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Abstract—Advancements  in  attacks  with physical
access  to  commodity  hardware  has  resulted  in  a
general consensus that, given physical access, all  of
the  data  on  a  machine  should  be  considered
compromised.  In  this  talk,  I  will  consider  existing
attacks  and  mitigations  and  propose  a  practical
system under which certain data security guarantees
can be made. Specifically, I propose a system which
attempts  to  protecting  encryption  keys  absolutely
against physical attackers and uses them to protect
both main memory and disk access.

I. INTRODUCTION

Over  the  past  many  years,  advancements  in
attacks allowing the exfiltration of data when given
physical access to the hardware of a machine have
progressed significantly faster than defences against
such attacks. The goal of this research is to address
the  problem not  by continuing the  cat-and-mouse
game of the past decade,  but instead by reducing
the  Trusted  Computing  Base  (TCB)  to  a  limited,
secureable device and ensure access to other parts
of  the  device  be  limited  in  their  ability  to  gain
access  to  useful  data.  Specifically,  by  private
encryption  keys  in  processor registers  where they
are inaccessible to anything but software running in
kernel mode, we can create a simple and very small
root  of trust.  I  then use this  to  encrypt  both disk
access  and  large  sections  of  main  memory.
Additionally,  this  research  attempts  to  remain
entirely practical for use on a daily basis, drawing
an  important  distinction  between  much  of  the
academic  discussion  of  securing  against  physical
attackers and this work.

I will begin in Section II by defining the threat
model used for my analysis. Section III by briefly
surveys  the  current  state  of  data  exfiltration  with
physical  access,  including  current  state-of-the-art
attacks which are relevant to this project, as well as
the  existing  mitigations  and  their  drawbacks.
Section  IV  covers  my  approach  in  more  detail,

proposing a model under which it can be analysed.
In Section V, I dive into the implementation details,
discussing  tradeoffs  which  were  made  at  varying
levels  to  balance  usability  and  security  of  the
system. Section VI analyses the practical use of the
system, evaluating both its security guarantees and
its practicality. I conclude the paper with a section
on possible future research areas as well as a final
conclusion.

II. THREAT MODEL

There are  many considerations  to  be taken into
account  when  discussing  exfiltration  of  data  and
compromise of a machine via physical attacks. This
paper primarily concerns itself with the ability of an
attacker to, using any reasonable methods, to gain
access to data stored on a machine. Keep in mind
that  a  sufficiently  motivated  and  well-funded
attacker  could use some hypothetical  hardware to
modify the CPU's registers or data during runtime,
however  the  overhead  cost  on  such  an  operation
against a running machine makes it expensive to the
point  of  impracticality  and possibly impossibility.
Thus, I instead chose to analyse existing published
research  on  data  exfiltration.  Additionally,  I
primarily focus on attacks other than side-channel
attacks as such attacks are both specific in nature (ie
in nearly all form cannot be used to exfiltrate any
data,  but  instead  focuses  on  eg  the  stealing  of
private  keys  by analysing  CPU operations)  and a
very  wide  range  and  large  number  of  attacks.
Though this limits the security guarantees that my
system can make, this is a limitation inherent to the
type of system which I am proposing.

In  order  to  adequately  discuss  the  methods  for
data exfiltration which have been published today,
we must clearly define what our attacker can and
cannot  do,  ie  our  threat  model.  As  a  simplifying
assumption,  we  begin  with  a  “trusted  loading”
phase. Namely, we begin with a boot phase during
which we have a trusted kernel loaded into memory



and a secure path from the keyboard to the kernel
(to enter an encryption passphrase). Note that this
phase must repeat itself when the system resumes
from  suspend  and  is  not  only  required  during
system  boot.  Though  this  is  a  rather  expensive
requirement (in the sense that it is hard to achieve
today with commodity hardware),  I  will  revisit  it
late  in  Section  III  as  well  as  as  a  possibility  for
future research. Additionally, we assume that some
hardware is potentially malicious during this phase,
specifically, we limit our trust to only the BIOS and
related basic systems. Though this sounds nice, in
practice  this  can  include  all  PCI-Express  devices
attached  to  the  machine  (see,  for  example,  [1]
which is able to load firmware-level code into the
BIOS using EFI extensions),  potentially including
externally-attached PCI Express devices. However,
we are generally able to leave many devices, such
as  USB  devices,  entirely  untrusted  and  the
extension of trust to PCI Express and many other
devices does not generally apply when the system
resumes from suspend, only during initial boot.

After the “trusted loading” phase of the system
completes,  we  assume  that  all  hardware  is
malicious  and  is  actively  attempting  to  assist  the
attacker  in exfiltrating data.  Specifically, after  the
“trusted loading” phase completes,  we reduce our
TCB to only include the  processor and must limit
the  access  of  peripheral  devices   (including  PCI-
Express  devices)  to  only  data  which  they  should
have access to.

III. BRIEF SURVEY ON THE STATE OF HARDWARE

COMPROMISE AND ITS IMPACT ON MY SYSTEM

Because of a large body of research amassed over
the past decade,  security common sense generally
dictates that if an attacker has physical access to a
machine,  there  is  nothing  that  can  be  done  to
protect  the  data  stored  on  and  the  behaviour  of
running programs on that machine. In this section, I
analyse this claim and step through a selection of
the  various  defences  and  attacks  which  have
appeared over time.

A. First steps in protecting data

When attempting to protect the data on a machine
from a physical attacker, the first step is usually full
disk  encryption,  which  does  not  allow  any

unencrypted  data  from  ever  reaching  physical
nonvolatile  memory.  In  recent  years,  full  disk
encryption has become both incredibly performant
(with the overhead to encrypt and decry data stored
on disk being far less than the overhead required for
disk reads/writes) and incredibly popular (with all
mainstream operating systems having support for it
“baked-in”, often with incredibly simple user-facing
Graphical  User Interfaces,  or GUIs).  However, in
step with the rise in the use of full disk encryption,
attackers have made significant strides in defeating
it. Specifically, because the encryption keys used to
encrypt and decrypt data on the drive are stored in
main  memory,  attacks  which  allow  the  reading
and/or  writing  of  system  memory  are  incredibly
successful. Specifically, both cold-boot attacks and
DMA-based  attack  schemes  have  proven  very
successful and often quite easy to perform.

B. DMA-Based Attacks

Many modern  peripheral  devices  require  direct
memory  access  (DMA) to  communicate  with  the
CPU  in  order  to  increase  efficiency.  In  these
systems,  devices,  such  as  graphics  cards  and
network interface cards, are able to read and write
arbitrarily  to  main  memory  and  are  then  able  to
trigger interrupts on the processor to notify it that
new data  has been read or written.  Under normal
operation, such a device will only read or write to
memory allocated to to it by the kernel. However,
malicious DMA devices have been proposed many
times in various formats over the years. Originally,
much  research  focused  on  the  use  of  FireWire
(IEEE 1394) for its DMA capability and status as an
external  device,  making  exploitation  without  the
need to install a device internal to a computer easy
[2]. There was then much research into the use of
similar DMA attacks by PCI-Express devices, often
by  exploiting  a  vulnerable  device  and  installing
persistent  malware  on it  such that  the device  can
provide  persistent  exploitation  of  the  host  system
[3] by modifying the running kernel or other code
present in main memory. Also note that more recent
hardware  interfaces,  such  as  ThunderBolt,  have
exposed a host to DMA-based attacks via external
devices  as  they  expose  a  PCI-Express  interface
externally  to  an  attacker.  As  a  generic  line  of
defence  against  against  DMA-based  exploitation,



modern  commodity  x86  hardware  often  includes
I/OMMU capability. This device performs a similar
function  to  the  virtual  memory  translation
operations  performed  for  user-space  applications,
but  applies  to  DMA  access  instead.  A properly
configured  kernel  and  device  driver  will  set  the
DMA translation tables for each device such that it
is only able to access the areas of memory allocated
to it, and such that any access outside of those areas
is  rejected  by  the  I/OMMU  hardware.  Note  that
many kernels do not well support proper I/OMMU
configuration [4] and there have been many attacks
targeting the kernel to trick it into misconfiguration
of  the  I/OMMU  [5] or  attack  errors  in  the
configuration of the I/OMMU as a result of bugs in
the kernel or device drivers.

Instead of attempting to prevent DMA attacks by
creating a new system of defence, my work instead
builds  on  existing  I/OMMU  work,  strongly
encouraging  the  user  to  enable  existing  security
features  which  are  often  disabled  by  default.  For
example, the I/OMMU features of x86 hardware are
often disabled by default in Linux, which generates
clearly  worded  warnings  for  users  during  the
initialization  of  the  system  under  my  work.
Additionally,  as  a  part  of  my  work,  I  have
thoroughly  studied  existing  research  in  DMA
defence  on  commodity  x86  hardware  and  either
provided  the  user  with  warnings  if  they  are
vulnerable  to  known  exploits.  Specifically,  by
encouraging  the  user  to  initialize  the  kernel  boot
using  Intel  Trusted  Execution  Technology  (TXT)
the user is protected against attacks which exploit
DMA during early boot (ie before the I/OMMU is
configured) to hide their presence from the kernel,
preventing them from being placed under I/OMMU
protection [5].

C. The ColdBoot Attack

The  ColdBoot  attack  [6],  published  in  2008,
works  by  using  the  property  of  modern  DRAM
chips  that  retain  their  charge  for  seconds  after
power is lost (ie during a system shutdown). Thus,
when a system is shut down, an attacker can read
the  majority  of  contents  of  main  memory  for
several seconds before it fades. Additionally, if the
memory is frozen before the system is shut down,
its  contents  remains  readable  significantly  longer,

hence the name. Though it has other uses for data
exfiltration  (potentially  recovering the memory of
running applications at the time of shutdown), this
attack  captured popular  attention  as  a  method for
drive-encryption  key  recovery  and  the  most
attention has been paid to it as such. The ColdBoot
paper also discussed the possibility of recovering an
encryption  key  by  searching  memory  for  the
structure  of  AES and  other  encryption  keys  after
they  have  undergone  key  expansion.  Using  this
method  allows  an  attacker  to  efficiently  search
memory  without  needing  to  fully  interpret  its
contents as well as recover from some errors in key
recovery. Additionally, note that even if some parts
of  an  encryption  key  has  faded  and  is  not
recoverable,  any  remaining  parts  may  help  to
decrease the search space for a brute force approach
significantly.

One  of  the  proposed  solutions  to  storing
encryption keys such that a ColdBoot attack can not
recover keys is to store them in processor registers,
outside  the  reach  of  main  memory-stealing
techniques.  One particular  implementation  of  this
idea  is  TRESOR  [7].  There  are  a  few  sets  of
registers which are available in x86 which may be
potential key storage locations (they must be largely
unused and be accessible only to the kernel, ie not
accessible  to  applications  running  in  user  mode).
TRESOR suggested the use of the debug registers
present in x86 as they offer a total of 256 bits of key
storage  space  in  registers  which  are  used  largely
only  by  debugging  applications  and  for  which
debugging  applications  nearly  always  have
software-only alternatives to (for example, a 4-line
patch to GDB will force it to always use software
breakpoints instead of hardware ones, avoiding the
debug  registers).  Though  this  approach  largely
solves the issue of an attacker  using ColdBoot to
steal encryption keys, it has several flaws in other
areas.  Specifically,  an  attacker  exploiting  and
DMA-based  attack  with  write  access  to  system
memory  may  rewrite  part  of  the  kernel  code  to
simply  copy  the  encryption  keys  from  debug
registers  into  main  memory, allowing  them to  be
read  out  using  DMA  or  a  ColdBoot  attack,  as
shown by the TRESOR-HUNT [8] paper published
a year later. Additionally, note that TRESOR does
not solve the issue of an attacker gaining access to



any  other  data  stored  in  memory,  including
application  memory  and  disk  cache,  including
caches of decrypted copies of files.

D. Notes on Types of Targets and Additional 
Vulnerabilities

It  is  important  to  note that  physical  attacks  are
generally  only  applicable  with  certain  hardware
present. For example, exploiting a host using DMA
may be more difficult if there are no DMA-capable
busses  available  externally  and  access  to  the
machine's  motherboard  directly  is  impossible  (ie
locked, case-open-detection enabled, etc). Thus, the
type of exploitation you are facing is important to
consider. As noted above, Thunderbolt hardware is
DMA-capable  as  it  exposes  the  PCI-Express
interface.  However,  Thunderbolt  is  far  more
exploitable  as  it  is  not  only  exposed  externally
without  an  attacker  needing  to  install  an  internal
PCI-Express device, but also supports hotplugging
on more operating systems, resulting in an attacker
not  being  required  to  reboot  the  machine  before
exploitation. Additionally, in many modern mobile
computers,  physical  space  within  the  device  is
incredibly limited,  limiting access for attackers to
install malicious PCI-Express devices. However, in
a  desktop,  workstation,  or  server  environment,
installing a malicious PCI-Express device becomes
very possible  as most  users do not check for the
presence of unknown devices on each system start.

An  additional  issue  with  mobile,  and  often
workstation,  computing  is  the  need  to  load  the
system  kernel  from an  unencrypted  device,  often
susceptible  to  modification  by  an  “evil-maid”
attacker.  This  issue  necessitates  my  “trusted-
loading”  phase,  and  is  both  incredibly  easy  to
exploit and difficult to detect. Note that this issue is
largely not present on server and other long-running
systems are there is little need to reload the kernel
after  boot  but  very  rarely.  A  common  defence
against  such  attacks  is  the  use  of  SecureBoot  to
prevent  the booting of a  kernel  other  than a pre-
programmed one. However, note that there is little
preventing  an  “evil-maid”  from  simply  replacing
the  TPM/motherboard/entire  computer  which  has
the  trusted  kernel  programmed  in  it  with  an
identical one which has no such limitation.

In  addition  to  the  lack  of  need  to  repeat  the
“trusted-loading” phase, servers have a potentially
different threat model due to their  storing of data
for  multiple  users.  For  a  server  to  be  considered
secure,  the  users  who  store  their  data  on  it  may
want  some  kind  of  assurance  that  not  only  a
physical attacker with no connection to the system
administrator  can  steal  their  data,  but  also  a
physical  attack  by  a  rogue  system  administrator
should as well. 

IV. APPROACH

In order to analyse the security of the proposed
system, I will begin by introducing a model for the
security of various data-storage locations. 

Fig. 1.  The hierarchy of data security used to analyse the data
an attacker can access

At the lowest level of data security and highest
total capacity (see Fig. 1) we have the disk. Because
it is nonvolatile memory, an attacker with physical
access to a machine can read the disk's contents at
any  time  by  simply  removing  the  drive  and
plugging  it  into  one  of  their  own systems.  If  its
contents are unencrypted, this allows the attacker to
gain access to any private data stored on it. Directly
above the disk is main memory. Although it is not
technically  nonvolatile,  ColdBoot  attacks  place  it
somewhere  between  nonvolatile  and  completely
volatile  memory. In  addition  to  an  attacker  being
able to read the contents of memory after shutdown
via a ColdBoot attack,  an attacker  can potentially
read  much  of  main  memory  using  DMA-based
attacks. Thus, its security against data being read or
even  modified  is  fairly  low.  Additionally,  main
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memory  is  fairly  large  and  generally  stores
significant  amounts  of  disk  cache,  making  it  an
ideal target for the stealing of private data.

Above  disk  and  memory  comes  the  CPU's
internal  memory  cache  as  well  as  its  registers.
Unlike main  memory, the CPU's  cache is  cleared
upon system restart (it is even cleared in ACPI S1
sleep),  making  it  truly  volatile  memory.
Additionally, neither CPU cache nor CPU registers
are available to an attacker unless they are able to
run  software  directly  on  the  machine,  and  CPU
registers of other applications are only readable by
the application which set them or the kernel, which
is in our TCB. Thus,  it  is  our goal to reduce our
private data storage as much as possible to be only
in  CPU  Registers  and  CPU  cache.  Note  that  no
peripherals  are  in  this  hierarchy  as  they  are  all
assumed  to  be  either  compromised  or  entirely
malicious.

The  first  step  to  protecting  ourselves  from
physical attackers is the creation of a secure TCB
which  can  be  used  to  store  encryption  keys  to
protect the less secure areas of data storage in our
model. Though this is possible by entering a trusted,
measured  environment  each  time  we  wish  to
perform a secure operation, because we anticipate
regularly  using  this  TCB to  encrypt  and  decrypt
data, doing this would be prohibitively expensive.
Instead in order to create this TCB, we rely on the
secure loading of a trusted kernel and our ability to
protect  the  kernel  against  malicious  modification.
Thus  we  are  required  to  properly  configure  the
I/OMMU  to  protect  against  malicious  devices
which might modify the running kernel to perform
any  action  which  the  attacker  wishes,  including
divulge secrets or other confidential  data.  Though
this is rather simple in statement, it turns out to be
rather  complicated  in  practice,  requiring  several
existing solutions be used in combination to protect
against  various  attack  scenarios.  Additionally,  we
are  required  to  prevent  users  from being  able  to
load kernel modules at runtime, as those modules
could divulge  secrets  by running in  kernel  mode.
This has an additionally nice property as inserting a
malicious device can no longer trigger the loading
of  any  device  driver,  some  of  which  may  have
know bugs leading to exploitation.

After  we  have  sufficiently  protected  ourselves
such that  we have a  trusted  kernel  which  can  be
trusted even in  the face of physical  attackers,  we
must set up encryption keys within secure areas of
data security such that only our kernel can access
them. Luckily, x86 provides us with many registers
which are only readable/writeable by code running
in  kernel  mode.  Thus,  during  our  trusted  loading
phase we require the user exploit  the trusted path
from  keyboard  into  CPU  to  enter  a  passphrase
which  will  be used for  key derivation  and stored
only in CPU registers. In order to limit the effect of
a loss of the trusted path, we enable the user to use
a  disk  drive,  such  as  a  USB  flash  drive,  as  an
additional key storage mechanism, the selected part
of  which  will  be  included  in  the  key  derivation
process.  Thus,  an  attacker  would  have  to
compromise both paths in order to compromise the
system, not just a single path.

In  addition  to  the  single-key method  described
above, I provide a multi-key method for servers. By
requiring multiple keys distributed using a standard
secret-sharing method, users who store their data on
a  remote  server  can  ensure  that  no  single,  rogue
system administrator with significant resources and
physical access can compromise private data.

Once encryption keys are safely stored away in
CPU registers, we can begin using them to encrypt
the less-secure data  storage areas. First,  and most
simply,  we  encrypt  the  disk.  Because  full  disk
encryption  is  a  popular  mechanism  on  many
computers  today,  doing  so  using  existing
infrastructure  is  quite  simple.  Additionally,  recall
that modern disk encryption systems have nearly no
performance  overhead  as  the  cost  to
encrypt/decrypt a single block is incredibly low and
orders of magnitude lower than the cost to access
the disk itself. Secondly, we encrypt main memory.
Because  modern  commodity  hardware  does  not
include  any  mechanism  for  encrypting  main
memory, we have to rely on partial encryption and
page faults to decrypt memory as it is needed. Some
modern  processors have significant  space in CPU
cache, which we can attempt to use to avoid storing
much,  if  any,  unencrypted  data  in  main  memory.
Specifically, some Intel Haswell processors include
128MB of on-die L4 CPU cache. Sadly, there is no
way for  the  kernel  to  control  this  cache,  or  even



gain  insight  into  which  data  it  is  storing  using
performance counters. To make matters worse, this
cache is shared between the CPU and GPU, making
it even harder to limit unencrypted memory to that
which  is  in  cache.  Thus,  I  instead  propose  a
probabilistic system under which a large percentage
of active memory is encrypted. Because there is a
large  tradeoff  between  encrypting  more  memory
(and  thus  gaining  more  security)  and  the
performance  of  the  system  as  a  whole,  the  ratio
between  encrypted  memory  and  unencrypted
memory is left configurable for the user.

V. IMPLEMENTATION DETAILS

The implementation of my system can be largely
categorized into two sections,  the disk encryption
and the encryption of main memory.

A. Disk Encryption

In order to build on existing research, I chose to
use TRESOR as a starting point for implementation
of  my  system.  In  this  way,  much  of  the  disk
encryption work was already complete, specifically
the  storage  of  keys  in  the  processor's  debug
registers  and  prevent  applications  from accessing
them  and  integrating  with  Linux'  existing  disk
encryption  system  were  largely  implemented.
However,  the  implementation  of  TRESOR  as
published  was  severely  lacking  in  its  practicality
and needed to be extended to more fully support the
set of features described in Section IV. Specifically,
the implementation of TRESOR published with the
paper included only simple key derivation from one
passphrase instead of also allowing the user to input
key material  using  drives  and  support  for  secret-
sharing between multiple system administrators. 

1)  Keydevice Support:  In order to allow the user
to distribute their trusted-path trust among multiple
paths, I added support for “keysectors”. A user who
wishes  to  add  additional  key  material  to  the  key
derivation function may choose to fill a device with
random data data and select a single sector which
will  be  loaded  as  a  part  of  the  key  derivation
processes.  This  functions  similarly  to  keyfiles
which are employed by many encryption systems,
however work at a lower level, removing the need
for  filesystem  handling  in  the  key  derivation
system.  Though  the  reading  of  a  user-specified

sector  from  a  device  is  not  complicated  during
system boot, doing the same when the encryption
keys must be re-derived when resuming from sleep
requires  some  additional  legwork.  In  order  to
prevent I/O threads from reading or writing to disk
while encryption keys were unavailable, TRESOR
originally simply prevented any kernel threads from
resuming  before  the  key  could  be  re-derived.
However, because we need to use those I/O threads
for  keysector  loading  during  key-derivation,  we
need a  mechanism to wait  for  the  key derivation
process to complete. This necessitated adding locks
around  the  key being  set  in  memory  and  simply
using  Linux'  scheduling  features  to  sleep  the
processes which attempt filesystem I/O before keys
are  available.  Because  of  the  way  the  Linux
cryptography subsystem is structured, this results in
an  inability  to  use  Encrypted  salt-sector
initialization  vector  (ESSIV)  encryption  mode,
which encrypts the sector number before using it as
the  Initialization  Vector  (IV)  in  the
encryption/decryption  process.  Thus,  a  second
TRESOR  cipher  is  exposed  to  the  kernel
cryptography  subsystem  which  automatically
encrypts  the  IV  before  running  through  standard
CBC encryption/decryption.

In order to use a keysector, a user needs to simply
specify the device or partition's identifier (using the
same method and allowed device identifiers which
are used to specify the root device) to the kernel's
boot arguments. Ideally the user will use a device
with a UEFI/GPT partition table, allowing them to
use  a  partition's  Universally  Unique  Identifier
(UUID),  allowing  the  device  to  be  removed  and
inserted at will as it will be automatically identified
as the correct device by the device-searching code.
Then, after being asked for a passphrase using the
original TRESOR passphrase dialog code, the user
is  asked  to  enter  a  sector  number  within  the
partition  or  device  which  will  be  loaded  as  the
keysector.

Though  supporting  keysectors  themselves  is  a
huge  addition  for  limiting  trust  in  the  derivation
process, they serve an additional role which is far
more important. Namely, they provide users with a
two-factor authentication system which allows them
flexibility in the key storage mechanism they wish
to use. Note that any device which reports itself as a



block device can be used, allowing the user to use
any type  of custom block device they wish. As a
part of implementing the system for myself, I opted
to use an entirely custom USB drive which appears
to  be  a  simple  USB  mass  storage  device  to  the
kernel,  but,  in  fact,  has  additional  logic  baked in
allowing it to be more clever about when it will and
will not divulge its keys. Specifically, if an attacker
is able to steal a user's passphrase (eg by looking
over their shoulder as they enter it), they can rather
trivially brute-force their key by stealing their key
storage device and simply testing each sector on the
device (to an offline attacker, tens or hundreds of
thousands  of  attempts  at  a  few  hundred
milliseconds per attempt  is  not significant).  Thus,
my key storage device attempts to prevent any kind
of mass reading by wiping itself in the event of a
read or write to a sector in one of several ranges.
Specifically, by storing its data on an encrypted SD
card  and  keeping  its  encryption  keys  in  on-die
nonvolatile memory that cannot be read by anything
except  the  ROM programmed  into  the  processor,
and which are cleared when the ROM is modified,
the  device  can  protect  its  data  from  any  reads
except  those  that  go  through  its  normal  sector-
reading handling. As a part of this code, the device
checks  the sector  number  and,  if  it  is  one of  the
disallowed  ranges,  simply  clears  its  encryption
keys,  locking  the  data  permanently.  Though  my
device  is  rather  simple,  a  more  advanced  device
could  be  constructed  as  there  are  some  basic
fingerprints that could be performed to identify the
type  of  machine  which  the  system  was  plugged
into.  For  example,  a  system  running  Microsoft
Windows  will  re-read  the  MBR  sectors  multiple
times when the device is first attached, allowing the
device  to  identify the  host  and wipe itself  before
any other  reads  can  complete.  Also  note  that  my
particular  device  is  designed  to  appear  to  an
uninformed  observer  to  be  a  simple  flash  drive,
who, in the case of an attacker attempting to steal
private information, might simply attempt to image
the device, clearing it in the process. 

2)  Keydevice  Secret-Sharing  Support:  As
mentioned, in order to support servers which store
data for users who wish to trust more than a single
key-holding  system  administrator,  my

modifications  to  TRESOR  include  the  ability  to
read secrets which are secret-shared across multiple
key devices. In order to accomplish this, I searched
for a trivially auditable and trusted implementation
of Sharmir's Secret Sharing (SSS), however, unable
to  find  one,  I  implemented  a  simple  one  myself,
splitting  each  secret  one  byte  at  time  over  the
simple GF(2^8) curve used in Rijndael (AES). This
has the effect of limiting the total number of shares
possible to 256-1 = 255, however this seems to be a
reasonable tradeoff in exchange for the simplicity
and,  thus,  auditability  of  the  secret  sharing
implementation.  To  use  secret  sharing,
administrators  need  to  use  a  simple  userspace
program to split a sector into parts using SSS and
then write the resulting parts to separate devices at
sectors each administrator can choose. Note that if
each  part  has  a  distinct  non-0  first  byte  and  the
administrators wish to require all devices to recreate
the secret instead of a quroum n-of-m (with n < m),
the administrators  may simply use random values
they  each  choose  independently.  During  kernel
boot, the kernel then needs to be informed of all of
the possible devices which may contain keysectors.
It  will  then  simply  repeat  the  keysector-loading
code  until  it  has  enough  sectors  to  recreate  the
secret.  Because  each  share  requires  an  additional
byte  (the  X  coordinate  of  the  share  on  the
polynomial),  each  secret  is  one byte  smaller  than
regular shares as they must both fit inside exactly
one  sector  on  disk.  Thus,  in  order  to  allow
administrators  to  split  keys  when  a  system  has
already been encrypted, an extra, arbitrary, byte can
be input as hex during key derivation.

3)  General  Updates:   In  addition  to  the  above
changes, I made a few small tweaks to TRESOR to
make it  more practical  and to slightly protect  the
user  from  themselves.  First  of  all,  TRESOR
allowed arbitrarily low passphrase length, which I
limited to at least 8 characters. Secondly, as noted
in  Section  III,  I  inform the  user  in  case  they are
booting  without  sufficient  protection  from  DMA
attacks  by  requiring  both  a  Intel  TXT measured
boot  environment  as  well  as  the  enabling  of  the
I/OMMU period.

B. Main Memory Encryption



In  addition  to  upgrading  the  security  of  the
TRESOR  disk  encryption  significantly  using
various  software  methods  in  combination  with
custom  hardware,  I  implemented  memory
encryption  in  Linux.  This  allows  the  kernel  to
encrypt the majority of main memory and rely on
page  faults  to  be  notified  when  individual  pages
need to be decrypted for access. While the theory of
simply  encrypting  pages  and  marking  them  non-
resident in page tables is quite simple, the reality is
that the Linux Memory Management subsystem is
incredibly  complicated  and  accomplishing  this
without subtle race conditions resulting in memory
corruption is incredibly difficult. The only reference
to main memory encryption in academic literature
which  runs  on  commodity  hardware  instead  of
relying  on  custom  hardware  to  perform  the
encryption is in a paper entitled CryptKeeper  [9].
This  paper  focuses  largely  on  exploring  the
possibility  of  memory  encryption  in  Linux  by
benchmarking  an  implementation  thereof  and
analysing  the  performance  tradeoff  in  herit  in
memory  encryption  on  modern  commodity
hardware. As a proof-of-concept paper, the source
to CryptKeeper was never released and disabled a
number of practical features (such as PAE and 64-
bit  mode)  which  further  make  the  use  of
CryptKeeper on a real-world system impractical. In
non-academic  literature,  there  is  also  some
reference  to  using  a  memory-backed  encrypted
SWAP partition  to  force  the  kernel  to  encrypt  a
user-configurable amount of memory. Note that in
the second case the manipulation of the kernel  is
even  worse  as  the  kernel's  normal  attempts  at
avoiding the overuse of SWAP are then applied to a
large  section  of  main  memory,  hurting  the
performance  of  disk  caches  and  potentially  other
applications.  Both  of  these  implementations,
however, suffered from a common flaw, namely the
storage  of  encryption  keys  in  the  same  main
memory  which  they  were  being  used  to  encrypt.
Thus,  in  the  case  of  either  a  DMA-based  or  a
ColdBoot  attack  the  encrypted  memory  was
trivially decryptable with some additional effort on
the  part  of  the  attacker  to  interpret  the decrypted
memory.

My  implementation  relies  on  existing  kernel
infrastructure as much as possible, limiting both the

number of lines of code required to implement it (in
the process decreasing chance for bugs, decreasing
the  size  of  the  TCB)  and  exploiting  the  existing
tuning  of  the  kernel's  performance  to  increase
performance of the system with encrypted memory.
By  relying  on  the  kernel's  active/inactive  lists,
which  it  uses  to  determine  which  pages  to
deallocate  by  writing  them  to  disk  or  swapping
them  out  to  disk  to  determine  which  pages  to
encrypt,  I build on all of the existing work which
has gone into tuning Linux' memory management
subsystem.  Additionally,  because  the  Linux
inactive/active  list  rebalancing  is  based  on  the
process'  Control  Group  (cgroup)  and  utilizing  a
simple patch which places each parent process in its
own cgroup, pages of processes which have more
total pages allocated are encrypted more than pages
which are allocated to others. This, in turn, ensures
that even processes which have very little memory
also  get  encrypted,  ensuring  that  small  processes
which store secret data are not simply ignored by
the  page  encrypter  due  to  large  processes  that
allocate but do not use large sections of memory.

In  order  to  perform the  encryption  of  memory
itself,  I  repurposed  the  kswapd  process,  which
normally  rebalances  the  active/inactive  lists  and
swaps out pages as main memory becomes full. In
addition to its usual tasks, under my system it also
encrypts  pages  as  it  moves  them  from  active  to
inactive lists. Normally, kswapd sleeps until there is
limited  available  free  memory,  allowing  it  to  not
cause  a  performance  impact  needlessly  moving
pages  from  active  to  inactive  lists.  Under  my
system  this  would  be  unacceptable,  so  it  instead
attempts to encrypt 1/4th of the total pages which
would be required to have the user's desired ratio
between unencrypted and encrypted memory every
1/10th of a second. Note that this approach, instead
of  ensuring  strict  adherence  to  the  user's  desired
ratio, allows the security provided by the memory
encryption  to  float  as  necessary when the system
enters  higher  or  lower  load  (as  processes  which
need  their  entire  address  space  will  decrypt  their
1/4th every 1/10th of a second as their memory is
encrypted). Additionally, it  places an upper bound
on  the  overhead  of  the  memory  encryption.  This
allows the system to be far more performant than
other, stricter, alternatives while still providing the



desired  security  on a  desktop system where  CPU
load is generally very low.

VI. ANALYSIS

In  this  section  I  will  largely  analyze  the
performance  and  practicality  of  the  memory
encryption  part  of  my  work.  Because  the  disk
encryption  section  of  the  work  functions  nearly
identically to existing disk encryption systems and
the  security  model  thereof  has  already  been
thoroughly  explored  in  previous  sections,  it  does
not merit further analysis.

For  the  memory  encryption  to  be  considered
practical,  it  has  to  perform  well.  Specifically,  it
cannot have significant overhead when compared to
a  system  running  with  fully  unencrypted  main
memory.  In  order  to  adequately  benchmark  the
performance  of  applications  as  their  memory  is
encrypted,  I  designed  a  simple  benchmark  which
allocates a large section of memory, initializes it to
known values, and then verifies its value repeatedly.
In  this  way,  memory  can  be  encrypted  as  the
process  steps  through  its  memory  and  then  will
have to be decrypted as the process enters its next
iteration. The results of the benchmark can be seen
in Fig. 2. As can be seen, the total time taken does
not increase greatly as the majority of the program's
time is spent verifying the contents of memory and
not  encrypting  encrypted  pages,  a  huge  win  for
performance.  To  better  analyze  the  time  spent
decrypting  pages,  we  look  at  the  time  spent  in
system mode  (including  handling  page  faults  and
decrypting pages). After the initial jump in system
time to have any encrypted memory, the time spent
in system mode between a ratio  of 0.2 to  5 only
increased 83%.
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Fig. 2.  The hierarchy of data security used to analyze the data
an attacker can access

VII. FUTURE WORK

While  this  research  moved  the  idea  of  data
confidentiality  on  compromised  commodity
hardware forward significantly, it should still be
considered  early research  and there  is  a  lot  of
work  left  to  be  done  in  the  area.  First  of  all,
additional  research  into  the  effectiveness  of
I/OMMUs  needs  to  be  continued.  There  have
been  numerous  examples  of  serious  bugs  in
implementation  of  I/OMMU  and  related
technologies  [10].  While  these  bugs  are
addressed as they are discovered, their presence
on a regular basis indicates a lack of security in
the system as a whole. More importantly to this
research,  however,  would  be  research  into  the
decrease  in  trust  required  during  the  initial
loading  phase.  One  potential  approach  to  this
would be to utilize the TPM's ability to measure
the running system to authenticate the kernel to
the  key  storage  device  before  the  key  storage
device  will  divulge  any information.  After  the
kernel has been authenticated, one could create a
secure, encrypted channel from the kernel to the
key storage device. By exchanging the keys only
over this channel, an attacker would no longer be



able  to  intercept  the  keys  by  monitoring  the
channel (ie the USB bus).

VIII. CONCLUSION

In this  work,  I  propose a new system which is
both practical and drastically increases data security
against an attacker with significant resources. After
extending the  security of existing disk encryption
systems drastically against DMA-based attackers, I
implemented  a  novel  memory  encryption  system
for  commodity  x86  hardware,  greatly  increasing
data privacy for users against physical attackers. In
addition, I provided a system for a group of system
administrators  to  effectively  share  the  disk
encryption keys of a shared system.
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