed to freely explore the apparatus for a test interval of 10 min. 

Animals were scored for a number of behaviors in the open field, including total 

distance traveled (in cm), ambulatory episodes (number of times animal breaks 

user-defined number of beams before coming to rest), percent time resting, 

average velocity (in cm per second), number of rearings and percent time spent 

in the center of arena (defined as nine square-inch central part of arena). These 

data were recorded during testing and scored in post-session analyses using 

commercially available software (Activity Monitor 5.1, Med Associates). We have 

found in previous studies (Bailey et al., 2008, Eisener-Dorman et al., 2010) that 

factor analysis can reduce the data from the OF assay to two distinct classes of 

behaviors - activity-related behaviors and anxiety-related behaviors and rearing 

behavior represents a separate behavior. For subsequent analyses, we included 

only one representative behavior from each class in our analysis; total distance 
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(activity), percent time in the center (anxiety) and rearing behavior. 

Elevated Plus Maze (EPM). The elevated plus maze (7001-0336; San Diego 

Instruments, San Diego, CA, USA) consists of two open arms and two closed 

arms [26.5” " 2.5”] that are directly opposing each other. The walls of the 

enclosed arms completely surround the end of the runway and are 6” high. The 

top of the enclosed arms is open to the testing room.  The entire apparatus is 15” 

high and is placed on the floor for testing.  A video camera above the maze 

captures the animal’s location in the maze. Data is collected and analyzed with 

Actimetrics LimeLight software (Actimetrics, Wilmette, IL, USA).  The animals are 

placed in the center of the maze and allowed to investigate the maze for 

5 minutes. Data recorded include distance traveled in each region and percent 

time spent in the open arms of the maze.  

 

Light/Dark Assay (LD). The light/dark enclosure (ENV-511; Med Associates) 

inserts into the Med-Associates open field apparatus and is a light-impermeable 

box that covers one third of the area of the open field. The dark box has a classic 

“mouse hole” entry for the animal to enter and exit the box.  The animals were 

placed in the center of the open field directly in front of and facing the dark 

enclosure and allowed to explore the arena for ten minutes. Transitions between 

light and dark quadrants and time spent in each quadrant were assessed.  

 

Gene Expression Studies 
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Tissue Collection. Eight to ten week old male and female mice of each strain 

were purchased from the Jackson Laboratory (Bar Harbor, ME, USA).  The mice 

were habituated for one week prior to tissue collection. Mice were sacrificed by 

cervical dislocation without anesthesia to avoid gene expression differences in 

response to anesthetic. All dissections were conducted between the hours of 

9:00AM to 11:30AM. Prefrontal cortex, amygdala, hypothalamus, hippocampus, 

nucleus accumbens, striatum and pituitary were dissected as follows: 

Immediately following euthanasia, mice were decapitated and the whole brain 

was removed from the skull. The hypothalamus was lifted from the ventral 

surface of the brain using curved forceps. The pituitary was lifted from the sella 

tursica in the base of the skull using microforceps. The brain was then 

transferred, ventral side up, to an ice-cold brain matrix with 0.5mm spacing 

(505C Braintree Scientific, Braintree, MA, USA).  A single razor blade was placed 

into the first space on the brain matrix and the rostral surface of the brain was 

placed in the matrix and touching this blade.  Thin, double-edged razor blades 

were placed in the twelve most anterior spaces.  Following removal from the 

matrix, the 0.5 mm brain slices were placed flat onto an ice-cold dissection stage 

and specific regions dissected using anatomical landmarks as described below.  

The prefrontal cortex was taken from the slice corresponding to approximately 

2.5 mm to 2.0 mm anterior to Bregma.  To do so, a “V-shaped” wedge was made 

just medial to the corpus callosum with the apex terminating at about the lateral 

ventricle (viewed from the caudal side of the slice).  Nucleus accumbens and 

striatum were taken from the adjacent slice approximately 2.0mm to 1.5mm 
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anterior to Bregma.   To isolate nucleus accumbens, 1mm diameter punches 

were taken just ventromedial to the anterior commissure (AC).  For striatum, 

1mm diameter punches were taken dorsolateral to the AC, midway between the 

AC and corpus collosum, and lateral ventricle and corpus collosum.  Amygdala 

was dissected from the slices corresponding to approximately 0.5mm to 1.5mm 

posterior to Bregma, ventromedial to the ventral boundary of the external capsule 

and directly below the caudate putamen.  Hippocampus was dissected from 

slices at approximately 1.0mm to 2.0mm posterior to Bregma.  The dissected 

regions included the following - Prefrontal cortex consists of the piriform cortex, 

secondary motor cortex, cingulate cortex area 1 and medial orbital cortex!"

nucleus accumbens consists of the anterior portion of the nucleus accumbens 

core and shell!"striatum is a one mm diameter punch of striatum only; amygdala 

contains all amygdaloid nuclei plus 50% of the piriform cortex and the entire 

ventral endopiriform nucleus!" hippocampus contains hippocampus only as it is 

easily peeled away from the surrounding tissue.  "

Gene expression analysis. After dissection tissues were immediately frozen 

on dry ice and stored in a -80o C freezer until RNA preparation. Tissue was 

pulverized to a fine powder while frozen to obtain a mixture of homogeneous 

tissue.  A small (~10mg) aliquot was homogenized using a rotor-stator (Omni TH 

polytron, Omni International, USA) homogenizer in Trizol (Invitrogen, Carlsbad, 

CA, USA) and total RNA purified with RNeasy columns (Qiagen, Valencia, CA, 

USA).  RNA quality was tested using an Agilent Bioanalyzer (Santa Clara, CA, 

USA) and high quality RNA was pooled from three animals per strain to run one 
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microarray.  Male and female samples were pooled separately and processed on 

separate microarrays.  Gene expression analysis was performed according to 

standard procedures (Su et al., 2004). RNA was amplified and labeled using the 

Affymetrix one-cycle target labeling kit. Samples were hybridized to Affymetrix 

GeneChip 430v2 whole-genome mouse arrays and data were processed using 

the gcRMA algorithm (Wu et al., 2008). Raw data were deposited in GEO 

(http://ncbi.nih.gov/geo) under series accession GSE20160. In this study, data 

were filtered to remove probe sets whose expression was either undetectable 

(maximum expression across strains <200) or invariant across strains (ratio of 

maximum expression to minimum expression across strains). Although 

summarization algorithms are designed to be robust to single-probe outliers, the 

presence of SNPs in the probe sequence could theoretically lead to spurious 

detection of cis-eQTL.  An analysis performed after removing all probes 

overlapping a SNP in dbSNP from the CDF file resulted in qualitatively similar 

results. 

qPCR Validation of Affymetrix GeneChip array 

Microarray data was validated by q-PCR in cDNA prepared from pituitary and 

cortex RNA from male animals. The first round of q-PCR used RNA remaining 

from the original samples prepared for the microarray.  The sixteen strains (from 

48 male animals) used in the first round of q-PCR validation were: BTBR T+ tf/J, 

C3H/HeJ, C57BL/6J, C57BR/cdJ, CBA/J, CE/J, KK/HIJ, MRL/MpJ, NOD/LtJ, 

NON/LtJ, NZO/HILTJ, NZW/LacJ, P/J, PL/J, RIIIS/J and SM/J. The most 

significant change in gene expression was validated by an ABI custom designed 
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Taqman assay in the 3’UTR interval (data not shown).  The primer and probe 

sequences are: Forward primer 5’AAACCCCTCACGGTGAATCC3’, Probe 

5’TCTGCACCCAAGAACA3’, Reverse primer 

5’CATCTCACCAGTCCCCCTTTTT3’,   (Applied Biosystems Incorporated, Foster 

City, CA, USA). The second round of validation used cortex from four 10 week 

old males from strains AKR/J, BALB/cByJ, C3H/HeJ and SJL/J. The material was 

not pooled in the second q-PCR assay.  Data was collected from sixteen 

individual animals, from each of four strains. Animals were housed and sacrificed 

as previously described.  ABI TaqMAN probe Mm00514377_m1, which 

measures transcript in the coding region, was used for the cortex q-PCR.    

Identification of B2 SINE element  

BAC clone sequence for 129S6/SvEvTac (AC012399) and C57BL6/J 

(AC133487) was aligned with Sequencher software.  A 234 bp insert was 

discovered in the 3’UTR. This sequence was run through Repeat Masker 

(http://www.repeatmasker.org), which identified it as a B2 SINE element. PCR 

primers flanking the region (forward primer 5’TTTCCTCAGGGCCTGTGGCT3’ 

and reverse primer 5’GAGGCCATCAGGATGACACC3’) were designed using 

publically available Primer3 software (http://frodo.wi.mit.edu/primer3/). PCR was 

performed on both DNA and cDNA. Liver and whole brain cDNA was sequenced 

and referenced against Comt1 cDNA transcript NM_001111063.1 in 

129S1/SvImJ, BALB/cByJ, C57BL/6J, CBA/J and WSB/EiJ.  

Development of COMT ELISA assay 

COMT1 protein was measured from three pooled brain regions (two male 
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animals), determined by proximity: region HHA (hypothalamus, hippocampus and 

amygdala), region AS (nucleus accumbens and striatum) and region C (cortex). 

To detect the levels of COMT1 in brain lysates, the Meso Scale discovery (MSD) 

electrochemiluminescence (ECL) assay was performed using a MSD Sector 

Imager 2400 according to the manufacturer's protocol (Meso Scale Discovery, 

Gaithersburg, MD, USA). The MSD assay is based on a sandwich immunoassay 

that utilizes ECL to measure protein levels. Frozen brain regions were pulverized 

to a powder in liquid nitrogen. The pulverized tissue was mixed with RIPA buffer 

(Pierce, Thermo Fisher Scientific, Rockford, IL, USA, Cat. # PIH9901) and 

protease inhibitor cocktail (Pierce, Cat. # PI-78430) and were then centrifuged at 

13,000 RPM for 30 min at 4 °C to obtain the supernatant. Coomassie Plus 

(Pierce, Cat. # PI-23200) assays were performed according to manufacturer’s 

protocol to determine the protein concentrations in the lysates. 10 µl of primary 

antibody at a 1:100 concentration (Abcam, Cambridge, CA, USA Cat. #36144) 

was spotted in each well of a 96-well plate (MSD, Cat. # MA2400), and allowed 

to dry at room temperature overnight.  The plate was incubated for 1 h with 

blocking buffer containing 3% bovine serum albumin at room temperature, then 

25 mg/ml protein lysates in 50 µl lysis buffer were added to the ELISA plates. 

The plate was incubated at 4 °C overnight, and washed three times with 150 µl of 

the MSD wash buffer (50 mM Tris pH 7.5, 1.5 M NaCl, 0.2% Tween-20). 25 µl of 

the secondary antibody (Abcam, Cat. #51984), diluted 1:10 and labeled with the 

MSD SULFO-TAG detection antibody solution was added to the wells and the 

plates were incubated for 2 h at room temperature, while rocking. The plates 
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were again washed three times with the wash buffer and 150 µl of Buffer T from 

MSD was added to each well. The plates were analyzed with the SECTOR 

Imager 2400. ECL intensities obtained from the assay were normalized by the 

blank wells of the secondary antibody to the bovine serum albumin-coated spot 

with no lysate. 

Enzymatic analysis of brain lysates 

Sample preparation. Whole brains from two 10 week old males from strains 

129S1/SvImJ, C3H/HeJ, C57BL/6J, C57BLKS/J, NZB/BlNJ, NZW/LacJ, and PL/J 

were purchased from Jax Laboratories.  Animals were killed by cervical 

dislocation, brains removed, frozen on dry ice, shipped, and thawed for our 

dissection of the frontal cortex. Tissue was pooled by strain, refrozen on dry ice, 

pulverized, and homogenized in 0.1mM CDTA (Sigma Chemical Company, St. 

Louis, MO, USA) with a 16 gauge syringe.  A second round of experiments used 

non-pooled material from four 10 week old males from strains AKR/J, BALB/cByJ 

C3H/HeJ, and SJL/J. Animals were housed and sacrificed as previously 

described. Cortex was dissected from fresh tissue, and frozen on dry ice. 

Samples were then pulverized and homogenized in 0.1mM CDTA as for the first 

experiment.  In both experiments, homogenized brain lysate was centrifuged at 

2000g for 10 minutes and filtrate quantified with the Pierce BCA assay (Thermo 

Fisher Scientific, Rockford, IL, USA) in accordance with the manufacture’s 

recommendation.  

Enzymatic assay. COMT1 activity was assessed with the Normetanephrine 

ELISA kit (RE59171, IBL, Hamburg, Germany as described (Nackley & 
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Diatchenko 2010,  Nackley et al., 2006). In this method, a known amount of 

substrate, L-norepinephrine, is added to a biological lysate. The measure of 

COMT1 enzymatic activity is the amount of product, normetanephrine (NMN), 

produced in the reaction of lysate and added substrate.  Briefly: after lysates 

were normalized to equal protein concentrations, 8 µl was incubated with 200µM 

S-adenosyl-L-methionine (SAMe; ICN Chemical, Aurora OH, USA), 7.5 mM L-

norepinephrine (NE; Sigma Chemical Co.) and 2mM MgCL2 in 50mM phosphate 

buffered saline for 1 hr at 37 C°, final volume 21µl.  The reaction was terminated 

using 20µl of 0.4M hydrochloric acid and 1µl of 330 mM EDTA. 10µl of the halted 

reaction mixture was then used in the Normetanephrine ELISA kit in accordance 

with the manufacture’s recommendation. Lysates from cortex regions of brains in 

four strains of the -SINE haplotype and 6 strains of the +SINE haplotype were 

assayed for COMT1 enzymatic activity. Four technical replicates were conducted 

per animal or per strain in two separate experiments. C3H/HeJ was run in both 

experiments and data were normalized to C3H/HeJ COMT1 activity.   

Cell Construct. A Comt1 cDNA clone in expression vector pCMV-SPORT6 

was purchased from the I.M.A.G.E. Consortium (ATCC, Manassas, VA, USA, 

clone ID 4210097). The clone contained the full length 5’UTR and aligned to the 

Comt1 NM_001111063 transcript.  The full length 3’UTR was not present in the 

clone. To construct the +SINE and -SINE expression vectors, the truncated 

3’UTR was excised by a double digestion of Not1 and Bsu36I. Primers to 

genomic DNA were designed flanking the 3’UTR genomic region to be ligated 

into the double digested expression construct. The 5’ primer was 5’ of the Bsu36I 
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cut site, and the 3’ primer had a Not1 linker 3’ of the sequence aligning to 

genomic sequence. C57BL6/J and WSB/J genomic DNA was PCR amplified for 

the 3’UTR, resulting in +SINE and -SINE 3’UTR fragment. The amplimer was 

double digested with Not1 and Bsu36I, gel purified, and ligated into the double 

digested expression vector. Clones were verified by sequencing the entire insert 

in both directions.  

Transient transfection of Comt1 cDNA clones. This transfection assay has 

been previously described (Nackley et al., 2007).  A rat pheochromocytoma cell 

line (PC12) was transiently transfected in 35-mm six well plates using FuGENE 6 

Transfection Reagent (Roche, Indianapolis, IN, USA) according to 

manufacturer’s recommendations. The amount of +SINE or -SINE construct was 

at a concentration of 0.9 µg/ml of media.  To account for transfection efficiency, 

pSV-#Galactosidase vector (Promega, Madison, WI, USA) was co-transfected at 

0.1 µg/ml of media.  Transfection with empty vector was done for each 

experiment. Cell lysates were collected approximately 24 hours post-transfection.   

Enzymatic analysis of cell constructs  

Sample preparation and assay. After removing media, cells were washed 

once with ice cold 0.9% saline solution (1ml/35 mm well), and collected by 

scraping the wells (on ice) with 150µl/well of ice cold 0.1mM CDTA.  The lysate 

was collected in 1.8 ml tubes and freeze/thawed (-80 C°/RT) twice.  The tubes 

were centrifuged at 2000g for 10 min and filtrate removed.  Filtrate was quantified 

with the Pierce BCA assay in accordance with the manufacture’s 

recommendation and lysates normalized. The Normetanephrine ELISA kit was 
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also used for the cell constructs, in the same manner as for brain lysates. 

COMT1 activity was determined after subtracting the amount of NMN produced 

by endogenous enzymatic assay (transfection with empty vector). COMT1 

activity was then normalized for transfection efficiency by measuring the #-

galactosidase activity for each lysate. #-galactosidase activity was determined by 

incubating 50µg of normalized lysate with 2X #-galactosidase buffer (39.3 mM 

NaH2PO4 •H2O, 154.84 mM Na2HPO4, 4.3 mM MgCl2, 4.45 mM O-Nitrophenyl #-

D-galactopyranoside, 12.mM #-mercaptoethanol) in a 100µl reaction for 30 

minutes at 37 C°.  The lysates were then read with a luminometer at 405nM filter. 

The read for blank, 50µl 0.1mM CDTA and 50µl 2X #-galactosidase buffer, was 

subtracted from each lysate. 

Statistical Analysis 

Genome-wide eQTL mapping. The detailed algorithm underlying the 

Haplotype Association Mapping (HAM) method has been previously described 

(McClurg et al., 2007, McClurg et al., 2006, Pletcher et al., 2004).  Briefly, HAM 

uses ANOVA to calculate the strength of genetic associations between an input 

phenotype and the ancestral haplotype structure (as inferred using a local 

window of three adjacent SNP alleles across the genome). A weighted bootstrap 

method was introduced to detect association peaks conditional on the population 

structure in the mouse diversity panel. At each genetic locus, the association 

score was represented as the negative log10-transformed P value. A score of –

LogP=6 is a maximal score resultant from 106 permutations performed at each 

locus.  This score is not corrected for genome-wide significance. HAM analysis 
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was performed for Comt1, across 29 strains using the web-based analysis 

SNPster (http://snpster.gnf.org/cgi-bin/snpster_ext.cgi) with the expression 

phenotype transformed to log scale. The genomic mapping of all genes and 

SNPs was based on Mouse Genome NCBI Build 35 (mm7).  

Analysis of B2 SINE element and Comt1 mRNA expression and 

enzymatic activity. Comt1 mRNA expression data (Affymetrix 430v2 probe set 

1449183_at) was analyzed in seven brain regions using analysis of variance 

(ANOVA) (SPSS, v.16 for Mac, Chicago, IL USA) with sex and SINE status as 

independent variables.  

Replicate enzymatic assays were performed and C3H/HeJ was included in all 

replicates. COMT1 enzymatic data were normalized to C3H/HeJ. An independent 

t-test (SPSS) was performed to determine differences in enzymatic activity 

between +SINE and -SINE strains. 

  Analysis of behavioral data. A total of 744 mice (355 females from 32 

strains and 389 males from 31 strains) were tested in the OF assay and 223 

mice (113 female and 110 males from 24 strains each) were tested in both the 

EPM and the LD assays as described above. Fifty-one percent of the mice tested 

in the OF were -SINE and forty-nine percent were +SINE. Thirty-nine percent of 

the mice tested in the EPM and LD assays were –SINE and sixty-one percent 

were +SINE. The complete data set is available on (http://www.jax.org/phenome; 

Project: MPD: 214).  The analyses described below were conducted on the 

behavioral data from individual mice. However, for those results that showed 

significance with individual test scores we also conducted the analysis using 
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inbred strain means to avoid potential strain bias of uneven numbers of animals 

between strains.  Only results that support significance by strain means as well 

as with individual behavioral scores were considered to have significant 

genotype-phenotype associations. Strain mean data and numbers of animals 

tested for each phenotype is listed in Table 2.4.  

We used multivariate analysis to account for large numbers of data vectors 

(Marron, 2007). This methodology allows us to test the single hypothesis that 

mice with the +SINE haplotype are behaviorally different from -SINE mice.  All of 

the behavioral data from both cohorts of mice were used in single analyses in 

both male and female mice.  This technique does not assign a P-value to 

individual behavioral assays, and contributions from each behavioral assay are 

visualized by distance weighted discrimination (DWD) plots.  After the data is 

plotted, hypothesis testing then confirms the impressions gained from the 

visualization of the data.  This can be done without the loss of information 

entailed by classical dimensionality reduction, using a Direction Projection 

Permutation hypothesis test (DiProPerm) (Benito et al., 2004, Hu et al., 2006, 

Marron, 2007). 

DWD focuses on two-class discrimination in multi-dimensional space formed 

by the data.  The objective is to find a direction, a loading vector, which best 

separates the two classes. The variables are the 11 behavioral test scores for all 

of the individual animals. The length of a bar corresponds to the importance in 

separating the two classes and a positive loading value indicates that the -SINE 

haplotype tends to have a higher level of the corresponding variable than the 
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+SINE haplotype, while the negative loading value means the opposite.  

The second step projects all behavioral test scores from the +SINE and -SINE 

haplotypes in a DWD direction to obtain a pair-wise t-statistic.  The data 

projection plots a cloud of data points from each of the two classes, with the 

Gaussian distribution of both classes under the data points.  The Gaussian 

distribution of all data points is represented above the two curves of +SINE and -

SINE Gaussian distribution.  A pair-wise t-statistic was then obtained. 

The DiProPerm test is used to assess the significance of the t-statistic.  All of 

the data from each behavioral test and each mouse was randomly re-labeled into 

two classes. This permutation was performed 100 times, and each time there 

was a new t-statistic.  The empirical p-value corresponds to the proportion of the 

t-statistics of the permutated data at or above the t-statistic 

(http://www.stat.colostate.edu/~chihoon/FDA_ratPMdata.pdf). 

 Genetic Correlation Analysis with Nociception Assays. To determine if 

the absence of the SINE element is genetically related to sensitivity in pain 

models of several fundamental nociceptive modalities, Comt1 SINE status was 

compared to sensitivity in 22 nociception and hypersensitivity assays previously 

collected in twelve inbred mouse strains. Six of the strains had the SINE element: 

A/J, AKR/J, BALB/cJ, C57BL/6J, C57BL/10J and SM/J. Six of the strains did not: 

129P3/J, C3H/HeJ, C58/J, CBA/J, DBA/2J and RIIIS/J. Brief descriptions of the 

assays are found in Table 2.3, with greater detail available on The Jackson 

Laboratory’s Mouse Phenome Database website (http://www.jax.org/phenome) 

and in the original reports (Lariviere et al., 2002, Mogil et al., 1999a, Mogil et al., 
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1999b). Multivariate statistical analyses were used as previously described 

(Lariviere et al., 2002) to simultaneously assess the genetic correlations between 

absence of the SINE element in standard inbred strains and their sensitivity in: 

six inflammatory, six thermal and one mechanical nociception assay; one 

mechanical sensitivity assay; and eight mechanical, thermal and afferent-

dependent hypersensitivity assays (see Table 2.3). Pearson product-moment 

correlation coefficients were calculated between the strain means for each assay 

and the SINE status of the strain, with 1 = absence and 0 = presence due to the 

expectation of a negative correlation with pain sensitivity, and with strain means 

corrected by multiplication by -1 so that higher numbers indicated greater 

sensitivity. As such, a positive correlation indicates that absence of the SINE 

element is observed in strains more sensitive in the particular assay. 

Multidimensional scaling (MDS) and principal components analysis (PCA) were 

used to visualize all pairwise correlations simultaneously (Systat 13, Chicago, IL, 

USA). Briefly, in MDS, coordinates in two-dimensional space are reiteratively 

computed for a set of points representing SINE status and the assays to fit as 

closely as possible the measured similarities of Pearson correlations using a 

Kruskal loss function with monotonic regression. High positive correlations are 

represented as small distances between points, and high negative correlations 

are represented as large distances between points. Uncorrelated points have 

intermediate distances between them. In PCA, two linear combinations of the 

points are constructed, and the weights of the linear combinations are plotted in a 

two-dimensional space to produce a vector for each point. Highly positively 
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correlated points are represented with vectors with angles close to 0° between 

them, and high negative correlations as angles close to 180° between vectors. 

The results can also be viewed in three dimensions to determine if the same 

groupings are observed as in the two-dimensional representation. 

RESULTS 

Expression QTL (eQTL) analysis of microarray data reveals cis-regulation 

of Comt1 

The use of gene expression as a quantitative phenotype for SNP haplotype 

mapping allows for identification of genomic regions that control gene expression 

(eQTL). The correlation of differential gene expression for a specific gene with 

the haplotype pattern at its own chromosomal location indicates that the gene is 

cis-regulated - meaning that a difference at or near the gene influences its 

expression. Comt1 gene expression (intensity scores) for all strains was used as 

a quantitative phenotype for haplotype association mapping analysis. A genome-

wide association plot for Comt1 gene expression from pituitary (Affymetrix 

probeset 1418701_at) using the SNPster algorithm shows an eQTL peak with a -

LogP score of 6 on chromosome 16 (Figure 2.1a) near the physical location of 

the Comt1 gene, indicating that Comt1 is cis-regulated.  Analyses of Comt1 

expression for other brain regions, (nucleus accumbens, cortex, hippocampus, 

amygdala and striatum) also demonstrate cis-regulation (data not shown). 

More detailed investigation of the Chr 16 region identified only 6 SNPs that 

define the 2.5MB haplotype interval immediately surrounding Comt1 (Figure  

2.1b).  The other SNPs in the interval that show no association are non-
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informative for the strains included here.  The genomic location of each SNP is 

indicated with its association score on the Y-axis. The SNP with the maximal -

LogP score of 6, rs4165252, is at genomic location 20650976.  We sequenced 

coding regions of Comt1 in brain and liver cDNA in several +SINE and -SINE 

strains and did not discover new SNPs, confirming earlier reports of identity by 

descent (IBD) in this region (Yang et al., 2007).  HAM analysis uses a 3 SNP 

window to define haplotypes and for the surveyed strains, there were three 

distinct haplotypes in this SNP position: AGT, AAC, and AAT (Figure 2.1c). We 

did not include the wild-derived strains CZECHII/EiJ, CAST/EiJ, MOLF/EiJ or 

PWD/PhJ in the original survey, but note: these strains exhibit an additional 

haplotype at this position, GGC. 

A B2 SINE element defines haplotype  

We discovered the SINE insertion by aligning BAC clone sequence from 

129/SvEvTac with C57BL6/J. C57BL6/J had an insertion of roughly 240 bp in the 

3’UTR. RepeatMasker identified the inserted sequence as a B2 SINE element 

(http://www.repeatmasker.org). Although we found no other polymorphisms 

within Comt1, the HAM analysis pointed us toward this insertion as the cis-

element contributing to regulation of Comt1.  

A PCR to detect the presence or absence of the SINE element was 

developed to assess the status of the insertion among mouse strains (Figure 

2.1d and e). Almost all of the -SINE strains are haplotype AGT, and almost all of 

the +SINE strains are haplotype AAT, except for A/J, PL/J, and SM/J. We 

included a single 129 strain, 129S1/SvImJ in our analysis, but included 
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129X1/SvJ in our SINE element PCR assay. Although both these 129 sub-strains 

have the haplotype that exhibit -SINE, these two strains are +SINE. We 

examined a third 129 strain, 129P3/J, and found this 129 parental strain to be a -

SINE strain; 129/SvEvTac, is also a -SINE strain (data not shown). 

Expression QTL (eQTL) analysis of microarray data reveals significant 

effect of SINE haplotype on Comt1 expression  

 ANOVA identified a significant main effect of both SINE element status and 

sex for all brain regions examined. Overall, +SINE strains had higher Comt1 

expression and males showed higher expression levels than females (see Table 

2.1). A significant SINE by sex interaction effect was also observed for 

expression levels in the nucleus accumbens (F(1,55)=24.4;P<0.0001), prefrontal 

cortex (F(1,57)=8.2;P<0.01), amygdala (F(1,57)=18.0;P<0.0001) and striatum 

(F(1,51)=9.9;P<0.01). Posthoc analyses indicate that female mice show increased 

Comt1 expression in the striatum and +SINE females have slightly lower Comt1 

expression in the nucleus accumbens in contrast to males (Table 1). 

Validation of array data 

Typical microarray data is shown for cortex and nucleus accumbens (Figure 

2.2). To validate results from the microarray data we developed TaqMAN assays.  

qPCR of cortex cDNA replicated the array findings (Figure 2.3 a, P<0.01). In 10-

week old male mice, the average increase in Comt1 mRNA is approximately 20% 

across the surveyed strains. Resultant from increased mRNA presence we 

expected to find an increase in COMT1 protein levels and developed an ELISA 

assay to ascertain protein levels. However, we could not show differences 
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observed in COMT1 protein levels in prefrontal cortex were significant for the 

strains surveyed (Figure  2.3b). 

 

Comt1 Enzymatic Activity is higher in brain lysates and cell constructs 

In the absence of determining robust differences in COMT1 protein levels 

among the strains we investigated whether there was any change in enzymatic 

activity. We examined this in both in-vivo and in-vitro assays. The +SINE strains 

had an average of 20% more activity, mirroring gene expression profiles (t(8)=-

4.4; P<0.01; Figure 2.3c). To validate the hypothesis that the presence of the 

SINE element was driving the increase in activity, we constructed full-length 

(cDNA) Comt1 clones of the NM_001111063 transcript with and without the B2 

SINE element. Rat adrenal (PC-12) cells were transiently transfected with each 

construct. COMT1 enzymatic activity was measured and found to be 5-fold 

greater in +SINE transcripts (Figure 2.3d). 

SINE haplotype has an effect on anxiety and exploratory phenotypes  

The DiProPerm analysis showed that +SINE strains have a significantly 

different behavioral profile than the -SINE strains. Four behaviors had a 

significant effect in separating the two classes.  These were open field rearing 

and total distance, percent time in the light side of the light/dark arena and total 

distance in the elevated plus maze (Figure 2.4a). The results were similar for 

both male and female mice. When viewed in the distance-weighted 

discrimination (DWD) loading plot, the length of the bar corresponds to its 

contribution in discriminating between the two haplotypes. A positive loading 
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value indicates that the -SINE mice have an increased measure of the behavior 

than the +SINE mice and a negative loading value means the opposite. Based on 

the DWD results, -SINE mice rear more in the open field assay and spend more 

time in the lighted area of the LD assay and +SINE mice exhibit greater 

locomotion in the elevated plus maze and open field. All behavioral data from the 

DWD loading plot for all strains were plotted on a data projection plot (Figure 

2.4b) and this clearly shows discrimination between the absence (black) or 

presence (grey) of the SINE insertion. The DiProPerm analysis assessed the 

significance of the t-statistic by a permutation test and found it to be highly 

significant in both female and male mice (Figure 2.4c and Table 2.2).  When 

individual behavioral tests are analyzed the elevated plus maze contributes a 

significant effect to the DWD loading plot for males only.   

When strain means, rather than individual scores, for combined tests were 

analyzed, distance in the elevated plus maze was no longer significantly different 

in +SINE vs –SINE mice. Open field distance and rearing were significant in 

females (t=2.6;P<0.05) but only exhibited borderline significance in males (t=2.3; 

P=0.07). Percent time spent in the lighted area of the LD assay was significant in 

both males (t=2.2;P<0.05) and females (t=2.2;P<0.05). 

Strains without the SINE insertion are more sensitive to spontaneous 

inflammatory nociception.   

Strains without the SINE insertion are more sensitive to spontaneous 

inflammatory nociception. Absence of the SINE insertion is positively and 

significantly correlated with increased pain sensitivity of inbred strains of mice in 
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spontaneous inflammatory nociception assays.  These include assays of 

subcutaneous injection of the inflammatory irritants bee venom, capsaicin or 

formalin to evoke paw licking, and intraperitoneal injection of acetic acid or 

magnesium sulfate to evoke abdominal constrictions or writhes (see Table 2.3 for 

statistical significance; (Lariviere et al., 2002 for more details of the assays)  for 

more details of the assays). Thermal nociception was also positively and 

significantly correlated with absence of the SINE haplotype in two of six assays, 

with the majority of assays showing no relation to SINE haplotype (Table 2.3). 

There was no consistent relationship of SINE haplotype with mechanical 

sensation or nociception in the von Frey and tail clip tests, respectively, or with a 

range of hypersensitivity assays tested with thermal or mechanical stimuli 

including hypersensitivity evoked by inflammatory irritants or nerve injury (Table 

2.3). Multivariate analyses and the MDS and PCA plots in Figure 2.5 confirm 

these individual findings and demonstrate graphically that absence of SINE 

haplotype is most genetically related to increased sensitivity to spontaneous 

inflammatory nociception. Note that the clustering of SINE status with 

spontaneous inflammatory nociception assays in the PCA plot was preserved 

when viewed in three dimensions (with 0.65 of the total variation accounted for), 

and more closely matched the correlations reported in Table 2.3 (e.g. strong 

correlation of absence of SINE element with Hargreaves’ test of thermal 

nociception). 

DISCUSSION 

 Commonly used inbred strains of mice exhibit broad phenotypic and 
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genotypic variation.  We measured behavioral phenotypes and gene expression 

variation across 29 inbred mouse strains and identified Comt1 as being one of a 

number of genes that exhibit differential expression among inbred strains of 

mice.  A cis-regulated pattern of gene expression was observed for all brain 

regions we examined.  We have linked this gene expression difference to the 

insertion of a B2 SINE element in the 3’UTR of the gene such that mice with an 

insertion of the SINE element show increased expression and increased COMT1 

enzymatic activity. Using a distance-weighted discrimination technique, we 

identified four behavioral phenotypes that contributed most strongly to 

discrimination of the status of the Comt1 haplotype. Our results indicate that 

mouse strains with the SINE element display increased locomotor activity, 

decreased rearing behavior and exhibit an increased anxiety response in the 

light/dark assay. 

The SINE element insertion is a recent event in inbred strains 

The use of gene expression data as a quantitative trait has been successful 

for identification of eQTL (Chen et al., 2008, Wu et al., 2008). The actual 

polymorphism responsible for cis-regulation of gene expression, however, can 

often be difficult to identify.  In mouse, Comt1 is located in a genomic region for 

which most strains share common haplotypes. We identified very few 

polymorphisms in the Comt1 region within the common inbred strains (6 SNPs 

within 2.5 Mb). More extensive resequencing data (Frazer et al., 2007) shows 

polymorphic variance only for wild-derived inbred strains and a similar pattern of 

two major haplotypes for laboratory inbred strains.  Comt1 itself exhibits no 
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coding sequence polymorphisms. In an attempt to identify non-coding regulatory 

polymorphisms we aligned sequence from BACs of two strains that were in 

different inferred haplotypes (C57BL/6J, 129/SvEvTac). A SINE element was 

discovered in the 3’UTR of Comt1.  The SINE element insertion is likely to be of 

recent origin within the inbred strains as it is not found in wild-derived strains and 

it is not present in all C57 or 129-derived strains.   

Insertion of a B2 SINE element increases COMT1 enzymatic activity 

Since Comt1 mRNA expression correlated to the presence or absence of the 

SINE insertion we predicted that we would detect concomitant changes in 

COMT1 protein levels.  Our data did not reveal that protein levels correlated in a 

robust and consistent manner with SINE element status and although this could 

be due to secondary compensatory mechanisms it is more likely resultant from 

assay variability.  However, our cell-based studies established that the presence 

of the SINE element does impact enzyme activity levels. It is not clear how a 

SINE element insertion can functionally cause a variation in the amount of 

measurable (mRNA) Comt1 and how this translates to variable enzyme activity 

and changes in protein levels. It is plausible that insertion of this SINE element 

affects mRNA secondary structure leading to alteration in mRNA degradation 

rate and protein folding. Protein folding may in turn affect protein stability, 

enzymatic activity or post-translational modification efficiency.  Recently, the 

COMT enzyme has been shown to be phosphorylated and N-acetylated in rats 

(Overbye & Seglen, 2009) indicating that post-translational alterations of the 

protein are also important and might be more mechanistically relevant 
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considering the requirement for rapid action of COMT1 for catecholamine 

modulation. The exact mechanism by which the SINE element alters COMT1 

enzymatic function will require further investigation.  

 

Behavioral effects of COMT enzymatic activity in inbred strains 

The COMT protein is involved in catecholamine regulation, a pathway that 

has been implicated in behavioral function in both humans and animal models. 

Human COMT has been implicated in phenotypes related to pain, stress, anxiety 

and ADHD (reviewed by (Andersen & Skorpen, 2009, Harrison & Tunbridge, 

2008, Lachman, 2008). In humans, a non-synonymous G!A base pair 

substitution results in a valine!methionine substitution at position 158. The 

Met158 amino acid substitution results in a less active form of the enzyme (Chen 

et al., 2004) thereby resulting in higher brain concentrations of dopamine. 

Presence of the Met158 allele of COMT has been associated with poor emotional 

regulation for anxiety-related traits (Domschke et al., 2004, Enoch et al., 2003) 

and low sensation seeking (Stein et al., 2005). However, it should be noted that 

the role of COMT in these behaviors in humans has not been consistent across 

all studies. 

Animal models have also been useful for studying the role of COMT on 

behavior. Examination of Comt1 knockout (KO) and transgenic (Tg) mice has 

addressed anxiety-related behaviors. Female Comt1 KO mice show increased 

anxiety as measured by latency to emerge from the dark quadrant in the 

light/dark assay (Gogos et al., 1998) and Tg mice carrying the human Val158 
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allele exhibit decreased anxiety in the elevated plus maze (Papaleo et al., 2008). 

The results from these animal studies concur with human studies linking 

increased enzymatic activity to decreased anxiety. 

Based on the data observed in humans and animal models, one would expect 

that +SINE mice that have increased enzymatic activity, would exhibit decreased 

anxiety rather than increased anxiety as indicated by the observation that +SINE 

mice spend less time in the lighted quadrant of the light/dark arena in comparison 

with -SINE mice. However, +SINE mice also exhibit increased locomotor 

activation in a novel environment (the open field) and increased locomotion in 

response to novelty is believed to reflect decreased anxiety or emotionality 

(Fujita et al., 1994, Kabbaj et al., 2000). This theory is supported by the 

observation that some anxiolytics, particularly benzodiazepines like diazepam 

and chlordiazepoxide at moderate doses, increase locomotor activity in anxiety-

related assays in mice (Choleris et al., 2001, Vlainic & Pericic, 2009). 

Interestingly, female Comt1 KO mice also display significantly less ambulatory 

activity than wild-type animals in the lighted quadrant of the light/dark arena 

(Gogos et al., 1998) although we did not observe this difference among the 

inbred strains. The observation of increased locomotor response to novelty in 

+SINE mouse strains does seem to concur with the human observation that 

increased COMT enzymatic activity is associated with decreased anxiety. The 

seemingly disparate results from two behavioral measures of anxiety may not be 

surprising since different anxiety assays often do not correlate and may measure 

different components of anxiety-related behavior (Lister, 1990).  
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Exploratory activity in novel environments has also been described as an 

animal model for novelty seeking (Piazza et al., 1989). Novelty and sensation 

seeking traits are correlated in human studies (McCourt et al., 1993). A decrease 

in novelty-induced locomotion in mice with decreased COMT1 enzymatic activity 

corresponds with human studies that link the Met158 allele of COMT with a 

decrease in sensation-seeking behavior (Lang et al., 2007, Stein et al., 2005).  

+SINE mice also exhibit decreased rearing behavior in the open field. Rearing 

behavior in a novel environment has been described as both a measure of 

exploratory behavior and an indicator of anxiety (Crusio et al., 1989a, Crusio et 

al., 1989b). However, previous studies in our laboratory and by others indicate 

that rearing behavior might also represent a distinct class of movements based 

on the lack of correlation between rearing behavior and anxiety- and locomotor-

related behavior in common rodent tests for anxiety (Bailey et al., 2008, 

Fernandez, 1997, Henderson et al., 2004). Various studies have reported that 

anxiolytics cause a decrease (Crabbe et al., 1998, Fahey et al., 2001, Gray & 

McNaughton, 2000, Hughes, 1993, McNaughton, 1985), an increase (Crabbe et 

al., 1998) or have no effect on rearing (Choleris et al., 2001, Czech et al., 2003). 

Some of these differences may reflect differences in the animal model (rat vs. 

mice), anxiolytic, dose or behavioral assay. Based on studies that have shown a 

decrease in rearing behavior in response to anxiolytics, one might hypothesize 

that the decrease in rearing behavior observed in the +SINE mice is also a 

reflection of decreased anxiety. However, until the neurobiological and 
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neurochemical mechanisms that govern rearing behavior and anxiety are more 

fully understood, such an interpretation is conjecture at this point. 

Relevance of the SINE element to pain sensitivity.  

In humans, lower levels of COMT activity have been linked to heightened pain 

perception (Diatchenko et al., 2006a, Diatchenko et al., 2005). Comt1 KO mice 

also exhibit increased pain sensitivity (Papaleo et al., 2008) and Tg mice carrying 

the human Val158 allele are more resistant to pain. The results of our study are 

consistent with decreased pain sensitivity in inbred strains with increased COMT 

activity. Previous reports in both rodents and humans show a stronger 

relationship of COMT genotype with noxious thermal stimuli over pressure stimuli 

(Diatchenko et al., 2006b) which is consistent with our results indicating a 

stronger positive association with sensitivity in several thermal nociception 

assays but not with mechanical nociception.  However, in the current study the 

strongest relationship between Comt1 genotype was with inflammatory 

nociception – an assay that has not been assessed with regard to COMT activity 

in humans. This novel finding suggests specific relationship of Comt1 genotype 

with the immediate effects of and spontaneous responses to nociceptive 

inflammatory insults, but not with the more prolonged consequences of 

inflammation- or nerve injury-induced hypersensitivity (Table 2.3). It is currently 

unknown how this specificity arises, but because COMT genotype differences 

are likely to be mediated via #-2 and  #--3 adrenergic receptors, a stronger 

positive association with sensitivity in several thermal nociception assays but not 

with mechanical nociception (Nackley et al., 2007) is consistent with our results.  
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Specific hypotheses regarding heritable differences in the effects of modulation 

of adrenergic receptor activity and relative specificity for inflammatory pain over 

other pain types should be tested in both humans and animal models. 
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Figure 2.1 Identification of Comt1 as a cis-regulated gene.  a.  Genome wide 

association analysis (HAM) of Comt1 RNA expression levels for probe set 

1418701_at in male pituitary across 29 strains.  The genomic position of 

SNPs is displayed on the X axis in cumulative position in the genome.  

Chromosomes are sequentially colored (1-19 and X). The Y axis displays 

the association score (-LogP) for association of between strain gene 

expression patterns with each inferred haplotype.  The highest association 

on Chr. 16 has a maximal score, -LogP = 6.  b. Expanded view of the 4 

MB region surrounding the Comt1 locus.  Eight SNPs with –LogP=0 are 

non-informative for these strains, thus producing a break in the QTL locus. 

The red markers below zero on the Yaxis define all Affymetrix 430v2 

probe sets in their correct genomic location.  c. SNP allele calls for 29 

inbred mouse strains at this locus define at least four distinct haplotypes.  

However, there are two major haplotype groups and all strains in this 

interval are also characterized by the presence (grey) or absence of a 

SINE element in the 3’UTR of Comt1.  d.  The presence of the B2 SINE 

element is demonstrated by PCR.  Strains are aligned in the same order.  

e.  cDNA structure of Comt1 illustrating exons, position of the SINE 

insertion, Affymetrix and TaqMAN probe sets, diagnostic PCR primers and 

coding exons. 
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Figure 2.1 
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Figure 2.2 Gene expression values for Comt1  (Affymetrix probe 1449183_at) in: 

a. prefrontal cortex (27 strains) and   b.  nucleus accumbens (29 strains).  Three 

male animals were pooled from each strain.  Each result is also characterized by 

the presence (grey) or absence of a SINE element in the 3’UTR of Comt1. 
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Figure 2.3 Functional analysis of Comt1 variants.   Microarray gene expression 

results were validated using TaqMan assays.  a.  Array data for Affymetrix probe 

1449183_at and qPCR (grey) from prefrontal cortex RNA: 4 strains, 4 male 

animals per strain demonstrate reproducible values between q-PCR and array 

data.  Data normalized to C3H/HeJ; error bars are S.E. **P<0.01, 1-tailed paired 

t-test. b.  An ELISA assay was developed to assess COMT1 protein levels. 

COMT1 protein levels in prefrontal cortex were measured for male animals in 8 

strains, (+SINE grey) error bars are S.E. c. Enzymatic activity of COMT1 protein 

was measured using a Normetanephrine ELISA assay.  Prefrontal cortex lysates 

from 2 to 4 male animals per strain were collected. Ten strains were assayed: 6 

+SINE (grey), and 4 –SINE. Data normalized to C3H/HeJ and then analyzed by 

1-tailed Mann Whitney test, **P < 0.01 d. Full length cDNA constructs of both 

+SINE and -SINE haplotypes were prepared and transiently transfected into 

PC12 cells.  Cell lysates were tested for enzymatic activity in the same manner 

as brain tissue samples. 
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Figure 2.3 
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Figure 2.4 Behavioral assays from individual animals are correlated with the 

presence or absence of the SINE element in Comt1.  Males were tested in two 

separate groups depending on assay.   a.  The four most significant behaviors 

that discriminate for the presence or absence of the SINE element in Comt1 are 

shown on a DWD loading plot (male) OFR - open field, rearing, LDB - Light/Dark 

Box, % time in light, OFD - Open Field, total distance, EPM - Elevated Plus 

Maze, total distance. b. Data projection plot on DWD direction of contributing 

behavioral assays, grey points indicate scores from +SINE haplotype, black from 

-SINE. c.  DiProPerm plot of t-statistics. The DiProPerm test plot depicts the 100 

t-statistics as 100 black dots under a Gaussian peak. The t-statistic for the DWD 

direction plot is depicted as a black line.  Similar scores are seen for female 

mice. 
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Figure 2.5 Multivariate analyses of cross-correlations between negative SINE 

status of inbred mouse strains and strain means for 22 assays of sensation, 

nociception and hypersensitivity (corrected for sensitivity; see Table 2.2 for 

abbreviations). MDS (a) and PCA (b) plots show that strains without a SINE 

element have increased sensitivity to spontaneous inflammatory nociception 

assays. In the MDS plot, the Euclidean distances between the point for Comt1 

SINE status and the points for sensitivity in the pain models are representative of 

their Pearson product-moment correlations; points for traits with higher positive 

correlations are closer (see text). Using a Kruskal loss function with monotonic 

regression, the final stress was 0.21. The proportion of total variance accounted 

for is 0.81. In the PCA plot, the angles between rays projecting to the points are 

representative of the correlations between the two traits (see text). The 

proportion of total variance accounted for is 0.53. Circles indicate the set of all 

spontaneous inflammatory nociception assays and demonstrate the overall 

proximity and strong genetic correlation of negative SINE status with this type of 

nociception. 

(a)                      (b) 
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Table  2.1: Association of the presence or absence of the SINE element with 

gene expression of Comt1 in seven brain regions. 

           
  Female 
           
  - SINE Haplotype  + SINE Haplotype   
           

Brain Region  N Mean 
Std 
Err  N Mean 

Std 
Err  P value 

           
Z-score  16 -5.86 0.15  13 -2.47 0.36  P<0.0001 
           
Nucleus 
Accumbens 

 
16 1141 72.9  13 1072 38.5  P=0.437 

           
Prefrontal 
Cortex 

 
16 791.4 15.08  13 1134 57.98  P<0.0001 

           
Amygdala  16 320.8 7.78  13 458.6 13.03  P<0.0001 
           
Hypothalamus  16 789.8 13.89  13 1267 48.72  P<0.0001 
           
Hippocampus  16 737.8 18.3  13 1027 28.13  P<0.0001 
           
Striatum  16 893.1 25.15  13 1371 65.46  P<0.0001 
           
Pituitary  15 805.7 33.25  13 814 38.87  P=0.872 
           
  Male 
           
Z-score  16 2.24 0.37  13 6.94 0.52  P<0.0001 
           
Nucleus 
Accumbens 

 
15 2136 53.28  12 2887 146.84  P<0.0001 

           
Prefrontal 
Cortex 

 
16 1493 47.29  13 2131 77.2  P<0.0001 

           
Amygdala  16 1507 34.76  13 1888 44.39  P<0.0001 
           
Hypothalamus  16 1310 104.5  13 1852 129.18  P<0.01 
           
Hippocampus  15 2370 139.2  13 2690 96.5  P<0.05 
           
Striatum  11 508.2 19.91  12 718.5 43.25  P<0.0001 
           
Pituitary  16 2444 59.28  13 2679 89.93  P<0.05 
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Table 2.2 Behavioral scores that best discriminate the +SINE/-SINE haplotypes 
 

 Female  Male 
    

Behavioral phenotype OFR, LDB, OFD, EPM  OFR, LDB, OFD, EPM 
    

DiProPerm t-statistic 10.501  8.6465 
    

P value P<0.0001  P<0.0001 
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Table 2.3 Correlations between negative SINE status and strain means for 22 

assays of sensation, nociception and hypersensitivity (corrected for sensitivity; 

positive correlation indicates absence of SINE haplotype associated with 

increased sensitivity in the assay).!

Abbreviation Description of pain model 

Pearson 
Correlation 
(Strains in 
Common) 

  
Spontaneous inflammatory nociception  
   
ACAA Abdominal constriction (writhing) test – 

acetic acid  
        0.46   (11) 

   
ACMS Abdominal constriction (writhing) test – 

magnesium sulfate  
        0.61* (11) 

   
BV Bee venom-induced spontaneous pain 

behavior (licking) 
        0.55* (12) 

   
CAP Capsaicin-induced spontaneous pain 

behavior (licking)  
        0.27   (12) 

   
Fearly Early/acute phase of formalin test          0.64* (11) 
   
Flate Late/tonic phase of formalin test          0.35   (11) 
   
Thermal 
nociception 

  

   
TW-15 Tail withdrawal from -15°C ethanol          0.05   (12) 
   
HP Hot-plate test          0.41   (11) 
   
HT Hargreaves et al.’s thermal paw-withdrawal 

test  
        0.60* (11) 

   
TF Tail-flick from radiant heat source         -0.21   (10) 
   
TW47.5 Tail withdrawal from 47.5°C water         -0.28   (12) 
   
TW49 Tail withdrawal from 49°C water         -0.20   (11) 
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Mechanical nociception  
   
TC Tail-clip test          0.33   (12) 
   
Mechanical sensitivity  
   
VF von Frey monofilament test         -0.01   (11) 
   
Mechanical hypersensitivity  
   
DYNVF Dynorphin-induced mechanical 

hypersensitivity assessed with von Frey 
monofilament test  

        0.29   (7) 

   
PNIVF Peripheral nerve injury-induced mechanical 

hypersensitivity assessed with von Frey 
monofilament test  

       -0.23   (11) 

   
Thermal and afferent-dependent hypersensitivities  
   
AUT Autotomy following sciatic and saphenous 

nerve transection  
        0.00   (11) 

   
BVHT Bee venom-induced thermal 

hypersensitivity assessed with Hargreaves’ 
test (ipsilateral)  

        0.31   (12) 

   
BVCON Contralateral bee venom-induced thermal 

hypersensitivity assessed with Hargreaves’ 
test  

        0.14   (12) 

   
CAPTW Capsaicin-induced thermal hypersensitivity 

assessed with tail-withdrawal test , 47°C 
water 

        0.20   (12) 

   
CARHT Carrageenan-induced thermal 

hypersensitivity assessed with Hargreaves’ 
test  

       -0.09   (11) 

   
PNIHT Peripheral nerve injury-induced thermal 

hypersensitivity assessed with Hargreaves’ 
test  

       -0.08   (11) 

 
*Statistically significant (P < 0.05, one-tailed test, uncorrected). 

!



!!!!!!! ,.!

Table 2.4: Mean strain values for four behavioral measurements most important 

in separating the +SINE and -SINE haplotypes by DWD analysis.  Standard 

Deviation is noted as s.d. 

!
  OFR : Open Field,  

Mean Rearing 
 LDB : Light/Dark Box, Mean % 

time in Light 
               

Strain 
SINE  

Haplo-
type 

Male N s.d. Female N s.d.  Male N s.d. Female N s.d. 

                  
129S1/ 
SvImJ 

+  8.1 14 10.4 1.0 14 1.5  4.7 8 4.9 0.2 8 0.4 

               
A/J +  11.4 14 13.6 8.0 14 13.6  0.0 8 0.0 0.3 8 0.2 

               
AKR/J +  77.6 14 27.0 54.4 16 22.4  3.0 8 4.3 1.6 8 1.6 

               
BALB/cByJ +  59.7 14 31.8 52.7 13 31.2  0.3 8 0.4 0.2 8 0.6 

               
BTBR  
T+ tf/J 

+  55.5 14 23.2 46.9 16 17.9 
       

               
BUB/BnJ +  69.3 16 26.8 49.0 12 15.9  6.2 4 5.3 6.4 4 4.4 

               
C3H/HeJ -  93.5 7 34.7 83.5 15 38.3  36.1 4 7.0 24.4 4 8.2 

               
C57BL/6J +  95.1 15 36.4 69.4 27 24.3  9.6 4 4.8 6.4 4 1.9 

               
C57BR/cdJ -  116.1 16 32.2 93.8 15 25.0  21.5 4 4.1 20.0 4 6.0 

               
C58/J -  83.4 14 27.7 63.4 16 24.7  6.5 4 5.4 7.4 4 4.7 

               
CBA/J -  54.1 16 40.2 57.1 15 45.3  5.1 3 3.0 33.6 4 34.5 

               
CE/J +  84.4 15 22.9 78.0 4 57.2  20.0 4 14.1 19.6 2 1.3 

               
DBA2/J -  79.5 8 33.4 78.0 14 25.7  4.5 4 3.5 2.2 4 1.8 

               
FVB/NJ -  173.0 14 47.6 153.6 14 24.5  18.2 7 11.2 22.6 8 6.9 

               
I/LnJ -  87.5 14 13.9 83.3 4 42.9        

               
KK/HIJ -  44.1 8 18.5 48.5 12 24.7        
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!
  OFR : Open Field,  

Mean Rearing 
 LDB : Light/Dark Box, Mean % 

time in Light 
               

Strain 
SINE  

Haplo-
type 

Male N s.d. Female N s.d.  Male N s.d. Female N s.d. 

LG/J +  75.3 17 29.5 116.8 12 35.1  1.3 4 2.6 0.3 4 0.5 
               

LP/J +  24.6 12 15.6 21.1 10 10.3              
               

MA/MyJ -  178.7 10 39.7 148.3 8 37.3  17.6 4 12.1 18.3 4 8.5 
               

MRL/MpJ +  45.1 14 17.7 47.3 14 25.3  3.6 8 10.0 5.4 8 13.2 
! ! ! ! ! ! ! ! ! ! ! ! ! ! !

NOD/LtJ +  144.5 17 28.9 133.9 18 46.9  9.6 8 10.0 4.7 8 5.1 
               

NON/LtJ +  137.1 16 53.3 134.6 16 44.8  4.7 4 3.2 6.4 3 5.7 
! ! ! ! ! ! ! ! ! ! ! ! ! ! !
NZB/BINJ -  28.5 14 16.9 26.9 10 20.0        
! ! ! ! ! ! ! ! ! ! ! ! ! ! !
NZO/HILtJ -  51.3 11 24.9 43.4 11 15.7  2.1 4 2.7 2.3 4 1.9 
! ! ! ! ! ! ! ! ! ! ! ! ! ! !
NZW/LacJ -     54.7 13 15.8  29.3 4 11.0 16.8 4 6.7 
! ! ! ! ! ! ! ! ! ! ! ! ! ! !

P/J -  174.3 3 33.5 49.3 2 10.6  10.9 2 15.0 3.5 4 4.7 
! ! ! ! ! ! ! ! ! ! ! ! ! ! !

PL/J +  115.3 18 26.3 135.1 18 24.7  26.6 4 6.4 25.1 4 10.8 
               

PWD/Ph -  61.0 10 33.6 32.3 10 30.1        
               

RIIIS/J -  121.2 15 20.1 109.0 12 34.6        
               

SJL/J -  147.9 16 39.8 109.9 16 34.6  8.7 4 9.5 7.4 4 3.7 
               

SM/J +  68.2 14 38.2 49.4 14 47.4  15.9 4 11.1 13.2 4 6.2 
               

SWR/J -  178.4 17 32.2 166.0 15 47.6  21.7 3 5.9 15.6 4 7.3 
! ! ! ! ! ! ! ! ! ! ! ! ! ! !

WSB/EiJ -  70.2 10 36.7 52.7 10 24.9  16.6 4 9.6 19.0 4 6.8 
!

!
!
!
!
!
!
!



!!!!!!! ,&!

!
  OFD : Open Field, Mean Distance Traveled (cm) 
        

Strain 
SINE 

Haplotype 
Male N s.d. Female N s.d. 

        
129S1/SvImJ +  1652.8 14 720.0 1023.6 14 730.2 

        
A/J +  531.8 14 224.6 601.0 14 409.7 

        
AKR/J +  3798.4 14 634.6 4031.0 16 1398.2 

        
BALB/cByJ +  2383.4 14 638.9 2441.6 13 427.4 

        
BTBR T+ tf/J +  4164.3 16 914.6 3562.3 16 994.7 

        
BUB/BnJ +  2348.5 7 503.6 2710.2 12 606.3 

        
C3H/HeJ -  1807.8 15 346.8 2171.6 15 545.1 

        
C57BL/6J +  3005.9 16 589.3 3311.4 27 772.9 

        
C57BR/cdJ -  4245.8 14 812.9 3347.4 15 1075.5 

        
C58/J -  4289.3 16 1719.8 3774.1 16 2054.0 

        
CBA/J -  1824.1 15 392.0 2302.0 15 344.7 

        
CE/J +  2950.8 8 481.9 5289.6 14 2253.8 

        
DBA2/J -  2053.6 14 405.9 2063.6 14 473.1 

        
FVB/NJ -  3763.7 14 479.7 3868.6 14 815.6 

        
I/LnJ -  4027.9 8 857.8 4166.1 4 1155.3 

        
KK/HIJ -  1751.9 17 656.1 1715.2 12 538.6 

        
LG/J +  2808.4 12 455.9 3403.4 12 596.4 

        
LP/J +  1474.7 10 669.1 1248.1 10 589.2 

        
MA/MyJ -  4771.8 9 1062.3 5069.7 8 822.0 

        
MRL/MpJ +  2381.7 14 526.8 2747.6 14 714.4 

        
NOD/LtJ +  4124.7 17 859.4 4068.2 18 1086.7 

        
NON/LtJ +  3775.6 16 545.1 3570.1 16 684.3 
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  OFD : Open Field, Mean Distance Traveled (cm) 
        

Strain 
SINE 

Haplotype 
Male N s.d. Female N s.d. 

        
NZO/HILtJ -  1190.9 11 185.1 1231.0 11 259.2 

        
NZW/LacJ -     2400.3 13 453.7 

        
P/J -  3267.9 3 783.5 3015.8 2 843.0 

        
PL/J +  3812.9 18 866.4 3936.0 18 1002.6 

        
PWD/Ph -  1808.9 10 326.5 1802.9 10 509.5 

        
RIIIS/J -  2732.8 15 428.1 2968.3 12 624.6 

        
SJL/J -  2486.4 16 548.4 2494.9 16 468.2 

        
SM/J +  3196.5 14 1018.0 3047.2 14 1116.0 

        
SWR/J -  2769.7 17 478.6 2657.8 15 497.4 

        
WSB/EiJ -  3282.5 10 697.5 4228.4 10 912.8 

!
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!
   
 

 EPM : Elevated Plus Maze, Mean Distance Traveled, 
(cm) 

        

Strain 
SINE 

Haplotype 
Male N s.d. Female N s.d. 

        
129S1/SvImJ +  1047.9 7 589.3 1068.2 8 463.7 

        
A/J +  1452.3 6 163.9 997.7 6 300.5 

        
AKR/J +  2091.7 6 401.1 1866.7 8 257.8 

        
BALB/cByJ +  1616.7 8 447.0 2082.0 8 515.5 

        
BUB/BnJ +  2225.1 4 381.9 2121.2 4 203.0 

        
C3H/HeJ -  777.1 4 249.4 928.3 3 142.9 

        
C57BL/6J +  1568.0 4 175.7 937.4 4 316.1 

        
C57BR/cdJ -  1505.3 4 98.3 1630.6 4 102.7 

        
C58/J -  1395.0 4 278.0 989.6 4 339.1 

        
CBA/J -  800.7 4 101.3 717.2 4 242.5 

        
CE/J +  1089.4 4 189.6 1676.2 2 62.4 

        
DBA2/J -  902.7 3 188.1 848.4 4 140.1 

        
FVB/NJ -  2276.4 8 383.2 2580.7 6 336.2 

        
LG/J +  1957.7 4 171.2 1984.6 4 374.3 

        
MA/MyJ -  1379.8 3 668.8 1708.4 4 131.1 

        
MRL/MpJ +  2046.6 6 394.3 1825.6 8 369.8 

        
NOD/LtJ +  2275.9 8 340.1 2367.7 8 409.1 

        
NON/LtJ +  1994.3 4 584.4 1717.8 2 332.6 

        
NZO/HILtJ -  661.0 4 364.0 468.9 4 99.1 

        
NZW/LacJ -  1825.6 4 101.2 2014.1 4 114.5 

        
P/J -  1148.2 2 362.4 961.9 4 204.9 
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!
  EPM : Elevated Plus Maze, Mean Distance Traveled, 

(cm) 
        

Strain 
SINE 

Haplotype 
Male N s.d. Female N s.d. 

!
PL/J +  1988.3 4 296.4 2351.3 4 255.3 

        
SJL/J -  1873.6 4 478.9 1933.2 4 367.8 

        
SM/J +  648.6 2 195.3 1202.1 4 496.3 

        
SWR/J -  1752.8 2 150.4 2391.9 2 371.4 
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Abstract 
!
! Recently, a functional haplotype of Catechol-O-Methyltransferase (Comt1) 

was discovered in inbred strains of mice defined by a B2 short interspersed 

repeat element (SINE) insertion in the 3’untranslated region (UTR) (Kember 

et.al., 2010, Mulligan et.al., 2010, Segall et. al., 2010). The strains of this 

haplotype, Comt1B2i, have increased Comt1 transcript 5’ to and decreased 

transcript 3’ of the insertion in the majority of tissues surveyed. COMT1 

enzymatic activity was increased in male mice of Comt1B2i strains in several  
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brain regions (Kember et.al., 2010, Li et.al., 2010, Segall et. al., 2010). We 

demonstrated that the B2 insertion results in two transcripts of Comt1B2i, a         

truncated form, which ends right after the B2 element, and a full transcript, which 

include B2 element. The full transcript is expressed at lower frequency in both 

cell construct experiments and tissue from Comt1B2i animals.  From preliminary 

cell construct experiments, the Comt1B2i transcript is more stable, and leads to 

increased protein levels and increased enzymatic activity in cell construct 

experiments (Chapter 2, Figure 2.3). We propose several molecular 

mechanisms which could cause this result: more stable mRNA 2o structure, 

and/or an early polyadenylation signal, which truncates the 3’ UTR, leading to 

more stable RNA, more protein and more activity. Future experiments will 

determine if it is the loss of the most distal 3’UTR which causes the truncated 

Comt1B2i transcript to become more stable, or the presence of the B2 sequence 

itself is responsible for the increased stability of Comt1B2i  transcript.   

INTRODUCTION 

SINE Elements in Mouse and Human Genomes 

 As we will show in this work, we have identified a molecular mechanism 

that could explain some phenotypic data for behavior and pain response in 

inbred strains of mice.  Short interspersed nucleotide elements (SINEs) are 

found in all inbred strains of mice, and in this case is the source of this Comt1 

haplotype in classic inbred strains.  SINE elements are sequences of small 

nuclear RNAs, such as tRNA and rRNA, which have been reverse-transcribed 

and integrated into the genome (Dieninger 1989, Goodier & Kazazian 2008). 
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SINE elements are 80-400 bp in length and are distributed throughout 

eukaryotic genomes (Jagadeeswaran et. al. 1981, Rogers 1985).  Table 3.1 lists 

the two main classes of SINE elements both originate from RNA Polymerase III 

transcribed genes (reviewed by Okada 1991).  The first class is derived form the 

7SL RNA genes, the RNA component of the signal recognition particle  (Krayev 

& Kramerov 1980, Ullu & Tschudi 1984). The human SINE element is termed 

Alu, for an internal Alu I restriction site (Houck et al., 1979).  In mouse, the 

analogous SINE element is termed B1 (Krayev et. al., 1980).  B1 elements are 

preferred methylation targets, found in GC rich regions, and have a high 

correlation with orthologous areas of the human genome.  

 Mice have a second class of SINE elements which do not have human 

orthologs: B2, ID, and B4 SINE elements comprise this class.  These elements 

have been found in three rodent species: Chinese hamster (Haynes & Jelinek 

1981), rat (den Dunnen & Schoenmakers 1987) and mouse (Kramerov et.al., 

1979, Krayev et.al., 1982). These SINE elements are derived from tRNAs 

(Daniels & Deininger 1985, Sakamoto & Okada 1985, Ohshima et.al.,1993).  

The 5’ end of these SINEs have approximately 70% similarity with a tRNALys or 

a tRNAGly (usually 70 bp).  The remaining 100-200 bp do not share sequence 

homology between the families.  The 3’ ends have an A-rich motif (reviewed by 

Serdobova & Kramerov 1997).   Mice have on the order of 1 X 105 copies of B2 

elements within their genomes (Serdobova & Kramerov 1998). 

Alu Repeats and Gene Disruption 

 SINE elements may be stable within a genome, but are sources of 
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mutation if they transpose into a gene. The best characterized SINE element is 

the Alu element as most SINE research to date has primarily focused on 

diseases or syndromes generated by human Alus.  Alu elements are ubiquitous 

in the human genome; they account for over ten percept of our total sequence 

(reviewed by Deininger & Batzer 1999). They can be found in every location 

within a gene except where the insertion disrupts essential gene function.  De 

novo Alu insertions into the genome commonly result in negative outcomes 

(Batzer & Deininger 2002).  An overview of molecular mechanisms disrupted by 

SINE insertions is listed in Table 3.2. Genes may be truncated, alternatively 

spliced, re-arranged or suppressed (reviewed by Häsler & Strub 2006). Human 

mRNA sequence may have full or partial Alu elements sequence in coding 

regions of mRNA (Nekrutenko et. al., 2001), through a process termed 

exonization, where intronic sequences are recruited into the coding regions.  A 

recent study found the majority of Alu-containing exons within coding regions 

caused premature termination signal or frame shift, with probable loss of gene 

function (Sorek et. al., 2002). In addition to changing the coding portion of a 

gene, an Alu element may decrease translation.  Several studies have found an 

Alu element within the 5’UTR to decrease mRNA translation efficiency, possibly 

through a more stable mRNA secondary structure (Landry et. al., 2001, Sobczak 

& Krzyzosiak 2002).   

B2 SINE Elements and Gene Disruption 

 The contribution of SINEs to alterations in gene function has not been as 

well characterized in mouse. It is estimated that 37.5% of the mouse genome is 
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transposable elements (SINEs, LINEs, and other interspersed repeat elements) 

and 1% is specifically SINE elements (Deininger 1989). The B2 SINE element 

has been extensively studied, with publications listing its effects of transcription, 

alternative splicing and evolution (reviewed by Brosius 1999). Table 3.3 lists 

consequences of SINE activity in the mouse genome.  

 A recent study by Chernova et. al., 2008, described the effect of a B2 SINE 

insertion in the 5’UTR of Aminolevulinic acid synthase 1 (Alas1). When 

comparing microarray expression profiles of C57BL/6J and DBA2/J mice, Alas1 

level was markedly lower in DBA2/J. Q-PCR confirmed a greater than five-fold 

difference between the strains, and sequence for Alas1 revealed the B2 

insertion. To test how a 5’UTR B2 SINE insertion repressed transcription, two 

constructs with and without the B2 insertion were made and analyzed for 

promoter activity using a luciferase reporting system. Additionally, 10 deletion 

mutants were made across the B2 sequence in the DBA construct. Promoter 

activity in the cellular system showed the entire B2 SINE element was required 

to inhibit transcription.  Among several theories, the authors postulate the local 

RNA structures of B2 insertion may be more stable, and thus, less able to be 

transcribed. While these few papers describe the deleterious effects of SINE 

insertions, other papers show how SINE insertions have provided a source of 

evolutionary diversity (reviewed by Goodier & Kazazian 2008). 

Proposed mechanism of the B2 SINE element in Comt1 

 Predicted B2 consensus RNA secondary structure folds into an ordered 

RNA structure (Bladon et.al., 1990).  The t-RNA derived region folds into a 
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specific structure, which suggests a role in function and stability (Kass et.al., 

1997).  Indeed, previous reports of B2 SINE insertions show reduced gene 

expression when the insertion is located in the 5’UTR (Chernova et. al., 2008), 

into intronic sequence (Zheng et.al., 1992), or near promoter sequence (Arranz 

et.al., 1994).  A 3’UTR insertion of a B2 SINE element has been shown to cause 

alternative mRNA species by early polyadenylation in five studies (Kress et.al., 

1984, Maichele et.al., 1993, Michel et.al.,1997, Ryskov et.al., 1984, Rothkopf, 

et.al., 1986, Maichele et.al., 1993).   

SINE elements as Natural Phylogenetic Markers 

  Both human and mouse SINEs depend on other mobile elements for 

propagation as they lack sequence for protein.  Long interspersed repeat 

elements (LINES) encode reverse transcriptase and provide factors for SINE 

element amplification and mobilization.  However, once a SINE element appears 

at a location within the genome, there is no mechanism to remove the SINE 

from the new location (Deininger 1989).  In other words, while a SINE element 

can be copied and inserted in a new genomic location, it cannot not mobilize 

itself out of this position on the chromosome.  A SINE insertion in an ancestral 

species will be present in all subsequent species.    Additionally, there have 

been no reported cases of identical tRNA-related SINE families present in 

unrelated taxa. Therefore, SINE insertions can be used as molecular 

phylogenetic markers for tracing ancestry.  

 It is estimated that a new SINE family remains in a genome for more than 

107 years (Serdobova & Kramerov 1997).   To find the consensus sequence of a 



!!!!!!! -&!

SINE family, sequences from many family members are aligned to find the most 

common nucleotide at each position (Deininger 1989).  The more ancient the 

SINE element is believed to be, the more SNPs accumulate in what is 

considered the consensus sequence from the ancestral sequence (Roy et. al. , 

1998). 

Estimation of the age of the B2 insertion into Comt1 

  The origin of new insertions of B2 elements are from currently “active” B2 

master gene(s) (Roy et. al., 1998).  The average sequence divergence between 

copies of a B2 element (within a species) is around 10% (Rogers et. al., 1985).   

A recent B2 element insertion was discovered in intron 4 of the murine #-

glucuronidase gene (Gus-s) in the strain BALB/cByJ (Roy et. al., 1998).   

Compared to the 182 bp consensus sequence in the B2 element of the mouse 

subfamily II, the intronic B2 in Gus-s contained three SNPs and one nucleotide 

deletion, for a sequence divergence of approximately 2%.  Since this Gus-s B2 

element insertion only occurs in the BALB/cByJ strain, it is likely that the 

mutation occurred recently when the initial laboratory colony was formed.   

MATERIALS AND METHODS 

Animal Husbandry 

Details may be found on page 33. 

Inbred Strains 

Details may be found on page 34. 

B2 Analysis   

Details on original identification of B2 element found on page 40.  The original 
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analysis generated by www.repeatmasker.org classified the insertion as a B2-B4 

SINE element.  To determine what portion of the insertion was B4, we registered 

with www.girinst.org for access to B2 and B4 consensus sequence. Using the 

Sequencher program (Build 3768, Gene Codes Corporation, Ann Arbor, MI, 

USA) we were able to align B2 and B4 consensus sequence to a reference 

transcript for Comt1 in C57BL/6J, NM1111063.  Further characterization was 

conducted by Professor PL Deininger, who kindly provided details through 

correspondence. 

Gene Expression Studies  

Primer sequences are listed in Table 3.4.  For semi-quantitative PCR, the 

reaction was halted at 30 cycles with no extention.   qPCR was conducted by 

the SYBR green method in accordance with manufactor’s recommendation 

(FastStart SYBR Green Master Mix, Cat. 04673484001, Roche).  

COMT ELISA assay 

Details may be found on page 40. 

Enzymatic analysis of brain lysates 

Sample preparation.  

Details may be found on page 42. 

Enzymatic assay.  

Details may be found on page 42. 

Cell Constructs  

Comt1B2i and Comt1+  

Details may be found on page 43. 
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Transient transfection of Comt1 cDNA clones.  

Details may be found on page 44. 

Analysis of cell constructs  

Sample preparation and enzymatic assay.  

Details may be found on page 44.  

Transfection efficiency 

The amount of control plasmid for transfection activity (SEAP, Clonetech, 

Mountain View, CA, USA) was kept at 0.2 µg per well of a 35 mm 6-well plate.  

Parallel transfection with the pCMV-Sport6 lacking an insert was conducted for 

each experiment.  Cell lysates collected 24 hours post-transfection. COMT1 

activity was normalized for transfection efficiency by measuring amount of SEAP 

transcript in q-PCR.   

Western blot 

 This assay has been described previously (Nackley et.al., 2006). 

Centrifuged lysates, after normalization for protein content using a BCA assay, 

were run on a 10% Novex Tris-Glycine gels (Invitrogen) and transferred to 

nitrocellulose membranes (Whatman, Florham Oak, NJ, USA). Blots were 

blocked with 5% non-fat milk made in 1X PBST for 1 hour at room temperature, 

and then incubated with COMT polyclonal 1° antibody, (Chemicon, Temecula, 

CA, USA)  (1:10,000; USA) overnight at 4° C, washed with PBST 3X and then 

incubated with Goat Anti-Rabbit IgG HRP polyclonal 2° antibody (1:5000) for 1 

hr at room temperature. Blots then were washed with PBST for 10 minutes at 

room temperature, exposed to chemiluminescence reagent (Pierce, Milwaukee, 
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WI, USA), and developed. 

Assessment of mRNA degradation rates 

 This assay has been described previously (Nackley et.al., 2006, Nackley & 

Diatchenko 2010).  A time course of mRNA degradation was measured after 

actinomyocin D (act D; Sigma) was added to media.  Twenty-four hours after 

transfections of Comt1B2i, Comt1+, and SEAP plasmids, cells were treated with 

actD (10µg/ml) to stop transcription and collected 0,2,4,and 8 hours post 

treatment.  RNA was isolated using Trizol and processed for real time PCR.   

RESULTS 

Analysis of the B2 insertion  

The Comt1B2i insertion has seven SNPs, approximately 4% sequence 

divergence (Figure 3.1).  Uncharacteristically, the sequence for this particular B2 

insertion is found in one other place in C57BL6/J genome, on Chromosome 5 

(Deininger, personal communication).   The B2 sequence in Comt1B2i has 

several polyadenylation signals, including the most common and strongest motif 

in mouse, AATAAA (Tian et.al., 2010) (Figure 3.2 a).  The more distal 

polyadenylation signal is ATTAAA, although it should be noted that this signal is 

also 5’ of the B2 insertion. 

Array reveals bimodal expression patterns in coding versus 3’UTR probes 

In Chapter 2, we discussed the significant effect of both Comt1 haplotype 

and sex for all brain regions examined.  Overall, Comt1B2i strains had higher 

Comt1 gene expression, and males had higher expression than females (Segall 

et.al., 2010), which is consistent with suppression of COMT expression by 
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estrogen (Xie et.al., 1999).  The Affymetrix array has two coding probes for 

Comt1, 1449183_at in the coding regions, and 1418701_at in the 3’UTR region  

(Figure 3.3).  All seven regions of brain in both male and female showed lower 

signal for Comt1B2i  strains in the 3’UTR probe set 1418701_at, while expression 

was usually approximately 20%  higher in the coding regions (Figure 3.4 a-g).  

Hypothalamus in the male survey was an outlier as four strains appear to have 

“switched” expression profiles: A/J, C57BL/6J, SJL/J, and C3H/HeJ (Figure 3.4 

c).  In nucleus accumbens and pituitary, female Comt1B2i strains do not show a 

statistically significant effect of the B2 insert in the coding region (Figure 3.4 d, e 

and Table 2.1).  Females had less Comt1 gene expression than males in all 

surveyed regions except for striatum (Table 2.1).  When all brain regions are 

considered, a Z-score by sex and by haplotype, showed males to have 

significantly more Comt1 gene expression than females, and the Comt1B2i 

haplotype to have more RNA than Comt1+ in both males and females (Figure 

3.5).  

Validation of array data by qPCR, protein ELISA and enzymatic assay 

 To validate results from the microarray data we developed a TaqMAN 

assay. The positions of the TaqMAN probe are in Figure 3.3.  qPCR of pooled 

prefrontal cortex, pooled striatum/nucleus accumbens, and pooled 

hippocampus/hypothalamus/amygdala tissue from two male animals per strain 

replicated array findings that showed the strains of the Comt1B2i  haplotype to 

have more Comt1 transcript in the coding region (Figure 3.6a: P<0.01 and 

P<0.001).  Resultant from increased mRNA presence we expected to find an 
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increase in COMT1 protein levels and developed an ELISA assay to ascertain 

protein levels.  However, the Comt1+ strains statistically showed more protein in 

the cortex and Nucleus Accumbens/Striatum tissue (P<0.05) and no difference 

in the Hippocampus/Hypothalamus/Amygdala tissue (Figure 3.6b).   

The same samples used in the protein ELISA were used in an enzymatic 

assay (Figure 3.6c). In the enzymatic assay, the strains of the Comt1B2i  

haplotype samples had significantly more enzymatic activity in cortex and 

Nucleus Accumbens/ striatum regions (P<0.01, P<0,001).  The enzymatic assay 

was not conducted on Hippocampus/Hypothalamus/Amygdala samples.   

The Comt1B2i  transcript leads to more protein expression in cell construct 

experiments 

 Preliminary western blot results show that COMT1 protein is made in the 

cell construct experiment and apparently more protein in the Comt1B2i construct 

as compared to Comt1+ construct (Figure 3.6d).  Endogenous COMT from rat is 

seen faintly in the two controls of empty vector and no DNA added.  

Semi-quantitative and quantitative analysis of transcript 

Semi-quantitative and quantitative PCR of cell construct and tissue 

samples showed a pattern of expression similar but exaggerated of array 

findings.    PCR product surrounding the B2 insertion had extremely low product 

from cDNA made from tissue of animals of the Comt1B2i haplotype (Figure 3.7a). 

In contrast, PCR from tissue of animals of the Comt1+ haplotype had robust 

amplification from liver and kidney cDNA, and in cortex, a faint amplification 

compared to no amplification in Comt1B2i cortex.  Transfection experiments also 
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showed less PCR product surrounding the B2 insertion in the Comt1B2i  

transfections, although two products are made, with the longer and expected 

product more abundant (Fig.3.7, arrow).  PCR in the region within the 

1418701_at array probe had similar results, with weak amplification of Comt1 

cDNA in samples of the Comt1B2i  haplotype (Figure 3.7b). 

qPCR with SYBR-green had mixed results, possibly due to variability in 

developmental age in the mice of the Comt1 haplotypes. (Figure 3.7c).  qPCR 

amplimer which spans several exons in the coding region was present at 20 

times the amount of transcript in this region in Comt1B2i cortex compared to 

Comt1+ cortex.  Unexpectedly, a Comt1B2i liver had only half the amount of 

qPCR transcript of coding region compared to a Comt1+ liver.  Cells transfected 

with Comt1B2i construct showed twice the amount of qPCR transcript in the 

coding region in comparison to Comt1+ cell construct transfection.   

 To confirm the Comt1B2i transcript included B2 sequence, the qPCR 

primers had the forward primer 5’ of the insert and the reverse primer within the 

B2 insert. Comt1B2i cortex and liver and Comt1B2i expression construct had 

abundantly more qPCR product when the internal primer was within the B2 

element.  As B2 elements are abundantly expressed throughout the genome, we 

were not sure if the reverse primer would be quenched by other B2 elements, 

which are present in cDNA from liver or cortex. qPCR which surrounds the B2 

insertion (same primers as in Figure 3.7a) showed again very little product is 

made in Comt1B2i cortex and liver through the B2 element.  The transfection 

experiment showed roughly a 75% reduction in signal for Comt1B2i cell construct 
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in qPCR, which surrounds the B2 insertion in comparison with the wild type 

construct.  

The Comt1B2i  transcript is more stable. 

In chapter two, cell construct experiments of both haplotypes showed the  

Comt1B2i  construct to have greater enzymatic activity.  In order to identify how 

the construct has greater activity, transcript stability experiments were 

conducted with actinomyocin D, an inhibitor of transcription.  Transfections on 

separate days showed the Comt1B2i transcript to be more stable than the 

Comt1+ transcript as measured by qPCR in the coding region, Figure 3.8.  

DISCUSSION 

De novo insertions of repeat elements into the human genome commonly 

result in negative outcomes (Batzer & Deininger 2002).  The contribution of 

repeat elements to alterations in gene function has not been as well 

characterized in mouse. From our review of the literature, the B2 insertion into 

Comt1 is the first description of a repeat element increasing gene function in 

mouse.  In other organisms, we were not able to find any comparable examples 

of repeat elements increasing gene function.  Therefore, we believe the B2 

insertion into the 3’UTR of Comt1 is the first example of a repeat element 

increasing gene function in any organism.   

Additionally, the B2 insertion in Comt1 is unusual in another regard: 

Chromosome 5 contains the sequence for this particular B2 insertion in the 

C57BL6/J genome (Deininger, personal communication). Therefore, either one 

B2 insertion gave rise to the other B2 insertion or they both arose from another 
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common source in the population (Deininger, personal communication).  The B2 

element in Comt1 is also the first time a perfect match in B2 sequence has been 

found in two regions of the genome, and warrants further characterization for the 

study of B2 elements (Deininger, personal communication).   

From our data, the strains of the B2 insertion had significantly less protein 

in cortex and striatum/nucleus accumbens tissue, but a recent report by Li et.al. 

found the short isoform associated with increased protein expression relative to 

the longer ancestral isoforms in several brain regions (Li et.al., 2010).  It may be 

possible that our ELISA was not able to detect small changes in protein 

abundance. We did find greater protein expression in cell transfection 

experiments  (see Future Experiments, Chapter 6). 

Semiquantitiative and qPCR results support our hypothesis that the B2 

element causes an early polyadenylation signal.  From various tissues of the 

Comt1B2i haplotype, very little transcript is made 3’ of the B2 insert in array, PCR 

and qPCR results.  What is interesting is the unusual high signal from PCR 

product within the B2 insertion.  The objective of the qPCR experiments within 

the B2 element was to find out if transcript was made into the B2 sequence, or if 

the B2 sequence was not generated.  The cortex and liver samples presumably 

have an abundance of B2 transcript in cDNA, so it would be expected that the 

reverse primer would have been quenched by annealing to other transcripts. 

However, there is more than a hundred fold difference compared to the wild type 

Comt1.  In the cell transfection experiments, the only mouse B2 sequence is 

from cDNA made from the transfected vector, and the difference between 
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Comt1B2i and Comt1+ is nearly 5000 fold. When the reverse primer is 3’ of the 

B2 element, the Comt1B2i signal drops $75%.   Therefore, it is reasonable to 

speculate that the polyadenylation signal within the B2 element causes an early 

polyadenylation, and that very little transcript is made through the 

polyadenylation signal.  Because we did not obtain PCR product from control 

samples, which were DNAsed but not reverse transcribed, we should exclude 

possibility that this longer PCR product is derived from untranscribed vector 

itself. 

The translation from highly efficient CMV promoter may mask 

degradation rates of Comt1 isoforms, as transcript is made at an artificially 

inflated rate.  Therefore, we measured transcript degradation in a time course 

series in the presence of actinomyocin D (actD), a nonspecific inhibitor of 

transcription.  The rate of degradation in the coding region of Comt1B2i was less 

than Comt1+ in two separate experiments.  Two subsequent transfection 

experiments with actD over a longer time course (10 hours) have been 

conducted and will be quantified.  The maximal differences occurred at 6 and 8 

hours following actD treatment: $ 25% more mRNA remained for the Comt1B2i 

transcript, which corresponds with the amount of increased enzymatic activity in 

brain lysates from animals of the Comt1B2i  haplotype. 

 In conclusion, we have learned some facts and have some suggestions as 

to how the insertion of the B2 SINE element leads to greater enzymatic activity 

to the ancestral Comt1+ transcript.  From our cell construct experiment and the 

results by Li et.al., 2010, more protein is made by the Comt1B2i transcript.  We 
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have demonstrated the Comt1B2i transcript is more stable in actD experiments.  

Very little transcript is produced 3’ of the B2 insertion in tissue and construct 

experiments. It may be the region 3’ of the B2 insertion has an important 

regulatory element, and an early polyadenylation signal removes the regulatory 

sequence that promote RNA degradation.   

 A B1 SINE insertion is in this region (Figure 3.2).  It is tempting to 

speculate if the B1 element is involved in regulation through miRNA.  The 

corresponding SINE element to B1 is termed Alu in humans and has been 

implicated in transcript degradation.  A recent bioinformatic study of nearly 30 

human miRNAs show high complementarity to a specific site within conserved 

Alu elements in 3’UTR (Smalheiser et.al., 2006).  We do not know if miRNAs 

exist for B1 elements in mouse. The molecular mechanism for the stability of 

Comt1B2i will be explored in future experiments, detailed in Chapter 6.  

 

 

Notes: This chapter will the basis of our next manuscript.  Further experiments 

will be conducted in the Laboratory of Luda Diatchenko.  

 

 

 

 

 

 



!!!!!!! ./(!

References 

Arranz, V., Kress, M. & Ernoult-Lange, M. (1994) The gene encoding the MOK-2 
zinc-finger protein: characterization of its promoter and negative 
regulation by mouse Alu type-2 repetitive elements. Gene, 149, 293-298. 

 
Batzer, M.A. & Deininger, P.L. (2002) Alu repeats and human genomic diversity. 

Nat Rev Genet, 3, 370-379. 
 
Bladon, T.S., Fregeau, C.J. & McBurney, M.W. (1990) Synthesis and processing 

of small B2 transcripts in mouse embryonal carcinoma cells. Mol Cell 
Biol, 10, 4058-4067. 

 
Brosius, J. (1999) RNAs from all categories generate retrosequences that may 

be exapted as novel genes or regulatory elements. Gene, 238, 115-134. 
 
Chen, J.M., Masson, E., Macek, M., Jr., Raguenes, O., Piskackova, T., Fercot, 

B., Fila, L., Cooper, D.N., Audrezet, M.P. & Ferec, C. (2008) Detection of 
two Alu insertions in the CFTR gene. J Cyst Fibros, 7, 37-43. 

 
Chernova, T., Higginson, F.M., Davies, R. & Smith, A.G. (2008) B2 SINE 

retrotransposon causes polymorphic expression of mouse 5-
aminolevulinic acid synthase 1 gene. Biochem Biophys Res Commun, 
377, 515-520. 

 
Clark, R.M., Dalgliesh, G.L., Endres, D., Gomez, M., Taylor, J. & Bidichandani, 

S.I. (2004) Expansion of GAA triplet repeats in the human genome: 
unique origin of the FRDA mutation at the center of an Alu. Genomics, 
83, 373-383. 

 
Daniels, G.R. & Deininger, P.L. (1985) Integration site preferences of the Alu 

family and similar repetitive DNA sequences. Nucleic Acids Res, 13, 
8939-8954. 

 
Deininger, P.L. (1989) SINEs: Short Interspersed Repeat Elements in Higher 

Eucaryotes. In Howe, D.E.B.M.M. (ed), Mobile DNA. American Society of 
Microbiolgy, Washington DC, pp. 619-636. 

 
Deininger, P.L. & Batzer, M.A. (1999) Alu repeats and human disease. Mol 

Genet Metab, 67, 183-193. 
 
den Dunnen, J.T. & Schoenmakers, J.G. (1987) Consensus sequences of the 

Rattus norvegicus B1- and B2 repeats. Nucleic Acids Res, 15, 2772. 
 
Diatchenko, L., Nackley, A.G., Slade, G.D., Bhalang, K., Belfer, I., Max, M.B., 

Goldman, D. & Maixner, W. (2006) Catechol-O-methyltransferase gene 



!!!!!!! ./)!

polymorphisms are associated with multiple pain-evoking stimuli. Pain, 
125, 216-224. 

 
Dussault, A.A. & Pouliot, M. (2006) Rapid and simple comparison of messenger 

RNA levels using real-time PCR. Biol Proced Online, 8, 1-10. 
 
Goodier, J.L. & Kazazian, H.H., Jr. (2008) Retrotransposons revisited: the 

restraint and rehabilitation of parasites. Cell, 135, 23-35. 
 
Hasler, J. & Strub, K. (2006) Alu elements as regulators of gene expression. 

Nucleic Acids Res, 34, 5491-5497. 
 
Haynes, S.R. & Jelinek, W.R. (1981) Low molecular weight RNAs transcribed in 

vitro by RNA polymerase III from Alu-type dispersed repeats in Chinese 
hamster DNA are also found in vivo. Proc Natl Acad Sci U S A, 78, 6130-
6134. 

 
Houck, C.M., Rinehart, F.P. & Schmid, C.W. (1979) A ubiquitous family of 

repeated DNA sequences in the human genome. J Mol Biol, 132, 289-
306. 

 
Jagadeeswaran, P., Forget, B.G. & Weissman, S.M. (1981) Short interspersed 

repetitive DNA elements in eucaryotes: transposable DNA elements 
generated by reverse transcription of RNA pol III transcripts? Cell, 26, 
141-142. 

 
Kass, D.H., Kim, J., Rao, A. & Deininger, P.L. (1997) Evolution of B2 repeats: 

the muroid explosion. Genetica, 99, 1-13. 
 
Kember, R.L., Fernandes, C., Tunbridge, E.M., Liu, L., Paya-Cano, J.L., 

Parsons, M.J. & Schalkwyk, L.C. (2010) A B2 SINE insertion in the Comt1 
gene (Comt1(B21)) results in an overexpressing, behavior modifying 
allele present in classical inbred mouse strains. Genes Brain Behav. 

 
Kim, J. & Deininger, P.L. (1996) Recent amplification of rat ID sequences. J Mol 

Biol, 261, 322-327. 
 
Knebelmann, B., Forestier, L., Drouot, L., Quinones, S., Chuet, C., Benessy, F., 

Saus, J. & Antignac, C. (1995) Splice-mediated insertion of an Alu 
sequence in the COL4A3 mRNA causing autosomal recessive Alport 
syndrome. Hum Mol Genet, 4, 675-679. 

 
Kramerov, D.A., Grigoryan, A.A., Ryskov, A.P. & Georgiev, G.P. (1979) Long 

double-stranded sequences (dsRNA-B) of nuclear pre-mRNA consist of a 
few highly abundant classes of sequences: evidence from DNA cloning 
experiments. Nucleic Acids Res, 6, 697-713. 



!!!!!!! ./*!

 
Krayev, A.S., Kramerov, D.A., Skryabin, K.G., Ryskov, A.P., Bayev, A.A. & 

Georgiev, G.P. (1980) The nucleotide sequence of the ubiquitous 
repetitive DNA sequence B1 complementary to the most abundant class 
of mouse fold-back RNA. Nucleic Acids Res, 8, 1201-1215. 

 
Krayev, A.S., Markusheva, T.V., Kramerov, D.A., Ryskov, A.P., Skryabin, K.G., 

Bayev, A.A. & Georgiev, G.P. (1982) Ubiquitous transposon-like repeats 
B1 and B2 of the mouse genome: B2 sequencing. Nucleic Acids Res, 10, 
7461-7475. 

 
Kress, M., Barra, Y., Seidman, J.G., Khoury, G. & Jay, G. (1984) Functional 

insertion of an Alu type 2 (B2 SINE) repetitive sequence in murine class I 
genes. Science, 226, 974-977. 

 
Landry, J.R., Medstrand, P. & Mager, D.L. (2001) Repetitive elements in the 5' 

untranslated region of a human zinc-finger gene modulate transcription 
and translation efficiency. Genomics, 76, 110-116. 

 
Li, Z., Mulligan, M.K., Wang, X., Miles. M., Lu, L., Williams, R.W. (2010) A 

Transposon in Comt Generates mRNA Variants and Causes Widespread 
Expression and Behavioral Differences among Mice. PLOS One, 5, 1-11. 

 
Maichele, A.J., Farwell, N.J. & Chamberlain, J.S. (1993) A B2 repeat insertion 

generates alternate structures of the mouse muscle gamma-
phosphorylase kinase gene. Genomics, 16, 139-149. 

 
Markert, M.L., Hutton, J.J., Wiginton, D.A., States, J.C. & Kaufman, R.E. (1988) 

Adenosine deaminase (ADA) deficiency due to deletion of the ADA gene 
promoter and first exon by homologous recombination between two Alu 
elements. J Clin Invest, 81, 1323-1327. 

 
Michel, D., Chatelain, G., Mauduit, C., Benahmed, M. & Brun, G. (1997) Recent 

evolutionary acquisition of alternative pre-mRNA splicing and 3' 
processing regulations induced by intronic B2 SINE insertion. Nucleic 
Acids Res, 25, 3228-3234. 

 
Mustajoki, S., Ahola, H., Mustajoki, P. & Kauppinen, R. (1999) Insertion of Alu 

element responsible for acute intermittent porphyria. Hum Mutat, 13, 431-
438. 

 
Myerowitz, R. & Hogikyan, N.D. (1987) A deletion involving Alu sequences in the 

beta-hexosaminidase alpha-chain gene of French Canadians with Tay-
Sachs disease. J Biol Chem, 262, 15396-15399. 

 
Nackley, A.G., Shabalina, S.A., Tchivileva, I.E., Satterfield, K., Korchynskyi, O., 



!!!!!!! ./+!

Makarov, S.S., Maixner, W. & Diatchenko, L. (2006) Human catechol-O-
methyltransferase haplotypes modulate protein expression by altering 
mRNA secondary structure. Science, 314, 1930-1933. 

 
Nekrutenko, A. & Li, W.H. (2001) Transposable elements are found in a large 

number of human protein-coding genes. Trends Genet, 17, 619-621. 
 
Ohshima, K., Koishi, R., Matsuo, M. & Okada, N. (1993) Several short 

interspersed repetitive elements (SINEs) in distant species may have 
originated from a common ancestral retrovirus: characterization of a squid 
SINE and a possible mechanism for generation of tRNA-derived 
retroposons. Proc Natl Acad Sci U S A, 90, 6260-6264. 

 
Okada, N. (1991) SINEs. Curr Opin Genet Dev, 1, 498-504. 
 
Rogers, J.H. (1985) The origin and evolution of retroposons. Int Rev Cytol, 93, 

187-279. 
 
Roman, A.C., Benitez, D.A., Carvajal-Gonzalez, J.M. & Fernandez-Salguero, 

P.M. (2008) Genome-wide B1 retrotransposon binds the transcription 
factors dioxin receptor and Slug and regulates gene expression in vivo. 
Proc Natl Acad Sci U S A, 105, 1632-1637. 

 
Rothkopf, G.S., Telakowski-Hopkins, C.A., Stotish, R.L. & Pickett, C.B. (1986) 

Multiplicity of glutathione S-transferase genes in the rat and association 
with a type 2 Alu repetitive element. Biochemistry, 25, 993-1002. 

 
Roy, A.M., Gong, C., Kass, D.H. & Deininger, P.L. (1998) Recent B2 element 

insertions in the mouse genome. DNA Seq, 8, 343-348. 
 
Ryskov, A.P., Ivanov, P.L., Kramerov, D.A. & Georgiev, G.P. (1984) [Universal 

orientation and 3'-terminal localization of repeated sequences in the B2 
family of mRNA]. Mol Biol (Mosk), 18, 92-103. 

 
Sakamoto, K. & Okada, N. (1985) Rodent type 2 Alu family, rat identifier 

sequence, rabbit C family, and bovine or goat 73-bp repeat may have 
evolved from tRNA genes. J Mol Evol, 22, 134-140. 

 
Schichman, S.A., Caligiuri, M.A., Strout, M.P., Carter, S.L., Gu, Y., Canaani, E., 

Bloomfield, C.D. & Croce, C.M. (1994) ALL-1 tandem duplication in acute 
myeloid leukemia with a normal karyotype involves homologous 
recombination between Alu elements. Cancer Res, 54, 4277-4280. 

 
Segall, S.N., AG; Diatchenko, L; Lariviere, W; Lu, X; Marron, J; Grabowski-

Boase, L; Walker, J: Slade, G; Bailey, JS; Gauthier, J; Steffy, BM; 
Maynard, T; Tarantino, L; Wiltshire, T (2010) Comt1 Genotype and 



!!!!!!! ./,!

Expression Predicts Anxiety and Nociceptive Sensitivity in Inbred Strains 
of Mice. Genes, Brain and Behavior. 

 
Serdobova, I.M. & Kramerov, D.A. (1998) Short retroposons of the B2 

superfamily: evolution and application for the study of rodent phylogeny. J 
Mol Evol, 46, 202-214. 

 
Smalheiser, N.R. & Torvik, V.I. (2006) Alu elements within human mRNAs are 

probable microRNA targets. Trends Genet, 22, 532-536. 
 
Smit , A.F. (2005) B2_Mm1t - a subfamily of SINEs from mouse. 
 
So, C.W., Ma, Z.G., Price, C.M., Dong, S., Chen, S.J., Gu, L.J., So, C.K., 

Wiedemann, L.M. & Chan, L.C. (1997) MLL self fusion mediated by Alu 
repeat homologous recombination and prognosis of AML-M4/M5 
subtypes. Cancer Res, 57, 117-122. 

 
Sobczak, K. & Krzyzosiak, W.J. (2002) Structural determinants of BRCA1 

translational regulation. J Biol Chem, 277, 17349-17358. 
 
Sorek, R., Ast, G. & Graur, D. (2002) Alu-containing exons are alternatively 

spliced. Genome Res, 12, 1060-1067. 
 
Strout, M.P., Marcucci, G., Bloomfield, C.D. & Caligiuri, M.A. (1998) The partial 

tandem duplication of ALL1 (MLL) is consistently generated by Alu-
mediated homologous recombination in acute myeloid leukemia. Proc 
Natl Acad Sci U S A, 95, 2390-2395. 

 
Swensen, J., Hoffman, M., Skolnick, M.H. & Neuhausen, S.L. (1997) 

Identification of a 14 kb deletion involving the promoter region of BRCA1 
in a breast cancer family. Hum Mol Genet, 6, 1513-1517. 

 
Teugels, E., De Brakeleer, S., Goelen, G., Lissens, W., Sermijn, E. & De Greve, 

J. (2005) De novo Alu element insertions targeted to a sequence 
common to the BRCA1 and BRCA2 genes. Hum Mutat, 26, 284. 

 
Tian, B., Pan, Z. & Lee, J.Y. (2007) Widespread mRNA polyadenylation events 

in introns indicate dynamic interplay between polyadenylation and 
splicing. Genome Res, 17, 156-165. 

 
Ullu, E. & Tschudi, C. (1984) Alu sequences are processed 7SL RNA genes. 

Nature, 312, 171-172. 
 
Xie, T., Ho, S.L. & Ramsden, D. (1999) Characterization and implications of 

estrogenic down-regulation of human catechol-O-methyltransferase gene 
transcription. Mol Pharmacol, 56, 31-38. 



!!!!!!! ./-!

 
Zheng, J.H., Natsuume-Sakai, S., Takahashi, M. & Nonaka, M. (1992) Insertion 

of the B2 sequence into intron 13 is the only defect of the H-2k C4 gene 
which causes low C4 production. Nucleic Acids Res, 20, 4975-4979. 



!!!!!!! ../!

Figure 3.1 Consensus Mus Musculus B2 SINE family sequence and the B2 

insertion in the 3’UTR of Comt1.  SNPs are denoted by highlight and star above. 

B2 SINE sequence (top) is from a direct submission to Repbase (Smit 2005). 

Reference (bottom) is from C57BL/6J transcript NM_1111063.  
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Figure 3.2 Identification of polyadenylation signal in Comt1B2i.  a. Full mRNA 

sequence of Comt1B2 from C57BL6/J, NM_0001111063 transcript. B2 SINE 

insertion is highlighted in pink.  b. Sequence of polyadenylation hexamers and 

frequency found in the mouse genome .!

(a) 
 
TGGGTATATAAAGGCTCAGGCCCAGTGTGCATGCAGAGTGACCACATGAGCACTCTGCCTTTTGGAAATAGGTGAC
ATGAGTGTGTGGGCTGTAGAGCCTCAGCTTTGAGGTCCCTCTCTTGAGACTATCCTGAAGCAGCCCTCACACCTAG
GGCTTGGACCTGCCTCCTCTAAAGACTCTTCCACAAGCCTTCCCAACCTAGATCAGCACTCTACCCTGGAAGGAACT
ATGCTGTTGGCTGCTGTCTCATTGGGTCTCCTGTTGCTGGCCTTCCTCCTGCTCCTGCGACACCTAGGCTGGGGCT
TGGTGGCTATTGGTTGGTTTGAGTTCGTGCAGCAGCCGGTCCACAACCTGCTCATGGGTGGCACAAAGGAGCAGC
GCATCCTGCGCCATGTGCAGCAACACGCAAAGCCTGGAGACCCCCAGAGCGTCCTGGAGGCCATTGATACCTACT
GCTCAGAGAAGGAGTGGGCCATGAACGTGGGTGACGCAAAAGGCCAAATCATGGATGCAGTGATTCGGGAGTACA
GGCCCTCGCTGGTGCTGGAGCTAGGAGCTTATTGTGGCTACTCAGCCGTGCGAATGGCCCGCCTGCTGCCACCTG
GAGCCAGGCTTCTCACCATGGAGATTAACCCTGACTACGCTGCCATCACCCAGCAAATGCTGGACTTCGCAGGCCT
ACAGGACAAAGTTTCCATCCTCATCGGGGCATCCCAGGACCTTATCCCCCAGCTGAAGAAGAAGTACGATGTGGAC
ACATTAGACATGGTCTTTCTTGACCACTGGAAAGACCGCTACCTTCCAGACACACTTCTCCTGGAGGAATGTGGC
CTGCTGCGCAAGGGGACGGTGCTCCTAGCTGACAATGTCATTGTCCCGGGAACCCCTGACTTCCTGGCGTATGTG
AGGGGGAGCAGCAGCTTCGAGTGCACACACTACAGCTCATACCTGGAGTACATGAAAGTGGTGGACGGCTTGGA
GAAGGCAGTCTACCAGGGTCCAGGCAGCAGCCCCGTGAAGTCCTGACCACTCAGCCTGATGAGCTTCCGTCCCAG
CTCCCTTCTGCACGATGACACACACTCACTCTGACCCCCTCTATGCTTCTGGGGCCTTTCCTCAGGGCCTGTGGCT
CCAGATTGTCATACACTGGCACATTAAAGGTAGTGAGCTCACCATGCAAACCACTACAATACCCCTGGAAAACACCT
GTGCATCAAAGGCTGCATTGAGGCCAGAGATGCAGTAGATCACAGTGCGTGCCTGGCACGCAAAACCCCTCACGG
TGAATCCTCTGCACCCAAGAACAAAAAGGGAGATTTAAAAAAAAAAAAAAAGGGGGACTGGTGAGATGGCTCAGTG
GGTAAGAGCACCCGACTGCTCTTCTGAAGGTCCAGAGTTCAAATCCCAGCAACCACATGGTGGCTCACAACCATCC
GTAACAAGATCTGATGCCCTCTTCTGGTGTGTCTGAAGACAGCTACAGTGTATTTACATATAATAAATAAATAAATCT
TTTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATCAAAGCAGGTGTCATCCTGATG
GCCTCACTAACTGGAAGAGGAGATTTTTTACAAAGTTTCAGTGTGGGATCCCTAGGCACTGCCATCACTCAGCAA
GAAGTCAGGAAACTGAACATATCCAGATACCATTCGGCTGTCACCAATGGCAGCAACGACTCAGACGGTACTGT
CACCAGCAACTCATACCACATTTCATCTTAAGAATGAGTCACAAACTTTTCAGGTATGATGGCGCATGCCTTTAATC
CCAGAATCCAGGAGGCAGAGGCAGATGGATCTGAGTTCTGTGCCAGCCTGGTCTACACAGTGAGTTCCAGGACAG
CCAGGGCTACATAGAAATACTTTGAAAAAAAAAGTCATAATCTCTTTTATATTATAAAAGAAATTAAAGATCTAAATAT
TTGGATATAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
 

1449183_at probe set  1418701_at probe set 
 
!
B2 SINE INSERTION, B1 SINE INSERTION (overlap with 1418701_at) 
 

(b)  AATAAA  59.16%            TATAAA   3.79%             TTTAAA   1.08% 
 
 
     ATTAAA  16.11%             AAGAAA  3.28%   
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Figure 3.3. cDNA structure of Comt1B2i illustrating exons, positions of B2 

insertion, Affymetrix and TaqMAN probe sets, diagnostic PCR primers and 

coding exons. 

 

 

 

 

 

 

 

Figure 3.4. (Following pages) Gene expression values for Comt1 in both 

coding and UTR regions in seven brain regions of all surveyed strains, male and 

female. Results are also characterized by the presence (red) or absence (blue) 

of the B2 SINE element in the 3’UTR of Comt1. a. amygdala, b. hippocampus, 

c. hypothalamus, d. nucleus accumbens, e. pituitary, f. prefrontal cortex, g. 

striatum. 
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Figure 3.4 
 
 
(a) Expression in coding region                  Expression 3’ of B2 element in  
        3’UTR region 
 
 

 
 
 
 

1449183_at probe set                                  1418701_at probe set 
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Figure 3.4 
 
 
(b)       Expression in coding region             Expression 3’ of B2 element in       
              3’UTR region 
 
 
 
 
 
 
      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    

 
 
 
 
 
 
 
 
 
 
 

 
   1449183_at probe set    1418701_at probe set 
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Figure 3.4 
 
 
(c) Expression in coding region                  Expression 3’ of B2 element in  
        3’UTR region 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

        
                 1449183_at probe set              1418701_at probe set 
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Figure 3.4 
 
 
(d)  Expression in coding region                           Expression 3’ of B2 element in                   
               3’UTR region 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 1449183_at probe set       1418701_at probe set 
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Figure 3.4 
 
 
(e)  Expression in coding region                           Expression 3’ of B2 element in                   
               3’UTR region 
 
 

 
 

      
 1449183_at probe set             1418701_at probe set 
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Figure 3.4 
 
 
(f)   Expression in coding region                           Expression 3’ of B2 element in                   
               3’UTR region 
 

 
 
 

 1449183_at probe set       1418701_at probe set 
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Figure 3.4 
 
 
(g)  Expression in coding region                           Expression 3’ of B2 element in                   
               3’UTR region 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     1449183_at probe set                              1418701_at probe set 
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Figure 3.5 Z-score of Comt1 mRNA in seven brain regions across all surveyed 

strains.  The difference between Comt1B2i  and Comt1+ mRNA was significant, 

P<0.0001.  Males have significantly more Comt1 mRNA than females, 

P<0.0001.  Interaction between B2 SINE status and sex (P=0.0713) shows the 

difference between Comt1B2i  and Comt1+ were similar in both sexes. *** 

P<0.0001. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



!!!!!!! .%.!

Figure 3.6. Functional analysis of Comt1 variants.  Microarray gene expression 

results were validated using Taqman assays.  a. qPCR from RNA: 4 strains, 4 

male 10 week old animals per strain, for a total of 16 animals in this analysis. 

Each animal had a separate qPCR reaction, with three technical replicates.  

Data normalized to C3H/HeJ and then analyzed by 1-tailed unpaired t-test.  

**P<0.01, ***P<0.001, Comt1B2i more RNA in coding region.  

 
 
(a) 
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Figure 3.6 b. An ELISA assay was developed to assess COMT1 protein levels. 

COMT1 protein levels in cortex, nucleus accumbens/striatum, hippocampus/ 

hypothalamus/amygdala were measured for 10 week old male animals in 7 

strains. Tissue was pooled from 2 animals per strain. Error bars are standard 

deviation in eight technical replicates.  Two runs were preformed, and data 

normalized to C3H/HeJ and then analyzed by strain means in a 1-tailed 

unpaired t-test with unequal varience, *P<0.05,Comt1+ more protein.  c. 

Enzymatic activity of COMT1 protein was measured using a Normetanephrine 

ELISA assay.  Same samples as used in a, cortex and nucleus 

accumbens/striatum.  Error bars are standard deviation in five technical 

replicates.  One run was preformed, and data analyzed by strain means in a 1-

tailed unpaired t-test with unequal variance,  ***P<0.001, Comt1B2i  more 

enzymatic activity. d. Western blot of a transfection of cell constructs of both 

haplotypes.  
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Figure 3.6: b, c. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) (c) 

d  COMT1 Protein in cell 
transfection 



!!!!!!! .%(!

Figure 3.7 Analysis of Comt1B2i RNA abundance. Mock cDNA (no reverse 

transcriptase enzyme added) was run in all experiments. a. Semiquantitative 

PCR using which primers flanking B2 insertion (halted at 30 cycles) showed two 

products in the cell transfection of the Comt1B2i construct.  Very little product is 

produced in this region in tissue samples, while the PCR product without the B2 

element is robustly expressed. 
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Figure 3.7 b. Semiquantitative PCR using primers amplifying region within 

1418701_at probe set.  In strains of the B2 insertion, less PCR product is made 

3’ of the B2 insertion. cDNA was made from an individual animal per strain  from   

Hippocampus/Hypothalamus/Amygdala  tissue.  
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Figure 3.7 c. qPCR throughout the transcript showed variable amounts of 

coding transcript, a very high amount of transcript within the B2 insertion, and 

very low expression of transcript 3’ of the B2 insertion in cortex, liver and 

transfection samples in the Comt1B2i compared to Comt1+. Ratio is to ancestral 

Comt1+ tissue or construct, using the formula: fold increase = 2^
%%

CT (Dussault & 

Pouliot 2006). 

 

! ! ! !
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Figure 3.8 Transcript stability in actD assay. Two transfections on separate 

days of Comt1B2i and Comt1+ constructs had nearly identical degradation rates, 

as measured by Taqman probe Mm_ 514377 in the coding region.   

 

 

 

 

 

 

 

 



!!!!!!! .%,!

Table 3.1 SINE Repeat Elements in Human and Mouse 
 

 
Family 

Ancestral 
sequence 

Structure # bp 
Component 
of Genome 

Publications 

       

B1 
7SL 
RNA 
gene 

monomers 
with internal 
29bp 
duplication  

#140 2.20% 

Krayev et. 
al.,1980,         
Ullu & 
Tschudi, 
1984 

      

B2 
tRNALys 
or 
tRNAGly 

5' homology 
with 
tRNALys or 
tRNAGly 

#160 2.00% 
Krayev et. 
al., 1982 

      

ID  tRNAAla 

75bp core 
region, 10-
40bp poly A 
tail 

#90 0.10% 
Kim & 
Deininger, 
1996 

      

M
ou

se
 

B4 
ID and 
B1 

fusion of ID 
element at 
5' end and 
B1 elements 
at 3' end 

#150 1.80% 

Serdobova 
& 
Kramerov,
1998 

       

H
um

an
 

Alu 
7SL 
RNA 
gene 

dimer, 
center A-
rich region 
flanked by 
short intact 
direct 
repeats 

#300 10.10% 
Houck et. 
al., 1979 
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Table 3.4: Primers for semi-quantitative and quantitative PCR 

Primer Pair  Sequence 

   

PCR in coding region F 5’ ATGGGTGGCACAAAGGAGCA 3’ 

 R 5’ GAGGCCATCAGGATGACACC 3’ 

   

PCR spanning B2 
insertion 

F 5’ TTTCCTCAGGGCCTGTGGCT 3’ 

 R 5’ GAGGCCATCAGGATGACACC 3’ 

   

Reverse primer  
Within B2 insertion 

F 5’ TTTCCTCAGGGCCTGTGGCT 3’ 

 R 5’ TCAGAAGAGCAGTCGGGTGC 3’ 

   

PCR product 3’ of 
B2 insertion 

F 5’ CTCACTAACTGGAAGAGGAGATTTTT 3’ 

 R 5’ CATTCTTAAGATGAAATGTGGTATGA 3’ 

 

!
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CHAPTER 4:  A MORE DETAILED EXAMINATION OF THE EFFECT OF THE 

B2 INSERTION ON BEHAVIOR, GENE EXPRESSION AND NOCICEPTION 

 

Introduction  

There is a large behavioral data set measured in inbred strains of mice 

which was analyzed for correlations of Comt1 mRNA levels and behavioral 

measurements which was not included in our published paper.  We also 

analyzed the effect of the Comt1B2i haplotype for RNA and protein expression of 

other genes.  These data are presented here. 

Correlations of Comt1 RNA Levels and Behavior 

 As polymorphisms in COMT is well known to be involved in human 

anxiety studies, we initially looked in our RNA expression data across inbred 

strains and saw a bimodal distribution in one of the Affymetrix Comt1 probe sets, 

at_1418701, Figure 3.3.  We then used the publicly available SNPster algorithm 

(http://snpster.gnf.org), which associates phenotype to genotype across a 

diverse panel of >70 inbred stains.  Our phenotype was the expression of the 

at_1418701 probe set. Our goal was to find a region of the genome where the 

expression of this probe set correlated with haplotype groups within a gene. The 

SNPster program revealed the probe set for Comt1 “mapped back” to itself 

surrounding the Comt1 locus, which meant the gene was cis-regulated, Figure 
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2.1.  We then considered it likely that a polymorphism within or near the gene 

was responsible for the difference in expression.  Before we identified the 

source of the polymorphism, we first needed to correlate the difference in 

expression with a behavioral trait.  

The initial approach taken was to take pair-wise correlations of mRNA 

levels and behavior measurements across the strains and look for P values 

which passed Bonferroni correction.   We defined the Bonferroni correction as 

P<0.00069: a P<0.05 divided by eleven behavioral measurements multiplied by 

seven brain regions.  None of our P values reached significance with Bonferroni 

correction, although three of our behaviors in male mice did correlate with a P 

<0.05 (Table 4.1).  

After the B2 insertion was discovered, we then tried to correlate behavior 

by haplotype, and did not consider RNA levels.  In this case, the Bonferroni 

correction was P<0.00455 (0.05 divided by eleven behavioral measurements).   

We used a one-tailed t-test with unequal variances in Microsoft Excel to 

calculate significance.  With this approach, we still had no significant behaviors 

with a Bonferroni correction (Table 4.2).  If individual animals are considered, we 

had numerous positive correlations, although this result may be biased as we 

usually had more Comt1B2i animals, and t-tests with individual animals give 

inflated P values (Professor William Lariviere, personal correspondence).   

The analysis conducted with the Directed Projection Permutation 

(DiProPerm) also used individual animal scores and divided the strains by 

haplotype.  We looked to see if the number of strains or the number of animals 
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was significantly biased in favor of the Comt1B2i haplotype.  Two cohorts or 

groups of animals were used in the original behavioral data gathering.  We 

looked by the number of individual animals: by sex, haplotype and group, and 

then by the numbers of strains: by sex, haplotype and group for a bias (Figure 

4.1).  We saw an increase in group 2 of the number of animal behavioral 

measurements for male and female Comt1B2i haplotype.  The numbers of 

animals per strain used in the DiProPerm analysis are listed in Figure 4.2.   We 

were however, fortunate that the strains were chosen before the haplotypes 

were known and the ratios between the haplotypes were nearly equal.    

The DiProPerm analysis did not consider strain means and analyzed all 

of the behavioral data per group at once. We were not sure what significance we 

would see if we looked at individual tests or combinations of tests. Therefore, we 

looked at the subset of the four most important tests which demonstrated a 

behavioral difference between the two haplotypes and ran the DiProPerm 

analysis on strain means and individual animal scores for individual tests and for 

combinations of tests (Table 4.3).  As we saw when we analyzed strain means 

by haplotype in the students’ t-test, we had few tests with P < 0.05. 

What does this mean for the B2 insertion into Comt1?  As we discussed 

in Chapter 2, several behavioral assays reached significance for both individuals 

and for combined tests of strain means.  There were several behaviors which 

were close to significance, but with 29 to 32 strains per assay, significant P 

values were difficult to obtain.  However, one assay was always significant for 

both males and females when individual animals, strain means, or DiProPerm 
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was used in analysis: t4, or the Light/Dark box, % Time Spent in Light.  We turn 

now to effects of the B2 insertion less open to interpretation, the effect of 

haplotype group on protein and gene expression. 

Comt1 Haplotype and Biomarkers Expressed in Brain 

 Part of our overall strategy to find genes involved in anxiety and 

depression was to quantify biomarkers associated with anxious or depressed 

phenotypes across the inbred strains.  Brain regions were dissected as 

described in Chapter 2 methods: Development of COMT ELISA assay.  One 

animal was used per strain.  Brain samples were sent to a commercial company 

for quantification of protein levels in a sandwich ELISA (Zeptosens, Basel, 

Switzerland).   

Three biomarkers were examined for correlation to Comt1 haplotype: 

Norepinephrine Transporter (NET), Interleukin-6 (IL-6), and Tumor necrosis 

factor alpha (TNF-!).  We were curious if the high COMT1 activity would affect 

the amount of transporter protein expressed, as theoretically there should be 

less norepinephrine to transport from the presynaptic cell to the post synaptic 

cell.  We did see significantly less NET protein by Comt1B2i haplotype in all brain 

regions we examined (Figure 4.3).  We could conclude the reason NET protein 

is expressed at a lower level is because there is no need for the cell to have 

numerous transporters for low levels of catecholamines (and presumably 

Comt1B2i strains have low catecholamine levels).  

We also saw significantly low levels of two other biomarkers, IL-6 and 

TNF-!, which may also be due to decreased levels of epinephrine and 
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norepinephrine.  Epinephrine and norepinephrine activate #2 adrenergic 

receptors (#2ARs) (Dohlman et.al., 1991). Activation of #2ARs up-regulates 

protein levels of IL-6 in macrophages (with agonist salmeterol, Tan et.al., 2007), 

cardiac fibroblasts (Yin et.al., 2006),  adipose tissue (Mohamed-Ali et.al., 2001), 

pituicytes (Christensen et.al., 1999), skeletal muscle and myoblasts (Frost et.al., 

2004).  If the strains of the Comt1B2i haplotype have less epinephrine and 

norepinephrine, then we should see less IL-6 production. In our pooled brain 

regions, we saw decreased strain mean levels of IL-6 in Comt1B2i haplotype, but 

significance only in the Hippocampus/Hypothalamus/Amygdala  region (Figure 

4.3b).    

Decreased norepinephrine and epinephrine should also decrease protein 

levels of TNF-!.  Norepinephrine inhibits TNF-! and IL-6 production in whole 

blood and THP-1 cells (van der Poll et.al. 1994, Severn et.al., 1992). #2AR 

agonists salmeterol and albuterol also reduce TNF-!  production in THP-1 cells 

(Sekut et.al., 1995). Additionally, high levels of TNF-! correlate with pain in 

temporomandibular joint pain (Shafer et.al., 1994), arthritis (Tak et.al., 1997) and 

inflammatory neuropathies (Lindenlaub & Sommer 2003). We see TNF-! 

significantly down regulated in the Nucleus Accumbens/Striatum regions (Figure 

4.3 c), although strain means were slightly higher in the two other regions.  We 

could conclude the reason TNF-! and IL-6 protein is expressed at a lower level 

in strains of the Comt1B2i haplotype is because these animals have higher 

baseline pain thresholds, and lower baseline levels of norepinephrine and 

epinephrine. 
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Correlations of Comt1 Haplotype and Pain Response 

 An examination of pain data collected in inbred mouse strains (Lariviere 

et.al.,  2002, Mogil et.al.,1999 a, b) and deposited in the Jackson Laboratory 

Phenome Database (http://www.jax.org/phenome) was conducted to determine 

if the absence of the B2 SINE insertion in inbred mice also influences pain 

sensitivity. Nociception data was uploaded from the Jax Phenome website 

(http://www.jax.org/phenome; Project: Mogil1, MPD:22). Five of the strains 

measured had the B2 SINE insertion: A/J, AKR/J, BALB/cJ, C57BL/6J, SM/J, 

and five of the strains did not: C3H/HeJ, C58/J, CBA/J, DBA/2J, and RIIIS/J.  

The data was organized into four types of nociceptive stimulus: chemical, 

mechanical, thermal, and neuropathic and multiple measures for each modality 

were available.  We tabulated strain means by Comt1 haplotype, per pain assay, 

Table 5.4.  The strains were divided by Comt1B2i and Comt1+ haplotype and 

analyzed by one-tailed student’s t-test on Microsoft Excel, per type of 

nociceptive stimulus.   

    In order to derive an overall pain response for each modality, the pain 

assay data for each individual strain was converted into a Z-score as follows: 

Individual strain z-scores were calculated using the formula  where  

= individual strain mean,  = group mean for all strains and  = standard 

deviation across strains. Individual strain z-scores were summed across each 

measure within a particular modality to generate an overall strain z-score. A t-

test of Z-scores by Comt1B2i and Comt1+ haplotype was conducted for each type 

of nociceptive stimulus.   
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The pain studies conducted by Mogil et.al., preceded the distinction of the 

129 sub strains. In 1999, the sub strains 129/SvJ and 129/SvJae were further 

divided into 17 sub strains (Festing et.al., 1999).  Some of the 129s have the B2 

SINE element, such as 129X1/SvJ and 129S1/SvImJ, while others do not, such 

as 129P3/J and 129/SvEvTac. In view of this ambiguity, the pain data for 129/J 

was not included for the computation of a Z-score in Table 5.4.  To be noted, 

when we included 129/J as a Comt1+ haplotype, the Z- score for chemical data 

still reached significance with Bonferroni correction, P<0.01.  When 129/J was 

included as a SINE haplotype, the significance with Bonferroni correction 

remained P<0.01. 

Although we did not see significance with pain modalities other than 

chemical induced pain, we looked for trends in the strain means.  We saw for 

chemical pain assays, the Comt1B2i strain means are less sensitive in the 

majority of assays (Figure 5.3a).  In thermal pain: Comt1B2i strain means are less 

sensitive in assays 1, 2, 3, 4, 7, 9 (Figure 5.3b). Comt1B2i strain means are 

slightly more sensitive in assay 8. No difference was observed in assays 5, 6.  

For mechanical pain, Comt1B2i strain means are less sensitive to tail pinch and 

slightly and (not significantly) more sensitive to von Frey filaments (Figure 4.4c). 

For neuropathic pain, Comt1B2i strain means are more sensitive in all assays, 

but the difference is also not significant (Figure 4.4d).   

Why do pain sensitivities switch between modalities? Could it be 

experimental error, or reflect the underlying biology of catecholamine mediated 

pain? 



!!!!!!! .&-!

In a recent Meeting of the American Pain Society, we discussed human 

LPS/HPS/APS haplotypes and neuropathic pain with colleagues. Our 

discussions led to a revelation about catecholamine signaling and pain in the 

spinal chord – a basic premise which has not been articulated in the literature 

before.  We present evidence for this fundamental feature of pain in vertebrate 

species in our next chapter. 
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Figure 4.2 Number of subjects by strain & haplotype for group 1 (a) and 2 (b).  
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Figure 4.3 ELISA of three biomarkers by pooled brain regions in 22 inbred 
strains. a. Prefrontal cortex b. Nucleus Accumbens and striatum c. 
Hippocampus, Hypothalamus and Amygdala. Significance determined using 
unmatched one-tailed unpaired t-test in Graph Pad Prism, version 5 for IBM. 

  

(a) 

 

 

 

 

 

 

(b)  

 

 

 

 

 

 

(c)
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Figure 4.4 Strain means of five Comt1B2i  and five Comt1+ haplotypes in assays 

of chemical-induced nociception, from http://www.jax.org/phenome; Project: 

Mogil1, MPD:22.  The  Comt1B2i  strains were less sensitive in all chemically 

induced assays. 

(a) 
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Figure 4.4 continued, (b) Sensitivity to noxious thermal stimulous. 
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Figure 4.4 continued  (c) Mechanical pain sensitivity in two assays (b)  

Neuropathic pain, Comt1B2i strain means are more sensitive in all assays. 

 (c) 

 

 

 

 

 

 

 

(d)
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Table 4.1 Correlations between Comt1 mRNA and behavioral assays. 

mRNA levels measured by Affymetrix coding probe, 1449183_at. 

 

Behavioral Assay Brain region Correlation 
Number 
of strains 

P value 

     

Forced Swim 
Test: Immobility 

Time 

Nucleus 
Accumbens 

0.6293 23 0.0013 

     
Elevated Plus 
Maze: Total 

Distance 
Traveled 

Striatum 0.5243 20 0.0176 

     
Elevated Plus 
Maze: Total 

Distance 
Traveled 

Amygdala 0.4494 24 0.0276 
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Table 4.2 Comparison of P values between strain means and individual 

animals for correlations between eleven behavioral measurements and 

Comt1 haplotype. 

 

 Individual Animals Strain Means 

 Female Male Female Male 

 B2i WT+ B2i WT+ B2i WT+ B2i WT+ 
Light/Dark Box: 
Total Distance 

Traveled  
**0.0071 **0.0045 0.3623 0.2057 

n 73 56 76 51 13 13 13 13 
 Light/Dark box: % 
Time Spent in Light ***<0.0001 ***<0.0001 *0.0259 *0.0340 

n 73 56 76 51 13 13 13 13 
Light/Dark Box: 

Total Transitions 
Between Sections 

***<0.0001 ***0.0065 **0.0028 0.1731 

n 74 56 76 51 13 13 13 13 
Elevated Plus Maze: 

Total Distance 
Traveled 

*0.0138 **0.0060 0.1412 0.0601 

n 71 47 67 46 13 12 13 12 
Elevated Plus Maze: 
Percent Time Spent 
in Open Quadrant 

**0.0046 *0.0291 0.1660 0.1732 

n 70 47 67 46 13 12 13 12 
Open Field: Total 
Distance Traveled *0.0338 0.1289 0.4532 0.4287 

n 219 212 204 218 15 18 17 15 
Open Field: Percent 

Center 0.2161 0.3130 0.2975 0.2569 

n 218 204 204 218 15 18 15 17 
Open Field: Total 
Rearing Events **0.0015 ***0.0001 0.1520 *0.0493 

n 218 212 204 219 15 18 15 17 
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Table 4.2 continued 

 Individual Animals Strain Means 

 Female Male Female Male 

 B2i WT+ B2i WT+ B2i WT+ B2i WT+ 

Forced Swim Test: 
Immobility Time *0.0370 0.0982 0.4052 0.2996 

n 74 52 76 51 13 12 13 13 
Percent Immobility 

the Last Four 
Minutes of the Tail 
Suspension Test 

*0.0277 0.4160 0.3886 0.4455 

n 176 179 192 199 15 18 15 16 
Change in 

temperature due 
to Stress Induced 

Hyperthermia 
0.3878 0.3331 0.2622 0.4920 

n 208 216 203 213 14 16 14 16 
total behavior data 

points per 
haplotype 

1474 1337 1445 1363 138 163 154 157 

total female or male 
data points  2811 2808 301 154 

total behavior data 
points 5619 455 
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Table 4.3 DiProPerm Analysis on Subsets of Behavioral Measurements. 

 
Empirical P 

Gaussian 
fit P 

Group 1 Female, all tests on strain mean data 0.251680 0.277610 
Group 1 Female, 4 samples for each strain, all tests 0.112510 0.104380 
Group 1 Female, 4 samples for each strain, t1 and t2 0.018269 0.003571 
Group 1 Female, 4 samples for each strain, t2 0.030188 0.013146 
   
Group 1 Female, 10 samples for each strain, all tests 0.000000 0.000000 
Group 1 Female, 10 samples for each strain, t1 and t2 0.000000 0.000000 
Group 1 Female, 10 samples for each strain, t2 0.000000 0.000000 
   
Group 1 Female, t1 & t2 on strain mean data 0.066228 0.043534 
Group 1 Female, t1 & t2 on raw data 0.000000 0.000000 
Group 1 Female, t2 on raw data 0.000000 0.000000 
Group 1 Female, t2 on strain mean data 0.127230 0.120290 
   
Group 1 Male, all tests on strain mean data 0.418560 0.044402 
Group 1 Male, t1 & t2 on strain mean data 0.082816 0.072761 
Group 1 Male, t1 & t2 on raw data 0.000000 0.000000 
Group 1 Male, t2 on strain mean data 0.082800 0.056038 
Group 1 Male, t2 on raw data 0.000000 0.000000 
   
Group 2 Female, strain means, all tests 0.179440 0.182430 
Group 2 Female, 4 samples for each strain, all tests 0.000000 0.000001 
Group 2 Female, strain mean, test 4 0.037162 0.014386 
Group 2 Female, 4 samples from each strain t4 0.000000 0.000000 
   
Group 2 Male, strain means, all tests 0.205160 0.231900 
Group 2 Male, 4 samples for each strain, all tests 0.001218 0.000131 
Group 2 Male, strain means, t4 0.040607 0.017757 
Group 2 Male, 4 samples for each strain, t4 0.000000 0.000000 
   
Group 1 & 2 Female strain mean t1, t2, t4 0.026917 0.011414 
Group 1 & 2 Female, 4 samples for each strain, t1, t2, t4 0.000000 0.000000 
Group 1 & 2 Male strain mean t1, t2, t4 0.025333 0.010524 
Group 1 & 2 Male, 4 samples for each strain, t1, t2, t4 0.000000 0.000000 
   
 t1 = Total Distance traveled in Open Field   
 t2 = Rearing in Open Field   
 t4 = % Time in Light Section of Dark/Light Box   
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Table 4.4 Correlations of Pain Measurements to Comt1 Haplotype. 1-tailed 

student’s t-test used to determine significance for individual assays and Z-

scores. 

 
  B2i S.E. WT+ S.E. P  Z score P  

sensitivity to formalin-
induced pain, early 

phase   [s]  
68.6 9.3 104.2 6.3 *0.02 

sensitivity to formalin-
induced pain, late 

phase   [s]  
221.7 69.7 351.8 39.9 0.15 

sensitivity to chemical-
induced pain, acetic 

acid   [n]  
36.8 3.7 66.6 12.2 0.07 

sensitivity to chemical-
induced pain, 

magnesium sulfate [n]  
3.0 0.7 10.5 1.9 *0.01 

hypersensitivity to 
chemical-induced pain, 

capsaicin   [s]  
61.4 13.2 106.7 18.4 0.08 

C
h
em

ic
al

  
p
ai

n
 

hypersensitivity to 
chemical-induced pain, 

bee-venom   [s]  
239.7 55.1 430.0 24.7 *0.02 

*** 
P<0.001 

        

latency of nociception 
to pinched tail [s] 24.3 9.2 11.7 2.7 0.25 

M
ec

h
an

ic
al

  
p
ai

n
 

median 50% foot 
withdrawal threshold, 
Von Frey test [mN] 

14.3 3.7 15.6 2.6 0.79 

P=0.4154 

        
autotomy (neuropathy) 
score (1-11) following 
hindlimb denervation 

[score] 

56.8 7.0 41.0 10.2 0.24 

percent hypersensitivity 
threshold to 

Hargreaves test 
following peripheral 

nerve injury (PNI) [%] 

27.2 7.1 23.2 11.1 0.77 

N
eu

ro
p
at

h
ic

 p
ai

n
 

median 50% foot 
withdrawal 

hypersensitivity 
threshold to von Frey 

test following 
peripheral nerve injury 

(PNI) [mN] 

4.7 3.7 5.0 2.6 0.90 

P=0.3397 
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Table 4.4 continued 

  
B2i S.E. WT+ S.E. P  Z score P  

latency of nociceptive 
response, (53°C) hot 

plate test [s] 
30.2 5.3 22.5 3.1 0.26 

latency of heated 
hindpaw withdrawal, 
Hargreaves test [s]    

14.9 2.6 9.5 0.4 0.10 

percent hypersensitivity 
threshold to bee 

venom-induced thermal 
hyperalgesia 

(ipsilateral), treated & 
heated hindpaw 
withdrawal [%] 

52.0 8.2 63.3 6.2 0.30 

percent hypersensitivity 
threshold to bee 

venom-induced thermal 
hyperalgesia 

(contralateral), 
untreated & heated 

hindpaw withdrawal [%]   

15.9 15.0 21.0 6.4 0.77 

percent hypersensitivity 
threshold to 

carrageenan-induced 
thermal hyperalgesia, 

treated & heated 
hindpaw withdrawal [%]  

26.8 14.2 20.5 8.5 0.72 

tail withdrawal following 
thermally (hot or cold)-
induced pain, 49°C [s]  

3.7 0.4 3.9 0.3 0.75 

tail withdrawal following 
thermally (hot or cold)-
induced pain,–15°C [s]  

13.3 2.6 10.7 1.5 0.43 

latency of tail 
withdrawal, 47°C heat 

stimulation [s]    
7.6 0.7 8.9 1.9 0.56 

T
h
er

m
al

 P
ai

n
 

percent hypersensitivity 
threshold to capsaicin-

induced thermal 
hyperalgesia, tail 

withdrawal at 47°C [%]    

8.8 7.1 14.1 15.0 0.76 

P=0.4514 
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CHAPTER 5: CONCLUSIONS AND FUTURE EXPERIMENTS 

 

Concluding Remarks 

Comt1 contributes to pain sensitivity and several behavioral phenotypes 

in inbred strains of mice.  Based on the data observed in humans and Comt1-/- 

(knock-out) animal studies, we would expect that Comt1B2i mice with increased 

enzymatic activity would exhibit decreased pain and anxiety.  While we 

correlated a decrease in pain with the Comt1B2 haplotype to several previously 

reported pain assays, we could not state with certainty from all of our anxiety 

assays that the increase in COMT1 activity decreases anxiety.  We have a few 

behavioral measurements which could tangentially support the hypothesis of 

decreased anxiety, such as the increased locomotor activity in the elevated plus 

maze and open field in Comt1B2i mice, and decreased rearing in Comt1B2i mice.    

 In a second publication which identified the mutation in Comt1, measures 

relating to anxiety, cognition and depression (elevated plus maze, light/dark box, 

open field) were not shown to be associated with the Comt1B2i allele (Kember 

et.al., 2010). To be noted, this study used Heterogeneous Stock (HS) mice, 

which were generated by recombination from eight progenitor stocks of inbred 

mice.           

 The Kember study did find a strong association in the novel object 
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exploration, which Comt1B2i/B2i and Comt1B2i/+ mice making fewer visits to a 

novel object, and spending less time exploring, than Comt1+/+ mice.  Our inbred 

strains were not assayed for the novel object assay.  In the Papaleo et.al., 2008 

study, the authors found that Comt1-/- and Comt1+/- mice spent less time 

exploring a novel object, and exhibited more stretching attempts towards the 

novel object without touching it.  This result is consistent with a hypothesis that 

decreased COMT1 enzymatic activity would cause an animal to be more 

anxious.  The Kember study did not specify stretching attempts, but they did 

speculate that the open field was an aversive environment and that the mice 

may not have fully habituated to the novel environment.  Although these results 

appear inconsistent, the mice used to measure the contribution of Comt1 were 

on different backgrounds and this makes interpretation of comparative results 

problematic.  Clearly, more sophisticated behavioral tests are in order to clarify 

the contribution of the Comt1B2i allele to this behavior. 

 What are other possible future directions of the Comt1B2i study? Mutants of 

a gene are often created to study gene function. The Comt1B2i allele is a natural 

occurring polymorphism that increases Comt1 function. The Comt1B2i mice can 

be compared to the transgenic Comt-Val Tg mice and the Comt1-/- null mice. 

One direction would be to use the mutation as a means to study the effects of 

how and where Comt1 actually works in the brain, as the studies of the Comt1-/- 

mice have begun to do.  The Comt1-/- mice are instrumental in determining the 

contribution of COMT1 enzymatic activity to catecholamine metabolism in a 

living organism, as demonstrated by the in vivo experiments of Huotari et.al., 



!!!!!!! .)*!

2002.  This study of Huotari used a bolus of the precursor to dopamine, 

levodopa, to flood the mouse with COMT1 substrate.  The important observation 

was that under basal conditions, the contribution of COMT1 is insignificant.  

When an acute challenge, such as levodopa loading, is imposed on COMT1 

deficient mice, there is a significant accumulation of dopamine.  Therefore, the 

authors conclude COMT1 to have an important role in the catecholaminergic 

system when catecholamines flood the system.  

 Why would this be important to keep in mind?  Stress is not a basal 

condition.  The effect of an increase or decrease in COMT1 enzymatic activity 

isn’t apparent until the animal is stressed.  Our study, as many others, examined 

gene expression in unstressed animals, which may be different from stressed 

animals.   

 How COMT metabolism has such a profound effect on behavior is in itself 

a mystery as COMT activity has not been shown in presynaptic neurons 

(Karhunen et.al., 1995, Lundstrom et.al., 1995, Mannisto & Kaakkola, 1999).   

As the catecholamine leaves the presynaptic cell, it is either returned to a 

storage vessel back in the presynaptic cell or metabolized by monoamine 

oxidase (uptake1) (Kopin 1985, Cass et.al., 1993).  COMT eliminates 

catecholamines in glial cells and postsynaptic dendritic spines (uptake2) (Huotari 

et.al., 2002).   

 The protein made from Comt1B2i transcript could quantified before and 

after a stressful event. This would tell you if more protein is being generated, or 

if it is post-translational modification.  RNA in situ probes of Comt1 run on pre- 
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and post-stressed brain sections in Comt1B2i and Comt1+ animals would tell you 

if the mutant Comt1B2i is now being expressed in a different cell type.  

Fluorescent markers can be added to the cell constructs of both Comt1B2i and 

Comt1+ alleles to determine where in the cell the protein resides, and if the 

mutation causes the protein to be sequestered in a cellular compartment.  As in 

the experiments of Overbye & Seglen, lysates of Comt1B2i brain can be 

compared to Comt1+ to see if the B2 mutation confers a difference in 

phosphorylation or N-acetylation.  

 The other future direction of the Comt1B2i study is the study of the B2 

repeat element: function and origin.  Insertions of repeat elements into the 

human genome commonly result in negative outcomes, as mutations cause a 

decrease in gene function (Batzer & Deininger 2002).  We put forward a few 

thoughts about the B2 insertion into a domesticated laboratory animal.  First, the 

B2 insertion is the first example we can find of a mutation where the end result is 

an increase in function.  Second, for a mouse not in a laboratory setting, we 

believe the recent B2 insertion would indeed result in a negative outcome i.e., 

being eaten by a predator.   The B2 insertion would not give the animal any 

survival advantage in the wild, as not only is basal catecholamine metabolism 

higher in Comt1B2i mice, but COMT1 activity increases after an anxiety inducing 

event in Comt1B2i mice (possibly negating the fight-or-flight response, 

Eleftheriou, 1975, Figure 1.6), the opposite of what a prey animal would need to 

survive in a natural environment.    

 Considering that the classic inbred strains display less “wild” behavior 
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(such as biting and escaping) than the more recently developed wild-derived 

strains (Wahlsten et.al., 2003), it is temping to speculate that these behavioral 

differences may be attributed to the Comt1B2i allele.  With what is known about 

repeat element insertions, the mutation happened a single time, and was 

somehow propagated throughout the classic inbred lines.    

 In previous years, inbred mice were not housed with lids on the cages, and 

current thought is that mice in all the classic inbred lines were bred together 

inadvertently by male mice roaming from cage to cage at night (Pardo-Manuel 

de Villena, 2010).  If the Comt1B2i allele caused a mouse to be slightly less 

anxious when handled, this would confer a selective advantage to the mouse, as 

a person would naturally select the easiest mouse to catch by hand to go into a 

breeding cage.  The breeding paradigm in the Collaborative Cross is computer 

generated to avoid this confounding effect of human selection of placid mice 

(Pardo-Manuel de Villena, 2010). 

 Classic laboratory mice have extremely low genetic variation in two-thirds 

of the genome (Yang et.al., 2007).  The Comt1B2i allele is in a region of 

essentially no genetic diversity, which provides a tantalizing, if unproven, theory 

that this region was selected for because of the selective advantage offered by 

the decrease in anxiety the Comt1B2i allele conferred.  

 

The following experiments to characterize the B2 SINE insertion are currently 

underway and will be completed as a Post-doctoral fellowship in the laboratory 

of Dr. Luda Diatchenko. 
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Future Experiments to Characterize the B2 SINE Insertion 

 

 Our goal is to determine which region of the transcript drives for 

increased stability. Is it that the transcript lacks B1 sequence, or does the 

presence of B2 sequence drive the increased stability of the RNA? We know the 

B2 insertion possesses a polyadenylation signal, which probably causes early 

polyadenylation, and very little transcript is made 3’ of the insertion.  

Does the B1 sequence have a regulatory role? We know mouse B1 

sequence is similar to human Alu sequence; they are both derived from the RNA 

component of the signal recognition particle, or 7SL RNA (Ullu & Tschudi 1984).  

As Xenopus is 87% and Drosophila 64% homologous to human 7SL RNA 

sequence, Alu sequence was likely not only present before the mammalian 

radiation (Ullu & Tschudi 1984), but may have molecular functions other than 

directing intercellular proteins.   

  Alu sequences are preferred methylation targets (Hellmann-Blumberg 

et.al., 1993, Kochanek et.al., 1993, Jeong & Lee 2005) and are not uniformly 

distributed across chromosomes (Grover et.al., 2003, 2004). B1 distribution 

correlates with Alu in orthologous areas of the human genome (Waterson et.al., 

2002).  Most enticing for a simple explanation of decreased stability in the full 

Comt1+ transcript, Alu sequence contains miRNA targets (Smalheiser et.al., 

2006).                                                                                      

We know: 1) The Comt1+ construct containing the B1 sequence is less stable 
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in actinomyocin D experiments, 

 2) B1 s   2) B1 sequence is not made in the Comt1B2i constructs.   

 

  In view of these findings, our first goal is to establish what role B1 

sequence has in the stability of the transcript. Here are three possible 

mechanisms, which may not be exclusive, for the increased stability of the 

mutant RNA  (Figure 5.1): 

 

1) The putative early polyadenylation signal and the absence of B1 

element is responsible for lower RNA stability. Remove the 

polyadenylation site.    

               

To test this hypothesis, we will use the QuickChange II XL Site-Directed 

Mutagenesis Kit (Stratagene, LaJolla, CA, USA) to remove the polyadenylation 

signal AATAAA from the transcript, making a construct we term Comt1B2i/nullpolyA 

(Fig.5.1, construct 1).  We can then transfect the mutant constructs into 

mammalian cell lines (such as PC12, HEK293, COS-1, BV-2, SK-N-Be (2) and 

THP-1) use RT-PCR to measure if the full transcript, containing both B1 and B2 

elements, is made in this case, and if its RNA stability and enzymatic activity are 

equivalent to those without B1 element. If we see that removing the putative 

polyadenylation signal has no effect, we can continue to experiment 3.   
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2. The B1 sequence (or sequence including or near B1) is necessary for 

transcript degradation. Cite directed mutagenesis of B1 sequence (or sequence 

including or near B1 sequence). 

 

Dr. Svetlana Shabalina was essential in analyzing human COMT HPS, 

LPS, and APS transcripts for stability in previous work (Nackley et.al. 2006).  Dr. 

Shabalina will analyze the 3’UTR of Comt1+ for RNA degradation motifs and 

RNA folding. 

If the first experiment shows that Comt1B2i/nullpolyA is essentially the same 

as the Comt1+ by activity and stability and the entire transcript is made, we can 

conclude that there is some region of the 3’UTR necessary for degradation.  In 

this case, we will find RNA degradation motifs in the B1 region of the 3’UTR, and 

use site directed mutagenesis to remove this motif.  This construct will be called 

Comt1B2i/nullpolyA/nullB1 (Fig.6.1, construct 2a).  

As the most elegant experiments use a double mutant to restore function, 

we will then attempt a to restore the secondary structure and stability in the 

3’UTR by designing a double mutant, Comt1B2i/nullpolyA/B1DM (Figure 5.1, construct 

2b).   

 

3) The B2 sequence makes a very strong secondary structure, which is 

why the Comt1B2i transcript is more stable, not because of absence of B1 

element. Cite directed mutagenesis of B2 secondary RNA structure. 

 



!!!!!!! .*%!

First, in collaboration with Dr. Shabalina we will build local secondary 

structure surrounding B2 region.  We then will find nucleotide(s) crucial to this 

RNA structure in the B2 region and use site directed mutagenesis to 

remove/modify these critical nucleotides to destroy the secondary structure.  

This construct will be called 3a) Comt1B2i/null2nd (Figure.6.1 construct 3a).  We 

then will transfect into mammalian cell lines as before and use RT-PCR to 

measure if the shorter transcript is still made, and if the ablated secondary 

structure of the B2 insertion is still causing an increase in stability, and if the 

enzymatic activity is still increased. If we see that the secondary structure really 

is crucial to increased transcript stability, we can prove this by making a double 

mutant, 3b) Comt1B2i/null2nd/dm, which then restores the secondary structure and 

stability (Figure 5.1, construct 3b) 

 

Future Protein Quantification: 

 We have not established that the B2 insertion causes more protein to be 

made in the Comt1B2i transcript, although other labs have reported this finding 

(Mulligan et.al. 2010).  We will quantify protein amounts in our cell transfect ion 

experiments by Western Blot and run control markers (#-actin) to establish 

equivalent protein loading amounts.  This will establish a logical and linear 

progression of increased RNA, increased protein, increased enzymatic activity, 

to a phenotype in animals of the Comt1B2i haplotype.  
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Future Experiments to Establish Dichotomous Role of Catecholamine 

Signaling in the Spinal Chord 

 

Proposed Mouse Experiments:   

Peripheral neuropathic injury, as measured 

by a Von Frey Filament (PNIVF), is a model of 

neuropathic pain. A principle component analysis 

plot showed an inverse correlation with this assay to 

assays of chemically induced nociception (Figure 

5.2).  Therefore, this assay may be ideal to test for 

opposing genotypic effects on neuropathic versus 

nociceptive pain.  Comt1 -/- and Comt Val-Tg mice mirror human studies of low 

COMT activity in regards to thermal pain perception. Neuropathic pain and 

spontaneous inflammatory pain have not been tested in these mice. Both the 

Comt1-/- and Tg mice in comparison to wild-type littermates will be tested in the 

PNIVF and inflammatory pain assays. Dr. Joseph Gogos (generated Comt1-/-) 

and Dr. Daniel Weinberger (generated Comt Val-Tg) have sent letters of 

confirmation that the mice are available for transfer to UNC-Chapel Hill. 

Expected Results of Animal Experimentation:  

The Comt1-/- mice should be less sensitive to the Von Frey filament assay 

in the neuropathic pain model and more sensitive in inflammatory assays, while 

the Tg mice should exhibit opposite sensitivities.   

Proposed Human Association Study: 

Figure 5.2 Principle Component 
Analysis Plot of Pain Modalities , 
from Segall et.al. 2010 
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Our hypothesis will be tested by examining the association of COMT 

haplotypes with clinical pain in four previously collected cohorts: three cohorts of 

neuropathic pain and one cohort of inflammatory pain.  Dr. Jennifer 

Haythornthwaite, Dr. Claudia Campbell and Dr. Inna Belfer have sent letters of 

confirmation that data are available for analysis by our group.  COMT haplotype 

associations with chemically induced inflammatory and neuropathic pain have 

not been published previously; this study will be done the first. 

Expected Results of Association Study:  

We expect the COMT functional haplotypes for high expression and 

activity (HPS) to be protective in a model of inflammatory pain. We expect to see 

a negative correlation for HPS haplotypes in neuropathic pain.  

In conclusion, establishing the directionality of COMT activity in different 

pain models is needed to translate basic molecular genetic findings into findings 

that have meaning in clinical setting.  If our hypothesis is correct, COMT 

genotype will be differentially predictive for inflammatory and neuropathic 

sensitivity, and will bring us closer to diagnostic marker and novel therapeutic 

targets for these complex human pain conditions.   
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Figure 5.1 Proposed cell constructs.  (a) Mutant Comt1B2i transcript compared 

to ancestral Comt1+ transcript. (b) Destroy the B2 sequence polyA signal.  Does 

construct 1 make the full-length transcript including the B1 sequence? Are these 

cell constructs now equivalent in RNA degradation, protein, and enzymatic 

activity? 

(a) 

 

 

 

 

 

 

 

 

 

 

 

 

(b) 
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Figure 5.1 (c) Destroy 20 structure in B1 sequence. Is construct 2a equivalent to 

the mutant Comt1B2i transcript? This would mean the B1 sequence is crucial to 

decreased stability, as B1 sequence is not made at high frequency in Comt1B2.  

Is construct 2b equivalent to Comt1+ transcript? This would confirm the 

importance of RNA secondary structure in the B1 sequence for RNA 

degradation. 

 

(C) 
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Figure 5.1 (d) Destroy 20  structure in B2 sequence. Is construct 3a equivalent 

to the ancestral Comt1+ transcript? This would mean the B2 secondary structure 

is crucial to increased RNA stability. Is construct 3b equivalent to Comt1B2i 

transcript? This would confirm the importance of RNA secondary structure in the 

B2 sequence to inhibit RNA degradation. 

(d) 

 

  

 


