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Abstract
JENNIFER M. STAAB: Systematic approaches to integrate inconsistent, noisy

high-throughput data to bolster subtle relationships obscured by standard analyses.
(Under the direction of Shawn M. Gomez.)

The increasing availability and decreasing cost of high throughput technologies coupled with the

availability of computational tools form a basis for a shift to a more integrated approach to analyzing

biological processes. In particular, classical statistical analysis techniques are designed to analyze data

characterized by a single data source and are distinguished by a much higher ratio of subjects to the

number of observations. In contrast, bioinformatics and systems biology applications often involve

large data sets characterized by an abundance of observations spawned from a relatively small sample

of subjects. The complexity of these systems coupled with the need to integrate inconsistent (noisy)

data require appropriate methodologies that address these issues.

Standard analyses can proficiently identify associations within consistent data, but these approaches

are not robust at identifying relationships across data sources and/or where nontrivial amounts of in-

consistency (noise) are present. Such data requires approaches that account for this increasing incon-

sistency within the data. One technique of accounting for such inconsistency is to limit analyses to

subsets of data where the desired associations are the most prominent. Challenges for this particular

approach involve the determination of subsets of interest while simultaneously establishing a metric

with which to judge statistical importance.

My initial work using this approach involved providing a methodology to represent Nuclear Mag-

netic Resonance (NMR) Spectra as hundreds of aligned peaks as opposed to thousands of unaligned

points, which allows for more sophisticated means of analysis. My later work explores the develop-

ment of data mining methodologies for identifying associations that exist within subsets of inconsis-

tent, noisy data while addressing how to sensibly target subsets of interest while establishing a metric

of association that provides statistical significance. Two approaches were developed, the first of which

established a p-value associated metric, while the latter allowed for multiple arbitrary metrics of inter-

est to be used to identify statistically significant patterns. This work helps to establish methodologies

for the identification of rare, but significant patterns in large noisy data sets.
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Chapter 1

Introduction

1.1 Motivation and Goals

The increasing availability and decreasing cost of high-throughput (HT) technologies coupled

with the availability of computational tools and data form a basis for a shift to a more in-

tegrated approach in analyzing biological processes. Classical statistical analysis techniques

were designed to analyze data characterized by a single data source distinguished by a much

higher ratio of subjects in comparison to the number of observations arising from each subject.

In contrast, bioinformatics and systems biology often involve high-throughput data character-

ized by an abundance of observations spawned from a relatively small sample of subjects.

Additionally, the complexity of these systems under analysis coupled with the need to in-

tegrate inconsistent (noisy) data often violates many of the assumptions of classical analytic

techniques. My primary focus has been based upon the identification of relationships amongst

noisy, inconsistent data within the context of providing a more integrated approach to analyz-

ing biological processes. The approaches I developed identify subsets of data that maintain

robust analytic relationships obscured by the standard methodologies.

My initial work was within the field of metabolomics and focused on providing a digi-

tal data representation through automated alignment of Nuclear Magnetic Resonance (NMR)

Spectra. The longer-term goal of this work was to open up new avenues for analysis and



integration of metabolomic data and aid their incorporation into larger integrative analysis

frameworks. Specifically, the transformation of the spectrum representation from points to

peaks which reduces the inconsistency within a spectrum by focusing directly on the compo-

nent of analysis. The algorithm reduces each spectrum from thousands of points to hundreds

of consistent peaks for final analysis. Moreover, the automated alignment of the NMR spectra

served as a means of further noise reduction, increasing the likelihood that the peaks within

each spectrum would be fruitful with regards to the final result. The noise reduction provided

by this transformation and alignment process greatly simplified data complexity and enabled

further application of other means of statistical analysis of NMR spectra.

From this, my focus shifted to developing data mining methods to identify relationships

that exist within subsets of inconsistent, imperfect data. My research deliberately focused

upon data where traditional means of analysis proved to be futile, to identify association

between response and explanatory variables as data sources are integrated over a common

set of subjects. Specifically, the toxicological associations between animal study endpoints

(response variables) and high-throughput/high-content bioassays (explanatory variables) as

perturbed by the same potentially toxic chemicals (subjects). The methods I employed use

pattern identification approaches to identify subsets of potentially toxic chemicals that per-

turbed sets of animal endpoints and bioassays in a consistent manner. These methods have

been enhanced to allow for the incorporation of user-defined amounts of fuzziness into the re-

sults and to enable the identification of statistically significant results based upon user defined

metrics (no p-value required). Furthermore, the methods can be employed upon larger, more

dense datasets through targeted analysis and can be used in the integration of three or more

datasets.
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1.2 Brief Overview of Existing Methods

1.2.1 NMR Spectra Noise Reduction Methods

As discussed in detail in Chapter 2 within the field of metabolomics, the standard way to

reduce the noise in spectra prior to analysis is through binning, a procedure that involves di-

viding the spectra into small windows and taking the area under the curve for each window

as the final intensity (Gartland et al., 1991; Anthony et al., 1994). Ideally, these windows will

be large enough to encompass peak drift and to reduce the number of points that represent a

spectrum, but not so large as to include many peaks in a single bin. The latter consequence is

unavoidable in crowded spectra and thus there is the potential for significant loss of informa-

tion when binning, for example by including peaks belonging to multiple compounds within a

single bin. Alternatives to binning typically involve some form of peak alignment procedure.

Several algorithms have also been recently developed to align peaks in sets of NMR spectra

Wu et al. (2006); Kim et al. (2006); Torgrip et al. (2003); Veselkov et al. (2009); Savorani

et al. (2010).

Current advanced NMR alignment methods such as fuzzy warping (Wu et al., 2006),

Bayesian alignment (Kim et al., 2006), Recursive Segment-Wise Peak Alignment (Veselkov

et al., 2009), peak alignment by FFT (Wong et al., 2005; Savorani et al., 2010) and peak align-

ment using reduced set mapping without recursive target update (Torgrip et al., 2003), are

based on the use of a template spectrum to help align a set of spectra. Choosing a template

typically involves either selecting a single sample spectrum that appears most like the others

as determined by some measure of similarity, creating an ”average” spectrum, or by choosing

a reference spectrum not contained within the sample. All remaining sample spectra are then

aligned to this selected template using some form of pairwise alignment algorithm. A signif-

icant problem with the template approach is that there can be a great amount of variability

between any two spectra. Part of this difference arises due to the previously described chem-

ical shift variation. In addition, significant differences arise due to the existence of disparate

3



groups within the data; for instance, inter-group variation between control and treated groups,

subpopulation differences within these groups, etc. There may often be a priori knowledge

of general subgroups, but one of the goals of metabolomics is to discover new subgroups

such as different types of responders in drug or toxicity studies; by definition, templates for

such groups are not known beforehand. Thus in such cases, the use of a template can signif-

icantly complicate downstream analyses. Further discussion of existing methodologies and

comparison of these methodologies to our own can be found in Chapter 2.

1.2.2 Identifying Association in Inconsistent, Noisy Data

Clustering is a fundamental method of unsupervised learning that partitions data in a way as to

highlight meaningful relationships by exploring how data groups based upon similarity. Given

a two-dimension data matrix, 2-D hierarchical clustering can be used to consider both columns

and rows of the data when looking for meaningful relationships within the data. 2-D hierar-

chical clustering is not ideal in inconsistent, noisy data because the methodology considers the

entire record (all the data in a given row and for a given column) when partitioning the data

into meaningful groups. Similarly to 2-D hierarchical clustering, biclustering is able concur-

rently partition data by both rows and columns. Unlike 2-D hierarchical clustering, bicluster-

ing is able to consider submatrices, or subsets of the data; thus, using biclustering is a better

method than hierarchical clustering to identify meaningful relationships within inconsistent

data. Computationally, biclustering works best on sparse data matrices or when heuristics are

used to limit the exhaustive enumeration of all possible submatrices. This is because biclus-

tering solutions employ algorithms with computational complexity of NP-complete, meaning

they have no known polynomial time algorithms and in the worst case their runtimes are ex-

ponential. van Uitert et al. (2008) demonstrate the use of biclustering on high-throughput data

when they employ their method of biclustering on sparse binary genomic data to identify in-

teracting transcription factors. Another example is DiMaggio et al. (2010) use of biclustering

on inconsistent data to explore the use of logistic regression to identify predictive association

4



between sets of explanatory variables and a response variables. Methods of biclustering most

directly compare to our methodology because they focus upon analysis of subsets of the data.

Other methods of determining association across multiple datasets with inconsistent data

typically involve a bayesian framework. Specifically, these methods tend to weight the data

based on its usefulness in the underlying mathematical model of association as was demon-

strated by Webb-Robertson et al. (2009) using metabolomic data. The primary motivation of

the study by DiMaggio et al. (2010) was to identify relationships between explanatory and

response variables that could be used in prediction; whereas, the motivation of the Webb-

Robertson et al. (2009) methodology was to identify relationships that provided the most sig-

nificant differences between classes based upon integrated metabolomic data. Zhang et al. has

developed data mining methods to identify significant relationships that existed between sets

of explanatory and response variables for categorical data (Zhang et al., 2010b,a). Similarly,

van Uitert et al. (2008) developed a method that was used to determine an association between

two sets of genomic data to identify clusters with novel associations between the datasets. Al-

though not focused on the relationship between explanatory and response variables, Reif et al.

(2010) developed a measure that integrates multiple sources of toxicological data together

to prioritize toxicological risk. Unlike DiMaggio et al., the methodology of Zhang et al. is

able to integrate together the search for relationships with significance testing of discovered

relationships. DiMaggio and Webb-Robertson both use methods that are more suited for in-

tegrating data from multiple data sources where a high degree of inconsistency (noise) exists

between the data sources. Additionally DiMaggio, Webb-Robertson, and Reif’s methodolo-

gies are more suitable for handling numeric data as compared to the methods that Zhang et

al. employ which involve pairwise association between categorical data. The methodology of

van Uitert et al. addresses some degree of inconsistency within the data, but unlike the other

methods, its primary goal is the discovery of novel associations identified through integration

with little regard for finding all associations or assigning statistical significance to the results.

Similarly to van Uitert et al., Reif’s methodology does not provide statistical significance to

5



indicate the importance of its results. However, their methodology does provide a ranking of

toxicological risk based upon multiple data sources. As discussed above there are multiple

methods of integrating inconsistent data, but the biclustering methodology (like van Uitert

et al. (2008)) is most similar to our methods because they both focus upon analysis of subsets

of data to deal with inconsistency.

1.3 Approach and Innovations

1.3.1 Methods to Enhance NMR Spectra Analysis

Our novel approach for the alignment of NMR spectra is based on the creation of a consen-

sus spectrum alignment through integration of pairwise spectrum comparisons (referred to as

PCANS hereafter - Progressive Consensus Alignment of Nmr Spectra). To our knowledge,

this is the first such consensus approach applied to the alignment of NMR spectra and the

only approach that transforms spectra from points to peaks prior to alignment as opposed to

using the entire spectrum. This approach has several advantages that include the ability to

align spectra with significant amounts of noise in chemical shift position, peak height and

peak width. By using peaks as the basis for alignment we maintain the maximally informative

set of information existing within a set of spectra. As a result, the existence of subgroups

within a set of spectra can be identified since group-specific peaks are maintained in the final

alignment.

We characterize the performance of this approach by aligning simulated NMR spectra

which have been provided with user-defined amounts of chemical shift variation as well as

inter-group differences as would be observed in control-treatment applications. Moreover,

we demonstrate how our method provides better performance than either a template-based

alignment or binning. Finally, we further evaluate this approach in the alignment of real

mouse urine spectra and demonstrate its ability to improve downstream statistical analyses

such as PCA and OPLS models commonly used in metabolomics analyses.
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1.3.2 Methods to Enhance Association Identification

The data mining methods implemented focus on data where traditional methods of predic-

tive modeling failed to identify useful relationships because they considered the entire data

record. In contrast our approach, similar to biclustering, identifies relationships amongst sub-

sets of the data. Our methods differ from the biclustering and prediction scheme of DiMaggio

et al. (2010) by allowing one to incorporate group identification and association in a more

streamlined framework. Moreover, our methods exhaustively explore the inclusion of mul-

tiple response variables with regards to association with the explanatory variables, while the

work of DiMaggio et al. considers each response variable separately. Our methods more

fully explore all possible enumerations of the subsets of data that specifically support the

desired association; in our case the association between response and explanatory variables.

Our methods are more similar to those employed by Zhang et al. (2010b,a) with regards to

incorporating association finding and significance into a streamlined framework. However,

unlike Zhang, our methods focus on subsets of the data (Zhang et al., 2010b,a). While our

algorithms are similar to the methodology of van Uitert et al. (2008) as in they are applied to

sparse inconsistent binary data; they differ from this work in that they provide a measure of

statistical significance for the results. Additionally they provide the full complement of results

for a given threshold, and can be modified to integrate more than a pair of datasets. Our meth-

ods differ from all three (Zhang, DiMaggio, Webb-Robertson) by allowing one to incorporate

fuzziness (allowable zeros) given specific restrictions (described later). Finally, our algorithm

is able to be applied to the mining of larger datasets by constraining the search space through

requiring a minimum number of pre-specified features in the output through the use of seed

nodes.

1.3.3 Thesis

Classical statistical analyses are not robust in identifying relationships within data in the

presence of inconsistencies or noise. By focusing analysis on subsets of data with internal
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consistency, I develop methods that show improved identification of relationships as evidenced

by the relevance of the generated results.

The methods I develop focus on two areas of research, NMR spectra analysis and data

mining for association within inconsistent data. The contributions to improving NMR spectral

analysis are discussed first. The data mining for association follows because these methods

can be directly applied to NMR spectral analysis to improve the relevance of the results.

1.3.4 Contributions to Enhance NMR Spectra Analysis

To address these problems of inconsistency between NMR spectra when performing metab-

olomic type analysis, our methods transform and align the peaks of each spectrum. This

reduces the analysis to a small subset of well-aligned aligned peaks as opposed to attempting

to quantify and analyze all the unaligned points of each spectrum. Treating each spectrum as

hundreds of aligned peaks as opposed to thousands of unaligned points enhances the analysis

we can perform and enables us to use more sophisticated means of analysis as is discussed in

detail in Chapter 2.

Innovations made with regards to NMR spectra analysis are the following:

• Spectra are transformed (subset) to a collection of peaks with properties of location,

height and width instead of a collection of points

– Reduces spectrum to relevant information

– Reduces complexity of alignment and analysis

– Reduction allows for more sophisticated analysis

• Alignment algorithm that employs consensus as opposed to template alignment

– Improves quality of alignment by preventing misalignment of peaks not found

within the template

– Consensus alignment can be incorporated into any pairwise alignment scheme
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– Removes need to identify all peaks within sample spectra for template formation

– Same amount of computation as template alignment when coupled with pairwise

alignment schemes

1.3.5 Contributions to Enhance Association Identification

With the integration of datasets over a common set of observations, inconsistencies are ad-

dressed by identifying subsets of data that most strongly support the desired association be-

tween the datasets. For this problem in particular, the methods developed focus on deficien-

cies in current methodologies by identifying consistent relationships within noisy data. Once

these subsets are identified, the methodology establishes a statistical framework under which

the significance of the subsets can be ranked and their strength of association can be deter-

mined. This approach of exploring relationships within subsets of the data is meant to be

used when traditional means of analysis fail to produce adequate results due to inconsistency

within the data. Furthermore, this methodology is meant to be used as an exploratory tool to

find underlying relationships that were obscured with traditional means of analysis.

Innovations made with regards to the discovery and prioritization of subsets:

• Determination of Subsets with Closed/Approximate Itemset Mining

– Means to target analysis on certain relationships with use of seed nodes

∗ Full enumeration of desired relationships based upon frequency criterion

∗ Exploration of larger, more dense data through targeted analysis

∗ Ability to focus analysis on multivariate associations (2+ response variables)

– Incorporation of Fuzziness into subsets

∗ For larger, more dense datasets

∗ Use of statistic to provide relevance of results

• Establish Metric of Importance
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– Strength of association and statistical relevance

∗ Phi Coefficient used to rank and provide statistical relevance for closed / ap-

proximate itemsets applied to identify association between explanatory and

response variables

∗ Established techniques to enable use of bootstrap methodology on larger data-

sets with higher support thresholds to facilitate use of any metric to quantify

association

– Integration of 3+ Datasets with bootstrap methodology’s use of multiple metrics

1.4 Dissertation Outline

In chapter 2, I describe my initial work on PCANS in the field of metabolomics in detail.

Beginning with background and motivation, describing the methodology, results on simulated

and real data, our conclusions and future directions. Chapters 3 through 5 focus on my work

developing data mining techniques to mine for association with inconsistent, noisy datasets.

Chapter 3 describes in detail the background and related work. Chapter 4 describes using

closed/approximate itemset mining in conjunction with the phi coefficient to discover signifi-

cant subsets within data. Chapter 5 describes in detail mining for association with a bootstrap

methodology where statistical significance is no longer dependent upon a metric with an asso-

ciated p-value. Chapter 6 presents the conclusions and future directions of my thesis research.

10



Chapter 2

Enhancing Metabolomic Analysis with PCANS

2.1 Background

Continuing technological advances are providing rich data sets quantifying an increasingly

broad range of biological processes. Obvious examples include the use of microarrays for the

quantification of mRNA levels and mass spectroscopy for the identification of protein states

and their interactions. Coinciding with these technological developments are computational

approaches for the extraction, organization and analysis of these data. The application of

improved experimental methods in combination with tailored computational approaches is

providing a major driving force in the development of a more global, systems perspective of

biological function and disease.

Metabolomics, also referred to as metabonomics, similarly provides a comprehensive pic-

ture of biological function by focusing on quantitative measurement of metabolites in biolog-

ical fluids, cells or tissues (Nicholson et al., 1999; Robertson, 2005). The two major analyti-

cal platforms used in metabolomics are nuclear magnetic resonance (NMR) spectroscopy and

mass spectrometry (MS), the latter typically being preceded by either liquid or gas chromatog-

raphy (LC/MS and GC/MS respectively). The ultimate goal of these methods is to extract

accurate and quantitative information as to the identity of detected metabolites. Increasingly

common in metabolomic studies is the analysis of a large number of samples, where the result-



ing data is analyzed using multivariate methods such as principal components analysis (PCA).

Such analyses typically require significant preprocessing of the data. In particular, it is im-

perative that signals for a given compound appear at the same location in all spectra. Signal

locations can vary significantly, however, as in the case of LC/MS where small deviations in

the chromatographic retention time can arise from variation in instrumental parameters such

as flow rate, gradient slope and temperature. In NMR spectra, the peak location can vary

due to differences in pH, ion content and the concentration of metabolites. For both of these

methods, this variability has to be overcome in order to provide a consistent set of spectra for

analysis.

The most common method of addressing variability across spectra is through binning, a

procedure that involves dividing the spectra into small windows and taking the area under

the curve for each window as the final intensity (Gartland et al., 1991; Anthony et al., 1994).

Ideally, these windows will be large enough to encompass the peak drift, but not so large as to

include many peaks in a single bin. The latter consequence is unavoidable in crowded spectra

and thus there is the potential for significant loss of information when binning, for example by

including peaks belonging to multiple compounds within a single bin. Alternatives to binning

typically involve some form of peak alignment procedure. For LC/MS methods, a number

of algorithms have been developed to align similar peaks across a set of chromatograms (e.g.

(Wong et al., 2005) and recently reviewed in (America and Cordewener, 2008)). Similarly,

several algorithms have also been recently developed to align peaks in sets of NMR spectra

(Wu et al., 2006; Kim et al., 2006; Torgrip et al., 2003; Veselkov et al., 2009; Savorani et al.,

2010). In this paper we describe a novel peak alignment method for NMR that is specifically

tailored to the demands of large and disparate metabolomics datasets.

Current advanced NMR alignment methods such as fuzzy warping (Wu et al., 2006),

Bayesian alignment (Kim et al., 2006), Recursive Segment-Wise Peak Alignment (Veselkov

et al., 2009), peak alignment by FFT (Wong et al., 2005; Savorani et al., 2010) and peak align-

ment using reduced set mapping without recursive target update (Torgrip et al., 2003), are
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based on the use of a template spectrum to help align a set of spectra. Choosing a template

typically involves either selecting a single sample spectrum that appears most like the others

as determined by some measure of similarity, creating an “average” spectrum, or by choosing

a reference spectrum not contained within the sample. All remaining sample spectra are then

aligned to this selected template using some form of pairwise alignment algorithm. A signif-

icant problem with the template approach is that there can be a great amount of variability

between any two spectra. Part of this difference arises due to the previously described chem-

ical shift variation. In addition, significant differences arise due to the existence of disparate

groups within the data; for instance, inter-group variation between control and treated groups,

subpopulation differences within these groups, etc. There may often be a priori knowledge of

general subgroups, but one of the goals of metabolomics is to discover new subgroups such

as different types of responders in drug or toxicity studies; by definition, templates for such

groups are not known beforehand. Thus in such cases, the use of a template can significantly

complicate downstream analyses.

Here we describe a novel approach for the alignment of NMR spectra that is based on the

creation of a consensus spectrum alignment through integration of pairwise spectrum compar-

isons and referred to as PCANS hereafter (Progressive Consensus Alignment of Nmr Spectra).

To our knowledge, this is the first such consensus approach applied to the alignment of NMR

spectra. This approach has several advantages that include the ability to align spectra with

significant amounts of noise in chemical shift position, peak height and peak width. By using

peaks as the basis for alignment we maintain the maximally informative set of information

existing within a set of spectra. As a result, the existence of subgroups within a set of spectra

can be identified since group-specific peaks are maintained in the final alignment.

We characterize the performance of this approach by aligning simulated NMR spectra

which have been provided with user-defined amounts of chemical shift variation as well as

inter-group differences as would be observed in control-treatment applications. Moreover,

we demonstrate how our method provides better performance than either a template-based
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alignment or binning. Finally, we further evaluate this approach in the alignment of real

mouse urine spectra and demonstrate its ability to improve downstream statistical analyses

such as PCA and OPLS models commonly used in metabolomics analyses.

2.2 Methodology

2.2.1 Experimental NMR data collection and processing

Complete details on the urine collection and sample preparation are given in (Bradford et al.,

2008). Briefly, the samples consisted of 540 µl of urine plus 60 µl of a D2O solution containing

5mM trimethylsilylpropionate-d4 (TSP) as a concentration and chemical shift reference. The

solutions were transferred to 5 mm NMR tubes and NMR spectra were acquired on a Varian

Inova 400 MHz spectrometer using a 5 mm pulsed field gradient, inverse detection probe

(Varian, Inc., Palo Alto, CA). The spectra were acquired with 1024 transients and a sweep

width of 4650Hz digitized with 16384 points. The pulse sequence included a 4 second solvent

presaturation period and a 2.6 second acquisition time. A 45 degree excitation pulse was used

to provide quantitative results.

The data were processed using ACD software version 9 (Advanced Chemistry Develop-

ment, Toronto, Canada). A 0.1Hz exponential line broadening was applied to the data. The

spectra were phased and baseline corrected using a 6th order polynomial fitting algorithm

implemented in the software. The spectra were normalized to the integral for the TSP peak.

The digitized spectra were exported as text files for subsequent peak picking prior to align-

ment with the PCANS method. Spectral binning was carried out by dividing the spectrum

into uniform 0.04 ppm bin windows and taking the integral value as the sum of the intensities

of all peaks in that bin. The regions from 0.5 to 4.7 ppm and 4.9 to 9.5 were included in the

integration. The regions below 0.5 and above 9.5 contained only noise and the region from

4.7 to 4.9 contained the residual solvent peak.
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2.2.2 Multivariate statistical analysis

The statistical analyses were performed using SimcaP+ version 11.5 (Umetrics, Umea, Swe-

den). Pareto scaling was applied to both the peak picked and binned NMR data prior to prin-

cipal component analysis (PCA) and orthogonal projection to latent structures discriminant

analysis (OPLS-DA) (Wiklund et al., 2008; Cloarec et al., 2005).

2.2.3 Peak picking

The simulated spectra were based upon peaks manually chosen from an actual urine spectrum.

Peaks were chosen such that they contained a range of features typically found within normal

spectra including tall and small peaks, clusters of many closely spaced peaks, doublets, etc.

These peaks and their associated chemical shift position, height and width were then used

as the basic material from which simulated spectra (peak profiles) were generated. Thus,

the peaks used for simulation are a representative subset of the original spectrum and the

simulation program uses sets of these along with defined amounts and types of variation to

generate the simulated profiles. For simulated spectra, the steps responsible for peak detection

and peak attribute assignment are skipped since the simulated spectra are already defined with

a set of peaks with associated attributes.

For real NMR spectra, the peak detection algorithm uses the derivative of the spectrum to

detect and define potential peaks. Potential peaks must have a zero first derivative, a negative

second derivative and be composed of at least 8 points, where points here refer to data values

from the digitized raw spectra. In addition, we use the number of points that define a peak as

well as peak height relative to neighbors to determine ‘real’ peaks from noise peaks within a

given spectrum. Specifically, for each potential peak, we look in a region centered around this

point (151 points in this work) and call this a ‘true’ peak if it exceeds a user defined height.

This threshold height is based on the height of surrounding points within this region. In this

work a true peak had to have a height greater than 70% of the surrounding points. The resulting

peaks that define each spectrum are characterized by the attributes of relative intensity (height)
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Figure 2.1: Overview of the PCANS Alignment Process. The alignment process loops through
multiple iterations of pairwise alignment until achieving a single consensus profile. See text
for further details.

at peak apex, chemical shift position at peak apex, and the width at half-height of the peak.

The width at half-height is calculated by fitting a triangle to the peak based on the points

prior and immediately after the apex point. The base of the triangle estimates the width at half

height for the peak. The peaks from NMR spectra are not perfect Lorentzians because multiple

compounds compose a sample; therefore, relative intensity (height) and width at half-height

are not redundant information.

The overall flow of the PCANS alignment algorithm is diagrammed in Figure 2.1. Detailed

algorithm pseudocode for both naive and dynamic programming alignment is provided in the

next section . After peak detection, the remaining alignment steps are the same for both

real and simulated spectra. The process begins with highly similar pairs of spectra being

identified using synchronous sample−sample correlation (Figure 2.1A) (Sasic et al., 2000).
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We note that the statistical correlation between spectra will be more influenced by the larger

peaks, but this is simply a starting point in choosing which spectra to try and align first into a

consensus spectrum; all peaks will ultimately be aligned. Once the alignment pairs have been

identified, the pairwise alignment process begins with naive peak alignment as illustrated in

Figure 2.1B. The naive peak alignment algorithm aligns corresponding peaks within the pair

that have ninety percent or greater similarity across all peak attributes. Doing so also generates

unaligned regions that are often bounded on both sides by regions composed solely of these

highly similar (and easily alignable) peaks.

In both the naive as well as dynamic programing alignment, described next, crossover of

peaks is prevented. Here, crossover is defined as shifting a peak over an adjacent peak that

has already been aligned to a peak in the paired peak profile. In addition, peaks are restricted

by the amount of chemical shift position movement that is allowed based upon a user defined

maximum. Therefore, a pair of peaks will only align together if the amount of movement that

the peaks need to make for the alignment is less than this user defined maximum. Typically,

the user would define this maximum chemical shift position movement as ±0.04 or ±0.03

ppm, but the value is data dependent. We note that by aligning each peak within its own user

defined window the notion of linear or non-linear shifting of peaks across the spectrum need

not be considered.

The next step in alignment involves defining corresponding unaligned segments of the

peak profile pair as depicted in panel C of Figure 2.1. Here, each spectra is segmented such

that only the unaligned peaks contained within a segment will be subject to the dynamic

programming alignment process. Again, these segments are paired between the two peak

profiles and segments are bounded on each side either by already aligned regions or “empty”

regions where it is impossible to form an alignment between a pair of peaks based upon the

user-defined maximum chemical shift variation.

Both the naive and dynamic programming alignment schemes rely upon a scoring function

that determines the similarity between the two corresponding peaks (Equation 2.1). Note that
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this similarity score is different from correlation, despite it ranging from 0.0 to 1.0. This

score indicates the proportion of similarity between two peaks, i.e. a score of 1.0 indicates

the corresponding peaks are exactly the same. The similarity is determined based on the three

peak attributes of height at apex, h, width at half height, w, and chemical shift position, c.

While in this work each of the three peak attributes are assigned so as to contribute an equal

proportion to the score, the assignment of these proportions, ph, pw and pc can readily be

altered as appropriate. For both height and width, the similarity is measured by difference

of the two values scaled by the larger of the two subtracted from one. For the variation in

chemical shift, the similarity is measure by the difference scaled by the user defined maximum

amount of acceptable variation between peaks, m, subtracted from one.

Score = ph ∗
(

1−
(

ha − hb
max(ha,hb)

))
+

pw ∗
(

1−
(

wa − wb
max(wa,wb)

))
+

pc ∗
(
max

((
1−

(
ca − cb

m

))
, 0
))

(2.1)

A modified dynamic programming algorithm is used to align peaks within each of the

segments (see next section for pseudocode). The algorithm involves using the typical dynamic

programming recursion, where the scores assigned for a given alignment between peaks are

defined using the scoring function enumerated above with a gap penalty, gp, is imposed for

unaligned peaks. The modification involves assigning a large penalty, the boundary penalty

bp, when alignment between two peaks involves chemical shift variation greater than m or

when two aligned peaks do not achieve the minimum acceptable similarity for alignment,

minScr. The user defines both of these values, -0.10 gp and -5.0 bp in this work, with the

assignment of the large penalty preventing the algorithm from violating either the maximum

allowable chemical shift variation, m, or the minimum allowable similarity for alignment.

The recursive formula for aligning a pair of peak profiles with our modified dynamic
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programming scheme is the following (Equation 2.2). Given a pair of spectra S and T , one

defines a scores matrix c such that c has i rows equal to length(S) + 1 and j columns equal to

length(T ) + 1. The function Scr(x, y) returns the similarity score between two peaks, x and

y, computed using the formula above. The gap penalty, gp, should be greater in value than the

boundary penalty, bp. The gap penalty can range from the user defined minimum similarity,

minScr (0.60 in this work), to a small negative number, typically -1.0. The boundary penalty

should be a large negative number (we used -999 in our implementation to allow the algorithm

to automatically assign its value).

c[i, j] =



j ∗ gp+ i ∗ gp if i = 0 or j = 0,

MAX
{
c[i, j − 1] + gp,

c[i− 1, j] + gp,

c[i− 1, j − 1]+ if i, j > 0 &

Scr(S[i], T [j])
}

Scr(S[i], T [j]) ≥ minScr,

MAX
{
c[i, j − 1] + gp,

c[i− 1, j] + gp, if i, j > 0 &

c[i− 1, j − 1] + bp
}

Scr(S[i], T [j]) < minScr.

(2.2)

Panel E of Figure 2.1 illustrates the final step in the process where the consensus peak pro-

file is formed. Specifically, the consensus profile is generated by assigning a new consensus

peak to each successfully aligned pair of peaks, where this consensus peak takes on the me-

dian chemical shift value and the average relative height and width of the paired aligned peaks.

Peaks from either profile that fail to align are allowed to ”pass-through” to the consensus pro-

file and maintain their original attributes. Panel E of Figure 2.1 depicts successfully aligned

peaks as those contained within a shaded box, those that failed alignment are unadorned.

Figure 2.2 illustrates how the entire process diagrammed in Figure 2.1 is repeated on the

resulting consensus profiles until a single consensus profile is produced. The peak profiles

in the top row of figure 2.2 demonstrate the initial step where the pairs of input profiles are

aligned together to form consensus profiles. The next steps involve pairing these resulting

consensus profiles together, aligning them and forming ‘new’ consensus profiles. This process
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Figure 2.2: Final Consensus Profile Formation. Pairwise alignments are progressively com-
bined together through the alignment of consensus profiles to form a final consensus profile.
This profile is then used to adjust the chemical shift positions of the peaks from the original
input peak profiles to their final aligned positions.

is repeated until only a single consensus profile exists as depicted at the bottom of Figure 2.2.

This final consensus profile is used to adjust the chemical shift positions of the peaks from the

original input profiles to their final aligned positions.

For the determination of optimal alignment parameters (ph, pw and pc in the scoring func-

tion), we perturbed the peak attributes of the simulated peak profiles in a variety of different

ways. Figure 2.3 depicts a representative result of one of the many simulations that were run.

The results from these experiments indicate that using equal proportions is robust regardless

of the perturbations introduced, as long as all three attributes experienced some amount of per-

turbation. If the amount of perturbation experienced by one of the three attributes is expected

to be considerably less than the other two, the user might consider increasing its contribution

to the score function.

2.2.4 Alignment Algorithms

For the alignment algorithms defined below, let A define the set of input peak profiles, where

profile X can be defined by peaks y where {y | A[X, y], 1 ≤ y ≤ nX} and the value of nX is
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Figure 2.3: Accuracy of alignment as a function of scoring weights assigned to peak attributes
(chemical shift, height, width). Simulated peak profiles were used with ±0.03 variation in
chemical shift for 50% of peaks, ±0.10 perturbation in height for 25% of peaks, ±0.10 per-
turbation in width for 25% of peaks, and 1-4 noise peaks randomly added to 50% of the
profiles. Y-axis indicates the proportion of the score that is attributed to chemical shift posi-
tion, x-axis indicates the proportion of the height and width that contribute to the remaining
proportion of the score. Panel A depicts accuracy as indicated by the colorbar on the right and
Panel B depicts the standard deviation of the accuracy measurements shown in panel A.
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the number of peaks that were picked for peak profileX . The inputs for the pseudocode below

involve only aligning a pair of peak profiles, S and T , such that S, T ∈ A, {i | A[S, i],1 ≤

i ≤ nS} and {j | A[T, j], 1 ≤ j ≤ nT}.

2.2.5 Naive Alignment Scheme

The naive alignment incorporates a greedy algorithm that will align two nearby peaks as

long as they are close in proximity (chemical shift position) to each other and achieve a

high similarity score (i.e. also have high similarity in height and width). The procedure

NaiveAlign(S,T ,maxCS,minScoreN ), naively aligns the pair of peak profiles S and T .

This procedure inputs maxCS, the chemical shift value that is the maximum the user expects

to have to shift a peak to obtain a match, and minScoreN , the minimum value of the similar-

ity between two peaks to allow for naive alignment. Additionally, the value of minScoreN is

used to define the required amount of similarity in chemical shift position that two peaks must

have to allow naive alignment.

The similarity between two peaks is calculated using the function CalcScore(S[i], T [j],

maxCS) which is based on the similarity score formula presented in the methods section of

the paper. Typically, minScoreN should be a high value of 0.88 or greater (0.90 for this pa-

per) and maxCS should range within 0.04 - 0.02 ppm (0.04 for this paper). Naive alignments

are made using the procedure MakeNaiveMatch(S,T ,sIdx,tIdx), which is not illustrated

below due to its reliance on our algorithm’s spectra data structure. The MakeNaiveMatch

procedure makes the naive matches given the input pair of peak profiles and the indices of

their peaks that match. Nothing is returned, but the underlying peak profile data structure is

changed to reflect the naive matches. Pseudocode for the algorithm can be found below as

Algorithm 1 for naive alignment with the two helper functions defined in Algorithm 2 and

Algorithm 3.
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Algorithm 1
NaiveAlign(S, T,maxCS,minScoreN) ≡
m← length[S]
ssT ← 1
searchCS ← maxCS ∗ (1.0−minScoreN)
for i← 1 to m do

temp← ReturnStart(S, T, searchCS, i, ssT )
if temp 6= −999

then ssT ← temp
matchI ← ReturnMaxMatchIdx(S, T,maxCS, searchCS, i, ssT,
minScoreN)
if matchI 6= −999

then MakeNaiveMatch(S, T, i,matchI)
fi

fi
end
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Algorithm 2
ReturnStart(S, T, searchCS, idxS, ssT ) ≡
n← length[T ]
z ← ssT
if T [z].chemShift ≥ (S[idxS].chemShift− searchCS)

then
while (z > 1 and T [z].chemShift > (S[idxS].chemShift− searchCS)) do

z ← z − 1
end
if (z ≥ 1 and T [z].chemShift ≤ (S[idxS].chemShift− searchCS))

then if T [z].chemShift = (S[idxS].chemShift− searchCS)
then rssT ← z
else rssT ← z + 1

fi
else rssT ← −999

fi
else

while (z < n and T [z].chemShift < (S[idxS].chemShift+ searchCS)) do
z ← z + 1

end
if (z ≤ n and T [z].chemShift ≥ (S[idxS].chemShift+ searchCS))

then if T [z].chemShift = (S[idxS].chemShift+ searchCS)
then rssT ← z
else rssT ← z − 1

fi
else rssT ← −999

fi
fi
return rssT
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Algorithm 3
ReturnMaxMatchIdx(S, T,maxCS, searchCS, idxS, ssT,minScoreN) ≡
n← length[T ]
z ← ssT
bestV ← CalcScore(S[idxS], T [z])
bestI ← z
z ← z + 1
while (z ≤ n and T [z].chemShift ≤ (S[idxS].chemShift+ searchCS)) do

if bestV < CalcScore(S[idxS], T [z],maxCS)
then bestV ← CalcScore(S[idxS], T [z],maxCS)

bestI ← z
fi
z ← z + 1

end
if bestV < minScoreN

then bestI ← −999
fi
return bestI

2.2.6 Dynamic Programming Alignment Scheme

To dynamically align the pair of peak profiles S and T , the procedure DynProgAlign(S,T ,

maxCS,gp,bp, minScoreD) uses the recursive formula defined in the methods section of the

paper. The recursive formula from the paper defines an alignment scores matrix c[i, j] and

the backtrack matrix b[i, j] that indicate the optimal solution. Notice that indices i and j from

these matrices (scores and backtrack) are defined as i=0,...,nS and j=0,...,nT . The pseudocode

in Algorithm 4 follows a modified dynamic programming alignment scheme as outlined by

the recursive formula in the paper.

The function CalcScore(S[i], T [j],maxCS,minScoreD) calculates the similarity score

between two peaks using the similarity score formula as indicated in the methods section

of the paper. A gap penalty, gp, is incurred each time two peaks fail to align. A boundary

penalty, bp, is incurred each time two peaks are so dissimilar that they should not be allowed

to align together based on the user defined minimum similarity required for dynamic align-
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ment, minScoreD, or if two peaks’ difference in chemical shift position is greater than the

maximum allowable chemical shift variation, maxCS. The gap penalty, gp, and boundary

penalty, bp, can be input by the user.

Typically, minScoreD is a high value of 0.50 or greater, but this parameter should be set

based upon the user’s discretion (for this paper 0.60). The gap penalty (-0.10 for this paper)

should be greater in value than the boundary penalty (-5.0 for this paper). The gap penalty can

range from the user defined minimum similarity, minScoreD, to a small negative number,

typically -1.0. The boundary penalty should be a large negative number or set to -999 to allow

the algorithm to automatically set the value. Pseudocode for the algorithm can be found below

as Algorithm 4. Notice for simplicity the CalcScore(S[i], T [j],maxCS,minScoreD) func-

tion in the algorithm is implemented in a manner that returns a similarity score that is less than

minScoreD if the difference in chemical shift position is greater than the maximum allowable

shift, maxCS. This allows the boundary penalty to be incurred when it is appropriate.
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Algorithm 4
DynProgAlign(S, T,maxCS, gp, bp,minScoreD) ≡
m← length[S]
n← length[T ]
if bp == −999

then bp = gp ∗ n ∗m
fi
for i← 0 to m do

for j ← 0 to n do
if i = 0 or j = 0

then c[i, j]← i ∗ gp+ j ∗ gp
if i = 0

then b[i, j]← ”← ”
else b[i, j]← ” ↑ ”

fi
else DiagScore← CalcScore(S[i], T [j],maxCS,minScoreD)

if DiagScore < minScoreD
then DiagScore← bp

fi
if (c[i− 1, j − 1] +DiagScore ≥ c[i− 1, j] + gp) and

(c[i− 1, j − 1] +DiagScore ≥ c[i, j − 1] + gp)
then c[i, j]← c[i− 1, j − 1] +DiagScore

b[i, j]← ”↖ ”
if else (c[i− 1, j] + gp ≥ c[i− 1, j − 1] +DiagScore) and

(c[i− 1, j] + gp ≥ c[i, j − 1] + gp)
then c[i, j]← c[i− 1, j] + gp

b[i, j]← ” ↑ ”
else c[i, j]← c[i, j − 1] + gp

b[i, j]← ”← ”
fi

fi
fi

end
end

2.2.7 Algorithm speed

In our Python implementation, alignment of the described 22 real mouse urine spectra takes

approximately 2 minutes on a 2GHz laptop. Approximately 30 seconds involves the actual

process of alignment, with the remaining time involving peak picking and other data process-
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ing. Alignment of 150 real mouse urine spectra takes approximately 38 minutes with 1 min

54 sec being involved in alignment.

2.2.8 Simulation of NMR spectra peak profiles

To generate NMR profiles that were as realistic as possible our simulated peak profiles are

based upon characteristics of urine spectra from mice. Specifically, we follow the distribution

of peak locations, heights and widths as estimated from murine urine spectra using the spec-

trum visualization utility implemented in ACD 1D NMR Processor, version 11 (Advanced

Chemistry Development, Toronto, Canada). The spectral peaks used for calculating these dis-

tributions range in chemical shift position from 2.0 ppm to 4.10 ppm. These distributions are

coded into a software utility that allows the generation of simulated peak profiles. In addition,

user-defined levels of noise in chemical shift position, height and width can be defined. To

help simulate attributes observed with real NMR spectra, the number of peaks generated per

spectrum is varied through the addition of noise peaks to the simulated profiles. To evaluate

algorithm performance with profiles originating from multiple distinct classes, we generate

spectra from distinctly different templates where the user defines the number of peaks com-

mon between templates.

2.3 Results

While the alignment method we propose consists of several steps which are described in detail

in Methods, we provide a brief overview here. As outlined in Figure 2.1, our approach begins

by first characterizing each individual spectrum by defining its peaks. The process of picking

peaks can be done through a variety of methods and we have used a straightforward approach

that uses the derivative of the spectrum, and other associated properties for discerning peaks.

The resulting set of peaks contains the location, height and width of all peaks in a spectrum,

referred to as the peak profile. These features comprise the main information content that is
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used in the interpretation of NMR spectra. This approach allows each NMR spectrum to be

represented by a much smaller collection of data points than if we used the full resolution

of the acquired spectrum. For example, our experimental urine spectra were collected with

16384 points, but the peak picking process found that the spectrum contained less than 500

significant peaks. It must be noted that peak picking may result in loss of information if some

peaks are not picked. The peak picking algorithm is under active development to ensure that

peak information is not lost due to features such as low signal to noise or spectral crowding.

Future work will also consider spectral features such as multiplet structure to provide more

accurate peak profiles.

In the next step of the process, pairs of peak profiles are chosen for alignment, where the

most similar profiles are determined through pair-wise statistical correlation (Figure 2.1A).

Thus we start by aligning the most similar pairs of profiles to each other first. Each of these

pairs of profiles is then aligned through a series of progressively more rigorous steps that be-

gins with the naive alignment of the most highly similar peaks (Figure 2.1B-D). This naive

alignment establishes aligned regions of high identity separated by segments that cannot be

so readily aligned. These segments, bordered on either side by high-confidence aligned re-

gions, are then aligned through a dynamic programming algorithm where the alignment score

is based on chemical shift position, peak height and peak width. Note that only the peak

location is altered throughout the alignment process and that peak height and width remain

unaltered. Following this first pairwise alignment, a single consensus profile is created (Figure

2.1E). This process is then repeated, first for each set of pairs and then progressively for all

of the generated consensus profiles. At the end of this process a single representative consen-

sus profile is generated which defines the final alignment (see Figure 2.2). The final output

consists of the set of input profiles with their respective peaks aligned to this final consensus

alignment.
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2.3.1 Alignment of simulated spectra

As ”gold-standard” completely characterized NMR spectra for use in validation are not avail-

able, we used a simulation approach for generating peak profiles that could then be used to

assess the performance of the alignment methods. In particular, the use of simulated profiles

allows us to determine whether or not two or more peaks aligned through our algorithm should

actually be aligned with each other, and if not, which other peaks they should be aligned to.

It also allows us to introduce defined amounts of noise, either in the form of chemical shift

variation, peak height, peak width, or randomly introduced ”noise” peaks into each profile

and measure their effect on alignment accuracy. As we wished to generate NMR profiles that

were as realistic as possible, our simulated profiles were composed of a subset of peaks picked

from an actual mouse urine spectrum (see Methods).

As a test of our alignment approach, we attempted to align simulated profiles under a vari-

ety of noise conditions. In these tests we generated two sets of profiles consisting of 32 profiles

each, where each set was based on a different template. Each template consisted of a total of

50 peaks, 13 of which were unique to each group, allowing us to look at the effectiveness of

alignment in the presence of inter-group variation. In addition to the differences derived from

the peaks specific to each group, predefined amounts of chemical shift, peak height and peak

width variation were also introduced before alignment. Finally, 50% of the profiles in each

group had from 1 to 4 additional noise peaks inserted at random positions within each profile.

The effects of chemical shift variation on alignment accuracy are shown in Figure 2.4

where, in addition to chemical shift variation, 25% of peaks were subject to noise of ±10% in

peak height and/or peak width at half-height. The contribution of chemical shift, peak height

and width to the alignment score were kept equal in this and all other tests as this combination

was found to be highly robust. Sensitivity to the choice of these weighting parameters is shown

in 2.3. In Figure 2.4 we see that the accuracy of alignment is highly robust to chemical shift

variation as can be seen by the slow decrease in accuracy with increasing variation. Here,

alignment accuracy is calculated by dividing the number of peaks correctly aligned by the
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Figure 2.4: Accuracy of Alignment with Simulated Peak Profiles. The x-axis indicates ±
range of chemical shift variation and the y-axis indicates proportion of peaks per profile that
experienced chemical shift variation. The graph depicts accuracy as indicated by the colorbar
on the right, where PCANS achieved accuracies between 98.4% and 88.5%. Besides chemical
shift position, both relative intensity and width were randomly perturbed by ±10% of the
origin for 25% of the peaks within each profile and 50% of the profiles had 1-4 noise peaks
randomly added.
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Figure 2.5: Standard deviations corresponding to the alignment accuracies shown in Figure
2.4. The x-axis indicates ± range of chemical shift variation and the y-axis indicates propor-
tion of peaks per peak profile that experienced chemical shift variation. The graph depicts the
standard deviation of the accuracy as indicated by the colorbar on the right. Besides chemical
shift position, both relative intensity and width were randomly perturbed by ±10% of the ori-
gin for 25% of the peaks within each peak profile and 50% of the profiles had 1-4 noise peaks
randomly added.
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total number of peaks. Alignment is similarly robust to increases in the proportion of peaks

subjected to such variation. In fact, a nearly 90% accuracy is maintained despite 50% of peaks

experiencing variation of up to ±0.04 ppm. The maximum standard deviation is ±0.033 and

the corresponding map of deviations is shown in Figure 2.5. While we used a window of

±0.04 ppm in the alignment of individual peaks, this is a user-defined quantity that can be

changed to suit the underlying data.

We also compared the accuracy of our alignment method between our consensus approach

and the use of a template. Again, we started with two sets of profiles, with each set consisting

of 32 profiles and 50 peaks, with 13 peaks unique to the set. Variation in chemical shift

position (±0.02 ppm) was introduced for 50% of the peaks. Peak height and width noise

(25% of peaks affected with ±10% variation) was also independently introduced. As before,

50% of the profiles in each group had 1 to 4 noise peaks inserted at random chemical shift

positions.

We iteratively chose one of the sixty-four peak profiles as the template to which all the

other profiles were aligned. Thus this approach differs from the PCANS alignment method

only in the fact that it uses a representative profile as a template for use in aligning the other

peak profiles; all other steps are identical including the dynamic programming alignment of

peaks. Over all 64 possible templates, the average accuracy using this approach was 84.4%

with 99% confidence intervals of 84.02% and 84.68%. The best single template had an accu-

racy of 87.5%. In contrast, PCANS had a 93.9% accuracy (PCANS generates only one answer

so there are no error bars in this case).

A representative region of an alignment is shown in Figure 2.6 where the template gener-

ating the highest accuracy (87.5%) was used to generate the shown template-based alignment.

Differences between the template, unaligned and PCANS alignments can be readily observed.

For example, three regions are highlighted that have peaks unique to Group 1. In Region 1 of

the unaligned spectra (center row), it is possible to pick out by eye the existence of two likely

peaks in Group 1 with no nearby corresponding peaks in Group 2. In addition, a peak unique
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Figure 2.6: A Sample Region of Simulated Peak Profiles Before and After Alignment. Align-
ment is shown with either PCANS-aligned or template-aligned peak profiles. Short, individ-
ually colored bars indicate a profile’s peaks. Peak profiles were simulated from two groups
having group-specific peaks, with 32 profiles in each group. The colorbar on the right indi-
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in panel A indicates the best overall individual peak profile that was used as the template for
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to Group 2 is also visible in this region. In the template alignment (top row) the two peaks of

Group 1 could not be aligned, as the best overall template did not contain associated peaks in

these locations. In addition, the template did have a peak in Group 2, but at the wrong loca-

tion, forcing alignment of the unique Group 2 peak to a shifted location. In contrast, PCANS

correctly aligned the Group 2 peak (bottom row). Furthermore, the two peaks unique to Group

1 were also successfully aligned. Note that the rightmost peak of the pair appears to be shifted

to the right. This is due to the variation present within the unaligned set of peaks. Aligning

noisy spectra containing peaks with varying chemical shift position with PCANS results in the

alignment of peaks at their median chemical shift position. This provides a robust estimate of

peak position despite potentially significant amounts of spectral noise.

In Region 2 of the template alignment, we see a well-aligned peak for Group 1. However,

as we are using simulated data, we know that the position of this alignment is centered at a

nearby noise peak within the template profile and inspection of the unaligned profiles also

shows no obvious peak. The correct result is shown in Region 2 of the PCANS alignment.

This incorrect alignment occurs because the “best” template happens to contain a nearby noise

peak that is used as the basis for alignment of all other profiles.

Finally, in Region 3 (unaligned) we see strong indications of a peak in Group 1 as well as

alignment of this peak with PCANS. However, in the template alignment we see no obvious

change relative to the unaligned profiles. This is due to the fact that the template profile had no

peaks in this region and thus none of the identified peaks could be aligned. The fact that they

are present at all in the final alignment is due to the PCANS-portion of the algorithm (non-

template), which allows these orphan peaks to pass through to the final alignment regardless of

whether or not they are found in the template. Overall, this example demonstrates the inherent

pitfalls and challenges that arise with any alignment method that is based on the concept of a

template or standard spectrum.
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Figure 2.7: PCA Analysis of Simulated Peak Profiles. Displays binned (A & B), unaligned (C
& D), PCANS aligned (E & F), and template aligned (G & H) simulated peak profiles, with
(B, D, F & H) and without (A, C, E & G) outliers removed.

36



- 0 . 5

- 0 . 4

- 0 . 3

- 0 . 2

- 0 . 1

- 0 . 0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

- 0 . 7 - 0 . 6 - 0 . 5 - 0 . 4 - 0 . 3 - 0 . 2 - 0 . 1 0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7

p[2]

p [ 1 ]

3 . 0 1 9 1

3 . 0 5 9 8

4 . 0 4 6

4 . 0 8 6 8

SIMC A-P+ 12 - 2009-01-29 10:45:36 (U TC -5) 

- 0 . 5

- 0 . 4

- 0 . 3

- 0 . 2

- 0 . 1

- 0 . 0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

- 0 . 3 0 - 0 . 2 0 - 0 . 1 0 - 0 . 0 0 0 . 1 0 0 . 2 0 0 . 3 0 0 . 4 0

p[2]

p [ 1 ]

2 . 0 2 5

2 . 5 0 0 8

2 . 5 4 1 8

2 . 5 8 4 8

2 . 6 2 5 4

2 . 6 7 3

2 . 9 1 9 5

3 . 1 0 1 8

3 . 1 8 2 7

3 . 5 5 2 9
3 . 6 7 7 8

3 . 7 6

3 . 8 0 0 3

3 . 8 8 4 5

3 . 9 2 4

3 . 9 6 5 4

SIMC A-P+ 12 - 2009-01-29 10:46:45 (U TC -5) 

- 0 . 2

- 0 . 1

- 0 . 0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

- 0 . 1 0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8

p[2]

p [ 1 ]

3 . 0 4 3 3

3 . 0 5 9 8
3 . 0 6 3 8 3 . 5 5 9

4 . 0 6 6 8

SIMC A-P+ 12 - 2009-01-29 10:47:42 (U TC -5) 

- 0 . 3 0

- 0 . 2 0

- 0 . 1 0

- 0 . 0 0

0 . 1 0

0 . 2 0

0 . 3 0

- 0 . 1 0 0 . 0 0 0 . 1 0 0 . 2 0 0 . 3 0 0 . 4 0

p[2]

p [ 1 ]

2 . 6 7 3

3 . 0 2 7

3 . 0 3 9 3

3 . 0 4 1

3 . 0 4 7 3

3 . 0 4 8 8

3 . 0 5 0 8

3 . 0 5 13 . 0 5 9

3 . 0 5 9 8

3 . 0 6 3 8

3 . 1 0 8 8

3 . 8 2 0 3

3 . 9 2 4 5

4 . 0 5 4 4

4 . 0 5 8 8

4 . 0 6 4

4 . 0 7 0 8

4 . 0 7 5 8

4 . 0 9 3 4

SIMC A-P+ 12 - 2009-01-29 10:48:32 (U TC -5) 

- 0 . 6

- 0 . 4

- 0 . 2

- 0 . 0

0 . 2

0 . 4

0 . 6

- 0 . 2 0 - 0 . 1 0 - 0 . 0 0 0 . 1 0 0 . 2 0 0 . 3 0 0 . 4 0 0 . 5 0 0 . 6 0

p[2]

p [ 1 ]

2 . 9 1 9 5

3 . 0 2 7 8

3 . 6 3 7

3 . 6 9 6 5

3 . 9 1 2 8

3 . 9 2 4 5

3 . 9 5 3 8

3 . 9 6 8 5

SIMC A-P+ 12 - 2009-01-29 10:51:37 (U TC -5) 

- 0 . 3

- 0 . 2

- 0 . 1

- 0 . 0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

- 0 . 2 0 - 0 . 1 0 - 0 . 0 0 0 . 1 0 0 . 2 0 0 . 3 0 0 . 4 0 0 . 5 0 0 . 6 0

p[2]

p [ 1 ]

2 . 6 2 0 9

2 . 9 1 9 5

3 . 0 2 7

3 . 4 4 2

3 . 4 5 7 5

3 . 5 8 5 5

3 . 6 3 7

3 . 6 5 0 8

3 . 6 9 6 5

3 . 7 1 6

3 . 9 0 5 8

3 . 9 5 3 8

3 . 9 6 8 5

SIMC A-P+ 12 - 2009-01-29 10:53:03 (U TC -5) 

A B

C D

E F

-0.35

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

-0.10 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70

p[2]

p[1]

2.529 2.5682.6732.713

3.044

3.228

3.252

3.637

3.764

3.765

4.078

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

-0.20 -0.10 -0.00 0.10 0.20 0.30 0.40

p[2]

p[1]

2.529
2.5682.673

2.713

3.228

3.252

3.637

3.764

3.765

SIMC A-P+ 12 - 2009-10-27 15:52:11 (U TC -5) 

G H

Figure 2.8: Loadings plots of binned (A & B), unaligned (C & D), PCANS aligned (E & F),
and template aligned (G & H) simulated peak profiles, with (B, D, F & H) and without (A, C,
E & G) outliers removed.
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2.3.2 PCA analysis of simulated spectra

To further demonstrate how spectral alignment with PCANS can improve downstream data

analysis, we performed a PCA analysis of unaligned, binned, PCANS-aligned and template-

aligned peak profiles (see Figure 2.7). This data set consists of 1368 unique peaks when

unaligned, 216 unique peaks after template alignment, 91 unique peaks after alignment with

PCANS and 46 chemical shift position bins. PCA analysis of a perfect alignment of the data

would show two tightly clustered groups with the only variance due to the small number of

noise peaks added to each of the groups. The scores plot resulting from a standard binning

procedure with uniform 0.04 ppm bin widths is shown in Figure 2.7A. This plot displays three

distinct groups along with several outliers on the bottom half of the plot. The simulated peak

profiles contain two large peaks that were modeled after the creatinine peaks that are found

in urine. Thus the separation of the three clusters, as well as the outliers in this model, are

largely due to inclusion of the creatinine peaks into four separate bins. The corresponding

loadings plot for this scores plot is given in Figure 2.8. Figure 2.7B shows the scores plot that

results from excluding those four bins. The separation between the groups is clearer, but the

clustering is still rather diffuse.

Similarly, Figure 2.7C shows the PCA scores plot of the unaligned peak profiles. In this

case the four clusters do not distinguish the groups, and are again based upon differences in the

peak positions of two large creatinine peaks. As with the binning example, removal of these

two peaks leads to a clearer discrimination of the groups, but again with a diffuse clustering

as observed in Figure 2.7D.

In contrast, Figure 2.7E shows the results of PCA analysis after alignment with PCANS.

The separation between the groups along the first principal component is complete and the

clustering is very tight. The outliers from each group near the top of the plot are again due

to one creatinine peak that did not get aligned with the rest. Removal of this peak from the

analysis lead to the scores plot in Figure 2.7F. Although there are still a small number of

outliers, the separation between the groups along the 1st principal component is excellent and

38



this PC explains nearly fifty percent of the variance in the data.

The final comparison is with the template aligned peak profiles. Figure 2.7G displays a

very good discrimination of the groups, with the control groups being very tightly clustered.

This is reasonable as the template was chosen from that group. If, as with the other plots, the

creatine and creatinine peaks are removed, the separation looks quite similar but the percent

variation explained by the first principal component decreases by nearly half. Compared with

the PCANS plot, the control group is more tightly clustered, but the treated group is less

well so. Furthermore, the first principal component of the PCANS alignment explains 46.5%

as opposed to 35.6% of the variation. In this rather simple example of only two groups, the

PCANS alignment does have some advantages, but the benefits would be expected to be much

greater in a more complex situation which has more than two groups.

2.3.3 Alignment of Mouse Urine Spectra

To demonstrate the utility of PCANS on real data, we applied our approach to the alignment of

twenty-two mouse urine spectra from a recent study of ethanol toxicity (Bradford et al., 2008).

In this study, half of the samples were taken from mice receiving chronic ethanol treatment

and the other half were from controls, with results from PCA analysis shown in Figure 2.9.

In Figure 2.9A, the data was analyzed using standard binning with 0.04 ppm bins, resulting

in 152 bins across the spectrum. As can be seen, the correct separation of the data into two

groups is discovered, largely due to the presence of ethanol and ethyl glucuronide in the

spectra of dosed mice (see Figure 2.10). This positive result indicates that the chemical shift

drift amongst these peaks is generally smaller than the applied bin width (i.e. the bin-widths

are appropriately set to capture the chemical shift variation within these samples). Figure 2.9B

shows the data prior to alignment. In its unaligned form, this dataset consists of 1496 unique

chemical shifts. In this case the control samples are very tightly clustered (black points) and

the major variation in the data appears in the dosed spectra. Again, the corresponding loadings

plot shows that the separation of the dosed group into two clusters is predominantly due to
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aligned (C) mouse urine peak profiles.
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Figure 2.10: Loadings plots of binned (A), unaligned (B), and aligned (C) mouse urine peak
profiles. Peaks associated with EtOH and EtOH-glucuronide are labeled with their chemical
shift position.
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the small differences in the ethanol and ethyl glucuronide peaks (Figure 2.10B). After peak

alignment with PCANS, the number of unique chemical shifts is reduced to 483. The scores

plot looks remarkably similar to that generated from the binned data and the percent variances

for both of the PCs in these models is very similar (see Figure 2.9C).

Given the similarity between the binned and aligned data, the advantage of alignment with

PCANS may not be obvious. However, it should be emphasized that the information content

of the PCANS-aligned data is over three-fold larger than that of the binned data. More specif-

ically, the intensity of 483 individual peaks is represented in the PCANS-aligned data, while

the binned data encodes only 152 variables, many of which are influenced by (i.e. containing)

multiple peaks. We can better observe the advantage that PCANS alignment provides through

this added information by looking at the results of a supervised OPLS analysis.

Figure 2.11 shows the OPLS loadings coefficients plots using data from each of the three

data sets, with original spectra from dosed and control samples superimposed in Figure 2.11A

(Cloarec et al., 2005; Wiklund et al., 2008). Figures 2.11B-D show the back-scaled loadings

coefficients such that the spectral features that are higher in the control group are positive

and those that are higher in the ethanol treated group are negative. The color relates to the

strength of the correlation, with red being the strongest. In Figure 2.11B, we see the OPLS

coefficients prior to alignment and observe very weak correlation between peaks (blue-green

colors in the Figure). In addition, several spectral features are largely missed (Regions 1 and

4 indicated in brackets at the bottom of the figure) or only weakly identified (Regions 2, 3 and

5). Application of OPLS analysis to binned data is shown in Figure 2.11C. The decrease in the

data density due to peak consolidation into bins can be observed in this figure by the sparseness

of data along the x-axis. While some of the correlations are higher, there are inappropriate

assignments between groups as can be observed in the positively-valued peaks in Region 2.

While the binned data shows the importance of the ethanol peaks in distinguishing the groups,

interestingly the signals from ethyl glucuronide are very weak.

In contrast, Figure 2.11D shows the loadings coefficients after PCANS alignment. As can

42



1.11.522.533.544.5
−1500

−1000

−500

0

500

Ba
ck

sc
al

ed
 O

PL
S 

C
oe

ffi
ci

en
ts

1.11.522.533.544.5
−1500

−1000

−500

0

500

1.11.522.533.544.5
−1500

−1000

−500

0

500

Chemical Shift

0.16

0.32

0.48

0.64

0.79

0.95

1.11.522.533.544.5
0

2

4

6

8

10

R
el

at
iv

e 
In

te
ns

ity

1 2 3 4 5

A

B

C

D

54321

Figure 2.11: OPLS Analysis of Mouse Urine Spectra. Displays unaligned (B), binned (C), and
aligned (D) OPLS coefficients from mouse urine peak profiles. Panel A depicts the unaligned
peak profiles that correspond to the OPLS analysis. Peaks associated with glucose are located
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in bracket 4.
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be seen along the x-axis, data density (and thus information content), is significantly higher

than with binned data. In addition, the signals from ethanol and ethyl glucuronide are all very

strong with colors indicating a very high confidence. Also note that while template alignment

would perhaps perform similarly with regard to generating strong correlations for aligned

peaks, it suffers from the earlier described difficulties that will lead to loss of peaks defining

group/inter-group differences, loss of unique peaks, and alignment of different, but close peaks

to nearby peaks within the template. These results demonstrate the value alignment with

PCANS and its ability to enhance the information content relative to the standard binning

protocol.

2.4 Conclusions

The increasing scale and complexity of metabolomics studies is driving the need for improved

computational tools for data integration and analysis. We have described our PCANS ap-

proach which was developed to address the need for multiple spectrum alignment where noise

in the form of chemical shift variation and deviations in peak properties is present, along with

significant sample complexity.

In metabolomic analyses there are often multiple groups of spectra, such as control and

treated groups, which may not be appropriately aligned with any algorithm that is primarily

based upon the use of a template. For instance, the peaks from the exogenous metabolites that

are present in the treated group may not be well aligned using a template from the control

group. Similarly, alignment of the control spectra could be confounded by the presence of

the exogenous peaks in the template. Even when a specific group (e.g. the treatment group)

can be reasonably well aligned by a representative template spectrum, metabolomics is also

being increasingly used to determine multiple responder phenotypes wherein the treated group

may contain several subgroups characterized by distinctly different spectra. Thus a significant

advantage of PCANS over the use of template-derived methods is that it is a fully unsupervised
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method and can be used to align spectral data containing multiple disparate groups that may

not/cannot be anticipated. Furthermore, as both aligned and unaligned peaks are incorporated

into the final consensus, we minimize the amount of data lost in this process while enhancing

the signal within alignable regions.

This algorithm uses peaks rather than full resolution spectra as the basis for alignment. We

consider this to be a general advantage as the datasets are much smaller while having no loss

of real spectral information, as peak location, height and width are all maintained. A primary

goal of the PCANS process is to provide better input data for multivariate statistical analysis

that will help identify significant groups in the sample set. As shown in the OPLS loadings

coefficients plots in figure 2.11, the peak profiles provide an ample representation of the NMR

spectra so that specific compounds can be identified. It could be argued that these peak pro-

files are even easier to interpret than real spectra as they are free from spectral noise and have

perfectly uniform linewidths. But, should a more traditional representation of NMR spectra

be desired, the information has been maintained to regenerate such a spectrum. In general,

the use of peak profiles as input to PCANS allows us to maximize the amount of high-quality

information available for alignment and further downstream analysis. We are further investi-

gating the use of more sophisticated peak picking algorithms that will include recognition of

peak multiplets and advanced recognition of shoulder peaks that are often present in samples

such as serum that displays large, broad peaks due to the presence of macromolecules. While

we have used a robust peak picking algorithm, improvements in this step will help minimize

issues of inconsistent peak selections across samples. Continued incorporation of more so-

phisticated scoring schemes as well as more realistic handling of multiplets (rather than as

separate peaks), is expected to further enhance the effectiveness of our approach. Finally,

while PCANS was developed specifically with NMR data in mind, it has the potential to be

applicable to the alignment of other types of data with similar properties. In particular, chro-

matographic data which is composed of peak positioned along a time axis would be amenable

to PCANS alignment. Future work will attempt to further extend these capabilities.
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2.5 Future directions

Recently the peak picking method has been revised to reflect the one used Abdo et. al.(Abdo

et al., 2006). The primary difference between our method and the method Abdo et. al. de-

scribed, is that ours is fully automated as to self-select a cutpoint based upon the assumption

that one would expect similar numbers of peaks to be selected from all spectra. This is an

improvement over the peak picking algorithm that was used by the original implementation

of PCANS because one does not have to select parameters for peak picking. Additional func-

tionality has been added that allows the reconstruct of the consensus spectrum’s appearance

based upon the original spectra. A webtool that performs Statistical Total Correlation Spec-

troscopy, STOCSY, on PCANS aligned or binned spectra has been implemented (Sasic et al.,

2000). In the future, I would like to improve PCANS alignment by allowing for differing size

alignment windows to be used based upon the position in the spectrum (7.5+ aromatic regions

are typically more misaligned). Additionally, I would like to improve the framework to more

readily align hundreds of spectra through the use of sampling to form the consensus, as to

prevent an over abundance of peaks in the consensus spectrum.

As mentioned above metabolomics is being used to determine multiple responder pheno-

types wherein the treated group may contain several subgroups characterized by distinctly dif-

ferent spectra. Thus OPLS analysis as shown in Figure 2.11 might fail to find subgroups from

amongst the multiple responder phenotypes unless one can determine apriori which spectra

belong to which subgroups. Methods that identify subsets of peaks and sample spectra that act

in a similar fashion could identify such responder phenotypes without any apriori knowledge.

This would especially be useful coupled with a measure of strength of association, which is

used to determine association between different classes of spectra. The data mining methods

discussed in chapters 3-5, can be used in this manner as to provide a more sophisticated way

to analyze multiple responder phenotypes.
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Chapter 3

Background and Related Work

3.1 Motivating Problem

Identification of associations that exist between data when the data under consideration comes

from multiple data sources or where nontrivial amount of noise has been introduced into the

data makes traditional means of analysis difficult. When there exists variable signal to noise

ratio within a data source or across data sources, considering the entire data record (using all

the data) is misleading due to the underlying noise which mask existing associations. One way

of dealing with this issue is to use a Bayesian methodology to weight the reliability of the data

included in the model as was illustrated by Webb-Robertson et al. (2009) using Metabolomic

data. Another approach is to subset the data down to subsets that contain the strongest as-

sociations. This approach was partially explored by DiMaggio et al. (2010) when they used

biclustering coupled with logistic regression to identify association between an optimal set

of explanatory variables and their corresponding response variable. DiMaggio et al. used bi-

clustering to remove redundancy amongst the explanatory variables and to determine the two

most anticorrelated classes of response variables. Using biclustering in this manner allowed

them to select sets of variables that would be most amenable for use with their logistic regres-

sion modeling scheme. Similar to DiMaggio et al., we subset the data to determine where the

associations between the data are the strongest. Unlike DiMaggio et al., we create subsets by



considering both explanatory and response variables simultaneously; thus, producing results

that are most likely to show the true underlying associations that exist within the data.

Similar to the biclustering methods, we subset the data down simultaneously by rows and

columns. By using closed frequent itemset mining, our algorithm provides overlapping sub-

sets of data limited by a minimum row threshold. Consider the case where numeric association

between a set of explanatory and response variables is so complicated and contradictory that

the only reliable information that can be deduced is a binary classification. Attempting to

quantify the level of response to more than a binary classification just confounds the associ-

ation between explanatory and response variables. The data is simplified down to a binary

classification that either a response occurred or it did not occur. Because the data is binary,

closed frequent itemset mining can be used to subset the data down by rows and columns

simultaneously restricting the resulting subsets of data only by a minimum row threshold

(known as minimum support threshold). Similar to biclustering this methodology has compu-

tational complexity of NP complete. Although high complexity, the closed frequent itemset

mining approach has the benefits of considering explanatory and response variables simulta-

neously and will fully enumerate all subsets of data that meet the minimum row threshold.

Both properties help our approach to discover the results that have the strongest associations

between explanatory and response variables. Furthermore, using closed frequent itemset min-

ing allows for a intuitive inclusion of user defined approximation/fuzziness (zeros) into the

results.

Both DiMaggio and van Uitert et al. (2008) use biclustering, but van Uitert uses the result-

ing biclusters to identify novel associations between two integrated datasets; whereas, DiMag-

gio uses biclustering as means of data reduction in a much larger modeling scheme. Similar to

van Uitert et al. our methodology integrates binary datasets, but our methods also statistically

assess results to determine the importance of the resulting subsets. Additionally our methodol-

ogy provides full enumeration of potential results for a given threshold; whereas, van Uitert’s

method provides the top scoring non-overlapping biclusters and it does not guarantee that the
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resulting clusters show an association between the integrated datasets. We illustrate how our

approach can be adjusted to integrate three or more datasets and provide results for larger,

more complex datasets using a focused analysis.

3.1.1 Real World Data Example

The methods we explore are designed to identify association between sets of response and

explanatory variables when the data under consideration comes from multiple data sources or

nontrivial amount of inconsistency has been introduced into the data. Specifically in cases

where integration of the data is so complicated and contradictory that the only reliable in-

formation deduced is binary, in the sense that either a response occurred or it did not occur.

Furthermore, determining relationships between this inconsistent data is so difficult that using

traditional methods of analysis fail to produce substantial results. A real world example of

data that meets the above criteria is the Environmental Protection Agency’s (EPA) ToxCast

and Toxicity Reference Database (ToxRefDB) data programs. These datasets share a set of

common potentially toxic chemicals, where ToxRefDB contains a multitude of animal study

endpoints based upon exposure to these chemicals and ToxCast contains bioassay responses

to those same potentially toxic chemicals (Dix et al., 2007; EPA, 2010a; Judson et al., 2009;

Martin et al., 2009a; Knudsen et al., 2009; Martin et al., 2009b; EPA, 2010b). The EPA would

like to integrate these data together as to determine which chemicals will cause malady as seen

with the animal endpoint studies based primarily upon ToxCast bioassay responses (Dix et al.,

2007; EPA, 2010a; Judson et al., 2009). Their reasoning behind this is described below along

with a more detailed explanation of the data and how it qualifies as a real world example for

our methods.

The efficient testing of chemicals for possible human health effects is a continually grow-

ing challenge, with over 83,000 chemicals currently within the Toxic Substances Control Act

inventory and over 30,000 in widespread use(Agency, 2011; Judson et al., 2009). Compli-

cating the demand for increased screening of chemicals having industrial and agricultural
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importance is the fact that the current processes for testing chemicals is extremely complex,

expensive and time intensive, with heavy reliance on animal studies that take 2-3 years and

millions of dollars to complete(Judson et al., 2009). With the majority of such chemicals hav-

ing undergone little to no safety testing, there is a significant need to develop complimentary

or alternative approaches to help prioritize both the chemicals to be tested as well as identify

the types of tests that will be most informative in the regulatory decision making process.

To help understand and address these challenges, the EPA established the ToxCast pro-

gram, a high-throughput screening (HTS) effort focused on the development of methods

for accurate and cost-effective chemical screening and prioritization (Dix et al., 2007; EPA,

2010a). The initial phase of the ToxCast program consisted of the testing of 309 unique chem-

icals against a panel of over 650 toxicity-relevant assays. While chemicals chosen for this first

effort are comprised largely of food-use pesticide active components, assays vary greatly in

the type of technology used, the target measured, as well as the biological context in which the

assay is performed. While still in the early stages, programs such as ToxCast and Tox21 are

expected to provide the methodological foundations for future sustainable efforts in chemical

screening(Dix et al., 2007; EPA, 2010a; Kavlock et al., 2009).

Although providing a wealth of data across a broad spectrum of chemicals, high-throughput

approaches as used in ToxCast present their own challenges with regard to data integration and

downstream interpretation. There is a great deal of variation in the types of assays used for

screening, with associated variation in the levels of quality, sensitivity and specificity. Fur-

thermore, tests are performed in cells or tissues of a number of different species including

rat, mouse and human. As our understanding of mechanisms of toxicity for different chem-

icals is far from complete, methods that can use such data to help establish more integrated

pictures of the linkages between chemicals, biomolecular players and disease endpoints are

of significant value. Specifically ToxCast data provided the ideal dataset to demonstrate the

utility of our methods for integrating inconsistent/noisy datasets in a response and explanatory

variable framework where the data is subset to consider only the strongest relationships as an
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alternative to considering the entire data record.

Preliminary investigations by both the Reif et al. (2010) using the ToxPi measure and

DiMaggio et al. (2010) with their biclustering and logistic regression framework indicate that

the data collected from the first round of the ToxCast program is quite sparse, with highly vari-

able amounts of inconsistency within the bioassays data. This is demonstrated by the modest

subset of the data that is used in both methods and the small number of important results that

are reported as discussed in greater detail below. The measure ToxPi presented by Reif et al.

does integrate several sources of data into a measure that ranks a chemical’s toxicity with a

score (Reif et al., 2010). The difficulty of ToxPi is that it does not indicate which results are

statistically significant with regards to chemical toxicity. Moreover, the paper provides scant

evidence that the top ranking chemicals are toxic and the bottom ranking chemicals are benign

with regards to toxicity(Reif et al., 2010). The methodology of DiMaggio et al. indicate the

minimal set of bioassays that maximize the separation between 8 liver and 10 reproductive an-

imal endpoints(DiMaggio et al., 2010). Their framework helps determine which bioassay can

be uniquely associated with either liver or reproductive animal endpoints. Yet, their results fail

to provide any goodness-of-fit measures for the logistic regression models that were used to

determine the association between animal endpoint and bioassay. Furthermore, they are only

able to determine unique association between animal endpoint and bioassay for 18 of the over

300 active animal endpoints(DiMaggio et al., 2010). Similarly the ToxPi measure only uses

90 of the over 650 bioassay to create its integrated measure of chemical toxicity(Reif et al.,

2010).

The primary goal in this work is to use our methods to account for the underlying inconsis-

tency/noise within the ToxCast data by focusing the analyses on subsets of data. We assume

that the desired associations are the most prominent for subsets of the data due to this un-

derlying inconsistency. We integrate the ToxCast and ToxRefDB data to identify association

between the explanatory variables (ToxCast bioassays) and response variables (ToxRefDB an-

imal endpoints) with regards to identifying chemical toxicity. Our methods provide statistical
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measures that furnish strength of association for the subsets of data and statistical signifi-

cance that accounts for multiple hypothesis testing. Additionally our methods allow for some

approximation/fuzziness to be incorporated into the results in an intuitive manner.

3.1.2 ToxCast Data

The first phase of the ToxCast program involved the utilization of a multitude of in vitro high-

throughput screening (HTS) assays to 320 chemical substances that represent a unique set of

309 potentially toxic chemicals(Dix et al., 2007). These unique chemicals were selected based

upon the conclusions of EPA’s previous work(Judson et al., 2009). This work surveyed the

primary types of EPA regulated chemicals and compiled a set of non-redundant chemicals to

be used within the ToxCast program. The majority of the ToxCast chemicals were related to

food-use pesticides(Dix et al., 2007).

The over 600 in vitro HTS assay results that compose the ToxCast program are derived

from ten different assay technologies (bioassays from ACEA, Attagene, BioSeek, Cellumen,

CellzDirect, GeneAssays, Gentronix, NCGC, Novascreen, Solidus)(Dix et al., 2007). These

bioassay results depict interactions between the 320 chemicals and molecular targets or cel-

lular events that give rise to measured cellular phenotypes, gene expression, biomarker and

transcription factor activity(Dix et al., 2007). For this methodology the bioassay activity is

represented as a binary result such that the chemical potency (like EC50, IC50, AC50) or low-

est effective level of activity detected beyond normal functioning is considered as chemically

active (indicated by one). Non-activity (indicated by zero) indicates that high chemical con-

centrations resulted in no detectable activity within the bioassay. The primary reasoning for

using the bioassay data as a binary response is because of the added complication that inte-

grating bioassays from many different technologies, response types (cellular, tissue, cellular

phenotype, gene expression etc), and species would cause.

Current publications that provide a detailed description and analysis of specific ToxCast

bioassays include those that analyze Attagene assays (Martin et al., 2010), Bioseek assays
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ToxCast & ToxRefDB Data
Active Chemicals
All ToxCast .................................. 320
Unique ToxCast ........................... 309
All ToxRefDB .............................. 294
Unique ToxRefDB........................ 283
Active Bioassays
All ToxCast ................................. 659
ToxCast with Gene Targets ......... 529
Active Animal Endpoints
Original ToxRefDB ....................... 89
Expanded ToxRefDB................... 289

Table 3.1: Quantification of EPA’s ToxCast and ToxRefDB data.

(Houck et al., 2009) and Gentronix, Cellumen and NCGC assays (Knight et al., 2009). Unlike

these publications, we want to describe frequent chemical activity across all of the ToxCast

bioassays that share chemical perturbation by the same chemical substances used in the EPA’s

Toxicity Reference Database, ToxRefDB, animal study endpoint studies. To simplify the re-

sults, chemical activity in bioassays that are measured at different time points are collapsed

into a single value that indicates any chemical activity across all time points. Similarly, chem-

ical activity associated to up or down regulation of genes or biomarkers are collapsed into a

single value that indicates any chemical activity regardless of regulation type. Through this

simplification, the number of ToxCast program HTS assay results is reduced to 659 HTS as-

says that were at least activated by one of the chemicals. Table 3.1 quantifies the numbers of

active chemicals, HTS bioassys and animal endpoints discussed below.

Of the 659 HTS ToxCast bioassays, 529 could be further associated directly to their gene

targets. These 529 bioassays represented 258 unique genes, where 202 of those genes could

be associated to 175 unique KEGG molecular and cell signaling pathways or Ingenuity molec-

ular and cell signaling pathways. Additionally, many of the gene targets were associated to

multiple bioassays; thus, giving a clarifying view of chemical activity across multiple tech-

nologies, organisms and cell types. The classification of the ToxCast bioassays by activated

pathways, molecular functions or biological processes allows one to get a better scientific
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view of the effects of the chemical activity perturbations. The gene targets were identified

by the companies responsible for that creating the 659 HTS ToxCast bioassays. These 258

unique gene targets were then used to determine which KEGG and Ingenuity pathways that

the gene activation could be associated to.

3.1.3 ToxRefDB Animal Study Endpoints

Of the 309 unique ToxCast chemicals, 289 of them were used within EPA’s ToxRefDB(Martin

et al., 2009a; Knudsen et al., 2009; Martin et al., 2009b; EPA, 2010b). This program resulted

in 86 animal study endpoints that include measurements from 2-year rat and mouse cancer or

chronic bioassays studies, rat reproductive toxicity studies, and rat and rabbit developmental

toxicity studies. These 86 ToxRefDB animal study endpoints were then expanded to the 289

endpoints to better describe the malady represented by these animal study endpoints. For

example, mouse and rat liver lesions are expanded to describe the type/stage of lesion.

The 289 chemicals represent the union of chemical activity of chemicals that were tested

by the animal study endpoints; where, the maximum number of chemicals tested on any one

endpoint was 257 and the minimum was 245 out of 309 chemicals that were unique to the Tox-

Cast bioassays. Of the 289 unique chemicals tested by the ToxRefDB animal study endpoints,

283 chemicals were chemically active for both ToxRefDB animal endpoints and the ToxCast

bioassays. The relationship between bioassay and animal endpoints with regards to chemical

activity will be explored through these 283 chemicals. Ideally this relationship should help

identify which potentially toxic ToxCast chemicals, as indicated by chemical activity within

the ToxCast bioassays, are also associated to detrimental animal endpoints.
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3.2 Existing Approaches and Related Work

3.2.1 Modeling Full Data

Some methods of determining association across multiple datasets with inconsistent data com-

monly involve a bayesian framework. These methods weight the data based on its usefulness

in the underlying mathematical model of association as was demonstrated by Webb-Robertson

et al. (2009) using metabolomic data. Zhang et al. developed methods to identify significant

associations that existed between set of explanatory and response variables for categorical data

as in form of chi-square and anova testing of genome-wide association studies (GWAS)(Zhang

et al., 2010a,b, 2009, 2008). The exhaustive enumeration and control of error rate associated

with multiple testing, makes the TEAM algorithm most comparable in calculation of contin-

gency tables statistics(Zhang et al., 2010a). The primary difference between our methodology

and the methodologies used by Webb-Robertson and Zhang is that their algorithms used the

entire data record; whereas, our methods focus on subsets of the data more similar to bicluster-

ing(Webb-Robertson et al., 2009; Zhang et al., 2010a). Although Webb-Robertson’s method

controls for inconsistency by weighting the results, the method still uses the entire record as

compared to using only subsets of the data. Zhang’s TEAM algorithm may work with contin-

gency table statistics not too different than the statistic we use, but their methods only consider

the association between pairs of explanatory variables (in their case SNPs) as associated with

a response variable classification (in their case phenotype)(Zhang et al., 2010a). In contrast,

our methods consider associations between response and explanatory variables that are more

complex. Our methods also consider response variables in a multivariate sense (one or more

response variables) and explanatory variables that include more than a pair.

Although there is not an association between explanatory and response variables, Reif et

al. used ToxCast data to create a measure referred to as ToxPi(Reif et al., 2010). The mea-

sure integrates 90 of the over 650 ToxCast bioassays data along with chemical and pathway

information for each chemical(Reif et al., 2010). ToxPi uses the entire data record because it
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is calculated for all chemicals over 90 of the ToxCast bioassays(Reif et al., 2010). Another

important difference is that ToxPi fails to indicate which of the final results are statistically

significant regarding the measure of toxicity that it generates(Reif et al., 2010). Our methods

consider partial data, and the resulting associations produced are assigned statistical signifi-

cance related to strength of association that has been adjusted to account for error as associated

for multiple testing.

3.2.2 Clustering and use of Partial Data

Clustering is a fundamental method of unsupervised learning that looks to partition one’s data

in a way so as to highlight meaningful relationships. K-means clustering is a well established

form of partitioning one’s data into k groups, where k is chosen a priori. Hierarchical clus-

tering provides a potential advantage over k-means clustering because it does not require that

one choose the number of clusters, k, a priori. Hierarchical clustering involves an algorithm

that continues to divide or merge groups iteratively until all data is divided into single items or

all data is merged into a single group. Our method differs from two-dimensional hierarchical

clustering, because instead of considering all the data our method can concurrently subset the

data by both rows and columns. Similarly, biclustering is able concurrently partition one’s

data by both rows and columns to consider submatrices, or subsets of the data. Thus, the

method of biclustering of binary data is most closely related to our methodology because it

also is able to concurrently subset the data by both rows and columns.

Similar to the methods we employed computationally, biclustering works best on sparse

data matrices or when heuristics are used to limit exhaustive enumeration of all possible sub-

matrices. This is because the computational complexity of considering full enumeration (all

possible combinations) of the data is NP-complete, meaning they have no known polynomial

time algorithms and in worst case their runtimes are exponential. This notion of considering

subsets of data is explored as a means of accounting for inconsistency within the data while

facilitating the discovery of the underlying associations that arise between explanatory and
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response variables. When comparing our methods with others, we will reserve direct com-

parison to biclustering of binary data because it is most similar to primary force driving our

method. That being the exploration of subsets of data as a means to deal with integration of

extremely inconsistent data.

van Uitert et al. (2008) employ their method of biclustering of spare binary genomic data

to identify interacting transcription factors. Van Uitert’s method, BicBin, is most similar to our

methodology since both consider subsets of binary data(van Uitert et al., 2008). Van Uitert’s

methods differ from ours because the method greedily gives the highest scoring bicluster as

the result. To obtain all the non-overlapping greedily selected biclusters, one must reset the

data matrix ones to zeros of the previously discovered biclusters and rerun the algorithm until

the data matrix is entirely composed of zeros or can no longer produce biclusters given the

input parameters. This differs from our method because our method provides a full enumera-

tion of all subsets (overlapping or not) that meet the minimum row threshold and composition

criteria. Thus, our methodology provides more relevant subsets because they meet input cri-

teria and provide a statistic that measures strength of association between the explanatory and

response variables. BicBin only provides a score as the measure as to how useful a resulting

bicluster is, there is no statistic to assess quality of biclusters that result from their method.

Conversely, our methods provides a measure of statistical significance that has been adjusted

for error that results from multiple testing. Finally, unlike the results from our methods, there

is no guarantee the biclusters produced by van Uitert’s method contain an association between

response and explanatory variables. These three differences make BicBin a difficult algorithm

to use if one’s primary purpose is to determine the most important biclusters based upon their

association between response and explanatory variables.

DiMaggio et al. (2010) explore the use of logistic regression to identify association be-

tween sets of explanatory variables and a response where the variables used in the logistic

modeling scheme had been reduced through the use of biclustering. This type of biclustering

differed from our methods because it was used as a data reduction methodology to determine
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which sets of explanatory and response variables should be used in the logistic regression

models. DiMaggio did produce results that gave the most optimal association between 18 of

the endpoints and a set of bioassays from the ToxCast data, but they failed to provide a mea-

sure of goodness of fit to assess the quality of their optimal models. Moreover, their resulting

models only include a small portion of all possible animal endpoints (18 out of over 300) and

did not consider multivariate association with regards to the response variables (animal end-

points). Conversely our methods considers all associations given a row threshold and provides

clear assessment of quality of the results through the error adjusted significance test.

As stated above our methods use closed and approximate itemset mining to identify sub-

sets of data with association between response and explanatory variables. The process will

described in greater detail in Chapter 4, below is a brief discussion of how our methods differ

from the standard implementations. The closed frequent itemset mining methodology used

builds a depth first tree that is pruned using the minimum support threshold based upon the

Apriori algorithm for frequent itemset generation (Han and Kamber, 2006). The methods

employed include techniques for efficient tree traversal similar to ones described by Wang

et al. (2006) in their paper that details their algorithms for discovering closed cliques. These

techniques include adding response and explanatory variables of higher frequency first into

the depth tree, determining potential children as only response and explanatory variables of

same or less frequency, and pursuing only closed itemsets in the tree traversal Wang et al.

(2006). The main distinction from Wang et al. and others is that our algorithm requires that

all itemsets within the depth tree contain at least one response and explanatory variable. Thus,

adding additional efficiency to the algorithm by generating only closed sets that will have an

association between response and explanatory variable. This methodology gives the user the

ability to target one’s analysis based upon itemset composition and is unique to our algorithm,

and enables the user to focus the analysis upon subsets that contain only certain response

and explanatory variable combinations. Our algorithm first determines all possible response

variable combinations which allows the user to then focus their analysis based upon these
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initial results. Our algorithm consider closed frequent itemset as opposed to frequent item-

sets because it maximizes the number of response and explanatory variables (items) that are

associated with the set of observations (transactions) and it allows us to incorporate fuzziness

(approximate itemsets) into the result.

To help address the challenge of identifying association between response and explana-

tory variable while accounting for the variability within the explanatory variables, our method

allows for unbiased integration of fuzziness into the results. An approximate (fuzzy) fre-

quent itemset can be defined as one that includes explanatory variables that might not fully be

supported (be ones) for all observations (transactions) included in a particular itemset (set).

In this way, approximation of the itemset is restricted to explanatory variables because the

imprecision of the itemsets (in our examples) can be primarily be attributed to the variability

within the explanatory variables. Allowing for approximate frequent itemsets provides a more

complete view of the subsets of data in the presence of the variability (noise) within the data.

Furthermore, approximate frequent itemsets provide distinguishing features associated with

the discovered itemsets by allowing for a larger number explanatory variables to be included

within the resulting sets.

To create the approximate frequent itemsets, our algorithm identifies the maximal frequent

itemsets (leaf nodes) and in a top-down fashion collapses these sets with the closed frequent

itemsets located levels above using the row and column constraints similar to those described

by Cheng et al. (2008), AC-Close algorithm. This collapse consists of taking the union of a

maximal frequent itemset with a closed set located levels above and accepting the resulting

set if it meets the row and column constraints on allowable fuzziness. This collapse considers

all combinations of sets that have connections within the lattice and the collapse continues up

the levels of the lattice until row or column constraints are broken or the root set is reached.

Inclusion of an approximate frequent itemset within the results concludes with the removal of

its founding closed frequent itemsets from the results.

The methods we employ differ from the AC-Close algorithm in the following ways: ap-
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proximate itemset creation is only initiated using maximal frequent itemsets, our algorithm

considers all combinations of closed sets that meet row and column constraints during the

union process, and our algorithm has core pattern factor, α, set to one instead of allowing a

range. These modifications provide more appropriate approximate sets given that our results

are associated with a statistic of association. Specifically, our algorithm considers approx-

imate frequent itemset formation originating solely from maximal itemsets (leaf nodes) be-

cause these nodes will most likely result in the formation of approximate frequent itemsets

given more stringent column and row constraints. Moreover, the process is likely to collapse

itemsets that contain a good deal of overlap together into a single approximate itemset, which

helps simplify the results. Because of the uncertainty on what provides the optimal union

of closed sets when forming approximate itemsets, our algorithm allows all combinations to

occur and relies upon the statistic of association to determine which of the resulting itemsets

are most significant.

Liu et al. (2006) created AFI, an approximate frequent itemset mining algorithm, that uses

row and column error control similar to AC-Close and our algorithm. The primary difference

between AFI, and our algorithm is that is it a bottom-up as opposed to top-down algorithm.

The result of this difference is that AFI does not scale on datasets that include a large number

of response and explanatory variables. The efficiencies that were programmed into closed fre-

quent itemset mining portion of our algorithm allow for hundreds of response and explanatory

variables to be included dependent upon the density of the input data matrix. Our methods then

create the approximate itemsets using the resulting closed frequent itemsets in a breath-first,

top-down methodology that entails taking the union of the closed itemsets. Unlike AFI, this

type of methodology is scalable given hundreds of explanatory and response variables. Both

methods produce overlapping approximate itemsets, but our method is more efficient based

upon the top down methodology and the use of closed itemsets. As described above with our

comparison to the AC-Close, our approximate itemset algorithm also provides more appropri-

ate approximate itemsets when focusing upon subsets with association between response and
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explanatory variables.

3.3 Challenges

Identification of relationships that exist amongst data when the data under consideration comes

from multiple data sources, experiments or where a nontrivial amount of noise has been intro-

duced into the data can prove to be difficult using traditional methods of analysis. Typically

such cases arise when there exists variable signal to noise ratio within a single data source or

across data sources; thus, considering the entire data record (using all the data) is misleading

due to the underlying noise which will mask relationships that exist amongst one’s data. One

way to deal with such an issue is to use Bayesian methods to weight the reliability (absence

of noise) of the data included in the model as was demonstrated by Webb-Robertson et al.

(2009) using Metabolomic data. Another way of dealing with this problem is to subset one’s

data down to subsets that contain the strongest relationships. This approach was partially ex-

plored by DiMaggio et al. (2010) when they used biclustering coupled with logistic regression

to identify association between an optimal set of explanatory variables and their correspond-

ing response variable. DiMaggio et al. used biclustering to remove redundancy amongst the

explanatory variables and to determine two most anticorrelated classes of response variables.

Using biclustering in this manner allowed them to select sets of variables that would be most

amenable for use with their logistic regression models. Similar to DiMaggio et al. we look

to subset the data down to subsets where the relationships between the data are the strongest.

Unlike DiMaggio et al. we create subsets by considering both explanatory and response vari-

ables simultaneously; thus, producing results that are most likely to show the true underlying

relationships that exist between the data.
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3.3.1 Noisy/Inconsistent Data

Identification of association between response and explanatory variables can prove to be chal-

lenging when the analysis involves the integration of data from multiple data sources or where

there are potentially complicated associations between data due to underlying differences in

the data. Typically integration of such data proves to be rather ineffectual using classical meth-

ods of analysis because there exists variable signal to noise ratio within a single data source

and/or across data sources. Therefore, considering the entire data record can be misleading

due to the underlying noise which will mask relationships that exist within one’s data. To deal

with the challenge of integrating such inconsistent/noisy data to discover underlying relation-

ships that exist between response and explanatory variables we explore focusing on subsets

of the data instead of the entire data record. Moreover to deal with the challenge where the

numeric association between ones’ data is complicated and contradictory, the data was sim-

plified to a binary response. This provided the most reliable information as it simplified the

numeric information to whether or not a response occurred at any quantification. Additionally,

one can use the minimum row threshold to reduce the likelihood of finding false positives and

to require relationships that are true for a reasonable portion of the data. Finally, we provided

a means to allow some user defined fuzziness or approximation to be incorporated into the

resulting subsets of data in both the row and column dimensions.

With our real world example, the integration of the bioassays of ToxCast proved chal-

lenging because of the complicated association amongst the bioassays. As a demonstration

of the variation in bioassay type, one type of ToxCast bioassays are Attagene bioassays that

measure cis-acting and trans-acting transcription factors using human liver cells(Martin et al.,

2010). Another example is BioSeek bioassays that detect different biomarkers and risk fac-

tors, like cytokines, chemokines, growth receptors, biological mediators and enzymes, from

various human primary cells, such as endothelial, smooth muscle and fibroblasts(Houck et al.,

2009). The activity of a chemical perturbation within a bioassay is expressed as a potency

(like EC50, IC50, AC50) or lowest effective level of activity detected beyond normal function-
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ing. Non-activation can be interpreted as high chemical concentration resulted in no detectable

chemical activity. This means even the numeric values of chemical activity have complicated

association because of the variety of ways they were expressed as a potency and the variation

of amount of chemical needed to cause a response. These problems of association between

bioassays can be attributed to the variation of technology and organism type within bioassays

and differences in how chemical perturbation was measured. Furthermore these problems

with association caused variation in precision, accuracy and introduced more ambiguity into

the data integration of the bioassays. Attempting to associate the bioassays with ToxRefDB

animal endpoints is a challenging task because many of the bioassays utilized human tissues

and cells; whereas, the endpoints were derived from rats, mice and rabbits. Although used as

animal models of humans systems rats, mice and rabbits do not always respond biologically

similar to humans(Mestas and Hughes, 2004; Clemencet et al., 2005; Gibbons and Spencer,

2011). Recall that the preliminary investigations by both the Reif et al. and DiMaggio et al.

indicate that the ToxCast is quite sparse, with highly variable amounts of inconsistency espe-

cially amongst the bioassays as demonstrated by the modest subset of the data that is used in

both analyses and the small number of important results that are reported.

3.3.2 Large Datasets

Integration of data from multiple data sources to identification of association between response

and explanatory variables can prove to be challenging because it typically involves trying to

analyze large datasets. With traditional analyses this may prove to be less problematic but

when looking at subsets of data depending on the minimum row threshold and density of the

data the number of combinations one might have to consider can become computationally

prohibitive. The number of all possible subsets based upon the number of columns is given

by 2c − 1, where c represents the number of columns in a data matrix. Given a data matrix

with few columns as depicted in figure 3.1, the number of subsets is relatively small, but for

even 30 columns all possible subsets will be over a billion different subset combinations. To
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Figure 3.1: Subset Combinations. Data matrix of n rows and 5 columns depicted on left,
results in 31 different subsets based upon all combinations of columns as shown on right.

help address this challenge one would want to set the minimum row threshold to consider a

reasonable portion of the data as to provide relationships that are most likely true in addition

to reducing the number subsets considered. Moreover one would want to require that all

relationships consider are only ones that contain at least one response and one explanatory;

thus, further reducing the number of combinations of rows that would need to be considered.

Obviously, the more sparse the dataset the fewer number of subsets that the algorithm has

to consider, but in cases of dense or large datasets one can consider further limiting subsets

that are considered in the analysis. Three plausible techniques are limiting the analysis to

only subsets that involve certain response variables, limiting the analysis to subsets that are

multivariate in the sense that they contain two or more response variables, and perform a round

of data reduction where columns that are highly correlated are combined prior to analysis.

The final option for dealing with very dense data is to run the algorithm on the negative

space (zeros) since they should be sparse given that the positive space is dense. Although

ToxCast dataset was composed of over 900 columns it was sparse enough that the minimum

row threshold was set at 40 rows, roughly a support threshold of 0.16.
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3.3.3 Prioritization of Results and Multivariate Association

The number of subsets that support an association between response and explanatory variables

can be quiet large; thus, making a challenge to prioritize the importance of the resulting sub-

sets. The statistic that quantifies the association between response and explanatory variables

can be used to rank the results. A better way to prioritize is to provide a p-value as a means

to determine within the type-I error, the number of subsets that reach that significance level

with regards to the statistic that provided the strength of association between response and ex-

planatory variables. Recall in hypothesis testing the p-value is the probability of obtaining a

test statistic at least as extreme as the one observed under the assumption that the null hypoth-

esis is true. Moreover, the probability of committing a type-I error is the significance level

of the hypothesis test, it indicates the probability of accepting false positive results. Because

all results are derived from the same data sources and we test each one for significance, we

must provide a means to control for the increase in type-I error that occurs when performing

multiple tests. This is simply done by adjusting the p-value using the False Discovery Rate

(FDR) (details about the adjustment can be found in Benjamini and Hochberg (1995) paper).

There exist frequent itemset and biclustering methods, like BicBin, that will create subsets

of data given a binary dataset and set of threshold criteria, and a few, like BicBin, will rank

the importance of the resulting subsets. To the best of my knowledge there are not any that

also provide significance adjusted for multiple testing as well as a statistic that indicates the

strength of the relationship between response and explanatory variables.

A multivariate response is defined by an association that includes more than one response

variable. Identification of association between response and explanatory variables where there

exists at least two or more response variables can prove to be challenging using traditional

means of analysis. Typically one would need to know in advance which response variables

might be associated with each other or attempt to determine this prior to modeling. By reduc-

ing the problem to one of binary data where one searches for all patterns of association that

involve response and explanatory variables, one can easily identify all patterns that involve a

65



multivariate response as long as the minimum row constraint is met.
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Chapter 4

Mining for Association

4.1 Approach

Identification of associations that exist between response and explanatory variables when the

data under consideration comes from multiple sources or where a nontrivial amount of noise

has been introduced into the data makes using classical methods of analysis difficult. When

there exists a variable signal to noise ratio within a single data source or across data sources,

considering the entire data record (using all the data) is misleading due to the underlying

noise (inconsistency) which masks true associations that exist within one’s data. One way of

dealing with this problem is to find subsets of data that contain the strongest associations. As

mentioned in Chapter 3, biclustering methods enable one to subset the data simultaneously

by rows and columns. Consider the case where the numeric association between the data

is so complicated that attempting to quantify the level of response beyond a binary sense

(event occurred or it did not) just confounds the association between explanatory and response

variables. If dealing with binary data, closed frequent itemset mining can be used to subset the

data down by rows and columns simultaneously to discover all patterns of association between

the data given a minimum row/support threshold. A measure of the strength of association is

applied to the resulting subsets to determine which are most important with regards to the

relationships between response and explanatory variables. Adjustments to the data mining
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Figure 4.1: Subsetting Binary Data with Frequent Itemset Mining. The market basket list
on the left contains transaction ids (TID) and their corresponding list of grocery items pur-
chased for each transaction. This list is transformed into observations/subjects and their cor-
responding list of response and explanatory variables that have a response(one) for that obser-
vation/subject. The market basket list corresponds to the data in the binary matrix below it,
such that column D(Diapers) has a value(is listed) for rows(transactions) 2, 4 and 5. To find all
subsets, this data is transformed into the lattice on the right such that each node in the lattice is
labeled by a column(s) (Item) and each node contains an associated list of rows(transactions)
where that column(item) has a value of one(white cell). This lattice displays all 31 possi-
ble subsets, even though only 25 contain data. The data structures can hold response and
explanatory variables and observations/subjects instead of market basket data.

methods allow user defined amounts of fuzziness/approximation to be incorporated into the

results to enable them to be more tolerant of the underlying noise within the data.

Figure 4.1 shows how the typical market basket example of frequent itemset mining can

be associated with a binary matrix of data such that the columns of the matrix represent the

’items’ and the columns represent the ’transactions’ of that market basket. The grocery items

that exist for a transaction correspond directly to a cell in the binary matrix that contains a one

(white cell). On the right is a lattice that provides all possible combinations of the columns of

the binary matrix; thus, providing all possible subsets of the binary data matrix. Notice each

node in the lattice is labeled by one or more columns (items) and that is associated with a list

of rows (transactions - red numbers beside the node) for which this column(s) contain a one.

As stated in the previous chapter the number of all possible subsets of the binary data matrix

can be calculated by 2c − 1, where c represents the number of columns in the matrix. The
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Figure 4.2: Itemset Mining Definitions. Frequent Items sets are those that meet minimum
support threshold (minimum number of transactions/rows). The 25 nodes above the purple
line represent frequent itemsets when the minimum support threshold is set to 1 transaction.
Closed Frequent Itemsets are a subset of all frequent itemsets; thus, frequent Itemsets where
none of the immediate supsersets (children) contain the exact same support transaction/row
list are closed frequent itemsets. The 12 shown are nodes enclosed by a bold black oval.
Maximal Frequent itemsets are a subset of closed frequent itemsets; such that, any closed
itemset that has no frequent supersets (children) is a maximal frequent itemset. The 3 shown
are the nodes enclosed by bold blue oval.

number of subsets that can be created for any given data matrix depends upon the density of

the data; notice now in figure 4.1 only 25 of the 31 nodes contain data. The market basket

data can be easily replaced by data that represents explanatory and response variables as the

columns/items and the observations/subjects as the rows/transactions.

The explanatory and response variables were chosen to represent the items (columns) such

that all possible combinations of these variables could be explored for relationships that exist

between them. Moreover in frequent item mining the number of subsets explored is limited by

a row/transaction threshold. This is a desired property because it limits the subsets considered

to the number of observations that support that subset of data. We feel that a reasonably sized

threshold will help guarantee the results are more likely to be true relationships within the

data and not due to random chance. Specifically, only subsets (nodes in the lattice) meeting

the minimum support threshold (minimum number of transactions/rows) will be explored.

To aid the explanation of the methods we used a few concepts of data mining diagramed in
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figure 4.1. Notice the tree representation in figure 4.1 begins with a null(empty set) root node

with the nodes directly connected below defined as its children nodes. Thus, the root node

is the parent node of each of its children. Excluding the root node, child nodes are always

supersets of their parent node; thus, they will have at most the same transaction(row) support

if not less support than their parent node. This means that if a node does not meet the minimum

support threshold then none of its children will meet the support criteria either. Thus, traversal

of the tree down that branch can be stopped (pruned) since it will not result in more subsets

being added to the results. This concept of pruning based upon a downward closed property

is known as the Apriori algorithm for frequent itemset generation in data mining(Han and

Kamber, 2006).

This concept applied to the tree in figure 4.1 produces the 25 frequent itemsets generated

when minimum support threshold is set to one transaction, as depicted as the nodes above the

purple line. Closed frequent itemsets are a subset of frequent itemsets; such that, a frequent

itemset where none of its immediate supersets (children) contains the exact same support

transaction list is a closed frequent itemset. The 12 closed frequent itemsets in figure 4.2

are encircled by a black oval. Additionally, maximal frequent itemsets are a subset of closed

frequent itemsets; thus, a closed frequent itemset who has no frequent supersets (children) is

a maximal frequent itemset. Notice in the tree graphic in figure 4.2 the 3 maximal frequent

itemsets encircled by a blue oval can be viewed as the leaf nodes of the tree.

The methods that we employed to find subsets of data to explore the relationship between

explanatory and response variables involved finding all closed frequent itemsets given a min-

imum support threshold. Our methods focused upon closed itemsets because closed itemsets

have the property that none of their immediate supsersets (children) contain the exact same

support transaction list; thus, maximizing the information (number of explanatory and re-

sponse variables) given for a set of observations/subjects. This provides more information

that can help validate the resulting subsets using outside literature. Furthermore using closed

frequent itemsets allows for user defined amounts of of fuzziness/approximation to be in-
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corporated into the results, which enables the results to be more tolerant of the underlying

inconsistency within the data.

4.1.1 Closed Frequent Itemset Mining for Association

The methods we employed to find all closed frequent itemsets for a given minimum support

threshold involved using a depth first tree to along with a few modifications to improve effi-

ciency. To begin with the items (here response and explanatory variables) in the binary data

matrix are sorted and the most frequent are added into the tree first. In addition, potential

children of a newly added item can only be derived from items that occur after that newly

added item in the sorted list of items. Looking at the tree in figure 4.3 this means that item

A would have the highest support as compared to items B-E to adhere to the rule that most

frequent items are added first to the tree. Notice that this is not the case in our cartoon exam-

ple, item C is the most frequent and would have been listed as the first node if this tree had

adhered to the methodology that we used. Although not true for the example tree in figure 4.3,

imagine that the frequency of items A-E resulted in a list that was in alphabetical order when

sorted from most frequent to least frequent item (item A was most frequent and E least). Thus

using the next rule for efficiency item A’s potential children are items B-E; whereas, item B’s

potential children are items C-E. Using such a rule results in visiting each of all possible sub-

sets (nodes) only once during tree traversal. In figure 4.3 the blue lines (dark blue solid and

light blue dashed) indicate the tree traversal that would visit each of the 25 frequent itemsets

once based upon this rule. These two techniques for efficient tree traversal are similar to ones

described by Wang et al. (2006) their paper that details their algorithm for discovering closed

cliques.

The next efficiencies on tree traversal apply only to algorithms that find closed frequent

itemsets because they prune certain branches of the tree once it is determined that an itemset

(node) is known to be not closed. Pursuing only closed itemsets (nodes) in the tree traversal

is similar to the methods described by Wang et al. (2006) in their paper that detailed their
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Figure 4.3: Efficiencies of Closed Frequent Itemset Mining. The red rectangle around the first
level nodes highlights the seed nodes that are required to contain at least one response and
one explanatory variable. The orange ovals around 3 of the nodes shows where traversal was
terminated once a child node determines its parent node is not closed. The green hexagon
depicts where traversal was terminated once a node is found to be not closed based upon
previously defined closed itemsets.

algorithm for discovering closed cliques. Putting the most frequent items first in the tree

increases the likelihood of finding most of the closed itemsets earlier in the process. Closed

itemsets can not be determined until all of a node’s children have been processed; thus, if an

itemset is determined to not be closed then traversal can stop because its remaining children

will also not be closed.

Looking at figure 4.3, the light blue dashed lines indicate where a branch was pruned (tree

traversal was halted) because the parent node was determined to not be closed by one of its

children. The three cases of this in figure 4.3 occur where the parent nodes are encircled

by an orange dashed oval. Normal depth first tree traversal using figure 4.3 would follow

the dark blue arrows beginning at the root node and proceed to the node labeled A, next to

node labeled AB until reaching node labeled ABCD. Since node ABCD has no children but

meets the minimum support threshold (1 transaction) it is the first closed set added to a hash

table that contains all closed sets. Next processing back up the branch it is determined that
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ABC is also a closed set since it doesn’t share the same transaction set with the only child it

has. Moreover, since the next node AB shares same transaction set with its child ABC it is

determined to not be closed thus further traversal of its children is halted.

The next efficiency is also related to checking if an itemset is not closed in order to prune

branches early. The check involves determining an itemset’s closed status based upon the

closed frequent itemsets that have already been added to the results prior to adding a node

to the tree. This check is done prior to adding a node into the tree as to prevent the work of

having to process that node’s children since they also will not be closed itemsets. This prevents

unnecessary tree traversals as depicted as the green dashed hexagon in figure 4.3 where node

CD was determined to be not closed because of closed frequent itemset ACD with identical

transaction list.

We have modified this algorithm to focus its subset finding on only those subsets that show

a relationship between response and explanatory variables. The first level nodes in the tree

must contain at least one response variable and one explanatory variable as shown in figure

4.3. Assuming that the set of response variables is smaller and more sparely populated but

more consistent with regards to variability we use this set of data to seed the first level tree

nodes. Specifically we create all closed frequent itemsets that involve one explanatory variable

and as many of the response variables as possible as long as the minimum support threshold

is met. The results are collected as the seed nodes; they contain the response variable(s) and

their children as the list of the explanatory variables that can form a potential closed itemset

with that response variable(s). The ability to target one closed itemset finding based upon

itemset composition using the seed nodes is unique to our algorithm, and enables the user to

focus the analysis upon only subsets that contain two or more response variables or specific

response and explanatory variable combinations.

The process to form the seed nodes involves running a modified version of our closed fre-

quent itemset mining algorithm. First all explanatory variables are sorted by frequency and

only kept if they meet the minimum support threshold. They are treated as the first level nodes
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in the tree. Their children are all the response variables sorted by frequency and kept only if

they in combination with the explanatory variable assigned to the first level node meets the

minimum support threshold. Next each first level node is run through our closed frequent

itemset mining algorithm to determine all closed sets formed from that one explanatory vari-

able and all of its response variable children. The results of running the closed frequency

itemset mining algorithm on all first level nodes are collected in a hash table. The hash table’s

key is the response variable(s) and the hash value is a list of all explanatory variables that form

closed sets with the hash key. Each hash key will be used to form the seed nodes that make up

the first level nodes of the tree our closed frequent itemset mining algorithm. The children of

each of those first level nodes are composed of the hash value, the list of explanatory variables

that formed a closed set with the response variable(s) hash key.

This assumption that the set of response variables is smaller, more sparely populated and

more consistent with regards to variability holds true for our real world example of ToxCast

data and in most typical modeling schemes. Generally researchers collect fewer final response

(endpoint) variables and collect them with more care because of their critical impact with

regards to the results of their research. Conversely with explanatory variables, researchers

attempt to collect many and may add in ones of questionable consistency in their efforts to

help ease the explanation of what is seen with their response variable(s). Many researchers

assume that useless explanatory variables will be determined and removed through the mod-

eling process. Often they have to guess what possible explanatory variables might influence

their response variables apriori based upon scant data provided by pilot studies and previous

research.

The final improvements to the algorithm enable it to quickly search through the closed

frequent itemsets when checking if a frequent itemset is defined as not closed because its items

are a subset of the items in a closed frequent itemset and also have an identical transaction

list. This part of the algorithm, dependent upon the number of closed frequent itemsets already

defined, can be time consuming. Specifically these efficiencies pertain to limiting the existing
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closed itemsets hash table to only those with potential overlap with the frequent itemsets and

creating an efficient hash key for this check.

When finding the seed nodes this efficiency involves addressing each explanatory vari-

able, meeting the minimum support threshold, separately finding all combinations of response

variables that formed closed sets with the explanatory variable. Specifically with seed find-

ing, the hash table that holds the resulting closed frequent itemsets can be recreated anew to

collect closed itemsets for each explanatory variable; thus, limiting the number of applicable

closed sets one must process through when determining if a frequent itemset is closed. This

is because each resulting seed node must contain a single explanatory variable to be relevant;

therefore, no two seeds spawned from different explanatory variables will ever be subsets of

each other.

When determining closed sets using each of the seed nodes, this efficiency involves creat-

ing an efficient hash key and the observation that only certain seed nodes will have overlapping

response variables. Seed nodes will overlap in response variable depending on whether or not

their response variables are subsets of each other. Therefore, once the seed nodes are defined

our algorithm builds a mapping to identify which seed nodes are subsets of each other. This

minimizes the number of closed sets one must consider when determining which frequent

itemsets are closed. Moreover, this part of the algorithm builds a hash key that consists of the

response variables and the number of items that the closed set contains. This enables a more

efficient search when determining whether or not a frequent itemset is closed because this

check should only consider certain seed nodes that the itemset is a subset of and only closed

sets that contain at least one more item than the frequent itemset.

One can visualize the outcome of our algorithm’s closed itemset mining by the cartoon

in figure 4.4. The left-hand side of figure 4.4 depicts a binary dataset, where ones are white

and zeros are black. The yellow boxes represent subsets of the data that have been identified

through data mining of the binary matrix for closed frequent itemsets (pink boxes). Our closed

frequent itemset mining algorithm identifies the pink boxes where response and explanatory
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Figure 4.4: Closed Frequent Itemset Mining to Identify Subsets within Binary Data. The left-
hand side depicts the discovery of closed frequent itemsets (pink boxes) to identify subsets of
data (yellow boxes). The right-hand side details how identified subsets of data are composed
of four states of association, a-d, between the response and explanatory variables.

variables are both active (ones). Once these closed itemsets have been identified, the algo-

rithm determines the observations that make up the other three of the four possible states of

the response and explanatory variables that are defined by the closed itemset. The right-hand

side of figure 4.4 depicts the four states, a-d, of the subset identified by closed frequent itemset

mining for response and explanatory variable activity (pink box). The red line indicates the

division between response and explanatory variables. The number of observations that deter-

mines a closed frequent itemset, a, is at least the minimum support threshold. The number of

observations that compose the other three states, b-d, is determined by the data.

The use of closed frequent itemset mining to determine subsets of data means that our

algorithm will produce overlapping closed frequent itemsets. Figure 4.5 depicts two response

and five explanatory variables (the seven rows) over a number of observations (columns) that

are included in one of the three closed frequent itemsets (colored boxes labeled by 1-3). The

colors within the boxes that denote the closed frequent itemsets indicates the activity overlap

between the three itemsets. The light green shade indicates observations, response and ex-

planatory variables are active (ones) for all three closed frequent itemsets, light teal indicates

activity for two of the three closed itemsets, and light blue indicates activity for only one of
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Figure 4.5: Overlapping Closed Itemsets. Rows indicated the response, R1,R2, and explana-
tory variables, E1-E5, columns the observations for which these three closed itemsets as in-
dicated by the three colored boxes include, 1-3. The color within the itemsets indicates the
activity (ones) overlap between them where light green shows active (ones) observations for
response/explanatory variables common to all 3 itemsets, light teal indicates active observa-
tions common to 2 of the sets, and light blue indicates active observations common to 1 of
the sets. The black cells within the itemsets indicates inactive observations that are included
because it is an approximate itemset. The black and white cells located outside of the itemsets
indicates explanatory variable activity for observations outside of the 3 closed itemsets.

the three closed itemsets. The black shade indicates inactivity and white indicates activity

but not membership to any of the three closed frequent itemsets. The black cells within the

three closed frequent itemsets indicate that these are approximate frequent itemsets whose

formation will be discussed in the next section.

All of the efficiencies mentioned above exist in the pseudocode described in detail in

Algorithms 5, 6, and 7. Algorithm 5 creates the initial seed nodes and Algorithm 6 uses those

seed nodes to create a depth-first tree that is used to determine all closed frequent itemsets that

meet minimum support threshold and response/explanatory variable criteria. Algorithm 7 is

used by both algorithms 5 and 6 as the recursive function that process each node in the depth-

first tree that finds all closed frequent itemsets. Notice that the resulting hash tables passed

into and out of Algorithm 7 are pass-by-reference so that results can be added and accessed

during the recursion. Additionally, the input SeedMap is only input by Algorithm 6 because

this algorithm uses the efficiency to only search closed itemsets where a possible overlap can

occur when determining a frequent itemsets closed status. Finally the exact form of the output
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of Algorithm 7 is dependent upon the algorithm in which this function is called.

Algorithm 5 FindSeeds (Finds Response Variable Seeds)
Input: SeedNodeHash = {({Rx1, · · · }, [Ex1, · · · , ExL]), · · · , ({Ry1, · · · }, [Ey1, · · · , ExO])},

Sorted List Explanatory Variables E′ = {E1, E2, · · · , EM}, Minimum Support Threshold S
Output: SeedNodeHash = {({Rx1, · · · }, [Ex1, · · · , ExL]), · · · , ({Ry1, · · · }, [Ey1, · · · , ExO])},

where key = {Rz1, · · · } and value = [Ez1, · · · , EzP ]) pair of Hash Table.

SeedNodeHash← ∅
for every Ri ∈ R′, do

ExplanatoryV Hash← ∅;
E′′ ← returnsChildList(Ri, E

′) where Ej ∈ E′ and Ej ∈ E′′ | support(Ri, Ej) ≥ S;
processNode(Ri, E

′′, S, ExplanatoryV Hash, ∅);
SeedNodeHash← addsResults(ExplanatoryV Hash);

end
return SeedNodeHash.

Algorithm 6 FindClosedFreqItemsets (Finds Closed Frequent Itemsets)
Input: SeedNodeHash = {({Rx1, · · · }, [Ex1, · · · , ExL]), · · · , ({Ry1, · · · }, [Ey1, · · · , ExO])},

Minimum Support Threshold S, Hash Maps Overlap between Seeds SeedMap
Output: closedFreqSetHash = {({Rx1, · · · }, {Ex1, · · · , ExL}), · · · , ({Ry1, · · · }, {Ey1, · · · ,

ExO})},where key = {Rz1, · · · } and value = {Ez1, · · · , EzP }) pair of Hash Table.

closedFreqSetHash← ∅
for every Keyi ∈ SeedNodeHash do

E′′ ← returnsChildList(Keyi, V aluei) where Ej ∈ V aluei and Ej ∈ E′′ |
support(Keyi, Ej) ≥ S;
processNode(Keyi, E

′′, S, closedFreqSetHash, SeedMap);
end
return closedFreqSetHash.
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Algorithm 7 processNode( )
Input: ParentNode P , ChildList E′ = {E1, E2, · · · , EM}, Minimum Support Threshold S, Pass-By-

Reference ResultsHash, Hash Maps Overlap between Seeds SeedMap
Output: Pass-By-Reference ResultsHash = {({KEY }, {V ALUE}), · · · , ({KEY },

{V ALUE})}
done← 0;
stop← length(E′);
i← 1;
while done = 0 and i ≤ stop do

if i = 1 and IsNOTClosed(P,Ei) then
if stop = 1 then

nChildren← ∅;
cNodeId← getNodeId(P );
done← 1

else
i = i+ 1;
nChildren = −1;

end
else

cNodeId← addNode(P,Ei)
E′′ ← returnsChildList(cNodeId, {Ei+1, · · · }) where Ei+1 ∈ E′ |
support(Ri, Ei+1) ≥ S;
addChildren(cNodeId,E′′)
nChildren← length(E′′)
pNodeId← getParentId(cNodeId)
if nodeIsNOTClosed(pNodeId) then

deleteNode(pNodeId)
end
if nChildren ≥ 1 then

processNode(cNodeId,E′′, S,ResultsHash);
end
i = i+ 1;

end
if nChildren = ∅ then

while cNodeId 6= ∅ do
nxtNodeId← getParentId(cNodeId)
addNodeToResults(cNodeId,ResultsHash)
deleteNode(cNodeId)
if nodeProcessedAllChildren(nxtNodeId) then

cNodeId← nxtNodeId
end

end
end

end
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4.1.2 Approximate Frequent Itemsets

To help deal with the challenge of identifying association between response and explanatory

variables amongst noisy, inconsistent data our methodology allows for unbiased integration

of fuzziness into the results. An approximate (fuzzy) frequent itemset can be defined as one

which includes items that might not be fully supported (active/binary value of one) for all

transactions included in a particular itemset. For our algorithm, this means that some of the

explanatory variables that define an approximate (fuzzy) frequent itemset might not fully be

supported (maybe inactive/binary value zero) for some of the observations that are included in

that approximate itemset. Specifically, the user defines row and column bounds for fuzziness

(minimum proportion of ones for any column or row) for an approximate frequent itemset

and the algorithm provides all approximate itemsets within those bounds based upon existing

closed frequent itemsets using methods similar to ones described by Cheng et al. (2008).

Response variables were excluded from this fuzziness (inactivity) for an approximate itemset

because we required a stronger association amongst response variables if they are multivariate

(more than one response variable in an itemset). Additionally, with our real world example,

there is less inconsistency amongst the response variables as compared to the explanatory

variables.

With our real world example, approximateness is restricted to explanatory variables be-

cause the imprecision of the results can be attributed to the variability within the explanatory

variables. With the ToxCast data given the variability of the technology, cell/tissue and or-

ganism type, the bioassay results may contain between bioassay imprecision and experience a

weakened signal for certain chemicals. Thus, it is possible that the activity (chemically active

or inactive) of some of the bioassays might have been incorrectly classified. Allowing for

approximate frequent itemsets provides the sets of bioassays and endpoint(s) that share chem-

ical activity for a subset of chemicals in the presence of the result variability of the bioassays.

Approximate frequent itemsets could help distinguish which pathways were activated by al-

lowing for a larger number of bioassays to be included within the result set, because more
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Figure 4.6: Mining for Approximate Frequent Itemsets. Given row constraint of 0.75 and col-
umn constraint of 0.50 proportion of ones, the two matrices depict two approximate frequent
itemsets based upon the closed frequent itemsets in the tree on the right. The red highlighted
matrix is an approximate itemset formed by taking union of closed itemsets ABC, ACD, and
ABCD.The orange highlighted matrix is an approximate itemset formed by taking union of
closed itemsets ACD and ACDE.

bioassays provide more information about the itemset. Since many bioassays are involved in

multiple pathways, increasing the number of bioassays included within a result set may clarify

the activated pathway with this increase in information.

Our algorithm creates approximate frequent itemsets from the resulting closed frequent

itemsets based upon user defined row and column constraints on the minimum proportions of

ones required for the rows and columns that compose an itemset. The approximate frequent

itemsets are created by taking the union of select resulting closed itemsets; such that, the

approximate frequent itemsets are added to and the closed itemsets that they originated from

are removed from the final results set. Our method focuses solely upon creating approximate

frequent itemsets using the maximal frequent itemsets (leaf nodes) in a top-down fashion that

collapses these sets with the closed frequent itemsets located levels above as depicted in figure

4.6. This collapse consists of taking the union of a maximal frequent itemset with a set located

one level above and accepting the resulting set if it meets the row and/or column constraints.
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The collapse considers all combinations of sets that have connections within the the tree and

the collapse continues up the levels of the tree until row or column constraints are broken or

the root node is reached. Note that the inclusion of an approximate frequent itemset within

the results concludes with the removal of its founding closed itemsets from the results.

Looking at figure 4.6 given the row constraint of 0.75 and column constraint of 0.50 with

regards to the proportion of ones (white boxes depicted in matrix), this figure shows two

approximate itemsets. The first approximate itemset is formed by the union of closed itemsets

ABC and ACD with maximal itemset ABCD and depicted by the matrix highlighted with red

dashed line. The second approximate itemset is depicted by union of closed itemset ACD with

maximal itemset ACDE and depicted by matrix highlighted with orange dashed line. The

closed itemsets textitABC, ACD, ABCD, and ACDE are removed from the resulting closed

itemsets since they are now included as part of the two approximate itemsets.

The methods we employ are similar to the AC-Close algorithm described by Cheng et al.

(2008) with regards to using row and column constraints to collapse closed itemsets in a

top-down fashion breadth-first manor that takes the union of closed sets to form approximate

frequent itemsets. One primary difference between AC-Close and our algorithm is that we

only consider approximate frequent itemsets whose creation is initiated from a maximal fre-

quent itemsets instead of also including those that originate from closed frequent itemsets that

are not maximal. Additionally our algorithm considers all possible combinations of closed

sets whom meet the row and column constraints when taking the union of closed sets as they

move up to levels closer to the root node. Whereas, the AC-Close algorithm will solely con-

sider the union of all closed sets that meet row constraints as a single unit that will either pass

the column constraint and be considered an approximate frequent itemset or fails to meet the

constraint and be pruned. In this way our methodology is similar to Liu et al. (2006) AFI al-

gorithm because they both produce overlapping approximate itemsets, as illustrated in figure

4.5. The primary difference between AFI, and our algorithm is that it is a bottom-up as op-

posed to top-down algorithm. The top-down methodology allows our algorithm to be scalable
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for much larger datasets than AFI. The final difference is our algorithm has the core pattern

factor, α, set to one instead of allowing α to range between one and zero.

Our algorithm considers approximate frequent itemset formation originating solely from

maximal itemsets (leaf nodes) because these nodes will most likely result in the formation

of approximate frequent itemsets given stringent column and row constraints. Moreover, the

process is likely to collapse itemsets that contain a good deal of overlap together into a single

approximate itemset, which simplifies the results. Because of the uncertainty on what provides

the optimal union of closed sets when forming approximate itemsets, our algorithm allows all

combinations to occur and relies upon the statistic of association to determine which of the

resulting itemsets are most significant.

4.1.3 Statistic of Association

Strength of association between the two binary variable sets, the response variables and the

explanatory variables, is assessed using the phi coefficient. The phi coefficient is commonly

used to determine the strength of association between two binary variables (Chedzoy, 2006).

Specifically the phi coefficient is an expression of the amount of consistency (both variables

share same value) and inconsistency (variables differ in value) that exist between the two

binary variables (Chedzoy, 2006). To calculate the phi coefficient (see Equation 4.1), the

number of observations that are associated with each of the four categories that exist between

the two binary sets of variables is determined as depicted in the contingency table in figure 4.7.

A chi-square statistic with one degree of freedom can then be calculated based upon the phi

coefficient (see Equation 4.1) as shown by Equation 4.2 using the counts in the contingency

table in figure 4.7. Based upon this chi-square statistic, a p-value can be calculated to deter-

mine the significance of the strength of association between the two sets of binary variables. In

cases where cell sizes of the contingency table are small, a Fisher’s exact calculation is more

appropriate to prevent one from failing to identify a significant association. This should not be

an issue for truly consistent subsets because the minimum support threshold should be large
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enough that cell a should overshadow small cell sizes in cells b-d. When performing multiple

tests of strength of association for different binary variables based upon the same set of obser-

vation it is necessary to adjust the p-value to account for the increase in type-I error that occurs

due to multiple testing. The p-values used to determine significant results have been adjusted

for multiple testing using the False Discovery Rate (FDR) adjustment correction, details can

be found in Benjamini and Hochberg (1995) paper.

Φ =
(a ∗ d)− (b ∗ c)√

(a+ b) ∗ (b+ d) ∗ (a+ c) ∗ (c+ d)
(4.1)

χ2 = (a+ b+ c+ d) ∗ Φ2 (4.2)

Our use of the phi coefficient differs slightly from its traditional use because we are look-

ing at association between to sets of binary variables as opposed to two binary variables.

Therefore, these sets of binary variables represent distinct patterns where all variables in a

set can be active(ones) or inactive(zeros). Because we are looking at sets of variables this

means certain observations may remain undefined because they contain a mixture of activity

(ones and zeros) for given a set of variables. In this sense, we subset the observations under

consideration down to data that can be defined as active or inactive given a variable set defini-

tion and we test for strength of association between the two variable set combinations. Using

the phi coefficient we are attempting to judge the consistency between two variable sets, here

response and explanatory variables, over a subset of data in which the phi coefficient can be

clearly defined. Because the four categories of the contingency table are so closely related to

each other, we only have to mine for one of the four cells of the contingency table to define

the others when calculating strength of association between two variable sets. In our case,

we use closed frequent itemset mining to define all combinations of response and explanatory
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Figure 4.7: Statistic of Association. Binary matrix shows mined closed frequent itemset
R1,R2,E1,E7,E9,E11,E14 as indicated by pink box labeled a. The other three categories of
data denoted by b, c, and d define the remaining 3 combinations of response and explanatory
variables in the contingency table below the matrix. This contingency table depicts the data
partitioning used to determine strength of association between the two binary sets, response
variables and explanatory variables. Observations that cannot be classified by the 4 categories
are ignored.

variable sets that are all active (ones). The only criteria placed upon the combinations dis-

covered is that they contain at least one response and explanatory variable and that they meet

the minimum support threshold for active observations. The cartoon in figure 4.4 depicts the

closed frequent itemsets where response and explanatory variables sets are all active (a, pink

box) and its associated subset that contains all four categories (a-d, yellow box).

The data matrix on top of figure 4.7 depicts an example closed frequent itemset R1, R2,

E1, E7, E9, E11, E14 as indicated by the pink box labeled a and its similarly labeled cell

in the contingency table below the matrix. The remaining three cells of the contingency ta-

ble, b-d, are indicated by the blue lines and letter labels in the data matrix. Once the mined

closed itemsets have been defined, in our case where both response and explanatory variables

are all active, the remaining three categories can be calculated by a single pass through the
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Figure 4.8: Statistic of Association for Approximate Itemsets. Primary difference between
calculating phi coefficient for approximate itemsets as compared to closed itemsets is that
approximate itemsets allow some proportion of zeros in the observations that define the four
categories of the contingency table for the explanatory variables (only).

data. This determines the strength of association for each of the variable sets as defined by

the mined closed itemsets and adjusts this value to determine its significance with regards to

the entire dataset. Therefore given a threshold of support, in our case the number of obser-

vations that must be all active, we can rank and determine which subsets of data are most

statistically significant, regarding strength of association, given the entire distribution of the

data. This provides a powerful way to determine which subsets of data most likely show a

true association between explanatory and response variables when considering all possible

enumerations. Given noisy and inconsistent data, this methodology can provide insight into

determining novel associations between explanatory and response variables that could not be

efficiently discovered without prior knowledge of a likely relationship between explanatory

and response variables.

The phi coefficient could also be calculated for approximate sets in the results, where the
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explanatory variable set could now contain a mixture of ones and zeros as long as they did

not exceed the row and column constraints placed upon approximate sets as defined by the

user. The count for the contingency cell that represented when the response and explanatory

variables were considered active is indicated by the pink box and letter a in figure 4.8 is given

by the number of observations (support) that an approximate frequent itemset has. The more

challenging issue is to define the remaining three categories while allowing the same user de-

fined approximation for the explanatory variables. The algorithm first uses the results from

the approximate sets to define the sets of response and explanatory variables under consid-

eration. Then in a single pass through the algorithm defines three sets of observations that

meet the row and column constraints placed upon approximate sets. Next for each of the three

sets, the algorithm combines the observations in similar fashion to finding an approximate

set based upon closed frequent itemsets to determine the maximum number of observations

that can be combine without breaking column and row constraints. Whichever combination

gives the maximum count becomes the observations used for the set associated to the cell of

the contingency table when calculating the phi coefficient. The chi-square statistic and FDR

adjustment of the p-value are then calculated using these counts. The approximate frequent

itemsets represent the union of closed frequent itemsets; thus, results including approximate

frequent itemsets also include closed frequent itemsets that could not be made approximate

and the FDR adjustment of the p-values account for all these results.

4.2 Results with Real World Example

The purpose of our method is to identify relationships that show association between sets

of response and explanatory variables when the data under consideration is noisy and incon-

sistent. The data relationships are so complicated and contradictory that the only reliable

information that can be deduced is in a binary sense that either a response occurred or it did

not occur. Additionally determining relationships amongst the data proved to be so difficult

87



that using traditional methods of analysis failed to produce substantial results. A real world

example of such data is the EPA’s ToxCast and ToxRefDB programs, ToxRefDB contains a

multitude of animal study endpoints and ToxCast contains bioassay responses to the same set

of potentially toxic chemicals (Dix et al., 2007; EPA, 2010a; Judson et al., 2009; Martin et al.,

2009a; Knudsen et al., 2009; Martin et al., 2009b; EPA, 2010b). As discussed previously

preliminary investigations by both Reif et al. (2010) and DiMaggio et al. (2010) indicated

that the data collected from the first round of ToxCast is quite sparse, with highly variable

amounts of inconsistency when associating toxicity of the chemicals based upon the associa-

tions between the bioassay and the animal study endpoints. The goal was to find significant

associations between the 289 ToxRefDB animal study endpoints, as the response variables,

and the 659 ToxCast bioassays, as the explanatory variables, over the set of 283 potentially

toxic chemicals that were common to both studies, see table 3.1.

4.2.1 Closed and Approximate Frequent Itemsets

There were 22,881 closed frequent itemsets formed with a frequency support threshold of

approximately one-sixteenth (40) of the chemicals common to both studies. These itemsets

include up to six ToxRefDB animal endpoints and as many as ten ToxCast HTS bioassays

with chemical support threshold of at least 40 of the chemicals. The initial seed nodes of

these 22,881 closed itemsets consisted of 58 unique sets of ToxRefDB animal endpoints that

had an association to at least one ToxCast HTS bioassay. The approximate itemset algorithm

is run on the maximal frequent itemsets (leaf nodes) of these closed sets with row and col-

umn thresholds set to 0.70 or greater proportion of ones in the 18,098 resulting approximate

sets. All 58 seed nodes had at least one approximate frequent itemset and up to twelve HTS

bioassays were included in these approximate itemsets. The approximate itemsets involved

combining as few as two and as many as six different closed sets; thus, resulting in a total

of 25,380 closed or approximate itemsets, where 18,098 were approximate and 7,282 were

closed frequent itemsets that were not involved in the creation of the approximate itemsets.
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The phi coefficient and its corresponding p-value were calculated for all 25,380 resulting sets,

these p-values were then adjusted for multiple testing using the FDR correction provided by

the R p.adjust() function in the stats package. Table 4.1 displays all 25,380 resulting itemsets

grouped by the 58 seed nodes and classified by their type (closed or approximate) and their

significance. Table 4.1 shows that 6.2 percent of the itemsets could be attributed to sets that

include more than one animal endpoint (multivariate response) and of those 25.1 percent had

adjusted p-values that were significant at α of 0.05. This is a higher rate of significance as

compared to all 25,380 itemsets, only 19.2 percent of these had significant adjusted p-values.

The multivariate (2+ animal endpoints) significance has not been explored in depth by

other research groups like Reif et al. (2010) and DiMaggio et al. (2010); therefore, the next

sections are going to focus upon the analysis of two of the thirty-eight seed nodes that rep-

resent this multivariate response with regards to the association between sets of response and

explanatory variables. The two selected seed nodes are indicated by *** in table 4.1, we chose

one of the smallest and one of the largest two endpoint seed nodes, where size refers to the

number of itemsets associated to a seed node. These were selected to demonstrate one way to

effectively analyze and verify the significant itemsets of a seed node regardless of the number

of itemsets associated to the seed node.
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ToxRefDB Animal Endpoints #Apx Sets #Cls Sets #Total #Signif
(6) Chrn: Mouse: Liver Tumors, Any Liver Lesion, Preneoplastic Liver Lesion,
Tumorigen, Prolifertve Liver Lesions, Neoplastic Liver Lesion 6 24 30 1

(5) Chrn: Mouse: Preneoplastic Liver Lesion, Tumorigen, Any Liver Lesion,
Rat: Any Liver Lesion, Prolifertve Liver Lesions 0 1 1 0
(5) Chrn: Mouse: Liver Tumors, Preneoplastic Liver Lesion, Tumorigen,
Any Liver Lesion, Neoplastic Liver Lesion 6 30 36 2

(4) Chrn: Mouse: Preneoplastic Liver Lesion, Any Liver Lesion, Prolifertve Liver Lesions ,
Rat: Any Liver Lesion 6 21 27 5
(4) Chrn: Mouse: Preneoplastic Liver Lesion, Tumorigen,
Any Liver Lesion, Prolifertve Liver Lesions 6 36 42 3

(3) Chrn: Mouse: Any Liver Lesion Rat: Any Liver Lesion, MultiGenReprdctv: Rat: Liver 0 6 6 2
(3) Chrn: Mouse: Tumorigen, Any Liver Lesion Rat: Any Liver Lesion 0 3 3 0
(3) Chrn: Mouse: Any Liver Lesion Rat: Any Liver Lesion, Prolifertve Liver Lesions 0 1 1 1
(3) Chrn: Mouse: Any Liver Lesion Rat: Any Liver Lesion, Liver Hypertrophy 0 1 1 1
(3) Chrn: Mouse: Any Liver Lesion, Liver Hypertropy Rat: Any Liver Lesion 0 1 1 0
(3) Chrn: Mouse: Preneoplastic Liver Lesion, Tumorigen, Any Liver Lesion 5 32 37 3
(3) Chrn: Mouse: Preneoplastic Liver Lesion, Any Liver Lesion, Prolifertve Liver Lesions 143 309 452 122
(3) Chrn: Rat: Prolifertve Liver Lesions, Any Liver Lesion, Preneoplastic Liver Lesion 6 14 20 4

***(2) Chrn: Mouse: Any Liver Lesion Rat: Any Liver Lesion 44 102 146 69
(2) Chrn: Mouse: Any Liver Lesion Develpmt: Rat: Skeletal Axial 5 7 12 0
(2) Chrn: Mouse: Any Liver Lesion Develpmt: Rabbit: Pregnancy Rel Matrnl Preg Loss 0 5 5 0
(2) Chrn: Mouse: Any Liver Lesion MultiGenReprdctv: Rat: Liver 2 40 42 15
(2) Chrn: Mouse: Any Liver Lesion Rat: Tumorigen 6 11 17 2
(2) Chrn: Mouse: Preneoplastic Liver Lesion, Any Liver Lesion 95 255 350 111
(2) Chrn: Mouse: Tumorigen, Any Liver Lesion 15 73 88 8
(2) Chrn: Mouse: Any Liver Lesion Rat: Any Kidney Lesion 0 3 3 0
(2) Chrn: Mouse: Any Liver Lesion Rat: Prolifertve Liver Lesions 0 2 2 0
(2) Chrn: Mouse: Any Liver Lesion, Liver Hypertrophy 2 18 20 2
***(2) Chrn: Rat: Any Liver Lesion Develpmt: Rat: Skeletal Axial 6 8 14 3
(2) Chrn: Rat: Any Liver Lesion MultiGenReprdctv: Rat: Liver 2 23 25 10
(2) Chrn: Rat: Tumorigen, Any Liver Lesion 17 34 51 15
(2) Chrn: Mouse: Tumorigen Rat: Any Liver Lesion 0 8 8 1
(2) Chrn: Rat: Any Liver Lesion Develpmt: Rat: Genrl Fetal Weight Redctn 0 1 1 0
(2) Chrn: Rat: Any Liver Lesion, Any Kidney Lesion 2 8 10 1
(2) Chrn: Rat: Prolifertve Liver Lesions, Any Liver Lesion 5 22 27 3
(2) Chrn: Rat: Any Liver Lesion, Liver Hypertrophy 16 31 47 7
(2) Develpmt: Rat: Skeletal Axial, Rabbit: Pregnancy Rel Matrnl Preg Loss 0 4 4 0
(2) Develpmt: Rat: Skeletal Axial MultiGenReprdctv: Rat: Liver 2 7 9 3
(2) Chrn: Rat: Tumorigen Develpmt: Rat: Skeletal Axial 0 2 2 0
(2) Develpmt: Rat: Genrl Fetal Weight Redctn, Skeletal Axial 3 15 18 0
(2) Chrn: Rat: Tumorigen MultiGenReprdctv: Rat: Liver 0 1 1 0
(2) MultiGenReprdctv: Rat: Kidney, Liver 2 7 9 0
(2) Chrn: Mouse: Any Kidney Lesion, Kidney Pathology 0 1 1 0

(1) Chrn: Mouse: Any Liver Lesion 4,638 1,477 6,115 1,297
(1) Chrn: Rat: Any Liver Lesion, 12,024 3,019 15,043 2,907
(1) Develpmt: Rat: SkeletalAxial 102 341 443 2
(1) Develpmt: Rabbit: Pregnancy Rel Matrnl Preg Loss 39 115 154 5
(1) MultiGenReprdctv: Rat: Liver 648 497 1,145 273
(1) Chrn: Rat: Tumorigen 145 248 393 8
(1) Chrn: Mouse: Tumorigen 45 204 249 6
(1) Develpmt: Rat: Genrl Fetal Weight Redctn 20 52 72 0
(1) Chrn: Rat: Any Kidney Lesion 18 67 85 0
(1) MultiGenReprdctv: Rat: Kidney 4 16 20 0
(1) Develpmt: Rabbit: Pregnancy Rel Embryo Fetal Loss 0 18 18 0
(1) MultiGenReprdctv: Rat: ViabilityPND4 5 21 26 0
(1) Chrn: Rat: Prolifertve Liver Lesions 8 14 22 3
(1) Develpmt: Rat: Pregnancy Rel Embryo Fetal Loss 0 7 7 0
(1) Develpmt: Rabbit: Skeletal Axial 0 6 6 0
(1) Chrn: Rat: Any Thyroid Lesion 0 5 5 1
(1) Develpmt: Rat: Pregnancy Rel Matrnl Preg Loss 0 1 1 0
(1) Develpmt: Rat: Skeletal Appendicular 0 2 2 0
(1) Develpmt: Rabbit: Genrl Fetal Weight Redctn 0 2 2 0
(1) Chrn: Rat: Any Testes Lesion 0 3 3 0

Total: 18,098 7,282 25,380 4,896
Total 2+ Endpoints: 402 1,167 1,569 394

Table 4.1: Closed & Approximate Itemsets by seed node. Column(1) indicates seed node
endpoints, col(2) number of approximate itemsets, col(3) number of closed itemsets, col(4)
total number of itemsets, and col(5) number of total itemsets with significant adjusted p-value
for α at 0.05 level.
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Figure 4.9: Rat Skeletal Development and Liver Lesions Tree. The tree root is two endpoints,
each node (oval) off this root represents a results set. Each set is labeled with HTS bioassays
that make up its composition and its chemical support as S:xx, where xx defines number of
chemicals that support the set. Connections between sets represent percent overlap of chem-
icals shared between connecting sets. Six approximate sets are those that are sets encircled
three times with an * to indicate the approximate HTS bioassays. The 3 nodes encircled in
purple are significant for α of 0.05.

4.2.2 2 Endpoints: Rat Skeletal Development and Liver Lesions

As described in the methods section, itemsets were created such that animal endpoints and

HTS bioassays were all active for the same subset of chemicals. The number of active chem-

icals for a grouping of bioassays and endpoints that compose a set is referred to as the set’s

chemical support. The resulting itemsets where then grouped together based upon commonal-

ity of animal endpoint(s) that represented the response variables that made up the initial seed

nodes. One of the smallest two endpoint seed nodes is one that includes the endpoints: devel-

opmental rat skeletal axial, defined as the variations or abnormalities of the vertebral column,

ribs or sternum in a rat fetus, and chronic rat liver lesions, defined as any chronic rat liver

lesions. This endpoint seed node originally included 16 closed itemsets that contained from

1 to 4 different HTS bioassays and a chemical support that ranged from 40 to 51 chemicals.

These 16 closed sets were then used to create approximate sets which resulted in 14 itemsets,

where 6 of those are approximate. A representation of this two endpoint seed node with the

six approximate itemsets and 8 closed itemsets is depicted in Figure 4.9.

The following five human genes are ones associated with the activated bioassays of the

two endpoint tree: CCL2 chemokine (C-C motif) ligand 2, CXCL10 chemokine (C-X-C mo-
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tif) ligand 10, NR1I2 nuclear receptor subfamily 1 group I member 2, CYP3A4 cytochrome

P450 family 3 subfamily A polypeptide 4, and CYP2B6 cytochrome P450 family 2 subfam-

ily B polypeptide 6. Although the mechanism behind the association between liver disease

and metabolic bone disease is not fully understood, Ferencz et al. (2005) demonstrated that

experimentally induced liver cirrhosis in rats arrests skeletal growth and influences other as-

pects involved in bone metabolism (Ferencz et al., 2005). This two endpoint seed seems to

indicate that these five genes might be involved in the mechanisms that are associated with

liver disease, abnormal skeletal development and the association between the two. The lit-

erature indicates that expression of these five genes can be linked to diseases of the liver

and other biological responses associated with the two rat endpoints. For example, gene

expression profiling of alcoholic liver disease identified the genes CCL2 and CXCL10 are

involved in the immune response and gene CYP3A4 is involved with alcohol and xenobiotic

metabolism(Seth et al., 2003). Furthermore, expression profiling indicates that CXCL10 gene

is highly activated due to its association with inflammation in hepatic tissue of those who

suffer from non-alcoholic steatohepatitis, NASH (Baker et al., 2010). NASH is a form of

non-alcoholic fatty liver disease that is often associated with obesity and insulin resistance

(Baker et al., 2010). Additionally, Maglich et al. (2002) demonstrate how nuclear pregnane X

receptor (PXR - NR1I2) can regulate the expression of both CYP3A isozymes, like CYP3A4,

and CYP2B genes, like CYP2B6, in the detoxification response to a large range of chemicals

as observed in human hepatocytes (Maglich et al., 2002).

Figure 4.9 depicts the three sets out of the fourteen sets that are significant for α at 0.05

level. These three sets have bioassays that are associated with the genes NR1I2 nuclear recep-

tor subfamily 1 group I member 2, CYP3A4 cytochrome P450 family 3 subfamily A polypep-

tide 4, and CYP2B6 cytochrome P450 family 2 subfamily B polypeptide 6. Maglich et al.

(2002) demonstrate these three genes are involved in detoxification response in hepatocytes;

specifically, how nuclear pregnane X receptor (PXR - NR1I2) can regulate the expression of

both CYP3A isozymes and CYP2B genes in the detoxification response in human hepatocytes

92



Figure 4.10: Rat Skeletal Development and Liver Lesions heat map shows intricacy of the
relationship that exists between the rat skeletal development and liver lesion endpoints and the
five bioassays that constitute the three significant sets belonging to those endpoints regarding
chemical activity. The 320 columns represent the 309 chemicals of ToxCast and the 7 rows
represent the endpoints and bioassays. The blue to light green color on the graphic indicates
active chemicals that are members of one or more of the significant sets. White indicates
chemical activity but failure to be grouped as a member of one the significant sets and black
indicates chemical inactivity. Gray indicates chemicals that were not tested on the endpoints.

(Maglich et al., 2002). The complexity of the chemical activity as associated with the end-

points and bioassays of these three significant sets across the 309 ToxCast chemicals can be

seen in Figure 4.10. As depicted in Figure 4.10 when considering the entirety of the ToxCast

chemicals it is difficult to see the relationship between these two endpoints and the five bioas-

says of the significant set with regards to chemical activity. Figure 4.11 focuses on only those

50 chemicals that are active and members of at least one of the three significant sets, the figure

indicates which chemicals activate both endpoints and bioassays of the significant sets. Notice

that the coloring schemes in both figures 4.10 and 4.11 have the same meaning as in figure

4.5. As the color bar on right show, shade of blue and green indicate overlap between the

sets, gray indicates chemical that weren’t tested for those endpoints, white indicates chemical

activity that is not part of a set, and black indicates chemical in-activity.

Although not significant at the 0.05 level, ten of the remaining eleven sets had an adjusted

p-value of less than 0.2350 and were associated with the same three genes, NR1l2, CYP3A4

and CYP2B6, in addition to CXCL10 chemokine ligand 10. CXCL10 is is known to be asso-

ciated with immune response in alcoholic liver disease (Seth et al., 2003) and inflammation of
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Chemical CAS RN Is Apx Sig Sets Mjr Sets
2,4-DB 94-82-6
2,4-Dichlorophenoxyacetic acid (2,4-D) 94-75-7
3-Iodo-2-propynylbutylcarbamate 55406-53-6 x x
Acetamiprid 135410-20-7
Acetochlor 34256-82-1 x x
Acibenzolar-S-Methyl 135158-54-2
Butylate 2008-41-5 x
Carbaryl 63-25-2 x x
Carfentrazone-ethyl 128639-02-1 x
Chlorpropham 101-21-3 x
Clodinafop-propargyl 105512-06-9 x x
Cyproconazole 94361-06-5 x x
Cyprodinil 121552-61-2 x x
Dichloran 99-30-9 x x
Difenoconazole 119446-68-3
Emamectin benzoate 155569-91-8
Fenamidone 161326-34-7
Fenbuconazole 114369-43-6 x x
Fentin 76-87-9 x
Fluazinam 79622-59-6 x x
Flufenacet 142459-58-3 x x
Flusilazole 85509-19-9 x x
Hexaconazole 79983-71-4 x x
Isoxaflutole 141112-29-0 x x
Lactofen 77501-63-4 x x
Lindane 58-89-9 x x
Linuron 330-55-2 x
Metalaxyl 57837-19-1 x x
Myclobutanil 88671-89-0 x x
Nitrapyrin 1929-82-4 x x
Oxadiazon 19666-30-9 x x
Oxasulfuron 144651-06-9 x
Paclobutrazol 76738-62-0 x x
Permethrin 52645-53-1 x
Propanil 709-98-8 x x
Propiconazole 60207-90-1 x x
Pyrithiobac-sodium 123343-16-8 x x
Quintozene 82-68-8 x x
S-Bioallethrin 28434-00-6 x x
Sethoxydim 74051-80-2 x x
Simazine 122-34-9
Tebufenpyrad 119168-77-3 x x
Tetraconazole 112281-77-3 x x
Thiacloprid 111988-49-9 x
Thiazopyr 117718-60-2 x x
Thiram 137-26-8
Tralkoxydim 87820-88-0 x
Triadimefon 43121-43-3 x
Triflumizole 68694-11-1 x x
Triticonazole 131983-72-7 x

Table 4.2: Chemicals Common to Significant Sets for rat developmental skeletal axial and
chronic liver lesions endpoints seed node. 50 chemicals that are common to at least one of
the three significant sets for endpoints. First two columns indicate chemical name and CAS
registry numbers with the third column indicating ’approximate’ chemicals (inactivity for a
few bioassays in the significant sets). Fourth column indicates the 41 chemicals common to
all 3 significant sets and fifth column indicates 28 chemicals common to 13 sets with adjusted
p-values less than 0.2350.

94



Figure 4.11: Rat Skeletal Development and Liver Lesions heap map focuses on 50 chemicals
that are members of at least one of the three significant sets for the rat skeletal development
and liver lesion endpoint seed depicted in figure 4.9. The 7 rows represent the endpoints and
bioassay and the columns represent the 50 chemicals associated to the significant sets. The
blue to light green color indicates active chemicals that are members of at least one of the
three significant sets. White indicates chemical activity but failure to be grouped as a member
of one of the significant sets and black indicates chemical inactivity.

hepatic tissue with non-alcoholic steatohepatitis (Baker et al., 2010). Table 4.2 highlights the

chemicals that are active for both rat skeletal development and liver lesions endpoints along

with the bioassays of the sets that are associated to the four genes mentioned above. Table

4.2 contains the 50 chemicals that occur in at least one of the three significant sets, the fourth

column indicates the 41 chemicals that common to all three significant sets. The fifth column

indicates the 28 chemicals that were common to the three significant sets along with the ten

sets with adjusted p-values of less than 0.2350.

From the literature we demonstrate how the five gene targets of the activated bioassays

of the significant sets that compose this two endpoint seed node can be involved in diseases

of the liver, abnormal skeletal development, and the association between the two. For this

two endpoint seed node the 50 chemicals listed in Table 4.2 may precipitate diseases of the

liver, abnormal skeletal development, and the association amongst those two endpoints. The

fact that Ferencz et al. (2005) experimentally demonstrated that induced liver cirrhosis in rats

leads to arrested skeletal development adds to the credence of this unexpected data mining
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discovery found within the overlap of ToxCast and ToxRefDB data.

4.2.3 2 Endpoints: Rat and Mouse Liver Lesions

The larger two endpoint seed node included chronic mouse and rat endpoints for any liver

lesion. This seed node contained 146 sets, where 44 were approximate sets. These 146 sets

were composed of 1 to 7 different HTS bioassays and chemical support that ranged from 40

to 72 chemicals. The adjusted p-value classified 69 of the 146 sets significant for α at 0.05

level. When considering the analysis of these 69 significant sets, we further filtered them to

consider only those that had a consistency of at least seventy percent or higher. Consistency

was calculated using definition provided for in Figure 4.7, where its value is calculated as sum

of cells a and d over the sum total of all cells a-d. The analysis describe below considers

only 33 of the 69 significant sets; where, the sets had both statistical significance and high

consistency (≥70%).

The 33 significant sets of the 146 that compose this seed node encompass the activation

of 15 different HTS bioassays that are associated to 8 different genes. The following eight

genes are ones associated with the activated bioassays in these 33 sets: CCL2 chemokine (C-

C motif) ligand 2, NFE2L2 nuclear factor (erythroid-derived 2)-like 2, PLAUR plasminogen

activator urokinase receptor, HLA-DRA major histocompatibility complex class II DR alpha,

PPARg peroxisome proliferator-activated receptor gamma, NR1I2 nuclear receptor subfamily

1 group I member 2, CYP3A4 cytochrome P450 family 3 subfamily A polypeptide 4, and

CYP2B6 cytochrome P450 family 2 subfamily B polypeptide 6. Three of the eight genes are

associated the cytochrome P450 drug-metabolizing enzymes receptors: pregnane X receptor

(PXR) and constitutive androstane receptor (CAR). Specifically, the thirty-three significant

sets of this seed node included two assays for the gene NR1I2, which is directly associated

to PXR, and two assays for the gene CYP3A4, which is PXR-inducible. Furthermore, these

sets comprised of two assays are associated with gene CYP2B6, that can be induced by CAR.

Thus, these three genes can be associated to the activity of 6 out of the 15 HTS bioassays of
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the significant sets of this seed node that are directly linked to a specific gene response.

There exists some uncertainty as to whether gene CYP2B6 was directly activated by CAR

or if cross-talk amongst these cytochrome P450 receptors or another mechanism accounts for

its activation in the absence of response from bioassays associated with CAR, NR1I3. Kohle

and Bock (2009) demonstrate that there exists substantial cross-talk between the cytochrome

P450 receptors PXR, CAR, and AHR (Kohle and Bock, 2009). Plant and Aouabdi (2009) sug-

gest that besides CYP3A genes, PXR can activate the expression of other genes like CYP2B6

(Plant and Aouabdi, 2009). Younossi et al. (2009) support this claim by suggesting that new

substrates of CYP2B6 might share specificity with CYP3A4; thus, regulation of CYP3A4’s

transcriptional activation might be similar with regulation of CYP2B6 (Younossi et al., 2009).

Omiecinski et al. (2011) demonstrate that PRX and CAR cytochrome P450 receptors share

overlap amongst chemical ligands and within the genes they target (Omiecinski et al., 2011).

Specifically, receptors PRX and CAR are both able to transcriptionally activate CYP2B6 and

CYP3A4 which makes these receptors seem to perform as a dynamic, parallel set of gene regu-

lators with regards to xenobiotic metabolism (Omiecinski et al., 2011). Moreover, Omiecinski

et al. (2011) support that there exists significant cross-talk amongst PXR and CAR receptors

with regards to regulatory pathways involved with xenobiotic detoxication, adverse drug re-

actions, bile acid toxicity and pathophysiological conditions such as lipid metabolism and

cholestatic liver disease(Omiecinski et al., 2011). Finally as mentioned earlier, Maglich et al.

(2002) demonstrate how nuclear PXR can regulate the expression of both CYP3A isozymes,

like CYP3A4, and CYP2B genes, like CYP2B6, in the detoxification response as observed

in human hepatocytes (Maglich et al., 2002). This seems to suggest that both directly and

indirectly the drug-metabolizing enzyme receptor PXR is activated by chemicals of the thirty-

three sets that are associated with the genes NR1I2, CYP3A4 and CYP2B6.

The complexity of the chemical activity as associated with these rat and mouse liver le-

sion endpoints and the bioassays of these thirty-three significant sets across the 320 ToxCast

chemicals can be seen in Figure 4.12. Figure 4.12 show the entirety of chemical activity of the
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Figure 4.12: Rat and Mouse Liver Lesions heat map shows intricacy of the relationship that
exists between the rat and mouse liver lesion endpoints and the fifteen bioassays that constitute
the thirty-three significant sets belonging to seed node with regards to chemical activity. The
320 columns represent the 309 chemicals of ToxCast and the 17 rows represent the endpoints
and bioassays. The blue to yellow color on the graphic indicates active chemicals that are
members of at least one or more of the significant sets. White indicates chemical activity but
failure to be grouped as a member of one of the significant sets and black indicates chemical
inactivity. Gray indicates chemicals that were not tested on the endpoints.

ToxCast chemicals, from which it is difficult to see the relationship between these two end-

points and the fifteen bioassays of the significant sets with regards to chemical activity. Figure

4.13 focuses on those 62 chemicals that are active and members of at least one of the thirty-

three significant sets, and indicates which chemicals activate both endpoints and bioassays

of the significant sets. The six bioassays associated with the three genes (NR1I2, CYP3A4

CYP2B6) that can be attributed to PXR activation are the common to the many of the thirty-

three sets as indicated by the light blue and green coloring of the rows associated to the six

bioassays in Figure 4.13. This implies that the chemicals common to many of the significant

sets can be attributed to PXR activation as hepatic response xenobiotic detoxication, bile acid

toxicity, lipid metabolism and cholestatic liver disase.

Besides three genes related to PXR activation; there are two bioassays related to gene tar-

get for PPARγ. Omiecinski et al. (2011) indicate that thiazolidineiones, a class of xenobiotics,

are potent to PPARγ agonists (Omiecinski et al., 2011). Moran-Salvador et al. (2011) demon-

strate that PPARγ expression in hepatocytes can act as steatogenic inducer gene and that
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Figure 4.13: Rat and Mouse Liver Lesions heap map focuses on 62 unique chemicals that
are members of at least one of the thirty-three significant sets of the rat and mouse liver
lesion endpoint seed node. The 17 rows represent endpoints and bioassays and the columns
represent the 62 chemicals associated to the significant sets (note chemical set includes 5
duplicate chemicals). The blue to yellow color on the graphic indicates active chemicals that
are members of at least one of the significant sets. White indicates chemical activity but
failure to be grouped as a member of one of the significant sets and black indicates chemical
inactivity.

administration of thiazolidinediones in situations where PPARγ is already highly expressed

in the liver can lead to a steatogenic response (Moran-Salvador et al., 2011). Rogue et al.

(2010) indicated that thiazolidinediones have been shown to regulate cytochrome P450 activ-

ities such as the induction of CYP3A4 and CYP2B6 (Rogue et al., 2010). This implies that

chemicals associated to the sets that include bioassays that target PPARγ and CYP3A4 and

CYP2B6 are likely that share common chemical properties to those of the thiazolidineiones.

Other genes that are included in the composition of some of the thirty-three significant sets

have been associated with PXR activation are genes: CCL2 chemokine (C-C motif) ligand 2

and PLAUR plasminogen activator urokinase receptor. As stated earlier the chemokines are

associated with immune response and inflammation and can be associated with alcoholic liver

disease(Seth et al., 2003). Younossi et al. (2009) has associated these two genes in particular

to those that are present with liver steatosis and/or fibrosis as associated with chronic hepatitis

C (Younossi et al., 2009).
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Chemical CAS RN Is Apx All Sets
*Bensulide 741-58-2 x
Clofentezine 74115-24-5 x
d-cis,trans-Allethrin 584-79-2 x
Fenarimol 60168-88-9 x
Fenbuconazole 114369-43-6
Fluazinam 79622-59-6
Fludioxonil 131341-86-1 x
Fluthiacet-methyl 117337-19-6
Indoxacarb 173584-44-6 x
Lactofen 77501-63-4 x
Malathion 121-75-5 x
MGK 113-48-4 x
Paclobutrazol 76738-62-0
Permethrin 52645-53-1 x
Prallethrin 23031-36-9
Resmethrin 10453-86-8 x
Thiazopyr 117718-60-2 x
Triflumizole 68694-11-1 x

Table 4.3: Chemicals Common to 2 Endpoint seed node of Rat and Mouse Any Liver Lesions.
Depicts 18 chemicals that are common to at least 90 percent of the 33 significant sets of
the seed node for the chronic rat and mouse any liver lesions endpoints. First two columns
indicate chemical name and CAS registry numbers, the third column indicates ’approximate’
chemicals(inactivity for a few bioassays in the significant sets), and final column indicates 10
chemicals common to all the significant sets. ’*’ indicates all 3 duplicates are represented in
results for Bensulide.
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Table 4.3 highlights the chemicals that are active for both rat and mouse liver lesions

endpoints along with the bioassays of the sets that are associated to the eight genes mentioned

above. The 18 chemicals in Table 4.3 are those that are common to at least 90 percent (≥

30) of the sets that constitution the thirty-three significant sets mentioned above. The fourth

column of the table depicts the 10 chemicals that common to all thirty-three significant sets.

From the literature we demonstrate how the three gene targets are involved in PXR activation,

how CYP gene targets and PPARγ may both be activated by thiazolidineiones-like chemicals

in association to steatogenic liver response, and how two genes associated with inflammation

and immune response are also associated to PXR activation in connection to ailments of the

liver (Maglich et al., 2002; Omiecinski et al., 2011; Moran-Salvador et al., 2011; Rogue et al.,

2010; Younossi et al., 2009; Seth et al., 2003). This endpoint seed node implies that the 18

chemicals listed in Table 4.3 may result in diseases of the liver as associated with the rat and

mouse liver lesions endpoints.

4.3 Comparison to Biclustering

An indirect comparison can be made between our results (Table 4.1) and the results provided

by DiMaggio et al. (2010) with their biclustering and logistic regression framework in ana-

lyzing the ToxCast data. Biclustering is used as means of data reduction in a much larger

modeling scheme, but the methods did produce results that gave the most optimal association

between 18 of the endpoints and a set of bioassays from the ToxCast data. Besides not provid-

ing a measure of goodness of fit to assess the quality of their optimal models, they were only

able to address 18 of the animal endpoints and did not provide any multivariate (more than

one endpoint) models. Our results grouped by the 58 seed nodes in table 4.1 encompass 29

unique animal endpoints, of which 13 were the same as those addressed by DiMaggio et al.

(2010) logistic regression models. In addition our methods provide multivariate associations

as shown by the 38 seed nodes in table 4.1 that are associated with two to six animal endpoints.
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Score Prop. Ones # Endpoints #Rows #Columns
12.49 0.91 0 8 205
8.06 0.91 10 133 4
7.12 1.00 7 121 2
6.85 0.87 0 31 101
6.75 0.99 0 4 116
6.31 1.00 0 2 75
5.91 1.00 6 80 2
4.99 1.00 0 3 78
4.96 1.00 9 178 1
4.86 1.00 23 125 2
4.55 1.00 51 139 1
4.52 1.00 0 2 22
4.44 1.00 51 130 1
4.33 1.00 0 4 18
4.32 1.00 16 89 2

Table 4.4: 15 Top Scoring Biclusters found with BicBin Algorithm.

Furthermore, of the 25,380 subsets depicted in table 4.1, 4,896 show statistically significant

association between the endpoints and bioassays of Toxcast, where 1,569 of the subsets are

multivariate of which 394 have statistically significant association. This demonstrates that

our methods not only revealed the multivariate associations from amongst the data, but also

provided a measure of statistical relevance for those results.

A direct comparison can be made between our results (Table 4.1) and the results provided

by van Uitert et al. (2008) in analyzing the ToxCast data. Our algorithm most resembles bi-

clustering of binary data as provided by van Uitert et al. (2008) methodology because it allows

for some level of approximation (zeros) to be considered within the resulting biclusters. Using

the ToxCast dataset we compared the results our algorithm produced with those produced by

van Uitert et al. (2008) method of biclustering binary data (BicBin). One issue with using

BicBin is that it only provides the highest scoring bicluster. Thus, to get more than one biclus-

ter, the previously discovered bicluster data must be set to zero prior to searching for the next

top scoring bicluster within the data. This is repeated until the BicBin algorithm no longer

provides a bicluster given the input parameters or the dataset contains only zeros. This pro-

duces fewer results than our algorithm because BicBin provides non-overlapping biclusters

whose dimensions (number rows and columns) are not restricted by the algorithm. Whereas,
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Itemset Mining BicBin Biclustering
All Sig@0.05 All Sig@0.05

All Subets 25,380 4,896 528 / 308 203
Aprox Subsets 18,098 3,542 10 2

Table 4.5: Comparison of Closed/Approximate Itemset Mining to BicBin Biclustering for
All & Approximate Subsets. Significant subsets are determined at α 0.05 level for p-values
adjusted for multiple testing using FDR.

our algorithm produces the equivalent to overlapping biclusters (subsets) whose dimensions

are restricted by the minimum support threshold requirement.

The BicBin algorithm gives little control over how large the proportion of zeros, the ap-

proximation, of the produced results. To make the BicBin results comparable to our results

we used a range of BicBin parameters to discover the top scoring biclusters for a given pa-

rameter set. Once we discover biclusters for each parameter set, we greedily selected the

highest scoring bicluster that did not exceed the row and column thresholds for approxima-

tion (proportion of zeros). This bicluster’s data is zeroed out and the selection process was

repeated until no more biclusters could be identified. The fifteen top scoring BicBin biclusters

are depicted in table 4.4. Notice that only eight of the fifteen have any response variables

(endpoints) included in their bicluster. This is problematic for showing association between

response and explanatory variables. Furthermore, there is not much balance between size of

rows and columns. This is also problematic because ideally one would want to find a number

of response and explanatory variables (rows) that show some association that holds true over a

decent number of observations (columns). Only five out of the fifteen BicBin biclusters have

at least four rows and at least for columns and only one of those five has any response variable

(endpoint).

The BicBin algorithm identifies 528 biclusters of which only 308 contained at least one

endpoint. The overall results are displayed in table 4.5, one can see that only 10 of the 528

biclusters were approximate. For the 308 results that contained at least one endpoint, strength

of association was assessed between the endpoints and bioassays of the bicluster using the phi
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<= 1+ Endpoints =>

<= 2+ Endpoints =>

Subsetting with Itemset Mining: BicBin - Binary Biclustering:

25,380 [4,896] 308 [203] 

1,569 [394] 235 [135]  

Figure 4.14: Comparison of Closed/Approximate Itemset Mining to BicBin Biclustering for
all subsets classified by number of endpoints included within the subset. Top two charts for
subsets with 1+ endpoints and bottom two charts for subsets with 2+ endpoints. Reports all
subsets (orange bars) and the significant subsets (yellow bars) determined at α 0.05 level for
p-values adjusted for multiple testing using FDR.

coefficient. The significance of the biclusters is based upon the chi-square statistic associated

to the phi coefficient and the p-values are adjusted for multiple testing using FDR as described

in section 4.1.3. Table 4.5 shows how our methods provided more statistically significant

results and allow for a higher degree of approximation to be incorporated into the results.

The four charts in figure 4.14 break the comparison down by number of endpoints and by

the dimensions of the subsets/biclusters. The number above each chart shows the total num-

ber of results and the number of statistically significant results in brackets. The orange bars

represent the total results and the yellow bars show only the statistically significant results.

The bottom two bars labeled All display all the results as is represented by the numbers above

each chart. The next three sets of bars break the results down by their dimensions, as in they

only display the results that meet or exceed the dimensions (column/row) labeling the left side

of the chart. The column dimension only include the number of bioassays because the top

two charts display results associated with at least one endpoint and the bottom two charts only

depict the results of the multivariate associations (2 or more endpoints). The minimum sup-

port threshold requirement provides that all of our results are associated with at least 40 rows
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(chemicals). Whereas, the BicBin bicluster algorithm provides no restrictions on the bicluster

dimensions; thus, the dimension classifications were selected to match for the minimum num-

ber of rows and columns. The results in figure 4.14 show that our algorithm produces more

significant results and that our results are more balanced in dimensions (top rows) for both

univariate (1 endpoint) and multivariate (2+ endpoints) associations.

The results of the comparison to BicBin as shown in tables 4.4 and 4.5 and figure 4.14

demonstrate how our methodology provides more appropriate results than those provided by

biclustering algorithms, like BicBin. Specifically, our methods only provide appropriate re-

sults with regards to always including both response and explanatory variables (endpoints and

bioassays) and our methodology is better able to incorporate approximation into the results.

The restrictions on dimensions provide for larger and more balanced (equality in number of

rows and columns) subsets of data, which provide for a larger quantity of significant results

that are more easily verified. Specifically, the more bioassays provided in the column dimen-

sion the more information is provided about biological pathways perturbed by the chemicals

in the row dimension. In addition with our methodology’s use of the seed nodes, one can

easily target their analysis to focus on only specific associations.

4.4 Timing

The primary bottleneck of this method is mining for closed frequent itemsets and using those

resulting itemsets to determine the subset of data that defines the association between the

response and explanatory variables. The time and space required for this computation is de-

pendent the number closed frequent itemsets discovered. The correlation between runtime

and number of closed frequent itemsets discovered is 0.92 as depicted by figure 4.15. The

number of closed frequent itemsets found is dependent upon the density of ones within the

binary dataset, the association of explanatory and response variables as related to the density

of ones, and the minimum support threshold selected for the closed itemset mining. Table
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Figure 4.15: Timing plotted for Closed Itemset creation.

4.6 contains the average runtime given different minimum support thresholds on the ToxCast

dataset. The ToxCast dataset was used because it provided an association between the re-

sponse and explanatory variables that had the complexity that one might see with a real world

example. All jobs were run on UNC’s research computing cluster KillDevil each running on

a single Intel EM64T 2.0-2.93 GHz CPU with access to at least 8 GB of memory. In table

4.6 *indicates the first row where average run times exceed one minute and **indicates the

first row where average run times exceed one hour. Figure 4.15 and table 4.6 demonstrate

how the computational complexity increase as density of ones and size of the data increase

as simulated by the lowering of the support threshold to increase the number of discovered

closed frequent itemsets. The primary approach to dealing with such increasing complexity

is to limit the scope of analysis through the use of the seed nodes to target the analysis to

focus only on specific associations. Other means of controlling the computational complexity

involve using larger minimum support thresholds, reducing the number of input variables via
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Min. Support Threshold # Closed Average StdDev
proportion (n) Itemsets in Secs in Secs

0.300 (75) 134 6.0 0.1
0.280 (70) 210 8.0 0.4
0.260 (65) 387 12.6 0.4
0.252 (63) 482 15.3 0.8
0.240 (60) 698 21.1 1.5
0.228 (57) 1,070 30.8 0.2
0.220 (55) 1,401 41.2 1.8

*0.208 (52) 2,220 64.5 0.4
0.200 (50) 3,106 92.9 1.6
0.180 (45) 7,816 297.0 7.5
0.176 (44) 9,564 417.3 23.9
0.168 (42) 14,724 761.4 38.4
0.160 (40) 22,881 1,639.5 77.4
0.156 (39) 28,879 2,837.5 131.1

**0.152 (38) 36,616 4,280.4 248.5
0.148 (37) 46,716 6,757.4 44.4
0.140 (35) 77,332 22,641.1 373.3
0.132 (33) 130,197 80,178.4 356.3

Table 4.6: Timing of Closed Frequent Itemset Mining using different support thresholds on
ToxCast Data. *Indicates first row where average runtime exceeds one minute and **indicates
where average runtime exceeds one hour.

data reduction techniques and to mine for the negative cases when dealing with extremely

dense data. It should be noted that mining for negative cases changes the type of results one

finds, but given extremely dense datasets the negative space will provide more informative

results.

4.5 Conclusions

Identification of relationships that exist amongst response and explanatory variables when

the data under consideration has a nontrivial amount of inconsistency and noise within it can

prove to be difficult using classical methods of analysis. Instead of considering the entire

data record in dealing with association amongst noisy data, we developed methodology that

focuses on subsets of the data that would be considered the most consistent (noise free). We

provided a means to successfully identify subsets of data that show association between re-
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sponse and explanatory variables and to quantify the strength of this relationship using the

phi coefficient. We account for the increase in type I error that is seen with multiple testing

using the FDR correction on the p-values associated with the phi coefficient. Additionally,

we demonstrated how some level of user defined approximation (fuzziness) can be introduced

into the results to help account for the inconsistency within the data. We illustrated how the

most statistically significant subsets of data can be analyzed using the ToxCast data. Since bi-

clustering methodology also identified subsets of data; we directly compare our methodology

to van Uitert’s method of biclustering binary data, BicBin, using the ToxCast data. We estab-

lished how our methodology is more adept than BicBin at focusing exclusively on subsets of

data that have an association between response and explanatory variables. Additionally, we

provide techniques that can be used to enable our methodology to provide results for datasets

of larger size and higher density than the ToxCast data.
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Chapter 5

Mining for Association with Improved Statistic

5.1 Motivation

As established in Chapter 4, one can use closed and approximate frequent itemset mining

to identify subsets of data that have association between response and explanatory variables.

Namely the p-value associated with the phi coefficient can be used to determine which discov-

ered subsets of data are statistically significant (important) while accounting for the increase

in type I error that is associated with multiple testing by using the False Discovery Rate (FDR)

correction. The only issue that arises occurs when the phi coefficient fails to adequately quan-

tify the association between response and explanatory variables. For example, in figure 5.1

there are six subsets of data that all have the same consistency, but vastly different associated

p-values, where consistency = (a + d)/(a + b + c + d). Comparing the top row (black

text) to the two below it (blue text), notice that the associated p-value increases in signifi-

cance (becomes smaller in value) as there is less balance in inconsistent cells b and c, where

balance means equality in value. Comparing the top row (black text) to the fourth and fifth

rows (purple text), notice how the associated p-value increases in significance as there is more

balance in consistent cells a and d. If one deems the metric consistency more important re-

garding the association between response and explanatory variables than the phi coefficient,

figure 5.1 demonstrates how the methods described in Chapter 4 will not adequately discover
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Figure 5.1: Depicts issue with using statistics based upon p-value. Shows how same consis-
tency can give vastly different phi coefficient p-values.

all important subsets of data with regards to consistency using the phi coefficient.

In the preceding chapter we propose a bootstrap methodology that has been adapted to

free ourselves from having to use metrics associated with p-values to determine statistically

significant subsets of data discovered through the process of closed frequent itemset mining.

The primary benefit of this bootstrap methodology is that it can be used with any statistic or

property of the dataset without dependence upon a p-value. Moreover the method provides

ways to incorporate multiple metrics into the methodology, such that the final significance can

be associated with multiple properties of the data. The advantage of this is that if one can

provide a statistic that incorporates the integration of three or more datasets, one can effec-

tively extend the method to consider associations between three or more datasets as depicted

in figure 5.2. One naive way to associate three or more datasets would be to create metrics for

all pairwise associations between all pairs of the datasets and use these multiple metrics with

the bootstrap methodology.

Another benefit is that the bootstrap methodology allows one to appropriately account for

type I error associated with multiple testing. Similar to the selection of an α value in hypoth-

esis testing, one selects δ, the probability that the significance threshold selected will exceed

the number of false positives selected, as the threshold criterion. This gives one more control

over the probability of observing false positives within the results deemed significant than
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Figure 5.2: Association for Multiple Data Sources.

what is observed with standard corrective measures like the FDR correction. Additionally, the

analysis can be focused solely on multivariate associations or other particular associations of

interest with the use of the seed nodes in the closed frequent itemset mining algorithm. Where

multivariate is defined as including more than one response variable. This enables one to fo-

cus the analysis on the associations they are most interested in. As demonstrated in Chapter 4

with the identification of approximate frequent itemsets, the bootstrap methodology can also

be used in such a way as to incorporate fuzziness into the results to provide a method that

is robust with noisy, inconsistent data. The bootstrap methodology can be adapted to work

with approximate itemsets as long as the incorporation of approximation does not impair the

rationale behind one’s metric of interest.

The primary weakness of this method is intuitive for all methods that use bootstrapping;

the resampling and the measurement of the metric of interest on the bootstrap samples coupled

with the summarization of the bootstrap results are computationally expensive in both time and

space. The most computationally expensive process is the closed and approximate itemset

mining. As discussed in Chapter 4, both are time consuming dependent upon the size of the

original binary dataset, the density of ones in the dataset, and the support threshold used.

Running the FDR correction on the phi coefficients p-values is more efficient than using the

bootstrap method. Computing closed or approximate itemsets on the bootstrap samples can
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be much more computationally expensive than was observed with the original dataset. This is

because generating the bootstrap samples using random sampling with replacement of original

dataset can result in producing a much more dense (more ones) bootstrap dataset.

Thus for datasets that produce on average more than 25,000 rules, the method can be

computationally infeasible. For example, it took approximately 27 minutes to mine and out-

put results for 22,881 closed itemsets for the ToxCast data and running 1000 such bootstrap

samples would take approximately 19 days of runtime if each bootstrap was run sequentially.

Furthermore, depending upon the density and size of the original dataset some of the bootstrap

samples can produce 4 or more times the number of closed itemsets than what was observed

in the original dataset. An increase from 25,000 to 125,000 closed itemsets would result in

taking a day as opposed to an hour just to mine all itemsets, let alone to attempt to summarize

the results on a bootstrap sample of that size. Therefore, for the bootstrap methodology to

be computationally feasibly applied, one must find ways to limit the number of itemsets they

want to quantify to be no greater than 15,000 to 20,000. The seed nodes used in our closed

frequent itemset mining algorithm provide a natural way to limit ones results as to enable the

bootstrap methodology to be used.

The final weakness is that using too large of a support threshold can result in the bootstrap

method producing results that were too stringent with regards to the number of significant

results provided. We demonstrate how greater minimum support thresholds tend to produce

results that are more stringent than what is seen with the FDR correction. The method seems

to work best for support thresholds that are around 0.10 or less. This is somewhat dependent

upon the density of ones in the original dataset; thus, we provide methodology for determining

the criteria that should be used with regards to δ and the support threshold as compared to the

results that would have been provided by using FDR correction.
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5.2 Methods

5.2.1 Bootstrap Method

Using this methodology frees one from having to use metrics that are associated with a p-

value to account for the increase in type I error that is associated with multiple testing. We use

the bootstrap methodology to determine which subsets of data that associate response and ex-

planatory variables are most significant regarding the properties that are determined to be most

important regardless of whether or not they can be associated to a p-value. To fully enumerate

all subsets of data with regards to the association between explanatory and response variables,

we use closed frequent itemset mining as we did with the phi coefficient described in Chapter

4. The primary difference is that now we can calculate any statistic the user determines to be

most important as opposed to solely relying upon the phi coefficient as we did in Chapter 4.

The bootstrap methodology that we use is based upon the methods described in Chapter 11

of the text Quality Measures in Data Mining, see Lallich et al. (2007) for further details. The

methodology used to mine for closed and approximate itemsets to produce subsets of data

was described in detail in Chapter 4. We adapted the bootstrap methodology as presented by

Lallich et al. (2007) to determine which of our subsets of data are significant while controlling

for increase in type I error due to multiple testing as described in detail below.

1. Empirical Assessment on Original Data: All rules R are measured using metric M

on set of transactions T creating set M(r), r ∈R. The user must define V0 as number of

false discoveries not to be exceeded given δ. δ defines the probability that the number

of false discoveries exceeds V0. One can think of δ in the same way as one thinks

of α with regards to hypothesis testing. Where α is the probability of committing a

Type I error, δ is the probability of that the number of false discoveries will exceed

V0. At this first step the user needs to define V0, the number of false discoveries, δ,

the probability of exceeding V0, and create rule set R using metric M on transaction

set T . We created rule set R, such that our rules are the subsets produced using our
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Figure 5.3: Creation of Rules (Subsets) from Transaction Set (Dataset) and calculation of the
metric for each rule. Far left depicts original transaction set (dataset) T from which the Rule
set R is defined by itemset mining for subsets of the data. Metric, M , is calculated for each of
these rules (subsets) based upon contingency table presented on far right.

closed frequent itemset mining algorithm with a minimum support threshold criterion

that requires a certain frequency (number) of transactions (observations) on the rules

(subsets) that are members of the rule set R. Additionally, our algorithm also requires

all resulting rules involve at least one response and at least one explanatory variable.

The metric on which each of the rules (subsets) is evaluated is calculated based upon the

contingency table associated with each rule (subset), see figure 5.3. Figure 5.3 depicts

a graphic that demonstrates rule finding (defining subsets) in the original transaction set

(dataset).

2. Bootstrap to Determine Significant Results while Accounting for Multiple Testing:

Repeat l times:

• Sample with replacement and equal probability n transactions (observations) from

T ; thus, creating T ′ where cardinality of T ′ is the cardinality of T as depicted in

section A of figure 5.4.

• Compute M ′(r) from T ′ using M on T ′ as depicted in section B of figure 5.4.

• Calculate the difference, M ′(r)−M(r), and then compute ε(V0, i) by using these

sorted differences specifically for each i = 1, 2, . . . , l bootstraps.
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Figure 5.4: Bootstrap Sample Creation using Original Transaction Set (Dataset) and Summa-
rization to find ε(δ) Threshold. Top section A depicts the resampling of the observations to
create the bootstrap sample transaction sets. Middle section B shows similar to depicted in
figure 5.3 rule set creation and metric calculation for each bootstrap sample. The bottom C
shows the bootstrap sample summarization with the distribution of ε(V0) to find ε(δ) thresh-
old.

(a) Rank the differences, M ′(r)−M(r), from largest to smallest difference.

(b) Find ε(V0, i) given i by finding the (V0 + 1)th largest element in the ranked

difference list that defines this ε(V0, i) for any given i.

3. Summarize the Bootstraps: This takes all l bootstraps and determines the ε(δ) thresh-

old for which rules from rule set R will be judged.

• Bootstraps i = 1, 2, . . . , l provides l values of ε(V0, i), sort this list of l values of

ε(V0, i) in descending order.

• Compute ε(δ) using the ε(V0, i) list by determining the (1 − δ)th quantile of this

list as the l ∗ (δ + 1) item in the list such that only l ∗ δ values in the list are larger

than this selected ε(δ) as depicted in section C of figure 5.4.

4. Determine Significant Results from Rule Set R using ε(δ) Threshold: Rule set R∗

is the significant rules from rule set R based upon threshold ε(δ), such that rule r from
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transaction set T given metric M where M(r)>ε(δ) holds true.

In practice, we discovered that the random sampling that is used to generate the bootstrap

samples could produce bootstrap samples that had little overlap in rules as compared to the

original rule set. This issue of overlap increased as the minimum support threshold used in

rule generation was increased. To control for this issue, we evaluate all bootstrap samples

prior to using them in this method to determine how much a bootstrap sample rule set over-

laps with the original rule set. A threshold that represents the number of standard deviations

below the mean rule set overlap is used to exclude bootstrap samples that are outliers in this

regard. For the examples shown in this paper, if a bootstrap sample is more than three standard

deviations below the mean rule set overlap it is excluded from use within the method. Under

the assumption of normality of the samples, three standard deviations from the mean account

for 99.7% of the sample; thus, greater than three standard deviations away from the mean is

the standard definition of an outlier.

This bootstrap methodology carefully controls for type I error, probability of false pos-

itive, with regards of the selection of δ. Lallich et al. (2007) indicate that the risk of type

II errors, probability of false negative, generated by the methodology can be optimized us-

ing Hadamard differentiable transformations of the metric to make the measures homogenous

through standardization, see van der Vaart and Wellner (1996) for the details. The method as

outlined above assumes that the metric of interest is most significant (important) for the largest

values of the metric. If this is not the case for your metric of interest, one can simply reverse

the scale to effectively use the method as described above. For example, a p-value ranges in

value from zero to one, where the most significant values have a value closest to zero. To use

this as the metric with the bootstrap methodology as stated above, one can simply subtract the

calculated p-values from one to reverse the metric such that the most significant values are the

largest.

The bootstrap method as stated above uses a single measure, statistic, that is calculated in

determining the significant rules. A nice property about the bootstrap methodology is that if
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one has multiple metrics of interest, M1,M2, . . . ,Mn, all metrics can be used to define a new

composite metric ∗M(r). This is where the composite metric ∗M(r) = minimum{M1, M2,

. . . , Mn} allows for the consideration of more than one metric of interest, specifically it ranks

a rule’s importance by its worst performing metric. To use this multiple metric methodology

one should standardize multiple metrics to the same scale, such that each metric considered

is given equal weight. However, if one wants to account for multiple properties of interest in

a more complex manner, one should combine all properties of interest into a single metric as

opposed to using the composite metric ∗M(r), the minimum of multiple metrics of interest.

This ability to include multiple metrics into a composite metric provides one with a means to

associate three or more datasets. One could use all pairwise associations between datasets as

the M1,M2, . . . ,Mn metrics that compose the composite metric ∗M(r).

We considered three metrics when discussing the bootstrap method. The first metric we

considered is the p-value associated with the phi coefficient. This p-value metric is used to

verify that our implementation of the bootstrap is correct. We also use the p-value to quantify

how δ effects the number of significant rules found as compared to other corrective measures,

such as the False Discovery Rate (FDR) and Bonferroni correction. The two metrics that

are selected as important with regards to the resulting rules are consistency and a measure of

difference from random chance. Consistency is defined as depicted in figure 5.1, as the pro-

portion of consistent results over all observations for which the association between response

and explanatory variables are defined, specifically consistency = (a + d) / (a + b + c + d).

Difference from random chance is defined as the difference between the expected and ob-

served probabilities of finding both explanatory and response variables ’on’ (one), cell a from

the contingency table in figure 5.1 represents the value of the observed probability. The ex-

pected probability is calculated using the probabilities of the appearance of a one across all

observations in the input datasets for the explanatory and response variables. Using these

probabilities, one can calculate the expected probability of observing the pattern of ones for

a given rule (closed frequent itemset) under the premise that the occurrence of the pattern is
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no different than what would be expected given the probabilities observed across the input

datasets. The greater the difference between the observed and expected probabilities, indi-

cates the greater association between the explanatory and response variables of the rule. The

difference from random chance is simply: difference = (Prbobs − Prbexp), when Prbobs ≥

Prbexp and difference = 0 when Prbobs < Prbexp.

Both metrics, consistency and difference from random chance, can range in value between

zero and one, and the closer to one in value the more significant the rule should be. The com-

posite metric we use considers both metrics by taking the minimum value between the two

metrics for each given rule as described above with metric ∗M(r). To equally weight the

metrics, both are rescaled such that each fully span the range zero to one. This is achieved by

multiplying each value of the metric by a factor as to ensure that it fully spans the range

of one unit, followed by subtracting a second factor from each value to adjust the mea-

sure to be between one and zero. The multiplication factor is computed as multFactor =

(1 / (Maxmetric − Minmetric)) and the subtraction factor is computed as subFactor =

(Maxmetric ∗ multFactor) −1. The metric must first be calculated on all rules of a rule

set to determine the maximum, Maxmetric, and minimum, Minmetric, values. Once these

have been determined the multiplication and subtraction factors can be calculated and applied

to all rules in a rule set to effectively rescale the metric to fully span the range one to zero.

5.2.2 Method Verification

To verify the bootstrap method, we first created a realistic simulated dataset to quickly evaluate

the association between response and explanatory variables. This simulated dataset had to

consist of explanatory and response variables that included both observations that supported

a strong association and those that showed relatively no association. We selected ten closed

frequent itemsets that were mined from the ToxCast data when the minimum support threshold

was set to 40 observations (chemicals). All ten selected closed frequent itemsets contained

the same two response variables, where four of the itemsets showed a strong association with
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Figure 5.5: ToxCast Closed Itemsets that create Simulated Data. First four closed sets had
consistency > 0.73 and FDR adjusted p-values < 0.03. Last six closed sets had consistency
< 0.52 and FDR adjusted p-values > 0.33. Ten closed sets composed a dataset of 2 response
variables, 20 explanatory variables and 141 observations to create the simulated data.

FDR adjusted p-values of less than 0.03 and consistency greater than 0.73. The remaining

six itemsets showed lack of association with FDR adjusted p-value greater than 0.33 and

consistency that is less than 0.51. All ten closed frequent itemsets have the properties as

described in figure 5.5 and created a simulated dataset of 141 observations that spanned 2

response variables and 20 explanatory variables. This was the simulated dataset that was used

hence forth.

The simulated dataset produces a different number of rules (closed frequent itemsets) de-

pendent upon the minimum support threshold selected, here thresholds of 0.125, 0.10 and 0.05

and no threshold (all rules). Figure 5.6 shows, for different thresholds, the number of rules

produced and the number of rules determined significant given FDR correction with α of 0.05.

Additionally, the table depicts the p-value thresholds and number of rules for the Bonferroni

Correction at α of 0.05, 0.10 and 0.125 given the four minimum support thresholds. The pri-

mary goal of the corrections methods, including our bootstrap method, FDR and Bonferroni

Correction, is to account for the increase in type I error due to multiple testing by providing a

more stringent threshold for determining the number of significant rules.

Recall that hypothesis testing provides a formal method for determining whether or not

the null hypothesis was rejected based upon the evaluation of a statistic using sample data.

The α level, significance level, provides the probability of committing a type I error. A type
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Figure 5.6: Significance thresholds based upon FDR and Bonferroni correction on the simu-
lated dataset.

I error describes the error made when one rejects the null hypothesis when it is actually true.

Thus, this error is also referred to as the probability of accepting a false positive. The formal

methodology of hypothesis testing is designed such that the probability supported by the α

value is only guaranteed for a single test. Testing a sample multiple times for the same hy-

pothesis increases the probability that one will observe a significant test, when in actuality the

test is not truly significant at the selected α level. This increase in probability reflects that one

is observing an increase in the α probability that is not reflected by the selected α value since

that value is based upon only testing once. A simple but often overly stringent way to account

for this increase in type I error is the Bonferroni Correction, where one divides the selected α

level by the number of tests performed. This typically provides a too stringent correction for

this type I error; thus, other corrective methods are typically used instead. Figure 5.6 demon-

strates how Bonferroni correction is much more stringent than FDR adjustment with regards

to significant rules.

The False Discovery Rate, FDR, corrective method is an accepted way to account for

the increase of type I error without being overly stringent as with the Bonferroni Correction.

FDR provides greater power and less stringency as compared to the other corrections like the

familywise error rate (FWER), especially when the number of tests is large (Storey, 2002).

Storey (2002) indicates that the FDR assumes that the true proportion of null hypotheses is

one; therefore, an even less stringent means of correcting for type I error is through the use
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of q-values. Q-values estimate the proportion of true null hypotheses instead of assuming it

is one, as is done with FDR correction(Storey, 2002). For our validation and exploration of δ

regarding the bootstrap methodology we will compare our results to those produced by using

FDR adjustment on the p-value produced by the phi coefficient. The author feels the FDR

correction provides an accepted level of stringency given the large number of tests/rules that

will result from the method. Moreover, in practice the author has had issue with using q-values

when the estimated proportion of truly null hypotheses is small; thus, the FDR correction

prevents any failures in adjustment regardless of the true proportion of null hypotheses.

Based upon figure 5.6 we selected the minimum support threshold of 0.05 (7 observations)

because it provided that an association had to occur in at least five percent of all observations

and resulted in over fifty percent increase in significant rules given total rule decrease (2,926

to 2,808) of four percent. In addition to added strength of association as seen through increase

in the minimum number of observations required for a significant rule, this support threshold

only saw an increase in false positives at α of 0.05 by five. The top left-hand table in figure

5.7 depicts the results of running the bootstrap method with 1000 bootstraps on the simulated

dataset with minimum support threshold set to 0.05 (7 observations). The top table on the

far right represents the number of expected significant rules given the 0.05 minimum support

threshold using FDR to adjust the p-values for multiple testing. The first column gives an α

level, given this α value the second column reports the expected number of FDR corrected

significant rules and the third column gives the expected number of false positives.

Both methods are using the same metric, the p-value associated with the phi coefficient.

This means if both methods were to report 34 significant rules, they would be the same 34

significant rules because both rule sets were evaluated on the same metric. Therefore, we

can determine which δ levels will produce the same number of rules as is seen with the FDR

correction. This provides one with more control over the number of false positives observed,

given that δ represents the probability of exceeding the selected number of false positives

selected (V0). The dark gray cells in the table in figure 5.7 represent the first δs where the
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DEMONSTRATE THRESHOLD ISSUE AND THAT METHOD WORKS

#False 
Positives

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Expected 
Results

# False 
Positives

0.0281 34 0.96
0.05 5 17 31 38 47 60 60 84 100 100 100 123 140 143 156 0.0380 54 2.05
0.10 31 40 40 60 93 100 143 156 181 214 258 267 331 390 453 0.0410 68 2.79
0.15 36 40 60 100 143 161 192 258 297 390 400 479 563 645 710 0.0425 99 4.21
0.20 40 60 100 143 176 258 331 453 522 602 655 710 837 921 1033 0.0427 129 5.51
0.25 60 96 131 161 258 400 517 655 710 822 921 1002 1127 1232 1296 0.0445 136 6.06
0.30 60 100 156 267 400 563 655 776 921 1055 1157 1264 1452 1532 1663 0.0469 150 7.04
0.35 100 156 258 400 522 701 829 974 1127 1307 1497 1548 1755 1844 2034 0.0476 180 8.58
0.40 100 192 390 517 659 871 1127 1251 1429 1552 1764 1843 2041 2178 2288 0.0482 187 9.01
0.45 156 258 510 655 871 1127 1307 1530 1744 1825 2034 2178 2312 2427 2481 0.0489 214 10.45
0.50 156 384 655 921 1127 1309 1532 1744 1942 2152 2286 2412 2488 2545 2588 0.0489 229 11.20
0.55 258 517 835 1127 1349 1656 1825 2034 2196 2371 2477 2541 2585 2616 2644 0.0491 288 14.15
0.60 297 684 1055 1307 1663 1936 2121 2315 2421 2497 2546 2599 2628 2646 2673 0.0500 299 14.94

#False 
Positives

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Expected 
Results

# False 
Positives

0.0155 66 1.02
0.05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0223 88 1.97
0.10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0223 143 3.20
0.15 0 0 0 0 0 0 0 0 0 0 1 1 1 1 2 0.0234 174 4.07
0.20 0 0 0 0 0 0 1 1 1 2 3 4 4 8 11 0.0244 205 5.00
0.25 0 0 0 0 1 2 4 8 10 15 16 19 27 29 30 0.0260 228 5.92
0.30 0 0 1 3 4 10 16 19 28 30 32 35 35 36 38 0.0286 243 6.95
0.35 0 1 4 8 16 21 29 32 35 36 38 44 46 47 50 0.0315 254 8.01
0.40 1 4 14 20 29 32 36 38 45 46 51 53 57 60 64 0.0344 262 9.02
0.45 4 14 27 33 36 40 46 50 53 57 63 66 69 72 76 0.0369 271 10.01
0.50 14 29 35 40 45 51 54 63 67 70 73 77 90 102 112 0.0393 280 11.01
0.55 27 35 40 51 57 63 70 73 77 90 102 116 137 159 177 0.0414 290 12.02
0.60 35 46 55 63 70 74 84 101 121 145 159 185 217 231 247 0.0438 299 13.10
0.65 45 57 66 74 82 106 127 167 196 223 245 258 266 288 308 0.0457 307 14.04
0.70 56 68 76 105 135 178 217 242 251 260 285 312 339 377 407 0.0474 316 14.98

16% Support Threshold Bootstrap Sampling results using Phi Coefficient P-Value 16% Threshold - FDR @ 0.05

5% Support Threshold Bootstrap Sampling results using Phi Coefficient P-Value 5% Threshold - FDR @ 0.05

C

M

Y

CM

MY

CY

CMY

K

SIMBSWorks_ThreshProb.pdf   3/20/12   3:11:38 PM

Figure 5.7: Verification of Bootstrap Method. Tables on right shows FDR adjusted p-values α,
corresponding number of significant rules, and estimated number of false positives for those
values. Tables on left shows the number of significant rules on bootstrap method at 0.05 and
0.16 minimum support thresholds for 1000 bootstraps using the phi coefficient’s p-value as the
metric. Light gray shaded cells indicate first δ where the number of rules exceeds the number
of false positives, dark gray shaded cells indicate first δ where the number of rules exceeds
those resulting from FDR correction (right-hand tables).
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number of rules provided by the bootstrap method exceeds those given by the FDR correction.

Similarly the light gray cells indicate the first δs where the number of rules provided exceed

the number of false positives, V0. Selecting a δ as small as 0.05 will provide significant

rules that exceed the false positives and selecting a δ of 0.10 will give more results than was

observed with the FDR correction for 10 or more false positives. The top table in figure

5.7 demonstrates that using the bootstrap method on simulated data with minimum support

threshold of 0.05 can provide the same results as the FDR correction with the allowance

of only 13 false positives when a δ of 0.10 was selected (instead of 15 with the standard

FDR correction). This demonstrates that the bootstrap method as implemented can effectively

replicate the FDR adjusted results, in addition to providing a measure of sensitivity through

the selection of δ. The δ allows one to bound the likelihood of exceeding the selected number

of false positives with regards to the significant results.

It is important to note that with all the analysis presented from this point forth the phi

coefficient’s the p-value, consistency and the composite metric may not be directly comparable

in the sense that they likely have different underlying distributions in the original dataset. We

use dark gray shaded cells to indicate the first δs that exceed the number of results provided

by the standard FDR adjustment of the phi coefficient’s p-value, but this does not mean we

expect similar numbers of significant results to be given unless the bootstrap metric is the the

phi coefficient’s p-value. We provide this information only to help demonstrate how different

minimum support thresholds, scaling, and adjustments to the bootstrap methods compare.

We tested the bootstrap method at higher minimum support thresholds and this test in-

dicated one drawback of the method. As the minimum support threshold increases the strin-

gency of the bootstrap method increases such that the threshold provided by the method would

be even more stringent than the Bonferroni Correction at reasonable δ levels. This happens be-

cause the greater the minimum support threshold, the less overlap there is between the original

rule set and the bootstrap rule sets, where overlap is defined as finding same rule in both rule

sets. This causes a problem because it artificially inflates the threshold set by ε(δ); thereby,
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identifying fewer rules from the original rule set to be significant. This in turn can make the

bootstrap method too stringent and even more stringent than the Bonferroni Correction.

Recall that each bootstrap sample will always maintain the same items (response and ex-

planatory variables), but the frequency (number of observations) that each of these items occur

will change with each bootstrap sample. The super set of all possible rules is represented by

all possible combinations of the items; therefore, the lower the minimum support threshold

the greater the likelihood of representing a larger proportion of all possible rules with the

original rule set. In turn, representing a larger proportion of all possible rules increases the

overlap between the original and bootstrap samples. The overlap between rule sets is impor-

tant because it sets the threshold ε(δ) from which a rule from the original set’s significance is

determined. When a bootstrap rule does not have a corresponding rule in the original rule set,

its difference, M ′(r) −M(r), becomes its value of the metric M ′(r) because M(r) is zero.

The more frequently this occurs, the more this occurrence artificially inflates the threshold

ε(δ) to be at such a high level that few rules from the original set will be determined to be

significant. This problem is exacerbated when the metric of interest is highly dependent upon

the observed frequency of a rule. Specifically, if an increase in frequency of the rule results

in similar increase in value of the metric, differences between rules, M ′(r) −M(r), will be

more effected by the lack of overlap between the rule sets. The phi coefficient’s p-value is

influenced by frequency; whereas, metric like consistency is not. Therefore, this problem will

be more pronounced with the p-value as compared to a metric like consistency.

The number of rules observed at different minimum support thresholds is dependent upon

the density of ones and the size of the original dataset. If one can mine the data as we did with

our simulated data down to a minimum support of one, one can approximate the coverage

of a rule set generated by the minimum support threshold. This is done by computing the

proportion of the rules generated by a selected minimum support threshold divided by the

rules generated when the minimum support threshold is set to one. Using a minimum support

threshold of 0.05 generated 96% of all rules (minimum support of one), see figure 5.6. In
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comparison, using minimum support threshold of 0.16 (23 observations) will generate 22% of

all rules. To demonstrate how poorly the bootstrap method works with too high of a support

threshold using a metric that is dependent upon frequency, see the bottom tables in figure 5.7.

The left-hand table represents the number of significant rules using the p-value as the metric

for 1000 bootstrap samples using minimum support threshold of 0.16 given δ and V0. The

right-hand table reports the results using the same metric and minimum support threshold for

the FDR correction. The bottom left-hand table in figure 5.7 demonstrates that to get the same

results as what is seen with the FDR correction one must use a δ of 0.70 for V0 of 11 or more

(dark gray cells). Additionally, the number of false positives is only exceeded by the results

for δs starting at 0.45 level (light gray cells). This demonstrates how the using a support

threshold that is too high can produce results that are more stringent than what is seen with

the FDR correction.

Since the stringency of the bootstrap method is dependent upon the overlap between orig-

inal and bootstrap rule sets and the proportion of rules falling at the minimum support thresh-

old, it is likely that choosing a support threshold of 0.05 or less will provide the desired

thresholds. Selecting minimum support thresholds as large as 0.10 may also provide the de-

sired results dependent upon the underlying properties of the dataset. In cases where one

cannot compute down to the lowest minimum support threshold to determine the number of

all rules, one can use the phi coefficient’s p-value and the FDR correction as we did in figure

5.7 to determine the likely performance with regards to stringency that the bootstrap method

will provide. Note that overly stringent results fail to give the full complement of significant

results. However, they do not give more false positives than would be expected given a δ and

V0. In this way being overly stringent is only misleading in the sense that one fails to account

for all significant results that could be provided by an alternative method, like FDR correction,

if one exists. It should be noted that when dealing with highly inconsistent data one should

take care not to set the minimum support threshold too low, for this threshold prevents the

discovered subsets of data from being too small in size. Recall that the larger the size of the
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subset with regards to shared activity (ones) for both explanatory and response variables, the

more likely the discovered association will not be due to random chance.

Figure 5.8 shows results of using the metric consistency in place of the phi coefficient’s

p-value and explores the effect of rescaling of a metric. The bootstrap method was performed

on the simulated data using a minimum support threshold of 0.05 for 1000 bootstrap samples.

The consistency metric and the formula for rescaling it to span the entire range of zero to

one is described in the methods section. The top table shows the number of significant rules

given a δ and V0 using the metric rescaled consistency and the bottom table depicts results of

unscaled consistency. The light gray cells denote the first δ where significant rules exceed the

number of false positives (V0) and the dark gray cells denote the first δ where significant rules

exceed the number of rules given by the FDR adjusted p-value (see figure 5.7). Considering

the positioning of the gray cells, rescaling consistency seems to provide very similar results.

This is because 96% of all rules are represented by the using minimum support threshold

of 0.05. In running our bootstrap methodology on other minimum support thresholds with

scaled and unscaled consistency, we saw the biggest gains in improvement in stringency when

the minimum support threshold was too high. The rescaling guarantees that all rules span

the complete range (one to zero), which helps reduce the effects seen by the lack of overlap

between original and bootstrap rule sets.

As discussed previously, one advantage of the bootstrap methodology is that it removes

the need to use a metric that relies upon having a computable p-value to determine rules of

interest. Moreover, using the bootstrap methodology enables one to consider more than a

single metric. This composite metric’s value is based upon the minimum value of all metrics

used. Recall that being able to consider more than one metric offers the advantage of being

able integrate three or more datasets using this methodology. As suggested in the methods

section one can rescale all metrics involved to give them equally weighted influence on the

composite metric used within the bootstrap method. Using the simulated dataset we computed

a composite metric ∗M(r) which was computed as the minimum of the rescaled versions of
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Demonstrate what Rescaling does -- in this case seems to redistribute results more evenly ….

#False 
Positives

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.05 0 0 0 0 0 0 0 0 0 0 3 11 11 15 15
0.10 0 0 0 0 0 0 3 7 11 15 15 20 25 26 30
0.15 0 0 0 0 3 7 15 15 20 25 26 36 45 53 66
0.20 0 0 0 3 11 15 20 25 26 39 47 62 78 93 100
0.25 0 0 0 11 15 25 26 36 45 62 78 95 116 149 182
0.30 0 0 3 15 20 26 36 62 78 93 107 145 191 252 298
0.35 0 0 11 20 26 39 62 79 100 137 155 244 298 401 512
0.40 0 3 15 26 36 62 79 106 155 207 273 394 512 652 806
0.45 0 11 20 36 62 79 116 155 209 298 416 607 781 887 1023
0.50 0 15 26 53 79 107 182 252 352 419 635 845 1018 1156 1336
0.55 7 25 45 78 107 155 275 408 550 775 887 1091 1290 1487 1571
0.60 15 30 62 100 155 275 419 659 844 1060 1272 1499 1571 1781 1924
0.65 20 47 93 155 273 512 781 962 1197 1466 1571 1776 1900 2029 2147
0.70 26 79 137 325 532 887 1176 1388 1564 1776 1922 2009 2107 2213 2321

#False 
Positives

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.05 0 0 0 0 0 0 0 0 0 0 3 7 11 11 15
0.10 0 0 0 0 0 0 3 7 11 11 15 20 20 26 30
0.15 0 0 0 0 3 7 11 15 20 20 26 30 39 53 66
0.20 0 0 0 3 11 15 20 26 26 39 47 66 79 79 107
0.25 0 0 0 11 15 20 26 30 47 66 71 79 107 155 155
0.30 0 0 3 15 20 30 39 53 66 79 107 155 199 252 298
0.35 0 0 11 20 26 39 63 79 107 121 155 252 352 419 659
0.40 0 3 15 26 39 66 79 107 155 252 298 419 659 806 1024
0.45 0 11 20 36 53 79 121 155 252 333 419 740 887 1212 1572
0.50 0 15 30 53 79 121 209 298 419 659 806 1091 1572 2029 2550
0.55 7 26 39 79 121 209 298 419 740 1024 1291 2029 2391 2737 2808
0.60 15 30 66 107 155 333 659 887 1212 1977 2391 2737 2808 2808 2808
0.65 20 53 107 209 333 740 1212 1572 2190 2721 2806 2808 2808 2808 2808
0.70 30 100 155 419 1024 1572 2190 2721 2808 2808 2808 2808 2808 2808 2808

5% Support Threshold Bootstrap Sampling results using Unscaled Consistency Metric

5% Support Threshold Bootstrap Sampling results using Rescaled Consistency Metric
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Figure 5.8: Verification of the Rescaling Metrics. Top (scaled) and bottom (unscaled) tables
show number of significant rules given δ and number of false positives for the metric consis-
tency using 0.05 minimum support threshold with 1000 bootstrap samples on the simulated
dataset. Light gray shaded cells indicate first δ where the number of rules exceed the number
of false positives, dark gray shaded cells indicate first δ where the number of rules exceeds
those resulting from FDR correction (right-hand table in figure 5.7).
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consistency and difference from random (as detailed in the methods section). The results of

running 1000 bootstrap samples using this composite metric can be found in the table in figure

5.9. The dark gray shaded cells indicate the first δ where the number of rules exceed those

given by the FDR corrected p-value associated with the phi coefficient. The light gray cells

indicate the first δ where the number of rules exceeds the of false positives.

Figure 5.9 indicates that one can successfully use a composite metric when calculating the

significant rules with the bootstrap methodology. The gray shaded cells occur for the same or

smaller δs for the composite metric and indicate that it produces a slightly higher number of

results. This suggests that using difference from random chance to create a composite metric

increases the uniqueness of the simulated rule set. Here uniqueness is defined by how many

of the simulated rule set fall within the tail of the distribution, where the distribution is the

one formed by computing the metric on all rules (simulated rule set and bootstrap rule sets).

On the simulated dataset, the phi coefficient’s p-value produces more significant results than

either rescaled consistency or the composite metric (see table 5.7). This is because the phi

coefficient’s p-value classifies more of the simulated dataset’s rules to be in the tail of the

distribution of all rules. This property of the simulated dataset is only important if the phi

coefficient is more meaningful than rescaled consistency or the composite metric with regards

to one’s analysis.

Given the potential problems one can encounter with attempting to select a low enough

minimum support threshold while being able to run the bootstrap method in a reasonable

amount of time, we suggest two solutions to enable one to run this bootstrap algorithm on

larger more dense datasets. Because in the first step of the algorithm we list out all the seed

nodes that involve at least one response and one explanatory variable, one can use this list to

pick the seed nodes that one wants to explore. This selection could be as simple as selecting

all seed nodes that contain two or more response variables or by picking a specific response

variable to explore. In this way, one limits their results to a manageable number of combi-

nations to allow the algorithm to run on more dense data at appropriate minimum support
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SHOW CONSISTENCY VS COMPOSITE TO SHOW THAT WORKs With regarding its use  -- in this case works better in case of thresholds of results

#False 
Positives

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Expected 
Results

# False 
Positives

0.0281 34 0.96
0.05 0 0 0 0 0 0 0 0 0 0 3 11 11 15 15 0.0380 54 2.05
0.10 0 0 0 0 0 0 3 7 11 15 15 20 25 26 30 0.0410 68 2.79
0.15 0 0 0 0 3 7 15 15 20 25 26 36 45 53 66 0.0425 99 4.21
0.20 0 0 0 3 11 15 20 25 26 39 47 62 78 93 100 0.0427 129 5.51
0.25 0 0 0 11 15 25 26 36 45 62 78 95 116 149 182 0.0445 136 6.06
0.30 0 0 3 15 20 26 36 62 78 93 107 145 191 252 298 0.0469 150 7.04
0.35 0 0 11 20 26 39 62 79 100 137 155 244 298 401 512 0.0476 180 8.58
0.40 0 3 15 26 36 62 79 106 155 207 273 394 512 652 806 0.0482 187 9.01
0.45 0 11 20 36 62 79 116 155 209 298 416 607 781 887 1023 0.0489 214 10.45
0.50 0 15 26 53 79 107 182 252 352 419 635 845 1018 1156 1336 0.0489 229 11.20
0.55 7 25 45 78 107 155 275 408 550 775 887 1091 1290 1487 1571 0.0491 288 14.15
0.60 15 30 62 100 155 275 419 659 844 1060 1272 1499 1571 1781 1924 0.0500 299 14.94
0.65 20 47 93 155 273 512 781 962 1197 1466 1571 1776 1900 2029 2147
0.70 26 79 137 325 532 887 1176 1388 1564 1776 1922 2009 2107 2213 2321

#False 
Positives

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.05 0 0 1 1 1 2 4 8 12 17 17 20 21 26 30
0.10 0 1 1 2 6 12 17 20 26 26 30 36 39 47 62
0.15 1 1 2 8 17 20 26 30 36 45 53 62 70 78 78
0.20 1 2 5 17 20 30 30 45 53 65 77 92 99 120 142
0.25 2 4 12 20 30 36 45 62 77 92 105 120 153 179 202
0.30 2 8 17 26 36 47 62 78 99 115 142 179 250 322 371
0.35 4 17 26 36 47 63 78 105 135 179 204 281 390 510 570
0.40 8 17 30 45 65 78 106 146 179 249 347 419 595 778 958
0.45 12 26 39 53 78 105 146 202 273 347 510 701 843 995 1174
0.50 17 30 47 77 99 146 204 322 415 537 778 959 1090 1332 1486
0.55 20 39 65 92 136 203 329 419 700 884 1058 1284 1465 1569 1839
0.60 26 53 78 142 183 322 517 773 958 1196 1486 1570 1785 1961 2049
0.65 39 70 106 183 329 517 884 1087 1351 1570 1790 1946 2049 2149 2247
0.70 52 99 154 368 722 1016 1291 1569 1790 1990 2099 2214 2250 2346 2406

5% Support Threshold Bootstrap Sampling results using Rescaled Consistency Metric 5% Threshold - FDR @ 0.05

5% Support Threshold Bootstrap Sampling results using Composite Metric
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Figure 5.9: Top (scaled consistency) and bottom (scaled composite) tables show the number
of significant rules given δ and number of false positives for the metric using 0.05 minimum
support threshold with 1000 bootstrap samples on the simulated dataset. Table on the far right
shows FDR adjusted p-values α, the corresponding number of significant rules, and estimated
number of false positives for those values. Light gray shaded cells indicate first δ where the
number of rules exceed the number of false positives, dark gray shaded cells indicate first δ
where the number of rules exceed those resulting from FDR correction (right-hand table).
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threshold levels. An alternative is to compare the bootstrap rules to rules produced by running

the algorithm at a lower support threshold. This helps ameliorate the issue of overlap between

bootstrap samples and the original rule set because it increases the overlap between the boot-

strap sample rules and the data set they are compared with when determining the threshold set

by ε(δ). This can be done because the algorithm’s rules are closed frequent itemsets; there-

fore, rules created at lower support thresholds are super sets of rules created at higher ones.

Using a rule set that has a lower minimum support threshold than the bootstrap samples and

the original rule set, effectively prevents setting the threshold set by ε(δ) so high that it will

cause the bootstrap method to be too stringent. Additionally, using metrics that are not depen-

dent upon frequency, like consistency, and rescaling those metrics will also alleviate issues

related to the bootstrap method’s increased stringency at higher minimum support thresholds.

5.3 Results

5.3.1 ToxCast and Thresholding Issues

Using a minimum support threshold of 0.16 (40 observations), the bootstrap method proved

to be too stringent in comparison to FDR adjustment on the ToxCast data. Figure 5.10 demon-

strates that a minimum support threshold of 0.16 is so stringent that one needs to set δ at 0.45

or greater for at least 350 false positives to get just a few significant results. Compared to the

standard FDR adjustment where one would expect over 5,500 results for 350 false positives

as depicted in the right-hand table in figure 5.10. Selecting lower support threshold for the

ToxCast data becomes computationally infeasible at levels much lower than 0.16 due to the

variability in run time and number of rules produced by the bootstrap. Specifically, table 4.6

demonstrates how increasing to more than 25,000 rules increases runtime to be over an hour

and table 5.2 establishes how the initial rule set will contain about the median number of rules

as compared to the rule sets of the bootstrap samples. Thereby, illustrating that decreasing the

minimum support threshold below 0.16 for ToxCast example is computationally infeasible.
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TOXCAST SHOWS HOW %16 THRESHOLD TOO STRINGENT FOR P-VALUE AND FOR CHOOSING GOOD DELTA FOR OTHER METRICS LIKE RESCALED CONSISTENCY

#False 
Positives

5 10 25 50 75 100 125 150 200 250 300 350 400 500 750 1000 1250 Expected 
Results

# False 
Positives

0.0292 402 11.7
0.05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0302 866 26.2
0.10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0349 1,436 50.2
0.15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0388 1,914 74.3
0.20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0.0419 2,386 100.0
0.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 5 0.0447 2,798 125.1
0.30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 5 12 0.0470 3,203 150.5
0.35 0 0 0 0 0 0 0 0 0 0 0 0 0 1 5 11 31 0.0516 3,875 200.1
0.40 0 0 0 0 0 0 0 0 0 0 0 1 2 2 9 32 56 0.0556 4,496 249.8
0.45 0 0 0 0 0 0 0 0 0 0 1 2 2 5 26 55 97 0.0593 5,073 300.9
0.50 0 0 0 0 0 0 0 0 0 2 2 5 5 11 45 87 160 0.0635 5,514 350.0
0.55 0 0 0 0 0 0 0 0 2 2 5 6 12 31 78 160 265 0.0673 5,946 400.2
0.60 0 0 0 0 0 0 0 2 3 5 8 17 28 47 113 232 414 0.0745 6,723 500.8
0.65 0 0 0 0 0 0 2 2 5 10 22 38 48 72 198 376 613 0.0917 8,180 750.3
0.70 0 0 0 0 1 2 4 5 12 31 47 60 83 141 359 666 1074 0.1075 9,305 999.9

0.1225 10,211 1,250.4

#False 
Positives

5 10 25 50 75 100 125 150 200 250 300 350 400 500 750 1000 1250

0.05 1 3 9 17 27 41 55 62 81 100 128 145 168 213 329 430 550
0.10 1 3 12 27 44 62 77 91 129 160 194 224 260 321 479 646 794
0.15 2 6 13 38 59 77 100 121 160 197 250 289 329 422 611 837 1036
0.20 3 6 17 50 72 100 125 151 202 266 318 354 429 537 805 1073 1326
0.25 3 9 21 59 87 121 147 194 260 318 389 467 537 647 977 1283 1574
0.30 3 9 27 66 108 145 168 224 305 389 467 537 615 766 1136 1457 1860
0.35 5 11 30 72 125 168 224 266 350 467 548 615 727 901 1302 1671 2289
0.40 6 13 41 91 146 197 266 318 422 523 609 709 805 1005 1497 1954 2380
0.45 6 13 50 108 168 240 289 350 470 578 687 803 908 1099 1647 2289 2739
0.50 9 17 59 129 196 281 333 395 537 647 794 902 1037 1302 1954 2664 3197
0.55 9 18 66 147 229 305 389 470 636 805 963 1099 1284 1603 2289 3040 3697
0.60 9 22 81 168 266 350 467 537 730 908 1073 1283 1420 1846 2705 3532 4340
0.65 13 30 91 194 305 422 523 615 837 1037 1255 1416 1641 1954 3105 3955 4920
0.70 15 39 110 229 350 497 609 730 977 1254 1455 1649 1954 2358 3505 4512 5569

16% Support Threshold Bootstrap Sampling results using Phi Coefficient P-Value 16% Threshold - FDR @ 0.05

16% Support Threshold Bootstrap Sampling results using Rescaled Consistency 
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Figure 5.10: Threshold Problem with ToxCast Data. Right table shows FDR adjusted p-values
as α, expected rules produced at minimum support threshold 0.16 given α, and correspond-
ing number of expected false positives. Left tables show number of significant rules using
bootstrap method at 0.16 support threshold for 1000 bootstraps using the phi coefficient’s p-
value(top) and scaled consistency(bottom) as the metrics. Light gray shaded cells indicate
first δ where number of rules exceed number of false positives, none of the results exceeded
the number of rules resulting from FDR correction (right-hand table).

This makes the ToxCast data a good example of how one can use the alternative solutions

enable the use of the bootstrap methodology on a real world example. The bottom table in

figure 5.10 demonstrates how using scaled consistency for δ of 0.30 or more and for 150 or

greater false positives will provide significant rules that more than exceed the number of false

positives. This illustrates that even in cases where the number of significant rules fails to ex-

ceed the number of false positives when the phi coefficient is used, other metrics that are not

dependent upon frequency may produce an adequate number of results.

One solution to the problem of not being able to use a low enough minimum support

threshold is to limit the seed nodes to ones that the user is most interested in. For ToxCast

data we selected a support threshold of 0.11(28 observations), for all seed nodes that had three

or more response variables. This generated 16,523 rules where the standard FDR adjustment

resulted in 6 percent of the rules being significant (1,048) given an α of 0.05. Note that the
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FDR adjustment on this dataset was odd in the sense that only 2 of the 1,048 rules were

clearly significant (p-value 0.0030) and the remaining 1,046 had a borderline significance as

demonstrated by adjusted p-values of at least 0.0488 (see right-hand table in figure 5.11).

Table 5.1 show that the rules deemed significant show an association between sets of response

and explanatory variable of almost equal size with average consistency of 0.66 and on average

a subset of data that includes 88 observations. The bootstrap method was performed for 1000

bootstraps samples with support threshold of 0.11(28 observations) and was limited to rules

that contained at least 3 or more response variables.

# Resp # Explan Consist All ’One’ Obs Tot Obs
Max. 7 10 0 .77 65 243
Min. 3 1 0 .49 28 50
Med. 3 4 0 .66 30 83
Avg. 3.2 4.2 0 .66 31.6 88.2
Std. 0.49 1.39 0 .03 4.32 23.36

Table 5.1: Statistics on 1,048 significant rules given FDR Adjustment at α 0.05. Table con-
tains statistics describing the number of response variables (col 1), the number of explanatory
variables (col 2), the consistency (col 3), size of cell a from figure 5.1 (col 4), and sum of cells
a-d from figure 5.1 (col 5).

The tables on the left in figure 5.11 displays the number of significant rules produced us-

ing the bootstrap method given a selected δ and V0 for the metrics phi coefficient’s p-value

(top) and scaled consistency (bottom). The table on the right in figure 5.11 shows the number

of significant rules expected using the standard FDR adjustment, where the dark gray shaded

cells indicate the first δ values that will return at least as many significant results as the stan-

dard FDR adjustment. Due to only two of the rules being truly significant with regards to the

FDR correction, only V0 of 30 or less have rules that exceed the number expected by the FDR

correction. The light gray shaded cells indicate the first δs where the number of rules exceeds

the number of false positives. Only the scaled consistency metric provides significant rules

that exceed the number of false positives expected. Seemingly, if one selects a δ of at least

0.40, the results will more than exceed the number of false positives. The performance of the

bootstrap method coupled with the oddness of phi coefficient, as noted above, indicate that
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DEMONSTRATES CUTTING THE DATA THAT IT WORKS AND PRODUCES SIGNIFICANT RESULTS -- NOTE THAT FDR FOR LESS DATA AND TOXCAST DATA GIVES WEIRD RESULTS

#False 
Positives

5 10 15 20 25 30 35 40 45 50 55 60 65 70 85
Expected 
Results

# False 
Positives

0.0030 2 0.01
0.05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0488 673 32.85
0.10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0494 682 33.68
0.15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0.0495 700 34.67
0.20 0 0 0 0 0 0 0 0 0 0 1 1 1 1 2 0.0497 870 43.23
0.25 0 0 0 0 0 0 0 1 1 2 2 2 2 2 2 0.0500 880 43.99
0.30 0 0 0 0 1 1 2 2 2 2 2 2 2 2 2 0.0500 1048 52.40
0.35 0 0 0 1 2 2 2 2 2 2 2 2 2 2 2 0.0501 1297 64.95
0.40 0 0 1 2 2 2 2 2 2 2 2 2 2 2 2 0.0501 1310 65.63
0.45 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 0.0502 1314 66.00
0.50 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0.0503 1704 85.66
0.55 1 2 2 2 2 2 2 2 2 2 2 2 3 3 3
0.60 2 2 2 2 2 2 2 2 2 3 3 3 3 4 5
0.65 2 2 2 2 2 2 3 3 3 3 4 4 5 7 8
0.70 2 2 2 2 2 3 3 3 4 7 7 8 8 9 10

#False 
Positives

5 10 15 20 25 30 35 40 45 50 55 60 65 70 85

0.05 1 6 6 8 8 12 13 20 21 24 28 29 30 34 35
0.10 4 6 8 8 12 20 24 29 29 34 35 35 36 39 44
0.15 5 7 8 15 21 28 29 34 35 36 38 40 44 52 60
0.20 6 8 12 21 28 30 35 35 38 41 44 52 58 60 69
0.25 6 8 20 24 30 35 36 40 44 52 58 60 64 69 79
0.30 6 12 21 29 34 36 40 44 56 60 64 70 73 79 94
0.35 7 12 24 30 35 39 44 56 60 66 70 79 79 92 113
0.40 8 18 29 35 39 44 56 60 69 76 79 92 98 105 129
0.45 8 20 29 36 41 52 60 70 79 92 94 103 113 120 141
0.50 8 24 34 39 52 60 70 79 92 103 113 120 129 136 169
0.55 12 29 36 44 58 69 79 92 103 119 129 136 150 155 190
0.60 17 34 40 56 66 79 94 106 124 132 144 155 172 181 230
0.65 20 35 52 64 79 92 106 125 141 155 176 190 213 230 301
0.70 24 39 62 79 95 116 130 153 170 188 211 230 255 288 349

11% Support Threshold Bootstrap Sampling results using Phi Coefficient P-Value  3+Response Variables 11% Threshold - FDR @ 0.05

11% Support Threshold Bootstrap Sampling results using Rescaled Consistency  3+Response Variables
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Figure 5.11: Rules Reduction Solution to Threshold Problem. Tables reflect results that con-
tained 3 or more response variables to allow use of lower support threshold. Right-hand table
shows FDR adjusted p-values as α, expected rules produced at support threshold 0.11 given
α, and corresponding number of false positives. Left-hand tables show the number of signifi-
cant rules using bootstrap method at 0.11 support threshold for 1000 bootstraps using the phi
coefficient’s p-value(top) and scaled consistency (bottom) as the metrics. Light gray shaded
cells indicate first δ where the number of rules exceed the number of false positives, dark gray
cells indicate first δ where the number of rules exceed those resulting from FDR correction
(right-hand table).

at most only 2 rules are truly significant regarding the phi coefficient. This example seems

to present a case where the researcher might be truly interested in a metric other than the phi

coefficient to quantify significant results (rules).

Another solution to the issue of not being able to select a lower minimum support thresh-

old, is to use a lower minimum support threshold when calculating the difference, M ′(r) −

M(r), between rules of the bootstrap samples and the original rule set. Specifically, one would

use this lower minimum support threshold only on the original dataset to produce a larger rule

set to only to be used when calculating this difference between the bootstrap rule sets and the

original rule set. This rule set at the lower minimum support threshold, would be a super set

of the one calculated at a higher minimum support threshold. Using this larger rule set should

help with the issue of not having adequate overlap between the original and bootstrap rule
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sets. Recall that this lack of overlap causes the threshold set by ε(δ) to be so high that it will

make the bootstrap method too stringent.

For ToxCast data, the minimum support threshold set to 0.16 (40 observations) to define

the original and bootstrap rule sets. For only the difference calculation, M ′(r) −M(r), we

use a rule set that was generated by the minimum support threshold of 0.12 (29 observations).

The tables on the left in figure 5.12 display the number of significant rules produced using the

bootstrap method given a selected δ and number of false positives for the metrics phi coef-

ficient’s p-value (top) and scaled consistency (bottom). The table on the right in figure 5.12

shows the number of significant rules expected using the standard FDR adjustment, where

the dark gray shaded cells indicate the first δs that exceed the number of results given by the

standard FDR adjustment. The light gray shaded cells indicate the first δs whose results ex-

ceed the number of false positives. This alternative method is able to effectively improve the

performance with regards to the phi coefficient, especially at V0 of 150 or greater. Notice how

now with this adjustment a δ of 0.50 for V0 will produce results similar to what was observed

with the FDR correction. Additionally one can now select δs of 0.15 or greater to more than

exceed the number of false positives with regards to the scaled consistency metric.

To demonstrate using a different statistic on real data, we used consistency as the metric

on ToxCast data. For this comparison we did not use the composite statistic because we

wanted to look specifically at the metric that provided motivation for exploring the use of this

bootstrap methodology. The metric used is scaled consistency whose calculation is described

in detail in the methods section. The bootstrap method was performed for 1000 bootstrap

samples and the tables in the figure 5.13 indicate the number of rules that would be consider

significant based upon scaled consistency. The first two tables in 5.13 are the results of using

scaled consistency as the metric of interest for the entire ToxCast dataset. The top table is

the original using minimum support of 0.16, the next is one using minimum support 0.16 but

a lower support threshold (0.12) for the calculation of difference for the bootstrap samples.

These two tables are directly comparable since they encompass the same 22,881 rule set. The
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SHOW HOW LOW CUT THRESHOLD ON RULES COMPARISON IMPROVES BOTH WHAT IS SEEN WITH P-VALUE & OTHER METRICS LIKE CONSISTENCY

#False 
Positives

5 10 25 50 75 100 125 150 200 250 300 350 400 500 750 1000 1250 Expected 
Results

# False 
Positives

0.0292 402 11.7
0.05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 6 26 0.0302 866 26.2
0.10 0 0 0 0 0 0 0 0 0 0 0 1 2 5 41 105 226 0.0349 1,436 50.2
0.15 0 0 0 0 0 0 0 0 2 5 8 21 35 73 246 645 1388 0.0388 1,914 74.3
0.20 0 0 0 0 0 0 1 2 9 26 43 66 99 220 890 2457 4380 0.0419 2,386 100.0
0.25 0 0 0 0 2 3 6 16 62 126 225 362 527 1080 3064 6145 10372 0.0447 2,798 125.1
0.30 0 0 0 2 6 26 53 80 187 336 632 1035 1444 2797 8408 12865 16341 0.0470 3,203 150.5
0.35 0 0 0 6 41 103 189 317 776 1393 2059 3387 4788 7764 14737 17164 18472 0.0516 3,875 200.1
0.40 0 0 2 31 92 232 431 794 1709 3073 4937 6433 8721 12410 17020 18637 19358 0.0556 4,496 249.8
0.45 0 0 8 83 307 721 1348 2078 4033 6566 8947 11459 13452 16026 18230 19280 19862 0.0593 5,073 300.9
0.50 0 2 41 230 643 1347 2401 3833 7915 11192 13747 15460 16384 17487 19019 19738 20197 0.0635 5,514 350.0
0.55 0 5 83 607 1787 3421 5746 9681 13509 15349 16377 17125 17586 18406 19473 20061 20533 0.0673 5,946 400.2
0.60 2 17 271 1494 3946 7744 11441 13348 15496 16661 17288 17892 18308 18871 19805 20381 20771 0.0745 6,723 500.8
0.65 10 80 753 4091 9525 12753 14357 15538 16724 17482 18011 18436 18753 19288 20089 20656 21013 0.0917 8,180 750.3
0.70 43 230 2279 8907 13154 14641 15812 16507 17466 18116 18587 18959 19237 19707 20429 20861 21230 0.1075 9,305 999.9

0.1225 10,211 1,250.4

#False 
Positives

5 10 25 50 75 100 125 150 200 250 300 350 400 500 750 1000 1250

0.05 3 6 17 50 66 95 128 147 202 281 345 422 473 601 943 1326 1671
0.10 6 13 41 87 147 194 266 318 430 567 690 837 943 1183 1693 2493 3196
0.15 9 17 62 142 222 305 384 497 686 886 1054 1260 1497 1954 3238 4647 5722
0.20 12 27 91 226 345 473 609 738 1073 1416 1726 1954 2427 3106 5088 7069 9125
0.25 17 44 145 318 537 738 933 1136 1591 1954 2522 3040 3538 4551 7123 10198 13360
0.30 27 72 229 491 738 1036 1397 1671 2349 3106 3883 4657 5587 7088 11902 15419 19779
0.35 45 110 331 761 1283 1647 2289 2895 3996 5091 6227 7317 8236 10780 18485 22313 22576
0.40 73 168 491 1175 1948 2687 3476 4122 5722 7544 9643 11468 13654 17695 22449 22586 22654
0.45 114 241 738 1641 2687 3702 5091 6323 8966 11504 14114 16507 19095 22124 22574 22646 22680
0.50 168 345 1005 2294 3923 5719 7701 9301 12791 16988 20035 21919 22315 22493 22627 22675 22697
0.55 266 567 1603 3538 6124 8547 11557 14596 20013 22113 22352 22440 22493 22565 22661 22692 22711
0.60 395 901 2493 5776 9487 14731 18894 21110 22283 22408 22471 22522 22554 22606 22680 22704 22725
0.65 647 1351 4310 10667 17019 20548 22071 22267 22432 22500 22540 22577 22606 22651 22692 22719 22742
0.70 1005 2289 7852 16740 21631 22157 22326 22409 22500 22552 22581 22608 22644 22673 22708 22736 22757

16% Support Threshold Bootstrap Sampling results using Phi Coefficient P-Value with %12 Threshold for Rules Comparison 16% Threshold - FDR @ 0.05

16% Support Threshold Bootstrap Sampling results using Rescaled Consistency with %12 Threshold for Rules Comparison
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Figure 5.12: Lower Comparison Threshold Solution to Threshold Problem. Right table shows
FDR adjusted p-values as α, expected rules produced at support threshold 0.16 given α, and
corresponding number of false positives. Left tables show number of significant rules using
bootstrap method at 0.16 support threshold for 1000 bootstraps with support threshold 0.12
for rules comparison and phi coefficient’s p-value(top) and scaled consistency(bottom) as the
metrics. Light gray shaded cells indicate first δ where number of rules exceed number of false
positives, dark gray cells indicate first δ where number of rules exceed those resulting from
FDR correction (right-hand table).
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bottom table is the one where the results have been restricted to 3 or more response variables

and minimum support threshold of 0.11 is used. It is not directly comparable to the two

tables above it because its 16,523 rule set is a superset of all rules from the 22,881 rule set

that contain 3 or more response variables. The dark gray cells indicates the first δs where

the number of rules exceed those given by the phi coefficient’s FDR adjusted p-value shown

in figures 5.11 and 5.10. The light gray cells indicate the first δs where the number of rules

exceed the number of false positives.

The top table in figure 5.13 demonstrates how even when the minimum support threshold

is too high to give results similar to what is seen with FDR correction (see figure 5.10); using

a metric that is not dependent on frequency can provide results that exceed the number of

false positives at reasonable levels of δ and V0. The top table shows that for V0 of 150 or

greater and for δ of 0.30 or greater one can get a reasonable number of results. The next

table in figure 5.13 depicts how using a lower minimum support threshold when calculating

the difference between the bootstrap and original rule sets can alleviate this issue of a high

of a minimum support threshold giving too stringent of results. Top two tables are directly

comparable, demonstrating how selecting a δ as small as 0.10 will now provide results that

more than exceed the number of false positives for V0 of 150 or greater. The bottom table

establishes that by restricting the results to allow one to use of a smaller minimum support

threshold can also provides a viable solution to the threshold problem. In this case selecting a

δ of 0.35 or greater will provide results that exceed the number of false positives for all V0s.

In light of the issues that occur with the minimum support threshold, figure 5.13 suggests that

scaled consistency might be a better indicator of association than phi coefficient for dealing

with noisy inconsistent data. Because the rule sets are not directly comparable; it is difficult

to determine which of the two methods used to deal with the threshold issue provided a better

result. The rule restriction method encourages the analyst to focus their analysis; thus, perhaps

making it a more ideal strategy to use.
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#False 
Positives

5 10 25 50 75 100 125 150 200 250 300 350 400 500 750 1000 1250

0.05 1 3 9 17 27 41 55 62 81 100 128 145 168 213 329 430 550
0.10 1 3 12 27 44 62 77 91 129 160 194 224 260 321 479 646 794
0.15 2 6 13 38 59 77 100 121 160 197 250 289 329 422 611 837 1036
0.20 3 6 17 50 72 100 125 151 202 266 318 354 429 537 805 1073 1326
0.25 3 9 21 59 87 121 147 194 260 318 389 467 537 647 977 1283 1574
0.30 3 9 27 66 108 145 168 224 305 389 467 537 615 766 1136 1457 1860
0.35 5 11 30 72 125 168 224 266 350 467 548 615 727 901 1302 1671 2289
0.40 6 13 41 91 146 197 266 318 422 523 609 709 805 1005 1497 1954 2380
0.45 6 13 50 108 168 240 289 350 470 578 687 803 908 1099 1647 2289 2739
0.50 9 17 59 129 196 281 333 395 537 647 794 902 1037 1302 1954 2664 3197
0.55 9 18 66 147 229 305 389 470 636 805 963 1099 1284 1603 2289 3040 3697
0.60 9 22 81 168 266 350 467 537 730 908 1073 1283 1420 1846 2705 3532 4340
0.65 13 30 91 194 305 422 523 615 837 1037 1255 1416 1641 1954 3105 3955 4920
0.70 15 39 110 229 350 497 609 730 977 1254 1455 1649 1954 2358 3505 4512 5569

#False 
Positives

5 10 25 50 75 100 125 150 200 250 300 350 400 500 750 1000 1250

0.05 3 6 17 50 66 95 128 147 202 281 345 422 473 601 943 1326 1671
0.10 6 13 41 87 147 194 266 318 430 567 690 837 943 1183 1693 2493 3196
0.15 9 17 62 142 222 305 384 497 686 886 1054 1260 1497 1954 3238 4647 5722
0.20 12 27 91 226 345 473 609 738 1073 1416 1726 1954 2427 3106 5088 7069 9125
0.25 17 44 145 318 537 738 933 1136 1591 1954 2522 3040 3538 4551 7123 10198 13360
0.30 27 72 229 491 738 1036 1397 1671 2349 3106 3883 4657 5587 7088 11902 15419 19779
0.35 45 110 331 761 1283 1647 2289 2895 3996 5091 6227 7317 8236 10780 18485 22313 22576
0.40 73 168 491 1175 1948 2687 3476 4122 5722 7544 9643 11468 13654 17695 22449 22586 22654
0.45 114 241 738 1641 2687 3702 5091 6323 8966 11504 14114 16507 19095 22124 22574 22646 22680
0.50 168 345 1005 2294 3923 5719 7701 9301 12791 16988 20035 21919 22315 22493 22627 22675 22697
0.55 266 567 1603 3538 6124 8547 11557 14596 20013 22113 22352 22440 22493 22565 22661 22692 22711
0.60 395 901 2493 5776 9487 14731 18894 21110 22283 22408 22471 22522 22554 22606 22680 22704 22725
0.65 647 1351 4310 10667 17019 20548 22071 22267 22432 22500 22540 22577 22606 22651 22692 22719 22742
0.70 1005 2289 7852 16740 21631 22157 22326 22409 22500 22552 22581 22608 22644 22673 22708 22736 22757

#False 
Positives

5 10 15 20 25 30 35 40 45 50 55 60 65 70 85

0.05 1 6 6 8 8 12 13 20 21 24 28 29 30 34 35
0.10 4 6 8 8 12 20 24 29 29 34 35 35 36 39 44
0.15 5 7 8 15 21 28 29 34 35 36 38 40 44 52 60
0.20 6 8 12 21 28 30 35 35 38 41 44 52 58 60 69
0.25 6 8 20 24 30 35 36 40 44 52 58 60 64 69 79
0.30 6 12 21 29 34 36 40 44 56 60 64 70 73 79 94
0.35 7 12 24 30 35 39 44 56 60 66 70 79 79 92 113
0.40 8 18 29 35 39 44 56 60 69 76 79 92 98 105 129
0.45 8 20 29 36 41 52 60 70 79 92 94 103 113 120 141
0.50 8 24 34 39 52 60 70 79 92 103 113 120 129 136 169
0.55 12 29 36 44 58 69 79 92 103 119 129 136 150 155 190
0.60 17 34 40 56 66 79 94 106 124 132 144 155 172 181 230
0.65 20 35 52 64 79 92 106 125 141 155 176 190 213 230 301
0.70 24 39 62 79 95 116 130 153 170 188 211 230 255 288 349

16% Support Threshold Bootstrap Sampling results using Rescaled Consistency with %12 Threshold for Rules Comparison

11% Support Threshold Bootstrap Sampling results using Rescaled Consistency  3+Response Variables

TOXCAST RESULTS FOR RESCALED 
CONSISTENCY USING NOTHING , 
LOWCUT, AND REDUCTION OF 
RESULTS

16% Support Threshold Bootstrap Sampling results using Rescaled Consistency 
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Figure 5.13: Bootstrap Results from Scaled Consistency Metric using ToxCast Data. The
tables present the number of statistically significant rules for a given δ and false positive. The
light gray cells indicate the first δs where the number of rules exceed the number of false
positives and dark gray cells indicates the first δs where the number of rules exceed those
given by the FDR adjusted p-value shown in figures 5.11 and 5.10.
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5.3.2 Approximate Itemsets

The primary difficulty in making the algorithm work for approximate itemsets resides within

the comparison of rules between the bootstrap and the original rule sets. Since an approxi-

mate itemset is a superset of the original closed frequent itemsets, calculating it can represent

a reduction in itemsets from the original set in the sense that certain itemsets with fewer items

will disappear because they were incorporated into the approximate set. This results in a de-

crease of the overlap between the original rule set and the bootstrap rule sets; thus, causing

one to choose an even smaller support threshold to attempt to get similar stringency as seen

with FDR correction. The initial attempts on incorporating approximate closed frequent item-

sets proved to provide results that were too stringent due to the problems with rule overlap

mentioned above.

To fix these issues with rule overlap we will implement the following as part of our fu-

ture work. We will allow a relaxing in the rules comparison such that an approximate rule

(rule from approximate itemset) matches any rule that it shares all the same item labels with

whether or not those items match on approximation. Note that an item is approximate if some

of the observations associated to that item are zero. The priority is given such that if an ap-

proximate rule matches another rule exactly (including all approximate items matching), then

the difference is calculated using that rule match. If an approximate rule matches a number of

other rules by their item labels (not in approximateness), then the median rule (as judged by

the metric of interest) is used for the calculation of the difference. Additionally, for the pur-

poses of calculation of the difference for the bootstrap samples, itemsets that were removed

because they were incorporated into an approximate itemset are added back to the original

dataset (not the bootstraps) for calculation of this difference only. These two adjustments

should resolve the stringency issues observed when attempting to get the bootstrap algorithm

work with approximate itemsets.
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Figure 5.14: Histogram of timing statistics on 1,000 bootstrap samples create for analysis of
rules with 3+ response variables.

5.4 Timing

Prop. Rule Tot Runtime Tot Runtime
#Rules Overlap (min) (sec)

Max. 71,060 0.9909 1,420.7 85,242.6
95 Ptile 46,612 0.8546 802.8 48,169.1
75 Ptile 26,406 0.6336 163.7 9,823.5
Median 14,992 0.4617 37.6 2,258.8
25 Ptile 8,134 0.3109 9.6 577.5
5 Ptile 3,054 0.2016 1.7 103.2
Min. 974 0.1440 0.4 24.6

Table 5.2: Rule and timing statistics on 1,000 bootstrap samples create for analysis of rules
with 3+ response variables. Table provides the number of rules (col 1), the proportion of
overlap between bootstrap sample and original rule set (col 2), total runtime in minutes (col
3), total runtime in seconds (col 4).

The most time consuming part of the method is the closed frequent itemset mining of

each of the bootstrap samples. As stated in the introduction, this problem is even further

exasperated because a bootstrap sample may have many times the number of rules (closed

itemsets) as the original. The worse case scenario, regarding the maximum number of rules

observed with a bootstrap sample, is determined by the density and size of the binary dataset
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with regards to ones and the minimum support threshold selected. For ToxCast dataset used in

the analysis which focused on rules that had three or more response variables, the worst case

was an increase from 16,523 to 71,060 rules. The statistics quantifying runtime and number of

rules (subsets) generated by the bootstrap samples can be found in the table 5.2. Figure 5.14 is

a histogram of runtime calculated in seconds for each of these 1,000 bootstrap samples. The

total time the program spent computing the 1,000 bootstraps is 154,480 hours. Additionally,

summarizing the bootstrap samples for the phi coefficient’s p-value, consistency and scaled

consistency took an additional 5 hours and 26 minutes. The programs were all run on UNC’s

research computing cluster KillDevil, each running on a single Intel EM64T 2.0-2.93 GHz

CPU with access to at least 8 GB of memory. In light of these timing issues, we suggest the

user limit themselves to 10,000 - 12,000 rule maximum and use a support threshold no greater

than 0.15. The ideal runtime scenario was depicted with the simulated data, with less than

5,000 rules and a minimum support threshold of 0.05.

5.5 Conclusions

We have demonstrated that the proposed bootstrap methodology can be adapted to allow a

researcher to select any metric of interest with regards to determining which subsets of data

show a strong association between response and explanatory variable while accounting for the

increase in type I error associated with multiple testing. We established how scaled consis-

tency could be used in place of the phi coefficient in determining which subsets of data are

most significant for both real and simulated data. We determined how one can successfully

incorporate multiple metrics of interest into the methodology, which enables one to to extend

the analysis to integrate more than two datasets in a meaningful way. Furthermore we showed

how one could easily restrict their analysis of interest to include only multivariate relationships

(those involving two or more response variables). Using the phi coefficient’s FDR corrected

p-values, we demonstrated how the δ parameter provide a greater deal of control over the
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number of false positives in the result. Additionally, using the phi coefficient we demon-

strated how the selection of the minimum support threshold influences the stringency of the

results returned. We established two methods for preventing the selected minimum support

threshold from creating results that are too stringent. Furthermore, we illustrated that certain

metrics that are not influenced by the frequency of the observations can provide adequate re-

sults even at higher minimum support thresholds. Higher minimum support thresholds may

provide the ideal results when the data under analysis is highly inconsistent because larger

subsets can demonstrate truer associations. Additionally, we indicated methods for enabling

the bootstrap methodology to be adapted for use with approximate itemsets. The weaknesses

of this method are intuitive for all methods that use bootstrapping, the bootstrap methodol-

ogy is computationally expensive and can be infeasible for certain sized datasets given the

minimum support threshold that would be required. We provided methodology for restricting

one’s analysis to those association of greatest interest, which enables this methodology to be

used with larger datasets of greater complexity.
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Chapter 6

Concluding Remarks

6.1 Conclusions

Classical methods of analysis can fail to identify associations within the data when the data

under consideration has nontrivial amount of inconsistency because these methods consider

the entire data record. The approaches I develop focus the analysis on subsets of data with

internal consistency obscured by the standard methods of analysis. My initial research within

the field of metabolomics provides a means to represent NMR spectra as hundreds of aligned

peaks as opposed to thousands of unaligned points. Representing spectra in this focused

manner improves the relevance of the results generated as detailed in Chapter 2. Additional

improvements to enhance NMR spectra analysis can be achieved though the identification of

associations that exist over subsets of PCANS aligned data. As demonstrated in Chapters 4

and 5 when analyzing inconsistent data, identifying associations that exist between response

and explanatory variables over subsets of data improves the relevance of results. Specifically,

our methodology is more adept at focusing exclusively on subsets of data that have an as-

sociation between response and explanatory variables in comparison to similar methods of

subset analysis, like biclustering. As highlighted in Chapter 5, improvements are made to

allow the user to employ any metric of interest to quantify strength of association between

between response and explanatory variables while accounting for the increase in type I error



associated with multiple testing. The methodology discussed in Chapter 5 establishes how

multiple metrics of interest can be combined into a measure of strength of association; thus,

enabling the integration of three or more datasets in a meaningful way. This methodology has

limitations regarding usage on large, complex datasets because of its reliance on bootstrap-

ping. Techniques to handle such limitations are demonstrated in Chapter 5 to illustrate how

these methods provide relevant results on real data.

6.2 Future Directions

As mentioned in Chapter 2, there are a number of improvements to be made to the PCANS

algorithm. The primary improvement was an update to the peak picking method that now

employs an automated statistically based algorithm based on work done by Abdo et al.(Abdo

et al., 2006). Another involved adding more functionality to the PCANS webtool as to allow

for the visualization of the consensus spectrum based upon the original spectra. Two addi-

tional improvements can be made to the alignment algorithm. One would allow for different

sized alignment windows to be used based upon the position in the spectrum and the other

updates the alignment framework to better handle the alignment of hundreds of spectra.

In Chapter 2, it was discussed how metabolomics is being used to determine multiple re-

sponder phenotypes wherein the treated group may contain several subgroups characterized by

distinctly different spectra. Standard methods of analysis that consider the entire data record

may fail to identify such subgroups. Using the closed/approximate frequent itemset mining

methodology of Chapter 4, would provide the means to do such an analysis on PCANS aligned

spectra. These methods focus upon subsets of data, which will enable them to identify multi-

ple responder phenotypes within a specific group because they do not require the association

to be true for the entire data record.

This type of analysis would use the results of PCANS alignment, a data matrix and the

consensus spectrum. One can convert this data matrix into a binary dataset by converting all
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peaks to ones. The chemical shift values (peak positions) would be treated as the observa-

tions (transactions) and the spectra would be treated as the response and explanatory variables

(items). The group classification could define the two classes of variables. For example, con-

trol spectra could be the response variables and all treatment spectra could be the explanatory

variables. In this sense, strength of association would find subsets (peaks & spectra) where the

two groups were most similar. If instead one wanted subsets where the two groups were most

different, they could either use the bootstrap method or subtract one from the initial p-values

prior to FDR correction.

Another analysis of interest might be to treat all spectra as explanatory variables and create

the response variables using the consensus spectrum. The consensus spectrum would be used

to create a profile spectrum that contains the majority of peaks that are associated to a specific

group, like control or treatment. In this way subgroups strongly associated with the two

response variables, the control and treatment profiles, identify peaks that are common to both

groups. Whereas, subgroups strongly associated to one response variable, either the control

or the treatment profile, identify peaks that are common to only a specific group.

There are three avenues of research that can be further explored based upon the bootstrap

methodology in Chapter 5. As outlined in Chapter 5, I would like to account for the problems

I encountered when attempting to use the bootstrap methodology with approximate itemsets.

In the first attempts, the methodology proved to give results that were too stringent due to the

issue with overlap between bootstrap and original rule sets. This issue was exacerbated by the

approximate itemsets since they were difficult to compare if one did not relax the rules of com-

parison. This relaxation of rules comparison would allow itemsets that shared the same item

labels to match even if they did not share the same level of fuzziness (approximation). The

first avenue of future research would be implementation of the relaxation of rules comparison

and evaluate its success to incorporate approximate itemsets into the bootstrap methodology.

It may be necessary to restrict the level of approximation allowed and require the metric of

interest to be one that is not associated with frequency, like scaled consistency.
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Additionally, I would like to demonstrate the integration of three or more datasets through

the use of the composite metric. If real data cannot be identified, I can create simulated data

to demonstrate how three or more datasets can successfully be integrated with the composite

metric. The metrics that compose the composite metric are the pairwise associations between

the datasets. Initially, these pairwise associations will be scaled as to give them equal weight.

Unequal weighting of the pairwise associations will also be explored.

Finally we will explore using the bootstrap methodology of Chapter 5 to associate sta-

tistical importance with Reif et al. (2010) ToxPi measure. This bootstrap methodology can

be modified to provide the ToxPi metric with a measure of statistical significance while con-

trolling the probability of observing a false positive results. Specifically, Lallich et al. (2007)

defined a rule set, R, that is defined by a metric, M , that is computed based upon transactions,

T , defined as ones in a binary dataset. Lallich et al. (2007) defined each rule r in the rule set

based upon the items that composed a specific transaction. The methodology they use perturbs

the transaction set and determines thresholds in which rules are still significant in light of this

perturbation. This is no different than the introduction of noise into a mathematical solution

to test the robustness of its composition.

In this sense we can define the chemicals that ToxPi is defined upon as our rule set, R. Our

transaction set can be defined as the 90 measures that compose the calculation of ToxPi. Since

ToxPi is not binary but is measured on a unit circle, each of the 90 measures that compose the

transaction set will be given a weight proportionate to their contribution to the ToxPi measure

for a given chemical. This weight will be equivalent to the number of times the measure is

represented in the initial transaction set. For example, say that attagene assay ATG A TRANS,

that is one of the five assays that compose the AR section of ToxPi, contributes to 0.0680 to

that of the unit circle of ToxPi for chemical HPTE. If 1000 units compose the transaction

set, then 68 of those assigned to assay ATG AR TRANS will be indicated as one for chemical

HTPE. The bootstrap sampling of this transaction set will perturb the units that are assigned

to the 90 measures the compose ToxPi for each chemical (rule). The metric would be the
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proportion of the ToxPi unit circle a chemical defines. In this way each chemical is a ”rule”

with its ToxPi value as the metric on which it is assessed. This would enable the bootstrap

methodology to determine statistically important chemicals (rules) as those that fall within

the tail of the distribution of the ToxPi metric. If certain (pie) sections of ToxPi are more

important with regards to chemical toxicity, their weights can be adjusted to account for this

known importance. Furthermore, chemicals with known toxicity can be included within the

metric and their positioning can be used to help determine thresholds of toxicity for chemicals

of unknown toxicity.
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