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ABSTRACT 

EMILY GURNEY  

Camp Rock fault slip rate and folding of the Lenwood anticline: contributions to eastern 
California shear zone strain accumulation 
(Under the direction of Dr. Mike Oskin) 

 

Geologic mapping, 10Be geochronology, and fold modeling provide insight into 

reconciling discrepant geologic and geodetic slip rates across a portion of the eastern 

California shear zone.  The Camp Rock fault is one of six faults that make up the shear 

zone.  Two alluvial fans of different generations, offset by the fault, yield ages of 100±30 

ka and 56.4±7.7 ka.  Offsets on these fans are 41±25 m and 22±2 m respectively, yielding 

a long-term slip rate of 0.4 +0.3/-0.1 mm/yr for the fault.  This is only 2-7% of the 

geodetic strain rate across the shear zone.  The Camp Rock fault terminates northward 

into the Lenwood anticline.  Modeling of this fold indicates ~3.8 km of north-south 

shortening, of which ~1.0-2.4 km is not transferred to Camp Rock fault slip but is 

maintained east of the fault.  Such regionally distributed shortening may help to reconcile 

geologic and geodetic strain rates.   
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INTRODUCTION 

The eastern California shear zone (ECSZ) provides a natural laboratory in which 

to study tectonic strain accumulation and its release as fault slip.  It is an example of a 

distributed, intracontinental shear zone with a long geodetic record and well-documented 

paleoseismicity (Sauber et al., 1986; Dawson et al., 2003).  These data indicate a 

potential discrepancy between faster geodetic and slower geologic strain rates.  Long-

term (105 yr) fault slip rates can test if high geodetic strain rates or low rates of 

paleoseismicity are more representative of the long-term behavior of the faults of the 

ECSZ (e.g. Oskin and Iriondo, 2004).   

The Mojave Desert portion of the ECSZ refers to a block bounded to the north by 

the sinistral Garlock fault, to the southwest by the dextral San Andreas fault, and to the 

east by the southern extension of the Death Valley fault zone (Glazner et al., 2002; Figure 

1).  This portion of the ECSZ lies to the northeast of the Big Bend segment of the San 

Andreas fault where shortening has built the Transverse Ranges (Crowell, 1981).   This 

study focuses on the Camp Rock fault, which is located in the central Mojave Desert, and 

lies within an array of six dextral faults that comprise the ECSZ south and east of 

Barstow, California.  From west to east, these faults are the Helendale, Lenwood, Camp 

Rock, Calico, Pisgah and Ludlow (Figure 2). 
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Figure 1:  Index map of Pacific-North America plate boundary through southern 
California.  Major faults are shown as thick black lines; thinner black lines represent 
faults of the Mojave Desert portion of the eastern California shear zone.  Faults 
highlighted in red indicate extent of 1992 Landers Earthquake rupture, which includes the 
southern portion of the Camp Rock fault (Sieh et al., 1993).  Orange area is Mojave 
Desert block, red area is Sierra Nevada batholith, blue dots show extent of the eastern 
California shear zone.      
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Figure 2:  Index map showing the six faults of the central Mojave Desert portion of the 
eastern California shear zone.  Background is hillshaded with a 30m-pixel elevation 
model.  Faults are represented by red lines.  Green line indicates trace of Lenwood 
anticline fold axis.  Blue box shows location of LiDAR swath. 
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Objective 

This thesis presents a slip rate for the Camp Rock fault and a shortening estimate 

for the Lenwood anticline, into which the northern Camp Rock fault terminates  

(Figure 2).  Data collected on the Camp Rock fault and Lenwood anticline will contribute 

to assessment of the total long-term rate of dextral faulting of the ECSZ.  The Camp 

Rock fault is of particular interest because of its intersection with the actively folding 

Lenwood anticline to the northwest and because of existing paleoseismic data (Rubin and 

Sieh, 1997).  This study analyzes both faulting and folding together to provide insight 

into interactions between faults and shortening structures in the Mojave Desert portion of 

the ECSZ.  

Tectonic History 

 Dibblee (1961) first proposed that NW-trending dextral faults of the ECSZ are 

related to movement along the San Andreas fault.  Earlier, Hewett (1954) had proposed 

that these faults exhibited mainly dip-slip motion.  Atwater (1970) noted that motion on 

faults of the Mojave Desert portion of the ECSZ was most likely accommodating a 

portion of Pacific - North America plate boundary motion, thus accounting for a 

discrepancy between San Andreas fault slip rate and Pacific-North America plate motion 

rate.  Recent measurements of Pacific-North American plate motion in southern 

California are ~50 mm/yr (DeMets and Dixon, 1999) and measurements of San Andreas 

fault motion are ~35 mm/yr (Sieh and Jahns, 1984).  Based on reconstruction of a block 

model, Dokka and Travis (1990) argue that faults of the Mojave Desert portion of the 

ECSZ accommodate approximately 9-14% of relative motion between the Pacific and 

North American plates, or 4.5-7 mm/yr.  Geodetic measurements of displacement across 
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the ECSZ are about twice this, or 10-14 mm/yr (Savage et al., 1990; Dixon et al., 1995; 

Gan et al., 2000; Miller et al., 2001).  This higher rate accounts for most of the difference 

between the displacement rate across the Pacific-North American plate boundary, and the 

slip rate of the San Andreas fault in central California (Miller et al., 2001).  Tectonic 

models of the Mojave ECSZ emphasize the role of dextral shear.  Early models of the 

Mojave Block by Garfunkel (1974) and Carter et al. (1987) treated the entire area as a 

zone of distributed simple shear during the late Cenozoic. Dokka and Travis (1990) later 

designated the zone of regional dextral shear defined by the Mojave Desert block and 

dextral faulting north of the Garlock fault as the eastern California shear zone.  They 

divided the Mojave Desert block into a series of strain domains that have deformed and 

rotated independently of one another.   

The timing of initiation of the ECSZ is uncertain.  Dokka and Travis (1990) 

hypothesize that initiation of motion along dextral faults of the ECSZ likely occurred due 

to Pacific – North American plate boundary interaction causing broadly distributed 

regional dextral shear.  They place the time of initiation at 6-10 Ma based on earlier work 

of Carter et al. (1987) and Stewart (1983). Carter et al. (1987) documented that shearing 

younger than 10 Ma caused rotation of the Eastern Transverse Ranges and Stewart (1983) 

found that faulting may have begun as late as 6 Ma by establishing age relations on 

northwest-striking dextral faults in Death Valley.  Glazner et al. (2002) further this idea 

with the hypothesis that northward migration of the Mendocino triple junction away from 

the Mojave Desert region is related to the change from an extensional to a transpressional 

deformation regime.  However, this would place the onset of dextral shear at 19 Ma 
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(Glazner et al., 2002), significantly earlier than the ages argued by Dokka and Travis 

(1990).   

Disagreements over the timing of fault inception are accompanied by differing 

ideas over the roles of shortening and extension in the central Mojave Desert.  It is agreed 

upon that extension commenced in the Mojave Desert during the latest Oligocene or 

earliest Miocene (Dokka, 1983; Bartley et al., 1990; Glazner et al., 2002).  However, 

these authors disagree on the spatial and temporal scope of extension.  Bartley et al. 

(1990), Fletcher et al. (1995) and Glazner et al. (2002) show that extension by 

detachment faulting in the latest Oligocene was intense to the immediate west and 

northwest of Barstow, resulting in exhumation of a metamorphic core complex, but was 

minimal or nonexistent outside of that area.  Dokka (1989) hypothesizes that extension in 

the earliest Miocene was intense in the western and central Mojave Desert, and proposes 

that this extensional tectonism was concentrated in the east-west trending Mojave 

Extensional Belt. 

Bartley et al. (1990) and Glazner et al. (2002) maintain that dextral faulting in the 

central and western Mojave Desert began immediately after regional extension 

terminated, and that regionally significant north-south contraction accompanies strike-

slip faulting and may equally participate in accommodating strain in the Mojave Desert.  

Their observation that possible Quaternary age deposits are folded indicates that 

contraction is likely still continuing at the present time (Bartley et al., 1990).  This differs 

greatly from the view of Dokka and Travis (1990), who maintain that on a regional level, 

strike-slip faulting has been coeval with extension in the Mojave Desert since the late 

Miocene, and extension has been overprinted by dextral shear.  The authors state that 
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areas of shortening are local, minor components of the total strain accumulation in the 

ECSZ and are limited to the northernmost tips of dextral faults in response to rotation of 

the Mojave Desert block. 

Discrepancies Between Geologic and Geodetic Data 

 Potential discrepancies exist between geologic fault slip rates and geodetic strain 

accumulation rates across the Mojave Desert portion of the ECSZ.  Estimates of present-

day geodetic strain accumulation rate across the area range from 10 to 14 mm/yr (Savage 

et al., 1990; Dixon et al. 1995; Gan et al. 2000; Miller et al. 2001).  Sauber et al. (1994) 

show that distribution of strain across this portion of the ECSZ (~12 mm/yr) extends at 

least from the Helendale fault (westernmost active fault in the Mojave Desert ECSZ) to 

the Pisgah fault, a zone 60 km wide.  Paleoseismic investigations, however, do not 

support this high geodetic strain accumulation rate.  Rockwell et al. (2000) found that 

earthquakes on distinct faults of the ECSZ, including the southern Camp Rock fault, are 

temporally clustered with a return period of at least ~5000 years.  The most recent cluster 

of earthquakes includes the 1992 Landers earthquake and the 1999 Hector Mine 

earthquake.  Assuming an average slip-per-event similar to the ~3m documented for the 

1992 and 1999 earthquakes (Sieh et al., 1993; Treiman et al., 2002), the paleoseismic 

data implies that earthquake production rates and thus slip rates for faults in the eastern 

California shear zone are uniformly low: approximately 0.6 mm/yr per fault, or 

approximately 4 mm/yr across the entire shear zone.   

  Paleoseismicity of the Emerson fault, an en echelon southward continuation of 

the Camp Rock fault, is consistent with the data of Rockwell et al. (2000). Rubin and 

Sieh (1997) found that earthquakes recur infrequently on the Emerson fault – 
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approximately every 9 kyr.  Based on the paleoseismic data and an assumed displacement 

of 6 meters per earthquake (maximum observed surface displacement for the 1992 

Landers earthquake), these authors calculated a maximum slip rate on the Emerson fault 

of ~0.7 mm/yr, only one-fourteenth to one-twentieth of the geodetic strain rate across the 

entire Mojave Desert portion of the ECSZ.  A minimum calculated slip rate of 0.2 mm/yr 

contributes one-fiftieth, at most, to the overall geodetic strain rate.  This result indicates 

that the Emerson fault and likely also the Camp Rock fault contribute little to overall 

strain accumulation in the ECSZ (Rubin and Sieh, 1997).  However, if the clustering 

hypothesis of Rockwell et al. (2000) is correct, and all faults produce similar, infrequent 

earthquakes, then these rates could be representative of the shear zone overall. 

New kinematic models for the ECSZ created by McQuarrie and Wernicke (2005) 

suggest a long-term sum slip rate of 8.3±1 mm/yr, significantly lower than geodetic rates 

of 10-14 mm/yr.  They propose that shear began at ~16 Ma and reached its current long-

term rate by 12 Ma.  Higher offsets on individual faults of the central Mojave Desert 

were required for kinematic compatibility with the ECSZ north of the Garlock fault.  For 

example, they predict 11-13 km of slip for the Camp Rock fault, whereas geologic 

markers mapped by Dibblee (1964) are only offset 2-4 km according to studies by 

Hawkins (1976) and Miller (1980; Figure 3).  Regional penetrative shear within the 

granitic crust between strike-slip faults may account for the differences between model 

and observed data; however, it is unclear which structures are accommodating this shear 

(McQuarrie and Wernicke, 2005).  The presence of contractional features such as 

ubiquitous active folds found in the central Mojave Desert could be one mechanism 

accommodating additional shear, and could reconcile geologic slip rates and geodetic  
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Figure 3.  Total offset measurements of the Camp Rock fault.  Top figure shows an offset 
series of small outcrops including granite and quartz monzonite (Gqm; blue arrows) and 
aplitic quartz monzonite (Aqm; red arrows).  Base map by Dibblee, 1964.  3.75 km of 
offset between the units is from Miller, 1980.  Bottom figure shows a 2 km offset of a 
non-depositional contact between interbedded volcanic and sedimentary rocks (gray 
shaded area) and steeply dipping tuff breccia overlying gneiss and hornblende diorite and 
biotite granite (brown shaded area).  Map area is located just southeast of the core of the 
Lenwood anticline.  Yellow arrows indicate location of contact.  Map modified from 
Hawkins, 1976.           
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strain rates (Bartley et al., 1990). 

Study Area 

 This study focuses on the northern portion of the Camp Rock fault, bounding the 

west side of the Newberry and Rodman Mountains, and the Lenwood anticline, into 

which the Camp Rock fault terminates.  This area was selected for a slip rate study 

because the fault trace cuts through many alluvial fan surfaces, thereby increasing the 

likelihood of locating measurable and dateable offsets.  The study area also contains 

alluvial fan surfaces composed of unique clast types which aids correlation of alluvial 

fans for offset measurement.  The Lenwood anticline is an active east-west trending fold 

located at the northwest end of the Camp Rock fault (figure 2).  As the Camp Rock fault 

approaches the fold, its strike changes from 325° to 290°, and fault slip diminishes from 

2-4 km to zero.



 

 

 

 

METHODS 

Mapping 

Two separate maps were created, one along the Camp Rock fault and another 

across the Lenwood anticline.  Plate 1 is a detailed map of Quaternary units and bedrock 

along the Camp Rock fault.  Pre-Quaternary stratigraphic units are adapted from mapping 

by Dibblee (1964).  The map also segregates various generations of Quaternary deposits 

in order to locate features with measurable fault displacement.  Airborne Laser Swath 

Mapping via LiDAR (light detection and ranging) was acquired as a mapping base for its 

high resolution and precise elevation data.  LiDAR was processed to 1 m pixels and is 

accurate to 0.1 m in the vertical.  This makes it extremely useful for mapping fault scarps 

in active alluvium and other Quaternary surfaces where the scarps may be difficult to 

discern in the field.  The high resolution provides ease of locating single-event fault 

scarps and is helpful in targeting features before field work commences.  Maps produced 

in the field at a scale of 1:5,000 were later digitized using ArcGIS software, providing a 

continuous map of a 10-km section the Camp Rock fault.  Figure 4 is a strip map across 

the axis of the Lenwood anticline.  This map is based on mapping by Dibblee (1970) and 

modified from field measurements compiled on aerial photos at a scale of 1:10,000.  

Mapping of the Lenwood anticline was subsequently used to create a cross-section of the 

fold.  
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Figure 4.  Geologic map of a portion of the Lenwood anticline.  Line A-A’ indicates 
location of cross-section.  Map modified from Dibblee (1970).  
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10Be Geochronology 

Along with detailed Quaternary mapping and location of an offset alluvial fan 

surface along the Camp Rock fault, cosmogenic dating, using in-situ accumulation of 

10Be in quartz, was performed to determine an age for the offset fan surface.  Clasts were 

collected from darkly varnished pavements on the fan surface in three locations.  Two 

samples were also taken from modern alluvium in order to estimate 10Be concentration 

inherited prior to deposition of the sediment onto the fan surface.  Sample preparation 

took place according to the standard operating procedures of the cosmogenic dating lab at 

the University of Minnesota – Minneapolis, under the direction of Dr. Lesley Perg.  

Sample preparation methods are described in Appendix A.  10Be measurements took 

place at the Lawrence Livermore National Laboratory. 

             

 

 

 

 

 

 

 

 

 

 



 

 

 

 

RESULTS AND INTERPRETATIONS 

Stratigraphy 

 Mesozoic basement rocks are prevalent east of the Camp Rock fault in the 

Rodman Mountains and along both sides of the fault in the Newberry Mountains, as well 

as in the core of the Lenwood anticline.  Miocene sedimentary and volcanic rocks of the 

Pickhandle Formation are present in the Newberry Mountains.  The Pickhandle 

Formation and Miocene sedimentary rocks of the Barstow Formation are present on the 

limbs of the Lenwood anticline, overlying the basement rock unconformably.  Modern 

alluvium and older alluvial fans are present both along the Camp Rock fault and on the 

limbs of the Lenwood anticline.  

Mesozoic Basement Rocks 

Porphyry Complex (Mzpc) 

 The porphyry complex consists of massive, hard, mostly dark-gray fine-grained 

porphyritic metavolcanic rocks.  Some members of the complex range from light-gray to 

pink and white.  Phenocrysts of plagioclase, quartz and potassium feldspar are common 

(Dibblee, 1964).  Internal units of the complex were not differentiated during mapping.  

Outcrops are present in the Rodman Mountains adjacent to the Camp Rock fault, in the 

southern part of the study area.     
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Quartz Diorite (Mzqd) 

 The quartz diorite is light-gray to gray, massive, equigranular and medium-

grained.  It is composed mainly of quartz, plagioclase, potassium feldspar and biotite.   

Outcrops are present on the border of the Rodman and Newberry Mountains adjacent to 

the Camp Rock Fault and west of the Camp Rock fault in the northern part of the study 

area. 

Undifferentiated basement rocks (Mzu) 

Mesozoic basement units were not differentiated during mapping of the Lenwood 

anticline.  Dibblee (1970) mapped granite, hornblende diorite and gabbro, biotite quartz 

monzonite, aplitic quartz monzonite, and an andesite to latite porphyry exposed in the 

core of the Lenwood anticline.    

Miocene Sedimentary and Volcanic Rocks 

Mixed-clast Conglomerate (Tsf) 

 The mixed-clast conglomerate is gray to brown and unconsolidated.  Clasts are 

unsorted, subrounded to angular boulders, cobbles and pebbles derived from the porphyry 

complex, quartz diorite, and other plutonic rocks not found within the mapping area.  The 

conglomerate also contains clasts of basalt and andesite (Dibblee, 1970).  Bedding is not 

exposed.  It is interpreted to have been deposited as alluvial fans, presumably derived 

from areas to the south (Dibblee, 1970).  The unit is located along both sides of the Camp 

Rock fault in the Newberry and Rodman Mountains, as well as on the south limb of the 

Lenwood anticline. 
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Quartz Diorite Conglomerate (Tcgqd) 

 The quartz diorite conglomerate is a gray and unconsolidated monolithologic 

conglomerate of subangular to angular boulders, cobbles and pebbles.  The unit is derived 

from quartz diorite exposures adjacent to the Camp Rock fault.  In places, the 

conglomerate was shed across the fault and sits atop quartz diorite unconformably.  The 

quartz diorite conglomerate appears to have been deposited along the Camp Rock fault 

scarp, and is likely derived from erosion of the scarp.  Based on the angularity of clasts 

and its presumed connection to Camp Rock fault activity, the quartz diorite conglomerate 

could possibly be younger than Miocene in age.  It is found locally on two hills in the 

northwestern Rodman Mountains west of and within the Camp Rock fault zone. 

Undifferentiated volcanic rocks and conglomerate (Tcv) 

 Undifferentiated volcanic rocks and conglomerate consist of agglomerate, a tuff 

breccia, a granitic breccia and a basalt unit.  The agglomerate and tuff breccia is white to 

tan and consists of mainly unsorted porphyritic rhyolite clasts.  The basalt is black and 

massive and is microcrystalline to fine grained.  The granitic breccia is shattered biotite 

quartz monzonite in landslide masses or gray granitic breccia (Dibblee, 1970).  Outcrops 

are present on the south limb of the Lenwood anticline. 

Granitic conglomerate (Tsg) 

 The granitic conglomerate is white-pink to light gray.  Clasts range in size from 

<1 cm to boulder-sized in a sandstone matrix (Dibblee, 1970).  Bedding is rare.  It 

directly overlies eroded pre-Tertiary volcanic rocks.  Outcrops are present on the north 

and south limbs of the Lenwood anticline, but it is found predominantly on the north 

limb.  
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Peach Springs Tuff (Tpst) 

 The Peach Springs Tuff is a white to pink nonlithified to lithified tuff.  It contains 

subrounded to angular potassium feldspar phenocrysts up to 2 mm in diameter, small 

xenoliths of pink and brown volcanic rocks, and biotite (Dibblee, 1970).  It crops out on 

the north and south limbs of the Lenwood anticline, with outcrops on the south limb more 

friable than those on the north. 

Sandstone/shale/conglomerate (Tss) 

 The sandstone is white to light gray-tan with localized orange-pink to tan areas.  It 

weathers brown.  Grains are subangular to subrounded and poorly sorted.  The outcrops 

are mostly massive with some shaley bedding found in the outcrops on the north limb of 

the Lenwood anticline.  The shale unit is micaceous and includes interbedded gray to tan 

shale and sandstone (Dibblee, 1970).  The conglomerate clasts are rounded to subangular 

and composed of Tertiary andesites and Mesozoic granites.  Outcrops are present on the 

north and south limbs of the Lenwood anticline. 

Quaternary Units 

Five distinct Quaternary units are distinguished adjacent to the Camp Rock fault.  

Only modern alluvium and undifferentiated old alluvium (Qoa) are distinguished on the 

limbs of the Lenwood anticline.   

Older alluvium along the Camp Rock fault has been subdivided into three alluvial 

fan generations, Qtf, Qtk and Qtn.  In this naming scheme, Q refers to the Quaternary age 

of the fans, t indicates that they are terraces, and f, k and n are letters chosen at random to 

indicate the relative age of each terrace generation, where letters closer to the beginning 

of the alphabet represent older alluvial fans.  Letters successively lower in the alphabet 
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represent successively younger fans.  Pre-existing naming schemes were not used, in 

order to remove any association of the age of these fans with past glacial or interglacial 

periods.   

All three generations are located adjacent to the fault, in the form of terraces that 

sit higher than the modern alluvium or against the mountain front.  These alluvial fans, 

formed by channels emerging from mountains adjacent to the Camp Rock fault, are 

important geomorphic features for measuring fault offset.  Abandonment of alluvial fans, 

forming relict surfaces, occurs via a transition from aggradation of channel-transported 

alluvium to channel incision. The former aggradational surface becomes abandoned and 

soil development processes commence.  This cycle can result in multiple generations of 

surfaces preserved in order of formation, with younger surfaces inset successively below 

older surfaces.  Elsewhere, younger surfaces grade to fans deposited above older 

deposits, obscuring older fan surfaces.      

Alluvial fan generations were distinguished based on relative age criteria.  In 

addition to inset relations between fans, the presence or absence and intensity of rock 

varnish and rubification of clasts, and the extensiveness of desert pavement on the fan 

surface were used as diagnostic tools.  Rock varnish is a brownish-black manganese-rich 

coating that accumulates on top of clasts that are resting on a stable surface in an arid 

region (Bull, 1991).  The bottom sides of these clasts undergo rubification, which is the 

accumulation of an orange to reddish-brown coating of iron-rich rock varnish  

(Bull, 1991).  Older fans will have clasts that have undergone a higher degree of 

varnishing and rubification than younger fans.  Development of desert pavement also 

increases with age of surface.  A pavement is formed as aeolian processes winnow away 
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small particles on a fan surface, allowing larger and more similar-sized clasts to become 

packed in against one another in an interlocking arrangement.  An accretionary Av soil 

horizon of aeolian dust that becomes entrapped below the pavement helps to keep the 

pavement clasts at the surface (Wells et al., 1995) and facilitates surface smoothing 

through shrink-swell processes.  Well-developed pavements will have a smooth surface, 

typically comprised of well-varnished clasts, whereas younger surfaces with no pavement 

will have a topographically variegated surface consisting of bars and swales.  The amount 

of vegetation present on the surface can also be used in relative dating, as younger 

surfaces are more conducive to plant growth than older surfaces.         

Qtf alluvial fans (Qtf) 

Qtf is the oldest fan generation.  It displays a high degree of dark brown to black 

desert varnish, and dark orange to red rubification on all clasts.  The presence of well-

interlocked, continuous desert pavement creates a smooth surface and allows for almost 

no gaps between clasts (Figure 5).  Bar and swale topography is completely obliterated.  

Terrace surfaces are almost completely devoid of vegetation.  Large clasts are scattered in 

small clusters across the surface.  Based on clast composition, some Qtf fans can be tied 

to local alluvial sources that have subsequently been displaced by fault slip.  

Qtk alluvial fans (Qtk) 

Qtk fans are younger than Qtf fans based on inset relations and morphology.  

Some clasts display brown to black desert varnish.  However, many clasts are 

unvarnished to only lightly varnished.  Rubification is less developed than on Qtf surfaces 

and is orange when present.  Poorly interlocked desert pavement is patchy and sand- to 

gravel-sized particles are found between larger clasts (Figure 6).  The fans exhibit 
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subdued bar and swale topography and few plants grow on their surfaces.  Large clasts 

appear scattered throughout, but are found in larger quantities on remnant channel bars.   

Qtn alluvial fans (Qtn) 

Qtn is the youngest fan generation based on inset relations and morphology.  

Surfaces are light in color as they display the most minimal desert varnish or none at all.  

Rubification is light orange if present.  Desert pavement is nonexistent and large clasts 

lie loosely on the surface.  Bar and swale topography is preserved and plants grow 

abundantly on the surface.  The largest clasts are located atop the remnant bar crests 

(Figure 7).   

Modern alluvium (Qal) 

Two types of modern alluvium exist: inactive alluvial fans and active washes.  

However, the two types were not differentiated during mapping.  The inactive alluvial 

fans are located to the southwest of the fault and emanate from the mountain front.  They 

contain gravel, cobbles and large amounts of sand and display very well-preserved bar 

and swale topography.  The active washes are located in the valley to the southwest of the 

fault.  They are also composed of sand, gravel and cobbles but contain more gravel than 

the inactive alluvial fans.  Bar and swale topography in active alluvium can reach up to 

approximately a meter high. 

Silt (Qsi) 

Silts of lacustrine or aeolian origin are present along the southwest side of the 

fault underlying thin terrace gravel deposits.  The silt is white to light brown in color, 

unconsolidated, and contains calcite cementation in some areas. 
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Figure 5:  Qtf terrace surface.  The black clasts display a high degree of varnish, and the 
undersides of these same clasts are orange-red due to rubification.  Visible rubification of 
clasts is due to overturning of clasts.  The tightly packed angular clasts indicate a well-
developed desert pavement, with few smaller clasts present between the larger 
interlocked clasts.   
 

 
Figure 6:  Qtk terrace surface.  Note that although some clasts display black or brown 
desert varnish, smaller clasts are commonly unvarnished.  Rubification is less common 
and a lighter orange when present.  Poorly interlocked clasts constitute a patchy desert 
pavement that contains sand- to gravel-sized particles between larger clasts.

10 cm 

10 cm 
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Figure 7:  Qtn terrace surface.  Desert varnish is minimal if at all present, and rubification 
of the lightest orange is rarely present.  Desert pavement is nonexistent, as a wide 
spectrum of clast sizes lie loosely on the surface. 
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Colluvium (Qc) 

 Colluvium consists of pebble- to boulder-sized angular to subangular clasts of 

various composition in a coarse sand matrix.  The colluvium forms aprons covering parts 

of the Camp Rock fault scarp.  

Mapping of Camp Rock Fault 

I subdivide mapping of the northern Camp Rock fault into four divisions with 

distinct attributes.  The southern section comprises the southern 3.3 km of the fault trace 

and the surrounding area, the mid-southern section the next 1.9 km, the mid-northern 

section the following 3.3 km, and the northern section encompasses the northern 2.3 km. 

In the southern section, the fault is characterized by a single, distinct trace which 

is at times apparent as a fresh scarp or a scarp visible in modern alluvium from the 1992 

Landers earthquake.  Basement rocks located in the Rodman Mountains east of the fault 

are comprised of several members of the porphyry complex.  An expansive alluvial fan 

complex emanates from the mountain front, dominated by Qtf and Qtk alluvial fans.  The 

Qtf portion of this fan is cut by channels up to ~5 m deep.   

The Camp Rock fault throughout the mid-southern section is predominantly 

covered by modern alluvium as its trace runs along the range front.  Only for a few 

meters at a stretch is its trace clearly located by an apron of colluvium or as the contact 

between Miocene rocks and small Qtn terrace remnants.  The Mesozoic rocks located 

east of the fault are composed of the porphyry complex and quartz diorite.  The contact 

between these basement rocks is covered by the Miocene mixed-clast conglomerate.  

Modern alluvium makes up almost the entire southern side of the fault throughout this 

section, with the exception of two small Qtf alluvial fan remnants.     
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The geology of the mid-northern section is significantly more complex than the 

preceding two sections.  The main strand of the fault twice splays into two segments as it 

runs through hills of Mesozoic quartz diorite covered by Miocene conglomerate, in the 

Rodman Mountains.  Quartz diorite conglomerate emplaced coevally with fault slip 

overlies quartz diorite bedrock on two hills south of the fault.  Although the fault in this 

section cuts through bedrock, the southern side of the fault is predominantly alluvium and 

old alluvial surfaces.  A thrust fault strand cuts Quaternary alluvium on the south side of 

the main fault.  At the mountain front, terraces of all three generations exist, although the 

prevailing generation is Qtk.  Many of the terraces in this area are thin deposits overlying 

silt.   

In the northern section the fault runs along the side of an elongate ridge before 

splitting into two branches.  The fault is more difficult to precisely locate in this section 

due to a paucity of offsets of topographic features.  Miocene conglomerate (Tsf) of the 

Newberry Mountains occurs on both sides of the fault.  Little modern alluvium exists in 

this section.  Fan surfaces of all three generations are present but scarce.   

Evidence of paleoquakes along the Camp Rock fault is present in the form of fault 

scarps.  Fault scarps in terraces have the general appearance of either a small step or a 

groove in the fan surface.  These scarps are commonly very small, only a few centimeters 

in height, and are oftentimes better viewed in the LiDAR than in the field.  More 

prominent scarps exist as slope breaks on hillsides or steps in fans up to 1 m in height, 

although scarps of this magnitude are less common.  Toward the southern end of the 

study area, fresh scarps from the northernmost rupture of the 1992 Landers earthquake 

are observed (Plate1).   
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10Be Geochronology Results 

 Ages of the five collected samples were calculated using the equation  

t=N/P0, 

where N is the concentration of 10Be atoms/quartz gram of the sample, P0 is the 

production rate of 10Be atoms at the surface, and t is exposure time of the sample (Lal, 

1991).  This equation assumes that decay of 10Be, with a half-life of 1.36 Ma, is 

negligible.  A P0 of 11.1 (atoms/gram)/year was calculated based on an altitude of 1147 m 

and a latitude of ~34o N (Stone, 2000).  Of the five samples collected along the Camp 

Rock fault, samples CR-01, CR-02 and CR-03 were collected from the Qtf fan surface 

and samples CR-04 and CR-06-01 were collected from the modern alluvium.  The 

concentrations found for the modern alluvium represent inheritance of 10Be during 

erosion and transport of sediment prior to deposition on the alluvial fan to be dated 

(Anderson et al., 1996).  This concentration is used to estimate and subtract inheritance 

from the concentrations of the alluvial fan samples.  Calculated exposure times have been 

rounded to the nearest 1 ka and include 1σ errors.  
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Table 1:  10Be concentrations and exposure ages 
 

 

Age of Qtf Fans 

The samples from the Qtf surface yield inheritance-corrected exposure ages of 

108±15 ka, 78±14 ka and 25±13 ka using the 10Be concentration of CR-06-01, and 

103±11 ka, 71±9 ka and 18±8 ka using the 10Be concentration of the weighted mean of 

CR-04 and CR-06-01.  The youngest age, from sample CR-03, is stratigraphically 

inconsistent with ages of the younger Qtk surface determined along the nearby Calico 

fault (Oskin et al., 2007).  The anomalously young CR-03 age probably indicates erosion 

on the fan surface at the sample site.  Of the two samples from the modern alluvium used 

to estimate inheritance, CR-04 is considered less accurate because it probably contained 

contamination from material eroded from the nearby CR-03 sample site.  The other 

modern alluvium sample, CR-06-01, was collected from higher up in the channel where it 

Sample 

10Be 
concentration 

×105 
(atoms/g quartz) 

Inheritance-
corrected 

10Be 
concentration 

× 105  

(atoms/g 
quartz) using 
sample CR-

06-01 

 
Inheritance-

corrected 10Be 
concentration × 

105 (atoms/g 
quartz) using 

weighted mean of 
CR-04 and CR-

06-01 

 
 

Inheritance
-corrected 
exposure 
time using 

sample 
CR-06-01 

(ka) 

Inheritance-
corrected 

exposure time 
using weighted 
mean of CR-04 
and CR-06-01 

(ka) 
       

CR-01 18.2±0.6  12.0±1.6 
 

11.4±1.1 
 

108±15 103±11 

CR-02 14.7±0.18 8.7±1.5 
 

7.9±0.96 
 

78±14 71±9 

CR-03 8.77±0.17 2.8±1.5 
 

1.97±0.96 
 

25±13 18±8 

CR-04 8.14±0.11 — 
 

— 
 

— — 

CR-06-01 5.99±1.5 
 

— 
 

— 
 

— — 
Weighted 
mean CR-

04 and 
CR-06-01 6.8±0.94 — 

 
 
 

— 

 
 
 

— — 
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could not have been contaminated by erosion of terrace material.  However, a weighted 

mean inheritance was calculated using both CR-04 and CR-06-01 in order to not 

disregard any data that may influence the age of the Qtf fan.  Fan surfaces southwest of 

the Camp Rock fault exist only as thin deposits; therefore it was impossible to obtain 

shielded samples from below the surface to further assess inheritance (Anderson et al., 

1996).  In addition, the thin surface deposit makes it difficult to independently gauge 

erosion of the fan surface.  In many places Qtf gravels form a lag deposit upon eroding 

silt deposits.  

To further constrain the age of Qtf, its morphology was compared with other 

dated alluvial fan surfaces formed in a similar environment.  The properties of these 

alluvial fan surfaces have similar relative-age parameters to Qtf such as well-interlocked, 

smooth desert pavement with a dark varnish covering a majority of the clasts, rubified 

clast undersides, and extensive fan surfaces with no remaining original depositional 

morphology (i.e. bar and swale topography).   

Based on a study by Dorn (1988) on Death Valley alluvial fans, Qtf surfaces 

along the Camp Rock fault can be correlated to his Q3a surfaces.  Dorn (1988) described 

Q3a as having smooth and well-varnished desert pavements that are continuous over 

large areas.  Older fans are highly dissected and have patchier desert pavement; younger 

fans have not developed enough desert pavement (Dorn, 1988).  Nishiizumi et al. (1993) 

sampled clasts from the surfaces of these same Death Valley fans and dated those clasts 

using 10Be and 26Al cosmogenic radionuclides.  The Hanaupah Canyon fan in Death 

Valley was selected for dating and yields a minimum apparent exposure age of 117±4 ka  
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(Nishiizumi et al., 1993).  It is important to note that Nishiizumi does not consider 

inheritance in this study.     

Studies by Bull (1991) on piedmonts from the lower Colorado River including the 

Whipple Mountains of southeastern California have Q2c and Q2b surfaces that are 

morphologically similar to Qtf.  Based on one [230Th/234U] age obtained from clasts 

sampled from the surface, Q2c yields an age of 61 ka and seven clasts sampled from the 

Q2b surface yield an age of 82-83 ka (Bull, 1991) 

Wells et al. (1987) and Reneau (1993) described surfaces from the Soda 

Mountains piedmont in the Mojave Desert.  Qf1 surfaces from these studies possess the 

same characteristics as Qtf.  Although the Qf1 surfaces have not been dated, Wells et al. 

(1995) collected and dated samples from a younger Qf3 surface from the nearby Cima 

Dome area using cosmogenic 3He.   This fan produced ages of 85±9 ka and 80±10 ka 

from two aliquots of the same sample (Wells et al., 1995).  From this age it can be 

deduced that Qf1 surfaces are at least ~100 ka.           

A recent study on the Lenwood fault, just west of the Camp Rock fault, includes 

relative and cosmogenic dating of alluvial fan surfaces adjacent to that fault.  A Qtf 

surface along the Lenwood fault was sampled for clasts both at the surface and from a pit 

dug into the surface.  Dating of these clasts using 10Be cosmogenic radionuclides yielded 

an age of 200±30 ka (Strane, 2007).  The Lenwood Qtf surface appears to possess the 

same geomorphic characteristics as the Camp Rock Qtf surface; however, its advanced 

age indicates the possibility that it is actually from an older fan generation.  

The ages of 108±15 ka, 103±11, 71±9 and 78±14 ka determined from this study 

fall within the range of ages determined from other studies.  Due to variable erosion on 
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the fan surface, the older ages of sample CR-01 are considered to be the most 

representative.  By using these ages in conjunction with ages from other studies, a 

conservative age of 100±30 ka is assigned to the Qtf surface. 

Slip Rate of the Camp Rock Fault 

Slip rates are determined from alluvial fans that are dextrally displaced by the 

Camp Rock fault.  Two well-defined offsets were located in the study area, one each in 

Qtk and Qtf fans.  A maximum value and a minimum value of the offset Qtf fan were 

calculated by reconstructing the configuration of the fan and channel edges prior to 

disruption by faulting (Figure 8).  The maximum offset of 66 m is based on matching the 

northwestern intersection of a Qtf terrace remnant with the fault with the contact of 

colluvium and basement rock on the opposite side of the fault.  Any further backslipping 

of the fault results in the impossible placement of all or a portion of the Qtf alluvial fan 

remnant northeast of the fault behind a hill of basement rock southwest of the fault.  The 

minimum offset is 16 m (Figure 8).  This value is based on matching corresponding 

channel edges projected to the fault.  The location of the usable northwest edge is 

estimated from existing topography.  The minimum value of 16 m accounts for the fact 

that it is unknown if the original path of the channel was straight downhill at the time of 

abandonment of the fan surface, or if the channel had a distinct right deflection around 

the conglomerate hill west of the fault while it was depositing the terrace material.  

Dividing a Qtf offset of 41±25 m by a surface age of 100±30 ka yields a slip rate of 

0.4±0.3 mm/yr for the Camp Rock fault. 

An additional slip rate constraint is determined from minimum offset of the 

younger Qtk fan.  This offset is formed as the fault displaced the edge of the Qtk fan and   
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Figure 8:  Restoration of slip along Camp Rock fault since truncation of Qtf alluvial fan.  
This Qtf fan is composed of mixed clasts, whereas other terraces in the area are 
composed only of quartz diorite.  The distinctive clast makeup ensures that both the main 
portion of the Qtf fan and the truncated remnant were once part of a continuous fan.   
Former channel paths shown as white dashed lines; present day channel path as a solid 
black line.  Top figure shows modern-day location of fan and remnant, along with the 
former and present channel paths.  10Be sample sites are represented by stars.  Middle 
figure shows 16 m minimum displacement, based on an inferred location of the restored 
northwest channel edge, represented by the line of white dots.  Bottom figure shows 66 m 
maximum displacement, as any further displacement would impossibly situate the fan 
remnant on the northeast side of the fault behind a hill composed of quartz diorite 
conglomerate.          



   

33 

an inset alluvial fan channel by at least 22±2 m (Figure 9).  This is a minimum offset 

because erosion could have occurred on the edge of the Qtk fan on the north side of the 

fault.  Based on the work of Oskin et al. (2007), a Qtk alluvial fan surface along the 

nearby Calico fault (Figure 2) yielded a cosmogenic age of 56.4±7.7 ka.  If this Qtk age is 

applied to the offset Qtk alluvial fan, a minimum slip rate of 0.4±0.1 mm/yr is obtained. 

Folding of Lenwood Anticline 

The Lenwood anticline is located at the northern tip of the Camp Rock fault.  The 

axis of the fold trends approximately east-west.  The south limb of the fold is comprised 

of Tertiary and Quaternary units that dip shallowly to the south or are flat-lying.  Tertiary 

units consist of undifferentiated volcanic rocks and coarse conglomerates (Tcv), a mixed-

clast conglomerate (Tsf), a granitic conglomerate (Tsg), sandstone and shale (Tss) and the 

Peach Springs Tuff (Tpst).  At the core of the fold, which rises to an elevation of 

approximately 1300 m, Mesozoic granitic basement rocks are exposed.  The north limb 

of the fold comprises Tertiary and Quaternary units.  Older units dip more steeply than 

younger units.  The undifferentiated volcanic rocks and coarse conglomerates (Tcv) found 

on the south limb are not exposed on the north limb.  Tertiary units on the north limb 

consist of a granitic conglomerate (Tsg), sandstone (Tss), and the Peach Springs Tuff 

(Tpst; figure 4).  

Based on the asymmetry of bedding dips, I interpret the Lenwood anticline as a 

fault-propagation fold.  Beds in the steep limbs of fault-propagation folds progressively 

rotate toward the orientation of the fault with depth and proximity to fault (Erslev, 1991).  

In a limb rotation model, the younger beds syntectonically emplaced across the fold limb  
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Figure 9.  Offset of the Qtk age fan.  The edge has been offset into a channel of modern 
alluvium.  Offset is 22±2 m, which is measured as the edge of the Qtk fan is offset into a 
channel of modern alluvium.  This offset is a minimum due to possible erosion of the Qtk 
fan northeast of the fault.  Qtk = Quaternary tk fan, Qtn = Quaternary tn fan, Qa = 
modern alluvium, Mzpc = Mesozoic porphyry complex.      
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will dip less than older beds (Suppe et al., 1997).  Dips measured on the north limb of the 

Lenwood anticline demonstrate limb rotation.   

The Lenwood anticline has been an active fold since the Miocene.  Active folding 

is exhibited by growth strata present on the north limb of the fold.  These growth strata 

are characterized by internal unconformities that separate progressively younger beds on 

the north limb that dip more shallowly than the older beds.  Uplifted and tilted terraces of 

Qoa are evidence of continued fold activity in the Quaternary.



 

 

 

 

DISCUSSION 

 To evaluate the constancy of slip rate over different time scales, slip rates for the 

Camp Rock fault obtained from offset alluvial fans are compared to paleoseismic slip 

rates and geodetic strain accumulation rates.  By comparing these rates it becomes 

apparent that shorter-term paleoseismic slip rates are representative of long- and 

intermediate-term slip rates presented in this thesis.  However, all of these geologic rates 

are low when compared to geodesy.  Folding of the Lenwood anticline is then examined 

to determine whether contractional structures in the Mojave Desert accommodate as 

much deformation as faulting.  Such folding may provide a mechanism by which 

discrepant geologic and geodetic strain rates can be reconciled.       

Slip Rate Comparison 

 There are three basic time frames in which fault slip can be studied.  Geodesy 

measures short-term present-day strain rates which can be used to establish 

corresponding displacement rates.  However geodesy gives only a snapshot of a fault’s 

loading rate during a small portion of the earthquake cycle.  Paleoseismic trenching 

studies give earthquake recurrence rates that can be used to infer slip rates.  Depending 

on the recurrence interval of earthquakes on a given fault, slip rates determined from 

paleoseismic investigations could encompass less than an entire earthquake cycle to one 

or two earthquakes.  Slip rates measured in the long- to intermediate-term, such as those 

presented in this thesis, encompass slip accrued over many earthquakes and tens of 
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thousands of years.  Examining these rates can encompass many complete earthquake 

cycles, thereby averaging shorter-term variations in slip rate and loading rate. 

Paleoseismicity vs. long-term rate 

For the Camp Rock fault, the average slip rate of 0.2-0.7 mm/yr determined from 

paleoseismic recurrence (Rubin and Sieh, 1997) is comparable to long-term slip rate of 

0.4±0.3 mm/yr determined from this study.  The Qtk minimum slip rate of 

 0.4±0.1 mm/yr, although less well-constrained, also falls within the range of 

paleoseismic estimates.  Combining all of these constraints yields a best-estimate slip rate 

of 0.4 +0.3/-0.1 mm/yr for the Camp Rock fault. 

Geologic vs. Geodetic Rate Reconciliation 

 The long-term slip rate of 0.4 +0.3/-0.1 mm/yr on the Camp Rock fault is 2%-7% 

of the present-day geodetic strain rate of 10-14 mm/yr across the central Mojave Desert.  

Because there are six dextral faults in this portion of the ECSZ, the total geodetic strain 

accumulation cannot be distributed evenly between these faults, as the Camp Rock fault 

does not account for 1/6 of the geodetic strain rate.  Comparable pre- and post-Landers 

earthquake geodetic measurements suggest that this discrepancy is not due to post-

seismic effects.  One way the discrepancy can be reconciled is if there are faster faults in 

the ECSZ that account for more than 1/6 of the geodetic strain.  For example, the slip rate 

on the Calico fault is 1.6±0.1 mm/yr (Oskin et al., 2007), or 11%-17% of the geodetic 

strain rate.  However slip rates faster than that of the Calico fault are necessary on other 

faults to reconcile the discrepancy in strain rate across the entire shear zone.  The 

contractional folds associated with some dextral faults of the ECSZ, including the Camp 

Rock fault, could also account for a portion of the rate discrepancy. 
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Role of Active Folding 

 There are two current viewpoints on the role of active folding in the central 

Mojave Desert.  Dokka and Travis (1990) hypothesize that areas of shortening are local, 

minor components of total strain accumulation in the ECSZ.  Bartley et al. (1990) state 

that north-south contraction is regionally significant in the central Mojave Desert.  I 

modeled shortening of the Lenwood anticline in order to evaluate the importance of 

active folding in the area and relate it to slip on the Camp Rock fault.   

Model of Lenwood anticline 

A model of folding of the Lenwood anticline accounts for the following 

observations: (1) forelimb dips measured in the field and taken from mapping by Dibblee 

(1970), (2) evident but poorly constrained thickening of beds in the forelimb, (3) the 

location and dip of the backlimb, (4) lack of evidence for thrust-faulting at the surface, 

and (5) probable removal of Tcv on the forelimb by erosion (Figure 4 & Plate 2).  The dip 

change within Tsg and the location and dips of the backlimb are the factors that provided 

the most important constraints on creating the fold model.  Removal of Tcv is presumed 

to have occurred due to tilting and erosion during early Miocene extension prior to the 

onset of folding.  If instead Tcv was eroded during uplift of the fold crest, additional 

shortening would be required. 

I modeled the Lenwood anticline as a trishear fold using the FaultFold 4.6.4 

modeling program of Allmendinger (1998; Figure 10).  The three main variables 

considered in my model were fault angle, trishear angle, and P/S ratio.  The trishear angle 

refers to the apical angle of the triangular zone in which deformation occurs ahead of a 

propagating fault.  If the trishear angle is small, the deformation will be concentrated 
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Fig 10:  Step-by-step formation of the 
forelimb of the Lenwood anticline, as 
modeled in the FaultFold program.  A 
decrease in P/S ratio is needed to avoid 
surficial breakthrough of fault and 
diminish continued folding of the 
hanging wall.  The fault angle increase 
is necessary to reproduce back limb 
dips, and increase of the trishear angle 
prevents oversteepening of Tsg near the 
surface. 
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in a small wedge of rock, and if it is large, resulting deformation will be more diffuse 

(Allmendinger, 1998).  The P/S ratio, or propagation to slip ratio, determines how 

quickly the fault tip propagates in relation to slip on the fault.  For a large P/S ratio, 

material spends less time in the deformation zone, and is thereby less deformed.  For a 

small P/S ratio, material will spend longer in the deformation zone and be more 

deformed.  A P/S =1 indicates a trishear zone attached to the hanging wall 

(Allmendinger, 1998). 

In order to reproduce the fold, I began the model with a fault dip of 40° and a 

trishear angle beginning at 40°.  These initial values for fault angle and trishear angle 

were based on numerous trials of various fault and trishear angle combinations.  Other 

combinations failed in that they either created folding that was too broad or tight, or did 

not concentrate folding in such a way as to produce the abrupt steepening of dip 19º to 

67º in the forelimb.       

The P/S ratio of 1.8 used through the first six folding steps helps to initiate the 

production of the dip change from 19º to 67º in Tsg.  A higher P/S ratio results in fault tip 

placement too close to the beds, thereby producing drastic oversteepening in the 

shallowly dipping portion of Tsg and the other beds.  Four more folding steps occur with 

the P/S ratio decreasing to 1.1.  This decrease is needed to avoid breakthrough of the fault 

at the surface and diminish folding in upper layers of the hanging wall such as Tss and 

Qoa.  Even lower P/S ratios were unable to create the 19º dip in Tsg. 

To produce the change from 0º to 15º in the backlimb, the fault angle was 

changed to 50º and the trishear angle increases to 65º during the final four steps of 

folding, while the P/S ratio was maintained at 1.1.  This fault angle change can reproduce 
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the dips in the back limb (Narr and Suppe, 1994) and also sets it the appropriate distance 

away from the forelimb.    Folding of the backlimb was iteratively determined from the 

fold model using angular relationships set forth by Narr and Suppe (1994), 

φεφφβφθ −+++−= − ))]cot()cot(/(cot1[tan 1 , 

where θ is the lower fault dip, φ  is the dip of the axial plane of the backlimb fold, β is the 

backlimb dip, and ε is the upper fault dip.    

All angles used to model the cross-section in FaultFold 4.6.4 are within 2º of 

those determined from the equation of Narr and Suppe (1994).  Once the fault dip had 

been steepened, it became essential to widen the trishear angle.  In previous models 

where the trishear angle was not widened, the steeper fault angle caused too much 

steepening in Tsg near the surface, and resulted in excess folding to be located where it 

was not needed.  Widening of the trishear angle smoothes out this oversteepening and 

maintains the proper location of continued folding.        

Shortening and its Relationship to Slip on the Camp Rock fault 

The value of shortening across the Lenwood anticline is estimated to be 3.8 km 

(Figure 11A).  This value is determined from the modeled amount of fault slip (4.9 km) 

and the dip of the lower portion of the fault (40°). This estimate is of the same order as 

the 2 to 4 km of slip determined from basement rocks offset across the Camp Rock fault 

(Hawkins, 1976; Miller, 1980; Figure 3).  However, because the Camp Rock fault strikes 

NW and the fold axis strikes EW, an additional geometric correction is needed to 

compare dextral fault slip to shortening.  If the 3.8 km of shortening represents only the 

NS component of the slip vector on the Camp Rock fault (Figure 11B), the length of this 
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Figure 11.  Cross-section view and map view of slip on the Camp Rock fault and 
shortening on the Lenwood anticline.  Trigonometric relationships were used to 
determine shortening values from existing data.  (A) shows N-S shortening across the 
anticline, 3.8 km.  4.9 km slip on the reverse fault is data obtained from modeling of the 
fold.  (B) shows shortening of the Lenwood anticline parallel to the Camp Rock fault, 5.3 
km.  (C) shows the amount of N-S shortening needed to yield values that absorb total slip 
on the Camp Rock fault with no excess, 1.4-2.8 km.  Extension of thrust fault on the 
right-hand side of the Camp Rock fault in (C) is suggested by Glazner and Bartley 
(1994).    
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vector would be 
3.8 km / sin 45º = 5.3 km 

This is at least ~1 km greater than the amount of slip recognized on the Camp Rock fault. 

Understanding that the Lenwood anticline has experienced enough shortening to 

absorb all Camp Rock fault slip has important implications for how strain is 

accommodated within the Mojave Desert portion of the ECSZ.  It is not necessary to look 

for or assume throughgoing faults to the north and south of Barstow, such as those 

presented in the Mojave Block deformation model of Garfunkel (1974).  The significance 

of folding in the central Mojave Desert appears to be congruent with the hypotheses of 

Bartley et al. (1990) and Glazner et al., (2002) that north-south shortening is an important 

component of strain accumulation that could help to reconcile the discrepancy between 

geologic and geodetic strain measurements.  The important observation is that there is 

more shortening on the Lenwood anticline than can be accommodated by Camp Rock 

fault slip.  This indicates that north-south shortening may partially reconcile the geologic 

slip rate and geodetic strain rate discrepancy regionally across the central Mojave Desert.   

Figure 11C shows a map-view model where some shortening on the Lenwood 

anticline is not transferred to slip on the Camp Rock fault.  Rather, this shortening 

continues on an eastward extension of the Lenwood anticline beneath the Newberry 

Mountains.  Such a continuation of the thrust fault that underlies the Lenwood anticline 

has previously been hypothesized (Bartley et al., 1990, 1992; Glazner and Bartley, 1994).  

Of the 3.8 km of north-south shortening west of the Camp Rock fault, 1.0 to 2.4 km is 

maintained east of the Camp Rock fault.  This shortening contributes to regional north-

south contraction of the Mojave Block that could accommodate some of the Pacific-

North America plate motion not absorbed by dextral faulting (Bartley et al. 1990). 
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Presently the rates of such shortening are not well known, so it is difficult to further 

evaluate its role in reconciling the geologic-geodetic rate discrepancy.



 

 

 

 

CONCLUSIONS 

Based on offsets located through detailed mapping along the Camp Rock fault and 

assigning ages to these surfaces based on 10Be dating and correlation with previous work 

(Bull, 1991; Dorn, 1988; Wells et al., 1987; Nishiizumi et al., 1993; Reneau, 1993; Wells 

et al., 1995; Oskin et al., 2007, Strane, 2007), the slip rate on the Camp Rock fault is    

0.4 +0.3/-0.1 mm/yr.  This slip rate agrees with the 0.2-0.7 mm/yr rate determined from 

paleoseismic studies of the Emerson fault, an along-strike continuation of the Camp Rock 

fault (Rubin and Sieh, 1997).  The comparable paleoseismic and long-term slip rates 

confirm that Holocene activity on the fault is representative of activity over the past    

100 kyr.  The Camp Rock fault contributes only 2-7% of geodetically measured strain 

accumulation across the Mojave Desert portion of the ECSZ. 

Contractional structures associated with various strike-slip faults in the central 

Mojave Desert, (i.e. the Lenwood anticline) are capable of accommodating as much 

strain as dextral faulting.  Based on evidence of limb rotation on the Lenwood anticline, a 

trishear fault-propagation fold was used to model shortening.  The shortening amount of 

3.8 km is comparable to total slip on the Camp Rock fault of 2 to 4 km (Hawkins, 1976; 

Miller, 1980). Because this north-south shortening is oblique to the northwest strike of 

the Camp Rock fault, there is potential that shortening exceeds the amount needed to 

absorb all Camp Rock fault slip.  Based on the map-view relationship of folding to 

faulting, up to 1.0 to 2.4 km of shortening of the Lenwood anticline may contribute to 
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regional contraction of the Mojave Block.  Though the rate of this regional contraction 

has not yet been determined, it likely contributes towards reconciling discrepant geologic 

and geodetic rates across the Mojave ECSZ. 
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APPENDIX A: Cosmogenic 10Be Sample Preparation 

 

Samples were first described based on clast composition, and then crushed and 

sieved to 0.2 – 0.25 mm.  This fraction was then leached in heated 6N hydrochloric acid 

to remove any carbonates, iron oxides or minor organic matter present on the samples.  

The remaining sample was then leached in 1% hydrofluoric acid (HF) and 1% nitric acid 

(HNO3) in a sonic bath to etch the quartz grains to remove meteoric 10Be, and to remove 

residual feldspar and clay minerals.  This step was at least thrice repeated, with the 

amount of sample loss noted in between each leaching.  The majority of sample loss 

occurred during the first step.   

The samples were then precisely weighed, divided into vials, and spiked with 0.3 

grams of 9Be (SPEX standard), to ensure accurate measurements of the 9Be/10Be ratio 

using the accelerator mass spectrometer.  The spiked samples were then dissolved in a 

3:1 HF/ HNO3 solution and heated on hot plates to fume away SiO2.  Remaining fluorine 

ions were fumed away using perchloric acid.  

The samples were run through both anion and cation columns to remove every 

remaining impurity in the sample other than Be.  To precipitate out the Be gel from the 

ambient fluid, a Be and 6N HCl solution was neutralized with 8N ammonium hydroxide, 

and the samples were placed into a centrifuge.  Oven-drying of the samples in a hot block 

was followed by oxidization in a furnace at 750 °C.  This turned the Be gel into dust 

which was then mixed with niobium powder and packed into targets.  
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