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ABSTRACT

Daniel Serrano: A Second-Order Growth Model for Longitudinal Item Response Data
(Under the direction of Patrick J. Curran)

This Dissertation explores the unique issues related to specifying and fitting a second-

order growth model to longitudinal item response data. The model examined is a hybrid

of the logistic IRT model for binary item responses and the latent growth curve model

for repeated measures. Attention centered around parameterization, identification, es-

timation, and issues related to estimation of the model such as convergence, improper

solutions, bias and root mean squared error (RMSE). Two variations on the proposed

model: one with correlated errors (model 2) and one without (model 1). In each model

two types of estimator were examined: full and limited information estimators. Two

sample size conditions were examined, one with N = 750 observations, and another with

N = 3000. In addition, two item parameter sets were examined, one having a wide range

of difficulty and the other, narrow. Comparing analyses stratified across model, findings

indicated greater rates of improper solutions and bias for model 2 versus model 1. Lim-

ited information estimators of model 1 performed worse than full information estimators,

while the opposite was true for model 2. Bias and convergence issues were greatest when

difficulty had a wide range. Lastly, sample size appeared to play a negligible role in bias

and RMSE, though it did affect convergence issues and improper solutions. Based on

empirical results presented in this simulation the proposed model appears to be a logical

statistical framework for modeling longitudinal item responses.
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CHAPTER 1

Introduction

Over the past 30 years psychological research has gradually shifted away from cross

sectional designs and toward longitudinal or repeated sampling designs, under which

scales are repeatedly administered to a sample of subjects tracked over multiple assess-

ment occasions. The field’s origins in experimental research likely account for the heavy

reliance on cross sectional designs. However, as research began to focus on developmen-

tal processes of both normative and pathological behavior, longitudinal designs became

prominent (Nesselroade & Baltes, 1979). Advances in statistical theory and computing

have facilitated the adoption of this approach within the field (Bollen & Curran, 2006;

Mehta & West, 2000). However, it is rare for such studies to incorporate measurement

models to account for the measurement error inherent in the study of such unobservable

psychological constructs as internalizing or externalizing behavior.

In the case of most measurement studies, single stage sampling is employed and re-

sults in the random sampling of respondents and their responses to a scale composed

of k items. This historical design resulted in the development of many useful statistical

models for assessing measurement properties in cross section, but renders the analysis of

longitudinal responses complex. The primary obstacle to specification of a latent variable

model characterizing the measurement properties of the sampled responses is the speci-

fication of a distribution for the latent variable and a distribution for the item-responses

conditional upon the latent variable. In the case of uni-dimensional scales, only a uni-

variate distribution need be specified for the latent variable. In contrast, consider a two



stage sampling design of a uni-dimensional psychopathology scale. In the first stage of

sampling respondents are randomly sampled with equal probability of selection. In the

second stage of sampling, responses to the items composing the uni-dimensional psy-

chopathology scale are sampled at T measurement occasions. This design induces an

T dimensional joint distribution for the latent variables underlying the uni-dimensional

scale at each occasion. Thus the model specification now requires characterizing a T

dimensional distribution for the latent variables, increasing the complexity of the condi-

tional response distributions. When item responses are discrete and we wish to estimate

item parameters or obtain latent variable scores while simultaneously taking into account

the parameters characterizing the T dimensional latent variable distribution, there are

two classes of methods: Factor analysis and item response theory procedures.

Within the factor-analytic tradition several models have been developed for embed-

ding a measurement model for discrete item responses within a longitudinal model for

the joint distribution of the repeated latent-variable measures. While this approach per-

mits specification of a general model for longitudinal measurement models, it is limited

to few items. In addition, it may not be amenable to application to psychopathology

scales. Such scales often contain items which are rarely endorsed within a sample; ex-

amples would include items assessing suicidal ideation on a depression inventory. Such

behaviors are rare enough in the general population that item endorsement rates are

generally low. The factor analytic approach performs poorly with such items. In con-

trast the item response theory (IRT) model easily handles large item sets and rarely

endorsed items. However, the traditional item response theory (IRT) model (Birnbaum,

1968; Bock & Lieberman, 1970; Bock & Aitkin, 1981; Bartholomew & Knott, 1999), is

not easily amenable to accounting for the joint distribution of latent variables arising

from repeated measures. Often, application of the IRT model to longitudinal responses

requires modification of the data to fit existing architecture.

For example, in order to approximate latent variable scores Curran et al. (2008)

2



modified longitudinal item response data through a random sampling selection process

converting the longitudinal data into representative cross sectional data thus permitting

item evaluation within existing measurement model architecture. Provisional on the

obtained pseudo-cross-sectional item parameters, latent variable scores were obtained for

each subject at each time-point. However, because the scores were not obtained from

a model which explicitly accounted for the repeated measures, the degree of precision

of the resulting scores was likely distorted. The extent of this distortion is unclear, and

would depend on the representativeness of the sample resulting from the random selection

process. Nonetheless, some imprecision is induced under such an approach and exists for

two reasons.

First, the item parameters on which the scores are conditioned do not characterize

any of the time-specific item response patterns. Thus we can not determine how the scale

performs at any given assessment. In addition, because the item parameters do not map

on to any one assessment, the time-specific latent variable scores that can be estimated

may not be conditioned on the correct item parameters. Consequently there may be some

misspecification in the latent variable scores. Second, latent variable scores of this type

are obtained using a shrinkage estimator. By that I mean scores are concentrated toward

areas of highest precision and extreme scores are pulled in toward the mean. Because

of the random sampling process, a given random draw could result in a preponderance

of cases from a single time-point. In so doing, scores would be shrunken towards those

characterizing a specific time-point rather than the time-specific latent variable which

we desire. These two issues are but a few which serve to motivate the longitudinal IRT

model.

Part of the reason that a more comprehensive model was not implemented by Curran

et al. (2008) is that until recently computational limitations have prevented the specifi-

cation and estimation of such models. In fact, such models remain in their infancy and

the field is full of opportunities for study and development. Several longitudinal item

3



response models have been proposed, In this dissertation I develop and study a general

model for longitudinal binary item responses. Specifically, I examine the performance

of second-order growth models in the analysis of longitudinal item response data. I

consider the application of the model to designs commonly encountered in the study of

psychopathology: multiple repeated measures of a small item pool. This is in contrast

to the item pools common to educational testing in which large item sets are repeatedly

sampled few times. The second-order growth model has yet to be explicated or evaluated

in the case of longitudinal item response data.

Though the literature on longitudinal IRT models is diverse, I focus here on the

most prominent and notable work developing general statistical frameworks for estimat-

ing item parameters and scoring. Embedding a measurement model within a generalized

linear mixed model, Johnson and Raudenbush (2006) specified a repeated measures Rasch

model for two longitudinal assessments. Because of the Rasch specification prevented es-

timation of a distinct slope for each item, slopes were constrained to equality across items,

the estimates then for the constrained slope and the threshold parameters were estimated

as the average of the parameters between the two repeated measures. Justifications for

employing the restricted Rasch model included estimation limitations, simplicity of in-

terpretation of scale, and an empirical evaluation indicating that the Rasch model fit the

data considered in application better than a two parameter logistic (2pl) model. Because

the model given by Johnson and Raudenbush (2006) specifies item parameters as aver-

ages of the time-specific item parameters, the framework does not provide a means for

testing invariance.

In a recent dissertation, Hill (2006) developed a 2pl IRT bi-factor model for two

repeated measures. Hill (2006) employed the testlet-factors approach to specification,

augmented by a general factor at each time. The testlet factors were specified by giving

each repeated item a constant loading on the testlet, and constraining the mean and

variance of the testlet factor to be 0, 1 respectively. The error correlation for each pair of

4



items was then given by the square of the testlet loading. The bi-factor model given by

(Hill, 2006) was identified by constraining θ1 ∼ N(0, 1) and freely estimating the mean

and variance of θ2. Though a simulation design was not employed, Hill (2006) examined

the performance of her model under single replications of several simulated data sets in

order to examine item-set and sample size effects.

Alternative models have been proposed by Gibbons and Hedeker (1997), Liu and

Hedeker (2006), and Liu (2008). These authors have specified IRT models in which

the repeated measures are modeled at the item response level and not the level of θ.

Specifically, these authors have fit standard IRT models at each assessment while simul-

taneously fitting a random effect for time to the observed item-responses. Because the

time trend is modeled at the level of the item responses and not θ, one cannot disen-

tangle the effects of growth from non-invariance. In contrast, the second-order growth

parameterization models the repeated measures at the latent ability (θ) level. Though I

defer thoroughly examining measurement invariance to future work, the model provides a

general framework for the testing of invariance. The contribution of this work is therefore

the explication of the proposed model and assessment of its performance in simulation.

1.1 Proposed Model

The proposed model is based on a second-order growth model where the lower order

measurement models are repeated samples of the IRT model over time. These IRT models

are parameterized using the threshold parameterization for the kth item:

ϕk = ak(θ − bk), (1.1)

where ak is the slope (discrimination in IRT parlance) and bk the threshold, and θ is the

latent variable measured by the items. In this model the item-parameters to be estimated

are ak and bk. In the case of binomial family response distributions the model will employ

the logit inverse link function:

P (itemk = 1|θ) =
1

1 + e−ϕk
. (1.2)
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1.1.1 A Model for Correlated θ

To account for the correlated nature of the T longitudinal assessments, a second-order

growth model will be specified for the repeated θ. The second-order growth model is sim-

ply a mixed effects model for θ, which accounts for the trend in the mean and covariance

structure observed among the repeated measures in θ. Let η be an R dimensional matrix

of unobserved random effects:

η =

[

α β,

]

(1.3)

and let η ∼ N(µη, τ η). The fixed effects, contained in µη, characterize the mean trend

structure of θ, while the R×R dimensional random effects covariance matrix, τη, char-

acterizes the trend in the covariance structure of θ. The conditional model relating η to

the 1× T dimensional vector θ, whose T th element, θT , is the latent variable value for a

single respondent at the T th assessment, may be expressed as a function of a mixed-effect

polynomial trend for time:

θ = λη + ǫ (1.4)

The model of interest employs a linear polynomial trend to parameterize λ, though this

model permits the parameterization of more complex trends. For example,

λ =



























1 0

1 1

1 2

...
...

1 T − 1



























. (1.5)

The time-specific disturbance terms, contained in ǫ, are assumed ǫ ∼ N(0,ψ), where

ψ is a T × T dimensional diagonal matrix of time-specific variances, the T th element of

which is the variance of θT conditioned upon the growth model.

The distribution for θ may be derived using properties of linear combinations of

Gaussian variates from the conditional model. Specifically, θ ∼ N(λµη,λτηλ
′ + ψ).
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This model provides estimates of parameters characterizing the distribution of the time-

specific θT . However, the parameters are not freely estimated, but instead are implied

by the linear trend specified in the model. Thus the model explicitly assumes that ability

increases or decreases via a linear polynomial over time.

1.1.2 Advantages of this Approach

There is one main advantages of this approach relative to a multivariate longitudi-

nal model which jointly estimates time-specific IRT models and characterizes the change

over time by freely estimating the saturated mean and covariance structure of the matrix-

valued θ. The advantage relates to the dimensions of integration required for the model

relative to the number of parameters which summarize the moments of the distribu-

tion of θ. Under a binary response model both models estimate 2k item parameters,

consequently the primary difference between the two models relates to the number of

parameters estimated to characterize the distribution of θ. The multivariate model for

T repeated measures estimates (T )(T+1)
2

parameters characterizing the covariance matrix

θ, and T means. Defining the dimensions of the second-order growth component matrix

(η) as R = dim(η), the number of estimated parameters under the second-order model

may be expressed as (R)(R+1)
2

parameters characterizing the covariance matrix of η, R

means, and T time-specific error variances. With four repeated measures the saturated

multivariate model estimates 14 total parameters, while the second-order model with

linear polynomial trend estimates a total of 9 parameters. The difference in parameters

required to summarize the distribution of θ, is a common result of invoking any structural

model, however, what is unexpected is that this can be accomplished without increasing

the burden of numerical integration.

We can express the marginal likelihood generally as

∫ ∫

p(y|θ) p(θ|η) φ(η) ∂η φ(θ)∂θ, (1.6)
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which may be partitioned into:

∫

p(y|θ)
[
∫

p(θ|η) φ(η) ∂η

]

φ(θ) ∂θ (1.7)

And the component of the integrals required to express the conditional model relating θ

to η:
∫

p(θ|η) φ(η) ∂η (1.8)

has a closed form solution, meaning that this model only requires T dimensions of inte-

gration and not T +R dimensions of integration. Thus, the second-order growth model

can characterize the distribution of θ with as many dimensions of integration as a mul-

tivariate model with fewer parameters. Consequently, the apparent added complexity

of the second-order model results in parametric savings with no additional estimation

burden.

1.1.3 Identification

In traditional IRT sampling situations i = 1 . . . L subjects are sampled and each

responds to k = 1 . . .N items. Under such sampling we identify the IRT model by as-

suming that θ ∼ N(0, 1). However, the model of interest accounts for the effect of time

on θ through parameterization of the mean and covariance matrix of θ. Consequently,

a different identification procedure is required, one that permits estimation of the pa-

rameters characterizing the distribution of θ. One alternative, employed by Hill (2006),

identifies the model by constraining θ1 ∼ N(0, 1), constraining the item parameters corre-

sponding to the first item to equality, and freely estimating all other item and structural

parameters. However, consider imposing the constraint that the variance of V ar(θ1) = 1

in the context of the growth model. Under the proposed model, V ar(θ1) = τα + ψ1,1,

consequently, in order to employ the identification constraint employed by Hill (2006),

the linear constraint τα +ψ1,1 = 1 would have to be imposed on the second order model.

Instead, I advocate identification based on the alternative reference item identifica-

tion constraint. Under this constraint, the slope and threshold corresponding to the kth
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item are constrained to 1 and 0 respectively at each time-point and the mean and vari-

ance for θT are freely estimated at each repeated measure. The constraint on the item

parameters implies moments for the distribution of θ. Specifically, omitting the inequal-

ities used to derive these implied moments, µ = −a⋆
kb

⋆
k and σ2 = (a⋆

k)
2. It is important to

observe that selection of the reference item has implications for the moments of the latent

variable, because when estimation is sensitive to the location and dispersion of the distri-

bution of the latent variable, poor choices of the reference item could lead to estimation

difficulties. Thus when employing this identification constraint, it is important to keep

this issue in mind in the event that estimation troubles are encountered. Nonetheless, it

is a common and easily implemented identification constraint. In addition, the reference

item is invariant to time, and therefore, changes in items over time must be attended to

in order to understand potential estimation troubles.

1.1.4 Measurement Invariance

In order to model trends in θ, be it externalizing behavior, or educational ability,

across repeated measures, we must assume that the definition of θ does not change over

time. In other words, to be able to describe change over time in θ we must be able to

demonstrate that θ is changing, rather than the definition of θ changing. While this

notion exists within both the factor analytic and response theoretic frameworks, this

concept of constant definition of θ can generally be referred to as factorial invariance.

There is more than one way of establishing factorial invariance; in this project I define

invariance by holding the item parameters constant within item over time, yet permitting

the mean and variance to change over time as detailed in the preceding section. Though

invariance is likely to be violated within any given application of the proposed model,

a comprehensive examination of the proposed model under both invariance and non-

invariance is beyond the scope of this project. Consequently, in this dissertation all

models examined will be parameterized consistent with invariance assumptions.
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1.1.5 A Model For Correlated Errors

The probability model given in equation 1.2 expresses a relationship between the true

score and item response under the assumption of independent and standardized errors.

The error model corresponds to the standardized logistic distribution, with error variance

π2

3
, and is a necessary restriction imposed for model identification (McCullough & Nelder,

1989). Given a set of repeated item responses one does not know whether the the growth

model explicated is sufficient to model the correlated nature of the repeated responses. In

some circumstances, repeated measurement may induce correlation in both the true scores

and the errors. In that case one must augment the proposed model with correlations

among the errors. However, constraining the error model for identification does not

permit flexible parameterization of the error covariances as is common in linear models.

Instead, one could consider testlet factors to account for the item-specific correlation.

Whereas θT is a constant person effect at the T th measurement occasion which accounts

for the correlation in item responses, the testlet factor accounts for the correlation within

a specific item induced by repeated administration of that item. The testlet factor model

may be expressed for a given subject by augmenting equation 1.1:

ϕkt = akt(θt − bkt) + λkθk, (1.9)

where λk is the loading that item k has on the item-specific testlet factor θk. For identi-

fication purposes I set θk ∼ N(0, 1). When item k is measured repeatedly, each realized

item response is a function of the testlet factor θk. Given constant loading on the testlet

factor across items, we can determine the within-item error-correlation resulting from

repeated administration by λλ′. For example, with three repeated measures of a given

item and constant loading estimated to be .5477 the implied residual item-correlation is

.3, given by λ2
k = .54772 = ρk = .3. This is identical to the method employed by Hill

(2006) for handling correlated errors. In some cases it may be reasonable to expect a

decaying correlation pattern among more temporally distal measurements of the same
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item. In such circumstances, λ may be structured in order to fit patterned correlation

structures. Nonlinear constraints could be employed in order for λk to produce an autore-

gressive structure of user-specified order. A substantial problem with the specification

of an unrestricted error-correlation model is related to computational burden. Whereas

the model for correlated true scores increases by one dimension for every added repeated

measure, the unrestricted model for correlated errors with N items and M repeated

measures consists of a minimum of N +M dimensions. And that is under a model with

constant error-correlation within item. If error correlations are non-constant within item

over time the dimension of the unrestricted model for correlated errors can have as many

as
(

M(M − 1)

2

)

N +M (1.10)

dimensions. Thus an unrestricted model may be computationally impractical for more

than a few items or a few repeated measures, unless an estimation routine can be em-

ployed which can handle very high-dimensional models.

1.2 Estimation

Two primary estimation methods exist for latent variable models with Bernoulli item

responses: Full and limited information estimation. The advantage of the full informa-

tion approach is that it takes advantage of the raw response patterns and is rooted in

the established theory of maximum likelihood (Bock & Lieberman, 1970). Historical

disadvantages of the full information approach have included heavy computing burden

and the restriction of the approach to a single factor model and few items. These dis-

advantages motivated the development of limited information techniques that permitted

the fitting of multi-factor models to larger sets of items with reduced computing time

(Christofferson, 1975; Muthén, 1978; Olsson, 1979). The limited information approach

avoids the use of the raw response patterns and instead uses first-order and second-order

marginal proportions obtained from contingency tables in order to fit the model. This
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approach has gained wide appeal among factor analysts because it serves as an analog in

discrete indicators to the weighted least squares estimation of the common factor model

under continuous indicators (Bartholomew & Knott, 1999). A substantial limitation of

this approach is the rate at which the weight matrix grows, which has historically re-

stricted the method to the analysis of no more than 25 items. The ascension of the

limited information estimator did not limit work refining the full information estimator.

The modern full-information approach to item parameter estimation is based on the work

of Bock and Aitkin (1981) who employed an EM-type algorithm to facilitate the approx-

imation to the integrals that bogged down the computations in Bock and Lieberman

(1970). The advantage of the Bock and Aitkin (1981) method is that it increased the

number of items that could be analyzed from a maximum of 12 to nearly 100, making

it an exceedingly useful method for estimating single-factor models with large item-sets.

These two approaches to estimation are discussed in the following sections.

1.2.1 Limited Information Estimation

Drawing on the strengths of the factor analytic model, Christofferson (1975), Muthén

(1978), and Olsson (1979) developed a general framework for fitting models to discretely

distributed item responses. Parameter estimates obtained within this framework may

be translated to IRT parameters. This framework serves as an elegant complement to

the item response model. Because the parameters can be compared, and the proposed

model has been estimable within this framework for years, I am interested in examining

the limited information estimator and its performance relative to the full information

estimator of IRT.

Pearson (1901) pioneered an approach to the analysis of Bernoulli item responses

that has enjoyed widespread favor among psychometricians, primarily because of the

fact that it serves as a heuristic analog in discrete indicators to the widely employed, and

well understood, method of fitting the common factor model to the correlation matrix

of continuous indicators. Following Lord and Novick (1968), for pairs of discrete items
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{k, l}, the joint Gaussian density defined through an auxiliary threshold model gives

conditional proportions:

πkl =

∞
∫

τk

∞
∫

τl

Φ(θk, θl, ρkl)∂θk∂θl, (1.11)

where θk and θl are unobserved Gaussian variates dichotomized at τk and τl respectively

to define the observed dichotomous indicators yk and yl, and where yk = 1 ⇐⇒ θk ≥ τk

and yk = 0 ⇐⇒ θk ≤ τk. The unobserved Gaussian variates are correlated ρkl.

The conditional proportion given above in equation 1.11 corresponds to yk = 1 and

yl = 1, the complement can be obtained by inversion of the integration limits, and the

remaining proportions can be obtained by conditional inversion of the integration limits.

The marginal proportions for yk and yl defined by the auxiliary threshold model are given

by

πk =

∞
∫

τk

∞
∫

−∞

Φ(θk, θl, ρkl)∂θk∂θl, (1.12)

πl =

∞
∫

−∞

∞
∫

τl

Φ(θk, θl, ρkl)∂θk∂θl, (1.13)

If the proportions, πk, πl, πkl are known then the parameters, τk, τl, and ρkl defining the

joint Gaussian distribution characterizing θk and θl are uniquely defined by the given

functions. However, in the absence of the population proportions, the sample estimates

must be used, resulting in the estimation of a sample tetrachoric correlation coefficient.

When, for all pairs of items, the sample tetrachoric correlation coefficient is computed,

the tetrachoric correlation matrix can be populated. The previously mentioned heuristic

method relies on the sample tetrachoric correlation matrix as input to the fitting func-

tion. An unfortunate property of the sample tetrachoric correlation matrix is that even

when the population tetrachoric correlation matrix is well defined, the sample tetrachoric

correlation matrix can be degenerate, particularly as |ρ̂kl| → 1 (Lord & Novick, 1968).

Modern methods of limited information estimation are similar to the method pro-

posed by Pearson (1901), where each of three related methods seek to simplify the com-
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puting burden inherent in the approach taken by Pearson (1901) and early full informa-

tion methods (Bock & Lieberman, 1970). The first limited information estimator was

derived by Christofferson (1975) who sought to find some approximation to the full infor-

mation in the data that would permit easier model estimation of more complex models for

more items. Rather than employing the response pattern, Christofferson (1975) chose to

employ the first and second-order marginal proportions for model estimation. The pop-

ulation first-order proportions have been defined in equations 1.12 and 1.13 while the

second-order proportions are given in equation 1.11. Christofferson (1975) defined the

sample realizations of these proportions as P̂k = πk + ǫk, P̂l = πl + ǫl, and P̂kl = πkl + ǫkl.

While the first-order sample proportions were estimated by Christofferson (1975) via

standard routines, the second-order sample proportions had to be approximated via the

tetrachoric expansion. The population and sample proportions can be stacked in the

vectors π and P respectively. Stacking the errors, defined as P − π, into the vector ǫ

and then computing the corresponding covariance matrix of these errors yields Σǫ would

produce the covariance matrix of the errors, permitting weighted minimization of the

squared errors, ǫΣ−1
ǫ ǫ

′. Unfortunately, Σǫ is not known. Christofferson (1975) derived a

consistent estimator of Σǫ based on third and fourth-order moments which produced an

efficient generalized least squares (GLS) estimator. In fact, in comparison to the results

obtained by Bock and Lieberman (1970), both the point estimates and the standard

errors for the GLS estimator were nearly identical. Compared to the solution given by

Bock and Lieberman (1970), this approach reduced the computing burden, increased the

analyzable number of items to 25, and allowed for the fitting of multi-factor models.

However, it required the evaluation of the integrals contained in equations 1.11− 1.13

at each stage of iteration.

In order to circumvent the burdensome integration required by the GLS estimator

proposed by Christofferson (1975), Muthén (1978) inverted the integrals in equations

1.11− 1.13. This inversion results in the definition of the thresholds and tetrachoric
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correlations rather than the first-order and second-order marginal moments employed by

Christofferson (1975). Reparameterizing the elements contained in ǫ as a function of the

distance between the sample and model-implied thresholds and tetrachoric correlation

coefficients yielded a GLS estimator as efficient as that derived by Christofferson (1975).

Muthén (1978) described the relationship between the methods proposed by himself

and Christofferson (1975) to the heuristic method, noting that the heuristic method

was analogous to the GLS method replacing the weight matrix with an identity matrix,

resulting in an unweighted least squares (ULS) solution. The approaches proposed by

Christofferson (1975) and Muthén (1978) provided a least squares theory for fitting the

heuristic method, with the main added advantage being the provision of efficient standard

errors. Because the fitting function employed in this approach measures discrepancy

primarily as a function of the distance between the sample and model-implied correlation

coefficients, this method serves as the dichotomous analog to the weighted least squares

estimator for continuous indicators.

In the case of polytomous item responses, Olsson (1979) solved the problem of effi-

cient computation of the polychoric correlation matrix. The polychoric correlation ma-

trix is an extension of the tetrachoric correlation to multinomial item responses. Rather

than attempting to evaluate the full multinomial distribution of the set of polytomous

responses in order to estimate the polychoric correlations, Olsson (1979) provided an

algorithm for deriving the correlations as a function of the bivariate marginals obtained

from pairwise contingency tables. Focussing on pairwise evaluation of the conditional re-

lations between the items to characterize the multivariate distribution underlying the set

of contingency tables provided a practical solution to a formerly intractable computing

problem. This approach forms the basis for modern approaches to weighted least squares

estimates of item parameters given discrete item-responses. The algorithm implemented

in most commercial software involves three steps of estimation. In the first stage, uni-

variate marginal proportions are used to obtain estimates of the threshold parameters.
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In the second stage, bivariate proportions are employed to obtain estimates of the poly or

tetrachoric correlation (following Olsson, 1979) conditioned upon the threshold estimates

obtained in stage 1. In the final stage of estimation the factor model is estimated by

employing weighted least squares to the polychoric correlation matrix, where the weight

matrix corresponds to the asymptotic covariance matrix of the polychoric correlations.

1.2.2 Full Information Estimation

For the case of both large and small item pools, no estimator is more optimal than

the full information estimator historically employed within IRT. This estimator fits nicely

within the generalized linear model theory (McCullough & Nelder, 1989) in which analysis

is based on the expression and maximization of a likelihood for the raw item responses.

Consequently, the full information estimator retains all the desirable properties associated

with maximum likelihood theory which are not available within the limited information

estimator.

Given the full response pattern rather than statistics summarizing the response pat-

tern, estimation must employ a likelihood for the response given the latent variable.

However, because the latent variable is not observed, in order to obtain estimates of the

item parameters governing the responses to a given item it is reasonable to treat the

latent variable as a nuisance over which to integrate in order to obtain item parameters

marginal to the latent variable. This requires specification and evaluation of the marginal

log likelihood function. This function may be expressed for respondent i as:

ℓi =

N
∑

k=1

∞
∫

−∞

log(g(itemk|θ)) + log(φ(θ))∂θ. (1.14)

Here, g(itemk|θ) is a general expression for the conditional likelihood of the item response

given θ, and φ(θ) is the distribution assumed for θ, in most applications this is the stan-

dardized Gaussian density. In the case of Gaussian item-responses and Gaussian latent

variables one can marginalize the log-likelihood in closed form because the log likelihood

is itself an additive function of two Gaussian densities. In contrast, with Bernoulli item-
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responses and Gaussian latent variables, the log likelihood is of indeterminate form mean-

ing that the likelihood cannot be marginalized in closed form. Consequently, marginal

maximization requires integration of the log likelihood over the Gaussian latent variables.

In order to understand the concept of numerical approximations to marginal maximum

likelihood it is useful to understand the procedure given by Bock and Aitkin (1981),

which gave an early and useful means of approximating the integral in equation 1.14.

Following Bartholomew and Knott (1999) the conditional response function may

be expressed generally as πi(θ), thus permitting the derivation of the estimator under

either the probit or logit response functions. The EM-type algorithm given by Bock and

Aitkin (1981) requires Gauss-Hermite quadrature approximations to the marginal and

conditional likelihood functions, given respectively as

f(xh) =
r

∑

q=1

f(xh|θq)w(θq) (h = 1, 2, . . . , n) (1.15)

and

f(xh|θq) =

P
∏

i=1

[πi(θq)]
xih [1 − πi(θq)]

1−xih , (1.16)

where xh is the observed response pattern, of which there may be n, and θq is the qth

Gauss-Hermite quadrature node, derived as the qth root of the Legendre polynomial,

with corresponding quadrature weight w(θq). Estimation requires maximization of ℓ =
n
∑

h=1

f(xh). Expressing the response model as αi0 + αi1θ permits a simplified definition of

the gradient function:

∂ℓ

∂αil

=
r

∑

q=1

∂πi(θq)

∂αil

[riq −Nqπi(θq)]

πi(θq)[1 − πi(θq)]
(1.17)

where riq andNq are the expected response pattern and corresponding expected frequency

of that response pattern respectively. Given provisional values of αil, riq and Nq may be

solved for, then holding riq and Nq fixed, values of αil may be obtained by maximum

likelihood, where maximization is based on probit regression in the case of the ogive

model and logistic regression in the case of the logistic model. Conditional upon l = 0, 1,
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this process is repeated until convergence is obtained for estimates of αil. The asymptotic

covariance matrix need not be computed for estimates to be obtained, thus circumventing

the limitations of the approach taken by Bock and Lieberman (1970). Of course, the lack

of this matrix also prevents computation of standard errors for the item parameters, αil,

which was one of the advantages of the Bock and Lieberman (1970) method.

The full information approach given by Bock and Aitkin (1981) was based on evalu-

ation of the integral via summation over Gauss-Hermite quadrature nodes where integra-

tion nodes were distributed across the range of the distribution of θ, assuming θ ∼ N(0, 1),

at fixed intervals (generally user specified intervals). This approach is commonly referred

to as fixed quadrature approximations to an integral. While this approach works well

when the posterior distribution is normally distributed and when models have few di-

mensions of integration, the models considered in this dissertation require an alternative

procedure that can accommodate the high-dimensional nature of the models of interest.

Two alternative approximations to the integral exist for just such circumstances, they

are adaptive quadrature and Monte-Carlo integration.

As can be seen in equation 1.15, the integral approximation is based on evaluating

quadrature points distributed at fixed intervals along the assumed range of θ. Given that

under most applications we assume that θ ∼ N(0, 1), quadrature nodes are generally

arrayed at fixed intervals between ±3. An added complexity unique to the models that

I consider here is that the latent ability is now vector-valued for each respondent and is

no longer scalar. Because the integrand evaluated in equation 1.15 is proportional to the

posterior density (Skrondal & Rabe-Hesketh, 2004), when the posterior is asymmetric or

departs substantially from Gaussian form, fixed quadrature may provide a poor solution.

Rather than basing integration on the assumption that the mode of the integrand lies

within the domain corresponding to a standard Gaussian density, we can estimate the

moments of the integrand and relocate the quadrature points according to the estimated

moments of the integrand. Estimation of the moments of the integrand requires iterative
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updating, and therefore at each iteration the quadrature nodes adapt to new locations

given the current estimates of the integrand moments. This is the essence of adaptive

quadrature. To be more precise, following Naylor and Smith (1982) the expectation of

the integrand may be expressed as:

ε[f(θq)] =

∞
∫

−∞

f(θ)p(θ)∂θ. (1.18)

Starting with θ ∼ N(0, I), and defining f(θ) as a transformation which gives a non-

standard Gaussian distribution gives a means of defining a function which can be updated

to determine the parameters of the integrand. For example, following the work of Schilling

and Bock (2005), f(θ) = Tθ + µ, where T corresponds to the Cholesky decomposition

of the covariance matrix of the posterior density and µ the posterior mean, estimates

of which help guide the location of the quadrature nodes used in approximating the

integrand. Many implementations of adaptive quadrature estimate the mode (µ̃) and

information matrix at the mode (I−1(µ̃)) rather than the mean and covariance matrix

because they are easier to estimate. Scaling by f(θ) gives the adaptive quadrature analog

of equation 1.15:

f(θq) = |T|
q

∑

id=1

Wid . . .

q
∑

i1=1

Wi1f(Tθi1...id + µ̃), (1.19)

where θiq is a quadrature point and Wiq is the corresponding weight.

Monte-Carlo integration differs from adaptive quadrature in how the moments of

the integrand are estimated. Whereas in adaptive quadrature moments are estimated

by evaluating draws of empirical Bayes estimates of θ at each iteration, in Monte-Carlo

integration the moments are estimated by simulating s = 1 . . . t random draws of size n

from p(θ). As a result, f(θh) is identical to that given in equation 1.19, only weights are

not given because rather than evaluating nodes and weights, simulated draws from each

dimension of the prior substitute for the empirical Bayes estimates of θ. Consequently,
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the Monte-Carlo analog of equation 1.15 is given as:

f(θq) = |T| 1
n

t
∑

s=1

f(θ̃s), (1.20)

where θ̃s is the vector-valued draw of simulated values of θ simulated from a multivariate

Gaussian density θ̃s ∼ N(µ̃, Σ̃).

In sum, each of these approaches to estimation have strengths and limitations.

Weighted least squares with mean and variance adjustment (WLSMV) is widely rec-

ognized as being capable of fitting large models to few items (Joreskog & Moustaki,

2001), in addition certain parameterizations permit easier specification of error covari-

ances/correlations. Consequently, I would expect this to be a stable estimator when few

items are repeatedly sampled and a highly parameterized model is indicated. Full in-

formation estimation based on adaptive quadrature approximations to the integral work

well for large item sets when models are relatively parsimonious. Thus, the fitting of

the model for correlated true scores should be easily fit in this framework even with

item sets that would prove prohibitively large for WLSMV (Skrondal & Rabe-Hesketh,

2004). However, the accuracy of the solution depends on the number of quadrature points

employed per dimension, and as dimensions increase, quadrature points must decrease

to offset the computing burden. Thus, even though a complex model may be fit using

adaptive quadrature, the solution may not be optimal due to increased error in approx-

imating the integral with fewer pieces of information per dimension (Schilling & Bock,

2005). Lastly, for highly parameterized models of many dimensions irrespective of item

set size, I would expect a simulated integral, like that employed in Monte-Carlo inte-

gration, to more readily accommodate optimization than quadrature based approaches.

Therefore, I would expect Monte-Carlo integration to perform well when fitting a model

for either or both the correlated true scores and errors, though the increased computing

time associated with simulating the integral would only justify employing this estimation

routine for the model with correlated true scores and errors.
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1.3 Hypotheses

I propose five key hypotheses relating to model complexity, estimators, difficulty

range width, and sample size, as well as the interaction between estimators across sample

size.

1.3.1 Model Complexity Hypothesis

Two general classes of models are considered in this dissertation: A model for corre-

lated true scores only, denoted model 1, and A model for both correlated true scores and

errors, denoted model 2. Comparing these two models in terms of computing time and

rates of estimation failure (non-convergence and boundary solutions) will demonstrate

advantages for Model 1. Models with more complex error correlation structures will

be harder to fit and exhibit greater bias and inflated root mean squared error (RMSE)

compared to models with no error correlations. Though the bias and RMSE may not

be compared directly across model types, the difference in absolute magnitude of the

estimation error will be discussed across stratified analyses.

1.3.2 Estimator Hypothesis

Compared to WLSMV estimation, FIML estimators, either quadrature or Monte-

Carlo based, will differ little in point estimate accuracy. However, observed differences

will favor FIML estimation. In particular, FIML estimation will be less biased and have

lower RMSE than limited information estimation. Within quadrature based estimation,

consistent with the work of Schilling and Bock (2005), accuracy of point estimates will

increase as the number of quadrature points per dimension increase. I expect the relative

ranking of the estimators, in terms of bias and RMSE, to favor FIML based on 7 QP

more than 3 QP, which will be favored over WLSMV. The difference between the limited

information estimator and FIML estimators in terms of computing time will demonstrate

advantages of limited information estimation over full information. Limited information

estimation will differ from full information estimation in the rate of estimation problems
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such that WLSMV will have more cases of non-convergence or improper solutions than

will FIML.

1.3.3 Difficulty Range Hypothesis

Consistent with the ideas put forth by Schilling and Bock (2005), when few items

cover a wide range of θ, as when the difficulty parameters are spread widely across θ, lim-

ited information estimators and quadrature based estimators employing few quadrature

points will fail or exhibit high degrees of bias and RMSE.

1.3.4 Sample Size Hypotheses

Estimates based on larger sample sizes will show less bias and less dispersion (as

measured by RMSE). In addition, rates of non-convergence (NCV) will decrease as sample

size increases.

1.3.5 Sample Size By Estimator Hypothesis

NCV rates will decrease as sample size increases for all estimators. Because NCV

rates for WLSMV are a function of degenerate contingency tables, which are themselves

a function of sample size, the decrease in NCV rates will be greatest for WLSMV. In

addition, because sparse, though not degenerate, contingency tables can pose estimation

problems for WLSMV, compared to other estimators, WLSMV will have higher rates of

bias and RMSE at lower sample sizes. Consequently, increasing sample size will decrease

the difference in bias between the WLSMV and FIML estimators, thus the difference

between estimators will be greatest at small sample sizes and smallest at large sample

sizes. There is no evidence to suggest that a similar effect would be observed for FIML

estimators.

Testing of these hypotheses will permit me to examine two useful and theoretically

important longitudinal IRT models. Because there are no existing simulation studies of

this or any other longitudinal IRT model, these hypotheses will permit the explication

of the effects of difficulty range, sample size, and estimator. These are three of the most
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basic and important considerations in any IRT application. Therefore, within existing

computational constraints, this study provides a thorough preliminary examination of

the performance of the proposed models under the most fundamental and important

aspects considered in the specification of any IRT model.
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CHAPTER 2

Method

In order to empirically test the proposed hypotheses I employed a simulation study.

All estimation was based on the Mplus system (Muthén & Muthén, 2007). Due to com-

putational considerations I made heavy use of fractional experimental design rather than

a full factorial design. Outcomes of interest in this study included non-convergence rates,

rates of boundary solutions, bias, and root mean squared error (RMSE) of estimates. I

simulated 300 replications per cell of the design.

2.0.6 Model Complexity Manipulation

Two longitudinal models were examined, model 1 and 2. For each model, nine items

were simulated over four repeated measures. Model 1 was the proposed second-order

growth curve with no correlated errors, having 4 dimensions of integration, one for each

time-point. Model 2 extended model 1 to include constant error correlation of .3 for 4 of

the 9 items. Because for FIML estimators the error correlations were parameterized via

testlet factors, model 2 had a total of 8 dimensions of integration. Item and structural

parameters for models 1 and 2 are given in Table 2.1. Item and structural parameters

were held constant across models. The only difference between model 1 and model 2 was

that the constant error correlation of .3 was simulated for the 4 items in model 2.

2.0.7 Estimator Manipulation

The estimator component of the design had three levels: WLSMV, quadrature, and

Monte-Carlo based estimation, and was fractionally nested within model as a result of



computing limitations. Consequently, within model 1 WLSMV and quadrature based

estimation were contrasted. The dimensions of integration associated with model 2 likely

exceeded or were at the limit of the available computing resources afforded by quadrature

based estimation, thus, only WLSMV and Monte-Carlo based estimation were contrasted

within this model. Monte-Carlo EM estimation was based on N = 500 simulated draws

from the posterior per dimension of integration. Within model 1, quadrature-based

solutions were contrasted across quadrature point conditions. The quadrature point

effect had two levels: the minimum number greater than one and maximum feasible

number of odd quadrature points per dimension, which were 3 and 7 quadrature points

respectively.

For both full and limited information estimation, Mplus parameterizes the response

model with a slope and intercept (ϕk = ck + akθ), where ck = ak × bk. Because the

generating model is based on the slope and threshold parameterization, ϕk = ak(θ− bk),

in order to compare accuracy of item parameter estimates to generating parameters,

intercept estimates were re-parameterized to thresholds as bk = ck
ak

. Even after this

conversion, an additional rescaling was required for WLSMV estimates obtained from

the theta parameterization, denoted with a ϑ subscript, to translate them from the

probit to logit metric:

afiml = aϑ

bfiml =
(

cϑ
aϑ

)

1.7

σ2
fiml = (σ2

ϑ) 1.72

Covfiml = (Covϑ) 1.72

µfiml = (µϑ) 1.7.

(2.1)

where 1.7 is a scaling factor for the difference between the standardized Gaussian and

standardized Logistic distribution functions.
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2.0.8 Difficulty Range Manipulation

Width of the difficulty, or threshold, parameter range was manipulated as follows:

holding the distribution parameters for θ constant, when the difficulty parameters covered

a narrow range of θ, test information plateaus were approximately bounded between ± 1

standard deviations of θ at each time point. When the difficulty parameters covered a

wide range, test information plateaus were approximately bounded between ± 2 standard

deviations of theta at each time point. The number of items were held fixed at 9 items

per assessment. Each model examined had a total of 4 repeated measures, resulting in

a total item set of 9 × 4 = 36 items. As stated, item parameters within item were held

constant over time, with two parameters per item, this simulation examined a total of

16 item parameters per model. There were 16, and not 18, because one of the items had

item parameters constrained and not estimated for purposes of identification. Slope and

threshold parameters were modeled after those presented by Curran et al. (2008) so as

to be representative of the diversity and magnitude of item parameters encountered in

psychopathology research. Structural parameters for the higher and lower order factors

were held constant across the two response pattern conditions.

Table 2.1: Population Values for Item and Structural Parameters

Generating values

P Set 1 Set 2

a1 0.46 0.46

a2 0.69 0.69

a4 0.92 1.92

a5 1.15 1.20

a6 1.37 1.80

Continued on next page
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Table 2.1 – continued from previous page

Generating values

P Set 1 Set 2

a7 1.68 1.68

a8 1.76 1.76

a9 0.30 0.30

b1 2.30 3.30

b2 -0.50 -1.00

b4 3.00 4.00

b5 1.50 2.50

b6 1.00 1.20

b7 -0.30 -1.50

b8 2.00 2.80

b9 -1.00 -2.00

µα 1.39 1.39

µβ 0.50 0.50

τα 0.67 0.67

ταβ 0.05 0.05

τβ 0.05 0.05

ψ1 0.67 0.67

ψ2 0.81 0.81

ψ3 1.05 1.05

ψ4 1.39 1.39
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Table 2.1 presents the generating parameters employed in parameter set 1 and 2. Note

that for both parameter sets the only difference is the item parameters, with the structural

model parameters being fixed across sets. To characterize the difficulty range effect, ICC

plots for the two sets are plotted for each time-point. For ease of interpretation, the

ICCs are based on standardized parameters, and not the raw parameters listed in Table

2.1. The raw parameters were converted to the standardized metric using the following

procedure: Given

ϕkt = akt(θt − bkt) | θt ∼ N(µt, σ
2
t ), (2.2)

I can obtain a standardized expression for ϕkt under θ⋆
t ∼ N(0, 1) by a Gaussian change

of variable function. Let

θ⋆
t =

θt − µt

σt

→ θ⋆
t ∼ N(0, 1), (2.3)

then I can express

ϕ⋆
kt = a⋆

kt(θ
⋆
t − b⋆kt) | θ⋆

t ∼ N(0, 1), (2.4)

where

a⋆
kt = akt ∗ σt and b⋆kt =

bkt − µt

σt

. (2.5)

As can be seen in the ICC plots for both sets, the generating procedure succeeded

in producing data which are representative of longitudinal studies of substance abuse or

internalizing behavior, in which the phenomenon of interest is rarely observed early on

and items are consequently difficult to endorse and not strongly discriminating, while

later in observation the phenomenon is more common and items appear less difficult

but more highly discriminating. Though both parameter sets were reflective of this

process, they differed in the range of θ measured by the scale. The first parameter set

was representative of a scale which measured a much more narrow range of the latent

construct, while the second parameter set measured a much broader range of the latent

construct. Because the number of observations and items were held constant across sets,
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expanding the range of the latent construct being measured resulted in a sparseness of

the response patterns under set 2.
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Figure 2.1: ICCs for Parameter Set 1 at Time 1
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Figure 2.2: ICCs for Parameter Set 1 at Time 2
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Figure 2.3: ICCs for Parameter Set 1 at Time 3
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Figure 2.4: ICCs for Parameter Set 1 at Time 4
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Figure 2.5: ICCs for Parameter Set 2 at Time 1
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Figure 2.6: ICCs for Parameter Set 2 at Time 2
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Figure 2.7: ICCs for Parameter Set 2 at Time 3
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Figure 2.8: ICCs for Parameter Set 2 at Time 4
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2.0.9 Implied Moments

The generating parameters given in Table 2.1 coupled with the coding of λ can be

used to calculate the implied moments of θ. As stated, the implied mean vector may

be calculated as µθ = λµη and the implied covariance matrix may be calculated as

Σθ = λτηλ
′ +ψ.

This resulted in

µθ =

[

1.392 1.892 2.392 2.892

]

(2.6)

and

Σθ =



















1.34 − − −

0.7157575 1.6230301 − −

0.761515 0.9072725 2.1060601 −

0.8072725 1.0030301 1.1987876 2.7890902



















, (2.7)

with corresponding correlation matrix

Rθ =



















1 − − −

0.4853446 1 − −

0.4533052 0.490726 1 −

0.4175769 0.4714324 0.4946244 1



















. (2.8)

Because the structural parameters were held fixed across parameter sets, the implied

moments given here are the same for both parameter sets.

2.0.10 Sample Size Manipulation

All cells of the simulation were examined under two fixed sample sizes: N = 750 and

N = 3000. These sample sizes were chosen in order to minimize optimization problems

for WLSMV estimation under the wide difficulty range condition and because they were

representative of the large samples common in IRT applications. The lower sample size of

N = 750 was selected so as to be representative of what we considered to be a minimally

sufficient sample size for the estimation of the models of interest.
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2.0.11 Non-Convergence

For every cell of the design, non-converged solutions were identified. Within a model

and parameter set combination, replications were fixed across estimator within sample

size cells. Thus, 300 replications were generated when N = 750 and each of these

replications was used in each estimator. Every unique replication which did not converge

across estimators was identified and within a sample size non-converged replications

were deleted and resampling of replications was conducted until a total of 300 converged

solutions were obtained in each sample size.

2.0.12 Improper Solutions

Following the work of Chen, Bollen, Paxton, Curran, and Kirby (2001) I differ-

entiated the importance of improper solutions (non-positive definite (NPD) covariance

matrices and negative variance estimates) based on the magnitude of the departure of

the parameter from its support. Thus, variance parameters for which estimates were only

slightly negative, or covariance matrices with eigenvalues that were trivially negative or

near zero were deemed to result from sampling variation, particularly when they were

associated with generating values which were themselves close to the boundary of para-

metric support. In addition, even when point estimates appear proper, the covariance

matrix may be degenerate, having a negative eigenvalue. Consequently, all variance esti-

mates were screened for degeneracy and replications having trivially degenerate solutions

were identified and described. These replications were not removed from analysis as this

could have induced a selection bias in the outcomes of interest. Rather, analyses were

conducted with results from all 300 converged replications. However, in order to assess

the potential impact of the degenerate solutions, sensitivity analyses, in which models for

bias were re-run omitting replications with improper solutions, were conducted to assess

any impact of degeneracy on conclusions.

39



CHAPTER 3

Results

To more clearly distill the experimental manipulation, and the fractional design em-

ployed, effects of interest related to sample size, estimator, model, and difficulty range

width are outlined in Table 3.1. This table also reflects the order with which results

are presented. First I will present results for Model 1 for the first and then second item

parameter sets, focussing on differences across sample size and estimator cells of the

design. This is then followed by the same presentation for Model 2. Convergence and

NPD solutions are discussed first. Bias and meta-model results are then discussed in

detail. Contrasts of interest in the meta-models include the sample size main effect, the

estimator main effects, and all sample size by estimator interactions. As detailed in the

results section, because patterns observed for RMSE did not differ from those for bias,

RMSE is not examined in detail, and results are relegated to appendices.



Table 3.1: Experimental Design

N = 750 & N = 3000

Estimator

Model Set Limited Information Full Information

1 1 WLSMV QP = 3 QP = 7

1 2 WLSMV QP = 3 QP = 7

2 1 WLSMV MCEM −

2 2 WLSMV MCEM −

3.1 Model 1

3.1.1 Convergence

Non-converged replications were encountered only when estimation was based on

full information with three quadrature points per dimension. Of the 300 replications

simulated per cell, 40 failed to converge when N = 750, and 17 failed to converge when

N = 3000 under item parameter set 1. Under item parameter set 2, when N = 750 a total

of 27 replications failed to converge, and when N = 3000 a total of 5 replications failed

to converge. The converged solutions corresponding to these replications were deleted

from the 7 quadrature point and WLSMV solutions. An additional 100 replications were

generated in order to replace the failed or deleted replications. This produced solutions

corresponding to 300 identical replications across all analyzed cells.

3.1.2 NPD Solutions

Under item parameter set 1, when N = 750 a total of 36 unique replications had

degenerate variance estimates. All estimates were associated with τη. A total of 8

replications were common to all estimators, 7 were common to FIML based on 3 QP
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and WLSMV, 4 were common to FIML based on 7 QP and WLSMV. A total of 16 were

unique to WLSMV, and 1 was unique to FIML based on 3 QP. When N = 3000 a total

of 2 unique replications had degenerate variance estimates. One degenerate replication

occurred under WLSMV, and the other was observed for FIML based on 3 QP.

Under item parameter set 2, when N = 750 a total of 34 unique replications had

improper solutions for variance estimates. A total of 3 replications were common to all

estimators, 4 replications were shared between FIML based on 3 QP and WLSMV, 5

replications were common to FIML based on 7 QP and WLSMV, one replication was

shared between 3 and 7 QP only. A single replication was unique to 3 QP, likewise for 7

QP, while a total of 19 replications were unique to WLSMV. When N = 3000 no repli-

cations had degenerate solutions under either FIML estimator, and only 2 replications

produced improper solutions under WLSMV.

Across both parameter sets, the majority of degenerate solutions were associated with

estimates of τβ , whose generating value, .05, was near the boundary of the parametric

support. Consequently, sampling variations likely account for a large number of the

degenerate solutions.

3.1.3 First Parameter Set Bias

Examination of the results presented in Table 3.2 reveals that, aside from the co-

variance between the random intercept and slope, all estimators exhibit minimal degrees

of bias. Column heading P contains the parameters, heading θ contains the population

values, heading θ̂(SD) contains the estimate averaged over the 300 replications and corre-

sponding standard deviation, Bθ̂ contains the bias of the estimate, and RBθ̂ contains the

relative bias of the estimate obtained by dividing bias by the population value. Values

of θ̂(SD), Bθ̂, and RBθ̂ are given for each estimator. Tables are organized by blocking

on estimator, with the 3 QP FIML estimator, denoted QP = 3, followed by the 7 QP

FIML estimator, denoted QP = 7, with WLSMV last.

Notable trends include the elevated bias of WLSMV relative to FIML, the equality of
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3 and 7 quadrature points, and the preponderance of negative bias exhibited by WLSMV

estimates of b̂i. Nearly identical results are observed in Table 3.3, suggesting the absence

of a sample size effect, even though sample size was quadrupled under this condition. It

is important to note that though there appear to be some differences in degree of bias,

nearly all of the bias observed is so low as to be of little consequence. In point of fact,

the highest relative bias observed corresponds to ταβ , which ranges from 12.3% to 22.1%

bias, however, examination of the raw bias and average point estimate reveals that there

is very little discrepancy between the population parameter and the estimate. This is

the case for every parameter: degrees of bias were acceptably low based on the ±10%

relative bias criterion. Throughout, estimates for which relative bias met or exceeded

±10% have their values of and RBθ̂ placed in bold text.

Table 3.2: Item and Structural Parameter Bias for Model 1, Set 1, N=750

N=750

QP = 3 QP = 7 WLSMV

P θ θ̂(SD) B
θ̂

RB
θ̂

θ̂(SD) B
θ̂

RB
θ̂

θ̂(SD) B
θ̂

RB
θ̂

a1 0.46 0.46(0.05) 0.003 0.006 0.46(0.04) -0.003 -0.006 0.50(0.05) 0.037 0.081

a2 0.69 0.70(0.07) 0.005 0.007 0.69(0.07) -0.002 -0.003 0.69(0.07) 0.002 0.002

a4 0.92 0.94(0.08) 0.016 0.018 0.93(0.08) 0.005 0.006 0.96(0.10) 0.043 0.046

a5 1.15 1.16(0.09) 0.009 0.008 1.15(0.09) 0.002 0.002 1.20(0.11) 0.054 0.047

a6 1.37 1.38(0.12) 0.012 0.009 1.37(0.12) 0.003 0.002 1.41(0.13) 0.043 0.031

a7 1.68 1.72(0.17) 0.041 0.024 1.69(0.16) 0.012 0.007 1.66(0.21) -0.020 -0.012

a8 1.76 1.75(0.13) -0.011 -0.006 1.76(0.14) -0.004 -0.002 1.78(0.17) 0.021 0.012

a9 0.30 0.30(0.04) -0.001 -0.004 0.30(0.04) -0.005 -0.015 0.31(0.05) 0.014 0.046

b1 2.30 2.31(0.12) 0.013 0.006 2.31(0.12) 0.013 0.006 2.26(0.12) -0.035 -0.015

b2 -0.50 -0.50(0.19) -0.001 0.002 -0.53(0.20) -0.029 0.058 -0.55(0.22) -0.049 0.098

b4 3.00 3.00(0.14) -0.003 -0.001 3.00(0.14) 0.002 0.001 2.94(0.14) -0.065 -0.022

b5 1.50 1.51(0.07) 0.006 0.004 1.50(0.07) 0.000 0.000 1.48(0.07) -0.016 -0.011

b6 1.00 1.01(0.07) 0.007 0.007 1.00(0.07) -0.003 -0.003 1.00(0.08) -0.003 -0.003

b7 -0.30 -0.28(0.13) 0.021 -0.069 -0.31(0.13) -0.008 0.028 -0.28(0.15) 0.019 -0.063

b8 2.00 2.00(0.08) 0.005 0.002 2.00(0.08) 0.002 0.001 1.97(0.07) -0.033 -0.017

b9 -1.00 -1.05(0.41) -0.055 0.055 -1.09(0.42) -0.093 0.093 -1.09(0.45) -0.085 0.085

µα 1.39 1.40(0.07) 0.005 0.004 1.39(0.07) 0.000 0.000 1.38(0.07) -0.010 -0.007

µβ 0.50 0.50(0.04) 0.002 0.004 0.50(0.04) 0.004 0.009 0.48(0.04) -0.019 -0.038

τα 0.67 0.69(0.13) 0.017 0.025 0.69(0.13) 0.021 0.032 0.66(0.14) -0.012 -0.019

τ αβ 0.05 0.04(0.04) -0.007 −0.161 0.04(0.04) -0.006 −0.123 0.04(0.05) -0.010 −0.214

τβ 0.05 0.05(0.03) 0.003 0.060 0.05(0.03) 0.004 0.074 0.05(0.03) -0.001 -0.025

ψ1 0.67 0.64(0.15) -0.031 -0.046 0.67(0.15) 0.002 0.002 0.63(0.15) -0.041 -0.062

ψ2 0.81 0.79(0.14) -0.024 -0.029 0.81(0.14) 0.002 0.003 0.76(0.15) -0.049 -0.061

ψ3 1.05 1.05(0.19) -0.006 -0.005 1.08(0.19) 0.024 0.022 0.99(0.19) -0.061 -0.058

ψ4 1.39 1.38(0.28) -0.013 -0.010 1.42(0.28) 0.021 0.015 1.31(0.28) -0.086 -0.061
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Table 3.3: Item and Structural Parameter Bias for Model 1, Set 1, N=3000

N=3000

QP = 3 QP = 7 WLSMV

P θ θ̂(SD) B
θ̂

RB
θ̂

θ̂(SD) B
θ̂

RB
θ̂

θ̂(SD) B
θ̂

RB
θ̂

a1 0.46 0.46(0.02) 0.005 0.010 0.46(0.02) -0.001 -0.002 0.50(0.03) 0.041 0.089

a2 0.69 0.70(0.03) 0.006 0.008 0.69(0.03) -0.002 -0.002 0.69(0.03) 0.003 0.004

a4 0.92 0.93(0.04) 0.010 0.011 0.92(0.04) 0.000 0.000 0.95(0.04) 0.034 0.036

a5 1.15 1.16(0.05) 0.007 0.006 1.15(0.05) 0.000 0.000 1.20(0.05) 0.053 0.046

a6 1.37 1.38(0.06) 0.010 0.007 1.37(0.06) 0.001 0.000 1.41(0.07) 0.042 0.031

a7 1.68 1.71(0.09) 0.027 0.016 1.68(0.09) -0.002 -0.001 1.60(0.09) -0.085 -0.050

a8 1.76 1.76(0.07) -0.004 -0.002 1.76(0.08) 0.003 0.002 1.79(0.09) 0.028 0.016

a9 0.30 0.30(0.02) 0.002 0.006 0.30(0.02) -0.002 -0.005 0.32(0.02) 0.017 0.058

b1 2.30 2.30(0.07) 0.003 0.001 2.30(0.07) 0.003 0.001 2.25(0.06) -0.051 -0.022

b2 -0.50 -0.48(0.09) 0.019 -0.037 -0.51(0.09) -0.009 0.018 -0.53(0.10) -0.026 0.052

b4 3.00 3.00(0.08) -0.005 -0.002 3.00(0.08) 0.001 0.000 2.93(0.07) -0.072 -0.024

b5 1.50 1.50(0.04) 0.002 0.002 1.50(0.04) -0.003 -0.002 1.48(0.03) -0.022 -0.015

b6 1.00 1.01(0.03) 0.009 0.009 1.00(0.03) 0.000 0.000 1.00(0.03) 0.000 0.000

b7 -0.30 -0.27(0.07) 0.026 -0.085 -0.30(0.07) -0.004 0.012 -0.30(0.07) 0.004 -0.014

b8 2.00 2.00(0.04) 0.002 0.001 2.00(0.04) 0.000 0.000 1.96(0.04) -0.039 -0.020

b9 -1.00 -0.99(0.19) 0.008 -0.008 -1.03(0.19) -0.029 0.029 -1.01(0.21) -0.012 0.012

µα 1.39 1.40(0.04) 0.004 0.003 1.39(0.04) -0.001 -0.001 1.38(0.03) -0.012 -0.009

µβ 0.50 0.50(0.02) -0.002 -0.004 0.50(0.02) 0.001 0.001 0.48(0.02) -0.025 -0.049

τα 0.67 0.67(0.07) -0.001 -0.002 0.67(0.07) 0.002 0.004 0.64(0.07) -0.033 -0.049

ταβ 0.05 0.04(0.02) -0.003 -0.071 0.04(0.02) -0.001 -0.024 0.04(0.02) -0.010 −0.221

τβ 0.05 0.05(0.01) 0.000 0.009 0.05(0.02) 0.001 0.018 0.05(0.02) -0.004 -0.075

ψ1 0.67 0.64(0.07) -0.028 -0.042 0.67(0.08) 0.005 0.007 0.63(0.07) -0.044 -0.066

ψ2 0.81 0.79(0.07) -0.022 -0.027 0.82(0.08) 0.005 0.006 0.75(0.08) -0.058 -0.072

ψ3 1.05 1.03(0.10) -0.020 -0.019 1.06(0.10) 0.010 0.009 0.97(0.10) -0.081 -0.077

ψ4 1.39 1.36(0.13) -0.033 -0.023 1.40(0.14) 0.004 0.003 1.26(0.13) -0.132 -0.094

3.1.4 First Parameter Set Meta Model Results

Tables 3.2 and 3.3 present the descriptive statistics for model 1, set 1. I next employed

a series of meta models to formally test my proposed hypotheses in regards to raw

bias. The model of interest characterized main effects for sample size (750 Vs. 3000)

and estimator (3 vs. 7 QP, 3QP Vs. WLSMV, 7QP Vs. WLSMV, and all FIML

Vs. WLSMV), as well as all two-way interactions. The model was fit separately for

each parameter presented in Tables 3.2 and 3.3. In the case of item parameters and

the residual variances contained in ψ, bias was aggregated over parameters within a
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parameter class. Thus rather than fit a model to the bias of each individual a parameter,

a parameter bias was aggregated and the average a bias was modeled. The decision

to aggregate was based on the desire for parsimony and the fact that examination of

the results for individual parameters within these classes indicated little deviation from

the trend observed in aggregate. The meta model tables for the item parameters and

residual variance include a block of columns indicating any discrepancies observed in the

individual-parameter models. Asterisks indicate correspondence to the aggregate results,

while dashes indicate divergence from the aggregate results. Complete results for the

parameter-specific models for every cell of the entire simulation design are presented in

a PDF posted at

www.unc.edu\~curran\serrano.pdf

.

Readers interested in augmenting their understanding of the direction of effects are

referred to Table 5.7, which contains the cell means from which all contrasts parameter-

ized in the meta models may be computed. This table, and the cell means tables for all

analyses are contained in Appendix 3. Cell means for each parameter are given, though

only aggregate cell means are given for the a, b, and ψ parameters.

Results presented in Table 3.4 for aggregated â raw bias reveal an absence of sample

size effects and interactions, but the hypothesized estimator effects were observed. The

direction of effects was consistent with those hypothesized: Estimates based on 7 QP were

significantly less biased than 3 QP, though bias was only lower by .008 units (β(95%CI) =

−0.008(−0.015,−0.002), t = −2.5, p ≤ .05). FIML estimates obtained under 3 QP

were .012 units less biased than WLSMV (β(95%CI) = −0.012(−0.018,−0.005), t =

−3.6, p ≤ .001). Likewise, FIML estimates based on 7 QP exhibited bias .02 units lower

than WLSMV estimates (β(95%CI) = −0.020(−0.026,−0.014), t = −6.1, p ≤ .0001).

Lastly, the average of 3 and 7 QP, comprising the aggregate FIML effect, was less biased
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than WLSMV (β(95%CI) = −0.016(−0.021,−0.010), t = −5.6, p ≤ .0001). This model

accounted for 2% of the variance in bias.

There were few individual items which diverged from the aggregate findings. Notable

exceptions included a2 and a7. In the case of the former, a lack of estimator main effects

was observed, while for the latter, the sample-size main effect was observed, along with

all 2-way interactions. In addition, 50% of the parameters did not exhibit a difference

between FIML based on 3 and 7 QP.

Table 3.4: Meta Model Results: â Raw Bias for Model 1, Set 1

Raw â Bias

Results when âi Aggregated Correspondence to Aggregate by âi

Contrast β(95%CI) t, pval a1 a2 a4 a5 a6 a7 a8 a9

1 : N3k −N750 −0.004(−0.009, 0.002) −1.3, NS ∗ ∗ - ∗ ∗ - ∗ ∗

2 : 3QP − 7QP −0.008(−0.015,−0.002) −2.5, p ≤ .05 ∗ ∗ ∗ - - ∗ - -

3 : 3QP −WLSMV −0.012(−0.018,−0.005) −3.6, p ≤ .001 ∗ - ∗ ∗ ∗ ∗ ∗ ∗

4 : 7QP −WLSMV −0.020(−0.026,−0.014) −6.1, p ≤ .0001 ∗ - ∗ ∗ ∗ ∗ ∗ ∗

5 : FIML−WLSMV −0.016(−0.021,−0.010) −5.6, p ≤ .0001 ∗ - ∗ ∗ ∗ ∗ ∗ ∗

6 : 1 × 2 0.000(−0.013, 0.013) −0.0, NS ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

7 : 1 × 3 −0.006(−0.019, 0.007) −0.9, NS ∗ ∗ ∗ ∗ ∗ - ∗ ∗

8 : 1 × 4 −0.006(−0.019, 0.007) −0.9, NS ∗ ∗ ∗ ∗ ∗ - ∗ ∗

9 : 1 × 5 −0.006(−0.017, 0.005) −1.0, NS ∗ ∗ ∗ ∗ ∗ - ∗ ∗

With the exception of the significant sample size effect, all results for the aggre-

gated b̂ bias matched those observed for the aggregated â. However, closer inspection

of the point estimates contained in Table 3.5 suggests an opposite direction of effect

for the estimator contrasts, indicating WLSMV was less biased for b̂ compared to both

FIML estimators. Examination of the estimator cell means helps understand this coun-

terintuitive finding. Aggregate bias for b̂ based on WLSMV was negative, as was that

based on 7 QP, though it was positive for estimates based on 3 QP. Given these cell

means, the estimator contrasts may be re-constructed using WLSMV as the reference.

Though the direction of effects for contrasts in Table 3.5 suggest WLSMV is less bi-

ased, it is clear from the cell means that WLSMV is more biased, and that the di-
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rection of effect is obscured by the larger negative bias of WLSMV during the calcu-

lation of differences in cell means. The same issue was observed for the sample size

effect. On average, bias was negative; however bias was larger when N = 750 than when

N = 3000. Thus, bias was significantly larger whenN = 750 compared to whenN = 3000

(β(95%CI) = 0.008(0.002, 0.014), t = 2.7, p ≤ .01). Bias was significantly lower when

3 QP were employed compared to 7 QP(β(95%CI) = −0.013(−0.020,−0.006), t =

−3.6, p <= .001). Estimates based on 3 QP were significantly less biased than WLSMV

estimates (β(95%) = 0.034(0.027, 0.041), t = 9.3, p <= .0001), as was the case when

estimates were based on 7 QP(β(95%CI) = 0.021(0.013, 0.028), t = 5.6, p <= .0001).

In addition, the aggregate FIML bias was less than that of WLSMV (β(95%CI) =

0.027(0.021, 0.033)t = 8.6, p <= .0001). This model accounted for 5% of the variance in

bias.

As with the estimates of â, results from the parameter-specific models reveal some

discrepancies relative to the aggregate results. Specifically, there was an absence of the

sample size effect in all but three parameters (b1, b2, and b9). Moreover, the difference

between bias for 3 and 7 QP estimates was absent for all but b2, b6, and b7. One parameter

in particular, b9 diverges substantially, not exhibiting any of the estimator effects.

Table 3.5: Meta Model Results: b̂ Raw Bias for Model 1, Set 1

Raw b̂ Bias

Results when b̂i Aggregated Correspondence to Aggregate by b̂i

Contrast β(95%CI) t, pval b1 b2 b4 b5 b6 b7 b8 b9

1 : N3k −N750 0.008(0.002, 0.014) 2.7, p ≤ .01 ∗ ∗ - - - - - ∗

2 : 3QP − 7QP −0.013(−0.020,−0.006) −3.6, p ≤ .001 - ∗ - - ∗ ∗ - -

3 : 3QP −WLSMV 0.034(0.027, 0.041) 9.3, p ≤ .0001 ∗ ∗ ∗ ∗ ∗ - ∗ -

4 : 7QP −WLSMV 0.021(0.013, 0.028) 5.6, p ≤ .0001 ∗ ∗ ∗ ∗ - ∗ ∗ -

5 : FIML−WLSMV 0.027(0.021, 0.033) 8.6, p ≤ .0001 ∗ ∗ ∗ ∗ - - ∗ -

6 : 1 × 2 0.000(−0.015, 0.014) 0.0, NS ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

7 : 1 × 3 −0.003(−0.017, 0.012) −0.4, NS ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

8 : 1 × 4 −0.003(−0.017, 0.011) −0.4, NS ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

9 : 1 × 5 −0.003(−0.015, 0.010) −0.4, NS ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
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Design effects observed for fixed effect bias, presented in Table 3.6, are nearly iden-

tical across µα and µβ, the primary difference being the existence of a sample-size effect

for µβ only. Otherwise, results confirmed that the negative bias of WLSMV exceeded

that of both FIML estimators, both individually, and in aggregate. When considering µα,

FIML based on 3 QP was, on average, less biased than WLSMV by .02 units(β(95%CI) =

0.02(0.01, 0.02), t = 4.7, p <= .0001). Likewise, FIML based on 7 QP was less biased than

WLSMV by .01 units (β(95%CI) = 0.01(0.00, 0.02), t = 3.2, p <= .01). In aggregate,

FIML was less biased than WLSMV (β(95%CI) = 0.01(0.01, 0.02), t = 4.5, p <= .0001).

This model accounted for 1.3% of the variance in bias. In contrast, bias for µβ was

significantly, though trivially, lower when N = 750 versus N = 3000 (β(95%CI) =

−0.004(−0.01,−0.001), t = −3.1, p <= .01). Estimates obtained from 3 QP were signifi-

cantly less biased than WLSMV estimates (β(95%CI) = 0.02(0.02, 0.03), t = 12.1, p <=

.0001), as were 7 QP estimates (β(95%CI) = 0.02(0.02, 0.03), t = 13.4, p <= .0001).

Consistent with these results, the aggregate FIML bias was significantly lower than that

observed for WLSMV (β(95%CI) = 0.02(0.02, 0.03), t = 14.8, p <= .0001). This model

accounted for 11.3% of the variance in bias.

Table 3.6: Meta Model Results: Fixed Effect Raw Bias for Model 1, Set 1

Raw Bias

µ̂α µ̂β

Contrast β(95%CI) t, pval β(95%CI) t, pval

1 : N3k −N750 −0.00(−0.01, 0.00) −0.5, NS −0.00(−0.01,−0.00) −3.1, p ≤ .01

2 : 3QP − 7QP −0.01(−0.01, 0.00) −1.5, NS 0.00(0.00, 0.01) 1.3, NS

3 : 3QP −WLSMV 0.02(0.01, 0.02) 4.7, p ≤ .0001 0.02(0.02, 0.03) 12.1, p ≤ .0001

4 : 7QP −WLSMV 0.01(0.00, 0.02) 3.2, p ≤ .01 0.02(0.02, 0.03) 13.4, p ≤ .0001

5 : FIML−WLSMV 0.01(0.01, 0.02) 4.5, p ≤ .0001 0.02(0.02, 0.03) 14.8, p ≤ .0001

6 : 1 × 2 0.00(−0.01, 0.01) 0.0, NS 0.00(−0.01, 0.01) 0.0, NS

7 : 1 × 3 −0.00(−0.01, 0.01) −0.3, NS −0.00(−0.01, 0.01) −0.6, NS

8 : 1 × 4 −0.00(−0.01, 0.01) −0.3, NS −0.00(−0.01, 0.00) −0.6, NS

9 : 1 × 5 −0.00(−0.01, 0.01) −0.3, NS −0.00(−0.01, 0.00) −0.7, NS
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Results for the model of random effect variance bias are presented in Table 3.7.

In the case of τα, estimates were less biased when N = 750 than when N = 3000

(β(95%CI) = −0.02(−0.03,−0.01), t = −3.8, p ≤ .001). Estimates based on 3 QP were

less biased than WLSMV (β(95%CI) = 0.03(0.02, 0.04), t = 4.9, p <= .0001). The 7

QP estimates were less biased than WLSMV estimates β(95%CI) = 0.03(0.02, 0.05), t =

5.5, p <= .0001). The aggregate FIML bias was significantly lower than the WLSMV

bias β(95%CI) = 0.03(0.02, 0.04), t = 6.0, p <= .0001). This model accounted for 3% of

the variance in bias.

In contrast to τα, τβ estimates were less biased when N = 3000 than when N = 750

(β(95%CI) = −0.002(−0.004,−0.0004), t = −2.4, p <= .05). FIML estimates based

on 3 QP were less biased than WLSMV estimates β(95%CI) = 0.004(0.001, 0.01), t =

3.1, p <= .01), as were estimates based on 7 QP β(95%CI) = 0.004(0.002, 0.01), t =

3.5, p <= .001). In addition, the average FIML estimate was less biased than WLSMV

β(95%CI) = 0.004(0.002, 0.01), t = 3.8, p <= .001). This model accounted for 1% of the

variance in bias.

Table 3.7: Meta Model Results: Random Effect Variance Estimate Raw Bias for Model

1, Set 1

Raw Bias

τ̂α τ̂β

Contrast β(95%CI) t, pval β(95%CI) t, pval

1 : N3k −N750 −0.02(−0.03,−0.01) −3.8, p ≤ .001 −0.00(−0.00,−0.00) −2.4, p ≤ .05

2 : 3QP − 7QP 0.00(−0.01, 0.02) 0.6, NS 0.00(0.00, 0.00) 0.4, NS

3 : 3QP −WLSMV 0.03(0.02, 0.04) 4.9, p ≤ .0001 0.00(0.00, 0.01) 3.1, p ≤ .01

4 : 7QP −WLSMV 0.03(0.02, 0.05) 5.5, p ≤ .0001 0.00(0.00, 0.01) 3.5, p ≤ .001

5 : FIML−WLSMV 0.03(0.02, 0.04) 6.0, p ≤ .0001 0.00(0.00, 0.01) 3.8, p ≤ .001

6 : 1 × 2 0.00(−0.02, 0.03) 0.0, NS 0.00(−0.01, 0.01) 0.1, NS

7 : 1 × 3 0.00(−0.03, 0.02) −0.2, NS 0.00(−0.01, 0.01) 0.0, NS

8 : 1 × 4 0.00(−0.03, 0.02) −0.1, NS 0.00(0.00, 0.01) 0.1, NS

9 : 1 × 5 0.00(−0.02, 0.02) −0.2, NS 0.00(0.00, 0.00) 0.1, NS
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As can be seen in Table 3.8, the random effect covariance ταβ , did not exhibit

a sample-size effect. Estimates of ταβ were significantly less biased for 3 QP versus

WLSMV (β(95%CI) = 0.004(0.0004, 0.01), t = 2.2, p <= .05). likewise, estimates based

on 7 QP were less biased than WLSMV (β(95%CI) = 0.01(0.002, 0.01), t = 3.1, p <=

.01). FIML estimates, in aggregate, were less biased than WLSMV (β(95%CI) =

0.01(0.002, 0.01), t = 3.1, p <= .01). This model accounted for 1% of the variance in

bias.

Table 3.8: Meta Model Results: Random Effect Covariance Estimate Raw Bias for Model

1, Set 1

Raw Bias

τ̂αβ

Contrast β(95%CI) t, pval

1 : N3k −N750 0.00(0.00, 0.01) 1.6, NS

2 : 3QP − 7QP 0.00(0.00, 0.01) 0.9, NS

3 : 3QP −WLSMV 0.00(0.00, 0.01) 2.2, p ≤ .05

4 : 7QP −WLSMV 0.01(0.00, 0.01) 3.1, p ≤ .01

5 : FIML−WLSMV 0.01(0.00, 0.01) 3.1, p ≤ .01

6 : 1 × 2 0.00(−0.01, 0.01) −0.1, NS

7 : 1 × 3 0.00(−0.01, 0.00) −1.1, NS

8 : 1 × 4 0.00(−0.01, 0.00) −1.1, NS

9 : 1 × 5 0.00(−0.01, 0.00) −1.3, NS

Aggregate bias for the residual variance estimates, presented in Table 3.9, was

significantly lower when N = 750 compared to when N = 3000 (β(95%CI) =

−0.01(−0.02,−0.00), t = −2.0, p <= .05). In addition, aggregate bias was significantly
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lower for 7 QP estimates compared to 3 QP (β(95%CI) = 0.03(0.02, 0.04), t = 4.7, p <=

.0001). Both 3 QP estimates (β(95%CI) = 0.05(0.03, 0.06), t = 7.1, p <= .0001) and 7

QP estimates (β(95%CI) = 0.08(0.07, 0.09), t = 11.9, p <= .0001) significantly differed

from WLSMV estimates. In addition, the aggregate FIML bias was significantly less

than WLSMV bias (β(95%CI) = 0.06(0.05, 0.07), t = 11.0, p <= .0001). This model

accounted for 8% of the variance in bias. Few individual parameters deviated from the

aggregate trend, though two did not exhibit the sample size effect, and ψ1 did not show

any difference in bias between 3 QP and WLSMV.

Table 3.9: Meta Model Results: ψ̂ Raw Bias for Model 1, Set 1

Raw ψ̂ Bias

Results when ψ̂i Aggregated Correspondence to Aggregate by ψ̂i

Contrast β(95%CI) t, pval ψ1 ψ2 ψ3 ψ4

1 : N3k −N750 −0.01(−0.02,−0.00) −2.0, p ≤ .05 - - ∗ ∗

2 : 3QP − 7QP 0.03(0.02, 0.04) 4.7, p ≤ .0001 ∗ ∗ ∗ ∗

3 : 3QP −WLSMV 0.05(0.03, 0.06) 7.1, p ≤ .0001 - ∗ ∗ ∗

4 : 7QP −WLSMV 0.08(0.07, 0.09) 11.9, p ≤ .0001 ∗ ∗ ∗ ∗

5 : FIML−WLSMV 0.06(0.05, 0.07) 11.0, p ≤ .0001 ∗ ∗ ∗ ∗

6 : 1 × 2 −0.00(−0.03, 0.02) −0.1, NS ∗ ∗ ∗ ∗

7 : 1 × 3 −0.01(−0.04, 0.01) −0.9, NS ∗ ∗ ∗ ∗

8 : 1 × 4 −0.01(−0.04, 0.01) −1.0, NS ∗ ∗ ∗ ∗

9 : 1 × 5 −0.01(−0.04, 0.01) −1.1, NS ∗ ∗ ∗ ∗

3.1.5 Second Parameter Set Bias

As can be seen in Table 3.10 with N = 750, the degree of bias for model 1 under

parameter set 2 was higher than that observed for model 1 under parameter set 1. Though

bias was higher in relative terms, bias remained acceptably low in absolute terms, with

only a few parameters, notably b7 under WLSMV estimation, exhibiting large degrees

of bias. With N = 3000 WLSMV estimates of b7 remained profoundly biased, though

as can be seen in Table 3.11, for most other parameters all estimators performed with

minimal bias. Again, though bias remained low in absolute terms, WLSMV did appear

more biased than either FIML estimator.
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Table 3.10: Item and Structural Parameter Bias for Model 1, Set 2, N=750

N=750

QP = 3 QP = 7 WLSMV

P θ θ̂(SD) B
θ̂

RB
θ̂

θ̂(SD) B
θ̂

RB
θ̂

θ̂(SD) B
θ̂

RB
θ̂

a1 0.46 0.48(0.05) 0.018 0.039 0.46(0.05) 0.001 0.002 0.50(0.07) 0.037 0.081

a2 0.69 0.72(0.07) 0.033 0.048 0.70(0.07) 0.007 0.011 0.68(0.09) -0.007 -0.010

a4 1.92 2.01(0.18) 0.085 0.044 1.95(0.20) 0.031 0.016 1.65(0.25) -0.268 −0.140

a5 1.20 1.24(0.10) 0.042 0.035 1.20(0.10) 0.001 0.001 1.26(0.14) 0.057 0.047

a6 1.80 1.90(0.18) 0.099 0.055 1.82(0.18) 0.023 0.013 1.90(0.26) 0.104 0.058

a7 1.68 1.79(0.24) 0.106 0.063 1.72(0.26) 0.043 0.026 1.00(0.15) -0.685 −0.408

a8 1.76 1.83(0.16) 0.070 0.040 1.77(0.15) 0.013 0.007 1.76(0.21) -0.004 -0.002

a9 0.30 0.31(0.04) 0.010 0.034 0.30(0.04) -0.001 -0.003 0.30(0.05) 0.003 0.010

b1 3.30 3.24(0.18) -0.064 -0.019 3.32(0.18) 0.016 0.005 3.26(0.23) -0.041 -0.013

b2 -1.00 -0.93(0.23) 0.071 -0.071 -1.00(0.23) 0.000 0.000 -1.06(0.31) -0.065 0.065

b4 4.00 3.90(0.18) -0.098 -0.025 4.00(0.19) -0.003 -0.001 4.03(0.26) 0.027 0.007

b5 2.50 2.45(0.10) -0.047 -0.019 2.50(0.11) 0.004 0.002 2.47(0.13) -0.035 -0.014

b6 1.20 1.19(0.06) -0.007 -0.006 1.20(0.07) 0.000 0.000 1.20(0.07) 0.000 0.000

b7 -1.50 -1.42(0.24) 0.076 -0.050 -1.52(0.27) -0.015 0.010 -2.45(0.49) -0.947 0.631

b8 2.80 2.74(0.12) -0.061 -0.022 2.80(0.12) -0.001 0.000 2.76(0.15) -0.039 -0.014

b9 -2.00 -1.98(0.50) 0.024 -0.012 -2.08(0.52) -0.084 0.042 -2.22(0.66) -0.224 0.112

µα 1.39 1.37(0.07) -0.020 -0.014 1.39(0.07) -0.004 -0.003 1.38(0.07) -0.015 -0.011

µβ 0.50 0.49(0.04) -0.013 -0.025 0.50(0.04) 0.003 0.006 0.49(0.05) -0.008 -0.015

τα 0.67 0.64(0.13) -0.027 -0.040 0.69(0.14) 0.018 0.027 0.68(0.17) 0.014 0.020

ταβ 0.05 0.04(0.04) -0.010 −0.210 0.04(0.04) -0.008 −0.185 0.04(0.05) -0.007 −0.159

τβ 0.05 0.05(0.03) 0.002 0.044 0.06(0.03) 0.006 0.124 0.06(0.04) 0.005 0.108

ψ1 0.67 0.61(0.14) -0.056 -0.084 0.66(0.15) -0.014 -0.020 0.60(0.19) -0.066 -0.099

ψ2 0.81 0.75(0.13) -0.059 -0.073 0.81(0.14) 0.002 0.002 0.75(0.18) -0.057 -0.070

ψ3 1.05 0.98(0.17) -0.071 -0.067 1.06(0.18) 0.011 0.010 1.00(0.24) -0.054 -0.052

ψ4 1.39 1.28(0.25) -0.112 -0.080 1.39(0.26) -0.009 -0.007 1.33(0.34) -0.069 -0.050

Table 3.11: Item and Structural Parameter Bias for Model 1, Set 2, N=3000

N=3000

QP = 3 QP = 7 WLSMV

P θ θ̂(SD) B
θ̂

RB
θ̂

θ̂(SD) B
θ̂

RB
θ̂

θ̂(SD) B
θ̂

RB
θ̂

a1 0.46 0.48(0.02) 0.018 0.039 0.46(0.02) 0.000 0.000 0.50(0.03) 0.044 0.095

a2 0.69 0.72(0.04) 0.029 0.042 0.69(0.04) 0.002 0.002 0.68(0.04) -0.013 -0.019

a4 1.92 1.99(0.09) 0.071 0.037 1.93(0.10) 0.005 0.003 1.64(0.11) -0.278 −0.145

a5 1.20 1.24(0.05) 0.044 0.036 1.20(0.05) -0.001 -0.001 1.27(0.06) 0.069 0.058

a6 1.80 1.88(0.10) 0.082 0.046 1.80(0.09) 0.001 0.000 1.82(0.10) 0.023 0.013

a7 1.68 1.76(0.12) 0.084 0.050 1.69(0.12) 0.014 0.008 1.19(0.11) -0.485 −0.289

a8 1.76 1.83(0.08) 0.066 0.037 1.76(0.08) 0.005 0.003 1.86(0.11) 0.104 0.059

a9 0.30 0.31(0.02) 0.011 0.037 0.30(0.02) -0.001 -0.003 0.31(0.02) 0.013 0.044

b1 3.30 3.22(0.10) -0.081 -0.024 3.31(0.10) 0.006 0.002 3.19(0.10) -0.111 -0.034

b2 -1.00 -0.92(0.12) 0.076 -0.076 -1.00(0.12) 0.000 0.000 -1.06(0.14) -0.057 0.057

b4 4.00 3.89(0.10) -0.106 -0.027 4.00(0.10) -0.001 0.000 3.94(0.12) -0.060 -0.015

b5 2.50 2.45(0.05) -0.054 -0.022 2.50(0.06) 0.001 0.001 2.42(0.05) -0.079 -0.032

b6 1.20 1.19(0.03) -0.008 -0.007 1.20(0.03) -0.001 -0.001 1.19(0.03) -0.014 -0.012

Continued on next page
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Table 3.11 – continued from previous page

N=3000

QP = 3 QP = 7 WLSMV

P θ θ̂(SD) B
θ̂

RB
θ̂

θ̂(SD) B
θ̂

RB
θ̂

θ̂(SD) B
θ̂

RB
θ̂

b7 -1.50 -1.41(0.13) 0.095 -0.063 -1.50(0.14) -0.002 0.001 -1.92(0.24) -0.424 0.283

b8 2.80 2.73(0.06) -0.066 -0.024 2.80(0.07) 0.000 0.000 2.70(0.07) -0.104 -0.037

b9 -2.00 -1.92(0.26) 0.082 -0.041 -2.03(0.27) -0.033 0.016 -2.03(0.29) -0.029 0.015

µα 1.39 1.37(0.04) -0.018 -0.013 1.39(0.04) -0.001 -0.001 1.37(0.03) -0.024 -0.017

µβ 0.50 0.48(0.02) -0.017 -0.033 0.50(0.02) 0.000 0.001 0.48(0.02) -0.024 -0.049

τα 0.67 0.62(0.07) -0.045 -0.068 0.67(0.08) 0.002 0.004 0.62(0.08) -0.047 -0.070

ταβ 0.05 0.04(0.02) -0.004 -0.077 0.04(0.02) -0.002 -0.042 0.04(0.03) -0.009 −0.200

τβ 0.05 0.05(0.01) -0.003 -0.067 0.05(0.02) 0.001 0.013 0.05(0.02) -0.001 -0.019

ψ1 0.67 0.63(0.07) -0.043 -0.065 0.67(0.08) 0.004 0.006 0.56(0.09) -0.107 −0.159

ψ2 0.81 0.75(0.07) -0.063 -0.077 0.81(0.07) 0.003 0.004 0.69(0.08) -0.122 −0.150

ψ3 1.05 0.97(0.09) -0.080 -0.076 1.06(0.10) 0.008 0.008 0.93(0.10) -0.125 −0.119

ψ4 1.39 1.28(0.12) -0.116 -0.083 1.39(0.13) -0.004 -0.003 1.23(0.13) -0.166 −0.119

3.1.6 Second Parameter Set Meta Model Results

Meta model results for aggregate âi bias under item parameter set 2 differ sub-

stantially from those observed for set 1. In particular, many sample size by estima-

tor interactions were observed, and the magnitude of the point estimates were larger,

reflecting greater degrees and wider variation of bias in set 2. Bias for estimates ob-

tained under 7 QP was significantly smaller than that associated with 3 QP estimates

(β(95%CI) = −0.05(−0.05,−0.04), t = −10.7, p ≤ .0001). Both 3 QP (β(95%CI) =

0.14(0.13, 0.14), t = 31.8, p ≤ .0001) and 7 QP (β(95%CI) = 0.09(0.08, 0.10), t =

21.1, p ≤ .0001) were significantly less biased compared to WLSMV. In addition, the

average FIML bias was significantly lower than the bias observed for WLSMV estimates

(β(95%CI) = 0.11(0.10, 0.12), t = 30.5, p ≤ .0001). However, main effects involving the

contrast with WLSMV were not possible to interpret given the interaction effects observed

in this model. The difference in bias between estimates based on 3 QP and WLSMV

was significantly greater when N = 750 compared to when N = 3000 (β(95%CI) =

0.04(0.02, 0.05), t = 4.4, p ≤ .0001). This was also the case for the difference in bias

between 7 QP and WLSMV (β(95%CI) = 0.04(0.03, 0.06), t = 4.9, p ≤ .0001), and the

aggregate FIML bias versus WLSMV (β(95%CI) = 0.04(0.03, 0.05), t = 5.4, p ≤ .0001).
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Thus, as sample size increased, the discrepancy in bias between estimators diminished.

Reflecting the greater variation in bias observed under parameter set 2, this model ac-

counted for a larger proportion of the observed variation in bias.

As with Set 1, there were some individual âi for which bias trends did not correspond

to the aggregate trend. Notably, 50% of the eight estimated âi did not have any of the

sample size by estimator interactions, and nearly all of the âi exhibited a main effect for

sample size not observed in aggregate.

Table 3.12: Meta Model Results: â Raw Bias for Model 1, Set 2

Raw â Bias

Results when âi Aggregated Correspondence to Aggregate by âi

Contrast β(95%CI) t, pval a1 a2 a4 a5 a6 a7 a8 a9

1 : N3k −N750 0.00(0.00, 0.01) 1.1, NS ∗ ∗ - ∗ - - - -

2 : 3QP − 7QP −0.05(−0.05,−0.04) −10.7, p ≤ .0001 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

3 : 3QP −WLSMV 0.14(0.13, 0.14) 31.8, p ≤ .0001 ∗ ∗ ∗ ∗ ∗ ∗ ∗ -

4 : 7QP −WLSMV 0.09(0.08, 0.10) 21.1, p ≤ .0001 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

5 : FIML−WLSMV 0.11(0.10, 0.12) 30.5, p ≤ .0001 ∗ ∗ ∗ ∗ - ∗ - -

6 : 1 × 2 0.01(−0.01, 0.02) 0.6, NS ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

7 : 1 × 3 0.04(0.02, 0.05) 4.4, p ≤ .0001 - - - - ∗ ∗ ∗ ∗

8 : 1 × 4 0.04(0.03, 0.06) 4.9, p ≤ .0001 - - - - ∗ ∗ ∗ ∗

9 : 1 × 5 0.04(0.03, 0.05) 5.4, p ≤ .0001 - - - - ∗ ∗ ∗ ∗

The magnitude of bias for estimates of b̂i differed significantly as a function of

sample size and estimator main effects, however, these main effects were subsumed by

the existence of multiple significant interactions. The difference in bias between es-

timates based on 3 QP and WLSMV was significantly greater when N = 750 com-

pared to when N = 3000 (β(95%CI) = 0.05(0.03, 0.07), t = 5.6, p ≤ .0001). This

was also the case for the difference in bias between 7 QP and WLSMV (β(95%CI) =

0.05(0.03, 0.07), t = 5.5, p ≤ .0001), and the aggregate FIML bias versus WLSMV

(β(95%CI) = 0.05(0.03, 0.06), t = 6.4, p ≤ .0001). Consistent with the results observed

for âi as sample size increased, the discrepancy in bias for b̂i between estimators di-

minished. This model accounted for approximately 40% of the variation in aggregate b̂i
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bias.

Some individual parameters did not follow the trends observed in aggregate. A no-

table discrepancy was the existence of the main effect for 3 versus 7 QP for all parameters

individually, which was not observed in aggregate. In addition, a majority of parameters

did not have a significant main effect for the difference between 3 QP and WLSMV.

Table 3.13: Meta Model Results: b̂ Raw Bias for Model 1, Set 2

Raw b̂ Bias

Results when b̂i Aggregated Correspondence to Aggregate by b̂i

Contrast β(95%CI) t, pval b1 b2 b4 b5 b6 b7 b8 b9

1 : N3k −N750 0.02(0.02, 0.03) 6.2, p ≤ .0001 ∗ - ∗ ∗ ∗ ∗ ∗ ∗

2 : 3QP − 7QP 0.00(−0.01, 0.01) 0.8, NS - - - - - - - -

3 : 3QP −WLSMV 0.13(0.12, 0.14) 28.4, p ≤ .0001 - ∗ ∗ - - ∗ - ∗

4 : 7QP −WLSMV 0.13(0.12, 0.14) 29.2, p ≤ .0001 ∗ ∗ - ∗ ∗ ∗ ∗ ∗

5 : FIML −WLSMV 0.13(0.12, 0.14) 33.3, p ≤ .0001 ∗ ∗ ∗ ∗ - ∗ ∗ ∗

6 : 1 × 2 −0.00(−0.02, 0.02) −0.1, NS ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

7 : 1 × 3 0.05(0.03, 0.07) 5.6, p ≤ .0001 ∗ - ∗ ∗ ∗ ∗ ∗ ∗

8 : 1 × 4 0.05(0.03, 0.07) 5.5, p ≤ .0001 ∗ - ∗ ∗ ∗ ∗ ∗ ∗

9 : 1 × 5 0.05(0.03, 0.06) 6.4, p ≤ .0001 ∗ - ∗ ∗ ∗ ∗ ∗ ∗

When considering bias in estimates of the growth curve fixed effects, substantial

discrepancies were observed. In the case of µα, only estimator main effects were observed,

with 7 QP being less biased than 3 QP (β(95%CI) = 0.02(0.01, 0.02), t = 5.2, p ≤ .0001),

and 7 QP being less biased than WLSMV (β(95%CI) = 0.02(0.01, 0.02), t = 5.3, p ≤

.0001), as well as the aggregate FIML bias being smaller than WLSMV (β(95%CI) =

0.01(0.00, 0.01), t = 3.2, p ≤ .01). This model accounted for 2.2% of the variation in bias.

However, for µβ, main effects and interactions were observed. Estimator differ-

ences varied as a function of sample size. For example, the difference in bias be-

tween 3 QP and WLSMV was significantly smaller when N = 750 compared to

when N = 3000 (β(95%CI) = −0.01(−0.02,−0.01), t = −3.3, p ≤ .001). The same

trend was observed for 7 QP versus WLSMV when N = 750 versus N = 3000

(β(95%CI) = −0.01(−0.02,−0.01), t = −3.7, p ≤ .001). Consequently, in contrast
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to the bias observed for â and b̂, the estimator difference for 3 and 7 QP versus

WLSMV increased as a function of sample size. This was also true for the aggre-

gate FIML bias compared to WLSMV, which diverged in bias as sample size increased

(β(95%CI) = −0.01(−0.02,−0.01), t = −4.1, p ≤ .0001). This model accounted for 7.5%

of the variation in bias.

Table 3.14: Meta Model Results: Fixed Effect Raw Bias for Model 1, Set 2

Raw Bias

µ̂α µ̂β

Contrast β(95%CI) t, pval β(95%CI) t, pval

1 : N3k −N750 −0.00(−0.01, 0.00) −0.4, NS −0.01(−0.01,−0.00) −5.0, p ≤ .0001

2 : 3QP − 7QP 0.02(0.01, 0.02) 5.2, p ≤ .0001 0.02(0.01, 0.02) 8.5, p ≤ .0001

3 : 3QP −WLSMV 0.00(−0.01, 0.01) 0.2, NS 0.00(0.00, 0.01) 0.7, NS

4 : 7QP −WLSMV 0.02(0.01, 0.02) 5.3, p ≤ .0001 0.02(0.01, 0.02) 9.2, p ≤ .0001

5 : FIML−WLSMV 0.01(0.00, 0.01) 3.2, p ≤ .01 0.01(0.01, 0.01) 5.7, p ≤ .0001

6 : 1 × 2 −0.00(−0.01, 0.01) −0.3, NS −0.00(−0.01, 0.01) −0.4, NS

7 : 1 × 3 −0.01(−0.02, 0.00) −1.6, NS −0.01(−0.02,−0.01) −3.3, p ≤ .001

8 : 1 × 4 −0.01(−0.02, 0.00) −1.8, NS −0.01(−0.02,−0.01) −3.7, p ≤ .001

9 : 1 × 5 −0.01(−0.02, 0.00) −2.0, NS −0.01(−0.02,−0.01) −4.1, p ≤ .0001

In the case of the random intercept variance, τα, bias differed as a function of sam-

ple size and estimator main effects, though these effects were subsumed by interactions.

Though in the case of the FIML estimator contrast, main effects and not interactions

were observed, with FIML based on 7 QP being less biased than FIML based on 3 QP

(β(95%CI) = 0.05(0.03, 0.06), t = 6.9, p ≤ .0001). The difference in bias between FIML

based on 3 QP and WLSMV was significantly greater when N = 750 compared to when

N = 3000 (β(95%CI) = −0.04(−0.07,−0.02), t = −3.2, p ≤ .01), indicating a conver-

gence in estimator behavior as sample size increased. In contrast, the opposite was true

for FIML based on 7 QP versus WLSMV, as sample size increased the difference in bias

between these estimators increased (β(95%CI) = −0.05(−0.07,−0.02), t = −3.4, p ≤

.001), and the same was true for the difference in bias between the aggregate FIML and

WLSMV (β(95%CI) = −0.04(−0.07,−0.02), t = −3.8, p ≤ .001). This model accounted
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for 5% of the variance in bias.

The variance for the slope random effect, τβ, only exhibited sample size and estimator

differences. These estimates were much less biased when N = 3000 compared to N = 750

(β(95%CI) = −0.01(−0.01,−0.00), t = −5.2, p ≤ .0001). FIML estimates based on 3 QP

tended to be less biased than those based on 7 QP (β(95%CI) = 0.004(0.001, 0.01), t =

2.9, p ≤ .01), and WLSMV estimation as well (β(95%CI) = −0.003(−0.01,−0.0001), t =

−2.0, p ≤ .05). Approximately 2% of the variance in bias was accounted for by this

model.

Table 3.15: Meta Model Results: Random Effect Variance Estimate Raw Bias for Model

1, Set 2

Raw Bias

τ̂α τ̂β

Contrast β(95%CI) t, pval β(95%CI) t, pval

1 : N3k −N750 −0.03(−0.04,−0.02) −5.8, p ≤ .0001 −0.01(−0.01,−0.00) −5.2, p ≤ .0001

2 : 3QP − 7QP 0.05(0.03, 0.06) 6.9, p ≤ .0001 0.00(0.00, 0.01) 2.9, p ≤ .01

3 : 3QP −WLSMV −0.02(−0.03,−0.01) −2.9, p ≤ .01 −0.00(−0.01,−0.00) −2.0, p ≤ .05

4 : 7QP −WLSMV 0.03(0.01, 0.04) 4.0, p ≤ .0001 0.00(0.00, 0.00) 0.9, NS

5 : FIML−WLSMV 0.00(−0.01, 0.01) 0.6, NS −0.00(0.00, 0.00) −0.7, NS

6 : 1 × 2 −0.00(−0.03, 0.02) −0.2, NS 0.00(−0.01, 0.01) 0.0, NS

7 : 1 × 3 −0.04(−0.07,−0.02) −3.2, p ≤ .01 −0.00(−0.01, 0.00) −0.3, NS

8 : 1 × 4 −0.05(−0.07,−0.02) −3.4, p ≤ .001 −0.00(−0.01, 0.00) −0.3, NS

9 : 1 × 5 −0.04(−0.07,−0.02) −3.8, p ≤ .001 −0.00(−0.01, 0.00) −0.3, NS

In the case of the covariance, ταβ , estimates were less biased when N = 3000

(β(95%CI) = 0.004(0.0001, 0.01), t = 2.0, p ≤ .05), though this effect differed as a func-

tion of sample size, with the difference in bias of FIML and WLSMV being smaller when

N = 750 versus when N = 3000 (β(95%CI) = −0.01(−0.02,−0.001), t = −2.2, p ≤ .05).

This model accounted for approximately 1% of the variance in bias.
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Table 3.16: Meta Model Results: Random Effect Covariance Estimate Raw Bias for

Model 1, Set 2

Raw Bias

τ̂αβ

Contrast β(95%CI) t, pval

1 : N3k −N750 0.00(0.00, 0.01) 2.0, p ≤ .05

2 : 3QP − 7QP 0.00(0.00, 0.01) 0.6, NS

3 : 3QP −WLSMV 0.00(0.00, 0.01) 0.8, NS

4 : 7QP −WLSMV 0.00(0.00, 0.01) 1.4, NS

5 : FIML−WLSMV 0.00(0.00, 0.01) 1.2, NS

6 : 1 × 2 0.00(−0.01, 0.01) −0.1, NS

7 : 1 × 3 −0.01(−0.02, 0.00) −1.8, NS

8 : 1 × 4 −0.01(−0.02, 0.00) −1.9, NS

9 : 1 × 5 −0.01(−0.02,−0.00) −2.2, p ≤ .05

Bias for the residual variance exhibited main effects for sample size and estimator,

though only the FIML contrast was not subsumed by interactions, with FIML estima-

tion based on 3 QP significantly more biased than FIML estimation based on 7 QP

(β(95%CI) = 0.08(0.06, 0.09), t = 10.8, p ≤ .0001). The difference in bias between 3 QP

and WLSMV was significantly greater when N = 750 versus N = 3000 (β(95%CI) =

−0.07(−0.09,−0.04), t = −4.8, p ≤ .0001), as was the case for FIML based on 7 QP ver-

sus WLSMV (β(95%CI) = −0.07(−0.10,−0.05), t = −5.3, p ≤ .0001), and the aggregate

FIML bias versus WLSMV (β(95%CI) = −0.07(−0.09,−0.05), t = −5.8, p ≤ .0001).

This model accounted for 12.5% of the variation in bias for the residual variance. As was

the case in the first item parameter set, there was virtually no divergence from the aggre-
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gate trend among the individual parameters, though a notable exception is the WLSMV

versus 3 QP effect, which was not observed for 50% of the parameters.

Table 3.17: Meta Model Results: ψ̂ Raw Bias for Model 1, Set 2

Raw ψ̂ Bias

Results when ψ̂i Aggregated Correspondence to Aggregate by ψ̂i

Contrast β(95%CI) t, pval ψ1 ψ2 ψ3 ψ4

1 : N3k − N750 −0.02(−0.03,−0.01) −3.7, p ≤ .001 - ∗ ∗ ∗

2 : 3QP − 7QP 0.08(0.06, 0.09) 10.8, p ≤ .0001 ∗ ∗ ∗ ∗

3 : 3QP −WLSMV 0.02(0.01, 0.03) 3.0, p ≤ .01 ∗ ∗ - -

4 : 7QP −WLSMV 0.10(0.08, 0.11) 13.8, p ≤ .0001 ∗ ∗ ∗ ∗

5 : FIML −WLSMV 0.06(0.05, 0.07) 9.7, p ≤ .0001 ∗ ∗ ∗ ∗

6 : 1 × 2 −0.01(−0.03, 0.02) −0.5, NS ∗ ∗ ∗ ∗

7 : 1 × 3 −0.07(−0.09,−0.04) −4.8, p ≤ .0001 ∗ ∗ ∗ ∗

8 : 1 × 4 −0.07(−0.10,−0.05) −5.3, p ≤ .0001 ∗ ∗ ∗ ∗

9 : 1 × 5 −0.07(−0.09,−0.05) −5.8, p ≤ .0001 ∗ ∗ ∗ ∗

3.1.7 RMSE

RMSE results for both item parameter set 1 and 2 in model 1 and model 2 did

not differ in any substantial manner from the results observed for bias. The magnitude

of RMSE was relatively low, estimators maintain the same relative ranking in terms of

RMSE as bias, and the sample size effect is trivial. Consequently, in the interest of

devoting space to only the most relevant information, RMSE results are relegated to a

series of appendices.

3.1.8 Summary of Findings

Under Model 1, non-converged (NCV) solutions were only observed for the FIML

estimator based on 3 QP. NCV solutions were more common when N = 750 compared

to N = 3000. Though I hypothesized a higher rate of NCV solutions under parameter

set 2, when N = 750 more NCV solutions were observed under parameter set 1 than

were observed for parameter set 2, while the opposite was true when N = 3000. Non-

positive definite (NPD) solutions were restricted to the random effect covariance matrix,
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τ̂η, particularly, τ̂β . NPD solutions under the first parameter set varied in frequency

as a function of estimator, with the majority being observed for WLSMV, followed by

FIML based on 3 QP, and the least observed for FIML based on 7 QP. Under the second

parameter set the same pattern was observed, though FIML based on 7 QP produced

one more NPD solution than 3 QP. For both parameter sets, virtually no NPD solutions

were observed when N = 3000.

Under model 1 bias for all estimators was acceptably low, with only estimates of τ̂αβ

exceeding 10% relative bias for all estimators when N = 750, and only WLSMV estimates

of τ̂αβ when N = 3000. Though estimates of τ̂αβ had the highest relative bias value, higher

raw bias values were observed for other parameters for all estimators. Bias values for all

estimators were higher under the second parameter set, though WLSMV estimates were

the most biased. The highest raw and relative bias values were observed for WLSMV

estimates of the slope and threshold parameters for item 7. Meta model results for raw

bias within the first parameter set produced mostly subtle estimator differences with

FIML estimators less biased than WLSMV. For some parameters, specifically aggregate

b̂, µ̂β, τ̂α, τ̂β , and aggregate ψ̂, sample size main effects were observed. In addition, for

some parameters differences in bias were observed between FIML estimators, with 7 QP

less biased than 3 QP for aggregate â and ψ̂, but the opposite true for b̂. In contrast, under

the second parameter set, though main effects were observed, the majority of parameters

exhibited significant sample size by estimator interactions. For item parameters and ψ̂,

differences between FIML and WLSMV bias diminished as sample size increased, while

the opposite was true for all estimators of µ̂β, and in the case of τ̂β the difference between

3 QP and WLSMV decreased with sample size, though it increased with sample size for

the difference between 7 QP and WLSMV as well as the aggregate FIML bias.

3.2 Model 2

Recall that within the cells of the experimental design, full information estimation of

Model 2 was infeasible with adaptive Gauss-Hermite based quadrature approximations
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to the posterior distribution due to the increased dimensions of integration associated

with the testlet factors for error correlations. As such, the full information estimator

comparator to WLSMV was Monte-Carlo integration, implemented in the Monte-Carlo

EM algorithm implemented in Mplus. Throughout, MCEM is the FIML comparator,

and should be viewed as an analog of the adaptive Gauss-Hermite integration employed

in Model 1, as such, expressed hypotheses predict better performance for MCEM than

WLSMV.

3.2.1 Convergence

As with Model 1, WLSMV never failed to converge. Under parameter set 1, when

N = 750 a total of 32 replications failed to converge under MCEM, while only one failed to

converge when N = 3000. When replications were generated under the second parameter

set many more non-converged (NCV) replications were observed. With N = 750 a total

of 75 replications failed to converge, more than double the rate observed for parameter

set 1, and with N = 3000 25 replications failed to converge.

An additional 100 replications were generated to replace these failed simulates. Repli-

cations which failed to converge under MCEM were deleted from the WLSMV solutions

and replaced with estimates from the converged replications obtained from the additional

100 replications. Consequently, analysis was based on 300 identical replications across

estimators.

3.2.2 NPD Solutions

Under MCEM estimation, with N = 750, a total of 26 replications had non-positive

definite (NPD) random effect covariance matrices, and each NPD solution was associated

with covariance matrices whose point estimates were within the parametric support hav-

ing very slightly negative eigenvalues, the largest being 1.29834E − 9. With N = 3000,

only 3 replications had NPD estimates of τη, and again, each estimate was character-

ized by apparently non-degenerate point estimates but slightly negative eigenvalues, the

61



largest being −1.5637E − 10.

When estimation was based on WLSMV degeneracy was observed with greater fre-

quency. When N = 750 a total of 43 replications had NPD estimates of τη, though

most NPD cases were associated with seemingly proper point estimates, multiple neg-

ative variance estimates were observed for τβ. In addition, the negative eigenvalues

were much larger, for example, the smallest eigenvalue was −0.000302, while the largest

was −0.079986. Consequently, the NPD solutions under WLSMV appear to be more

substantial departures from the parametric support. With N = 3000, 5 replications

had NPD estimates of the random effect covariance matrix. Point estimates appeared

proper, but negative eigenvalues were again relatively large, with a range of −.000563818

to −.001532073.

The second parameter set was associated with a much higher rate of degenerate

solutions for both estimators. With N = 750, 27 replications had degenerate solutions,

all estimates were within the parametric support, and as with the first parameter set,

negative eigenvalues were very small, having a range of −8.2765E− 12 to −7.266E− 10.

Given the same number sample size, WLSMV had nearly triple the number of degenerate

solutions, with a total of 61 NPD estimates of τη. Roughly half (31) of these cases were

associated with negative point estimates for τβ. As with model 1, the NPD solutions were

more profoundly degenerate, with the range of observed eigenvalues being −0.001730 to

−0.098104. With N = 3000, only 6 replications had NPD solutions for τη under MCEM,

each of which had positive point estimates for τβ. The observed range of the improper

eigenvalues was −2.6545E − 11 to −5.0596E − 11, indicating trivial departure from the

parametric support. WLSMV estimation produced only 2 NPD solutions, each of which

had seemingly proper point estimates of the elements of τη, though again, eigenvalues

associated with the degenerate solutions were much larger than was observed for MCEM,

having a range from −.001072593 to −.007005037.
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3.2.3 First Parameter Set Bias

As can be seen in Table 3.18, at N = 750, the degree of bias for the correlated

error model was higher than that observed for Model 1. Even given the uniformly high

degree of bias, estimators could be differentiated in degree of bias. Specifically, MCEM

was substantially more biased than WLSMV for nearly every parameter. As with Model

1, WLSMV demonstrated a pronounced negative bias for threshold estimates. Though

MCEM exhibited particularly high rates of bias, with virtually every parameter exceeding

10% relative bias, MCEM estimates of the fixed effects and random effect covariance

components were relatively unbiased in the raw metric, though relative bias indicated

greater problems. Note that while WLSMV estimates the error correlations directly,

MCEM estimates the root of the correlation as λ, and under the testlet parameterization

in MCEM, ρ = λ2, consequently, the bias values for ρ̂ under MCEM are in relation to

the generating parameter for λ, which was
√
ρ = .5477.

Table 3.18: Item and Structural Parameter Bias for Model 2, Set 1, N=750

N=750

WLSMV MCEM

P θ θ̂(SD) B
θ̂

RB
θ̂

θ̂(SD) B
θ̂

RB
θ̂

a1 0.46 0.49(0.06) 0.03 0.066 0.593(0.12) 0.133 0.289

a2 0.69 0.693(0.07) 0.003 0.005 0.864(0.17) 0.174 0.252

a4 0.92 0.951(0.1) 0.031 0.034 1.212(0.24) 0.292 0.317

a5 1.15 1.252(0.11) 0.102 0.089 1.46(0.27) 0.31 0.269

a6 1.37 1.472(0.13) 0.102 0.074 1.725(0.33) 0.355 0.259

a7 1.68 1.715(0.2) 0.035 0.021 2.121(0.41) 0.441 0.263

a8 1.76 1.867(0.19) 0.107 0.061 2.204(0.42) 0.444 0.252

Continued on next page
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Table 3.18 – continued from previous page

N=750

WLSMV MCEM

P θ θ̂(SD) B
θ̂

RB
θ̂

θ̂(SD) B
θ̂

RB
θ̂

a9 0.3 0.327(0.05) 0.027 0.089 0.378(0.08) 0.078 0.259

b1 2.3 2.164(0.12) -0.136 -0.059 2.187(0.18) -0.113 -0.049

b2 -0.5 -0.512(0.21) -0.012 0.023 −0.134(0.32) 0.366 −0.732

b4 3 2.815(0.14) -0.185 -0.062 2.731(0.25) -0.269 -0.09

b5 1.5 1.419(0.07) -0.081 -0.054 1.528(0.11) 0.028 0.019

b6 1 0.953(0.07) -0.047 -0.047 1.123(0.12) 0.123 0.123

b7 -0.3 −0.155(0.13) 0.145 −0.482 0.18(0.24) 0.48 −1.6

b8 2 1.883(0.07) -0.117 -0.059 1.931(0.13) -0.069 -0.034

b9 -1 -1.059(0.45) -0.059 0.059 −0.561(0.46) 0.439 −0.439

µα 1.39 1.302(0.07) -0.09 -0.065 1.423(0.11) 0.031 0.023

µβ 0.5 0.475(0.04) -0.025 -0.05 0.413(0.07) −0.087 −0.175

τα 0.67 0.594(0.13) −0.076 −0.113 0.473(0.18) −0.197 −0.295

ταβ 0.05 0.037(0.05) −0.009 −0.186 0.027(0.03) −0.019 −0.418

τβ 0.05 0.042(0.03) −0.008 −0.153 0.028(0.02) −0.022 −0.431

ψ1 0.67 0.618(0.15) -0.052 -0.078 0.485(0.19) −0.185 −0.276

ψ2 0.81 0.675(0.13) −0.136 −0.168 0.452(0.17) −0.36 −0.443

ψ3 1.05 0.9(0.18) −0.153 −0.145 0.634(0.24) −0.419 −0.398

ψ4 1.39 1.217(0.27) −0.177 −0.127 0.872(0.35) −0.523 −0.375

ρ1 0.3 0.28(0.08) -0.02 -0.066 0.347(0.14) −0.201 −0.366

ρ2 0.3 0.246(0.11) −0.054 −0.18 0.294(0.22) −0.253 −0.462

ρ3 0.3 0.268(0.13) −0.032 −0.108 0.336(0.22) −0.212 −0.387

ρ4 0.3 0.272(0.11) -0.028 -0.093 0.346(0.19) −0.202 −0.368
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As can be seen in Table 3.19 quadrupling the sample size to N = 3000 had little

impact on the degree of observed bias of the estimators. Again, the degree of bias

for the correlated error model was higher than that observed for the model without

correlated errors. As was the case with N = 750, WLSMV was substantially less biased

than MCEM. With N = 3000, WLSMV threshold estimates remained negatively biased,

though not uniformly. As with N = 750, MCEM estimates only demonstrated acceptable

levels of bias for fixed effect and random effect covariance component estimates.

Table 3.19: Item and Structural Parameter Bias for Model 2, Set 1, N=3000

N=3000

WLSMV MCEM

P θ θ̂(SD) B
θ̂

RB
θ̂

θ̂(SD) B
θ̂

RB
θ̂

a1 0.46 0.491(0.03) 0.031 0.067 0.596(0.07) 0.136 0.295

a2 0.69 0.691(0.04) 0.001 0.001 0.863(0.1) 0.173 0.251

a4 0.92 0.945(0.05) 0.025 0.027 1.208(0.13) 0.288 0.313

a5 1.15 1.252(0.06) 0.102 0.088 1.465(0.16) 0.315 0.274

a6 1.37 1.467(0.07) 0.097 0.071 1.73(0.18) 0.36 0.263

a7 1.68 1.671(0.1) -0.009 -0.005 2.123(0.24) 0.443 0.264

a8 1.76 1.858(0.09) 0.098 0.056 2.203(0.24) 0.443 0.251

a9 0.3 0.33(0.02) 0.03 0.099 0.383(0.04) 0.083 0.277

b1 2.3 2.151(0.06) -0.149 -0.065 2.159(0.09) -0.141 -0.061

b2 -0.5 -0.499(0.11) 0.001 -0.003 −0.093(0.19) 0.407 −0.814

b4 3 2.803(0.07) -0.197 -0.066 2.691(0.13) −0.309 −0.103

b5 1.5 1.411(0.03) -0.089 -0.059 1.514(0.06) 0.014 0.009

b6 1 0.95(0.03) -0.05 -0.05 1.122(0.07) 0.122 0.122

b7 -0.3 −0.163(0.07) 0.137 −0.457 0.205(0.15) 0.505 −1.684

Continued on next page
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Table 3.19 – continued from previous page

N=3000

WLSMV MCEM

P θ θ̂(SD) B
θ̂

RB
θ̂

θ̂(SD) B
θ̂

RB
θ̂

b8 2 1.875(0.04) -0.125 -0.063 1.911(0.07) -0.089 -0.044

b9 -1 -0.987(0.21) 0.013 -0.013 −0.472(0.24) 0.528 −0.528

µα 1.39 1.299(0.03) -0.093 -0.067 1.416(0.06) 0.024 0.017

µβ 0.5 0.469(0.02) -0.031 -0.061 0.401(0.04) −0.099 −0.198

τα 0.67 0.585(0.07) −0.085 −0.127 0.438(0.1) −0.232 −0.346

ταβ 0.05 0.034(0.02) −0.012 −0.266 0.026(0.02) −0.02 −0.433

τβ 0.05 0.042(0.01) −0.008 −0.164 0.026(0.01) −0.024 −0.481

ψ1 0.67 0.607(0.07) -0.063 -0.095 0.457(0.1) −0.213 −0.318

ψ2 0.81 0.675(0.07) −0.136 −0.168 0.429(0.09) −0.383 −0.472

ψ3 1.05 0.88(0.09) −0.173 −0.164 0.583(0.13) −0.47 −0.446

ψ4 1.39 1.169(0.13) −0.226 −0.162 0.799(0.18) −0.595 −0.427

ρ1 0.3 0.287(0.04) -0.013 -0.044 0.358(0.07) −0.19 −0.346

ρ2 0.3 0.259(0.06) −0.041 −0.136 0.344(0.1) −0.204 −0.372

ρ3 0.3 0.262(0.07) −0.038 −0.126 0.325(0.12) −0.222 −0.406

ρ4 0.3 0.274(0.05) -0.026 -0.085 0.354(0.09) −0.194 −0.353
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3.2.4 First Parameter Set Meta Model Results

As with model 1, parameter sets were aggregated. Thus models were fit to the

average bias for â, b̂, ψ̂,andρ̂, though in order to characterize any discrepancy between

the aggregate and the individual parameters idiosyncracies are noted for each individual

parameter. Results which diverge from the aggregate are denoted with a dash, while

results which conform to that observed for the aggregate are denoted with an asterisk.

For the vast majority of parameters modeled, only estimator main effects were observed.

Table 3.20: Meta Model Results: â Raw Bias for Model 2, Set 1

Raw â Bias

Results when âi Aggregated Correspondence to Aggregate by âi

Contrast β(95%CI) t, pval a1 a2 a4 a5 a6 a7 a8 a9

1 : N3k −N750 0(−0.02, 0.01) −0.36, NS * * * * * * * *

2 : MCEM −WLSMV 0.23(0.21, 0.25) 26.58, p ≤ .0001 * * * * * * * *

3 : 1 × 2 −0.01(−0.04, 0.02) −0.56, NS * * * * * * * *

As can be seen from the cell means, and the model results presented in Table 3.20,

bias did not vary as a function of sample size, though MCEM was significantly more

biased than WLSMV (β(95%CI) = 0.23(0.21, 0.25), t = 26.58, p ≤ .0001). In addition,

the distance between the difference of MCEM and WLSMV did not vary as a function of

sample size. All of the individual â conformed to the findings observed for the aggregate.

This model accounted for 39% of the variance in bias.

Table 3.21: Meta Model Results: b̂ Raw Bias for Model 2, Set 1

Raw b̂ Bias

Results when b̂i Aggregated Correspondence to Aggregate by b̂i

Contrast β(95%CI) t, pval b1 b2 b4 b5 b6 b7 b8 b9

1 : N3k −N750 0.01(0, 0.02) 1.09, NS - - - - * * - -

2 : MCEM −WLSMV 0.19(0.18, 0.2) 37.81, p ≤ .0001 * * * * * * * *

3 : 1 × 2 0(−0.02, 0.02) −0.22, NS * * * * * * * *

67



Results for b̂, presented in Table 3.21, match those of â. There was no difference as

a function of sample size, though MCEM was significantly more biased than WLSMV

(β(95%CI) = 0.19(0.18, 0.2), t = 37.81, p ≤ .0001). As can be seen from the cell means,

the aggregate bias for b̂ exhibited the same negative bias observed for model 1. In

addition, the distance between the difference of MCEM and WLSMV did not vary as a

function of sample size. All of the individual b̂ conformed to the findings observed for

the aggregate estimator and interaction effects, though the majority of the individual

b̂ exhibited a sample size effect not observed in aggregate. This sample size effect was

likely due to the stronger negative bias for b̂WLSMV when sample size was N = 750. This

model accounted for 56% of the variance in bias.

Table 3.22: Meta Model Results: Fixed Effect Raw Bias for Model 2, Set 1

Raw Bias

µ̂α µ̂β

Contrast β(95%CI) t, pval β(95%CI) t, pval

1 : N3k −N750 −0.01(−0.01, 0) −1.24, NS −0.01(−0.01,−0.00) −3.17, p ≤ .01

2 : MCEM −WLSMV 0.12(0.11, 0.13) 27.55, p ≤ .0001 −0.07(−0.07,−0.06) −24.12, p ≤ .0001

3 : 1 × 2 0(−0.01, 0.02) 0.52, NS 0.01(0, 0.02) 1.12, NS

Bias for fixed effect estimates, µ̂α and µ̂β, presented in Table 3.22, match the pattern

observed for item parameters though direction of effect varied as a function of parameter.

There was no difference as a function of sample size for µ̂α, though WLSMV was signifi-

cantly more biased than MCEM (β(95%CI) = 0.12(0.11, 0.13), t = 27.55, p ≤ .0001). In

the case of µ̂β, estimates were significantly (though trivially) more negatively biased with

N = 3000 compared to N = 750 (β(95%CI) = −0.01(−0.01,−0.003), t = −3.17, p ≤

.01), and estimates were significantly more negatively biased under MCEM than WLSMV

(β(95%CI) = −0.07(−0.07,−0.06), t = −24.12, p ≤ .0001). This model accounted for

40% of the variance in bias for µ̂α R
2 = 0.40, and 35% of the bias in µ̂β.
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Table 3.23: Meta Model Results: Random Effect Variance Estimate Raw Bias for Model

2, Set 1

Raw Bias

τ̂α τ̂β

Contrast β(95%CI) t, pval β(95%CI) t, pval

1 : N3k −N750 −0.02(−0.04,−0.01) −3, p ≤ .01 0(0, 0) −1.28, NS

2 : MCEM −WLSMV −0.13(−0.15,−0.12) −18.32, p ≤ .0001 −0.01(−0.02,−0.01) −12.48, p ≤ .0001

3 : 1 × 2 0.03(0, 0.05) 1.73, NS 0(0, 0.01) 0.81, NS

In the case of the random effect variance bias, given in Table 3.23, both sample

size and estimator main effects were observed for τ̂α while only estimator main effects

were observed for τ̂β . Estimates of τ̂α were, significantly less biased under N = 750

compared to N = 3000 (β(95%CI) = −0.02(−0.04,−0.01), t = −3, p ≤ .01), and

estimates were significantly more biased for MCEM than for WLSMV (β(95%CI) =

−0.13(−0.15,−0.12), t = −18.32, p ≤ .0001). In the case of τ̂β , MCEM esti-

mates were significantly more negatively biased than those of WLSMV (β(95%CI) =

−0.01(−0.02,−0.01), t = −12.48, p ≤ .0001). This model accounted for 24% of the

variance in bias for τ̂α, and 12% of the variance in bias for τ̂β.

Table 3.24: Meta Model Results: Random Effect Covariance Estimate Raw Bias for

Model 2, Set 1

Raw Bias

τ̂αβ

Contrast β(95%CI) t, pval

1 : N3k −N750 0(−0.01, 0) −1.12, NS

2 : MCEM −WLSMV −0.01(−0.01,−0.01) −4.71, p ≤ .0001

3 : 1 × 2 0(−0.01, 0) −0.76, NS
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Table 3.24 reveals that the random effect covariance bias, differed trivially as a

function of estimator, with τ̂αβ estimates slightly more negatively biased under MCEM

then WLSMV (β(95%CI) = −0.01(−0.01,−0.01), t = −4.71, p ≤ .0001). This model

accounted for only 2% of the bias in τ̂αβ.

Table 3.25: Meta Model Results: ψ̂ Raw Bias for Model 2, Set 1

Raw ψ̂ Bias

Results when ψ̂i Aggregated Correspondence to Aggregate by ψ̂i

Contrast β(95%CI) t, pval ψ1 ψ2 ψ3 ψ4

1 : N3k −N750 −0.03(−0.05,−0.02) −3.77, p ≤ .001 * - * *

2 : MCEM −WLSMV −0.25(−0.27,−0.24) −30.15, p ≤ .0001 * * * *

3 : 1 × 2 0.02(−0.01, 0.06) 1.42, NS * * * *

Table 3.25 demonstrates that the aggregate ψ bias was significantly less nega-

tively biased with N = 750 compared to N = 3000, though this difference was

small (β(95%CI) = −0.03(−0.05,−0.02), t = −3.77, p ≤ .001). In addition bias

for MCEM estimates was more than double that observed for WLSMV (β(95%CI) =

−0.25(−0.27,−0.24), t = −30.15, p ≤ .0001). Results for all individual parameters con-

formed to the aggregate results, except that bias for ψ2 did not vary as a function of

sample size. This model accounted for 45% of the variance in bias for ψ.

Table 3.26: Meta Model Results: ρ̂ Raw Bias for Model 2, Set 1

Raw ρ̂ Bias

Results when ρ̂i Aggregated Correspondence to Aggregate by ρ̂i

Contrast β(95%CI) t, pval ρ1 ρ2 ρ3 ρ4

1 : N3k − N750 −0.01(−0.01,−0.00) −2.76, p ≤ .01 - - * *

2 : MCEM −WLSMV −0.13(−0.14,−0.12) −46.55, p ≤ .0001 * * * *

3 : 1 × 2 0.02(0.01, 0.04) 4.29, p ≤ .0001 - * * *
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Aggregate bias for estimates of the error correlation, ρ, presented in Table 3.26,

reveal significant main effects and interactions. Bias was significantly less negatively

biased with N = 750 versusN = 3000, though this difference was small (β(95%CI) =

−0.01(−0.01,−0.002), t = −2.76, p ≤ .01). In addition, MCEM estimates were signif-

icantly more biased than WLSMV estimates (β(95%CI) = −0.13(−0.14,−0.12), t =

−46.55, p ≤ .0001). The difference between estimator bias was greater with N = 3000

compared to N = 750 , though only slightly β(95%CI) = 0.02(0.01, 0.04), t = 4.29, p ≤

.0001). A majority of individual parameters did not exhibit a sample size effect, and

ρ1 did not demonstrate a significant estimator by sample size interaction. This model

accounted for 66% of the variance in bias for ρ.

3.2.5 Second Parameter Set Bias

As can be seen in Table 3.27 with N = 750, the degree of bias for the correlated

error model was higher than that observed for Model 1. MCEM was uniformly more

biased than WLSMV for nearly every parameter, and the magnitude of observed bias

was quite large. WLSMV demonstrated a preponderance of negative bias for threshold

estimates. MCEM estimates were least biased for fixed effects. As noted under model

2 for the first parameter set, WLSMV estimates the error correlations directly, while

MCEM estimates the root of the correlation as λ, and under the testlet parameterization

in MCEM, consequently, MCEM bias values are in relation to the generating parameter

for λ, which was
√
ρ = .5477.

Table 3.27: Item and Structural Parameter Bias for Model 2, Set 2, N=750

N=750

WLSMV MCEM

P θ θ̂(SD) B
θ̂

RB
θ̂

θ̂(SD) B
θ̂

RB
θ̂

a1 0.46 0.49(0.07) 0.035 0.075 0.65(0.13) 0.195 0.424

a2 0.69 0.68(0.09) -0.009 -0.013 0.91(0.18) 0.22 0.319

a4 1.92 1.67(0.24) -0.255 −0.133 2.71(0.55) 0.789 0.411

a5 1.2 1.31(0.14) 0.105 0.088 1.64(0.32) 0.441 0.368

a6 1.8 1.97(0.27) 0.168 0.093 2.31(0.46) 0.511 0.284

Continued on next page
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Table 3.27 – continued from previous page

N=750

WLSMV MCEM

P θ θ̂(SD) B
θ̂

RB
θ̂

θ̂(SD) B
θ̂

RB
θ̂

a7 1.68 1.24(0.17) -0.441 −0.263 2.43(0.52) 0.751 0.447

a8 1.76 1.83(0.22) 0.067 0.038 2.41(0.47) 0.646 0.367

a9 0.3 0.32(0.05) 0.017 0.056 0.4(0.09) 0.104 0.346

b1 3.3 3.1(0.22) -0.199 -0.06 2.81(0.3) -0.489 −0.148

b2 -1 -1.03(0.32) -0.027 0.027 -0.51(0.37) 0.485 −0.485

b4 4 3.86(0.24) -0.143 -0.036 3.33(0.39) -0.675 −0.169

b5 2.5 2.37(0.12) -0.132 -0.053 2.23(0.2) -0.272 −0.109

b6 1.2 1.14(0.07) -0.056 -0.046 1.24(0.11) 0.039 0.032

b7 -1.5 -0.91(0.26) 0.589 −0.392 -0.13(0.28) 1.374 −0.916

b8 2.8 2.65(0.14) -0.148 -0.053 2.45(0.23) -0.35 −0.125

b9 -2 -2.13(0.63) -0.127 0.064 -1.27(0.59) 0.733 −0.366

µα 1.39 1.26(0.07) -0.128 -0.092 1.34(0.11) -0.056 -0.04

µβ 0.5 0.51(0.05) 0.006 0.012 0.41(0.07) -0.089 −0.179

τα 0.67 0.63(0.16) -0.041 -0.061 0.43(0.16) -0.241 −0.36

ταβ 0.05 0.04(0.05) -0.003 -0.061 0.02(0.03) -0.029 −0.645

τβ 0.05 0.04(0.03) -0.014 −0.283 0.02(0.02) -0.031 −0.621

ψ1 0.67 0.77(0.2) 0.099 0.148 0.54(0.2) -0.129 −0.192

ψ2 0.81 0.61(0.16) -0.199 −0.245 0.34(0.15) -0.471 −0.58

ψ3 1.05 0.86(0.21) -0.197 −0.187 0.5(0.2) -0.553 −0.526

ψ4 1.39 1.19(0.29) -0.207 −0.148 0.72(0.28) -0.672 −0.482

ρ1 0.3 0.27(0.09) -0.028 -0.093 0.36(0.14) -0.192 −0.351

ρ2 0.3 0.23(0.12) -0.073 −0.242 0.36(0.28) -0.186 −0.34

ρ3 0.3 0.25(0.15) -0.055 −0.183 0.33(0.22) -0.215 −0.392

ρ4 0.3 0.31(0.3) 0.008 0.028 0.21(0.46) -0.335 −0.611

As can be seen in Table 3.28 quadrupling the the number of observations toN = 3000

did not reduce bias in a substantial manner, and for some estimates, notably among

MCEM point estimates, bias increased. Again, the degree of bias for the correlated error

model was higher than that observed for the model without correlated errors. As was the

case with N = 750, WLSMV was substantially less biased than MCEM. With N = 3000,

WLSMV threshold estimates remained negatively biased, though not uniformly. As with

N = 750, MCEM estimates only demonstrated acceptable levels of raw bias for fixed

effects and some random effect covariance parameters, though the relative bias values

reflected more substantial estimation error. In some cases, MCEM was grossly biased,

for example, the estimate of b7.
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Table 3.28: Item and Structural Parameter Bias for Model 2, Set 2, N=3000

N=3000

WLSMV MCEM

P θ θ̂(SD) B
θ̂

RB
θ̂

θ̂(SD) B
θ̂

RB
θ̂

a1 0.46 0.5(0.03) 0.04 0.087 0.69(0.1) 0.235 0.51

a2 0.69 0.68(0.04) -0.009 -0.013 0.96(0.13) 0.269 0.39

a4 1.92 1.69(0.1) -0.232 −0.121 2.85(0.38) 0.927 0.483

a5 1.2 1.33(0.07) 0.129 0.107 1.75(0.24) 0.549 0.457

a6 1.8 1.89(0.1) 0.091 0.051 2.44(0.34) 0.636 0.353

a7 1.68 1.47(0.11) -0.213 −0.127 2.57(0.38) 0.889 0.529

a8 1.76 1.92(0.1) 0.157 0.089 2.55(0.36) 0.788 0.448

a9 0.3 0.33(0.02) 0.028 0.092 0.43(0.07) 0.134 0.448

b1 3.3 3.04(0.09) -0.261 -0.079 2.69(0.19) -0.611 −0.185

b2 -1 -0.99(0.14) 0.007 -0.007 -0.39(0.24) 0.615 −0.615

b4 4 3.76(0.11) -0.237 -0.059 3.16(0.24) -0.837 −0.209

b5 2.5 2.32(0.05) -0.18 -0.072 2.15(0.12) -0.352 −0.141

b6 1.2 1.13(0.03) -0.069 -0.057 1.24(0.05) 0.035 0.029

b7 -1.5 -0.65(0.1) 0.846 −0.564 -0.02(0.19) 1.48 −0.987

b8 2.8 2.59(0.06) -0.209 -0.075 2.36(0.14) -0.443 −0.158

b9 -2 -1.94(0.27) 0.061 -0.031 -1.03(0.37) 0.972 −0.486

µα 1.39 1.25(0.03) -0.138 -0.099 1.32(0.05) -0.067 -0.048

µβ 0.5 0.49(0.02) -0.009 -0.017 0.38(0.05) -0.119 −0.239

τα 0.67 0.58(0.07) -0.092 −0.137 0.36(0.1) -0.313 −0.467

ταβ 0.05 0.03(0.02) -0.012 −0.266 0.01(0.01) -0.031 −0.683

τβ 0.05 0.04(0.01) -0.014 −0.278 0.01(0.01) -0.035 −0.703

ψ1 0.67 0.69(0.08) 0.018 0.027 0.46(0.12) -0.208 −0.311

ψ2 0.81 0.57(0.06) -0.245 −0.301 0.29(0.09) -0.522 −0.643

ψ3 1.05 0.79(0.08) -0.266 −0.253 0.42(0.12) -0.638 −0.606

ψ4 1.39 1.09(0.12) -0.3 −0.215 0.61(0.17) -0.785 −0.563

ρ1 0.3 0.28(0.04) -0.02 -0.066 0.36(0.07) -0.188 −0.343

ρ2 0.3 0.25(0.06) -0.053 −0.177 0.4(0.14) -0.149 −0.271

ρ3 0.3 0.26(0.07) -0.036 −0.121 0.31(0.1) -0.234 −0.428

ρ4 0.3 0.35(0.12) 0.046 0.154 0.2(0.31) -0.348 −0.635
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3.2.6 Second Parameter Set Meta Model Results

As with model 1, parameter sets were aggregated. Thus models were fit to the

average bias for â, b̂, ψ̂, and ρ̂, though in order to characterize any discrepancy between

the aggregate and the individual parameters idiosyncracies are noted for each individual

parameter. Results which diverge from the aggregate are denoted with a dash, while

results which conform to that observed for the aggregate are denoted with an asterisk.

For the vast majority of parameters modeled, only estimator main effects were observed.

Table 3.29: Meta Model Results: â Raw Bias for Model 2, Set 2

Raw â Bias

Results when âi Aggregated Correspondence to Aggregate by âi

Contrast β(95%CI) t, pval a1 a2 a4 a5 a6 a7 a8 a9

1 : N3k −N750 0.07(0.04, 0.09) 5.55, p ≤ .0001 * * * * - * * *

2 : MCEM −WLSMV 0.53(0.5, 0.55) 43.5, p ≤ .0001 * * * * * * * *

3 : 1 × 2 −0.06(−0.11,−0.01) −2.42, p ≤ .05 * * * * * * - *

As can be seen from the cell means, and the model results presented in Ta-

ble 3.29, bias was significantly lower when N = 750 compared to when N = 3000

(β(95%CI) = 0.07(0.04, 0.09), t = 5.55, p ≤ .0001). MCEM estimates were signifi-

cantly more biased than WLSMV (β(95%CI) = 0.53(0.5, 0.55), t = 43.5, p ≤ .0001). In

addition, the difference between MCEM and WLSMV differed as a function of sam-

ple size, with the difference in bias between estimators increasing with sample size

(β(95%CI) = −0.06(−0.11,−0.01), t = −2.42, p ≤ .05). All of the individual â con-

formed to the findings observed for the aggregate except a6, whose bias did not vary as

a function of sample size, and a8, whose bias did not have an estimator by sample size

interaction. This model accounted for 63% of the variance in bias.
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Table 3.30: Meta Model Results: b̂ Raw Bias for Model 2, Set 2

Raw b̂ Bias

Results when b̂i Aggregated Correspondence to Aggregate by b̂i

Contrast β(95%CI) t, pval b1 b2 b4 b5 b6 b7 b8 b9

1 : N3k −N750 0.01(0, 0.02) 2.71, p ≤ .01 * * * * * * * *

2 : MCEM −WLSMV 0.12(0.11, 0.13) 25.03, p ≤ .0001 * * * * * * * *

3 : 1 × 2 0.02(0, 0.04) 2.38, p ≤ .05 * * * * - * - -

As can be seen from the cell means, and the model results presented in Table 3.30,

bias was significantly, though trivially lower when N = 750 compared to when N = 3000

(β(95%CI) = 0.01(0.003, 0.02), t = 2.71, p ≤ .01). MCEM estimates were significantly

more biased than WLSMV (β(95%CI) = 0.12(0.11, 0.13), t = 25.03, p ≤ .0001). In

addition, the difference between MCEM and WLSMV differed as a function of sam-

ple size, with the difference in bias between estimators increasing with sample size

(β(95%CI) = 0.02(0.004, 0.04), t = 2.38, p ≤ .05). All of the individual â conformed to

the findings observed for the aggregate except b6, b8, andb9 whose bias did not exhibit an

estimator by sample size interaction. This model accounted for 36% of the variance in

bias.

Table 3.31: Meta Model Results: Fixed Effect Raw Bias for Model 2, Set 2

Raw Bias

µ̂α µ̂β

Contrast β(95%CI) t, pval β(95%CI) t, pval

1 : N3k −N750 −0.01(−0.02,−0.00) −2.41, p ≤ .05 −0.02(−0.03,−0.02) −7.42, p ≤ .0001

2 : MCEM −WLSMV 0.07(0.06, 0.08) 16.23, p ≤ .0001 −0.1(−0.11,−0.1) −34.39, p ≤ .0001

3 : 1 × 2 0(−0.02, 0.02) 0.17, NS 0.02(0.00, 0.03) 2.61, p ≤ .01

Bias for fixed effect estimates, µ̂α and µ̂β, are presented in Table 3.31. Estimates

of µ̂α were significantly, though trivially, less biased under N = 750 (β(95%CI) =

−0.01(−0.02,−0.002), t = −2.41, p ≤ .05). MCEM estimates of µ̂α were significantly
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less biased than WLSMV estimates (β(95%CI) = 0.07(0.06, 0.08), t = 16.23, p ≤ .0001).

In the case of µ̂β, estimates were significantly, though trivially, less biased under

N = 750 (β(95%CI) = −0.02(−0.03,−0.02), t = −7.42, p ≤ .0001). MCEM esti-

mates were profoundly more biased than WLSMV (β(95%CI) = −0.1(−0.11,−0.1), t =

−34.39, p ≤ .0001). Furthermore, the degree to which MCEM estimates were more

biased than WLSMV estimates significantly increased as a function of sample size

(β(95%CI) = 0.02(0.003, 0.03), t = 2.61, p ≤ .01). This model accounted for 20% of

the variance in bias for µ̂α, and 52% of the bias in µ̂β.

Table 3.32: Meta Model Results: Random Effect Variance Estimate Raw Bias for Model

2, Set 2

Raw Bias

τ̂α τ̂β

Contrast β(95%CI) t, pval β(95%CI) t, pval

1 : N3k −N750 −0.06(−0.08,−0.05) −7.88, p ≤ .0001 0(0, 0) −1.65, NS

2 : MCEM −WLSMV −0.21(−0.23,−0.2) −27.29, p ≤ .0001 −0.02(−0.02,−0.02) −16.34, p ≤ .0001

3 : 1 × 2 0.02(−0.01, 0.05) 1.35, NS 0(0, 0.01) 1.86, NS

Consistent with the results observed for model 2 under parameter set 2, in the

case of the random effect variance bias, given in Table 3.32, both sample size and es-

timator main effects were observed for τ̂α while only estimator main effects were ob-

served for τ̂β. Estimates of τ̂α were, significantly less biased under N = 750 com-

pared to N = 3000 (β(95%CI) = −0.06(−0.08,−0.05), t = −7.88, p ≤ .0001), and

estimates were profoundly more biased for MCEM than for WLSMV (β(95%CI) =

−0.21(−0.23,−0.2), t = −27.29, p ≤ .0001). In the case of τ̂β , MCEM estimates

were significantly, though only slightly, more negatively biased than those of WLSMV

(β(95%CI) = −0.02(−0.02,−0.02), t = −16.34, p ≤ .0001). This model accounted for

41% of the variance in bias for τ̂α, and 20% of the variance in bias for τ̂β .
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Table 3.33: Meta Model Results: Random Effect Covariance Estimate Raw Bias for

Model 2, Set 2

Raw Bias

τ̂αβ

Contrast β(95%CI) t, pval

1 : N3k −N750 −0.01(−0.01,−0.00) −2.87, p ≤ .01

2 : MCEM −WLSMV −0.02(−0.03,−0.02) −11.79, p ≤ .0001

3 : 1 × 2 −0.01(−0.02,−0.00) −1.97, p ≤ .05

Table 3.33 reveals that the random effect covariance bias, differed trivially as a

function of all effects, with τ̂αβ estimates slightly more negatively biased under under

N = 3000 (β(95%CI) = −0.01(−0.01,−0.002), t = −2.87, p ≤ .01) and more negatively

biased under MCEM than WLSMV (β(95%CI) = −0.02(−0.03,−0.02), t = −11.79, p ≤

.0001). Moreover, the difference in bias as a function of estimator increased with sample

size, though only slightly (β(95%CI) = −0.01(−0.02,−0.00001), t = −1.97, p ≤ .05).

This model accounted for only 12% of the bias in τ̂αβ .

Table 3.34: Meta Model Results: ψ̂ Raw Bias for Model 2, Set 2

Raw ψ̂ Bias

Results when ψ̂i Aggregated Correspondence to Aggregate by ψ̂i

Contrast β(95%CI) t, pval ψ1 ψ2 ψ3 ψ4

1 : N3k −N750 −0.08(−0.09,−0.06) −9.03, p ≤ .0001 * * * *

2 : MCEM −WLSMV −0.34(−0.35,−0.32) −39.28, p ≤ .0001 * * * *

3 : 1 × 2 0.01(−0.02, 0.04) 0.58, NS * * * *

Results from the meta model for the aggregate ψ bias, presented in Table 3.34,

reveal that estimates were significantly more negatively biased with N = 3000 compared
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to N = 750 (β(95%CI) = −0.08(−0.09,−0.06), t = −9.03, p ≤ .0001). In addition

bias for MCEM estimates was almost triple that observed for WLSMV (β(95%CI) =

−0.34(−0.35,−0.32), t = −39.28, p ≤ .0001). Results for all individual parameters

conformed to the aggregate results. This model accounted for 59% of the variance in

bias for ψ.

Table 3.35: Meta Model Results: ρ̂ Raw Bias for Model 2, Set 2

Raw ρ̂ Bias

Results when ρ̂i Aggregated Correspondence to Aggregate by ρ̂i

Contrast β(95%CI) t, pval ρ1 ρ2 ρ3 ρ4

1 : N3k − N750 −0.02(−0.03,−0.01) −3.68, p ≤ .001 - - * *

2 : MCEM −WLSMV −0.11(−0.12,−0.1) −23.74, p ≤ .0001 * * * *

3 : 1 × 2 0.08(0.06, 0.09) 8.31, p ≤ .0001 * * * *

Aggregate bias for estimates of the error correlation, ρ, presented in Table 3.35,

reveal significant main effects and interactions. Though bias was significantly less neg-

ative with N = 750, this difference was trivial (β(95%CI) = −0.02(−0.03,−0.01), t =

−3.68, p ≤ .001). MCEM estimates were substantially more biased than WLSMV es-

timates (β(95%CI) = −0.11(−0.12,−0.1), t = −23.74, p ≤ .0001). The difference

between estimator bias increased with sample size (β(95%CI) = 0.08(0.06, 0.09), t =

8.31, p ≤ .0001). Though most parameters conformed to the aggregate results, ρ1 and

ρ2 did not exhibit a sample size effect. This model accounted for 36% of the variance in

bias for ρ.

3.2.7 Summary of Findings

Under Model 2, NCV solutions only occurred under MCEM estimation, with an

identical sample size effect as observed under model 1, though NCV rates were higher for

MCEM than any estimator under model 1. NPD solution rates under the first parameter

set mirrored the effects observed for model 1, with NPD solutions restricted to τ̂ η, more
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common whenN = 750, with the majority associated with WLSMV estimates. Under the

second parameter set the same pattern was observed, though NPD rates under WLSMV

were the highest observed in the entire simulation.

Though MCEM was hypothesized to outperform WLSMV in terms of bias and RMSE

under model 2, this was virtually never the case. Of the 29 parameters estimated in model

2 under parameter set 1 when N = 750, only 5 had relative bias vales below 10%, and

in the case of b̂7, MCEM exhibited 160% relative bias. In contrast, though WLSMV was

a far cry from exhibiting unbiased estimates, only 9 out of 29 parameters had relative

bias values exceeding 10%. Both estimators had highest relative bias for estimates of

thresholds, random effect variances, and variances of the time-specific θ. In addition,

MCEM displayed marked relative bias in estimates of the error correlations. Out of

the 29 parameters estimated in this model, only three displayed less bias under MCEM

than under WLSMV, these parameters were the thresholds for item1 and item5 and µ̂α.

Under the second parameter set, estimates exhibited much higher degrees of bias, with

MCEM performing even more poorly than under the first parameter set, and WLSMV

performing only slightly worse than under the first parameter set. When N = 750 only

2 of 29 MCEM estimates had relative bias below 10% while only 10 of 29 WLSMV

estimates exceeded 10%. WLSMV was more biased than MCEM in only two parameters

(b̂6 and µ̂α). Whereas high bias for WLSMV was restricted to estimates of thresholds,

random effect variance estimates, variances of the time-specific θ, and error correlations,

MCEM displayed uniformly high bias across all parameters in both the raw and relative

bias metrics.

Quadrupling the sample size to N = 3000 did not help MCEM estimates, with only

4 out of 29 parameters having relative bias below 10%, while in the case of WLSMV only

9 out of 29 parameters had relative bias values exceeding 10%. In addition, there were

only four parameters for which MCEM was less biased than WLSMV, these parameters

were b̂1, b̂5, b̂8, and µ̂α. As was the case when N = 750, the highest relative bias values
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for both estimators were associated with estimates of item thresholds, random effect

variances and covariances, variances of the time-specific θ, and the error correlations.

Under the second parameter set, no real change was observed relative to N = 750, with

both MCEM and WLSMV performing even more poorly than under the first parameter

set. When N = 3000 only 2 of 29 MCEM estimates had relative bias below 10% while

13 of 29 WLSMV estimates exceeded 10%. WLSMV was more biased than MCEM for

the same two parameters when N = 3000 as under N = 750 (b̂6 and µ̂α). Whereas

high bias for WLSMV was restricted to estimates of thresholds, random effect variance

estimates, and variances of the time-specific θ, MCEM displayed uniformly high bias

across all parameters in both the raw and relative bias metrics.

Compared to model 1, Meta model results for raw bias under model 2 within the first

parameter set produced more pronounced estimator differences with WLSMV uniformly

less biased than MCEM. In addition to estimator effects, estimates of µ̂β, τ̂α, aggregate

ψ̂, and ρ̂, exhibited modest sample size main effects, suggesting that bias increased with

sample size. The difference in bias between WLSMV and MCEM increased with sample

size for estimates of ρ̂. Under the second parameter set, estimator main effects indicated

that WLSMV remained less biased than MCEM. Sample size effects were the same as

under the first parameter set, indicating that bias increased with sample size for model 2.

In addition, several interactions were observed under the second parameter set indicating

that the difference in bias between WLSMV and MCEM for aggregate â, b̂, and ρ̂, along

with µ̂β and τ̂αβ increased as sample size increased.
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3.3 Additional Analyses

3.3.1 Model 1 with MCEM

To investigate the poor behavior of MCEM in model 2, MCEM was used to estimate

model 1 for the first parameter set when N = 750. Results are contrasted with WLSMV

and FIML based on 7 QP in Table 3.36. As can be seen, MCEM was the most biased

estimator of model parameters both in relative and absolute terms. Contrasting estima-

tors on relative bias, we see that the only case in which relative bias exceeded 10% for

FIML and WLSMV was for τ̂αβ . In contrast, only 6 out of 25 parameters for MCEM

had relative bias values below 10%. In the case of b̂7, whose generating value was −.3,

MCEM exhibited 74% relative bias, and the raw bias associated with this parameter,

.22, was also substantial. We can therefore conclude that the implementation of MCEM

in Mplus is a poor one, especially given the optimal performance of this estimator for

similar models demonstrated in Schilling and Bock (2005).

Table 3.36: MCEM Item and Structural Parameter Bias for Model 1, Set 1, N=750

N=750

QP = 7 WLSMV MCEM

P θ θ̂(SD) B
θ̂

RB
θ̂

θ̂(SD) B
θ̂

RB
θ̂

θ̂(SD) B
θ̂

RB
θ̂

a1 0.46 0.46(0.04) -0.003 -0.006 0.50(0.05) 0.037 0.081 0.540(0.09) 0.080 0.173

a2 0.69 0.69(0.07) -0.002 -0.003 0.69(0.07) 0.002 0.002 0.810(0.14) 0.120 0.174

a4 0.92 0.93(0.08) 0.005 0.006 0.96(0.10) 0.043 0.046 1.086(0.17) 0.166 0.181

a5 1.15 1.15(0.09) 0.002 0.002 1.20(0.11) 0.054 0.047 1.354(0.20) 0.204 0.177

a6 1.37 1.37(0.12) 0.003 0.002 1.41(0.13) 0.043 0.031 1.613(0.24) 0.243 0.177

a7 1.68 1.69(0.16) 0.012 0.007 1.66(0.21) -0.020 -0.012 1.964(0.31) 0.284 0.169

a8 1.76 1.76(0.14) -0.004 -0.002 1.78(0.17) 0.021 0.012 2.047(0.28) 0.287 0.163

a9 0.30 0.30(0.04) -0.005 -0.015 0.31(0.05) 0.014 0.046 0.347(0.06) 0.047 0.158

b1 2.30 2.31(0.12) 0.013 0.006 2.26(0.12) -0.035 -0.015 2.179(0.14) -0.121 -0.053

b2 -0.50 -0.53(0.20) -0.029 0.058 -0.55(0.22) -0.049 0.098 -0.266(0.26) 0.234 −0.468

b4 3.00 3.00(0.14) 0.002 0.001 2.94(0.14) -0.065 -0.022 2.775(0.18) -0.225 -0.075

b5 1.50 1.50(0.07) 0.000 0.000 1.48(0.07) -0.016 -0.011 1.482(0.08) -0.018 -0.012

b6 1.00 1.00(0.07) -0.003 -0.003 1.00(0.08) -0.003 -0.003 1.050(0.09) 0.050 0.050

b7 -0.30 -0.31(0.13) -0.008 0.028 -0.28(0.15) 0.019 -0.063 -0.078(0.20) 0.222 −0.741

b8 2.00 2.00(0.08) 0.002 0.001 1.97(0.07) -0.033 -0.017 1.914(0.09) -0.086 -0.043

b9 -1.00 -1.09(0.42) -0.093 0.093 -1.09(0.45) -0.085 0.085 -0.762(0.45) 0.238 −0.238

µα 1.39 1.39(0.07) 0.000 0.000 1.38(0.07) -0.010 -0.007 1.381(0.08) -0.011 -0.008

µβ 0.50 0.50(0.04) 0.004 0.009 0.48(0.04) -0.019 -0.038 0.438(0.06) -0.062 −0.125

τα 0.67 0.69(0.13) 0.021 0.032 0.66(0.14) -0.012 -0.019 0.519(0.14) -0.151 −0.225

Continued on next page
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Table 3.36 – continued from previous page

N=750

QP = 7 WLSMV MCEM

P θ θ̂(SD) B
θ̂

RB
θ̂

θ̂(SD) B
θ̂

RB
θ̂

θ̂(SD) B
θ̂

RB
θ̂

ταβ 0.05 0.04(0.04) -0.006 −0.123 0.04(0.05) -0.010 −0.214 0.038(0.02) -0.008 −0.170

τβ 0.05 0.05(0.03) 0.004 0.074 0.05(0.03) -0.001 -0.025 0.034(0.04) -0.016 −0.321

ψ1 0.67 0.67(0.15) 0.002 0.002 0.63(0.15) -0.041 -0.062 0.473(0.15) -0.197 −0.293

ψ2 0.81 0.81(0.14) 0.002 0.003 0.76(0.15) -0.049 -0.061 0.581(0.15) -0.230 −0.284

ψ3 1.05 1.08(0.19) 0.024 0.022 0.99(0.19) -0.061 -0.058 0.775(0.21) -0.278 −0.264

ψ4 1.39 1.42(0.28) 0.021 0.015 1.31(0.28) -0.086 -0.061 1.036(0.29) -0.358 −0.257

3.3.2 NPD Sensitivity Analyses

For model 1 under the first parameter set a total of 38 replications had NPD solutions

for τ η. Sensitivity analyses for the first parameter set were conducted by removing all

replications with NPD solutions for each estimator, resulting in an unbalanced design, as

rates of NPD replications differed across estimator. A total of 16 replications were deleted

from the 3 QP estimator replications, 12 from the 7 QP estimator replications, and 35

from WLSMV. After deletion meta-models were re-run for each parameter group and

results were compared to the complete-case data. For every parameter except ταβ and

the aggregated ψ, the direction of effect and patterns of significant findings were identical

after deletion of replications with NPD solutions. In the case of ταβ , after deleting the

replications with NPD solutions, the formerly non-significant sample size effect became

significant (p = .0232) though all other contrasts remained identical. In the case of the

aggregated ψ, the formerly significant sample size effect became non-significant (p = .094)

after deletion, though all other contrasts remained identical.

A total of 34 replications had NPD solutions for τ η under the second parameter set.

Sensitivity analyses conducted after deletion of 9 replications with NPD solutions in the

3 QP estimator, and the 10 replications in the 7 QP estimator, and the 31 replications in

WLSMV with NPD solutions revealed a similar pattern of findings as those observed in

the first parameter set. For all parameters except ταβ and τβ, results did not change in

direction or significance after case-deletion. In the case of τβ , the formerly significant 3
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QP versus WLSMV contrast became non-significant (p = 0.0766), and in the case of ταβ

the significant sample size main effect became non-significant (p = 0.0986) and the non-

significant sample size by 3 QP versus WLSMV (p = 0.0332) and sample size by 7 QP

versus WLSMV (p = 0.0340) interactions became significant. Thus, in the case of model

1, sensitivity analyses revealed that case-deletion only affected the results observed for

parameters which could have been impacted by NPD solutions: namely, variances and

covariances. It is not clear whether this is due to selection bias truncating the distribution

of observed bias, or whether the NPD solutions themselves produced misleading estimates

which obscured the true effects for bias in these parameters. Nonetheless, it is important

to note that virtually all other contrasts were unaffected, and where change was observed,

it was only for a small number of contrasts. Out of the total 144 contrasts estimated

across all parameters and item parameter sets, only 6, or .042%, contrasts deviated from

the observed trends once replications with NPD solutions were deleted.

For model 2, set 1, a total of 29 replications had NPD solutions under MCEM

estimation and 48 replications had NPD solutions under WLSMV estimation. Sensitivity

analyses revealed no change for any parameter in terms of sign or significance after

deleting replications with NPD solutions under the first parameter set. In the case of

the second parameter set, 63 WLSMV replications had NPD solutions and 33 MCEM

replications had NPD solutions. Only the formerly significant sample size by estimator

interaction for ταβ became non-significant (p = 0.0541) after deletion of replications with

NPD solutions. For all other parameters deletion of replications produced no change

under the second parameter set. Consequently, out of the 54 contrasts estimated across all

parameters and item parameter sets for model 2, only 1, or .02%, showed differences under

sensitivity analyses. As with model 1, differences observed for model 2 under sensitivity

analyses were restricted to parameters which would be expected to be impacted, namely

a covariance of a matrix identified as being degenerate upon which selection for deletion

was based. We can therefore conclude that the inclusion of the NPD solutions was
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associated with trivial, if any, impact on conclusions.
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CHAPTER 4

Discussion

There were five key issues that arose in this dissertation: convergence, sample size

effects, estimator effects, WLSMV bias and contingency table sparseness, and marginal

likelihood approximations. I next expand on these themes in order to more adequately

address the nature of the observed phenomena. Each of these issues ran counter to

hypotheses in one way or another, and I attempt to elucidate likely mechanisms which

lead to the departure of observed phenomena from expectation.

4.1 Convergence

Though hypotheses related to convergence posited that WLSMV would fail to con-

verge more than any other estimator due to degenerate contingency tables, in fact

WLSMV never failed to converge. Instead, and rather unexpectedly, NCV solutions

were only observed for FIML based on 3 QP. The lack of NCV solutions for WLSMV

may be explained through the fact that the algorithm implemented in Mplus augments

degenerate contingency tables by inserting trivially small numbers into zero cells in order

to prevent convergence failure. No such explanation exists for why FIML based on 3 QP

would fail to converge, though. However, the fact that replications failed to converge

under 3 QP but not under 7 QP points to an answer. If the only difference between

converging and not is quadrature points, then the likely explanation is that replications

which fail to converge do so because the number of quadrature points used to approximate

the integrals required to obtain and maximize the marginal log-likelihood are insufficient



and approximation fails. If approximating the integrals fails, then the marginal log-

likelihood can not be defined. And if the marginal log-likelihood can not be defined then

it can not be maximized. Thus bad approximations to the integral render the marginal

log-likelihood ill or undefined, which prevents optimization of the target function, leading

to a failure to converge. To verify this hypothesis, replications which failed to converge

were run individually outside of the simulation automation program and error messages

were examined. In virtually every case convergence failure was caused by the log likeli-

hood decreasing in the final iteration. Increasing the number of iterations did not fix the

problem. Examination of the iterations revealed that the likelihood evaluations in these

cases alternated between positive and negative values at each iteration. This behavior

is characteristic of likelihood surfaces with poorly defined maxima, a phenomenon which

is itself consistent with the conjecture that the cause of convergence failure was poor

approximations of the marginal likelihood.

4.2 Sample Size Effect

The sample size manipulation was implemented to test the hypothesis that bias

would diminish markedly by quadrupling sample size from 750 to 3000. While meta-

model results indicated some significant sample size differences, differences in absolute

terms were very small for bias. However, it is worth noting that, in general, RMSE

exhibited a 50% reduction, as expected, when sample size was quadrupled from 750

to 3000. In the case of model 1, even though bias decreased as a function of sample

size, bias was acceptably low even at N = 750, and thus the estimators, particularly

FIML, were operating as we would expect asymptotically even at the smallest observed

sample size. Under model 2, in most cases where significant sample size effects were

observed, differences nearly uniformly indicated that bias increased with sample size.

Examination of cell means reveals that the increase in bias was trivial in absolute terms.

No clear explanation exists for this phenomenon. One could speculate that model 2, being

a more complex model than model 1, is subject to greater imprecision and sampling
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variability, and that this sampling variability would account for this counter-intuitive

finding. However, we would expect sampling variability to decrease with increases in

sample size. While this is true, sampling variability will decrease faster as precision

increases, and in a simulation, precision increases faster with increasing replications than

with increasing sample size per replication. Therefore, if properties of model 2 render it

more subject to sampling variability, to counter this sampling variability more replications

are required in order to fully understand the nature of estimators of this model. Given

the very small differences in bias for parameters as a function of sample size, this seems

viable. Nonetheless, more work is needed to understand the specific nature of bias under

model 2.

4.3 Estimator Effects

Under model 1, regardless of parameter set, differences in bias and RMSE across es-

timators were consistent with my hypotheses. In general, FIML based on 7 QP was the

least biased estimator, followed by FIML based on 3 QP, with the most biased estimator

being WLSMV. However, as I noted above, the absolute magnitude of the bias observed

for these estimators was uniformly (and acceptably) low under parameter set 1. Thus,

while we can rank the estimators in relative terms, WLSMV did not appear to be mean-

ingfully more biased than any other estimator. This was not the case under the second

parameter set for the same model. Though estimators maintained their hypothesized

relative ranking, WLSMV exhibited bias values which were much larger than the FIML

estimators in absolute terms for certain parameters.

Under model 2 I hypothesized that the FIML estimator (i.e., MCEM) would out-

perform WLSMV. Given that MCEM is the Bayesian integration analog of adaptive

Gauss-Hermite quadrature integration, and that simulation results suggest their equiva-

lence (Schilling & Bock, 2005), MCEM seemed like a reasonable substitute for adaptive

quadrature under model 2 for the estimator contrast. However, this was not the case,

as the expected relative ranking was reversed, with WLSMV outperforming MCEM in

87



terms of both bias and RMSE. Because the estimator effects were contained within model

without crossover, except for WLSMV, it is unclear whether MCEM is just poorly im-

plemented in Mplus, or whether some aspect of model 2 contaminates the performance

of MCEM. To examine MCEM further, MCEM estimation of model 1 was examined and

the estimator remained the most biased and least efficient, indicating that the MCEM

implementation in Mplus is currently less optimal than the quadrature-based integral

approximation routines.

4.4 WLSMV Bias and Contingency Table Sparseness

Bias for WLSMV exceeded that observed for FIML estimators under the first pa-

rameter set and model 1, though the difference for most parameters was small and the

absolute magnitude of bias for WLSMV was acceptably low. For the second parame-

ter set, irrespective of model, WLSMV had high degrees of bias, and model 2 had high

degrees of bias irrespective of parameter set. Examination of the bias observed for the sec-

ond parameter set and model 2 bias for both parameter sets reveals that while WLSMV

bias was high, item parameters for certain items always had the highest observed bias.

Inspection of the item parameters revealed that in the case of items with even trivially

negative thresholds and high discrimination WLSMV exhibited high degrees of bias for

threshold estimates. The slope parameters associated with these items were the most

biased among the set of slope parameters, though this bias was lower than that associated

with the corresponding thresholds. The same was true for positive thresholds, though

only when thresholds were large and positive and the corresponding slopes were high.

A logical explanation exists for this phenomenon. In the case of items with negative

thresholds and steep slopes the probability of endorsing the item is quite high. For

example, in the case of item 7 under the second parameter set p(item = 1|θ) ranges from

.97 to .99 across time, under the first parameter set the probability ranged from .86 to

.95, thus the one-way table is dominated by ones. In the case of items with large positive

thresholds and steep slopes, the opposite is true, with the one-way tables dominated by
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zeroes. For example, p(item = 1|θ) for item 4 under the second parameter set ranges

from .04 to .28 over time. Examination of two-way tables associated with these items

revealed high rates of sparseness, with tables tending toward complete separation of

cells. In the case of item 7, two-way tables not only tended toward sparseness, but many

exhibited complete separation of cells under any reasonable sample size. For example,

cross tabulation under the second parameter set of items 7 and 4 having item parameters

a = 1.68, and b = −1.5 and a = 1.92, and b = 4 respectively produces a degenerate

two-way table when N = 750:






27 693

0 30






, (4.1)

and the two-way table remains degenerate even with a sample size of N = 100, 000.

Because first and second order moments of the sample proportions are functions of the

one and two-way tables, respectively, and WLSMV uses these moments in the calculation

of thresholds and polychoric correlations (Olsson, 1979), for such items WLSMV will

encounter difficulties which likely produce the observed bias. In the case of two-way

tables which degenerate to complete separation of cells, the implementation of WLSMV

in Mplus fills in cells with small numbers based on implied fractions from the observed

sample size, and while this prevents the estimator from failing, the polychoric correlation

estimates obtained must be less than optimal, leading to the extreme bias observed.

4.5 Recommendations for Application

Applied researchers can conclude from this simulation that if convergence can be ob-

tained with 3 quadrature points per dimension of integration, FIML with few quadrature

points may be expected to produce little bias in point estimates and minimal dispersion

as measured by standard errors. Given the lack of computing burden, we can recom-

mend that this procedure be employed for estimation, though if convergence issues are

encountered, FIML with 7 quadrature points is optimal, with WLSMV being employed

only as an option of last resort. Though WLSMV is not profoundly more biased or inef-
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ficient than FIML estimators, the bias effect is highly dependent on characteristics of the

data, and thus accuracy can not be predicted pre-estimation. Examination of WLSMV

item parameters, paying particular attention to large slope parameters and thresholds

at locations in the neighborhood of ±2 standard deviations of θt, or examination of all

contingency tables would give insight into the extent to which WLSMV estimates may

be untrustworthy. Lastly, a lower sample size of N = 750 was selected because we an-

ticipated that it would be a reasonable and commonly accepted lower bound for sample

sizes considered for such models, based on the results observed in this study, it is likely

that the minimally sufficient sample size for fitting these types of models is much lower

than 750. As such, applications which have sample sizes in the neighborhood of N = 750

may be expected to perform very well. In conclusion, these models may be estimated

with relatively modest sample sizes, with limited computing burden, and still produce

very accurate estimates in expectation when FIML estimators are employed.

4.6 Limitations and Future Directions

Because estimators of model 1 were behaving as we would expect asymptotically even

at N = 750, the presented simulation results prevent making conclusions regarding the

lower limits of optimal performance as a function of sample size. However, information

related to expected performance of the model in real-data applications is the paramount

goal of any simulation. As such, in order to augment the utility of this work additional

sample size cells should be added to the design in order to understand at what point below

a sample size of 750 the estimators begin to degenerate and exhibit poor performance.

This is important because it will both augment our understanding of the finite sample

performance of the estimators, and reflect more modest sample sizes encountered in some

domains of applied research, such as studies of rare events. It is likely the case that even

minimal reductions in sample size will impact WLSMV heavily due to the contingency

table issues described above. However, the robustness of the FIML estimators may be

quite substantial, and large reductions in sample size may be required in order to observe
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poor behavior on their part.

Though the second parameter set was introduced to test the robustness of the es-

timators to difficulty range effects, an alternative (and more realistic) process common

to longitudinal data collection which induces sparseness in contingency tables is missing

data. Missing data were not considered here so that focus could be placed on other

elements of the design. However, this is a limitation considering the omnipresence of

missing data in longitudinal data collections. The inclusion of missing data are impor-

tant to maximize generalizability and external validity, but could also serve as a second

contingency table sparseness condition of interest. Likely consequences of the introduc-

tion of missing data to the simulation include increased separation of estimators in terms

of bias as WLSMV would most assuredly degenerate as it encountered increasingly sparse

contingency tables resulting from missingness. In addition, already sparse contingency

tables occurring in the second parameter set would be rendered more sparse, likely re-

sulting in higher rates of NCV for FIML estimators based on few quadrature points.

Though this might not have an impact on bias, given that the rates of NCV for FIML

based on 3 QP were not associated with substantial increases in bias relative to 7 QP,

increased rates of NCV are a substantial liability in application. Thus, the expected

impact of missing data on the 3 QP estimator and WLSMV would likely permit stronger

conclusions regarding optimizing estimation of these models under real-data conditions.

A final limitation relates to measures of model fit. Though inference for model fit

under the FIML estimators remains an area for development given the sparseness of the

multidimensional contingency table giving rise to the response patterns, and, in fact,

fit indices are not currently reported for FIML estimators, model fit is provided under

limited information estimators. Given that this information was only available for one of

four estimators considered in this dissertation and interest centered around estimation,

the decision was made to defer the study of this facet of modeling to a separate and

subsequent project.
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Despite these limitations, the key strength of this study is that it permitted an un-

derstanding of fundamental aspects of the models considered. Results provide unique

insights into the nature of bias in WLSMV as it relates to contingency table sparseness,

the robustness of Gauss-Hermite adaptive quadrature-based FIML estimators, the lim-

ited effect of sample size, the added complexity of the correlated error model, and the

impact of difficulty range on contingency table sparseness. No single study is capable

of encapsulating all aspects of a given model, as such, there are two key future direc-

tions which will help augment our understanding of this model in addition to examining

missing data and smaller sample sizes.

First, in this simulation change in item behavior was assumed to be wholly accounted

for by the trends in the moments of θ over time. Given a small number of closely spaced

repeated measures this is a reasonable structure under which to simulate data. An alter-

native, which would be reflective of more repeated measures, or widely spaced measures,

or poorly constructed scales, would be data in which even after accounting for the trends

in the moments of θ the relationship between the items and the latent construct changed

over time. Whether we embed this issue in the domains of differential item functioning

(DIF), or measurement non-invariance with respect to time, these frameworks exist and

are devoted to the examination and testing of such phenomena. Each provide standard-

ized methods for the detection and resolution of time-varying item to construct relations.

Consequently, there is no reason to believe that new procedures need be developed in

order to examine this issue. I did not consider this issue here because it was deemed

outside the scope of an initial study for the model of interest. However, in future work,

the model developed and examined herein will be extended to examine ways in which the

model integrates into the architecture of DIF and measurement non-invariance, and issues

unique to the model which may require augmenting existing protocols for the detection

of time-varying item to construct relations.

Second, while the scale simulated in this study was unidimensional within time (which
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is representative of many well constructed scales) there do exist a number of scales which

are multidimensional. For even a small number of repeated measures multidimensional

scales pose a substantial problem for the proposed model, one with no clear solution given

present-day computing limitations. However, it is worth emphasizing that the problem

with extending the proposed model to more complex factor structures is not indicative of a

liability in the model, which fits into current statistical consensus on models for repeated

measures (Demidenko, 2004). Instead, the limitation is strictly related to computing

power. As computing power increases or new estimation algorithms are developed, the

restrictions which prevent expanding into more complex factor structures will diminish

or disappear.

4.7 Conclusion

In this study I described a model for longitudinal item response data. Two variations

of the model were examined: one where the correlation induced by repeated sampling

was accounted for exclusively by a linear polynomial trend with fixed and random com-

ponents, and one where the correlation induced by repeated sampling was accounted for

by both the linear polynomial and time-specific error correlations for a subset of items.

For each model limited and full information estimators were contrasted across two sample

size conditions and two response pattern conditions. Whereas full information estimators

outperformed limited information estimators in the first model, the opposite was true in

the second model. No meaningful differences were observed for bias and RMSE as a

function of sample size, though convergence and NPD solutions diminished as sample

size increased. Wide difficulty ranges impacted bias, mostly as a function of sparse con-

tingency tables in limited information estimation, though full information estimators also

had some difficulty with items having extreme parameters. The goal of my project was to

explicate and study the feasibility of fitting a model for longitudinal item response data.

This model was a hybrid of two existing model types: The item response theory model

and the latent growth curve model for repeated measures. I have empirically demon-
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strated the utility and feasibility of this model. Future work will focus on extensions

and applications, but this first step unambiguously establishes the second-order growth

model as a promising statistical approach to modeling longitudinal item response data.
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CHAPTER 5

Appendices

5.1 Appendix 1: Parameter set 1 RMSE

Table 5.1: Item and Structural Parameter RMSE for Model 1, Set 1, N=750

N=750

QP = 3 QP = 7 WLSMV

P θ θ̂(SD) RMSEθ̂ θ̂(SD) RMSEθ̂ θ̂(SD) RMSEθ̂

a1 0.46 0.46(0.05) 0.045 0.46(0.04) 0.044 0.50(0.05) 0.065

a2 0.69 0.70(0.07) 0.068 0.69(0.07) 0.067 0.69(0.07) 0.073

a4 0.92 0.94(0.08) 0.083 0.93(0.08) 0.078 0.96(0.10) 0.107

a5 1.15 1.16(0.09) 0.094 1.15(0.09) 0.093 1.20(0.11) 0.119

a6 1.37 1.38(0.12) 0.118 1.37(0.12) 0.116 1.41(0.13) 0.136

a7 1.68 1.72(0.17) 0.172 1.69(0.16) 0.164 1.66(0.21) 0.206

a8 1.76 1.75(0.13) 0.134 1.76(0.14) 0.140 1.78(0.17) 0.172

a9 0.30 0.30(0.04) 0.038 0.30(0.04) 0.038 0.31(0.05) 0.048

b1 2.30 2.31(0.12) 0.122 2.31(0.12) 0.123 2.26(0.12) 0.121

b2 -0.50 -0.50(0.19) 0.193 -0.53(0.20) 0.198 -0.55(0.22) 0.221

b4 3.00 3.00(0.14) 0.138 3.00(0.14) 0.138 2.94(0.14) 0.152

b5 1.50 1.51(0.07) 0.073 1.50(0.07) 0.073 1.48(0.07) 0.071

Continued on next page



Table 5.1 – continued from previous page

N=750

QP = 3 QP = 7 WLSMV

P θ θ̂(SD) RMSEθ̂ θ̂(SD) RMSEθ̂ θ̂(SD) RMSEθ̂

b6 1.00 1.01(0.07) 0.074 1.00(0.07) 0.074 1.00(0.08) 0.076

b7 -0.30 -0.28(0.13) 0.133 -0.31(0.13) 0.131 -0.28(0.15) 0.147

b8 2.00 2.00(0.08) 0.078 2.00(0.08) 0.080 1.97(0.07) 0.080

b9 -1.00 -1.05(0.41) 0.415 -1.09(0.42) 0.426 -1.09(0.45) 0.460

µα 1.39 1.40(0.07) 0.074 1.39(0.07) 0.075 1.38(0.07) 0.071

µβ 0.50 0.50(0.04) 0.039 0.50(0.04) 0.038 0.48(0.04) 0.044

τα 0.67 0.69(0.13) 0.130 0.69(0.13) 0.131 0.66(0.14) 0.140

ταβ 0.05 0.04(0.04) 0.044 0.04(0.04) 0.045 0.04(0.05) 0.051

τβ 0.05 0.05(0.03) 0.028 0.05(0.03) 0.029 0.05(0.03) 0.032

ψ1 0.67 0.64(0.15) 0.150 0.67(0.15) 0.152 0.63(0.15) 0.155

ψ2 0.81 0.79(0.14) 0.145 0.81(0.14) 0.144 0.76(0.15) 0.158

ψ3 1.05 1.05(0.19) 0.191 1.08(0.19) 0.194 0.99(0.19) 0.199

ψ4 1.39 1.38(0.28) 0.283 1.42(0.28) 0.276 1.31(0.28) 0.289
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Table 5.2: Item and Structural Parameter RMSE for Model 1, Set 1, N=3000

N=3000

QP = 3 QP = 7 WLSMV

P θ θ̂(SD) RMSEθ̂ θ̂(SD) RMSEθ̂ θ̂(SD) RMSEθ̂

a1 0.46 0.46(0.02) 0.023 0.46(0.02) 0.022 0.50(0.03) 0.049

a2 0.69 0.70(0.03) 0.034 0.69(0.03) 0.033 0.69(0.03) 0.035

a4 0.92 0.93(0.04) 0.042 0.92(0.04) 0.040 0.95(0.04) 0.056

a5 1.15 1.16(0.05) 0.048 1.15(0.05) 0.047 1.20(0.05) 0.075

a6 1.37 1.38(0.06) 0.061 1.37(0.06) 0.060 1.41(0.07) 0.079

a7 1.68 1.71(0.09) 0.093 1.68(0.09) 0.088 1.60(0.09) 0.124

a8 1.76 1.76(0.07) 0.073 1.76(0.08) 0.078 1.79(0.09) 0.096

a9 0.30 0.30(0.02) 0.020 0.30(0.02) 0.020 0.32(0.02) 0.029

b1 2.30 2.30(0.07) 0.066 2.30(0.07) 0.067 2.25(0.06) 0.080

b2 -0.50 -0.48(0.09) 0.094 -0.51(0.09) 0.095 -0.53(0.10) 0.105

b4 3.00 3.00(0.08) 0.076 3.00(0.08) 0.075 2.93(0.07) 0.104

b5 1.50 1.50(0.04) 0.036 1.50(0.04) 0.036 1.48(0.03) 0.040

b6 1.00 1.01(0.03) 0.034 1.00(0.03) 0.034 1.00(0.03) 0.033

b7 -0.30 -0.27(0.07) 0.072 -0.30(0.07) 0.069 -0.30(0.07) 0.074

b8 2.00 2.00(0.04) 0.043 2.00(0.04) 0.043 1.96(0.04) 0.057

b9 -1.00 -0.99(0.19) 0.191 -1.03(0.19) 0.195 -1.01(0.21) 0.210

µα 1.39 1.40(0.04) 0.037 1.39(0.04) 0.037 1.38(0.03) 0.037

µβ 0.50 0.50(0.02) 0.021 0.50(0.02) 0.020 0.48(0.02) 0.032

τα 0.67 0.67(0.07) 0.075 0.67(0.07) 0.074 0.64(0.07) 0.082

ταβ 0.05 0.04(0.02) 0.024 0.04(0.02) 0.024 0.04(0.02) 0.026

τβ 0.05 0.05(0.01) 0.015 0.05(0.02) 0.015 0.05(0.02) 0.016

Continued on next page
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Table 5.2 – continued from previous page

N=3000

QP = 3 QP = 7 WLSMV

P θ θ̂(SD) RMSEθ̂ θ̂(SD) RMSEθ̂ θ̂(SD) RMSEθ̂

ψ1 0.67 0.64(0.07) 0.076 0.67(0.08) 0.076 0.63(0.07) 0.086

ψ2 0.81 0.79(0.07) 0.077 0.82(0.08) 0.077 0.75(0.08) 0.095

ψ3 1.05 1.03(0.10) 0.102 1.06(0.10) 0.100 0.97(0.10) 0.127

ψ4 1.39 1.36(0.13) 0.137 1.40(0.14) 0.137 1.26(0.13) 0.185

Table 5.3: Item and Structural Parameter RMSE for Model 2, Set 1

RMSE

N = 750 N = 3000

WLSMV MCEM WLSMV MCEM

P θ θ̂(SD) RMSE
θ̂

θ̂(SD) RMSE
θ̂

θ̂(SD) RMSE
θ̂

θ̂(SD) RMSE
θ̂

a1 0.46 0.49(0.06) 0.066 0.59(0.12) 0.178 0.49(0.03) 0.042 0.60(0.07) 0.151

a2 0.69 0.69(0.07) 0.073 0.86(0.17) 0.246 0.69(0.04) 0.038 0.86(0.1) 0.2

a4 0.92 0.95(0.1) 0.103 1.21(0.24) 0.376 0.94(0.05) 0.052 1.21(0.13) 0.317

a5 1.15 1.25(0.11) 0.151 1.46(0.27) 0.411 1.25(0.06) 0.116 1.46(0.16) 0.354

a6 1.37 1.47(0.13) 0.167 1.72(0.33) 0.483 1.47(0.07) 0.121 1.73(0.18) 0.404

a7 1.68 1.71(0.2) 0.198 2.12(0.41) 0.601 1.67(0.1) 0.098 2.12(0.24) 0.503

a8 1.76 1.87(0.19) 0.217 2.20(0.42) 0.614 1.86(0.09) 0.136 2.20(0.24) 0.503

a9 0.3 0.33(0.05) 0.056 0.38(0.08) 0.111 0.33(0.02) 0.038 0.38(0.04) 0.094

b1 2.3 2.16(0.12) 0.178 2.19(0.18) 0.21 2.15(0.06) 0.161 2.16(0.09) 0.168

b2 -0.5 -0.51(0.21) 0.213 -0.13(0.32) 0.488 -0.50(0.11) 0.11 -0.09(0.19) 0.448

b4 3 2.81(0.14) 0.23 2.73(0.25) 0.369 2.80(0.07) 0.21 2.69(0.13) 0.335

b5 1.5 1.42(0.07) 0.106 1.53(0.11) 0.109 1.41(0.03) 0.095 1.51(0.06) 0.057

b6 1 0.95(0.07) 0.088 1.12(0.12) 0.17 0.95(0.03) 0.061 1.12(0.07) 0.14

b7 -0.3 -0.15(0.13) 0.197 0.18(0.24) 0.537 -0.16(0.07) 0.155 0.20(0.15) 0.526

b8 2 1.88(0.07) 0.138 1.93(0.13) 0.149 1.87(0.04) 0.131 1.91(0.07) 0.111

b9 -1 -1.06(0.45) 0.454 -0.56(0.46) 0.638 -0.99(0.21) 0.207 -0.47(0.24) 0.58

µα 1.39 1.30(0.07) 0.114 1.42(0.11) 0.982 1.30(0.03) 0.099 1.42(0.06) 0.992

µβ 0.5 0.47(0.04) 0.048 0.41(0.07) 0.178 0.47(0.02) 0.037 0.40(0.04) 0.114

τα 0.67 0.59(0.13) 0.153 0.47(0.18) 0.644 0.58(0.07) 0.109 0.44(0.1) 0.644

ταβ 0.05 0.04(0.05) 0.05 0.03(0.03) 0.027 0.03(0.02) 0.025 0.03(0.02) 0.023

τβ 0.05 0.04(0.03) 0.031 0.03(0.02) 0.476 0.04(0.01) 0.016 0.03(0.01) 0.419

ψ1 0.67 0.62(0.15) 0.157 0.48(0.19) 0.275 0.61(0.07) 0.095 0.46(0.1) 0.258

ψ2 0.81 0.67(0.13) 0.187 0.45(0.17) 0.297 0.67(0.07) 0.153 0.43(0.09) 0.263

ψ3 1.05 0.9(0.18) 0.236 0.63(0.24) 0.391 0.88(0.09) 0.194 0.58(0.13) 0.309

ψ4 1.39 1.22(0.27) 0.319 0.87(0.35) 0.114 1.17(0.13) 0.26 0.80(0.18) 0.063

ρ1 0.3 0.28(0.08) 0.087 0.35(0.14) 0.242 0.29(0.04) 0.044 0.36(0.07) 0.201

Continued on next page
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Table 5.3 – continued from previous page

RMSE

N = 750 N = 3000

WLSMV MCEM WLSMV MCEM

P θ θ̂(SD) RMSE
θ̂

θ̂(SD) RMSE
θ̂

θ̂(SD) RMSE
θ̂

θ̂(SD) RMSE
θ̂

ρ2 0.3 0.25(0.11) 0.121 0.29(0.22) 0.337 0.26(0.06) 0.07 0.34(0.1) 0.225

ρ3 0.3 0.27(0.13) 0.136 0.34(0.22) 0.302 0.26(0.07) 0.078 0.32(0.12) 0.253

ρ4 0.3 0.27(0.11) 0.116 0.35(0.19) 0.28 0.27(0.05) 0.059 0.35(0.09) 0.212

5.2 Appendix 2: Parameter set 2 RMSE

Table 5.4: Item and Structural Parameter RMSE for Model 1, Set 2, N=750

N=750

QP = 3 QP = 7 WLSMV

P θ θ̂(SD) RMSEθ̂ θ̂(SD) RMSEθ̂ θ̂(SD) RMSEθ̂

a1 0.46 0.48(0.05) 0.053 0.46(0.05) 0.048 0.50(0.07) 0.077

a2 0.69 0.72(0.07) 0.079 0.70(0.07) 0.069 0.68(0.09) 0.089

a4 1.92 2.01(0.18) 0.203 1.95(0.20) 0.206 1.65(0.25) 0.366

a5 1.20 1.24(0.10) 0.113 1.20(0.10) 0.100 1.26(0.14) 0.150

a6 1.80 1.90(0.18) 0.206 1.82(0.18) 0.178 1.90(0.26) 0.280

a7 1.68 1.79(0.24) 0.265 1.72(0.26) 0.262 1.00(0.15) 0.700

a8 1.76 1.83(0.16) 0.174 1.77(0.15) 0.155 1.76(0.21) 0.205

a9 0.30 0.31(0.04) 0.041 0.30(0.04) 0.038 0.30(0.05) 0.049

b1 3.30 3.24(0.18) 0.187 3.32(0.18) 0.183 3.26(0.23) 0.233

b2 -1.00 -0.93(0.23) 0.238 -1.00(0.23)) 0.233 -1.06(0.31) 0.312

b4 4.00 3.90(0.18) 0.208 4.00(0.19) 0.193 4.03(0.26) 0.265

b5 2.50 2.45(0.10) 0.112 2.50(0.11) 0.105 2.47(0.13) 0.132

b6 1.20 1.19(0.06) 0.064 1.20(0.07) 0.065 1.20(0.07) 0.065

Continued on next page
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Table 5.4 – continued from previous page

N=750

QP = 3 QP = 7 WLSMV

P θ θ̂(SD) RMSEθ̂ θ̂(SD) RMSEθ̂ θ̂(SD) RMSEθ̂

b7 -1.50 -1.42(0.24) 0.254 -1.52(0.27)) 0.265 -2.45(0.49) 1.066

b8 2.80 2.74(0.12) 0.131 2.80(0.12) 0.119 2.76(0.15) 0.156

b9 -2.00 -1.98(0.50) 0.501 -2.08(0.52)) 0.523 -2.22(0.66) 0.699

µα 1.39 1.37(0.07) 0.072 1.39(0.07) 0.071 1.38(0.07) 0.071

µβ 0.50 0.49(0.04) 0.040 0.50(0.04) 0.038 0.49(0.05) 0.049

τα 0.67 0.64(0.13) 0.131 0.69(0.14) 0.137 0.68(0.17) 0.170

ταβ 0.05 0.04(0.04) 0.042 0.04(0.04) 0.045 0.04(0.05) 0.055

τβ 0.05 0.05(0.03) 0.026 0.06(0.03) 0.028 0.06(0.04) 0.036

ψ1 0.67 0.61(0.14) 0.150 0.66(0.15) 0.148 0.60(0.19) 0.198

ψ2 0.81 0.75(0.13) 0.145 0.81(0.14) 0.139 0.75(0.18) 0.190

ψ3 1.05 0.98(0.17) 0.184 1.06(0.18) 0.182 1.00(0.24) 0.248

ψ4 1.39 1.28(0.25) 0.275 1.39(0.26) 0.260 1.33(0.34) 0.347

Table 5.5: Item and Structural Parameter RMSE for Model 1, Set 2, N=3000

N=3000

QP = 3 QP = 7 WLSMV

P θ θ̂(SD) RMSEθ̂ θ̂(SD) RMSEθ̂ θ̂(SD) RMSEθ̂

a1 0.46 0.48(0.02) 0.030 0.46(0.02) 0.023 0.50(0.03) 0.052

a2 0.69 0.72(0.04) 0.047 0.69(0.04) 0.036 0.68(0.04) 0.040

a4 1.92 1.99(0.09) 0.116 1.93(0.10) 0.099 1.64(0.11) 0.297

Continued on next page
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Table 5.5 – continued from previous page

N=3000

QP = 3 QP = 7 WLSMV

P θ θ̂(SD) RMSEθ̂ θ̂(SD) RMSEθ̂ θ̂(SD) RMSEθ̂

a5 1.20 1.24(0.05) 0.068 1.20(0.05) 0.051 1.27(0.06) 0.094

a6 1.80 1.88(0.10) 0.126 1.80(0.09) 0.093 1.82(0.10) 0.103

a7 1.68 1.76(0.12) 0.146 1.69(0.12) 0.123 1.19(0.11) 0.498

a8 1.76 1.83(0.08) 0.105 1.76(0.08) 0.080 1.86(0.11) 0.150

a9 0.30 0.31(0.02) 0.024 0.30(0.02) 0.021 0.31(0.02) 0.027

b1 3.30 3.22(0.10) 0.125 3.31(0.10) 0.099 3.19(0.10) 0.150

b2 -1.00 -0.92(0.12) 0.140 -1.00(0.12) 0.123 -1.06(0.14) 0.152

b4 4.00 3.89(0.10) 0.144 4.00(0.10) 0.104 3.94(0.12) 0.132

b5 2.50 2.45(0.05) 0.077 2.50(0.06) 0.056 2.42(0.05) 0.096

b6 1.20 1.19(0.03) 0.032 1.20(0.03) 0.032 1.19(0.03) 0.034

b7 -1.50 -1.41(0.13) 0.159 -1.50(0.14) 0.138 -1.92(0.24) 0.485

b8 2.80 2.73(0.06) 0.092 2.80(0.07) 0.066 2.70(0.07) 0.123

b9 -2.00 -1.92(0.26) 0.272 -2.03(0.27) 0.271 -2.03(0.29) 0.288

µα 1.39 1.37(0.04) 0.040 1.39(0.04) 0.036 1.37(0.03) 0.042

µβ 0.50 0.48(0.02) 0.026 0.50(0.02) 0.020 0.48(0.02) 0.032

τα 0.67 0.62(0.07) 0.084 0.67(0.08) 0.076 0.62(0.08) 0.090

ταβ 0.05 0.04(0.02) 0.023 0.04(0.02) 0.024 0.04(0.03) 0.028

τβ 0.05 0.05(0.01) 0.015 0.05(0.02) 0.015 0.05(0.02) 0.016

ψ1 0.67 0.63(0.07) 0.083 0.67(0.08) 0.076 0.56(0.09) 0.139

ψ2 0.81 0.75(0.07) 0.093 0.81(0.07) 0.074 0.69(0.08) 0.145

ψ3 1.05 0.97(0.09) 0.119 1.06(0.10) 0.096 0.93(0.10) 0.158

Continued on next page
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Table 5.5 – continued from previous page

N=3000

QP = 3 QP = 7 WLSMV

P θ θ̂(SD) RMSEθ̂ θ̂(SD) RMSEθ̂ θ̂(SD) RMSEθ̂

ψ4 1.39 1.28(0.12) 0.167 1.39(0.13) 0.125 1.23(0.13) 0.211

Table 5.6: Item and Structural Parameter RMSE for Model 2, Set 2

RMSE

N = 750 N = 3000

WLSMV MCEM WLSMV MCEM

P θ θ̂(SD) RMSE
θ̂

θ̂(SD) RMSE
θ̂

θ̂(SD) RMSE
θ̂

θ̂(SD) RMSE
θ̂

a1 0.46 0.49(0.07) 0.076 0.65(0.13) 0.236 0.5(0.03) 0.049 0.69(0.1) 0.254

a2 0.69 0.68(0.09) 0.09 0.91(0.18) 0.283 0.68(0.04) 0.04 0.96(0.13) 0.298

a4 1.92 1.67(0.24) 0.35 2.71(0.55) 0.96 1.69(0.1) 0.255 2.85(0.38) 1.003

a5 1.2 1.31(0.14) 0.176 1.64(0.32) 0.544 1.33(0.07) 0.144 1.75(0.24) 0.599

a6 1.8 1.97(0.27) 0.318 2.31(0.46) 0.686 1.89(0.1) 0.134 2.44(0.34) 0.719

a7 1.68 1.24(0.17) 0.472 2.43(0.52) 0.912 1.47(0.11) 0.238 2.57(0.38) 0.965

a8 1.76 1.83(0.22) 0.229 2.41(0.47) 0.801 1.92(0.1) 0.186 2.55(0.36) 0.865

a9 0.3 0.32(0.05) 0.052 0.4(0.09) 0.136 0.33(0.02) 0.036 0.43(0.07) 0.149

b1 3.3 3.1(0.22) 0.296 2.81(0.3) 0.573 3.04(0.09) 0.277 2.69(0.19) 0.638

b2 -1 -1.03(0.32) 0.319 -0.51(0.37)) 0.607 -0.99(0.14) 0.142 -0.39(0.24) 0.66

b4 4 3.86(0.24) 0.281 3.33(0.39) 0.777 3.76(0.11) 0.26 3.16(0.24) 0.871

b5 2.5 2.37(0.12) 0.18 2.23(0.2) 0.337 2.32(0.05) 0.187 2.15(0.12) 0.371

b6 1.2 1.14(0.07) 0.087 1.24(0.11) 0.115 1.13(0.03) 0.075 1.24(0.05) 0.063

b7 -1.5 -0.91(0.26) 0.643 -0.13(0.28) 1.403 -0.65(0.1) 0.852 -0.02(0.19) 1.492

b8 2.8 2.65(0.14) 0.203 2.45(0.23) 0.422 2.59(0.06) 0.217 2.36(0.14) 0.465

b9 -2 -2.13(0.63) 0.642 -1.27(0.59)) 0.937 -1.94(0.27) 0.276 -1.03(0.37) 1.04

µα 1.39 1.26(0.07) 0.146 1.34(0.11) 0.984 1.25(0.03) 0.142 1.32(0.05) 1.013

µβ 0.5 0.51(0.05) 0.049 0.41(0.07) 0.179 0.49(0.02) 0.022 0.38(0.05) 0.175

τα 0.67 0.63(0.16) 0.167 0.43(0.16) 0.654 0.58(0.07) 0.114 0.36(0.1) 0.656

ταβ 0.05 0.04(0.05) 0.053 0.02(0.03) 0.032 0.03(0.02) 0.025 0.01(0.01) 0.032

τβ 0.05 0.04(0.03) 0.035 0.02(0.02) 0.531 0.04(0.01) 0.019 0.01(0.01) 0.43

ψ1 0.67 0.77(0.2) 0.22 0.54(0.2) 0.36 0.69(0.08) 0.082 0.46(0.12) 0.39

ψ2 0.81 0.61(0.16) 0.258 0.34(0.15) 0.368 0.57(0.06) 0.253 0.29(0.09) 0.414

ψ3 1.05 0.86(0.21) 0.285 0.5(0.2) 0.433 0.79(0.08) 0.278 0.42(0.12) 0.475

ψ4 1.39 1.19(0.29) 0.353 0.72(0.28) 0.128 1.09(0.12) 0.322 0.61(0.17) 0.087

ρ1 0.3 0.27(0.09) 0.09 0.36(0.14) 0.24 0.28(0.04) 0.046 0.36(0.07) 0.2

ρ2 0.3 0.23(0.12) 0.144 0.36(0.28) 0.338 0.25(0.06) 0.081 0.4(0.14) 0.203

ρ3 0.3 0.25(0.15) 0.161 0.33(0.22) 0.309 0.26(0.07) 0.079 0.31(0.1) 0.256

ρ4 0.3 0.31(0.3) 0.299 0.21(0.46) 0.566 0.35(0.12) 0.132 0.2(0.31) 0.463
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5.3 Appendix 3: Cell Means

Sample size effects may be computed by taking the difference between the first two

rows for each parameter, using N = 750 as the reference. Likewise, the third through

fifth rows may be used to calculate all possible estimator main effects. Sample size by

estimator interactions may be computed from the remaining rows. To facilitate use of

this table I give an example of the computation of all effects for the aggregate a:

• Sample Size = N3k −N750 = .008 − .012 = −.004

• 3QP-7QP = 3QP − 7QP = .009 − 0 = .009

• 3QP-WLSMV = 3QP −WLSMV = .009 − .02 = −.011

• 7QP-WLSMV = 7QP −WLSMV = 0 − .02 = −.02

• Sample Size by 3QP-7QP = (3QP750 − 7QP750) − (3QP3K − 7QP3K) = (0.009 −

0.001) − (0.008 − 0) = 0

• Sample Size by 3QP-WLSMV = (3QP750−WLSMV750)−(3QP3K−WLSMV3K) =

(0.009 − 0.024) − (0.008 − .017) = −.006

• Sample Size by 7QP-WLSMV = (7QP750−WLSMV750)−(7QP3K−WLSMV3K) =

(0.001 − 0.024) − (0 − .017) = −.006

These estimates match those presented in Table 3.4 within rounding error, and are the
explicit equations used for generating the reported contrasts:

PROC GLM DATA= GC_ANALYSIS;

CLASS SAMPLE_SIZE QPOINTS ;

MODEL A_DIF = SAMPLE_SIZE QPOINTS SAMPLE_SIZE*QPOINTS / CLPARM ;

ESTIMATE ’N3000 Vs. N750’ SAMPLE_SIZE -1 1 ;

ESTIMATE ’3QP Vs. 7QP’ QPOINTS 0 -1 1 ;

ESTIMATE ’3QP Vs. WLSMV’ QPOINTS -1 1 0 ;

ESTIMATE ’7QP Vs. WLSMV’ QPOINTS -1 0 1 ;

ESTIMATE ’FIML Vs. WLSMV’ QPOINTS -2 1 1 / DIVISOR=2;

ESTIMATE ’DIFFERENCE BETWEEN 3QP AND 7QP WHEN N=3K VERSUS N=750’ SAMPLE_SIZE*QPOINTS 0 -1 1 0 1 -1;

ESTIMATE ’DIFFERENCE BETWEEN 3QP AND WLSMV WHEN N=3K VERSUS N=750’ SAMPLE_SIZE*QPOINTS -1 1 0 1 -1 0;
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ESTIMATE ’DIFFERENCE BETWEEN 7QP AND WLSMV WHEN N=3K VERSUS N=750’ SAMPLE_SIZE*QPOINTS -1 0 1 1 0 -1;

ESTIMATE ’DIFFERENCE BETWEEN FIML AND WLSMV WHEN N=3K VERSUS N=750’ SAMPLE_SIZE*QPOINTS -2 1 1 2 -1 -1 / DIVISOR=2;

ODS OUTPUT ESTIMATES=PARMS;

RUN;

QUIT;

The FIML main effect and interaction may be computed by taking the average of the 3

QP and 7 QP bias and constructing the appropriate contrasts. For the main effect, the

difference between that average and the WLSMV cell mean is taken, and the interaction

is constructed by averaging the FIML cell means stratified by sample size and taking the

appropriate differences with WLSMV means stratified by sample size. These examples

may be used to re-construct any contrast. But contrasts need not be constructed to

interpret the direction of effect, that may be gleaned from the cell means in Table 5.7

without any further computations, though interactions are a bit harder to interpret in

the absence of some calculations. This same procedure may be applied to the cell means

for parameter set 2 presented in Table 5.8.

Table 5.7: Item and Structural Parameter Bias Cell Means for Model 1, Set 1

Set 1 Bias Cell Means

Cell a b µα µβ τα ταβ τβ ψ

N750 0.012 -0.016 -0.002 -0.004 0.009 -0.008 0.002 -0.022

N3K 0.008 -0.008 -0.003 -0.009 -0.011 -0.005 -0.001 -0.033

WLSMV 0.02 -0.03 -0.011 -0.022 -0.023 -0.01 -0.003 -0.069

3QP 0.009 0.004 0.005 0 0.008 -0.005 0.002 -0.022

7QP 0 -0.01 0 0.002 0.012 -0.003 0.002 0.009

WLSMV750 0.024 -0.033 -0.01 -0.019 -0.012 -0.01 -0.001 -0.059

WLSMV3K 0.017 -0.027 -0.012 -0.025 -0.033 -0.01 -0.004 -0.079

3QP750 0.009 -0.001 0.005 0.002 0.017 -0.007 0.003 -0.018

Continued on next page

104



Table 5.7 – continued from previous page

Set 1 Bias Cell Means

Cell a b µα µβ τα ταβ τβ ψ

3QP3K 0.008 0.008 0.004 -0.002 -0.001 -0.003 0 -0.026

7QP750 0.001 -0.014 0 0.004 0.021 -0.006 0.004 0.012

7QP3K 0 -0.005 -0.001 0.001 0.002 -0.001 0.001 0.006

Table 5.8: Item and Structural Parameter Bias Cell Means for Model 1, Set 2

Set 2 Bias Cell Means

Cell a b µα µβ τα ταβ τβ ψ

N750 -0.008 -0.063 -0.013 -0.006 0.002 -0.008 0.005 -0.046

N3K -0.004 -0.04 -0.014 -0.014 -0.03 -0.005 -0.001 -0.067

WLSMV -0.08 -0.138 -0.02 -0.016 -0.017 -0.008 0.002 -0.096

QP3 0.054 -0.011 -0.019 -0.015 -0.036 -0.007 -0.001 -0.075

QP7 0.009 -0.007 -0.003 0.002 0.01 -0.005 0.003 0

WLSMV750 -0.095 -0.165 -0.015 -0.008 0.014 -0.007 0.005 -0.062

WLSMV3K -0.065 -0.11 -0.024 -0.024 -0.047 -0.009 -0.001 -0.13

QP3750 0.058 -0.013 -0.02 -0.013 -0.027 -0.01 0.002 -0.074

QP33K 0.051 -0.008 -0.018 -0.017 -0.045 -0.004 -0.003 -0.075

QP7750 0.015 -0.011 -0.004 0.003 0.018 -0.008 0.006 -0.003

QP73K 0.003 -0.004 -0.001 0 0.002 -0.002 0.001 0.003
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Table 5.9: Item and Structural Parameter Bias Cell Means for Model 2, Set 1

Set 1 Bias Cell Means

Cell a b µα µβ τα ταβ τβ ψ ρ

N750 0.166 0.031 -0.029 -0.056 -0.136 -0.014 -0.015 -0.251 -0.093

N3K 0.163 0.036 -0.035 -0.065 -0.159 -0.016 -0.016 -0.282 -0.101

WLSMV 0.051 -0.059 -0.092 -0.028 -0.081 -0.01 -0.008 -0.14 -0.031

MCEM 0.279 0.127 0.027 -0.094 -0.216 -0.019 -0.023 -0.395 -0.162

WLSMV750 0.055 -0.062 -0.09 -0.025 -0.076 -0.009 -0.008 -0.13 -0.034

WLSMV3K 0.047 -0.057 -0.093 -0.031 -0.085 -0.012 -0.008 -0.149 -0.029

MCEM750 0.278 0.123 0.031 -0.087 -0.197 -0.019 -0.022 -0.372 -0.152

MCEM3K 0.28 0.13 0.024 -0.099 -0.232 -0.02 -0.024 -0.415 -0.172

Table 5.10: Item and Structural Parameter Bias Cell Means for Model 2, Set 2

Set 2 Bias Cell Means

Cell a b µα µβ τα ταβ τβ ψ ρ

N750 0.394 0.2 -0.092 -0.042 -0.141 -0.016 -0.023 -0.291 -0.072

N3K 0.425 0.206 -0.107 -0.057 -0.188 -0.02 -0.023 -0.346 -0.079

WLSMV 0.166 0.146 -0.133 -0.002 -0.068 -0.008 -0.014 -0.165 -0.025

MCEM 0.688 0.269 -0.061 -0.104 -0.275 -0.03 -0.033 -0.495 -0.133

WLSMV750 0.146 0.132 -0.128 0.006 -0.041 -0.003 -0.014 -0.126 -0.037

WLSMV3K 0.184 0.157 -0.138 -0.009 -0.092 -0.012 -0.014 -0.198 -0.016

MCEM750 0.642 0.268 -0.056 -0.089 -0.241 -0.029 -0.031 -0.456 -0.107

MCEM3K 0.739 0.27 -0.067 -0.119 -0.313 -0.031 -0.035 -0.538 -0.161
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