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ABSTRACT 

Nathan Geraldi: OYSTER REEF ECOLOGY AND RESTORATION: FINDINGS FROM 

FIELD AND MESOCOSM STUDIES 

(Under the direction of Charles Peterson) 

 

 

Habitat degradation and invasive species are two of the most rampant threats to 

marine ecosystems worldwide. The causes of degradation include coastal development and 

destructive harvesting practices. My thesis focuses on how to best invest resources to restore 

lost habitat and the unexpected consequences of shoreline hardening. I examined the efficacy 

of a costly and widespread restoration practice of adding juvenile oysters to reefs to enhance 

reef restoration. The results from my experimental field manipulations of juvenile oysters at 

three oyster sanctuaries throughout the Pamlico Sound indicate that the addition of oysters 

does not enhance reef development because natural recruitment of oysters is not limiting and 

efforts should focus on deploying substrate to restore oyster reefs. In addition to restoration, 

understanding biotic and abiotic interactions in oyster reefs is necessary to understand 

population dynamics. I ran multiple mesocosm experiments on food web interactions in 

oyster reefs and found that movement and size of mud crabs influence oyster survival. In 

addition, natural oyster reefs and shoreline hardening structures were surveyed for native and 

invasive macroalgae. Codium fragile, a nonnative species, was primarily found on artificial 

structures while the native Codium decorticatum was found almost exclusively on intertidal 

oyster reefs. C. fragile also had significantly higher nitrogen removal rates and although 
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shoreline hardening was habitat for nonnative species, this species could mitigate excess 

nutrient loading. Results from my research will increase the efficacy of habitat restoration 

and increase our understanding of interactions between habitat alteration and invasive 

species. 
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INTRODUCTION 

Anthropogenic impacts such as global warming and consequent sea-level rise, 

overfishing, habitat degradation, introduction of non-native species, and increased 

nutrient inputs have accelerated ecological change and are altering the structure and 

function of many coastal ecosystems (Vitousek et al. 1997, Lotze et al. 2006, Halpern et 

al. 2008). The ability to mitigate and even reverse ecosystem alteration depends on 

understanding how these impacts change ecological processes. In my dissertation I use 

both applied and basic ecology to understand the effects of anthropogenic changes on 

oyster reefs, with the goal of using this knowledge to help restore oyster reefs to historic 

abundances. 

Oyster reefs are one of the most depleted and degraded marine habitats worldwide 

(Beck et al. 2011). To reverse the current trend of oyster reef declines, governmental and 

private organizations have invested substantial resources into oyster restoration. 

Specifically, North Carolina has established subtidal oyster sanctuaries in the Pamlico 

Sound, initiated by creating many large mounds of marl boulders. North Carolina has 

seeded sanctuary mounds and harvest areas with hatchery-raised juvenile oysters set on 

recycled adult shell to enhance development of oyster reefs. These costly restoration 

efforts, which are widely used for the eastern oyster, are carried out despite limited 

information on whether seed oysters accelerate reef development and, if so, how oyster 

size and time of deployment increase oyster survival. I experimentally manipulated 
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mounds at three sanctuaries which were seeded during summer 2010, and varied recycled 

shell and seed presence, seed size, and deployment date of shell and seed. Findings from 

this study can be used to maximize the resources invested into oyster restoration. 

  Overfishing on oyster reefs alters the abundance of target species, which are 

usually predators, and can change the structure of oyster reef ecosystems (O’Connor et al. 

2008). Predators can affect prey populations and, via trophic cascades, indirectly impact 

resource populations (2 trophic levels below the predator) through consumption of prey 

(density-mediated indirect effects; DMIEs) and by inducing predator-avoidance behavior 

in prey (trait-mediated indirect effects; TMIEs). TMIEs are usually calculated based on a 

single predator-avoidance response, either dispersal or reduced foraging activity of the 

prey, even though prey may employ multiple predator-avoidance behaviors. My third 

chapter quantifies direct and indirect predator effects in a mesocosm experiment using an 

oyster reef ecosystem consisting of a predator (toadfish – Opsanus tau), prey (mud crab - 

Panopeus herbstii) and resource (ribbed mussel – Geukensia demissa). In this chapter, I 

manipulated the presence and absence of the predator and whether prey could or could 

not disperse into a predator-free area, and then calculated the relative importance of 

indirect effects based on multiple predator-avoidance responses used by the prey. 

Overfishing not only affects species abundance but also the size structure of 

populations (Garcia et al. 2012). The size of an organism can change by orders of 

magnitude during its lifespan, which can alter whether the individual is a competitor, a 

prey, or a predator for other individuals of the same or different species. The effect of 

size on intra- and interspecific interactions likely alters trophic cascades through 

mechanisms such as predation, cannibalism, interference competition, and predator-
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avoidance behavior. In the fourth chapter I measured the effect of prey and predator size 

on resource survival by setting up a mesocosm experiment using a tri-trophic food chain 

in oyster reefs (predator-toadfish; prey-mud crab; resource-oyster) to measure the effect 

of prey and predator size on oyster survival. 

One of the biggest threats to ecosystems worldwide is invasive species (Mack et 

al. 2000), including oyster reefs.  In addition, artificial substrates in areas naturally 

devoid of hard substrate might increase the invasive potential of exotic organisms 

(Tyrrell and Byers 2007). Although researchers have made strides in understanding and 

predicting the effects of anthropogenic impacts, less is known about the potential 

interactive effects between human-induced changes. In the fifth chapter I measure the 

abundance of native (C. decorticatum) and non-native (C. fragile) Codium species on 

natural hard substrates (oyster reefs) and artificial substrates (bulkheads and rock 

revetments) in North Carolina estuaries and assess the effect of each Codium species on 

local nitrogen cycling using continuous flow microcosms. Results from this chapter will 

increase our knowledge of how multiple anthropogenic impacts can alter ecosystem 

processes.  

 

  



4 
 

Literature Cited 

Beck, M. W., R. D. Brumbaugh, L. Airoldi, A. Carranza, L. D. Coen, C. Crawford, O. 

Defeo, G. J. Edgar, B. Hancock, M. C. Kay, H. S. Lenihan, M. W. Luckenbach, 

C. L. Toropova, G. Zhang, and X. Guo. 2011. Oyster reefs at risk and 

recommendations for conservation, restoration, and management. BioScience 

61:107–116. 

 

Garcia, S. M., J. Kolding, J. Rice, M.-J. Rochet, S. Zhou, T. Arimoto, J. E. Beyer, L. 

Borges, A. Bundy, D. Dunn, E. A. Fulton, M. Hall, M. Heino, R. Law, M. 

Makino, A. D. Rijnsdorp, F. Simard, and A. D. M. Smith. 2012. Reconsidering 

the consequences of selective fisheries. Science 335:1045–1047. 

 

Halpern, B. S., S. Walbridge, K. A. Selkoe, C. V. Kappel, F. Micheli, C. D’Agrosa, J. F. 

Bruno, K. S. Casey, C. Ebert, H. E. Fox, R. Fujita, D. Heinemann, H. S. Lenihan, 

E. M. P. Madin, M. T. Perry, E. R. Selig, M. Spalding, R. Steneck, and R. 

Watson. 2008. A global map of human impact on marine ecosystems. Science 

319:948–952. 

 

Lotze, H., H. Lenihan, B. Bourque, R. Bradbury, R. Cooke, M. Kay, S. Kidwell, M. 

Kirby, C. Peterson, and J. Jackson. 2006. Depletion, degradation, and recovery 

potential of estuaries and coastal seas. Science 312:1806–1809. 

 

Mack, R. N., D. Simberloff, W. M. Lonsdale, H. Evans, M. Clout, and F. A. Bazzaz. 

2000. Biotic invasions: causes, epidemiology, global consequences, and control. 

Ecological Applications 10:689–710. 

 

O’Connor, N. E., J. H. Grabowski, L. M. Ladwig, and J. F. Bruno. 2008. Simulated 

predator extinctions: predator identity affects survival and recruitment of oysters. 

Ecology 89:428–438. 

 

Tyrrell, M., and J. Byers. 2007. Do artificial substrates favor nonindigenous fouling 

species over native species? Journal of Experimental Marine Biology and Ecology 

342:54–60. 

 

Vitousek, P. M., J. D. Aber, R. W. Howarth, G. E. Likens, P. A. Matson, D. W. 

Schindler, W. H. Schlesinger, and D. G. Tilman. 1997. Technical report: human 

alteration of the global nitrogen cycle: sources and consequences. Ecological 

Applications 7:737–750. 

 

 

  



5 
 

 

 

 

TESTING THE EFFICACY OF A WIDESPREAD HABITAT RESTORATION 

PRACTICE: ADDITION OF JUVENILE OYSTERS FAILS TO ENHANCE OYSTER 

REEF DEVELOPMENT 

Introduction 

 The extent of historic loss and degradation of biogenic marine habitats caused by 

humans is staggering (Lotze et al. 2006). Although remaining threatened habitats may be 

maintained through conservation efforts, habitat restoration will be needed to regain lost 

habitat and associated ecosystem services. Restoration ecology may become one of the 

most important scientific endeavors of this century  and is an essential component of 

conservation and management (Hobbs et al. 2011). To maximize the benefits of how 

limited resources for restoration are utilized, restoration techniques must be based upon 

rigorous ecological experimentation (Blankenship and Leber 1995). 

  Eastern oyster, Crassostrea virginica, populations have been a target of decades 

of restoration efforts (Brumbaugh and Coen 2009, Kennedy et al. 2011) because only 

15% of historic oyster populations persist worldwide (Beck et al. 2011). Unlike other 

marine biogenic habitats such as seagrass meadows or coral reefs, oysters are harvested 

for human consumption thus increasing risk of degradation and decline. In addition to 

supporting a bivalve fishery, oyster reefs also provide other ecosystem services including 

enhanced production of fishes, crabs, and shrimps (Lenihan et al. 2001, Peterson et al. 

2003) and improved water quality through filtration and denitrification (Grabowski and 
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Peterson 2007, Coen et al. 2007, Piehler and Smyth 2011). The economic value of 

ecosystem services provided by non-harvested reefs is greater than the value of oysters 

obtained from harvesting the reefs (Peterson et al. 2003, Grabowski and Peterson 2007, 

Coen et al. 2007). 

 To restore the services provided by lost oyster reefs, governmental and private 

organizations have invested substantial resources into oyster restoration, but the 

knowledge necessary to maximize the effectiveness of money spent on restoration is 

limited. Restoration efforts include providing hard substrate for oyster to grow on such as 

oyster shell, clam shell, or marl rip-rap (Lenihan 1999, Coen and Luckenbach 2000, 

Mann and Powell 2007). Where oyster recruitment, the number of oysters that settle and 

survive to a size that can be visually sampled (approximately 5mm shell height),  is 

thought to limit oyster reef creation, the new reefs maybe seeded with juvenile oysters. 

Seeding consists of spawning oysters in captivity, allowing the larvae to settle on 

recycled shell, raising the juvenile oysters in captivity to a size at which it is thought 

mortality from predation is reduced and then deploying the seeded shells on natural 

substrate or onto constructed reefs. This practice occurs over the entire range of the 

eastern oyster (see review by Brumbaugh and Coen 2009) including New Hampshire 

(Grizzle et al. 2006), Virginia (Associated Press 2007), Maryland (Rodney and Paynter 

2006), Alabama (Wallace et al. 2002), Louisiana (Supan et al. 1999), and North Carolina. 

North Carolina has devoted public resources to building multiple oyster hatcheries ($4.3 

million for North Carolina in 2008) and deploying seeded shells on harvested areas 

(Ortega and Sutherland 1992) and oyster sanctuaries. Remarkably, even though oyster 

seeding is a costly and widespread restoration practice, no published information exists 
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supporting the notion that seeding is necessary to generate or enhance an adult oyster 

population. 

 Seeding newly deployed reefs might be necessary if oyster recruitment is limiting. 

Recruitment of oysters may be limiting because adult oysters could be locally extinct or 

so depleted that larval supply is low and settlement onto hard substrate does not occur in 

densities that result in sufficient recruitment to develop an oyster reef. If settlement is 

limiting reef restoration, it may be necessary to restore a network of reefs to ensure 

sufficient larval supply to maintain oyster populations because oysters have a 2-3 week 

pelagic larval stage (Kennedy et al. 1996) and usually do not recruit to the same reef on 

which they were spawned. However, it is difficult to determine whether settlement is 

limiting recruitment because settlement varies in space and time (Michener and Kenny 

1991, Ortega and Sutherland 1992, Austin et al. 1996). An area that is settlement-limited 

one year may not be the next. Devoting resources to deploy seed oysters to create 

functional oyster reefs may or may not be necessary for oyster reef restoration depending 

on oyster settlement and subsequent recruitment in space and time. 

 In addition to bottom-up factors limiting recruitment, post-settlement mortality 

can also make seeding necessary to restore oyster reefs. High oyster mortality from 

predation could result in few oysters reaching maturity (Wallace et al. 2002, Kraeuter et 

al. 2003). Shellfish seed survival varies strongly with seed size and date of deployment 

(Leber et al. 2005, Peterson et al. 2005) and predation risk and oyster size are negatively 

correlated (Newell et al. 2000, Kulp et al. 2011). Predation can vary  in time as predators 

migrate with season (Brown et al. 2008), recruit to oyster reefs and grow to sizes that 

consume oysters (McDonald 1982), or are indirectly affected by higher trophic levels 
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(Abbe and Breitburg 1992, Grabowski 2004). Oyster mortality also varies spatially 

because of physiological constraints of oyster predators (Wallace et al. 2002). Knowledge 

of how seed survival is affected by size at deployment, date of deployment, location of 

deployment, and the interaction of these factors is necessary to maximize resources 

invested in seed production (Peterson et al. 1995). 

 In this study we tested the effect of adding seeded recycled shell onto marl 

mounds within three different oyster sanctuaries in Pamlico Sound, NC. Specifically, 

recycled oyster shell and recycled oyster shell with small seed oysters attached were 

deployed in early summer, and shells with two sizes of seed oysters (small and large) 

were deployed in mid-summer. Deployed shell and mound surface (marl) were monitored 

to determine the effect of seeding on oyster abundance and reef development (abundance 

and size of oysters on deployed shell, and oyster density on the surface of the marl 

boulders of different treatments over time). To expand our empirical findings in both 

space and time, we analyzed survey data from the North Carolina Division of Marine 

Fisheries (NCDMF) from three additional sanctuaries seeded in two different years. The 

goal of this study was to guide future restoration efforts so that the limited resources 

devoted to oyster reef restoration can be maximized by determining if seed oysters are 

necessary for oyster restoration and if so, when and at what size the seed oysters should 

be deployed to minimize seed mortality. 

 

Methods 

Reef creation and seeding procedure 
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 To test how three combinations of seed size and planting date, plus substrate type 

(recycled shell and marl), influence the success of oyster reef development as a function 

of location, this experiment was repeated at three NCDMF oyster sanctuaries in Pamlico 

Sound, North Carolina (Clam Shoal, Crab Hole and Gibbs Shoal; Fig. 2.1). These sites 

were chosen because they span the wide range of salinities that exist in the Pamlico 

Sound and because they contained newly created mounds (constructed after Dec. 2009). 

Each oyster sanctuary consisted of 50 to 300 mounds of rip-rap marl rock. Each mound 

contained approximately 15 tons of marl elevated 3m high with a footprint diameter of 

4m. Mounds were created in a uniform grid with mounds separated by approximately 25 

m in the diagonal rows. Mean water depths at Clam Shoal, Crab Hole and Gibbs Shoal 

were approximately 3.4, 4.0, and 4.3 m, respectively.  

 Oyster larvae, spawned from 15 oysters collected from the West Bluff oyster 

sanctuary in Pamlico Sound, were purchased from Middle Peninsula Aquaculture in 

Foster, VA. Substrate for seeding consisted of harvested oysters shells > 7.2 cm shell 

height (SH) from the NCDMF recycling program that were thoroughly cleaned by 

repeatedly dunking them in seawater and then moved to completely fill 2-bushel plastic 

crates (2.5-cm
2
 openings separated by 1-cm thick plastic on sides and bottom with open 

tops). Eighteen crates were placed into large tanks (4.9 x 0.9 x 0.8 m) located on the 

NCDMF dock in Morehead City, NC filled with unfiltered seawater from Bogue Sound. 

Approximately 2.5 million eyed larvae were added to each tank and fed plankton 

provided by the Middle Peninsula Aquaculture twice a day. The larvae were given 3 days 

to settle, after which unfiltered seawater was pumped (4.4 l s
-1 

for each tank) directly 

from Bogue Sound until the seeded shells were deployed on reefs. Salinity was measured 
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weekly at the NCDMF dock using a Sontec YSI and ranged from 21 to 31 psu. One to 

three days before deployment, crates were divided into 9 sections (3x3 grid when viewing 

the broad side of the crate) and 1-3 shells were haphazardly chosen from each section to 

ensure the nine shells were sampled evenly throughout the crate, seed oyster abundance 

and size were determined by counting the number of juvenile oysters per shell and 

measuring the height of 5 haphazardly chosen spat on each shell.  

 Larvae were set on shell in two independent additions of eyed larvae on May 25
th

 

and July 5
th

 2010. Large seed oysters were produced on half the seeded shells from the 

May larva, and these shells were kept in separate tanks until the second deployment. 

Treatments consisted of: 1) recycled shell deployed in late June 2010, 2) small seed 

oysters set on recycled shell (approximately 5 mm SH) deployed in late June 2010, 3) 

small seed oysters set on recycled shell (approximately 2 mm SH) deployed in mid 

August 2010, 4) large seed oysters set on recycled shell (approximately 10 mm SH) 

deployed in mid August 2010, and 5) no shell addition (marl). These treatments will be 

referred to as early shell, early small seed, late small seed, late large seed, and marl only, 

respectively. Ten mounds at each sanctuary were haphazardly assigned one of five 

treatments for a total of two mounds per treatment (two replicates per treatment per 

sanctuary). Mounds with shell treatments received 16 bushels of shells (seeded or 

unseeded depending on the treatment), which were deployed on the top of the mounds. 

The early deployment was achieved by transferring the oyster-filled tanks into a dump 

truck and transporting them from Morehead City to boat launches near the sanctuaries, 

where they were then delivered to the mounds by boat. Transport in the tanks took no 

longer than 5 hours.  Seed and shell were deployed at Crab Hole, Gibbs Shoal, and Clam 
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Shoal on June 21, 22 and 23, respectively. For the second deployment, oyster tanks were 

transported from their original location on the NCDMF dock to the sanctuaries by barge. 

Oysters remained in tanks on the barge deck with a continuous supply of unfiltered 

seawater for approximately 10, 20 and, 24 hours as shells were deployed sequentially in 

the three sanctuaries. Seeded shell was deployed in Clam Shoal on Aug. 10
th

 and in Gibbs 

Shoal and Crab Hole on Aug. 11
th

. Prior to depositing shell on a mound, divers marked 

the center of each mound with a surface buoy attached to a weight. Immediately after 

deployment, divers inspected the mounds to ensure shells were on top of the mound and 

spread the shell out so that the shell layer was no greater than 5 cm. At Clam Shoal and 

Crab Hole, two additional mounds at each sanctuary, created in 2005 and 2006, were 

monitored to serve as a baseline for established reefs. Gibbs Shoal was first established as 

a sanctuary in 2009 and had no previously constructed mounds. A temperature-salinity 

data logger was deployed on the top of one mound at each study sanctuary to measure 

environmental conditions. Temperature-salinity data were recorded every 30 minutes 

from June 2010 to September 2011, except when loggers malfunctioned (Fig 2.2).  

Reef monitoring 

 To quantify the success of oyster reef development on the reef mounds, we 

collected two sets of measurements: abundance and size of oysters on deployed shell, and 

oyster density on the surface of the marl boulders. Abundance of seed oysters and their 

size frequency were measured on two occasions in fall of 2010 (10/7-10/15) and 2011 

(9/8-9/13). Divers searched the mound top for deployed shell and retrieved 50 deployed 

shells or as many shells as could be located. Deployed shells could be distinguished from 

naturally recruited shells because deployed shells were larger and thicker. Retrieved 
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shells were returned to the lab. We recorded the number of oysters on each shell and 

measured the shell height of 5 haphazardly chosen oysters on each of the retrieved shells 

to obtain a size frequency for each mound.  

 We quantified the density and size of oysters on the marl mounds in each 

sanctuary during three samplings in the fall of 2010 and 2011 (same dates as shell 

sampling) and spring of 2011 (5/25-6/3). Divers haphazardly removed 2 marl pieces from 

both the top and bottom (<50cm from the base) of the mound and immediately placed the 

marl in separate plastic sacks. Care was taken to ensure that oysters remained attached to 

the marl or that any oysters that did fall remained in the sack for quantification. Marl 

pieces were labeled with location on the mound (top or bottom) and mound type (early 

small seed, late small seed, large seed, shell, marl only or old mound) and brought back 

to the lab for processing. The surface area of the marl that was exposed on the mound and 

available for organisms to occupy was measured by orienting the marl as it was on the 

mound (oysters oriented vertically and side of marl with little or no epifauna on the 

bottom) and the “bird’s eye view” surface area was estimated by using a 5 cm grid 

quadrat held directly over the marl. Oyster size frequency was determined by measuring 

50 haphazardly chosen oysters attached to the marl from both top and bottom samples of 

each mound. Oysters that recruit on the shells of existing oysters and small oysters can be 

difficult to find, especially on the highly complex 3d structure of oysters on the marl. To 

ensure accurate counts, three different people counted the number of oysters on each marl 

piece. The 3-observer average abundance for each piece of marl was combined with the 

area of exposed marl to determine oyster density (m
-2

). This procedure was used instead 
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of harvesting all oysters within a quadrat on the mound because of the difficulty in 

removing all oysters from pieces of marl in a defined area. 

NC DMF data 

  To account for temporal variability in oyster recruitment in our study, we 

analyzed data from the NCDMF sanctuary program. We only analyzed data from 

sanctuaries that had mounds seeded and unseeded within 1 year of the mounds being 

built.  This criterion was met 4 times. In 2006 South River had 14 mounds built in June 

and July and 9 of the mounds were seeded in Aug. Sound River had 8 mounds built in 

Mar. 2008 and 7 of the mounds were seeded in June in 2008.  In 2008 West Bluff had 5 

mounds built in June and July and 3 of them were seeded in Aug.  Finally, Ocracoke had 

14 mounds built in Sept. 2006 and 6 of these mounds were seeded in Aug. 2007. In these 

instances seed production and deployment were similar to methods described above, 

except approximately 20 bushels (instead of the 16) were added to each mound after seed 

reached approximately 1 cm SH. These sanctuaries were sampled throughout the year, 

once a year starting in 2007, with sampling within a sanctuary being completed in less 

than one week. NCDMF sampling was similar to our methods, except 3 instead of 2 

pieces of marl were collected from the top, middle (half way between the crest and 

bottom), and bottom of the mound, for a total of 9 pieces of marl per mound. NCDMF’s 

procedure for estimating oyster density (m
-2

) differed from the method used in our study, 

and consisted of estimating surface area of the marl by measuring the length, width, and 

height of the marl and used 50% of the calculated surface area to determine the oysters m
-

2
. The abundance of oysters on each piece of marl was estimated by taking the sum of the 

total number of oysters counted within 10 cm increments of SH. 
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Statistical analysis 

 Differences in salinity among sites were analyzed using a non-parametric 

Kruskal-Wallis test with site as the independent variable. The mean salinity per day (from 

measurements taken every 30 min) was used as a replicate and only days that had data 

from all sites were used. To determine whether large seed oyster were larger than small 

seed oyster before deployment, we ran a non-parametric Kruskal-Wallis test with oyster 

seed size as the dependent variable, and treatment (early small, late small, and late large 

seed) as the independent variable. Non-parametric tests were necessary because data were 

non-normal and had heterogeneous variances. The numbers of oysters on shell or marl 

were not normally distributed and heavily skewed towards 0 and a mixed effects-

generalized linear mixed models (GLMM) were used to determine significant effects (R 

software, GLMM ADMB package using Laplace approximation). Independent fixed 

factors were shell/seed treatment (early shell, early small seed, late small seed, and late 

large seed), site, and sampling date. Shell/seed treatment included marl only as a level 

(mounds with no shell addition) when running analyses on oyster density on marl. 

Sampling date was a fixed factor and not a random factor because including temporal 

variation in recruitment was ecologically relevant. Mound was included as a random 

factor in all models. Model family (Poisson or Negative binomial) and inclusion of 

factors and interactions were chosen based on lowest AIC scores. Model creation started 

with treatment factor only and then additional models were created by adding site and 

sampling date with and without interactions. The model with the lowest AIC was chosen.  

If this model had interactions that were not significant, the highest order interaction was 

removed to determine if the model could be improved (lower AIC). This was repeated 
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until the best model was found. Model selection was performed separately with the 

following dependent variables: number of oysters per shell, oyster density (m
-2

) on marl, 

and oyster density (m
-2

) on marl from DMF seeded sites. Depth was included as an 

additional factor in model selection for number of oysters m
-2

 on experimental mounds. 

Model selection for NCDMF data included an additional fixed factor, year created, and 

sampling date was referred to as age of mound. Size of oysters on shells was analyzed 

using a general linear model (GLM; R software, glme package with AIC) because it was 

a continuous variable with homogeneous variance (Bartlett’s test; p > 0.05). Procedures 

for model selection were identical to those previously described. 

 To answer the primary question of the study, which was to determine if seeding 

increased oyster abundance, as well as the best model for number of oysters per shell and 

oyster density on marl were complex and included 3 independent factors with 3 

significant interactions, separate tests were run for each sanctuary with shell/seed 

treatment as the independent variable using only data from 1.5 years after shells were 

deployed (fall 2012 sampling). The simplified models were run with the same GLMM 

procedure as previously described. The significant levels for these additional tests were 

adjusted to reduce type I error when running multiple tests (p<0.012; Bonferroni’s 

correction).  

 

Results 

 Salinity was recorded for an average of 194 days at each sanctuary where we 

conducted our experiments (Fig. 2.2). All three sites only had 60 days of 

contemporaneous data. Crab Hole, Gibbs Shoal and Clam Shoal, experienced salinities 
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(mean ±1 SE) of 14.8 ± 0.51, 19.7 ± 0.41, and 21.2 ± 0.64, which were statistically 

different (Kruskal-Wallis chi-squared = 57.52, df = 2, p-value < 0.001). The salinity at 

the three sanctuaries ranged from 0 to 32 psu, which spans the documented salinity of the 

Pamlico Sound (Williams et al. 1973).  

 The 16 bushels (approximately 560 l) of shell deployed on each mound contained 

an average of 32,000 seed oysters. We deployed approximately 588,000 seed oysters to 

the Pamlico Sound. On average, late large seed had the highest number of seed oysters 

per shell (6.0±0.3, mean±SE), followed by early small seed (4.4±0.6) and late small seed 

(2.9±0.2) before deployment (Fig. 2.3A). The size of large and small seed oysters on 

recycled adult shell were significantly different immediately before deployment 

(Kruskal-Wallis chi-squared = 662.78, df = 2, p-value < 0.001; Fig. 2.4A). 

 The number of oysters per seeded shell was best described by a negative binomial 

model with shell/seed treatment, site, and date sampled as factors (see Appendix 2.A for 

all models). As a result of shells being overgrown by oysters and/or moved by wave 

action, only one shell originally deployed was found on the late large seed mounds in 

Gibbs Shoal during the second sampling, which negated producing a model with all 

interactions. The difficulty in finding shells after two summers of growth is evident in the 

total number found per two mounds as shown in Fig. 3C. The shells deployed in June 

without seed or with small seed had more oysters than the shells deployed in August with 

small or large seed (Fig. 2.3, Appendix 2.B). Posthoc comparisons were based on 

variables standard errors from the model not overlapping . Crab Hole had more oysters 

on shells than the other two sites and these differences were consistent across sampling 

dates. Most two-way interactions were significant (Appendix 2.B) and additional models 
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were run for each sanctuary separately with data from the fall 2011 sampling. In the fall 

of 2012 the shell/seed treatment was not significant (p>0.012) when analyses were run 

for each site separately (Fig. 2.3C, Appendix 2.C).  

 The size-frequency of oysters on deployed shell was analyzed using a parametric 

model with shell/seed treatment and site as factors (Appendix 2.D). The model would not 

run with year as a factor because of the lack of data for late large-seed mounds at Gibbs 

Shoal during the second sampling. Shells deployed in June 2010 had larger oysters than 

shells deployed later, regardless of seed presence or deployment size of seed (Fig. 2.4C, 

Appendix 2.E). Shells deployed at Gibbs Shoal had larger oysters than shells at Clam 

Shoal or Crab Hole. There were no significant interactions, but the inclusion of the 

interactions improved the model (Appendix 2.D).  

 The density of oysters on marl was best described by a negative binomial model 

with site, depth, and sampling date as factors (Appendix 2.F). The three-way interaction 

was not included because it did not significantly change the model and parsimonious 

models are preferred (Crawley 2007). Treatment was not included in the model because it 

did not explain a significant amount of the variation (Fig. 2.5, Appendix 2.G). Significant 

interactions resulted from: more oysters on the top than on the bottom of the mound at 

Clam Shoal, the reverse of the pattern at the other sites; oyster density at Gibbs Shoal 

increased through time, which was the opposite trend of the other 2 sites (Fig. 2.5); and 

bottom marl had more oysters in the first two samplings, but mean oyster density was 

similar on the top and bottom of mounds at the final sampling (Fig. 2.5). Although the 

interactions prevent conclusions about the main effects the following trends among the 

main effects were evident; the mean density of oysters on marl was 4 times greater at 
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Clam Shoal than at the other two sites in the fall after deployment (Fig. 2.5, Appendix 

2.G); oyster density at the bottom of the mound was greater than on the top of the mound; 

and the third sampling in fall of 2011 had fewer oysters than the samplings in fall of 2010 

and spring of 2011. Because of the complexity of the overall model, separate models 

were run for each sanctuary at the fall 2011 sampling with shell/seed treatment as a fixed 

factor and mound as random factor. There was no difference in shell/seed treatments in 

any of the sanctuaries (Fig. 2.5C, Appendix 2.H). 

 Our analysis of  NCDMF data at three additional sanctuaries where mounds were 

both seeded and unseeded within 1 year of being created was limited because all four 

fixed factors (seeded or not, mound age, site, and year created) could not be included in 

one model due to inconstant sampling of mounds each year. The best model included 

whether the mound was seeded, mound age, and year of creation as factors (Appendix 

2.I). Seeded mounds had a lower density of oysters than unseeded mounts (Appendix 2.J, 

Fig. 2.6). Mounds created in 2008 had a higher density of oysters than mounds created in 

2006 and the density of oysters increased with mound age. 

 

Discussion 

 The sanctuaries in this study extended over the entire area of Pamlico Sound and 

the temporal scale of results included 3 different years of reef creation. In the fall 

following experimental seeding, shells deployed without seed in June had as many 

oysters of equal or greater size than any of the shells deployed with seed. Our results 

indicate that seeding recently created artificial reefs is neither necessary nor enhances 

oyster reef development in the Pamlico Sound.  
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  Seeding artificial reefs could have been expected to  increase natural recruitment 

because oyster larvae are thought to be gregarious settlers (Kennedy et al. 1996). 

Laboratory experiments have found that the presence of seed oyster on shell (Hidu and 

Haskin 1971, Keck et al. 1971) and  presence of chemical cues from adult conspecifics 

(Hidu et al. 1978, Turner et al. 1994, Tamburri et al. 2008) increase settlement of larvae. 

Although we did not directly measure settlement, natural oyster recruitment 

overwhelmed any benefit of seeding. Our results are not consistent with laboratory 

findings because the presence of seed oysters did not increase recruitment on shell or on 

the mound substrate (marl). Discrepancies between this study and past laboratory 

experiments could result from seed oysters not producing a strong enough chemical cue 

to attract larvae, or the larvae could have been equally attracted to cues coming from 

biofilms on the marl, shell, and shell with seed (Tamburri et al. 1992, 2008). 

 Oyster recruitment and abundance varied within and among sites. Abundance of 

oysters on shell was highest at the low-salinity site, but oyster density was highest on 

marl at the high-salinity site. Greater recruitment in higher salinities has been found in 

the Pamlico Sound (Ortega and Sutherland 1992), Maryland (Beaven 1954), and the Gulf 

of Mexico (Butler 1954). The low recruitment to shell at the high-salinity site compared 

to the low-salinity site could have resulted from an earlier settlement pulse at the high 

salinity site, with deployment of shell occurring after this pulse. Within sites, recruitment 

of oysters was higher at the bottom of the mounds than on the top at the first sampling. 

Lenihan (1999) monitored high and low relief oyster reefs and also found higher oyster 

recruitment at deeper depths. But 1 year after reef deployment, the density of oysters was 

similar between the top and bottom of the reef. In addition, oyster density decreased over 
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time at the low- and high-salinity sites, but increased at the mid-salinity site. This could 

indicate that moderate salinities within Pamlico Sound may be the best areas for oyster 

restoration with the goal of maximizing oyster densities. However, the average density of 

oysters remained above 400 oysters m
-2

 at all experimental sites, which is greater than the 

highest densities found on oyster reef sanctuaries throughout North Carolina and is 40 

times higher than the 10 oysters m
-2

 that has been used as a indicator for a functional reef 

(Powers et al. 2009). 

  Data from NCDMF support our experimental findings that seeding is neither 

necessary for nor beneficial to oyster restoration efforts in Pamlico Sound. Results from 

these data are not as clear as our experimental study results because of inconsistent 

sampling, but conclusions can still be made. At NCDMF-monitored sites, density of 

oysters on the marl varied between the 2 years that mounds were created. Seeded mounds 

had significantly fewer oysters than unseeded mounds. Addition of seeded shell could 

reduce oyster abundance on mounds because added shell is easily dislodged and 

redistributed during storm events, and this shell movement can destroy oysters attached 

to marl or remove deployed shell from the mound. Shell overgrowth and removal was 

evident at the experimental sites by the decreasing number of shells found on the mounds 

through time.  

 In principle, addition of seed oysters could be advantageous for restoration efforts 

where oyster recruitment is limiting or mortality is high for recently settled oysters. These 

situations would exist if: populations are reduced low enough that gametes released by 

adults are not fertilized; habitat is highly degraded (i.e. anoxia) and the existing oyster 

population has very low reproductive output; or predators or disease cause high mortality 
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of recently settled oysters. Although oyster recruitment did vary, recruitment was not 

limiting because natural recruitment swamped any effect of seeded shell. Oyster 

predators (mud crabs, sheepshead fish, black drum and oyster drills) exist throughout 

Pamlico Sound (Chesnut 1955, Rindone and Eggleston 2011, NRG unpub.), but 

recruitment seemed to exceed the effect of predators because the density of oysters 

remained above 400m
-2

 regardless of shell/seed treatment. Our results indicate a drastic 

decrease in oyster density in high-salinity areas by the last sampling at Clam Shoal and 

approximately 3 years after reef creation at Ocracoke. Powers et al. (2009) surveyed a 

protected reef near (within 5 km) Clam Shoal in 2002-2003 and found no live oysters. 

They attributed the oyster absence to recruitment limitation, but our results and findings 

of Ortega and Sutherland (1992) indicate that post-recruitment mortality is probably the 

reason for low oyster abundance on the east side of Pamlico Sound. The cause of the high 

mortality is presently unknown, but this region had the highest recruitment to marl (Clam 

Shoal, approximately 8000 oysters m
-2

). High recruitment and subsequent high mortality 

indicates that this region could be used for transplantation in oyster reef restoration 

schemes. Transplantation consists of deploying substrate in high-recruitment areas and 

then moving the substrate to an area with lower mortality after recruitment occurs. Such 

oyster transplanting is common in many areas and is used to increase oyster harvest and 

restore oyster reefs (Powell et al. 1997, Southworth and Mann 1998, Brumbaugh and 

Coen 2009, Kennedy et al. 2011). 

 Beck et al. (2011) estimated that oysters are only 5-10 percent of historic 

abundances in North Carolina. However, our findings indicate that extant oyster 

populations in the areas surrounding the studied oyster sanctuaries have larval production 
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sufficient to develop oyster reefs on deployed substrate, which confirms historical 

observations that oyster recruitment is not limiting south of the Chesapeake Bay (Wallace 

1952, Andrews 1954). Ortega and Sutherland (1992) found that recruitment along the 

western side of Pamlico Sound seemed to be decreasing from 1988 to 1990, which they 

attributed to decreasing oyster populations. Our study two decades later was different 

from their finding. Moreover, no-harvest oyster sanctuaries throughout the Pamlico 

Sound have remained viable for longer than 10 years (Powers et al. 2009), which would 

indicate that recruitment is neither limiting nor decreasing. Determining which factors 

contribute to the high recruitment in Pamlico Sound and why recruitment is low in other 

areas, such as the Chesapeake Bay (Mann and Powell 2007), is an important step to 

facilitate widespread oyster restoration.  

 To our knowledge, few experimental studies have tested the benefit of seeding 

restored oyster reefs, which is unexpected given the widespread use of seed oysters to 

restore and maintain oyster populations. One study on whether seed oysters augmented 

artificial reefs found 100% mortality of seed oysters from oyster drill predation in Mobile 

Bay, AL (Wallace et al. 2002). Although the benefit of seeding for oyster restoration will 

vary depending on where and when seeding is used, experiments are needed to determine 

if seeding is beneficial to oyster restoration.  

 Restoring habitats, whether because of widespread degradation or extirpation, is 

one of the great challenges of our century (Hobbs and Harris 2001). Management 

restoration efforts are usually limited by management schemes that led to the 

degradation, the amount of money allocated for restoration and the complexity of 

ecological processes. Managers and stakeholders should invest in experiments that test 
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whether recruitment is limited before artificially augmenting natural recruitment, a 

strategy commonly used to restore other biogenic habitats such as seagrass meadows 

(Bell et al. 2008, Orth et al. 2012) and coral reefs (Clark and Edwards 1995, Edwards and 

Clark 1998). As habitat restoration efforts increase, restoration techniques need to be 

firmly grounded in experimental ecology so that invested resources are maximized based 

on the spatial and temporal dynamics of recruitment and the overall restoration goals. 

 

  



24 
 

Literature Cited 

 

Abbe, G. R., and D. L. Breitburg. 1992. The influence of oyster toadfish (Opsanus tau) 

and crabs (Callinectes sapidus and Xanthidae) on survival of oyster (Crassostrea 

virginica) spat in Chesapeake Bay: does spat protection always work? 

Aquaculture 107:21–31.  

 

Andrews, J. D. 1954. Setting of oysters in Virginia. Proceedings of the National 

Shellfisheries Association 45:38–46. 

 

Associated Press. 2007. Virginia commits $2.1 million to oyster restoration. Chesapeake 

Bay Journal 3031. 

 

Austin, H. M., D. Evans, and D. S. Haven. 1996. A retrospective time series analysis of 

oyster, Crassostrea virginica, recruitment (1946-1993). Journal of Shellfish 

Research 15:565–582. 

 

Beaven, F. G. 1954. Various aspects of oyster seeding in Maryland. Proceedings of the 

National Shellfisheries Association 45:29–37. 

 

Beck, M. W., R. D. Brumbaugh, L. Airoldi, A. Carranza, L. D. Coen, C. Crawford, O. 

Defeo, G. J. Edgar, B. Hancock, M. C. Kay, H. S. Lenihan, M. W. Luckenbach, 

C. L. Toropova, G. Zhang, and X. Guo. 2011. Oyster reefs at risk and 

recommendations for conservation, restoration, and management. BioScience 

61:107–116. 

 

Bell, S. S., A. Tewfik, M. O. Hall, and M. S. Fonseca. 2008. Evaluation of seagrass 

planting and monitoring techniques: Implications   for assessing restoration 

success and habitat equivalency. Restoration Ecology 16:407–416. 

 

Blankenship, H. L., and K. M. Leber. 1995. A responsible approach to marine stock 

enhancement. American Fisheries Society Symposium 15:167–175. 

 

Brown, K., G. George, G. Peterson, B. Thompson, and J. Cowan. 2008. Oyster predation 

by black drum varies spatially and seasonally. Estuaries and coasts 31:597–604.  

 

Brumbaugh, R., and L. Coen. 2009. Contemporary approaches for small-scale oyster reef 

restoration to address substrate versus recruitment limitation: a review and 

comments relevant for the olympia oyster, Ostrea lurida carpenter 1864. Journal 

of Shellfish Research 28:147–161.  

 

Butler, P. 1954. Selective setting of oyster larvae on artificial cultch. Proceedings of the 

Natinoal Shellfisheries Association 45:95–109. 

 



25 
 

Chesnut, A. F. 1955. The distribution of osyter drills in North Carolina. Proceedings of 

the National Shellfisheries Association 46:134–139. 

 

Clark, S., and A. Edwards. 1995. Coral transplantation as an aid to reef rehabilitation: 

Evaluation of a case study in the Maldive Islands. Coral Reefs 14:201–213.  

 

Coen, L. D., R. D. Brumbaugh, D. Bushek, R. Grizzle, M. W. Luckenbach, M. H. Posey, 

S. P. Powers, and S. G. Tolley. 2007. Ecosystem services related to oyster 

restoration. Marine Ecology Progress Series 341:303–307.  

 

Coen, L. D., and M. W. Luckenbach. 2000. Developing success criteria and goals for 

evaluating oyster reef restoration: Ecological function or resource exploitation? 

Ecological Engineering 15:323–343. 

 

Crawley, M. J. 2007. The R book. Wiley, Hoboken, N.J. 

 

Edwards, A., and S. Clark. 1998. Coral transplantation: A useful management tool or 

misguided meddling? Marine Pollution Bulletin 37:474–487. 

 

Grabowski, J. H. 2004. Habitat complexity disrupts predator-prey interactions but not the 

trophic cascade on oyster reefs. Ecology 85:995–1004. 

 

Grabowski, J. H., and C. Peterson. 2007. Restoring Oyster Reefs to Recover Ecosystem 

Services. Pages 281–298 Ecosystem Engineers. Academic Press. 

 

Grizzle, R., D. Burdick, J. Greene, H. Abeels, and C. Capone. 2006. Reef structure 

alternatives for restoration of oyster   (Crassostrea virginica) populations in New 

Hampshire. The New Hampshire Estuaries Project. 

 

Hidu, H., and H. H. Haskin. 1971. Setting of the American oyster related to 

environmental factors and larval behavior. Proceedings of the National 

Shellfisheries Association 61:35–50. 

 

Hidu, H., W. G. Valleau, and F. P. Veitch. 1978. Gregarious setting in European and 

American oysters response to surface chemisty vs. waterborne pheromones. 

Proceedings of the National Shellfisheries Association 68:11–16. 

 

Hobbs, R. J., L. M. Hallett, P. R. Ehrlich, and H. A. Mooney. 2011. Intervention ecology: 

applying ecological science in the twenty-first century. BioScience 61:442–450.  

 

Hobbs, R. J., and J. A. Harris. 2001. Restoration ecology: repairing the earth’s 

ecosystems in the new millennium. Restoration Ecology 9:239–246. 

 

Keck, R., D. Maurer, J. C. Kauer, and W. A. Sheppard. 1971. Chemical stimulants 

affecting larval settlement in the american oyster. Proceedings of the National 

Shellfisheries Association 61:24–28. 



26 
 

 

Kennedy, V. S., D. L. Breitburg, M. C. Christman, M. W. Luckenbach, K. Paynter, J. 

Kramer, K. G. Sellner, J. Dew-Baxter, C. Keller, and R. Mann. 2011. Lessons 

learned from efforts to restore oyster populations in Maryland and Virginia, 1990 

to 2007. Journal of Shellfish Research 30:719–731.  

 

Kennedy, V. S., M. S. G. College, R. I. E. Newell, and A. F. Eble. 1996. The eastern 

oyster : Crassostrea virginica. Maryland Sea Grant College,, College Park, MD. 

 

Kraeuter, J., S. Ford, and W. Canzonier. 2003. Increased biomass yield from Delaware 

bay oysters (Crassostrea virginica) by alternation of planting season. Journal of 

Shellfish Research 22:39–49.  

 

Kulp, R. E., V. Politano, H. A. Lane, S. A. Lombardi, and K. T. Paynter. 2011. Predation 

of juvenile Crassostrea virginica by two species of mud crabs found in the 

Chesapeake Bay. Journal of Shellfish Research 30:261–266.  

 

Lenihan, H. S. 1999. Physical–biological coupling on oyster reefs: how habitat structure 

influences individual performance. Ecological Monographs 69:251–275.  

 

Lenihan, H. S., C. H. Peterson, J. E. Byers, J. H. Grabowski, G. W. Thayer, and D. R. 

Colby. 2001. Cascading of habitat degradation: oyster reefs invaded by refugee 

fishes escaping stress. Ecological Applications 11:764–782.  

 

Lotze, H., H. Lenihan, B. Bourque, R. Bradbury, R. Cooke, M. Kay, S. Kidwell, M. 

Kirby, C. Peterson, and J. Jackson. 2006. Depletion, degradation, and recovery 

potential of estuaries and coastal seas. Science 312:1806–1809. 

 

Mann, R., and E. Powell. 2007. Why oyster restoration goals in the Chesapeake Bay are 

not and probably cannot be achieved. Journal of Shellfish Research 26:905–917. 

 

McDonald, J. 1982. Divergent life-history patterns in the co-occurring inter-tidal crabs 

Panopeus-herbstii and Eurypanopeus-depressus (crustacea, brachyura, 

xanthidae). Marine Ecology-Progress Series 8:173–180.  

 

Michener, W. K., and P. D. Kenny. 1991. Spatial and temporal patterns of Crassostrea 

virginica (Gmelin) recruitment: relationship to scale and substratum. Journal of 

Experimental Marine Biology and Ecology 154:97–121. 

 

Newell, R., G. Alspach, V. Kennedy, and D. Jacobs. 2000. Mortality of newly 

metamorphosed eastern oysters (Crassostrea virginica) in mesohaline 

Chesapeake Bay. Marine Biology 136:665–676.  

 

Ortega, S., and J. Sutherland. 1992. Recruitment and growth of the eastern oyster, 

Crassostrea virginica, in North Carolina. Estuaries 15:158–170. 

 



27 
 

Orth, R. J., K. A. Moore, S. R. Marion, D. J. Wilcox, and D. B. Parrish. 2012. Seed 

addition facilitates eelgrass recovery in a coastal bay system. Marine Ecology 

Progress Series 448:177–195.  

 

Peterson, C., J. Grabowski, and S. Powers. 2003. Estimated enhancement of fish 

production resulting from restoring oyster reef habitat: quantitative valuation. 

Marine Ecology-Progress Series 264:249–264.  

 

Peterson, C., H. Summerson, and J. Huber. 1995. Replenishment of hard clam stocks 

using hatchery seed: Combined importance of bottom type, seed size, planting 

season, and density. Journal of Shellfish Research 14:293–300.  

 

Piehler, M. F., and A. R. Smyth. 2011. Habitat-specific distinctions in estuarine 

denitrification affect both ecosystem function and services. Ecosphere 2:art12. 

 

Powell, E., J. Klinck, E. Hofmann, and S. Ford. 1997. Varying the timing of oyster 

transplant: implications for management from simulation studies. Fisheries 

Oceanography 6:213–237.  

 

Powers, S. P., C. H. Peterson, J. H. Grabowski, and H. S. Lenihan. 2009. Success of 

constructed oyster reefs in no-harvest sanctuaries: implications for restoration. 

Marine Ecology Progress Series 389:159–170.  

 

Rindone, R. R., and D. B. Eggleston. 2011. Predator-prey dynamics between recently 

established stone crabs (Menippe spp.) and oyster prey (Crassostrea virginica). 

Journal of Experimental Marine Biology and Ecology 407:216–225. 

 

Rodney, W. S., and K. T. Paynter. 2006. Comparisons of macrofaunal assemblages on 

restored and non-restored oyster reefs in mesohaline regions of Chesapeake Bay 

in Maryland. Journal of Experimental Marine Biology and Ecology 335:39–51. 

 

Southworth, M., and R. Mann. 1998. Oyster reef broodstock enhancement in the Great 

Wicomico River, Virginia. Journal of Shellfish Research 17:1101–1114. 

 

Tamburri, M. N., M. W. Luckenbach, D. L. Breitburg, and S. M. Bonniwell. 2008. 

Settlement of Crassostrea ariakensis larvae: effects of substrate, biofilms, 

sediment and adult chemical cues. Journal of Shellfish Research 27:601–608. 

 

Tamburri, M., R. Zimmerfaust, and M. Tamplin. 1992. Natural sources and properties of 

chemical inducers mediating settlement. Biological Bulletin 183:327–338.  

 

Turner, E., R. Zimmerfaust, M. Palmer, M. Luckenbach, and N. Pentcheff. 1994. 

Settlement of oyster (Crassostrea virginica) larvae effects of water-flow and a 

water-soluble chemical cue. Limnology and Oceanography 39:1579–1593. 

 



28 
 

Wallace, D. H. 1952. A critique of present biological research on oysters. Proceedings of 

the Gulf and Caribbean Fisheries Institute 5:132–136. 

 

Wallace, R. K., F. S. Rikard, and J. C. Howe. 2002. Optimum size for planting hatchery 

produced oyster seed. Final Technical Report MS-AL Sea Grant. 

 

Williams, A. B., G. S. Posner, W. J. Woods, and E. E. Deubler. 1973. A hydrographic 

atlas of larger North Carolina sounds. University of North Carolina. 

 

 

  



29 
 

 

 

 

RESTRICTING PREY DISPERSAL OVERESTIMATES THE IMPORTANCE OF 

PREDATION IN CAUSING INDIRECT INTERACTIONS 

 

Introduction 

The importance of predation in community dynamics is exemplified by trophic 

cascades (Carpenter and Kitchell 1988, Estes et al. 1998, Pace et al. 1999, Myers et al. 

2007). Studies on trophic cascades have usually focused on the indirect effect of 

predators that are generated by consumption of prey, but there is a growing number of 

studies that have found that behavioral responses of prey to avoid predators are also 

important to understanding both direct and indirect effects of predators in food webs 

(Schmitz et al. 2004, Preisser et al. 2005, Okuyama and Bolker 2007). For example, 

studies of tri-trophic food chains (predator-prey-resource) that include assessment of 

behavioral effects have shown that resource persistence is influenced as much by prey 

predator-avoidance behaviors (trait-mediated indirect effects; TMIEs) as by predators 

consuming prey (density-mediated indirect effects; DMIEs) (Werner and Peacor 2003, 

Preisser et al. 2005, Trussell et al. 2006). For instance, in grassy meadows, spiders 

feeding on grasshoppers had a similar positive effect on grasses as when non-feeding 

spiders were present (Schmitz et al. 1997). Hence, the inclusion of prey behavior in food 

web models is an important step towards developing a holistic understanding of 

ecological processes (Ings et al. 2009, Beckerman et al. 2010). 
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 TMIEs often result from more than one predator-avoidance behavior in nature 

(Wirsing and Ripple 2011). For instance, elk, under the risk of predation by wolves, 

increase vigilance time and decrease foraging (Laundré et al. 2001, Childress and Lung 

2003), which results in increasing willow heights (Ripple and Beschta 2006, Beschta and 

Ripple 2007). In addition, elk can also alter habitat selection in the presence of wolves 

and move away from their preferred resource in open grasslands to safer coniferous 

forests with lower-quality resources (Creel et al. 2005). Even though animals use multiple 

behaviors in response to predators, few studies consider more than one predator-

avoidance behavior, especially when determining the relative importance between TMIEs 

and DMIEs (Abrams 2007, Wirsing and Ripple 2011).  

Quantifying the relative importance of TMIEs and DMIEs is necessary in order to 

include behavior in food chain models that have until recently included only the effects of 

consumption. In a recent meta-analysis on the relative importance of prey behavior and 

predation in indirect interactions, all 20 examples of studies that measured TMIEs and 

DMIEs were conducted in mesocosms (Preisser et al. 2005). Researchers rely on  

mesocosm experiments to determine TMIEs and DMIEs  because prey mortality and the 

consumption of resources by prey must be measured (Schmitz 2005, Okuyama and 

Bolker 2007). Generally mesocosm designs limit how prey can respond to predators. 

Three different quantified predator avoidance behaviors of prey, in addition to prey 

mortality, have been studied; reduced activity, changes in habitat, and immigration, but 

only one predator avoidance behavior has been measured at a time (Preisser et al. 2005; 

Appendix A). This practice of measuring one predator-avoidance behavior at a time may 

lead to overestimating the importance of the measured behavior in indirect effects when 
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compared to prey behavior natural settings. 

One of the most frequently studied predator avoidance behaviors in indirect effect 

studies is reduced prey activity, but studies on prey activity that are conducted in 

mesocosms usually restrict the ability of prey to disperse to locations where the threat of 

a predator is diminished (Schmitz et al. 1997, 2008, Grabowski 2004, Grabowski and 

Kimbro 2005). For instance, the studies that measured the effect of reduced prey activity 

on indirect effects in Preisser et al. (2005) had mesocosm boundaries that limited 

dispersing prey to distances that we estimate prey could move in less than a minute 

(Appendix A). Restricting prey to an area that is small compared to the area that they use 

in nature (home range) inhibits the prey’s ability to disperse from predators. The ability 

of prey to move away from the threat of predation can depend on the density of predators 

and the distance at which prey are able to detect a predator. Even if mesocosm size does 

not alter the ability of prey to disperse, mesocosms boundaries can alter detection and 

capture of prey (Englund 1997). Furthermore, minor changes in predator-prey 

interactions can have major impacts on resources (Preisser et al. 2005). Thus, mesocosm 

experiments measuring the effects of predators on prey activity could overestimate 

DMIEs because prey are unable to disperse from the threat of predation and mesocosm 

boundaries increase predator capture success.  

The indirect effect of prey dispersal on the resource has been tested in enclosure 

studies in streams (Cooper et al. 1990, Sih and Wooster 1994, Forrester 1994, McIntosh 

et al. 1999) and grasslands (Cronin et al. 2004; see review by Preisser et al. 2005). But, 

these studies did not assess how  resource survival was affected by predator consumption 

of prey and reductions in prey foraging because of difficulties in determining the number 
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of prey eaten versus the number of prey that dispersed (Preisser and Bolnick 2008, 

Orrock et al. 2008). One mesocosm study did estimate the effect of prey dispersal and 

reduced activity on algae in streams but did not measure the number of prey eaten by 

predators and the relative importance of TMIE and DMIE was not calculated (Diehl et al. 

2000). 

Our study system consisted of a tri-trophic food chain with toadfish (Opsanus tau; 

predator), mud crabs (Panopeus herbstii; prey), and ribbed mussels (Geukensia demissa; 

resource). Past experiments have been conducted with these same species in 1.7 m 

diameter mesocosms and found that the relative importance of TMIEs, resulting from 

reduced prey activity in the presence of a predator, was much greater than DMIEs 

(Grabowski 2004, Grabowski and Kimbro 2005). However, a study on the mobility of the 

same species of mud crab found that marked crabs released in the wild were not found 

within 5m of the release point after 48h (Stachowicz and Hay 1999). Consequently, we 

designed a relatively large-scale experiment that manipulated the presence and absence of 

a predator within mesocosms that either prevented or allowed prey, but not a predator, to 

disperse out of the mesocosm. The importance of reduced activity of prey, prey dispersal, 

and predation of prey were each quantified to assess the indirect effects of the predator on 

the resource.  

 

Methods 

Calculating indirect effects 

Assessments of the importance of prey behavior in ecological processes must 

isolate behavioral effects from consumptive effects (Peacor and Werner 2001, Schmitz et 
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al. 2004, Okuyama and Bolker 2007). Our experiment accomplished this by parsing 

different indirect effects via counting the numbers of the resource species eaten per day 

by prey in the absence (M) and presence (m) of a predator, the daily per-prey 

consumption of the resource in absence (C) and presence (c) of a predator, and the 

number of prey eaten by a predator (p; Table 1). Following the labeling convention used 

by Okuyama and Bolker (2007), capital letters indicate absence of a predator and lower 

case letters indicate presence of a predator. The DMIEs were the amount of resources 

surviving because of prey mortality (c·p). The actual release (AR) was the difference 

between resources consumed by prey in the absence and presence of a predator (M-m). 

The activity resource release (AyR), or the amount of resources that were not eaten 

because prey reduce activity and foraging in the presence of a predator, was the 

difference between the AR and the DMIEs (Grabowski 2004), when dispersal was 

prevented. Thus, if the change in the numbers of resources and prey are known, indirect 

effects can be estimated (Table 1). We took this construct one step further by calculating 

the dispersal resource release (DR), the positive effect of a predator on resource survival 

resulting from prey dispersal, by multiplying the per-prey consumption of resources by 

the number of prey that dispersed and then subtracting the number of resources not eaten 

because of dispersal in the presence (c·e) and absence (C·E) of a predator. The increase 

in resource survival resulting from reduced prey activity was then calculated in 

mesocosms that allowed prey dispersal (AyR=AR-DR-DMIE; Table 3.1). 

Our mesocosm design was based on a combination of past research on prey 

dispersal, which has primarily been measured in stream mesocosms (referred to as 

emigration in those studies), and research on changes in prey activity, which has 
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primarily been conducted in closed mesocosms mimicking marine or terrestrial 

environments. Crab movement out of the mesocosm was considered dispersal and not 

refuge-seeking behavior because we refer to dispersal as the movement out of a hostile 

environment while refuge seeking behavior is hiding within a hostile environment. 

Refuge seeking is a reduction in crab activity when crabs hide deeper within the oyster 

shell to escape predation (Grabowski and Kimbro 2005). 

Experimental Setup 

Experiments were conducted in 21 m
2
 outdoor cement ponds (7 x 3m) at the 

University of North Carolina’s Institute of Marine Sciences (Morehead City, NC, USA). 

Animals were collected by hand or trap in Bogue Sound and held in flow-through tanks 

supplied with raw seawater (1 Ls
-1

). Toadfish were fed chunks of frozen fish and crabs 

were fed mussels (> 1 cm shell height) ad libitum every 2 days before experiments 

started. 

The experimental design consisted of 2 crossed factors: predator (present or 

absent) and mesocosm design (open - prey could leave the mesocosm or closed - prey 

could not leave mesocosm). The 2 mesocosm designs were created by dividing each 

cement pond in half with one of 2 alternate sizes of Vexar mesh, one of which allowed 

crab dispersal (open – 5 cm mesh) while the other did not  (closed – 1 cm mesh).  

Depending on the mesh size crabs could move out of the mesocosm (3.5 x 3m) into a 

predator-free sanctuary (other side of the cement pond; Fig. 3.1). The sanctuary in the 

closed treatment was used as a control to measure mussel mortality not attributable to 

crab consumption.  
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Oyster habitat was created by adding cleaned adult oyster shells (37.9 L bucket 

full of shells) to each mesocosm and sanctuary and spreading it out to cover a 0.56 m
2
 

area. The oyster shells were approximately 15 cm deep. The oyster habitat was placed 0.5 

m from the mesh barrier so that oyster habitat in open mesocosms was 1m apart from 

oyster habitat in sanctuaries (Fig. 3.1). The size of the oyster habitat and the distance 

between patches are commonly found in natural oyster reefs (Eggleston et al. 1998, 

Macreadie et al. 2011; Appendix 3.A). Eight oyster shells each had 7 mussels (resource) 

attached to them and were haphazardly placed within the oyster habitat. Mussels are 

commonly found in interstitial spaces in oyster reefs and are eaten by mud crabs 

(Toscano and Griffen 2012). Mussel shell height ranged from 8 to 24 mm (17 ± 0.04, 

mean ± standard error, n=60). Mussels were placed on the shell 24 hours before the 

beginning of the trial and they naturally attached to the oyster shell via their byssal 

threads. 

Five mud crabs (range=10 - 39 mm carapace width, 26 ± 0.4 mm, n=119) were 

placed in the oyster habitat in each mesocosm (Fig.3.1). Crab density within the oyster 

habitat in mesocosms (8.9 crabs m
-2 

of oyster habitat) was selected from the lower end of 

the natural range of crab density for individuals with 20 - 40 mm carapace widths within 

intertidal oyster reefs in South Carolina (4 - 20 m
-2

, McDonald 1982) to reduce density-

dependent movement and interference competition. After crabs had acclimated for 30 

min in the mesocosm, a single adult toadfish (range=230 - 320 mm total length, 278 ± 1.0 

mm, n=8) was added to the predator-present treatments. Each trial of the experiment 

consisted of a single replicate of each of the 4 treatments (predator-present or absent 

crossed with mesocosm-open or closed). Replication was gained through successive trials 
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(n = 6) and treatment was haphazardly assigned to mesocosms before each trial. Trials 

were conducted from July to Sept in 2009. Trial time was based on keeping resources 

above 50% to minimize crab dispersal resulting from resource depletion and to minimize 

a decrease in prey feeding rate because of resource depletion (Murdoch 1969), which was 

measured in pilot trials and took 2 - 3 days. Mesocosms were completely drained of 

seawater at the end of each trail, which took approximately 15 min, to allow crabs and 

mussels to be accurately counted.  

Observations of crab location were conducted 3 – 4 times during each trial. The 

observations were conducted from 8 am – 8 pm. Each mesocosm and sanctuary was 

searched for 1 min and the location of each visible crab was recorded. The locations of 

crabs were grouped into 4 categories: within oyster habitat, closer than 5 cm to 

mesocosm walls, in mesocosm corners, or in the open (between oyster reef and 

mesocosm boundaries). 

Experimental design justification and caveats 

The experimental design allowed us to quantify the number of prey that dispersed 

out of the mesocosm in the absence and presence of a predator. Although this design may 

also have experimental artifacts, we tried to mimic natural conditions by allowing mud 

crabs to disperse while still measuring changes in prey and resource abundance resulting 

from consumption and dispersal. The mesh barrier restricted movement of predators to 

remain within the mesocosm, but the barrier probably did not affect toadfish predation on 

mud crabs because a toadfish’s ambush attack is characterized by a quick and sudden 

strike and toadfish are sedentary ambush predators that occupy dens (tin cans or piles of 

oyster shell) for 3 - 5 weeks (Gray and Winn 1961). Hence, the potential artifacts 
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introduced by mesh barriers are probably minimal in toadfish-mud crab interactions in 

this experiment. A treatment in which toadfish could move into the sanctuary was not 

included in this study because it would have a different shape and twice the area as the 

mesocosms we used and changes in prey and resource consumption could not be directly 

attributed to the presence of the mesh barrier because of concurrent changes in mesocosm 

area and predator density.  

Past studies calculate TMIEs (Griffin and Thaler 2006, Trussell et al. 2006, 

Okuyama and Bolker 2007) by using a “risk” or “cue” treatment. Risk treatments usually 

consisted of a predator that is caged within mesocosms or water flowing through a tank 

containing a predator before flowing into the study mesocosm. We did not include a risk 

treatment because risk treatments can underestimate predator-avoidance behaviors 

because prey never have an opportunity to escape the predator (Abrams 2007) and the 

reduction in prey foraging resulting from predator presence is calculated from per prey 

consumption of resources when the predator can consume the prey. However, the risk 

treatment does keep prey density constant and removes any artifact resulting from crabs 

altering their feeding rates with changes in crab density. We acknowledge that this could 

bias our results if crabs increased feeding when crab density decreased from either 

predation or dispersal, but the experiment was designed to minimize changes in density-

dependent crab feeding rates and intraspecific interactions by using crab densities from 

the lower end of natural densities and with resources that were distributed throughout the 

oyster habitat. 

Statistical Analysis 
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Response variables were analyzed in factorial ANOVAs with mesocosm design 

(open or closed) and predator (present or absent) as fixed factors and trial (1-6) as a 

blocked factor. Dependent variables were: % crabs consumed (crabs eaten /{[initial # of 

crabs-final #of crabs]/2}), % crabs remaining in the mesocosm (final # of crabs/{initial # 

of crabs- # crabs eaten}) and % mussels consumed in the mesocosm. ANOVAs were also 

run for results in the sanctuary (open mesocosms only) with predator in the mesocosm 

(present or absent) as a fixed factor and trial (1-6) as a blocked factor. Dependent 

variables for ANOVA’s run with results from sanctuaries were number of crabs in the 

sanctuary at the end of the trial and % mussels consumed in the sanctuary. All data were 

first tested for normality and homoscedasticity by the K-S normality test and the 

Levene’s test, respectively, and passed both tests without transformation unless stated 

otherwise.  

Crab behavior was analyzed using a 2-way MANOVA with predator mesocosm 

design and trial as independent factors. The numbers of crabs observed per trial along the 

sides, in corners, and in oyster habitat were the dependent variables. The number of times 

a crab was observed in each trail was divided by the average number of crabs present and 

the number of observations conducted during that trail to account for differences in the 

number of crabs and observations among trials. Only 1 crab was observed in a sanctuary 

and only observations in mesocosms were used in the observation analysis. A crab was 

never observed in the open so this category was not used in the analysis. To elucidate 

which observation category was driving the significant MANOVA results, separate three-

way ANOVAs, with predator (fixed), mesocosm design (fixed), and trial (blocked) as 

independent factors, were run with each location category as the dependent variable.  
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Indirect Effect Calculations 

To determine the effect of mesocosm design, prey activity within the mesocosm, 

and prey dispersal on the relative strength of DMIEs and TMIEs, we used calculations 

similar to Grabowski (2004). Variables and equations are shown in Table 1; lower case 

variables indicate predator presence and upper case variables indicate predator absence 

(Okuyama and Bolker 2007). The mean number of crabs eaten by a predator during a trail 

(p) was calculated for closed and open mesocosms. We determined the mean number of 

crabs that dispersed out of open mesocosms during a trial with (d) and without predators 

(D), as well as the per-prey rate of resource consumption for open and closed mesocosms 

with (c) and without (C) a predator. All calculations were carried out independently for 

open and closed mesocosms. The rate of resource consumption per prey was calculated 

by dividing the number of resources consumed per day by the average number of crabs 

present during the trail. The average number of crabs was calculated by dividing the 

initial plus the final number of crabs by 2 

DMIEs, or the number of mussels surviving because of predation of mud crabs, 

was calculated for predator treatments (p·c). Actual resource release (AR), or the number 

of mussels not eaten because of the presence of a predator, was calculated by subtracting 

the mussel consumption without and with a predator (M-m). Dispersal resource release 

(DR), or the number of mussels not eaten because of crab dispersal out of the mesocosm 

and away from the predator, was calculated by subtracting the number of mussels not 

consumed because of crab dispersal without a predator present (C·D) from the number of 

mussels not consumed because of crab dispersal in the presence of a predator (c·d) in the 

mesocosm. Dispersal resource release was only calculated for open mesocosms. The 



40 
 

activity resource release (AyR), or the number of mussels not eaten because of mud crabs 

reducing activity in the presence of a predator, was calculated for closed mesocosms 

(AyR=AR-DMIE). The calculation for AyR in open mesocosms included the number of 

resources not eaten because of crab dispersal (AyR=AR+DR –DMIE, Table 1). TMIEs or 

the total indirect effects resulting from predator-avoidance behaviors were calculated for 

closed (AyR) and open mesocosms (AyR+DR). Finally, the relative magnitude of TMIEs 

compared to the total indirect effect of the predator on the resource was calculated for 

open and closed mesocosms by dividing TMIEs by the sum of indirect effects 

(DMIE+TMIE; Table 1).  

The contribution of the DMIE can be calculated by subtracting the TMIEs from 1. 

Standard errors were not calculated for the indirect effect percentages because one trial in 

both AyR and DMIEs calculations had a negative number, which resulted from more 

mussels being consumed in the presence of a predator for those trials. The negative 

number greatly skewed the calculations by reducing the mean even when transformations 

were conducted. Thus, the means of the resource release were used and error was not 

calculated.  

 

Results 

The proportion of crabs consumed by toadfish was eight times higher in closed 

(0.35 ± 0.11 crabs per trial; mean ± standard error; n=6 for all analyses) than in open 

mesocosms (0.041 ± 0.041 crabs per trial; F1, 11 = 6.64, p = 0.030; Fig. 3.2A; Appendix 

3.C). Predator presence did not affect the proportion of crabs remaining in mesocosms 

(final # of crabs/(initial # of crabs- # crabs eaten); F1,15 = 0.03, p = 0.857; Fig. 3.2B; 
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Appendix 3.D), but mesocosm design did affect the proportion of crabs remaining in the 

mesocosm with more crabs remaining in the closed mesocosms, although only marginally 

significant (F1,15 = 3.66, p = 0.075; Fig. 3.2B; Appendix 3.D). Thus, predator presence did 

not affect crab dispersal, but crabs did disperse when in open mesocosms. The closed 

mesocosms did not have all of the crabs remaining in the mesocosm because 3 crabs in 

no predator trials and 2 crabs in the predator trials managed to get under the small mesh 

barrier and moved into the control. This should not have affected our results because so 

few crabs escaped from closed mesocosms. Toadfish presence did not affect the number 

of mud crabs that were in the sanctuary at the end of the trial (F1,5 = 0.19, p = 0.679; Fig. 

3.2C; Appendix 3.E).  

All mussel mortality was assumed to be from mud crab consumption because 

mussel mortality in the control sanctuary was negligible (0.6 ± 0.25 mussels per trial) and 

toadfish did not eat mussels (N. Geraldi pers. obs.). Toadfish presence reduced mussel 

mortality by half (F1,15 = 11.38, p =0.004), but there was no difference in mussel 

mortality between open and closed mesocosms (F1,15 = 0.50, p = 0.490; Fig. 3.3A; 

Appendix 3.F). Percent mortality of mussels in the sanctuary was reduced from 17 to 5% 

when the mesocosm had a predator (F1,5 = 4.32, p = 0.092; Fig. 3.3B; Appendix 3.G). 

Neither the trial factor nor the interaction term had an effect (p > 0.05) in any of these 

statistical tests. 

Although the ability to observe crabs was limited by variable water turbidity; 

observations of all treatments during trials were conducted 21 times (3-4 observations 

during each trial) and 33 crabs were observed during the entire experiment. The majority 

of crabs was observed along the edges of the mesocosms (20), and these crabs were 
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moving in 75% of the observations. A total of 10 crabs was observed in the corners, and 

these corner crabs were inactive in 90% of the observations. Three crabs were observed 

in the oyster habitat. There was a significant interaction between predator and mesocosm 

type (F1,20 = 4.059, p = 0.023), and predator was marginally significant (F1,20 = 2.445, p = 

0.097) when observations of crabs in corners, in oyster reef, and along edges were 

analyzed using a MANOVA (Appendix 3.H). The proportion of crabs was not normally 

distributed among the three dependent variables and crabs along edges did not have 

homogeneous variances. When transformation did not improve normality or 

heteroscedasticity, the variables were left untransformed. Non-parametric tests were not 

run because they cannot analyze mixed-effect models. Although variance tests are robust 

to non-normal data (Underwood 1997), caution should be taken in interpreting the 

ANOVA for proportion of crabs along edges because this dependent variable did not 

have homogeneity of variance. Neither predator nor the type of mesocosm had a 

significant effect on the proportion of crabs observed in corners (p > 0.40; Appendix 3.I). 

The proportion of crabs observed along edges was significantly affected by predator (F1,15 

= 6.37, p = 0.023; Fig. 3.2D; Appendix 3.J) and mesocosm type (F1,15 = 5.54, p = 0.033). 

The interaction between these 2 factors was also significant (F1,15 = 5.95, p = 0.028). 

Neither predator nor the type of mesocosm had a significant effect alone on the 

proportion of crabs observed in the oyster habitat (p > 0.40; Appendix 3.K), but the 

interactions between these two independent variables was marginally significant (F1,15 = 

3.24, p = 0.088). 

The contributions of predator-avoidance behaviors and consumptions of prey on 

resource survival are summarized in Table 1. The presence of toadfish reduced the 
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number of mussels eaten per crab per day by half. On average there was a small effect of 

mesocosm design and open mesocosms had 8% higher levels of per-prey consumption. 

The DMIE was almost 3-times greater in the closed (1.31 ± 0.80) than in open 

mesocosms (0.46 ± 0.46). This resulted from the significantly higher predation on mud 

crabs in closed mesocosms. The average number of crabs that dispersed out of an open 

mesocosm was the same for no-predator (1.33± 0.21) and predator treatments (1.33 ± 

0.42). Although prey (crab) density remained unchanged in closed no-predator 

treatments, reduction in prey density resulting from predation and/or dispersal was 

similar between closed predator, open no-predator, and open predator treatments 

(1.33±0.42, 1.33±0.21, and 1.50±0.59 crabs respectively. The DR, or the number of 

mussels not eaten because of changes in crab dispersal induced by predator presence, was 

-2.21± 0.70. This negative number indicates that the DR (number of mussels “saved”) 

was lower in the presence of a predator than in the absence of a predator, an outcome that 

resulted from higher consumption of resources per prey in no-predator treatments. The 

activity resource release (AyR) was lower in the closed (4.19 ± 2.06) than open (7.58 

±3.46) mesocosms. Finally, the activity (AyR) and dispersal (DR) resource release were 

combined for open mesocosms to calculate the number of resources not eaten resulting 

from both of these prey behaviors (5.37± 3.13).  

 The contribution of TMIEs as compared to DMIEs was calculated for closed and 

open mesocosms. The TMIEs from activity reduction in the closed mesocosm accounted 

for 76.2% of the indirect effect. The TMIEs in the open mesocosm, or the increase in 

resource survival resulting from changes in prey foraging activity and dispersal, 

accounted for 92.1% of the effect of the predator on the resource. The difference in 
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indirect effects between the treatments was primarily driven by the significantly higher 

predation on mud crabs in closed mesocosms. 

 

Discussion 

We found that the magnitude of the TMIEs compared to DMIEs was dependent 

on how many predator avoidance behaviors were measured. Our results add to the 

growing body of evidence that fear of predation can have a greater influence on food 

chain dynamics than predation. The evidence includes experiments in grass meadows 

(Schmitz et al. 1997, Schmitz and Suttle 2001, Schmitz 2008), freshwater streams (Huang 

and Sih 1991, Peckarsky 1996, Peacor and Werner 1997, McIntosh et al. 1999), and 

intertidal pools (Trussell et al. 2002, 2006). But, unlike these past studies we measured 

multiple predator avoidance behaviors. When prey were unable to disperse (closed 

mesocosms), TMIEs on mussel survival were 3 times higher than the DMIEs. When 

crabs were allowed to disperse, the TMIEs on mussel survival increased to 11 times the 

DMIEs. This increase in TMIEs resulted from rates of mud crab consumption by toadfish 

(the sole source of DMIEs) that were 9 times higher in closed mesocosms than in 

mesocosms where crabs could disperse. Crabs were observed moving along mesocosm 

edges more often in closed mesocosms than in open mesocosms, probably because they 

were trying to disperse. This left prey more vulnerable to predation and increased prey 

mortality and estimation of DMIEs. Open mesocosms had only 1 of 4 sides permeable to 

crabs, and yet prey consumption by a predator was significantly reduced as compared to 

closed mesocosms. Predation resource release (DMIEs) could be even lower in natural 

settings because no mesocosm boundaries exist, but this is dependent on predator density 
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because prey could inadvertently move into an area with predators. Mesocosm 

experiments on indirect effects could be overestimating DMIE because of mesocosm 

artifacts, especially when mesocosm size restricts the distance prey can move in 

relatively short time periods (< 1 minute), a limitation that is common in previous 

indirect effect experiments (Appendix 3.A). However, the magnitude of the potential bias 

resulting from mesocosms is context dependent and is probably affected by the predator-

avoidance behaviors of the prey, the forage area of the prey and predator (home range), 

and whether the predator actively searches for prey or ambushes prey. 

Prey can reduce predator encounters by dispersing away from the predator 

(Cooper et al. 1990, Fraser and Gilliam 1992, Forrester 1994, McIntosh et al. 2002, Creel 

et al. 2005). We found that the percent of mud crabs remaining in the mesocosm was not 

affected by toadfish presence, which is supported by a smaller body of literature that 

shows no effect of predators on prey dispersal (Sih and Wooster 1994, Orrock et al. 2008, 

Winkelmann et al. 2008). While the number of dispersing crabs did not change, crabs that 

remained in a predator mesocosm ate fewer mussels than crabs that remained in the 

predator-free mesocosms, and as a result the number of mussels surviving in a mesocosm 

because crabs dispersed was less when a predator was present than when a predator was 

absent. This resulted in a negative dispersal resource release because the predator had a 

negative effect on resource survival. The effect of dispersal on resource survival was four 

times greater in magnitude than the effect of prey mortality. Our results bring up 

interesting scenarios in which the cascading effect of dispersal is not intuitive, such as 

when a predator does not alter prey dispersal, but does decrease TMIEs. This could occur 

when the per-prey consumption of resources is lower in the presence of a predator. Or, a 
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dispersal resource release could be negligible even though predators increased dispersal, 

because per-prey consumption decreased in the presence of a predator. 

Our experiment allowed us to estimate the importance of multiple predator-

avoidance behaviors in trophic interactions. We found that prey foraging and dispersing 

each had a greater effect than prey mortality on resource survival. Past experiments 

usually determined indirect effects by measuring prey activity in closed mesocosms or 

prey dispersal in open mesocosms, but to our knowledge no study has directly measured 

both. Excluding dispersal as an antipredator behavior underestimated the activity 

resource release (AyR). The opposite could happen as well; excluding dispersal could 

overestimate the AyR if predator presence increased dispersal and increased resource 

survival. Calculations of indirect effects are based on the difference between resource 

consumption in the absence and presence of the predator. Thus, the magnitude of 

different indirect effects is dependent upon each other. Measuring only one predator-

avoidance behavior, when prey utilize more than one, biases conclusions and thereby 

misrepresents indirect effects. 

Unlike prey that reduce activity in the presence of a predator, prey that disperse 

probably affect resources in the area where the prey disperse to. This is known as ‘remote 

effects’ of predators (Orrock et al. 2008) and is seldom quantified. We found that a 

predator has a disproportionately larger effect on resource survival in sanctuaries, where 

resource consumption was 5 times greater when there was no predator, as opposed to 

when there was a predator in the mesocosm. This was probably a consequence of both 

chronic predator effects (Bolnick and Preisser 2005), in which prey that were recently 

under threat of predation remain vigilant, and a consequence of prey continuing to detect 



47 
 

the predator in the mesocosm (e.g. chemical and/or visual cues). Remote predator effects 

are not only dependent on whether prey alter dispersal rates in the presence of a predator, 

but also the distance from a predator in which the prey resume foraging without ‘fear’. 

Although such effects are dependent on the spatial scale, incorporating the effect of 

dispersing prey on the resource outside of the study area is important in understanding the 

overall effect of predator-avoidance behavior on resource populations. 

The indirect effects of prey mortality and reduced prey activity were previously 

investigated in a tri-trophic food chain with toadfish, mud crabs, and juvenile oysters 

(Grabowski 2004, Grabowski and Kimbro 2005). Grabowski (2004) found a TMIE that 

was larger than what we found in the comparable, closed mesocosm (TMIE was ≥94% 

compared to our finding of 76.2%). Several factors may explain these differences. First, 

the effect of a predator on avoidance behavior is dependent on prey density (all prey are 

inhibited regardless of their density; Okuyama and Bolker 2007, Belovsky et al. 2011) 

and indirect effect calculations are based on the change in resource consumption by all 

the prey. Thus, indirect effects can change depending on the prey density, and if feasible, 

it is best to measure indirect effects as a function of prey density (Abrams 2007). The 

prey to predator ratio that Grabowski (2004) used was double ours, which probably 

resulted in a larger TMIE. But, consumption of mud crabs per toadfish in Grabowski’s 

study was similar to ours in closed mesocosms (0.5 vs. 0.6 crabs·day
-1

) but not in open 

mesocosms (0.06 crabs·day
-1

), which suggests that mesocosms used in Grabowski’s 

study could have overestimated the relative importance of DMIEs compared to more 

natural conditions. Finally, our experiment had a patch of oyster habitat surrounded by 

open substrate, whereas Grabowski (2004) had oyster reef covering the entire mesocosm. 
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Many habitats, including oyster reefs, exist in a continuum of patch sizes. Prey dispersing 

from habitat patches are often more vulnerable to predation (e.g. Micheli and Peterson 

1999). Although patch size and configuration of habitat has not been included in indirect 

effect experiments, it too may alter indirect effects (Macreadie et al. in review). The 

effects of prey to predator ratio and habitat layout probable contributed to the differences 

between this study and that of Grabowski (2004). However, our open mesocosm may be 

closer to natural conditions because prey could move distances closer to distances they 

move in nature.  

While the limited spatial and temporal scales of indirect effect experiments are 

cited as reasons why the results may not be scalable to natural food webs (Schmitz 2007, 

Abrams 2008), the number of large-scale studies finding that predator-avoidance 

behaviors are just as important as prey mortality in indirect effects is growing (Laundré et 

al. 2001, Dill et al. 2003, Stallings 2008, Laundre 2010, Madin et al. 2010). A major goal 

in conservation is to protect and restore ecosystems that have been altered by humans, 

which often includes restoring apex predator populations through creating national parks 

or marine reserves. Animal behavior is at the interface between selection pressure and 

population dynamics (Beckerman et al. 2010) and thus integral to our ability to 

understand and predict changes in ecological communities. Our findings show that 

complex prey behavior is important in determining the effect of a predator on local 

resources and ignoring particular predator-avoidance behaviors can overestimate the 

importance of predators consuming prey on indirect effects of predators
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NATURAL SIZE RANGES OF PREDATOR AND PREY DIMINISH CASCADING 

EFFECTS THROUGH AN INCREASE IN PREY CANNIBALISM AND 

INTERFERENCE COMPEITIION 

 

Introduction 

Populations contain individuals which can range in size by orders of magnitude 

and span multiple trophic levels. Community ecology traditionally uses species as the 

basic building block of food webs and often ignores the different functional roles that the 

same species can play at different times of their life span (Raffaelli 2007). Theoretical 

models that incorporate species body size as a component of natural predator-prey 

dynamics are able to reproduce the stability of the natural community better than models 

that treat species as static entities (Berlow et al. 2008, Petchey et al. 2008, Ings et al. 

2009, Rall et al. 2011). Beyond theoretical predictions, only a few experimental studies 

have incorporated species size variation into food web interactions (Rudolf 2007a, Miller 

and Rudolf 2011). 

The specific nature among species interactions change as individuals grow 

(Werner and Gilliam 1984, Woodward and Hildrew 2002, Yang and Rudolf 2010) 

because size often determines who eats or outcompetes whom (Shine 1991, Sousa 1993, 

Mittelbach and Persson 1998, Aljetlawi et al. 2004, Costa 2009). Interaction strength or 

the relative effect of one species on another through time, affects population dynamics 
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(De Roos et al. 2003, Emmerson and Raffaelli 2004, Brose 2010), which influences 

community structure (Werner and Gilliam 1984, Vucic-Pestic et al. 2010). Hence, 

including a natural size range of species to evaluate changes in the interaction strength 

between predators and prey is necessary to model community dynamics. 

The relative sizes of predator and prey affect whether a predator consumes the 

prey and if a prey has effective predator-avoidance behavior. Predators are often limited 

in the size of prey they can consume which determines their predation window. The 

maximum size of prey a predator can consume is limited by the ability to capture the prey 

and ingest the prey. The minimum size of prey a predator can consume is determined by 

the ability of the predator to detect and capture the prey. Optimal foraging theory predicts 

that predators with a choice of prey size should choose a specific size range of prey 

within their predation window that maximizes capture success and energy uptake 

(Berlow et al. 2008, Petchey et al. 2008, Vucic-Pestic et al. 2010). Behavior also affects 

predator-prey interactions (Lima and Dill 1990, Lima 1998). Similar to the predation 

window, only a certain size range of the prey population reacts to a predator with 

predator-avoidance behavior (Turner and Mittelbach 1990, Peacor and Werner 2000), 

which will be referred to here to as the predator-avoidance window. Predator-avoidance 

behavior is trigger by  the threat  of being consumed by a predator and the predator-

avoidance window is often similar to the predation window (Turner and Mittelbach 1990, 

Crumrine 2010). However, consumption and behavior of prey need to be measured 

simultaneously to determine the size range of prey affected by predation and predator-

avoidance behaviors. 
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Predator-prey interactions, whether behavioral or consumptive, cascade down to 

resources in tri-trophic food chains (predator-prey-resource). The predator indirectly 

affects the resource by consuming prey (DMIE) and causing prey predator-avoidance 

behavior (TMIE). Predator-avoidance behavior can be as important, if not more 

important, than consumption of prey in indirect effects (Peacor and Werner 2001, 

Preisser et al. 2005). Predator-prey interactions that have a minimal effect on prey can be 

magnified in indirect effects and significantly affect the resource (Preisser et al. 2005). 

The effect of predator and prey size on DMIEs and TMIEs is not well studied (Rudolf 

2008b). A range in prey size adds horizontal complexity to food chain dynamics because 

larger size differences between individuals of the same species can lead to an increase in 

negative intraspecific interactions such as cannibalism and interference competition (de 

Roos et al. 2006). Increases in cannibalism and interference competition in the absence of 

predators can counterbalance the indirect effect that predators have on resources (Persson 

1999). 

This study measured the effect of predator and prey size on intra- and 

interspecific interactions and the cascading effect on the resource within a tri-trophic food 

chain (predator-prey-resource; toadfish-mud crab-juvenile oyster). I altered predator size 

and presence, prey size class (3 different sizes and all three sizes together), and measured 

prey and resource survival. Specifically, this study quantified the effect of 1) prey and 

predator size on prey and resource survival (TMIEs and DMIEs) and 2) predator presence 

and size on the intraspecific interactions, TMIEs, and DMIEs when all sizes of prey were 

present. 
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Methods 

Experiment 1  

The study system consisted of a tri-trophic food chain with toadfish (Opsanus tau; 

predator), mud crabs (family Xanthidae; prey) and juvenile oysters (Crassostrea 

virginica; resource). The experimental design had 2 crossed factors, each with 4 levels: 

predator (absent, small, medium, and large) and prey size class (small, medium, large, 

and all three size classes). Predator treatments that contained toadfish had 1 toadfish in 

the predetermined size class (<250, 250-300,>300mm total length). The prey treatments 

contained either 12 small, 7 medium, 5 large or 24 (12 small, 7 medium, and 5 large) 

mud crabs. These densities were the mean number of mud crabs per m
2
 of oyster reef in 

South Carolina within the size range of carapace widths (CW; 22 crabs 10-15mm, 13 

crabs 16-25mm, and 9 crabs >26mm CW for the 3 size classes respectively; McDonald 

1982). Two species of mud crabs (family Xanthidae) were used, Panopeus herbstii and 

Eurypanopeous depressus, which co-occur in oyster reefs (Menendez and Abele 1983, 

Meyer 1994). Predator size and prey size classes (Table 4.1; see Appendix 4.A for 

picture) were chosen for multiple reasons. First, these sizes span the range of these 

species caught on oyster reefs with minimum mud crab size (10mm carapace width) 

restricted by the mud crab’s ability to consume the size of  juvenile oysters used in the 

experiment (Kulp et al. 2011, Toscano and Griffen 2012; NRG pers.obs). Second, our 

large mud crabs should be outside of the predation window of the small toadfish because 

toadfish do not consume prey greater than 1/10
th

 their length (Bisker et al. 1989).  

Finally, the average biomass of individuals (both predator and prey) was approximately 

doubled with each successively larger size class (Table 4.1) to increase the occurrence of 
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size-dependent interactions because this has been hypothesized as a large enough 

difference in weight (2 times) that will allow species to coexist (Schoener 1974, Bowers 

and Brown 1982).  

Experiments were conducted in sixteen outdoor stainless steel tanks (2m long  

1m wide  0.6m deep, with a 1cm layer of sand on the bottom), supplied with unfiltered 

seawater (at a flow rate of ~0.2L/s) from nearby Bogue Sound, at the University of North 

Carolina’s Institute of Marine Sciences (Morehead City, NC, USA). Crabs and fish were 

collected by hand and trap in Bogue and Pamlico Sounds (NC, USA) and held separately 

in flow-through tanks that were supplied with raw seawater. The use of unfiltered 

seawater in experiments allowed recruitment of crab prey items, such as mussels, during 

the trials. This mimicked natural reef conditions in which resources other than oysters are 

available for crabs. Toadfish were fed chunks of frozen fish and crabs were fed oysters (< 

1 cm shell height) ad libitum every 2 days before experiments started.  

Oyster habitat was created in each mesocosm by adding cleaned adult oyster 

shells (37.9L) to the mesocosm and spreading them out to cover a 0.56m
2
 area (0.75 x 

0.75m square). The oyster shells created oyster habitat that was approximately 15cm 

deep. This patch size of oyster habitat is commonly found within natural oyster reefs 

(Eggleston et al. 1998, Macreadie et al. 2011). Juvenile oysters were produced from 

hatchery raised larvae and settled on cleaned adult shell in flow through tanks. Eight 

cleaned adult oyster shells, each with 5 juvenile oysters (see Table 4.1 for sizes; a total of 

40 oysters per treatment) were haphazardly placed within the oyster habitat.  

Treatments were haphazardly assigned to tanks. Mud crabs were placed in the 

oyster habitat in each mesocosm. After crabs acclimated for 10 minutes in the mesocosm, 
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a single adult toadfish of the treatment-appropriate size was added to the predator-present 

treatments. Each trial of the experiment consisted of a single replicate of each of the 16 

treatments, and replication was gained through successive, replicated trials (n = 6). Trials 

were run from July to October in 2010. Trials were ended before 50% of oysters were 

consumed, which was 6-8 days as determined in pilot trials, to minimize a decrease in 

prey feeding rate because of resource depletion (Murdoch 1969). At the end of each trial, 

all mesocosms were drained of seawater, the oyster shells were removed and searched 

thoroughly, and the sand was removed and sieved through 1-mm mesh so that all crabs 

were counted. Individual toadfish and mud crabs were used once and released after each 

trial. 

Small mud crab treatments were the only single size class in which cannibalism 

occurred.  To ensure this was a result of mortality and not a result of failure to recover 

surviving individuals because of their small size, I ran a control experiment. Twelve 

small crabs were added to a tank with shell at 5 pm and recovered at 9 am the next day 

following the procedures previously described. Six replicates were run simultaneously in 

October 2010 and 71 out of 72 crabs were recovered.  Because of the 99% crab recovery, 

it was assumed that all crabs not recovered at the end of trials were eaten. To estimate 

mortality of oysters from causes other than predation, I added 40 oysters (5 per shell) to a 

Vexar bag and placed two bags of those oysters in separate tanks not being used for trials. 

This control was conducted during trials 3-5 (n=6).  Three oysters died out of 240.  

Because of the high survival in these controls, oyster mortality within the experimental 

tanks was attributed to predation.   

Experiment 2  
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Cannibalism occurred in the ‘small’ and ‘all prey’ treatments of Experiment 1 

(Exp 1) (Appendix 4.C), so a second experiment (Exp 2) was run to parse intra- and 

interspecific predation.  Exp 2 was conducted in the same mesocosms following the same 

procedures as Exp 1 with the following changes. The experimental design consisted of 2 

crossed factors: predator (absent, caged, and free), and prey size classes (small and all; 

see Table 1 for sizes). The mean size of toadfish fell within the medium size class of Exp 

1, although the size range was greater (Table 4.1). All treatments had a Vexar mesh bag 

(90cm x 50cm x 10cm high, 0.5cm mesh) in a haphazardly chosen corner of the 

mesocosm, which over-laid 1/4
th

 of the oyster habitat. A toadfish was put in the bag in 

the caged treatment and added directly to the tank in the free treatment. The experiment 

was run from July through August of 2011. Two replicates of the 6 treatments were run 

simultaneously 3 separate times for a total of 6 replicates. Trials continued for 5 days. To 

estimate mortality of oysters from causes other than predation, 40 juvenile oysters (5 

juvenile oysters per shell) were put in Vexar bags and placed in tanks not used for the 

experiment. This was repeated twice during each trail (n=6) and all oysters survived. 

During the second experiment, individual crabs were weighed to estimate the total 

biomass of each mud crab size treatment and the crab biomass eaten during each trial for 

Exp 1 and Exp 2 (Table 4.1). 

Indirect effect and multiple predator calculations 

Assessments of the importance of prey behavior in ecological processes must 

isolate behavioral effects from consumptive effects (Peacor and Werner 2001, Schmitz et 

al. 2004, Okuyama and Bolker 2007). I parsed different indirect effects by counting the 

number of the oysters eaten per day by prey in the absence (M) and presence (m) of a 
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predator (M=initial # of oysters – final # of oysters), the daily per-prey consumption of 

the resource in absence (C) and presence (c) of a predator (C=M/[initial # of crabs-final # 

of crabs/2]), and the number of prey eaten by a predator (p; p=initial # of crabs-final # of 

crabs; Appendix B). The expected resource release (ER) is the amount of resources 

surviving because of prey mortality (c·p) resulting from intra- and interspecific predation. 

The actual resource release (AR) is the difference between resources consumed by prey 

in the absence and presence of a predator (M-m). The behavioral resource release (BR), 

or the amount of resources that are not eaten because prey reduce activity and foraging in 

the presence of a predator, is the difference between the AR and ER (AR-ER; Grabowski 

2004). Thus, if the change in the numbers of resources and prey are known, indirect 

effects can be estimated (Appendix 4.B). All calculations were conducted on individual 

replicates and error was calculated among replicates. 

Additional calculations were made to quantify the number of resources not eaten 

because of interference competition by comparing the number of resources eaten in each 

of the individual size class treatments to the number of resources eaten in the ‘all prey’ 

treatment with no predator. First, I calculated the resources expected to be eaten if there 

was no intraspecific interactions using the multiplicative rule (Soluk and Collins 1988, 

Soluk 1993), which estimates multiple predator effects (the sum of the proportion of 

oysters consumed in each individual size class trial minus the product of the proportion of 

oysters consumed in each individual size class trial). Subtraction of the product of the 

proportion of oysters eaten accounts for the fact that an oyster eaten by one size class 

cannot be eaten by another. This proportion of individuals expected to be eaten was then 

multiplied by 40 (number of oysters in each trial) and divided by the length of the trial 
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(days) to standardize the expected number of oysters consumed per day when all size 

classes were present. The estimated number of resources eaten with all size classes 

present was subtracted from the actual number of oysters consumed per day in ‘all prey’ 

treatments to determine the number of resources released because of intraspecific 

interference. The calculated number of oysters per day released because of interference 

competition is included in figures as BR in the ‘all prey-no predator’ treatment. It was 

used to compare interference competition to both a predator-avoidance behavior (BR) 

and the expected release resulting from cannibalism in ‘all prey’ treatments (ER). 

To estimate the importance of behavior in species interactions and food chain 

dynamics, the relative strength of behavior is compared to consumption, which is the 

traditional measure of interaction strength. The strength of BR relative to ER was 

calculated by dividing the BR by the sum of BR and ER. The contribution of the ER can 

be calculated by subtracting the BR from 1. The overall means of BR and ER were used 

to calculate the ratios because multiple trials had negative BRs, which resulted from more 

oysters being consumed in the presence than in the absence of a predator for those trials. 

The negative number greatly skewed the calculations by reducing the mean even when 

transformations were conducted. As a result, the standard error was calculated by error 

propagation. Errors were propagated using the formulas for addition and division 

respectively; [(δ x)
 2

 + (δ y)
 2

]
 1/2

, R[(δ x/x)
2
 + (δ y/y)

2
]

1/2
.  R is the product of the means, 

x and y are the means, and δ indicates the standard error of the respective means. 

Statistical analysis 

Dependent variables were analyzed in a series of 2-way ANOVA’s with fixed 

crossed factors. Interactions were run initially but were removed if they were not 
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significant. Trial was included in ANOVAs as a random factor, but did not significantly 

alter findings and it was removed from all analyses. Because ANOVAs with balanced 

designs are robust against errors introduced by non-normal distributions (Underwood 

1997), I did not test for normality. Bartlett’s test was used to test heteroscedasticity. If the 

dependent variable had heterogeneous variance it was log-transformed and all dependent 

variables passed Bartlett’s test (p-value > 0.05) after transformation. Tukey’s test was 

used to determine significant pair-wise comparisons when the main effect was 

significant. 

The effect of predator size and prey size class on crab mortality was analyzed in 

two separate ANOVAs with crab biomass consumed as the dependent variable. Biomass 

was used as the dependent variable instead of individuals consumed because number of 

crabs differed for each individual size class, but biomass was similar (Table 4.1). The 

first ANOVA was run with predator (4 levels) and prey (3 levels) as independent factors. 

The mud crab treatment with all size classes was not included in this ANOVA because it 

had 3 times the biomass available for predator consumption and was run in a separate 

ANOVA with predator (4 levels) as the independent factor.   

Total oysters consumed and oysters consumed per crab were analyzed in separate 

ANOVAs with predator (4 levels) and prey size class (4 levels) as crossed fixed factors. 

The ER and BR were each analyzed as dependent factors in 2 separate ANOVAs to keep 

crab biomass constant. The first ANOVA for the ER had prey size class (3 levels) and 

predator (4 levels: absent, small, medium, and large) as independent variables and the 

second had predator (4 levels) as the independent variable. For the BR, the first ANOVA 
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had prey size class (3 levels) and predator (3 levels: small, medium, and large) as 

independent variables and the second had predator (4 levels) as the independent variable. 

In Exp 2, analysis of consumed crab biomass was conducted using two separate 

ANOVAs: one ANOVA for small crabs and a second for all crab size classes. The 

dependent variable was biomass of crabs consumed, and predator (3 levels; absent, 

caged, and free) was the independent variable. Oysters consumed and oysters consumed 

per crab from Exp 2 were analyzed as dependent factors in two separate 2-way ANOVAs 

with predator (3 levels) and prey size (2 levels) as independent factors. The dependent 

variables from Exp 2 had homogeneous variances and were not transformed. 

Results 

Experiment 1 

No crabs were consumed in the medium or large crab treatments without a 

predator present (Appendix 4.C). On average 2 crabs were consumed in the ‘no predator-

small crab’ treatment. Within the ‘all prey’ treatment, large crabs were only consumed by 

small and medium toadfish, while small and medium crabs were consumed by all 

toadfish sizes and in the absence of toadfish (Appendix 4.C). The biomass of crabs 

consumed in individual crab size class treatments was higher for the small crab than the 

large crab treatment (F2,66=3.87, p=0.026; Fig. 4.1A) and greater for the medium toadfish 

treatment than when the toadfish was absent (F2,66=3.80, p=0.014; Fig. 4.1B).  The 

biomass of crabs consumed was marginally significant  among toadfish treatments when 

all crab size classes were present (F3,20=2.75, p=0.069; Fig. 4.1C).  Crab biomass 

consumed was higher in the small toadfish treatment than the large toadfish treatment 

(Tukey’s test, p=0.080). When a predator was present, differences in crab biomass 
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consumed among treatments did not cascade to alter resource survival. The total number 

of oysters consumed was not affected by mud crab treatment (F3,89=1.51, p=0.219; Fig. 

4.2A), but was higher when a toadfish was absent compared to when a toadfish of any 

size was present (F3,89=6.27, p<0.001; Fig. 4.2B). The number of oysters consumed per 

crab was higher in medium and large crab treatments than in the small and all prey 

treatments (F3,89=23.37, p<0.001; Fig. 4.2C). In addition, more oysters were consumed 

per crab in ‘toadfish-absent’ treatments then when a toadfish of any size was present 

(F3,89=5.97, p<0.001; Fig. 4.2D). 

The expected resource release (ER) or oysters not consumed because of crab 

mortality was not affected by crab size class (F2,89=1.01, p=0.394; Fig. 4.3A) or predator 

treatment (F3,89=1.19, p=0.310; Fig. 4.3B) when crab treatments had a single size class. 

When all crab size classes were present, the expected release of oysters was not affected 

by predator treatment (F3,20=1.02, p=0.40; Fig. 4.3C). The behavioral resource release 

(BR) or the number of oysters not consumed because of both anti-predator and 

intraspecific behavior (interference competition) when individual prey size classes were 

present was not affected by prey size class (F2,49=0.34, p=0.996; Fig. 4.3D) or predator 

treatment  (F2,49=0.63, p=0.537; Fig. 4.3E). Furthermore, the BR was not affected by 

predator treatment when all mud crab size classes were present (F3,20=0.28, p=0.839; Fig. 

4.3F). A comparison of BR strength relative to the overall resource release indicated that 

the BR was stronger than the ER (Fig. 4.3G-I) and behavior caused an average of 70-96% 

of oyster survival resulting from predator-prey and prey-prey interactions. 

Past studies on DMIEs and TMIEs primarily have very low or no prey mortality 

when the predator is absent; therefore ER and BR are equal to DMIE and TMIE, 
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respectively. Although this was the case when only one crab size class was present in this 

study, there were similar levels of crab mortality with and without a predator when all 

crab size classes were present. In Exp 2, cannibalism was minimal in the presence of a 

predator, and because cannibalism and interspecific predation were not additive, I did not 

perform calculations to partition intra- and interspecific predation (i.e. ER with a predator 

minus ER without a predator). All dependent variables from Exp 1 had homogeneous 

variance after log-transformation and there were no significant interactions.   

Experiment 2 

When only small crabs were present in the mesocosm, the biomass of crabs 

consumed was not different among toadfish treatments (F2,15=1.63, p=0.228; Fig. 4.4A). 

However, when all size classes of crab were present an average of 0 crabs were eaten in 

caged toadfish treatments, 2 crabs were eaten when the toadfish was absent, and 3 crabs 

were consumed when a toadfish was present and able to consume mud crabs (Appendix 

4.D). Small crabs entered mesocosms via the unfiltered seawater during Exp 2 because 

pipes in the water delivery system were probably fouled with organisms. This resulted in 

negative crabs consumed and I was unable to determine which crabs entered through the 

water system. Because trials were haphazardly assigned to mesocosms and crabs 

dropping into tanks from the inflow pipes could not have been biased by the treatment in 

the tank, crabs entering the tanks during the trials was random and should not have affect 

the results. Therefore, all crabs recovered at the end of trials were included in the 

analysis. In ‘all prey’ treatments, there was a marginally significant difference in crab 

biomass consumed among predator treatments (F2,15=3.34, p=0.063; Fig. 4.4B), with 
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greater biomass consumed in the free than caged predator treatments (Tukey’s test, 

p=0.05).  

The number of oysters consumed was affected by predator (F2,30=8.15, p=0.001) 

and mud crab treatments (F1,30=101.75, p<0.001), and the interaction was significant 

(F2,30=7.96, p=0.002; Fig. 4.5A). Fewer oysters were consumed in the small crab 

treatments than the ‘all prey’ treatments, regardless of predator treatment.  When all mud 

crab sizes were present, fewer oysters were consumed in the free predator treatments than 

when the toadfish was absent. Oyster consumption per crab was also affected by both 

predator (F2,30=6.52, p=0.004) and mud crab treatments (F1,30=52.50, p<0.001), and the 

interaction was significant (F2,30=6.05, p=0.006; Fig. 4.5B).  

 

Discussion 

Predator presence indirectly increased resource survival through prey mortality 

and predator-avoidance behavior. Neither predator size nor prey size class significantly 

affected resource survival despite significant effects of prey and predator size on the 

amount of crab biomass consumed. Stability in resource survival in this food chain across 

treatments may have resulted from multiple factors: 1) consumption of resources was 

constant across individual prey size classes because the treatments had similar prey 

biomass; 2) intraspecific competition and cannibalism among prey increased when a 

range of prey sizes was present; and 3) behavioral effects were stronger than intra- and 

inter-specific predation. In addition, I found that intraspecific interference competition 

was just as important as predator-avoidance behavior when a broader range of prey size 
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was present. These experimental findings unravel some of the mechanisms behind the 

effect of size structure and intra- and interspecific behavior in the stability of populations. 

Although there was no significant effect of predator or prey size on resource 

survival, there were significant effects of size on both prey-resource and predator-prey 

interactions. Crab size was positively correlated with per-capita crab consumption of 

oysters, which is common among metazoa because body size and metabolic demand are 

positively correlated (Brown et al. 2004). But, abundance and size are inversely related 

and individual size classes of mud crabs had similar crab biomasses and each size class 

consumed an equal amount of resources. Hence, the effect of prey size on per individual 

consumption of resource was negated by the relationship between size and abundance. 

Similar to the findings on prey size, there was no effect of predator size on crab 

biomass consumed when only 1 size class of prey was available. A small predator 

consumed more prey biomass than a large predator when all sizes of prey were present. 

This could have resulted from larger toadfish being more sedentary than smaller ones 

leading to a lower energetic demand. When all crab sizes were available to the predator, 

more small crabs than large crabs were consumed by all predator sizes. In half of all 

‘small predator-all prey’ treatments, a large crab was consumed by a small toadfish. 

Thus, and contrary to past studies, toadfish consume mud crabs that are greater than 

1/10
th

 their size (Bisker et al. 1989). Large toadfish did not consume large mud crabs in 

‘all prey’ treatments and preferred, consistently, small prey, indicating the predation 

window for larger predators was narrower than for small predators. Neither the wider 

predation window nor the greater consumption of prey biomass by small predators 

compared to large predators cascaded to affect resource survival. But, predator-avoidance 
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behavior did and the predator-avoidance window was similar for all predator-prey size 

combinations (BR was similar for all treatments). Thus, if measured by the cascading 

effect on the resource, the predator-avoidance window has a greater affect than the 

predation window on predator-prey interactions. 

Recreating natural size ranges and abundances of crabs increased cannibalism. 

Cannibalism is ubiquitous in nature (Fox 1975, Polis 1981) and  increases with species 

density and size range (Rudolf 2008a). Many experimental studies use only a small size 

range compared to what exists in nature (Miller and Rudolf 2011) and probably 

underestimate the importance of intraspecific interactions in food web dynamics (Rudolf 

2007b, 2008b). No cannibalism occurred in treatments with medium or large mud crabs 

alone. Cannibalism did occur in small crab treatments, which may have resulted from 

relative thickness of the exoskeleton of small sized crabs which leaves them vulnerable to 

similar sized crabs. When all crab size classes were together cannibalism also occurred. 

In the absence of a predator, cannibals consumed as much crab biomass as when a 

predator was present. The inclusion of a caged predator reduced cannibalism by an 

average of 92%, which indicates that a predator consumes the majority of crabs when a 

predator is present and drastically reduces cannibalism. Although overall biomass 

consumed did not change in the absence or presence of a predator, the mortality shifted 

from smaller to larger crabs in the presence of a predator. Similar findings have been 

found in lakes where removal of predators resulted in increased abundance of very large 

prey and decreased abundance of small prey because of cannibalism (Wahlstrom et al. 

2000). Presence of predators may not have a net effect on overall prey biomass, but loss 

of the predator can alter prey size frequency which may cascade to lower trophic levels. 
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A growing body of evidence indicates that predators indirectly affect resources by 

consuming prey (DMIE) and causing predator-avoidance behavior (TMIE), and that 

predator-avoidance behavior is equal to or greater than direct consumption in tri-trophic 

food chains (Peacor and Werner 2000, Preisser et al. 2005). Many of these studies use 

only a narrow size range in each trophic level. When Law and Rosenheim (2011) 

included 2 size classes of prey in a terrestrial food chain, they found that predator 

presence did not have an effect on prey density because cannibalism was as important as 

interspecific predation on prey abundance. I also found that cannibalism was similar to 

interspecific predation when a range of prey sizes were present and both intra-and 

interspecific predation resulted in similar increases in resource survival. In addition, this 

study measured the effect of behavior in food chain dynamics and found that intraspecific 

behavior was equal to predator-avoidance behavior when a nature range of prey size was 

present. Including a natural range of prey size was not only important for consumptive 

effects, but also for behavioral effects, which were on average 96% of the intraspecific 

interaction. Similar to TMIEs and DMIEs, behavior was also more important than 

consumption in intraspecific interactions. 

The indirect effects of prey mortality and reduced prey activity have been 

previously investigated in a tri-trophic food chain with toadfish, mud crabs, and juvenile 

bivalves (Grabowski 2004). Grabowski (2004) used medium-sized crabs and small 

toadfish as compared to this study and found minimal mortality of crabs when a predator 

was absent. Although prey consumption by a predator differed between experiments the 

TMIEs were similarly important in indirect effects (mean 95% vs. 80% in Exp 1). 

Although the additive design in my study could not determine whether the intraspecific 
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interactions in all size class treatments were a result of size class or density (Griffen 

2006), relative importance of size vs. density in intraspecific interactions of mud crabs 

can be drawn by comparing past experiments that altered crab density. Grabowski and 

Powers (2004) used 3 different densities of large mud crabs, as compared to this study, 

and measured the change in consumption of juvenile clams. They found that clam 

consumption increased slightly from low to medium crab densities but resource mortality 

did not change among the medium and high crab density. Crab mortality was 

approximately 2.4%, but they did not report if mortality changed with crab density. The 

density of large mud crabs used by Grabowski and Powers was up to 5 times the average 

natural densities of crabs this size (McDonald 1982) and it is important to keep in mind 

that an increase in density in nature will usually include all sizes, skewed towards small 

sizes. In addition, Toscano and Griffen (2012) used a substitutional design and found that 

3 crab sizes in isolation consumed a similar amount of bivalves as when together. These 

findings, in combination with our study, indicate that interference competition is 

primarily density dependent, while cannibalism is primarily driven by size.   

Understanding the effect of size in predator-prey interactions could increase our 

understanding of how selective fishing can decrease stability in the target species 

population and indirectly impact marine food webs. Garcia et al. (2012) found that 

fisheries selecting for a specific species or size within a species caused greater population 

instability than harvesting fish regardless of species or size. They conclude that switching 

from selective to nonselective fishing would result in more sustainable fisheries. The 

present study concurs and maintaining a wide range of sizes could result in food chain 

stability because of the importance of intraspecific interactions. 
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My study corroborates the importance of intraspecific interactions in food chains 

from diverse ecosystems (Chase et al. 2002, Rudolf 2006, de Roos et al. 2006, Andersson 

et al. 2007, Law and Rosenheim 2011) and reiterates the long-standing notion that both 

competition and predation shape communities. Recent studies have highlighted the 

importance of predator-avoidance behavior in trophic cascades (Peacor and Werner 2001, 

Preisser et al. 2005, Peckarsky et al. 2008), but the inclusion of intraspecific behavior is 

necessary to build food web models that replicate natural systems. The disparity between 

population stability found in natural food webs and the instability in experimental studies 

could result from the increased horizontal complexity that natural size ranges of species 

add to food webs (Chase et al. 2002, Woodward et al. 2005, Rall et al. 2011). These 

findings indicate that even relatively simple food webs can be stable to changes in 

predator abundance but trophic interactions could be sensitive to human alteration of 

population size frequencies through size selective harvesting. 
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UNEXPECTED CONSEQUENCE OF ARTIFICIAL STRUCTRUES: THE POSITIVE 

EFFECT OF NON-NATIVE SPECIES ON NITRGEN REMOVAL 

Introduction 

 Human activities are directly and indirectly altering coastal ecosystems (Vitousek 

et al. 1997, Lotze et al. 2006, Halpern et al. 2008). Major changes resulting from human 

activities include global warming and associated sea-level rise (FitzGerald et al. 2008), 

coastal development (Vitousek et al. 1997), spread of invasive species (Mack et al. 2000, 

Schaffelke et al. 2006), and eutrophication resulting from increased inputs of nitrogen 

(Nixon 1995). Interactions among human impacts have the potential to mitigate or 

exacerbate environmental change. Because human impacts seldom occur in isolation, the 

ability to efficiently manage the impacts depends on a mechanistic understanding of their 

causes and interactions (Cloern 2001, Schaffelke et al. 2006, Didham et al. 2007). 

 Global climate change will result in both inundation of low-lying coastal land 

from rising sea level (IPCC 2007) and increased erosion from more intense and frequent 

storms (FitzGerald et al. 2008). Land owners and communities will have to make 

important decisions on whether to artificially harden shorelines or lose low-lying 

property (Kittinger and Ayers 2010, Chapman and Underwood 2011). However, 

shoreline-hardening structures such as bulkheads, revetments, and jetties have negative 

impacts on the surrounding ecosystem (Titus et al. 1991), including loss of natural habitat 

and reductions in associated fishes (Peterson et al. 2000, Seitz et al. 2006, Bilkovic and 
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Roggero 2008). In addition, artificial hard structures that are installed in environments 

dominated by soft substrate contain a higher percentage of non-native species than 

surrounding soft substrates (Wasson et al. 2005), and when both natural and artificial 

hard substrates are present, artificial substrates can have a higher percent cover of non-

native species than natural hard substrates (Tyrrell and Byers 2007).  

Codium fragile subsp. tomentosoides (C. fragile), a siphonaceous green alga 

native to Asia, dominates artificial structures in soft substrate-dominated environments 

along the Italian coast (Bulleri and Airoldi 2005, Vaselli et al. 2008). C. fragile is 

considered one of the most invasive macroalgae in the world because of its trans- and 

inter-oceanic introductions (Trowbridge 1998), its high rate of dispersal and successful 

establishment, and its ecological capacity to displace native species (Nyberg and 

Wallentinus 2005). It has outcompeted native kelps for space on natural hard shoreline in 

the Northwest Atlantic (Harris and Jones 2005, Scheibling and Gagnon 2006) and 

coexists with native Codium spp. in the British Isles (Trowbridge 2001, Trowbridge and 

Farnham 2004), New Zealand, and eastern Australian shores (Trowbridge 1995, 1998, 

Schaffelke and Deane 2005). In North Carolina, where Codium decorticatum is native, C. 

fragile was first documented in 1979  attached to jetties, seawalls, and shells and may 

compete with the native species for the relatively-scarce hard substrate in the lower 

intertidal and shallow subtidal within North Carolina estuaries and sounds (Searles et al. 

1984). Given the difficulty in distinguishing species of Codium and the consequent 

uncertainty in individual species distributions in North Carolina, we use “Codium” from 

this point forward to refer to both species within the Codium genus.  
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Changes in the species composition and abundance of Codium could affect the 

amount and type of biologically available nitrogen in coastal ecosystems (Rosenberg and 

Paerl 1981). Increased nitrogen concentrations can increase eutrophication, which can 

result in hypoxia, fish kills, and harmful algal blooms (Nixon 1995). Codium is 

associated with nitrogen-fixing bacteria that convert N2 gas to ammonium, a biologically 

available form of nitrogen (Head and Carpenter 1975). Rates of nitrogen fixation vary by 

Codium species (Dromgoole et al. 1978). In New Zealand, C. fragile has higher rates of 

nitrogen fixation than native C. adhaerene (Dromgoole et al. 1978). In North Carolina, 

nitrogen fixation was not detected in C. isthmocladum, a native deepwater species, while 

C. decorticatum fixed 1.2µg of N2 fixed per g of dry wt
 
per h (Rosenberg and Paerl 

1981). Two additional studies in the northwest Atlantic found nitrogen fixation rates in C. 

fragile averaging from 0.03-3.2 (Gerard et al. 1990) and 0.6-1.0 µg of N2 fixed per g of 

dry wt
 
per h (Head and Carpenter 1975). A small portion of the newly fixed nitrogen is 

used for growth (Gerard et al. 1990), while the remainder enters the surrounding water. 

Thus, Codium can alter local nitrogen pools; however, the magnitude would be dependent 

on the abundance of the different Codium species (Rosenberg and Paerl 1981). The 

identification of the nitrogen-fixing bacteria and their mode of association (epi- or 

endophytic) with Codium are inconclusive. Therefore, “Codium” will refer not only refer 

to the two shallow Codium species in North Carolina, but also to the macroalgae and 

associated organisms unless otherwise stated.  

The opposing process to nitrogen fixation is denitrification, which converts nitrate 

to N2 gas thereby removing it from the pool of available nitrogen. These two processes 

are the major factors determining whether nitrogen is limiting or not in coastal 
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ecosystems (Howarth et al. 1988). Denitrification has also been associated with 

macrophytes in both marine and freshwater ecosystems (Eriksson and Weisner 1999, 

Bastviken et al. 2003, Tall et al. 2011) and it is possible that both nitrogen fixation and 

denitrification could be associated with Codium. However, our understanding of how 

macroalgae mediate denitrification is limited (McGlathery et al. 2007, Goecke et al. 

2010) and the cumulative effects of Codium on coastal nitrogen dynamics are unknown.  

If denitrification rates associated with Codium are greater than rates of nitrogen fixation, 

Codium could provide a valuable ecosystem service of removing usable nitrogen 

(Costanza et al. 1997).  

To assess the abundance and distribution of native and non-native Codium and 

possible effects on nitrogen dynamics in coastal North Carolina, we sampled natural 

(oyster reefs) and artificial (bulkheads, revetments, jetties) shallow-water hard substrates 

to estimate percent cover, species composition, and biomass of Codium in selected North 

Carolina estuaries once each season from 2009-2011. We also employed continuous-flow 

microcosms to examine the effects of Codium on nitrogen transformations during three 

seasons (spring, summer, and fall): very little Codium was present during winter. Finally, 

we calculated the net change in N2 flux attributable to Codium.  

  

Methods 

Codium sampling 

 We sampled natural hard substrates (oyster reef and oyster shell) and shoreline 

stabilization structures around Wilmington and Morehead City, North Carolina to 

determine the abundance and distribution of non-native C. fragile and native C. 
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decorticatum (Fig 5.1). Mean tidal range in Wilmington was 116.1cm and 94.8cm  in 

Morehead City (NOAA stations 8658163 in Wrightsville Beach, NC and 8656483 in 

Beaufort, NC, respectively). Shoreline stabilization structures sampled included: 

bulkheads, which were vertical walls of different materials (plastic and treated wood) 

built along the shoreline; revetments, which were granite boulders piled on a steep slope 

(20-40 º from the vertical) oriented along the shoreline; and jetties, composed of piled 

granite boulders (20-40º from the vertical) running perpendicular to the shoreline. 

 Morehead City-area sampling sites included  Radio Island (a jetty; 0.3 to 10m 

below mean sea level (MSL); Fig. 5.1A); Taylor’s Creek (two separate revetments: 1m 

above to 3m below MSL; Fig. 5.1B); Rachel Carson Reserve (part of NOAA’s National 

Estuarine Research Reserve; four intertidal oyster reefs; 0.8 m above and below MSL; 

Fig. 5.1C), and Pine Knoll Shores (a revetment, a treated wood bulkhead and a plastic 

bulkhead; 2 m above to 0.6 m below MSL; Fig. 5.1D). Sampling near Wilmington 

encompassed the Masonboro Inlet jetty (5m above to 2m below MSL; Fig. 5.1E), an 

intertidal oyster reef, and a tidal creek with intertidal oyster shell (both 0.5 m above and 

below MSL; Fig. 5.1E). Sites were chosen because they had continuous hard substrate 

(>10m long) within the tidal range in which Codium occurs (0.25-1 m below MSL; 

Thomsen et al. 2007). Sites around Morehead City were sampled once each season 

(season, sampling months, water temperature range in ºC: winter, Feb.-Mar., 6.8-12.3; 

spring, April-May, 17.2-24.4; summer, June-July, 27.3-31.2;fall, Nov.-Dec., 9.3-20.5).  

Sites near Wilmington were sampled in summer and winter (same date and similar 

temperature range as above). Sampling began in May 2009 and ended in May 2011. 

Mean water temperature was calculated from weekly measurements taken in Bogue 
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Sound at UNC’s Institute of Marine Sciences during sampling dates from surface water 

using a Sontec YSI.  

 Sampling consisted of estimating the percent cover of visible taxa (not including 

taxa under algal canapy) and bare substrate within replicate 25x25cm quadrats (0.0625 

m
2
). Depending on the length and depth of the hard structure, 10 to 15 quadrats were 

taken at one or two tidal heights (approximately 0.5 and 0.75 below MSL) at each site by 

aligning the bottom of the quadrat with the appropriate tidal height. Elevation of the top 

of fixed markers (50 cm PVC pipe driven into the sediment) at each site was measured 

using a Trimble GPS. Sampling depth relative to mean sea level was estimated by 

comparing the nearest NOAA tide height station measurement at low tide with the 

water’s elevation on the fixed marker at the concurrent low tide. To determine the 

biomass of Codium per area, we divided sites that were 20m or more in length into 

percent cover and biomass sampling sections so that Codium removal for biomass 

measurements did not affect percent cover of Codium for subsequent samplings. To 

measure the biomass per area, the percent cover of Codium within the quadrat was 

recorded and all Codium was harvested within ten- 0.0625 m
2
 quadrats. The wet weight 

of Codium was measured after spinning it in a salad spinner 20 times (Power et al. 2008).  

Identification of Codium species was made by removing a 5 mm piece of thallus 

tip from each plant within percent cover and biomass quadrats. A cross section of each 

piece was then chopped to fine pieces using a razor blade, mounted on a slide, and 

observed under a Wild M20 dissecting microscope (100 x power). C. fragile was 

distinguished from C. decorticatum by presence of apiculate utricle tips (Searles and 

Schneider 1991, J. Fegley pers. demonstration).   
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 The effect of artificial and natural substrates on community assemblage of sessile 

organisms was tested with a PERMANOVA (PRIMER, Clarke and Gorley 2006) with 

substrate and season as crossed factors. Dependent variables were the vectors of percent 

cover of individual taxa of each quadrat. Region (Morehead City and Wilmington) was 

not included in any analysis because Wilmington sites were only sampled in winter and 

summer.  All analyses were rerun excluding Wilmington samples to determine if unequal 

sample sizes altered findings. Excluding Wilmington samples did not change significant 

results and all subsequent analyses include samples from Wilmington sites.  

 The factors affecting percent cover of Codium were analyzed using a generalized 

linear model (GLM) with binomial error and a logit canonical link, which fit the strictly 

bounded data set containing a majority of zeros (residual deviance < degrees of freedom; 

Crawley 2007). The initial model included 2 fixed factors: season (4 levels), and 

substrate type (2 levels: natural and artificial). Depth (0.50 and 0.75 m below MSL) was 

not included in the model because multiple sampling sites did not exist at both elevations. 

Because we could not accurately identify the difference between C. fragile and C. 

decorticatum in the field, the analysis of community assemblage of sessile organisms and 

percent cover were conducted with Codium as a genus and not as individual species. 

After determining the species of Codium in the lab, the number of C. fragile and C. 

decorticatum individuals were analyzed using the same model as percent cover, but the 

percent of each species at each sampling was used as the response variable (Crawley 

2007). The model included 1fixed factor: substrate type (2 levels; natural and artificial). 

Season was not included because Codium was absent on natural substrate in fall and 

winter. 
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Codium nitrogen dynamics 

 The effects of C. fragile and C. decorticatum on nitrogen dynamics were 

measured in continuous flow microcosms (40-cm high x 7.6-cm diameter, 800ml water 

volume) using methods from Piehler and Smyth (2011). Three individuals of each species 

were collected from Bogue Sound. Within 2 hours of harvesting, a 15 g section of each 

individual was added to a microcosm. We employed a total of 7 microcosms with each 

species replicated three times and including a microcosm with water only to account for 

changes in nitrogen composition not attributable to the Codium. The 7 microcosms were 

run simultaneously. 

Unfiltered water from Bogue Sound, which was aerated with an air stone, was 

pumped at 2ml per min into the top of the microcosm and flowed out of a tube positioned 

5 cm above the bottom of the microcosm. This flow rate was determined to be the 

maximum flow rate achievable while still preventing washout of changes in nitrogen gas 

concentration (Miller-Way and Twilley 1996, MFP and ARS unpublished data). 

Microcosms were maintained in a temperature-controlled room (Baily, Inc.), set to match 

the water temperature of Bogue Sound at the time of the experiment. Microcosms were 

run for an acclimation period of approximately 18 hours prior to initial sampling to 

decrease oxygen concentration in the water that could interfere with measurements of 

denitrification (Eyre et al. 2002). To mimic natural light, grow lamps (50 µeinstiens) 

were cycled off/on every 12 hours starting after the 18-hour acclimation period. This light 

intensity is approximately equal to natural light at 1.8m depth in Bogue Sound 

(S.Thompson unpub. data). The light cycle was held constant throughout all seasons to 

maintain a consistent measurement schedule. After 18 hours, samples from an inflow 
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line, which bypassed the microcosms and flowed directly into 5ml sample vials, and the 

outflow line of each microcosm were taken at 0 (dark), 6 (dark), 18 (light) and 24 (light) 

hours. The samples were analyzed for dissolved gasses: N2, Ar, and O2 (Kana et al. 1994) 

by a Balzers Prisma QME 200 quadropole mass spectrometer (MIMS; Pfeiffer Vacuum, 

Nashua, NH, USA). Concentrations of dissolved gasses were determined as described in 

Ensign et al. (2008). Additionally, 50ml samples of water from the inflow and outflow 

line of each microcosm were collected for nutrient analysis at 6 (dark) and 24 (light) 

hours. Water was filtered through Whatman GF/F filters (25mm diameter, 0.7µm 

nominal pore size) and the filter was frozen until analysis. Filtrate was analyzed with a 

Lachat Quick-Chem 8000 (Lachat Instruments, Milwaukee, WI, USA) automated ion 

analyzer for nitrate + nitrite (collectively nitrate), ammonium and total dissolved 

nitrogen. Detection limits were 0.6μg/l for NOx
-
, 2.55μg/l for NH4

+
, and 35.4μg/l for total 

dissolved nitrogen. Dissolved inorganic nitrogen (DIN) was calculated as the sum of 

nitrate and ammonium. Dissolved organic nitrogen (DON) was calculated as the 

difference between total dissolved nitrogen and DIN. Microcosm experiments were 

conducted three times: summer and fall of 2010 and spring 2011 at 26ºC, 17ºC, and 22ºC, 

respectively. Experiments were not conducted in winter because of the low abundance of 

Codium and because denitrification rates are negligible in North Carolina during winter 

months (Piehler and Smyth 2011).  

Water blank concentrations were subtracted from the microcosm-specific 

concentrations to exclude changes resulting from water column processes. Rate 

calculations were based on the assumption that concentration profiles of dissolved 

nutrients and gasses remained constant over time (Miller-Way and Twilley 1996). The 
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rates of change in nutrient and dissolved gases were calculated using the equation J=(Cout 

- Cin) x F/M, where Cout and Cin are the outflow and inflow concentrations (µg), 

respectively, F is the peristaltic pump flow rate (2 ml hr
-1

), M is the wet mass of Codium 

(15g), and J is the change in concentrations (µgC gCodium
-1 

hr
-1

). This method measures 

net fluxes (production — consumption) such that positive flux of nitrogen-gas (N2) 

indicates denitrification in excess of nitrogen fixation. O2 was calculated as biological 

oxygen demand (BOD) and positive numbers indicate O2 uptake in the microcosm. 

Individual measurements from each microcosm over time were averaged separately for 

both light and dark periods to yield two microcosm-specific values. Denitrification rates 

were analyzed using a mixed-effects ANOVA with season, species, and light/dark as 

fixed factors and microcosm number as a random factor. Bartlett’s test was used to check 

for homogeneity of variance for all ANOVA’s and passed unless otherwise stated. 

Nitrogen fixation  

The microcosm experiments measured the net flux of N2 and nitrogen fixation 

associated with C. fragile and C. decorticatum was measured using an acetylene 

reduction assay modified for macroalgae (Head and Carpenter 1975). Codium (5g wet 

weight) was added to 160ml serum vials with 100ml of unfiltered seawater form Bogue 

Sound. Each species was replicated 4 times in both clear (light) and opaque (dark) bottles 

for a total of 16 bottles. Acetylene was added to each bottle (15% acetylene by volume) 

and the bottles were placed in flowing seawater under full sunlight for 4 hours. After 4 

hours, 5ml of gas was removed with a syringe and transferred to 3ml serum vials. 

Ethylene concentration was measured with a Shidmadzu GC-9A gas chromatograph and 

nitrogen fixation was determined following Stewart et al. (1967) and Hardy et al. (1968). 
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A 2-way fixed-factor ANOVA was conducted to determine the effects of Codium species 

and light on nitrogen fixation. A constant (2) was added to denitrification rate prior to 

running analysis so that all rates were greater than 1, allowing square root transformation. 

After transformation, the variance remained slightly heterogeneous (Bartlett’s Test, 

p=0.035), but balanced parametric tests are robust against slight deviations from 

homoscedasticity (Underwood 1997).  Nitrogen fixation assays were conducted in May 

of 2010 in 23 º C water and were not repeated because of the observed uniformly low 

rates of fixation compared to denitrification. 

Additional Denitrification Experiments 

Additional experiments were conducted to test the possibility that our results 

derived from artifacts in the continuous flow microcosms. The first experiment was 

designed to determine if cutting the Codium, to standardize weight, affected the 

concentration of dissolved nutrients in the water and thereby affected denitrification rates. 

Fifteen g of freshly cut C. fragile and C. decorticatum (n=3 for each species) were added 

to separate 1000 ml bottles with 800 ml of unfiltered seawater (23 º C) from Bogue 

Sound. Water samples (50ml) were collected from each bottle immediately after and 24 

hr following the addition of Codium for nutrient analysis. Experiments were conducted in 

the dark to mimic the initial acclimation period in the continuous flow microcosm 

experiments. An additional sample was taken from the water before the addition of 

Codium to determine ambient nutrient concentrations. Concentrations of dissolved 

nutrients were determined following the methods described above.  

The second experiment tested if the minimal mixing within the microcosms, 

because of the low supply rate of water (2ml per min), was artificially inflating 
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denitrification by increasing micro-anoxic regions (Eriksson 2001).  Micro-anoxic 

regions are small regions of no oxygen which are necessary for denitrification to occur 

and could be increased artificially in the low mixing environment of the microcosm. We 

used methods  identical to the continuous flow microcosms previously described except 

that microcosms contained stir bars spinning at three different rates: no mixing had a 

stationary, cylindrical stir bar (30 mm length x 8 mm diameter); low mixing had a stir bar 

spinning on the bottom of the microcosm at 17 revolutions per minute (same as original 

experiment); and high mixing had a stir bar spinning at 78 revolutions per minute. Each 

mixing intensity treatment was replicated 3 times with 15 g of C. fragile in each 

microcosm. The experiment was carried out for a total of 18 hr following an 18-hr 

acclimation period and only in the dark. The experiment was conducted once in the 

summer of 2011 with unfiltered water from Bogue Sound (27ºC). Differences in 

denitrification rates were analyzed with a one-way ANOVA with mixing intensity as the 

independent variable following the analysis described for the continuous flow 

microcosms. 

Denitrification extrapolation 

 Our results from sampling Codium and the microcosm experiments were used to 

estimate the amount of nitrogen removed per m
2
 of artificial structure with the measured 

biomass of C. fragile. It was assumed that only C. fragile colonized the artificial 

structures because greater than 99% of Codium found on artificial substrata was C. 

fragile. The biomass (mean ± SE) of C. fragile was calculated for each quadrat sampled 

on artificial structures from separate linear regressions of percent cover and biomass for 

each season.  Linear regression was used, instead of measured biomass, because biomass 
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was not sampled at all sites. Biomass (mean ± SE) was calculated from percent cover 

quadrats for each season and divided by the area of the quadrat to calculate biomass per 

m
2
. Measured rates of denitrification (N2 g wet weight

-1
 hr

-1
) were multiplied by biomass 

per m
2
 (g wet weight per m

2
) in order to obtain a denitrification rate per m

2 
of artificial 

structure (N2 m
-2

 hr
-1

) during each season. Error was propagated using the formula; R · 

[(δ x/x)
2
 + (δ y/y)

2
]

1/2
. Where R is the product of the means, x and y are the means being 

multiplied, and δ indicates the standard error of the respective means. The time 

submerged was calculated from the number of hours the tide was higher than 0.4m below 

MSL, which is the upper bound of Codium distribution and is a conservative calculation 

because denitrification only occurs when Codium is submerged. Hours submerged during 

day and night were calculated by multiplying the total hours that Codium was submerged 

for each season by the mean percent of day and night for each respective season. The 

hours submerged during day and night for each season was multiplied by the light/dark 

denitrification rates to calculate diurnal denitrification per season. We assumed that low 

and high tides occurred equally during the day and night during each season. The total 

nitrogen removed per m
2
 for each season was summed to calculate the amount removed 

per m
2 

per year.  

Results 

Surveys  

 C. decorticatum and C. fragile both occurred from approximately 0.4 to 1.0m 

below MSL. Within this elevation Codium was a dominant macroalga on artificial 

substrates but not on natural substrate (Fig. 5.2). Ectocarpus sp. was, generally, the 

second most abundant taxon and covered approximately 6% of the surface on both 
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artificial and natural substrate. Sargassum sp. was, on average, more abundant on 

artificial (6 percent cover) than natural substrate (0.5 percent cover).  Other genera 

covering greater than 1% of the surface included Bryopsis sp., Aurosiphonia arcta, 

Hypnea cornata, and Dictyota dichotoma. Overall, 36 taxa were identified during 

sampling, 28 on artificial substrates and 24 on natural substrates. Natural and artificial 

substrates had significantly different community compositions (PERMANOVA, sample 

statistic=0.188, p=0.001, untransformed data), but the dispersion was also significantly 

different for untransformed data. Log transformation did not improve dispersion and 

untransformed data was used for the analysis. Dispersion is analogous to an ANOVA 

having heterogeneous variance. Although we cannot make definitive conclusions about 

the significance of observed differences in community assemblages on artificial and 

natural substrates, the artificial substrates had greater variability in composition 

(PERMDISP; f=166.5, p=0.001). Substrate type and season significantly affected the 

percent cover of Codium (Appendix 5.A). The interactions were not significant, and 

therefore removed from the model (Crawley 2007). A 2-season model (fall/winter and 

spring/summer) was not significantly different from the model with 4 seasons so the 2-

season model was used because it had fewer levels (Crawley 2007). Substrate and season 

were significant in the final model. Codium on artificial substrates was dominated by 

non-native C. fragile (771 of 779 samples; Fig. 5.3), while natural substrates were 

dominated by C. decorticatum (63 of 73 samples). There was a significant difference in 

the abundance of C. fragile and C. decorticatum between natural and artificial substrates 

(t-value=2.696,  df=38, p=0.007) 

Nitrogen experiments  
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 Denitrification rates were different between species, but there was a significant 

interaction between species and season (Appendix 5.B, Fig. 5.4). The different rates 

between species resulted from the high denitrification rates in C. fragile compared to C. 

decorticatum in summer, which also caused the significant interaction between species 

and season. Within microcosms, light and the interaction between season, light, and 

species were significant (Appendix 5.B, Fig 5.4). Post-hoc tests were not run because 

they are inappropriate for a mixed effect model so interactions were assessed using 

inspection of the figures. The significant 3-way interaction within microcosm resulted 

from the C. fragile in summer having high rates at night compared to C. decorticatum. 

Fluxes of DIN, DON, and BOD (mean± SE) are presented (Table 5.1) to infer 

mechanisms of denitrification and analyses were not conducted on these fluxes. On 

average, DIN uptake was greatest in the summer, with C. fragile taking up more than C. 

decorticatum. C. decorticatum had higher rates, on average, of DON uptake in the 

summer and in the dark compared to C. fragile. There was a trend for increased BOD by 

C. fragile.  

Additional denitrification experiments 

Nitrogen fixation rates were significantly different between light and dark 

samples but not between Codium species (Appendix 5.C). Codium fronds added to vials 

increased concentrations of DIN and DON at time 0, but DIN and DON concentrations 

were similar to their initial concentrations after 24 hours (Appendix 5.D). Mixing 

intensity did not significantly change denitrification rates, although highest rates were 

seen with the highest mixing (f2,6=1.918, p=0.227; Appendix 5.E). 

Extrapolation 
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 The nitrogen removed by C. fragile per m
2
 of artificial structure was calculated 

for day and night during three seasons (Table 5.3). Relatively high C. fragile biomass 

(Appendix 5.F) and high denitrification rates (Fig. 5.4) produced the highest estimates of 

nitrogen removal rates in the summer. The total amount of nitrogen removed per m
2
 of 

artificial substrate (0.4-1m below MSL) by measured abundances of C. fragile was 

5.8±0.7g N m
-2 

year
-1

. 

Discussion 

Artificial substrates have greater abundances of non-native species, especially in 

areas where natural, hard substrates are limited (Wasson et al. 2005, Tyrrell and Byers 

2007, Vaselli et al. 2008). Our study supported this pattern: the non-native C. fragile was 

the dominant Codium species on artificial substrates (>99%), while the native C. 

decorticatum was the dominant Codium on natural substrate (~80% of Codium). In 

addition, C. fragile was the most abundant algae on artificial substrates during spring and 

summer within the sampled tidal range. This study demonstrated that the abundance of 

two similar species within the same genera, one native and one non-native, was 

dependent of substrate type.   

The difference in Codium abundance on artificial and natural substrate could 

result from multiple factors including differences in environmental factors and Codium 

morphology.  For instance, the intertidal oyster reefs (natural substrate) were in tidal 

creeks with low flow and low wave energy compared to the environmental setting of the 

shoreline hardening structures. Native C. decorticatum was usually tall (> 40cm) with 

flattened fronds (>1 cm), and was often  isolated (>1m) from other C. decorticatum 

individuals (NRG per. obs.).  The morphology of C. decorticatum seems better adapted 
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for the low-energy environment that has historically harbored the only natural, hard 

substrate in North Carolina.  In contrast, C. fragile was shorter (<20 cm) and  bushy with 

thin fronds (< 1 cm) and often existed in dense patches, which reduces the potential for 

dislodgement from the shoreline hardening structures that are in higher-energy 

environments (Denny et al. 1985, Kawamata 2001, Pratt and Johnson 2002, Thomsen and 

Wernberg 2005). Additionally, the shoreline hardening structures were made primarily of 

granite, a substrate which is not found naturally in North Carolina but is similar to the 

rocky shorelines that C. fragile has successfully invaded throughout the world 

(Trowbridge 1998).  Because substrate type and amount of energy in the environment 

were confounded in this study, future experiments should to be conducted to elucidate the 

mechanisms that are shaping Codium distributions. 

We found that differences in Codium distributions can have significant effects on 

nitrogen cycling. The potential for multiple Codium species to alter nitrogen pools 

through microbially-mediated nitrogen transformations has been studied (Head and 

Carpenter 1975, Dromgoole et al. 1978, Gerard et al. 1990), but past work focused only 

on nitrogen fixation. We found measured rates of nitrogen fixation similar to those 

reported previously in North Carolina measured by acetylene reductions assays (0.02-

1.2µgN2 fixed g dry wt
-1

 h
-1

; Rosenberg and Paerl 1981). However, we found that the flux 

of N2 gas was positive indicating that denitrification was greater than nitrogen fixation. 

Net nitrogen gas production suggests that Codium species may be “hot spots” for 

denitrification (McClain et al. 2003). Denitrification requires a low-oxygen environment, 

availability of nitrate, and an electron donor (e.g., carbon). Previous work suggests that 

C. fragile uptakes DIN from the water column (nitrate and ammonium) at high rates (>25 
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µmol of N per g of dry wt
 
per h; Hanisak and Harlin 1978). While a majority of this DIN 

is likely assimilated by the algae, a portion of the DIN may be utilized for denitrification 

which was not measured in previous studies. However, we found relatively low uptake of 

nitrate by Codium. Relatively low uptake of nitrate by Codium and low concentrations of 

ambient nitrate dissolved in the water suggest that the source of nitrate for denitrification 

is from nitrification of ammonium rather than from the water column (Eriksson and 

Weisner 1999, Krause-Jensen et al. 1999, An and Joye 2001). The coupling of 

nitrification and denitrification associated with Codium could result from the presence of 

epiphytes.  Epiphytes have been shown to affect oxygen gradients associated with 

macroalgae such that aerobic processes occur in the surface layer of the algae and 

anaerobic processes occur in adjacent deeper layers of the thallus tissues (Nielsen et al. 

1990, Krause-Jensen et al. 1999). The nitrate produced from ammonium by nitrification 

in the aerobic zone could be used for denitrification in the nearby anoxic zone. In 

addition, the epiphytes and macroalgae could serve as the energy source (electron donor) 

for the denitrifying bacteria by supplying large amounts of labile organic matter (Khailov 

and Burlakova 1969, Tyler et al. 2003). The simultaneous occurrence of these conditions 

on macroalgal surfaces probably results in microzones where conditions are favorable for 

denitrification (Law et al. 1993).  

Previous work on nitrogen dynamics associated with macroalgae have focused on 

the effects of the algae on sediment microbial processes in the sediment such as 

competition for nutrients (Tyler et al. 2003, Hardison et al. 2011, Eyre et al. 2011). 

Codium on artificial structures is not directly associated with soft sediment and our study 

demonstrates that denitrification can be directly attributable to macroalgae and the 
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associated epiphytic community and not sediment microbial processes. The significantly 

higher rates of denitrification associated with C. fragile compared to C. decorticatum 

could result from different epiphytic communities on the two Codium species (Lutz et al. 

2010). Although epiphytic denitrification has been associated with freshwater 

macrophytes (Eriksson 2001), this relationship for macroalgae remains unclear. Previous 

studies of nitrogen dynamics with macroalgae have examined algae that do not live long 

enough to develop epiphyte communities (Tyler et al. 2003, Hardison et al. 2011) or have 

chemical defenses limiting epiphytes (Eyre et al. 2011). Further research must be 

conducted to understand the mechanisms and factors that affect denitrification associated 

with epiphytes (Cornwell et al. 1999), C. fragile (Howarth et al. 2011), and other 

macroalgae (Rysgaard et al. 1995, Tall et al. 2011). Such information is necessary to 

determine whether C. fragile is unique in providing nitrogen removal or denitrification is 

often associated with macroalgae, in which case C. fragile may not have an overall 

ecosystem service benefit if C. fragile only supplants native macroalgae with similar 

properties. 

 We measured denitrification rates associated with Codium, but there were 

potential methodological artifacts that might have biased our results. Such artifacts 

include nutrients leaking from the Codium into the microcosm that resulted from the 

wound sustained during collection, and the creation of low oxygen microzones from 

minimal mixing in microcosms.  First, nutrients did leach from sampled Codium, but 

nutrient concentrations returned to ambient levels within 24 hours and likely did not 

affect denitrification rates because nitrogen measurements were not taken until 24 hours 

after Codium was added to the microcosms. Second, increased mixing within microcosm 
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did not decrease denitrification and there was a trend for increased denitrification.  This 

indicates that our measurements in microcosms are not inflating denitrification, but may 

be underestimating denitrification.  

To extrapolate laboratory rates to the ecosystem, we assumed a positive linear 

relationship between biomass and denitrification. This assumption is based on past 

findings that denitrification associated with macrophytes is a function of surface area 

(Eriksson and Weisner 1999), which is correlated with biomass. Moreover, our findings 

are probably conservative for two reasons. First, there was a trend for higher 

denitrification in the high-mix treatment, which probably increased rates of exchanges 

across the water-alga interface and more closely resembles environmental conditions than 

the treatment that was used for our calculations. Second, granite boulders that are used to 

harden shorelines have a complex 3-dimensional structure and the amount of Codium per 

m
2
 is greater than the amount in the planar m

2
 used for our calculations, which would 

result in our estimate of denitrification being conservative.  

We found that C. fragile enhances denitrification, an important ecosystem service 

that removes biologically available nitrogen, which could be substantial in areas where 

the coastline is dominated by hard substrate. C. fragile is now a dominant species in areas 

along the Gulf of Maine, where it is found from the intertidal to depths of 8 m and has a 

maximum biomass of 10.2 kg m
−2

 (Mathieson et al. 2003). In areas along the coast of 

Chile, C. fragile averages 22.9 kg m
−2

 (Neill et al. 2006). Assuming environmental 

conditions similar to North Carolina and given our measured rates of denitrification, C. 

fragile could remove a significant amount of nitrogen in these areas: 500m
2
 of C. fragile 

during the four month warm season in Chile could remove 22kg N2.  
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Recent studies on other habitat-forming organisms corroborate our findings that 

biogenic habitats can be denitrification hotspots. Sediment patches within seagrass beds 

and adjacent oyster reefs had similar annual rates of areal denitrification compared to 

Codium (Piehler and Smyth 2011). Few studies have measured denitrification rates of 

organisms (algae, oysters, or seagrass) and their accompanying communities. In situ rates 

of denitrification associated with seagrass beds, measured with large batch cores, are 

temporally and spatially variable, ranging from 476 to 4480 µg N- N2 m
−2

 h
-1 

respectively 

(Eyre et al. 2010, 2011). However, these studies did not quantify seagrass density or 

biomass, or determine if denitrification occurred in sediments or on the seagrass, so the 

contribution of seagrass to the measured denitrification rates cannot be inferred. 

Understanding the mechanisms that affect nutrient removal within these habitats is a 

prerequisite if biogenic habitats are to be included in management schemes to mitigate 

nutrient pollution.  

Nutrient loading in coastal waters is one of the greatest threats to conservation 

and restoration of coastal ecosystems (Conley et al. 2009). Excessive inputs of nutrients 

can lead to eutrophication, which includes low-oxygen events, fish kills, harmful algal 

blooms, and shellfish closures. Reducing nutrient loading by regulation alone is not 

feasible given that the majority of nutrient inputs cannot be traced to specific sources 

(Bricker et al. 1999) and the lack of political will to ratify appropriate management 

strategies. To reduce nutrient loading, management strategies must include increasing the 

denitrification capacity of the system by increasing areas with high rates of denitrification 

or hotspots (Brush 2008). The overall effect of C. fragile and artificial structures on 

coastal ecosystems is complex because altering habitats by adding shoreline hardening 
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structures can also have negative impacts.  For instance, bulkheads and revetments alter 

and/or remove the natural transitional habitat from marine to terrestrial environments, salt 

marshes, which provide ecosystem services such as fish habitat (Peterson et al. 2000, 

Seitz et al. 2006, Bilkovic and Roggero 2008) and nitrogen removal (Piehler and Smyth 

2011). But, revetments made of boulders can provide habitat, which likely replace some 

or all of the services provided by the natural habitat (Bilkovic and Roggero 2008). Jetties 

provide hard substrate in an environment that was previously shifting soft sediment and, 

although they alter geological processes, jetties can provide ecosystem services that did 

not exist previously, such as providing substrate for habitat forming species that in turn 

provide fish habitat (Hay and Sutherland 1988) and remove nitrogen. The overall gains or 

losses of ecosystem services provided by artificial structures is complex (Chapman and 

Underwood 2011), and will depend on quality and quantity of both original habitat and 

the habitat provided by the artificial structure.  

Anthropogenic impacts change environments both locally and globally. The 

ability of coastal managers to mitigate such changes, which often occur simultaneously, 

depends on understanding mechanisms associated with multiple impacts (Cloern 2001). 

We found an unexpected positive effect emerging from the interaction between habitat 

alteration and non-native species. Although non-native species do have many negative 

impacts, positive aspects of invasions have been found (Posey 1988, Pejchar and Mooney 

2009, Carroll et al. 2010). Pursuing eradication as the recommended reaction to invasive 

species has become a contentious issue, because of the high economic cost and low 

success rate of eradication (Gozlan 2008, Schlaepfers et al. 2011, Davis et al. 2011). 

Making decisions on how to manage non-native species without knowing if interactions 
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occur with other anthropogenic stressors could mitigate or exacerbate environmental 

impacts. This study reveals that not all non-natives may merit the same level of 

management concern and non-native species and shoreline hardening can interact to have 

a positive effect on coastal ecosystems.  
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Table 3.1.  The variables and formulas used to calculate indirect effects (upper panel) and the experimental results (lower panel). 

Lower case letters denote presence of predator and upper case denotes absence of predator. Estimation of the resource release resulting 

from predators consuming prey (DMIE), the dispersal of prey (DR), the reduction in prey activity induced by a predator (AyR), and 

the percent contribution of predator-avoidance behaviors in indirect effects. 

Mesocosm 

condition Predator 

No. 

crabs 

eaten 

No. crabs 

dispersed  

Mussel 

consumption   

(mussels·d-1) 

Standardized 

mussel 

consumption  

(mussels· 

crab-1 ·d-1) 

Predation 

resource 

release  

(DMIE, 

mussels ·d-1) 

Actual 

resource 

release 

(mussels·d-1) 

Dispersal  

resource 

release 

(mussels · 

d-1) 

Activity 

resource 

release        

(mussels· 

d-1) 

Dispersal & 

activity 

resource 

release 

(TMIE, 

mussels·d-1) 

Indirect 

effects 

attributable 

to TMIE (%) 

Closed 
No     M C 

DMIE=p·c AR=M-m 
  AyR=AR-

DMIE 
TMIE=AyR 

(AR-DMIE)/ 

AR Yes p   m c   

Open 
No   E M C 

DMIE=p·c AR=M-m 
DR= 

(c·e)-(C·E) 

AyR=AR-

DMIE-DR 

TMIE=AyR+

DR 

(AR-DMIE)/ 

AR Yes p e m c 

                       

Closed 

No     8.70±1.82 1.82±0.33 

1.31±0.80 5.50±1.74  (0) 4.19±2.06 4.19±2.06 76% 
Yes 

1.33 

±0.42  
  3.19±1.32 0.80±0.36 

Open 

No   1.33±0.21  10.00±2.70 2.22±0.60 

0.46±0.46 5.75±2.97 -2.21±0.70 7.58±3.46 5.37±3.13 92% 
Yes 

0.17 

±0.17 
1.33±0.42  4.25±1.83 0.97±0.43 
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Table 4.1. Size measurements of oysters, mud crabs, and toadfish in Exp 1 and 2. The biomass of individual mud crabs was measured 

during Exp 2. The biomass per size class was calculated by multiplying the average biomass in each size class to the number of crabs 

in the respective size class treatment. Standard error (SE) and number of individuals measured (n) are included. 

 

    
Oyster Mud crab Toadfish 

    Small Medium  Large Small Medium  Large 

Experiment 1 Mean ± SE. 
10.9±0.

3 
12.4±0.2 20±0.2 30.5±0.4 198.1±8.8 270.4±2.5 321.9±4.5 

Size (mm) n 249 135 134 137 21 22 21 

 
Range 4.4-23.4 9-15.4 15.3-24.8 25-44.3 95-248 250-286 294-358 

Experiment 2 Mean ± SE 8.3±0.3 12.5±0.2 20±0.2 29.6±0.4 

 

264.1±6.6 
 

Size (mm) n 70 70 70 70 

 

24 
 

 
Range 4.4-13.4 9-14.9 16.4-24.6 23.4-39.5 

 

195-313 
 

Overall Mean ± SE 

 

12.4±0 19±0.1 30.8±0.9 196.8±14.3 
375.7±16.

6 
587±41.2 

Biomass (g) n 

 

122 157 61 23.0 19.0 19.0 

 
Range 

 

0.16-2 0.76-6.09 
4.45-

38.26 
62-384 252-551.1 220-934 

Experiment 1 

 

Biomass  (g) 

Mean ± SE 

 

148.8±0.3 133±0.7 154±4.6 
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Table 5.1.  Nutrient fluxes (mean±SE) from inflow and outflow of microcosms for native (C. decorticatum) and non-native (C. 

fragile) Codium during 3 seasons and light and dark sampling periods. For dissolved nutrients positive values indicate production in 

the microcosm and negative values indicate uptake. O2 fluxes are presented as biological oxygen demand (BOD) where positive 

values indicate uptake of oxygen within microcosms.  

 

Season Light/Dark Species 

DIN        

(µgN*g
-1

*hr
-

1
) 

DON        

(µgN*g
-1

*hr
-

1
) 

BOD        

(µgO*g
-1

*hr
-

1
) 

Summer Light Native -0.21±0.01 0.14±0.02 -0.32±0.18 

    Non-native -0.4±0.14 -0.04±0.13 9.7±4.41 

  Dark Native -0.05±0.02 -0.87±0.03 6.27±0.43 

    Non-native -0.02±0.04 -0.33±0.26 10.86±3.12 

Fall Light Native -0.05±0.02 -0.07±0.03 3.18±0.59 

    Non-native 0.05±0.09 -0.35±0.09 3.74±0.74 

  Dark Native -0.02±0.02 0.34±0.07 4.48±2.19 

    Non-native -0.04±0.04 0.24±0.14 3.26±0.74 

Spring Light Native -0.09±0.04 0.19±0.11 4.48±0.49 

    Non-native -0.13±0.03 -0.03±0.05 4.11±1.08 

  Dark Native -0.01±0.01 -0.3±0.14 6.33±1.17 

    Non-native 0.86±0.86 0.4±0.38 18.41±8.16 
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Table 5.2.  Nitrogen fixation resulting from native (C. decorticatum) vs. non-native (C. fragile) Codium (mean±SE). Native and non-

native species were not significantly different, but light/dark was significantly different (2-way ANOVA, p<0.05).  

 

Light/Dark Species 

N-fixation        

(µgN*g
-1

*hr
-

1
) 

Light Native 0.71±0.25 

  

Non-

native 0.48±0.3 

Dark Native 0.12±0.04 

  

Non-

native 0.05±0.03 
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Table 5.3. Extrapolation of denitrification associated with C. fragile on artificial substrates. The denitrification rate from light and dark 

for each season was multiplied by the mean biomass per m
2
 of C. fragile on artificial substrates to calculate the denitrification rate per 

m
2
.  The denitrification rate per m

2 
was then multiplied by the hours submerged to determine the denitrification rate for light and dark 

in each season. Yearly denitrification was calculated by summing the seasonal denitrification for light and dark rates for all seasons. 

 

Season Light 

Microcosm 

denitrification 

(µgN-N2*g 

Codium
-1

*hr
-1

) 

Biomass of 

Codium    

(g*m
-2

) 

Denitrification 

(µgN-N2*      

m
-2

*hr
-1

) 

Hours 

sub-

merged 

(hr*seaso

n
-1

) 

Seasonal 

denitrification 

(kgN-N2*m
-

2
*season

-1
) 

Yearly 

denitrification 

(kgN-N2*m
-

2
*year

-1
) 

Fall 
Dar

k 0.25±0.08 1088±0.1 276±4.8 1056 

2.91E-

4±5.06E-6 

5.78E-

3±7.32E-5 

Fall 
Lig

ht 0.08±0.13 1088±0.1 86±25.7 946 

8.17E-

5±2.44E-5 

 
Spring 

Dar

k 0.85±0.53 1306±0.1 1111±10.0 852 

9.47E-

4±8.54E-6 

 
Spring 

Lig

ht 0.15±0.18 1306±0.1 193±19.7 1008 

1.94E-

4±1.99E-5 

 Summe

r 

Dar

k 1.06±0.38 2784±0.1 2938±5.7 801 

2.35E-

3±4.57E-6 

 Summe

r 

Lig

ht 0.61±0.37 2784±0.1 1703±9.6 1124 

1.91E-

3±1.08E-5 
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Fig. 2.1. Locations of sampled oyster sanctuaries in Pamlico Sound. Experimental 

sanctuaries had 5 shell/seed treatments. NCDMF seeded sanctuaries had either seeded or 

unseeded mounds and were sampled by NCDMF. 

 

 
 

 

  



107 
 

Fig. 2.2. Salinities through time at the three experimental sanctuaries. Salinities were 

recorded every 30 minutes by a logger placed on the top of a mound. The mean salinity 

for each day is shown. 
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Fig. 2.3. Number of oysters per shell (mean ± 1 SE) before shells were deployed in the 

summer of 2010 (A), after deployment in the fall Oct. 2010 (B) and the following year in 

Sept. 2011 (C). Number of shells sampled are noted above the x-axis.  
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Fig. 2.4. Size of oysters (mean±SE) per shell before shells were deployed  during the 

summer of 2010 (A), after deployment in the fall Oct. 2010 (B) and the following year in 

Sept. 2011 (C).  
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Fig. 2.5. The density of oysters (m
-2

; mean±SE) on sampled marl in fall 2010 (A), spring 

2011 (B), and fall 2011 (C). The density of oysters on mounds created in 2005-2006 were 

included in the figure as a baseline for successful restoration (Established), but were not 

included in the analysis.  
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Fig. 2.6. The density of oysters (m
-2

; mean±SE) on sampled marl from mounds seeded in 

2006 in South River (A), 2008 in South River (B), 2008 in West Bluff (C) and 2006 in 

Ocracoke (D). Number of mounds sampled are noted above the x-axis.  
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Fig. 3.1. The experimental setup of the study showing open and closed mesocosms and 

the initial placement of mud crabs.  
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Fig. 3.2. Summary of crab (prey) data showing: (A) the mean proportion (±SE) of crabs 

eaten per trial by toadfish in open and closed mesocosms; (B) the mean proportion (±SE) 

of surviving mud crabs remaining in the mesocosms; (C) the mean number (±SE) of mud 

crabs that dispersed into sanctuaries; and (D) the proportion of crabs observed along the 

edges of mesocosms. The number of crab observations was standardized for both number 

of observations per trial and by the average number of crabs. Significant effects (p < 

0.05) of mesocosm design are indicated by asterisks, and the significant effect of toadfish 

presence/absence is indicated by a tilde.  
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Fig.  3.3. Summary of mussel (resource) data showing: (A) the percent mortality of 

mussels per day in mesocosms and; (B) the percent mortality of mussels per day in 

sanctuaries. 
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Fig. 4.1 Crab biomass consumed in treatments with 3 individual crab sizes (A), four 

predator treatments (B), and all crab sizes with 4 predator treatments (C) Exp 1. The 

biomass was calculated by multiplying the number of crabs eaten by the average biomass 

of individuals in the respective size class (Table 1). Lower case letters indicate significant 

differences between treatments.  Significance was tested using 2 separate ANOVAs to 

keep crab biomass consistent (individual crab sizes with light gray boxplots, p≤0.05 and 

all crab size classes with dark gray boxplots, p≤0.1). Boxplots show inner 2 quartiles 

within box and whiskers extent to 1.5 times the respective inner quartile. The line through 

the box, cross, and dots indicate median, mean, and outliers, respectively. 
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Fig. 4.2. Total number of oysters eaten (A) and the number of oysters eaten per crab (B) 

found in Exp 1. Lower case letters indicate significant differences between treatments 

(p≤0.05). Boxplots show inner 2 quartiles within box and whiskers extent to 1.5 times the 

respective inner quartile. The line through the box, cross, and dots indicate median, mean, 

and outliers, respectively. 
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Fig. 4.3 Estimated  number of oysters that survived because of prey being consumed (ER; 

A-C) and changes in behavior (BR; D-E). The ratio of BR to overall resource release (G-

I) in Exp 1. Lower case letters indicate significant differences between treatments. 

Significance was tested using 2 separate ANOVAs (p≤0.05) for each BR and ER to keep 

crab biomass consistent (individual crab sizes in, light gray and all crab size classes, dark 

gray). No significance test was run on the behavioral ratio because error was propagated. 

Boxplots (A-E) show inner 2 quartiles within box and whiskers extent to 1.5 times the 

respective inner quartile. The line through the box, cross, and dots indicate median, mean, 

and outliers, respectively. G-I show mean (cross) and standard error. 
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Fig. 4.4. Crab biomass consumed in Exp 2 for treatments with small crabs (A) and all 

crab sizes (B). The predator was either absent, present in a cage within the mesocosm, or 

present and free in the mesocosm. The biomass was calculated by multiplying the number 

of crabs eaten by the average biomass of individuals in the respective size class (Table 1). 

Lower case letters indicate significant differences between treatments. Significance was 

tested using 2 separate ANOVAs (p≤0.05) to keep crab biomass consistent. Boxplots 

show inner 2 quartiles within box and whiskers extent to 1.5 times the respective inner 

quartile. The line through the box, cross, and dots indicate median, mean, and outliers, 

respectively. 

 

 
  



119 
 

Fig. 4.5. The number of oysters eaten (A) and the number of oysters eaten per crab (B) in 

Exp 2. The predator was either absent, present in a cage within the mesocosm, or free in 

the mesocosm. Boxplots show inner 2 quartiles within box and whiskers extent to 1.5 

times the respective inner quartile. The line through the box, cross, and dots indicate 

median, mean, and outliers, respectively. 
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Fig. 5.1. Locations of sampling sites. Solid circles mark artificial structures: rock jetties 

(A and E), rock revetment (B and D) and plastic bulkheads (left circle in D). Dashed 

circles mark natural hard substrates (C and E). 
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Fig 5.2. Percent cover of Codium (C. fragile and C. decorticatum), Ectocarpus sp, 

Sargassum sp. and the remaining macroalgae on natural (A) vs. artificial (B) substrates 

during 4 seasons. Boxplots indicate the inner 2 quartiles (box), distribution of points 

outside of the box up to 1.5 times the respective inner quartile (whisker), median 

(horizontal bar), and mean (open circle).  
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Fig 5.3. The proportion of individuals of native (C. decorticatum) vs. non-native (C. 

fragile) Codium. Proportions are displayed in separate bars for natural and artificial 

substrates, which are grouped by season. The number of individual plants sampled are 

shown above the x-axis.  
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Fig 5.4. Denitrification rate from microcosms for native (C. decorticatum) and non-native 

(C. fragile) Codium during 3 seasons and light and dark sampling periods. Boxplots 

indicate the inner 2 quartiles (box), distribution of points outside of the box up to 1.5 

times the respective inner quartile (whisker), median (horizontal bar), and mean (open 

circle). 
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Appendix 2.A. The number of oysters per shell fit to mixed effect-generalized linear 

models. Models are listed from the simplest to the most complex for each model family. 

Best model (lowest AIC) is bolded and NA indicated model would not run because of 

lack of replication. 

 
Model Family df AIC 

# oysters=treatment, random=mound poisson 5 12757.96 

# oysters=treatment*site, random=mound poisson 13 12724.48 

# oysters=treatment+site+year, random=mound poisson 8 12605.14 

# oysters=treatment*site*year, random=mound poisson NA NA 

# oysters=treatment+site+year+treatment:site+ 

treatment:year+site:year, random=mound poisson 19 11688.92 

# oysters=treatment, random=mound negative binomial 6 9646.92 

# oysters=treatment*site, random=mound negative binomial 14 9613.64 

# oysters=treatment+site+year, random=mound negative binomial 9 9586.02 

# oysters=treatment*site*year, random=mound negative binomial NA NA 

# oysters=treatment+site+year+treatment:site 

+treatment:year+site:year, random=mound negative binomial 20 9264.5 
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Appendix 2.B. Summary of results for the number of oysters per shell fit to a negative-

binomial mixed effect model. Factors included were treatment, site, year sampled and the 

two-way interactions. The intercept estimate is the estimated mean and estimates for all 

of the factor levels are changes relative to the intercept estimate.  The pr is the estimated 

probability that the listed factor level or interaction is significantly different from the 

factor level that is the control (not listed).  Pair-wise comparisons are significant if the 

standard errors relative to the respective means do not overlap. 

 

 

Estimate Std. Error z value Pr(>|z|) 

(Intercept) 2.8438 0.154 18.47 < 2e-16 

Treatment-Early small -0.0733 0.2172 -0.34 0.7358 

Treatment-Late small -1.5322 0.222 -6.9 5.20E-12 

Treatment-Late large -0.5349 0.2194 -2.44 0.0148 

Site-Gibbs Shoal -1.6461 0.2219 -7.42 1.20E-13 

Site-Clam Shoal -1.93 0.2246 -8.59 < 2e-16 

Sampling-fall 2011 -0.0509 0.1089 -0.47 0.6403 

Early small seed:Gibbs Shoal 0.5157 0.3097 1.67 0.0959 

Late small seed:Gibbs Shoal 1.6711 0.3136 5.33 9.90E-08 

Late large seed:Gibbs Shoal 1.4598 0.3143 4.64 3.40E-06 

Early small seed:Clam Shoal 1.0103 0.3102 3.26 0.0011 

Late small seed:Clam Shoal 0.5394 0.3228 1.67 0.0947 

Late large seed:Clam Shoal 1.2972 0.312 4.16 3.20E-05 

Early small sees: Sampling-fall 2011 -0.3834 0.128 -2.99 0.0027 

Late small seed: Sampling-fall 2011 0.8649 0.1488 5.81 6.10E-09 

Late large seed: Sampling-fall 2011 -0.0647 0.1391 -0.47 0.6417 

Gibbs Shoal: Sampling-fall 2011 0.5969 0.1344 4.44 9.00E-06 

Clam Shoal: Sampling-fall 2011 -1.3622 0.1106 -12.32 < 2e-16 
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Appendix 2.C. Summary of results for the number of oysters per shell fit to a negative-

binomial mixed effect model.  Analyses were run with data from fall of 2011 for each site 

separately, with treatment (fixed) and mound (random) as independent factors. The late 

large seed treatment is missing for Gibbs Shoal because only 1 shell was found on the 

two mounds. 
Crab Hole 

         

  Estimate Std. Error z value Pr(>|z|) 

(Intercept) 2.554 0.166 15.350 <0.001 

Treatment-Early small seed -0.230 0.232 -0.990 0.320 

Treatment-Late small seed -0.355 0.286 -1.240 0.210 

Treatment-Late large seed -0.279 0.229 -1.220 0.220 

          

Gibbs Shoal         

  Estimate Std. Error z value Pr(>|z|) 

(Intercept) 1.774 0.159 11.150 <0.001 

Treatment-Early small seed 0.465 0.237 1.960 0.050 

Treatment-Late small seed 0.403 0.234 1.720 0.086 

          

Clam Shoal         

  Estimate Std. Error z value Pr(>|z|) 

(Intercept) -0.084 0.261 -0.320 0.750 

Treatment-Early small seed -0.069 0.351 -0.200 0.840 

Treatment-Late small seed -0.325 0.353 -0.920 0.360 

Treatment-Late large seed -0.116 0.358 -0.320 0.750 

 

 

 

  



127 
 

 

Appendix 2.D. The size of oysters on deployed shell fit to mixed effect-general linear 

models. Models are listed from the simplest to the most complex for each model family. 

Best model (lowest AIC) is bolded and NA indicated model would not run because of 

lack of replication. 

 
Model df AIC 

oyster size=treatement, random=mound  6 10462.84 

oyster size=treatement+site, random = mound  8 10438.37 

oyster size=treatement+year, random = mound  7 10421.75 

oyster size=treatement*site, random = mound 14 10419.52 

oyster size=treatement*year, random = mound NA NA 

oyster size=treatement*year*site, random = mound NA NA 
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Appendix 2.E. Summary of results for the size of oysters on deployed shell fit to a 

negative-binomial mixed effect model. Factors included were treatment, site, year 

sampled and the two-way interactions. 

 

 

Value Std.Error df t-value p-value 

(Intercept) 25.278493 1.416065 1457 17.851226 0 

Treatment-Early small seed 1.289854 1.989079 12 0.648468 0.5289 

Treatment-Late small seed -7.455579 2.040513 12 -3.65E+00 0.0033 

Treatment-Late large seed -5.490506 1.979502 12 -2.77E+00 0.0168 

Site-Gibbs Shoal 7.943172 2.035137 12 3.90E+00 0.0021 

Site-Clam Shoal -0.825575 2.05927 12 -4.01E-01 0.6955 

Early small seed:Gibbs Shoal -3.721463 2.868715 12 -1.297258 0.2189 

Late small seed:Gibbs Shoal -0.521924 2.900534 12 -0.179941 0.8602 

Late large seed:Gibbs Shoal -5.296975 2.877028 12 -1.841128 0.0904 

Early small seed:Clam Shoal -3.882938 2.867001 12 -1.354355 0.2006 

Late small seed:Clam Shoal 3.33342 2.967718 12 1.123227 0.2833 

Late large seed:Clam Shoal -2.210245 2.8818 12 -0.766967 0.4579 
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Appendix 2.F. The number of oysters on marl fit to mixed effect-generalized linear 

models. Models are listed from the simplest to the most complex for each model family. 

Best model (lowest AIC) is bolded. 

 
Model Family df AIC 

# oysters=site, random=mound poisson 4 624110 

# oysters=treatment*site, random=mound poisson 16 624108 

# oysters=treatment+site+samplin, random=mound poisson 8 11035.98 

# oysters=site*depth*sampling, random=mound poisson 19 208554 

# oysters=treatment+site+sampling+treatment:site+ 

treatment:sampling+site:sampling, random=mound poisson 19 10555.72 

# oysters=treatmen, random=mound negative binomial 7 6442.42 

# oysters=treatment*site, random=mound negative binomial 17 6403.38 

# oysters=treatment+site+depth+sampling, random=mound negative binomial 12 6322.78 

# oysters=site*depth*sampling, random=|mound negative binomial 20 6032.46 

# oysters=site+depth+sampling+site:depth+site:sampling+ 

depth:sampling, random=mound negative binomial 16 6032.68 

# oysters=treatment+site+sampling+treatment:site+ 

treatment:sampling+site:sampling, random=mound negative binomial 31 6118.26 

 

 

  



130 
 

Appendix 2.G. Summary of results for the number of oysters on marl fit to a negative-

binomial mixed effect model. Factors included were site, depth, and sampling. 

 

 

Estimate Std. Error z value Pr(>|z|) 

(Intercept) 7.0524 0.121 58.26 < 2e-16 

Site-Gibbs Shoal -0.0298 0.1526 -0.2 0.85 

Site-Clam Shoal 1.7317 0.1581 10.95 < 2e-16 

Depth-Bottom 0.8913 0.1331 6.7 2.10E-11 

Samping-spring 2011 -0.1558 0.1485 -1.05 0.29 

Samping-fall 2011 -0.8256 0.1455 -5.67 1.40E-08 

Gibbs Shoal:Bottom -0.2157 0.1451 -1.49 0.14 

Clam Shoal:Bottom -0.7308 0.148 -4.94 7.90E-07 

Gibbs Shoal: Sampling-spring 2011 0.1904 0.1773 1.07 0.28 

Clam Shoal: Sampling-spring 2011 -0.215 0.1815 -1.18 0.24 

Gibbs Shoal: Sampling-fall 2011 1.6727 0.1751 9.55 < 2e-16 

Clam Shoal: Sampling-fall 2011 -1.7427 0.1792 -9.72 < 2e-16 

Bottom: Sampling-spring 2011 0.1173 0.1464 0.8 0.42 

Bottom: Sampling-fall 2011 -0.6485 0.1441 -4.5 6.80E-06 
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Appendix 2.H. Summary of results for the density of oysters on marl fit to a negative-

binomial mixed effect model.  Analyses were run with data from fall of 2011 for each site 

separately, with treatment (fixed) and mound (random) as independent factors. 

 
Crab Hole         

  Estimate Std. Error z value Pr(>|z|) 

(Intercept) 8.199 0.213 38.440 <0.001 

Treatment-Early shell 0.351 0.302 1.160 0.250 

Treatment-Early small seed 0.085 0.305 0.280 0.780 

Treatment-Late small seed 0.209 0.302 0.690 0.490 

Treatment-Late large seed 0.022 0.302 0.070 0.940 

          

Gibbs Shoal         

  Estimate Std. Error z value Pr(>|z|) 

(Intercept) 8.199 0.213 38.440 <0.001 

Treatment-Early shell 0.351 0.302 1.160 0.250 

Treatment-Early small seed 0.085 0.305 0.280 0.780 

Treatment-Late small seed 0.209 0.302 0.690 0.490 

Treatment-Late large seed 0.022 0.302 0.070 0.940 

          

Clam Shoal         

  Estimate Std. Error z value Pr(>|z|) 

(Intercept) 8.199 0.213 38.440 <0.001 

Treatment-Early shell 0.351 0.302 1.160 0.250 

Treatment-Early small seed 0.085 0.305 0.280 0.780 

Treatment-Late small seed 0.209 0.302 0.690 0.490 

Treatment-Late large seed 0.022 0.302 0.070 0.940 
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Appendix 2.I. The number of oysters on marl from sites seeded and sampling by NCDMF 

fit to mixed effect-generalized linear models. Models are listed from the simplest to the 

most complex for each model family. Best model (lowest AIC) is bolded and NA 

indicated model would not run because of lack of replication. 

 

Model Family    df     AIC 

# oysters=seeded, random=mound poisson 3 125478.2 

# oysters=seeded, random=mound negative binomial 4 8924.94 

# oysters=seeded*depth, random=mound negative binomial 8 8926.42 

# oysters=seeded*year created, random=mound negative binomial 6 8919.94 

# oysters=seeded*site, random=mound negative binomial 8 8921.02 

# oysters=seeded*mound age, random=mound negative binomial 6 8831.04 

# oysters=seeded+mound age+year created, random=mound negative binomial 6 8825.18 

# oysters=seeded*mound age*year created, random=mound negative binomial 10 8813.02 

# oysters=seeded*mound age*year created+seeded:mound age+ 

seeded:year created+moundage:year created, random= mound negative binomial 9 8811.16 

# oysters=seeded*mound age*year created+seeded:mound 

age+ moundage:year created, random=mound negative binomial 8 8809.5 

# oysters=seeded*mound age*site, random=mound negative binomial 14 8723.9 

# oysters=seeded+mound age+site+year created, 

random=mound negative binomial 8 8820.02 

# oysters=seeded*mound age*site*year created, 

random=mound negative binomial NA NA 
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Appendix 2.J. Summary of results for the number of oysters on marl from sites seeded 

and sampling by NCDMF fit to a negative-binomial mixed effect model. Factors included 

were seeded, mound age, and site. 

 

 

Estimate Std. Error z value Pr(>|z|) 

(Intercept) 5.19E+00 0.2443 21.24 2.00E-16 

Seeded-yes -1.03E+00 0.2891 -3.55 0.00038 

Mound age 3.92E-01 0.0933 4.2 2.60E-05 

Year created-2008 1.88E+00 0.3832 4.89 9.90E-07 

Seeded-yes:Mound age 3.63E-01 0.1137 3.19 0.00143 

Mound age:Year created-2008 -6.28E-01 0.1984 -3.16 0.00156 
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Appendix 3.A. Summary of studies using 3 tropic levels in a meta-analysis by Preiser et 

al. (2005) followed by references cited. We estimated the time scale required for prey to 

traverse the mesocosm based on the natural history of the prey. 

 

 

Reference no. Reference Primary predator Prey Resource Ecosystem

Mesocosm 

dimension

Estimated time 

for prey to 

traverse 

mesocosm

Predator-

avoidance 

behavior 

measured

1

Brodin and 

Johansson (2002)

Perca 

fluviatilis ,perch   

Lestes sponsa,

damselfly 

Daphnia magna , zooplankton freshwater stream 27 cm diameter  < 1 minute

reduced 

activity

2 Grabowski (2004)

Opsanus tau , 

oyster toadfish 

Panopeus 

herbstii , mud 

crab 

Crassostrea 

virginica , oyster marine 120 cm diameter  < 1 minute

reduced 

activity

3

McIntosh and 

Townsend (1996) 

Galaxias 

vulgaris , river 

galaxia 

Stream 

invertebrates algae freshwater stream 260x35 cm  < 1 minute

reduced 

activity

3

McIntosh and 

Townsend (1996) 

Galaxias 

vulgaris , river 

galaxia 

Stream 

invertebrates algae freshwater stream 200x35 cm  < 1 minute

reduced 

activity

4

Rudgers et al. 

(2003) 

Forelius 

pruinosus , ant

Bucculatrix 

thurberiella , 

cotton leaf 

perforator moth 

Gossypium 

thurberi , wild 

cotton terrestrial branch  < 1 minute

reduced 

activity

5 Schmitz (1998) 

Pisurina mira, 

nursery web 

hunting spider 

Melanoplus 

femurrubrum , red-

legged 

grasshopper grasses terrestrial 25x100 cm seconds

reduced 

activity

5 Schmitz (1998) 

Pisurina mira, 

nursery web 

hunting spider 

Melanoplus 

femurrubrum , red-

legged 

grasshopper herbs terrestrial 25x100 cm seconds

reduced 

activity

6

Schmitz et al. 

(1997) 

Pisurina mira, 

nursery web 

hunting spider 

Melanoplus 

femurrubrum , red-

legged 

grasshopper grasses terrestrial 60x60 cm seconds

reduced 

activity

6

Schmitz et al. 

(1997) Pisurina mira ,

Melanoplus 

femurrubrum , red-

legged 

grasshopper forbs terrestrial 60x60 cm seconds

reduced 

activity

7 Stav et al. (2000) 

Anax imperator , 

dragonfly 

Culiseta 

longiareolata , 

mosquito periphyton freshwater pond 34x59cm < minute

reduced 

activity

7 Stav et al. (2000) 

Anax imperator , 

dragonfly 

Culiseta 

longiareolata , 

mosquito phytoplankton freshwater pond 34x59 cm < minute

reduced 

activity

8

Stelzer and 

Lamberti (1999) 

Etheostoma 

caeruleum , darter 

Orconectes 

propinquus , 

crayfish periphyton freshwater stream 53x38 cm seconds

reduced 

activity

9

Turner and 

Mittelbach (1990) 

Micropterus 

salmoides, 

largemouth bass 

Lepomis 

macrochirus , 

bluegill 

Daphnia pulex , 

cladoceran freshwater pond

quarter of 1500 

cm diameter seconds

altered 

habitat

9

Turner and 

Mittelbach (1990) 

Micropterus 

salmoides , 

largemouth bass 

Lepomis 

macrochirus , 

bluegill 

Diaphanosoma 

brachyurum , 

cladoceran freshwater pond

quarter of 1500 

cm diameter seconds

altered 

habitat

9

Turner and 

Mittelbach (1990) 

Micropterus 

salmoides , 

largemouth bass 

Lepomis 

macrochirus , 

bluegill 

Ceriodaphnia 

reticulata , 

cladoceran freshwater pond

quarter of 1500 

cm diameter seconds

altered 

habitat

9

Turner and 

Mittelbach (1990) 

Micropterus 

salmoides , 

largemouth bass 

Lepomis 

macrochirus , 

bluegill 

Chaoborus 

americanus , 

Chaoborus 

flavicans, 

phantom midges freshwater pond

quarter of 1500 

cm diameter seconds

altered 

habitat

10

Winkelman and 

Aho (1993) 

Esox niger , 

pickerel 

Gambusia 

holbrooki , adult 

mosquitofish 

Gambusia 

holbrook i, 

juvenile 

mosquitofish, freshwater pond 100 cm diameter seconds

altered 

habitat
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Reference no. Reference Primary predator Prey Resource Ecosystem

Mesocosm 

dimension

Estimated time 

for prey to 

traverse 

mesocosm

Predator-

avoidance 

behavior 

measured

1

Brodin and 

Johansson (2002)

Perca 

fluviatilis ,perch   

Lestes sponsa,

damselfly 

Daphnia magna , zooplankton freshwater stream 27 cm diameter  < 1 minute

reduced 

activity

2 Grabowski (2004)

Opsanus tau , 

oyster toadfish 

Panopeus 

herbstii , mud 

crab 

Crassostrea 

virginica , oyster marine 120 cm diameter  < 1 minute

reduced 

activity

3

McIntosh and 

Townsend (1996) 

Galaxias 

vulgaris , river 

galaxia 

Stream 

invertebrates algae freshwater stream 260x35 cm  < 1 minute

reduced 

activity

3

McIntosh and 

Townsend (1996) 

Galaxias 

vulgaris , river 

galaxia 

Stream 

invertebrates algae freshwater stream 200x35 cm  < 1 minute

reduced 

activity

4

Rudgers et al. 

(2003) 

Forelius 

pruinosus , ant

Bucculatrix 

thurberiella , 

cotton leaf 

perforator moth 

Gossypium 

thurberi , wild 

cotton terrestrial branch  < 1 minute

reduced 

activity

5 Schmitz (1998) 

Pisurina mira, 

nursery web 

hunting spider 

Melanoplus 

femurrubrum , red-

legged 

grasshopper grasses terrestrial 25x100 cm seconds

reduced 

activity

5 Schmitz (1998) 

Pisurina mira, 

nursery web 

hunting spider 

Melanoplus 

femurrubrum , red-

legged 

grasshopper herbs terrestrial 25x100 cm seconds

reduced 

activity

6

Schmitz et al. 

(1997) 

Pisurina mira, 

nursery web 

hunting spider 

Melanoplus 

femurrubrum , red-

legged 

grasshopper grasses terrestrial 60x60 cm seconds

reduced 

activity

6

Schmitz et al. 

(1997) Pisurina mira ,

Melanoplus 

femurrubrum , red-

legged 

grasshopper forbs terrestrial 60x60 cm seconds

reduced 

activity

7 Stav et al. (2000) 

Anax imperator , 

dragonfly 

Culiseta 

longiareolata , 

mosquito periphyton freshwater pond 34x59cm < minute

reduced 

activity

7 Stav et al. (2000) 

Anax imperator , 

dragonfly 

Culiseta 

longiareolata , 

mosquito phytoplankton freshwater pond 34x59 cm < minute

reduced 

activity

8

Stelzer and 

Lamberti (1999) 

Etheostoma 

caeruleum , darter 

Orconectes 

propinquus , 

crayfish periphyton freshwater stream 53x38 cm seconds

reduced 

activity

9

Turner and 

Mittelbach (1990) 

Micropterus 

salmoides, 

largemouth bass 

Lepomis 

macrochirus , 

bluegill 

Daphnia pulex , 

cladoceran freshwater pond

quarter of 1500 

cm diameter seconds

altered 

habitat

9

Turner and 

Mittelbach (1990) 

Micropterus 

salmoides , 

largemouth bass 

Lepomis 

macrochirus , 

bluegill 

Diaphanosoma 

brachyurum , 

cladoceran freshwater pond

quarter of 1500 

cm diameter seconds

altered 

habitat

9

Turner and 

Mittelbach (1990) 

Micropterus 

salmoides , 

largemouth bass 

Lepomis 

macrochirus , 

bluegill 

Ceriodaphnia 

reticulata , 

cladoceran freshwater pond

quarter of 1500 

cm diameter seconds

altered 

habitat

9

Turner and 

Mittelbach (1990) 

Micropterus 

salmoides , 

largemouth bass 

Lepomis 

macrochirus , 

bluegill 

Chaoborus 

americanus , 

Chaoborus 

flavicans, 

phantom midges freshwater pond

quarter of 1500 

cm diameter seconds

altered 

habitat

10

Winkelman and 

Aho (1993) 

Esox niger , 

pickerel 

Gambusia 

holbrooki , adult 

mosquitofish 

Gambusia 

holbrook i, 

juvenile 

mosquitofish, freshwater pond 100 cm diameter seconds

altered 

habitat
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Appendix 3.B. Oyster reef  habitat at the Rachel Carson Research Reserve, NC (76º38.5’  

Lon, 34º42.5’ Lat); (1) dispersed, (2) intermediate sized patches, and (3) continuous 

habitat. 

 

 

 

   
  

1 

2 
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Appendix 3.C.  Two-way ANOVA with mesocosm (open/closed) and trial as 

independent variables and percent crabs consumed per trial as the dependent variable. 

 

 

 

 

 

 

 

 

 

 

 

  

Source of 

Variation 
df 

MS 
F P 

Mesocosm 1 0.276 6.636 0.030 

Trial 5 0.038 0.924 0.362 

Residual 5 0.42     
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Appendix 3.D.  Three-way ANOVA with toadfish (presence/absence), mesocosm 

(open/closed), and trial as independent variables and percent crabs remaining in arena as 

the dependent variable. 

 

 

 

 

 

 

 

 

 

  

Source of 

Variation 
df MS F P 

Predator 1 14 0.03 0.857 

Mesocosm  1 1530.7 3.66 0.075 

Trial 5 267.3 0.64 0.674 

Predator x 

Mesocosm  
1 214 0.51 0.486 

Residual 15 418.4     
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Appendix 3.E.  Two-way ANOVA with toadfish (presence/absence) and trial as 

independent variables and number of crabs that moved into adjacent arena as the 

dependent variable. 

 

Source of 

Variation 
df MS F P 

Predator 1 0.333 0.19 0.679 

Trial 5 0.533 0.31 0.889 

Residual 5 1.733     
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Appendix 3.F.  Three-way ANOVA with toadfish (presence/absence), mesocosm 

(open/closed), and trial as independent variables and percent mortality of mussels per day 

as the dependent variable 

 

Source of Variation df MS F P 

Predator 1 0.061 11.38 0.004 

Mesocosm 1 0.003 0.5 0.49 

Trial 5 0.014 2.64 0.066 

Predator x 

Mesocosm 
1 0.000 0.01 0.941 

Residual 15 0.005     
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Appendix 3.G.  Two-way ANOVA with toadfish (presence/absence) and trial as 

independent variables and percent mussel mortality per day in adjacent arena as the 

dependent variable. 

 

Source of 

Variation 
df MS F P 

Predator 1 0.040 4.32 0.092 

Trial 5 0.025 2.64 0.156 

Residual 5 0.009     
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Appendix 3.H.  Two-way MANOVA with toadfish (presence/absence) and mesocosm 

(open/closed) as independent variables and number of crabs observed in corners, along 

edges, and in oyster habitat as dependent variables 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Source of Variation 
Df Pillai 

approx. 

F 
P 

Predator 1 0.2890 2.445 0.097 

Mesocosm 1 0.2700 2.218 0.121 

Predator x 

Mesocosm 
1 0.4040 4.059 0.023 

Residual 20       
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Appendix 3.I.  Three-way ANOVA with toadfish (presence/absence), mesocosm 

(open/closed), and trial (blocked) as independent variables and number of crabs observed 

in corners as the dependent variable 

 

Source of Variation df MS F P 

Predator 1 0.0000 0.01 0.928 

Mesocosm 1 0.0003 0.14 0.714 

Trial 5 0.0033 1.41 0.276 

Predator x Mesocosm 1 0.0011 0.48 0.501 

Residual 15 0.0023     
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Appendix 3.J.  Three-way ANOVA with toadfish (presence/absence), mesocosm 

(open/closed), and trial (blocked) as independent variables and number of crabs observed 

along edges as the dependent variable 

 

Source of Variation df MS F P 

Predator 1 0.020 6.37 0.023 

Mesocosm 1 0.017 5.54 0.033 

Trial 5 0.005 1.6 0.219 

Predator x 

Mesocosm 
1 0.018 5.95 0.028 

Residual 15 0.003     
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Appendix 3.K.  Three-way ANOVA with toadfish (presence/absence), mesocosm 

(open/closed), and trial (blocked) as independent variables and number of crabs observed 

in oyster habitat as the dependent variable 

 

Source of 

Variation 
df MS F P 

Predator 1 <0.001 0.562 0.463 

Mesocosm  1 <0.001 0.562 0.463 

Trial 5 <0.001 0.123 0.729 

Predator x 

Mesocosm  
1 0.002 3.240 0.088 

Residual 15 <0.001     
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Appendix 4.A. Toadfish and mud crabs in each of the respective size categories. 
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Appendix 4.B.  The variables and formulas used to calculate indirect effects (upper 

panel) and the experimental results (lower panel). Lower case letters denote presence of 

predator and upper case denotes absence of predator. Estimation of the resource release 

resulting from consumption of prey (ER) and the reduction in prey foraging (BE). Only 

calculations for treatments with all crab size classes are shown. 

Predator 

Treatment 

Crabs 

eaten 

(crab) 

Oyster 

consumption   

(oysters·d-
1
) 

Standardized 

Oyster 

consumption  

(oysters·crab
-1     

 

·d
-1

) 

Expected 

resource release  

(ER, oysters·d
-1

) 

Actual 

resource 

release (AR, 

oysters·d
-1

) 

Behavioral 

resource 

release        

(BR, 

oysters·d
-1

) 

No P M C 

ER=c·p AR=M-m 
TMIE=AR-

DMIE Yes p m c 

              

No 3.33±1.36 1.91±0.39 0.09±0.02 0.34±0.19     

Small 4.33±1.43 0.73±0.18 0.04±0.01 0.20±0.10 1.18±0.31 0.98±0.28 

Medium 4.50±0.85 0.78±0.29 0.04±0.01 0.21±0.10 1.13±0.29 0.93±0.31 

Large 1.67±0.76 0.45±0.13 0.02±0.01 0.05±0.04 1.46±0.34 1.41±0.34 
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Appendix 4.C. The total number of crabs eaten in treatments (A), in the ‘all prey’ 

treatment (B), and the biomass of crabs eaten in each treatment (C). The biomass was 

calculated by multiplying each crab in each size category by the average biomass found 

for that size (Table 1). Boxplots show inner 2 quartiles within box and whiskers extent to 

1.5 times the respective inner quartile.  The line through the box, cross, and dots indicate 

median, mean, and outliers, respectively. 
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Appendix 4.D. The number of crabs eaten in all treatments (A), in the ‘all prey’ treatment 

separated by sizes (all crab treatments; B), and the biomass of crabs eaten in each 

treatment (C) in the second experiment. The biomass was calculated by multiplying each 

crab in each size category by the average biomass found for that size (Table 1). Boxplots 

show inner 2 quartiles within box and whiskers extent to 1.5 times the respective inner 

quartile. The line through the box, cross, and dots indicate median, mean, and outliers, 

respectively. 
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Appendix 5.A. The effect of substrate (artificial vs. natural) and season on the percent 

cover of Codium. The generalized linear model had binomial error and logit canonical 

link.  The best model combined seasons into winter/fall and spring/summer and did not 

include the interaction between substrate and season. 

 

  Estimate 

Std. 

Error z value Pr(>|z|) 

Intercept -2.878 0.208 -13.847 < 0.001 

Artificial (substrate) -2.185 0.231 -9.450 < 0.001 

Spring-summer (season) 1.930 0.224 8.602 < 0.001 
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Appendix 5.B. Summary of the results of denitrification rates, which were analyzed using 

a mixed effect ANOVA with season, species, and light/dark as fixed factors and 

microcosm number as a random factor. Microcosm was included as a random variable 

because light/dark measurements were taken within each microcosm. 

 

Response Error Predictor Df 
Sum 

Sq 

Mean 

Sq 

F 

value 
Pr(>F) 

N2 Microcosm Season 2 0.003 0.002 1.867 0.197 

  Species 1 0.005 0.005 5.186 0.042 

  Season x Species 2 0.021 0.010 10.984 0.002 

  Residuals 12 0.011 0.001   

 Within Light/dark 1 0.018 0.018 38.088 0.000 

  Season x Light/dark 2 0.001 0.000 0.862 0.447 

  Light/dark x Species 1 0.000 0.000 0.603 0.453 

  
Season x Light/Dark x 

Species 
2 0.004 0.002 4.396 0.037 

  Residuals 12 0.006 0.000   
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Appendix 5.C. Summary of a 2-way fixed-factor ANOVA conducted to determine the 

effects of Codium species and light on nitrogen fixation. 

 

  Df 
Sum 

Sq 

Mean 

Sq 
F value Pr(>F) 

Light 1 0.470 0.470 8.482 0.012 

Species 1 0.060 0.060 1.080 0.318 

Residuals 13 0.720 0.055   
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Appendix 5.D. Concentration of DIN (A) and DON (B) immediately before (solid dot), 

immediately after, and 24 hours after Codium was cut for experiments. Boxplots indicate 

the inner 2 quartiles (box), distribution of points outside of the box up to 1.5 times the 

respective inner quartile (whisker), median (horizontal bar), and mean (open circle). 
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Appendix 5.E. The effect of mixing on denitrification rates associated with C. fragile in 

microcosms. No significant differences between mixing intensity was detected (p=0.227). 

Boxplots indicate the inner 2 quartiles (box), distribution of points outside of the box up 

to 1.5 times the respective inner quartile (whisker), median (horizontal bar), and mean 

(open circle). 
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Appendix 5.F. The multiple regression of wet weight of Codium vs. percent cover of 

Codium on natural (A) and artificial (B) substrates parsed out by season (F5,178 =50.16, 

p<0.001, R
2
adj=0.57). No biomass samples were taken in fall and winter on natural 

substrates because little Codium was present. 
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