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ABSTRACT

Yilin Wang: EFFICIENT TECHNIQUES FOR HIGH RESOLUTION STEREO
(Under the direction of Jan-Michael Frahm and Enrique Dunn)

The purpose of stereo is extracting 3-dimensional (3D) information from 2-dimensional (2D)

images, which is a fundamental problem in computer vision. In general, given a known imaging

geometry the position of any 3D point observed by two or more different views can be recovered by

triangulation, so 3D reconstruction task relies on figuring out the pixel’s correspondence between

the reference and matching images. In general computational complexity of stereo algorithms is

proportional to the image resolution (the total number of pixels) and the search space (the number

of depth candidates). Hence, high resolution stereo tasks are not tractable for many existing stereo

algorithms whose computational costs (including the processing time and the storage space) increase

drastically with higher image resolution. The aim of this dissertation is to explore techniques aimed

at improving the efficiency of high resolution stereo without any accuracy loss.

The efficiency of stereo is the first focus of this dissertation. We utilize the implicit smoothness

property of the local image patches and propose a general framework to reduce the search space

of stereo. The accumulated matching costs (measured by the pixel similarity) are investigated

to estimate the representative depths of the local patch. Then, a statistical analysis model for

the search space reduction based on sequential probability ratio test is provided, and an optimal

sampling scheme is proposed to find a complete and compact candidate depth set according to the

structure of local regions. By integrating our optimal sampling schemes as a pre-processing stage,

the performance of most existing stereo algorithms can be significantly improved. The accuracy of

stereo algorithms is the second focus. We present a plane-based approach for the local geometry

estimation combining with a parallel structure propagation algorithm, which outperforms most

state-of-the-art stereo algorithms. To obtain precise local structures, we also address the problem of

iii



utilizing surface normals, and provide a framework to integrate color and normal information for

high quality scene reconstruction.
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CHAPTER 1: INTRODUCTION

In computer vision, stereo is a fundamental research topic that focuses on capturing the shape

of real objects. The research began in the 1970s (Hannah, 1974; Marr and Poggio, 1976, 1979), and

numerous stereo algorithms (Kolmogorov and Zabih, 2001; Rusinkiewicz et al., 2002; Hirschmuller,

2005; Klaus et al., 2006; Yoon and Kweon, 2006; Yang et al., 2009; Rhemann et al., 2011; Mei

et al., 2011) and outstanding hardware (Izadi et al., 2011; Smisek et al., 2013) have been proposed

in last few decades. Generally, stereo methods can be classified as active approaches (interfering

with objects) (Rusinkiewicz et al., 2002; Izadi et al., 2011) and passive approaches (not interfering

with objects) (Kolmogorov and Zabih, 2001; Hirschmuller, 2005; Klaus et al., 2006; Yoon and

Kweon, 2006; Yang et al., 2009; Rhemann et al., 2011; Mei et al., 2011) .

There are two main types of active stereo approaches: Structured Light (Scharstein and Szeliski,

2003a) and Time of Flight (Hansard et al., 2012), where the former one is the process of projecting

a known pattern of pixels (often grids or horizontal bars) onto a scene, and the latter one is a range

imaging camera system that resolves distance based on the known speed of light, measuring the

time-of-flight of a light signal between the camera and the subject for each point of the image.

Kinect 1 is a typical active stereo camera, which is able to perform real time 3d reconstruction but

only works well within a limited depth range (usually 1m ∼ 5m). Furthermore, if multiple active

stereo cameras are running at the same time, the devices may disturb each other’s measurements.

Due to the limitation of active cameras, passive stereo approaches are still good choices in

many applications (as shown in Figure 1.1), such as High-Quality Reconstruction (Beeler et al.,

2010; Furukawa and Ponce, 2010; Matthies et al., 2007), Real-time 3D Urban/Terrain Modeling

(Gallup et al., 2007; Matthies et al., 2007), and Modeling from Image Collections (Furukawa et al.,

1 Kinect for Windows: http://www.microsoft.com/en-us/kinectforwindows/
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Large Scale Scene Reconstruction High Quality Surface Reconstruction

Building Rome on a Cloudless Day 377

Fig. 6. Sample input images (courtesy of Flickr users: jdn, parris , Rictor Norton &
David Allen, Felpa Boy, Andreas Solberg, xiquinhosilva, HarshLight,stevesheriw), local
iconic scene graph and 3D model

Real-time 3D Urban Modeling Modeling from Image Collection
(Gallup et al., 2007) (Frahm et al., 2010)

Figure 1.1: Applications of Passive Stereo.

2010; Frahm et al., 2010). In passive stereo, multiple color/intensity images covering the same

scene are captured at different camera positions, and then the 3D information of one pixel can be

estimated by finding its corresponding pixels on matching images based on perspective geometry

(Hartley and Zisserman, 2003). In the Middlebury stereo benchmark 2, more than 150 different

passive stereo algorithms have been proposed in the last ten years, however, most of them are only

evaluated by images with Video Graphics Array (VGA) resolutions (640 × 480 ≈ 0.3M pixels,

Fig 1.2 left), which are much smaller than the resolution of images captured by state of the art

mobile phones (around 8M pixels) and digital cameras (20M pixels, Fig 1.2 middle). Furthermore,

some applications like 3D map reconstruction (Hirschmuller et al., 2012; Dial and Grodecki, 2005)

require to process even larger images (150M pixels, Fig 1.2 right) captured by aircrafts or satellites.

Since the computational complexity of stereo is proportional to the number of image pixels and

the number of candidate depths for testing (called search space), the computational cost for high

resolution stereo would be unaffordable for many existing stereo approaches. Performing high

2 Middlebury Stereo Evaluation: http://vision.middlebury.edu/stereo/eval/
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resolution stereo efficiently is still an open problem in computer vision. Since directly performing

stereo algorithms designed for low resolution image in high resolution cases will lead to lots of

redundant costs, reducing the computational requirements has recently received renewed attention

(Sizintsev, 2008; Hawe et al., 2011; Min et al., 2011).

In this dissertation, we study the efficiency of stereo by investigating two critical components

of the stereo algorithm: the search space and the aggregation structure. The former determines

the number of candidate depths needed to be tested, while the latter one will heavily influence

the accuracy of the estimated depths. By improving the performance of stereo algorithms in both

aspects, i.e. reducing the search space and refining the aggregation structure, we can obtain depth

maps with more efficiency and higher quality than existing approaches.
High Resolution Stereo

15

VGA Image
(0.3M pixels)

High Resolution Image
(19M pixels)

VGA Image (0.3M )

Satellite Image
(144M pixels)

Figure 1.2: Image resolution comparison: VGA image, High Resolution image, and Satellite image.

Thesis Statement

The efficiency of stereo algorithms can be highly improved by reducing the search space

under optimal sampling schemes, and high quality depth maps can be achieved by extracting and

integrating local structures.
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Contributions

My research makes the following contributions.

Search Space Reduction

Sparse Distributed Depth Sampling. We introduce a novel framework for efficient stereo

disparity estimation leveraging the spatial smoothness typically assumed in stereo. The smoothness

constraint presumes that a neighboring set of pixels shares the same disparity or the disparity

varies smoothly. The key insight is that it hence suffices to evaluate any single one of those pixels

at the correct disparity to identify a valid estimate for the entire set. We leverage this insight

into the formulation of a complexity reducing mechanism, and distribute the exploration of the

disparity search space among neighboring pixels, effectively reducing the set of disparity hypotheses

evaluated at each individual pixel.

Sequential Optimal Sampling. We develop a sequential optimal sampling framework for stereo

disparity estimation by adapting the Sequential Probability Ratio Test (SPRT) model. The proposed

framework operates over local image neighborhoods by iteratively estimating single pixel disparity

values until sufficient evidence has been gathered to either validate or contradict the current

hypothesis regarding local scene structure. The output of the sampling within a given region is a

set of sampled pixel positions along with a robust and compact estimate of the set of disparities

contained within that region. The attainment of such disparity set enables the effective reduction of

the disparity search space for all remaining non-sampled pixels. Accordingly, the proposed sampling

framework is a general pre-processing mechanism aimed at reducing computational complexity of

disparity search algorithms.

Local Structure Estimation

Surflet-based Stereo. We present a multi-modal surface reconstruction approach, which uti-

lizes direct surface orientation measurements, along with luminance information, to obtain high
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quality 3D reconstructions. The proposed approach models local surface geometry (called Surflet)

as a set of intersecting natural cubic splines estimated through least squares fitting of our input

pixelwise surface normal measurements. We use this representation to detect discontinuities and

divide the scene into disjoint continuous surfaces, which are constructed by the aggregation of con-

nected local surface geometry elements. In order to obtain absolute depth estimates, we introduce

the concept of multi-view surflet sweeping, where we search for the most photo-consistent patch

displacement along a viewing ray. This approach improves on existing shape from normals methods

by enabling absolute depth estimates for scenes with multiple objects. Furthermore, in contrast to

existing multi-view stereo methods, this method is able to reconstruct textureless regions through

the propagation of relative surface orientation measurements.

Stereo by Local Structure Propagation. We present a plane-based sampling scheme to robustly

approximate the structure of a local patch, which leverages the pre-computed sampling positions

and refined candidate depths. A parallel structure propagation mechanism is then proposed, which

outperforms state-of-art propagation-based stereo algorithms with random initialization. More-

over, by integrating with sequential optimal sampling scheme instead of random sampling, the

completeness and sufficiency of exploited local structures are further improved.

Organization

The remainder of the dissertation is organized as follows.

Chapter 2 provides a general framework of stereo algorithms, which consists of local matching

cost computation, disparity computation, and disparity refinement. Classical global and local

stereo approaches are reviewed, followed by a specific literature review of sampling-based stereo

techniques.

Chapter 3 presents an efficient and accurate modification to the standard exhaustive search

paradigm in local stereo. The approach reduces the search space by sampling matching costs for

the local patch, and then using a voting scheme to recover the depth map from a sparse pattern of
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seeds. The joint use of these orthogonal performance-oriented optimization mechanisms enables a

dramatic reduction in the computational burden of local stereo methods.

Chapter 4 proposes a statistical analysis framework for search space reduction based on the

sequential ratio probability test from the sequential decision theory. The method avoids unnecessary

evaluation of irrelevant disparities for pixels of an image, and can be combined with a large variety

of existing stereo estimation methods.

Chapter 5 proposes a novel method to recover the absolute surfaces of a scene using surface

normal and texture information as inputs. The approach detects surface discontinuities by modeling

local surface topology as a parametric surface obtained through least square data fitting of a set of

measured surface normals. Next, accurate depth estimates are obtained through multi-view surflet

sweeping.

Chapter 6 describes a propagation-based stereo scheme integrated with the sequential optimal

sampling scheme, which maintains the quality of the exhaustive disparity estimation at significantly

lower computational costs.

Finally, Chapter 7 concludes with a summary and discussion of potential improvements and

future work.
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CHAPTER 2: BACKGROUND AND RELATED WORK

In the pinhole camera model (Hartley and Zisserman, 2003), where the camera aperture is

described as a point and no lenses are used to focus light, given the calibration matrix (formed by the

focal length and principal point) and extrinsic matrix (image rotation and translation), any 2D image

can be placed into the 3D space with the corresponding camera pose (viewpoint). As illustrated

in Figure 2.1, shooting a viewing ray (straight line) from the viewpoint through the corresponding

3D position of a pixel (called reference pixel) on the image plane, all possible 3D positions of this

reference pixel are restricted along this viewing ray, with the actual 3D point position determined

by one factor, depth. If we know the corresponding pixel on another image (called a matching

image), which gives another viewing ray, ideally the intersection of these two viewing rays is the

true 3D position of the pixel. Hence, the crucial problem becomes how to find the corresponding

pixel on the matching image. The similarity of pixels is measured by photo-consistency, and those

approaches are called photo-consistency-based stereo.

In general, the projection of the viewing ray onto one matching image is an epipolar line, and a

special case is when images are rectified, the epipolar line will only pass through the pixels on the

same row of the reference pixel. In this case, the depth is a one-to-one (non-linear) correspondence

to the column difference (also called disparity) of the reference pixel and the matching pixel. When

we discussed the correspondence between depths and pixel-level matching costs for rectified images,

it would be an intuitive and convienent way to illustrate concepts in the scope of disparity.
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Figure 2.1: Depth Recovery from Stereo.

A General Framework of Stereo Algorithms

In the first part of this chapter, we introduce a general framework of stereo algorithms, which

consists of two components: local matching cost computation and disparity (or depth in unrectified

cases) computation.

Local Matching Cost Computation

The basic operation of stereo is to compute the matching cost for a given disparity, and there

are two issues to be considered: 1) which metric is used for photo-consistency comparison, and 2)

what spatial support region are used for local cost computation.

Metric for Photo-Consistency Comparison

As previously discussed, to recover the depth of the pixel we need to find its corresponding

pixel on the matching image. Accordingly, there should be detectable cues to distinguish the correct
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Color maps:

Gradient maps:

Census maps:

Figure 2.2: Three kinds of information used for photo-consistency comparison: Color, Gradient, and
Census. The yellow and red pixels are ambiguous for color-based matching, but can be distinguished
by gradient (yellow) and census (red).
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Figure 2.3: Depth maps recovered from different aggregation structures.

matching pixel from other incorrect pixels. The basic photo-consistency cue for stereo is the color

similarity (or intensity similarity for gray images), including SAD (Sum of Absolute Differences)

(Kanade et al., 1995), SSD (Sum of Squared Differences) (Hannah, 1974; Anandan, 1989), and

NCC (Normalized Cross-Correlation) (Hannah, 1974; Bolles et al., 1993; Scharstein and Szeliski,

2002). Sometimes, color information is too ambiguous to find the correct matching pixel (as the

yellow and red pixels shown in Figure 2.2), there are also two additional cues widely used in stereo:

gradient (Seitz, 1989; Scharstein, 1994; Bleyer et al., 2011; Rhemann et al., 2011; Min et al., 2013)

and census (Zabih and Woodfill, 1994; Humenberger et al., 2010; Mei et al., 2011). The gradient of

the intensity image captures many details of the fine structures by amplifying the intensity variances

in different directions and is useful to recover high quality depth maps; while census encodes

local image structures with relative orderings of the pixel intensities instead of the intensity values

themselves. Accordingly, census tolerates outliers due to radiometric changes and image noise, and

is suitable for ambiguous regions.

Reliability of Matching Cost

To compute the matching cost for one pixel, the simplest way is to compare its color difference

with the corresponding matching pixel. However, it is not a reliable criterion in most cases (as

shown in Figure 2.3) because there would be many ambiguous pixels having too similar matching

costs to distinguish the correct one. One way to remove the ambiguity is using the average matching

cost of all pixels within a certain neighborhood (e.g. SAD), which is more reliable for pixels on

a color smooth surface, but still fails when the neighborhood covers two or more discontinuous
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regions. A more robust aggregation structure to preserve edges is adaptive support weight (Yoon

and Kweon, 2006) (also called Bilateral Filter in (Petschnigg et al., 2004; He et al., 2010)), where

the matching cost for pixel p with disparity d is computed as:

cost(p, d) =

∑
q∈N(p) w(p, q)w(p̄, q̄)e(q, q̄)
∑

q∈N(p)w(p, q)w(p̄, q̄)
(2.1)

where p̄ = p − d and q̄ = q − d are the corresponding pixels of p and q on the matching image,

while e(q, q̄) is the pixelwise difference between q and q̄ and N(p) is the set of p’s neighbors. The

adaptive weight w(p, q) for q with respect to the center p combines the similarity distance and the

spatial distance:

w(p, q) = exp

(
−‖ (Ip − Iq) ‖

λcolor
− ‖ (p− q) ‖

λspatial

)
(2.2)

here λcolor and λspatial are constants used to adjust the influences of color and spatial differences.

Figure 2.4 shows an example of adaptive weights for the local patch N(p), where we can see high

weights are assigned to neighbors with the similar color as the center pixel. For neighbors with the

same color (e.g. red pixels on the roof), the weights of pixels far from the patch center are smaller

than the weights of pixels closer to the center.

The accuracy of the aggregated cost is also influenced by the aggregation structure. In order to

aggregate matching costs from neighboring pixels, we need to assume their relative depths with

respect to the center pixel. The basic assumption of the aggregation structure is the fronto-parallel

plane, where all the neighbors have the same depths as the center pixel. However, such assumption

would fail to get correct aggregated costs when the local patch contains non-fronto-parallel structures.

In the example shown in Figure 2.5, the bottom region can only be correctly recovered by using

oriented planes instead of fronto-parallel planes.

Let Sp = {sq∈N(p)(d)} be the aggregation structure of pixel p, where sq(d) is the disparity

of neighboring pixel q given d as the depth of the center pixel p. Then q̃ = q − sq(d) is the

corresponding pixel of q on the matching image, and we modify Equation 2.1 to be a general

11



dpp −=p

N(p)

p

q ),( qpw

N(p)

Figure 2.4: Adaptive weights for neighboring pixels.

formulation of the local cost computation:

cost(p, d, Sp) =

∑
q∈N(p) w(p, q)w(p̃, q̃)e(q, q̃)
∑

q∈N(p) w(p, q)w(p̃, q̃)
(2.3)

Equation 2.3 can be simplified to fronto-parallel aggregation by setting sq(d) ≡ d, and it further

reduces to the uniform cost aggregation when w(p, q) ≡ 1 and even the pixel-wise comparison

when N(p) = {p}. The reliability of a neighborhood depends on the structures of local patches,

and usually needs to cover a large region, e.g.35× 35 pixels in Yoon and Kweon (2006); Bleyer

et al. (2011). Thus, there is a tradeoff between the cost reliability and computation complexity, and

it can be improved by caching or sparse sampling techniques (Wang et al., 2012).
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Fronto-Parallel Planes Oriented Planes

Figure 2.5: Comparison of tow aggregation structures: Fronto-parallel planes vs. Oriented planes.

Disparity Computation

The above metrics are used to evaluate all possible disparities, and in this section we will

discuss how to select the right disparity for each pixel. The final disparity of the pixel is the one

that has the best disparity cost. Besides the matching cost, the disparity cost may also consider

the information passed from its neighboring pixels, and keep changing until it converges to a

stable value. The disparity cost could be initialized by the pixel-wise matching cost (Tappen and

Freeman, 2003), the local matching cost by adaptive support aggregation (Yoon and Kweon, 2006),

or some predefined costs (Min et al., 2011). Then the disparity cost will be modified iteratively

according to specific updating strategies, such as Graph-cut (Kolmogorov and Zabih, 2001, 2002),

Belief-Propagation (Tappen and Freeman, 2003; Felzenszwalb and Huttenlocher, 2004; Klaus et al.,

2006; Yang et al., 2010), Semi-Global Matching (Hirschmuller, 2008; Humenberger et al., 2010;

Michael et al., 2013) and Non-Local Filter (Yang, 2012). A special case is the exhaustive local

stereo such as SAD and SSD, which does not require any updating step and the initial local matching

cost is just the final disparity cost. Not every disparity cost needs to be updated for each iteration, for

propagation-based stereo like PatchMatch (Bleyer et al., 2011; Besse et al., 2012) and voting-based
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stereo HistogramAggregation (Min et al., 2011), only a small subset of disparities updates their

costs in each iteration. Popular updating structures include grid (Graph-cut and Belief-Propagation),

tree (Non-Local Filter), and straight lines (Semi-Global Matching and PatchMatch).

Stereo Algorithms

Accuracy and Efficiency are two major foci in stereo research. Commonly, high computational

cost is required to recover accurate details, such as clear edges, by using global methods (Tappen

and Freeman, 2003) or adaptive support aggregation windows (Yoon and Kweon, 2006).

To obtain a depth map with accurate details, global methods such as Graph Cuts (Kolmogorov

and Zabih, 2001) and Belief Propagation (Tappen and Freeman, 2003) treat the disparity computation

as an energy minimization problem, and the objective is to find an assignment of disparities d that

minimize the global energy:

E(d) = Edata(d) + Esmooth(d) (2.4)

where the data term Edata(d) corresponds the local matching costs and smooth term Esmooth(d)

penalizes the discontinuities between neighboring pixels. There are two main benefits of global

methods. First, for a homogenous region (assume the area is much larger than the size of the

aggregation window), usually the matching costs of multiple candidates disparities are ambiguous.

In this case, the global method is able to aggregate costs crossing the entire region so that the correct

disparities can be more precisely determined by pixels along the boundaries. The second benefit is

better edge preserving quality compared against original local methods, which assume pixels within

the neighborhood belongs to the same surface and aggregate the matching costs equally. However,

state of the art local stereo approaches are also able to preserve edges by using the adaptive support

weight aggregation (Yoon and Kweon, 2006) (will be introduced in Section 2.1.1.2). A shortcoming

of global methods is that their complexity is usually proportional to the square of the size of the

search space, which makes it difficult to be applied in high resolution stereo.
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The recent explosion in image resolution has brought efficiency to the forefront of requirements

for high quality stereo. Algorithms for reducing the burden of matching cost aggregation while

retaining matching accuracy include non-local aggregation (Yang, 2012), cross-based aggregation

(Mei et al., 2011), and fast cost-volume filters (Rhemann et al., 2011).

Yang (2012) provided a non-local cost aggregation method, where the matching cost values are

aggregated adaptively based on pixel similarity on a minimum spanning tree derived from the stereo

image pair to preserve depth edges. It is a two step cost aggregation: each node will aggregate the

original matching cost from leaf nodes towards the root node and store it as a temporal local cost.

then the root will propagate the aggregated cost towards leaf nodes, and each node updates its local

cost based on the propagated cost. The method has an extremely low computational complexity,

and outperforms many local cost aggregation methods. The entire image is treated as a minimum

spanning tree, and a shortcoming is that the method is difficult to be parallelized when dealing with

high resolution images. Also since pixels only have few supports in the tree structure (only one

father and several sons), the quality of boundary regions is slightly worse than the methods (Bleyer

et al., 2011; Besse et al., 2012) using adaptive support weight aggregation.

Mei et al. (2011) proposed a cross-based aggregation to achieve comparable quality as the

adaptive support weight aggregation with much less computation time, which is much more efficient

for GPU implementation. The algorithm consists of two step aggregation: first an upright cross is

constructed for each pixel. As illustrated in Figure 2.6, the local pixel p will extend arms in four

directions, and each expansion will stop when hitting a pixel whose color is very different from the

local pixel p, or the length of arm exceed a preset maximum length. The support region of the local

pixel is modeled by merging the horizontal arms of the pixels lying on the vertical arms of the local

pixel. In the second step, the cost in the support region is aggregated within two passes along the

horizontal and vertical directions. In contrast to assigning different weights for non-homogenous

pixels in adaptive support weight, the costs are aggregated equally from pixels within the support

region, which still works well because the cross is formed by pixels with similar colors, and in some

sense the aggregated region can be roughly treated as a continuous homogenous segment.
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Figure 2.6: Cross-based aggregation (Mei et al., 2011). The algorithm consists of two step
aggregation: (a) Cross construction and (b) Cost aggregation.

Another approximation of adaptive support weight aggregation, or called Joint Bilateral Filter

(Petschnigg et al., 2004), is Guided Filter (He et al., 2010) and then applied in stereo by Rhemann

et al. (2011). The spatial distance is discarded and the Equation (2.1) is represented by a linear filter

cost(q, d) = ape(q, q̄) + bp, ∀q ∈ N(p), where ap and bp are some linear coefficients assumed to be

constant in the neighborhood N(p). However, a pixel q is involved in all the windows N(p) that

contain q, so the value of cost is not the same when it is computed in different windows. A simple

strategy is to average all the possible values of costs. The standard bilateral filtering process is a

translation-variant convolution, whose computational cost increases drastically when the kernel

becomes larger. Instead of directly performing the convolution, the guided filter computes the filter

output by aggregating the linear coefficients ap and bp so that it can be computed in O(N) time.
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Sampling-based Stereo

Perpendicular to various cost aggregation approaches, search space reduction for stereo offers a

complexity reducing framework to avoid the exhaustive evaluation of the cost volume (i.e. reducing

the number of matching cost computations). Our proposed statical analysis sampling framework

falls into this category. And in this section we discuss related sampling-based stereo methods.

Hierarchical stereo (Koschan et al., 1996; Van Meerbergen et al., 2002; Sizintsev, 2008) is a

multi-resolution approach for deterministic search space reduction, but lacks adaptability to fine

structures. Veksler (2006) compared the effect of using the disparities obtained by hierarchical

stereo, dynamic programming and local stereo for limiting the disparity range, and concluded

that reduction by local stereo resulted in almost no loss in accuracy with a significant efficiency

improvement over hierarchical stereo and dynamic programming.

Wang et al. (2008) proposed a search space reduction method for Markov Random Fields

(MRF) stereo (Kolmogorov and Zabih, 2001; Tappen and Freeman, 2003) based on estimating a

putative disparity map from pixel-wise photo-consistency. Estimation reliability is verified through

left-right consistency and reliable pixel estimates are propagated to the entire image. The disparity

variability in the local neighborhood is then used to determine a candidate depth range for each

pixel. However, this method requires a rough disparity map obtained by local stereo and is only

meaningful when combined with global stereo methods.

Hawe et al. (2011) employ a compressed sensing formulation to reconstruct a high quality

disparity map through spatial sub-sampling of the images to reduce computation. The disparity map

is estimated for as little as 5% of the original image’s pixels and the depth map is densified through

optimization based sparse signal reconstruction techniques. In addition to the computational burden

of the reconstruction process, the sufficiency and accuracy of the underlying seed generation process

and their effect on the final estimation are not addressed by the authors.

Histogram Aggregation (HA) (Min et al., 2011) reduces the computational complexity of the

the disparity estimation by combining a pixel-wise likelihood histogram aggregation scheme with
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Figure 1. Disparity candidate selection with local/global maxima.

plex form in stereo matching. Yu et al. [12] proposed a
novel envelope point transform (EPT) method by applying a
principal components analysis (PCA) to compress messages
used in belief propagation [15]. Wang et al. [13] estimated
the subset of disparity hypotheses for reliably matched pix-
els and then propagated them on MRF formulation for esti-
mating the subset of unreliable pixels. Yang et al. [14] pro-
posed the method for reducing the search range and applied
it into hierarchical belief propagation [16]. PCA or Gaus-
sian Mixture Model (GMM) can be used for the compact
representation, but the compression for all pixels is time-
consuming.

The weighting function w(p, q) based on the color and
spatial distances have been used to obtain accurate disparity
maps as in Eq. (2). The cost aggregation hence becomes a
non-linear filtering, whose complexity is very high. In this
paper, we propose a new approach for reducing the com-
plexity from a perspective of the relaxed joint histogram.
Our key idea is to find a compact representation of the
per-pixel likelihood eh(p, d), based on the assumption that
eh(p, d) with low values do not provide really informative
support on the histogram-based aggregation.

In this paper, we extract the subset of local maxima at the
per-pixel likelihood eh(p, d) for the compact representation.
The per-pixel likelihood for each pixel is pre-filtered with a
5×5 box window for suppressing noise. The pre-filtering is
done for all disparity hypotheses, but its complexity is triv-
ial in case of using a spatial sampling method, which will be
described in the next section. The local maximum points are
calculated by using the profile of the pre-filtered likelihood
function. They are then sorted in a descending order and a
pre-defined number of disparity candidates Dc(≪ D) are
finally selected. If the number of the local maxima is less
than Dc, the values corresponding to the 2nd, 3rd (and so
on) highest likelihood are selected. Fig. 1 shows an exam-
ple of the disparity candidate selection for ‘Teddy’ stereo
images, where the number of the disparity hypotheses is 60.
The new aggregated cost Eh(p, d) is defined with the subset
of disparity hypotheses only.

Eh(p, d) =
∑

q∈N(p)

w(p, q)eh
1 (q, d)o(q, d)

o(q, d) =

{
1 d ∈ SC(q)
0 otherwise

, (4)

(a) Conventional cost aggregation
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(b) Proposed method

Figure 2. Cost aggregation: (a) conventional approaches perform
nonlinear filtering with (or without) a color image for all dispar-
ity hypotheses: O(HWBD). (b) Proposed method estimates the
subset of disparity hypotheses, whose size is Dc(≪ D), and then
performs joint histogram-based aggregation: O(HWBDc).

where SC(q) is a subset of disparity hypotheses whose
size is Dc. Note that SC(q) varies for all pixels. eh

1

represents the prefiltered likelihood with 5 × 5 box win-
dow. Fig. 2 explains the difference between the conven-
tional cost aggregation and the proposed method. When
the size of the matching window is set to B, the conven-
tional method performs the non-linear filtering for all pixels
(HW ) and disparity hypotheses (D), so the complexity is
O(HWBD). In contrast, the proposed method votes the
subset of informative per-pixel likelihoods (whose size is
Dc) into Eh(p, d) with the complexity of O(HWBDc).
Moreover, since the normalization term

∑
w(p, q) is not

used in the joint histogram Eh(p, d), the complexity has
been further reduced. We will show in the experimental re-
sults that the compact representation by the subset of local
maxima is helpful for reducing the complexity while main-
taining the accuracy.

3.3. Second approximation: spatial sampling of
matching window

Another source for reducing the complexity is on the
spatial sampling inside the matching window. There is a
trade-off between the accuracy and the complexity accord-
ing to the size of the matching window. In general, using a
large matching window and a well-defined weighting func-
tion w(p, q) for obtaining a high quality disparity map leads
to high computational complexity [4][8]. In this paper, we
handle this problem with a spatial sampling scheme inside

Figure 2.7: Histogram Aggregation (Min et al., 2011). Suppose the image size is W ×H and the
length of the search space is D. The likelihood function is computed for sampled pixel pi, and then
the depths with high likelihoods form a subset of weighted depths for pi, where each survived depth
is assigned a weight eh(qi, dj). Then each pixel q will aggregate all the weighted depths within its
matching window, and its final depth is the one with the highest aggregated likelihood.

sparse image sampling. They discovered that their cost aggregation scheme has no monotonic

correlation between estimation accuracy and sampling density. To be robust against noisy matching

cost, the pixel-wise depth candidates for each seed in the sampling grid are attained by selecting a

fixed number of local extrema in the seed cost function. The resulting set of extrema is used in a

spatial voting framework to propagate the depths to the entire image. In some sense, the method

could be treated as dense local stereo (pixelwise) on low resolution images and then voting for the

original resolution image, which also has the problem of missing fine details as hierarchical stereo

approaches.

PatchMatch (PM) (Bleyer et al., 2011) is a fixed propagation scheme with random depth

initialization. With assumed sufficient sampling of the local structure (i.e. depths or oriented planes),

the spatial propagation and pairwise hypothesis comparison message passing framework effectively

converges in a few iterations. PM treats each pixel as a seed, which propagates its best structure to

other pixels, and the received structure could be re-propagated from the local pixel to neighboring

pixels only when the new structure has better aggregated matching costs than the current one;

otherwise, the current local structure will be propagated. The propagation starts from the top-left
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of the image to the bottom-right and then backwards, and most pixels will obtain stable results

after just a few iterations. An implicit assumption of PM is that the correct disparities among the

random initialized seeds can reach corresponding pixels during the propagation, which may be not

true for some isolated regions. To overcome such a defect of pixel-to-pixel propagation, Lu et al.

(2013) proposed a generic and fast computational framework called PatchMatch Filter (PMF) by

decomposing an image into compact superpixels.
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CHAPTER 3: SPARSE DISTRIBUTED DEPTH SAMPLING

The accuracy and efficiency of depth estimates is contingent upon a variety of factors such as

the photo-consistency measure (Scharstein and Szeliski, 2002) used to compare pixel similarity,

the scope and form of the aggregation mechanisms (Scharstein and Szeliski, 2002; Yoon and

Kweon, 2006) used to robustify individual pixel similarity measurements, as well as the search

strategy (if any) used to explore the space of depth hypotheses. In order to develop an efficient

depth search strategy, we leverage the implicit smoothness assumption used in most fronto-parallel

photo-consistency measures, where pixels in a local neighborhood are assumed to belong to the

same fronto-parallel surface and have the same depth. Clearly, such a smoothness assumption

suggests that there is significant redundancy in an exhaustive search of the depth search space for

each pixel. Hence, our first contribution is to reduce the number of evaluated depth hypothesis by

spatially distributing (within a local neighborhood) the sampling of the depth hypothesis space.

We introduce this structured approximation as Distributed Depth Sampling (DDS). Our second

contribution in this Chapter is to incorporate within this new framework the recently introduced

concept of spatial sampling (Min et al., 2011), we developed generalization of DDS we denote as
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Figure 3.1: Relationship between a traditional exhaustive search disparity strategy and our proposed
DDS strategy. At left, every pixel within a local neighborhood is evaluated at each possible disparity.
At middle, our proposed scheme where each pixel sparsely samples the disparity space, relying on
neighboring pixels to infer missing data.
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Sparse Distributed Depth Sampling (SDDS). The concepts of image plane and depth (or disparity)

sparsity are orthogonal in the sense that they may be used independently or in a combination. In this

chapter we propose a stereo depth approach that conjugates these two separate sparsity concepts

in a manner consistent with the concept of smoothness in depth estimation. We note that spatial

smoothness is an ubiquitous and implicit assumption throughout stereo methods, whose relevance

for algorithm design has been hitherto neglected. Moreover, even though both sparsity mechanisms

represent efficiency driven approximations, we combine them into a reduced complexity depth

estimation framework, yielding comparable results to exhaustive search.

One work closely related to ours is Histogram Aggregation (HA) proposed by Min et al.

(2011) for efficient cost aggregation, which combines both a new pixel-wise likelihood histogram

aggregation scheme along with sparse image sampling in order to drastically reduce computational

complexity. The authors explored the robustness of their cost aggregation scheme across different

levels of pixel sampling sparsity and discovered that for their proposal there is not a monotonic

correlation between estimation accuracy and the sampling sparseness. In contrast to (Min et al.,

2011), we favor robustness by deploying full template variable cost aggregation instead of single

pixel intensity photo-consistency. To overcome the related performance challenges we couple our

template variable cost aggregation with a depth sub-sampling framework, which achieves both lower

computational complexity and higher processing speed, while simultaneously improving accuracy.

Distributed Depth Sampling

The smoothness constraint in stereo estimation confers a strong correlation between the spatial

proximity of neighboring image pixels and the spatial proximity of their corresponding 3D points

in the observed scene. Accordingly, having each pixel evaluate all possible depths using a photo-

consistency measure that implicitly enforces such smoothness constraints, leads unequivocally to

the realization that there is significant redundancy in the computation of local stereo methods.
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Key Insight. If we assume a neighboring set of pixels share the same depth, it suffices to

evaluate any single one of those pixels at the correct depth to identify a valid estimate for the entire

set.

In this section, we propose to modify the traditional (exhaustive) search strategy for depth

estimation into a structured and sparsely spatially distributed search scheme. Namely, lets assume,

without loss of generality, a neighborhood of pixels ℵ = {pi|i ∈ [1, . . . , N ]}, which satisfies the

smoothness constraint. Let us further assign to each pi a depth offset value oi ∈ [1, . . . , N ], such

that {oi 6= oj|∀i 6= j}. In order for the neighborhood of pixels ℵ to collectively explore an entire

consecutive set of depths D= {dk|k ∈ [1, . . . , D]}, where D ≥ N , it suffices to assign to each pi

a subset of depths {dij = dk|k = j ∗ N + i , j ≥ 0 , k ≤ D}, where the union of the subsets

for pixels in ℵ equals the entire depth range. In this way, each pixel will search a sparse set of

depths where the number of total depths is bounded by the ratio D/N and the depth offset between

consecutive samples is N .

We denote this new depth sampling scheme Distributed Depth Sampling (DDS). In order

to extend DDS across the entire image we may simply tile the image with this sampling pattern,

which ensures that in each local stereo window the set of sampled depths equals D . In this way,

depth assignment is based on the traditional Winner-Take-All (WTA) selection within a vicinity

centered on a given pixel. Note that for pixels near the periphery of their sampling pattern, their

WTA vicinity encompasses pixels belonging to neighboring sampling patterns. Accordingly, the

distribution of offsets within the search patterns, may introduce bias into our estimation. We have

found that randomly determining a fixed pattern to be repeated across the entire image generally

provides robust results and minimizes the bias. The reduction in computational complexity afforded

by DDS is proportional to the size of the depth distribution neighborhood. Hence, we can define a

square neighborhood of side length M = 10 for an effective quadratic reduction in computational

complexity of two orders of magnitude.

Figure 3.2 gives the raw depth maps of DDS for Midlebury benchmark (Scharstein and Szeliski,

2002). We can see discontinuous regions (e.g. edges) become very jagged when N > 52. One

22



Color image Exhaustive DDS (N = 32) DDS (N = 52) DDS (N = 72) DDS (N = 92)

Figure 3.2: Comparison for raw disparity maps for DDS. From left to right: color images, raw
disparity maps for Exhaustive Search and DDS with neighborhood 32, 52, 72, and 92.

reason is that DDS uses the fixed depth distribution pattern for all patches. And another reason is

that DDS assumes that pixels in the neighborhood share the same depth, which is too strong to be

satisfied in large neighborhoods.

The proposed DDS scheme will provide reliable depth estimates only when the neighborhood

used for depth exploration covers a single fronto-parallel surface. Moreover, while DDS indeed

provides a remarkable performance to cost ratio, up to this point we have only considered the case

where the depth range is larger than the number of pixels in the depth distribution neighborhood

ℵ (i.e. D ≥ N ). In order to improve upon the efficiency of DDS we have explored the opposite

scenario where D < N . A straightforward solution is to apply redundant depth sampling within the

DDS neighborhood. Instead, we have incorporated spatial sparsity into our approach and in doing

so we have developed a more efficient and accurate generalization of DDS, which is described in

the following section.
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Sparse Distributed Depth Sampling

In this section we extend our DDS method to be able to leverage the spatial sparsity concept

proposed by Min et al. (2011). The resulting sparse distributed depth sampling (SDDS) approach

can be summarized as follows.

1. We define a set of neighborhoods (with possible overlap) that cover the entire image. For

each of these neighborhoods:

(a) We randomly select individual pixels to be evaluated each at a single specific depth

hypothesis until the entire depth rangeD is sampled without redundancy, i. e. each depth

is sampled once.

(b) Step 1 (a) is performed k times for the neighborhood to obtain a consensus on a reduced

set of representative depths for it.

2. Then we spread a regular sparse pattern of seeds across the entire image and for each seed

we evaluate the joint set of representative depths of all the neighborhoods to which the seed

belongs.

3. The depth estimate for each of the seed pixels is the one with minimum cost among those

evaluated in Step 2.

4. The depth estimate for non-seed pixels is obtained through proximity and photo-consistency

weighted voting among all seeds in their vicinity.

Our cost aggregation deploys robust symmetric weight aggregation during the windowed matching

(steps 1(a) and step 2). The remainder of this section discusses in greater detail the mechanisms and

design decisions enabling our SDDS approach.

Adaptive Weight Cost Aggregation

We rely on adaptive weight cost aggregation (AW) in a similar manner to (Yoon and Kweon,

2006), as it has been shown to be a highly accurate and discriminative local photo-consistency
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aggregation framework. We mitigate the computational burden of using AW by effectively reducing

the number of times such template vs. template evaluations need to be made. Note that this in no

way precludes the use of constant time weighted aggregation approaches such as the ones discussed

in Chapter 2. Recall that for adaptive weight based stereo, the matching cost for pixel p with depth

d is computed as:

cost(p, d) =

∑
q∈N(p) w(p, q)w(p̄, q̄)e(q, q̄)
∑

q∈N(p)w(p, q)w(p̄, q̄)
(3.1)

where p̄ = p − d and q̄ = q − d are the corresponding pixels of p and q on the matching image,

while N(p) is the set of p’s neighbors. The pixel similarity measure e(q, q̄) used in this work is the

AD-census cost (Mei et al., 2011). The adaptive weight w(p, q) for q with respect to the center p,

combines the color distance (in CIELAB space) and the spatial distance as defined by Equation

(2.2).

The two most time consuming operations are the pixel-wise comparison e(q, q̄) and the weight-

ing w(p, q). Even though very efficient implementations of the AD-Census similarity measure can

be achieved (Mei et al., 2011), we note in general that pixel-wise weight computation w(p, q) is

more efficient than similarity computation e(q, q̄), due to the overhead associated with the census

transform estimation in addition to Census and SAD aggregation. Other operations like depth

sorting could be ignored with respect to these two operations. To analyze the time complexity of

AW we define Q to be the number of pixels in the image, D the number of tested depth hypotheses,

and W the side length of a square matching window. Then the complexity of the exhaustive adaptive

weight stereo is QDW 2(2 ∗ uw + um), where um and uw are basic complexity for pixel-wise

comparison and weighting. Here, we reduce the window size W by sparse spatial sampling. Let

s ∈ [1, . . . ,W/2] be the sampling step indicating the distance between samples along each image

direction, then sub-sampling reduces the total complexity by a factor of 1/s2. Note that, such spatial

sub-sampling within the photo-consistency measure assumes smoothness between pixels separated

by L = s/2 pixels. This formulation implies that by performing photo-consistency using every
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consecutive pixel (i.e. s = 1) we are in fact assuming a smoothness level of L = 0.5 pixels (i.e.

the strong spatial correlations only extend from the center of the pixel to each edge along both

directions). Depending on the smoothness level assumed for a given image scene, the value of s can

be reasonably controlled. We empirically determined a value of s = 4 represents a good trade-off

between accuracy and efficiency.

Representative Depths of a Neighborhood

For each local patch, we randomly select D (equal to the size of the depth set) pixels, assign

them different test depths and compute their costs according to Eqn. (3.1). Next, we sort all the

estimated costs and assign to each depth a score inversely proportional to its order. By repeating

this sampling and aggregating the scores for each depth, we obtain a reliable profile of scores,

which approximates the profile of the likelihoods of all depths within the local patch structure. For

example (as illustrated in Figure 3.3), if we only find one peak in the profile, since weights are

computed from randomly selected pixels, it is highly probable that all the pixels in the local patch

share the same depth. Similarly, if there are two peaks, the local patch may be on the boundary

of two objects, the absence of distinguishable peaks suggests the complex scene, which may not

follow the smoothness assumption.

Let ci be the cost for the ith depth after a single sampling, and oi is the position of the ith depth

in the sorted sequence of the cost of the depths, then each depth is scored as 1/oi. After sampling k

times, depths with total scores greater than Ts (pre-defined threshold, e.g. Ts = 1.2 when sampling

4 times) will be treated as the representative depths for the current local patch. Given that sampled

pixels are selected randomly, there is in fact a possibility of failing to find any correct depths.

However, in practice, SDDS works well for patches containing three or less structures.

It can be seen that if all all the sampled pixels within a local patch belong to a single fronto-

parallel surface (i.e. they all have the same depth), the probability of identifying the correct depth is

P= 1 given that all depths of D are sampled. Accordingly, after the kth sampling, the final score

for the correct depth would be k. Hence for patches from a single surface, we will always find the
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( 2 )

( 1 )

Figure 3.3: Disparity sampling analysis. Case 1: only one peak of the score profile for continuous
surfaces; case 2: two peaks for simple discontinuous region (only two different surfaces); case 3: no
distinguish peaks for patches with complex structures.
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correct depth (i.e. one of the samples will be correct and we are certain this sample will have the

highest score). This argumentation is predicated on the typical assumptions made in stereo that

for a given pixel, the correct depth will get the smallest cost, or alternatively, that this minimum

cost corresponds to the best possible depth estimate. This implies that when a pixel is evaluated

at its correct depth hypothesis, it will be within the depths with the smallest cost, hence oi will

be small after sorting the results of all depth values within the patch. It is further assumed that

the positions oi of the other (incorrect) depth estimates within the patch are randomly distributed,

which is true for all regions with a well defined global cost minimum. In all other cases the stereo

decision is ambiguous. Hence we exclude them from our analysis, although in practice even those

cases work robustly. For patches containing multiple surfaces we chose the threshold Ts to ensure a

false positive rate (wrong depths selected into the set of interest depths) of about 2%. Please, note

that any wrong depth being part of the interest depths does only slightly influence computational

performance but has no quality implications.

Sparse Seed Evaluation and Propagation

The distributed attainment of a representative depth set for each neighborhood can be seen as an

efficient sampling in depth space. In the next stage of our pipeline we also perform sampling on the

2D image space to reduce computation even further. Given that neighboring pixels generally have

similar matching costs for a given depth, it is reasonable for the majority of pixels to approximate

their corresponding costs from a set of pre-computed cost measurements in their vicinity. This

reasoning leads to the sparse sampling of the image by means of pixel ”seeds”. Seed selection may

be based on color similarity or spatial proximity. However, a good color-based sampling usually

needs additional processing like clustering or segmentation, which may be prohibitive in cost for

local stereo methods. Accordingly, we uniformly distribute m seeds in the image, and for each

depth d belonging to the joint set of representative depths of the seed, we compute their adaptive

weight costs cs1,d, ..., csm,d. For the ith remaining pixels, their costs ci,d are computed by weighted
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Color image Exhaustive SDDS (B = 11) SDDS (B = 31) SDDS (B = 51) SDDS (B = 71)

Figure 3.4: Comparison for raw depth maps for SDDS. From left to right: color images, raw depth
maps for Exhaustive Search and SDDS with block size 11, 31, 51, and 71, and the default sampling
time is 4.

aggregation of neighboring seeds

ci,d =

∑
sj∈N(i) w(i, sj)csj ,d∑
sj∈N(i) w(i, sj)

(3.2)

where N(i) is the set of seeds within the ith pixel’s proximity and wi,sj is the adaptive weight

between the ith and sjth pixels. After cost aggregation, the candidate depth with minimum cost will

be chosen as the final depth.

Figure 3.4 compares the raw depth maps of SDDS against the exhaustive search. In contrast to

the results of DDS (Figure 3.2), discontinuous regions (edges) are preserved by SDDS with almost

the same quality as the exhaustive search, which means the selected seeds are able to maintain both

main structure and fine details of the local patches.
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Computational cost analysis

In this section, we analyze the total computational cost of our SDDS approach. As discussed

in Section 3.2.1, the complexity for exhaustive adaptive weight based stereo and corresponding

sub-sampled aggregation stereo are CEX = QDW 2(2uw +um) and CSP = QDW 2(2uw +um)/s2,

where Q is the total number of pixels, D is the size of the depth set, W is the size (width and

height) of matching window, s is the spatial sampling ratio inside the matching window, u is the unit

computation cost, uw and um are complexity for pixel-wise weighting (uw ≈ 2u) and pixel-wise

matching cost (um ≈ 5u). In our algorithm, when applying sampled aggregation, the computational

cost C1 to select the representative depths, the cost C2 for aggregating the seed costs, and the

computational cost C3 for aggregating the remaining pixels’ costs are:

C1 = kQDW 2(2uw + um)/(µs2B2) (3.3)

C2 = mQDcW
2(2uw + um)/(µs2B2) (3.4)

C3 = nQDcuw/µ. (3.5)

where B is the size of local patch, Dc is the average size of selected candidate depths (≈ 3), 1− µ

is the overlapping ratio of neighboring patches, k is the number of randomly sampled times, m is

the number of seeds per local patch, and n is the number of neighboring seeds for cost aggregation.

Accordingly, the total complexity is CSDDS = C1 + C2 + C3. Substituting the default values used

in our experiments (see Table 3.1), and assuming the size of the original depth set D = 60, block

size B = 50, and sampling k = 4 times, we find ratio of computational costs to be CEX

CSDDS
= 1096

and CSP

CSDDS
= 69. In fact, even when omitting the use of sub-sampling within the AW matching

(i.e. s = 1), we obtain a computational speed-up of CEX

CSDDS
= 131. We can see our depth sampling

approach reduces the computational cost dramatically. The main reason is that our method reduces

the cardinality of the tested depths per pixel (≈ 3). Additionally, our technique replaces the

costly and redundant matching cost computation (patch-wise comparison) by aggregating costs

from neighboring seeds, which has only a cost of 2uw + um to uw. Comparing with another fast

30



stereo approach HistoAggr (Min et al., 2011), whose computational cost could be approximated

by CHA = QDum/(s
2
HA) +QDfixedW

2uw/(s
2
HA), where sHA = 3 is the default spatial ratio and

Dfixed = D/10 is a fixed subset size of depths. Our experiments demonstrate that our method

outperforms (Min et al., 2011) by a factor of 2.8 =
(

CHA

CSDDS

)
.

Depth Refinement

To overcome the typical minor mishaps of local stereo estimation caused for example by

occlusions, we propose a voting-based refinement method inspired by the work of (Min et al., 2011).

Firstly, pixels P r
i with reliable depths dri are found by left-right cross validation. Since the cost cri

for each reliable depth dri is known after the depth computation, we define the likelihood for dri

as lri = 1− cri . Notice that each reliable pixel only needs to keep the likelihood value for its final

depth. When estimating the depth for an unreliable pixel P u
j , first we check the ratio of reliable

pixels within its neighborhood, if the ratio is greater than some pre-defined threshold TN , then we

build a voting list for all the reliable depths occurring in its neighborhood, and the voting score is

computed by summing weighted likelihoods of the reliable neighbors:

vuj,di =
∑

P r
i ∈Nr(Pu

j )

lriw(P u
j , P

r
i ), (3.6)

where Nr(P
u
j ) is the set of reliable pixels within P u

j ’s neighborhood Nr, and the weights w(P u
j , P

r
i )

are computed by Equation 2.2. Also, for each candidate depth di, its confidence fj,di is determined by

the maximum value of corresponding weight w(P u
j , P

r
i ). Then the depth with maximum confidence

vuj,di greater than threshold TF (initially TF = 0.5) is chosen as the final depth drj . If no candidate

depth has good confidence, the minimum depth will be set as the final depth (similar to filling

holes with the background). Finally, P u
j becomes a new reliable pixel P r

j , and its new likelihood is

computed as

lrj =
vuj,dj∑

di=dj
w(P r

j , P
r
i )

(3.7)
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We repeat the above procedure for all unreliable pixels, and gradually decrease the threshold

TF if all the unreliable pixels cannot find enough reliable neighbors. The detailed algorithm is

shown in Algorithm 1. Notice that the goal of this paper is to more efficiently perform the local

depth estimation without loss of accuracy. We utilized similar post processing to that in (Min et al.,

2011) in order to better contextualize our results with respect to the Middlebury benchmark and

make both approaches comparable. Improved refinement procedures would elevate the ranking of

our implementation but that was not our emphasis.

Algorithm 1 Voting Refinement
1: Parameters:
2: {P r} and {Pu}: set of reliable and unreliable pixels
3: dri : depth for reliable pixels P r

i ∈ {P r}
4: lri : likelihood for reliable pixels P r

i with depth dri
5: Nr(P

u
j ): set of neighboring reliable pixels for Pu

j

6: TN : Threshold of size of neighboring reliable pixels
7: TF : Threshold of confidence
8:
9: Algorithm:

10: while {Pu} 6= ∅ do
11: for Pu

j ∈ {Pu} do
12: if |Nr(P

u
j )| < TN then

13: continue
14: Initialize voting list vu for candidate set {d}
15: for di ∈ {d} do
16: vuj,di

=
∑

P r
i ∈Nr(Pu

j ) w(P
u
j , P

r
i )l

r
i

17: fj,di
= maxP r

i ∈Nr(Pu
j )({w(Pu

j , P
r
i )})

18: if max({fj,di
}) < TF then

19: dj = min({d})
20: else
21: dj = argmaxdi

({vuj,di
})

22: lrj = vuj,dj
/
∑

di=dj
w(Pu

j , P
r
i )

23: {Pu} = {Pu} − Pu
j

24: {P r} = {P r} ∪ Pu
j

25: if |{Pu}| not decrease then
26: TN = TN/2
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Experiments

We evaluate our methods on the stereo images from the Middlebury benchmark. Table 3.1 lists

the default parameters used in all experiments, whose corresponding descriptions may be found in

Section 3.2.4.

Table 3.1: Default values for experiment parameters.

Parameter W s µ m n
default value 31 4 50% 100 20

In the first set of experiments, we investigate the quality of raw depth images. As an evaluation

baseline, we use the results and performance of an exhaustive depth search with variable cost aggre-

gation. Moreover, we omitted performing our depth and spatial sub-sampling, yielding a similar

approach to that of (Rhemann et al., 2011) but using AD-Census as a photo-consistency measure.

Results for DDS and SDDS, with varying cardinality of the depth exploration neighborhood ℵ, are

compared relatively to the baseline, with all methods being executed on the same machine. For

accuracy comparison, the baseline is the number of pixels with correct depths (according to the

Midlebury benchmark (Scharstein and Szeliski, 2002)) generated by the baseline. From this value,

the hit ratio is computed as the number of correct pixels estimated by our methods divided by

the same corresponding quantity for the baseline method. Similarly, the relative processing time

compares the processing times of the exhaustive baseline method and our proposals.

First, we investigate how the performance of DDS changes when the neighborhood size N

increases form 32 to 92, see Figure 3.5. We find that for images with small depth set (D < 20, e.g.

Tsukuba and Venus), the hit ratio and processing time do not decrease significantly when N ≥ 52,

this is because when D ≤ N , each pixel only tests a single depth (the sparsest case for DDS), and

no further computation savings can be achieved. For large depth sets (Teddy and Cones), the relative

processing time is about 0.0016 when N = 92 (approximately 625 times faster than the baseline),

while DDS is still able to obtain more than 90% hit ratio. The considerable speed up for DSS is a
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consequence of both the quadratic reduction in depth sampling and the sparse spatial sampling used

for variable cost aggregation.

Similar comparisons for SDDS are shown in Figure 3.6 and Figure 3.7 for various block sizes

11 ≤ B ≤ 91 and sampling iterations 2 ≤ k ≤ 10. From the hit ratio plot, we can see when

B ≤ 51, SDDS hits more than 95% percent of reliable pixels by sampling 2 times. Even for large

block sizes (71 and 91), the hit ratio is greater than 90% after using four samples to build the

representative depth sets. Particularly, the hit ratio for Venus images is greater than 1, which means

our method could find more reliable pixels than the exhaustive method did. From the processing

time comparison, we can see when the block size is larger than 51 and sampling times less than 5,

the processing time is improved by 1000 times. Considering that the sparse aggregation scheme

speeds up our algorithm by 16 times, the pure benefit of our depth sampling scheme is more than 60

times.

Comparing DDS and SDDS on the Cones dataset illustrates the relative processing time for

DDS (N = 92) and SDDS (B = 51 and k = 4) are 0.00164 (≈ 610 times) and 0.00108 (≈ 926

times) respectively, while the corresponding hit ratios are 0.94 and 1.00. Similar results have been

found for other datasets, indicating that SDDS is both faster and more accurate than DDS.

For the second set of experiments we benchmarked our performance against three recently

proposed stereo algorithms aimed at improving efficiency: HistoAggr (Min et al., 2011) (pixel-wise

cost aggregation), ESAW (Yu et al., 2009) (exponential step cost aggregation), and CSBP (Yang

et al., 2010) (constant-space belief propagation). Our C++ with OpenMP (4 threads) implementation

of SDDS was executed on a Quad-core Intel Xeon W3540 @2.93GHz with default parameters

shown in Section 4.4. We used our own implementation of HistoAggr in C++ with OpenMP (4

threads). We used the author provided code for CSBP and ESAW. For ESAW we set the number of

iterations to six in order to achieve comparable results (longer executions tend to improve quality

at the cost of efficiency). Table 3.2 shows the Middlebury benchmark results for raw depth map

comparison for depth error (all pixels) and processing time. Notice that our SDDS implementation

is CPU based, and is the fastest among all reported CPU methods. Specific comparison with the
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Figure 3.5: Raw depth map evaluation for DDS : Hit ratio and relative processing time
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Figure 3.6: Raw depth map evaluation for SDDS: Hit ratio for various block size B and sampling
times k.
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Table 3.2: Raw Depth map comparison for depth error (all regions) and processing time.

Algorithm
Tsukuba Venus Teddy Cones

error time error time error time error time
SDDS 6.25 0.137s 2.00 0.196s 17.4 0.339s 13.1 0.327s

HistoAggr (Min et al., 2011) 6.63 0.256s 2.15 0.392s 17.9 0.507s 13.1 0.490s
ESAW (Yu et al., 2009) 2.85 0.314s 3.75 1.097s 17.1 2.237s 17.4 2.285s

CSBP (Yang et al., 2010) 4.17 0.304s 3.11 0.406s 20.2 0.662s 16.5 0.677s

computational times reported in (Min et al., 2011) should reflect on the significance of our proposal.

All faster methods on the Middlebury website deploy GPU implementations and there is no aspect

of our framework that precludes this.

For the third set of experiments we compared our refined output against those reported on

the Middlebury benchmark. Depthmap refinement effectively doubled our execution time given

the need to generate both left and right depthmaps and also adds a processing time penalty in

the range of 0.3s to 0.5s depending on resolution. Figure 3.8 shows refined depth maps for DDS

(N = 3) and SDDS (B = 51 and k = 4), while the corresponding quantitative evaluation results

are listed in Table 3.3 (results for SDDS have been uploaded to Middlebury website). We find

that SDDS consistently outperforms DDS, especially for the discontinuous regions like the lamp

arm, which means SDDS is more efficient for sampling depths than using fixed patterns. Also,

we can see SDDS has better performance than other adaptive weight based stereo approaches like

HistoAggr (Min et al., 2011), FastBilateral (Mattoccia et al., 2009), RealTimeABW (Gupta et al.,

2010), and FastAggreg (Tombari et al., 2008). Our results for Venus and Teddy are even better than

the conventional adaptive weight algorithm (AdaptWeight (Yoon and Kweon, 2006)). For large

continuous regions with outliers having very low costs for incorrect depths, our approach usually

has better results. One reason is that due to repeated random sampling scheme, scores of incorrect

depths are unlikely to be high enough to be selected as the potential depths for the whole block, so

their influence is limited.
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Table 3.3: Refined Depth map evaluation for non occlusion (nocc), all, discontinuous (disc) regions,
and average percent bad pixels (APBP).

Algorithm
Tsukuba Venus Teddy Cones

APBP(%)
nocc all disc nocc all disc nocc all disc nocc all disc

AdaptWeight 1.38 1.85 6.90 0.71 1.19 6.13 7.88 13.3 18.6 3.97 9.79 8.26 6.67
SemiGlob 3.26 3.96 12.8 1.00 1.57 11.3 6.02 12.2 16.3 3.06 9.75 8.90 7.50

SDDS 3.31 3.62 10.4 0.39 0.76 2.85 7.65 13.0 19.4 3.99 10.0010.8 7.19
FastBilateral 2.38 2.80 10.4 0.34 0.92 4.55 9.83 15.3 20.3 3.10 9.31 8.59 7.31

RealTimeABW 1.26 1.67 6.83 0.33 0.65 3.56 10.7 18.3 23.3 4.81 12.6 10.7 7.90
HistoAggr 2.47 2.71 11.1 0.74 0.97 3.28 8.31 13.8 21.0 3.86 9.47 10.4 7.33

DDS 3.39 3.70 11.6 0.53 0.97 4.14 7.92 14.3 21.1 4.61 10.9 12.1 7.94
FastAggreg 1.16 2.11 6.06 4.03 4.75 6.43 9.04 15.2 20.2 5.37 12.6 11.9 8.24

Figure 3.8: Comparison for refined depth maps. From top to bottom: color images, refined depth
maps for DDS and SDDS
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Discussion

We have presented an efficient and accurate modification to the standard exhaustive search

paradigm in local stereo. We have achieved this by incorporating the concept of depth smoothness

at the algorithm design level. Our approach incorporates sub-sampling at the depth as well as

the spatial search space. The joint use of these orthogonal performance-oriented optimization

mechanisms enables a dramatic reduction in the computational burden of local stereo methods, by

reducing the total number of template comparisons.

One shortcoming of the SDDS is its fixed sampling scheme. No matter how simple or complex

the local structure is, SDDS always samples fixed number of seeds to estimate the representative

depth set, which cannot guarantee the completeness and compactness of the final candidate set.

We will address this problem in Chapter 4, and provide an adaptive sampling scheme based on

sequential test theory.

SDDS uses a sparse seed pattern to maintain the local structure, however, it is not most

efficient. In Chapter 6 we propose a novel method to approximate and fill local structures by plane

propagation.
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CHAPTER 4: SEQUENTIAL OPTIMAL SAMPLING

Introduction

Dense stereo depth/disparity estimation methods commonly rely on the exhaustive enumeration

of the photo-consistency cost volume attained from an a priori determined set of depth/disparity

hypotheses. This is inherently inefficient given that, in the absence of scene structure priors, all

pixels share a common hypotheses search space designed to cover the entire scene volume. One

aim of this thesis is to propose a novel framework to reduce the candidate hypotheses per pixel.

The reduction especially benefits high resolution stereo for modern high resolution digital cameras

or satellite terrain height map estimation (with an additional computational burden due to the

rational polygonal camera model (RPC) (Dial and Grodecki, 2005) during the photo-consistency

cost computation).

Recent randomized (Bleyer et al., 2011) and structured (Min et al., 2011) sampling schemes are

efficient and robust mechanisms for disparity estimation. The concepts of sparsity and propagation

are recurring themes across these efficiency driven optimizations of the basic disparity search

framework. The underlying property being exploited is that of scene structure regularity due to

the assumption of local depth correlations among adjacent pixels. These assumptions are typically

encoded as predetermined sampling distributions or data propagation schemes. Since these broad a

priori assumptions are in general error prone we, instead, favor the explicit adaptive sampling of

the depth (or disparity) search space to build incremental models of the local scene structure. Depth

sampling schemes like Histogram Aggregation (Min et al., 2011) and PatchMatch (Bleyer et al.,

2011) can be characterized by their neighborhood structure, sampling budget and the search range

being analyzed. Namely, in a M ×M local patch K pixels are sampled across the full search space

S by computing matching cost with aggregation window W . For example, Histogram Aggregation
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Figure 4.1: The unreliability of local photo-consistency matching. We depict an image block
containing only two ground truth disparities. Exhaustive local search overestimates the disparity set.

sampled (M/3)2 pixels on the entire space with pixel-wise matching, and PatchMatch is initialized

by sampling M2 pixels on a randomly selected disparity using an aggregation window W .

In this chapter, I propose an efficient sampling scheme for building an accurate model of

the local disparity structure. Our sampling scheme strives to minimize the number of sampling

computations while providing statistical guarantees of coverage sufficiency based on the sequential

probability ratio test (SPRT). This data driven sampling scheme enables an adaptive framework for

optimal depth sampling leading to a turnkey solution for reduced complexity depth sampling. SDDS

proposed in Chapter 3 is also a sparse sampling framework for reducing the candidate hypotheses

per pixel. For each local patch, it randomly computes the matching cost for one pixel per disparity,

and then finds a candidate set by repeated sampling with a constant number (3 or 4) of iterations. In

contrast, the optimal sampling scheme proposed in this chapter balances sampling completeness and

efficiency in a statistical framework, enabling the adaptive termination of local structure sampling.
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Figure 4.2: Three regions with variant local scene structure and different sampling requirements.
Note that texture variability is not a robust cue for predicting scene complexity.

Properties of Stereo Sampling Schemes

Stereo depth sampling aims to attain a representative scene structure by exploring the photo-

consistency cost volume. A sampling operation refers to determining a pixel’s depth estimate

from the enumeration of its cost function across the entire depth range. Our focus is on sampling

schemes for representing the local scene structure as a reduced set of candidate disparities D, with

D being a sufficient representation of the local structure i.e. contains all distinct disparities in a

local neighborhood. Conversely, we aim for an efficient sampling scheme which minimizes the

number of sampling operations while sufficiently sampling.

It is well known that local photo-consistency is a noisy measurement. In the absence of a data

discrimination framework, noisy depth observations will be mistakenly added to the candidate

disparity set D (see Figure 4.1 as illustration) requiring robustness to achieve an effective sampling

scheme. A naive sampling scheme is to specify a fixed sampling ratio and perform random sampling

(RS) for a predetermined portion of pixels. Such open loop sampling disregards the observed local

structure and may be arbitrarily inefficient or insufficient, i.e. over-sampling in simple and flat

regions while under-sampling in regions with complicated and overlapping structures. The structure

of smooth regions (like the top block in Figure 4.2) is easy to recover using a few samples, while

the patch with complex structure (the middle patch in Figure 4.2) requires much more samples.

Furthermore, adjusting the sampling rate based on the color information (such as working on
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superpixels or image segments (Klaus et al., 2006)) is error prone as, in general, there is not a

correlation between appearance variability and structure variability. Our adaptive sampling scheme

overcomes these limitations and complexities.

The compactness of the local disparity set D refers to its cardinality and is related to the

robustness of our sampling operations. We build an incremental model of the local disparity

candidate set D and rely on the sequential probability ratio test (SPRT) to determine an optimal

stopping criteria for the random sampling within each local neighborhood.

Sequential Probability Ratio Test

A general SPRT model

The Sequential Probability Ratio Test (SPRT) is a pairwise hypothesis testing technique com-

monly used in decision theory for likelihood based hypothesis testing as for example used in efficient

RANSACs (Chum and Matas, 2008). Given two hypotheses H0 and H1, along with sequential

observations xk(k = 1, ..., n), suppose the corresponding likelihoods for these two hypotheses

P (xk|Hi={0,1}) are already known. In the SPRT model, testing is controlled by the accumulated

likelihood ratio L:

Ln =
n∏

k=1

P (xk|H0)

P (xk|H1)
= Ln−1 ·

P (xk|H0)

P (xk|H1)
. (4.1)

Given thresholds T1 and T0 (T1 ≤ T0), for each observation the SPRT model (as shown in Figure

4.3) will be one of following three states:

• L ≥ T0: stop testing and accept H0;

• L ≤ T1: stop testing and accept H1;

• T1 < L < T0: wait for a new observation.

The SPRT model is completely data driven to sample far less to reach the same conclusion as with a

predetermined number of samples (Wald, 1947).
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Figure 4.3: SPRT model: for each observation (xi), the subject decides whether to accept (H0 or
H1), or collect more information.

The thresholds T0 and T1 have to be determined prior to the computation by for example

analyzing the behavior of the sampling sequences. Without loss of generality, we assume H0 is the

correct hypothesis. Given a sequence of arbitrary consecutive observations xk of a correct model,

for any given threshold T0 there will be sequences that are accepted as they meet the constraint

L ≥ T0, other valid sequences will be wrongly neglected (i.e. L ≤ T1 and then accept H1). The

portion of such “wrong” combinations is the error for likelihood P (xk|H0), denoted by e0, which

quantifies the representative ability of the likelihood function Ln. Similarly, e1 denotes the error for

likelihood P (xk|H1). Let x = (x1, ..., xn), R0 = {x : Ln ≥ T1}, R1 = 1− R0 = {x : Ln < T1},

and pi(x) =
∏n

k=1 P (xk|Hi), where i = 0, 1. It yields that

1− e0 =

∫

R0

p0(x)dx

=

∫

R0

p0(x)

p1(x)
p1(x)dx

=

∫

R0

Lnp1(x)dx

≥ T0

∫

R0

p1(x)dx, since Ln ≥ T0

= T0e1 (4.2)
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1− e1 = 1−
∫

R0

p1(x)dx

=

∫

R1

p1(x)

p0(x)
p0(x)dx

=

∫

R1

L−1
n p0(x)dx

≥ T−1
1

∫

R1

p0(x)dx, since L−1
n ≥ T−1

1

= T−1
1 e0 (4.3)

The thresholds T1 and T2 are bound by errors: T0 ≤ 1−e0
e1

and T1 ≥ e0
1−e1 (Wald, 1947). Thus we can

predetermine the errors to make both as small as possible. By modeling the error of our likelihood

models we can define a robust and efficient sampling mechanism. Next we define the sampling

model for the candidate disparities.

Sequential Optimal Sampling for Stereo

Recall that a depth sampling model finds a set of candidate depth D for each local patch by

sampling K pixels in the search space S and evaluating their matching costs for a given aggregation

window. We design a scheme that dynamically adjusts the value of K according to the previous

observations. The observation xk is represented by the cost profile of the kth randomly selected

pixel p, comprised by the matching cost for all candidate depths d ∈ S. Our matching cost is

computed based on color and gradient values as in Bleyer et. al. (Bleyer et al., 2011).

In our SPRT scheme, hypothesis H0 is that the current disparity set D is sufficient with a

probability α (called α-sufficient), and H1 is that D should be expanded to D′(⊇ D). Different

from the standard SPRT scheme, our model performs an incremental test, where hypotheses H0

and H1 keep changing until D is accepted. P (xk|H0) and P (xk|H1) are the likelihoods to accept

D and D′ respectively. Since D′ is a superset of D, we have P (xk|H0) ≤ P (xk|H1). Accordingly,

the accumulated likelihood ratio L is monotonically decreasing for any given pair of hypotheses

H0 and H1. Hence, we can see that our SPRT model based on evolving hypotheses is similar to
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Figure 4.4: Sequential Optimal Sampling (SOS) model. Given a depth set D and a new observations
di, if the accumulated likelihood drops below threshold T1, D is augmented. Sampling halts after
N consecutive samples without updates to D.

a “one-sided” model, which only considers whether to expand the current D by comparing the

accumulated likelihood ratio L with the threshold T1.

A candidate depth set D is α-sufficient if it has not been updated in N consecutive observations,

and our optimal sampling aims to find an α-sufficient depth set with the minimum samples. Values

for hypothesis errors e0 and e1 are attained from two user parameters: αsuff (sufficiency) and αconf

(confidence), where αsuff is an acceptable accuracy of the reduced disparity set (e.g. for αsuff = 90%,

the reduced set contains the true depths of at least 90% of the pixels within the sampling block), and

αconf is an estimated probability of finding a new depth through N independent samples, e.g. our

confidence on the 90% sufficiency assertion. Given the two parameters, since αconf = 1− (αsuff)
N ,

we have N = ln(1 − αconf)/ln(αsuff), which is an overestimate as it assumes sampling with

replacement.

We call this SPRT-based sampling scheme Sequential Optimal Sampling (SOS), which is able

to sample less and provide a significantly tighter search space for each local image region. Figure

4.4 shows the flowchart of the SOS model, where given the original depth set D, the model state L

(the accumulated likelihood ratio) is updated by each new observation d. To improve the sensitivity

to photo consistency noise we design our likelihood function to be more tolerant to costs slightly

greater than the minimum matching cost. Let c(x, d) be the matching cost for pixel x at depth d,

c̄(x) the mean cost for x across all depth hypotheses, and d∗ the depth with the minimum matching
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cost. We define the score for each depth d as:

s(d, x) = exp(−1 +
c̄(x)− c(x, d)

c̄(x)− c(x, d∗)) (4.4)

The range of the score s(d, x) is (0, 1], with higher scores being sought. Thus, even if the current

best disparity estimate d∗ is not included in the current depth set D, if there exists some d ∈ D

whose score is relatively high, we delay the inclusion of d∗ into D until we have gathered more

sampling evidence to mitigate spurious depth outlier estimates. Accordingly, in this new support

test model, newly encountered depths will be stored in a candidate pool instead of being directly

added into D, and the sample information (the coordinates and the cost curve) will be recorded and

will then be used in updating the candidate depth set.

The likelihood P (x|H) is defined as follows:

P (x|H) =
maxd∈D s(d, x)∑
D̃ maxd∈D̃ s(d, x)

(4.5)

where D̃ is an arbitrary subset of the entire search space. Let D′ = D
⋃ {d′} be the superset of

current reduced depth candidate set D, which will be used to replace D. Recall that H0: D is

α-sufficient, and H1: D′ is α-sufficient. Then the likelihood ratio is

P (x|H0)

P (x|H1)
=

maxd∈D s(d,x)∑
D̃ maxd∈D̃ s(d,x)

maxd∈D′ s(d,x)∑
D̃ maxd∈D̃ s(d,x)

=
maxd∈D s(d, x)

maxd∈D′ s(d, x)

≥ maxd∈D s(d, x)

maxd∈D⋃
{d∗} s(d, x)

= max
d∈D

s(d, x)

where equality is achieved when d′ = d∗. Then the accumulated likelihood ratio L is

Ln =
n∏

i=1

P (xi|H0)

P (xi|H1)
≥

n∏

i=1

max
d∈D

s(d, xi) = L∗n (4.6)
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The lower bound of the accumulated likelihood ratio L∗n is used to replace Ln in the test, i.e. D

will be updated if L∗n is less than a predefined threshold T1. Since there will be several different

depths in the candidate set, we exploit the recorded sample information to accumulate the likelihood

ratio for each candidate, and choose the one with the lowest value as d′ to expand the current depth

set D. According to the SPRT theory (Wald, 1947), the lower bound for threshold T1 is given

by T1 ≥ e0
1−e1 where e0 and e1 are errors for hypotheses H0 and H1 respectively. Since D′ is the

superset of D, which yields e0 ≥ e1, we choose T1 = e0
1−e0 ≥

e0
1−e1 to be a more strict threshold, and

e0 = 1− αsuff according to the definition of α-sufficiency.

Bounding the Output Search Space

The number of attained disparities through sequential optimal sampling for a given image

region is dependent on the observed scene structure. Accordingly, image regions covering a large

number of disparities will be assigned a larger set of candidate depths. However, the efficiency

of many stereo algorithms (such as Belief Propagation) is heavily impacted by the maximum size

of all candidate sets. To make the candidate depth sets more balanced over the entire image, we

introduced a quad-tree based recursive sampling strategy to leverage sampling patches consistent

with the true depth distribution, which attains disparity sets of bounded cardinality K across the

entire image. This adaptive sampling scheme guarantees that the search space of each pixel won’t

exceed K, so the upper bound of computation cost for stereo is limited. In order to achieve such

behavior, when we detect that the current set of K depths is still incomplete, instead of adding

a new depth, the patch is recursively partitioned into four sub-blocks and the optimal sampling

process restarted for each new partition. Figure 4.5 shows an image automatically segmented by

constrained optimal sampling. Note how complex regions are sampled by smaller windows while

large homogenous regions like the background remain unchanged.
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Figure 4.5: Optimal sampling with constrained search space. Limiting the size of the disparity set
by spatial partitioning incurs in a marginal accuracy penalty at partition boundaries.

Optimal Search Space Refinement

For one local patch, there will be more than one acceptable reduced space, and the one

obtained by SPRT model may not be the best combination, since the reduced search space is built

incrementally, and the depths added at the beginning are only determined by few observations. Here

we propose a method to refine the final search space. During the sequential test, the cost profile for

each sampled pixel will be recorded in a history table.

Let ci(dj) be the relative cost difference for depth dj defined in Equation 4.4, and suppose the

depth set found by SPRT model contains K elements, then to find the optimal depth set for the

given patch is to find a set DK with at most K elements such that the product of samples’ likelihood

is greater than any other combinations D′, as illustrated in Equation (4.7).

1 ≤
∏n

i=1 maxd∈DK
exp(−1 + ci(d))∏n

i=1 maxd′∈D′ exp(−1 + ci(d′))

= exp(
n∑

i=1

max
d∈DK

(ci(d))−
n∑

i=1

max
d′∈D′

ci(d
′))

⇒
n∑

i=1

max
d∈DK

(ci(d)) ≥
n∑

i=1

max
d′∈D′

ci(d
′)) (4.7)

Suppose there is a cost table, and the element ci,j is the relative cost difference for the jth

depth in the ith samples. The problem then becomes a binary integer programming task: to find
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K columns to maximize the sum of scores
∑n

i=1 maxj∈DK
ci,j . However, such a problem does

not have an O(n) solution. Here we use a greedy method to approximate the optimal solution.

First, we find the depth dk that has the maximum sum of scores
∑n

i=1 ci,k, and put it as the first

depth in the candidate set. Then elements in the table are updated as ci,j = max(0, ci,j − ci,k), and

find the next depth with the maximum sum of scores in the new table. Repeat K times to get the

approximated optimal set, which is then compared with the original candidate set generated by

optimal sampling, and choose the one with the better accumulated score as the final set. Also, when

applying constrained optimal sampling scheme, the patch will be split only when the optimal set is

still incomplete.

Recovering Isolated Structures

Sequential optimal sampling is designed to achieve disparity set α sufficiency for each given

region. Accordingly, our coverage may be incomplete whenever there are isolated structures

comprising a region coverage near or below the 1− α confidence threshold. The shortcoming of

sampling in regular square blocks is that some isolated regions (such as the tip of the lamp in Figure

4.5) might be missed. Although the portion of such areas is much smaller with respect to the entire

patch, it is still worth to recover the missed search space for some boundary sensitive applications.

In this paper, the search space for the local patch will be propagated to small neighboring regions,

so that isolated areas (as the errors shown in Figure 4.5) will have a joint search space that contains

the correct depth. The length of the propagation is set as 10% (called propagation ratio) of the

patch size. In practice such propagation results in a small dilation of each sampling block aimed at

mitigating the boundary effects of our block partitioning scheme.

Experiments

We evaluate our search space reduction through SOS sampling and present results of its

combination with existing stereo algorithms. For ground truth evaluation and benchmarking we

used the Middlebury Stereo datasets (Scharstein and Szeliski, 2002, 2003b; Scharstein and Pal,
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Figure 4.6: Cardinality: Sequential optimal sampling (SOS) vs. random sampling (RS) for various
matching window size (left) and sampling neighborhood size (right).
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Figure 4.7: Accuracy: SOS vs. RS for various matching window size (left) and sampling neighbor-
hood size (right).

2007; Hirschmuller and Scharstein, 2007). All algorithms were implemented in C++ and executed

on an Intel Xeon CPU W3540 2.93GHz. The default aggregation window size is 3 × 3 for our

depth sampling preprocessing step. Matching cost computation parameters are set to the default

parameters proposed in (Bleyer et al., 2011). The SOS stopping parameters were set to αsuff = 0.90

and αconf = 0.95.

Search Space Reduction from SOS

Initially we compare our Sequential Optimal Sampling (SOS) scheme and SOS with constrained

search space ‖D‖ ≤ 5 (SOS-C) against the Random Sampling scheme RS(X), which randomly

selects pixels with the fixed sampling ratio X = {0.005, 0.01, 0.05, 0.1} in each patch and uses their

disparities to form the reduced search space. The reduced search space is evaluated in three aspects:
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Figure 4.8: Redundancy: SOS vs. RS for various matching window size (left) and sampling
neighborhood size (right).

cardinality, accuracy, and redundancy. The results of SOS are evaluated on non-overlapping blocks

of default size 50× 50. Our evaluation is based on the average data of the five test images: tsukuba,

venus, teddy, cones, and art.

Compactness. Figure 4.6 compares the reduced search space for SOS and SOS-C against

RS(X) with multiple fixed sampling ratios. Both SOS and SOS-C consistently provide smaller

search spaces M ×M , irrespective of patch size. Moreover, our proposal found more compact

disparity sets than the random sample variants geared at performing less sampling (e.g. RS 0.005).

Thus our optimal sampling models effectively reduce the search space.

Accuracy. We analyze the fraction of pixels whose ground truth disparity is present in the

reduced set. In Figure 4.7 we can see the accuracy of SOS and SOS-C are always above 95% with

arbitrary matching windows sizes and patch sizes, showing that our optimal schemes are able to

obtain a stable accuracy by adjusting the sampling ratio according to local structures, providing

more flexibility than random sampling with a predefined ratio.

Redundancy Figure 4.8 measures the fraction of wrong disparities left in the reduced disparity

set. Again our optimal sampling models have very small and stable redundancy (less than 1 spurious

disparity added to the disparity candidate set), which is much better than any random sampling

scheme. Notice that the two high accuracy (nearly 100%) schemes RS 0.05 and RS 0.1 also have

huge redundancy (2% accuracy improvement with more than 20 useless depths), which intuitively

is not a good balance between the efficiency and completeness.
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Sampling efficiency. We focus on the total number of samples required to estimate the local

structure. The sampling ratios for SOS and SOS-C are shown in Figure 4.9, and we observe a stable

ratio around 1%. Figure 4.10 shows the final patches generated by SOS-C and the corresponding

sampling density in each of the patches. In general, the block size reveals the complexity of the local

structure and all pixels in the image have a bounded (i.e. turnkey) reduced disparity set. Moreover,

SOS-C successfully detects image regions with complex structure and recursively partitions said

region. Accordingly, flat regions with few disparities are represented by relatively large blocks.

However, we also find homogenous regions like the bottom of the image are over-segmented due to

ambiguous texture, which is beyond the capability of local matching techniques.

Experiments show that the SOS schemes outperform the fixed ratio random sampling RS(X)

schemes. Processing times of SOS-C for tsukuba, venus, teddy, cones and art are 21ms, 42ms,

106ms, 114ms, and 193ms respectively. Thus, SOS and SOS-C are reliable light-weight sampling

schemes suitable as a stereo complexity reduction pre-process.

Stereo under SOS

We now evaluate the performance of the coupling of SOS as a pre-processing step for a variety

of stereo algorithms. Namely, we compare the performance of two efficiency driven state of the art

disparity sampling techniques PatchMatch (PM) (Bleyer et al., 2011) and HistogramAggregation

(HA) (Min et al., 2011). As an additional baseline we include typical local and global stereo

methods: Exhaustive search (EX) and Belief Propagation (BP) under the complete and the reduced

disparity search space estimated through SOS (PM+S, HA+S, EX+S, and BP+S). The search space

used is generated by SOS-C on 100 × 100 blocks with a maximum size of the disparity set of

|D| = 5 and using propagation ratio γ = 0.1.

To enable a leveled comparison against algorithms working under the fronto-parallel assumption

we modify PM for compliance to this assumption. The default window size for cost aggregation

is 11, except for BP (no explicit cost aggregation). For HA (position-dependent), the spatial ratio

is 3, and aggregation window is 31 (the default value used in (Min et al., 2011), which is similar
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Time (s) PM(FP)+S PM(FP) HA+S HA EX+S EX BP+S BP

Tsukuba 1.76 1.91 1.40 1.80 2.54 5.13 7.88 34.00

Venus 2.49 2.80 2.10 3.09 3.81 9.48 14.57 78.30

Teddy 2.93 3.28 2.65 6.41 5.20 24.61 35.03 652.95

Cones 2.89 3.29 2.72 6.38 5.18 23.05 41.32 649.59

Art 3.26 3.72 3.70 8.21 7.76 31.22 102.38 1221.36

Books 3.11 3.5 3.06 8.13 6.27 32.34 58.33 1192.62

Table 4.1: Processing time for various stereo methods.

to aggregate cost from 11× 11 pixels). For fronto-parallel PatchMatch (PM(FP)), the maximum

number of iterations is four, and in each iteration the disparities are propagated starting from the

top-left to the bottom-right, and then they are propagated back to the top-left. For BP, the maximum

number of iterations is fifteen.

Figure 4.11 shows samples of raw disparity maps generated by the various stereo algorithms,

and the corresponding processing times are listed in Table 4.1. We observe no significant quality

loss between stereo algorithms under reduced and entire search spaces, while the processing time

on reduced spaces is smaller than using the entire space, for PM(85%), HA(50%), EX(20%), and

BP(6%).

We also compare PM(FP)+S and PM(FP) on the high resolution (21M ) images of Kim et al.

(2013) with a large candidate disparities set of 250 disparities. After our optimal sampling, the

average search space is reduced to less than 10 disparities. Figure 4.12 shows the raw disparity

maps for PM(FP) and PM(FP)+S, with the corresponding processing time. We also can see PM

has many outliers around the bush regions which have been successfully removed by our sampling

so that PM+S has much fewer outliers. While the goal of our SOS sampling scheme is to enable

attainment of the same results as exhaustive disparity search from a reduced search space, in this

case increased accuracy is a byproduct of our optimal local structure estimates due to the removal

of ambiguous and wrong disparities.
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Color image PM(FP)+S HA+S EX+S BP+S

Ground truth PM(FP) HA EX BP

Color image PM(FP)+S HA+S EX+S BP+S

Ground truth PM(FP) HA EX BP

Color image PM(FP)+S HA+S EX+S BP+S

Ground truth PM(FP) HA EX BP

Figure 4.11: Raw disparity maps for various stereo methods.
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Color map (5490× 3450) PM(FP)+S 58.97s PM(FP) 75.56s

Color map (2676× 1752) PM(FP)+S 16.84s PM(FP) 19.30s

Color map (4007× 2622) PM(FP)+S 33.36s PM(FP) 51.83s

Color map (4020× 2679) PM(FP)+S 34.31s PM(FP) 40.57s

Color map (2622× 1718) PM(FP)+S 14.91s PM(FP) 17.94s

Figure 4.12: Raw disparity maps and processing time (10 threads) for PM(FP)+S and PM(FP) on
high resolution images.
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Discussion

In this chapter, we introduced a novel approach to reduce the disparity search space for stereo

based on the Sequential Probability Ratio Test from sequential decision theory. Our method avoids

unnecessary evaluation of irrelevant disparities for pixels of an image. Moreover, our method can be

combined with a large variety of existing stereo estimation methods. As shown in our experimental

evaluation, our method maintains the quality of the exhaustive disparity estimation at significantly

lower computational costs.

Sequential optimal sampling scheme provides an adaptive strategy to estimate the property of

the local patch, where sufficient accuracy and compactness can be achieved by manually selected

thresholds. One of its extension is to recover the structure of the local patch, which is further

discussed in chapter 6.
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CHAPTER 5: SURFLET-BASED STEREO

To improve the accuracy of stereo is one goal of this dissertation. As discussed in section

2.1.1, we need a pre-assumed local structure for aggregating pixel-wise matching costs, and the

reliability of the aggregated matching costs is heavily influenced by the aggregation structure. In

this chapter, we focus on the recovery of high quality local structures, and we will show that more

accurate local geometry can be recovered by utilizing additional surface normal measurements,

which also overcome the shortcoming of color-based stereo such as textureless regions. We address

the problem of traditional surface from normal techniques first, and then propose a stereo framework

integrating photo-consistency and surface normal.

Surface normals are usually obtained from illumination cues, and then used to generate high

quality surfaces in Photometric Stereo (Woodham, 1980; Horn and Brooks, 1986; Frankot and

Chellappa, 1989; Chow and Yuen, 2009). Under Woodham’s original assumptions (Woodham,

1980) (Lambertian reflectance, known point-like distant light sources, and uniform albedo), the

normal map can be obtained by inverting the linear equation I = N ·L, where I is a (known) vector

of m observed intensities, N is the (unknown) surface normal, and L is a (known) 3×m matrix

of normalized light directions. However, photometric stereo relies on knowing (or estimating) the

directions of the light sources while making assumptions regarding their relative intensity. Light

source calibration errors or other deviations from the assumed source properties may result in

unacceptable distortions (Horovitz and Kiryati, 2001).

Another practical limitation of many photometric approaches is that they work with a single

orthogonal image as input, so the reconstructed surfaces have no information about the absolute

depths. Moreover, the surface integrability assumption used in many surface from normal algorithms

only work well with single object scene geometries. Accordingly, it is hard to use them to recover
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(a) (b) (c)

Figure 5.1: Multi-modal data fusion. Our approach uses (a) color images and (b) normal maps to
estimate (c) reconstructed surfaces.

scenes comprising multiple objects, given that depth discontinuities are difficult to model in

this context. In contrast, plane-sweep-based stereo (Collins, 1996; Yang and Pollefeys, 2003;

Gallup et al., 2007) is an efficient approach to recover absolute depths based on photo-consistency

measurements. However, the availability of sufficiently textured surfaces is not always fulfilled

in real-world scenarios. Nevertheless, the integration of both of these complementary surface

estimation approaches is a promising research path.

Recently, a novel spatial phase camera has been developed Photon-X 1, which is capable of

passively recording an object’s surface normals with an accuracy of two degrees of orientation

(as shown in Figure 5.1b). This new sensing device measures the orientation of the last surface a

viewing ray was reflected from as a function of the phase of the light wavelength captured by each

CCD array element. Accordingly, we obtain a 3D orientation vector for each pixel in addition to

the luminance information. In this chapter, we leverage this new sensing modality by developing

a multi-modal surface reconstruction approach, which efficiently integrates measurements of the

orientation and texture of multiple disjoint surfaces.

1 Photon-X: http://www.photon-x.com/tech.html
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Related work

Given the normal map N = {(nx, ny, nz)} defined over a pixel grid, we can obtain a gradient

map G = {(gx, gy)} where gx = −nx

nz
and gy = −ny

nz
. The generating surface Z(x, y) may then be

obtained by minimizing the functional (Horn and Brooks, 1986)

∫ ∫
((Zx − gx)2 + (Zy − gy)2)dxdy (5.1)

Similar integral approaches (Klette and Schluns, 1996; Noakes and Kozera, 2003) share the

common underlying assumption that the surface is uniformly integrable (Zxy = Zyx), i.e. the second

partial derivatives are independent of the order of differentiation. Without this constraint, Equation

5.1 may have an infinite number of solutions. However, the integrability constraint is rarely satisfied

in practice due to the presence of sharp edges and occlusion boundaries.

A number of approaches (Frankot and Chellappa, 1989; Hsieh et al., 1995; Karaçali and Snyder,

2003; Kovesi, 2005) project the gradient field onto a finite set of integrable basis functions φ(·) in

order to apply an integral method on a possibly non-integrable surface. In this case, the surface

Z(x, y) is represented as

Z(x, y) =
∑

ω∈Ω

C(ω)φ(x, y, ω) (5.2)

where ω = (ωx, ωy) is a two-dimensional index, Ω is a finite set of indexes and the integrability of

the surface Z(x, y) is contingent on each φ(x, y, ω) being integrable. In this scenario, the problem

becomes finding the coefficients C(ω) that minimize the distances between the given possibly

non-integrable surface and the approximated integrable surface. Frankot and Chellappa (1989) used

Fourier basis functions, which are fast and robust to noise. Later, wavelet basis functions were

adopted by Karaçali and Snyder (2003), who point out that the uniform integrability assumption

will become invalid and cause significant distortions due to the impact of unknown discontinuities

(edges and occlusions). They relaxed the constraint to partial integrability, and provide a global
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method to detect and localize unknown edges in the gradient field. The key to the edge detection is

to examine the difference between the given gradient field and the gradient field obtained by the

uniform integrability assumption. However, the method is complicated and the computational load

in constructing the feasible gradient space descriptors grows rapidly with increasing image size.

Kovesi (2005) uses shapelets (a redundant non-orthogonal set of basis functions) to enhance sharp

transitions in the surface. However, the reconstructed shape is sensitive to the scale of the shapelet

function being used, whose optimal determination is still an open problem.

More recent work (Chow and Yuen, 2009; Nehab et al., 2005; Lee and Kuo, 1996) uses

multiple images to obtain the shape with absolute depths. Nehab et al. (2005) concluded that the

prevailing errors in measured normals are low-frequency in nature, whereas positions measured by

stereo triangulation contain mostly high frequency noise. The method first corrects the bias in the

normals by low-pass filtering, then it formulates the corrected normals and measured positions as an

optimization problem, where the objective function is a large sparse linear system. Chow and Yuen

(2009) estimate the absolute depths for the singular points in intensity images by a novel sparse

matching technique, then the surface is expanded from these singular points by the fast matching

method. Lee and Kuo (1996) establish a unified framework for the integration of photometric

ratio and stereo by employing perspective projection on a parametric surface via minimizing a

cost function, which consists of a weighted sum of shading and stereo errors. Also, multi-view

photometric stereo (Vlasic et al., 2009; Hernandez Esteban et al., 2008) utilizes illumination

conditions, silhouettes and the shading cues to recover the absolute depths.

The aforementioned methods do not provide an explicit and efficient mechanism to detect and

treat discontinuities in the scene. As a consequence, two overlapping objects may be fused together,

leading to heavy distortions near the joint boundaries. To exemplify, a simple scene consisting of a

bunny and a plate is shown in Figure 5.2, and the shape generated by the diffusion method for shape

from normals (Agrawal et al., 2006) is compared with the ground truth and our method. We can see

the plate reconstructed by the traditional method is very jagged. Moreover, since the two objects are

treated as a uniform surface, it is impossible to recover the true relative distances between them. We
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(a) (b) (c) (d)

(e) (f) (g)

(h) (i) (j)

Figure 5.2: Distortion caused by discontinuities. Top: (a-d) normal map and its 3D components.
Middle: scene geometry for (e) the ground truth, (f) the approach presented in (Agrawal et al., 2006)
and (g) our approach. Bottom: (h-j) corresponding geometry for the background plate. Note the
distortions in (i) generated by the integration approach (Agrawal et al., 2006).

also note that viewing geometry and object topology are another possible cause of surface ambiguity,

as some object self occlusions (and the corresponding depth discontinuities) can not be properly

reconstructed by a surface integration approach. For example, for fronto-parallel view of our scene,

the bunny’s ears in the ground truth model will not be directly connected to the head because of

occlusions, but in the diffusion reconstructed surface the two components are smoothly connected.

The methods proposed in this paper address all these limitations through a multi-modal approach.

Traditional stereo approaches rely on finding dense correspondences among images using

local photo-consistency to discriminate among alternative matching hypotheses. For most stereo
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approaches, the photo-consistency evaluation is performed over an arbitrary neighborhood surround-

ing a pixel in the reference and a displaced pixel neighborhood in the matching image. The work of

Yang and Pollefeys (2003) applies this concept to multiple images by applying an affine texture

transformation to the matching images in order to efficiently model a plane sweeping through

the space of depth hypotheses. The affine transformation corresponds to a plane orthogonal to

the camera viewing axis. Gallup et al. (2007) later improved upon this approach by adaptively

selecting a reduced set of main sweeping directions in accordance to sparse depth estimates from an

independent structure from motion process. In that work, it was argued that aligning the sweeping

direction with the main surface orientation improved accuracy by reducing the depth discretization

effect caused by slanted planar surfaces not complying with the local fronto-parallel assumption.

We go a step further by modeling the local surface of the matching neighborhood and using this

parametric surface to sweep the space of depth hypotheses. This provides more accurate and robust

depth estimates than the aforementioned plane sweeping approaches, as will be presented later in

Figure 5.4.

Natural Cubic Spline Patches

This section presents the method to estimate local surface geometry (called surflet) in the

neighborhood of a single pixel based on surface normal information. We model surflet as a

continuous parametric function, which can be approximated by a set of intersecting 3D cubic splines

defined over an image patch. Moreover, we use the surface normal measurements to formulate a

linear system of equations from which we can determine least square depth estimates for each pixel

in the surflet being considered.

For a surflet of size k × k, the pixels in the same row or same column form k horizontal and k

vertical curves. Note that the terms horizontal and vertical refer to the orientation on the image, as

these are actually 3D curves generated by the object surface. Suppose the ith horizontal curve Ch
i

consists of points Pi,j = [xi,j, yi,j, zi,j], (j = 1, ..., k). Then, the segment between point Pi,j and

64



Pi,j+1 can be approximated by a natural cubic spline as follows:

XPi,j ,Pi,j+1
(λ)=ai,j,0 + ai,j,1λ+ ai,j,2λ

2 + ai,j,3λ
3

YPi,j ,Pi,j+1
(λ)=bi,j,0 + bi,j,1λ+ bi,j,2λ

2 + bi,j,3λ
3

ZPi,j ,Pi,j+1
(λ)=ci,j,0 + ci,j,1λ+ ci,j,2λ

2 + ci,j,3λ
3, (5.3)

where ai,j,m, bi,j,m, ci,j,m are the coefficients for the spline function, and λ ∈ [0, 1] is a scalar that

parameterizes the traversal of a 3D point along a curve segment with Pi,j and Pi,j+1 as its end

points.

According to the spline continuity constraints (0th, 1st, and 2nd order), and assuming the

second derivatives at the end points are 0, the spline coefficients ai,j,1 can be obtained from the

following system of linear equations:




2 1

1 4 1

. . .

1 4 1

1 2







ai,1,1

ai,2,1
...

ai,k−1,1

ai,k,1




= 3




xi,2 − xi,1
xi,3 − xi,1

...

xi,k − xi,k−2

xi,k − xi,k−1.




(5.4)

The coefficients bi,j,1 and ci,j,1 are obtained by similar formulations. Accordingly, the surface

tangent vector
−→
th at point Pi,j on the ith horizontal curve Ch

i is defined by

−→
th (Pi,j)

= [
∂XPi,j ,Pi,j+1

∂λ
,
∂YPi,j ,Pi,j+1

∂λ
,
∂ZPi,j ,Pi,j+1

∂λ
] |λ=0

= [ai,j,1, bi,j,1, ci,j,1]

= f(xi,1, yi,1, zi,1, ..., xi,k, yi,k, zi,k) (5.5)
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where f is a linear function and xi,j, yi,j, zi,j are the coordinates of the control points Pi,1, ..., Pi,k.

For perspective images with a known intrinsic calibration matrix K, the 3D position of the pixel

is determined by the depth zi,j . Hence,
−→
th (Pi,j) can be simplified to a function with k unknowns

zi,1, ..., zi,k.

Let −→n (Pi,j) be the normal measured at point Pi,j , there are two linear functions for depths

zi,1, ..., zi,k and z1,j, ..., zk,j:

−→n (Pi,j) · −→th (Pi,j) = −→n (Pi,j) · fh(zi,1, ..., zi,k) = 0

−→n (Pi,j) · −→tv (Pi,j) = −→n (Pi,j) · fv(z1,j, ..., zk,j) = 0 (5.6)

Equation 5.6 can be extended to a linear function for all the depths in the surflet (k2 unknowns:

z1,1, ..., zk,k). Given that each surface point is found at the intersection of two curves, there are two

perpendicular tangents per point. So we can obtain 2k2 linear equations:




m1,1 m1,2 . . . m1,k2

m2,1 m2,2 . . . m2,k2

...

m2k2,1 m2k2,2 . . . m2k2,k2




︸ ︷︷ ︸
M




z1,1

z1,2

...

zk,k




= 0 (5.7)

where mi,j are constants for given intrinsic matrix and surflet size.

Let M denote the coefficient matrix in equation 5.7, and M = USV T , where S is a diagonal

matrix, and U ,V are orthogonal matrices. The last column of V is a normalized nonzero solution

for equation 5.7. Then, if we know the absolute depth for one point, we can recover the absolute

depths for the whole surflet.

In our approach, the relationship between depth and normals is approximated by a linear

function defined over a set of cubic spline coefficients. This modeling offers better accuracy and

robustness than using an explicit linear relation among depth and normals. Moreover, by solving
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an over-determined system of equations in a least square manner, we are able to readily obtain a

measure of the reliability of our estimate. In turn, unreliable relative depth estimates (i.e. with a

poor fit) are identified as discontinuous surface patches. An examination of the minimum eigenvalue

of the coefficient matrix in equation 5.7 is a straightforward criterion for the correctness of our

estimates. However, a more geometrically meaningful criterion for discontinuity detection is

to compute the difference between the estimated and observed normals. We define the normal

difference by

Dnorm =
∑

1≤i,j≤k

‖ −→n (Pi,j)−−→tv (Pi,j)×−→th (Pi,j) ‖
k2

, (5.8)

and use it as the quantitative criterion to evaluate the recovered depths. If the normal difference is

greater than a pre-defined threshold, it means the surflet is not able to be approximated by our natural

cubic spline model and it is highly probable that the current image patch contains a discontinuity.

Relative Surfaces through Surflet Aggregation

This section presents an efficient method to generate continuous 3D surfaces in the scene by a

process of selectively aggregating and segregating surflets. The method introduced in Section 5.2

estimates the local geometry of a 3D surface patch by solving a linear system with k2 unknowns.

The quadratic growth of our linear system of equations renders the use of the surflet estimation

method across an entire high resolution image as not computationally tractable. Moreover, any

violations of the surface continuity assumption will cause severe distortions in our depth estimation.

In order to efficiently estimate an image-wide relative surface, we propose a region growing

procedure that aggregates surflets to form disjoint surfaces whose relative depth is consistent with

the input surface orientation measurements. Starting from one seed pixel, a local cubic spline

patch is estimated and the surface is expanded by attaching neighboring surflets sequentially. The

expansion of a given surface will stop at discontinuous regions (boundaries, edges or occlusions)

and once a given surface can no longer be expanded in any direction, a new seed is selected. This
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process is repeated until all pixels in the image have been examined, yielding a segmentation of the

scene into disjoint relative surfaces.

Suppose a is an arbitrary pixel in the image, and its corresponding k × k surflet is A. Notice

that in this step, we only consider continuous patches, so if A is discontinuous, we discard a and

randomly select a new pixel. We assume the depth of a is 1, and use it as the initial element in the

fixed point set F = {a}. Suppose b is one of a’s neighbors and its corresponding surflet is B. Let

d(x, Y ) be a function that returns the estimated depth for a point x in surflet Y . By attaching patch

B to A, the depth of point b will be scaled by s, where s = d(b,A)
d(b,B)

. Then the attachment is validated

according to the depth difference of a: Va = d(a,A)− s · d(a,B). If Va is small, which means the

depth ratio of a to b estimated by two surflet are similar, then the attachment is valid; otherwise at

least one approximated surflet is incorrect, so the attachment is invalid and point b is dropped. From

these elements we define our depth scaling function as

s =
1

|F ∩ P |
∑

x∈F∩P

d(p,X)

d(p, P )
, (5.9)

where F is the current fixed point set, p is a new point to attach, and P is the surflet generated with

p as the patch center. In addition, the function used to validate the correctness of the aggregation of

a particular surflet to our existing surface estimate is defined by

V (s) =
1

|F ∩ P |
∑

x∈F∩P

(d(x, F )− s · d(x, P ))2. (5.10)

The attachment process repeats until all the points are added to the fixed point set or dropped at the

end of this process, and then all the points in the fixed set form a continuous surface segment. In the

same way, all the pixels in the image can be clustered to certain disconnected segments. The entire

procedure is listed in Algorithm 2.

An example for a relative depth map and surface is shown in Figure 5.3. Compared to existing

integral approaches, our method is more robust because the attaching operation usually involves

more than one neighbors’ information, and the validation operation guarantees that the attached
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Figure 5.3: Relative depth map and surface generated from a single normal map.

surflet will coincide with existing surflets. Additionally, the validation operation will detect the

discontinuity on the surface to prevent integrating disconnected segments. Although the generated

related surface will vary for different expanding paths, the variation is bounded because of the

validation operation.

Absolute Depth through Surflet Sweeping

After obtaining the connected surfaces, the next step is to obtain their absolute depth within the

scene. An estimate of the absolute depth of a single pixel is sufficient to propagate depth information

through an entire relative surface. In our approach, multiple 3D points are used to make the absolute

depth estimate for a given surface more robust and mitigate any error propagation effects introduced

in our surface generation method. Moreover, we estimate the absolute depth for a subset of points

in the scene and adjust the relative surface to which they belong accordingly.

Feature points in the luminance image are identified using SIFT (Lowe, 1999). We generate

the corresponding surflet to the SIFT feature and sweep the surflet along its viewing ray, as shown

in Figure 5.4. By sweeping the surflet along the ray and projecting back to other images, we can

accurately estimate the depth for the surflet. The surflet sweeping approach proposed here is similar

to the plane sweeping (Collins, 1996; Yang and Pollefeys, 2003; Gallup et al., 2007), but points are

no longer required to lie on a common plane. Moreover, by sweeping a parametric surface patch

instead of a plane, we can model self-occlusions caused by local surface geometry. To reduce the
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Algorithm 2 Relative Surface Generation
1: U = {p1, ..., pN}: initial set of all pixels to be attached
2: D = {0, ..., 0}: initial set of depth for all the pixels
3: Segs = {}: initial set of recovered surface segments
4: si = 0: index for the current segment
5: while U 6= {} do
6: p = U{1}, U = U − {p}
7: generate surflet P for p
8: if P is discontinuous then
9: continue

10: si+ = 1
11: Ssi = {p}: set of fixed pixels for current segment
12: Dp = 1
13: Nsi: set of neighbor pixels for Ssi

14: Csi = U ∩Nsi

15: while Csi 6= {} do
16: q = Csi{1}, Csi = Csi − {q}
17: generate surflet Q for q
18: if Q is discontinuous then
19: U = U − {q}
20: continue
21: computer depth d for q by function (5.9)
22: validate d by function (5.10)
23: if d is valid then
24: Ssi = Ssi ∪ {q}, Dq = d, U = U − {q}
25: update Nsi and Csi

26: Segs{si} = Ssi

27: return D and Segs
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Figure 5.4: Surflet sweeping.

search space, we assume the surflet center can be seen in all the images, then the search space is

limited by the boundaries of all the images. The projection of the reduced search space on each

image is a segment along the epipolar line, and each pixel on the line segment delivers a depth

interval.

The absolute depths obtained by surflet sweeping are then used to refine the surface segments.

We foresee that surflet sweep stereo may provide erroneous estimates do to the limitations common to

local stereo estimation approaches (e.g. foreground over-extension, multi-modal photo-consistency

function). We deploy a RANSAC based data filtering approach to discard outlier depth estimates

that would corrupt the absolute depth of our continuous relative surfaces. In fact, we use the

pre-computed relative surface estimate as our fitting model. In this way, we obtain a filtered set of n

feature points p1, ..., pn with known depths d1, ..., dn in the same segment. For each point x with

relative depth dr, its absolute depth is computed by equation 5.11.

d(x) =
1∑n

j=1
1

‖x−pj‖

n∑

i=1

di · dr
‖ x− pi ‖

(5.11)
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Experiments

We evaluated our approach on both synthetic and real data containing disconnected objects.

The synthetic data contains the Stanford Bunny and the Happy Buddha models 2, whose surfaces are

formed by about 1 million triangles. Each endpoint of the triangles is assigned a random value [0, 1],

so the color of the triangle is the mean of its three endpoints’ colors, and the normal is computed by

the cross product of two edges. We set 36 viewpoints surrounding the models, with a fixed intrinsic

matrix and known extrinsic matrix (rotation and translation of the camera). At each viewpoint we

generate 1 perspective grayscale image and 1 normal map by projecting the models to the image

plane. In this experiment we choose six typical views, three front and three back images (Figure

5.5). The experiments on real data are captured by the spatial phase camera provided by Photon-X,

and consist of three grayscale images (left, middle, right) and one normal map for the middle image

(Figure 5.6).

Figure 5.5: Grayscale and normal images for synthetic data.

We initially evaluate the generated depth maps using synthetic data. The model size is 215mm×

115mm × 205mm, and the program runs several times with different patch sizes: 3 × 3, 5 × 5,

7× 7, and 9× 9. The depth maps and errors for synthetic data are shown in Figure 5.7 and Table

1, where we observe that greater overall reconstruction accuracy can be achieved by using the

two smallest patch sizes. This is mainly attributed to improved local surface approximations near

discontinuity boundaries. We also note that small patch sizes are computationally less demanding

2 Stanford 3D Scanning Repository: http://www.graphics.stanford.edu/data/3Dscanrep/
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Figure 5.6: Grayscale and normal images for real data.

as the number of equations is proportional to the number of pixel in the patch. Accordingly, in

following experiments, the default patch size is 3× 3.

Figure 5.7: Depth maps for synthetic data. From left: Ground truth, patch size s=3,5,7, and 9.

Next, we investigate the capability of recovering discontinuous regions by comparing our

method with shapelets approach (Kovesi, 2005) and the diffusion method proposed in (Agrawal et al.,

2006). Note that the shapelets and the diffusion algorithms treat normal maps as orthogonal images,

so the reconstructed surfaces differ slightly. The first row of Figure 5.8 shows the reconstructed
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Patch depth error (front) depth error (back)
size mean median mean median
3 2.5mm 0.38mm 2.0mm 0.4mm
5 2.5mm 0.30mm 6.4mm 1.1mm
7 2.0mm 0.39mm 7.9mm 2.0mm
9 20.9mm 0.47mm 9.7mm 1.5mm

Table 5.1: Mean and median depth error for synthetic data with different patch size.

Normal Map Ground truth Shapelet Diffusion Surflet (Ours)

Figure 5.8: Comparison for discontinuous region reconstruction. The first column shows investi-
gated overlapping regions (bounded by boxes), followed by surfaces reconstructed by Ground truth,
Shapelets (Kovesi, 2005), Diffusion(Agrawal et al., 2006), and our approach.

ear of the bunny in the first (front) synthetic image. Since the ear is overlapped with Buddha’s

body, we can see the ear reconstructed by either shapelets or diffusion method has a sharp distortion

near the tip. Also in the second row of Figure 5.8, where the Bunny’s body is overlapped with

Buddha’s pedestal, we find that surfaces obtained by shapelets and diffusion methods become

concave around the overlapping region. Moreover, only the surfaces reconstructed by our method

maintain a consistent geometry w.r.t. the ground truth.

Figure 5.9 shows the estimated surfaces with their corresponding (estimated) normal maps. We

can see that the front and back objects are clearly separated, and neither is distorted by the other,

especially for the regions near the boundaries. However, for the real data there are still a number of

jagged points along the shape boundary. Since we only use three images for photo-consistency based
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stereo matching, we expect these issues to be further reduced by considering additional images.

The existence of small gaps in our face model (i.e. in the hair region) is due to the detection of

disconnected surface regions (obtained through the analysis of normal information) where no SIFT

features are found. While these artifacts can be improved by adjusting the discontinuity threshold,

it is evident that the development of an improved adaptive scene segmentation mechanism is an

important aspect to be addressed in future works.

In addition to evaluating the overall performance of our approach, we also tested the behavior

of our multi-view surflet sweeping module. Namely, we compared it against a fronto-parallel plane

sweep (Yang and Pollefeys, 2003) and an oriented plane sweep (Gallup et al., 2007). Our results

(Figure 5.10) illustrate how modeling the local surface geometry consistently provides a better depth

estimate based on photo-consistency. As expected, patches with a set normal surface measurements

which diverge from the fronto parallel assumption are increasingly better estimated by our approach.

Also, as the size of the matching template increases, surflets sweeping does a better job of modeling

arbitrary surfaces.
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Figure 5.10: Surflet sweep accuracy comparison. At left, depth error as a function of the surface
deviation from the fronto-parallel assumption. At right, depth error as a function of varying patch
size.
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Figure 5.9: Recovered surfaces and normal maps. Left column: original normal maps used as input;
middle column: recovered surfaces; right column: normal maps estimated from recovered depth
maps.
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Discussion

Besides the color information, we introduced approaches to obtain high quality surface re-

construction by normals. In contrast to previous surface from normal methods, our method can

efficiently detect surface discontinuities, enabling its application to scenes containing multiple

objects, which is then suitable to integrate with color-based stereo approaches. Accurate depth

estimates are obtained through multi-view surflet sweeping, due to the precise local geometry

estimation from surface normals. The proposed stereo approach outperforms existing plane sweep

methods by being able to better model local surface geometry and incorporating this information

into our photo-consistency estimates.
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CHAPTER 6: STEREO BY STRUCTURE PROPAGATION

Introduction

In Chapter 5 we obtained high quality local structures with surface normal information captured

by special hardware, which is hard to be satisfied in many applications. In this chapter, we will

discuss how to approximate local structures when we only have color images.

By separating the entire image into proper small local patches, the complexity of the scene

structure is also simplified due to the relative smoothness of each local patch. In Chapter 4, we

utilize this property to reduce the search space by sequential optimal sampling. Actually, besides the

candidate depths/disparities, the sampled pixels also provide the spatial cues of the local geometry,

which promotes a structure-oriented stereo strategy that outperforms state of the art sampling based

stereo techniques in accuracy and speed.

One difficulty of the matching cost aggregation in stereo is that in theory there are infinite kinds

of depth distributions for pixels within the aggregation window, which has to be approximated

by some simple structures such that the depth of each neighboring pixel can be determined based

on few factors (e.g. the depth of the center pixel). The most popular structure is planes, and a

general framework is called Plane Sweeping (Collins, 1996). Plane Sweeping (PS) is a depth-map

generation framework for general multi-view configurations (Seitz et al., 2006). PS evaluates for

each pixel a sequence of depth hypotheses through the comparison of the reference and matching

images, using a 3D plane-induced homographic transformation between both images. Hence, the

depth estimation process relies on an explicit and pre-determined sampling or discretization of

the space of feasible homography inducing planes π ∈ P3. The parameterization of π can be

decomposed into a depth value d ∈ R+ defined along the reference camera’s optical axis, and a

plane orientation vector n = (nx, ny, nz) ∈ R3, where ‖n‖ = 1. Single orientation PS (typically
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fronto-parallel) defines for each pixel a 1D search, which depends exclusively on the hypotheses

depth parameter d selected from a set of values D = {d1, . . . , dD}. Implicitly, a set of orientations

O = {n}, consisting of a single element, is also being evaluated. In rectified stereo (Bleyer et al.,

2011), the plane π : d = a · x + b · y + c · z for pixel p(x0, y0) is determined by a normal vector

n and the disparity z0, where a = −nx

nz
, b = −ny

nz
, and c = nxx0+nyy0+nzz0

nz
. And we can enforce

fronto-parallel plane π : d = z0 by setting n = (0, 0, 1).

In following section, we will discuss how to estimate the structure of the local patch by planes,

and propose an efficient propagation-based stereo algorithm. All the discussion is based on the

rectified images, and can be straightforwardly extended into multi-view stereo.

Related work

Integrated multi-view stereo approaches for 3D model generation commonly strive to estimate

surface geometry either by generalizing the results of sparse reconstructions or by fitting a global

surface parametric model to the observed data. (Furukawa and Ponce, 2007; Bradley et al., 2008;

Liu et al., 2009; Kolev et al., 2010). Furukawa and Ponce (2007) implemented multi-view stereopsis

as a match, expand, and filter procedure. First, some (feature) points are recovered in 3D space,

and then triangulated as sparse patches, which were then spread to nearby pixels to form a dense

set of patches. The authors use visibility constraints to eliminate incorrect matches. Bradley et al.

(2008) applied scaled window matching in binocular stereo, and integrate outlier removal in a lower

dimensional meshing. Liu et al. (2009) integrated silhouette information and epipolar constraint

into the variational method for continuous depth map estimation, and then synthesized depth maps

according to path-based NCC (normalized cross correlation) metric. Kolev et al. (2010) generalized

the photo-consistency-weighted minimal surface approach by means of an anisotropic metric to

integrate a specified surface orientation into the optimization process.

The plane sweeping approach is a category of local stereo methods that performs matching

across multiple unrectified images. Collins (1996) first introduced this method to reconstruct sparse

features by back-projecting them onto successive fronto-parallel planes. The algorithm was then
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extended for dense reconstruction in (Yang et al., 2002; Nozick et al., 2005), where each pixel

has a cost volume in the discretized depth space, and the final depth is the one with the minimum

cost. Due to perspective distortion, such fronto-parallel plane sweeping methods are not proper for

reconstructing oblique surfaces (Zabulis and Kordelas, 2006). Gallup et al. (2007) used slanted

planes for facade reconstruction, where the sweeping directions are estimated by the sparse points

cloud obtained from structure-from-motion. Carceroni and Kutulakos (2002) used fronto-parallel

plane sweeping to estimate depths first and then used surfel (surface element) to estimate orientation.

A common problem in existing sweeping approaches is that depth planes are sampled by uniformly

discretizing a predefined depth range. Zabulis and Daniilidis (2004); Zabulis and Kordelas (2006)

estimated the surface normals by oriented plane sweeping. They back-projected images onto a planar

patch in 3D space and computed the correlation. For each orientation of the patch a correlation

score is computed and the orientation that yields the highest correlation was selected as the best one.

PatchMatch (Bleyer et al., 2011) first introduces the slanted planar surface in rectified stereo.

In PatchMatch, each pixel is initialized with a random plane and then update the plane by three

kinds of propagation: Spatial Propagation, View Propagation, and Temporal Propagation. However,

the number of sampled planes (equals the number of all pixels on the image) is still very small

with respect to the space of candidate planes, a iterative plane refinement procedure is required to

converge to the correct plane. In contrast, our method proposed in this chapter significantly reduces

the search space of candidate planes, and does not need any iterative plane refinement during the

propagation.

Local Structure Estimation

Compared with the entire scene, the structure of each local patch is relatively simple. However,

like finding the candidate search space discussed in Chapter 4, we need to consider how to guarantee

the completeness and sufficiency of the exploited structures.

80



Figure 6.1: Structure pattern for the local patch.

Structure Pattern for Local Patches

The local structure can be approximated by a group of slanted planes (as illustrated in Figure

6.1). Besides the orientation and depth/disparisy of the plane, the positions of those planes should

also be known, and the combination of planes and their distribution is called the Structure Pattern

of the local patch.

An exhaustive approach is to find the slanted plane that best represents the local geometry of

each pixel, which is obviously intractable because of infinite candidate planes. A reasonable way is

to divide the local patch into several disjoint sub-patches, where each sub-patch can be approximated

by one slanted surface. In this ideal case, we just need to find a proper plane for one pixel from

each sub-patch to achieve a complete and sufficient structure pattern of the local patch. An intuitive

way to find this ideal structure pattern is to segment the local patch, and then approximate each

segment by a slanted plane. However, since there is no explicit or implicit correlation between the

depth and color, just performing color-based segmentation cannot guarantee the completeness and

sufficiency of the discovered structure pattern. For example, in Figure 6.1 the background poster

contains many different paintings, each of which will be treated as a distinct segment and then

approximated by one slanted plane. However, all of those regions have the same structure (one

fronto-parallel plane), so this over-segmentation will lead to redundant computational costs. Due to
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the homogenous texture, the front cone in Figure 6.1 will be treated as a single segment, but in fact

it has a curved surface and should be approximated by a batch of planes with gradually changed

orientations. Therefore, color-based segmentation will lead to incomplete structure pattern, and we

need a better sampling method that considers both color and depth information of the local scene.

Structure Pattern Sampling

Here we estimate the structure pattern by pixel-wise sampling. Instead of computing aggregated

matching costs for all possible oriented planes per pixel, we find the best structure by fitting planes

among multiple pixels, which is much more efficient and robust.

For a given local patch, we randomly select some sampled pixels (treated as seeds), and compute

their pixels-wise matching costs, where each seed will be assigned with the disparity that has the

minimum matching cost in the candidate disparity set. All seeds are connected with each other and

the edge between any two seeds will be assigned with a weight according to their color similarity

and spatial distances using Equation 2.2. Then all the edges whose weights are smaller than

certain per-defined threshold Tc are removed, and those seeds are grouped into several connected

components. Each sampled pixel s will be fitted with oriented planes by RANSAC (Fischler and

Bolles, 1981; Raguram et al., 2013): in each iteration we randomly select three sampled pixels

from the same component, and generate a plane π(x, y): d = a · x+ b · y + c, where x and y are

coordinates of the seed, d is the corresponding best disparity, and a, b, and c are coefficients to be

determined. Aggregating the weighted matching cost for pixel s from all the seeds belonging to the

same component with respect to the generated plane, and keep the plane if its cost is better than the

current cost (the default cost is computed from the fronto-parallel plane). Once a new plane is found,

the local pixel will also check the neighboring planes π+ and π−, which are generated by increasing

and decreasing c with 1 disparity, and keep the one with the best matching cost. Repeated sampling,

until no better matching cost has been found for consecutive R(= 10) randomly generated planes.

In this way, we can find the best planes for all sampled pixels, which will be used as seeds for

structure propagation.
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Figure 6.2: Plane Propagation.

One issue of the local structure exploration is the completeness. As discussed in in Chapter

4, we can set a large random sampling threshold to guarantee over-sampling even in the most

complicated local patch. A better way is selecting seeds by the sequential optimal sampling

proposed in Chapter 4. Our optimal sampling scheme adaptively separates the image into proper

sub-regions, whose local structures are also inherently represented by the candidate disparity set

and the spatial distribution of the corresponding sampled pixels. Another benefit is that the number

of sampled pixels are adaptive to the local geometry, so that it avoids generating insufficient similar

planes for simple smooth regions.

Local Structure Propagation

In this section, we will discuss how to integrate explored local structure patterns to obtain a

dense depth map. Ideally, the combination of all local structure patterns could be treated as a sparse

skeleton of the entire scene. According to the local smoothness assumption, neighboring pixels

should have similar structures as the sampled seeds, which means each pixel can directly choose the

slanted plane from its most “similar” seed.
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Propagation from Structure Pattern

Here we propose a propagation-based strategy to pass potential structure information across the

image. Initially, each seed ps propagates its plane πs(x, y) to its four neighbors (red pixels in Figure

6.2), and each neighbor pn will perform one of the following actions when receiving πs:

• If dn = πs(xn, yn) is not in pn’s search space Dn, discard πs;

• Otherwise:

– If the neighbor pn has not received any disparity before, set pn’s plane πn = πs, and

propagate πs to pn’s neighbors;

– If pn’s plane πn equals πs, do nothing;

– If πn 6= πs, compare their corresponding matching costs (for the first appeared plane,

compute the matching cost and store in the local cost table), if πs’s cost is better, update

local plane by the best of {π−s , πs, π+
s }, and propagate the new plane to pn’s neighbors;

In each iteration, pixels that update their local plane will be the seeds in the next iteration, and

the propagation will stop when no updates are occurring. Since the SOS (Chapter 4) is able to

automatically split the local patch into suitable portions along with appropriate number of samples,

this seed propagation scheme corresponds to the implicit smoothness of the local patches. Hence,

many pixels can directly “borrow” the plane (and corresponding disparity) from seeds without

computing the matching costs. Matching cost estimation will only need to be performed for pixels

that already have an assigned local plane (either by seed initialization or subsequent propagation)

and are receiving a contradicting disparity estimate from one of their neighbors. Even if there are

some incorrect seeds involved in the propagation, their influence is restricted within the regions

whose reduced search space contains such erroneous disparities, which is more robust and leads to

less computational effort spent on wrong planes.

84



Parallel Propagation Scheme

For high resolution images, a more efficient solution is parallel processing, and here we give a

parallelized version of our structure propagation stereo. First, the image is divided into K disjoint

M × M sampling blocks, and each block runs sequential optimal sampling independently by

one thread. After all blocks have been sampled, we redivide the image into multiple M ′ ×M ′

propagation blocks (M ′ = 2M or 3M ), and perform the propagation algorithm independently (as

illustrated in Figure 6.3). The average accuracy of SOS is about 95%, which means there may be

few fine structures missing from the recovered structure pattern, and most of these missing structures

come from isolated regions along the sampling block boundaries. Thus by propagating structures

in a larger regions, the structure cues missing from one sampling block will be complemented

from neighboring blocks, which improves the reliability and accuracy of the final result. After all

propagation blocks converge to stable results, the pixels along the boundaries will pass their local

best planes to the neighboring pixels that belongs to other blocks, and neighboring blocks will

run the inner propagation again. Repeat this procedure until the entire image converge to a stable

disparity map. In practice, we found that just performing the parallel block propagation is almost

good enough to generate accurate results without any discontinuity along the block boundaries,

which means the exploited structure patterns are sufficient.

Disparity Post-Processing

Next we perform a disparity refinement where the reliable pixel disparity estimates are identified

through left-right cross-validation and unreliable pixels near the left image boundary are assigned

the median of the neighboring reliable pixels on the same row. Remaining unreliable pixels are

filled by an improved interpolation method proposed in (Hirschmuller, 2008). For each occluded

pixel (a reference pixel whose disparity is smaller than the disparity of its corresponding pixel on the

matching image (Hirschmuller, 2008)), we will find the closet reliable pixels based on 16 directions,

and classify those reliable pixels as similar neighbors and dissimilar neighbors according to their
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Figure 6.3: Parallel Propagation Scheme.
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Figure 6.4: Homogenous component refinement. From left to right: color image, disparity maps
before and after homogenous component refinement.

color similarity. If there are some similar neighbors found, set the local disparity as the minimum

disparities of those similar neighbors; otherwise, set the local disparity as the minimum disparities

of the dissimilar neighbors. For each mismatched pixel (the reference pixel has greater disparity),

the local disparity is set as: i) the disparity of the most similar neighbor, or ii) the minimum disparity

of all neighbors if there is no similar neighbor.

A process deemed homogenous component refinement, see figure 6.4. Our proposed refinement

strives to correct remaining errors by propagating with the disparity that dominate the entire

component. First, we separate the image into disjoint homogenous components by connecting

the neighboring pixels if their color difference is below a pre-defined threshold. Homogenous

components that contain too many difference disparities (≥ 10) will be discarded because there does

not exist any dominated disparity. For other homogenous components, initially all pixels with the

dominated disparity are selected as seeds, and each seed will check its four neighbors. If neighbor

pixel’s disparity is similar (±1) as the local’s, keep it unchanged. Otherwise, change the neighbor’s

disparity to the local disparity. And the new visited pixels become new seeds for the next iteration.

Repeat this procedure until all the pixels in the component have been visited. The effect of the this

refinement is shown in Figure 6.4 (right). Finally, the disparity map will be smoothed by weighted

median filter first with a large window size (about 2% of the image width), and then with a small

window size (=3).
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Experiments

We evaluate our proposed plane propagation scheme (SOS+) under the Middlebury Stereo

datasets (Scharstein and Szeliski, 2002). The initial seeds for SOS+ are sampled by our SOS scheme

proposed in Chapter 4 with default parameters. Matching cost computation parameters are set to

the default parameters proposed in (Bleyer et al., 2011). All algorithms were implemented in C++

and executed on an Intel Xeon CPU W3540 2.93GHz.

Stereo with Slanted Planes

In the first experiment, we investigate the effect of aggregating matching cost across oriented

planes by comparing our SOS+ algorithm against PatchMatch (PM). The aggregation window

for both methods is 31 × 31 (similar as the default value in (Bleyer et al., 2011)). For PM, the

maximum number of iterations is four, and in each iteration the planes are propagated starting from

the top-left to the bottom-right, and then they are propagated back to the top-left. Two types of PM

are tested: the first one, PM(NPR), propagates the randomly initialized planes, and the second one

(PM) incorporates the iterative plane refinement (Bleyer et al., 2011). The raw disparity maps of

image “Teddy” are shown in Figure 6.5, and the corresponding processing times are: SOS+ 17.41s,

PM(NPR) 220.54s, and PM 747.97s. Without the iterative plane refinement step, there are many

ambiguous regions that can not be recovered by PM’s propagation scheme, but recovered by our

SOS+.

Stereo on Fronto-Parallel Plane

To enable leveled comparison against algorithms working under the fronto-parallel assumption,

Histogram Aggregation (HA) (Min et al., 2011) and typical local Exhaustive search (EX), we modify

SOS+ and PM for compliance to this assumption. The default window size for cost aggregation is

11. For HA (position-dependent), the spatial ratio is 3, and aggregation window is 31 ( the default

value used in (Min et al., 2011), which is similar to aggregate cost from 11× 11 pixels).
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Ground truth PM(NPR)

SOS+ PM

Figure 6.5: Raw disparity maps comparison for SOS+ and PM, and PM(NPR) is the PM without
plane refinement.
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Time (s) Tsukuba Venus Teddy Cones Art Books

SOS+(FP) 0.33 0.41 0.89 0.88 1.13 0.94

PM(FP) 1.91 2.80 3.28 3.29 3.72 3.5

HA 1.80 3.09 6.41 6.38 8.21 8.13

EX 5.13 9.48 24.61 23.05 31.22 32.34

Table 6.1: Processing time for various stereo methods.

Figure 6.6 shows samples of raw disparity maps generated by the various stereo algorithms,

and the corresponding processing times are listed in Table 6.1. We observe that SOS+(FP) is the

fastest method for all test images. For example, the processing time of SOS+(FP) for image “Books”

is 0.94s, which is even smaller than time spent on the random initialization for PM(FP) (computing

the matching cost for a random disparity per pixel takes 1.28s). Note that SOS+(FP) evaluates on

reduced search spaces corresponding to local structures (exploited by SOS), which will converge

quickly and many pixels just receive the propagated disparity values without any matching cost

computation. These results indicate SOS+ is more efficient than sampling methods not exploiting

local scene structure.

We also compare SOS+(FP) and PM(FP) on the high resolution (21M ) images of (Kim et al.,

2013) with a large candidate disparities set of 250 disparities. Figure 6.7 shows the raw disparity

map and corresponding processing time for PM(FP) and SOS+(FP), and we also can see SOS+(FP)

outperforms PM(FP) in both quality and speed. And figure 6.8 compares the raw disparity maps

for SOS+(FP), PM(FP), and PM(FP)+SOS, and although SOS+(FP) and PM(FP)+SOS work on

the same reduced search space, our propagation scheme is still much faster (30 minutes less) than

PatchMatch. The corresponding 3D point cloud of the terrain estimated by SOS+(FP) is given in

Figure 6.9.
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Color image SOS+(FP) PM(FP) HA EX

Figure 6.6: Raw disparity maps for various stereo methods.
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Color image SOS+(FP) PM(FP)

23.41s 75.56s

8.89s 19.30s

13.01s 51.83s

11.24s 40.57s

6.24s 17.94s

Figure 6.7: Raw disparity maps and processing time (10 threads) for high resolution (21M ) images.
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Color map (12000× 12000) PM(FP)+SOS 5951.26s

SOS+(FP) 4073.94s PM(FP) 6440.36s

Figure 6.8: Raw disparity maps and processing time (10 threads) for SOS+(FP),PM(FP)+SOS, and
PM(FP) for satellite image.
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Figure 6.9: Corresponding point cloud for the depth map from two satellite images as estimated by
SOS+(FP).
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Tsukuba Venus Teddy Cones APBP
(nocc,all) (nocc,all) (nocc,all) (nocc,all) (%)

SOS+ (1.45,1.63) (0.21,0.32) (3.13,8.45) (2.43,7.10) 4.30
PM(Bleyer et al., 2011) (2.09,2.33) (0.21,0.39) (2.99,8.16) (2.47,7.80) 4.59

SOS+(FP) (1.58,1.81) (0.21,0.31) (5.67,11.0) (2.57,7.70) 5.37
NLF(Yang, 2012) (1.47,1.85) (0.25,0.42) (6.01,11.6) (2.87,8.45) 5.48

AW(Yoon and Kweon, 2006) (1.38,1.85) (0.71,1.19) (7.88,13.3) (3.97,9.79) 6.67
SG (Hirschmuller, 2005) (3.26,3.96) (1.00,1.57) (6.02,12.2) (3.06,9.75) 7.50
SDDS(Wang et al., 2012) (3.31,3.62) (0.39,0.76) (7.65,13.0) (3.99,10.00) 7.19

HA(Min et al., 2011) (2.47,2.71) (0.74,0.97) (8.31,13.8) (3.86,9.47) 7.33

Table 6.2: Disparity map evaluation for non occlusion (nocc), all regions, and average percent bad
pixels (APBP).

Evaluation for Refined Disparity Maps

Figure 6.10 shows the refined disparity maps for our constrained SOS+(FP) and SOS+ algo-

rithms, and the quality evaluation are listed in Table 6.2, with the rank 23 and 10 in the Middlebury

benchmark for SOS+ and SOS+(FP) respectively. The quality of the SOS+(FP) algorithm is similar

to PatchMatch (rank 22) with main differences coming from the ground region of the teddy image,

which can only be recovered by using oriented planes. However, the processing time of SOS+(FP)

is much faster than other investigated stereo algorithms. In practice, SOS+ is more suitable for the

scene with large slanted surfaces, and SOS+(FP) is more efficient for time-sensitive applications.

Discussion

We proposed a novel approach to approximate local structures by slanted plane surfaces. By

integrating the SOS scheme, the exploited structures are complete and compact enough for stereo

without using any iterative plane refinement procedure as other plane-based algorithms. Our

propagation-based stereo scheme is more efficient than state-of-art stereo methods. As shown in our

experimental evaluation, our method maintains the quality of the exhaustive disparity estimation at

significantly lower computational costs.
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Figure 6.10: Refined disparity maps for SOS+(FP) (middle column) and SOS+ (right column) on
Middlebury Benchmark.
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CHAPTER 7: CONCLUSION

Summary

This dissertation focuses on the efficiency and accuracy of high resolution stereo. Novel

sampling schemes are presented to reduce the computational complexity for most stereo algorithms,

efficient propagation-based stereo algorithm is proposed by utilizing robust local structures, and

a tractable framework of integrating depths and normals is introduced to improve the accuracy of

recovered surfaces. The techniques proposed in this thesis remarkably improve the performance of

high-resolution stereo, and can be easily incorporated into existing systems. The problem of high

resolution stereo is studied in three aspects.

Search Space Refinement

The depth range of the entire scene on the image must cover the depths of all the objects, and

the larger the depth range is, the more computation costs are wasted on unsuccessful localizations

and comparisons. In Chapter 3 we pointed out that the pixel’s search space is only relevant to the

depth range of the local patch, which is much smaller than the search space of the entire scene.

Two search space reduction methods are proposed: SDDS (Chapter 3) and SOS (Chapter 4). The

key insight of SDDS is that correct depths tend to keep low matching costs, while the matching

costs of incorrect depths are random. Thus by sampling matching costs several times, there will

be observable differences between correct and incorrect depths on the aggregated cost curve. We

compute the matching costs of a sparse pattern of pixels only on the reduced candidate depth set,

and then vote the depths of other pixels. Our SDDS outperforms, in terms of solution quality and

speed, state of the art work on complexity reduction for local stereo (Min et al., 2011). To overcome

the shortcoming of fixed sampling schemes, we propose a statistical framework to analyze the
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correlation between the complexity of the local structure and the probability of encountering a

new depth. According to the SPRT theory, the accuracy of the candidate depth set obtained by

our sequential sampling scheme is the same as any over-sampling scheme with a fixed number of

samples. Since SOS is an incremental sampling model, the compactness of the candidate set is much

better than any fixed random sampling. By integrating SOS as a pre-processing step, state-of-the-art

stereo methods can achieve the same quality with much less processing time.

Local Structures Estimation and Aggregation

High quality reconstruction usually requires sophisticated aggregation structures other than

fronto-parallel planes to obtain more accurate and reliable matching costs. Thus the accuracy of

stereo will be heavily influenced by the accuracy of estimated structures of local patches. In Chapter

5, we use natural cubic spline to construct surflets (local patches), and show that surflet-based

matching is more accurate than fronto-parallel and oriented plane based matching. The surflet is a

more accurate representation of the local structure, which is generated based on the surface normal

information. For applications without normal information, we also showed how to use oriented

planes to approximate local structures by pixel-wise sampling in Chapter 6, where the completeness

and robustness of the extracted structure pattern is also guaranteed by SPRT theory.

An implicit assumption of stereo is the local smoothness property: neighboring pixels tend to

have similar geometric structures. Therefore, the task of dense depth map stereo can be translated

into extracting all distinct local structures and propagating them to other pixels. With extracted

local structures, a structure propagation algorithm is presented in Chapter 6, which is much more

efficient than state of the art stereo approaches (Bleyer et al., 2011; Min et al., 2011). The benefit of

using oriented plane for cost aggregation is that pixels within the aggregation window do not need

to have the same depth, so that the aggregated matching cost on slanted surface is more accurate

than the cost aggregated from fronto-parallel plane. Furthermore, the plane refinement procedure is

not necessary for our propagation algorithm, due to the sufficient structure pattern explored by our

optimal sampling scheme. The quality of photo-consistency-based stereo is restricted to the image
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resolution, which may not satisfy the requirement of high quality surface modeling. Since surface

normal provides fine geometry information of the object, Chapter 5 showed a surflet stitching

algorithm to generate a continuous surface with automatic discontinuity detection, and a stereo

framework that integrates the normal and color information.

Future Work

Potential directions for future work include a self-adapting sampling framework, SPRT-based

Model Completeness Validation, adaptive aggregation structures, and a complete stereo framework

integrating color and normal.

A Self-adapting Sampling Framework

The sequential optimal sampling (SOS) scheme proposed in Chapter 4 follows a quad-tree

search strategy, which iteratively divides the investigated region into four equal sub-regions. How-

ever, such fixed separation pattern does not consider the true structure of the local patch, which

prevents to find the optimal solution. For example, if the depth range of the patch center was much

larger than the surrounding areas, each of them will have a large search space by just dividing the

region into four equal sub-patches. Obviously, the optimal solution is to separate the center and the

surrounding regions, which requires reforming the investigated regions based on previous sampling

results. Hence, a challenging future work is to design a self-adapting sampling scheme that can

adjust sampling regions to be consistent with local structures.

SPRT-based Model Completeness Validation

Our sampling scheme can also be extended into object modeling. To obtain a complete 3D

surface of an object, one usually needs to capture multiple images at different positions, but how to

evaluate the completeness is not a trivial problem. Suppose there has been a rough 3D model and we

need to check whether the new image contains any new region or feature missing from the current

model. We can use the SOS model judge whether all local structures on the new image have been
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fully exploited with very few sampled pixels. Furthermore, the SOS model will also tell us where

those missing structures should be. The feedback of the optimal sampling model will help us avoid

running stereo algorithms on overlapping areas, so that we can just focus on the missing region, and

complete the model by capturing more details (zooming in) or moving to a better viewing position.

Adaptive Aggregation Structures

Another future work would be a closed loop adaptation of aggregation structure. So far, our

method extends from fronto-parallel plane to oriented plane, but still not enough for complicated

regions. It is interesting to evolve more complex aggregation structures, like curves or even arbitrary

shapes, and can also be incorporated with segmentation results like utilizing the information of

superpixels. Also for large aggregation window, we only need to aggregate costs from some of the

most distinct neighbors, and how to find these good neighbors is an interesting problem.

A General Stereo Framework Integrating Color and Normals

Photo-consistency stereo approaches recover depths based on color cues, while surface from

normals is based on geometry information. On one hand, it is easy to get plenty of high quality

input images, but the quality of recovered depth maps sometimes is not good enough; for normal

approaches, the input image is difficult to capture and sometimes is very noisy, but it is able to

recover the details even for homogenous regions. Ideally, we could get better depth estimation

by combining these two approaches. The precision of color-based stereo approaches is limited by

differences of matching costs, and the precision of normal approaches depends on pixel’s normal

and its depth (only in perspective geometry). A theoretical analysis of the uncertainty for depth

from color and normals is needed to establish a general stereo framework with mixed information.
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