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ABSTRACT 
 

Niantao Jiang: Three Tests of Dimensionality in Structural Equation Modeling:  
A Monty Carlo Simulation Study 

(Under the direction of Kenneth Bollen) 

 

    The issue of dimensionality is essential to social science research but few researchers have 

empirically tested the dimensionality of theoretical constructs. One main reason is the 

uncertainty of how best to proceed. With the development of structural equation modeling 

with latent variables, several tests are available for researchers to choose. In this study, 

drawing on statistical theory and prior researches, I empirically assess the performance of 

likelihood ration test, confidence interval test, and vanishing tetrads test using data generated 

from Monte Carlo simulations. 

The study results show the likelihood ratio test did reasonably well. It does not show 

obvious signs of impact of the violation of boundary condition when testing for 

dimensionality. While overall the confidence interval test method appears to be too 

conservative, the vanishing tetrads tests for dimensionality works best for models with few 

indicators, but less well in larger models and smaller sample sizes. 
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1. INTRODUCTION 
 

    An often asked question in sociology and other social science disciplines is whether a 

theoretical construct is unidimensional or multidimensional.  Researchers have done various 

studies on the dimensionality of important theoretical constructs like alienation (Seeman, 

1959; Kohn, 1976), bureaucracy structure (Blau, 1967; Child, 1972; Hall, 1963; Pugh et al., 

1968; Reimann, 1973; Samuel and Mannheim, 1970), political democracy (Bollen, 1979; 

Bollen 1980; Cutright, 1963; Jackman, 1975), and social capital (Bourdieu, 1983; Coleman, 

1988; Lin, 2001; Narayan and Cassidy, 2001; Paxton, 1999; Portes, 1998; Putman, 2001). 

    Such questions are essential to social science research because misspecification of the 

dimensions can lead to incorrect empirical results.  On the one hand, if a construct is 

unidimensional, using several measures as separate independent variables would most likely 

cause severe multicollinearity problem (Blalock, 1963). On the other hand, if a construct is 

multidimensional and a single measurement is employed, we would probably only catch one 

dimension of the construct, which inevitably would cause trouble in discovering what really 

is going on with the construct and its related variables. As Bollen and Grandjean (1981) put it,     

    “The dimensionality question is crucial to the integration of theory and research, because it 
draws attention to the implicit theoretical assertions in any operational definition, and 
therefore emphasizes the need to incorporate explicit measurement models in causal models.” 
 
    However, there have been few sociological examples where dimensionality is empirically 

explored during the past several decades.  Part of the reason might be that most researchers 

are unsure of how best to proceed. When testing dimensionality of a construct, we have the 



  
   

need to test whether the correlation between two latent variables is one. This follows since if 

two dimensions are really a single dimension, then the two dimensions should be perfectly 

correlated when treated separately. With the development and increasing interest of advanced 

statistical techniques in the social science, especially structural equation modeling (SEM) 

with latent variables, several tests are available for researchers to choose. 

    Structural equation modeling is a very general and powerful multivariate analysis 

technique that includes specialized versions of a number of other analysis methods as special 

cases. Causal modeling, factor analysis, path analysis, regression models, covariance 

structure models, and correlation structure models all could be seen as special cases of SEM.  

    A structural equation model implies a structure of the covariance matrix of the observed 

variables in an analysis. Once the model’s parameters have been estimated, the resulting 

model-implied covariance matrix can then be compared to the sample covariance matrix. If 

the two matrices are consistent with one another, then the structural equation model can be 

considered a plausible explanation for relations between the measures. Thus SEM is a largely 

confirmatory, rather than exploratory, technique. That is, a researcher is more likely to use 

SEM to determine whether a certain model is plausible, rather than using SEM to perform an 

exploratory search for a suitable model--although SEM analyses sometimes involve a certain 

exploratory element.  

    In SEM, interest usually focuses on latent constructs—abstract psychological or 

sociological variables like “intelligence” or “socioeconomic status”—rather than on the 

manifest variables that measure these constructs. With SEM, the reliabilities of each indicator 

of the latent variables can be assessed. When predictor variables do not account for changes 

in outcome variables, it is possible to determine whether this is because of lack of association 
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between the variables or because of poor reliability of the operational measures of those 

variables. SEM assesses the degree of imperfection in the measurement of underlying 

constructs and distinguishes between less than perfect measurement of variables and 

nonrandom, unexplained variance.  By explicitly modeling measurement error, SEM users 

seek to derive unbiased estimates for the relations between latent constructs. To this end, 

SEM allows multiple measures to be associated with a single latent construct. These features 

of SEM have led to increasing interest in it in psychology, sociology, organization behavior, 

marketing, education and other disciplines. 

    Among the many applications of SEM, testing for dimensionality of a construct is a 

significant one. There are several methods by which researchers can test whether two latent 

variables are perfectly correlated in structural equation modeling and the most commonly 

used one is the likelihood ratio test, which is based on maximum likelihood statistical theory. 

Several researcher have used this test to examine dimensionality of measures by testing 

whether the correlation between two constructs was one or not (Joreskog, 1979; Bollen and 

Grandjean, 1981; Parker, 1983). However, when dealing with testing for dimensionality of a 

construct, one of the key assumptions of the likelihood ratio test, that the true parameter 

value is interior to the parameter space, is violated. As I will detail below, this violation 

raises questions about the validity of the likelihood ratio. There are other tests that might be 

considered including putting confidence intervals around the estimated correlation with the 

standard errors, or applying a vanishing tetrads test of dimensionality.  

This master paper examines the LR test and other tests of perfect correlations to determine 

which works the best. In addition to reviewing these tests of dimensionality, this study will 

examine the finite sample performance of these tests of dimensionality across a variety of 
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sample sizes and several different model specifications. The goal is to evaluate which 

dimensionality test(s) is most accurate and provide recommendations about which tests 

perform best so as to give practical guidance to researchers interested in testing 

dimensionality. 

The remaining paper is organized as follows: In the next section, I will review the formal 

basis of the likelihood ratio test and explain why the test of perfect correlation falls outside 

the classical LR test. Next I will describe the test of dimensionality using confidence 

intervals with asymptotic standard errors. Then I will introduce the vanishing tetrads test, its 

properties, and the steps to perform the test. The fifth section outlines the design of a Monte 

Carlo simulation used to address my research question. The last section reports the 

simulation results across the different experiment conditions. I conclude with a comparison 

of the performance of the different test methods for testing the dimensionality of a theoretical 

construct.  

  

2. LIKELIHOOD RATIO TEST 

 

Among all the tests available to examine whether two latent variables are perfectly 

correlated in structural equation modeling, the most commonly used one is the likelihood 

ratio test, which is based on maximum likelihood theory. 

Assume that the distribution of the random variable Y is given by f( θ;y ) where θ denotes 

a vector of possibly unknown parameters ( Θ∈θ ). The log-likelihood function corresponding 

to a random sample of size N is given by  

∑= i iyf );(ln)( θθl  
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with the maximum likelihood estimator of θ being defined by . )}(arg{minˆ θθ θ lΘ∈=

The standard regularity conditions for this estimator to be asymptotically normal with a 

variance-covariance matrix equal to the Cramer-Rao matrix are (Cox and Hinkley 1974): 

a) The parameter space Θ  has finite dimension, is closed and compact, and the true 

parameter value is interior toΘ ; 

b) The probability distribution defined by any two different values ofθ are distinct; 

c) The first three derivatives of the log likelihood function with respect toθ exist in the 

neighborhood of the true parameter value almost surely. Further, in such a 

neighborhood, n times the absolute value of the third derivative is bounded above by 

a function of Y, whose expectation exists; 

d) The variance matrix of the first derivatives of the log-likelihood function equals the 

negative expected value of the matrix of second order derivatives, i.e., the 

information matrix, which is finite and positive definite in the neighborhood of the 

true parameter value. 

Consider the composite hypothesis: Θ⊂Θ∈ 00 :θH . The corresponding likelihood ratio 

test statistic is defined by LR = 2 )~()ˆ(( θθ ll −  where )}~(arg{max~
0

θθ θ lΘ∈= . If the above 

regularity conditions hold, an asymptotic approximation of the likelihood ratio test statistic 

can be expressed as the difference of two quadratic forms which have independent 

distributions. Consequently, LR test statistic is asymptotically distributed as  with d 

equals the difference between dimensions of 

2χ 2
dχ

Θ and 0Θ  (Chernov, 1954). 

In the context of SEM, the population covariance matrix of the observed variables,Σ , 

equals an implied covariance matrix )(θΣ  by the hypothesized model, where the values of θ  
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represent a vector of free parameters in the hypothesized model. Most of the estimators for 

SEMs have the objective of minimizing the difference between the covariance matrix implied 

by the hypothesized model and the covariance matrix observed in the sample S, where 

the minimization is with respect to a fitting function, F. If we denote  as the value 

of the minimum of the fitting function, then it is a scalar value that ranges from 0 to infinity 

and equals 0 only when the estimated implied covariance matrix exactly reproduces the 

sample covariance matrix. Although there are several major functions from which to choose, 

the maximum likelihood estimator is the most widely used one. The maximum likelihood 

fitting function is as follows: 

)ˆ(θΣ

)]ˆ(,[ˆ θΣSF

),(||log))ˆ((|)ˆ(|log)ˆ(,(ˆ 1 qpSStrSFML +−−Σ+Σ=Σ − θθθ  

 where qp +  represents the total number of observed measured variables. Generally, we 

assume that  and  are positive-definite which implies that they are nonsingular. 

Assuming no excess multivariate kurtosis, adequate sample size, and proper model 

specification, ML parameter estimates of  are asymptotically unbiased, consistent, efficient, 

and normally distributed (Bollen, 1989; Browne, 1984). 

)ˆ(θΣ S

θ̂

Correspondingly, the most commonly used measure of model fit based on  is the 

likelihood ratio test statistic T = , where N represents sample size. If the regularity 

conditions hold, under the same assumptions described above, this test statistic T 

asymptotically follows a central chi-square distribution with degrees of freedom denoted as 

df. Given the known asymptotic sampling distribution of T under proper model specification, 

this test statistic allows us to test the null hypothesis that the population covariance matrix 

equals the covariance matrix implied by the population model parameters. 

MLF̂

)1(ˆ −NFML
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However, when the test is whether a construct is unidimensional or multidimensional, we 

need to test whether the correlation between two constructs is equal to one or not. This 

creates the “boundary conditions” as the true parameter may not be interior to parameter 

space, instead, it could lay on the boundary of the parameter space. Such a situation violates 

the regularity condition a) described above. Thus one of the key assumptions of the 

likelihood test is violated.  Lots of research has investigated the asymptotic distribution of 

likelihood ratio test statistics under boundary conditions (Chernoff, 1954; Shapiro, 1985; Self 

and Liang, 1987; Stram and Lee, 1994; Andrews, 2001).  

Chernoff (1954) first showed that when testing whether θ  is on one side or the other of a 

smooth (k-1) dimensional surface in k dimensional space and θ  lies on the surface, the 

distribution of likelihood ratio test statistics “is that of a chance variable which is zero half 

the time and which behave like  with one degree of freedom the other half of the time.”  

Shapiro (1985) examined the asymptotic distribution of a class of test statistics (including 

likelihood ratio statistics) when 

2χ

θ  is on the boundary of 0Θ  but is an interior point ofΘ  and 

he concluded that the asymptotic distribution is a mixture of  distributions. Using 

virtually the same approach as in Shapiro’s work, Self and Liang (1987) generalized 

Shapiro’s results to the case in which 

2χ

θ  is a boundary point ofΘ . However, they also found 

that when a nuisance parameter is on the boundary, the asymptotic distributions of likelihood 

ratio statistics may not be a mixture of chi-squared distributions. Based on the results by Self 

and Liang, Stram and Lee (1994) investigated the asymptotic behavior of likelihood ratio 

tests for nonzero variance components in the longitudinal mixed effects linear model and 

proved that the likelihood ratio test has a  asymptotic distribution, where q is 

the number of fixed effects parameters constrained under the null hypothesis. Finally, 

2
1

2 5.05.0 ++ qq χχ
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Andrews (2001) established the asymptotic null and local alternative distribution of several 

test statistics when parameter vectors in the null are on the boundary of the maintained 

hypothesis as well as when a nuisance parameter appears under the alternative hypothesis, 

but not under the null.  

 

3. CONFIDENCE INTERVAL TEST 

 

    Another way to test whether a correlation is one that does not use the likelihood ratio test 

is to estimate the correlation between the two latent variables representing the two 

dimensions and to employ the asymptotic standard errors to form a confidence interval 

around the correlation.  If the confidence interval (CI) includes 1, then this is evidence of a 

single empirical dimension to the construct.   If the confidence interval does not include 1, 

then this is evidence of distinct dimensions. In the situation where the estimated correlation is 

greater than 1 and the CI does not include 1, this is evidence of a misspecified model due to 

the impossible population value of a correlation greater than 1.   This would suggest that a 

new specification of the model is required. However, the asymptotic standard error that 

derives from maximum likelihood estimation may also be affected by the boundary condition. 

 

4. VANISHING TETRADS TEST 

 

4.1 Basic Concepts 

A useful alternative to more traditional measures of model fit is based on the vanishing 

tetrads implied by a SEM. In contrast to the traditional test statistics, the hypothesis being 
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tested is that a set of vanishing tetrads is zero whereas before we were testing whether a 

model implied covariance matrix equals the population covariance matrix. 

These tetrads are differences in products of covariances of the observed variables. 

Depending on the structure of the SEM, some of these differences will “vanish”—that is, 

they will be zero in the population. To the degree that the sample vanishing tetrads are 

consistent with being zero in the population, we have evidence consistent with the 

hypothesized structure. Thus the vanishing tetrads test that we propose will give us an 

alternative method to test SEMs.  

Although previous researchers employed the concept of vanishing tetrads in an exploratory 

manner for discovering possible models (Glymour, Scheines, Spirtes,&Kelly, 1987), Bollen 

(1990) first proposed that model fit could be assessed by simultaneously testing the multiple 

vanishing tetrads implied by a model. This was later elaborated by Bollen and Ting (1993) to 

show that it not only could be used to assess the fit of structural equation models, but that in 

some instances it could be used to assess the fit of models that are not formally identified. In 

addition, Bollen and Ting (1998) provide a bootstrap method of generating the p-value for 

the tetrad tests that has better performance in small to moderate sample sizes than the original 

tetrad test proposed in Bollen (1990). More recently, a tetrad test was proposed for 

comparing causal indicators to effect indicators for a model (Bollen and Ting 2000). 

A tetrad is formed from four random variables, and refers to the difference between the 

product of one pair of covariances and the product of the other pair. Four variables contain 

six covariances, and from these we can create three tetrads:  

,241334121234 σσσστ −=  
       ,321442131342 σσσστ −=  and 

,431223141423 σσσστ −=  
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This notation comes from Kelley (1928), with ghijτ  referring to hjgiijgh σσσσ − and σ as 

the population covariance of the two variables that are indexed below it. A hypothesized 

model structure will imply that for some of these tetrads, 0=ghijτ , and these are referred to 

as vanishing tetrads. Given the set of implied vanishing tetrads in a model, Bollen (1990) 

proposed a method to simultaneously test whether this set of tetrads is significantly different 

than zero. Rejecting this hypothesis would suggest a possible problem with the hypothesized 

model. Failure to reject indicates consistency between the model and the data. 

Below is a simple example to show the nature of the vanishing tetrads test on testing 

dimensionality. Figure 1 includes two models: the left one (model A) is a factor model with 

one latent variable (F) and four observed variables. This model implies that the construct is 

unidimensional. The right one (model B) is a two-factor model with two indicators for each 

latent variable, representing a construct with two dimensions. 

1

F

V2 v3V1 v4

e1
1

e2
1

e3
1

e4
1

1

F1

V2 v3V1 v4

e1
1

e2
1

e3
1

e4
1

1

F2

 

Figure1: Path Diagram for One-factor Model and Two-factor Model 

 

    The corresponding equations for the above path diagrams are 

iii FV ελ +=  

where 
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    From the above definition of tetrad, we could use covariance algebra to prove that in 

model A there are three vanishing tetrads: 1234τ , 1342τ  and 1423τ . A simultaneous significance 

test explained later could be used to determine whether model A is consistent with sample 

data. If the test statistic is significant, we would conclude that the implied vanishing tetrads 

do not hold and reject this one-factor model. A nonsignificant test statistic would lead us to 

consider this model A as a possible representation of the sample data. Different from model 

A, model B only implies one vanishing tetrad: 1342τ . A significance test of this vanishing 

tetrad would provide a test of model B and the decision rule is the same for model A. Since 

the vanishing tetrad implied by Model B is a subset of the vanishing tetrad implied by Model 

A, we can treat those two models as having “nested tetrads.” If the difference in the test 

statistics for the two models is significant, we would conclude that the model with the fewest 

vanishing tetrad is a better model. If the test result is not significant, we would prefer the 

model that implies the most vanishing tetrads. So in this example, we would favor the 

unidimensional construct model (model A) if the test statistic for the vanishing tetrads 

implied in model A is not significantly greater than the test statistic for the vanishing tetrads 

implied in model B. 

 

4.2 Test Steps 

Given a theoretically specified model, the vanishing tetrad testing procedure has three 

steps: (a) identify all of the model-implied vanishing tetrads, (b) select an independent set of 
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vanishing tetrads, and (c) form the simultaneous test statistic for the independent vanishing 

tetrads. 

To perform vanishing tetrads test, we need to first identify the vanishing tetrads implied by 

a model. Bollen and Ting (1993) proposed three methods for this task: covariance algebra, a 

factor analysis rule, and an empirical method for general SEM. Using covariance algebra, we 

can express the covariance of any two variables in terms of the parameters of the model. We 

can then compare two pairs of covariances in a tetrad and conclude whether a vanishing 

tetrad is implied by the model. However, this method become tedious for models with more 

than four variables and is prone to errors. The factor analysis rule simplifies the task by 

detecting a vanishing tetrad when none of the four covariances in a tetrad equation involve 

correlated error terms and the two pairs of latent variables associated with the two 

covariances in the first term match those in the second term of the equation. The limitation of 

this method is that it only works for factor analysis models where each indicator is influenced 

only by one latent variable and an error variable, thus inapplicable to models with factor 

complexity greater than one or to general SEM. The third method first arbitrarily specifies 

the values of model parameters and uses those to generate the implied covariance matrix 

through SEM programs. Then it calculates all tetrads and takes those tetrads within rounding 

of zero as the model implied vanishing tetrads. 

After determining the vanishing tetrads implied by a model, we need to determine which 

vanishing tetrads are redundant and should be excluded from the test. Bollen and Ting (1993) 

showed that when two covariances in one vanishing tetrad are identical with the covariances 

in another vanishing tetrad, it is a sufficient condition that a third vanishing tetrad must be 

implied and should be eliminated in the simultaneous test and in the case where there is only 
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one common covariance between two vanishing tetrad, algebraic substitution will lead to a 

vanishing equation with six covariances, and no additional vanishing tetrad will be implied. 

Hipp and Bollen (2003) proposed an alternative approach for this task: they used sweep 

operator on the asymptotic covariance matrix of vanishing tetrads implied in the model to 

find tetrads that are linearly dependent on the other. Then by employing a suitable criterion 

value for assessing linear dependence, those tetrads are determined redundant and dropped 

from the test. The empirical results have shown this sweep operator method is much faster 

than the first one. It should be noticed that for any model there are a large number of possible 

sets of nonredundant tetrads, thus Bollen and Ting (1993) suggested one should select a 

difference set of redundant vanishing tetrads to exclude and recalculate the test of 

significance, adjusting by the Bonferroni method for multiple testing. 

After identifying a set of independent vanishing tetrads, one needs to evaluate those tetrads 

simultaneously. Bollen (1990) proposed a test that applies to normally and nonnormally 

distributed observed variables, and analyzes correlations or covariances. The null hypothesis 

of the test is ,0:0 =τH  and the null alternative hypothesis is 0: ≠τaH where τ  is a vector 

of the population tetrads that are implied to be zero for a specific model. The test statistic is 

derived by first defining t as a column vector of the independent sample tetrad difference 

implied by a model, σ  as a column vector of all efσ that appear in one or more of the 

vanishing tetrads, and )(στ as a column vector of the population vanishing tetrads that is a 

function ofσ . A covariance matrix of the limiting distribution of the sample covariance, ttΣ , 

is then constructed corresponding to the elements inσ . In general the elements of  are: ttΣ

ghefefghgheftt σσσ −=Σ ,][  
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where efghσ  is the fourth-order moment for the e, f, g, and h variables. The sample estimator 
of efghσ  is: 

)].)()()(([1
hhggffeeefgh XXXXXXXXNS −−−−Σ= −  

 

    Using the delta method (Rao, 1973; Bishop, Fienberg, and Holland, 1975), one can 

estimate the covariance matrix of the limiting distribution of the sample tetrad differences: 

)/()/( ' στστ ∂∂Σ∂∂=Σ sstt , 

    Finally, the test statistic is constructed as: 

tNtT tt
1' ˆ −Σ= . 

where N is the sample size. Asymptotically, T approximates a chi-square distribution with d.f. 

equal to the number of independent vanishing tetrads simultaneously examined in the test. A 

significant test statistic suggests that the model implied vanishing tetrads are not zero and 

casts doubt on the model’s validity. 

    Two models have nested vanishing tetrads when all the model implied vanishing tetrads of 

one model are a subset of the vanishing tetrads of another. When comparing two models 

nested in terms of vanishing tetrads, the more restricted model implies a greater number of 

vanishing tetrads than the less restricted one. Their test statistics could be referred as and 

with degree of freedom and respectively. If the two test statistics are not 

significantly different from each other, the model with more vanishing tetrads would be 

preferred; otherwise, the model with the fewer vanishing tetrads will be selected. This 

significance test for two nested models, , is  

MT

LT Mdf Ldf

DT

LMD TTT −=  

Which is asymptotically distributed as Chi-square distribution with . LM dfdfdf −=
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4.3 Test Properties 

The vanishing tetrads test has several good properties. First, the vanishing tetrads test 

provides a goodness-of-fit test for a model that can lead to results different from the usual LR 

test associated with the ML method. So it may be possible to reveal some specification errors 

that are not detected in the LR test. Second, the vanishing tetrads test could be applied to 

some underidentified models as well as models that are not nested in the usual LRT sense but 

are tetrad-nested. Third, the vanishing tetrads test can be applied to polychoric and polyserial 

correlation (covariance) matrices for dichotomous, ordinal, or censored endogenous variables 

(Hipp & Bollen, 2003).  Finally and most importantly, vanishing tetrads test is very useful for 

testing the dimensionality of latent variables when the validity of the LR test is in doubt 

because of the presence of boundary condition. 

These three tests I just reviewed, likelihood ratio test, confidence interval test using 

asymptotic standard errors, and vanishing tetrad test, could all be employed to examine the 

construct dimensionality. In the following section, I will use a Monte Carlo simulation to 

investigate the performance of those tests with the presence of boundary conditions. 

 

5. SIMULATION DESIGN 

 

Monte Carlo simulation is a widely used technique in SEM. Examples of Monte Carlo 

studies in SEM include Anderson and Gerbing’s (1984) examination of fit indexes, 

nonconvergence, and improper solutions; Curran, West, and Finch’s (1996) study of 

likelihood ratio test statistics; Hu and Bentler’s (1999) analysis of cutoff criteria for 
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goodness-of-fit statistics; and Muthén and Kaplan’s (1985, 1992) study of the effects of 

coarse categorization in structural equation model estimation.  

A major criticism of Monte Carlo simulation studies is a lack of external validity. Usually 

only a limited number of model types are examined, or the models that are tested bear little 

resemblance to those commonly estimated in applied research. So a key step in designing a 

Monte Carlo experiment is therefore to have a model that is representative from an applied 

standpoint. The main purpose of this study is to comparing the performance of different 

methods on testing the dimensionality. And in practice researchers usually test the 

dimensionality of a construct with a confirmatory factor analysis (CFA) before applying this 

construct in the general structural equation models. 

So in this study I chose to use a confirmatory factor analysis model to conduct the 

simulation study. It also should be noted that there are lots of possible dimensional tests, like 

2 dimensions vs. 1 dimension, 3 dimensions vs. 1 dimension, 3 dimensions vs. 2 dimensions 

etc. In this study, my focus is on a basic and important case: bivariate vs. univariate 

dimension.  

Distribution 

    All random variables were generated from a standard multivariate normal distribution. I 

chose to control the complexity of the simulation by limiting the distribution to a normal one. 

A systematic examination of what the performance of those tests would be with excess 

kurtosis would require a separate simulation with several varieties of different distributions. 

This will dramatically increase the number of experimental design conditions beyond what I 

could handle in the paper. 

Sample Size  
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    One of the most important variables in a simulation study is sample size. The best known 

properties of ML estimators are asymptotic ones.  We do not know the properties of test 

methods for small to moderate sample sizes. As a result, nearly all Monte Carlo simulations 

vary sample size (Paxton, Curran, Bollen, Kirby, and Chen, 2001). Since in some social 

science disciplines, such as psychology or cross-national analyses in sociology or political 

science, routinely use sample sizes under 100 and one major interest in this study is to 

examine the performance of various tests in the small sample situation, I chose five sample 

sizes that range from small to large and are typical of those usually found in social science 

research: 75, 100, 250, 500, and 1000. 

Number of Indicator per Latent Variable 

Several studies have shown that the number of indicators per latent variable and the 

sample size both influence the possibility of obtaining improper solutions (e.g., negative 

estimates of variances or correlations greater than one). Gerbing and Anderson (1985) find 

that bias significantly increases with two indicator models. Velicer and Fava (1998) support 

this finding with their own simulation study and argue that a minimum of three indicators per 

latent variables is important. Matsueda and Bielby (1986) and Marsh, Hau, Balla, and 

Grayson (1998) both examine the impact of an increase in the number of indicators per factor 

in CFA context. They conclude that having more indicators can compensate for low sample 

size. In this study, I chose to have two, three, or four indicators per factor for the two-factor 

model. Table 1 summarizes the experimental conditions and the symbols I will use 

throughout this paper to refer to them. 
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Table1: Experimental Design Conditions 
 Variation Symbol 

Model specification One-factor Model 
Two-factor Model 

M1 
M2 

Number of Indicators per Latent 
Variable for one-factor Model 

4 
6 
8 

I4 
I6 
I8 

Sample Size 

75 
100 
250 
500 
1000 

N75 
N100 
N250 
N500 
N1000 

 

Population Parameters 

    Selection of the specific values of the population model parameters should be under the 

guide of theory, research questions, and utility. They should not only reflect values 

commonly encountered in applied research, but also provide an opportunity to differentiate 

the performance of various tests. Since my main object is to examine the performance of 

different test methods for testing the dimensionality of a theoretical construct, I chose the 

following parameter specifications: The latent variables’ variances were set to 1. All the 

factor loadings as well as error variance were fixed to 1. All the observed variables in each 

sample have a mean of 0 for the purpose of computation efficiency. 

Software Package 

    Most SEM packages, including AMOS, EQS, GAUSS/MECOSA, SAS/CALIS/IML, 

Fortran (ISML), MPLUS, and PRELIS/LISREL, have some capability of doing simulation 

studies. Each package has its strengths and weaknesses with regarding to its simulation 

capability (Hox, 1995; Waller, 1993) and the choice of a Monte Carlo modeling package 

should be dependent on the experimental design conditions. For this study, after some 

research and initial test, I decide to use version 4 of Mplus because it has been previous 
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successfully employed in various simulation studies (Asparouhov, 2004, 2005; Flora and 

Curran, 2004; MacIntosh and Hashim, 2003) and it has extensive Monte Carlo facilities for 

both data generation and data analysis. However, Mplus alone was not adequate to meet all 

of my analytic needs. So I also used AMOS and SAS for data management and data analysis. 

Replications  

    Since I chose five sample sizes for three different models (two, three, and four indicators 

per factor for the two-factor model), this resulted in a total of 15 experimental conditions. 

Because of the possibility of high variation of the estimator due to some small sample sizes, I 

chose to generate 500 replications for each condition (For the smaller sample sizes, which 

would more likely to have convergence problems, I will generate many more samples than 

500 to get 500 good replications). This resulted in 7500 samples. For each sample, I 

conducted all three tests, which resulted in 22500 tests. 

Convergence 

    The random samples generated by Mplus may not converge. Especially small samples may 

have a tendency to increase this problem, as both the observed covariance estimates may be 

further away from their true value, and the starting value for optimization may be far from 

the optimum (Siemsen and Bollen 2005). This leads to the issue of whether those samples 

should be kept in the analysis. Researchers have debated about whether nonconverged 

samples should remain in Monte Carlo simulations. Since the main research interest in this 

study is not nonconverged samples, I will follow the suggestion from a previous study 

(Paxton, Curran, Bollen, Kirby, and Chen, 2001) to exclude them from the analysis. 

    The data were generated using the MONTECARLO command in Mplus. All random 

variables were drawn from a standard normal distribution. The seed for each experimental 
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condition was selected randomly from a random number table and different from each other. 

The generated data were first analyzed in Mplus to get the likelihood ratio test and 

confidence interval test. I then used the Mplus RUNALL utility to get the sample-implied 

covariance matrix of each sample and AMOS software to obtain the model-implied 

covariance matrix of a random selected sample for each sample size. Those covariance 

matrixes were then put into a SAS Macro developed by Hipp, Bauer, and Bollen (2003) for 

conducting test for tetrad-nested models to get the test results. The programming codes for 

data simulation and analysis in Mplus and for SAS analysis can be obtained from the author 

upon request. 

 
6. SIMULATION RESULTS 
 

    I now present the results of the simulation. The performance of confidence interval test 

method is examined first. Then I look at the results and their accuracies for Likelihood ratio 

test and Vanishing tetrads test in testing the null hypothesis of a correlation of 1 or single 

dimensionality. My focus is on the accuracy of the p-value compared to what it should be at a 

given Type I error. Specifically, if my test is set to be at 0.05, then I would see whether that 

only 5 percentages of all tests are significant for each of these two test types. Finally, using 

goodness-of-fit test for Gamma distribution, I look into the value of chi square difference for 

Likelihood ratio test and Vanishing tetrads test to examine whether they follow a chi square 

distribution with 1 degree of freedom. 

 

6.1 Confidence Interval Test 
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    Table2 summarizes the results of 95 percentage confidence interval test. With a 95% 

confidence interval, we would expect that about 25 confidence intervals out 500 samples for 

each model would not include the correlation of 1. 

Table 2. Results of 95% Confidence Interval Test 
 
 
 
 

Number of 
CI 
including 1 

Total Number 
of CI not 
including 1 

Number of CI not 
including 1 and 
Estimated Correlation 
<1 

Number of CI not 
including 1 and 
Estimated Correlation 
>1 

I4N75 491 9 6 3 
I4N100 484 16 9 7 
I4N250 484 16 8 8 
I4N500 475 25 12 13 
I4N1000 476 24 11 13 
I6N75 484 16 6 10 
I6N100 486 14 5 9 
I6N250 479 21 9 12 
I6N500 473 27 12 15 
I6N1000 467 33 16 17 
I8N75 474 26 5 21 
I8N100 469 31 10 21 
I8N250 474 26 9 17 
I8N500 479 21 5 16 
I8N1000 473 27 10 17 
 
 

As we can see from Table 2, when the sample size increases, the confidence interval test 

method generally performs better. For all three model specifications with sample size of 250, 

500, or 1000, the total numbers of confidence interval not including 1 are all not significantly 

different from the expected number, 25. Using Bonferroni correction, I tested whether the 

numbers for each model specification are significantly different from 25 and the results are 

not significant except for model I4N75. 

Within confidence intervals that do not include one, there are two situations: one is that the 

estimated correlation itself is smaller than one and the other is it is greater than one. For the 

first situation (column 3), it means that the test incorrectly identify the two-factor model as 
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the correct model. The values in this column range from 5 to 12 and do not appear to be 

affected by sample size and model complexity. In the last column of table 2, it is the number 

of cases that estimated correlation is greater than one and the corresponding confidence 

interval does not cover 1. One thing special about Mplus software is that instead of forcing 

the correlation to be one during the estimation; it allows such improper solution and gives a 

warning message. In this study, having a correlation greater than 1 and a confidence interval 

not including 1 is actually an indicator of an incorrect model. In other words, the cases in the 

third column, as well as the cases in the first column, all point to the one-factor model as the 

correct model, which is the model I used to generate the data. Thus, if we consider the cases 

where the estimated correlation is greater than one and the corresponding confidence interval 

does not include one as identifying the correct model, then in all the models and sample sizes 

considered, the 95 percentage confidence interval test appears to be too conservative when 

testing whether the correlation between two constructs is one or not. Same conclusion can be 

drawn based on the results of 99 percentage confidence interval test.  

 

6.2 P-Value of LRT/VTT for Nested Models 

    In this subsection, I look into the p-values of likelihood ratio test and vanishing tetrads test 

for nested models. My main concern is the accuracy of the p-value compared to what it 

should be at a given type I error. To make the finding comparable with the one from 

confidence interval test, I chose to have a Type I error of 0.05. Thus, here I investigate 

whether only 5 percentages of all tests (25 tests) are significant for each of these two test 

types. The results are shown in table 3. 
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Table 3. Number of P-Value below 0.05 significant level for Nested Test 
Number of P-Value below 0.05 significant level for Nested Test  

LRT VTT 
I4N75 22 22 
I4N100 28 22 
I4N250 20 15 
I4N500 27 25 
I4N1000 26 22 
I6N75 22 1 
I6N100 22 4 
I6N250 22 8 
I6N500 29 16 
I6N1000 32 27 
I8N75 32 0 
I8N100 32 0 
I8N250 25 5 
I8N500 17 5 
I8N1000 24 17 

 

The second column of table 3 is the number of cases that have a p-value less than 0.05 for 

the nested likelihood ratio test. Overall, the likelihood ratio test for nested model performs 

reasonably well in this study. Except for some large deviation from the expected value in 

certain models (I6N1000, I8N75, I8N100, and I8N500), the number of cases with p-value 

below 0.05 is pretty close to 251. Its performance does not seem to be influenced by the small 

sample size, contrary to what I had expected. The model complexity has some influence as 

the models with too low or too high a number of less than 0.05 P-value all happened in the 

group with 6 and 8 observed indicators. 

The results of vanishing tetrads test for nested models in third column of table 3 show that 

it performs fine under the simple model structure. Among the five 4-indicator models, one of 

them has exactly 25 cases with less than 0.05 P-value; three of them have 22 such cases, 

which is very close to the expected value. However, the vanishing tetrads test does not do 

                                                 
1 For a sample size of 500, the chi-square test shows that a value below 15 or above 35 is significantly different 
from 25 at the 0.05 level of significance. 
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well for the 6-indicator and 8-indicator models. Other than the two models with 1000 sample 

size, the numbers of significant test (with a less than 0.05 P-value) are far below what should 

be expected. This is especially true for the 8-indicator model where the model with sample 

size of 75 and 100 do not have any test that is significant. Those results suggest that when 

testing the dimensionality of theoretical constructs, vanishing tetrads test for nested model 

tends to perform poorly when the complexity of the model is high and the sample size is 

relatively small. 

    Based on table 3, we can compare the performance of likelihood ratio test and vanishing 

tetrads test for nested models. Both tests did well for the models with 4-indicator model, 

regardless of the sample size. But for the more complicated model type, likelihood ratio test 

performs much better than the vanishing tetrads test.  

 
6.3 Distribution of Chi Square Difference 

Though in section 6.2 we see that likelihood ratio test does better than the vanishing 

tetrads test with regard to how many cases having a significant p-value compared with how 

many should be; we still need to further study the entire distribution of the likelihood ratio 

test statistics and the vanishing tetrads test statistics resulted from the test of nested models, 

which should approximately follow a chi square distribution with 1 degree of freedom. There 

is the possibility that the difference may behave well below certain significant level, 0.05 in 

this case, it may not follow the chi square distribution as a whole. Since the chi-square 

distribution is a special case of the gamma distribution with shape parameter k = n / 2 (n is 

the degree of freedom) and scale parameter 2. I conducted Kolmogorov-smirnov test, 

Cramer-von Mises test, and Anderson-darling test in SAS with PROC CAPACITY procedure 

to test the hypothesis that the distribution of the likelihood ratio test statistics/the vanishing 
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tetrads test statistics is a chi-square distribution. Those results are present in table 4 and table 

5 separately.  

    The results in table 4 show that for the models with 4 and 6 observed indicators, the 

likelihood ratio test statistics all follow the chi-square distribution with 1 degree of freedom. 

Across various sample sizes, the p-values for most tests are greater than 0.25 and the lowest 

p-value is 0.18, which is still much greater than the commonly used significance level (0.05 

and 0.10). For the 5 models with 8 indicator variables, the test results are mixed. All three 

tests for model with sample size of 100, 250, and 500 are not significant, with the p-values 

greater than 0.25. However, for model with sample size of 75, three tests are all highly 

significant with the p-values less than 0.001. This indicates that the test statistics does not 

follow a chi-square distribution. Also, for the model with sample size of 1000, the p-values 

are 0.072, 0.025, and 0.022, respectively, for those three tests. So we would also reject the 

null hypothesis that the test statistics follow a chi-square distribution with one degree of 

freedom. The latter case is not expected since the likelihood ratio test should perform better 

with large sample size. To make sure that this is just one extreme case, I randomly selected 

several other seeding values to generate the data and conducted the analysis. All the resulted 

likelihood ratio test statistics follow a chi-square distribution with one degree of freedom at 

the 0.05 level of significance. So it appears that the performance of likelihood ratio test for 

nested model is affected by small sample size and model complexity. In addition, since all 

tests are not significant for 4-indicator and 6-indicator models while two groups of tests for 

8-indicator model are, one needs to be more cautious about the performance of likelihood 

ratio test for nested models when the model structure is complex. 
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Table 4. Tests Results for whether Likelihood Ratio Test Statistics for Nested Models Follow 
a 1 d.f. Chi-Square Distribution 

Model         Test                  ---Statistic----   -----p Value----- 
I4N75        Kolmogorov-Smirnov    D     0.02008258   Pr > D     >0.250 
             Cramer-von Mises      W-Sq  0.03868300   Pr > W-Sq  >0.250 
             Anderson-Darling      A-Sq  0.34298888   Pr > A-Sq  >0.250 
I4N100       Kolmogorov-Smirnov    D     0.04546775   Pr > D      0.247 
             Cramer-von Mises      W-Sq  0.22660797   Pr > W-Sq   0.227 
             Anderson-Darling      A-Sq  1.19134079   Pr > A-Sq  >0.250 
I4N250       Kolmogorov-Smirnov    D     0.04191576   Pr > D     >0.250 
             Cramer-von Mises      W-Sq  0.16895268   Pr > W-Sq  >0.250 
             Anderson-Darling      A-Sq  1.19119152   Pr > A-Sq  >0.250 
I4N500       Kolmogorov-Smirnov    D     0.02933869   Pr > D     >0.250 
             Cramer-von Mises      W-Sq  0.04811765   Pr > W-Sq  >0.250 
             Anderson-Darling      A-Sq  0.32699149   Pr > A-Sq  >0.250 
I4N1000      Kolmogorov-Smirnov    D     0.04161307   Pr > D     >0.250 
             Cramer-von Mises      W-Sq  0.15822693   Pr > W-Sq  >0.250 
             Anderson-Darling      A-Sq  0.81895158   Pr > A-Sq  >0.250 
I6N75        Kolmogorov-Smirnov    D     0.03040564   Pr > D     >0.250 
             Cramer-von Mises      W-Sq  0.08355360   Pr > W-Sq  >0.250 
             Anderson-Darling      A-Sq  0.54362457   Pr > A-Sq  >0.250 
I6N100       Kolmogorov-Smirnov    D     0.02899773   Pr > D     >0.250 
             Cramer-von Mises      W-Sq  0.08298033   Pr > W-Sq  >0.250 
             Anderson-Darling      A-Sq  0.78276964   Pr > A-Sq  >0.250 
I6N250       Kolmogorov-Smirnov    D     0.04369172   Pr > D     >0.250 
             Cramer-von Mises      W-Sq  0.26171464   Pr > W-Sq   0.180 
             Anderson-Darling      A-Sq  1.33425020   Pr > A-Sq   0.226 
I6N500       Kolmogorov-Smirnov    D     0.04525292   Pr > D     >0.250 
             Cramer-von Mises      W-Sq  0.16832499   Pr > W-Sq  >0.250 
             Anderson-Darling      A-Sq  1.06108242   Pr > A-Sq  >0.250 
I6N1000      Kolmogorov-Smirnov    D     0.04834045   Pr > D      0.193 
             Cramer-von Mises      W-Sq  0.16063706   Pr > W-Sq  >0.250 
             Anderson-Darling      A-Sq  1.24388813   Pr > A-Sq  >0.250 
I8N75        Kolmogorov-Smirnov    D     0.08615887   Pr > D      0.001 
             Cramer-von Mises      W-Sq  1.57514726   Pr > W-Sq  <0.001 
             Anderson-Darling      A-Sq  7.69145878   Pr > A-Sq  <0.001 
I8N100       Kolmogorov-Smirnov    D     0.03428711   Pr > D     >0.250 
             Cramer-von Mises      W-Sq  0.09205049   Pr > W-Sq  >0.250 
             Anderson-Darling      A-Sq  0.88002144   Pr > A-Sq  >0.250 
I8N250       Kolmogorov-Smirnov    D     0.03572188   Pr > D     >0.250 
             Cramer-von Mises      W-Sq  0.12620882   Pr > W-Sq  >0.250 
             Anderson-Darling      A-Sq  0.68309677   Pr > A-Sq  >0.250 
I8N500       Kolmogorov-Smirnov    D     0.02694726   Pr > D     >0.250 
             Cramer-von Mises      W-Sq  0.03591508   Pr > W-Sq  >0.250 
             Anderson-Darling      A-Sq  0.34778751   Pr > A-Sq  >0.250 
I8N1000      Kolmogorov-Smirnov    D     0.05775971   Pr > D      0.072 
             Cramer-von Mises      W-Sq  0.58256208   Pr > W-Sq   0.025 
             Anderson-Darling      A-Sq  3.23014521   Pr > A-Sq   0.022 

 

 26  



  
   

Table 5. Tests Results for whether Vanishing Tetrads Test Statistics for Nested Models 
Follow a 1 d.f. Chi- Square Distribution 

 
Model         Test                  ---Statistic----   -----p Value----- 
I4N75         Kolmogorov-Smirnov    D     0.04381453   Pr > D     >0.250 
              Cramer-von Mises      W-Sq  0.22243447   Pr > W-Sq   0.233 
              Anderson-Darling      A-Sq  1.75799828   Pr > A-Sq   0.127 
I4N100        Kolmogorov-Smirnov    D     0.04468277   Pr > D     >0.250 
              Cramer-von Mises      W-Sq  0.28917535   Pr > W-Sq   0.146 
              Anderson-Darling      A-Sq  1.66583893   Pr > A-Sq   0.141 
I4N250        Kolmogorov-Smirnov    D     0.03745869   Pr > D     >0.250 
              Cramer-von Mises      W-Sq  0.07825799   Pr > W-Sq  >0.250 
              Anderson-Darling      A-Sq  0.60208183   Pr > A-Sq  >0.250 
I4N500        Kolmogorov-Smirnov    D     0.03110098   Pr > D     >0.250 
              Cramer-von Mises      W-Sq  0.08026243   Pr > W-Sq  >0.250 
              Anderson-Darling      A-Sq  0.50240848   Pr > A-Sq  >0.250 
I4N1000       Kolmogorov-Smirnov    D     0.03879387   Pr > D     >0.250 
              Cramer-von Mises      W-Sq  0.14869934   Pr > W-Sq  >0.250 
              Anderson-Darling      A-Sq  0.75259619   Pr > A-Sq  >0.250 
I6N75         Kolmogorov-Smirnov    D      0.2231518   Pr > D     <0.001 
              Cramer-von Mises      W-Sq  11.5729603   Pr > W-Sq  <0.001 
              Anderson-Darling      A-Sq  56.2242172   Pr > A-Sq  <0.001 
I6N100        Kolmogorov-Smirnov    D      0.1752846   Pr > D     <0.001 
              Cramer-von Mises      W-Sq   5.9872149   Pr > W-Sq  <0.001 
              Anderson-Darling      A-Sq  31.4450898   Pr > A-Sq  <0.001 
I6N250        Kolmogorov-Smirnov    D      0.0958154   Pr > D     <0.001 
              Cramer-von Mises      W-Sq   2.1128146   Pr > W-Sq  <0.001 
              Anderson-Darling      A-Sq  11.1173836   Pr > A-Sq  <0.001 
I6N500        Kolmogorov-Smirnov    D     0.06338167   Pr > D      0.036 
              Cramer-von Mises      W-Sq  0.59561915   Pr > W-Sq   0.024 
              Anderson-Darling      A-Sq  3.60160506   Pr > A-Sq   0.015 
I6N1000       Kolmogorov-Smirnov    D     0.04625278   Pr > D      0.232 
              Cramer-von Mises      W-Sq  0.33711025   Pr > W-Sq   0.108 
              Anderson-Darling      A-Sq  2.09778854   Pr > A-Sq   0.085 
I8N75         Kolmogorov-Smirnov    D       0.296616   Pr > D     <0.001 
              Cramer-von Mises      W-Sq   22.273803   Pr > W-Sq  <0.001 
              Anderson-Darling      A-Sq  108.813090   Pr > A-Sq  <0.001 
I8N100        Kolmogorov-Smirnov    D      0.2843012   Pr > D     <0.001 
              Cramer-von Mises      W-Sq  19.0369748   Pr > W-Sq  <0.001 
              Anderson-Darling      A-Sq  93.6117899   Pr > A-Sq  <0.001 
I8N250        Kolmogorov-Smirnov    D      0.1590207   Pr > D     <0.001 
              Cramer-von Mises      W-Sq   5.3877501   Pr > W-Sq  <0.001 
              Anderson-Darling      A-Sq  27.8673861   Pr > A-Sq  <0.001 
I8N500        Kolmogorov-Smirnov    D     0.09444782   Pr > D     <0.001 
              Cramer-von Mises      W-Sq  1.65121558   Pr > W-Sq  <0.001 
              Anderson-Darling      A-Sq  9.27324918   Pr > A-Sq  <0.001 
I8N1000       Kolmogorov-Smirnov    D     0.03069548   Pr > D     >0.250 
              Cramer-von Mises      W-Sq  0.08755651   Pr > W-Sq  >0.250 
              Anderson-Darling      A-Sq  0.67999078   Pr > A-Sq  >0.250 
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    Table 5 summarizes the test result for the vanishing tetrads test statistics. For the models 

with 4 observed variables, the p-values range from 0.127 to greater than 0.25. So it means 

that we can not reject the null hypothesis that the test statistics for all five sample size are a 

chi-square distribution with 1 degree of freedom. It also should be noted that when the 

sample sizes increases, so does the p-value for Anderson-Darling test, which may suggest 

that the vanishing tetrads test works better with large sample size. For the models with 6 or 8 

observed variables, all those tests are significant at the 0.05 level except those two models 

with sample size of 1000. Among the five 6-indicator models, the p-values of the tests of 

those three models with relatively small sample sizes are all below 0.001. For model I6N500, 

the p-values increase to 0.036, 0.024, and 0.015, but are still significant at 0.05 level, leading 

to the rejection of null hypothesis. For the model I6N1000, the p-values are 0.232, 0.108, and 

0.085. Though they are greater than 0.05, one still would be significant at 0.10 level while 

another is very close. 

    The patterns also hold for the model with 8 observed variables. The hypothesis of the test 

statistics follow a chi-square distribution with one degree of freedom all got rejected with p-

value less than 0.001. However, three tests for model I8N1000 all have p-value greater than 

0.25, thus failing to reject the null hypothesis. Overall, the vanishing tetrads test for nested 

models performs all right when the number of observed variable is small. In the case of 

model with more indicators, the test only does well when the sample size is large. These 

results are consistent with those from the simulation study conducted by Bollen and Ting 

(1998). So it seems that both the model complexity and the sample size have an effect on the 

performance of the vanishing tetrads test.  Bollen and Ting (1998) developed a bootstrapping 

procedure for computing the p-value of the test statistic. Though I did not look at this 

 28  



  
   

procedure in the study, their results show the procedure generally is more accurate than using 

the chi-square distribution to compute the p-value of the test statistic in small to moderate 

sample sizes with a moderate to large number of observed variables. 

  

7. DISCUSSION AND CONCLUSION 
 

7.1 Main Findings 

A main goal of this study was to empirically evaluate the performance of the likelihood 

ratio test, confidence interval test, and vanishing tetrads test for testing the dimensionality of 

a theoretical construct. This is a very important issue to better  understand considering the 

significance of the dimensionality issue to social science research—misspecification of the 

dimension would lead to either multicollinearity problem for model estimation or omission of 

key variables related to the construct. 

One major reason for the relatively few empirical examples of testing dimensionality in 

stead of using exploratory factor analysis to determine the number of factors underlying data 

in social science might be that most researchers are not sure of what tests are available and 

which test one should use. One of the assumptions of the most commonly used likelihood 

ratio test is violated when testing whether the correlation between two constructs is one or 

not. And to my knowledge, no previous study has been conducted to examine its 

performance under the SEM context. The relatively new vanishing tetrads test and 

confidence interval test also provide possible alternatives for LRT. In this study, drawing on 

statistical theory and prior research, I empirically assess those three tests’ performance using 

data generated from Monte Carlo simulations. Experimental conditions included 30 different 

models varying either in model specification or sample sizes ranging from 75 to 1000. I did 
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not experience any non-convergence problem, which might be due to the fact that the 

simulation and estimation was conducted for relatively simple model structure. The test 

results were presented in previous section. 

For the confidence interval test of dimensionality, overall it appears to be too conservative: 

when I count the cases where the correlation estimate is greater than one and the 

corresponding confidence interval does not include one as accepting of the true model, the 

number of tests that falsely reject the true model is much lower than what one should expect 

given a certain level of significance. Generally this test method performs relatively better 

when the sample size is large. However, the test becomes less accurate when the number of 

indicators increases in the model. 

The likelihood ratio test for nested models appears to be doing well. It does not show 

obvious signs of impact of the violation of boundary condition when testing for 

dimensionality. The number of tests that incorrectly concludes the two-factor model is the 

true model is pretty close to the expected value at the 0.05 LEVEL of significance. And the 

accuracy of the test is influenced by the model complexity but not small sample size. When I 

examined the whole distribution of the likelihood ratio nested test statistics, most of them 

prove to follow a Chi-square distribution with 1 degree of freedom. Only in two cases, 

(model I8N75 and model I8N1000), the null hypothesis were rejected at the 0.05 level 

significance. All these findings indicate that despite the existence of boundary condition, the 

likelihood ratio test for nested models functions reasonably well in this study with few minor 

problems. 

As a relatively new method for testing model fit, the performance of vanishing tetrads tests 

for dimensionality is inconsistent across the model complexity and sample size. It did well 
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for the models with 4 observed variables, correctly identifying expected number of the true 

model at the selected p-value. However, for the model with 6 and 8 observed variable, the 

test only performs well for the models with the largest sample size. For other models, the 

number of misidentified cases is greatly lower than what it should be. The same patterns hold 

when I check the whole distribution of the vanishing tetrads test statistics. All the chi-square 

differences from models with 4 observed variables follow a chi-square distribution with 1 

degree of freedom. But again, for the models with 6 or 8 observed variables, with the 

exception of two models with sample size of 1000, all other models’ test statistics turned out 

be significant at the 0.05 level. So in general, the vanishing tetrads tests for nested models 

did all right when the number of observed variable is small. However, when dealing with 

more complex model and small sample size, the test appears to be too conservative for the 

given level of significance and the test statistics does not follow the expected distribution 

form in this study. These are the same pattern of results as in Bollen and Ting (1998), in 

which they developed a bootstrap approach for computing the p-value of the test statistics in 

small to moderate sample size. 

 

7.2 Limitations and Future Research 

An inherent limitation to any Monte Carlo simulation study is that the results of the study 

are necessarily limited to the parameterization of the models and conditions under study, and 

care should be taken when generalizing my findings presented here since findings may differ 

with variations in factors such as model complexity, model parameterization, and degree of 

misspecification. However, I took great care in the design of my simulation experiment 

conditions to reflect a wide variety of sample sizes and model specification. I thus feel that 
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these findings could be generalized to similar types of CFA models testing univariate vs. 

bivariate dimensions. 

One thing that should be noted for the vanishing tetrads test is that there is not simply a 

single set of nonredundant vanishing tetrads for a model, but rather many possible 

combinations. As a result, the test statistics obtained through the vanishing tetrads test SAS 

Macro would change each time depending on which set of vanishing tetrads the nested test 

uses. The benefit for this is the program could allow the researchers to assess the robustness 

of their finding. However, in this study both the 1-factor and 2-factor models fit the data 

relatively well so the difference between those chi-squares is sometimes very small. As a 

result, the changing vanishing test tetrads test statistics could affect the results that I 

presented in section 6.2 and 6.3. In addition, the SAS Macro could not properly conduct the 

nested test for the 4-indicator models due to some unsolved bug. I have to get around this by 

doing the vanishing tetrads test separately for the 1-factor and 2-factor and then do the nested 

models test, which might have some effect on the final results. 

Another limitation of my study is that I examined only data generated from a multivariate 

normal distribution. Prior research has indicated that it is important to also consider non-

normally distributed data (e.g., Muthén & Kaplan, 1985, 1992), but an examination of this 

was beyond the scope of the current project. Given that non-normal distributions are a 

significant problem in social science research (e.g. Micceri, 1989), much can be learned 

about the performance of those three tests with nononormally distributed data. Finally, all the 

variables in this study are continuous. Considering more and more researches are involved 

with censored, ordinal, and dichotomous variables, it would be interesting to look into those 

tests’ performance after adding some categorical variables to the model. These limitations 
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should warrant some caution in over generalizing from results of this study, but I think my 

findings provide an important first glimpse into the empirical testing of dimensionality and I 

hope that it could serve as a starting point for future research on this important topic of 

structural equation modeling. 
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