
Stable Patterns of Gene Expression Regulating
Carbohydrate Metabolism Determined by Geographic
Ancestry
Jonathan C. Schisler1, Peter C. Charles1,2, Joel S. Parker3, Eleanor G. Hilliard1, Sabeen Mapara1, Dane

Meredith2, Robert E. Lineberger1, Samuel S. Wu2, Brian D. Alder4, George A. Stouffer2, Cam Patterson1,2*

1 McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina, United States of America, 2 Division of Cardiology, University of North Carolina, Chapel

Hill, North Carolina, United States of America, 3 Expression Analysis, Durham, North Carolina, United States of America, 4 School of Medicine, Duke University, Durham,

North Carolina, United States of America

Abstract

Background: Individuals of African descent in the United States suffer disproportionately from diseases with a metabolic
etiology (obesity, metabolic syndrome, and diabetes), and from the pathological consequences of these disorders
(hypertension and cardiovascular disease).

Methodology/Principal Findings: Using a combination of genetic/genomic and bioinformatics approaches, we identified a
large number of genes that were both differentially expressed between American subjects self-identified to be of either
African or European ancestry and that also contained single nucleotide polymorphisms that distinguish distantly related
ancestral populations. Several of these genes control the metabolism of simple carbohydrates and are direct targets for the
SREBP1, a metabolic transcription factor also differentially expressed between our study populations.

Conclusions/Significance: These data support the concept of stable patterns of gene transcription unique to a geographic
ancestral lineage. Differences in expression of several carbohydrate metabolism genes suggest both genetic and
transcriptional mechanisms contribute to these patterns and may play a role in exacerbating the disproportionate levels of
obesity, diabetes, and cardiovascular disease observed in Americans with African ancestry.
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Introduction

Cardiovascular diseases (CVD) are multifactorial conditions

with strong genetic and environmental influences [1,2]. Despite

many advances in diagnosis and treatment, significant challenges

remain in understanding, treating and possibly preventing these

conditions [3]. Most forms of CVD are multi-factorial, influenced

by genetic predispositions as well as environmental factors. On a

genetic level, the contribution of any single gene is often small,

making investigations of candidate genes difficult to draw any

conclusions towards the etiology of CVD [4,5]. Initial attempts to

characterize the underlying causes of CVD have identified a

plethora of heterogeneous risk factors including: demographic

factors such as family history of premature CVD, gender, and

race; behavioral factors including smoking, diet, and activity level;

metabolic/biochemical factors related to adiposity, plasma

homocysteine, cholesterol levels; and the presence of co-morbid

conditions (for example diabetes and hypertension). Whereas

individual risk factors often lack significance in terms of predictive

power for any given illness, assessment of several risk factors

allows appropriate medical interventions both for prevention and

treatment of CVD [6].

The study of ancestry and genetics is a highly controversial

subject [7,8,9]. However, studies have shown that Americans of

African ancestry have up to a 2.5-fold increased risk of developing

type 2 diabetes, five-fold increased risk of CVD, and eight-fold

increase in mortality from CVD compared to Americans of

European ancestry [10,11]. The molecular basis for the increased

frequency of these disease occurrences in Americans of African

ancestry remains unclear and cannot be adequately explained by

social marginalization or various theories of access to health care

[1,11,12].

The purpose of this study was to identify differential

transcriptional signals associated with CVD susceptibility and

ancestry. Using genetic samples obtained from a cohort of

subjects undergoing cardiac-related evaluation, a strict algorithm

that filtered for genomic features at multiple levels identified

151 differentially-expressed genes between Americans of African
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ancestry and those of European ancestry. Many of the genes

identified were associated with glucose and simple sugar

metabolism, suggestive of a model whereby selective adaptation

to the nutritional environment differs between populations of

humans separated geographically over time. These observations

represent promising preliminary data indicating that gene

expression profiles can be used to phenotypically describe

ancestral populations. Furthermore, the data offer at least one

potential explanation for the rising incidence of obesity, type 2

diabetes, metabolic syndrome and CVD in the American

population as a whole.

Materials and Methods

Study Guidelines and Processing
Subjects were enrolled in the University of North Carolina

Institutional Review Board approved ‘‘SAMARA’’ study (IRB 04-

MED-471). Exclusion criteria included pregnancy, lymphoma,

leukemia, chronic immunosuppressive therapy, infection with HIV

or HCV, history of solid organ transplant, and anemia. Blood was

drawn early in the day from fasted subjects to minimize signals

associated with nutritional and diurnal cycle and processed within

fifteen minutes. Plasma samples were obtained and RNA and

DNA recovered from leukocytes using a modified one-step acid

guanidinium thiocyanate-phenol-chloroform extraction (RNA-

STAT60, Tel-Test, TX).

Microarray and qRT-PCR Analysis
Labeled cRNA was co-hybridized to Agilent G4112A Whole

Human Genome 44K oligonucleotide arrays with equimolar

amounts of Cyanine-3 labeled Universal Human Reference RNA

(UHRR, Stratagene, LaJolla, CA) as previously described [13].

Complete, MIAME-compliant datasets were deposited with the

Gene Expression Omnibus of the National Center for Biotech-

nology Information and can be accessed through GEO Series

accession number GSE12959. Ten micrograms of total RNA was

reverse transcribed into cDNA using the High Capacity cDNA

Reverse Transcription Kit (ABI, Applied Biosystems, Framing-

ham, MA) and quantitative real-time PCR (qRT-PCR) reactions

were performed using the ABI PRISMH 7900 HT sequence

detection system, software and reagents; see Table S1 for primer

and probe information. RNA input was calibrated with 18S

expression levels and relative mRNA levels were normalized to

levels from the UHRR.

Genotype Analysis
DNA labeling, hybridization, and data extraction were

performed by the DNA Array Core Facility at The Scripps

Research Institute (Jupiter, FL). The Genome-Wide Human SNP

Array 6.0 (AffymetrixH) was used for hybridizations. Identification

of local elements associated with expression (eQTLs) was

performed with linear modeling tools in the software package R.

For a given gene, all SNPs within 10 kb of the untranslated region

were tested. Each SNP was tested by grouping the expression

values based on the genotype and assuming an additive

relationship between number of ‘B’ alleles and expression level.

The genes were selected for differential expression between

ancestries, and PCA illustrated segregation of ethnicities based

on the genotypes. This combination may inflate the theoretical

number of false positives from the linear model. In order to

minimize bias, the eQTL procedure was repeated after random-

izing the gene-SNP pairs. After 100 such randomizations these

permuted statistics were compared to actual statistics in order to

estimate the empirical false discovery rate at each theoretical

p value threshold. This permutation procedure is specific for

identifying local-acting SNPs since it assumes no distant-acting

SNPs, and thus is a conservative estimate in the presence of the

potential selection bias.

Statistical Methods
Microarray data were normalized via the loess local intensity

normalization method of Smyth and Speed [14], and probes were

filtered for features having a normalized intensity of ,30 aFU in

both channels. Probes were removed if ,70% of the data were

present across all samples. Missing data points were imputed using

the k nearest-neighbors algorithm (k = 17). 18,375 probes passed

these filters, and were subsequently used for analysis. Scripts

written in the R Statistical Language and Environment (‘‘R’’;

Version 2.2.1, build r36812, release date 2005-12-20.) and Perl

(ActiveState Perl 5.8.1, build 807, release date 2003-11-6) were

used to standardize (m= 0, s= 1) the data set. Samples were tested

for processing time-dependent correlation with gene expression

and found to be clear of any technical confounding variables [15].

Furthermore, to avoid any potential analysis bias, ancestry was not

associated with subject ID number. Lists of differentially expressed

genes were identified using the statistical analysis of microarray

algorithm [16] (SAM, Version 2.21, release date 2005-8-24;

typical false discovery rate of 1% and 10%), and custom R scripts

written in our laboratory. Unsupervised, semi-supervised, and

supervised clustering analysis were performed on gene lists

essentially as described [17] using Cluster (Version 2.11, http://

rana.lbl.gov/EisenSoftware.htm). Heatmaps of cluster analyses

were visualized with JavaTreeView (Version 1.0.12, release date

2005-3-14; http://sourceforge.net/projects/jtreeview/) [18]. Nearest

centroid classification was performed by calculating two centroids, or

vectors of the class mean (AA or CAU) of each gene. Test cases were

assigned the class of the most similar centroid as measured by

Euclidean distance.

Plasma Fructosamine Assays
Plasma fructosamine levels were determined using the Kamiya

Biosciences (Seattle, WA) Fructosamine Assay Kit, following the

manufacturer’s recommended protocol. Ten microliters of ar-

chived plasma from each subject were utilized for analysis.

Immunoblotting
Plasma protein concentration was determined for each archived

plasma sample (Bio-Rad Quick Start Bradford Assay, Bio-Rad,

Hercules, CA). Twenty-five micrograms of total protein were

reduced, denatured, and resolved on 4–12% NuPAGEH Novex

Bis-Tris Gels (Invitrogen, Carlsbad, CA) in the MES/SDS buffer

system. Proteins were transferred to PVDF membranes, reacted

with chicken anti-human haptoglobin (NB300-330, Novus,

Littleton, CO) and detected with rabbit anti-chicken IGY HRP-

conjugate (Sigma, St. Louis, MO). Bands were visualized with

Pierce ECL Substrate (Pierce, Rockford, IL). Relative levels of

haptoglobin were quantified using Image J (NIH, Bethesda, MD).

Results

Demographics and Covariates Analyses
One hundred and sixty-three subjects referred to cardiology

services at UNC between the ages of 18 and 50 years enrolled in

Phase One of the SAMARA (Supporting a Multi-disciplinary

Approach to Researching Atherosclerosis) study were used for this

analysis. Using unsupervised clustering and principal components

analysis, the variation in gene expression data among the study

subjects resulted in a binary segregation of subjects based on

Genes of Geographic Ancestry
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self-reported race, either ‘‘African American’’ (AA) or ‘‘Cauca-

sian’’ (CAU). Exclusion of gender and coronary artery disease as

confounding factors limited the initial analysis to a ‘‘discovery set’’

of 17 AA and 30 CAU subjects, with equal contributions of gender

per cohort.

Within the discovery set of subjects, four demographic variables

differed significantly in AA versus CAU subjects: lower smoking

pack years and hematocrit levels, and higher occurrence of

hypertension and fructosamine levels (Table 1). These findings are

in line with other studies performed in the United States that

report increased diagnosis of hypertension and decreased mean

hematocrit values and smoking rates in Americans of African

ancestry versus those of European decent [1,11,19].

To test if these demographic variables confounded the analysis

of gene expression within the discovery set, we investigated gene

expression patterns associated with hematocrit levels, smoking

pack-years, hypertension, or fructosamine. A two-class SAM

analysis compared the bottom quartile subjects to top quartile

subjects and negatives to positives for the continuous and

categorical variables, respectively. This method failed to identify

any differentially expressed genes (false discovery rate ,20%).

Alternatively, performing SAM as a quantitative analysis on the

continuous variables yielded the same results, indicating these

clinical and demographic features are unlikely to impair detection

of distinct ancestral transcriptional profiles.

Differences in Glucose Homeostasis
Despite the numerous studies associating increased rates of

metabolic syndrome in persons of African descent, there was no

significant difference in clinical diagnosis of diabetes mellitus or

mean fasting plasma glucose between AA and CAU subjects (data

not shown). We used the measurement of plasma fructosamine as

a surrogate marker for functional diabetes, using a threshold value

of 2.6 mM/L [20]. Fructosamine measures the concentration of

glycated protein adducts in the blood to assess regulation of

glucose levels in the diabetic patient over a time period of weeks.

Consistent with clinical diagnosis and fasting blood glucose data

there was no significant difference between AA and CAU subjects

in the number of subjects with fructosamine levels above

threshold. However, when fructosamine was analyzed as a

continuous variable, we identified significantly higher concentra-

tions in AA compared to CAU subjects (Table 1), suggesting a sub-

clinical predisposition to dysglycemia in AA subjects. Overall, the

observed differences in fructosamine and other variables (Table 1)

within the discovery set of this study agrees with previously

published reports on the same topic, implying that, although the

number of cohorts in each group was relatively small, the two

study groups used in this report are largely representative of their

respective populations in the United States. Importantly, the lack

of correlation between fructosamine levels and gene expression

across our subjects lessens the probability of long-term glucose

homeostasis impairment confounding ancestry-dependent expres-

sion analyses.

Identification of Transcriptional Expression Patterns
Associated with Ancestry

In this discovery set, the SAM statistical technique [16]

identified 2521 probes, corresponding to 2331 genes, that were

significantly differentially expressed between CAU and AA groups,

using a false discovery rate of 1% (Figure 1, Table S2). Given this

large number of differentially expressed genes between the study

groups, we refined these data by concentrating our focus on

Table 1. Demographic variables in the discovery set of
subjects.

Variable p-value AA (n = 17) CAU (n = 30)

Hypertension{ 0.037 82.40% 46.70%

Fructosamine (mM/L){ 0.033 1.9060.04 1.6860.07

Hematocrit (%){ 0.032 37.5961.20 40.7960.66

Pack Years{ 0.034 8.2662.90 18.7563.83

Categorical{ and continuous{ variables are expressed as percentage of
population group or mean6standard error and differences were considered
significant at p,0.05, calculated by Fisher’s Exact Test, or Student’s T Test,
respectively.
doi:10.1371/journal.pone.0008183.t001

Figure 1. Workflow diagram to identify geo-ancestral genes. The
analysis used to identify geo-ancestral genes involved three primary
steps: 1) Significance of Microarray (SAM) analysis of two distinct
populations in North Carolina, Americans of African or European
ancestry, identified 2531 genes as differentially expressed between the
populations (green); 2) The set of 2531 genes was further restricted to
those genes than had SNPs that distinguished to representative ancestral
populations from the HapMap project, a total of 897 genes (yellow);
3) Further restriction to only those genes that have an absolute mean fold
change of 1.3 yielded the set of 151 geo-ancestral genes (purple). SNP
graphic courtesy of David Hall.
doi:10.1371/journal.pone.0008183.g001
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genetic differences that had been identified previously between

similar populations represented in the HapMap project. The

HapMap project is a collection of genetic differences, i.e. single

nucleotide polymorphisms (SNP), that have been identified

between human populations of different geographical regions

[21]. Using this approach, we identified the differentially expressed

genes from the SAM analysis that contained at least one SNP

(within 10kb of the untranslated regions) that distinguishes two

HapMap populations with similar ancestral origins as our AA and

CAU study groups, the Yoruba people in Ibadan, Nigeria

(abbreviation: YRI) and the CEPH population (Utah residents

with ancestry in northern and western Europe, abbreviation:

CEU), respectively. This analysis uncovered 897 genes (of the

2331 differentially expressed genes in the discovery set, Figure 1)

that had single nucleotide polymorphisms (12,276 total SNPs) that

were statistically different between YRI versus CEPH populations

(p value,1.25E-07, Bonferroni’s corrected p value of 0.01, Table

S2). Further refining the 897 gene list to those genes that had an

absolute mean fold change (MFC) cutoff of greater than 1.3 in our

discovery set resulted in the identification of 151 genes; we define

these genes as ‘‘geo-ancestral genes’’ as they encompass both

geographical and ancestral-based transcriptional characteristics

(Figure 1, Tables 2 and 3).

This approach of filtering the large amount of genetic data

originally pulled from our discovery set yielded results that align

with findings from other groups. Park et al. used a nearest shrunken

centroids methodology to identify SNPs that were unique to each

of the populations studied in the HapMap project, identifying

Table 2. Genes expressed lower in Americans of African versus European ancestry.

D Gene Symbol GBID D Gene Symbol GBID D Gene Symbol GBID

22.79 S100P NM_005980 21.43 SNX27 NM_030918 21.35 TTRAP NM_016614

22.49 SAMD10 NM_080621 21.43 HOXB2 NM_002145 21.34 FLOT1 NM_005803

22.08 PGM1 NM_002633 21.43 PPP2R5A NM_006243 21.34 ABCA7 NM_033308

21.98 MMP9 NM_004994 21.42 GPR97 NM_170776 21.34 HTATIP2 NM_006410

21.96 HP NM_005143 21.42 STX10 NM_003765 21.34 GPR160 NM_014373

21.96 EXOSC6 NM_058219 21.42 TP53I11 BC071606 21.34 DHRS8 NM_016245

21.87 C20orf3 NM_020531 21.42 PKD1-like NM_024874 21.34 FBXL5 NM_033535

21.85 ORM1 NM_000607 21.41 FLJ13052 NM_023018 21.34 DKFZp762O076 NM_018710

21.85 UHSKerB NM_021046 21.41 HIST1H2AI NM_003509 21.33 TXN NM_003329

21.81 CKLFSF1 NM_181294 21.41 IGF2R NM_000876 21.33 RAF1 NM_002880

21.76 COL9A3 NM_001853 21.41 MME NM_007289 21.33 REPS2 NM_004726

21.69 BMX NM_001721 21.40 SNX11 NM_013323 21.33 C20orf24 NM_018840

21.68 QPCT NM_012413 21.39 HEBP2 NM_014320 21.33 LBR NM_194442

21.67 DIRC1 NM_052952 21.39 NS3TP1 NM_019048 21.33 MOSPD2 NM_152581

21.65 GPT NM_005309 21.39 CHI3L1 NM_001276 21.33 SLC40A1 NM_014585

21.64 RAI16 NM_022749 21.39 IFNGR2 NM_005534 21.33 ANPEP NM_001150

21.55 ASGR2 NM_001181 21.39 LOC120224 NM_138788 21.33 PYGL NM_002863

21.54 LCE2A NM_178428 21.38 GCA NM_012198 21.33 GAB2 NM_080491

21.52 ANXA3 NM_005139 21.38 HIST3H2A NM_033445 21.33 DREV1 NM_016025

21.51 KRT23 NM_173213 21.37 ATP6V1B2 NM_001693 21.33 DEGS NM_003676

21.50 USP10 NM_005153 21.37 SEPX1 NM_016332 21.32 SIAT7B NM_006456

21.50 NOV NM_002514 21.37 SIAT10 NM_006100 21.32 ChGn NM_018371

21.50 PPT1 NM_000310 21.37 COPS2 NM_004236 21.32 TPD52L2 NM_199360

21.49 PPP1R12B NM_002481 21.37 OGFRL1 NM_024576 21.32 PLAU NM_002658

21.49 HK2 NM_000189 21.36 ASAH1 NM_004315 21.31 CDA NM_001785

21.49 PGD NM_002631 21.36 PLAUR NM_001005377 21.31 AC093582

21.48 SULF2 NM_198596 21.36 WIPI49 NM_017983 21.31 PAIP2 NM_016480

21.47 MYBPH NM_004997 21.36 F5 NM_000130 21.31 MGC11324 NM_032717

21.47 C7orf19 NM_032831 21.36 ACOX1 NM_007292 21.30 NM_001024688

21.46 LAMP2 NM_013995 21.35 STX3A NM_004177 21.30 MAP4K4 NM_145687

21.46 LMOD1 NM_012134 21.35 RNF135 NM_197939 21.30 CHPT1 NM_020244

21.44 LRWD1 NM_152892 21.35 HIST2H2 NM_003516 21.30 PCTP NM_021213

21.44 CCPG1 NM_020739 21.35 SRPK1 NM_003137 21.30 GALNAC4S-6ST NM_015892

21.44 HIST1H2AD NM_021065 21.35 UBN1 NM_016936

21.44 IFRD1 NM_001550 21.35 GADD45A NM_001924

Data expressed as Log2 mean fold change (D). GenBank identifications (GBID) are provided.
doi:10.1371/journal.pone.0008183.t002
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thousands of ethnically variant SNPs [22]. When we compared

our data to the results of this study we found that approximately

half of the 897 differentially-expressed ancestral genes, and 71 of

the 151 most strongly differentially expressed genes contained

‘‘ethnically variant SNPs’’ identified by Park, et al.; suggesting that

the delineation of AA and CAU subjects in this study was accurate

(see Table S2). Other studies identified genetically linked gene

expression differences between various HapMap populations

[23,24]. However, comparing the compilation of Stranger et al.

and Spielman et al. to our findings results in only a 9% overlap (see

Table S2); therefore, the integrative approach of filtering gene

expression data from AA and CAU subjects from North Carolina

with existing SNP databases representing African and European

populations both confirm findings from previous studies as well as

identify new patterns of gene expression not previously associated

with ancestry.

Similarities in Allele Frequencies between Discovery Set
and Respective HapMap Populations

Previous studies demonstrate the utility and transferability of

genetic data from the four HapMap populations to distant

ancestral-related populations around the world [25,26,27].

Likewise, we used the assumption that the ancestry of AA and

CAU subjects in this study was similar to the YRI and CEPH

populations, respectively, to generate our list of geo-ancestral

genes. However, to test that this assumption was correct, DNA

from our discovery set was genotyped using the AffymetrixH
Genome-Wide Human SNP Array 6.0, which allowed comparison

of principle component analysis of our data with 90 representative

samples from each of the YRI and CEU populations. Sorting by

the first and second component identified 26 of 30 CAU subjects

as more similar to the CEPH versus YRI population and AA

subjects (Figure 2). Likewise, 16 of 17 AA subjects associated more

with YRI population than the CEPH population and CAU

subjects. The alignment of our CAU and AA study cohorts with

CEPH and YRI populations previously identified by the HapMap

study once again lends credence to accuracy of ethnic identifica-

tion in the present study. Furthermore, it validates the extensive

genetic information in the HapMap database while providing a

suitable resource as an ancestral filter for the data set used in

this study.

Quantitative Verification of the Differential Expression of
Geo-Ancestral Genes

Quantitative real-time polymerase chain reaction (qRT-PCR)

and immunoblot analysis on discovery set samples was used to

Table 3. Genes expressed higher in Americans of African versus European ancestry.

D Gene Symbol GBID D Gene Symbol GBID D Gene Symbol GBID

1.30 CRIP1 NM_001311 1.34 CCL4 NM_002984 1.46 IGJ NM_144646

1.30 FGFR1OP NM_194429 1.34 MTR NM_000254 1.47 TNFRSF17 NM_001192

1.31 NM_016171 1.34 I_3554426 1.50 CD19 NM_001770

1.31 I_3544621 1.35 RPL30 NM_000989 1.50 RPL8 NM_033301

1.32 TM4SF9 NM_005723 1.36 MYLK NM_053025 1.51 SMAD1 NM_005900

1.32 KI0746 NM_015187 1.36 LOC127253 NM_138467 1.52 C21orf81 NM_153750

1.32 RORA NM_134260 1.36 NKG7 NM_005601 1.60 CPNE5 NM_020939

1.32 ZCCHC7 NM_032226 1.36 NM_002304 1.67 AY372690

1.33 FLJ32001 NM_152609 1.36 AL080251 1.67 TCL1A NM_021966

1.33 NG_001019 1.38 NM_001620 1.70 GNG11 NM_004126

1.33 MMD NM_012329 1.38 GZMH NM_033423 1.71 POU2AF1 NM_006235

1.34 POMC NM_000939 1.39 CCL3 NM_002983 1.77 XM_371884

1.34 TAF3 XM_291729 1.41 XM_209178 1.81 IGHG2 BC040042

1.34 LIMS1 NM_004987 1.41 RPS15 NM_001018 1.85 NR_002225

1.34 RPL24 NM_000986 1.41 GNAZ NM_002073 1.91 I_3584237

1.34 SLC12A7 NM_006598 1.44 ZNF234 NM_006630 4.08 PSPHL AJ001612

Data expressed as Log2 mean fold change (D). GenBank identifications (GBID) are provided.
doi:10.1371/journal.pone.0008183.t003

Figure 2. Genomic similarities between North Carolinian and
HapMap populations. Unsupervised principal component analysis
on genotyping data from the AA and CAU discovery set subjects (n = 17
and 34, respectively) and samples from each corresponding HapMap
population, YRI and CEU (n = 90). Principle component 1 and 2
accounted for 22.7% and 11.6%, respectively, of the variation between
all four populations.
doi:10.1371/journal.pone.0008183.g002
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verify that the geo-ancestral genes identified in our analysis of the

microarray data reflect true changes in gene expression. In

general, the direction of change in mRNA levels agreed

completely with the microarray analysis, but with larger mean

fold differences (Figure 3A and Table S2). One exception was the

expression of PSPH. Microarray analysis indicated that PSPH and

a similar gene, PSPHL, were expressed higher in AA compared to

CAU subjects. However, the Agilent array probe for PSPH

(A_23_P251984) cannot distinguish between these two transcripts.

Using qRT-PCR probes specific for each transcript thereby

allowed us to determine that PSPHL (but not PSPH) mRNA levels

were differentially expressed between the two groups. Moreover,

qRT-PCR could not detect PSPHL transcript in most CAU

subjects, whereas most AA subjects expressed levels of PSPHL

transcript near the levels of expression seen in the Universal

Human Reference RNA (Figure 3A), indicating near-Boolean

expression patterns of the PSPHL gene between AA and CAU

subjects.

To determine if changes in mRNA can be used to identify

potential quantifiable markers in blood samples from the study

subjects, we measured circulating levels of the plasma protein,

haptoglobin (HP). Haptoglobin is an abundant acute-phase

reactant elevated in a variety of inflammatory conditions and

functions by modulating oxidative damage as well as the salvage of

free hemoglobin via uptake through the macrophage CD163

scavenger receptor [28,29]. Western blot analysis of total plasma

isolated from the subjects used in our study revealed a 2.960.5

fold increase in circulating HP in CAU versus AA subjects

(Figure 3B), consistent with both microarray and qRT-PCR

analysis (Table S2, Figure 3A). Ancestral-based differences in the

levels of plasma haptoglobin are well described in the literature,

and correlate with a multitude of genetic distinctions: allelic

differences in the coding regions of HP [28], SNPs in the upstream

promoter sequences [30], and intronic regulatory elements [31].

Importantly, a number of recent studies implicate the absolute

amount and quality of the HP gene product as an independent risk

factor for a multitude of diseases including: diabetes [32];

atherosclerosis [33]; poor clinical outcome following myocardial

infarction [28,34]; and percutaneous coronary interventions

[34,35]. In all of these cases, lower levels of functional haptoglobin

increase the likelihood of developing diabetes and cardiovascular

disease.

Validation of Ancestral Patterns of Gene Expression
In order to determine how predictive our geo-ancestral gene set

was of the general population, we used an independent validation

set comprised of 112 unrelated subjects, similarly classified by

self-reported ancestry (32 AA and 80 CAU), to validate the 151

Figure 3. Confirmation of differential gene expression. To verify actual changes in gene expression identified in our analysis, a selected
number of genes were measured by Quantitative real-time PCR (qRT-PCR) and/or immunublot analysis. A) Results of qRT-PCR analysis of the
discovery set subjects normalized to the Universal Human RNA Reference (left, heatmap) or as the mean fold change between AA and CAU discovery
set cohorts (right, table) n = 17 and 34, respectively. All data represented in Log2. The differences between AA and CAU subjects were considered
significant at p,0.05 for all mRNAs shown, except for PSPH (indicated by *). B) Immunoblot analysis of Haptoglobin (Hp) in plasma protein samples
from randomly selected AA and CAU discovery set subjects (AA samples indicated by {). Immunoreactive bands were observed at the predicted
molecular weight, 46 kDa. C) Densitometry analysis presented as the relative amount of Haptoglobin6SEM (n = 6 per group) results in a 2.960.5 fold
increase in Haptoglobin protein in plasma from CAU versus AA subjects.
doi:10.1371/journal.pone.0008183.g003
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geo-ancestral genes. A two-tailed Student’s T test identified 102 of

the 151 genes (67.5%) as differentially expressed at a p value of

#0.05 (range: p = 8.32610216 (PSPHL) to p = 4.9661022 (STX3A);

Table S2). Furthermore, using the 151 genes for supervised

principle component analysis, AA and CAU subjects successfully

separated both discovery and validation sets. As expected, principal

component analysis successfully grouped the discovery set subjects,

with less than 7.0% misclassification (1/17 AA and 2/30 CAU,

Figure 4A). Parallel analysis on the validation set led to a similar

level of ancestral discrimination in the independent subjects

(Figure 4B). A simple nearest centroid classifier built from all 151

genes yielded 84% accuracy in the validation set. These data

validate the gene expression patterns observed in the discovery set of

47 subjects, and demonstrate that these geo-ancestral genes are in

fact stable phenotypes in Americans of African and European

ancestry. Understanding the functional relationships within this

gene set could potentially help in explaining the disproportionate

predisposition of CVD and other diseases between these popula-

tions, a topic that we explore below.

Ancestral Differences in Expression of Carbohydrate
Metabolic Genes

Numerous genes expressed at lower levels in AA relative to CAU

participate in glucose metabolism (Table 2): primary carbohydrate

metabolism (HK2, PYGL, GPT, and PGM1); pentose phosphate

shunt (PGD); and glycosylation of proteins and lipids (ST3GAL6,

SULF2, GALNAC4S-6ST, and ChGn). Interestingly, the decreased

expression of these genes in the AA cohort was notable because of

the increased plasma fructosamine levels in these same subjects

(Table 1). These results suggest that differences in glucose

metabolism between Americans of African and European may

reside at the transcriptional level. The down-regulation of these genes

in the AA cohorts argues against these changes being a

compensatory response to hyperglycemia and suggests instead a

genetic adaptation to changes in the availability of dietary sugars

that may no longer be appropriate to a Western Diet. In order to

explore this idea further and to determine the functional importance

of the genetic differences we identified, we used hyperclustering

analysis of our geo-ancestral gene set to test for differential

expression of gene sets that underlie common biological process.

Hyperclustering is a method of associating genes with significant

enrichments in Gene Ontologies, KEGG pathways, and TRANS-

FAC analysis [13]. Using this methodology on the 151 geo-ancestral

genes, we were able to identify three functional hyperclusters:

Carbohydrate Metabolism, Amino Acid Biosynthesis, and Chemo-

taxis (Figure 5). Of the eight GO categories and four KEGG

pathways enriched at a threshold of p#0.01, half belonged to the

Carbohydrate Metabolism hypercluster. These overrepresented

KEGG pathways and Gene Ontologies within the Carbohydrate

Metabolism hypercluster reaffirm the initial observation of

differential expression of carbohydrate metabolic genes, and begin

to shed light on factors that may affect glycemic regulation in

different ancestral populations.

Regulation of Geo-Ancestral Genes by the Transcription
Factor SREBP1

We next extended our analysis to include algorithms for

identifying transcription factor binding sites in the promoter region

of differentially expressed genes. This analysis led to the

identification of significantly enriched binding sites (p#0.02) of

four predicted transcription factors in the gene set: AML6,

HNF3a, E2F1, and SREBP1. Although transcription factor

activity can be influenced by several factors, such as post-

transcriptional and post-translational modifications and the

availability of co-activators and co-repressors, the direction of

change in overall activity predicts a complementary change in

expression of target genes. The only significant enrichment in

either up- or down-regulated target genes of the four transcription

factors was SREBP1, exhibiting a 2.9-fold enrichment in down-

regulated genes (p,0.05, Table S3). Consistent with this

observation, microarray and qRT-PCR analysis identified expres-

sion for the gene encoding for SREBP1, SREBF1, as significantly

decreased by 0.360.1-fold in AA relative to CAU subjects (t-test

p,0.001, SAM q-value of zero, qRT-PCR p,0.05, Figure 3A,

Table S2).

Although SREBP1 was initially characterized as a primary

regulator of cholesterol anabolic genes [36], recent studies in animal

models detail the critical role SREBP1 plays in the long-term

control of both lipid and glucose homeostasis in an insulin-dependent

manner. As such, SREBP1 mediates the regulation of insulin and

glucose responsive genes in a variety of tissues, including skeletal

muscle, liver, adipose, and the pancreatic islets of Langerhans

[37,38,39]. Promoters of five of the eight genes in the carbohydrate

Figure 4. Validation of geo-ancestral genes. The 151 geo-
ancestral genes were used to perform supervised principle components
analysis of the discovery set of 47 subjects (A) and the validation set of
112 unrelated subjects (B). The first and second principle components
effectively segregated the AA and CAU populations in both cases.
doi:10.1371/journal.pone.0008183.g004
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metabolic hypercluster (Figure 5) contain SREBP1_Q6 binding

motifs. Importantly, while a sequence algorithm identified potential

SREBP1 binding sites in these genes, ChIP analysis and DNase

footprinting determined SREBP1 directly interacts with the promoters

and mediates the transcription of both HKII [40] and PGD [41],

which encode the first enzymes in glycolysis and the pentose

Figure 5. Hyperclustering geo-ancestral genes identify three functional groups. Using the 151 geo-ancestral genes, GATHER identified
significantly enriched categories of Gene Ontologies, KEGG pathways and TRANSFAC predicted binding sites. A) Hyperclustering of geo-ancestral
genes: relative gene expression values are represented by the yellow-blue scale (Log2 mean fold change); Inclusion in a functional class of either Gene
Ontologies (GO) or KEGG pathways is initiated by green; and predicted TRANSFAC binding sites (TF) are represented as the mean fold change
between AA and CAU (using the yellow-blue scale). This resulted in three functional hyperclusters (HC): 1) ‘‘Carbohydrate Metabolism’’; 2) ‘‘Amino Acid
Biosynthesis’’; and 3) ‘‘Chemotaxis’’. B) Detail showing the average relative gene expression (AA vs CAU) and functional categories for each
hypercluster.
doi:10.1371/journal.pone.0008183.g005
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phosphate pathway, respectively. These data provide a mechanism

by which a decrease in SREBP1 expression and transcriptional

activity promotes the differential expression of several geo-ancestral

genes including multiple carbohydrate metabolic genes.

The Influence of cis-Acting Elements Associated with
Gene Expression

Gene expression is influenced by a variety of factors, such as the

thousands of common cis-acting variations that occur in the

population as well as trans-acting factors, such as the activity of

transcription factors, RNA processing, and signaling molecules

[42]. Expression quantitative trait locus (eQTL) analysis combines

gene expression and genotyping (i.e. SNP) data to determine if

changes in gene expression correlate to variations in genomic

sequence. We used local eQTL analysis to identify cis-acting

genetic contributions to the differential expression pattern of the

geo-ancestral genes.

Differentially expressed genes and SNP associations were both

identified with respect to ancestry; as such, the association between

genotype and gene expression may be artificially increased (Figure

S1). This potential bias was minimized by permutation of the SNP

– gene pairs. Association of a SNP with expression after this

permutation is assumed to be due to the selection bias. This

procedure generates a distribution from which to calculate the

expected false discovery rate for a threshold and corresponding set

of candidate eQTLs. Comparing the number of observed p values

versus expected p values from permutation resulted in more eQTL

associations than expected at reasonable thresholds (e.g. 16

observed eQTLs compared to 3 expected SNP; FDR = 15.8%,

p,0.00025, Table S4). Overall, 119 of the 151 genes were

represented by a total of 3241 SNPs, with 106 and 312 SNPs

associating with expression or race, respectively (additive or

Cochran-Armitage model, p,0.01, Figure 6, and Table S2).

Local eQTL analysis also allowed us to determine the potential

influence of cis-acting elements on the differential expression of the

previously discussed cadre of carbohydrate metabolic genes. From

the eight metabolic genes represented in the Carbohydrate

Metabolism hypercluster, four had local eQTL (CHGN, PGM1,

HK2, and PYGL), and all but PGD contained SNPs that associated

with race. However, out of this metabolic cluster only PYGL had a

proportion of eQTL (number of eQTL per total number of gene

SNPs, 3.8%, additive model p,0.01) greater than the mean

proportion of eQTL from the entire geo-ancestral gene list (3.3%).

A similar trend was seen using the proportion of ancestry-

associated SNPs (Cochran-Armitage model, Table S2) suggesting

that relative to the geo-ancestral list, other factors not defined by

these eQTLs may contribute to the differential expression of

metabolic genes. In combination with the presence of SREBP1

binding sites in these carbohydrate metabolic genes and the

observed decreased in SREBF1 expression in AA versus CAU

subjects, these data suggest that both trans-acting elements, such as

SREBP1 activity, and hereditary cis-acting elements contribute to

the differential expression of the carbohydrate metabolic genes

identified in this study (Figure 7).

Discussion

Characterizing inherited patterns of gene transcription is crucial

in understanding the meaning of signals related to disease states

that vary in incidence across different ancestral populations. This

knowledge not only informs the disease data analysis process, it

provides important insight into the range of baseline transcrip-

tional regulation in human populations. The International

HapMap Project characterizes the scope of genetic differences

by genomic sequencing human populations from different

geographical areas: Europe, Asia, and Africa. It is important to

emphasize that the HapMap Project is highly informative, despite

small numbers of subjects from different ancestries: for example,

the YRI and CEU datasets derive from 90 total subjects each (30

trios of two parents and an adult child). This effort tabulated

millions of single nucleotide polymorphisms within these popula-

tions [21]. Several groups have used these data to explore the

genetic components of multi-factorial diseases [43,44]. Recently,

whole genome scans identified single nucleotide polymorphisms

(SNPs) within the p21.3 region of chromosome 9 that are

associated with increased risk of cardiovascular disease and

myocardial infarction in Caucasian populations [45,46,47].

Although there is no mechanistic data on the association of these

non-coding SNPs with disease, it is likely that these silent

polymorphisms are associated with transcriptional control of gene

expression [48]. The burgeoning correlations between whole-

genome SNP patterns and transcriptional regulation is redefining

the use of integrative genomics to understand multi-factorial

diseases, such as cardiovascular and metabolic diseases [49].

We acknowledge that multi-center genome-wide association

studies on cardiovascular disease and diabetes include very large

cohorts; however, our approach was designed to better understand

disease biology by identifying heritable traits that influence gene

expression, not to identify genetic markers solely based on their

predictive power of a disease state. Using this approach, the largest

transcriptional difference observed in this study was associated with

the self-reported ancestry of the subjects. It can be argued that the

concept of race, especially self-reported race can be unreliable.

However, the correlation between genetic data obtained from our

Figure 6. Increase in associations between SNPs and expres-
sion of the geo-ancestral genes. The p value of the observed versus
predicted eQTLs are plotted using the additive model of association.
Data points above the line x = y (--) indicate p values that are smaller
than expected due to chance after correcting for selection bias. There
were 3241 SNPs found in the 151 geo-ancestral genes, 106 of which
associated with expression at a p,0.01 (red) with the remainder at
p$0.01 (blue).
doi:10.1371/journal.pone.0008183.g006
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study cohorts respective of self-proclaimed race and data reported

from other groups studying similar ancestral populations supports

the validity of our cohort partitioning. Indeed, an integrative data

analysis, incorporating SNPs identified in the HapMap project,

identified differentially expressed genes between Americans of

African (AA) and European (CAU) ancestry in the United States

that were also structurally distinct between European and African

populations (as identified in the HapMap project) that we classified

as ‘‘geo-ancestral genes’’. Many of the geo-ancestral genes expressed at

lower levels in AA compared to CAU subjects were associated with

carbohydrate and glucose metabolism. This subset of genes

contained local eQTLs (cis-acting) as well as predicted and/or

confirmed binding sites for the metabolic transcription factor,

SREBP1 (trans-acting), also expressed lower in AA subjects

(Figure 7). These results are consistent with the observations that

Americans of African ancestry are disproportionately affected by

obesity, metabolic syndrome, type 2 diabetes, and cardiovascular

disease [1] as well as recent studies classifying SREBF1 as a

candidate gene both at an expression and genetic level for these

same diseases [50,51,52,53,54]. Studies suggest that variations at cis-

regulatory polymorphisms account for more of the population

differences in prevalence of complex diseases versus trans effects

[23,24,42]. Likewise, future studies including analysis of SREBF1

polymorphisms within our study populations and distant eQTL

studies to identify other loci that contribute to the regulation of

carbohydrate metabolic gene expression should be considered.

A study of the nutritional patterns and diabetes risk among

American children demonstrated that, despite better overall compli-

ance with the FDA recommended ‘‘Food Pyramid,’’ American

children of African ancestry remained at higher risk for the

development of diabetes and pre-diabetic conditions [55]. One

interpretation of our findings is that differences in metabolic

expression profiles between AA and CAU subjects may not be the

sole result of differing nutritional and dietary practices between the

study groups. Likewise, diabetics studied within the Seventh Day

Adventist Church revealed less benefit for American patients of

African versus European ancestry when both groups adhered to the

religious dietary practices of the denomination [56]. More focused

studies are needed to determine and identify the contribution of

genetics to dietary responses, in particular subjects at high risk for

multi-factorial diseases such as cardiovascular disease and diabetes.

Our study identifies ancestral-dependent patterns of gene expression

that may contribute to the differential adaptations of dietary changes

and if better understood, could help therapeutically.

Supporting Information

Figure S1 Illustrating the p-value distributions from different

association tests. An eQTL analysis was performed using an additive

(left) or genotype (middle) model. In both cases, there is enrichment

of small p-values beyond what is expected due to chance. This

enrichment is likely due to selection bias because both SNPs and

genes were selected based on their association with self reported race.

Found at: doi:10.1371/journal.pone.0008183.s001 (0.87 MB TIF)

Table S1 Real-time qPCR reagents. Quadruplicate reactions

from each subject’s RNA sample were performed (N = 47 subjects;

Figure 7. Contributions of cis- and trans-acting variations to disease pathogenesis. The level of gene expression is influenced by both cis-
and trans-acting factors. Analysis of the carbohydrate metabolic hypercluster identified in the geo-ancestral genes identified both SNPs (cis, top) and
transcription factors such as SREBP1 (trans, bottom) that function on a genomic level (green) contributing to the expression of genes (blue) such as
PYGL and HKII. The enzymes encoded by these genes contribute in carbohydrate and glucose metabolism (yellow) and likely contribute to the
increase the predisposition to multi-factorial diseases (red) in Americans of African versus European ancestry.
doi:10.1371/journal.pone.0008183.g007
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17 self-identified African American, 30 self-identified Caucasian).

RNA input was calibrated with 18S expression levels and relative

mRNA levels were normalized to levels from the UHRR

(Stratagene, LaJolla, CA). *Determined using ProbeFinder

(version 2.44) and the Universal ProbeLibrary (Roche Applied

Science, Indianapolis, IN).

Found at: doi:10.1371/journal.pone.0008183.s002 (1.39 MB

XLS)

Table S2 SNP, gene expression, qRT-PCR, and eQTL analysis.

Found at: doi:10.1371/journal.pone.0008183.s003 (1.48 MB

XLS)

Table S3 TRANSFAC enrichment analysis. For each predicted

TRANSFAC binding site the actual and predicted number (shown

in parentheses) are provided assuming an equal distribution

between up- and down-regulated genes. * indicates distributions

considered unequal at p,0.05, d = fold-enrichment in down-

regulated genes.

Found at: doi:10.1371/journal.pone.0008183.s004 (1.39 MB

XLS)

Table S4 eQTL false discovery rates (FDR) in geo-ancestral

genes.

Found at: doi:10.1371/journal.pone.0008183.s005 (1.39 MB

XLS)
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