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Abstract 

Within the last two decades, coronaviruses have generated devastating effects on humans 

being. Especially in 2020, the appearance of new coronaviruses, COVID-19, makes 

researchers aware of the importance of forecasting and predicting the COIVD-19 spreading 

patterns. This research utilizes four different time series models - Naïve model, ARIMA 

model, Horizon-Specific Model without Difference, and Horizon-Specific Model with 

Difference – to predict the case and death rate with a horizon time of 1 day, 3 days, and 5 

days ahead for 173 different countries. We identify the best model for each country based 

on the minimization of out-of-sample root mean squared error (RMSE). The results show 

that when forecasting the case rate, ARIMA models are the best fit for around 54% of 

countries with a horizon time of 1 day ahead, while the horizon-specific models without 

difference are the most appropriate for about 50% and 49% of countries with a horizon 

time of 3 days and 5 days ahead, respectively. When forecasting the death rate, the ARIMA 

models significantly outperform the others and are suitable for 59%, 39%, and 40% of 

countries with a horizon of 1 day, 3 days, and 5 days ahead, respectively.  

1. Introduction 

Coronaviruses are a large family of viruses that infects humans and leads to an upper 

respiratory infection. There have been two major outbreaks of coronaviruses for the last 

two decades, resulting in severe diseases and side effects after recovery [1-2]. SARS, 

severe acute respiratory syndrome, occurred in Southern China from 2002 to 2003. The 

disease rapidly spread from Hong Kong to most Asian countries, ultimately causing 8422 

cases with 916 deaths, a case fatality rate of 11% [3]. Later in 2012, MERS-CoV, Middle 

East respiratory syndrome coronavirus had been identified in the Middle East, Africa, and 

South Asia, resulting in 858 known deaths due to the infection and related complications 

[4]. In 2020, a novel coronavirus named COVID-19 ravaged the world. The first case of 

COVID-19 was reported on December 27, 2019, in Wuhan, China, and was recognized as 

a pandemic in March 2020 by the World Health Organization [5]. COVID-19 has a 

devastating effect on human health and has caused 1.47 million deaths till November 30, 

2020. Compared to SARS and MERS-CoV, COVID-19 has brought an unprecedented 

disaster to the globe. Therefore, it is essential to understand COVID19's trending.  
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Time series analysis is very effective for data gathered and indexed by time, especially 

for epidemiological problems like the West Nile virus (WNV), infections' SARS rate, and 

MERS's outbreak prediction [6]. With global researchers having employed different time 

series models to forecast the COVID-19's trend of the world [7], we are interested in 

setting up a data algorithm that can forecast future case and death rates with different 

models for each country. This project predicts the COVID-19's case and death rate of 173 

countries, with time horizons ahead of 1 day, 3 days, and 5 days by utilizing four different 

time series models. We find the best model for each country by comparing their out-of-

sample RMSE (Root Means Square Error). We aim to set up a system that could help each 

country find its own COVID-19's spreading pattern. 

2. Data 

a. Data Source 

This research mainly utilizes three different datasets – jhu_full_data, jhu_population 

from the GitHub of Our World in Data [8], and Land_Area from the World Bank [9]. 

Thanks to Our World in Data, an online scientific publication focusing on global disease 

problems [10] and the World Bank, we can research with these valuable resources. The 

jhu_full_data records the COVID-19 infection situation of 199 different countries in the 

world. For each country, the dataset gathers the information of COVID-19's new cases and 

deaths number, total cases and deaths number, and weekly cases and deaths number, from 

the first day of infection to February 21, 2021. Figure 2.1 and Figure 2.2 are the 

visualizations of the global COVID-19's distribution.  

 
Figure 2.1 World COVID-19 Cases Number 
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Figure 2.2 World COVID-19 Deaths Number 

 
Figure 2.1 and Figure 2.2 have very similar distributions, which record the total cases 

number (or deaths number) until February 21, 2021. We can notice that the Americas and 

tropical regions have more severe epidemics, while Asian countries have better control 

over the disease.  

 The jhu_population gathers the population data of 199 countries in early 2020, 

while Land_Area describes the land area (square miles) of 201 countries in 2018. Figure 

2.3 and Figure 2.4 present an approximation of the world population and the world 

population density in 2020. 

 
Figure 2.3 World Population in 2020 

 
 

Figure 2.4 World Population Density in 2020 
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b. Data Cleaning  

      After summarizing the jhu_full_data, we discover 26 small countries and regions that 

miss daily new cases and new death numbers. Therefore, we remove those observations 

from the data and select the necessary variables: Date, Country, New cases, and New 

deaths. After that, we combine the jhu_full_data with jhu_population by the name of the 

country and create two variable 𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 and 𝑑𝑑𝑒𝑒𝑐𝑐𝑑𝑑ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 

𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑐𝑐𝑟𝑟𝑐𝑐𝑟𝑟𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝

∗ 100000, 𝑑𝑑𝑒𝑒𝑐𝑐𝑑𝑑ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝

∗ 100000     (2. 1) 

As shown by equation (2.1), 𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 is equal to the number of new cases per one hundred 

thousand persons, while 𝑑𝑑𝑒𝑒𝑐𝑐𝑑𝑑ℎ𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 is equal to the number of new deaths per one hundred 

thousand persons. Figure 2.5 and Figure 2.6 respectively describe the case rate and death 

rate of the world.   
Figure 2.5 World COVID-19 Case Rate 

 
Figure 2.6 World COVID-19 Death Rate 

 
Compared to Figure 2.1-2, Figure 2.5-6 has a significant difference between rates value. 

While China and Russia have large population densities but low COVID-19's case and 

death rate, countries like the US and Brazil have both high value in population density and 

COVID-19's statistic data. The difference between countries inspires us to cluster different 

countries into various types and conduct specific forecasts.  
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c. Model Preparation 

      We split the dataset into training (the year 2020) and testing (the year 2021) data to 

conduct time series analysis. As the dataset gathers daily information, we are able to 

visualize the changes in case rate and death rate by day, and we define the forecasting 

variables with the following symbols:  

𝐶𝐶𝑟𝑟 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑐𝑐𝑑𝑑 𝑑𝑑𝑡𝑡𝑡𝑡𝑒𝑒 𝑑𝑑, 𝐷𝐷𝑟𝑟 = 𝑑𝑑𝑒𝑒𝑐𝑐𝑑𝑑ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑐𝑐𝑑𝑑 𝑑𝑑𝑡𝑡𝑡𝑡𝑒𝑒 𝑑𝑑  

Figure 2.7-10 shows four typical patterns of COVID-19 spreading. As the first country to 

report the COVID-19's infection, China's COVID-19 severity reached the peak value in 

March and quickly under control by April 2020, as shown in Figure 2.7. Brazil (Figure 

2.8) represents the countries that have the constant but severe situation all the time, while 

Canada (Figure 2.9) and France (Figure 2.10) are typical for most counties in the world, 

whose have two peak values, one around April 2020, and the other around the winter of 

2021.  
Figure 2.7 COVID-19 Spreading Curve of China 

 
 

Figure 2.8 COVID-19 Spreading Curve of Brazil 
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Figure 2.9 COVID-19 Spreading Curve of Canada 

 
 

Figure 2.10 COVID-19 Spreading Curve of France 

 
The red curve visualizes the training data, and the green curve represents the testing data. 

We use different models to analyze each country's pattern and determine the best model by 

comparing the closeness between the test data's curve and the other forecasting models' 

curve.  

3. Methodology 

We build four different time series models to forecast each country's case rate and 

death rate at a horizon time of 1 day, 3 days and 5 days.  For each model and each horizon, 

we calculate the RMSE during the testing period, figuring out the best model for each 

country. We store the models' coefficients in a dataset, which helps us set up data 

algorithms for prediction in the future. Details of the four time series models that we used 

are found below.    
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a. Naïve Model 

Economists first suggested the Naïve Model as benchmarks of forecasting accuracy in 

the 1940s. Since the model simply predicts the next period's value by setting it to be that of 

the preceding value, it is considered the most straightforward time series model, and any 

other forecasting models that failed to perform better than the Naïve model should be 

disqualified [11]. A naïve forecast is optimal when data follow a random walk. In this project, 

the Naïve method forecasts the case and death rate of COVID-19 to be the last observation 

value [12].  

𝐶𝐶𝑟𝑟+ℎ = 𝐶𝐶𝑟𝑟 + 𝜀𝜀𝑟𝑟,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 ℎ = 1, 3, 5    (3. 1) 

𝐷𝐷𝑟𝑟+ℎ = 𝐷𝐷𝑟𝑟 + 𝜀𝜀𝑟𝑟,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 ℎ = 1, 3, 5   (3. 2) 

Equations (3.1) and (3.2) show the relationship between case rate (and death rate) at time t 

and the predicting values of 1 day, 3 days, and 5 days ahead. We estimate the white noise 

𝜀𝜀𝑟𝑟 by calculating the Root Mean Square Root (RMSE) between the current and predicted 

value. Then, we run a loop through 173 countries and store the RMSE values of case rate 

and death rate in a larger table for results analysis.  

b. ARIMA Model 

The ARIMA(p, d, q) Model (Autoregressive Integrated Moving Average) is a widely 

used model for time series forecasting and aims to describe the autocorrelations in the data 

[7]. It combines the Autoregressive model AR(p) and Moving average model MA(q). The 

entire models of COVID-19's cases and death rate prediction can be written as 

𝐶𝐶′𝑟𝑟 = 𝑐𝑐 + ∅1𝐶𝐶′𝑟𝑟−1 + ⋯+ ∅𝑝𝑝𝐶𝐶′𝑟𝑟−𝑝𝑝 + 𝜃𝜃1𝜀𝜀𝑟𝑟−1 + ⋯+ 𝜃𝜃𝑞𝑞𝜀𝜀𝑟𝑟−𝑞𝑞 + 𝜀𝜀𝑟𝑟    (3. 3) 

𝐷𝐷′𝑟𝑟 = 𝑐𝑐 + ∅1𝐷𝐷′𝑟𝑟−1 + ⋯+ ∅𝑝𝑝𝐷𝐷′
𝑟𝑟−𝑝𝑝 + 𝜃𝜃1𝜀𝜀𝑟𝑟−1 + ⋯+ 𝜃𝜃𝑞𝑞𝜀𝜀𝑟𝑟−𝑞𝑞 + 𝜀𝜀𝑟𝑟   (3. 4) 

Where p = order of the autoregressive, d = degree of first differencing involved, q = order 

of the moving average part,  𝜀𝜀𝑟𝑟 is the white noise. Specifically, 

𝐶𝐶′𝑟𝑟 = (1 − 𝐿𝐿)𝑑𝑑𝐶𝐶𝑟𝑟, 𝐿𝐿𝐶𝐶𝑟𝑟 = 𝐶𝐶𝑟𝑟−1 

𝐷𝐷′𝑟𝑟 = (1 − 𝐿𝐿)𝑑𝑑𝐷𝐷𝑟𝑟, 𝐿𝐿𝐷𝐷𝑟𝑟 = 𝐷𝐷𝑟𝑟−1 

Here "L" is the backward shift operator to move value one day backward. We build the 

ARIMA model for each country with auto.arima() function in R, and save the p, d, and q 

value for the best classical model, chosen using stepwise selection and AIC, for later 

analysis. Instead of building separate models for each horizon time, we employ rolling 

forecasting to set up ARMIA models.  
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c. Horizon-Specific without Differencing 

The horizon-specific model without differencing is to conduct time series regression 

models over forecast variables. To stabilize the variance of a time series 𝐶𝐶𝑟𝑟 and 𝐷𝐷𝑟𝑟, we 

make a transformation on the forecast variables and predictors by taking the values of the 

logarithms. Equations (3.5) and (3.6) are the models of forecasting COVID-19's case and 

death rate of 1 day, 3 days, and 5 days ahead. 

𝐿𝐿𝐿𝐿𝐿𝐿(𝐶𝐶𝑑𝑑+ℎ + 1) = 𝛽𝛽0 + 𝛽𝛽1𝐿𝐿𝐿𝐿𝐿𝐿(𝐶𝐶𝑑𝑑 + 1) + 𝛽𝛽2𝐿𝐿𝐿𝐿𝐿𝐿(𝐶𝐶𝑑𝑑−1 + 1) + ⋯+ 𝛽𝛽5𝐿𝐿𝐿𝐿𝐿𝐿(𝐶𝐶𝑑𝑑−5 + 1)    (3. 5) 

𝐿𝐿𝐿𝐿𝐿𝐿(𝐷𝐷𝑑𝑑+ℎ + 1) = 𝛽𝛽0 + 𝛽𝛽1𝐿𝐿𝐿𝐿𝐿𝐿(𝐷𝐷𝑑𝑑 + 1) + 𝛽𝛽2𝐿𝐿𝐿𝐿𝐿𝐿(𝐷𝐷𝑑𝑑−1 + 1) + ⋯ + 𝛽𝛽5𝐿𝐿𝐿𝐿𝐿𝐿(𝐷𝐷𝑑𝑑−5 + 1)   (3. 6) 

Where h = 1, 3, 5. Since the case and death rate can be zero, we add 1 to the original value 

before doing the transformations. We conduct linear regression to forecast future rates by 

utilizing the rates from the past five days. We loop the models for 173 counties and save 

the coefficients. Besides, we transfer the predicted value back to raw data by taking 

exponential transformations,  

�̂�𝐶𝑟𝑟+ℎ = 𝑒𝑒𝐿𝐿𝑝𝑝𝐿𝐿(𝐶𝐶𝑡𝑡+ℎ+1)� − 1, 𝐷𝐷�𝑟𝑟+ℎ = 𝑒𝑒𝐿𝐿𝑝𝑝𝐿𝐿(𝐷𝐷𝑡𝑡+ℎ+1)� − 1 

and calculate the RMSE for each country.  

d. Horizon-Specific with Differencing 

The horizon-specific with differencing model computes the difference between 

consecutive observations, stabilizing the mean of a time series by removing changes in the 

level of a time series, and therefore eliminating trend and seasonality [7]. Equations (3.7) 

and (3.8) are the models of forecasting COVID-19's cases and death rate of 1 day, 3 days, 

and 5 days ahead.  

𝐿𝐿𝐿𝐿𝐿𝐿(𝐶𝐶𝑟𝑟+ℎ − 𝐶𝐶𝑟𝑟 + 1) = 𝛽𝛽0 + 𝛽𝛽1[𝐿𝐿𝐿𝐿𝐿𝐿(𝐶𝐶𝑟𝑟 − 𝐶𝐶𝑟𝑟−1 + 1)] + ⋯+ 𝛽𝛽5[𝐿𝐿𝐿𝐿𝐿𝐿(𝐶𝐶𝑟𝑟−5 − 𝐶𝐶𝑟𝑟−6 + 1)]    (3. 7) 

𝐿𝐿𝐿𝐿𝐿𝐿(𝐷𝐷𝑟𝑟+ℎ − 𝐷𝐷𝑟𝑟 + 1) = 𝛽𝛽0 + 𝛽𝛽1[𝐿𝐿𝐿𝐿𝐿𝐿(𝐷𝐷𝑟𝑟 − 𝐷𝐷𝑟𝑟−1 + 1)] +⋯+ 𝛽𝛽5[𝐿𝐿𝐿𝐿𝐿𝐿(𝐷𝐷𝑟𝑟−5 − 𝐷𝐷𝑟𝑟−6 + 1)]  (3. 8) 

Where h = 1, 3, 5. After we conduct basic linear regression on each country's models and 

save the coefficients to the results table, we transfer the forecast variables back to calculate 

the RMSE. The transformations are  

�̂�𝐶𝑟𝑟+ℎ = 𝑒𝑒𝐿𝐿𝐿𝐿𝐿𝐿(𝐶𝐶𝑑𝑑+ℎ−𝐶𝐶𝑑𝑑+1)� − 1 + 𝐶𝐶𝑑𝑑, 𝐷𝐷�𝑟𝑟+ℎ = 𝑒𝑒𝐿𝐿𝐿𝐿𝐿𝐿(𝐷𝐷𝑑𝑑+ℎ−𝐷𝐷𝑑𝑑+1)� − 1 + 𝐷𝐷𝑑𝑑 
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4. Results 

a. Case Rate 
Table 4.1 Percentage of Countries that a Model outperform based on Smallest RMSE-Case Rate 

  Models 

  Naive ARIMA HS w/o Diff HS w Diff 

Horizon 

1 0.028902 0.543353 0.231214 0.196532 

3 0.034682 0.33526 0.508671 0.121387 

5 0.034682 0.346821 0.491329 0.127168 

 

From Table 4.1, horizontally, we can see that relatively few countries have the smallest 

RMSE value of the Naïve model. When horizon =1, the ARIMA model is the best fit for 

54% of counties. When horizon =3 and 5, horizon-specific models without difference are 

the best fit for 50% and 49% countries, respectively.  Generally, the horizon-specific 

models without difference are suitable for more countries than those with difference, which 

may be caused by two reasons. In 2021, some countries like the US and Brazil have a 

worse COVID-19 situation because of the continuous outbreaks, while others, especially 

Asian Countries-China, Japan, and Korea-have better control over the disease with timely 

government regulation.  

Vertically, the horizon-specific models with difference have similar percentage 

values,12%, at the three horizon time, indicating that around 12% of countries may have 

the best performance with this model. When we verify the explanation by researching the 

original dataset, we confirm that horizon-specific models with difference are the best fit for 

countries such as Japan, South Sudan, and Zambia at three different time predictions.  
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Table 4.2 Summary of Case Rate's RMSE for Different Models 

 Horizon  

 1 3 5 

 Percentile of RMSE 

 5% 50% 95% 5% 50% 95% 5% 50% 95% 

ARIMA 0.053482 2.364728 28.2511 0.061499 2.769217 30.13886 0.066402 3.101633 32.77622 

HS w/o 

Diff 
0.057362 2.41878 27.46566 0.07031 2.621284 27.21092 0.077105 2.853925 28.41588 

HS w 

Diff 
0.057261 2.702174 28.55484 0.072697 3.427373 34.71377 0.083387 3.465854 38.64386 

 

Table 4.2 shows the 5%, 50%, and 95% percentile case rate's RMSE for different 

models. ARIMA has the smallest median RMSE with a horizon of 1 day ahead. However, 

the value does not significantly vary from the other models. Horizon-specific models 

without difference have the smallest median value at 3-days and 5-days ahead 

prediction.  Horizontally, the RMSE of all three different models increases, showing that 

the errors are compounding at every prediction round.  

When we have a closer look at the countries with extreme RMSE, we get some 

interesting results. For instance, Tanzania has a zero RMSE for the ARIMA model, which 

may be caused by the few sample data gathered from this country. On the other hand, 

Andorra has RMSE > 50 at all three models. As an inland European Country, Andorra is 

surrounded by France and Spain, indicating that its COVID-19's trending is much more 

complicated and can be significantly affected by its nearby countries.  These results alert us 

that we may need to insert other new variables or pick up new models to conduct the 

prediction for countries like Andorra and Tanzania.  
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Figure 4.1 Summary of ARIMA's p, d, and q Values for Case Rate 

 
When forecasting case rate's 1-day ahead, ARIMA models have dominant advantages 

over the other models. Figure 4.1 summarizes the p, d, and q values of 173 countries, and 

the model ARIMA(0,1,2) is the best fit for most countries.  

𝐶𝐶𝑟𝑟 − 𝐶𝐶𝑟𝑟−1 = 𝑐𝑐 + 𝜃𝜃1𝜀𝜀𝑟𝑟−1 + 𝜃𝜃2𝜀𝜀𝑟𝑟−2 + 𝜀𝜀𝑟𝑟    (4. 1) 

Equation (4.1) describes the ARIMA(0,1,2) model, which is similar to a random walk 

model but with complex white noise calculation. 
Figure 4.2 Predicting Case Rate of France 
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Figure 4.3 Predicting Case Rate of China 

 
Figure 4.4 Predicting Case Rate of Brazil 

 
Figure 4.5 Predicting Case Rate of Australia 

 



14 
 

Figures 4.2-5 are the results of some typical countries. For France (Figure 4.2), the curve 

of ARIMA is closer to the test curve than the other models. However, both China and 

Brazil (Figures 4.3-4) are more applicable to horizon-specific models than the ARIMA 

models. As for Australia (Figure 4.5), the horizon-specific model with the difference is the 

best fit.   

b. Death Rate 
Table 4.3 Percentage of Countries that a Model outperform based on Smallest RMSE-Death Rate 

  Models 

  Naive ARIMA HS w/o Diff HS w Diff 

Horizon 1 0.069364 0.595376 0.127168 0.208092 

3 0.057803 0.398844 0.387283 0.156069 

5 0.046243 0.404624 0.34104 0.208092 

 

From Table 4.3, we can see that relatively few countries have the smallest RMSE 

value of the Naïve model. Compared to the case rate's results, when horizon =1, 3, and 5, 

the ARIMA model outperforms the others and is the best fit for 60%, 39%, and 40% of 

counties.  
Table 4.4 Summary of Death Rate's RMSE for Different Models 

 Horizon  

 1 3 5 

 Percentile of RMSE 

 5% 50% 95% 5% 50% 95% 5% 50% 95% 

ARIMA 0.000338 0.05381 0.571891 0.000311 0.05633 0.605386 0.000106 0.056317 0.585087 

HS w/o 

Diff 
0.001122 0.056031 0.609481 0.001057 0.055335 0.542959 0.001093 0.057108 0.615005 

HS w 

Diff 
0.000263 0.056429 0.561369 0.000353 0.058027 0.563637 0.000559 0.063115 0.65123 

 

Table 4.4 shows the 5%, 50%, and 95% percentile of death rate's RMSE for different 

models. If we have a closer look at the ARIMA, horizon-specific models with and without 

difference, it is apparent that ARIMA has the smallest mean RMSE at a horizon of 1 day 

and 5 days ahead. When forecasting the death rate at a horizon of 3 days ahead, ARIMA 

models and horizon-specific models without difference have similar RMSE values. 
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Noticeably, the RMSE of death rate is relatively smaller than the case rate, showing that 

many patients have been recovered from the infection. 
Figure 4.6 Summary of ARIMA's p, d, and q Values for Death Rate 

 
From Tables 4.3-4, we can see that the ARIMA models have dominant advantages over 

the other models at all horizons. Figure 4.6 summarizes the p, d, and q values of 173 

countries, and the model ARIMA(0,1,1) is the best fit for most countries.  

𝐷𝐷𝑟𝑟 − 𝐷𝐷𝑟𝑟−1 = 𝛼𝛼𝜀𝜀𝑟𝑟−1    (4. 2) 

Equation (4.2) describes the ARIMA(0,1,1) model, which correcting auto-correlated errors 

in a random walk model by adding the simple exponential smoothing model [13].  
Figure 4.7 Predicting Death Rate of France 
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Figure 4.8 Predicting Death Rate of China 

 
Figure 4.9 Predicting Death Rate of Brazil 

 
Figure 4.10 Predicting Death Rate of Canada 
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Figures 4.7-10 are the results of some typical countries. For France (Figure 4.7) and Brazil 

(Figure 4.9), the curve of ARIMA is closer to the test curve than the other models. On the 

other hand, the horizon-specific model with the difference is more applicable to China 

(Figure 4.8) and Canada (Figure 4.10).   

5. Conclusion 

Conclusively, the Naïve model is the least effective, and the ARIMA model applies to 

most countries. However, by viewing the graph above, it is evident that all models' curves 

are still having some difference with one of the test data. One major problem of the results 

is that we only conduct basic linear regression models while conducting horizon-specific 

models. To solve this problem, we could try running ridge regressions to improve the 

models' performance. Moreover, test data trends are dissimilar to train data, which may be 

affected by other factors, such as government regulations, vaccine inoculation, and other 

medical resources. We should insert more predictors into our models.  

For the next step, we are going to explore clustering techniques to group countries 

according to the similarity in their ARIMA model orders and coefficients. Then create an R 

Shiny App where a user picks the country and horizon, and it outputs a table of the 1 day, 3 

days, and 5 days forecast from all of the models in a table. 
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