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Abstract

DANIEL ORR: Nonsymmetric Difference Whittaker Functions and Double Affine
Hecke Algebras

(Under the direction of Ivan Cherednik)

This dissertation is devoted to a new theory of nonsymmetric difference Whittaker

functions and the corresponding Toda-Dunkl operators for arbitrary reduced irreducible

root systems. The nonsymmetric Whittaker functions are obtained as limits of (global)

spherical functions under a variant of a limiting procedure due to Ruijsenaars and Etingof.

Under this procedure, the Toda-Dunkl operators are realized as limits of difference-

reflection Dunkl operators. We give a direct and constructive proof of the existence of

these limits. We show that the nonsymmetric Whittaker function solves the eigenvalue

problem for Toda-Dunkl operators and admits an explicit expansion in terms of the

level-one affine Demazure characters.
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Introduction

This dissertation is devoted to a new theory of nonsymmetric difference Whittaker

functions and the corresponding Toda-Dunkl operators for arbitrary reduced irreducible

root systems, generalizing the A1–case considered in [15, 16, 17]. Our approach is

based on a new technique involving W–spinors, which can be thought of as functions

{fw} indexed by the elements of the (finite) Weyl group W with the natural action of

W on the indices. This technique has important links to the classical harmonic analysis

on symmetric spaces and the theory of spherical, Whittaker, and Bessel functions. For

instance, W–spinors arise in the study of nonsymmetric or singular symmetric solutions

of symmetric systems such as the Quantum Many-Body Problem; see [6, 15, 31].

The theory of nonsymmetric (global) spherical functions from [9] is the starting point

of our approach; these functions are denoted by G(X,Λ) in Theorem 3.2.1. We introduce

the nonsymmetric difference Whittaker function Ω as the limit ofG under a nonsymmetric

variant of a limiting procedure due to Ruijsenaars [32] and Etingof [18]. The function

Ω is a quadratic-type generating function for the nonsymmetric Macdonald polynomials

Eb (at t = 0) for b in the weight lattice P . Moreover, the values of Ω at X = qc for c ∈ P

coincide with Ec(Λ) up to an explicit factor. See Theorem 4.4.1, the main result of this

dissertation, and also Proposition 4.3.1.

Symmetric variants of Ω were introduced and studied in [13]. These symmetric

Whittaker functions W solve the (generalized) difference Toda eigenvalue problem and,

moreover, they simultaneously generalize the Whittaker functions from the classical har-

monic analysis on symmetric spaces [23, 37] and their p–adic counterparts from [4].

They are expressed in terms of Eb for antidominant b only (such Eb are W–invariant).



We show that the function Ω solves the eigenvalue problem for the Toda-Dunkl opera-

tors Ŷb (b ∈ P ), which we introduce as limits of the Dunkl difference-reflection operators.

Establishing the existence of the Toda-Dunkl operators is one of the central developments

of this dissertation. Proposition 5.2.1 provides a direct and constructive justification of

the existence of Ŷb via the nonsymmetric Ruijsenaars-Etingof procedure; its proof pro-

vides formulas for basic spinor Dunkl operators, including those for the minuscule weights

(which are involved even for root systems of type A—see Section 5.5 for some examples).

The nonsymmetric Whittaker function Ω leads an indirect justification of the exis-

tence of Toda-Dunkl operators (see the Remark following Theorem 4.4.1). However, this

approach is inconvenient for finding explicit formulas and does not clarify the structure

of these operators.

Via symmetrization of Ω and Ŷb, we recover the symmetric Whittaker functions and

Toda operators from [13]; see (4.22) and Proposition 5.4.1.

0.1. Origins

In order to motivate our approach, let us consider the case of GLN in more detail. In

this setting, the difference Toda Hamiltonian is the operator

H =
N−1∑
i=1

(1−Xi+1X
−1
i ) Γi + ΓN ,(0.1)

acting on functions F of the variables X1, . . . , XN ∈ C∗, where Γi is the translation

operator given by

Γi(F )(X1, . . . , XN) = F (X1, . . . , qXj, . . . XN)

and q ∈ C∗. The operator H is equivalent (by an explicit gauge transformation) to

Ruijsenaars’ quantum relativistic Toda Hamiltonian modeling a system of N particles on

a line with exponential nearest-neighbor interactions [18, 32].
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The operator H is a certain limit of the Macdonald difference operator

L =
N∑
i=1

∏
j 6=i

t1/2Xi − t−1/2Xj

Xi −Xj

Γi (t ∈ C∗)

when t→ 0. More precisely, before taking the limit one conjugates L as follows. For any

a = (a1, . . . , aN) ∈ ZN = P , we set

Xa = Xa1
1 · · ·X

aN
N and Γa = Γa11 · · ·Γ

aN
N .

Now let ρ = (N−1
2
, N−3

2
, · · · ,−N−1

2
) and consider the operator

κ(L) = (Xkρ Γ−kρ)L (Xkρ Γ−kρ)
−1,(0.2)

where we impose the relation t = qk. (In order for this to make sense, we should require

that kρ ∈ ZN ; however, the result κ(L), when expressed in terms of q and t, depends

neither on this restriction nor on the specific choice of k.) A straightforward calculation

then shows that

RE(L) := lim
t→0

κ(L) = H.(0.3)

This limiting procedure is due to Ruijsenaars [32] and Etingof [18].

In [7], Cherednik used double affine Hecke algebras (DAHAs) to realize L (and its

analogues for arbitrary root systems) as symmetrizations of Dunkl operators. The latter

are pairwise commutative difference-reflection operators indexed by a ∈ P ; for GLN ,

they are denoted Ya for a ∈ ZN . If ω1 = (1, 0, . . . , 0), then one has

L =
∑

a∈W (ω1)

Y−a,

upon the restriction to W–invariant functions. Here W = SN is the symmetric group.

3



The symmetric (global) spherical function F (X,Λ) from [9] solves the Macdonald

eigenvalue problem. In the case of GLN , the eigenvalue problem reads:

L(F (X,Λ)) = (Λ1 + · · ·+ ΛN)F (X,Λ),

where Λ = (Λ1, · · · ,ΛN) ∈ (C∗)N . In [13], it was shown (for arbitrary root systems) that

the limit

W(X,Λ) := lim
t→0

XkρΓ−kρ(F (X,Λ))(0.4)

exists and solves the corresponding Toda eigenvalue problem.

Correspondingly, the nonsymmetric spherical function G(X,Λ) from [9] is a solution

to the Dunkl eigenvalue problem:

Ya(G(X,Λ)) = Λ−1
a G(X,Λ) (a ∈ ZN),

where we define Λa as above. The main objective of this dissertation is to extend the

limits (0.3) and (0.4) to the nonsymmetric setting (for arbitrary root systems).

0.2. Perspectives

The results of this dissertation suggest the following topics for future research:

Representation theory of nil-DAHA. In our construction of the nonsymmetric Whit-

taker function Ω and the Toda-Dunkl operators Ŷb, a certain degeneration of the DAHA

as t → 0 plays a fundamental role. The resulting algebra is called nil-DAHA; see Def-

inition 2.4.2. The function Ω admits an alternate characterization as the kernel of an

integral transform between irreducible nil-DAHA modules. The image of this transform,

the so-called spinor-polynomial representation, is a new addition to the representation

theory of DAHA. In the rank-one case, the spinor-polynomial representation was given

its proper representation-theoretic interpretation as a (sub-)induced nil-DAHA module

in [16]. Extending this description of the spinor-polynomial representation to arbitrary

root systems and developing a general classification of induced nil-DAHA modules are

4



interesting problems for future research. In the general representation theory DAHA, the

nil-DAHA is expected to play a role analogous to that of crystal bases in the representa-

tion theory of quantum groups.

Analytic theory of nonsymmetric Whittaker functions. The study of asymptotic ex-

pansions of symmetric (global) Whittaker functions—the analog of Harish-Chandra’s

expansion of spherical functions on real semisimple Lie groups [24]—was initiated by

Cherednik in [13]. More generally, the symmetric (global) spherical functions have been

studied from the same point of view in [36]. While convergent expansions are known to

exist in the symmetric setting, the exact expansion coefficients are complicated and only

indirectly described. The asymptotic theory of nonsymmetric (spherical and Whittaker)

functions is expected to lead to new insights in this direction. In addition to their own

fundamental importance, the asymptotic expansions of symmetric Whittaker functions

are particularly relevant in several of the applications discussed below.

Applications of symmetric Whittaker functions. The symmetric difference Whittaker

functions are known to have many applications, including the quantum K–theory of

flag varieties [3, 22], the theory of q–Whittaker processes [1], and generalized Rogers-

Ramanujan identities related to the representation theory of affine Lie algebras [14].

Furthermore, they exhibit important connections to Whittaker vectors in the represen-

tation theory of quantum groups [18, 19, 34]. The works [20, 21] provide an extensive

treatment of the GLN–case, touching upon some of these applications (and more). The

theory of nonsymmetric Whittaker functions and Toda-Dunkl operators developed in this

dissertation is expected to enrich these directions of research.

0.3. Outline

Let us describe the contents of this dissertation in more detail. In Chapter 1, we

gather basic facts about root systems, Weyl groups, and double affine Hecke algebras.

Chapter 2 is devoted to the nonsymmetric Macdonald polynomials, their construction
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using intertwiners, and their behavior under certain limits. The global spherical func-

tions, which extend the nonsymmetric Macdonald polynomials and are essential for the

construction of the nonsymmetric difference Whittaker function Ω, are introduced in

Chapter 3. In Chapter 4, we formulate our main result and prove the existence of Ω,

leading to an indirect proof of the existence of the Toda-Dunkl operators. Finally, in

Chapter 5, we provide a direct and constructive proof of the existence of these operators.

This proof involves certain combinatorial properties of reduced expressions in the Weyl

group and is quite interesting in its own right.
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CHAPTER 1

Double affine Hecke algebras

1.1. Root systems

Fix an integer n ≥ 1. For vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) in Rn, let

(x, y) = x1y1 + · · · + xnyn be their dot product. Given α ∈ Rn \ {0}, let Hα denote the

hyperplane in Rn orthogonal to α. The reflection through Hα can be expressed as

sα(x) = x− (x, α∨)α,

where α∨ := 2α/(α, α).

A root system in Rn is a finite subset R ⊂ Rn \ {0} satisfying the following axioms:

R spans Rn,(1.1)

(α, β∨) ∈ Z for all α, β ∈ R,(1.2)

sα(β) ∈ R for all α, β ∈ R.(1.3)

Elements of R are called roots. Note that α ∈ R implies that −α = sα(α) ∈ R. We will

assume, in addition, that R is reduced and irreducible. We say that R is reduced if for

any α ∈ R, one has Rα ∩R = {±α}. We say that R is irreducible if it is not possible to

partition R into two nonempty, mutually orthogonal subsets.

We refer to [2] for the classification of root systems and for proofs of the following

basic properties of R.

There are at most two possible lengths of roots in R. When there are two distinct

root lengths, we refer to roots as being short and long; otherwise, all roots are called both

short and long.

The Weyl group W is the subgroup of O(n,R) generated by the reflections {sα}α∈R.



For any c ∈ R∗, the set cR is again root system having the same Weyl group as R.

Note that the quantity (α, β∨) is invariant under simultaneous scaling of α and β. We

assume that (α, α) = 2 for short roots α. For any α ∈ R, we set

να = (α, α)/2, νR = {να : α ∈ R}.

Then νR is one of the following sets: {1}, {1, 2}, or {1, 3}.

A chamber of R is a connected component of Rn \ ∪α∈RHα. The Weyl group W acts

simply transitively on the set of chambers. The choice of a chamber C gives rise to a

partition of R into disjoint subsets R = R+ ∪R−, where for any x ∈ C

R+ = {α ∈ R : (x, α) > 0}, R− = −R+.

Chambers are in bijection with bases of R. The latter are, by definition, subsets

∆ ⊂ R having the property that each root can be written uniquely as a sum

∑
α∈∆

nαα(1.4)

with either all nα ≥ 0 or all nα ≤ 0. Given a chamber C, determining the partition

R = R+ ∪R−, the associated base ∆ is the set of all α ∈ R+ which cannot be written as

α = β + γ for some β, γ ∈ R+. Then R+ (resp. R−) consists of all roots represented as

sums (1.4) such that nα ≥ 0 (resp. nα ≤ 0) for all α ∈ ∆. A base of R is also a basis of

Rn and therefore any base has cardinality equal to n.

From this point on, we fix a chamber C and the corresponding base ∆. Write ∆ =

{α1, · · · , αn} and set si = sαi . The αi are called simple roots, and the si simple reflections.

The Weyl group W is generated by the simple reflections. In fact, W admits an explicit

presentation as a Coxeter group—namely, W is generated by s1, . . . , sn subject to the
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defining relations

s2
i = 1 (1 ≤ i ≤ n),(1.5)

(sisj)
mij = 1 (1 ≤ i 6= j ≤ n),(1.6)

where π − π/mij is the angle between αi and αj. Explicitly, mij = 2, 3, 4, or 6 as

(αi, α
∨
j )(αj, α

∨
i ) = 0, 1, 2, or 3, respectively. The relations (1.6), which are typically

referred to as the braid relations, can be written as

sisjsi · · · = sjsisj · · · ,(1.7)

where both sides consist of mij factors.

In particular, any w ∈ W can be written as a product

w = sjl · · · sj1 ,(1.8)

where j1, . . . , jl ∈ {1, . . . , n}. Define the length of w, denoted l(w), to be the smallest l

for which an expression of the form (1.8) exists. An expression (1.8) having l = l(w) will

be called a reduced expression for w. The length function on W is independent of the

choice of the chamber C, which justifies the notation l(w).

The group W has a unique element w0 of longest length. This element is also uniquely

determined by the condition w0(C) = −C. The length of w0 is the cardinality of R+.

The dual root system is defined as R∨ = {α∨ : α ∈ R}. One readily verifies that R∨

is a root system in Rn with base {α∨1 , · · · , α∨n} and the same Weyl group as R. Elements

of R∨ are called coroots.

The root lattice Q and coroot lattice Q∨ are the (additive) subgroups of Rn generated

by R and R∨, respectively. Explicitly,

Q =
n⊕
i=1

Zαi, Q∨ =
n⊕
i=1

Zα∨i .

9



Let

Q± =
n⊕
i=1

Z±αi, Q∨± =
n⊕
i=1

Z±α∨i ,

where Z± = {m ∈ Z : ±m ≥ 0}. We also set Z>0 = {m ∈ Z : m > 0}.

The weight lattice P is dual to the coroot lattice Q∨ and the coweight lattice P∨ is

dual to the root lattice Q:

P = {b ∈ Rn : (b, α∨) ∈ Z,∀α ∈ R}, P∨ = {b ∈ Rn : (b, α) ∈ Z,∀α ∈ R}.

In terms of the fundamental weights ω1, . . . , ωn and fundamental coweights ω∨1 , . . . , ω
∨
n

determined by

(ωi, α
∨
j ) = δij, (ω∨i , αj) = δij,

one has

P =
n⊕
i=1

Zωi, P∨ =
n⊕
i=1

Zω∨i .

Let

P± =
n⊕
i=1

Z±ωi, P∨± =
n⊕
i=1

Z±ω∨i .

Elements of P (resp. P∨) are called dominant weights (resp. dominant coweights). We

refer to elements of P− and P∨− as antidominant. An element b ∈ P (resp. P∨) belonging

to a chamber (i.e., (b, α) 6= 0 for all α ∈ R) is called a regular (co)weight.

Let

ρ =
∑
ν∈νR

ρν , ρν =
1

2

∑
α∈R+
να=ν

α =
∑

1≤i≤n
νi=ν

ωi,

ρ∨ =
∑
ν∈νR

ρ∨ν , ρ∨ν = ν−1ρν =
1

2

∑
α∈R+
να=ν

α∨ =
∑

1≤i≤n
νi=ν

ω∨i .

For any b ∈ P , let b+ (resp. b−) denote the unique dominant (resp. antidominant)

weight in the orbit W (b). For x, y ∈ Rn, we write x ≤ y to mean that y − x ∈ Q+, and

we write x < y if in addition x 6= y. For any b ∈ P , one has b− ≤ b ≤ b+.

10



We define a partial ordering � on P as follows:

b � c ⇐⇒ b− ≤ c− and if b− = c−, then b ≤ c.(1.9)

Note that b− = c− means that b, c belong to the same W–orbit. We write b ≺ c if b � c

and b 6= c. Note that � and ≤ agree on P−. Within each W–orbit of P , the antidominant

weight is minimal with respect to �, and the dominant weight is maximal.

We will also use the Bruhat ordering on W , which can be defined as follows. Write

w → w′ if there exists some α ∈ R such that w = sαw
′ and l(w) > l(w′). Then the

Bruhat ordering is the partial ordering ≥ generated by these relations. In other words,

w ≥ w′ if there exists a chain w = w1 → w2 → · · · → wm = w′.

1.2. Affine Weyl groups

Denote elements of Rn × R by [x, ζ] for x ∈ Rn and ζ ∈ R. The (twisted) affine root

system1 associated to R is the following subset of Rn × R:

R̃ = {[α, ναj] : α ∈ R, j ∈ Z},

Recall that να = (α, α)/2 and να = 1 when α is a short root. Elements of R̃ are called

affine roots. We extend the dot product on Rn to Rn × R trivially:

([x, ζ], [y, ξ]) := (x, y).

For any affine root α̃ = [α, ναj], we set α̃∨ = 2α̃/(α̃, α̃) and να̃ = (α̃, α̃)/2 = να.

For any affine root α̃ = [α, ναj], consider the hyperplane

Hα̃ := {x ∈ Rn : (x, α) + ναj = 0}.

1 These are the real roots of the following affine root systems from [26]:

R An Bn Cn Dn E6,7,8 F4 G2

R̃ A
(1)
n D

(2)
n+1 A

(2)
2n−1 D

(1)
n E

(1)
6,7,8 E

(2)
6 D

(3)
4

11



We note that (x, α) + ναj = να((x, α∨) + j), so Hα̃ is equivalently described by the

equation (x, α∨) + j = 0. Let sα̃ denote the reflection in Rn through the hyperplane Hα̃.

This reflection is given explicitly by the formula

sα̃((x)) := x− ((x, α∨) + j)α = sα(x)− jα.(1.10)

The affine Weyl group W̃ is the group of affine transformations of Rn generated by

the reflections {sα̃}α̃∈R̃. Due to (1.10), one has

sαsα̃ = τ−jα,

where τy for y ∈ Rn denotes the translation τy((x)) = x+ y. One has W̃ = W nQ, where

we identify Q with the subgroup {τb : b ∈ Q} ⊂ W̃ and wτbw
−1 = τw(b) for any w ∈ W

and b ∈ Q. We simply write b in place of τb from now on.

The affine Weyl group naturally acts on the space of affine linear functions on Rn,

which we identify with Rn × R as follows. Given any [y, ζ] ∈ Rn × R, we form the affine

linear function x 7→ (x, y) + ζ. Under this identification, the action w̃(f)(x) = f(w̃−1(x))

of w̃ = wb ∈ W̃ on an affine linear function f , is given by

wb([y, ζ]) = [w(y), ζ − (b, x)].(1.11)

This action preserves R̃, since

wb([α, ναj]) = [w(α), να(j − (b, α∨))].(1.12)

The actions of W̃ on Rn × R and Rn defined above are compatible in the following

sense. Define

([x, ζ], [y, ξ] + d) := (x, y) + ζ.(1.13)
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In other words, we enlarge Rn × R by adding a linearly independent element2 d and we

extend the pairing by setting ([0, 1], d) = 1. Then one has

(w̃([x, ζ]), w̃((y)) + d) = ([x, ζ], y + d).(1.14)

Connected components of Rn \
⋃
α̃∈R̃Hα̃ are called alcoves. The affine Weyl group W̃

acts simply transitively on the set of alcoves. The fundamental alcove A is determined

by the inequalities 0 < (x, α∨) < 1 for all α ∈ R+. The inequalities (x, α∨i ) > 0 for

i = 1, . . . , n and (x, ϑ) < 1 are sufficient to describe A. Here ϑ is the highest short root

of R, i.e., the unique maximal short root with respect to the partial ordering ≤. One

has ϑ∨ = ϑ and ϑ is the highest root in R∨. One may also characterize ϑ as the unique

short root lying in P+.

The choice of an alcove determines a disjoint union R̃ = R̃+ ∪ R̃−, where for any x in

the chosen alcove R̃+ = {[α, ναj] : (x, α∨) + j > 0} and R̃− = −R̃+. From this point on,

we choose the fundamental alcove, which gives

R̃+ = {[α, ναj] : α ∈ R+, j ≥ 0 or α ∈ R−, j > 0}, R̃− = −R̃+.(1.15)

We identify R with the subset R× {0} ⊂ R̃.

The base of R̃ determined by A consists of the simple roots {α0, α1, · · · , αn}, where

α0 = [−ϑ, 1]. Every affine root can be written uniquely as a sum α̃ =
∑n

i=0 niαi for

ni ∈ Z, and one has α̃ ∈ R̃+ (resp. α̃ ∈ R̃−) if and only if all ni ≥ 0 (resp. all ni ≤ 0).

Let s0 = sα0 . The affine Weyl group W̃ is generated by {s0, s1, . . . , sn} subject to the

defining relations

s2
i = 1 (0 ≤ i ≤ n),(1.16)

(sisj)
mij = 1 (0 ≤ i 6= j ≤ n),(1.17)

2 In the notation of [26], the element d corresponds to Λ0 and [0, 1] to the imaginary root δ. The affine
action w̃((y)) is the so-called level-one action (modulo δ).
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where mij = 2, 3, 4, or 6 as (αi, α
∨
j )(αj, α

∨
i ) = 0, 1, 2, or 3, respectively. Thus W̃ is a

Coxeter group, and the Weyl group W is the subgroup of W̃ generated by {s1, . . . , sn}.

We define the length l(w̃) as the smallest l for which there exists an expression

w̃ = sjl · · · sj1 where j1, . . . , jl ∈ {0, . . . , n}. For w̃ = w ∈ W , this definition agrees with

the one given in the previous section.

Another important characterization of the length function l(w̃) is the following. One

has l(w̃) = |λ(w̃)|, where

λ(w̃) := {α̃ ∈ R̃+ : w̃(α) ∈ R̃−} = R̃+ ∩ w̃−1(R̃−).

The following refinement of λ(w̃) gives more information:

λ(w̃) =
⋃
ν∈νR

λν(w̃), where λν(w̃) = {α ∈ λ(w̃) : να = ν}.(1.18)

Define lν(w̃) = |λν(w̃)|. Then lν(w̃) is equal to the number of sj with ναj = ν in any

reduced expression for w̃.

Consider the larger group Ŵ = WnP , which is called the extended affine Weyl group.

The affine Weyl group W̃ is a normal subgroup of Ŵ , and one has a natural isomorphism

Ŵ/W̃ ∼= P/Q. The affine action of W̃ on Rn extends to Ŵ via the translations τb((x)) =

x + b for b ∈ P , and Ŵ acts on Rn × R preserving R̃ by (1.11). The compatibility

condition (1.14) continues to hold for these actions of Ŵ .

We extend the length function to Ŵ by defining λν(ŵ) = R̃+ ∩ ŵ−1(R̃−), λ(ŵ) =

∪ν∈νRλν(ŵ), lν(ŵ) = |λν(ŵ)|, and l(ŵ) = |λ(ŵ)| for any ŵ ∈ Ŵ .

In contrast to W̃ , the group Ŵ is not a Coxeter group; it has elements of length

zero other than the identity element id. Let Π denote the subgroup of Ŵ consisting of

all length zero elements. The group Π can also be characterized as the stabilizer in Ŵ

of the fundamental alcove. Hence the composition Π ↪→ Ŵ → Ŵ/W̃ gives rise to an

isomorphism Π ∼= Ŵ/W̃ , since W̃ acts simply transitively on the set of alcoves.

Therefore, one has isomorphisms Π ∼= Ŵ/W̃ ∼= P/Q. The nonzero elements in P/Q

are in bijection with the fundamental weights ωr satisfying (ωr, ϑ) = 1, which are the
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minuscule fundamental weights. Note that (ωr, ϑ) = 1 is equivalent to ωr ∈ A. Let

O′ := {r : (ωr, ϑ) = 1}, O := O′ ∪ {0}.

Under the composite isomorphism P/Q ∼= Π, the coset ωr+Q corresponds to the element

πr ∈ Ŵ defined by

πr := ωru
−1
r ,

where ur the unique shortest element inW such that ur(ωr) ∈ P−. Explicitly, ur = w0w
ωr
0 ,

where wωr0 is the unique longest element in the stabilizer of ωr in W .

Since Π preserves the fundamental alcoveA, it permutes the simple roots {α0, . . . , αn},

and consequently

πrsiπ
−1
r = sj, where πr(αi) = αj.(1.19)

We note that for r ∈ O, one has πr(α0) = αr and π−1
r = πr∗ , u

−1
r = ur∗ , where r∗ is

determined from the relation −w0(αr) = αr∗ .

Any ŵ ∈ Ŵ can be written uniquely as ŵ = πrw̃, where r ∈ O and w̃ ∈ W̃ . One has

l(ŵ) = l(w̃). We call ŵ = πrsjl · · · sj1 a reduced expression if and only l = l(w̃) = l(ŵ).

Given any ŵ = πrw̃ ∈ Ŵ and any reduced expression w̃ = sjl · · · sj1 ∈ W̃ , one obtains

an ordering of the λ–set:

λ(ŵ) = { α̃1 = αj1 , α̃
2 = sj1(αj2), . . . , α̃

l = w̃−1sjl(αjl) }.(1.20)

We will call (1.20) the λ–sequence associated with the given reduced expression for ŵ.

Such sequences are exactly those in R̃+ satisfying properties (i, ii) of the following lemma.

Lemma 1.2.1 ([12]). Given ŵ ∈ Ŵ and a reduced expression ŵ = πrsjl · · · sj1, form

the λ–sequence using (1.20).

(i) If α̃ = α̃q + α̃r ∈ R̃+, then α̃ = α̃p for some p between q and r. The same holds if

α̃ = c1α̃
q + c2α̃

r ∈ R̃+ for positive rational c1, c2.
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(ii) If λ(ŵ) 3 α̃ = β̃ + γ̃ for β̃, γ̃ ∈ R̃+ ∪ [0,Z+], then at least one of β̃, γ̃ belongs to

λ(ŵ) and exactly one of β̃, γ̃ comes before α̃ in λ(ŵ).

For arbitrary b ∈ P , we set πb := bu−1
b ∈ Ŵ , where ub is defined to be the unique

shortest element of W satisfying ub(b) = b−. Thus πωr = πr and uωr = ur for r ∈ O′.

The element πb can be characterized as the unique minimum length representative of the

coset of b in Ŵ/W̃ .

Lemma 1.2.2. One has the following explicit descriptions of λ–sets:

λ(b) =

{
[α, ναj] :

0 ≤ j < (b, α∨) if α ∈ R+

0 < j ≤ (b, α∨) if α ∈ R−

}
,(1.21)

λ(πb) =

{
[α, ναj] : α ∈ R− and

0 < j < (b−, α
∨) if u−1

b (α) ∈ R+

0 < j ≤ (b−, α
∨) if u−1

b (α) ∈ R−

}
,(1.22)

λ(ub) = { α ∈ R+ : (b, α) > 0 }.(1.23)

Proof. Using (1.12), it is straightforward to verify (1.21) and (1.22). For a proof of

(1.23), see [30, (2.4.4)]. 2

Using (1.21), one sees that lν(b) = lν(w(b)) for any w ∈ W and b ∈ P . Hence

lν(b) = lν(b+) = 2(b+, ρ
∨
ν ).(1.24)

We will need some further properties of the reflections sα̃ and their λ–sequences.

Lemma 1.2.3. Let α̃ ∈ R̃+.

(i) If β̃ ∈ λ(sα̃) \ {α̃}, then β̃′ = −sα̃(β̃) belongs to λ(sα̃) and α̃ lies between β̃ and

β̃′ in any ordering of λ(sα̃) via (1.20).

(ii) There exists a reduced expression of the form

sα̃ = sj1 · · · sjpsmsjp · · · sj1 , where 0 ≤ j1, . . . , jp,m ≤ n,(1.25)

and j1, . . . , jp,m ≥ 1 if α̃ = α ∈ R+.
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(iii) Construct the λ–sequence λ(sα̃) using (1.20) and a reduced expression of the

form (1.25). Then one has −sα̃(α̃i) = α̃l+1−i for any 1 ≤ i ≤ l = l(sα̃). In particular,

α̃ = α̃p+1.

Proof. (i) Clearly, β̃′ ∈ λ(sα̃) and β̃ + β̃′ is a positive integer multiple of α̃. Hence

Lemma 1.2.1(ii) gives the claim.

(ii) We argue by induction of l(sα̃), which must be odd. The claim is trivial when

l(sα̃) = 1. If l(sα̃) ≥ 3, find some αi (0 ≤ i ≤ n) such that l(sα̃si) = l(sisα̃) < l(sα̃).

Then sα̃(αi) ∈ R̃− and sα̃(αi) 6= −αi. Hence sisα̃(αi) < 0 and consequently l(sisα̃si) <

l(sisα̃) < l(sα̃). By induction sisα̃si = ssi(α̃) has a reduced expression of the form (1.25).

We multiply both sides of this expression by si to complete the argument.

(iii) This is immediate from (1.20). 2

Finally, we need a formula for the length lν(sα) of non-affine reflections.

Lemma 1.2.4. Let α ∈ R+ and

δα,ν = δνα,ν , ηα,ν =


ν if να = 1 = νsht and ν = νlng,

1 otherwise.

Then

lν(sα) = 2
(α, ρν)

ναηα,ν
− δα,ν .(1.26)

More explicitly, one has lν(sα) = 2(α∨, ρν)− δα,ν for long α and lν(sα) = 2(α, ρ∨ν )− δα,ν

for short α.

Proof. We use the formula

ρν − w(ρν) =
∑

β∈λν(w)

β.(1.27)

as follows: 2(ρν , α
∨) = (ρν − sα(ρν), α

∨) = δα,ν +
∑

β∈λν(sα) ηα,β = δα,ν + ηα,νlν(sα). 2
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1.3. Affine Hecke algebras

Let {t1/2α }α∈R be a family of indeterminates satisfying t
1/2
w(α) = t

1/2
α for all α ∈ R and

w ∈ W . We understand t
1/2
α as a (formal) fractional power of tα, e.g., (t

1/2
α )2 = tα. Let

Qt be the field of rational functions in the indeterminates {t1/2α }α∈R. We write t
1/2
α̃ = t

1/2
α

for α̃ = [α, ναj] and t
1/2
i = t

1/2
αi for i = 0, . . . , n.

The affine Hecke algebra H̃ is the algebra generated over Qt by {T0, T1, . . . , Tn} subject

to the relations

(Ti − t1/2i )(Ti + t
−1/2
i ) = 0 (i = 0, · · · , n),(1.28)

TiTjTi · · · = TjTiTj · · · (0 ≤ i 6= j ≤ n),(1.29)

where the braid relations (1.29) match those from W̃ , i.e., they contain exactly mij

factors on each side. We note that if the parameters t
1/2
i are specialized to t

1/2
i = 1 for

all i = 0, . . . , n, then H̃ can be naturally identified with the group algebra Q[W̃ ].

Given a reduced expression w̃ = sj` · · · sj1 ∈ W̃ , define Tw̃ := Tj` · · ·Tj1 . Since the

Ti satisfy the same braid relations as the si, the definition of Tw̃ is independent of the

reduced decomposition for w̃ (see, e.g., [2, Chapter IV, §1, Proposition 5]). The elements

Tw̃ form a basis for H̃ over Qt.

Corresponding to Ŵ , we define the extended affine Hecke algebra Ĥ by adjoining the

group Π to H̃ with the additional relations

πrTiπ
−1
r = Tj, where πr(αi) = αj (r ∈ O, 0 ≤ i ≤ n).(1.30)

More precisely, Ĥ is defined as the tensor product Ĥ = Qt[Π] ⊗Qt H̃ with the multi-

plication between the tensor factors determined by the relations (1.30); this algebra is

commonly referred to as the smash product of Π and H̃.

Given a reduced expression ŵ = πrsj` · · · sj1 ∈ Ŵ , define Tŵ := πrTj` · · ·Tj1 , which

again does not depend on the reduced expression for ŵ. The elements Tŵ form a basis
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for Ĥ and satisfy

Tv̂ Tŵ = Tv̂ŵ, provided `(v̂ŵ) = `(v̂) + `(ŵ).(1.31)

In particular, for b, c ∈ P+ or b, c ∈ P−, one has TbTc = Tb+c and hence Tb and Tc

commute; here we use (1.24).

We define elements Yb (b ∈ P ) in Ĥ as follows. Any b ∈ P can be expressed as

b = b1 − b2 for b1, b2 ∈ P+. Define Yb := Tb1T
−1
b2

for any such expression; it is easy to see

that Yb is independent of the choice of b1, b2. In particular, Yb = Tb whenever b ∈ P+.

The {Yb : b ∈ P} generate a commutative subalgebra naturally isomorphic to the group

algebra Qt[P ]; denote this subalgebra by Qt[Y ].

One has the relations (see [28]):

TiYb = Ysi(b)Ti + (t
1/2
i − t

−1/2
i )

Ysi(b) − Yb
Y−αi − 1

, for i = 1, . . . , n and b ∈ P.(1.32)

It is easy to see that the quotient (Ysi(b) − Yb)/(Y−αi − 1) belongs to Qt[Y ]. Particular

cases of (1.32) include:

TiYb = YbTi if (b, α∨i ) = 0 and i > 0,(1.33)

T−1
i YbT

−1
i = Ysi(b) if (b, α∨i ) = 1 and i > 0.(1.34)

Proposition 1.3.1 ([28]). The sets

{YbTw : b ∈ P, w ∈ W} and {TwYb : b ∈ P, w ∈ W}

are bases of Ĥ.

The Yb provide a convenient description of the center of Ĥ:

Proposition 1.3.2 ([28]). The center of Ĥ is Qt[Y ]W , where we let w(Yb) = Yw(b)

for w ∈ W and b ∈ P .
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For any b ∈ P and a reduced expression b = πrsjl · · · sj1 , one has Yb = πrT
εl
jl
· · ·T ε1j1 ,

where

εp =


+1 if αp > 0,

−1 if αp < 0.

(1.35)

and α̃p = [αp, ναpj] are from (1.20); see, e.g., [30, (3.2.10)] for a proof of this fact. The

total number of factors T±1
j with νj = ν in this product is lν(b) = 2(b+, ρ

∨
ν ).

1.4. Double affine Hecke algebras

Let Ĥ be the extended affine Hecke algebra defined in the previous section. From

now on, we denote Ĥ by HY .

Let q1/2m be an indeterminate, where m is the least positive integer with the property

that m(P, P ) ⊂ Z, and let Qq,t be the field of rational functions in the indeterminates

q1/2m and {t1/2α }α∈R.

It is convenient to introduce additional parameters {kα}α∈R, where kw(α) = kα for all

α ∈ R and w ∈ W , and to impose the relation

tα = qkαα .

As above, we write kν = kα provided ν = να. We also set

ρk =
∑
ν∈νR

kνρν .(1.36)

Thus

q(ρk,b) = q(
∑
ν kνρν ,b) =

∏
ν

t(ρ
∨
ν ,b)

ν .

For any ring A, let A[X] be the group algebra of P over A spanned by elements

{Xb : b ∈ P} satisfying the relations

XaXb = Xa+b (a, b ∈ P ).
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More generally, for any b̃ = [b, j] where b ∈ P and j ∈ Z, we set Xb̃ = qjXb.

We let Ŵ act on A[X] by

ŵ(Xb) = Xŵ(b),

where we use the action of Ŵ on Rn × R from (1.11), treating b as [b, 0].

Definition 1.4.1. The double affine Hecke algebra HH is the Qq,t–algebra generated

by HY and Qq,t[X] subject to the following additional relations:

TiXb = Xsi(b)Ti + (t
1/2
i − t

−1/2
i )

Xsi(b) −Xb

Xαi − 1
(i ≥ 0, b ∈ P ),(1.37)

πrXbπ
−1
r = Xπr(b) (r ∈ O, b ∈ P ).(1.38)

Proposition 1.4.2 ([7]). The monomials {YaTwXb : w ∈ W, a, b ∈ P} form a basis

for HH over Qq,t.

There exists a unique Qq,t–linear anti-involution ϕ of HH satisfying:

ϕ : Ti 7→ Ti (1 ≤ i ≤ n), Xb 7→ Y−b, Yb 7→ X−b.(1.39)

See [5]. We call ϕ the duality anti-involution. For H ∈ HH, we often write Hϕ := ϕ(H).

Using Yϑ = T0Tsϑ and Yωr = πrTur , one finds that

ϕ(T0) = T−1
sϑ
X−1
ϑ , ϕ(πr) = T−1

u−1
r
X−1
ωr = Xωr∗Tur = ϕ(π−1

r∗ ).(1.40)

1.5. Polynomial representation

The polynomial representation of HH is the induced module

V := IndHHHY (Qq,t) = HH⊗HY Qq,t,

where Qq,t carries the action of HY defined by Ti(1) = t
1/2
i (i ≥ 0) and πr(1) = 1 (r ∈ O).

Proposition 1.4.2 gives rise to an isomorphism V ∼= Qq,t[X] of Qq,t–vector spaces.

Under this identification, elements of HH act by difference-reflection operators, which are
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by definition operators of the form

∑
w∈W, b∈P

gb,w Γbw, gb,w ∈ Qq,t(X).(1.41)

Here Qq,t(X) is the field of rational functions in the Xb (b ∈ P ), all but finitely many

gb,w are zero, and Γb (b ∈ P ) are the operators

Γb(Xc) = q(b,c)Xc.(1.42)

We observe that the action of Γ−b coincides with that of b ∈ Ŵ .

Let us permanently identify V ∼= Qq,t[X]. We now describe the action of HH in V

explicitly. For any H ∈ HH, we continue to denote by H the corresponding endomorphism

of V .

Due to the relation (1.37), the action of Ti (i ≥ 0) is given by the Demazure-Lusztig

operator:

Ti = t
1/2
i si +

t
1/2
i − t

−1/2
i

Xαi − 1
(si − 1).

The action of πr (r ∈ O) is given by πr = Γ−ωru
−1
r , and the Xb (b ∈ P ) act by multipli-

cation operators.

The Yb (b ∈ P ) act by the difference Dunkl operators. One can describe these opera-

tors explicitly as follows. Let b = πrsjl · · · sj1 be a reduced decomposition and recall the

definition of εp from (1.35). Then

Yb = πrT
εl
jl
· · ·T ε1j1 = Γ−bG

sgn(εl)

α̃l
· · ·Gsgn(ε1)

α̃1 ,(1.43)
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where sgn(±1) = ± and

G+
α̃ = t

1/2
α̃ +

t
1/2
α̃ − t

−1/2
α̃

X−1
α̃ − 1

(1− sα̃) = t
−1/2
α̃ (fα̃ + gα̃ sα̃),(1.44)

where fα̃ =
tα̃X

−1
α̃ − 1

X−1
α̃ − 1

, gα̃ =
tα̃ − 1

1−X−1
α̃

;

G−α̃ = t
−1/2
α̃ +

t
1/2
α̃ − t

−1/2
α̃

1−Xα̃

(1− sα̃) = t
−1/2
α̃ (fα̃ − sα̃ gα̃).(1.45)

We note that

G+
αi

= si Ti, G+
−αi = Ti si, G−αi = si T

−1
i , and G−−αi = T−1

i si.

We also set G̈±α̃ := t
1/2
α̃ G±α̃ , so that

Ÿb := q(b+,ρk)Yb = Γ−b G̈
sgn(εl)

α̃l
· · · G̈sgn(ε1)

α̃1 .(1.46)

Let D denote the algebra of all difference-reflection operators (1.41). Its defining

relations are as follows:

q(a,b)XaΓb = ΓbXa, wXa = Xw(a)w, wΓb = Γw(b)w, for w ∈ W, a, b ∈ P.

By difference operators we mean elements of the subalgebra of D generated by Qq,t(X)

and Γb (b ∈ P ). There is a natural linear map

Red :
∑

w∈W, b∈P

gb,w(X) Γbw 7→
∑

w∈W, b∈P

gb,w Γb,(1.47)

sending difference-reflection operators to difference operators. Clearly, Red is not a ho-

momorphism of algebras.

For f ∈ Qq,t[X]W , let

Lf := f(Yω1 , . . . , Yωn) =
∑

w∈W, b∈P

gb,w Γbw, gb,w ∈ Qq,t(X),

Lf := Red(Lf ) =
∑

w∈W, b∈P

gb,w Γb.(1.48)
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By Proposition 1.3.2, f(Y ) is central in HY . Hence Lf and Lf preserve VW and coincide

upon the restriction to this space. Moreover, the Lf are W–invariant difference operators,

i.e., wLfw
−1 = Lf for any w ∈ W . For a ∈ P+, we define La := Lf and La := Lf for

f =
∑

w∈W/Wa
X−w(a), where Wa is the stabilizer of a in W .
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CHAPTER 2

Nonsymmetric Macdonald polynomials

Recall that X[b,j] = qjXb, for any b ∈ P and j ∈ Z. We also set Xb(q
x) := q(b,x) and

Y[b,j] := q−jYb, so that Y −1
[b,j] = ϕ(X[b,j]).

2.1. Inner product

Let

µ = µ(X) :=
∏
α̃∈R̃+

1−Xα̃

1− tα̃Xα̃

.(2.1)

Using the identity

(1− tα̃Xα̃)−1 = 1 + tα̃Xα̃ + t2α̃X2α̃ + · · · ,

we expand µ as a formal Laurent series in the variables Xαi (i = 1, . . . , n) with coefficients

in the ring Z[tν ][[q]]. We extend the action of Ŵ on Qq,t[X] to Laurent series

f =
∑
b∈P

cbXb, where cb ∈ Q[tν ][[q]][q
−1],(2.2)

by setting ŵ(f) =
∑

b∈P cbXŵ(b).

For any Laurent series f of the form (2.2) (with coefficients in any ring), let 〈f〉 := c0

be the constant term of f . Clearly, 〈µ〉 is invertible in Q[tν ][[q]].

Let µ◦ = µ/〈µ〉. Then µ◦ has coefficients in Q(q, tν), the field of rational functions in

q and tν (ν ∈ νR); see, e.g., [30, (5.2.10)] for a proof of this fact.

Let ∗ : V → V be the Q–linear involution defined by

X∗b = X−b, (q1/2m)∗ = q−1/2m, (t1/2ν )∗ = t−1/2
ν ,



Then one has µ∗◦ = µ◦ (where we extend ∗ to Laurent series as above), while this does

not hold for µ.

For f, g ∈ V , we define the inner product

〈f, g〉 = 〈fg∗µ◦〉 ∈ Qq,t.

Clearly, 〈f, g〉 is linear in f , ∗–linear in g, and satisfies 〈f, g〉 = 〈g, f〉∗. We observe that

if f, g ∈ Q(q, tν)[X], then 〈f, g〉 ∈ Q(q, tν). It is straightforward to verify:

Lemma 2.1.1. For any nonzero f ∈ V, one has 〈f, f〉 6= 0. In particular, the restric-

tion of 〈 , 〉 to any nonzero subspace of V is nondegenerate.

Definition 2.1.2. The nonsymmetric Macdonald polynomials are the unique ele-

ments {Eb : b ∈ P} of Q(q, tν)[X] satisfying the following two conditions:

Eb = Xb +
∑
c�b

pbcXc, where pbc ∈ Q(q, tν),(2.3)

〈Eb, Xc〉 = 0 for c � b.(2.4)

By Lemma 2.1.1, we can apply the Gram-Schmidt process to the finite-dimensional

subspaces Q(q, tν)[Xc : c � b] ⊂ Q(q, tν)[X] to construct the Eb. This justifies their

existence and uniqueness.

2.2. Orthogonality

An immediate consequence of Definition 2.1.2 is that 〈Eb, Ec〉 = 0 whenever c � b.

In this section, we prove that the Eb are pairwise orthogonal and we give the formula for

their norms.

There is a unique anti-involution ? of HH satisfying

? : Ti 7→ T−1
i (i ≥ 0), Xb 7→ X−1

b , πr 7→ π−1
r , q1/2m = q−1/2m, t1/2ν 7→ t−1/2

ν .

This is easy to check using Definition 1.4.1. One also has Y ?
b = Y −1

b .
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Proposition 2.2.1 ([7]). The representation V is ?-unitary. That is,

〈H(f), g〉 = 〈f,H?(g)〉, for f, g ∈ V and H ∈ HH.

For any b ∈ P , we set

b] := πb((−ρk)) = b− u−1
b (ρk).

Recall that ub is the unique element of W of shortest length such that ub(b) = b−,

πb = bu−1
b , and ρk is from (1.36).

Lemma 2.2.2. For any a, b ∈ P , one has

Ya(Xb) ≡ q−(a,b])Xb mod Qq,t[Xc : c � b].(2.5)

We will prove Lemma 2.2.2 at the end of this section. For now, we use it to deduce

the following.

Corollary 2.2.3. (i) For any a, b ∈ P , one has

Ya(Eb) = q−(a,b])Eb.(2.6)

(ii) If b 6= c, then 〈Eb, Ec〉 = 0.

Proof. (i) For any fixed a ∈ P , one combines Lemma 2.2.2 with Proposition 2.2.1

to see that {q(a,b])Ya(Eb) : b ∈ P} satisfy the conditions (2.3) and (2.4). Since these

conditions determine the Eb uniquely, the claim follows.

(ii) For any a ∈ P , Proposition 2.2.1 gives that

q(a,b])〈Eb, Ec〉 = 〈Ya(Eb), Ec〉 = 〈Eb, Y −1
a (Ec)〉 = q−(a,c])〈Eb, Ec〉.(2.7)

When b 6= c, there clearly exists a such that q(a,b]) 6= q(a,c]) and hence (2.7) implies

〈Eb, Ec〉 = 0. 2
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The values of 〈Eb, Eb〉 are given by the following theorem, which was stated by Mac-

donald in [29] (for kν ∈ Z>0) and proved by Cherednik in [8].

Theorem 2.2.4 ([8]). For any b, c ∈ P , one has

〈Eb, Ec〉 = δbc
∏

[α,ναj]∈λ(πb)

(1− qjαt−1
α X−α(qρk))(t−1

α − qjαX−α(qρk))

(1− qjαX−α(qρk))2
.(2.8)

We conclude this section with a proof of Lemma 2.2.2.

Proof of Lemma 2.2.2. It suffices to prove the claim for a ∈ P+∪P−. We consider

only a ∈ P+, the proof for a ∈ P− being similar. We use (1.46) to write

Ya = q−(a,ρk)Γ−aG̈
+
α̃l
· · · G̈+

α̃1 ,

for any reduced expression a = πrsjl · · · sj1 . Modulo Qq,t[Xc : c � b], one has

G̈+
α̃ (Xb) ≡


Xb if (b, α) > 0,

tα̃Xb otherwise.

It follows that G̈+
α̃l
· · · G̈+

α̃1(Xb) ≡ (
∏

α̃∈λ(a)
(b,α)≤0

tα̃)Xb, and due to (1.21) and (1.23) one has

∏
α̃∈λ(a)
(b,α)≤0

tα̃ = q(a, ρk+u−1
b (ρk)).

This gives (2.5) for a ∈ P+. 2

2.3. Intertwiners

The intertwiners are the elements

Ψi := Ti +
t
1/2
i − t

−1/2
i

Y −1
αi
− 1

(i = 1, . . . , n),

Ψ0 := q−1XϑT
−1
0 +

t
1/2
0 − t−1/2

0

Y −1
α0
− 1

,

Πr := q−(ωr,ωr)/2Xωrπr (r ∈ O′), Π0 := 1.
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Recall that Y[b,j] = q−jYb for b ∈ P and j ∈ Z. Strictly speaking, the Ψi belong to a local-

ization of HH, but since we will apply the intertwiners to the nonsymmetric Macdonald

polynomials only, we will not be concerned with this point.

Due to (2.6), the action of Ψi on Eb is given by Ψb
i , where

Ψb
i := Ti +

t
1/2
i − t

−1/2
i

Xαi(q
b])− 1

(i = 1, . . . , n), Ψb
0 := q−1XϑT

−1
0 +

t
1/2
0 − t−1/2

0

Xα0(q
b])− 1

.

Recall that Xα̃(qc) = q(α,c)+ναj. The following proposition describes the action of the

intertwiners on the nonsymmetric Macdonald polynomials. Recall the definition of d in

the extended pairing (1.13).

Proposition 2.3.1 ([11]). Let b ∈ P .

(i) If (b+ d, αi) > 0 for some i = 0, . . . , n, then

q−
(c,c)
2 Ec = q−

(b,b)
2 t

1/2
i Ψb

i(Eb), where c = si((b)).(2.9)

(ii) If (b+ d, αi) = 0 for some i = 0, . . . , n, then

τ+(Ti)(Eb) = t
1/2
i Eb.(2.10)

(iii) For any r ∈ O, one has

q−
(c,c)
2 Ec = q−

(b,b)
2 Πr(Eb), where c = πr((b)).(2.11)

We note that for i > 0, (2.10) is equivalent to si(Eb) = Eb.

Starting from E0 = 1, Proposition 2.3.1 can be used to construct Eb for any b ∈ P ,

as follows. For any reduced expression πb = πrsjl · · · sj1 , form λ(πb) = {α̃1, . . . , α̃l} using

(1.20) and set b1 = 0 and bp = sjp−1 · · · sj1((0)) for p = 2, . . . , l. Then

(bp + d, αjp) = (d, α̃p) > 0, by (1.22),
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and hence

q−(b,b)/2Eb = tl(πb)/2 Πr Ψbl
jl
· · ·Ψb1

j1
(1), where tl(πb)/2 =

∏
ν

tlν(πb)/2
ν .(2.12)

Corollary 2.3.2. The coefficients of the polynomial

∏
[α,ναj]∈λ(πb)

(1− qjαX−α(qρk)) Eb(2.13)

belong to Z[q, tν ].

Proof. We take a reduced expression πb = πrsjl · · · sj1 and use (2.12). We use

the following property of the elements {πb : b ∈ P}: for any 0 ≤ i ≤ n, one has

(b + d, αi) 6= 0 if and only if πsi((b)) = siπb; see, e.g., [10, (1.20)] or [30, (2.4.14)]. In

particular, πbp = sjp−1 · · · sj1 and therefore

(α̃p,−ρk + d) = (αjp , πbp((−ρk)) + d).

Hence the product in (2.13) clears all denominators in (2.12). 2

2.4. Limits

Corollary 2.3.2 implies that the Eb are well defined when tν = 0 for all ν ∈ νR. We

denote by Eb the image of Eb under this specialization. It also follows from Corollary 2.3.2

that the coefficients of Eb belong to Z[q].

Remark. As a matter of fact, the coefficients of Eb are known to lie in Z+[q]. This

follows from results of Ion [25] and Sanderson [33], which identify {Eb} with the char-

acters of level-one Demazure modules for the (twisted) affine Lie algebra associated to

R (i.e., for the affine Lie algebra having R̃ as its system of real roots). The strategy

employed in [25, 33] is to establish a connection between the intertwiner construction

of Eb via Proposition 2.3.1 (as tν = 0) and the Demazure character formula, which was

proved for any Kac-Moody Lie algebra by Kumar [27].
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Let us consider more systematically the behavior ofHH and V under the specialization

tν = 0. Let Q̈q,t be the subring of Qq,t consisting of those rational functions that are well

defined when t
1/2
ν = 0 for all ν ∈ νR.

The definition of HH given in Definition 1.4.1, while standard in the literature, is not

suited to this specialization. We therefore introduce the following normalization:

T̈i := t
1/2
i Ti, T̈ ′i := t

1/2
i T−1

i = T̈i − (ti − 1).

Note that the same normalization is used for both Ti and T−1
i , so that T̈iT̈

′
i = ti. This

ensures that T̈i and T̈ ′i are well defined in V when ti = 0.

The T̈i (i = 0, . . . , n) satisfy the braid relations1 for Ti given in (1.29). Consequently,

the elements T̈ŵ := πrT̈jl · · · T̈j1 , where ŵ = πrsjl · · · sj1 is any reduced expression in Ŵ ,

are well defined. The quadratic relations for T̈i read: (T̈i − ti)(T̈i + 1) = 0.

Correspondingly, we define Ÿb := q(b+,ρk)Yb for any b ∈ P . Note that ŸbŸ−b = q2(b+, ρk).

Definition 2.4.1. Let ḢḢ be the Q̈q,t–subalgebra of HH generated by the elements

Xa (b ∈ P ), T̈ŵ (ŵ ∈ Ŵ ), Ÿb (b ∈ P ).

It is straightforward to check that the algebra ḢḢ is generated over Q̈q,t by

Xa (b ∈ P ), T̈i (i ≥ 0), and Π,

subject to the defining relations:

(T̈i − ti)(T̈i + 1) = 0, T̈iT̈jT̈i · · · = T̈jT̈iT̈j · · · ,

T̈iXb = XbX
−1
αi
T̈ ′i if (b, α∨i ) = 1, T̈iXb = XbT̈i if (b, α∨i ) = 0,

πrT̈iπ
−1
r = T̈j if πr(αi) = αj, πrXbπ

−1
r = Xπr(b) = Xu−1

r (b)q
(ωr∗ ,b),

1 This is due to the fact that mij = 2, 3, 4, or 6, and when mij = 3, αi and αj have the same length and
hence ti = tj .
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where 0 ≤ i, j ≤ n, b ∈ P , r ∈ O, and the braid relations contain mij factors on each

side.

We observe that the restriction to ḢḢ of the HH–action in the polynomial represen-

tation V preserves V̈ := Q̈q,t[X].

Definition 2.4.2. The nil-DAHAHH is defined as the specialization of ḢḢ at t
1/2
ν = 0

for all ν ∈ νR. More precisely, let Qq := Q(q1/2m) and define HH to be the Qq–algebra

HH := Qq ⊗Q̈q,t ḢḢ,(2.14)

where the tensor product structure is defined using the homomorphism Q̈q,t → Qq fixing

Qq and sending t
1/2
ν 7→ 0 for all ν ∈ νR.

Specializing V̈ in the same manner, we obtain an HH–module V := Qq[X].

We denote the images of T̈i and Ÿb in HH by T i and Y b, respectively. Using (2.6), we

arrive at

Y a(Eb) =


q−(a,b)Eb, if ub(a) = a−,

0, otherwise.

If (b, αi) > 0 and 1 ≤ i ≤ n, then the intertwiner t
1/2
i Ψb

i becomes T i + 1 as ti = 0.

This has the following consequence.

Proposition 2.4.3. If b ∈ P−, then Eb is W–invariant.

Proof. For 1 ≤ i ≤ n and any f ∈ V , one has si(f) = f if and only if T i(f) = 0.

When b ∈ P−, Proposition 2.3.1 gives that Eb = (T i+1)Esi(b) for any i = 1, . . . , n. Hence

T i(Eb) = 0, because T i(T i + 1) = 0. 2

Next we consider the orthogonality relations (2.8) as tν = 0. We set

µ := µ(tν = 0) =
∏
α∈R+

∞∏
j=0

(1−Xαq
j
α)(1−X−1

α qj+1
α ), µ◦ := µ/〈µ〉.
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To state the counterpart of (2.8) as tν = 0, we will need the limits E
†
b of the Eb as

tν → ∞. We will justify the existence of these limits below. More generally, we set

f
†

:= limtν→∞ f for any Laurent polynomial or series depending on q, tν , provided the

existence of this limit. Then one has

(f ∗) = (f
†
)∗, (f ∗)

†
= (f)∗.(2.15)

Using this notation, (2.8) reads as follows for tν = 0:

〈Eb, Ec〉 := 〈Eb(E
†
c)
∗µ◦〉 = δbc

∏
[α,j]

(1− qjα),(2.16)

where the product runs over all [−α, ναj] ∈ λ(πb) for simple α = αi ∈ R+.

Formula (2.16) provides an indirect justification of the existence of the limits E
†
b for

any b ∈ P . We now give a constructive justification of this fact using the intertwiners.

We will also show in Corollary 2.4.5 that the coefficients of E
†
b belong to Z[q−1].

To this end, we set

T̈ †i := t
−1/2
i Ti, (T̈ †i )′ := t

−1/2
i T−1

i ,

T
†
i := T̈ †i (ti =∞), (T

†
i )
′ := (T̈ †i )′(ti =∞) = T

†
i − 1,

and, correspondingly, Ÿ †a := q−(a+,ρk)Ya. It is then straightforward to see that Y
†
a :=

limtν→∞ Ÿ
†
a is well defined and that (2.6) gives

Y
†
a(E

†
b) =


q−(a,b)Eb if ub(a) = a+,

0 otherwise.

Proposition 2.4.4. (i) For b ∈ P−,

E
†
b = q(ρ,b)(T

′
πρ(E−w0(b)))

∗,(2.17)

where T
′
πρ := T

′
j1
· · ·T ′jl π

−1
r is defined for any reduced expression πρ = πrsjl · · · sj1 (and

does not depend on the choice of the reduced expression).
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(ii) If (b, αi) < 0 and 1 ≤ i ≤ n, then

E
†
si(b)

=


(1− q(b,αi))−1(T

†
i )
′(E
†
b) if (ub(αi), ρ

∨) = 1,

(T
†
i )
′(E
†
b) if (ub(αi), ρ

∨) > 1.

(2.18)

Proof. (i) Let b ∈ P−. We will use the formula

E∗b =
∏
ν∈νR

tlν(ub)−lν(w0)/2
ν Tw0(E−w0(b))(2.19)

from [11, (3.3.24)].

We prove (2.17) by renormalizing (2.19) as follows. Note that q(c, w0(b)+ρk)Y −1
c acts

as the identity on E−w0(b) for any c ∈ P . Taking c = c+, so that lν(c) = 2(c, ρ∨ν ), one

therefore has

E∗b = q(c,w0(b))
∏
ν

t−lν(w0)/2+lν(c)/2
ν Tw0Y

−1
c (E−w0(b)).(2.20)

Specializing further to c = ρ, we have Yρ = TπρTw0 and (2.20) becomes

E∗b = q−(ρ,b)
∏
ν

tlν(πρ)/2
ν T−1

πρ (E−w0(b)) = q−(ρ,b)T̈ ′πρ(E−w0(b)),

where by definition T̈ ′πρ = T̈ ′j1 · · · T̈
′
jl
π−1
r for any reduced decomposition πρ = πrsjl · · · sj1 .

Moving ∗ to the right-hand side and taking tν →∞, we obtain (2.17).

(ii) This follows from a modification of (2.9). It is convenient to use the normalized

intertwiners Gi := ψ−1
i Ψi for

Ψi = τ+(Ti) +
t
1/2
i − t

−1/2
i

Y −1
αi
− 1

, ψi = t
1/2
i +

t
1/2
i − t

−1/2
i

Y −1
αi
− 1

.

For simplicity, let us take here 1 ≤ i ≤ n. In addition to the braid relations, the

normalized intertwiners satisfy G2
i = 1. Hence Ψ−1

i = ψ−1
i Ψiψ

−1
i . Now, when (b, αi) <

0, (2.9) gives Esi(b) = t
−1/2
i Ψ−1

i (Eb). Applying Ψ−1
i = ψ−1

i Ψiψ
−1
i to Eb, the first ψ−1

i
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produces

(
t
1/2
i +

t
1/2
i − t

−1/2
i

q(αi,b]) − 1

)−1

= t
1/2
i

q(αi,b]) − 1

q(αi,b])ti − 1
.

The second (left) ψ−1
i produces the factor

(
t
1/2
i +

t
1/2
i − t

−1/2
i

q−(αi,b]) − 1

)−1

= t
−1/2
i

q−(αi,b]) − 1

q−(αi,b]) − t−1
i

= t
−1/2
i

q(αi,b]) − 1

q(αi,b])t−1
i − 1

.

Multiplying these two factors and taking tν → ∞, one arrives at (2.18). Note that

ub(αi) > 0 and hence q(αi,b]) contains nonpositive powers of tν and at least one t−1
i .

2

Corollary 2.4.5. The polynomials E
†
b are well defined for any b ∈ P . Moreover,

the coefficients of E
†
b belong to Z[q−1] for any b ∈ P .

Proof. The existence of E
†
b for any b ∈ P follows from (2.17) and (2.18). More

precisely, (2.17) gives the existence of E
†
b for b ∈ P−, and (2.18) allows one to construct

E
†
b for any b ∈ P starting from b− ∈ P−.

By Corollary 2.3.2, the denominators of the coefficients in Eb are of products of factors

of the form

(1− qj
∏
ν

tmνν ), where j,
∑
ν

mν > 0.

Since we already know that E
†
b exists, we may set t = tν for all ν when calculating the

limits of the coefficients. As polynomials in t, the denominators of Eb then have leading

terms of the form ±qrts where r, s > 0, and no higher power of t can appear in the

corresponding numerators. Thus the coefficients of E
†
b must belong to Z[q±1].

Using (2.17), it is easy to see that E
†
b has coefficients in Z[q−1] for b ∈ P−. Then

(2.18) shows that this holds for arbitrary b ∈ P . 2
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CHAPTER 3

Spherical and Whittaker functions

In this chapter, we mainly regard the parameters q and tν as nonzero complex num-

bers. Recall that tν = qkνν . When discussing the convergence of infinite series, we will

assume in addition that |q| < 1.

3.1. Gaussian

By the Gaussian we mean the Laurent series

γ̃ =
∑
b∈P

q(b,b)/2Xb.(3.1)

Multiplication by γ̃ preserves the space of Laurent series with coefficients in Q[t][[q1/2m]].

Recall that Xb(q
x) = q(b,x). Regarding Xb as a function of x ∈ Cn in this way, the

Gaussian γ̃ converges uniformly on compact subsets of Cn, provided |q| < 1. We will

write γ̃x whenever we want to regard γ̃ as an entire function of x ∈ Cn.

The main property the Gaussian that we will need is the following:

Γa(γ̃) = q−(a,a)/2X−1
a γ̃ for a ∈ P.(3.2)

In particular, one has

Γ−ρk(γ̃) = q−(ρk,ρk)/2Xρk γ̃,(3.3)

provided ρk ∈ P (e.g., when kν ∈ Z).

3.2. Global spherical function

We use the notation γ̃λ for the Gaussian defined in terms of the variable λ ∈ Cn.

Correspondingly, we write Λ = qλ and Λb(q
λ) = q(b,λ). We will use superscripts when



applying operators from the polynomial representation of HH to functions of x or λ. For

instance, we write T λi for the action of Ti on the variables λ. When no superscript is

used, such operators are understood to act on the variables x.

We will also use the normalization constant

γ̃(qρk) =
∑
b∈P

q
(b,b)
2

+(b,ρk).(3.4)

When ρk ∈ P , one has

γ̃(qρk) = q−(ρk,ρk)/2γ̃(1), where γ̃(1) :=
∑
b∈P

q(b,b)/2.(3.5)

The function G(X,Λ) defined in the following theorem is called the global non-

symmetric spherical function.1

Theorem 3.2.1 ([9]). (i) The series

Ξ(X,Λ; q, t) :=
∑
b∈P

q(b],b])/2−(ρk,ρk)/2 E∗b (X)Eb(Λ)

〈Eb, Eb〉
(3.6)

converges in the ring of formal Laurent series in X,Λ with coefficients in Q[t][[q
1

2m̃ ]].

When |q| < 1, Ξ converges to an entire function of x, λ, provided tν are chosen so that

all the Eb are well defined (by Proposition 2.3.2, the conditions |tν | < 1 are sufficient).

Accordingly, G(X,Λ) defined via

γ̃x γ̃λ
γ̃(qρk)

G(X,Λ) := Ξ(X,Λ; q, t)(3.7)

is a meromorphic function of X,Λ and it is holomorphic where γ̃xγ̃λ 6= 0.

(ii) The function G(X,Λ) satisfies G(X,Λ) = G(Λ, X) and

Hx(G(X,Λ)) = (ϕ(H))λ(G(X,Λ)) for H ∈ HH,(3.8)

1 This terminology reflects connections to Harish-Chandra’s theory of spherical functions on real semisim-
ple Lie groups; cf. [24, 36].
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in terms of the anti-involution ϕ from (1.39). More concretely, one has

T xi (G(X,Λ)) = T λi (G(X,Λ)) for 1 ≤ i ≤ n,(3.9)

Ya(G(X,Λ)) = Λ−1
a G(X,Λ) and X−1

a G(X,Λ) = Y λ
a (G(X,Λ)) for a ∈ P.(3.10)

(iii) The function G(X,Λ) extends the nonsymmetric Macdonald polynomials as fol-

lows. For any b ∈ P , one has

G(X, qb]) =
Eb(X)

Eb(q−ρk)

∏
α∈R+

∞∏
j=1

1− q(ρk,α)+jνα

1− t−1
α q(ρk,α)+jνα

.(3.11)

Remark. The convergence of the series Ξ from (3.6) as an entire function can be

justified using the following estimate. For any compact subset K ⊂ Cn, there exists a

constant C = CK > 0 such that

|Eb(qx)| ≤ C |b|, for all x ∈ K and b ∈ P,

where |b|2 = (b, b). This estimate can be demonstrated using the intertwiner recurrence

for the Eb from Proposition 2.3.1; see, e.g., [35, Proposition 5.13].

3.3. Symmetrization

Define the symmetrizer

P :=
∑
w∈W

∏
ν∈νR

tlν(w)/2
ν Tw.(3.12)

Then one has (see, e.g., [30, (5.5.9)])

(Ti − t1/2i )P = 0 = P(Ti − t1/2i ),

and hence P : Qq,t[X] → Qq,t[X]W . As above, we will write Px or Pλ to distinguish

between the variables x and λ.
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The global symmetric spherical function is defined as

F (X,Λ) := Px(G(X,Λ)) = Pλ(G(X,Λ)).(3.13)

The second equality in (3.13) holds due to (3.9). The function F (X,Λ) is W–invariant

in both X and Λ, satisfies F (X,Λ) = F (Λ, X), and for any f ∈ Qq,t[X]W , one has

Lf (F (X,Λ)) = f(Λ−1)F (X,Λ), f(X−1)F (X,Λ) = Lλf (G(X,Λ)).(3.14)

Here f(X−1) means we replace Xb by X−b, and similarly for f(Λ−1). For these and

further properties of F (X,Λ), we refer to [9, 13].

3.4. Whittaker limit

We assume that |q| < 1 and kν ∈ Z>0 in this section. For any difference operator L

and any function F (X), set

κ(L) := (XρkΓ−ρk)L (XρkΓ−ρk)
−1, κ(F ) := XρkΓ−ρk(F ).(3.15)

Definition 3.4.1. The Ruijsenaars-Etingof limiting procedure is defined by

RE(L) := lim
k→∞

κ(L), RE(F ) := lim
k→∞

κ(F ),(3.16)

where we take kν ∈ Z>0 and k → ∞ means that kν → ∞ for all ν ∈ νR; equivalently,

tν → 0 for all ν ∈ νR.

This limiting procedure is a natural extension of (0.3) to arbitrary root systems. The

definition (3.16) first appeared in [13], where it was shown that the limit

W(X,Λ) := RE(F (X,Λ))(3.17)

exists for F (X,Λ) from (3.13). The function W(X,Λ) is called the global symmetric

Whittaker function. We note that W(X,Λ) is W–invariant in Λ but no longer in X.
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CHAPTER 4

Nonsymmetric Whittaker function

In this chapter we come to the main objects of this dissertation: the nonsymmetric

Ruijsenaars-Etingof limiting procedure REδ, the global nonsymmetric Whittaker func-

tion Ω, and the Toda-Dunkl operators Ŷb. In order to construct these objects, we first

introduce the notion of W–spinors.

When discussing the convergence of limits and series, we assume that q is a nonzero

complex number and that |q| < 1.

4.1. W–spinors

Given a vector space V over any field, let F(W,V ) denote the space of functions from

W to V . This space carries a natural action of W given by

(δ(w)f)(u) := f(w−1u), for f ∈ F(W,V ), w, u ∈ W.

If V is also an algebra over the base field, then F(W,V ) inherits this structure via

pointwise multiplication, and W then acts by algebra automorphisms.

Consider the Qq,t–algebra F(W,V); in [15], elements of this algebra are called W–

spinors. For any w ∈ W , denote by ζw the characteristic function ζw(u) = δwu. These

are pairwise orthogonal idempotents in F(W,V), and any element in F(W,V) can be

written uniquely as

f =
∑
w∈W

fw ζw, where fw := f(w) ∈ V .



We refer to fw as the w–component of f . We observe that δ(w)(ζv) = ζwv and hence for

any f ∈ F(W,V):

(δ(v)f)w = fv−1w.(4.1)

One has a natural embedding of algebras δ : V → F(W,V) given by

δ(F ) :=
∑
w∈W

F ζw.(4.2)

The image of δ is the space of W–invariants of F(W,V), which will be denoted by

F δ(W,V).

We define another algebra embedding % : V → F(W,V) by

%(F ) :=
∑
w∈W

w−1(F ) ζw.(4.3)

Thus F ∈ V is W–invariant if and only if %(F ) = δ(F ). For arbitrary F ∈ V we may

also write F % := %(F ) and F δ := δ(F ). When no superscript is used, we take the image

F % under the embedding % by default.

Generally, any endomorphism of V acts pointwise in F(W,V). For instance, given a

translation Γb, we set

Γb(f)(u) := Γb(f(u)).

We define

δ(Γb) = Γδb :=
∑
w∈W

Γb ζw,(4.4)

%(Γb) = Γ%b :=
∑
w∈W

Γw−1(b) ζw,(4.5)

where we let ζw act by multiplication in F(W,V). Similarly, we let Xb act by pointwise

multiplication:

Xb(f)(u) := Xb(f(u)).
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Remark. All of the constructions above can be applied to more general spaces of

functions other than V (as long as the spaces are preserved by W ). For instance, one may

replace V by the field of rational functions Qq,t(X), or more generally by meromorphic

functions of X ∈ (C∗)n. We will apply the above constructions in such contexts without

further comment. When considering a function F (X), we take by default the image F %

under the embedding %, unless otherwise specified.

Recall from Section 1.5 that D denotes the algebra of difference-reflection operators

over Qq,t. We define a map from D to EndQq,t(F(W,Qq,t(X))) by

φ : g Γbw 7→ %(g) %(Γb) δ(w), where g ∈ Qq,t(X), b ∈ P, w ∈ W.

It is then straightforward verify the following:

Lemma 4.1.1. The map φ : D → EndQq,t(F(W,Qq,t(X))) is a homomorphism of

algebras.

We obtain an action of HH in F(W,Qq,t(X)) by composing φ with the polynomial

representation, the latter being viewed as a homomorphism HH → D.

4.2. Nonsymmetric limiting procedure

For a difference-reflection operator L and a function F (X), let

κδ(L) := δ(XρkΓ−ρk)φ(L) δ(XρkΓ−ρk)
−1,(4.6)

κδ(F ) := δ(XρkΓ−ρk)
(
%(F )

)
.

For instance, one has

κδ(Xb) =
∑
w∈W

∏
ν

t−(ρ∨ν ,w
−1(b))

ν Xw−1(b) ζw,(4.7)

κδ(Γb) =
∑
w∈W

∏
ν

t−(ρ∨ν ,w
−1(b))

ν Γw−1(b) ζw,(4.8)

κδ(w) = δ(w) for w ∈ W.(4.9)
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We observe that

κδ(vLw) = v κδ(L)w for v, w ∈ W,(4.10)

for any difference-reflection operator L.

Definition 4.2.1. The nonsymmetric Ruijsenaars-Etingof procedure is defined by

REδ(L) := lim
k→∞

κδ(L), REδ(F ) := lim
k→∞

κδ(F ),(4.11)

where kν ∈ Z+ and k →∞ means that kν →∞ for all ν ∈ νR; equivalently, tν → 0.

This limiting procedure was defined in [15] for the root system A1.

4.3. Calculating the limit

Recall that we assume |q| < 1. We also take kν ∈ Z+ in this section.

The global nonsymmetric difference Whittaker function is defined as

Ω(X,Λ) := REδ(G(X,Λ)).(4.12)

The following proposition justifies the existence Ω(X,Λ).

Proposition 4.3.1. The limit, as k → ∞, of the series Γδ−ρk(Ξ(X,Λ; q, t)) exists;

here Ξ(X,Λ; q, t) is the series from (3.6). Accordingly,

Ω(X,Λ) =
γ̃(1)

γ̃x γ̃λ

∑
b∈P

q(b,b)/2 Eb(Λ)

〈Eb, Eb〉

∑
w∈W

ab,wX−b− ζw,(4.13)

where γ̃(1) :=
∑

b∈P q
(b,b)/2 and ab,w is the limit, as all tν → 0, of the coefficient of

X−w(b−) in E∗b . In particular, one has ab,w ∈ Z[q] and ab,u−1
b

= 1, ab,id = δb,b−.

Proof. First, one has

δ(XρkΓ−ρk) (γ̃x)
−1 = q(ρk,ρk)/2 (γ̃x)

−1 δ(Γ−ρk),
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as operators. (Due to the W–invariance of γ̃x, we omit % here.) Using (3.5), we arrive

that factor γ̃(1) in (4.13). It now suffices to consider the limit of

q−(b−,ρk) Γδ−ρk(%(E∗b (X))),

or, equivalently, the limit as tν → 0 of

q−(b−,ρk) Γ−ρk(w
−1(E∗b )) ζw for all w ∈ W.(4.14)

Using (2.15) and Proposition 2.4.4, one sees that this limit exists and has the form

ab,wX−b− ζw for ab,w as claimed. By (2.15), E∗b = (E
†
b)
∗. Hence Corollary 2.4.5 implies

that ab,w ∈ Z[q]. �

Remark. Alternatively, one can set

G′(X,Λ) = G(X,Λ)
γ̃(X)q

(x,x)
2

γ̃(qρk)q
(ρk,ρk)

2

, Ω′(X,Λ) = REδ(G′(X,Λ)),

and take <kν → ∞ for complex kν . Then γ̃xq
(x,x)

2 Ω(X,Λ) = Ω′(X,Λ). Using G′ instead

of G somewhat simplifies the calculation of the limit and does not influence the corre-

sponding operators acting on this function (which are studied below), since γ̃xq
(x,x)

2 is

Ŵ–invariant.

4.4. Main theorem

We now come to our main result, a counterpart of Theorem 3.2.1 for the global

nonsymmetric Whittaker function Ω(X,Λ). Recall the definition of the algebra ḢḢ from

Definition 2.4.1 and the anti-involution ϕ from (1.39).

Theorem 4.4.1. (i) The operators REδ(Hϕ) acting in F(W,V) are well defined for

H ∈ ḢḢ. For instance, the following operators are well defined:

Ŷb := REδ(Yb), X̂b := REδ(X̃b) for X̃b := Ÿ ϕ
−b = t(b+,ρ

∨)Xb,(4.15)

T̂i := REδ(T̈i) for i > 0, T̂0 := REδ(T̈ϕ0 ), π̂r := REδ(πϕr ) for r ∈ O′.
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(ii) The function Ω(X,Λ) satisfies

π̂r(Ω(X,Λ)) = πλr (Ω(X,Λ)) for r ∈ O,(4.16)

T̂i(Ω(X,Λ)) = T λi (Ω(X,Λ)) for 0 ≤ i ≤ n,(4.17)

and the following relations corresponding to (3.10):

Ŷa(Ω(X,Λ)) = Λ−1
a Ω(X,Λ) and Y

λ

a(Ω(X,Λ)) = X̂−aΩ(X,Λ) for a ∈ P.(4.18)

(iii) Let f(qc̃) := fu−1
c

(qc−) for any f =
∑

w∈W fw ζw and c ∈ P . Then

Ω(qc̃,Λ) = Ec(Λ)
n∏
i=1

∞∏
j=1

1

1− qji
.(4.19)

Equivalently, one has (where x2 = (x, x))

∑
b∈P

q(b−−c−)2/2 Eb(Λ)

〈Eb, Eb〉
ab,u−1

c
= γ̃λEc(Λ)

n∏
i=1

∞∏
j=1

1

1− qji
.(4.20)

Proof. Chapter 5 is devoted to a direct and constructive proof of (i). We also

sketch an indirect proof of (i) in the remark below. Assuming that (i) holds, (ii) and

(iii) are direct consequences of Theorem 3.2.1 and Proposition 4.3.1. For (iii), one uses

the formula for Eb(q
−ρk) from [11, (3.3.16)]. 2

We call the operators Ŷb (b ∈ P ) the Toda-Dunkl operators.

Remark. The existence of Ω(X,Λ), which was demonstrated in Proposition 4.3.1,

provides an indirect proof of Theorem 4.4.1(i). Let us sketch this argument for the

operator Ŷb. One uses (3.10) as follows:

Yb(q
(c],c])

2
−(ρk,ρk)E∗c (X) (γ̃x)

−1) = 〈Yb(G(X,Λ))E∗c (Λ) γ̃λ µ◦(Λ)〉,

= 〈Λ−1
b G(X,Λ)E∗c (Λ) γ̃λ µ◦(Λ)〉.(4.21)
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Applying κδ and taking tν → 0, the right-hand side of (4.21) is well defined. It follows

that the action of REδ(Yb) is well defined on

REδ(q−(c−,ρk)− (ρk,ρk)

2 E∗c (X) (γ̃x)
−1) = (

∑
w

ac,wX−c− ζw) (γ̃x)
−1.

In general, one obtains that the action of the operators from (i) are well defined when

they are applied to linear combinations of Xb ζw (γ̃x)
−1 for regular b ∈ P+ and w ∈ W .

The operators κδ(Hϕ) for H ∈ ḢḢ have rational coefficients; nevertheless, this property

is sufficient to see that their coefficients are well defined in the limit tν → 0.

4.5. Symmetrization

The symmetric Whittaker function W(X,Λ) from (3.17) is the symmetrization of

Ω(X,Λ). More precisely, one has

δ(W(X,Λ)) =
∑
w∈W

T̂w(Ω(X,Λ)) =
∑
w∈W

Tw(Ω(X,Λ)).(4.22)

In particular, all W–components of the right-hand side coincide; see also (5.26) below.

Explicitly, one has

W(X,Λ) =
γ̃(1)

γ̃x γ̃λ

∑
b∈P−

q(b,b)/2 X−1
b Eb(Λ)∏n

i=1

∏−(α∨i ,b)
j=1 (1− qji )

.

We recall that Eb is W–invariant1 for b ∈ P−, by Proposition 2.4.3.

For c ∈ P−, one has

W(qc,Λ) = Ec(Λ)
n∏
i=1

∞∏
j=1

1

1− qji
,

which is equivalent to

∑
b∈P−

q(b−c)2/2Eb(Λ)∏n
i=1

∏−(α∨i ,b)
j=1 (1− qji )

= γ̃λEc(Λ)
n∏
i=1

∞∏
j=1

1

1− qji
.(4.23)

1 For b ∈ P−, Eb coincides with the symmetric Macdonald polynomial Pb(tν = 0).

46



We observe that formula (4.23) results from (4.20). Indeed, when c ∈ P−, one has uc = id

and the coefficient ab,u−1
c

is nonzero only for b ∈ P−; in this case, one has ab,id = 1 and

hence the summation in (4.23) ranges over b ∈ P−.
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CHAPTER 5

Toda-Dunkl operators

Our main aim in this chapter is to provide a direct and constructive proof of the

existence of the operators from Theorem 4.4.1. We also consider symmetrizations of

the Toda-Dunkl operators. In Proposition 5.4.1, we show that these symmetrizations

coincide with RE limits of the symmetric operators Lf from (1.48). Finally, at the end

of the chapter we provide some explicit examples of the Toda-Dunkl operators for the

root systems A1, A2, and B2.

5.1. Preparations

Recall the explicit description of Yb in terms of G±α̃ given by (1.43), (1.44), and (1.45).

Recall that G̈±α̃ := t
1/2
α̃ G±α̃ and

Ÿb = Γ−b G̈
sgn(εl)

α̃l
· · · G̈sgn(ε1)

α̃1 ,(5.1)

where the εp are given by (1.35).

Given u ∈ W and a reduced expression u = sjl · · · sj1 , form λ(u) = {α1, . . . , αl} using

(1.20) and write si = sαi . We will consider products of the form

κδ(G̈+
±αp · · · G̈+

±αr), for 1 ≤ r ≤ p ≤ l,(5.2)

and similar products for G̈−α . We expand such products by choosing from each G̈±α either

fα or gα sα.



For any f ∈ F(W,Qq,t(X)), w ∈ W , and ν ∈ νR, we define ordνw(f) to be the order

of the w-component fw with respect to tν . For instance, if α̃ = [α, ναj], then

ordνw(κδ(fα̃)) =


0, if w−1(α) > 0,

δν,να , if w−1(α) < 0,

(5.3)

ordνw(κδ(gα̃)) =


0, if w−1(α) > 0,

−(ρ∨ν , w
−1(α)), if w−1(α) < 0.

(5.4)

The second line in (5.3) follows from the fact that (ρ∨ν , w
−1(α)) 6= 0 for all w ∈ W

provided ν = να.

For any f, g ∈ F(W,Qq,t(X)) and w, v ∈ W , one has

ordνw(fg) = ordνw(f) + ordνw(g),(5.5)

ordνw(δ(v)f) = ordνv−1w(f),(5.6)

due to (4.1).

For f ∈ F(W,Qq,t(X)) and w, v ∈ W , we define

ordνw(f v) := ordνw(f), Xordνw(v f) := ordνw(f).(5.7)

The following proposition will be our main tool in the proof of the existence of the

Toda-Dunkl operators Ŷb.

Proposition 5.1.1. Let u ∈ W , choose a reduced expression u = sjl · · · sj1, and let

1 ≤ r ≤ p ≤ l.

(i) The ordνw of any product in the expansion of κδ(G̈+
αp · · · G̈+

αr) is bounded below by

ordνw(κδ(fαp · · · fαr)).

(ii) The ordνw of any product in the expansion of κδ(G̈+
−αr · · · G̈+

−αp) is bounded below

by ordνw(κδ(f−αr · · · f−αp)).
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(iii) The Xordνw of any product in the expansion of κδ(G̈−αp · · · G̈−αr) is bounded below

by ordνw(κδ(fαp · · · fαr)).

(iv) The Xordνw of any product in the expansion of κδ(G̈−−αr · · · G̈−−αp) is bounded below

by ordνw(κδ(f−αr · · · f−αp)).

Proof. We will prove (i) only; the other statements can be proved by similar argu-

ments. The proof is based on the following lemma.

Lemma 5.1.2. Let u ∈ W and choose a reduced expression u = sjl · · · sj1. Then for

any l ≥ i ≥ r ≥ 1, one has

ordνw(κδ(gαifsi(αi−1) · · · fsi(αr))) ≥ ordνw(κδ(fαi · · · fαr)), where si := sαi .(5.8)

Proof of Lemma 5.1.2. Write α = αi (so sα = si) and take β = αk for any

i > k ≥ r. Using (5.3), one has

ordνw(κδ(fβ)) ≤ ordνw(κδ(fsα(β)))

unless

ν = νβ, w−1(β) < 0, and w−1(sα(β)) > 0.(5.9)

An equivalent description of (5.9) is

ordνw(κδ(fβ)) = 1 and ordνw(κδ(fsα(β))) = 0,(5.10)

Assuming (5.9) holds, there are two cases to consider: either w−1(α) > 0 or w−1(α) < 0.

Suppose w−1(α) > 0. Then ordνw(κδ(gα)) = ordνw(κδ(fα)) = 0. If (5.10) occurs, then

one must have (β, α) < 0. Hence sα(β) belongs to λ(u) and by Lemma 1.2.1, one has

sα(β) = αj where i > j > k. Therefore, the application of sα to the product fαi−1 · · · fαr

reverses the positions of the factors fsα(β) and fβ for all pairs {β, sα(β)}, where β satisfies

(5.10); the ordνw of any other factors in this product can only increase upon the application

of sα. This proves (5.8) when w−1(α) > 0.
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It remains to consider the case when w−1(α) < 0. We note that w−1(sα(β)) =

sw−1(α)(w
−1(β)). By (1.26), one has

lν(sw−1(α)) ≤ −2(ρ∨ν , w
−1(α))− δν,να .(5.11)

(The only case when (5.11) is not an equality is να = νlng and ν = νsht.) Combining this

with (5.4) and (5.3) yields

ordνw(κδ(gα)) ≥ ordνw(κδ(fα)) +
lν(sw−1(α))− δν,να

2
.(5.12)

Using Lemma 1.2.1(ii), one sees that

lν(sw−1(α))− δν,να
2

is the maximum possible number of β satisfying (5.9). In other words, (5.12) compensates

for all drops in the order coming from (5.10) when applying sα to the product fαi−1 · · · fαr .

This establishes (5.8). 2

Now we return to the proof of Proposition 5.1.1(i). We argue by induction on the num-

ber of factors of the form gα sα chosen to form a particular product in the expansion—the

base case being the product when no such factors are chosen, i.e., P∅ := κδ(fαp · · · fαr).

Let us first consider some particular cases. Suppose that just one factor of the form

gα sα, say gαi s
i, is chosen. In other words, take the product

P i := κδ(fαp · · · fαi+1 gαi s
i fαi−1 · · · fαr).

Due to (5.7),

ordνw(P i) = ordνw(κδ(fαp · · · fαi+1 gαi fsi(αi−1) · · · fsi(αr)))

= ordνw(κδ(fαp · · · fαi+1)) + ordνw(κδ(gαi fsαi (αi−1) · · · fsαi (αr))),

Then (5.8) gives ordνw(P i) ≥ ordνw(P∅), as claimed.
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Now consider the case when two factors of gα sα are chosen:

P ij := κδ(fαp · · · fαi+1 gαi s
i fαi−1 · · · fαj+1 gαj s

j fαj−1 · · · fαr).(5.13)

Due to (5.7),

ordνw(P ij) = ordνw(κδ(fαp · · · fαi+1 gαi fsi(αi−1) · · · fsi(αj+1)

× gsi(αj) fsisj(αj−1) · · · fsisj(αr))).(5.14)

Apply (5.6) and (5.8) as follows:

ordνw(κδ(gsi(αj) fsisj(αj−1) · · · fsisj(αr))) = ordνsiw(κδ(gαj fsj(αj−1) · · · fsj(αr)))

≥ ordνsiw(κδ(fαj fαj−1 · · · fαr)) = ordνw(κδ(fsi(αj) fsi(αj−1) · · · fsi(αr))).

Returning to (5.14), one then has

ordνw(P ij) ≥ ordνw(κδ(fαp · · · fαi+1 gαi fsi(αi−1) · · · fsi(αr)))(5.15)

= ordνw(P i) ≥ ordνw(P∅).

In general, for any decreasing sequence p ≥ i1 > i2 > · · · > im ≥ r, we set

P i1...im := κδ(hp · · ·hr),

where hi = gαi s
i whenever i ∈ {i1, . . . , im} and hi = fαi otherwise. The same reasoning

used to arrive at (5.15) shows that

ordνw(P i1...im) ≥ ordνw(P i1...im−1),(5.16)

which gives the induction step. 2

5.2. Limits of Dunkl operators

Now we are ready to prove the existence of the Toda-Dunkl operators.

52



Theorem 5.2.1. The operators Ŷb = REδ(Yb) exist for all b ∈ P .

Proof. We will break the proof into steps, proving that Ŷb exists for the following

choices of b:

(1) b = ωr (r ∈ O′),

(2) b equal to a short positive root,

(3) b = −ωr (r ∈ O′),

(4) b equal to a short negative root.

These steps are sufficient to prove the theorem, because P is generated by Q together

with the minuscule weights, and Q is generated by the short roots. For a proof of the

latter assertion, see [26, Exercise 6.9].

For (1) and (2), we consider first any b ∈ P+. Write b = πrw̃ = πrsjl · · · sj1 (l = l(b))

in Ŵ and form α̃p (1 ≤ p ≤ l) from (1.20). Since b ∈ P+, one has lν(b) = 2(b, ρ∨ν ) and

Yb = Tb = πrTjl · · ·Tj1 . Hence Yb = q−(b, ρk)Γ−b G̈
+
α̃l
· · · G̈+

α̃1 . Using (4.8), we can write

κδ(Yb) =
∑
w∈W

q−(b, ρk−w(ρk)) Γ−w−1(b) ζw κδ(G̈+
α̃l
· · · G̈+

α̃1).

We claim that

ξδ(Yb) :=
∑
w∈W

q−(b, ρk−w(ρk)) Γ−w−1(b) ζw κδ(fα̃l · · · fα̃1)(5.17)

is regular at tν = 0 for any b ∈ P+. Indeed, one has

q−(b, ρk−w(ρk)) =
∏
ν

t−(b, ρ∨ν−w(ρ∨ν ))
ν

and the exponents (b, ρ∨ν − w(ρ∨ν )) count the number of α̃ = [α, ναj] ∈ λν(b) such that

w−1(α) < 0. This follows from (1.21) and the following counterpart of (1.27):

ρ∨ν − w(ρ∨ν ) =
∑

α∈λν(w−1)

α∨.(5.18)

Hence the regularity of ξδ(Yb) is immediate from (5.3).
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(1) Let b = ωr for r ∈ O′; recall that ωr = πrur. Using Proposition 5.1.1, where we

take u = ur, the regularity of κδ(Yωr) follows from that of ξδ(Yωr).

(2) Suppose b = α is any short positive root. We use the following lemma.

Lemma 5.2.2. For any short α ∈ R+, there exists a reduced expression

sϑ = sj1 · · · sjpsmsjp · · · sj1

such that α = sjr · · · sj1(ϑ) for some 0 ≤ r ≤ p.

Proof of Lemma 5.2.2. We can write ϑ = sj1 · · · sjr(α) by choosing αj1 , . . . , αjr

such that

(sji · · · sjr(α), α∨ji+1
) < 0, 1 ≤ i ≤ r.

Here we are using the characterization of ϑ as the unique short root lying in P+. If

β ∈ R+ is not a simple root, then 0 < si(β) < β for at least one i. Thus we can find

αjr+1 , · · · , αjp and αm such that α = sjr+1 · · · sjp(αm) and

(sji+1
· · · sjp(αm), α∨ji) = −1, 1 ≤ i ≤ p.(5.19)

These inner products must equal −1 because αm is short. Hence ϑ = sj1 · · · sjp(αm) and

p ≤ (ϑ, ρ∨)− 1. The expression sϑ = sj1 · · · sjpsmsjp · · · sj1 must be reduced, because

l(sϑ) = l(ϑ)− l(s0) = 2(ϑ, ρ∨)− 1;

i.e., we must have p = (ϑ, ρ∨)− 1. 2

Let sϑ = sj1 · · · sjpsmsjp · · · sj1 be a reduced expression as in Lemma 5.2.2. Let l =

l(sϑ) = 2p+ 1 and construct λ(sϑ) = {α1, . . . , αl} using this reduced expression.

Note that ϑ = s0sϑ and l(ϑ) = l(sϑ) + 1. Accordingly, λ(ϑ) = λ(sϑ) ∪ {[ϑ, 1]}.

Due to (5.19) and (1.34), one has

Yα = (T−1
jr
· · ·T−1

j1
)T0 (Tj1 · · ·TjpTmTjp · · ·Tjr+1).
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Hence, for v = sjr · · · sj1 , we can write

v−1 Yα v = q−(ϑ, ρk) G̈−αr · · · G̈−α1 Γ−ϑ G̈
+
[ϑ,1] G̈

+
αl
· · · G̈+

αr+1 .

We note that by (4.10) one has

κδ(v−1 Yα v) = v−1 κδ(Yα) v.

Hence it suffices to prove that κδ(v−1 Yα v) is regular at tν = 0.

By Proposition 5.1.1(i, iii), it is enough to consider

q−(ϑ, ρk)κδ(fαr · · · fα1 Γ−ϑ G̈
+
[ϑ,1] fαl · · · fαr+1).

We expand this product by choosing either f[ϑ,1] or g[ϑ,1] s[ϑ,1] from G̈+
[ϑ,1].

Choosing f[ϑ,1] from G̈+
[ϑ,1], we arrive at ξδ(Yϑ), which is known to be regular at tν = 0.

Thus it remains to choose g[ϑ,1] s[ϑ,1]. This yields

q−(ϑ, ρk)κδ(fαr · · · fα1 g[ϑ,−1] sϑ fαl · · · fαr+1),

where we have used that Γ−ϑ g[ϑ,1] s[ϑ,1] = g[ϑ,−1] sϑ. According to (5.7), when calculating

ordνw, one must move sϑ to the right:

sϑ (fαl · · · fαr+1) = (f−α1 · · · f−αl−r) sϑ,

where we have used Lemma 1.2.4(iii). By (5.4), we need to show that

ordνw(κδ(fαr · · · fα1f−α1 · · · f−αl−r)) ≥


(ϑ, ρ∨ν ), if w−1(ϑ) > 0,

(ϑ, ρ∨ν + w(ρ∨ν )), if w−1(ϑ) < 0,

(5.20)

for any 0 ≤ r ≤ p.

To this end, assume first that w−1(ϑ) > 0. Clearly we have (where δν,α = δν,να)

ordνw(κδ(fαr · · · fα1f−α1 · · · f−αr)) =
r∑
i=1

δν,αi .
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For the remaining factors in the left-hand side of (5.20), one has

ordνw(κδ(f−αr+1 · · · f−αl−r)) ≥ δν,ϑ +

p∑
i=r+1

δν,αi .

This can be seen as follows. First, αp+1 = ϑ and hence, by (5.3), ordνw(κδ(f−αp+1)) = δν,ϑ.

Second, for each r + 1 ≤ i ≤ p, at least one of w−1(αi) or w−1(αl−i+1) must be positive.

This follows from Lemma 1.2.1(ii), Lemma 1.2.4(iii), and the assumption w−1(ϑ) > 0.

Therefore, altogether one has

ordνw(κδ(fαr · · · fα1f−α1 · · · f−αl−r)) ≥ δν,ϑ +

p∑
i=1

δν,αi .(5.21)

Finally, using Lemma 1.2.4(i), one finds that the right-hand side of (5.21) is exactly

(ϑ, ρ∨ν ).

Now assume w−1(ϑ) < 0. One has

ordνw(κδ(f−α1 · · · f−αl−r)) =
∑

1≤i≤l−r
w−1(αi)>0

δν,αi(5.22)

and

ordνw(κδ(fαr · · · fα1)) =
∑

1≤i≤r
w−1(αi)<0

δν,αi ≥
∑

l−r+1≤i≤l
w−1(αi)>0

δν,αi .(5.23)

The inequality in (5.23) follows from Lemma 1.2.1(ii), Lemma 1.2.4(iii), and the assump-

tion that w−1(ϑ) < 0. In particular, if w−1(αl−i+1) > 0 for 1 ≤ i ≤ p, then necessarily

w−1(αi) < 0. Putting (5.22) and (5.23) together, one has

ordνw(κδ(fαr · · · fα1f−α1 · · · f−αl−r)) ≥
∑

1≤i≤l
w−1(αi)>0

δν,αi .

Finally, to get (5.20), we observe that

ρ∨ν + w(ρ∨ν ) =
∑

α>0, να=ν
w−1(α)>0

α∨(5.24)

56



and consequently (ϑ, ρ∨ν + w(ρ∨ν )) is exactly the number of α̃ ∈ λν(ϑ) with w−1(α) > 0.

Note that since w−1(ϑ) < 0, such α̃ must belong to λν(sϑ) \ {ϑ}.

This completes the proof of (5.20) and hence the proof of (2) as well.

Remark. The relation T−1
i YbT

−1
i = Ysi(b) from (1.34), which was used at the begin-

ning of (2), is valid only when (b, α∨i ) = 1. In particular, it does not hold for b = αm and

i = m. In this case,

T−1
m YαmT

−1
m = Y −1

αm + (t1/2m − t−1/2
m )T−1

m .(5.25)

One cannot use (5.25) to pass from Yαm to Y −1
αm in a way that is compatible with the limit

tν → 0. Nevertheless, we can reach Y −1
αm , along with all the operators corresponding to

negative short roots, by starting from Y −1
ϑ . This is carried out in (4) below.

Before (3) and (4), let us make some general remarks about Y−b for arbitrary b ∈ P+.

Write b = πrsjl · · · sj1 (l = l(b)) and construct λ(b) = {α̃1, · · · , α̃l} using this reduced

expression. Then (−b) = π−1
r sπr(j1) · · · sπr(jl), which is a reduced expression.

For 1 ≤ p ≤ l, let

β̃p = −b(α̃l−p+1) = sπr(jl) · · · sπr(jl−p+2)(απr(jl−p+1)),

so that λ(−b) = {β̃1, · · · , β̃l}. We can write

Y−b = q−(b,ρk)Γb G̈
−
β̃l
· · · G̈−

β̃1
= G̈−−α̃1 · · · G̈−−α̃l q

−(b,ρk) Γb.

Hence

κδ(Y−b) = κδ(G̈−−α̃1 · · · G̈−−α̃l)
∑
w∈W

q−(b, ρk+w(ρk)) Γw−1(b) ζw.

We claim that

ξδ(Y−b) := κδ(f−α̃1 · · · f−α̃l)
∑
w∈W

q−(b, ρk+w(ρk)) Γw−1(b) ζw.
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is regular at tν = 0. The proof is similar to that for ξδ(Yb) from (5.17) that was given

before step (1). One uses (5.24) instead of (5.18).

(3) In the case of b = ωr (r ∈ O′), the regularity of κδ(Y−b) is immediate from that

of ξδ(Y−b), due to Proposition 5.1.1(ii).

(4) For b equal to any negative short root −α (α ∈ R+), the proof is similar to (2).

Use Lemma 5.2.2 to choose a reduced expression sϑ = sj1 · · · sjpsmsjp · · · sj1 such that

sjr · · · sj1(−ϑ) = −α

for some 0 ≤ r ≤ p. Then, starting from Y −1
ϑ = T−1

sϑ
T−1

0 , we use (5.19) and (1.34) to get

Y −1
sj1 (ϑ) = Tj1Y

−1
ϑ Tj1 , Y −1

sj2sj1 (ϑ) = Tj2Tj1Y
−1
ϑ Tj1Tj2 , . . . ,

Y −1
α = Tjr · · ·Tj1Y −1

ϑ Tj1 · · ·Tjr .

Then the regularity of κδ(Y−α) can be shown using Proposition 5.1.1(ii, iv) as in (2).

The proof of Theorem 5.2.1 is now complete. 2

5.3. Remaining operators

We consider the remaining operators from Theorem 4.4.1(i).

Proposition 5.3.1. (i) The operator T̂i = REδ(T̈ϕi ) exists for i = 0, . . . , n. Moreover,

T̂i = REδ(T̈i) =
∑

w∈W s.t.
w−1(αi)<0

ζw (si − 1) for i > 0.(5.26)

(ii) For any b ∈ P ,

X̂b = REδ(X̃b) =
∑

w∈W s.t.
w−1(b)=b+

Xb+ ζw.(5.27)
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(iii) For any r ∈ O′,

π̂−1
r = REδ(ϕ(π−1

r )) =
∑
w∈W

(
Xw−1(ωr)

∏
α∈λ(ur) s.t.

(w−1(α),ρ∨)=1

(1−X−1
w−1(α)) ζw

)
u−1
r

+
∑
v<u−1

r

(∑
w∈W

fv,w ζw
)
v for certain fv,w ∈ Qq[X].(5.28)

Proof. (i) Using κδ(si) = si and (4.7), we readily arrive at (5.26) for i > 0. The

case of i = 0 is significantly more involved. We have ϕ(T̈0) = t
1/2
0 T−1

sϑ
X−1
ϑ . Write

sϑ = sjl · · · sj1 = sj1 · · · sjl (l = l(sϑ)). Let αp = sj1 · · · sjp−1(αjp) ∈ λ(sϑ) for p = 1, . . . , l.

Now

T̈ϕ0 = t
1/2
0

∏
ν

t−lν(sϑ)/2
ν G̈−−α1 · · · G̈−−αl sϑX

−1
ϑ .(5.29)

By Lemma 1.2.4(i), one has lν(sϑ) = 2(ϑ, ρ∨ν )− δν,ϑ. Hence

t
1/2
0

∏
ν

t−lν(sϑ)/2
ν =

∏
ν

t
−(ϑ, ρ∨ν )+δν,ϑ
ν .

Returning to (5.29), we have

κδ(T̈ϕ0 ) = κδ(G̈−−α1 · · · G̈−−αl)
∑
w∈W

tsht q
−(ϑ, ρk+w(ρk)) Xw−1(ϑ) ζw sϑ.(5.30)

By Proposition 5.1.1(iv),

Xordνw(κδ(G̈−−α1 · · · G̈−−αl)) ≥ ordνw(κδ(f−α1 · · · f−αl)) =
∑

α∈λ(sϑ)∩(R+\λ(w−1))

δα,ν .

The claim now follows from (5.24), the description of the sets λν(ϑ) from (1.21), and

ϑ = s0sϑ. The tsht factor in (5.30) accounts for the case when w−1(ϑ) > 0, because

λ(sϑ) = λ(ϑ) \ {[ϑ, 1]}.

(ii) By definition, X̃b = q(b+, ρk)Xb; hence

κδ(X̃b) =
∑
w∈W

q(b+−w−1(b), ρk)Xw−1(b) ζw.
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Now (5.27) follows due to the fact that b+ ≥ w−1(b) for all w ∈ W .

(iii) Recall that ϕ(π−1
r ) = XωrTu−1

r
. Let ur = sjl · · · sj1 be a reduced decomposition.

Construct λ(ur) = {α1, . . . , αl} using this decomposition. Then

ϕ(π−1
r ) = q−(ωr, ρk)XωrG̈

+
−α1 · · · G̈+

−αl u
−1
r .

We have used here that lν(ur) = lν(ωr) = 2(ωr, ρ
∨
ν ). Hence

κδ(ϕ(π−1
r )) =

(∑
w∈W

q−(ωr, ρk+w(ρk)) Xw−1(ωr) ζw
)
κδ(G̈+

−α1 · · · G̈+
−αl)u

−1
r .

Now, by (5.24) and Proposition 5.1.1(ii), the limit REδ(ϕ(π−1
r )) exists. Then (5.28)

follows readily. 2

5.4. Symmetrization

Recall the definition of RE from (3.15) and the operators Lf and Lf from (1.48).

Proposition 5.4.1. For any f ∈ Q̈q,t[X]W , one has

REδ(Lf ) = RE(Lf ),(5.31)

upon the restriction to F δ(W,V), the space of W–invariants of F(W,V).

Proof. By Proposition 1.3.2, REδ(Lf ) commutes with REδ(T̈i) from (5.26) for all

i = 1, . . . , n. Now we have the following:

Lemma 5.4.2. An element g ∈ F(W,V) belongs to F δ(W,V) if and only if T̂i(g) = 0

for all i = 1, . . . , n.

Proof. Applying (5.26) to g =
∑

w∈W gw ζw gives

T̂i(g) =
∑

w∈W s.t
w−1(αi)<0

(gsiw − gw) ζw.

This vanishes provided gsiw = gw whenever w−1(αi) < 0; but the latter condition is

always met by exactly one of w, siw. 2
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It follows that REδ(Lf ) preserves F δ(W,V). Therefore, upon the restriction to

F δ(W,V), this operator has the form
∑

w∈W L ζw for some fixed difference operator L.

By considering the id–component of REδ(Lf ) one sees that L = RE(Lf ). 2

5.5. Examples

For the root system A1, one has

Ŷω = Γ%−ω

(
(ζid + (1−X−1

α )ζs) + (−ζid +X−1
α ζs) s

)
Ŷ −1
ω = Ŷ−ω =

(
(1−X−1

α )ζid + ζs

)
Γ%ω +

(
ζid −X−1

α ζs

)
Γ%−ω s

in terms of the fundamental weight ω and corresponding simple root α and simple reflec-

tion s. See (4.5) for the definition of Γ%b . Upon the restriction to F δ(W,V),

Ŷω + Ŷ −1
ω =

(
(1−X−1

α )Γω + Γ−ω

)
,

which is a special case of Proposition 5.4.1. See [15] and [16, 17] for a complete treatment

of the rank-one case, including a construction of the Toda-Dunkl operators in terms of

(sub-)induced nil-DAHA module in [17].

For the root system A2, one has

Ŷω1 = Γ%−ω1

(
(ζid + (1−X−1

α1
)ζs1 + ζs2 + (1−X−1

α2
)ζs1s2 + (1−X−1

α1
)ζs2s1 + (1−X−1

α2
)ζs1s2s1) id

+(−ζid +X−1
α1
ζs1 − ζs2 − (1−X−1

α1
)ζs2s1 +X−1

α2
ζs1s2s1) s1

+(ζs2 +X−1
α1+α2

ζs1s2 −X−1
α1
ζs2s1 −X−1

α1+α2
ζs1s2s1) s1s2

+(−(ζs1 + ζs2) + (1−X−1
α1

)X−1
α2
ζs1s2 +X−1

α1
ζs2s1 +X−1

α1+α2
ζs1s2s1) s1s2s1

)
.

The operator Ŷω2 is obtained by interchanging the indices 1 and 2 of ωi, si, and αi in the

above formula. The operators Ŷωi are invertible (their inverses are Ŷ−ωi), and one has
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the following special case of Proposition 5.4.1:

Ŷ −1
ω1

+ Ŷω1Ŷ
−1
ω2

+ Ŷω2 = (1−X−1
α1

)Γω1 + (1−X−1
α2

)Γ−ω1+ω2 + Γ−ω2 = RE(Lω1),

upon the restriction to F δ(W,V); cf. (0.1).

For the root system B2, with α1 long and α2 short, the fundamental weight ω2 is

minuscule, while ω1 = ϑ is not. One has

Ŷω2 = Γ%−ω2

(
(ζid + ζs1 + (1−X−1

α1
)(ζs2s1 + ζs1s2s1)

+(1−X−1
α2

)(ζs2 + ζs1s2 + ζs2s1s2 + ζs1s2s1s2)) id

+(−(ζid + ζs1) +X−1
α2

(ζs2 + ζs1s2s1s2)− (1−X−1
α2

)ζs1s2

−(1−X−1
α1

)ζs1s2s1) s2

+(ζs1 + (1−X−1
α2

)ζs1s2 +X−1
α1+α2

ζs2s1 −X−1
α1
ζs1s2s1

+X−1
α1+α2

(1−X−1
α2

)ζs2s1s2 −X−1
α1+α2

ζs1s2s1s2) s2s1

+(−(ζs1 + ζs2)− (1−X−1
α2

)ζs1s2 +X−1
α1

(1−X−1
α2

)ζs2s1

+X−1
α1+2α2

ζs2s1s2 +X−1
α1
ζs1s2s1) s2s1s2

+(−(ζs1 + ζs2s1) +X−1
α2
ζs1s2 +X−1

α2
(1−X−1

α1
)ζs2s1s2

+X−1
α1+α2

ζs1s2s1 −X−1
α1+α2

(1−X−1
α2

)ζs1s2s1s2) s1s2s1

+(ζs1 −X−1
α2
ζs1s2 −X−1

α1+α2
ζs1s2s1 +X−1

α1+2α2
ζs1s2s1s2) s1s2s1s2

)
.
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