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ABSTRACT  

Hao Cai: Metformin Efficacy Against Breast Cancer Depends on Its Cellular Uptake via Cation 
Transporters and Modulation of Insulin/IGF1 Pathway 

(Under the direction of Dhiren R. Thakker) 

 

Clinical evidence suggests that metformin is efficacious as an anticancer agent in 

diabetic patients; however, results about its efficacy are mixed, especially in non-diabetic 

patients. The goal of this dissertation project was to improve metformin treatment for breast 

cancer by elucidating molecular and cellular mechanisms that play an important role in its 

efficacy. Research conducted in this project showed that breast cancer cells exhibit wide 

variability in the expression of cation transporters, which are required for intracellular uptake and 

accumulation of metformin. Further, metformin requires a functional intracellular adenosine 

monophosphate-activated protein kinase (AMPK) pathway to exert its anticancer activity. 

Interestingly, cancer stem cells, which are more sensitive to the antiproliferative effect of 

metformin, express higher levels of cation-selective transporters than non-stem cancer cells.  

 Preclinical dose-response studies showed that estrogen receptor positive breast tumors 

with low expression of cation transporters required a minimum metformin dose (in combination 

with 30 mg/kg/day paclitaxel) that is equivalent to the highest current anti-diabetic dose of 2,550 

mg/day, suggesting that an even higher metformin dose is needed to optimally treat these 

patients. The minimum efficacious metformin dose (in combination with 50 mg/kg/day 

carboplatin) to treat triple negative breast cancer with high expression of cation transporters was 

equivalent to the 850 mg daily dose of metformin that is typically used in the treatment of type 2 

diabetes.
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Studies in mice showed that attenuation of the insulin/IGF1 pathway sensitized breast 

cancer cells to the antiproliferative efficacy of metformin exerted via modulation of the AMPK 

pathway. These results provide a rationale for lower efficacy of metformin in non-diabetic 

patients, and suggest that co-administration of metformin with an insulin/IGF1 pathway inhibitor 

may improve metformin efficacy in non-diabetic breast cancer patients.

In summary, the dissertation research provides valuable insights into cellular and 

molecular factors that contribute to the variable responses of diabetic and non-diabetic breast 

cancer patients to metformin therapy. The findings of this research will contribute to 

improvement in selection of breast cancer patients who would respond to metformin therapy, 

improved dose selection strategy, and development of new metformin combination therapies for 

breast cancer. 
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CHAPTER 1 

Repurposing Metformin for Breast Cancer Therapy: from Clinical Observations to Molecular 
Mechanisms to Drug Optimization 

 

1.1 Metformin is A Leading Drug for Type 2 Diabetes 

Metformin, also known as 1,1-dimethylbiguanide, is currently the first-line therapeutic agent 

for type 2 diabetes. Metformin is a type of biguanide compound which originates from goat's rue 

(Galega officinalis), a herbal medicine used for the treatment of diabetes for centuries. 

Metformin was synthesized in 1922 by Emil Werner and James Bell (1). Compared to other 

biguanide compounds such as phenformin, metformin is much safer, but also has a relatively 

lower anti-glycemic efficacy. As a result, metformin was not used in the clinic for treatment of 

diabetes until the 1970s when other biguanide drugs were withdrawn from the market due to 

toxicity.  

Metformin was approved by the U.S. Food and Drug Administration (FDA) for type 2 

diabetes in 1994. Today, it has become the most widely prescribed anti-diabetic agent in the 

U.S. with 59.2 million prescriptions in 2014 (2). For the treatment of type 2 diabetes, metformin 

is orally administered as either immediate-release GLUCOPHAGE® Tablets or extended-release 

GLUCOPHAGE® Tablets (Bristol-Myers-Squibb Inc.). The dose of metformin generally used for 

anti-diabetic treatment ranges from 500 to 1000 mg, with a maximum recommended daily dose 

of 2550 mg (for immediate-release formulation) or 2000 mg (for extended-release formulation). 

Metformin exerts its anti-glycemic effects in diabetic patients by increasing insulin sensitivity 

rather than decreasing insulin secretion. The liver is the primary target of the anti-diabetic effect 

of metformin. Upon being taken up into the hepatocytes, metformin inhibits gluconeogenesis via 

activation of the intracellular adenosine monophosphate-activated protein kinase (AMPK), and 
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subsequent downregulation of the genes that drive gluconeogenesis (3). Metformin treatment 

has also been reported to activate AMPK in the skeletal muscle and recruit glucose transporters 

to increase glucose uptake into skeletal muscle (4). Studies also suggested that metformin 

reduces circulating glucose levels by decreasing intestinal glucose absorption, demonstrated by 

impaired anti-glycemic efficacy of metformin when the drug was delivered through the portal 

vein (5). The anti-diabetic effect of metformin (i.e. its glucose-lowering effect) in the non-diabetic 

people has been reported to be insignificant (6). Since metformin has been shown to impact 

circulating fatty acids (7), growth hormone (8), and transforming growth factor beta (TGFβ) (9), 

etc., it is also used for the treatment of polycystic ovary syndrome (10), excessive weight (11), 

insulin resistance (12), and arterial hypertension (13). 

1.2 Metformin Pharmacokinetics (PK): The Role of Transporters in Metformin Disposition 

and Efficacy against Type 2 Diabetes 

Metformin is a highly hydrophilic small molecule (logD of -6.13 at pH 6.0) that is 

positively charged (pka 12.4) at all physiological pH values (structure shown as the insert of 

Figure 1.1). Due to the physicochemical properties of metformin, its intracellular uptake through 

passive diffusion is very limited (14). Instead, studies have shown that the cellular transport of 

metformin is primarily mediated by cation-selective transporters (15, 16), as evidenced by 

observations showing significantly higher permeability of metformin in Caco-2 cells compared to 

neutral molecules with similar physicochemical properties, such as mannitol (16-18). 

The absorption, distribution, metabolism, and excretion (ADME) of metformin have been 

well studied. The intestinal absorption of metformin is saturable and dose-dependent (6), and its 

bioavailability from 40%-60%, which is 3-fold higher than the bioavailability of mannitol (6, 19). 

These observations suggested that the intestinal absorption of metformin is through transporter-

mediated processes rather than by passive diffusion. Han et al. identified four cation-selective 

transporters namely organic cation transporter (OCT)1, plasma membrane monoamine 

transporter (PMAT), serotonin transporter (ST), and choline transporter (CHT) that are 
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expressed in human intestinal tissues and are responsible for metformin intestinal absorption, 

(15). As metformin absorption was also shown to be dependent on intestinal length, a “sponge” 

mechanism was proposed by Proctor et al., which suggested that the intestinal absorption of 

metformin is enhanced by an uptake-efflux-reuptake process mediated by cation-selective 

transporters (16).  

Upon being taken up into the intestine, metformin accumulates in the liver and small 

intestine (17), with a volume of distribution in humans ranging from 60 to 280 L. The absorption 

of metformin in its primary target organ, the liver, is mediated by OCT1. In the liver, metformin 

remains unmetabolized (20) and a small proportion of it (<20%)) is secreted into bile by the 

multidrug and toxin extrusion protein (MATE)1 transporter. The elimination of metformin from 

the body is achieved primarily through renal clearance. In the kidney, metformin is taken up into 

the proximal tubules via OCT2, and secreted into the urine via MATE1 and MATE2 (21, 22). 

Since cation-selective transporters play a critical role in the ADME of metformin, studies 

have been conducted to evaluate how mutations in these transporters affect the PK and anti-

diabetic efficacy of metformin. Becker et al. reported that OCT1 mutations impaired the anti-

glycemic efficacy of metformin in diabetic patients by reducing OCT1-mediated intestinal 

absorption and decreasing the systemic concentrations of the drug (23). Mutations in 

transporters, which only reduce accumulation of metformin in its target organ, also affect the 

efficacy of the drug. A study conducted by Chen, et al. shown that mutations in OCT3, the 

predominant transporter expressed in skeletal muscles, impaired the uptake and accumulation 

of metformin in muscle tissues, and led to a reduced anti-diabetic efficacy as metformin-

mediated increase in glucose uptake in muscle was affected (24). Similarly, patients carrying 

mutated MATE1 exhibited improved response to the glucose-lowering effect of metformin, as 

metformin concentration in liver was elevated due to hampered biliary secretion (25). 
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1.3 From Leading Anti-diabetic Agent to Potential Anticancer Drug: the Beneficial Effects 

of Metformin against Breast Cancer in Clinical Studies 

 Epidemiological studies have shown that patients with type 2 diabetes exhibited an 

increased risk of developing breast cancer compared to the non-diabetic population (26-28). 

These clinical observations led to further retrospective analyses on the potential impact of anti-

glycemic agents on the incidence of breast cancer. A majority of retrospective studies have 

shown that diabetic patients on metformin treatment had a significantly lower risk of developing 

breast cancer compared to those on other therapeutic agents such as insulin and sulfonylurea, 

although some studies only observed a trend (Table 1.1) (29-37). This beneficial effect of 

metformin against breast cancer occurrence aroused further interest in evaluating the possibility 

of using metformin as an anticancer agent. In a retrospective study by He, et al., it was 

concluded that metformin improved the breast cancer-specific survival rate of diabetic patients 

compared to other anti-glycemic drugs (38). Not only is metformin implicated in cancer 

prevention, but evidence is mounting for the inhibitory effects of metformin against cancer cell 

proliferation and tumor growth. In a study of breast cancer patients on neoadjuvant 

chemotherapy, diabetic patients on metformin therapy showed a significantly improved 

response to chemotherapy (reflected by higher rates of pathologic complete response) 

compared to diabetic patients on other anti-glycemic drugs (39). Additionally, treatment of 

presurgery diabetic breast cancer patients with metformin significantly reduced the proportion of 

proliferating cells (identified by immunohistochemical (IHC) staining of the proliferation 

biomarker, Ki-67) in tumor tissues (40). 

 In addition to breast cancer, metformin has also been reported to exert beneficial effects 

against lung cancer (41), prostate cancer (42), pancreatic cancer (43), ovarian cancer (4), and 

colon cancer (45). Also, non-diabetic patients who received short-time metformin treatment 

showed an improved response to chemotherapy (40, 46, 47) compared to non-metformin users, 
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although the anticancer efficacy of metformin in non-diabetic cancer patients was not as 

significant as its efficacy in diabetic patients with cancer.  

Since breast cancer is the second leading cause of cancer death among women in the 

U.S (48), and there is currently no efficacious therapeutic agent for some subtypes of breast 

cancer (e.g. triple-negative breast cancer), repurposing metformin (a highly cost-effective drug 

with limited toxicity) for breast cancer therapy would be a significant improvement on the current 

treatment of this disease. However, metformin has not been used in the clinic for the treatment 

of breast cancer as some clinical trials report that the drug failed to show significant anticancer 

efficacy (49, 50). Therefore, there have been an increasing number of clinical studies being 

conducted on the anticancer efficacy of metformin (Table 1.2). At the same time, preclinical 

studies are also being conducted to identify the anticancer mechanisms of metformin to provide 

insights into its optimization for future clinical trials. 

1.4 Molecular Mechanisms of the Anticancer Effects of Metformin 

1.4.1 Reduction of Insulin and Insulin-like Growth Factor (IGF)1  

Since metformin has been widely used for the treatment of diabetes, the role of its anti-

diabetic effects in its anticancer pharmacology should be evaluated. Studies have shown that 

the proliferation of cancer cells can be stimulated under hyperglycemic culture conditions versus 

normal glucose levels (51). However, it is likely that the anti-glycemic effect is not the primary 

contributor to the in vivo anticancer effects of metformin, as other anti-glycemic agents such as 

insulin and sulfonylurea have been reported to increase breast cancer incidence (30-32). The 

difference in the anti-diabetic pharmacology between metformin and insulin/sulfonylurea is that 

metformin reduces circulating insulin and IGF1 (secretion suppressed by the reduced insulin 

level) levels, whereas long-term treatment with insulin/sulfonylurea causes hyperinsulinemia 

(52). Studies have shown that long-term exposure to high insulin and IGF1 levels increased the 

risk of breast cancer in diabetic patients (53, 54), suggesting that metformin exerts its anticancer 

effects in diabetic patients through reduction of insulin and IGF1.   
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Studies have been conducted to illustrate the role of insulin and IGF1 in breast cancer 

development (Figure 1.2). Both insulin and IGF1 activate the insulin pathway through binding to 

their receptors, namely insulin receptor (IR) and IGF1 receptor (IGF1R), on cancer cell 

membranes. Activated IR and IGF1R phosphorylate insulin receptor substrate (IRS)-1 and 

induce a conformational change in IRS-1, which enables downstream molecules to bind to it 

(55). Phosphoinositide 3-kinase (PI3K) is one of the major downstream targets of IRS-1. 

Activation of PI3K and its downstream protein kinase B (Akt) induces protein synthesis, 

enhances glucose uptake, and inhibits cell apoptosis (56). Compared to somatic cells, cancer 

cells have a hyperfunctional insulin pathway, which is the result of unregulated expression of IR 

and IGF1R or mutation of PI3K (57, 58). Several inhibitors of the insulin pathway have been 

approved for cancer therapy. Clinical studies have shown that co-administration of a PI3K 

inhibitor and trastuzumab significantly improved progression-free survival of breast cancer 

patients compared to trastuzumab monotherapy (hazard ratio: 0.78, p<0.01) (59), which implies 

that the insulin pathway plays a critical role in breast cancer development. Besides indirect 

attenuation of the insulin pathway through modulation of insulin and IGF1 levels, metformin was 

reported to directly reduce the expression of IR and IGF1R (60). The suppression of the insulin-

dependent pathway by metformin was observed only in diabetic patients, which could be the 

likely cause of a poor response of non-diabetic breast cancer patients to metformin treatment 

compared to breast cancer patients with type 2 diabetes, as observed in clinical studies. 

1.4.2 Activation of the AMPK Pathway 

 Besides the modulation of circulating insulin and IGF1 levels, attempts have been made 

to identify the intracellular targets of metformin in breast tumor tissues. As mentioned before, 

metformin exerts its anti-diabetic effects through suppressing hepatic gluconeogenesis and 

enhancing glucose uptake in skeletal muscles. Both processes are mediated by activation of 

intracellular AMPK. Therefore, it is possible that AMPK is the target of metformin anticancer 

effects if AMPK can modulate the proliferation of cancer cells.  

https://en.wikipedia.org/wiki/Progression-free_survival
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One of the primary roles of AMPK in breast cancer cells is the regulation of energy 

homeostasis. In somatic cells, energy is produced by two steps: 1) glycolysis in the cytosol to 

generate pyruvate, and 2) oxidation of pyruvate in mitochondria via Krebs Cycle. In cancer cells, 

however, pyruvate gets further oxidized into lactate instead of entering into the mitochondria 

(the Warburg effect) (61). The Warburg effect is critical to cancer cell proliferation as it allows 

the cancer cells to survive without the need of oxygen, since the microenvironment in tumor 

tissues is hypoxic. Besides, the Warburg effect not only produces energy but also provides 

intermediate products that are required for protein and lipid synthesis (61).  AMPK is the central 

regulator of the Warburg effect. Activation of AMPK, on one hand, inhibits multiple enzymes that 

are involved in Warburg effect, such as phosphofructokinase-1 (62). On the other hand, AMPK 

activation inhibits the mammalian target of rapamycin (mTOR) and attenuates the 

phosphorylation of P70S6 kinase (a downstream molecule of mTOR). Suppression of the 

mTOR pathway attenuates lipid and protein synthesis, inhibits cell proliferation, and induces 

apoptosis (63).  

Studies have shown that metformin can activate AMPK in cancer cells (Figure 1.1). 

After being taken up into cancer cells, metformin blocks Mitochondrial Complex I in the electron 

transport chain and suppresses ATP synthesis. The elevated AMP/ATP ratio induces a 

conformational change of AMPK and exposes the site (Thr172) for phosphorylation by liver 

kinase B1 (LKB-1) (64). The critical role of LKB-1 and AMPK phosphorylation was confirmed in 

in vitro studies by Dowling et al., in which the LKB-1 deficient MDA-MB-231 human breast 

cancer cell line showed a limited response to the anti-proliferative effects of metformin (65).  

Studies have implied that the effects of metformin on the AMPK pathway and the insulin 

pathway are not independent of each other. MCF-7 breast cancer cells cultured in low 

insulin/IGF1 media exhibited greater metformin-induced activation of the AMPK pathway 

compared to cells cultured in media with high insulin/IGF concentrations (66). This suggests that 

inhibition of the insulin pathway may sensitize the AMPK pathway to metformin (Figure 1.1).  
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1.4.3 Regulation of the Cell Cycle  

Besides the molecular targets involved in the anti-diabetic effects of metformin, the 

contributions of other signaling pathways, such as the cell cycle, to the antiproliferative effects of 

metformin have also been evaluated. Cell proliferation is regulated by the cell cycle regulatory 

pathway which maintains genomic stability by preventing cells with damaged DNA from 

proliferating. DNA damage in the cells induces the phosphorylation of Ataxia Telangiectasia 

Mutated (ATM), which subsequently stabilizes and activates its major downstream modulator, 

p53 (67).  Activation of p53 leads to cell cycle arrest at the G1/S phase or G2/M phase via 

induction of p21 synthesis, which inhibits a group of cell proliferation initiators including cyclin-

dependent kinase 2 (cdc2) (68). Mutations in p53 and ATM are the most frequently observed 

mutations in tumor tissues, which highlights the critical role of cell cycle regulation in cancer 

development.   

 There are some reports to suggest that metformin inhibits cell proliferation through 

modulation of the cell cycle checkpoint genes (69-72) (Figure 1.2). For example, metformin 

treatment resulted in an increase in the proportion of breast cancer cells that were arrested in 

the G1 phase (69). Metformin is believed to regulate the cell cycle by enhancing the synthesis of 

p21 (69). Although some studies also showed that metformin can induce phosphorylation of the 

two upstream molecules of p21, namely ATM and p53 (70, 71), a functional p53 is not required 

for metformin-mediated regulation of the cell cycle in cancer cells. Interestingly, studies have 

shown that metformin exerts better efficacy against p53-deficient tumors rather than p53-

competent tumors (72). This suggests that activation of p21 by metformin is likely to be 

regulated by other signaling pathways such as the AMPK-dependent pathway (71). 

1.4.4 Effect on Cancer Stem Cells (CSCs) 

The effect of metformin on cancer relapse and metastasis has also been investigated. 

According to some reports, the preventive effect of metformin against breast cancer 

reoccurrence and metastasis may be rooted in its antiproliferative efficacy against CSCs. Breast 
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tumors are believed to be generated from a group of cells named CSCs due to cellular 

properties that are similar to embryonic stem cells. Several studies showed that CSCs originate 

primarily from somatic epithelial cells through epithelial-mesenchymal transition (EMT) (73), a 

process originally discovered in the early development stage by which epithelial cells lose their 

cell-cell adhesion, acquire the ability to migrate, and become mesenchymal stem cells. 

Compared to non-stem cancer cells (NSCCs), CSCs are more resistant to chemotherapeutic 

agents due to higher expression of efflux transporters (ATP-binding cassette transporters or 

ABC transporter), enhanced DNA damage response system, and increased aldehyde 

dehydrogenase (ALDH) activity (74, 75). Additionally, CSCs have a lower expression of cell-cell 

adhesion protein and are more tumorigenic compared to NSCCs (76). It is widely believed that 

these properties make CSCs major cause of cancer reoccurrence and metastasis. 

 It has been reported that CSCs are more sensitive to metformin treatment compared to 

NSCCs (77). Several mechanisms have been proposed to explain this observation (Figure 1.3). 

First, the intracellular concentration of metformin in CSCs is not affected by the upregulation of 

efflux transporters because metformin is not an ABC transporter substrate under physiological 

conditions. Second, the inhibitory effect of metformin on ATP synthesis has greater impact on 

the proliferation of CSCs versus NSCCs since CSCs heavily rely on mitochondrial ATP 

production compared to NSCCs (77). Third, metformin inhibits the generation of CSCs by 

blocking the EMT process. Metformin reduces the secretion of IGF1 and transforming growth 

factor (TGF)β, both of which are required to maintain the “stemness” of CSCs and initiate EMT 

from NSCCs (78, 79). Furthermore, metformin-induced activation of AMPK leads to the 

inhibition of mTOR. As mTOR is a regulator of E-cadherin expression, its inhibition by metformin 

increases E-cadherin expression, improves cell-cell adhesion, and halts the EMT process (80).  

1.4.5 Other Mechanisms 

Recently, new targets of the anticancer effects of metformin have been identified. 

Several studies have shown that metformin-mediated inhibition of mTOR reduces the 
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expression of human epidermal growth factor receptor (HER)2 (81) which is critical for the 

growth of HER+ breast cancer cells. The study conducted by Marini et al. revealed that 

metformin altered glucose metabolism in breast cancer cells by impairing hexokinase activity 

through steadily binding to its catalytic pocket (82, 83). These studies imply that, unlike other 

widely used chemotherapeutic agents, metformin inhibits tumor growth by modulating multiple 

signaling pathways simultaneously. 

1.5 The Role of Transporters in the Efficacy of Metformin as An Anticancer Agent 

Although multiple molecular mechanisms/targets have been proposed from preclinical 

studies to explain the anticancer effects of metformin, their clinical relevance remains unclear. 

Based on the need for intracellular uptake of metformin for activation of these targets, the 

molecular targets can be categorized into two types: 1) extracellular targets (e.g. insulin and 

IGF1) and 2) intracellular targets (e.g. AMPK and p21).  

While the activation of extracellular targets of metformin depends on the expression of their 

receptors on the surface of cancer cells, the activation of intracellular targets is determined by 

the intracellular concentration of metformin. As mentioned above, the intracellular uptake of 

metformin is mediated by cation-selective transporters. Previous studies investigating the anti-

diabetic effects of metformin showed that mutations in OCT3, the predominant metformin 

transporter in the skeletal muscle, led to impaired activation of AMPK and reduced anti-diabetic 

efficacy of metformin (24). Therefore, the expression profiles of cation-selective transporters in 

tumor tissues should be extensively investigated, as they determine the extent of metformin 

uptake into tumors and activation of intracellular targets. However, only a few studies have 

implicated interactions between transporters and the antitumor efficacy of metformin. Patel et al. 

(84) showed that siRNA-mediated attenuation of OCT3 expression in human head and neck 

squamous cell carcinoma cells inhibited the attenuation of P70S6K phosphorylation induced by 

metformin. Despite these preliminary studies, there is little direct evidence that confirms cation-

selective transporter expression in human breast tumor tissues.  
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1.6 Rationale for the Dissertation Project 

The overall goal of this dissertation research is to optimize current treatment of 

metformin against breast cancer. Based on existing knowledge on metformin PK and its 

molecular mechanisms in cancer therapy, the dissertation research will commence with 

identifying the molecular targets of metformin that determine its clinical antitumor efficacy, so 

that selection criteria can be provided for identifying patients who have functional metformin 

targets and are most suitable for metformin cancer therapy. To evaluate the contributions of 

extracellular and intracellular targets to the inhibitory efficacy of metformin in breast tumors, 

cation-selective transporter expression in human breast tumor tissues and breast cancer cell 

lines will be assessed. The roles of transporter expression and transporter-mediated uptake of 

metformin in the antitumor efficacy of metformin will be evaluated by comparing metformin 

efficacy against transporter-overexpressing tumors versus tumors with limited transporter 

expression. In addition, the impact of extracellular insulin and IGF1 levels on the antitumor 

efficacy of metformin will be evaluated. Based on these results, a therapeutic regimen of 

metformin, specifically for the treatment of breast cancer, will be developed through optimizing 

metformin dose and designing a new combination therapy. Therefore, the following 

overarching hypotheses have been proposed to achieve this goal: 

 Metformin exerts its antiproliferative effects against both breast cancer stem cells and 

non-stem cancer cells.  

 The anticancer efficacy of metformin is due to 1) transporter-mediated uptake and 

activation of the intracellular AMPK pathway, and 2) reduction of circulating insulin and 

IGF1 levels and subsequent attenuation of cell growth stimulus.  

Specific Aim 1. Investigate the role of transporter-mediated tumor uptake of metformin and the 

modulation of intracellular targets (AMPK Pathway) in its anticancer effects against CSCs and 

NSCCs. 
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1a. Evaluate the expression of cation-selective transporters in breast cancer cell lines 

and tumor tissues. 

1b. Establish an OCT3-overexpressing MCF-7 (OCT3-MCF7) cell line and confirm 

increased OCT3 expression in this cell line. 

1c. Compare metformin-induced activation of the AMPK-dependent pathway and 

antiproliferative efficacy between OCT3-MCF7 cells and MCF-7 cells. 

1d. Evaluate the importance of transporters in metformin antitumor effects by comparing 

metformin antitumor efficacy between OCT3-MCF7 tumors and MCF-7 tumors. 

1e. Investigate the role of transporters in metformin effects on MCF-7 CSCs. 

Specific Aim 2. Optimize metformin doses for the treatment of breast cancer and correlate 

metformin efficacy with its systemic and intratumoral exposure. 

2a. Generate xenograft mice bearing tumors generated from MCF-7 cells and MDA-MB-

468 cells. 

2b. Optimize metformin dose and establish a relationship between metformin dose-

exposure and tumor volumes in mice bearing MCF-7 tumors and MDA-MB-468 tumors. 

2c. Relate metformin dose-exposure-response to its effects on intracellular targets. 

Specific Aim 3. Investigate the role of metformin-mediated reduction of insulin and IGF1 levels 

in the anticancer effects of the drug against CSCs and NSCCs. 

3a. Generate IRS-1 knockdown MCF-7 (MCF-7IRS-1 KD) cells. 

3b. Evaluate the role of insulin and IGF1 in the anticancer effects of metformin using in 

vitro cell models. 

3c. Evaluate the role of insulin and IGF1 in the anticancer effects of metformin using food-

induced diabetic xenograft mouse models. 

Results from the three specific aims will be presented in the following chapters: 

Chapter 2. Aim 1a 

Chapter 3. Aim 1e 
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Chapter 4. Aim 1b-d 

Chapter 5. Aim 2a-c  

Chapter 6. Aim 3a-c 
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Figure 1.1 Interactions between AMPK Pathway and Insulin Pathway. 
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Figure 1.2 The Effect of Metformin on Cell Cycle Check Point Genes 
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Figure 1.3 The Effect of Metformin on the Generation of CSCs 
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Table 1.1 Retrospective Studies on the Effect of Metformin against Breast Cancer Risk 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Year 
Study 
Size 

Comparator Study Population 
Hazard 
Ratio 

Ref. 

2009 62,809 
Sulfonylurea and 

insulin 
Diabetic patients in United 

Kingdom 
0.66-1.21 (29) 

2009 8,170 
Other anti-diabetic 

drugs 
Diabetic patients in United 

Kingdom 
0.53-0.75 (30) 

2010 22,621 
Other anti-diabetic 

drugs 
Female diabetic patients in 

United Kingdom 
0.24-0.82 (31) 

2011 4,323 
Other anti-diabetic 

drugs 
Female diabetic patients in 

Denmark 
0.61-0.99 (32) 

2011 85,289 
Sulfonylurea 
derivatives 

Diabetic patients in Netherlands 0.91-0.98 (33) 

2012 68,019 
Other anti-diabetic 

drugs 
Postmenopausal women in 

United States 
0.57-0.99 (34) 

2013 1,547 Non-metformin use Diabetic patients in Australia 0.39-1.00 (35) 

2014 476,282 Non-metformin use Diabetic patients in Taiwan 0.60–0.66 (36) 

2015 4,216 
Sulfonylureas and 

insulin 
Diabetic patients in United States 0.38-0.79 (37) 



18 

 
Table 1.2 Ongoing Clinical Studies Using Metformin for Breast Cancer Treatment. Data 
from ClinicalTrials.gov (http://clinicaltrials.gov). 
 

 

 

 

 

 

 

 

 

 

 

 

Study 
Size 

Comparator Study Name (Study Phase) Outcome 
Metformin 

Dose 
(mg/day) 

40 
Before 

treatment 

Pre-surgical trial of the combination of 
metformin and atorvastatin in newly 

diagnosed operable breast cancer (0) 

Tumor 
progression 

1500 

150 Placebo 
Phase II study of metformin for reduction of 

obesity-associated breast cancer risk (II) 
Breast 

cancer risk 
850 

72 Placebo 
A trial of standard chemotherapy with 
metformin (vs placebo) in women with 

metastatic breast cancer (II) 

Progression-
free survival 

850 

42 Placebo 
Metformin for reduction of paclitaxel-related 
neuropathy in patients with breast cancer (II) 

Change in 
neuropathy 

500 

46 Placebo 

A study of Liposomal Doxorubicin+ 
Docetaxel + Trastuzumab + Metformin in 
operable and locally advanced HER2+ 

breast cancer (II) 

Pathologic 
complete 
response 

1000 

96 
Placebo or 
melatoninn 

Neoadjuvant FDC with melatonin or 
metformin for locally advanced breast cancer 

(II) 

Response 
rate 

850 

60 Placebo 
Metformin Plus Neoadjuvant Chemotherapy 

in Breast Cancer (II) 

Pathologic 
complete 
response 

500 

http://clinicaltrials.gov/


19 

REFERENCES 

1. Dunn CJ, Peters DH. Metformin. A review of its pharmacological properties and therapeutic 
use in non-insulin-dependent diabetes mellitus. Drugs. 49 1995; (5): 721–49 

2. "Leading Prescriptions Dispensed in the U.S. Diabetes Market 2014 | Statistic." Statista. 
Web. 08 Mar. 2016. 

3. Hundal RS, Krssak M, Dufour S, Laurent D, Lebon V, Chandramouli V, et al. Mechanism by 
which metformin reduces glucose production in type 2 diabetes. Diabetes. 
2000;49(12):2063-9 

4. Musi N, Hirshman MF, Nygren J, Svanfeldt M, Bavenholm P, Rooyackers O, et al. Metformin 
increases AMP-activated protein kinase activity in skeletal muscle of subjects with type 2 
diabetes. Diabetes. 2002;51(7):2074-81 

5. Ikeda T, Iwata K, Murakami H. Inhibitory effect of metformin on intestinal glucose absorption 
in the perfused rat intestine. Biochemical pharmacology. 2000;59(7):887-90 

6. Sambol NC, Chiang J, O'Conner M, Liu CY, Lin ET, Goodman AM, et al. Pharmacokinetics 
and pharmacodynamics of metformin in healthy subjects and patients with noninsulin-
dependent diabetes mellitus. J Clin Pharmacol. 1996;36(11):1012-21 

7. Tiikkainen M, Hakkinen AM, Korsheninnikova E, Nyman T, Makimattila S, Yki-Jarvinen H. 
Effects of rosiglitazone and metformin on liver fat content, hepatic insulin resistance, insulin 
clearance, and gene expression in adipose tissue in patients with type 2 diabetes. Diabetes. 
2004;53(8):2169-76 

8. Landin K, Tengborn L, Smith U. Treating insulin resistance in hypertension with metformin 
reduces both blood pressure and metabolic risk factors. Journal of internal medicine. 
1991;229(2):181-7 

9. Agard C, Rolli-Derkinderen M, Dumas-de-La-Roque E, Rio M, Sagan C, Savineau JP, et al. 
Protective role of the antidiabetic drug metformin against chronic experimental pulmonary 
hypertension. British journal of pharmacology. 2009;158(5):1285-94. 

10. Bourron O, Daval M, Hainault I, Hajduch E, Servant JM, Gautier JF, et al. Biguanides and 
thiazolidinediones inhibit stimulated lipolysis in human adipocytes through activation of 
AMP-activated protein kinase. Diabetologia. 2010;53(4):768-78 

11. Guido M, Romualdi D, Giuliani M, Suriano R, Tienforti D, Costantini B, et al. Effect of 
metformin on the growth hormone response to growth hormone-releasing hormone in obese 
women with polycystic ovary syndrome. Fertil Steril. 2005;84(5):1470-6 

12. Kim YD, Kim YH, Tadi S, Yu JH, Yim YH, Jeoung NH, et al. Metformin inhibits growth 
hormone-mediated hepatic PDK4 gene expression through induction of orphan nuclear 
receptor small heterodimer partner. Diabetes. 2012;61(10):2484-94. 

13. Agard C, Rolli-Derkinderen M, Dumas-de-La-Roque E, Rio M, Sagan C, Savineau JP, et al. 
Protective role of the antidiabetic drug metformin against chronic experimental pulmonary 
hypertension. British journal of pharmacology. 2009;158(5):1285-94. 



20 

14. Irvine JD, Takahashi L, Lockhart K, Cheong J, Tolan JW, Selick HE, et al. MDCK (Madin-
Darby canine kidney) cells: A tool for membrane permeability screening. J Pharm Sci. 
1999;88(1):28-33. 

15. Han TK, Proctor WR, Costales CL, Cai H, Everett RS, Thakker DR. Four cation-selective 
transporters contribute to apical uptake and accumulation of metformin in Caco-2 cell 
monolayers. J Pharmacol Exp Ther. 2015;352(3):519-28. 

16. Proctor WR, Bourdet DL, Thakker DR. Mechanisms underlying saturable intestinal 
absorption of metformin. Drug Metab Dispos. 2008;36(8):1650-8 

17. Sinko PJ, Hu P. Determination intestinal metabolism and permeability for several 
compounds in rats. Implications on regional bioavailability in humans. Pharm Res. 
1996;13(1):108-13 

18. Artursson P, Karlsson J. Correlation between Oral-Drug Absorption in Humans and 
Apparent Drug Permeability Coefficients in Human Intestinal Epithelial (Caco-2) Cells. 
Biochem Bioph Res Co. 1991;175(3):880-5 

19. Pentikainen PJ. Bioavailability of metformin. Comparison of solution, rapidly dissolving 
tablet, and three sustained release products. International journal of clinical pharmacology, 
therapy, and toxicology. 1986;24(4):213-20 

20. Tucker GT, Casey C, Phillips PJ, Connor H, Ward JD, Woods HF. Metformin kinetics in 
healthy subjects and in patients with diabetes mellitus. Br J Clin Pharmacol. 1981;12(2):235-
46 

21. Chen Y, Li S, Brown C, Cheatham S, Castro RA, Leabman MK, Urban TJ, Chen L, Yee SW, 
Choi JH, Huang Y, et al. Effect of genetic variation in the organic cation transporter 2 on the 
renal elimination of metformin. Pharmacogenetics and genomics 2009;19(7):497-504 

22. Hemauer SJ, Patrikeeva SL, Nanovskaya TN, Hankins GD, Ahmed MS. Role of human 
placental apical membrane transporters in the efflux of glyburide, rosiglitazone, and 
metformin. Am J Obstet Gynecol. 2010;202(4):383 e1-7. 

23. Becker ML, Visser LE, van Schaik RHN, Hofman A, Uitterlinden AG, Stricker BHC. Genetic 
variation in the organic cation transporter 1 is associated with metformin response in 
patients with diabetes mellitus. Pharmacogenomics Journal. 2009;9(4):242-7 

24. Chen L, Pawlikowski B, Schlessinger A, More SS, Stryke D, Johns SJ, et al. Role of organic 
cation transporter 3 (SLC22A3) and its missense variants in the pharmacologic action of 
metformin. Pharmacogenetics and genomics. 2010;20(11):687-99 

25. Shu Y, Sheardown SA, Brown C, Owen RP, Zhang SZ, Castro RA, et al. Effect of genetic 
variation in the organic cation transporter 1 (OCT1) on metformin action. Journal of Clinical 
Investigation. 2007;117(5):1422-31 

26. Lipscombe LL, Goodwin PJ, Zinman B, McLaughlin JR, Hux JE. Diabetes mellitus and 
breast cancer: a retrospective population-based cohort study. Breast Cancer Res Treat. 
2006;98(3):349-56 



21 

27. Wideroff L, Gridley G, Mellemkjaer L, Chow WH, Linet M, Keehn S, et al. Cancer incidence 
in a population-based cohort of patients hospitalized with diabetes mellitus in Denmark. J 
Natl Cancer Inst. 1997;89(18):1360-5 

28. Currie CJ, Poole CD, Gale EA. The influence of glucose-lowering therapies on cancer risk in 
type 2 diabetes. Diabetologia. 2009;52(9):1766-7 

29. Libby G, Donnelly LA, Donnan PT, Alessi DR, Morris AD, Evans JM. New users of 
metformin are at low risk of incident cancer: a cohort study among people with type 2 
diabetes. Diabetes Care. 2009;32(9):1620-5 

30. Bodmer M, Meier C, Krahenbuhl S, Jick SS, Meier CR. Long-term metformin use is 
associated with decreased risk of breast cancer. Diabetes Care. 2010;33(6):1304-8 

31. Bosco JL, Antonsen S, Sorensen HT, Pedersen L, Lash TL. Metformin and incident breast 
cancer among diabetic women: a population-20(1):101-11.based case-control study in 
Denmark. Cancer Epidemiol Biomarkers Prev. 2011; 

32. Ruiter R, Visser LE, van Herk-Sukel MP, Coebergh JW, Haak HR, Geelhoed-Duijvestijn PH, 
et al. Lower risk of cancer in patients on metformin in comparison with those on sulfonylurea 
derivatives: results from a large population-based follow-up study. Diabetes Care. 
2012;35(1):119-24 

33. Chlebowski RT, McTiernan A, Wactawski-Wende J, Manson JE, Aragaki AK, Rohan T, et al. 
Diabetes, metformin, and breast cancer in postmenopausal women. J Clin Oncol. 
2012;30(23):2844-52 

34. Onitilo AA, Donald M, Stankowski RV, Engel JM, Williams G, Doi SA. Breast and prostate 
cancer survivors in a diabetic cohort: results from the Living with Diabetes Study. Clin Med 
Res. 2013;11(4):210-8 

35. Tseng CH. Metformin may reduce breast cancer risk in Taiwanese women with type 2 
diabetes. Breast Cancer Res Treat. 2014;145(3):785-90 

36. Calip GS, Hubbard RA, Stergachis A, Malone KE, Gralow JR, Boudreau DM. Adherence to 
oral diabetes medications and glycemic control during and following breast cancer 
treatment. Pharmacoepidemiol Drug Saf. 2015;24(1):75-85 

37. He X, Esteva FJ, Ensor J, Hortobagyi GN, Lee MH, Yeung SC. Metformin and 
thiazolidinediones are associated with improved breast cancer-specific survival of diabetic 
women with HER2+ breast cancer. Ann Oncol. 2012;23(7):1771-80 

38. Jiralerspong S, Palla SL, Giordano SH, Meric-Bernstam F, Liedtke C, Barnett CM, et al. 
Metformin and pathologic complete responses to neoadjuvant chemotherapy in diabetic 
patients with breast cancer. J Clin Oncol. 2009;27(20):3297-302 

39. Bonanni B, Puntoni M, Cazzaniga M, Pruneri G, Serrano D, Guerrieri-Gonzaga A, et al. Dual 
effect of metformin on breast cancer proliferation in a randomized presurgical trial. J Clin 
Oncol. 2012;30(21):2593-600 



22 

40. Libby G, Donnelly LA, Donnan PT, Alessi DR, Morris AD, Evans JM. New users of 
metformin are at low risk of incident cancer: a cohort study among people with type 2 
diabetes. Diabetes Care. 2009;32(9):1620-5 

41. Wright JL, Stanford JL. Metformin use and prostate cancer in Caucasian men: results from a 
population-based case-control study. Cancer Causes Control. 2009;20(9):1617-22 

42. Li D, Yeung SC, Hassan MM, Konopleva M, Abbruzzese JL. Antidiabetic therapies affect 
risk of pancreatic cancer. Gastroenterology. 2009;137(2):482-8 

43. Bodmer M, Becker C, Meier C, Jick SS, Meier CR. Use of metformin and the risk of ovarian 
cancer: a case-control analysis. Gynecol Oncol. 2011;123(2):200-4 

44. Zhang ZJ, Zheng ZJ, Kan H, Song Y, Cui W, Zhao G, et al. Reduced risk of colorectal 
cancer with metformin therapy in patients with type 2 diabetes: a meta-analysis. Diabetes 
Care. 2011;34(10):2323-8 

45. Xiao Y, Zhang S, Hou G, Zhang X, Hao X, Zhang J. Clinical pathological characteristics and 
prognostic analysis of diabetic women with luminal subtype breast cancer. Tumour Biol. 
2014;35(3):2035-45 

46. Bayraktar S, Hernadez-Aya LF, Lei X, Meric-Bernstam F, Litton JK, Hsu L, et al. Effect of 
metformin on survival outcomes in diabetic patients with triple receptor-negative breast 
cancer. Cancer. 2012;118(5):1202-11 

47. Hosono K, Endo H, Takahashi H, Sugiyama M, Sakai E, Uchiyama T, et al. Metformin 
suppresses colorectal aberrant crypt foci in a short-term clinical trial. Cancer Prev Res 
(Phila). 2010;3(9):1077-83 

48. American Cancer Society. Cancer facts & figures. Atlanta, GA: The Society, 2013. p. v. 

49. Kalinsky K, Crew KD, Refice S, Xiao T, Wang A, Feldman SM, et al. Presurgical trial of 
metformin in overweight and obese patients with newly diagnosed breast cancer. Cancer 
Invest. 2014;32(4):150-7. 

50. Cazzaniga M, DeCensi A, Pruneri G, Puntoni M, Bottiglieri L, Varricchio C, et al. The effect 
of metformin on apoptosis in a breast cancer presurgical trial. Br J Cancer. 
2013;109(11):2792-7 

51. Okumura M, Yamamoto M, Sakuma H, Kojima T, Maruyama T, Jamali M, et al. Leptin and 
high glucose stimulate cell proliferation in MCF-7 human breast cancer cells: reciprocal 
involvement of PKC-alpha and PPAR expression. Biochim Biophys Acta. 2002;1592(2):107-
16 

52. Hermann LS, Schersten B, Bitzen PO, Kjellstrom T, Lindgarde F, Melander A. Therapeutic 
Comparison of Metformin and Sulfonylurea, Alone and in Various Combinations - a Double-
Blind Controlled-Study. Diabetes Care. 1994;17(10):1100-9 

53. Hardefeldt PJ, Edirimanne S, Eslick GD. Diabetes increases the risk of breast cancer: a 
meta-analysis. Endocr Relat Cancer. 2012;19(6):793-803. 



23 

54. Wieman HL, Wofford JA, Rathmell JC. Cytokine stimulation promotes glucose uptake via 
phosphatidylinositol-3 kinase/Akt regulation of Glut1 activity and trafficking. Mol Biol Cell. 
2007;18(4):1437-46 

55. Wieman HL, Wofford JA, Rathmell JC. Cytokine stimulation promotes glucose uptake via 
phosphatidylinositol-3 kinase/Akt regulation of Glut1 activity and trafficking. Mol Biol Cell. 
2007;18(4):1437-46 

56. Kauffmann-Zeh A, Rodriguez-Viciana P, Ulrich E, Gilbert C, Coffer P, Downward J, et al. 
Suppression of c-Myc-induced apoptosis by Ras signalling through PI(3)K and PKB. Nature. 
1997;385(6616):544-8 

57. Milazzo G, Giorgino F, Damante G, Sung C, Stampfer MR, Vigneri R, et al. Insulin receptor 
expression and function in human breast cancer cell lines. Cancer Res. 1992;52(14):3924-
30 

58. Papa V, Gliozzo B, Clark GM, McGuire WL, Moore D, Fujita-Yamaguchi Y, et al. Insulin-like 
growth factor-I receptors are overexpressed and predict a low risk in human breast cancer. 
Cancer Res. 1993;53(16):3736-40 

59. Andre F, O'Regan R, Ozguroglu M, Toi M, Xu BH, Jerusalem G, et al. Everolimus for 
women with trastuzumab-resistant, HER2-positive, advanced breast cancer (BOLERO-3): a 
randomised, double-blind, placebo-controlled phase 3 trial. Lancet Oncology. 
2014;15(6):580-91 

60. Dowling RJ, Niraula S, Chang MC, Done SJ, Ennis M, McCready DR, et al. Changes in 
insulin receptor signaling underlie neoadjuvant metformin administration in breast cancer: a 
prospective window of opportunity neoadjuvant study. Breast Cancer Res. 2015;17:32 

61. Warburg O. On the origin of cancer cells. Science. 1956;123(3191):309-14 

62. Bartrons R, Caro J. Hypoxia, glucose metabolism and the Warburg's effect. Journal of 
bioenergetics and biomembranes. 2007;39(3):223-9 

63. Bolster DR, Crozier SJ, Kimball SR, Jefferson LS. AMP-activated protein kinase suppresses 
protein synthesis in rat skeletal muscle through down-regulated mammalian target of 
rapamycin (mTOR) signaling. J Biol Chem. 2002;277(27):23977-80 

64. Wheaton WW, Weinberg SE, Hamanaka RB, Soberanes S, Sullivan LB, Anso E, et al. 
Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis. eLife. 
2014;3:e02242 

65. Dowling RJ, Zakikhani M, Fantus IG, Pollak M, Sonenberg N. Metformin inhibits mammalian 
target of rapamycin-dependent translation initiation in breast cancer cells. Cancer Res. 
2007;67(22):10804-12 

66. Zakikhani M, Dowling R, Fantus IG, Sonenberg N, Pollak M. Metformin is an AMP kinase-
dependent growth inhibitor for breast cancer cells. Cancer Res. 2006;66(21):10269-73 



24 

67. Waterman MJ, Stavridi ES, Waterman JL, Halazonetis TD. ATM-dependent activation of p53 
involves dephosphorylation and association with 14-3-3 proteins. Nat Genet. 
1998;19(2):175-8 

68. Agarwal ML, Agarwal A, Taylor WR, Stark GR. p53 controls both the G2/M and the G1 cell 
cycle checkpoints and mediates reversible growth arrest in human fibroblasts. Proc Natl 
Acad Sci USA. 1995;92(18):8493-7 

69. Alimova IN, Liu B, Fan Z, Edgerton SM, Dillon T, Lind SE, et al. Metformin inhibits breast 
cancer cell growth, colony formation and induces cell cycle arrest in vitro. Cell Cycle. 
2009;8(6):909-15 

70. Duan X, Ponomareva L, Veeranki S, Choubey D. IFI16 induction by glucose restriction in 
human fibroblasts contributes to autophagy through activation of the ATM/AMPK/p53 
pathway. PLoS One. 2011;6(5):e19532 

71. Zhuang Y, Miskimins WK. Cell cycle arrest in Metformin treated breast cancer cells involves 
activation of AMPK, downregulation of cyclin D1, and requires p27Kip1 or p21Cip1. J Mol 
Signal. 2008;3:18 

72. Buzzai M, Jones RG, Amaravadi RK, Lum JJ, DeBerardinis RJ, Zhao F, et al. Systemic 
treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell 
growth. Cancer Res. 2007;67(14):6745-52 

73. Morel AP, Lievre M, Thomas C, Hinkal G, Ansieau S, Puisieux A. Generation of Breast 
Cancer Stem Cells through Epithelial-Mesenchymal Transition. Plos One. 2008;3(8) 

74. Hirschmann-Jax C, Foster AE, Wulf GG, Nuchtern JG, Jax TW, Gobel U, et al. A distinct 
"side population" of cells with high drug efflux capacity in human tumor cells. P Natl Acad 
Sci USA. 2004;101(39):14228-33 

75. Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN, et al. Association of reactive 
oxygen species levels and radioresistance in cancer stem cells. Nature. 
2009;458(7239):780-U123 

76. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective 
identification of tumorigenic breast cancer cells. P Natl Acad Sci USA. 2003;100(7):3983-8 

77. Lonardo E, Cioffi M, Sancho P, Sanchez-Ripoll Y, Trabulo SM, Dorado J, et al. Metformin 
Targets the Metabolic Achilles Heel of Human Pancreatic Cancer Stem Cells. Plos One. 
2013;8(10) 

78. Chang WW, Lin RJ, Yu J, Chang WY, Fu CH, Lai ACY, et al. The expression and 
significance of insulin-like growth factor-1 receptor and its pathway on breast cancer 
stem/progenitors. Breast Cancer Research. 2013;15(3) 

79. Cufi S, Vazquez-Martin A, Oliveras-Ferraros C, Martin-Castillo B, Joven J, Menendez JA. 
Metformin against TGF beta-induced epithelial-to-mesenchymal transition (EMT) From 
cancer stem cells to aging-associated fibrosis. Cell Cycle. 2010;9(22):4461-8 



25 

80. Qu C, Zhang WJ, Zheng GP, Zhang ZJ, Yin J, He ZM. Metformin reverses multidrug 
resistance and epithelial-mesenchymal transition (EMT) via activating AMP-activated protein 
kinase (AMPK) in human breast cancer cells. Molecular and Cellular Biochemistry. 
2014;386(1-2):63-71 

81. Vazquez-Martin A, Oliveras-Ferraros C, Menendez JA. The antidiabetic drug metformin 
suppresses HER2 (erbB-2) oncoprotein overexpression via inhibition of the mTOR effector 
p70S6K1 in human breast carcinoma cells. Cell Cycle. 2009;8(1):88-96 

82. Marini C, Salani B, Massollo M, Amaro A, Esposito AI, Orengo AM, et al. Direct inhibition of 
hexokinase activity by metformin at least partially impairs glucose metabolism and tumor 
growth in experimental breast cancer. Cell Cycle. 2013;12(22):3490-9 

83. Salani B, Marini C, Rio AD, Ravera S, Massollo M, Orengo AM, et al. Metformin impairs 
glucose consumption and survival in Calu-1 cells by direct inhibition of hexokinase-II. Sci 
Rep. 2013;3:2070 

84. Patel H, Younis RH, Ord RA, Basile JR, Schneider A. Differential expression of organic 
cation transporter OCT-3 in oral premalignant and malignant lesions: potential implications 
in the antineoplastic effects of metformin. Journal of oral pathology & medicine: official 
publication of the International Association of Oral Pathologists and the American Academy 
of Oral Pathology 2013;42(3):250-6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



____________________ 

1. This chapter has been adapted from the paper published in the International Journal of Cancer. 
The original citation is: Cai H, Zhang Y, Han TK, Everett RS, Thakker DR. Cation-selective 
transporters are critical to the AMPK-mediated antiproliferative effects of metformin in human 
breast cancer cells. Int J Cancer. 2016;138(9):2281-92 
 
 

26 

CHAPTER 21 

Variability in Cation-selective Transporter Expression in Human Breast Cancer Cell Lines and 
Breast Tumor Tissues Resulted in Variability in the Antiproliferative Efficacy of Metformin 

 

2.1. OVERVIEW 

The antidiabetic drug metformin exerts antineoplastic effects against breast cancer and 

other cancers. One mechanism by which metformin is believed to exert its anticancer effect 

involves activation of its intracellular target, adenosine monophosphate-activated protein 

kinase (AMPK), which is also implicated in the antidiabetic effect of metformin. It is proposed 

that in cancer cells, AMPK activation leads to inhibition of the mammalian target of rapamycin 

(mTOR) and the downstream P70S6K that regulates cell proliferation. Due to its hydrophilic and 

cationic nature, metformin requires cation-selective transporters to enter cells and activate 

AMPK. This study demonstrates that expression levels of cation-selective transporters correlate 

with the antiproliferative efficacy of metformin in breast cancer. Metformin uptake and 

antiproliferative activity were compared between a cation-selective transporter-deficient human 

breast cancer cell line, BT-20, and a BT-20 cell line that was engineered to overexpress organic 

cation transporter 3 (OCT3), a representative of cation-selective transporters and a predominant 

transporter in human breast tumors. Metformin uptake was minimal in BT-20 cells, but 

increased by >13-fold in OCT3-BT20 cells, and its antiproliferative potency was >4-fold in 

OCT3-BT20 versus BT-20 cells. This increase in antiproliferative activity was associated with 

greater AMPK phosphorylation and decreased P70S6K phosphorylation in OCT3-BT20 
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cells.  Collectively, these findings establish a clear relationship between cation-selective 

transporter expression, the AMPK-mTOR-P70S6K signaling cascade, and the antiproliferative 

activity of metformin in breast cancer. 

2.2. INTRODUCTION 

Breast cancer is the second most common cancer and cause of cancer death among 

women in the United States. The American Cancer Society estimates approximately 231,840 

new cases of invasive breast cancer and 40,730 breast cancer deaths in 

2016 (1). Epidemiological studies suggest that women with type 2 diabetes are at a greater risk 

of developing breast cancer. A meta-analysis study showed that type 2 diabetes is associated 

with 23% increased risk of breast cancer, especially in post-menopausal women (2-5). 

Evidence indicates that the frontline antidiabetic drug for type 2 diabetes, namely metformin, 

acts as an anticancer agent in several cancers, including breast cancer (6-11).  Studies have 

also shown that diabetic women on long-term metformin treatment have a lower risk of breast 

cancer compared to those not on metformin therapy, and that diabetic breast cancer patients on 

metformin have a lower risk of distant metastases compared to those not receiving 

metformin (12, 13). Pre-operative metformin treatment of non-diabetic women with operable 

invasive breast cancer results in down-regulation of Ki-67, a biomarker of cell proliferation and a 

predictive marker for clinical or pathological response to neoadjuvant 

therapy (11). Retrospective analyses showed higher pathological complete response rates 

(24%) in diabetic patients on metformin undergoing neoadjuvant chemotherapy for breast 

cancer versus diabetic patients not on metformin (8%) or non-diabetic patients (16%) (14). An 

association was observed between survival in diabetic cancer patients and metformin therapy, 

but not between survival and sulfonylurea or insulin therapy (15). Preclinical studies in xenograft 

mouse models of breast, prostate and lung cancer showed that metformin and the 

chemotherapeutic agent doxorubicin (DOX) were more effective in blocking tumor growth and 

preventing relapse than DOX alone (6). In vitro studies also showed that metformin inhibited 
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growth and colony formation of breast cancer cells, and induced cell cycle arrest and 

apoptosis (10).  

As an anticancer agent, metformin is thought to exert its antiproliferative effects via an 

extracellular indirect pathway (insulin-dependent) and an intracellular direct pathway (insulin-

independent). Insulin can bind to the insulin receptor that is highly expressed in cancer cells, 

and induce cell proliferation. It is suggested that metformin, by lowering circulating insulin levels, 

can induce anticancer effects by intercepting insulin-dependent tumor growth (16, 17). The 

direct antiproliferative effects of metformin in cancer cells are thought to be mediated via 

activation of intracellular adenosine monophosphate-activated protein kinase (AMPK), 

which leads to down regulation of the mammalian target of rapamycin (mTOR) and its 

downstream target, p70S6K (18, 19). In hepatocytes, AMPK and its upstream regulator liver 

kinase B1 (LKB1) (20) are key mediators in the glucose-lowering effect of metformin. Metformin 

activates AMPK via LKB1, leading to inhibition of liver gluconeogenesis (21) and lowering of 

circulating glucose and insulin levels (22). Hence, AMPK appears to be a common intracellular 

target both for the antidiabetic and anticancer effects of metformin.   

Metformin is hydrophilic (logD of -6.13 at pH 6.0) and charged at all physiological pH 

values (pKa 12.4) (23). Therefore, it cannot enter cells via passive diffusion across the cell 

membrane (24), and relies on cation-selective transporters to enter the cell where it can activate 

its intracellular target, AMPK. Transport proteins such as organic cation transporters (OCT 1-3) 

(SLC22A1-3), plasma monoamine transporter (PMAT) (SLC29A4), and multidrug and toxin 

extrusion proteins (MATE1 and 2) (SLC47A1 and SLC47A2) facilitate metformin trafficking in 

different organs and tissues (25, 26), such as the intestine, liver, and kidney, and thus drive the 

disposition of metformin. In the liver, metformin is taken up into hepatocytes predominantly via 

OCT1, and thus this transporter plays a critical role in the antidiabetic effect of metformin. We 

have recently reported that as many as four cation-selective transporters, namely OCT1, PMAT, 

serotonin reuptake transporter (SERT), and a high affinity choline transporter (CHT) contribute 
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to the intestinal uptake and absorption of metformin (27). These four transporters define the 

systemic exposure to orally administered metformin, and consequently, its pharmacologic 

behavior.    

            Emerging literature on the antiproliferative and anticancer efficacy of metformin in 

cancer cell lines and preclinical models of the disease either ignores the role of transporters or 

often suggests that a single transporter is responsible for metformin trafficking through tumor 

cells/tissues (28, 29, 30). Based on our studies on metformin transport in the intestinal tissue, 

we anticipate that multiple transporters, and interplay among them, may affect the uptake of 

metformin into tumor cells and tissues, and therefore influence its antiproliferative and antitumor 

efficacy. Hence, in any preclinical or clinical study in which the anticancer efficacy of metformin 

is evaluated, one must consider the expression of one or more metformin transporters in tumor 

cells for appropriate interpretation of the mechanisms underlying the antitumor effect of 

metformin. 

In the present study, we have characterized the expression of cation-selective 

transporters in human breast cancer tissues and in nine commonly studied human breast 

cancer cell lines. The nine human breast cancer cell lines analyzed in this study were selected 

based on the two main subtypes of breast cancer, namely luminal and basal. Luminal breast 

cancer accounts for >70% of tumors that express estrogen receptors (ER) and/or progesterone 

receptors (PR), and low or no human epidermal growth factor receptors (EGFR) 1 and 2, the 

latter also known as HER2 (31). Basal-like breast cancers are generally triple negative as they 

lack ER, PR, and HER2, but express EGFR1 (32) and exhibit enhanced hypoxia and high tumor 

grade (33, 34). Further, we have compared transporter expression profiles between breast 

tissues and breast cancer cell lines, and evaluated an association between transporter 

expression levels and the antiproliferative efficacy of metformin in human breast cancer cells. 

The most definitive role of cation-selective transporters in the uptake and antiproliferative 

efficacy of metformin was obtained in this study by engineering an OCT3-overexpressing cell 
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line (i.e., OCT3-BT20) from the BT-20 cell line that does not express detectable levels of cation-

selective transporter genes. Gene and protein expression of OCT3 in BT-20 and OCT3-BT20 

cells are related to metformin uptake, its antiproliferative efficacy, and its modulation of the 

AMPK-mTOR signaling pathway. It is important to emphasize that OCT3 was chosen for 

overexpression simply as a representative of cation-selective transporters. Thus, this is the first 

comprehensive study in which the expression of cation-selective transporter genes and proteins 

has been characterized in several commonly used human breast cancer cell lines, and an 

unequivocal relationship has been established between cation transporter expression in human 

breast cancer cells and the antiproliferative efficacy of metformin. 

2.3. MATERIALS AND METHODS 

Materials. The human breast cancer cell lines analyzed in this study were obtained from the 

Tissue Culture Facility (TCF) at the University of North Carolina at Chapel Hill, and were 

authenticated by TCF through forensic Short Tandem Repeat Analysis techniques. Snap-frozen 

breast tissues were purchased from the UNC Tissue Procurement Facility with IRB exemption. 

Cell Culture. Cells were cultured at 37°C, passaged at 90% confluency, and plated in 75-

cm2 T-flasks. For uptake studies, MDA-MB-231 and BT-20 cells were seeded on 24-well plates 

at a density of 37,500 cells/cm2, and MCF-7 cells at 75,000 cells/cm2. 

Generation of OCT3-BT20 Cells. OCT3 from the pSPORT1 vector was cloned into a pcDNA 

3.1(+) vector. BT-20 cells (1×106) were transfected with 2 μg of vector, and cultured in 6-well 

plates. Single OCT3-BT20 colonies were isolated in selection medium containing 200 μg/ml 

Geneticin®, and [14C]metformin (50 µM) uptake (at 5 min) was evaluated in the 

presence/absence of 50 µM famotidine (OCT3 and MATE1 inhibitor) or 500 µM quinidine (pan 

transporter inhibitor) to confirm functional activity of OCT3 in OCT3-BT20 cells 

Determination of Transporter Gene Expression. Total RNA from cells/tissues was isolated 

and synthesized into cDNA. Transporter gene expression was determined by real-time 
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polymerase chain reaction (RT-PCR) using Taqman® assays, and normalized to endogenous 

18s rRNA. 

Determination of Transporter Protein Expression. Cells were lysed and protein content was 

measured with a bicinchoninic acid (BCA) protein assay kit. Proteins (20 µg) were subjected to 

gel electrophoresis, transferred to a nitrocellulose membrane and probed with a primary OCT1, 

OCT3, PMAT or MATE1 antibody and a secondary goat anti-rabbit IgG-horseradish peroxidase 

antibody. Protein bands were detected with SuperSignal® West Dura Extended Duration 

Substrate Kit and imaged. Membranes were stripped and analyzed for glyceraldehyde-3-

phosphate dehydrogenase (GAPDH). 

To determine metformin-mediated AMPK activation and P70S6K inhibition (assessed by 

their phosphorylation status), cells were incubated with culture medium in the presence/absence 

of 5 mM metformin for 2 days. Protein was extracted and subjected to Western blotting as 

described above using primary antibodies against p-AMPKα (Thr172) and p-P70S6K. 

Densitometry of protein bands from three Western blots was performed, and the percent change 

in p-AMPK and p-P70S6K between metformin-treated and control cells was calculated using the 

formula: 

Cellular Uptake of Metformin. Uptake studies were conducted using methods previously 

reported with minor deviations (36). Cells were preincubated for 30 min in transport buffer (0.5 

ml) which was replaced with transport buffer containing varying concentrations of [14C]metformin 

or [14C]metformin plus transporter inhibitors (500 µM quinidine, 200 µM MPP+, or 50 µM 

famotidine).  Metformin uptake was determined over 5 min (within linear uptake range). Cells 

were lysed with 500 µl of 1 M NaOH-0.1% SDS (3 h with shaking). [14C]metformin in lysates was 

measured using liquid scintillation spectrometry. Protein content was determined by the BCA 

protein assay. 

Cell Proliferation Assay.  MDA-MB-231, BT-20, BT-549 and OCT3-BT20 cells were seeded in 

96-well plates. After 24 hours, cells were incubated in medium containing metformin (1 µM to 
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100 mM) for 5 days and cell viability was assessed by the Alamar Blue® assay. To demonstrate 

that AMPK activation is required for the antiproliferative activity of metformin, cells were 

pretreated with 2 µM of the selective AMPK inhibitor, dorsomorphin (Compound C), followed by 

incubation with 10 mM metformin in the presence/absence of 2 µM Compound C for 48 hours. 

Cell viability was determined by the Alamar Blue®assay. 

Statistical Analyses. All data are expressed as mean ± S.D. Statistical differences in 

transporter expression between human breast tumor tissues (N=15) and the corresponding 

adjacent non-malignant tissues (N=15) from the same subject were determined by Wilcoxon 

Signed-Rank Test. Statistical significance for difference in mean transporter expression in 

normal human breast tissues from mammoplasty surgeries (N=5) and in human breast tumor 

tissues (N=15) or non-malignant breast tissues adjacent to tumors (N=15) was determined by 

Mann-Whitney U test. Tukey’s test was used to analyze data from chemical inhibition studies in 

OCT3-BT20 cells and BT-20 cells, and for percent change in the phosphorylation of AMPK and 

P70S6K. For chemical inhibition studies in MCF-7, MDA-MB-231, BT-20, OCT3-BT20, and BT-

549 cells, an independent t-test was used to compare control and treated groups.  

2.4. RESULTS 

Gene and Protein Expression of Cation-selective Transporters in Human Breast Cancer 

Cell Lines. The four luminal human breast cancer cell lines (MCF-7, SK-BR-3, ZR-75-1 and BT-

474) and two basal cell lines, BT-20 and MDA-MB-435S, expressed negligible levels of OCT1, 

OCT2, OCT3, PMAT, MATE1 and MATE2 transporter genes, whereas three basal cell lines, 

MDA-MB-231, MDA-MB-468 and BT-549 had relatively higher levels of transporter gene 

expression, with MATE1 being the predominant transporter (Figure 2.1A). MATE1 was also the 

predominant transporter in MCF-7 and MDA-MB-435S cell lines, although its expression was 

relatively low compared to MDA-MB-231, MDA-MB-468 and BT-549 cells. OCT3, the second 

most highly expressed transporter gene in MDA-MB-231 cells, showed negligible expression in 

the other breast cancer cell lines. Expression of OCT1, OCT3, PMAT, and MATE1 transporter 
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proteins in BT-20, MCF-7, MDA-MB-231, BT-549, MDA-MB-468, and MDA-MB-435S cell lines 

was assessed by Western blot analyses. Corresponding to gene expression, OCT1, OCT3, 

PMAT and MATE1 proteins were detected in MDA-MB-468, MDA-MB-435S, and MDA-MB-231 

cells (Figure 2.1B). No transporter proteins were detected in the BT-20 cell line which had 

negligible transporter gene expression (Figure 2.1B). Thus, transporter protein expression 

reflected transporter gene expression in the human breast cancer cell lines analyzed. The 

variability in metformin transporter expression profiles among these cell lines suggests that cells 

within breast cancer tissues are also likely to show heterogeneity in metformin transporter 

expression. 

Gene Expression of Cation-selective Transporters in Human Breast Tissues. The 

expression of OCT1, OCT2, OCT3, PMAT, MATE1 and MATE2 genes was assessed by RT-

PCR in human breast tumor tissues, their corresponding adjacent non-malignant tissues, and in 

normal breast tissues obtained from mammoplasty surgeries. OCT3 and PMAT were the 

predominant transporter genes expressed in all three tissue types (Figure 2.2), with lower 

expression of OCT1 and MATE1 genes, and negligible expression of the OCT2 gene. MATE2 

gene expression was negligible in breast tumor tissues, and was low in normal breast tissues 

and in tissues adjacent to breast tumors. The expression of OCT1, OCT3, PMAT and MATE1 

genes was down regulated in all 15 pairs of breast tumor tissues analyzed compared to the 

corresponding adjacent non-malignant tissues, although this decrease was not statistically 

significant. No comparison was made between OCT2 and MATE2 gene expression in breast 

tumor tissues and their corresponding adjacent non-malignant tissues as these transporters 

were below detectable levels in several tissues examined.  

Metformin Uptake in Human Breast Cancer Cell Lines. [14C]Metformin (50 µM) uptake was 

first assessed in the low transporter-expressing MCF-7 cell line, a widely used in vitro model for 

breast cancer. Uptake was inefficient, and was not inhibited by the pan cation-selective 

transporter inhibitor MPP+ (200 µM). Metformin uptake in transporter-deficient BT-20 cells was 



34 

also low and comparable to its uptake in MCF-7 cells, and uptake was not inhibited by 

MPP+ (Figure 2.3A). This result suggests that transporter-mediated metformin uptake in MCF-7 

and BT-20 cells is negligible, and corresponds with low transporter expression levels in these 

cell lines. However, metformin uptake in MDA-MB-231 cells, which express OCT3 and MATE1, 

was ~12-fold higher compared to BT-20 cells (22.78 vs. 1.97 pmol/mg protein/min) (Figure 

2.3A). Similarly, metformin uptake in BT-549 cells, which express high levels of MATE1, was 

~14-fold higher than uptake in BT-20 cells (27.43 vs. 1.97 pmol/mg protein/min, respectively; 

p<0.001) (Figure 2.3A). Overexpression of OCT3 in BT-20 cells (OCT3-BT20) increased 

metformin uptake by >13-fold compared to wild-type BT-20 cells (108.38 vs. 8.09 pmol/mg 

protein/min; p<0.001) (Figure 2.3B). Treatment of OCT3-BT20 cells with the OCT3-selective 

inhibitor, famotidine (50 µM), and the pan cation-selective transporter inhibitor, quinidine (500 

µM), decreased metformin uptake by 88% and 96%, respectively, confirming that almost all 

metformin uptake in these cells is mediated by OCT3. RT-PCR and Western blot analyses 

confirmed the overexpression of OCT3 gene and protein in OCT3-BT20 cells. There were no 

detectable levels of OCT3 mRNA in wild-type BT-20 cells (p<0.001) (Figure 2.3C). 

Role of Cation-selective Transporters in the Antiproliferative Efficacy of Metformin in 

Human Breast Cancer Cell Lines. Cation-selective transporter-mediated increase in metformin 

uptake in OCT3-BT20 cells translated into greater potency of the antiproliferative effect of 

metformin in this cell line compared to BT-20 cells; the extracellular metformin concentrations 

required to inhibit 50% cell growth (IC50) of OCT3-BT20 cells was 2.13 mM, and IC50 of BT-20 

cells was 9.06 mM (p<0.001) (Figure 2.4A). Further, the transporter-competent BT-549 cells, 

which express high levels of MATE1, were also more sensitive to the antiproliferative activity of 

metformin compared to transporter-deficient BT-20 cells (IC50 2.93 mM and IC50 9.06 mM, 

respectively; p<0.001) (Figure 2.4B). These data establish a direct relationship between cation-

selective transporter expression levels and metformin-mediated inhibition of cell growth in 

human breast cancer cell lines. Interestingly, despite high expression of OCT3 and MATE1 in 
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MDA-MB-231 cells and a corresponding ~12-fold higher metformin uptake compared to BT-20 

cells, the IC50 for MDA-MB-231 was comparable to the IC50 for BT-20 cells (10.56 mM and 9.06 

mM, respectively) (Figure 2.4B). This discrepancy between high metformin uptake and its poor 

antiproliferative efficacy in MDA-MB-231 cells appears to be due to the lack of a functional 

intracellular AMPK-mTOR-P70S6K signaling cascade that is required for the antiproliferative 

activity of metformin. It has been hypothesized that metformin suppresses mTOR/P70S6K 

signaling by activating AMPK in cancer cells (19); since MDA-MB-231 cells do 

not express LKB1(35) that is required for AMPK activation (36), metformin does not exert 

antiproliferative effects in MDA-MB-231 cells despite achieving high intracellular 

concentrations. To further demonstrate that AMPK activation is required for the antiproliferative 

activity of metformin, breast cancer cell lines with varying transporter expression profiles (i.e., 

BT-20, OCT3-BT20, MCF-7, BT-549 and MBA-MB-231 cells) were treated with metformin with 

or without the selective AMPK inhibitor, Compound C. Our results show that Compound C 

attenuates the antiproliferative activity of metformin in all the breast cancer cell lines tested 

(Supplementary Figure 2.1).  As expected, Compound C did not have any effect on the 

antiproliferative activity of metformin in MDA-MB-231 cells, since the mechanism for AMPK 

activation is dysfunctional in this cell line.   

Interplay of Cation-selective Transporter Expression and AMPK/P70S6K Modulation in 

BT-20, OCT3-BT20, and MDA-MB-231 Cell Lines. To further test the hypothesis that 

metformin transporters, as well as AMPK activation by metformin, are essential for its 

antiproliferative activity in breast cancer cell lines, we utilized a transporter-deficient cell line with 

a functional AMPK/P70S6K/mTOR signaling cascade (BT-20), an engineered BT-20 cell line 

that overexpresses a metformin transporter and has a functional AMPK/P70S6K/mTOR 

pathway (OCT3-BT20), and a cell line that expresses metformin transporters but lacks LKB1 

that is required for AMPK activation by metformin (MDA-MB-231). Cells were treated with 5 mM 

metformin for 48 hr and the phosphorylation status of the two intracellular signaling targets of 
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metformin, namely AMPK and P70S6K, was evaluated. Additional breast cancer cell lines with 

varying transporter expression profiles (i.e., low transporter-expressing MCF-7 cells and 

transporter-competent MDA-MB-468, MDA-MB-435S, and BT-549 cells) were also assayed for 

comparison.  

The increase in AMPK phosphorylation within transporter-deficient BT-20 cells in 

response to metformin treatment was low, as was the corresponding decrease in P70S6K 

phosphorylation. In contrast, a noticeably higher AMPK phosphorylation and decreased P70S6K 

phosphorylation was observed in OCT3-BT20 cells following metformin treatment (Figure 

2.5B). Metformin treatment had no effect on the phosphorylation status of AMPK and P70S6K in 

the MDA-MB-231 cell line despite high transporter expression and high metformin cellular 

uptake, presumably due to a defective AMPK pathway (Figure 2.5A). As expected, 

the transporter-competent MDA-MB-468, MDA-MB-435S, and BT-549 cells showed a 

metformin-mediated increase in AMPK phosphorylation and decrease in P70S6K 

phosphorylation (Figure 2.5A). The MCF-7 cell line, despite relatively low expression of cation-

selective transporters, also showed an increase in AMPK phosphorylation following metformin 

treatment (Figure 2.5B), which could suggest a higher sensitivity of this cell line to metformin as 

reported in the literature (37), or the presence of an unidentified metformin transporter. Notably, 

the decrease in P70S6K phosphorylation in MCF-7 cells was relatively small and did not 

correspond with the extent of AMPK activation (Figure 2.5B). 

Western blot data on metformin-mediated changes in AMPK and P70S6K phosphorylation 

in MCF-7 cells (low transporter expression with a functional LKB1), MDA-MB-231 cells 

(transporter-competent without LKB1), BT-20 cells (transporter-deficient with a functional LKB1) 

and OCT3-BT20 cells (transporter-competent with a functional LKB1) were subjected to 

densitometry analyses and the mean p-AMPK and p-P70S6K protein band intensities 

(normalized to GAPDH) obtained from three Western blots  are depicted in Figure 2.5C. In 

transporter-deficient BT-20 cells, metformin increased AMPK phosphorylation and decreased 
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P70S6K phosphorylation by about 10%, whereas metformin treatment of OCT3-BT20 cells 

resulted in ~87% increase in AMPK phosphorylation and ~17% decrease in P70S6K 

phosphorylation. In the low-transporter expressing MCF-7 cells, metformin increased AMPK 

phosphorylation by ~50%, with ~9% decrease in P70S6K phosphorylation (Figure 2.5C). 

Metformin had a minimal effect on AMPK and P70S6K phosphorylation (~15% and <1%, 

respectively) in MDA-MB-231 cells. Collectively, these data clearly establish an association 

between cation-selective transporter expression, modulation of AMPK/P70S6K phosphorylation, 

and the antiproliferative potency of metformin. 

2.5. DISCUSSION 

Initial observations on the unexpected anticancer efficacy of metformin, the leading 

antidiabetic drug, in diabetic patients with breast cancer (1, 2) have been subsequently 

supported by other clinical and preclinical studies on the antineoplastic effects of this drug (3-

9, 11-15). It is well established that the hepatic and renal disposition of metformin is mediated 

by cation-selective transporters, and our own data implicate OCT1, PMAT, SERT and CHT in its 

intestinal absorption (38). Our studies also demonstrated that following metformin uptake into 

intestinal epithelial cells across the apical membrane, the drug is unable to egress across the 

basolateral cell membrane as this membrane lacks metformin transporters (38). These data 

provide strong evidence that metformin trafficking across cell membranes is transporter-

dependent. Others have shown a decrease in the glucose-lowering effect of metformin in 

mOct1-knockout mice, implicating an important role for cation-selective transporters in the 

antidiabetic efficacy of metformin (39). The interaction of metformin with cation-selective 

transporters has also been implicated in tumor cells. In a study by Patel et al. (40), siRNA-

mediated attenuation of OCT3 expression in human head and neck squamous cell carcinoma 

cells decreased the effect of metformin on the phosphorylation of P70S6K; however, the study 

did not investigate a relationship between OCT3 expression and the antiproliferative activity of 

metformin. In the present study, we have characterized the expression of cation-selective 
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transporter genes and proteins in human breast cancer tissues, and in human breast cancer cell 

lines that are commonly used in breast cancer research. We have then correlated transporter 

expression profiles with the cellular uptake and antiproliferative activity of metformin. We have 

also provided a mechanistic basis for this correlation by demonstrating that activation of 

intracellular AMPK and down regulation of P70S6K are associated with transporter-mediated 

uptake and antiproliferative activity of metformin. 

Our results showed that OCT3 and PMAT are the predominant transporters expressed in 

breast tumor tissues (Figure 2.2). Notably, OCT3 gene expression in breast tumor tissues was 

13,000-fold higher than its expression in normal breast tissues, suggesting that OCT3 could 

play an important role in the antitumor efficacy of metformin in breast cancer. Other transporter 

genes expressed in breast tumors are MATE1, MATE2, and OCT1. Although MATE1 and 

MATE2 have been reported to predominantly facilitate the egress of compounds from cells, 

these transporters are bidirectional and can facilitate the uptake of compounds under certain 

conditions. Our data showing metformin uptake in BT-549 cells, in which MATE1 is the 

predominant transporter (Figure 2.1), provide the first evidence that MATE1 acts as an uptake 

transporter rather than an efflux transporter in breast cancer cells. 

To characterize the expression profiles of OCT1-3, PMAT and MATE1-2 in luminal and 

basal human breast cancer cell lines, four luminal breast cancer cell lines (MCF-7, SK-BR-3, 

ZR-75-1 and BT-474) and five basal cell lines (MDA-MB-231, MDA-MB-435S, MDA-MB-468, 

BT-20 and BT-549) were analyzed. Transporter expression varied among the nine breast 

cancer cell lines, with negligible or undetectable cation-selective transporter expression in MCF-

7, SK-BR-3, ZR-75-1, BT-474 and BT-20 cells and multiple transporters expressed in MDA-MB-

231, MDA-MB-435S, and MDA-MB-468 cells (Figure 2.1). Generally, there was good 

correspondence between transporter gene and protein expression (Figure 2.1). 

The dependence of metformin uptake into human breast cancer cell lines on cation-selective 

transporters was demonstrated by a head-to-head comparison of metformin uptake in two cell 
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lines with the same origin (i.e., the BT-20 cell line), and hence the same genetic background, 

but with one cell line expressing a metformin transporter (OCT3-BT20 cell line) and the other 

cell line practically devoid of the transporter (BT-20 cell line) (Figure 2.1). Metformin uptake in 

OCT3-BT20 cells was >13-fold higher compared to uptake in BT-20 cells (Figure 2.3B). These 

data from two cells that differ only in the presence or absence of a cation-selective transporter 

provide the most direct evidence that metformin uptake in breast cancer cell lines is transporter-

dependent. 

An alternative experimental approach to overexpressing a transporter in a transporter-

deficient cell line would be siRNA-mediated knockdown of a transporter in a transporter-

competent cell line, and comparison of metformin uptake and its antiproliferative activity 

between the wild-type and transporter-knockdown cells. However, because metformin uptake 

into cells is mediated by multiple transporters, this approach would not have been as effective 

as the one employed in our study. The advantage of our strategy utilizing two cell lines with the 

same genetic background to demonstrate the critical role of transporters in the uptake and 

antiproliferative efficacy of metformin is evident from our data comparing these parameters 

between two cell lines with different genetic backgrounds, namely BT-20 (transporter-deficient) 

and MDA-MB-231 (transporter-competent) cells. As expected, metformin uptake in MDA-MB-

231 cells was ~12-fold higher compared to uptake in BT-20 cells (Figure 2.3A), but its 

antiproliferative activity was similar in both these cell lines (Figure 2.4B). This discrepancy 

between metformin uptake and its antiproliferative activity in the MDA-MB-231 cells is due to an 

intrinsic deficiency in LKB1 (20), the kinase that is required for the phosphorylation of AMPK, 

resulting in a defective AMPK-P70S6K-mTOR pathway and subsequent inability of metformin to 

exert its antiproliferative effect in this cell line. The dependence of the antiproliferative activity of 

metformin on AMPK activation was confirmed by our results showing attenuation of the 

antiproliferative effects of metformin in BT-20, OCT3-BT20, BT-549, and MCF-7 cells in the 

presence of the AMPK inhibitor, Compound C, but not in MDA-MB-231 cells (Supplementary 
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Figure 2.1). Others have reported the involvement of cation-selective transporters, such as 

OCT1, in the antiproliferative activity of metformin in epithelial ovarian cancer cells, and the 

contribution of OCT3 to metformin-induced decrease in cell viability in head and neck squamous 

cell carcinoma cell lines (40, 42). However, our study represents the most comprehensive 

approach to evaluating the role of transporters in the antiproliferative activity of metformin in 

cancer cell lines. 

Our results underscore the importance of cation-selective transporter expression as a 

criterion for selecting breast cancer cell lines to investigate the antiproliferative or antitumor 

activity of metformin. A review of the literature suggests that little or no attention has been paid 

to cation-selective transporter expression in selecting relevant in vitro (cellular) and in 

vivo (xenograft) models of breast cancer for such studies. 

Clinical studies have shown that transporter polymorphisms alter the pharmacokinetics 

(PK) and glucose-lowering efficacy of metformin. Healthy volunteers with reduced function 

OCT1 alleles had a significantly higher area under the plasma concentration–time curve of 

glucose (41). It has also been reported that renal clearance and net secretion of metformin were 

significantly altered in individuals heterozygous for an OCT2 variant allele compared to 

individuals homozygous for the OCT2 reference allele, and altered metformin disposition and 

response were observed in patients carrying MATE1 and MATE2 promoter variants (43, 44). 

Additionally, a wide variability in hepatic expression of OCT1 (113-fold variation) and OCT3 (27-

fold variability) in Caucasians has been previously reported (28). Taken together, these data 

suggest that genetic variants among cation-selective transporters impact the antidiabetic 

efficacy in metformin, and could explain the sub-therapeutic efficacy of this drug in 36% of 

diabetic patients on metformin therapy (40, 42, 45, 46). Therefore, it is likely that transporter 

variants could also affect the efficacy of metformin in breast cancer. Our in vitro data showing 

variability in cation-selective transporter expression profiles in human breast cancer cell 

lines reflects the degree of variability in transporter expression among cells comprising human 
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breast tumors, and suggest that treatment outcomes to metformin therapy in breast cancer 

could be highly variable. Thus, to predict the efficacy of metformin as an anticancer agent in 

breast cancer or other cancers, screening patients for transporter and LKB1 expression in 

neoplastic tissues may be necessary.  

To demonstrate that low/no cation-selective transporter expression in breast tumors 

could significantly restrict the antineoplastic effects of metformin, we conducted an in vivo proof-

of-concept study. Xenograft mouse models of breast cancer were developed by subcutaneous 

injections of BT-20 and OCT3-BT20 cells into athymic nude mice. However, due to the limited 

tumorigenicity of BT-20 cells and the inherent slow growth rate of BT-20 tumors (as also 

reported in the literature (47)) and of OCT3-BT20 tumors, only a small number of mice 

developed measurable tumors by the end of week 10 post injection. Hence, we used the highly 

tumorigenic, fast-growing and low transporter-expressing MCF-7 cells to generate an OCT3-

overexpressing MCF-7 (OCT3-MCF7) cell line, and used these two cell types to develop 

xenograft mice bearing MCF-7 and OCT3-MCF7 tumors. A systematic study was conducted on 

xenograft mice bearing OCT3-MCF7/MCF-7 breast tumors and the correlation between 

transporter expression in tumor tissues and the response to the antitumor efficacy of metformin 

was evaluated. The results of this in vivo study will be presented in Chapter 4.  
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Figure 2.1 Expression of Cation-selective Transporters OCT1-3, PMAT and MATE1-2 in 
Human Breast Cancer Cell Lines. (A) Relative gene expression of known metformin 
transporters OCT1-3, PMAT and MATE1-2 in four luminal human breast cancer cell lines (MCF-
7, SK-BR-3, ZR-75-1 and BT-474) and five basal human breast cancer cell lines (BT-20, MDA-
MB-435S, MDA-MB-231, MDA-MB-468 and BT-549) was determined by RT-PCR and 
normalized to 18s rRNA. (B) Expression of OCT1, OCT3, PMAT, and MATE1 transporter 
proteins in MDA-MB-468, MDA-MB-435S, BT-549, MDA-MB-231, MCF-7, and BT-20 breast 
cancer cell lines was assessed by Western blot analyses, using primary antibodies specific for 
human OCT1, OCT3, PMAT and MATE1. GAPDH was used as a loading control. 
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Figure 2.2 Expression of Cation-selective Transporter Genes in Normal Breast Tissues, 
Breast Tumor Tissues and Their Adjacent Non-malignant Tissues. The variability in relative 
gene expression of cation-selective transporters among breast tissues is represented as box 
and whisker plots. The top of each whisker represents the sample maximum, the bottom of the 
whisker is the sample minimum, the top and bottom of each box are the upper and lower 
quartiles, the horizontal line in each box represents the sample median, and the plus symbol in 
each box represents the sample mean. 
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Figure 2.3 Metformin Uptake in Human Breast Cancer Cell Lines with High and Low 
Cation-selective Transporter Expression. Metformin uptake was assessed in the presence or 
absence of the pan cation-selective transporter inhibitors MPP+ (200 µM) and quinidine (500 
µM), or the OCT3 and MATE1 inhibitor famotidine (50 µM) in (A) low transporter-expressing 
MCF-7 cells, transporter-competent MDA-MB-231 and BT-549 cells, and transporter-deficient 
BT-20 cells, and (B) transporter-competent OCT3-BT20 and transporter-deficient BT-20 cells. 
Data represent mean ± SD; N=4. *p<0.05 for (A) and *p<0.001 for (B). (C) Expression of OCT2 
and OCT3 genes in OCT3-BT20 and BT-20 cells was analyzed by RT-PCR and normalized to 
18s rRNA. OCT3 protein expression in OCT3-BT20 and BT-20 cells, evaluated by Western blot 
analysis, is shown as an insert. Results are shown as the mean ± SD; N=3. *p<0.001. 
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Figure 2.4 Antiproliferative Effects of Metformin in Human Breast Cancer Cell Lines with 
Varying Transporter Expression Profiles. (A) OCT3-BT20 and BT-20 cells and (B) MDA-MB-
231, BT-20, and BT-549 cells were cultured in the presence of metformin for 5 days. The effect 
of metformin on cell growth was evaluated, and metformin concentrations that caused 50% 
growth inhibition (IC50) were calculated. Results are shown as the mean ± SD; N=4. 
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Figure 2.5 Contribution of Cation-selective Transporters to Metformin-mediated AMPK 
and P70S6K Phosphorylation in Human Breast Cancer Cell Lines. Representative Western 
blots show metformin-mediated modulation of AMPK and P70S6K phosphorylation in (A) high 
transporter-expressing cell lines (MDA-MB-468, MDA-MB-435S, BT-549, and MDA-MB-231), 
and (B) a low transporter-expressing cell line (MCF-7), a transporter-deficient cell line (BT-20) 
and a transporter-overexpressing cell line (OCT3-BT20). Metformin-induced changes (or lack 
thereof) in p-AMPK and p-P70S6K levels are shown with arrows. GAPDH was used as a 
loading control. (C) Graphical representation of the percent change in p-AMPK and p-P70S6K 
between metformin-treated and control cells using densitometry analyses of the protein bands 
normalized to GAPDH. Data represent the average percent change from three independent 
experiments.  
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Supplementary Figure 2.1 The Interaction of Cation-selective Transporters and the AMPK 
Signaling Cascade in the Antiproliferative Efficacy of Metformin. BT-20, OCT3-BT20, 
MDA-MB-231, MCF-7, and BT-549 cells were cultured in media containing 2 µM of the AMPK 
inhibitor, Compound C, 10 mM metformin, or 2 µM Compound C plus 10 mM metformin for 48 
hours, and cell viability was evaluated. Results are shown as the mean ± SD; N=4. *p<0.05. 
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CHAPTER 3 

Cancer Stem Cells Are More Susceptible to Metformin Due to Enhanced Transporter-mediated 
Metformin Uptake

 
3.1 OVERVIEW 

Cancer stem cells (CSCs) have been reported to initiate breast tumor development and 

cause chemoresistance and relapse. Previous studies suggest that CSCs are more susceptible 

to metformin, and that metformin selectively kills CSCs through modulation of its intracellular 

targets in CSCs. However, the greater sensitivity of CSCs to metformin, compared to non-stem 

cancer cells (NSCCs), has not been thoroughly investigated. Since metformin is highly 

hydrophilic and positively charged under physiological conditions, its uptake into cells must be 

mediated by cation-selective transporters. Thus we hypothesize that the enhanced sensitivity of 

CSCs versus NSCCs to metformin treatment is due to upregulation of cation-selective 

transporters in CSCs and a subsequent increase in transporter-mediated metformin uptake. To 

test this hypothesis, CSCs and NSCCs were isolated from the BT-549 human breast cancer cell 

line. CSCs from this cell line have >50% higher gene and protein expression of multidrug and 

toxin extrusion protein (MATE1), the predominant transporter in BT-549 cell line, compared to 

NSCCs. The higher MATE1 expression resulted in a 40% higher metformin uptake in BT-549 

CSCs versus NSCCs. We hypothesize that greater expression of cation-selective transporters 

and consequent greater uptake of metformin in CSCs compared to NSCCs account for greater 

susceptibility of CSCs to metformin in the treatment of breast cancer. 

3.2 INTRODUCTION 

Human breast tumor cells are heterogeneous (1). The development of human breast 

tumors is believed to be initiated by a group of breast tumor cells with high CD44 expression 
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and low CD24 expression (CD44+/CD24-) on the cell surface (2), and are referred to as cancer 

stem cells (CSCs) because they exhibit many cellular properties of embryonic stem cells 

(ESCs). CSCs originate from either ESCs that have mutations in oncogenes or tumor 

suppressor genes or from somatic cells which are reprogrammed through epithelial-

mesenchymal transition (EMT) (3, 4). Compared to non-stem cancer cells (NSCCs), CSCs are 

more resistant to most chemotherapeutic agents since they have a hyper-functional DNA repair 

system that enables them to withstand the DNA damage caused by chemotherapeutic agents 

(5). The efflux transporters (primarily p-glycoprotein and multidrug resistant associated proteins) 

that are highly expressed on the cell membrane of CSCs also contribute to drug resistance by 

pumping out chemotherapeutic agents that are mostly lipophilic and charged under 

physiological conditions (6, 7). Unlike NSCCs, CSCs lack or have reduced expression of cell-

cell adhesion proteins, resulting in relatively weak connections with surrounding cells and 

enabling them to readily migrate to other organs (8). Since CSCs are highly proliferative, tumors 

can be grown from a small number of these cells (9). These specific cellular properties of CSCs 

make them the primary contributors to breast cancer chemoresistance, relapse, and metastasis 

(1, 5, 9). 

Studies have shown that low concentrations of metformin can selectively kill CSCs and 

significantly reduce the proportion of CSCs in several breast cancer cell lines, with limited 

effects on NSCCs (10, 11). Adenosine monophosphate-activated protein kinase (AMPK) is one 

of the primary intracellular targets of metformin activity against CSCs (12). Metformin-induced 

phosphorylation of AMPK leads to the suppression of multiple downstream molecules that are 

involved in the EMT process, including twist family BHLH transcription factor 1 (TWIST1) and 

zinc finger e-box binding homeobox 1(ZEB1) (13). A recent study conducted by Gou et al. 

suggests that, compared to NSCCs, CSCs are more sensitive to metformin as a significantly 

lower concentration of metformin is required to activate AMPK in CSCs (14). In previous 

chapters, we demonstrated that metformin uptake in breast cancer cells is mediated by cation-
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selective transporters. Therefore, we hypothesize that the higher expression of cation-selective 

transporters in breast CSCs and subsequent higher metformin uptake into these cells results in 

higher sensitivity of CSCs to metformin compared to NSCCs. To test this hypothesis, we have 

selected the BT-549 human breast cancer cell line, which contains both CSCs and NSCCs. 

These CSCs and NSCCs were isolated using fluorescence-activated cell sorting (FACS), and 

expression of cation-selective transporters as well as metformin uptake was compared in these 

cell types. 

3.3 MATERIAL AND METHOD 

Cell Culture. BT-549 cells were cultured in RPMI-1640 media (11875-093, Invitrogen) with 10% 

fetal bovine serum (FBS, 12003C, Sigma), penicillin-streptomycin (15140, Invitrogen) and 

human recombinant insulin (12585, Invitrogen). Cells were cultured in 175 cm2 cell culture flasks 

(10-126-39, Corning) and passaged at 80% confluency.   

Isolation of CSCs and NSCCs via FACS. The cell sorting buffer was prepared by adding 0.5% 

FBS to Hank's Balanced Salt Solution (14170112, Gibco). BT-549 cells were trypsinized at 90% 

confluency and washed once with the sorting buffer. The cells were then filtered through sterile 

pre-separation filters (30 µm, 130-041-407, Miltenyi Biotech) to remove cell aggregates. 

Approximately 1×107 filtered cells were resuspended and incubated in 1 mL sorting buffer 

containing 50 µL phycoerythrin-conjugated mouse anti-human CD24 antibody (PE-CD24) 

(311105, Biolegend) and 25 µL fluorescein isothiocyanate-conjugated mouse anti-human CD44 

(FITC-CD44) antibody (338803, Biolegend) at 4ºC for 30 mins. After incubation, cells were 

washed three times with ice-cold sorting buffer and resuspended in the sorting buffer at a final 

density of 50,000/mL. AbC™ Total Antibody Compensation Beads (A10513, Life Technologies) 

incubated with either PE-CD24 or FITC-CD44 antibody were used as compensation controls. 

Flow cytometry sorting was conducted by the University of North Carolina Flow Cytometry 

Facility using the Becton Dickinson FACSAria II cell sorter (BioProtect). CD44+/CD24- cells 

(CSCs) and the remaining cells (NSCCs) were isolated and collected.  
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Determination of Transporter Gene Expression. BT-549 CSCs and NSCCs were washed 

with ice-cold phosphate-buffered saline (PBS) and lysed in QiAzol Lysis Reagent (79306, 

Qiagen). Total RNA was isolated from the lysate, purified using RNeasy® Plus Mini Kit (74134, 

Qiagen), and synthesized into cDNA with iScript™ cDNA Synthesis Kit (1708891, BioRad). 

Transporter gene expression was determined by quantitative reverse transcription polymerase 

chain reaction (qRT-PCR) by Taqman® assays (4324018, Life Technologies), and normalized to 

endogenous 18s rRNA. 

Evaluation of Metformin Uptake. Uptake studies were conducted using methods similar to 

those described in Chapter 2. The isolated BT-549 CSCs and NSCCs were seeded on 48-well 

plates at a density of 100,000 cells/well and cultured in media for two hours to allow the cells to 

adhere to the bottom of the wells. Cells were incubated for 30 min in transport buffer which was 

then replaced with transport buffer containing 50 µM [14C]metformin or 50 µM [14C]metformin 

plus 500 µM pan transporter inhibitor, quinidine. After 10-min incubation, the cells were washed 

three times with ice-cold transport buffer and lysed in 300 µL of 1 M NaOH-0.1% SDS solution. 

[14C]Metformin in lysates was measured using liquid scintillation spectrometry (Packard). The 

protein concentration of each sample was determined by the bicinchoninic acid (BCA) protein 

assay. 

Analyses of Transporter Protein Expression. CSCs and NSCCs from BT-549 cells were 

lysed in radioimmunoprecipitation assay (RIPA) buffer (89900, Thermo Fisher). Protein 

concentration of each sample was determined by the BCA assay. Protein samples (30 µg) were 

subjected to Western blot analyses as described in previous chapters. MATE1 expression was 

probed using a primary antibody against MATE1 (SC-133390, Santa Cruz). Glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) was used as protein loading control. Densitometry 

analysis of Western blot bands was performed by Image Lab (BioRad). 

Statistical Analyses. All data are presented as mean ± S.D. One-way analysis of variance 

followed by Tukey’s test was performed to determine statistical differences in transporter gene 
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expression and metformin uptake. All statistical analyses were performed by GraphPad Prism 

(GraphPad Software). 

3.4 RESULTS 

Cation-selective Transporters Are Upregulated in CSCs. The expression of six cation-

selective transporter genes (i.e. organic cation transporter (OCT)1-3, plasma membrane 

monoamine transporter (PMAT), multidrug and toxin extrusion protein (MATE)1,2) that are 

expressed in human breast tumors and breast cancer cell lines (15) (Chapter 2) was assessed 

in BT-549 CSCs and NSCCs. Among the six transporters studied, MATE1 was the predominant 

transporter in both cell types (Figure 3.1), with negligible levels of OCT1, OCT3, and PMAT 

gene expression (Figure 3.1), which were less than 1% of MATE1 expression (Figure 3.1). 

MATE1 gene expression in CSCs was 87% higher than the expression in NSCCs (1.66×10-5 vs. 

8.99×10-6, p<0.05), and this difference translated into similar differences in transporter protein 

expression. Densitometric analysis of the Western blot data revealed a 69% increase in MATE1 

protein expression in CSCs versus NSCCs (p<0.05) (Figure 3.2A and B). 

CSCs Exhibited Higher Transporter-mediated Metformin Uptake. To assess whether higher 

MATE1 expression in BT-549 CSCs would lead to higher metformin uptake, [14C]metformin (50 

µM) uptake (at 10 mins) into CSCs and NSCCs was measured and compared. Metformin 

uptake in CSCs was 40% higher compared to its uptake in NSCCs (10.52 vs. 7.36 pmol/mg 

protein/min, p<0.05). Coadministration of metformin and quinidine, a pan transporter inhibitor, 

reduced metformin uptake in both BT-549 CSCs and NSCCs to similar levels (4.48 vs. 2.70 

pmol/mg protein/min, p=0.11), suggesting that the higher metformin uptake in BT-549 CSCs 

was due to upregulation of metformin transporter(s), mostly upregulation of MATE1 (Figure 

3.3).       

3.5 DISCUSSION 

CSCs play a critical role in the development of breast cancer, chemoresistance, cancer 

relapse, and metastasis. In contrast to several current chemotherapeutic agents, metformin is 
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implicated in selective killing of CSCs in human breast cancer cell lines and breast tumor 

tissues, which is consistent with clinical observations that long-term metformin treatment in 

diabetic patients, in contrast to treatment with other anti-diabetic agents, causes a significant 

reduction in the risk of developing breast cancer (16, 17), and leads to improved metastasis-free 

survival after chemotherapy (18). Despite an increasing number of reports on metformin efficacy 

against CSCs, only a few studies address the differences in sensitivity of breast CSCs and 

NSCCs to metformin. A study conducted by Lonardo et al. suggested that compared to NSCCs, 

the highly proliferative CSCs relied heavily on intracellular ATP levels and were subsequently 

more sensitive to metformin-mediated inhibition of ATP synthesis in mitochondria (19). Qu et al., 

on the other hand, suggested that AMPK was the primary intracellular target of metformin in 

both CSCs and NSCCs, but the activation of AMPK in CSCs not only inhibited cell proliferation 

as it did in NSCCs, but also suppressed EMT-mediated generation of CSCs (12). Although the 

mechanisms proposed by these two studies were different, both studies suggested that 

metformin uptake and activation of its intracellular targets were required for its efficacy against 

CSCs. Therefore, investigating the mechanisms of metformin transport in CSCs will not only 

contribute to understanding the molecular mechanisms of its efficacy against CSCs, but also 

provides a rationale for optimizing metformin therapy against CSCs.  

 The transport of chemotherapeutic agents in CSCs has been relatively well studied. 

CSCs have a higher expression of multiple ATP-binding cassette (ABC) efflux transporters (e.g. 

p-glycoprotein and multidrug resistant associated proteins) compared to NSCCs (6, 7). Since 

many widely used chemotherapeutic agents, such as doxorubicin, paclitaxel, and fluorouracil, 

are substrates of these ABC transporters (20), the upregulation of ABC transporters is believed 

to be the primary cause of chemoresistance exhibited by CSCs. Expression of uptake 

transporters, in contrast to expression of efflux transporters, is seldom studied in CSCs, perhaps 

because majority of the chemotherapeutic agents are relatively lipophilic and their uptake into 

CSCs is not dependent on transporters. In contrast to many other chemotherapeutic agents, 



58 

metformin is positively charged under physiological conditions and very hydrophilic; thus it 

requires cation-selective transporters to mediate its cellular uptake. Therefore, evaluating 

cation-selective transporter expression and transporter-mediated metformin uptake in CSCs is 

important in elucidating the mechanism(s) underlying greater sensitivity of CSCs over NSCCs to 

metformin treatment. 

 In this study, the BT-549 cell line, a triple-negative human breast cancer line, was 

selected as a representative of human breast cancer cell lines because it contains both CSCs 

and NSCCs in moderate proportions; thus sufficient numbers of CSCs and NSCCs can be 

isolated for RNA isolation, uptake studies, and Western blot analyses. Expression of cation-

selective transporters was evaluated in CSCs and NSCCs and correlated with intracellular 

uptake in these two cell types. An increase in the expression of cation-selective transporter 

genes and proteins, specifically MATE1, was observed in BT-549 CSCs compared to NSCCs. 

The upregulation of transporters led to higher metformin uptake in CSCs versus NSCCs. The 

results suggest that the increased sensitivity of CSCs to metformin treatment compared to 

NSCCs could be due to higher transporter-mediated metformin uptake. The role of transporters 

in metformin-induced AMPK activation and antiproliferative efficacy against CSCs can be 

elucidated by evaluating the activity of metformin in CSCs in the presence and absence of a 

transporter inhibitor.  

 In addition to BT-549 cell line, cation-selective transporter expression in CSCs and 

NSCCs from oncogenic transformed immortalized human mammary epithelial (HMLER) cells 

was also investigated; HMLER cells are widely used for breast CSC research. Similar to 

observations in BT-549 cells, cation-selective transporter gene expression in HMLER CSCs was 

higher compared to expression in HMLER NSCCs (Supplementary Figure 3.1). Similar efforts 

to investigate cation-selective transporter expression levels in CSCs and NSCCs of other breast 

cancer cell lines did not succeed because very few CSCs in MCF-7 and BT-20 cells and limited 

NSCCs in MDA-MB-468 and MDA-MB-231 cells prevented meaningful analyses. Interestingly, 
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based on the results from Chapter 2, we observe that breast cancer cell lines with a high 

proportion of CSCs (e.g. MDA-MB-468, MDA-MB-231, and BT-549 cells) are generally 

transporter-competent cell lines whereas breast cancer cell lines with very few CSCs (e.g. MCF-

7, BT-20, and ZR-75-1 cells) are transporter-deficient cell lines. These observations provide 

indirect evidence that cation-selective transporters are upregulated in CSCs compared to 

NSCCs.  

 In this chapter, we provide the first report that cation-selective transporters are 

upregulated in breast CSCs. However, the physiological role of these transporters in the 

generation and proliferation of CSCs remains unclear. In contrast to efflux transporters which 

contribute to chemoresistance of CSCs, we hypothesize that (1) cation-selective transporters 

play a critical role in the uptake of cationic and hydrophilic nutrients, such as choline, which are 

required for CSC growth and proliferation, and (2) cation-selective transporters are upregulated 

to meet the demand for cationic and hydrophilic nutrients due to an increase in protein and lipid 

synthesis in CSCs compared to NSCCs. Clearly, future studies are needed to elucidate the role 

of cation-selective transporters in CSC generation and proliferation.  
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Figure 3.1 Expression of Cation-selective Transporter Genes in BT-549 CSCs and NSCCs. 
Results are shown as the mean ± SD; N=3. 
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Figure 3.2 Expression of MATE1 Protein in BT-549 CSCs and NSCCs. A) Western blot 
analysis of MATE1 expression in BT-549 CSCs and NSCCs (isolated from three independent 
cell sorting experiments) using a primary antibody against MATE1. GAPDH was used as a 
loading control. B) Comparison of MATE1 protein expression in BT-549 CSCs and NSCCs 
using densitometric analysis of MATE1 bands normalized to GAPDH. Results are shown as the 
mean ± SD; N=3. 

 

 

 

 

 

 

 



62 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.3 Metformin Uptake in BT-549 CSCs and NSCCs. Metformin uptake was assessed 
in the presence or absence of the pan cation-selective transporter inhibitor quinidine (500 µM). 
Results are shown as the mean ± SD; N=3. 
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Supplementary Figure 3.1 Expression of Cation-selective Transporter Genes in HMLER 
CSCs and NSCCs. Results are shown as the mean ± SD; N=3. 
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CHAPTER 4

Cation-selective Transporters in Breast Tumors Enhance the Intratumoral Concentration of 
Metformin and Metformin-Mediated Activation of the AMPK Pathway and Antitumor Efficacy  

 

4.1 OVERVIEW 

Our previous in vitro studies in human breast cancer cell lines presented in Chapter 2 

showed that cation-selective transporters mediate the intracellular uptake of metformin and its 

subsequent antiproliferative efficacy. The study in this chapter provides evidence that 

transporter expression is a critical determinant of the anticancer efficacy of metformin via AMPK 

activation, and is the first to establish a direct in vivo relationship between a cation-selective 

transporter expression (in otherwise matched tumors), metformin intratumoral uptake, and its 

antitumor efficacy. The low transporter-expressing MCF-7 human breast cancer cells and MCF-

7 cells which were engineered to overexpress OCT3, an organic cation transporter that is 

expressed in breast tumors, were used to generate xenograft mice bearing MCF-7 and OCT3-

MCF7 tumors, and the antitumor efficacy of metformin as a monotherapy and in combination 

with doxorubicin (DOX) in these two tumor types was evaluated. A significantly greater 

antitumor potency of metformin (alone or in combination with DOX) and greater modulation of 

the AMPK-mTOR-P70S6 pathway were observed in OCT3-MCF7 tumors versus MCF-7 tumors. 

4.2 INTRODUCTION 

Metformin, the first-line therapy for type 2 diabetes, has beneficial effects against breast 

cancer as well as other types of cancer. In diabetic cancer patients, metformin appears to exert 

its anticancer effect indirectly by decreasing circulating insulin levels and reducing the tumor 

growth stimulus provided by insulin (1, 2). Metformin is also believed to exert direct anticancer 

effects on tumor cells by inhibiting the respiratory-chain complex 1 (3), leading to elevated 
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AMP/ATP ratio, increased phosphorylation and activation of 5' adenosine monophosphate-

activated protein kinase (AMPK), and subsequent suppression of cell proliferation via down-

regulation of the mammalian target of rapamycin (mTOR) and its downstream target, ribosomal 

kinase P70S6 (P70S6K) (4, 5). According to some reports, metformin selectively kills cancer 

stem cells (CSC), a small proportion of cells which share characteristics of embryonic stem cells 

and which confer chemo-resistance and induce cancer metastasis (6, 7).  

For metformin to achieve its anticancer effects via the intracellular targets, its cellular 

uptake and accumulation are critical. Due to the hydrophilic nature (logD -6.13 at pH 6.0) and 

positive charge of metformin (pKa 12.4) at physiological conditions, its cellular uptake and 

accumulation in tissues are mediated by cation-selective transporters. In Chapter 2, we showed 

that multiple cation-selective transporters that play a role in metformin trafficking in other organs 

are also expressed in breast tumors and in commonly used breast cancer cell lines, and that the 

expression levels of these transporters is highly variable (8). The study further demonstrated 

that OCT3, and not OCT1 or OCT2 (the predominant metformin transporters in the liver and 

kidney, respectively), is one of two predominant transporters in many breast tumors, the plasma 

membrane monoamine transporter (PMAT) being the other major transporter (8).  

In this chapter, we have demonstrated that higher expression levels of a metformin 

transporter in breast tumor tissue increases the anticancer efficacy of metformin in xenograft 

mouse models. We selected OCT3 as a representative of all the cation-selective transporters of 

metformin that are expressed in breast tumors, and overexpressed OCT3 in the low transporter-

expressing MCF-7 human breast cancer cell line to generate OCT3-MCF7 cells. The antitumor 

efficacy of metformin (as a monotherapy and in combination with DOX) was evaluated in 

xenograft mice bearing tumors generated from OCT3-MCF7 and MCF-7 cells. This is the first 

study in which the expression level of a metformin transporter in tumor tissue has been directly 

related to uptake of the drug in tumor cells, exposure of the tumor tissue to metformin, and to 
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the cellular and pharmacological evidence for the antiproliferative and antitumor effects of the 

drug in the same in vivo experimental model.   

4.3 MATERIAL AND METHODS 

Cell Culture. MCF-7 cells were cultured in MEM media (11095, Invitrogen) with 10% fetal 

bovine serum (s-12450, Atlanta), non-essential amino acid (11140, Invitrogen), sodium pyruvate 

(11360, Invitrogen) and penicillin-streptomycin (15140, Invitrogen). OCT3-MCF7 cells were 

cultured in media containing 500 µg/ml Geneticin® (10131, Invitrogen). 

Generation of OCT3-MCF7 Cells. The OCT3-pSPORT vector was obtained from Dr. 

Ganapathy at Georgia Regents University. The OCT3 gene was cloned into a pcDNA3.1 (+) 

vector (V790-20, Life Technologies) which was transfected into MCF-7 cells using the AMAXA 

NucleofectionTM system (AAB-100, Lonza). Cells were cultured in complete MEM media 

containing 500 µg/ml Geneticin®. Colonies were isolated and clones with high OCT3 expression 

were identified by evaluating [14C]metformin uptake at 5 min in the presence or absence of the 

pan transporter inhibitor, quinidine. 

Evaluation of Transporter Gene Expression. Total RNA was isolated from OCT3-MCF7/ 

MCF-7 cells using QiAzol® (79306, Qiagen) and cDNA was synthesized from RNA using 

Superscript® III First-Strand Synthesis Supermix kit (18080-400, Life Technologies). Gene 

expression of PMAT, MATE1 and OCT3 was determined by real-time polymerase chain 

reaction (RT-PCR) by Taqman® assay (4369016, Life Technologies) and normalized to 

endogenous 18s rRNA.  

Cellular Uptake of Metformin. OCT3-MCF7/MCF-7 cells were cultured until 90% confluent, 

and incubated in transport buffer (i.e., Hank’s Balanced Salt Solution (MT-21-023-CV, Fisher) 

with 25 mM D-glucose (G8210, Sigma) and 10 mM HEPES (15630-106, Corning)) for one hour. 

Transport buffer was replaced with 50 µM [14C]metformin in the presence or absence of 500 μM 

of quinidine (Q-0750, Sigma Aldrich). After 5 min, cells were washed with ice-cold transport 

buffer and lysed with 500 µl 1M NaOH solution containing 0.1% SDS. [14C]Metformin in cell 
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lysates was measured by liquid scintillation spectrometry (1600 TR Liquid Scintillation Analyzer; 

PerkinElmer Life and Analytical Sciences). Metformin uptake was normalized to protein content 

determined by the bicinchoninic acid (BCA) protein assay (23225, Pierce).  

Assessment of the Antiproliferative Effects of Metformin on Breast Cancer Cell Lines. 

OCT3-MCF7/MCF-7 cells were cultured for 24 hours. Culture medium was replaced with 

medium containing varying concentrations of metformin (1 nM to 100 mM). After five days, the 

Alamar Blue® Cell Viability assay (DAL1025, Life Technologies) was performed according to the 

manufacturer’s instructions.  

Generation of Xenograft Mouse Models of Breast Cancer. Xenograft mice were generated 

by subcutaneous injections of 2×106 OCT3-MCF7/MCF-7 cells resuspended in 50% MatrigelTM 

(356234, BD Bioscience) into the right flank of 8-week-old athymic nude mice. Estrogen pellets 

(SE-121, Innovative Research of America) were subcutaneously implanted into mice to 

stimulate tumor growth. Tumor size was measured and tumor volume was calculated using the 

equation below: 

Tumor Volume =  
1

2
×（Length） × (width)2 

When tumors were >100 mm3 in size, mice were intraperitoneally (IP) injected daily with saline, 

2 mg/kg DOX (D1515, Sigma Aldrich) every 5 days or 2 mg/kg DOX every 5 days plus 50mg/kg 

metformin daily for 20 days, and euthanized on day 20. Tumor volumes were measured and 

plotted against treatment time, and the area under the curve (AUCTumor Volume) was calculated to 

assess the effect of the therapy on tumor progression. Tumor weights and AUCTumor Volume data 

are summarized in Supplementary Table 4.1. 

Evaluation of Metformin-induced Activation of the AMPK Pathway in Xenograft Tumor 

Tissues. Cells were washed and lysed in a radio-immunoprecipitation assay (RIPA) buffer 

system. About 10 mg of tumor tissues were isolated from mice following euthanization. Tissues 

were washed and lysed in RIPA buffer, and protein content was measured by the BCA assay. 
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Protein from cells/tumors was subjected to Western blot analyses as previously described (23, 

26) using primary antibodies against AMPK (5831, Cell Signaling Technology), phospho-AMPK 

(9205, Cell Signaling Technology), P70S6K (9234, Cell Signaling Technology), phospoh-

P70S6K (2535, Cell Signaling Technology) and OCT3 (ab183071, Abcam). Glyceraldehyde-3-

phosphate dehydrogenase (GAPDH, sc-25778, Santa Cruz) was used as a loading control.  

Immunohistochemical (IHC) Staining of Tumor Tissues. Tumor tissues (~20 mg) were fixed 

in 4% paraformaldehyde (P6148, Sigma Aldrich) in PBS for three days. Tissue blocks were 

transferred to 70% ethanol, and paraffin-embedded tissue blocks and sections (5 µm thick) were 

prepared by the Animal Histopathology Core Facility at the UNC Lineberger Cancer Center. 

Tissue sections were stained in a Bond-Max automated immunostainer (Leica Biosystem) using 

antibodies against CD44 (3578, Cell Signaling Technology), Ki-67 (VP-RM04, Vector 

Laboratories) and OCT3. The number of Ki-67-positive cells in OCT3-MCF7 and MCF-7 tumor 

tissue sections was counted in one field of view from three different tissue sections (i.e., three 

tissue sections for OCT3-MCF7 tumors and three tissue sections for MCF-7 tumors), and the 

average of the three values was determined. 

Evaluation of Plasma and Intratumoral Concentrations of Metformin. A single dose of 50 

mg/kg [14C]metformin was injected IP into mice. Blood was collected from the tail vein at 5 min, 

15 min, 50 min, 2 hr, 8 hr and 24 hr post metformin administration and plasma was isolated. 

Mice were euthanized at 15 min (N=3) and at 24 hr (N=3) post injection. Hepatic, renal and 

tumor tissues were harvested and lysed. [14C]Metformin in plasma and tissue lysates was 

measured by liquid scintillation spectrometry. Systemic exposure of metformin (reflected by 

AUCplasma), maximum plasma concentration of metformin, and metformin clearance were 

estimated through non-compartmental analysis by Pharsight Phoenix WinNonlin (Certara, NJ).  

Statistical Analyses. All data are expressed as mean ± SD. Statistical analyses of transporter 

expression and IC50 values of metformin in OCT3-MCF7/MCF-7 cells were determined by a 

Student’s t-test. Duncan’s multiple comparison test was used to determine statistical 
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significance in metformin uptake between metformin-treated MCF-7 cells and other groups. 

Analysis of Variance followed by Tukey’s test was used to determine statistical significance 

between the proportions of Ki-67-positive cells and AUCTumor Volume of any two treatment groups. 

A Student’s t-test was used to make comparisons of the effect of metformin plus DOX on tumor 

weights, tissue concentrations of metformin, AUCPlasma, Cmax and Cl between OCT3-MCF7 

tumors and MCF-7 tumors. 

4.4 RESULTS 

Generation and Characterization of an OCT3 Overexpressing MCF-7 Cell Line. MCF-7 

cells were transfected with a vector containing the OCT3 gene, and a single OCT3-MCF7 clone 

expressing high levels of the OCT3 gene (3.46 x 10-3 of 18s rRNA) compared to MCF-7 cells 

(1.61×10-7 of 18s rRNA, p<0.001) was isolated (Figure 4.1A). Higher gene expression of OCT3 

in the OCT3-MCF7 clone corresponded with high OCT3 protein levels in comparison to barely 

detectable OCT3 protein in MCF-7 cells (Western blot insert of Figure 4.1A). The expression of 

PMAT and MATE1 genes, which are expressed at low levels in MCF-7 cells as demonstrated in 

our previous study in Chapter 2 (8), was evaluated in the OCT3-MCF7 clone to confirm that 

overexpression of the OCT3 gene did not affect the expression of other metformin transporters. 

A modest 2.8-fold increase in the expression of MATE1 gene, compared to >1000-fold increase 

in the expression of OCT3 gene, was observed in the OCT3-MCF7 clone versus MCF-7 cells 

(5.45×10-7 vs. 1.94×10-7 of 18s rRNA, p<0.05) (Figure 4.1A). No difference in the expression of 

PMAT gene was observed between OCT3-MCF7 and MCF-7 cells (Figure 4.1A). As expected, 

metformin uptake in OCT3-MCF7 cells was higher compared to uptake in MCF-7 cells (95.1 vs. 

12.9 pmol/mg protein*min, p<0.001); and uptake was attenuated by 85% in the presence of the 

pan transporter inhibitor, quinidine (14.2 vs. 95.1 pmol/mg protein*min, p<0.001) (Figure 4.1B), 

confirming that the nearly 7-fold increase in metformin uptake observed in OCT3-MCF7 cells 

was due to transporter-mediated uptake and not due to unrelated changes in cell membrane 

integrity or composition. A difference in nearly two orders of magnitude between the increase in 
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transporter-mediated uptake and the increase in transporter gene expression is not surprising, 

since the increase in protein expression is often a fraction of the increase in gene expression, 

and frequently, only a fraction of the transporter protein that is expressed in a cell is localized to 

the cell membrane where it is functional. 

Thus, a head-to-head comparison of OCT3 gene and protein expression and 

transporter-mediated uptake in two MCF-7 cell lines, one expressing low levels of cation-

selective transporters and the other in which one of the metformin transporters is 

overexpressed, provided reasonable assurance that tumors generated from OCT3-MCF7 cells 

would undergo greater intratumoral exposure to metformin compared to tumors generated from 

MCF-7 cells in the xenograft mice.  

Metformin is More Efficacious against OCT3-MCF7 versus MCF-7 Tumors. Xenograft mice 

bearing tumors generated from MCF-7 and OCT3-MCF7 cells were developed. To confirm the 

overexpression of the OCT3 protein in OCT3-MCF7 tumors versus MCF-7 tumors, IHC analysis 

of paraffin-embedded tumor tissue sections was performed. The IHC results showed a 

noticeably greater staining of OCT3 in OCT3-MCF7 tumors compared to MCF-7 tumors (Figure 

4.2A).  

Metformin monotherapy, at a dose that is equivalent to the clinical dose for T2DM, 

attenuated the growth of both MCF-7 tumors and OCT3-MCF7 tumors, and compared to DOX 

alone, metformin was 60% more efficacious in OCT3-MCF7 tumors (Figure 4.3A) and 30% less 

efficacious in MCF-7 tumors (Figure 4.3B). In fact, metformin induced complete arrest of tumor 

growth in OCT3-MCF7 tumors. Metformin, as a combination therapy with DOX (which reflects 

its potential use for cancer therapy in the clinic), was almost twice as effective in decreasing the 

size of OCT3-MCF7 tumors versus MCF-7 tumors (Figure 4.3C). The combined antitumor 

effects of metformin plus DOX were enhanced by 97% over that of DOX alone against OCT3-

MCF7 tumors and by 27% against MCF-7 tumors (Figure 4.3A-C, Supplementary Table 4.1). 

OCT3 overexpression did not alter the inherent responsiveness of MCF-7 cells to DOX 
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treatment as evidenced by the observation that there was no significant difference between the 

growth of OCT3-MCF7 and MCF-7 tumors when the animals were treated with DOX alone 

(Figure 4.3A and B).  

Metformin, in combination with DOX, was more potent in reducing the number of 

proliferating cells in OCT3-MCF7 tumors compared to MCF-7 tumors, as evidenced by IHC 

staining of Ki-67, a biomarker of proliferating cells (26.3% vs. 56.3% of Ki-67-positive cells, 

p<0.001) (Figure 4.2B, C). Additionally, compared to treatment with DOX alone, metformin plus 

DOX reduced the number of Ki-67-positive cells in both OCT3-MCF7 tumors (26.3% vs. 60.0% 

of Ki-67-positive cells, p<0.001) and MCF-7 tumors (56.3% vs. 61.2% of Ki-67-positive cells, 

p<0.05) (Figure 4.2B, C).  

The greater antitumor efficacy of metformin, both as a monotherapy and in combination 

with DOX, against OCT3-MCF7 versus MCF-7 tumors provides compelling evidence that a 

higher level of cation-selective transporter expression in breast cancer cells can enhance 

metformin treatment outcomes in breast cancer. 

Metformin Induced Greater Modulation of the AMPK Pathway in OCT3-MCF7 Tumors 

Compared to MCF-7 Tumors. To elucidate the cellular and molecular basis for the greater 

antitumor efficacy of metformin in OCT3-MCF7 tumors than in MCF-7 tumors, modulation of the 

AMPK pathway following metformin treatment was evaluated by Western blot analyses of 

lysates from these tumors. Consistent with the increased potency of metformin against OCT3-

MCF7 tumors, a greater increase in AMPK phosphorylation and a greater decrease in P70S6K 

phosphorylation was observed in OCT3-MCF7 tumors compared to MCF-7 tumors in both 

“metformin plus DOX” and “metformin monotherapy” groups (Figure 4.4). In contrast, DOX 

treatment had limited effect on these two kinases in either OCT3-MCF7 or MCF-7 tumors 

(Figure 4.4).   

In a pharmacokinetic (PK) study, metformin concentrations in plasma as well as in the 

liver, kidney and tumor tissues were compared between mice bearing OCT3-MCF7 and MCF-7 
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tumors (Figure 4.5). No difference was observed in the plasma PK of metformin between the 

two groups of mice; the area under metformin plasma concentration vs. time curve (AUC0-24hr), 

maximum plasma concentration (Cmax) or clearance (Cl) were comparable in OCT3-MCF7 and 

MCF-7 mice (Supplementary Table 4.2). In contrast, the intratumoral concentration of 

metformin in OCT3-MCF7 tumors was 5-fold higher than that observed in MCF-7 tumors at 15 

min post metformin delivery (403.2 vs. 77.4 µM, p<0.001), suggesting that metformin is taken up 

more effectively into tumors that express higher levels of OCT3. Even when metformin is almost 

cleared from the body at the 24 hr time point, the intratumoral concentration of metformin in 

OCT3-MCF7 tumors was  ~8-fold higher than the concentration in MCF-7 tumors (5.61 vs. 0.71 

µM, p<0.001) (Figure 4.5), suggesting that the initial higher exposure of OCT3-overexpressing 

tumors to metformin persists throughout the 24-hr dosing period. Hepatic and renal tissue 

concentrations of metformin in OCT3-MCF7 and MCF-7 xenograft mice were comparable 

(Figure 4.5). These PK data clearly showed that overexpression of OCT3 in MCF-7 tumors did 

not affect the overall systemic exposure of metformin or its concentrations in key organs such 

as the liver and kidney, while causing an increased exposure of the tumor tissues to metformin.  

4.5 DISCUSSION 

The anticancer effect of the antidiabetic drug, metformin, was first discovered from 

retrospective analyses, which showed a decreased risk of breast cancer in diabetic patients who 

were on metformin treatment. Metformin was initially reported to inhibit tumor growth indirectly 

via its antidiabetic pharmacology, which involves a decrease in circulating glucose and insulin 

levels (9). Since insulin enhances tumor growth by binding to its receptors on the surface of 

cancer cells and activating the downstream insulin pathway (3, 4, 10) that promotes cell 

proliferation, a decrease in plasma insulin levels would attenuate the proliferation of tumor cells. 

However, metformin exhibits antitumor effects even in non-diabetic patients in whom the drug 

has limited insulin and glucose-lowering effects (11), suggesting that the antitumor effects of 

metformin in non-diabetic breast cancer patients must be mediated via an intracellular 
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mechanism that is distinct from the extracellular insulin receptor-mediated pathway. Several 

studies have implicated that metformin suppresses tumor growth by activating intracellular 

AMPK (via phosphorylation), resulting in attenuation of the activities of the downstream mTOR 

complex and P70S6 kinase and subsequent suppression of protein synthesis and cancer cell 

proliferation (12). For breast tumors whose growth is inhibited by metformin via the intracellular 

AMPK-mTOR pathway, it is reasonable to assume that the intracellular concentration of 

metformin would affect its antitumor efficacy against breast cancer. Metformin uptake into breast 

cancer cells and tumor tissues is an obligate step for activation of its intracellular targets. 

However, since metformin is highly hydrophilic (logD = -6.13 at pH 7) and carries a positive 

charge at all physiologic pH values, it cannot traverse the cell membrane by passive diffusion, 

and requires a transporter(s) for cellular entry. Previous studies, including our own, have shown 

that cation-selective transporters mediate cellular uptake of metformin in the intestine, liver, and 

kidney (13-16).  

The role of one or more cation-selective transporters in the antiproliferative activity of 

metformin in vitro (8, 17) has been reported previously. In Chapter 2 (8), we examined the 

expression of several known metformin transporters in human breast tumors and in most 

commonly used human breast cancer cell lines, and have reported that OCT3 and/or PMAT are 

the major metformin transporters that are overexpressed in breast tumors compared to non-

malignant breast tissue. The study further showed that there is a wide variability in the 

expression of metformin transporters among breast tumors and among the commonly studied 

breast cancer cell lines. Collectively, current literature reports strongly suggest that metformin 

transporters in tumor tissues could influence the efficacy of this drug as an anticancer agent. 

However, we lack the ability to translate this information into the relevance of metformin 

transporters in clinical outcomes of metformin therapy in breast cancer and other cancers. In 

part, this is because of a lack of knowledge on how variations in transporter expression among 



76 

cells within tumor tissue and among tumor tissues of patient populations could affect responses 

to metformin treatment for cancer.  

This study takes the first step toward understanding a relationship between expression 

levels of a metformin transporter in breast tumors and the resulting metformin exposure in tumor 

tissue, the modulation of intracellular mediators of the antiproliferative/antitumor activity of 

metformin, and the overall potency of the drug against breast cancer, both as a monotherapy 

and in combination with other chemotherapeutic agents. By necessity, we chose a simple 

system by artificially overexpressing, in MCF-7 tumors, one of the two major metformin 

transporters (i.e. OCT3) found in human breast tumors, and measuring the effect of high 

transporter levels on the anticancer efficacy of metformin in tumor-bearing mice.  An alternative 

approach would have been to compare the antitumor efficacy of metformin in a xenograft mouse 

model of breast cancer to the antitumor efficacy metformin in the presence of a cation-selective 

transporter inhibitor. However, evidence is clear that several transporters can mediate 

metformin disposition in the body, making it challenging to evaluate the contribution of a 

metformin transporter(s) to the antitumor efficacy of the drug, since the transporter inhibitor 

would influence the overall disposition of metformin in the body. Another approach would be to 

attenuate the expression of one or more metformin transporters in a breast cancer cell line that 

could then be used to generate xenograft tumors, and compare the antitumor efficacy of 

metformin between transporter-deficient tumors and normal tumors. Since our data show that 

typically two or more transporters are expressed in most breast cancer cells (and cell lines), we 

recognized that it would be challenging to achieve complete inhibition of all transporters in a cell 

line. Hence, we selected a breast cancer cell line that expresses low levels of organic cation 

transporters (i.e. MCF-7 cells), and overexpressed OCT3, one of the major cation-selective 

transporters expressed in breast tumor tissues (8). The successful overexpression of OCT3 in 

OCT3-MCF7 cells was confirmed by increased OCT3 gene and protein expression, as well as 
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higher metformin uptake in OCT3-MCF7 cells compared to MCF-7 cells. Xenograft mice bearing 

tumors generated from OCT3-MCF7 cells and MCF-7 cells were then developed.  

The MCF-7 human breast cancer cell line was selected for generating OCT3-overexpressing 

cells because i) MCF-7 cells are widely used to develop xenograft mouse models of breast 

cancer, ii) overall metformin transporter expression is relatively low in this cell line (8), and iii) 

MCF-7 cells are highly tumorigenic with a functional AMPK-mTOR-p70S6K signaling pathway 

(8). The same genetic origin of tumors derived from OCT3-MCF7 and wild-type MCF-7 cell lines 

enabled a direct comparison of the responsiveness of these tumors to metformin therapy. Our 

results showing that the OCT3-MCF7 and MCF-7 tumors responded similarly to DOX 

treatments provide confirmation that overexpression of OCT3 does not affect the intracellular 

machinery of the MCF-7 cells. This approach is preferable to strategies used by others where 

the antiproliferative and antitumor efficacies of metformin were compared between cell lines and 

xenograft tumors from different genetic backgrounds.  

It is expected that in clinical settings, metformin is likely to be used as a 

chemopreventive/chemotherapeutic agent in combination with other cancer drugs; therefore, we 

evaluated the antitumor efficacy of metformin both as a monotherapy and in combination with 

DOX. A moderate dose of DOX (2 mg/kg) that had limited toxicity and no effect on animal 

survival was selected based on our own preliminary studies and those of others as reported in 

the literature (18). The dose of metformin was determined from our preliminary studies, and was 

equivalent to the dose commonly used for the treatment of T2DM. In several published reports, 

metformin was administered to mice orally in drinking water (19, 20). However, to ensure 

accurate systemic delivery of a defined dose of metformin in our study, the drug was 

administered intraperitoneally.  

Interestingly, metformin as a monotherapy, was efficacious against MCF-7 tumors, but was 

less efficacious than DOX (Figure 4.3). The antitumor efficacy of metformin plus DOX against 

MCF-7 tumors was slightly better than the efficacy of DOX alone, although this was not 
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statistically significant. In contrast, metformin as a monotherapy was significantly more 

efficacious than DOX against OCT3-MCF7 tumors, and in combination with DOX it not only 

attenuated the growth of OCT3-MCF7 tumors, but reduced tumor size by ~30%. Thus, it is clear 

that the antitumor efficacy of metformin, as a monotherapy or a combination therapy, was 

influenced by the expression levels of the OCT3 transporter. The greater antitumor efficacy of 

metformin against OCT3-MCF7 tumors is due to higher transporter-mediated uptake and higher 

intratumoral concentrations of the drug, as evidenced by nearly 6 to 8-fold increase in metformin 

concentration in OCT3-MCF7 tumors compared to MCF-7 tumors (Figure 4.5). The overall 

increase in metformin efficacy against OCT3-overexpressing tumors was accompanied by 

greater activation of AMPK and inhibition of P70S6K in OCT3-MCF7 tumors compared to MCF-

7 tumors, as evidenced by their phosphorylation status (Figure 4.4). These results were 

consistent with data from our in vitro studies which showed that OCT3-MCF7 cells were more 

sensitive to metformin treatment compared to MCF-7 cells (Supplementary Figure 4.1). 

Metformin is regarded as a useful anticancer agent not only due to its ability to slow or stop 

tumor growth, but also due to its potential ability to prevent cancer metastasis and relapse, 

presumably by inhibiting proliferation of CSC within the tumor mass. CSC proliferation is 

regulated through both the intracellular AMPK-E-cadherin pathway (20) and extracellular growth 

factors (i.e. TGF-beta) (21), and it is not known which of these factors is the predominant 

contributor to the antiproliferative efficacy of metformin against CSC. Our results show that 

metformin, in combination with DOX, achieved a greater reduction in the number of CSC in 

OCT3-MCF7 tumors compared to MCF-7 tumors, as evidenced by the differential staining 

intensity of CD44 (a membrane marker of CSC) in tissues from these two tumors 

(Supplementary Figure 4.2). This is the first evidence that suggests that tumors derived from 

cancer cell lines with different transporter expression levels (OCT3 in this case) may contain 

CSC that also exhibit different transporter expression profiles, and more importantly, this 
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difference in cation-selective transporter expression may result in differential effect of metformin 

in inhibiting tumor growth and cancer metastasis/relapse.  

Evidence for the anticancer activity of metformin against various tumor types is mounting, 

and multiple mechanisms have been implicated, including the activation of AMPK and 

subsequent modulation of the AMPK-P70S6K-mTOR signaling cascade. Reports that 

expression of OCT1 is associated with the antidiabetic activity of metformin have been 

published (17). A recent study by Patel et al. demonstrates that head and neck cancer cells with 

higher expression of OCT3 are more sensitive to metformin treatment compared to cancer cells 

with lower OCT3 expression (22). The true significance of our study in light of the prior evidence 

that suggests that the antitumor efficacy of metformin is associated with OCT1 and/or OCT3, is 

that in one study we showed a significant relationship between higher gene expression of an 

organic cation transporter (OCT3 in this case) and (i) higher protein expression of the 

transporter, (ii) increased uptake of metformin into tumor cells in vivo, (iii) increased AMPK 

phosphorylation and decreased P70S6K phosphorylation in tumors treated with metformin, (iv) 

greater antitumor efficacy of metformin as a monotherapy and in combination with an 

established chemotherapeutic agent such as DOX, and (v) greater reduction of CSC in tumors 

treated with metformin. Clearly, OCT3 is only one of several transporters expressed in tumor 

cells that can transport metformin into and out of the cells. However, we wish to emphasize that 

overexpression of OCT3 was employed as a tool to assess the relationship between the 

expression of metformin transporters and the antitumor efficacy of metformin in vivo.  

Considering the high variability in transporter expression in tumor tissues among breast 

cancer patients (8), our study could explain the underlying cause for the sub-therapeutic efficacy 

of metformin in cancer therapy in some clinical studies (23). The correlation between higher 

intratumoral metformin concentrations and greater antitumor efficacy of metformin in OCT3-

MCF7 tumors compared to MCF-7 tumors can also explain literature reports that phenformin, a 

more lipophilic biguanide compound, exhibited greater anticancer efficacy compared to 



80 

metformin (24) since phenformin does not have an absolute requirement for transporters to 

enter cells, and can be taken up into cancer cells via passive diffusion through the cell 

membrane. While further evidence needs to be developed, we believe that cation-selective 

transporter expression may turn out to be an important biomarker to identify the patient 

population that would be most responsive to metformin therapy in breast cancer. Further, our 

study provides a mechanistic rationale for developing metformin prodrugs that mask the charge 

and add lipophilicity, lipophilic metformin analogs like phenformin, or nanoparticle formulations 

of metformin that could circumvent the dependence of the success of metformin therapy on 

cation-selective transporters. Such metformin prodrugs, analogs, or formulations can eliminate 

the potential variability in response to metformin therapy among patients based on variability in 

transporter expression profiles and/or polymorphisms in transporters, and improve the utility of 

this safe, cost-effective and tolerable drug in breast cancer therapy.  

In addition to metformin, widely used chemotherapeutic agents such as platinum derivatives 

or imatinib, a tyrosine kinase inhibitor, have been reported to be substrates of cation-selective 

transporters (25, 26). Similar to metformin, cellular uptake of these chemotherapeutic agents 

and activation of their intracellular targets in cancer cells are also required for their anticancer 

activity. However, the dose of these chemotherapeutic agents was based on their systemic 

exposure. Although there are a few reports on the relationship between transporter expression 

and drug-induced toxicity (27, 28), no systematic studies have been conducted to determine the 

effect of transporters on drug disposition, and the critical role of tumor transporter expression in 

the antitumor efficacy of these chemotherapeutic agents has been ignored. This study highlights 

the importance of cation-selective transporters in cancer therapies that use cationic 

chemotherapeutic agents, and sets the stage for using the transporter expression profiles of 

tumors as important biomarkers to adjust the therapeutic strategy of such chemotherapeutic 

drugs.  
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Figure 4.1 Generation and Characterization of OCT3-MCF7 Cells. A) Relative gene 
expression of three predominant cation-selective transporters (OCT3, PMAT and MATE1) in 
OCT3-MCF7 cells and MCF-7 cells was determined by RT-PCR and normalized to 18s rRNA. 
Data represent mean ± SD; N=3. *p<0.05, **p<0.001. NS: not significant. OCT3 protein 
expression in OCT3-MCF7 and MCF-7 cells was assessed by Western blot analysis and is 
shown in the insert. B) Metformin uptake in OCT3-MCF7 cells and MCF-7 cells was evaluated 
by incubating cells with [14C]metformin in the presence or absence of the pan transporter 
inhibitor, quinidine, and uptake was normalized to protein content.**p<0.001, NS: not significant.  
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Figure 4.2 IHC Staining of Tissue Sections from OCT3-MCF7 Tumors and MCF-7 Tumors 
to Evaluate OCT3 Expression and the Antiproliferative Efficacy of Metformin. Images were 
taken at an amplification of 40X. A) OCT3 expression in OCT3-MCF7 tumors and MCF-7 
tumors was evaluated using an antibody against OCT3 (staining shown in brown-red). B) The 
antiproliferative efficacy of metformin in OCT3-MCF7 tumors and MCF-7 tumors was 
determined using an antibody against the cell proliferation biomarker-Ki-67 (staining shown in 
brown).  C) The percent of Ki-67-positive cells in OCT3-MCF7 and MCF-7 tumor tissues 
following metformin plus DOX or DOX treatment. Each bar represents the average of three 
values obtained from counting the number of Ki-67-positive cells under the microscope in one 
field of view (at 40X magnification) from three different tissue sections (i.e., three tissue sections 
for OCT3-MCF7 tumors and three tissue sections for MCF-7 tumors). Data represent mean ± 
SD; N=3. *p<0.05.  
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Figure 4.3 The Effects of Saline, DOX Alone, Metformin Alone and Metformin Plus DOX 
on Breast Tumors. Change in volumes of (A) OCT3-MCF7 tumors and (B) MCF-7 tumors over 
a 20-day treatment period. C) Head-to-head comparison of the effect of metformin plus DOX on 
OCT3-MCF7 tumors vs. MCF-7 tumors. N=8. *p<0.05, **p<0.001; NS: not significant. Data are 
summarized and shown in Supplementary Table 4.1.  
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Figure 4.4 Western Blot Analyses Showing the Effect of Metformin Treatment on AMPK 
Phosphorylation and P70S6K Phosphorylation in OCT3-MCF7 Tumors and MCF-7 
Tumors. GAPDH was used as a loading control. Mice were euthanized on Day 20, tumor 
tissues were harvested, and proteins from tissue lysates were subjected to Western blot 
analyses. 
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Figure 4.5 Plasma and Tissue Concentrations of Metformin in Xenograft Mice Bearing 
OCT3-MCF7 Tumors and MCF-7 Tumors. (A) Metformin plasma concentration-time profiles. 
Metformin concentrations in the liver, kidney and tumor tissues at (B) 15 min and (C) 24 hr post 
metformin administration. Data represent mean ± SD. N=3. ** signifies p<0.001; NS: not 

significant. Pharmacokinetic data are summarized and shown in Supplementary Table 4.2. 
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Supplementary Figure 4.1 The Antiproliferative Efficacy of Metformin in OCT3-MCF7 Cells 
and MCF-7 Cells. The efficacy of metformin was assessed by incubating cells for five days in 
culture media containing varying concentrations of metformin. Data represent mean ± SD; N=5 
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Supplementary Figure 4.2 Metformin-induced Decrease in the Proportion of CSC in 
OCT3-MCF7 Tumors and MCF-7 Tumors. CSC was probed using an antibody against CD44, 
a membrane surface marker of CSC (staining shown in brown).   
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Supplementary Table 4.1 The Effect of Metformin Plus DOX on Tumor Volumes and Tumor 
Weights of OCT3-MCF7 Tumors and MCF-7 Tumors. Data are represented as mean (SD). N=3. 
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Supplementary Table 4.2 AUCplasma, Cmax and Cl of Metformin in Xenograft Mice Bearing 
OCT3-MCF7 and MCF-7 Tumors. Data are represented as mean (SD). N=3. 
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CHAPTER 5

Relationship between Metformin Dose and Efficacy against Estrogen Receptor-positive and 
Triple-negative Breast Cancer  

 

5.1 OVERVIEW 

The ability of the antidiabetic drug, metformin, to reduce breast cancer incidence was 

discovered from retrospective analyses of clinical studies in diabetic cancer patients. Since 

then, numerous clinical trials have been conducted with the goal to repurpose metformin for 

cancer therapy. However, results from these studies are mixed, with some studies reporting 

efficacy of metformin as an anticancer agent in combination chemotherapy regimens while other 

studies show that the anticancer efficacy of metformin is marginal. One explanation for these 

mixed results is that current metformin treatment for cancer is not optimized. The dose of 

metformin used in a majority of these clinical studies was based on the doses used for 

treatment of type 2 diabetes. Since the results in Chapters 2 and 4 showed that transporter-

mediated uptake and accumulation of metformin in tumor cells is related to its antitumor efficacy 

against breast cancer, it was hypothesized that increasing the metformin dose over that used for 

treatment of type 2 diabetes would achieve higher intratumoral exposure and would increase 

the antitumor efficacy of metformin against breast cancer. Therefore, efficacy of metformin, 

used in combination with paclitaxel (for estrogen-receptor positive breast tumors) and 

carboplatin (for triple-negative breast tumors), was evaluated in relation to its dose in mouse 

models of breast cancer. Xenograft mice bearing MCF-7 estrogen receptor-positive breast 

tumors or MDA-MB-468 triple-negative breast tumors were administered four escalating doses 

of metformin (12, 36, 120, 360 mg/kg/day for the duration of the study) in combination with a 

fixed dose of paclitaxel (30 mg/kg/day for 5 days) (for MCF-7 tumors) and carboplatin (50 
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mg/kg/day for 5 days) (for MDA-MB-468 tumors), and the antitumor efficacy was evaluated by 

measuring tumor volume. The four metformin doses were calculated from human doses used in 

the treatment of type 2 diabetes mellitus, and ranged from a dose lower than the initial dose to 

the maximum recommended daily dose. Our results showed an increase in the antitumor 

efficacy of metformin with increasing dose. A combination of carboplatin and a metformin dose 

of 120 mg/kg/day (equivalent to the most common anti-diabetic daily dose of 850 mg in 

humans) was required to observe a significant improvement in antitumor efficacy compared to 

carboplatin alone in MDA-MB-468 tumors, whereas a 3-fold higher metformin dose of 360 

mg/kg/day (equivalent to the 2,550 mg maximum anti-diabetic daily dose in humans) in 

combination with paclitaxel was needed to observe a significant increase in antitumor efficacy 

compared to paclitaxel alone in MCF-7 tumors. The lower metformin dose required for efficacy 

against MDA-MB-468 tumors compared to MCF-7 tumors is consistent with high expression of 

cation-selective transporters in MDA-MB-468 tumor cells and relatively modest expression of 

these transporters in MCF-7 tumor cells. These results suggest that efficacious metformin dose 

for breast cancer therapy may vary depending on the tumor type, and that relative expression 

levels of cation-selective transporters in the tumor cells may provide a useful guide for selection 

of efficacious metformin doses. Because the metformin dose-response curve did not achieve a 

plateau in this study, it is recommended that metformin doses that are higher than the maximum 

daily dose of 2,550 mg may be considered for combination chemotherapy of both estrogen-

receptor positive and triple negative breast cancer.  

5.2 INTRODUCTION 

Breast cancer is the second most frequently diagnosed cancer and cause of death due 

to cancer among women in the United States. The American Cancer Society estimates that 

there will be over 307,000 newly diagnosed cases and over 40,000 deaths in 2016 (1). Breast 

cancer is categorized into multiple types based on the expression of growth factor receptors on 

the cell membrane. Due to significant differences in the patterns of gene mutation and 



95 

expression of oncogenes and tumor suppressors, the mechanism of cancer development, tumor 

growth rate, and clinical outcomes vary among different types of breast cancer (1). Therefore, 

the type of chemotherapeutic agent to be used in clinical cancer therapy is also determined 

based on the type of breast cancer. Estrogen receptor-positive (ER+) breast cancer and triple-

negative (TN) breast cancer are the two most commonly diagnosed types of breast cancer, 

which account for more than 85% of all breast cancer cases (1). Compared to ER+ breast 

cancer, TN breast cancer is more aggressive and relatively poorly controlled by the 

chemotherapeutic agents that are currently used for breast cancer (2, 3). It is clear that effective 

chemotherapy of TN breast cancer is an unmet medical need, and new agents that can improve 

the outcomes of other forms of breast cancer are also desired.  

Recently there has been a surprising discovery that the leading drug for type 2 diabetes, 

metformin, contributes to reduced incidence of breast cancer among women with diabetes and 

better outcome of their treatment with conventional chemotherapeutic agents (4-11). 

Retrospective studies showed that type 2 diabetes patients have an increased risk of 

developing breast cancer compared to the non-diabetic population (6, 7), which led to further 

investigations on the impact of different anti-glycemic agents on breast cancer incidence. 

Compared to other widely administered anti-diabetic agents such as insulin and sulfonylurea, 

metformin significantly reduced the risk of breast cancer in diabetic patients in most 

retrospective studies (6-8). This led to clinical studies in type 2 diabetes and non-diabetic breast 

cancer patients aimed at evaluating metformin as an anticancer agent, either as a monotherapy 

or in combination with chemotherapeutic agents. Some studies showed that, unlike other anti-

diabetic drugs, metformin improved clinical outcomes to neoadjuvant chemotherapy (9), 

inhibited cell proliferation in tumor tissues (10), and increased metastasis-free survival rates (11) 

in diabetic breast cancer patients. However, others have reported that no beneficial effects of 

metformin against breast cancer were observed (12, 13). It is worth noting that in a majority of 

clinical studies, metformin did not produce significant anticancer effects in non-diabetic breast 
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cancer patients, although a trend for anticancer effect was generally observed (9, 11, 14). It is 

likely that the anticancer efficacy of metformin did not reach significance due to inter-individual 

variability in response to metformin treatment among breast cancer patients. Although the 

response to anticancer agents generally varies significantly among different types of breast 

cancer, breast cancer type was not considered to stratify patients in many of these clinical 

studies in which metformin was evaluated for its anticancer efficacy. Further, the dose and 

administration frequency of metformin were not optimized in these clinical trials; rather the 

doses that are generally considered efficacious for treatment of diabetes were used for 

treatment of cancer. A typical dosing regimen for treatment of diabetes starts with a daily dose 

of 850 mg and the dose is titrated up by 500 mg weekly until a minimum dose for adequate anti-

glycemic effect is achieved (15). In short-term studies of non-diabetic breast cancer patients, the 

daily dose of metformin ranged from 500 mg twice a day to its maximum daily dose for anti-

diabetic treatment, namely 2550 mg (12, 16, 17).  

Because the anticancer effect of metformin in diabetic patients with breast cancer is 

believed to be achieved, at least in part, by lowering circulating glucose, insulin, and IGF1 levels 

(18)), the assumption that the doses of metformin that are efficacious in the treatment of 

diabetes would also be efficacious against breast cancer may be considered reasonable. 

However, studies clearly showed that unlike metformin, other anti-diabetic drugs were not 

effective as anticancer agents, suggesting that the anticancer effects of metformin may be 

mediated by mechanisms that are distinct from and /or in addition to its effect on lowering 

circulating levels of glucose, insulin, and IGF1. Interestingly, some studies have shown that the 

key molecular target that is implicated in the inhibition of gluconeogenesis in the liver, i.e. 

adenosine monophosphate-activated protein kinase (AMPK), may also mediate the 

antiproliferative effects of metformin in cancer cells because it is an important modulator of 

energy homeostasis (19). Studies show that upon being taken up into the cancer cells, 

metformin induces the phosphorylation of AMPK, and subsequently attenuates protein 
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synthesis, inhibits cancer cell proliferation, and induces cell apoptosis through modulation of the 

downstream signaling molecules including mammalian target of rapamycin (mTOR) and 

phosphoprotein 70 ribosomal protein S6 kinase (P70S6K) (19, 20). If this is true, then sufficient 

intratumoral concentration of metformin must be achieved to modulate its intracellular targets. 

Unlike other chemotherapeutic agents, metformin is not capable of passing through the cell 

membrane via passive diffusion (21) since it is hydrophilic (logD -6.13 at pH 6.0) and positively 

charged (pKa 12.4) under physiological conditions (22). Instead, cellular uptake of metformin is 

mediated via cation-selective transporters (23-25). Cai et al. (26) have shown that the 

expression of cation-selective transporters in breast tumor tissues is relatively low and varies 

significantly among breast cancer patients. Therefore, it is hypothesized that metformin is not 

efficacious in those breast cancer patients because the doses of metformin used for the 

treatment of type 2 diabetes are not sufficient to achieve adequate intratumoral exposure of 

metformin that is required for activating its intracellular targets and exerting its antitumor 

efficacy. 

In this study, a dose-response relationship for anticancer efficacy of metformin is 

evaluated against ER+ and TN human breast cancer in xenograft mouse models. The 

metformin doses used in this preclinical study were calculated such that the lowest dose would 

be equivalent to the human dose that is lower than the starting dose used in the treatment of 

type 2 diabetes, and the highest dose would be equivalent to the maximum daily dose 

administered to humans thus far (26). This is the first study that systematically investigates the 

relationship between metformin dose, systemic and tumor exposure, effect on intracellular 

targets, and antitumor efficacy against two most commonly encountered (ER+ and TN) breast 

cancers. 

5.3 MATERIAL AND METHODS 

Cell Culture. MCF-7 and MDA-MB-468 cells were cultured in DMEM media (11965, Invitrogen) 

with 10% fetal bovine serum (12003C, Sigma) and penicillin-streptomycin (15140, Invitrogen). 
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Human recombinant insulin (12585, Invitrogen) was added to the culture media to stimulate the 

growth of MCF-7 cells. Cells were plated in 175 cm2 cell culture flasks (10-126-39, Corning) and 

passaged at 80% confluency.   

Evaluation of antitumor Efficacy of Metformin as Monotherapy or Combination Therapy 

in Orthotopic Xenograft Mice Bearing MCF-7 and MDA-MB-468 Tumors. Athymic nude mice 

were purchased from the Animal Studies Core at the University of North Carolina at Chapel Hill. 

Two million MCF-7 cells or MDA-MB-468 cells were resuspended in 50% MatrigelTM (356234, 

BD Bioscience) and orthotopically injected into the breast region of 8-week-old nude mice. To 

stimulate the growth of MCF-7 tumors, estrogen pellets (SE-121, Innovative Research of 

America) were subcutaneously implanted into mice. Tumor size was measured externally with a 

caliper and tumor volume was calculated using the equation below: 

Tumor Volume =  
1

2
×（Length） × (width)2 

When tumor size was larger than 100 mm3, mice were assigned to seven groups (N=8 per 

group) which received a two-month treatment with saline (02049-0, Hospira), paclitaxel 

(760350, APP Pharmaceuticals) or carboplatin (C177500, Toronto Research Chemicals) alone, 

metformin (M258815, Toronto Research Chemicals) alone, or paclitaxel or carboplatin plus 

different doses of metformin (Figure 5.1A). Paclitaxel and carboplatin were administered via 

intravenous injections every week, and metformin was administered by oral gavage every day. 

During the treatment period, tumor volumes were measured and plotted against treatment time. 

In addition to tumor volume, body weights of the xenograft mice were monitored during the 

treatment period. Kaplan-Meier survival curves were plotted to assess the outcome of the 

different dosing regimens on overall survival of the animals. 

Evaluation of Plasma and Intratumoral Concentrations of Metformin. On the last day of 

treatment, unlabeled metformin was replaced with the same dose of [14C]metformin (50 µCi, MC 

2043, Moravek) to assess the concentrations of metformin in plasma and tumor tissues. Blood 
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was collected from the tail vein at 5 min, 15 min, 1 hr, 2 hr, 8 hr, and 24 hr post administration 

and plasma was isolated. Mice were euthanized at 1 hr or 24 hr post metformin administration. 

Tumor tissues were isolated, weighed and lysed, and [14C]metformin in plasma and tumor 

tissues was assessed by liquid scintillation spectrometry (1900 TR, Packard Tri-Carb).  

Analysis of the Effect of Treatment Regimens on the AMPK Pathway. Tumor tissues 

(approximately 20 mg) were isolated from euthanized mice and lysed in radio-

immunoprecipitation assay (RIPA) buffer system (89900, Thermo Fisher). Protein concentration 

in the lysed sample was measured by bicinchoninic acid assay (23225, Thermo Fisher). Tumor 

lysates were subjected to Western blot analyses as described in previous chapters (26) using 

primary antibody against p-AMPK (9205, Cell Signaling Technology). Glyceraldehyde-3-

phosphate dehydrogenase (GAPDH, sc-25778, Santa Cruz) was used as a loading control. 

Densitometric analyses of p-AMPK and GAPDH bands were performed using Image Lab 

(BioRad). 

PK Model Development. A two-compartment PK model was considered to represent the 

distribution phase and systemic clearance phase of metformin PK based on the metformin 

plasma concentration-time profiles (Figure 5.5A). Since the systemic exposure of metformin 

increased linearly as the dose was escalated within the dose range that was used in this study, 

a first-order absorption kinetics was applied in this PK model. It was also assumed that only the 

central compartment contributed to the clearance of metformin and the disposition of metformin 

in tumor tissues. Differential equations were established based on the modeling scheme shown 

in Figure 5.1B. Phoenix WinNonlin (Certara) was applied to solve the differential equations 

shown below and fit the plasma and intratumoral concentrations to the model and to estimate 

the PK parameters. 

dA0

dt
= −Ka ∗ A0 

dAc

dt
= Ka ∗ A0 − Ke ∗ Ac − K12 ∗ Ac + K21 ∗ Ap − Q ∗ Ac/Vc + Q ∗ At/Vt 
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dAp

dt
= K12 ∗ Ac − K21 ∗ Ap 

dAt

dt
= Q ∗ Ac/Vc − Q ∗ At/Vt 

The inter-individual variability was estimated via an exponential model and the intra-individual 

error was estimated using a proportional-additive mixed model. The property of the model was 

evaluated by the assessment of the goodness-of-fit (reflected by Akaike's Information Criterion) 

as well as visual predictive checks by comparing the simulated mean and 90% confidence 

interval with the experimental data. The time profile of plasma and intratumoral concentrations 

of metformin was simulated. Plasma/intratumoral exposure of metformin (reflected by the area 

under the metformin plasma/intratumoral concentration-time curve, namely AUCplasma or 

AUCtumor) was also estimated by the model and compared among different treatment groups.    

Statistical Analyses. All data are expressed as mean ± S.D. Analysis of variance (ANOVA), 

and Tukey's test was performed to determine the statistical significance for the difference in 

tumor weight, AUCtumor volume, AUCplasma, and AUCtumor among different treatment groups. 

Statistical significance for differences in survival rates among different treatment groups was 

assessed by Log-rank (Mantel-Cox) test. Kruskal-Wallis test was performed to determine the 

statistical significance in AMPK phosphorylation induced by different treatments. All statistical 

analyses were conducted with GraphPad Prism (GraphPad Software Inc.). 

5.4 RESULTS 

A Different Minimum Dose of Metformin is Required to Significantly Improve the Efficacy 

of Chemotherapeutic Agents against ER+ and TN Breast Cancer. The antitumor efficacy of 

metformin alone, paclitaxel or carboplatin alone, and the combination of metformin and 

paclitaxel or carboplatin was assessed and compared in xenograft mice bearing MCF-7 tumors 

or MDA-MB-468 tumors, respectively. Figure 5.2A and B show the percent change in tumor 

volume over time as the mice bearing tumors are treated daily with the indicated agents; 

Figures 5.2C and D show the tumor weights at the end of the therapy with each regimen 
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tested. As a monotherapy, metformin caused significant tumor reduction at 360 mg/kg/day dose, 

but not at lower doses (results are shown for metformin monotherapy only at this highest dose 

tested). Compared to saline, paclitaxel (MCF-7), carboplatin (MDA-MB-468), and metformin 

monotherapy significantly inhibited the growth of MCF-7 tumors and MDA-MB-468 tumors 

(Figure 5.2). Among the four combination therapy treatment groups, antitumor efficacy against 

MDA-MB-468 tumors was enhanced by metformin at 120 and 360 mg/kg/day doses. For the two 

lower doses of metformin (i.e. 12 and 36 mg/kg/day) used in combination therapy, difference in 

efficacy of the combination over monotherapy was not statistically significant (Figure 5.2A and 

C). Carboplatin plus two high doses of metformin (120 and 360 mg/kg/day) not only inhibited 

MDA-MB-468 tumor growth, but also caused tumor shrinkage (Figure 5.2A and C). Analysis of 

the anticancer efficacy of paclitaxel with metformin against MCF-7 tumors revealed that only the 

highest dose of metformin (i.e. 360 mg/kg/day) significantly improved antitumor efficacy of 

paclitaxel (Figure 5.2B and D). Thus, different minimum doses of metformin are required to 

enhance the antitumor efficacies of chemotherapeutic agents against MDA-MB-468 and MCF-7 

tumors. For the low transporter expressing MCF-7 tumors, the minimum dose of metformin that 

enhances anticancer efficacy of paclitaxel is 3-fold higher than that needed for enhancing 

anticancer efficacy of carboplatin against the high transporter-expressing MDA-MB-468 tumors.  

Metformin Dose that Improves Survival by Chemotherapeutic Treatment of Tumor-

bearing Mice is Lower Than that Improves Anticancer Efficacy. Animal survival rates during 

treatment were also assessed, as the survival rate is generally regarded as the most important 

and direct indicator of cancer therapy outcome. In general, the tumor-bearing mice treated with 

combination therapy had higher survival rates during the treatment period compared to those 

treated with chemotherapeutic agents alone (Figure 5.3A and B). Metformin at 120 mg/kg/day 

in combination with paclitaxel or carboplatin was most effective in prolonging survival of tumor 

bearing animals. Interestingly, although paclitaxel/carboplatin in combination with 360 

mg/kg/day metformin had the highest antitumor efficacy against MCF-7/MDA-MB-468 tumors 
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among all treatment groups, the efficacy of this combination on survival rate was lower than that 

of other doses of metformin (Figure 5.3A and B). Even the doses of metformin that did not 

cause significant improvement in the anticancer efficacy of paclitaxel and carboplatin were 

effective in improving survival of tumor bearing mice being treated by these agents.  

Metformin-mediated Activation of the AMPK Pathway in Tumor Tissues is Dose-

dependent. Since AMPK is regarded as the primary target of the antitumor efficacy of 

metformin, the activation of AMPK (reflected by its phosphorylation) in tumors from different 

treatment groups was evaluated and compared. Activation of AMPK in both MDA-MB-468 and 

MCF-7 tumors increased as the dose of metformin was escalated (Figure 5.4). With the same 

metformin dose, greater AMPK activation was observed in MDA-MB-468 tumors compared to 

MCF-7 tumors. In MDA-MB-468 tumors, 120 mg/kg/day and 360 mg/kg/day of metformin, in 

combination with carboplatin, caused a significantly greater AMPK activation compared to saline 

treatment, whereas in MCF-7 tumors, only the 360 mg/kg/day dose of metformin in combination 

with paclitaxel caused significantly greater AMPK phosphorylation compared to saline 

treatment. Carboplatin and paclitaxel as monotherapies did not activate AMPK nor did they 

interfere with the effect of metformin on AMPK activation. These results establish a clear 

association between activation of intracellular AMPK in tumor cells, metformin dose, and its 

antitumor efficacy, either as a monotherapy or in combination with other chemotherapeutic 

agents 

Metformin PK in MCF-7 and MDA-MB-468 Tumor-bearing Mice. A PK study was conducted 

to evaluate and compare the systemic and intratumoral concentrations of metformin in tumor 

bearing mice during treatment of these mice with metformin in combination with paclitaxel or 

carboplatin. Metformin plasma concentrations as a function of time were plotted (Figure 5.5A 

and B) and the systemic exposure of metformin (reflected by the area under the plasma 

concentration-time curves, AUCplasma) was calculated using non-compartmental analysis. The 

metformin AUCplasma was comparable in mice bearing MDA-MB-468 and MCF-7 tumors, and 
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increased linearly as the metformin dose was elevated. In contrast, a 70%~80% higher 

intratumoral metformin concentration was observed at 1 hr and 24 hr post administration in 

MDA-MB-468 tumors compared to MCF-7 tumors (Figure 5.5C and D), which correlates with 

high cation-selective transporter expression in MDA-MB-468 tumors versus low transporter 

expression in MCF-7 tumors (Chapter 2). No difference in systemic and intratumoral 

concentrations of metformin was observed in mice on metformin monotherapy and in mice on 

metformin (same dose) plus carboplatin/paclitaxel combination therapy (Supplementary Table 

5.1), suggesting that metformin PK was not affected by either paclitaxel or carboplatin. These 

results show that the different sensitivities of MDA-MB-468 and MCF-7 tumors to metformin 

treatment are due to differences in intratumoral exposure to metformin rather than systemic 

exposure.  

Establish A PK Model to Estimate Metformin Intratumoral Exposure. To determine 

intratumoral metformin concentration-time profiles in tumor bearing mice treated with different 

doses of metformin, a population-based two-compartment PK model was developed (Figure 

5.1B). The PK Parameters were estimated from the model and are listed in Table 5.1. A 

reasonable coefficient of variation (CV%) for all the estimated PK parameters suggested that 

the model appropriately described the variability in PK parameters among individual animals. 

The robustness of the model was further confirmed by visual predictive checks, which showed 

that most of the metformin plasma and intratumoral concentration data points fell within the 

simulated 90% confidence interval (Figure 5.6). The intratumoral exposures of metformin were 

simulated using the PK model. The intratumoral exposures of metformin in MDA-MB-468 tumors 

were more than 2-fold higher than the exposures in MCF-7 tumors following treatment with the 

same dose of metformin (Table 5.2).  

5.5 DISCUSSION 

Breast cancer is the second leading cause of cancer death among women in the United 

States. The current challenge in treating breast cancer is believed to be largely due to genetic 
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variability among different types of breast cancer, and a lack of efficacious chemotherapeutic 

agents for some types of breast cancer, such as TN breast cancer (3). Metformin, the most 

widely administered anti-diabetic agent, reduces breast cancer incidence (8), improves 

outcomes to chemotherapy (9), and prevents breast cancer metastasis and reoccurrence (10) in 

both type 2 diabetes and non-diabetic cancer patients. At the same time, other studies question 

the efficacy of metformin as an anticancer agent (12, 13). Because most of the evidence for 

anticancer efficacy of metformin, particularly for its efficacy against breast cancer, is derived 

from studies in which metformin was administered as an anti-diabetic agent, it is not surprising 

that the outcomes of such studies are variable and ambiguous since the doses used in these 

studies were not optimized for the anticancer efficacy of metformin. Hence, studies were 

performed to provide unambiguous evidence to confirm the anticancer efficacy of metformin 

against breast cancer, and to assess the dose-response relationship for metformin when it is 

used in combination with the established chemotherapeutic agents for ER+ and TN cancers.   

Orthotopic xenograft mouse models of breast cancer were employed to evaluate the 

dose-response of metformin in breast cancer. ER+ tumors were produced with MCF-7 cells and 

TN tumors were produced with MDA-MB-468 cells. Of note, MCF-7 cells express low levels of 

cation-selective transporters whereas MDA-MB-468 cells exhibit high expression of multiple 

cation-selective transporters (Chapter 2.1). To simulate clinical situations, metformin was co-

administered with paclitaxel to mice with ER+ (MCF-7) tumors and with carboplatin ER+ to mice 

with TN (MDA-MB-468) tumors. Metformin doses used in this preclinical study (360, 120, 36, 

and 12 mg/kg/day) were calculated from the maximum recommended human daily dose (2,550 

mg) and two  commonly administered doses (850 mg/day and 250 mg/day) for the treatment of 

patients with type 2 diabetes, as well as a sub-therapeutic dose (85 mg/day). Metformin was 

administered orally, and the two chemotherapeutic agents were administered intravenously, as 

is the case in the clinic. A metformin monotherapy group was included in the study (360 

mg/kg/day) to enable interpretation of the combination chemotherapy results. Mice with MDA-
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MB-468 tumors were treated for two months, whereas mice with MCF-7 tumors were treated for 

one month as MCF-7 tumors grow more aggressively when stimulated with estrogen pellets.  

Metformin (360 mg/kg/day) inhibited both MCF-7 and MDA-MB-468 tumor growth, but to 

a lower extent than the inhibition of tumor growth by either paclitaxel or carboplatin alone. At the 

same dose, metformin was more effective in inhibiting the growth of MDA-MB-468 tumors than 

MCF-7 tumors. This is consistent with the greater efficacy of monotherapy and combination 

therapy against MDA-MB-468 tumors than against MCF-7 tumors. Metformin was also found to 

be efficacious at 120 mg/kg/day (given intraperitoneally) against MCF-7 tumors in studies 

reported in Chapter 4 (Figure 4.2). Metformin at a dose of 360 mg/kg/day improved the efficacy 

of paclitaxel and carboplatin against MCF-7 and MDA-MB-468 tumors (Figure 5.2), suggesting 

that metformin may prove to be useful in enhancing efficacy of currently accepted therapeutic 

agents for breast cancer. This could translate into improved control of the disease with 

combination therapy with metformin or reduction in the doses of the chemotherapeutic agents 

and less severe side effects.  A minimum metformin dose of 120 mg/kg/day (equivalent to the 

850 mg human daily dose generally used for anti-diabetic treatment) in combination with 

carboplatin (50 mg/kg/day) was required to observe significant improvement in antitumor 

efficacy in MDA-MB-468 tumors, whereas a metformin dose of 360 mg/kg/day (equivalent to the 

2,550 mg maximum recommended daily dose for human anti-diabetic treatment) in combination 

with paclitaxel (30 mg/kg/day) was needed to observe significant increase in efficacy against 

MCF-7 tumors. Considering that an 850 mg daily dose of metformin is most frequently used in 

metformin cancer clinical trials, these results provide a rationale for the lack of significant 

improvement in treatment outcomes in some clinical studies where metformin was co-

administered with chemotherapeutic agents.  

Although chemotherapy in combination with a 360 mg/kg/day metformin dose exhibited 

greatest antitumor efficacy in all treatment groups, only a limited improvement in survival rates 

was observed when compared to survival rates with paclitaxel or carboplatin monotherapy 
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(Figure 5.3). This may be due to increased toxicity when a high metformin dose of 360 

mg/kg/day is used in combination with a chemotherapeutic agent compared to the effect of the 

chemotherapeutic agent alone. Interestingly, metformin at lower doses (e.g. 120 mg/kg/day) in 

combination with paclitaxel or carboplatin improved survival of the animals over that observed 

with these chemotherapeutic agents alone. 

This study revealed that differences in metformin PK contributed to the differences in the 

sensitivity of MDA-MB-231 tumors and MCF-7 tumors to metformin treatment. Metformin 

plasma concentration-time profiles were comparable between mice bearing MDA-MB-468 

tumors and MCF-7 tumors (Figure 5.5), but the tumor levels of metformin at 1 hr time point at 

different doses were nearly 2-fold higher in the MDA-MB-468 tumors than in the MCF-7 tumors; 

further, the difference in the metformin levels between the two tumor types at 24 hr was several 

fold.  The two-compartment PK model developed in this study predicts that the exposure of both 

type of tumors to metformin is dose-dependent, and that exposure of MDA-MB-468 tumors to 

metformin over a 24 hr period is expected to be nearly 2-fold greater than exposure of MCF-7 

tumors to the drug (Figure 5.6 and Table 5.2). The greater exposure of the MDA-MB-468 

tumors to metformin can be attributed to higher expression of cation-selective transporters and 

subsequent greater transporter-mediated metformin uptake in these tumors compared to the 

MCF-7 tumors (Chapter 2). These results suggest that response to metformin therapy may be 

predicted based on transporter expression profiles in tumor tissues. Further, the level of AMPK 

phosphorylation in tumor tissues increased with increased dose of metformin, and as expected, 

the level of phosphor-AMPK was greater in the MDR-MB-468 tumors than in MCF-7 tumors 

corresponding to higher cation-selective transporter expression in MDR-MD-468 tumors and 

greater efficacy of metformin against this tumor (Figure 5.4). Thus AMPK, in addition to the 

expression of cation-selective transporters, in the tumor tissue may prove to be a good 

biomarker to assess the antitumor efficacy of metformin. AMPK is widely believed to be the 

primary intracellular target of the anticancer efficacy of metformin and it has been evaluated as 
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a biomarker to predict success of metformin cancer therapy previously, although without a 

definitive conclusion (28). The present study provides support to using AMPK as a biomarker for 

metformin therapy. 

The simulated intratumoral concentration data from the population-based two-

compartment PK model developed in this study can be used to create the PK-

pharmacodynamic (PD) model. Such a PK-PD model can be used to estimate the efficacy of 

combination therapy of paclitaxel or carboplatin and metformin at doses that are higher than the 

highest dose used in this study, i.e. 360 mg/kg/day. In conclusion, this study systematically 

evaluated the antitumor efficacy of metformin as a monotherapy and in combination with 

paclitaxel or carboplatin for the treatment of ER+ or TN breast cancer, respectively. The results 

clearly suggest that metformin would be beneficial as a combination therapy for breast cancer, 

and provide the first direct evidence that a different minimum dose of metformin is required to 

achieve sufficient intratumoral exposure and antitumor efficacy of chemotherapeutic agents in 

different tumor types. The study also showed that cation-selective transporter expression levels 

and transporter-mediated metformin uptake into tumors directly affect the sensitivity of breast 

tumors to metformin treatment. Thus, screening transporter expression profiles in tumor 

biopsies from breast cancer patients would be beneficial in determining the initial metformin 

dose required for cancer therapy. Since chemotherapeutic agents are generally more toxic than 

metformin, investigating whether coadministration of metformin reduces the current dose of 

chemotherapeutic agents, without affecting treatment outcomes, could be an area of further 

investigation. 
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Figure 5.1 Design of the In Vivo Study to Evaluate the Anticancer Efficacy of Metformin 
as a Monotherapy and in Combination with Chemotherapeutic Agents Paclitaxel (for 
MCF-7 Tumors) and Carboplatin (for MDA-MB-468 Tumors) (A) Treatment group 
assignment for mice bearing MCF-7 tumors and MDA-MB-468 tumors. (B) Schematic of the 
two-compartment PK model used for estimating time profiles of intratumoral concentrations of 
metformin. V: Volume of distribution in each compartment. Q: Intercompartmental clearance. K: 
Rate constant. A: Amount of metformin in each compartment.  
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Figure 5.2 Antitumor Efficacy of Metformin as a Monotherapy and in Combination with 
Carboplatin (for MDA-MB-468 Tumors) and Paclitaxel (for MCF-7 Tumors). The progression 
of MDA-MB-468 tumors (A) and MCF-7 tumors (B) under different treatments was assessed by 
measuring tumor volume. Monotherapy is represented as solid lines and combination therapy 
as dashed lines. Weights of MDA-MB-468 tumors (C) and MCF-7 tumors (D) isolated from 
euthanized mice at the end of the treatment period were compared among different treatment 
groups. Data represent mean ± SD. N=6. * signifies p<0.05. ** signifies p<0.01. 
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Figure 5.3 Kaplan–Meier Survival Curves Showing the Effect of Metformin Treatment as a 
Monotherapy and in Combination with (A) Carboplatin or (B) Paclitaxel on the Survival of 
Mice Bearing MDA-MB-468 or MCF-7 Tumors, Respectively. Monotherapy is represented as 
solid lines and combination therapy as dashed lines. Mice on a combination therapy of 
carboplatin or paclitaxel and metformin (12 mg/kg/day, 36 mg/kg/day and 120 mg/kg/day) had 
higher survival rates compared to carboplatin and paclitaxel monotherapy, but combination with 
360 mg/kg/day metformin reduced the survival rate of mice. N=8 mice per treatment group. 
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Figure 5.4 Activation of AMPK Caused by Metformin and/or Paclitaxel and Carboplatin in 
MDA-MB-468 Tumors (A) and MCF-7 Tumors (B). Tumor tissues from mice euthanized at the 
end of treatment were lysed and analyzed by Western blot analyses for the extent of AMPK 
phosphorylation, using GAPDH as a loading control. Data are represented as scatter points and 
the median value of each group is represented as a dashed line. * signifies p<0.05. ** signifies 
p<0.01 
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Figure 5.5 Plasma and Intratumoral Concentrations of Metformin in Mice Treated with 
Different Doses of Metformin.  Metformin plasma concentrations versus time profiles in mice 
bearing MDA-MB-468 tumors (A) and MCF-7 tumors (B). Plasma concentration data points are 
represented as open circles and time profiles of the mean plasma concentration of metformin 
are represented as dashed line. Tumor tissues were isolated at 1 hr or 24 hr after administration 
of [14C]metformin. Intratumoral concentrations of metformin in MDA-MB-468 tumors (C) and 
MCF-7 tumors (D) are represented as mean± SD. N=3. 
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Figure 5.6 Visual Predictive Checks of the PK Model to Predict Plasma and Tumor 
Metformin Concentrations as a Function of Time in Tumor-bearing Mice. Simulated profiles 
of metformin plasma (red) and intratumoral (blue) concentrations as a function of time in mice 
bearing MDA-MB-468 tumors (A) and MCF-7 tumors (B). Simulated mean concentrations are 
represented as solid lines and the simulated 90% confidence interval is reflected by dashed 
lines. 
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Table 5.1 Estimates of the PK Parameters Calculated Using the Model Described in 
Figure 5.1 for Mice Bearing MDA-MB-468 Tumors and MCF-7 Tumors.  
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Table 5.2 Summary of the Simulated Intratumoral Exposures of Metformin in Tumor-
bearing Mice Treated with Varying Doses of Metformin. Data are represented as mean 
(90% confidence interval). 
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Supplementary Table 5.1 Systemic Exposures of Metformin in Tumor-bearing Mice 
Treated with 360 mg/kg/day Metformin versus 360 mg/kg/day Metformin and Carboplatin 
or Paclitaxel. Data are represented as mean (SD).  
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CHAPTER 6

Antiproliferative Efficacy of Metformin against Breast Cancer Cells is Enhanced by Inhibition of 
the Insulin/IGF1 Pathway  

 

6.1 OVERVIEW 

The effect of metformin on reducing breast cancer occurrence has been observed in 

several retrospective clinical studies. However, in several prospective clinical trials of metformin 

as an anticancer agent, breast cancer patients with type 2 diabetes generally had a better 

response than non-diabetic breast cancer patients to the antitumor efficacy of metformin. Since 

metformin suppresses the secretion of insulin and insulin-like growth factor (IGF)1 in breast 

cancer patients with type 2 diabetes, but not in non-diabetic cancer patients, and since insulin 

and IGF1 promote breast cancer cell proliferation, it was hypothesized that the modulation of 

insulin/IGF1 through the anti-diabetic pharmacology of metformin sensitizes breast cancer cells 

to its antiproliferative activity. In vitro studies using cell culture media devoid of insulin and IGF1 

increased the sensitivity of MCF-7 cells to the antiproliferative efficacy of metformin. Further 

analysis suggested that sensitization of MCF-7 cells to metformin was mediated by the 

intracellular target of metformin, namely the adenosine monophosphate-activated protein kinase 

(AMPK) pathway, rather than through modulation of intracellular uptake of the drug via 

increased expression of cation-selective transporters. Inhibition of the insulin pathway via 

knockdown of the insulin receptor substrate (IRS)1, a key mediator in the insulin pathway, 

improved sensitivity of MCF-7 cells to metformin beyond that expected by attenuation of the 

effect of insulin and IGF1 on promoting cell growth. These results suggest that metformin can 

be used as a combination therapy with current chemotherapeutic agents such as inhibitors of 
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phosphoinositide 3-kinase (PI3K), a signaling molecule downstream to IRS1 in the insulin 

pathway, so as to enhance efficacy in non-diabetic breast cancer patients.  

6.2 INTRODUCTION 

Retrospective analyses show that type 2 diabetes patients on long-term metformin 

treatment exhibit a lower risk of developing breast cancer compared to patients on other types 

of anti-glycemic therapy, such as insulin and sulfonylurea (1-3). These data led to prospective 

clinical studies to evaluate the efficacy of metformin in breast cancer therapy; the patient 

population in these studies included both diabetic and non-diabetic breast cancer patients. In 

the diabetic patients, metformin improved response to chemotherapy (4), inhibited cancer cell 

proliferation in breast tumor tissues (5), and improved metastasis-free survival following 

chemotherapy (6). In contrast, no significant beneficial effects of metformin were observed in 

non-diabetic patients with breast cancer (5-9), although a trend towards better outcomes was 

reported in some studies. These data suggest that current metformin therapy for non-diabetic 

breast cancer patients may be inadequate and needs to be optimized.     

In previous chapters of this dissertation, two strategies were proposed to optimize 

metformin treatment for breast cancer: 1) identify breast cancer patients who are most suitable 

for metformin cancer therapy using cation-selective transporter expression in tumor tissues as a 

biomarker, and 2) increase the dose of metformin in patients with breast tumors that exhibit low 

cation-selective transporter expression levels, so as to overcome insufficient uptake of 

metformin into tumor cells. This chapter details a new strategy to enhance the sensitivity of non-

diabetic breast cancer patients to metformin treatment. This strategy involves exploiting 

differences in the underlying molecular mechanisms of the antitumor activity of metformin in 

diabetic and non-diabetic breast cancer patients.   

The molecular mechanisms involved in the anticancer effects of metformin have been 

widely studied. The adenosine monophosphate-activated protein kinase (AMPK) pathway is the 

primary target of metformin in the tumor cells of diabetic and non-diabetic breast cancer 
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patients. Upon cation-selective transporter-mediated uptake into tumor cells, metformin 

activates AMPK, attenuates phosphorylation of P70S6K, a downstream molecule of AMPK, and 

subsequently inhibits breast cancer cell proliferation and induces apoptosis (10-11). In diabetic 

breast cancer patients, the pharmacology of metformin manifested in the treatment of the 

disease also contributes to the attenuation of tumor cell proliferation by lowering circulating 

insulin and insulin-like growth factor (IGF)1 levels. This results in suppression of insulin-

mediated tumor growth. Insulin and IGF1 bind to their receptors on the cell membrane and 

stimulate phosphorylation of the insulin-receptor substrate (IRS)-1, and thus activate the insulin 

pathway and promote cancer cell proliferation (12). Activation of the insulin pathway also 

modulates multiple signaling molecules including phosphoinositide 3-kinase (PI3K) and Protein 

kinase B (PKB, Akt) (13). The literature reports an upregulation of insulin and IGF1 receptors on 

breast cancer cell membranes (14), which enhances the sensitivity of these cells to changes in 

insulin and IGF1 levels affected by metformin therapy in diabetes.  

The potential interaction between extracellular insulin/IGF1 and the intracellular AMPK 

pathway in response to metformin treatment has been implied in some studies. Zakikhani et al., 

showed a greater inhibition of cell proliferation by metformin with the removal of both insulin and 

IGF1 from the culture media (11); however, this study did not investigate the underlying 

mechanisms involved. Others have demonstrated a potential role of metformin-mediated 

activation of the AMPK pathway in the expression of insulin and IGF1 receptors on breast 

cancer cell membranes (15).  A systematic investigation was undertaken to elucidate a possible 

interaction between inhibition of the insulin pathway and activation of the AMPK pathway by 

metformin.  

6.3 MATERIAL AND METHODS 

Generation of IRS-1 Knockdown MCF-7 (MCF-7IRS-1 KD) Cells.  The MCF-7 breast cancer cell 

line, which has a high expression level of insulin and IGF1 receptors compared to other breast 

cancer cell lines, was employed for these studies and cultured under the same conditions 
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described in Chapters 2 and 4. A TRC2 plasmid containing a puromycin-resistant gene and 

shRNA sequence that specifically targets human IRS-1 (SHCLNG-NM_010570, Sigma Aldrich) 

was transfected into MCF-7 cells using the AMAXA NucleofectionTM system (AAB-100, Lonza). 

The transfected cells were seeded on a 100mm cell culture dish (100-62-878, VWR) at a low 

density, and cultured for three weeks in selection media containing 0.5 µg/mL puromycin 

(A1113802, Gibco) until puromycin-resistant colonies were observed. A single MCF-7IRS-1KD 

clone with low IRS-1 expression was identified by real-time polymerase chain reaction (RT-

PCR) analysis of IRS-1 gene expression as described below. MCF-7 cells stably transfected 

with a non-target shRNA sequence (MCF-7T-CTRL) were generated using the same method 

described above and used as a transfection control. 

Determination of Expression of IRS-1 Genes and Cation-selective Transporter Genes. 

MCF-7 cells, MCF-7T-CTRL cells, and MCF-7IRS-1 KD cells were cultured in serum-deprived media 

in the presence or absence of insulin (5 µg/mL) and IGF1 (40 ng/mL) for 48 hours and lysed in 

QIAzol Lysis Reagent (79306, Qiagen) to isolate total RNA. cDNA was synthesized from total 

RNA and subjected to RT-PCR as described in Chapters 2 and 4 to determine the expression of 

IRS-1, plasma membrane monoamine transporter(PMAT) and multidrug and toxin extrusion 

protein (MATE)1 genes. The expression of endogenous 18s rRNA was used as a loading 

control.  

Evaluation of the Inhibition of Cell Proliferation by Metformin. MCF-7 cells, MCF-7T-CTRL 

cells, and MCF-7IRS-1 KD cells cultured in serum-deprived media in the presence or absence of 

insulin (5 µg/mL) and IGF1 (40 ng/mL) were exposed to 10 mM metformin for 48 hours. The 

antiproliferative efficacy of metformin in each treatment group was assessed by the Promega 

CellTiter 96® Cell Proliferation Assay (G3582, Promega). 

Measurement of Metformin Intracellular Uptake. MCF-7 cells, MCF-7T-CTRL cells, and MCF-

7IRS-1 KD cells were seeded on 24-well plates at a density of 75,000 cells/cm2. After reaching 90% 

confluency, the cell culture media was replaced with serum-deprived media with or without 
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insulin (5 µg/mL) and IGF1 (40 ng/m), and cells were pre-incubated for 48 hours. The 

intracellular uptake of metformin was evaluated by incubating 50 µM [14C]metformin for 5 min in 

the presence or absence of 500 μM of the pan transporter inhibitor, quinidine. Details of 

experimental procedure are described in Chapters 2 and 4. 

Assessment of Intracellular AMPK Activation. Western blot analysis was performed to 

evaluate activation of the AMPK pathway (reflected by increased AMPK phosphorylation and 

attenuated P70S6K phosphorylation) following metformin (10 mM) treatment for 48 hours in 

serum-deprived media with or without insulin (5 µg/mL) and IGF1 (40 ng/mL). Glyceraldehyde 3-

phosphate dehydrogenase (GAPDH) was used as a loading control. Details of the Western blot 

assay are provided in Chapters 2 and 4. 

Statistical Analyses. One-way analysis of variance (ANOVA) followed by Tukey’s test was 

applied to determine statistical significance in the differences between experimental groups in 

IRS-1 gene expression, cell proliferation, and intracellular uptake of metformin. Statistical 

analyses were conducted by GraphPad® (GraphPad Inc.,CA). 

6.4 RESULTS 

Generation of MCF-7IRS-1KD and MCF-7T-CTRL Cell Lines. MCF-7IRS-1 KD cells, in which IRS-1 

was stably knocked down, exhibited greater than 70% reduction in IRS-1 gene expression 

compared to MCF-7 cells (p<0.001, Figure 6.1). To ensure that any difference in cellular 

behavior and response to metformin treatment in MCF-7IRS-1 KD cells, compared to wildtype 

MCF-7 cells, was only due to IRS-1 knock-down and not the transfection process, MCF-7 cells 

stably expressing a non-target shRNA sequence (namely MCF-7T-CTRL cells) were used as a 

transfection control. No difference in IRS-1 gene expression was observed between MCF-7 

cells and MCF-7T-CTRL cells (Figure 6.1) suggesting that transfection did not alter IRS-1 gene 

expression. Therefore, in subsequent in vitro studies, the role of the insulin pathway in response 

to metformin treatment was evaluated and compared between MCF-7T-CTRL and MCF-7IRS-1 KD 

cells. 
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Inhibition of the Insulin Pathway Enhanced Sensitivity to the Antiproliferative Efficacy of 

Metformin. Metformin at a concentration of 10 mM inhibited proliferation of MCF-7T-CTRL and 

MCF-7IRS-1 KD cells in the absence of insulin/IGF1 (Figure 6.2A and B). In MCF-7T-CTRL cells, the 

antiproliferative effect of metformin was reversed by the addition of insulin/IGF1 to the culture 

media (Figure 6.2A). In contrast, addition of insulin/IGF1 to the culture media did not reverse 

the antiproliferative activity of metformin in MCF-7IRS-1 KD cells (Figure 6.2B), suggesting that the 

antiproliferative effect of metformin is countered by the active insulin pathway; stated 

alternatively, the sensitivity of breast cancer cells to the antiproliferative effects of metformin is 

enhanced when the insulin pathway is attenuated either by removing extracellular insulin/IGF1 

or knocking down IRS-1, which is a modulator of the insulin pathway (Figure 1.1). In the 

absence of metformin, the removal of insulin/IGF1 from the culture media had no impact on the 

proliferation of MCF-7T-CTRL and MCF-7IRS-1 KD cells (Figure 6.2A and B), suggesting that a 48-

hour exposure of breast cancer cells to insulin/IGF1 does not enhance cell proliferation. 

Inhibition of the Insulin Pathway Increased Activation of the AMPK Pathway by 

Metformin. Western blot analysis showed that, in both MCF-7IRS-1 KD and MCF-7T-CTRL cells, 

metformin caused activation of the AMPK pathway (reflected by an increase in AMPK 

phosphorylation and decrease in P70S6K phosphorylation) whether insulin/IGF1 was present or 

absent in the culture media (Figure 6.3, lanes 1, 3, 5 and 7). However, modulation of the 

AMPK pathway by metformin was less pronounced in the presence of insulin/IGF1 (Figure 6.3, 

lanes 1 and 2) than in the absence of insulin/IGF1 (Figure 6.3, lanes 3 and 4). As would be 

expected, modulation of the AMPK pathway by metformin in MCF7IRS-1 KD cells was not sensitive 

to the presence or absence of insulin/IGF1 (Figure 6.3, lanes 5 and 6), and was comparable 

under both conditions; further, the modulation in the AMPK pathway by metformin in these IRS-

knocked down cells was comparable to that in MCF-7T-CTRL observed in the absence of 

insulin/IGF1 (Figure 6.3, lanes 3 and 4). These data suggest that insulin/IGF1 suppresses the 
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modulation of the AMPK pathway and this could lead to suppression of antiproliferative activity 

of metformin by insulin/IGF1 (Figure 6.2). 

Inhibition of the Insulin Pathway Had Limited Effects on Transporter-mediated Metformin 

Uptake. The results reported in Chapter 2 showed that transporter-mediated metformin uptake 

was required for modulation of the AMPK pathway. Therefore, it is important to determine if 

insulin/IGF1 sensitized the metformin-mediated modulation of AMPK pathway by simply 

increasing the expression of metformin transporters and thus cellular uptake of metformin. This 

was achieved by evaluating expression of the two predominant cation-selective transporters in 

MCF-7 cells, namely PMAT and MATE1 (Chapter 2), in the transfected MCF-7IRS-1 KD and MCF-

7T-CTRL cells upon treatment of the cells with insulin/IGF1, and correlating changes in the 

transporter expression to changes in intracellular metformin uptake.  Insulin/IGF1 caused 

approximately 100% increase in PMAT gene expression in MCF-7T-CTRL cells but had no effect 

on the expression of MATE1 gene (Figure 6.4). In contrast, insulin/IGF1 had no effect on the 

expression of both PMAT and MATE1 gene in MCF-7IRS-1 KD cells (Figure 6.4). Interestingly, 

expression of both PMAT and MATE1 gene was significantly lower in the MCF-7IRS-1 KD cells 

than in the MCF-7T-CTRL cells regardless of treatment with insulin/IGF1 (Figure 6.4). 

 Metformin uptake over 5 min was assessed in MCF-7T-CTRL and MCF-7IRS-1 KD cells to 

determine if there is any association between the differences in expression of PMAT and 

MATE1 genes and intracellular uptake of metformin. Although cells with intact insulin pathway 

and cells fed with insulin/IGF1 had higher expression of PMAT and MATE1 genes, this did not 

result in an increased uptake of metformin (Figure 6.5). These results suggest that the higher 

sensitivity of the AMPK pathway to metformin treatment was not due to an increase in 

transporter-mediated metformin uptake. 

6.5 DISCUSSION 

The number of clinical studies focusing on repurposing the anti-diabetic drug metformin 

as a therapeutic agent for breast cancer has been increasing in recent years. Clinical trials have 
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shown that breast cancer patients with type 2 diabetes generally had a better response to the 

anticancer efficacy of metformin compared to non-diabetic breast cancer patients (4-9). 

Understanding the mechanisms responsible for this difference in treatment outcomes to 

metformin between the two patient populations will be critical to determining whether metformin 

would be suitable as a therapeutic agent in non-diabetic breast cancer patients, and will provide 

insights into improving current metformin therapy for breast cancer. The pharmacology of 

metformin in breast cancer patients with diabetes, as in other diabetic patients, involves 

inhibition of hepatic gluconeogenesis that results in a reduction in circulating levels of glucose, 

insulin, and growth factors like IGF1. It is important to note that these nutrients and growth 

factors contribute to the generation and growth of breast tumors (16-17). Although breast cancer 

cells are known to grow faster under hyperglycemic conditions versus under normal glucose 

levels (18), clinical observations suggest that the simple reduction of circulating glucose level by 

metformin does not improve its anticancer efficacy as other anti-glycemic agents such as insulin 

and sulfonylurea increase breast cancer incidence (1-3). Unlike insulin and sulfonylurea, 

metformin enhances insulin sensitivity (19, 20) and subsequently suppresses the secretion of 

insulin and IGF1 (21). Since insulin and IGF1 have been reported to stimulate breast cancer cell 

proliferation through activating the insulin pathway (12-14), it is possible that the inhibitory 

effects of metformin on insulin and IGF1 secretion reduces the stimulus for tumor growth and/or 

improves the sensitivity of breast tumors to its antitumor efficacy of metformin via other 

mechanisms, such as modulation of the AMPK-mTOR-P70S6K pathway. 

 In this chapter, a strategy was developed to evaluate the interplay between the anti-

diabetic and anticancer effects of metformin in an in vitro system. The anti-diabetic effect of 

metformin that is observed in diabetic patients was simulated in vitro by regulating insulin/IGF1 

levels in cell culture media. MCF-7 human breast cancer cells with high insulin and IGF1 

receptor expression were used in this study as they are more sensitive to changes in 

insulin/IGF1 levels in the culture media compared to other human breast cancer cell lines. MCF-
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7 cells were allowed to grow in cell media containing metformin but with low levels of 

insulin/IGF1 to simulate the condition of diabetes patients on metformin treatment. In an 

alternative approach, the insulin signaling pathway was attenuated/disabled by knocking down 

one of the key modulator of this pathway, namely, IRS-1. Since IRS-1 is a signaling molecule 

downstream to insulin and IGF1 receptors, reducing its expression should reduce any effect that 

insulin/IGF1 may have on metformin-mediated effects on cell proliferation.  

These in vitro studies showed that the antiproliferative efficacy of metformin in breast 

cancer cells was enhanced when the insulin pathway was inhibited either by deprivation of 

insulin/IGF1 or knockdown of IRS-1 (Figure 6.2). Removal of insulin/IGF1 from the culture 

media by itself had no effect on cell proliferation, ruling out that this enhancement in metformin 

antiproliferative activity was due to a metformin-independent effect. It is postulated that 

attenuating the insulin pathway increases the antiproliferative efficacy of metformin by causing a 

greater modulation of the AMPK pathway in breast cancer cells by the drug (Figure 6.3). The 

results further showed that the higher sensitivity of AMPK to metformin treatment caused by 

inhibition of the insulin pathway was not due to an increase in transporter-mediated intracellular 

metformin uptake (Figure 6.4). Instead, Western blot analysis showed that inhibition of the 

insulin pathway modulated the baseline phosphorylation levels of AMPK and P70S6K prior to 

metformin treatment (Figure 6.3). Since several studies have reported that activation of Akt1 

and 2, which are downstream molecules of IRS1, modulates the activation of AMPK and 

P70S6K in skeletal muscle cells (21) and hepatocytes (22), it is possible that the insulin 

pathway also impacts the AMPK pathway in human breast cancer cells through the insulin/IGF1 

receptor-IRS-1-Akt signaling cascade.  

Attempts were made to elucidate the interplay between the insulin and AMPK pathways 

in vivo by developing diabetic xenograft mice bearing MCF-7T-CTRL tumors and MCF-7IRS-1 KD 

tumors. However, only the mice injected with MCF-7IRS-1 KD cells were able to develop sizeable 

tumors, whereas mice injected with MCF-7T-CTRL cells developed very small tumors that failed to 
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grow (Supplementary Figure 6.1A). Although in vitro studies showed that MCF-7T-CTRL cells 

and wildtype MCF-7 cells had comparable levels of IRS-1 gene expression (Figure 6.1) as well 

as similar responses to the antiproliferative activity of metformin and similar intracellular 

metformin uptake (Supplementary Figure 6.2), the growth of MCF-7T-CTRL tumors was 

unexpectedly slower than that of wildtype MCF-7 tumors (Supplementary Figure 6.1A). Thus 

the MCF-7T-CTRL clone selected in this study was only suitable for in vitro studies. Interestingly, 

analysis of tumor tissues showed noticeably fewer blood vessels in MCF-7T-CTRL tumors 

compared to MCF-7IRS-1 KD and wildtype MCF-7 tumors (Supplementary Figure 6.1B), 

suggesting impaired angiogenesis in MCF-7T-CTRL tumors.  

Despite these unsuccessful attempts at generating xenograft mice bearing MCF-7T-CTRL 

tumors, preliminary studies were conducted in which results from the xenograft mice bearing 

MCF-7IRS-1 KD tumors (data obtained in this study) were compared with the results from the 

wildtype MCF-7 tumors (data from Chapter 5). Compared to wildtype MCF-7 tumors, MCF-7IRS-1 

KD tumors had a slower endogenous growth rate and were more sensitive to the antitumor 

effects of a high dose of metformin (360 mg/kg/day) monotherapy (Supplementary Figure 6.3). 

These results indirectly demonstrate that, similar to the results from the in vitro studies, 

inhibition of the insulin pathway in tumor tissues improved the sensitivity of tumors to metformin 

treatment. In future studies, an MCF-7T-CTRL clone will be identified that has an endogenous 

growth rate and response to metformin treatment similar to wildtype MCF-7 cells so as to 

successfully develop xenograft mice bearing MCF-7T-CTRL tumors. Diabetes will be induced in 

xenograft mice bearing MCF-7T-CTRL and MCF-7IRS-1 KD tumors by feeding the animals a high-fat 

high-carbohydrate diet, and the interplay between the anti-diabetic and anticancer effects of 

metformin in these mice will be evaluated.  

The results in this study suggest that the antitumor efficacy of metformin in diabetic 

patients is enhanced by the decrease in insulin/IFG1 levels caused by the drug therapy. Clearly, 

altering circulating insulin and IGF1 levels in non-diabetic patients is not a good option as insulin 
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and IGF1 also impact the physiology of other organs such as liver, pancreas, intestine, and 

muscles (23- 25). Hence, a more appropriate strategy would be to attenuate one or more 

signaling molecules in the insulin pathway of cancer cells. PI3K inhibitors are a category of 

cancer drugs that exert their anticancer effects by targeting the insulin pathway. However, 

several clinical studies using PI3K inhibitors reported a substantial patient dropout rate in the 

treatment group versus the placebo group, which was due to the adverse effects possibly 

caused by insulin resistance or hyperinsulinemia (26, 27). Based on this report and the results 

from the present study, it is proposed that a combination therapy of metformin and a PI3K 

inhibitor will improve the treatment for breast cancer by metformin alone or metformin with other 

chemotherapeutic agents. The PI3K inhibitor will inhibit the insulin pathway, subsequently 

increasing the antitumor efficacy of metformin in non-diabetic breast cancer patients, and 

metformin could improve insulin sensitivity and alleviate hyperinsulinemia caused by the PI3K 

inhibitor. The efficacy of this combination therapy can be assessed in preclinical in vivo studies 

by evaluating and comparing the antitumor efficacy of metformin alone, PI3K inhibitor alone, 

and metformin plus PI3K inhibitor in xenograft mouse models of breast cancer.  
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Figure 6.1 Generation of MCF-7T-CTRL and MCF-7IRS-1 KD Cell Lines. Expression of the IRS-1 
gene in MCF-7T-CTRL and MCF-7IRS-1 KD cells was normalized to IRS-1 expression in MCF-7 cells 
and compared to MCF-7 cells. Data represent mean ± SD, N=3. ** signifies p<0.001. NS: not 
significant. 
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Figure 6.2 Comparison of the Antiproliferative Efficacy of Metformin against MCF7T-CTRL 
Cells and MCF-7IRS-1 KD Cells. The impact of insulin/IGF1 on the antiproliferative efficacy of 
metformin was assessed in MCF-7T-CTRL cells (A) and MCF-7IRS-1 KD cells (B). Metformin and 
insulin/IFG1 treatments are shown below each bar. MCF-7 or MCF-7T-CTRL cells cultured in 
media containing insulin/IGF1 were set as the control group to which the cell proliferation of the 
other three groups were normalized and compared. Data represent mean ± SD, N=3. * signifies 
p<0.05. NS: not significant. 
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Figure 6.3 Impact of Insulin/IGF-1 on Metformin-mediated Modulation of the AMPK 
Pathway in MCF-7T-CTRL and MCF-7IRS-1 KD Cells. Metformin-mediated increase in AMPK 
phosphorylation and attenuation of P70S6K phosphorylation in MCF-7T-CTRL and MCF-7IRS-1 KD 

cells was assessed by Western blot analyses. Metformin and insulin/IFG1 treatments are shown 
for each lane. Total AMPK and P70S6K expression was also assessed. GAPDH was used as a 
loading control. 
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Figure 6.4 Effect of Insulin/IGF1 Treatment on the Expression of PMAT and MATE1 Genes 
in MCF-7 Breast Cancer Cells with Attenuated Insulin/IGF1 Signaling Pathway. Expression 
of PMAT and MATE1 genes was assessed by RT-PCR. PMAT and MATE1 expression in MCF-
7T-CTRL  cells cultured in media containing insulin/IGF1 was used as a control to which 
transporter expression in the other three groups (i.e. MCF-7T-CTRL  cells deprived of insulin/IFG1, 
MCF-7IRS-1 KD with or without insulin/IFG1 in the media) was compared. Data represent mean ± 
SD, N=3. * signifies p<0.05, ** signifies p<0.01.  NS: not significant. 
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Figure 6.5 Effect of Insulin/IFG1 Treatment on Intracellular Uptake of Metformin in Intact 
and Attenuated Insulin/IGF1 Signaling Pathway. Uptake of [14C]metformin was assessed in 
the presence or absence of the pan cation-selective transporter inhibitor quinidine in MCF-7T-

CTRL and MCF-7IRS-1 KD cells cultured in media containing insulin/IGF1 or in media deprived of 
these growth factors. Data represent mean ± SD, N=3. 
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Supplementary Figure 6.1 Endogenous Growth Rates of Wildtype MCF-7 Tumors, MCF-7T-

CTRL Tumors, and MCF-7IRS-1 KD Tumors. (A) The change in tumor volumes (over 50 days) of 
xenograft mice bearing wildtype MCF-7, MCF-7T-CTRL and MCF-7IRS-1 KD tumors. Data represent 
mean ± SD, N=20. (B) Images of the cross sections of wildtype MCF-7, MCF-7T-CTRL and MCF-
7IRS-1 KD tumor tissues; arrows point to blood vessels. 
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Supplementary Figure 6.2 Cell Proliferation (A), and Metformin Intracellular Uptake (B) in 
Wildtype MCF-7 Cells and MCF-7T-CTRL Cells. The treatment of various groups (insulin/IGF1, 
metformin) in the cell proliferation assay (A) is shown. MCF-7 or MCF-7T-CTRL cells cultured in 
media containing insulin/IGF1 were set as the control group to which cell proliferation of the 
other three groups were normalized and compared. (B) Metformin uptake in each treatment 
group was measured in the presence or absence of quinidine to assess transporter-mediated 
uptake. Data represent mean ± SD, N=3. 
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Supplementary Figure 6.3 The Effect of Metformin Treatment (360 mg/kg/day) in Relation 
to Saline Treatment (Control) on Wildtype MCF-7 Tumors and MCF-7IRS-1 KD Tumors.  The 
change in volumes of MCF-7 and MCF-7IRS-1 KD tumors over a 25-day treatment period was 
plotted. Metformin efficacy was reflected by the difference in the volumes of MCF-7IRS-1 KD/MCF-
7 tumors between metformin group vs. saline group (i.e. ∆MCF-7IRS-1 KD or ∆MCF-7), and 
pointed out by the vertical bars. Data represent mean ± SD, N=8.  
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CHAPTER 7

Conclusions 

 

Breast cancer is the second leading cause of cancer death among women in United 

States, with an estimated 40,730 breast cancer deaths in 2016 (1).  Based on different patterns 

of cell surface receptor expression, breast cancer can be categorized in to different subtypes 

such as estrogen receptor-positive (ER+) breast cancer, triple-negative (TN) breast cancer, and 

human epidermal growth factor receptor 2-posiitve (HER2+) breast cancer  (2). A significant 

challenge in the successful treatment of breast cancer is the wide variability in the expression of 

and mutations in oncogenes and tumor suppressor genes among different subtypes of breast 

cancer (2,3). Therefore, the selection of appropriate chemotherapeutic agents and the 

therapeutic dose depends on the breast cancer subtype. For luminal breast cancer, such as 

ER+ breast cancer (3), the tumors are relatively well-controlled by current chemotherapy. In 

contrast, patients with basal breast cancer, such as TN breast cancer, generally have a poor 

response to chemotherapy (2). Therefore, a new chemotherapeutic agent that is efficacious in 

all subtypes of breast cancer will represent a major advance in breast cancer therapy.  

 The length of survival in breast cancer patients following chemotherapy (generally 

expressed as a 5- or 10-year survival rate) is one of the primary standards of evaluating 

treatment outcomes, which is not only determined by the tumor inhibitory efficacy of the 

treatment, but also by the extent to which risk of cancer relapse and metastasis exists. Although 

the number of approved chemotherapeutic agents has been increasing in recent years, these 

agents have not contributed to cure of breast cancer and are generally too toxic for long-term 

therapy that is required to prevent cancer metastasis and relapse. Therefore, discovery of 
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metformin as a therapeutic agent that is safe, cost-effective, and efficacious in preventing 

cancer metastasis and relapse can be hailed as an important advance in cancer therapy that 

can improve survival outcomes in breast cancer patients. 

Since type 2 diabetes has been reported to increase the risk of developing breast cancer 

(4), the impact of anti-diabetic agents on breast cancer incidence was investigated by 

retrospective analyses. Compared to insulin and sulfonylurea, diabetic patients on metformin 

exhibited significantly lower breast cancer incidence in a majority of clinical trials (Table 1.1). 

Since metformin is a highly cost-effective drug with excellent safety profile that has been used 

for decades to treat type 2 diabetes, these retrospective observations led to follow-up 

prospective clinical studies to evaluate the antitumor efficacy of metformin, either as a 

monotherapy or in combination with chemotherapeutic agents. Several studies showed that 

metformin treatment was able to suppress tumor growth (5), prevent cancer relapse (6), and 

inhibit metastasis (6). However, in some clinical trials, particularly in those involving non-diabetic 

cancer patients, these beneficial effects of metformin were reported to be insignificant (6, 7). 

These contradictory observations from different clinical studies suggest that there are cellular 

and molecular factors in anticancer effects of metformin against breast cancer that are not well 

understood. 

As has been discussed in Chapter 1, because the anticancer effects of metformin were 

observed in the patient populations who were on metformin therapy for type 2 diabetes. Thus 

the two major mechanisms that have been considered for anticancer effect of metformin are 

those that seem to play a key role in metformin’s antidiabetic effects; namely, reduction of the 

circulating insulin and insulin-like growth factor 1 (IGF1) levels, and activation of AMP-activated 

protein kinase (AMPK) that leads to inhibition of gluconeogenesis in the liver cells. There is 

growing consensus that these mechanisms may play a critical role in the anticancer effects of 

cancer. High levels of circulating insulin and IGF1, a common physiologic feature found in type 

2 diabetic patients, are likely to provide the stimulus for cell proliferation and tumor growth. Thus 
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it is reasonable to propose that metformin therapy in type 2 diabetes that causes these levels to 

come down can reduce the stimulus for cell proliferation in the breast cancer tissue. At the 

cellular level, metformin appears to regulate the mobilization of glucose from stored glycogen in 

the liver cell by activation of AMPK, which is an important cellular signal for modulating 

metabolism at the cellular level according to the energy needs of the cell. It is important to note 

that AMPK activation can also trigger changes in the downstream signals, such as mammalian 

target for rapamycin (mTOR) and P70S6K, that play a critical role in programming a cell toward 

apoptosis (8, 9). Thus metformin’s known ability to activate AMPK in the liver cells would 

suggest that it can activate AMPK in breast cancer cells and contribute to reprogramming 

proliferating breast cancer cells toward apoptosis by modulation of the downstream signaling 

molecules mTOR and P70S6K.  

An important question that was unanswered at the time this dissertation project was 

being conceived was: how does metformin get into the tumor cells to cause activation of the 

intracellular target AMPK? Metformin is a small and very hydrophilic drug; in fact it is one of very 

few drugs that have more nitrogen atoms in its structure than carbon atoms. In addition, 

metformin carries a positive at all physiologic pHs. Hence, there was a strong consensus within 

the Thakker Group that metformin could not cross cell membranes or physiologic barriers such 

as intestinal epithelium or blood-brain barrier by passive diffusion, and that it requires cation-

selective transporters to carry it across the cell membranes and physiologic barriers. The 

previous and ongoing work on the treatment of type 2 diabetes with metformin had provided 

evidence that cation-selective transporters, such as organic cation transporters (OCT)s play an 

important role in its therapeutic efficacy (10) and renal elimination (11-13), respectively. Studies 

in the Thakker Group had produced new evidence that four different transporters, namely 

OCT1, plasma monoamine transporter (PMAT), serotonin reuptake transporter (ST) and high 

affinity choline transporter (CHT), played a significant role in metformin uptake into and 

transport across the intestinal epithelium (14, 15). Thus the major goal of this dissertation 
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project was to elucidate the expression and function of key cation-selective transporters in 

breast cancer tissues and breast cancer cell lines that are extensively used as surrogates of 

breast cancer cells in research, and to investigate the role of these transporters in the 

antiproliferative and antitumor activity of metformin.  

The studies in Chapter 2 provided the first evidence that OCT3, PMAT, and OCT1 are 

the predominant cation-selective transporters in human breast tumor tissues, and that variability 

in the expression of these transporters is greater than 1000-fold among breast cancer patients 

(Figure 2.2). This result implies that sufficient metformin uptake into breast tumor tissues is 

likely achieved only in a subpopulation of breast cancer patients. These studies also revealed a 

high variability in cation-selective transporter expression among different types of breast cancer 

cell lines (Figure 2.1). For breast cancer cell lines such as MDA-MB-468, MDA-MB-231, and 

BT-549 cells, multiple types of transporters are expressed at high levels, whereas no or very 

limited transporter expression is observed in breast cancer cell lines such as BT-20, MCF-7, 

and SK-BR-3 cells (Figure 2.1). As the activation of intracellular targets by metformin depends 

on its intracellular concentrations, it is possible that using breast cancer cell lines with different 

transporter expression profiles may lead to contradictory observations on metformin efficacy 

against breast cancer.  

These studies established an association between high cation-selective transporter 

expression in breast cancer cells and enhanced metformin uptake, enhanced activation of the 

AMPK pathway, and greater sensitivity to the antiproliferative activity of metformin (Figure 2.3-

5). A compelling evidence for these concepts was provided by designing studies in which the 

antiproliferative efficacy of metformin was compared between a transporter-deficient human 

breast cancer cell line (BT-20 cells) and an engineered OCT3-overexpressing cell line from the 

same genetic background (i.e. OCT3-BT20 cells) (Figure 2.3-5). Here, OCT3 was selected as a 

representative of all cation-selective transporters because it is most highly expressed in breast 

tumor tissues (Figure 2.1). As these cation-selective transporters share similar transportation 
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mechanisms, it is assumed the conclusion obtained from the study on OCT3 can also be 

applied to other cation-selective transporters. As both BT-20 and OCT3-BT20 have same 

genetic background, we can conclude that the increased metformin uptake, enhanced AMPK 

activation by metformin, and improved response to the antiproliferative efficacy of metformin 

observed in OCT3-BT20 cells compared BT-20 cells are only due to the OCT3 overexpression. 

These results suggest that transporter expression and transporter-mediated metformin uptake 

are both required for the antiproliferative efficacy of metformin.  

Besides overexpressing transporters in a transporter-deficient cell lines, the critical role 

of transporters in metformin anticancer effects can be illustrated through knocking down a 

transporter in transporter-competent cells, and comparing the antiproliferative activity between 

the wildtype and the transporter-knockdown cells. However, this approach would not have been 

as effective as the one employed in this research as the reduction of metformin uptake caused 

by the knockdown of one transporter may be compensated by other transporters that are also 

expressed in the cancer cells.  

Besides in vitro studies, attempt was made to use BT-20 and OCT3-BT20 cells to 

generate a pair of breast tumors which have similar genetic background and are only different in 

OCT3 expression, and compare metformin antitumor efficacy against both types of tumors. 

However, due to the endogenous slow growth of BT-20 tumors, there were not enough 

continuous growing BT-20 tumors generated for the in vivo studies. To overcome this difficulty, 

OCT3 was overexpressed in MCF-7 cells (OCT3-MCF7 cells), which are highly tumorigenic, 

fast-growing, and have low expression of transporters.  In vivo studies were conducted using 

xenograft mice bearing low transporter expressing MCF-7 tumors or transporter-competent 

OCT3-MCF7 tumors. As in clinical conditions, metformin is used as monotherapy or in 

combination with chemotherapeutic agent, the antitumor efficacy of metformin as well as 

metformin plus doxorubicin (DOX) were evaluated. DOX monotherapy was also included into 

the study to evaluate any possible interactions between DOX and metformin. The in vivo studies 
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demonstrated higher intratumoral concentrations of metformin in OCT3-MCF7 tumors than 

MCF-7 tumors (Figure 4.5), which suggested that the intratumoral accumulation of metformin is 

also mediated by cation-selective transporters. Consistent with the elevated accumulation of 

metformin, a greater increase in AMPK phosphorylation by metformin was observed in OCT3-

MCF7 tumors versus MCF-7 tumors (Figure 4.4). This greater activation of metformin led to an 

increased sensitivity to the antitumor efficacy of metformin monotherapy and DOX plus 

metformin treatment in OCT3-MCF7 tumors compared to MCF-7 tumors, which demonstrates a 

correlation among transporter expression, metformin accumulation in tumor tissues, activation 

of intracellular targets, and the response to metformin treatment. Collectively, these data clearly 

showed that high cation-selective transporter expression is required for adequate intracellular 

uptake and accumulation of metformin in breast cancer cells and tumors that can then activate 

its intracellular targets.  

The studies also demonstrated that a functional AMPK pathway is required for metformin 

to exert its antiproliferative efficacy, as inhibition of this pathway by Compound C, an AMPK-

specific inhibitor, reversed the antiproliferative activity of metformin in breast cancer cells 

(Supplementary Figure 2.1). This finding was also supported by comparing the antiproliferative 

efficacy between MDA-MB-231 cells and BT-20 cells. Due to the mutation in LKB-1, the kinase 

which is responsible for AMPK phosphorylation (Table 1.1), metformin treatment was not able 

to induce the AMPK phosphorylation in MDA-MB-231 cells (Figure 2.5). Therefore, even though 

the transporter-competent MDA-MB-231 cells exhibited more than 5-fold higher metformin 

uptake compared to BT-20 cells (Figure 2.3), both cell lines showed similar sensitivity to 

metformin treatment compared to BT-20 cells (reflected by comparable values of metformin 

IC50) (Figure 2.4). 

In summary: (1) these studies provided important information on cation-selective 

transporter expression in human breast tumor tissues and breast cancer cell lines and, that in 

turn, yielded key rationale for the in vitro and in vivo studies designed in this work to explore the 
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role of cellular mechanisms underlying antiproliferative and anticancer efficacy of metformin. 

These studies will prove to be critical in future basic and clinical research on the role of 

metformin in breast cancer. (2) The studies showed the importance of transporters in metformin 

uptake and accumulation in breast tumor cells/breast cancer cell lines and subsequent 

activation of the intracellular AMPK pathway, and the role of the AMPK pathway in the antitumor 

and antiproliferative activity of metformin. This correlation between cation-selective transporters 

and the antitumor efficacy of metformin suggest that at least one reason for poor outcomes of 

metformin treatment in breast cancer patients may be low transporter expression levels or a 

dysfunctional AMPK pathway in breast tumors. 

Future studies: 1. Clinical studies will be designed by stratifying patients with respect to 

metformin transporter expression (not only in breast cancer but in other cancers).  This will 

provide a more definitive evidence for the efficacy of metformin in breast cancer and other 

cancers, and provide more clarity about its intracellular mechanism underlying its anticancer 

effect.  2. These future studies can lead to exploration of metformin transporters and AMPK as 

biomarkers for predicting clinical outcome for patients to be treated with metformin as a 

monotherapy or in combination therapy. 

 Additionally, metformin prodrugs with high lipophilicity can be developed to enhance the 

intracellular uptake of metformin by passive diffusion, so as to circumvent the need for cation-

selective transporters in intracellular/intratumoral uptake and accumulation of the drug. This 

approach would enable all breast cancer patients, regardless of transporter expression levels or 

transporter polymorphisms, to avail of this efficacious and cost-effective drug.    

 Another set of important questions about metformin therapy against breast cancer that 

remains unanswered to date are: In the retrospective studies in diabetic patients that provided 

evidence for efficacy of metformin as an anticancer or cancer-preventive agent, were the doses 

of metformin adequate or optimum for its anticancer efficacy? Second, in the prospective 

preclinical and clinical studies that have been conducted to evaluate anticancer efficacy of 
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metformin, what was the rationale for selection of the doses used and was there a systematic 

assessment of dose-effect relationship? These questions clearly articulate the need to 

investigate dose-response relationship for treatment of breast cancer with metformin.  Hence, 

studies were designed in mouse models of breast cancer to systematically evaluate the 

relationship between metformin dose, exposure of tumor tissues to the drug, and the antitumor 

efficacy (Chapter 5).  

To simulate clinical situations and provide important insights into dose 

selection/adjustment for future clinical trials, a comprehensive preclinical study was designed 

(Figure 5.1A). The potential impact of breast cancer subtypes and tumor transporter expression 

profiles on the efficacy of metformin doses was evaluated in orthotopic xenograft mice bearing 

ER+ MCF-7 tumors (low transporter expression) and TN MDA-MB-468 tumors (high transporter 

expression) (Figure 2.1). Since most clinical trials investigating metformin for cancer therapy 

use the drug as a combination therapy with chemotherapeutic agents (6, 7), the preclinical study 

was designed to include varying doses of metformin as a combination therapy with paclitaxel 

(for MCF-7 tumors) or carboplatin (for MDA-MB-468 tumors), the two widely used 

chemotherapeutic agents for ER+ and TN breast cancer. The different doses of metformin were 

calculated (using body surface area) from human anti-diabetic doses, namely, the maximum 

recommended daily dose, the most commonly prescribed daily dose, and the two lower doses. 

In addition, the feasibility of using metformin as a monotherapy in breast cancer therapy was 

also evaluated in this preclinical study, as it is challenging to do so in clinical trials due to 

concerns that metformin monotherapy may not be potent enough to inhibit tumor growth. Such a 

study would play a critical role in interpreting the results of the studies involving combination of 

metformin with other chemotherapeutic agents. The antitumor efficacy was compared among 

the different treatment groups through comprehensive analysis of tumor progression, tumor 

weights at end points, and overall survival rates. 
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The results showed that metformin, in combination with chemotherapeutic agents like 

paclitaxel or carboplatin, produced demonstrated superior antitumor efficacy and better clinical 

outcomes than when metformin, paclitaxel or carboplatin was used as a single agent (Figure 

5.2-3). The data also revealed that in order to achieve significant improvement in antitumor 

efficacy by adding metformin to either carboplatin or paclitaxel, a minimum metformin dose of 

120 mg/kg/day (equivalent to 850 mg daily dose used for the treatment of type 2 diabetes) is 

required for the treatment of TN MDA-MB-468 tumors by carboplatin, and a 3-fold higher 

metformin dose of 360 mg/kg/day (equivalent to the 2550 mg maximum recommended daily 

dose for diabetes) is required for treatment of ER+ MCF-7 tumors with paclitaxel (Figure 5.2). 

These results could explain the ambiguous treatment outcomes observed in clinical studies that 

used a metformin daily dose of 850 mg.  

The doses of metformin in these studies were related to the systemic and intratumoral 

exposure to metformin, and to the efficacy of metformin. This is the first study in which the dose-

response and exposure-response relationships for metformin have been investigated in breast 

cancer therapy. While the intratumoral concentrations of metformin were only be determined at 

two time points (at Tmax and 24 hr time points), a two-compartment pharmacokinetic (PK) 

model was developed to simulate and predict intratumoral exposure over the entire 24 hour 

dosing period. The measured metformin plasma and intratumoral concentrations and the 

simulated intratumoral concentrations/exposure showed that while there was no difference in 

plasma concentrations of metformin between xenograft mice bearing the ER+ MCF-7 and TN 

MDA-MB-468 tumors when the same metformin dose was administered, intratumoral exposure 

of metformin in MDA-MB-468 tumors was approximately 2.5-fold higher than the exposure in 

MCF-7 tumors. Further, to achieve comparable exposure of MDA-MB-468 and MCF-7 tumors to 

metformin, 3-fold higher metformin dose (360 mg/kg/day) to mice bearing MCF-7 tumors was 

required over the metformin dose (120 mg/kg/day) to mice bearing MDA-MB-468 mice (Table 

5.2). These results are consistent with higher cation-selective transport expression in the MDA-
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MB-468 tumor cells than in the MCF-7 tumor cells, and suggest that the minimum required dose 

of metformin for combination therapy is primarily determined by intratumoral exposure, which 

argues for screening breast tumors for transporter expression levels to guide dose selection.  

The study described in Chapter 5 provides another important insight into breast cancer 

therapy. The results suggest that by adding metformin to the breast cancer treatment regimen 

that comprise conventional chemotherapeutic agents, it may be possible to reduce the doses of 

the chemotherapeutic agents and thus reduce their adverse effects. The survival data were very 

interesting, and showed that metformin improves survival of animals with breast cancer on 

chemotherapy even at doses that are sub-therapeutic in metformin monotherapy. Also, the high 

dose of 360 mg/kg/day that proved to be more efficacious than 120 mg/kg/day in inhibiting 

cancer growth, the lower dose proved to be more effective in improving survival.  

Future studies: Thus, future preclinical and clinical studies should evaluate efficacy and 

adverse effects of treatments in which a high dose of metformin (e.g. 360 mg/kg/day) is titrated 

with different doses of chemotherapeutic agents. Also, future studies should evaluate metformin 

doses higher than 360 mg/kg/day in monotherapy and combination therapy regimens to 

evaluate the maximum effective dose of the drug in ER+ and TN breast cancers.    

 In the studies discussed so far, the factors that impact the antitumor efficacy of 

metformin were investigated, and strategies were proposed to select breast cancer patients with 

good prognosis for metformin therapy and to select metformin doses for the best treatment 

outcomes. Metformin is also reported to suppress breast cancer relapse and metastasis, and 

this effect is thought to be mediated by suppression of breast cancer stem cells (CSCs). Breast 

CSCs are a subpopulation of cancer cells in breast tumors that are generally identified by a high 

expression of CD44 and low expression of CD24 on the cell surface (16). CSCs are widely 

believed to cause cancer relapse and metastasis as they are more resistant to 

chemotherapeutic agents (17), can readily migrate to other organs (18), and are highly 

tumorigenic (19) compared to non-stem cells cancer cells (NSCCs). Analyses of human breast 
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tumor tissues have revealed that basal breast tumors with a high proportion of CSCs are more 

aggressive and enhance the risk of cancer relapse and metastasis compared to luminal breast 

tumors that have a smaller proportion of CSCs (20). This finding suggests that CSCs play a 

central role in cancer relapse and metastasis.  

Breast CSCs are reported to be more sensitive than non-stem cancer cells (NSCCs) to 

metformin treatment, as metformin treatment has been shown to reduce the number of CSCs in 

breast tumors and breast cancer cell lines (21). Several studies have reported that metformin 

suppressed the proliferation of CSCs through activation of the AMPK pathway, and caused 

AMPK activation at a significantly lower concentration compared to NSCCs (22). However, the 

mechanisms involved in the higher sensitivity of CSCs versus NSCCs to metformin treatment 

have not been investigated.  

Chapter 3 of this dissertation described the studies conducted to elucidate the 

mechanistic differences in the sensitivities of CSCs and NSCCs to metformin. These studies 

used the BT-549 TN breast cancer cell line as a representative cell line, as it has moderate 

proportions of CSCs and NSCCs. Multidrug and toxin extrusion protein 1 (MATE1) transporter is 

the only predominant transporter expressed in BT-549 cells. A greater than 50% increase in 

MATE1 expression (Figure 3.1 and 2), (Figure 2.1), was observed in CSCs compared to 

NSCCs. This upregulation in MATE1 resulted in an increase in transporter-mediated metformin 

uptake in BT-549 CSCs versus NSCCs (Figure 3.3), and provided a rationale for the activation 

of intracellular AMPK and subsequent antiproliferative activity in CSCs at lower metformin 

concentrations compared to NSCCs. Since CSCs are believed to play a role in cancer relapse 

and metastasis, the greater sensitivity of CSCs to metformin treatment suggests that a lower 

metformin dose may be adequate to prevent cancer metastasis and relapse compared to the 

dose required for tumor inhibition.  

 Although there are several published reports on the upregulation of the ATP-binding 

cassette transporters (ABC transporters) and ABC transporter-mediated chemoresistance in 
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CSCs (17), there are no reports on the expression of uptake transporters in CSCs or on a 

correlation between uptake transporter expression and the cellular behavior of CSCs. This study 

provided the first evidence that cation-selective transporter expression is upregulated in CSCs 

and could be one of the factors that contributes to increased sensitivity of this subpopulation of 

cancer cells to metformin treatment. However, it remains to be determined whether the 

antiproliferative efficacy of metformin in CSCs is dependent on activation of intracellular AMPK.  

Future studies: Clearly, these findings open up an important area of research to 

investigate the distinct properties of CSCs that make them uniquely susceptible to metformin. 

This is an important area of research as few drugs have shown selectivity for CSCs that play 

such an important role in recurrence and metastases of breast cancer and other cancers.  

 It is believed that in non-diabetic breast cancer patients, metformin exerts its anticancer 

activity predominantly via modulation of its intracellular targets in tumor cells, whereas in 

diabetic breast cancer patients, the drug can also exert its anticancer effect indirectly through its 

anti-diabetic effects (5). Studies have shown that diabetic breast cancer patients generally 

respond better to metformin treatment compared to non-diabetic breast cancer patients; hence, 

understanding the interactions between the anti-diabetic and anticancer effects of metformin will 

not only help explain differences in clinical outcomes to metformin therapy among these two 

patient populations, but will also provide insights for the development of new combination 

therapies that can synergistically improve the anticancer efficacy in non-diabetic breast cancer 

patients. Therefore, the focus of the studies in Chapter 6, was to evaluate the impact of the anti-

diabetic effects of metformin on its anticancer activity at the cellular and molecular level. 

Similar to other agents used for the treatment of type 2 diabetes, the primary anti-diabetic effect 

of metformin is its glucose-lowering activity. However, the reduction of circulating glucose levels 

alone appears to have a very limited impact on the growth of breast tumors, as the long-term 

administration of other widely used glucose-lowering agents such as insulin and sulfonylurea 

enhances breast cancer incidence (23, 24). In contrast to insulin and sulfonylurea, metformin 
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improves insulin sensitivity and therefore, suppresses insulin and insulin-like growth factor 

(IGF1) secretion. Since both insulin and IGF1 have been reported to promote cancer cell 

proliferation by activating the insulin pathway through the modulation of the cell signaling 

cascade involving insulin/IGF1 receptor, insulin receptor substrate (IRS1)1, and 

phosphoinositide 3-kinase (PI3K) (25, 26), it was hypothesized that the insulin/IGF1-lowering 

effects of metformin inhibits breast cancer proliferation through regulation of the insulin pathway. 

To test this hypothesis, the dual effects of metformin (namely, its anticancer effects and its 

insulin/IGF1-lowering effect) in diabetic breast cancer patients were simulated by 

simultaneously adding metformin to MCF-7 cell culture media and removing insulin/IGF1 from 

the culture media. The results showed that the antiproliferative efficacy of metformin was 

enhanced in the absence of insulin/IGF1, whereas removal of insulin/IGF1 from the culture 

media without metformin treatment had limited effect on MCF-7 proliferation (Supplementary 

Figure 6.2). Further analyses showed that the increase in the antiproliferative effect of 

metformin in the absence of insulin/IGF1 from the culture media was through activation of the 

AMPK pathway (Figure 6.3) without increasing transporter-mediated intracellular uptake of the 

drug (Figure 6.4 and Supplementary Figure 6.3).  

In MCF-7 cells where the insulin pathway was inhibited by knocking down IRS-1 (the key 

regulator of this pathway) to generate MCF-7IRS-1 KD cells, metformin caused a greater activation 

of AMPK and greater antiproliferative activity regardless of insulin/IGF1 levels in the culture 

media compared to MCF-7 cells (Figure 6.2 and 3). This result suggested that the effects of 

extracellular insulin/IGF1 levels on the antiproliferative efficacy of metformin was mediated by 

the insulin pathway, and implied that inhibition of the insulin pathway by the insulin/IGF1-

lowering effects of metformin sensitizes breast cancer cells to its antiproliferative activity through 

modulation of the AMPK pathway. The results from studies described in Chapter 6, for the first 

time, provide clear evidence of interplay between the antidiabetic and anticancer effects of 

metformin.  
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Future studies: The significance of these results is that not only do they provide a 

rationale for differences in clinical outcomes to metformin treatment between diabetic and non-

diabetic breast cancer patient populations, but also they also suggest new strategies for 

improving metformin therapy in non-diabetic breast cancer patients through a combination of 

metformin and an insulin pathway inhibitor. Currently, several PI3K inhibitors are used in breast 

cancer therapy. Although they have shown significant efficacy against multiple types of breast 

tumors, there are concerns about the induction of hyperinsulinemia. Therefore, it is possible that 

a combination of metformin and a PI3K inhibitor can exert greater antitumor efficacy in non-

diabetic breast cancer patients, as the PI3K inhibitor will suppress tumor growth and sensitize 

tumor cells to the antiproliferative efficacy of metformin with reduced adverse effects, as 

metformin can alleviate hyperinsulinemia caused by the PI3K inhibitor. 

Studies in Chapter 6 investigated the insulin-lowering effects of metformin in vitro by 

removing insulin/IGF1 from cell culture media. These in vitro results need to be confirmed in in 

vivo studies. To do so, the anticancer and anti-diabetic effects of metformin can be evaluated in 

xenograft mice bearing MCF-7 tumors or MCF-7IRS-1 KD tumors that are fed a high-fat high-

carbohydrate diet to induce diabetes. The impact of the insulin/lGF1-lowering effect of 

metformin on AMPK activation in tumor tissues, as well as intratumoral concentrations of 

metformin and treatment outcomes can be evaluated. To test the feasibility of using a 

combination therapy of metformin and a PI3K inhibitor to improve antitumor efficacy and reduce 

adverse effects, tumor growth and circulating insulin/IGF1 levels following treatment with saline, 

metformin alone, PI3K inhibitor alone, or metformin and a PI3K inhibitor can be evaluated  

 In summary, the purpose of this dissertation research project was to identify important 

gaps in knowledge about metformin use in breast cancer (Chapter 1) and address some of the 

gaps, questions and limitations of metformin treatment (Figure 7.1). Studies in Chapter 2 

confirmed that the AMPK pathway is the primary intracellular target of the anticancer activity of 

metformin, and that intracellular uptake of metformin is mediated by cation-selective 
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transporters. Results from Chapters 2 and 4 demonstrated that transporter-mediated uptake 

and activation of the AMPK pathway are required for the anticancer activity of metformin, and 

suggested that metformin would be effective in breast cancer patients with a functional AMPK 

pathway and high transporter expression in tumors. Studies in Chapter 3 showed that the 

antiproliferative activity of metformin in CSCs is also achieved via transporter-mediated uptake 

of the drug and activation of intracellular targets, and that upregulation of cation-selective 

transporters in CSCs confers greater sensitivity to metformin treatment compared to NSCCs. 

Data generated from studies described in Chapters 1-4 led to the formulation of two strategies 

to optimize metformin for breast cancer therapy (Chapters 5 and 6). The PK studies in Chapter 

5 showed that metformin exerts greater antitumor efficacy in combination with a 

chemotherapeutic agent compared to monotherapy, and suggested that a minimum dose of 

metformin and intratumoral exposure of metformin are required to enhance antitumor efficacy 

compared to chemotherapy. Studies in Chapter 6 investigated interactions between the anti-

diabetic and anticancer effects of metformin in vitro and demonstrated that inhibition of the 

insulin pathway by the anti-diabetic effect of metformin sensitizes the AMPK pathway to 

metformin and improves antiproliferative efficacy in human breast cancer cells.  

Results from this research provide important insights and point to future directions for 

optimizing clinical use of metformin in cancer therapy. 

1. Selection criteria can be used to determine the most suitable breast cancer patients for 

metformin therapy by screening transporter expression and AMPK mutations in breast tumor 

biopsies.  

2. These selection criteria can be used as inclusion criteria in future clinical studies to reduce 

variability in metformin treatment outcomes in breast cancer patients.  

3. Metformin prodrugs with increased lipophilicity can be designed to enhance cellular uptake 

via passive diffusion and improve the antitumor efficacy of this drug in breast cancer 

patients with tumors that have limited transporter expression.  
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4. The current anti-diabetic metformin dose (850 mg/day) used in most clinical studies for 

breast cancer needs to be increased to the maximum recommended anti-diabetic dose of 

2,550 mg/day, and even higher doses of metformin should be evaluated for use in 

combination therapy of breast cancer.  

5. Clinical studies should be initiated in which metformin is administered in combination with an 

insulin pathway inhibitor, such as PI3K inhibitor, so as to improve antitumor efficacy of the 

combination and reduce the adverse effects of the PI3K inhibitors.  
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Figure 7.1 Summary of the Dissertation Research and Future Directions 
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