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ABSTRACT

Hao Tan: Pre-Training Methods for Vision and Language
(Under the direction of Mohit Bansal)

Vision and language are the primary modalities of our human perception and learning. Recent

years have witnessed fast development of methods that connect vision and language. Current

deep learning methods are data-hungry, thus pre-training on large-scale data helps warm up the

model and shows better fine-tuning results on downstream tasks. However, pre-training frame-

works that exploit the power of multi-modality are still underexplored. Specifically, we have the

following questions remaining: Could we build large pre-trained models that understand the inter-

actions and alignments between modalities? Could language and vision help the understanding of

each other? Could we combine the current diverse methods for vision pre-training and language

pre-training? This dissertation aims to answer these questions. I first build a vision-and-language

pre-training framework: LXMERT. This pre-training framework learns vision-and-language joint

representations from massive data (e.g., MS COCO) and achieves state-of-the-art results on sev-

eral benchmark tasks such as image question answering and visual reasoning. We also illustrate

the importance of single-modality pre-training in vision-and-language tasks. Next, I improve

language understanding via dense visual supervision and show its generalization to pure-text

tasks. I develop the vokenization method to construct this visual supervision, which learns to

retrieve related images for each contextualized token in the sentence. Lastly, current language

pre-training and vision pre-training are led by different pretext tasks: language modeling and con-

trastive learning. I combine these two methods into a unified pre-training framework on videos,

such that the pre-trained model could capture both static spatial contents and dynamic temporal

interactions.
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CHAPTER 1: INTRODUCTION

Vision and language are the two major modalities for human to perceive the world. We rely

on these two modalities to learn and to communicate with others. To build an embodied agent

which interact with humans, the ability to handle multiple modalities is necessary. Researchers

have studied diverse problems (Kazemzadeh et al., 2014; Chen et al., 2015; Antol et al., 2015;

Plummer et al., 2015; Anderson et al., 2018b) in vision-and-language and have built different

learning systems (Gerber and Nagel, 1996; Farhadi et al., 2010; Yao et al., 2010; Aker and

Gaizauskas, 2010), using deep learning techniques (Vinyals et al., 2015; Xu et al., 2015; Lu

et al., 2016; Yang et al., 2016). Current machine learning systems, especially the models with

neural networks, are data-hungry and the performance scales well with the amount of data (Sun

et al., 2017; Kaplan et al., 2020). However, the amount of clean human-annotated data is limited

by the collection budget and is far from saturating the model capacity. In order to deal with this

data shortage, the “pre-training and fine-tuning” paradigm is developed and became the primary

approach in current machine learning research. In this paradigm, the model is first pre-trained on

large-scale less-annotated or unannotated data with pretext tasks (He et al., 2020a). Then these

well-initialized models are fine-tuned on downstream tasks, usually with much smaller data size.

In the past decade, we have experienced the power of pre-training in vision (Krizhevsky et al.,

2012; Simonyan and Zisserman, 2014; Szegedy et al., 2015; He et al., 2016; Huang et al., 2017)

and in language (Mikolov et al., 2013; Pennington et al., 2014; Peters et al., 2018; Devlin et al.,

2019a; Radford et al., 2018; Yang et al., 2019; Lan et al., 2019) thus it is a strong belief to see the

same improvement in multi-modal tasks. In this thesis, we illustrate the possibility of building

vision-and-language pre-training frameworks and present some solutions.
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There are three key aspects in building pre-training frameworks: the neural model, the data,

and the pre-training (pretext) tasks. Vision-and-language models are usually built with three com-

ponents: the visual encoder, the language encoder, and the fusion module. The visual encoder

and language encoder converts the visual input (e.g., images, videos) and language input (e.g.,

sentences, paragraphs) to dense vectors. Then the fusion module takes these vectors as input.

For detailed model design, the visual encoder usually uses a convolutional neural network (He

et al., 2016) as backbone. Recurrent neural networks like LSTM (Hochreiter and Schmidhuber,

1997) were the popular choice for the language encoder until Transformer (Vaswani et al., 2017)

becomes a preferring alternative. Fusion module needs to model the interaction between two

modalities thus the Transformer model with attention layers (Xu et al., 2015) is suitable. Since

pre-training needs large data amount, captioning data is the first choice since they are easier to

annotate (Chen et al., 2015; Young et al., 2014; Krishna et al., 2017) or could be gathered from

the web (Thomee et al., 2016; Sharma et al., 2018; Radford et al., 2021a; Changpinyo et al.,

2021). The captioning data is constructed with pairs of images and sentences, where the sen-

tence describes the visual content of the image. We will discuss the vision-and-language data

in Sec. 2.2 in detail. For pre-training methods, the vision and language communities prefer dif-

ferent pretext tasks. Visual models are traditionally pre-trained with classification task on large

annotated datasets (Deng et al., 2009) but recently transferred to the unsupervised contrastive

learning (Oord et al., 2018; He et al., 2020a; Chen et al., 2020b). For language pre-training, word-

level pre-trained vectors (Mikolov et al., 2013; Pennington et al., 2014) are first developed by

maximizing the mutual information of word distributions (Levy and Goldberg, 2014; Oord et al.,

2018). Since the development of ELMo (Peters et al., 2018), language modeling became the most

popular pretext task given its natural connections to human language understanding.

To build a vision-and-language pre-training framework, we need to gather these three pieces

as well: suitable models, large-scale data, and appropriate pre-training tasks. LXMERT (Tan and

Bansal, 2019) is among the first few realizations of such pre-training frameworks. In this work,

we build a full-Transformer (Vaswani et al., 2017) model that the visual encoder, the language
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encoder, and the fusion module are all built in Transformer. Since Transformer model only takes

sequential data as input, it has an issue to directly process the two-dimensional images. We thus

use a detection system (Ren et al., 2015; Anderson et al., 2018a) to convert the image into a se-

quence of objects.1 For pre-training dataset, we consider the captioning data (Chen et al., 2015;

Krishna et al., 2017) and image questions answering data (Goyal et al., 2017b; Hudson and Man-

ning, 2019), which are the public large-scale image-and-sentence data resources. For pre-training

tasks, we consider the cross-modality masked language modeling and the cross-modal matching

tasks. The first task tries to predict masked information from both modalities, and the second

task verifies whether the image and the sentence semantically match. We evaluate our pre-trained

LXMERT model on several downstream tasks (e.g., visual question answering, visual reasoning)

and observe that the performance is significantly improved.

The vision-and-language pre-training method (Tan and Bansal, 2019) trains all model pa-

rameters from scratch, but still has an independent visual module to convert images into objects.

This ‘bottom-up attention’ (Anderson et al., 2018a) visual module is a Faster R-CNN (Ren et al.,

2015) trained on Visual Genome (Krishna et al., 2017) detection data. This single-modality pre-

trained vision encoder exists in most current vision-and-language systems (Lu et al., 2019; Chen

et al., 2020d; Li et al., 2020b), and is biologically plausible that researchers has located the visual

system in our brain (Wurtz et al., 2000). From practical considerations, the amount of aligned

vision-and-language data is strictly less than the single-modality data (i.e., pure image, pure text).

Thus, pre-trained visual system could benefit from larger amount of data. For these reasons, we

study the impact of these pre-trained single-modality modules to multimodal tasks. We com-

pare a list of vision modules from the traditional convolution neural networks to recent vision

transformers. These models are pre-trained on different datasets as well, including image classifi-

cation dataset, detection dataset, and also aligned web image-text dataset. As the architecture and

visual pre-training methods evolve, we see a significant improvement on downstream vision-and-

language tasks. This improvement is almost at the same level as the improvement that vision-and-

1Recent work ViT (Dosovitskiy et al., 2021) converts images to a sequence of patches instead and this approch is
used in ViLT (Kim et al., 2021) for vision-and-language pre-training.
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language pre-training brings. These results show that we still need a careful examination about

single-modality training when looking at multimodal tasks.

Previously, we talked about pre-training on vision-and-language data, but only multimodal

tasks are considered. However, learning in the multimodal world not only helps a better under-

standing of multimodal interactions but also is essential in building our communication abil-

ity (Bloom, 2002; Bender and Koller, 2020; Bisk et al., 2020). We thus want to show that single-

modal tasks can also benefit from multimodal data by integrating more knowledge about the

world. We develop a method, vokenization (Tan and Bansal, 2020), to simulate the pointing

game for human language learning (Bloom, 2002). Our method first maps each word in the sen-

tence to related images. Then the pre-training task for the language model is to predict these

related images. With this external visual supervision, we empirically show that the model has

a better performance on pure language tasks. This idea is further extended in our recent works

VidLanKD (Tang et al., 2021) where we use knowledge distillation to replace the explicit vo-

ken mapping. Concurrently, VirTex (Desai and Johnson, 2020) proposes to pre-train the vision

encoder with captioning model, showing the possibility of improving pure vision tasks from mul-

timodal data. CLIP (Radford et al., 2021a) improves it by using a simpler contrastive model and a

larger (400M) image-sentence dataset crawled from website.

Lastly, current vision pre-training and language pre-training methods are different from each

other, with Contrastive Learning (CL) providing strong results for vision representation learn-

ing (Oord et al., 2018; He et al., 2020b; Chen et al., 2020b), and Language Modeling (LM) show-

ing its strength in natural language processing (NLP) pre-training (Peters et al., 2018; Devlin

et al., 2019a; Radford et al., 2019). We present VIMPAC (Tan et al., 2021) that combines the lan-

guage modeling method and constrastive learning in video pre-training since video understanding

naturally combines both characteristics of image and text. The 2D processing along the spatial

dimensions of the video bears similarity to image processing, while 1D processing along the tem-

poral dimension often involves modeling sequential events and short range coherence. We show
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that this model could achieve state-of-the-art results on two temporally-heavy action recognition

tasks.

With these pre-training frameworks in vision and language, we make progress in moving uni-

modal research to multi-modal research. We hope that this research would soon bring an impact

to our real life by utilizing multi-modal search, multi-modal recommendation system, and the

multi-modal AR/VR systems.

1.1 Thesis Statement

Through using massive data and large-scale models, it is possible to build multimodal pre-

training frameworks that benefit both vision-and-language tasks and single-modality tasks.

1.2 Overview of Chapters

The remainder of this dissertation is organized into six chapters. Chapter 2 discusses the re-

lated work and background for vision-and-language tasks and data. Chapter 3 presents our work

on building the first image-and-text pre-training frameworks, LXMERT. Chapter 4 discusses the

impact of single-modality pre-training to multi-modal tasks. Chapter 5 shows how pure-language

tasks to be improved from visual supervision by the vokenization method. Chapter 6 illustrates

the natural combination of the language pre-training method and vision pre-training methods.

Chapter 7 summarizes the contributions herein and discusses the potential opportunities for future

work.
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CHAPTER 2: BACKGROUND AND RELATED WORK

In this chapter, we discuss the background and related work for vision and language tasks

(Sec. 2.1) and data (Sec. 2.2).

2.1 Vision-and-Language Tasks: An Overview

In this section, we give an overview of representative vision-and-language tasks. These

vision-and-language tasks are categorized by their input and output types. For each task, we

present a short story for their history and recent research progress. Note that it is not ana ex-

clusive list of tasks and there are a lot of other vision-and-language tasks such as multimodal

sentiment analysis, multimodal machine translation, e.t.c.

2.1.1 Vision to Language

Image Captioning Given an image as the input, image captioning task aims to generate a cor-

responding natural language that faithfully describe the visual content. It is useful in building

website where alternative texts (known as the ‘alt’ attribute in HTML) significantly reduce the

networking and are friendly to visually-impaired people. As a well-formulated task, it witnessed

each progress in vision-and-language research in the deep learning era. Show-and-tell (Vinyals

et al., 2015) proposes the encoder-decoder architecture that uses a convolutional neural net-

work (Szegedy et al., 2015) as the vision encoder and a recurrent neural network (Hochreiter

and Schmidhuber, 1997) as the language decoder. Show-Attend-and-Tell (Xu et al., 2015) uses

attention mechanism (Mnih et al., 2014; Bahdanau et al., 2014) to bridge the two modality. This

attention mechanism uses the feature map (i.e., a set of features) of the convolutional neural

network, thus could break the information bottleneck introduced by the single-vector image fea-
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ture. Sequence-level Training (Ranzato et al., 2015; Rennie et al., 2017) computes evaluation

metric scores as rewards to the generation, and uses reinforcement learning technique to opti-

mize the model. Bottom-Up Top-Down Attention (Anderson et al., 2018a) uses objects from the

detection system as the input to the vision-and-language model, replacing the previously used

grid features from convolutional neural networks. As pre-training methods developed, image

captioning dataset serves as the major data resources and is used in almost every pre-training

frameworks (Tan et al., 2019; Lu et al., 2019; Chen et al., 2020d; Li et al., 2020b). Recent works

also show that image captioning data could help pure-language (Tan and Bansal, 2020) and pure-

vision (Desai and Johnson, 2020; Radford et al., 2021a) tasks.

2.1.2 Language to Vision

Grounding Visual grounding (more specifically, object localization) maps the words in the

sentence to the objects in the image. It builds an explicit connection between the text and im-

age, thus could be used in follow-up processing (e.g., searching, recommendation). Flickr-30K

dataset (Young et al., 2014) is an example dataset, but it has a strong bias towards common and

large objects (Li et al., 2019a; Kamath et al., 2021). Referring expression (Kazemzadeh et al.,

2014) is another types of grounding tasks that needs to differentiate a specific objects within

a specific object types. Vision-and-language pre-training (Lu et al., 2019; Chen et al., 2019b)

explicitly model this interaction thus showing the state-of-the-art performance.

Conditional Image Generation Conditional image generation aims to generate the image given

a natural language text. It is the reverse task of image captioning but is much harder since image

generation is more complicated than text generation. It also has an issue in evaluation, since

most existing automatic scores focus on the fidelity, and are not good at measuring the semantic

correspondence. Multiple works use text-to-image model and GAN loss (Reed et al., 2016; Xu

et al., 2018; Zhang et al., 2017; Koh et al., 2021; Zhang et al., 2021a) to train the model. DALL-

E (Ramesh et al., 2021) uses VQ-VAE (van den Oord et al., 2017) to quantize the image into

discrete tokens then an unified language model could be used as image generation.
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Image Retrieval Image retrieval tries to find the matched image from a large set of images given

the natural language query. It is directly related to the problem of searching the image on search

engines. The retrieval task could be viewed as a finite version of the image generation task. The

evaluation metric is deterministic and more accurate, although still has false negative errors. The

objective of image retrieval could not be directly optimized given the large negative samples.

Hence, a matching score between image and sentence is usually optimized instead. It conducts

on the image captioning data by hinge ranking loss (Gordo et al., 2016), binary classification

loss (Tan and Bansal, 2019), or multi-way contrastive loss (Radford et al., 2021a). Vision-and-

language pre-training frameworks (Tan and Bansal, 2019; Lu et al., 2019) integrate this loss

into pre-training thus it naturally shows a large improvement given the bigger data amount.

CLIP (Radford et al., 2021a) scales up the retrieval model training with 400M image-sentence

pairs and a large batch size of 32,768. With this extreme large model and dataset, CLIP (Radford

et al., 2021a) formulate vision tasks as a retrieval problem and shows strong zero-shot ability.

2.1.3 Vision and Language to Others

Visual Question Answering Visual question answering needs to answer a natural language

question about the image content. To simplify the task, the datasets (Antol et al., 2015; Goyal

et al., 2017b; Hudson and Manning, 2019) are usually presented in the classification version by

providing a possible answer set. Due to the simple and faithful evaluation metric along with the

large-scale data, visual question answering become a standard dataset to measure the ability of

vision-and-language interactions. Previous VQA improvement is based on building better fusion

models (Gao et al., 2016; Lu et al., 2016; Yang et al., 2016) with special pooling layers and atten-

tion mechanism. Bottom-up attention (Anderson et al., 2018a) proposes to use a detection system

trained on fine-grained object annotations (Krishna et al., 2017). After that, different pre-training

methods (Tan and Bansal, 2019; Lu et al., 2019) dominate the progress.

Vision-and-Language Navigation Vision-and-language navigation tests the agent’s ability to

take action according to human instructions, which recently gains popularity in embodied AI (An-
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Number of Images

Number 
of Sentences

Localized Narratives:
850K Imgs/31M Words

[Pont-Tuset, ECCV 2020]

Visual Genome:
100K Imgs/25M Words

[Krishna, IJCV 2017]

MS COCO:
120K Imgs/6M Words

[Lin, ECCV 2014]

Conceptual Captions:
3.3M Imgs/30M Words

[Sharma, ACL 2018]

Wikipedia:
6M Imgs/3.3B Words

MSR VTT:
445K Frames/1.8M Words

[Xu, CVPR 2016]]

HowTo100M:
1.5B Frames/544M Words

[Miech, ICCV 2019]

Instagram (1 Year):
35B imgs/700B Words

[Mahajan, ECCV 2018]
YouTube (1 Year):

~1.7T Frames/~500B Words

TikTok/Douyin (1 Year):
~1.6T Frames/ ~800B Words

C4 (Clean Web Data):
~500M Imgs/~200B Words

[Raffel, JMLR 2020]

Note: For videos, we consider a standard frame rate of 3 frames / second.

Web 
Images

Figure 2.1: The amount of different vision-and-language data.

derson et al., 2018b; Chen et al., 2019a; Jain et al., 2019; Chen et al., 2019a; Qi et al., 2020b;

Krantz et al., 2020; Nguyen and Daumé III, 2019; Ku et al., 2020). Specifically, the agent is put

at a location in the environment (Chang et al., 2017) and asked to reach a target by following

the language instructions. Different from visual question answering where we only face a static

image, vision-and-language navigation requires exploring and understanding the dynamic envi-

ronment to approach the target. Multiple works (Zhu et al., 2020; Hao et al., 2020; Hong et al.,

2021) pre-train the model on the domain-specific room-to-room dataset (Anderson et al., 2018b).

These domain-specific pre-training shows an improvement over generally-pretrained visoin-and-

language systems (Li et al., 2020b; Hong et al., 2021).

2.2 Vision-and-Language Data

The amount of data is the major requirement to single-modality pre-training, e.g., number

of images for visual pre-training and number of text tokens for language pre-training. However,

the requirement of data in vision-and-language pre-training is more complex and finding suitable

datasets actually becomes the bottleneck for vision-and-language research. Besides the need of

large amount, the alignment between the visual content and text is also crucial. In this section, we

discuss these available data from different viewpoints.
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Pixel-Word
[Pont-Tuset, ECCV 2020]

Conceptual Captions:
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Weakly Img-Sent
[Sharma, ACL 2018]

Visual Genome:
100K Imgs/25M Words

Scene Graph, 
Dense Caption
[Krishna, IJCV 2017]
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Language

Data

C4 (Clean Web Data):
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Weakly Img-Paragraph
[Raffel, JMLR 2020]HowTo100M:

1.5B Frames/544M Words
Weakly Video-Phrase 

[Miech, ICCV 2019]

YouTube (1 Year):
~1.7T Frames/~500B Words
Weakly Video-Text (Audio)

Wikipedia:
6M Imgs/3.3B Words

Img-Paragraph

Unaligned 
Web Data

MSR VTT:
445K Frames/1.8M Words

Video-Sent
[Xu, CVPR 2016]]

Videos

Note: For videos, we consider a standard frame rate of 3 frames / second.

Instagram (1 Year):
Weakly Img-Paragraph
35B imgs/700B Words

[Mahajan, ECCV 2018]

TikTok/Douyin (1 Year):
~1.6T Frames/ ~800B Words

Video-Text (Audio)

Figure 2.2: The alignment granularity of different vision-and-language data.

2.2.1 Data Amount

As all pre-training methods require, we discuss the amount of data first from different data

resources. As shown in Fig. 2.1, we visualize the amount of data by their number of images (the

x-axis) and the text-token amounts (the y-axis). We list both image-and-text data and video-

and-text data here and compute the amount of images in video dataset with a playing speed

of 3 frames per second. In general, academic datasets (e.g., MS COCO, Visual Genome) are

much smaller than the data from websites. However, these datasets are human-annotated thus

are cleaned for research purpose. Conceptual Captions (Sharma et al., 2018) (CC) provide an

opportunity to explore the web-level data in research community. CC heavily cleans the web

image-text pairs with multiple cleaning stages. We also estimate the amount of data in three popu-

lar multimedia websites: Instagram, YouTube, and TikTok. These data are marginally available to

our research community. We see some works exploring the Instagram data from company (Feicht-

enhofer et al., 2021). There is also a small version of the YouTube dataset, HowTo100M (Miech

et al., 2019), which has a focus on instructional videos.
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2.2.2 Data Alignment Granularity

Besides the amount of data, we also care about the alignment granularity in building vision-

and-language pre-training systems. The alignment granularity could be considered as the ‘an-

notation’ of the data that provides supervision to vision-and-language pre-training For exam-

ple, image captioning data (e.g., MS COCO) has image-to-sentence alignment while the video

captioning data (e.g., MSR VTT (Xu et al., 2016)) has video-clip-to-sentence alignment. For

other non-standard dataset, we have image-to-paragraph alignment in Wikipedia and video-to-

sentence on YouTube. With these alignments, we know that the visual input and text data tell

similar things, thus contrastive learning methods could be used. The alignments also tell that the

vision and language data share the same context, so it enables the use of multimodal language

modeling as the pre-training task as well. We show a series of different data in Fig. 2.2. We kept

the y-axis to be the size of language data as in Fig. 2.1. For the x-axis, it indicates the granular-

ity. We could observe that the human-annotated data are usually fine-grained, e.g., Localized

Narratives (Pont-Tuset et al., 2019) has pixel-to-word annotation and Visual Genome (Krishna

et al., 2017) has object-to-sentence annotation (i.e., dense captions). For web data, it shows a

clear trend that larger data usually have weaker alignments and the trade-off between amount and

quality naturally arises. Recent works are actively exploring these web data and fighting with this

trade-off. Conceptual Captions (Sharma et al., 2018) aim to provide a clean dataset for research

purpose. It utilizes a multi-stage filtering and sentence rewriting, but results in a large amount

of data (about 99.8%) to be filtered out. In the follow-up work Changpinyo et al. (2021), the

pipeline is improved and the dataset is enlarged by four times (i.e., 12M image-sentence pairs).

At the same time, CLIP (Radford et al., 2021a) employs a weaker filtering strategy to retain much

more data (400M image-sentence pairs). As the research community gradually moves to larger

dataset (e.g., the video data in industry), we will face this problem time by time.
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Images: Words Ratio

Conceptual Captions:
3.3M Imgs/30M Words

Weakly Img-Sent
[Sharma, ACL 2018]

Visual Genome:
100K Imgs/25M Words

Scene Graph, 
Dense Caption
[Krishna, IJCV 2017]

MS COCO:
120K Imgs/6M Words

Img-Sent [Lin, ECCV 2014]

HowTo100M:
1.5B Frames/544M Words

Weakly Video-Phrase 
[Miech, ICCV 2019]

YouTube Description Wikipedia:
6M Imgs/3.3B Words

Img-Paragraph

MSR VTT:
445K Frames/1.8M Words

Video-Sent
[Xu, CVPR 2016]]

YouTube ASR

1:1
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LXMERT
(2019)

Instagram (1 Year):
Weakly Img-Paragraph
35B imgs/700B Words

[Mahajan, ECCV 2018]

TikTok/Douyin ASR:
~1.6T Frames/ ~400B Words

Video-Text (Audio)

TikTok/Douyin Title:
~1.6T Frames/ ~800B Words

Video-Text

Figure 2.3: The modality balance of different vision-and-language data.

2.2.3 Data Modality Balance

In the previous section, we talked about the alignment’s granularity. We take another look

at the alignment by showing the modality balance. The modality balance is measured by ra-

tio between paired images and words. As shown in Fig. 2.3, we illustrate the balance of some

vision-and-language datasets. Academic datasets focus more on well-balanced data from the

range of 10:1 (e.g., MSR VTT video captioning dataset) to 1:10 (e.g., MS COCO image caption-

ing dataset). They mitigate the issue of imbalanced data and are suitable for current vision-and-

language models where neural modules for different modalities are also balanced designed. How-

ever, the balance between modality in real-life applications is not as well as the ideal academic

scenario. For YouTube descriptions, about 100 frames are described by one words in average. On

the other side, an image is matched with 500 words in News and Wikipedia articles. As news and

videos take a large part of the Internet, these imbalanced datasets proposes new research ques-

tions that we are seldom facing now. They might call for a study of new neural models and novel

pre-training methods.

2.2.4 Data Multi-linguality

People with different language tries to communicate with each other by building a ‘commonly-

grounded knowledge space’. Visual objects, actions, and gestures are actively used to reach a
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Languages

Size of 
Data

Wikipedia:
6M Imgs/3.3B Words

Img-Paragraph

C4 (Clean Web Data):
~500M Imgs/~200B Words

Weakly Img-Paragraph
[Raffel, JMLR 2020]

YouTube (1 Year):
~1.7T Frames/~500B Words
Weakly Video-Text (Audio)

Unaligned Web Data

Conceptual Captions:
3.3M Imgs/30M Words

Weakly Img-Sent
[Sharma, ACL 2018]

MS COCO:
120K Imgs/6M Words

Img-Sent [Lin, ECCV 2014]
Specific Dataset

Note: For videos, we consider a standard frame rate of 3 frames / second.

TikTok/Douyin (1 Year):
~1.6T Frames/ ~800B Words

Video-Text (Audio)

Instagram (1 Year):
Weakly Img-Paragraph
35B imgs/700B Words

[Mahajan, ECCV 2018]

Figure 2.4: The multi-linguality of different vision-and-language data.

consensus since different language are usually mapped to a similar external world. For this rea-

son, vision-and-language data would be a valuable resource to explore the multi-lingual research.

We thus illustrate the multi-linguality of each vision-and-language data resources. As shown

in Fig. 2.4, we kept the y-axis to be the size of data and use x-axis to indicate the number of

languages in each dataset. Current academic datasets (e.g., MS COCO, CC) are built fully on

English. Researchers have created multiple specific datasets with other languages (Elliott et al.,

2016; Wang et al., 2019d; Ku et al., 2020) but they are usually small. However, the Internet is

open to people speaking diverse languages and the web data usually contains tens, hundreds, even

thousands of different languages. Although we are currently focusing on English data (Radford

et al., 2021a; Feichtenhofer et al., 2021) to prototype the vision-and-language models, it would be

a great opportunity to consider different languages when exploring the web data.
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CHAPTER 3: VISION-AND-LANGUAGE PRE-TRAINING

3.1 Introduction

Vision-and-language reasoning requires the understanding of visual contents, language se-

mantics, and cross-modal alignments and relationships. There has been substantial past works in

separately developing backbone models with better representations for the single modalities of vi-

sion and of language. For visual-content understanding, people have developed several backbone

models (Simonyan and Zisserman, 2014; Szegedy et al., 2015; He et al., 2016) and shown their

effectiveness on large vision datasets (Deng et al., 2009; Lin et al., 2014; Krishna et al., 2017).

Pioneering works (Girshick et al., 2014; Xu et al., 2015) also show the generalizability of these

pre-trained (especially on ImageNet) backbone models by fine-tuning them on different tasks. In

terms of language understanding, last year, we witnessed strong progress towards building a uni-

versal backbone model with large-scale contextualized language model pre-training (Peters et al.,

2018; Radford et al., 2018; Devlin et al., 2019b), which has improved performances on various

tasks (Rajpurkar et al., 2016; Wang et al., 2019a) to significant levels. Despite these influential

single-modality works, large-scale pretraining and fine-tuning studies for the modality-pair of

vision and language are still under-developed.

Therefore, we present one of the first works in building a pre-trained vision-and-language

cross-modality framework and show its strong performance on several datasets. We name this

framework “LXMERT: Learning Cross-Modality Encoder Representations from Transformers”

(pronounced: ‘leksmert’). This framework is modeled after recent BERT-style innovations while

further adapted to useful cross-modality scenarios. Our new cross-modality model focuses on

learning vision-and-language interactions, especially for representations of a single image and

its descriptive sentence. It consists of three Transformer (Vaswani et al., 2017) encoders: an
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object relationship encoder, a language encoder, and a cross-modality encoder. In order to better

learn the cross-modal alignments between vision and language, we next pre-train our model

with five diverse representative tasks: (1) masked cross-modality language modeling, (2) masked

object prediction via RoI-feature regression, (3) masked object prediction via detected-label

classification, (4) cross-modality matching, and (5) image question answering. Different from

single-modality pre-training (e.g., masked LM in BERT), this multi-modality pre-training allows

our model to infer masked features either from the visible elements in the same modality, or from

aligned components in the other modality. In this way, it helps build both intra-modality and

cross-modality relationships.

Empirically, we first evaluate LXMERT on two popular visual question-answering datasets,

VQA (Antol et al., 2015) and GQA (Hudson and Manning, 2019). Our model outperforms pre-

vious works in all question categories (e.g., Binary, Number, Open) and achieves state-of-the-art

results in terms of overall accuracy. Further, to show the generalizability of our pre-trained model,

we fine-tune LXMERT on a challenging visual reasoning task, Natural Language for Visual Rea-

soning for Real (NLVR2) (Suhr et al., 2019), where we do not use the natural images in their

dataset for our pre-training, but fine-tune and evaluate on these challenging, real-world images. In

this setup, we achieve a large improvement of 22% absolute in accuracy (54% to 76%, i.e., 48%

relative error reduction) and 30% absolute in consistency (12% to 42%, i.e., 34% relative error

reduction). Lastly, we conduct several analysis and ablation studies to prove the effectiveness of

our model components and diverse pre-training tasks by removing them or comparing them with

their alternative options. Especially, we use several ways to take the existing BERT model and

its variants, and show their ineffectiveness in vision-and-language tasks, which overall proves

the need of our new cross-modality pre-training framework. We also present several attention

visualizations for the different language, object-relationship, and cross-modality encoders.
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Figure 3.1: The LXMERT model for learning vision-and-language cross-modality represen-
tations. ‘Self’ and ‘Cross’ are abbreviations for self-attention sub-layers and cross-attention
sub-layers, respectively. ‘FF’ denotes a feed-forward sub-layer.

3.2 Model Architecture

We build our cross-modality model with self-attention and cross-attention layers following

the recent progress in designing natural language processing models (e.g., transformers (Vaswani

et al., 2017)). As shown in Fig. 3.1, our model takes two inputs: an image and its related sentence

(e.g., a caption or a question). Each image is represented as a sequence of objects, and each

sentence is represented as a sequence of words. Via careful design and combination of these

self-attention and cross-attention layers, our model is able to generate language representations,

image representations, and cross-modality representations from the inputs. Next, we describe the

components of this model in detail.

3.2.1 Input Embeddings

The input embedding layers in LXMERT convert the inputs (i.e., an image and a sentence)

into two sequences of features: word-level sentence embeddings and object-level image embed-

dings. These embedding features will be further processed by the latter encoding layers.

Word-Level Sentence Embeddings A sentence is first split into words tw1, . . . , wnu with length

of n by the same WordPiece tokenizer (Wu et al., 2016) in Devlin et al. (2019b). Next, as shown

in Fig. 3.1, the word wi and its index i (wi’s absolute position in the sentence) are projected to
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vectors by embedding sub-layers, and then added to the index-aware word embeddings:

ŵi “WordEmbed pwiq

ûi “ IdxEmbed piq

hi “ LayerNorm pŵi ` ûiq

Object-Level Image Embeddings Instead of using the feature map output by a convolutional

neural network, we follow Anderson et al. (2018a) in taking the features of detected objects as

the embeddings of images. Specifically, the object detector detects m objects to1, . . . , omu from

the image (denoted by bounding boxes on the image in Fig. 3.1). Each object oj is represented by

its position feature (i.e., bounding box coordinates) pj and its 2048-dimensional region-of-interest

(RoI) feature fj . Instead of directly using the RoI feature fj without considering its position

pj in Anderson et al. (2018a), we learn a position-aware embedding vj by adding outputs of 2

fully-connected layers:

f̂j “ LayerNorm pWFfj ` bFq

p̂j “ LayerNorm pWPpj ` bPq

vj “
´

f̂j ` p̂j

¯

{2 (3.1)

In addition to providing spatial information in visual reasoning, the inclusion of positional infor-

mation is necessary for our masked object prediction pre-training task (described in Sec. 3.3.1.2).

Since the image embedding layer and the following attention layers are agnostic to the absolute

indices of their inputs, the order of the object is not specified. Lastly, in Equation 3.1, the layer

normalization is applied to the projected features before summation so as to balance the energy of

the two different types of features.
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3.2.2 Encoders

We build our encoders, i.e., the language encoder, the object-relationship encoder, and the

cross-modality encoder, mostly on the basis of two kinds of attention layers: self-attention layers

and cross-attention layers. We first review the definition and notations of attention layers and then

discuss how they form our encoders.

Background: Attention Layers Attention layers (Bahdanau et al., 2014; Xu et al., 2015) aim to

retrieve information from a set of context vectors tyju related to a query vector x. An attention

layer first calculates the matching score aj between the query vector x and each context vector yj .

Scores are then normalized by softmax:

aj “ scorepx, yjq

αj “ exppajq{
ÿ

k
exppakq

The output of an attention layer is the weighted sum of the context vectors w.r.t. the softmax-

normalized score: AttXÑY px, tyjuq “
ř

j αjyj . An attention layer is called self-attention when

the query vector x is in the set of context vectors tyju. Specifically, we use the multi-head atten-

tion following Transformer (Vaswani et al., 2017).

Single-Modality Encoders After the embedding layers, we first apply two transformer en-

coders (Vaswani et al., 2017), i.e., a language encoder and an object-relationship encoder,

and each of them only focuses on a single modality (i.e., language or vision). Different from

BERT (Devlin et al., 2019b), which applies the transformer encoder only to language inputs,

we apply it to vision inputs as well (and to cross-modality inputs as described later below).

Each layer (left dashed blocks in Fig. 3.1) in a single-modality encoder contains a self-attention

(‘Self’) sub-layer and a feed-forward (‘FF’) sub-layer, where the feed-forward sub-layer is further

composed of two fully-connected sub-layers. We take NL and NR layers in the language encoder

and the object-relationship encoder, respectively. We add a residual connection and layer normal-

ization (annotated by the ‘+’ sign in Fig. 3.1) after each sub-layer as in Vaswani et al. (2017).
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Figure 3.2: Pre-training in LXMERT. The object RoI features and word tokens are masked. Our
five pre-training tasks learn the feature representations based on these masked inputs. Special
tokens are in brackets and classification labels are in braces.

Cross-Modality Encoder Each cross-modality layer (the right dashed block in Fig. 3.1) in

the cross-modality encoder consists of two self-attention sub-layers, one bi-directional cross-

attention sub-layer, and two feed-forward sub-layers. We stack (i.e., using the output of k-th layer

as the input of pk+1q-th layer) NX these cross-modality layers in our encoder implementation.

Inside the k-th layer, the bi-directional cross-attention sub-layer (‘Cross’) is first applied, which

contains two uni-directional cross-attention sub-layers: one from language to vision and one

from vision to language. The query and context vectors are the outputs of the pk-1q-th layer (i.e.,

language features thk´1i u and vision features tvk´1j u):

ĥki “ CrossAttLÑR

`

hk´1i ,tvk´11 , . . . , vk´1m u
˘

v̂kj “ CrossAttRÑL

`

vk´1j ,thk´11 , . . . , hk´1n u
˘

The cross-attention sub-layer is used to exchange the information and align the entities between

the two modalities in order to learn joint cross-modality representations. For further building

internal connections, the self-attention sub-layers (‘Self’) are then applied to the output of the

cross-attention sub-layer:

h̃ki “ SelfAttLÑL

´

ĥki , tĥ
k
1, . . . , ĥ

k
nu

¯

ṽkj “ SelfAttRÑR

`

v̂kj , tv̂
k
1 , . . . , v̂

k
mu

˘
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Image Split Images
Sentences (or Questions)

COCO-Cap VG-Cap VQA GQA VG-QA All

MS COCO - VG 72K 361K - 387K - - 0.75M
MS COCO X VG 51K 256K 2.54M 271K 515K 724K 4.30M
VG - MS COCO 57K - 2.85M - 556K 718K 4.13M

All 180K 617K 5.39M 658K 1.07M 1.44M 9.18M

Table 3.1: Amount of data for pre-training. Each image has multiple sentences/questions. ‘Cap’
is caption. ‘VG’ is Visual Genome. Since MS COCO and VG share 51K images, we list it
separately to ensure disjoint image splits.

Lastly, the k-th layer output thki u and tvkj u are produced by feed-forward sub-layers (‘FF’) on top

of tĥki u and tv̂kj u. We also add a residual connection and layer normalization after each sub-layer,

similar to the single-modality encoders.

3.2.3 Output Representations

As shown in the right-most part of Fig. 3.1, our LXMERT cross-modality model has three

outputs for language, vision, and cross-modality, respectively. The language and vision outputs

are the feature sequences generated by the cross-modality encoder. For the cross-modality out-

put, following the practice in Devlin et al. (2019b), we append a special token [CLS] (denoted

as the top yellow block in the bottom branch of Fig. 3.1) before the sentence words, and the

corresponding feature vector of this special token in language feature sequences is used as the

cross-modality output.

3.3 Pre-Training Strategies

In order to learn a better initialization which understands connections between vision and

language, we pre-train our model with different modality pre-training tasks on a large aggregated

dataset.
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3.3.1 Pre-Training Tasks

3.3.1.1 Language Task: Masked Cross-Modality LM

On the language side, we take the masked cross-modality language model (LM) task. As

shown in the bottom branch of Fig. 3.2, the task setup is almost same to BERT (Devlin et al.,

2019b): words are randomly masked with a probability of 0.15 and the model is asked to pre-

dict these masked words. In addition to BERT where masked words are predicted from the non-

masked words in the language modality, LXMERT, with its cross-modality model architecture,

could predict masked words from the vision modality as well, so as to resolve ambiguity. For

example, as shown in Fig. 3.2, it is hard to determine the masked word ‘carrot’ from its language

context but the word choice is clear if the visual information is considered. Hence, it helps build-

ing connections from the vision modality to the language modality, and we refer to this task as

masked cross-modality LM to emphasize this difference. We also show that loading BERT pa-

rameters into LXMERT will do harm to the pre-training procedure in Sec. 3.5.1 since BERT can

perform relatively well in the language modality without learning these cross-modality connec-

tions.

3.3.1.2 Vision Task: Masked Object Prediction

As shown in the top branch of Fig. 3.2, we pre-train the vision side by randomly masking

objects (i.e., masking RoI features with zeros) with a probability of 0.15 and asking the model

to predict proprieties of these masked objects. Similar to the language task (i.e., masked cross-

modality LM), the model can infer the masked objects either from visible objects or from the

language modality. Inferring the objects from the vision side helps learn the object relationships,

and inferring from the language side helps learn the cross-modality alignments. Therefore, we

perform two sub-tasks: RoI-Feature Regression regresses the object RoI feature fj with L2 loss,

and Detected-Label Classification learns the labels of masked objects with cross-entropy loss.

In the ‘Detected-Label Classification’ sub-task, although most of our pre-training images have
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object-level annotations, the ground truth labels of the annotated objects are inconsistent in dif-

ferent datasets (e.g., different number of label classes). For these reasons, we take detected labels

output by Faster R-CNN (Ren et al., 2015). Although detected labels are noisy, experimental

results show that these labels contribute to pre-training in Sec. 3.5.3.

3.3.1.3 Cross-Modality Tasks

As shown in the middle-rightmost part of Fig. 3.2, to learn a strong cross-modality representa-

tion, we pre-train the LXMERT model with 2 tasks that explicitly need both language and vision

modalities.

Cross-Modality Matching For each sentence, with a probability of 0.5, we replace it with a mis-

matched1 sentence. Then, we train a classifier to predict whether an image and a sentence match

each other. This task is similar to ‘Next Sentence Prediction’ in BERT (Devlin et al., 2019b).

Image Question Answering (QA) In order to enlarge the pre-training dataset (see details in

Sec. 3.3.2), around 1{3 sentences in the pre-training data are questions about the images. We ask

the model to predict the answer to these image-related questions when the image and the question

are matched (i.e., not randomly replaced in the cross-modality matching task). We show that

pre-training with this image QA leads to a better cross-modality representation in Sec. 3.5.2.

3.3.2 Pre-Training Data

As shown in Table. 3.1, we aggregate pre-training data from five vision-and-language datasets

whose images come from MS COCO (Lin et al., 2014) or Visual Genome (Krishna et al., 2017).

Besides the two original captioning datasets, we also aggregate three large image question an-

swering (image QA) datasets: VQA v2.0 (Antol et al., 2015), GQA balanced version (Hudson

and Manning, 2019), and VG-QA (Zhu et al., 2016). We only collect train and dev splits in each

dataset to avoid seeing any test data in pre-training. We conduct minimal pre-processing on the

1We take a sentence from another image as the mismatched sentence. Although the sentence and the image still have
chance to match each other, this probability is very low.
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Method
VQA GQA NLVR2

Binary Number Other Accu Binary Open Accu Cons Accu

Human - - - - 91.2 87.4 89.3 - 96.3
Image Only - - - - 36.1 1.74 17.8 7.40 51.9
Language Only 66.8 31.8 27.6 44.3 61.9 22.7 41.1 4.20 51.1

State-of-the-Art 85.8 53.7 60.7 70.4 76.0 40.4 57.1 12.0 53.5

LXMERT 88.2 54.2 63.1 72.5 77.8 45.0 60.3 42.1 76.2

Table 3.2: Test-set results. VQA/GQA results are reported on the ‘test-standard’ splits and
NLVR2 results are reported on the unreleased test set (‘Test-U’). The highest method results are
in bold. Our LXMERT framework outperforms previous (comparable) state-of-the-art methods
on all three datasets w.r.t. all metrics.

five datasets to create aligned image-and-sentence pairs. For each image question answering

dataset, we take questions as sentences from the image-and-sentence data pairs and take answers

as labels in the image QA pre-training task (described in Sec. 3.3.1.3). This provides us with a

large aligned vision-and-language dataset of 9.18M image-and-sentence pairs on 180K distinct

images. In terms of tokens, the pre-training data contain around 100M words and 6.5M image

objects.

3.3.3 Pre-Training Procedure

We pre-train our LXMERT model on the large aggregated dataset (discussed in Sec. 3.3.2)

via the pre-training tasks (Sec. 3.3.1). We carefully split each dataset to ensure that all testing

images are not involved in any pre-training or fine-tuning steps. Our data splits for each dataset

and reproducible code are available at https://github.com/airsplay/lxmert.

LXMERT Pre-Traininig Since MS COCO has a relative large validation set, we sample a set

of 5k images from the MS COCO validation set as the mini-validation (minival) set. The rest of

the images in training and validation sets (i.e., COCO training images, COCO validation images

besides minival, and all the other images in Visual Genome) are used in pre-training. Although

the captions and questions of the MS COCO test sets are available, we exclude all of them to

make sure that testing images are not seen in pre-training.
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Fine-tuning For training and validating VQA v2.0, we take the same split convention as in our

LXMERT pre-training. The data related to images in LXMERT mini-validation set is used to

validate model performance and the rest of the data in train+val are used in fine-tuning. We test

our model on the VQA v2.0 ‘test-dev’ and ‘test-standard’ splits. For GQA fine-tuning, we follow

the suggestions in official GQA guidelines2 to take testdev as our validation set and fine-tune our

model on the joint train + validation sets. We test our GQA model on GQA ‘test-standard’ split.

The images in NLVR2 are not from either MS COCO or Visual Genome, we thus keep using the

original split: fine-tune on train split, validate the model choice on val split, and test on the public

(‘Test-P’) and unreleased (‘Test-U’) test splits. The input sentences are split by the WordPiece

tokenizer (Wu et al., 2016) provided in BERT (Devlin et al., 2019b). The objects are detected

by Faster R-CNN (Ren et al., 2015) which is pre-trained on Visual Genome (provided by An-

derson et al. (2018a)). We do not fine-tune the Faster R-CNN detector and freeze it as a feature

extractor. Different from detecting variable numbers of objects in Anderson et al. (2018a), we

consistently keep 36 objects for each image to maximize the pre-training compute utilization by

avoiding padding. For the model architecture, we set the numbers of layers NL, NX, and NR to

9, 5, and 5 respectively.3 More layers are used in the language encoder to balance the visual fea-

tures extracted from 101-layer Faster R-CNN. The hidden size 768 is the same as BERTBASE. We

pre-train all parameters in encoders and embedding layers from scratch (i.e., model parameters

are randomly initialized or set to zero). We also show results of loading pre-trained BERT param-

eters in Sec. 3.5.1. LXMERT is pre-trained with multiple pre-training tasks and hence multiple

losses are involved. We add these losses with equal weights. For the image QA pre-training tasks,

we create a joint answer table with 9500 answer candidates which roughly cover 90% questions

in all three image QA datasets.

We take Adam (Kingma and Ba, 2014) as the optimizer with a linear-decayed learning-rate

schedule (Devlin et al., 2019b) and a peak learning rate at 1e ´ 4. We train the model for 20

2https://cs.stanford.edu/people/dorarad/gqa/evaluate.html
3If we count a single modality layer as one half cross-modality layer, the equivalent number of cross-modality layers
is p9` 5q{2` 5 “ 12, which is same as the number of layers in BERTBASE.
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epochs (i.e., roughly 670K4 optimization steps) with a batch size of 256. We only pre-train with

image QA task (see Sec. 3.3.1.3) for the last 10 epochs, because this task converges faster and

empirically needs a smaller learning rate. The whole pre-training process takes 10 days on 4

Titan Xp.

Fine-tuning Fine-tuning is fast and robust. We only perform necessary modification to our

model with respect to different tasks (details in Sec. 3.4.2). We use a learning rate of 1e ´ 5

or 5e´ 5, a batch size of 32, and fine-tune the model from our pre-trained parameters for 4 epochs.

3.4 Experimental Setup and Results

In this section, we first introduce the datasets that are used to evaluate our LXMERT frame-

work and empirically compare our single-model results with previous best results.

3.4.1 Evaluated Datasets

We use three datasets for evaluating our LXMERT framework.

VQA The goal of visual question answering (VQA) (Antol et al., 2015) is to answer a natural

language question related to an image. We take VQA v2.0 dataset (Goyal et al., 2017c) which

reduces the answer bias compared to VQA v1.0. The dataset contains an average of 5.4 questions

per image and the total amount of questions is 1.1M.

GQA The task of GQA (Hudson and Manning, 2019) is same as VQA (i.e., answer single-image

related questions), but GQA requires more reasoning skills (e.g., spatial understanding and multi-

step inference). 22M questions in the dataset are generated from ground truth image scene graph

to explicitly control the question quality.

NLVR2 Since the previous two datasets are used in pre-training for increasing the amount of pre-

training data to a certain scale, we evaluate our LXMERT framework on another challenging vi-

4For comparison, ResNet on ImageNet classification takes 600K steps and BERT takes 1000K steps.
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sual reasoning dataset NLVR2 where all the sentences and images are not covered in pre-training.

Each datum in NLVR2 consists of a two-image pair (img0, img1), one statement s, and a ground

truth label y˚ indicating whether the statement correctly describe the two images. The task is to

predict the label y given the images and the statement. To use our LXMERT model on NLVR2,

we concatenate the cross-modality representations of the two images and then build the classifier

with GeLU activation(Hendrycks and Gimpel, 2016). Suppose that LXMERTpimg , sentq is the

single-vector cross-modality representation, the predicted probability is:

x0 “ LXMERTpimg0, sq

x1 “ LXMERTpimg1, sq

z0 “ W0rx0;x1s ` b0

z1 “ LayerNorm
`

GeLUpz0q
˘

prob “ σpW1z
1
` b1q

where σ is sigmoid function. The model is optimized by maximizing the log-likelihood, which is

equivalent to minimize the binary cross entropy loss:

L “ -y˚ log prob ´ p1´ y˚q logp1´ probq

3.4.2 Implementation Details

On VQA and GQA, we fine-tune our model from the pre-trained snapshot without data aug-

mentation (analysis in Sec. 3.5.2). When training GQA, we only take raw questions and raw

images as inputs and do not use other supervisions (e.g., functional programs and scene graphs).

Since each datum in NLVR2 has two natural images img0, img1 and one language statement s,

we use LXMERT to encode the two image-statement pairs pimg0, sq and pimg1, sq, then train

a classifier based on the concatenation of the two cross-modality outputs. More details in Ap-

pendix.
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3.4.3 Empirical Comparison Results

We compare our single-model results with previous best published results on VQA/GQA

test-standard sets and NLVR2 public test set. Besides previous state-of-the-art (SotA) methods,

we also show the human performance and image-only/language-only results when available.

VQA The SotA result is BAN+Counter in Kim et al. (2018), which achieves the best accu-

racy among other recent works: MFH (Yu et al., 2018), Pythia (Jiang et al., 2018), DFAF (Gao

et al., 2019a), and Cycle-Consistency (Shah et al., 2019).5 LXMERT improves the SotA over-

all accuracy (‘Accu’ in Table 3.2) by 2.1% and has 2.4% improvement on the ‘Binary’/‘Other’

question sub-categories. Although LXMERT does not explicitly take a counting module as in

BAN+Counter, our result on the counting-related questions (‘Number’) is still equal or better.6

GQA The GQA (Hudson and Manning, 2019) SotA result is taken from BAN (Kim et al., 2018)

on the public leaderbaord. Our 3.2% accuracy gain over the SotA GQA method is higher than

VQA, possibly because GQA requires more visual reasoning. Thus our framework, with novel

encoders and cross-modality pre-training, is suitable and achieves a 4.6% improvement on open-

domain questions (‘Open’ in Table 3.2).7

NLVR2 NLVR2 (Suhr et al., 2019) is a challenging visual reasoning dataset where some exist-

ing approaches (Hu et al., 2017; Perez et al., 2018) fail, and the SotA method is ‘MaxEnt’ in

Suhr et al. (2019). The failure of existing methods (and our model w/o pre-training in Sec. 3.5.1)

indicates that the connection between vision and language may not be end-to-end learned in a

complex vision-and-language task without large-scale pre-training. However, with our novel

pre-training strategies in building the cross-modality connections, we significantly improve the

accuracy (‘Accu’ of 76.2% on unreleased test set ‘Test-U’, in Table 3.2) by 22%. Another evalua-

5These are state-of-the-art methods at the time of our EMNLP May 21, 2019 submission deadline. Since then, there
have been some recently updated papers such as MCAN (Yu et al., 2019b), MUAN (Yu et al., 2019a), and MLI (Gao
et al., 2019b). MCAN (VQA challenge version) uses stronger mixture of detection features and achieves 72.8% on
VQA 2.0 test-standard. MUAN achieves 71.1% (compared to our 72.5%).
6Our result on VQA v2.0 ‘test-dev’ is 72.4%.
7Our result on GQA ‘test-dev’ is 60.0%.
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Method VQA GQA NLVR2

LSTM + BUTD 63.1 50.0 52.6
BERT + BUTD 62.8 52.1 51.9

BERT + 1 CrossAtt 64.6 55.5 52.4
BERT + 2 CrossAtt 65.8 56.1 50.9
BERT + 3 CrossAtt 66.4 56.6 50.9
BERT + 4 CrossAtt 66.4 56.0 50.9
BERT + 5 CrossAtt 66.5 56.3 50.9

Train + BERT 65.5 56.2 50.9
Train + scratch 65.1 50.0 50.9
Pre-train + BERT 68.8 58.3 70.1
Pre-train + scratch 69.9 60.0 74.9

Table 3.3: Dev-set accuracy of using BERT.

tion metric consistency measures the proportion of unique sentences for which all related image

pairs8 are correctly predicted. Our LXMERT model improves consistency (‘Cons’) to 42.1% (i.e.,

by 3.5 times).9

3.5 Analysis

In this section, we analyze our LXMERT framework by comparing it with some alternative

choices or by excluding certain model components/pre-training strategies.

3.5.1 BERT versus LXMERT

BERT (Devlin et al., 2019b) is a pre-trained language encoder which improves several lan-

guage tasks. As shown in Table 3.3, we discuss several ways to incorporate a BERTBASE pre-

trained model for vision-language tasks and empirically compare it with our LXMERT approach.

Although our full model achieves accuracy of 74.9% on NLVR2, all results without LXMERT

pre-training is around 22% absolute lower.

8Each statement in NLVR2 is related to multiple image pairs in order to balance the dataset answer distribution.
9These are the unreleased test set (‘Test-U’) results. On the public test set (‘Test-P’), LXMERT achieves 74.5% Accu
and 39.7% Cons.
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BERT+BUTD Bottom-Up and Top-Down (BUTD) attention (Anderson et al., 2018a) method

encodes questions with GRU (Chung et al., 2015), then attends to object RoI features tfju to

predict the answer. We apply BERT to BUTD by replacing its GRU language encoder with BERT.

As shown in the first block of Table. 3.3, results of BERT encoder is comparable to LSTM en-

coder.

BERT+CrossAtt Since BUTD only takes the raw RoI features tfju without considering the

object positions tpju and object relationships, we enhance BERT+BUTD with our novel position-

aware object embedding (in Sec. 3.2.1) and cross-modality layers (in Sec. 3.2.2). As shown in

the second block of Table 3.3, the result of 1 cross-modality layer is better than BUTD, while

stacking more cross-modality layers further improves it. However, without our cross-modality

pre-training (BERT is language-only pre-trained), results become stationary after adding 3 cross-

attention layers and have a 3.4% gap to our full LXMERT framework (the last bold row in Ta-

ble 3.3).

BERT+LXMERT We also try loading BERT parameters10 into LXMERT, and use it in model

training (i.e., without LXMERT pre-training) or in pre-training. We show results in the last block

of Table. 3.3. Compared to the ‘from scratch’ (i.e., model parameters are randomly initialized)

approach, BERT improves the fine-tuning results but it shows weaker results than our full model.

Empirically, pre-training LXMERT initialized with BERT parameters has lower (i.e., better)

pre-training loss for the first 3 pre-training epochs but was then caught up by our ‘from scratch’

approach. A possible reason is that BERT is already pre-trained with single-modality masked

language model, and thus could do well based only on the language modality without considering

the connection to the vision modality (as discussed in Sec. 3.3.1.1).

10Since our language encoder is same as BERTBASE, except the number of layers (i.e., LXMERT has 9 layers and
BERT has 12 layers), we load the top 9 BERT-layer parameters into the LXMERT language encoder.
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Method VQA GQA NLVR2

1. P20 + DA 68.0 58.1 -
2. P20 + FT 68.9 58.2 72.4
3. P10+QA10 + DA 69.1 59.2 -
4. P10+QA10 + FT 69.9 60.0 74.9

Table 3.4: Dev-set accuracy showing the importance of the image-QA pre-training task. P10
means pre-training without the image-QA loss for 10 epochs while QA10 means pre-training
with the image-QA loss. DA and FT mean fine-tuning with and without Data Augmentation,
resp.

Method VQA GQA NLVR2

1. No Vision Tasks 66.3 57.1 50.9
2. Feat 69.2 59.5 72.9
3. Label 69.5 59.3 73.5
4. Feat + Label 69.9 60.0 74.9

Table 3.5: Dev-set accuracy of different vision pre-training tasks. ‘Feat’ is RoI-feature regression;
‘Label’ is detected-label classification.

3.5.2 Effect of the Image QA Pre-training Task

We show the importance of image QA pre-training task (introduced in Sec. 3.3.1.3) by exclud-

ing it or comparing it with its alternative: data augmentation.

Pre-training w/ or w/o Image QA To fairly compare with our original pre-training procedure

(10 epochs w/o QA + 10 epochs w/ QA, details in Sec. 3.3.3) , we pre-train LXMERT model

without image QA task for 20 epochs. As shown in Table 3.4 rows 2 and 4, pre-training with

QA loss improves the result on all three datasets. The 2.1% improvement on NLVR2 shows the

stronger representations learned with image-QA pre-training, since all data (images and state-

ments) in NLVR2 are not used in pre-training.

Pre-training versus Data Augmentation Data augmentation (DA) is a technique which is used

in several VQA implementations (Anderson et al., 2018a; Kim et al., 2018; Jiang et al., 2018).

It increases the amount of training data by adding questions from other image QA datasets. Our

LXMERT framework instead uses multiple QA datasets in pre-training and is fine-tuned only on

one specific dataset. Since the overall amounts of data used in pre-training and DA are similar,

we thus can fairly compare these two strategies, and results show that our QA pre-training ap-
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(a)  LXMERT 2nd Lang-layer (b) BERT 3rd Layer 

(c) LXMERT 4th Lang-layer  (d) BERT 4th Layer 

Figure 3.3: Attention graphs reveal similar behavior in the LXMERT language encoder (a, c) and
in the original BERT encoder (b, d). Fig. a & b show the attention pointing to next words while
Fig. c & d show the attention pointing to previous words.

proach outperforms DA. We first exclude the QA task in our pre-training and show the results of

DA fine-tuning. As shown in Table. 3.4 row 1, DA fine-tuning decreases the results compared to

non-DA fine-tuning in row 2. Next, we use DA after QA-pre-training (row 3) and DA also drops

the results.

3.5.3 Effect of Vision Pre-training tasks

We analyze the effect of different vision pre-training tasks in Table 3.5. Without any vision

tasks in pre-training (i.e., only using the language and cross-modality pre-training tasks), the

results (row 1 of Table 3.5) are similar to BERT+3 CrossAtt in Table 3.3. The two visual pre-

training tasks (i.e., RoI-feature regression and detected-label classification) could get reasonable

results (row 2 and row 3) on their own, and jointly pre-training with these two tasks achieves the

highest results (row 4).
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(a)  LXMERT 1st Visn-layer (b) Recovered graphs 

Figure 3.4: The attention graph (a) and its recovered scene graph (b) in the first layer of
LXMERT’s object-relationship encoder.

3.6 Visualizing LXMERT Behavior

In this section, we show the behavior of LXMERT by visualizing its attention graphs in the

language encoder, object-relationship encoder, and cross-modality encoder, respectively.

3.6.1 Language Encoder

In Fig. 3.3, we reveal that the LXMERT language encoder has similar behaviour as the origi-

nal BERT encoder, by using the same sentence “Is it warm enough for him to be wearing shorts?”

as the input to both models. LXMERT’s attention graphs (in Fig. 3.3(a, c)) are extracted from

the pre-trained LXMERT without fine-tuning on a specific task. BERT’s attention graphs (in

Fig. 3.3(b, d)) come from Hoover et al. (2019).11 We find that both the second LXMERT layer

(Fig. 3.3(a)) and third BERT layer (Fig. 3.3(b)) point to the next words while both the fourth

LXMERT layer (Fig. 3.3(c)) and fourth BERT layer (Fig. 3.3(d)) point to the previous words,

thus showing the similar behaviour of the two encoders.

3.6.2 Object-Relationship Encoder

In Fig. 3.4, we visualize the attention graph of the first layer in LXMERT’s object-relationship

encoder. We only highlight the objects with the highest attention scores while the other objects

are mostly not attended to. We manually build the connections between objects (marked as yel-

low lines in Fig. 3.4(b)) according to the attention graph. These connections faithfully draw a

11exBERT demo (Hoover et al., 2019) is available at http://exbert.net/
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Is it warm enough for him to be wearing shorts ? 

What colors are the pole the horse is jumping over? 

Figure 3.5: Attention graphs in LXMERT’s cross-modality encoder showing that the attention
focus on pronouns (marked in pink), nouns (marked in blue), and articles (marked in red).

scene graph of the figure, which indicates that the object-relationship encoder might be learning a

reasonably good network of the relationships between objects.

3.6.3 Cross-Modality Encoder

In Fig. 3.5, we visualize the attention in LXMERT’s cross-modality encoder to reveal the con-

nections between objects and words. We find that the attention focuses on nouns and pronouns as

shown in the top figure of Fig. 3.5 because they are the most informative words in current vision-

and-language tasks. However, for non-plural nouns (as shown in the bottom example in Fig. 3.5),

the attention will focus on the articles. Although we do not specifically design for this behavior,

we think that articles are possibly serving as special tokens (e.g., [CLS], [SEP] in BERT), thus

providing unified target entries for the attention layers. Next, we are also looking at how to uti-

lize pre-training tasks which directly capture pairwise noun-noun and noun-verb relationships

between the images and text sentences.
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3.7 Conclusion

We presented a cross-modality framework, LXMERT, for learning the connections between

vision and language. We built the model based on Transformer encoders and our novel cross-

modality encoder. This model is then pre-trained with diverse pre-training tasks on a large-scale

dataset of image-and-sentence pairs. Empirically, we showed state-of-the-art results on two im-

age QA datasets (i.e., VQA and GQA) and show the model generalizability with a 22% improve-

ment on the challenging visual reasoning dataset of NLVR2. We also showed the effectiveness of

several model components and training methods via detailed analysis and ablation studies.
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CHAPTER 4: SINGLE-MODALITY PRE-TRAINING FOR MULTI-MODAL TASKS

4.1 Introduction

As vision-and-language tasks involve different modalities as input and output, the vision-and-

language models are naturally designed as multiple components where each component focus on

some modalities. For example, a typical model for visual questions answering containing three

components: the visual encoder, the language encoder, and the fusion module. In general, the

amount of aligned vision-and-language data (for both human-annotated and web-collected) is

less than the single-modality data (e.g., image-only data or text-only data). To pursue a better

vision-and-language model, single-modality pre-trained language modules or vision modules

is widely used. The pre-training methods for these single-modality encoder keep evolving and

largely contribute to the improvement in vision-and-language tasks. In this chapter, we discuss

the history of these single-modality pre-trained models and their impact on vision-and-language

tasks.

We first discuss the pre-trained visual encoders. When the encoder-decoder neural architec-

ture was first introduced in Show-and-Tell (Vinyals et al., 2015) and Karpathy and Fei-Fei (2015),

it takes the single feature output from the Convolution Neural Networks (CNN) since using sin-

gle vector aligns well with the LSTM (Hochreiter and Schmidhuber, 1997) decoder structure.

Show-Attend-and-Tell (Xu et al., 2015) then introduce the attention mechanism to the image

captioning task and thus the 2D feature map from CNN is used. This grid feature approach have

being a standard feature extractor setup until Bottom-Up Attention (Anderson et al., 2018a) pro-

poses to use the detected objects as image representations. VinVL (Zhang et al., 2021b) push this

detection-based exploration to extreme by using most of publicly available detection datasets.

These detection-based approaches hypothesis that the improvement mainly come from the adap-
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tive resolutions in the object-level (i.e., RoI-pooling) features (Ren et al., 2015). However, later

works (Liu et al., 2019a; Jiang et al., 2020) show that the actual improvement is attributed to

the fine-grained supervision inside the Visual Genome, where not only the classes but also the

attributes (e.g., color, material, shape) of objects are annotated. Another useful insight in Bottom-

Up Attention is to use higher resolution for the input image (e.g., from 224 to 448). Overall, the

success of the visual feature extractors needs to have two characteristics 1) fine-grained visual

supervision when training the backbone, 2) large input resolution when extracting the features.

The recent work CLIP (Radford et al., 2021a) is trained by contrastive loss on large and diverse

image-sentence pairs to enable zero-shot image classifier. It takes the free-form natural language

as the visual supervision, and thus its visual encoder coincidentally satisfies these two criterions.

In our recent work (Shen et al., 2021), we consider to use CLIP encoder as the next-generation

feature extractors. By simply replacing the previous feature extractors to CLIP feature extractor,

significant and consistent improvements are observed on diverse downstream tasks.

Like pre-trained vision encoder, pre-trained language encoder are explored as well. The de-

velopment of pre-trained language encoder is slower than the pre-trained visual encoder. Previ-

ous works (Anderson et al., 2018a) use pre-trained word embedding like Word2Vec (Mikolov

et al., 2013) and GLoVE (Pennington et al., 2014). ELMo (Peters et al., 2018) shows a success

in pre-trained language encoder by using the language modeling task. We test the ability of the

ELMo encoder in our work Tan et al. (2019) and find that ELMo helps stabilize the training but

do not provide better results. BERT (Devlin et al., 2019a) take the transformer model and train

on the clean Wikipedia dataset with masked language modeling. The surprisingly high results

produced by BERT excite the community and also encourage the exploration of the usage in

vision-and-language tasks. With the BERT integration, PRESS (Li et al., 2019b) shows success

in vision-and-language navigation and B2T2 (Alberti et al., 2019) got state-of-the-art results on

visual commonsense reasoning. Part of the improvement in using BERT possibly comes from a

good initialization for a large language model. Thus, when sufficient large pre-training dataset is

provided, LXMERT (Tan and Bansal, 2019) and CLIP (Radford et al., 2021a) train the language
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encoder from scratch and do not observe a significant performance drop. However, these pre-

trained language encoder are still needed in some language-heavy datasets, e.g., VCR (Zellers

et al., 2019) and Hateful Meme (Kiela et al., 2020).

In our experiments, we take the vision-and-language navigation as the main task to illustrate

the impact of different features. Vision-and-language navigation data are collected from the

Matterport-3D environments (Chang et al., 2017) thus it prohibits any potential data overlapping

with the single-modality pre-training. For other dataset, it shows an inevitable data collision since

most of vision-and-language datasets are collected on popular vision benchmarks, where the

image encoder is pre-trained on. VQA (Antol et al., 2015; Goyal et al., 2017b) is collected on

MS COCO that shares about 50% images with the Bottom-up Attention (Anderson et al., 2018a)

and 100% of training images are seen in VinVL (Zhang et al., 2021b). GQA is auto-generated

from Visual Genome annotations, thus visual encoders trained on VG detection benefits from

such overlapping semantic annotations. In our paper Shen et al. (2021), we also provide the result

for other datasets as well.

4.2 Pre-trained Vision Encoder in Vision-and-Language Navigation

Vision-and-language navigation tests the agent’s ability to take action according to human

instructions, which recently gains popularity in embodied AI (Anderson et al., 2018b; Chen

et al., 2019a; Jain et al., 2019; Chen et al., 2019a; Qi et al., 2020b; Krantz et al., 2020; Nguyen

and Daumé III, 2019; Ku et al., 2020). Specifically, the agent is put at a location in the environ-

ment (Chang et al., 2017) and asked to reach a target by following the language instructions.

Here, we investigate the impact of the visual encoder on this task.

Model Architecture. We experiment with the basic attentive neural agent as in Fried et al.

(2018) and Tan et al. (2019). At each time step, the agent attends to the panoramic views and

the instruction to make an action. The panoramic view is processed with a pre-trained visual

encoder (e.g., ResNet) and the instructions are processed by a language LSTM (Hochreiter and
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Schmidhuber, 1997). The agent model (i.e., another LSTM) then attends to the visual features

and the language representations to predict the actions. At each time step t, the agent attends

to the panoramic views tvt,iui and the instruction twju to make the action. The panoramic view

is processed with a pre-trained visual encoder (e.g., ResNet) and the instructions are processed

by a language LSTM (Hochreiter and Schmidhuber, 1997), denoted LSTML. The agent model,

LSTMA, then attends to the visual features and the language representations to predict the ac-

tions.

gt,i “ ResNetpvt,iq (4.1)

x1, . . . , xl “ LSTMLpw1, . . . , wlq (4.2)

input t “ rAttnpht´1,tgt,iuq,Attnpht´1,txjuqs (4.3)

ht, ct “ LSTMApinputt , ht´1, ct´1q (4.4)

where ht and ct are the hiddens and states of the action LSTM at time step t, respectively.

4.2.1 Impact to the Results

We replace the pre-trained visual encoder from ImageNet pre-trained ResNet to the CLIP vi-

sual encoders. We use a single-vector output for the entire image following previous works (Fried

et al., 2018). For CLIP-ViT models, we take the output of the [CLS] token. For CLIP-ResNet

models, we take the attentive pooled feature (Radford et al., 2021a) of the feature map. These

features are also linearly projected and L2-normalized as in the CLIP model.

Experimental Setup. We apply our model to two vision-and-language navigation datasets:

Room-to-Room (R2R, Anderson et al. (2018b)) and Room-across-Room (RxR, Ku et al. (2020)).

R2R is built on the indoor environments from the MatterPort3D dataset (Chang et al., 2017). The

environments are split into training (61 environments), unseen validation (11 environments),

and unseen test (18 environments). The agent is trained on the training environments (with

14,025 navigation instructions) and tested on separate sets of environments (2,349 in the unseen-
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Method Unseen Test

SR SPL

No Pre-Training
R2R (Anderson et al., 2018b) 20 18
RPA (Wang et al., 2018) 25 23
S-Follower (Fried et al., 2018) 35 28
RCM (Wang et al., 2019c) 43 38
SMNA (Ma et al., 2019a) 48 35
Regretful (Ma et al., 2019b) 48 40
FAST-Short (Ke et al., 2019) 54 41
EnvDrop (Tan et al., 2019) 51 47
PRESS (Li et al., 2019b) 49 45
ALTR (Huang et al., 2019) 48 45
CG (Anderson et al., 2019) 33 30
RelGraph (Hong et al., 2020) 55 52
EnvDrop + CLIP-ViL 59 53

Pre-Training
AuxRN (Zhu et al., 2020) 55 50
PREVALENT (Hao et al., 2020) 54 51
VLN-BERT(Hong et al., 2021)+OSCAR 57 53
VLN-BERT(Hong et al., 2021) 63 57

Table 4.1: Unseen test results for Room-to-Room (R2R) dataset. ‘SR’ and ‘SPL’ are Success
Rate and Success rate normalized by Path Length. ‘Pre-Training’ methods are mostly in-domain
pre-trained on the Matterport3D (Chang et al., 2017) environments.

validation and 4,173 in the unseen-test). RxR extends the R2R dataset with multiple languages

and follow the environment split. Besides the multilingual nature, RxR is also more diverse in

the navigation paths and richer in the present language. For R2R dataset, we follow the hyper-

parameter (e.g., batch size, learning rate, optimizer) of the publicly available implementation 1

R2R-EnvDrop (Tan et al., 2019) and replace the input features 2 with the CLIP features. To re-

duce the computational cost, the features are pre-extracted and frozen during the training of the

navigational agent. For RxR dataset, we take the processed multilingual data provided in Li et al.

(2021a) with Stanza tokenizers (Qi et al., 2020a). Since RxR dataset contains instructions longer

than R2R, we change the maximum input length to 160 (from 80) and increase the imitation

learning ratio from 0.2 to 0.4 to stabilize the training. Other training hyperparameters of RxR are

1https://github.com/airsplay/R2R-EnvDrop
2https://github.com/peteanderson80/Matterport3DSimulator
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Method Unseen Test

SR nDTW

Random-Baseline (Ku et al., 2020) 7.5 15.4
Mono-Baseline (Ku et al., 2020) 25.4 41.1
SAA (Li et al., 2021a) 35.4 46.8
EnvDrop + CLIP-ViL 38.3 51.1

Table 4.2: Unseen test results for Room-across-Room (RxR) dataset under mono-lingual setup.
‘SR’ and ‘nDTW’ are Success Rate and normalized Dynamic Time Warping.

Features Room-to-Room Room-across-Room

Agent BT-Agent English Hindi Telugu Average
SR SPL SR SPL SR nDTW SR nDTW SR nDTW SR nDTW

ImageNet-Res152 48.2 44.4 53.5 48.8 35.3 50.6 37.9 51.9 37.1 52.0 36.8 51.5
CLIP-Res50 52.6 47.4 56.2 49.7 38.8 53.3 44.1 55.7 43.5 55.5 42.1 54.8
CLIP-ViT-B 52.5 47.7 57.4 51.3 40.2 52.5 44.3 55.0 42.1 54.6 42.2 54.0
CLIP-Res101 53.6 47.5 56.7 49.5 41.0 54.6 44.9 56.9 42.2 55.3 42.7 55.6
CLIP-Res50x4 54.7 48.7 59.2 52.9 40.8 54.7 44.5 56.5 42.4 56.0 42.6 55.7

Table 4.3: Results of Room-to-Room (R2R) and Room-across-Room (RxR) datasets with
original ResNet features and CLIP feature variants. ‘BT-Agent’ is the agent trained with back
translation (BT). ‘SR’ is Success Rate. ‘SPL’ and ‘nDTW’ are the main metrics for R2R and
RxR, respectively. The best results are bold. CLIP-ViL shows clear improvements over the
previous ImageNet-trained ResNet model.

the same as R2R. The models are trained on one RTX 2080 Ti GPU. It takes 1 days to converge

in R2R and about 1.5 days to converge in RxR. We report two significant digits for R2R unseen

test results following the leaderboard convention.

Experimental Results. We show the test-unseen results of our best model (CLIP-Res50x4) and

the comparison to the previous methods. On R2R dataset (in Table 4.1), CLIP-ViL reaches 8%

higher in SR (success rate) and 6% higher in SPL (Success Rate normalized by Path Length)

than our baseline, EnvDrop. CLIP-ViL outperforms previous non-pre-training agents and shows

competitive results to VLN-specific pre-trained models. On RxR dataset (Table 4.2), CLIP-ViL

achieves the best success rate and nDTW (normalized Dynamic Time Warping) under the mono-

lingual setup (Ku et al., 2020) and is 4.3% better then the previous results for nDTW. In Ta-

ble 4.3, we compare different CLIP variants with the previous standard ResNet-152 feature

extractors. These extractors are pre-trained on ImageNet and use the mean-pooled features as

the representation for the image. CLIP-Res50 shows a clear improvement over the IN alternative
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Feature Dimension SR SPL

ImageNet-Res152 2048 48.2 44.4
CLIP-Res50 1024 52.6 47.4

Grid-Res50 2048 47.6 44.7
Grid-ResX101 2048 46.5 43.2
Grid-ResX152 2048 47.8 44.6

Table 4.4: Comparison between grid features, CLIP features, and ImageNet-trained features on
the R2R dataset. ‘SR’ and ‘SPL’ are success rate and success rate weighted by path length.

(‘ImageNet-Res152’). With larger models (i.e., ‘CLIP-Res101’ and ‘CLIP-Res50x4’), the agent

performance scales well on both R2R and RxR. Lastly, we find that the CLIP ViT model (‘CLIP-

ViT-B’) has similar results as CLIP-Res50 model. ViT also shows a relatively better result when

back translation (BT) is applied. The success of ViT model in VLN is possibly due to the use of

[CLS] feature instead of the feature map.

Results Comparison to Grid Features We previously compare the results regarding the ImageNet-

pre-trained ResNet-152. We also report the comparison to grid features Jiang et al. (2020) that

is trained with detection dataset. Jiang et al. (2020) showed that the results with these features

are comparable to the original bottom-up attention with a heavy detection module. We test the

performance of these detection-trained grid features on VLN tasks. Specifically, we use the mean

pooling of the feature map as the representation of each view following previous works (Ander-

son et al., 2018b). As shown in Table 4.4, under the same ResNet50 backbone 3, we find that

the detection-trained grid features are on par with the classification-trained grid features, still

showing a gap to the contrastive-trained grid features. We hypothesize that the grid features inject

regional knowledge into the dense feature map thus showing good results with grid-based mod-

ules (as in VQA). However, pooling the feature map into a single feature vector (as in previous

VLN works) leads to a loss of this dense information.

3The CLIP model uses an attention pooling module and makes modifications over the original ResNet (He et al.,
2016) backbone.
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Method Result

Val Seen Val Unseen Gap |∆|

Room-to-Room (Anderson et al., 2018b)

R2R 38.6 21.8 16.8
RPA 42.9 24.6 18.3
S-Follower 66.4 35.5 30.9
RCM 66.7 42.8 23.9
SMNA 67 45 22
Regretful 69 50 19
EnvDrop 62.1 52.2 9.9
ALTR 55.8 46.1 9.7
RN+Obj 59.2 39.5 19.7
CG 31 31 0
Our baseline 56.1 47.5 8.6
Our Learned-Seg 52.6 53.3 0.7

Room-for-Room (Jain et al., 2019)

S-Follower 51.9 23.8 28.1
RCM 55.5 28.6 26.9
Our baseline 54.6 30.7 23.9
Our Learned-Seg 38.0 34.3 3.7

CVDN (Thomason et al., 2020)

NDH 5.92 2.10 3.82
Our baseline 6.60 3.05 3.55
Our Learned-Seg 5.82 4.41 1.41

Table 4.5: Results showing the performance gaps between seen (‘Val Seen’) and unseen (‘Val
Unseen’) environments in several VLN tasks. Room-to-Room and Room-for-Room are evaluated
with ‘Success Rate’, CVDN is evaluated with ‘Goal Progress’, Touchdown is evaluated with
‘Task Completion’.

4.2.2 Impact to the Environmental Bias

For vision-and-language tasks, most of the works (Anderson et al., 2018b; Wang et al., 2018;

Fried et al., 2018; Wang et al., 2019c; Ma et al., 2019a,b; Tan et al., 2019; Huang et al., 2019; Hu

et al., 2019) observe a significant performance drop from the environments used in training (seen

environments) to the ones not used in training (unseen environments), which indicates the models

are strongly biased to the seen environments. We here show that a more semantical feature could

relieve this bias.
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In order to evaluate the generalizability of agent models, indoor VLN datasets (e.g., those

collected from Matterport3D (Chang et al., 2017)) use disjoint sets of environments in train-

ing and testing. Two validation splits are provided as well: validation seen (which takes the

data from training environments) and validation unseen (whose data is taken from testing en-

vironments different from the training). In the first part of Table 4.5, we list most of the previ-

ous works (R2R (Anderson et al., 2018b), RPA (Wang et al., 2018), S-Follower (Fried et al.,

2018), RCM (Wang et al., 2019c), SMNA (Ma et al., 2019a), Regretful (Ma et al., 2019b), En-

vDrop (Tan et al., 2019), ALTR (Huang et al., 2019), RN+Obj (Hu et al., 2019), CG (Anderson

et al., 2019)) on the Room-to-Room dataset (Anderson et al., 2018b) and their success rate under

greedy decoding (i.e., without beam-search) on validation seen and validation unseen splits. The

large absolute gaps (from 30.9% to 9.7%) between the results of seen and unseen environments

show that current agent models on R2R suffer from environment bias.4 This phenomenon is also

revealed in two other newly-released indoor navigation datasets, Room-for-Room (R4R) (Jain

et al., 2019) and Cooperative Vision-and-Dialog Navigation (CVDN) (Thomason et al., 2020).

The significant result drops from seen to unseen environments can also be observed (i.e., 26.9%

on R4R and 3.82 on CVDN), as shown in the second and third parts of Table 4.5. Lastly, we

show the results (‘Our Learned-Seg’ in Table 4.5) when the environment bias is effectively re-

duced by our learned semantic-segmentation features, compared to our baselines (denoted as

‘Our baseline’) and previous works.

4.3 Conclusion

We analyzed the impact of different pre-trained vision modules to vision-and-language tasks.

With the same model, the features not only largely affect the performance but also change the

characteristics of model behavior. We conducted detailed experiments on diverse vision-and-

language navigation, visual questions answering, and image captioning tasks. In general, the

4Our work’s aim is to both close the seen-unseen gap while also achieving competitive unseen results. Note that (An-
derson et al., 2019) also achieve 0% gap but at the trade-off of low unseen results.
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features containing more semantic information is better for vision-and-language tasks, and we

found that the recent CLIP (Radford et al., 2021a) features perform the best. These results call for

a study to further improve the single-modality pre-training scheme.

44



CHAPTER 5: LANGUAGE PRE-TRAINING FROM VISUAL SUPERVISION

5.1 Introduction

Most humans learn language understanding from multiple modalities rather than only from

the text and audio, especially using the visual modality. As claimed in Bloom (2002), visual

pointing is an essential step for most children to learn meanings of words. However, existing lan-

guage pre-training frameworks are driven by contextual learning which only takes the language

context as self-supervision. For example, word2vec (Mikolov et al., 2013) takes surrounding bag-

of-words; ELMo (Peters et al., 2018) and GPT (Radford et al., 2018) take succeeding contexts;

and BERT (Devlin et al., 2019a) takes randomly masked tokens. Although these self-supervised

frameworks have achieved strong progress towards understanding human language, they did not

borrow grounding information from the external visual world.

In this paper, we introduce the visually-supervised language model that simulates human

language learning with visual pointing (Bloom, 2002). As shown in Fig. 5.1, this model takes

language tokens as input and uses token-related images as visual supervision. We name these

images as vokens (i.e., visualized tokens), since they act as visualizations of the corresponding

tokens. Assuming that a large aligned token-voken dataset exists, the model could learn from

these vokens via voken-prediction tasks.

Unfortunately, such an aligned token-voken dataset is currently unavailable and hence there

are two main challenges in creating it from visually-grounded language datasets. First, there is a

large discrepancy between visually-grounded language (which provides innate visual grounding

supervision) and other types of natural language. For example, about 120M tokens are available

in visually-grounded language datasets (Tan and Bansal, 2019; Chen et al., 2019b), which is far

less compared to the 3,300M tokens in BERT training data and 220B tokens in T5 (Raffel et al.,
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Figure 5.1: We visually supervise the language model with token-related images. We call these
images vokens (visualized tokens) and develop a vokenization process to contextually generate
them.

listeninglearn

Vokenization

Humans learn language by 
listening, speaking ...

humans

Language Input

BERT Transformer Model

Masked Language Model

[MASK] language by [MASK] speaking humans

Language Input

BERT Transformer Model

Voken Classification Task

[MASK] language by [MASK] speaking

Masked Tokens Vokens (Token-Related Images)

Figure 5.2: Illustration of the BERT transformer model trained with a visually-supervised lan-
guage model with two objectives: masked language model (on the left) and voken classification
(on the right). The first objective (used in original BERT pre-training) predicts the masked tokens
as self-supervision while the second objective predicts the corresponding vokens (contextually
generated by our vokenization process) as external visual supervision. Since the inputs are the
same, we optimize the two objectives simultaneously and share the model weights.

2019). Grounded language also prefers short and instructive descriptions, and thus has different

distributions of sentence lengths and active words to other language types. Second, most of the

words in natural language are not visually grounded, hence this challenges the premise in creating

visual supervision. With an approximate estimation, the ratio of grounded tokens is only about

28% in English Wikipedia. This low grounding ratio leads to low coverage of visual supervision

in previous approaches (Frome et al., 2013; Kiela et al., 2018).

To resolve the above two challenges, we propose our vokenization method (as shown in

Fig. 5.1) that contextually maps the tokens to the visualized tokens (i.e., vokens) by retrieval.

Instead of directly supervising the language model with visually grounded language datasets
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Dataset # of Tokens # of Sents Vocab. Size Tokens #/ Sent. 1-Gram JSD 2-Gram JSD Grounding Ratio

MS COCO 7.0M 0.6M 9K 11.8 0.15 0.27 54.8%
VG 29.2M 5.3M 13K 5.5 0.16 0.28 57.6%
CC 29.9M 2.8M 17K 10.7 0.09 0.20 41.7%

Wiki103 111M 4.2M 29K 26.5 0.01 0.05 26.6%
Eng Wiki 2889M 120M 29K 24.1 0.00 0.00 27.7%
CNN/DM 294M 10.9M 28K 26.9 0.04 0.10 28.3%

Table 5.1: Statistics of image-captioning dataset and other natural language corpora. VG, CC,
Eng Wiki, and CNN/DM denote Visual Genome, Conceptual Captions, English Wikipedia,
and CNN/Daily Mail, respectively. JSD represents Jensen–Shannon divergence to the English
Wikipedia corpus. A large discrepancy exists between the visually grounded captioning and
general language corpora.

(e.g., MS COCO (Lin et al., 2014)), we use these relative small datasets to train the vokenization

processor (i.e., the vokenizer). We then generate vokens for large language corpora (e.g., English

Wikipedia), and our visually-supervised language model will take the input supervision from

these large datasets, thus bridging the gap between different data sources, which solves the first

challenge. The second challenge of low grounding ratio seems to be an inherent characteristic

of language; however, we observe that some non-visually-grounded tokens can be effectively

mapped to related images when considering its context, e.g., the abstract word “angry” in the sen-

tence “an angry cat lies on my leg”. This observation is realized by our contextual token-image

matching model (defined in Sec. 5.3.2) inside our vokenization processor, where we map tokens

to images by viewing the sentence as the context.

Using our proposed vokenizer with a contextualized token-image matching model, we gen-

erate vokens for English Wikipedia. Supervised by these generated vokens, we show consistent

improvements upon a BERT model on several diverse NLP tasks such as GLUE (Wang et al.,

2019a), SQuAD (Rajpurkar et al., 2016), and SWAG (Zellers et al., 2018). We also show the

transferability of our vokens to other frameworks (i.e., RoBERTa).
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5.2 Visually-Supervised Language Models

Contextual language representation learning is driven by self-supervision without considering

explicit connections (grounding) to the external world. In this section, we illustrate the idea of a

visually-supervised language model and discuss the challenges of creating its visual supervision.

5.2.1 Vokens: Visualized Tokens

To provide visual supervision to the language model, we assume a text corpus where each

token is aligned with a related image (although these voken annotations currently do not exist,

we will try to generate vokens next in Sec. 5.3 by the vokenization process). Hence, these images

could be considered as visualizations of tokens and we name them as ‘vokens’. Based on these

vokens, we propose a new pre-training task for language: voken classification.

5.2.2 The Voken-Classification Task

Most language backbone models (e.g., ELMo (Peters et al., 2018), GPT (Radford et al.,

2018), BERT (Devlin et al., 2019a)) output a localized feature representation thiu for each token

in a sentence s “ twiu. Thus it allows adding a token-level classification task without modify-

ing the model architecture. Suppose the vokens come from a finite set X, we convert the hidden

output hi to a probability distribution pi with a linear layer and a softmax layer, then the voken

classification loss is the negative log probability of all corresponding vokens:

h1,h2, . . . ,hl “ lmpw1, w2, . . . , wlq

pipv | sq “ softmaxvtW hi ` bu

LVOKEN-CLSpsq “ ´
l
ÿ

i“1

log pi pvpwi; sq | sq

This task could be easily integrated into current language pre-training frameworks, and we next

show an example.
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Example: Visually-Supervised BERT Fig. 5.2 shows an example realization of the voken-

classification task that provides visual supervision to BERT (Devlin et al., 2019a). The origi-

nal BERT pre-training mainly relies on the task of masked language model1 (illustrated on the

left side of Fig. 5.2): tokens are randomly masked and the model needs to predict these miss-

ing tokens from language context. For simplicity, we use s and ŝ to denote the set of tokens and

masked tokens, separately. The unmasked tokens are the set difference szŝ. Suppose qi is the

conditional probability distribution of the i-th token, the Masked Language Model (MLM) loss is

the negative log-likelihood of the masked tokens:

LMLMps, ŝq “ ´
ÿ

wiPŝ

log qi pwi | szŝq

Without changing the model and model’s inputs, we calculate the voken-classification loss for all

tokens (illustrated on the right side of Fig. 5.2):

LVOKEN-CLSps, ŝq “ ´
ÿ

wiPs

log pi pvpwi; sq | szŝq

The visually-supervised masked language model takes the sum of these two losses with a ratio λ.

LVLMps, ŝq “ LVOKEN-CLSps, ŝq ` λLMLMps, ŝq (5.1)

5.2.3 Two Challenges in Creating Vokens

Previous sections illustrate the potential external supervision by assuming the existence of

vokens. However, we are currently lacking the dense annotations from tokens to images. The

most similar concept to vokens is phrase localization (e.g., in Flickr30K entities (Young et al.,

2014; Plummer et al., 2017)). Because the process of collecting phrase localization is costly, the

1The next-sentence prediction task is removed in RoBERTa (Liu et al., 2019b) and XLM (Lample and Conneau,
2019) and the fine-tuning results are not largely affected.
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coverage and the amount of annotations cannot meet our requirements.2 Apart from phrase lo-

calization, the most promising data source is image captioning datasets with sentence-to-image

mappings. Image captions belong to a specific type of language called grounded language (Roy

and Pentland, 2002; Hermann et al., 2017), which has an explicit grounding to external exis-

tence or physical actions. However, grounded language has a large discrepancy to other types

of natural language (e.g., News, Wiki, and Textbooks). To illustrate this, we list key statistics

of three image-captioning dataset (i.e., MS COCO (Lin et al., 2014), Visual Genome (Krishna

et al., 2017), and Conceptual Captions (Sharma et al., 2018)) and three language corpora of other

language types (i.e., Wiki103 (Merity et al., 2017), English Wiki, and CNN/Daily Mail (See et al.,

2017)) in Table 5.1. This discrepancy between grounded language and other types of natural

language leads to two challenges:

A. Different Distributions between Grounded Language and Other Natural Language Cor-

pora. Sentences belonging to grounded language are usually short and informative, e.g., the

average sentence length in MS COCO is 11.8, which is much shorter than the average sentence

length of 24.1 in English Wiki. The vocabulary3 of MS COCO only covers around one-third of

token types (Smith, 2019) in English Wiki. There is also a large divergence of the 1-Gram and

2-Gram distributions (measured by Jensen–Shannon divergence) between grounded language

dataset and the English Wikipedia. Lastly, the amount of tokens in grounded language corpora

are also orders of magnitude smaller than commonly-used Wikipedia.

B. Low Grounding Ratio in Natural Language. The grounding ratio is defined as the per-

centage of visually grounded tokens in the dataset. Visually grounded tokens (e.g., concrete

nouns) are the token types that are naturally related to specific visual contents (e.g., ‘cat’, ‘cake’,

‘clock’). Since a precise list of such token types is hard to define, we thus estimate the grounding

ratio based on existing grounded language corpora. Specifically, we consider a token type with

2Recently, a concurrent work Pont-Tuset et al. (2019) releases localized narratives. The tokens are aligned with
image pixels instead of images.
3The vocabulary is calculated following Karpathy and Fei-Fei (2015) where the words with ą 5 occurrence is
counted.
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more than 100 occurrences in MS COCO (after removing all stop words) as visually-grounded.

As shown in the last column of Table 5.1, the grounding ratio of English Wiki is 27.7%, which is

almost half of that in Visual Genome.

To address these two challenges, we propose a vokenizer with contextual token-image match-

ing models next in Sec. 5.3.

5.3 Vokenization

In the previous section, we discuss the potential of using vokens (i.e., visualized tokens) as

visual supervision to the language model, and also demonstrate the large gap between currently

available resources (i.e., annotated dataset) and the desired requirements. Hence, in this section,

we develop a framework that can generate vokens. As shown in Fig. 5.2, the general idea is that

we learn a “vokenizer” from image-captioning dataset and use it to annotate large language cor-

pora (i.e., English Wiki), thus bridging the gap between grounded language and other types of

natural language. We start by illustrating the vokenization process and then describe how we

implement it.

5.3.1 The Vokenization Process

As shown in Fig. 5.1 and Fig. 5.2, vokenization is the process to assign each token wi in a

sentence s “ pw1, w2, . . . , wlq with a relevant image vpwi; sq. We call this image vpwi; sq as a

‘voken’ (visualized token). Instead of creating this image with generative models, we retrieve

an image from a set of images X “ tx1, x2, . . . , xnu regarding a token-image-relevance scor-

ing function rθpwi, x; sq. This scoring function rθpwi, x; sq, parameterized by θ, measures the

relevance between the token wi in the sentence s and the image x. We here assume that the opti-

mal parameter of this function is θ˚ and will discuss the details of formulations later. The voken

vpwi; sq related to a token wi in the sentence s is realized as the image x P X that maximizes their
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relevance score rθ˚:

vpwi; sq “ argmaxxPV rθ˚pwi, x; sq

Since the image set X indeed builds a finite vocabulary for vokens, we could utilize the voken-

classification task (formulated in Sec. 5.2.2) to visually supervise the language model training.

We next talk about the detailed implementation of this vokenization process.

5.3.2 Contextual Token-Image Matching Model

Lying in the core of the vokenization process is a contextual token-image matching model.

The model takes a sentence s and an image x as input, and the sentence s is composed of a se-

quence of tokens tw1, w2, . . . , wlu. The output rθpwi, x; sq is the relevance score between the

token wi P s and the image x while considering the whole sentence s as a context.

Modeling To model the relevance score function rθpwi, x; sq, we factorize it as an inner product

of the language feature representation fθpwi; sq and the visual feature representation gθpxq:

rθpwi, x; sq “ fθpwi; sq
ᵀgθpxq

These two feature representations are generated by language and visual encoders respectively.

The language encoder first uses a pre-trained BERTBASE (Devlin et al., 2019a) model to contextu-

ally embed the discrete tokens twiu into hidden-output vectors thiu:

h1,h2, . . . ,hl “ bertpw1, w2, . . . , wlq

Then we apply a multi-layer perceptron (MLP) w mlpθ to down project the hidden output hi. In

order to simplify the retrieval process in Sec. 5.3.1, the final language features are normalized to
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norm-1 vectors by dividing their Euclidean norms:

fθpwi; sq “
w mlpθphiq

}w mlpθphiq}

On the other side, the visual encoder first extracts the visual embedding e from a pre-trained

ResNeXt (Xie et al., 2017). Similar to the language encoder, an MLP layer x mlpθ and an L2-

normalization layer are applied subsequently:

e “ ResNeXtpxq

gθpxq “
x mlpθpeq

}x mlpθpeq}

Training Since the dense annotations from tokens to images are lacking and hard to generate

(illustrated in Sec. 5.2.3), we thus alternatively train the token-image matching model from weak

supervision in image-captioning datasets (e.g., MS COCO (Lin et al., 2014)). These datasets are

comprised of sentence-image pairs tpsk, xkqu where the sentence sk describes the visual content

in image xk. To build alignments between tokens and images, we pair all tokens in a sentence

sk with the image xk. The model is then optimized by maximizing the relevance score of these

aligned token-image pairs over unaligned pairs.

Without loss of generality, assuming ps, xq is an image-captioning data point, we randomly

sample another image x1 with the condition x1 ‰ x. We then use hinge loss to optimize the

weight θ so that the score of the positive token-image pair rθpwi, x; sq aims to be larger than the

negative pair rθpwi, x1; sq by at least a margin M .

Lθps, x, x1q “
l
ÿ

i“1

maxt0,M ´ rθpwi, x; sq

` rθpwi, x
1; squ

53



Vision
EncoderVision

EncoderVisual
Encoder

Language
Corpus

Visually-
Supervised
Language

Model

Tokens

Vokens

Tokenizer

Nearest Neighbor Search

Visual 
Supervision

Language
Input

Vokenization

Language
Encoder

Image
Set

Figure 5.3: Implementation of our vokenization process. For the tokens in language corpora, we
contextually retrieved images (with nearest neighbor search) from the image set as vokens. These
generated vokens are then used as the visual supervision to the language model.

Intuitively, minimizing this hinge loss maxt0, M ´ pos ` negu will try to increase the score of the

positive pair and decrease the score of the negative pair when the score difference is smaller than

the margin M . Otherwise (if the difference is ě margin M ), the two scores remain unchanged.

Inference Given that the relevance score is factorized as the inner product of feature representa-

tions fθpwi; sq and gθpvq, the retrieval problem in Sec. 5.3.1 could be formulated as Maximum In-

ner Product Search (Mussmann and Ermon, 2016)). Moreover, since the vectors are norm-1, the

vector with the maximum inner product is identical to the closest vector in the Euclidean space

(i.e., Nearest Neighbor (Knuth, 1973)). We illustrate the detailed implementation in Fig. 5.3.

5.3.3 Revokenization

A constraint of the vokenization process in Sec. 5.3.1 is that the vokens depend on the ac-

tual tokenizer of the language encoder in Sec. 5.3.2. Since different frameworks utilize a various

range of tokenizers, this constraint limits the transferability of vokens between different frame-

works. Instead of binding our vokenizer to a specific pre-training framework (e.g., BERT), we

want to enable its extensibility to other frameworks (e.g., RoBERTa). Thus, we introduce a “revo-

kenization” technique to address this limitation.

Given two different tokenizers T1 and T2, they tokenize a sentence s into two different se-

quences of tokens: T1psq “ pw1, w2, . . . , wlq and T2psq “ pu1, u2, . . . , umq.
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Method SST-2 QNLI QQP MNLI SQuAD v1.1 SQuAD v2.0 SWAG Avg.

BERT6L/512H 88.0 85.2 87.1 77.9 71.3/80.2 57.2/60.8 56.2 75.6
BERT6L/512H + Voken-cls 89.7 85.0 87.3 78.6 71.5/80.2 61.3/64.6 58.2 76.8
BERT12L/768H 89.3 87.9 83.2 79.4 77.0/85.3 67.7/71.1 65.7 79.4
BERT12L/768H + Voken-cls 92.2 88.6 88.6 82.6 78.8/86.7 68.1/71.2 70.6 82.1

RoBERTa 6L/512H 87.8 82.4 85.2 73.1 50.9/61.9 49.6/52.7 55.1 70.2
RoBERTa 6L/512H + Voken-cls 87.8 85.1 85.3 76.5 55.0/66.4 50.9/54.1 60.0 72.6
RoBERTa 12L/768H 89.2 87.5 86.2 79.0 70.2/79.9 59.2/63.1 65.2 77.6
RoBERTa 12L/768H + Voken-cls 90.5 89.2 87.8 81.0 73.0/82.5 65.9/69.3 70.4 80.6

Table 5.2: Fine-tuning results of different pre-trained models w/ or w/o the voken classification
task (denoted as “Voken-cls”). SQuAD results are “exact match”/“F1”. The results which signifi-
cantly outperform the second-best ones are marked in bold. The averages of metrics (denoted as
“Avg.”) show improvement from voken supervisions.

Without loss of generality, assuming the vokenizer is built based on the first tokenizer T1,

the standard vokenization process will generate a sequence of vokens tvpwi; squli“1 which are

one-to-one aligned with the tokens twiuli“1. Our goal is to transfer these w-related vokens to the

u-related vokens generated by T2. We adapt the idea of “nearest neighbor algorithm” (Altman,

1992) here. For a given token uj , among all w’s, we select the one that overlaps the most with

uj and record it as windpjq. The voken for uj is defined as the voken for its “nearest neighbor”

windpjq:

vpuj; sq :“ vpwindpjq; sq

indpjq “ argmaxli“1 overlappwi, ujq

The overlapping of two tokens are further quantified by the intersection-over-union (i.e., Jaccard

index, defined as IoUpA,Bq= |AXB|
|AYB|

) of their ranges in the raw sentence s.
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5.4 Experimental Setups and Results

5.4.1 Pre-training Data and Fine-tuning Tasks

We train our model on English Wikipedia 4 and its featured subset Wiki103 (Merity et al.,

2017). We use our vokenizer to generate vokens for these two datasets as well. The pre-trained

models are then fine-tuned on GLUE (Wang et al., 2019a), SQuAD (Rajpurkar et al., 2016, 2018),

and SWAG (Zellers et al., 2018) to assess the pre-training performance. Since some smaller tasks

in GLUE are reported as unstable (Dodge et al., 2020), recent papers (e.g., Li et al. (2020c)) only

report on selected tasks. We follow this trend and evaluate on the four largest datasets (i.e., SST-

2 (Socher et al., 2013), QNLI (Rajpurkar et al., 2016), QQP (Iyer et al., 2017), MNLI (Williams

et al., 2018)).5.

5.4.2 Implementation Details

We train our contextual token-image matching model (in Sec. 5.3.2) on MS COCO image

captioning dataset for 20 epochs. The concatenation of the last 4 layers of BERT outputs and

ResNeXt-101-32x8d features are used as language hidden states and visual embedding, respec-

tively. Both multi-layer perceptrons w mlpθ and x mlpθ have two fully-connected layers with

256-dimensional intermediate outputs (followed by ReLU activation) and 64-dimensional final

outputs. The two backbone models BERT (Devlin et al., 2019a) and ResNeXt (Xie et al., 2017)

are not fine-tuned. We set the hinge loss margin M to 0.5. During the vokenization process of

English Wikipedia and Wiki103, we use the faiss (Johnson et al., 2019) library to speed up the

nearest neighbor search. The vokens are retrieved from the Visual Genome images that are not

used in MS COCO. We fix a voken size of 50000.

When pre-training the model on pure language corpus, we unify the training protocols to

avoid possible side effects. We follow previous works to conduct two simplifications: 1. Remov-

4BERT (Devlin et al., 2019a) also uses Toronto Books Corpus (Zhu et al., 2015). However, the dataset is not publicly
released. We thus exclude it in our study to ensure reproducibility.
5The size of the used four dataset range from 60K to 400 while the omitted dataset range from 0.6K to 8.5K.
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Model Init. with BERT? Diff. to BERT Weight SST-2 QNLI QQP MNLI

ViLBERT (Lu et al., 2019) Yes 0.0e-3 90.3 89.6 88.4 82.4
VL-BERT (Su et al., 2020) Yes 6.4e-3 90.1 89.5 88.6 82.9
VisualBERT (Li et al., 2019a) Yes 6.5e-3 90.3 88.9 88.4 82.4
Oscar (Li et al., 2020b) Yes 41.6e-3 87.3 50.5 86.6 77.3
LXMERT (Tan and Bansal, 2019) No 42.0e-3 82.4 50.5 79.8 31.8

BERTBASE (Devlin et al., 2019a) - 0.0e-3 90.3 89.6 88.4 82.4
BERTBASE + Weight Noise - 6.5e-3 89.9 89.9 88.4 82.3

Table 5.3: Results of vision-and-language pre-trained models on GLUE tasks. We also provide
BERT models w/ and w/o weight noise as baselines.

Pre-trained on SST-2 QNLI QQP MNLI

MS COCO 83.7 60.6 82.1 69.3
Wiki103* 85.8 77.9 84.8 73.9
No Pre-train 77.1 50.5 31.6 31.8

Table 5.4: Results of BERT models pre-trained on captions in MS COCO and a reduced version
of Wiki103 dataset (denoted as Wiki103*). Models without pre-training are taken as a baseline.

ing the next-sentence-prediction task (Liu et al., 2019b) 2. Using fixed sequence length (Conneau

et al., 2020) of 128. We take the 12-layer BERTBASE model of 768 hidden dimensions and train

it on English Wikipedia for 200K steps from scratch. We also take a reduced 6-layer model and

train it on Wiki103 for 40 epochs (160K steps) because this reduced model could not fit the full

English Wikipedia dataset.

Since we only use the vokens in the supervision, the voken-classification task does not bring

additional parameters to the language model but needs more computations. We thus adjust the

training steps for pure masked-language-model (MLM) training accordingly for a fair compar-

ison. The loss ratio λ=1.0 in Eqn. 5.1 is not tuned because of limited budget. All pre-training

processes take batch sizes of 256 and learning rates of 2e-4. For fine-tuning tasks, we report the

results on the validation sets. We train 3 epochs with a learning rate of 1e-4 and a batch-size of 32

for all tasks in GLUE. The hyper-parameters for SQuAD, SWAG are borrowed from BERT.

5.4.3 Results

As reported in Table 5.2, we fine-tune the pre-trained models on different natural-language

tasks. The models are either pre-trained with masked language model (e.g., “BERT6L/512H”)
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Method Retrieval Supervision SST-2 QNLI QQP MNLI

SentLabel Sent-level Sent-level 88.3 86.1 86.9 78.0
Propagated Sent-level Token-level 88.9 87.9 88.1 80.2
Term Frequency Token-level Token-level 89.0 86.9 85.5 79.8

Vokens Contextual Token-level Token-level 92.2 88.6 88.6 82.6

Table 5.5: Comparisons of sentence-level (denoted as “Sent-level”) and token-level approaches.
Token-level approaches outperform the sentence-level approaches from both retrieval-method and
supervision perspective.

or pre-trained with masked language model with an additional voken-classification task (e.g.,

“BERT6L/512H+Voken-cls”) following Eqn. 5.1. The default metric is accuracy. Following Wang

et al. (2019a), we report the average of F1 and accuracy for QQP. For SQuAD, we report the

exact matching and F1 score respectively. We also compute macro-averages for evaluated tasks

(denoted as “Avg.” in the last column) as a general indicator. Although the different architectures

of models (i.e., 6L/512H and 12L/768H) affect the fine-tuning results, the voken-classification

task consistently improves the downstream tasks’ performance and achieves large average gains.

We also show the transferability of our vokenizer to the RoBERTa model and observe the same

phenomenon as that in BERT.

5.5 Analysis

5.5.1 Limit of Visually-Grounded Language

In Sec. 5.2.3, we illustrated the differences between (visually-)grounded-language datasets

and other natural-language corpora by demonstrating their contrasting statistics. In this section,

we study the models trained with grounded language and show their ineffectiveness on pure-

language tasks. We first investigate vision-and-language pre-training frameworks, which succeed

on multimodal tasks. As shown in Table 5.3, when fine-tuning them on pure-language tasks, the

results are generally lower than the pre-trained BERT model.6 Although these frameworks are dif-

6ViLBERT (Lu et al., 2019) freezes the BERT weight in its training thus their results are the same to BERT;
Uniter (Chen et al., 2019b) shrinks its vocab thus is not shown.
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ferent in multiple ways, the only remarkable factor to the fine-tuning results is the BERT-weight

initialization. Moreover, we also show that these models are similar to a BERT model with a ran-

dom weight noise of the same magnitude. We thus claim that vision-and-language pre-training

on visually-grounded language dataset currently might not help the pure-language tasks. Note

that the BERT results in Table 5.2 are not fairly comparable to the results in Table 5.3 because the

original BERT model (Devlin et al., 2019a) also uses Toronto Books Corpus (Zhu et al., 2015).

Unfortunately, this dataset is not publicly available and hence we exclude it. According to Raffel

et al. (2019), the exclusion of Toronto Books Corpus downgrades the results and we observe the

same tendency here (comparing BERT12L/768H in Table 5.2 and BERTBASE in Table 5.3).

Besides these existing models, we next investigate the BERT models trained with masked

language model on grounded language data (i.e., MS COCO). A control experiment is built

by shrinking the Wiki103 to the same token amount as MS COCO. We also provide the BERT

model trained from scratch as a baseline. As shown in Table 5.4, the model trained with MS

COCO is significantly worse than the model trained with Wiki103 on all downstream tasks. The

reason might be the large discrepancy between visually-grounded language and other types of

language as shown in Sec. 5.2.3.

5.5.2 Token-Level vs. Sentence-Level Approaches

In Sec. 5.1, we stated the drawbacks of the purely sentence-level and token-level approaches,

then introduce the contextual token-level approach (i.e., the contextual token-image matching

model in Sec. 5.3.2) which combines these two approaches. In this section, we demonstrate a

careful comparison between our vokenization process and the other two approaches from two

perspectives: the retrieval methods and the supervision types. Experiments are conducted with

the same hyper-parameters and dataset as “BERT12L/768H+Voken-cls” in Table 5.2.

Sentence-Level Retrieval To conduct sentence-level retrieval, we first adapt the contextual

token-image matching model in Sec. 5.3.2 to a sentence-image matching model. We then re-

trieve a related image for each sentence. As shown in Table 5.5, these retrieved images are used
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as two kinds of supervisions by putting classifiers at different places: in the row “SentLabel”,

we provide sentence-level supervision by using the classifier to predict the label for the whole

sentence (similar to the BERT’s “next-sentence prediction” (NSP) task); and in the row “Propa-

gated”, we provide token-level supervision by propagating sentence-level labels to all tokens in

the sentences, and apply the classifier at each token (similar to our voken-classification task). The

results of both kinds of supervisions are lower than our proposed vokens (in the row “Vokens”).

One possible reason for these lower results is that finding an image that conveys the meaning of

the whole sentence is hard. We also find that dense token-level supervision also outperforms the

sentence-level supervision.

Token-level Retrieval Our proposed vokenization process is viewed as contextual token-level

retrieval, which grounds tokens with whole sentences as context. We here consider a purely

token-level retrieval method regarding term frequencies. The term frequency tf ptok , xiq (Man-

ning et al., 2008) is calculated based on the occurrence #ptok , xiq of the token tok in the image

xi’s captions.

tf ptok , xiq “
#ptok , xiq

ř

tok 1 #ptok
1, xiq

We then convert this term frequency to the conditional distribution via Boltzmann distribution:

ppxi | tokq “
exp ptf ptok , xiq{γq

ř

x1 exp ptf ptok , x
1q{γq

where γ is temperature. We stochastically map the tokens to images with this conditional distri-

bution ppxi | tokq. The results trained with these special vokens are shown in Table 5.5 as “Term

Frequency”. Overall, token-level supervision is still better than the sentence-level supervision

(as in the row “SentLabel”). However, among the models trained with token-level supervision,

this token-level retrieval method neglects the contextual information thus is worse compared with

sentence-level (in the row “Propagated”) and contextual token-level retrieval methods (in the row

“Voken”) .
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down by the salle

##y gardens my love

and I did meet

humans learn language by

listening speaking writing reading

Example 2: Down by the salley gardens 
my love and I did meetExample 1: Humans learn language by 

listening, speaking, writing, reading

Figure 5.4: Visualization of model-generated vokens. Example 1 takes the leading sentence of
this paper while Examples 2 takes Yeats’s poet.

5.5.3 Visualization of Vokens

In Fig. 5.4, we visualize our generated vokens. The first example takes the leading sentence

in our paper (without commas), which is also used in the imaginary example in Fig. 5.1. We also

vokenize another sentence from William Yeats’s poet “Down by the Salley Gardens” in Fig. 5.4.

Although the vokenizer is trained on image-captioning datasets without localizing token-to-image

annotations, the vokenizer shows a strong selectivity: different images are selected w.r.t the to-

kens. The contextual token-level retrieval could also disambiguate certain tokens (e.g., “down”

in Example 2) with the help of its context. When the unique related image is hard to define, our

vokenizer aims to ground the non-concrete tokens (e.g., “by”/“and”/“the”) to relevant images: the

voken for the token “by” in Example 2 (of Fig. 5.4) is better aligned with the [centering token,

context] pair than the voken for the same token “by” in Example 1. This related visual informa-

tion helps understand the language and leads to the improvement in Table 5.2. On the other hand,

some tokens are not faithfully grounded (e.g., “writing” in Example 1) and we also observe a

shift in alignment (e.g., the relevant image for the phrase “my love” in Example 2 is aligned to

“my” instead of “love”). These misalignments are possibly caused by the limitations of sentence-

image weak supervision in our training data since the strong token-image annotations are not

available.
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5.6 Conclusion

We explored the possibility of utilizing visual supervision to language encoders. In order

to overcome the challenges in grounded language, we developed the vokenizer with contextual

token-image matching models and used it to vokenize the language corpus. Supervised by these

generated vokens, we observed a significant improvement over the purely self-supervised lan-

guage model on multiple language tasks.
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CHAPTER 6: COMBINING VISION AND LANGUAGE PRE-TRAINING METHODS
FOR VIDEO UNDERSTANDING

6.1 Introduction

In recent years, state-of-the-art self-supervised methods have been exploring different direc-

tions for pre-training images and text representations, with Contrastive Learning (CL) providing

strong results for vision representation learning (Oord et al., 2018; Chen et al., 2020b; He et al.,

2020a; Chen et al., 2020c; Tian et al., 2020), and Language Modeling (LM) becoming the de-

facto standard in natural language processing (NLP) pre-training (Devlin et al., 2019a; Liu et al.,

2019b; Yang et al., 2019; Lan et al., 2019). Both approaches are quite different from each other.

A contrastive objective compares positive/negative examples at a coarse/sample level, focusing

on global-content (e.g., for object detection) while a token modeling objective predict missing

tokens from context at a much finer/sub-sample level to model sequential and short range interac-

tions between tokens (e.g. in text generation tasks). Interestingly, video understanding naturally

combines both types of requirements. 2D processing along the spatial dimensions of the video

bears similarity to image processing, while 1D processing along the temporal dimension often

involves modeling sequential events and short range coherence.

Hence, in this work, we propose to combine both text and image representation learning ap-

proaches for improved video pre-training, taking advantage of recent advances in self-supervised

methods of both fields. We name our method as VIMPAC: VIdeo pre-training via Masked to-

ken Prediction And Contrastive learning. From language research, we adopt a ‘masked language

model’ pre-training objective (Devlin et al., 2019a) where a model is trained to reconstruct local

masked regions in images or videos. From the computer vision world, we borrow a contrastive

learning objective, specifically the InfoNCE (Oord et al., 2018) objective applied on positive/neg-
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ative video samples. While the masked language model objective encourages models to learn

low-level semantics and sequential interaction, the contrastive loss provide a supervision for the

models to learn more global and separable representations that are useful for many downstream

tasks (e.g., action classification (Soomro et al., 2012b; Kuehne et al., 2011a; Carreira and Zisser-

man, 2017)). Combining both objectives allow to provide training signal covering complemen-

tary aspects of a video signal: while short range correlations can be predominantly modeled from

the training signal of the mask-and-predict task, the contrastive learning objective can provide

signal on a more coarse-grained global-context and semantic level.

However, unlike language and its compact vocabulary of discrete tokens, videos are typically

represented as RGB pixels in an almost continuous, high dimensional vector space. Naively

masking pixels in videos induces a prohibitive computation cost while also tending to over-

emphasize local details. To overcome these issues, we first tokenize input videos using the la-

tent codes of a pretrained Vector Quantized-Variational Auto-Encoder (VQ-VAE) (van den Oord

et al., 2017; Ramesh et al., 2021) to encode them in smaller quantized representations on which

a reconstruction model can then be trained with a masked token modeling objective. In practice,

we also discovered that models trained with a uniform random token masking strategy can fail

to learn meaningful and useful visual representations as neighboring pixels may contain very

similar and correlated content (in particular along the temporal frame axis), making the task of

predicting a randomly masked token from its visible neighbors easy. We therefore also introduce

a block-masking scheme for videos by simultaneously masking video tokens in a contiguous 3D

spatio-temporal block. Reconstructing such an extended spatio-temporal cube requires perform-

ing long-range predictions, forcing the models to learn a more complex set of relations between

the video tokens, resulting in better visual representations.

Our contrastive learning approaches also departs from previous work in several aspects. First,

since we apply the contrastive objective on token-discretized video samples and in combination

with the token modeling loss, we observe strong performance without requiring the usual exten-

sive set of data augmentations (Chen et al., 2020b,c; Qian et al., 2021; Feichtenhofer et al., 2021).
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Second, we are able to leverage positive clip pairs that are temporally distant from each other

(can be as far as 400 seconds away), while previous work favors using positives within a shorter

range (maximum 36 seconds for uncurated videos in (Feichtenhofer et al., 2021) or 10 seconds

in (Qian et al., 2021)).

We evaluate the performances of our method VIMPAC on several video understanding

datasets including two temporal-heavy tasks, SSV2 and Diving48 on which it achieves state-

of-the-art results with regard to both self-supervised and supervised pre-training works and a set

of more spatial-heavy datasets (UCF101, HMDB51, and Kinetics-400) on which it achieve com-

petitive results with regards to the literature. Overall, taking advantage of VQ-VAE discretized

video tokens, we present a method for self-supervised learning of video representations that

combines two general streams of research in self-supervision: masked language modeling and

contrastive learning. Our contribution is 3-folds: (i) We apply the mask-then-predict task to video

understanding and introduce the use of block masking. (ii) We propose a contrastive learning

method which is able to achieve strong performance without spatial data augmentation. (iii) We

empirically show that this method can achieve state-of-the-art results on several video classifica-

tion datasets. We also present comprehensive ablation studies to analyze the various aspects of

our proposed approach.

6.2 Methods

In this section, we present our proposed video pre-training method VIMPAC (illustrated

in Fig. 6.1) as well its detailed components. We first introduce the mask-then-predict task in

Sec. 6.2.1, and then the contrastive learning task in Sec. 6.2.2. Lastly, we discuss how these two

tasks are combined in Sec. 6.2.3.

6.2.1 Mask-then-Predict Task

Suppose that a video clip input comprises T frames tf1, f2, . . . , fTu, the mask-then-predict

task learns video representations by predicting the masked contents from their spatio-temporal
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Task 2): Contrastive Learning

Spatio-Temporal Transformer

VQ-VAE
Encoder

Video Clip

Frame 1 Frame 2

Task 1): Mask-then-Predict

VQ-VAE
Encoder

Block-
Masked 
Tokens

Tokens

[CLS] Token

Figure 6.1: Illustration of our VIMPAC framework. Frames are sampled from the video clip
and discretized by VQ-VAE encoder. The tokens from VQ-VAE are then block-masked (in light
yellow blocks). The model is self-supervised by two tasks: 1) mask-then-predict task predicts the
masked tokens from visible context; 2) contrastive learning task classifies the positive examples
(details in Fig. 6.2) with the feature of the additional [CLS] token. For space limit, we only show
2 frames and a smaller token map.

context. Denote the set of mask-token locations as M , we learn to predict the original tokens

txt,i,ju (see details below) by optimizing the negative log-likelihood:

Lmask “ ´
1

|M |

ÿ

t,i,jPM

log pt,i,j
`

xt,i,j | txt1,i1,j1ut1,i1,j1PMC

˘

, (6.1)

where MC is the complement of M and thus indicates the unmasked context.

Video Quantization with VQ-VAE. Since directly applying mask-then-predict over raw pixels

and masking/predicting pixels leads to prohibitive computational costs and also tends to make

the model overfit on detailed low-level visual information, we quantize the input videos with

Vector Quantized-Variational Auto Encoder (VQ-VAE) (van den Oord et al., 2017; Ramesh

et al., 2021). The VQ-VAE encoder takes an image as input and produces a token map, where

the tokens belong to a predefined vocabulary V of cardinal ‘vocabulary size’. The VQ-VAE

decoder then tries to reconstruct the original image from these latent codes. In our method, we

use a frozen and pretrained generic VQ-VAE encoder as a compressor that converts an input from

an original input space RHˆWˆ3 into a discretized space rV s
H
8
ˆW

8 . We independently apply the
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VQ-VAE
Encoder

Video Frames Video Frames

Block Masking I.I.D. Masking

Video 1

Video 2

Video 3

Reference

Positive

Negatives

(a) Illustration of Block and I.I.D. Masking. (b) Illustration of Contrastive Learning.

Spatio-
Temporal 

Trans-
former

Figure 6.2: Illustration of pre-training task details. In (a), block masking constructs the 3D-
contiguous masking cube while i.i.d masking independently samples masked tokens. In (b),
given the reference video clip, the positive clip is uniformly sampled from the same video
(video 1) while negative clips are sampled from other videos (video 2 and video 3). No spatial
augmentations are applied to the raw video clips.

VQ-VAE encoder to each frame ft inside a clip.1 We keep the VQ-VAE weights frozen and do

not finetune or adapt this model on our corpus.

Block Masking For sampling tokens to mask, the original BERT methods proposes the i.i.d.

(independent and identically distributed) random mask Miid that constitutes of masked tokens:

Miid “ tpt, i, jq | Ut,i,jr0, 1s ă ξu, (6.2)

where Ut,i,jr0, 1s is the uniform distribution from 0 to 1. Intuitively, ξ is the expectation of masked-

token ratio and hence controls the difficulty of our mask-then-predict task. In our early experi-

ments, we found it easy to infer a masked token from its direct spatio-temporal neighbours (e.g.,

neighboring frames in a video tend to look similar thus contain similar tokens). To overcome this

issue, we propose to use block masking (see Fig. 6.2 (a)), which masks continuous tokens inside

spatio-temporal blocks. For each mask block B, we randomly sample lower (B˚,0) and upper

boundaries (B˚,1) for each of the temporal (T ), height (H), and width (W ) dimensions. The di-

rect product of the intervals delimited by these boundaries constructs the block mask. The final

1We do not use the Video-VQVAE (Walker et al., 2021) method since the image-trained VQVAE (Ramesh et al.,
2021) has been pretrained on a very large image corpus and as a consequence cover a much more diverse set of
visual scenes and elements.
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mask Mblock is the union of them:

Mblock “
Ť

BrBT,0, BT,1s ˆ rBH,0, BH,1s ˆ rBW,0, BW,1s. (6.3)

6.2.2 Contrastive Learning

Contrastive learning aims to distinguishing positive pairs from negative pairs (see Fig. 6.2

(b)). For each video videoi, we uniformly and independently sample two clips ci, c1i as a positive

pair, while the clips in a batch belonging to other videos are used to construct negative pairs. A

model (described in Sec. 6.2.4) processes clips ci, c1i to build respective vector representations fi,

f 1i and an InfoNCE (Oord et al., 2018) loss is used to distinguishes the positive feature pair (fi,

f 1i ) from the negative pairs
Ť

ttpfi, fkq, pfi, f
1
kqu | k ‰ iu for each clip ci:

LInfoNCEpiq “ ´ log
exp pfJi f

1
i{γq

ř

k‰i exp pf
J
i fk{γq `

ř

k exp pf
J
i f

1
k{γq

, (6.4)

which we combine with the symmetric loss L1InfoNCEpiq for paired clip sample c1i.

The final loss for a mini batch Lcl is the average loss for all n clips in the mini-batch:

Lcl “
1

n

n
ÿ

i“1

LInfoNCEpiq `
1

n

n
ÿ

i“1

L1InfoNCE. (6.5)

6.2.3 Pre-Training Objective

We combine the two pre-training methods discussed above to define the overall objective as:

L “ Lmask ` αγLcl, (6.6)

where α is a hyperparameter controlling the weight of the contrastive loss and multiplying the

temperature γ will smooth training (Grill et al., 2020; Chen et al., 2021). The inputs for both

tasks are shared in mini-batches with the contrastive learning loss using the same block-masked

68



inputs necessary for the mask-then-predict task. We highlight that the masked tokens for the

denoising task are the only noise introduced in the contrastive learning, and that no other data

augmentation is applied to raw pixels, in contrast to previous vision contrastive learning meth-

ods in which data-augmentation was paramount to the final performances of the model. This

phenomenon is empirically studied in Sec. 6.4.2.3.

6.2.4 Modeling

The model architecture follows the standard transformer architecture in its post-layer-norm

variant (Vaswani et al., 2017; Devlin et al., 2019a) with two more recent additions: divided

temporal-spatial attention (Bertasius et al., 2021), and sparse spatial attention (Child et al., 2019).

The model embedding layer maps the discrete tokens txt,i,ju of a quantized input video (see

Sec. 6.2.1) into dense vectors and sum them with positional embeddings. The backbone trans-

former model then outputs corresponding features tht,i,ju. We append an additional [CLS] token

to each input sequence following (Devlin et al., 2019a) and use its output feature hcls as a rep-

resentation for the whole video. For pre-training, we use two heads: a 2-layer MLP after each

token outputs tht,i,ju for the mask-then-predict task following BERT (Devlin et al., 2019a), and a

3-layer MLP after the CLS output hcls for the contrastive learning task following SimCLR (Chen

et al., 2020b). For fine-tuning on classification tasks, we remove the pre-training heads and add a

fully-connected layer to the [CLS] output hcls.

6.3 Experiments and Results

6.3.1 Datasets

For pre-training, we use the HowTo100M dataset (Miech et al., 2019). This dataset is con-

structed by searching YouTube videos with a list of text queries, it is significantly larger and more

diverse than human-annotated datasets such as Kinetics 400 (Carreira et al., 2019). HowTo100M

has 1.2M uncurated videos, with an average duration of 6.5 minutes. We only use videos and do
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not use other signals such as ASR captions in this dataset. For downstream evaluation, we exper-

iment with several action classification datasets: UCF101 (Soomro et al., 2012a), HMDB51 (Kuehne

et al., 2011b), Kinetics-400 (Carreira and Zisserman, 2017), SSV2 (Goyal et al., 2017a), and Div-

ing48 (Li et al., 2018). It is important to note that in many cases, actions in UCF101, HMDB51,

and Kinetics-400 can be recognized from a single frame of the video, thus these datasets are

‘spatially-heavy’. As a consequence, image-level methods (Bertasius et al., 2021; Radford et al.,

2021b) show competitive results without modeling the temporal interactions inside the videos. To

test the video model’s ability beyond recognizing static images, we lay our focus on ‘temporally-

heavy’ datasets (SSV2 and Diving48), in which action recognition from a single frame is more

difficult. For example, it is almost impossible to distinguish two SSV2 classes moving some-

thing up and moving something down without reasoning across frames, and the same for different

diving classes in Diving48.

6.3.2 Experimental Setup

Our model shapes follow BERTLARGE with 24 layers and hidden size 1024, but with halved at-

tention head size and MLP intermediate size as in (Child et al., 2019). For pre-training, we train

the model for 100 epochs on the HowTo100M dataset with frames sampled at 2 FPS. We create

the training inputs by sampling two clips from each video as described in Sec. 6.2.2. To reduce

computation cost, the first 90 epochs are trained with a smaller input resolution (#frames T=5

and frame size S=128) and we increase the spatial resolution (T=5, S=256) for the last 10 epochs

following (Devlin et al., 2019a). Positional embeddings are interpolated as in (Dosovitskiy et al.,

2021) when input resolution changes. Importantly, our pre-training scheme does not involve spa-

tial augmentations: all frames are resized and centered cropped without random flipping, color

distortion, etc. We use a batch size of 1024 in pre-training. The number of negative clips used

for contrastive learning is 255 for the first 90 epochs and 127 for the last 10 epochs. The num-
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Table 6.1: Comparison with state-of-the-art. Our model outperforms previous works on
SSV2 and Diving48 dataset while showing competitive results on other datasets. UCF101
and HMDB51 are average over three train-val splits.

Method
Temporally-Heavy Spatially-Heavy

SSV2 (Goyal et al., 2017a) Diving48 (Li et al., 2018) UCF101 (Soomro et al., 2012b) HMDB51 (Kuehne et al., 2011a) K400

Previous SotA 65.4 (Arnab et al., 2021) 81.0 (Bertasius et al., 2021) 98.7 (Kalfaoglu et al., 2020) 85.1 (Kalfaoglu et al., 2020) 84.8 (Arnab et al., 2021)
w/o Temporal Modeling 36.6 (Bertasius et al., 2021) - 92.0 (Radford et al., 2021b) - 77.6 (Bertasius et al., 2021)

Self-supervised Pre-Training
K400 Self-Sup. 55.8 (Feichtenhofer et al., 2021) - 96.3 (Feichtenhofer et al., 2021) 75.0 (Feichtenhofer et al., 2021) -
MIL-NCE - - 91.3 61.0 -
MMV - - 95.2 75.0 -
MoCo 53.2 - 92.9 - -
VIMPAC 68.1 85.5 92.7 65.9 75.3

Supervised Pre-Training
K400 Sup. 63.1 (Feichtenhofer et al., 2019) - 96.8 (Tran et al., 2018) 82.5 (Wang et al., 2019b) 81.5 (Kondratyuk et al., 2021)
TimeSformer 62.3 81.0 - - 80.7
ViViT 65.4 - - - 80.6

ber of negative pairs used in our ablation analyses is kept constant at 127.2 For fine-tuning, we

use more input frames (T=10 and S=256), and batch size 128. We sample frames at 2 FPS for

datasets with longer videos (i.e., UCF101 and Kinetics-400), and sample 4 FPS for datasets with

shorter videos (i.e., HMDB51, SSV2, Diving48). During inference, we follow (Feichtenhofer

et al., 2019, 2021) to use 3 spatial crops and 10 temporal crops (in total 30 crops), and average

their prediction scores as the final score.3 All models are trained with AdamW (Loshchilov and

Hutter, 2018) optimizer with linear warm-up and linear learning rate decay. We observe simi-

lar pre-training instability as reported in (Chen et al., 2020a, 2021) and follow their practice to

sequentially choose learning rate at 1e-3, 5e-4, 3e-4, ..., until convergence.

6.3.3 Results

We compare our primary results with previous work in Table 6.1. We expand the results

that are most related to our work: self-supervised training on uncurated videos and supervised

pre-training with transformers. For other results, we select the best-performing models to our

knowledge and denote their reference in the table.

2During pre-training, we always accumulate the gradient to a batch size of 1024 before updating the weights but use
different numbers of negative examples. We analyze this effect in Sec. 6.4.2.3.
3As in (Bertasius et al., 2021; Arnab et al., 2021), we observe that the performance is saturated at 4„5 temporal
crops for our model.
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Our model VIMPAC sets the new state of the art on the two temporally-heavy datasets SSV2

and Diving48, where we achieve 2.7% and 4.5% absolute improvement, respectively, over pre-

vious best models among all self-supervised and supervised pre-trained methods. This is es-

pecially surprising considering the two previous SotA models ViViT (Arnab et al., 2021) and

TimeSformer (Bertasius et al., 2021) both use large-scale supervised pre-training, and ViViT

also uses various regularization techniques (e.g., stochastic depth (Huang et al., 2016), random

augment (Cubuk et al., 2020) and mixup (Zhang et al., 2018)). VIMPAC also achieves compet-

itive results on other three spatially-heavy datasets: UCF101, HMDB51, and Kinetics-400. As

discussed in Sec. 6.3.1, recognizing actions in SSV2 and Diving48 require a strong temporal

reasoning ability, while in the other datasets, spatial understanding is dominant. Some relatively

low results of our VIMPAC (e.g., K400) are thus possibly due to the VQ-VAE spatial informa-

tion loss. To illustrate this, we show a comparison between the SotA models 4 with temporal

modeling in the first row and the ones without in the second row of Table 6.1. Note the gaps be-

tween these two types of models are significantly larger for temporally-heavy datasets (SSV2)

than spatially-heavy datasets (UCF101, Kinetics-400), demonstrating the importance of temporal

modeling for temporally-heavy datasets. We also show the methods pre-trained on HowTo100M

that take other modalities to help video learning thus beyond the scope of visual self-supervised

learning.

Previous self-supervised pre-training such as MoCo (Feichtenhofer et al., 2021) are good

at global understanding, but the pre-training schema does not consider the internal interactions

inside videos (especially for the temporal dimensions). As a result, it could reach or even outper-

form the supervised alternatives on UCF101. However, it shows lower results on SSV2 compared

to the transformer models (Bertasius et al., 2021; Arnab et al., 2021) (although with different

backbone models) that warm up from image-pre-trained models and learn the temporal interac-

tions directly from the downstream tasks.

4Some SotA models are pre-trained with extremely large (weakly-)supervised datasets, e.g., IG65M (Ghadiyaram
et al., 2019) in (Kalfaoglu et al., 2020) and JFT-300M (Sun et al., 2017) in (Arnab et al., 2021).
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Table 6.2: Impact of model size. ‘Params’ is the number of parameters. ‘Speed’ is the normalized
pre-training speed measured by #videos/second on one V100 GPU. ‘Mask-Accu.’ and ‘CL-Loss’
are mask-then-predict accuracy and contrastive learning loss to indicate the pre-training perfor-
mance. ‘UCF101’ is the fine-tuning accuracy on UCF101 dataset. First line is defautly used in
analysis and the configuration producing final results are underlined.

Layers Dim Params Speed Mask-Accu.Ò CL-Loss Ó UCF101Ò

6 512 29.4M 32.0 17.2 1.06 69.4

6 768 63.0M 21.0 17.7 1.03 75.0
12 512 54.7M 18.1 17.9 1.02 76.6
12 768 119.7M 11.2 18.4 1.00 78.1
24 1024 210.1M 5.0 18.7 0.98 78.5

6.4 Analysis

We also analyze the model’s scalability and the effectiveness of our pre-training methods.

To save computation, for all analyses, we use a smaller model (6-layer transformer with hidden

dimension 512) and smaller input resolution (5 input frames with spatial size 128, i.e., T=5,

S=128) throughout this section, unless otherwise stated. We also perform pre-training with fewer

epochs (i.e., 10). For downstream tasks, we use the same input resolution as pre-training (i.e.,

T=5, S=128), and we use 2 temporal crops for inference. All results are reported on the train-val

split 1 if applicable.

6.4.1 Scalability

Model. In Table 6.2, we illustrate the scalability of our method with different model sizes

(i.e., number of layers and hidden dimensions). Larger models have more parameters (‘Params’)

and higher computational cost (measured by the normalized pre-training ‘Speed’). To evaluate

the pre-training tasks performance, we provide both pre-training metrics (mask-then-predict accu-

racy denoted by ‘Mask-Accu.’, and contrastive learning loss denoted by ‘CL-Loss’) and UCF101

downstream fine-tuning results. As the size of the model grows, the fine-tuning results show

consistent improvement with the pre-training metrics. Note that for the last row in Table 6.2, we

halve the attention head and MLP intermediate dimensions.
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Table 6.3: Impact of input resolutions T and S. ‘Mask-Accu.’ and ‘CL-Loss’ are the pre-training
metrics. ‘UCF101’ indicates the UCF101 fine-tuning results with the pre-training resolution.
‘UCF101-Full-Reso.’ indicates the full-resolution fine-tuning with T=10 and S=256.

#frames T Frame Size S Params Pre-train Speed Mask-Accu.Ò CL-LossÓ UCF101Ò UCF101-Full-Reso.Ò

5 128 29.4M 32.0 17.2 1.06 69.4 73.8
10 128 29.4M 16.5 17.2 0.96 74.2 74.6
5 256 29.4M 8.4 10.8 0.93 72.9 75.7

10 256 29.4M 4.4 10.6 0.85 78.1 78.1

Input Resolution. In Table 6.3, we show model scalability over input resolution (i.e., #frames

T and frame size S). With the same frame size S, longer clips perform better than shorter clips

(e.g., T=10, S=128 is better than T=5, S=128). With the same number of input frames T , larger

frame size improves the performance (e.g., T=10, S=256 is better than T=10, S=128). For each

pre-training resolution, we also try to fine-tune under a full-resolution with T=10, S=256 (de-

noted as ‘UCF101-Full-Reso.’). As in pre-training, fine-tuning with larger resolution generally

improves the results. Although longer and smaller clips (T=10, S=128) show better results than

shorter and larger clips (T=5, S=256) when using the same pre-training and fine-tuning resolu-

tions, they show different trends with the full-resolution fine-tuning. Increasing frame size during

fine-tuning (the second block in Table 6.3) only improves the UCF101 result by 0.4, while in-

creasing the clip length (the third block) improves the UCF101 result by 3.8. These results call

for a need of pre-training with large spatial size, and we follow this practice in our large-scale

experiments as in Sec. 6.3.3.

6.4.2 Pre-Training Methods

We analyze the key designs of our two pre-training tasks. When analyzing the mask-then-

predict task in Sec. 6.4.2.2, we exclude the contrastive learning loss (by setting loss ratio α=0)

to preclude potential side effects. However, we still use masked prediction loss when assessing

the contrastive learning task in Sec. 6.4.2.3 as we observe very low performance with only con-

trastive learning objective.
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Table 6.5: Impact of masking strategies.
Models are pre-trained with only mask-then-
predict.

Strategy Frame Size S Mask-Accu.Ò UCF101 Ò

block 128 17.6 68.3
i.i.d. 128 24.3 63.5 (-4.8)

block 256 11.2 69.5
i.i.d. 256 19.5 61.4 (-8.1)

Table 6.6: Impact of masking ratios. Models
are pre-trained with only mask-then-predict.
Default setup is underlined.

Strategy #Blocks Ratio Mask-Accu.Ò UCF101 Ò

block 4 11.9% 17.9 66.8
block 5 14.5% 17.6 68.3
block 6 17.0% 17.3 67.3

6.4.2.1 The Impact of Pre-Training

Table 6.4: Impact of pre-training tasks.
‘MP’=Mask-then-Predict, ‘CL’=Contrastive
Learning task.

MP CL
Temporally-Heavy Spatially-Heavy

SSV2 Diving48 UCF101 HMDB51 K400

7 7 1.2 10.0 41.3 19.0 41.0

7 3 32.5 26.3 57.1 30.7 47.0

3 7 41.4 37.2 68.3 35.3 53.7

3 3 41.1 37.5 69.4 37.8 54.5

We first compare different pre-training tasks

and the non-pre-training results. As shown in Ta-

ble 6.4, mask-then-predict is good at temporally-

heavy datasets (SSV2, Diving48) while contrastive

learning improves the spatially-heavy datasets. We

also compare with the non-pre-training results (the

first row of Table 6.4) and observe that both tasks

significantly improve the results. We notice that

these non-pre-training results are lower than previ-

ous from-scratch models, which might be caused

by the difficulty in training video transformers (Bertasius et al., 2021; Arnab et al., 2021) and the

information loss in our input quantization process (Ramesh et al., 2021).

6.4.2.2 Mask-then-Predict

Block Masking versus I.I.D. Masking. We first compare our proposed block masking strat-

egy and the uniform i.i.d. masking strategy (discussed in Sec. 6.2.1 and illustrated in Fig. 6.2).

As shown in Table 6.5, although the i.i.d. masking achieves higher pre-training mask-token-

prediction accuracy (‘Mask-Accu.’), it shows lower downstream results (‘UCF101’) than block

masking. The higher mask accuracy is possibly due to the easier i.i.d. mask-then-predict task.

The existence of such a trivial solution potentially prevents the model from learning useful video
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Table 6.7: Impact of maximum sampling
distance dmax (seconds) between two positive
clips.

dmax Mask-Accu.Ò CL-LossÓ UCF101Ò

8 17.2 1.06 69.4
30 17.3 0.77 69.0 (-0.4)
10 17.4 0.61 68.3 (-1.1)
0 17.5 0.41 66.7 (-2.7)

Table 6.8: Impact of number of negative
samples.

#samples Mask-Accu.Ò CL-LossÓ UCF101Ò

128 -1 17.2 1.06 69.4
256 - 1 17.1 1.30 69.2
512 - 1 17.2 1.56 70.4
1024 - 1 17.0 1.86 69.8

representations for downstream tasks. Meanwhile, we also find that the model with larger input

frame size 256 benefits more from the block masking strategy, because the adjacent tokens are

closer in the original 2D image for these larger frames. Hence, the spatial locality is amplified.

Masking Ratio. In Table 6.6, we study the impact of masking ratio, by varying the number

of masked blocks for block masking. Empirically, the result differences among different masking

ratios are marginal and the original BERT’s 15% masking ratio (with roughly 5 masking blocks)

works slightly better. Thus we always select the number of mask blocks whose induced masking

ratio is closest to 15%.

6.4.2.3 Contrastive Learning

Positive Sampling Distance. As illustrated in Sec. 6.2.2 and Fig. 6.2.(b), we uniformly sam-

ple positive clip pairs across the whole video without any distance restriction. To analyze the

effect of such a sampling strategy, We perform a set of experiments by varying the maximum

sampling distance dmax (in seconds) between two positive clips. The results are shown in Ta-

ble 6.7. dmax=8 denotes our default setup without any distance restriction. dmax=0 samples two

same clips, and dmax=10 samples two positive clips with a maximum distance of 10 seconds. Al-

though previous contrastive learning methods (Qian et al., 2021; Feichtenhofer et al., 2021) favor

the sampling of temporal positives within a shorter range (e.g., maximum 36 seconds for uncu-

rated videos in (Feichtenhofer et al., 2021)), we observe a performance gain when using larger

distance. We also want to emphasize that the results with dmax=10 and dmax=0 are not better

than the model pre-trained with only mask-then-predict (UCF101 accuracy 68.3), which suggests
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that short-range contrastive learning does not improve upon our mask-then-predict task. This is

potentially because our mask-then-predict already gives the model the ability to model local in-

teractions, thus contrastive learning objective can only be useful when it focuses on longer-range

interactions.

Number of Negative Samples. Previous constrastive learning methods (Chen et al., 2020b,

2021; Feichtenhofer et al., 2021) benefit from more negative samples. In this section, we show

that the number of negative samples has less impact on our method when mask-then-predict task

is added. As shown in Table 6.8, we experiment with different contrastive learning sample sizes

(i.e., n in Sec. 6.2.2 which is 1 + number of negative samples) and always accumulate the gra-

dients to 1024 samples before updating the parameters. Although increasing sample size makes

the contrastive learning task harder (reflected by ‘CL-Loss’), it does not show clear evidence of

improving UCF101 downstream performance.

Table 6.9: Impact of mask augmentation
in contrastive learning. ‘MP’=Mask-then-
Predict. ‘CL-Mask’=Use input mask in CL.
Default setup is underlined.

MP CL-Mask Mask-Accu.Ò CL-LossÓ UCF101Ò

7 7 - 1.07 57.1

7 3 - 1.08 55.5

3 7 17.2 1.04 67.4

3 3 17.2 1.06 69.4

Input Masking as Augmentation. Most self-

supervised visual representation learning meth-

ods (Chen et al., 2020c,b; Grill et al., 2020; Feicht-

enhofer et al., 2021; Qian et al., 2021) based on

contrastive learning suffer from a large drop when

removing strong spatial augmentations. In contrast,

our pre-training does not use any spatial augmenta-

tions on raw frames, such as flipping and random

cropping. However, as we tie the input between

mask-then-predict and contrastive learning to re-

duce computation cost, the random masking noise

is naturally introduced. We here investigate its impact in Table 6.9. When pre-trained jointly

with mask-then-predict, adding mask noise improves UCF101 accuracy by +2.0; however, when

pre-trained without it, adding mask noise hurts the performance (-1.6). We hypothesize that

this is due to the large input mismatches between pre-training and fine-tuning when mask-then-
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predict objective is not applied. Noisy masking creates ‘holes’ to the input token maps during

pre-training, while for fine-tuning the input token maps are intact. When mask-then-predict task

is applied, it guides the model to fill these holes, thus reducing this mismatch and allowing the

contrastive learning task to benefit from noisy masking as a type of regularization. In constrast,

this input mismatch becomes dominant when only using the contrastive learning objective.

6.5 Conclusion

We presented the video pre-training framework VIMPAC that introduces mask-then-predict

task to video self-supervised learning. mask-then-predict task helps model spatio-temporal inter-

actions that are important for video understanding. We used the VQ-VAE quantizer and propose

the block masking method that is essential to overcome the strong locality in video. The con-

trastive learning task is also added to learn separable global features. Different from previous

methods, our contrastive learning does not use data augmentation over raw frames and is less

sensitive to the temporal sampling distribution for positive pairs. We showed that our frameworks

could achieve state-of-the-art performance on two temporally-heavy dataset (SSV2 and Div-

ing48) and reach competitive results on other datasets. Detailed analyses are provided regarding

the model scalability and task design.
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CHAPTER 7: SUMMARY, LIMITATIONS, AND FUTURE WORK

7.1 Summary of Contributions

We presented multiple pre-training frameworks for advancing the vision-and-language re-

search. We developed the first vision-and-language pre-training frameworks (LXMERT) in han-

dling image-text interactions and show a significant improvement over non-pre-trained models

on multiple benchmark dataset. We study the impact of single-modality pre-training to vision-

and-language tasks, where visual features containing more semantic information generally

performs better. We next explore whether we could build pre-training frameworks to improve

single-modality tasks with the help from multimodal data. In Vokenization, we present a visually-

supervised language model that learn the language meaning from corresponding images. Lastly,

in VIMPAC, we combine the language modeling and contrastive learning pre-training methods

and show that they are complementary to each other. All these projects have publicly available

code that attracted substantial attention from the community. We hope that our works could in-

spire and help future research in this area as well.

7.2 Limitations and Future Work

7.2.1 Vision-and-Language Pre-training

After the development of vision-and-language pre-training models (Sun et al., 2019; Tan

and Bansal, 2019; Lu et al., 2019), a lot of works in building image-and-text pre-training have

been presented (Li et al., 2019a; Su et al., 2020; Chen et al., 2020d; Zhou et al., 2020; Huang

et al., 2020; Li et al., 2020b; Zhang et al., 2021b; Li et al., 2021b). Researchers also extend the

pre-training method to other problem setups, e.g., video-and-language (Sun et al., 2019; Zhu and
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Yang, 2020; Li et al., 2020a; Miech et al., 2020), instruction-guided navigation (Zhu et al., 2020;

Hao et al., 2020; Hong et al., 2021), documents (Xu et al., 2020), and audio (Akbari et al., 2021).

Although current vision-and-language pre-training frameworks has shown success on diverse

vision-and-language tasks, there are some directions that current models have less explored. First,

the pre-training frameworks are built on deeply-interacted models that do not support efficient

retrieval. ViLBERT (Lu et al., 2019) allows retrieving images from about a set of 5K images,

which is far away from industry requirement of billions (even trillions) images. CLIP (Radford

et al., 2021a) tries to solve this problem by building additive models (Hessel and Lee, 2020), but

it still shows a gap to the deeply-interacted models. Given the industry interest in retrieval-based

problems (e.g., searching, recommendation), we expect substantial progress in building retrieval-

specific pre-trained models in the next few years. Second, the embodied systems (e.g., navigation,

assistant) have a strong need in our real life and usually lack specific data. Thus, it would be

an ideal scenario where pre-training could help. Besides a few works in in-door navigation pre-

training (e.g., Hong et al. (2021)) that is bounded by the small number of environments (i.e., 90),

the power of pre-training frameworks in embodied tasks has not shown yet. Third, balanced data

such as image-caption and video-subscription only contribute a part of our daily life. For most

cases, the multimodal data is imbalanced (in Sec. 2.2.3) that one modality dominates, and other

modality helps with complementary information. For examples, news has long text and a few

related figures, while movies have millions of image frames with only a few-line descriptions.

We think that the understanding of these imbalanced data would be important. It will also require

developing new models, finding new pre-training data, and designing new pretext tasks.

7.2.2 Building Multi-modal Learner

Most of us learn from the multi-modal worlds and apply the knowledge to all kinds of tasks:

pure-language tasks, pure-vision tasks, and vision-and-language tasks. Thus, building a multi-

modal learner that leverages all these supervisions is appealing. Our Vokenization (Tan and

Bansal, 2020) (in Chapter 5) is an initial step to pursue this goal by improving language under-
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standing from multimodal data. It shows improvement on pure-language tasks, but has two main

constraints: 1. the pre-trained BERT (Devlin et al., 2019a) and ResNet (He et al., 2016) model

are needed in training the retriever, which possibly causes information leak from the original

BERT model. 2. The method has not shown the ability to scale up along the amount of vision-

and-language data. We partially resolve these limitations in our recent work (Tang et al., 2021)

by including the video dataset and using a pure knowledge-distillation method. The requirements

of the pre-trained language models are thus removed, and the video data can be easily scaled

up. Meanwhile, concurrent works (Desai and Johnson, 2020; Zhang et al., 2020; Radford et al.,

2021a) explore the possibility to improve pure-vision tasks from the multimodal data. Unsuper-

vised VisualBERT (Li et al., 2021b) and UniT (Hu and Singh, 2021) starts to study a multitasking

model by applying both language tasks, vision tasks, and vision-and-language tasks. Given these

pieces, we are now at the time to build a real multi-modal learner that could benefit from the

redundant and complementary information inside the multimodal signals.

7.2.3 The Universal Model

Current vision-and-language models are designed to contain multiple contents. In LXMERT (Tan

and Bansal, 2019), we have the vision ResNet (He et al., 2016) backbone, Regional Proposal Net-

work (RPN) (Ren et al., 2015), vision transformer encoder, language transformer (Vaswani et al.,

2017) encoder, and the cross-modal transformer encoder. This five-encoder structure is reduced

in recent works. UNITER (Chen et al., 2020d) removes the vision transformer and language

transformer modules but only keeps the cross-modal transformer encoder. PixelBERT (Huang

et al., 2020) removes the Regional Proposal Network (RPN) and only uses the visual backbone.

ViLT (Kim et al., 2021) goes one step further by removing the separate visual backbone. This

provides a unified model to process the vision and language data. However, the input embeddings

are still treated differently. The vision input is converted to vectors by the fully-connected layer,

and the language input is mapped to embeddings by looking up a vector dictionary. We thus seek

for a truly unified model that could treat image and text with the same input module.
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Current progress focuses on unifying the image and text processing. The unified models for

video, audio, kinetics, and other modalities are also important to study. Besides the detailed mod-

eling choices, the pre-training data and tasks to warm up this universal model is another critical

problem. The model is ideally supervised by all the data we had, but practically there would be

a primary task to lead the learning process and build the first curriculum. Lu et al. (2021) takes

language modeling as the universal pre-training tasks. Papadimitriou and Jurafsky (2020) also

tries music, which is another interesting attempt. In the future, we might need to find suitable

tasks and data for building this universal model.
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