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ABSTRACT

Ché L. Smith: Model Selection for Nonnested Linear Mixed Models
(Under the direction of Lloyd J. Edwards)

The selection of an adequate and parsimonious model among suitable candidates is an es-

sential aspect of the model-building process. Model selection approaches have been widely

studied for the univariate linear model and other models arising from cross-sectional data.

As researchers increasingly rely on linear mixed models (LMMs) to characterize longitudi-

nal data, there is a need for improved techniques for selecting among this class of models

which requires specification of both fixed and random effects via a mean model and variance-

covariance structure. The model selection process for LMMs is further complicated when

fixed and/or random effects are nonnested between models. Presently, information crite-

ria such as AIC and BIC dominate model selection criteria used to compare nested and

nonnested LMMs. This dissertation explores the development of a hypothesis test to compare

nonnested LMMs based on extensions of the work begun by Sir David Cox. Particularly, we

address the complex issue of estimating the variance of Cox test statistics through the use of

parametric bootstrapping. Various information criteria have been modified for this purpose,

but recent investigations have all led to inconclusive results as to which criterion is the best

to select among LMMs. We also consider the use of the Extended Information Criterion

(EIC) as an improvement on the more commonly used AIC. Application to observed data

demonstrates the viability of both the Cox Test and the EIC to select among nonnested

LMMs.
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CHAPTER 1: INTRODUCTION AND LITERATURE
REVIEW

1.1 Introduction

Selecting an adequate and parsimonious model is an important, yet often neglected,

aspect of data analysis and research. Over the past few decades, the majority of research

in model selection has centered around linear regression and other univariate linear models.

Any work beyond that class of models has involved the extension of existing model selection

methods applied to regression and univariate linear models (e.g., likelihood ratio tests, R2

coefficient, information criteria) to more complex types of models, with little investigation

of the robustness of these methods after extension. Even more rarely have model selection

techniques for the linear mixed model been thoroughly examined. Here, an attempt to

extend the capability to select among nonnested linear mixed models is made.

Longitudinal studies are often employed to assess changes within individuals and groups

over time. One well known example arises from a study by Potthoff and Roy (1964), in which

twenty-six children (sixteen girls, eleven boys) were followed every two years for six years,

and at each observation the growth of each subject’s jaw was measured. In examples like

this one, each child has his/her own trajectory of correlated repeated observations, allowing

one to study individual variability in growth as well as group averages (e.g, boys vs. girls).

The linear mixed model is a useful tool to model longitudinal trends among continuous

outcomes following a normal distribution, allowing for both subject-specific trajectories and

population-averaged models, as in the above example. As opposed to repeated measures

ANOVA, its flexibility lies in the separate modeling of the mean and variance-covariance

structures, thus providing many potential ’best’ model candidates via various combinations
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of these two components. Well-developed techniques exist for comparing models with nested

mean and/or covariance structures, mostly following from Neyman-Pearson (Neyman and

Pearson, 1933) theory. On the other hand, formal approaches to compare models lacking

this nested structure (or nonnested models) have not been developed.

This review highlights important findings from the literature on model selection for the

linear mixed model - with special attention given to the case of nonnested models - and

illuminates some opportunities for methodological improvement. In the next section, a

detailed specification of the linear mixed model is introduced with specific notation to be

used throughout this document. Subsequent sections review the history of model selection

techniques for univariate linear models, and their extension to multivariate and correlated

data. Special attention is paid to the case of comparing nonnested linear mixed models,

which has received little attention. Specifically, two general approaches to model building

and selection among nonnested linear mixed models are highlighted - hypothesis testing

and the use of information criteria. Particularly for the hypothesis testing approach, ties

are made from the econometrics literature which contains applications of selecting among

nonnested models of a similar structure to linear mixed models. Finally, the most important

findings from the literature review are summarized.

1.2  The Linear Mixed Effects Model

The Linear Mixed Effects Model (referred to hereafter as the linear mixed model) is used

to analyze multivariate continuous data, particularly longitudinal data. Consider the linear

mixed model for repeated measures data specified below (Edwards et al., 2008):

With N independent sampling units (often persons in practice), the linear mixed model

for person i may be specified as yyyi = XXX iβ + ZZZibi + ei, where yyyi is a (ni × 1) vector of

correlated observations on person i; in the longitudinal setting, they represent the set of

repeated measurements over a specified period of time on a single subject. The (ni × p)
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matrix XXX i is the known and fixed design matrix for person i, with full column rank p.

(p × 1) vector β is a vector of unknown, constant population parameters, common to all

subjects. Matrix ZZZi, of dimension (ni × q), is a known, constant design matrix with rank q

for person i corresponding to the (q×1) vector of unknown random effects, bi, while ei is an

(ni × 1) vector of unknown random errors. Random effects are assumed to be independent

of random errors, and together they are assumed to follow a normal distribution with mean

0 and variance

V


 bi

ei


 =

 Σbi (τb) 0

0 Σei (τe)

 .
In the equation above, V (·) is the covariance operator, while both Σbi (τb) and Σei (τe)

are positive-definite, symmetric covariance matrices. Therefore, V (yyyi) may be expressed as

Σi = ZZZiΣbi (τb)ZZZ
′
i + Σei (τe). We assume that Σi can be characterized by a finite set of

parameters represented by an (r × 1) vector τ , which consists of the unique parameters in

τb and τe.

For simplicity, we will assume here that all subjects have the same number of repeated

measurements, so that ni = n for all subjects, such thatei ∼ Nn (0,Σe(τe)), where the

(n× 1) vector τe collects the n unique parameters of Σe(τe).

Alternatively, we may specify the linear mixed model for all subjects in a stacked formu-

lation as follows: yyy = XXXβ+ZZZb+e where yyy = (yyy′1 . . . yyy
′
N)′; design mnatrix XXX = (XXX ′1 . . .XXX

′
N)′;

vector β is as specified before; ZZZ = diag (ZZZ1, . . . ,ZZZN); vector b is as specified before; and

e = (e′1 . . . e
′
N)′.

Note the dimensions of yyy, XXX, ZZZ, and e are (Nn× 1), (Nn× p), (Nn× q), and (Nn× 1),

respectively. Further, b ∼ Nq (0,Σbi (τb)⊗ Ib) and e ∼ NNn (0,Σe). We have Σe =

diag [Σe1 (τe) , . . . ,ΣeN (τe)]; thus yyy ∼ N (XXXβ,Σ) with Σ = V (yyy) = diag (Σ1, . . . ,ΣN).

Hereafter, we adopt this notation to refer to a linear mixed model as a function yyy of the
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collection of its complete parameter space θ, where θ = (β′, τ ′)′ is a (s× 1) vector, with

s = p+ r.

1.3 Model Selection in the Linear Mixed Model (LMM)

The selection of an adequate model among suitable candidate models is an essential part

of the model-building process and has been widely studied for the univariate linear model and

other types of models arising from cross-sectional data. Most commonly for linear regression

models, researchers employ forward, backward, and stepwise variable selection procedures.

Ngo and Brand (2002) discussed how the extension of these procedures to the linear mixed

model introduces problems of multiple testing, further complicated by the use of an arbitrary

level of significance. Some methods are ad hoc, and have not been well developed or studied.

This is especially true for the linear mixed model, which requires selection of both a mean

model and a covariance model.

Cheng et al. (2010) recently summarized issues researchers have with building a ’good

enough’ linear mixed model, arguing that no model is the ’best’ or ’true’ model. The authors

distinguish between the concepts of model choice, model building, and model selection. For

example, model choice refers to the decision to use a linear mixed model (as opposed to

a different class of model) to characterize data; model building involves using a particular

predictor selection strategy; and model selection involves the formulation of a criterion used

to determine which model is the relative ’best’ among all candidates. The authors acknowl-

edge that various information criteria have been developed and used to compare models,

but they are flawed mostly because they do not provide a formal statistical test to discern

models. Further, the authors emphasize that neither information criteria nor likelihood ratio

tests (and other F tests) have been well-developed for use among this class of models. They

propose the following general five-step strategy for building and selecting an adequate linear

mixed model:
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1. Specify the maximum model to be considered (both in fixed and random effects).

2. Specify a criterion of goodness of fit of a given model.

3. Specify a predictor selection strategy.

4. Conduct the analysis.

5. Evaluate the reliability of the model chosen.

Cheng et al. emphasize that these steps are also appropriate for building univariate, mul-

tivariate, linear, and nonlinear models, along with models for any type of response variable

distribution. Their discussion also follows the assumption that the ’best’ model is contained,

or nested, within a maximum model. Of particular interest here is the third item in the above

list. It is important to predetermine a strategy that will lead to fitting a select few models

with as few predictors as necessary to characterize the outcome variable(s). In most cases,

the maximal model rarely ends up being the final model. Ideally, one would implement a

well-planned strategy to select a small number of predictors based on the size of the data

and knowledge of the subject area. For linear regression, it is straightforward to employ

techniques such as forward, backward, or stepwise variable selection. Model selection for the

linear mixed model, however, is more complex and requires attention to its two models - the

mean structure, and selection of random effects and variance components (Liu and Yang,

2008). In the linear mixed model, it is common to keep one aspect of the model fixed in

both models, while using techniques to refine the other model. For example, one may assign

a common covariance matrix to both models and compare models with different sets of fixed

effects.

Edwards et al. (2008) focus on three general types of model comparisons that may occur

when selecting among linear mixed models: first, mean models with common covariance

structure (most commonly, nested mean models); second, (nested or nonnested) covariance

models with common mean structure; and finally, linear mixed models with different mean
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and different covariance structures. These categories may be expanded to more specifically

outline the types of linear mixed models that may be compared. One may compare:

1) Nested mean models with:

a. the same covariance structure;

b. different (but nested) covariance structures; or

c. nonnested covariance structures, or

2) Nonnested mean models with:

a. the same covariance structure;

b. different (but nested) covariance structures; or

c. nonnested covariance structures.

The first case listed above - comparing nested mean models - is most commonly considered

(Diggle et al., 1994; Wolfinger et al., 1993). Selection of a favored model is largely based

on extensions of techniques used for univariate linear models, such as likelihood ratio tests,

goodness of fit measures, predictive criteria (R2, PRESS, etc.), and information criteria

(AIC, BIC, etc.). Existing techniques rely on theories developed by Neyman and Pearson

(1933) or Kullback and Leibler (1951). theory. Virtually all recent reviews of variable/model

selection in the linear mixed model only consider cases of mean models that are nested (Wang

and Schaalje, 2009; Dziak and Li, 2007; Dimova et al., 2011). Here, models are considered

nonnested if one cannot be obtained as a simple limit of the other. In the following sections,

we distinguish in more detail between nested and nonnested models, and describe the history

of existing model selection techniques for both cases with particular emphasis on the scarcity

of methodology applied to nonnested linear mixed models.
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1.3.1 Selecting among Nested Models

The vast majority of model selection techniques were developed to make comparisons

between pairs of models that follow a nested structure. Models are considered nested when

one model can be obtained by imposing a set of linear constraints on another more general

model. In terms of the linear mixed model, one may consider models with nested fixed

and/or random effects. Models with nested fixed effects are typically compared under maxi-

mum likelihood estimation using likelihood ratio tests, t tests, or F tests. Models with nested

covariance structures are compared under restricted maximum likelihood (REML) estima-

tion using χ2 tests. Wang and Schaalje (2009) reviewed several model selection techniques

involving predictive criteria that were originally designed for selecting among ordinary linear

models. The authors summarize the history of the adjusted R-squared
(
Radj

2
)
, the concor-

dance correlation coefficient (CCCadj), and the predicted residual sum of squares (PRESS),

noting that though all three were being used for selection of linear mixed models they had

not yet been adequately assessed for their ability to select among models. They developed

simulations to compare the performance of the predictive criteria against each other, as well

as with versions of the most common information criteria (AIC and BIC), and the pseudo

F-test. The authors did not determine a single selection criterion that performed consis-

tently better than the others. Moreover, their investigation does not address how well these

criteria select among nonnested fixed and/or random effects models. Finally, no assessment

was made among large-sample data, which is often the case of interest to many longitudinal

data analysts. Other recent investigations that compare information criteria have also led

to inconclusive results regarding selecting a ’best’ criterion among a group of nested linear

mixed models (Dziak and Li, 2007; Shang and Cavanaugh, 2008; Dimova et al., 2011).
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1.3.2 Selecting among Nonnested Models

The second case, where models are nonnested, is seldom addressed. There are varied

scenarios in which candidate models could be considered nonnested. One may consider

comparing models with nonnested sets of explanatory variables, where non-linear restrictions

to parameter vectors from both models are required to establish a nested structure between

competing models. Most commonly seen is the case of alternative, positively correlated,

measures of the same concept in nonnested parametric form, where both of which are assumed

to influence some outcome (Cole et al., 2005). For example, Dameus et al. (2002) compared

models with rival econometric theories to expain the same phenomenon. Additionally, one

could compare models with the partially overlapping sets of main effects and with nonested

interactions among explanatory variables. Another manifestation of nonnested models of this

type occurs in models having additive vs. multiplicative interactions; that is, testing absolute

(additive) risk difference vs relative (multipicative) risk (Kalilani and Atashili, 2006). One

may also compare models with nonnested functional forms ; an example of this case is the

comparison of linear vs. log-linear functions of a continuous outcome variable. One would use

a linear mixed model under the assumption of a Normal distribution for the first function, and

a gamma link for the nonlinear model under the assumption of a non-Normal distribution.

One could also use a generalized estimating equations (GEE) approach in both, but this case

is not explored here.

Here, we focus on the first case, where models have nonnested sets of explanatory vari-

ables. That is, one may wish to compare two models for which either the mean models

or the covariance models are nonnested. To address comparisons of nonnested linear mixed

models, it makes sense to consider approaches used to compare nonnested univariate models.

Univariate models do not have random effects, only random errors, eliminating the case of

comparing models with nonnested covariance structures; when we refer to nonnested univari-

ate models, we consider models with nonnested explanatory variables. In linear regression,
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the R2 statistic is most commonly used to compare nonnested models, though traditionally it

is a goodness-of-fit statistic. Edwards et al. (2008) developed an extension of this technique

to the linear mixed model to determine an association between repeated measurements and

fixed effects. Watnik and Johnson (2002) discuss using a relative efficiency approach to com-

pare nonnested linear regression models and considers globally non-nested models, in which

neither design matrix is a subset of the other. Timm et al. (2002) compared nonnested

models arising from a meta-analysis of six studies investigating the effect of academic coach-

ing on students’ SAT scores. They use a modified Wald test statistic developed in a prior

investigation (Timm et al., 2001) which was shown to be more powerful than the hypothesis

test developed by Cox (1961). The authors do not consider repeated measures data, but they

acknowledge that the use of an information-theoretic approach (using information criteria)

as a suitable alternative to their methodology. That approach is considered here as well, and

discussed in more detail in a later section.

Pesaran and Weeks (2000) and Szroeter (2007) reviewed methods for comparisons of

nonnested econometrics models, including the Cox Test - discussed in more detail in the

next section - and encompassing tests. From the behavioral research paradigm, Levy and

Hancock (2007) discuss a general hypothesis testing framework and approach that applies

to comparing both hierarchical (nested) and non-hierarchical (nonnested) multivariate nor-

mal mean and covariance models stemming from the structural equation modeling (SEM)

framework. They build on the work proposed by Vuong (1989), who used Kullback-Leibler

information theory to contruct tests to compare nonnested models. Vuong proposed di-

rectional tests for comparison of nonnested hypotheses under a variety of scenarios under

the linear regression framework. This and other approaches have attempted to circumvent

having to compare nonnested models by assuming that both models are encompassed by a

larger model Mizon and Richard (1986). The authors emphasize the fact that information

criteria do not provide a statistical test to compare models, so they cannot elucidate the
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magnitude of difference between models.

Other notable investigations of comparing nonnested models include Ette (1996), who

compared nonnested (or non-hierarchical) nonlinear mixed models arising from longtiduinal

observations of pharmacokinetic data; particularly, he compared models with the same co-

variates, but one having a different parametric form in each model; the two candidate models

were thus highly correlated, but not nested by earlier definitions. Ette bootstrapped the

log-likelihood difference betweeen candidate models. His investigation illuminates the need

for more research related to bootstrapping correlated data and comparing nonnested models

arising from longitudinal data. Haskard et al. (2010) discussed ways to compare linear mixed

models with nonnested - or non-stationary random effects, and used the AIC to compare

models. These data were not repeated observations, but rather each vector of observations

contained soil samples from nearby locations so that clusters of observations were correlated

spatially. In another example using linear mixed models, Morrell et al. (2009) describe

how changes in parameterization of time-dependent covariates (mainly, subject’s age) can

influence results of longitudinal models. The authors compared models with nonnested fixed

and random effects, using the AIC and BIC as selection criteria, noting that models with

nonnested fixed effects cannot be compared using these criteria under REML estimation.

It is clear that more research is needed on comparing linear mixed models that are

nonnested. In the following sections, we review two promising model selection approaches

with similar computational challenges that have not yet been applied for selecting among

nonnested linear mixed models: hypothesis testing following the theory of Cox (1961) em-

ploying parametric bootstrapping to estimate test statistics’ variances and distributions, and

the Extended Information Criterion (EIC) introduced by Ishiguro et al. (1997) which also

employs the use of bootstrapping.
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1.4 Testing Separate Hypotheses in the Linear Mixed Model

While recent literature has given much attention to model selection for nonnested regres-

sion models and econometrics models, the case of selecting among nonnested linear mixed

models remains severely underexplored. Seminal works of Cox beginning in 1961 and 1962

highlight tests of separate families of hypotheses, meaning that one hypothesis (or model)

cannot be obtained as a simple limit of the other; before his works, ad hoc methods were em-

ployed to test separate hypotheses. Since then, Pesaran (1974), Pesaran and Deaton (1978)

and several others have also studied this methodology extensively. Parallel approaches have

also been developed, employing theories such as the encompassing approach Mizon and

Richard (1986), including the J-test (Davidson and MacKinnon, 1993) and Vuong’s Test

(Vuong, 1989). One major disadvantage of these approaches is that the assumption of an

all-encompassing model can become tedious for the linear mixed model, since one must

consider both the mean model and covariance structure. Here, we describe Cox’s Test of

Separate Hypotheses in more detail, providing examples of its implementation, and outlin-

ing some considerations for applying this approach to compare separate, or nonnested, linear

mixed models.

1.4.1 The Cox Test of Separate Hypotheses

Cox (1961) recognized a need to find a general method for handling testing of separate

families of hypotheses, a class of problems which until that time had not received much

attention in the literature. Prior to Cox’s paper, ad hoc methods had been employed to test

nonnested - or separate - hypotheses. Two hypotheses are called separate if an arbitrary sim-

ple hypothesis in one cannot be obtained as a limit of a simple hypothesis in the other. The

idea of two hypotheses being separate is a function of both the parameters of the hypotheses

and the definitions of the hypotheses. For instance, both the null and alternative hypotheses

could have the same number of parameters in their parameter vectors, but the hypotheses
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are considered separate due to the definitions of the hypotheses. Conventional techniques

for comparing nested models, such as Wald’s F test, do not apply for the comparisons of

nonnested models, as they require restrictions on the models’ parameter spaces that do not

exist, thus making it more difficult to estimate the distribution of the ratio of likelihood

functions. Cox recognized the need to make modifications to recenter the likelihood ratio

and standardize a test statistic with an asymptotically normal distribution. Pesaran and

Weeks (2000) provide a good summary of the motivation behind Cox’s formulation. The

literature following Cox’s two papers has been extensive, but few well-developed techniques

and extensions have been studied or recommended, especially for the linear mixed model.

In the following section, Cox’s methodology is defined and described in more detail.

Notation and Setup

Let yyy = (y1, y2, . . . ym) be an (m× 1) observed random vector and suppose we are in-

terested in testing the composite null hypothesis, H1, that the probability density function

(pdf) is f(yyy,θ1) against the composite alternative, H2, that the pdf is g(yyy,θ2), where θ1 and

θ2 are vectors of dimension (k1 × 1) and (k2 × 1), respectively. That is

H1 : f(yyy,θ1)

H2 : g(yyy,θ2)

where θ1 ∈ Ω1 ⊂ Rk1×1 and θ2 ∈ Ω2 ⊂ Rk2×1, where k1, k2 > 1. Note the following

assumptions:

(i) the parameters θ1 and θ2 may be treated as varying continuously even when a compo-

nent of say θ2 is the serial number of the observation at which a discontinuity occurs;

(ii) the values of θ1, or θ2, are interior to Ω1, or Ω2, so that the type of distribution problem

discussed by Chernoff (1954) is excluded.
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Let l1(θ̂1) be the maximized log-likelihood function of the model proposed under H1

and l2(θ̂2) be the maximized log-likelihood function under H2, where θ̂1 and θ̂2 are the

maximum likelihood estimates of θ1 and θ2, respectively. Cox proposed using the following

test statistic:

T1 = l1(θ̂1)− l2(θ̂2)− E
[
l1(θ̂1)− l2(θ̂2)

]
θ1=θ̂1

, (1)

which compares the observed difference of log-likelihoods with an estimate of the ex-

pected difference between log-likelihoods, with expectation taken under H1. In the expected

difference θ1 is replaced with its maximum likelihood estimate, θ̂1, under H1; other unknown

paramters are also replaced with estimates under the null. Under the null hypothesis, Cox

(1961; 1962) showed the value of T1 should be nearly zero, while under H2, T1 is presumed to

be negative. Thus, a large negative value of T1 leads to the rejection of the null hypothesis,

H1.

Alternatively, a simplified specification of T1 is given by

T1 = l̂12 − E
[
l̂12

]
θ1=θ̂1

where l̂12 = l1

(
θ̂1

)
− l2

(
θ̂2

)
Furthermore, a different specification of T1 is given by

T1 = l̂12 −N

(
plimN→∞

l̂12
N

)
θ1=θ̂1

.

Replacing the expectation in the second term with a probability limit (plim) allows for

more flexibility when working with complex expressions, especially those involving products

and quotients of random variables. (Dougherty, 2011; Appendix A)

A few general remarks are in order (White, 1982):

(i) Usually in likelihood ratio applications, Ω1 ⊂ Ω2, so that l12 < 0. Under the assump-
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tion of separate families, this inequality - representative of the models having nested

structures - may not hold.

(ii) When the components of yyy are independent, l12 is the sum of n independent terms and

an application of the central limit theorem will usually prove the asymptotic normality

of l12. Approximations to the percentage points of l12 can then be obtained under both

H1 and H2.

(iii) The hypotheses H1 and H2 are considered asymmetrically, and are not assumed to be

the only possible hypotheses.

(iv) The roles of H1 and H2 can be interchanged, yielding corresponding test statistic T2,

where

T2 = l2(θ̂2)− l1(θ̂1)− E
[
l2(θ̂2)− l1(θ̂1)

]
θ2=θ̂2

. (2)

Here, expectation is taken under the new null, H2, and θ2 is replaced by its maximum

likelihood estimate under H2, θ̂2, while all other unknown parameters are replaced by

their estimates under H2.

In order to make inferences using T1 and/or T2, one must derive the distribution of these

statistics. Cox established that both test statistics have a limiting distribution that is Normal

with mean 0 and Cox denoted the variances of T1 and T2, V ar(T1) and V ar(T2), respectively,

by: V ar(T1) = V1 (l12)−G′1I−1
1 G1 and V ar(T2) = V2 (l21)−G′2I−1

2 G2, where V1 (l12) is the

variance of the log-likelihood ratio taken under the null hypothesis, and V2 (l21) is defined

correspondingly for the case where the null and alternative hypotheses are interchanged,

G1 = N
∂

∂θ1
plimN→∞

l̂12
N

G2 = N
∂

∂θ2
plimN→∞

l̂21
N
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and I1 and I2 are the information matrices corresponding to θ1 and θ2, respectively.

Thus, for any pair of hypotheses, two tests may be constructed.

In the following sections, we derive T1 and T2 and their corresponding distributions for a

pair of linear mixed models with nonnested fixed effects.

Coulibaly and Brorsen (1999) first proposed using a parametric bootstrap to estimate

the distribution of test statistics under the corresponding null hypothesis, showing that this

technique helped achieve correct test size and higher power, especially in small samples.

Dameus et al. (2002), Monfardini (2003), and Godfrey (2007) also establish a need for

bootstrapping the distributions of statistics for comparing various types of models applied

to econometrics analyses. Huber (1967) discusses the behavior of maximum likelihood es-

timates under nonstandard conditions, but not much of the literature following Cox’s work

adequately addresses the distribution of test statistics and their limitations under different

variance estimates.

Definition of Separate Families

The hypotheses, H1 and H2, are separate in the sense that an arbitrary simple hypothesis

H1 cannot be obtained as a simple limit hypothesis in H2. That is, f(y, θ1) and g(y, θ2)

represent separate families in that an arbitrary value of θ1 cannot be approximated arbitrarily

closely by g(y, θ2).

Existing examples

In his seminal works, Cox presented several scenarios in which one could apply his

method; selected examples are described below.

Lognormal vs. Exponential In this example, the null hypothesis assumes a model fol-

lowing a lognormal distribution; that is, f(y) = 1

y
√
2πσ2

e
(ln y−µ)2

2σ2 . The alternative hypothe-

sis assumes an exponential model, given by g(y) = θe−θy. Cox (1961, 1962) showed that
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T1 = n log β̂
βα̂

, where βα̂ = eα̂1+
α2
2 , and V ar(T1) = n

(
eα̂2 − 1− α̂2 − 1

2
α̂2
2

)
. Not shown here

or in other examples, it is trivial to derive the statistic T2 which assumes g(y) is the null

hypothesis, f(y) as the alternative, along with an expression for its variance. Alternative

forms of independent variables Consider comparing the following sets of models

y = aα

y = bβ

or

y = α1 + α2x

y = β1 + β2 log x

Cox (1961) explained that the two pairs of models above are from a problem considered

by Hotelling (1940), and expounded upon in Williams (1959); Cox demonstrated the need

for more theoretical exploration for nonnested models of this type.

Alternative forms of the dependent variable

E (log y) = aα

E (y) = aβ

Also from Cox (1961), this example is accompanied by the scenario that in a simple

factorial experiment, E (log y) = aα has no second order interactions, and the same for the

other model; furthermore, the models are nonnested since one model cannot be obtained as

a simple limit of the other .
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Poisson vs. Geometric distributions

fY (y) =
e−ααy

y!
(y = 0, 1, 2, . . .) ;

gY (y) =
βy

(1 + β)y+1 (y = 0, 1, 2, . . .)

Cox (1962) explained that this example, demonstrating the comparison of exact versus

asymptotic statistical theory, results in a test statistic T1 = −Σ log Yi! +nlf
(
Ȳ
)
, where lf (·)

is the log-likelihood function of fY (y), which assumes the model fY (y) is the null hypothesis

and gY (y) is the alternative.

Demand analysis models with nonnested functional forms

Dameus et al. (2002) explored comparisons of nonnested demand analysis models (US meat

demand), and showed that using a Cox test with a parametric bootstrap was more powerful

than using encompassing tests. The authors compared the following two demand analysis

models.

First-difference AIDS model:

∆si = τi +
4∑

k=1

θikDk +
4∑
j=1

γij∆ ln (pj) + βi [∆ ln (x)−∆ ln (P )] , i = 1, . . . , 4

Rotterdam model:

s̄i∆ ln (yi) = τi +
4∑

k=1

θikDk +
4∑
j=1

γij∆ ln (pj) + βi

[
∆ ln (x)−

4∑
j=1

s̄j∆ ln (pj)

]

Multinomial Probit vs. Multinomial Logit Model

Monfardini (2003) compared the multinomial probit vs. multinomial logit model for assessing

choice of labor sector among Italian workers.
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Multinomial probit model:

upij = x′iαj + νij (νi) = (νi1, . . . , νiJ−1)
′ ≈ i.i.d.N (0,Σ) , j = 1, . . . , J − 1,

Multinomial logit model:

ulij = x′iδj + ηij (ηi) = (ηi1, . . . , ηiJ−1)
′ ≈ i.i.d.Logistic (0,Λ) , j = 1, . . . , J − 1,

To date, this methodology has not been extended to the case of comparing linear mixed

models with nonnested fixed and/or random effects. The last two of the extensions outlined

below (Pesaran (1974) and Araujo et al. (2005)) provide the most adequate framework for

developing test statistics for nonnested linear mixed models. We consider these extensions

in more detail in the sections below.

Univariate Linear Regression

Pesaran (1974) derived test statistics to compare two univariate linear regression models

with nonnested fixed effects. This section summarizes the formulation. Suppose there are

data for N independent subjects; consider the following hypotheses:

H1 : yyy = XXXβ1 + eee1; eee1 ∼ N (0, σ2
1IN)

H2 : yyy = WWWβ2 + eee2; eee2 ∼ N (0, σ2
2IN).

For models in each hypothesis, yyy is an (N × 1) vector containing the observed contin-

uous outcome for each of the N subjects. The null hypothesis (H1) assumes a univariate

linear regression model with known (N × p) design matrix XXX and random errors distributed

normally with mean 0 and variance σ2
1IN, where IN is the (N ×N) identity matrix. The al-

ternative hypothesis (H2) assumes a univariate linear regression model with known (N × p)
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design matrix WWW and random errors also distributed normally with mean 0 and variance

σ2
2IN, with IN defined as before. Furthermore, assume that XXX and WWW are not nested; that

is, all of columns of XXX cannot be obtained from those of WWW and vice versa. For simplicity,

we assume that XXX and WWW have the same dimensions. Recall from the discussion of Levy

and Hancock (2007) that most often considered is the case of partially overlapping models,

where there may be some variables in common between the models but neither design matrix

is a subset of the other. We denote the collections of unknown parameters of each model

as θ1 = (β′1, σ
2
1)
′

and θ2 = (β′2, σ
2
2)
′
, both vectors having dimension (p+ 1× 1). Pesaran

required that the following three limits exist and are finite.

lim
N→∞

(
1

N
XXX ′XXX

)
= ΣX′X

lim
N→∞

(
1

N
WWW ′WWW

)
= ΣW ′W

lim
N→∞

(
1

N
XXX ′WWW

)
= ΣX′W

where the matrices ΣX′X and ΣW ′W are nonsingular and ΣX′W 6= 0. All matrices are of

dimension (N ×N).

Formulation of expressions for T1 and V ar(T1)

First, the log-likelihood functions corresponding respectively to the linear models given

in hypotheses H1 and H2 are defined below:

l1 (θ1) = −N
2

log (2πσ1
2)− 1

2σ12
(yyy −XXXβ1)

′ (yyy −XXXβ1)

l2 (θ2) = −N
2

log (2πσ2
2)− 1

2σ22
(yyy −WWWβ2)

′ (yyy −WWWβ2) ,

Defining the log-likelihood functions of H1 and H2 as l1 (θ1) and l2 (θ2), respectively,
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and the maximum log-likelihood ratio (or difference in log-likelihood functions) by l̂12 =

l1

(
θ̂1

)
− l2

(
θ̂2

)
, recall the formula for T1 given by:

T1 = l̂12 −N
[
plimN→∞

(
l̂12/N

)]
θ=θ̂1

,

with plim taken under the assumption of H1. The maximum likelihood estimates of θ1

and θ2, given by θ̂1 and θ̂2, respectively, are defined as follows.

First, θ̂′1 =
(
β̂′1, σ̂

2
1

)
, where

β̂1 = (XXX ′XXX)
−1
XXX ′yyy,

σ̂2
1 =

yyy′ (IN −MX)yyy

N
.

(N ×N) matrix IN is defined as before, and (N ×N) matrix MX is given by MX =

XXX (XXX ′XXX)−1XXX ′.

Next, θ̂2 =
(
β̂2, σ̂

2
2

)
, where

β̂2 = (WWW ′WWW )
−1
WWW ′yyy,

σ̂2
2 =

yyy′ (IN −MWWW )yyy

N
.

Here, (N ×N) matrix is defined by MW = WWW (WWW ′WWW )−1WWW ′.

Now,

l12 =
N

2
log (σ2

2/σ1
2) +

1

2

[
σ2
−2 (yyy −WWWβ2)

′ (yyy −WWWβ2)− σ1−2 (yyy −XXXβ1)
′ (yyy −XXXβ1)

]
.

To compute l̂12, we replace the elements of θ1 and θ2 with their respective maximum

20



likelihood estimates as defined above.

l̂12 =
N

2
log (σ̂2

2/σ̂
2
1) +

1

2

[
σ̂−22

(
yyy −WWW β̂2

)′ (
yyy −WWW β̂2

)
− σ̂−21

(
yyy −XXXβ̂1

)′ (
yyy −XXXβ̂1

)]
=
N

2
log (σ̂2

2/σ̂
2
1) +

1

2

[
(yyy′ (I−MW)yyy)

−1
(
yyy −WWW β̂2

)′ (
yyy −WWW β̂2

)
− (yyy′ (I−MX)yyy)

−1
(
yyy −XXXβ̂1

)′ (
yyy −XXXβ̂1

)]
=
N

2
log (σ̂2

2/σ̂
2
1) +

1

2

[
(yyy′ (I−MW)yyy)

−1
(yyy′ (I−MW)yyy)

− (yyy′ (I−MX)yyy)
−1

(yyy′ (I−MX)yyy)

]
=
N

2
log

(
σ̂2
2

σ̂2
1

)

Determining the second term of T1 requires finding the probability limit (plim) of l̂12

under the assumption that the null hypothesis is the true model. First, by definition, we

know that plimN→∞ (σ̂2
1) = σ2

1. Assuming H1 is the true model, Pesaran (1974) determined

the expected value of σ̂2
2, denoted by σ̂2

21 as follows.

σ̂2
21 =

1

N
(MW e1 +MWXXXβ1)

′ (MW e1 +MWXXXβ1)

Now taking the probability limit of the above quantity, we have

plimN→∞
(
σ̂2
21

)
= σ2

1 + β′1 lim
N→∞

(
1

N
XXX ′MWXXX

)
β1

We also have

σ2
21 = σ2

1 + β′1Hβ1

where
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H = ΣX′X −ΣX′WΣ−1W ′WΣW ′X

Now, since under H1 σ̂
2
1 is a consistent estimator of σ2

1, using the above results

N plimN→∞

(
l̂21
N

)
=
N

2
log

(
σ2
1 + β′1Hβ1

σ2
1

)
Combining the two terms, Pesaran (1974) gave an expression for T1 as follows:

T1 =
N

2
log

(
σ̂2
2

σ̂2
1

)
− N

2
log

(
σ̂2
1 + β̂′1Hβ̂1

σ̂2
1

)
(3)

=
N

2
log

(
σ̂2
2

σ̂2
1 + β̂′1Hβ̂1

)
(4)

Distribution of T1

Pesaran (1974) noted that the distribution of T1 depends on unknown parameters, since

replacing σ̂2
1 and σ̂2

2 with expressions of their estimates listed above produces a complicated

function of the unknown vector β1. As a result, the exact distribution of T1 cannot be

derived. The only way to eliminate the dependence on unknown parameters is to compare

models that are nested, such that MWXXX = 0, which is the case for which a hypothesis test

is well-defined.

To obtain an asymptotic variance of T1, denoted by V̂ ar (T1), we must derive the two

terms according to the formula defined in equation 8.

Pesaran defined the first term as follows:

V̂
(
l̂12

)
=
N

2

(
1

σ2
21

− 1

σ2
1

)2

σ4
1 +

σ2
1

σ4
21

(XXXβ1 −WWWβ21)
′ (XXXβ1 −WWWβ21)
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The second term is given by:

1

N
G′1 plimN→∞

(
NI−1

)
G1 =

N

σ4
21

[
σ2
1β
′
1HΣ−1X′XHβ1 +

1

2
(β′1Hβ1)

2

]

Combining the two terms and replacing all unknown parameters with their consistent

estimates (under H1), Pesaran’s estimate of V̂ ar(T1) is given by

V̂ ar(T1) =
σ̂2
1

σ̂4
21

β̂′1XXX
′MWMXMWXXXβ̂1

Finally, when H1 is true, we have that T1

[V̂ ar(T1)]
1/2 approxN (0, 1)

Expressions for T2 and V ar(T2)

When two models are nested, then the choice of a null hypothesis is fairly intuitive;

one typically sets the most parsimonious (or reduced) model as the null hypothesis. When

models are not nested, one must consider that either candidate model can be set as the null

hypothesis. In order to implement Cox’s test of separate hypotheses, one must consider the

case that the second model is the true model. Thus, in this case, one can interchange the

models given in each hypothesis and formulate test statistic T2 and its variance given by

V ar (T2).

H1 : yyy = WWWβ2 + eee2 ; eee2 ∼ N
(
0, σ2

2IN

)
H2 : yyy = XXXβ1 + eee1 ; eee1 ∼ N

(
0, σ2

1IN

)
Both models are specified exactly as before, and we now indicate log-likelihood functions

from the null and alternative hypotheses as l1 (θ2) and l2 (θ1), respectively. θ̂1 and θ̂2 are

defined as before.
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Recall the expression for T2 given by:

T2 = l̂21

(
θ̂2, θ̂1

)
−N

[
plimN→∞

(
l̂21/N

)]
θ=θ̂2

,

where l̂21 = l1

(
θ̂2

)
− l2

(
θ̂1

)
.

Following similarly to the formulation of T1, it can be shown that an expression for T2 is

given by

T2 =
N

2
log

(
σ2
1

σ2
1 + β′2H̃β2

)
,

where H̃ = ΣW ′W −ΣW ′XΣ−1X′XΣX′W with ΣW ′W , ΣW ′X , and ΣX′X defined as before.

Also following similarly from previous sections, an asymptotic expression for V ar(T2) is

given by

V̂ ar(T2) =
σ2
2

σ4
12

β̂′2W
′MXMWMXW β̂2

Finally, it is also true that T2
V̂ ar(T2)1/2

approx ∼ N (0, 1).

1.4.2 Multivariate Linear Regression

Another extension of Cox’s methodology for comparing nonnested models was introduced

by Araujo et al. (2005). Following from the previous example by Pesaran (1974) and

subsequent works involving the same author, the authors developed test statistics to compare

nonnested multivariate regression models. Consider the following set of hypotheses:

H1 : YYY = XXXB1 +EEE1

H2 : YYY = WWWB2 +EEE2

Here, YYY is an N×k matrix of information on k continous outcome variables corresponding

to each of N subjects. XXX and WWW are, respectively, N × p and N × q matrices of regressors;
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B1 and B2 are, respectively, p × k and q × k matrices of parameters. Matrices EEE1 and EEE2

are N × k matrices whose rows are independent and identically distributed normal random

vectors with means equal to zero and N ×N covariance matrices Σ1 and Σ2, respectively.

So, it follows that E1E1E1 ∼ N (0, IN ⊗Σ1) and E2E2E2 ∼ N (0, IN ⊗Σ2), and that YYY ∼

N (XXXB1, IN ⊗Σ1) under H1 and YYY ∼ N (WWWB2, IN ⊗Σ2) under H2. That is, YYY , EEE1, EEE2

follow multivariate Normal distributions.

The models represented in each hypothesis are nonnested in that one cannot obtain the

columns of XXX from the columns of WWW , and vice versa. As in Pesaran’s example, further

assumptions to justify the models being nonnested include the following:

lim
N→∞

(
1

N
XXX ′XXX

)
≡ ΣX′X

lim
N→∞

(
1

N
WWW ′WWW

)
≡ ΣW ′W

lim
N→∞

(
1

N
XXX ′WWW

)
≡ ΣX′W .

Further, it is assumed that ΣX′X and ΣW ′W are nonsingular, and that ΣX′W is a non-zero

matrix.

We may collect the unknown parameters from each model into ((pk +Nk)× 1) vectors

θ1 = (vecB1, vecΣ1)
′ and θ2 = (vecB2, vecΣ2)

′ corresponding respectively to the models

given in H1 and H2.

Note that the log-likelihood functions corresponding respectively to the two nonnested

models under consideration are given by

l1 (θ1) = −N
2

log
∣∣Σ−11

∣∣− kN

2
log (2π)− 1

2
tr (YYY −XXXB1)′ (YYY −XXXB1) Σ−11

l2 (θ2) = −N
2

log
∣∣Σ−12

∣∣− kN

2
log (2π)− 1

2
tr (YYY −WWWB2)′ (YYY −WWWB2) Σ−12
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Formulation of Expressions for T1 and V ar(T1) To compute an expression for T1,

as defined in equation 7, Araujo et al. first define l̂12 = N
2

(
log
∣∣∣Σ̂2

∣∣∣− log
∣∣∣Σ̂1

∣∣∣), where

Σ̂1 = 1
N
ÊEE
′
1ÊEE1 and Σ̂2 = 1

N
ÊEE
′
2ÊEE2. Under H1, ÊEE1 = MXEEE1 and ÊEE2 = MWEEE1 + MWXXXB1,

where MX = IN −XXX (XXX ′XXX)−1XXX ′ and MW = IN −WWW (WWW ′WWW )−1WWW ′.

So it follows that,

Σ̂2 =
1

N
ÊEE
′
2ÊEE2 =

1

N
(MWEEE1 + MWXXXB1)′ (MWEEE1 + MWXXXB1)

=
1

N
(EEE ′1MWEEE1 + B′1XXX

′MWEEE1 +EEE ′1MWXXXB1 + B′1XXX
′MWXB1) .

Now, under H1, the expectation of Σ̂2 is given by Σ21 = E
(
Σ̂2

)
H1

= Σ1 + B′1Σ̄B1,

where Σ̄ = ΣX′X −ΣX′WΣ−1W ′WΣW ′X , and as Σ̂1 converges to Σ1 in probability under H1,

we have

N plimN→∞

l12

(
θ̂1, θ̂2

)
N

=
N

2

(
log
∣∣Σ1 + B′1Σ̄B1

∣∣− log |Σ1|
)
.

Putting the two terms together, an expression for T1 is given below.

T1 =
N

2

(
log
∣∣∣Σ̂2

∣∣∣− log
∣∣∣Σ̂1

∣∣∣)− N

2

(
log
∣∣Σ1 + B′1Σ̄B1

∣∣− log |Σ1|
)

=
N

2

(
log
∣∣∣Σ̂2

∣∣∣− log

∣∣∣∣∣Σ̂1 +
B̂′1XXX

′MWXXXB̂1

N

∣∣∣∣∣
)
.

Note that 1
N
XXX ′MWXXX is a consistent estimator of Σ̄.

As in the Pesaran (1974) extension, the distribution of T1 under H1 is dependent upon

unknown parameters. Only when models are nested - that is, when MWXXX = 0 - does this

dependence go away.
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Araujo et al. (2005) derived the variance of T1, given by V ar(T1), which also is dependent

upon unknown parameters. Their formula is derived by the following series of equations.

V ar(T1) = tr
[
(XXXB1 −WWWB21) Σ−121 Σ1Σ

−1
21 (XXXB1 −WWWB21)′

]
+
N

2
tr
[(

Σ−121 −Σ−11

)
Σ1

]2
− N

4

[(
2 vec Σ̄B1Σ−1

21

)′ (
Σ−1X′X ⊗Σ1

) (
2 vec Σ̄B1Σ−1

21

)
+
(
2 vech

[
Σ−121 −Σ−11

]
− vech diag

[
Σ−121 −Σ−11

])′
∆(

2 vech
[
Σ−121 −Σ−11

]
− vech diag

[
Σ−121 −Σ−11

])]
,

where ∆ is a complex function of the information matrix of vech Σ1. More details on

these computations are given in the containing paper. Most notably, in this extension to

multivariate linear regression models, the formula for V ar(T1) is even more complex than

that for the case of comparing univariate linear regression models.

All in all, T1V̂ ar(T1)
−1/2T1approx ∼ N (0, 1).

Expressions for T2 and V ar(T2)

Araujo et al. (2005) did not provide expressions for T2 and V ar(T2), which are derived

similarly to the formulations of T1 and V ar(T1). Here, we provide expressions for both

quantities.

T2 =
N

2

(
log
∣∣∣Σ̂1

∣∣∣− log

∣∣∣∣∣Σ̂2 +
B̂′2WWW

′MXWWW B̂2

N

∣∣∣∣∣
)
,

where Σ̃ = ΣW ′W −ΣW ′XΣ−1X′XΣX′W and 1
N
WWW ′MXWWW is a consistent estimator of Σ̃.

27



One can find that

V ar(T2) = tr
[
(WWWB2 −XXXB12) Σ−112 Σ2Σ

−1
12 (WWWB2 −XXXB12)′

]
+
N

2
tr
[(

Σ−112 −Σ−12

)
Σ2

]2
− N

4

(
2 vec Σ̃B2Σ−1

12

)′ (
Σ−1W ′W ⊗Σ2

) (
2 vec Σ̃B2Σ−1

12

)
+
N

4

(
2 vech

[
Σ−112 −Σ−12

]
− vech diag

[
Σ−112 −Σ−12

])′
Γ(

2 vech
[
Σ−112 −Σ−12

]
− vech diag

[
Σ−112 −Σ−12

])
,

where Γ is a complex function of the information matrix of vechΣ2.

Again, T2V̂ ar(T2)
−1/2

T2approx ∼ N (0, 1).

All of the previous examples demonstrate a clear need for a similar application to linear

mixed models with nonnested functional forms.

1.5 Using Information Criteria to Distinguish Nonnested LMMs

In the linear mixed model, information criteria are most commonly used to compare

models with nonnested fixed and/or random effects. As an alternative to a statistical test,

the use of information criteria allow one to judge goodness-of-fit of candidate models to data.

The premise of comparing models based on information functions dates back to the work of

(Kullback and Leibler, 1951), who developed the Kullback-Leibler information (or divergence,

distance, discrepancy) (Burnham and Anderson (2002)); hereafter, the K-L information)

function which essentially measures the distance - or loss of information - between a candidate

model and an assumed ’true’ model. Since we are rarely able to identify the full knowledge of

a true model, the development of information criteria overcomes this obstacle by estimating

a relative expected K-L information. The formula for most information criteria include a

goodness-of-fit term for the candidate model’s maximized log likelihood function (usually

−2 times the log-likelihood function) along with a penalty term involving the number of
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parameters estimated by the model to prevent overfitting and/or sample size. The general

selection rule is ’smaller is better’, meaning that a model having the lowest value of an

information criterion - or lowest deviation from an assumed true model - is favored over other

candidates. Below, several common information criteria whose theory has been extended to

the linear mixed model are reviewed; their advantages and limitations are considered.

1.5.1 Commonly used information criteria

In this section, a brief overview of some information criteria that are commonly applied to

linear mixed models are described in more detail. Particular attention is paid to the Akaike

Information Criterion (AIC) first proposed in Akaike (1973) and several of its variants. For

a more comprehensive review of all available information criteria for the linear mixed model,

see Dimova et al. (2011), Greven and Kneib (2010), Wang and Schaalje (2009), Shang and

Cavanaugh (2008), Gurka (2006), Pu and Niu (2006), Vaida and Blanchard (2005), Chen

and Dunson (2003), Burnham and Anderson (2002), Ngo and Brand (2002), and Cavanaugh

(1999).

Akaike Information Criterion (AIC) and variants

Kullback and Leibler (1951) defined the Kullback directed divergence as a measure of the

distance between the true model and a candidate model. First proposed in Akaike (1973),

the Akaike Information Criterion arises from the Kullback directed divergence. The formula

for AIC is given by

AIC = −2 l (yyy |θ ) + 2p

where l is the likelihood function for the observed data yyy (N × 1) ,and p × 1 vector θ

represents the dimension of the unknown parameter space represented by vector θ.

As stated previously, AIC assumes that the candidate model is nested within a larger,

’true’ model (Ngo and Brand, 2002). It favors a model with fewer parameters, all else fixed,
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according to the ’smaller is better’ principle. When two models have the same number of

parameters, but slightly different forms of a particular independent variable (e.g., continuous

vs. categorical age parameterization), using the AIC to select the better model can be

misleading.

Several variations of the AIC exist and their formulas are listed below (note that l and

p are defined as before):

• AICc = −2l+2p
(

N
N−p−1

)
, also referred to as a ’small-sample AIC (Hurvich and Tsai,

1989)

• cAIC = −2lc + 2 (ρ̂+ 1), where lc is the conditional log-likelihood function and ρ̂ is

the estimated effective degrees of freedom (Vaida and Blanchard, 2005; Dimova et al.,

2011)

• Variants where the penalty term is estimated using parametric bootstrapping, as con-

sidered in Shang and Cavanaugh (2008)

The AICc improves upon the AIC’s small smaple bias by correcting for sample size

within the penalty term. As a further improvement, Vaida and Blanchard (2005) proposed

the Conditional Akaike Information Criterion (cAIC) . Liang et al. (2008) highlighted some

limitations of Vaida and Blanchard’s approach, and proposed a modification to the cAIC.

Many bootstrap-based variants of the AIC have been developed, and many were shown to

outperform the AIC among small samples and under varied estimation approaches; however,

many researchers steer clear of this approach because of the assumed computational effort

required.

Several investigations have shown that the AIC is inconsistent, particularly among small-

sample data (Ngo and Brand, 2002). Gurka (2006) considers the AIC and the variants listed

above for comparing fixed effects models; a Monte-Carlo simulation study led to inconclu-

sive results on which criterion performs best. Moreover, Gurka emphasizes certain adjust-
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ments required for estimating these criteria under restricted maximum likelihood estimation

(REML) and the impact that certain data characteristics can have on each criterion’s per-

formance. Most recently, Dimova et al. (2011) compared the AIC and some variants in

selecting among nested models arising from moderate-sample data. Like other investiga-

tions, no one criteria outshone the others; however, a poor performance of the cAIC led

the authors to recommend that it no longer be used to select linear mixed models. Their

investigation omitted Schwarz’s Bayesian Information Criterion and any bootstrap variants

of the AIC such as the Extended Information Criterion (EIC), both of which are discussed

in more detail below.

Schwarz’s Bayesian Information Criterion (BIC)

In 1978, Scwharz proposed the Bayesian Information Criterion (BIC) as an alternative

to the AIC. The formula for BIC is given by

BIC = −2 l (yyy | θ) + p lnN

where, like before, l represents the log-likelihood function for the N ×1 observed data vector

yyy, and θ is the p× 1 vector of unknown parameters.

Like the AIC, the BIC penalizes models with many parameters, but this criterion also

takes sample size into account penalizing high-dimensional data. Unlike the AIC, however,

the BIC does not assume a true model and thus does not assume a nested structure among

models.

Limitations of AIC and BIC

While the AIC and BIC are easy to compute, use, and interpret, one major criticism of

both is that they are only relative measures of model discrimination; they offer no decision

related to statistical significance of differences between candidate models. Additionaly, these
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and other information criteria will always favor one of the models under consideration, even

if none represent the ’best’ characterization of the relationship between covariates and the

outcome variable. Both criteria have been outperformed by other IC given different types of

models.

Preference of one over the other depends on several factors, including the sample size

under consideration and the number of unknown parameters in each model. In many cases,

the AIC and BIC will select different models.

Burnham and Anderson (2002) offer more discussion of AIC and BIC, and Gurka (2006)

examines properties and performance of all of the above criteria under REML in the linear

mixed model with inconclusive results as to a ’best’ criterion.

A common criticism and major limitation of using an information criterion to select a

model is that the absolute value of a criterion for a single model has no direct interpretation.

Comparing the values for two models gives no indication of statistical significance in deciding

which model is better, and there is no knowledge of the impact of the magnitude of difference

between the values of a criterion from two candidate models. Furthermore, the AIC and most

of its variants assume a true model within all candidate models are nested; this assumption

is not practical for all sets of candidate models.

Li and Wong (2010) analyzed longitudinal data from a clinical trial among scleroderma

patients. They considered models with nonnested covariance structures (though no discus-

sion is given to how one distinguishes whether two covariance structures are nested) using

the AIC and BIC to compare models. They did acknowledge the existence of variants

In spite of the limitations discussed here, these information criteria remain commonly

used to distinguish linear mixed models with nonnested fixed and/or random effects. Many

researchers continue to modify the AIC and BIC to account for the limitations listed above.

One promising variant of the AIC is described in the following section.
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1.5.2 The Extended Information Criterion (EIC)

Ishiguro et al. (1997) first proposed the extended information criterion (EIC), an exten-

sion of AIC that followed the methodology of Efron (1983); the goal of the EIC is to better

estimate the bias of the sample log-likelihood using the bootstrap technique, as compared

to the AIC. Like the AIC, the preferred model is ascertained using the ’smaller is better’

judging criterion. However, unlike the AIC, the EIC can be used under various methods

of parameter estimation (ML, REML, etc.). Further, the EIC does not rely on candidate

models being nested.

Notation and Setup The calculation of the EIC is straightforward, but is not readily

available for use in statistical software programs. Its general formula is given below.

EIC = −2 l
(
yyy | θ̂

)
+ 2Ĉ∗ (5)

where Ĉ∗ is a scalar quantity estimated by

Ĉ∗ =
1

B

B∑
b=1

[
l
(
yyyb
∗ | θ̂∗b

)
− l
(
yyy | θ̂∗b

)]

where l (·) represents the log-likelihood function; yyy, like before, is the N×1 vector contain-

ing observed subject responses; θ̂ is the r × 1 vector of unknown parameters corresponding

the original data yyy; yyyb
∗ is the bth bootstrap sample of the original data yyy; θ̂∗b is the set of

fixed and random effects that maximize the likelihood function of the bth bootstrap data set.

Essentially, Ĉ∗ is the averaged (across allB bootstrap samples) difference in the maximum

log-likelihood function of the bootstrapped data and the value of a log-likelihood function

of the original data with bootstrapped parameter estimates. Among all candidate models,

the model with the lowest EIC should be selected.
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Implementation of the EIC

Pan (1999) compared performance of the EIC, AIC, and other model selection criteria.

Their example data were a small sample with which these criteria were assessed under

linear regression, logistic regression, and Cox regression. The author found that the EIC

outperformed AIC, but was not as good as another technique - the BCV (bootstrap cross-

validation).

Yafune et al. (2005) used the EIC to compare linear mixed models with nested mean

and covariance structures under REML estimation, a case which we do not consider since

one cannot compare log-likelihood functions of linear mixed models under REML estimation.

The authors assessed the performance of the EIC using motivating data from two small-

sample longitudinal studies. The first study is Potthoff and Roy’s dental data Potthoff and

Roy (1964), and the authors only used data for the 16 boys in study (observed at 4 equally

spaced time points). Second example is data of platelet count for 12 ITP patients (observed

at 6 time points). Simulation studies considered only seven models, of which only nested

mean model structures were considered. While this paper leverages the use of well-designed

longitudinal studies and simulations to assess the performance of the EIC and demonstrate

its applicability to non-ML estimation procedures, and shows that EIC outperforms AIC in

small sample studies, the authors do not consider large sample studies and do not compare

models with nonnested structures.

Shang and Cavanaugh (2008) examined the EIC and another bootstrap variant of AIC

in selecting among mixed models arising from clustered (not necessarily repeated measures)

data with small and moderate sample sizes. Their results reinforced the findings of Yafune

et al. (2005) that EIC outperforms AIC in small samples. Among large sample data, the

performances of EIC and AIC in selecting a model were comparable. Again, only nested

models were compared.

While the EIC was developed to improve the finite-sample bias, it has not been well-
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studied for its properties in models arising from large-sample data. In addition, its potential

to distinguish between nonnested models has not been adequately addressed.

1.6 Summary

The linear mixed model is a very useful tool to characterize longitudinal data; having

separately-modeled mean and covariance structures provides great flexibility to build a wide

variety of models. However, it also complicates the process of selecting an adequate whole

model by requiring correct specification of each structural component. For this reason, most

existing model selection techniques focus on the selection of one model (mean or covariance)

at a time while holding the other fixed. Techniques to select both mean and covariance

models are ad hoc extensions from simpler univariate and multivariate data with uncorre-

lated continuous outcomes; it has been established that these extensions have not been well

studied, nor have they been adequately tested in various model comparison scenarios for the

linear mixed model. Particularly, cases where two candidate models are nonnested (in fixed

and/or random effects) are rarely considered. Most researchers blindly use information crite-

ria, which are uncalibrated to determine statistically significant differences between models

and often lead to inconclusive results. Moreover, hypothesis testing has not been thoroughly

leveraged as an option for selecting between nonnested models. Much of the literature on

nonnested models is based in econometrics, social science research, and pharmacology; while

examples similar to the case of nonnested linear mixed models exist, few attempts have

been made to ground or extend these cases to statistical literature. Moreover, discussions of

nonnested linear mixed models are usually restricted to nonnested mean models with very

little attention paid to the case of nonnested random effects or covariance structures.

We propose two techniques that are incorporated into three methodological papers:

* a hypothesis testing approach

* an information criterion, applied under maximum likelihood estimation.
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These two proposed approaches will add to the lack of available model selection techniques

for nonnested linear mixed models and advance the discussion and development of more

flexible model selection techniques.
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CHAPTER 2: A HYPOTHESIS TEST TO SELECT
BETWEEN LMMS WITH NONNESTED FIXED EFFECTS

2.1 Introduction

The construction of an adequate statistical model to characterize particular relationships

or phenomena is an important step of scientific research. In studies using longitudinal data

- particularly repeated measurements - the selection of a linear mixed model, where both

a parsimonious mean model and an appropriate covariance structure must be specified,

model selection is even more important. Typically, the first step of model selection in the

linear mixed model among two candidate models involves assigning a common covariance

structure that appropriately characterizes the correlation among repeated measurements

to both models and then selecting among nested mean models using techniques such as

likelihood ratio tests. When two models are nested, that means that one model can be

derived by applying a linear restriction to the other model. Once a mean model is chosen, it

is kept fixed and an appropriate covariance structure that represents inherent correlation of

repeated measurements is then identified. The vast majority of scenarios involve comparing

two candidate mean models that are nested, using techniques that are mostly extensions

of those used to select among nested univariate linear regression models; these techniques

continue to undergo investigations to assess their robustness.

Increasingly and under a wide variety of scenarios, researchers may be interested in com-

paring nonnested mean models. For instance, econometrics analysts often compare compet-

ing indices that measure the same phenomenon to determine which index more appropriately

relates observed data to some outcome variable (Dimova et al., 2011; Monfardini, 2003); the

indices, though not nested by definition, are often strongly positively correlated precluding
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their simultaneous inclusion in a single model. The common approach to selecting the more

adequate model is that one fits two models, each including only one of the indices, then com-

pares the properties of the models. In many cases, especially for the linear mixed model, the

standard suggestion is to compare nonnested models using their information criteria (e.g.,

AIC, BIC), favoring the model with the smaller information criterion value. However,

these criteria have not yet been adequately assessed for their ability to select among a set of

nonnested models arising from longitudinal data with continuous outcomes. Furthermore,

there does not exist a cadre of well-studied hypothesis tests or other criteria to evaluate

nonnested models, so such comparisons have considerable drawbacks.

More relevant to linear mixed models, an important example of comparing nonnested

models can be found in the study of obesity as a risk factor for diabetes, hypertension,

and other detrimental cardiovascular and metabolic conditions. Researchers have devoted

great interest to determining a measure of body fat that best captures the deposition of

fat that leads to serious cardiovascular events among aging populations (particularly elderly

populations and children). Most commonly used as a proxy for body fat is body mass index

(or BMI), which is a function of an individual’s weight (in kilograms) and height (in meters).

The formula for BMI is given below:

BMI =
Weight (kg)

[Height (m)]2

This function produces a range of values with which individuals can be classified as

underweight (BMI < 18kg/m2), normal (18 ≤ BMI < 25), overweight (25 ≤ BMI < 30),

or obese (BMI ≥ 30). BMI has recently come under much scrutiny for its inability to

accurately distinguish detrimental fatty body mass from lean mass, and for consistently

misclassifying certain subpopulations as overweight or obese (Lewis et al., 2009; Hojgaard

et al., 2008). Other related measures, such as waist circumference (distance around the

abdomen, traditionally measured in inches), waist-to-hip ratio (Chan et al., 2003; Cole et
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al., 2005), and the more recently proposed Body Adiposity Index (BAI) (Bergman et al.,

2011), have been purported to more accurately characterize body fat and its association with

diabetic and cardiovascular risk.

Mathematically, to assess which (if any) of these alternative measures are better predic-

tors than BMI of some continuous and normally distributed measure of cardiovascular risk

among individuals over time, one could build separate models including only one measure at

a time since including more than one of these correlated measures in a single model intro-

duces collinearity. All of these measures have been shown to be strongly positively correlated

with each other, yet their functional forms are such that separate models each including only

one of these measures at a time can be considered nonnested in that one model cannot be

obtained as a simple limit or linear restriction of the other. Again, there do not exist robust

techniques to compare models of this type that are not nested, but there is great interest in

establishing mathematical evidence to favor one measure above the others.

Levy and Hancock (2007) delineated four types of model relations for structural equa-

tion models via a framework that can be readily applied to linear mixed models: completely

overlapping models, hierarchically related models, partially overlapping models, and nonover-

lapping models. The first two relations represent nested models, in which one model is

completely contained in the other. Existing model selection techniques are largely applied

to these cases, where likelihood ratio tests can be used to distinguish models. In the dis-

cussion of nonnested models, the focus here is on what Levy and Hancock named partially

overlapping models, which are derived from similar distributions and have some variables in

common, but neither model is contained in the other without requiring constraints in both

models. Nonoverlapping models are considered to be completely nonnested, where there is no

possible set of constraints that could be applied to either model to create a nested structure

between models; this case is not addressed here but is worthy of future exploration.

Seminal works by Sir David Cox (1961, 1962) highlighted this case of comparing partially
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overlapping models, or separate families of (nonnested) hypotheses. Important examples that

expound upon Cox’s work and help build the case for a need to extend this methodology

to linear mixed models are found in, but not limited to, Pesaran (1974), Araujo et al.

(2005), Monfardini (2003), and Dameus et al. (2002). To add to the scarce toolbox of

available methods to compare and test linear mixed models with nonnested fixed effects, we

investigate the development of a set of hypothesis tests based on the work of Cox (1961, 1962)

and the extensions to nonnested univariate and multivariate regression models, introduced by

Pesaran (1974) and Araujo et al. (2005), respectively. We derive bi-directional test statistics

to compare two linear mixed models with nonnested fixed effects, particularly models that

could be classified as partially overlapping. The corresponding limiting distributions of

the test statistics are also derived, and we show that a closed form for the variance of

either test statistic cannot be obtained without making conforming assumptions. In cases

where simplifying assumptions made here are not appropriate, we demonstrate that the

determinination of the distributions of test statistics can be computed using parametric

bootstrapping. Below, we review Cox’s methodology and build a foundation for deriving

a test of separate hypotheses for linear mixed models with nonnested fixed effects. We

use simulation studies to assess the viability of the derived test statistics to select among

nonnested fixed effects models, paying particular attention to the issue of distinguishing

body fat measures to assess longitudinal risk of cardiovascular events.

2.2 Review of Cox methodology

Recall from Section 1.4.1 that we covered the background and theoretical overview of

Cox’s methodology and some notable extensions of his work. Now we introduce notation

more relevant to linear models. Let l1(θ̂1) represent the maximized log-likelihood function

of the model proposed under H1 maximized by parameter value θ̂1 and l2(θ̂2) be the maxi-

mized log-likelihood function under H2, where θ̂1 and θ̂2 are the (k × 1) maximum likelihood

40



estimates of θ1 and θ2, respectively. Cox proposed using the following test statistic,

T1 = l1(θ̂1)− l2(θ̂2)− E
[
l1(θ̂1)− l2(θ̂2)

]
θ=θ̂1

, (6)

which compares the observed difference of maximized log-likelihoods with an estimate of

their expected difference under H1. In the expected difference θ1 and θ2 are replaced with

their maximum likelihood estimates under H1, θ̂1 and θ̂21, respectively.

Alternatively, T1 can be expressed as follows:

T1 = l̂12 −N

[
plimN→∞

l̂12
N

]
θ1=θ̂1

(7)

where l̂12 = l1

(
θ̂1

)
− l2

(
θ̂2

)
; that is, l̂12 is the difference in log-likelihood functions or

the likelihood ratio between candidate models, and plim refers to the probability limit of the

given expression evaluated under H1. This specification of T1 differs from the first in its use

of the probability limit in lieu of expectation. Appendix A delineates the similarities and

differences between the probability limit and expectation. Our focus here relies on evaluating

probability limits in lieu of taking expectations.

Cox demonstrated that, under the null hypothesis, T1 is normally distributed with mean

0 and variance given by the equation below:

V ar(T1) = V1 [l1 (θ1)− l2 (θ21)]−G′1I−11 G1, (8)

where V1 is the variance of the containing expression evaluated under H1, θ21 is the plim

of θ̂2 under H1, G1 ≡ N ∂
∂θ1

[
plimN→∞

l̂12
N

]
, and I1 is the information matrix of θ1.

Recall that the roles of H1 and H2 can be interchanged, yielding corresponding test

statistic T2, where

T2 = l̂21 −N

[
plimN→∞

l̂21
N

]
θ2=θ̂2

(9)
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In this case, the probability limit is taken under H2 and θ2 and θ1 are replaced by their

maximum likelihood estimates under H2, θ̂2 and θ̂12, respectively.

Asymptotically, T ∗1 = T1V ar1
− 1

2T1 follows a standard normal distribution under the null

hypothesis, H1.

Decision-Making based on T1 and T2

In using two test statistics, it is possible to obtain rejections of both hypotheses (mod-

els), as well as non-rejections of both hypotheses. Asymptotically, T1 has a negative expected

value under H2 and similarly, T2 has a negative expected value under the alternative hypoth-

esis. Thus, a large negative value of T1 or T2 leads to the rejection of the null hypothesis

related to each test statistic. The case where both T1 and T2 are both significantly positive

is inadmissible. From Sawyer (1983), the following table summarizes the decisions that can

be made based on the values of T1 and T2.

Table 1: Decisions resulting from values of the Cox test statistics

T2
T1 Sig., (−) Not Sig. Sig., (+)

Sig., (−) Reject H1 and H2 Do not reject H2 Reject H1 and H2

Not Sig. Do not reject H1 Do not reject H1 and H2 Possibly Inadmissible
Sig., (+) Reject H1 and H2 Possibly Inadmissible Inadmissible

Thus, there are nine combinations that may result from computing both T1 and T2, re-

sulting in four distinct decisions for a pair of separate hypotheses: rejecting both hypotheses,

not rejecting both hypotheses, or rejecting one hypothesis while not rejecting the other. Fol-

lowing Cox’s proposed hypothesis testing framework for nonnested models, Pesaran (1974)

formulated a test to select among nonnested univariate linear regression models. He found

that he could not derive an exact distribution of each test statistic, since each distribution

depended on unknown parameters. To overcome this, he derived the variance of each test

statistic according to Cox’s formula, and in the end replaced unknown parameters with their

42



maximum likelihood estimates, under the given null hypothesis. More than thirty years later,

Araujo et al. (2005) carried this work further in developing a similar test for nonnested mul-

tivariate linear regression models. The extension to mutivariate models introduced further

complexities in deriving the variance of the test statistic, regardless of the model considered

as the null hypothesis. Building upon these two extensions, we will derive a hypothesis test

for comparing linear mixed models with nonnested fixed effects. We attempt to obtain a

closed form, or reasonable estimate, of the variance of each test statistic in order to derive

an asymptotic distribution of the test statistics.

2.3 Formulating the Cox Test of Nonnested Hypotheses for

LMMs with nonnested fixed effects

Considering the formulations of tests by Pesaran (1974) and Araujo et al. (2005), we

propose a similar test of separate hypotheses applicable to the case of comparing two linear

mixed models with nonnested fixed effects. One major distinction between the extension by

Araujo et al. (2005) and our proposed methodology is that with the linear mixed effects

model, we must consider the inherent correlation among the multivariate observations within

subjects. From the Araujo et al. extension, it is evident that determining an expression for

the variance of the test statistics for linear mixed models may require some conforming

assumptions. Below, we present in detail the derivation of bidirectional test statistics T1

and T2 and their respective asymptotic variances, denoted by V ar(T1) and V ar(T2); these

quantities are used to discuss determination of the asymptotic distribution of T1 and T2.
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H1 : yyy = XXXβ1 +ZZZb1 + e1 (10)

H2 : yyy = WWWβ2 +ZZZb2 + e2 (11)

alternatively expressed as

H1 : yyy ∼ N (XXXβ1,Σ1) (12)

H2 : yyy ∼ N (WWWβ2,Σ2) (13)

(14)

The null hypothesis assumes a linear mixed effects model with (Nn× p) fixed effects

design matrix XXX, (p× 1) fixed effects parameter vector β1, (Nn× q) random effects matrix

ZZZ which is a subset of XXX, (q × 1) random effects parameter vector b1 ∼ Nq (0,Σb1) inde-

pendent of random errors distributed normally e1 ∼ NNn (0,Σe1). In the null hypothesis,

the variance of yyy is denoted by (Nn×Nn) matrix Σ1 = ZZZΣb1ZZZ
′ + Σe1 . The alternative

hypothesis favors a linear mixed effects model with (Nn× p) fixed effects matrix WWW , where

neither WWW nor XXX is assumed to be a subset of the other matrix, although the two matrices

may have some common variables and both are assumed to contain the same number of

variables. In addition, the (p× 1) vector of fixed effects parameters in the null hypothesis,

β1, is assumed to be different from the alternative hypothesis (p× 1) fixed effects parameter

vector, β2. Vectors b2 and e2 are assumed to be independent, and the variance of yyy under

the alternative hypothesis is given by Σ2 = ZZZΣb2ZZZ
′ + Σe2 . Again, matrices XXX and WWW are

not nested; that is, all columns of XXX cannot be obtained from those of WWW and vice-versa.

However, ZZZ is a subset of WWW . For simplicity, in order to allow ZZZ to be the same in both H1

and H2 so that the random effects covariance structures can be specified similarly, and thus
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2.3.1 Deriving T1, computing V ar(T1), and deriving

the distribution of T1

Consider the following hypotheses:



nested, we assume that XXX and WWW are partially nonnested (Levy and Hancock, 2007).

Recall, the general formula for test statistic T1 given by equation (6), as well as the

alternative formula for T1 given in equation (7).

In order to derive an expression for T1 for the specific hypotheses, H1 and H2, listed pre-

viously, we first note that the log-likelihood functions of models H1 and H2 under maximum

likelihood (ML) estimation are given according to the multivariate normal distribution by

l1 (θ1) = −Nn
2

log 2π − 1

2
log |Σ1| −

1

2
tr (yyy −XXXβ1)

′Σ−11 (yyy −XXXβ1)

l2 (θ2) = −Nn
2

log 2π − 1

2
log |Σ2| −

1

2
tr (yyy −WWWβ2)

′Σ−12 (yyy −WWWβ2)

In the equations above, θ1 and θ2 are of dimension (s× 1) ,where s = p+q+r, vectors that

collects unknown fixed and random effects parameters in the null and alternative hypotheses,

respectively. The trace (tr) indicates the sum of the diagonal elements of the contained

matrix.

If we assume that both fixed and random effects are unknown, then we have:

l̂12 = l1

(
θ̂1

)
− l2

(
θ̂2

)
= −1

2
log
∣∣∣Σ̂1

∣∣∣+
1

2
log
∣∣∣Σ̂2

∣∣∣
− 1

2
tr

[(
yyy −XXXβ̂1

)′
Σ̂−11

(
yyy −XXXβ̂1

)]
+

1

2
tr

[(
yyy −WWW β̂2

)′
Σ̂−12

(
yyy −WWW β̂2

)]
,

where β̂1 =
(
XXX ′Σ̂−11 XXX

)−1
XXX ′Σ̂−11 yyy under H1, and under H2,
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Σ̂1 =
1

Nn

(
yyy −XXXβ̂1

)(
yyy −XXXβ̂1

)′
;

Σ̂2 =
1

Nn

(
yyy −WWW β̂2

)(
yyy −WWW β̂2

)′
.

Notably, Σ̂1 and Σ̂2 do not have closed form expressions (Pinheiro et al., 1994).

Then, using properties of the trace of a matrix (Appendix A), we have

l̂12 =
1

2
log

∣∣∣Σ̂2

∣∣∣∣∣∣Σ̂1

∣∣∣ − 1

2
tr

[
Σ̂−11

(
yyy −XXXβ̂1

)(
yyy −XXXβ̂1

)′]

+
1

2
tr

[
Σ̂−12

(
yyy −WWW β̂2

)(
yyy −WWW β̂2

)′]

=
1

2
log

∣∣∣Σ̂2

∣∣∣∣∣∣Σ̂1

∣∣∣ − Nn

2
tr
(
Σ̂−11 Σ̂1

)
+
Nn

2
tr
(
Σ̂−12 Σ̂2

)

=
1

2
log

∣∣∣Σ̂2

∣∣∣∣∣∣Σ̂1

∣∣∣ − Nn

2
trIII +

Nn

2
trIII

Thus, l̂12 reduces to the following equation.

l̂12 =
1

2
log

∣∣∣Σ̂2

∣∣∣∣∣∣Σ̂1

∣∣∣ .
Now, to compute the second term of T1 according to equation 7, and applying properties

of probability limits (Appendix A), we have:

Nn

(
plimNn→∞

l̂12
Nn

)
θ=θ̂1

= Nn plimNn→∞

 1

2Nn
log

∣∣∣Σ̂2

∣∣∣∣∣∣Σ̂1

∣∣∣

θ=θ̂1

=
1

2
log

∣∣∣Σ̂21

∣∣∣∣∣∣Σ̂1

∣∣∣ ,
where Σ21, the probability limit of Σ2 under H1, is equivalent to 1

Nn

[
Σ1 + β′1Σ̄β1

]
.
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β̂2 =
(
WWW ′Σ̂2

−1WWW
)−1

WWW ′Σ̂2
−1yyy;



Similar to Araujo et al. (2005), we assume the following matrices exist, and that the first

two are nonsingular and the third a non-zero matrix:

ΣXXX′XXX ≡ limNn→∞
1

Nn
XXX ′XXX,

ΣWWW ′WWW ≡ limNn→∞
1

Nn
WWW ′WWW,

ΣXXX′WWW ≡ limNn→∞
1

Nn
XXX ′WWW,

so that Σ̄1 = ΣXXX′XXX −ΣXXX′WWWΣWWW ′WWWΣWWW ′XXX .

Combining the two terms of T1, we have

T1 =
1

2
log

∣∣∣Σ̂2

∣∣∣∣∣∣Σ̂21

∣∣∣ , (15)

In order to use this proposed testing strategy, the distribution of the test statistic T1 must

be determined. Cox (1962) showed that asymptotically, under H1, T1 has an expected value

of 0 and variance given by V ar (T1) = V1 [l12 (θ1,θ21)]−G1
′I1
−1G1, where l12 (·) is defined as

before, and in the first term the variance is computed under the null hypothesis H1. Also, θ21

represents the probability limit (plim) of θ̂2 under H1, G1 = Nn ∂
∂θ1

[
plimNn→∞

l12(θ̂1,θ̂2)
Nn

]
,

and I1 is the information matrix of θ1.

Beginning with the first term of V ar(T1), we have

V1 [l12 (θ1,θ21)] = V1

{
1

2
log
|Σ21|
|Σ1|

+
1

2
tr
[
(yyy −WWWβ21)

′Σ−121 (yyy −WWWβ21)
]

− 1

2
tr
[
(yyy −XXXβ1)

′Σ−11 (yyy −XXXβ1)
]}

.

To evaluate the variance of the above expression, we note that the first term drops off

47



since the expression is a constant that does not depend on a random quantity. So we have

V1 (l12 (θ1,θ21)) =
1

4
V1
(
tr
[
(yyy −WWWβ21)

′Σ−121 (yyy −WWWβ21)
])

+
1

4
V1
(
tr
[
(yyy −XXXβ1)

′Σ−11 (yyy −XXXβ1)
])

=
1

4

[
2tr
(
Σ−121 Σ1Σ

−1
21 Σ1

)
+ 4 (XXX −WWWβ21)

′Σ−121 Σ1Σ
−1
21 (XXX −WWWβ21)

]
+
Nn

2

Applying lemmata and properties used in Araujo et al. (2005) and described in Ap-

pendix A, we arrive at an expression for the first term of V ar(T1) as follows:

V1 [l12 (θ1,θ21)] = tr
[
(XXXβ1 −WWWβ21)

′Σ−121 Σ1Σ
−1
21 (XXXβ1 −WWWβ21)

]
+
Nn

2
tr
[(

Σ−121 −Σ−11

)
Σ1

]2
Now, to compute the second term of V ar(T1), we start with

G1 = Nn
∂

∂θ1

(
plimNn→∞

l̂12
Nn

)

=
Nn

2

∂

∂θ1

[
log
|Σ21|
|Σ1|

]
=
Nn

2

[
∂

∂θ1
log |Σ21| −

∂

∂θ1
log |Σ1|

]
.

Again, applying results from Araujo et al. (2005), we continue with

G1 =

 Nn ∂
∂β1

plimNn→∞
l̂12
Nn

Nn ∂
∂Σ1

plimNn→∞
l̂12
Nn


=

 Nnvec
(
Σ̄1β1β

−1
21

)
Nn
2

[
2vec

(
Σ−121 −Σ−11

)
− vech diag

(
Σ−121 −Σ−11

)]
 ,

48



where Σ̄1 is defined as before.

Next, we find an expression for the information matrix of θ1 represented by

I−11 =

 ∂2

∂β1∂β1

∂2

∂β1∂Σ1

∂2

∂Σ1∂β1

∂2

∂Σ1∂Σ1


−1

=

 NnΣXXX′XXX ⊗Σ−11 0

0 Nn
2

Σ̃1

 ,

where Σ̃1 is a product of matrices dependent on the columns and rows of matrices XXX and

Σ1.

Now, it’s possible to put the terms of V ar(T1) together, replacing (without loss of gener-

ality) all unknown quantities with their corresponding maximum likelihood estimates; this

expression, however, is dependent upon matrices whose sizes are directly related to the

sample size of observed data. This complicates the practical application of computing an

asymptotic distribution for T1. As an alternative to using the derived expression estimating

the variance of the test statistic, here we consider the use of bootstrapping to estimate the

distribution of T1 (Godfrey, 2007).

Dameus et al. (2002) outline a strategy for estimating a p-value for the Cox test using

parametric bootstrapping in the following steps: (1) estimate the two models under con-

sideration using the actual observed data set; (2) compute the observed log-likelihood ratio

of the two models; (3) estimate a distribution function for the original data under the null

hypothesis, and, based on this estimate, generate a large number (B) of datasets of the same

size; (4) re-estimate the two models for each of the generated datasets; (5) compute the

simulated log-likelihood ratio for each simulated dataset compared to the observed data set;

(6) compare the true and simulated log-likelihood ratios to compute the p-value according

to the formula below:

49



p− value =

[
l1

(
θ̂1b, yyyb

)
− l2

(
θ̂2b, yb

)
≤ l12 ∀b = 1, . . . , B

]
+ 1

B + 1

Dameus et al. (2002) encountered difficulties generating simulated data with inherent

correlations among observations. In our application, we will adapt this methodology for

determining bootstrapped p-values for T1 and T2. The analogous derivation of T2 and its

asymptotic distribution for comparing linear mixed models with nonnested fixed effects can

be found in the next section.

2.3.2 Deriving T2, computing V ar(T2), and deriving

the distribution of T2

Cox proposed a bi-directional test where the hypotheses may be interchanged such that

the model from H2 in Section 2.3.1 is now considered the null hypothesis, and the model

from H1 is the alternative hypothesis. If we consider the same models from (11), then we

now consider the hypotheses as follows:

H1 : yyy ∼ N (WWWβ2,Σ2)

H2 : yyy ∼ N (XXXβ1,Σ1)

To derive the statistic for this test, T2, we start with:

T2 = l̂21 −N

(
plimN→∞

l̂21
N

)
θ2=θ̂2
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Computing the first term of T2, we begin by defining the difference l21.

l21 (θ1,θ2) = l2

(
θ̂2

)
− l1

(
θ̂1

)
=

1

2
log |Σ1| −

1

2
log |Σ2|

+
1

2
tr
(
yyy −XXXβ̂1

)′
Σ−11

(
yyy −XXXβ̂1

)
− 1

2
tr
(
yyy −WWW β̂2

)′
Σ−12

(
yyy −WWW β̂2

)
,

where, under H1, we have

β̂2 =
(
WWW ′Σ−12 WWW

)−1
WWW ′Σ−12 yyy, Σ̂2 =

1

Nn

(
yyy −WWW β̂2

)(
yyy −WWW β̂2

)′
;

and, under H2 we assume

β̂1 =
(
XXX ′Σ−11 XXX

)−1
XXX ′Σ−11 yyy, Σ̂1 =

1

Nn

(
yyy −XXXβ̂1

)(
yyy −XXXβ̂1

)′
.

Continuing, we have l21

(
θ̂1, θ̂2

)
= 1

2
log |Σ1|

|Σ2| , noting that the trace terms drop off similarly

as in the derivation of T1.

The second term of T2 is defined by

Nn

(
plimNn→∞

l̂21
Nn

)
θ2=θ̂2

= Nn

 1

2Nn
log

∣∣∣Σ̂1

∣∣∣∣∣∣Σ̂2

∣∣∣

θ2=θ̂2

=
1

2
log

∣∣∣Σ̂12

∣∣∣∣∣∣Σ̂2

∣∣∣ ,
where Σ12, the probability limit of Σ1 under the null hypothesis, is equivalent to

1

Nn

(
Σ2 + β′2Σ̃β2

)
;

and Σ̄2 = ΣWWW ′WWW −ΣWWW ′XXXΣXXX′XXXΣXXX′WWW , where all terms are as defined before.
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Putting both terms together, we find an expression for T2 as follows

T2 =
1

2
log

∣∣∣Σ̂1

∣∣∣∣∣∣Σ̂12

∣∣∣ (16)

As with T1, we must determine the asymptotic distribution of T2 in order to apply it.

The variance of T2, denoted by V ar (T2), is given by

V ar (T2) = V2 [l21 (θ12,θ2)]−G2
′I2
−1G2

where l21 (·) is defined as before, and in the first term the variance is computed under the

null hypothesis (Model 2). Also, θ12 represents the plim of θ̂1 under the null hypothesis. So

the first term is given by

V2 [l21 (θ12,θ2)] = V2

[
1

2
tr (yyy −XXXβ12)

′Σ−112 (yyy −XXXβ12)

]
− V2

[
1

2
tr (yyy −WWWβ2)

′Σ−12 (yyy −WWWβ2)

]
= tr

[
(WWWβ2 −XXXβ12)

′Σ−112 Σ2Σ
−1
12 (WWWβ2 −XXXβ12)

]
+
Nn

2
tr
[(

Σ−112 −Σ−12

)
Σ2

]2
To compute the second term of V ar(T2), note that

G2 =

(
N

∂

∂θ2

plimN→∞

l21

(
θ̂1, θ̂2

)
N

)
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G2 = Nn
∂

∂θ2

(
plimNn→∞

l̂21
Nn

)

=
Nn

2

∂

∂θ2

(
log
|Σ12|
|Σ2|

)
=
Nn

2

[
∂

∂θ2
log |Σ12| −

∂

∂θ2
log |Σ2|

]

=

 Nn ∂
∂β2

plimNn→∞
l̂21
Nn

Nn ∂
∂Σ2

plimNn→∞
l̂21
Nn


=

 Nnvec
(
Σ̄2β2β

−1
12

)
Nn
2

[
2vec

(
Σ−112 −Σ−12

)
− vech diag

(
Σ−112 −Σ−12

)]


An expression for the information matrix of θ2 is represented by

I−12 =

 ∂2

∂β2∂β2

∂2

∂β2∂Σ2

∂2

∂Σ2∂β2

∂2

∂Σ2∂Σ2


−1

=

 NnΣWWW ′WWW ⊗Σ−12 0

0 Nn
2

Σ̃2

 ,

where, like Σ̃2 from the previous section, Σ̃2 is a product of matrices dependent on the

columns and rows of matrices WWW and Σ2. As with T1 and V ar(T1), while it is possible

to obtain a closed form expression for V2 (T2) by putting together all the terms outlined

above, we opt to apply bootstrapping techniques to determine the distribution of T2 to avoid

complex computations of large matrices.

2.4 Application to Data

An example was introduced that related to identifying a most appropriate anthropo-

metric measure of body fat. Body mass index (BMI) has been the overwhelming standard
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for the past few decades amidst much criticism due to its inability to distinguish lean fat

from detrimental fatty mass and for its gross misclassification of individuals into the over-

weight and obese categories (Bozeman et al., 2012; Pedersen et al. 2011; Kennedy et al.,

2009; Freedman et al., 2009). Researchers have increasingly considered other measures such

as waist circumference and waist-to-hip ratio, but have not had statistically rigorous tech-

niques to formally assess the ’best’ measure. Here we assess the Cox test’s performance to

ascertain which body fat measure - BMI or waist circumference - more accurately explains

cardiometabolic risk among an aging elderly population.

2.4.1  Comparing nonnested fixed effects models

in the NC EPESE data

The Established Populations for Epidemiologic Studies of the Elderly (hereafter, EPESE)

was a National Institute on Aging study that took place from 1986 until 1998 (Blazer et

al., 1991). Subjects were followed for up to four in person visits, each about four years

apart, with some telephone interviews completed between visits. There were five study sites,

including one in Central NC; for this investigation, we only use data from this site, which

observed more than 4, 000 participants at baseline. Hereafter, we refer to this subset of data

as NC EPESE. Data were publicly available and additional information was obtained with

approval through the Inter-University Consortium for Political and Social Research (ICPSR).

This resource contains demographic, clinical, physical functioning, and quality of life data

for thousands of elderly subjects, allowing for rich assessments of the trajectory of health

among this population. For the case of assessing the Cox tests of separate hypotheses for

the linear mixed model, we rely on complete and balanced data through the third in person

visit as attrition at the fourth wave of data collection and changes to variable coding do not

allow for complete data across all four waves.
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2.4.2  Specification of LMMs with nonnested fixed effects

Consider the following two models that result from the data set described above:

SBP = α0 +α1BMI +α2Sex+α3Time+ a0 + a1Time+ e1

SBP = β0 + β1WC + β2Sex+ β3Time+ b0 + b1Time+ e2

In both models, the outcome variable is systolic blood pressure (SBP ), a continuous measure

used as a proxy for cardiometabolic risk. Typically, an SBP measurement above 120 mmHg

is considered unhealthy and indicative of risk for hypertension among other cardiovascular

risks. In the EPESE study, two consecutive sitting blood pressure measurements were taken,

and the variable used here represents the arithmetic mean of each subject’s systolic blood

pressure measurements. The first model (Model I) includes baseline body mass index (BMI)

as a covariate, while the second model (Model II) uses baseline waist circumference (WC).

Since waist circumference measurements were not taken in the EPESE study, we simulated

these values based on a piecewise linear function of subjects’ baseline weight, height, and

gender; thus, BMI and WC are positively correlated but neither can be obtained via a

direct linear function of the other. Common to both models is the inclusion of sex (male

or female) and time of in person observation as covariates (first through third waves of in

person observation); thus, the design matrices for the two models (previously denoted as

XXX and WWW , respectively, have some columns in common and neither can be fully obtained

as a subset of the other. Additionally, both models contain a random intercept and a

random slope for time of in person visit (1, 2, 3). As noted previously, we assume complete

and balanced data; that is, each subject has data for the first three in person visits and

there are no missing observations. In total, the models above have nonnested fixed effects

since restrictions must be applied to both models in order to achieve a nested mean model

structure. By comparing these models, we can assess whether BMI or WC is more predictive
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of longitudinal cardiometabolic risk.

2.4.3 Results

Descriptive information at baseline for the NC EPESE data is outlined in table 2. All

NC EPESE participants in this subset of data were of age 65 years or older at the first wave,

about two-thirds were male, and on average participants were overweight as categorized by

their BMI. Baseline systolic blood pressure indicates that this subset of the population, on

average, were hypertensive.

Table 2: Descriptive statistics at baseline for the NC EPESE data

Variable Mean (SD) (Min, Max)
SBP (mm Hg) 142.4(19.49) (72.5, 230.0)

Age (years) 72.2(5.65) (65.0, 94.7)
BMI (kg/m2) 26.3(4.59) (13.6, 44.5)
WC (inches) 34.2(4.84) (20.6, 51.3)

Variable N (%)
Male Sex 610(33.4%)

For each of the hypothesized models above, a linear mixed model with corresponding

fixed and random effects was fit to the data. Each model assumes a compound symmetric

covariance model; that is, it is assumed that correlations between subjects’ blood pressure

measurements vary according to a common pattern, and the correlation does not change

with distance between observations. Table 3 lists fit statistics for each model, and table 4

displays fixed effects and covariance estimates for each model. The log-likelihood functions

(transformed to −2l) for Models I and II are very close in value, and both the AIC and

BIC favor Model I since their values are smaller than corresponding values for Model II.

Additionally, assuming a significance level of 0.05, the fixed effects estimate for BMI is

statistically significant in Model I, while the estimate for WC in Model 2 is not significant.

These results suggest that, among this dataset, BMI is more explanatory of SBP than waist

circumference.
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Table 3: Fit statistics for Models 1 and 2
−2l AIC BIC

Model I: BMI 48115.9 48121.9 48132.9
Model II: WC 48118.6 48124.6 48135.6

Table 4: Mixed model estimates, standard errors (SE) and p-values for Models 1 and 2; both
models specify a random intercept and slope with compound symmetric covariance structure

Cov. estimates
Model Fixed effect Estimate SE p-value Random effects Error
I Intercept 137.49 2.17 < 0.0001 σ̂2

b1 = 18.79 σ̂2
e = 257.9

BMI 0.16 0.08 0.038
Sex −1.57 0.76 0.039
Time 0.75 0.28 0.007

II Intercept 138.51 2.71 < 0.0001 σ̂2
b = 18.80 σ̂2

e = 258.01
WC 0.10 0.08 0.213
Sex −2.10 0.82 0.011
Time 0.77 0.28 0.007

To assess the Cox test of separate hypotheses, we computed values for test statistics T1,

which assumes that Model I is the null hypothesis and Model II is the alternative; and T2,

which assumes that Model II is the null hypothesis with Model I as the alternative hypoth-

esis. From 1, we can use each statistic to determine which model we prefer for predicting

cardiometabolic risk. In the previous section, we determined that we could bootstrap the

distributions of T1 and T2, as use these estimates to complete the tests and make decisions

about a preferred model. As in Monfardini (2003), we resampled B = 100 datasets from

our original NC EPESE data, preserving the correlation among individual observations and

maintaining complete and balanced data. For each resampled dataset, we computed val-

ues for T1 and T2; the variance of each test statistic was estimated by the sample variance

of the test statistic values for each resampled dataset. Table 5 displays the results of our

computation.

For the hypothesis test that uses T1, we find that the observed value of the statistic

is 0.975; assuming that T1 asymptotically follows a standard normal distribution, then the
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Table 5: Values of T1, T2, their bootstrap variance estimates, and corresponding bootstrap
p-values

Model I (BMI) Model II (WC)
T1 = 0.975 T2 = -3.612

ˆV arboot (T1) = 1.877 ˆV arboot (T2) = 3.322
p-valueboot = 0.2441 p-valueboot < 0.0001

bootstrap p-value indicates that we should not reject Model I - the null hypothesis in this

case. Similarly, the results for T2 lead to a rejection of its null hypothesis, Model II, in favor

of the alternative. From Table 1, we have the case where T1 is not significant and T2 is

significant with a negative sign; so, we do not reject Model I. That is, these results support

what we observe from using traditional model and variable selection techniques leading to

the selection of the model containing BMI as its measure of body fat. Overall, values of T1

and T2 did not vary greatly across the datasets generated from parametric bootstrapping.

Similarly, model I and II fit statistics and parameter estimates were also comparable across

datasets.

2.5 Discussion and Conclusions

The case of comparing nonnested models has received minimal attention in statistical

literature since the pioneering work of Sir David Cox on tests of separate families of hy-

potheses. Much of the subsequent work has focused on comparisons of models applied to

problems in econometrics and quantitative psychology. Two important extensions of Cox’s

work created formulations of hypothesis tests to compare nonnested linear regression models

and nonnested multivariate regression models, building the case for deriving test statistics

for a new extension of this methodology to compare linear mixed models with nonnested

fixed effects. Having to account for correlated observations within subjects, some conform-

ing assumptions make determining a closed expression for the variance of test statistics a

tedious task.
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In this investigation, the proposed Cox test of separate hypotheses was applied to lin-

ear mixed models with nonnested fixed effects. Particularly, we sought to compare models

with competing measures of body fat (BMI vs. waist circumference) using observed epi-

demiological data to determine which model including one of the body fat measures was

most explanatory of systolic blood pressure, a proxy for cardiometabolic risk. Our investi-

gation has demonstrated that the Cox test is viable for comparing linear mixed models with

nonnested fixed effects. Since the application of Cox’s work to the linear mixed model is

new, there is not much understanding of the performance of the tests under unsuitable con-

ditions. Our requirement of the existence of matrices ΣXXX′XXX , ΣXXX′WWW , ΣWWW ′XXX , and ΣWWW ′WWW makes

assumptions that may not always hold. More work is needed to understand the limitations

of this approach.

Some limitations to this investigation include, but are not limited to: intensive compu-

tation required to perform the tests and lack of missing data to assess robustness of the

methodology. Future investigations should consider other types of nonnested linear mixed

models, including models with nonnested random effects, models with fixed and random

effects that are nonnested, as well as models whose outcome (or dependent) variables repre-

sent similar phenomena but take on nonnested forms. Here, we have demonstrated that it

is possible to construct and implement a test of separate hypothesis for linear mixed models

with nonnested fixed effects.
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CHAPTER 3: SELECTING BETWEEN LINEAR MIXED
MODELS WITH NONNESTED RANDOM EFFECTS

3.1 Introduction

Analyses of repeated measures data assume that the collection of observations for an

individual are correlated; the linear mixed model allows one to model this correlation struc-

ture to determine individual trajectories as well as population averages. With the advent of

availability of patient data via electronic health records and other emerging technologies that

open up individual data for analysis, many healthcare providers are interested in monitoring

the health of individual patients as well as cohorts of patients over time. As changes in the

health of individuals can be just as informative as tracking patterns among a population of

patients over time, the linear mixed model facilitates separation of individual trajectories

from population averages in the separate modeling of the mean model and covariance model.

In this section, we draw attention to the structure of the covariance model of the random

effects which capture unobserved heterogeneity among individuals, not captured in fixed

effects.

Similarly for linear mixed models with nonnested fixed effects, literature describing ap-

proaches for comparing models with nonnested random effects is greatly limited. In many

cases, the commonly proposed approach of comparing nonnested random effects models by

using information criteria AIC and BIC seems to trivialize the importance of the covariance

structure in the validity and interpretation of the linear mixed model. Several papers suggest

that an appropriate covariance structure must be identified prior to selecting fixed effects

(Keselman et al., 1998; Littell et al., 1996; Wolfinger, 1993), but do not offer alternative

approaches to selecting among structures other than the previously highlighted information
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criteria. Econometrics and quantitative sociology literature examine the theoretical basis

for comparing nonnested random effects (Mebane and Sekhon, 1996; Levy and Hancock,

2007; Timm et al., 2002), but the ties to statistical notation and application to public health

research questions have not been made clear.

Of interest here, Morrell et al. (2009) explore how the structure of a model can impact

the interpretation. Specifically, among a cohort of patients from the Baltimore Longitudinal

Study of Aging (BLSA), the authors sought to determine if it was necessary to model patient

age at baseline or whether to keep age as a dynamic variable. There are justifications

for choosing either parameterization of age, depending on the interest in observing cross-

sectional differences in a specificied factor by age or modeling longitduinal changes in a factor

across subjects who entered the study at various ages. The cadre of models considered in

the authors’ investigation give rise to several examples of models with nonnested random

effects, which we will apply to similar data on a longitudinal cohort of elderly subjects from

the NC EPESE study (Blazer et al., 1991).

In Chapter 2, we established the viability of using methodology first proposed by Cox

(1961; 1962) to formulate statistical tests of linear mixed models with nonnested fixed effects.

Here, we wish to formulate a viable test for comparing models with nonnested random

effects. Below, we describe some of the more common covariance structures applied to the

linear mixed model to characterize random effects and review recommended techniques for

selecting the appropriate structure for observed data. Next, we derive statistical tests of

separate hypotheses to compare models with covariance structures that are nonnested, and

apply the tests to models of real data. Finally, we will highlight the benefits and limitations

of this approach.
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Table 6: Common covariance structures applied to the linear mixed model, assuming k
repeated measurements

Name Abbrev. # of Unknown Parameters
Variance Components VC 1
Compound Symmetry CS 2

Autoregressive, First Order AR(1) 2
Toeplitz TOEP k − 1

Unstructured UN k(k+1)
2

3.1.1 Common covariance structures in the LMM

Table 6 describes some of the most common covariance structures used for the linear

mixed model. Here, we assume that there are k repeated measurements for each subject.

The table above is not an exhaustive list of covariance structures for linear mixed models;

many other structures exist, can be modeled, or are under development (Kincaid, 2005;

Fitzmaurice et al., 2004; McCullagh and Nelder, 1989; Laird and Ware, 1982). The MIXED

procedure in SAS uses variance components (VC) as its default. The unstructured covari-

ance is the least restrictive and can be considered to indirectly ”contain” all other possible

covariance structures. However, it requires estimation of the largest number of unknown pa-

rameters of all structures. It can be useful when there are few repeated measurements among

individual subjects, a large sample size relative to the number of repeated measurements, no

apparent correlation structure that fits with other structures listed above, and when there

is no interest in assuming a specific variance-covariance pattern among observed data. On

the other extreme is the variance components structure structure, which doesn’t assume any

change in covariance across repeated measurements. The VC structure can be considered

nested within all other possible covariance structures. The first-order auto-regressive struc-

ture is a special case of, and thus nested within, the Toeplitz structure; it is most useful when

data are balanced and equally spaced. From table above, it can be noted that the variance

components structure requires the estimation of only one unknown parameter. One draw-
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back to using this structure is that it may be too simple to accurately describe patterns of

within-subject correlation. Choosing a structure that is too simple results in increased Type

I errors. For the other structures listed, the number of unknown parameters increases as

the number of observed repeated measurements increases and as the structure of the matrix

wanes. If choosing the unstructured model, one must sacrifice statistical power as this struc-

ture uses up resources to estimate a larger number of unknown parameters. For instance, if

considering the unstructured covariance to model data with 7 repeated measurements, one

would be required to estimate 28 unknown parameters.

Strategies for selecting covariance structures: Ignoring or misspecifying the variabil-

ity within persons or sampling units within the linear mixed model has serious consequences, 

mostly introducing bias in estimated the mean model’s fixed effects. Thus, the determina-

tion of an adequate representation of random effects in the linear mixed model is important; 

when selecting among covariance structures, one must take a strategic approach. While the 

literature offers some strategies for selecting the best covariance structure for a given set of 

observed data (Cheng et al., 2010), Kincaid (2005) outlines four basic approaches towards 

selecting a covariance structure for hierarchical data or data with repeated measurements of 

a continuous variable. These four approaches are listed below, as well as a fifth approach 

not considered by Kincaid and not often addressed in general, the use of statistical tests. 

One may opt to use a single approach, or several in combination, to determine the structure 

that is most representative of patterns of variation among observed data.

Parsimony: First, one may aim for parsimony, choosing the simplest possible structure. 

One benefit of this approach is that the covariance structure is easy to interpret and explain,

and fewer unknown parameters must be specified. However, choosing a structure that is too

simple for the data being considered may increase Type I error rates in selecting fixed effects.

A structure that is highly complex and requires estimation of many unknown parameters

can cloud interpretation of the covariance pattern and require inefficient use of computing
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resources.

Contextual Knowledge: In selecting a covariance structure, one may also draw upon 

contextual knowledge to determine which structure most adequately represents patterns of

variation among observed data. This approach is particularly useful if the researcher has an

in-depth understanding of the study design, general data structure, and/or the phenomenon

being modeled. A potential drawback is that the most appropriate covariance structure may

be difficult to model, or require the estimation of too many unknown parameters.

Graphical Tools: The ability to visualize patterns in variance and covariance within and 

between subjects offers great insight into the inherent correlation structure of repeated

measures data. In particular, Kincaid (2005) discusses the semi-variogram and lag obser-

vation graphs as useful graphical tools for ascertaining correlation and potential outliers

among subjects’ measurements. These graphical tools are best used in tandem with another

strategy to determine the most adequate covariance structure for repeated measures data.

Information Criteria: This approach is most commonly used, since most statistical 

software provides three default IC which are generally straightforward to interpret. There

is also the caveat that IC are subjective in nature, and do not offer a formal comparison of

structures (including a p-value) so differences in magnitude give no indication of statistical

significance. Studies using IC to select covariance structures (Dimova et al., 2011; Timm et

al, 2002 ) have led to inconclusive decisions as to which IC is best for a variety of scenarios.

Statistical Tests: As with fixed effects models, one may opt to use a statistical test to 

compare covariance structures. Most tests are based on Neyman-Pearson theory which

assumes that one model (or structure) is nested within the other. Likelihood ratio tests are

applied to test a model containing one or more random effects vs a model that excludes a

subset of those effects (while not adding additional effects). By our previous definition of

nested models, one model can be obtained as a simple limit of the other. For example, one

may compare a mixed model with specified fixed effects design and a random subject-specific
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intercept to a model with the same set of fixed effects and a random intercept and random

slope to allow completely subject-specific trajectories and not just different intercepts. These

comparisons are made under restricted maximum likelihood estimation (REML), and no

decisions are made concerning the choice of fixed effects since they are common in both

models. For covariance structures, one must assess whether the two structures are nested.

For some pairs of structures, it is simple to recognize that they are nested. Consider the

Toeplitz (TOEP ) structure, which is setup as a diagonal-constant matrix, meaning that

variances are constant along the diagonal and along each descending diagonal; as a special

case, the first-order autoregressive AR(1) structure adds additional restrictions to the TOEP

by relating adjacent observations by a multiplicative factor.

3.1.2 Selecting among nonnested covariance structures

In the previous section, we discussed cases where covariance structures for two models

are nested. For cases where covariance structures are not nested and traditional approaches

for selecting a most appropriate covariance structure do not hold. This case where structures

are nonnested remain elusive to many researchers, and the blanket recommendation of using

information criteria is frequently offered as the primary choice for comparing models of

this type. Below, we address nonnested structures and propose methodology to formulate

a statistical test to be used for these cases. Additionally, one may encounter nonnested

random effects as in Morrell et al. (2009). We define nonnested models as we did in previous

chapters; random effects models are considered nonnested if one cannot obtain a candidate

model by applying a linear restriction to the other candidate model. As an example, one

might be interested in comparing a model with a random intercept for each subject and

a random slope for visit (or repeated observation) with a model with only the random

intercept; these models are clearly nested, and a likelihood ratio test comparing the two

models, following mixture chi-square distribution could be applied. However, if one wanted
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to compare a random effects model with only the intercept to a model with a random slope,

it would not be possible to use the likelihood ratio test to compare them. The literature does

not adequately address cases of nonnested covariance structures; again, most investigations

appeal to the use of information criteria for all comparisons of covariance structures to evade

distinguishing between nested and nonnested structures.

3.2 Cox Test of Separate Hypotheses for LMMs with

Nonnested Random Effects

We have previously covered the formulation of Cox’s test of separate hypotheses (Section

1.4.1). Here, we wish to derive similar test statistics for comparing linear mixed models

with nonnested random effects according to this methodology.

Consider the following set of hypotheses:

H1 : yyy = XXXβ +ZZZb1 + e1

H2 : yyy = XXXβ +WWWb2 + e2

First, the notation for the models listed above is not specified as in Chapter 2, though

similar. Both hypotheses assume a linear mixed model with fixed effects parameters captured

by the (p× 1) vector β, along with fixed effects design matrix XXX of dimension (Nn× p).

Keeping the fixed effects common facilitates the selection of random effects. The null model

assumes random effects captured by (q × 1) vector b1, while the alternative model assumes

a different - nonnested - set of random effects captured by vector b2 of the same dimen-

sion. That is, WWW and ZZZ are not subsets of each other, but both are subsets of XXX. In this

initial scenario, we assume that both models have the same covariance structure, though

the estimates of unknown parameters associated with each structure will likely differ. Since

our focus is on comparing random effects, we use restricted maximum likelihood (REML)
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estimation (Fitzmaurice et al., 2004). The REML log likelihood functions of each model are

listed below:

l1,R = −Nn− p
2

log 2π − 1

2
log |Σ1| −

1

2
tr (yyy −XXXβ)′Σ−11 (yyy −XXXβ)− 1

2
log
∣∣XXX ′Σ−11 XXX

∣∣
l2,R = −Nn− p

2
log 2π − 1

2
log |Σ2| −

1

2
tr (yyy −XXXβ)′Σ−12 (yyy −XXXβ)− 1

2
log
∣∣XXX ′Σ−12 XXX

∣∣
Deriving R1, V ar(R1), and its distribution

Recall the statistic formulated previously, T1, defined as:

T1 = l̂12 −Nn

[
plimNn→∞

l̂12
Nn

]
θ=θ̂1

.

To distinguish this new formulation where we compare models with nonnested random

effects, we refer to the corresponding statistic as R1. So,

R1 = l̂12 −Nn

[
plimNn→∞

l̂12
Nn

]
θ=θ̂1

.

Below, we will derive an expression for R1 for the hypotheses specified above. We will

apply the same properties as used in the previous section and described in Appendix A to

arrive at simplified expressions for all quantities derived below. First, taking the difference

of the specified log-likehood functions evaluated at their respective maximum likelihood
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estimates, l̂12, we have

l̂12 =
1

2
log

∣∣∣Σ̂2

∣∣∣∣∣∣Σ̂1

∣∣∣ +
1

2
tr
(
yyy −XXXβ̂

)′
Σ̂−12

(
yyy −XXXβ̂

)
− 1

2
tr
(
yyy −XXXβ̂

)′
Σ̂−11

(
yyy −XXXβ̂

)

+
1

2
log

∣∣∣XXX ′Σ̂−12 XXX
∣∣∣∣∣∣XXX ′Σ̂−11 XXX
∣∣∣

=
1

2
log

∣∣∣Σ̂2

∣∣∣∣∣∣Σ̂1

∣∣∣ +
1

2
log

∣∣∣XXX ′Σ̂−12 XXX
∣∣∣∣∣∣XXX ′Σ̂−11 XXX
∣∣∣

+
1

2
trΣ̂−12

(
yyy −XXXβ̂

)(
yyy −XXXβ̂

)′
− 1

2
trΣ̂−11

(
yyy −XXXβ̂

)(
yyy −XXXβ̂

)′
=

1

2
log

∣∣∣Σ̂2

∣∣∣∣∣∣Σ̂1

∣∣∣ +
1

2
log

∣∣∣XXX ′Σ̂−12 XXX
∣∣∣∣∣∣XXX ′Σ̂−11 XXX
∣∣∣

The equation reduces down since the terms including the trace cancel out. Now, to find

the second term of R1, we evaluate the probability limit of l̂12 under the null hypothesis,

H1, and replace unknown quantities with estimates under H1. Since we are evaluating under

REML functions, the previous ML estimates for β and Σ no longer hold.

Nn

[
plimNn→∞

l̂12
Nn

]
θ1=θ̂1

=
1

2
log

∣∣∣Σ̂21

∣∣∣∣∣∣Σ̂1

∣∣∣ +
1

2
log

∣∣∣XXX ′Σ̂−121XXX
∣∣∣∣∣∣XXX ′Σ̂−11 XXX
∣∣∣ ,

where Σ21 is the probability limit of Σ2 under H1 evaluated under θ̂1, and its expression

follows similarly from the quantity Σ1|0 from Araujo et al. (2005). Specifically,

Σ̂21 = Σ̂1 +
1

Nn
XXX
(
β̂1β̂

′
1 − β̂2β̂

′
1 − β̂1β̂

′
2 + β̂2β̂

′
2

)
XXX ′,

where β̂1 and β̂2 represent model-specific estimates of fixed effects. Since we specify the

same fixed effects in each model, the expectation is that both quantities will not differ much.
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In the analogous derivation of R2, the quantity Σ̂12 is estimated by the expression:

Σ̂12 = Σ̂2 +
1

Nn
XXX
(
β̂2β̂

′
2 − β̂1β̂

′
2 − β̂2β̂

′
1 + β̂1β̂

′
1

)
XXX ′,

where β̂1 and β̂2 are defined as before.

A final expression for R1 is found by putting its two terms together,

R1 =
1

2
log

∣∣∣Σ̂2

∣∣∣∣∣∣Σ̂21

∣∣∣ +
1

2
log

∣∣∣XXX ′Σ̂−12 XXX
∣∣∣∣∣∣XXX ′Σ̂−121XXX
∣∣∣ . (17)

It is easy to see that, given the expression for Σ̂21, the expected value of R1 under the null

hypothesis is 0.

Note that the formula for R2, which tests the interchanged hypotheses with the second

model specified previously as the null hypothesis and the first model as the alternative

hypothesis, can be similarly derived as R1 as follows.

R2 =
1

2
log

∣∣∣Σ̂1

∣∣∣∣∣∣Σ̂12

∣∣∣ +
1

2
log

∣∣∣XXX ′Σ̂−11 XXX
∣∣∣∣∣∣XXX ′Σ̂−112XXX
∣∣∣ , (18)

where Σ12 is the probability limit of Σ1 under the new null evaluated under θ̂2.

The variance of R1 is given by the formula below.

V ar (R1) = V1 [l12 (θ1,θ21)]−G1
′I1
−1G1,

where G1 and I are defined as before in Section 2.3.1. Beginning with the first term, we

want to evaluate the variance of l12 (θ1,θ21) under H1.

l12 (θ1,θ21) =
1

2
log
|Σ21|
|Σ1|

+
1

2
(yyy −XXXβ)′

(
Σ−121 −Σ−11

)
(yyy −XXXβ) +

1

2
log

∣∣XXX ′Σ−121XXX
∣∣∣∣XXX ′Σ−11 XXX
∣∣
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So, using the above quantity, we begin with the first term of V ar(R1).

V1 [l12 (θ1,θ21)] = V1

[
1

2
(yyy −XXXβ)′

(
Σ−121 −Σ−11

)
(yyy −XXXβ)

]
=

1

4
V1

[
1

2
(yyy −XXXβ)′

(
Σ−121 −Σ−11

)
(yyy −XXXβ)

]
=

1

2
tr
[(

Σ−121 −Σ−11

)
Σ1

(
Σ−121 −Σ−11

)
Σ1

]
=
Nn

2
+

1

2
tr
(
Σ−121 Σ1Σ

−1
21 Σ1

)
− tr

(
Σ−121 Σ1

)
Continuing with the second term of V ar(R1),

G1 = Nn
∂

∂θ1

(
plimNn→∞

l̂12
Nn

)

=
Nn

2

∂

∂θ1

[
log
|Σ21|
|Σ1|

+ log

∣∣XXX ′Σ−121XXX
∣∣∣∣XXX ′Σ−11 XXX
∣∣
]

=
Nn

2

∂

∂θ1

[
log |Σ21| − log |Σ1|+ log

∣∣XXX ′Σ−121XXX
∣∣− log

∣∣XXX ′Σ−11 XXX
∣∣]

=
Nn

2

[
2Σ−121 − diag

(
Σ−121

)]
− Nn

2

[
2Σ−11 − diag

(
Σ−11

)]
+
Nn

2

[
2XXX ′Σ−121XXX − diag

(
XXX ′Σ−121XXX

)−1]− Nn

2

[
2XXX ′Σ−11 XXX − diag

(
XXX ′Σ−11 XXX

)−1]
= Nn

(
Σ−121 −Σ−11 +XXX ′

(
Σ−121 −Σ−11

)
XXX + diag

(
XXX ′Σ−11 XXX

)−1 − diag (XXX ′Σ−121XXX
)−1)

The expression for G1 is a constant since none of the containing terms depend directly

on β. Furthermore, to find I−11 , it suffices to obtain ∂2

∂Σ1∂Σ1
.

I−11 =
∂2l1 (θ1)

∂Σ1∂Σ1

=
∂

∂Σ1

1

2
diagΣ−11 −Σ−11 −

1

2
(yyy −XXXβ) (yyy −XXXβ)′ +

1

2
diag

(
XXX ′Σ−11 XXX

)−1
+
(
XXX ′Σ−11 XXX

)−1
From here, one can obtain the full expression for V ar(R1) by combining the above terms;
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the derivation of V ar(R2) follows similarly. The computation of the resulting expression,

however, is tedious, yielding complex expressions of large sized matrices Σ1 and Σ21. In

lieu of computing the closed form expressions for V ar(R1) and V ar(R2), we explore the

approach of bootstrapping the variances and determine the asymptotic distributions of R1

and R2 (Shao, 1988).

3.2.1 Application to Data

In this section, we demonstrate the viability of the tests of separate hypotheses for models

with nonnested random effects proposed in the previous sections using practical data. We

again employ a subset of the NC EPESE data as used in Section 2.4.1, which contains

data on 1829 subjects, observed at three equally spaced time points, each about four years

apart, with information collected on their systolic blood pressure (SBP ), body mass index

(BMI), gender, and Center for Epidemiologic Studies Depression (CESD) scale score.

Application to Data - NC EPESE

In SAS, we use PROC MIXED under the default estimation method, REML. For each

model, the RANDOM statement is included to specify random intercepts and slopes. From

Chapter 2, we determined that BMI was preferred over WC for predicting cardiometabolic

risk. Here, we introduce another variable, CESD score that measures clinical depression

among the study population. A score higher than 16 is indicative of clinical depression. So,

each candidate model contains fixed effects for BMI, gender, CESD score, and time of

observation. Both models contain a random intercept, and a random slope in either CESD

score (Model III) or time of observation (Model IV). The models are specified below:

SBP = β0 + β1BMI + β2Sex+ β3CESD + β4Time+ b0 + b1CESD + e1

SBP = β0 + β1BMI + β2Sex+ β3CESD + β4Time+ b0 + b1Time+ e1
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Table 7: Fit statistics from candidate models fit to observed data

−2l AIC BIC
Model III: Random slope in CESD score 48105.3 48113.3 48135.3

Model IV: Random slope in Time 48054.0 48062.0 48084.1

Generally, it is problematic to include two time-varying covariates in a linear mixed

model; in this scenario, CESD score is time varying, and thus can be considered as a

complex function of time. However, unlike the time covariate, a subject’s CESD score

can fluctuate up and down, making its interpretation difficult as a ’rate of change’. This

example is still important for demonstrating two models with nonnested random effects, but

we acknowledge the need for additional examples. Summary statistics from the generated

data are found in Table 2.1. For these models, table 7 gives a summary of fit statistics

computed under REML estimation.

The log-likelihood functions for models III and IV are relatively close in value, with

Model IV having a lower value among the two. Both the AIC and BIC both prefer the

model with a random slope in time of observation (Model IV), since these values are smaller

in Model IV than those for Model III. Table 8 displays fixed effects and covariance param-

eter estimates; recall that both models assumed an unstructured covariance pattern across

repeated measurements, making no expectations about the level of correlation between a

subject’s observations across time.

We assumed the same set of fixed effects in both models; that is, design matrix XXX is

common in both models. As expected, fixed effects parameter estimates are very similar in

both models, and each covariate is statistically significant at the α = 0.05 level.

To estimate the asymptotic distributions of R1 and R2, we generated 100 bootstrapped

data sets from the original NC EPESE data set (Monfardini, 2003; Shao, 1998). For each

bootstrap data set, the two candidate models were fit; information criteria, covariance model

estimates, standard errors, and p-values were captured; and each test statistic (R1 and R2)
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Table 8: Mixed model estimates, standard errors (SE) and p-values for Models III and IV;
Model III specifies a random intercept and slope in CESD with unstructured covariance;
Model IV specifies a random intercept and slope in time of observation with unstructured
covariance

Cov. estimates
Model Fixed effect Estimate SE p-value Random effects Error
III Intercept 132.63 2.82 < 0.0001 σ̂2

b1 = 380.76 σ̂2
e = 251.49

BMI 0.17 0.08 0.048 σ̂2
b2 = −13.22

CESD 0.25 0.09 0.006 σ̂2
b3 = 0.86

Time 0.75 0.26 0.005
IV Intercept 132.32 2.75 < 0.0001 σ̂2

b1 = 187.93 σ̂2
e = 229.60

BMI 0.18 0.08 0.0322 σ̂2
b2 = −25.09

CESD 0.25 0.09 0.004 σ̂2
b3 = 26.55

Time 0.75 0.28 0.007

was computed. Average run time for computing both test statistics for each data set was 11

minutes and 59 seconds, which is similar to the corresponding run times for T1 and T2 (test

statistics for comparing models with nonnested fixed effects). Table 9 summarizes aspects of

the bootstrapped data sets and resulting model statistics. Now, for the Cox test statistics,

R1 has a large positive value which could lead to a decision to reject the null hypothesis,

the model with a random slope in time, in favor of the model including CESD score as

a random effect, given the values of the bootstrapped standard error and p-value of R1.

Correspondingly, R2 takes on a relatively large negative value for our observed data and

candidate models, but its bootstrapped standard error and p-value make it marginally not

significant. Again, referring to Table 1, the results for R1 and R2 are classified as a scenario

that is possibly inadmissible. A slightly smaller p-value for R2 would reclassify our decision

to reject both hypotheses. Overall, these results support decisions that would be made using

the common information criteria AIC and BIC, favoring the model with a random slope in

time.

Unlike the simulations for T1 and T2 in Chapter 2, it is not clear from this simulation

whether the distributions of R1 and R2 are distributed normally. The expressions of Σ̂21
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Table 9: Values of R1 and R2, for N = 100 bootstrapped data sets

Metric Observed Value Mean (SEboot) p− valueboot
R1 11.67 10.29 (4.27) < 0.0001
R2 −6.457 −5.30 (4.22) 0.063

and Σ̂12 include a term consisting of combinations of products of fixed effects parameter

estimate vectors β̂1 and β̂2. Thus, assuming that the fixed effects estimates are similar

between models, we expect this second term to cancel out, expecting the value of Σ̂21 under

the null hypothesis that specifies Model III to be Σ1. Similarly for

3.3 Discussion

The case of comparing nonnested models has received minimal attention in statistical

literature, particularly a rigorous treatment of comparing nonnested random effects in the

linear mixed model. Since the pioneering work of Cox on tests of separate families of hy-

potheses. Formulations of hypothesis to compare nonnested linear regression models and

nonnested multivariate regression. This investigation helps to give a practical example of

techniques available for rigorously approach the selection of random effects in the linear

mixed model.

The choice of covariance structure to model random effects in the linear mixed model

is very important. Moreover, failing to strategically address this aspect of the linear mixed

model often leads to biased fixed effects estimates and faulty inference. We have demon-

strated the viability of a test of separate hypotheses for linear mixed models with nonnested

random effects. Particularly, cases where covariance structures are not nested between mod-

els ; other examples of models with nonnested random effects exist, with one particular

example addressed in the next chapter (Morrell et al., 2009). Future work will use real data

to assess the performance of the test statistics to select the correct covariance structure in
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CHAPTER 4: COMPARING THE COX TESTS WITH
THE EIC FOR SELECTING NONNESTED LMMS

4.1 Introduction

Previous chapters have demonstrated the need for more rigorous approaches to compar-

ing nonnested models, particularly nonnested linear mixed models which are often applied

to longitudinal data. In statistical, econometrics, and other literature, the most commonly

recommended approach for comparing nonnested models of various types (including, but not

limited to linear mixed models) is to use information criteria to select the favored model.

Only recently have researchers begun to critically examine the adequacy of these criteria for

comparing complex models, and to broaden the scope of nonnested model selection to con-

sider approaches that are less subjective and more statistically grounded. The investigations

in Chapters 2 and 3 demonstrated the plausibility of the Cox test of separate hypotheses

for linear mixed models with nonnested fixed or random effects (but not the case where

both sets of effects are nonnested). This investigation seeks to compare the performance of

the Cox Test against information criteria - particularly, a variant of the Akaike Information

Criterion (AIC), the Extended Information Criterion (EIC) - in selecting among nonnested

linear mixed models. The vast majority of previous work on model selection techniques for

linear mixed models has considered comparisons among information criteria, and most have

not considered EIC (Wang and Schaalje, 2009; Dimova et al., 2011) nor have they often

considered comparisons of nonnested models. Those that do include this criteria in their

comparisons among nested models have shown it to outperform the AIC and several AIC

variants among small samples (Dimova et al., 2011; Pan, 1999; Yafune et al., 2005). Li and

Wong (2010) compared semiparametric models from longitudinal data using both likelihood
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ratio tests (to compare nested covariance structures only) and information criteria.

Here we wish to add to the scarcity of research comparing the performance of both

statistical tests and information criteria to compare models arising from repeated measures

and longitudinal data. In the following sections, we specify the formula for the EIC, provide

examples of nonnested linear mixed models, and present results for applying both the EIC

and bidirectional Cox tests to compare models. Application to observed data will show which

(if any) of the two techniques performs above the other, as well as how they fare against

other widely used model selection techniques.

4.2 Applying the EIC to nonnested models arising from

repeated measures data

When fitting a linear mixed model using the MIXED procedure in SAS (version 9.3, Cary,

NC), there exists the option to print model fit statistics such as −2 times the observed log

likelihood (or −2 l), the AIC, and the BIC. Naturally, it is of interest to persuade developers

to include the EIC in this list of fit statistics. Here, we outline the steps to compute the

EIC for a single linear mixed model in SAS. The computational ease and efficiency of this

method is also evaluated.

Recall the formula for EIC:

EIC = −2 l
(
yyy | θ̂

)
+ 2Ĉ∗

where Ĉ∗ is given by

Ĉ∗ =
1

B

B∑
b=1

[
l
(
yyyb
∗ | θ̂∗b

)
− l

(
yyy | θ̂∗b

)]

The steps required to compute the EIC for a linear mixed model follow directly from

Yafune et al. (2005).
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Step 1. From the observed data yyy = [yyy1
∗, . . . , yyyN

∗], draw B independent random samples of

size N. That is, sample with replacement among each subject’s vector of repeated outcome

measurements. In SAS, this is facilitated using the SURVEYSELECT procedure.

Step 2a. Fit the candidate mixed model to the original data using PROC MIXED. Using

the Output Delivery System, or ODS, extract fixed and random effects parameter estimates,

as well as the value of the log-likelihood function (under maximum likelihood or some other

estimation method, such as REML as Yafune et al. assumed) and fit statistics from the

MIXED output summary.

Step 2b. Complete step [2a.] for each of the B resampled datasets.

Step 3. Define the first term of the EIC formula by the originally observed data log likeli-

hood, l
(
yyy
∣∣∣θ̂).

Step 4. Compute Ĉ∗ by replacing log-likelihood values for each corresponding term. To

determine the value of l
(
yyy
∣∣∣θ̂∗b ), that is, the likelihood of the originally observed data con-

ditional upon bootstrap parameter estimates, use the Interactive Matrix Language (IML) to

facilitate these computations.

Step 5. Repeat steps [1] through [4] for all candidate models.

Step 6. The model with the lowest EIC value should be selected as most suitable, according

to the ’smaller is better’ principle.

EIC computation in R follows similar steps. Data resampling is facilitated using the

sample function. Before fitting a mixed model, one should first load the nlme package, and

use the contained function lmer to fit the model. The summary function allows viewing

of the results and extraction of relevant elements. Results from R computations nor the

limitations of fitting linear mixed models in this software are not discussed here.

A motivating example arises from the recent analysis by Morrell et al. (2009), who

used data from the Baltimore Longitudinal Study of Aging (BLSA), an observational study

conducted by the National Institute on Aging (NIA) beginning in 1958 (and in 1978 for
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female participants). Participants were healthy volunteers at baseline and were observed

approximately every two years and were followed for an average of about three repeated

measurements, (up to six observations per subject). The age at baseline of BLSA participants

varied greatly, making it important to discern cross-sectional vs. longitudinal trends in

cholesterol among study participants.

One comparison of note explored by the authors is the following exploration of the asso-

ciation between (male only) participants’ age and cholesterol levels:

yi = β0 + β1 (FAge+ Time)i + b0i + b1i (FAge+ Time) + ε

yi = β0 + β1FAgei + β2Timei + b0i + b1iFAgei + b2iTimei + ε

where FAge represents a participant’s age (in years) at baseline and Time is the time of

observation. Both models allow for a random intercept (b0i; that is, each subject’s baseline

cholesterol is allowed to vary around an average estimated by the fixed effects intercept,

β0. The first model contains random slopes in both baseline age and time, while the second

model only contains a random slope in time. So, the first model essentially only considers

a subject’s age at time of observation, ignoring any differences in cholesterol attributable

to the subject’s age at baseline. That is, the model similarly considers a subject who was

65 years of age at the time they entered the study, and a 59 year-old subject who has been

observed by the study for six years. The second model, however, separates subjects’ baseline

age from the time of observation, allowing one to better distinguish the subjects purported

in the example above. This difference is evident in the mathematical parameterization of

the models which specify different fixed effects, making the models nonnested as one model

cannot be obtained as a simple limit of the other. While one could not use a likelihood

ratio test to compare these models, the authors note that these models could be compared

under maximum likelihood estimation using information criteria AIC and BIC. However,

like others, they emphasize the uncertainty in using these measures to compare models of

78



this type.

Using the SAS macro described in the previous section, we assess the performance of the

EIC in selecting between a pair of nonnested linear mixed models, using the NC EPESE

data (described in Section 2.4.1) which is similar to that from the BLSA.

4.3 EIC for Nonnested Models from Sections 2.4.2 and 3.2.1

We have covered the formulation of the Cox’s methodology for comparing separate fam-

ilies of hypotheses (1961, 1962) in previous chapters. Below, we revisit the two scenarios

covered in Sections 2.4.2 and 3.2.1, the cases of comparing models with nonnested fixed

effects and models with nonnested random effects, respectively. A version of the macro to

compute the EIC is found in Appendix 0.18. The results of these computations are found

below.

Recall the models with textitnonnested fixed effects compared in Section 2.4.2:

SBP = α0 +α1BMI +α2Sex+α3Time+ a0 + a1Time+ e1

SBP = β0 + β1WC + β2Sex+ β3Time+ b0 + b1Time+ e2

The above model specify repeated systolic blood pressure measurements as a function of

participants’ sex, time of observation, and a body fat measure (BMI in Model I, and WC

in Model II). Both models specify a random intercept and a random slope in time.

For each model in each pair above, the EIC was computed

In Section 3.2.1, we compared the following models with nonnested random effects :

SBP = β0 + β1BMI + β2Sex+ β3CESD + β4Time+ b0 + b1CESD + e1

SBP = β0 + β1BMI + β2Sex+ β3CESD + β4Time+ b0 + b1Time+ e1

Based on the results from Section 2.4.2, we preferred the use of BMI over WC for
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Table 10: Applying the EIC to LMMs with Nonnested Fixed Effects for assessing the impact
of body fat on SBP

Model I: Fixed Effect for BMI Model II: Fixed Effect for WC
−2l = 48115.9 −2l = 48118.6
AIC = 48121.9 AIC = 48124.6
BIC = 48132.9 BIC = 48135.6

B EIC EIC
100 49742.54 49849.05
200 49725.57 49831.78
500 49703.33 49811.46
1000 49677.06 49775.12

T1 (p-value) T2 (p-value)
0.975(0.2441) −3.612(< 0.0001)

Table 11: Applying the EIC to LMMs with Nonnested Random Effects: comparing random
slopes

Model III: CESD score Model IV: Time
−2l = 48105.3 −2l = 48054.0
AIC = 48113.3 AIC = 48062.0
BIC = 48135.3 BIC = 48084.1

B EIC EIC
100 48133.85 48027.33
200 48033.49 48027.93
500 48006.73 48001.07
1000 47983.14 47985.62

R1 (p-value) R2 (p-value)
11.67(< 0.0001) −6.46(0.063)

characterizing body fat among NC EPESE participants; so the models above contain comon

fixed effects for BMI, sex, CESD score, and time of observation. While each model specifies

a random intercept, the first model contains a random slope in CESD score, while the second

model has a random slope in time. For both pairs of models, we wish to determine if the

EIC will support our choices of models made in previous sections.

In tables 10 and 11, it is clear that the outcome of the EIC simulations correspond

as expected with the AIC and BIC as well as the results from applying the Cox tests of

separate hypotheses. That is, for each pair of models the smaller EIC value corresponds to
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the model favored by the other information criteria, regardless of the number of bootstrap

resamples used in computation. It is worth noting that, for both models, the absolute value

of. Additionally, the scale of units of the EIC in each case correspond with the other criteria.

One benefit of using the EIC is that its computing time is much faster than that required

for computing Cox test statistics. The bulk of computing time required for obtaining the EIC

relates to the generation of bootstrap data resamples, while model fitting and computation

of the EIC takes relatively less time. For B = 100, total computing time (data resampling,

fitting two mixed models, and extracting important information for EIC computation) is

about 4 minutes. The average runtime for the data resampling algorithm for B = 1000 is

approximately 40 minutes. In all, this motivating example demonstrates that the EIC can

be readily applied to comparing linear mixed models with nonnested fixed or random effects.

4.4 Discussion

The benefit of applying a viable statistical test to compare nonnested model clearly shows

great promise for expanding available model selection techniques for linear mixed models and

other models applied to longitudinal data. One major benefit of the EIC is that it can be

applied under ML and non-ML estimation methods (Yafune et al., 2005). This is especially

beneficial for the linear mixed model, where much debate has centered around the use of

ML vs. REML for estimating fixed and random effects. Since the authors’ paper, other

investigations (Gurka, 2006; Dimova et al., 2011; Pan, 1999) have more rigorously assessed

the performance of various information criteria under both estimation methods, though very

few of these investigations have included the EIC in their analyses, nor have they considered

the application of a statistical test. In this investigation, both the EIC and the Cox tests

require bootstrap resampling of observed data, but the computation of EIC is much faster

than producing Cox test statistics.

Other investigations that have compared the performance of a statistical test to the use of

81



information criteria to select among covariance models have only applied the statistical test

(usually, the likelihood ratio test) to nested models. Li and Wong (2010) assert than when

results of the two procedures are inconclusive, one should rely on results from the information

criteria. Additionally, many investigations of existing techniques for selecting among nested

or nonnested models have involved small-sample data. In practice, longitudinal studies often

have larger samples, as in BLSA and EPESE. This investigation explored how effective the

Cox Test and EIC are at selecting among nonnested linear mixed models arising from data

with larger sample sizes, and simply demonstrated that both approaches could be applied

to comparing models with nonnested random effects. It remains to evaluate the EIC under

more practical scenarios with imperfect conditions of observed data (unbalanced/unequally-

spaced observations, missing data, etc.). As a start, we have demonstrated that the EIC is

a viable model selection technique for nonnested linear mixed models, but offer no conclusive

decision regarding the comparative performance in selecting among nonnested linear mixed

models between the EIC and the Cox tests.
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CHAPTER 5: CONCLUSION

- This work draws more attention to model selection as a critical step in the analysis

of longitudinal data. Particularly for the case of selecting among nonnested linear mixed

models, the two proposed techniques expand one’s options for determining the most adequate

model among several candidates that cannot be compared using traditional techniques built

off of theory for nested models. We built the case for extending the seminal work of Sir David

Cox to comparing linear mixed models with separate hypotheses related to their fixed effects

or random effects. We also explored the case of using a variant of the AIC, the Extended

Information Criterion (EIC), to compare nonnested linear mixed models.

An important complement to the Cox tests of separate hypotheses statistics proposed are

the computational algorithms required to compute the statistics, their corresponding distri-

butions and p-values. Aspects of the computation of both the Cox Tests and the EIC rely

on parametric bootstrap resampling. In both cases, it is of interest to rigorously determine

the optimal number of bootstrap resamples (B) required to produce consistent estimates.

Future refinement of these computational techniques will test the proposed approaches in

situations of incomplete, unbalanced, and otherwise imperfect repeated measures data, as

well as assess their adequacy in application to additional practical examples.

Future directions of this work include exploring the derivation of test statistics for com-

paring nonnested generalized linear mixed models (GLMMs) as well as models arising from

generalized estimating equations (GEE). These classes of models are often applied to data

similar to repeated observations considered here. Particularly for GEE, which enjoys the ad-

vantage of overcoming misspecification of the correlation structure, it would be interesting to

explore whether the approaches proposed here would enhance its utility. Another approach
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to consider is the case of comparing a linear mixed model to a nonlinear mixed effects model.

These models are nonnested because their functional forms do not allow for one model to be

derived as a simple limit of the other.

It is important to note that more than fifty years later, much of the literature around

nonnested models stemming from Cox’s seminal work lies in the field of econometrics, though

its potential for practical application is much more vast. Recently, Cox (2013) revisited his

seminal papers to discuss the varied applications of his original work. A symposium in-

cluded comments from some researchers who have made the most notable extensions to the

methodology. This work seeks to build a bridge from these important econometrics theo-

retical discoveries and applications to the statistical literature. Data observed or collected

over time among individual subjects sets the stage for many interesting research questions

in fields beyond econometrics, but differences in notation cloud these apparent ties to other

disciplines. The practical application of the proposed methodology are applicable to myr-

iad problems in public health and medical research. Important areas of application include

research on aging populations, when there is a concern about how to parameterize age in

models arising from repeated measures data; cardiovascular diseases, where the comparison

of models including similar fat or adiposity measures is of interest; nutrition, in selecting the

most appropriate set of dietary fat measures associated with various clinical outcomes; brain

imaging, when analyzing longitudinal data on functional magnetic resonance imaging (fMRI)

to assess changes in brain function over time; and in genetics, when comparing nonnested

segregation analysis models. All of the above mentioned applications tie back to the study of

progression of life and physiology over time, an issue that has become increasingly important

in the United States and many other countries as life expectancy increases and demands for

improved quality of health care for aging populations have skyrocketed.

An important goal of this research is to produce software that can be widely used by re-

searchers who build linear mixed models with longitudinal data, providing them an expanded
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suite of techniques to compare linear mixed models that are nonnested. The proposed statis-

tical tests and information criterion have been shown to be viable for use among linear mixed

models; with some refinement, the resulting code could eventually become pre-programmed

into popular software programs for advanced statistical modeling which are not currently

well-equipped to address selection among nonnested linear mixed models. The development

of well-tested and easy-to-use software will facilitate widespread use of the proposed method-

ology across a variety of research areas, and inform future areas of improvement related to

theoretical methodology and computation.
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APPENDIX A: IMPORTANT PROPERTIES OF RANDOM
VARIABLES AND MATRICES

Derivations in Chapters 2 and 3 rely on some important properties of random variables

and matrices. Here, define some of these properties and demonstrate their application to

equations found throughout this document.

Trace of a matrix

The trace of a square matrix, denoted by tr is defined as the sum of the elements along

the diagonal (Hazewinkel, 2001). That is, if we suppose that square matrix M is of dimension

(m×m), then

tr (M) =
m∑

i=1;j=1

Mij

Properties of the trace

Suppose A and B are square matrices both having dimension (k × k), where B is invertible,

and that x is a scalar. The following trace properties are true.

1. tr (A) = tr (A′)

2. tr (AB) = tr (BA)

3. tr (B−1AB) = tr (A)

4. tr (A+B) = tr (A) + tr (B)

5. tr (xA) = x tr(A)

6. log (|A|) = tr (logA)
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Consider the maximum log-likelihood function of a linear mixed model:

l(θ̂) = −Nn
2

log 2π − 1

2
log
∣∣∣Σ̂∣∣∣− 1

2
tr
(
yyy −XXXβ̂

)′
Σ̂−1

(
yyy −XXXβ̂

)
.

In taking the trace of the third term, we can apply the properties listed above to rewrite the

term as

tr
(
yyy −XXXβ̂

)′
Σ̂−1

(
yyy −XXXβ̂

)
= trΣ̂−1

(
yyy −XXXβ̂

)(
yyy −XXXβ̂

)′
Now, by definition, Σ̂ = 1

Nn

(
yyy −XXXβ̂

)(
yyy −XXXβ̂

)′
, so we simplify the expression as follows

tr
(
yyy −XXXβ̂

)′
Σ̂−1

(
yyy −XXXβ̂

)
= trΣ̂−1NnΣ̂

= NntrΣ̂−1Σ̂

= NntrI,

where I is the (Nn×Nn) identity matrix whose trace is Nn. Thus, the trace term reduces

to (Nn)2 .

Probability limits of random variables

An essential part of the formula for each Cox test statistic involves the use of probability

limits. The term is sometimes used (erroneously) interchangeably with expected value. In his

book, Dougherty (2011) defines and describes the probability limit and its relationship to

expected value in great detail. Essentially, the existence of a probability limit is a necessary

condition for defining a consistent estimator. It is widely accepted that, all else constant,

use of the probability limit is preferred over expectation.

First, we define a probability limit, given by plim. Let Zn represent a random variable,
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and α be the probability limit of Zn. Then plim Zn = α implies that:

lim
n→∞

P (|Zn − α| > ε)→ 0.

Suppose that X, Y , and Z are random variables, b is a constant, and f (·) is a continuous

function. The following properties of probability limits hold (Dougherty, 2011).

Properties of Probability Limits

1. plim (X + Y + Z) = plim X + plim Y + plim Z

2. plim bX = b plim X

3. plim b = b

4. plim XY = plim X plim Y

5. plim X
Y

= plim X
plim Y

, if plim Y 6= 0

6. plim f (X) = f (plim X)

The first three properties also hold when plim is replaced with expected value, E (·).

Only when X and Y are independent of each other does the fourth property hold. Property

[5.] is a tedious case for expectation. The final property does not always hold for expectation.

We apply these properties in deriving expressions for terms in T1, T2, R1, R2, as well as

their respective variances.

Properties of quadratic forms of random variables

Working with log-likelihood equations of linear mixed models often requires manipulation

of quadratic forms of random variables. Here, we focus on properties related to determining

expected values and variances of these quantities (Mathai and Provost, 1992).
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Let ε represent an (k × 1) vector, with E[ε] = µ and V ar (ε) = Σ, where Σ is a (k × k)

matrix. Note that one does not have to assume that ε follows a Normal distribution. Also,

let A be a (k × k) symmetric matrix.

It can be shown that

E [ε′Aε] = tr[AΣ] + µ′Aµ

V ar (ε′Aε) = 2tr[AΣAΣ] + 4µ′AΣAµ.

More generally,

Cov (ε′Aε, ε′Bε) = 2tr[AΣBΣ] + 4µ′AΣBµ.

Say that (k × 1) vector γ = X − µ, where E[X] = µ, and let V ar (γ) = Σ. Symmetric

matrix A is as defined above. Then

E [γ′Aγ] = tr[AΣ]

V ar (γ′Aγ) = 2tr[AΣAΣ]
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APPENDIX B: SAS CODE FOR COMPUTING THE EIC

%macro eic(B);

proc iml;

use ncepese;

read all var _num_ into data;

close ncepese;

/* Fit statistics from original data and bootstrapped data */

use fit;

read all var _num_ into fit;

close fit;

/* Fixed effects parameter estimates */

use est;

read all var _num_ into beta;

close est;

/* Variance-covariance (random effects) parameter estimates */

use cov;

read all var _num_ into cov;

close cov;

/* Extract relevant variables from observed data and construct
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fixed/random effects design matrices*/

= data[, 9];y

x

z

= J(nrow(y), 1, 1)||data[, 3]||data[, 4];

= J(nrow(y), 1, 1)||data[, 4];



p = nrow(beta)-1;

/* Set dummy matrix for l(y|b*) */

databoot_ll = j(&B,nrow(y)/4,0);

do i=1 to &B; /* For each dataset ... */

b = beta[i+1,];

/* Use first row of ’cov’ to populate covariance matrix) */

d11 = cov[1,1];

d12 = cov[1,2];

d22 = cov[1,3];

sigsqd = cov[1,4];

D = (d11 // d12) || (d12 d22);

sig = z*D*z‘ + sigsqd*I(nrow(y));

/* Iterate by subject vectors of dim (3 x 1) */

do j=1 to nrow(y) by 3;

m = (j+2)/3; /* For every subject...*/
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ysub = y[j,]//y[j+1,]//y[j+2,];

xsub = x[j,]//x[j+1,]//x[j+2,];

zsub = z[j,]//z[j+1,]//z[j+2,];

diag = I(3);

r = sigsqd*diag;



sigma = zsub*D*t(zsub) + r;

dsig = det(sigma);

isig = inv(sigma);

/* Correct for ’close to zero’ determinants*/

if dsig < 0.0001 then dsig=0.0001;

/* Compute l(y|b*) for each bootstrapped dataset */

databootll[i,m] = -0.5*log(2*3.14)-0.5*log(dsig)

-0.5*t(ysub-(xsub*t(b)))*isig*(ysub-(xsub*t(b)));

end;

end;

lorig = fit[1,1];

avgbootll = (1/&B)*(fit[,+]-lorig);

term1 = (1/&B)*J(1,&B,1)*avgbootll[2:(&B+1),1];

dbootll = databootll[,+];

avgdatabootll = (1/&B)*J(1,&B,1)*dbootll;

Ck = term1 - avgdatabootll;

eic = lorig + 2*Ck;

print eic;

quit;

%mend;
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