
Securing Data on Compromised Hardware
Matt Corallo

University of North Carolina at Chapel Hill, Computer Science Department
Chapel Hill, NC, USA

Abstract—Advancements in attacks with physical
access to commodity hardware has resulted in a
general consensus that, given physical access, all of
the data on a machine should be considered
compromised. In this talk, I will consider existing
attacks and mitigations and propose a practical
system under which certain data security guarantees
can be made. Specifically, I propose a system which
attempts to protecting encryption keys absolutely
against physical attackers and uses them to protect
both main memory and disk access.

I. INTRODUCTION

Over the past many years, advancements in
attacks allowing the exfiltration of data when given
physical access to the hardware of a machine have
progressed significantly faster than defences against
such attacks. The goal of this research is to address
the problem not by continuing the cat-and-mouse
game of the past decade, but instead by reducing
the Trusted Computing Base (TCB) to a limited,
secureable device and ensure access to other parts
of the device be limited in their ability to gain
access to useful data. Specifically, by private
encryption keys in processor registers where they
are inaccessible to anything but software running in
kernel mode, we can create a simple and very small
root of trust. I then use this to encrypt both disk
access and large sections of main memory.
Additionally, this research attempts to remain
entirely practical for use on a daily basis, drawing
an important distinction between much of the
academic discussion of securing against physical
attackers and this work.

I will begin in Section II by defining the threat
model used for my analysis. Section III by briefly
surveys the current state of data exfiltration with
physical access, including current state-of-the-art
attacks which are relevant to this project, as well as
the existing mitigations and their drawbacks.
Section IV covers my approach in more detail,

proposing a model under which it can be analysed.
In Section V, I dive into the implementation details,
discussing tradeoffs which were made at varying
levels to balance usability and security of the
system. Section VI analyses the practical use of the
system, evaluating both its security guarantees and
its practicality. I conclude the paper with a section
on possible future research areas as well as a final
conclusion.

II. THREAT MODEL

There are many considerations to be taken into
account when discussing exfiltration of data and
compromise of a machine via physical attacks. This
paper primarily concerns itself with the ability of an
attacker to, using any reasonable methods, to gain
access to data stored on a machine. Keep in mind
that a sufficiently motivated and well-funded
attacker could use some hypothetical hardware to
modify the CPU's registers or data during runtime,
however the overhead cost on such an operation
against a running machine makes it expensive to the
point of impracticality and possibly impossibility.
Thus, I instead chose to analyse existing published
research on data exfiltration. Additionally, I
primarily focus on attacks other than side-channel
attacks as such attacks are both specific in nature (ie
in nearly all form cannot be used to exfiltrate any
data, but instead focuses on eg the stealing of
private keys by analysing CPU operations) and a
very wide range and large number of attacks.
Though this limits the security guarantees that my
system can make, this is a limitation inherent to the
type of system which I am proposing.

In order to adequately discuss the methods for
data exfiltration which have been published today,
we must clearly define what our attacker can and
cannot do, ie our threat model. As a simplifying
assumption, we begin with a “trusted loading”
phase. Namely, we begin with a boot phase during
which we have a trusted kernel loaded into memory

and a secure path from the keyboard to the kernel
(to enter an encryption passphrase). Note that this
phase must repeat itself when the system resumes
from suspend and is not only required during
system boot. Though this is a rather expensive
requirement (in the sense that it is hard to achieve
today with commodity hardware), I will revisit it
late in Section III as well as as a possibility for
future research. Additionally, we assume that some
hardware is potentially malicious during this phase,
specifically, we limit our trust to only the BIOS and
related basic systems. Though this sounds nice, in
practice this can include all PCI-Express devices
attached to the machine (see, for example, [1]
which is able to load firmware-level code into the
BIOS using EFI extensions), potentially including
externally-attached PCI Express devices. However,
we are generally able to leave many devices, such
as USB devices, entirely untrusted and the
extension of trust to PCI Express and many other
devices does not generally apply when the system
resumes from suspend, only during initial boot.

After the “trusted loading” phase of the system
completes, we assume that all hardware is
malicious and is actively attempting to assist the
attacker in exfiltrating data. Specifically, after the
“trusted loading” phase completes, we reduce our
TCB to only include the processor and must limit
the access of peripheral devices (including PCI-
Express devices) to only data which they should
have access to.

III. BRIEF SURVEY ON THE STATE OF HARDWARE

COMPROMISE AND ITS IMPACT ON MY SYSTEM

Because of a large body of research amassed over
the past decade, security common sense generally
dictates that if an attacker has physical access to a
machine, there is nothing that can be done to
protect the data stored on and the behaviour of
running programs on that machine. In this section, I
analyse this claim and step through a selection of
the various defences and attacks which have
appeared over time.

A. First steps in protecting data

When attempting to protect the data on a machine
from a physical attacker, the first step is usually full
disk encryption, which does not allow any

unencrypted data from ever reaching physical
nonvolatile memory. In recent years, full disk
encryption has become both incredibly performant
(with the overhead to encrypt and decry data stored
on disk being far less than the overhead required for
disk reads/writes) and incredibly popular (with all
mainstream operating systems having support for it
“baked-in”, often with incredibly simple user-facing
Graphical User Interfaces, or GUIs). However, in
step with the rise in the use of full disk encryption,
attackers have made significant strides in defeating
it. Specifically, because the encryption keys used to
encrypt and decrypt data on the drive are stored in
main memory, attacks which allow the reading
and/or writing of system memory are incredibly
successful. Specifically, both cold-boot attacks and
DMA-based attack schemes have proven very
successful and often quite easy to perform.

B. DMA-Based Attacks

Many modern peripheral devices require direct
memory access (DMA) to communicate with the
CPU in order to increase efficiency. In these
systems, devices, such as graphics cards and
network interface cards, are able to read and write
arbitrarily to main memory and are then able to
trigger interrupts on the processor to notify it that
new data has been read or written. Under normal
operation, such a device will only read or write to
memory allocated to to it by the kernel. However,
malicious DMA devices have been proposed many
times in various formats over the years. Originally,
much research focused on the use of FireWire
(IEEE 1394) for its DMA capability and status as an
external device, making exploitation without the
need to install a device internal to a computer easy
[2]. There was then much research into the use of
similar DMA attacks by PCI-Express devices, often
by exploiting a vulnerable device and installing
persistent malware on it such that the device can
provide persistent exploitation of the host system
[3] by modifying the running kernel or other code
present in main memory. Also note that more recent
hardware interfaces, such as ThunderBolt, have
exposed a host to DMA-based attacks via external
devices as they expose a PCI-Express interface
externally to an attacker. As a generic line of
defence against against DMA-based exploitation,

modern commodity x86 hardware often includes
I/OMMU capability. This device performs a similar
function to the virtual memory translation
operations performed for user-space applications,
but applies to DMA access instead. A properly
configured kernel and device driver will set the
DMA translation tables for each device such that it
is only able to access the areas of memory allocated
to it, and such that any access outside of those areas
is rejected by the I/OMMU hardware. Note that
many kernels do not well support proper I/OMMU
configuration [4] and there have been many attacks
targeting the kernel to trick it into misconfiguration
of the I/OMMU [5] or attack errors in the
configuration of the I/OMMU as a result of bugs in
the kernel or device drivers.

Instead of attempting to prevent DMA attacks by
creating a new system of defence, my work instead
builds on existing I/OMMU work, strongly
encouraging the user to enable existing security
features which are often disabled by default. For
example, the I/OMMU features of x86 hardware are
often disabled by default in Linux, which generates
clearly worded warnings for users during the
initialization of the system under my work.
Additionally, as a part of my work, I have
thoroughly studied existing research in DMA
defence on commodity x86 hardware and either
provided the user with warnings if they are
vulnerable to known exploits. Specifically, by
encouraging the user to initialize the kernel boot
using Intel Trusted Execution Technology (TXT)
the user is protected against attacks which exploit
DMA during early boot (ie before the I/OMMU is
configured) to hide their presence from the kernel,
preventing them from being placed under I/OMMU
protection [5].

C. The ColdBoot Attack

The ColdBoot attack [6], published in 2008,
works by using the property of modern DRAM
chips that retain their charge for seconds after
power is lost (ie during a system shutdown). Thus,
when a system is shut down, an attacker can read
the majority of contents of main memory for
several seconds before it fades. Additionally, if the
memory is frozen before the system is shut down,
its contents remains readable significantly longer,

hence the name. Though it has other uses for data
exfiltration (potentially recovering the memory of
running applications at the time of shutdown), this
attack captured popular attention as a method for
drive-encryption key recovery and the most
attention has been paid to it as such. The ColdBoot
paper also discussed the possibility of recovering an
encryption key by searching memory for the
structure of AES and other encryption keys after
they have undergone key expansion. Using this
method allows an attacker to efficiently search
memory without needing to fully interpret its
contents as well as recover from some errors in key
recovery. Additionally, note that even if some parts
of an encryption key has faded and is not
recoverable, any remaining parts may help to
decrease the search space for a brute force approach
significantly.

One of the proposed solutions to storing
encryption keys such that a ColdBoot attack can not
recover keys is to store them in processor registers,
outside the reach of main memory-stealing
techniques. One particular implementation of this
idea is TRESOR [7]. There are a few sets of
registers which are available in x86 which may be
potential key storage locations (they must be largely
unused and be accessible only to the kernel, ie not
accessible to applications running in user mode).
TRESOR suggested the use of the debug registers
present in x86 as they offer a total of 256 bits of key
storage space in registers which are used largely
only by debugging applications and for which
debugging applications nearly always have
software-only alternatives to (for example, a 4-line
patch to GDB will force it to always use software
breakpoints instead of hardware ones, avoiding the
debug registers). Though this approach largely
solves the issue of an attacker using ColdBoot to
steal encryption keys, it has several flaws in other
areas. Specifically, an attacker exploiting and
DMA-based attack with write access to system
memory may rewrite part of the kernel code to
simply copy the encryption keys from debug
registers into main memory, allowing them to be
read out using DMA or a ColdBoot attack, as
shown by the TRESOR-HUNT [8] paper published
a year later. Additionally, note that TRESOR does
not solve the issue of an attacker gaining access to

any other data stored in memory, including
application memory and disk cache, including
caches of decrypted copies of files.

D. Notes on Types of Targets and Additional
Vulnerabilities

It is important to note that physical attacks are
generally only applicable with certain hardware
present. For example, exploiting a host using DMA
may be more difficult if there are no DMA-capable
busses available externally and access to the
machine's motherboard directly is impossible (ie
locked, case-open-detection enabled, etc). Thus, the
type of exploitation you are facing is important to
consider. As noted above, Thunderbolt hardware is
DMA-capable as it exposes the PCI-Express
interface. However, Thunderbolt is far more
exploitable as it is not only exposed externally
without an attacker needing to install an internal
PCI-Express device, but also supports hotplugging
on more operating systems, resulting in an attacker
not being required to reboot the machine before
exploitation. Additionally, in many modern mobile
computers, physical space within the device is
incredibly limited, limiting access for attackers to
install malicious PCI-Express devices. However, in
a desktop, workstation, or server environment,
installing a malicious PCI-Express device becomes
very possible as most users do not check for the
presence of unknown devices on each system start.

An additional issue with mobile, and often
workstation, computing is the need to load the
system kernel from an unencrypted device, often
susceptible to modification by an “evil-maid”
attacker. This issue necessitates my “trusted-
loading” phase, and is both incredibly easy to
exploit and difficult to detect. Note that this issue is
largely not present on server and other long-running
systems are there is little need to reload the kernel
after boot but very rarely. A common defence
against such attacks is the use of SecureBoot to
prevent the booting of a kernel other than a pre-
programmed one. However, note that there is little
preventing an “evil-maid” from simply replacing
the TPM/motherboard/entire computer which has
the trusted kernel programmed in it with an
identical one which has no such limitation.

In addition to the lack of need to repeat the
“trusted-loading” phase, servers have a potentially
different threat model due to their storing of data
for multiple users. For a server to be considered
secure, the users who store their data on it may
want some kind of assurance that not only a
physical attacker with no connection to the system
administrator can steal their data, but also a
physical attack by a rogue system administrator
should as well.

IV. APPROACH

In order to analyse the security of the proposed
system, I will begin by introducing a model for the
security of various data-storage locations.

Fig. 1. The hierarchy of data security used to analyse the data
an attacker can access

At the lowest level of data security and highest
total capacity (see Fig. 1) we have the disk. Because
it is nonvolatile memory, an attacker with physical
access to a machine can read the disk's contents at
any time by simply removing the drive and
plugging it into one of their own systems. If its
contents are unencrypted, this allows the attacker to
gain access to any private data stored on it. Directly
above the disk is main memory. Although it is not
technically nonvolatile, ColdBoot attacks place it
somewhere between nonvolatile and completely
volatile memory. In addition to an attacker being
able to read the contents of memory after shutdown
via a ColdBoot attack, an attacker can potentially
read much of main memory using DMA-based
attacks. Thus, its security against data being read or
even modified is fairly low. Additionally, main

Disk

Memory

Cache

CPU Registers

memory is fairly large and generally stores
significant amounts of disk cache, making it an
ideal target for the stealing of private data.

Above disk and memory comes the CPU's
internal memory cache as well as its registers.
Unlike main memory, the CPU's cache is cleared
upon system restart (it is even cleared in ACPI S1
sleep), making it truly volatile memory.
Additionally, neither CPU cache nor CPU registers
are available to an attacker unless they are able to
run software directly on the machine, and CPU
registers of other applications are only readable by
the application which set them or the kernel, which
is in our TCB. Thus, it is our goal to reduce our
private data storage as much as possible to be only
in CPU Registers and CPU cache. Note that no
peripherals are in this hierarchy as they are all
assumed to be either compromised or entirely
malicious.

The first step to protecting ourselves from
physical attackers is the creation of a secure TCB
which can be used to store encryption keys to
protect the less secure areas of data storage in our
model. Though this is possible by entering a trusted,
measured environment each time we wish to
perform a secure operation, because we anticipate
regularly using this TCB to encrypt and decrypt
data, doing this would be prohibitively expensive.
Instead in order to create this TCB, we rely on the
secure loading of a trusted kernel and our ability to
protect the kernel against malicious modification.
Thus we are required to properly configure the
I/OMMU to protect against malicious devices
which might modify the running kernel to perform
any action which the attacker wishes, including
divulge secrets or other confidential data. Though
this is rather simple in statement, it turns out to be
rather complicated in practice, requiring several
existing solutions be used in combination to protect
against various attack scenarios. Additionally, we
are required to prevent users from being able to
load kernel modules at runtime, as those modules
could divulge secrets by running in kernel mode.
This has an additionally nice property as inserting a
malicious device can no longer trigger the loading
of any device driver, some of which may have
know bugs leading to exploitation.

After we have sufficiently protected ourselves
such that we have a trusted kernel which can be
trusted even in the face of physical attackers, we
must set up encryption keys within secure areas of
data security such that only our kernel can access
them. Luckily, x86 provides us with many registers
which are only readable/writeable by code running
in kernel mode. Thus, during our trusted loading
phase we require the user exploit the trusted path
from keyboard into CPU to enter a passphrase
which will be used for key derivation and stored
only in CPU registers. In order to limit the effect of
a loss of the trusted path, we enable the user to use
a disk drive, such as a USB flash drive, as an
additional key storage mechanism, the selected part
of which will be included in the key derivation
process. Thus, an attacker would have to
compromise both paths in order to compromise the
system, not just a single path.

In addition to the single-key method described
above, I provide a multi-key method for servers. By
requiring multiple keys distributed using a standard
secret-sharing method, users who store their data on
a remote server can ensure that no single, rogue
system administrator with significant resources and
physical access can compromise private data.

Once encryption keys are safely stored away in
CPU registers, we can begin using them to encrypt
the less-secure data storage areas. First, and most
simply, we encrypt the disk. Because full disk
encryption is a popular mechanism on many
computers today, doing so using existing
infrastructure is quite simple. Additionally, recall
that modern disk encryption systems have nearly no
performance overhead as the cost to
encrypt/decrypt a single block is incredibly low and
orders of magnitude lower than the cost to access
the disk itself. Secondly, we encrypt main memory.
Because modern commodity hardware does not
include any mechanism for encrypting main
memory, we have to rely on partial encryption and
page faults to decrypt memory as it is needed. Some
modern processors have significant space in CPU
cache, which we can attempt to use to avoid storing
much, if any, unencrypted data in main memory.
Specifically, some Intel Haswell processors include
128MB of on-die L4 CPU cache. Sadly, there is no
way for the kernel to control this cache, or even

gain insight into which data it is storing using
performance counters. To make matters worse, this
cache is shared between the CPU and GPU, making
it even harder to limit unencrypted memory to that
which is in cache. Thus, I instead propose a
probabilistic system under which a large percentage
of active memory is encrypted. Because there is a
large tradeoff between encrypting more memory
(and thus gaining more security) and the
performance of the system as a whole, the ratio
between encrypted memory and unencrypted
memory is left configurable for the user.

V. IMPLEMENTATION DETAILS

The implementation of my system can be largely
categorized into two sections, the disk encryption
and the encryption of main memory.

A. Disk Encryption

In order to build on existing research, I chose to
use TRESOR as a starting point for implementation
of my system. In this way, much of the disk
encryption work was already complete, specifically
the storage of keys in the processor's debug
registers and prevent applications from accessing
them and integrating with Linux' existing disk
encryption system were largely implemented.
However, the implementation of TRESOR as
published was severely lacking in its practicality
and needed to be extended to more fully support the
set of features described in Section IV. Specifically,
the implementation of TRESOR published with the
paper included only simple key derivation from one
passphrase instead of also allowing the user to input
key material using drives and support for secret-
sharing between multiple system administrators.

1) Keydevice Support: In order to allow the user
to distribute their trusted-path trust among multiple
paths, I added support for “keysectors”. A user who
wishes to add additional key material to the key
derivation function may choose to fill a device with
random data data and select a single sector which
will be loaded as a part of the key derivation
processes. This functions similarly to keyfiles
which are employed by many encryption systems,
however work at a lower level, removing the need
for filesystem handling in the key derivation
system. Though the reading of a user-specified

sector from a device is not complicated during
system boot, doing the same when the encryption
keys must be re-derived when resuming from sleep
requires some additional legwork. In order to
prevent I/O threads from reading or writing to disk
while encryption keys were unavailable, TRESOR
originally simply prevented any kernel threads from
resuming before the key could be re-derived.
However, because we need to use those I/O threads
for keysector loading during key-derivation, we
need a mechanism to wait for the key derivation
process to complete. This necessitated adding locks
around the key being set in memory and simply
using Linux' scheduling features to sleep the
processes which attempt filesystem I/O before keys
are available. Because of the way the Linux
cryptography subsystem is structured, this results in
an inability to use Encrypted salt-sector
initialization vector (ESSIV) encryption mode,
which encrypts the sector number before using it as
the Initialization Vector (IV) in the
encryption/decryption process. Thus, a second
TRESOR cipher is exposed to the kernel
cryptography subsystem which automatically
encrypts the IV before running through standard
CBC encryption/decryption.

In order to use a keysector, a user needs to simply
specify the device or partition's identifier (using the
same method and allowed device identifiers which
are used to specify the root device) to the kernel's
boot arguments. Ideally the user will use a device
with a UEFI/GPT partition table, allowing them to
use a partition's Universally Unique Identifier
(UUID), allowing the device to be removed and
inserted at will as it will be automatically identified
as the correct device by the device-searching code.
Then, after being asked for a passphrase using the
original TRESOR passphrase dialog code, the user
is asked to enter a sector number within the
partition or device which will be loaded as the
keysector.

Though supporting keysectors themselves is a
huge addition for limiting trust in the derivation
process, they serve an additional role which is far
more important. Namely, they provide users with a
two-factor authentication system which allows them
flexibility in the key storage mechanism they wish
to use. Note that any device which reports itself as a

block device can be used, allowing the user to use
any type of custom block device they wish. As a
part of implementing the system for myself, I opted
to use an entirely custom USB drive which appears
to be a simple USB mass storage device to the
kernel, but, in fact, has additional logic baked in
allowing it to be more clever about when it will and
will not divulge its keys. Specifically, if an attacker
is able to steal a user's passphrase (eg by looking
over their shoulder as they enter it), they can rather
trivially brute-force their key by stealing their key
storage device and simply testing each sector on the
device (to an offline attacker, tens or hundreds of
thousands of attempts at a few hundred
milliseconds per attempt is not significant). Thus,
my key storage device attempts to prevent any kind
of mass reading by wiping itself in the event of a
read or write to a sector in one of several ranges.
Specifically, by storing its data on an encrypted SD
card and keeping its encryption keys in on-die
nonvolatile memory that cannot be read by anything
except the ROM programmed into the processor,
and which are cleared when the ROM is modified,
the device can protect its data from any reads
except those that go through its normal sector-
reading handling. As a part of this code, the device
checks the sector number and, if it is one of the
disallowed ranges, simply clears its encryption
keys, locking the data permanently. Though my
device is rather simple, a more advanced device
could be constructed as there are some basic
fingerprints that could be performed to identify the
type of machine which the system was plugged
into. For example, a system running Microsoft
Windows will re-read the MBR sectors multiple
times when the device is first attached, allowing the
device to identify the host and wipe itself before
any other reads can complete. Also note that my
particular device is designed to appear to an
uninformed observer to be a simple flash drive,
who, in the case of an attacker attempting to steal
private information, might simply attempt to image
the device, clearing it in the process.

2) Keydevice Secret-Sharing Support: As
mentioned, in order to support servers which store
data for users who wish to trust more than a single
key-holding system administrator, my

modifications to TRESOR include the ability to
read secrets which are secret-shared across multiple
key devices. In order to accomplish this, I searched
for a trivially auditable and trusted implementation
of Sharmir's Secret Sharing (SSS), however, unable
to find one, I implemented a simple one myself,
splitting each secret one byte at time over the
simple GF(2^8) curve used in Rijndael (AES). This
has the effect of limiting the total number of shares
possible to 256-1 = 255, however this seems to be a
reasonable tradeoff in exchange for the simplicity
and, thus, auditability of the secret sharing
implementation. To use secret sharing,
administrators need to use a simple userspace
program to split a sector into parts using SSS and
then write the resulting parts to separate devices at
sectors each administrator can choose. Note that if
each part has a distinct non-0 first byte and the
administrators wish to require all devices to recreate
the secret instead of a quroum n-of-m (with n < m),
the administrators may simply use random values
they each choose independently. During kernel
boot, the kernel then needs to be informed of all of
the possible devices which may contain keysectors.
It will then simply repeat the keysector-loading
code until it has enough sectors to recreate the
secret. Because each share requires an additional
byte (the X coordinate of the share on the
polynomial), each secret is one byte smaller than
regular shares as they must both fit inside exactly
one sector on disk. Thus, in order to allow
administrators to split keys when a system has
already been encrypted, an extra, arbitrary, byte can
be input as hex during key derivation.

3) General Updates: In addition to the above
changes, I made a few small tweaks to TRESOR to
make it more practical and to slightly protect the
user from themselves. First of all, TRESOR
allowed arbitrarily low passphrase length, which I
limited to at least 8 characters. Secondly, as noted
in Section III, I inform the user in case they are
booting without sufficient protection from DMA
attacks by requiring both a Intel TXT measured
boot environment as well as the enabling of the
I/OMMU period.

B. Main Memory Encryption

In addition to upgrading the security of the
TRESOR disk encryption significantly using
various software methods in combination with
custom hardware, I implemented memory
encryption in Linux. This allows the kernel to
encrypt the majority of main memory and rely on
page faults to be notified when individual pages
need to be decrypted for access. While the theory of
simply encrypting pages and marking them non-
resident in page tables is quite simple, the reality is
that the Linux Memory Management subsystem is
incredibly complicated and accomplishing this
without subtle race conditions resulting in memory
corruption is incredibly difficult. The only reference
to main memory encryption in academic literature
which runs on commodity hardware instead of
relying on custom hardware to perform the
encryption is in a paper entitled CryptKeeper [9].
This paper focuses largely on exploring the
possibility of memory encryption in Linux by
benchmarking an implementation thereof and
analysing the performance tradeoff in herit in
memory encryption on modern commodity
hardware. As a proof-of-concept paper, the source
to CryptKeeper was never released and disabled a
number of practical features (such as PAE and 64-
bit mode) which further make the use of
CryptKeeper on a real-world system impractical. In
non-academic literature, there is also some
reference to using a memory-backed encrypted
SWAP partition to force the kernel to encrypt a
user-configurable amount of memory. Note that in
the second case the manipulation of the kernel is
even worse as the kernel's normal attempts at
avoiding the overuse of SWAP are then applied to a
large section of main memory, hurting the
performance of disk caches and potentially other
applications. Both of these implementations,
however, suffered from a common flaw, namely the
storage of encryption keys in the same main
memory which they were being used to encrypt.
Thus, in the case of either a DMA-based or a
ColdBoot attack the encrypted memory was
trivially decryptable with some additional effort on
the part of the attacker to interpret the decrypted
memory.

My implementation relies on existing kernel
infrastructure as much as possible, limiting both the

number of lines of code required to implement it (in
the process decreasing chance for bugs, decreasing
the size of the TCB) and exploiting the existing
tuning of the kernel's performance to increase
performance of the system with encrypted memory.
By relying on the kernel's active/inactive lists,
which it uses to determine which pages to
deallocate by writing them to disk or swapping
them out to disk to determine which pages to
encrypt, I build on all of the existing work which
has gone into tuning Linux' memory management
subsystem. Additionally, because the Linux
inactive/active list rebalancing is based on the
process' Control Group (cgroup) and utilizing a
simple patch which places each parent process in its
own cgroup, pages of processes which have more
total pages allocated are encrypted more than pages
which are allocated to others. This, in turn, ensures
that even processes which have very little memory
also get encrypted, ensuring that small processes
which store secret data are not simply ignored by
the page encrypter due to large processes that
allocate but do not use large sections of memory.

In order to perform the encryption of memory
itself, I repurposed the kswapd process, which
normally rebalances the active/inactive lists and
swaps out pages as main memory becomes full. In
addition to its usual tasks, under my system it also
encrypts pages as it moves them from active to
inactive lists. Normally, kswapd sleeps until there is
limited available free memory, allowing it to not
cause a performance impact needlessly moving
pages from active to inactive lists. Under my
system this would be unacceptable, so it instead
attempts to encrypt 1/4th of the total pages which
would be required to have the user's desired ratio
between unencrypted and encrypted memory every
1/10th of a second. Note that this approach, instead
of ensuring strict adherence to the user's desired
ratio, allows the security provided by the memory
encryption to float as necessary when the system
enters higher or lower load (as processes which
need their entire address space will decrypt their
1/4th every 1/10th of a second as their memory is
encrypted). Additionally, it places an upper bound
on the overhead of the memory encryption. This
allows the system to be far more performant than
other, stricter, alternatives while still providing the

desired security on a desktop system where CPU
load is generally very low.

VI. ANALYSIS

In this section I will largely analyze the
performance and practicality of the memory
encryption part of my work. Because the disk
encryption section of the work functions nearly
identically to existing disk encryption systems and
the security model thereof has already been
thoroughly explored in previous sections, it does
not merit further analysis.

For the memory encryption to be considered
practical, it has to perform well. Specifically, it
cannot have significant overhead when compared to
a system running with fully unencrypted main
memory. In order to adequately benchmark the
performance of applications as their memory is
encrypted, I designed a simple benchmark which
allocates a large section of memory, initializes it to
known values, and then verifies its value repeatedly.
In this way, memory can be encrypted as the
process steps through its memory and then will
have to be decrypted as the process enters its next
iteration. The results of the benchmark can be seen
in Fig. 2. As can be seen, the total time taken does
not increase greatly as the majority of the program's
time is spent verifying the contents of memory and
not encrypting encrypted pages, a huge win for
performance. To better analyze the time spent
decrypting pages, we look at the time spent in
system mode (including handling page faults and
decrypting pages). After the initial jump in system
time to have any encrypted memory, the time spent
in system mode between a ratio of 0.2 to 5 only
increased 83%.

0 0.2 0.25 0.33 0.5 1 2 3 4 5
0

5

10

15

20

25

30

35

40

45

Benchmark Time at Various Encryption Ratios

Real Time System Time

Encrypted Memory Ratio

Ti
m

e
 (
s
e
co

n
d
s
)

Fig. 2. The hierarchy of data security used to analyze the data
an attacker can access

VII. FUTURE WORK

While this research moved the idea of data
confidentiality on compromised commodity
hardware forward significantly, it should still be
considered early research and there is a lot of
work left to be done in the area. First of all,
additional research into the effectiveness of
I/OMMUs needs to be continued. There have
been numerous examples of serious bugs in
implementation of I/OMMU and related
technologies [10]. While these bugs are
addressed as they are discovered, their presence
on a regular basis indicates a lack of security in
the system as a whole. More importantly to this
research, however, would be research into the
decrease in trust required during the initial
loading phase. One potential approach to this
would be to utilize the TPM's ability to measure
the running system to authenticate the kernel to
the key storage device before the key storage
device will divulge any information. After the
kernel has been authenticated, one could create a
secure, encrypted channel from the kernel to the
key storage device. By exchanging the keys only
over this channel, an attacker would no longer be

able to intercept the keys by monitoring the
channel (ie the USB bus).

VIII. CONCLUSION

In this work, I propose a new system which is
both practical and drastically increases data security
against an attacker with significant resources. After
extending the security of existing disk encryption
systems drastically against DMA-based attackers, I
implemented a novel memory encryption system
for commodity x86 hardware, greatly increasing
data privacy for users against physical attackers. In
addition, I provided a system for a group of system
administrators to effectively share the disk
encryption keys of a shared system.

ACKNOWLEDGMENT

Mike Reiter provided significant input to the
design and discussion of security tradeoffs used in
this system.

Peter A. H. Peterson provided the details of his
CryptKeeper implementation, providing advice on
the implementation of memory encryption in Linux.

REFERENCES

[1] For example, see the presentation given at BlackHat
which available at he presentation on a similar topic for
PCs available at
https://www.blackhat.com/presentations/bh-usa-
07/Heasman/Presentation/bh-usa-07-heasman.pdf

[2] For example, see the implementation of FireWire-based
authentication skipping bypassing available at
http://www.breaknenter.org/projects/inception/.

[3] For example, see the presentation on Mac EFI rootkits,
given in 2012 available at
http://ho.ax/downloads/De_Mysteriis_Dom_Jobsivs_Ru
xcon.pdf

[4] Bystrov, Stewin. “Understanding DMA Malware”
[5] Sang, Lacombe, Nicomette, Deswarte. “Exploiting an

I/OMMU Vulnerability”
[6] Halderman, Schoen, Heninger, et al. “Lest We

Remember: Cold Boot Attacks on Encryption Keys”
[7] Mueller, Freiling, Dewald. “TRESOR Runs Encryption

Securely Outside RAM”
[8] Blass, Robertson. “TRESOR-HUNT: Attacking CPU-

Bound Encryption”
[9] Peterson. “Cryptkeeper: Improving Security With

Encrpted RAM”
[10] There are, for example, multiple examples of Intel TXT

(a requirement for our secure MMU) being broken by a
research team at http://theinvisiblethings.blogspot.com/

http://www.breaknenter.org/projects/inception/
http://ho.ax/downloads/De_Mysteriis_Dom_Jobsivs_Ruxcon.pdf
http://ho.ax/downloads/De_Mysteriis_Dom_Jobsivs_Ruxcon.pdf
https://www.blackhat.com/presentations/bh-usa-07/Heasman/Presentation/bh-usa-07-heasman.pdf
https://www.blackhat.com/presentations/bh-usa-07/Heasman/Presentation/bh-usa-07-heasman.pdf
http://theinvisiblethings.blogspot.com/

