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ABSTRACT 
 

EMAD ALI KHAN: Characterization of a Novel Protein – 3D10 – a Secreted Receptor Form 
of the Human Osteoclast-Associated Receptor (OSCAR) 

 (Under the direction of Dr. Patrick Flood) 
 

Human osteoclast-associated receptor (hOSCAR) is a member of the leukocyte receptor 

cluster (LRC) of an unknown ligand.  hOSCAR has been reported to be expressed in several 

mononuclear cells (MNC) of myeloid origin and plays a role in modulating innate and 

adaptive immune response.  We identified an alternative spliced isoform of hOSCAR that we 

named 3D10.  Sequence analysis showed that 3D10 is one of a group of hOSCAR with a 

non-spliced intron resulting in larger transcripts and soluble proteins lacking a trans-

membrane domain.  Comparisons were made in tissue distribution between the two groups 

using specific PCR primers and rabbit polyclonal anti-hOSCAR and anti-soluble hOSCAR 

antibodies.  Both groups were found to be differentially expressed in peripheral blood 

leukocytes and in a wide variety of tissues.  They were also found to be expressed in all 

MNC and neutrophils.  The membrane-bound isoforms were down-regulated more than the 

soluble isoforms following stimulation in MNC with the mitogens PWM, Con A and PHA. 

Studies using THP-1 cells showed that the soluble isoforms are up-regulated by both PMA 

and LPS, and that they are secreted and may act as decoy receptors.  Performing yeast two 

hybrid screening of macrophage cDNA library identified potential binding partners that 

might include hOSCAR ligand and cytoplasmic modulators.  Screening mouse tissues with 

anti-soluble hOSCAR Ab suggests the existence of the soluble group of mOSCAR.  Finally, 
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although 3D10 has been found to be secreted, over-expressed intra-cellular 3D10 inhibits 

NF-κB in a TNF-α-independent pathway. 
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INTRODUCTION 

 

Inflammation is “a local response to cellular injury that is marked by capillary dilatation, 

leukocytic infiltration, redness, heat, and pain and that serves as a mechanism initiating the 

elimination of noxious agents and of damaged tissue” (Merriam-Webster’s Online Dictionary 

http://www.m-w.com/dictionary).  The process of inflammation is designed to dilute, 

destroy, or otherwise inactivate the agent that caused the injury with the ultimate goal to 

restore damaged or infected tissue to its original state. Inflammation itself and the causative 

agent(s) can result in tissue destruction and bone loss with a wide range of debilitating 

effects.  Examples are chronic periodontitis, rheumatoid arthritis and endotoxic or septic 

shock.  Although such examples are different in their outcomes, they share common cells and 

signaling pathways and may also be regulated by common molecules. 

Cells of the monocyte (MO)/macrophage (MФ) lineage play a crucial role in the 

initiation and maintenance of inflammation. Historically, they were called the mononuclear 

phagocyte system (MPS) that was defined as a family of cells arising from bone marrow 

progenitors, circulating as MOs and entering the tissues where they form the resident MФ 

population.1  These cells differentiate from pluripotent stem cells in bone marrow and can 

differentiate into MФs, osteoclasts (OCs) or dendritic cells (DCs).2,3  In inflammatory 

processes, circulating MOs are quickly become recruited and activated into MФs by bacterial 

products like lipopolysaccharides (LPS) and/or cytokines.  It has been established that MФ-

colony-stimulating factor (M-CSF) is mainly a MФ inducing cytokine, hence the name, but it 
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induces OC differentiation as well.4,5  MФs participate in the inflammatory and immune 

response by secreting pro- and anti-inflammatory mediators and by acting as phagocytes and 

antigen presenting cells. The balance between the two groups of cytokines is crucial for the 

modulation of inflammatory response.  The signaling pathways for differentiation, 

maturation and activation of MФs are important and have been used for drug development.6-8   

OCs are multi-nucleated cells responsible for bone resorption and originate from the 

MO/MФ lineage.9,10  The highly regulated balance between bone resorption by OCs and 

bone formation by osteoblasts determines and maintains the skeletal mass under physiologic 

conditions.  The disturbance of this balance can lead to severe pathologic conditions like 

osteoporosis and inflammatory diseases that involve bone like periodontitis or osteoarthritis.  

In addition to the balance between these two types of cells, there is an interesting osteoblastic 

role in the differentiation of OCs.  Osteoblasts express two molecules essential and sufficient 

for OC differentiation; M-CSF 10,11 and TNF-related activation-induced cytokine (TRANCE) 

that is also known as receptor activator of NF-κB (RANK) ligand (RANKL), osteoprotegerin 

(OPG) ligand (OPGL), or OC differentiation factor (ODF).10,12  M-CSF is expressed and 

secreted and it binds to its M-CSF receptor (CSF-1R or c-Fms) expressed on OC precursors, 

while RANKL is expressed on the surface of osteoblasts, stromal cells and T-lymphocytes, 

which requires physical cell-cell interaction to bind to its receptor RANK.10  OPG is a 

secreted “decoy” receptor that can bind RANKL and inhibit or potentially regulate 

osteoclastogenesis, hence the other name osteoclastogenesis inhibitory factor (OCIF).13  In 

vitro osteoclastogenesis has been successful when MФs are cultured with M-CSF and 

RANKL.9,10,12,14  It is interesting that IL-3 has been shown to block OC formation during the 

M-CSF/RANKL induction diverting the cells to MФ differentiation.15 
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LPS which is found in the wall of gram-negative bacteria is a very potent activator for 

both the immune system and the skeletal system and their cells.  It is pathologically found in 

the active sites of periodontal lesions.16  In pathologic situations, over-stimulation by 

bacterial LPS and the enhanced survival of MФs could lead to excessive release of cytokines, 

resulting in uncontrolled systemic inflammation and septic shock.17-19  LPS acts by binding to 

the LPS receptor complex that is composed of 3 proteins-CD14, Toll-like receptor 4 (TLR-

4), and myeloid differentiation protein-2 (MD-2).8  CD14 is expressed on MOs and MФs and 

is critical for LPS signaling.20  LPS binds to a plasma protein called LPS-binding protein 

(LBP), which transfers LPS to CD14.  CD14 has no cytoplasmic domain so it presents LPS 

to TLR-4/MD-2.21  TLRs and IL-1 receptors form the Toll/IL-1R (TIR) super-family.22  This 

family shares a common signaling pathway using TNF receptor-associated factor-6 (TRAF-

6) and activating NF-κB transcription factor.  LPS’ effect on MO/MФ cell line has been 

extensively studied, yet much more needs to be resolved.  It has been shown that LPS-

stimulated MФ has a very large change in the gene expression profile to the extent that very 

few genes do not change their level of expression.23  It has also been shown that TLR-4-LPS 

pathway induces pro-inflammatory cytokines in the precursors of OCs but not OCs 

themselves,24 which supports that the stimulation of TLRs favors immune responses and 

inhibits osteoclastogenesis.25  On the other hand, LPS has been shown to stimulate survival 

and fusion of pre-OCs.11  Furthermore, LPS inhibits osteoclastogenesis by down-regulating 

M-CSF and RANK receptors on pre-OCs, however, it stimulates TNF-α-dependent 

osteoclastogenesis in RANKL-pretreated cells.26  As for DCs, LPS activates existing DCs but 

inhibits the generation of new DCs.27  An interesting feature of LPS is that pre-exposure to 
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low dose of it desensitizes the cells to a second challenge, known as LPS hypo-

responsiveness or tolerance.28,29 

The balance between pro- and anti-inflammatory cytokines, between the activation 

and the inhibition of cells and between the differentiations of different cell populations is 

crucial for the modulation of inflammatory response, bone physiology and the 

pathophysiology of the whole body.  This balance is controlled by cell surface receptors.  

The expression of a receptor and its binding to its ligand initiates the signaling pathway(s) 

needed for a certain biological process.  These receptors, ligands and their signaling 

pathways for differentiation, maturation and activation of cells are highly regulated and not 

fully elucidated.  

A large group of gene families of these receptors are mapped on chromosome 

19q13.42, forming the Leukocyte Receptor Cluster (LRC) 30 which is part of the 

Immunoglobulin Super-family (Ig-SF).  These genes and gene families within this cluster 

share common structural and functional properties.  They include killer cell inhibitory 

receptors (KIR),31 killer cell activatory receptors (KAR),32 leukocyte Ig-like receptors (LIR) 

33,34 also known as Ig-like transcripts (ILT),35,36 monocyte/macrophage (myeloid) inhibitory 

receptors (MIR),37 HM and HL clones,38 CD85 39 or Leukocyte Ig-like receptors (activating 

LILRA or inhibiting LILRB) according to the Human Genome Organization (HUGO) Gene 

Nomenclature Committee HGNC 

(http://www.gene.ucl.ac.uk/nomenclature/genefamily/lilr.php); human hematopoietic Fc 

receptor for IgA (FcαR),40 and leukocyte-associated Ig-like receptors (LAIR).41  The two 

largest families are the KIRs/KARs and the LILRs.  They both can be classified into three 

functional categories: inhibitory, activating and soluble secreted receptors.  Members of the 
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inhibitory receptors have 2 or 3 extra-cellular Ig-like domains in case of KIRs and 2 or 4 in 

case of LILRBs.  They have a long cytoplasmic tail that has one or more immunoreceptor 

tyrosine-based inhibitory motif (ITIM).  Members of the activating receptors have short 

cytoplasmic tail that has no ITIMs.  They have a charged AA residue (arginine in the case of 

LILRAs) in the trans-membrane (TM) domain and they activate the cells by the association 

of this residue with an immunoreceptor tyrosine-based activation motif (ITAM)-bearing 

adaptor protein (like FcRγ, DAP12 and CD3ζ).  The soluble secreted receptors retain the 

extra-cellular Ig-like domains and the signal peptide but lack the TM domain.  The 

expression distribution of LRC genes is variable.  While KIRs/KARs are expressed only in 

natural killer (NK) cells and T cells, LILRs are expressed in lymphoid and myelomonocytic 

cells including T, B and NK cells, monocytes, macrophages and dendritic cells.34,42  LAIRs 

are even broader in their expression range.41   

We have isolated a novel gene, 3D10, which is an alternative spliced isoform of the 

newly discovered Osteoclast-Associated Receptor (OSCAR).43  OSCAR is one of the most 

recently identified members of the LRC genes.  It was discovered in mouse and thought to be 

OC-specific gene.  Human OSCAR (hOSCAR) shows structural and functional similarities to 

the LILRAs.  It has two extra-cellular Ig-like domains, arginine residue in the TM domain 

and a short cytoplasmic tail.  It has been shown to associate with FcRγ and activates dendritic 

cells.44  This shows that hOSCAR is a classical activating leukocyte receptor.  hOSCAR 

expression has been reported in neutrophils, monocytes, macrophages and dendritic cells.44  

Its expression in human tissues has not been fully explored and there have been no identified 

stimuli to modulate its expression.  The fact that its ligand has not been identified either, adds 

to the complication of its investigation.  Lately, hOSCAR has been studied extensively and 
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new findings show the importance of this receptor in modulating the innate and the adaptive 

immunity in addition to its involvement in bone biology. 

This research investigates a novel soluble group of hOSCAR focusing on 3D10 as a 

representative of this group.  We present some expression data of this group comparing it to 

the membrane-bound group and show some novel findings related to the modulation of the 

expression of both groups.  We also present some potential binding partners that might 

include OSCAR ligand which has been considered the most important finding to study 

OSCAR function by many authors.  These partners might also include important modulators 

to the osteo-immune biology.  Findings from this research will definitely contribute to the 

understanding of human biology and the future development of therapeutic modalities for 

diseases 

 

 

 

 



 

 

 

Chapter 1. 3D10 is a New Isoform of the Osteoclast-Associated Receptor 

 

Background 

Our laboratory has been studying bone biology, wound healing and the extra-cellular matrix 

biology.  This project started when we were searching for genes that are differentially 

expressed during bone remodeling in neonatal mice.  At this stage of development, tissues 

and cells behave very similar to the wound healing process.45  During these processes some 

genes are up-regulated and differentially expressed.  To identify some of these genes, the 

Representational Difference Analysis (RDA) method has been proposed.  RDA has been 

originally designed to analyze the differences between two complex genomes and has been 

used to isolate probes to viral genomes present as single copies in human DNA.46  RDA can 

also be used to analyze differences between two cDNA samples in the same way. 

 Since we were searching for mouse bone-specific genes, bone tissue should be used 

to synthesize the “Tester” cDNA.  The “Driver” cDNA should be synthesized from tissues 

that share the same genes except bone-specific genes like skin and tail.  We performed this 

method and isolated two novel genes one of which was 3D10. 

 

Materials and Methods 

Representational Difference Analysis 

Twenty 7-day-old C57BL/6J mice (Black 6) of unknown sex were sacrificed by quick 

decapitation.  Calvaria (target tissue or tester), skin, and 1 cm tail samples (control/driver 
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tissues) were dissected out and kept in ice-cold phosphate-buffered saline (PBS) buffer 

treated with diethyl pyrocarbonate (DEPC).  Tissues were immediately homogenized in 

guanidine thiocyanate for total RNA isolation in cesium chloride (CsCl)-gradient method.47  

The isolated RNA was treated with RNase-free DNase and then checked for quality using 

formaldehyde-agarose gels. Magnetight™ Oligo(dT) Particles (Novagen, EMD Biosciences, 

Inc, Darmstadt, Germany) were used to isolate messenger RNA (mRNA) from 200 µg of 

total RNA from each tissue type. RDA was completed according to a published protocol.48  

Briefly, single stranded (ss) DNA was obtained using Superscript II Reverse Transcriptase 

(Invitrogen) and mRNA as template. Double stranded (ds) cDNA was synthesized by E. coli 

DNA polymerase, quality assessed in agarose gels and cut with the restriction enzyme DpnII. 

Cut fragments were polymerase chain reaction (PCR)-amplified giving the Representations 

for each cDNA type. Approximately 1.5 µg of each cDNA type was ligated to the R-Bgl-

12/24 adapter in a PCR machine using T4 DNA ligase and oligonucleotides (oligo-nt). The 

amplified products were verified on agarose gel, phenol extracted-ethanol precipitated and 

re-suspended in buffer TE. DpnII digestion removed the R-adapters and then Qiaex resin was 

used to gel-purify the Representations. A new set of J-Bgl-12/24 adapters were ligated to the 

tester cDNA as described for R-adapters. The driver tissue cDNA was pooled with no 

adapters ligated and 40 µg of it was mixed with 0.4 µg of the tester. This mixture was phenol 

extracted-ethanol precipitated and thoroughly re-suspended in 4 µl of EEx3 buffer (30 mM 

EPPS, pH 8.0, 3 mM EDTA). Mineral oil was overlaid, DNA was denatured and the salt 

concentration was adjusted by adding 1 µl of 5 M NaCl. The sample was allowed to 

anneal/hybridize. The hybridized DNA was diluted, re-suspended in 400 µl of TE and 10-

cycle-PCR amplified. All ssDNA was removed using mung bean nuclease in digestion 
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buffer. Final amplification was carried out by PCR for 18 cycles. The PCR product was 

phenol extracted, isopropanol precipitated and re-suspended at 0.5 µg/µl to give the First 

Difference Product (DP1). 

The Second Difference Product (DP2) was generated using the N-Bgl-12/24 adapters 

and the same steps of DP1 except that in the second round of hybridization, 50 ng of tester 

(DP1) was mixed with 40 µg of driver. The procedure was repeated a third time using 100 pg 

of J-ligated DP2 to generate the “final” Third Difference Product (DP3), which was the result 

of 22 cycles of PCR amplifications. DP3 was digested with DpnII and cloned into the BamHI 

site of the vector pSPORT-2 (Invitrogen) and screened for recombinants by blue-white 

screening. Randomly picked white colonies were grown and plasmid DNA prepared using 

the Qiagen kit for minipreps (Qiagen, Inc.).  Forty one colonies were sequenced and their 

cDNA was compared with entries in GenBank Sequence Database.  

 

Northern Blotting 

Total RNA was isolated from the calvaria, skin and tails of 7-day-old mouse pups as 

described previously.  Twenty µg of total RNA from each tissue was run on formaldehyde 

agarose gels and blotted onto Nylon membranes.  The complete protocol is described 

elsewhere.49  The membranes were processed for Northern Blotting using 32P-dCTP-labeled 

probe for 3D10.  Ethidium bromide-stained gel was used for loading comparison. 

 

3D10 cDNA Cloning 

3D10 cDNA was sequenced and analyzed for homology. A newly described Osteoclast 

Associated Receptor (OSCAR) 43 and a human EST clone showed significant homology. 
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Because of the differences with OSCAR, we sequenced the human EST clone and identified 

a 282-amino acid (AA)-coding region. This sequence showed that 3D10 is an alternatively 

spliced variant of OSCAR gene with an un-spliced intron between the last two exons giving a 

larger transcript.  This intron has a stop codon preventing the last exon from being translated.  

We cloned the coding region of human 3D10 plus the un-translated region from the last exon 

to the stop codon into the eukaryotic expression vector pcDNA3.1/His B (Invitrogen) which 

has an amino (N)-terminus Xpress epitope and a His-tag (Figure 1.1). 

 

Anti-3D10 and Anti-mOSCAR Antibodies 

Using the human 3D10-specific C-terminus polypeptide we synthesized a polyclonal 

antibody.  The C-terminal 15 AA-polypeptide (QDSWDPAPPPSDPGV) was conjugated to 

keyhole limpet hemocyanin (KLH) and used to immunize rabbits.  Pre-immune serum was 

prepared to be used as a negative control.  This was made by Alpha Diagnostic Intl. Inc., San 

Antonio, TX.  We received 6 bleeds from 2 rabbits.  Aliquots were prepared and stored at -

80°C.  Anti-mOSCAR Ab (R&D Systems) was raised in goat against AA 19-228 of 

mOSCAR, which is approximately 70% homologous to the N-terminus sequence of 

hOSCAR. 

 

3D10 mRNA Expression 

Human BD™ MTC Multiple Tissue cDNA Panels (Human MTC Panel I, and Human 

Immune System MTC Panel of Clontech) were PCR-amplified using 3D10-specific primers.  

PCR products were hybridized with 32P-dCTP-labeled probe for 3D10.  GAPDH was used 

for loading control.   
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3D10 Protein Expression 

A common cell line for MФ and OC is the murine myeloid cell line RAW 264.7 (ATCC 

TIB-71).  RAW 264.7 is MФ-like, Abelson leukemia virus transformed cell line derived 

from BALB/c mice.  RAW 264.7 cells were plated and incubated in Dulbecco's modified 

Eagle's medium (DMEM) with 10% fetal calf serum (FCS) to adhere for 24 hours (h).  One 

µg/ml E. coli LPS (Sigma) was added in fresh medium and cell lysates were collected at 0 

(no LPS), 2, 6, 12 h, 1, 2, 4 and 6 days in RIPA buffer.  Equal amount of protein from each 

time-point was loaded in 4-12% SDS-Poly Acrylamide Gel Electrophoresis (PAGE) gels and 

transferred to 3 celluloid membranes for western blot using TNF-α and IL-1β antibodies 

(R&D Systems) and 3D10 rabbit anti-sera.   

We also examined LPS effect in cultured bone marrow cells.  Adult rats were 

sacrificed under CO2 chambers, the long bones were dissected out from all adherent tissues 

carefully and the bone marrow was flushed with α-MEM.  The marrow was homogenized, 

centrifuged and cultured in α-MEM/10% FCS for 24 h.  Non-adherent cells were collected 

and cultured for the LPS experiment.  LPS was added in fresh medium and 2 days later 

lysates were blotted using 3D10 anti-sera and goat anti-mOSCAR antibody.  

Adult Black 6 mice were sacrificed under CO2 chambers.  Skin, lung and spleen 

samples were dissected out and kept in ice-cold PBS buffer containing 1X proteases inhibitor 

cocktail (Sigma).  Tissues were homogenized and protein was extracted by centrifugation.  

Total protein was measured using BCA (bicinchoninic acid) Protein Assay (Pierce).  

Aliquots of equal loading were processed for western blot and blotted with anti-3D10 anti-

sera.   
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Immunohistochemical staining of serial paraffin sections generously obtained from 

Dr. Dana Graves, Boston University, were processed and analyzed as follows.  Slides were 

heated to 55-60ºC for 20 min to melt paraffin.  Gradual re-hydration was done by immersing 

in xylene for 5 min twice followed by serial dilution of ethyl alcohol from 100% to dH2O at 5 

min intervals.  Slides were immersed in boiled 1 mM EDTA (pH 8) for 1 min followed by 

dH2O and then PBS for 5 min each.  Endogenous peroxide was blocked by immersing the 

slides in 50% methyl alcohol and 1% H2O2 for 30 min.  Non-specific antigens were blocked 

by 1:100 pre-immune serum in PBS for 30 min.  Slides were stained then by either pre-

immune serum or anti-3D10 anti-sera followed by the secondary antibody.   

Transient transfection of RAW 264.7 cells was carried out using Superfect 

transfection reagent (Qiagen) according to the manufacturer’s protocol.  Cells were 

transfected with 3D10 eukaryotic expression vector pcDNA3.1/His B, lysed and blotted 

using 3D10 antibody. 

 

Recombinant 3D10 Production 

3D10 cDNA was cloned into the prokaryotic expression vector pET-15b (Novagen) which is 

inducible and has an N-terminus His tag.  Plasmid was verified for its reading frame by 

sequencing, amplified and isolated from non-expression host NovaBlue.  It was then 

transformed into expression host E. coli strain BL21(DE3).  Single colonies from Luria Broth 

(LB)/ampicillin (amp) plates were tested for expression by inoculating the bacteria into 3 ml 

LB/amp media and incubated at 37°C and shaking at 250 rpm for 3 h followed by 1 mM 

IPTG induction for 1 h.  Samples from cultures (before and after induction) were run in SDS-

PAGE and initially verified by immuno-blotting in western blot using anti-3D10 anti-sera.  
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All other small scale cultures thereafter were tested by Coomassie blue staining looking for 

protein expression at the expected molecular weight.  Positive cultures were scaled up.  Cells 

were harvested by centrifugation at 4°C and 6500 x g for 15 min.  Protein was isolated as 

either soluble or insoluble (in the inclusion bodies) by binding, washing and eluting buffers 

in His-Bind resin columns according to the manufacturer’s instructions (Novagen pET 

System). 

 

Results 

mOSCAR is differentially expressed in developing bone 

Out of the 41 clones we sequenced, two clones were novel at the time this was done (Table 

1.1).  The novel clone we named 3D10 (in mouse) was later registered as mOSCAR.  We 

isolated a 240 bp-fragment near the 5’ end of this transcript.  We synthesized a 32P-dCTP-

labeled probe using the whole fragment.  Northern blot confirmed that 3D10 is expressed in 

calvaria and not in skin or tail of neonatal mice (Figure 1.2).  Several attempts were made 

unsuccessfully to isolate the full cDNA using Rapid Amplification of cDNA Ends (RACE).  

We found the human EST clone which was approximately 70% homologous to the isolated 

fragment and named it 3D10.  All the following studies were made to characterize the human 

3D10. 

 

3D10 mRNA is widely expressed in human tissues 

We found that the strongest expression among the examined tissues was from peripheral 

blood leukocytes (Figure 1.3).  Weaker signals were also observed from lung, pancreas, 

kidney, spleen, liver, bone marrow and placenta.  Another human 24-tissue cDNA panel 
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(OriGene) was used to compare the expression of soluble group with the membrane-bound 

group.  This is discussed in chapter 4. 

 

3D10 protein expression is observed in mouse tissues 

Western blot of spleen, lung and skin using 3D10 rabbit anti-sera showed a single band with 

the expected molecular weight (MW) of ~ 32 kDa (Figure 1.4).  Although skin showed 

negative expression to 3D10 during the RDA and the Northern blot, it was from 7-day-old 

pups while for western blot it was from adult mice.  Furthermore, skin sample for western 

blot contained inflammatory cells and dendritic cells that have been found to express 3D10 

and human OSCAR respectively.50   

Immunohistochemical sections of various tissues showed positive 3D10 staining in 

OCs and inflammatory cells compared to the control rabbit IgG or normal goat serum (Figure 

1.5).  

 

Cloned 3D10 is over-expressed in RAW 264.7 cells 

Transiently transfected RAW 264.7 cells showed a prominent band with the expected MW of 

3D10 matching the band from non-transfected cells (Figure 1.6). 

 

LPS-stimulated RAW 264.7 and RBM cells over-express 3D10 

The expression of 3D10 in leukocytes and OCs guided us to study LPS effect on its 

expression in vitro.  LPS-stimulated RAW 264.7 (Figure 1.7) expressed TNF-α and IL-1β 

with the first time-point post-LPS addition (2 h).  While TNF-α and IL-1β had different 

peaks, they both gradually decreased when 3D10 expression started to gradually increase 
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from the baseline that did not change with LPS addition.  The time-course of the experiment 

did not allow us to compare the peak of 3D10 expression with the other 2 pro-inflammatory 

cytokines.  Nevertheless, there was an obvious inverse relationship between them. 

 RBM cells showed similar baseline expression of 3D10 and over-expression post-

LPS stimulation (Figure 1.8).  Anti-mOSCAR Ab did not detect any expression.   

 

3D10 cloned and expressed using prokaryotic expression system could not be purified 

Initial induction test for 3D10 expression was positive as western blot showed (Figure 1.9).  

The expressed protein was found in the pellet as inclusion bodies.  Several protocols were 

used to solubilize it and purify it unsuccessfully.  Another host strain (BL21(DE3) pLysS) 

was used, slow expression at 30°C, addition of 1% glucose to repress lac promoter, different 

buffers (like phosphate or Tris buffers), denaturation by 6 M urea or guanidine HCl, adding 

reagents like DTT or Triton X, and extreme pH (4.6 and 9.1) were all unsuccessful.  We tried 

to lyophilize the pellet and re-dissolve it but the protein remained in the pellet. 

 

Discussion 

We have shown that mOSCAR is differentially expressed during bone remodeling in 

neonatal mice.  OSCAR has been shown to be important in OC differentiation.43,51  The 

balance between OC and osteoblast function is very important in the development and wound 

healing.  In addition to this, we have also shown that OSCAR is expressed in other tissues 

and cells and may play important role in modulating the immune response.  More data and 

findings will be shown in the following chapters of this project. 
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3D10 coding transcript is currently registered at GenBank as human OSCAR isoform 

OSCAR-S1 by Kim et al.  We isolated mouse OSCAR fragment and obtained a human EST 

clone that was approximately 70% homologous to the isolated fragment and different from 

mouse OSCAR at the C-terminus.  When mOSCAR and hOSCAR genes were identified with 

their supporting transcripts we compared the sequences and realized that there is no evidence 

that supports the existence of the soluble group in mouse.  The Ab we synthesized and used 

recognized a sharp strong band at the expected molecular weight of 3D10 in mouse tissues 

and the murine cell-line RAW 264.7.  This band is increased in intensity with LPS 

stimulation in both mouse and rat tissues.  Immunohistochemistry slides showed positive 

staining of multi-nucleated giant cells located at bone margins that looked characteristic of 

OCs.  Inflammatory cells also showed positive staining compared to the pre-immune serum 

control.  Finally, there was no homologous match or close to the epitope we used to 

synthesize anti-3D10 Ab when we searched in mouse protein database using Blast.  These 

findings and observations support that anti-3D10 Ab could be binding to a mouse homolog of 

3D10 that has not been identified and isolated.   The possibility that anti-3D10 Ab cross-

reacts to another molecule sharing the same antigenicity and molecular weight with 3D10 is 

supported with the mouse genomic structure of OSCAR gene and the negative results 

observed when anti-mOSCAR Ab was used.  This Ab was raised to an epitope that is 

approximately 70% homologous to hOSCAR.  Nevertheless, many antibodies may fail to 

bind to proteins carrying the epitope for unknown reason.  The final answer will be 

determined when the band recognized by anti-3D10 Ab is precipitated and sequenced.  This 

is one of the future directions of 3D10 investigation.   
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 Recombinant 3D10 could not be purified from a prokaryotic expression system.  The 

expressed protein is different from the native eukaryotic one in at least two areas.  It lacks 

any post-translational modification and it has the N-terminus addition of His tag and linker.  

Human OSCAR has been shown to be N-glycosylated.50  It has 3 potential sites that are 

present in 3D10 sequence.  N-glycosylation is important in protein folding and stability and 

could have contributed to the unsuccessful 3D10 purification.  Lower level of expression 

could be attained and purified from eukaryotic expression system or from transfected cells, 

provided that the protein is not toxic to the cells or unstable for other reasons.    

Although we were interested in the extra-cellular matrix biology, the progress of this 

project has shown and proven that biological systems are complex and inter-related.  OSCAR 

has been shown to be important in both the immune system and the skeletal system.  The 

field of the cross-talk between skeletal system and immune system “Osteoimmunology”52 

has been growing lately.  Both systems have common regulatory molecules (e.g. RANKL53, 

IFN-γ54, IFN-β55 and other cytokines), and cells of both systems form in the bone marrow.  

Bone regulation by immune inflammatory processes and the “inflammatory bone loss” are 

very well recognized but the complete picture is not completely understood.  Understanding 

the biological mechanisms between the two systems has a definite positive impact on our 

health. 

In conclusion, 3D10 is a new isoform of hOSCAR.  It is expressed in wide variety of 

tissues and cells.  It might be expressed in mouse and is up-regulated with LPS stimulation. 

 The following chapters will focus on the role of 3D10 in modulating inflammation by 

inhibiting NF-κB transcription factor activity, searching for 3D10 binding partners and 
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characterizing the soluble group of hOSCAR compared to the membrane-bound group 

regarding the expression and distribution pattern. 
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Tables 

Table 1.1. Representational Difference Analysis of 7-day-old mouse calvaria (tester) and 

skin/tail (driver) after 22-cycle PCR amplification DP3. 

 

Number of 

Clones 

Sequence Homology to 

GenBank entries 

Confirmation by Northern 

Blotting 

25 Mouse Osteocalcin Yes 

2 Mouse Acid Phosphatase Yes 

2 Mouse Creatine Kinase Yes 

6 Rat Myosin Heavy Chain No 

4 Unknown Protein mRNA (mouse) No 

1 Novel Clone 3D10  Yes 

1 Novel Clone 4G8 Yes 
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Figures 

Figure 1.1. Cloned 3D10 into pcDNA3.1/His B. 

Full coding region of 3D10 cDNA (3D10 CDS) plus the un-translated region of the last exon 

to the stop codon of membrane-bound hOSCAR was cloned into the vector pcDNA3.1/His B 

(Cloned fragment).  KpnI and BamHI restriction sites were used at the 5’ and 3’ ends of the 

insert respectively.  An additional “c” nucleotide was added after the KpnI site to make the 

insert in-frame.  The vector has an N-terminus 6-histidine (6xHis) tag and an Xpress epitope.  

EK: enterokinase recognition site, BGH pA: Bovine Growth Hormone polyadenylation 

region, Neo®: Neomycin resistance gene, Amp®: Ampicillin resistance gene. 
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Figure 1.2. Northern Blot Confirming RDA results.   

20 µg total RNA from calvaria (C), skin (S) and tail (T) of 7-day-old mouse pups was run on 

formaldehyde agarose gels and blotted onto Nylon membranes.  The membranes were 

processed for Northern Blotting using 32P-dCTP-labeled probes for 3D10 (Left).  The blot 

shows that 3D10 is expressed in calvaria and not in skin or tail.  Ethidium bromide-stained 

gel shows loading of total RNA (Right).  The positions of 28S and 18S ribosomal RNA are 

indicated. 

 

 

 

 

Figure 1.3. PCR amplification of 3D10 mRNA expressed in human multiple-tissue 

cDNA panel. 

3D10 cDNA was amplified from Human BD™ MTC Multiple Tissue cDNA Panels (Human 

MTC Panel I, and Human Immune System MTC Panel of Clontech) using 3D10-specific 

primers in PCR and the products were hybridized with 32P-dCTP-labeled probe for 3D10. 

3D10 is heavily expressed in peripheral blood leukocytes (PBL). Weaker signals were also 
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observed from lung, pancreas, kidney, spleen, liver, bone marrow and placenta.  GAPDH 

probing shows the relative loading differences.  The large difference in loading is due to the 

mixture of two panels without specific order.   

 

Marker
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Liver
Spleen

Kidney

Bone Marrow

Brain
Tonsil
Thymus
Heart

Muscle
Fetal Liver

Lymph Node
Placenta
( – )

GAPDH 3D10

 

 

 

Figure 1.4. Western blot of adult mouse tissue extracts using 3D10 antibody.  

Lysates from adult mouse tissue extracts were processed for western blot as described and 

blotted using 3D10 antibody.  3D10 is heavily expressed in skin.  Weaker signals were also 
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observed from lung and spleen.  3D10 expression in the skin might represent the 

inflammatory cells and/or the skin DCs as has been shown for human OSCAR. 

 

 

 

 

Figure 1.5. 3D10 is widely expressed by multi-nucleated giant cells, leukocytes and 

other cells in bone and gingiva of mice.  

Immunohistochemical analyses of serial paraffin sections from mouse stained with either 

anti-3D10 Ab (1) or the pre-immune serum (2). (A) The inter-dental part of the periodontium 

of adult mouse showing the inflammatory cells in the lamina propria with positive 3D10 

staining. Other cells in the gingival epithelium are also positive.  (B) LPS-induced 

inflammation in mouse calvaria with subcutaneous injection (sections were generously 

obtained from Dr. Dana Graves, Boston University). OCs and inflammatory cells show 

positive 3D10 staining. 
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A1 A2 

B1 B2 
 

 

 

Figure 1.6. Western blot of transiently-transfected RAW 264.7 cells with 3D10. 

RAW 264.7 cells were plated and transiently-transfected (TT) with pcDNA3.1/His B-3D10 

using Superfect transfection reagent according to the manufacturer’s protocol. Cells were 

lysed and blotted using 3D10 antibody. Transfected cells show a prominent band with the 

expected MW of cloned 3D10 compared to the band from non-transfected control (C) cells. 

 

 

 

 

Figure 1.7. RAW 264.7 cells express 3D10 and it is up-regulated with LPS 

stimulation at the time IL-1β and TNF-α are down-regulated. 
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RAW 264.7 cells were plated at approximately 70% confluence in 100 mm dishes and 

stimulated with 10 µg/ml E. coli LPS 24 h post-plating.  Cell lysate was processed for 

western blot at the indicated time points and blotted using anti-3D10, anti-mouse IL-1β or 

anti-mouse TNF-α antibodies.  3D10 maintains a stable baseline expression and is up-

regulated with the decreased expression of IL-1β and TNF-α, post-LPS stimulation. mTNF-α 

is the membrane-bound form. 

 

 

 

 

Figure 1.8. 3D10 is expressed by rat bone marrow (RBM) cells and is up-regulated 

by LPS stimulation. 

Cultured rat bone marrow cells (RBM) were isolated and plated as described.  LPS was 

added in fresh medium and 2 days later lysates were blotted using 3D10 anti-sera and goat 

anti mOSCAR antibody.  3D10 Ab recognized a baseline expression that was induced by 

LPS.  Anti-mOSCAR Ab did not detect any band before or after LPS stimulation.  
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Figure 1.9. Western blot of bacterial expressed 3D10. 

3D10 full cDNA was cloned into the prokaryotic expression vector pET-15b and transfected 

into E. coli cells as described.  After 3 h of small scale cultures, before and after induction 

(BI and AI) aliquots (7 µl) and samples from the supernatant (SN) and the pellet (P) of the 

large scale culture were run in SDS-PAGE and blotted in western blot using anti-3D10 anti-

sera.  3D10 protein band is shown clearly in the sample from culture after IPTG induction 

and it is shown as a negative band in the pellet due to the high concentration. 

 

 

 



 

 

 

Chapter 2. 3D10 Inhibits NF-κB 

 

Background 

NF-κB represents a common and important regulatory transcription factor and signaling 

pathway for many pro-inflammatory cytokines including IL-1β and TNF-α.56,57  NF-κB is a 

transcription factor family consists of 5 members: NF-κB1 (p50 or its precursor p105), NF-

κB2 (p52 or its precursor p100), NF-κB3 (p65 or RelA), Rel (c-Rel) and RelB.6,56  The active 

NF-κB is a homo- or hetero-dimer that forms through a conserved Rel-homology domain 

(RHD), which also serves as DNA-binding and principal regulatory domain.6,56  The 

precursors p105 (p50) and p100 (p52) have their RHD fused to an auto-inhibitory Ankyrin 

repeats (ANK) common for all NF-κB inhibitory proteins (IκBs).  IκBs bind to NF-κB units 

and mask the nuclear localization signal (NLS) - present on the RHD - trapping NF-κB in the 

cytoplasm.56  Activation of NF-κB pathway by many stimuli (e.g. LPS) results in the 

proteasome degradation of IκBs mediated by phosphorylation and ubiqitination, and the 

nuclear translocation of NF-κB dimer.6,56  The most common NF-κB (classical) is NF-

κB1/NF-κB3 (p50/p65).  Two protein complexes are essential for NF-κB release: the IκB-

kinase (IKK) and the E3IκB ubiqitin ligase complexes.6  The IKK complex is composed of 

three subunits: the catalytic subunits IKK1 (IKK-α) and IKK2 (IKK-β), and the regulatory 

subunit NF-κB essential modulator (NEMO) (IKK-γ).6,56  NEMO is required for IKK activity 

and p50/p65 activation but not the p52/RelB (alternative pathway).  Classical NF-κB cannot 

be activated without IKK2 but IKK1 is required for RANK pathway.6  NF-κB is an important 
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transcription factor in inflammation and immune response.7,58  Factors that regulate NF-κB 

transcription and activity seem to be very important for therapeutic strategies. 

 Although NF-κB is not the only regulatory pathway for TNF-α and IL-1β, it is 

common to both cytokines and has very broad and diverse functions.  Most of the studies 

focus on the early stages of LPS-induced cytokines production and kinetics.  Reviewing that 

in summary, it has been observed that all NF-κB-dependent cytokines are produced very 

early post-LPS stimulation.  They peak between 6 hours to 2 days.  This peak is usually 

followed by a steady state and then declines to the basal level with the loss of inflammatory 

signs.  Examples to this are TNF-α59,60, IL-1β60, IL-660 and iNOS.61  Similar findings have 

been observed with non-NF-κB-dependent cytokines like IL-1060 and IL-18 which is similar 

to IL-1β but with longer steady state.62 

 3D10 up-regulation was observed late during LPS-induced inflammation.  This could 

be related to later stages of inflammation like cell migration, phagocytosis or LPS-tolerance, 

especially when we know that the last two are associated with NF-κB inhibition.63-65 

 We also investigated the effect of two nuclear proteins that were found to bind to 

3D10 in the yeast-two-hybrid analysis.  The first one is phosphonoformate immuno-

associated protein 5 (PFAAP5) and the second is Human Leukocyte Antigens-B (HLA-B)-

associated transcript 3 (BAT3).  Nuclear proteins could modulate transcription factors like 

YAP (Yes-associated protein of 65 kDa)66 and could act as chaperone pulling 3D10 into the 

nucleus.  BAT3 is an apoptotic regulator.67  NF-κB has been shown to regulate apoptosis.68-71 

 Since hOSCAR has been reported to enhance the pro-inflammatory cytokine 

production, we attempted to establish over-expressing stably transfected cells to investigate 

3D10 as a possible antagonist to hOSCAR. 
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Materials and Methods 

NF-κB Inhibition 

We used the reporter plasmid 3X-κB-luc, which has 3 copies of the NF-κB binding site from 

the murine major histocompatibility complex (MHC) class I promoter upstream of the 

luciferase gene (a generous gift from Dr. Albert S. Baldwin, Lineberger Comprehensive 

Cancer Center, UNC-CH).  Human embryonic kidney cells (HEK 293T) 72 were plated in 12-

well plate at a density of 7.5 x 104 and allowed to adhere for 24 h.  The approximately 70-

80% confluent cells were transfected using Effectene transfection reagent (Qiagen) with 3X-

κB-luc with or without the following plasmids: p65 (positive control), 3D10 in 

pcDNA3.1/His, or IκB-α super-repressor (negative control).  As control for transfection 

efficiency, β-Gal construct was used for all wells.  Total DNA was maintained by adding the 

appropriate blank vector if needed.  48 h post-transfection, cell lysates were collected and 

processed for luciferase and β-Gal activities (Promega) and read in a luminometer and plate 

reader respectively.  The experiment was performed in triplicates. The averages were 

normalized and compared using Student’s t-test.  This experiment was repeated with 

different doses of 3D10 plasmid and also with some of its binding partners (PFAAP5 and 

URP2).  Positive control p65 was replaced in some experiments with human recombinant 

TNF-α.  LPS could not be used as positive control because HEK 293T cells do not express 

its receptor. 
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Cell Viability 

An initial screening to the effect of 3D10 on cell viability was performed using CellTiter 96 

AQueous One Solution Cell Proliferation Assay (Promega).  HEK 293T cells were seeded in 

duplicate 96-well plates at 3 x 104 cells/well in 100 µl culture media.  Cells were transfected 

with 3D10, PFAAP5 and BAT3 plasmids at different concentrations using Effectene rapid 

transfection protocol (Qiagen).  24 h post-transfection, cells in one plate were stimulated with 

30 ng/ml TNF-α in fresh media to induce apoptosis, and the other plate was processed for 

reading as follows: 20 µl of CellTiter reagent was added to each well and the plate was 

incubated at 37°C and 5% CO2 for 1 h.  Soluble formazan produced by viable cellular 

reduction was measured by recording the absorbance at 490 nm using a 96-well plate reader.  

24 h post-stimulation, the other plate was processed and read similarly.  All wells were in 

triplicates and averages were compared.   

 

Stably Transfected Cell-lines 

To overcome the stress produced by transient transfection and to study the effect of 3D10 on 

cell differentiation, activation and survival, we generated stably transfected cell-lines.  HEK 

293T and RAW 264.7 cell-lines were plated and transfected as previously mentioned, with 

each of the following plasmids: 3D10, pcDNA3.1/His empty vector and OSCAR4 in 

pFLAG-CMV-4.  Culture medium was replaced by a selection medium containing 1 g/ml 

G418 (Gibco).  Cells were allowed to grow for 2-3 weeks in selection medium and fed every 

3 days.  Positive adherent colonies were collected and re-plated as needed in low density to 

allow true selection.  Dead cells were removed regularly by washing and media replacement.  

Stably transfected cells were frozen and stored at -80°C. 



31 

 

Results 

Initially, 3D10 showed significant inhibition to NF-κB activity (50% ± 4.8) compared to the 

super-repressor IκB-α (88% ± 0.3).  3D10 also showed a dose-response effect with 3 

different concentrations of the DNA 0.1, 0.2 and 0.4 µg.  Data represents the mean of 

triplicates ± standard deviation (Figure 2.1).  Comparisons were statistically significant when 

p < 0.05.  When compared to PFAAP5 (Figure 2.2) and URP2 (Figure 2.3), the former 

showed similar results to 3D10 while the latter needed higher plasmid concentration to 

achieve similar effect.  When TNF-α was used as a positive control, it failed to activate NF-

κB and 3D10 showed equivalent inhibition in both conditions (Figure 2.4).  The experiment 

was modified to allow cells to rest after the transient transfection but during this experiment 

3D10 showed no significant inhibition compared to the empty vector (Figure 2.5).  We also 

investigated the effect of double transfection of 3D10 and PFAAP5 and this showed an 

additive effect (Figure 2.6). 

Neither 3D10 nor PFAAP5 showed any significant effect on cell viability compared 

to the empty vector control.  The same was observed when cells were stimulated to induce 

apoptosis (Figure 2.7). 

 

Discussion 

We presented here that 3D10 inhibited NF-κB baseline activation induced by the transient 

transfection stress by 30-50%.  PFAAP5 showed the same level of inhibition and they both 

showed an additive effect.  TNF-α-dependent activation could not be inhibited by 3D10 

expression.  NF-κB could be activated by many stimuli including TNF-α, IL-1, phorbol ester, 



32 

okadaic acid, H2O2, ceramide, endotoxin, and γ-radiation.73  We only investigated TNF-α-

dependant activation.  3D10 and PFAAP5 could be inhibiting NF-κB activation through one 

or more of the other stimuli. 

 We investigated the effect of 3D10 expression on cell viability because NF-κB has 

been linked to apoptosis as pro- and sometimes anti-apoptotic.68-71  And since hOSCAR has 

been reported to enhance the survival of DCs,74 we proposed an opposing function of 3D10.  

3D10 and PFAAP5 did not have any effect on cell viability or TNF-α-dependant apoptosis.  

It would be interesting to investigate the effect of other apoptotic stimuli on 3D10 or 

PFAAP5 over-expressing cells. 

 A major finding should be addressed here.  The cloned 3D10 in pcDNA3.1/His has 

been shown to be localized in the cytoplasm but at a later stage of 3D10 investigation it has 

been shown to be secreted.  Sequence analysis of cloned 3D10 translated product (including 

the N-terminus tag) showed no signal peptide and possible membrane-bound product.  Its 

cytoplasmic expression could be explained by the over-expression nature and/or the blockage 

of the N-terminus signal peptide by the His tag and Xpress epitope of the vector.  This 

change of protein structure might have affected its folding, cleavage and secretion.  

Consequently, its function and behavior could have also been affected. 

 In conclusion, 3D10 and PFAAP5 inhibit NF-κB activity through TNF-α-independent 

pathway.  Neither 3D10 nor PFAAP5 have any effect on cell viability or TNF-α-dependent 

apoptosis. 
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Figures 

Figure 2.1. 3D10 inhibits NF-κB activity in a dose-response effect. 

HEK 293T cells were plated in 12-well plate at a density of 7.5 x 104 and allowed to adhere 

for 24 h.  The approximately 70-80% confluent cells were transiently transfected with 75 

ng/ml 3X-κB-luc (Luc) with or without the following plasmids at the indicated concentration: 

3D10 in pcDNA3.1/His, IκB-α super-repressor (negative control), or 75 ng/ml p65 (positive 

control).  As control for transfection efficiency, β-Gal construct was used for all wells (75 

ng/ml).  Total DNA was maintained by adding the appropriate blank vector if needed.  48 h 

post-transfection, cell lysates were collected and processed for luciferase and β-Gal activities 

and read in a luminometer and plate reader respectively.  The experiment was performed in 

triplicates.  The averages were normalized and compared using Student’s t-test.  The 

luciferase activity of 3X-κB-luc-transfected cells was used as the reference and was 

arbitrarily set to 1.0.  The experiment is a representative of three independent experiments 

carried out in triplicate. Bars represent standard deviations.  * Statistically significant (p < 

0.05). 
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Figure 2.2. Both 3D10 and PFAAP5 inhibit NF-κB activity with the same efficiency. 

HEK 293T cells were plated in 12-well plate at a density of 7.5 x 104 and allowed to adhere 

for 24 h.  The approximately 70-80% confluent cells were transiently transfected with 75 

ng/ml 3X-κB-luc (kB-Luc) with or without the following plasmids at the indicated 

concentration: 3D10 in pcDNA3.1/His, p65 (positive control), IκB-α super-repressor 

(negative control), or PFAAP5 in pFLAG-CMV-4.  As control for transfection efficiency, β-

Gal construct was used for all wells (75 ng/ml).  Total DNA was maintained by adding the 

appropriate blank vector if needed.  48 h post-transfection, cell lysates were collected and 

processed for luciferase and β-Gal activities and read in a luminometer and plate reader 

respectively.  The experiment was performed in triplicates.  The averages were normalized 

and compared to the luciferase activity of 3X-κB-luc-transfected cells which was used as the 

reference and was arbitrarily set to 1.0.  The experiment is a representative of three 

independent experiments carried out in triplicate.  Bars represent standard deviations.   
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Figure 2.3. 3D10 is more efficient inhibitor to NF-κB activity than URP2. 

HEK 293T cells were plated in 12-well plate at a density of 7.5 x 104 and allowed to adhere 

for 24 h.  The approximately 70-80% confluent cells were transiently transfected with 75 

ng/ml 3X-κB-luc (kB-Luc) with or without the following plasmids at the indicated 

concentration: 3D10 in pcDNA3.1/His, p65 (positive control), IκB-α super-repressor 

(negative control), or URP2 in pFLAG-CMV-4.  As control for transfection efficiency, β-Gal 

construct was used for all wells (75 ng/ml).  Total DNA was maintained by adding the 

appropriate blank vector if needed.  48 h post-transfection, cell lysates were collected and 

processed for luciferase and β-Gal activities and read in a luminometer and plate reader 

respectively.  The experiment was performed in triplicates.  The averages were normalized 

and compared to the luciferase activity of 3X-κB-luc-transfected cells which was used as the 

reference and was arbitrarily set to 1.0.  The experiment is a representative of three 

independent experiments carried out in triplicate.  Bars represent standard deviations. 
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Figure 2.4. TNF failed to activate NF-κB but 3D10 showed significant inhibition. 

HEK 293T cells were plated in 12-well plate at a density of 7.5 x 104 and allowed to adhere 

for 24 h.  The approximately 70-80% confluent cells were transiently transfected with 75 

ng/ml 3X-κB-luc and 100 ng/ml of either 3D10 in pcDNA3.1/His or the empty vector.  As 

control for transfection efficiency, β-Gal construct was used for all wells (75 ng/ml).  24 h 

post transfection, cells were either stimulated or not stimulated with human recombinant 

TNF-α (10 ng/ml) for 30 min.  Cell lysates were collected and processed for luciferase and 

β-Gal activities and read in a luminometer and plate reader respectively.  The experiment 

was performed in duplicates.  The averages were normalized and compared to the luciferase 

activity of empty vector-transfected cells which was used as the reference and was arbitrarily 

set to 1.0.  The experiment is a representative of three independent experiments carried out in 

duplicates.  Bars represent standard deviations.   
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Figure 2.5. 3D10 failed to inhibit TNF-dependent NF-κB activation. 

HEK 293T cells were plated in 12-well plate at a density of 7 x 104 and allowed to adhere for 

24 h.  The approximately 70% confluent cells were transiently transfected with 100 ng/ml 

3X-κB-luc and 100 ng/ml of either 3D10 in pcDNA3.1/His or the empty vector.  As control 

for transfection efficiency, β-Gal construct was used for all wells (100 ng/ml).  5 h post-

transfection, culture media was exchanged with fresh media.  24 h post transfection, cells 

were either stimulated or not stimulated with human recombinant TNF-α (10 ng/ml) for 12 h.  

Cell lysates were collected and processed for luciferase and β-Gal activities and read in a 

luminometer and plate reader respectively.  The experiment was performed in duplicates.  

The averages were normalized and compared to the luciferase activity of empty vector-

transfected cells which was used as the reference and was arbitrarily set to 1.0.  The 

experiment is a representative of three independent experiments carried out in duplicates.  

Bars represent standard deviations. 
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Figure 2.6. 3D10 and PFAAP5 show and additive effect in NF-κB inhibition.  

HEK 293T cells were plated in 12-well plate at a density of 7.5 x 104 and allowed to adhere 

for 24 h.  The approximately 70-80% confluent cells were transiently transfected with 75 

ng/ml 3X-κB-luc with or without the following plasmids: IκB-α super-repressor (75 ng/ml), 

3D10 in pcDNA3.1/His (100 ng/ml), PFAAP5 in pFLAG-CMV-4 (100 ng/ml), or both 3D10 

and PFAAP5 (100 ng/ml each).  As control for transfection efficiency, β-Gal construct was 

used for all wells (75 ng/ml).  Total DNA was maintained by adding the appropriate blank 

vector.  48 h post-transfection, cell lysates were collected and processed for luciferase and β-

Gal activities and read in a luminometer and plate reader respectively.  The experiment was 

performed in triplicates.  The averages were normalized and compared to the luciferase 

activity of 3X-κB-luc-transfected cells which was used as the reference and was arbitrarily 

set to 1.0.  The experiment is a representative of three independent experiments carried out in 

triplicate.  Bars represent standard deviations. 
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Figure 2.7. 3D10 and PFAAP5 showed no effect on cell viability. 

HEK 293T cells were seeded in 96-well plates at 3 x 104 cells/well in 100 µl culture media.  

Cells were transfected with different plasmids at different concentrations as indicated.  24 h 

post-transfection, cells in one plate were processed for baseline reading and cells in another 

plate were stimulated with 30 ng/ml TNF-α in fresh media for 24 h to induce apoptosis and 

then processed as follows: 20 µl of CellTiter reagent was added to each well and the plate 

was incubated at 37°C and 5% CO2 for 1 h.  Soluble formazan produced by viable cellular 

reduction was measured by recording the absorbance at 490 nm using a 96-well plate reader.  

All wells were in triplicates and averages were compared. 
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Chapter 3. Searching For 3D10-Binding Partners Using the Yeast Two 

Hybrid Screening 

 

Background 

3D10 appears to be a soluble protein.  It appears also to be secreted which suggests a decoy 

receptor role.  Identifying 3D10 binding partner(s) is very important.  Due to the difficulty of 

testing all potential partners individually, it has been a common research method to use the 

yeast-two hybrid screening.  It is a well-established and reliable method if used and 

interpreted properly.  Identified binding partners to 3D10 could be different ligands or intra-

cellular signaling molecules and trafficking regulators.  Here we performed two rounds of the 

yeast-two-hybrid screening of mouse calvaria and human macrophage cDNA libraries each 

one separately, and identified several potential binding partners to 3D10. This list of proteins 

has the potential to open many venues in the future to further study OSCAR. 

 

Materials and Methods 

Library and Prey Construction – A macrophage cDNA library (Clontech) was used to 

construct the yeast library (prey) using MATCHMAKER Library Construction & Screening 

Kit (Clontech) which will be described briefly here.  20 µl cDNA and 5-6 µl vector 

pGADT7-Rec (yeast Gal4 activation domain (AD) vector) (Clontech) were co-transformed 

into AH109 Saccharomyces cerevisiae yeast strain using lithium acetate (LiAc)-mediated 

protocol.  150 µl of 1:1000 dilution of the co-transformation mixture was spread on a 
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Synthetic Defined media (SD)/-Leu plate to check the transformation efficiency.  The 

remaining 15 ml transformants was spread on 100 SD/-Leu plates.  After incubation at 30ºC 

for 3-6 days until colonies appeared, the transformants were harvested with freezing medium 

and the concentration was adjusted to 6 x 106 cells/ml.  Aliquots of 1 ml were made and tubes 

stored at -80ºC. 

The mouse calvaria library was constructed using the MATCHMAKER library 

construction & screening kit (Clontech) following the manufacturer's instructions and is 

descried briefly here. The calvaria of 7-day old mouse pups was dissected and placed in 

DEPC-treated ice-cold PBS. All adherent soft tissues were carefully removed before placing 

the tissues in Guanidine-HCl buffer. Total RNA was isolated using the cesium chloride 

gradient centrifugation method.47  The RNA pellet was washed thoroughly before re-

suspension. 100 µg of total RNA was used to isolate the mRNA using Straight A's mRNA 

isolation system (Novagen). One mg of mRNA was reverse transcribed with MMLV reverse 

transcriptase and primed with oligo d(T) primer and SMART III oligonucleotide. After first-

strand cDNA was synthesized, long distance-PCR was used to amplify the double strand 

cDNA.  The double strand PCR product was then loaded on 1% agarose gel.  Only cDNA 

larger than 800 bp in size was cut out and purified using QIAEX II gel extraction kit 

(Qiagen).  Then 20 µl dscDNA and 6 µl vector pGADT7-Rec were co-transformed into yeast 

AH109 using LiAc-mediated protocol. 150 µl of the 1:1000 dilution of the co-transformation 

mixture was spread on a 150-mm SD/-Leu to check the transformation efficiency. The 

remaining 15 ml transformants were spread on 100 150-mm SD/-Leu plates. After incubation 

at 30ºC for 3-6 days until colonies appear, the transformants were harvested with freezing 

medium and the concentration was 6 X 107 cells/ml. The transformation efficiency was > 1.5 
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X 106 transformants / 3 µg pGADT7-Rec.  Aliquots of 1 ml were made and tubes stored in -

80ºC freezer. 

 

Bait Construction – 3D10 full coding cDNA was cloned into the bait vector pGBKT7 (yeast 

Gal4 DNA-binding domain (DNA-BD) fusion protein vector) and used to transform the 

Saccharomyces cerevisiae yeast strain Y187.  The bait plasmid was first tested for activity 

and/or toxicity.  The plating was repeated as it was done for the library but using SD/-Trp 

and no harvesting was needed.   

 

Yeast mating – SD agar plates were prepared: four 100-mm plates for each SD/–Leu, SD/–

Trp, and SD/–Leu/–Trp; and fifty 150-mm plates SD/–Ade/–His/–Leu/–Trp.  A concentrated 

overnight culture of Y187 bait colony was combined with 1 ml aliquot of AH109 library for 

mating.  The mating culture was incubated at 30°C for 24 h.  Zygotes presence was checked 

just before the end.  The mating mixture was collected carefully and centrifuged.  The cell 

pellet was re-suspended and plated.  To determine the mating efficiency, 100 µl of a 

1:10,000, 1:1,000, 1:100, and 1:10 dilution of the mating mixture was spread on three media 

(100-mm plates): SD/–Leu, SD/–Trp and SD/–Leu/–Trp.  The remaining mating mixture was 

spread on SD/–Ade/–His/–Leu/–Trp plates (200 µl cells/150-mm plate).  The plates were 

incubated at 30°C for 10-15 days.  Positive colonies (>100) were harvested for plasmid DNA 

extraction. 

 

Electrocompetent E. coli Preparation – LB media with low salt concentration was prepared 

in large quantity and stored at room temperature.  100 ml ice cold 10% glycerol was filter 
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sterilized. E. coli DH5α cells (Invitrogen) were inoculated in 3 ml of media and grown at 

37°C for 12-16 h at 250 rpm shaking. Four 500 ml of LB in flasks were inoculated with 500 

µl of overnight culture and incubated at 37°C while shaking vigorously at 250-300 rpm to an 

OD600 of 0.6-0.8. Flasks were transferred to ice when the cells reached the correct optical 

density and held for 15 min. 330 ml of the cells was transferred to 6 ice-cold sterile 500 ml 

centrifuge bottles and centrifuged at 4000 x g for 15 min.  Media was discarded and cells 

were kept on ice at all times.  Cells were gently suspended in one-volume sterile ice-cold 

distilled water (dH2O) and centrifuged at 4000 x g at 4°C for 15 minutes.  The second and 

third washes were done in 0.5 volumes of sterilized ice-cold H2O.  The 4th and 5th (final) 

washes were done in 0.02 volumes of sterilized ice-cold H2O and filter-sterilized ice-cold 

10% glycerol respectively.  Transformation efficiency was tested and aliquots of 250 µl were 

quickly frozen in a dry ice/ethanol bath in microfuge tubes and stored at -80°C until required.   

 

Plasmid DNA Isolation and Sequencing – yeast plasmids were isolated using the yeast 

plasmid protocol.  Briefly, colonies were cultured in liquid medium overnight.  Cell pellets 

were processed and lysed.  Different reagents were used with freezing and finally plasmid 

pellets were suspended in dH2O.  Electrocompetent E. coli KC8 (Clontech) or DH5α 

(prepared locally) were transformed with 30 yeast plasmids from the first round and 50 from 

the second using cuvettes and Electroporation device and method.  Cells were plated on 

LB/amp agar medium and incubated at 37°C for 24 h.  One colony from each plate was 

cultured and its respective plasmid DNA was isolated using QIAprep miniprep kit (Qiagen).  

Isolated plasmid DNAs were sent for sequencing at UNC genome analysis facility. 

Sequences were analyzed with BLAST program (NCBI).   
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Co-transformation – The first step of binding confirmation was performed by yeast co-

transformation.  Selective plasmids were tested for binding with 3D10 by co-transformation 

with pGBKT7-3D10 plasmid into AH109 yeast and were plated on a selection medium 

(SD/–Ade/–His/–Leu/–Trp/X-Gal).  Selection media plates were plated with 3D10 only, 

plasmid of interest only and both together.  Positive growth of the co-transformed yeasts only 

indicates true binding.   

 

Confocal Laser Microscopy Co-localization – Rat bone marrow cells were isolated. Femora 

and tibiae were aseptically removed and dissected free of adherent soft tissues. The bone 

ends were cut, and the marrow cavity was flushed out with α-MEM medium (Sigma-Aldrich) 

from one end of the bone using a sterile 21-gauge needle. The bone marrow suspension was 

carefully dispersed to obtain a single-cell suspension. The cells were washed twice and re-

suspended (106 cells/ml) in α-MEM containing 10% FBS, and added to 12-well plates 

containing glass coverslips. M-CSF (30 ng/ml) and RANKL (30 ng/ml) were added to induce 

OC formation. Cultures were fed on day 3 by fresh medium and reagents. After incubation 

for 5 days, coverslips were washed twice with PBS, fixed with 3.7% formalin in PBS for 10 

min, washed twice in TBS and permeabalized in 0.5% Triton X for 10 min and then washed 

in TBS-Tween 20.  They were then blocked with 1% BSA in PBS for 20 min (all steps were 

performed at 4°C).  Cells were treated with primary Ab (rabbit Anti-3D10 anti-sera and 

chicken anti-actin Ab) for 60 min at 37°C, washed, and treated with secondary FITC- or 

Texas Red-labeled Abs (Jackson ImmunoResearch Laboratories) for 60 min.  Cells were 
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washed twice with PBS-Tween 20 and viewed with Zeizz LSM5 Pascal Confocal Laser 

Scanning Microscope (Zeiss, Germany). 

HEK 293T or RAW 264.7 cells were plated on glass coverslips in 12-well plates and 

allowed to adhere for 24 h. Using the Effectene transfecting kit (Qiagen), cells were co-

transfected with 3D10 plasmid (pcDNA3.1/His) and either PFAAP5 or BAT3 plasmid 

(pFLAG-CMV-4).  24 h post-transfection, cells were fixed and stained as previously 

described using mouse Anti-Xpress Ab (Invitrogen) for 3D10 and rabbit Anti-FLAG Ab 

(Sigma) for either PFAAP5 or BAT3. 

 

Actin Binding Assay – To confirm actin binding without IP, an actin binding spin-down 

assay kit (Cytoskeleton, Inc.) was used.  This assay depends on co-sedimentation of actin and 

the binding partner (3D10) in the pellet compared to the supernatant.  The positive control is 

α-Actinin and the negative control is BSA.  The assay was performed according to the 

manufacturer’s instructions.  Briefly, 3D10 and the control proteins were incubated with 40 

µg of freshly polymerized actin (F-actin) for 1 h at room temperature. After incubation, each 

protein plus F-actin solution was subject to high-speed centrifugation (160,000 x g) to pellet 

F-actin and protein bound to it. The pellet fraction was dissolved in SDS-sample buffer, the 

volume being equal to the initial incubation volume. Equivalent volumes of pellet and 

supernatant fractions were analyzed by SDS-PAGE followed by Coomassie blue staining. 

  

Results 

Over 200 yeast colonies positively grew in the highest stringency setting in each round of the 

screening.  Out of these, we sequenced over 80 plasmids; approximately 30 from 1st round 
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and 50 from 2nd round (Table 3.1).  The results from the first round were over 70% actin.  

From the 2nd round, we observed only 7 that have multiple (2-4) hits and two from the same 

family (Table 3.2).  Actin and two other genes were investigated further according to their 

relevance to 3D10 characterization.  Target genes were genes with multiple hits especially 

cytoplasmic proteins-encoding genes, and receptors that may signal through 3D10 binding. 

Actin from the 1st round and 12 plasmids from the second were tested. Actin and 7 

plasmids were confirmed (Figure 3.1).  Actin, PFAAP5 and BAT3 were screened for co-

localization with 3D10.  PFAAP5 and BAT3 are nuclear proteins.  While PFAAP5 is of 

unknown function, BAT3 is known to be an apoptosis regulator.67  Since OSCAR has been 

reported to be anti-apoptotic in DCs,74 we hypothesized that 3D10 may play an opposite role 

by binding to nuclear proteins and apoptotic regulators.  3D10 detection was done with either 

anti-Xpress mAb or anti-3D10 polyclonal Ab that show almost identical images (Figure 3.2).  

PFAAP5 and BAT3 clones were purchased from OriGene and cloned into pFLAG-CMV-4 

expression vector (Sigma) with an N-terminus FLAG epitope. 

Actin showed a typical cytoskeleton distribution while 3D10 showed the main 

distribution perinuclear and at the plasma membrane.  The co-localization was minimal and 

mainly at the plasma membrane region (Figure 3.3).  PFAAP5 and BAT3 were nuclear and 

co-localization was not conclusive from these slides (Figure 3.4). 

Actin binding assay showed that 3D10 precipitated with actin suggesting positive 

binding.  Suspended 3D10 with no actin showed some precipitation as well (Figure 3.5). 
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Discussion 

Yeast-two-hybrid system can result in a wide range of interactions; few vs. too many, weak 

vs. strong, and true vs. false interactions.  Few, strong and true interactions are of our 

interest.  To minimize the number of colonies to exclude weak and false interactions, we 

used a high stringent selection medium.   

 At the time the yeast-two hybrid screening was performed, 3D10 was considered a 

cytoplasmic protein.  The 1st round was designed to pick cytoplasmic binding partners from 

mouse bone tissues.  The results showed actin as the majority hits which indicated a true 

interaction at least at the in vitro level.  Actin seemed to be of interest because of this number 

of hits and because of its relevance to actin ring formation of activated OCs.75  The complete 

investigation of actin binding was faced by many pitfalls.  Co-immuno-precipitation was 

difficult to be resolved due to actin size (approximately 45 kDa) which overlaps the heavy 

chain of IgG in western blot.  Confocal microscopy showed some co-localization at the 

plasma membrane.  Actin binding assay was not conclusive because 3D10 could not be 

purified in sufficient amount to perform this assay with good control.  At this stage we 

moved to the second round looking for human binding partners to the full 3D10 molecule.  

We used MΦ cDNA library because of 3D10 expression in these cells and to limit the search 

in a smaller field of tissues.   

 Nuclear proteins binding could not be co-localized with 3D10 in immuno-

fluorescence studies.  Their binding could be confirmed by Co-IP and fractionation of cell 

lysates into nuclear and cytoplasmic extracts looking for any change in protein localization 

with double transfection. 
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Target proteins have been changed after 3D10 was found to be secreted.  Candidate 

proteins now could be ligands, trafficking modulators, or transcription factors.  Among the 

interesting results we found are Major histocompatibility complex, class I (MHC I), C (HLA-

C), one membrane-bound ligand (Lymphotoxin beta (LTB), also known as TNF superfamily, 

member 3), and some nuclear proteins (Phosphonoformate immuno-associated protein 5 

(PFAAP5), Human Leukocyte Antigens-B (HLA-B)-associated transcript 3 (BAT3) and 

some transcription factors).  It is known for members of LRC to bind to MHC I as 

ligands.30,33  MHC I molecules could be ligands for OSCAR.  Other possibilities are LTB and 

membrane-bound proteins.  mOSCAR ligand has been proposed to be expressed on 

osteoblast surface like RANKL.43  Nuclear proteins are interesting because of the potential 

role in regulating cell differentiation, survival and activation of immune response.   

Although 3D10 has the potential to polymerize, we did not find any supporting 

evidence among the 50 plasmids that we sequenced.     

These results will be analyzed in the future 3D10 research by functional analysis and 

comparing in vivo binding to different OSCAR isoforms.  Functional analyses include Co-IP, 

co-localization and modulation of known OSCAR function. 

Other alternatives to the yeast-two-hybrid screening are the Tandem Affinity 

Purification, Phage Display and Protein Chips (or Protein Micro-Array).  These methods 

require pure protein (3D10) which was not available at the time of the present study.  And the 

first method requires also protein engineering before its expression and purification. 

In conclusion, none of the selected candidates was completely confirmed to bind to 

3D10.  Several strong candidates have been identified some of which are under investigation.  

The future of 3D10 and hOSCAR study is dependent on the identification of its ligand(s) and 
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modulator(s).
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Tables 

Table 3.1. Sequencing results of the yeast-two-hybrid screening of the macrophage 

cDNA library.   

No. 
Y2H 
ID 

Name 
Nucleotide 

ID 
Protein ID Tested Confirmed 

1 1 

Ubiquitously-
expressed transcript 
(UXT), transcript 

variant 1/2 

NM_153477 
NM_004182 

NP_705582 
NP_004173 

Yes No 

2 2 

Ficolin 
(collagen/fibrinogen 
domain containing) 1 

(FCN1) 

NM_002003 NP_001994 No No 

3 3 Clone AY358502 AAQ88866 No No 
4 4 Flotillin 2 (FLOT2) NM_004475 NP_004466.1 No No 

5 5 
Heterogeneous nuclear 

ribonucleoprotein F 
(HNRPF) 

NM_004966 NP_004957.1 Yes Yes 

6 6 
Chitinase 1 

(chitotriosidase) 
(CHIT1) 

NM_003465 NP_003456.1 Yes Yes 

7 7 
UNC-112 related 
protein 2 (URP2) 

NM_178443 
NM_031471 

NP_848537 
NP_113659 

Yes Yes 

8 8 
Phosphonoformate 
immuno-associated 
protein 5 (PFAAP5) 

NM_014887 NP_055702 Yes Yes 

9 9 
Hypothetical protein 

LOC91289 
NM_033200 NP_149977.1 Yes Yes 

10 10 Same as #7 NM_178443  Yes Yes 
11 11 Same as #8 NM_014887  Yes Yes 

12 12 
Histidine triad 

nucleotide binding 
protein 1 (HINT1) 

NM_005340 NP_005331 Yes Yes 

13 13 

Calcium channel, 
voltage-dependent, 

beta 1 subunit, 
transcript variant 1 

BC037311 AAH37311 Yes No 

14 14 
S100 calcium binding 

protein A9 (calgranulin 
B) 

BC047681 
NM_002965 

AAH47681 
NP_002956 

Yes No 

15 15 

Human Leukocyte 
Antigens-B (HLA-B) 
associated transcript 3 

(BAT3), transcript 
variant 1 

NM_004639 NP_004630 Yes Yes 

16 16 Similar to Actin AK125561  No No 
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17 17 Same as #8 NM_014887  Yes Yes 
18 18 XXX AC004264  No No 
19 19 XXX AL807752  No No 

20 20 
Hermansky-Pudlak 
syndrome protein 

(HPS) 
U65676 AAB17869 Yes No 

21 23 
BTG family, member 2 

(BTG2) 
NM_006763 NP_006754 No No 

22 24 
RAB43, member RAS 

oncogene family 
(RAB43) 

NM_198490 
NP_940892 
(RAB41) 

No No 

23 26 

Lymphotoxin beta 
(TNF superfamily, 
member 3) (LTB), 
transcript variant 2 

NM_009588 NP_033666 No No 

24 28 
Chitobiase, di-N-
acetyl- (CTBS) 

NM_004388 NP_004379 No No 

25 29 
Pellino homolog 1 

(Drosophila) (PELI1) 
NM_020651 NP_065702 No No 

26 32 
PAC clone RP1-102K2 

from 22q12.1-qter 
AC004264  No No 

27 34 
DnaJ (Hsp40) 

homolog, subfamily A, 
member 3 (DNAJA3) 

NM_005147 NP_005138 No No 

28 51 

Benzodiazapine 
receptor (peripheral) 
(BZRP), transcript 

variant PBR OR PBR-
S 

NM_000714 
NM_007311 

NP_000705 
NP_009295 

No No 

29 52 
Glutamate-ammonia 

ligase (glutamine 
synthase) (GLUL) 

NM_002065 NP_002056 No No 

30 53 

Human DNA sequence 
from clone RP11-

440G5 on chromosome 
9 Contains the NFIL3 
gene for interleukin 3 

regulated nuclear 
factor, a novel gene 
and two CpG islands 

AL353764 CAH73854 No No 

31 54 

Heterogeneous nuclear 
ribonucleoprotein H1 

(H) (HNRPH1) 
See #5 

NM_005520 NP_005511 No No 

32 55 Same as #8   Yes Yes 
33 56 Same as #14   Yes No 

34 57 
BAC clone RP11-

383I5 from 2 
AC019201 AAY14898 No No 

35 58 Same as #7   Yes No 
36 59 Hypothetical protein NM_017730 NP_060200 No No 
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LOC54870 

37 60 
Myosin, heavy 

polypeptide 9, non-
muscle (MYH9) 

NM_002473 NP_002464 No No 

38 61 
Maltase-glucoamylase 

(alpha-glucosidase) 
(MGAM) 

NM_004668 NP_004659 No No 

39 62 

Family with sequence 
similarity 48, member 

A (FAM48A), 
transcript variant 2 

NM_017569 NP_060039 No No 

40 63 
CD27-binding (Siva) 

protein (SIVA), 
transcript variant 1 

NM_006427 NP_006418 No No 

41 64 

Major 
histocompatibility 
complex, class I, C 

(HLA-C) 

NM_002117 NP_002108 No No 

42 65 
Nuclear factor 

(erythroid-derived 2)-
like 2 (NFE2L2) 

NM_006164 NP_006155.2 No No 

43 66 Same as #7   No No 

44 67 

Pyruvate kinase, 
muscle (PKM2), 

transcript variant 1, 2 
& 3 

NM_002654 
NM_182470 
NM_182471 

 No No 

45 69 
Interleukin 2 receptor, 

beta (IL2RB) 
NM_000878 NP_000869.1 No No 

46 70 Same as #26 NM_009588  No No 
47 71 Same as #29 NM_020651  No No 

48 72 

Cytochrome P450, 
family 2, subfamily S, 

polypeptide 1 
(CYP2S1) 

NM_030622 NP_085125.1 No No 

49 74 Same as #15 NM_004639  No No 

50 75 Same as #51 
NM_000714 
NM_007311 

 No No 

 

 

Table 3.2. Summary of the multiple hits from table 3.1. 

Protein Y2H ID 
Heterogeneous nuclear ribonucleoprotein F (HNRPF) 
Heterogeneous nuclear ribonucleoprotein H1 (H) (HNRPH1) 

5, 54 

UNC-112 related protein 2 (URP2) 7, 10, 58, 66 
Phosphonoformate immuno-associated protein 5 (PFAAP5) 8, 11, 17, 55 
S100 calcium binding protein A9 (calgranulin B) 14, 56 
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HLA-B associated transcript 3 (BAT3), transcript variant 1 15, 74 
Lymphotoxin beta (TNF superfamily, member 3) (LTB), transcript variant 2 26, 70 
Pellino homolog 1 (Drosophila) (PELI1) 29, 71 
Benzodiazapine receptor (peripheral) (BZRP), transcript variant PBR OR PBR-S 51, 75 
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Figures 

Figure 3.1. Co-transformation of actin with 3D10 bait vector.  

Isolated plasmids from the binding partners were co-transformed with pGBKT7-3D10 

plasmid into AH109 yeast and were plated on a selection medium (SD/–Ade/–His/–Leu/–

Trp/X-Gal).  Each plate was plated with 3D10 only, plasmid of interest only and both 

together.  Neither 3D10 (1) nor the binding partner (actin) (2) grows.  Positive growth of the 

two plasmids co-transformation indicates positive protein-protein interaction (3). 

 

 

 

 

Figure 3.2. Immuno-fluorescence of transiently transfected cells shows that 3D10 

localizes in the cytoplasm. 

HEK 293T (top) or RAW 264.7 (bottom) cells were plated in low density on glass coverslips.  

Cells were transiently transfected with 3D10 plasmid (pcDNA3.1/His).  Transfected cells 

were fixed and stained as described using anti-Xpress Ab and Texas Red-labeled secondary 
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Ab (left), or anti-3D10 Ab and FITC-labeled secondary Ab (middle).  3D10 was localized in 

the cytoplasm by both antibodies.  Merged images (right) show almost identical localization. 

 

 

 

 

 

 

Figure 3.3. 3D10-Actin co-localization is minimal and mainly at plasma membrane. 

RBM cells were isolated and induced to differentiate into OC as described.  Cells grown on 

coverslips were fixed and stained with anti-3D10 anti-sera and FITC-labeled secondary Ab, 

and anti-actin Ab and Texas Red-labeled secondary Ab.  3D10 (left), actin (middle) and 

merged images (right) show minimal co-localization mainly at the plasma membrane. 
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Figure 3.4. 3D10-Nuclear proteins co-localization. 

HEK 293T or RAW 264.7 cells were plated on glass coverslips and allowed to adhere for 24 

h.  Cells were co-transfected with 3D10 plasmid (pcDNA3.1/His) and either PFAAP5 or 

BAT3 plasmid (pFLAG-CMV-4).  24 h post-transfection, cells were fixed and stained as 

previously described using mouse Anti-Xpress Ab and Texas Red-labeled secondary Ab for 

3D10, and rabbit Anti-FLAG Ab and FITC-labeled secondary Ab for either PFAAP5 or 

BAT3.  3D10 (left) is cytoplasmic and PFAAP5 (middle top) and BAT3 (middle bottom) are 

nuclear.  Merged images (right) show no co-localization. 
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Figure 3.5. 3D10-Actin co-sedimentation assay. 

Purified 3D10 or the control protein (positive control α-Actinin and the negative control 

BSA) was incubated with 40 µg of freshly polymerized actin (F-actin) for 1 h at room 

temperature.  Each protein plus F-actin solution was subject to high-speed centrifugation 

(160,000 x g).  The pellet fraction was dissolved in SDS-sample buffer.  Equivalent volumes 

of pellet and supernatant fractions were analyzed by SDS-PAGE followed by Coomassie 

blue staining.  Coomassie blue stained gel of the assay shows that 3D10 completely co-

precipitated with actin but it also showed some precipitation without actin.  The positive 

control α-Actinin co-precipitated with actin in the pellet (P) and the negative control BSA 

remained in the supernatant (SN). 
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Chapter 4. Identification of a Secreted Form of the Human Osteoclast-

Associated Receptor (hOSCAR) 

 

Abstract 

Human osteoclast-associated receptor (hOSCAR) is a member of the leukocyte receptor 

cluster (LRC) for an unknown ligand.  hOSCAR has been reported to be expressed in several 

mononuclear cells (MNC) of myeloid origin and plays a role in modulating innate and 

adaptive immune response.  We identified an alternative spliced isoform of hOSCAR that we 

had originally named 3D10.  Sequence analysis showed that hOSCAR is expressed as 

membrane-bound (hOSCARm) and soluble (hOSCARs) isoforms with a non-spliced intron 

resulting in larger transcripts and soluble proteins lacking the trans-membrane domain.  The 

expression profiles and tissue distribution of hOSCARm and hOSCARs were compared 

using specific PCR primers and new antibodies made in rabbits against either all or 

hOSCARs isoforms.  Both isoforms were found to be differentially expressed in a wide 

variety of tissues.  They were also found to be expressed in all MNC and neutrophils.  

hOSCARm isoforms appeared to be down-regulated more than the hOSCARs isoforms 

following stimulation of MNC with the mitogens PWM, Con A and PHA.  Studies using 

THP-1 cells showed that the soluble isoforms are secreted and are up-regulated by both PMA 

and LPS.  In conclusion, hOSCARs isoforms represent novel secretory isoforms of hOSCAR 

that may be functioning as decoy receptors. 
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Introduction 

Leukocyte function and differentiation are regulated by cell surface receptors.  A group of 

gene families of these receptors are mapped on chromosome 19q13.42, forming the 

Leukocyte Receptor Cluster (LRC) 30 which is part of the Immunoglobulin Super-family (Ig-

SF).  These genes and gene families within this cluster include killer cell inhibitory receptors 

(KIR),31 killer cell activatory receptors (KAR),32 leukocyte Ig-like receptors (LIR) 33,34 also 

known as Ig-like transcripts (ILT),35,36 monocyte/macrophage (myeloid) inhibitory receptors 

(MIR),37 HM and HL clones,38 CD85 39 or Leukocyte Ig-like receptors (activating LILRA or 

inhibiting LILRB) according to the Human Genome Organization (HUGO) Gene 

Nomenclature Committee HGNC 

(http://www.gene.ucl.ac.uk/nomenclature/genefamily/lilr.php); human hematopoietic Fc 

receptor for IgA (FcαR),40 and leukocyte-associated Ig-like receptors (LAIR).41  The two 

largest families are the KIRs/KARs and the LILRs.  They both can be classified into three 

functional categories: inhibitory, activating and soluble secreted receptors.  Members of the 

inhibitory receptors have 2 or 3 extra-cellular Ig-like domains in case of KIRs and 2 or 4 in 

case of LILRBs.  They have a long cytoplasmic tail that has one or more immunoreceptor 

tyrosine-based inhibitory motif (ITIM).  Members of the activating receptors have short 

cytoplasmic tail that has no ITIMs.  They have a charged AA residue (arginine in the case of 

LILRAs) in the trans-membrane (TM) domain and they activate the cells by the association 

of this residue with an immunoreceptor tyrosine-based activation motif (ITAM)-bearing 

adaptor protein (like FcRγ, DAP12 and CD3ζ).  The soluble secreted receptors retain the 

extra-cellular Ig-like domains and the signal peptide but lack the TM domain.  The 

expression distribution of LRC genes is variable.  While KIRs/KARs are expressed only in 
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natural killer (NK) cells and T cells, LILRs are expressed in lymphoid and myelomonocytic 

cells including T, B and NK cells, monocytes, macrophages and dendritic cells.34,42  LAIRs 

are even broader in their expression range.41   

 Osteoclast-associated receptor (OSCAR) is one of the most recently identified 

members of the LRC genes.43  Human OSCAR (hOSCAR) shows structural and functional 

similarities to the LILRAs.  It has two extra-cellular Ig-like domains, arginine residue in the 

TM domain and a short cytoplasmic tail. It has been shown to associate with FcRγ and 

activates dendritic cells.44  This shows that hOSCAR is a classical activating leukocyte 

receptor.  hOSCAR expression has been reported in neutrophils, monocytes, macrophages 

and dendritic cells.44   

 While searching for genes differentially expressed during bone remodeling in a 7-

day-old mouse calvaria using representational difference analysis (RDA), we isolated a novel 

cDNA clone that we initially called 3D10.  A human EST clone that showed significant 

homology to the isolated clone was obtained and sequenced.  3D10 was found to be an 

alternatively spliced isoform of hOSCAR with substantially different C-terminus AA 

sequence.  It has subsequently been named “OSCAR-S1” in the GenBank and registered by 

Kim et al (GenBank accession No. AF474152.1).43  Human OSCAR gene is alternatively 

spliced into six isoforms. Careful analysis of these isoforms shows that only three have TM 

domains suggesting they are membrane receptors.  The other three isoforms lack the TM 

domain but contain the signal peptide and the extra-cellular domain sequences present in the 

membrane receptor isoforms, which suggests they might be secreted isoforms. 
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 Secreted receptors have been reported among LRC members (LILRA3 and 

LILRA5) 76 and other Ig-SF members (Mer receptor tyrosine kinase).77  They represent a 

regulatory mechanism to the balance between receptors and their ligands.   

 OSCAR function has been reported to be important in inflammatory and immune 

response modulation and extends beyond the immune system to bone biology in osteoclast 

(OC) differentiation and function, a field named osteoimmunology.52   

 We have examined hOSCAR isoforms lacking the TM domain and compared the 

expression profiles with the membrane-bound hOSCAR isoforms.  The soluble hOSCAR 

isoforms are novel isoforms that are secreted and may play an important role in hOSCAR 

regulation.  To the best of our knowledge, these findings have not been reported or addressed 

in the previously published literature and they contribute to the understanding of osteo-

immune biology and to the development therapeutic modalities to osteo-immune diseases. 

 

Materials and Methods 

Representational Difference Analysis (RDA) to isolate Differentially Expressed Genes 

One week old mouse pups were used to obtain calvaria as the target tissue and their skin and 

tail as control/driver tissues.  Following their sacrifice by quick decapitation, the calvaria 

were dissected out and all adherent soft tissues removed while keeping the pieces of calvaria 

in ice-cold PBS treated with DEPC.  Skin and 1 cm tail samples were also dissected and 

collected separately.  The tissues were immediately placed in tubes containing guanidine 

thiocyanate and homogenized.  Total RNA was isolated using the guanidine thiocyanate-

CsCl gradient method 47 and treated with RNase-free DNase.  The quality of the RNA was 

determined by running small aliquots (15 µg) of each on formaldehyde-agarose gels.  
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Messenger RNA (mRNA) was isolated from 200 µg of total RNA from each of these tissues 

using Oligo dT magnetic beads (Novagen).  The protocols for carrying out the RDA are 

described in detail elsewhere.78  Differentially expressed cDNA fragments were cloned into 

the vector pSPORT-2.  Randomly picked colonies were grown and plasmid DNA prepared 

using the Qiagen kit for minipreps.  Forty one colonies were screened by sequencing and 

their cDNA sequence compared with entries in GenBank Sequence Database.  Two novel 

clones were identified. One of them, termed 3D10 was used for further analysis.  cDNA 

sequence showed homology to an EST clone that was obtained to assemble the full-length 

cDNA reading frame. 

 

Sequence Analysis 

Initially, the full length cDNA assembled from the human EST clone showed significant 

homology to the recently published human OSCAR except that there was no TM domain.  

Subsequent analysis revealed that OSCAR had several isoforms.  Human OSCAR isoforms 

were aligned for nucleotide and AA sequences using Vector NTI 10.0.1 software 

(Invitrogen).  Each protein sequence was analyzed for the presence of a TM domain by the 

following online programs: SOSUI system (http://bp.nuap.nagoya-u.ac.jp/sosui), TMHMM 

Server v. 2.0 (http://www.cbs.dtu.dk/services/TMHMM-2.0), TMpred 

(http://www.ch.embnet.org/software/TMPRED_form.html), and “DAS”-Trans-membrane 

Prediction server (http://mendel.imp.ac.at/sat/DAS/DAS.html); and for the presence of a 

signal peptide by SOSUIsignal (http://bp.nuap.nagoya-u.ac.jp/sosui/sosuisignal) and SignalP 

3.0 Server (http://www.cbs.dtu.dk/services/SignalP).  
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Cell Lines 

THP-1 cells (human myeloid monocytic cell line) were obtained from the American Type 

Culture Collection (ATCC, Manassas, VA).  Cells were maintained at 37°C and 5% CO2 in 

complete media composed of RPMI 1640 with 2 mM L-glutamine supplemented with 100 

U/ml penicillin/streptomycin, non-essential AAs, 0.05 mM 2-mercaptoethanol (GIBCO 

Laboratories, Grand Island, NY), and 10% heat-inactivated fetal bovine serum (FBS) 

(Sigma-Aldrich, St. Louis, MO). 

 

Phorbol Myristate Acetate (PMA) and Lipopolysaccharide (LPS) Stimulation 

THP-1 cells were seeded in 6-well plates at the density of 106 cells/ml. PMA in DMSO or E. 

coli LPS (Sigma-Aldrich) were used to stimulate the cells with the following concentrations: 

1, 10, 100 and 1000 ng/ml for 48 or 24 h, respectively.  Adherent and suspended cells were 

processed for either RNA extraction or Western Blot analysis. 

 

Semi-Quantitative RT-PCR 

Total RNA from THP-1 cells was prepared using TRIzol Reagent (Invitrogen, Carlsbad, 

CA), and reverse transcribed using SuperScript II reverse transcriptase (Invitrogen).  The 

Human 24 Tissue Rapid-Scan cDNA panel (OriGene Technologies, Inc., Rockville, MD), the 

Human Blood Fraction MTC Panel (Clontech Laboratories, Inc., Mountain View, CA) and 

Neutrophil cDNA (OriGene) were screened by Polymerase Chain Reaction (PCR) using 

specific primers for OSCAR: forward 5’-AGCTGCTGGTGACAGAGGAG-3’, and reverse 

5’-GTGTAGTCGGAGGAGCCAGA-3’.  We used GAPDH primers for standardization and 

they were: forward 5’-ACCACAGTCCATGCCATCAC-3’ and reverse 5’-
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TCCACCACCCTGTTGCTGTA-3’.  Expected PCR amplification product sizes are 833 bp 

for OSCAR isoforms with no TM domain, 319 bp for OSCAR isoforms with TM domain and 

452 bp for GAPDH.  PCR cycling conditions were 94°C for 3 min and 40 cycles of 94°C for 

1 min, 51°C for 1 min, and 72°C for 2 min, and a final extension time of 72°C for 10 min, on 

a GeneAmp PCR System 9700 (Applied Biosystems, Foster City, CA).  PCR products were 

run on 2% agarose gels. Intensity of the bands - Optical Density (OD) - was quantified by 

ImageJ software (National Institutes of Health, USA) and plotted using MS Office Excel 

(Microsoft Corporation, Costa Mesa, CA).  For the Human 24 Tissue Rapid-Scan cDNA 

panel, GAPDH amplification was done using 100X panel and OSCAR amplification using 

the 1000X panel. 

 

Analysis of Protein Expression by Western Blotting 

THP-1 cells were stimulated with PMA as described before and cultured in serum-free media 

for 24 h.  Culture media were collected and the cells washed with PBS before being lysed 

using RIPA buffer (50 mM Tris-HCl, 150 mM NaCl, 1% Triton X-100, 0.5% sodium 

deoxycholate, 0.1% SDS, and 1 mM EDTA, pH 7.4), containing 1X proteases inhibitor 

cocktail (Sigma).  The collected conditioned media (CM) was concentrated 10-fold using 

Centriplus YM-10 centrifugal filter devices (Millipore, Bedford, MA).  The concentrated CM 

was lyophilized overnight and re-suspended in dH2O to give us samples that were 

concentrated approximately 100 folds.  Aliquots of the concentrated CM were prepared and 

were either digested overnight using N-Glycanase (ProZyme, Inc., San Leandro, CA) or used 

as undigested samples.  An aliquot of serum-free media was also digested as a negative 

control.  Proteins in the cell lysates and media aliquots were separated by electrophoresis 
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using SDS-PAGE.  Gels were transferred into nitrocellulose membranes and blotted.  

Western Blots were analyzed in duplicate using two separate antibodies that were raised in 

rabbits against synthetic peptides that were either common to all isoforms or specific to the 

isoform(s) with no TM domain.  Antibody raised against the peptide 

RHSAQPWADFTLLGARAPG recognizes all isoforms of hOSCAR.  A second rabbit 

polyclonal antibody raised against the C-terminus peptide QDSWDPAPPPSDPGV of our 

new hOSCAR isoform is specific to the isoform(s) that do not have the TM domain.  Both 

the antibodies were made by Alpha Diagnostic Intl. Inc., San Antonio, TX.  Mouse alpha-

Tubulin antibody (DM1A) (Abcam, Cambridge, MA) was used as a loading control antibody 

for Western Blotting. 

 

Results 

hOSCAR has three pairs of membrane and soluble receptors 

As of date, GenBank search for hOSCAR isoforms indicates the cDNA sequences of six 

isoforms with the following accession numbers; OSCAR1 (NM_206818.1), OSCAR3 

(NM_130771.2), OSCAR4 (NM_133169.2), OSCAR5 (NM_133168.2), OSCAR-S1 

(AF474152.1), and OSCAR-S2 (AF474153.1).  They were all registered by Kim et al.43  

Human OSCAR gene consists of six exons.  Alternative splicing process results in six 

variants.  Aligning their nucleotide sequences shows that three of them have an unspliced 

intron between exon V and VI (Figure 4.1 A).  This unspliced intron is approximately 500 bp 

long, which results in the presence of three long and three short cDNA sequences.  Mouse 

OSCAR (mOSCAR) gene consists of five exons and the unspliced intron does not exist in 

the currently identified three alternatively spliced isoforms.  There is one short, and two long 
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transcripts with a difference of approximately 600 bps at the 3’ un-translated region of the 

last exon (Data not shown).   

 AA sequences of proteins encoded by hOSCAR cDNA isoforms show six different 

isoforms (Figure 4.1 B).  Analyzing the splicing pattern shows that there are three pairs of 

proteins.  Each pair consists of an identical N-terminus polypeptide sequence but one 

molecule with and one without a TM domain at the C-terminus end in each pair.  This is 

caused by the presence of a stop codon within the unspliced intron preventing exon VI from 

being translated, which carries the TM domain encoding sequence.  Isoforms lacking the TM 

domain are only 19 AA-longer than their counterparts.  This is because the translated region 

from the unspliced intron is longer than the one from exon VI.  To avoid confusion between 

the various isoforms, we are proposing a new nomenclature for hOSCAR isoforms as shown 

in Table 4.1.  Basically, isoforms with no TM domains in their AA sequence (soluble 

isoforms) will be abbreviated hOSCARs 1-3 and those with a TM domain in their C-terminal 

end (membrane-bound, receptor) abbreviated as hOSCARm 1-3.  As per the proposed new 

nomenclature, the longest pair is OSCARs1 and OSCARm1.  OSCARs2 and OSCARm2 

have exon III spliced out, and OSCARs3 and OSCARm3 have both exon II and III spliced 

out.  All isoforms have predicted signal peptides.  The N-terminus of all isoforms (the extra-

cellular domain of the membrane receptors) has two Ig-like domains each one is encoded by 

a different exon.   

The three isoforms of mOSCAR encode only two proteins (two transcripts with 

identical coding regions but different 3’ untranslated regions and one transcript that is 

slightly shorter). The difference in the AA sequence between the two protein isoforms is at 

the N-terminus with 6 AAs (one exon) missing in the shorter isoform (data not shown). 



69 

 

hOSCAR is differentially expressed in many tissues 

Since the soluble form of hOSCAR (hOSCARs) is a novel finding, we investigated its 

mRNA distribution in a human tissue cDNA panel and compared it to the distribution of the 

membrane receptor hOSCAR mRNA (hOSCARm) using RT-PCR.  Primers were designed 

to amplify both groups in the same PCR reaction with the difference of amplicon size taking 

advantage of the unspliced intron specificity to the soluble isoforms.  Figure 4.2 A. shows 

that both forms are differentially expressed in most tissues screened.  The intensity of the 

band for membrane receptor isoforms was stronger in general.  The intensity of the PCR 

amplified bands was normalized to the GAPDH mRNA levels (Figure 4.2 B) and the 

findings reveal that the abundance of the two groups is not equally distributed nor has similar 

distribution pattern among tissues. 

 

hOSCAR is differentially expressed in all mononuclear cells and is down-regulated by 

lectin mitogen activators 

It has been reported that hOSCAR is expressed in myeloid cells.44  We investigated the 

expression of both groups of hOSCAR in a cDNA panel and found that both groups are 

actually expressed abundantly in all mononuclear cells screened (Figure 4.3).  While both 

groups are down-regulated by lectin mitogen activators (PHA, Con A and PWM), 

hOSCARm is almost abolished in unsorted MNC and in both T- and B-cells.   

 



70 

PMA and LPS-stimulated THP-1 cells over-express hOSCAR mRNA 

We selected the THP-1 human monocytic cell line to screen the mRNA expression of the two 

groups of hOSCAR.  Un-stimulated THP-1 cells were found to express both isoform groups 

at a basal level (Figure 4.4).  Macrophage induction with PMA results in over-expression of 

the hOSCARs isoforms in a dose response manner, while the level of the hOSCARm 

isoforms does not change.  LPS activation showed a similar pattern but the over-expression 

did not change with increasing the dose above 1 ng/ml.  Adding PMA first followed by LPS 

showed no difference compared to each stimulant individually.   

 At the protein level, lysates from both un-stimulated and stimulated THP-1 cells 

showed a band of approximately 29-30 kDa that did not change in intensity with the different 

treatments when screened using the hOSCAR antibody that recognizes all isoforms (Figure 

4.5).  This band size corresponds to the calculated size of both hOSCAR isoform groups 

(Table 4.1).   

 

Soluble hOSCAR isoform is secreted 

To investigate whether the new hOSCARs isoform that has signal peptide is secreted, we 

examined the conditioned media from PMA-stimulated THP-1 cells.  The approximately 

100-folds concentrated media showed a band of approximately 29-30 kDa.  Next we 

examined the possibility of glycosylation of the secreted isoform by digesting the protein 

with N-Glycanase before analyzing by Western Blotting.  The results using both the 

polyclonal antibodies are shown in figure 4.6.  Ab specific to the soluble isoforms also 

showed a faint wide band at approximately 45 kDa in the undigested media, suggesting the 

possible presence of glycosylated forms.   
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Discussion 

Human OSCAR gene maps to LRC on chromosome 19q13.42.  This cluster has been 

receiving more interest lately due to new members added, old members characterized and 

differences between species studied.  Currently, only OSCAR and NKp46 have orthologs in 

human and rodents.79,80  Interestingly, NKp46 was suggested to be the boundary of LRC on 

one end in both human and mouse and LILRB3 and the PIR family in human and mouse 

respectively 81 but now NKp46 and OSCAR represent LRC boundaries.  More members 

might be added in the future due to the complexity and new understanding of this cluster.  

There are some differences between hOSCAR and mOSCAR and several similarities 

between hOSCAR and other members of LRC.  The mOSCAR has been shown to be 

Osteoclast-specific and is expressed only in committed pre-Osteoclasts 43 while hOSCAR has 

been shown to be expressed in several MNC of myeloid origin 44 which suggests a need for 

tighter regulatory mechanism of its function.  One of the very important regulatory 

mechanisms that exist in LRC members, like the LILRs, is alternative splicing and 

production of soluble receptors.76  Soluble receptors provide a mechanism to regulate the 

balance between receptors and their ligands. 

In this study we identified a spliced isoform of hOSCAR that is soluble and secreted 

into the extra-cellular compartment.  We have also suggested a revised nomenclature of the 

different isoforms of hOSCAR comparing their splicing pattern and AA sequences for better 

understanding of this family of proteins and avoiding confusion.  We have shown how the 

presence of the stop codon in the unspliced intron prevents the translation of the TM domain 

yet the extra-cellular domain is completely translated and theoretically can bind, presumably 
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to the same ligand.  Whether the differences in the N-termini of the extra-cellular domain 

between different isoforms affect ligand binding specificity and/or efficiency is not known at 

present.  Alternatively, such minor differences may have no functional relevance.  It was 

interesting to find that each membrane receptor isoform has a partner that is soluble with 

almost identical AA sequence.  This supports the notion that structural difference may have 

functional effects.  The soluble isoforms have a relatively longer C-terminal domain.  

Whether the extra AA sequences in the C-terminal ends of soluble isoforms serve direct 

functions or affect the folding of these soluble isoforms is not known.  Similarly, the 

transcriptional regulation of all these different isoforms has yet to be studied.   

 The existence of the soluble isoforms led us to investigate their expression 

distribution and compare them to the membrane receptor isoforms.  Designing specific 

primers for soluble isoforms as a group was easy due to the presence of the intron but 

specific primers for individual isoforms of either group or the membrane receptor group was 

only possible across the splicing regions.  In this study we used a common set of primers 

specific for hOSCAR but can detect both groups in the same reaction and the difference 

would be in the amplicon size.  Both groups were found in lymphoid and almost all other 

tissues but with differences in the intensity of the PCR bands within and between the groups.  

This indicates that transcriptional regulation is tissue-specific depending on the cell type 

expressing OSCAR.  mRNA expression distribution in leukocytes showed that both groups 

are highly expressed in all resting MNC including T- and B-cells.  This contradicts finding 

by Merck et al.44 and could be possibly explained by two factors: the quality of cDNA from 

T- and B-cells could have been different (housekeeping gene expression control), and 

primers used could not detect OSCARs3 and OSCARm3.  An interesting finding is that all 
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lectin mitogen activators used show down-regulation of both groups and almost abolished the 

membrane-bound group.  These mitogens increase IL-2 production which is nuclear factor of 

activated T cells (NFAT) transcription factor-dependent.82  Although NFAT activity is 

increased, which up-regulates mOSCAR,83,84 other transcription factors could be severely 

suppressed like microphthalmia transcription factor (MITF) in activated B-cells.85  A 

complete transcriptional regulation of OSCAR is not fully studied especially in human.  Our 

findings will assist in this field.  The down-regulation of hOSCAR isoforms could suggest a 

low functional importance in these cells post-activation.  Although MNC collectively showed 

the same effect of down-regulation, CD14+ monocytes were not activated separately by 

mitogens.  It would be interesting to find out the effect on these cells since PMA and LPS 

showed the opposite effect on THP-1 cells which are monocytic cell line.  PMA induces 

THP-1 cells to differentiate into macrophages morphologically and functionally through 

protein kinase C (PKC) pathway.86  PKC is known to activate NFAT 87,88 which might 

explain the up-regulation of hOSCAR soluble isoforms.  This effect was not observed in the 

membrane receptors.  A transcriptional difference is a possible explanation.  LPS activation 

showed similar up-regulation level for soluble hOSCAR isoforms with the lowest dose but 

no additive or synergistic effect was observed after PMA stimulation.  Our findings were in 

agreement with what has been reported of LPS neutral effect on membrane hOSCAR 

isoforms.89  We did not detect any expression difference between stimulated and non-

stimulated THP-1 cell lysates at the protein level.  This could be because the molecular mass 

of the two groups overlaps within a small range.  There is a possibility that membrane 

receptors band masked the soluble receptors band.   
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 The hypothesis that the soluble hOSCAR isoforms are secreted has been confirmed 

by western blot of conditioned media from PMA-stimulated THP-1 cells.  This finding 

provides an additional difference between mOSCAR and hOSCAR and a similarity to some 

other LRC members.  Secreted receptors are formed by alternative splicing or proteolytic 

cleavage.90  These two mechanisms could exist together in one gene as in the case of IL-4 

and IL-6 receptors.  It would not be surprising to find out that membrane-bound hOSCAR 

could be released by proteolytic cleavage.  Secreted receptors sequester ligands and/or 

eliminate the membrane receptor in the case of proteolytic cleavage.  They play an important 

role in the pathophysiology of immune and bone diseases by altering the balance between 

activation and inhibition.  They have been also used for therapeutic purposes to facilitate 

treatment and monitoring disease processes.90  These secreted hOSCAR isoforms might 

provide an alternative mechanism to an ITIM receptor binding the same ligand as in the case 

of several LRC members with known MHC class I ligands.91  The ligand of hOSCAR has not 

been identified yet but a putative ligand for mOSCAR has been detected on osteoblasts.43   

 In conclusion, we identified a new group of hOSCAR that is secreted and may act as 

decoy receptors to regulate hOSCAR function keeping the balance between the activating 

nature of hOSCAR and the inhibition needed to prevent excessive immune response and 

bone destruction.  Identifying hOSCAR ligand and evaluating receptor/ligand expression 

biologically and in osteo-immune diseases will help further elucidate hOSCAR function and 

therapeutic potential. 

 



Tables 

Table 4.1. Suggested New Nomenclature of hOSCAR Isoforms and their Characteristics. 

 

Isoform 

Current Name Suggested 
New Name 

Group/Protein 
Nature 

cDNA Size 
(bp) 

Polypeptide 
Length (AA) 

Molecular 
Weight (kDa) 

OSCAR1 hOSCARs1 Soluble/Secreted 1946 286 30.9 

OSCAR-S1 hOSCARs2 Soluble/Secreted 1897 282 30.5 

OSCAR-S2 hOSCARs3 Soluble/Secreted 1826 271 29.2 

OSCAR3 hOSCARm1 Membrane-Bound 1440 267 29.2 

OSCAR4 hOSCARm2 Membrane-Bound 1428 263 28.8 

OSCAR5 hOSCARm3 Membrane-Bound 1395 252 27.6 
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Figure Legends 

Figure 4.1. Human OSCAR isoforms sequence comparison.   

(A) A schematic illustration drawn to scale for hOSCAR gene showing exon/intron 

organization of the longest isoforms hOSCARs1 and hOSCARm1 with a parallel encoded 

polypeptide sequences and their main domains.  Human OSCAR gene consists of six exons 

and one unspliced intron between exon V and VI.  Due to the presence of a stop codon in the 

unspliced intron, the resulting protein lacks the TM domain that is present when the intron is 

spliced out.  There is a signal peptide at the N-terminus region of all the spliced forms 

predicted to be 18 AA-long.  All isoforms have 2 Ig-like domains each one is encoded by a 

separate exon.  Numbers represent AA residues.  (B) AA sequence alignment of hOSCAR 

isoforms.  Alternative splicing process to exons II and III and the unspliced intron results in 

six variants; three with and three without the TM domain.  Isoforms lacking the TM domain 

are 19 AAs longer than their counterparts.   

 

Figure 4.2. PCR of human tissue cDNA panel.   

(A) A 2% agarose gel electrophoresis of PCR products shows a relative distribution of 

hOSCAR groups in 24 different human tissues.  (B) Normalized OD to GAPDH mRNA 

expression shows that both forms are expressed in almost all tissues.  The abundance of the 

two groups is not equally distributed nor has similar distribution pattern among tissues. 

 

Figure 4.3. PCR of blood cells cDNA panel.   

(A) A 2% agarose gel electrophoresis of PCR products of a Clontech cDNA panel of resting 

and activated T-, B- and mononuclear cells (MNC) and resting monocytes (MO), and an 
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OriGene cDNA of Neutrophils shows a relative distribution of hOSCAR groups mRNA 

expression.  According to the supplier, activation was done as follows: CD8+ cells by 5 

µg/ml phytohemagglutinin (PHA) for 3 days, CD4+ cells by 5 µg/ml concanavalin A (Con 

A) for 3-4 days, CD19+ cells by 2 µ/ml pokeweed mitogen (PWM) for 4 days, and MNC by 

2 µl/ml PWM and 5 µg/ml Con A for 3 days.  (B) After normalizing the OD to GAPDH 

levels, mRNA expression shows that both forms are down-regulated by the lectin mitogen 

activators. 

 

Figure 4.4. RT-PCR of PMA/LPS-stimulated THP-1 cells.   

(A) A 2% agarose gel electrophoresis of PCR products of cDNA of THP-1 cells stimulated 

by PMA and LPS (dose as indicated).  (B) After normalizing the OD to GAPDH levels, 

mRNA expression relative to the non-stimulated cells shows that there is a clear dose-

response up-regulation of hOSCARs group with PMA stimulation.  LPS shows some up-

regulation as well but without dose-response.  (C) hOSCARm group expression is not 

significantly altered. 

 

Figure 4.5. Western blot of PMA/LPS-stimulated THP-1 Cells.   

THP-1 cells were stimulated with PMA and LPS as indicated.  The cells were harvested and 

the lysates were analyzed by Western blot using anti-hOSCAR and anti-α-Tubulin, 

antibodies. Human OSCAR bands are approximately 29-30 kDa, corresponding to their 

calculated size.  There is no change in the expression level between the stimulated versus the 

non-stimulated cells. 
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Figure 4.6. Soluble receptor hOSCAR isoforms are secreted.   

Western blot analysis using anti-hOSCAR Ab (A) and anti-hOSCARs Ab (B) show that the 

soluble receptor hOSCARs isoforms are present in the N-Glycanase-digested (D) and 

undigested (UD) conditioned media (CM) of THP-1 cells.  Digested serum-free (SF) media 

was used as a negative control.  A wide band of approximately 45 kDa appears in the 

undigested media in the blot with anti-soluble hOSCAR Ab representing the glycosylated 

isoforms.   
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Figures 

Figure 4.1 
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Figure 4.2 
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Figure 4.6 

         

 



 

 

 

DISCUSSION & CONCLUSIONS 

 

OSCAR was discovered in mouse and thought to be OC-specific gene.43  We isolated 

OSCAR fragment from mouse calvaria which shows the importance of this gene during bone 

development.  Mouse OSCAR has been shown to play an important role as a co-stimulatory 

signaling receptor cooperating with RANK for OC differentiation.92  We have shown that in 

human OSCAR is widely expressed in many tissues including bone marrow, lymphoid and 

non-lymphoid tissues.  This suggests a broader function of OSCAR in human depending on 

the type of tissue and the cells expressing it.  hOSCAR is expressed in the myeloid cells DC, 

MO and MΦ, in addition to OC.50  We have shown that hOSCAR is also expressed in T and 

B lymphocytes.  hOSCAR has been shown to be important in maturation, activation, survival 

and antigen presentation of DC.74  It has also been shown to enhance the pro-inflammatory 

response of neutrophils and MO.89  Since hOSCAR is an activating receptor, its expression in 

T cells suggests an activating function especially that the only LILR gene that is expressed 

on T cells is LILRB1 which is an inhibitory receptor.93  Similarly, hOSCAR’s expression in 

B cells represents a regulatory mechanism to the inhibitory receptors.  PIR-A which is a 

mouse activating receptor similar to LILRA receptors, counteracts the inhibitory effect of 

PIR-B on B cells.94,95  The secreted hOSCAR isoforms themselves represent a regulatory 

mechanism to hOSCAR receptor function and activation especially if they are expressed by 

the same cell.  The finding that both groups of hOSCAR are down-regulated by lectin 

mitogen activators in lymphocytes was very interesting.  Lectin mitogens could down-
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regulate hOSCAR due to an opposing pathway to the activation through hOSCAR 

stimulation.  This is supported by the observation of the significant diminishing of the 

membrane-bound isoforms compared to the secreted isoforms.  The down-regulation could 

be direct transcriptional regulation or indirect through another pathway or molecule.  There is 

a possibility that the down-regulation is a feedback inhibition through hOSCAR activation.  

These mitogen activators could bind hOSCAR and activate the receptor followed by 

hOSCAR self-regulation.  The expression profile during the activation process, which took 3-

5 days, was not possible to study.  The wide expression of hOSCAR in immune cells 

indicates its involvement in both the innate and adaptive immunity.  Other cell surface 

receptors that share very similar structural and functional features with hOSCAR are 

members of the LILR family within the LRC.  hOSCAR gene maps to chromosome 

19q13.42, where other genes of LRC are located.  Families of genes within this cluster have 

no true orthologs in human and rodents except OSCAR and NKp46.  The PIR family in 

mouse resembles the LILR family in human in terms of their sequence, expression pattern, 

ligands, signaling, and function.  Alternative splicing is a common feature found in these 

genes which results in different isoforms some of which have no TM domain and could be 

secreted.  Secreted members of LRC in human include LILRA3,34 LILRA5,76 and LILRB2 96 

from the LILR family, LAIR2 41 from the LAIR family, and KIR3DP1 97 from the KIR 

family.  We have added one more member to this list which is hOSCAR with its 3 isoforms.  

In mouse LRC, there has been no identified soluble (secreted) receptor.  We have shown 

evidence suggests the existence of soluble form of mOSCAR using the rabbit anti-soluble 

hOSCAR Ab.  If this is confirmed by sequencing the band recognized by this Ab, OSCAR 

will become the first soluble member of mouse LRC.  Secreted receptors play important role 
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in regulating the balance between receptor-ligand binding and the consequent activation or 

inhibition of that receptor.  We have presented a group of 3 different isoforms of soluble 

hOSCAR and confirmed the expression and secretion of this form.  We have shown that 

these 3 isoforms along with the 3 membrane-bound isoforms form 3 pairs.  The difference 

between these pairs is in the extra-cellular domain.  These differences suggest functional 

differences in ligand binding specificity and/or efficiency as in the example of LILRB2 

which shares 82% identity with LILRB1 extra-cellular domain but it binds its ligand with 

1500-fold lower affinity.98  The ligand for hOSCAR has not been identified but evidence 

suggest that it is expressed on the surface of osteoblast.  Many members of LRC are of 

unknown ligand.  LILR family has been divided into 2 groups based on sequence alignment 

and homology to LILRB1.99  Group 1 was suggested to bind MHC I molecules based on 

known findings of at least 3 members 100 and the comparison between the known crystal 

structures and the AA residues of MHC I binding site.91  This comparison suggested that 

members of group 2 do not play a role in any MHC I recognition.  Other members of LRC 

have been reported to bind MHC I and non-MHC I.  Some KIR members bind MHC I, GPVI 

binds collagen, LAIR binds epithelial cellular adhesion molecule, FcαR binds IgA, and 

gp49B binds integrin αvβ3.
100  Among the list of the yeast two hybrid screening results there 

are some strong candidates like MHC I molecules and some membrane proteins that could be 

the ligand(s) for hOSCAR.  Others could be intra-cellular modulators especially when we 

consider the inhibition of NF-κB observed by the over-expression of cloned 3D10.  Some of 

these candidates are currently under investigation.  Identifying and characterizing hOSCAR 

ligand(s) would clearly lead to better understanding of this important receptor function and 

potential.  Its ligand(s) could also be the same for other receptors of LRC. 
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 To date, what is known about the expression modulation and transcriptional 

regulation of hOSCAR is very little.  Most of the current studies have been focused on 

mOSCAR.  mOSCAR has been shown to be regulated by microphthalmia transcription factor 

(MITF), PU.1 101 and NFATc1.83,84,102  Unfortunately, MITF and PU.1 sites present in 

mOSCAR promoter are not present in hOSCAR promoter.50  mOSCAR has been reported to 

be inhibited by the over-expression of MafB/Kreisler 103 and Protein inhibitor of activated 

STAT3 (PIAS3).102  Some LILR members have been found to be regulated by Sp1, 

chromatin modifications and histone acetylation, PU.1, Runx1, and CMV infection.104  

Whether hOSCAR shares some of these regulators or not is not known at present.  

Membrane-bound hOSCAR was found to be inhibited by LILRB1.105  Its level was not found 

to be altered by LPS, Pam3Cys (synthetic palmitoylated mimic of bacterial lipopeptides), R-

848 (imidazoquinoline resiquimod), or GM-CSF in neutrophil or MO.89  However, we have 

shown that the secreted hOSCAR is up-regulated by LPS and PMA in MO.  During 

activation of MO, inflammatory response needs to be controlled and regulated to prevent the 

over-activation.  In addition, the enhanced inflammatory response of MO to suboptimal dose 

of LPS when hOSCAR is stimulated could be damaging to the tissues.89  This explains why 

the secreted isoforms are up-regulated by LPS.  They could also be involved in sequestering 

the ligand to prevent another pathway of MO differentiation to OC.  This is supported by the 

finding that these isoforms are also over-expressed during MO differentiation into MΦ by 

PMA stimulation.  It would be interesting to investigate the expression profile of all these 

isoforms in OC during the different stages of differentiation and activation.  It appears that 

the secreted hOSCAR isoforms in MO favors the immune response over OC differentiation 
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but prevent the over-activation and the enhanced survival of MΦ caused by the membrane-

bound isoforms in the presence of LPS. 

 Although the soluble hOSCAR isoforms are secreted, they could be expressed and 

remain intra-cellular.  It has been reported that all CD4+ and CD8+ clones may be positive 

for intra-cellular LILRB1 irrespective of the surface expression of this receptor.93  We 

observed the inhibition of over-expressed 3D10 to NF-κB which could be specific or general 

to other transcription factors that are important in the inflammatory response.  This further 

confirms the opposite role of the two groups of hOSCAR since the soluble isoforms inhibit 

NF-κB and the membrane-bound isoforms enhance the inflammatory response and also 

osteoclastogenesis which is NF-κB-dependant. 

 The future of hOSCAR research looks very demanding.  Clinically, OSCAR 

promoter polymorphism has been associated with bone mineral density (BMD) in 

postmenopausal women.106  Several clinical studies have been conducted to link some of 

LRC gene families to diseases failed to identify the gene of interest.  Coeliac disease and 

systemic lupus erythematosus (SLE) has been linked to LRC region,107,108 and psoriasis 

vulgaris is associated with MHC class I.109  hOSCAR could be that unknown gene.  Studying 

OSCAR will face some problems because there has been no reported animal model.  Since 

mOSCAR is not expressed in immune cells, it is impossible to evaluate the interaction 

between the different biological processes involving OSCAR in mouse and correlate it with 

human.  One of the solutions is a transgenic mouse.  Transgenic mice have been generated 

for LILR and KIR genes since these families have either no true homolog or do not exist at 

all.110   
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In conclusion, we isolated a novel protein that we named 3D10.  It is one of six 

alternatively spliced isoforms of hOSCAR.  We showed that hOSCAR is expressed in both 

membrane-bound and soluble isoforms.  Each membrane-bound isoform has and identical 

soluble one making three pairs.  Each pair shares a slight different extra-cellular (N-terminus) 

domain that suggests functional differences.  Although mOSCAR gene does not have soluble 

isoforms identified, we showed some evidence supports their existence.  The confirmation is 

pending sequencing the band identified by anti-3D10 Ab in mouse tissues and RAW 264.7 

cells.  We presented that hOSCAR isoforms are widely expressed in human tissues and MNC 

including T- and B-lymphocytes.  We also showed that PMA and LPS increase the 

expression of the soluble isoforms and lectin mitogen activators down-regulate all isoforms 

but have more effect on the membrane-bound isoforms.  OSCAR ligand has not been 

identified but we presented a list of potential ligand(s) and binding partners by the yeast-two-

hybrid screening.  Some of these proteins are currently under investigation.  We confirmed 

that the soluble isoforms of hOSCAR are actually secreted.  Given the structural properties, 

their function is suggested to be as decoy receptors regulating OSCAR activation by ligand 

binding.  Finally, although 3D10 has been found to be secreted, over-expressed intra-cellular 

3D10 inhibits NF-κB in a TNF-α-independent pathway.  These findings expand our 

knowledge about receptors regulating the osteoimmunology and present a potential for better 

understanding of human biology which will lead to better therapeutic modalities and health. 
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