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ABSTRACT 

Zhenkun Guo: Application of Diffractive Optical Element on Spectroscopy and Imaging  

(Under the direction of Andrew Moran) 

 

Diffractive optical elements (DOE) are optical components that manipulate light by 

diffraction, interference, and other phase control methods. The application of DOE in multi-

dimensional spectroscopy could significantly reduce the efforts required for conducting 

experiments and enhance the signal-to-noise ratio with high efficiency. In this dissertation, DOE-

based two-dimensional resonance Raman spectroscopy was developed and implemented in two 

model systems, triiodide and myoglobin. This new technique uncovers new dimensions of 

information, which were not available with previous one-dimensional spectroscopy techniques. 

The DOE was also applied to the wide-field transient absorption microscopy. Conducting a large 

number of experiments simultaneously is possible in this configuration. Analysis of parallel 

measurements provides statistical information essential to comprehensively study heterogeneous 

samples. 

After absorbing an ultraviolet photon, triiodide undergoes photodissociation to produce 

diiodide and radical iodine on a time scale comparable to the period of triiodide’s nuclear 

motion, which could impulsively activate a vibrational coherence in the diiodide. In this 

dissertation, the ability of 2DRR to capture coherent reaction mechanisms is demonstrated by 

directly establishing a correlation, for the first time, between the nonequilibrium geometry of 

triiodide at photodissociation and the stretching frequency of diiodide. 



iv 

Ligand binding and dissociation processes are crucial to the functions of heme proteins. 

The recovery of the protein matrix involves fast energy dissipation from the heme group to 

solvent, facilitated by the propionic acid side chains as an effective “gateway”. In this 

dissertation, we found that the propionic chains possess significant structural heterogeneity, 

which could be induced by the thermal fluctuation in geometries. It is interesting to consider 

whether the variation in conformation could relate to the vibrational cooling rate distributions. 

Carrier diffusion is imaged in a perovskite film and crystal using a newly developed 

DOE-based wide-field transient absorption microscopy technique. The function of the instrument 

is illustrated with 41 parallel measurements conducted on methylammonium lead iodide 

perovskite films and single crystals in a single experiment. Obvious carrier diffusion is observed 

in the crystal. However, results indicate that the carrier dynamics in the film are dominated by 

many-body interactions instead. The grain boundaries in the film contribute to this difference in 

behavior.  
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CHAPTER 1. INTRODUCTION 

 Applications of Diffractive Optical Elements 

Diffraction and interference, phenomena that result from the wave-like property of light, 

have been studied since the very early stage of optics. In 1665, Grimaldi noticed that light that 

passed through a hole took on the shape of a cone instead of following a rectilinear path.1 He 

named this effect ‘diffraction,’ which means “break into pieces” in Latin. Since then, the wave 

theory of light has been gradually developed by Huygens,2 Fresnel,3 Young,4 Fraunhofer,5-6 and 

others. The wave theory of light successfully explained many phenomena including diffraction, 

interference, and Arago spot (Poisson spot),7 and became the basis for modern optics. 

Diffractive optical elements (DOE) are optical components that manipulate light by 

diffraction, interference, and other phase control methods. Diffractive gratings are the most 

widely used diffractive optical elements, which are made by closely placed periodic structures 

that split the incoming beam into many diffraction orders. The simplest diffractive grating is a 

collection of thin slits, as shown in Figure 1.1. According to grating theory, the angles between 

diffracted beams are controlled by the periodic frequency, and the relative distribution of 

magnitudes is determined by the unit cell structures.8-10 In 1967, Lohmann and Paris performed 

numerical simulations and demonstrated that in theory, a DOE can generate nearly all arbitrary 

magnitude and phase patterns with specially designed unit cells.11 The limiting factor is the 

fabrication precision and cost. Optical engineers borrowed photolithography methods from the 

semiconductor industry, making possible the fabrication of a diffractive optical element with a 

complicated unit cell pattern.12-13 Due to its outstanding ability to control the magnitude and 
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phase of the diffracted beams, the diffractive optical element typically reduces the complexity of 

spectroscopy experiments and improves the quality of experimental data. 

 

Figure 1.1. A simple grating made by closely separated periodical slits. The incoming light can 

be diffracted into different orders. For a transmissive grating, the 0th order will be the directly 

transmitted light. The angle between diffraction orders and the intensity distributions can be 

modulated by adjusting the slit spacing and width. 

 

In this dissertation, we developed a DOE-based multidimensional vibrational 

spectroscopy experiment involving six laser beams. We demonstrated that this technique is 

capable of decomposing the dynamics of reactants and products into different dimensions for 

photo-induced reactions.14-15 In addition, as in infrared two-dimensional spectroscopy, our 

technique distinguished heterogeneous and homogeneous line broadening mechanisms.16-17 The 

application of a DOE improved the signal-to-noise of our measurements by enabling a 

background-free geometry and interferometric signal detection. The works presented herein were 

featured as Editor’s Choice in the Journal of Chemical Physics for the years 2014 and 2015.15, 17  

In the microscopy field, we applied the DOE in a wide-field transient absorption (TA) 

microscope. The DOE split the incoming pulses to excite up to 41 different spots on a sample 

surface simultaneously, where multiple TA measurements were conducted in parallel. Therefore, 
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statistical information, such as average and standard deviation, was available after a single 

experiment. In addition, wide-field detection captured the response of the entire field of view 

without scanning the position of a probe beam, which requires an extremely long time for a KHz 

laser system. Thus, this DOE-based approach facilitated the fast acquisition of statistical 

information and proved a powerful method to examine heterogeneous samples. 

The key contributions of this dissertation are as follows: 

• Developed two-dimensional resonance Raman spectroscopy (2DRR) for studies of fast 

chemical reactions. 

• Showed that 2DRR reveals correlations between nuclear motions of the reactant and 

product in triiodide photodissociation. 

• Utilized 2DRR to measure structural heterogeneity in vibrational coordinates of 

myoglobin responsible for energy exchange with the surrounding environment. 

• Developed DOE-based wide-field TA microscopy. 

• Measured and compared the diffusion processes in organic halide perovskite thin film 

and crystals. 

 Application of Diffractive Optical Elements in Spectroscopy and the Development of 

Two-Dimensional Resonance Raman Spectroscopy 

DOEs were first implemented into transient gating spectroscopy by Miller and Nelson to 

stabilize the phase difference passively between the emitted signal and a reference beam, which 

interferes with the signal at the detector.18-20 In this interferometric detection method, the 

interference fringes were measured instead of the weak intensity of the signal field to acquire 

high signal-to-noise data.21-22 However, this technique was susceptible to fluctuations in the 

phase difference between the two pulses. Small fluctuations in the phase induce a significant 

amount of noise, as further discussed in Chapter 2. Previously, the phase was maintained by an 
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active optical phase-locked loop, which controlled the optical path of one beam in the 

interferometer via piezo stages and feedback circuits.23-25 This active phase stabilizing method 

required high effort in daily operation and was not cost efficient. Utilizing DOE provided an 

excellent solution to this issue because the diffracted orders passed through the same amount of 

glass and were the exact replicas of each other in phase, as shown in Figure 1.2. Soon after, 

diffractive optical elements were also implemented for passive phase stabilization in more 

complicated fifth-order signal measurements.26-28 The implementation of DOE significantly 

enhanced the signal-to-noise ratio and reduced the efforts involved with experimental setup.  

 

Figure 1.2. A DOE is used to generate replicas of the incoming laser pulse in both intensity and 

phase. The ovals represent a snapshot of the spatial pulse envelopes as they propagate through 

the optical system. One feature of using a DOE is that the pulse fronts are parallel in space and 

can entirely overlap with each other when focused on the sample (i.e., pulse front tilt is 

eliminated regardless of crossing angle). 

 

The idea of two-dimensional (2D) Raman spectroscopy was rooted in the early stage of 

the development of multidimensional spectroscopy.19, 29-36 It was motivated by initial attempts to 

determine the vibrational line broadening mechanisms and anharmonicities in liquids.37-41 The 

study of 2D Raman spectroscopy was also driven by examining the coherent reaction mechanism 
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involved in many systems, including polymer-fullerene blends, photosynthetic complexes, and 

semiconductor interfaces.42-46 As highlighted by Mukamel et al.,29-30 a fifth-order nonlinearity 

needed to be measured to obtain information beyond that offered by one-dimensional (1D) 

Raman spectroscopy. Due to the technical challenges in measuring a weak high-order signal, it 

took about 10 years of exhaustive effort to conduct the first successful two-dimensional off-

resonance Raman measurements with the crucial help of a diffractive optical element in 2002.28, 

47 However, further development of 2D Raman spectroscopy encountered another technical issue 

known as cascades.37, 39, 47 Cascades represent a process in which the four-wave mixing response 

of one molecule induces a four-wave mixing response on a second molecule. The second 

molecule then radiates a signal field in the same direction as the desired 2D Raman response. 

 

Figure 1.3. An example of 2D Fourier transform vibrational spectroscopy. Typically, two time 

intervals are built by three pulses, and the measured signal oscillates in both delays, 1  and 2 . 

Fourier transforms of the time-domain vibrations result in peaks in the frequency domain, as 

shown in the figure. Vibrations in the 1  ( 2 ) dimension correspond to the signal in 1 ( 2 ) in 

the 2D Fourier transform. 
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Under the electronically off-resonant conditions, as in the earliest 2D Raman 

spectroscopy experiments, the generation of the fifth-order signal is forbidden for harmonic 

modes. Unfortunately, cascades are allowed for harmonic systems and are therefore able to 

outcompete the desired response. In contrast, the 2DRR response is permitted for all Franck-

Condon active modes, whether they are harmonic or not. As a result, the 2DRR is much less 

susceptible to such artifacts. Details about these statements will be discussed in both theory and 

experiment in Chapter 3 and Chapter 4. In this dissertation, we applied the 2DRR in two model 

systems, triiodide and myoglobin. In the measurement of the photo-dissociation of the triiodide 

model, we used a diffractive optic-based six-wave mixing interferometer. We obtained the 2DRR 

spectrum by Fourier transforming both delay time dimensions into the frequency domain, as 

indicated in Figure 1.3. The two vibrational frequency dimensions distinguished the responses 

from the reactant and the product and established a clear correlation between the two species. In 

the measurement of myoglobin, we applied a pulse configuration in the six-wave mixing 

interferometer, similar to femtosecond stimulated Raman spectroscopy.48-50 This approach 

isolated the desired fifth-order signal from background light and achieved higher signal-to-noise 

in less time because it scanned only one delay line. Only one vibrational frequency dimension 

was calculated by the Fourier transformation of the signal into the time domain. 2DRR 

determined the line-broadening mechanisms in myoglobin and provided valuable information 

about the fluctuations of the moieties relevant to energy exchange between the heme group and 

the environment. 

 Coherent Reaction Mechanism in Triiodide Photo Dissociation 

Second-order perturbative theories like Forster energy transfer and Marcus theory are 

widely used in describing photo-induced reactions, and usually assume an initial state of 

vibrational equilibrium prior to the electronic reaction of interest.51 However, this assumption is 
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inappropriate when the timescale of vibrational dephasing is comparable to the electronic 

processes of interest, as reported in polymer-fullerene blends, photosynthetic complexes, and 

semiconductor interfaces.42-46 Coherent vibrational motions  affect sub-picosecond energy 

transfer or electron transfer dynamics.52-58 To elucidate this effect, a direct measurement of 

correlations between reactant and product vibrational motions is necessary.  

However, it is impossible to distinguish the vibrations of a reactant and product with third-

order nonlinear spectroscopy techniques unambiguously, including four-wave-mixing (4WM) and 

pump-probe TA spectroscopies. Both the reactants and products evolve in the single ‘population 

time,’ and ambiguities are always involved because of the difficulty in determining the exact 

origins of the oscillations. Besides, in the third-order nonlinear spectroscopies, the photochemistry 

always starts from the equilibrium geometry of the reactant. Thus, a 2D spectroscopy technique 

with two population times and an additional pair of pulses are necessary to deconvolve the reactant 

response from the product response. Under this pulse sequence, the second pair of pulses initiates 

the photo-induced reaction after the first population time from a non-equilibrium geometry, which 

is prepared by the first pair of laser pulses. The two population times are Fourier transformed and 

yield the two vibrational frequency dimensions, as shown in Figure 1.3. Reactant evolution 

corresponds to the first dimension, while the product vibration corresponds to the second 

dimension. The correlation between the non-equilibrium geometry of the reactant and the coherent 

vibration of the product is established without ambiguities in the 2D vibrational spectroscopy.  
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Figure 1.4. Photo-dissociation process of triiodide after excitation. An excited state wavepacket 

is initiated at the excited electronic state by photo-excitation, where the steep gradient of the 

potential energy surface drives the motion of the wavepacket along the symmetric stretch 

coordinates. Dissociation of triiodide yields a diiodide ion and a free iodine atom. This entire 

process occurs in approximately 300 fs, at the same time scale of the period of triiodide’s 

symmetric stretch. The non-equilibrium geometry of the reactant can have an influence on the 

vibrational coherence in the products. 2DRR with reactant evolution in one dimension and 

product evolution in the other can be used to reveal such effects. 

 

In this dissertation, 2DRR was applied to reveal the coherent reaction mechanism in the 

photo-dissociation of triiodide in solution. Triiodide is an ideal model system that has been 

extensively studied by one-dimensional stimulated Raman spectroscopy,59-68 and was very suitable 

for developing our experimental method. A vibrational wavepacket in the excited state is initiated 

upon the absorption of ultraviolet (UV) light. Then, the wavepacket moves along the symmetric 

stretch coordinate driven by the gradient of the potential surface, as illustrated in Figure 1.4. The 

ensemble wavepacket quickly traverses along the symmetric stretch until a finite displacement 

where the bond rupture is induced to generate atomic iodine and vibrationally hot diiodide ions.63-

64, 68-69 Equation 1.1 illustrates this chemical reaction. The diiodide ions, produced directly in the 

electronic ground state, possess near 20 vibrational quanta of energy and dissipate mostly into the 
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solvent within 3-4 ps.55, 61, 68 As shown in Figure 4, the wavepacket may also cross the intersection 

between the ground and the excited states, preparing a vibrationally hot ground state.61  

3 2I hv I I− −+ ⎯⎯→ +               (1.1) 

The timescale of the triiodide photo-dissociation is similar to the period of the symmetric stretch 

(period of 300 fs and wavenumber of 110 cm-1) but shorter than the vibrational dephasing time 

(i.e., inverse of the line width).64, 69-70 This key feature of the reaction determines that the non-

equilibrium geometry of the reactant significantly influences the vibrational frequency of the 

product because the coherence of the wavepacket is preserved during the impulsive reaction. In 

Chapter 3, we describe how 2DRR experiments selectively detected the vibrational coherences 

of the reactant and product in separate population times (i.e., ‘dimensions’) and directly revealed 

the correlation without ambiguities for the first time.  

 Structural Heterogeneity and Vibrational Energy Exchange in Myoglobin 

Heme proteins are a large family of metalloproteins that play essential roles in 

metabolism. They contain a porphyrin ring and a metal cofactor coordinated with four nitrogen 

atoms in porphyrin backbone and an amino acid residue from the protein skeleton. The 

remaining vacancy of the metal is usually bonded to a ligand determined by protein function, 

such as O2, CO, or NO. Figure 1.5 shows the structure around the active site of myoglobin. The 

functions of heme proteins rely on the dissociation and binding between ligands and the metal 

cofactor,71 including myoglobin,72 hemoglobin,73 cytochrome c oxidase,74-75 and NO-synthase.73 

These impulsive events can induce vibrations in the protein’s skeleton and cause reorganization 

of the conformation.76 The ability to dissipate the vibrational energy into the surroundings 

quickly is crucial to recovering the proper conformation of the protein, which can determine 

protein activity.76-79 Previous studies have shown that the propionic acid chains on the porphyrin 
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ring, as circled in Figure 1.5, are the primary channel for fast vibrational energy transfer to the 

solvent.80-85 Efficient energy dissipation from the porphyrin ring prevents a significant 

disturbance in the protein matrix and helps to maintain functionality.  

 

Figure 1.5. Structure of myoglobin in water. Green spheres represent the porphyrin active site, 

while red spheres represent bonded oxygen. The propionic acid chains are circled in red and can 

form hydrogen bonds with water molecules. These side chains are the primary energy dissipation 

channel after ligand dissociation. 

 

2DRR spectroscopy is a great tool to study the exchange of vibrational energy with 

surroundings in a heme protein after photon-dissociation, especially in myoglobin. Myoglobin’s 

primary biological function is to store and release molecular oxygen in muscle tissue,79 and it 

only contains one active site, which simplifies the data analysis. The on-resonance excitation 

induces dissociation of ligand, such as water, oxygen, carbon monoxide, and nitric oxide,71-72 and 

activates several vibrational modes including in-plane porphyrin stretching, iron- histidine (Fe-

His) stretching, and bending and wagging of the side chains.85-87 The vibrational energy in these 

modes is transferred to the surroundings within 6 ps through the propionic acid chains. With 
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2DRR, it is possible to extract the correlation between the two frequency dimensions for a 

specific vibrational mode. Such correlation between two vibrational frequency dimensions can 

provide information about the line broadening mechanism, as illustrated in Figure 1.6. The 

signatures of homogeneous and inhomogeneous line broadening mechanisms are very similar to 

those in well-established two-dimensional infrared  measurements.31, 88-90 Line broadening 

mechanisms are of central interest in condensed phase spectroscopy and shed light on the 

intrinsic properties of the related groups, such as conformation fluctuation91-93 and interaction 

strength with surroundings.94-95  
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Figure 1.6. Signatures of homogeneous and inhomogeneous line broadening mechanisms in 

2DRR spectra. The inhomogeneously broadened signal is elongated with respect to the diagonal. 

Inhomogeneous line broadening indicates static heterogeneity in the ensemble (e.g., a difference 

in local environments or molecular conformations). The fluctuations of these properties occur on 

a time scale much longer than the measurement. The homogeneously broadened peak is circular 

in appearance. Homogeneous line broadening indicates fast fluctuations of the vibrational 

coordinates (e.g., collisions with solvent molecules). These two line broadening mechanisms are 

indistinguishable in one-dimensional Raman spectroscopies.  

 

In this dissertation, we applied an FSRS-like approach to measure the 2DRR spectrum of 

water- and oxygen-ligated myoglobin. In Chapter 5, we illustrate how the bending and wagging 

modes of propionic acid side chains exhibit significant inhomogeneous line broadening in 2DRR 

spectra. With knowledge about the protein structure, Figure 1.5 shows that these side chains 

extend to the outside of the protein matrix and are surrounded by water molecules. Together with 

inhomogeneous line broadening, we found that propionic acid chains are flexible and have a 
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large number of possible conformations in the equilibrium state. The Fe-His stretch mode also 

showed some amount of correlation, which reflects the variation of the Fe-His bond length 

determined by the number of possible conformation geometries of the protein around the active 

site. This work demonstrated that 2DRR is useful for investigating line broadening mechanisms 

in systems with multiple Franck-Condon active modes. Such spectroscopic data can be combined 

with structural information to provide insight into mechanisms of molecular functionality. 

 Application of Diffractive Optical Element in Transient Absorption Microscopy 

The initial development of time-resolved microscopy was motivated by knowledge of the 

lifetimes of chromophores in a labeled biological sample, the delineation of local 

environments96-98 progression of localized cell damage,99-101 and the contrast between labeled 

chromophores and sources of background.102 These techniques required detectors with fast 

responses like time-correlated single photon counters or streak cameras, which are not suitable 

for measurements of femtosecond dynamics. The pump-probe configuration was introduced to 

achieve sub-picosecond time-resolution with ultrafast femtosecond laser systems to solve this 

issue.103-104 By removing the fluorophore labels and directly measuring the third-order 

nonlinearities, pump-probe microscopy possesses the same sensitivity to ultrafast dynamics as 

regular TA spectroscopy and has been widely implemented in many fields, especially 

nanotechnology, in recent decades. 105-109 

In these experiments, both pump and probe beams were focused onto the sample through 

the objective, and the probe or both of the beams were scanned in the x-y dimension to obtain a 

spatially resolved image. The point-to-point scanning method inflates the data acquisition time 

and is therefore most appropriate for a high repetition rate laser system (MHz). In contrast, a 

wide-field microscope can collect transient data over the entire visual field under the 

objective.110-111 Unfortunately, previously reported wide-field microscopes were not suitable for 
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studying carrier transport, because the pump beam excited the entire field of view 

simultaneously, and no spatial dynamics could be observed. In this dissertation, we show how 

counter-propagating pump and probe beams can be used to address this drawback and resolve the 

carrier transport without point-to-point scanning. 

To accelerate the data acquisition speed over a designated region further, multiplex 

excitation can be used as it is a straightforward method that excites the sample at many spots 

simultaneously. We applied the DOE in the multiphoton scanning fluorescence microscopy to 

generate multiplex excitations.112-113
 Compared to other multiplex generation techniques like an 

array of micro lenses114-116 and cascades beam splitters,117 the DOE achieved much more uniform 

intensity. The installation of a single customized DOE was also much more convenient than 

other methods. Although this DOE-based technique has previously only been applied in scanning 

microscopy, it was suitable for our counter-propagating wide-field microscopy. The incoming 

pump beam was split into 41 beams, and a typical transient signal was shown, as illustrated in 

Figure 1.7. With this configuration, we could conduct 41 TA experiments simultaneously. This 

feature of the instrument enabled the fast compilation of statistical information for heterogeneous 

samples. 
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Figure 1.7. The signals are measured simultaneously from 41 different spots on the sample 

surface, as shown in the figure. A DOE splits the incoming pump beam into 41 segments with 

equal intensity and parallel aligned wave-fronts. These beams are focused onto many spots on 

the sample because of the different diffraction angles. Since the probe is focused to a much 

larger area covering all the spots, the TA response can be measured simultaneously from all 41 

positions. Statistical information is available after only a single experiment. 

 

 Carrier Diffusion in Organic Halide Perovskite Single Crystals and Thin Films 

Organohalide perovskite is a newly emerging type of solar cell material, which has 

achieved impressive photo-conversion efficiencies as high as 22.1%118 and is compatible with 

solution processing.119 A number of special features have been identified as crucial to its 

excellent performance, such as long diffusion lengths,120-122 high tolerance to defects,123-126 

tunable absorbance spectrum by controlling the halide ratio127 or changing the metal cation,128 

and long-lived vibrationally hot carriers.109, 129-131 The long diffusion length and long hot carrier 

diffusion length may enable the harvesting of hot carriers and enhance the power conversion 

efficiency above the Shockley–Queisser limit.132 Although there have been multiple studies 

about diffusion length in perovskite single crystals, no sufficient studies have determined to what 
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extent the grain boundaries influence the carrier transport, which is vital in thin film perovskite 

solar cells.120, 133-134 

Many methods have been used to measure the diffusion constant of carriers in 

organohalide perovskite. Some indirect conventional measurements gave carrier diffusivities 

ranging from 0.02 cm2/s to 0.16 cm2/s.122, 130, 135 These values were one order of magnitude 

smaller than the values yielded by TA microscopy (0.7-1.77 cm2/s), which provided a more 

direct measurement.109, 136-137 In a typical indirect measurement, an electron-PCBM or hole-

quencher (Spiro-OMeTAD) is placed in contact with the perovskite to accept electrons or holes 

diffused to the boundary. To determine the diffusion coefficients, the key assumption that 

carriers will be immediately quenched once arriving at the interface must be valid. However, 

perfect contact between the perovskite and quencher for a relatively large area is hard to 

guarantee, and thus it might take some time for the carriers to cross the boundary. Moreover, 

interface heterogeneity could also affect the carrier transfer rate.109, 136-137 The breakdown of this 

assumption may cause an underestimation of diffusion coefficients. In contrast, TA microscopy 

can directly image the motion of carrier within a single grain, minimizing the influence of local 

heterogeneity and boundaries. 

Ultrafast TA microscopy is a powerful tool to image carrier dynamics directly with sub-

micrometer spatial resolution and has been applied to measure carrier diffusion in organic 

semiconductor films,138 silicon nanowires,105, 108 metal dichalcogenides139 and single-crystal gold 

nanobars,140 along with perovskites.109, 136-137 Sample heterogeneity can obscure the measurement 

results because TA microscopy reveals properties over a tiny area. As for perovskites, 

researchers have shown that heterogeneity exists even within a single grain,141-142 and such 



17 

heterogeneity induces widely distributed diffusion constants.136 Therefore, it is necessary to 

average over multiple points on the sample to characterize diffusivities correctly in the sample.  

In this dissertation, we applied DOE-based wide-field TA microscopy and 

simultaneously measured 41 spots on the sample. Statistical distributions of diffusion constants 

were revealed in a single measurement, thereby yielding detailed information about the sample 

heterogeneity with short data acquisition time. We compared the diffusion constants in thin films 

and single crystals to determine to what extent the grain boundaries affected the diffusion 

process. According to the results, the diffusion rate in the film was one order of magnitude 

smaller than in crystals due to the much smaller grain size in the film (less than 1 μm) as 

compared to the crystal with a length scale of hundreds of μm. 

 Dissertation Content 

The first chapter above has provided background and motivation driving the work 

contained in this dissertation. Technical details utilized in the dissertation are majorly discussed 

in Chapter 2, which includes DOE theory, pulse generation techniques, principles of nonlinear 

spectroscopy, third-order and fifth-order nonlinear spectroscopy techniques and the configuration 

of DOE based TA microscopy. 

Chapter 3 focuses on a simple model system, photodissociation of triiodide, to 

demonstrate the ability of DOE-based 2DRR. The correlations between vibrational nuclei 

motions in the reactant and product are revealed for the first time. With no ambiguity, 2DRR 

spectra show that the nonequilibrium geometry of the reactant at the time when impulsive 

reaction happen directly affects the resulting vibrational frequency of the product. 

Chapters 4 and 5 involve studies of myoglobin. In Chapter 4, FSRS measurement was 

conducted in a DOE-based six-wave-mixing geometry, which completely eliminated the 

undesired signal and background and guaranteed high sensitivity. The improved signal quality 
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and data acquisition efficiency are crucial to successfully Fourier transfer the time dimension 

into frequency domain, which was conducted to obtain 2DRR in Chapter 5. Signature of 

heterogenous line broadening in 2DRR suggested conformational fluctuation in the vibrational 

energy dissipation ‘gateways’. Theoretical simulation and controlled experimental tests 

confirmed that our measurements of heme proteins are free from the technical challenges of 

artifacts in previous 2D Raman measurements. 

In Chapter 6 the power of DOE is leveraged to measure the carrier diffusion process in 

organic halide perovskite film and crystal with the DOE-based multiplex excitation TA 

microscopy. Up to 41 measurements were performed in parallel and provided essential statistical 

information about the investigated property in the heterogeneous sample. The comparison 

between film and crystal indicated that the boundaries between grains contribute to the much 

lower diffusivity in the film comparing to the crystal. 

Finally, Chapter 7 concludes the research highlights on the prior chapters. In addition, the 

future directions of 2DRR and DOE-based microscopy are discussed by presenting scientifically 

interesting systems which our techniques can shed new insights on.  
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CHAPTER 2.  METHODS AND INSTRUMENTATION 

 Introduction 

Diffractive optic elements (DOE) were applied in many types of spectroscopy in this 

dissertation, including two-dimensional resonance Raman spectroscopy (2DRR)1-5 and multiplex 

excitation wide-field transient absorption microscopy. In this chapter, we briefly discuss some of 

the basic theories applied to the experiments presented herein and introduce multiple relevant 

nonlinear spectroscopy techniques. In the second section, we introduce the principles of scalar 

diffraction theory, a general strategy to design a DOE producing an arbitrary pattern. Section 2.3 

is about the laser pulses implemented in 2DRR and microscopy. We describe the spectral 

broadening technique, which generates the 25 fs visible pulses, in the first part of Section 2.3, 

before explaining the white-light generation in the second. Principles of nonlinear spectroscopy 

and a diagrammatic method, the Feynman diagram, in Section 2.4 provide a basis to understand 

the following sections. In Section 2.5, we summarize two widely conducted third-order nonlinear 

spectroscopies, transient absorption and transient grating spectroscopy, and also emphasize the 

significance of applying the DOE in nonlinear spectroscopy. We review concepts about several 

types of fifth-order spectroscopy, especially two types of 2DRR, in Section 2.6, which comprise 

the primary contributions of our research group to the field. In Section 2.7, we provide the 

experimental details of another DOE application, multiplex wide-field transient absorption 

microscopy.   
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 Basics of Diffractive Optical Elements 

2.2.1. Principles of Diffracted Lights 

 

Figure 2.1. Illustration of the symbols used in Equation 2.1 and Equation 2.2. r is the distance 

between a point in the object plane and a point in the detection plane, 
2 2 2( ) ( )r X x Y y Z= − + − +

. 

 

In scalar diffraction theory, the electronic and/or magnetic field of the propagating light is 

treated as a scalar field. For a complex amplitude in free space with no charges, the propagation 

of the field is governed by the Helmholtz equation:6-9 

2 2

0( , , ) ( , , ) 0U x y z k U x y z + =
.  (2.1) 

For a more particular case, considering a transparent pattern on an opaque input plane, which is 

illuminated by monochromic light as in Figure 2.1, the field on the point of the output plane with 

coordinates ( , , )X Y Z  can be determined by Fresnel-Kirchhoff’s diffraction formula:6-7, 10 

,

( , ,0)
( , , ) [cos( , ) 1]

4

ikr

x y

ik U x y e
U X Y Z n r dxdy

r
= − + .  (2.2) 

Parameters used in the equation are illustrated in Figure 2.1, where n  is the normal vector of the 

object plane. To simplify the equation further, several approximations can be applied. The most 
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important two are the paraxial approximation (Fr-esnel approximation) and the far-field 

approximation (Fraunhofer approximation). The distance between the source point on the input 

plane and the target point on the output plane can be expanded, shown in Equation 2.3, as the 

starting point of applying these approximations: 

( ) ( )
( ) ( ) ( ) ( )

1
2 2 2

2
2 2 2 2

2 3

1 1
1

2 8

X x Y y
r Z Z X x Y y X x Y y

Z Z Z

 − + −
   = + = + − + − − − + − + 
   

  

. (2.3) 

Apply the paraxial approximation: 

( ) ( )
2

2

ax

3 2

m8
Z

k
X x Y y − + −

 
.          (2.4) 

The third- and higher-order terms can be truncated, and we can estimate cos( , ) 1n r  . Then the 

Fresnel diffraction equation is given in Equation 2.5: 

( ) ( )
2 2exp( )

( , , ) ( , ,0)exp[ ]
2 2

aperture

ikZ ik ik
U X Y Z U x y X x Y y dxdy

Z Z
= − + − .       (2.5) 

In the next step, we consider the far-field or Fraunhofer approximation in Equation 2.6 and leave 

only the linear terms in Equation 2.3: 

( )2 2

max2
Z

k
x y+           (2.6) 

The result yields the Fraunhofer diffraction equation: 

2 2exp( )
( , , ) exp ( , ,0)exp[ ]exp[ )]

2 2
aperture

ikZ ik X Y xX yY
U X Y Z ik U x y ik ik dxdy

Z Z Z Z

 +
= − − 

 
 .     (2.7) 

We can further simplify Equation 2.7 by substituting X and Y with 
X

R
 =  and 

Y

R
 = , and move 

the phase factor outside the integral into a single function as in Equation 2.8: 

( , ) ( , , ) ( , )exp( )exp( )
aperture

U A X Y Z U x y ik x ik y dxdy   = − − .        (2.8) 
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In Equation 2.8, the complex amplitude distribution is the product of the integral and a phase 

factor. The phase factor ( , , )A X Y Z does not affect the amplitude distribution in which we are 

interested, and the magnitude distribution after the DOE is directly proportional to the integral 

portion. More importantly, the integral is in the form of a two-dimensional Fourier transform of 

the field, ( , )U x y , which can be written in a more compact way:  

( )( , ) { , }U U x y   F .                   (2.9) 

2.2.2. General Diffractive Optical Element Design Strategy Based on Scalar Theory 

For a typical grating, the diffractive pattern can be described by the convolution of a 

periodic comb function and a unit cell function. The field passing through the DOE has a general 

form, as shown in Equation 2.10, under the simplest one-dimensional condition: 

( ) ( ) ( )exp[ ( )]
x x

U x comb rect i x= 
 

.                   (2.10) 

Here,   is the period of the grating, ( )
x

rect


describes the size of the unit cell, and ( )x  is the 

modulation of phase by the DOE. Substituting the general function into the Fourier transform 

yields: 

( )  ( ) ( ) ( )exp[ ( )]
x x

U U x comb rect i x 
   

= =    
    

F F F .                 (2.11) 

The first term results in another comb function, which characterizes the separation between 

different diffraction orders. The second term, the Fourier transform of the unit cell pattern, 

defines the diffraction pattern after the DOE. 

Scalar diffraction theory in the form of a two-dimensional Fourier transform serves as a 

convenient method to design the DOE pattern. It is straightforward to perform an inverse Fourier 

transform on the desired output pattern and obtain the DOE design. The fast Fourier transform 
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and inverse fast Fourier transform are well-established algorithms, which can be efficiently 

executed by computers.  

However, a practical fabrication issue is that the lithography etching techniques can only 

carve for specific discrete depths. Furthermore, partial attenuation is difficult and expensive to 

achieve at micrometer level. A DOE is usually constructed with binary attenuation levels, which 

are completely blocked and unblocked. As a result, the outgoing light cannot be modulated with 

infinite precision in phase and amplitude.9, 11-12 The quantized phase and binary amplitude 

modulations may introduce a substantial amount of distortion in both amplitude and phase even 

for simple patterns. As in Figure 2.2, the desired pattern is a periodic matrix of two-dimensional 

Gaussian functions with uniform intensities. The direct inverse Fourier transform of this pattern 

yields the corresponding DOE design and then the modulations levels are quantized. The phase 

modulation is limited to eight different levels, while the amplitude modulation is limited to 

binary. The aforementioned is a general manufacturing precision widely used in modern 

fabrication. As in Figure 2.2(c) and 2.2(d), distortions are introduced in the unit cell, and the 

center dots are more significant than the target. Semicircles around the center dot are caused by 

the discontinuous phase and amplitude variation in the DOE unit cell. Although etching and 

attenuation precision can limit DOE performance, it is still possible to reduce the distortion by a 

better DOE design under the manufacturing limit.  
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Figure 2.2. A simple simulation to show the distortion introduced by the quantized phase and 

binary amplitude modulations limitations imposed by the lithography etching technique. (a) is 

the desired diffraction pattern and (b) is one diffraction order (unit cell) of the desired pattern. 

In the simplest case, one diffraction order is given by a two-dimensional Gaussian function. (c) 

and (d) show the diffraction pattern and unit cell obtained by DOE designed through the direct 

inverse Fourier transform method. The phase is quantized to eight different levels (

3 5 3 7
0, , , , , , ,

8 4 8 2 8 4 8

      
 ) and the amplitudes modulation is binary ( 0,1 ). Distortion of the 

unit cell pattern is clearly introduced. 
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Several iterative algorithms can be used to search for the best practical DOE design. A 

typical iterative algorithm is usually done by following these steps9:  

1. The first estimate of the phase plane contains random numbers for each unit cell, 

whose size is determined by the fabrication precision.  

2. The first estimate is truncated due to the limited number of available etching depths 

and attenuation levels. Discrete numbers replace the continuous phase values. A 

threshold is set to substitute the amplitude modulation by 0 (blocked) and 1 

(unblocked).  

3. Two-dimensional Fourier transform (for scalar diffraction theory) or other system 

transform is performed on the first estimate.  

4. The resulting pattern is evaluated by the difference in amplitude from the desired 

amplitude pattern.  

5. Amplitudes of the unit cells in the resulting pattern are replaced by the desired 

amplitude distribution and the phase is unchanged.  

6. An inverse two-dimensional Fourier transform or other inverse system transform is 

performed on the amplitude and phase distribution obtained from Step 5.  

7. A new phase and amplitude distribution, constrained by the procedure mentioned in 

Step 2, enters the iteration.  

Figure 2.3 summarizes the whole iterative algorithm. This iterative algorithm is still not 

guaranteed to converge at the best design because the optimizing destination is dependent on the 

first estimate and a locally optimized result is possible. Other more sophisticated algorithms can 

be used to reduce the possibility of ending at a locally optimized design, such as simulated 

annealing algorithms and genetic algorithms. These methods control the speed of minimizing the 



38 

difference between the DOE output and desired pattern to avoid locally optimized destinations. 

These complicated algorithms consume more computational power than the regular method 

described above and, as such, magnitude of performance enhancement relative to design time 

should be evaluated. 

 

Figure 2.3. A typical iterative algorithm to optimize the diffractive optical element design. 

 

 Generation of the Required Laser Pulses 

2.3.1. Spectral Broadening of Femtosecond Pulses Using Hollow-Core Fibers 

Wide spectral width is necessary to obtain the ~25 fs duration visible pulse because of the 

product relation between the spectral width and the duration, 0.441     for the Gaussian 

envelope shape. In this research, we used fused silica hollow core fiber (HCF) waveguides to 

broaden the spectral width of the incident femtosecond pulse.1-5 The chamber in the middle was 

filled with argon providing a transparent medium for self-phase modulation. The gaseous 

medium is superior to solid core fibers13 for guiding the high-intensity laser pulses because the 

former has much higher breakdown thresholds and weaker optical nonlinearities compared to 

solid media.14-16 Although an extended interaction length is essential for the gaseous medium, it 

provides the tunability of self-phase modulation by changing the gas type and pressure.13 The 
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lowest supported mode for a hollow-core fiber is the 11EH  mode, which has a spatial profile 

very similar to the 00TEM  laser mode for Gaussian beams.17 

The self-phase modulation is induced by the intensity-dependent refractive index. The 

transmitted laser beam can be described as shown in Equation 2.12: 

( ) ( ) ( )0 0, , . .NLi k z t
E z t A z t e c c

 − −
= +  ,               (2.12a) 

( ) ( )2 0 /NL t n I t L c = − .                            (2.12b) 

Here, ( )NL t is the laser-induced phase shift caused by the third-order nonlinearities, which 

results in the nonlinear refractive index 2n . To show just the basic concepts of self-phase 

modulation, here we assume that the laser does not reshape when propagating along the fiber, 

which was not the real case under our experimental conditions. It is possible to determine the 

nonlinear effects in the frequency domain by Fourier transforming Equation 2.12 and obtaining 

the energy spectrum given in Equation 2.13:  

( ) ( ) ( )0

2

NLi t i t i tS A t e e dt
  

+ − −

−
=   .                         (2.13) 

The nonlinear phase shift can be considered as the induced frequency shift from the 0  by 

Equation 2.14: 

( )
0 0

NLd t

dt


   = + = + .                            (2.14) 

For a Gaussian intensity envelope in the time domain, we have ( )
2

0 2
exp

t
I t I



 
= − 

 
, where τ is 

the characteristic time for the varying envelope. The induced frequency deviation,   is: 

( ) 2

2 0 0
2 0 2 2

2
/ exp

dI t n tLI t
n L c

dt c


 

 

 −
= − =  

 
 .                            (2.15) 
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Most materials except plasma retain positive 2n , for which the overall effect is illustrated in 

Figure 2.4. Equation 2.15 together with Figure 2.4 demonstrate how the spectrum is broadened 

when propagating through the transparent medium. For a medium with 2 0n  , the rising edge of 

the pulse envelope experiences a red shift in the frequency, while the falling edge experiences a 

blue shift.  

In this dissertation, the long hollow-core fiber was mounted in an air-tight housing 

charged with a noble gas. Two lenses were placed before and after the fiber focus and collimated 

the laser beams to ensure high transmission efficiency and suitable interaction strength. Different 

lengths and hollow diameters were selected to provide a balanced amount of broadening and 

attenuation for each wavelength. When the laser beam was carefully aligned to the fiber, the 

lowest fiber mode was selected and gave a Gaussian-like spatial profile. This technique was 

used, as discussed in Chapters 3, 4, and 5, to generate the ~25 fs visible pulses. 

 

Figure 2.4. The effect of self-phase modulation in a hollow-core fiber. The plot assumes a 

Gaussian pulse propagating through isotropic media with positive 2n . The frequency of the 

pulse red-shifts at the rising edge (i.e., 0t  ) and blue-shifts at the falling edge (i.e., 0t  ). The 

frequency does not shift (i.e,. 0 = ) at the pulse envelope maximum.  
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2.3.2. White Light Generation by Filamentation in a Noble Gas 

With strong enough self-phase modulation and high-order harmonic generation, it is 

possible to broaden the ultrashort pulse so far as to produce white light. Such an effect was 

reported in the condensed phase17-21 and is well known as a white-light supercontinuum 

generation method. Similar results have also been observed in gaseous media,22-26 but require 

higher incident intensity and longer interaction length. A phenomenon called filamentation helps 

stabilize the propagation of high-intensity femtosecond pulses for long distances.27-31 The 

filament is produced by cycles of Kerr effect-induced self-focusing and plasma-induced 

defocusing.31 Since the gas medium is not damageable under high-intensity laser beams, it is 

possible to apply laser pulses with high fluence and produce powerful white light. 

The self-focusing process is a result of the Kerr effect. When considering the third-order 

nonlinearities, the intensity-dependent refractive index can be written as Equation 2.16: 

0 2n n n I= + ,                   (2.16) 

where the Kerr index, 2n , is induced by the third-order susceptibility 
(3)  with the relation: 

(3) 2

0 2 04 / 3cn n = . For regular medium, 2n is positive and leads to an increase of the refractive 

index in the presence of intense radiation field. In general, laser beams have Gaussian transverse 

spatial profiles where the intensity is the highest in the middle and results in a larger refractive 

index at the center. The overall Kerr effect influences the curvature of the incident light wave-

front, which is similar to an optical lens focusing the light. When only self-focusing occurs, the 

propagating beam could collapse to a single point. However, it should be noted that self-focusing 

always needs to overcome the universal diffraction, which defocuses the laser beams. Therefore, 

the collapse of the laser beam requires an initial power density above the critical power for the 

medium as calculated in Equation 2.17: 
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2

0 0 23.72 / 8crP n n = .                  (2.17) 

Another effect competing with the self-focusing is the photo-ionization, which defocuses 

the light when the power density is high enough. The ionization of the gas medium requires the 

simultaneous absorption of a large number of photons 0/iU h  , where iU  is the ionization 

potential of the gas molecule or atom and is unreachable for regular lasers. When the beam 

approaches the point of collapse, the power density is extremely high, and the ionization starts to 

generate plasma through multiphoton absorption or tunneling. The ionization rate highly depends 

on the power density, described as 
KI , where K  is the number of absorbed photons required to 

ionize the gas atom or molecule. The plasma could locally reduce the refractive index according 

to Equation 2.18: 

( )
0

,

2 c

r t
n n




−  ,                  (2.18) 

where ( ),r t is the density of ionized free electrons and c  is critical plasma density, defined as 

2 2

0 0 /c em e   , above which the plasma is no longer transparent.31-32 The reduction of the 

refractive index works as a concave lens to diverge the laser beam with a higher power density at 

the center.  

These two competing effects together build the filament intuitively as shown in Figure 

2.5. The self-focusing effect initially dominates and shrinks the beam diameter tremendously. 

When the power density is high enough, gas ionization generates the plasma which defocuses the 

laser beam. The ionization rate decreases fast as the beam diverges and, as a result, the self-

focusing dominates in the propagation again. When two such processes reach a balance, the 

filament is built and enables strong interaction between the high-intensity laser pulse and gas 

medium over a long distance. Depending on the peak power and the type of gas, the length of 
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filament could range from several centimeters to even kilometers. The extended interaction 

length ensures the spectral width is broadened enough for white light generation. In this method, 

the plasma absorption is the predominant source of energy loss.31 

The filament is a very complicated phenomenon involving a large number of impressive 

nonlinear effects that are still under investigation.33-35 Up to now, there is not a single general 

model that can include all the phenomena already observed in the propagation of a high-intensity 

femtosecond laser pulse. A detailed discussion is beyond the scope of this dissertation. A 

reduced scalar model, as seen in Equation 2.19, can explain the processes mentioned above, 

which is enough to describe the formation of the filament: 

2 0
0 2

02 2 c

ki
ik n i

z k n




⊥


=   +   − 


,                            (2.19) 

where ( ), , ,E x y z t  is a slowly varying envelope of the incident light. 

 

Figure 2.5. An illustration of the focusing–defocusing cycles induced by the competing self-

focusing and plasma defocusing. The solid curves indicate the diameter of the laser beam. The 

filament is built by a large number of these cycles, and the filament length is the distance 

covered by the cycles.  
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 Principles of Nonlinear Spectroscopy 

Nonlinear spectroscopy refers to light-matter interaction under a strong radiation field 

when the response is nonlinearly related to the amplitude of the light field.36-37 In nonlinear 

spectroscopy, the emitted signal is subject to more than one field-matter interaction and usually 

treated with high-order perturbation theory. From Maxwell equations, the propagation of the 

electronic field in a dielectric medium can be described by: 

( )
( ) ( )2 2

2 2 2 2

2
, ,1 4

,
E r t P r t

E r t
c t c t




 
− =

 
.                (2.20) 

Solving the equation gives signalE iP . The phase factor i is introduced because the emitted field 

is proportional to the gradient of the polarization. In nonlinear spectroscopy, the induced 

polarization needs to be treated by perturbation theory and can be expanded as:    

(1) (2) (3)( ) ...P t P P P= + + + ,                  (2.21) 

where 
( )nP refers to the polarization arising from interaction with n  incident light fields.36-38 

(2)P and higher order terms are called the nonlinear terms. 
( )nP can be measured with suitable 

thn

-order nonlinear spectroscopic techniques. 
( )nP  can be written as the convolution between the 

response function 
( )nR , which characterizes the material response when interacting with light 

and the electric field.36-37 

( ) ( ) ( ) ( ) ( )( )

1 1 1 1 1 1 1
0 0 0

... , ... ... ...
n n

n n n n n n n nP t d d d R E t E t         
  

− − −= − − − −              (2.22) 

The response function contains all the relevant information about the response of material when 

interacting with the radiation field. It is possible to get the expression of 
( )nR with the 

commutator between the transition dipole operators and the density operator:   
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,               (2.23) 

where ( )n   is the Heaviside step function, which enforces the causality of the equation, I is 

the transition dipole, and eq is the density operator at equilibrium.36-37 

The definition of the density operator is given in Equation 2.24 as the outer product of a 

wave function and its conjugate: 

  =                     (2.24) 

If expanding the  in a comprehensive set, the density operator can be expressed in the format 

of a matrix. For a simple two-level system, as in Equation 2.25, the diagonal elements 11p and 22p  

are called populations, which describe the possibility of finding a molecule in such a state; in 

contrast, the off-diagonal elements 12c  and 21c  are called coherences, which represent the 

superposition between particular states: 

11 12

21 22

p c

c p


 
=  

 
.                   (2.25) 

The response function is a summation over several correlation functions, which 

characterize the correlation between the system before and after interacting with the radiation 

field. These correlation functions differ from interacting with the bra  or ket  sides of the density 

operator. For the 
thn -order response function, 2n correlation function terms contribute. The 

derivations of the response functions and correlation functions have not been included to avoid 

too much detail in this dissertation. A graphic method called a Feynman diagram39-41 is widely 

used to write the correlation function terms representing the specific sequence of field-matter 
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interactions conveniently. There are several rules when drawing a Feynman diagram and 

translating the chart into the terms of the response function, as detailed below: 

1. Two vertical lines represent the ket  and bra  sides of the density operator. 

2. Time elapses from the bottom to the top. 

3. The Feynman diagram must start and end at populations 

4. Inward arrows represent absorptions, while outward arrows represent emissions. 

5. Arrows on the left side interact with ket , while arrows on the right side interact with 

bra . 

6. Absorption excites the state on its side from a lower energy to a higher energy, while 

the emission relaxes the state on its side from a higher energy to a lower energy. 

7. For the 
thn -order nonlinear spectroscopy, 1n + arrows are included. The last arrow 

always represents the signal emission. 

8. A transition dipole matrix element is written for each field-matter interaction 

including signal emission. 

9. The system evolves freely under 0H  between interactions and gives a propagation 

function. 

10. The propagation function of a coherence contains the frequency corresponding to the 

energy gap between the ket - and bra -side states and a damping factor. 

11. Arrows pointing to the right (left) are associated with positive (negative) wavevectors 

and frequencies. 

12. The overall wavevector (frequency) of the signal is determined by the sum of the 

incident field wavevectors (frequencies) reflecting the conservation of energy and 

momentum. 
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13. A constant ( )1
k

−  is multiplied to the response function where k is the number of 

interactions on the bra  side. 

Following these guidelines, we can write the specific terms in the response function. The 

whole response function is the sum over all possible Feynman diagrams obeying the above rules. 

Figure 2.6 and Equation 2.26 provide an example of two ground state bleach (GSB) terms in the 

third-order nonlinear spectroscopy of a two-level system: 

( ) ( ) ( ) ( ) ( ) ( )1 32

1

eg eg eg eggg
i i

g eg eg eg egR p e e e
   

   
− − − −−    =

       
             (2.26a) 

and 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 32
2 * * *

2 1 eg eg eg eggg
i i

g eg eg eg egR p e e e
   

   
− − − −−    = −

       
.            (2.26b) 

Here, for convenience, the propagation functions were written under the homogeneous limit. If 

the spontaneous transfer g e→  is not considered, the relaxation rate of the ground state gg  

equals zero. As demonstrated above, the response functions are easily obtained with the help of 

Feynman diagrams, which are instrumental in understanding the signal measured by nonlinear 

spectroscopy. 
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Figure 2.6. In a third-order nonlinear spectroscopy, two Feynman diagrams for a two-level 

system are shown. These two Feynman diagrams are associated with the ground state bleach 

(GSB). The end state is not shown in the plots, which is g g  . 

 

 Third-Order Nonlinear Spectroscopy 

2.5.1. Transient Absorption Spectroscopy 

Transient absorption spectroscopy is a third-order nonlinear spectroscopic method that 

measures the change of the absorption spectrum induced by the pump laser pulse and can reflect 

the relaxation of nonequilibrium species. Firstly, a pump pulse promotes a portion of the 

molecules in the system from the ground state to an electronically or vibrationally excited state. 

The effect of the pump can be interpreted in either a classical or quantum way. In the quantum 

consideration, the sample absorbs a photon. In the classical consideration, two field-matter 

interactions are involved within the pump pulse. These two interpretations are equally valid 

under the particle-wave duality of light. The probe pulse then arrives after a delay τ and interacts 

with the excited molecules. The transmitted probe is measured by a spectrometer synchronized to 

the laser repetition rate to perform a pulse-by-pulse measurement. By varying the delay τ 

between the pump and probe pulses, spectra are acquired at different steps in the evolution of the 

excited species, obtaining the frequency-resolved dynamics. To measure the laser-induced 
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change of the absorption spectrum, an optical chopper at 500Hz, which is half of the laser 

repetition rate, is placed in the path of the pump beam to produce two phases for differencing. 

The transmission of the probe is measured under with pump-on conditions, representing the 

excited species, and pump-off conditions, representing the ground state species. Equation 2.27 is 

used to calculate the transient absorption for each delay: 

( ) ( ) ( )
0 0

, , , log log log
pump on pump off pump off

pump on pump off
pump on

I I I
A A A

I I I
     

− − −

− −
−

    
 = − = − + =       

     

.      (2.27) 

From the classical interpretation, the third-order nonlinear signal measured by transient 

absorption spectroscopy has a phase matching condition 1 2 3sigk k k k= − + , where 1 2k k= because 

the first two field-matter interactions come from the same pump pulse.42-43 Thus, the signal emits 

in the same direction as 3k , the probe pulse. 

The calculation of the transient absorption signal in this research for the wide-field 

microscope was slightly different from the method mentioned above. When the pump pulse was 

scattered by the sample and enters the spectrometer, it could introduce a large differencing signal 

and overwhelm the desired response from the sample. Another optical chopper was placed in the 

probe path and the frequency of the chopper in the pump was set at half of the original frequency 

to remove the scattered pump. The two choppers cycled among four phases: pump-on/probe-on 

( 1S  ), pump-on/probe-off ( 2S ), pump-off/probe-on ( 3S ), pump-off/probe-off ( 4S ). Equation 

2.28 calculated the differencing signal: 

( ) ( )1 2 3 4log logA S S S S = − − + − .                 (2.28) 

There are usually three different signal components measured in transient absorption 

spectroscopy: ground state bleach (GSB), excited state emission (ESE), and excited state 

absorption (ESA). For the three-level system, Figure 2.7 illustrates three Feynman diagrams as 
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examples. It is also possible to understand these three components intuitively.44-45 The GSB 

component has a negative sign and is a result of the increase in the probe transmission. When a 

fraction of the system is promoted to the excited state by the pump pulse, this population stops 

absorbing the light at the ground state absorption band and the transmitted light at these 

frequencies increases. According to Equation 2.27, this effect can generate a negative signal. 

Instead of absorbing from the ground state, the excited molecules instead can emit light from the 

bottom of the higher electronic state when stimulated by the probe. The stimulated emission is in 

the same direction as the probe and increases the intensity of the transmitted probe at the 

fluorescence frequencies. This contribution gives a negative signal as ESE, which is very similar 

to the GSB but red-shifted due to nuclear relaxation. At short delays, the GSB and ESE are not 

distinguishable.46-47 The last component is the ESA, which is a positive component induced by 

the absorption of the excited molecules. The new absorption band decreases the intensity of 

transmitted light, and thus has a positive sign according to Equation 2.27. Among these three 

components, ESE and ESA are directly related to the excited state population and relax when the 

occupancy of specific state decreases. However, the GSB contribution is only related to the 

ground state population and decays when the population of the equilibrium species recovers. 



51 

 

Figure 2.7. These three Feynman diagrams illustrate examples of GSB, ESE, and ESA measured 

by transient grating and transient absorption spectroscopy. Although not all terms contributing 

to these two techniques are plotted in the figure, all response function terms measured can be 

classified into these three categories.  

 

2.5.2. Four-Wave-Mixing Spectroscopy and Transient Grating Spectroscopy 

When counting the number of field-matter interactions, 
thn -order nonlinear spectroscopy 

involves 1n +  field-matter interactions, sometimes also referred as 1n + wave-mixing 

spectroscopy. Proposed in the 1970s, transient grating spectroscopy is a widely performed four-

wave-mixing technique and measures the third-order nonlinearities of the sample.48-49 Figure 2.8 

depicts a typical geometry of a transient grating measurement. Two time-coincident laser pulses 

pump the sample, and after a waiting time τ, the probe beam arrives. The signal will emit in the 

phase-matched direction. This geometry guarantees that transient grating is a background-free 

technique, which increases signal-to-noise and data acquisition efficiency. The phase matching 

condition, which is determined by the conservation of momentum, gives the signal direction as 

1 2 3sigk k k k= − + . With the first two field-matter interactions, the matter only absorbs one photon, 

which is in a superposition of photons from the two different fields. Transient grating 
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spectroscopy is sensitive to ground state bleaching (GSB), excited state emission (ESE), and 

excited state absorption (ESA) terms in the response function. Examples for a three-level system 

are shown in Figure 2.7. 

 

Figure 2.8. Typical transient grating experiment geometry. Two time-coincident pump pulses 

arrive at the sample first. Then, after some waiting time τ, the probe pulse arrives and generates 

the signal. The signal is emitted in a different direction from all incoming laser beams 

determined by the phase match condition. Therefore, the measurement is background free and no 

optical chopper is necessary. 

 

 

Figure 2.9. The concept of grating formation in transient grating measurements. Two time-

coincident pump beams with different wavevectors cross in the sample at an angle 2𝜃 and 

interfere to form a population grating. After a delay, the probe arrives and is scattered off the 

grating in the signal direction 1 2 3sigk k k k= − + , where k1 and k2 are the pump beams and k3 is the 

probe. 

 

The mechanism of signal generation can be understood more intuitively. The two time-

coincident pump pulses may form an interference pattern in the sample since they have different 

wavevectors, as shown in Figure 2.9. In areas of constructive interference, the molecules are 
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excited, whereas the molecules stay at equilibrium in regions of destructive interference. The 

periodic switching between excited and ground state molecules forms a short-lived population 

grating in space.50-51 When the third probe pulse arrives at the transient population grating after a 

delay τ, it can be diffracted to the particular angles determined by the period of the grating, 

which is 
2 sinn





= . The efficiency of the diffraction depends on the sharpness of the fringes, 

which reflects the fraction of molecules that stay in the excited states after delay τ. Thus, the 

transient grating technique can measure relaxation processes. 

The transient grating technique is sensitive to weak signals because it is background free. 

The signal can be detected as long as it is stronger than the signals from random scattering and 

above the detector threshold. However, when the transition dipole is small, and the sample 

damage threshold limits the laser fluence, directly measuring the weak emitted signal may not 

produce an excellent signal-to-noise ratio. An interferometric method, called heterodyne 

detection, can be applied in this case. By overlapping the signal with a reference field of higher 

intensity, it is possible to amplify the weak signal and obtain the phase information beyond just 

the intensity, which is essential to separate the absorptive and dispersive parts of the emitted 

field.52-57 The signal measured in the heterodyne detection method is given by:38, 58-60 

( ) ( ) ( )
2 2

2 cosref S ref S ref SI E E t E E t  = + + − .                 (2.29) 

Since the reference field is much stronger than the signal, ( )
2 2

ref SE E t , the 

amplification of the signal depends on the crossing term ( ) ( )2 cosref S ref SE E t  − , and the 

signal is amplified by a factor of ( )2 /ref SE E t .53, 58 Figure 2.10(b) illustrates the interferometric 

spectrum measured. A Fourier transform of the interference leads to the emission field evolution 

in the time domain, where a Gaussian apodization function filters out the time independent part 
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refE . Finally, inverse-Fourier transform produces the complex signal in which the real part 

corresponds to the transient absorption,37, 61 while the imaginary part refers to the transient 

dispersion.55-57  

 

Figure 2.10. An illustration of how the interferometric detection method magnifies the signal 

and why the phase fluctuation has significant influence on the measured signal. (a) The real 

parts of the electronic fields are shown in the time domain as a summation over all frequencies. 

The reference (Ref) field is five times stronger than the signal. The disturbance in the optical 

path on the times scale of 0.7 fs could shift the 400 nm light by π/2, as indicated by the red lines. 

(b) The measured signal is the square of the time-integrated sum between the reference field and 

the signal. Fringes are generated by the interference between the reference field and the signal. 

If the reference field varies by 0.7 fs in optical path, it may cause a 25% reduction of peak 

intensity. 

 

The magnitude of the crossing term is sensitive to the phase difference between the 

reference and the signal fields, thus a consistent phase relationship is crucial to acquire high 

signal-to-noise data. Figure 2.10 illustrates the influence of phase fluctuation on the measured 

signal. To elucidate the difficulty in maintaining the phase difference further, we can decompose 

it into several sources,58 

( ) ( )1 2
2

ref S pump pump ref probe


        = − = + + − − − ,                (2.30) 
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where / 2  is the phase shift between the polarization and field emitted, and  is the phase shift 

originating from the complex third-order susceptibility. The resting phase contributions, 

1 2, , ,pump pump ref probe    , can be influenced by the air current, humidity, temperature fluctuation, 

and vibrations of optics. Due to the nanometer-scale wavelengths of the visible range, delicate 

variations of these conditions could induce significant phase shift. This factor becomes the 

dominant noise source in heterodyne-detected transient grating measurements. An active phase 

feedback loop can be applied to monitor the fluctuation and compensate the phase shift.62-64 

Another way is to apply sheer brute force to control the mechanical stability and experimental 

environment.65 However, these active phase control methods are not cost-efficient and are 

complicated to set up. A better solution is the DOE-based passive phase-lock, which is widely 

used to measure weak high-order nonlinearities.38, 52-53, 58, 60, 66-72 In transient grating experiments, 

the DOE splits the two incoming laser beams into 1  orders. Either of the two pairs contains two 

beams identical in intensity and phase. One pair of beams serves as the two pumps, and the other 

pair includes the probe and reference. The similarity in the beam proximity cancels out the phase 

distortion caused by temperature and humidity differences, as indicated by Equation 2.30. 

Furthermore, all four beams are reflected by the same set of optics. Therefore, the phase 

fluctuations induced by the vibrations are identical. Figure 2.11 illustrates a typical DOE-based 

transient grating setup.  
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Figure 2.11. A typical geometry for the diffractive optical element (DOE)-based transient 

grating setup. Two beams are focused onto the DOE and split into ±1 diffraction orders. A 

spherical mirror reflects and focuses the four beams. Beams 1 and 2 induce the population 

grating, and the transient grating diffracts beam 3 (the probe). The diffracted signal beam is 

collinear with beam 4, which is an attenuated reference field for heterodyne detection. A typical 

interferometric signal measured on the spectrometer is shown. 

 

 Fifth-Order Nonlinear Spectroscopies 

2.6.1. Diffractive Optics-Based Six-Wave-Mixing 

As mentioned in Section 2.5.2 of this chapter, six-wave-mixing refers to fifth-order 

nonlinearities. The simplest six-wave-mixing spectroscopy is the pump-repump-probe, which 

adds a pump pulse to prepare a nonequilibrium state before measuring the transient absorption.1, 

73-75 Because we primarily focused on the application of DOE, we do not discuss details about 

this technique in this dissertation. Another avenue for developing a six-wave-mixing technique 

involves adding beams to the diffractive optic-based four-wave-mixing transient grating 

geometry shown in Figure 2.11.38, 59-60, 71, 76 These derivations from transient grating have shown 

higher sensitivity and an increased signal-to-noise ratio over the pump-repump-probe, and 

possess a unique ability to separate absorptive and dispersive signal components. In this 

research, we used three different configurations to measure the two-dimensional resonance 

Raman spectroscopy. 
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Figure 2.12. A diffractive optic-based four-beam interferometer used to measure the six-wave-

mixing signal in Chapter 3. Compared to the geometry used in the four-wave-mixing transient 

grating in Figure 2.11, an additional pump beam arrives before the formation of population 

grating. A nonequilibrium state of the sample molecules can be prepared before measuring the 

transient grating signal. The signal emits in the same direction as in the transient grating case, 

collinear to the reference field 4. 

 

In Figure 2.12, one additional pump beam could be added to the four-wave-mixing 

transient grating geometry illustrated in Figure 2.11. This four-beam geometry was used to 

measure the photodissociation of triiodide in this dissertation. The pump induced photochemistry 

processes such as photodissociation and prepares a nonequilibrium state before measuring the 

transient grating signal. The delay τ between this pump and the time-coincident pair of pumps in 

transient grating could be controlled in order to examine the relaxation processes happening 

during this time interval. Two field-matter interactions were involved in the first pump, and the 

corresponding phase matching condition was 1 2 3 4 5sigk k k k k k= − + − + , where 1 2k k= . Because 

the first two wavevectors canceled out, the fifth-order signal would emit in the same direction as 

in the transient grating measurement and overlap with the third-order response. An optical 

chopper must be applied to pump 1 to isolate the desired fifth-order signal. The third-order signal 
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background was removed by subtracting the pump1-off measurement from the pump1-on. 

However, when the sample was not resonant to the wavelength used for the four transient grating 

beams and possesses no third-order signal, it was possible to measure the background-free fifth-

order response without chopping directly. This situation could happen when applying 340 nm 

pump1 and 680 nm pump 2, pump 3, and probe to measure the photodissociation of the triiodide. 

Because the triiodide molecule was transparent at 680 nm, no third-order signal could originate 

from the ground state of triiodide, and only the diiodide molecules generated by pump 1 could 

react with the three 680 nm beams. In Chapter 3, we further discuss the details of this case. 

 

Figure 2.13. A diffractive optic-based interferometer with five-beam geometry is used to 

measure the six-wave-mixing signal in Chapter 3. The three incoming beams are split into -1, 0, 

and +1 diffraction orders with even intensity distribution. A mask on the spherical mirror blocks 

beams not marked with numbers. Beams 1 and 2 firstly excite the sample and produce a 

population grating. After a delay τ, beams 3 and 4 arrive and re-excite the sample from a 

prepared nonequilibrium state. These four beams generate a two-dimensional crossing grating. 

The last, beam 5, is diffracted by this grating in the same direction as beam 6, the attenuated 

reference field, for heterodyne detection. 
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With one more beam added in, the five-beam six-wave-mixing geometry in Figure 2.13 

can separate the fifth-order response from the third-order background and still maintain a 

reference field automatically collinear with the signal. In this dissertation, we used this geometry 

to measure the degenerate two-dimensional resonance Raman spectroscopy of triiodide, as 

discussed in detail in Chapter 3. 

In Figure 2.13, the three degenerate incoming beams are focused onto the diffractive 

optic and split into 0, 1  diffraction orders with identical intensities. A spherical concave mirror 

folds and focuses six of these nine beams onto the sample. A mask set against the mirror blocks 

the other three beams. The time-coincident pumps 1 and 2 arrive first and excite the sample to 

generate a population grating as in Figure 2.14(a). After a delay time 1 , the second pair of time-

coincident pumps 3 and 4 forms a new grating pattern and re-excites the molecules in the 

constructive interference regions. Figure 2.14(b) depicts the overall population grating generated 

by these four beams. Finally, the probe beam 5 arrives at the sample after the second delay 2

and is diffracted by this grating into the phase matching direction, 1 2 3 4 5sigk k k k k k= − + − + . 

Unlike the previous geometry, here 1 2k k . Considering the equal angles between the 0th order 

and the 1+  or 1−  order, the apparent calculation yields 6sigk k= , which is the same direction of 

the attenuated reference field beam 6. The overlapped signal and reference field produce an 

interferrogram on the spectrometer for heterodyne detection, which needs to be processed by the 

method mentioned in Section 2.5.2 of this chapter. In this setup, the application of diffractive 

optic not only stabilizes the phase difference crucial to measuring a weak fifth-order signal, but 

also provides a local oscillator (beam 6) that helps find the direction of the emitted field without 

much effort. 
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Figure 2.14. Population grating generated by the six-wave-mixing geometry demonstrated in 

Figure 2.13. A 266 nm deep UV laser beam generates the patterns, as described in Chapter 3. 

The angle between 1  orders of the diffracted light is 6.1 degrees. The figures represent the 

views observed from a direction perpendicular to the sample surface. (a) The population grating 

formed by the first two pumps, beams 1 and 2. (b) The population grating formed by all four 

pumps, beams 1 through 4. These gratings are not moving due to the degenerate condition for all 

beams. 

 

2.6.2. Femtosecond Stimulated Raman Spectroscopy 

Femtosecond stimulated Raman spectroscopy (FSRS) has been developed as a powerful 

method to investigate ultrafast structural dynamics in condensed phases with sub-picosecond 

time precision.77-90 This new technique has shed light on systems including biological proteins77, 

79-80, 88 and organic photovoltaic materials.78, 85 Figure 2.15 depicts the pulse sequence generally 

used for FSRS. The FSRS technique involves two succeeding events: (a) an electronically 

resonant actinic pump pulse initiates some electronic photochemical process, and (b) a 

stimulated Raman spectrum is obtained after a controlled delay τ using a combination of time-

coincident narrowband and broadband laser pulses. The actinic pump pulse is usually < 100 fs in 

duration and possesses a wide bandwidth. In contrast, the Raman pump pulse is at least hundreds 

of femtoseconds long and is narrow enough to ensure high Raman resolution. The Stokes probe 

is a broadband femtosecond pulse that is red-shifted from the Raman pump to produce a 

broadband response that interferes with the emitted stimulated Raman scattering. As illustrated 
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in Figure 2.15, the actinic pump prepares a nonequilibrium state n  and then a vibrational 

coherence 1n n + is activated by the first field-matter interaction involved in the Raman pulse 

and the probe. This coherence dephases with a characteristic vibrational dephasing time. The 

second field-matter interaction from anytime under the Raman pump duration envelope induces 

the signal emission in the phase matching direction. The femtosecond-scale sensitivity to 

ultrafast dynamics is achieved by the accuracy in the scanned delay between the short actinic 

pump and the overlapped pair of Raman pump and short Stokes probe, although the vibrational 

coherence can freely decay before the emission of signal.91-93 

 

Figure 2.15. (a) A schematic representation of time-resolved femtosecond stimulated Raman 

spectroscopy (FSRS). A femtosecond actinic pump pulse initiates photochemistry by promoting 

the system to an excited electronic state first. Then, the combination of a Raman pump pulse and 

a Stokes probe pulse induces the emission of the stimulated Raman signal. (b) The sequence of 

the actinic pump, the Raman probe, and the Stokes probe. (c) An energy diagram illustrates the 

key to femtosecond time precision. The actinic pump promotes the systems into an electronically 

excited state with two field-matter interactions. Then, the vibrational coherence 1n n +  is 

driven by the time-overlapped Raman pump and Stokes probe pulses from a prepared 

nonequilibrium state. The signal can actually emit anytime under the time-envelope of the 

Raman pump with the second field-matter interaction while the vibrational coherence is 

dephasing. The time precision depends on the time convolution between the actinic pump and the 

probe. 
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In our implementation of FSRS technique, which we discuss in Section 2.6.3, a fixed 

delay, 𝜏2, was introduced between the first and second interactions involved in the long Raman 

pump. This 300 fs delay suppressed the broadband pump-repump-probe response, which could 

be very strong when the Raman pump is electronically resonant to the sample. The broadband 

response depended on the electronic coherence prepared by the Raman pump and Stokes probe. 

With increasing 𝜏2, both the vibrational coherence and the electronic coherence were dephasing, 

but the latter decayed faster due to a generally shorter dephasing time. We discuss the details of 

𝜏2 further in Chapter 4. 

2.6.3. Femtosecond Stimulated Raman Spectroscopy by Six-Wave-Mixing 

Given the advantages of a background-free signal in this geometry, the data acquisition 

efficiency and quality can be enhanced for other fifth-order spectroscopies like FSRS in a similar 

setup. In this dissertation, we conducted FSRS experiments in both the four-beam and five-beam 

geometries described above and illustrated in Figure 2.16(a) and (b). In both geometries, the first 

pair of pumps, beams 1 and 2, is replaced by a pair of actinic pumps, which excites the system 

into a higher state. The second pair of pumps, the Raman pumps, propagate along beams 3 and 4, 

which induce vibrational coherence and possess narrow bandwidth and long duration. A 

broadband Stokes probe takes the position of beam 5. The phase matching condition 

1 2 3 4 5sigk k k k k k= − + − +  still holds, therefore the signal is emitted collinearly to beam 6. The 

other diffraction order of the Stokes probe is used as a local oscillator to help find the direction 

of the signal. Given the pulse sequence in Figure 2.16(c), one of the Raman pumps, beam 4, 

arrives last onto the sample and is diffracted by the population grating generated by the other 

beams. 
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Unlike the degenerate six-wave-mixing case, the grating formed by different colors is no 

longer static but actually moves toward a specific direction as demonstrated in Figure 2.17. In 

the five-beam geometry, the two degenerate actinic pumps form a static grating as in Figure 

2.17(a); the first arriving Raman pump, beam 3, and the probe, beam 5, create a grating that 

propagates in the sample, as in Figure 2.17(b). The overall FSRS grating (Figure 2.17(c)), which 

is a summation of the two gratings, moves away from the detector and induces the red-shifts of 

the scattered Raman pump due to the ‘Doppler effect.’ Because of the broadband nature of the 

Stokes probe, the moving velocity could vary within a wide range. When the velocity matches a 

specific Raman mode possessed by the sample, the scattering is enhanced to generate a peak in 

the measured spectrum. 
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Figure 2.16. (a) The five-beam geometry used for FSRS by six-wave-mixing (6WM) experiments 

in this dissertation. This design is much like the interferometer shown in Figure 2.13. However, 

each of the three incoming beams is a different color. (b) The four-beam FSRS geometry. (c) The 

pulse arrival scheme. The actinic pumps arrive first and activate some electronic process. After a 

controlled delay, 1  , the first Raman pump (beam 3) and the Stokes beam (beam 5) arrive at the 

same time. The window shown in (a) and (b) induces a delay, 2  , between the two Raman 

pumps, which suppresses the incoherent response. The final signal is formed by the diffraction of 

the last Raman pump (beam 4).  
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As for the four-beam geometry, the wavevectors are equal, 1 2k k= , because the first two 

field-matter interactions are from the same beam and there is no population grating formed by 

the actinic pump. Similar to the five-beam geometry, the first Raman pump, beam 3, and the 

Stokes probe, beam 5, produce a dynamic grating proceeding away from the detector as in Figure 

2.17(b). This grating diffracts the last Raman pump and results in red-shifted frequency. The 

overall effect is very similar to the five-beam geometry case. 

-  

Figure 2.17. Views of gratings from the direction perpendicular to the sample surface. (a) The 

static grating formed by the time coincident actinic pump beams, beam 1 and 2 in the five-beam 

geometry experiment. However, because the first two field-matter interactions are induced by the 

same beam in the four-beam geometry, no grating is formed. (b) In both the four- and five-beam 

experiments, a dynamic population grating is generated by the Raman pump and Stokes beams 

because of the difference in wavelength. The interference pattern moves down and to the right. 

(c) In the five-beam geometry, the overall FSRS grating is the summation of the two gratings in 

(a) and (b) and moves down and to the left. In both four- and five-beam geometries, the moving 

direction of the overall population grating is opposite to the signal propagating direction. 

Therefore, the Doppler shifts could induce a red-shift in frequency.  
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 Multiplex Wide-Field Transient Absorption Spectroscopy 

Transient absorption microscopy is a technique that measures ultrafast dynamics with 

spatial resolution. It is very suitable for detecting the carrier transport in solid state materials, 

especially in nanostructures and film.94-100 These experiments are usually done with a megahertz 

(MHz) repetition rate laser system and by spatially scanning the focused pump and probe beams 

on the sample. In this dissertation, we developed a new type of transient absorption microscopy 

with wide-field detection and multiplex excitation, which facilitates spatially- and temporally-

resolved measurement using a low repetition rate laser system and access to statistical 

information in a single experiment. The conventional scanning transient absorption microscopy 

is not very suitable for use with a kHz laser system because of low data acquisition efficiency. 

To solve this problem, we applied a wide-field transient absorption microscopy technique99-100 

but with a counter-propagating pump and probe beams. A DOE was placed in the pump path to 

build multiplex excitations and obtain statistical information, which is crucial for dealing with 

the heterogeneity of the sample. Similar techniques have been used in scanning microscopies.101-

102   
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Figure 2.18. A schematic illustration of the all-reflective 4F setup. A grating disperses the 

incoming broadband or super-continuum white light into a wide range of angles. The dispersed 

light is then focused by a concave spherical mirror to a flat mirror where different colors are 

spatially separated. A slit can be placed right in front of the flat mirror to select the desired 

wavelength range, then the flat mirror reflects the selected portion backward to the concave 

mirror and the grating. The distance between the concave mirror and grating as well as the 

distance between the concave mirror and the flat mirror are equal to the focus length of the 

concave mirror. The final output beam has the same beam profile as the incoming beam with 

frequencies selected by the slit. 
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Figure 2.19. Transient absorption microscopy experiments are conducted with a diffractive 

optic-based wide-field microscope. (a) A diffractive optic is used to generate a 41-point array of 

pump beams, which focus at different places on the sample. (b) The diffractive optic produces a 

41-point matrix of laser beams, which all possess equal intensities. (c) A counter-propagating 

pump and probe beams are focused to full width at half maximum (FWHM) spot sizes of 0.73 

and 150 μm on the sample surface, respectively. 

 

In this experiment, both the pump and probe beams were portions selected from the 

super-continuum spectrum, which was generated by focusing 1.5 mJ of a 800 nm fundamental 

laser beam into a 2 m long cell. This cell was pressurized by 5 psi argon, thereby creating a 6-

inch long filament. In Section 2.3.2 of this chapter, we discussed the principles of the filament. A 

4F setup which, as shown in Figure 2.19, uses a 1200 grooves/mm grating to disperse the white 

light and filters out the undesired part with a slit can select the desired frequencies. Putting the 

slit on a motorized stage and scanning the position achieved tunability of the pump and probe 

beams, thereby facilitating the spectral resolution of our microscope. 

Figure 2.19 shows a schematic illustration of the microscope setup. The pump and probe 

beams were focused on the sample from different sides. A lens or concave spherical mirror 
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focused the probe beam. Because of the low numerical aperture, the probe illuminated a large 

area and filled the whole view under the objective lens, which enabled wide-field detection. The 

pump beam was split by a customized DOE into 41 collimated beams as in Figure 2.19(a). The 

telescope placed between the DOE along with the dichroic mirror guided the diffracted pump 

beams into the objective lens. The first lens focused the 41 segments onto the focal plane and the 

second lens recovers the collimation. If we regard the objective lens as an ideal lens, the 

collimated light was focused onto the focus plane with displacements from the center determined 

by the incident angle. Therefore, it was possible to adjust the angles between the different orders 

by the ratio of focal lengths according to the equation 
1

2

o

i

F

F




= , where 1F  and 2F  were focal 

lengths for the first and second lens respectively, and o  along with i  represents the angles 

between the diffraction orders at the DOE and objective lens. The objective lens focuses the 41 

segments onto the sample surface with the pattern shown in Figure 2.19(b).  

Because the signal wavevector is the same as the probe beam, as discussed in Section 

2.4.1, the resolution of our transient absorption microscopy is determined in the same way as a 

wide-field microscope illuminated by the probe. For the 760-nm probe beam used in this 

dissertation, the resolution determined by Raleigh criteria is:  
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The objective lens can focus the pump beams into spots with diameter determined by a similar 

equation: 
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The calculation of the signal is almost the same as discussed in Section 2.4.1 of this 

chapter, except two laser pulses are accumulated on the camera due to the limitation of the frame 

rate. The camera takes images of transmitted probe under pump-off, pump offI − , and pump on, 

pump onI − , conditions. Transient absorption imaging is obtained by applying Equation 2.27 to every 

measured pixel of the two images.  

Since a camera detected the signal instead of a spectrometer, the embedded spectral 

resolution of white light probing TA is lost in the experiment. However, by continuously tuning 

the probe, it was possible to combine the responses at different wavelengths and construct the 

frequency-resolved TA spectrum. Figure 2.21 demonstrates the ability with a typical measured 

TA spectrum of a two-dimensional perovskite film, which is not included in this dissertation. 

 

Figure 2.20. Frequency-resolved transient absorption spectrum was measured on a single spot 

of the two-dimensional perovskite film. The probe was scanned from 605 nm to 790 nm and 

resolved exciton peaks for quantum confined two-dimensional layers.  
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 Summary 

In Chapter 2, we briefly introduced basic scalar diffraction theory and DOE design 

strategy. We also described the techniques used to generate spectrally broad 25 fs ultrashort 

pulses and super-continuum white light. These pulses are used in many diffractive optic-based 

nonlinear spectroscopies, including transient grating, two-dimensional resonance Raman 

spectroscopy, femtosecond stimulated Raman spectroscopy, and multiplex excitation wide-field 

transient absorption microscopy with some principles in nonlinear spectroscopy.  
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CHAPTER 3.  ELUCIDATION OF REACTIVE WAVEPACKETS BY TWO-

DIMENSIONAL RESONANCE RAMAN SPECTROSCOPY1 

 Introduction 

Models used to describe photoinduced electronic relaxation mechanisms in condensed 

phases are often based on perturbative descriptions at the level of Fermi’s golden rule (e.g., 

Marcus equation, Forster energy transfer).1-3 Such second-order rate theories typically assume an 

equilibrium initial condition in the photoexcited state of the system prior to the non-radiative 

transition of interest. This assumption is generally poor when applied to processes that occur on a 

time scale faster than solvation and/or vibrational dephasing. Recent studies show that non-trivial 

quantum effects may emerge when electronic and nuclear relaxation processes become time-

coincident.4 For example, in charge transfer processes that are time-coincident with vibrational 

dephasing, bursts of population flow have been observed in polymer-fullerene blends,5 

photosynthetic complexes,6 and at interfaces of semiconductors.7-8 Transient coupling between 

electronic and vibrational degrees of freedom has also been implicated in sub-picosecond energy 

transfer transitions.9-15 The two-dimensional resonance Raman (2DRR) techniques developed in 

this work are motivated by new insights into these types of non-equilibrium dynamics. 

In this paper, the sensitivity of 2DRR spectroscopy to coherent reaction mechanisms is 

demonstrated with measurements conducted on the photodissociation process of triiodide. Two-

color laser pulse configurations are used to selectively detect vibrational motions of the triiodide 

                                                 
1 This chapter previously appeared as an article in the Journal of Chemical Physics. The original citation is as 

follows: Guo, Z.; Molesky, B. P.; Cheshire, T. P.; Moran, A. M., Elucidation of reactive wavepackets by two-

dimensional resonance Raman spectroscopy. J. Chem. Phys. 2015, 143 (12), 124202. Copyright (2015) American 

Institute of Physics. 
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reactant and/or diiodide photoproduct in the two dimensions of the 2DRR spectrum. The unique 

power of the technique is ultimately realized using a pulse sequence, where vibrational 

resonances of triiodide and diiodide appear in separate dimensions. These “cross peaks” 

represent events in which a nuclear wavepacket transitions between reactant and product states 

without loss of coherence. Below, we explore how 2DRR spectroscopy can be used to expose 

non-trivial correlations between the nonequilibrium geometry of the reactant and vibrational 

coherence frequency of the product. Such information cannot be derived from four-wave mixing 

spectroscopies, which possess only one “population time” in which nuclear wavepacket motions 

take place. 

Ultrafast spectroscopic investigations of the photodissociation process in solvated 

triiodide are motivated by knowledge of the extraordinary reaction mechanism in this well-

defined system.16-23 Light absorption by triiodide in the ultraviolet spectral range induces 

photodissociation on a time scale that is shorter than16, 19 or comparable to22, 24 the vibrational 

period of diiodide. Photodissociation of triiodide acts as an impulse that initiates vibrational 

coherence in the bond stretching coordinate of diiodide. Information about the geometry changes 

that transform the reactant to the photoproduct can be derived from oscillatory components of 

transient absorption signals. For example, earlier work has shown that the oscillatory amplitude 

reflects symmetry breaking in the excited state,20 whereas the “chirp” in the waveform of the 

vibrational coherence represents time evolution of the bond strength during the reaction.22 It has 

also been demonstrated that photodissociation yields distinct populations of free solvated 

diiodide and a contact fragment pair (diiodide and iodine).25 Of relevance to the present 2DRR 

study, recent work suggests that the vibrational mode in free solvated diiodide dephases on a 



82 

time scale that is longer than the 300-fs vibrational period, whereas overdamped vibrational 

motion tends to take place in the contact radical pair.24 

We recently measured 2DRR spectra of triiodide using deep UV laser pulses.26 This 

approach was sensitive to ground state wavepacket motions in the triiodide molecule but did not 

convey detailed information about the photodissociation mechanism. Examination of this simple 

nonlinearity was motivated by the ability to compare experimental 2DRR spectra with those 

simulated using the Hamiltonian of triiodide determined in earlier spontaneous resonance Raman 

studies.27-29 Together with a battery of control experiments, these simulations were essential for 

ruling out cascades of four-wave mixing signal fields, which are known to significantly 

challenge 2D Raman experiments conducted under off-resonant conditions.30-34 We concluded 

that the desired 2DRR response will generally be dominant in systems with large excited state 

potential energy surface displacements. In effect, Franck–Condon activity obviates the selection 

rules that favor cascaded signal intensity under off-resonant conditions. 

 2DRR Spectra Simulated for a Reactive Model System 

As implemented in this work, 2DRR spectroscopy is a fifth-order technique in which 

vibrational coherences are detected in two delay times between laser pulses. In contrast, 

vibrational coherences may be investigated during only one pulse delay time in a traditional 

third-order pump-probe spectroscopy. The goal of the model presented in this section is to 

establish spectroscopic signatures corresponding to particular classes of terms in the 2DRR 

response function. It is important to carry out such an analysis, because the 2DRR nonlinearity is 

more complicated than that associated with a traditional pump-probe experiment.1 

Vibrational motions in the ground electronic state of triiodide were detected in our earlier 

all-UV 2DRR experiments.26 Here, sensitivity to the diiodide photoproduct is derived by 

applying laser pulses in a spectral range that is electronically off-resonant with triiodide at 
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equilibrium.16-23 The patterns of 2DRR resonances associated with such two-color pulse 

sequences are explored with model calculations below. 

 

Figure 3.1. Linear absorbance spectra of triiodide and diiodide in ethanol. The absorbance 

spectrum of triiodide is directly measured, whereas that of diiodide is derived from Ref. 35 

because it is not stable in solution. Diiodide is probed on the picosecond time scale in the 

present work. The electronic resonance frequencies associated with this nonequilibrium state of 

diiodide are likely red-shifted from those displayed above. 

 

3.2.1. Model Hamiltonians 

The electronic resonances relevant to the experiments conducted in this work are 

displayed in Figure 3.1. The resonance of triiodide centered near 27800 cm−1 is excited in all 

experiments. In a single experiment, either the lower- (13300 cm−1) or higher-frequency (25400 

cm−1) electronic resonance of diiodide is probed (i.e., the 2DRR experiments presented below are 

two-color rather than three-color). Therefore, the nonlinear optical response associated with all 

measurements presented below may be simulated using a Hamiltonian in which each molecule, 

triiodide and diiodide, is treated as an effective two-level electronic system. Explicit inclusion of 
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additional off-resonant electronic states will have a negligible impact on these signals. The 

effective Hamiltonian for triiodide can be written as 

  *

* * *

0 0

triiodide r m nr
m n

H r r m m E E r r r n n E E
 

= =

 = + +  +   ,         (3.1) 

whereas that of diiodide is given by 

*

* * *

0 0

diiodide p m np
m n

H p p m m E E p p p n n E E
 

= =

  = + +  +                (3.2) 

Here, r and p represent the ground electronic states of triiodide and diiodide, whereas an 

asterisk is used to denote the excited electronic state. The energies, rE and *r
E ( pE and *p

E ), 

correspond to the ground and excited states, respectively. The dummy indices, m and n , represent 

vibrational levels belonging to the ground and excited electronic states. 

The transition energies of each system, 𝐸𝑟∗ − 𝐸𝑟 and 𝐸𝑝∗ − 𝐸𝑝, are readily derived from 

the absorbance spectra presented in Figure 3.1. The two potential energy surfaces that belong to 

each molecule must also be described in order to generate the vibrational energy levels, 𝐸𝑚 and 

𝐸𝑛. The ground state potential energy surfaces must be modeled with a far greater level of detail 

than the excited state potential energy surfaces in order for the model to generate realistic 

spectroscopic signals. Insensitivity to the global excited state potential energy surfaces is taken 

into account when writing the summations over quantized vibrational levels for the dissociative 

excited states in 𝐻𝑡𝑟𝑖𝑖𝑜𝑑𝑖𝑑𝑒 and 𝐻𝑑𝑖𝑖𝑜𝑑𝑖𝑑𝑒. We next discuss the approximations made in the 

descriptions of the potential energy surfaces in a qualitative way. Further technical details about 

the parameterization of the potential energy surfaces are given in Section 3.8.1. 

The summations over quantized levels for the ground states in 𝐻𝑡𝑟𝑖𝑖𝑜𝑑𝑖𝑑𝑒 and 𝐻𝑑𝑖𝑖𝑜𝑑𝑖𝑑𝑒 

are clearly motivated. The previous literature can be used to guide decisions about parameters.16, 
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19, 27 The vibrational motions of triiodide and diiodide detected in this work are known to occur 

in the electronic ground states, because the excited states of both systems are dissociative.16, 19 

Vibrational resonances in the ground electronic state of triiodide have been detected in both 

spontaneous and stimulated Raman experiments carried out with deep and near ultraviolet laser 

beams.16, 27 In this work, signals will be simulated using a harmonic ground-state potential for 

triiodide, because only the lowest-energy vibrational states contribute to the signals. Resonance 

Raman experiments suggest that the harmonic approximation is indeed reasonable for these 

energy levels.27 In two-color transient absorption experiments (ultraviolet pump with visible- and 

near-infrared probes), the relationship between the vibrational phase and detection wavelength 

was used to assign wavepacket motions to the electronic ground state in diiodide.16, 19 The 

ground state potential energy surface of diiodide is modeled using a cubic potential in this work, 

because higher-energy vibrational levels (near 12 quanta) are known to contribute to the 

response following photodissociation.19 Introduction of the cubic potential is required to obtain 

agreement between theoretical and experimental vibrational frequencies but does not impact the 

patterns of peaks in the 2DRR spectra. 

The shapes of the excited state potentials require far less detail than those of the ground 

states, because the experiments presented here are sensitive only to the potential energy gradient 

near the Franck–Condon geometry.36 This aspect of the response is made clear by the absence of 

vibronic progressions in the absorbance spectra shown in Figure 3.1. In the semiclassical 

perspective, this means that the wavepacket initiated on the excited state potential energy surface 

does not return to the Franck–Condon geometry before electronic dephasing is complete (i.e., 

electronic dephasing is on the order of 10-20 fs).37 The excited state potential energy gradient 

near the Franck–Condon geometry primarily governs the amplitude of the wavepacket stimulated 
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in the ground electronic state. Here, we use the cubic fitting parameters for the London-Eyring-

Polanyi-Sato (LEPS) excited state potential energy surface of triiodide in ethanol.18, 27 Johnson 

and Myers used a similar displaced oscillator model for triiodide to achieve reasonable 

agreement with spontaneous Raman spectra.27 The gradient of the excited state potential energy 

surface of diiodide at the Franck–Condon geometry is approximated by displacing a replica of 

the cubic ground state potential energy surface. We have chosen a set of parameters that 

produces a gradient which is consistent with models used in other work (see 3.8.1).24-25 

3.2.2. Response Functions 

We consider three types of 2DRR nonlinearities: (i) both dimensions correspond to the 

triiodide reactant; (ii) both dimensions correspond to the diiodide photoproduct; and (iii) the 

vibrational resonances of triiodide and diiodide appear in separate dimensions. As in Section 

3.2.1., we use a notation where the indices 𝑟 and 𝑟∗ represent the ground- and lowest-energy 

excited electronic states of the triiodide reactant. Likewise, 𝑝 and 𝑝∗ correspond to the ground- 

and lowest-energy excited states of the diiodide photoproduct. Vibrational levels associated with 

these electronic states are specified by dummy indices (𝑚, n, j, k, l, u, v, w). The Feynman 

diagrams presented in Figure 3.2 show that the vibrational coherences detected in 2DRR spectra 

evolve in the two time-intervals with even indices (𝑡2 and 𝑡4). Electronic (or vibrionic) 

coherences, which dephase in 10’s of fs for solvated triiodide, evolve in the time intervals that 

correspond to odd indices (𝑡1, 𝑡3 , and 𝑡5). It is useful to consider that the experimentally 

controlled pulse delay times, 𝜏1 and 𝜏2, are good approximations to the time intervals between 

field-matter interactions, 𝑡2 and 𝑡4. 

The first class of nonlinearities shown in Figure 3.2 (i.e., terms 1-4) involves vibrational 

motions of only the triiodide reactant.26 In contrast to terms 1-4, the Feynman diagrams 
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associated with the other two classes of response functions incorporate the photodissociation 

process as a transfer of vibrionic coherence from triiodide to diiodide either before (terms 5-8) or 

after (terms 9-12) evolution of the vibrational coherence in 𝑡2 (i.e., the delay time, 𝜏1). In the 

present model, we assume that the reaction is faster than the 300-fs period of the symmetric 

stretching coordinate in triiodide. This separation in time scales is consistent with the finding of 

vibrational coherence in diiodide (i.e., vibrational motions in the ensemble can dephase if the 

reaction is not impulsive). It was understood in earlier studies that photodissociation is faster 

than the 300-fs vibrational period.16, 19 However, some later work suggests that the reaction takes 

place on nearly the same time scale as the vibrational period (i.e., a few hundred 

femtoseconds).22, 24 In any case, we consider the impulsive approximation to be reasonable here, 

because it does not impact the pattern of peaks in the 2DRR spectra. 
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Figure 3.2. Feynman diagrams associated with dominant 2DRR nonlinearities. Blue and red 

arrows represent pulses resonant with triiodide and diiodide, respectively. The indices 𝑟 and 𝑟∗ 

represent the ground and excited electronic states of the triiodide reactant, whereas 𝑝 and 

𝑝∗correspond to the diiodide photoproduct. Vibrational levels associated with these electronic 

states are specified by dummy indices (𝑚, 𝑛, 𝑗, 𝑘, 𝑙, 𝑢, 𝑣, 𝑤). Each row represents a different class 

of terms: (i) both dimensions correspond to triiodide in terms 1-4; (ii) both dimensions 

correspond to diiodide in terms 5-8; and (iii) vibrational resonances of triiodide and diiodide 

appear in separate dimensions in terms 9-12. The intervals shaded in blue represent a non-

radiative transfer of vibrionic coherence from triiodide to diiodide. 
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As in Ref. 26, response functions are written in the “snapshot” limit, where the laser 

pulses are short compared to the vibrational period but long compared to electronic dephasing.1 

Both approximations are appropriate for the experiments described below. We additionally take 

the finite bandwidths of the laser pulses into account in the expressions for the nuclear 

wavepacket. Under these approximations, the polarization components consist of products of 

Lorentzian functions (see the supplementary material for derivation).38 For example, the first 

term is given by 
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Here, |n m  is a vibrational overlap integral, where the index on the left represents the 

vibrational level of the excited electronic state (i.e., the same notation is used in Ref. 39). The 

subscript of the electric field, UV, denotes an interaction with the lowest-energy electronic 

resonance of triiodide (VIS denotes an interaction with either electronic resonances of diiodide). 

The remaining 11 response functions are given in 3.8.2. 

The parameters given in Table 3.1 are chosen to approximate the properties of triiodide 

and diiodide. The electronic and vibrational resonance frequencies of both systems have been 
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determined in earlier studies.16-23, 26 We take the potential energy surface of the ground state of 

triiodide to be harmonic in agreement with spontaneous resonance Raman experiments.27 The 

excited state potential energy surface of triiodide and both the ground and excited state potential 

energy surfaces of diiodide are expanded to the cubic term.26 Cubic expansion coefficient of −1 

cm−1 (see Equation 3.8) approximate the LEPS surface of triiodide17 and capture the 100-cm−1 

gap between successive energy levels in diiodide near 20 vibrational quanta.19 Evaluation of the 

vibrational overlap integrals in the response function is accomplished by assuming a 

dimensionless displacement of 7.0 for both triiodide and diiodide. This value of the displacement 

is consistent with spontaneous Raman measurements27 and our previous 2DRR study of 

triiodide.26 A displacement of 7.0 also produces an excited state potential energy gradient in 

diiodide (225 eV/pm) that is identical to that associated with a commonly employed exponential 

surface at a displacement of only 9 pm from the Franck–Condon geometry.24-25 As discussed in 

Section 3.2.1, this gradient is the key quantity that must be reproduced by the present model, 

because electronic dephasing is fast compared to the vibrational period.  
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Table 3.1. Parameters of Model Used to Compute 2DRR Spectra 

(a)Parameter Value 

* / 2r r c   27,800 cm-1 

(b)
* / 2p p c   13,300 cm-1 & 25,400 cm-1 

(c)
, *,/ 2 / 2r vib r vibc c   =  111 cm-1 

(c)
, *,/ 2 / 2p vib p vibc c   =  114 cm-1 

(c)
3, /rU hc  0 cm-1 

(c)
3, * 3, 3, */ / /r p pU hc U hc U hc= =  -1 cm-1 

, *, , *,/ / / /r vib r vib p vib p vibc c c c =  =  =   10 cm-1 

* */ /r r p pc c =   2000 cm-1 

(d)
*r r  2.3 D 

(d)
*p p  1.0 D 

(e) / 2UV c   29,400 & 25,000 cm-1 

(f) / 2VIS c   14,705 & 18,900  cm-1 

/ 2t c   / 2VIS c   

/ /UV VISc c =   500 cm-1 

(a) The indices 𝑟 and 𝑝 represent triiodide and diiodide, respectively. Asterisks indicate the lowest-energy excited 

electronic states of the molecules. 
(b) The electronic resonance of diiodide that is probed depends on the particular experiment (see Section 3). In terms 

1-4 and 9-12, the resonance is located at 25400 cm-1, whereas in terms 5-8 it is equal to 13300 cm-1.  
(c) Parameters of Equation 3.7. 
(d) Magnitudes of transition dipoles do not impact line shapes of simulated 2DRR spectra. 
(e) In Figure 3.3, “pump” wavenumbers are: 25000 cm-1 for terms 1-4; 29400 cm-1 for terms 5-8; 25000 cm-1 for terms 

9-12. 
(f) In Figure 3.3, “probe” wavenumbers are 14705 cm-1 in terms 5-8 and 20000 cm-1 in terms 9-12, respectively. 

 

3.2.3. Calculated 2DRR Spectra 

Figure 3.3 presents signals that are simulated for the three types of nonlinearities. Terms 

1-4 yield resonances in only the upper right and lower left quadrants of Figure 3.3(a) because of 

interferences between components of the response function.26 For terms 5-8 in Figure 3.3(b), 
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suppression of signal intensity in the upper left and lower right quadrants originates in the same 

types of interferences found in terms 1-4. In terms 1-8, evolution of the system in the time 

intervals, 𝑡2 and 𝑡4, is always described by a pair of coherences in which only one of the 

vibrational indices is modified by the third and fourth field-matter interactions (e.g., 𝑟 𝑗 in terms 

2 and 4 or 𝑝𝑙 in terms 5 and 6). In contrast, calculations based on terms 9-12 yield peaks with 

equal intensities in all four quadrants in Figure 3.3(c). The unique pattern of resonances found in 

terms 9-12 reflects independence of the vibrational coherences that evolve during 𝑡2 and 𝑡4. The 

key issue is that the photo-dissociation process takes place between 𝑡2 and 𝑡4 time intervals in 

terms 9-12 (see Figure 3.2). Therefore, the vibrational coherence in the time interval 𝑡4 involves 

a set of indices that is fully independent from those in 𝑡2. In contrast, photodissociation occurs 

before vibrational coherences evolve in 𝑡2 in terms 5-8 thereby placing constraints on the 

vibrational coherences that evolve in 𝑡2 and 𝑡4. 

In summary, the model calculations presented in this section demonstrate that cross peaks 

between triiodide and diiodide appear in all four quadrants of the 2DRR spectrum. These 2DRR 

cross peaks may be induced with a pulse configuration in which UV pulses are employed before 

the 𝜏2 delay time, and a visible pulse is applied afterwards (see terms 9-12). This particular 

signature of cross peaks will generalize to other systems in which vibrational coherences of the 

reactant and product evolve in the ground electronic states. For such systems, only cross peaks 

between the reactant and product will yield resonances in the upper left and lower right 

quadrants. The key issue is that the third and fourth field-matter interactions must take place with 

either the ket or bra in terms 1-8, thereby allowing a difference in only one of the indices that 

describes the coherences in 𝜏1 and 𝜏2 (see Figure 3.2).  
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Figure 3.3. Absolute values of 2DRR spectra computed using (a) the sum of terms 1-4 in 

Equation 3.22. (b) the sum of terms 5-8 in Equation 3.23 and (c) the sum of terms 9-12 in 

Equation 3.24. The frequency dimensions, ω1 and ω2, are conjugate to the delay times, τ1 and τ2 

(see Figure 3.2). Signal components of the type shown in panel (a) are generally detected in one-

color experiments. Two-color 2DRR approaches are used to detect nonlinearities that 

correspond to panels (b) and (c) in this work. The peaks displayed in (c) are unique in that 

resonances of the reactant and product are found in ω1 and ω2, respectively. 

 

 Experimental Methods 

The 2DRR experiments conducted in this work utilize either five or three laser beams to 

obtain the fifth-order response. Measurements conducted in these geometries must contend with 

a background of residual laser light and/or lower-order nonlinearities, because fewer than six 

laser beams are employed.26 In this section, we describe the two experimental setups and discuss 

how sources of background are dealt with. 

3.3.1. Conducting 2DRR Spectroscopy with a Five-Beam Geometry 

Detection of signal components described by terms 5-8 in Figure 3.2 is accomplished 

with a geometry of five laser beams. In Figure 3.4, it is shown that a 340-nm laser beam is 

simply added to an existing diffractive optic-based transient grating setup operational at 680 

nm.40 A slightly modified version of this interferometer has been described elsewhere.41-42 

Briefly, the 680-nm beams are focused on the diffractive optic with a 20-cm focal length 

spherical mirror and cross at 5.4º. The angle between the +1 and −1 diffraction orders is also 

5.4º. Thus, a square pattern of 680-nm beams appears on the 20-cm focal length spherical mirror. 
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The spherical mirror is tilted off-axis by approximately 5º (i.e., the minimum amount) in order to 

image the spot from the diffractive optic onto the sample. Focusing conditions of the 340-nm 

beam are optimized to match the 200-µm FWHM spot sizes of the 680-nm beams. 

 

Figure 3.4. (a) Diffractive optic-based interferometer used to detect signal components 

described by terms 5-8 in Figure 3.2. Each of the two 680-nm beams is split into −1 and +1 

diffraction orders with equal intensities at the diffractive optic. The signal is collinear with the 

reference field (pulse 5) used for interferometric signal detection. (b) The 340-nm pulse induces 

photodissociation and vibrational coherence in the diiodide photoproduct during the delay, τ1. 

The time-coincident 680-nm pulses, 2 and 3, reinitiate the vibrational coherence in diiodide 

during the delay, τ2. 

 

The 340-nm and 680-nm laser beams are produced by focusing a 0.8-mJ, 60-fs laser 

beam at 800 nm into a 43-cm long hollow core fiber with a 250-µm inner diameter. The 

continuum produced in the fiber spans the full visible spectral range. A 4-µJ, 40-nm wide portion 

of the continuum centered at 680 nm is filtered in a fused silica prism compressor. Most of the 

680-nm beam (65%) is used to generate 340-nm light in a 100-µm thick, Type I Beta Barium 

Borate (BBO) crystal. In order to minimize lossy reflections, the 340-nm beam is directly imaged 
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from the BBO onto the sample using a 15-cm focal length spherical mirror placed 30-cm from 

the BBO. Residual 680-nm light is filtered using a 1-mm thick fused silica polarizer. A lossy 

second compression step is not required for the 340-nm beam because of pre-compensation for 

dispersion in the aforementioned prism compressor; the polarizer used to filter residual 680-nm 

light compensates for negative chirp in the 340-nm pulse. 

In this pulse sequence, the 40-fs, 340-nm pulse (pulse 1 in Figure 3.4) induces a 

photodissociation process that leaves the diiodide photoproduct in a vibrational coherence as 

suggested by terms 5-8 in Figure 3.2. A time-coincident pair of 25-fs, 680-nm laser pulses 

(pulses 2 and 3 in Figure 3.4) reinitiates the vibrational coherence in diiodide during the delay, 

𝜏2. The fourth pulse (also at 680 nm) induces signal emission. The fifth pulse, which is 

attenuated by a factor of 1000 before the sample, is used for heterodyne detection by spectral 

interferometry.43-44 The signal phase can be determined using the method devised by Turner and 

Scholes in this beam geometry,45 because the 340-nm pulse does not factor into the phase 

calibration. Scherer and Blank have employed similar laser beam geometries and phasing 

schemes in related fifth-order experiments.46-48 

An undesired four-wave mixing response may be radiated by the solvent in the same 

direction as the fifth-order signal in this geometry. However, because the sample is transparent at 

680 nm, this four-wave mixing signal is approximately 50 times smaller than that associated with 

the solute at delay times greater than 80 fs. Moreover, the desired signal radiated by the solute 

exhibits a vibrational coherence with a period of 300 fs. Insensitivity of this setup to 

intramolecular vibrations of the solvent was confirmed by scanning the delay,  𝜏2, with the 340 

nm beam blocked. Thus, the assignment of the experimentally observed 112-cm−1 vibrational 

resonance to the solute is unambiguous.26 The 2DRR experiment may be conducted without 
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chopping the 340-nm beam, because the desired fifth-order nonlinearity dominates the total 

response of the solution. Conducting the experiment without chopping the 340-nm beam greatly 

speeds up data acquisition and facilitates signal averaging. 

Signals are detected using a back-illuminated CCD array (Princeton Instruments PIXIS 

100B) mounted on a 0.3 m spectrograph with a 600 g/mm grating. The signal generates roughly 

80 counts/ms on the detector with 150-nJ, 340-nm pulses and 200-nJ, 680-nm pulses. All beams 

possess the same electric field polarization and are focused to 200 µm at the sample position. 

The two delay lines are scanned 20 times and averaged. The step sizes are 40 fs in both 

dimensions. 

3.3.2. Conducting 2DRR Spectroscopy with a Three-Beam Geometry 

Signal components of the type described by terms 9-12 are detected using a three-pulse 

geometry (i.e., a standard pump-repump-probe experiment).49 As shown in Figure 3.5, the first 

two pulses that arrive at the sample are 25-fs, 400-nm pulses produced by self-phase modulation 

in a hollow core fiber,50 whereas the third pulse is a visible continuum produced in a 3-mm thick 

sapphire plate. The 400-nm beams are focused onto the sample with a 30-cm focal length 

spherical mirror, whereas the continuum is relayed from the sapphire plate onto the sample using 

a single 5-cm focal length mirror (the continuum focuses 35 cm from the spherical mirror). The 

FWHM spot sizes of the 400-nm beams are 600 µm, whereas those of the continuum are 400 

µm. Angles between the adjacent beams are 5º. Pulse energies of the 400-nm beams range from 

150 to 300 nJ in various experiments, and we observe no differences in the vibrational line 

shapes obtained within this range of pulse energies. The phases of the two chopper wheels, 

which are both operated at 250 Hz, are shifted by 90º to acquire signals under the four conditions 

needed to produce a pump-repump-probe signal ( A ).49 Signal detection is accomplished with 

a CMOS array detector that is synchronized to the 1-kHz repetition rate of the laser system. The 
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noise level of a pump-repump-probe signal is approximately 0.1 mOD in this setup. The delay 

lines are scanned 10 times with step sizes of 40 fs and averaged. 

 

Figure 3.5. (a) Pump-repump-probe beam geometry used to detect signal components described 

by terms 9-12 in Figure 3.2. (b) The first 400-nm pulse promotes a stimulated Raman response in 

the ground electronic state of the triiodide reactant during the delay, τ1. The second pulse 

induces photodissociation of the non-equilibrium reactant, thereby giving rise to vibrational 

coherence in the diiodide photoproduct during the delay, τ2. Sensitivity to diiodide is enhanced 

by signal detection in the visible spectral range. 

 

Two field-matter interactions with triiodide occur with each of the 400-nm pump pulses 

in this experiment. The first pulse stimulates wavepacket motion in the ground electronic state of 

triiodide as indicated in terms 9-12. The application of a second 400-nm pulse ensures that the 

signals are primarily sensitive to vibrational coherences of triiodide during 𝜏1 (i.e., signal 

contributions from diiodide are negligible during 𝜏1). The key issue is that the transient 

electronic resonance of triiodide is dominant at 400 nm (i.e., the bleach of the ground state). The 

second 400-nm pulse induces photodissociation of triiodide and leaves the diiodide photoproduct 

in a vibrational coherence in 𝜏2. Signal detection in the visible spectral range enhances 

sensitivity to the diiodide product in the delay, 𝜏2.  



98 

3.3.3. Sample Preparation and Handling 

Triiodide solutions are prepared by mixing solid I2 (Aldrich) with 5-fold molar excess of 

KI (Aldrich) in ethanol (Decon Labs, 200 proof). The solutions are stirred for 1 h to fully 

dissolve the solid. The absorbance of the solutions is equal to 0.5 at 400 nm in a 300-µm path 

length. The sample is flowed through a wire-guided jet with a thickness of 300 µm, where the 

volume of the reservoir is 50 ml. 

 Experimental Results 

In this section, we present 2DRR signals obtained for triiodide using two-color pulse 

sequences. We begin by reviewing properties of the third-order pump-probe response to facilitate 

the subsequent discussion of 2DRR spectra. 

3.4.1. Third-Order Stimulated Raman Response 

The pump-probe signals shown in Figure 3.6 illustrate several aspects of the stimulated 

Raman response of triiodide. Vibrational coherences are observed throughout the visible spectral 

range as in earlier work on this system.16-23 The modulation depth of the oscillations is greatest in 

the range, 18000-21000 cm−1 (475-555 nm). Coherences at detection wavenumbers below 20000 

cm−1 (500 nm) are dominated by diiodide, whereas signals acquired at detection wavenumbers 

above 20000 cm−1 possess significant contributions from ground state wavepacket motions of 

triiodide. The vibrational coherences detected below 20 000 cm−1 are similarly assigned to the 

ground electronic state of diiodide, because the excited state potential energy surface is 

dissociative.51  
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Figure 3.6. (a) Transient absorption signals (in mOD) obtained for triiodide with a 400-nm 

pump pulse and continuum probe pulse. (b) The coherent component of the signal is isolated by 

subtracting sums of 2 exponentials from the total signal presented in panel (a). (c) Fourier 

transformation of the signal between delay times of 0.1 and 2.5 ps shows that the vibrational 

frequency decreases as the detection wavenumber decreases. Dispersion in the vibrational 

frequency reflects sensitivity to high-energy quantum states in the anharmonic potential of 

diiodide.19 

 

The photodissociation process is known to cause the period of vibrational motion to 

evolve as the delay increases.22 In Figure 3.6(b), such “chirped” wavepacket dynamics are 

evidenced by time evolution in the orientations of the nodal contour lines of the signal. It has 

been established that the strength of the chemical bond weakens as the symmetry of triiodide 

breaks immediately following light absorption.16-23 The reactive wavepacket departs from the 

Franck–Condon geometry as one of the bonds ruptures, thereby giving rise to the time 

dependence of the vibrational frequency observed in Figure 3.6(b). The dependence of the 

vibrational period on the detection wavenumber reflects sensitivity to highly excited states in the 

anharmonic potential of the diiodide product. Kühne and Vöhringer determined that experiments 

with visible probe pulses are sensitive to states with 10-30 vibrational quanta.19 

3.4.2. 2DRR Response of The Diiodide Photoproduct 

The 2DRR response of the diiodide photoproduct is detected using the two-color 

approach described in Figure 3.4. The signals shown in Figure 3.7 are Fourier transformed to 
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reveal peaks in the upper right and lower left quadrants of the 2DRR spectrum. The resonances 

appear near 100 cm−1 in both dimensions, which indicates that the experiment is sensitive to 

states of diiodide that possess roughly 20 vibrational quanta.19 Vibrational resonances are not 

detected in the other two quadrants of the 2DRR spectrum as in our earlier study of ground state 

wavepacket motions in triiodide.26 The locations of the peaks in the experimental 2DRR 

spectrum agree with the prediction made for terms 5-8 in Figure 3.3 (i.e., the terms this pulse 

sequence is designed to detect). 

 

Figure 3.7. 2DRR signals associated with terms 5-8 are obtained using the two-color approach 

described in Figure 3.4. (a) The total signal possesses both coherent and incoherent components. 

(b) The coherent (Raman) component of the signal is isolated by subtracting sums of two 

exponentials from the total signal presented in panel (a). (c) The two-dimensional Fourier 

transformation of the signal in panel (b) reveals resonances in the upper right and lower left 

quadrants. This pattern of 2DRR resonances is consistent with calculations based on terms 5-8 

(see Figure 3.3), which this experiment is designed to detect. 

 

The data shown in Figure 3.7(b) indicate that the vibrational dephasing rate is slightly 

faster in 𝜏1 than it is in 𝜏2 (i.e., the line width is slightly larger in ω1 than it is in ω2). We attribute 

this difference in line widths to intramolecular relaxation and inertial solvation processes that 

occur following photodissociation in 𝜏1. The photoproduct is likely far from equilibrium when 

the vibration fully damps near 2 ps; however, a significant amount of solute-to-solvent 

vibrational energy transfer may still take place on this time scale.17 This view of the information 
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carried by each dimension of the 2DRR signals consistent with interpretations of related optical 

pump/Raman probe experiments.46-48, 52-54 That is, the relaxation processes detected in the first 

delay time, 𝜏1, are related to those investigated with traditional pump-probe experiments (e.g., 

vibrational cooling).16-2316–23 Scanning the second delay time, 𝜏2, essentially yields a snapshot 

of the vibrational spectrum as the system relaxes in 𝜏1.18 

3.4.3. 2DRR Cross Peaks Between Triiodide and Diiodide 

The 2DRR spectra theoretically predicted in Figure 3.3 are consistent with the 

experimental measurements shown in Figure 3.7 (terms 5-8) and our earlier all-UV 2DRR 

spectra (terms 1-4).26 In both cases, peaks are found in only the upper right and lower left 

quadrants because of interferences between numerous terms in the response function. In this 

section, we test the prediction that signal components corresponding to terms 9-12 will give rise 

to resonances in all four quadrants of the 2DRR spectrum (see Figure 3.3(c)). This unique pattern 

of resonances signifies a process in which a vibrational wavepacket transitions between reactant 

and product states without loss of coherence.  

The 2DRR data presented in Figure 3.8 are obtained using the experimental setup 

described in Figure 3.5. The pump-repump-probe signals exhibit oscillations in both dimensions, 

which may be Fourier transformed to produce 2DRR spectra. Signals acquired at several 

detection wavenumbers are displayed to illustrate a transition between regimes in which motions 

of triiodide or diiodide dominate the second dimension, ω2. At a detection wavenumber of 22500 

cm-1 (444 nm), where absorption of triiodide is dominant, the pattern of resonances is consistent 

with terms 1-4 (see Figure 3.3(a)). However, intensities of the vibrational resonances in the 

upper left and lower right quadrants of the 2DRR spectrum increase as the detection 

wavenumber is detuned from the absorption spectrum of triiodide. At detection wavenumbers 
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less than 19500 cm-1 (513 nm), we observe peaks with equal intensities in all four quadrants, 

which is consistent with the prediction made for terms 9-12 in Figure 3.3(c).  

 

Figure 3.8. 2DRR data are obtained using the two-color approach described in Figure 3.5. Each 

column corresponds to a different detection wavenumber: 22500 cm-1 (444 nm) in column 1; 

21000 cm-1 (476 nm) in column 2; 19500 cm-1 (513 nm) in column 3; 18000 cm-1 (555 nm) in 

column 4. (a)-(d) Total pump-repump-probe signal in mOD. (e)-(h) Coherent parts of the pump-

repump-probe signals displayed in the first row. (i)-(l) 2DRR spectra are generated by Fourier 

transforming the signals shown in the second row in delay ranges, 𝜏1  and  𝜏2, between 0.15 and 

2.0 ps. The data show that peaks in the upper left and lower right quadrants emerge as the 

detection wavenumber becomes off-resonant with triiodide. Signals acquired at detection 

wavenumbers above 21,000 cm-1 (476 nm) are dominated by stimulated Raman processes in the 

ground electronic state of triiodide (terms 1-4). In contrast, signals acquired at detection 

wavenumbers below 19,500 cm-1 (513 nm) are consistent with terms 9-12, where vibrational 

resonances in 𝜔1 and 𝜔2 correspond to triiodide and diiodide, respectively. 
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The detection of peaks with equal intensities in all four quadrants is consistent with 

nonlinearities of the type shown in terms 9-12. The peak positions are also consistent with this 

assignment. The 112-cm-1 vibrational resonance in   is notably independent of the detection 

wavenumber (as it should be for the reactant). In contrast, the frequency of the vibrational 

resonance in   decreases as the detection wavenumber decreases. For example, we observe 

resonances in   at 110 cm-1 and 100 cm-1 for detection wavenumbers of 22500 cm-1 (444 nm) 

and 18000 cm-1 (555 nm), respectively. As discussed in Section 3.4.1, correlation between the 

vibrational frequency and detection wavenumber is a signature that diiodide contributes to the 

signal (i.e., the origin of the response transitions from terms 1-4 to terms 9-12 as the detection 

frequency decreases).51 At present, 2DRR spectra cannot be measured at detection wavenumbers 

below 18,000 cm-1 (555 nm) in this setup, because of the substantial background that must be 

removed by chopping the pump and repump laser beams. Nonetheless, the transition between the 

two aforementioned regimes (i.e., terms 1-4 versus terms 9-12) is made sufficiently clear in the 

range of detection frequencies where adequate signal strength is obtained.  

Cascades of four-wave mixing signal fields challenge the application of 2D Raman 

spectroscopy under off-resonant conditions. Cascades were ruled out in our previous all-UV 

2DRR study of triiodide using control experiments based on the signal phase, concentration 

dependence of the signal intensity, and the relative phases of the vibrations detected in four and 

six-wave mixing signals.26 The direct 2DRR response should be even more dominant in the 

present study, because lower-frequency laser beams are employed. Moreover, the direct response 

is favored in the present experiments for the same reasons discussed at length in Reference 26. In 

the Supplementary Material, we demonstrate that the sign of the 2DRR response is consistent 

with the direct fifth-order nonlinearity rather than a cascade.38 
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3.4.4. Summary of 2DRR Signal Components 

In this section, we summarize our attainment of 2DRR spectra associated with the three 

types of signal components d. Figure 3.9 displays the present results alongside the 2DRR 

spectrum for ground state wavepacket motions of triiodide obtained in earlier work.26 As shown 

in Figure 3.9(a), the application of all-UV pulses yields a 2DRR spectrum in which the 

vibrational resonances of triiodide appear in both dimensions (i.e., terms 1-4 in Figure 3.2). 

Similarly, vibrational motions of diiodide dominate both dimensions in Figure 3.9(b), because 

only the first pulse is resonant with equilibrium triiodide (i.e., terms 5-8 in Figure 3.2). Finally, 

vibrational motions of triiodide and diiodide are detected in separate dimensions in Figure 3.9(c). 

Here, only the final pulse to arrive at the sample is electronically off-resonant with triiodide (i.e., 

terms 9-12 in Figure 3.2). This type of nonlinearity is unique in that it gives rise to 2DRR spectra 

in which peaks with equal intensities appear in all four quadrants. The terms in the response 

function responsible for these peaks reflect a sequence in which a wavepacket in the symmetric 

stretching coordinate of triiodide transforms into a wavepacket in the bond stretching mode of 

diiodide without loss of coherence. 2DRR spectroscopy is specially equipped for investigations 

of such coherent dynamics, because it possesses two electronic “population times”. In contrast, 

traditional third-order pump-probe experiments only have one population time.  
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Figure 3.9. Summary of 2DRR experiments conducted on triiodide: (a) the response of triiodide 

was detected in both dimensions in Reference 26; (b) the response of the diiodide photoproduct 

is detected in both dimensions (see Figure 3.7); (c) the response of triiodide and diiodide are 

detected in separate dimensions (see Figure 3.8). Blue and red laser pulses represent 

wavelengths that are electronically resonant with triiodide and diiodide, respectively. 

 

The signature of cross peaks demonstrated in Figure 3.9 will not necessarily generalize to 

all systems. In the photodissociation process of triiodide, the key is that the wavepacket motions 

take place on the ground state potential energy surfaces of both the reactant and product. For 

signal components associated with terms 1-8, this means that both the third and fourth field-

matter interactions occur with either the ket or bra (see Figure 3.2). In contrast, the constraints 

that suppress intensity in the upper left and lower right quadrants in Figures 3.9(a) and 3.9(b) 

may be lifted in systems with bound excited states, thereby yielding peaks in all four quadrants. 

Nonetheless, it is likely that strategies such as three-color pulse sequences can be used in systems 

with bound excited states to isolate the desired signal components.  
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 Nonequilibrium Correlation Between Reactants and Products 

We have focused to this point on establishing signatures of cross peaks between triiodide 

and diiodide in 2DRR spectra (see Figure 3.9(c)). Of course, the vibrational resonance 

frequencies of both species can be determined by lower-order pump-probe experiments.16, 19-21 

The information unique to 2DRR spectroscopy pertains to the correlated vibrational motions of 

the reactant and product. In this section, we explore a time-frequency representation of the signal 

that is well-suited for physical insight into the photodissociation process of triiodide. 

 

Figure 3.10. 2DRR response of triiodide in ethanol with a detection wavenumber of 19,500 cm-1 

(513 nm). (a) Resonances in all four quadrants of the 2DRR spectrum signify cross peaks 

between triiodide (in 𝜔1) and diiodide (in 𝜔2). (b) Quantum beats in the Raman spectrum of 

diiodide are observed when the 2DRR spectrum in panel (a) is inverse Fourier transformed with 

respect to 𝜔1. (c) Oscillations in the mean vibrational frequency are analyzed using Equation 

3.6. Such oscillatory behavior suggests that the vibrational coherence frequency of diiodide is 

sensitive to vibrational motions of triiodide in the delay time, 𝜏1.  

 

For the present system, it is our view that the frequency-domain representation of the 

2DRR signal is primarily useful for confirming that the reactant and product dominate separate 

dimensions (see Figure 3.9). Once this is established, we suggest that the physical insight into the 

dissociation process is most clearly derived by leaving the first dimension in the time domain as 

displayed in Figure 3.10(b). Here, the 𝜏1 dimension represents wavepacket motion of triiodide in 

its ground electronic state, whereas the vibrational spectrum of diiodide is displayed in the 𝜔2 
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dimension. The mean vibrational frequency shown in Figure 10(c) is generated using the 

weighted average, 
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where ( )1 2,S    denotes the signal displayed in Figure 10(b). The oscillations in ( )1vib   

indicate that the vibrational coherence frequency of diiodide depends on the time-evolving 

nonequilibrium geometry of triiodide in the delay time, 𝜏1. The fit shown in Figure 10(c) reveals 

extrema in ( )1vib   of 99 and 111 cm-1 near the turning points of the wavepacket at delay 

times of 170 and 325 fs, respectively.  

The LEPS potential energy surface of triiodide in ethanol shown in Figure 3.11 facilitates 

a discussion of the signal generation mechanism in terms of a microscopic picture.17, 27 As 

suggested by Figure 3.11(a), the first pulse induces an electronic coherence and initiates a 

wavepacket in the symmetric stretching mode on the ground state potential (i.e., a stimulated 

Raman process). The turning points of the wavepacket can be estimated using the 300-fs period 

of the vibration and approximate 0.6 Å bond length displacement between the ground and 

excited state potential energy minima (i.e., 0.6 Å is the projection of the symmetric stretching 

coordinate onto the individual bond lengths).27 We estimate that the wavepacket is stimulated in 

the ground state at bond lengths, Rab=Rbc, near 3.06 Å by assuming a 20-fs electronic dephasing 

time. Here, the turning point is computed by adding 20/75×0.6 Å to the equilibrium bond length 

of 2.9 Å (75 fs is 1/4 of the vibrational period and 20 fs is the electronic dephasing time).18 In 

other words, we estimate that the wavepacket moves approximately 0.16 Å from the equilibrium 

position of 2.9 Å during the electronic coherence induced by the first laser pulse before 

undergoing oscillations on the ground state potential energy surface in  𝜏1. Notably, small 
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changes in the numbers chosen for this analysis do not impact the physical interpretation of the 

experiment. 

 

Figure 3.11. The sequence of events associated with the 2DRR signals shown in Figure 3.10. Rab 

and Rbc denote the two bond lengths in triiodide. (a) The first pulse initiates a ground state 

wavepacket in the symmetric stretching coordinate. Force is accumulated when both bond 

lengths increase during the electronic coherence induced by the first laser pulse. (b) Wavepacket 

motion on the ground state potential energy surface is detected in the delay between the pump 

and repump laser pulses, 𝜏1. (c) Photodissociation of triiodide is initiated from a nonequilibrium 

geometry by the repump laser pulse. The Raman spectrum of diiodide may then be detected by 

scanning the delay of a probe pulse, 𝜏2. 

 

Following ground state wavepacket initiation by the pump pulse, the application of a 

repump laser pulse promotes the vibrational wavepacket in triiodide to the excited state potential 

energy surface, where asymmetric motion induces dissociation of the molecule (see Figures 

3.11(b) and 3.11(c)). The 20-fs pump and repump laser pulses are much shorter than the 300-fs 

vibrational period, and the wavepacket moves very little along the symmetric stretching 

coordinate before photodissociation.20 For these reasons, the geometry of triiodide from which 

the reaction commences is sensitive to the delay time, 𝜏1. By contrast, in a traditional (third-

order) transient absorption spectroscopy, the reactive wavepacket must always be promoted onto 

the excited state potential energy surface from the equilibrium geometry (i.e., bond lengths of 

approximately 2.9 Å).  
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Correlation between the wavepacket in the symmetric stretching coordinate of triiodide 

and the vibrational coherence frequency of diiodide can be visualized by converting the delay 

time, 𝜏1, into the position of the wavepacket in the symmetric stretching coordinate (i.e., the 

bond lengths in triiodide, Rab=Rbc). In Figure 3.12, the inner and outer turning points of the 

wavepacket are taken to correspond to the minima and maxima in ( )1vib   shown in Figure 

3.10(c). Translation between the delay, 𝜏1,, and the bond lengths is achieved by applying the 

model described above to ( )1vib  . That is, we estimate that the wavepacket is located at 2.74 

and 3.06 Å at delay times, 𝜏1, of 170 and 325 fs, respectively. Each revolution of the spiral in 

Figure 3.12 represents one period of vibrational motion in 𝜏1,. The spiral focuses inward towards 

the equilibrium bond length because of damping in ( )1vib  . The orientation of the spiral 

during the first cycle of the wavepacket suggests that bond length displacements of 

approximately 0.1 Å in triiodide produce a 6.8-cm-1 shift in the vibrational coherence frequency 

of diiodide.  
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Figure 3.12. Correlation between the vibrational wavenumber of the diiodide photoproduct and 

the pair of bond lengths in the triiodide reactant, Rab=Rbc, is illustrated by analyzing the 

dynamics in the mean vibrational coherence frequency, ( )1vib  , shown in Figure 3.10(c). The 

delay time, 𝜏1, is converted into the position of the wavepacket in the symmetric stretching 

coordinate using the model presented in Figure 3.11. Each revolution of the spiral corresponds 

to 300 fs. The wavepacket oscillates around the equilibrium bond length until vibrational 

dephasing is complete. The diagonal slant in the spiral suggests that a bond length displacement 

of 0.1 Å in triiodide induces a shift of 6.8 cm-1 in the vibrational coherence frequency of diiodide. 

 

The primary goal of the analysis presented in this section is to demonstrate the type of 

information that 2DRR spectroscopy can provide about nonequilibrium dynamics. Although our 

data suggests correlation between triiodide and diiodide, further theoretical work will be needed 

to draw firm conclusions about the relationship established in Figure 3.12.  We have considered 

two possibilities. First, the geometry of the triiodide from which the reaction is initiated may 

influence the distribution of vibrational quanta in diiodide through a straightforward Franck-

Condon mechanism as discussed in earlier work on triiodide in the gas phase.55 Indeed, a second-

order perturbative theory for photodissociation processes suggests that the populations of the 

vibrational states in a product may be weighted by overlap integrals involving the nuclear 
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coordinates of the reactant.56 Of course, the vibrational coherence frequency of diiodide is 

known to be sensitive to the distribution of vibrational quanta because of anharmonicity.19 A 

second possibility is that the correlation displayed in Figure 3.12 reflects interactions between 

dissociated fragments. Small inter-fragment distances have been suggested to influence 

vibrational coherence frequencies in solution on short time scales (i.e., fragment recoil).19 

Ruhman and co-workers have also recently discovered the presence of contact fragment pairs in 

solution (i.e., fragments in close proximity).25 It is not yet clear if contributions from distinct 

relaxation channels are relevant to the present observations. Nishiyama et al. found evidence that 

vibrational dephasing may be faster than or comparable to the vibrational period in contact ion 

pairs, which suggests that 2DRR spectroscopy may be insensitive to these species.24  

 Concluding Remarks 

In summary, we have demonstrated that 2DRR spectra carry unique signatures of 

vibrionic coherence transfer in triiodide. The patterns of resonances associated with three 

different types of nonlinearities are summarized in Figure 3.9. The unique pattern of resonances 

associated with cross peaks between triiodide and diiodide facilitates insights into the reaction 

mechanism. Moreover, cross peaks between triiodide and diiodide provide information about 

nonequilibrium behavior that cannot be derived from traditional pump-probe experiments, where 

reactants are always photo-initiated from the equilibrium geometry of the ground state. The 

present experiments suggest positive correlation between the bond lengths of the triiodide 

reactant and the vibrational coherence frequency of the diiodide photoproduct (see Figure 3.12). 

We suggest that correlation between these variables can be explained by Franck-Condon activity 

and/or by sensitivity to inter-fragment interactions.24-26  

2DRR spectroscopy may reveal coherent reaction dynamics in any system where a light-

activated non-radiative transition is fast compared to the period of vibrational motion. A non-
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radiative transition, rather than the direct action of laser pulses, serves as an impulse that initiates 

vibrational coherence in such systems. Triiodide has long been recognized as a well-defined 

model system for reaction-induced wavepacket motions; however, these types of dynamics may 

also be detected in larger systems that possess numerous Franck-Condon active coordinates. For 

example, the photodissociation process of myoglobin is known to exhibit reaction-induced 

vibrational coherences in both the doming and iron-histidine stretching coordinates.57 Champion 

and co-workers uncovered these dynamics with a sophisticated modulation scheme in third-order 

stimulated Raman experiments.58 New physical insights can be derived at fifth-order, because the 

photodissociation reaction can be initiated from a well-defined nonequilibrium geometry of the 

heme moiety. Fast non-radiative transitions also initiate vibrational coherences in bulk-

heterojunction systems,5 photosynthetic complexes,6, 9-13 and molecule-semiconductor 

interfaces.7-8 These systems may also be well-suited to 2DRR investigations. 

 Supplemental Information 

3.7.1. Vibrational Hamiltonians 

The present model assumes that both triiodide and diiodide possess two electronic levels 

and one nuclear coordinate whose potential energy minimum is displaced between the ground 

and excited electronic states. The rationale behind the model is discussed in Section 3.2.1. The 

anharmonic vibrational wavefunctions for the Franck-Condon active bond stretching mode of 

diiodide and the symmetric stretching coordinate of triiodide are generated using a Hamiltonian 

with the following form:59 

( ), † † † † † † † †

3,2 1 3 3 3 3
2

vib
H a a U a a a a a a a aa aaa a a



 


 = + + + + + + + 

,        (3.7) 

where 
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3

3, 33 3 3 3
0

1

3! 2

d V
U

dqm


 −

 
=  

 
.                        (3.8) 

The wavefunctions are obtained by diagonalizing this Hamiltonian in a basis set of harmonic 

oscillators that includes states with up to the 40 vibrational quanta. Parameters of the vibrational 

Hamiltonian are given in Table 3.1. We use a notation in which α represents the molecule (𝑟 for 

triiodide or 𝑝 for diiodide) and an asterisk indicates an electronically excited state. 

The vibrational overlap integrals used to evaluate the response functions of diiodide are obtained 

using 

nk mj

jk

n m k j =  ,                         (3.9) 

where 𝜑𝑛𝑘 is the expansion coefficient for harmonic basis vector, 𝑘, and the anharmonic excited 

state vibrational wavefunction, 𝑛. Vibrational overlap integrals of triiodide are given by a 

different formula, 

nk

k

n m k m=  .             (3.10) 

because the ground and excited states are taken to be harmonic and anharmonic, respectively 

(see discussion in Section 3.2). In order to evaluate the overlap integrals, we assume a 

dimensionless displacement of 7.0 based on spontaneous Raman measurements for triiodide27 

and our earlier 2DRR study.26 A displacement of 7.0 also produces an excited state potential 

energy gradient of 225 eV/pm in diiodide which is identical to that associated with a previously 

employed exponential surface at a displacement of only 9 pm from the Franck-Condon 

geometry.24-25 As discussed in Section 3.2.1, this gradient is the key quantity that must be 

reproduced by the present model, because electronic dephasing is fast compared to the 

vibrational period.36 For this reason, the spectroscopic signals investigated in this work are 
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insensitive to features of the excited state potential energy surface that are displaced from the 

Franck-Condon geometry. 

3.7.2. Two-Dimensional Resonance Raman Signal Components 

The Feynman diagrams presented in Figure 3.2 include dummy indices for vibrational 

levels (𝑚, 𝑛, 𝑗, 𝑘, 𝑙, 𝑢, 𝑣, 𝑤) associated with the ground and excited electronic states (𝑟 and 𝑟∗ for 

triiodide, 𝑝 and 𝑝∗ for diiodide). Response functions are written in the Condon approximation, 

where the integral over electronic and nuclear degrees of freedom in the transition dipole is 

separated into a product of two integrals. For example, an interaction that couples vibrational 

level 𝑚 in the ground electronic state of the reactant and vibrational level 𝑛 in the excited 

electronic state of the reactant contributes the product, 𝜇𝑟∗𝑟〈𝑛|𝑚〉, to the response function, 

where 𝜇𝑟∗𝑟  is the electronic transition dipole and 〈𝑛|𝑚〉,  is a vibrational overlap integral. We 

use a notation in which the excited state vibrational energy level is always written in the bra.39  

The first polarization component is given in Equation 3.3. The remaining 11 polarization 

components, which are derived in the Supplementary Material,38 are given by 

( )

( ) ( ) ( ) ( ) ( )

65

5 *

2 1 2 5

* , , 1 , * , 2 * ,

( , )
UV r r

m

mnjklu
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N
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L D L D L
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In the above polarization components, laser pulses with the subscripts UV and VIS are taken to 

interact with triiodide and diiodide, respectively.  

For convenience, we further group the terms into three classes of signal fields under the 

assumption of perfect phase-matching conditions 

( )
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Here, the two subscripts of the signal fields represent sensitivity to the triiodide reactant 

(subscript 𝑟) and diiodide product (subscript 𝑝) in the two frequency dimensions, 𝜔1and 𝜔2.  
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CHAPTER 4.  FEMTOSECOND STIMULATED RAMAN SPECTROSCOPY BY SIX-

WAVE MIXING2 

 Introduction 

Femtosecond Stimulated Raman Spectroscopy (FSRS) has emerged as a powerful 

method for investigating ultrafast structural dynamics in condensed phases.1-12 Recent 

applications have revealed new insights into systems ranging from proteins9-10, 12 to organic 

photovoltaic materials.4, 11 The FSRS technique is essentially a sequence of two events: (i) an 

electronically resonant (actinic) pump pulse initiates a photochemical process; (ii) a stimulated 

Raman spectrum is obtained at various delay times using a combination of narrowband and 

broadband laser pulses. Simultaneous probing of all vibrational resonances in the fingerprint 

region of the spectrum and sensitivity to dynamics on the 100-fs time scale are the primary 

selling points for the technique. The key is that the precision in the delay between 

photoexcitation and initiation of the Raman response is determined by the convolution of 

femtosecond laser pulses in FSRS (although the vibrational frequencies can notably evolve 

during the free induction decay).13-15 In contrast, precision in the delay time and spectral 

resolution are intrinsically coupled in experiments that employ spontaneous Raman probes, 

because initiation of the Raman response requires a spontaneous fluctuation of the radiation 

field.16 

                                                 
2 This chapter previously appeared as an article in the Journal of Chemical Physics. The original citation is as 

follows: Molesky, B. P.; Guo, Z.; Moran, A. M., Femtosecond stimulated Raman spectroscopy by six-wave mixing. 

J. Chem. Phys. 2015, 142 (21), 212405. Copyright (2015) American Institute of Physics. 



123 

Foremost among the technical challenges that may be encountered in a three-beam 

implementation of FSRS is a substantial background associated with residual laser light and 

third-order processes that are radiated in the same direction as the signal. The third-order 

nonlinearities include a broadband pump-probe signal and a stimulated Raman scattering 

response (SRS). Of course, undesired signal components that are generated by subsets of the 

incoming beams (e.g., pump-probe and SRS) can always be eliminated by chopping the incident 

beams and/or by modulating the frequency of the narrowband pulse.17-19 The magnitude of the 

background depends on the particular properties of the sample and the frequencies of the Raman 

pump and Stokes pulses. The pulses involved in the Raman probe are often tuned into pre-

electronic-resonance with the photoproduct, where the equilibrium system is transparent.1, 17, 20  

The amount of background may be reduced to a non-problematic level under these conditions. In 

contrast, the method presented in this work is motivated by a more general situation, wherein all 

pulses are electronically resonant with the equilibrium system. Lower-order nonlinearities and 

the pump-repump-probe response may then become dominant, particularly in systems with small 

normal mode displacements.   
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Figure 4.1. (a) A five-beam FSRS geometry is used in this work to eliminate the portion of the 

background associated with residual Stokes light and third-order nonlinearities. The color code 

is as follows: the actinic pump is green, the Raman pump is blue, and the Stokes pulse is red. (b) 

Relaxation dynamics are probed in the delay between the actinic pump and Stokes pulses, 1 . 

The fixed time delay, 2 , is used to suppress a broadband pump-repump-probe response. 

 

In this work, we implement laser beam geometries that either reduce or fully eliminate 

residual laser light and the background of third-order nonlinearities present in traditional FSRS. 

Figure 4.1 explains how a five-beam geometry can be used to spatially separate most of the 

background from the FSRS signal emission. It should be noted that, while Figure 4.1 assumes 

detection of Stokes shifted emission, the same approach can be employed with anti-Stokes 

detection. Elimination of these undesired signal components greatly enhances sensitivity and 

reduces data acquisition times compared to a traditional approach in which three incoming 

beams are utilized. The broadband pump-repump-probe response of the sample is not spatially 

filtered in the present approach, because this undesired nonlinearity is phase-matched in the same 

direction as the FSRS signal. Nonetheless, the pump-repump-probe response can be suppressed 
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in the five-beam geometry by introducing a delay between the two Raman pump pulses, 2 . This 

delay enforces the order of field-matter interactions unique to the FSRS response.   

The present approach to FSRS is demonstrated with metmyoglobin (metMb), which is 

the ferric form (Fe+3) of the protein. Photoexcitation induces ground state recovery within several 

picoseconds (rather than ligand dissociation and recombination) in metMb, because water binds 

to the distal side of the heme group.21-25 Upon photoexcitation of the Soret band, the ground 

electronic state of metMb is repopulated through one of two relaxation mechanisms that have 

been delineated in recent work by Chergui and co-workers.23 The most efficient pathway (57% 

efficiency) involves sub-picosecond internal conversion from a high-energy charge-transfer state 

formed immediately after photoexcitation. In the second pathway, the ground state is repopulated 

within 5 picoseconds following a cascade of transitions through iron spin states. In both 

processes, excess vibrational energy is dissipated within several picoseconds following ground 

state recovery. We employ metMb as a model system here in order to establish the validity of the 

present technique for investigations of heme proteins. Future studies may then focus on 

understanding photochemical processes in related systems (e.g., photodissociation, electron 

transfer).  

Cascades of third-order signals have been recognized as a serious experimental 

complication in off-resonant fifth-order Raman experiments conducted on pure liquids and 

concentrated mixtures.26-30 Cascades involve a sequence in which the third-order polarization 

induced on one molecule radiates a signal field that induces a third-order polarization in a second 

molecule. The second molecule then radiates a signal field in the same direction as the fifth-order 

signal of interest. The central problem in off-resonant experiments is that direct (desired) and 

cascaded (undesired) signals are respectively forbidden and allowed by the lowest order terms in 
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the polarization responses (i.e., harmonic potentials with polarizabilities that depend linearly on 

the vibrational coordinates).27, 31-33 One key to the success of electronically resonant FSRS is that 

the signal generation mechanism does not rely on such higher-order terms in the expansion of the 

potential energy.15, 34-36 Unlike off-resonant experiments, resonant FSRS signal generation is 

allowed for all Franck-Condon active modes (whether they are harmonic or not). Moreover, the 

solute concentrations employed in resonant FSRS experiments are typically more than 10,000 

times smaller than those associated with samples in which cascades are known to dominate the 

optical response (e.g., pure CS2). Nonetheless, we have encountered uncertainties among 

specialists regarding the potential for cascades in electronically resonant FSRS, which should be 

dealt with before studies of photochemical mechanisms are pursued. For this reason, significant 

effort is put forth in this work to rule out contributions from cascades with experimental tests and 

model calculations.  

 Experimental Methods 

4.2.1. Laser Pulse Generation 

Actinic pump, Raman pump, and Stokes pulses resonant with the Soret band of metMb 

are employed in the present study (see Figure 4.2). All experiments are based on a Titanium 

Sapphire laser system that produces 0.8 mJ, 55-fs pulses at 1 kHz. The 410-nm actinic pump 

pulses are obtained by second harmonic generation of 50 μJ of the fundamental beam in a 0.25-

mm thick BBO crystal. Dispersion accumulated in the BBO crystal and several beam splitters, 

which amounts to roughly 500 fs2 group delay dispersion (GDD), is pre-compensated for with 

reflections of the 800-nm pulses on mirrors that impart negative GDD before second harmonic 

generation. Raman pump pulses are produced by second harmonic generation of the fundamental 

laser beam in a 1-mm thick BBO crystal.  The Raman pump is then sent through a 4F spectral 
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filter consisting of two 2400-g/mm gratings and two 25-cm focal length lenses. Pulses with 

spectral widths of 50 cm-1 are obtained by placing a slit with an 890-μm width at the 2F plane.  

 

Figure 4.2. Spectra of the actinic pump (green), Raman pump (blue), and Stokes pulses (red) are 

overlaid on the linear absorbance spectrum of metmyoglobin in aqueous buffer solution at 

pH=7.0. 

 

The Stokes pulse is produced by doubling the frequency of the fundamental laser beam in 

a 0.25-mm thick BBO crystal. The resulting 90-μJ, 410-nm second harmonic beam is then 

focused into a 75-cm long hollow core fiber with a 30-cm focal length lens. The 100-μm inner 

diameter of the fiber constitutes a suitable compromise between throughput and spectral 

broadening. The fiber is housed in a stainless-steel cell filled with 1.0 atm of argon gas. The 

spectrum of the spectrally broadened laser pulse that exits the fiber is fairly sensitive to the 

alignment into the fiber. For this reason, the spectrum of the output is continually monitored with 

an Ocean Optics spectrometer and laptop computer; adjustments are made after the laser is 

warmed up to reproduce the spectrum on a daily basis. The Stokes spectrum shown in Figure 4.1 

is obtained by spectral filtering of the laser beam in a fused-silica prism compressor with 70-cm 

prism separation. The instrument response width, which was determined in a 0.25-mm thick 
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fused silica window, is less than 80 fs at Raman shifts ranging from 500-2000 cm-1 (i.e., Stokes 

wavelength range of 415-440 nm).  

 

Figure 4.3. (a) Diffractive optic-based interferometer used for FSRS measurements. The 

transparent fused silica window delays pulse 3 by 290 fs with respect to pulse 4 (delay 2  in 

Figure 4.1). (b) A five-beam geometry is used to detect the FSRS signal in the background-free 

direction, k1-k2+k3-k4+k5. (c) The FSRS signal is also radiated in the direction, k1-k2+k3-k4+k5 

in the four-beam geometry; however, the wavevectors k1 and k2 cancel each other, so the signal 

is radiated in the same direction as a four-wave mixing signal, k3-k4+k5. In the four-beam 

geometry, the FSRS signal corresponds to the difference between signals measured with and 

without the actinic pump beam (beam 1,2). Beams represented with solid circles reach the 

sample, whereas those represented with open circles are blocked with a mask. The same color 

code is applied in all panels (Raman pump is blue, actinic pump is green, Stokes beam is red). 

 

4.2.2. Laser Beam Geometries 

Experiments are conducted with the diffractive optic-based interferometer shown in 

Figure 4.3. All beams are focused onto the diffractive optic with a 50-cm focal length spherical 

mirror. The 20-cm focal length imaging mirror is rotated off-axis by approximately 5º (i.e., the 
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minimum amount). The actinic pump and Raman pump beams cross at approximately 6.9º in the 

diffractive optic and are bisected by the Stokes beam. The angles between the +1 and -1 

diffraction orders of the actinic and Raman pump beams are both 6.9º. The angle between +1 and 

-1 diffraction orders of the Stokes beam is 7.2º. Approximately 25% of each incident beam is 

diffracted into each of the three diffraction orders (0 and +/-1). Subsets of the 9 beams can be 

selected to conduct a variety of four and six-wave mixing experiments. We utilize the two beam 

patterns shown in Figures 4.3(b) and 4.3(c) in this work. 

The laser beam geometry displayed in Figure 3(b) was developed by Mark Berg for 

studies of multidimensional population dynamics.37-38 The signal is detected in the direction, k1-

k2+k3-k4+k5. The key advantage of this geometry is that the signal is free from a background of 

direct third-order signal fields when the beam diameters are small compared to their separation 

after the sample. As discussed in our earlier study of triiodide,35 a direct third-order signal is 

radiated in the direction k1+k4-k5 when the actinic pump and Stokes beams overlap. This 

response vanishes at positive delay times, 1 , because pulses 1 and 5 establish the holographic 

grating in the sample; this can be proven by blocking either beam 2 or 3 at positive delay times. 

Notably, this undesired signal (near 1 =0) does not possess narrow vibrational resonances due to 

the 250-cm-1 spectral width of the actinic pump pulse. It is therefore removed when the 

broadband baseline is subtracted in the signal processing algorithm described in Section 4.3. 

Beams 2 or 3 may also be chopped if dynamics at sub-100-fs delay times are of interest.  

The four-beam geometry shown in Figure 4.3(c) is obtained simply by changing the mask 

between the diffractive optic and the sample. The signal is again radiated in the direction, k1-

k2+k3-k4+k5; however, this direction is collinear with the vector k3-k4+k5, because a single 

actinic pump beam is employed. The actinic pump beam (beam 1,2) must be chopped in order to 
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remove contributions of the third-order SRS signal.39-41 Chopping the actinic pump beam 

significantly increases the data acquisition time and reduces sensitivity compared to the five-

beam geometry. Therefore, we use the four-beam geometry only to determine the relative signs 

of the third- and fifth-order signals in this work.  

In both geometries, the beams are focused onto the diffractive optic with a 50-cm focal 

length spherical mirror. The depth of focus for each beam is approximately 7 mm given the 

approximate 6-mm beam diameters at the surface of the spherical mirror. The beams are imaged 

onto the sample with 20-cm focal length spherical mirror placed 40 cm from the diffractive optic. 

In the five-beam geometry, beams 1 and 2 are displaced by 2.4 cm and 3.5 cm from the center of 

the mirror, respectively. The difference in focal lengths induced by spherical aberration for this 

pair of beams is 0.2 mm (beams 1 and 2 respectively focus 40.02 and 40.04 cm from the imaging 

mirror). The effects of spherical aberration are minimal, because the 7-mm depth of focus is 

large compared to the 0.2-mm displacement in the focal position. Thus, the beams propagate 

through the 0.22-mm thick sample with a negligible change in diameter.  

4.2.3. Signal Detection 

In all experiments, signals are detected using a back-illuminated CCD array (Princeton 

Instruments PIXIS 100B) mounted on a 0.3-meter spectrograph with a 1200-g/mm grating. The 

signal beam is focused to a spot size of 100 μm at the entrance to the spectrograph to obtain 

hardware-limited spectral resolution of approximately 10 cm-1. Ultimately, the resolution of the 

measurement is limited by the 50-cm-1 spectral width of the Raman pump beam. The FWHM 

spot sizes of all laser beams are 200 μm at the sample position. Pulse energies of the actinic 

pump and Raman pump pulses are 150 nJ and 200 nJ, respectively. The pulse energy of the 

Stokes beam is 50 nJ. Under these conditions, the total six-wave mixing signal produces 5000 

counts on the detector with an integration time of 100 ms under our experimental conditions. The 
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FSRS response is typically 10-20% of the total signal strength (i.e., the majority of the signal 

field is a broadband pump-repump-probe response). The noise level in each spectrum is less than 

20 counts. 

4.2.4. Sample Handling  

Myoglobin from horse skeletal muscle is purchased from Sigma-Aldrich. The protein is 

dissolved in 0.1-M sodium phosphate buffer at a pH of 7.0. The solution is centrifuged at 6000 

revolutions per minute for 5 minutes before experiments to optimize the optical quality. In all 

experiments except for those described in Section 3.2, the 0.2-mM sample of metMb is flowed 

through a wire-guided jet with a thickness of 220 μm, where the reservoir volume is 50 mL. 

Absorbance spectra are measured before and after experiments to confirm the absence of sample 

degradation. We do not observe changes in the absorbance spectrum of the solution during 

experiments that require several hours. 

Investigation of the concentration dependence of the signal intensity in Section 4.1 

requires an approach in which the solutions are quickly exchanged without moving the sample 

holder. To this end, we mounted an aluminum adaptor plate with a slot for a cuvette on a 

spinning rotation mount (spins at a rate of 720º per second). This setup allows a cuvette with a 

0.5-mm path length to be removed and put back into the same position when the samples are 

exchanged and/or the cuvette is cleaned. FSRS signals are readily detected in this setup; 

however, we find that it is more susceptible to scattered light than the jet. 

 Signal Processing 

4.3.1. Algorithm 

Figure 4.4 illustrates the signal processing algorithm used in this work with a six-wave 

mixing signal acquired in the five-beam geometry. The total signal intensity shown in Figure 

4.4(a) exhibits dispersive line shapes, which is a signature of interference between broadband 
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(pump-repump-probe) and FSRS responses. The origin of the interference can be understood by 

considering the total signal intensity, ( )totalI  , as a sum of three terms, 

( ) ( ) ( ) ( ) ( ) ( ) ( ) 
2

2Retotal BB FSRS BB FSRS BB FSRSI E E I I E E      = + = + + ,      (4.1)     

where ( )BBE   and ( )FSRSE   represent the broadband and FSRS components of the signal field 

( ( )BBI   and ( )FSRSI   are signal intensities). The third term in Equation 4.1 is responsible for the 

dispersive vibrational line shapes in the signal spectrum. In Figure 4.4(a), the broadband 

baseline, ( )BBI  , is obtained by Fourier transforming the total signal intensity, ( )totalI  , into the 

time domain and filtering the peak at 0 fs (see Figure 4b). Subtraction of the baseline isolates the 

third term in Equation 4.1, 

( ) ( ) ( ) ( ) ( ) ( )2 costotal BB BB FSRS BB FSRSI I E E       −  −   ,              (4.2)     

where ( )BB   and ( )FSRS   are the phases of the broadband and FSRS signal components. 

Here, we have assumed that BB FSRSI I , which is a good approximation in systems with modest 

mode displacements such as myoglobin.42 Dominance of the term on the right side of Equation 

4.2 is consistent with the dispersive line shapes observed in the measured signals ( FSRSI  does not 

possess a dispersive line shape). In systems with large mode displacements, the term linear in the 

field component, ( )FSRSE  , can be obtained using an external local oscillator that is delayed 

with respect to the Stokes pulse. The fringe spacing associated with ( )FSRSE   will be unique in 

such an implementation, so it can be isolated with a Fourier filter. Such an interferometric 

detection scheme has been demonstrated in a previous four-wave mixing experiment.43  
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Dependence of the signal on the phase difference, ( ) ( )BB FSRS   − , can be eliminated 

by applying a second filter function to the inverse Fourier transform of the baseline-subtracted 

signal (see Figure 4.4(c)). The filter in Figure 4.4(c) is displaced from the origin by 60 fs in order 

to eliminate the residual broadband response. As shown in Figure 4.4(d), Fourier transformation 

of the signal back to the frequency domain yields a complex signal field in which phase 

information can be eliminated by taking the absolute value, 

( ) ( ) ( ) ( ) ( ) ( )1/ 2 expFSRS BB BB FSRS BB FSRSE I E E i i       − −   .                (4.3)    

In Equation 4.3, the magnitude of the FSRS response, ( )FSRSE  , is obtained by 

multiplication of  ( ) ( )BB FSRSE E   and 
1/ 2

BBI −
. Equation 4.3 also makes clear one of the 

tradeoffs associated with the present technique. The phase of the FSRS response, ( )FSRS  , 

cannot be obtained without knowledge of ( )BB  , which is a 1 -dependent quantity. 

Traditional FSRS is not subject to this limitation, because the signal is heterodyne-detected with 

the residual Stokes pulse.17 
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Figure 4.4. (a) This six-wave mixing signal for metMb is obtained in the five-beam FSRS 

geometry with 2 =290 fs. The broadband baseline is subtracted to isolate the vibrational 

component of the response. (b) The baseline in panel (a) is obtained by inverse Fourier 

transforming the measured signal into the time domain, then filtering the broadband part of the 

response at 0 fs. (c) The baseline-subtracted signal is filtered at positive times after inverse 

Fourier transformation of the difference between the measured signal and the baseline shown in 

panel (a). The filter is displaced from the origin by 60 fs to eliminate the residual broadband 

response, which is dominant at earlier times. (d) The absolute value of the FSRS spectrum is 

obtained by Fourier transformation of the filtered signal in panel (c).  

 

The Raman spectrum obtained in Figure 4(d) exhibits several known vibrational 

resonances of metMb.44 The 670 and 1370-cm-1 modes correspond to deformation and bond-

stretching motions localized on the tetrapyrrole moiety, respectively. The remaining resonances 

are primarily localized on the vinyl substituents of the tetrapyrrole group shown in Figure 4.5. 

Intensities of the resonances in the 1000-1300 cm-1 range are enhanced in the present technique, 
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because they coincide with the peak of the Stokes spectrum. In contrast, the peak intensities 

observed in traditional FSRS are independent of the Stokes intensity.17 

 

Figure 4.5. Molecular structure of iron protoporphyrin-IX. 

 

In principle, an external (i.e., 1 -independent) reference field may be used to eliminate 

( )BB   from consideration.45 Such an approach is challenged by several technical issues. One 

problem particular to the present five-beam geometry is that no beam produced by the diffractive 

optic is perfectly collinear with the signal (there is at least a 0.5º deviation for the beam whose 

wavevector is most closely matched to that of the signal). Additional cross terms will also appear 

in Equation 4.1 if an external reference field is introduced, so a different baseline subtraction 

algorithm would need to be devised. We are presently working on solutions to these challenges. 

One key to success may be reduction of the ratio, ( )FSRSE  / ( )BBE  , perhaps by using shaped 

Raman pump pulses.46 
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Figure 4.6. This six-wave mixing signal for metMb is obtained in the five-beam FSRS geometry 

with 2 =420 fs The panels (a)-(d) are defined in the same way as those in Figure 4.4. The 

vibrational frequencies obtained in this measurement differ by less than 10 cm-1 from those found 

in Figure 4. This difference is 5 times less than the bandwidth of the Raman pump pulse (i.e., 

intrinsic frequency resolution). The vibrational line widths are roughly 25% less than those 

shown in Figure 4.4. This decrease in the line width with increasing delay, 2 , is consistent with 

the theory outlined in Section 4.5.   

 

4.3.2. Adequate Suppression of the Broadband Response  

The key to success of the baseline subtraction method is adequate suppression of the 

broadband pump-repump-probe response. This undesired nonlinearity can be suppressed by 

increasing the delay between Raman pump pulses, 2 . An increase in this delay increases the 

probability that the final field-matter interaction occurs with the final Raman pump pulse to 
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arrive at the sample (see Figure 4.1). This order of field-matter interactions is unique to the FSRS 

response (see Section 4.5); the last field-matter interaction occurs with the Stokes pulse in the 

undesired pump-repump-probe response.47 A compromise must be made between signal intensity 

and background suppression, because the amplitude of the FSRS response also increases as 2  

increases (the FSRS signal vanishes when 2  is longer than the inverse of the vibrational line 

width).  

In Figure 4.6, a FSRS signal acquired with 2 =420 fs is presented. The signal count rate 

is roughly 4 times lower than that associated with the measurement in Figure 4.4, and the 

integration time has been doubled to 200 ms. The contribution of the FSRS response to the total 

signal is approximately 3-5 times larger than that found with the delay, 2 =290 fs, in Figure 4.4. 

This reduces the magnitude of the broadband response near 60 fs in Figure 6(c), and there is no 

need to displace the apodization window from time-zero. The vibrational resonance frequencies 

displayed in Figures 4.4(c) and 4.6(c) are indistinguishable, thereby confirming the theoretically 

predicted independence of the resonance frequency on the delay, 2 . Small displacements in the 

apodization window do not alter the frequencies of the vibrational resonances, because the 

information is primarily located at times greater than 60 fs (i.e., the vibrations damp as the 

magnitude of the time axis increases).  

In the theory outlined in Section 4.5, it is predicted that the line width decreases as the 

delay, 2 , increases. Consistent with this prediction, we find that the line widths decrease from 

approximately 60 cm-1 to 45 cm-1 when the delay, 2 , increases from 290 and 420 fs. Related 

line-narrowing effects have been discussed in the context of sum-frequency generation 
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techniques that combine broadband and narrowband laser pulses.48 We have also examined this 

issue numerically in a study of short-lived electronic coherences in molecular aggregates.49 

Essentially, the temporal decay of the polarization is determined by the product of the vibrational 

coherence, which is initiated when the Stokes pulse arrives at the sample, and the envelope of the 

final Raman pump pulse to arrive at the sample (see Figure 4.1(b)). Both quantities decay 

simultaneously when 2 =0 fs, and the measured line width is generally broader than the 

bandwidth of the Raman pump. However, the envelope of the Raman pump rises as the 

vibrational coherence decays when 2 >0 fs. This convolution artificially inflates the duration of 

the polarization, thereby reducing the vibrational line width.     

It is worth noting that the suppression of the broadband response in the present 

implementation is limited by the time-symmetric envelopes of the Raman pump pulses. Overlap 

between the two Raman pump pulses can be further reduced significantly using etalons. Such an 

approach has already been successfully demonstrated in the traditional three-beam FSRS 

geometry.46  

4.3.3. Summary of Technical Issues Involved in Signal Processing 

In summary, FSRS spectra are obtained using the data processing algorithm described 

above. Key points made in this section are summarized below. 

(i) Success of the algorithm requires suppression of the broadband pump-repump-probe response 

using a delay between the two Raman pump pulses. The ratio of the FSRS to broadband response 

increase as the delay, 2 , increases (see Figure 4.4 and 4.6); however, the overall magnitude of 

the signal intensity decreases as well. Thus, a compromise between signal strength and 

background suppression must be made. 
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(ii) An increase in the delay, 2 ,  induces a line-narrowing effect. This observation is 

consistent with theory presented in Section 4.5. 

(iii) The vibrational resonance frequencies are unaffected by the delay,  2 . The 

vibrational coherences are induced before the final Raman pump pulse arrives at the sample.  

(iv) In principle, the relative magnitudes of the vibrational resonances may depend on 2 . 

The amplitudes of vibrational resonances with the broadest line widths (fastest dephasing times) 

should decrease the most as 2  increases. Notably, the amplitudes of the vibrational resonances 

reflect the intensity of the Stokes pulse in the four and five-beam geometries. In contrast, the 

relative amplitudes are independent of the Stokes spectrum in traditional three-beam FSRS, 

where the Stokes pulse is uses for heterodyne detection.  

(v) Further suppression of the broadband pump-repump-probe response can likely be 

achieved by reducing the overlap in the Raman pump pulses using etalons. Further suppression 

of the broadband response will enable interferometric detection with an external local 

oscillator.43 Signs of the vibrational resonances can then be determined.  

 Experimental Results 

4.4.1. Dependence of FSRS Signal on Incident Pulse Energies 

In this section, we examine the dependence of the signal strength on the intensities of the 

incident laser beams. As in traditional FSRS, the Raman response, ( )FSRSE  , must scale linearly 

with both API  and RPI , where API  and RPI  are the intensities of the actinic and Raman pump 

beams (these intensities represent sums for pulse-pairs 1,2 and 3,4). The broadband response, 

( )BBE  , must also scale linearly in both API  and RPI , because it represents a fifth-order 
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nonlinearity (i.e., a pump-repump-probe signal). Unlike traditional FSRS, ( )FSRSE   and 

( )BBE   scale as the square root of the Stokes intensity, 
1/ 2

StI , because the signal is not obtained 

by differential transmission of the Stokes beam.17  

 

Figure 4.7. Signal intensities corresponding to the vibrational resonance at 1370 cm-1 are 

plotted versus incident pulse energies. In the first row, the signal, ( ) ( )FSRS BBE E  , is plotted 

versus energies of (a) actinic pump, (b) Raman pump, and (c) Stokes beams. In the second row, 

the signal, ( )FSRSE  , is plotted versus energies of the (d) actinic pump, (e) Raman pump, and (f) 

Stokes beams. Pulse energies associated with the actinic and Raman pump represent sums for 

the respective pairs of beams at the sample position (i.e.,beams 1 and 2 or beams 3 and 4). The 

functional forms used to fit the data (red lines) are indicated in the respective panels. These data 

validate the signal processing algorithm described in Section 4.3 and confirm that saturation of 

the optical response is negligible in these ranges of the pulse energies. 

 

Figure 4.7 displays both ( ) ( )FSRS BBE E   and ( )FSRSE   obtained for the 1370-cm-1 

mode, which represents in-plane stretching of the tetrapyrrole moiety,44 with respect to API , 

RPI , and StI . The pulse energies are cycled within the respective ranges three times and 30 

spectra are accumulated at each pulse energy within each cycle (i.e., each point in Figure 4.7 
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represents a total of 90 spectra or 9000 laser shots). The error bars are determined by computing 

standard deviations in the signal intensities for the 30 spectra acquired at each pulse energy then 

propagating the error for each of the three cycles. Experiments conducted on different days yield 

indistinguishable results. As expected, the measurements in Figure 4.7 suggest that 

( ) ( )FSRS BBE E   and ( )FSRSE  , scale as 
2 2

AP RP StI I I  and
1/ 2

AP RP StI I I , respectively. The form of 

the function used to fit the data is indicated in each Figure panel. In all cases, fits conducted with 

the assumed functions are within the uncertainty ranges of the data. In principle, the functional 

forms may be better characterized by examination of a larger ranges in pulse energies; however, 

this cannot be achieved here without the potential for artifacts caused by sample degradation. We 

find that the sample degrades during the experiment if the upper limit of each pulse energy in 

Figure 4.7 is doubled.  

4.4.2. Dependence of FSRS Signal on Sample Concentration 

Determination of the dependence of the FSRS signal on solute concentration is one way 

to rule out contributions from third-order cascades.50-51 At extremely low optical densities (less 

than 0.1), the direct (fifth-order) FSRS signal intensity scales as the square of concentration, 

whereas third-order cascades scale as the fourth power of the concentration. However, saturation 

effects related to absorption of the incident beams and signal take hold at the optical densities 

where the experiments are usually conducted (0.7-1.0). Therefore, as in our recent study of 

triiodide,35 we develop a simple model in this section to capture the dependence of the signal 

intensity on concentration. Predictions of the model are then compared to experimental data. 

The direct fifth-order signal intensity at position x  in the sample is subject to the relation, 

( ) ( ) ( ) ( ) ( ) ( )
2

5 52 2 2, , , ,direct AP RP StI x C C I x C I x C I x C ,                                (4.4)     
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where C  is concentration and 
( )5

  is the fifth-order susceptibility. The laser intensity is given 

by 

( ) ( ), expj jI x C Cx − ,                                                       (4.5)     

where j  is an absorption coefficient (product of ( )ln 10  and the molar extinction coefficient) 

and j  denotes the type of laser pulse (RP, AP, or St). The signal intensity accumulated at the exit 

of the sample is obtained by integrating over x , 

( ) ( ) ( ) ( ) ( ) ( )5 2 2 2 2

0

, , , exp

a

direct AP RP St StI C C dxI x C I x C I x C C x a −   ,                  (4.6) 

where a  is the path length and the exponential function represents attenuation of the 

signal beam as it exits the sample. The susceptibility can be removed from the proportionality in 

Equation 4.6 because it is independent of x . 

Treatment of the cascaded signal field must take into account accumulation of both the 

primary and secondary third-order signal intensities. For the cascaded process that the five-beam 

geometry is most susceptible to, the primary four-wave mixing signal intensity scales according 

to ( ) ( )2 , ,AP StI x C I x C . The intensity of the secondary four-wave mixing process depends on the 

product of ( )2 ,RPI x C , which decreases exponentially with x ,  and the intensity of the primary 

four-wave mixing signal (denoted as 
( ) ( )3

,primaryI x C ), which increases in a (slightly) sub-quadratic 

fashion with x  at the optical densities of interest. With consideration of these factors, the 

cascaded signal intensity may be written as  

( ) ( ) ( ) ( ) ( )32 2

0

, exp ,

a

cas RP St primaryI C C dxI x C C x a I x C −   ,                        (4.7) 

where the primary four-wave mixing signal intensity at position x  is proportional to 
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( ) ( ) ( ) ( ) ( )3 2 2

0

, , , exp

x

primary AP St StI C x C dx I x C I x C C x a    −   .                      (4.8) 

 

Figure 4.8. (a) FSRS signal intensities associated with the vibrational resonance at 1370 cm-1 

are plotted versus the optical density of the solution in a 0.5-mm path length. The functions, 
( ) ( )5

directI C  and ( )cascadeI C , illustrate how the data compare to the concentration dependence 

predicted for (red) the direct fifth-order signal and (blue) third-order cascades. The functions, 
( ) ( )5

directI C  and ( )cascadeI C , are multiplied by constants to overlay them with the measured signal 

intensities. (b) Dynamics in the peak intensity at 1370 cm-1 are experimentally indistinguishable 

at various sample concentrations. (c) Signal intensities are overlaid at the highest and lowest 

concentrations to illustrate the range in the data quality.   

 

The signal intensity at 1 =1 ps is plotted versus the optical density of the solution at 410 

nm in Figure 4.8. Saturation of the measured signal intensity with increasing optical density is 

caused by absorption of the incident laser beams. 
( ) ( )5

directI C  and ( )cascadeI C  are overlaid on the 

experimental data to illustrate how these functional forms compare to the measurements. The 

data are more consistent with the model based on the direct fifth-order signal. Figure 4.8(b) 

additionally shows that the dynamics are insensitive to the concentration. Notably, the dynamics 

in the signal observed at an OD of 0.37 are due noise (not a vibrational coherence). It should also 

be noted that if the direct and cascaded signals are comparable in magnitude, then signatures of 

destructive interference between these nonlinearities should be found in the concentration 

dependence, because direct and cascaded signals have opposite signs.35 The data show no signs 

of such interference. FSRS spectra overlaid at the highest and lowest concentrations demonstrate 
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the range in signal quality in Figure 4.8(c). The best signal quality is generally obtained at optical 

densities near 1.0. The narrow spectral features observed at an OD of 0.37 are caused by noise. 

These features are not caused by the shape of the Fourier filter, which is the same for all values 

of the OD. 

4.4.3. Relative Signs of Third- and Fifth-Order Signals 

In this section, we present an experimental test for third-order cascades that takes into 

account the approximate 180º phase-difference between the direct third- and fifth-order signal 

fields under resonant conditions.35, 51 This phase-relationship can be understood with simple 

bookkeeping on the numbers of field-matter interactions and light emission events. Under 

resonant conditions, a 90º phase-shift is accumulated in each time-interval between field-matter 

interactions. In a background-free experiment, the number of incoming beams is simply 

multiplied by 90º (270º and 450º at third- and fifth-order). Thus, approximate phase-shifts of 

360º and 540º are respectively accumulated in direct third- and fifth-order processes when the 

signal field emission events are accounted for (field emission adds 90º). Direct third- and fifth-

order nonlinearities therefore have opposite signs, because their phases differ by 180º. It is useful 

to consider that essentially the same idea applies to traditional experiments such as pump probe 

spectroscopy. For a two-level system, the sign of light transmission changes when a sample is 

exposed to a pump beam due to ground-state depletion (i.e., a comparison of first and third-order 

responses). The sign of the signal again changes if a second pump beam is introduced in a pump-

repump-probe experiment (i.e., pump-repump-probe signals are absorptive in two-level 

systems).52  

In a cascaded nonlinearity, a phase-shift of approximately 540º is accumulated through 

the total of 6 (perturbation-theoretic) time-evolution intervals involved in the process. An 

additional phase-shift of 180º degrees must be added for the two emission events, which results 
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in a total of 720º.  Thus, the phase of the absorptive component of the cascaded nonlinearity 

differs from those associated with the direct third- and fifth-order signals by approximately 0º 

and 180º, respectively. This is a convenient relationship, because the third-order signal can serve 

as an “internal standard” for the signal phase.39-41 The key is to employ a geometry in which the 

third- and fifth-order signals are equally phase-matched, so that significant phase-shifts are not 

accumulated through propagation in the medium. The four-beam geometry shown in Figure 

4.3(b) satisfies this criterion, because both interactions with the actinic pump take place with a 

single beam. Previous experiments have similarly made use of four-beam geometries in which 

the signal phase is referenced to that of a background-free third-order signal.39-41 

 

Figure 4.9. (a) Signals acquired in the four-beam geometry at various delay times between the 

actinic pump and Stokes pulses, 1 . The signal at 1 =-0.5 ps is indistinguishable from the four-

wave mixing signal measured with actinic pump pulse blocked. (b) The fifth-order signal is 

obtained by computing differences between signals acquired with the actinic pump unblocked 

and blocked (i.e., pump on – pump off). Depletion of the ground state population with the actinic 

pump pulse is a signature that the direct fifth-order FSRS signal field is measured. In contrast, 

third-order cascades would induce an increase in the total signal intensity, because such 

nonlinearities are in-phase with the third-order response. (c) Oscillatory features associated 

with the vibrational resonances are phase-shifted by approximately 180º in third- and fifth-order 

measurements (these are magnified views of the data in panels (a) and (b)).  

 

Figure 4.9(a) presents the total signal intensity measured at various delays between the 

actinic pump and the Stokes pulses, 1 , in the four-beam geometry. The four-wave mixing 

signal obtained with the actinic pump beam blocked is also presented as a reference. The four-

beam signal is indistinguishable from the four-wave mixing signal at negative delay times, but a 
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decrease in the total signal intensity is observed at positive delay times. Observation of a 

decrease in signal intensity is expected because of the sign reversal that takes place in the direct 

third- and fifth-order signals. That is, Figure 4.9(a) indicates that the direct third- and fifth-order 

signals interfere destructively. The difference, actinic-pump-on/actinic-pump-off, shown in 

Figure 4.9(b) represents the direct fifth-order signal (i.e, the third-order contribution has been 

removed in the difference). The third- and fifth-order line shapes are additionally overlaid in 

Figure 4.9(c) to illustrate the reversal in the signal sign. 

We interpret the data shown in Figure 4.9 by considering the following components of 

the total signal intensity, 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2

3 5 3 3 5 3
2 cos 180 2 cos 0cas casE E E E E E E E+ +  + + ,              (4.9) 

where it is assumed that the direct third-order signal field, ( )3
E , is large compared to the direct 

fifth-order and cascaded responses, ( )5
E  and casE . The second and third terms on the right side 

of Equation 4.9 have negative and positive signs, respectively. An actinic pump-induced 

decrease in signal intensity is predicted if ( )5

casE E , whereas an increase in signal intensity 

is predicted if ( )5

casE E .  The 180º phase-shift associated with the second term on the right 

side of Equation 4.9 is generally valid, because the direct third- and fifth-order signals have the 

same amounts of phase mismatch in the four-beam geometry. However, the 0º phase-shift in 

term 3 is dependent on the sample thickness and amount of phase mismatch for particular 

cascades. Therefore, we have also confirmed that the same signal sign is measured at path 

lengths of 0.2, 0.3, and 0.5 mm. 

In addition to the perspective suggested by Equation 4.9, it may also be useful to consider 

the signal phase in terms of the ground-state depletion induced by the actinic pump pulse. Each 
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molecule involved in a third-order cascade possesses independent populations. For this reason, 

depletion of the ground state population by the actinic pump on one molecule does not reduce the 

magnitude of the cascaded nonlinearity. Rather, increasing the intensity of the actinic pump (i.e., 

increasing ground state depletion for one of the molecules involved in the cascade) should 

increase the total signal intensity if cascades are dominant. The actinic pump-induced decrease in 

the signal intensity found in Figure 4.9 is therefore inconsistent with dominance of third-order 

cascades.  

4.4.4. Dynamic Line Shapes of FSRS Signals Obtained by Six-Wave Mixing 

In this section, the sensitivity and data acquisition rate of our method are demonstrated by 

measuring decay profiles of vibrational resonances in metMb. We also compare FSRS signals 

acquired in the five-beam geometry with cascaded responses simulated using experimental four-

wave mixing signals. Simulations of this type were instrumental in identifying signatures of 

cascades in off-resonant experiments conducted on pure liquids. We also employed similar 

approach in a recent multidimensional resonance Raman study of triiodide.35 

FSRS signals acquired for metMb in the five-beam geometry are presented in Figure 

4.10. These data represent the average of two different data sets. In each data set, the 1  delay is 

scanned 30 times in 15 minutes, and 200 points are acquired in each scan. Inspection of the 

contour plot makes clear that all vibrational resonances fully decay within 10 ps. Figure 4.10(b) 

overlays distributions of relaxation times obtained for modes at 670, 1120, 1370, and 1600 cm-1 

using the maximum entropy method (MEM).53 Analysis by MEM is motivated by avoidance of 

assumptions about the shapes of decay profiles. Although powerful, the MEM is not often used 

in analysis of femtosecond transients, because it requires exceptionally high signal-to-noise 

ratios. The 670 and 1370-cm-1 resonances represent in-plane modes that are located on the 
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tetrapyrrole moiety, whereas many of the weaker resonances in the 1000-1300 cm-1 and 1400-

1650 cm-1 wavenumber ranges are localized on the vinyl substituents.44 Intensities of the 

resonances in the 1000-1300 cm-1 range are enhanced in the present experiments (compared to 

spontaneous Raman or traditional FSRS), because the intensity of the Stokes pulse maximizes in 

this range (see Figure 4.2). 

 

Figure 4.10. (a) Contour plot of signal field magnitude, FSRSE , obtained for metMb in the five-

beam geometry. (b) Temporal decay profiles for vibrational resonances detected in FSRS 

response. (c) Distributions of relaxation times for various resonances are obtained using the 

maximum entropy method. (d)-(f) FSRS signal field magnitudes are overlaid with fits conducted 

using the maximum entropy method. 

 

Chergui and co-workers have recently identified two relaxation pathways in metMb that 

possess nearly equal efficiencies.23 One pathway repopulates the ground state by way of sub-ps 

internal conversion from a high-energy charge transfer state, whereas the second pathway 

proceeds through a number of intermediate iron spin states. Importantly, transient electronic 

resonances associated with both pathways overlap with the frequencies of the laser pulses 
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employed in this work (see Figure 4.2). The FSRS experiments described in this section should 

therefore be sensitive to excited state relaxation even though the nonlinear response near 430 nm 

possesses significant contributions from the bleach of the Soret band. 

The MEM analysis displayed in Figure 10(c) reveals peaks in the kinetic distributions 

near 0.22 ps and 1.4 ps for all vibrational modes. The peaks in the distributions centered near 

0.22 ps encompass the time scales associated with two processes: (i) back-electron transfer 

between Fe2+ and the porphyrin; (ii) ground state recovery via a high-energy charge-separated 

excited state.23 The peaks in the MEM distributions centered near 1.4 ps may reflect 

contributions from the second relaxation pathway, wherein an intermediate iron spin state (with 

S=1/2) is depopulated with a time constant of 1.1 ps. It is also possible that vibrational cooling 

dynamics contribute to this second peak in the MEM distribution.54  

The relative amplitudes of the two peaks in the MEM distributions are fairly similar for 

the resonances associated with the vinyl substituents (1120 and 1560 cm-1). However, the 

vibrational modes located on the tetrapyrrole (670 and 1370 cm-1) differ markedly in the relative 

amplitudes of the two peaks, with the 670 cm-1 mode possessing a dominant 0.22-ps component. 

The signal intensity observed for a particular mode in FSRS reflects the dynamic resonance 

Raman cross section, which is governed by the difference in nuclear geometries associated with 

the pair of electronic states that comprise the resonance (i.e., difference in potential energy 

gradients). It is possible that the differences in the relaxation rates observed for various 

resonances reflect mode-specific details the internal conversion mechanisms in the system. That 

is, at short delay times, before a significant amount of vibrational cooling has occurred, the non-

equilibrium distributions of vibrational quanta found in metMb may reflect the propensities for 

particular coordinates to act as “promoting modes” in the internal conversion processes.  
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Figure 4.11. Laser beam geometries used to acquire (a) stimulated Raman and (b) transient 

grating signals shown in (c) and (d), respectively. Beams represented with solid circles reach the 

sample, whereas those represented with open circles are blocked with a mask. (e) The two four-

wave mixing signals are combined to simulate the cascaded response. (f) Unlike the FSRS 

signals plotted in Figure 4.10, all vibrational resonances decay with indistinguishable temporal 

profiles in the simulated cascade. Signal magnitudes for the 670 and 1370-cm-1 vibrational 

resonances are shown as examples.  

 

As a final experimental test for cascaded nonlinearities, we compare signals simulated 

with experimental four-wave mixing responses to those presented in Figure 4.11. This empirical 

approach does not require knowledge of the form of the optical response function or associated 

parameters. We assume only that the cascaded process combines a transient grating response 

(involving the actinic pump and Stokes) with a stimulated Raman response (involving the Raman 

pump and Stokes). This assumption is consistent with calculated phase mismatch factors 

discussed below. Both of these four-wave mixing responses, which are denoted here as ( )TG tS   

and ( )SRS tS  , are readily measured by blocking the appropriate beams in the interferometer 
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shown in Figure 4.3. The cascaded signal field is then generated with the product, 

( ) ( ) ( )1 1, ,CAS t TG t SRS tS S S    = .  

The two four-wave mixing responses, ( )1,TG tS    and ( )SRS tS  , and the cascade, 

( )1,CAS tS   , are shown in Figure 4.11. The four-wave mixing Raman spectrum, ( )SRS tS  , 

appears similar to the six-wave mixing FSRS spectrum (at a fixed delay time), which is to be 

expected because the same Franck-Condon active modes contribute to both nonlinearities.  In 

agreement with recent work on metMb,23 the signal, ( )1,TG tS   , decays within a few 

picoseconds. The simulated cascade, ( )1,CAS tS   , obtained by combining ( )1,TG tS    and 

( )SRS tS   exhibits negligible changes in the Raman spectrum during the relaxation process (i.e., 

the overall amplitude changes but the spectrum does not).  Time-invariant Raman spectra are 

inconsistent with the mode-specific transients displayed in Figure 4.10.  

In summary, the present analysis suggests that cascades radiated in the 600-1700-cm-1 

range in metMb will possess Raman spectra that are insensitive to the delay time. In other words, 

the relative amplitudes of the various peaks will be insensitive to the delay time. Such delay-

independent Raman spectra are inconsistent with the measured FSRS signals shown in Figure 

4.10. More generally, we anticipate that cascades will be distinguishable from direct processes in 

related heme proteins, where the relative magnitudes and frequencies of the peaks are known to 

evolve during the vibrational cooling process.16 

 Theoretical Analysis of Relative Magnitudes of Resonant FSRS Signals and Cascades  

In this section, we use model calculations to compare direct fifth-order and cascaded 

third-order signal strengths for a model system that approximates metMb. All experimental tests 

conducted above are consistent with dominance of the direct fifth-order signal. The calculations 
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presented here address the likelihood that this result will generalize to a wider variety of systems 

and experimental conditions. 

4.5.1. Background 

Cascades of third-order nonlinearities are generated in all spectroscopies that are fifth-

order in the nonlinear polarization (e.g., 2D Raman, pump-repump-probe, visible pump-2DIR 

probe, etc). Third-order cascades are not unique to experiments that employ five incoming laser 

beams. In fact, phase-matching conditions for cascades are generally enhanced relative to the 

direct fifth-order response in geometries that employ few laser beams with small crossing 

angles.55 Phase-matching efficiencies become essential design criteria when the intrinsic 

magnitudes of direct fifth-order signals are small compared to those associated with cascaded 

third-order processes.29 Of course, laser beam geometries can be chosen purely as a matter of 

convenience if the direct signal is known to dominate the response. For example, the proven 

negligibility of third-order cascades has motivated simplified three-beam approaches in 3D-IR 

experiments.56-57  

Cascades are known to significantly challenge off-resonant fifth-order Raman 

spectroscopies conducted on pure liquids and concentrated mixtures.28-30 High sample 

concentrations are one reason why cascades are so dominant in these systems. Another reason is 

that the direct fifth-order signal is forbidden for harmonic systems in which the polarizability 

depends linearly on the vibrational coordinate (i.e., lowest-order approximations).31-33 Reliance 

on higher-order effects for signal generation is particularly problematic, because the cascades are 

not subject to such restrictions. We have recently discussed why electronically resonant 

conditions generally make the direct fifth-order response dominant in systems with Franck-

Condon active modes.35 The key is that all displaced modes (harmonic and anharmonic) may 

contribute to the signal without non-Condon effects in resonant FSRS.36  
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Figure 4.12. Double- sided Feynman diagrams associated with four classes of terms in the FSRS 

response function. The terms are classified according to whether or not they evolve in ground or 

excited state populations during the delay times, 1  and 2 . The laser pulses associated with 

each field-matter interaction are indicated in the figure in the same color-code employed in 

Figure 4.2. 

 

4.5.2. Response Functions 

The FSRS response for a system in which resonance enhancement is dominated by a 

single pair of electronic states possesses 16 response functions (see Supplementary Material).47 

The response functions can be divided into four classes based on whether or not the system is in 

the ground or excited state during the two population times (see Figure 4.12 for one member of 

each class). An earlier theoretical description of FSRS has grouped terms in a related way.58 In 

metMb, excited state populations may contribute at sub-picosecond delay times (i.e., before 

internal conversion is complete), whereas dynamics on the picosecond time scale primarily 

reflect vibrational cooling in the electronic ground state.21-25 We consider all terms here as the 

goal is simply to estimate relative signal strengths for direct and cascaded responses.  
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It is instructive to consider one of the polarization components in the FSRS response. The 

polarization component associated with the 
( )5

1R diagram in Figure 4.12 is given by 

   

( )

( ) ( ) ( ) ( ) ( )

6
2 2

5

1 5

, , 1 , , ,
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
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=

 −


 ,          (4.10) 

where j  are the electric field amplitudes associated with the three types of laser pulses (actinic 

pump, Raman pump, Stokes), N  is the number density, eg  is the electronic transition dipole 

for the Soret band, mB  is the Boltzmann population of level m , n m  is a vibrational overlap 

integral (with excited state index in the bra),59 and the summation is carried out with respect to 

dummy indices for vibrational energy levels. The functions, ( ),en gmL  , are Lorentzian line 

shapes associated with resonances between vibronic levels in electronic states g  and e , whereas 

( ), 1gk gmD   describes vibrational wavepacket motion induced by the actinic pump in the delay 

time, 1  (see Section 4.8.1). The function, 

( )
( )

( ) ( )
2

,

exp RP

gu gm t RP

t RP um vib RP

J
i


 

  

−
− =

− + +  − 
,                            (4.11)   

provides insight into aspects of the signal that are unique to the present approach. The 

denominator suggests that the line width of the resonance is reduced by introducing a time delay 

between Raman pump pulses (i.e., vib  and RP  have opposite signs). However, the numerator 

makes clear that such enhancement in spectral resolution comes at the expense of signal 

intensity; the magnitude of the polarization decreases exponentially with 2 . 
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Figure 4.13. Feynman diagrams associated with the nonlinearities on the two molecules 

involved in third-order cascades with intermediate phase-matching conditions (a) k1-k2+k5 and 

(b) k3-k4+k5. Field-matter interactions are color-coded as follows: actinic pump is green; Raman 

pump is blue; Stokes is red; cascaded signal field is red; the field radiated at the intermediate 

step in the cascade is purple. 

 

In the present laser beam geometries, we consider third-order cascades with intermediate 

phase-matching conditions, k1-k2+k5 and k3-k4+k5. Additional cascades are possible (e.g., k2-

k1+k4) but possess much smaller phase-matching efficiencies. The polarization components 

related to the cascaded nonlinearities are summarized in Supplemental section 4.7.2. The two 

types of cascades essentially permute coherent Stokes Raman scattering (CSRS) and pump-probe 

(PP) responses on the two molecules involved in the process (see Figure 4.13). For example, 

third-order polarization components associated with these two types of nonlinear responses are 

given by 

( ) ( ) ( ) ( )

4
2

3

1, , , 1 ,3
( )

AP St eg

PP t m en gm AP en ek en gl t

mnkl

N
P i B n m k m k l n l L D L

  
   =  ,  (4.12) 

and 
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where we have derived these expressions under the same assumptions used to describe the direct 

fifth-order response (see Supplementary Material).47 The cascaded signal field is proportional to 

the product of 
( )3

1, ( )PP tP   and 
( )3

1, ( )CSRS tP  .  

The above formulas highlight three key issues that govern relative magnitudes of direct 

and cascaded responses: 

(i) The cascaded signal field scales as the square of concentration, whereas the field 

radiated by the fifth-order polarization is linear in concentration. This is one reason why 

cascades are generally negligible at optical densities employed under resonant conditions in 

transmissive geometries. For example, the concentration of CS2, in which cascades are dominant, 

is roughly 80,000 times larger than that employed here. 

(ii) The direct and cascaded responses respectively include 3 and 4 resonant electronic 

line shape functions, ( ),en gmL  . The direct fifth-order signal field therefore becomes more 

dominant as the electronic dephasing rate increases.35 This aspect of the nonlinear response 

favors the direct fifth-order signal in condensed phases at ambient temperatures, where line 

widths are generally greater than 1000 cm-1. 

(iii) The direct and cascaded polarization components involve sums of products of 8 and 

6 vibrational overlap integrals, respectively. The direct fifth-order signal field becomes more 

dominant as the mode displacement increases because the integrals are all less than 1 and 

decrease as the mode displacement increases. In related work, we found that this effect becomes 
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quite pronounced in systems with extremely large displacements (displacements greater than 

3).35  

4.5.3. Model Calculations 

In this section, we evaluate the ratio between the cascaded third-order and direct fifth-

order signal magnitudes, ( )5
( ) / ( )cas t direct tE E  , which are defined in appendices A and B. These 

model calculations are motivated by knowledge of how the relative signal strengths depend on 

properties of the model system and the frequencies of the incident pulses. Insights derived from 

these calculations do not assume an optimal parameterization for metMb. Rather, parameters are 

scanned over wide ranges to explore general effects that apply not only to metMB but also to 

other heme proteins with similar optical properties. Figure 4.14 presents spectra computed with a 

displaced 1370-cm-1 mode, where the actinic and Raman pump frequencies, AP  and RP , are 

taken to be equal to the electronic resonance frequency, eg . The vibrational resonances appear 

on a frequency-dependent baseline, which is consistent with the model developed by Ernsting 

and co-workers.3 We consider a system with a single harmonic mode to keep the number of 

parameters manageable. For fundamental transitions, we find that the ratio, 

( )5
( ) / ( )cas t direct tE E  , is insensitive to the number of vibrational modes in the system. 
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Figure 4.14.  Absolute values of signal spectra computed using the models presented in 

appendices A and B and the parameters in Tables 4.1 and 4.2. The system possesses a single 

1370-cm-1 harmonic mode with a displacement of 0.35 (a reasonable estimate for metMb).42 The 

frequency of the actinic pump pulse is set equal to the electronic resonance frequency, AP eg =

. This calculation assumes that the five-beam geometry is employed (cascades are 4 times 

weaker in the four-beam geometry). 

 

We begin by exploring the parameter space of the mode frequency and displacement in 

Figure 4.15(a). The ratios between ( )5
( )cas tE   and ( )direct tE   are computed at values of the 

Raman shift, RP t − , equal to the mode frequency (i.e., at the peak of the fundamental 

transition). The calculations predict extremely small ratios (<0.01) at frequencies near the 1370 

cm-1 mode. The ratio, ( )5
( ) / ( )cas t direct tE E  , increases as the vibrational frequency decreases, 

but ( )5
( )direct tE   remains dominant down to the lowest frequency probed in this work (i.e., the 

670-cm-1 mode). The calculation is carried out over a wide range of mode displacements in order 

to establish behaviors that will generalize to other systems. Displacements for the 670-cm-1 and 

1370-cm-1 modes are near 0.25 and 0.35, respectively.54 

The laser detuning and mode displacement are varied for the 670 and 1370-cm-1 modes in 

Figures 4.15(b) and 4.15(c). The calculations suggest greater dominance of ( )5
( )direct tE   when 
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the actinic and Raman pump beams are tuned to the low-frequency side of the electronic 

resonance (i.e., AP eg   and RP eg  ). Notably, the ratio remains small when the beams are 

within the approximate 1500-cm-1 linewidth of the electronic transition ( 2 eg ). Regions of the 

plots most relevant to the present application to metMb are indicated with boxes. The 

calculations predict that ( )5
( )direct tE   remains dominant for displacements between 0 and 1.  

The present model system approximates the response of metMb when photoexcited in the 

region of the Soret band. Inclusion of additional excited states in the model (e.g., higher-energy 

spin states of iron) is unlikely to affect the ratio because of their relatively small magnitudes. 

Increases in ( )cas tE   and ( )5
( )direct tE   are largely offset when new classes of signal 

components are introduced (e.g., resonances between excited states), because terms with nearly 

equal weights must then be added to both types of fields. Perhaps the most important issue is that 

( )5
( )direct tE    and ( )cas tE   always consist of sums of products of 6 and 8 vibrational overlap 

integrals, respectively. The terms in ( )cas tE   will generally be smaller than those in 

( )5
( )direct tE  , because each of the overlap integrals in the product is less than 1. The direct 

response, ( )5
( )direct tE  , can become many orders of magnitude larger than ( )cas tE   in systems 

with extremely large mode displacements.35 This, together with the low sample concentrations 

typically employed in transmissive laser beam geometries suggests that third-order cascades are 

unlikely to outcompete the resonant FSRS response in most systems. 
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Figure 4.15. (a) The ratio, ( )5
( ) / ( )cas t direct tE E  , is computed for a system with a single 

harmonic mode under electronically resonant conditions, AP eg = .The ratio is computed at the 

value of the Raman Shift equal to the mode frequency (i.e., at the peak of the vibrational 

resonance). (b) The ratio, ( )5
( ) / ( )cas t direct tE E  , is computed for a 670- cm-1mode at various 

dimensionless displacements and detuning factors, AP eg − . (c) The ratio, 

( )5
( ) / ( )cas t direct tE E  , is computed for a 1370-cm-1 mode at various dimensionless mode 

displacements and detuning factors, AP eg − . Boxes are drawn in the regions of the plots 

relevant to myoglobin in panels (b) and (c). 

 

 Concluding Remarks 

Four and five-beam implementations of FSRS have been used in this work to 

significantly reduce the background of residual laser light and lower-order nonlinearities that 

would be present in the three-beam geometry carried out with the same laser pulses. The 

background-free nature of the five-beam geometry supports excellent signal-to-noise ratios and 

short data acquisition times. As with any experimental technique, the present method possesses 

strengths and limitations that are important to take into account when deciding on an approach. 

The fast data acquisition time and sensitivity achieved by the present method comes at the 

expense of nonlinearities that are more complicated than those associated with spontaneous 

Raman probes. This is one reason why time-resolved spontaneous Raman spectroscopy may be 

preferred for studies of relaxation dynamics in heme proteins that are slower than 0.7 ps.16 We 
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envision that the power of the present method may be fully exploited in studies of low-frequency 

vibrational coherences in 1 , and their anharmonic couplings to vibrational resonances in 2  

(i.e., multidimensional analogues of third-order vibrational coherences studies).54 Hybrid 

FSRS/2D Photon Echo pulse sequences may also be implemented in a five-beam geometry.  

Significant contributions from cascaded nonlinearities have been ruled out with control 

experiments based on the signal phase, concentration dependence, and spectroscopic line shapes. 

In addition, we have developed a model to explore how the propensity for cascades depends on 

parameters of the system, the frequencies of the incoming beams, and the laser beam geometry. 

Our calculations suggest that third-order cascades are less than 5% of the signal in the entire 

vibrational frequency range examined in this study. The present work (and our related study of 

I3
- by our group)35 suggests that cascades are unlikely to be problematic at the optical densities 

typically employed in transmissive beam geometries. In such experiments, concentrations are 

typically tens of thousands of times lower than those associated with the pure liquids and 

concentrated mixtures in which cascades are known to dominate.28-30 Moreover, Franck-Condon 

active modes will always dominate the direct fifth-order response under electronically resonant 

conditions (i.e., the direct response is “allowed” under resonant conditions). Together, the 

control experiments and model calculations presented here suggest promise for multidimensional 

resonance Raman investigations of heme proteins. 

 Supplemental Information 

4.7.1. Direct Fifth-Order Signal Field 

The direct fifth-order polarization possesses 16 components when a single electronic 

resonance dominates the optical response. One of these polarization components is given in 

Equation 4.10. The remaining 15 polarization components are 
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The functions ( ), 1gk gmD   and ( ),en gmL   are written as60 
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and  
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The vibrational line shape function, ( ),gu gm t RPJ  − , is defined in Equation 4.11. 

The direct fifth-order signal field is expressed in terms of these polarization components 

as60 
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where the factor of 1/7 represents the orientational average for all-parallel electric field 

polarizations56 and the wavevector mismatch, 
( )5

directk , is given for the four and five beam 

geometries in Tables 4.2 and 4.3. 

4.7.2. Cascaded Third-Order Signal Field 

In this supplemental section, we obtain an expression for the signal field generated by 

third-order cascades with intermediate phase-matching conditions, k1-k2+k5 and k3-k4+k5. The 

two processes essentially permute the type of nonlinearity that occurs on the two molecules 

involved in the cascade. A pump-probe-like response precedes a coherent Stokes Raman 

scattering (CSRS) process in cascade 1, whereas the sequence is reversed in cascade 2. Below, 

we present polarization components for each process then combine them in an expression for the 

cascaded signal field. The formulas are obtained under the same approximations as the fifth-

order polarization and thus can be compared on the same footing (see Supplementary Material).47  
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The pump-probe-like polarization components are  
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The CSRS polarization components are  
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The total signal field generated by the two cascades can be written as 
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where the phase matching function is given by60 
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The factor of 1/25 represents the product of orientational averages for all-parallel electric field 

polarizations61 and the wavevector mismatches, jAk  and jBk , are given for each of the 

experimental geometries in Tables 4.2 and 4.3. 

Table 4.1. Parameters of Theoretical Model 

Parameter Value 

( ) / 2AP eg c  −  varied 

RP  AP  

d  varied 

/vib c  10 cm-1 

/eg c  750 cm-1 

eg  8.8 D 

N  1.21023 m-3 

/ 2t c   23250 cm-1 

( )tn   1.39 

l  0.22 mm 
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Table 4.2. Wavevector Mismatch in the Five-Beam Geometry 

Nonlinearity ( )n

directk  (cm-1) Ak   (cm-1) Bk   (cm-1) 
(a),(b)Efficiency 

Direct Fifth-Order (FSRS) -215 ------ ------ 0.123 

Cascade #1 (k1-k2+k5 

intermediate) 

------ -18 -197 0.069 

Cascade #2 (k3-k4+k5 

intermediate) 

------ -412 196 0.005 

(a) The efficiency is computed using 

( )

sinc
2

n

directk l 
  
 

 and sinc sinc
2 2

A Bk l k l    
   
   

 for direct and 

cascaded processes, respectively.  
 (b) Path length, l , is 0.022 cm. 

 

Table 4.3. Wavevector Mismatch in the Four-Beam Geometry 

Nonlinearity ( )n

directk  (cm-1) Ak   (cm-1) Bk   (cm-1) 
(a),(b)Efficiency 

Direct Fifth-Order (FSRS) -198 ---------- ---------- 0.123 

Direct Third-Order 

(CSRS) 

-225 ---------- --------------- 0.128 

Cascade #1 (k1-k2+k5 

intermediate) 

---------- -215 -215 0.015 

Cascade #2 (k3-k4+k5 

intermediate) 

---------- -215 -180 -0.002 

(a) The efficiency is computed using 

( )

sinc
2

n

directk l 
  
 

 and sinc sinc
2 2

A Bk l k l    
   
   

 for direct and  

cascaded processes, respectively.  
 (b) Path length, l , is 0.022 cm. 

 

4.7.3. Distinguishing the Broadband and FSRS Responses 

The present experiments must contend with an intense broadband (pump-repump-probe) 

response because all laser pulses are electronically resonant with the Soret band. Many 

traditional FSRS applications because the Raman pump and Stokes pulses are tuned into 

resonance with a photoproduct (often where the equilibrium system is transparent). We suppress 

this broadband response by introducing a delay between the two Raman pump pulses. This 

enforces the desired order of field-matter interactions; the final interaction occurs with the 
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Raman pump and Stokes pulses in the FSRS and pump-repump-probe nonlinearities, 

respectively. 

Figure 4.16 compares FSRS signals acquired with 2 =0 and 290 fs. The types of terms in 

the response function responsible for both signal components are also presented. The FSRS 

resonances are not visible when 2 =0 fs because of the dominant pump-repump-probe response. 

Notably, such a delay between Raman pump interactions cannot be achieved in a traditional 

three-beam geometry. The measurement obtained with 2 =0 fs reflects the ratio in FSRS and 

broadband responses that would be observed in a three-beam geometry with the same laser 

pulses. 

 

Figure 4.16. (a) Examples of Feynman diagrams associated with the desired FSRS and 

undesired broadband responses. The indices, g  and e , represent the ground and excited 

electronic states, whereas dummy indices ( m , n , k , l ,u , and v ) denote vibrational levels. Green, 

blue, and red arrows represent the actinic pump, Raman pump, and Stokes pulses, respectively. 

(b) The FSRS component of the response of metMb increases as the delay 2  increases (the 

delay, 1 , is 0.5 ps here). This effect can be understood by inspection of the Feynman diagrams, 

which suggest that the FSRS response will increase as the delay 2  increases.  
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CHAPTER 5. TWO-DIMENSIONAL RESONANCE RAMAN SPECTROSCOPY OF 

OXYGEN- AND WATER-LIGATED MYOGLOBIN3 

 Introduction 

Once the specialization of a small number of experimental groups, multidimensional laser 

spectroscopies have become fairly widespread in the past 20 years with applications spanning the 

traditional disciplines of chemistry, biology, and physics.1-10 The development of multi-

dimensional techniques is rooted in the picosecond coherent Raman spectroscopies of the late 

1970’s and early 1980’s.11-14 At the time, it was unclear whether or not traditional (one-

dimensional) coherent Raman measurements could distinguish between homogeneous and 

inhomogeneous line broadening mechanisms.15-17 Theoretical work showed that higher-order 

(multidimensional) methods were indeed required to obtain such information,18-20 and early 

success was achieved in Raman echo experiments (i.e., eight-wave mixing).21 Several 

experimental groups took up the challenge of conducting six-wave mixing experiments in the 

mid-1990’s but met substantial technical challenges.22-27 Success in six-wave mixing 

measurements was achieved after years of exhaustive efforts.27-28  Difficulties encountered in 

these pioneering works significantly slowed further development of multidimensional Raman 

techniques. However, interest in this class of experiments has been reinitiated by related methods 

that are used to study molecular photochemistries.29-40  

                                                 
3 This chapter previously appeared as an article in the Journal of Chemical Physics. The original citation is as 

follows: Molesky, B. P.; Guo, Z.; Cheshire, T. P.; Moran, A. M., Two-dimensional resonance Raman spectroscopy 

of oxygen- and water-ligated myoglobins. J. Chem. Phys. 2016, 145 (3), 034203. Copyright (2016) American 

Institute of Physics. 
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In this paper, we present two-dimensional resonance Raman (2DRR) measurements that 

blend different types of higher-order Raman spectroscopies. The multi-beam aspect of the 

experiment illustrated in Figure 5.1 is similar in nature to earlier off-resonant 2D Raman work,27-

28 whereas the combination of narrowband and broadband pulses is inspired by Femtosecond 

Stimulated Raman Spectroscopy (FSRS).30, 32 As depicted in Figure 5.1, the experiment begins 

when an actinic pump pulse initiates vibrational motion of the system in the variable delay, 1 . 

Fourier transformation with respect to 1  constitutes the first dimension of the 2DRR spectrum. 

Vibrational motion is re-initiated by time-coincident Raman pump and Stokes pulses before a 

second Raman pump pulse induces signal emission. The second dimension of the 2DRR 

spectrum is obtained by dispersing the signal pulse on an array detector. The approach is distinct 

from traditional three-pulse FSRS in that (i) residual laser light does not travel in the same 

direction as the signal beam and (ii) a fixed delay, 2 , is used to suppress the intense broadband 

pump-repump-probe response.41 The data acquisition rate and sensitivity of our method facilitate 

detection of the 2DRR response, which is generally less that 5% of the total fifth-order signal. 

Traditional three-beam FSRS offers other advantages such as automatic heterodyne detection 

and straightforward implementation of two-color experiments.30   
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Figure 5.1. (a) A four-beam FSRS geometry is used in this work to eliminate the portion of the 

background associated with residual Stokes light and a pump-probe response. The color code is 

as follows: the actinic pump is green, the Raman pump is blue, and the Stokes pulse is red. (b) 

Vibrational coherences in 1  are resolved by numerically Fourier transforming the signal with 

respect to the delay time. Time-coincident Raman pump and Stokes pulse then initiate a second 

set of vibrational coherences, which are resolved by dispersing the signal pulse on an array 

detector. The fixed time delay, 2 , is used to suppress the broadband pump-repump-probe 

response of the solution.  

 

Measurements and model calculations are conducted for both metmyoglobin (metMb) 

and oxymyoglobin (MbO2) in order to establish signatures of inhomogeneous line broadening 

and anharmonic coupling in 2DRR spectra. The charge of the iron atom is +3 (ferric) and +2 

(ferrous) in metMb and MbO2, respectively. Of course, the two systems also differ in whether 

water (metMB) or oxygen (MbO2) is coordinated on the distal side of the heme group. Sub-100-

fs photodissociation of oxygen is induced following photoexcitation in the visible spectral range 

in MbO2, whereas metMb relaxes to the ground electronic state by way of non-radiative 

processes on the picosecond time scale.42-47 In analogy with other 2D methods, the present 2DRR 

measurements reveal heterogeneity within the ensembles for the two systems. The 220-cm-1 iron-

histidine stretching mode is of particular interest because of its prominence in MbO2, where the 
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heme moiety transitions from a planar to non-planar geometry following photodissociation.48 In 

addition, vibrational modes associated with the propionic acid side chains may provide insight 

into energy exchange between the heme and aqueous solvent.49-52 Line broadening mechanisms 

of these modes are intimately connected to such vibrational energy exchange, because they 

reflect fluctuations in the geometries. 

The present work builds upon a variety of experimental approaches that we have 

developed for conducting 2DRR experiments in recent years.41, 53-54 An earlier report of the 

technique employed in this work focused primarily on experimental issues.41 Control 

experiments were used to show that the response of metMb exhibits the anticipated (correct) 

dependence on sample concentration and on the intensities of the incoming beams. The 

susceptibility of the experiment to cascaded four-wave mixing responses was an issue of primary 

concern, because these undesired nonlinearities present significant challenges in off-resonant 2D 

Raman experiments.26-28, 55-56 It was also shown that cascades of four-wave mixing signals are 

negligible under our experimental conditions. Calculations suggest the selection rules that 

enhance cascaded signal intensity under electronically off-resonant conditions are obviated when 

all pulses are electronically resonant with the system. In effect, the direct and cascaded signals 

compete on the same footing when all laser beams are tuned into electronic resonance. The 

cascaded signal is weaker than the direct response with optical densities of metMb less than 1.0, 

because it involves two more field-matter interactions (i.e., it is a higher-order process in this 

respect). Our analysis suggests that the direct response of myoglobin will also dominate in a 

conventional three-beam FSRS geometry. That is, it may generally be possible to conduct 2DRR 

spectroscopy without beam geometries cleverly designed to induce phase mismatch in third-

order nonlinearities. 
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 Experimental Methods 

5.2.1. Sample Preparation 

Myoglobin from horse skeletal muscle (Sigma-Aldrich) is dissolved in 0.1-M sodium 

phosphate buffer at a pH of 7.0. The metMb solutions are centrifuged at 6000 revolutions per 

minute for 15 minutes before each experiment to optimize the optical quality.  To convert metMb 

to MbO2, 10-fold molar excess of sodium hydrosulfite is added to reduce metMb.  Air is then 

bubbled through the solution for 15 minutes until it is bright red in color. Attainment of a high 

quality MbO2 sample is confirmed by comparison of the sample’s linear absorption to the known 

spectrum of MbO2. The primary metric is the peak position of the Soret band, which is located at 

409 and 418 nm for metMb and MbO2, respectively.57 Spontaneous Raman spectra are also used 

to confirm the position of the most intense in-plane bond stretching vibration (i.e., an oxidation 

state marker band). The vibrational frequencies of this mode are close to 1373 and 1356 cm-1 for 

metMb and MbO2 , respectively.58-59 In all experiments, the 0.2-mM sample of myoglobin is 

flowed through a wire-guided jet with a thickness of 220 μm, where the reservoir volume is 50 

mL.60 Absorbance spectra are measured before and after experiments to confirm the absence of 

sample degradation.  

5.2.2. Spectroscopic Measurements 

In this section, we summarize key aspects of the experimental approach, which is 

described at length in Reference 41. As in earlier work, we employ laser pulses which are all 

resonant with the Soret bands of metMb and MbO2 (see Figure 5.2). The narrowband Raman 

pump pulses are generated by sending 70-fs, 410-nm second harmonic pulses through a 4F 

spectral filter consisting of two 2400-g/mm gratings and two 25-cm focal length lenses. Pulses 

with spectral widths of 50 cm-1 are obtained by placing a slit with a 890-μm width at the 2F 

plane. Broadband actinic pump and Stokes pulses are produced by focusing a 90-μJ, 410-nm 
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second harmonic beam into a 75-cm long hollow core fiber filled with 1.0 atm of argon gas. The 

spectrally broadened output of the fiber is compressed using fused-silica prisms separated by 50 

cm to achieve an instrument response of 20 fs over full the spectral range corresponding to 

Raman shifts of 200-1500 cm-1 (413-437 nm).  

 

Figure 5.2. Laser spectra are overlaid on the linear absorbance spectra of (a) metMb and (b) 

MbO2 in aqueous buffer solution at pH=7.0. 

 

Experiments are conducted with the diffractive optic-based interferometer shown in 

Figure 5.3. All beams are focused onto the diffractive optic with a 50-cm focal length spherical 

mirror. Approximately 25% of each incident beam is diffracted into each of the three diffraction 

orders (0 and +/-1). The 20-cm focal length imaging mirror is rotated off-axis by approximately 

5º (i.e., the minimum amount). The actinic pump and Raman pump beams cross at approximately 

6.9º in the diffractive optic and are bisected by the Stokes beam. The angle between the +1 and -

1 diffraction orders of the Raman pump beams is 6.9º. The angle between +1 and -1 diffraction 

orders of the actinic pump and Stokes beams is 7.2º; the actinic pump and Stokes pulses have the 
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same spectrum (see Figure 5.2). Pulse energies of the actinic pump and Stokes pulses are 100 nJ 

each. The pulse energy of each Raman pump is 150 nJ. The FWHM spot sizes of all laser beams 

are 200 μm at the sample position. 

 

Figure 5.3. Diffractive optic-based interferometer used for 2DRR measurements. The 

transparent fused silica window delays pulse 3 by 290 fs with respect to pulse 4 (delay 
2  in 

Figure 5.1). A four-beam geometry is used to detect the signal radiated in the direction, k1-

k2+k3-k4+k5; the wavevectors k1 and k2 cancel each other. The 2DRR signal is obtained by 

measuring differences with and without the actinic pump (beam 1,2). Beams represented with 

solid circles reach the sample, whereas those represented with open circles are blocked with a 

mask.  

 

We employ a four-beam geometry in which the signal is associated with the difference 

produced by the actinic pump beam.41 The four-wave mixing "background" generated by the 

Raman pump and Stokes pulses is not difficult to subtract, because it is only 10-20 times larger 

than the desired fifth-order response. We find that the background is most effectively removed 

by subtracting spectra acquired at negative delay times (far from the rise of the FSRS signal near  

1 =-10 ps). An alternate approach in which the actinic pump beam is chopped at every delay 

point results in poor signal quality because of the longer data acquisition time. Despite its smaller 

background, we opt not to use the five-beam geometry described in Reference 41, because it is 

more difficult to maintain alignment day-to-day. In addition, color tunable actinic pump beams 
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may be employed in the four-beam geometry, and such experiments are presently being pursued 

with the same experimental setup.54 

Signals are detected using a back-illuminated CCD array (Princeton Instruments PIXIS 

100B) mounted on a 0.3-meter spectrograph with a 1200-g/mm grating. The signal beam is 

focused to a spot size of 100 μm at the entrance to the spectrograph to obtain hardware-limited 

spectral resolution of approximately 10 cm-1. Ultimately, the resolution of the measurement is 

limited by the 50-cm-1 spectral width of the Raman pump beam. The total FSRS response 

produces roughly 1000 counts on the detector at each delay point with an integration time of 100 

ms. The vibrational coherences associated with the 2DRR component of the response are all less 

than 5% of the total signal. The delay, 1 , of the actinic pump is scanned 100 times, and the signal 

is averaged to optimize the data quality. 

 Simulations of 2DRR Spectra 

The development of 2DRR spectroscopy is still at an early stage despite a long history of 

off-resonant 2D Raman work. As mentioned above, signal generation is allowed and forbidden 

for harmonic systems in resonant and off-resonant experiments, respectively. The implications of 

this difference in selection rules for information content has not yet been established. To this 

end, we begin this section by examining signatures of inhomogeneous broadening and 

anharmonicity in 2DRR spectra for a pair of vibrational modes. The 2DRR spectrum of 

myoglobin is then simulated using parameters derived from earlier spontaneous resonance 

Raman experiments. Insights gained from these calculations will be used to interpret 

experimental signals in Section 5.4.   
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5.3.1. Signatures of Inhomogeneous Broadening in 2DRR Spectra 

The ability to distinguish inhomogeneous and homogeneous line broadening mechanisms 

motivated the first multidimensional Raman experiments conducted in the late 1980’s and early 

1990’s.18, 21 The spectroscopic signatures are much like those associated with 2D photon echo 

experiments, where heterogeneity gives rise to a difference between the diagonal and anti-

diagonal widths.1, 8, 61-62 Inhomogeneous line broadening is a signature of correlation between the 

resonance frequencies detected in the two frequency dimensions.63-64 Unlike Raman echo 

experiments,21 the present (fifth-order) 2DRR experiments do not yield the time scale at which 

correlation decays, because an intermediate "waiting time" cannot be scanned.18 Rather, we are 

able to detect the amount of correlation present in the system on the time-scale of the inverse of 

the vibrational line width.  

Spectroscopic signatures are most easily established with calculations based on two 

vibrational modes and a single electronic resonance. The model developed in Reference 41 can be 

adapted for this purpose (see Section 5.7.1). We take the mode frequencies to be 400 cm-1 and 

1100 cm-1 in order to produce well-resolved vibrational resonances. Resolution of the various 

2DRR peaks also requires that the two mode frequencies and their overtones are well-separated. 

For example, the overtone of the 400-cm-1 mode at 800 cm-1 must be well-separated from the 

fundamental mode frequency at 1100 cm-1. The dimensionless displacement of each mode is set 

equal to 0.75 so that all key resonances can be observed on the same linear scale for the signal 

magnitude.  

Heterogeneity is introduced by convoluting the signal field defined in Section 5.7.1 with 

a Gaussian function,  

( ) ( )5

1 2 2 1 2( , ) , ( , )a b DRR a bS G E d d       
 

− −
=    ,                              (5.1)  
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Here, a  is the deviation of the harmonic mode frequency, a  ,from its mean value, a  (in cm-1) 

whereas a  is the width of the inhomogeneous distribution. The inter-mode correlation 

parameter,  , ranges from the fully anti-correlated (-1) to fully correlated (+1) limits.63-64 The 

signal field depends on a  and b  through the vibrational Hamiltonian of the system (see 

Section 5.7.2).  

The calculations in Figure 5.4 are conducted in the anti-correlated (  =-0.75), 

uncorrelated (  =0), and correlated (  =+0.75) regimes. Of course, the diagonal peaks exhibit 

correlated line shapes for all cases, because the inhomogeneous widths, a  and b , are nonzero. 

Notably, this signature of inhomogeneous line broadening cannot be derived from one-

dimensional Raman spectroscopy (e.g., third-order stimulated Raman and spontaneous Raman 

measurements). For diagonal 2DRR peaks, the anti-diagonal width is related to homogeneous 

broadening, whereas the diagonal width represents the combination of homogeneous and 

inhomogeneous widths. Unlike the diagonal peaks, the orientations and relative intensities of the 

cross peaks depend on the correlation parameter,  ; the cross peaks possess an anti-diagonal 

and diagonal slant when the correlation parameter is negative and positive, respectively. The 

cross peaks exhibit a fairly “round” line shape for the uncorrelated limit in Figure 5.4(b). These 

spectroscopic signatures are much like those established in 2D infrared experiments.1, 8, 61-62 The 
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relative intensities of the cross peaks are largest when   is positive because of cancellations 

between terms with opposite signs in ( ),a bG   . 

 

Figure 5.4. 2DRR spectra computed for a pair of harmonic oscillators with inhomogeneous line 

broadening. The spectra are computed by combining Equations 5.1 and 5.23 with the parameters 

given in Table 5.1.  The correlation parameter,   , is set equal to (a) -0.75, (b) 0.0, and (c) 0.75. 

The diagonal peaks always exhibit correlated line shapes, whereas the orientations and 

intensities of the off-diagonal peaks depend on the correlation parameter,   . 

 

5.3.2. Signatures of Anharmonicity in 2DRR Spectra 

Signal generation is allowed in off-resonant 2D Raman experiments only if the modes are 

anharmonic or the polarizability scales nonlinearly with the vibrational coordinates.19-20 Thus, 

success in detecting the signal constitutes unambiguous evidence of a non-trivial behavior. Of 

course, this aspect of the off-resonant nonlinearity also means that the signal will generally be 

small and that artifacts such as cascades can readily contaminate the signals.27-28 As noted in our 

previous work, 2DRR spectroscopy is "easier" to conduct than off-resonant 2D Raman 

experiments, because signal generation is allowed for harmonic modes. Unfortunately, this also 

means that any pair of harmonic Franck-Condon active modes will generate a 2DRR cross peak, 
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thereby complicating signal interpretation. We investigate signatures of anharmonicity in 2DRR 

spectra in this section. 

 

Figure 5.5. 2DRR spectra computed with the anharmonic vibrational Hamiltonian described in 

Section 5.7.2 and the parameters in Table 5.1. The diagonal cubic expansion coefficients are set 

equal to -5 (first row), 0 (second row), and 5 cm-1 (third row). The off-diagonal expansion 

coefficients are set equal to -5 (first column), 0 (second column), and 5 cm-1 (third column). The 

response of a harmonic system is shown in panel (e). These calculations suggest that 

anharmonic coupling promotes intensity borrowing effects via the transformation of Franck-

Condon overlap integrals from the harmonic to anharmonic basis set (see Equation 5.26). For 

many of the parameter sets, anharmonicity causes the intensity of the cross peak above the 

diagonal to increase relative to that of the cross peak below the diagonal. This effect is most 

pronounced in the left column. 
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As in Section 5.3.1, calculations are conducted for a pair of vibrational modes and single 

electronic resonance. However, we treat only homogeneous line broadening here in order to 

focus on the effects of anharmonicity. Cubic force constants are added to a harmonic vibrational 

Hamiltonian as described in Section 5.7.2. The two normal modes mix through cubic force 

constants that depend on two coordinates. These "off-diagonal" cubic expansion coefficients are 

denoted as 122U , 212U , 221U , 211U , 121U , and 112U . In contrast, the "diagonal" cubic expansion 

coefficients, 111U  and 222U , primarily shift the resonances to lower frequencies.  

In Figure 5.5, the off-diagonal expansion coefficients are all set equal to three values (-5, 

0, and 5 cm-1) to illustrate the effects that these terms have on 2DRR spectra. New resonances 

are not generated; however, the peak intensities are affected by an intensity borrowing effect that 

originates in the transformation of Franck-Condon overlap integrals from the harmonic to 

anharmonic basis sets (see Equation 5.26). Calculations are also carried out for three values of 

the diagonal expansion coefficients (-5, 0, and 5 cm-1). In general, the cross peak intensities 

above the diagonal increase relative to the cross peak below the diagonal for the anharmonic 

systems (see Figures 5.5(a), 5.5(d), 5g, and 5.5(i)). In general, differences between 2DRR spectra 

for the anharmonic and harmonic (see Figure 5.5(e)) systems are fairly subtle, which suggests 

limited potential of the 2DRR technique to reveal anharmonic couplings in the present a quasi-

degenerate (one-color) configuration. 

For FSRS signals represented in the traditional way ( 1  and 2  in our notation), it has 

been shown that anharmonic coupling between modes may cause the vibrational resonance 

frequencies in 2  to oscillate with respect to 1  in ring-opening65 and proton photodissociation66 

reactions. The present model does not predict such dynamics, because the non-oscillatory 
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component of the signal dominates the response under one-color conditions. In previous 2DRR 

studies of the photodissociation reaction of triiodide, we observed anharmonicity-induced 

oscillations in the vibrational resonance frequencies under two-color conditions.53-54  Although 

signatures of anharmonicity are more readily derived from two-color 2DRR experiments, it will 

still be true that cross peaks are generated for all pairs of Franck-Condon actives modes (whether 

they are harmonic or not). Simulated 2DRR spectra will be useful for identifying genuine 

evidence of anharmonicity. 

5.3.3. Predicted 2DRR Spectrum of Myoglobin 

Calculations presented in Sections 5.3.1 and 5.3.2 provide basic insights into 2DRR 

signal interpretation. The simulations suggest that signatures of inhomogeneous line broadening 

will be fairly obvious, whereas unambiguous evidence of anharmonicity will be difficult to 

derive from experimental data (particularly in one-color experiments). It will be useful to 

"estimate" how the 2DRR spectrum of myoglobin should be expected to appear based on earlier 

work. To this end, the parameters needed to simulate the 2DRR spectrum for a one-color 

experiment can be obtained from earlier fits to the spontaneous Raman excitation profiles for the 

Soret band.67 Notably, these fits are carried out in a basis of harmonic modes. 

In Figure 5.6, we present a 2DRR spectrum computed in the homogeneous limit of line 

broadening using the parameters given in Table 5.2. The four most dominant vibrational modes 

are included in the model. A peak associated with each mode appears on the diagonal. The most 

intense cross peak is found at 1 / 2 c  =220 cm-1 (iron-histidine stretch) and 2 / 2 c  =1356 cm-1 

(in-plane stretch of heme); the cross peak intensity above the diagonal is greater than that found 

for the corresponding cross peak below the diagonal. The model additionally suggests that the 

intensity of the cross peak above the diagonal increases with respect to the peak below the 
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diagonal as the dimensionless displacements increase. The spectrum in Figure 5.6 exhibits weak 

off-diagonal peaks that are shifted down the 2  axis from the 674-cm-1 and 1356-cm-1 diagonal 

peaks by 220 cm-1. These off-diagonal peaks represent sequences in which the system evolves in 

a coherence at the fundamental 674-cm-1 or 1356-cm-1 frequency 1  and an inter-mode coherence 

in 2 . Finally, we remark that the calculations presented in Figure 5.6, which employ large mode 

displacements, exhibit a peak associated with an inter-mode vibrational coherence on the 

diagonal (at 1 / 2 c  = 2 / 2 c  =454 cm-1). Detection of this type of resonance requires two 

modes with significant displacements. 

Overall, the calculations presented in Figures 5.4-5.6 suggest that line broadening 

mechanisms will be the primary information to be derived from 2DRR spectra for myoglobin. 

Signatures of anharmonicity are likely to be ambiguous in the present quasi-degenerate (one-

color) experiments, because the response is allowed for harmonic modes. Moreover, the fairly 

small potential energy surface displacements found in myoglobin should make most cross peaks 

difficult to detect.67  
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Figure 5.6. 2DRR spectrum of myoglobin computed using parameters obtain by fitting 

spontaneous resonance Raman excitation profiles.67 The spectrum is dominated by resonances 

on the diagonal. The most dominant cross peak is associated with the iron-histidine stretch (

1 / 2 c  =220 cm-1) and in-plane stretching mode ( 2 / 2 c  =1356 cm-1). The spectra are 

computed by combining Equation 5.23 with the parameters in Table 5.2. 

 

 Results and Discussion 

5.4.1. Isolation of 2DRR Signal Components 

In this section, we show how the 2DRR response is extracted from the total signal. To 

begin, the procedure used to obtain the FSRS-like representation of the signal at various delay 

times, 1 , was described at length in earlier work.41 Examples of such FSRS-like signals are 

shown in Figures 5.7(a) and 5.7(d). The novel aspect of this study is that we carry out a Fourier 

transformation with respect to 1  to generate a 2DRR spectrum. The main challenge in doing so 

is that the coherent signal component of interest must be separated from the much larger 

incoherent fifth-order response. Below, we discuss issues particular to this aspect of the data 

analysis.  
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Figure 5.7. Signals obtained for (a) metMb and (d) MbO2 in a FSRS-like representation. At each 

point in 2 , the incoherent baseline is generated using the maximum entropy method. Shown 

here are slices of the signals for (b) the 670-cm-1 mode of metMb and (e) the 370-cm-1 mode of 

MbO2. Coherent residuals are obtained by subtracting incoherent MEM baselines from the total 

signals for (b) metMb and (e) MbO2. The coherent residuals are presented for (c) metMb and (f) 

MbO2. 

 

To illustrate the method of data analysis, we begin by examining time-dependent Raman 

spectra obtained for both metMb and MbO2 in Figure 5.7. In both cases, peaks are observed near 

220 cm-1, 370 cm-1, 675 cm-1, and 1356 cm-1. The in-plane bond stretching mode is a particularly 

useful marker for the oxidation state of the heme. The vibrational wavenumber is 1356 cm-1
 in 

MbO2 and 1373 cm-1 in metMB.59 The 220-cm-1 resonance corresponds to the iron-histidine 

stretch on the proximal side of the heme group. The 370-cm-1 mode represents double bond 

(methylene) stretching local to the propionic acid side chains (see Figure 5.8).  Finally, the 670 
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and 1356-cm-1 (or 1373-cm-1) modes correspond to deformation and bond-stretching motions 

localized on the tetrapyrrole moiety, respectively. The intensity of the 220 cm-1 mode varies 

significantly between systems, because photodissociation is initiated only in MbO2. That is, there 

is a significant excited state potential energy gradient for the iron-histidine stretch in MbO2, 

because the iron moves out of plane following photodissociation. 

 

Figure 5.8. Molecular structure of iron protoporphyrin-IX. 

 

Oscillatory signal components in 1  are isolated by subtracting incoherent baselines 

generated using the maximum entropy method (MEM), which suppresses low-frequency artifacts 

that may arise when baselines are produced using a small number of exponential functions.68 In 

Figures 5.7(b) and 5.7(e), we overlay example MEM fits with signals obtained for both metMb 

and MbO2; residuals are plotted in Figures 5.7(c) and 5.7(f). The analysis is carried out 

beginning at a delay time of 0.1 ps in 1   to remove contributions from the region of pulse 

overlap. The 2DRR spectra shown in Figure 5.9 are obtained by repeating this procedure at every 
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point in 2  (i.e., every pixel on CCD array), then carrying out a Fourier transformation with 

respect to 1 , 

( ) ( ) ( )1 2 1 2 1 1 1 1, , expS S i d      = − ,                                     (5.3) 

where ( )1 2,S    is the baseline-subtracted signal, ( )1 2,S    is the 2DRR spectrum, and   is a 

time constant used to suppress contributions from delay times at which the oscillations have 

decayed below the noise level. In the present work we set   equal to 1.4 ps-1. 

The 2DRR spectra of both systems shown in Figure 5.9 exhibit diagonal peaks near 220 

cm-1, 370 cm-1, 674 cm-1, and 1356 cm-1 (close to 1373 cm-1 in metMb).59, 67 The peaks near 1356 

cm-1 are relatively weak, because the 24-fs period of this mode is slightly larger than the 19-fs 

instrument response width at this particular value of the Raman shift. Two cross peaks are 

located above the diagonal. The cross peaks at 1 / 2 c  =50 cm-1 and 2 / 2 c  =674 cm-1 reflect 

motion along the doming coordinate in 1 . Cross peaks are also located near 1 / 2 c  =370 cm-1 

and 2 / 2 c  =1356 cm-1. It is interesting that only one cross peak is found in the slice of the 2D 

spectrum near 2 / 2 c  =1356 cm-1; cross peaks near 1 / 2 c  =674 cm-1 and 2 / 2 c  =1356 cm-

1 are below the detection threshold despite the significant intensity of the diagonal peak at 674 

cm-1. This aspect of the spectrum is consistent with the simulation in Figure 5.6. In this 

calculation, an intense cross peak is generated above the diagonal near 1 / 2 c  =220 cm-1 and 

2 / 2 c  =1356 cm-1, but not at 1 / 2 c  =674 cm-1 and 2 / 2 c  =1356 cm-1. The measurement 

in Figure 5.9 differs from Figure 5.6 in that off-diagonal peaks are not detected 220 cm-1 below 

diagonal peaks in 2  (e.g., at 1 / 2 c  =674 cm-1 and 2 / 2 c  =454 cm-1). The key issue is that 
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the iron-histidine stretch is less intense than the prediction based on a fit to the spontaneous 

Raman excitation profile.67  

Cross peaks are detected below the diagonal near 1 / 2 c  =990 cm-1 and 2 / 2 c  =674 

cm-1. We tentatively suggest that a Franck-Condon active vinyl stretching mode is responsible 

for the 990-cm-1 of this peak in the first dimension.59 The absence of a diagonal peak at 1 / 2 c 

= 2 / 2 c  =990 cm-1 could be explained by the weaker Franck-Condon activity of this mode. It is 

unclear why a cross peak is not also detected at 1 / 2 c  =674 cm-1 and 2 / 2 c  =990 cm-1. One 

possibility is that anharmonicity redistributes intensities among cross peaks as demonstrated in 

Figure 5.5. The calculation presented in Figure 5.6 captures many aspects of the measured 

2DRR spectra in Figure 5.9; however, knowledge of the anharmonic couplings may be the key to 

precisely reproducing peak intensities. The calculations presented in Figure 5.5 suggest that 

intensity borrowing effects may be observed with relatively modest anharmonic couplings.  
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Figure 5.9. Experimental 2DRR spectra for (a) metMb and (b) MbO2 are generated by Fourier 

transforming the coherent residuals with respect to 1  at each point in 2  (i.e., at each pixel in 

CCD detector). For both systems, diagonal peaks are detected near 220, 370, 674, and 1356 cm-
1 (close to 1373 cm-1 in metMb). Arrows are used to identify cross peaks. 
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5.4.2. Analysis of Spectral Line Shapes 

The ability to distinguish inhomogeneous and homogeneous line broadening mechanisms 

motivated the first multidimensional Raman experiments.18, 21 As in 2D infrared spectroscopy, 

information about the line broadening mechanism can be read directly from the line shape. 

Inhomogenous broadening will cause peaks to elongate on the diagonal of the 2DRR spectrum; 

the diagonal width will then be greater than the anti-diagonal width. Correlated line shapes may 

be observed when spectral diffusion of a vibrational resonance frequency is much slower than 

the time-scale of the inverse line width (roughly 1 picosecond). In this section, we characterize 

the 2DRR line shapes shown in Figure 5.9. The present analysis is limited to the region of the 

spectrum between 200 and 800 cm-1 in both dimensions, because we find no evidence of 

inhomogeneous line broadening elsewhere.  
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Figure 5.10. Line shapes of diagonal peaks are examined in lower-frequency regions of 2DRR 

spectra obtained for (a) metMb and (b) MbO2. Peaks are fit to two-dimensional Gaussians with 

correlation parameters in panels (c) and (d) (see Equation 5.2). The parameter,  , ranges 

between the uncorrelated (  =0) and fully correlated (  =1) limits for diagonal peaks. A 

correlation parameter greater than 0 is a signature of inhomogeneous line broadening. In panels 

(e) and (f), the slope consistent with each correlation parameter is overlaid on the experimental 

data to offer an additional perspective. For both systems, the 370-cm-1 methylene deformation 

mode local to the propionic acid side chains exhibits the greatest amount of heterogeneity 

(wavenumber near 370 cm-1). 

 

In Figure 5.10, all peaks are fit to two-dimensional Gaussian line shapes of the form 

given in Equation 5.2. The correlation parameter,  , generally ranges from the fully anti-

correlated (  =-1) to fully correlated (  =+1) limits. However,   should not be less than zero 

for diagonal peaks. This form of the 2D Gaussian function takes into account the difference in 

frequency resolution associated with the two dimensions. The correlation parameters must be 

equal to zero if the line broadening mechanisms are fully homogeneous. With inspiration from 

2D infrared spectroscopy, slopes obtained with a linear regression analysis are overlaid on 
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various peaks in Figures 5.10(c) and 5.10(f). The slopes are useful for inspection of the data but 

are less rigorous than the 2D Gaussian fits, because they are affected by frequency resolution. 

The iron-histidine stretching mode near 220-cm-1 exhibits a smaller amount of 

heterogeneity; the correlation parameter is 0.14 in metMb and 0.09 in MbO2. For both systems, 

the greatest amount of heterogeneity is associated with the 370-cm-1 methylene deformation 

mode local to the propionic acid groups. The correlation parameter for this mode is 0.43 in 

metMb and 0.54 in MbO2. We hypothesize that this heterogeneity originates in fluctuations of 

the “floppy” propionic acid side chains. That is, the 2DRR data suggest that rigidity of the 

macrocycle suppresses heterogeneity in higher frequency modes such at the in-plane deformation 

near 674 cm-1. 

5.4.3. Computational Analysis of Line Broadening Mechanism 

In this section, computational models are used to explore the effects that motions of the 

propionic acid side chains have on the vibrational frequency of the 370-cm-1 methylene 

deformation mode. In particular, we are interested in how the magnitudes of the fluctuations 

compare to characteristic frequencies in the spectral densities (i.e., spectra of vibrational 

freqeuncy fluctuations). These comparisons will provide insights into the line broadening 

mechanisms. It is relatively straightforward to model fluctuations in the geometries of the 

proteins with classical molecular dynamics (MD) simulations; however, the vibrational 

frequencies should be calculated at a higher level of theory. Here, we use ab initio maps to 

parameterize the vibrational frequencies associated with side chain geometries extracted from 

MD simulations. Similar approaches have been used to interpret 2D infrared experiments 

conducted on proteins and pure liquids.69-72 

Fluctuations in the geometries of the proteins are modeled with MD simulations based on 

the GROMACS96 force field73-75 To prepare the systems, heavy atoms in the proteins were 
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restrained and an energy minimization (steepest descent method) was implemented to relax the 

solvent around the protein. This was followed by two equilibration steps in the isothermal-

isochoric and isothermal-isobaric ensembles for a total of 400 ps. Simulations were run for 1 ns 

with 2 fs steps. The ab initio maps are constructed by first optimizing the geometries of the 

isolated hemes at the B3LYP/6-311G(2d,3p) level.76 The equilibrium dihedral angles associated 

with the propionic acid side chains are L =81.3° and R =81.1° for metMb and L =94.4° 

and R =109° for MbO2 (see Figure 5.11). The ab initio maps are produced by varying the two 

dihedral angles (in steps of 5°) over the full ranges covered by the MD simulations while holding 

all other coordinates fixed at the values corresponding to the equilibrium geometries. In doing so, 

it is assumed that the frequency of the methylene deformation mode local to the propionic acid 

side chains is primarily affected by the "floppy" coordinates of the side chain. The vibrational 

modes are computed at each geometry, and the methylene deformation mode is identified by (i) 

large-amplitude motion of the methylene bonds near the propionic acid side chain and (ii) the 

scalar product with the normal mode calculated at the equilibrium geometry. The resulting maps 

of vibrational frequencies are presented in Figures 5.11(b) and 5.11(e). With these maps, the 

vibrational frequency is readily generated at each step in the MD trajectory by extracting the two 

dihedral angles. Segments of the trajectories are presented in Figures 5.11(c) and 5.11(f). Scatter 

plots of the dihedral angles suggest that fluctuations in these coordinates are fairly evenly 

distributed about the equilibrium geometry (see Supplementary Material).77 
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Figure 5.11. Dihedral angles associated with the propionic acid chains are defined for the heme 

in (a) metMb and (d) MbO2. The vibrational frequency of the methylene deformation mode local 

to the propionic acid side chains is computed as a function of the two dihedral angles for (b) 

metMb and (e) MbO2. These ab initio maps are used to parameterize the vibrational frequencies 

associated with molecular dynamics simulations. Segments of the trajectories for vibrational 

frequencies are shown for (c) metMb and (f) MbO2.  

 

MD trajectories of vibrational frequencies for metMB and MbO2 yield standard 

deviations of 5.9 and 7.0 cm-1, respectively. These standard deviations correspond to FWHM line 

widths of 13.9 and 16.5 cm-1 under the assumption of Gaussian line shapes. These line widths are 

smaller than those found in the 2DRR measurements shown in Figure 5.9 because of finite 

spectral resolution. In order to obtain further insight into the line broadening mechanism, time-

correlation functions associated with the MD trajectories are Fourier transformed to produce the 

spectral densities shown in Figure 5.12.78-79 The spectral densities show how the fluctuation 
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amplitudes are distributed in the frequency domain. The simulations suggest that the fluctuations 

in the vibrational frequencies are dominated by thermal motion below 10 cm-1; however, higher-

frequency components with magnitudes up to 10% of the maximum value are found in both 

systems.  

The line broadening mechanism can be interpreted by comparing the fluctuation 

amplitudes (5.9 cm-1 in metMb and 7.0 cm-1 in MbO2) to the characteristic frequencies of 

thermal motion (i.e., dominant part of spectral density). In the homogeneous limit, the fluctuation 

amplitude must be small compared to the characteristic frequency, whereas the opposite applies 

in the inhomogeneous limit.78 The spectral densities computed with MD simulations have 

decayed to roughly 50% of their maximum values at frequencies corresponding to the 5.9 and 

7.0-cm-1 fluctuation amplitudes computed for metMb and MbO2. Thus, the calculations suggests 

that the line broadening of both systems reside between the homogeneous and inhomogeneous 

limits. The correlation parameters of 0.43 and 0.54 determined from experimental data for 

metMb and MbO2 are consistent with the line broadening regime predicted by the MD 

simulations (see Figure 5.10). 
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Figure 5.12. Spectral densities of the methylene deformation modes obtained from molecular 

dynamics simulations. The spectral densities decay to less than 50% of the maximum values at 

frequencies corresponding to the fluctuation amplitudes (5.9 and 7.0 cm-1 for metMb and MbO2). 

These calculations are consistent with an intermediate line broadening regime.  

 

5.4.4. Implications for the Vibrational Cooling Mechanism 

The propionic acid groups are known to dominate vibrational energy exchange of the 

heme with its surrounding environment. Hochstrasser first proposed this mechanism in 1994, and 

MD simulations contributed further support several years later.49-51 In 2006, the role of the 

propionic acid groups was finally confirmed by a direct experimental test in which vibrational 

cooling rates were compared for the native protein and a mutant.52 These earlier works suggest 

that the propionic acid side chains are an effective gateway for vibrational energy transfer, 

because they hydrogen bond with the aqueous solvent. In contrast, the porphyrin macrocycle is 

enclosed in a hydrophobic pocket devoid of solvent. The surrounding protein matrix is less 
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effective than the solvent in exchanging vibrational energy with the porphyrin despite close to 90 

van der Waals contacts.80 This behavior underscores the important role of hydrogen bonds in 

accelerating solute-to-solvent vibrational energy transfer.81 

The experimental data and computational simulations presented in Figures 5.10-5.12 

suggest that the 2DRR line shapes of the methylene deformation modes reflect heterogeneity in 

the geometries of the side chains. It is interesting to consider whether or not heterogeneity in the 

structure translates into heterogeneity in the vibrational cooling rate. This issue cannot be 

directly addressed with 2DRR spectroscopy. However, Berg and co-workers have shown that 

such information about incoherent dynamics can be derived from six-wave mixing 

experiments.82-83 We are presently using a related pump-repump-probe approach to examine 

heterogeneity in vibrational cooling rates in heme proteins. 

 Concluding Remarks 

In summary, we have conducted quasi-degenerate (one-color) 2DRR spectroscopy 

experiments on oxygen- and water-ligated myoglobin. The experimental technique developed in 

Reference 41 has been leveraged to produce 2D resonance Raman spectra.  For both systems, we 

find that the greatest amount of heterogeneity is associated with the methylene deformation 

mode local to the propionic acid side chains. The computational model presented in Section 5.4.3 

yields distributions with standard deviations of 5.9 and 7.0 cm-1 for metMb and MbO2, 

respectively. It is interesting to consider whether or not the vibrational cooling rate of the heme 

varies as a consequence of heterogeneity in the propionic acid groups. This issue will be 

addressed in future work using pump-repump-probe spectroscopy.  

The calculations in Section 5.3 suggest that two key points must be considered when 

interpreting 2DRR signals. First, 2DRR experiments do not necessarily yield information about 

anharmonic mode couplings, because the signal is allowed for harmonic systems. The absence of 
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a signal for harmonic systems is one of the primary motivations for conducting electronically 

off-resonant 2D Raman experiments.19, 27-28, 55-56 Thus, a tradeoff between information content 

and susceptibility to experimental artifacts is made when 2D Raman experiments are conducted 

under electronically resonant conditions. A two-color implementation of 2DRR spectroscopy 

may expand the range of scientific questions that can be addressed, but does not change this 

essential aspect of the signal generation mechanism.54 Second, 2DRR experiments can be used to 

characterize vibrational line broadening mechanisms in a straightforward way. As in 2D infrared 

experiments, inhomogeneous line broadening is made clear by inspection of the 2DRR signal. 

Notably, the line broadening mechanism cannot be directly determined from traditional (third-

order) coherent Raman or spontaneous Raman spectroscopies.18  

 Supplemental Information 

5.6.1. Response Function 

The fifth-order polarization possesses 16 components when a single electronic resonance 

dominates the optical response.41 The 2DRR spectra in this work are calculated by Fourier 

transforming the polarization components presented in Reference 41 with respect to the delay 

time, 1 . The frequency dimension, 2 , is equal to the difference between the detection 

frequency, t , and the frequency of the narrowband Raman pump, RP . The summations 

below are restricted to eliminate population terms from the dimensions, 1  and 2 .  The 16 

polarization components are 
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The electronic line shape function, ( ),en gmL  , is written as 
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L
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The vibrational line shape functions, ( ), 1gk gmD   and ( ), 2gu gmJ  , are given by 
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The fifth-order 2DRR signal field is expressed in terms of these polarization components as 
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where perfect phase-matching has been assumed and the factor of 1/7 represents the orientational 

average for all-parallel electric field polarizations.84  

5.6.2. Anharmonic Vibrational Hamiltonian 

All calculations conducted in this work are based on the following vibrational 

Hamiltonian,85 

( ) ( ) (

)

† † † † † † †
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where the cubic expansion coefficients are given by 
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The basis set is taken to be uncoupled at second-order for this Hamiltonian. Therefore, 

normal modes are recovered if the cubic expansion coefficients are set equal to zero. This is the 

most natural basis set for the present study, because the calculations in Section 5.3 make use of 

fitting parameters obtained in a basis of normal modes.67 Vibrational wavefunctions are obtained 

by diagonalizing the Hamiltonian in a basis of harmonic oscillators (up to the 20 vibrational 

quanta in each mode results in good convergence). 

The vibrational overlap integrals needed to evaluate the response functions are written as  

n mn m  


   =  ,                                  (5.26) 

where n  is the expansion coefficient for harmonic basis function   and the anharmonic 

vibrational wavefunction, n .   
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5.6.3. Parameters Used in the Model 

Table 5.1. Parameters of Theoretical Model for System with Two Vibrational Modes 

 (a)Parameter Value 

/ 2eg c   23250 cm-1 

AP   & RP   set equal to eg  

(b)
a   400 cm-1 

(b)
b  1100 cm-1 

(c)
ad  0.75 

(c)
bd  0.75 

/vib c  10 cm-1 

/eg c  750 cm-1 

eg  8.8 D 

(d)
a  & b  35 cm-1 

(a) The number density ( N ), refractive index ( ( )tn  ), and path length ( l ) do not affect these results because 

normalized intensities are displayed (see Equation 5.22). 

(b) The parameter, j , is the wavenumber for mode j , j = / 2j c  . 

(c) The parameter, jd , is the dimensionless potential energy minimum displacement for mode j . 

(d) Inhomogeneous line broadening is included only for the calculations shown in Figure 5.5 (see Equations 5.1 and 

5.2). 
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Table 5.2. Parameters of Model Based on Empirical Fit of Spontaneous Raman Signals 

 (a)Parameter Value 

/ 2eg c   23250 cm-1 

AP   & RP   set equal to eg  

(b)
1   220 cm-1 

(b)
2  370 cm-1 

(b)
3   674 cm-1 

(b)
4  1356 cm-1 

(c)
1d  0.47 

(c)
2d  0.20 

(c)
3d  0.26 

(c)
4d  0.34 

/vib c  10 cm-1 

/eg c  750 cm-1 

eg  8.8 D 

(a) The number density ( N ), refractive index ( ( )tn  ), and path length ( l ) do not affect these results because 

normalized intensities are displayed (see Equation 5.22). 

(b) The parameter, j , is the wavenumber for mode j , j = / 2j c  . 

(c) The parameter, jd , is the dimensionless potential energy minimum displacement for mode j .  
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CHAPTER 6. IMAGING CARRIER DIFFUSION IN PEROVSKITES WITH A 

DIFFRACTIVE OPTIC-BASED TRANSIENT ABSORPTION MICROSCOPE4 

 Introduction  

Organohalide perovskites carry many advantages for use in solar cells and other 

optoelectronic devices.1-3 They can be processed from solution4 and have absorbance spectra that 

are readily tuned with control of the halide ratio5 and metal cation.6 Long diffusion lengths7-8 and 

low susceptibility to trap-assisted recombination9-10 have also been demonstrated, which is a 

remarkable result considering the flexibility of the ionic lattice.11 Slow vibrational cooling, 

which occurs on the time scale of 100 picoseconds, is one source of enhanced carrier transport in 

perovskites.3, 12-14 The extent to which grain boundaries and many-body decay processes 

influence carrier transport is also under investigation.8, 15-16 

Carrier mobilities in organohalide perovskites have been determined using a variety of 

methods. Conventional (indirect) measurements of carrier diffusivities yield values (0.02-0.16 

cm2/s)7, 13, 17 that are an order of magnitude smaller than those obtained in a more direct manner 

with transient absorption microscopy (0.05-1.77 cm2/s).14, 18-20 Discrepancies in the diffusion 

coefficients determined using these two approaches are thought to represent the influence of 

grain boundaries.20 In the conventional approach, an electron (PCBM) or hole quencher (Spiro-

OMeTAD) is placed in contact with the perovskite. Diffusion coefficients can then be 

determined under the assumption that electron transfer is instantaneous when an electron reaches 

                                                 
4 This chapter previously appeared as an article in the Journal of Physical Chemistry C. The original citation is as 

follows: Guo, Z.; Zhou, N.; Williams, O. F.; Hu, J.; You, W.; Moran, A. M., Imaging Carrier Diffusion in 

Perovskites with a Diffractive Optic-Based Transient Absorption Microscope. J. Phys. Chem. C Just Accepted 

Manuscript. Copyright (2018) American Chemical Society. 
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the interface with the quencher. While the conventional approach is often effective, the rate of 

electron transfer and the quenching efficiency can vary significantly at different locations on 

heterogeneous interfaces.21 Such a breakdown in assumptions may lead to an underestimation of 

diffusion coefficients. By contrast, carrier diffusion within individual grains can be directly 

imaged with transient absorption microscopy, thereby eliminating contributions from grain 

boundaries when the laser is focused to a spot size smaller than an individual grain.  

Ultrafast transient absorption microscopy is a relatively new approach for studying 

carrier diffusion in nanoparticles and films.14, 18-20, 22-26 Systems under investigation include 

silicon nanowires,23 metal dichalcogenides,25 perovskite thin films,14, 18, 20 and various organic 

semiconductors.22 In these types of experiments, the pump beam is typically focused to a sub-μm 

spot size and a probe beam is raster scanned in order to image carrier diffusion. Laser systems 

with MHz repetition rates are best-suited to such point-by-point methods for image construction. 

In an alternate approach that is more appropriate for laser systems with kHz repetition rates, an 

entire femtosecond time-resolved image is obtained in a wide-field geometry without scanning 

the position of a laser beam.27-28 Unfortunately, wide-field imaging is not well-suited for studies 

of carrier diffusion because the pump and probe beams are focused to large spot sizes on the 

sample. A method that combines wide-field imaging with the initiation of a localized distribution 

of carriers (on the μm length scale) is better-suited for laser systems with kHz repetition rates. 

In this work, we describe a diffractive optic-based, wide-field method for conducting 

transient absorption microscopy. In order to directly image carrier diffusion in organohalide 

perovskite systems, the pump and probe beams, which counter-propagate through the 

microscope objective, and are focused to 0.7-μm and 150-μm spot sizes on the sample surface, 

respectively. Up to 41 transient absorption experiments are conducted in parallel using an array 
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of pump laser beams generated with a diffractive optic. This multi-beam approach facilitates the 

rapid attainment of statistical information. The capabilities of the instrument are demonstrated 

with measurements conducted on lead iodide perovskite films and single crystals. This choice of 

systems is motivated by two goals. The first goal is to analyze the effects of grain boundaries on 

the diffusivities and relaxation processes. The second goal is to establish a fitting procedure that 

accounts for the dependence of the excited state lifetime on the position-dependent laser 

intensity.  

 Experimental Methods 

6.2.1. Sample Preparation  

Methylammonium lead iodide perovskite films were prepared based on previously 

reported methods.29 Dimethylformamide (DMF) was obtained from Sigma-Aldrich, lead iodide 

was purchased from Alfa Aesar, methylammonium iodide (MAI) was obtained from Solaronix, 

and isopropanol (Optima grade) was purchased from Fisher Scientific. All materials were used 

without further purification.  

FTO (Sigma-Aldrich; ~13 Ω/sq, approx. 1.1 cm2) substrates were cleaned via sonication 

for 20 minutes in a series of four solvents: Contrex AP glassware detergent in deionized water, 

deionized water, acetone, and isopropanol. Substrates were dried in a stream of nitrogen gas 

following the isopropanol wash.  

Pre-cleaned FTO substrates and a lead iodide solution (0.83 M in DMF) were preheated 

at 90°C for 30 minutes immediately before film deposition. Perovskites films were prepared 

using a two-step fabrication process. First, 50 μL of the pre-heated lead iodide solution was 

deposited onto the preheated substrate by spin coating at 6000 RPM for 20 seconds (3000 

RPM/second acceleration). Immediately following the spin coating, 200 μL of MAI solution (10 

mg/mL in isopropanol) was deposited on top of the lead iodide layer and allowed to soak into the 
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film for 10 seconds. Excess solvent was spun off the film using the previously described spin 

cycle. The perovskite films were then annealed at 90°C for 40 minutes.  

The perovskite crystal was prepared with a space-limiting method reported elsewhere.30 

First, 461 mg of lead iodide and 159 mg of MAI were dissolved in 0.75 mL γ-Butyrolactone 

(from Sigma-Aldrich) and heated at 60 °C. A drop of the precursor solution was then deposited 

onto a glass slide (Fisher Scientific, pre-cleaned and used as received) and covered with a second  

identical slide. Thin perovskite crystals were then grown between the glass slides at 120 °C for 2 

hours.  

6.2.2. Transient Absorption Microscopy 

 

Figure 6.1. Transient absorption microscopy experiments are conducted with a diffractive optic-

based, wide-field microscope. (a) A diffractive optic is used to generate an array of pump beams 

which focus at different places on the sample. (b) Array of 41 pump laser beams is focused onto 

the sample surface. (c) Counter-propagating pump and probe beams are focused to FWHM spot 

sizes of 0.7 and 150 μm, respectively. 



221 

All experiments are conducted with a 45-fs, 4-mJ Coherent Libra laser system with a 1-

kHz repetition rate. Continuum pump and probe pulses are produced by focusing 1.5 mJ of the 

800 nm fundamental beam into a 2-m long tube filled with argon gas to induce continuum 

generation. The continuum is then divided into pump and the probe beams with a 70:30 beam 

splitter. The two laser beams are passed through all-reflective 4F setups, which are based on 

1200 g/mm gratings and 20-cm focal length mirrors. Motorized slits at the Fourier planes are 

used to filter the desired portions of the pump and probe spectra. The spectrally filtered pulses 

have 250-fs durations and 5-nm widths. The continuum beams are then relayed into the 

microscope setup shown in Figure 6.1(c). Pulse energies are controlled with neutral density 

filters. 

The operations performed by the diffractive-optic based microscope are illustrated in 

Figure 6.1(a). Three beams are shown for clarity; however, arbitrary beam patterns can be 

generated by customizing the diffractive optic.31-32 The pump is split into 41 beams with the 

diffractive optic (Holoeye) employed in this work (see Figure 6.1(b)). The two lenses placed 

before the microscope objective have 10-  and 2.5-cm focal lengths, which reduce the angles 

between beams by 75%. The pump beams are then focused onto the sample with a microscope 

objective (Olympus). The infinity-corrected microscope objective has a magnification of 40x, a 

numerical aperture of 0.95, and a working distance of 0.18 mm. The tube lens located between 

the objective and the detector is also infinity-corrected and has an 18-cm focal length. With this 

objective, the FWHM spot size of each pump beam is 0.7 µm on the sample surface. The probe 

beam, which has a fluence of approximately 15 µJ/cm2 at the sample, is focused to a spot size of 

150 μm from the opposite side of the microscope objective using a 10-cm focal length lens. 

Therefore, the probe intensity for a spot at one of the corners of the array of pump beams is 11% 
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less than that of the central beam (see Figure 6.1(b)). Of course, a difference of 11% is irrelevant 

in transient absorption experiments because differential absorption is independent of the probe 

intensity. 

The CMOS detector is 12-bit with a 1024×1280 array of pixels and 915 Hz maximum 

frame rate (Phantom Miro C110). The detector is synchronized to the laser system at 1 kHz. An 

optical chopper, which is placed in the path of the pump beam, cycles the instrument between the 

pump-on, 
1S , and pump-off, 

2S ,  conditions at 500 Hz. Differential absorption is then computed 

as ( ) ( )1 2log logA S S = − . Each differential absorption image is averaged over a total of 100 

images in a single scan of the delay line. The delay line is scanned 30 times during each 

experiment. 

 

Figure 6.2. Control experiments are conducted to establish a model for signal processing. (a) 

The decay rate decreases with distance from the center of one of the pump beams because of the 

decrease in laser fluence. Transient absorption signals measured at 760 nm for the (b) film and 

(c) crystal exhibit square root dependencies on the fluence of the pump beam (pump is at 570 

nm).  
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 Signal Processing 

Sensitivity of the photoluminescence quantum yield to the incident light intensity has 

been demonstrated in previous studies of organohalide perovskites.33-36 The quantum yield of 

light emission is compared to the spatially-averaged intensity (i.e., averaged over the beam 

profile) of the incident laser beam in these measurements. In the present experiments, it is 

important to account for variation of the carrier lifetimes across the Gaussian beam profile. As 

expected, we find that the lifetime is shortest in the center of the pump beam and increases at 

points displaced from the peak of the intensity distribution (see Figure 6.2(a)). Such variation of 

the lifetime promotes a delay-dependent expansion in the width of the signal spot that is 

unrelated to carrier diffusion. Incorporating this process into the algorithm for signal 

interpretation is important because the carrier diffusivity will be overestimated if the intensity 

dependence of the lifetime is not taken into account.  

The relaxation dynamics under investigation exhibit a clear dependence on the pump 

intensity as evidenced by variation of the lifetime within the laser spot. We account for such 

many-body relaxation processes with the modified diffusion equation, 

                      
2 2

0 2

1 2

N N N N
D

x  

 
= − −

 
,                                       (6.1) 

where x  is a spatial coordinate (a one-dimensional slice through the peak of a two-dimensional 

Gaussian intensity distribution), N  is the density of electronic excitations, 0D  is a diffusion 

constant, 1  is the single-body carrier lifetime, 2  and is a two-body relaxation time.  

Data processing involves calculating full-width-half-maxima of the signal spots at each 

delay point. The signal intensity is first normalized to 1 for each one-dimensional slice of the 

signal. On the left (smaller x value) side of the peak, two successive data points (x1, y1), (x2, y2) 
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are located at a signal intensity of 0.5. The half-width-half-maximum coordinate on this side of 

the peak is then calculated with linear interpolation,  

( ) 2 1
1 1

2 1

0.5left

x x
HWHM y x

y y

−
= −  +

−
.                              (6.2) 

 

Figure 6.3. Transient absorption spectra measured for the perovskite (a) film and (b) crystal 

with a 570-nm pump wavelength. Imaging for both systems is conducted with at probe 

wavelength of 760 nm. 

  



225 

The relation between the signal intensity ( ),S x   and carrier density ( ),N x   must be 

known in order to fit the data. We have confirmed that the signal scales as the square root of 

( ),N x  ,  

( ) ( ), ,S x A N x = ,                           (6.3) 

where A  is a linear scaling parameter determined in the fitting process (see Figures 6.2(b) and 

6.2(c)). When interactions between electronic excitations are significant, such scaling is 

anticipated for signal components in which the system evolves in an excited state population 

during the delay time,   (e.g., stimulated emission in Figure 6.3).14, 37 The initial condition 

required to solve Equation 6.1 is given by 

( )
( )

2

,0
,0

S x
N x

A

 
=  

 
.                               (6.4) 

The boundary condition for the differential equation is 

( ),0 0N  = .                                    (6.5) 

The least squares method is used to fit the data and obtain the parameters 
0D , A , 1 , and 

2 . 

 Results and Discussion 

Both the film and crystal exhibit intense stimulated emission resonances near 760 nm as 

shown in Figure 6.3. Evidence for excitons has been presented for perovskites with crystalline 

domains in recent literature;26, 38 however, we do not observe signatures of excitons in this 

crystal (i.e., no excited state absorption in the 700-800 nm range). The transient absorption 

spectrum of the film red-shifts at delay times less than 10 ps, whereas the peak of the signal is 

essentially independent of the delay time for the crystal. This difference between the spectra is 

partly due to a larger excited state absorption response in the film at detection wavelengths less 
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than 740 nm. In order to compare both systems on similar footing, images are constructed with 

signal detection at 760 nm. The dynamics of interest occur on the nanosecond time scale and are 

therefore insensitive to the ultrafast red-shift in the signal spectrum of the film. 

 

Figure 6.4. Transient absorption signals measured with 570-nm pump beam and 760-nm probe 

beam with a pump fluence of 40 μJ/cm2. Images measured for a perovskite film at delay times of 

(a) 1 ps, (b) 500 ps, and (c) 1000 ps. Images measured for a perovskite single crystal at delay 

times of (d) 1 ps, (e) 500 ps, and (f) 1000 ps. The sizes of the signal spots expand as the delay 

time increases because of carrier diffusion and intensity dependence of the carrier lifetimes.  

 

Transient absorption images measured for the perovskite film and crystal are presented in 

Figure 6.4. In both systems, the signal spots expand as the delay time increases due to carrier 

diffusion and/or intensity dependence of the carrier lifetimes. These two processes cannot be 

distinguished by inspection. Rather, it is necessary to vary the intensities of the pump beams and 
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fit the intensity distributions of the signals. In addition, the shape of the signal intensity is 

maintained as time evolves for carrier diffusion, whereas the peak of the signal “flattens” when 

intensity dependence of the excited state lifetimes takes hold. While Equation 6.1 is sufficient for 

such line shape analysis, conclusions about the influence of the pump intensity on the widths of 

the signal spots should be corroborated with measurements in which the intensity of the pump is 

varied over a wide range. 

 

Figure 6.5. Full-width-half-maximum spot widths measured for a methylammonium lead iodide 

perovskite film (top row) and single crystal (bottom row). The data are fit with Equation 6.1 

(blue line). These data suggest that dynamics in the film and crystal are associated with fluence-

dependent carrier lifetimes and carrier diffusion, respectively. 

 

Dynamics in the spatial widths of the transient absorption signal spots are displayed in 

Figure 6.5. Equation 6.1 adequately describes the dynamics in the spot widths for both samples 

at all pump fluences. In the film, the magnitude of the expansion in the signals’ spot widths 

becomes larger as the pump fluence increases, whereas the spot widths are fairly insensitive to 

the pump fluence in the crystal. The behavior of the film suggests that the spot widths increase 
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primarily because the carrier lifetimes are shortest in the center of the signal spot (see Figure 

6.2(a)). This fluence-dependent effect on the spot widths is associated with the two-body 

contribution to the relaxation time, 
2 . In contrast, the delay-dependent increases in the spot 

widths determined for the crystal are insensitive to the fluence of the pump, which indicates that 

carrier diffusion is responsible for the dynamics. 

 

Figure 6.6. Statistical analyses of fitting parameters for perovskite film and single crystal: (a) 

diffusion coefficients, 
0D ;  (b) single-body relaxation rate, 1

1 − ; (c) two-body relaxation rate, 

1

2 − . The uncertainty intervals represent two standard deviations. These data confirm the 

negligibility of carrier diffusion in the perovskite film. In contrast, expansion of the signal spots 

observed for the perovskite crystal is dominated by carrier diffusion. 

 

The fitting parameters obtained for the perovskite film and crystal are compared in Figure 

6.6. The error bars span ranges equal to two standard deviations. The parameters are obtained by 

fitting the transient absorption dynamics at each spot on the sample surface with Equation 6.1. 

The means and standard deviations for each of the parameters are then calculated for 41 and 33 

spots for the film and crystal, respectively. Fewer laser spots are processed for the crystal 

because of light scattering at defects. 

The diffusion coefficients, 0D , determined for the single crystal are near 0.20 cm2/s for 

most pump fluences, whereas those obtained for the film are close to 0.01 cm2/s. Diffusivities of 
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the carriers in the film are below the lower limit of the range of values reported in earlier studies 

(0.02-0.16 cm2/s).7, 13, 17 In contrast, the diffusion coefficients determined for the crystal are 

within the range of those reported in recent transient absorption microscopy measurements 

conducted on individual grains (0.05-1.77 cm2/s).14, 18-20 The smaller diffusivities determined for 

carriers in the film are consistent with the dynamics in the spot widths displayed in Figure 6.5. 

Notably, the parameters, 
0D  and 

2 , are governed by dynamics in the shapes of the signal spots 

(i.e., the peak of the signal spot “flattens” when two-body dynamics contribute). For this reason, 

Figures 6.5 and 6.6 represent independent ways to differentiate diffusion and intensity 

dependence of the carrier lifetimes.  

Our data suggests that the difference in diffusion coefficients, 
0D , obtained for the film 

and crystal are associated with grain boundaries. The grain sizes in the film are on the order of 

0.2 μm, which is smaller than 0.7-μm spot sizes of the pump laser. Thus, the experimental 

measurements are sensitive to inter-grain carrier diffusion processes in the film (i.e., insensitive 

to diffusion within the grains). This may explain why the diffusion constants for the film derived 

from our measurements are smaller than those reported in recent transient absorption 

microscopies.14, 18, 20   

 Conclusion 

In summary, the present approach for conducting transient absorption microscopy solves 

several technical challenges associated with the use of a 1-kHz laser system. First, the data 

acquisition time is minimized by employing a wide-field geometry in which the pump and probe 

beams counter-propagate through the sample. The pump beams are focused to spot sizes with 

FWHM of 0.7 μm, whereas the spot size of the probe beam is 150 μm. In this configuration, an 

entire image of the sample can be obtained in less than one second without raster scanning 
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individual laser beams on the sample surface. Second, a diffractive optic is used to generate an 

array of 41 pump beams. Conducting many transient absorption experiments in parallel allows 

statistics to be quickly compiled.  

The capabilities of the instrument are demonstrated with applications to a 

methylammonium lead iodide perovskite film and crystal. Our data suggests that carrier 

diffusion in the film is essentially negligible on the nanosecond time-scale, whereas the diffusion 

coefficients in the crystal are approximately 0.2 cm2/s.  Measurements conducted at multiple 

pulse energies are required to distinguish between two mechanisms for delay-dependent 

expansions in the spot widths: carrier diffusion and intensity-dependence of the carrier lifetimes. 

We conclude that the spot widths expand in the film because of intensity-dependence of the 

carrier lifetimes rather than carrier diffusion. These differences between the film and crystal are 

attributed to the presence of grain boundaries in the film. 
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CHAPTER 7. CONCLUDING REMARKS 

The works in this dissertation have developed two diffractive optical element (DOE) 

based spectroscopy techniques: two-dimensional resonance Raman (2DRR) spectroscopy and 

multiplex wide-field transient absorption microscopy. 2DRR provides new insights into fast 

chemical reactions involving simple molecules or even complex proteins. Specifically, this work 

has revealed the correlation between vibrational coherence in the reactant and product, as well as 

investigated the heterogeneity in protein conformations responsible for dissipating energy to the 

surroundings. Besides 2DRR, multiplex wide-field transient absorption microscopy is capable of 

imaging the entire area of interest in one shot and conducting a large number of transient 

absorption measurements in parallel. Statistical information is available after only one 

experiment, which is essential for highly heterogeneous samples. Chapter 1 discussed the 

scientific background and motivation driving the demands of new spectroscopy methods in this 

dissertation. Chapter 2 introduced the basic theories related to DOE-based spectroscopies and 

detailed the instrumental setups applied in the rest of this dissertation.  

The DOE-based 2DRR was firstly applied to a small molecule model system, triiodide, in 

Chapter 3.  The measurement assigned the nuclear motions of the reactant and product into 

separate dimensions without ambiguity and established a positive correlation between vibrational 

coherences, indicating that the nonequilibrium bond length of triiodide determines the vibrational 

coherence frequency of diiodide. To further validate this assertion, a simulation based on a 

theoretical model that treats the reaction as a ‘coherence transfer transition’ was found to match 

the experimentally measured signals. 
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In Chapter 4, the focus was shifted to a more complicated system, the photo-dissociation 

of ligands in myoglobin—protein that possesses many active vibrational coordinates. As a 

derivative of 2DRR applied above, a femtosecond stimulated Raman spectroscopy (FSRS) pulse 

sequence is implemented in the DOE-based six-wave-mixing interferometer, which eliminates 

the low-order nonlinearities and collects the background-free fifth-order signal. This approach 

significantly shortens the data acquisition time and improves the signal-to-noise ratio. The 

Raman response of the photo-excited heme throughout the fingerprint region was detected in the 

frequency dimension while the evolution of vibrations was measured in the time domain. The 

agreement in time scales of the vibrational cooling between our results and reports made by 

Chergui and coworkers1 demonstrates the effectiveness of this approach. As another contribution 

to the field of spectroscopy, carefully controlled experiments were conducted to rule out the 

possibility of cascades, which are a technical issue that produced many artifacts in previously 

performed off-resonance two-dimensional Raman spectroscopies. A publication containing the 

work in Chapter 4 was an Editor’s Choice in the Journal of Chemical Physics for the year 2015.2 

Further study of myoglobin in Chapter 5 relies on the high-quality data measured with the 

approach detailed in Chapter 4. Fourier transform of the vibrational coherence in the time-

dimension yields the 2DRR spectra, which is sensitive to signatures of different line broadening 

mechanisms. The measurement together with simulation suggests that the greatest amount of 

heterogeneity is contributed by the methylene deformation mode, which is local to the propionic 

acid side chains.  Because they serve as the gateways mediating fast energy dissipation from the 

heme,2-6 variation in these side chains may play critical roles in such process. 

Besides studying photo-dissociation reactions in triiodide and myoglobin, 2DRR should 

be sensitive to other photo-induced reactions where a non-radiative electronic transition occurs at 
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the same time scale as the nuclear vibrations. This technique could bring new insights for 

processes including energy transfer in photosynthetic complexes7-12, charge transfer in electron 

transport chain chromophores,13-14 charge transfer at the molecule-semiconductor interfaces,15-17 

electron migration in polymer-fullerene blends,18 and even the chemistry comprising the initial 

steps of vision.19-20 2DRR correlates the vibrational coherence in the reactant and product with 

clear assignment of the signal origins and distinguishes the static and dynamic line broadening 

mechanisms. 

As the next step of applying DOE in spectroscopy, a multiplex excitation transient 

absorption microscopy technique was developed in Chapter 6. The data acquisition time is 

minimized by employing counter-propagating pump and probe beams, which facilitates wide-

field detection and generates the whole image on the camera within one laser shot. More 

importantly, the DOE splits the pump into many segments and makes it possible to 

simultaneously measure multiple spots on a heterogeneous sample. The obtained averaged 

properties together with variation reflect the intrinsic nature of a sample without bias, which is 

essential for nanomaterials.  

To demonstrate the ability of the DOE-based microscope, carrier diffusion in 

methylammonium lead-iodide perovskite films and crystals were measured. By applying a 

diffusion model with two-body relaxation process, our analysis suggests that the diffusivities in 

crystals are at least one order of magnitude larger than in films. The differences between the 

systems are attributed to the presence of grain boundaries in the films. (Modify this paragraph 

according to the updated version of the microscopy paper). 

The DOE-based microscope can also be applied to other newly-emerging materials, such 

as two-dimensional (2D) Ruddlesden–Popper perovskites. 2D perovskites refer to few-layer 
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perovskite sheets surrounded by layers of organic cations, in which the thickness of the organic 

layer determines the degree of quantum confinement.21-22 Because of the tunability and higher 

stability comparing to its three-dimensional counterpart, low-dimensional perovskite films, 

which is a mixture of different thickness, have been implemented in solar cells23-25 and LEDs.26-

30 For solar cells, these benefits were obtained at a price of low power conversion efficiency due 

to the low carrier mobility inside or between the quantum-confined layers.31-37 On one hand, the 

latter has been improved by building preferential layer alignment perpendicular to the film 

substrate34. Besides, recent reports indicated that a statistically ordered layer distribution and a 

suitable bandgap alignment engineering facilitate ultrafast carrier or energy transfer between the 

layers thus enhance the performances of 2D perovskite devices.38-44 (Also cite our JCP and Liang 

Yan’s paper here). On the other hand, there is still no direct measurement of the carrier transport 

inside individual 2D perovskite grain, where the excitons diffusion could be remarkably different 

from the bulk as observed in transition metal dichalcogenides.45-47 Stronger exciton many-body 

interactions31, 48 and exciton-phonon interactions49-51 are the possible factors affecting carrier 

mobility in 2D perovskites. Applying the DOE-based microscopy could provide a solid-base to 

analyze the mechanisms involved in exciton diffusion process. 

In summary, we developed two DOE-based spectroscopy techniques: two-dimensional 

resonance Raman spectroscopy and wide-field transient absorption microscopy. We 

demonstrated the validity of these techniques by applying them on simple systems, like triiodide, 

complicated biological samples, like the protein myoglobin, and a newly-emerging 

semiconductor, lead halide perovskites. 
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APPENDIX A: SUPPLEMENT TO “ELUCIDATION OF REACTIVE WAVEPACKETS 

BY TWO-DIMENSIONAL RESONANCE RAMAN SPECTROSCOPY” 

 

Figure A1. Fenyman diagrams associated with dominant 2DRR nonlinearities. Blue and red 

arrows represent pulses resonant with triiodide and diiodide, respectively. The indices r  and *r  
represent the ground and excited electronic states of the triiodide reactant, whereas p  and *p  

correspond to the diiodide photoproduct. Vibrational levels associated with these electronic 

states are specified by dummy indices ( m , n , j , k , l , u , v , w ). Each row represents a different 

class of terms: (i) both dimensions correspond to triiodide in terms 1-4; (ii) both dimensions 

correspond to diiodide in terms 5-8; (iii) vibrational resonances of triiodide and diiodide appear 

in separate dimensions in terms 9-12. The intervals shaded in blue represent a non-radiative 

transfer of vibronic coherence from triiodide to diiodide.  
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A.1. Derivation of Formula for the Two-Dimensional Resonance Raman Signal Field 

The Feynman diagrams presented in Figure A1 include dummy indices for vibrational 

levels ( m , n , j , k , l , u , v , w ) associated with the ground and excited electronic states of the 

reactant ( r  and 
*r ) and product ( p  and *p ). Response functions are written in the Condon 

approximation, where the integral over electronic and nuclear degrees of freedom in the 

transition dipole is separated into a product of integrals. For example, an interaction that couples 

vibrational level m  in the ground electronic state of the reactant and vibrational level n  in the 

excited electronic state contributes the product, *r r n m , to the response function, where *r r  

is the electronic transition dipole of the reactant and n m  is a vibrational overlap integral. We 

use a notation in which the index for the excited state vibrational energy level is always written 

in the bra.1 

Under the assumption that the photodissociation time scale is short compared to the 

vibrational period, the time interval, PDt , can be eliminated from consideration. The response 

functions corresponding to the fifth-order diagrams in Figure A1 can then be written as 
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In the above equations, the propagation functions corresponding to vibronic (in 1t , 3t , or 5t ) and 

purely vibrational (in 2t  or 4t ) coherences are respectively given by2 
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                                                 ( ) ( ) ( )* , * *expr m rn r r mn r rL t t i t i t t  = − − −                                  (A13) 

and 

                                                         ( ) ( ) ( ), exprm rn mn vibL t t i t t = − −   ,                                     (A14) 

where ( )t  is a Heaviside step function. It is assumed in Equation (A13) that electronic 

dephasing is much faster than vibrational dephasing (i.e.,  *r r >> vib ). 

We next obtain the 12 components of the fifth-order polarization by convoluting the 

response functions with the external electric fields. The component of the fifth-order polarization 

corresponding to the 1R  term is given by 
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where N  is the number density and j  are the pulse delay times defined in the manuscript. 

Pulses with the subscripts UV and VIS are taken to interact with triiodide and diiodide, 

respectively. Attainment of analytic expressions is facilitated by use of double-sided exponential 

electric field envelopes,  

                                                               ( )( ) expj j j jE t i t t = − −   ,                                        (A16) 

where j  is the (real) electric field amplitude, j  is the HWHM spectral width, and j  is the 

carrier frequency of the laser pulse (the index, j , signifies either the “pump” or “probe”), which 

we take to be resonant with the triiodide reactant. The polarization component, 
( )5

1 ( )P t , can now 

be rewritten as 
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We use a “doorway wavepacket” to filter vibrational coherences with frequencies that exceed the 

bandwidth of the pump pulse.2 To this end, we introduce the change of variables, 1 2t t t = + −  

and 2 4t t t = + − . The polarization component is then given by 
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Here, we have assumed that (i) 2 1t   in order to carry out the integral over t  and (ii) the pulse 

durations are short compared to the delay times to make the upper limits of the integrals over t  

and t  infinite. The time intervals, 1t  , 3t , and 5t , have also been removed from the arguments of 

the laser pulses under the assumption that the pulse durations are long compared to the electronic 

dephasing time. We next introduce the approximation, 5t t= ,  
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and Fourier transform the expression with respect to 1 , 2 , and t . Evaluation of the seven 

integrals in Equation (A19) yields     
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where the line shape of the electronic resonance is given by 
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The spectroscopic line shape associated with the doorway wavepacket is written as  
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We obtain the following 11 polarization components by following the same procedure 
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A.2. Dominance of the Direct 2DRR Response Over Third-Order Cascades 

Fifth-order coherent Raman spectroscopies conducted under off-resonant conditions are 

susceptible to artifacts known as cascades.3-7 A cascade is a sequence in which the four-wave 

mixing signal field generated by one molecule induces a four-wave mixing response on a second 

molecule. The second molecule then radiates a signal field in the same direction as the fifth-order 

signal of interest. Cascades are problematic under off-resonant conditions, because they can be 

many orders of magnitude more intense than the direct fifth-order response. It is thought that 

selection rules primarily govern this mismatch in signal intensities.7-9 That is, two-quantum 

transitions involved in the direct fifth-order process are forbidden in harmonic systems when the 

polarizability scales linearly in the vibrational coordinate. In contrast, third-order cascades are 

allowed in harmonic systems, which gives them a significant advantage over the fifth-order 

process. Cascades require this difference in selection rules to dominate over the direct fifth-order 

response, because they are higher-order in the sense that they involve two more field-matter 

interactions than the direct process (i.e., this extra factor of the polarizability operator suppresses 

the relative intensity of the cascaded response). 

Cascades were ruled out in our previous all-UV 2DRR study of triiodide using control 

experiments based on the signal phase, concentration dependence of the signal intensity, and the 

relative phases of the vibrations detected in four and six-wave mixing signals.8 The direct 2DRR 

response should be even more dominant in the present study because lower-frequency laser 

beams are employed. Moreover, the direct response is favored in the present experiments for the 

same reasons discussed at length in Reference 8. In pump-repump-probe experiments, inspection 

of the signal phase is a particularly convenient way to check for cascades, because third and 

fifth-order signals possess a readily detected sign difference.4-5 In contrast, cascades have the 

same sign as the direct third-order response. To illustrate this point, we present (third-order) 
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pump-probe and (fifth-order) pump-repump-probe signals acquired for triiodide in Figure A2. 

The two signals have opposite signs as expected for the direct response. Compared to the all-UV 

approach taken in Reference 8, the phase difference for vibrational motion is not as 

straightforward to predict in the present two-color experiments because of sensitivity to the 

complex photodissociation process. Nonetheless, in Figure A2b, we compare the third-order 

signal to a slice of the fifth-order signal in 2  (at 1 =0) at a signal detection wavenumber of 

20,000 cm-1 (500 nm). The analysis carried out in Reference 8 suggests that a phase shift near 

180º is expected for the direct fifth-order response under these conditions. This prediction is 

consistent with the measurement shown in Figure A2b. 

Our work suggests that contributions from cascades will generally be negligible in 

systems such as triiodide, where the excited state potential energy surface displacement is 

extremely large.8 In essence, Franck-Condon activity eliminates the problematic selection rules 

found under off-resonant conditions (see Figure 14 in Reference 8). We emphasize that the direct 

response is not necessarily predicted to dominate in systems with modest mode displacements 

(i.e., dimensionless displacements below 1), which are typically found in larger molecules. 

However, in a recent study of metmyoglobin, we still found that the direct fifth-order 

nonlinearity is at least 10 times larger than the cascaded response in dilute solution.10 It is worth 

noting that experiments in which the final four field-matter interactions are off-resonant with the 

equilibrium system are much less susceptible to cascades than our earlier all-resonant 

approaches.8, 10 In such a two-color configuration, the fifth-order response will be fully 

(electronically) resonant, whereas one of the four-wave mixing responses involved in a cascade 

must be (electronically) off-resonant (see  Figure 3.7 and terms 5-8 in Figure 3.2 of in Chapter 3 

of this dissertation). Pulse sequences in which the final four field-matter interactions are off-
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resonant with the equilibrium system are typically used in other types of optical pump-Raman 

probe experiments.11-16  

 

Figure A2. Comparison of signal phases obtained for third-order (pump-probe) and fifth-order 

(pump-repump-probe) signals. (a) Pump-probe (delay of 0.5 ps) and pump-repump-probe ( 1 =

2 =0.5 ps) signals have similar line shapes but opposite signs. This sign-difference suggests that 

the pump-repump-probe signal is dominated by the desired fifth-order nonlinearity (i.e., not 

third-order cascades). (b) Oscillations in pump-probe and pump-repump-probe signals are 

compared with signal detection at 20,000 cm-1 (500 nm). This is a slice of the pump-repump-

probe signal in 2  with the delay, 1 , fixed at 0 ps. A relative phase-shift near 180º suggests 

that the oscillatory component of the pump-repump-probe signal is dominated by the direct fifth 

order nonlinearity.8 
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APPENDIX B: SUPPLEMENT TO “FEMTOSECOND STIMULATED RAMAN 

SPECTROSCOPY BY SIX-WAVE MIXING” 

 

Figure B1. Feynman diagrams associated with the direct fifth-order response. The indices, g  

and e , represent the ground and excited electronic states, whereas dummy indices ( m , n , k , l ,
u , and v ) denote vibrational levels. Green, blue, and red arrows represent the actinic pump, 

Raman pump, and Stokes pulses, respectively. We restrict the response function to these 16 terms 

under the assumption that the signal is primarily resonance-enhanced by the Soret band.  

 

B.1. Derivation of Formula for Direct Fifth-Order Signal Field 

Here, we obtain formulas that can be used to compute the relative magnitudes of 

cascaded third-order and direct fifth-order signal fields. The Feynman diagrams presented in 

Figure B1 include dummy indices for vibrational levels ( m , n , k , l , u , and v ) associated with 

the ground and excited electronic states ( g  and e ). Response functions are written in the 

Condon approximation, where the integral over electronic and nuclear degrees of freedom in the 

transition dipole is separated into a product of integrals. For example, an interaction that couples 

vibrational level m  in the ground electronic state and vibrational level n  in the excited 

electronic state contributes the product, eg n m , to the response function, where eg  is the 

electronic transition dipole and n m  is a vibrational overlap integral. We use a notation in 

which the excited state vibrational energy level is always written in the bra.1 
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The response functions corresponding to the fifth-order diagrams in Figure B1 can be 

written as 
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In the above equations, the propagation functions corresponding to vibronic (in 1t , 3t , or 5t ) and 

purely vibrational (in 2t  or 4t ) coherences are respectively given by2 

                                                    ( ) ( ) ( ), expem gn eg mn egL t t i t i t t  = − − −                             (B17) 

and 

                                                       ( ) ( ) ( ), expgm gn mn vibL t t i t t = − −   ,                                 (B18) 
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where ( )t  is a Heaviside step function. Equation (B17) assumes that electronic dephasing is fast 

compared to vibrational dephasing (i.e.,  eg >> vib ). 

We next convolute the response functions and electric fields to obtain the 16 components 

of the fifth-order polarization. The component of the fifth-order polarization corresponding to the 

1R  term is given by 
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where N  is the number density, j  are the pulse delay times defined in the manuscript, and 

subscripts are used to specify the three types of laser pulses (actinic pump, Raman pump, and 

Stokes pulses). Attainment of analytic expressions is facilitated by use of double-sided 

exponential electric field envelopes, 

                                                          ( )( ) expj j j jE t i t t = − −   ,                                       (B20) 

where j  is the (real) electric field amplitude, j  is the HWHM spectral width, and j  is the 

carrier frequency. The polarization component, 
( )5

1 ( )P t , can now be rewritten as 
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The 65-fs actinic pump pulse employed in this work cannot initiate vibrational coherences in the 

high-frequency, bond-stretching modes in the delay, 1 . Therefore, we use a “doorway 
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wavepacket” to filter vibrational coherences with frequencies that exceed the bandwidth of the 

actinic pump pulse (i.e., this assumption is valid in the limit of non-overlapping actinic pump and 

Stokes pulses).2 We introduce the change of variables, 2 1t t = + , to obtain 
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where we have eliminated 1t  , 3t , and 5t  from the arguments of the pulse envelopes under the 

assumption that the pulse durations are long compared to the electronic dephasing time. Since we 

must carefully bookkeep on the phase-angle of the polarization, it should be noted that the 

infinite limits of the integral over t  yield a real Lorentzian function. We next introduce the 

approximation, 4 2t t  + ,  
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under the assumption that eg vib   . Evaluation of the four integrals in Equation (B23) yields     
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where the line shape of the electronic resonance is given by 
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and the doorway wavepacket induced by the actinic pump pulse is written as 
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The polarization component, 
( )5

1 ( )P t , must be Fourier transformed to the frequency domain to 

account for dispersed detection. To this end, it is useful to consider the following integral, 
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where t  is the frequency of light emission observed on the array detector. Evaluation of the 

sum of integrals in Equation (B27) yields 
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where t RP −  is the Raman shift. The first and third terms in Equation (B28) cancel each other 

when vib RP    (i.e., a reasonable approximation for the present experimental conditions) and 

we obtain 

                                   

( ) ( )

( ) ( )

( ) ( )

2
2

2 2

exp

exp

t RP um vib RP

t RP um RP vib

t RP um vib RP

i dt t i t t t

i

i


    

    

  



−
+  − − −  −   

− − − −  −    −
− − +  − 


 .                    (B29) 

Equation (B29) reveals a desirable line narrowing effect that originates in the difference between 

vib  and RP  in the denominator (i.e., the line widths of the vibrational resonances can be 
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narrower than the bandwidth of the Raman pump). The above equations can be combined to 

obtain 
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where 
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This expression sets St  equal to t  under the assumption of vibrationally resonant conditions, 

St RP um  −   and t RP um  −  . We obtain the following 15 polarization components by 

following the same procedure 
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The direct fifth-order signal field is expressed in terms of these polarization components 

as 
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where the factor of 1/7 represents the orientational average for all-parallel electric field 

polarizations.3    

B.2. Derivation of Formula for Third-Order Cascaded Signal Field  

The third-order response functions needed to compute cascaded nonlinearities can be 

derived under the same approximations outlined above. Feynman diagrams for third-order 

nonlinearities are presented in Figure B3. Response functions corresponding to these diagrams 

can be written as  

              ( ) ( ) ( ) ( ) ( )
43

1 1 2 3 , 1 , 2 , 3, , eg m en gm en ek en gl

mnkl

R t t t B n m k m k l n l L t L t L t=   ,       (B48)  

              ( ) ( ) ( ) ( ) ( )
43

2 1 2 3 , 1 , 2 , 3, , eg m gm en ek en ek gl

mnkl

R t t t B n m k m n l k l L t L t L t=  ,        (B49)  
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Figure B3. Feynman diagrams associated with the direct third-order CSRS response. The 

indices, g  and e , represent the ground and excited electronic state, whereas dummy indices (

m , n , k , and l ) denote vibrational levels. Blue and red arrows represent the Raman pump and 

Stokes pulses, respectively.  

 

B.2.1. Direct Coherent Stokes Raman Scattering (CSRS) Signal Field Obtained with the 

Phase Matching Condition k3-k4+k5 

We first consider the direct third-order CSRS signal field, which is compared to the direct 

fifth-order signal field in the four-beam geometry in section IIID of the manuscript. The CSRS 

polarization component associated with term, ( )1 1 2 3, ,F t t t , is given by  
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Application of the approximations and procedure outlined above yields 
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The polarization components for the three remaining terms are 
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The third-order CSRS signal field is given by 
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where the factor of 1/5 represents the orientational average for all-parallel electric field 

polarizations at third-order in perturbation theory.4     
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B.2.2. Cascades with Intermediate Phase-Matching Conditions k1-k2+k5 and k3-k4+k5 

In this section, we obtain an expression for the signal field generated by third-order 

cascades with intermediate phase-matching conditions, k1-k2+k5 and k3-k4+k5 , which we refer 

to as cascades 1 and 2, respectively. Figures B4 and B5 display all terms in the response 

functions associated with these types of cascades. The two processes essentially permute the type 

of nonlinearity that occurs on each molecule. A pump-probe-like response precedes a CSRS 

process in cascade 1, whereas the opposite is true for cascade 2. The polarization components for 

the CSRS process are given in Equations (B53)-(B56). Therefore, we must first derive equations 

related to the pump-probe response (actinic pump and Stokes probe). 

The pump-probe-like polarization component associated with term, ( )1 1 2 3, ,F t t t , is given 

by  
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Application of the procedure used to derive the fifth-order polarization components in section I 

yields 
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Under the same approximations, the polarization components for the three remaining terms are 
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The total signal field generated by the two cascades can be written as 
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where the phase matching function is given by 
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The factor of 1/25 represents the product of orientational averages for all-parallel electric field 

polarizations at third-order in perturbation theory.4 Wavevector mismatches, jAk  and jBk , 

associated with all direct and cascaded processes are given in Tables B1-B3. We consider the 

four and five-beam geometries employed in the manuscript in Tables B1 and B2. In Table B3, 

calculations are also carried out for a hypothetical three-beam geometry in which the actinic and 

Raman pump pulses cross at 6.9º and are bisected by the Stokes beam (i.e., traditional FSRS). 

Table B1. Wavevector Mismatch in the Five-Beam Geometry 

Nonlinearity ( )n

directk  (cm-1) Ak   (cm-1) Bk   (cm-1) 
(a),(b)Efficiency 

Direct Fifth-Order (FSRS) -215 ------ ------ 0.123 

Direct Third-Order 

(CSRS) 

-430 ------ ------ 0.050 

Cascade #1 (k1-k2+k5 

intermediate) 

------ -18 -197 0.069 

Cascade #2 (k3-k4+k5 

intermediate) 

------ -412 196 0.005 

(a) The efficiency is computed using 

( )

sinc
2

n

directk l 
  
 

 and sinc sinc
2 2

A Bk l k l    
   
   

 for direct and  cascaded 

processes, respectively.  
 (b) Path length, l , is 0.022 cm. 
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Table B2. Wavevector Mismatch in the Four-Beam Geometry 

Nonlinearity ( )n

directk  (cm-1) Ak   (cm-1) Bk   (cm-1) 
(a),(b)Efficiency 

Direct Fifth-Order (FSRS) -198 ---------- ---------- 0.123 

Direct Third-Order 

(CSRS) 

-225 ---------- --------------- 0.128 

Cascade #1 (k1-k2+k5 

intermediate) 

---------- -215 -215 0.015 

Cascade #2 (k3-k4+k5 

intermediate) 

---------- -215 -180 -0.002 

(a) The efficiency is computed using 

( )

sinc
2

n

directk l 
  
 

 and sinc sinc
2 2

A Bk l k l    
   
   

 for direct and  cascaded 

processes, respectively.  
 (b) Path length, l , is 0.022 cm. 

 

Table B3. Wavevector Mismatch in a (Hypothetical) Three-Beam Geometry 

Nonlinearity ( )n

directk  (cm-1) Ak   (cm-1) Bk   (cm-1) 
(a),(b)Efficiency  

Direct Fifth-Order (FSRS) 0 ------ ------ 1.000 

Direct Third-Order 

(CSRS) 

0 ------ ------ 1.000 

Cascade #1 (k1-k2+k5 

intermediate) 

------ 0 0 1.000 

Cascade #2 (k3-k4+k5 

intermediate) 

------ 0 0 1.000 

(a) The efficiency is computed using 

( )

sinc
2

n

directk l 
  
 

 and sinc sinc
2 2

A Bk l k l    
   
   

 for direct and  cascaded 

processes, respectively.  
 (b) Path length, l , is 0.022 cm.  
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Figure B4. Feynman diagrams associated with third-order cascades with the intermediate 

phase-matching condition k1-k2+k5 (referred to as cascade #1 in text). The indices, g  and e , 

represent the ground and excited electronic states, whereas dummy indices ( m , n , k , l ,u , and v ) 

denote vibrational levels. Field-matter interactions are color-coded as follows: actinic pump is 

green; Raman pump is blue; Stokes is red; radiated signal field is red; the field radiated at the 

intermediate step in the cascade is purple. We restrict the response function to these terms (total 

of 16 products) under the assumption that the signal is primarily resonance-enhanced by the 

Soret band. 
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Figure B5. Feynman diagrams associated with third-order cascades with the intermediate 

phase-matching condition k3-k4+k5 (referred to as cascade #2 in text). The indices, g  and e , 

represent the ground and excited electronic states, whereas dummy indices ( m , n , k , l ,u , and v ) 

denote vibrational levels. Field-matter interactions are color-coded as follows: actinic pump is 

green; Raman pump is blue; Stokes is red; radiated signal field is red; the field radiated at the 

intermediate step in the cascade is purple. We restrict the response function to these terms (total 

of 16 products) under the assumption that the signal is primarily resonance-enhanced by the 

Soret band.  
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APPENDIX C: SUPPLEMENT TO “TWO-DIMENSIONAL RESONANCE RAMAN 

SPECTROSCOPY OF OXYGEN- AND WATER-LIGATED MYOGLOBIN” 

C.1. Signatures of Anharmonicity in Time-Frequency Representation of 2DRR Signal 

As discussed in the main text, anharmonic coupling between modes may cause the 

vibrational resonance frequencies in 2  to oscillate with respect to 1  for FSRS signals 

represented in the traditional way ( 1  and 2  in our notation). Here, we examine this 

representation in our calculated signals. The first dimension may be expressed in the time 

domain by inverse Fourier transforming 
( ) ( )5

1 2,E    with respect to 1 . Analytic expressions for 

this representation, which we denote as 
( ) ( )5

1 2,E   , were given in Reference 1. The mean 

vibrational frequencies in 2  are then Fourier transformed with respect to 1 , 

                                   ( )
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
.                                (C1) 

in order to produce a vibrational spectrum associated with the quantum beats in the resonance 

frequencies. The lower,  , and upper,  , limits of the integral over 2  are respectively set 

equal to 250 and 550 cm-1 for the 400-cm-1 mode. Limits of 950 and 1250 cm-1 are used for the 

1100-cm-1 resonance in 2 .  

In Figure C1, we present vibrational spectra associated with quantum beats in the 

resonance frequencies. The harmonic system in panel (e) exhibits the most intense oscillations at 

the frequency corresponding to a coherence between the two modes (i.e., 700 cm-1 is the 

difference in wavenumbers. As in Reference 1, we find that oscillations in the mean vibrational 

resonance frequencies are observed even for a harmonic system (see Figures 11 and 12 in 

Reference 2). Anharmonicity causes the relative amplitude of the quantum beat at 400 cm-1 to 
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increase; the effect is most pronounced in panels C1(a), C1(c), C1(g) and C1(i) (i.e., the 

parameters with the greatest amount of anharmonicity) These results suggest that the relative 

amplitudes of various spectral components carry the key information about anharmonicity in this 

representation. Quantum beats at difference frequencies occur even in the harmonic system. This 

conclusion is still valid if the real or imaginary parts of the fifth-order signal field enter Equation 

(C1). We process the absolute value of the signal field, 
( ) ( )5

1 2,E   , because the time evolution 

(in 1 ) between absorptive and dispersive line shapes (in 2 ) gives rise to artificially large 

oscillations in the mean resonance frequencies (in 2 ). 
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Figure C1. Spectral components associated with oscillations of the mean vibrational resonance 

frequencies computed with an anharmonic vibrational Hamiltonian. The diagonal expansion 

coefficients are set equal to -5 (first row), 0 (second row), and 5 cm-1 (third row). The off-

diagonal expansion coefficients are set equal to -5 (first row), 0 (second row), and 5 cm-1 (third 

row). All amplitudes are normalized to the maximum found for the 400-cm-1 mode in the second 

row and first column. These calculations show that oscillations in the mean vibrational 

resonance frequencies occur primarily at the difference frequency in the harmonic system (see 

panel (e)). Anharmonicity increases the amplitude of oscillations at the fundamental frequencies 

of the vibrations. 
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C.2. Fluctuations in the Geometries of the Propionic Acid Side Chains Produced with 

Molecular Dynamics Simulations and an Ab Initio Map 

In this section, we present scatter plots for 5000 steps in the molecular dynamics 

trajectories of metMb and MbO2, respectively. The structures fluctuate in a fairly symmetric 

manner with respect to the equilibrium geometries.  

 

Figure C2. Distribution of dihedral angles for 5000 steps of the molecular dynamics trajectory 

simulated for metMb. The equilibrium dihedral angles associated with the propionic acid side 

chains (see Figure 5.11 in Chapter 5 of this dissertation) are L =81.3° and R =81.1°. 



277 

 

Figure C3. Distribution of dihedral angles for 5000 steps of the molecular dynamics trajectory 

simulated for MbO2. The equilibrium dihedral angles associated with the propionic acid side 

chains (see Figure 5.11 in Chapter 5 of this dissertation) are L =94.4° and R =109°. 
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APPENDIX D: SUPPLEMENT TO “IMAGING CARRIER DIFFUSION IN 

PEROVSKITES WITH A DIFFRACTIVE OPTIC-BASED TRANSIENT ABSORPTION 

MICROSCOPE” 

D1. SEM Image of Perovskite Film 

 

Figure D1. Individual grains are observed in this SEM image of a perovskite film.  

 

D2. SEM Image of Perovskite Single Crystal 

 

Figure D2. SEM image of perovskite single crystal.  
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Figure D3. SEM image of perovskite single crystal. 

 

D3. Summary of Fitting Parameters 

Table D1. Diffusion Coefficient D0 

Fluence (μJ/cm2) Crystal D0 (cm2/s ) Film D0 (cm2/s ) 

95 0.268±0.0869 2.80×10-9±6.84×10-9 

148 0.143±0.0546 0.00874±0.0127 

233 0.178±0.0409 0.0465±0.0248 

402 0.286±0.0702 0.0454±0.0305 

782 0.263±0.0889 0.0360±0.0148 

1590 0.271±0.0659 0.0733±0.0417 

4018 0.282±0.0698 0.150±0.0886 
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Table D2. Density-Independent Relaxation Time τ1 

Fluence (μJ/cm2) Crystal τ1 (ns) Film τ1 (ns) 

95 0.676±0.234 3.39±1.13 

148 1.18±1.16 7.75±2.65 

233 1.15±0.476 10.7±6.60 

402 1.58±0.763 10.8±10.3 

782 1.27±0.537 10.5±9.03 

1590 2.42±2.18 7.38±3.05 

4018 10.3±22.4 5.47±2.42 

 

Table D3. Two-Body Relaxation Time τ2 

Fluence (μJ/cm2) Crystal τ2 (ns2) Film τ2 (ns2) 

95 478±380 948±126 

148 28.5±94.9 215±426 

233 819±201 144±363 

402 547±425 215±425 

782 253±450 1.12±0.45 

1590 4.64±2.03 1.28±0.217 

4018 4.78±1.11 1.20±0.160 

 

Table D4. Constant Coefficient Relating the Signal Intensity and Density A 

Fluence (μJ/cm2) Crystal A Film A 

95 1.04±0.138 1.17±0.0568 

148 0.853±0.0660 0.905±0.162 

233 1.01±0.130 0.901±0.140 

402 1.00±0.137 0.933±0.151 

782 0.992±0.154 0.836±0.0146 

1590 0.892±0.106 0.828±0.0153 

4018 0.854±0.0470 0.824±0.0236 

 


