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ABSTRACT 

This project was undertaken to determine how coastal land use and land cover affect 

dissolved nutrient concentration and form, phytoplankton abundance and community 

composition, and nitrogen buffering capacity in the non-tidal oligo- to meso-haline creeks of 

the Neuse Pamlico Estuarine System. The research included routine sampling of four 

estuarine creeks and seasonal in-situ nutrient addition bioassays designed to mimic nutrient 

loading events observed in the monitoring data. The results show the land use causing the 

greatest degree of disturbance (agriculture) resulted in the highest in-stream nutrient 

concentrations, the highest inorganic to organic nitrogen ratios, the lowest phytoplankton 

diversity, and decreased capacity to buffer the mainstem estuary from episodic nutrient 

loading. The findings underscore the need for watershed management designed to mitigate 

increased fresh water and nutrient loading from watershed modification upstream of 

estuarine creeks. 
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CHAPTER 1  

RESEARCH RATIONALE 

 
Anthropogenic activity and development in coastal areas and upland watersheds has 

altered estuarine inputs including freshwater, nutrients, sediments and organic matter 

(Dynesius and Nilsson 1994; Hopkinson and Vallino 1995).  In some cases the impacts of 

human population increase and changing land use on estuaries have outpaced research on 

estuarine function. In the 1980’s, surveys of North Carolina estuarine ecosystems determined 

there was a deficiency in comprehensive studies of primary productivity, trophic dynamics, 

nutrients budgets, or any other non-commercially motivated issues for the shallow primary 

nursery areas of the Neuse Pamlico Estuarine System (NPES) (Epperly and Ross 1986; 

Stearns et al. 1989). This knowledge gap has been narrowed with understanding gleaned 

from studies existing at the time, and sequentially dependent research initiatives in the years 

since those cautionary statements (Kirby-Smith and Barber 1979; Paerl 1983; Rudek et al. 

1991; Mallin et al. 1993; Boyer et al. 1994; Mallin and Paerl 1994; Pinckney et al. 1997; 

Paerl et al. 1998; Christian et al. 2000; Luettich 2000; Whitall and Paerl 2001; Piehler et al. 

2002; Fear et al. 2004).  Comparable bodies of knowledge have also been built for estuaries 

throughout the United States and the World (Monbet 1992; Rabalais et al. 1996; Bricker et 

al. 1999; Orive et al. 2002). 

The current body of knowledge in estuarine science shows that anthropogenic drivers 

of estuarine alteration may vary across regions, but the resulting declines in water quality are 
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comparable; for example, nutrient loading and poor land use in North Carolina has rivaled 

high population densities in Florida as a threat to estuaries (Dame et al. 2000; Clement et al. 

2001).  One ubiquitous threat to estuaries has been eutrophication and nutrient-induced shifts 

in phytoplankton production and community composition (Nixon 1995; Paerl 1998; Cloern 

2001).  The deleterious effects of these shifts include, altered food webs, harmful algal 

blooms, hypoxia, and fish kills (Sanders et al. 1987; Paerl 1988; Boesch 1996; Bricker et al. 

1999; Gray et al. 2002; Landsberg 2002).  Such water quality declines are well documented 

for the open waters of the nitrogen (N) limited Neuse River Estuary (NRE) (Paerl 1983; 

Mallin et al. 1993; Pinckney et al. 1997; Borsuk et al. 2004).  

Various studies of the NRE have examined the drivers of eutrophication that originate 

far from the estuary itself; these include: upper watershed driven flow, point and non-point 

sourced riverine nitrogen loads, and atmospheric nitrogen deposition (Mallin et al. 1993; 

Peierls and Paerl 1997; Pinckney et al. 1997; Whitall et al. 2003).  These remote drivers are 

clearly influential in controlling primary production over long temporal scales; however they 

do not explain all observations when applied in modeling and statistical analysis (Borsuk et 

al. 2004). The disparity may be explained by the short temporal scale effects of proximate 

drivers, including meteorological conditions, internal nutrient recycling, and surface runoff 

loading from proximate areas (Stanley and Hobbie 1981; Luettich 2000; Luettich et al. 2002; 

Borsuk et al. 2004; Fear et al. 2004). Nutrient enrichment associated with proximate runoff is 

the subject of continuing research on watershed nutrient transport and transformation 

(USEPA STAR Grant #R83-0652).  The critical connection between these estuarine 

watersheds bordering the NPES and the open waters of the NPES are the oligo- to 

mesohaline creeks targeted by this study.  
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The oligo- to mesohaline creeks bordering the NPES estuary both harbor diverse and 

abundant microbial communities that mediate terrestrial-to-marine material transfer and 

serve as critical nursery area for diverse fisheries (Bradshaw et al. 1985; Posey et al. 2002; 

Ross 2003).  In other systems, creeks of similar reach have provided a buffer for receiving 

waters by assimilating 50% to 90% of the input of dissolved inorganic nitrogen from 

upstream watersheds (Peterson et al. 2001; Mallin et al. 2004). Impairment of these estuarine 

creek capacities and alterations in phytoplankton assemblages has been cited as an early 

indicator of impending degradation to estuarine waters (Holland et al. 1997; Paerl et al. 2003; 

Holland et al. 2004).  Impairment can be the result of changes in nutrient and fresh water 

loading that have the potential to alter 1) critical nursery area function, 2) primary 

productivity controls, and 3) nutrient buffering capacity (Kennedy 1984; Pinckney et al. 

1997; Ross 2003).  In other estuarine studies, both flow rates and loading of nutrients, 

pathogens, and toxins have been directly tied to watershed land use and land cover (LULC) 

(Lerberg et al. 2000; Holland et al. 2004; Kelsey et al. 2004). In the NRE nitrogen has been 

identified as the primary growth limiting nutrient (Paerl 1983; Mallin et al. 1993; Pinckney et 

al. 1997; Borsuk et al. 2004).  Consequently, I hypothesized that watershed LULC would 

significantly influence the abundance and forms of the biologically available dissolved 

nitrogen, phytoplankton abundance and diversity, and the nutrient buffering capacity in 

proximate estuarine creeks. This linkage between proximate land use and nutrient processing 

in creeks had not previously been studied directly in the NPES.  This study aimed to close 

that gap with regular in situ monitoring and controlled manipulative bioassay experiments, 

designed to quantify how the different LULC bordering the NPES affect nutrient loading and 

eutrophication in these creeks. This work was supported by the US-EPA Estuarine and Great 
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Lakes Program STAR Grant # R82867701 that was specifically funded to develop landscape 

measures that serve as quantitative indicators of estuarine environmental condition and 

vulnerability. 



  

CHAPTER 2  

HYPOTHESIS AND OBJECTIVES 

Objective and Hypothesis #1  

Topic: Nutrient conditions in non-tidal NPES creeks 

Objective: Quantify the concentrations and forms of biologically available nitrogen in creeks 

downstream of representative watersheds draining the four distinct land uses.  

Hypothesis: Current land use and land cover (LULC) bordering the NPES will significantly 

influence allochtonous nutrient loading to the proximate estuarine creeks. Specifically, runoff 

originating from the agricultural areas will be enriched in  total nitrogen and soluble 

inorganic nitrogen fractions when compared to runoff from the forested areas. 

Objective and Hypothesis #2  

Topic: Creek phytoplankton community 

Objective: Compare and contrast the abundance, composition, and diversity of the dominant 

phytoplankton taxonomic groups between the creeks.  

Hypothesis: Contrasting nutrient loads from different LULC will influence the abundances, 

composition, and diversity of the dominant phytoplankton community groups. Specifically, 

the reference and forested creeks will contain lower total community abundance and consist 

of diverse groups adapted to consistently low concentrations of DIN (e.g. cyanobacteria), 

whereas the agricultural creeks will contain higher total abundance and consist of groups 

suited to high DIN concentrations in chronic and episodic loads (e.g. chlorophytes, 

dinoflagellates).  
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Objective and Hypothesis #3  

Topic: Creek nutrient buffering capacity 

Objective: Determine if these non-tidal estuarine creeks serve as effective nutrient buffers for 

the main-stem estuary.  

Hypothesis: High productivity and nutrient assimilation rates in the proximate creeks will 

provide an efficient nutrient buffer for the main stem of estuary during both average base 

flows and episodic storm-level flows. Specifically, in-stream nutrient attenuation in all creeks 

will be directly related to levels of phytoplankton chlorophyll a. 

This project addressed these research questions using LULC assessments, study site 

selection, regular in-situ monitoring of creek conditions, and controlled manipulative 

bioassay experiments. The unifying goal was to combine the knowledge gleaned from 

addressing the three objectives to determine LULC influence on dissolved nutrient 

concentration and form, phytoplankton abundance and community composition, and nitrogen 

buffering capacity in the non-tidal oligo- to meso-haline creeks of the NPES. 



  

CHAPTER 3 

 LITERATURE REVIEW 

The literature review topics were selected and organized to address the following 

topics central to this research: 1) environmental controls of estuarine phytoplankton, 2) 

ecological significance of estuarine creeks and potential for degradation, and 3) current 

methods and results in studies of LULC impacts on receiving waters.   

3.1 Environmental Controls of Estuarine Phytoplankton  

   The factors controlling phytoplankton productivity and biomass at any given point in 

time are numerous and complex and represent a formidable challenge to  mechanistic or 

statistical modeling (Borsuk et al. 2004). This complexity  does not suggest the dominant 

controls are not identified and understood; rather, that their relative influence vary enough 

through space and time to warrant continued examination (Turpin and Harrison 1979; Cloern 

2001; Paerl et al. 2003).  

Proximate creeks are connected to the main stem estuary waters; however, they do 

not necessarily exhibit similar nutrient limitation, nitrogen amounts and forms, and 

hydrologic conditions documented as main stem drivers (Noble et al. 2003). The following 

subsections contain reviews of existing research on three dominant drivers: nutrient 

limitation, nitrogen form, and hydrology.  These controls were selected to highlight both 

distinct and common conditions between the estuarine open waters and estuarine creek 

environments.   
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Nutrient Limitation 

The major chemical requirements for phytoplankton photosynthesis and growth are 

generally accepted as the Redfield (1958) molar ratios of Carbon:Nitrogen:Phosphorous 

(106:16:1). A deficiency in the availability of any of these three requirements has been 

commonly referred to as “limiting” in reference to phytoplankton growth.   However, these 

three elements do not represent all nutrients required for growth, nor are the ratios absolute; 

for instance, N:P ratios have varied from 5:1 to 34:1 across a broad range of systems (Geider 

and La Roche 2002). In many estuarine systems, nitrogen (N) has been identified as the 

nutrient most often limiting phytoplankton growth, with an increasing degree of N limitation 

as salinity increases along the salinity gradient (Ryther and Dunstan 1971; D'Elia et al. 1986; 

Howarth 1988; Hinga et al. 1995).  It follows that bioassay experiments have identified 

inorganic forms of nitrogen (NOx
- and NH4

+) as limiting of primary productivity in the open 

waters of the NPES and the tidal estuarine creeks of southern North Carolina (Rudek et al. 

1991; Mallin et al. 2004; Piehler et al. 2004).  

However, N enrichment does not consistently or uniformly increase the biomass of all 

phytoplankton; N additions have shown group specific phytoplankton response in 18 month 

mesocosm experiments (Sanders et al. 1987). This group specific response to varied nitrogen 

loadings reveals competitive differences in nutrient limited phytoplankton. Different growth 

rates under similar conditions are referred to as ‘r’ vs. ‘K’ selection, or affectionately 

“sippers” vs. “gulpers” (Morris 1980; Kilham and Hecky 1988).  This concept suggests that 

phytoplankton may have a competitive advantage under nitrogen concentrations that are 

consistently high, consistently low, or fluctuating based upon uptake kinetics and cell surface 

area to volume ratios (Kilham and Hecky 1988; Stolte et al. 1994; Hein et al. 1995). 
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However, competitive advantages are not limited to varied surface area to volume ratios. 

Persistently low dissolved inorganic nitrogen (DIN) concentrations may also affect 

phytoplankton community composition. For example, the low DIN (and P sufficient) loads 

observed in forested creek runoff may favor cyanobacteria capable of nitrogen fixation 

(Piehler et al. 2002).  

Nitrogen Form 

Phytoplankton expend more metabolic energy assimilating N from NOx
-
 versus NH4

+. 

Phytoplankton can directly utilize NH4
+

, whereas NOx
- cannot be utilized before being 

reduced to NH4
+ in enzyme catalyzed reactions (Wheeler 1983; Boney 1989). The enzyme 

catalyzed reactions increase the energy cost of NOx
- utilization and suggest these is a 

competitive advantage in NH4
+ utilization. Selective uptake of NH4

+ over NOx
- has been 

documented in observational data (Pennock 1987). However, bioassay experiments have not 

consistently found selective NH4
+ uptake causes significant differences in phytoplankton 

biomass or community composition (Stolte et al. 1994; Harrington 1999; Richardson et al. 

2001). These findings suggest the increased energy cost of NOx
- utilization may interact with 

other growth regulating factors such as light availability and vertical mixing (i.e. fluctuating 

light regimes), or may not be significant enough to impact primary productivity, biomass, or 

community composition.  

Nitrogen utilization by phytoplankton is not limited to obligatory inorganic 

assimilation in fact, bioassay experiments have revealed stimulation of growth in response to  

dissolved organic nitrogen (DON) additions  (Bronk and Glibert 1993; Lewitus et al. 2000). 

DON assimilation is a function of the chemical composition of the DON and physiological 

capabilities of the phytoplankton (Antia et al. 1991). The chemical composition of the DON 
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may determine the bioavailability of the particular DON form (Bronk and Glibert 1993; 

Peierls and Paerl 1997; Seitzinger et al. 2002; Twomey et al. 2005). Low molecular weight 

forms of DON (i.e. urea) are readily assimilated, whereas, more refractory humic substances 

are less available (Carpenter et al. 1972; Paerl 1988; Twomey et al. 2005). However, not all 

phytoplankton can utilize DON. The physiological configuration of the phytoplankton 

determines heterotrophic ability. Heterotrophic phytoplankton posses at least one of two 

different enzymes necessary for DON (urea) metabolism (Bonin and Maestrini 1981; Paerl 

1988; Antia et al. 1991). 

Phytoplankton DON utilization was expected in NPES creeks for three reasons. First, 

DON utilization has been documented in waters where inorganic N was scarce and organic N 

was available (Chang et al. 1995; Wafar et al. 1995). Second, Seitzinger et al. (2002) found 

LULC influenced the bioavailability of DON in coastal runoff. Seitzinger et al. (2002) found 

DON was increasingly bioavailable (i.e. less complex)  in runoff from forests, agricultural 

land, and developed land. Third, bioavailable DON was shown to alter phytoplankton 

community composition in Graneli and Moreira (1990). Graneli and Moreira (1990) 

demonstrated that humic acid enrichment  can influence a shift in species composition from 

diatoms to dinoflagellates in laboratory cultures.  

Hydrology 

Hydrology influences and often defines both main stem estuaries and nursery creeks. 

Hydrologic drivers include lunar tides, flow, and meteorology (Snow et al. 2000). These 

drivers control residence time in estuaries. Residence time can influence phytoplankton 

growth, biomass accumulation and community composition via many processes including 

nutrient cycling and bloom initiation (Paerl 1988; Monbet 1992; Koseff et al. 1993; Snow et 
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al. 2000; Richardson et al. 2001; Noble et al. 2003). Nutrient cycling is the nutrient 

utilization path in which nutrients (i.e. N) are transformed from inorganic to organic forms 

and vice versa via assimilatory, dissimilatory and degradative reactions (Stanley and Hobbie 

1981). Nutrient cycling is referred to as nutrient spiraling when each successive cycle results 

in net downstream nutrient transport (Newbold et al. 1981; Ensign 2004). The concept of 

nutrient cycling helps illustrate the connection between residence time, nutrient availability, 

and phytoplankton. Long residence time translates into short downstream transport during 

each nutrient cycle. Shorter downstream transport increases the number of sedimentary 

regeneration cycles; thereby allowing each unit of nitrogen more “opportunity” to serve as a 

nutrient source in support of phytoplankton growth. Under relatively long residence 

conditions, a single atom of N could be assimilated in multiple bloom events before being 

removed from the system. This is the  case in the NRE where summer residence time can be 

quite long (up to 90 days) due to negligible tidal influence reduced freshwater flow and 

restricted circulation (Robbins and Bales 1995; Pietrafesa et al. 1996; Paerl et al. 2001; 

Luettich et al. 2002). Conversely, macrotidal systems have shorter residence times that 

typically increase the system sensitivity of nitrogen inputs (Monbet 1992).  

3.2 Estuarine Creeks: Ecological Significance and Vulnerability to Modification. 

The soft bottom proximate creeks of the NPES function as the Primary Nursery Area 

(PNA) for juvenile fish species spawned both inside and outside the estuary.  For many 

species, including North Carolina’s state fish, the Red Drum, these habitats directly support 

key development stages that have the greatest influence on population growth (Deegan and 

Day 1985; Ross 1985; Ross 2003; Levin and Stunz 2005). In terms of estuarine ecology, 

Holland (1997; 2004) suggested that the  position of estuarine creeks, as connections between 
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land and estuary, make them ideal early indicators of impending harm from local sources of  

development.    

The optimum PNA for each individual species is defined by a set of parameters that 

are shared across a broad range of species. These parameters include adequate salinity, 

dissolved oxygen, temperature, sediment type, shelter from predators, rich food sources, 

depth, and distance from ocean inlets (Deegan and Day 1985; Ross 1985; Wolfe 1986; Hoss 

and Thayer 1993; Able and Kaiser 1994; Rubec et al. 1998; Kirby-Smith et al. 2003; Ross 

2003). Land use in estuarine watersheds can alter these critical characteristics of PNA creeks 

either: directly, through abiotic processes, or, indirectly, through biologically mediated 

processes. Watershed runoff that lowers salinity, delivers toxins, and increases turbidity is an 

example of an abiotic alteration (Kirby-Smith and Barber 1979; Sanger et al. 2004). 

Watershed runoff that increases in-stream nitrogen concentrations is an example of an 

indirect biologically mediated alteration. Specifically, high nitrogen concentrations that are 

often found in agricultural runoff, do not directly harm juvenile fish. However, a nuisance 

phytoplankton bloom initiated by nitrogen laden runoff can have a measurably negative 

effect on juvenile fish (Paerl et al. 1998; McNatt and Rice 2004).  Two examples of indirect 

alteration processes are Low Dissolved Oxygen and Impaired Trophic Transfer. 

Low Dissolved Oxygen  

In proximate estuarine creek low dissolved oxygen concentrations can be exacerbated 

by three factors common in estuaries. First, salinity driven density stratification can limit 

oxygen supply to bottom waters by isolating bottom waters from atmospheric gas exchange. 

Second, microbial metabolism and oxygen demand may be elevated in the shallow creeks 

where solar energy can readily increase water temperatures. Thirdly, watershed runoff 
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increases allochtonous and autochtonous OM loading (Bradshaw et al. 1985; Stanley and 

Nixon 1992; Able and Kaiser 1994; Pinckney et al. 1997; Ross 2003).  Phytoplankton-

derived OM created during a runoff stimulated bloom is an example of autochtonous organic 

matter loading. Phytoplankton-derived OM can settle to the bottom; either as waste products 

from zooplankton grazing, or as ungrazed, senescing cells. Microbially mediated 

decomposition of settling OM consumes dissolved oxygen driving hypoxia (DO < 2mg l-1) 

and anoxia (no measurable DO) in stratified bottom waters. (White and Roman 1992; Mallin 

and Paerl 1994; Cloern 2001). Hypoxia and anoxia can have negative effects on fish and 

shellfish populations (Baker and Mann 1992; Stanley and Nixon 1992; Bell and Eggleston 

2005). The negative impact of low oxygen on fisheries resources range across non-lethal 

negative costs in growth and fitness, alterations in predator-prey behavior, and death of 

chronically exposed communities (Bejda et al. 1992; Breitburg et al. 1997; Eby and Crowder 

2002; Bell and Eggleston 2005). In addition to the aforementioned low dissolved oxygen 

impacts, certain creeks host highly concentrated fish populations for brief periods, suggesting 

that even limited spatial and temporal periods of low oxygen in PNA creeks could have a 

significant impact on the year class of a particular species (Able and Kaiser 1994; Ross 

2003).  Chronic impairments are more alarming in their ability to disrupt multiple year 

classes via persistent juvenile mortality (Collins et al. 2000; Campbell and Goodman 2004; 

Levin and Stunz 2005) The point at which such irreversible damage occurs has not been 

clearly defined. However, cases of limited recovery in formerly impacted systems have been 

clearly documented (Diaz and Rosenberg 1995; Gray et al. 2002).  
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Impaired Trophic Transfer  

Trophic transfer studies have found high secondary and tertiary productivity in 

estuaries is largely supported by phytoplankton-based primary production (Ryther 1969; 

Deegan and Day 1985; Day 1989; Mallin and Paerl 1994; Hughes et al. 2000; Capriulo et al. 

2002). Multiple trophic transfer studies have used isotopic tracers to document the 

enormously complex estuarine food web (Nixon 1981; Hughes et al. 2000).  The complex 

and variable food web can be generalized as follows: Energy from primary production passes 

successively through zooplankton, secondary consumers (planktivores), and tertiary 

consumers (piscivores); eventually, being exported to the ocean as living biota or biotic 

detritus. The current eutrophication paradigm suggests excess production stimulated by 

anthropogenic eutrophication may not be transferred to higher trophic levels (Cloern 2001).  

Conclusive documentation of such trophic impairment in a single system has yet to be 

completed due to sporadic research efforts, complex food webs, and lack of baseline data. 

However, existing research has concluded that estuarine systems are vulnerable to this type 

of trophic disruption.  

The vulnerabilities of estuarine trophic transfer can be drawn from evidence across 

series of eutrophied estuaries. In the NPES, zooplankton have been shown to graze as much 

as 45% of daily phytoplankton productivity (Mallin and Paerl 1994). Annual peaks in 

zooplankton grazing coincide with the arrival of juvenile fishes in the systems PNAs 

(Deegan and Day 1985; Epperly and Ross 1986; Mallin and Paerl 1994). Phytoplankton size, 

nutritional value, and toxicity can increase or decrease grazing by zooplankton and other 

primary consumers (Mallin and Paerl 1994; Haywood and Burns 2003; Leonard 2003). 

Moving up the next rung in the trophic ladder, Allen et al. (1995) observed selective 
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consumption of zooplankton by zooplanktivorous fishes species found in the NPES. 

Furthermore, stable isotope tracer studies have shown phytoplankton derived organic matter 

in juvenile fish that are present in the NEPS nursery areas (Winslow 1988; Menhinick 1991; 

Weinstein et al. 2000). These studies suggest alterations in phytoplankton composition in 

estuarine creeks may inhibit transfer of energy from primary producers to higher trophic 

levels.  This potential loss of productivity can extend well beyond the creeks themselves, due 

to the migratory nature of many estuarine dependent species (Deegan and Day 1985; Diaz 

and Rosenberg 1995; Peterson et al. 2000). 

 3.3 Current Methods and Results in studies of LULC Influence on Receiving Waters 

In estuarine systems, existing studies of LULC influence have focused on rates at 

which runoff delivers sediments, nutrients, pathogens and contaminants to receiving waters 

(Lerberg et al. 2000; Holland et al. 2004; Sanger et al. 2004; Van Sickle et al. 2004).  Many 

of the methods and results from these existing studies were applicable to this study of 

estuarine creeks.  The following section of this literature review has been divided into two 

parts to address how existing research benefited this research project: (1) study site selection 

in LULC impact assessments, and (2) results from analogous studies of LULC influence on 

estuarine systems.  

Site Selection in LULC Impact Assessments  

Ideally a monitoring study should be designed as closely to an experimental study as 

possible. Specifically, monitoring study should be set up to eliminate alternative explanations 

for observations by isolating a hypothetical causal variable. Difficulties with alternative 

explanations can be found in several other studies of land use and land cover influence on 

estuarine waters.   In a tidal estuarine creek study, comparable to work presented here, 
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Holland et al. (2004) selected heterogeneous watersheds that required numerous caveats in 

LULC classification.  For instance, “suburban” LULC was defined as, “>30% but < 70% 

urban/suburban land cover with a human population density >5 but < 20 individuals/ha or 

>10% but < 50% of watershed as impervious cover.”. This mixed LULC type was related to 

in stream water quality observations using first order and multivariate regression techniques. 

Regression methods are robust and have been used in other LULC studies (Lerberg et al. 

2000; Van Sickle 2003; Holland et al. 2004; Kelsey et al. 2004). However, multivariate 

regressions have identified relationships between parameters that were not necessary causal. 

For example, Kelsey et al. (2004) found a significant relationship between residential septic 

tank density and fecal coliform bacteria abundance in downstream estuarine waters. 

However, Kelsey et al. (2004) recognized domestic pets living near the septic tanks were the 

most likely sources of in-stream fecal coliforms because properly functioning septic tanks are 

not considered significant fecal coliform sources. Mixed watershed LULC also complicated  

an assessment of residential dock construction in Sanger et al. (2004). Specifically, in-stream 

toxins originating in residential dock construction could not be distinguished from 

originating from other anthropogenic watershed activities. Van Sickle et al. (2004) selected 

homogenous watersheds to model various land use impacts on streams and avoided the 

aforementioned problems common in heterogeneous LULC regressions. Confidence in 

LULC impact assessments can also be increased by selecting watersheds in close proximity 

to each other. For example, in the Newport River Estuary, NC Sanders and Kuenzler (1979) 

found greater phytoplankton biomass downstream of a sewage outfall than was found 

downstream of a reference watershed. However, the increased phytoplankton biomass 

downstream of the sewage outfall could not be conclusively linked to the sewage outfall 
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because of stark differences in irradiance and temperature between the sewage outfall site 

and the reference site.  

These examples highlight site selection issues considered in planning this study of 

estuarine creeks. Where possible, the selection of spatially analogous and internally 

homogenous watersheds will reduce the number of factors influencing the study area. 

Reducing the possible number of influencing factors should, in turn, decrease the complexity 

of techniques required to interpret results. 

Results of Studies in LULC Impact on Estuarine Systems 

Studies of LULC impacts on creeks in other ecosystems have focused on variations in 

loading and in stream responses. The loading parameters have included flow, nutrients, 

organic matter, salinity, toxins, and turbidity (Corbett et al. 1997; Wahl et al. 1997; Sanger et 

al. 1999; Mallin et al. 2001; Sanger et al. 2004). The response parameters have included 

bacteria, phytoplankton, benthic invertebrate fauna, shellfish, and fish (Lerberg et al. 2000; 

Cressman et al. 2003; Arnold et al. 2004; Holland et al. 2004; Sanger et al. 2004). Studies 

covering parameters that influence the phytoplankton are briefly detailed below.  

Mallin et al. (2004) identified nitrogen limitation and vulnerability to anthropogenic 

development in the macrotidal estuarine creeks located inside North Carolina barrier islands. 

The Mallin et al. (2004) study also found NO3
- was the primary DIN form in creeks draining 

developed watersheds, while regenerated NH4
+ dominated the waters below undisturbed 

lands.  Similarly, Wahl et al. (1997) found higher NO3
- concentrations in urban estuarine 

streams and higher NH4
+ in forested estuarine streams of the Murrells Inlet, SC estuarine 

system. Wahl et al. (1997) also observed a greater than 100% per unit area load of DIN from 

the urbanized watershed when compared to a forested watershed. Barnes (2004) identified a 
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relationship between high in-creek dissolved NO3 and increasing degrees of watershed 

agriculture. In the same creeks selected for this study, Kirby-Smith and Barber (1979) found 

in-stream turbidity increased 10 to 20 times after the conversion of forest land to agriculture. 

Increased DIN load has been shown to promote monotypic phytoplankton blooms and 

decreases in community diversity in estuarine creek phytoplankton population (Sanders and 

Kuenzler 1979).   

 3.4 Literature Review Summary 

This literature review highlighted links between land use and land cover, primary 

production, and estuarine creek condition. Specifically, the literature review underscores four 

general findings relevant to the study presented in the following chapters. First, watershed 

LULC can quantifiably influence nutrient and allochtonous material loading. Second, 

phytoplankton abundance and diversity can be varied via experimental manipulation of 

nutrient loading. Third, altered phytoplankton communities can have negative impacts on 

estuarine ecosystem conditions. Finally, study site selection is a key component in linking 

LULC, nutrient conditions and phytoplankton response in downstream estuarine waters  



 

CHAPTER 4 

 STUDY SITE

The project objectives and hypotheses were evaluated in four estuarine creeks 

draining to the NPES. The project creeks were selected for study based on three criteria. 

First, the creeks needed to be located in close proximity to each other and have similar 

morphometrics (e.g., length, width, and depth). Second, the upstream watersheds needed to 

be representative of the primary LULC types present around the NRE (agriculture, 

unmanaged forest, and silviculture) (Table 4.1). Third, the upstream watersheds needed to 

have a homogenous LULC type. These criteria were selected to eliminate alternative 

explanations for observed differences in nutrient conditions and phytoplankton response. The 

intention was to isolate the hypothetical causal variable (upstream watershed LULC).  

Candidate creeks were evaluated via aerial photographs and field inspection. Creek 

systems that satisfied each of the three criteria listed above were selected near and within the 

South River sub-estuary (Figure 4.1, Figure 4.2). A sub-estuary is a system that receives 

direct runoff from a local coastal watershed and exchanges water at its mouth with a main-

stem estuary (Gallegos et al. 1992). Sampling sites in each creek were established in the 

South River sub-estuary and at the headwater, mid-point, and mouth of each creek. The 

locations of the sampling sites and identification numbers are detailed Figure 4.2.  

4.1 Creek and Watershed Descriptions  

Southwest Creek receives runoff from 18.58 km2 (4591 acres) of farm fields and 

riparian buffers. The fields are owned and managed by Open Grounds Farm Inc (OGF). 
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These fields were created in 1974 when OGF purchased 45,000 acres of pocosin and 

subsequently ditched, drained, and converted the land to agricultural use (Kirby-Smith and 

Barber 1979). Best management practices (BMP) in the Southwest Creek watershed included 

the use of flashboard risers. Flow was monitored at the headwaters of the creek at 30-minute 

intervals during the study period with a current meter and depth transducer maintained by the 

Forested and Agricultural Watershed Nitrogen Attenuation (FAWNA) research project 

currently managed through the University of North Carolina Institute of Marine Science 

(UNC-IMS) (Figure 4.2). This flow meter received runoff from 8.90 km2 of the total 

Southwest Creek watershed.  

Westfork Creek receives runoff from 13.04 km2 (3224 acres) of OGF fields and 

riparian areas. In addition to the use of flashboard riser BMP’s, runoff from the 6.58 km2 of 

the Westfork Creek watershed passed through a constructed treatment wetland prior to 

reaching the creek.  The FAWNA project also maintained a flow meter at the treatment 

wetland outfall (Figure 4.2).  

Big Creek receives runoff from 4.71 km2 (1164 acres) of actively-managed 

Silviculture forest. There were also five residential homes and properties within the 

watershed. The home lots and roads totaled only 0.03km2 or less than 1% of the Big Creek 

watershed area. Two flow meters identical to those used in Westfork Creek and Southwest 

Creek were maintained in the headwaters of the creek. These flow meters received runoff 

from 2.64 km2 of the Big Creek watershed. 

Browns Creek receives runoff from 9.44 km2 (2332 acres) of unmanaged forest. The 

vegetation included loblolly pine (Pinus taeda) and natural pond-pine pocosin species 

detailed in Frankenberg (1997). During the study period, the entire watershed was owned by 
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a hunting club with public access restricted to members. Carteret County, NC tax records 

show the hunt club ownership group is identified as a logging company. This suggests the 

land has been previously logged; however, a mature forest covered the watershed during this 

study.  
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Figure 4.1  Study area location 
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LULC Type Percent Coverage 

Urban 5.1 
Agricultural 12.6 
Forested 27.0 
Grassland 0.0 
Open Water 26.2 
Wetlands 28.9 
Barren 0.3 
Total 100.0 
Table 4.1  LULC in the lower Neuse River Estuary watershed USGS hydrologic unit 03020204105.  
Source: US-EPA SPOT and Landsat 7 ETM+ satellite sensor data and GIS software analysis (Material and 
Methods chapter). 
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Figure 4.2  Detail of study area creeks and watersheds



 

CHAPTER 5 

 MATERIALS AND METHODS

5.1 Regular Sampling  

Creek stations shown on Figure 4.2 were sampled every 14 to 21 days from February 

2003 to August 2004 via shallow draft outboard skiff. Vertical profiles of in-situ salinity, 

turbidity, pH, dissolved oxygen, and chlorophyll a fluorescence were made with a Yellow 

Springs Instruments (YSI) Sonde model 6600. The YSI 6600 probes were calibrated the day 

before the each trip using methods outlined in the YSI 6600 maintenance manual. The 

dissolved oxygen probe and depth sensor were re-calibrated in the field on the day of 

sampling to compensate changes in ambient atmospheric pressure. Photic depth and light 

attenuation coefficient were calculated using data collected with a 4π light sensor and Sechhi 

disk.  

At each station discrete samples of surface and bottom water were collected in 

translucent one liter Nalgene bottles, placed in a darkened cooler, and transported back to 

UNC-IMS for immediate filtration and storage until analysis. The list of parameters analyzed 

and methods can be found in Table 5.1.  

5.2 Bioassay Water Collection, Design, and Sampling  

Bioassay Design  

The design of the bioassay experiments was adapted from Paerl and Bowles (1987). 

The water for the experimental treatments was collected from the agricultural watershed 
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creek (Southwest Creek), the reference forest watershed creek (Browns Creek), the 

silviculture watershed creek (Big Creek), and a site in the main stem of the lower NRE. The 

NRE site was included to provide a link to ongoing main stem monitoring and research. In 

treatments that received nutrient additions, the addition concentrations were selected to 

mimic conditions observed in the creek headwaters. Headwater runoff loading regularly 

increased ambient DIN concentrations to greater than 20uM (Sampling Results chapter). 

Bioassays were limited to 96 hours to limit experimental artifacts (Downing et al. 

1999). A DON (urea) treatment was included in the bioassay experiments to mimic the 

higher DON:DIN fraction associated with forested watershed runoff (Wahl et al. 1997). Urea 

was chosen as the DON amendment for two primary reasons: 1) previously documented urea 

uptake characteristics of phytoplankton and 2) urea was known to be excreted by 

zooplankton, bacterial processing of more complex organic compounds, and direct terrestrial 

inputs (Carpenter et al. 1972; Antia et al. 1991; Peierls and Paerl 1997; Harrington 1999; 

Twomey et al. 2005).   

Bioassay Collection, Treatment, and Sampling 

 Bioassay waters were collected in clean and acid rinsed (0.1 N HCl) 20 liter 

polypropylene carboys. The carboys were immediately transported back to the UNC-IMS. 

Here, water from each creek was homogenized in separate cleaned 400 liter tanks. The 

homogenized water was dispensed via spigot into 10 liter 85% PAR transparent polyethylene 

cubitainers. All cubitainers were filled before solar noon and rapidly amended with nutrient 

additions detailed in Table 5.2. Each treatment consisted of 4 replicates for robust statistical 

analysis.  
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Cubitainers were incubated in the retention pond at UNC-IMS. Twice daily, 

cubitainers were manually mixed and circulated in the retention corral (Figure 5.1). Each 

treatment replicate was sub-sampled within 90 minutes following sunrise at T1 (24 hours), 

T2 (48 hours), and T4 (96 hours). Sub-samples were analyzed for: chlorophyll a, primary 

productivity, phytoplankton community composition, and dissolved nutrients (NOx
-, NH4

+, 

TDN, and PO4
-3). 

5.3 Laboratory Protocols and Analysis  

Phytoplankton Community Analysis 

Phytoplankton photopigment concentration and community composition for major 

algal groups were determined using reverse phase high performance liquid chromatography 

(HPLC) of diagnostic photopigments (Tester et al. 1995; Mackey et al. 1996; Jeffrey et al. 

1997; Pinckney et al. 1998). Sample aliquots from regular sample collections and 

experimental treatments were filtered onto 25 mm Whatman GF/F filters and frozen until 

extraction. The filters were placed in a 100% acetone, sonicated with a microtip sonic 

dismembrator (Fisher Sonic Dismembrator, model 300), and extracted at -8° C for 18-24h 

(Jeffrey et al. 1997). HPLC was used to quantify selected chlorophylls and carotenoids as 

biomarker algal pigments. The HPLC system pumped a binary gradient under high pressure 

(1800-4000psi) through a single monomeric column and two polymeric C18 columns (Van 

Heukelem et al. 1994).  The mobile phase consisted of two solvents cycling from Solvent ‘A’ 

to Solvent ‘B’ over a 54-minute time program. Solvent ‘A’ was a 80:20 solution of HPLC 

grade methanol and 0.5M ammonium acetate and Solvent ‘B’ was a 80:20 solution of  HPLC 

grade methanol and HPLC grade acetone (Millie et al. 1993). An in-line photodiode array 

spectrophotometer (Shimadzu SPD M10avp) provided individual photopigment 
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identification and concentration. Identification was based on retention time and characteristic 

absorption spectra (380–700 nm), and concentration was calculated by absorbance across a 

4nm bandwidth centered on 440nm. (Millie et al. 1993; Jeffrey et al. 1997; Jeffrey et al. 

1999). Pigment standards were acquired from DHI Water and Environment, Denmark, and 

used in the calibration methods outlined by (Mantoura and Repeta 1997).  

The matrix factorization program ChemTax (CHEMical TAXonomy), executed in 

MATLAB technical computing software (Math Works Inc., Natick, Massachusetts), was 

used to establish the relative biomass of major algal groups in the phytoplankton community 

and expressed as percentage of total chlorophyll a.  (Mackey et al. 1996; Wright et al. 1996; 

Mackey et al. 1997; Pinckney et al. 1998; Schluter et al. 2000; Lewitus 2005). This program 

iteratively modified each element of a table containing the sample pigment concentrations 

obtained in HPLC analysis to “best fit” the sample data to a second matrix containing 

reference pigment ratios for each algal group.  The seminal ChemTax work Mackey et al. 

(1997),  stressed the importance of several factors in setting up the reference pigment ratio 

matrix. First, the reference matrix must include all major groups likely to be present in the 

samples. Second, each major group should have two reference pigments in addition to 

chlorophyll a. Third, the total number of pigments used in the ratio should outnumber the 

total number of expected classes by at least three. Additionally, subsequent publications have 

stressed that the reference matrix should be derived from phytoplankton culture isolates 

representative of the assemblages present in the study location (Wright et al. 1996; Schluter 

et al. 2000; Lewitus 2005).  

Following the requirements outlined above, a reference matrix was adapted from the 

a matrix developed for estuaries in the southeastern US by Lewitus (2005) (Table 5.6). The 
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algal groups selected were those documented as the dominate algal classes present in the 

NRE and South River Sub-Estuary by Pinckney et al (1998) and Lapennas (1980), 

respectively.   

Phytoplankton Chlorophyll a    

In-vivo chlorophyll a for both bioassay and monitoring samples were determined via 

sample water filtration and acetone extraction.  50ml of sample water was filtered onto a 

25mm Whatman GFF, folded, padded dry, and frozen until extraction.  Extractions began 

with sonicating the frozen filter in 90% acetone solution. The samples were the extracted in 

the 90% acetone at -4°C for 24 hours. The extracted concentration of chlorophyll a was 

quantified with a Turner Model 10AU fluorometer calibrated with a solid standard.  

Phytoplankton Productivity 

Phytoplankton primary productivity was measured by assimilation of 14C. As part of 

the bioassay experiments 20ml subsamples from each replicate were dispensed into 20ml 

borosilicate vials. Two additional vials were also filled from each treatment; the first vial was 

darkened and included in all procedures to account for non-photosynthetic assimilation while 

the second vial was immediately analyzed on a Shimadzu TOC 5000 for ambient dissolved 

inorganic carbon concentration.  Each incubation vial was injected with 200uL of 14C  

sodium bicarbonate (NaH14CO3) with an activity of 9.3uCi ml-1 (specific activity 28 Mci 

mmol-1, ICN INC. (Summer and Fall Bioassays) or 10.6 uCi/ml (Winter and Spring 

Bioassays). Vials were incubated for 3 hours spanning solar noon in the same experiment 

pond as the bioassay treatments. The vials were submerged just below the surface during 

incubations and screened with neutral density screening when light intensities exceeded 

800uEm-2s-1. At the end of the incubation period, all vials were darkened and rapidly filtered 
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on 25mm Whatman GFF. Filters were placed on an inert rack and fumed with concentrated 

HCl to remove unassimilated residual 14C. The following day, air dried filters were placed in 

7ml plastic scintillation vials and covered with 5ml of cytoscint liquid scintillation cocktail. 

The mass of assimilated 14C was quantified as dissolutions per minute using a Beckman 

model LS5000TD scintillation counter calibrated to an unquenched 14C standard. 

Assimilation rates were determined using the incorporated mass and the time elapsed from 

initial 14C injections to filtration. Primary Productivity, as assimilation rate, was expressed as 

mgC m-3 h-1. 

Nutrient Analysis 

 Nutrient analyses of NOx
-, NH4

+, PO4
-3, and TDN for the bioassays and monitoring 

samples were conducted with a Lachat Quick-Chem 8000 auto-analyzer using standard 

protocols (Lachat Quikchem methods 31-107-04-1-A, 31-107-06-1-A, 31-115-01-3-G, and 

31-107-04-3-A respectively). The methods are detailed in Table 5.4. The mean DON:DIN 

ratios were used to assess the labile inorganic and organic fractions of nitrogen available to 

the creek microbial communities.  The Redfield molar ratio of N:P (16:1) was applied to 

DIN:PO4
-3  and used to identify potential P and N limitation of phytoplankton growth.   

Below detection limit (BDL) values were encountered during sample analysis. BDL 

limit values for NH4
+ only occurred during the summer maximum productivity periods in 

2003 and in during relatively high chlorophyll a levels in Westfork Creek on 22-Jan-04. 

During these times, NH4
+ was assumed to be highly scavenged. Consequently, BDL values 

were set to ½ detection limit for use in analysis. In NOx
- analysis, 22% of analyzed samples 

were below the detection limit of 3.68 μg l-1. For these data, the values reported by the 
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nutrient auto-analyzer were used down to ½ detection limit in analysis. Below ½ the 

detection limit values were reported as BDL in analysis.   

DIN utilization rates in the bioassay incubations were calculated from changes in 

dissolved NOx
- and NH4

+ over the time elapsed between sampling points. Rates were 

normalized to chlorophyll a concentrations.  

5.6 Data Analysis and Calculations 

Species Diversity and Dominance Methods 

The Shannon-Weiner index of diversity was used to evaluate how phytoplankton 

groups differed spatially and temporally across the four study creeks. Both long- and short-

term assessment of diversity were completed. Long-term diversity was quantified by deriving 

Shannon-Weiner index values from all phytoplankton community data collected during the 

18 months of sampling. Short-term diversity was quantified by deriving Shannon-Weiner 

index values for a phytoplankton community observed on a single day in a specific creek. 

The diversity values from each sampling date were compared to assess the relative diversity 

of creek phytoplankton communities on a single sampling day. The phytoplankton 

community groups used in the diversity analyses were quantified by HPLC and ChemTax. 

The Shannon index of diversity was previously used by Sanders and Kuenzler (1979) to 

assess phytoplankton diversity in a tidal estuarine creek near the study area. 

Geographic Information System Analysis  

Geographic information system (GIS) analysis and mapping was conducted using 

ArcView, ArcGIS, and ArcInfo software releases 3.2 through 9.1 (Environmental Research 

Systems Incorporated, Redlands, California). Analysis extensions included ArcHydro, 
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Spatial Analyst, and 3D Analyst. The products of the GIS analysis included LULC 

assessments, watershed delineations, and creek volume calculations.  

Areas of different LULC types were calculated for the Neuse River Basin (United 

States Geologic Survey [USGS] HUC 030202) and Neuse River Sub-Basin 10 (USGS HUC 

03020204105). The LULC area calculations used 15 meter resolution, SPOT and Landsat 7 

ETM+ imagery data developed by the USEPA Landscape Characterization Branch. All 

spatial data were projected into a common projection (North Carolina State Plane 1983 feet) 

and clipped to the extent of each watershed.  Areas of each LULC type (agriculture, forest, 

wetland, etc) were then calculated in square meters with a visual basic code script. 

Browns Creek and Big Creek watershed areas were delineated using a combination of 

20ft resolution LIDAR (LIght Detection And Ranging) sensor data from the North Carolina 

Flood Plain Mapping System; 1/3 degree digital elevation models data from the 2005 Multi-

Resolution Land Characteristics Consortium; and 1:24,000 USGS topographic quads. The 

graded flat topology of the agricultural watersheds had vertical variation below the resolution 

of available remote sensing data. Consequently, Southwest Creek and Westfork Creek 

watershed were delineated based on the opinion of OGF manager, Gabrelli Oranato, and 

onsite inspections by collaborators Suzanne Thompson and Sara McMillan. The watershed 

areas were calculated for each total creek watershed and also for the smaller portions for that 

drained to the flow meter locations (Figure 4.2). 

The creek volumes were calculated using depth data collected during sampling. These 

depth data were used to create triangulated irregular network (TIN) models of each creek’s 

bathymetry. The ArcGIS 9.1 3D Analyst extension and the TIN models were used to 

calculate the volume, benthic surface area, and select cross-sectional areas for each creek.  



 33

Creek Flushing Time and DIN Load Capacity Calculations 

 Creek flushing times were calculated using mean daily watershed flow and creek 

salinity as shown in Creek Flushing Time Equation adapted from Alperin (2003).  

Creek Flushing Time Equation =  Volume [Qwatershed (Sd (Sd – Ss)-1)]-1 

In Equation 1 the parameters were defined as follows: Volumes were those calculated using 

GIS analysis described above; Qwatershed was the mean daily watershed water flow to the 

creek; Sd was the mean bottom salinity observed at the creek mouth; and Ss was the mean 

surface salinity observed at the creek mouth. Mean daily watershed flow was estimated using 

drainage area ratio method. Specifically, the ratio of the total watershed area to the sub-

watershed area used to scale up the sub-watershed flow observations to the total watershed 

(Pope 2001). The drainage area ratio method was also used to estimate flow into Browns 

Creek, using Big Creek flow data.  

 The capacity for phytoplankton assimilation was calculated using the seasonal DIN 

utilization rates from the bioassay experiments, the calculated creek volumes, and calculated 

creek flushing times. Seasonal DIN load capacities represent the maximum DIN load each 

creek could assimilate given phytoplankton abundance observed during seasonal bioassays. 

This does not include potential assimilation by benthic algae or nutrient loading from 

groundwater in-flow. Calculation accuracy was improved by using the actual creek 

bathymetry to derive volume and cross-sectional areas via GIS software. Mulholland et al. 

(2002) found that using experimentally derived N uptake rates would over estimate the 

stream length and time required to assimilate a unit of dissolved inorganic nitrogen. Thus, the 

experimentally derived N uptake rates used here may actually under estimate in-creek 

assimilation rates. Watershed flows and loads were calculated for sub-watershed areas that 
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were instrumented with flow meter and automated samplers under the FAWNA project 

(Figure 4.2). The flow and DIN load values were then scaled up the whole watershed using 

drainage basin area ratios as outlined above (Pope 2001).  

Statistical Methods 

Statistical Software Packages SPSS 11.5 (SPSS Inc., Chicago, Illinois) and Statistix 8 

(Analytical Software, Tallahassee, Florida) were used to perform statistical tests on 

monitoring and bioassays data. For the bioassay data, significant difference from control was 

evaluated with via one-way ANOVA or Kruskal-Wallis one-way nonparametric ANOVA. 

The methods were selected based on the results of the Shapiro-Wilk Normality Test, the 

Levene Test for Homogeneity of Variances, and Bartlett's Test of Equal Variances. Normally 

distributed data were evaluated via one-way ANOVA, with an alpha level of 0.05. Data that 

did not pass tests of normality and homogeneity were evaluated with the Kruskal-Wallis one-

way nonparametric ANOVA. Differences were determined to be significant where p < 0.05. 

Spatial and temporal interpolations of data were made using Surfer Version 7 (Golden 

Software, Golden, Colorado). The kriging interpolation method was adjusted so that spatial 

proximity was weighted more than temporal proximity. The spatial search windows were the 

total length of each creek analyzed. The temporal search window was 15 to 30 days, 

dependant on data availability. The spatial search window was the length of each individual 

project creek. This allowed only immediately preceding and succeeding sampling date data 

to influence interpolation results. 
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 Parameter Method 
Nitrate + Nitrite Cadmium Reduction 
Ammonium Phenol Hypochlorite Method 

Total Dissolved Nitrogen 
Persulfate Digestion And Cadmium 
Reduction 

Phosphate Molybdate Method 
Chlorophyll a  Fluorimetry 
Phytoplankton Accessory 
Pigments Chlorophyll a  

Reverse Phase High Pressure 
Chromatography 

Laboratory 
Analysis 

 

Phytoplankton Community 
Composition ChemTax Analysis 
Water Column Light 
Attenuation 

  
4π LICOR Light Meter  

Dissolved Oxygen YSI 6600 Sonde 
Chlorophyll a (fluorescence) YSI 6600 Sonde 
pH YSI 6600 Sonde 
Depth YSI 6600 Sonde 
Salinity YSI 6600 Sonde 
Temperature YSI 6600 Sonde 

In-Situ 
Measurements 

 

Turbidity YSI 6600 Sonde 
Table 5.1  Regular sampling parameters and standard analysis methods 
 
 

 
Experimental Concentration Increase in 10L Incubation 

Cubitainers   
Treatment NO3

- NH4
+ DON (Urea) PO4

-3 
Control  -- -- -- --  
Nitrate (NO3

-) 20uM -- --  -- 
Ammonium (NH4

+) --  20uM --  -- 
Organic Nitrogen DON (Urea) --  --  20uM  -- 
Phosphate (PO4

-3) --  --   -- 5uM 
Inorganic Nitrogen + Phosphate  
(DIN+P) 10uM 10uM  -- 5uM 
Organic Nitrogen + Phosphate 
(DON+P)  -- --  20uM 5uM 
Table 5.2  Increase in ambient nutrient concentrations in treatment additions 
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Figure 5.1  Bioassay incubation corral 
 
 c1c2 peridinin fucoxanthin viola alloxanthin lutein zeaxanthin chlb chla anthera
Diatoms 0.239 0 0.546 0 0 0 0 0 1 0 
Dinoflagellates 0.568 0.787 0 0 0 0 0 0 1 0 
Cyanobacteria 0 0 0 0 0 0 0.368 0 1 0 
Chlorophytes 0 0 0 0.06 0 0.221 0.002 0.322 1 0.048 
Cryptomonads 0.292 0 0 0 0.389 0 0 0 1 0 
Table 5.6  Reference pigment ratio matrix(Lewitus 2005) used in CHEMTAX community composition 
estimations for this study. 



 

CHAPTER 6   

RESULTS PART I – REGULAR SAMPLING 

6.1 Dissolved Nutrients 

 The dissolved NH4
+, NOx

-, PO4
-3 and TDN concentrations were generally highest 

downstream of the agricultural watersheds and lowest downstream of the forested 

watersheds.  

In the agricultural creeks, mean surface concentrations of NOx
- were the highest in 

Westfork Creek (287 µg l-1), followed by Southwest Creek (65 µg l-1). The NOx
- 

concentrations in the silviculture and reference forest creeks were similar at and average of 7 

µg l-1 and 10 µg l-1 respectively (Figure 6.1.1). Mean NOx
- concentrations in bottom water 

samples were generally lower than surface water sample concentrations in each creek. 

Westfork Creek had the highest bottom water NOx
- concentrations, followed by Southwest 

Creek, Browns Creek, and lastly Big Creek (Figure 6.1.2).  

The maximum mean surface water dissolved NH4
+ concentrations were not found in 

the same creeks as the maximum mean dissolved NOx
- concentrations. The highest mean 

NH4
+ concentration was found in Browns Creek (128 µg l-1) downstream of the reference 

forest watershed. In terms of NH4
+ concentrations, the agricultural creeks, Westfork Creek 

(98 µg l-1) and Southwest Creek (52 µg l-1), had the second and third highest surface values, 

and the silviculture creek, Big Creek (24 µg l-1), had the lowest (Figure 6.1.2). The highest 

mean bottom water NH4
+ concentration was in Westfork Creek, followed by Browns Creek, 

Southwest Creek, and Big Creek. The comparatively high mean NH4
+ concentrations in 
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Browns Creek were heavily influenced by data collected immediately following Hurricane 

Isabel on September 25, 2003. The mean NH4
+ concentration in Browns Creek following the 

Hurricane was 1315 µg l-1, while the mean concentration in Westfork Creek was 181 µg l-1. 

Figure 6.1.3 shows a comparison of mean dissolved inorganic nutrient concentrations 

calculated with and without data from September 25, 2003. The mean surface NH4
+ 

concentration in Browns Creek dropped 46% from 128 µg l-1 to 96 µg l-1 when the hurricane 

data were excluded. The hurricane data did not drive a similar a large percentage change in 

the mean inorganic nutrient concentrations from the other creeks. The hurricane data were 

not excluded from any analysis and were highlighted here only to emphasize the hurricane’s 

impact.   

The mean dissolved PO4
-3 concentrations were higher in the agricultural creeks than 

in the forested creeks (Figures 6.1.4 and 6.1.5). 

In general, the highest mean TDN concentrations were observed below agricultural 

watersheds, followed by the reference watershed, and lowest below the silviculture 

watershed. The mean TDN concentrations for surface and bottom samples in each creek are 

shown in Figures 6.1.6 and 6.1.7. 

Dissolved Inorganic Nitrogen Forms 

Below both agricultural watersheds, NOx
- was the primary form of surface water 

DIN. In contrast, NH4
+ was the primary form of surface water DIN downstream of both 

forested watersheds (Figure 6.1.8). The most extreme differences in DIN form were observed 

downstream of the reference forest watershed (Browns Creek) and downstream of the 

agricultural watershed with a treatment wetland (Westfork Creek).  In Browns Creek, NH4
+ 

represented up to 94% of DIN, while in Westfork Creek, NH4
+ represented up to 42% of 
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DIN. In the bottom water sample data, NH4
+ was the primary DIN form in all creeks, except 

downstream of agricultural land in Westfork Creek where NOx
- was the primary DIN form 

(Figure 6.1.9). Westfork had the lowest DON:DIN (2.0) followed by Southwest (4.6), 

Browns (5.8), and Big (10.4) (Figure 6.1.10). 

Spatial Patterns of Dissolved Nutrients 

Within each creek, dissolved NOx
- and NH4

+ concentrations were highest at the 

headwater stations (Figures 6.1.1 and 6.1.4). In the forested creeks, dissolved PO4
-3 in surface 

samples was highest at the creek mouths. In contrast PO4
-3 concentrations in the agricultural 

creeks were highest at the creek headwater stations (Figures 6.1.4 and 6.1.5).  

The distribution of nutrient concentrations in the bottom water samples was more 

uniform than in the surface water samples. Specifically, NH4
+ was the primary bottom water 

DIN form for all stations outside Westfork Creek. Westfork Creek was the only creek where 

NOx
- was the primary DIN species in both surface and bottom samples.  

Dissolved Inorganic N:P Ratios 

  The Redfield molar ratio of DIN:PO4
-3  (16:1) was used to identify conditions where 

N or P limitation of phytoplankton growth might occur.  Figure 6.1.8 shows the percentage of 

total creek samples where DIN:PO4
-3  > 16, suggesting P limitation and very rapid N turn 

over times. The incidence of potential P limitation was highest in the reference forest creek 

followed by silviculture forest, µthen agriculture. Across all creeks, potential P limitation 

occurred mostly at the headwater creek stations where conditions were least influenced by 

brackish bottom water intrusion and entrainment. Potential P limitation was more prevalent 

during the spring and potential N limitation was more prevalent during the summer months. 
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The highest N:P ratios were observed immediately after the passage of Hurricane Isabel in 

September, 2003.  

6.2 Chlorophyll a Concentrations 

On each sampling day, the Southwest Creek mean surface chlorophyll a 

concentration was on average 1.78 times higher than Browns Creek and 1.42 times higher 

than Big Creek (Table 6.2.1). Spatially, chlorophyll a concentrations were generally highest 

at the mid-creek stations where the creek channels broadened and flow velocities slowed 

(Figures 6.2.1 and 6.2.2). Chlorophyll a concentrations were also highest in the surface 

waters. Seasonally, mean chlorophyll a concentrations were highest between June and 

September, when no creek concentrations dropped below 10 µg l-1
. The highest chlorophyll a 

concentration of 198 µg l-1 was observed in Westfork Creek during a spring 2003 

dinoflagellate bloom. The lowest persistent chlorophyll a concentrations were found in 

Browns Creek throughout the spring of 2003. 

6.3 Phytoplankton Community Composition 

Figures 6.3.1 through 6.3.4 show spatiotemporal plots of the primary phytoplankton 

community groups identified in the monitoring data. The groups are shown as the percentage 

of total chlorophyll a. From top to bottom in each of the figures the fames are: 

dinoflagellates, cyanobacteria, chlorophyte, cryptomonad, and diatom. The bottom frame in 

each figure shows total chlorophyll a concentrations in µg l-1. Across all creeks, chlorophytes 

were the most prevalent phytoplankton group throughout the study period. Exceptions were 

the two periods of cyanobacterial dominance observed in Browns Creek. In the fall of 2004 

and summer of 2005, the cyanobacteria dominance persisted across several sampling dates 

and constituted 75% to 80% of the phytoplankton community in Browns Creek. 
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Dinoflagellates, cyanobacteria, cryptomonads, and diatoms, for the most part occurred as 

periodic blooms in each of the creeks. Consequently, the peak chlorophyll a concentrations 

observed in the monitoring data were not always attributable to chlorophytes.  

The remaining distribution of total chlorophyll a attributed to each phytoplankton 

group differed across creeks. Cyanobacteria were most prevalent in the forested creeks with 

the lowest DIN concentrations (Figures 6.3.5, 6.3.6). The phytoplankton groups were most 

evenly represented in Browns Creek. The means of the Browns Creek samples were 50% 

chlorophytes, 24% cyanobacteria, 15% diatoms, 9% cryptomonads, and 2% dinoflagellates.  

By contrast, in Southwest Creek below the most disturbed project watershed, 79% of all 

population units were comprised of chlorophytes (Figure 6.3.5). Winter dinoflagellate 

blooms in Westfork Creek resulted in a relatively high mean percentage of dinoflagellates.  

Within each creek, the spatial distribution of phytoplankton groups and their 

diagnostic indicator pigments varied with distance downstream. The samples with the highest 

percentage of chlorophytes were found at headwater creek stations of all creeks. In Browns 

Creek, the dinoflagellate indicator pigment, peridinin, was commonly detected at the creek 

mouth (Station 7), but was rarely present above detection levels at the creek headwater 

station (Figure 6.3.2). The influence of both upstream watershed forcing factors and 

downstream estuarine forcing factors on creek phytoplankton communities is addressed in 

the Discussion chapter. 

6.4 Phytoplankton Group Diversity and Dominance 

The Shannon-Weiner index of diversity evaluations were conducted for both long 

(year) and short (day) time scales, as detailed in the Materials and Methods chapter. Over the 

entire monitoring period, the least disturbed Browns Creek showed the highest level of 
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phytoplankton group diversity (H’) (Figure 6.4.1). The lowest H’ diversity values occurred in 

Southwest Creek below the most disturbed project watershed. Westfork Creek also received 

runoff from the same farm as Southwest Creek; however, diversity values below the 

treatment wetland were comparable to those found downstream of the reference forest 

watershed.  

 The mean of diversity values evaluated for phytoplankton groups at short time scales 

showed much less difference between creeks when compared to the long term evaluation of 

diversity across all sampling events (Figure 6.4.1 and 6.4.2). 

6.5 Salinity  

 All stations in all creeks exhibited periods of vertical salinity stratification during the 

monitoring period. The highest incidents of strong stratification ( > 3 parts per thousand 

[ppt]) were observed at the farthest upstream station in each creek, except for Browns Creek 

where the second downstream station was strongly stratified during 50% of sampling dates 

(Table 6.4.1). The highest surface salinities occurred in the summer months, specifically 

September 2003 and July 2004. The lowest surface salinity values for all stations were 

encountered on the June 24, 2004 sampling date. 

6.6 Creek Volume and Flushing Time 

The calculated volumes and flushing times for each project creek are provided in 

Table 6.6.1. Volumes are for the portions of the creeks between the flow meters and the 

creek mouth stations (Figure 4.2). The frequency at which the flushing time occurred for Big 

Creek and Southwest Creek at shown in Figures 6.6.1 and 6.6.2. Median flushing times better 

represent non-storm event conditions, while mean flushing times highlight the importance of 

storm events in creek hydrology. Specifically, the Big Creek mean flushing time of 1.57 days 
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occurred only 15% of the time (15th percentile of recurrence) , while the median flushing 

time of  4.35 days occurred 50% of the time. This contrast shows the large influence that 

storm events have on the mean flushing time.   
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Figure 6.1.1  Mean surface water dissolved inorganic nutrient concentrations 
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Figure 6.1.2  Mean bottom water dissolved inorganic nutrient concentrations 
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Figure 6.1.3  Effect of data collected immediately following Hurricane Isabel on mean surface nutrient 
concentrations 
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Figure 6.1.4  Mean PO4

-3 Surface samples. Station numbers increase from headwater to mouth within each 
creek 
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Figure 6.1.5  Mean PO4

-3 Bottom samples  Station numbers within each creek increase from headwater to 
mouth  
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Figure 6.1.6  Mean total dissolved nitrogen (DIN + DON) in surface water samples. Station numbers increase 
from headwater to mouth within each creek 
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Figure 6.1.7  Mean total dissolved nitrogen in bottom water samples. Station numbers increase from headwater 
to mouth within each creek 
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Figure 6.1.8  Mean DIN concentrations Surface Samples.  Station numbers increase from headwater to mouth 
within each creek 
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Figure 6.1.9  Mean DIN concentrations bottom samples. Station numbers increase from headwater to mouth 
within each creek 
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Figure  6.1.10 Mean DIN:DON weight ratio (µgN l-1: µgN l-1) surface and bottom samples.  Low values 
representing the lowest fraction of DIN 
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Figure 6.1.11  Percent of monitoring station samples where molar N:P ratio > 16. Surface and bottom samples 
combined 
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  Browns Big South River Southwest Westfork

LULC Reference Silviculture
Sub-Estuary 

Receiving Waters Agriculture Agriculture
Average in-situ 
Surface  
Chlorophyll a (μg 
l-1) 12.35 15.54 18.89 22.01 39.59 
Table 6.2.1  Mean in-situ surface chlorophyll a concentrations for all stations and all sampling events 
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Figure 6.2.1  Mean surface chlorophyll a concentrations. Station numbers within each creek increase from 
headwater to mouth  
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Figure 6.2.2  Mean bottom chlorophyll a concentrations. Station numbers within each creek increase from 
headwater to mouth  
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Figure 6.3.1  Big Creek phytoplankton community composition.  
Spatiotemporal interpolation with 2.2 km and 30 day search windows for entire record 
Groups are quantified as percentage of total chlorophyll a shown in bottom frame as µg l-1.  
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Figure  6.3.2 Browns Creek phytoplankton community composition  
Spatiotemporal interpolation with 2.1 km and 30 day search windows for entire record.  
X’ed regions shown period of insufficient data for interpolation. 
Groups are quantified as percentage of total chlorophyll a shown in bottom frame as µg l-1 
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Figure  6.3.3 Southwest Creek phytoplankton community composition  
Spatiotemporal interpolation with 2.7 km and 30 day search windows for entire record 
Groups are quantified as percentage of total chlorophyll a shown in bottom frame as µg l-1 
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Figure 6.3.4  Westfork Creek phytoplankton community composition Spatiotemporal interpolation with 1.4 km 
and 30 day search windows for entire record 
Groups are quantified as percentage of total chlorophyll a shown in bottom frame as µg l-1 
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Figure 6.3.6  Mean percent contribution of each phytoplankton group to total chlorophyll a concentrations 
April 2003 – August 2004 
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Figure 6.4.1  Long term phytoplankton group diversity Shannon-Weiner Index (H’) 
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Figure 6.4.2  Short term mean phytoplankton community unit diversity Shannon-Weiner Index (H’) 
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Westfork 

Creek Browns Creek 
Southwest 

Creek Big Creek South River 
SITE 0 1 2 4 5 6 7 8 9 10 11 12 13 3 14 15

Mean Δ S  2.9 1.0 1.9 2.0 3.9 1.8 0.7 2.6 1.6 1.6 3.4 0.4 0.6 1.7 2.5 2.6
Max Δ S 8.5 4.6 12.6 9.4 15.2 6.4 2.6 12.2 12.1 11.6 8.3 2.6 5.3 12.1 12.9 17.2

% Δ S > 2ppt 47% 21% 30% 35% 65% 33% 10% 50% 20% 11% 65% 5% 6% 24% 29% 31%
% Δ S > 3ppt 42% 5% 20% 25% 50% 17% 0% 38% 15% 11% 53% 0% 6% 19% 18% 19%

 

 
Westfork 

Creek Browns Creek 
Southwest 

Creek Big Creek South River 
SITE 0 1 2 4 5 6 7 8 9 10 11 12 13 3 14 15
Surface Mean  3.0 4.2 4.8 2.8 4.2 6.5 7.4 3.7 6.7 7.4 6.5 7.9 8.7 6.6 7.6 7.9
Surface Min  0.2 0.2 0.3 0.1 0.1 1.4 2.6 0.3 2.0 2.4 1.6 3.8 4.1 1.7 3.5 4.2
Surface Max  7.2 8.9 8.4 14.9 15.7 16.2 16.4 14.3 15.8 16.6 16.1 16.1 16.7 15.9 16.4 15.5
Bottom Mean 5.0 5.0 6.2 5.0 7.1 7.6 7.9 6.0 8.2 8.5 7.8 8.3 9.1 7.7 9.1 9.6
Bottom Min 0.2 0.2 0.3 0.1 1.3 2.0 3.3 0.9 2.5 2.9 3.4 4.0 4.1 2.3 3.8 4.4
Bottom Max 10.5 11.5 14.2 14.9 16.3 16.5 16.4 14.4 15.7 16.9 16.6 16.7 16.9 15.9 16.4 17.3

Table 6.5.1  Site salinity data (ppt). ΔS = different in ppt between surface and bottom samples 
 

Creek Volume (m3) 
Total Mean 

Flushing Time 
(days) 

Total Median 
Flushing Time 

(days) 
Big Creek  
(Managed Forest Watershed) 1.23 x 105 1.57 4.35
Browns Creek  
(Unmanaged Forest Watershed) 2.65 x 105 2.40 6.64
Southwest Creek  
(Agricultural Watershed) 3.52 x 105 3.79 5.63
Westfork Creek 
(Agricultural Watershed) 1.50 x 105 1.38 4.09

Table 6.6.1  Creek volume and flushing time values 
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Figure 6.6.1  Big Creek flushing time recurrence distribution 

Southwest Creek Agricultural Watershed
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Figure 6.6.2  Southwest Creek flushing time recurrence distribution



 

CHAPTER 6  

RESULTS PART II - BIOASSAYS

6.7 Summer Bioassay - July-August 2003 

Big Creek Results 

 Big Creek had the second highest initial chlorophyll a concentration (61 µg l-

1) (Figure 6.7.1). Initial NOx
-, NH4

+ and PO4
-3 concentrations for each creek were similar 

(Table 6.7.1).  The initial Big Creek phytoplankton community was dominated by 

cyanobacteria (42%) and chlorophytes (48%) (Figure 6.7.2). After 24 hours (T1), primary 

productivity was significantly greater than control in the NOx
-, NH4

+, and DIN+P 

treatments (Figure 6.7.6) (See Material and Methods chapter for statistical methods and 

definition of significance). There were no significantly greater than control responses in 

chlorophyll a concentration observed in any treatments until 48 hours (T2) (Figures 6.7.3, 

6.7.4). At T2, primary productivity and chlorophyll a were significantly greater than 

controls in all treatments containing N additions (NO3, NH4
+, DON, DIN+P, and 

DON+P) (Figures 6.7.4, 6.7.7). At 72 hours (T4) DIN concentrations were low in all 

treatments, there were no primary productivity rates significantly greater than controls, 

and only the NO3 and DIN+P treatments yielded chlorophyll a concentrations 

significantly greater than controls (Figures 6.7.5, 6.7.8).  In the PO4
-3 treatments, there 

were no responses that were significantly greater than control at any time points. The 

maximum nitrogen utilization rates of both NH4
+ and NOx

- occurred in the first 24 hours 

of the experiment (Tables 6.7.2 and 6.7.3). Specifically, in the NH4
+ additions, NH4

+ was 
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utilized at 288 µgN d-1 (7.7 µgN µgChla-1d-1), and in the NO3
- additions NOx

- was utilized 

at 280 µgN d-1 (10.8 µgN µgN-1d-1). These rates were the highest observed throughout the 

experiment across all creeks, but they were very similar to those in Southwest Creek. The 

N utilization rates in the first 24 hours assimilated over 90 percent of available N, which 

led to much lower N utilization rates as the experiment progressed. 

Southwest Creek Results 

 The initial Southwest Creek chlorophyll a concentration was (36 µg l-1) (Figure 

6.7.1). The Southwest Creek phytoplankton community was primarily chlorophytes 

(84%) (Figure 6.7.2). At T1, primary productivity and chlorophyll a concentrations were 

significantly greater than control in all N addition treatments. Primary productivity 

remained greater than control in all N addition treatments at T2 and T4. However, at T2 

and T4 chlorophyll a concentrations were only significantly higher than controls in the 

T4 DON+P treatment.   In the PO4
-3 treatments, there were no responses that were 

significantly greater than control at any time points. The PO4
-3 treatment chlorophyll a 

concentrations levels were less than control at T2 and T4. The maximum nitrogen 

utilization rates occurred in the first 24 hours of the experiment (Tables 6.7.2 and 6.7.3). 

As previously stated, these rates were very similar to those observed in Big Creek.  

Browns Creek Results 

 The initial Browns Creek phytoplankton community was primarily cyanobacteria 

(48%), and dinoflagellates (44%). Browns Creek also had the highest initial chlorophyll a 

concentration (79 µg l-1) (Figures 6.7.1 and 6.7.2). At T1, primary productivity was 

significantly greater than control only in treatments with additions of both N and P 

(DON+P, DIN+P) (Figure 6.7.6). No significantly greater than control chlorophyll a 
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concentration increases were observed until T2, and then only in the DIN+P treatment. At 

both T2 and T4, primary productivity rates were greater than control in all treatments 

containing N additions (Figures 6.7.3, 6.7.4). At T4, chlorophyll a concentrations were 

significantly higher than control in the NO3 and DON+P treatments. In the PO4
-3 

treatments, there were no responses that were significantly greater than control at any 

time points. A decrease of the cyanobacteria percentage of the phytoplankton community 

was observed at T2 in NH4
+ and DIN+P treatments (Figure 6.7.9). No other changes in 

the phytoplankton community were observed. The maximum nitrogen utilization rates 

occurred in the first 24 hours of the experiment. In the NH4
+ treatments, 95% of dissolved 

NH4
+ was utilized in the first 24 hours, at a rate of 288 µgN d-1 (7.7 µgN µgN-1 d-1). In 

the NO3
- treatments, 77% of dissolved NOx

- was utilized at a rate of 218 µgN d-1 (6.4 

µgN µgChla-1 d-1) (Tables 6.7.2 and 6.7.3). 

Neuse Estuary Results 

 The initial Neuse River chlorophyll a concentration was (28 µg l-1) (Figure 6.7.1). 

The initial Neuse Estuary phytoplankton community was primarily cyanobacteria (80%) 

(Figure 6.7.2). At T1, primary productivity was significantly greater than control in the 

DIN+P treatments, and no significantly greater than control chlorophyll a concentration 

increases were observed (Figures 6.7.3, 6.7.4, 6.7.6). At T2, chlorophyll a concentrations 

in all treatments containing N additions were significantly higher than controls, but only 

the NO3
- treatment had primary productivity rates significantly greater than controls 

(Figures 6.7.4 and 6.7.7). At T4, no primary productivity rates or chlorophyll a 

concentrations were significantly greater than controls, but DON+P chlorophyll a 

concentrations were significantly less than control (Figures 6.7.5 and 6.7.8).  In the PO4
-3 
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treatments, there were no responses that were significantly greater than control at any 

time points. The peak DIN nitrogen utilization rates (see Materials and Methods chapter) 

occurred between T1 and T2, which was 24 hours after the peak utilization rates were 

observed in all the creeks (Tables 6.7.2 and 6.7.3). 

Summer Bioassay Summary 

 The chlorophyll a concentrations in the collection waters of the summer bioassay 

were the highest of all the experiments. Chlorophyll a and primary productivity values 

were not significantly higher than control in treatments without N additions. The 

chlorophyte-dominated Southwest and Big Creek N additions treatments responded 24 

hours before the cyanobacteria and dinoflagellate communities in the Browns Creek and 

Neuse River treatments. The peak percentage of control responses in chlorophyll a and 

primary productivity were similar in all creeks and the Neuse Estuary. Additions of 

different forms of N did not lead to significantly different responses in chlorophyll a or 

primary productivity rates.  The only community composition shift observed in the 

experiment was an increase in dinoflagellates in the NH4
+, PO4

-3, and DIN+P treatments.  

6.8 Fall Bioassay – November 2003 

Big Creek Results 

The initial Big Creek chlorophyll a concentration was (6.7 µg l-1) (Figure 6.8.1) 

The initial Big Creek phytoplankton community was primarily cyanobacteria (60%) and 

cryptomonads (32%) (Figure 6.8.2). This community was similar to that found in the 

Neuse Estuary collection water.   At T1, increases in chlorophyll a concentrations in the 

DON treatment were the only significantly greater than control responses observed. 

Primary productivity rates in any treatments were not significantly higher than controls 
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(Figures 6.8.3, 6.8.4, 6.8.6). At T2 and T4 chlorophyll a in all treatments containing N 

additions were significantly greater than controls (Figures 6.8.4, 6.8.7). However, on T2 

and T4 primary productivity rates were significantly greater than control only in the 

DIN+P and DON+P treatments. In the PO4
-3 treatments, there were no responses that 

were significantly greater than control at any time points. The maximum DIN utilization 

rates were observed at T2. Notably, at T1 all treatments, including controls, had NH4
+ 

utilization rates greater than 24 µgN 1-1 d-1 and chlorophyll a normalized values that 

ranged from 4.1 µgN chla-1 d-1 to 7.0 µgN chla-1 d-1. (Tables 6.8.2 and 6.8.3). 

Southwest Creek Results 

The initial Southwest Creek chlorophyll a concentration was 5.9 µg l-1 (Figure 

6.8.1). Both DIN and PO4 were elevated in the Southwest Creek collection water (Table 

6.8.1). The majority of the initial Southwest Creek phytoplankton community was 

comprised of chlorophytes (72%) (Figure 6.8.2). At T1 and T2, no significantly greater 

than control responses were observed in any treatments except for the primary 

productivity rates in the T2 DIN+P additions (Figures 6.8.4, 6.8.7). At T4, all DIN 

chlorophyll a concentrations were significantly greater than control in all DIN additions 

(NOx
-, NH4

+, DIN+P) and primary productivity rates were significantly greater than 

control in the NH4
+ and DIN+P additions.  In the PO4

-3 treatments, there were no 

responses that were significantly greater than control at any time points. The maximum 

DIN utilization rates were observed at T4 (Table 6.8.2). All T2 treatments, including 

controls, had  NH4
+ and NOx

- utilization rates greater than 24 µgN 1-1 d-1. 
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Browns Creek Results 

The initial Browns Creek chlorophyll a concentration was 3.2 µg l-1 (Figure 

7.8.1). The initial molar ratio of DIN:P was greater than 16 in Browns Creek and less 

than 16 in water collected at other sites (Table 6.8.1). The majority of the initial Browns 

Creek phytoplankton community was cyanobacteria (89%) (Figure 6.8.2). The only 

significantly greater than control chlorophyll a and primary productivity responses were 

observed in treatments that included a PO4
-3 addition. Specifically, chlorophyll a was 

significantly higher than control in the T1 DON+P treatment and T4 DIN+P and DON+P 

treatments. Primary productivity was significantly greater than control in the T2 PO4
-3, 

DIN+P and DON+P and T4 DIN+P and DON+P treatments. The significantly greater 

than control primary productivity response to the PO4
-3 treatment was the only such 

response in the experiment. In the T4 DIN+P and DON+P treatments, the percent 

contribution chlorophytes to total chlorophyll a did increase to 26% and 12% 

respectively.  In the T0 and T4, controls chlorophytes represented less than 3% of total 

chlorophyll a (Figure 6.8.9). The maximum DIN utilization rates were observed at T4 

concurrently with the highest observed chlorophyll a and primary productivity 

observations (Tables 6.8.2 and 6.8.3). 

Neuse Estuary Results 

The Neuse Estuary had the highest initial chlorophyll a concentration (25.5 µg l-1) 

(Figure 7.8.1). The initial Neuse Estuary phytoplankton community was primarily 

cyanobacteria (60%) and cryptomonads (32%) (Figure 6.8.2). This community was 

similar to that found in Big Creek. At T1, no responses were significantly greater than 

control in any treatments.  At T2, chlorophyll a concentrations were significantly greater 
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than control in all treatments with an N addition. At T4, chlorophyll a concentrations 

were significantly greater than control in the DIN+P and DON+P treatments. The T2 

DIN+P treatment had the only primary productivity rates that were significantly greater 

than control during the bioassay. In the PO4
-3 treatments, there were no responses that 

were significantly greater than control at any time points. The maximum DIN utilization 

rates were observed at T2 in the NOx
-, NH4

+ and DIN+P treatments. (Tables 6.8.2 and 

6.8.3). 

Fall Bioassay Summary 

In Big Creek, Southwest Creek, and the Neuse River, the largest increases in chlorophyll 

a and primary productivity were observed in the N+P treatments. In the Browns Creek 

treatments, significantly greater than control responses were only seen in N+P treatments. 

No temporal differences in response time were observed across the experiment. All 

maximum chlorophyll a concentrations and primary productivity rates occurred on T4. 

Different forms of nitrogen did not elicit significantly different responses in chlorophyll a 

or primary productivity levels. 

6.9 Winter Bioassay - February 2004 

Big Creek Results 

The Big Creek initial chlorophyll a concentration was 5.5 µg l-1 (Figure 6.9.1). 

The initial nutrient concentrations in collection water from all creeks can be found in 

Table 6.9.1) The majority of the initial Big Creek phytoplankton community was 

chlorophytes (87%) (Figure 6.8.2). This community was similar to that found in the 

Southwest Creek collection water. The significantly greater than control responses in 

chlorophyll a and primary productivity were limited to the DIN+P treatments throughout 
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the experiment (Figures 6.9.3 through 6.9.9.) The exception was a significantly greater 

than control chlorophyll a response to all N addition treatments at T4 (6.9.5). In the PO4
-3 

treatments, there were no responses that were significantly greater than control at any 

time points. The highest DIN utilization rates were observed at T1 (Table 6.9.2 and 

6.9.3). 

Southwest Creek Results 

The initial Southwest Creek chlorophyll a concentration was 7.5 µg l-1 (Figure 

6.9.1). The majority of the initial Southwest Creek phytoplankton community was 

chlorophytes (72%) (Figure 6.9.2). DIN concentrations in the Southwest Creek collection 

water were 15uM, and N additions increased the concentration another 20uM. All 

Southwest Creek treatments, including controls, showed increasing chlorophyll a 

concentrations through the experiment.  There were no significantly greater than control 

responses in chlorophyll a concentrations throughout the experiment (Figures 3.9.3, 

3.9.4, 3.9.5). Primary productive rates were significantly higher than control at T4 in the 

PO4
-3, DIN+P, and DON+P treatments (Figures 3.9.6, 3.9.7, 3.9.8). The DIN utilization 

rates remained high throughout the experiment. The DIN utilization rate for NH4
+ in the 

NH4
+ treatment at T2 (Table 6.9.2 and 6.9.3)  

Browns Creek Results 

Browns Creek phytoplankton abundance was very low (0.8 µg l-1) (Figure 6.9.1). 

Diagnostic HPLC pigment concentrations were below detection limits. Chlorophyll a 

concentrations did not exceed 1 µg l-1 in any treatment during the experiment.   Primary 

productivity rates were also very low in all treatments, but were significantly greater than 

control in the PO4
-3 additions at all time points. However, the T4 primary productivity 
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rates normalized to chlorophyll a concentrations (μg C μgChla-1 h-1) and were 

comparable to those measured in the other creek and estuary treatments.   

Neuse Estuary Results 

Initial chlorophyll a concentrations were highest in the Neuse River (11.9 µg l-1) 

(Figure 6.9.1). The majority of the initial Neuse Estuary phytoplankton community was 

dinoflagellates (82%) (Figure 6.9.2). Chlorophyll a concentrations were significantly 

greater than control in the DIN+P treatment at T1 and significantly greater than control in 

all N addition treatments at T2 and T4. Primary productivity was significantly greater 

than control only in the DIN+P treatment at T2 and the DON+P treatment at T4. The 

maximum DIN utilization rates were observed at T1 in the NOx
- and NH4

+additions 

(Tables 6.9.2 and 6.9.3). 

Winter Bioassay Summary 

In the winter bioassay, the dinoflagellate community in the Neuse Estuary showed the 

greatest responses in chlorophyll a, primary productivity, and DIN assimilation in 

treatments containing N. Across all creeks, there were more significantly greater than 

control responses to N+P additions that to N only additions. No temporal differences in 

response time between the creeks were observed across the experiment. Maximum 

chlorophyll a concentrations and primary productivity rates occurred on T4. 

6.10 Spring Bioassay – May 2004 

Big Creek Results 

Initial chlorophyll a concentrations were similar at all collection sites. These  

concentrations ranged from 8.5 µg l-1 in Big Creek to 5.1 µg l-1 in Browns Creek (Figure 

6.10.1). The initial Big Creek phytoplankton community was primarily diatoms (88.9%) 
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(Figure 6.10.2). At T1, chlorophyll a concentrations were significantly greater than 

control in the DIN+P and DON+P treatments, and primary productivity were 

significantly higher than controls in all treatments containing N additions (Figures 6.10.2 

and 6.10.4). At T2 chlorophyll a concentrations and primary productivity rates were 

significantly greater than control in the DIN+P and DON+P treatments (Figures 6.10.3 

and 6.10.5). At T4, all chlorophyll a concentrations were lower than T2, but treatments 

containing N additions were significantly greater than control (Figure 6.10.4). No 

primary productivity rates were significantly greater than controls  at T4 (Figure 6.10.6). 

In the PO4
-3 treatments, there were no responses that were significantly greater than 

control at any time points. The highest DIN utilization rates were observed at T1 in the 

DIN+P treatments (Tables 6.10.2 and 6.10.3).  

Southwest Creek Results 

A majority of the initial Southwest Creek phytoplankton community was 

chlorophytes (75%) (Figure 6.8.2). This community was similar to that found in Browns 

Creek. At T1 and T4, chlorophyll a concentrations were significantly higher than controls 

in all treatments with an N addition. At T2, chlorophyll a concentrations were 

significantly greater than control only in the DIN+P and DON+P treatments. Primary 

productivity was significantly higher than control only in N+P treatment at all time 

points. Specifically, primary productivity was significantly greater than control in the 

DIN+P and DON+P treatments at T1 and in the DIN+P treatments at T2 and T4. In the 

PO4
-3 treatments, there were no responses that were significantly greater than control at 

any time points. The highest DIN utilization rates for NH4
+ occurred at T1 while the 
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highest rates for NOx
- occurred at T2. In the DIN+P treatment, DIN utilization rates were 

highest for NH4
+ at T1 and then highest for NOx

- at T2 (Tables 6.10.2 and 6.10.3). 

Browns Creek Results 

A majority of the initial Browns Creek phytoplankton community was 

chlorophytes (89%) (Figure 6.8.2).  Significantly greater than control responses in 

chlorophyll a and primary productivity were observed in treatments that included a PO4
-3 

addition. Specifically, chlorophyll a in the DIN+P and DON+P treatments was 

significantly greater than control and PO4
-3 treatments at all time points. Primary 

productivity was significantly greater than control in the DIN+P and DON+P treatments 

at T2. The highest DIN utilization rates for NH4
+ occurred at T1 while the highest rates 

for NOx
- occurred at T2. In the DIN+P treatment utilization rates were highest for NH4

+ 

at T1 and then highest for NOx
- at T2 (Tables 6.10.2 and 6.10.3). 

Neuse Estuary Results 

The initial Neuse Estuary phytoplankton community was primarily composed of 

cyanobacteria (91%) (Figure 6.10.2). At T1, chlorophyll a concentrations were 

significantly higher than controls in all treatments with N additions, and primary 

productivity was significantly greater than control in the DIN+P treatments. At T2, 

chlorophyll a concentrations and primary productivity rates were significantly greater 

than control in the DIN+P and DON+P treatments. At T4, chlorophyll a concentrations 

were significantly greater than controls in all treatments with N additions. In the PO4
-3 

treatments, there were no responses that were significantly greater than control at any 

time points. The highest DIN utilization rates for NH4
+ occurred at T1, while the highest 
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rates for NOx
- occurred at T2. The DIN+P treatment utilization rates were highest for 

NH4
+ at T1 and then highest for NOx

- at T2 (Tables 6.10.2 and 6.10.3). 

Spring Bioassay Summary 

In the spring bioassay, primary productivity rates were only found to be 

significantly higher than control in DIN+P and DIN+P treatments. In N only treatments, 

the diatom community in Big Creek was observed to have the largest response.  In 

treatments receiving N and P, the chlorophyte community in Browns Creek showed the 

largest chlorophyll a responses. In all DIN+P treatments, peak NH4
+ utilization occurred 

in the first 24 hours, followed by peak NOx
- utilization in the second 24 hours.   
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Figure 6.7.1  Summer bioassay T0 chlorophyll a concentrations 
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Figure 6.7.2  Summer bioassay T0 initial phytoplankton community composition 
 
 N-NOx µg l-1 N-NH4 µg l-1 P-PO4 µg l-1 TDN µg l-1 
Browns Creek 4.3 17.6 14.2 534 
Southwest Creek 2.6 18.3 160.9 511 
Neuse River 3.3 12.0 58.8 346 
Big Creek 2.6 16.3 51.4 408 
 Table 6.7.1  Summer bioassay T0 ambient nutrient concentrations  
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Figure 6.7.3  Summer bioassay T1 chlorophyll a results 

 
Figure 6.7.4  Summer bioassay T2 chlorophyll a results  
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Figure 6.7.5  Summer bioassay T4 chlorophyll a results 
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Figure 6.7.6  Summer bioassay T1 primary productivity rates  
Red star indicates rate significantly greater than control (p <0.05) 
 
 
  

 
Figure 6.7.7  Summer bioassay T2 primary productivity rates  
Red star indicates significantly greater than control (p < 0.05) 
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Figure 6.7.8  Summer bioassay T4 primary productivity rates  
Red star indicates significantly greater than control (p < 0.05) 
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Figure 6.7.9  Summer bioassay T2 phytoplankton community 
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Creek 

Treatment 
T1  

µgN 1-1 d-

1 

T2  
µgN 1-1 d-

1 

T4  
µgN l-1 d-1 

T1  
µgN 

µgChla-1 
d-1 

T2  
µgN 

µgChla-1 
d-1 

T4  
µgN 

µgChla-1 
d-1 

Big Creek DIN+P 150.20 -3.77 -3.01 2.98 -0.09 -0.21 
  NH4

+  288.53 -1.25 -6.18 7.77 -0.03 -0.46 
Browns 
Creek DIN+P 135.23 9.99 -2.71 3.10 0.18 -0.15 
  NH4

+  280.45 5.42 -2.61 5.72 0.14 -0.16 
Neuse 
Estuary DIN+P 92.68 44.45 -3.89 8.70 2.07 -0.53 
  NH4

+  124.00 157.45 -8.81 9.98 9.46 -1.25 
Southwest 
Creek DIN+P 146.47 2.67 -3.81 3.62 0.11 -0.42 
  NH4

+  287.52 -2.56 -0.64 8.85 -0.14 -0.07 
Table 6.7.2  Summer bioassay NH4

+ utilization rates in DIN additions   
 

Creek 

Treatment 
T1  

µgN 1-1 d-

1 

T2  
µgN 1-1 d-

1 

T4  
µgN l-1 d-1 

T1  
µgN 

µgChla-1 
d-1 

T2  
µgN 

µgChla-1 
d-1 

T4  
µgN 

µgChla-1 
d-1 

Big Creek DIN+P 141.60 -2.26 -0.25 2.81 -0.06 -0.02 
  NO3

-  281.02 -1.61 -0.58 10.76 -0.04 -0.04 
Browns 
Creek DIN+P 130.79 5.93 0.02 3.00 0.11 0.00 
  NO3

-  218.17 58.23 -0.02 6.38 1.61 0.00 
Neuse 
Estuary DIN+P 28.08 109.86 -0.26 2.64 5.12 -0.03 
  NO3

-  59.10 218.37 -0.04 5.26 9.54 -0.01 
Southwest 
Creek DIN+P 139.50 -1.82 -0.45 3.45 -0.08 -0.05 
  NO3

-  280.00 -2.42 -0.31 8.18 -0.10 -0.03 
Table 6.7.3 Summer bioassay NOx

- utilization rates in DIN additions 
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Figure 6.8.1  Fall bioassay T0 initial chlorophyll a concentrations 
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Figure 6.8.2  Fall bioassay initial phytoplankton community composition 
 

 N-NOx µg l-1 N-NH4  µg l-1 P-PO4 µg l-1  TDN µg l-1 
Browns Creek 8.1 52.6 4.3 368 
Southwest Creek 117.0 51.7 37.2 616 
Neuse River 18.9 27.3 7.1 351 
Big Creek 7.6 17.9 5.3 275 
Table 6.8.1  Fall bioassay T0 ambient nutrient concentrations 
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Figure 6.8.3  Fall bioassay T1 chlorophyll a results 
 

 
Figure 6.8.4  Fall bioassay T2 chlorophyll a results 
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Figure 6.8.5  Fall bioassay T4 chlorophyll a results 



 87

 

 
Figure 6.8.6  Fall bioassay T1 primary productivity rates  
Red star indicates significantly greater than control (p < 0.05) 
 

 
Figure 6.8.7  Fall bioassay T2 primary productivity rates  
Red star indicates significantly greater than control (p < 0.05) 
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Figure 6.8.8  Fall bioassay T4 primary productivity rates  
Red star indicates significantly greater than control (p < 0.05) 
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Figure 6.8.9  Fall bioassay Browns Creek phytoplankton community results 
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Creek 

Treatment 
T1  

µgN 1-1 d-

1 

T2  
µgN 1-1 d-

1 

T4  
µgN l-1 d-1 

T1  
µgN 

µgChla-1 
d-1 

T2  
µgN 

µgChla-1 
d-1 

T4  
µgN 

µgChla-1 
d-1 

Big Creek DIN+P 49.10 80.18 22.51 6.78 4.55 1.18 
  NH4

+  38.10 58.00 23.63 5.53 4.94 3.05 
Browns 
Creek DIN+P -64.35 59.25 75.36 -16.25 9.65 2.55 
  NH4

+  -25.35 -23.75 34.38 -6.34 -6.03 6.13 
Neuse 
Estuary DIN+P 49.73 102.46 1.86 2.54 3.69 0.08 
  NH4

+  55.05 111.25 37.70 2.41 4.44 1.91 
Southwest 
Creek DIN+P -8.15 92.70 48.06 -1.07 6.47 1.25 
  NH4

+  10.85 80.00 116.32 1.34 5.22 3.24 
Table 6.8.2  Fall bioassay NH4

+ utilization rates in DIN additions 
 

Creek 

Treatment 
T1  

µgN 1-1 d-

1 

T2  
µgN 1-1 d-

1 

T4  
µgN l-1 d-1 

T1  
µgN 

µgChla-1 
d-1 

T2  
µgN 

µgChla-1 
d-1 

T4  
µgN 

µgChla-1 
d-1 

Big Creek DIN+P 22.40 18.03 51.81 3.09 1.02 2.72 
  NO3

-  117.85 19.45 -10.72 22.22 1.78 -1.58 
Browns 
Creek DIN+P 17.10 15.78 34.04 4.32 2.57 1.15 
  NO3

-  60.10 14.75 2.88 17.41 2.82 0.53 
Neuse 
Estuary DIN+P 21.40 74.13 29.72 1.09 2.67 1.21 
  NO3

-  53.15 113.00 18.33 2.35 4.92 1.26 
Southwest 
Creek DIN+P -42.50 52.50 97.98 -5.57 3.66 2.54 
  NO3

-  120.90 -56.15 117.39 16.81 -4.29 3.47 
Table 6.8.3  Fall bioassay NOx

- utilization rates in DIN additions 
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Figure 6.9.1  Winter bioassay T0 initial chlorophyll a concentrations 
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Figure 6.9.2  Winter bioassay final phytoplankton community composition 
 

N-NOx µg l-1 N-NH4 µg l-1 P-PO4 µg l-1  TDN µg l-1 
Browns Creek 22.8 28.8 4.0 412 
Southwest Creek 147.0 70.8 46.1 640.5 
Neuse River 4.3 10.7 2.5 339.5 
Big Creek 6.5 5.7 2.7 367.5 
Table 6.9.1  Winter bioassay T0 initial nutrient concentrations 
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Figure 6.9.3  Winter bioassay T1 chlorophyll a results  
Red star indicates significantly greater than control (p < 0.05) 

 
Figure 6.9.4  Winter bioassay T2 chlorophyll a results  
Red star indicates significantly greater than control (p < 0.05) 
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Figure 6.9.5  Winter bioassay T4 chlorophyll a results  
Red star indicates significantly greater than control (p < 0.05) 
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Figure 6.9.6  Winter bioassay T1 primary productivity results  
Red star indicates significantly greater than control (p < 0.05) 
 

 

 
Figure 6.9.7  Winter bioassay T2 primary productivity results  
Red star indicates significantly greater than control ( p < 0.05) 
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Figure 6.9.8  Winter bioassay T4 primary productivity Results   
Red star indicates significantly greater than control  (p < 0.05)  
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Creek 

Treatment 
T1  

µgN 1-1 d-

1 

T2  
µgN 1-1 d-

1 

T4  
µgN l-1 d-1 

T1  
µgN 

µgChla-1 
d-1 

T2  
µgN 

µgChla-1 
d-1 

T4  
µgN 

µgChla-1 
d-1 

Big Creek DIN+P 44.53 44.88 29.97 6.07 4.33 2.33 
  NH4

+  33.80 36.50 7.75 4.87 4.81 1.32 
Browns 
Creek DIN+P -39.54 26.50 33.93 -56.79 46.75 65.43 
  NH4

+  17.96 -16.00 9.13 25.37 -28.85 25.28 
Neuse 
Estuary DIN+P 133.65 8.56 -1.27 7.50 0.34 -0.06 
  NH4

+  129.80 72.05 33.11 8.61 3.28 1.45 
Southwest 
Creek DIN+P 19.30 78.38 36.42 2.67 7.63 2.62 
  NH4

+  60.30 59.00 30.13 8.83 5.83 2.45 
Table 6.9.2  Winter bioassay NH4

+ utilization rates in DIN additions 
 

Creek 

Treatment 
T1  

µgN 1-1 d-

1 

T2  
µgN 1-1 d-

1 

T4  
µgN l-1 d-1 

T1  
µgN 

µgChla-1 
d-1 

T2  
µgN 

µgChla-1 
d-1 

T4  
µgN 

µgChla-1 
d-1 

Big Creek DIN+P 44.97 -11.58 19.05 6.13 -1.12 1.48 
  NO3

-  75.14 -8.85 9.00 12.98 -1.25 1.90 
Browns 
Creek DIN+P -7.69 -2.25 37.88 -11.05 -3.97 73.05 
  NO3

-  24.81 -0.50 -16.13 38.41 -0.92 -44.12 
Neuse 
Estuary DIN+P 38.47 76.95 14.74 2.16 3.09 0.69 
  NO3

-  122.14 19.25 40.46 8.08 0.94 2.11 
Southwest 
Creek DIN+P 22.48 59.50 9.90 3.11 5.79 0.71 
  NO3

-  47.23 49.75 26.25 6.83 5.04 2.82 
Table 6.9.3  Winter bioassay NOx

- utilization rates in DIN additions 
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Figure 6.10.1  Spring bioassay T0 initial chlorophyll a concentrations 
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Figure 6.10.2  Spring bioassay T0 initial phytoplankton community composition 
 
 N-NOx µg l-1 N-NH4 µg l-1 P-PO4 µg l-1  TDN µg l-1 
Browns Creek 2.9 14.0 5.6 296.5 
Southwest Creek 2.4 16.9 7.4 304 
Neuse River 2.0 9.5 6.2 241 
Big Creek 2.2 3.6 6.5 296 
Table 6.10.1  Spring bioassay T0 initial nutrient concentrations 
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Figure 6.10.1  Spring bioassay T1 chlorophyll a results  
Red star significantly greater than control (p < 0.05) 

 
Figure 6.10.2  Spring bioassay T2 chlorophyll a results  
Red star indicates significantly greater than control (p < 0.05) 
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Figure 6.10.3  Spring bioassay T4 chlorophyll a results 
Red star indicates significantly greater than control (p < 0.05)
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Figure 6.10.4  Spring Bioassay T1 primary productivity results 
Red star indicates significantly greater than control (p < 0.05) 
 

 
Figure 6.10.5  Spring Bioassay T2 primary productivity results   
Red star indicates significantly greater than control (p < 0.05) 
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Figure 6.10.6  Spring Bioassay T4 primary productivity results   
Red star indicates significantly greater than control (p < 0.05) 
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Creek 

Treatment 
T1  

µgN 1-1 d-

1 

T2  
µgN 1-1 d-

1 

T4  
µgN l-1 d-1 

T1  
µgN 

µgChla-1 
d-1 

T2  
µgN 

µgChla-1 
d-1 

T4  
µgN 

µgChla-1 
d-1 

Big Creek DIN+P 134.23 8.35 2.06 5.36 0.50 0.36 
  NH4

+  119.50 85.63 23.01 6.90 6.79 3.42 
Browns 
Creek DIN+P 50.95 74.70 0.93 6.06 3.90 0.16 
  NH4

+  21.82 50.50 14.88 3.58 11.67 6.66 
Neuse 
Estuary DIN+P 101.09 34.78 3.95 7.28 1.35 0.58 
  NH4

+  70.51 26.50 48.54 8.43 3.16 6.92 
Southwest 
Creek DIN+P 126.85 10.95 6.32 3.62 0.43 0.46 
  NH4

+  170.15 114.77 2.58 5.72 5.18 0.17 
Table 6.10.2  Spring bioassay NH4

+ utilization rates in DIN additions 
 

Creek 

Treatment 
T1  

µgN 1-1 d-

1 

T2  
µgN 1-1 d-

1 

T4  
µgN l-1 d-1 

T1  
µgN 

µgChla-1 
d-1 

T2  
µgN 

µgChla-1 
d-1 

T4  
µgN 

µgChla-1 
d-1 

Big Creek DIN+P 79.02 66.60 -1.64 3.15 3.98 -0.29 
  NO3

-  115.45 43.00 31.66 6.39 3.54 4.19 
Browns 
Creek DIN+P -0.07 145.06 -1.67 -0.01 7.58 -0.29 
  NO3

-  59.43 54.25 5.75 9.66 12.99 2.74 
Neuse 
Estuary DIN+P 19.17 125.62 -1.81 1.38 4.88 -0.27 
  NO3

-  48.67 129.50 16.96 5.44 15.61 2.41 
Southwest 
Creek DIN+P 44.30 100.65 -2.05 1.26 3.98 -0.15 
  NO3

-  169.70 115.96 -3.73 6.86 5.75 -0.29 
Table 6.10.3  Spring bioassay NOx

- utilization rates in DIN additions



 

CHAPTER 7 

 DISCUSSION 

 The following discussion sections are organized to specifically address the three 

project objectives. Each objective and hypothesis is first reiterated, and then evaluated, 

through discussion of the project results and results from similar investigations.  

7.1 Land Use Influence on Nutrient Concentrations 

Objective: Quantify the concentrations and forms of biologically available nitrogen in creeks 

downstream of representative watersheds draining the four distinct land uses.  

Hypothesis: Current LULC bordering the NPES will significantly influence allochtonous 

nutrient loading to the proximate estuarine creeks. Specifically, runoff originating from the 

agricultural areas will be enriched in total nitrogen and soluble inorganic nitrogen fraction 

when compared to runoff from the forested areas. 

Dissolved Nutrient Concentrations 

Existing LULC studies have directly addressed the effects of land use on downstream 

dissolved nutrient concentrations in the NRE (Kirby-Smith and Barber 1979; Paerl et al. 

1998; Thompson et al. 1998), and in other temperate estuaries (Hopkinson and Vallino 1995; 

Woodside 1995; Corbett et al. 1997; Wahl et al. 1997; Dauer et al. 2000; Cloern 2001; Gove 

et al. 2001; Seitzinger et al. 2002; Hagy et al. 2004). These studies found that watershed 

modifications, such as urban development and agricultural use, increased nutrient loading 

and concentrations in downstream waters. Similarly, this study of NRE estuarine creeks 
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compared nutrient concentrations down stream of two agricultural watersheds, a managed 

silviculture forest watershed, and an unmanaged reference forest watershed.   

The results of this study show that dissolved inorganic nutrients (NH4
+, NOx

-, and 

PO4
-3) and TDN concentrations were generally greatest downstream of the agricultural 

watersheds (Figure 6.1.1). An exception was high dissolved NH4
+ concentrations observed in 

Browns Creek downstream of the reference forest watershed. This exception is discussed 

below under dissolved nitrogen form. Otherwise, these findings are consistent with the 

previous research on nutrient budgets and exports for agricultural and forested lands  (Kirby-

Smith and Barber 1979; Lowrance et al. 1985; Woodside 1995; Perry et al. 1999; Vellidis et 

al. 2003; Long et al. 2004).   Generally, the existing research shows physical land 

modifications (e.g. ditching and fertilizer application) result in rapid runoff and increased 

dissolved nutrient loads. Woodside (1995) compared watershed land use and downstream 

nutrient concentrations in fresh water coastal plain creeks of the Albemarle Sound and 

Pamlico Sound drainage basins.  Woodside (1995) found the highest median concentrations 

of dissolved NO3
- were in streams draining watersheds that contained more than 45-percent 

cropland. The lowest median concentrations of dissolved NO3
- were in streams draining 

watersheds that contained more than 90-percent forest land.  The results presented here for 

the South River sub-estuary area also show the highest dissolved NOx
- concentrations in 

creeks draining agricultural watersheds and the lowest dissolved NOx
- concentrations in 

creeks draining forested watersheds. These current findings also agree with results of a 

previous investigation of land use and water quality in the South River sub-estuary (Kirby-

Smith and Barber 1979). During the construction of OGF in the 1970’s, Kirby-Smith and 

Barber (1979) found that concentrations of NOx
-, NH4

+, and PO4
-3 increased in the South 
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River sub-estuary as the watershed was converted from forest to intensive agriculture. The 

results from this 2003 – 2004 study show that despite advances in BMPs, such as flashboard 

risers and constructed wetlands, dissolved nutrient concentrations remain elevated in creeks 

draining the agriculture areas.   

Dissolved Inorganic Nitrogen Form 

The results from the monitoring data show the primary forms of DIN, NH4
+ and NOx

-, 

were different downstream of agricultural versus forested watersheds. Specifically, NH4
+ 

made up the majority of the DIN in the forested watershed creeks (Browns Creek and Big 

Creek). In contrast, NOx
- was the primary form of DIN in the agricultural watershed creeks 

(Southwest Creek and Westfork Creek) (Figure 6.1.2). Previous studies of LULC influence 

on downstream dissolved nutrient concentrations have also found this relationship between 

land use and dissolved nitrogen form (Corbett et al. 1997; Wahl et al. 1997; Mallin et al. 

2004).  Mallin et al. (2004) found high NO3
- concentrations were the primary DIN form in 

creeks draining developed watersheds, while regenerated NH4
+ was the primary N form in 

waters downstream of  undisturbed lands. In the Murrells Inlet, South Carolina estuarine 

system, Wahl et al. (1997) also found higher NOx
- concentrations in urban estuarine streams 

and higher NH4
+ in forested estuarine streams. Wahl et al. (1997) observed a greater than 

100% per unit area load of DIN from the urbanized watershed  when compared to a forested 

watershed.  

The differences in DIN form downstream of agricultural and forest watersheds 

observed in this study may be attributed to agricultural watershed modifications that increase 

NOx
- concentrations and benthic estuarine processes that increase NH4

+ concentrations. As 

mentioned above, agricultural fertilizer application and ditch networks increase rapid runoff 
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curves (Kirby-Smith and Barber 1979; Lowrance et al. 1985; Perry et al. 1999; Burt and 

Pinay 2005). The rapid runoff curves associated with the agricultural ditch networks decrease 

infiltration, which then also decreases the potential for NO3
- to be converted to N2 via 

denitrification (Thompson et al. 1998). Consequently, agricultural watershed modification 

increases in-stream nutrient loading of NOx
-. Alternatively, NH4

+ concentration can increase 

as the result of organic matter remineralization in estuarine sediments (Fear 2003; Fear et al. 

2004). The persistent salinity stratification (Table 6.4.1) and chronic summer hypoxia 

observed in the creek monitoring data mimic the conditions that promote NH4
+ flux from 

benthic sediments. However, benthic NH4
+ flux rates were not directly measured in this 

study; thus, this explanation cannot be tested at this point. Other possible explanations for the 

elevated NH4
+ in the Browns Creek bottom water may include intrusion of main stem estuary 

water in the downstream portions of the creek. Periods of downstream import of estuarine 

water were identified by high salinity and negative flow observations at the creek 

headwaters. Examples of estuary water intrusion (i.e. negative flow) during June and July of 

2004 are discussed below under phytoplankton community composition.  

NH4
+ flux measurements in Southwest Creek are currently being collected as part of 

the related Forested and Agricultural Watershed Nitrogen Attenuation project. Upon 

completion, these flux data will be incorporated with the data from this project to help 

develop a nutrient transport model for proximate estuarine watersheds.  

7.2 Creek Nutrient Buffering Capacity 

Objective: Determine if these non-tidal estuarine creeks serve as effective nutrient buffers to 

the main-stem estuary.  
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Hypothesis: High productivity and nutrient assimilation rates in the proximate creeks provide 

an efficient nutrient buffer for the main stem of estuary during both average base flows and 

episodic storm-level flows. Specifically, in-stream nutrient attenuation in all creeks will be 

directly related to levels of phytoplankton chlorophyll a. 

In other ecosystems, creeks of similar size have provided a buffer to receiving waters 

by assimilating 50% to 90% of the input of dissolved inorganic nitrogen from their 

watersheds (Peterson et al. 2001; Mallin 2004). This study used the sampling data and the 

bioassay experiments to evaluate whether these creeks are also effective buffers to the main 

stem Neuse River estuary from proximate nitrogen inputs.   

The results show that throughout the year, the phytoplankton community in the 

forested watershed creeks has the capacity to assimilate DIN delivered in all but the 95th 

percentile of flow and loads (Figures 7.2.1 and 7.2.2). In the agricultural watershed 

Southwest Creek, the phytoplankton community capacity to assimilate watersheds loads was 

less than the forested creeks and varied throughout the year. Specifically, in spring, summer, 

and fall, the agricultural creek phytoplankton community has the capacity to assimilate DIN 

delivered in all but the 90th percentile flow and DIN loads (Figures 7.2.1 and 7.2.3). In the 

winter, the agricultural creek phytoplankton community has the capacity to assimilate DIN 

delivered in all but 80th percentile of flow and DIN loads (Figures 7.2.1 and 7.2.3).  

The experimentally-derived N uptake rates used here may actually under-estimate in-

creek assimilation rates. Mulholland et al. (2002) found using experimentally derived N 

uptake rates would over-estimate the stream length and time required to assimilate a unit of 

dissolved inorganic nitrogen. Also, bacterial uptakes rates were not directly measured, but 

bacteria were present during the bioassay experiments. However, the project creek’s ability 
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to assimilate N does not mean the nitrogen is removed from the system. The N is assimilated 

into organic matter that may or may not be re-mineralized later. 

The DIN assimilation capacities detailed above were validated against the sampling 

data for flow and load events above and below the 90th percentile. In general, moderate flows 

containing high inorganic loads during the warm summer months resulted in phytoplankton 

biomass increases and rapid nutrient attenuation within the creeks. Figure 7.2.1 is a 

spatiotemporal plot of flow, NOx
- concentration increases, and subsequent chlorophyll a 

responses discussed above.  Figure 7.2.1 shows the rapid attenuation of NOx
- along the 

Southwest Creek axis from the headwater flow meters (0 km) to the creek mouth (2.7 km) for 

all but one runoff event. The exception was related to Hurricane Alex in August 2004, which 

brought approximately 5.5 inches of rain to the project area (Franklin 2004). The flow and 

DIN load observed following Hurricane Alex ranked in the 99th percentile of observations. 

The fact that very little of the DIN concentrations were attenuated in the stream supports the 

conclusion that above 90th percentile flows/loads, these creeks do not function as effective 

buffers to the downstream estuary. Interestingly, chlorophyll a peaks during winter months 

corresponded to nutrient attenuation and high chlorophyll a levels. One example of this was 

the spring 2003 dinoflagellate bloom discussed below under the heading phytoplankton 

community composition. This particular example suggests that the N buffering capacity of 

these estuarine creeks is persistent throughout the year. 

The project creeks ability to assimilate N does not mean the nitrogen is removed from 

the system. The N is only assimilated into organic matter that may or may not be re-

mineralized later. This analysis did not address the fate of the N assimilated in estuarine 
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creeks. These critical questions are being addressed through nitrogen fate and transport 

modeling under the Forested and Agricultural Watershed Nitrogen Attenuation project.   

7.3 Phytoplankton Abundance and Community Composition 

Objective: Compare and contrast the abundance, composition, and diversity of the dominant 

phytoplankton taxonomic groups between the creeks.  

Hypothesis: Contrasting nutrient loads from different LULC will influence the abundance, 

composition, and diversity of the dominant phytoplankton community groups. Specifically, 

the reference and forested creeks will contain lower total community abundance and consist 

of groups adapted to consistently low concentrations of DIN (cyanobacteria), whereas the 

agricultural creeks will contain higher total abundance and consist of groups suited to high 

DIN concentrations in chronic and episodic loads (chlorophytes, dinoflagellates). 

Phytoplankton Abundance 

Chlorophyll a concentrations have been used as measures of phytoplankton 

abundance in studies of the ecology and biogeochemistry of estuarine creeks and sub-

estuaries similar to those used in this study (Lapennas 1980; Gallegos et al. 1992; Mallin et 

al. 2004). Phytoplankton abundance investigations in estuarine creeks, sub-estuaries, and 

main stem estuaries have focused on nutrient, hydrologic, and other physical controls of 

growth and biomass (Cloern 2001). Primary productivity investigations have identified 

nitrogen as a phytoplankton growth limitation factor in North Carolina estuaries (Paerl and 

Bowles 1987; Rudek et al. 1991; Pinckney et al. 1997; Richardson et al. 2001; Mallin et al. 

2004; Piehler et al. 2004). For the most part, hydrologic control investigations have focused 

on large scale whole estuary circulation processes (Pietrafesa et al. 1996; Luettich 2000; 

Luettich et al. 2002; Reynold-Fleming and Luettich 2004; Brown et al. 2005). On a smaller 
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scale applicable to this study, Gallegos (1992) addressed hydrologic controls in a sub-estuary 

of the Chesapeake Bay. Gallegos (1992) found that proximate watershed freshwater input 

initiated spatially-constrained,  short-duration phytoplankton blooms when compared to 

broad, long duration blooms initiated by remote inputs. The sampling and bioassay results 

presented here also identified N limitation and observed short duration phytoplankton 

abundance increases in response to proximate watershed runoff. However, N limitation was 

not identified at all times or in all creeks. This result is similar to the findings in Mallin 

(1994), which identified alternating N and P limitation in the lower NRE.    

The monitoring data showed that the Westfork Creek had the highest mean 

chlorophyll a values and the highest mean DIN concentrations. However, the lowest mean 

chlorophyll a concentration and lowest mean DIN concentration did not occur in the same 

creek. Specifically, the lowest mean DIN was found in Big Creek downstream of the 

silviculture forest, while the lowest mean chlorophyll a was found in Browns Creek 

downstream of the unmanaged forest. This finding suggests a growth-limiting factor other 

than nitrogen was present in Browns Creek. Field data show light availability was not a 

limiting factor in Browns Creek. For example, the euphotic depth reached the creek bottom 

in winter and was approximately ½ the water column (0.6 m) in the summer. The first project 

objective included the assumption, based on previous estuarine research, that phytoplankton 

growth in these systems would be N limited (Paerl and Bowles 1987; Mallin et al. 1991; 

Rudek et al. 1991; Piehler et al. 2002). However, results from the bioassays and sampling 

data suggest that P availability was an additional growth-limiting factor in Browns Creek. 

Molar nutrient concentration ratios from the sampling data showed that the mean N:P ratios 

at Browns Creek exceeded 16 in 32.5% of samples from the creek mouth station and 68.5% 
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from the creek headwater station. In comparison, N:P ratios at Big Creek exceeded 16 in 

3.1% of samples from the creek mouth station and 30.0% from the creek headwater station 

(Figure 6.1.11).   The fall and spring bioassay results show that Browns Creek responses in 

chlorophyll a and primary productivity were significantly greater than control in treatments 

containing additions of both N and P. Assuming Browns Creek is representative of the 

“natural” state of a NRE creek, the reference condition of these non-tidal estuarine creeks 

may include seasonal periods of N and P co-limitation.  

The absence of N and P co-limitation in the agricultural creeks may have been the 

result of additional watershed PO4
-3 loading. The PO4

-3 concentrations observed in the 

sampling data (Figure 6.1.1) and the spatial distribution of PO4
-3 concentrations in the study 

creeks (Figure 6.1.5) support this theory.  Specifically, Figure 6.1.5 shows that PO4
-3 

concentrations were highest at the headwater stations in the agricultural creeks. In contrast, 

the mean PO4
-3 concentrations were highest at the creek mouth stations in the forested creeks. 

The combined evidence from the bioassay experiments suggests that the additional PO4
-3 

loading to the estuarine creeks shift these systems away from co- N and P growth limitation 

toward N limitation. An interesting extension to this work would be to see if N2 fixing 

cyanobacterial concentrations increase during periods of relatively high PO4
-3 concentrations.  

One of the most interesting results from the monitoring data was the relationship 

between nutrient runoff, flow, and phytoplankton chlorophyll a concentrations. Figure 7.3.1 

shows a spatial and temporal interpolation of surface chlorophyll a against an interpolation of 

NOx
- concentration for Southwest Creek (data from this project, the FAWNA project, and 

those collected by Dr. Bill Kirby Smith, Duke University Marine Laboratory). The blue 

graph at the bottom of the figure shows the mean daily flow from the flow meter deployed at 
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the headwater monitoring station in Southwest Creek by the FAWNA project. This flow 

meter collects runoff from approximately 47% of the total Southwest Creek watershed. The 

peak flow events (July-August 2003, October 2003, December 2003, July 2004) correspond 

to high DIN and low chlorophyll a concentrations in the headwaters followed days later by 

low DIN and high chlorophyll a concentrations at mid-creek.  The winter chlorophyll a peak 

in January 2004, is described below under phytoplankton community composition. In June 

and July of 2004 the data show the downstream transport of the summer productivity peak 

over the course of 15 days. The passing of Hurricane Alex on August 3, 2004 offered an 

example of episodic loading of water and dissolved nutrients. Approximately 5.5 inches of 

rain fell in the project area during the storm (Franklin 2004). More significantly, storm winds 

pushed estuarine water up the project creek channels and onto the watershed lands. 

Following the passage of the storm, watershed runoff stimulated chlorophyll a concentration 

peaks at the mid-creek stations. The location of these chlorophyll a peaks was similar to the 

locations observed under mean conditions. The relationship between headwater flow, nutrient 

concentrations, and phytoplankton community composition are explored further in the 

following sections. 

Phytoplankton Community Composition  

As mentioned above, Gallegos (1992) found that proximate (directly connected) 

watershed freshwater input initiated short duration phytoplankton blooms. Most 

phytoplankton have a capacity for accelerated growth under favorable chemical (nutrients), 

physical (light, salinity, mixing), and biological (grazers) conditions (Paerl 1988; Mallin 

1994; Boesch 1996; Paerl 1998; Pinckney et al. 1998; Cloern 2001; Buchanan et al. 2005). 

Fresh water inputs accompanied by nutrient enrichment have been shown to stimulate 
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chlorophyte blooms in the NRE (Paerl 2006; Valdes 2006). Similarly, the phytoplankton 

community analysis results showed that chlorophytes were the dominant community 

constituent in all the creeks throughout the monitoring period. The phytoplankton community 

was also punctuated by episodic increases in cyanobacteria, dinoflagellates, cryptomonads, 

and diatoms. The highest concentrations of cyanobacteria were observed in the creek with the 

lowest DIN and second greatest DON:DIN (Browns Creek). This observation supports the 

project hypothesis that low DIN concentrations may results in higher cyanobacteria 

concentrations. The sampling results also support the project hypothesis that the agricultural 

creek would have high concentrations of dinoflagellates. Specifically, the highest mean 

concentrations of dinoflagellates were observed in the agricultural creek (Westfork Creek); 

however, the high dinoflagellate value was due in large part to a February 2003 Heterocapsa 

sp. bloom.  

The controls of the persistent chlorophyte population and the episodic increases in 

cyanobacteria, dinoflagellates, cryptomonads, and diatoms were addressed by evaluating the 

community structure changes against headwater flow, DIN concentrations, and salinity. This 

evaluation shows a complex driver-response relationship.  Chlorophyte percent contribution 

to total chlorophyll a was highest during periods of median headwater flow and lower 

salinity (Figures 7.3.2 through 7.3.5). As mentioned above, this is consistent with existing 

phytoplankton studies (Harris and Trimbee 1986; Paerl 2006; Valdes 2006). Other 

phytoplankton populations surged when controlling conditions were above or below median 

loading of freshwater and nutrients. The controlling conditions were either episodic events 

(days of high watershed runoff) or more persistent events (weeks of low or negative 

headwater flow and estuarine water intrusion). Dinoflagellate, cyanobacteria, cryptomonad, 



 113

and diatom population increases were mostly found following one of three types of controls: 

1) blooms initiated by watershed runoff and loading of nutrient rich freshwater, 2) wind 

driven flow in the upstream direction (negative flow) of estuarine water containing a “seed” 

phytoplankton community, or 3) a rapid change from negative flow to high watershed runoff 

and loading. Specific examples of each of these event drivers are described in the following 

three paragraphs and detailed in Figures 7.3.2 through 7.3.5.  

The first of the phytoplankton community controls identified in the monitoring data 

was the most common in estuarine phytoplankton studies: bloom initiation by upstream 

loading that contemporaneously delivers nutrients and dilutes biomass (Pinckney et al. 1997). 

An example was identified in December 2003. Three tightly clustered runoff events on 

December 11th, 14-15th, and 24th, 2003 were recorded at the headwaters of the project creeks 

instrumented with flow meters (Southwest Creek, Big Creek, and Westfork Creek) (Figure 

4.2). The daily mean flows on these days were greater than the 97th percentile of recorded 

flows, except for the 14-15th event at the Southwest Creek location, which ranked in the 75th 

percentile. At the headwater stations, DIN concentrations were in excess of 100 µg l-1 in the 

agricultural creeks and between 40 µg l-1 and 50 µg l-1 in the forested creeks. The 

phytoplankton community was dominated by chlorophytes immediately preceding the 

December 2003 events. In the week immediately following these peak flows, dinoflagellate 

blooms were observed in Big, Westfork, and Southwest Creeks. These blooms represented 

the highest concentration and highest percentage of total population reached by 

dinoflagellates in each creek during the monitoring period. In Westfork and Big Creeks, the 

dinoflagellate population accounted for more than 90% of the total chlorophyll a 

concentration. These observations are similar to those common in the NRE during the winter 
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months. Specifically, Pinckney (1998) found that dinoflagellates reached maximum annual 

abundance in winter and early spring (January through March). Interestingly, the Browns 

Creek community composition did not change following this loading event, and chlorophyll 

a concentrations remained less than 10 µg l-1. A likely cause was P limitation in Browns 

Creek. Specifically, the molar ratio of N:P in the other three creeks remained below 16, while 

the molar ratio of N:P in Browns Creek ranged from 50 at the headwater station to 32 at the 

creek mouth station.  

The second type of observed phytoplankton community shift driver was upstream 

flow (negative flow) of estuarine waters and phytoplankton community groups. The salinity 

data presented in the Table 6.5.1 showed the creek headwater stations maintained a 

pycnocline with at least a three ppt salinity difference between the surface and the bottom (Δ 

S > 3ppt). This degree of stratification occurred least frequently at the Browns Creek 

headwater station (25% of sampling events) and most frequently at the Big Creek sampling 

station (53% of sampling events) (Table 6.5.1).  Salinity at the headwater stations ranged 

from 0.1 ppt to 17.3ppt. (Table 6.5.1).  Negative flow (flow in an upstream direction) was 

commonly recorded at each gauging station. Negative flow, specifically of estuarine bottom 

water, has also been observed in data collected in the South River sub-estuary by Dr. William 

Kirby-Smith of DUML (personal communication). In the data collected for this study, an 

example of wind driven upstream estuarine water flow and the subsequent change in 

phytoplankton community was observed in June and July of 2004. During this 61 day period, 

16% Big Creek daily mean flow measurement and 37% of Southwest Creek daily mean flow 

measurements were negative, with the gage on Southwest Creek documenting 10 consecutive 

days of mean negative flow 2-June-2004 through 12-June-2004. Creek salinity during this 
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period was the highest recorded. Also during this time, chlorophyll a levels increased in all 

creeks, and the percent contribution of cyanobacteria to total chlorophyll a increased in all 

creeks. In Browns Creek, cyanobacteria contributed up to 80% of total chlorophyll a on the 

18-June-04 and 8-July-2004 sampling dates.  Cyanobacteria blooms have been documented 

in the NRE during periods of similar warm temperatures, low-flow/high salinity, and N 

limitation (Pinckney et al. 1998; Piehler et al. 2002).  

The third observed phytoplankton community control was identified as a combination 

of the first two. Specifically, the third driver was generalized as a rapid change from 

upstream flow to high watershed runoff and loading. Conditions observed surrounding the 

passing of Hurricane Isabel in September 2003 offered a clear example of this type of driver. 

Sampling data collected on September 5, 2003, prior to the passing of the storm, showed high 

salinity concentrations in profile. At the same time, negative flow was measured at the 

Southwest Creek flow meter.  Together, the salinity plots and flow record show a significant 

estuarine influence prior to the storm. As the eye of Hurricane Isabel passed to the west of 

the study area on September 18, 2003, northeast winds from the west side of the hurricane 

pushed more estuarine waters into the project creeks. During the course of the storm, 

approximately 5.5 inches of rain fell in the project area (Beven 2004).  The subsequent runoff 

loading from the storm rainfall delivered the highest headwater station DIN concentrations 

observed throughout the entire monitoring period in Southwest, Big, and Browns Creeks. 

The phytoplankton community responses to this event were a cryptomonad bloom in 

Westfork and Southwest Creeks and a cyanobacterial bloom in Browns Creek. The 

cryptomonads represented over 60% of the total chlorophyll a concentrations in Westfork 

Creek, and cyanobacteria represented over 70% of total chlorophyll a in Browns Creek. Big 
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Creek did not have a distinct change in chlorophyll a or community composition following 

the hurricane; therefore, suggesting the storm flows pushed the phytoplankton community 

out into the South River sub-estuary.  This may have happened in Big Creek and not in the 

other creeks due to the relatively low volume and flushing time in Big Creek. 

The third type of phytoplankton community shift driver was also observed in the 

spring of 2003. Specifically, the salinity surface plots in the Browns Creek and Westfork 

Creek figures show a rapid change in salinity conditions in mid-March.  The salinity change, 

DIN concentrations, and rainfall data collected at OGF suggest a high runoff event. 

Unfortunately, this event occurred prior to flow meter installation in the creek headwaters. 

The community response was a shift from chlorophytes to diatoms in Browns and Westfork 

Creeks.  

Phytoplankton Community Diversity.  

The Sanders and Kuenzler (1979) study of phytoplankton diversity applied the 

Shannon-Weiner index of diversity to North Carolina estuarine phytoplankton communities. 

The results of the Sander and Kuenzler (1979) study showed phytoplankton diversity was 

lower in a estuarine tidal creek receiving nitrogen rich sewage treatment plant effluent when 

compared to phytoplankton assemblages from surrounding estuaries. Similarly, the study 

presented here also used the Shannon-Weiner index to assess phytoplankton diversity in non-

tidal estuarine creeks. The results of these analysis were similar to results from the Sanders 

and Kuenzler (1979) analysis. Specifically, the results showed that over the long term (18 

months), the phytoplankton assemblage was most diverse in Browns Creek, downstream of 

the reference watershed, and least diverse in Southwest Creek, downstream of an agricultural 



 117

watershed (Figure 6.4.1). This finding supports the hypothesis that high chronic loading of 

DIN would reduce diversity in the creek phytoplankton community. 

The results of the Shannon-Weiner index short term phytoplankton diversity 

assessments (described in the Materials and Methods chapter) were conflicting and less 

straightforward when compared to the long-term assessments. Specifically, the 

phytoplankton assemblages observed on a single day in Browns Creek and Big Creek (fortest 

watersheds) were on average less diverse than the assemblage observed in Westfork Creek, 

which received agricultural runoff (Figure 6.4.2). However, the phytoplankton assemblages 

observed on a single day in Browns Creek and Big Creek were on average more diverse than 

the assemblage in Southwest Creek, which also received agricultural runoff. 

These diversity assessments show that over an annual cycle, the phytoplankton 

community was most diverse downstream of the least disturbed watershed.  The diversity 

assessments of individual days of data do not show as clear of a conclusion. A possible 

explanation could be higher total chlorophyll a in West Fork creek. Specifically, with higher 

biomass, minority community constituents would be easier to detect and quantify via HPLC 

diagnostic pigment analysis. Also, there is the possibility that short-term diversity assessment 

of phytoplankton assemblages in estuarine creeks are not an appropriate application of the 

Shannon-Weiner index. Specifically, diversity may be better measured as longer term 

resilience to perturbation as opposed to a short term co-existence of many different species. 

There are broad ecological impacts that can arise from phytoplankton community 

shifts and lower diversity. Impaired trophic transfer is one example. The current 

eutrophication paradigm suggests excess primary production, or a shift to a nuisance algal 

species, may inhibit trophic energy transfer (Cloern 2001). In the NPES, zooplankton have 
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been shown to graze as much as 45% of daily phytoplankton productivity with annual peaks 

that coincide with the arrival of juvenile fishes in estuarine creeks (Deegan and Day 1985; 

Epperly and Ross 1986; Mallin and Paerl 1994). Studies have also shown selective feeding of 

zooplankton and other primary consumers on specific phytoplankton is based on size, 

nutritional value, and toxicity (Mallin and Paerl 1994; Haywood and Burns 2003; Leonard 

2003). This evidence supports the theory that phytoplankton community composition can 

influence the transfer of energy from primary producers to secondary consumers in estuarine 

creeks. 

.
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Figure 7.2.1  Nutrient attenuation down southwest creek axis July 2003 – November 2004 
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Figure 7.2.2  Estimated seasonal DIN load capacities.  
Capacities represent maximum DIN load each creek could assimilate given phytoplankton abundance observed 
during seasonal bioassays. 
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Table 7.2.3  Big Creek headwater DIN load at total creek flushing time intervals 
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Southwest Creek Agricultural Watershed
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Table 7.2.4  Southwest Creek headwater DIN load at total creek flushing time intervals 
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Figure 7.3.1  Spatiotemporal plot of flow, NOx, and chlorophyll a for Southwest Creek 
Search window 15 days and 2.7 km. White area indicates insufficient data. Chlorophyll a N = 251 
Data from UNC-IMS and DUML Projects (This Study, FAWNA , Dr. Bill Kirby-Smith)
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Figure 7.3.2  Big Creek surface phytoplankton community, salinity, DIN and headwater flow
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Figure 7.3.3  Southwest Creek surface phytoplankton community, salinity, DIN and headwater flow
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Figure 7.3.4  Browns Creek surface phytoplankton community, salinity, DIN and headwater flow
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Figure 7.3.5  Westfork Creek surface phytoplankton community, salinity, DIN and headwater flow 



 

CHAPTER 8 

SYNTHESIS OF FINDINGS

Results of this study demonstrate that mechanistically, human alterations of these 

watersheds affect creek nutrient delivery and ecological response. Specifically, the watershed 

with the greatest degree of disturbance (agricultural land use) had the highest N loading, 

highest in-stream nutrient concentrations, lowest phytoplankton diversity, and decreased 

capacity to buffer the mainstem estuary from episodic nutrient loading. This work is among 

the few studies in NPES non-tidal estuarine creeks and confirmed the findings of studies in 

other systems that have shown as watershed modifications increase, downstream estuarine 

water quality decreases (Corbett et al. 1997; Wahl et al. 1997; Holland et al. 2004; Mallin et 

al. 2004; Valiela et al. 2004). This study also begins to fill a knowledge gap that has 

previously hindered linking watershed models to estuarine eutrophication models. 

Specifically, the study combined in-situ experiments on the interactions of nutrient supply 

and hydrodynamics with some of the first monitoring data on phytoplankton diversity and 

abundance in NPES non-tidal creeks. These efforts assessed the impacts of different land 

uses on eutrophication potential; this included not only carbon fixed and nitrogen 

assimilated, but also what type of organism fixed the carbon and assimilated the nitrogen (i.e. 

phytoplankton).  This project considered a range of nitrogen forms. The data show that land 

use affected N load forms, but the phytoplankton responses to the different N forms were 

mostly the same. This information gives researchers a better chance to predict the fate of the 

terriginous carbon and nitrogen in estuarine waters (e.g. grazed, remineralized, transported 
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downstream). However, the findings must be interpreted and conveyed to decision makers in 

a meaningful and understandable form to make a real contribution to ecosystem 

management. The following sections below detail the conclusions from each project 

objective and close with how the findings can be applied directly applied to ecosystem 

research and management.  

8.1 Land Use Influence on Nutrient Concentrations 

Objective: Quantify the concentrations and forms of biologically available nitrogen in creeks 

downstream of watersheds draining four distinct land uses.  

Conclusions: The results of the creek sampling data analysis show that runoff originating 

from the agricultural areas was higher in total nitrogen and DIN when compared to the 

managed and unmanaged forest creeks. NOx
- was the primary form of DIN downstream of 

the agricultural watersheds. In contrast, NH4
+ was the primary form of DIN downstream of 

the forested watersheds. These findings are similar to those reached in studies of watershed 

land use and nutrient loading to creeks and sub-estuaries in other systems, including Kirby-

Smith and Barber (1979), Wahl et al. (1997), and Mallin et al (2004).  In addition, the 

findings corroborate the paradigm that land use modification can change watershed nutrient 

export.  Furthermore, they emphasize the need for coastal communities to focus on nutrient 

(and in this case, specifically N)  management in land use planning. 

8.2 Creek Nutrient Buffering Capacity 

Objective: Determine if these non-tidal estuarine creeks serve as effective nutrient buffers to 

the main-stem estuary.  

Conclusions: The forested creeks in the study have the capacity to assimilate DIN delivered 

up to the 95th percentile of flow and loads year round. The agricultural creeks in the study 
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can assimilate DIN delivered up to the 80th percentile of flow and DIN loads in winter and up 

to the 90th percentile of flow and DIN loads in spring, summer, and fall. 

The creek capacity to assimilate DIN does not mean that N is permanently removed 

from the system. The DIN assimilation capacity does mean there is limited potential for high 

DIN concentrations to reach the main stem estuary though the creeks.  However, the 

possibility exists that N assimilated within the project creeks may be re-mineralized at a later 

time.  Ensign (2004) described nutrient spiraling in the ditches and channels upstream of 

Southwest Creek. Specifically, phytoplankton and periphyton assimilation and senescence in 

shallow waters rapidly transports N rich detritus to denitrifiers in the benthos. Extending this 

concept downstream to the headwater estuarine creeks suggests that creek N assimilation 

may provide nutrient spiraling opportunities for denitrification. This potential is currently 

being addressed by the Forested and Agricultural Watershed Nitrogen Attenuation project via 

measurements of denitrification in the wetland and benthic sediments of two project creeks. 

At completion, the data from both studies will be used to further develop the fate of N 

contained in allochthonous and autochthonous organic matter found in the project creeks.  

8.3 Phytoplankton Abundance and Community Composition 

Objective: Compare and contrast the abundance, composition, and diversity of the dominant 

phytoplankton taxonomic groups between the creeks.  

Conclusions: Increases in creek chlorophyll a concentrations were observed following 

watershed nutrient loading events in all creeks. However, high chlorophyll a observed during 

periods of low flow and low dissolved nutrients suggest in-stream nutrient recycling is also 

an important control of phytoplankton abundance. As hypothesized, the highest chlorophyll a 

concentrations were observed downstream of the agricultural watersheds. Periods of P 
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limitation identified in the sampling and bioassay data show that these systems may not be 

strictly N limited and may also explain the lower chlorophyll a concentrations downstream of 

the unmanaged forest watershed.  

Within the chlorophyll a “green box”, chlorophytes made up the vast majority of the 

phytoplankton community in the study creeks. This finding is not surprising, given the strong 

bloom potential chlorophytes have shown in the main-stem of the NRE following freshwater 

loading and nutrient enrichment (Paerl et al. 2006; Valdes 2006). Periods of chlorophyte 

dominance in the creeks were punctuated by episodic dominance of cyanobacteria, 

dinoflagellates, cryptomonads, and diatoms. The controls of these events were presented with 

examples in the Discussion chapter. The highest level of phytoplankton community diversity 

over the monitoring period was observed in the creek downstream of the least disturbed 

watershed (Browns Creek, an unmanaged forest watershed). This suggests that watershed 

modifications, which increase fresh water and nutrient loading, may decrease creek 

phytoplankton diversity and possibly community resilience (Groffman et al. 2006). The 

highest concentrations of cyanobacteria were observed in the creek with the lowest DIN and 

second greatest DON:DIN (Browns Creek, unmanaged forest watershed). An interesting 

extension to this work would be to determine if concentrations of N2 fixing cyanobacteria 

increase during periods of low DIN concentrations and relatively high PO4
-3 concentrations. 

8.4 Potential Application of Findings in Estuarine Research and Management 

The project results show a need for watershed management designed to mitigate 

increased fresh water and nutrient loading from watershed modification upstream of 

estuarine creeks. This need is urgent, given the continued rise in urban and suburban 

development along U.S. coastal waters (Salvesen 2005).  The acceleration of development is 
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expected to continue locally near the study site, where Carteret County, NC plans to develop 

an additional 85,000 acres by the year 2025 to accommodate increases in permanent and 

seasonal populations (Carteret County 2005). This increased development will be regulated 

in part by the Neuse River Nutrient Sensitive Waters Management Strategy (Neuse Rules), 

the North Carolina Coastal Area Management Act (CAMA), and local land use laws. These 

regulations consider freshwater and nutrient loading components; however, they are lacking 

in several key areas discussed below.  

The Neuse Rules were established in 1997 to reduce the total annual nitrogen load to 

the NRE by 30% of year 1995 levels. These rules included components that addressed 

nitrogen loading from agriculture, stormwater dischargers, waste water dischargers, and 

persons applying fertilizer to over 50 acres of land (NCAC 1997). The agricultural portion of 

the rules applied to the project watersheds, where fertilizer management and controlled 

drainage measures have been installed. The Neuse Rules also mandated 50 foot riparian 

buffers to all perennial and intermittent streams, lakes, ponds, and estuaries in the Neuse 

River Basin; however, this rule does not apply to man-made ditches or stormwater channels 

(NCAC 1997). Also lacking in the Neuse Rules is a stormwater planning component, which 

does not apply to the areas surrounding the estuary downstream of New Bern, NC (Figure 

4.1). The second watershed management statute in the NPES watersheds, CAMA, currently 

requires coastal counties and municipalities to draft land use management plans.  However, 

these plans have limited connections to water quality and watershed runoff loading. 

Specifically, CAMA only requires that development projects within 575 feet of estuarine 

waters with greater than 30% impervious surface construct stormwater mitigation systems 

capable of retaining 1.5 inches of rain fall (NCDENR 2003). In creek watersheds selected for 
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this study, a 575 foot buffer covers only eight percent of the watershed areas. Furthermore, 

Carteret County does not currently operate a stormwater system or regulate stormwater 

dischargers beyond initial property development permit application review and approval 

(Carteret County 2005). This illustrates that existing regulations do not adequately address 

fresh water and nutrient loading which were shown as potential threats to creek buffering 

capacity, water quality, and ecological diversity in this study.  

Threshold development is the first quantitative step that could be taken to improve the 

management and assessment options for the NPES nursery creeks. A threshold is a point 

where there is an abrupt change in an ecological condition caused by alterations in an 

environmental control or driver (Holling 1973; Groffman et al. 2006).  The threshold concept 

has been applied to nutrient loading in other estuary management programs focused on 

habitat quality (Howes 2004).  In the NPES estuarine creeks, managers must identify a 

threshold in freshwater and nutrient loading to avoid eutrophication and the accompanying 

decreased ecological quality at multiple trophic levels (Nixon 1995; Holland et al. 1997; 

Paerl et al. 1998; Cloern 2001; Pitois et al. 2001; Gray et al. 2002; Campbell and Goodman 

2004; McNatt and Rice 2004).    

Results from this study will contribute critical information for threshold development 

in two areas. First, the creek flushing time and recurrence intervals documented in this study 

provide the critical quantitative values for low (forested watershed) and high (agricultural 

watershed) degrees of watershed modification. Second, the observed phytoplankton 

abundance and diversity values and experimentally-derived primary productivity rates can be 

used as calibration parameters in an empirical modeling approach that relates observed creek 

buffering capacity, water quality, and ecological diversity to upstream watershed 
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characteristics. These data will most likely need to be supplemented with nutrient loading 

and creek flushing times data from urban and suburban watersheds on the NPES shoreline. 

Possessing quantitative information on land use, nutrient loading, and creek flushing times at 

different degrees of watershed development will allow managers and environmental 

engineers to identify the specific degree of development where there is an undesirable change 

in creek buffering capacity, water quality, or ecological diversity (Holling 1973; Howes 

2004; Groffman et al. 2006). The path to threshold development outlined above will 

constitute a much-needed improvement to current watershed land use management in the 

areas surrounding the NPES. These improvements illustrate how the study findings on the 

deleterious effects of increased fresh water and nutrient loading can be used to effectively 

and realistically manage water quality in these nursery creeks with the overall goal being the 

preservation of acceptable water quality in the NPES mainstem. 
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