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Abstract

JIANG CHEN: Some Topics in Large Deviations Theory for Stochastic Dynamical
Systems

(Under the direction of Amarjit Budhiraja)

In this dissertation, we study large deviations problems for stochastic dynami-

cal systems. First, we consider a family of Stochastic Partial Differential Equations

(SPDE) driven by a Poisson Random Measure (PRM) that are motivated by prob-

lems of chemical/pollutant dispersal. We established a Large Deviation Principle

(LDP) for the long time profile of the chemical concentration using techniques based

on variational representations for nonnegative functionals of general PRM. Second,

we develop a LDP for small Poisson noise perturbations of a general class of deter-

ministic infinite dimensional models. SPDEs driven by PRM have been proposed as

models for many different physical systems. The approach taken here, which is based

on variational representations, reduces the proof of the LDP to establishing basic

qualitative properties for controlled analogues of the underlying stochastic system.

Third, we study stochastic systems with two time scales. Such multiscale systems

arise in many applications in engineering, operations research and biological and

physical sciences. The models considered in this dissertation are usually referred to

as systems with “full dependence”, which refers to the feature that the coefficients of

both the slow and the fast processes depend on both variables. We establish a LDP

for such systems with degenerate diffusion coefficients.

The last part of this dissertation focuses on numerical schemes for computing in-

variant measures of reflected diffusions. Reflected diffusions in polyhedral domains are

commonly used as approximate models for stochastic processing networks in heavy
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traffic. Stationary distributions of such models give useful information on the steady

state performance of the corresponding stochastic networks and thus it is important

to develop reliable and efficient algorithms for numerical computation of such dis-

tributions. We propose and analyze a Monte-Carlo scheme based on an Euler type

discretization. We prove an almost sure consistency of the appropriately weighted

empirical measures constructed from the simulated discretized reflected diffusion to

the true diffusion model. Rates of convergence are also obtained for certain class of

test functions. Some numerical examples are presented to illustrate the applicability

of this approach.
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Chapter 1

Introduction

This dissertation contains two distinct parts. The first part, which is the main

part (including Chapter 2-5), concerns large deviation theory for stochastic dynamical

systems, while the second discusses a problem in stochastic numerics.

The theory of large deviations is concerned with the study of asymptotic expo-

nential decay rate of probabilities of “rare events”. In a typical setting, one is given

a sequence of random variables {Xn} with values in some Polish space (E , d) which,

as n→∞, converges to a non-random limit x ∈ E . The main problem of interest is

to obtain precise upper and lower asymptotic bounds (as n→∞) on probabilities of

deviations of Xn from its limit value x, e.g. on quantities such as P(d(Xn, x) ≥ α).

A systematic treatment of this asymptotic study is given by establishing a Large De-

viation Principle (LDP) which gives precise exponential decay rates for probabilities

of the above form in terms of a suitable rate function.

The first part of this dissertation studies large deviation results for certain fam-

ilies of stochastic dynamical systems with jumps. Many models in probability and

stochastic dynamics are given in terms of noise processes that are described in terms

of Poisson random measures (PRM) and/or Brownian motions (BM). A promising

approach based on certain variational formulas to treat large deviation problems for

such stochastic systems has been initiated in [18]. These variational formulas are the

starting point of my work. We collect these formulas together with other background

results in Chapter 2.



We study two sets of applications of the variational representations of [15] to large

deviation problems for stochastic systems. The first is to the study of small noise

stochastic partial differential equations (SPDE) with Poisson noise. This is contained

in Chapters 3 and 4 of the dissertation. A family of SPDE motivated by problems

of chemical/pollutant dispersal is discussed in Chapter 3. In Chapter 4, we studied

a rather general family of SPDE models driven by PRM, and established a large

deviation result. The second application, studied in Chapter 5, concerns stochastic

averaging problems for two time scale stochastic differential equations (SDE) with

full dependence.

Although now there are many papers that treat large deviation problems for

SPDEs driven by Gaussian noises (see [15] and references therein), there are almost no

results available that systematically cover the setting of SPDEs with jumps. SPDEs

driven by PRM have been proposed as models for many different physical systems,

where they are viewed as a refinement of a corresponding noiseless partial differential

equation (PDE). For example, they have been used to develop models for neuronal

activity that account for synaptic impulses occurring randomly, both in time and at

different locations of a spatially extended neuron. Other applications arise in chemical

reaction-diffusion systems and stochastic turbulence models. We are interested in

the study of probabilities of deviations of the stochastic PDE from the associated

deterministic PDE. A systematic framework for such a study is through the theory

of large deviations. This is the topic of Chapters 3 and 4 of the dissertation.

In Chapter 3, we consider a family of SPDE driven by a Poisson random mea-

sure that is motivated by problems of chemical/pollutant dispersal. These equations

(taken from [52]) are stochastic versions of well studied convection-diffusion equa-

tions from hydrology literature for spread of a contaminant in a reservoir. We are

interested in the long time profile of the contaminant concentration. In particular, we
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study the probability of deviations from the nominal behavior determined by the law

of large numbers. The model is treated separately in two settings according to values

of a parameter in Section 3.3 and Section 3.4 respectively. In both cases, estimates

on probabilities of deviations are obtained by establishing a suitable large deviation

principle.

In Chapter 4, guided by the particular problem in Chapter 3, we develop the large

deviation theory for small Poisson noise perturbations of a general class of determin-

istic infinite dimensional models. In typical settings, the solutions of these stochastic

evolution equations are not smooth. In fact in many applications of interest they

are not even random fields (that is, function valued), and therefore an appropriate

framework is given through the theory of generalized functions. In this chapter, we

extend the approach based on variational representations [18] that has been very suc-

cessful for obtaining large deviation results for infinite dimensional systems driven

by Brownian noises to SPDE models driven by PRMs. As in the Brownian case the

focus here is on the small noise problem, which in the Poisson setting means that the

jump intensity is O(ε−1) and jump sizes are O(ε), where ε is a small parameter. We

consider a rather general family of models of the form

Xε
t = Xε

0 +

∫ t

0

A(s,Xε
s)ds+ ε

∫ t

0

∫
X
G(s,Xε

s−, v)Ñ ε−1

(dsdv), (1.0.1)

where Ñ ε−1
is the compensated PRM, associated with a PRM N ε−1

on [0, T ]×X with

a σ-finite mean measure ε−1λT ⊗ ν, where λT is the Lebesgue measure on [0, T ] and

ν is a σ-finite measure on the locally compact space X.

As noted previously, a key issue with a Poisson noise model is the selection of

an appropriate state space, since there is little spatial regularity. However, many

of these foundational issues have been satisfactorily resolved in [52], where pathwise

existence and uniqueness of SPDE of the form (1.0.1) are treated under rather general

conditions. We find that the estimates developed in [52] for establishing the well-
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posedness of the equation are precisely the ones that are key for the proof of the

large deviation result as well. We provide verifiable conditions on the model data

in (1.0.1) under which a large deviations principle holds. The paper based on this

chapter (joint work with A. Budhiraja and P. Dupuis) has appeared in Stochastic

Processes and their Applications [11].

Chapter 5 is devoted to stochastic systems with two time scales. In this chapter,

we study large deviation properties of stochastic differential equations with coeffi-

cients that are governed by rapidly oscillating pure jump processes. Such systems

arise in a variety of applications from stochastic networks, mathematical finance,

stochastic control and optimization; see for example [88] and references therein. The

precise mathematical model consists of a two component Markov process (Xε, Y ε)

with values in G = Rd × L, where L is a finite set which without loss of gener-

ality we take to be a finite additive group, and ε > 0 is a small parameter. The

process Xε between consecutive jumps of Y ε is a diffusion with coefficients b(x, y)

and a(x, y), and Y ε is a pure jump process described in terms of the jump intensity

function c(x, y) and the transition probability kernel R(x, y, dȳ). More precisely, if

(Xε(0), Y ε(0)) = (x, y) ∈ Rd×L, denoting by τ the first jump instant of Y ε, on [0, τ),

the process Xε satisfies

dXε(t) = b(Xε(t), y)dt+
√
εa(Xε(t), y)dW (t),

where W is a d dimensional Brownian motion. Furthermore,

P(τ > t | σ{Xε(s), s ≤ t}) = exp

{
−1

ε

∫ t

0

c(Xε(s), y)ds

}
and

P (Y ε(τ) ∈ dȳ | Xε(τ−) = x, Y ε(τ−) = y) = R(x, y, dȳ).

Thus the pair (Xε, Y ε) describes a jump-diffusion, where the diffusion component

(i.e. Xε ) has “small noise” while the jump component Y ε has jumps at rate O(1/ε).
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It is well known (cf. [73]) that as ε → 0, Xε converges to the solution of an ODE

ẋ = b̂(x), where for fixed x, b̂(x) is given in terms of the invariant distribution of

a L valued Markov process whose jump intensity function and transition kernel are

c(x, ·) and R(x, ·, ·) respectively. In this chapter we establish a LDP for {Xε}ε>0 as

ε→ 0. One of the key challenges, particularly in the proof of the lower bound, is to

handle the possible degeneracy of the diffusion coefficient.

Starting point of our analysis is a representation for the pair (Xε, Y ε) through a

stochastic evolution equation given in terms of a suitable Poisson random measure.

dXε(t) = b(Xε(t), Y ε(t))dt+
√
εa(Xε(t), Y ε(t))dW (t), Xε(0) = x0;

dY ε(t) =

∫
r∈[0,1]

k(Xε(t), Y ε(t), r)N1/ε(dr × dt), Y ε(0) = y0.

The function k and the intensity of N1/ε are of course related to the functions c(·, ·)

and R(·, ·, ·). This representation enables us to use the variational formulas for func-

tionals of Brownian motion and PRM obtained in [18]. Using techniques from the

theory of weak convergence and stochastic averaging, we then establish a LDP for

{Xε}ε>0.

The second part of this dissertation consists of Chapter 6, in which we study a

numerical scheme for invariant distributions of constrained diffusions. Constrained

diffusion processes in polyhedral domains have been proposed as approximate models

for critically loaded stochastic processing networks. Many performance measures for

stochastic networks are formulated to capture the long term behavior of the system

and a key object involved in the computation of such measures is the correspond-

ing steady state distribution. There are now several results that prove, for certain

generalized Jackson network models, the convergence of steady state distributions of

stochastic networks to those of the associated limit diffusions. Indeed, one of the

main motivations for introducing diffusion approximations in the study of stochastic
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processing systems is the expectation that diffusion models are easier to analyze than

their stochastic network counterparts. Then an important question is how to compute

the stationary distribution of reflected diffusions. Classical results of Harrison and

Williams [48] show that under certain geometric conditions on the underlying prob-

lem data, stationary densities of reflected Brownian motions have explicit product

form expressions. However, once one moves away from this special family of models

there are no explicit formulas and thus one needs to use numerical procedures.

The objective of this chapter is to propose and study the performance of one such

numerical procedure for computing stationary distributions of reflected diffusions in

polyhedral domains. We propose and analyze a Monte-Carlo scheme based on an

Euler type discretization of the reflected SDE using a single sequence of time dis-

cretization steps which decrease to zero as time approaches infinity. Appropriately

weighted empirical measures constructed from the simulated discretized reflected dif-

fusion are proposed as approximations for the invariant probability measure of the

true diffusion model. Almost sure consistency results are established that in par-

ticular show that weighted averages of polynomially growing continuous functionals

evaluated on the discretized simulated system converge a.s. to the corresponding

integrals with respect to the invariant measure. Proofs rely on constructing suitable

Lyapunov functions for tightness and uniform integrability and characterizing almost

sure limit points through an extension of Echeverria’s criteria for reflected diffusions.

Regularity properties of the underlying Skorohod problems play a key role in the

proofs. Rates of convergence for suitable families of test functions are also obtained.

A key advantage of Monte-Carlo methods is the ease of implementation, particularly

for high dimensional problems. A numerical example of a eight dimensional Skorohod

problem is presented to illustrate the applicability of the approach. The paper [12]

based on this chapter (joint work with A. Budhiraja and S. Rubenthaler) is currently

under revision for Mathematics of Operations Research.
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Chapter 2

Preliminaries

The theory of large deviations is concerned with the study of asymptotic expo-

nential decay rate of “rare events”. Consider for example, a Poisson process on a

probability space (Ω,F ,P) with constant rate γ. By law of large numbers, we know

that, for each t > 0, N(nt)
n
→ γt, a.s., as n → ∞. This in particular implies that

P(|N(nt)
n
− γt| ≥ ε) → 0, for ε > 0. Theory of large deviations gives us detailed

information about the rate of this convergence. In particular, it can be shown that

P(|N(nt)

n
− γt| ≥ ε) ∼ e−nI{[0,γt−ε]∪[γt+ε,∞)},

where I : R+ → [0,∞] is the, so called, rate function given as (see [33])

I(x) = inf
g:
∫ t
0 γg(s)ds=x

{∫ t

0

(g(s) log g(s)− g(s) + 1)ds

}
,

and I(F ) = infx∈F I(x), for a Borel set F ⊂ R+. The infimum is taken over mea-

surable maps g : [0, t] → R+. Such an estimate is obtained by establishing the

so called “Large Deviation Principle” (LDP) for the collection of random variables

{N(nt)
n
}n∈N, a precise definition of which is given in Section 2.1. A LDP in fact yields

similar estimates for a more general family of sets than unions of intervals. One

can similarly establish a LDP for the family of D([0, T ] : R+) valued random vari-

ables {N̄n}n∈N ≡ {N(nt)
n

: t ∈ [0, T ]}n∈N with a corresponding rate function. Here

and throughout, notation not introduced in the chapter can be found in the list of

notation and symbols on page x. A well known result in the theory of large devia-

tions, known as the Contraction Principle, says that, if a family of S valued random



variables {Xn} satisfies a large deviation principle with rate function I, and f is

a continuous map from S → S ′ (here S and S ′ are Polish spaces), then {f(Xn)}

satisfies a large deviation principle with rate function J , where

J(y) = inf{I(x) : x ∈ f−1(y)}, y ∈ S ′.

This result along with the LDP for N̄n tells us that continuous functionals of the

scaled Poisson process N̄n obey a LDP. Many models in probability and stochastic

dynamics are built in terms of functionals of Poisson random measures (PRM) and/or

Brownian motions (BM). However, frequently the functionals of interest are not con-

tinuous. Furthermore in many situations the functionals may depend on the scaling

parameters and hence one needs to handle a sequence of functionals. A promising

approach based on certain variational formulas to treat large deviation problems for

a family of stochastic dynamical systems driven by PRMs and/or Brownian motions,

has been initiated in [15]. These variational formulas described in Section 2.2 will be

the starting point of our work.

2.1 Large Deviation Principle and Laplace Principle.

Let {Xε, ε > 0} ≡ {Xε} be a family of random variables defined on a probability

space (Ω,F ,P) and taking values in a Polish space (i.e., a complete separable metric

space) E . Denote expectation with respect to P by E. The theory of large deviations

is concerned with events A for which probabilities P(Xε ∈ A) converge to zero expo-

nentially fast as ε→ 0. The exponential decay rate of such probabilities is typically

expressed in terms of a “rate function” I mapping E into [0,∞].

Definition 2.1.1 (Rate function). A function I : E → [0,∞] is called a rate function

on E , if for each M <∞ the level set {x ∈ E : I(x) ≤ M} is a compact subset of E .

For A ∈ B(E), we define I(A)
.
= infx∈A I(x).
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Definition 2.1.2 (Large deviation principle). Let I be a rate function on E . The

sequence {Xε} is said to satisfy the large deviation principle on E , as ε → 0, with

rate function I if the following two conditions hold:

1. Large deviation upper bound. For each closed subset F of E ,

lim sup
ε→0

ε logP(Xε ∈ F ) ≤ −I(F ).

2. Large deviation lower bound. For each open subset G of E ,

lim inf
ε→0

ε logP(Xε ∈ G) ≥ −I(G).

If a sequence of random variables satisfies a large deviation principle with some

rate function, then the rate function is unique. In many problems one is interested in

obtaining exponential estimates on functions which are more general than indicator

functions of closed or open sets. This leads to the study of the Laplace principle.

Definition 2.1.3 (Laplace principle). Let I be a rate function on E . The sequence

{Xε} is said to satisfy the Laplace principle upper bound (respectively lower bound)

on E , as ε→ 0, with rate function I if for all h ∈ Cb(E),

lim sup
ε→0

ε logE
{

exp

[
−1

ε
h(Xε)

]}
≤ − inf

x∈E
{h(x) + I(x)},

and, respectively,

lim inf
ε→0

ε logE
{

exp

[
−1

ε
h(Xε)

]}
≥ − inf

x∈E
{h(x) + I(x)}.

Laplace principle is said to hold for {Xε} with rate function I if both the Laplace

upper and lower bounds are satisfied for every bounded continuous function h.

One of the main results in the theory of large deviations is the equivalence between

the Laplace principle and the large deviation principle. For a proof we refer the reader

to Section 1.2 of [33].
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Theorem 2.1.1. The family {Xε} satisfies the Laplace principle upper (respectively

lower) bound with a rate function I on E if and only if {Xε} satisfies the large

deviation upper (respectively lower) bound for all closed sets (respectively open sets)

with the rate function I.

2.2 Infinite Dimensional Brownian Motions and Poisson Ran-

dom Measures.

In this work we are primarily interested in large deviation behavior of stochas-

tic dynamical systems driven by a Brownian motion (possibly infinite dimensional)

and/or a Poisson random measure (PRM). Key ingredients in our proofs will be

certain variational representations for nonlinear functionals of infinite dimensional

Brownian motions and general PRM’s [14, 15, 18]. Using such variational represen-

tations, general large deviation principles have been developed in [15, 18], which will

be the starting point of our study. In this section, we summarize the variational

representations and large deviation results from [15, 18].

2.2.1 Infinite Dimensional Brownian Motions and a Varia-

tional Representation.

Let {βi}∞i=1 be an infinite sequence of independent, standard, one dimensional,

{Ft}-Brownian motions given on the filtered probability space (Ω,F ,P, {Ft}). We

denote the product space of countably infinite copies of the real line by R∞. Endowed

with the topology of coordinate-wise convergence, R∞ is a Polish space. We will

consider the Brownian motions on a fixed finite time interval [0, T ]. Then β = {βi}∞i=1

can be regarded as a random variable with values in the Polish space C([0, T ] : R∞)

and it represents the simplest model of an infinite dimensional Brownian motion.
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We call a function f : [0, T ]×Ω→ R elementary if there exist a, b ∈ [0, T ], a ≤ b,

and a bounded {Fa}-measurable random variableX such that f(s, ω) = X(ω)1(a,b](s).

A finite sum of elementary functions is referred to as a simple function. We denote

by S̄ the class of all simple functions. The predictable σ -field P on [0, T ]×Ω is the

σ -field generated by S̄ . For a Hilbert space (H, 〈·, ·〉), a function f : [0, T ]×Ω→ H

is called an H valued predictable process if it is P/B(H) -measurable. Let P2(H)

be the family of all H valued predictable processes φ such that
∫ T

0
||φ(s)||2ds < ∞

a.s., where || · || is the norm in the Hilbert space H. We denote by l2 the Hilbert

space of real sequences a = (ai) satisfying ||a||2 =
∑∞

i=1 a
2
i <∞, with the usual inner

product. Note that in the case H = l2, u ∈ P2(H) = P2(l2) can be written as

u = {ui}∞i=1 , where ui ∈P2(R) and
∑∞

i=1

∫ T
0
|ui(s)|2ds <∞ a.s.

The following variational representation for functionals of an infinite dimensional

Brownian motion is taken from [15] (see also [14]).

Theorem 2.2.1. Let f ∈Mb(C([0, T ] : R∞)). Then,

− logE(exp{−f(β)}) = inf
u∈P2(l2)

E
(

1

2

∫ T

0

||u(s)||2ds+ f

(
β +

∫ ·
0

u(s)ds

))
.

This result and its variants have been used in several studies of large deviations

for small noise stochastic dynamical systems [5, 15, 17, 23, 30, 31, 61, 63, 69, 71, 74,

81, 86, 89, 90].

2.2.2 Poisson Random Measure and a Variational Represen-

tation.

Let X be a locally compact Polish space. LetMFC(X) be the space of all measures

ν on (X,B(X)) such that ν(K) <∞ for every compact K in X. EndowMFC(X) with

the weakest topology such that for every f ∈ Cc(X) (the space of continuous functions

11



with compact support), the function ν 7→ 〈f, ν〉 =
∫
X f(u)dν(u), ν ∈ MFC(X) is

continuous. This topology can be metrized such thatMFC(X) is a Polish space (see

e.g. [18]). Fix T ∈ (0,∞) and let XT = [0, T ]×X. Fix a measure ν ∈MFC(X), and

let νT = λT ⊗ ν, where λT is Lebesgue measure on [0, T ].

We recall that a Poisson random measure n on XT with mean measure (or intensity

measure) νT is a MFC(XT ) valued random variable such that for each B ∈ B(XT )

with νT (B) < ∞, n(B) is Poisson distributed with mean νT (B) and for disjoint

B1, ..., Bk ∈ B(XT ), n(B1), ...,n(Bk) are mutually independent random variables (cf.

[49]). Denote by P the measure induced by n on (MFC(XT ),B(MFC(XT ))). Then

letting M = MFC(XT ), P is the unique probability measure on (M,B(M)) under

which the canonical map, N : M→M, N(m)
.
= m, is a Poisson random measure with

intensity measure νT . With applications to large deviations in mind, we also consider,

for θ > 0, probability measures Pθ on (M,B(M)) under which N is a Poisson random

measure with intensity θνT . The corresponding expectation operators will be denoted

by E and Eθ, respectively. We now present a variational representation, obtained in

[18], for − logEθ(exp[−F (N)]), where F ∈ Mb(M), in terms of a Poisson random

measure constructed on a larger space. We begin by describing this construction.

Sometimes, the analysis of large deviation properties for a process is simplified

considerably by a convenient control representation for the exponential integrals ap-

pearing in the Laplace principle. In contrast with the case of Brownian motion, the

formulation of a useful representation is not immediate for Poisson noise. With a

Poisson random measure, one needs a control that alters the intensity at time t and

for jump type x from that of the underlying PRM to essentially any value in [0,∞)

in a non-anticipating fashion. To accommodate this form of control, we augment the

space of jump times and jump types by a variable r ∈ [0,∞), and consider in place

of the original PRM one whose intensity is a product of νT and Lebesgue measure on

12



r. The desired jump intensities can then be obtained by “thinning” this variable.

More precisely, we let Y = X×[0,∞) and YT = [0, T ]×Y. Let M̄ =MFC(YT ) and

let P̄ be the unique probability measure on (M̄,B(M̄)) under which the canonical map,

N̄ : M̄ → M̄, N̄(m)
.
= m, is a Poisson random measure with intensity measure ν̄T =

λT ⊗ ν ⊗ λ∞, with λ∞ Lebesgue measure on [0,∞). The corresponding expectation

operator will be denoted by Ē. Let Ft
.
= σ{N̄((0, s] × A) : 0 ≤ s ≤ t, A ∈ B(Y)},

and let F̄t denote the completion under P̄. We denote by P̄ the predictable σ-field

on [0, T ]× M̄ with the filtration {F̄t : 0 ≤ t ≤ T} on (M̄,B(M̄)). Let Ā be the class

of all (P̄ ⊗B(X))/B[0,∞)-measurable maps ϕ : XT × M̄→ [0,∞). For ϕ ∈ Ā, define

a counting process Nϕ on XT by

Nϕ((0, t]×U) =

∫
(0,t]×U

∫
(0,∞)

1[0,ϕ(s,x)](r)N̄(dsdxdr), t ∈ [0, T ], U ∈ B(X). (2.2.1)

Nϕ is then the controlled random measure, with ϕ selecting the intensity for the

points at location x and time s, in a possibly random but non-anticipating way.

When ϕ(s, x, m̄) ≡ θ ∈ (0,∞), we write Nϕ = N θ. Note that N θ has the same

distribution with respect to P̄ as N has with respect to Pθ. Define l : [0,∞)→ [0,∞)

by

l(r) = r log r − r + 1, r ∈ [0,∞).

For any ϕ ∈ Ā the quantity

LT (ϕ) =

∫
XT
l(ϕ(t, x, ω))νT (dtdx) (2.2.2)

is well defined as a [0,∞]-valued random variable. The following is a representation

formula proved in [18].

Theorem 2.2.2. Let F ∈Mb(M). Then, for θ > 0,

− logEθ(e−F (N)) = − log Ē(e−F (Nθ)) = inf
ϕ∈Ā

Ē
[
θLT (ϕ) + F (N θϕ)

]
.
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2.2.3 Representations for Functionals of both a PRM and an

Infinite dimensional BM.

One can combine Theorems 2.2.1 and 2.2.2 to obtain variational representations

for a joint functional of a BM and a PRM. We begin by constructing a suitable

probability space. As before, denote the product space of countable infinite copies of

the real line by R∞, and recall that with the topology of coordinate-wise convergence

R∞ is a Polish space. We denote the Polish space C([0, T ] : R∞) by W and denote

by V the product space W ×M. Let V̄ = W × M̄. Abusing notation from Section

2.2.2, let N : V → M be defined by N(w,m) = m, for (w,m) ∈ V. The map

N̄ : V̄→ M̄ is defined analogously. Let β = {βi}∞i=1 be coordinate maps on V defined

as βi(w,m) = wi. Analogous maps on V̄ are denoted again as β = {βi}∞i=1. Define

Gt
.
= σ{N((0, s] × A), βi(s) : 0 ≤ s ≤ t, A ∈ B(X), i ≥ 1}. For θ > 0, denote by Pθ

the unique probability measure on (V,B(V)) such that under Pθ:

1. {βi}∞i=1 is an i.i.d. family of standard Brownian motions.

2. N is a PRM with intensity measure θνT .

3. {βi(t), t ∈ [0, T ]}, {N((0, t]× A), t ∈ [0, T ]} are Gt-martingales for every i ≥ 1,

and A ∈ B(X) with ν(A) <∞.

Define (P̄, {Ḡt}) on (V̄,B(V̄)) analogous to (Pθ, {Gt}) by replacing (N, θνT ) with

(N̄ , ν̄T ) in the above. Throughout we will consider the P̄-completion of the filtration

{Ḡt} and denote it by {F̄t}. We denote by P̄ the predictable σ-field on [0, T ] × V̄

with the filtration {F̄t : 0 ≤ t ≤ T} on (V̄,B(V̄)). Let Ā be the class of all

(P̄ ⊗B(X))/B[0,∞) measurable maps ϕ : XT × V̄→ [0,∞). For ϕ ∈ Ā, define LT (ϕ)

and the counting process Nϕ on XT as in Section 2.2.2.
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As in Section 2.2.1, we define P2(l2) ≡P2 as

P2 =

{
ψ = {ψi}∞i=1 : ψi is P̄/B(R) measurable and

∫ T

0

||ψ(s)||2ds <∞, a.s.P̄
}
,

and set Ū = P2 × Ā. For ψ ∈ P2 define L̃T (ψ) = 1
2

∫ T
0
||ψ(s)||2ds and for u =

(ψ, ϕ) ∈ Ū , set L̄T (u) = LT (ϕ) + L̃T (ψ). For ψ ∈ P2, let βψ = (βψi ) be defined as

βψi (t) = βi(t) +
∫ t

0
ψi(s)ds, t ∈ [0, T ], i ∈ N. The following result is taken from [18].

Theorem 2.2.3. Let F ∈Mb(V). Then, for θ > 0,

− logEθ(e−F (β,N)) = − log Ē(e−F (β,Nθ)) = inf
u=(ψ,ϕ)∈Ū

Ē
[
θL̄T (u) + F (β

√
θψ, N θϕ)

]
.

2.3 Some General Large Deviation Results.

In this section, we summarize the main large deviation result of [18] that is ob-

tained as a consequence of Theorem 2.2.3.

Let {Gε}ε>0 be a family of measurable maps from V to U, where U is some Polish

space. We will present below a sufficient condition for large deviation principle to

hold for the family Zε = Gε
(√

εβ, εN ε−1
)

, as ε→ 0. Define

S̃N =
{
f ∈ L2([0, T ] : l2) : L̃T (f) ≤ N

}
.

Then S̃N is a compact subset of L2([0, T ] : l2) with the weak topology on the Hilbert

space. We will throughout consider S̃N endowed with this topology. Also, let

SN = {g : XT → [0,∞) : LT (g) ≤ N} . (2.3.1)

A function g ∈ SN can be identified with a measure νgT ∈ M, defined by νgT (A) =∫
A
g(s, x)νT (dsdx), A ∈ B(XT ). This identification induces a topology on SN , under

which SN is a compact space. The latter is essentially a consequence of the super-

linear growth of l and the lower semi-continuity property of relative entropy, as is

shown in the following lemma.

15



Lemma 2.3.1. For every N ∈ N, {νgT : g ∈ SN} is a compact subset of M.

Proof. One way to metrize the topology on M, described in Section 2.2.2 (making M

a Polish space), is the following. Consider a sequence of open sets {Oj, j ∈ N} such

that Ōj ⊂ Oj+1, each Ōj is compact, and ∪∞j=1Oj = XT (cf. Theorem 9.5.21 of [72]).

Let φj(x) = [1− d(x,Oj)] ∨ 0, where d denotes the metric on XT . Given any µ ∈M,

let µ(j) ∈M be defined by
[
dµ(j)/dµ

]
(x) = φj(x). Given µ, ν ∈M, let

d̄(µ, ν) =
∞∑
j=1

2−j
∥∥µ(j) − ν(j)

∥∥
BL
,

where ‖·‖BL denotes the bounded, Lipschitz norm on MF (XT ):

‖ µ(j) − ν(j)
∥∥∥
BL

= sup

{∫
XT
fdµ(j) −

∫
XT
fdν(j) : |f |∞ ≤ 1, |f(x)− f(y)| ≤ d(x, y) for all x, y ∈ XT

}
.

It is straightforward to check that d̄(µ, ν) defines a metric under which M is a

Polish space, and that convergence in this metric is essentially equivalent to weak

convergence on each compact subset of XT . Specifically, d̄(µn, µ) → 0 if and only if

for each j ∈ N, µ
(j)
n → µ(j) in the weak topology as finite nonnegative measures, i.e.,

for all f ∈ Cb(XT ) ∫
XT
fdµ(j)

n →
∫
XT
fdµ(j).

Let µn = νgnT . We first show that {µn} ⊂M is relatively compact for any sequence

{gn} ⊂ SN . For this, by using a diagonalization method, it suffices to show that

{µ(j)
n } ⊂ M is relative compact for every j. Next, since µ

(j)
n are supported on a

compact subset of XT given as Kj = {x|φj(x) 6= 0}, to show {µ(j)
n } ⊂ M is relative

compact it suffices to show supn µ
(j)
n (XT ) < ∞. The last property will follow from

LT (gn) ≤ N , for all n, and the super-linear growth of l. Specifically, let c ∈ (0,∞)
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be such that z ≤ c(l(z) + 1) for all z ∈ [0,∞). Then

sup
n
µ(j)
n (XT ) = sup

n

∫
XT
φj(v)gn(v)νT (dv)

≤ sup
n

∫
Kj

gn(v)νT (dv) ≤ c(N + νT (Kj)) <∞.

Next, suppose that along a subsequence (without loss of generality, also denoted

by {µn}), µn → µ. We would like to show that µ is of the form νgT , where g ∈ SN .

For this we will use the lower semi-continuity property of relative entropy. The result

holds trivially if µ = 0. Suppose now µ 6= 0. Then there exists j0 ∈ N such that for

all j ≥ j0, infn∈N ν
gn
T (Ōj) > 0. For j ≥ j0, define

cj = ν
(j)
T (XT ), ν̄jT = ν

(j)
T /cj;

cjn = µ(j)
n (XT ), µ̄jn = µ(j)

n /cjn;

cjµ = µ(j)(XT ), µ̄j = µ(j)/cjµ.

Then ν̄jT , µ̄jn and µ̄j are probability measures, and

R(µ̄jn||ν̄
j
T ) =

1

cjn

∫
XT

[
log(gn(v)) + log(

cj

cjn
)

]
gn(v)φj(v)νT (dv)

=
1

cjn

∫
XT

[l(gn(v)) + gn(v)− 1]φj(v)νT (dv) + log(
cj

cjn
)

≤ 1

cjn
N + 1− cj

cjn
+ log(

cj

cjn
).

Since µ
(j)
n → µ(j), we have cjn → cjµ. Thus by the lower semi-continuity property of

relative entropy,

R(µ̄j||ν̄jT ) ≤ lim inf
n→∞

R(µ̄jn||ν̄
j
T )

≤ lim inf
n→∞

1

cjn
N + 1− cj

cjn
+ log(

cj

cjn
)

≤ 1

cjµ
N + 1− cj

cjµ
+ log(

cj

cjµ
) <∞ (2.3.2)
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Thus µ(j) is absolutely continuous with respect to ν
(j)
T . Define gj = dµ(j)/dν

(j)
T , and

g = gj on Ōj. It is easily checked that g is defined consistently, and that µ = νgT .

Also by a direct calculation,

R(µ̄(j)||ν̄(j)
T ) =

1

cjµ

∫
XT
l(g(v))φj(v)νT (dv) + 1− cj

cjµ
+ log(

cj

cjµ
).

Combining the last display with (2.3.2), we have
∫
XT
l(g(v))φj(v)νT (dv) ≤ N , for all

j. Sending j →∞, we see that g ∈ SN . The result follows.

Throughout we consider the topology on SN obtained through the above iden-

tification making it a compact space. Let S̄N = S̃N × SN with the usual product

topology. Let

ŪN = {u = (ψ, ϕ) ∈ Ū : u(w) ∈ S̄N , P̄ a.e.w}.

Finally, let S̄ =
⋃
N≥1 S̄

N and S =
⋃
N≥1 S

N . The following is the main condition for

a large deviation property to hold for Zε = Gε
(√

εβ, εN ε−1
)

.

Condition 2.3.1. There exists a measurable map G0 : V→ U such that the following

hold.

1. For N ∈ N, let (fn, gn), (f, g) ∈ S̄N be such that (fn, gn) → (f, g) as n → ∞.

Then

G0

(∫ .

0

fn(s)ds, νgnT

)
→ G0

(∫ .

0

f(s)ds, νgT

)
.

2. For N ∈ N, let uε = (ψε, ϕε), u = (ψ, ϕ) ∈ ŪN be such that, as ε → 0, uε

converges in distribution to u. Then

Gε
(√

εβ +

∫ .

0

ψε(s)ds, εN
ε−1ϕε

)
⇒ G0

(∫ .

0

ψ(s)ds, νϕT

)
.

For φ ∈ U, let S̄φ =
{

(f, g) ∈ S̄ : φ = G0(
∫ .

0
f(s)ds, νgT )

}
. Let Ī : U → [0,∞] be

defined by

Ī(φ) = inf
q=(f,g)∈S̄φ

{
L̄T (q)

}
, φ ∈ U. (2.3.3)
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The following theorem from [18] gives the large deviation principle for {Zε}ε>0

under Condition 2.3.1.

Theorem 2.3.1. For ε > 0, let Zε be defined as Zε = Gε
(√

εβ, εN ε−1
)

and suppose

that Condition 2.3.1 holds. Then Ī given in (2.3.3) is a rate function on U and the

family {Zε}ε>0 satisfies a large deviation principle, as ε→ 0, with rate function Ī.

Large deviation results of functionals that depend only on a PRM follow as a

special case of Theorem 2.3.1. For future reference we record this special case below.

Let

UN = {ϕ ∈ Ā : ϕ(w) ∈ SN ,P a.e.w}.

Let {Gε}ε>0 be a family of measurable maps from M to U. The following is the

analogue of Condition 2.3.1.

Condition 2.3.2. There exists a measurable map G0 : M→ U such that the following

hold.

1. For N ∈ N, let gn, g ∈ SN be such that gn → g as n→∞. Then

G0 (νgnT )→ G0 (νgT ) .

2. For N ∈ N, let ϕε, ϕ ∈ UN be such that, as ε→ 0, ϕε converges in distribution

to ϕ. Then

Gε
(
εN ε−1ϕε

)
⇒ G0 (νϕT ) .

For φ ∈ U, define Sφ = {g ∈ S : φ = G0(νgT )}. Let I : U→ [0,∞] be defined by

I(φ) = inf
g∈Sφ
{LT (g)} , φ ∈ U. (2.3.4)

The following theorem is an immediate consequence of Theorem 2.3.1.

19



Theorem 2.3.2. For ε > 0, let Zε be defined as Zε = Gε
(
εN ε−1

)
, and suppose that

Condition 2.3.2 holds. Then I defined as in (2.3.4) is a rate function on U and the

family {Zε}ε>0 satisfies a large deviation principle, as ε→ 0, with rate function I.
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Chapter 3

A Stochastic Partial Differential Equation Model for Spread

of a Pollutant

3.1 Introduction.

In hydrology literature (see [43] for example), ordinary differential equations

(ODEs) of the following type are often used to model the spread of a pollutant

in a river or air, or the water quality in a basin or reservoir:

D4φ− V · ∇φ− αφ+Q = 0.

Here φ(x) represents the water quality or chemical concentration at location x; 4 is

the Laplacian operator modeling the diffusion of the chemical; D is the coefficient

capturing the strength of the diffusion effect. The term V ·∇φ models the convection

term, here ∇ is the gradient operator and V is the velocity vector. The scalar α ≥ 0

can be interpreted as the rate of dissipation of the chemical and Q ≥ 0 is the “load”

or pollutant issued from outside.

The above deterministic equation models the steady state density profile of the

pollutant and does not take into account any temporal or stochastic variability. A

dynamic stochastic model for pollutant spread described through a stochastic partial

differential equation (SPDE) driven by a PRM was studied in [52]. We begin by

describing this model in a one dimensional setting, where it describes the evolution

of a pollutant deposited at different sites along a river. We will then present some

time asymptotic results that describe the long term profile of the pollutant through



certain law of large number (LLN) type results. Our goal in this work is to study

probabilities of deviations from the nominal behavior, described through the LLN,

by establishing a suitable large deviation principle. Theorem 2.3.2 will be a crucial

ingredient in our proofs.

3.2 Dynamic SPDE Model.

The model considered here describes spread of concentration of undesired chemi-

cals which are released by several different sources along a river. Suppose that there

are r such sources located at different sites κ1, ...,κr ∈ [0, l], where the interval [0, l]

represents the river. These sources release chemicals according to independent Pois-

son streams Ni(t), with rate fi, i = 1, ..., r, and with random magnitudes Aji (ω),

j ∈ N, i = 1, ...r, which are mutually independent with magnitudes in the ith stream

having common distribution Fi(da). The chemicals released by the ith stream are

deposited uniformly over (κi − εi, κi + εi), i = 1, ..., r. We assume without loss of

generality that ∪ri=1(κi − εi, κi + εi) ⊆ [0, l].

Formally, the model describing the evolution of concentration is written as follows:

∂

∂t
u(t, x) =D

∂2

∂x2
u(t, x)− V ∂

∂x
u(t, x)− αu(t, x)

+
r∑
i=1

∑
j

Aji (ω)

2εi
1(κi−εi,κi+εi)(x)1t=τ ji (ω),

(3.2.1)

where τ ji (ω), j ∈ N are the jump times of Ni. The equation is considered with a

Neumann boundary condition on [0, l].

The above equation can be regarded as a stochastic partial differential equation

driven by a Poisson random measure with solutions in the dual of a suitable nuclear

space. The Poisson random measure N driving the equation is a random measure on
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the space R+ × [0, l]× R+ given as

N([0, t]× A×B) =
r∑
i=1

1A(κi)

Ni(t)∑
j=1

1B(Aji (ω)), t ≥ 0, A ∈ B([0, l]), B ∈ B(R+),

and the intensity measure of N is given as

ν0([0, t]×A×B) = t
r∑
i=1

1A(κi)fiFi(B), A ∈ B([0, l]), B ∈ B(R+), t ≥ 0. (3.2.2)

We now describe the solution space for the equation in (3.2.1). We begin with

some basic definitions (see [52]).

Definition 3.2.1. Let E be a vector space. A family of norms {|| · ||p : p ∈ N0} on E

is called compatible if for any p, q ∈ N0, whenever {xn} ⊆ E is a Cauchy sequence

with respect to both || · ||p and || · ||q, and converges to 0 with respect to one norm,

then it also converges to 0 with respect to the other norm. The family is said to be

increasing if for all x ∈ E , ||x||p ≤ ||x||q whenever p ≤ q.

Definition 3.2.2. A separable Frèchet space Φ is called a countable Hilbertian

space if its topology is given by an increasing sequence || · ||n, n ∈ N0, of compatible

Hilbertian norms. A countable Hilbertian space Φ is called nuclear if for each n ∈ N0

there exists m > n such that the canonical injection from Φm into Φn is Hilbert-

Schmidt, where Φk, for each k ∈ N0, is the completion of Φ with respect to || · ||k.

If Φ, {Φn}n∈N0 are as above, then {Φn}n∈N0 is a sequence of decreasing Hilbert

spaces and Φ = ∩∞n=0Φn. Identify Φ′0 with Φ0 using Riesz’s representation theorem,

and denote Φ′n (the dual of Φn) by Φ−n and corresponding norm by || · ||−n, n ∈ N0.

Then {Φ−n}n∈N0 is a sequence of increasing Hilbert spaces, Φ′ (the dual of Φ) is

sequentially complete and Φ′ = ∪∞n=0Φ−n (see Theorem 1.3.1 of [52]).

A natural Countable Hilbertian Nuclear Space (CHNS) associated with equation

(3.2.1) is described as follows (see [52]).
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Let ρ ∈MF [0, l] be defined as

ρ(A) =

∫
A

e−2cxdx; A ∈ B[0, l],

where c = V
2D

. Let H = L2([0, l], ρ). Then {φj}j∈N0 defined below defines a complete

orthonormal system on H of eigen-functions of L which is defined as

L = D
∂2

∂x2
− V ∂

∂x
, (3.2.3)

with Neumann boundary condition with corresponding eigenvalues denoted by {−λj}j∈N0 .

φ0(x) =

√
2c

1− e−2cl
, φj(x) =

√
2

l
ecx sin

(
jπ

l
x+ αj

)
;

αj = tan−1(−jπ
lc

), j = 1, 2, ...;

λ0 = 0, λj = D

(
c2 +

(
jπ

l

)2
)
.

For φ ∈ H and n ∈ Z, let

||φ||2n =
∞∑
j=0

〈φ, φj〉2(1 + λj)
2n,

where 〈φ, ψ〉 is the inner product on H. Define

Φ = {φ ∈ H : ||φ||n <∞,∀n ∈ Z},

and let Φn be the completion of Φ with respect to the norm || · ||n. Note that Φ0 = H,

and it can be checked that Φ is a CHNS.

We consider SDEs driven by PRMs with solutions in duals of nuclear spaces.

Namely, we consider a SDE of the form

Xt = X0 +

∫ t

0

A(s,Xs)ds+

∫ t

0

∫
X
G(s,Xs−, v)Ñ(dsdv) (3.2.4)

on the dual Φ′ of a CHNS Φ, where A : R+ × Φ′ → Φ′, G : R+ × Φ′ × X → Φ′ are

measurable maps, X is a locally compact space, N(dsdv) is a PRM on R+ × X with
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intensity measure λ ⊗ ν, λ is the Lebesgue measure and ν is a σ-finite measure on

(X,B(X)), and Ñ(dsdv) is the compensated random measure of N , i.e.

Ñ([0, t]×B) = N([0, t]×B)− tν(B),

∀B ∈ B(X) with ν(B) < ∞. Theorem 6.3.1 of [52] gives sufficient conditions on A

and G under which (3.2.4) has a unique solution.

For the equation in (3.2.1), X = [0, l]×R+ and the measurable maps A and G do

not depend on the first variable and first two variables, respectively. More precisely,

A : Φ′ → Φ′ and G : [0, l]× R+ → Φ′ are given as

A(u)[φ] = u[Lφ]− αu[φ] +
r∑
i=1

aifi
2εi

∫ κi+εi

κi−εi
φ(y)ρ(y)dy, φ ∈ Φ, u ∈ Φ′,

G(x, a)[φ] =


a

2εi

∫ κi+εi
κi−εi φ(y)ρ(y)dy x = κi, i = 1, · · · , r

0 otherwise

; (x, a) ∈ [0, l]×R+, φ ∈ Φ,

where ai =
∫
R+
aFi(da), L is defined as in (3.2.3). Note that the operator −L on H is

positive definite and self-adjoint. With this notation, equation (3.2.1) can be written

in the form of (3.2.4) as

ut = u0 +

∫ t

0

A(us)ds+

∫ t

0

∫
[0,l]×R+

G(x, a)Ñ(dsdxda). (3.2.5)

Using Theorem 6.3.1 of [52], (3.2.5) has a unique Φ′-valued solution. More pre-

cisely, let (Ω,F ,P, {Ft}) be a filtered probability space on which is given a Poisson

random measure N with intensity measure ν0 as in (3.2.2), such that N([0, t]× A×

B)− ν0([0, t]×A×B) is a {Ft} martingale for all A ∈ B([0, l]), B ∈ B(R+) satisfy-

ing ν0([0, t]× A× B) <∞, t ≥ 0; and let u0 be a F0 measurable Φ′ valued random

variable. Then there exists a unique {Ft} adapted Φ′ valued process {ut}t≥0 such

that ∀φ ∈ Φ, the following integral equation is satisfied,

ut[φ] = u0[φ] +

∫ t

0

A(us)[φ]ds+

∫ t

0

∫
[0,l]×[0,∞)

G(x, a)[φ]Ñ(dsdxda). (3.2.6)
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In fact, for the setting considered here, it follows from Theorem 7.3.1 of [52] that if

u0 ∈ H a.s., then u. ∈ D([0,∞), H) a.s..

We can also use Green’s function to represent the solution. The Green’s function

of the operator L with Neumann boundary conditions is given by

p(t, x, y) =
∞∑
j=0

e−λjtφj(x)φj(y), t ≥ 0, x, y ∈ [0, l].

In terms of p, the solution u(t, x) can be represented as

u(t, x) = e−αt
∫ l

0

u0(y)p(t, x, y)ρ(y)dy

+

∫ t

0

∫
[0,l]×[0,∞)

e−α(t−s) a

2εi
1y=κi

(∫ κi+εi

κi−εi
p(t− s, x, u)ρ(u)du

)
N(dsdyda).

We set bi =
∫
R+
a2Fi(da) and ψj(κi, εi) = 1

2εi

∫ κi+εi
κi−εi φj(y)ρ(y)dy for future use.

We are interested in the time asymptotic behavior of ut. This behavior is quite

different for the cases α = 0, and α > 0. Thus we consider the two cases separately

in the following two sections.

3.3 The case α = 0.

Throughout this section we will assume that α = 0. In this case, limiting behavior

of 1
t
ut, as t→∞, is studied in [52]. In particular the following result is obtained.

Theorem 3.3.1. As t tends to infinity,

1

t
ut →

r∑
i=1

fiaiψ0(κi, εi)φ0 in H, almost surely.

Note that φ0 is a constant function, thus the above result says that asymptoti-

cally, the rate of growth of the concentration at each site is the same and is given

explicitly in terms of the mean deposition magnitudes ai. This suggests that these

26



mean deposition amounts can be used as a basis for regulating chemical levels. How-

ever, looking at these values alone can be misleading, and one would like to know

the probability of deviations, particularly large deviations, from the nominal values

described through the right side of the above expression. Thus it is of interest to

study the large deviation behavior of 1
t
ut as t becomes large. More specifically, we

will establish a large deviation principle for the sequence {unt
n

: n ∈ N} of H valued

random variables, as n→∞.

For this study, we will use Theorem 2.3.2. For simplicity, we take the initial profile

u0 to be a fixed (non-random) element of H. In order to apply Theorem 2.3.2, we

will take the underlying filtered probability space to be the space (M̄,B(M̄), P̄, F̄t)

introduced in Section 2.2.2 with X = [0, l]×[0,∞), and ν(dx×da) = ν0([0, 1]×dx×da).

Let, for n ∈ N, ηn = 1
n
Nn, where Nn is as introduced below (2.2.1). From Theorem

7.3.1 of [52], it follows that for each n ∈ N, there is a unique D([0, 1], H) valued

process {ûn} solving the following stochastic integral equation

ûnt =
1

n
Tntu0 + φ0

∫ t

0

∫
[0,l]×[0,∞)

G(x, a)[φ0]ηn(ds, dx, da)

+
∞∑
j=1

φj

∫ t

0

∫
[0,l]×[0,∞)

G(x, a)[φj]e
−λjn(t−s)ηn(ds, dx, da),

(3.3.1)

where for u ∈ Φ and t > 0, Ttu ∈ H is defined as Ttu = etLu =
∑∞

j=0 e
−λjtu[φj]φj.

From unique solvability of (3.2.5) it follows that {ûnt : 0 ≤ t ≤ 1} has the same

distribution as { 1
n
unt : 0 ≤ t ≤ 1} on D([0, 1] : H). Thus we will instead consider the

large deviation behavior of {ûn : n ∈ N} as a sequence of D([0, 1] : H) ≡ U valued

random variables.

We will impose the following exponential integrability condition on the magnitude

distribution of the pollutant.
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Assumption 3.3.1. There exists δ > 0 such that∫ ∞
0

eδa
2

Fi(da) <∞, ∀i = 1, ..., r.

Due to pathwise unique solvability of (3.3.1), one can represent, for each n ∈ N,

ûn = Gn( 1
n
Nn) for some measurable map Gn : M→ U. Define the map G0 : M→ U

as follows. For ν ∈M, let

G0(ν) = φ0

∫ t

0

∫
[0,l]×[0,∞)

G(x, a)[φ0]ν(ds, dx, da),

if
∫

[0,t]×[0,l]×[0,∞)
|G(x, a)[φ0]|ν(ds, dx, da) <∞. If the latter integral is infinite, we set

G0(ν) = 0 (i.e. the zero trajectory in D([0, 1] : H)). Define I through (2.3.4).

The following is the main result of this section.

Theorem 3.3.2. Under Assumption 3.3.1, I is a rate function on U and the family

{ûn}n∈N satisfies a large deviation principle, as n → ∞, on D([0, 1] : H), with rate

function I.

The key step in the proof of Theorem 3.3.2 is the verification of Condition 2.3.2

(with T = 1). We first consider Part 1 of the condition.

Part 1 of Condition 2.3.2:

Let gn, g ∈ SN be such that gn → g. We will like to show that G0 (νgn1 )→ G0 (νg1)

in U (recall the definition of νg1 from Section 2.3). Here

G0 (νgn1 ) (t) = φ0

∫ t

0

∫ l

0

∫ ∞
0

G(x, a)[φ0]gn(s, x, a)νT (ds, dx, da)

= φ0

r∑
i=1

∫ t

0

∫ ∞
0

a

2εi

(∫ κi+εi

κi−εi
φ0(y)ρ(y)dy

)
fign(s, κi, a)Fi(da)ds

= φ0

r∑
i=1

ψ0(κi, εi)fi

∫ t

0

∫ ∞
0

agn(s, κi, a)Fi(da)ds.
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So it suffices to show that∫ t

0

∫ ∞
0

agn(s, κi, a)Fi(da)ds→
∫ t

0

∫ ∞
0

ag(s, κi, a)Fi(da)ds,

uniformly in t ∈ [0, 1] for all i. This is shown in the following lemma.

Lemma 3.3.1. Under Assumption 3.3.1, we have∫ t

0

∫ ∞
0

agn(s, κi, a)Fi(da)ds→
∫ t

0

∫ ∞
0

ag(s, κi, a)Fi(da)ds,

uniformly in t ∈ [0, 1] for all i, as n→∞.

Proof. Fix i ∈ {1, ..., r}. Let ΨL : [0,∞) → [0,∞) be a continuous and bounded

function such that ΨL(a) ≤ (L ∧ a) and

ΨL(a) =


a a ∈ [0, L];

0 a ∈ [L+ 1,∞).

(3.3.2)

Recalling the topology on SN , we have, for every t ∈ [0, 1],∫ t

0

∫ ∞
0

ΨL(a)gn(s, κi, a)Fi(da)ds→
∫ t

0

∫ ∞
0

ΨL(a)g(s, κi, a)Fi(da)ds. (3.3.3)

In order to show that the convergence in (3.3.3) is uniform in t ∈ [0, 1], we will obtain

a suitable equicontinuity estimate. Note that∫ ∞
0

∫ 1

0

l(gn(s, κi, a))dsFi(da) ≤ N

fi
, ∀i = 1, ..., r. ∀n ∈ N. (3.3.4)

We will use the following inequality. For a, b ∈ (0,∞),

ab ≤ eσa +
1

σ
(b log b− b+ 1) = eσa +

1

σ
l(b), ∀σ ∈ (1,∞). (3.3.5)

Fix 0 ≤ t0 < t1 ≤ 1. Then, for any σ ∈ (1,∞),∣∣∣∣∫ t1

t0

∫ ∞
0

ΨL(a)gn(s, κi, a)Fi(da)ds

∣∣∣∣ ≤ L

∣∣∣∣∫ t1

t0

∫ ∞
0

gn(s, κi, a)Fi(da)ds

∣∣∣∣
≤ L

[
(t1 − t0)eσ +

1

σfi
N

]
,
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where the last inequality follows from using (3.3.4) and applying (3.3.5) with a = 1

and b = gn. Equicontinuity of

[0, 1] 3 t 7→
∫ t

0

∫ ∞
0

ΨL(a)gn(s, κi, a)Fi(da)ds

is an immediate consequence of the above estimate. Thus the convergence in (3.3.3)

holds uniformly in t ∈ [0, 1].

Next, we show that

sup
0≤t≤1

sup
n
|
∫ t

0

∫ ∞
0

(ΨL(a)− a)gn(s, κi, a)Fi(da)ds| → 0, as L→∞. (3.3.6)

Fix ε > 0. Using (3.3.5) once again, the above quantity is bounded above by

sup
n

∫ 1

0

∫
a≥L

agn(s, κi, a)Fi(da)ds

≤
∫ 1

0

∫
a≥L

eσaFi(da)ds+ sup
n

1

σ

∫ 1

0

∫ ∞
0

l(gn(s, κi, a))Fi(da)ds

≤
∫
a≥L

eσaFi(da) +
N

σfi
.

Let σ0 be large enough, so that N
σfi

< ε
2

for all σ ≥ σ0. Fix σ ≥ σ0. From Assumption

3.3.1,
∫
eσaFi(da) < ∞. Thus choosing L0 sufficiently large, we have ∀L ≥ L0,∫

a≥L e
σaFi(da) < ε

2
. This proves (3.3.6) and the result follows.

As an immediate consequence of the lemma and calculations preceding it, we have

the following result.

Proposition 3.3.1. Suppose Assumption 3.3.1 holds. Then for every N ∈ N, and

gn, g ∈ SN , n ∈ N, such that gn → g, as n→∞, we have G0 (νgn1 )→ G0 (νg1) .

Next, we proceed to verify Part 2 of Condition 2.3.2.

Part 2 of Condition 2.3.2:
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Fix N ∈ N, and let ϕn, ϕ ∈ UN be such that ϕn ⇒ ϕ, as n→∞. We will like to

show that Gn
(

1
n
Nnϕn

)
⇒ G0 (νϕ1 ) .

Note that

Gn
(

1

n
Nnϕn

)
(t) =

1

n
Tntu0 + φ0

∫ t

0

∫
[0,l]×[0,∞)

G(x, a)[φ0]
1

n
Nnϕn(ds, dx, da)

+
∞∑
j=1

φj

∫ t

0

∫
[0,l]×[0,∞)

G(x, a)[φj]e
−λjn(t−s) 1

n
Nnϕn(ds, dx, da),

and

G0 (νϕ1 ) (t) = φ0

r∑
i=1

ψ0(κi, εi)fi

∫ t

0

∫ ∞
0

aϕ(s, κi, a)Fi(da)ds.

In order to prove the above weak convergence, the following lemma will be used.

For i = 1, ..., r, n ∈ N, let ϕin(s, a) = ϕ(s, κi, a); (s, a) ∈ [0, 1]× [0,∞).

Lemma 3.3.2. Fix i ∈ {1, ..., r}. Suppose that for all c > 0,
∫∞

0
ecaFi(da) < ∞.

Then, for j ≥ 1,

Sn(j) = sup
0≤t≤1

(∫ t

0

∫ ∞
0

ae−λjn(t−s)ϕin(s, a)Fi(da)ds

)
→ 0, a.s. as n→∞.

Also supj∈N0
supn∈N S

n(j) <∞, a.s.

Proof. From (3.3.5), for each c > 1,

Sn(j) ≤
∫ 1

0

∫ ∞
0

aϕin(s, a)Fi(da)ds

≤
∫ ∞

0

ecaFi(da) +
1

c

∫ 1

0

∫ ∞
0

l(ϕin(s, a))Fi(da)ds

≤
∫ ∞

0

ecaFi(da) +
N

cfi
, a.s.

This proves the second statement in the lemma.
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Recall the truncation function ΨL introduced in (3.3.2). Note that

Sn(j) ≤ sup
0≤t≤1

(∫ t

0

∫ ∞
0

ΨL(a)e−λjn(t−s)ϕin(s, a)Fi(da)ds

)
+ sup

0≤t≤1

(∫ t

0

∫
a≥L

ae−λjn(t−s)ϕin(s, a)Fi(da)ds

)
=Sn1 (j) + Sn2 (j).

The second term can be bounded as follows.

Sn2 (j) = sup
0≤t≤1

(∫ t

0

∫
a≥L

ae−λjn(t−s)ϕin(s, a)Fi(da)ds

)
≤
∫
|a|≥L

epaFi(da) +
1

p

∫ t

0

∫ ∞
0

l(ϕin(s, a))Fi(da)ds

=θ1(L, p) + θ2(p).

Note that θ2(p)→ 0 as p→∞, and for each p > 0, θ1(L, p)→ 0 as L→∞.

For the first term, for c > 0, let M(c) = infx∈[c,∞)
l(x)
x

. Then M(c) → ∞ as

c→∞. Note that, for j ≥ 1,

Sn1 (j) ≤ sup
0≤t≤1

(∫
[0,t]×[0,∞)

1|ϕin(s,a)|≤cΨL(a)e−λjn(t−s)ϕin(s, a)Fi(da)ds

)
+ sup

0≤t≤1

(∫
[0,t]×[0,∞)

1|ϕin(s,a)|>cΨL(a)e−λjn(t−s)ϕin(s, a)Fi(da)ds

)
≤Lc sup

0≤t≤1

(∫ t

0

e−λjn(t−s)ds

)
+

L

M(c)

∫
[0,1]×[0,∞)

1|ϕin(s,a)|>cl(ϕ
i
n(s, a))Fi(da)ds

≤ Lc

nλj
+

LN

M(c)fi
.

Thus we have

Sn(j) ≤Sn1 (j) + Sn2 (j)

≤ Lc

nλj
+

LN

M(c)fi
+ θ1(L, p) + θ2(p), ∀L, p, c.

Finally, given ε > 0, choose p, s.t. θ2(p) < ε/4; then choose L large enough, s.t.

θ1(L, p) < ε/4; then choose M large enough, s.t. LN
Mfi

< ε/4; next let c be large

enough so that M(c) > M . Finally choose N0 s.t. if n ≥ N0, Lc
nλj

< ε/4. Then

Sn(j) ≤ ε, for all n ≥ N0. The result follows.
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We now prove Part 2 of Condition 2.3.2.

Proposition 3.3.2. Let ϕn, ϕ ∈ UN be such that ϕn ⇒ ϕ, as n → ∞. Then under

Assumption 3.3.1, we have

Gn
(

1

n
Nnϕn

)
⇒ G0 (νϕ1 ) .

Proof. Write

Gn
(

1

n
Nnϕn

)
(t) = T n0 (t) + T n1 (t) + T n2 (t),

where, for t ∈ [0, 1],

T n0 (t) =
1

n
Tntu0,

T n1 (t) = φ0

∫ t

0

∫
[0,l]×[0,∞)

G(x, a)[φ0]
1

n
Nnϕn(ds, dx, da),

T n2 (t) =
∞∑
j=1

T n2j =
∞∑
j=1

φj

∫ t

0

∫
[0,l]×[0,∞)

G(x, a)[φj]e
−λjn(t−s) 1

n
Nnϕn(ds, dx, da).

From the contraction property of {Tt},

||T n0 (t)||0 = || 1
n
Tntu0||0 ≤

1

n
||u0||0 → 0,

as n→∞. Thus T n0 → 0 in C([0, 1] : H).

Next,

T n2j(t)

= φj

∫ t

0

∫
[0,l]×[0,∞)

G(x, a)[φj]e
−λjn(t−s) 1

n
Nnϕn(ds, dx, da)

= φj

r∑
i=1

∫ t

0

∫
[0,l]×[0,∞)

a

2εi

(∫ κi+εi

κi−εi
φj(y)ρ(y)dy

)
1{κi}(x)e−λjn(t−s) 1

n
Nnϕn(ds, dx, da)

= φj

r∑
i=1

∫ t

0

∫
[0,l]×[0,∞)

aψj(κi, εi)1{κi}(x)e−λjn(t−s) 1

n
Nnϕn(ds, dx, da)

=
r∑
i=1

(
T n,i2j + T̃ n,i2j

)
,

33



where

T n,i2j = φj

∫ t

0

∫
[0,l]×[0,∞)

aψj(κi, εi)1{κi}(x)e−λjn(t−s) 1

n
Nnϕn
c (ds, dx, da),

T̃ n,i2j = φj

∫ t

0

∫
[0,l]×[0,∞)

aψj(κi, εi)1{κi}(x)e−λjn(t−s) 1

n
nϕn(s, x, a)νT (ds, dx, da)

= φj

∫ t

0

∫ ∞
0

aψj(κi, εi)e
−λjn(t−s)ϕin(s, a)fiFi(da)ds,

here Nnϕn
c = Nnϕn − nϕnν1 is the compensated random measure for Nnϕn and

ϕin(s, a) = ϕn(s, κi, a).

Assumption 3.3.1 guarantees that the condition in Lemma 3.3.2 holds. Thus

Lemma 3.3.2 gives us

||
∞∑
j=1

T̃ n,i2j (t)||20 =
∞∑
j=1

ψ2
j (κi, εi)f

2
i

(∫ t

0

∫ ∞
0

ae−λjn(t−s)ϕin(s, a)Fi(da)ds

)2

≤
∞∑
j=1

ψ2
j (κi, εi)f

2
i S

n(j)2.

Since for each j ∈ N, Sn(j) goes to zero a.s., as n→∞, and Sn(j) is a.s. uniformly

bounded in j and n, and
∑∞

j=1 ψ
2
j (κi, εi) < ∞, we have by dominated convergence

theorem that
∑∞

j=1 T̃
n,i

2j converges a.s. in C([0, 1] : H) to 0.

Next consider T n,i2j , we will show that Ē(supt∈[0,1] ||
∑∞

j=1 T
n,i

2j ||20)→ 0. Define

Mn,j
t =

∫ t

0

∫
[0,l]×[0,∞)

a1{κi}(x)eλjnsNnϕn
c (ds, dx, da),

then Mn,j
t is a martingale. Note that

T n,i2j (t) = φjψj(κi, εi)

(
1

n
e−λjntMn,j

t

)
.

Using integration by parts, we have

1

n
e−λjntMn,j

t =
1

n

∫ t

0

e−λjnsdMn,j
s − λj

∫ t

0

e−λjnsMn,j
s ds. (3.3.7)
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The first term is a martingale and thus by Doob’s maximal inequality for martin-

gales,

Ē(
1

n
sup
t∈[0,1]

∫ t
0

e−λjnsdMn,j
s )2

≤ 4

n2
Ē
(∫ 1

0

e−λjnsdMn,j
s

)2

=
4

n2
Ē
(∫ 1

0

e−λjns
∫

[0,l]×[0,∞)

a1{κi}(x)eλjnsNnϕn
c (ds, dx, da)

)2

=
4

n2
Ē
(∫ 1

0

∫
[0,l]×[0,∞)

a21{κi}(x)nϕn(s, x, a)ν1(ds, dx, da)

)
=

4

n
fiĒ

(∫ 1

0

∫
[0,∞)

a2ϕin(s, a)Fi(da)ds

)
≤ 4

n
fi

(∫ ∞
0

eδa
2

Fi(da) + Ē
1

δ

∫ 1

0

∫ ∞
0

l(ϕin(s, a))Fi(da)ds

)
.

The last inequality is once more a consequence of (3.3.5). Using Assumption 3.3.1

and the fact that ϕn ∈ SN , we have that Ē( 1
n

supt∈[0,1]

∫ t
0
e−λjnsdMn,j

s )2 goes to 0

as n → ∞ and is uniformly bounded in j and n. Using the summability property∑∞
j=1 ψ

2
j (κi, εi) <∞, we now have that

∞∑
j=1

φjψj(κi, εi)

(
1

n

∫ t

0

e−λjnsdMn,j
s

)
→ 0, (3.3.8)

in probability in D([0, 1] : H), as n→∞.

Next consider the term λj
∫ t

0
e−λjnsMn,j

s ds, first we show Ē(λj
∫ t

0
e−λjnsMn,j

s ds)2 →

0 for all t ∈ [0, 1] and is bounded in j and n. Observe that if Mt is a square integrable

martingale, then for α : [0, 1]→ R with suitable integrability properties,

Ē
(∫ t

0

αsMsds

)2

= 2

∫ t

0

∫ s

0

αsαuĒMsMududs = 2

∫ t

0

∫ s

0

αsαuĒ(Mu)
2duds.

(3.3.9)
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Using this observation,

Ē
(
λj

∫ t

0

e−λjnsMn,j
s ds

)2

= 2λ2
j

∫ t

0

∫ s

0

e−λjnse−λjnuĒ(Mn,j
u )2duds

= 2λ2
j

∫ t

0

∫ s

0

e−λjnse−λjnuĒ
(∫ u

0

∫ ∞
0

a2e2λjnvnϕin(v, a)fiFi(da)dv

)
duds

= 2nfiλ
2
j Ē
(∫ t

0

∫ ∞
0

a2e2λjnvϕin(v, a)

∫ t

v

e−λjnu
∫ t

u

e−λjnsdsdudvFi(da)

)
=
fi
n
Ē
(∫ t

0

∫ ∞
0

(e−λjn(t−v) − 1)2a2ϕin(v, a)Fi(da)dv

)
≤ fi
n
Ē
(∫ t

0

∫ ∞
0

a2ϕin(v, a)Fi(da)dv

)
.

Using similar argument as used in obtaining (3.3.8), we have Ē
(
λj
∫ t

0
e−λjnsMn,j

s ds
)2

goes to 0 as n→∞ and is bounded in j, n and t. This proves that

Zn(t) ≡
∞∑
j=1

φjψj(κi, εi)

(
λj

∫ t

0

e−λjnsMn,j
s ds

)
→ 0, (3.3.10)

in probability, as n → ∞ for each t. In order to prove uniform convergence, we use

Aldous and Kurtz tightness criteria (see [53]). Given τ a stopping time such that

τ ≤M a.s. for some constant M ∈ (0, 1], note that

Ē||Zn(τ + δ)− Zn(τ)||20

=
∞∑
j=1

ψ2
j (κi, εi)Ē

(
λj

∫ τ+δ

τ

e−λjnsMn,j
s ds

)2

=
∞∑
j=1

ψ2
j (κi, εi)λ

2
j Ē
(∫ 1

0

1[τ,τ+δ](s)e
−λjnsMn,j

s ds

)2

= 2
∞∑
j=1

ψ2
j (κi, εi)λ

2
j Ē
(∫ 1

0

1[τ,τ+δ](s)e
−λjns

∫ s

0

1[τ,τ+δ](u)e−λjnuĒ[(Mn,j
u )2|Fτ ]duds

)

≤ 2
∞∑
j=1

ψ2
j (κi, εi)λ

2
j

(∫ 1

0

e−λjns
∫ s

0

e−λjnuĒ(Mn,j
u )2duds

)

≤ fi
n

∞∑
j=1

ψ2
j (κi, εi)Ē

(∫ 1

0

∫ ∞
0

a2ϕin(v, a)Fi(da)dv

)
.
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Thus

lim
δ→0

lim
n→∞

Ē||Zn(τ + δ)− Zn(τ)||20 = 0,

which along with the pointwise convergence in (3.3.10) yields that Zn → 0 in proba-

bility in C([0, 1] : H). Combining this with (3.3.7) and (3.3.8), we have
∑∞

j=1 T
n,i

2j → 0

in probability in D([0, 1] : H). Thus we have shown that T n2 → 0 in probability in

D([0, 1] : H), as n→∞.

We now show that T n1 ⇒ G0 (νϕ1 ). For this, by a standard argument based on

Skorokhod representation theorem, we can assume without loss of generality that

ϕn → ϕ a.s., as n→∞.

Then, from Lemma 3.3.1, a.s.,∫ t

0

∫ ∞
0

aϕin(s, a)Fi(da)ds→
∫ t

0

∫ ∞
0

aϕi(s, a)Fi(da)ds, (3.3.11)

uniformly on [0, 1]. Thus

T n1 (t)− G0 (νϕ1 ) (t) =φ0

∫
[0,t]×[0,l]×[0,∞)

G(x, a)[φ0]
1

n
Nnϕn
c (ds, dx, da)

+ φ0

(∫
[0,t]×[0,l]×[0,∞)

G(x, a)[φ0]ϕn(s, x, a)ν1(ds, dx, da)

−
∫

[0,t]×[0,l]×[0,∞)

G(x, a)[φ0]ϕ(s, x, a)ν1(ds, dx, da)

)
.

From (3.3.11), the second term goes to zero uniformly on [0, 1] a.s as n → ∞. For

the first term, notice that

Ē

∣∣∣∣∣ sup
t∈[0,1]

∫
[0,t]×[0,l]×[0,∞)

G(x, a)[φ0]
1

n
Nnϕn
c (ds, dx, da)

∣∣∣∣2
≤ 4

n2
Ē
∫

[0,1]×[0,l]×[0,∞)

(G(x, a)[φ0])2nϕnν1(ds, dx, da)

=
4

n
fiψ

2
0(κi, εi)Ē

∫ 1

0

∫ ∞
0

a2ϕin(s, a)Fi(da)ds.

The expression on the right side converges to 0 as n→∞, since

sup
n∈N

E
∫ 1

0

∫ ∞
0

a2ϕin(s, a)Fi(da)ds <∞,
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from Assumption 3.3.1 (see the estimate in (3.3.8)). Thus T n1 converges in D([0, 1] :

H) in probability to G0 (νϕ1 ). The result follows.

Finally we can complete the proof of Theorem 3.3.2.

Proof of Theorem 3.3.2. From Proposition 3.3.1 and 3.3.2, we see that Condition

2.3.2 is satisfied. Theorem now is an immediate consequence of Theorem 2.3.2.

3.4 The case α > 0.

In this section, we will assume that α > 0. This condition says that the chemical

amounts dissipate at a strictly positive rate. The following theorem from [52] shows

that, in this case, ut converges weakly to a random field.

Theorem 3.4.1. If u0 ∈ Φ0, then ut converges weakly in Φ0 to a random field

u∞. For x ∈ [0, l], let u(x) = Eu∞(x). Then u(x) is the solution of the following

differential equation

D
d2u(x)

dx2
− V du(x)

dx
− αu(x) +Q(x) = 0, (3.4.1)

where

Q(x) =
r∑
i=1

aifi
2εi

1(κi−εi,κi+εi)(x).

Remark 3.4.1. By a solution of (3.4.1) we mean a u ∈ Φ0 such that ∀φ ∈ Φ

〈u, Lφ〉0 − α〈u, φ〉0 +
r∑
i=1

aifi
2εi

∫ κi+εi

κi−εi
φ(y)ρ(y)dy = 0.

The above result in particular shows that as t→∞, ut
t
→ 0 in Φ0, in probability

and thus in order to obtain a nontrivial time asymptotic result it is more natural to

consider time averages of the form 1
T

∫ T
0
usds. The following result establishes a law

of large numbers for such time averages.
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Theorem 3.4.2. Let u0 ∈ Φ0. Then, as T →∞, 1
T

∫ T
0
utdt converges to u in Φ0, in

probability.

Proof. From (3.2.6) and recalling that {φj} are eigenfunctions of L, it follows that

ut[φj] =e−(α+λj)tu0[φj] +
r∑
i=1

fiaiψj(κi, εi)e
−(α+λj)t

∫ t

0

e(α+λj)sds

+ e−(α+λj)t

∫
[0,t]×[0,l]×[0,∞)

e(α+λj)sG(x, a)[φj]Nc(ds, dx, da).

Thus

1

T

∫ T

0

utdt =
1

T

∫ T

0

(
∞∑
j=0

e−(α+λj)tu0[φj]φj

)
dt

+
∞∑
j=0

φj

r∑
i=1

fiaiψj(κi, εi)
1

T

∫ T

0

1− e−(α+λj)t

α + λj
dt

+
∞∑
j=0

φj
1

T

∫ T

0

e−(α+λj)t

∫
[0,t]×[0,l]×[0,∞)

e(α+λj)sG(x, a)[φj]Nc(ds, dx, da)dt

=T1 + T2 + T3.

(3.4.2)

For the first term note that

||T1||0 = || 1
T

∫ T

0

e−αt(Ttu0)dt||0 ≤
1

T

∫ T

0

e−αt||(Ttu0)||0dt ≤ ||u0||0
1− e−αT

Tα
→ 0

(3.4.3)

as T →∞. Therefore, T1 goes to zero.

We next show that T3 goes to zero in probability. Write T3 as

T3 =
∞∑
j=0

(
1

T

∫ T

0

αjtM
j
t dt

)
φj,

where

αjt = e−(α+λj)t

M j
t =

∫
[0,t]×[0,l]×[0,∞)

e(α+λj)sG(x, a)[φj]Nc(ds, dx, da).
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Noting that M j
t is a martingale for each j, we have from (3.3.9) that,

E
(

1

T

∫ T

0

αjtM
j
t dt

)2

=
2

T 2

∫ T

0

∫ t

0

e−(α+λj)te−(α+λj)sE(M j
s )2dsdt.

Also,

E(M j
s )2 =

∫
[0,s]×[0,l]×[0,∞)

e2(α+λj)uG2(x, a)[φj]ν(du, dx, da)

=
r∑
i=1

ψ2
j (κi, εi)fi

∫
[0,s]×[0,∞)

e2(α+λj)ua2Fi(da)du

=
r∑
i=1

ψ2
j (κi, εi)fibi

e2(α+λj)s − 1

2(α + λj)
,

where recall that bi =
∫

[0,∞)
a2Fi(da).

Thus

E
(

1

T

∫ T

0

αjtM
j
t dt

)2

=
2

T 2

r∑
i=1

ψ2
j (κi, εi)fibi

∫ T

0

∫ t

0

e−(α+λj)te−(α+λj)s
e2(α+λj)s − 1

2(α + λj)
dsdt

=
2

T 2

(
T

2(α + λj)2
− e−2(α+λj)T − 1

4(α + λj)3
+
e−(α+λj)T − 1

(α + λj)3

) r∑
i=1

ψ2
j (κi, εi)fibi

≤ 2

T 2

(
T

2α2
+

1

4α3
+

1

α3

) r∑
i=1

ψ2
j (κi, εi)fibi → 0,

as T →∞. And since
∑∞

j=1 ψ
2
j (κi, εi) <∞, ∀i = 1, ..., r, we have

E||T3||20 =
∞∑
j=0

E
(

1

T

∫ T

0

αjtM
j
t dt

)2

→ 0. (3.4.4)

Finally we argue that T2 → u in Φ0. Recall that

T2 =
∞∑
j=0

φj

r∑
i=1

fiaiψj(κi, εi)
1

T

∫ T

0

1− e−(α+λj)t

α + λj
dt.

Also, from Remark 3.4.1

u =
∞∑
j=0

φj

r∑
i=1

fiaiψj(κi, εi)
1

α + λj
.
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Thus

||T2 − u||20 =
∞∑
j=0

(
r∑
i=1

fiaiψj(κi, εi)
1

T

∫ T

0

e−(α+λj)t

α + λj
dt

)2

≤ r

∞∑
j=0

(
r∑
i=1

f 2
i a

2
iψ

2
j (κi, εi)

)(
1

T

∫ T

0

e−(α+λj)t

α + λj
dt

)2

= r

∞∑
j=0

(
r∑
i=1

f 2
i a

2
iψ

2
j (κi, εi)

)(
1

T

1− e−(α+λj)T

(α + λj)2

)2

≤ r

T 2α4

∞∑
j=0

(
r∑
i=1

f 2
i a

2
iψ

2
j (κi, εi)

)
→ 0,

(3.4.5)

as T → ∞, using the fact that
∑∞

j=1 ψ
2
j (κi, εi) < ∞. The result follows upon using

(3.4.3),(3.4.4) and (3.4.5) in (3.4.2).

Next we will study the large deviation behavior of 1
T

∫ T
0
utdt as T becomes large.

Equivalently, one can consider the family { 1
n

∫ nt
0
usds : t ∈ [0, 1]} as n becomes large.

We begin by observing that for n ∈ N, {ũnt }t∈[0,1] given as the pathwise solution of

the integral equation

ũnt =

∫ t

0

e−αnsTnsu0ds

+ n

∞∑
j=0

φj

∫ t

0

e−(α+λj)ns

∫
[0,s]×[0,l]×[0,∞)

e(α+λj)nuG(x, a)[φj]ηn(du, dx, da)

on the probability space (M̄,B(M̄), F̄t), where ηn = 1
n
Nn, has the same distribution

as { 1
n

∫ nt
0
usds}t∈[0,1]. Here, as in Section 3.3, X = [0, l] × [0,∞), and M̄, B(M̄), F̄t

and 1
n
Nn are defined in the same way as in Section 2.2.2. We will now study the

large deviation behavior of the sequence of U = D([0, 1] : H) valued random variables

{ũn}n∈N.

Note that one can represent, for each n ∈ N, ũn = Gn( 1
n
Nn) for some measurable

map Gn : M→ U. Define the map G0 : M→ U as follows. For ν ∈M, let

G0(ν)(t) =
∞∑
j=0

φj
1

α + λj

∫
[0,t]×[0,l]×[0,∞)

G(x, a)[φj]ν(ds, dx, da), t ∈ [0, 1];
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if
∑∞

j=0
1

(α+λj)2

∣∣∣∫[0,t]×[0,l]×[0,∞)
G(x, a)[φj]ν(ds, dx, da)

∣∣∣2 < ∞. If the latter integral is

infinite, we set G0(ν) = 0 (i.e. the zero trajectory in D([0, 1] : H)). Define I through

(2.3.4).

The following is the main result of this section.

Theorem 3.4.3. Under Assumption 3.3.1, I is a rate function on U and the family

{ũn}n∈N satisfies a large deviation principle, as n → ∞, on D([0, 1] : H), with rate

function I.

As in Section 3.3, the key step in the proof of Theorem 3.4.3 is once more the

verification of Condition 2.3.2. We first consider Part 1 of the condition.

Part 1 of Condition 2.3.2:

Let gn, g ∈ SN be such that gn → g. We will like to show that G0 (νgn1 )→ G0 (νg1).

For t ∈ [0, 1] (integrability of the right side below is readily verified),

G0 (νgn1 ) (t) =
∞∑
j=0

φj
1

α + λj

∫
[0,t]×[0,l]×[0,∞)

G(x, a)[φj]gn(s, x, a)ν(ds, dx, da)

=
∞∑
j=0

φj
1

α + λj

r∑
i=1

fiψj(κi, εi)

∫
[0,t]×[0,∞)

agin(s, a)Fi(da)ds,

where gin(s, a) = gn(s, κi, a). Thus

||G0 (νgn1 ) (t)− G0 (νg1) (t)||20

=
∞∑
j=0

1

(α + λj)2

(
r∑
i=1

fiψj(κi, εi)

∫
[0,t]×[0,∞)

a(gin − gi)Fi(da)ds

)2

≤
∞∑
j=0

1

(α + λj)2

(
r∑
i=1

f 2
i ψ

2
j (κi, εi)

)(
r∑
i=1

(∫
[0,t]×[0,∞)

a(gin − gi)Fi(da)ds

)2
)

→0,

uniformly in t ∈ [0, 1], since from Lemma 3.3.1,
∫

[0,t]×[0,∞)
a(gin − gi)Fi(da)ds goes to

zero uniformly for every i ∈ {1, ..., r}, and
∑∞

j=1 ψ
2
j (κi, εi) <∞. Thus we have shown

the following result.
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Proposition 3.4.1. Under Assumption 3.3.1, for every N ∈ N, and gn, g ∈ SN ,n ≥

1, such that gn → g, we have

G0 (νgnT )→ G0 (νgT )

in U.

Next, we proceed to verify Part 2 of Condition 2.3.2.

Part 2 of Condition 2.3.2:

Let ϕn, ϕ ∈ UN . Then, for t ∈ [0, 1],

Gn
(

1

n
Nnϕn

)
(t) =

∫ t

0

e−αnsTnsu0ds

+ n

∞∑
j=0

φj

∫ t

0

e−(α+λj)ns

∫
[0,s]×[0,l]×[0,∞)

e(α+λj)nuG(x, a)[φj]
1

n
Nnϕn(du, dx, da),

and

G0 (νϕT ) (t) =
∞∑
j=0

φj
1

α + λj

r∑
i=1

fiψj(κi, εi)

∫
[0,t]×[0,∞)

aϕi(s, a)Fi(da)ds.

Proposition 3.4.2. Let ϕn, ϕ ∈ UN be such that ϕn ⇒ ϕ, as n → ∞. Then under

Assumption 3.3.1, we have

Gn
(

1

n
Nnϕn

)
⇒ G0 (νϕT ) .

Proof. Write

Gn
(

1

n
Nnϕn

)
(t) = T n0 (t) + T n1 (t) + T n2 (t),
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where, for t ∈ [0, 1],

T n0 (t) =

∫ t

0

e−αnsTnsu0ds,

T n1 (t) =
∞∑
j=0

φj

∫ t

0

e−(α+λj)ns

∫
[0,s]×[0,l]×[0,∞)

e(α+λj)nuG(x, a)[φj]N
nϕn
c (du, dx, da),

T n2 (t) =
∞∑
j=0

φj

∫ t

0

e−(α+λj)ns

∫
[0,s]×[0,l]×[0,∞)

e(α+λj)nuG(x, a)[φj]nϕn(s, x, a)ν(du, dx, da).

For the first term note that, for t ∈ [0, 1],

||T n0 (t)||0 = ||
∫ t

0

e−αnsTnsu0ds||0 ≤
∫ t

0

e−αns||Tnsu0||0ds

≤ ||u0||0
∫ t

0

e−αnsds = ||u0||0
1− e−αnt

αn
≤ ||u0||0

αn
→ 0,

as n→∞. Thus T n0 (t)→ 0 uniformly in t ∈ [0, 1].

Next, write T n1 (t) as T n1 (t) =
∑∞

j=0 φj
∑r

i=1 T
n,i

1j (t), where

T n,i1j (t) =

∫ t

0

e−(α+λj)ns

∫
[0,s]×[0,l]×[0,∞)

e(α+λj)nu1κi(x)G(x, a)[φj]N
nϕn
c (du, dx, da)

= ψj(κi, εi)

∫ t

0

e−(α+λj)ns

∫
[0,s]×[0,l]×[0,∞)

e(α+λj)nu1κi(x)aNnϕn
c (du, dx, da).

Using similar argument as in the proof of Theorem 3.4.2, we get

Ē(T n,i1j (t))2

=Ē
(∫ t

0

e−(α+λj)ns

∫
[0,s]×[0,l]×[0,∞)

e(α+λj)nu1κi(x)G(x, a)[φj]N
nϕn
c (du, dx, da)

)2

=2Ē
(∫ t

0

∫ s

0

e−(α+λj)nse−(α+λj)nu∫
[0,u]×[0,l]×[0,∞)

e2(α+λj)nv1κi(x)G2(x, a)[φj]nϕn(s, x, a)ν(dv, dx, da)duds

)
=2nfiψ

2
j (κi, εi)Ē

(∫ t

0

∫ s

0

e−(α+λj)nse−(α+λj)nu∫
[0,u]×[0,∞)

e2(α+λj)nva2ϕin(v, a)Fi(da)dvduds

)
.
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Changing the order of integration, after some calculations, we have

Ē(T n,i1j (t))2

=
fiψ

2
j (κi, εi)

(α + λj)2n
Ē
(∫

[0,t]×[0,∞)

(1 + e−2(α+λj)n(t−v) − 2e−(α+λj)n(t−v))a2ϕin(v, a)Fi(da)dv

)
≤
fiψ

2
j (κi, εi)

(α + λj)2n
Ē
(∫

[0,t]×[0,∞)

a2ϕin(v, a)Fi(da)dv

)
.

Also note that∫
[0,t]×[0,∞)

a2ϕin(v, a)Fi(da)dv ≤
∫

[0,t]×[0,∞)

eδa
2

Fi(da)dv +
1

δ

∫
[0,t]×[0,∞)

l(ϕin)Fi(da)dv

≤
∫

[0,∞)

eδa
2

Fi(da) +
N

δfi
a.s.

Thus Ē(T n,i1j (t))2 → 0 as n → ∞. Combining this with the observation that∑∞
j=0 ψ

2
j (κi, εi) <∞, we now have that Ē||T n1 (t)||2 → 0 for all t ∈ [0, 1].

In order to show uniform convergence of T n1 to zero, we will use Aldous’ tightness

criteria (see [6]). Given τ a stopping time such that τ ≤ M a.s. for a constant M ,

note that

Ē(T n,i1j (τ + δ)− T n,i1j (τ))2

= ψ2
j (κi, εi)Ē

(∫ τ+δ

τ

e−(α+λj)ns

∫
[0,s]×[0,l]×[0,∞)

e(α+λj)nu1κi(x)aNnϕn
c (du, dx, da)ds

)2

≤ ψ2
j (κi, εi)Ē

[(∫ 1

0

1[τ,τ+δ](s)ds

)
×

(∫ 1

0

e−2(α+λj)ns

(∫
[0,s]×[0,l]×[0,∞)

e(α+λj)nu1κi(x)aNnϕn
c (du, dx, da)

)2

ds

)]

≤ ψ2
j (κi, εi)δ

∫ 1

0

e−2(α+λj)nsĒ
(∫

[0,s]×[0,l]×[0,∞)

e(α+λj)nu1κi(x)aNnϕn
c (du, dx, da)

)2

ds

= ψ2
j (κi, εi)δ

∫ 1

0

e−2(α+λj)nsĒ
(∫

[0,s]×[0,∞)

e2(α+λj)nua2nϕin(u, a)fiFi(da)du

)
ds

≤
ψ2
j (κi, εi)fiδ

2(α + λj)
Ē
(∫

[0,1]×[0,∞)

a2ϕin(u, a)Fi(da)du

)
.

Using the summability of ψ2
j (κi, εi) again, we now see that

Ē||T n1 (τ + δ)− T n1 (τ)||20 ≤ c0δ,

45



where c0 depends only on M . Tightness of {T n1 }n∈N in D([0, 1] : Φ0) follows. Combing

with pointwise convergence to 0, we now have that T n1 converges in probability to 0

in D([0, 1] : Φ0).

Finally, consider T n2 :

T n2 (t)

= n

∞∑
j=0

φj

∫ t

0

e−(α+λj)ns

∫
[0,s]×[0,l]×[0,∞)

e(α+λj)nuG(x, a)[φj]ϕn(s, x, a)ν(du, dx, da)

= n
∞∑
j=0

φj

∫ t

0

e−(α+λj)ns

r∑
i=1

∫
[0,s]×[0,∞)

e(α+λj)nuaψj(κi, εi)ϕ
i
n(u, a)fiFi(da)duds

= n
∞∑
j=0

φj

r∑
i=1

ψj(κi, εi)fi

∫
[0,t]×[0,∞)

e(α+λj)nu

∫ t

u

e−(α+λj)nsaϕin(u, a)Fi(da)dsdu

=
∞∑
j=0

1

α + λj
φj

r∑
i=1

ψj(κi, εi)fi

∫
[0,t]×[0,∞)

(1− e−(α+λj)n(t−u))aϕin(u, a)Fi(da)du.

Thus,

||T n2 (t)− G0 (νϕ1 ) (t)||20

=
∞∑
j=0

1

(α + λj)2

(
r∑
i=1

ψj(κi, εi)fi

∫
[0,t]×[0,∞)

(1− e−(α+λj)n(t−u))aϕin(u, a)Fi(da)du

)2

≤
∞∑
j=0

1

(α + λj)2

(
r∑
i=1

ψ2
j (κi, εi)f

2
i

)

×

(
r∑
i=1

(∫
[0,t]×[0,∞)

(1− e−(α+λj)n(t−u))aϕin(u, a)Fi(da)du

)2
)
.

Once again, applying the Skorokhod representation theorem, we can assume with-

out loss of generality that ϕn → ϕ a.s., as n → ∞. Then, using Lemma 3.3.1 and

Lemma 3.3.2 (with λj replaced by α + λj therein),∫ t

0

∫ ∞
0

a(1− e−(α+λj)n(t−u))ϕin(u, a)Fi(da)du→
∫ t

0

∫ ∞
0

aϕi(u, a)Fi(da)du (3.4.6)

uniformly for t ∈ [0, 1], a.s., as n→∞.

Thus we have T n2 ⇒ G0 (νϕ1 ) in D([0, 1] : H). The proposition is proved.
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Finally we can complete the proof of Theorem 3.4.3.

Proof of Theorem 3.4.3. From Proposition 3.4.1 and 3.4.2, we see that Condition

2.3.2 is satisfied. Theorem now is an immediate consequence of Theorem 2.3.2.
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Chapter 4

Large Deviations for Stochastic Partial Differential

Equations Driven by a Poisson Random Measure

4.1 Introduction.

Stochastic partial differential equations driven by Poisson random measures arise

in many different fields. For example, they have been used to develop models for

neuronal activity that account for synaptic impulses occurring randomly, both in time

and at different locations of a spatially extended neuron. Other applications arise in

chemical reaction-diffusion systems and stochastic turbulence models. The starting

point in all these application areas are deterministic partial differential equations

(PDE) that capture the underlying physics. One then develops a stochastic evolution

model driven by a suitable Poisson noise process to take into account random inputs

or effects to the nominal deterministic dynamics. In typical settings the solutions of

these stochastic evolution equations are not smooth. In fact in many applications

of interest they are not even random fields (that is, function valued), and therefore

an appropriate framework is given through the theory of generalized functions. A

systematic theory of existence and uniqueness of solutions (both weak and pathwise)

for such stochastic partial differential equations (SPDE) driven by Poisson random

measures has been developed in [52]. Our objective in this chapter is to study some

large deviation problems associated with such stochastic systems.

Large deviation properties of SPDE driven by infinite dimensional Brownian mo-

tions (e.g. Brownian sheets) have been extensively studied. In a typical such set-



ting one considers a small parameter multiplying the noise term and is interested in

asymptotic probabilities of non-nominal behavior as the parameter approaches zero.

This is the classical Freidlin-Wentzell problem that has been studied in numerous

papers (see the references in [16]). Earlier works on this family of problems were

based on ideas of [2] and relied on discretizations and other approximations com-

bined with ‘super-exponential closeness’ probability estimates. For many models of

interest, particularly those arising from fluid dynamics and turbulence, developing

the required exponential probability estimates is a daunting task and consequently

simpler alternative methods are of interest. In recent years an approach based on

certain variational representation formulas for moments of nonnegative functionals

of Brownian motions [16] has been increasingly used for the study of the small noise

large deviation problem for Brownian motion driven infinite dimensional systems

[5, 16, 17, 23, 30, 31, 61, 63, 68, 69, 71, 74, 81, 86, 89, 90]. The main appealing

feature of this approach is that it completely bypasses approximation/discretization

arguments and exponential probability estimates, and in their place essentially re-

quires a basic qualitative understanding of existence, uniqueness and stability (under

‘bounded’ perturbations) of certain controlled analogues of the underlying stochastic

dynamical system of interest.

Large deviation results for finite dimensional stochastic differential equations with

a Poisson noise term has been studied by several authors [83, 59, 33, 29]. For infinite

dimensional models with jumps, very little is available. One exception is the paper

[70] that obtains large deviation results for an Ornstein-Uhlenbeck type process driven

by an infinite dimensional Lévy noise. One reason there is relatively little work in the

Poisson noise setting is that approximation arguments that one uses for Brownian

noise models become much more onerous in the Poisson setting, and for general

infinite dimensional models the approach of [2] becomes intractable.
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With the expectation that it would prove useful for the study of large deviations

for SPDEs driven by Poisson Random Measures (PRM), the paper [18] developed a

variational representation, for moments of non negative functionals of PRMs, which

is analogous to the representation given in [14, 16] for the Brownian motion case. The

paper [18] also obtained large deviation results for a basic model of a finite dimensional

jump-diffusion to illustrate the applicability of this variational representation for the

study of large deviation problems for models with jumps. However the feasibility

of this approach for the study of complex infinite dimensional stochastic dynamical

systems driven by Poisson random measures has not been addressed to date.

The goal of this chapter is to demonstrate that the approach based on variational

representations that has been very successful for obtaining large deviation results for

system driven by Brownian noises works equally well for SPDE models driven by

PRMs. As in the Brownian case we study the small noise problem, which in the

Poisson setting means that the jump intensity is O(ε−1) and jump sizes are O(ε),

where ε is a small parameter. We consider a rather general family of models of the

form

Xε
t = Xε

0 +

∫ t

0

A(s,Xε
s)ds+ ε

∫ t

0

∫
X
G(s,Xε

s−, v)Ñ ε−1

(dsdv), (4.1.1)

where N ε−1
is a Poisson random measure on [0, T ]×X with a σ-finite mean measure

ε−1λT ⊗ ν, λT is the Lebesgue measure on [0, T ] and Ñ ε−1
([0, t]×B) = N ε−1

([0, t]×

B) − ε−1tν(B), ∀B ∈ B(X) with ν(B) < ∞, is the compensated Poisson random

measure.

As noted previously, a key issue with a Poisson noise model is the selection of an

appropriate state space, since it is natural and often convenient for there to be little

spatial regularity. However, many of these foundational issues have been satisfactorily

resolved in [52], where pathwise existence and uniqueness of SPDE of the form (4.1.1)

are treated under rather general conditions. In the framework of [52] solutions lie in
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the space of RCLL trajectories that take values in the dual of a suitable nuclear space.

This framework covers many specific application settings that have been studied in

the literature (e.g., spatially extended neuron models, chemical reaction-diffusion

systems, etc.). In a parallel with the case of Brownian noise, one finds that the

estimates needed for establishing the well-posedness of the equation are precisely the

ones that are key for the proof of the large deviation result as well.

This Chapter is organized as follows. We begin in Section 4.2 with some back-

ground results. A strengthening of the general large deviation result established in

[18] is presented. Also summarized are basic existence and uniqueness results from

[52] for SPDEs with solutions in the duals of Countably Hilbertian Nuclear Spaces

(CHNS). In Section 4.3 we study the small noise problem and state verifiable con-

ditions on the model data in (4.1.1) under which a large deviations principle holds.

Finally, the Appendix collects some auxiliary results.

4.2 Preliminaries.

4.2.1 A General Large Deviation Result.

Recall Condition 2.3.2 in Chapter 2. The first condition requires continuity in

the control for deterministic controlled systems. The second condition is a law of

large numbers result for small noise controlled stochastic systems. In both cases we

are allowed to assume the controls take values in a compact set.When applied to the

SDE (4.1.1), Gε will be the mapping that takes the PRM into Xε.

Recall the rate function defined in (2.3.4). We will state it here again for easy

reference. For φ ∈ U, define Sφ = {g ∈ S : φ = G0(νgT )}. Let I : U → [0,∞] be
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defined by

I(φ) = inf
g∈Sφ
{LT (g)} , φ ∈ U. (4.2.1)

By convention, I(φ) =∞ if Sφ = ∅.

For applications, the following strengthened form of Theorem 2.3.2 is useful. The

proof follows by straightforward modifications; for completeness we include a sketch

in the appendix of this chapter.

Let {Kn ⊂ X, n = 1, 2, . . .} be an increasing sequence of compact sets such that

∪∞n=1Kn = X. For each n let

Āb,n
.
=

{
ϕ ∈ Ā : for all (t, ω) ∈ [0, T ]× M̄, n ≥ ϕ(t, x, ω) ≥ 1/n if x ∈ Kn

and ϕ(t, x, ω) = 1 if x ∈ Kc
n} ,

and let Āb = ∪∞n=1Āb,n. Define ŨN = UN ∩ Āb.

Theorem 4.2.1. Suppose Condition 2.3.2 holds with UN replaced by ŨN . Then the

conclusions of Theorem 2.3.2 continue to hold.

4.2.2 A family of SPDEs driven by Poisson Random Mea-

sures.

In this section we introduce the basic SPDE model that will be studied in this

work. We begin by giving a precise meaning to a solution for such a SPDE and then

recall a result from [52] which gives sufficient conditions on the coefficients ensuring

the strong existence and pathwise uniqueness of solutions.

If Φ is a countable Hilbertian nuclear space (recall the definition of CHNS in 3.2.2),

and {Φn}n∈N0 are the completions of Φ with respect to {|| · ||n}n∈N0 , respectively,

then {Φn}n∈N0 is a sequence of decreasing Hilbert spaces and Φ = ∩∞n=0Φn. Recall,
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we identify Φ′0 with Φ0 using Riesz’s representation theorem, and denote the space

of bounded linear functionals on Φn by Φ−n. This space has a natural inner product

(and norm) which we denote by 〈·, ·〉−n (resp. || · ||−n), n ∈ N0 such that {Φ−n}n∈N0

is a sequence of increasing Hilbert spaces and the topological dual of Φ, denoted as

Φ′ equals ∪∞n=0Φ−n (see Theorem 1.3.1 of [52]). Elements of Φ′ need not have much

regularity. Solutions of the SPDE considered in this chapter will have sample paths

in Φ′. In fact under the conditions imposed here the solutions will take values in

D([0, T ] : Φ−n) for some finite value of n.

We will assume that there is a sequence {φj} ⊂ Φ such that {φj} is a complete

orthonormal system (CONS) in Φ0 and is a complete orthogonal system (COS) in

each Φn, n ∈ Z. Then {φnj } = {φj||φj||−1
n } is a CONS in Φn for each n ∈ Z. Define

the map θp : Φ−p → Φp by θp(φ
−p
j ) = φpj . It is easy to check that for all p ∈ N,

θp(Φ) ⊆ Φ (see Remark 6.1.1 of [52]). Also, for each r > 0, η ∈ Φ−r and φ ∈ Φr, η[φ]

is defined by the formula

η[φ] =
∞∑
j=1

〈η, φj〉−r〈φ, φj〉r. (4.2.2)

We refer the reader to Example 1.3.2 of [52] for a canonical example of such a Count-

able Hilbertian Nuclear Space (CHNS) defined using a closed densely defined self-

adjoint operator on Φ0. A similar example was considered in Section 3.2.

Following [51], we introduce the following conditions on the coefficients A and G

in equation (4.1.1). Let A : [0, T ] × Φ′ → Φ′, G : [0, T ] × Φ′ × X → Φ′ be maps

satisfying the following condition.

Condition 4.2.1. There exists p0 ∈ N such that, for every p ≥ p0, there exists q ≥ p

and a constant K = K(p, q) such that the following hold.

1. (Continuity) For all t ∈ [0, T ] and u ∈ Φ−p, A(t, u) ∈ Φ−q and G(t, u, ·) ∈

L2(X, ν; Φ−p). The maps u 7→ A(t, u) and u 7→ G(t, u, ·) are continuous.
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2. (Coercivity) For all t ∈ [0, T ], and φ ∈ Φ,

2A(t, φ)[θpφ] ≤ K(1 + ||φ||2−p).

3. (Growth) For all t ∈ [0, T ], and u ∈ Φ−p,

||A(t, u)||2−q ≤ K(1 + ||u||2−p)

and ∫
X
||G(t, u, v)||2−pν(dv) ≤ K(1 + ||u||2−p).

4. (Monotonicity) For all t ∈ [0, T ], and u1, u2 ∈ Φ−p,

2〈A(t, u1)− A(t, u2), u1 − u2〉−q

+

∫
X
||G(t, u1, v)−G(t, u2, v)||2−qν(dv) ≤ K||u1 − u2||2−q.

We now give a precise definition of a solution to the SDE (4.1.1).

Definition 4.2.1. Let (M̄,B(M̄), P̄, {F̄t}) be the filtered probability space from Sec-

tion 2.2.2. Fix p ∈ N0, suppose that X0 is a F̄0-measurable Φ−p-valued random

variable such that E||X0||2−p < ∞. A stochastic process {Xε
t }t∈[0,T ] defined on M̄ is

said to be a Φ−p-valued strong solution to the SDE (4.1.1) with initial value X0, if

(a) Xε
t is a Φ−p-valued F̄t-measurable random variable for all t ∈ [0, T ];

(b) Xε ∈ D([0, T ] : Φ−p) a.s.;

(c) there is a q ≥ p such that for all t ∈ [0, T ] and u ∈ Φ−p, A(t, u) ∈ Φ−q and

G(t, u, ·) ∈ L2(X, ν; Φ−q), and there exists a sequence {σn}n≥1 of {F̄t}-stopping times

increasing to infinity such that for each n ≥ 1,

Ē
∫ T∧σn

0

∫
X
||G(s,Xε

s, v)||2−qν(dv)ds <∞
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and

Ē
∫ T∧σn

0

||A(s,Xε
s)||2−qds <∞;

(d) for all t ∈ [0, T ], almost all ω ∈ M̄, and all φ ∈ Φ

Xε
t [φ] = X0[φ] +

∫ t

0

A(s,Xε
s)[φ]ds+ ε

∫ t

0

∫
X
G(s,Xε

s−, v)[φ]Ñ ε−1

(dsdv). (4.2.3)

In Definition 4.2.1, Ñ ε−1
is the compensated version of N ε−1

as defined below

(4.1.1), with N ε−1
having jump rates that are scaled by 1/ε and is constructed from

N̄ , as below (2.2.1).

One can similarly define a Φ−p-valued strong solution on an arbitrary filtered

probability space supporting a suitable PRM.

Definition 4.2.2 (pathwise uniqueness). We say that the Φ−p-valued solution for the

SDE (4.1.1) has the pathwise uniqueness property if the following is true. Suppose

that X and X ′ are two Φ−p-valued solutions defined on the same filtered probability

space with respect to the same Poisson random measure and starting from the same

initial condition X0. Then the paths of X and X ′ coincide for almost all ω.

The following theorem is taken from [52] (see Theorem 6.2.2, Lemma 6.3.1 and

Theorem 6.3.1 therein).

Theorem 4.2.2. Suppose that Condition 4.2.1 holds. Let X0 be a Φ−p-valued random

variable satisfying E||X0||2−p < ∞. Then for sufficiently large p1 ≥ p, the canonical

injection from Φ−p to Φ−p1 is Hilbert-Schmidt, and for all such p1 the SDE (4.1.1)

with initial value X0 has a pathwise unique Φ−p1-valued strong solution.

4.3 Large Deviation Principle.

Throughout this section we will assume that Condition 4.2.1 holds.
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Fix p ≥ p0 and X0 ∈ Φ−p. Let Xε be the Φ−p1-valued strong solution to the SDE

(4.1.1) with initial value X0. In this section, we establish an LDP for {Xε} under

suitable assumptions, by verifying the sufficient condition in Section 4.2.1.

We begin by introducing the map G0 that will be used to define the rate function

and also used for verification of Condition 2.3.2. Recall that S = ∪N≥1S
N , where SN

is defined in (2.3.1). As a first step we show that under Conditions 4.3.1 and 4.3.2

below, for every g ∈ S, the integral equation

X̃g
t = X0 +

∫ t

0

A(s, X̃g
s )ds+

∫ t

0

∫
X
G(s, X̃g

s , v)(g(s, v)− 1)ν(dv)ds (4.3.1)

has a unique continuous solution. Here g plays the role of a control. Keeping in mind

that (4.2.3) is driven by the compensated measure and that equations such as (4.3.1)

will arise as law of large number limits, g corresponds to a shift in the scaled jump

rate away from that of the original model, which corresponds to g = 1. Let

||G(t, v)||0,−p = sup
u∈Φ−p

||G(t, u, v)||−p
1 + ||u||−p

, (t, v) ∈ [0, T ]× X.

Condition 4.3.1 (Exponential Integrability). There exists δ1 ∈ (0,∞) such that for

all E ∈ B([0, T ]× X) satisfying νT (E) <∞,∫
E

eδ1||G(s,v)||20,−pν(dv)ds <∞.

Remark 4.3.1. Under Condition 4.3.1, for every δ2 ∈ (0,∞) and for all E ∈ B([0, T ]×

X) satisfying νT (E) <∞ ∫
E

eδ2||G(s,v)||0,−pν(dv)ds <∞.

The proof of Remark 4.3.1 is given in the appendix.

Remark 4.3.2. The following inequalities will be used several times. Proofs are omit-

ted.
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1. For a, b ∈ (0,∞), σ ∈ (1,∞)

ab ≤ eσa +
1

σ
(b log b− b+ 1) = eσa +

1

σ
l(b). (4.3.2)

2. For each β > 0 there exists c1(β) > 0, such that c1(β)→ 0 as β →∞ and

|x− 1| ≤ c1(β)l(x) whenever |x− 1| ≥ β.

3. For each β > 0 there exists c2(β) <∞, such that

|x− 1|2 ≤ c2(β)l(x) whenever |x− 1| ≤ β.

In particular, using the inequalities we have the following lemma.

Lemma 4.3.1. Under Conditions 4.2.1 (c) and 4.3.1, for every M ∈ N,

sup
g∈SM

∫
XT
||G(s, v)||20,−p(g(s, v) + 1)ν(dv)ds <∞, (4.3.3)

sup
g∈SM

∫
XT
||G(s, v)||0,−p|g(s, v)− 1|ν(dv)ds <∞. (4.3.4)

and

lim
δ→0

sup
g∈SM

sup
|t−s|≤δ

∫
[s,t]×X

||G(r, v)||0,−p|g(r, v)− 1|ν(dv)dr = 0. (4.3.5)

Proof. First notice that under Condition 4.2.1 (c), we have∫
XT
||G(s, v)||20,−pν(dv)ds ≤ KT <∞. (4.3.6)

Thus we only need to prove that

sup
g∈SM

∫
XT
||G(s, v)||20,−pg(s, v)ν(dv)ds <∞.

If E = {(s, v) : ||G(s, v)||0,−p ≥ 1}, then by (4.3.6) we have νT (E) < ∞. Also, from

the super linear growth of the function l, we can find κ1, κ2 ∈ (0,∞) such that for
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all x ≥ κ1, x ≤ κ2l(x). Define F = {(s, v) : g(s, v) ≥ κ1}. Then, from (4.3.2)∫
XT
||G(s, v)||20,−pg(s, v)ν(dv)ds

=

∫
E

||G(s, v)||20,−pg(s, v)ν(dv)ds+

∫
Ec
||G(s, v)||20,−pg(s, v)ν(dv)ds

≤
∫
E

eδ1||G(s,v)||20,−pν(dv)ds+

∫
E

l(
g(s, v)

δ1

)ν(dv)ds

+

∫
Ec∩F

κ2l(g(s, v))ν(dv)ds+ κ1

∫
Ec∩F c

||G(s, v)||20,−pν(dv)ds.

Combining this estimate with Condition 4.3.1 and the definition of SM , we have

(4.3.3).

We now prove (4.3.4) and (4.3.5). Note that∫
[s,t]×X

||G(r, v)||0,−p|g(r, v)− 1|ν(dv)dr

=

∫
([s,t]×X)∩E

||G(r, v)||0,−p|g(r, v)− 1|ν(dv)dr

+

∫
([s,t]×X)∩Ec

||G(r, v)||0,−p|g(r, v)− 1|ν(dv)dr.

Using (4.3.2) twice (once with b = g and once with b = 1), for any M0 ∈ (1,∞)∫
([s,t]×X)∩E

||G(r, v)||0,−p|g(r, v)−1|ν(dv)dr ≤ 2

∫
([s,t]×X)∩E

eM0||G(r,v)||0,−pν(dv)dr+
M

M0

.

(4.3.7)

Recalling Remark 4.3.2, for any θ > 0 and g ∈ SM∫
([s,t]×X)∩Ec

||G(r, v)||0,−p|g(r, v)− 1|ν(dv)dr

=

∫
([s,t]×X)∩Ec∩{|g−1|≤θ}

||G(r, v)||0,−p|g − 1|ν(dv)dr

+

∫
([s,t]×X)∩Ec∩{|g−1|>θ}

||G(r, v)||0,−p|g − 1|ν(dv)dr

≤
(∫

[s,t]×X
||G(r, v)||20,−pν(dv)dr

)1/2√
c2(θ)M + c1(θ)M. (4.3.8)

The inequality in (4.3.4) now follows on setting s = 0, t = T in (4.3.7) and (4.3.8)

and using Condition 4.2.1 (c) and Remark 4.3.1.
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Next consider (4.3.5). Fix ε ∈ (0,∞). Choose M0 such that M
M0
≤ ε

4
. Let

δ1 ∈ (0,∞) be such that

2 sup
|t−s|≤δ1

∫
([s,t]×X)∩E

eM0||G(r,v)||0,−pν(dv)dr ≤ ε

4
.

Now choose θ ∈ (0,∞) such that c1(θ)M ≤ ε
4
. Finally, choose δ2 ∈ (0,∞) such that

sup
|t−s|≤δ2

(∫
[s,t]×X

||G(r, v)||20,−pν(dv)dr

)1/2√
c2(θ)N ≤ ε

4
.

Using the above inequalities in (4.3.7) and (4.3.8), we have for all δ ≤ min{δ1, δ2},

sup
g∈SM

sup
|t−s|≤δ

∫
[s,t]×X

||G(r, v)||0,−p|g(r, v)− 1|ν(dv)dr ≤ ε

The result follows.

We will need the following stronger condition on fluctuations of G than (d) of

Condition 4.2.1. Let

||G(t, v)||1,−q = sup
u1,u2∈Φ−q ,u1 6=u2

||G(t, u1, v)−G(t, u2, v)||−q
||u1 − u2||−q

.

Condition 4.3.2. For q as in Condition 4.2.1, there exists δ ∈ (0,∞) such that for

all E ∈ B([0, T ]× X) satisfying νT (E) <∞,∫
E

eδ||G(s,v)||21,−qν(dv)ds <∞.

Remark 4.3.3. Under Conditions 4.2.1 (d) and 4.3.2, for every M ∈ N,

sup
g∈SM

∫
XT
||G(s, v)||21,−q(g(s, v) + 1)ν(dv)ds <∞,

and

sup
g∈SM

∫
XT
||G(s, v)||1,−q|g(s, v)− 1|ν(dv)ds <∞. (4.3.9)

The proof of this remark is similar to that of Lemma 4.3.1, and thus omitted.

Note that Conditions 4.3.1 and 4.3.2 hold trivially if ||G(s, v)||0,−p and ||G(s, v)||1,−q

are bounded in (s, v).
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Recall that p1 ≥ p is chosen such that the canonical injection from Φ−p to Φ−p1

is Hilbert-Schmidt.

Theorem 4.3.1. Fix g ∈ S. Suppose Conditions 4.2.1, 4.3.1 and 4.3.2 hold, and

that X0 ∈ Φ−p. Then there exists a unique X̃g ∈ C([0, T ] : Φ−p1) such that for every

φ ∈ Φ,

X̃g
t [φ] = X0[φ]+

∫ t

0

A(s, X̃g
s )[φ]ds+

∫ t

0

∫
X
G(s, X̃g

s , v)[φ](g(s, v)−1)ν(dv)ds. (4.3.10)

Furthermore, for N ∈ N, supt∈[0,T ] supg∈SN ||X̃
g
t ||−p <∞.

We note that in the above theorem X̃g is a non-random element of C([0, T ] :

Φ−p1). We can now present the main large deviations result. Recall that for g ∈ S,

νgT (dsdv) = g(s, v)ν(dv)ds. Define

G0(νgT ) = X̃g for g ∈ S, with X̃g given by (4.3.10). (4.3.11)

Let I : D([0, T ] : Φ−p1)→ [0,∞] be defined as in (4.2.1).

Theorem 4.3.2. Suppose that Conditions 4.2.1, 4.3.1 and 4.3.2 hold. Then I is a

rate function on Φ−p1, and the family {Xε}ε>0 satisfies a large deviation principle on

D([0, T ] : Φ−p1) with rate function I.

We now proceed with the proofs. In Section 4.3.1 we prove Theorem 4.3.1 and in

Section 4.3.2, we present the proof of Theorem 4.3.2.

4.3.1 Proof of Theorem 4.3.1.

The proof of the theorem is based on the following two lemmas. The first lemma

is standard and so its proof is relegated to the appendix. The norm || · || in the lemma

is the Euclidean norm in Rd.
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Lemma 4.3.2. Let a, u : [0, T ] × Rd → Rd and b : [0, T ] × Rd → R be measurable

functions such that, for a.e. s ∈ [0, T ], the maps y 7→ a(s, y), y 7→ b(s, y) and

y 7→ u(s, y) are continuous. Further suppose that for some κ ∈ (0,∞),

||a(s, y)||+ |b(s, y)| ≤ κ(1 + ||y||), for all s ∈ [0, T ], y ∈ Rd∫ T

0

sup
y∈Rd
||u(s, y)||ds ≤M <∞.

Fix x0 ∈ Rd. Then there exists x ∈ C([0, T ] : Rd) such that x satisfies the integral

equation

x(t) = x0 +

∫ t

0

a(s, x(s))ds+

∫ t

0

b(s, x(s))u(s, x(s))ds, (4.3.12)

and

sup
t∈[0,T ]

||x(t)|| ≤ (||x0||+ κ(M + T ))eκ(M+T ).

Lemma 4.3.3. Let {ad, gd}d∈N be a sequence of maps, ad : [0, T ] × Rd → Rd and

gd : [0, T ]× Rd × X→ Rd, such that the following hold.

1. For each s ∈ [0, T ] and y ∈ Rd, gd(s, y, ·) ∈ L2(X, ν;Rd) and for each s ∈

[0, T ], the maps y 7→ ad(s, y) and y 7→ gd(s, y, ·) (from Rd to L2(X, ν;Rd)) are

continuous.

2. For some κ ∈ (0,∞) and all d ∈ N,

2〈ad(s, y), y〉 ≤ κ(1 + ||y||2), ∀(s, y) ∈ [0, T ]× Rd

and ∫
X
||gd(s, v)||20ν(dv) ≤ κ, ∀s ∈ [0, T ],

where ||gd(s, v)||0 = supy∈Rd
||gd(s,y,v)||

1+||y|| .

3. For each d ∈ N, there exists κd ∈ (0,∞) with

||ad(s, y)|| ≤ κd(1 + ||y||), ∀(s, y) ∈ [0, T ]× Rd.
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4. There is a δ0 ∈ (0,∞) such that for all E ∈ B([0, T ]×X) satisfying νT (E) <∞,∫
E

eδ0||g
d(s,v)||0ν(dv)ds <∞.

Then for any d ∈ N, ψ ∈ S and xd0 ∈ Rd, the equation

xd(t) = xd0 +

∫ t

0

ad(s, xd(s))ds+

∫ t

0

∫
X
gd(s, xd(s), v)(ψ(s, v)− 1)ν(dv)ds (4.3.13)

has a solution xd ∈ C([0, T ] : Rd). Suppose that supd∈N ||xd0||2 < ∞. Then for every

M ∈ (0,∞), there exists a κ̃M ∈ (0,∞) such that

sup
d∈N

sup
t∈[0,T ]

||xd(t)||2 ≤ κ̃M , whenever ψ ∈ SM .

Proof. For each d fixed, equation (4.3.13) is the same as (4.3.12) with the following

choices of a, b and u:

a(s, y) = ad(s, y),

b(s, y) = 1 + ||y||,

and

u(s, y) =

∫
X

gd(s, y, v)

1 + ||y||
(ψ(s, v)− 1)ν(dv).

Thus in order to prove the existence of the solutions to (4.3.13), it suffices to verify

conditions in Lemma 4.3.2. The continuity of a, b and first condition in Lemma 4.3.2

are immediate. The proof of the statement

y 7→ u(s, y) is continuous for a.e. s ∈ [0, T ] (4.3.14)

is given in the appendix. Finally note that∫ T

0

sup
y∈Rd
||u(s, y)||ds ≤

∫ T

0

∫
X
||gd(s, v)||0|ψ(s, v)− 1|ν(dv)ds <∞,

where the last inequality follows from conditions (b) and (d) using a similar argument

as for (4.3.4). Thus from Lemma 4.3.2, for each d ∈ N, there exists a xd ∈ C([0, T ] :
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Rd) satisfying (4.3.13). Next note that

||xd(t)||2

= ||xd0||2 + 2

∫ t

0

〈
xd(s),

(
ad(s, xd(s)) +

∫
X
gd(s, xd(s), v)(ψ(s, v)− 1)ν(dv)

)〉
ds

≤ ||xd0||2 + 2

∫ t

0

〈
xd(s), ad(s, xd(s))

〉
ds

+ 2

∫ t

0

||xd(s)||
∫
X
||gd(s, xd(s), v)|| |ψ(s, v)− 1|ν(dv)ds

≤ ||xd0||2 + κ

∫ t

0

(1 + ||xd(s)||2)ds

+ 2

∫ t

0

||xd(s)||(1 + ||xd(s)||)
∫
X
||gd(s, v)||0|ψ(s, v)− 1|ν(dv)ds.

(4.3.15)

Let

fd(s) =

∫
X
||gd(s, v)||0|ψ(s, v)− 1|ν(dv).

Then as before, using (b) and (d), we have that

sup
ψ∈SM

sup
d∈N

∫ T

0

fd(s)ds <∞. (4.3.16)

Also, from (4.3.15) and using that c+ c2 ≤ 1 + 2c2 for c ≥ 0,

||xd(t)||2 ≤
(
||xd0||2 + κT + 2

∫ T

0

fd(s)ds

)
+

∫ t

0

||xd(s)||2(κ+ 4fd(s))ds.

Thus, by Gronwall’s inequality

||xd(t)||2 ≤
(
||xd0||2 + κT + 2

∫ T

0

fd(s)ds

)
eκt+4

∫ t
0 f

d(s)ds.

Hence if supd∈N ||xd0||2 <∞, then by (4.3.16)

sup
ψ∈SM

sup
d∈N

sup
t∈[0,T ]

||xd(t)||2 <∞.

The lemma follows.

We are now ready to prove Theorem 4.3.1.
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Proof of Theorem 4.3.1. We first argue the existence of the solutions to (4.3.10). Let

M ∈ N be such that g ∈ SM . Recall the CONS {φpk} defined by φpk = φk ‖φk‖−1
p ∈ Φp

that was introduced in Section 4.2.2. Fix d ∈ N and let π : Φ−p → Rd be the mapping

given by

π(u)k = u[φpk], k = 1, 2, . . . , d

and denote π(X0) by xd0. Define ad : [0, T ]×Rd → Rd and gd : [0, T ]×Rd ×X→ Rd

by

ad(s, x)k = A

(
s,

d∑
j=1

xjφ
−p
j

)
[φpk]

and

gd(s, x, v)k = G

(
s,

d∑
j=1

xjφ
−p
j , v

)
[φpk].

It is easy to verify that ad and gd satisfy the assumptions of Lemma 4.3.3, and

therefore there exists xd ∈ C([0, T ] : Rd) which satisfies (4.3.13) with ψ replaced by

g. Define the Φ−p-valued continuous function Xd, associated with xd, by

Xd
t =

d∑
k=1

(xdt )kφ
−p
k .

Then with κ̃M as in Lemma 4.3.3, we have

sup
d∈N

sup
t∈[0,T ]

||Xd
t ||2−p ≤ κ̃M . (4.3.17)

Recalling the definition of u[φ] from (4.2.2), let γd : Φ′ → Φ′ be a mapping given

by

γdu =
d∑

k=1

u[φpk]φ
−p
k .

Let, for d ∈ N, Ad : [0, T ] × Φ′ → Φ′ and Gd : [0, T ] × Φ′ × X → Φ′ be measurable

mappings given by

Ad(s, u) = γdA(s, γdu) and Gd(s, u, v) = γdG(s, γdu, v).
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Then Xd solves

Xd
t [φ] = Xd

0 [φ]+

∫ t

0

Ad(s,Xd
s )[φ]ds+

∫ t

0

∫
X
Gd(s,Xd

s , v)[φ](g(s, v)−1)ν(dv)ds, φ ∈ Φ.

We now argue that for each φ ∈ Φ, the family {Xd[φ]}d∈N is pre-compact in

C([0, T ] : R). From (4.3.17), we have

sup
d

sup
t∈[0,T ]

|Xd
t [φ]| ≤ sup

d
sup
t∈[0,T ]

||Xd
t ||−p||φ||p ≤

√
κ̃M ||φ||p <∞. (4.3.18)

Now we consider fluctuations of Xd[φ]. For 0 ≤ s ≤ t ≤ T ,

|Xd
t [φ]−Xd

s [φ]|

≤
∫ t

s

|Ad(r,Xd
r )[φ]|dr +

∫ t

s

∫
X
|Gd(r,Xd

r , v)[φ]| |g(r, v)− 1|ν(dv)dr

≤
∫ t

s

||Ad(r,Xd
r )||−q||φ||qdr +

∫ t

s

∫
X
||Gd(r,Xd

r , v)||−p||φ||p|g(r, v)− 1|ν(dv)dr.

Also, for (s, u) ∈ [0, T ]× Φ′

||Ad(s, u)||2−q =

∣∣∣∣∣
∣∣∣∣∣
d∑

k=1

A(s, γdu)[φpk]φ
−p
k

∣∣∣∣∣
∣∣∣∣∣
2

−q

=

∣∣∣∣∣
∣∣∣∣∣
d∑

k=1

A(s, γdu)[φqk]φ
−q
k

∣∣∣∣∣
∣∣∣∣∣
2

−q

=
d∑

k=1

(
A(s, γdu)[φqk]

)2

≤ ||A(s, γdu)||2−q

≤ K
(
1 + ||γdu||2−p

)
≤ K

(
1 + ||u||2−p

)
,

where for the second equality we use the observation

u[φqj ]φ
−q
j = u[φpj ]φ

−p
j , ∀u ∈ Φ′, p, q ≥ 0,

and the last inequality follows on observing that

||γdu||2−p ≤ ||u||2−p, ∀p ≥ 0.
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Similarly,

||Gd(s, u, v)||2−p =

∣∣∣∣∣
∣∣∣∣∣
d∑

k=1

G(s, γdu, v)[φpk]φ
−p
k

∣∣∣∣∣
∣∣∣∣∣
2

−p

=
d∑

k=1

(
G(s, γdu, v)[φpk]

)2

≤ ||G(s, γdu, v)||2−p.

Combining the above estimates we have

|Xd
t [φ]−Xd

s [φ]| ≤ ||φ||q
√
K
√

1 + κ̃M(t− s)

+ ||φ||p(1 +
√
κ̃M)

∫ t

s

∫
X
||G(r, v)||0,−p|g(r, v)− 1|ν(dv)dr.

By Lemma 4.3.1 we now see that

lim
δ→0

sup
d∈N

sup
|t−s|≤δ

|Xd
t [φ]−Xd

s [φ]| = 0. (4.3.19)

Combining (4.3.18) and (4.3.19) we now have that the family {Xd[φ]} is pre-compact

in C([0, T ] : R) for every φ ∈ Φ. Combining this with (4.3.17) we have that {Xd}d∈N is

pre-compact in C([0, T ] : Φ−p1) (cf. Theorem 2.5.2 in [52]). Let X̃ be any limit point.

Then by the dominated convergence theorem and the definitions of Ad and Gd (see

Lemma 6.1.6 and Theorem 6.2.2 of [52]), X̃ satisfies the integral equation (4.3.10).

Note that the argument also shows that whenever g ∈ SM , supt∈[0,T ] ||X̃t||2−p ≤ κ̃M .

Next, we argue uniqueness of solutions. Suppose there are two elements X̃ and X̄

of C([0, T ] : Φ−p1) such that both satisfy (4.3.10). Then, using Condition 4.2.1 (d),

||X̃t − X̄t||2−q = 2

∫ t

0

〈A(s, X̃s)− A(s, X̄s), X̃s − X̄s〉−qds

+ 2

∫ t

0

∫
X
〈G(s, X̃s, v)−G(s, X̄s, v), X̃s − X̄s〉−q(g(s, v)− 1)ν(dv)ds

≤ K

∫ t

0

||X̃s − X̄s||2−qds

+ 2

∫ t

0

||X̃s − X̄s||2−q
∫
X
||G(s, v)||1,−q|g(s, v)− 1|ν(dv)ds.
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Also, by Remark 4.3.3,∫ T

0

∫
X
||G(s, v)||1,−q|g(s, v)− 1|ν(dv)ds <∞.

An application of Gronwall’s inequality now shows that ||X̃t − X̄t||2−q = 0 for all

t ∈ [0, T ]. Uniqueness follows.

4.3.2 Proof of Theorem 4.3.2.

From Theorem 4.2.2 and by the classical Yamada-Watanabe argument (cf. [49]),

for each ε > 0, there exists a measurable map Gε : M → D([0, T ] : Φ−p1) such that,

for any PRM nε
−1

on [0, T ]×X with mean measure ε−1λT ⊗ ν given on some filtered

probability space, Gε(εnε−1
) is the unique Φ−p1 valued strong solution of (4.1.1) (with

Ñ ε−1
replaced by ñε

−1
= nε

−1− ε−1λT ⊗ ν) with initial value X0, where p1 is as in the

statement of Theorem 4.2.2. In particular, Xε = Gε(εN ε−1
) is the strong solution of

(4.1.1) with initial value X0 on (M̄,B(M̄), P̄, {F̄t}). In view of this observation, for

proof of Theorem 4.3.2, it suffices to verify Condition 2.3.2.

We begin with the following lemma.

Lemma 4.3.4. Fix N ∈ N, and let gn, g ∈ SN be such that gn → g as n → ∞. Let

h : [0, T ]× X→ R be a measurable function such that∫
XT
|h(s, v)|2νT (dvds) <∞, (4.3.20)

and for all δ2 ∈ (0,∞) ∫
E

eδ2|h(s,v)|νT (dvds) <∞, (4.3.21)

for all E ∈ B([0, T ]× X) satisfying νT (E) <∞. Then∫
XT
h(s, v)(gn(s, v)− 1)νT (dvds)→

∫
XT
h(s, v)(g(s, v)− 1)νT (dvds) (4.3.22)

as n→∞.
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Proof. We first argue that given ε > 0, there exists a compact set K ⊂ X, such that

sup
n

∫
[0,T ]×Kc

|h(s, v)||gn(s, v)− 1|ν(dv)ds ≤ ε. (4.3.23)

For each β ∈ (0,∞) and compact K in X, the left side of (4.3.23) can be bounded

by the sum of the following two terms:

T1 = sup
n

∫
([0,T ]×Kc)∩{|gn−1|>β}

|h(s, v)||gn(s, v)− 1|ν(dv)ds,

and

T2 = sup
n

∫
([0,T ]×Kc)∩{|gn−1|≤β}

|h(s, v)||gn(s, v)− 1|ν(dv)ds.

Consider T1 first. Then for every L ∈ (1,∞)

T1 ≤ sup
n

∫
([0,T ]×Kc)∩{|gn−1|>β}∩{|h|<1}

|h(s, v)||gn(s, v)− 1|ν(dv)ds

+ sup
n

∫
([0,T ]×Kc)∩{|gn−1|>β}∩{|h|≥1}

|h(s, v)||gn(s, v)− 1|ν(dv)ds

≤ sup
n

∫
([0,T ]×Kc)∩{|gn−1|>β}∩{|h|<1}

|gn(s, v)− 1|ν(dv)ds

+ 2

∫
([0,T ]×Kc)∩{|h|≥1}

eL|h(s,v)|ν(dv)ds+
1

L
sup
n

∫
XT
l(gn(s, v))ν(dv)ds.

where the inequality uses (4.3.2) twice (with b = gn and b = 1). Using inequality (b)

of Remark 4.3.2, the first term on the right side above can be bounded by

c1(β) sup
n

∫
XT
l(gn(s, v))ν(dv)ds ≤ c1(β)N.

Therefore,

T1 ≤ c1(β)N + 2

∫
([0,T ]×Kc)∩{|h|≥1}

eL|h(s,v)|ν(dv)ds+
1

L
N.

Now choose β sufficiently large so that c1(β)N ≤ ε/6, L be sufficiently large so

that N/L ≤ ε/6. Note that from (4.3.20), νT{|h| ≥ 1} < ∞ and so by (4.3.21),∫
|h|≥1

eL|h(s,v)|νT (dvds) <∞. Thus we can find a compact set K1 ⊂ X such that

2

∫
([0,T ]×Kc

1)∩{|h|≥1}
eL|h(s,v)|νT (dvds) ≤ ε/6.
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With β chosen as above, consider now the term T2. We have, using the Cauchy-

Schwartz Inequality and inequality (c) of Remark 4.3.2, for every compact K,

T 2
2 ≤

∫
[0,T ]×Kc

|h(s, v)|2ν(dv)ds× c2(β) sup
n

∫
XT
l(gn(s, v))ν(dv)ds

≤
∫

[0,T ]×Kc

|h(s, v)|2ν(dv)ds× c2(β)N.

By (4.3.20), we can choose a compact set K2, such that T2 ≤ ε/2 with K replaced by

K2. Thus by taking K = K1 ∪K2, we have on combining the above estimates that

T1 + T2 ≤ ε. This proves (4.3.23).

In order to prove (4.3.22), it now suffices to show that, for every compact K ⊂ X,∫
[0,T ]×K

h(s, v)(gn(s, v)−1)νT (dvds)→
∫

[0,T ]×K
h(s, v)(g(s, v)−1)νT (dvds). (4.3.24)

Fix a compact K ⊂ X. From (4.3.20), we have that
∫

[0,T ]×K |h(s, v)|νT (dvds) < ∞.

Thus to prove (4.3.24), it suffices to argue∫
[0,T ]×K

h(s, v)gn(s, v)νT (dvds)→
∫

[0,T ]×K
h(s, v)g(s, v)νT (dvds). (4.3.25)

When h is bounded, (4.3.25) can be established using Lemma 2.8 in [9]. For complete-

ness we include the proof in Appendix. For general h (which may not be bounded),

it is enough to show

sup
n

∫
[0,T ]×K

|h(s, v)|1{|h|≥M}gn(s, v)νT (dvds)→ 0, (4.3.26)

as M →∞. We have

sup
n

∫
[0,T ]×K

|h(s, v)|1{|h|≥M}gn(s, v)νT (dvds)

≤ sup
n

∫
([0,T ]×K)∩{|h|≥M}

eL|h(s,v)|ν(dv)ds+
1

L
sup
n

∫
XT
l(gn(s, v))ν(dv)ds

≤
∫

([0,T ]×K)∩{|h|≥M}
eL|h(s,v)|ν(dv)ds+

1

L
N.

Given ε > 0, we can choose L large enough such that N/L ≤ ε/2. Also, since∫
[0,T ]×K

eL|h(s,v)|νT (dvds) <∞,
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we can choose M0 large enough such that
∫

([0,T ]×K)∩{|h|≥M} e
L|h(s,v)|ν(dv)ds ≤ ε/2, for

all M ≥ M0. Thus for all M ≥ M0, supn
∫

[0,T ]×K |h(s, v)|1|h|≥Mgn(s, v)νT (dvds) ≤ ε.

Since ε > 0 is arbitrary, (4.3.26) follows. This proves the result.

We now proceed to verify the first part of Condition 2.3.2. Recall the map G0

defined in (4.3.11).

Proposition 4.3.1. Fix N ∈ N, and let gn, g ∈ SN be such that gn → g as n→∞.

Then

G0 (νgnT )→ G0 (νgT ) .

Proof. Let X̃n = G0 (νgnT ). By Theorem 4.3.1, there exists a constant κ̃ ∈ (0,∞) such

that

sup
n

sup
t∈[0,T ]

||X̃n
t ||−p ≤ κ̃. (4.3.27)

Using similar arguments as in the proof of Theorem 4.3.1 (cf. (4.3.18) and (4.3.19)),

we have, for any φ ∈ Φ,

sup
n

sup
t∈[0,T ]

|X̃n
t [φ]| <∞.

Also,

|X̃n
t [φ]− X̃n

s [φ]| ≤ ||φ||q
√
K
√

1 + κ̃(t− s)

+ ||φ||p(1 +
√
κ̃)

∫ t

s

∫
X
||G(r, v)||0,−p|gn(r, v)− 1|ν(dv)dr.

Using (4.3.5) in Lemma 4.3.1 we now have that

lim
δ→0

sup
n

sup
|t−s|≤δ

|X̃n
t [φ]− X̃n

s [φ]| = 0.

This proves that the family {X̃n
t [φ]} is pre-compact in C([0, T ] : R) for every φ ∈ Φ.

Combining this with (4.3.27), we have that {X̃n}n∈N is pre-compact in C([0, T ] :

Φ−p1) (see Theorem 2.5.2 in [52]). Let X̃ be any limit point. An application of the
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dominated convergence theorem shows that, along the convergent subsequence,∫ t

0

A(s, X̃n
s )[φ]ds→

∫ t

0

A(s, X̃s)[φ]ds (4.3.28)

as n→∞. Furthermore, using the convergence of X̃n to X̃, Condition 4.2.1 (d) and

(4.3.9), we have that∫ t

0

∫
X
G(s, X̃n

s , v)[φ](gn(s, v)− 1)ν(dv)ds−
∫ t

0

∫
X
G(s, X̃s, v)[φ](gn(s, v)− 1)ν(dv)ds

→ 0.

(4.3.29)

Here we have used the inequality∣∣∣G(s, X̃n
s , v)[φ]−G(s, X̃s, v)[φ]

∣∣∣ ≤ ||G(s, v)||1,−q sup
t∈[0,T ]

||X̃n
s − X̃s||−q

along with inequality (4.3.9) in Remark 4.3.3.

Also, from (4.3.27), we have that for some κ1 ∈ (0,∞)

|G(s, X̃s, v)[φ]| ≤ κ1||G(s, v)||0,−p, ∀(s, v) ∈ XT .

Combining this with Condition 4.2.1 (c) and Remark 4.3.1, we now get from Lemma

4.3.4 that, as n→∞,∫ t

0

∫
X
G(s, X̃s, v)[φ](gn(s, v)− 1)ν(dv)ds→

∫ t

0

∫
X
G(s, X̃s, v)[φ](g(s, v)− 1)ν(dv)ds.

(4.3.30)

Combining (4.3.28), (4.3.29) and (4.3.30) we now see that X̃ must satisfy the integral

equation (4.3.10) for all φ ∈ Φ. In view of unique solvability of (4.3.10) (Theorem

4.3.1), it now follows that X̃ = G0 (νgT ). The result follows.

We now proceed to the second part of Condition 2.3.2. As noted in Theorem

4.2.1, it suffices to verify this condition with UM replaced with ŨM .
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Recall from the beginning of this section that Xε = Gε(εN ε−1
) is the strong

solution of (4.1.1) with initial value X0 on (M̄,B(M̄), P̄, {F̄t}). Let ϕε ∈ ŨM , define

ψε = 1/ϕε, and recall the definitions of N̄ and ν̄T from Section 2.2.2. Then it is easy

to check (see Theorem III.3.24 of [50], see also Lemma 2.3 of [18]) that

Eεt (ψε) =

exp

{∫
(0,t]×X×[0,ε−1]

log(ψε(s, x))N̄(ds dx dr) +

∫
(0,t]×X×[0,ε−1]

(−ψε(s, x) + 1) ν̄T (ds dx dr)

}

is an
{
F̄t
}

-martingale. Consequently

Qε
T (G) =

∫
G

E εt (ψε)dP̄, for G ∈ B(M̄)

defines a probability measure on M̄, and furthermore P̄ and Qε
T are mutually abso-

lutely continuous. Also it can be verified that under Qε
T , εN ε−1ϕε has the same law as

that of εN ε−1
under P̄. Thus it follows that X̃ε = Gε(εN ε−1ϕε) is the unique solution

of the following controlled stochastic differential equation:

X̃ε
t = X0 +

∫ t

0

A(s, X̃ε
s)ds+

∫ t

0

∫
X
G(s, X̃ε

s−, v)
(
εN ε−1ϕε(dsdv)− ν(dv)ds

)
. (4.3.31)

Proposition 4.3.2. Fix M ∈ N. Let ϕε, ϕ ∈ ŨM be such that ϕε converges in

distribution to ϕ, under P̄, as ε→ 0. Then Gε(εN ε−1ϕε)⇒ G0 (νϕ) .

Proof. If X̃ε = Gε(εN ε−1ϕε), then as just noted, X̃ε is the unique solution of (4.3.31).

We now show that the family {X̃ε}ε>0 of D([0, T ] : Φ−p1) valued random variables is

tight.

We begin by showing that for some ε0 ∈ (0,∞)

sup
0<ε<ε0

E sup
0≤t≤T

||X̃ε
t ||2−p <∞. (4.3.32)

Recall that θp is defined by θp(φ
−p
j ) = φpj for the CONS {φ−pj , j ∈ Z}. By Itô’s
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formula,

||X̃ε
t ||2−p =||X0||2−p + 2

∫ t

0

A(s, X̃ε
s)[θpX̃

ε
s]ds

+ 2

∫ t

0

∫
X
〈G(s, X̃ε

s, v), X̃ε
s〉−p(ϕε − 1)ν(dv)ds

+

∫ t

0

∫
X

(
||εG(s, X̃ε

s−, v)||2−p + 2〈εG(s, X̃ε
s−, v), X̃ε

s−〉−p
)

×
(
N ε−1ϕε(dsdv)− ε−1ϕεν(dv)ds

)
+ ε

∫ t

0

∫
X
||G(s, X̃ε

s, v)||2−pϕεν(dv)ds.

(4.3.33)

For completeness we include the proof of (4.3.33) in the appendix.

For the second term in (4.3.33), we have by Condition 4.2.1 (b) that

2

∫ t

0

A(s, X̃ε
s)[θpX̃

ε
s]ds ≤ K

∫ t

0

(1 + ||X̃ε
s||2−p)ds. (4.3.34)

Also, using a+ a2 ≤ 1 + 2a2 for a ≥ 0∣∣∣∣∫ t

0

∫
X
〈G(s, X̃ε

s, v), X̃ε
s〉−p(ϕε − 1)ν(dv)ds

∣∣∣∣
≤
∫ t

0

∫
X

||G(s, X̃ε
s, v)||−p

1 + ||X̃ε
s||−p

(1 + ||X̃ε
s||−p)||X̃ε

s||−p|ϕε − 1|ν(dv)ds

≤
∫ t

0

(1 + 2||X̃ε
s||2−p)

(∫
X
||G(s, v)||0,−p|ϕε − 1|ν(dv)

)
ds

≤ L1 + 2

∫ t

0

||X̃ε
s||2−p

(∫
X
||G(s, v)||0,−p|ϕε − 1|ν(dv)

)
ds,

where L1 = supϕ∈SM
∫
XT
||G(s, v)||0,−p|ϕ− 1|ν(dv)ds <∞, from (4.3.4).

For the last term in (4.3.33), we have

ε

∫ t

0

∫
X
||G(s, X̃ε

s, v)||2−pϕεν(dv)ds

= ε

∫ t

0

∫
X

||G(s, X̃ε
s, v)||2−p

(1 + ||X̃ε
s||−p)2

(1 + ||X̃ε
s||−p)2ϕεν(dv)ds

≤ 2ε

∫ t

0

(1 + ||X̃ε
s||2−p)

(∫
X
||G(s, v)||20,−pϕεν(dv)

)
ds

≤ 2εL2 + 2ε

∫ t

0

||X̃ε
s||2−p

(∫
X
||G(s, v)||20,−pϕεν(dv)

)
ds,
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where L2 = supϕ∈SM
∫
XT
||G(s, v)||20,−pϕν(dv)ds <∞, from (4.3.3).

We split the martingale term as Mt = M1
t +M2

t , where

M1
t =

∫ t

0

∫
X
||εG(s, X̃ε

s−, v)||2−p
(
N ε−1ϕε(dsdv)− ε−1ϕεν(dv)ds

)
,

and

M2
t =

∫ t

0

∫
X

2〈εG(s, X̃ε
s−, v), X̃ε

s−〉−p
(
N ε−1ϕε(dsdv)− ε−1ϕεν(dv)ds

)
.

We now use the following Gronwall inequality:

If η and ψ ≥ 0 satisfy η(s) ≤ a+

∫ s

0

η(r)ψ(r)dr for all s ∈ [0, t],

then η(t) ≤ ae
∫ t
0 ψ(s)ds.

Using this inequality, the above estimates, and Lemma 4.3.1, we have that for some

constants L3, L4 ∈ (1,∞),

sup
0≤s≤t

||X̃ε
s||2−p ≤ L3

(
L4 + sup

0≤s≤t
|M1

s |+ sup
0≤s≤t

|M2
s |
)
, (4.3.35)

for all ε ∈ (0, 1) and t ∈ [0, T ].

For the term M1
t , we have, for ε ∈ (0, 1)

E sup
0≤s≤T

|M1
s |

≤ E
∣∣∣∣∫ T

0

∫
X
||εG(s, X̃ε

s−, v)||2−pN ε−1ϕε(dsdv)

∣∣∣∣
+ E

∣∣∣∣∫ T

0

∫
X
||εG(s, X̃ε

s−, v)||2−pε−1ϕεν(dv)ds

∣∣∣∣
≤ 2E

∫ T

0

∫
X
||εG(s, X̃ε

s, v)||2−pε−1ϕεν(dv)ds

≤ 4εE
∫ T

0

(1 + ||X̃ε
s||2−p)

(∫
X
||G(s, v)||20,−pϕεν(dv)

)
ds

≤ 4εE
∫
XT
||G(s, v)||20,−pϕεν(dv)ds+ 4εE sup

0≤s≤T
||X̃ε

s||2−p
∫
XT
||G(s, v)||20,−pϕεν(dv)ds

≤ 4εL2(1 + E sup
0≤s≤T

||X̃ε
s||2−p).

(4.3.36)
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Next consider the term M2
t . From the Burkholder-Davis-Gundy inequality, we have

that

E sup
0≤s≤T

|M2
s |

≤ 4E[M2]
1/2
T

≤ 4E
{∫ T

0

∫
X

4ε2〈G(s, X̃ε
s−, v), X̃ε

s−〉2−pN ε−1ϕε(dsdv)

}1/2

≤ 4E
{∫ T

0

∫
X

4ε2||G(s, X̃ε
s−, v)||2−p||X̃ε

s−||2−pN ε−1ϕε(dsdv)

}1/2

≤ 8E
{

sup
0≤s≤T

||X̃ε
s||2−p

∫ T

0

∫
X
ε2||G(s, X̃ε

s−, v)||2−pN ε−1ϕε(dsdv)

}1/2

≤ 1

8L3

E sup
0≤s≤T

||X̃ε
s||2−p + 128ε2L3E

(∫ T

0

∫
X
||G(s, X̃ε

s−, v)||2−pN ε−1ϕε(dsdv)

)
=

1

8L3

E sup
0≤s≤T

||X̃ε
s||2−p + 128εL3E

(∫ T

0

∫
X
||G(s, X̃ε

s, v)||2−pϕεν(dv)ds

)
≤ 1

8L3

E sup
0≤s≤T

||X̃ε
s||2−p + 256εL2L3(1 + E sup

0≤s≤T
||X̃ε

s||2−p).

(4.3.37)

For the fifth inequality, we have used the AM-GM inequality
√
ab ≤ a

2
+ b

2
with a =

1
32L3

sup0≤s≤T ||X̃ε
s||2−p and b = 32L3ε

2
∫ T

0

∫
X ||G(s, X̃ε

s−, v)||2−pN ε−1ϕε(dsdv). Combin-

ing (4.3.35), (4.3.36) and (4.3.37) we now have(
E sup

0≤s≤T
||X̃ε

s||2−p
)(

1− 4εL2L3 − 256εL2L
2
3 −

1

8

)
≤ L3L4 + 4L2L3 + 256L2L

2
3.

Choose ε0 small enough so that max{4ε0L2L3, 256ε0L2L
2
3} ≤ 1

8
. Then for ε ≤ ε0, we

have that

E sup
0≤s≤T

||X̃ε
s||2−p ≤

8

5
(L3L4 + 4L2L3 + 256L2L

2
3).

This proves (4.3.32).

In view of the estimate in (4.3.32), to prove tightness of {X̃ε}ε≤ε0 in D([0, T ] :

Φ−p1), it suffices to show that for all φ ∈ Φ, {X̃ε[φ]}ε≤ε0 is tight in D([0, T ] : R). For

the rest of the proof we will only consider ε ≤ ε0, however we will suppress ε0 from
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the notation. Fix φ ∈ Φ. Let

Cε
t =

∫ t

0

A(s, X̃ε
s)[φ]ds+

∫ t

0

∫
X
G(s, X̃ε

s, v)[φ](ϕε − 1)ν(dv)ds

and

M ε
t = ε

∫ t

0

∫
X
G(s, X̃ε

s−, v)[φ]Ñ ε−1ϕε(dsdv).

To argue tightness of Cε in C([0, T ] : R), it suffices to show (cf. Lemma 6.1.2 of [52])

that for all τ > 0, there exists δ = δτ > 0 such that

sup
0≤ε≤ε0

P
(

sup
0<β−α<δ

|Cε
α − Cε

β| > τ

)
< τ. (4.3.38)

Fix τ > 0. Then for arbitrary δ > 0,

sup
ε

P
(

sup
0<β−α<δ

|Cε
α − Cε

β| > τ

)
= sup

ε
P
(

sup
0<β−α<δ

∣∣∣∣∫ β

α

A(s, X̃ε
s)[φ]ds+

∫ β

α

∫
X
G(s, X̃ε

s, v)[φ](ϕε − 1)ν(dv)ds

∣∣∣∣ > τ

)
≤ sup

ε
P
(

sup
0<β−α<δ

∣∣∣∣∫ β

α

A(s, X̃ε
s)[φ]ds

∣∣∣∣ > τ

2

)
+ sup

ε
P
(

sup
0<β−α<δ

∣∣∣∣∫ β

α

∫
X
G(s, X̃ε

s, v)[φ](ϕε − 1)ν(dv)ds

∣∣∣∣ > τ

2

)
≤ sup

ε

4

τ 2
E
(
δ2 sup

0≤s≤T

∣∣∣A(s, X̃ε
s)[φ]

∣∣∣2)
+ sup

ε

2

τ
E
(

sup
0<β−α<δ

∣∣∣∣∫ β

α

∫
X
G(s, X̃ε

s, v)[φ](ϕε − 1)ν(dv)ds

∣∣∣∣) .
(4.3.39)

From (4.3.32) and Condition 4.2.1 (c), it follows that

sup
ε

E
(

sup
0≤s≤T

∣∣∣A(s, X̃ε
s)[φ]

∣∣∣2) <∞.

Thus we can find δ1 > 0 such that for all δ ≤ δ1, the first term on the last line of

(4.3.39) is bounded by τ/2.
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Now we consider the second term:∣∣∣∣∫
[α,β]×X

G(s, X̃ε
s, v)[φ](ϕε − 1)ν(dv)ds

∣∣∣∣
≤ ||φ||p

(
1 + sup

0≤s≤T
||X̃ε

s||−p
)∫

[α,β]×X
||G(s, v)||0,−p|ϕε − 1|ν(dv)ds

≤ ||φ||p
(

1 + sup
0≤s≤T

||X̃ε
s||−p

)
sup
g∈SM

sup
|t−s|≤δ

∫
[s,t]×X

||G(s, v)||0,−p|g − 1|ν(dv)ds.

Then from (4.3.5) in Lemma 4.3.1 and (4.3.32), we can find δ2 > 0 such that for all

δ ≤ δ2, the second term on the last line of (4.3.39) is bounded by τ/2. By taking

δ = min(δ1, δ2), (4.3.38) holds and the tightness of {Cε}ε≤ε0 follows.

Next consider M ε. We have

E 〈M ε〉T = εE
∫ T

0

∫
X
(G(s, X̃ε

s, v)[φ])2ϕεν(dv)ds

≤ 2ε||φ||p(1 + E sup
0≤s≤T

||X̃ε
s||2−p) sup

ϕ∈SM

∫
XT
||G(s, v)||20,−pϕν(dv)ds.

(4.3.40)

Using Lemma 4.3.1, we have E sup0≤s≤T 〈M ε〉s goes to 0 as ε→ 0. Then by Theorem

6.1.1 in [52], for any φ ∈ Φ, the sequence of semimartingales X̃ε
t [φ] = X0[φ]+Cε

t +M ε
t

is tight in D([0, T ] : R). It then follows from (4.3.32) and Theorem 2.5.2 in [52] that

{X̃ε}ε≤ε0 is tight in D([0, T ] : Φ−p1).

Now choose a subsequence along which (X̃ε, ϕε,M
ε) converges in distribution to

(X̃, ϕ̃, 0). Without loss of generality, we can assume the convergence is almost sure

by using the Skorokhod representation theorem. Note that X̃ε satisfies the following

integral equation

X̃ε
t [φ] = X0[φ] +

∫ t

0

A(s, X̃ε
s)[φ]ds+

∫ t

0

∫
X
G(s, X̃ε

s, v)[φ](ϕε − 1)ν(dv)ds+M ε.

Along the lines of Theorem 4.3.1 and Proposition 4.3.1 (see (4.3.28) – (4.3.30)), we

see that X̃ must solve

X̃t[φ] = X0[φ] +

∫ t

0

A(s, X̃s)[φ]ds+

∫ t

0

∫
X
G(s, X̃s, v)[φ](ϕ̃− 1)ν(dv)ds.
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The unique solvability of the above integral equation gives that X̃ = G0
(
νϕ̃
)
, thus

we have proved part 2 of Condition 2.3.2, i.e., Gε(εN ε−1ϕε)⇒ G0 (νϕ).

We are now ready to prove the main theorem.

Proof of Theorem 4.3.2. Using Propositions 4.3.1 and 4.3.2, Theorem 4.3.2 is an im-

mediate consequence of Theorem 4.2.1.

4.4 Appendix.

Proof of Theorem 4.2.1.

Proof. Proof follows by modifying arguments for the lower bound and upper bound

in the proof of Theorem 4.2 of [18].

Lower Bound. Following the proof of Theorem 2.8 in [18], it is easy to see that

−ε log Ē
(
e−ε

−1F (Zε)
)

is bounded below (actually equal to)

inf
ϕ∈Ũ

Ē
[
LT (ϕ) + F ◦ Gε

(
εN ε−1ϕ

)]
, (4.4.1)

where Ũ = ∪N≥1ŨN . The rest of the proof for the lower bound is as in Theorem 4.2

of [18].

Upper Bound. Fix δ ∈ (0, 1) and φ0 ∈ U such that

I(φ0) + F (φ0) ≤ inf
φ∈U

(I(φ) + F (φ)) + δ.

Choose g ∈ Sφ0 such that LT (g) ≤ I(φ0) + δ. Note that g ∈ Sφ0 implies φ0 = G0 (νgT ).

Define

gn(t, x) =


[
g(t, x) ∨ 1

n

]
∧ n for x ∈ Kn,

1 else.
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Then gn ∈ Āb,n ⊂ Āb. By the monotone convergence theorem, LT (gn) ↑ LT (g).

Recalling from the proof of the lower bound that −ε log Ē (exp (−ε−1F (Zε)))

equals the expression in (4.4.1),

lim sup
ε→0

−ε log Ē
(
e−ε

−1F (Zε)
)
≤ LT (gn) + lim sup

ε→0
Ē
[
F ◦ Gε

(
εN ε−1gn

)]
≤ LT (gn) + F ◦ G0 (νgnT ) ,

where the last inequality follows on observing that since gn ∈ ŨN for some N , we

have by assumption that, for each fixed n, Gε(εN ε−1gn)⇒ G0 (νgnT ), as ε→ 0. Sending

n→∞, we have

lim sup
ε→0

−ε log Ē
(
e−ε

−1F (Zε)
)
≤ LT (g) + F ◦ G0 (νgT )

≤ I(φ0) + δ + F ◦ G0 (νgT )

= I(φ0) + F (φ0) + δ

≤ inf
φ∈U

(I(φ) + F (φ)) + 2δ.

Since δ ∈ (0, 1) is arbitrary the desired upper bound follows. This completes the

proof of the theorem.

Proof of Remark 4.3.1.

Proof. Let E ∈ B(XT ) be such that νT (E) < ∞. Fix δ2 ∈ (0,∞), and define

F = {(s, v) ∈ XT : ||G(s, v)||0,−p > δ2/δ1}. Then∫
E

eδ2||G(s,v)||0,−pν(dv)ds =

∫
E∩F

eδ2||G(s,v)||0,−pν(dv)ds+

∫
E∩F c

eδ2||G(s,v)||0,−pν(dv)ds

≤
∫
E∩F

eδ1||G(s,v)||20,−pν(dv)ds+ eδ
2
2/δ1

∫
E∩F c

ν(dv)ds

≤
∫
E

eδ1||G(s,v)||20,−pν(dv)ds+ eδ
2
2/δ1νT (E) <∞.

The remark follows.
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Proof of Lemma 4.3.2.

Proof. The proof proceeds through a standard Picard iteration argument. Define

x0(t) = x0 for all t ∈ [0, T ]. Define xn(t) iteratively as

xn(t) = x0 +

∫ t

0

a(s, xn−1(s))ds+

∫ t

0

b(s, xn−1(s))u(s, xn−1(s))ds, t ∈ [0, T ].

Then

||xn(t)|| ≤ ||x0||+
∫ t

0

||a(s, xn−1(s))||ds+

∫ t

0

||b(s, xn−1(s))u(s, xn−1(s))||ds

≤ ||x0||+
∫ t

0

κ(1 + ||xn−1(s)||)ds+

∫ t

0

κ(1 + ||xn−1(s)||) sup
y
||u(s, y)||ds

≤ ||x0||+ κ(M + T ) + κ

∫ t

0

||xn−1(s)||(1 + sup
y
||u(s, y)||)ds.

Let L = ||x0||+ κ(M + T ), α(s) = 1 + supy ||u(s, x)||, and β(t) =
∫ t

0
α(s)ds. Then a

recursive argument shows that for all t ∈ [0, T ],

||xn(t)|| ≤ L+ κLβ(t) +
κ2L

2
β(t)2 + · · ·+ κnL

n!
β(t)n,

and thus

sup
n

sup
t∈[0,T ]

||xn(t)|| ≤ Leκβ(T ) ≤ Leκ(M+T ). (4.4.2)

Similarly

||xn(t)− xn(s)|| ≤
∫ t

s

||a(s, xn−1(r))||dr +

∫ t

s

||b(r, xn−1(r))u(r, xn−1(r))||dr

≤ κ(1 + Leκ(M+T ))(t− s) + κ(1 + Leκ(M+T ))

∫ t

s

sup
y
||u(r, y)||dr,

and therefore

lim
δ→0

sup
n

sup
|t−s|≤δ

||xn(t)− xn(s)|| = 0.

Together with (4.4.2) shows that the sequence {xn} is pre-compact in C([0, T ] : Rd).

Let x be a limit point of some subsequence of {xn}. Then using the continuity

properties of the functions a, b and u with respect to x and the dominated convergence

theorem, it is easy to check that x satisfies (4.3.12). The lemma follows.
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Proof of (4.3.14).

Proof. Let yn → y, yn, y ∈ Rd. We will like to show that u(s, yn) → u(s, y) for a.e.

s ∈ [0, T ]. Note that, since ψ ∈ SM ,
∫

[0,T ]×X l(ψ(s, v))ν(dv)ds ≤M. Thus there exists

T1 ⊂ [0, T ], with λT (Tc1) = 0 and such that∫
X
l(ψ(s, v))ν(dv) <∞, ∀s ∈ T1.

Also, from arguments similar to those in the proof of Lemma 4.3.1,∫
XT
||gd(s, v)||0|ψ(s, v)− 1|ν(dv)ds <∞.

Consequently, there exists T2 ⊂ [0, T ], with λT (Tc2) = 0 and such that∫
X
||gd(s, v)||0|ψ(s, v)− 1|ν(dv) <∞, ∀s ∈ T2. (4.4.3)

Let T = T1 ∩ T2 and fix s ∈ T. Define Fβ(s) = {v ∈ X : |ψ(s, v) − 1| ≤ β} for

β ∈ (0,∞). Then

u(s, yn) =

∫
X∩Fβ

gd(s, yn, v)

1 + ||yn||
(ψ(s, v)− 1)ν(dv) +

∫
X∩F cβ

gd(s, yn, v)

1 + ||yn||
(ψ(s, v)− 1)ν(dv)

= u1(s, yn) + u2(s, yn).

From part (c) of Remark 4.3.2, for all v ∈ Fβ(s),

|ψ(s, v)− 1|2 ≤ c2(β)l(ψ(s, v)).

Thus [ψ(s, ·)−1]1Fβ(s)(·) ∈ L2(X, ν;R). From assumption (a) in Lemma 4.3.3 we now

see that, for all such s, u1(s, yn)→ u1(s, y), as n→∞.

For u2(s, yn), we have∣∣∣∣gd(s, yn, v)

1 + ||yn||
(ψ(s, v)− 1)

∣∣∣∣ ≤ ||gd(s, v)||0|ψ(s, v)− 1|.

From (4.4.3), the term on the right hand side is ν-integrable. Furthermore, ν(F c
β)→ 0

from the super linear growth of l. Thus u2(s, yn) converges to 0, uniformly in n, as

β goes to ∞. The term u2(s, y) can be treated in a similar manner. Thus we have

shown that, for all s ∈ T, u(s, yn)→ u(s, y). Since λT (Tc) = 0, the result follows.
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Proof of (4.3.25) when h is a bounded and measurable function.

Proof. We can assume without loss of generality that
∫
K
gνT (dsdv) 6= 0 and∫

K
gnνT (dsdv) 6= 0, for all n ≥ 1. Define probability measures ν̃n and ν̃ as follows:

ν̃n(·) =
νg

n

T (· ∩K)

mn

, ν̃(·) =
νgT (· ∩K)

m

where mn =
∫
K
gnνT (dsdv) and m =

∫
K
gνT (dsdv). If θ(·) = νT (·∩K)

νT (K)
, then θ is also a

probability measure. We have

R(ν̃n||θ) =

∫
K

log

(
νT (K)

mn

gn

)
1

mn

gnνT (dsdv)

=
1

mn

∫
K

(l(gn) + gn − 1)νT (dsdv) + log
νT (K)

mn

≤ N

mn

+ 1− νT (K)

mn

+ log
νT (K)

mn

.

Noting thatmn → m, we have that there exists constant α such that supn∈NR(ν̃n||θ) ≤

α <∞. Also note that ν̃n converges weakly to ν̃. From Lemma 2.8 of [9], we have

1

mn

∫
[0,T ]×K

h(s, v)gn(s, v)νT (dvds)→ 1

m

∫
[0,T ]×K

h(s, v)g(s, v)νT (dvds),

which proves (4.3.25).

Proof of Itô’s formula in (4.3.33).

Proof. Here we will give the proof for a simpler case when Xt satisfies the following

integral equation, the proof of (4.3.33) being very similar to this case:

Xt = X0 +

∫ t

0

A(s,Xs)ds+

∫ t

0

∫
X
G(s,Xs−, v)Ñ(dsdv).

For j ∈ N,

Xt[θpφj] = X0[θpφj] +

∫ t

0

A(s,Xs)[θpφj]ds+

∫ t

0

∫
X
G(s,Xs−, v)[θpφj]Ñ(dsdv).
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Note that

Xt[θpφj] = 〈Xt, φj〉−p = ||φj||−p〈Xt, φ
−p
j 〉−p,

so
∞∑
j=1

||φj||2p(Xt[θpφj])
2 =

∞∑
j=1

〈Xt, φ
−p
j 〉2−p = ||Xt||2−p.

If ξj(t) = Xt[θpφj], then ξj(t) satisfies

ξj(t) = ξj(0) +

∫ t

0

aj(s)ds+

∫ t

0

∫
X
bj(s, v)Ñ(dsdv).

where aj(s) = A(s,Xs)[θpφj] and bj(s, v) = G(s,Xs−, v)[θpφj]. Applying Itô’s formula

(cf. Theorem 2.5.1 of [49]) to the real valued semimartingale ξj(t), we have

ξ2
j (t) = ξ2

j (0) + 2

∫ t

0

aj(s)ξj(s)ds+ 2

∫ t

0

∫
X
bj(s, v)ξj(s−)Ñ(dsdv)

+

∫ t

0

∫
X
[bj(s, v)]2Ñ(dsdv) +

∫ t

0

∫
X
[bj(s, v)]2ν(dv)ds.

(4.4.4)

Note that ||Xt||2−p =
∑∞

j=1 ||φj||2pξ2
j (t). So for the second term in (4.4.4), we have

∞∑
j=1

||φj||2paj(s)ξj(s) =
∞∑
j=1

||φj||2pA(s,Xs)[θpφj]Xs[θpφj]

= A(s,Xs)

[
∞∑
j=1

||φj||2pXs[θpφj]θpφj

]

= A(s,Xs)

[
∞∑
j=1

||φj||2p〈Xs, φj〉−p||φj||2−pφj

]

= A(s,Xs)

[
∞∑
j=1

〈Xs, φ
−p
j 〉−pφ

p
j

]

= A(s,Xs)[θpXs].
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Also, we have

∞∑
j=1

||φj||2pbj(s, v)ξj(s−) =
∞∑
j=1

||φj||2pG(s,Xs−, v)[θpφj]Xs−[θpφj]

=
∞∑
j=1

||φj||2p〈G(s,Xs−, v), φj〉−p〈Xs−, φj〉−p

=
∞∑
j=1

〈G(s,Xs−, v), φ−pj 〉−p〈Xs−, φ
−p
j 〉−p

= 〈G(s,Xs−, v), Xs−〉−p.

Finally, notice that

∞∑
j=1

||φj||2p[bj(s, v)]2 =
∞∑
j=1

||φj||2p (G(s,Xs−, v)[θpφj])
2

=
∞∑
j=1

||φj||2p (〈G(s,Xs−, v), φj〉−p)2

=
∞∑
j=1

(
〈G(s,Xs−, v), φ−pj 〉−p

)2

= ||G(s,Xs−, v)||2−p.

Combining the above equalities with (4.4.4), we have

||Xt||2−p = ||X0||2−p + 2

∫ t

0

A(s,Xs)[θpXs]ds+ 2

∫ t

0

∫
X
〈G(s,Xs−, v), Xs−〉−pÑ(dsdv)

+

∫ t

0

∫
X
||G(s,Xs−, v)||2−pÑ(dsdv) +

∫ t

0

∫
X
||G(s,Xs−, v)||2−pν(dv)ds.

The result follows.
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Chapter 5

Large Deviations for Degenerate Small Noise Diffusions with

Fast Markov Modulated Coefficients

5.1 Introduction.

We consider a two component Markov process (Xε, Y ε) with values in G = Rd×L,

where ε > 0 is a scaling parameter and L is a finite set, with infinitesimal generator

Lε given as

Lε (ϕ⊗ ψ) (x, y) =ψ(y)
(
b(x, y)∇ϕ(x) +

ε

2
Tr(aaTD2ϕ)(x)

)
+ϕ(x)

c(x, y)

ε

∫
L
[ψ(ỹ)− ψ(y)]R(x, y, dỹ),

where ϕ is a twice continuously differentiable function on Rd, ψ is a function from L

to R, ∇ is the gradient operator and D2 is the Hessian matrix. Here a, b, c and R are

suitable functions, in particular c is strictly positive and R is a transition probability

kernel on (Rd × L) × B(L). Roughly speaking, the process Xε between consecutive

jumps of Y ε is a diffusion with coefficients b(x, y) and
√
εa(x, y), namely denoting by

τ the first jump instant of Y ε, on [0, τ),

dXε(t) = b(Xε(t), y0)dt+
√
εa(Xε(t), y0)dW (t),

where W is a d dimensional Brownian motion and (Xε(0), Y ε(0)) = (x0, y0) ∈ Rd×L.

The process Y ε is a pure jump process with jump intensity function ε−1c(x, y) and

transition probability kernel R(x, y, dȳ), in particular, with τ as above,

P(τ > t | σ{Xε(s), s ≤ t}) = exp

{
−1

ε

∫ t

0

c(Xε(s), y0)ds

}



and

P (Y ε(τ) ∈ dȳ | Xε(τ−) = x, Y ε(τ−) = y0) = R(x, y0, dȳ).

A precise stochastic evolution equation for (Xε, Y ε) will be given in Section 5.2. This

pair describes a jump-diffusion, where the diffusion component (i.e. Xε ) has “small

noise” while the jump component (Y ε) has jumps at rate O(1/ε). Classical Averaging

principles [42, 73] show that, under conditions, as ε→ 0, Xε converges in probability

in C([0, T ] : Rd) (the space of continuous functions from [0, T ] to Rd with the uniform

topology), to the solution of an ‘averaged’ equation

dξ(t)

dt
= b̂(ξ(t)), ξ(0) = x0,

where b̂(x) =
∫
L b(x, y)ρx(dy) and for each x ∈ Rd, ρx is the invariant measure of a L

valued Markov process with jump intensity c(x, ·) and transition probability kernel

R(x, ·, ·).

In this work we are interested in the study of a large deviation principle(LDP)

for {Xε}ε>0, as ε → 0, in C([0, T ] : Rd). Such multiscale systems arise in many

applications in engineering, operations research and biological and physical sciences

(see [87] and references therein). Large deviation results of the form studied here, in

addition to providing probability estimates for non typical events, are a starting point

in developing efficient importance sampling algorithms for Monte-Carlo estimation

of probabilities of rare events (see [37] and references therein). Large deviation re-

sults associated with averaging principles for stochastic dynamical systems have been

studied by many authors [39, 40, 42, 32, 78, 58, 80, 79, 60, 56]. The models consid-

ered in the current work are usually referred to as systems with “full dependence”.

This refers to the feature that the coefficients of both the slow and the fast process

depend on both variables. Earliest results on large deviations for multiscale systems

are due to Freidlin[39, 40], see also [42]. They, in particular, treat the case where the

functions c and R do not depend on x (i.e. c(x, y) ≡ c(y), R(x, y, dỹ) ≡ R(y, dỹ))
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and a = 0. These papers also consider the case where the two components are given

through a system of diffusion equations of the form

dXε(t) =b1(Xε(t), Y ε(t))dt,

dY ε(t) =
1

ε
b2(Xε(t), Y ε(t))dt+

1√
ε
a2(Y ε(t))dW2(t),

(5.1.1)

where W2 is a Brownian motion and b1, b2, a2 are suitable coefficients. In this case

although there is a “full dependence” in the sense described above, the fact that the

diffusion coefficient a2 only depends on the fast variable makes the analysis signifi-

cantly more tractable since by appealing to Girsanov’s theorem one can reduce the

problem to a setting where the evolution of the fast variable does not depend on the

values of the slow variable. Such a reduction is not possible in the setting considered

in the current work. The paper [79] is closer to the setting considered in our work in

that, in [79], the equation of the fast variable takes the form

dY ε(t) =
1

ε
b2(Xε(t), Y ε(t))dt+

1√
ε
a2(Xε(t), Y ε(t))dW2(t)

and thus a Girsanov transformation that gets rid of full dependence is not possible.

However there is a key difference in that, in the current work one has to contend with

two forms of asymptotic behavior: small noise effects in the dynamics of Xε; and

stochastic averaging effects from the fast variable, whereas in [79] only the latter needs

to be understood. Furthermore, we consider here a model where the fast variable is

a jump process while [79] considers the setting of diffusions. Finally our proofs are

very different from those in [79] which rely on a delicate two level time discretization,

whereas the proofs in the current work largely bypass any discretization. Our proofs

are based on recent variational representations for functionals of Brownian motions

and Poisson random measures, obtained in [18].

Large deviation problems for systems with averaging are closely related to those

associated with homogenization problems [41, 3, 36]. In these problems one usually
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formulates a single equation, with two scaling parameters ε and δ, of the form

dXε(t) =

[
ε

δ
c1

(
Xε(t),

Xε(t)

δ

)
+ c2

(
Xε(t),

Xε(t)

δ

)]
+
√
εa1

(
Xε(t),

Xε(t)

δ

)
dW1(t),

where W1 is a Brownian motion and a1, c1, c2 are suitable functions. In the special

case when δ = ε, this can be rewritten, on defining Y ε(t) = Xε(t)
ε

and b1(x, y) =

c1(x, y) + c2(x, y), as an averaging system of the form

dXε(t) =b1(Xε(t), Y ε(t))dt+
√
εa1(Xε(t), Y ε(t))dW1(t),

dY ε(t) =
1

ε
b1(Xε(t), Y ε(t))dt+

1√
ε
a1(Xε(t), Y ε(t))dW1(t).

This model is once again a system with ‘full dependence’ where the diffusion coef-

ficient of the fast variable depends also on the slow variable. However there is one

key difference from the models studied in [41, 3, 36] from the systems considered

here (apart from the fact that the fast component in our setting is a jump process),

namely in all these works the diffusion coefficient a1 is taken to be uniformly nonde-

generate. The main challenge with dealing with degenerate a1 is obtaining suitable

regularity properties of the local rate function (see (5.5.4)) that is used in the proof

of the lower bound of the LDP. Roughly speaking our approach is as follows. We

regularize the local rate function by adding a small viscosity term in the evolution of

the slow system in the form of σB, where B is a standard d dimensional Brownian

motion independent of the original driving noise W , and σ is a small parameter. We

then first prove a large deviations lower bound for the regularized system and then

send σ → 0 to recover the lower bound for the original system. Allowing for degen-

erate diffusion coefficients is important for applications, specially when one considers

infinite dimensional noise terms. Although not considered here, we believe that tech-

niques developed here will be useful for obtaining large deviation results for infinite

dimensional systems with averaging (see e.g. [22]) as well.

The chapter is organized as follows. In Section 5.2 we introduce the key assump-

tions and then state our main result (Theorem 5.2.3). Section 5.3 shows that the
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function I defined in (5.2.11) is a rate function on C([0, T ] : Rd). In Section 5.4 we

prove the large deviation upper bound and in Section 5.5 we prove the lower bound.

Theorem 5.2.3 follows on combining the results of Sections 5.3, 5.4 and 5.5. Appendix

collects proofs of some auxiliary results.

5.2 Mathematical Preliminaries and Main Result.

We assume without loss of generality that L is a finite additive group whose zero

element is denoted by 0. The following is our first assumption on the coefficients.

Assumption 5.2.1. (1) c is a bounded measurable map from G to [0,∞).

(2) For each y, y′ ∈ L, a(·, y), b(·, y), c(·, y) and R(·, y, y′) are Lipschitz functions

from Rd to Rd×d, Rd, R+ and R+, respectively.

Remark 5.2.1. Assumption 5.2.1 (2) in particular says that, for some κ1 ∈ (0,∞)

|b(x, y)|+ |a(x, y)| ≤ κ1(1 + |x|), for all (x, y) ∈ G.

Under Assumption 5.2.1 (1), one can construct (see [73] page 104) a finite measure

θ on ([0, 1],B[0, 1]) and a measurable function k from Rd × L× [0, 1] to L such that

θ{r : k(x, y, r) 6= 0} = c(x, y),

θ{r : y + k(x, y, r) ∈ B} = R(x, y, B)c(x, y), (x, y) ∈ G, B ⊂ L \ {y},

where R(x, y, B) =
∑

y′∈B R(x, y, y′). Denote

Ex,y = {r : k(x, y, r) 6= 0}, and Ey′

x,y = {r : k(x, y, r)+y = y′}, (x, y, y′) ∈ Rd×L×L.

Then using the boundedness of c and Lipschitz property of c and R, one can assume

without loss of generality that θ and k are constructed in a manner that for some
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κ2 ∈ (0,∞)

sup
(y,y′)∈×L×L

[θ(Ey′

x,y4E
y′

x′,y) + θ(Ex,y4Ex′,y)] ≤ κ2|x− x′|, (5.2.1)

where ∆ denotes the symmetric difference operator. Furthermore one can assume

without loss of generality that

θ(∂Ey′

x,y) + θ(∂Ex,y) = 0 ∀(x, y, y′) ∈ Rd × L× L. (5.2.2)

Let N̄ be a Poisson random measure (PRM) on [0, 1] × R+ × R+ with intensity

measure θ ⊗ λ∞ ⊗ λ∞, where λ∞ denotes the Lebesgue measure on R+. Then

N1/ε(dr × dt) = N̄(dr × dt× [0,
1

ε
])

is a PRM on [0, 1]×R+ with intensity measure 1
ε
θ ⊗ λ∞. In terms of this PRM, the

evolution of (Xε, Y ε) can be described through the unique pathwise solution of the

following system of equations.

State Dynamics.

dXε(t) = b(Xε(t), Y ε(t))dt+
√
εa(Xε(t), Y ε(t))dW (t), Xε(0) = x0 (5.2.3)

dY ε(t) =

∫
r∈[0,1]

k(Xε(t), Y ε(t), r)N1/ε(dr × dt), Y ε(0) = y0 (5.2.4)

where W is a d dimensional Brownian martingale on some complete filtered proba-

bility space (Ω,F ,P, {Ft}) which also supports the Poisson random measure N̄ such

that

N̄(A× [0, t]×B)− tθ(A)λ∞(B)

is a {Ft} martingale for all A ∈ B[0, 1] and B ∈ B(R+) with λ∞(B) <∞.

For each fixed x ∈ Rd, the operator Πx acting on M(L), defined as

Πxφ(y) = −c(x, y)φ(y) + c(x, y)

∫
L
φ(z)R(x, y, dz), y ∈ L, φ ∈M(L),
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describes the generator of a L valued Markov process. Let

R̂n(x, y, z) =
∑
y′∈L

R̂(x, y′, z)R̂n−1(x, y, y′), n > 1; R̂1(x, y, z) = R(x, y, z) (5.2.5)

be the n-step transition probability kernel of the embedded chain. Let ` = card(L)

and define

αx = min
y,z∈L

∑̀
n=1

R̂n(x, y, z), α = inf
x
αx;

λx = min
y∈L

c(x, y), λ = inf
x
λx;

λ̄x = max
y∈L

c(x, y), λ̄ = sup
x
λ̄x.

From Assumption 5.2.1 (1) we see that λ̄ <∞. Let

T = {(y, y′) ∈ L× L : R(x, y, y′) > 0 for some x ∈ Rd}

and let

inf
x∈Rd

min
(y,y′)∈T

R(x, y, y′) = κ3.

We will make the following ergodicity assumption.

Assumption 5.2.2. α > 0, λ > 0 and κ3 > 0.

Assumptions 5.2.1 and 5.2.2 will be taken to hold throughout this work and will

not be mentioned in the statement of various results.

The following is an immediate consequence of our assumptions. For the proof of

the second statement in the theorem, see proof of Lemma 5.2.1 in the Appendix.

Theorem 5.2.1. For each x ∈ Rd, there is a unique invariant probability measure, ρx

for the L valued Markov process with generator Πx. Furthermore, infx∈Rd miny∈L ρx(y) ≡

ρ > 0.

Define

b̂(x) =

∫
b(x, y)ρx(dy).
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The following lemma ensures that equation (5.2.6) below has a unique solution. Proof

of this result is given in the Appendix.

Lemma 5.2.1. The function b̂ is a Lipschitz map on compact subsets of Rd.

The proof of the following theorem follows as that of Theorem 8 in Chapter 2 of

[73].

Theorem 5.2.2. Fix (x0, y0) ∈ G. Let (Xε, Y ε) solve the system of equations (5.2.3)-

(5.2.4). Then as ε → 0, Xε converges uniformly on compacts in probability to the

unique solution of

dξ(t)

dt
= b̂(ξ(t)), ξ(0) = x0 (5.2.6)

Let U = C([0, T ] : Rd). Then the solution Xε of system (5.2.3)-(5.2.4) can be

regarded as a U-valued random variable. The main result of this work establishes

a large deviation principle (LDP) for Xε, as ε → 0, in the space U. In rest of this

section we formulate the rate function for {Xε}, and state our main result.

Rate function.

Denote by MF the space of all finite measures on [0, 1], endowed with the usual

topology of weak convergence. For η ∈MF and x ∈ Rd, consider a L valued Markov

process with infinitesimal generator Πη
x, defined as

Πη
xφ(y) = −ĉη(x, y)φ(y) + ĉη(x, y)

∫
L
φ(z)R̂η(x, y, dz), y ∈ L, φ ∈M(L), (5.2.7)

where

ĉη(x, y) =

∫
[0,1]

1{r:k(x,y,r) 6=0}η(dr),

ĉη(x, y)R̂η(x, y, B) =

∫
[0,1]

1{r:y+k(x,y,r)∈B}η(dr), (x, y) ∈ G, B ⊂ L \ {y}.

92



We set R̂η(x, y, y) = 0 for all (x, y) ∈ G. Also, when ĉq(x, y) = 0, by convention we

take R̂η(x, y, y′) = R(x, y, y′). Define R̂η(x, y, A) =
∑

y∈A R̂
η(x, y, y′) for all A ⊂ L.

Note that with the above notation

Πθ
x = Πx, ĉ

θ(x, y) = c(x, y), R̂θ(x, y, y′) = R(x, y, y′), (x, y, y′) ∈ Rd × L× L.

Define l : [0,∞) → [0,∞) as l(x) = x log x − x + 1 and let l̂ : MF → [0,∞] be

defined as

l̂(η) =

∫
[0,1]

l(
dη

dθ
)(r)θ(dr), if η << θ and l(

dη

dθ
) is θ -integrable .

Otherwise we set l̂(η) =∞.

Denote by P1 the space of finite measures Q on

[0, T ]× L×MF × Rd ≡ HT

such that

Q([a, b]× L×MF × Rd) = b− a, for all 0 ≤ a ≤ b ≤ T.

In other words, denoting the marginal distribution on the ith coordinate of HT by

Q(i), Q is in P1 if and only if Q(1) = λ, where λ is the Lebesgue measure on [0, T ].

For notational simplicity, we will denote a typical (s, y, η, z) ∈ HT as v. For ξ ∈ U,

let Aξ be the family of all Q ∈ P1 such that∫
HT
|z|2Q(dv) <∞; (5.2.8)

ξ(t) = x+

∫
Ht
b(ξ(s), y)Q(dv) +

∫
Ht
a(ξ(s), y)zQ(dv); (5.2.9)

and ∫
Ht

Πη
ξ(s)φ(y)Q(dv) = 0 ∀φ ∈M(L), ∀t ∈ [0, T ], (5.2.10)
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where Ht = [0, t]×L×MF [0, 1]×Rd. Then the rate function for the family {Xε, ε > 0}

is defined to be

I(ξ) = inf
Q∈Aξ

{∫
HT

[
1

2
|z|2 + l̂(η)

]
Q(dv)

}
. (5.2.11)

The following is the main result of this work. Recall that a function I : U→ [0,∞]

is called a rate function on U if it has compact sub-level sets, namely for every

α ∈ (0,∞), the set {ξ ∈ U : I(ξ) ≤ α} is a compact subset of U.

Theorem 5.2.3. The map I is a rate function on U and {Xε}ε>0 satisfies a large

deviation principle, as ε→ 0, on U with rate function I.

Rest of the paper is organized as follows. In Section 5.3 we show that I is a rate

function on U. Given this result, to complete the proof of Theorem 5.2.3, it suffices

to show that for all F ∈ Cb(U)

lim
ε→0
−ε logE

[
exp

(
−1

ε
F (Xε)

)]
= inf

ξ∈U
{F (ξ) + I(ξ)}. (5.2.12)

In Section 5.4 we show that the left side of (5.2.12) is bounded below by the right

side (the upper bound) and in Section 5.5 we prove the reverse inequality. Theorem

5.2.3 follows on combining the results of Sections 5.3, 5.4 and 5.5.

5.3 Compact Level Sets.

In this section we will prove the following result.

Proposition 5.3.1. For every M ∈ (0,∞), the set UM = {ξ ∈ U|I(ξ) ≤ M} is

compact and consequently I is a rate function on U.

Proof. Let {ξn}n∈N be a sequence in UM . It suffices to show that {ξn} is pre-

compact and every limit point belongs to UM . Since I(ξn) ≤ M , we have that for
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each n ≥ 1, there exists some Qn ∈ Aξn , such that∫
HT

[
1

2
|z|2 + l̂(η)

]
Qn(dv) ≤M +

1

n
. (5.3.1)

We will now argue that:

(i) {Qn, ξn}n≥1 is pre-compact in P1(HT )× U;

(ii) Any limit point {Q, ξ} satisfies the following properties.

(a)
∫
H

[
1
2
|z|2 + l̂(η)

]
Q(dv) ≤M .

(b) (5.2.9) holds.

(c) (5.2.10) holds.

This will show that Q ∈ Aξ and I(ξ) ≤M , completing the proof.

We now give the proofs of (i) and (ii).

Proof of (i). Since L is a compact set and (Qn)(1) = λ for all n, and
∫
HT
|z|2Qn(dv) ≤

2(M + 1), in order to prove the pre-compactness of {Qn}, it suffices to show that for

every δ > 0, there exists a c(δ) ∈ (0,∞) such that

sup
n≥1

Qn{(s, y, η, z) ∈ HT |η[0, 1] > c(δ)} ≤ δ. (5.3.2)

From superlinearity of l, we see that for some c0 ∈ (0,∞),

η[0, 1] ≤ c0(1 + l̂(η)), ∀η ∈MF . (5.3.3)

For fixed δ > 0, choosing c(δ) ≥ c0(M+T+1)
δ

, we obtain from Markov’s inequality that

Qn{(s, y, η, z) ∈ HT |η[0, 1] > c(δ)} ≤ c0

c(δ)

(
T +

∫
HT
l̂(η)Qn(dv)

)
≤ δ.

This proves (5.3.2), completing the proof of pre-compactness of {Qn}.
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We next argue the pre-compactness of {ξn}. First, we show that

sup
n≥1

sup
0≤t≤T

|ξn(t)|2 <∞.

Since Qn ∈ Aξn , we have

ξn(t) = x+

∫
Ht
b(ξn(s), y)Qn(dv) +

∫
Ht
a(ξn(s), y)zQn(dv).

Using the linear growth condition on a, b, we have

|ξn(t)| ≤|x|+
∫
Ht
|b(ξn(s), y)|Qn(dv) +

∫
Ht
|a(ξn(s), y)||z|Qn(dv)

≤|x|+
∫
Ht
κ1(|ξn(s)|+ 1)Qn(dv) +

√∫
Ht
|a(ξn(s), y)|2Qn(dv)

∫
Ht
|z|2Qn(dv).

Thus

|ξn(t)|2 ≤3|x|2 + 6κ2
1

∫
[0,t]

(|ξn(s)|2 + 1)ds+ 6(M + 1)

∫
Ht
|a(ξn(s), y)|2Qn(dv)

≤3|x|2 + 6κ2
1

∫
[0,t]

(|ξn(s)|2 + 1)ds+ 12(M + 1)κ2
1

∫
[0,t]

(|ξn(s)|2 + 1)ds.

Let A = 6κ2
1 + 12(M + 1)κ2

1 and B = 3|x|2 + 6κ2
1T + 12(M + 1)κ2

1T . Then we have

|ξn(t)|2 ≤ A

∫
[0,t]

|ξn(s)|2ds+B.

By Gronwall’s inequality, we have that

sup
n≥1

sup
0≤t≤T

|ξn(t)|2 ≤ B exp(AT ) = M1 <∞.

Next, consider fluctuations of ξn. We have, for 0 ≤ t0 ≤ t1 ≤ T ,

|ξn(t1)− ξn(t0)| ≤
∫

[t0,t1]×L×MF×Rd
|b(ξn(s), y)|Qn(dv)

+

∫
[t0,t1]×L×MF×Rd

|a(ξn(s), y)||z|Qn(dv)

≤
∫

[t0,t1]×L×MF×Rd
κ1(|ξn(s)|+ 1)Qn(dv)

+

√∫
[t0,t1]×L×MF×Rd

|a(ξn(s), y)|2Qn(dv)

∫
HT
|z|2Qn(dv)

≤κ1(
√
M1 + 1)|t1 − t0|+ 2κ1

√
(M + 1)(M1 + 1)|t1 − t0|1/2.
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Thus

lim
δ→0

sup
n≥1

sup
|t1−t0|≤δ

|ξn(t1)− ξn(t0)| = 0.

Pre-compactness of {ξn} in U follows, and thus the proof of (i) is complete.

Proof of (ii). Let (Q, ξ) be a limit point of the sequence {(Qn, ξn)}n≥1. Part (a) is

an immediate consequence of the lower semi-continuity of the map

Q 7→
∫
HT

[
1

2
|z|2 + l̂(η)

]
Q(dv).

Assume without loss of generality that the full sequence converges to (Q, ξ). For

Part (b), note that from Lipschitz property of a and b,∫
HT
|b(ξn(s), y)− b(ξ(s), y)|Qn(dv) +

∫
HT
|a(ξn(s), y)− a(ξ(s), y)||z|Qn(dv)→ 0,

as n → ∞. Also (s, y, η, z) 7→ b(ξ(s), y) is a continuous and bounded map, and

(s, y, η, z) 7→ a(ξ(s), y)z is a continuous map and
∫
HT
|z|2Qn(dv) ≤ 2(M + 1), from

which it follows that∫
HT

[b(ξ(s), y) + a(ξ(s), y)z]Qn(dv)→
∫
HT

[b(ξ(s), y) + a(ξ(s), y)z]Q(dv).

Combining the above two convergence statements we have (b).

Next we consider part (c). We will use the following inequality: For u, v ∈ (0,∞)

and σ ∈ [1,∞)

uv ≤ eσu +
1

σ
(v log v − v + 1) = eσu +

1

σ
l(v). (5.3.4)

A simple calculation using (5.2.1) and the above inequality shows that there exists

c1 ∈ (0,∞) such that for all x, x′ ∈ Rd, η ∈MF and m ∈ (1,∞),

sup
y,y′∈L

{
|ĉη(x, y)− ĉη(x′, y)|+ |ĉη(x, y)R̂η(x, y)− ĉη(x′, y)R̂η(x′, y)|

}
≤ c1(emκ2|x− x′|+

l̂(η)

m
) (5.3.5)

sup
y∈L
|Πη

xφ(y)− Πη
x′φ(y)| ≤ c1|φ|∞(emκ2|x− x′|+

l̂(η)

m
). (5.3.6)
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For completeness, we include the proof of above inequalities in the Appendix. From

this estimate, along with the observation that
∫
HT
l̂(η)Qn(dv) ≤ M + 1, we obtain

that ∫
HT

(
Πη
ξn(s)φ(y)− Πη

ξ(s)φ(y)
)
Qn(dv)→ 0, (5.3.7)

as n→∞.

Finally, using Lemma 5.3.1 below, an application of Skorohod representation the-

orem shows that ∫
HT

Πη
ξ(s)φ(y)Qn(dv)→

∫
HT

Πη
ξ(s)φ(y)Q(dv). (5.3.8)

Combining this with (5.3.7), we have (c). The result follows. �

Lemma 5.3.1. Let (ηn, Zn, Y n) be a sequence ofMF×Rd×L valued random variables

given on a probability space (Ω̄, F̄ , P̄), which converges a.s. to (η̄, Z̄, Ȳ ). Further

suppose that, for some C1 ∈ (0,∞), supn≥1 Ēl̂(ηn) ≤ C1. Then for all φ ∈ M(L),

Πηn

Znφ(Y n) converges a.s. to Πη̄

Z̄
φ(Ȳ ), as n→∞.

Proof. Let Ω0 ⊂ Ω̄ be such that P̄(Ω0) = 1 and ∀ω ∈ Ω0,

(ηn(ω), Zn(ω), Y n(ω))→ (η̄(ω), Z̄(ω), Ȳ (ω)),

and l̂(η̄(ω)) <∞.

Using (5.3.6) we see that

|Πηn

Znφ(Y n)− Πηn

Z̄
φ(Y n)| → 0, a.s. (5.3.9)

Also, note that for (η, Z, Y ) ∈MF × Rd × L,

Πη
zφ(y) = −η{Ez,y}φ(y) +

∑
y′∈L\y

φ(y′)η{Ey′

z,y} (5.3.10)
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Fix ω ∈ Ω0. Then there exists a N ≡ N(ω) such that, ∀n ≥ N(ω), Y n(ω) = Ȳ (ω),

and thus (suppressing ω)

|Πηn

Z̄
φ(Y n)− Πη̄

Z̄
φ(Ȳ )| = |Πηn

Z̄
φ(Ȳ )− Πη̄

Z̄
φ(Ȳ )|. (5.3.11)

Recall from (5.2.2) that θ(∂Ez,y) = 0. Since l̂(η̄(ω)) <∞, we have that η̄(∂Ez,y) = 0.

Combining this with ηn → η̄, we have that

ηn{Ez,y} → η̄{Ez,y}, ∀(z, y) ∈ Rd × L.

Similarly

ηn{Ey′

z,y} → η̄{Ey′

z,y}, ∀(z, y, y′) ∈ Rd × L× L.

Using these observations in (5.3.10) and (5.3.11), we now have that

Πηn

Z̄
φ(Y n)→ Πη̄

Z̄
φ(Ȳ ), a.s.

Combining this with (5.3.9) we have the result. �

5.4 Large Deviation Upper Bound.

In this section we will show that for all F ∈ Cb(U),

lim
ε→0
−ε logEx

[
exp

(
−1

ε
F (Xε)

)]
≥ inf

ξ∈U
{F (ξ) + I(ξ)}. (5.4.1)

Let M denote the space of σ-finite measures on [0, 1] × R+ endowed with the vague

topology. With this topology, for µn, µ ∈M, µn → µ, if and only if
∫
f(r, t)µn(drdt)→∫

f(r, t)µ(drdt) for all continuous real functions f on [0, 1]× R+ with compact sup-

port. Let V = U ×M. Since there is a pathwise unique solution of (5.2.3)-(5.2.4),

we have that, for each ε > 0, there is a measurable map Gε : V → U such that

Xε = Gε(
√
εW, εN ε−1

).

The proof of the upper bound relies on a variational representation from [18]

which we now describe. Denote by P the predictable σ-field on [0, T ] × Ω with the
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filtration {Ft : 0 ≤ t ≤ T}. Let Ā be the class of all (P⊗B[0, 1]\B[0,∞)) measurable

maps ϕ : [0, 1]× [0, T ]× Ω→ [0,∞).

Let

P2 =

{
ψ = (ψi)

d
i=1 : ψi is P\B(R) measurable and

∫ T

0

|ψ(s)|2ds <∞, a.s. P
}

and set U = P2×Ā. For ψ ∈ P2 define L̃T (ψ) = 1
2

∫ T
0
|ψ(s)|2ds and for ϕ ∈ Ā,

let LT (ϕ) =
∫

[0,1]×[0,T ]
l(ϕ(r, s))θ(dr)ds. For u = (ψ, ϕ) ∈ U , set L̄T (u) = LT (ϕ)+

L̃T (ψ).

With this notation the variational representation of [18] says that

−ε logEx
[
exp

(
−1

ε
F (Xε)

)]
= inf

u=(ψ,ϕ)∈U
Ē
[
L̄T (u) + F ◦ Gε

(√
εW +

∫ ·
0

ψ(s)ds, εN ε−1ϕ

)]
.

(5.4.2)

In fact, a closer inspection of the proof of Theorem 2.8 of [18] shows that (5.4.2) can

be strengthened as follows. For n ≥ 1, define

Āb,n = {ϕ ∈ Ā : ϕ(r, s, ω) ∈ [n−1, n], for all (r, s, ω) ∈ [0, 1]× [0, T ]× Ω}

and let Āb = ∪∞n=1Āb,n. Also let Ub = P2 × Āb. Then in the equality in (5.4.2), U on

the right side can be replaced by Ub.

Let for ε > 0, uε = (ψε, ϕε) ∈ Ub be such that

−ε logEx
[
exp

(
−1

ε
F (Xε)

)]
≥ Ē

[
L̄T (uε) + F ◦ Gε

(√
εW +

∫ ·
0

ψε(s)ds, εN ε−1ϕε
)]
− ε.

(5.4.3)

Using the boundedness of F and a localization argument, one can assume without

loss of generality that for some M ∈ (0,∞),

sup
ε
L̄T (uε) ≤M. (5.4.4)
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From unique pathwise solvability of (5.2.3) - (5.2.4), it follows that

X̃ε = Gε
(√

εW +

∫ ·
0

ψε(s)ds, εN ε−1ϕε
)

is the unique solution of (6.1.10)-(5.4.7) .

(5.4.5)

For completeness, proof of (5.4.5) is included in the Appendix.

dX̃ε(t) = b(X̃ε(t), Ỹ ε(t))dt+
√
εa(X̃ε(t), Ỹ ε(t))dW (t) + a(X̃ε(t), Ỹ ε(t))ψε(t)dt

(5.4.6)

dỸ ε(t) =

∫
r∈[0,1]

k(X̃ε(t), Ỹ ε(t), r)N
1
ε
ϕε(dr × dt). (5.4.7)

Using the linear growth property of b and a, and property (5.4.4), it is easy to

check that

sup
ε>0

E
(

sup
0≤t≤T

|X̃ε(t)|2
)
<∞. (5.4.8)

Similarly it can be verified that for some c1 ∈ (0,∞),

sup
ε>0

sup
0≤s≤T−∆

E
(

sup
0≤t≤∆

|X̃ε(s+ t)− X̃ε(s)|2
)
≤ c1∆, (5.4.9)

for any ∆ ∈ [0, T ]. From (5.4.8) it follows that

sup
0≤t≤T

εE
∣∣∣∣∫ t

0

a(X̃ε(s), Ỹ ε(s))dW (s)

∣∣∣∣2 → 0. (5.4.10)

Fix {∆ε}ε>0 such that ∆ε → 0 and ∆ε

ε
→ ∞ as ε → 0. Using (5.4.8) and (5.4.9) we

have that

sup
0≤t≤T

E

∣∣∣∣∣
∫ t

0

b(X̃ε(s), Ỹ ε(s))ds−
∫ t

0

1

∆ε

∫ (s+∆ε)∧T

s

b(X̃ε(s), Ỹ ε(u))duds

∣∣∣∣∣
2

→ 0,

(5.4.11)

sup
0≤t≤T

E

∣∣∣∣∣
∫ t

0

a(X̃ε(s), Ỹ ε(s))ψε(s)ds−
∫ t

0

1

∆ε

∫ (s+∆ε)∧T

s

a(X̃ε(s), Ỹ ε(u))ψε(u)duds

∣∣∣∣∣
2

→ 0,

(5.4.12)

as ε → 0. Proof of (5.4.12) is given in the Appendix, and proof of (5.4.11) is very

similar to that of (5.4.12), and thus omitted.
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Adopting the convention that (Ỹ ε(u), ψε(u), φε(r, u)) = (Ỹ ε(T ), 0, 1), for u > T ,

define Qε ∈ P1 as

Qε(A×B × C ×D) =

∫
[0,T ]

1A(s)

(
1

∆ε

∫ s+∆ε

s

1B(Ỹ ε(u))1C(ηε(u))1D(ψε(u))du

)
ds,

where, for u > 0, ηε(u) ∈MF is defined as

ηε(u)(F ) =

∫
F

ϕε(u, r)θ(dr), F ∈ B[0, 1]. (5.4.13)

In terms of Qε, using (5.4.10) -(5.4.12) one can rewrite the evolution of X̃ε as

X̃ε(t) = x+

∫
Ht
b(X̃ε(s), y)Qε(dv) +

∫
Ht
a(X̃ε(s), y)zQε(dv) + Z̃ε(t), (5.4.14)

where

sup
0≤t≤T

E|Z̃ε(t)|2 → 0, (5.4.15)

as ε→ 0.

Also the following inequality holds

[
L̄T (uε)

]
≥
∫
HT

[
1

2
|z|2 + l̂(η)

]
Qε(dv), (5.4.16)

Proof of (5.4.16) is given in the Appendix.

From (5.4.8) and using an estimate similar to (5.4.9) (in terms of stopping times)

we have that {X̃ε}ε≥0 is a tight family of U valued random variables.

We will now prove the following statements:

(i) Qε is a tight family of MF (H) valued random variables.

(ii) If (X̃0, Q0) is a weak limit point of (X̃ε, Qε), then

(a)
∫
HT

[
1
2
|z|2 + l̂(η)

]
Q0(dv) ≤ lim infε→0 L̄T (uε).

(b) Equation (5.2.9) holds with (ξ,Q) replaced by (X̃0, Q0).
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(c) (5.2.10) holds a.s. with (ξ,Q) replaced by (X̃0, Q0).

Proof of (i). To show the tightness of {Qε}, it is enough to show that for any

δ > 0, there exists c(δ) such that the following inequalities hold.

sup
ε

EQε{(s, y, η, z) ∈ HT |η[0, 1] > c(δ)} ≤ δ;

sup
ε

EQε{(s, y, η, z) ∈ HT | |z| > c(δ)} ≤ δ.

Both of these inequalities are a consequence of (5.4.4) and (5.4.16); the proof of the

first inequality follows from similar argument as in the proof of (5.3.2) while the proof

of the second inequality is immediate on using Markov’s inequality.

Proof of (ii). Part (a) follows as in the proof of Proposition 5.3.1. Consider now

part (b). Assume without loss of generality that (X̃ε, Qε) → (X̃0, Q0) a.s. Then,

once again, as in the proof of Proposition 5.3.1, we have that∫
HT

[b(X̃ε(s), y) + a(X̃ε(s), y)z]Qε(dv)

→
∫
HT

[b(X̃0(s), y) + a(X̃0(s), y)z]Q0(dv).

Combining this with (5.4.14) and (5.4.15), we have part (b).

For part (c), we first estimate the difference between
∫
Ht Πη

X̃ε(s)
φ(y)Qε(dv) and∫ t

0
Π
ηε(u)

X̃ε(u)
φ(Ỹ ε(u))du. By a change of the order of integration, we have∫

Ht
Πη

X̃ε(s)
φ(y)Qε(dv) =

∫ t

0

1

∆ε

∫ s+∆ε

s

Π
ηε(u)

X̃ε(s)
φ(Ỹ ε(u))duds

=

∫ ∆ε

0

1

∆ε

∫ u

0

Π
ηε(u)

X̃ε(s)
φ(Ỹ ε(u))dsdu

+

∫ t

∆ε

1

∆ε

∫ u

u−∆ε

Π
ηε(u)

X̃ε(s)
φ(Ỹ ε(u))dsdu

+

∫ t+∆ε

t

1

∆ε

∫ t

u−∆ε

Π
ηε(u)

X̃ε(s)
φ(Ỹ ε(u))dsdu.

Also, we have∫ t

0

Π
ηε(u)

X̃ε(u)
φ(Ỹ ε(u))du =

∫ t

0

1

(∆ε) ∧ u

∫ u

(u−∆ε)+

Π
ηε(u)

X̃ε(u)
φ(Ỹ ε(u))dsdu.
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Using (5.4.4) and (5.3.5), there exists c ∈ (0,∞) such that, for any m ∈ [1,∞)∣∣∣∣∫
Ht

Πη

X̃ε(s)
φ(y)Qε(dv)−

∫ t

0

Π
ηε(u)

X̃ε(u)
φ(Ỹ ε(u))du

∣∣∣∣
≤
∣∣∣∣∫ ∆ε

0

1

∆ε

∫ u

0

Π
ηε(u)

X̃ε(s)
φ(Ỹ ε(u))dsdu

∣∣∣∣+

∣∣∣∣∫ ∆ε

0

1

u

∫ u

0

Π
ηε(u)

X̃ε(u)
φ(Ỹ ε(u))dsdu

∣∣∣∣
+

∫ t

∆ε

1

∆ε

∫ u

u−∆ε

∣∣∣Πηε(u)

X̃ε(s)
φ(Ỹ ε(u))− Π

ηε(u)

X̃ε(u)
φ(Ỹ ε(u))

∣∣∣ dsdu
+

∣∣∣∣∫ t+∆ε

t

1

∆ε

∫ t

u−∆ε

Π
ηε(u)

X̃ε(s)
φ(Ỹ ε(u))dsdu

∣∣∣∣
≤cem|∆ε|+ cem sup

|s−s′|≤∆ε,s,s′∈[0,T ]

|X̃ε(s)− X̃ε(s′)|+ c

m

∫ T

0

l̂(ηε(u))du

for all t ∈ [0, T ]. Thus

lim sup
ε→0

∣∣∣∣∫
Ht

Πη

X̃ε(s)
φ(y)Qε(dv)−

∫ t

0

Π
ηε(u)

X̃ε(u)
φ(Ỹ ε(u))du

∣∣∣∣
≤ lim sup

m→∞

[
cem lim sup

ε→0
sup

|s−s′|≤∆ε,s,s′∈[0,T ]

sup
ε̃>0
|X̃ ε̃(s)− X̃ ε̃(s′)|+ c

m
sup
ε̃>0

∫ T

0

l̂(ηε̃(u))du

]

≤ lim sup
m→∞

c

m
sup
ε̃>0

∫ T

0

l̂(ηε̃(u))du

= 0 (5.4.17)

where the second inequality follows on noting that {X̃ε, ε > 0} is an equicontinuous

family and the final equality follows from (5.4.4). Also, using Itô’s formula, we have

φ(Ỹ ε(t))− φ(y0)

=

∫
[0,1]×[0,t]

φ(Ỹ ε(u−) + k(X̃ε(u), Ỹ ε(u−), r))− φ(Ỹ ε(u−))N
1
ε
ϕε(drdu)

=

∫
[0,1]×[0,t]

φ(Ỹ ε(u−) + k(X̃ε(u), Ỹ ε(u−), r))− φ(Ỹ ε(u−))Ñ
1
ε
ϕε(drdu)

+

∫
[0,1]×[0,t]

φ(Ỹ ε(u) + k(X̃ε(u), Ỹ ε(u), r))− φ(Ỹ ε(u))
1

ε
ϕε(r, u)θ(dr)du

=

∫
[0,1]×[0,t]

φ(Ỹ ε(u−) + k(X̃ε(u), Ỹ ε(u−), r))− φ(Ỹ ε(u−))Ñ
1
ε
ϕε(drdu)

+
1

ε

∫ t

0

Π
ηε(u)

X̃ε(u)
φ(Ỹ ε(u))du.
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Rearranging terms,∫ t

0

Π
ηε(u)

X̃ε(u)
φ(Ỹ ε(u))du

=ε
(
φ(Ỹ ε(t))− φ(y0)

)
− ε
∫

[0,1]×[0,t]

[
φ(Ỹ ε(u−) + k(X̃ε(u), Ỹ ε(u), r))− φ(Ỹ ε(u−))

]
Ñ

1
ε
ϕε(drdu),

which clearly converges to 0 in probability, as ε → 0. Combining this observation

with (5.4.17), we have∫
Ht

Πη

X̃ε(s)
φ(y)Qε(dv)→ 0 in probability.

Finally using the estimates in (5.3.6) and Lemma 5.3.1 once more, we have∫
Ht

Πη

X̃0(s)
φ(y)Q0(dv) = 0 a.s.,

which completes the proof of part (c) and hence that of (ii).

From (i) and (ii) we now have that {Qε} is tight and if (Q0, X̃0) is a limit point

of (Qε, X̃ε), then Q0 ∈ AX̃0 a.s.. Taking limit as ε → 0 (along the subsequence) in

(5.4.3), we now see that

lim inf
ε→0

−ε logEx
[
exp

(
−1

ε
F (Xε)

)]
≥ E

[(∫
HT

[
1

2
|z|2 + l̂(η)

]
Q0(dv)

)
+ F (X̃0)

]
≥ E

[
inf

Q∈AX̃0

(∫
HT

[
1

2
|z|2 + l̂(η)

]
Q(dv)

)
+ F (X̃0)

]
= E

[
I(X̃0) + F (X̃0)

]
≥ inf

ξ∈U
[I(ξ) + F (ξ)] .

This completes the proof of the upper bound. �
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5.5 Large Deviation Lower Bound.

In this section we will show that for all F ∈ Cb(U),

lim
ε→0
−ε logEx

[
exp

(
−1

ε
F (Xε)

)]
≤ inf

ξ∈U
{F (ξ) + I(ξ)} (5.5.1)

where Xε is given through (5.2.3)–(5.2.4) and I is as defined in (5.2.11). The section

is organized as follows. In Section 5.5.1, we introduce the local rate function and

a suitable regularization of the function that allows for certain approximation argu-

ments. Next, in Section 5.5.2 we give some auxiliary lemmas for the proof of LDP

lower bound. Finally, in Section 5.5.3 we complete the proof of the lower bound.

5.5.1 Local Rate Function.

In this section we will give an alternative expression for the rate function which

is more amenable for the proof of the lower bound. Let

K = {q : L× B(MF )→ [0, 1] | q(y, ·) ∈ P∗(MF ), for all y ∈ L},

where P∗(MF ) is the space of all probability measures µ onMF with
∫
l̂(η)µ(dη) <

∞. For q ∈ K, let ϑq : L× B[0, 1]→ [0,∞] be defined as

ϑq(y, A) =

∫
MF

η(A)q(y, dη), (y, A) ∈ L× B[0, 1].

Then from superlinearity of l it follows that, for each y ∈ L, ϑq(y, ·) is a finite measure

on [0, 1]. Define for q as above, ĉq : Rd × L→ [0,∞) and R̂q : Rd × L× L→ [0, 1] as

ĉq(x, y) =

∫
[0,1]

1{r:k(x,y,r) 6=0}ϑ
q(y, dr),

ĉq(x, y)R̂q(x, y, y′) =

∫
[0,1]

1{r:y+k(x,y,r)=y′}ϑ
q(y, dr), (x, y) ∈ G, y′ ∈ L \ {y}.

We set R̂q(x, y, y) = 0 for all (x, y) ∈ G. Also, if ĉq(x, y) = 0, by convention we take

R̂q(x, y, y′) = R(x, y, y′). Define R̂q(x, y, A) =
∑

y∈A R̂
q(x, y, y′) for all A ⊂ L.
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For q ∈ K, (x, y) ∈ G and φ ∈M(L), define

Π̂q
xφ(y) =− ĉq(x, y)φ(y) + ĉq(x, y)

∫
L
φ(z)R̂q(x, y, dz) (5.5.2)

=

∫
Πη
xφ(y)q(y, dη), (5.5.3)

where Πη
x is defined as in (5.2.7).

For $ ∈ P(L), x ∈ Rd, let

K($, x) =

{
q ∈ K

∣∣∣∣∫
L

Π̂q
xφ(y)$(dy) = 0, for all φ ∈M(L)

}
Let G1 : P(L)× Rd → [0,∞] be defined as

G1($, x) = inf
q∈K($,x)

∫
L

∫
MF

l̂(η)q(y, dη)$(dy).

Next,for ($, x, v) ∈ P(L)× Rd × Rd, let

U($, x, v) =

{
u : L→ Rd

∣∣∣∣∫
L

(a(x, y)u(y) + b(x, y))$(dy) = v

}
and let G2 : P(L)× Rd × Rd → [0,∞] be defined as

G2($, x, v) = inf
u∈U($,x,v)

{
1

2

∫
L
|u(y)|2$(dy)

}
.

Let G($, x, v) = G1($, x) +G2($, x, v), and

L(x, v) = inf
$∈P(L)

{G($, x, v)}, (x, v) ∈ Rd × Rd. (5.5.4)

It will be convenient to work with a somewhat different representation for G1. Let

K̄ = {ϑ : L× B[0, 1]→ [0,∞) : ϑ(y, ·) ∈MF for all y ∈ L}. (5.5.5)

Given $ ∈ P(L) and x ∈ Rd, let

K̄($, x) ={ϑ ∈ K̄ :

∫
L

Πϑ
xφ(y)$(dy) = 0, for all φ ∈M(L)},
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where, for ϑ ∈ K̄ and x ∈ Rd, Πϑ
x is the generator of a L valued Markov process

defined as

Πϑ
xφ(y) = −ĉϑ(y,·)(x, y)φ(y) + ĉϑ(y,·)(x, y)

∫
L
φ(z)R̂ϑ(y,·)(x, y, dz).

Let Ḡ1 : P(L)× Rd → [0,∞] be defined as

Ḡ1($, x) = inf
ϑ∈K̄($,x)

∫
L
l̂(ϑ(y, ·))$(dy).

The following lemma shows that G1 and Ḡ1 are the same.

Lemma 5.5.1. For all ($, x) ∈ P(L)× Rd, Ḡ1($, x) = G1($, x).

Proof. For any ϑ ∈ K̄($, x), q(y, dη) = δϑ(y.·)(dη) defines an element of K($, x)

and clearly, ∫
L
l̂(ϑ(y, ·))$(dy) =

∫
L

∫
MF

l̂(η)q(y, dη)$(dy).

Thus Ḡ1($, x) ≥ G1($, x). Conversely, given a q ∈ K($, x), define ϑq ∈ K̄($, x) as

ϑq(y, A) =


∫
η(A)q(y, dη) if $(y) > 0,

θ(A) otherwise.

(5.5.6)

Without loss of generality we can assume that
∫
L

∫
MF

l̂(η)q(y, dη)$(dy) <∞. Then,

for any y with $(y) > 0, we must have
∫
l̂(η)q(y, dη) <∞ and consequently ϑq(y, ·) ∈

MF for all y ∈ L. It is immediate that ϑq ∈ K̄($, x). Also, using convexity of l̂ and

applying Jensen’s inequality, we see

Ḡ1($, x) ≤
∫
L
l̂(ϑq(y, ·))$(dy) ≤

∫
L

∫
MF

l̂(η)q(y, dη)$(dy).

Since q ∈ K($, x) is arbitrary, the result follows. �
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Define, for ϕ ∈ U,

Ĩ(ϕ) =


∫ T

0
L(ϕs, ϕ̇s)ds if

∫ T
0
|ϕ̇s|2ds <∞,

∞ otherwise.

(5.5.7)

The following proposition allows us to work with Ĩ, instead of I, when proving the

lower bound.

Proposition 5.5.1. For all ϕ ∈ U, I(ϕ) ≥ Ĩ(ϕ).

Proof. Fix ϕ ∈ U with I(ϕ) <∞. For fixed ε0 > 0, choose Q ∈ Aϕ such that

I(ϕ) ≥
∫
HT

(
1

2
|z|2 + l̂(η)

)
Q(dv)− ε0.

Disintegrate Q as

Q(ds dy dη dz) = Qs(dy dη dz)ds.

Also, disintegrate the marginals

Q1,2
s (dy dη) = Q̂2

s(y, dη)Q1
s(dy), Q1,3

s (dy dz) = Q̂3
s(y, dz)Q1

s(dy).

Define ϑs(y, A) =
∫
MF

η(A)Q̂2
s(y, dη). It is easily checked that

∫
L Π

ϑs(y,·)
ϕ(s) φ(y)Q1

s(dy) =

0, for all φ ∈M(L), a.e. s ∈ [0, T ]. Therefore

ϑs ∈ K̄(Q1
s, ϕ(s)), for a.e. s ∈ [0, T ]. (5.5.8)

Also, let

ψ(s) =

∫
L

(
b(ϕ(s), y) + a(ϕ(s), y)

∫
Rd
zQ̂3

s(y, dz)

)
Q1
s(dy).

Then ψ(s) = ϕ̇(s) for a.e. s ∈ [0, T ] and using (5.2.8) it follows that∫ T

0

|ϕ̇(s)|2ds =

∫ T

0

|ψ(s)|2ds <∞.

Define us(y) =
∫
Rd zQ̂

3
s(y, dz). Then

∫
|us(y)|2Q1

s(dy) < ∞ for a.e. s ∈ [0, T ],

consequently

us ∈ U(Q1
s, ϕ(s), ψ(s)), for a.e. s ∈ [0, T ].
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Also, ∫
[0,T ]

G2(Q1
s, ϕ(s), ψ(s))ds ≤1

2

∫
[0,T ]

∫
L
|us(y)|2Q1

s(dy)ds

≤
∫

[0,T ]×L×Rd

1

2
|z|2Q̂3

s(y, dz)Q
1
s(dy)ds

=

∫
HT

1

2
|z|2Q(dv).

Similarly, using (5.5.8),∫
[0,T ]

G1(Q1
s, ϕ(s))ds ≤

∫
[0,T ]

∫
L
l̂(ϑs(y, ·))Q1

s(dy)ds

≤
∫

[0,T ]×L×MF

l̂(η)Q̂2
s(y, dη)Q1

s(dy)ds

=

∫
HT
l̂(η)Q(dv)

Combining these estimates we have

Ĩ(ϕ) =

∫
[0,T ]

L(ϕ(s), ψ(s))ds ≤
∫

[0,T ]

G(Q1
s, ϕ(s), ψ(s))ds

≤
∫
HT

(
1

2
|z|2 + l̂(η))Q(dv) ≤ I(ϕ) + ε0.

The desired inequality follows on sending ε0 to 0. �

We will now introduce a regularization of L which will allow us to do certain

approximation arguments. For σ ∈ (0,∞), define

G2,σ : P(L)× Rd × Rd → [0,∞]

as

G2,σ($, x, v) = inf
r∈Rd

[
G2($, x, v − r) +

|r|2

2σ2

]
and let

Gσ($, x, v) = G1($, x) +G2,σ($, x, v), ($, x, v) ∈ P(L)× Rd × Rd.

Finally, let

Lσ(x, v) = inf
$∈P(L)

{Gσ($, x, v)}, (x, v) ∈ Rd × Rd.
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Observe that

G2,σ($, x, v) ≤ G2($, x, v) and Lσ(x, v) ≤ L(x, v), for all ($, x, v) ∈ P(L)×Rd×Rd.

The following elementary lemma shows that L is locally bounded.

Lemma 5.5.2. For every M ∈ (0,∞), there exists a M0 ∈ (0,∞) such that

Lσ(x, v) ≤ M0

σ2
(1 + |v|2), for all σ > 0 and (x, v) ∈ Rd × Rd with |x| ≤M.

Proof. Note that for σ ∈ (0,∞) and (x, v) ∈ Rd × Rd, Lσ(x, v) ≤ Gσ(ρx, x, v)

where ρx is as introduced in Theorem 5.2.1. Noting that q(y, dη) = δ{θ}(dη) ∈

K(ρx, x), we see that G1(ρx, x) = 0. Let r = v −
∫
L b(x, y)ρx(dy). Then there exists

M0 ∈ (0,∞) such that |r|2 ≤ 2M0(1 + |v|2) for all x ∈ Rd with |x| ≤M . Also, clearly

u = 0 belongs to U(ρx, x, v − r). Thus

Lσ(x, v) ≤ Gσ(ρx, x, v) = G2,σ(ρx, x, v) ≤ G2(ρx, x, v − r) +
|r|2

2σ2
≤ 2M0(1 + |v|2)

2σ2
.

The result follows.

The following lemma is a consequence of an elementary Lagrange multiplier ar-

gument.

Lemma 5.5.3. Let K1 ⊂ Rd be a compact set. Then there exists a B ∈ (0,∞) such

that for every σ ∈ (0,∞), x ∈ K1, v ∈ Rd and $ ∈ P(L) there is a r ∈ Rd and

u ∈ U($, x, v − r), with

G2,σ($, x, v) =
1

2

∫
L
|u(y)|2$(dy) +

|r|2

2σ2
,

|r| ≤ B(1 + |v|) and |u(i)| ≤ B(1+|v|)
σ2 for all i ∈ L.

111



Proof. For fixed ($, x, v) the equality in the above display holds for a u that

minimizes 1
2

∑
i∈L |u(i)|2$(i) + |r|2

2σ2 , subject to the constraint∑
i

(b(x, i) + a(x, i)u(i))$(i) + r = v. (5.5.9)

We set u(i) = 0 if $(i) = 0 so we can assume without loss of generality that $(i) > 0

for all i ∈ L. For simplicity assume first that all quantities are scaler valued. Then

differentiating

1

2

∑
i∈L

|u(i)|2$(i) +
|r|2

2σ2
− λ(

∑
i

(b(x, i) + a(x, i)u(i))$(i) + r − v)

with respect to u(i) and setting the derivative to 0 we get u(i) = λa(x, i). Also,

differentiating with respect to r we see that r = λσ2. Using this in (5.5.9) we get

λ =
v −

∑
i b(x, i)$(i)∑

i a
2(x, i)$(i) + σ2

and so

u(i) =
v −

∑
i b(x, i)$(i)∑

i a
2(x, i)$(i) + σ2

a(x, i), r =
v −

∑
i b(x, i)$(i)∑

i a
2(x, i)$(i) + σ2

σ2.

In the general vector valued case, a similar argument shows that, letting a(i) =

(a(x, i))jk, one can take

u(i) = a′(i)M−1
σ [v −

∑
i

b(x, i)$(i)], r = σ2M−1
σ [v −

∑
i

b(x, i)$(i)],

Mσ =
∑
i

$(i)A(i) + σ2Id, A(i) = a(i)a′(i).

Finally, the result follows on observing that a, b are bounded on K1 × L and for

α ∈ Rd α′Mσα ≥ σ2α′α.

Lemma 5.5.4. Let ε0 ∈ (0, 1). Then there exists a c1 ∈ (0,∞) such that for every

$ ∈ P(L) and x ∈ Rd, there is a ϑ ∈ K̄($, x) such that∫
L
l̂(ϑ(y, ·))$(dy) ≤ G1($, x) + ε0

and $(y)dϑ(y,·)
dθ
≤ c1 for every y ∈ L.
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Proof. Fix ε0 ∈ (0, 1). Choose q1 ∈ K($, x) such that

G1($, x) ≥
∫
L

∫
MF

l̂(η)q1(y, dη)$(dy)− ε0.

Then ϑq1 ∈ K̄($, x), and∫
L
l̂(ϑq1(y, ·))$(dy) ≤ G1($, x) + ε0. (5.5.10)

Now we will modify ϑq1 as follows. Define for y ∈ L, the measure ϑ̃(y, ·) as

dϑ̃(y, ·)
dθ

(r) =


αy
′
x,y if r ∈ Ey′

x,y for some y′ ∈ L and θ(Ey′
x,y) 6= 0,

1 otherwise.

where αy
′
x,y =

ϑq1 (y,Ey
′
x,y)

θ(Ey
′
x,y)

. From convexity of l and (5.5.10) it follows that

∫
l̂(ϑ̃(y, ·))$(dy) =

∫ ∫
[0,1]

l(
dϑ̃(y, ·)
dθ

(r))θ(dr)$(dy)

≤
∫
l̂(ϑq1(y, ·))$(dy) ≤ G1($, x) + ε0.

Also, Πϑq1
x = Πϑ̃

x. Thus ϑ̃ ∈ K($, x), and so does αϑ̃, for any α ∈ (0,∞). Denote

M =
∑
y∈L

 ∑
y′∈L/y

ϑ̃(y, Ey′

x,y) + θ(Ex,y)

$(y), and c =
∑
y∈L

θ(Ex,y)$(y),

where Ex,y = [0, 1] \ Ex,y Define ϑ̃∗(y, ·) = ϑ̃(y,·)
M

. Note that
∑

y∈L ϑ̃
∗(y, Ex,y)$(y) =

M−c
M

. Also

inf
α>0

∫
l̂(αϑ̃∗(y, ·))$(dy) ≤

∫
l̂(ϑ̃(y, ·))$(dy).

Next note that∫
l̂(αϑ̃∗(y, ·))$(dy) =

∑
y∈L

∑
y′∈L/y

l(α
ϑ̃∗(y, Ey′

x,y)

θ(Ey′
x,y)

)θ(Ey′

x,y)$(y) + l(α/M)c.

Denote ay
′
y = ϑ̃∗(y, Ey′

x,y), b
y′
y = θ(Ey′

x,y). Taking derivative with respect to α, and

setting it to 0, we have

log(α)[
∑
y∈L

∑
y′∈L/y

ay
′

y $(y) +
c

M
] =

∑
y∈L

∑
y′∈L/y

ay
′

y (log by
′

y − log ay
′

y )$(y) +
c logM

M
.
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Solving for α, we have

log(α) =

∑
y∈L
∑

y′∈L\y a
y′
y (log by

′
y − log ay

′
y )$(y) + c logM

M∑
y∈L
∑

y′∈L\y a
y′
y $(y) + c

M

=
∑
y∈L

∑
y′∈L\y

ay
′

y log by
′

y $(y)−
∑
y∈L

∑
y′∈L\y

ay
′

y log ay
′

y $(y) +
c logM

M
,

where the last equality follows on observing that the denominator in the first equality

equals M−c
M

+ c
M

= 1. Next note that(
c logM

M

)
+

≤ c ≤ θ[0, 1],∑
y∈L

∑
y′∈L\y

ay
′

y log ay
′

y $(y)


−

≤ `

e
,

∑
y∈L

∑
y′∈L\y

ay
′

y log by
′

y $(y)


+

≤ (log θ[0, 1])+`,

where the last inequality follows on observing that ay
′
y $(y) ≤ 1 for all y. Thus we

have that

α ≤ exp

{
θ[0, 1] +

`

e
+ (log θ[0, 1])+`

}
≡ c1.

Let ϑ = αϑ̃∗. Then
∫
L l̂(ϑ(y, ·))$(dy) ≤ G1($, x) + ε0 and

sup
y∈L

∣∣∣∣$(y)
dϑ(y, ·)
dθ

∣∣∣∣ ≤ c1.

The result follows.

For δ ∈ (0, 1), let Pδ(L) be the collection of all probability measures µ on L with

the property that µ(i) ≥ δ for all i ∈ L.

Lemma 5.5.5. Given κ ∈ (0, 1) and a compact set K1 ⊂ Rd, there exists a δ ∈ (0, 1),

B0, L0 ∈ (1,∞), l0 ∈ (0,∞) such that for every σ ∈ (0, 1), x ∈ K1 and v ∈ Rd there

is a $∗ ∈ Pδ(L), ṽ ∈ Rd, r∗ ∈ Rd, u∗ ∈ U($∗, x, ṽ − r∗), ϑ∗ ∈ K̄($∗, x), with the

following properties.
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(i) |r∗| ≤ B0(1 + |v|); for all y ∈ L, |u∗(y)| ≤ B0(1+|v|)
σ2 ; and

|v − ṽ| ≤ B(K1)κ, where B(K1) = sup
x∈K1,y∈L

|b(x, y)|.

(ii) For all y ∈ L,

l0 ≤
dϑ∗(y, ·)
dθ

(w) ≤ L0, a.s. θ. (5.5.11)

(iii) For all x̃ ∈ Rd and y, y′ ∈ L,

ĉϑ
∗(y,·)(x̃, y) ≥ δλ,

∑̀
n=1

R̂ϑ∗(y,·)
n (x̃, y, y′) ≥ f(δ, L0)α (5.5.12)

where R̂
ϑ∗(y,·)
n is defined as in (5.2.5) on replacing R with R̂ϑ∗(y,·), and f(δ, L0) =(

δ
L0

)l
.

(iv) The following inequality holds

Gσ($∗, x, ṽ) ≤
∫
L

(
1

2
|u∗(y)|2 + l̂(ϑ∗(y, ·))

)
$∗(dy)+

|r∗|2

2σ2
≤ Lσ(x, v)(1+κ)+κ.

Proof. Fix κ ∈ (0, 1) and a compact set K1 in Rd. Choice of δ0, l0, L0 will be

specified later in the proof. Given x ∈ K1, v ∈ Rd and σ ∈ (0, 1) choose $ ∈ P(L)

such that

Gσ($, x, v) ≤ Lσ(x, v) +
κ

4
. (5.5.13)

From Lemma 5.5.3, we can find a r∗ ∈ Rd and u ∈ U($, x, v− r∗), such that with B

as in Lemma 5.5.3, |r∗| ≤ B(1 + |v|) and |u(i)| ≤ B(1+|v|)
σ2 for all i ∈ L and such that

1

2

∫
|u(y)|2$(dy) +

|r∗|2

2σ2
= G2,σ($, x, v). (5.5.14)

Fix γ ≤ κ/2 and δ = γρ. Using Lemma 5.5.4 choose ϑ ∈ K̄($, x) such that∫
L
l̂(ϑ(y, ·))$(dy) ≤ G1($, x) +

κ

4
and max

y∈L
$(y)

dϑ(y, ·)
dθ

≤ c1. (5.5.15)

Define ζ ∈ P(L×MF ) as

ζ(dydη) = (1− γ)δϑ(y,·)(dη)$(dy) + γδθ(dη)ρx(dy).
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Then $∗ ∈ P(L) defined as

$∗(dy) =

∫
MF

ζ(dydη) = (1− γ)$(dy) + γρx(dy)

satisfies $∗(i) ≥ γρx(i) ≥ δ for all i ∈ L, i.e. $∗ ∈ Pδ(L). Disintegrating ζ as

ζ(dydη) = q∗(y, dη)$∗(dy),

we see that q∗ ∈ K($∗, x) and consequently ϑ∗ ≡ ϑq
∗ ∈ K̄($∗, x). Also, from (5.5.15)∫

L
l̂(ϑ∗(y, ·))$∗(dy) ≤

∫
L

∫
MF

l̂(η)q∗(y, dη)$∗(dy)

=(1− γ)

∫
L
l̂(ϑ(y, ·))$(dy)

≤G1($, x) +
κ

4
. (5.5.16)

Next, we claim that

δ ≤ dϑ∗(y, ·)
dθ

(w) ≤ c1 + 1

δ
, a.s. θ. (5.5.17)

Indeed, for A ∈ B[0, 1],

ϑ∗(y, A) =

∫
MF

η(A)q∗(y, dη) ≤ 1

δ

∫
MF

η(A)q∗(y, dη)$∗(y)

=
1

δ
((1− γ)ϑ(y, A)$(y) + γθ(A)ρx(y)) ≤ 1

δ
((1− γ)c1θ(A) + γθ(A))

≤c1 + 1

δ
θ(A).

Similarly

ϑ∗(y, A) =

∫
MF

η(A)q∗(y, dη) ≥
∫
MF

η(A)q∗(y, dη)$∗(y)

= ((1− γ)ϑ(y, A)$(y) + γθ(A)ρx(y))

≥δθ(A).

This proves (5.5.17) and thus part (ii) follows with L0 = c1+1
δ

and l0 = δ.
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For (x̃, y) ∈ G

ĉϑ
∗(y,·)(x̃, y) = ϑ∗(y, Ex̃,y) =

1

$∗(y)
ϑ∗(y, Ex̃,y)$

∗(y) ≥ γ

$∗(y)
θ(Ex̃,y)ρx(y) ≥ δλ.

Similarly one sees that

∑̀
n=1

R̂ϑ∗(y,·)
n (x̃, y, y′) ≥ f(δ, L0)α, for all x̃ ∈ Rd.

Thus (iii) is satisfied.

Next note that ∫
L
a(x, y)u(y)$(dy) =

∫
L
a(x, y)u∗(y)$∗(dy),

where u∗(y) = u(y) $(y)
$∗(y)

. Also∫
L
a(x, y)u∗(y)$∗(dy)+

∫
L
b(x, y)$∗(dy) = v−r∗+

∫
L
b(x, y)($∗(dy)−$(dy)) = ṽ−r∗,

where ṽ = v +
∫
L b(x, y)($∗(dy)−$(dy)). Thus u∗ ∈ U($∗, x, ṽ − r∗). Also

|ṽ − v| ≤ κ sup
x∈K1,y∈L

|b(x, y)| = κB(K1) and |u∗(y)| ≤ B(1 + |v|)
δσ2

.

This proves (i) with B0 = B
δ

. Next,

1

2

∫
L
|u∗(y)|2$∗(dy) =

1

2

∫
L
|u(y)|2 $(y)

$∗(y)
$(dy) ≤ 1

1− γ
1

2

∫
L
|u(y)|2$(dy).

Thus from (5.5.13) and (5.5.14)

1

2

∫
L
|u∗(y)|2$∗(dy) +

|r∗|2

2σ2
≤1

2

∫
L
|u(y)|2$(dy) +

|r∗|2

2σ2
+

γ

1− γ
(Lσ(x, v) +

κ

4
)

≤G2,σ($, x, v) +
κ

4
+ κLσ(x, v),

where the last inequality follows from our choice of γ.
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Combining the estimate in the above display with (5.5.13) and (5.5.16)

1

2

∫
L
|u∗(y)|2$∗(dy)+

∫
L
l̂( ϑ∗(y, ·))$∗(dy) +

|r∗|2

2σ2

≤G1($, x) +
κ

4
+G2,σ($, x, v) +

κ

4
+ κLσ(x, v)

=Gσ($, x, v) +
κ

2
+ κLσ(x, v)

≤Lσ(x, v) + κ+ κLσ(x, v).

This proves (iv).

Proof of the following lemma is given in the Appendix.

Lemma 5.5.6. For every m ∈ (0,∞) and δ ∈ (0, 1) there exists a β(m, δ) ∈ (0,∞)

such that whenever ϑ∗ ∈ K̄ satisfies (5.5.12) and

max
y∈L

dϑ∗(y, ·)
dθ

(w) ≤ m a.s. θ, (5.5.18)

we have

|$x −$x′| ≤ β(m, δ)|x− x′|, for all x, x′ ∈ Rd

where $x is the unique invariant measure of the Markov process with generator Πϑ∗
x .

Lemma 5.5.7. For every σ ∈ (0,∞), Lσ is continuous on Rd × Rd.

Proof. Fix σ ∈ (0,∞). We will show that for every compact K = K1 × K2 ⊂

Rd × Rd and κ0 ∈ (0, 1) there exists a ε0 ∈ (0, 1) such that

Lσ(x′, v′) ≤ Lσ(x, v) + κ0, whenever (x, v), (x′, v′) ∈ K and |x− x′|+ |v − v′| ≤ ε0.

Fix such a κ0 and K. Let M1 = sup(x,v)∈K Lσ(x, v). Note that M1 is finite from

Lemma 5.5.2. We will specify a choice of ε0 later in the proof. Fix (x, v) ∈ K. We now

apply Lemma 5.5.5 with K1 and κ = min
{

κ0
2(1+M1)

, κ0σ2

32B1B(K1)

}
. Then there are δ ∈
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(0, 1), L0, B0 ∈ (0,∞), $∗ ∈ Pδ(L), ϑ∗ ∈ K̄($∗, x), r∗ ∈ Rd and u∗ ∈ U($∗, x, ṽ− r∗)

such that parts (i) - (iv) of Lemma 5.5.5 are satisfied. Since $∗ ∈ Pδ(L), we have

that

max
y∈L

l̂(ϑ∗(y, ·)) ≤ M1 + 1

δ
≡M2.

Also, using Lemma 5.5.6

max
i∈L
|$∗(i)−$∗x′(i)| ≤ β(L0, δ)|x− x′|

for all x′ ∈ K1, where $∗x′ is the unique invariant distribution for Πϑ∗

x′ . Let B1 =

supv∈K2
B0(1 + |v|) Choose ε0 small enough so that whenever |x− x′|+ |v − v′| ≤ ε0

max
i∈L
|$∗(i)−$∗x′(i)| ≤

κ0

4M2`
∧ κ0σ

4

4B2
1`

(5.5.19)

and∣∣∣∣(v − v′) +

∫
(a(x′, y)u∗(y) + b(x′, y))$∗x′(dy)−

∫
(a(x, y)u∗(y) + b(x, y))$∗(dy)

∣∣∣∣
≤ κ0σ

2

32B1

.

Since ϑ∗ ∈ K̄($∗x′ , x
′), we have

G1($∗x′ , x
′) ≤

∫
L
l̂(ϑ∗(y, ·))($∗x′ −$∗)(dy) +

∫
L
l̂(ϑ∗(y, ·))$∗(dy)

≤ κ0

4M2`
M2`+

∫
L
l̂(ϑ∗(y, ·))$∗(dy)

≤κ0

4
+

∫
L
l̂(ϑ∗(y, ·))$∗(dy) (5.5.20)

Next, define

r0 = (ṽ − v′) +

∫
(a(x′, y)u∗(y) + b(x′, y))$∗x′(dy)−

∫
(a(x, y)u∗(y) + b(x, y))$∗(dy),

note that |r0| ≤ κ0σ2

16B1
. Let r̃ = r∗ − r0, then u∗ ∈ U($∗x′ , x

′, v′ − r̃). Also,

G2,σ($∗x′ , x
′, v′) ≤1

2

∫
L
|u∗(y)|2$∗x′(dy) +

|r̃|2

2σ2

≤1

2

∫
L
|u∗(y)|2$∗x′(dy) +

|r∗|2

2σ2
+
|r0|2

2σ2
+
|r∗||r0|
σ2

≤1

2

∫
L
|u∗(y)|2$∗x(dy) +

κ0

8
+
|r∗|2

2σ2
+
κ0

16
+
κ0

16
. (5.5.21)
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Combining estimates in (5.5.19), (5.5.20), (5.5.21), Lemma 5.5.5(iv)

Lσ(x′, v′) ≤Gσ($∗x′ , x
′, v′)

≤κ0

2
+

1

2

∫
L
|u∗(y)|2$∗(dy) +

∫
L
l̂(ϑ∗(y, ·))$∗(dy) +

|r∗|2

2σ2

≤Lσ(x, v) +
κ0

2
+ κ(1 + Lσ(x, v))

≤Lσ(x, v) + κ0.

The result follows.

5.5.2 Auxiliary Lemmas.

In this section we collect two other lemmas that will be used in the proof of the

lower bound. Let PLx0([0, T ] : Rd) be the space of piecewise linear maps from [0, T ]

to Rd starting from x0, i.e. ϕ ∈ U belongs to PLx0([0, T ] : Rd) if it is absolutely

continuous, ϕ(0) = x0 and there exists a partition 0 = t0 < t1 · · · < tk = T such

that ϕ̇(t) = ϕ̇(ti+) for all t ∈ (ti, ti+1), i = 0, · · · k − 1. For ξ ∈ U, let ||ξ||T =

sup0≤t≤T |ξ(t)|.

Lemma 5.5.8. Let ϕ ∈ U, ϕ(0) = x0 be such that ϕ is absolutely continuous and∫ T
0
|ϕ̇(s)|2ds <∞. Fix σ > 0. Then there exists a sequence {ϕn} ⊂ PLx0([0, T ] : Rd)

such that ϕn → ϕ uniformly and, as n→∞∫ T

0

Lσ(ϕn(t), ϕ̇n(t))dt→
∫ T

0

Lσ(ϕ(t), ϕ̇(t))dt.

Proof. Let ψ = ϕ̇ and define, for δ > 0, ψδ(s) = δ−1
∫ s

(s−δ)+ ψ(u)du, and ϕδ(s) =∫ s
0
ψδ(u)du, s ∈ [0, T ]. Then s→ ψδ(s) is continuous and∫ T

0

|ψδ(s)|2ds→
∫ T

0

|ψ(s)|2ds, as δ → 0. (5.5.22)
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Also

(ϕδ(s), ψδ(s))→ (ϕ(s), ψ(s)) for every s ∈ [0, T ] (5.5.23)

and the convergence of ϕδ to ϕ is uniform. Thus, from Lemma 5.5.7,

Lσ(ϕδ(s), ψδ(s))→ Lσ(ϕ(s), ψ(s)) as δ → 0. (5.5.24)

Combining this fact with Lemma 5.5.2 and (5.5.22) we have that∫ T

0

Lσ(ϕδ(t), ψδ(t))dt→
∫ T

0

Lσ(ϕ(t), ψ(t))dt.

Thus, in order to prove the lemma, we can assume without loss of generality that ϕ̇

is continuous. In particular sups∈[0,T ]{|ϕ(s)|+ |ϕ̇(s)|} ≡ M̃0 <∞. Let K = {(x, v) :

|x| + |v| ≤ M̃0}. Fix κ > 0. From Lemma 5.5.7, we can find δ0 ∈ (0, κ) such that

whenever (x, v), (x′, v′) ∈ K and |x− x′|+ |v − v′| ≤ δ0, we have

|Lσ(x, v)− Lσ(x′, v′)| ≤ ε0 =
κ

T
.

Also, from continuity of ϕ, ϕ̇, we can find γ0 ∈ (0, δ0
2M̃0

) such that whenever s, t ∈

[0, T ], |s− t| ≤ γ0, we have

|ϕ(s)− ϕ(t)| ≤ δ0

4
and |ϕ̇(s)− ϕ̇(t)| ≤ δ0

4
.

Now consider the partition 0 = t0 < t1 · · · < tk = T where, with k = bT/γ0c+ 1, ti =

iγ0, i = 0, 1, · · · k−1 and tk = T . Define ϕκ such that ϕκ(ti) = ϕ(ti), i = 0, 1, · · · k−1

and is extended to [0, T ] by the linear interpolation of the points ϕκ(ti), i = 0, 1, · · · k−

1. In particular,

ϕ̇κ(t) = ϕ̇(t̃i), for some t̃i ∈ (ti, ti+1) whenever t ∈ (ti, ti+1), i = 0, 1, · · · k − 1.

Then ϕκ ∈ PLx0([0, T ] : Rd) and∣∣∣∣∫ T

0

Lσ(ϕκ(t), ϕ̇κ(t))dt−
∫ T

0

Lσ(ϕ(t), ϕ̇(t))dt

∣∣∣∣
≤

k−1∑
i=0

∫ ti+1

ti

∣∣Lσ(ϕκ(t), ϕ̇κ(t̃i))− Lσ(ϕ(t), ϕ̇(t))
∣∣ dt

≤ε0T = κ
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where the last inequality follows on observing that for all s ∈ [ti, ti+1), i = 0, 1, · · · k−

1,

|ϕκ(s)− ϕ(s)|+ |ϕ̇κ(s)− ϕ̇(s)| ≤|ϕ(ti)− ϕ(s)|+ |s− ti||ϕ̇(t̃i)|+ |ϕ̇(s)− ϕ̇(t̃i)|

≤δ0

2
+ γ0M̃0 ≤

δ0

2
+

δ0

2M̃0

M̃0 = δ0.

Also, since δ0 ≤ κ, we have sups∈[0,T ] |ϕκ(s)−ϕ(s)| ≤ κ. Thus for an arbitrary κ > 0,

we have found a ϕκ ∈ PLx0([0, T ] : Rd) such that

sup
s∈[0,T ]

|ϕκ(s)− ϕ(s)| ≤ κ,

∣∣∣∣∫ T

0

Lσ(ϕκ(t), ϕ̇κ(t))dt−
∫ T

0

Lσ(ϕ(t), ϕ̇(t))dt

∣∣∣∣ ≤ κ.

The result follows. �

In fact in the course of the proof of the above lemma we have established the

following result.

Lemma 5.5.9. Let ϕ ∈ U, ϕ(0) = x0 be such that ϕ is absolutely continuous and∫ T
0
|ϕ̇(s)|2ds < ∞. Fix σ ∈ (0, 1). Then, for every κ > 0 there exists a ϕκ ∈

PLx0([0, T ] : Rd) such that ||ϕκ − ϕ||T ≤ κ, and if 0 = t0 < t1 · · · < tk = T is the

associated partition then for all si ∈ [ti, ti+1], i = 0, 1, · · · k − 1,∣∣∣∣∣
k−1∑
i=0

Lσ(ϕκ(si), ϕ̇
κ(si))(ti+1 − ti)−

∫ T

0

Lσ(ϕ(t), ϕ̇(t))dt

∣∣∣∣∣ ≤ κ.

5.5.3 Proof of the lower bound.

We now prove the inequality (5.5.1). We can assume without loss of generality

that F is a Lipschitz function (See Corollary 1.2.5 in [33]). Let MF ∈ (0,∞) be such

that

|F (ξ)− F (ξ̃)| ≤MF sup
0≤t≤T

|ξ(t)− ξ̃(t)|, for all ξ, ξ̃ ∈ U. (5.5.25)
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From Assumption 5.2.1(2) we have that for some dlip ∈ (0,∞)

max
y∈L
{|a(x, y)− a(x′, y)|+ |b(x, y)− b(x′, y)|} ≤ dlip|x− x′|, for all x, x′ ∈ Rd.

(5.5.26)

Fix ε0 ∈ (0, 1). Choose ξ1 ∈ U such that

F (ξ1) + I(ξ1) ≤ inf
ξ∈U
{F (ξ) + I(ξ)}+

ε0
2
.

From Proposition 5.5.1, I(ξ1) ≥ Ĩ(ξ1). Therefore, since Lσ(x, v) ≤ L(x, v),

F (ξ1) +

∫ T

0

Lσ(ξ1(s), ξ̇1(s))ds ≤ inf
ξ∈U
{F (ξ) + I(ξ)}+

ε0
2
.

Now fix a σ ∈ (0, 1). Using Lemma 5.5.9, we can now find a ξ∗ ∈ PLx0([0, T ] : Rd)

such that ||ξ1 − ξ∗||T ≤ ε0 and

F (ξ∗) +
k−1∑
i=0

Lσ(ξ∗(si), ξ̇
∗(ti))(ti+1 − ti) ≤ inf

ξ∈U
{F (ξ) + I(ξ)}+ ε0, (5.5.27)

for all si ∈ [ti, ti+1], where 0 = t0 < t1 · · · < tk = T is the partition over which ξ∗ is

piecewise linear. From the upper bound (5.4.1) proved in Section 5.4 we have that

k−1∑
i=0

Lσ(ξ∗(si), ξ̇
∗(ti))(ti+1 − ti) ≤ 2||F ||∞ + 1 ≡M0, (5.5.28)

Let K1 = {x ∈ Rd : |x| ≤ M̄}, where M̄ = ||ξ1||T + 1. We apply Lemma 5.5.5 with

the compact set K1 and κ = ε0. Let δ, L0, l0 be as in Lemma 5.5.5. Define M < ∞

as

M = sup
x:|x|≤M̄

sup
y∈L

[|b(x, y)|+ |a(x, y)|] . (5.5.29)

Choose

d0 =
ε0
2

min

{
1,

1

MF

,
δ

2(2M0 + 1)β(L0, δ)

}
, (5.5.30)

where β is as in Lemma 5.5.6. Let

M1 = (dlip +Mβ(L0, δ))

(
T +

√
2

δ
(2M0 + T )

)
+ 1.
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From (5.5.27) we have that

F (ξ∗) +
k−1∑
i=0

Lσ(ξ∗(ti), ξ̇
∗(ti))(ti+1 − ti) ≤ inf

ξ∈U
{F (ξ) + I(ξ)}+ ε0, (5.5.31)

where, by refining the partition if necessary, we can assume without loss of generality

that maxi |ti+1 − ti| = Λ is such that

sup
s,t∈[0,T ],|t−s|≤Λ

|ξ∗(s)− ξ∗(t)| = Λ̄ ≤ d0

M1 exp(M1)
, and k ≤ T

Λ
+ 1. (5.5.32)

For j = 0, 1, · · · (k − 1), let

mj = 2Lσ(ξ∗(tj), ξ̇
∗(tj))+1, Λj = (tj+1−tj) and Dj = (1+

√
2mj/δ)(dlip+Mβ(L0, δ)).

(5.5.33)

Then
k−1∑
j=0

DjΛj ≤M1. (5.5.34)

Then from Lemma 5.5.5, for each j ∈ {0, 1, · · · k − 1} there is a

ṽj ∈ Rd, $∗j ∈ Pδ(L), ϑj ∈ K̄($∗j , ξ
∗(tj)), rj ∈ Rd, uj ∈ U($∗j , ξ

∗(tj), ṽj − rj)

such that for all y ∈ L

l0 ≤
dϑj(y, ·)
dθ

(w) ≤ L0, a.s. θ (5.5.35)

|ṽj − ξ̇∗(tj)| ≤ B(K1)ε0, for all j = 0, 1, · · · k, and the inequalities in Lemma 5.5.5

(ii) hold with ϑ∗ replaced by ϑj, and∫
L

(
l̂(ϑj(y, ·)) +

1

2
|uj(y)|2

)
$∗j (dy) +

1

2σ2
|rj|2 ≤ (1 + ε0)Lσ(ξ∗(tj), ξ̇

∗(tj)) + ε0.

(5.5.36)

Also note that

max

(
1

2

∫
L
|uj(y)|2$∗j (dy),

1√
2

∫
L
|uj(y)|$∗j (dy)

)
≤ mj. (5.5.37)

Denote the unique invariant measure of the Markov process with generator Π
ϑj
x as

ρjx. Then, from Lemma 5.5.6,

max
j=0,1,···k−1

max
y∈L
|ρjx(y)− ρjx′(y)| ≤ β(L0, δ)|x− x′|, for all x, x′ ∈ Rd. (5.5.38)
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Let ϕ∗j(y, r) =
dϑj(y,·)
dθ

(r), r ∈ [0, 1] and let B be a d-dimensional standard Brownian

motion that is independent of the driving noises (W, N̄). Define stochastic process

(X̃ε, Ỹ ε, Ũ ε), iteratively as follows. Let (X̃ε(0), Ỹ ε(0)) = (x0, y0) and Ũ ε(0) = 0.

Having defined (X̃ε(t), Ỹ ε(t), Ũ ε(t)) for t ∈ [0, tj], define for t ∈ (tj, tj+1],

X̃ε(t) =X̃ε(tj) +

∫ t

tj

b(X̃ε(s), Ỹ ε(s))ds+
√
ε

∫ t

tj

a(X̃ε(s), Ỹ ε(s))dW (s)

+

∫ t

tj

a(X̃ε(s), Ỹ ε(s))ψεj(s)ds

Ỹ ε(t) =Ỹ ε(tj) +

∫ t

tj

∫
r∈[0,1]

k(X̃ε(s), Ỹ ε(s−), r)N
1
ε
ϕεj(dr × ds),

Ũ ε(t) =Ũ ε(tj) +
√
εσ

∫ t

tj

dB(s) + rj(t− tj), (5.5.39)

where

ψεj(t) = uj(Ỹ
ε(t)), ϕεj(t, r) = ϕ∗j(Ỹ

ε(t−), r), (5.5.40)

Finally, let Z̃ε = X̃ε + Ũ ε. Following the proof of Theorem II.8 in [73], we see that

as ε→ 0, X̃ε converges in probability (with the uniform metric on U) to x̂ ∈ U given

as the unique solution of the equation

dx̂(t) =

(∫
L

(b(x̂(t), y) + a(x̂(t), y)uj(y)) ρjx̂(t)(dy)

)
dt, (5.5.41)

t ∈[tj, tj+1], j = 0, 1, · · · , k − 1, x̂(0) = x0.

Also, Ũ ε converges in probability (with uniform metric on U) to ζ, defined as

ζ(0) = 0; ζ(t) = ζ(tj) + rj(t− tj), t ∈ (tj, tj+1], j = 0, 1, · · · , k − 1. (5.5.42)

Let z = x̂+ ζ. Then Z̃ε → z in probability as ε→ 0.

Next note that

|ζ|2T ≤ sup
0≤t≤T

(∫ t

0

∣∣∣ζ̇(s)
∣∣∣ ds)2

≤ T

∫ T

0

|ζ̇(s)|2ds = 2Tσ2

k−1∑
j=0

|rj|2

2σ2
(tj+1 − tj)

≤2Tσ2

(
2
k−1∑
j=0

Lσ(ξ∗(tj), ξ̇
∗
tj

)(tj+1 − tj) + 1

)
≤ 2Tσ2(2M0 + 1) ≡ (s(σ))2,

(5.5.43)
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where the next to last inequality follows from (5.5.36) and the last inequality follows

from (5.5.28).

Next define % ∈ U as

%(0) = 0; %(t) = %(tj)− [ṽj − ξ̇∗(tj)](t− tj), t ∈ (tj, tj+1], j = 0, 1, · · · , k − 1

Note that ∫ t

s

|%̇(u)|du ≤ B(K1)ε0(t− s), for all 0 ≤ s ≤ t ≤ T. (5.5.44)

We now estimate sup0≤t≤T |x̂(t)− ξ∗(t)|. Note that for t ∈ [0, t1]

x̂(t)− ξ∗(t) =

∫ t

0

[∫
L
b(x̂(s), y)ρ0

x̂(s)(dy)−
∫
L
b(ξ∗0 , y)$∗0(dy)

]
ds

+

∫ t

0

[∫
L
a(x̂(s), y)u0(y)ρ0

x̂(s)(dy)−
∫
L
a(ξ∗0 , y)u0(y)$∗0(dy)

]
ds

− ζ(t) + %(t).

For the second term, we have for t ∈ [0, t1],∣∣∣∣∫
L
a(x̂(t), y)u0(y)ρ0

x̂(t)(dy)−
∫
L
a(ξ∗(0), y)u0(y)$∗0(dy)

∣∣∣∣
≤
∣∣∣∣∫

L
(a(x̂(t), y)− a(ξ∗(0), y))u0(y)ρ0

x̂(t)(dy)

∣∣∣∣
+

∣∣∣∣∫
L
a(ξ∗(0), y)u0(y)

(
ρ0
x̂(t)(dy)−$∗0(dy)

)∣∣∣∣
≤
√

2m0

δ
(dlip +Mβ(L0, δ)) |x̂(t)− ξ∗(0)|

where in the last inequality, we have used (5.5.37), (5.5.29), (5.5.35), (5.5.38) and the

facts that $∗0(y) ≥ δ and $∗0(dy) = ρ0
ξ∗(0)(dy). For the first term we have similarly,∣∣∣∣∫

L
b(x̂(t), y)ρ0

x̂(t)(dy)−
∫
L
b(ξ∗(0), y)$∗0(dy)

∣∣∣∣ ≤ (dlip +Mβ(L0, δ)) |x̂(t)− ξ∗(0)|.

Combining these estimates, we have on recalling the definitions of Dj and Λj from
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(5.5.33) and using (5.5.32), for t ∈ [0, t1],

|x̂(t)− ξ∗(t)|

≤ D0

∫ t

0

|x̂(s)− ξ∗(0)|ds+

∫ t

0

|ζ̇(s)|ds+

∫ t

0

|%̇(s)|ds

≤ D0

∫ t

0

|x̂(s)− ξ∗(s)|ds+D0

∫ t

0

|ξ∗(s)− ξ∗(0)|ds+

∫ t

0

|ζ̇(s)|ds+

∫ t

0

|%̇(s)|ds

≤ D0

∫ t

0

|x̂(s)− ξ∗(s)|ds+D0Λ0Λ̄ +

∫ t

0

|ζ̇(s)|ds+

∫ t

0

|%̇(s)|ds.

Then by Gronwall’s inequality, we have

sup
t0≤t≤t1

|x̂(t)− ξ∗(t)| ≤
(
D0Λ0Λ̄ +H0

)
exp{D0Λ0},

where for j = 0, · · · (k − 1), Hj =
∫

[tj ,tj+1]
|ζ̇(s)|ds +

∫
[tj ,tj+1]

|%̇(s)|ds. Similarly, we

have for t ∈ [t1, t2],

|x̂(t)− ξ∗(t)|

≤ D1

∫ t

t1

|x̂(s)− ξ∗(t1)|ds+ |x̂(t1)− ξ∗(t1)|+
∫ t

t1

|ζ̇(s)|ds+

∫ t

t1

|%̇(s)|ds

≤ D1

∫ t

t1

|x̂(s)− ξ∗(s)|ds+D1

∫ t

t1

|ξ∗(s)− ξ∗(t1)|ds+H1 + (D0Λ0Λ̄ +H0) exp{D0Λ0}

≤ D1

∫ t

t1

|x̂(s)− ξ∗(s)|ds+ (D1Λ1Λ̄ +H1) + (D0Λ0Λ̄ +H0) exp{D0Λ0}

≤ D1

∫ t

t1

|x̂(s)− ξ∗(s)|ds+ ((D0Λ0 +D1Λ1)Λ̄ +H0 +H1) exp{D0Λ0}.

Thus by Gronwall’s inequality, we have

sup
t1≤t≤t2

|x̂(t)− ξ∗(t)| ≤ ((D0Λ0 +D1Λ1)Λ̄ +H0 +H1) exp{D0Λ0 +D1Λ1}.

Using similar estimates recursively, we have from (5.5.34), (5.5.43), (5.5.44) and

(5.5.32)

sup
0≤t≤T

|x̂(t)− ξ∗(t)| ≤

(
Λ̄
k−1∑
j=0

DjΛj +
k−1∑
j=0

Hj

)
exp

(
k−1∑
j=0

DjΛj

)

≤ Λ̄M1 exp(M1) + s(σ) exp(M1) + ε0A1

≤ d0 + s(σ) exp(M1) ≤ ε0
2

+ s(σ) exp(M1) + ε0A1, (5.5.45)
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where A1 = B(K1)T exp(M1). Combining this with (5.5.32), we have

|x̂(t)− ξ∗(ti)| ≤ 2d0 + s(σ) exp(M1) + ε0A1, for all t ∈ [ti, ti+1], i = 0, 1, · · · , k − 1.

(5.5.46)

By standard arguments it follows that, as ε→ 0,

1

2

∫ T

0

|ψε(s)|2ds→
k−1∑
i=0

1

2

∫ ti+1

ti

∫
L
|ui(y)|2ρix̂(s)(dy)ds,

∫ T

0

∫
[0,1]

l(ϕε(s, r))θ(dr)ds→
k−1∑
i=0

∫ ti+1

ti

∫
L
l̂(ϑi(y))ρix̂(s)(dy)ds (5.5.47)

in probability, where

(ψε(t), ϕε(t, ·)) = (ψεi (t), ϕ
ε
i(t, ·)), t ∈ [ti, ti+1), i = 0, 1, · · · k − 1.

Proof of the above statement is given in the appendix. Next note that

k−1∑
i=0

1

2

∫ ti+1

ti

(∫
L
|ui(y)|2ρix̂(s)(dy) +

|ri|2

σ2

)
ds (5.5.48)

=
k−1∑
i=0

1

2

∫ ti+1

ti

∫
L
|ui(y)|2(ρix̂(s)(dy)− ρiξ∗(ti)(dy))ds

+
k−1∑
i=0

1

2

∫ ti+1

ti

(∫
L
|ui(y)|2$∗i (dy) +

|ri|2

σ2

)
ds

≤ε0
2

+M2s(σ) + ε0A2

+
k−1∑
i=0

1

2

(∫
L
|ui(y)|2$∗i (dy) +

|ri|2

σ2

)
(ti+1 − ti), (5.5.49)

whereM2 = β(L0,δ)
δ

(2M0+1) exp(M1), A2 = B(K1)TM2 and the last inequality follows

from our choice of d0 on observing from (5.5.37), (5.5.46), (5.5.28) and (5.5.30) that

k−1∑
i=0

1

2

∫ ti+1

ti

∫
L
|ui(y)|2(ρix̂(s)(dy)− ρiξ∗(ti)(dy))ds

≤β(L0, δ)

δ

(
k−1∑
i=0

miΛi

)
(2d0 + s(σ) exp(M1) + ε0A1)

≤β(L0, δ)

δ
(2M0 + 1)(2d0 + s(σ) exp(M1) + ε0A1)

≤ε0
2

+M2s(σ) + ε0A2.

128



Similarly

k−1∑
i=0

∫ ti+1

ti

∫
L
l̂(ϑi(y))ρix̂(s)(dy)ds

=
k−1∑
i=0

∫ ti+1

ti

∫
L
l̂(ϑi(y))(ρix̂(s)(dy)− ρiξ∗(ti)(dy))ds

+
k−1∑
i=0

∫ ti+1

ti

∫
L
l̂(ϑi(y))ρiξ∗(ti)(dy)ds

≤β(L0, δ)

δ

(
k−1∑
i=0

miΛi

)
(2d0 + s(σ) exp(M1))

+
k−1∑
i=0

∫ ti+1

ti

∫
L
l̂(ϑi(y))$∗i (dy)ds

≤ε0
2

+M2s(σ) + ε0A2 +
k−1∑
i=0

∫
L
l̂(ϑi(y))$∗i (dy)(ti+1 − ti). (5.5.50)

Let

uε(t) = (ψε(t), ϕε(t, ·)). (5.5.51)

Define Zε
σ = Xε + U ε

σ, where U ε
σ =
√
εσB. Let Θ = max{2||F ||∞,MF}, where MF is

as in (5.5.25). Then

ε logEx
[
exp

(
−1

ε
F (Zε

σ)

)]
≤ ε logEx

[
exp

(
−1

ε
F (Xε)

)]
+ ε logEx

[
exp

(
1

ε
Θ(||U ε

σ||T ∧ 1)

)]
.

Therefore,

lim sup
ε→0

−ε logEx
[
exp

(
−1

ε
F (Xε)

)]
≤ lim sup

σ→0
lim sup
ε→0

−ε logEx
[
exp

(
−1

ε
F (Zε

σ)

)]
+ lim sup

σ→0
lim sup
ε→0

ε logEx
[
exp

(
1

ε
Θ(||U ε

σ||T ∧ 1)

)]
.

Note that, for every σ > 0, as ε → 0, U ε
σ satisfies the Laplace principle with rate
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function

I0,σ(ϕ) =


1

2σ2

∫ T
0
|ϕ̇(s)|2ds if

∫ T
0
|ϕ̇(s)|2ds <∞,

∞ otherwise.

(5.5.52)

A straightforward calculation now shows that

lim sup
σ→0

lim sup
ε→0

ε logEx
[
exp

(
1

ε
Θ(||U ε

σ||T ∧ 1)

)]
≤ lim sup

σ→0

Θ2σ2

2
T = 0.

Thus

lim sup
ε→0

−ε logEx
[
exp

(
−1

ε
F (Xε)

)]
≤ lim sup

σ→0
lim sup
ε→0

−ε logEx
[
exp

(
−1

ε
F (Zε

σ)

)]
.

(5.5.53)

Now consider the expression on the right side of the above display. For (ψ, ϕ) ∈ U

and γ ∈ P2 let

Zε(ψ, ϕ, γ) = Gε
(√

εW +

∫ ·
0

ψ(s)ds, εN ε−1ϕ

)
+
√
εσB +

∫ ·
0

γ(s)ds

where Gε is as in Section 5.4. Then by the variational representation from [18] (See

Theorem 3.1 therein) we have

−ε logEx
[
exp

(
−1

ε
F (Zε

σ)

)]
= inf

u=(ψ,ϕ)∈U
inf
γ∈P2

Ex
[
L̄T (u) +

1

2σ2

∫ T

0

|γ(s)|2ds+ F (Zε(ψ, ϕ, γ))

]
≤Ex

[
L̄T (uε) +

1

2σ2

∫ T

0

|ζ(s)|2ds+ F (Zε(ψ
ε, ϕε, ζ))

]
,

where uε = (ψε, ϕε) and ζ are as in (5.5.51) and (5.5.42), respectively. From (5.5.47),
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(5.5.49), (5.5.50), (5.5.36) and (5.5.28) it follows that

lim sup
ε→0

Ex
(
L̄T (uε) +

1

2σ2

∫ T

0

|ζ(s)|2ds
)
≤ ε0 + 2M2s(σ) + 2ε0A2

+
k−1∑
i=0

(∫
L

(
1

2
|ui(y)|2 + l̂(ϑi(y))

)
$∗i (dy) +

|ri|2

2σ2

)
(ti+1 − ti)

≤ε0 + 2M2s(σ) + 2ε0A2 + (1 + ε0)
k−1∑
i=0

Lσ(ξ∗(tj), ξ̇
∗(tj))(ti+1 − ti) + ε0T

≤(1 + T +M0)ε0 + 2M2s(σ) + 2ε0A2 +
k−1∑
i=0

Lσ(ξ∗(tj), ξ̇
∗(tj))(ti+1 − ti).

(5.5.54)

An application of Girsanov’s theorem shows that Zε(ψ
ε, ϕε, ζ)) = Z̃ε a.s. and as

noted below (5.5.41), Zε(ψ
ε, ϕε, ζ)) = Z̃ε converges in probability to z. Thus, using

(5.5.45), we have

lim sup
ε→0

Ex [F (Zε(ψ
ε, ϕε, β)] ≤ F (ξ∗) +MF |ζ|T +MF

(ε0
2

+ s(σ) exp(M1) + ε0A1

)
.

(5.5.55)

Combining (5.5.54), (5.5.43), (5.5.55) and (5.5.27) we have

lim sup
ε→0

−ε logEx
[
exp

(
−1

ε
F (Zε

σ)

)]
≤(1 + T +M0)ε0 + 2M2s(σ) + 2ε0A2

+
k−1∑
i=0

Lσ(ξ∗(tj), ξ̇
∗(tj))(ti+1 − ti) + F (ξ∗)

+MF s(σ) +MF

(ε0
2

+ s(σ) exp(M1) + ε0A1

)
≤ inf

ξ∈U
{F (ξ) + I(ξ)}+ (2 + T +M0 +MF + 2A2 + A1)ε0

+ (MF (1 + exp(M1)) + 2M2)s(σ).

Note that the constants MF ,M1, M2, A1, A2 depend only on F , the coefficients a, b,

and M̄ (and hence on ε0), but not on σ. The result now follows on sending first

σ → 0 and then ε0 → 0.
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5.6 Appendix.

Proof of Lemma 5.2.1.

In view of Assumption 5.2.1 (2), it suffices to show that ρx is Lipschitz continuous

in x. The L valued Markov chain with transition probabilities pxyz =
∑`

n=1 R̂n(x, y, z),

(y, z) ∈ L, is ergodic for each x ∈ Rd. Denote the unique invariant measure of this

chain by πx. From (5.2.1) it follows that pxyz is Lipschitz in x and infy,z∈L infx∈Rd p
x
yz >

0. From Lemma 3.1 in [42], πx is given as a ratio of polynomials in {pxyz}y,z∈L. Thus

x 7→ πx(y) is Lipschitz for every y ∈ L. The result now follows on noting that

ρx(y) = πx(y)
c(x,y)

along with the observation that x 7→ c(x, y) is Lipschitz for every y ∈ L

(from (5.2.1)) and the lower bound on c(x, y). �

Proof of (5.3.5) and (5.3.6).

Denote the set Ex,y∆Ex′,y by Ē. Then

|ĉη(x, y)− ĉη(x′, y)| =|η(Ex,y)− η(Ex′,y)| ≤ η(Ē)

=

∫
Ē

1 · dη
dθ

(r)θ(dr) ≤
∫
Ē

emθ(dr) +
1

m

∫
Ē

l(
dη

dθ
(r))θ(dr)

≤emκ2|x− x′|+
1

m
l̂(η),

where the inequality on the second line follows from (5.3.4) and the last inequality

follows from (5.2.1).

Similarly,

sup
y′∈L,y′ 6=y

∣∣∣ĉη(x, y)R̂η(x, y, y′) −ĉη(x′, y)R̂η(x′, y, y′)
∣∣∣

= sup
y′∈L,y′ 6=y

|η(Ey′

x,y)− η(Ey′

x′,y)| ≤ emκ2|x− x′|+
1

m
l̂(η).
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Combining the above estimates we have (5.3.5). Proof of (5.3.6) is now immediate

on observing that

|Πη
xφ(y)− Πη

x′φ(y)| ≤|φ|∞ |ĉη(x, y)− ĉη(x′, y)|

+|φ|∞ sup
y′∈L,y′ 6=y

∣∣∣ĉη(x, y)R̂η(x, y, y′)− ĉη(x′, y)R̂η(x′, y, y′)
∣∣∣ .

�

Proof of (5.4.12).

Changing the order of the integration, we can rewrite the following term as∫ t

0

1

∆ε

∫ (s+∆ε)∧T

s

a(X̃ε(s), Ỹ ε(u))ψε(u)duds

=

∫ ∆ε

0

1

∆ε

∫ u

0

a(X̃ε(s), Ỹ ε(u))ψε(u)dsdu

+

∫ t

∆ε

1

∆ε

∫ u

u−∆ε

a(X̃ε(s), Ỹ ε(u))ψε(u)dsdu

+

∫ (t+∆ε)∧T

t

1

∆ε

∫ t

u−∆ε

a(X̃ε(s), Ỹ ε(u))ψε(u)dsdu.

Also, we have∫ t

0

a(X̃ε(s), Ỹ ε(s))ψε(s)ds =

∫ t

0

1

∆ε

∫ u

u−∆ε

a(X̃ε(u), Ỹ ε(u))ψε(u)dsdu.

Thus∣∣∣∣∫ t

0

a(X̃ε(s), Ỹ ε(s))ψε(s)ds−
∫ t

0

1

∆ε

∫ s+∆ε

s

a(X̃ε(s), Ỹ ε(u))ψε(u)duds

∣∣∣∣
≤
∣∣∣∣∫ ∆ε

0

1

∆ε

∫ u

u−∆ε

a(X̃ε(u), Ỹ ε(u))ψε(u)dsdu−
∫ ∆ε

0

1

∆ε

∫ u

0

a(X̃ε(s), Ỹ ε(u))ψε(u)dsdu

∣∣∣∣
+

∣∣∣∣∫ t

∆ε

1

∆ε

∫ u

u−∆ε

a(X̃ε(u), Ỹ ε(u))ψε(u)dsdu−
∫ t

∆ε

1

∆ε

∫ u

u−∆ε

a(X̃ε(s), Ỹ ε(u))ψε(u)dsdu

∣∣∣∣
+

∣∣∣∣∣
∫ (t+∆ε)∧T

t

1

∆ε

∫ t

u−∆ε

a(X̃ε(s), Ỹ ε(u))ψε(u)dsdu

∣∣∣∣∣
= T

(1)
t + T

(2)
t + T

(3)
t
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For T (1) we have

(T
(1)
t )2 ≤ 2

∣∣∣∣∫ ∆ε

0

1

∆ε

∫ u

u−∆ε

a(X̃ε(u), Ỹ ε(u))ψε(u)dsdu

∣∣∣∣2
+ 2

∣∣∣∣∫ ∆ε

0

1

∆ε

∫ u

0

a(X̃ε(s), Ỹ ε(u))ψε(u)dsdu

∣∣∣∣2
≤ 4

(
κ1 sup

0≤s≤t
(|X̃ε(s)|+ 1)

)2 ∫ ∆ε

0

|ψε(u)|du

≤ 8κ2
1( sup

0≤s≤t
|X̃ε(s)|2 + 1) ·∆ε2M.

Similarly,

(T
(3)
t )2 ≤ 4κ2

1( sup
0≤s≤t

|X̃ε(s)|2 + 1) ·∆ε2M.

Thus in view of (5.4.8), sup0≤t≤T E(T
(i)
t )2 → 0, as ε→ 0, for i = 1, 3.

For the second term, using the Lipschitz property of a, we have,

(T
(2)
t )2 ≤

∫ t

∆ε

∫ u

u−∆ε

1

∆2
ε

d2
lip|X̃ε(u)− X̃ε(s)|2dsdu ·

∫ t

∆ε

∫ u

u−∆ε

(ψε(u))2 dsdu

≤
∫ t

∆ε

∫ u

u−∆ε

1

∆2
ε

d2
lip|X̃ε(u)− X̃ε(s)|2dsdu ·∆ε2M,

where dlip is as in (5.5.26). Using (5.4.9) we have

sup
0≤t≤T

E(T
(2)
t )2 ≤

d2
lip

∆2
ε

T∆ε sup
∆ε≤t≤T

E

(
sup

u−∆ε≤s≤u
|X̃ε(u)− X̃ε(s)|2

)
∆ε2M

≤ d2
lipc1T∆ε2M,

which converges to 0 as ε→ 0. Combining the above estimates, we have (5.4.12). �

Proof of (5.4.16).

Recall that

L̄T (uε) =
1

2

∫ T

0

|ψε(s)|2ds+

∫
[0,T ]×[0,1]

l(ϕε(r, s))θ(dr)ds,

and ∫
HT

[
1

2
|z|2 + l̂(η)

]
Qε(dv)

=
1

2

∫ T

0

1

∆ε

∫ s+∆ε

s

|ψε(u)|2duds+

∫ T

0

1

∆ε

∫ s+∆ε

s

l̂(ηε(u))duds,
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where ηε is as in (5.4.13).

Similar to the proof of (5.4.12), changing the order of integration, we can rewrite

the term
∫
HT
|z|2Qε(dv) as∫ ∆ε

0

1

∆ε

∫ u

0

|ψε(u)|2dsdu+

∫ T

∆ε

1

∆ε

∫ u

u−∆ε

|ψε(u)|2dsdu+

∫ T+∆ε

T

1

∆ε

∫ T

u−∆ε

|ψε(u)|2dsdu,

where the third term is 0 using our convention that ψε(u) = 0, for u > T .

Also, we have ∫ T

0

|ψε(s)|2ds =

∫ T

0

1

∆ε

∫ u

u−∆ε

|ψε(u)|2dsdu.

Then ∫ T

0

|ψε(s)|2ds−
∫
HT
|z|2Qε(dv)

=

∫ ∆ε

0

1

∆ε

∫ ∆ε

0

|ψε(u)|2dsdu−
∫ ∆ε

0

1

∆ε

∫ u

0

|ψε(u)|2dsdu

=

∫ ∆ε

0

1

∆ε

∫ ∆ε

u

|ψε(u)|2dsdu ≥ 0.

For the second term we have in a similar manner∫
[0,T ]×[0,1]

l(ϕε(r, s))θ(dr)ds−
∫
HT
l̂(η)Qε(dv) =

∫ ∆ε

0

1

∆ε

∫ ∆ε

u

l̂(ηε(u))dsdu ≥ 0.

The result follows. �

Proof of (5.4.5).

Recall from the discussion below (5.4.1) that Xε = Gε(
√
εW, εN ε−1

) is a solution

of (5.2.3)-(5.2.4). Let ϕ̄ε(r, s) = (ϕε(r, s))−1, (r, s) ∈ R× [0, 1] and let

E εt = exp

{∫
[0,1]×[0,t]

log(ϕ̄ε(r, s))N1/ε(dr × ds) +

∫
[0,1]×[0,t]

(1− ϕ̄ε(r, s))θ(dr)ds
}

and

Ē εt = exp

{∫ t

0

〈ψε(s), dW (s)〉 − 1

2

∫ t

0

|ψε(s)|2ds
}
.
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Define Ẽ εt = E εt Ē εt . Then Ẽ εt is a {Ft} martingale and consequently, Qε
T (G) =

∫
G
Ẽ εTdP,

G ∈ F , defines a probability measure on (Ω,F , {Ft}) and furthermore P and Qε
T are

mutually absolutely continuous. Also, under Qε
T , (
√
εW +

∫ ·
0
ψε(s)ds, εN ε−1ϕε) has

the same law as that of (
√
εW, εN ε−1

) under P. The statement in (5.4.5) is now

immediate. �

Proof of Lemma 5.5.6.

The L valued Markov chain with transition probabilities p̂xyz =
∑`

n=1 R̂
ϑ∗(y,·)
n (x, y, z),

(y, z) ∈ L, is ergodic for each x ∈ Rd. Denote the unique invariant measure of this

chain by π̂x. From (5.2.1) and (5.5.18) it follows that p̂xyz is Lipschitz in x and

infy,z∈L infx∈Rd p̂
x
yz > 0. As in Appendix 5.6, we now have that x 7→ π̂x(y) is Lipschitz

for every y ∈ L. The result now follows on noting that $x(y) = π̂x(y)

ĉϑ
∗(y,·)(x,y)

along with

the observation that x 7→ ĉϑ
∗(y,·)(x, y) is Lipschitz for every y ∈ L (from (5.2.1) and

(5.5.18)) and the lower bound on ĉϑ
∗(y,·)(x, y) in (5.5.12). �

Proof of (5.5.47).

It suffices to show that for each i = 0, · · · , k − 1,

1

2

∫ ti+1

ti

|ψεi (s)|2ds→
1

2

∫ ti+1

ti

∫
L
|ui(y)|2ρix̂(s)(dy)ds,∫ ti+1

ti

∫
[0,1]

l(ϕεi(s, r))θ(dr)ds→
∫ ti+1

ti

∫
L
l̂(ϑi(y))ρix̂(s)(dy)ds

in probability. Recalling the definition of ψεi and ϕεi in (5.5.40) we have that to prove

the above convergences, it is enough to show that for any function g : L → R, we

have ∫ ti+1

ti

g(Ỹ ε(s))ds→
∫ ti+1

ti

∫
L
g(y)ρix̂(s)(dy)ds
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in probability. We only consider the case i = 0 and write t1 = T . Then for t ∈ [0, T ],

Ỹ ε is given through the system of equations

X̃ε(t) =X̃ε(0) +

∫ t

0

b(X̃ε(s), Ỹ ε(s))ds+
√
ε

∫ t

0

a(X̃ε(s), Ỹ ε(s))dW (s)

+

∫ t

0

a(X̃ε(s), Ỹ ε(s))u0(Ỹ ε(s))ds

Ỹ ε(t) =Ỹ ε(tj) +

∫ t

tj

∫
r∈[0,1]

k(X̃ε(s), Ỹ ε(s−), r)N
1
ε
ϕ∗0(Ỹ ε(s−))(dr × ds). (5.6.1)

Note that

P
(∣∣∣∣∫ t

0

g(Ỹ ε(s))ds −
∫ t

0

∫
L
g(y)ρ0

x̂(s)(dy)ds

∣∣∣∣ > δ

)
≤P
(∣∣∣∣∫ t

0

g(Ỹ ε(s))ds−
∫ t

0

∫
L
g(y)ρ0

X̃ε(s)
(dy)ds

∣∣∣∣ > δ

2

)
+P
(∣∣∣∣∫ t

0

∫
L
g(y)ρ0

X̃ε(s)
(dy)ds−

∫ t

0

∫
L
g(y)ρ0

x̂(s)(dy)ds

∣∣∣∣ > δ

2

)
.

Since X̃ε converges in probability to x̂, with the uniform metric on U (see below

(5.5.40)), we have from (5.5.38) that

P
(∣∣∣∣∫ t

0

∫
L
g(y)ρ0

X̃ε(s)
(dy)ds −

∫ t

0

∫
L
g(y)ρ0

x̂(s)(dy)ds

∣∣∣∣ > δ

2

)
≤ P

(
||g||∞β(L0, δ) sup

0≤s≤t
||X̃ε(s)− x̂(s)||t > δ

2

)
→ 0.

Thus we only need to show, for all t ∈ [0T ],

E

(∣∣∣∣∫ t

0

g(Ỹ ε(s))ds−
∫ t

0

∫
L
g(y)ρ0

X̃ε(s)
(dy)ds

∣∣∣∣)→ 0, as ε→ 0. (5.6.2)

Fix a sequence {hε}ε>0 such that, as ε→ 0,

hε → 0,
ε

hε
→ 0 and

h
3/2
ε

ε
→ 0.
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By a change of order of integration we have,∣∣∣∣∫ t

0

g(Ỹ ε(s))ds −
∫ t

0

(
1

hε

∫ u+hε

u

g(Ỹ ε(s))ds

)
du

∣∣∣∣
≤
∣∣∣∣∫ hε

0

(
1

hε

∫ s

0

g(Ỹ ε(s))du

)
ds

∣∣∣∣+

∣∣∣∣∫ hε

0

(
1

hε

∫ s

s−hε
g(Ỹ ε(s))du

)
ds

∣∣∣∣
+

∣∣∣∣∫ t+hε

t

(
1

hε

∫ t

s−hε
g(Ỹ ε(s))du

)
ds

∣∣∣∣
≤3||g||hε

(5.6.3)

Also, for every u ∈ [0, T ], for any ε0 > 0, there exists a compact set K, such that,

P(||X̃ε(u)|| ∈ Kc) ≤ ε0 > 0. Following arguments along the lines in Theorem II.7 in

[73], we have,

E

(
EX̃ε(u),Ỹ ε(u)

∣∣∣∣ 1

hε

∫ u+hε

u

g(Ỹ ε(s))ds− 1

hε

∫ u+hε

u

g(Ȳ ε
u (s))ds

∣∣∣∣) ≤ κh3/2
ε ||g||/ε+2ε0||g||,

(5.6.4)

where EX̃ε(u),Ỹ ε(u) denotes the conditional expectation given {X̃ε(u), Ỹ ε(u)}, κ de-

pends only on K, and {Ȳ ε
u (s)}s≥u is the solution of the system of equations

X̄ε
u(t) =X̃ε(u) +

∫ t

u

b(X̄ε
u(s), Ȳ

ε
u (s))ds+

√
ε

∫ t

u

a(X̄ε
u(s), Ȳ

ε
u (s))dW (s)

+

∫ t

u

a(X̄ε
u(s), Ȳ

ε
u (s))u0(Ȳ ε

u (s))ds,

Ȳ ε
u (t) =Ỹ ε(u) +

∫ t

u

∫
r∈[0,1]

k(X̃ε(u), Ȳ ε
u (s−), r)N

1
ε
ϕ∗(Ȳ εu (s−))(dr × ds).

In view of (5.6.3) and (5.6.4), to show (5.6.2), it is enough to show that, for all

t ∈ [0, T ],

E

∣∣∣∣∫ t

0

1

hε

∫ u+hε

u

g(Ȳ ε
u (s))dsdu−

∫ t

0

∫
L
g(y)ρ0

X̃ε(s)
(dy)ds

∣∣∣∣→ 0. (5.6.5)

Next note that

E

∣∣∣∣∫ t

0

1

hε

∫ u+hε

u

g(Ȳ ε
u (s))dsdu−

∫ t

0

∫
L
g(y)ρ0

X̃ε(s)
(dy)ds

∣∣∣∣
≤
∫ t

0

E

∣∣∣∣ 1

hε

∫ u+hε

u

g(Ȳ ε
u (s))ds−

∫
L
g(y)ρ0

X̃ε(u)
(dy)

∣∣∣∣ du. (5.6.6)
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For every u fixed,

1

hε

∫ u+hε

u

g(Ȳ ε
u (s))ds =

ε

hε

∫ hε/ε

0

g(Ȳ ε
u (u+ εs))ds.

Note that, conditional on {X̃ε(u), Ỹ ε(u)}, {Ȳ ε
u (u + εs)}s≥0 is a L valued ergodic

Markov process with generator Πϑ0
X̃ε(u)

whose unique invariant measure is ρ0
X̃ε(u)

. Thus

by the ergodic theorem, and recalling that hε/ε→∞ as ε→ 0, we have

EX̃ε(u),Ỹ ε(u)

∣∣∣∣∣ εhε
∫ u+hε/ε

u

g(Ȳ ε
u (εs))ds−

∫
L
g(y)ρ0

X̃ε(u)
(dy)

∣∣∣∣∣→ 0, as ε→ 0.

The convergence in (5.6.5) now follows on using the dominated convergence theorem.

�
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Chapter 6

A Numerical Scheme for Invariant Distributions of

Constrained Diffusions

6.1 Introduction.

Reflected diffusion processes in polyhedral domains have been proposed as ap-

proximate models for critically loaded stochastic processing networks. Starting with

the influential paper of Reiman[66], there have been many works[65, 27, 62, 85, 55, 84]

that justify approximations via reflected diffusions rigorously by establishing a limit

theorem under appropriate heavy traffic assumptions. Many performance measures

for stochastic networks are formulated to capture the long term behavior of the system

and a key object involved in the computation of such measures is the corresponding

steady state distribution. Although classical heavy traffic limit theorems only justify

approximations of the network behavior through the associated diffusion limit over

any fixed finite time horizon, there are now several results[44, 20, 21] that prove, for

certain generalized Jackson network models, the convergence of steady state distri-

butions of stochastic networks to those of the associated limit diffusions. Such limit

theorems then lead to the important question: How does one compute the stationary

distributions of reflected diffusions? Indeed, one of the main motivations for intro-

ducing diffusion approximations in the study of stochastic processing systems is the

expectation that diffusion models are easier to analyze than their stochastic network

counterparts. Classical results of Harrison and Williams [48] show that under certain

geometric conditions on the underlying problem data, stationary densities of reflected



Brownian motions have explicit product form expressions. However, once one moves

away from this special family of models there are no explicit formulas and thus one

needs to use numerical procedures.

The objective of the current work is to propose and study the performance of

one such numerical procedure for computing stationary distributions of reflected dif-

fusions in polyhedral domains. For diffusions in Rm there are two basic approaches

for computation of invariant distributions: PDE methods and Monte-Carlo meth-

ods. PDE approaches are based on the well known basic property that invari-

ant densities of diffusions can be characterized as solutions of certain stationary

Fokker-Planck equations. For reflected Brownian motions in polyhedral domains the

papers[26, 54, 25] develop similar characterization results. The characterization in

this case is formulated for the invariant density together with certain boundary den-

sities and is given in terms of the second order differential operator describing the

underlying unconstrained dynamics and a collection of first order operators corre-

sponding to the boundary reflections. Using this characterization as a starting point

Dai and Harrison[25] develop an approximation scheme for the stationary density

by constructing projections on to certain finite dimensional Hilbert spaces that are

described in terms of the above collection of differential operators. Although PDE

methods such as above are quite efficient for settings where the state dimension m is

small, one finds that Monte-Carlo methods, based on the use of the ergodic theorem,

have advantages in higher dimensions. With this in mind, we will propose and study

here a Monte-Carlo method for the computation of stationary distributions. Approx-

imations of invariant distributions of diffusions in Rm using simulation of paths have

been studied in several works [4, 64, 76, 75, 57]. One of the key difficulties in using

simulation methods is that paths of diffusions cannot be simulated exactly and so

one has to contend with two sources of errors: Discretization of the SDE and finite

time empirical average approximation for the steady state behavior. In particular,
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the long term behavior of the discretized SDE could, in general, be quite different

from that of the original system and thus a performance analysis of such Monte-Carlo

schemes requires a careful understanding of the stability properties of the underlying

systems.

The Monte-Carlo approach studied in the current work is inspired by the papers

[4], [64], [57] which have analyzed the properties of weighted empirical measures

constructed from a Euler scheme, based on a single sequence of time discretization

steps decreasing to zero, for diffusions in Rm. For multi-dimensional diffusions with

reflection one first needs to describe a suitable analog of an ‘Euler discretization step’.

In order to do so, we begin with a precise description of the stochastic dynamical

system of interest.

Let G ⊂ Rm be the convex polyhedral cone in Rm with the vertex at origin given

as the intersection of half spaces Gi, i = 1, . . . , N . Let ni be the unit vector associated

with Gi via the relation

Gi = {x ∈ Rm : 〈x, ni〉 ≥ 0}.

Denote the boundary of a set S ⊂ Rm by ∂S. We will denote the set {x ∈ ∂G :

〈x, ni〉 = 0} by Fi. For x ∈ ∂G, define the set, n(x), of unit inward normals to G at

x by

n(x)
.
= {r : |r| = 1, 〈r, x− y〉 ≤ 0,∀y ∈ G}.

With each face Fi we associate a unit vector di such that 〈di, ni〉 > 0. This vector

defines the direction of constraint associated with the face Fi. For x ∈ ∂G define

d(x)
.
=

d ∈ Rm : d =
∑
i∈In(x)

αidi;αi ≥ 0; |d| = 1

 ,

where

In(x)
.
= {i ∈ {1, 2, · · · , N} : 〈x, ni〉 = 0}.
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Roughly speaking, the set d(x) represents the set of permissible directions of con-

straint available at a point x ∈ ∂G. In a typical stochastic network setting this set

valued function is determined from the routing structure of the network and governs

the precise constraining mechanism that is used. This mechanism specifies how a

RCLL trajectory ψ with values in Rm is constrained to form a new trajectory with

values in G, through the associated Skorohod problem, which is defined as follows.

Let D([0,∞) : Rm) denote the set of functions mapping [0,∞) to Rm that are

right continuous and have left limits. We endow D([0,∞) : Rm) with the usual

Skorokhod topology. Let

DG([0,∞) : Rm)
.
= {ψ ∈ D([0,∞) : Rm) : ψ(0) ∈ G}.

For η ∈ D([0,∞) : Rm) let |η|(T ) denote the total variation of η on [0, T ] with respect

to the Euclidean norm on Rm.

Definition 6.1.1. Let ψ ∈ DG([0,∞) : Rm) be given. Then the pair (φ, η) ∈

D([0,∞) : Rm) × D([0,∞) : Rm) solves the Skorokhod problem (SP) for ψ with

respect to G and d if and only if φ(0) = ψ(0), and for all t ∈ [0,∞)

(i) φ(t) = ψ(t) + η(t);

(ii) φ(t) ∈ G;

(iii) |η|(t) <∞;

(iv) |η|(t) =
∫

[0,t]
I{φ(s)∈∂G}d|η|(s);

(v) There exists Borel measurable γ : [0,∞) → Rm such that γ(t) ∈ d(φ(t)), d|η|-

almost everywhere and

η(t) =

∫
[0,t]

γ(s)d|η|(s).
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In the above definition φ represents the constrained version of ψ and η describes

the correction applied to ψ in order to produce φ. On the domain D ⊂ DG([0,∞) :

Rm) on which there is a unique solutions to the Skorokhod problem we define the

Skorokhod map (SM) Γ as Γ(ψ)
.
= φ, if (φ, ψ − φ) is the unique solution of the

Skorokhod problem posed by ψ. We will make the following assumption on the

regularity of the Skorokhod map defined by the data {(di, ni); i = 1, 2, · · · , N}.

Condition 6.1.1. The Skorokhod map is well defined on all of DG([0,∞) : Rm), that

is, D = DG([0,∞) : Rm) and the SM is Lipschitz continuous in the following sense.

There exists a K <∞ such that for all φ1, φ2 ∈ DG([0,∞) : Rm),

sup
0≤t<∞

|Γ(φ1)(t)− Γ(φ2)(t)| < K sup
0≤t<∞

|φ1(t)− φ2(t)|.

We will also make the following assumption on the problem data.

Condition 6.1.2. For every x ∈ ∂G, there is a n ∈ n(x) such that 〈d, n〉 > 0 for all

d ∈ d(x).

The above condition is equivalent to the assumption that the N × N matrix

with (i, j)th entry 〈di, nj〉 is complete-S (see [34, 67]). When G = Rm
+ and N = m,

it is known that Condition 6.1.1 implies Condition 6.1.2 (see [77]). An important

consequence of Condition 6.1.2 that will be used in our work is the following result

from [10] (see also [28]).

Lemma 6.1.1. Suppose that Condition 6.1.2 holds. Then there exists a g ∈ C2
b (Rm)

such that

〈∇g(x), di〉 ≥ 1 ∀x ∈ Fi, i ∈ {1, ..., N}.

We remark here that the function constructed in [10] is defined only on G, however

a minor modification of the construction there gives a C2 extension to all of Rm.
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We refer the reader to [46, 34, 35] for sufficient conditions under which Condition

6.1.1 and Condition 6.1.2 hold. For example, the paper [35] shows that if G = Rm
+ ,

N = m and the square matrix D = [d1, ..., dm] is of the form D = M(I−V ), where M

is a diagonal matrix with positive diagonal entries, V is off diagonal and the spectral

radius of |V | is less than 1, then both Conditions 6.1.1 and 6.1.2 hold. Here |V |

represents the matrix with entries (|Vij|), where Vij is the (i, j)-th entry of V .

We now describe the constrained diffusion process that will be studied in this

paper. Let (Ω,F ,P) be a complete probability space on which is given a filtration

{Ft}t≥0 satisfying the usual hypotheses. Let (W (t),Ft) be a m-dimensional standard

Wiener process on the above probability space. For x ∈ G, denote by Xx the unique

solution to the following stochastic integral equation,

Xx(t) = Γ

(
x+

∫ ·
0

σ(Xx(s))dW (s) +

∫ ·
0

b(Xx(s))ds

)
(t), (6.1.1)

where σ : G→ Rm×m and b : G→ Rm are maps satisfying the following condition.

Condition 6.1.3. There exists a1 ∈ (0,∞) such that

|σ(x)− σ(y)|+ |b(x)− b(y)| ≤ a1|x− y| ∀x, y ∈ G

and

|σ(x)| ≤ a1, |b(x)| ≤ a1, ∀x ∈ G.

Unique solvability of (6.1.1) can be shown using the above condition and the

regularity assumption on the Skorokhod map. In fact, the classical method of Picard

iteration gives the following:

Theorem 6.1.1. For each x ∈ G there exists a unique pair of continuous {Ft}

adapted process (Xx(t), k(t))t≥0 and a progressively measurable process (γ(t))t≥0 such

that the following hold:
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(i) Xx(t) ∈ G, for all t ≥ 0, a.s.

(ii) For all t ≥ 0,

Xx(t) = x+

∫ t

0

σ(Xx(s))dW (s) +

∫ t

0

b(Xx(s))ds+ k(t), (6.1.2)

a.s.

(iii) For all T ∈ [0,∞),

|k|(T ) <∞ a.s.

(iv) Almost surely, for every t ≥ 0,

|k|(t) =

∫ t

0

I{Xx(s)∈∂G}d|k|(s),

k(t) =
∫ t

0
γ(s)d|k|(s), and γ(s) ∈ d(Xx(s)) a.e, [d|k|].

In this work we are interested in the invariant distributions of the strong Markov

process {Xx}. One of the basic results due to Harrison and Williams[47] (see also

[13]) on invariant distributions of such Markov processes says that if b and σ are

constants and σ is invertible, then Xx has a unique invariant probability measure if

b ∈ Co (the interior of C), where

C .
=

{
−

N∑
i=1

αidi : αi ≥ 0; i ∈ {1, · · · , N}

}
.

This result was extended to a setting with state dependent coefficients in [1] as follows.

We introduce the following two additional assumptions. For δ ∈ (0,∞), define

C(δ) .
= {v ∈ C : dist(v, ∂C) ≥ δ}.

Condition 6.1.4. There exists a δ ∈ (0,∞) such that for all x ∈ G, b(x) ∈ C(δ).

Condition 6.1.5. There exists σ ∈ (0,∞) such that for all x ∈ G and α ∈ Rm,

α′(σ(x)σ′(x))α ≥ σα′α.
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The following is the main result of [1].

Theorem 6.1.2. Assume that Conditions 6.1.1-6.1.5 hold. Then the strong Markov

process {Xx(·);x ∈ G} is positive recurrent and has a unique invariant probability

measure.

We remark that in [1] a somewhat weaker assumption than Condition 6.1.4 is

used, which says that b(x) ∈ C(δ) for all x outside a bounded set. In the current

work, for simplicity we will use the stronger form as in Condition 6.1.4. Conditions

6.1.1-6.1.5 will be assumed to hold for the rest of this work and will not be explicitly

noted in the statements of various results.

We now summarize some of the notation that will be used in this work. For a

closed set G ⊂ Rm, we say f ∈ C2
b (G), [respectively f ∈ C2

c (G)] if f is defined

on some open set O ⊃ G and f is a twice continuously differentiable on O with

bounded first two derivatives [respectively compact support]. For ν ∈ P(S) and a

ν-integrable f : S → R, we write
∫
S
fdν as 〈f, ν〉 or ν(f) interchangeably. We will

use the symbol “⇒” or “
L−→” to denote convergence in distribution. Let Rm denote

the set of m-dimensional real vectors. Euclidean norm will be denoted by | · | and

the corresponding inner product by 〈·, ·〉. The symbols,
P−→,

Lp−→ denote convergence

in probability and Lp respectively. Denote by || · ||∞ the supremum norm. A vector

v ∈ Rm is said to be nonnegative (and we write v ≥ 0) if it is componentwise

nonnegative.

6.1.1 Numerical Scheme and Main Results.

Throughout this work, the unique invariant measure for the Markov process {Xx}

will be denoted by ν. The goal of this work is to develop a convergent numerical

procedure for approximating ν. We now describe this procedure.
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Let {λk}k≥1 be a sequence of positive real numbers such that

λk → 0, as k →∞ and letting Λn :=
n∑
k=1

λk, Λn →∞ as n→∞. (6.1.3)

Note the condition is satisfied if λn = 1
nθ

with θ ∈ (0, 1]. Define the map S : G×Rm →

G by the relation

S(x, v) = Γ(x+ vi)(1), (6.1.4)

where i : [0,∞)→ [0,∞) is the identity map. The map S will be used to construct an

Euler discretization of the stochastic dynamical system described by (6.1.2). We now

introduce the noise sequence that will be used in the Euler discretization of (6.1.2).

Let {Uk,j; k ∈ N, j = 1, ...,m} be an array of mutually independent R valued

random variables, given on some probability space (Ω,F ,P), such that EUk,j = 0

and EU2
k,j = 1, for all k ∈ N, j = 1, ...,m. We denote the Rm valued random variable

(Uk,1, ..., Uk,m)′ by Uk. We will make the following assumption on the array {Uk,j}.

Condition 6.1.6. For some α ∈ (0,∞),

EeλUk,j ≤ eαλ
2

for all k ∈ N, j = 1, ...,m, λ ∈ R.

The above condition is clearly satisfied when Uk,j ∼ N(0, 1). Also, using well

known concentration inequalities it can be checked that the condition also holds if

supp(Uk,j) is uniformly bounded (see Appendix for a proof of the latter statement).

Condition 6.1.6 will be assumed to hold throughout this work.

The Euler scheme is given as follows. Define iteratively, sequences {Xk}k∈N0 ,

{Yk}k∈N0 of G and Rm valued random variables, respectively, as follows. Fix x0 ∈ G.
X0 = x0,

Yk+1 = Xk + b(Xk)λk+1 + σ(Xk)
√
λk+1Uk+1,

Xk+1 = S(Xk, Yk+1 −Xk) .

(6.1.5)
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Note that {Xk} is a sequence of G valued random variables. The last equation of

the above display describes a projection for the Euler step that is consistent with the

Skorohod problem associated with the problem data.

Define a sequence of P(G) valued random variables as

νn =
1

Λn

n∑
k=1

λkδXk−1
, n ∈ N.

The above random measures define our basic sequence of approximations for the

invariant measure ν. In particular, they yield an approximation for any integral of

the form
∫
G
f(x)dν(x) through the corresponding weighted averages:

1

Λn

n∑
k=1

λkf(Xk−1). (6.1.6)

The following is the first main result of this work.

Theorem 6.1.3. As n→∞, νn converges weakly to ν, almost surely.

The above result ensures that (6.1.6) gives an almost surely consistent approxi-

mation for ν(f) for any bounded and continuous f . In fact we have a substantially

stronger statement as follows:

Theorem 6.1.4. There exists a ζ ∈ (0,∞) such that for all continuous f : G → R

satisfying lim supx→∞ e
−ζ|x||f(x)| = 0, we have νn(f)→ ν(f), a.s.

The key ingredient in the proof of the above almost sure limit theorems is a certain

Lyapunov function that was introduced in [19] to study geometric ergodicity proper-

ties of reflected diffusions. Using this Lyapunov function we establish a.s. bounds on

exponential moments of νn that are uniform in n. These bounds in particular guar-

antee tightness of {νn(ω), n ≥ 1}, for a.e. ω. Then the remaining work, for proving

the above theorems, lies in the characterization of the limit points of νn(ω). For this

we use an extension of the well known Echeverria criterion for invariant distributions
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of Markov processes that has been developed in [26, 54] (see also [10]). Verification

of this criteria (stated as Theorem 6.2.1 in the current work) for a typical limit point

ν0 of {νn} requires showing that, ν0 along with a certain collection {µi0, i = 1, · · ·N}

of finite measures supported on various parts of the boundary of G satisfy a relation

of the form in (6.2.13). The measures {µi0} are obtained by taking weak limits of

certain finite measures constructed from the Euler scheme. Although these pre-limit

measures may place positive mass away from the boundary of the domain, we argue

using the regularity properties of the Skorohod map (a key ingredient here is Lemma

6.1.1), that in the limit these finite measures are supported on the correct parts of

the boundary.

Under additional assumptions, one can obtain rates of convergence as follows. For

α > 0, set

Λ(α)
n = λα1 + ...+ λαn.

Denote the normal distribution with mean a and variance b2 by N (a, b2). For φ ∈

C3(G) (space of three times continuously differentiable functions on G) and v ∈ Rm,

let D3φ(x)(v)⊗3 =
∑

i,j,kD
3
i,j,kφ(x)vivjvk.

For f ∈ C2
c (G), define Af : G→ R and Dif : G→ R; i = 1, ..., N as

Af(x) = b(x) · ∇f(x) +
1

2
σ′(x)D2f(x)σ(x), x ∈ G,

Dif(x) = di · ∇f(x), x ∈ G,

where ∇ is the gradient operator and D2 is the m×m Hessian matrix.

Theorem 6.1.5. Assume that Ui’s are i.i.d with common distribution µ. There exists

a ζ ∈ (0,∞) such that whenever φ ∈ C2(G) satisfies lim|x|→∞ e
−ζ|x||∇φ(x)|2 = 0, we

have the following:

(a) Fast-decreasing step. Suppose limn→∞
Λ
(3/2)
n√
Λn

= 0, D2φ is bounded and Lips-
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chitz, and 
〈∇φ(x), di〉 = 0, ∀x ∈ Fi, ∀i;

D2φ(x)di = 0, ∀x ∈ Fi, ∀i.
(6.1.7)

Then the following CLT holds:

√
Λnνn(Aφ)

L−→ N
(

0,

∫
G

|σT∇φ|2dν
)
.

(b) Slowly decreasing step. Suppose that limn→∞(1/
√

Λn)Λ
(3/2)
n = λ̃ ∈ (0,+∞],

φ ∈ C3(G) and D3φ is bounded and Lipschitz. Further suppose that
〈∇φ(x), di〉 = 0, ∀x ∈ Fi,∀i;

D2φ(x)di = 0, ∀x ∈ Fi,∀i;

D3
·jkφ(x) · di = 0, ∀x ∈ Fi,∀i, j, k.

(6.1.8)

Then we have

√
Λnνn(Aφ)

L−→ N
(
λ̃m̃,

∫
G

|σT∇φ|2dν
)

if λ̃ <∞, (6.1.9)

Λn

Λ
(3/2)
n

νn(Aφ)
P−→ m̃ if λ̃ = +∞, (6.1.10)

where

m̃ = −1

6

∫
G

∫
Rm

D3φ(x)(σ(x)u)⊗3µ(du)ν(dx).

Note that when λk = 1
kα

, Λ
(3/2)
n /

√
Λn converges to 0 [resp. ∞, λ̃ ∈ (0,+∞)],

if α > 1/2 [resp. α < 1/2, α = 1/2]. Also note that if φ is a smooth function

supported in the interior of G then it automatically satisfies (6.1.7) and (6.1.8).

Our assumptions are restrictive in the sense that it does not cover the functional

f(x) = x1, but note that the theorem does cover a function fε(x) which is given

as a suitable mollification of the function x1

∏m
i=1 1{xi≥ε} that vanishes smoothly at

the boundaries. Heuristically speaking, this functional captures some properties of

the functional f(x) = x1 when ε is small. Another functional of interest for which
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the theorem gives a rate of convergence is a suitable mollification of the functional∏m
i=1 1{xi≥αi} where αi > 0, i = 1, · · ·m.

Proof of Theorem 6.1.5 is quite similar to that of Theorem 9 in [57], the main

difference is in the treatment of the reflection terms for which once more we appeal

to regularity properties of the Skorohod map and an estimate based on Lemma 6.1.1

(see proof of (6.2.19) which is crucially used in proofs of Section 6.3).

A key step in the implementation of the Euler scheme in (6.1.5) is the evaluation

of the one time step Skorohod map S(x, v). In Section 6.4.1 we describe one possible

approach to this evaluation that uses relationships between Skorohod problems and

Linear Complementarity problems(LCPs). There are many well developed numerical

codes for solving LCPs (for example in MATLAB) and we will describe in Section

6.4.2 some results from numerical experiments that use a quadratic programming

algorithm for LCPs (cf. [24]) in implementing the scheme in (6.1.5). As remarked

earlier, one of the advantages of Monte-Carlo methods is the ease of implementation,

particularly for high dimensional problems. To illustrate this, in Section 6.4.2 we

present numerical results for a eight dimensional Skorohod problem. Comparisons

with known exact formulas (from [25]) for this problem show that the scheme performs

well for small correlation values.

This chapter is organized as follows. In Section 6.2 we prove Theorem 6.1.3 and

6.1.4. Theorem 6.1.3 is proved in two steps. Section 6.2.1 shows the tightness of the

random measures {νn}, and Section 6.2.2 characterizes the limit of the measures {νn}

as the invariant measure of the constrained diffusion in (6.1.1). Section 6.2.3 gives

the proof of Theorem 6.1.4. Rate of convergence theorem (Theorem 6.1.5) is proved

in Section 6.3. Finally we conclude by describing some numerical results in Section

6.4.
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6.2 Proofs of Theorems 6.1.3 and 6.1.4.

The proof of Theorem 6.1.3 proceeds by showing that for a.e. ω, the sequence of

random probability measures {νn(ω)}n≥1 is tight and then characterizing the limit

points of the sequence using a generalization of Echeverria’s criteria. Tightness is

argued in Section 6.2.1 while the limit points are characterized in Section 6.2.2.

Finally in Section 6.2.3, we give the proof of Theorem 6.1.4.

6.2.1 Tightness.

We begin by presenting a Lyapunov function introduced in [1] that plays a key

role in the stability analysis of constrained diffusion processes of the form studied

here (see [1, 19, 20, 21, 10, 8, 7]).

Throughout this work we will fix a δ > 0 as in Condition 6.1.4.

For x ∈ G, let A(x) be the collection of all absolutely continuous functions z :

[0,∞)→ Rm defined via

z(t)
.
= Γ

(
x+

∫ ·
0

v(s)ds

)
(t), t ∈ [0,∞), (6.2.1)

for some v : [0,∞)→ C(δ) which satisfies∫ t

0

|v(s)|ds <∞, for all t ∈ [0,∞). (6.2.2)

Namely,

A(x) =

z : [0,∞)→ Rm

∣∣∣∣∣∣∣
z is absolutely continuous,

(6.2.1) and (6.2.2) hold for some v : [0,∞)→ C(δ)

 .

Define T : G→ [0,∞) by the relation

T (x)
.
= sup

z∈A(x)

inf{t ∈ [0,∞) : z(t) = 0}, x ∈ G. (6.2.3)

153



The function T has the following properties (see [1]).

Lemma 6.2.1. There exist constants c, C ∈ (0,∞) such that the following hold:

(i) For all x, y ∈ G,

|T (x)− T (y)| ≤ C|x− y|.

(ii) For all x ∈ G, T (x) ≥ c|x|. Thus, in particular, for all M ∈ (0,∞) the set

{x ∈ G : T (x) ≤M} is compact.

(iii) Fix x ∈ G and let z ∈ A(x). Then for all t > 0,

T (z(t)) ≤ (T (x)− t)+.

We next present an elementary lemma that will be used in obtaining moment

estimates. For k ∈ N, let Fk = σ(U1, ..., Uk). Set F0 = {∅,Ω}.

Lemma 6.2.2. There exist c1, c2 ∈ (1,∞) for which the following holds. Let {vi}i∈N

be a sequence of Rm valued random variables such that vi is Fi−1 measurable for all

i ≥ 1 and

ess sup
ω
|vi(ω)| ≡ |vi|∞ <∞.

Let Sn =
∑n

i=1 vi · Ui, n ∈ N. Then for every r ≥ 0 and n ≥ 1,

E max
1≤i≤n

er|Si| ≤ c1e
c2r2

∑n
i=1 |vi|2∞ .

Proof. We will only give the proof for the case m = 1. The general case is treated

similarly.

From Doob’s maximal inequalities for submartingales, we have

E max
1≤i≤n

er|Si| ≤ 4Eer|Sn|

≤ 4
(
EerSn + Ee−rSn

)
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From Condition 6.1.6, it follows that for every r ∈ R,

E
(
erSn|Fn−1

)
≤ erSn−1eαr

2v2n

≤ erSn−1eαr
2|vn|2∞

The result now follows by a successive conditioning argument.

Define λ : [0,∞)→ [0,∞) and j : [0,∞)→ N0 as

λ(s) = Λk; j(s) = k, if Λk ≤ s < Λk+1, k ∈ N0;

where we define Λ0 = 0. Define piecewise linear Rm valued stochastic process as

follows,

Ŵ (t) =
∑
i≤j(t)

√
λiUi +

t− λ(t)√
λj(t)+1

Uj(t)+1, t ≥ 0.

Let X̂(t) be the solution of the following integral equation

X̂(t) = Γ

(
x0 +

∫ ·
0

b(X̂(λ(s)))ds+

∫ ·
0

σ(X̂(λ(s)))dŴ (s)

)
(t), t ≥ 0.

Clearly, X̂(λ(t)) = Xj(t) for all t ≥ 0.

Fix ρ ∈ (0, 1]. Define

$ =
1

2(1 + ρ)L
, ∆ = 4λ0 + 16L ln(c1), (6.2.4)

where L = c2a
2
1C

2K2 and λ0 = supi≥1 λi. Let V : G→ R+ be defined as

V (x) = e$T (x), x ∈ G.

Lemma 6.2.3. There exist β ∈ (0, 1) and κ ∈ [0,∞) such that for each ζ ∈ [0, ρ]

and for all t ≥ 0,

E(V 1+ζ(Xj(t+∆))|Fj(t)) ≤ (1− β)V 1+ζ(Xj(t)) + κ (6.2.5)
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Proof. Fix t ≥ 0 and ζ ∈ [0, ρ]. Define ξ : [λ(t),∞)→ G as

ξ(s) = Γ

(
Xj(t) +

∫ λ(t)+·

λ(t)

b(Xj(u))du

)
(s− λ(t)), s ≥ λ(t).

Using the Lipschitz property of the Skorokhod map (Condition 6.1.1), we have

sup
λ(t)≤s≤λ(t)+∆+λ0

|X̂(s)− ξ(s)| ≤K sup
λ(t)≤s≤λ(t)+∆+λ0

∣∣∣∣∫ s

λ(t)

σ(X̂(λ(u)))dŴ (u)

∣∣∣∣
=:Kν̄(t,∆).

Note that

∆− λ0 ≤ λ(t+ ∆)− λ(t) ≤ ∆ + λ0.

Using this observation along with Lemma 6.2.1 (i) and (iii),

T (X̂(λ(t+ ∆))) ≤T (ξ(λ(t+ ∆))) + CKν̄(t,∆)

≤(T (X̂(λ(t)))− (λ(t+ ∆)− λ(t)))+ + CKν̄(t,∆)

≤(T (X̂(λ(t)))− (∆− λ0))+ + CKν̄(t,∆).

From the above estimate and the definition of V (x), we now have

E(V (X̂(λ(t+ ∆)))1+ζ |Fj(t))
V (X̂(λ(t)))1+ζ

≤ E
(

exp($(1 + ζ)
(

(T (X̂(λ(t)))− (∆− λ0))+ + CKν̄(t,∆))
) ∣∣Fj(t))

× exp(−$(1 + ζ))T (X̂(λ(t))). (6.2.6)

Letting, for q ∈ N0, σq = σ(Xq), we have, for any s ∈ [λ(t), λ(t) + ∆ + λ0],

∫ s

λ(t)

σ(X̂(λ(u)))dŴ (u) ≤



∑j(s)
q=j(t) σq

√
λq+1Uq+1, if σj(s)Uj(s) ≥ 0

∑j(s)−1
q=j(t) σq

√
λq+1Uq+1, if σj(s)Uj(s) < 0

,

which can be bounded by

max
j(t)≤j≤j(s)

j∑
q=j(t)

σq
√
λq+1Uq+1.
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Similarly,

−
∫ s

λ(t)

σ(X̂(λ(u)))dŴ (u) ≤ max
j(t)≤j≤j(s)

−
j∑

q=j(t)

σq
√
λq+1Uq+1.

And therefore

ν̄(t,∆) = sup
λ(t)≤s≤λ(t)+∆+λ0

∣∣∣∣∫ s

λ(t)

σ(X̂(λ(u)))dŴ (u)

∣∣∣∣ ≤ max
j(t)≤j≤j∗t

∣∣∣∣∣∣
j∑

q=j(t)

σq
√
λq+1Uq+1

∣∣∣∣∣∣ ,
where j∗t = j(λ(t) + ∆ + λ0).

Using Lemma 6.2.2, we now have that, with m0 = $(1 + ζ)CK,

E
[
em0ν̄(t,∆)

∣∣Fj(t) ] ≤ c1e
c2m2

0a
2
1

∑j∗t
q=j(t)

λq+1 ≤ c1e
c2m2

0a
2
1(∆+2λ0). (6.2.7)

In the case T (X̂(λ(t))) ≥ ∆− λ0, we have from (6.2.6) and (6.2.7) that

E(V (X̂(λ(t+ ∆)))1+ζ |Fj(t)) ≤ V (X̂(λ(t)))1+ζe−$(1+ζ)(∆−λ0) × c1e
c2m2

0a
2
1(∆+2λ0).

Recalling the choice of $ and ∆, we now see that

E(V (X̂(λ(t+ ∆)))1+ζ |Fj(t)) ≤ (1− β)V (X̂(λ(t)))1+ζ ,

where β = 1− e−3 ln c1 .

In the case T (X̂(λ(t))) < ∆− λ0, we have

E(V (X̂(λ(t+ ∆)))1+ζ |Fj(t)) ≤ E
(
em0ν̄(t,∆)|Fj(t)

)
≤ c1e

c2m2
0a

2
1(∆+2λ0) ≤ c1e

1
4L

(∆+2λ0) ≡ κ.

Combining the two cases, we have (6.2.5).

The following lemma follows from Lemma 6.2.3 through a recursive argument.

Lemma 6.2.4. There exists a2 ∈ (0,∞) such that

sup
t

E(V (X̂(λ(t)))1+ρ) ≤ a2. (6.2.8)
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Proof. For any t ∈ (∆,∞), we can find t′ ∈ (0,∆] and j ∈ N such that t = t′ + j∆.

By a recursive argument using (6.2.5), we then have

E(V (X̂(λ(t)))1+ρ) ≤ E(V (X̂(λ(t′)))1+ρ) +
κ

β
.

Thus

sup
t

E(V (X̂(λ(t)))1+ρ) ≤ sup
0≤t<∆

E(V (X̂(λ(t)))1+ρ) +
κ

β
.

The supremum on the right side is bounded by maxj≤j(∆+λ0) E(V (Xj)
1+ρ), which is

finite using Condition 6.1.6, boundedness of b, σ and the Lipschitz property of Γ.

Now we can prove the following lemma.

Lemma 6.2.5. For a.e. ω, supn〈V, νn(ω)〉 <∞. Consequently, the sequence {νn(ω)}n≥1

is tight for a.e. ω.

Proof. Let n0 be such that Λn0 > ∆. Then it suffices to consider the supremum in

the above display over all n ≥ n0. For i ∈ N0, define s(i) = inf{j ∈ N0 : Λj ≥ i∆}.

Then s(bΛn/∆c) ≤ n and therefore, for n ≥ n0,

νn(V ) =
1

Λn

n∑
k=1

λkV (Xk−1) =
1

Λn

∫ Λn

0

V (X̂(λ(t)))dt

≤ 1

Λs(bΛn/∆c)

∫ (bΛn/∆c+1)∆

0

V (X̂(λ(t)))dt.

Using Lemma 6.2.3 with ζ = 0, we have

1

Λs(bΛn/∆c)

∫ (bΛn/∆c+1)∆

0

V (X̂(λ(t)))dt

≤ 1

Λs(bΛn/∆c)

∫ (bΛn/∆c+1)∆

0

[V (X̂(λ(t)))− E(V (X̂(λ(t+ ∆)))|Fj(t))]dt

+
1

Λs(bΛn/∆c)

∫ (bΛn/∆c+1)∆

0

[V (X̂(λ(t)))(1− β) + κ]dt.
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Thus, rearranging terms,

β

Λs(bΛn/∆c)

∫ (bΛn/∆c+1)∆

0

V (X̂(λ(t)))dt

≤ 1

Λs(bΛn/∆c)

∫ (bΛn/∆c+1)∆

0

[V (X̂(λ(t)))− E(V (X̂(λ(t+ ∆)))|Fj(t))]dt

+ κ
(bΛn/∆c+ 1)∆

Λs(bΛn/∆c)
.

Next note that Λs(bΛn/∆c) ≥ bΛn/∆c∆, and, for n ≥ n0,

Λs(bΛn/∆c) ≥ Λs(1) ≥ λ1.

Thus

sup
n≥n0

κ
(bΛn/∆c+ 1)∆

Λs(bΛn/∆c)
≤ κ(1 +

∆

λ1

) <∞.

To prove the lemma, it is now enough to show

sup
n≥n0

1

Λs(bΛn/∆c)

∫ (bΛn/∆c+1)∆

0

[V (X̂(λ(t)))−E(V (X̂(λ(t+∆)))|Fj(t))]dt <∞, a.e. ω.

(6.2.9)

The above expression can be split into two terms:

1

Λs(bΛn/∆c)

∫ (bΛn/∆c+1)∆

0

[V (X̂(λ(t)))− E(V (X̂(λ(t+ ∆)))|Fj(t))]dt

=
1

Λs(bΛn/∆c)

∫ (bΛn/∆c+1)∆

0

[V (X̂(λ(t)))− V (X̂(λ(t+ ∆)))]dt

+
1

Λs(bΛn/∆c)

∫ (bΛn/∆c+1)∆

0

[V (X̂(λ(t+ ∆)))− E(V (X̂(λ(t+ ∆)))|Fj(t))]dt

≡ T1 + T2
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Consider the first term:

T1 =
1

Λs(bΛn/∆c)

∫ (bΛn/∆c+1)∆

0

[V (X̂(λ(t)))− V (X̂(λ(t+ ∆)))]dt

=
1

Λs(bΛn/∆c)

∫ (bΛn/∆c+1)∆

0

V (X̂(λ(t)))dt− 1

Λs(bΛn/∆c)

∫ (bΛn/∆c+1)∆+∆

∆

V (X̂(λ(t)))dt

=
1

Λs(bΛn/∆c)

∫ ∆

0

V (X̂(λ(t)))dt− 1

Λs(bΛn/∆c)

∫ (bΛn/∆c+1)∆+∆

(bΛn/∆c+1)∆

V (X̂(λ(t)))dt

≤ 1

Λs(bΛn/∆c)

∑
k:Λk−1≤∆

λkV (Xk−1).

Let Z =
∑

k:Λk−1≤∆ λkV (Xk−1). Then from (6.2.8), we have EZ ≤ a2(∆ + λ0).

Combining this with the fact that for n ≥ n0, Λs(bΛn/∆c) ≥ λ1, we have that

sup
n≥n0

T1(ω) <∞, a.e. ω. (6.2.10)

Next, consider T2:

T2 =
1

Λs(bΛn/∆c)

∫ (bΛn/∆c+1)∆

0

[V (X̂(λ(t+ ∆)))− E(V (X̂(λ(t+ ∆)))|Fj(t))]dt

=
1

Λs(bΛn/∆c)

bΛn/∆c∑
i=0

∫ (i+1)∆

i∆

[V (X̂(λ(t+ ∆)))− E(V (X̂(λ(t+ ∆)))|Fj(t))]dt.

From Kronecker’s Lemma (see page 63 of [38]), the last sum is bounded in n a.s. (in

fact converges to 0) if the following series is summable a.s.

∞∑
i=1

1

Λs(i)

∫ (i+1)∆

i∆

[V (X̂(λ(t+ ∆)))− E(V (X̂(λ(t+ ∆)))|Fj(t))]dt.

Consider the sum over even and odd terms separately. For even terms, the sum

can be written as

∞∑
k=1

1

Λs(2k)

∫ (2k+1)∆

2k∆

[V (X̂(λ(t+ ∆)))− E(V (X̂(λ(t+ ∆)))|Fj(t))]dt. (6.2.11)

Let

ξk+1 =
1

Λs(2k)

∫ (2k+1)∆

2k∆

[V (X̂(λ(t+ ∆)))− E(V (X̂(λ(t+ ∆)))|Fj(t))]dt
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and Gk = Fj(2k∆), then we have E(ξi+1|Gi) = 0. Also note that ξi+1 is Gi+1 measurable.

Thus Sn =
∑n

i=1 ξi is a martingale with respect to the filtration {Gn}. Consequently,

by Chow’s Theorem (see Theorem 2.17 of [45]), the series in (6.2.11) is a.s. summable

if
∑∞

k=1 E(|ξk|1+ρ) <∞. Now note that

E|ξk|1+ρ = E

∣∣∣∣∣ 1

Λs(2k)

∫ (2k+1)∆

2k∆

[V (X̂(λ(t+ ∆)))− E(V (X̂(λ(t+ ∆)))|Fj(t))]dt

∣∣∣∣∣
1+ρ


≤ 21+ρ∆1+ρ

Λ1+ρ
s(2k)

sup
t

E(V (X̂(t))1+ρ) ≤ 21+ρ∆1+ρa2

Λ1+ρ
s(2k)

,

where the last inequality follows form Lemma 6.2.4. Since Λs(k) ≥ k∆, we have that

∞∑
k=1

1

Λ1+ρ
s(k)

≤ 1

∆1+ρ

∞∑
k=1

1

k1+ρ
<∞.

This proves that the series in (6.2.11) is summable. The odd terms are treated in a

similar manner. Thus we have proved

sup
n≥n0

T2(ω) <∞, a.e. ω. (6.2.12)

Now (6.2.9) is an immediate consequence of (6.2.10) and (6.2.12), which proves the

lemma.

6.2.2 Identification of the limit.

In this section we will complete the proof of Theorem 6.1.3 by arguing that for

a.e. ω, every weak limit point of νn(ω) equals ν. For this we will use the following

extension of the Echeverria Criteria (see [54, 82], see also Theorem 5.7 of [10]).

Theorem 6.2.1. Let ν0 ∈ P(G) and µi0 ∈ MF (Fi), i = 1, ..., N be such that for all

f ∈ C2
c (G),

ν0(Af) +
N∑
i=1

µi0(Dif) = 0. (6.2.13)

Then ν0 = ν.
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In order to apply the above theorem to show convergence of νn to ν, we will

consider a sequence of finite measure {µin}n∈N; i = 1, ..., N , which, roughly speaking,

correspond to the prelimit versions of the measures {µi0} that appear in the theorem

above. We now describe this sequence.

For u ∈ Rm, v ∈ G, r ∈ (0,∞), define, for t ∈ [0, 1],

z(u, v, r|t) ≡ z(t) = v + (b(v)r + σ(v)
√
ru)t,

x(u, v, r|t) ≡ x(t) = Γ(z)(t),

y(u, v, r|t) ≡ y(t) = x(t)− z(t).

Then, one can represent the trajectory y as

y(t) =
N∑
i=1

di

∫ t

0

αi(s)d|y|(s); t ∈ [0, 1], (6.2.14)

where αi(s) ≡ αi(u, v, r|s) ∈ [0, 1] and αi(s) > 0 only if x(s) ∈ Fi. Also, let, for

t ∈ [0, 1]

Πt(u, v, r) = z(1) + t(x(1)− z(1)),

Li(u, v, r) =

∫ 1

0

αi(t)d|y|(t), i = 1, ..., N.

Finally for k ∈ N0, let

Πt
k = Πt(Uk+1, Xk, λk+1), Lik = Li(Uk+1, Xk, λk+1).

For k ∈ N0 and i = 1, ..., N , define aMF (Rm) valued random variable mi
k by the

relation

〈ψ,mi
k〉 =

∫ 1

0

EXk [ψ(Πt
k)L

i
k]dt, ψ ∈ BM+(Rm), (6.2.15)

where EX [Z] denotes E[Z|X], and BM+(Rm) is the space of nonnegative bounded

measurable functions on Rm.
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For n ∈ N and i = 1, ..., N , let µin be a MF (Rm) valued random variable defined

as

µin(A) =
1

Λn

n−1∑
k=0

mi
k(A); A ∈ B(Rm).

The following lemma relates the above family of random measures with our ap-

proximation scheme. Recall the definition of the filtration {Fk} in Section 6.2.1.

Lemma 6.2.6. For every f ∈ C2
b (Rm), there exists a sequence of real random vari-

ables {ξfn}n∈N such that

1

Λn

n−1∑
k=0

E[f(Xk+1)− f(Xk)|Fk] =
N∑
i=1

µin(Dif) + νn(Af) + ξfn, (6.2.16)

and supn ξ
f
n(ω) <∞ a.s. Furthermore if f has compact support then ξfn → 0 a.s. as

n→∞.

Proof. Fix (u, v, r) ∈ Rm×G×(0,∞). Using the notation introduced above, we have

from Taylor’s theorem,

f(z(1))− f(v) = 〈∇f(v), η〉+
1

2
η′D2f(v)η +R2(v, z(1))

where

R2(x, y) = f(y)− f(x)− 〈∇f(x), y − x〉 − 1

2
(y − x)TD2f(x)(y − x)

and

η ≡ η(u, v, r) = b(v)r + σ(v)
√
ru.

Define

r2(x, y) =
1

2
sup
t∈(0,1)

||D2f(x+ t(y − x))−D2f(x)||,

then we have |R2(x, y)| ≤ r2(x, y)|x− y|2.
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Also

f(x(1))− f(z(1)) =

∫ 1

0

df(z(1) + t(x(1)− z(1)))

dt
dt

=

∫ 1

0

∇f(z(1) + t(x(1)− z(1))) · (x(1)− z(1))dt

=
N∑
i=1

∫ 1

0

∇f(z(1) + t(x(1)− z(1)))dt · di
∫ 1

0

αi(t)d|y|(t).

Fix a k ∈ N and let v = Xk, u = Uk+1 and r = λk+1. Then

E[f(Xk+1)− f(Xk)|Fk] = E[f(x(1))− f(z(1)) + f(z(1))− f(v)|Fk].

From the definition of mi
k in (6.2.15) and observing that {Xk,Fk} is a Markov

chain and Uk+1 is independent of Fk, it follows that

E[f(x(1))− f(z(1))|Fk] =
N∑
i=1

mi
k(Dif),

Using independence of Uk+1 from Fk once more,

E[f(z(1))− f(v)|Fk] =λk+1〈∇f(Xk), b(Xk)〉+
1

2
λk+1σ(Xk)

′D2f(Xk)σ(Xk)

+
1

2
λ2
k+1b(Xk)

′D2f(Xk)b(Xk) + E[R2(Xk, Xk + ηk)|Fk]

=λk+1Af(Xk) + ξf (k),

where

ξf (k) =
1

2
λ2
k+1b(Xk)

′D2f(Xk)b(Xk) + E[R2(Xk, Xk + ηk)|Fk]

and ηk = η(Uk+1, Xk, λk+1).

Thus we have

1

Λn

n−1∑
k=0

E[f(Xk+1)− f(Xk)|Fk]

=
1

Λn

n−1∑
k=0

[
N∑
i=1

mi
k(Dif) + λk+1Af(Xk) + ξf (k)

]

=
N∑
i=1

µin(Dif) + νn(Af) +
1

Λn

n−1∑
k=0

ξf (k).
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Equality in (6.2.16) follows on taking ξfn = 1
Λn

∑n−1
k=0 ξ

f (k).

We now show that supn ξ
f
n(ω) <∞ a.s. Write

ξf (k) =
1

2
λ2
k+1b(Xk)

′D2f(Xk)b(Xk) + E[R2(Xk, Xk + ηk)|Fk] ≡ ξf1 (k) + ξf2 (k).

The term 1
Λn

∑n−1
k=0 ξ

f
1 (k) converges to zero because of the boundedness of b and D2f .

Consider now the contribution from ξf2 (k). Let for p ∈ R+,

h(p) =
1

2
sup

x1,x2∈Rm
|x1−x2|≤p

||D2f(x2)−D2f(x1)||.

Then

|R2(Xk, Xk + ηk)| ≤ h(ηk)|ηk|2

and so for some κ1 ∈ (0,∞),

|ξf2 (k)| ≤ E[h(ηk)|ηk|2|Fk]

≤ ||h||∞κ1λk+1.

Thus supn ξ
f
n(ω) <∞ a.s. This completes the first part of the lemma.

Finally if f in addition has compact support, we have h(p) → 0 as p → 0. Fix

ε > 0. Since b, σ are bounded, we can find for each θ ∈ (0,∞), kθ ∈ N such that for

every k ≥ kθ,

|h(b(xk)λk+1 + σ(xk)
√
λk+1Uk+1)|1|Uk+1|≤θ ≤ ε.

Also, for some lη ∈ (0,∞), for all k ∈ N,

E[|ηk|21|Uk+1|≥θ|Fk] ≤ lη(λ
3/2
k + λkE[|U1|21|U1|≥θ]) a.s.,

E[|ηk|2|Fk] ≤ lηλk a.s.

Choose θ0 ∈ (0,∞) such that E[|U1|21|U1|≥θ0 ] ≤ ε. Then

1

Λn

n−1∑
k=kθ0

|ξf2 (k)| ≤ εlη
1

Λn

n−1∑
k=kθ0

λk + ||h||∞lη(
1

Λn

n−1∑
k=kθ0

λ
3/2
k +

ε

Λn

n−1∑
k=kθ0

λk).
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Thus,

1

Λn

n−1∑
k=0

|ξf2 (k)| ≤ 1

Λn

kθ0−1∑
k=0

ξf2 (k) + εlη(1 + ||h||∞) + ||h||∞lη
1

Λn

n−1∑
k=kθ0

λ
3/2
k .

Sending n → ∞ and then ε → 0, we now see that 1
Λn

∑n−1
k=0 |ξ

f
2 (k)| → 0 as n → ∞.

The result follows.

The following lemma shows that the left side of the expression in (6.2.16) converges

to 0 as n→∞.

Lemma 6.2.7. For every f ∈ C2
b (G),

1

Λn

n−1∑
k=0

E[f(Xk+1)− f(Xk)|Fk]→ 0 a.s., as n→∞.

Proof. We can split the sum into two terms:

1

Λn

n−1∑
k=0

E[f(Xk+1)− f(Xk)|Fk]

=
1

Λn

n−1∑
k=0

(E[f(Xk+1)|Fk]− f(Xk+1)) +
1

Λn

n−1∑
k=0

(f(Xk+1)− f(Xk))

=T1 + T2.

Note that,

|T2| =
1

Λn

|f(Xn)− f(X0)| → 0,

as n→∞, since f is bounded and Λn →∞. Also, using Kronecker’s Lemma,

T1 =
1

Λn

n−1∑
k=0

(E[f(Xk+1)|Fk]− f(Xk+1))

will converge to 0 once the martingale

M f
n :=

n−1∑
k=1

1

Λk

(E[f(Xk+1)|Fk]− f(Xk+1))
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converges a.s. Finally observing that E(f(Xk+1)|Fk) minimizes the L2 distance from

f(Xk+1) among Fk measurable square integrable random variables,

E〈M f〉∞ =
∑
k≥1

(
1

Λk

)2E (f(Xk+1)− E(f(Xk+1)|Fk))2

≤
∑
k≥1

(
1

Λk

)2E (f(Xk+1)− f(Xk))
2

≤ ||Df ||∞
∑
k≥1

(
1

Λk

)2E (Xk+1 −Xk)
2

≤ κ1

∑
k≥1

λk+1

Λ2
k

<∞

for some constant κ1, where the last inequality follows from the observation that for

a positive sequence λk,
∑

k≥1 λk+1/Λ
2
k <∞. The lemma follows.

Next we consider the limit of the first term on the right side of (6.2.16). We can

regard µin to be a finite measure on the one point compactificaion of Rm, denoted as

R̄m. In order to show that {µin} is a.s. a precompact sequence inMF (R̄m), it suffices

to show that µin(Rm) is an a.s. bounded sequence of R+ valued random variables.

This is shown in the following lemma.

Lemma 6.2.8. For i = 1, ..., N ,

sup
n
µin(Rm) <∞, a.s.

Proof. Let g ∈ C2
b (Rm) be as in Lemma 6.1.1. Then for fixed (u, v, r) ∈ Rm × G ×

(0,∞) and with notation as introduced above Lemma 6.2.6,

g(x(1)) = g(v)+

∫ 1

0

[∇g(x(s)) · (b(v)r + σ(v)
√
ru)]ds

+
N∑
i=1

∫ 1

0

di · ∇g(x(s))αi(s)d|y|(s)
(6.2.17)
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Since αi(s) is nonzero only when x(s) ∈ Fi, and 〈∇g(x), di〉 ≥ 1, for all x ∈ Fi,

i ∈ {1, ..., N}, we have

N∑
i=1

Li(v, u, r) =
N∑
i=1

∫ 1

0

αi(s)d|y|(s)

≤
N∑
i=1

∫ 1

0

di · ∇g(x(s))αi(s)d|y|(s)

≤ |g(x(1))− g(v)|+ ||∇g||∞|b(v)r + σ(v)
√
ru|

≤ ||∇g||∞|x(1)− v|+ ||∇g||∞|b(v)r + σ(v)
√
ru|

≤ ||∇g||∞(K + 1)|b(v)r + σ(v)
√
ru|,

(6.2.18)

where the second inequality uses (6.2.17), and the last inequality uses the Lipschitz

property of the Skorokhod map.

Let κ1 = ||∇g||∞(K + 1)a1, then from (6.2.18) we have for i ∈ {1, ..., N},

Lik ≤ κ1

(√
λk+1|Uk+1|+ λk+1

)
. (6.2.19)

Also note that, with a1 as in Condition 6.1.3,

sup
t∈[0,1]

|xk(t)−Xk| ≤ K|b(Xk)λk+1+σ(Xk)
√
λk+1Uk+1| ≤ Ka1

√
λk+1|Uk+1|+Ka1λk+1,

(6.2.20)

and for t ∈ [0, 1],

|Πt
k−Xk| ≤ t|xk(1)−v|+(1− t)|zk(1)−v| ≤ (K+1)a1λk+1 +(K+1)a1

√
λk+1|Uk+1|,

(6.2.21)

where xk(t) = x(Uk+1, Xk, λk+1|t), zk(t) = z(Uk+1, Xk, λk+1|t). Combining (6.2.19)-

(6.2.21) we have that

EXk(|Πt
k − xk(sik)|Lik) ≤ (2K + 1)a1κ1mλk+1 + ϕ(λk+1)λk+1, (6.2.22)

where ϕ : (0,∞)→ (0,∞) is a bounded function satisfying ϕ(α)→ 0 as α→ 0.
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Next note that Lik is not equal to 0 only if there exists s ∈ [0, 1] such that

αki (s) > 0, i.e., xk(s) ∈ Fi, where αki (t) ≡ αi(Uk+1, Xk, λk+1|t). And in that case

(namely when xk(s) ∈ Fi for some s ∈ [0, 1]),

Dig(Πt
k) ≥ Dig(xk(s))− ||D2g||∞|Πt

k − xk(s)| ≥ 1− ||D2g||∞|Πt
k − xk(s)|. (6.2.23)

Let Aik = {ω : there exists s ∈ [0, 1] such that αki (s) > 0} and

sik(ω) =

 inf{s ∈ [0, 1] : αki (s) > 0} if ω ∈ Aik,

1 if ω /∈ Aik.

Then, from (6.2.22) and (6.2.23)

EXk [Dig(Πt
k)L

i
k1Aik ] ≥ EXk [L

i
k1Aik ]− ||D

2g||∞EXk [|Πt
k − xk(sik)|Lik1Aik ]

≥ EXk [L
i
k]− ||D2g||∞((2K + 1)a1κ1mλk+1 + ϕ(λk+1)λk+1)

Thus we have

〈Dig,m
i
k〉 =

∫ 1

0

EXk [Dig(Πt
k)L

i
k]dt

=

∫ 1

0

EXk [Dig(Πt
k)L

i
k1Aik ]dt

≥ 〈1,mi
k〉 − ||D2g||∞ ((2K + 1)a1mκ1λk+1 + ϕ(λk+1)λk+1) .

Rearranging the terms, we have

〈1,mi
k〉 ≤ 〈Dig,m

i
k〉+ ||D2g||∞ ((2K + 1)a1mκ1λk+1 + ϕ(λk+1)λk+1) .

Summing over k from 0 to n− 1 and i from 1 to N , we obtain

N∑
i=1

〈1, µin〉 ≤
N∑
i=1

〈Dig, µ
i
n〉+N ||D2g||∞ ((2K + 1)a1κ1m+ |ϕ|∞) . (6.2.25)

Using Lemma 6.2.6

N∑
i=1

µin(Dig) =
1

Λn

n−1∑
k=0

E[g(Xk+1)− g(Xk)|Fk]− νn(Ag)− ξgn.

Since g ∈ C2
b (Rm), the second term on the right side is bounded. Also from Lemma

6.2.7, the first term converges to 0 as n → ∞. Finally from Lemma 6.2.6, the third

term is bounded, a.s.
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From this it follows that

sup
n

N∑
i=1

µin(Dig) <∞ a.s.

Result follows on using this observation in (6.2.25).

The following lemma will be used to show that for a.e. ω, any limit point of µin(ω)

is supported on Fi, i = 1, ..., N .

Lemma 6.2.9. Fix i ∈ {1, ..., N}. Let ψ ∈ C2
c (Rm) be such that ψ(x) ≥ 0 for all

x ∈ Rm. Suppose that there is a ε > 0, such that ψ(x) = 0 if dist(x, Fi) ≤ ε. Then∫
ψ(x)µin(dx)→ 0, a.s. as n→∞.

Proof. We have

〈ψ, µin〉 =
1

Λn

n−1∑
k=0

〈ψ,mi
k〉

=
1

Λn

n−1∑
k=0

∫ 1

0

EXk [ψ(Πt
k)L

i
k]dt

=
1

Λn

n−1∑
k=0

∫ 1

0

EXk

∫ 1

0

ψ(Πt
k)α

k
i (s)d|yk|sdt

≤ |ψ|∞
Λn

n−1∑
k=0

EXk

∫ 1

0

∫ 1

0

1{|Πtk−xk(s)|>ε}α
k
i (s)d|yk|sdt,

(6.2.26)

where, recall that αki (s) ≡ αi(Uk+1, Xk, λk+1|s) and xk(s) = x(Uk+1, Xk, λk+1|s),

yk(s) = y(Uk+1, Xk, λk+1|s). The last inequality in the above expression follows from

the fact that αki (s) > 0 only when xk(s) ∈ Fi and if for such a s, |Πt
k − xk(t)| ≤ ε,we

have by our choice of ψ that ψ(Πt
k) = 0.

Next note that

{(t, s, ω) :|Πt
k − xk(s)| > ε}

⊂ {(t, s, ω) : |xk(1)− xk(s)| > ε} ∪ {(t, s, ω) : |zk(1)− xk(s)| > ε},
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where zk(t) is as introduced below (6.2.20), namely zk(t) = z(Uk+1, Xk, λk+1|t).

Also, from the Lipschitz property of the Skorokhod map,

|xk(1)− xk(s)| ≤ Ka1λk+1 +Ka1

√
λk+1|Uk+1|,

and

|zk(1)−xk(s)| ≤ |zk(1)−Xk|+ |Xk−xk(s)| ≤ (K+1)a1λk+1 +(K+1)a1

√
λk+1|Uk+1|.

Thus

{ω : |Πt
k − xk(s)| > ε for some t, s ∈ [0, 1]} ⊂ {ω : |Uk+1(ω)| ≥ pk},

where pk = ε/((K+1)a1)−λk+1√
λk+1

. Using this observation in (6.2.26), we have

〈ψ, µin〉 ≤
|ψ|∞
Λn

n−1∑
k=0

EXk

∫ 1

0

∫ 1

0

1{|U |≥pk}α
k
i (s)d|yk|sdt

≤ |ψ|∞
Λn

n−1∑
k=0

EXk

(
1{|U |≥pk}

∫ 1

0

αki (s)d|yk|s
)

≤ |ψ|∞
Λn

n−1∑
k=0

√√√√(EXk

(∫ 1

0

αki (s)d|yk|s
)2
)
P(|U | ≥ pk).

From (6.2.18) it follows that for some κ1 ∈ (0,∞), supk EXk

(∫ 1

0
αki (s)d|yk|s

)2

≤ κ1.

Also using Condition 6.1.6, E|U |j <∞ for all j ≥ 1. Choose k0 large enough so that

λk+1 ≤ ε
2(K+1)a1

for all k ≥ k0.

Fix j > 4, then

〈ψ, µin〉 ≤
|ψ|∞
Λn

√
κ1k0 +

|ψ|∞
Λn

n−1∑
k=k0

√
κ1(E|U |j)1/2p

−j/2
k .

The result now follows on observing that for some κ2 ∈ (0,∞), p
−j/2
k ≤ κ2λ

j/4
k+1 for

all k ≥ k0.

We are now ready to complete the proof of Theorem 6.1.3.
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Proof of Theorem 6.1.3. Fix f ∈ C2
c (G). Then such a function can be extended to

a function in C2
c (Rm). We denote this function once more by f . Then from Lemma

6.2.6,

1

Λn

n−1∑
k=0

E[f(Xk+1)− f(Xk)|Fk] =
N∑
i=1

µin(Dif) + νn(Af) + ξfn. (6.2.27)

From Lemmas 6.2.5, 6.2.6, 6.2.7 and 6.2.8, there exists Ω0 ∈ F such that P(Ω0) = 1

and for every ω ∈ Ω0,

• {νn(ω)}n is precompact in P(G),

• {µin(ω)}n is precompact in MF (R̄m), for every i = 1, ..., N ,

• Left hand side of (6.2.27) converges to 0,

• ξfn(ω) converges to 0.

Fix a ω ∈ Ω0 and let ν∞(ω), µi∞(ω), i = 1, ..., N , be a subsequential limit of νn(ω)

and µin(ω), respectively. Then from (6.2.27) and the above observations, we have (

suppressing ω )

ν∞(Af) +
N∑
i=1

µi∞(Dif) = 0.

To complete the proof, in view of Theorem 6.2.1, it suffices to argue that∫
Rm

1F ci (x)µi∞(ω)(dx) = 0. (6.2.28)

By convergence of µin to µi∞, we have for every ψ as in Lemma 6.2.9,∫
Rm

ψ(x)µi∞(ω)(dx) = 0.

Therefore ∫
Rm

1F ε,ri (x)µi∞(dx) = 0 ∀ε, r > 0,

where F ε,r
i = {x ∈ Rm| dist(x, Fi) ≥ ε and |x| ≤ r}. The equality in (6.2.28) now

follows on sending ε→ 0 and r →∞.
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6.2.3 Proof of Theorem 6.1.4.

Recall c from Lemma 6.2.1 and $ from (6.2.4). Fix ζ ∈ (0, $c). We will prove the

theorem with such a choice of ζ. Consider an f as in the statement of the theorem.

Then there exists constant κ1 such that |f(x)| ≤ κ1e
ζ|x| Without loss of generality,

we assume f ≥ 0.

From Theorem 6.1.3, for any L > 0, we have∫
(f ∧ L)dνn →

∫
(f ∧ L)dν a.s.

In order to prove the theorem, it suffices to show that

lim
L→∞

sup
n

[∫
fdνn −

∫
(f ∧ L)dνn

]
= 0

and

lim
L→∞

[∫
fdν −

∫
(f ∧ L)dν

]
= 0.

First, consider

sup
n

[∫
fdνn −

∫
(f ∧ L)dνn

]
≤ sup

n

∫
1f>Lfdνn

≤ sup
n

(
ν1/p
n (f > L)[νn(f q)]1/q

)
,

where p, q ∈ (1,∞) are such that p−1 + q−1 = 1 and the last inequality follows from

Hölder’s inequality. Choose q > 1 such that ζq < $c, then from Lemma 6.2.5 we

have

sup
n

[νn(f q)]1/q ≤ κ1 sup
n

[

∫
eζq|x|νn(dx)]1/q ≤ κ1 sup

n
ν1/q
n (V ) <∞, a.s. (6.2.29)

Using Markov’s Inequality, we have

ν1/p
n (f > L) ≤ ν

1/p
n (f)

L1/p
,
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which using (6.2.29) converges to 0 as L goes to infinity. Combining the above three

displays, we have

sup
n

[∫
fdνn −

∫
(f ∧ L)dνn

]
→ 0, a.s. as L→∞. (6.2.30)

Also, from Fatou’s lemma we have, for a.e. ω,∫
fdν −

∫
(f ∧ L)dν =

∫
(f − f ∧ L)dν

≤ lim inf
n

∫
(f − f ∧ L)dνn

≤ sup
n

∫
(f − f ∧ L)dνn.

Using (6.2.30) the last expression converges to 0 as L→∞. The result follows.

6.3 Proof of Theorem 6.1.5.

We begin with a few preliminary lemmas.

Lemma 6.3.1. If φ ∈ C2(G), then

Λnνn(Aφ) =
n∑
k=1

λkAφ(Xk−1) = Z(0)
n − (Nn +

4∑
i=1

Z(i)
n +

4∑
i=1

Y (i)
n )

with

Z(0)
n = φ(Xn)− φ(X0),

Nn =
n∑
k=1

√
λk〈∇φ(Xk−1), σ(Xk−1)Uk〉,

Z(1)
n =

1

2

n∑
k=1

λ2
kb(Xk−1)TD2φ(Xk−1)b(Xk−1),

Z(2)
n =

n∑
k=1

λ
3/2
k b(Xk−1)TD2φ(Xk−1)σ(Xk−1)Uk,

Z(3)
n =

1

2

n∑
k=1

λk[(σ(Xk−1)Uk)
TD2φ(Xk−1)(σ(Xk−1)Uk)

−E((σ(Xk−1)Uk)
TD2φ(Xk−1)(σ(Xk−1)Uk)|Fk−1)],

Z(4)
n =

n∑
k=1

R2(Xk−1, Xk),
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and

Y (1)
n =

n∑
k=1

〈∇φ(Xk−1), yk−1〉,

Y (2)
n =

1

2

n∑
k=1

yTk−1D
2φ(Xk−1)yk−1,

Y (3)
n =

n∑
k=1

λkb(Xk−1)TD2φ(Xk−1)yk−1,

Y (4)
n =

n∑
k=1

√
λky

T
k−1D

2φ(Xk−1)σ(Xk−1)Uk,

where R2(x, y) = φ(y)− φ(x)− 〈∇φ(x), y − x〉 − 1
2
(y − x)TD2φ(x)(y − x), and yk =

y(Uk+1, Xk, λk+1|1).

Proof. Denote δφ(Xk) = φ(Xk) − φ(Xk−1) and δXk = Xk −Xk−1. We deduce from

(6.1.5) that

δφ(Xk) =〈∇φ(Xk−1), δXk〉+
1

2
δXT

k D
2φ(Xk−1)δXk +R2(Xk−1, Xk)

=〈∇φ(Xk−1), yk−1〉+ λkAφ(Xk−1) +
√
λk〈∇φ(Xk−1), σ(Xk−1)Uk〉

+
1

2
yTk−1D

2φ(Xk−1)yk−1 +
1

2
λ2
kb(Xk−1)TD2φ(Xk−1)b(Xk−1)

+
1

2
λk
[
(σ(Xk−1)Uk)

TD2φ(Xk−1)(σ(Xk−1)Uk)

− E((σ(Xk−1)Uk)
TD2φ(Xk−1)(σ(Xk−1)Uk)|Fk−1)

]
+ λkb(Xk−1)TD2φ(Xk−1)yk−1 + λ

3/2
k b(Xk−1)TD2φ(Xk−1)σ(Xk−1)Uk

+
√
λky

T
k−1D

2φ(Xk−1)σ(Xk−1)Uk +R2(Xk−1, Xk).

The lemma follows by summing the above equality over k = 1, ..., n and rearranging

the terms.

Lemma 6.3.2. Let W : G→ R be a continuous function such that supn∈N νn(W ) <

∞, a.s. Let φ ∈ C1(G), be such that lim|x|→∞ |∇φ(x)|2/W (x) = 0. Then

1√
Λn

n∑
k=1

√
λk〈∇φ(Xk−1), σ(Xk−1)Uk〉

L−→ N
(

0,

∫
G

|σT∇φ|2dν
)
.
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Proof. This lemma follows from Theorem 6.1.3 using the martingale central limit

theorem, along the lines of Proposition 2 of [57]. Details are left to the reader.

Lemma 6.3.3. Under the assumptions of Theorem 6.1.5(b), we have,

Z
(4)
n

Λ
(3/2)
n

P−→ 1

6

∫
G

∫
Rm

D3φ(x)(σ(x)u)⊗3µ(du)ν(dx),

as n→∞.

Proof. The proof is similar to that of Lemma 10 of [57] except for the treatment of

reflection terms. Using the notation above Theorem 6.1.5 and in Lemma 6.3.1, we

have

R2(x, y) =
1

6
D3φ(x)(y − x)⊗3 +R4(x, y), (6.3.1)

with

|R4(x, y)| ≤ L

6
|y − x|4,

where L is the Lipschitz constant for D3φ. Hence

R2(Xk−1, Xk) =
1

6
D3φ(Xk−1)(δXk)

⊗3 + rk, (6.3.2)

with

|rk| ≤
L

6
|δXk|4 ≤ κ1λ

2
k(1 + |Uk|4), k ∈ N,

for some κ1 ∈ (0,∞). Since E|Uk|4 := µ4 <∞ from Condition 6.1.6, we have

E
n∑
k=1

|rk| ≤ κ1(1 + µ4)
n∑
k=1

λ2
k.

From the assumption limn→∞(1/
√

Λn)
∑n

k=1 λ
3/2
k = λ̃ ∈ (0,+∞], we deduce that

limn→∞
∑n

k=1 λ
3/2
k = +∞ and

lim
n→∞

n∑
k=1

λ2
k/Λ

(3/2)
n = 0. (6.3.3)

Therefore,

1

Λ
(3/2)
n

n∑
k=1

rk
L1

−→ 0. (6.3.4)
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Now consider the first term on the right side of (6.3.2).

D3φ(Xk−1)(δXk)
⊗3

=D3φ(Xk−1)(λkb(Xk−1) +
√
λkσ(Xk−1)Uk + yk−1)⊗3

=λ
3/2
k D3φ(Xk−1)(

√
λkb(Xk−1) + σ(Xk−1)Uk)

⊗3 + f
(1)
k (Xk−1, Uk)

=λ
3/2
k D3φ(Xk−1)(σ(Xk−1)Uk)

⊗3 + f
(2)
k (Xk−1, Uk) + f

(1)
k (Xk−1, Uk),

where f
(1)
k (Xk−1, Uk) and f

(2)
k (Xk−1, Uk) are defined through the second and third

equalities, respectively.

Next observe that

• From the assumptions, we have

|λkb(Xk−1) +
√
λkσ(Xk−1)Uk| ≤ a1

√
λk(|Uk|+

√
λ0).

• From (6.2.14) and (6.2.19), we have yk−1 =
∑N

i=1 diL
i
k−1 and for some κ2 ∈

(0,∞),

Lik−1 ≤ κ2

√
λk(|Uk|+ 1), for all k ∈ N

• The term Lik−1 is non zero only if there exists s ∈ [0, 1] such that xk−1(s) ∈ Fi,

where xk−1(s) = x(Uk, Xk−1, λk|s). And in that case, we have from (6.2.20),

the Lipschitz property of D3φ and (6.1.8) that, for some κ3 ∈ (0,∞),

|D3
·jkφ(Xk−1) · di| ≤ κ3

√
λk(|Uk|+ 1), ∀j, k.

Combining these estimates, we see that E
∑n

k=1 |f
(1)
k (Xk−1, Uk)| ≤ κ4

∑n
k=1 λ

2
k. Using

(6.3.3) we now have

1

Λ
(3/2)
n

n∑
k=1

f
(1)
k (Xk−1, Uk)

L1

−→ 0. (6.3.5)
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For the term f
(2)
k (Xk−1, Uk), using the boundedness of D3φ, b, and σ, it can be

easily checked that E|f (2)
k (Xk−1, Uk)| ≤ κ5λ

2
k. Thus

E
n∑
k=1

|fb(Xk−1, Uk)| ≤ κ5

n∑
k=1

λ2
k,

and so using (6.3.3) once again we have

1

Λ
(3/2)
n

n∑
k=1

fb(Xk−1, Uk)
P−→ 0. (6.3.6)

Let Θ(Xk−1, Uk) = D3φ(Xk−1)(σ(Xk−1)Uk)
⊗3. Since supk E|Θ(Xk−1, Uk)|2 < ∞

and limn→∞ Λ
(3)
n /(Λ

(3/2)
n )2 = 0, we have

1

Λ
(3/2)
n

n∑
k=1

λ
3/2
k [Θ(Xk−1, Uk)− E(Θ(Xk−1, Uk)|Fk−1)]

L2

−→ 0. (6.3.7)

Observe that E(Θ(Xk−1, Uk)|Fk−1) = J(Xk−1), where J is given by

J(x) :=

∫
Rm

D3φ(x)(σ(x)u)⊗3µ(du).

Since Λ
(3/2)
n → ∞ as n → ∞, we can apply Theorem 6.1.3 to the measure ν̃n =

1

Λ
(3/2)
n

∑n
k=1 λ

3/2
k δXk−1

. Since J is continuous and bounded, we have limn→∞ ν̃n(J) =∫
Jdν a.s., and the lemma follows on combining this fact with (6.3.1)-(6.3.7).

We are now ready to prove Theorem 6.1.5.

Proof of Theorem 6.1.5. The proof is similar as the proof of Theorem 9 of [57], once

again the main difference is in the treatment of reflection terms. Using the notation

of Lemma 6.3.1, we first observe that, for any sequence of positive numbers {an}n∈N

such that limn→∞ an =∞, we have Z
(0)
n /an → 0 in probability. This is because, from

Lemma 6.2.4, the sequence {Xn}n∈N is tight, and consequently so is {φ(Xn)}n∈N as

well.
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We also derive from the definitions of Z
(1)
n , Z

(2)
n and Z

(3)
n the inequalities

E|Z(1)
n | ≤ κ1

n∑
k=1

λ2
k||D2φ||∞, (6.3.8)

and

E|Z(i)
n |2 ≤ κ1

n∑
k=1

λ2
k||D2φ||2∞, i = 2, 3, (6.3.9)

for some κ1 ∈ (0,∞), for all n ≥ 1.

(a) Assume that limn→∞(1/
√

Λn)Λ
(3/2)
n = 0. We have limn→∞

∑n
k=1 λ

2
k/
√

Λn = 0,

and it follows from (6.3.8) that Z
(1)
n /
√

Λn
L1

−→ 0. We also deduce from (6.3.9), that

Z
(j)
n /
√

Λn
L2

−→ 0, for j = 2, 3. Consider now Z
(4)
n . Denoting the Lipschitz norm of

D2φ by L, we have

|R2(Xk−1, Xk)| ≤
L

2
|∆Xk|3 ≤

L

2
a3

1K
3(λk +

√
λk|Uk|)3,

where the second inequality follows from the Lipschitz property of the Skorokhod

map (Condition 6.1.1). Thus, there exists κ2 ∈ (0,∞) such that, for all n ≥ 1,

E|Z(4)
n | ≤ κ2

n∑
k=1

λ
3/2
k , (6.3.10)

and therefore Z
(4)
n /
√

Λn
L1

−→ 0.

We now, consider Y
(j)
n , for j = 1, 2, 3, 4.

Y (1)
n =

n∑
k=1

〈∇φ(Xk−1), yk−1〉 =
n∑
k=1

Diφ(Xk−1)Lik−1.

From (6.2.19), we have |Lik−1| ≤ κ3

√
λk(|Uk| + 1). Also, for any fixed i, Lik−1 is not

equal to 0 only if there exists x ∈ Fi, such that ||Xk−1− x|| ≤ a1Kλk + a1K
√
λk|Uk|;

and in that case, using Taylor’s theorem and the Lipschitz property of D2φ, there

exists κ4 ∈ (0,∞), such that,

|Diφ(Xk−1)−Diφ(x)− (Xk−1 − x)TD2φ(x)di| ≤ κ4||Xk−1 − x||2.
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Combining this with (6.1.7), we have

|Diφ(Xk−1)| ≤ κ4||Xk−1 − x||2.

Thus we have

E|Y (1)
n | ≤ κ5

n∑
k=1

λ
3/2
k , (6.3.11)

for some constant κ5. Using similar arguments as above, we obtain:

E|Y (j)
n | ≤ κ5

n∑
k=1

λ
3/2
k , j = 2, 3, 4. (6.3.12)

Thus we have that Y
(j)
n /
√

Λn
L1

−→ 0, for j = 1, 2, 3, 4.

From Lemma 6.2.5, and recalling the definition of V (see (6.2.1)) we have that,

for every ζ ∈ (0, c$),

sup
n∈N

∫
G

eζ|x|νn(dx) <∞, a.s.

For such a ζ, under the assumption that lim|x|→∞ e
−ζ|x||∇φ(x)|2 = 0, applying Lemma

6.3.2, we now have

Nn√
Λn

L−→ N
(

0,

∫
G

|σT∇φ|2dν
)
.

This completes the proof of part (a).

(b) Assume now that limn→∞(1/
√

Λn)Λ
(3/2)
n = λ̃ ∈ (0,+∞]. We then have that

lim
n→∞

Λ(3/2)
n = +∞ and lim

n→∞

n∑
k=1

λ2
k/Λ

(3/2)
n = 0.

As before, Z
(0)
n /Λ

(3/2)
n

P−→ 0. It follows from (6.3.8) that Z
(1)
n /Λ

(3/2)
n

L1

−→ 0, and from

(6.3.9) that Z
(j)
n /Λ

(3/2)
n

L2

−→ 0, for j = 2, 3.

Under the assumptions of part (b) (i.e. that D3φ is bounded, Lipschitz and (6.1.8)

holds), we have, using similar arguments as in part (a), for some κ6 ∈ (0,∞),

E|Y (j)
n | ≤ κ6

n∑
k=1

λ2
k, j = 1, ..., 4; n ≥ 1. (6.3.13)
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Thus we have that Y
(j)
n /Λ

(3/2)
n

L1

−→ 0, for j = 1, 2, 3, 4.

Applying Lemma 6.3.2 once again, we have, for φ satisfying lim|x|→∞ e
−ζ|x||∇φ(x)|2 =

0,

Nn√
Λn

L−→ N
(

0,

∫
G

|σT∇φ|2dν
)
. (6.3.14)

Also from Lemma 6.3.3

Z
(4)
n

Λ
(3/2)
n

P−→ 1

6

∫
G

∫
Rm

D3φ(x)(σ(x)u)⊗3µ(du)ν(dx) = −m̃. (6.3.15)

Now, if λ̃ < +∞, we have from the above observations that Z
(j)
n /
√

Λn
P−→ 0, for

j = 0, 1, 2, 3, Y
(j)
n /
√

Λn
P−→ 0, for j = 1, 2, 3, 4 and

Z
(4)
n√
Λn

P−→ −λ̃m̃. (6.3.16)

The statement in (6.1.9) now follows on combining this with (6.3.14).

Finally, if λ̃ = +∞, we have Z
(j)
n /Λ

(3/2)
n

P−→ 0, for j = 0, 1, 2, 3, Y
(j)
n /Λ

(3/2)
n

P−→ 0, for

j = 1, 2, 3, 4 and Nn/Λ
(3/2)
n

P−→ 0, and (6.1.10) follows from (6.3.15). This completes

the proof of Theorem 6.1.5.

6.4 Numerical Results.

6.4.1 Evaluation of the Euler Time Step.

A key step in simulating the sequence {Xk} in (6.1.5) is the evaluation of S(Xk, Yk+1−

Xk), where S : G×Rm → G is the time-1 Skorokhod map defined in (6.1.4). In this

section we describe a procedure for computing S(x, v) that uses well known relation-

ships between Skorokhod problems and linear complementary problems (LCP). We

restrict ourselves to a setting where N = m and G = Rm
+ . We begin by recalling
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the basic formulation of the LCP (see [24]). For j ∈ N, a j × j matrix R and a

j-dimensional vector θ, the LCP for (R, θ) is to find vectors u, v ∈ Rj such that
u ≥ 0, v ≥ 0;

v = θ +Ru;

u · v = 0.

It is well known (see [35] and [13]) that with R = [d1, ..., dm], under Condition

6.1.1, for every θ ∈ Rm, the LCP for (R, θ) admits a unique solution (u, v) ≡

(L1
m(R, θ),L2

m(R, θ)), and furthermore L2
m(R, θ) = S(0, θ). Thus the evaluation of

S(0, θ) reduces to solving the above LCP for which numerous algorithms are available.

In the examples considered in the current work we used a quadratic programming

algorithm. Evaluation of S(x, θ) for x 6= 0 can be carried out using a localization

procedure as follows.

Fix x ∈ G and let J = In(x) = {j ∈ {1, ...,m}|〈x, ej〉 = 0}. Let PJ = {z ∈

Rm|〈z, ej〉 = 0, ∀j ∈ J c}. Let πJ : Rm → PJ be the orthogonal projection:

πJ(z) = z −
∑
j∈Jc
〈z, ej〉ej.

Suppose that |J | = p and J = {i1, ..., ip}. Define a p × p matrix RJ be the relation

RJ(k, l) = (πJdil)ik , for k, l = 1, ...p. Let uJ , vJ ∈ Rp be the solution of LCP for

(RJ , πJθ), i.e., (uJ , vJ) = (L1
p(RJ , πJθ),L2

p(RJ , πJθ)). Once again unique solvability

of LCP for (RJ , πJθ) is assured from Condition 6.1.1. Denote uJ = (η1, ..., ηp) and

define x1(t) = x+ θt+ t
∑p

j=1 ηjdij . Let

τ1 = inf{t ≥ 0|In(x1(t)) 6= In(x)}.

We define τ1 =∞ if the above set is empty. Then Γ(x+θi)(t) = x1(t) for all t < τ1. If

τ1 <∞ set the initial point to be x1 = x1(τ1) and define the trajectory {x2(t)}t≥0 in a

similar way as {x1(t)} by replacing x with x1. Set τ2 = inf{t ≥ 0|In(x2(t)) 6= In(x1)}.
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Then

Γ(x+ θi)(τ1 + t) = Γ(x1 + θi)(t) = x2(t), for all t < τ2.

Define now recursively trajectory {xj(t)} with time points τj and end points xj(τj),

j = 3, 4, .... Let j0 be such that
∑j0

i=1 τi < 1 ≤
∑j0+1

i=1 τi. Then

S(x, θ) = Γ(x+ θi)(1) = Γ(xj0 + θi)(1−
j0∑
i=1

τi).

Thus the evaluation of S(x, θ) can be carried out by recursively solving a sequence

of LCP problems.

One difficulty in implementing the above scheme is the possibility that
∑∞

i=1 τi ≤

1. However using regularity property of the Skorokhod map, we see that this occurs

only when S(x, θ) is zero. Thus in the practical implementation of the algorithm we

fix a finite threshold L and carry out the above recursive procedure at most L times

and set S(x, θ) = 0 if
∑L

i=1 τi < 1.

6.4.2 Results.

A 3-d Example with Product Form Stationary Distribution.

First, we consider a 3-d example, where the reflection matrix is of the form:

R = I +Q, where I is the identity matrix, and Q is given as the following:

Q =


0 0.1 −0.2

−0.1 0 0

0.2 0 0

 .
The spectral radius of Q is less than 1, so the conditions in this paper holds. Take the

drift function b(x) = [−1/2,−1/2,−1/2]T and σ(x) = I, for all x ∈ R3
+. According

to [47], the stationary distribution in this case is of product form: exp(1.1667) ⊗
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exp(1.0938) ⊗ exp(0.8537), where exp(µ) is the exponential distribution with mean

µ. We set our initial point to X0 = [1, 1, 1]T , and simulate {Xk}nk=1 defined by

equation (6.1.5), taking Uk ∼ N (0, I), λk = 1/
√
k and n = 107. Figure 6.1 shows

the comparison between the exact distribution with the first-coordinate marginal of

the measure νn using the last 106 simulated trajectory points. Note that the actual

time span for 107 steps with α = 0.5 is about 6323, and the computation time is

2383.63s.1

Figure 6.1: Comparison between the sample distribution with theoretical distribution.
The left one is the comparison between the empirical cumulative distribution function
(cdf) and the theoretical cdf. The middle one is the the comparison between the
estimated density function and the theoretical density function. And the right one is
the qq-plot of the empirical quantiles versus the theoretical quantiles.

In this example, we summarize the value of Λr
n(
∫
x1νn(dx)−mean) with different

rate r evaluated for different n in Table 6.1. In Theorem 6.1.5, we prove a convergence

rate result for certain class of functions. Although the function x1 is not in this class,

we could still get the convergence. And Table 6.1 will give some idea about the

convergence rate.

1The computing time in this paper is measured in Linux system with 2.93GHz Intel processor
with algorithm implemented in Matlab.
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Table 6.1: Value of Λr
n(
∫
x1νn(dx)−mean) with different rate r evaluated for different

n.

r\n 10 102 103 104 105 106 107

0.0000 0.2725 -0.4576 -0.2598 -0.0418 -0.0799 -0.0611 3.4349e-5
0.1000 0.3203 -0.6129 -0.3924 -0.0710 -0.1523 -0.1306 8.2415e-5
0.2000 0.3763 -0.8209 -0.5928 -0.1205 -0.2903 -0.2793 1.9774e-4
0.3000 0.4423 -1.0996 -0.8953 -0.2045 -0.5531 -0.5972 4.7445e-4
0.4000 0.5197 -1.4729 -1.3523 -0.3472 -1.0539 -1.2771 1.1384e-3
0.5000 0.6107 -1.9728 -2.0426 -0.5893 -2.0082 -2.7308 2.7314e-3
0.6000 0.7176 -2.6425 -3.0851 -1.0003 -3.8266 -5.8394 6.5535e-3
0.7000 0.8433 -3.5395 -4.6599 -1.6979 -7.2916 -12.4864 1.5724e-2

Effect of Choice of {λk}.

Consider a two-dimensional SRBM with covariance matrix σ(x) = I, drift vector

b(x) = [−1, 0]T and reflection matrix

R =

 1 0

−1 1

 .

This example was considered in [25]. We consider the first moment of the x1-

coordinate. The exact value for this moment is known to be 0.5. We consider

λk = k−α and examine the influence of the choice of α on the numerical performance.

The results are given in Figure 6.2.

Note that in Figure 6.2, we show that how
∫
x1νn(dx) changes with n. This

in some sense maybe misleading, since for different α, the actual time span and

the computation time are quite different. For example, the actual time span and

computing time for α = 0.9 is 40.6 and 737s respectively, while the time for α = 0.1

is 1.1347 ∗ 105 and 29400s. To make a better comparison, we summarize the value

of
∫
x1νn(dx) for different α with the same computing time 1 hour, and the results

are shown in Table 6.2. In this example, the true value is 0.5, and α = 0.7 gives the

closest result.
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Figure 6.2: We consider time step sequence λn = n−α with different choice of α and
study the influence of α on numerical convergence. The thin solid line, the dotted
line, the thick solid line, the dash-dot line, and the dashed line correspond to α =0.1,
0.3, 0.5, 0.7, and 0.9 respectively. The x-axis shows the value of n while the y-axis
corresponds to

∫
x1νn(dx).

Table 6.2: Estimates for
∫
x1νn(dx) with same computing time of 1 hour for different

α.

α 0.1 0.3 0.5 0.7 0.9∫
x1νn(dx) 0.2565 0.4217 0.4681 0.4841 0.6218

An 8-d symmetric SRBM.

A SRBM is said to be symmetric if its covariance matrix Γ, drift vector µ and

reflection matrix R are symmetric in the following sense: Γij = Γji = ρ for 1 ≤ i <

j ≤ d, µi = −1 for 1 ≤ i ≤ d and Rij = Rji = −r for 1 ≤ i < j ≤ d, where r ≥ 0 .

The positiveness of Γ implies −1/(d− 1) < ρ < 1 and the completely-S condition of

R implies r(d− 1) < 1. In this case, It is known (see [25]) that, the first moment of

each of the component is the same, and is given by the following formula

m1 =
1− (d− 2)r + (d− 1)rρ

2(1 + r)
.
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Here we take d = 8. Then the conditions on the data yield −1/7 < ρ < 1 and

0 ≤ r < 1/7. Letting ρ range through {−0.1,−0.05, 0, 0.2, 0.9}, and r take value 0.1,

we obtain estimates of m1 using algorithm in this work. We take λk = k−α, α = 0.5

and n = 107. The results are shown in Table 6.3. The results show that as the

correlation coefficient ρ approaches 1, the performance of the algorithm deteriorates.

This may due to the fact that as ρ getting closer to 1, the covariance matrix becomes

degenerate. The stationary distribution will be concentrated in a small space, which

will be harder for the simulated trajectory to hit.

Table 6.3: Estimates for m1 when d = 8.

ρ -0.1 -0.05 0 0.2 0.9
Estimated Val. 0.131 0.137 0.163 0.414 3.205

True Val. 0.150 0.166 0.182 0.246 0.468

6.5 Appendix.

Lemma 6.5.1. Let U be a random variable with bounded support. Suppose that

EU = 0. Then there exists α ∈ (0,∞), such that

EeλU ≤ eαλ
2

for all λ ∈ R.

Proof. Without lots of generality we assume that |U | ≤ 1.

Using the convexity of the function eλx, we have

eλU ≤ U + 1

2
eλ +

1− U
2

e−λ.

Taking expectations in the above inequality and using Taylor’s expansion, we have

EeλU ≤ eλ + e−λ

2
≤ e

λ2

2 .

The lemma then follows on taking α = 1
2
.
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[9] M. Boué and P. Dupuis. A variational representation for certain functionals of
Brownian motion. The Annals of Probability, 26(4):1641–1659, 1998.

[10] A. Budhiraja. An ergodic control problem for constrained diffusion processes:
existence of optimal Markov control. SIAM Journal on Control and Optimiza-
tion, 42(2):532–558, 2003.

[11] A. Budhiraja, J. Chen, and P. Dupuis. Large deviations for stochastic partial
differential equations driven by a Poisson random measure. Stochastic Processes
and their Applications, 123(2):523–560, 2012.

[12] A. Budhiraja, J. Chen, and S. Rubenthaler. A numerical scheme for invariant
distributions of constrained diffusions. arXiv preprint arXiv:1205.5083, 2012.

188



[13] A. Budhiraja and P. Dupuis. Simple necessary and sufficient conditions for
the stability of constrained processes. SIAM Journal on Applied Mathematics,
59(5):1686–1700, 1999.

[14] A. Budhiraja and P. Dupuis. A variational representation for positive func-
tionals of infinite dimensional Brownian motion. Probability and Mathematical
Statistics-Wroclaw University, 20(1):39–61, 2000.

[15] A. Budhiraja, P. Dupuis, and V. Maroulas. Large deviations for infinite dimen-
sional stochastic dynamical systems. The Annals of Probability, 36(4):1390–1420,
2008.

[16] A. Budhiraja, P. Dupuis, and V. Maroulas. Large deviations for infinite dimen-
sional stochastic dynamical systems. The Annals of Probability, 36(4):1390–1420,
2008.

[17] A. Budhiraja, P. Dupuis, and V. Maroulas. Large deviations for stochastic flows
of diffeomorphisms. Bernoulli, 16(1):234–257, 2010.

[18] A. Budhiraja, P. Dupuis, and V. Maroulas. Variational representations for con-
tinuous time processes. In Annales de l’Institut Henri Poincaré, Probabilités et
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