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ABSTRACT 

 
Peter Mahan Douglas: The dynamic role of Hsp40 chaperones in  

protein aggregation and proteotoxicity 
(Under the direction of Douglas Cyr) 

 
Protein homeostasis or proteostasis involves an intricate balance between the 

synthesis, folding, localization and degradation of each protein in the cell.  Perturbations 

by age or chronic stress can compromise any one component of this integrated network 

and initiate a cascade of toxic misfolding events. Protein conformational disorders such 

as Alzheimer’s disease, transmissible spongiform encephalopathies, and the 

polyglutamine-expansion diseases are characterized by the misfolding and subsequent 

conversion of disease-related proteins into β-sheet-rich conformers capable of assembling 

into highly ordered aggregates termed amyloid. For over a century, amyloid fibrils were 

believed to represent the toxic agent behind these diseases due to their overwhelming 

presence in postmortem brains of diseased individuals. However, recent evidence has 

begun to challenge the notion that amyloid formation is the toxic mechanism.  Two 

observations described herein suggest that amyloid formation provides the cell a 

mechanism to buffer the formation of toxic protein species. First, my studies demonstrate 

that amyloid formation by the yeast prion protein, Rnq1, protects cells against 

proteotoxicity. Interestingly, the Hsp40 chaperone, Sis1, mediates the efficient 

conversion of nascent Rnq1 into amyloid-like, [RNQ+] prion assemblies.  Inefficiencies 

in Sis1-mediated [RNQ+] assembly result in the toxic accumulation of soluble, low 
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molecular weight oligomers. Second, Sis1 activity relocates [RNQ+] prion assembly 

pathways from the cytosol to the nucleus, in which [RNQ+] assembly was more efficient 

and less toxic. Sis1 modulates the conformation of [RNQ+] prions which, in turn, act as 

environmental factors to promote toxicity of a huntingtin’s protein exon-1 fragment with 

an expanded polyglutamine tract (Htt-103Q). Complex formation between [RNQ+] prions 

and Htt-103Q enabled nuclear [RNQ+] aggregates to attract Htt-103Q from the cytosol to 

the nucleus, which reduced the efficiency of nuclear Htt-103Q aggregation and 

exacerbated Htt-103Q toxicity. Thus, amyloid formation appears to represent a protective 

mechanism to ameliorate the toxic accumulation of small, soluble intermediates in the 

aggregation pathway. My studies also demonstrate that molecular chaperones directly 

and indirectly influence the cellular location of amyloidogenic proteins and therefore 

have a profoundly impact on proteotoxicity because the cytosol and nucleus have 

different capacities to package disease proteins into benign assemblies.  
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Molecular Chaperones antagonize proteotoxicity by differentially modulating 

protein aggregation pathways 
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1.1 Abstract 

The self-association of misfolded or damaged proteins into ordered amyloid-like 

aggregates characterizes numerous neurodegenerative disorders. Insoluble amyloid 

plaques are diagnostic of many disease states. Yet soluble, oligomeric intermediates in 

the aggregation pathway appear to represent the toxic culprit. Molecular chaperones 

regulate the fate of misfolded proteins and thereby influence their aggregation state. 

Chaperones conventionally antagonize aggregation of misfolded, disease proteins and 

assist in refolding or degradation pathways. Recent work suggests that chaperones may 

also suppress neurotoxicity by converting toxic, soluble oligomers into benign 

aggregates. Chaperones can therefore suppress or promote aggregation of disease 

proteins to ameliorate the proteotoxic accumulation of soluble, assembly intermediates. 
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1.2 Introduction 

Many neurodegenerative disorders are characterized by the misfolding and 

subsequent aggregation of toxic proteins. Alzheimer’s, Parkinson’s, and the glutamine-

encoding expansion diseases are examples of conformational disorders which show late 

onset symptoms of progressive neuronal dysfunction and eventual neuronal loss within 

certain brain regions (Carrell and Lomas, 1997). The disease-causing protein can adopt 

aberrant conformations due to age or stress which enables its aggregation and ultimate 

accumulation in amyloid fibrils (Figure 1.1) (Balch et al., 2008; Morimoto, 2008). 

Amyloids share a β-sheet-rich, fibrillar protein conformation in which the β-sheets stack 

parallel or anti-parallel to one another and run perpendicular to the fiber axis (Caughey 

and Lansbury, 2003; Nelson et al., 2005). Numerous pathogenic substrates as well as 

yeast prion proteins can exist in alternate, amyloid-like states that are characterized by a 

defined set of biochemical parameters including the ability to bind indicator dyes such as 

Thioflavin or Congo Red as well as resistance to both protease digestion and detergent 

solubilization (Chiti and Dobson, 2006). Though the appearance of amyloid is diagnostic 

of the disease state, the extent of amyloid accumulation often does not correlate with the 

disease symptoms (Caughey and Lansbury, 2003; Haass and Selkoe, 2007).  In fact, a 

wide variety of organisms utilize functional forms of amyloid-like structures to perform 

important cellular processes such as phenotypic adaptation in yeast (Shorter and 

Lindquist, 2005; True et al., 2004; Uptain and Lindquist, 2002) and melanin synthesis in 

humans (Fowler et al., 2006). These and other lines of evidence suggest that amyloid 

formation per se is not toxic but may represent a benign by-product or even a protective 

mechanism (Arrasate et al., 2004; Cheng et al., 2007; Douglas et al., 2008).   
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Soluble intermediates in the amyloid assembly pathway appear to represent the 

toxic species (Haass and Selkoe, 2007; Kayed et al., 2003). Relatively little is known 

about the exact nature of the assembly intermediates due to their dynamic structure 

(Figure 1.1). Antibodies generated against the Aβ42-peptide (proteolytically cleaved 

peptide from the Amyloid Precursor Protein, APP, and a causative agent for Alzheimers 

disease) could recognize assembly intermediates formed by numerous amyloidogenic 

substrates and buffer their cytotoxicity (Kayed et al., 2003). Subsequent work 

demonstrated that the same conformational-specific antibodies could selectively inhibit 

spontaneous amyloid formation of yeast prions in vitro (Shorter and Lindquist, 2004; 

Vitrenko et al., 2007). Thus, amyloid assembly intermediates, which include soluble 

oligomers, do exhibit common conformation-dependent structures that are unique to the 

intermediates regardless of the amino acid sequence.     

The accumulation of oligomeric amyloid assembly intermediates closely correlates 

with cell death (Haass and Selkoe, 2007), and distinct clearance pathways maintain the 

proteotoxic oligomers at low levels (Cohen et al., 2006). This can be accomplished by 

either solubilizing the aggregation-prone substrate or driving its assembly into higher-

ordered amyloid-like aggregates. The ability to promote aggregation does not necessarily 

represent the cell’s primary means of clearance but may provide backup pathways when 

solublization machinery has become compromised by age or environmental insult (Cohen 

et al., 2006). The nature and identity of the unfavorable interactions between the soluble 

oligomers and other cellular components is just being defined and may result in 

transcriptional deregulation (Burke et al., 1996; Dunah et al., 2002; Steffan et al., 2000), 

proteasomal inactivation (Bence et al., 2001), aberrant signaling (Small et al., 2001), or 
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membrane damage (Arispe et al., 1993; Kremer et al., 2001; Volles et al., 2001). It should 

be noted that disease proteins associated with conformational disorders perform a wide 

variety of cellular functions and scenarios may exist where protein species other than 

amyloid assembly intermediates represent the predominant toxic species. 

All cells contain quality control machinery termed molecular chaperones to 

maintain the appropriate folding state of proteins. Many of these molecular chaperones 

have been termed Heat-Shock Proteins (HSP) due to their increased expression upon heat 

treatment of cell and have been divided into six major families including HSP100, 

HSP90, HSP70, HSP60, HSP40, and the small HSPs (Muchowski and Wacker, 2005). 

Chaperones recognize misfolded protein conformers and ultimately coordinate the 

appropriate folding or degradation pathways. As the first line of defense against 

conformational disorders, chaperones maintain the solubility of misfolded, disease-

related substrates by directly binding to non-native conformers or disassembling 

aggregates formed by the disease protein (Muchowski and Wacker, 2005). Alternatively, 

recent evidence suggests that chaperones can also promote aggregation and thereby 

prevent the toxic accumulation of amyloid assembly intermediates (Behrends et al., 2006; 

Douglas et al., 2008). Herein we discuss how molecular chaperones manage proteotoxic 

misfolding events of numerous amyloidogenic substrates.  

 

1.3 Molecular chaperones antagonize aggregation of disease proteins 

Chaperones act by multiple means to maintain the solubility of disease-causing 

proteins. Chaperone-mediated solubilization can occur in the initial stages of the amyloid 

assembly pathway by preventing the self-association of misfolded, disease proteins into 

toxic, oligomeric intermediates. Alternatively, chaperones also act later in the assembly 
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pathway to dismantle amyloid-like aggregates and resolubilize the disease protein. Thus 

chaperone intervention can either maintain or generate disease protein monomers which 

can be properly refolded or marked for degradation by the ubiquitin-proteasome system 

or autophagy pathways. This reduces the flux of misfolded, disease proteins through 

different stages of the amyloid assembly pathway and decreases the cellular 

concentration of proteotoxic assembly intermediates. 

 

1.3.1 Chaperones prevent disease proteins from assembling into amyloid-like 
aggregations 

Chaperone machinery can act early in the amyloid assembly pathway by 

recognizing misfolded, disease proteins and subsequently preventing their aggregation. 

The Hsp70 chaperone system has been well-defined in its role of preventing the assembly 

of different, disease-causing proteins into amyloid-like aggregates (Bonini, 2002; 

Muchowski and Wacker, 2005). The Hsp70 family of chaperone proteins is abundantly 

expressed throughout the cell and contains 11 known isoforms in humans (Tavaria et al., 

1996). Though not as abundant as its Hsp70 partner, the Hsp40 co-chaperone (also 

referred to as J-proteins due to their highly conserved J-domain) represent a more diverse 

family of proteins which contain 41 isoforms in humans and are present in most every 

intracellular compartment (Qiu et al., 2006). The structural and functional diversity of 

Hsp40 co-chaperones provide specific substrate recognition properties for the Hsp70 

work horse (Fan et al., 2003).   

The misfolding of disease proteins can arise from numerous intrinsic or 

environmental stresses (Balch et al., 2008), and Hsp70 cooperates with different Hsp40 

co-chaperones to ultimately recognize and refold the non-native protein conformers 
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(Figure 1.2). Hsp40 can bind hydrophobic peptides which are normally buried in the core 

of natively folded proteins but become solvent-exposed in misfolded states (Rudiger et 

al., 2001). The polypeptide binding domain of Hsp40 binds non-native proteins and 

delivers them to Hsp70 (Cheetham and Caplan, 1998; Cyr and Douglas, 1994). The 

ability of Hsp70 to bind the misfolded substrate is tightly regulated through an ATP 

hydrolytic cycle. Once in a complex with Hsp70, the J-domain of Hsp40 stimulates ATP 

hydrolysis on Hsp70 which promotes a conformational change in the Hsp70 substrate-

binding domain and increases its binding affinity for the misfolded substrate (Cyr et al., 

1992; Langer et al., 1992; Liberek et al., 1991). Hsp40 is liberated from the 

Hsp70:substrate complex following ATP hydrolysis yet it is unclear how co-chaperone 

release occurs. The substrate in complex with Hsp70 can be properly refolded, marked 

for degradation via Hsp70 coordination with degradation machinery, or released to re-

enter this binding cycle. The substrate remains tightly bound to Hsp70 until ADP is 

exchanged for ATP via a diverse class of nucleotide exchange factors (NEF) (Bukau et 

al., 2006). It is in this manner that cooperation between Hsp40 and Hsp70 prevents the 

proteotoxic accumulation of misfolded, aggregation-prone proteins.  

The involvement of nucleotide exchange factors (NEF) adds yet another level of 

regulation to the Hsp70 system. This diverse family of exchange factors is critical for the 

functional cycle of Hsp70 because they replace ADP for ATP on Hsp70 and trigger 

substrate release (Bukau et al., 2006). Well characterized NEFs include the bacterial 

GrpE, which facilitates nucleotide dissociation from the Hsp70 (DnaK) (Liberek et al., 

1991; Zylicz et al., 1987), and the BAG family of eukaryotic proteins which are NEFs for 

different cytosolic Hsp70s (Bimston et al., 1998). A third family of proteins which  
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possess nucleotide exchange activity including the cytosolic Fes1 and ER luminal Sls1 in 

Saccharomyces cerevisiae (Kabani et al., 2002; Kabani et al., 2000), and the human 

ortholog HspBP1 (Hsp70 binding protein 1) (Raynes and Guerriero, 1998). Interestingly, 

other molecular chaperones are capable of nucleotide exchange on Hsp70. The yeast 

Hsp110, Sse1, regulates nucleotide exchange on different cytosolic Hsp70s (Raviol et al., 

2006), while the Hsp170, Lhs1, stimulates nucleotide exchange of the ER Hsp70, Kar2 

(Steel et al., 2004). Sse1 is a particularly interesting exchange factor because its activity 

in yeast is required for the propagation of the [URE3] prion (Kryndushkin and Wickner, 

2007), as well as the formation and propagation of the [PSI+] prion (Sadlish et al., 2008). 

The recent findings which implicate Sse1 in the formation and propagation of amyloid-

like prions may establish a better understanding of how nucleotide exchange on Hsp70 

affects amyloid dynamics. Thus, the cell can utilize this diverse family of NEFs to 

regulate the different activities of Hsp70 in distinct subcellular compartments. 

The ability of Hsp70 and Hsp40 to suppress the assembly of disease proteins into 

amyloid-like aggregates has been well documented in numerous model systems 

(Muchowski and Wacker, 2005), yet only a few examples will be discussed. Glutamine-

encoding repeats within a set of unrelated proteins are the cause of at least nine different 

late onset neurodegenerative disorders (Ross, 2002; Zoghbi and Orr, 2000). Elevating 

intracellular pools of Hsp70 as well as Hsp40 reduce expanded-polyQ aggregate 

formation and suppressed toxicity in cultured cells (Chai et al., 1999; Jana et al., 2000; 

Kobayashi and Sobue, 2001). Due to the high conservation of chaperone machinery 

between eukaryotic cells, Saccharomyces cerevisiae has emerged as a model system to 

study protein aggregation and toxicity. Overexpression of the yeast Hsp70, Ssa1, or the 



11 
 

Hsp40, Ydj1, inhibit the formation of large, detergent-insoluble aggregates by an 

expanded-polyQ protein containing the N-terminal sequence of the huntingtin protein, the 

causative gene for Huntington’s disease (Muchowski et al., 2000). Ydj1 also reduced the 

aggregation of the Q/N-rich prion domain of the yeast prion, Rnq1, which correlated with 

its ability to suppress prion toxicity (Summers et al., 2008). Elevated expression of 

another yeast Hsp40, Sis1, reduced the aggregation of expanded-polyQ Htt protein and 

suppressed toxicity in [psi-] yeast, which are void of the amyloid-like [PSI+] prion 

(Gokhale et al., 2005). Hsp70 and Hsp40 have also been shown to suppress the 

aggregation and toxicity of numerous other disease-causing proteins including mutant 

superoxide dismutase 1 (SOD) (Takeuchi et al., 2002), a causative gene for familial 

amyotrophic lateral sclerosis, and α–synuclein (Klucken et al., 2004), a causative gene 

for Parkinson disease. Thus, the ability of Hsp70 and Hsp40 to prevent assembly of 

amyloid-like aggregates and suppress cytotoxicity extends to numerous disease-causing 

proteins in a variety of model organisms. 

  

1.3.2 Molecular chaperones solubilize protein aggregates 

Chaperones can act later in the aggregation pathway to disassemble amyloid-like 

particles. Although it is unclear whether mammalian cells possess this disaggregation 

activity, fungi, plants and bacteria express the AAA ATPase protein remodeling factor, 

Hsp104 (ClpB in E. coli) (Shorter, 2008). The hexameric Hsp104 works synergistically 

with the Hsp70 chaperone system to not only resolubilize misfolded substrates, but to 

also restore their proper function (Glover and Lindquist, 1998). Interestingly, normal 

Hsp104 function is required in a yeast model to maintain different prion proteins in their 
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amyloid-like prion conformation (Chernoff et al., 1995; Derkatch et al., 1997; Moriyama 

et al., 2000; Sondheimer and Lindquist, 2000) by generating small prion seeds via 

fragmentation of larger prion aggregates which enables new rounds of prion propagation 

(Wegrzyn et al., 2001). Further in vitro studies demonstrated that Hsp104 couples ATP 

hydrolysis with the rapid disassembly of amyloid-like fibers and oligomeric intermediates 

formed by the yeast prions [PSI+] and [URE3] (Shorter and Lindquist, 2004; Shorter and 

Lindquist, 2006). Thus, it is not surprising that Hsp104 overexpression was able to 

efficiently solubilize amyloid-like aggregates formed by the expanded-polyQ huntingtin 

(Htt) fragment and reduce cell death in a yeast model (Cashikar et al., 2005). Yet removal 

of Hsp104 via gene deletion also subdued the toxicity caused by overexpression of the 

expanded-polyQ Htt fragment (Meriin et al., 2002). Thus, Hsp104 may indirectly affect 

polyQ aggregation and toxicity in yeast by acting through the yeast prions, [PSI+] and/or 

[RNQ+] [also termed [PIN+](Derkatch et al., 1997)], which can serve as Q/N-rich 

templates to alter the conformation of the expanded-polyQ protein into an aggregation-

prone, toxic form (Derkatch et al., 2004; Gokhale et al., 2005; Meriin et al., 2002).  

To clarify the role of Hsp104 in polyQ aggregation and toxicity, the yeast Hsp104 

chaperone was introduced into a number of higher eukaryotes and retained its ability to 

remodel amyloid-like assemblies. In a C. elegans model, expression of Hsp104 reduced 

the aggregation of expanded-polyQ proteins and abrogated developmental delays (Satyal 

et al., 2000). Similarly in a rat model, the presence of Hsp104 suppressed expanded-

polyQ toxicity in a manner which correlated with altered distribution and number of the 

polyQ assemblies (Perrin et al., 2007). The small heat shock proteins, Hsp26 in yeast and 

Hsp27 in rats, were identified as potentiators for Hsp104-mediated suppression of polyQ 
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aggregation and toxicity (Cashikar et al., 2005; Perrin et al., 2007). Utilizing a Parkinson 

disease model in rats, Hsp104 was also shown to antagonize the formation oligomeric 

intermediates and amyloid fibers by α-synuclein which reduced dopaminergic 

degeneration (Lo Bianco et al., 2008). Thus, molecular chaperones can act at multiple 

stages in the aggregation pathway to both coordinate the disassembly of amyloid-like 

aggregates and prevent the self-association of non-native protein monomers. 

 

1.3.3 Molecular chaperones participate in the degradation of proteotoxic substrates 

by the ubiquitin-proteasome system or chaperone-mediated autophagy 

Under certain conditions, chaperone machinery cannot repair the misfolded protein 

and must coordinate its degradation by either the ubiquitin-proteasome pathway or 

lysosomal-mediated autophagy. CHIP (carboxy terminus of Hsc70-interacting protein) is 

a versatile protein that acts as a co-chaperone to Hsc70 (Heat shock cognate 70) or 

Hsp70, possesses intrinsic chaperone activity in its own right and functions as an E3 

ligase to mediate the transfer of polyubiquitin chains to misfolded substrates (Cyr et al., 

2002; Jiang et al., 2001; Rosser et al., 2007). The Hsp70 interacting protein, Bag2 (Bcl2-

associated athanogene 2), can inhibit the ubiquitin ligase activity of CHIP and promote 

substrate refolding by Hsp70 (Arndt et al., 2005; Dai et al., 2005). Overexpression of 

CHIP increased the ubiquitination and degradation of expanded-polyQ huntingtin and 

ataxin-3, the causative gene for Spinocerebellar ataxia type 3 (SCA3) (Jana et al., 2005).  

This subsequently reduced polyQ aggregation levels and suppressed cell death. The 

suppressive activity by CHIP overexpression became more prominent when Hsc70 levels 

were also elevated. Similar results were obtained which demonstrated CHIP’s ability to 
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reduce aggregation of expanded-polyQ substrates and suppress cell death in transfected 

cell lines, primary neurons and zebrafish models (Miller et al., 2005). Therefore, CHIP 

along with other cofactors can partition Hsp70 substrates between refolding and 

degradation pathways.   

The autophagy pathway represents a mechanism independent of the ubiquitin-

proteosome system which participates in the intracellular bulk degradation of organelles 

as well as misfolded and aggregated proteins. Autophagy entails the 

packaging/engulfment of cytoplasmic contents into autophagosome vesicles which fuse 

with lysosomes, wherein the contents are degraded (Levine and Klionsky, 2004). Loss of 

autophagy in mice via disruption of ATG5 manifested features characteristic of 

neurodegeneration even in the absence of any disease-associated mutant proteins (Hara et 

al., 2006). Molecular chaperones have been shown to participate in the recognition and 

subsequent packaging of misfolded proteins into autophagasomes which has become 

termed chaperone-mediated autophagy (CMA) (Terlecky et al., 1991). CMA involves the 

selective targeting of proteins containing a KFERQ peptide motif to lysosomes (Olson et 

al., 1991). The rate-limiting step in CMA involves chaperone/cargo binding to the 

lysosomal receptor, Lamp2a (Cuervo and Dice, 1996). In this manner, chaperones can 

recognize misfolded or aggregated proteins and target them via the KFERQ motif to 

lysosomes for degradation. The causative agent in Parkinson’s disease, α-synuclein, 

possesses a pentapeptide sequence which is consistent with the CMA recognition motif 

and targets the disease protein to lysosomes (Cuervo et al., 2004). The pathogenic A53T 

and A30P mutations in α-synuclein were capable of binding the lysosomal receptors but 

inhibited both their own degradation as well as other substrates. Additionally, CMA has 
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also been linked to polyQ-expanded huntingtin toxicity through the small heat shock 

protein, HspB8, and Bag3. In cultured cells, elevated expression of HspB8 prevented the 

intracellular accumulation of polyQ-expanded huntingtin protein (Carra et al., 2005).  

Subsequent work demonstrated that HspB8 works in complex with Bag3 to stimulate the 

degradation of polyQ-expanded huntingtin protein by macroautophagy (Carra et al., 

2008). Thus, chaperones can couple their activity with multiple degradation pathways to 

remove toxic, disease proteins. 

 

1.4 Chaperones promote aggregation of toxic proteins 

 Chaperones are also capable of packaging disease proteins into tight, amyloid-like 

aggregates and thereby reducing the accumulation of soluble, oligomeric intermediates. 

Elevated expression of the human Hsp40, Hdj2, increased the aggregation of expanded-

polyQ huntingtin protein in COS-7 cells (Wyttenbach et al., 2000). Subsequent in vitro 

studies demonstrated that purified forms of Hsp70 and Hsp40, Hdj1, were able to 

attenuate polyQ oligomer assembly and drive the formation of amyloid-like fibrillar 

structures (Wacker et al., 2004). These data suggest that chaperones can partition disease 

proteins between oligomeric and fibrillar aggregation states. Chaperones other than 

Hsp70 and Hsp40 can take an active role in promoting protein aggregation.  The 

proteasomal chaperones, Rpt4 and Rpt6 (AAA ATPase subunits of the 19S proteasomal 

particle), facilitated the aggregation of different expanded-polyQ disease proteins, 

huntingtin and ataxin-3, without affecting proteasomal degradation (Rousseau et al., 

2009). Furthermore, in vitro reconstitution experiments showed that purified 19S 

proteasomal particles enhanced aggregation of expanded-polyQ huntingtin protein 
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(Rousseau et al., 2009). Thus, a number of molecular chaperones can promote the 

assembly of disease proteins into amyloid-like aggregates. 

 

1.4.1 Chaperone-mediated aggregation reduces proteotoxicity      

Recent work has begun to link chaperone-mediated aggregation of toxic proteins 

with suppression of toxicity. The chaperonin TriC complex was identified as potent 

suppressor of polyQ-mediated toxicity in C. Elegans (Nollen et al., 2004). This family of 

chaperonins form multi-subunit, cage-like structures that sequester non-native proteins 

(Fenton and Horwich, 2003) and work alongside Hsp70 chaperone systems to promote 

substrate refolding in the cytosol upon rounds of ATP hydrolysis (Farr et al., 1997; 

Frydman and Hartl, 1996). Substrate refolding occurs within the central cavity of the 

chaperonin complex and substrate release occurs after folding is complete (Meyer et al., 

2003). Interestingly, reducing the cellular concentration of TriC resulted in the 

accumulation of low-molecular weight, soluble oligomers by polyQ-expansions which 

correlated with toxicity in cell culture lines and yeast (Behrends et al., 2006; Kitamura et 

al., 2006; Tam et al., 2006). One group demonstrated by size exclusion chromotagraphy 

that toxic oligomers were approximately 200 kDa in size (Schaffar et al., 2004), yet the 

chaperonin complex remodeled the polyQ-expansions into higher molecular weight 

aggregates around the 500 kDa size range (Behrends et al., 2006). The ability of the 

chaperonin complex to remodel polyQ-expanded disease proteins worked synergistically 

with Hsp70, Ssa1, and Hsp40, Ydj1. In contrast, studies in [psi-] yeast demonstrate that 

excess Ydj1 increased aggregation of expanded-polyQ Htt, yet enhanced toxicity 

(Gokhale et al., 2005). Though these data seems contrary to the work done with TriC, the 

nature and size of the polyQ aggregates may differ between experimental conditions and 
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account for whether the polyQ protein elicits a toxic or benign outcome. Additionally, 

cellular factors such as endogenous prions add to complexity of how chaperone networks 

buffer the accumulation of expanded-polyQ aggregates in a yeast model. Nevertheless, 

this provides correlative evidence that chaperonin complexes can not only solubilize their 

substrates but also promote the efficient packaging of proteotoxic species into benign 

aggregates.   

Related studies in yeast have recently demonstrated the protective effects of Hsp40-

mediated aggregate formation. The Hsp40, Sis1, is an essential chaperone (Luke et al., 

1991) that participates in protein refolding (Lu and Cyr, 1998), protein translocation 

(Caplan et al., 1992), and translation initiation (Zhong and Arndt, 1993).  Sis1 activity is 

also required to maintain the Rnq1 yeast prion in its [RNQ+] amyloid-like, prion 

conformation (Sondheimer et al., 2001). Endogenous Rnq1 is not toxic to yeast yet 

modest elevation of Rnq1 levels induced cell death (Douglas et al., 2008). Rnq1 toxicity 

is dependent on the presence of pre-existing [RNQ+] prions as elevated Rnq1 levels are 

not toxic to [rnq-] cells in which the [RNQ+] prion conformer is absent. Thus, [RNQ+] 

prion seeds provide a template which can alter the conformation of native Rnq1 into a 

toxic form (Douglas et al., 2008). Elevating Sis1 levels was able to suppress Rnq1 

toxicity in a manner that correlated with increased formation of [RNQ+] prion assemblies 

and decreased amounts of soluble Rnq1. Point mutations (Rnq1 L94A) within the Sis1 

binding site of Rnq1 enabled it to assume an aberrant conformation which formed SDS-

soluble aggregates and became toxic in [rnq-] cells. Interestingly, Sis1 overexpression 

was able to detoxify excess Rnq1 L94A in [RNQ+] cells yet was unable to suppress Rnq1 

L94A toxicity in [rnq-] cells. Therefore, Sis1 detoxification requires [RNQ+] prion seeds 
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so that nascent Rnq1 can be efficiently packaged into benign, amyloid-like aggregates.  

Inefficiencies in the [RNQ+] prion assembly pathway due to compromised Sis1 activity 

exacerbated cell death.   

The molecular mechanism by which chaperones facilitate Rnq1 assembly into 

amyloid-like prions is not clear. Sis1 was previously shown to work in concert with 

Hsp104 to mediate the fragmentation of larger [RNQ+] prion aggregates (Aron et al., 

2007). This generates more [RNQ+] prion seeds and more nucleation points to further 

drive the autocatalytic conversion of nascent Rnq1 into the prion conformer.  The Ssa 

subclass of Hsp70 chaperones positively affects the formation and propagation of 

amyloid-like [PSI+] prions in yeast (Allen et al., 2005; Jung et al., 2000; Newnam et al., 

1999). Yet the role of Hsp70 in [RNQ+] prion assembly remains elusive. It does appear 

that [RNQ+] prion shearing alone is not sufficient to suppress Rnq1 toxicity as 

overexpression of Hsp104 or different Hsp70 members was unable to suppress Rnq1 

toxicity like excess Sis1 (Douglas et al., 2008). Therefore, we suggest that Sis1 may 

perform an additional function as an elongation factor in the [RNQ+] prion assembly 

process (Figure 1.3). Sis1 was shown to bind a region of Rnq1 outside the Q/N-rich prion 

domain (Douglas et al., 2008) in equimolar ratios (Lopez et al., 2003). Thus Sis1 may 

coat [RNQ+] prions and facilitate the stable association of nascent Rnq1 with [RNQ+] 

prions which would subsequently promote its efficient conversion into the growing 

amyloid-like [RNQ+] aggregate. Yet it is difficult to judge the relative importance of Sis1 

action in fragmentation versus elongation of [RNQ+] prions. 

  



 

 
 

 
 

Figur
templ
Sis1 
order
assem
to acc
 

re 1.3 Role
late to alter 
promotes th

red [RNQ+] 
mbly process
cumulate as 

es for Sis1 
the conform
he appropri
prions via a

s by Rnq1 o
soluble, pro

in [RNQ+] 
mation of nat

ate packagi
a fragmentat
verexpressio

oteotoxic spe
 

19 

prion asse
tive Rnq1 in
ing of temp
tion and elo
on or Sis1 d
ecies. 

embly. The 
nto an assem
plated Rnq1 
ongation mod
depletion ena

[RNQ+] pri
mbly compete

monomers 
del. Inefficie
able template

ion acts as 
ent monome

into higher
encies in thi
ed monomer

a 
r. 
r-
is 
rs 



20 
 

1.4.2 Distinct signaling pathways facilitate protein detoxification via opposing 

mechanisms 

Cells can manage the proteotoxic accumulation of soluble, oligomeric species by 

both disaggregation and aggregation methods. C. Elegans have become a valuable tool to 

dissect the dynamics of amyloid assembly pathways in aging organisms. Distinct 

signaling pathways exist which both prevent the formation of amyloid aggregates as well 

as promote efficient amyloid assembly. The heat shock factor-1 (HSF-1) signaling 

pathway promoted the solubilization of toxic, Aβ1-42 assemblies (Cohen et al., 2006). 

HSF-1 activity is induced by a variety of stress signals including heat-shock which 

subsequently promotes the expression of numerous chaperones (Morimoto, 1998; Sorger, 

1990; Wu et al., 1987). In contrast, the DAF-16 signaling pathway appears to promote 

efficient assembly of Aβ1-42 peptides into amyloid particles. The FOXO transcription 

factor, DAF-16 (Lin et al., 1997; Ogg et al., 1997), is a downstream target of 

insulin/insulin growth factor (IGF)-1-like signaling pathway which regulated life span 

and youthfulness in worms, flies and mammals (Kenyon, 2005). Although HSF-1 and 

DAF-16 signaling pathways promote longevity and cell survival, they appear to act by 

opposing mechanisms to accomplish this feat. 
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1.5 Conclusions 

Molecular chaperones can intervene at multiple points in the amyloid assembly 

pathway to buffer the proteotoxic accumulation of misfolded protein intermediates. As a 

first line of defense, chaperone networks can coordinate the solubilization and subsequent 

refolding or degradation of different toxic proteins. Alternatively, the cell possesses a 

second line of defense which can package misfolded proteins into benign aggregates and 

thereby minimize the cell’s exposure to the toxic assembly intermediates. Although the 

formation of amyloid-like aggregates appears to protect cells against protein misfolding 

events, the gradual stockpiling of amyloid fibrils into intra- and extra-cellular plaques can 

clearly have a negative impact on normal cellular processes over extended periods of 

time (Ehrnhoefer et al., 2008; Fiala, 2007; Lorenzo et al., 1994). Additionally, the general 

decline in protein homeostasis or proteostasis (Balch et al., 2008) by age or chronic stress 

may compromise chaperone networks (Morimoto, 2008) resulting in the destruction of 

benign aggregates and the generation of soluble, toxic oligomers. Two distinct signaling 

cascades appear to regulate the flux of misfolded, amyloidogenic proteins between 

solubilization and aggregation pathways (Cohen et al., 2006). HSF-1 regulates the 

expression of numerous molecular chaperones (Morimoto, 1998) and can antagonize 

aggregation through control of the integrated chaperone network. However, it is unclear 

in the DAF-16 signaling pathway which downstream components are involved in the 

remodeling of misfolded, disease proteins into ordered aggregates. Sis1 and the 

chaperonin complex were shown to drive protective aggregate formation, yet both 

proteins historically act to suppress non-specific aggregation (Frydman et al., 1992; Lu 

and Cyr, 1998). Therefore, different signaling pathways such as DAF-16 and HSF-1 may 

enable an individual chaperone such as Sis1 or the TriC chaperonin complex to perform 
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opposing functions on misfolded proteins. Alternatively, the disease substrate may 

possess intrinsic, structural properties which determine the action of the interacting 

chaperone. Further studies will elucidate the means by which opposing chaperone 

activities are regulated at a molecular and cellular level. 
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2.1 Abstract 

Protein conformational diseases are associated with the aberrant accumulation of 

amyloid protein aggregates, but whether amyloid formation is cytotoxic or protective is 

unclear. To address this issue, we investigated a normally benign amyloid formed by the 

yeast prion [RNQ+]. Surprisingly, modest overexpression of Rnq1 protein was deadly, but 

only when preexisting Rnq1 was in the [RNQ+] prion conformation. Molecular 

chaperones protect against protein aggregation diseases and are generally believed to do 

so by solubilizing their substrates. The Hsp40 chaperone, Sis1, suppressed Rnq1 

proteotoxicity, but instead of blocking Rnq1 protein aggregation, it stimulated conversion 

of soluble Rnq1 to [RNQ+] amyloid. Furthermore, interference with Sis1-mediated 

[RNQ+] amyloid formation exacerbated Rnq1 toxicity. These and other data establish that 

even subtle changes in the folding homeostasis of an amyloidogenic protein can create a 

severe proteotoxic gain-of-function phenotype and that chaperone-mediated amyloid 

assembly can be cytoprotective. The possible relevance of these findings to other 

phenomena, including prion-driven neurodegenerative diseases and heterokaryon 

incompatibility in fungi, is discussed. 
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2.2 Introduction 

 Alzheimer's disease, transmissible spongiform encephalopathies, and 

polyglutamine diseases are representatives of a large group of neurodegenerative 

disorders that are associated with the misfolding and conversion of particular proteins 

into amyloids (Carrell and Lomas, 1997). Amyloids form in response to many 

perturbations in protein homeostasis, namely mutations in the amino acid sequence of a 

disease-related protein, expansion of simple sequence elements in disease genes, elevated 

protein levels, and age-associated cell stress (Chiti and Dobson, 2006). Amyloid fibrils 

share a cross-β structural motif, in which β-strands run perpendicular to the long fiber 

axis and accumulate in intra- and extracellular inclusions (Caughey and Lansbury, 2003; 

Nelson et al., 2005). Fibril formation requires that a misfolded protein expose a pleated β-

surface that is capable of serving as a template and hydrogen-bonding partner with an 

extra β-strand (Carrell and Lomas, 1997). Biochemical parameters for the classification 

of protein aggregates as amyloids include resistance to solubilization by the detergent 

SDS and the ability to bind indicator dyes such as thioflavin-T (Chiti and Dobson, 2006).  

Amyloid deposits in the brain are a hallmark of protein conformational disease, 

but often there is only a poor correlation between the detection of amyloid fibrils and 

other markers of neurodegeneration (Haass and Selkoe, 2007). Thus, there is still intense 

debate about whether amyloids are the causative toxic protein species in 

neurodegenerative diseases. In fact, recent, still controversial work suggests that 

amyloids might be benign or cytoprotective and that difficult-to-characterize soluble 

oligomeric conformers are the toxic species of disease-causing proteins (Cheng et al., 

2007; Kayed et al., 2003; Shorter and Lindquist, 2005).  
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Cells buffer proteotoxic events related to intracellular protein misfolding via 

chaperone-mediated partitioning of nonnative conformers between pathways for proper 

folding, inclusion body formation, and degradation (Muchowski and Wacker, 2005). 

Molecular chaperones also play a critical role in the propagation of yeast prions 

(Chernoff et al., 1995), which are examples of intracellular amyloids that, in general, are 

not inherently toxic (Lindquist, 1997; Wickner, 1994). However, the conversion of active 

soluble Sup35 and Ure2 into their prion states [PSI+] and [URE3], respectively, 

inactivates these proteins (Lindquist, 1997; Wickner, 1994). Yeast prion formation occurs 

spontaneously at a low frequency, and the prion state is then perpetuated through the 

templating of newly synthesized prion proteins by preexisting amyloid-like prions (Chien 

et al., 2004). Templated prion proteins then undergo stable changes in structure and 

function to enter an amyloid-like state that is propagated and passed from mother cells to 

their daughters in a molecular chaperone-dependent manner (Chernoff et al., 1995). Yeast 

prions thereby constitute cytoplasmically transmitted, protein-based elements of 

inheritance that are dominant in genetic crosses (prions are denoted by brackets, italics, 

and capital letters to reflect these properties).  

The yeast prion [RNQ+] is determined by the conformational state of the Rnq1 

protein, which contains a C-terminal asparagine- and glutamine-rich prion domain and an 

N-terminal non-prion-forming domain (Derkatch et al., 2000; Sondheimer and Lindquist, 

2000). The native form of Rnq1 has no known normal biological function and is 

nonessential. Yet the [RNQ+] prion can have important effects on yeast cells because it 

influences certain other proteins to convert to amyloid-like states (Meriin et al., 2002; 

Osherovich and Weissman, 2001; Taneja et al., 2007). For example, [RNQ+] prions are 
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required for the initial conversion of native Sup35 to the [PSI+] state. Indeed, [RNQ+] 

constitutes the cytoplasmically inherited factor known as [PIN+] and is the only known 

yeast prion that is commonly found in wild strains (Derkatch et al., 2001; Nakayashiki et 

al., 2005). [RNQ+] prions also cause the exon 1 fragment of huntingtin protein, containing 

glutamine repeats, to become toxic in yeast (Meriin et al., 2002). Thus, [RNQ+] prions 

can interact with other amyloid-forming proteins and thereby help drive their conversion 

into benign or toxic amyloid-like species. 
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2.2 Results 

Overexpression of Rnq1 Is Toxic in [RNQ+] Cells  

We recently discovered that moderate (i.e., ≈5- to 10-fold) overexpression of 

Rnq1 from the GAL1 promoter was severely toxic in cells that harbored the [RNQ+] prion 

(Figure 2.1a, Upper panel shows growth of serially diluted liquid cultures on agar and 

Lower panel shows protein levels detected by western blot). This finding was surprising 

because Rnq1 overexpression was not toxic when endogenous Rnq1 was in the [rnq-] 

non-prion conformation, nor was it toxic in cells carrying a deletion of the RNQ1 gene, 

Δrnq1 (Figure 2.1a). Cell growth defects observed were more extreme than any we have 

observed with other misfolded proteins in yeast (Cooper et al., 2006; Duennwald et al., 

2006a; Duennwald et al., 2006b). At this modest level of Rnq1 overexpression, ≈25% of 

[RNQ+] cells were dead within 4 h, as determined by the percentage of colony-forming 

units and dye exclusion (data not shown). Toxicity was accompanied by the accumulation 

of Rnq1 aggregates that stained with the common amyloid diagnostic dye thioflavin-T 

(Figure 2.1b). Rnq1 overexpression was found to be toxic in [RNQ+] laboratory strains 

(W303, 74D-694, BY23, and BY4741), clinical strains (YJM269, YJM421, YJM436, and 

YJM653), a fermentation strain (Y12), and wine strains (I14, T73, and WE372) (M. 

Taipale and S.L., unpublished observations). Thus, Rnq1 toxicity is pervasive and not 

strain-specific.  

Although not quite as deadly, a carboxy-terminal Rnq1-YFP fusion protein 

behaved similarly to untagged Rnq1 and exhibited the same pattern of toxicity: toxic in 

[RNQ+] cells but not in [rnq-] or Δrnq1 cells. This result allowed us to correlate changes 

in toxicity with changes in protein distribution (Figure 2.1 and 2.2). While aggregated in  
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Figure 2.1 Overexpression of Rnq1 is toxic to [RNQ+] cells. (a) The effect of Rnq1 
overexpression on yeast cell viability in the presence and absence of the [RNQ+] prion. (b) 
Thioflavin-T staining of Rnq1 in [RNQ+], [rnq-] and ΔRnq1 cells.  Fixed yeast were decorated 
with α-Rnq1 sera that was detected with a fluorescent secondary antibody. The same cells were 
simultaneously stained with the amyloid indicator dye, thioflavin-T. (c) Visualization of the 
aggregation state of Rnq1-YFP by fluorescence microscopy. (d) The assembly status of Rnq1-
YFP as determined by SDD-AGE. The lower panels represent western blots of cell extracts 
probed with the indicated antibodies. 
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[RNQ+] cells, Rnq1-YFP was distributed throughout the cytosol in [rnq-] or Δrnq1 cells. 

Using low- and high-copy plasmids that express Rnq1-YFP at different levels, we found 

that toxicity positively correlated with the degree of overexpression (Figure 2.2a). 

Western blots of cell lysates separated by semidenaturing-detergent-agarose gel 

electrophoresis (SDD-AGE) demonstrated that, in [RNQ+] but not [rnq-] cells, Rnq1-YFP 

assembled into a SDS-resistant high-molecular-weight species typical of amyloid 

assemblies of yeast prions (Figure 2.1d and Figure 2.2b) (Kryndushkin et al., 2003). Yet 

a pool of soluble Rnq1-YFP, which ran at the position of a monomer on SDD-AGE gels, 

also was present in [RNQ+] cells.  

Growth of [RNQ+] cells overexpressing just the non-prion-forming domain or just 

the prion-forming domain of Rnq1, amino acids 1–153 and 154–405, respectively, was 

not hindered (Figure 2.2c). When the prion-forming domain is expressed on its own, it 

assembles into an SDS-resistant species that runs as an amyloid on SDD-AGE gels 

(Figure 2.2d). Therefore, the mechanism for Rnq1 toxicity does not appear related to the 

accumulation of large quantities of amyloid-like [RNQ+] prions per se.  

The toxicity of Rnq1 overexpression in the presence of the [RNQ+] prion might 

seem similar to the toxicity of overexpressed Sup35 in the presence of its prion [PSI+]. 

Overexpression of Sup35 is toxic in [PSI+] cells because it drives too much of the 

essential Sup35 protein into an inactive amyloid conformation (Derkatch et al., 1997). In 

contrast, Rnq1 toxicity cannot be due to an inhibition of Rnq1 function because deletion 

of the gene-encoding Rnq1 has no detectable effect on yeast growth under hundreds of 

conditions tested (T.F. Outeiro and S.L., unpublished data). Furthermore, in contrast to 
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Figure 2.2 Factors influencing Rnq1 toxicity include the expression level and presence of a 
carboxy-terminal tag. (a) Comparison of the toxicity of untagged Rnq1 to Rnq1-YFP that is 
expressed at different levels. (b) SDD-AGE analysis of the assembly status of Rnq1-YFP 
expressed from low and high copy expression vectors. The bottom panel represents Western blots 
depicting Rnq1-YFP levels in the indicated extracts. (c) The effect on growth of [RNQ+] yeast 
caused by overexpression of full length and truncated Rnq1-YFP fusion. Rnq1 1-153 corresponds 
to the Rnq1 N-terminal non-prion forming domain. Rnq1 154-405 corresponds to the Rnq1 C-
terminal prion forming domain. Spots that contain 10-fold serial dilutions of indicated yeast 
strains were positioned horizontally across the plate. The lower panel is a western blot of cell 
extracts that express the indicated YFP fusion with GFP anti-sera. (d) SDS-resistance of Rnq1-
GFP or PrD-GFP fusions expressed under control of the CUP1 promoter as analyzed by SDD-
AGE. 
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Sup35, expression of Rnq1's non-prion-forming domain does not rescue the toxicity 

caused by Rnq1 overexpression (data not shown). 

 

The Hsp40 Sis1 Can Suppress Rnq1 Toxicity 

Sis1, an essential Hsp40 chaperone, is required for the propagation of the [RNQ +] 

prion state (Sondheimer et al., 2001). Sis1 specifies Hsp70 function and is required for 

protein synthesis, protein folding, and cell stress protection (Fan et al., 2004; Zhong et al., 

1996). Overexpressing Sis1 by as little as 3-fold strongly suppressed Rnq1 toxicity 

(Figure 2.3a). To examine whether other chaperones were capable of suppressing Rnq1 

toxicity, an expression library of 4,954 yeast genes was screened (Cooper et al., 2006). 

Sis1 was the only chaperone in this library able to protect from Rnq1 toxicity (data not 

shown). This library includes, among many other chaperones, Ydj1, which is a member 

of the large Hsp40 family that is closely related to Sis1. It also includes Hsp70 Ssa1 

(Hsp70) and Hsp104, which assist in shearing [RNQ+] prions to form seeds required for 

the propagation of the [RNQ+] state (Aron et al., 2007). Therefore, the effect of Sis1 on 

the toxicity of Rnq1 overexpression is unique.  

Sis1 not only promotes [RNQ+] prion formation, but it remains stably bound to the 

prion in a 1:1 complex (Lopez et al., 2003). This finding could provide an explanation for 

the toxicity of overexpressed Rnq1: Elevation of [RNQ+] prion levels could kill cells by 

sequestering Sis1 away from its essential substrates. But this explanation is unlikely 

because cells in which Sis1 is depleted by nearly 100-fold grow for extended time periods 

and exhibit delayed lethality (Luke et al., 1991). In contrast, cells start to die within 4 h of 

the induction of Rnq1 overexpression.  
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To directly eliminate the possibility that cell death is due to the sequestration of 

Sis1, we deleted the domain of Sis1 that is required for interaction with the prion, the 

glycine- and phenylalanine-rich (G/F) region (Lopez et al., 2003). A Sis1 ΔG/F variant 

fails to promote the propagation of [RNQ+], but can carry out Sis1's essential functions. 

We overexpressed Sis1 ΔG/F and found that, unlike Sis1, it could not suppress Rnq1 

toxicity (Figure 2.3a). 

  

Sis1-Mediated Amyloid Formation Protects from Rnq1 Toxicity 

The toxicity produced by the overexpression of Rnq1 represents a dominant gain 

of function that requires endogenous Rnq1 protein to be in a [RNQ+] prion conformation. 

It may be Sis1's ability to facilitate [RNQ+] prion propagation that ameliorates Rnq1 

toxicity. Indeed, the suppression of Rnq1 toxicity by Sis1 overexpression was 

accompanied by a substantial increase in the formation of SDS-resistant [RNQ+] 

amyloids (Figure 2.3b). This seemed to be accompanied by a decrease in the pool of 

unassembled SDS-sensitive Rnq1. We have found, however, that although SDD-AGE is 

a reliable method for quantitatively detecting SDS-resistant species, it is not reliable for 

SDS-soluble species. To examine SDS-soluble species, we used gel-filtration 

chromatography. As shown in Figure 2.3c, a large pool of unassembled Rnq1-YFP 

accumulated on Rnq1-YFP overexpression (Figure 2.3c, compare Top and Middle). 

Suppression of Rnq1 toxicity by Sis1 correlated with a dramatic decrease in unassembled 

Rnq1-YFP pools and a corresponding increase in the pools of assembled forms (Figure 

2.3c, compare Middle and Bottom). These results suggest that cytotoxic Rnq1 conformers 

accumulate when levels of Rnq1 protein exceed the cell's capacity to efficiently promote 
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Figure 2.3 Sis1 overexpression protects against Rnq1 toxicity. (a) The effect of Sis1 
or Sis1ΔG/F overexpression on Rnq1 toxicity. (b) The effect of Sis1 overexpression on 
the formation of SDS-resistant [RNQ+] conformers as determined by SDD-AGE. (c) Gel 
filtration analysis of intracellular pools of overexpressed Rnq1-YFP. The lower panels in 
a and b represent Western blots of the indicated proteins. 
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the template-driven formation of the SDS-resistant [RNQ+] prion species. To test this 

hypothesis, we asked whether Rnq1 toxicity would be exacerbated when the efficiency of 

[RNQ+] amyloid assembly was reduced.  

 

Identification of the Sis1-Binding Site in Rnq1 

First, we identified and mutated the chaperone-binding motif that Sis1 uses to 

interact with Rnq1. A peptide array was created that contained 25 residue N-acetylated 

peptides spanning the entire Rnq1 amino acid sequence. This array was incubated with 

purified Sis1 and washed, and Sis1-interacting peptides were identified by western blot 

after transfer of bound chaperone to nitrocellulose (Figure 2.4b and 2.5a). Tight binding 

of Sis1 was observed only with a few neighboring Rnq1 peptides, and these peptides 

were located in the non-prion-forming domain.  

The amino acid sequence of this region is conserved in all known Rnq1 

homologues and contains a classic, hydrophobic, chaperone-binding motif, LGKLALL 

(Figure 2.5b and Figure 2.4a) (Rudiger et al., 2001). Hsp40 proteins stimulate the binding 

of their Hsp70 cochaperones to specific substrates. Indeed, Sis1 stimulated binding of its 

Hsp70 cochaperone, Ssa1, to the peptides containing this motif in an ATP-dependent 

manner (Figure 2.4b). Thus, Sis1 forms a functional chaperone:substrate complex with 

peptides containing this chaperone-binding motif.  

Next, to reduce the efficiency of Sis1's interaction with [RNQ+] prions, we 

replaced hydrophobic leucine residues in the Rnq1 chaperone-binding motif with alanines 

(L91A, L94A, and L97A). As demonstrated by coimmunoprecipitation, the capacity of 
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Figure 2.4 Sis1 binding to a conserved chaperone-binding motif in the non-prion domain of 
Rnq1. (a) A schematic showing the domain structure of Rnq1. The underlined region in non-
prion domain of Rnq1 represents a chaperone binding motif identified via screening a cellulose 
peptide array (see Fig. S2). (b) Sis1 dependent binding of Hsp70 Ssa1 to the peptide in the Rnq1 
peptide array that is bound most strongly by Sis1. (c) Mutation of L94A in the chaperone-binding 
motif reduces the ability of Sis1 to form co-immunoprecipitable complexes with Rnq1-GFP in 
[RNQ+] cells. Levels of the indicated proteins in c were visualized by western blot analysis (WB). 
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Figure 2.5 Mutation of the chaperone-binding motif slows the rate of Rnq1 assembly into 
[RNQ+] prions. (a) Peptide spots in a 25-residue Rnq1 peptide array that were bound by purified 
Sis1. Shown is a schematic of the Rnq1 peptide array in which circles represent the peptide spots 
starting at amino acid 1 of Rnq1 and sequentially shift in register by 3 amino acids until the 
terminal peptide. Filled circles represent peptide spots where Sis1 binding could be detected as 
significant levels above background. The darkness of the spots correlates with the intensity of 
Sis1 binding signal. (b) Comparison of the Sis1 binding site in Rnq1 with similar regions in the 
two known Rnq1 homologs from C. glabrata and E. gossypii.  The hydrophobic core within the 
peptide identified in b is conserved between species both in sequence as well as in proximity to 
the carboxy-terminal, Q/N rich prion-forming domain. The term aa is an abbreviation for amino 
acid. (c) Fluorescence microscopy of live [RNQ+] cells after the indicated form of Rnq1-GFP was 
expressed for 1 hr. (d) Pulse-Chase analysis of the assembly of nascent Rnq1 into pelletable 
[RNQ+] prions. [RNQ+] cells were labeled with 35S-translabel. At the indicated times cells were 
lysed and fractionated by centrifugation with an airfuge.  Rnq1-GFP present in supernatant and 
pellet fractions of cell extracts was then isolated by immuneprecipitation with α-GFP sera. 
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Rnq1-GFP to interact with Sis1 was strongly, but not completely, reduced by these 

mutations (Figure 2.4c and data not shown). 

  

Mutations in the Sis1-Binding Site of Rnq1 Interfere with [RNQ+] Amyloid 

Assembly  

To determine whether the Rnq1 chaperone-binding motif mutants were defective 

in the assembly of [RNQ+] amyloid, we expressed them as Rnq1-GFP fusions from an 

extrachromosomal plasmid in cells expressing WT Rnq1 in its prion state. The L91A, 

L94A, and L97A mutations were expressed at levels similar to those of WT Rnq1 by 

using the CUP1 promoter, but they had a reduced capacity to form fluorescent foci 

(Figure 2.5c). An L45A mutation, which also is located in the non-prion-forming domain, 

but lies outside of the chaperone-binding motif, had no detectable effect on the assembly 

of [RNQ+] prions. Further, a time-course analysis by SDD-AGE (Figure 2.6a) and pulse–

chase (Figure 2.5d) revealed that the rate at which newly synthesized Rnq1-GFP protein 

was converted into SDS-resistant conformers in vivo was reduced several fold by the 

L94A mutation in comparison with the WT protein. In addition, in vitro-purified Rnq1 

L94A could be templated by prion “seeds” present in [RNQ+] cell extracts to form SDS-

resistant species (Figure 2.6b). However, it was templated and converted to an SDS-

resistant form with lower efficiency than the WT Rnq1 protein.  

Finally, we asked whether the impairment of Rnq1 amyloid assembly increased 

the toxicity of Rnq1 overexpression. As we hypothesized, Rnq1 L94A was more toxic 

than WT Rnq1 when overexpressed in [RNQ+] cells (Figure 2.6c). A triple mutant, Rnq1  
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Figure 2.6 Mutations in the chaperone-binding motif of Rnq1 reduce the efficiency of 
[RNQ+] amyloid assembly. (a) Kinetics of Rnq1-GFP L94A assembly into SDS-resistant 
aggregates in [RNQ+] yeast determined by SDD-AGE. (b) [RNQ+] seed dependent assembly of 
purified Rnq1-His and Rnq1-His L94A into SDS-resistant amyloid. (c) Growth of 10 fold serial 
dilutions of [RNQ+] strains in which WT or L94A Rnq1 was overexpressed from the GAL1 
promoter.  Where indicated, Sis1 was overexpressed from the GPD promoter. Lower panels show 
the relative expression level of the specified proteins as determined by Western blot.   
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L94A–L96A–L97A, was even more toxic than Rnq1 L94A (data not shown). As 

expected from the fact that the Rnq1 L94A mutation impaired, but did not eliminate, 

interaction with Sis1, the overexpression of Sis1 3-fold was still able to suppress the 

toxicity of the mutant protein (Figure 2.6c).  

Thus far, we have shown that interfering with the assembly of Rnq1 into the 

[RNQ+] amyloid state is extremely toxic. Toxicity occurs when Rnq1 expression is higher 

than normal (Figures 2.1, 2.2 and 2.3) or when mutations in Rnq1 interfere with the 

efficiency of Sis1 interaction (Figures 2.4, 2.5 and 2.6). In addition, depletion of Sis1 

from the cytosol reduces the efficiency of [RNQ+] prion assembly and exacerbates Rnq1 

toxicity (Figure 2.7). These collective data indicate that the efficient conversion of native 

Rnq1 into its SDS-resistant amyloid form prevents the accumulation of a toxic Rnq1 

conformer. 

 

Suppression of Rnq1 Toxicity by Sis1 Requires [RNQ+] Prion Assembly  

Rnq1 L94A exhibits a higher propensity than WT Rnq1 to form SDS-soluble 

aggregates when [RNQ+] assembly is impeded via depletion of Sis1 (Figure 2.7). The 

inability of cells to maintain Rnq1 L94A in a soluble state correlates with the enhanced 

toxicity of the L94A mutant. In this sense, Rnq1 L94A is similar to alleles of 

amyloidogenic proteins whose subtle defects in folding kinetics cause devastating protein 

conformational diseases (Carrell and Lomas, 1997). Thus, we wondered whether Rnq1 

L94A would assume a toxic conformation in the absence of templating by [RNQ+] prion 

seeds. Indeed, the overexpression of Rnq1 L94A, but not WT Rnq1, was toxic in [rnq-] 
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Figure 2.7 Depletion of Sis1 hinders assembly of nascent Rnq1-GFP into SDS-resistant 
[RNQ+] aggregates. (a) The influence of Rnq1-GFP and Rnq1-GFP L94A overexpression on cell 
viability when Sis1 levels are normal or low. A [RNQ+] Δsis1 strain that harbored pGAL1-SIS1 
was grown on plates that contained galactose or glucose as the carbon source to maintain Sis1 at 
normal or low levels.  Rnq1-GFP and Rnq1-GFP L94A were expressed from the CUP1 promoter 
in the presence of 500 µM CuSO4. Sis1 was depleted from Δsis1 that was maintained pGAL1-
SIS1 from galactose to glucose medium. Consistent with a previous report (Luke et al., 1991), the 
near complete depletion of Sis1 did not cause yeast to exhibit growth defects on its own, but it did 
exacerbate Rnq1-GFP cytotoxicity. Further, this effect was far more severe for the L94A mutant 
than for wild-type Rnq1. (b) Coalescence of Rnq1-GFP and Rnq1-GFP L94A into foci in Sis1 
depleted cells. (c) SDD-AGE analysis of Rnq1-GFP and Rnq1-GFP L94A assembly into SDS-
resistant conformers at normal and low Sis1 levels.  The lower panels depict levels of the 
indicated proteins as determined by Western blot. These data demonstrate that the foci formed by 
Rnq1 L94A under toxic conditions are sensitive to SDS-treatment, and thus, do not appear to 
represent [RNQ+] prions. (d) Restoration of [RNQ+] prion formation in Sis1 depleted cells upon 
reintroduction of normal Sis1 expression. Bottom panels depict Sis1 and PGK levels in the 
indicated extracts as determined by western blot. Data in panel (d) indicate that defects in the 
assembly of Rnq1 and Rnq1 L94A into SDS-resistant species observed upon depletion of Sis1, 
are not resultant from curing [RNQ+] prion seeds from cells.   
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strains (Figure 2.8a). Hence, a small amino acid substitution can cause Rnq1 to be toxic 

even in the absence of [RNQ+] amyloid formation.  

Sis1-dependent [RNQ+] amyloid formation appears to protect cells from toxicity 

caused by the overexpression of Rnq1. If amyloid formation is a critical aspect of Sis1's 

ability to suppress Rnq1 toxicity, then Sis1 overexpression should not protect [rnq-] cells 

from Rnq1 L94A-mediated death because these cells lack the [RNQ+] prion seeds 

required for amyloid assembly. Indeed, overexpression of Sis1, which binds Rnq1 L94A 

with reduced efficiency, protected [RNQ+], but not [rnq-], strains from Rnq1 L94A 

toxicity. This finding further confirms that Rnq1 toxicity is not caused by the 

sequestration of Sis1 into [RNQ+] prion complexes. Furthermore, the presence of the 

[RNQ+] prion assembly pathway and Sis1 overexpression are both required for the 

suppression of Rnq1 toxicity. 

  

Rnq1 L94A Does Not Form Prion Amyloids in [rnq-] Cells  

To rule out the possibility that Rnq1 L94A assembled into [RNQ+] prions 

spontaneously in [rnq-] cells, we compared its assembly status to that of WT Rnq1 in 

[rnq-] strains (Figure 2.8b–e). In [rnq-] cells, Rnq1 L94A exhibited a higher propensity 

than WT Rnq1 to coalesce into foci (Figure 2.8b). Gel-filtration chromatography showed 

that Rnq1 L94A formed high-molecular-weight aggregates in these cells (Figure 2.9). 

Notably, these aggregates were not SDS-resistant and (Figure 2.8c) were unable to bind 

the amyloid indicator thioflavin-T (Figure 2.8d). Thus, Rnq1 toxicity is not related to the 

accumulation of excess pools of [RNQ+] amyloid and may be caused by a SDS-soluble 

Rnq1 species. 
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Figure 2.8 Rnq1 L94A toxicity and assembly status in [rnq-] yeast. (a) Growth of 10 fold 
serial dilutions of [rnq-] strains in which WT or L94A Rnq1 was overexpressed from the GAL1 
promoter. Sis1 was overexpressed from the GPD promoter. (b) Fluorescent foci formed by Rnq1-
YFP and Rnq1-YFP L94A in [RNQ+] and [rnq-] cells. (c) SDD-AGE analysis of aggregates 
formed by Rnq1-YFP and Rnq1-YFP L94A in [RNQ+] and [rnq-] cells. (d) Thioflavin-T staining 
of untagged Rnq1 and Rnq1 L94A in [RNQ+] and [rnq-] cells.  Fixed yeast were decorated with 
α-Rnq1 sera that was detected with a fluorescent secondary antibody. The same cells were 
simultaneously stained with the amyloid indicator dye, thioflavin-T. (e) Cell extracts from [rnq-] 
cells overexpressing either Rnq1 or Rnq1 L94A were incubated with purified Rnq1-His or Rnq1-
His L94A.  The assembly status of purified Rnq1-His was determined by SDD-AGE. As a 
control, the assembly status of purified Rnq1-His incubated with [RNQ+] cell extract was also 
determined. Lower panels in (a) and (b) are western blots of cell extracts. 
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Figure 2.9  Analysis of the mobility of Rnq1 L94A in extracts from [RNQ+] and [rnq-] strains 
by gel filtration chromatography.  Rnq1-YFP L94A was expressed from the GAL1 promoter 
for 4 hrs in the indicated strain.  Extracts were prepared under native buffer conditions and loaded 
onto a Superose 12S column. The mobility of Rnq1-YFP L94A was determined with Western 
blot of column fractions with anti-GFP sera. 
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Because small prion seeds in the form of detergent-soluble prefibrillar species could have 

escaped detection by SDD-AGE and thioflavin-T staining, we applied another test for the 

existence of such forms of Rnq1 L94A in [rnq-] cell extracts (Figure 2.8e). Prion seeds in 

cell extracts can be sensitively detected through their ability to catalyze the conversion of 

exogenously added native prion protein into SDS-resistant amyloids. Prion seeds were 

readily detected in lysates of [RNQ+] cells overexpressing Rnq1 L94A (Figure 2.6b). 

However, extracts of [rnq-] cells that contained toxic levels of Rnq1 L94A failed to seed 

assembly of purified His-Rnq1 or His-Rnq1-L94A into SDS-resistant amyloids (Figure 

2.8e).  

The Rnq1 L94A assemblies in [rnq-] cells fail to meet three classification 

standards of [RNQ+] amyloid. They are SDS-soluble, they do not stain with thioflavin-T, 

and they do not seed polymerization of soluble Rnq1 protein. Rnq1 L94A is more lethal 

than Rnq1 and can assume a toxic conformation in the absence of [RNQ+] templates. 

Rescue from Rnq1 L94A toxicity requires Sis1 overexpression and active propagation of 

the [RNQ+] prion. Therefore, it appears that the conversion of Rnq1 L94A to [RNQ+] 

amyloid prevents the accumulation of toxic Rnq1 conformer whose true nature remains 

obscure. 
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2.4 Discussion 

Our data suggest a model in which efficient chaperone-dependent conversion of 

soluble Rnq1 into SDS-resistant [RNQ+] amyloid is critical to prevent the formation of 

other toxic Rnq1 conformers. We demonstrate that toxic Rnq1 conformers accumulate in 

a nonamyloid form when [RNQ+] assembly is made inefficient by multiple means. We 

propose that nonproductive templating of Rnq1 monomers by [RNQ+] seeds predisposes 

Rnq1 to leave the amyloid pathway and accumulate as a toxic species, whose exact 

nature is not yet clear. Templating of native proteins to form amyloid is a basic feature of 

amyloidogenesis, and we suggest that inefficiencies in this process contribute to the 

proteotoxicity associated with certain protein conformational diseases. This templating 

model explains how amyloid formation can serve a protective function, whereas the 

[RNQ+] prion state is a prerequisite for toxicity of the WT Rnq1 protein.  

One of Sis1's functions in [RNQ+] prion propagation appears to be promoting the 

shearing of [RNQ+] amyloid fibers into smaller pieces, thereby creating new surfaces to 

more efficiently seed the assembly of the prion (Aron et al., 2007). This reaction also 

requires Hsp104 and Hsp70. Hence, binding of Sis1 to the non-prion-forming domain of 

full-length Rnq1 may help facilitate this shearing process. However, because 

overexpression of Hsp70 and Hsp104 does not suppress Rnq1 toxicity, Sis1 may have 

additional functions in [RNQ+] prion propagation that do not overlap with those of other 

chaperones. Sis1 stably associates with assembled [RNQ+] conformers in a 1:1 molar 

ratio (Lopez et al., 2003). Therefore, Sis1's binding to the non-prion-forming domain has 

the potential to stabilize [RNQ+] prions in a conformation that is optimal for efficient 

amyloid fibril growth.  
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Many neurodegenerative diseases involve the accumulation of intracellular and/or 

extracellular amyloid protein aggregates. In the past, these amyloid aggregates were 

thought to be the cytotoxic, disease-causing protein conformer. However, recent studies 

have begun to question this view. As one striking example in mice, deletion of the GPI 

anchor of the prion protein PrP leads to massive extracellular amyloid plaque formation 

in mice injected with infective scrapie, but causes no overt clinical manifestations of 

scrapie (Chesebro et al., 2005). Furthermore, it has been suggested that 

neurodegenerative diseases are caused by the ability of very different proteins to adopt 

common toxic nonamyloid conformers such as protofibrils or soluble oligomers 

(Caughey and Lansbury, 2003; Haass and Selkoe, 2007). Hence, amyloid formation may 

serve to convert oligomeric amyloid precursors into a highly stable, nontoxic form 

(Piccardo et al., 2007).  

Although amyloid is not toxic, its interaction with soluble protein forms could 

give rise to pathogenic species via nonproductive templating. Case in point, when GPI-

anchorless PrP was expressed together with WT PrP, it accelerated scrapie disease and 

resulted in increased deposits of both amyloid and nonamyloid proteinase K-resistant PrP 

(Chesebro et al., 2005). Similarly, in yeast, the toxicity of Huntington exon 1 depends on 

the [RNQ +] prion state (Duennwald et al., 2006a; Meriin et al., 2002). This concept may 

even extend to the heterokaryon incompatibility mediated by the [Het-s] prion in 

Podospora anserina (Coustou-Linares et al., 2001). HET-s in its prion form only leads to 

cell death when coexpressed with the HET-S allele that cannot form amyloid. Templating 

of the nonamyloidogenic HET-S protein by [Het-s] prion seeds could lead to the 
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formation of a toxic species, whereas templating of HET-s protein would result in the 

nontoxic prion amyloid species.  

The aggregation state and the toxicity of aggregation-prone proteins are strongly 

modulated by host factors such as Hsp70 and its associated cochaperones, but the 

mechanisms for chaperone function in this process are just being defined (Muchowski 

and Wacker, 2005). Molecular chaperones generally act to antagonize protein 

aggregation. Yet our observations that the chaperone-dependent assembly of amyloid 

conformers can be cytoprotective provide a different view of the effects of chaperones in 

conformational disease. Thus, molecular chaperones can antagonize protein toxicity in 

conformational disorders by two different mechanisms: They can solubilize misfolded 

proteins or aid in sequestering them into benign, amyloid-like species. The most central 

aspect of antagonizing toxicity of misfolded proteins appears to be preventing 

accumulation of the detergent-soluble misfolded species, rather than preventing the 

formation of amyloid conformers. 
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2.5 Materials and methods 

Strains and Plasmids. W303, MATa can1-100 ade2-1, his3-11,15 leu2-3,112 ura3-1 

trp1-1; W303Δrnq1, MATa can1-100 ade2-1 his3-11,15 leu2-3,112 ura3-1 trp1-1 

Δrnq1:KanMX4; 74D-694, MATa ade1-14 trp1-289 his3Δ-300 ura3-52 leu2-3,112; 

W303Δsis1, MATa ade2-1 his3-11,15 leu2-3,112 ura3-1 trp1-1 ssd1-d2 sis1::HIS 

pRS316-SIS1. All the above strains harbored Rnq1 in its [RNQ+] form and the generation 

of isogenic [rnq-] strains was accomplished via sequential passage of cells on plates 

containing 3 mM guanidinium-HCl (Eaglestone et al., 2000).  W303 and 74D-694 strains 

were utilized to take advantage of the different markers or gene deletions. Identical 

results were obtained in studies carried out with both of these strains, so Rnq1 toxicity is 

not strain specific.  

Strains were transformed with plasmids and cultured in synthetic media as 

previously described (Caplan and Douglas, 1991).  Plasmids that express the indicated 

protein under control of the GAL1 promoter include pRS416-RNQ1, pRS416-RNQ1-

YFP, and pYES3-SIS1, termed pGAL1-SIS1.  Plasmids that express RNQ1 under control 

of the CUP1 promoter include pRS316-RNQ1-GFP, pRS315-RNQ1-GFP.  The 

glyceraldehyde-3-phosphate dehydrogenase (GPD) promoter controlled expression of 

SIS1 in pRS414-SIS1 and pRS414-sis1Δg/f.  The QuikChange site-directed mutagenesis 

kit (Stratagene) was used to create the indicated point mutations in RNQ1. 

 

Analysis of Rnq1 cytotoxicity. W303 strains harboring pRS416-RNQ1 or pRS416-

RNQ1-YFP were grown overnight in synthetic drop-out media containing 2% raffinose 

before 5-fold serial dilutions were spotted on plates containing either 2% galactose or 
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glucose.  Alternatively, strains that harbored pRS316-RNQ1-GFP or pRS315-RNQ1-GFP 

were cultured overnight in synthetic media containing glucose before serial dilutions 

were spotted on agarose plates that contained 500 µM CuS04.  Plates were incubated for 

3-5 days at 30 ºC and then photographed. 

 

Screening of a Rnq1 peptide array. A 25mer Rnq1 cellulose bound peptide array was 

prepared by automated spot synthesis (Jerini Peptide Technologies). The array was 

screened according the manufactures instructions with 100 nM Sis1 or Hsp70 Ssa1 in the 

presence or absence of 1 mM EDTA or Mg-ATP.  Bound chaperones were transferred to 

a nitrocellulose membrane and the peptide spots were identified by western blot. Hsp70 

Ssa1 bound a number of different peptides that contained clusters of hydrophobic amino 

acids (data not shown), yet peptides 27-30 were the only peptides that Sis1 bound 

reproducibly with high affinity. In addition, peptide 28, which contains residues 82-106 

of Rnq1, was the only peptide that was bound by Hsp70 Ssa1 in a Sis1 and ATP 

dependent manner (Figure 2.5).   

 

Pulse-chase analysis of [RNQ+] prion formation. 74D-694 cultures were grown 

overnight in synthetic media and then diluted and starved in methionine free media. Log 

phase cultures were first supplemented with 50 µM CuS04 to induce Rnq1-GFP or Rnq1-

GFP L94A expression for 1 hr before the addition of Trans35S-label (100 µCi/ml).  

Cultures were labeled for 10 min, then 1 mg/ml of cold methionine was added and cells 

were washed. Cultures were incubated for the indicated time period at 30°C before 

samples were collected. Cell lysis was achieved by glass bead disruption in a buffer 
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composed of 50 mM Hepes pH 7.4, 150 mM NaCl, 1 mM EDTA, 0.1% Tween-20, 2 mM 

phenylmethysulfonyl fluoride and a protease inhibitor cocktail mixture. Cell debris was 

removed and the resulting lysate was spun at 4 ºC at 165,000 × g for 45 min in a TLA-

100 rotor (Beckman Coulter). Rnq1-GFP present in the supernatant and pellet fractions 

was then immuneprecipitated with α-GFP (Roche) in the presence of 0.1% SDS. 35S-

labeled proteins in immuneprecipitates were resolved by SDS-PAGE and detected by 

autoradiography.  

 

Analysis of [RNQ+] prion formation by fluorescence microscopy. To examine the 

assembly of newly synthesized Rnq1 into of [RNQ+] prions Rnq1-GFP expression was 

induced from the CUP1 promoter by the addition of 50 µM CuSO4 to log-phase cultures 

and live cells were photographed 1 hr later. To examine the aggregation pattern of Rnq1, 

Rnq1-GFP or Rnq1-YFP under condition where growth defects are observed, protein 

expression under control of the CUP1 or GAL1 promoter was induced by the addition of 

either 500 µM CuSO4 or 2% galactose, respectively, and 4 hrs later live cells were 

photographed. 

  Indirect immunofluorescence of Rnq1 and thioflavin-T staining of Rnq1 

aggregates were performed as follows. Log phase cells harboring pRS416-RNQ1 that 

were cultured in synthetic raffinose media were supplemented with 2% galactose for 4 

hrs to induce expression of either Rnq1 or Rnq1 L94A. Cells were fixed with 4% 

formaldehyde for 1 hr and washed twice in buffer containing 1.2 M sorbitol before being 

converted to spheroplasts via 45 min incubations at 30ºC in the presence of 5 mg/ml 

zymolyase-20T. Cells were then permeabilized in phosphate buffer saline (PBS) 
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containing 0.1% Triton X-100 for 5 min. Cells were washed and incubated with PBS that 

contained 0.001% Thioflavin-T for 10 min. Next, thioflavin-T stained cells were washed 

4 times and incubated in PBS containing 1.0% BSA and 0.025% Triton X-100. Blocked 

cells were then incubated with polyclonal rabbit α-Rnq1 (1:50 dilution) for 1 hr and then 

washed 4 times. Cells were then decorated with goat α-rabbit conjugated Texas Red 

(1:1000) second antibody (Molecular Probes). Decorated cells were spotted on glass 

slides and photographed with a Nikon fluorescence microscope and images were 

processed with Metamorph and Adobe Photoshop Software. 

 

Semi-denaturing detergent agarose gel electrophoresis (SDD-AGE). Rnq1 assembly 

into SDS-resistant [RNQ+] prions was monitored by SDD-AGE as previously described 

(Kryndushkin et al., 2003) with the following exceptions. Cells were lysed in buffer 

containing 2% SDS, 5% glycerol, 75 mM Tris-HCl pH 6.8, 2 mM EDTA, 8% 2-

mercaptoethanol, 0.05% coomassie blue, 2 mM phenylmethysulfonyl fluoride and a 

protease inhibitor cocktail (Roche). Proteins resolved by the 1.5% agarose gel were 

electrophoretically transferred to PVDF in a submerged transfer apparatus for 2 hrs at 24 

V. PVDF membranes were then decorated with α-GFP and bands were visualized with 

ECL reagent.  

 

Rnq1 co-immunoprecipitation. Expression of Rnq1-GFP in log phase cells harboring 

the indicated form of pRS316-Rnq1-GFP was induced by supplementation with 50 µM 

CuSO4. Cell extracts were prepared 1 hr later under the non-denaturing conditions 

described above for the pulse-chase analysis. Cell debris was removed by centrifugation 
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and the resulting supernatant was supplemented with either α-Sis1 or α-GFP. Samples 

were incubated at 4ºC for 1 hr before being supplemented with pre-blocked protein G 

agarose beads. After 1 hr, the beads were isolated by centrifugation and washed 3 times 

with lysis buffer. Immuneprecipitated proteins were resolved by SDS-PAGE and detected 

by western blot.   

 

Rnq1 toxicity and [RNQ+] assembly in Sis1 depleted cells.  A strain in which Rnq1-

GFP expression was controlled by the CUP1 promoter and Sis1 expression was 

controlled the GAL1 promoter was constructed by transforming W303∆sis1 with 

pRS315-Rnq1-GFP and pGAL1-SIS1. To examine [RNQ+] toxicity at different Sis1 

levels, strains were generated by the plasmid shuffle technique (Boeke et al., 1987) and 

then grown on synthetic drop-out plates containing 2% glucose. A single colony was 

picked, diluted into sterile H20 and 5-fold serial dilutions were spotted onto plates 

containing either galactose or glucose in the presence of 500 µM CuSO4. To examine the 

effect that depletion of Sis1 had on [RNQ+] assembly, transformants grown on galactose 

plates were transferred to liquid media containing either glucose or galactose and cultured 

overnight at 30ºC. Cells were then diluted and grown an additional 12 hrs. Rnq1-GFP 

expression was then induced by the addition of 500 µM CuSO4 and the formation of 

SDS-resistant [RNQ+] particles was measured by SDD-AGE. To demonstrate that Sis1 

depleted cells were still capable of [RNQ+] prion assembly, Sis1 levels were restored by 

spotting cells cultured in glucose media back onto synthetic galactose plates. After the 

restoration of Sis levels, [RNQ+] assembly was monitored as described by SDD-AGE. 
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Seeded polymerization of purified Rnq1. His-Rnq1 WT and L94A were expressed 

from pDEST17 vector in BL21 cells for 4 hrs at 30 ºC followed by lysis in a buffer that 

contained 6 M guanidium-HCl and 100 mM  potassium phospate buffer pH 7.0. His-

Rnq1 was purified by standard techniques on Ni-NTA agarose that was washed with 8 M 

urea and 100 mM potassium phosphate buffer pH 7.0. His-Rnq1 was eluted with the 

same buffer at pH 3.0, concentrated by methanol precipitation and stored at -80 °C. Prior 

to use His-Rnq1 was resuspended in 6 M guanidium-HCl and filtered through a Microcon 

YM-100 spin-column. Yeast extracts containing [RNQ+] seeds were prepared as follows. 

The indicated form of Rnq1 was expressed from the GAL1 promoter for 4 hrs. Cells were 

isolated by centrifugation and extracts were created by bead disruption in buffer 

composed of 40 mM Hepes, pH 7.5, 150 mM KCL, 2 mM DTT, 5% glycerol, 8 mM 

PMSF, 10 mg/ml aprotinin, and 10 mg/ml leupeptin. An aliquot of purified Rnq1 was 

adjusted to a final concentration of 5 µM in cell lysate and incubated at 25 ºC for 30 min, 

without agitation. Samples were then analyzed by SDD-AGE described above. 
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Hsp40 dependent localization of [RNQ+] prions to the nucleus 

reciprocally effects Rnq1 and Huntingtin toxicity 
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3.1 Abstract 

Cellular environment influences whether misfolded disease proteins are benign or 

toxic. Yet, how the cellular milieu impacts detoxification of disease proteins is unclear. 

Herein we demonstrate that interplay between chaperone systems, nucleocytoplasmic 

traffic, and protein interaction networks impacts the efficiency of benign aggregate 

formation and proteotoxicity. Increasing Hsp40 chaperone activity shifted the site of 

[RNQ+] prion assembly from the cytosol to the nucleus. Nuclear Rnq1 was less toxic as 

its assembly into benign [RNQ+] prions was more efficient. [RNQ+] prions are 

environmental factors that act via an ill-defined mechanism to promote toxicity of a 

huntingtin’s protein exon-1 fragment with an expanded polyglutamine tract (Htt-103Q). 

[RNQ+] prions were found to form stable complexes with Htt-103Q, which enabled 

nuclear [RNQ+] prions to attract Htt-103Q from the cytosol to the nucleus. The efficiency 

of nuclear Htt-103Q assembly into SDS-resistant aggregates was dramatically reduced 

and this exacerbated Htt-103Q toxicity. Molecular chaperones directly and indirectly 

impact the cellular location of amyloid-like aggregate formation. This has a profound 

impact on proteotoxicity because the cytosol and nucleus have different capacities to 

package disease proteins into benign assemblies. 
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3.2 Introduction 

Protein misfolding and accumulation of amyloid-like aggregates are the hallmarks 

of a broad class of protein conformational diseases, which include Alzheimer’s Disease, 

frontotemporal dementia, spongiform encephalopathies and polyglutamine expansion 

diseases (Carrell and Lomas, 1997). Factors that initiate protein aggregation and disease 

onset include inheritance of a mutant protein, aberrant protein processing, expansion of 

glutamine or alanine-rich tracts of amino acids, and environmental stress (Chiti and 

Dobson, 2006). The amino acid sequence of individual, disease-causing proteins defines 

the neurodegenerative disorder as well as the affected brain regions. Though it is unclear 

why some neuronal populations are more vulnerable to toxicity while others are more apt 

to efficiently manage protein misfolding events (Taylor et al., 2002). The differential 

susceptibility of various neuronal subtypes to proteotoxicity indicates that the cellular 

environment plays a major role in dictating whether a misfolded disease protein is toxic 

(Balch et al., 2008).   

The exact nature of the neurotoxic conformer formed by individual, disease 

proteins remains controversial (Caughey and Lansbury, 2003). Aggregates formed by 

disease proteins can sequester essential cellular proteins (Burke et al., 1996; Steffan et al., 

2000) and/or inhibit the activity of the proteasome (Bence et al., 2001) and thereby cause 

cell death. Yet, the extent of disease protein aggregation does not always correlate with 

the observed pathology (Caughey and Lansbury, 2003; Haass and Selkoe, 2007) and 

small oligomers formed by disease proteins have been implicated as the toxic species 

(Haass and Selkoe, 2007; Kayed et al., 2003).  
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A primary mechanism to prevent the accumulation of toxic protein species is 

chaperone-dependent suppression of disease protein aggregation and subsequent 

degradation (Cohen et al., 2006; Muchowski and Wacker, 2005). Emerging evidence 

demonstrates that the conversion of disease proteins into ordered, benign aggregates also 

serves to prevent the accumulation of toxic protein oligomers (Behrends et al., 2006; 

Cheng et al., 2007). Paradoxically, the ability of disease proteins to assemble into ordered 

benign aggregates is critically dependent upon molecular chaperone action (Behrends et 

al., 2006; Douglas et al., 2008). Thus, molecular chaperones can protect against 

proteotoxicity by either suppressing or promoting protein aggregation.   

Cell stress or subtle age-dependent changes in the activity of chaperone networks 

appear to enable pools of disease proteins to escape surveillance and accumulate as toxic 

conformers (Morimoto, 2008). Epigenetic factors control molecular chaperone expression 

and the capacity of chaperone networks in different cell types and subcellular 

compartments is variable (Balch et al., 2008; Morimoto, 2008). Therefore, selective 

vulnerability to conformational disease could result from differences in the neuron’s 

ability to promote efficient flux of disease proteins through degradation and aggregation 

pathways.  

The cytosol and nucleus have different capacities to buffer the presence of mutant 

disease proteins, but the mechanism behind this occurrence is unknown (Ross, 1997). For 

example, normal Huntingtin protein (Htt) contains a 25-residue polyglutamine (polyQ) 

sequence within exon I and predominately resides within the cytosol (De Rooij et al., 

1996). Huntington’s disease is caused by the expansion of the polyQ region in Htt 

beyond 39 residues and is associated with the nuclear accumulation of mutant Htt in 
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striatal neurons (DiFiglia et al., 1997; Saudou et al., 1998). Conversion of mutant Htt to a 

toxic species in the nucleus may occur through its interactions with new nuclear 

neighbors (Duennwald et al., 2006). In addition, the cytoplasmic chaperonin TriC, which 

functions to assemble mutant Htt into benign aggregates (Behrends et al., 2006), is not 

the present in the nucleus (Kim et al., 1994). Therefore, when mutant Htt enters the 

nucleus, it appears to face a combination of negative environmental influences that 

enable it to assume a toxic conformation. However, attaining a mechanistic 

understanding of the environmental conditions that permit accumulation of toxic Htt 

species requires further study. 

To define how the cellular environment buffers the accumulation of proteotoxic 

species, we study features of Rnq1 prion and Htt toxicity in yeast. The yeast prion Rnq1 

belongs to a class of glutamine/asparagine-rich (Q/N) proteins that exist in native and 

alternate, self-propagating amyloid-like forms (Sondheimer and Lindquist, 2000). 

Though benign at low levels, elevated expression of Rnq1 protein induces cell death 

(Douglas et al., 2008). Formation of toxic Rnq1 species requires the presence of pre-

existing [RNQ+]/[PIN+] prions (Derkatch et al., 1997; Douglas et al., 2008). Rnq1 

toxicity is suppressed by increasing the levels of the Hsp40 chaperone, Sis1, which 

enhances [RNQ+] prion formation and reduces accumulation of a detergent-soluble Rnq1 

species (Douglas et al., 2008). These data demonstrate that chaperone-dependent 

conversion of a toxic protein into its amyloid-like prion can serve as a protective 

mechanism. In addition, the efficiency of disease protein flux through amyloid assembly 

pathways appears to strongly influence whether or not cells tolerate disease protein 

expression. 
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 [RNQ+] prions also represent a model system to study the mechanism by which 

environmental factors promote the conversion of disease proteins to a toxic state (Meriin 

et al., 2002). It is proposed that [RNQ+] prions expose surfaces that serve as templates 

that foster conversion of endogenous yeast prions and foreign prions from other 

organisms, which are expressed in yeast, into amyloid-like states (Derkatch et al., 1997; 

Taneja et al., 2007). Furthermore, [RNQ+] prions act via an unknown mechanism to 

facilitate the conformational switching of the polyQ expanded exon-1 fragment from 

Huntingtin’s protein (Htt-103Q) from a benign to toxic state (Meriin et al., 2002). Thus, 

the study of interactions between [RNQ+] prions and Htt-103Q provides an excellent 

model to understand how members of a disease protein’s neighborhood influence 

whether it becomes benign or toxic. Such information will help explain enigmatic 

observations of selective neuronal vulnerability to specific disease proteins.  

To investigate how a disease protein’s environment influences its toxicity, we 

examined the impact of relocating [RNQ+] prions from the cytosol to the nucleus on cell 

death caused by Rnq1 and Htt-103Q. Hsp40 dependent accumulation of Rnq1 in the 

nucleus dramatically enhanced the accumulation of [RNQ+] prions and suppressed Rnq1 

toxicity. Relocation of the [RNQ+] prion assembly pathway from the cytosol to the 

nucleus also had dramatic effects on Htt-103Q localization and toxicity. Nuclear [RNQ+] 

prions sequestered Htt-103Q and interfered with the formation of SDS-resistant, Htt-

103Q aggregates. The resultant accumulation of detergent-soluble forms of Htt-103Q 

correlated with a dramatic increase in Htt toxicity. The presence of [RNQ+] prions in the 

nuclear environment reciprocally impacts the toxicity of Rnq1 and Htt-103Q. The 

differences in toxicity tightly correlate with the ability of the cytosol and the nucleus to 
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package Rnq1 and Htt-103Q in SDS-resistant aggregates. These data demonstrate that the 

capacity of the cytosol and nucleus to package proteins into benign aggregates varies in a 

manner that is dependent upon the nature of individual disease proteins. 
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3.3 Results 

Sis1-mediated suppression of Rnq1 toxicity is accompanied by movement of [RNQ+] 

prions the nucleus 

To explore how changes in chaperone activity within the cellular environment 

impact toxicity of disease proteins, we examined the ability of the Hsp40 Sis1 to subdue 

the rapid onset of Rnq1 toxicity in relation to the subcellular distribution of the [RNQ+] 

prions. The yeast plasma membrane becomes permeable to sytox dye (Zakrzewska et al., 

2007) within 5 hrs of inducing Rnq1 overexpression (Figure 3.1a). Elevating Sis1 

expression within the physiologic levels observed during heat-stress (Bardwell et al., 

1986), prevents Rnq1 from permeablizing the yeast plasma membrane to sytox, which 

correlates with suppression of Rnq1 induced cell death (Douglas et al., 2008). 

Interestingly, Sis1-dependent suppression of Rnq1 toxicity was also associated with a 

dramatic change in the localization of fluorescent [RNQ+] prion foci containing Rnq1-

mRFP from the cytosol to the nucleus (Figure 3.1b). 

The link between suppression of Rnq1 toxicity by Sis1 and the relocation of 

[RNQ+] prions to the nucleus is intriguing because, until now, changes in the 

nucleocytoplasmic distribution of disease-causing proteins has been associated with the 

onset of cell death (DiFiglia et al., 1997; Neumann et al., 2006; Saudou et al., 1998). 

Type II Hsp40s such as Sis1 have been implicated in mediating the accumulation of a 

range of proteins in the nucleus (Cheng et al., 2008; Zhang et al., 2008). Thus, we sought 

to establish the concept that molecular chaperones can impact proteotoxicity by 

influencing the cellular location of a disease protein.   
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Figure 3.1 Suppression of Rnq1 toxicity by Sis1 correlates with nuclear accumulation of 
[RNQ+] prions. (a) Sytox dye uptake into cells expressing Rnq1 with and without excess Sis1. 
Rnq1 overexpression was induced for 5 hrs prior to the addition of sytox dye, at which point 
fluorescent readings were taken every min for 30 min. (b) Localization of Rnq1-mRFP in the 
nucleus resultant from Sis1 overexpression. Nup49-GFP is a marker of the nuclear envelope 
boundary. DAPI denotes the localization of nuclear DNA. (c) The effect of chaperone 
overexpression on the cellular distribution of Rnq1-GFP. (d) Western blot analysis of the 
indicated proteins from cell extracts in panel c.  
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Control studies demonstrate that the effect of Sis1 on [RNQ+] prion localization 

was a specific result of Sis1 action in Rnq1 detoxification. The Hsp70, Ssa1, as well as 

Hsp104 play important roles in [RNQ+] prion propagation (Schwimmer and Masison, 

2002; Sondheimer and Lindquist, 2000), but do not suppress Rnq1 toxicity (Douglas et 

al., 2008). Accordingly, overexpression of either of these chaperones did not detectably 

alter the subcellular distribution or expression level of Rnq1-GFP (Figure 3.1c and d). In 

addition, elevating Sis1 levels did not have a pleiotrophic effect on nucleocytoplasmic 

traffic. Sis1 overexpression did not alter the cellular location of GFP (Figure 3.1c, right 

column), [PSI+] prions formed by Sup35-GFP (Figure 3.2a), or a GFP reporter of 

nucleocytoplasmic transport that contains both NLS (nuclear localization signal) and 

NES (nuclear export signal) moieties (Figure 3.2b) (Stade et al., 1997).   

Eukaryotic cells clear some misfolded protein conformers from the cytosol by 

partitioning protein aggregates into aggresome-like assemblies (Johnston et al., 1998) and 

non-aggregated ubiquitinated proteins to a perinuclear compartment for degradation 

(Kaganovich et al., 2008). Our data suggest that an additional route for detoxification 

exists, so it was important to further demonstrate that detoxification of Rnq1 was actually 

dependent upon nuclear transport machinery. This was accomplished by identification of 

three nuclear pore proteins (Nup84, Nup120, Nup188) and one nuclear transport receptor 

(Kap123) whose deletion hindered the ability of Sis1 to promote nuclear [RNQ+] prion 

accumulation (Figure 3.3a). These same nuclear import pathway genes were also shown 

to be required for Rnq1 detoxification in the absence of Sis1 overexpression because their 

deletion enhanced Rnq1 toxicity (Figure 3.3b). Thus, Rnq1 toxicity is exacerbated by 

removal of nuclear protein import machinery that is required for Sis1-  
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Figure 3.2 Sis1 overexpression does not promote the nuclear accumulation of [PSI+] prions 
or a nucleocytoplasmic transport reporter protein. (a) The localization of Rnq1-GFP or 
Sup35-GFP was monitored in [RNQ+][PSI+] cells by fluorescence microscopy. Right panels show 
prion localization in the presence of Sis1 overexpression. (b) Model of the tandem GFP reporter 
protein with an N-terminal NLS and NES. The cellular distribution of NLS-NES-GFP was 
monitored in the presence or absence of Sis1 overexpression by fluorescence microscopy. DAPI 
stained images were overlaid with the GFP channel in the merge.     
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Figure 3.3 Identification of nuclear import factors that are required for Sis1-mediated 
concentration of Rnq1-GFP to the nucleus. (a) Deletion strains of 24 non-essential nuclear 
transport factors were sequentially transformed with plasmids expressing Sis1 and then Rnq1-
GFP. The localization of Rnq1-GFP in 200 cells from 3-5 different transformations was scored 
via fluorescence microscopy as in Figure 3.1c. Deletion strains in which there was a significant 
decrease in Sis1 dependent nuclear accumulation of Rnq1-GFP are indicated (*), which denotes a 
p-value of <0.005. (b) Exacerbation of Rnq1 toxicity via deletion of genes required for Sis1 
dependent nuclear Rnq1 accumulation. Analysis of toxicity in 5 fold serial dilutions of cells 
grown on plates supplemented with galactose to induce Rnq1 expression from the GAL1 
promoter.   
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dependent [RNQ+] prion accumulation in the nucleus. These data, combined with Rnq1 

localization data, indicate that Sis1 does not drive [RNQ+] prion accumulation in 

cytosolic aggresomes or JUNK compartments (Johnston et al., 1998; Kaganovich et al., 

2008).  Instead, Sis1 somehow promotes [RNQ+] prion accumulation in the nucleus and 

this event assists in Rnq1 detoxification.  

Significant pools of Sis1 are normally found in the nucleus (Luke et al., 1991), so 

we explored the possibility that elevating Sis1 levels changes Rnq1 localization by 

stimulating nuclear [RNQ+] prion assembly. To test this concept, the order of Rnq1-GFP 

and Sis1 expression was varied and the effect of Sis1 overexpression on the localization 

of [RNQ+] prions was examined (Figure 3.4). When Rnq1-GFP was expressed first, 

[RNQ+] prions accumulated in the cytosol, and subsequent Sis1 overexpression did not 

redistribute [RNQ+] prions to the nucleus (Figure 3.4a and b). However, when Rnq1-GFP 

was expressed first, subsequent Sis1 overexpression was still able to suppress Rnq1 

toxicity (data not shown), because it stimulated [RNQ+] prion assembly (Douglas et al., 

2008). In contrast, when Sis1 levels were elevated prior to Rnq1-GFP expression, the 

nuclear accumulation of [RNQ+] prions was evident (Figure 3.4a and b).  

These data indicate that Sis1 does not drive the relocation of pre-formed, Rnq1-

GFP prion aggregates from the cytosol to the nucleus.  In addition, the ratio of Sis1 to 

[RNQ+] prion helps control whether the bulk of [RNQ+] prion assembly occurs in the 

cytosol or nucleus.  When cytosolic levels of [RNQ+] prions are high, [RNQ+] prion 

assembly is favored in the cytosol.  Yet, when the ratio of Sis1 to cytosolic [RNQ+] prions 

is elevated, Sis1 appears to promote the assembly of soluble Rnq1-GFP into nuclear 

[RNQ+] prions that are incapable of export back to the cytosol.  Over time, this Sis1  
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Figure 3.4 Sis1 overexpression needs to precede Rnq1-GFP expression to observe the 
nuclear localization of [RNQ+] prions. (a) Fluorescent images of the cellular distribution of 
Rnq1-GFP.  Sis1 was expressed from the GAL1 promoter while Rnq1-GFP was under control of 
the CUP1 promoter. The expression order of each protein was designated as 1st or 2nd. (b) 
Quantitation of Rnq1-GFP nuclear compartmentalization populations of 200 cells from 3 separate 
transformations. Values are expressed in percent of total cells counted and the error bars reflect 
the standard deviation. The p-value was <0.0001. (c) Expression levels of the indicated proteins 
by western blot analysis. 
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action shifts the localization of the [RNQ+] prion assembly pathway from the cytosol to 

the nucleus.  Thus, changes in the ratio of Rnq1 and Sis1 levels have dramatic effects on 

whether amyloid-like aggregate assembly occurs within the cytosol or the nucleus.  

 

The nuclear environment favors [RNQ+] prion accumulation  

To separate Sis1 action in [RNQ+] prion assembly from its impact on Rnq1 

localization, we compared the toxicity of Rnq1-GFP and Rnq1-GFP L94A to that of 

Rnq1-GFP-NLS and Rnq1-GFP-NLS L94A. The later has the SV-40 NLS (Kalderon et 

al., 1984) fused to the C-terminus of the GFP moiety attached to the C-terminus of Rnq1. 

The Rnq1 L94A variant was employed because it contains a point mutation in the Sis1 

binding site in the non-prion domain of Rnq1 (Douglas et al., 2008). Rnq1 L94A is a 

highly toxic Rnq1 variant because it’s conversion into amyloid-like [RNQ+] prions is 

inefficient (Douglas et al., 2008). Rnq1-GFP-NLS and Rnq1-GFP-NLS L94A were 

expressed at levels similar to their non-NLS-tagged counterparts, but were dramatically 

less toxic (Figure 3.5a). Decreased toxicity of NLS-tagged Rnq1-GFP and Rnq1-GFP 

L94A correlated with their accumulation in the nucleus (Figure 3.5b). It should be noted 

that near complete nuclear accumulation of Rnq1-NLS required it’s conversion into its 

[RNQ+] prion form, as it was enriched in the nucleus, but still present in the cytosol of 

[rnq-] cells (Figure 3.5b). Interestingly, filter trap and SDD-AGE analysis demonstrated 

that SDS-resistant pools of NLS-tagged forms of Rnq1-GFP and Rnq1-GFP L94A 

accumulated to 1.5 fold higher levels than the non-NLS-tagged forms (Figure 3.6a-c). 

Analysis of similar cell extracts by size exclusion chromatography demonstrated that 

around 55% of total Rnq1-GFP behaved as a high molecular weight species and the other  
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Figure 3.5 Rnq1-GFP-NLS is less toxic than Rnq1-GFP. (a) Analysis of toxicity in 5-fold 
dilutions of cells grown on plates supplemented with galactose to induce Rnq1 expression from 
the GAL1 promoter. (b) Localization of Rnq1-GFP-NLS and Rnq1-GFP via fluorescence 
microscopy in [RNQ+] and [rnq-] cells. 
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Figure 3.6 Rnq1-GFP-NLS assembles into SDS-resistant [RNQ+] prions with greater 
efficiency. (a) SDD-AGE analysis of the time course for the assembly of SDS-resistant [RNQ+] 
prions after induction of Rnq1 expression with galactose. (b) Filter trap analysis of Rnq1-GFP 
conversion to an SDS-resistant species at the indicated time after induced expression. Rnq1-GFP 
retained on the cellulose acetate filter was detected with α-GFP. (c) Time course of Rnq1-GFP 
expression determined by western blot. (d) Populations of Rnq1-GFP species as determined by 
size exclusion chromatography 4 hrs after induction of Rnq1 expression. Input corresponds to 
10% of the total Rnq1-GFP protein loaded.  
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45% behaved as a lower molecular weight unassembled species. The nuclear 

environment appeared to enhance the efficiency of Rnq1 assembly into [RNQ+] prions 

because 85% of total Rnq1-GFP-NLS behaved as a high molecular weight species and 

little unassembled Rnq1-GFP-NLS was detected (Figure 3.6d). Thus, changing the 

cellular location of Rnq1 from the cytosol to the nucleus does not affect expression levels 

of Rnq1, but does decrease the pool of unassembled Rnq1 whose accumulation is 

associated with cell death (Douglas et al., 2008).  

The dramatic decrease in unassembled Rnq1 pools observed does not appear to be 

related to degradation of Rnq1 because levels of total Rnq1-GFP and Rnq1-GFP-NLS are 

similar (Figure 3.6c). Instead, the decrease in unassembled Rnq1 observed when it 

accumulates in the nucleus correlates with a 1.5 fold increase in the accumulation of 

SDS-resistant Rnq1 aggregates (Figure 3.6a and b), which exhibit several features of 

amyloid (Douglas et al., 2008). These data suggest that conversion of Rnq1 into amyloid-

like [RNQ+] prions is more efficient in the nucleus. This environment-dependent increase 

in [RNQ+] prion formation appears cytoprotective because it prevents the accumulation 

of unassembled Rnq1 pools that are associated with cell death. 

 

Nuclear [RNQ+] prions act in trans to detoxify Rnq1 L94A 

Nuclear [RNQ+] prions appear to prevent the accumulation of toxic Rnq1 

conformers in the cytosol by acting as seeds that drive the ordered assembly of amyloid-

like aggregates in the nucleus. If this is true then the location of pre-existing [RNQ+] 

prion pools should dictate the site where soluble Rnq1 is converted into its [RNQ+] prion 

form. To test this prediction, we asked if an NLS-tagged pool of [RNQ+] prions could act 
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in trans to concentrate nascent Rnq1 in the nucleus and thereby suppress Rnq1 toxicity 

(Figure 3.7). Rnq1-GFP-NLS or Rnq1-GFP under control of the CUP1 promoter was first 

expressed at low non-toxic levels, which allowed for the formation of either nuclear or 

cytosolic [RNQ+] prions, respectively (Figure 3.7a). After a time period that allowed for 

distinct compartmentalization of the GFP-tagged [RNQ+] prions, expression of Rnq1-

mRFP under control of GAL1 promoter was induced for 1 hr and fluorescence of the 

different tagged proteins was visualized. We found that the subcellular location of Rnq1-

mRFP was dependent upon the localization of preformed GFP-tagged [RNQ+] prions 

(Figure 3.7a). Nearly the entire pool of newly synthesized Rnq1-mRFP became co-

localized with pools of nuclear [RNQ+] prions that accumulated during the prior 

expression of Rnq1-GFP-NLS (Figure 3.7a). Importantly, the severe growth defects 

caused by GAL1 dependent Rnq1-GFP L94A overexpression were suppressed through 

prior low-level expression of Rnq1-GFP-NLS (Figure 3.7b). Therefore, [RNQ+] prions 

can act in trans to both alter the subcellular location and toxicity of Rnq1.   

To further demonstrate the concept that pools of amyloid-like assemblies can trap 

native amyloidogenic proteins in a specific location, we conducted cytoduction 

experiments (Figure 3.7c). Cytoduction refers to an experimental situation where haploid 

yeast initiate the mating process, fuse their plasma membranes, and mix cytosolic 

contents, but fail to undergo karyogamy because one of the tester stains is defective in 

nuclear fusion (Conde and Fink, 1976). This scenario allowed us to monitor the fate of 

soluble Rnq1-mRFP in the cytosol of [rnq-] cells that was introduced into [RNQ+] cells, 

which harbored pre-existing nuclear [RNQ+] prions formed by Rnq1-GFP-NLS (Figure 

3.7c). GFP-tagged [RNQ+] prions present in the nucleus of [RNQ+] cells depleted the 
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Figure 3.7 Expression of Rnq1-GFP-NLS suppresses Rnq1 L94A toxicity and promotes the 
nuclear accumulation of Rnq1-mRFP. (a) Prior expression of Rnq1-GFP-NLS leads to the 
accumulation of Rnq1-mRFP in the nucleus. Rnq1-GFP or Rnq1-GFP-NLS were expressed 
overnight at low, non-toxic levels from the CUP1 promoter. Subsequent expression of Rnq1-
mRFP from the GAL1 promoter was induced by the addition of galactose. After 1hr, the location 
of the GFP and mRFP signals was determined in fixed, DAPI-stained cells by fluorescence 
microscopy. (b) Analysis of cell growth in 5 fold serial dilutions of [RNQ+] cells which harbored 
the indicated constructs. Cells were grown overnight in synthetic media to allow for Rnq1-GFP or 
Rnq1-GFP-NLS expression. Cells were then plated on agar that contained glucose (the control) or 
galactose to induce Rnq1-GFP L94A expression to toxic levels. (c) Rnq1-GFP-NLS in the 
nucleus of cytoduced [RNQ+] cells sequesters Rnq1-mRFP from the cytoplasm of [rnq-] cells. 
Cell fusion was analyzed 30 mins (Top row, control) and 2 hrs (bottom) after cell mixture. Merge 
images represent the combination of all fluorescent channels.  
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cytosol of [rnq-] cells of soluble Rnq1-mRFP and drove the assembly of a hybrid 

aggregate that contained both GFP and mRFP. Thus, nuclear [RNQ+] prions do indeed 

trap soluble Rnq1 in the nucleus by driving their fusion into large assemblies whose size 

constraints prevent export back to the cytosol. In this situation, the nuclear envelope acts 

as a sieve that helps suppress Rnq1 toxicity by sequestering prions in the nucleus, which, 

in turn, enhances [RNQ+] prion assembly. 

 

Nuclear [RNQ+] prions concentrate Htt-103Q in the nucleus and exacerbate Htt 
toxicity 

[RNQ+] prions promote Htt-103Q toxicity in yeast (Meriin et al., 2002) and 

movement of polyQ-expanded Htt protein from the cytosol to the nucleus of neurons and 

yeast correlates with exacerbated toxicity (DiFiglia et al., 1997; Schaffar et al., 2004). 

Yet, it is not clear how interaction with [RNQ+] prions or entry into the nuclear 

environment fosters toxicity of polyQ-expanded fragments of Htt exon-1 (Dunah et al., 

2002; Schaffar et al., 2004). To address these issues, we investigated the effects that Sis1 

overexpression had on the ability of the cell to tolerate Htt-103Q expression (Figure 3.8). 

While Sis1 expression suppressed Rnq1 toxicity (Fig. 1), the growth of yeast expressing 

Htt-103Q was slowed dramatically by Sis1 overexpression (Figure 3.8a). Interestingly, 

Sis1 overexpression also resulted in the nuclear accumulation of Htt-103Q-GFP 

aggregates in 15% of cells analyzed by fluorescent microscopy (Figure 3.8b). Based on 

these data, we explored whether [RNQ+] prions could act as environmental factors that 

increase Htt toxicity via attracting Htt-103Q to the nucleus (Figure 3.9 and 3.10).   

 To address this question we examined the effect that expression of low, non-toxic 

levels of Rnq1-GFP or Rnq1-GFP-NLS had on Htt-103Q toxicity. These Rnq1 variants  
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Figure 3.8 Elevation of Sis1 levels exacerbate growth defects caused by Htt-103Q 
overexpression.  (a) Growth of [RNQ+] yeast that harbored Sis1 and/or Htt-103Q overexpression 
constructs as indicated. (b) Cellular localization of Htt-103Q-GFP in [RNQ+] cells with and 
without Sis1 overexpression as determined by fluorescence microscopy. DNA is stained with 
DAPI. 
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were expressed, then expression of Htt-103Q was induced and the influence of [RNQ+] 

prion cellular location on Htt toxicity was evaluated. Growth of yeast was not impacted 

upon expression of Htt-25Q regardless of whether [RNQ+] prions were predominantly 

localized in the cytosol or nucleus (Figure 3.9a).  Yet, in dramatic contrast to what was 

observed with Rnq1 toxicity, the presence of small pools of [RNQ+] prions in the nucleus 

exacerbated Htt-103Q toxicity. The effect of Rnq1 localization on Htt toxicity was 

dependent upon the presence of the [RNQ+] prion conformer because Htt-103Q 

expression was not toxic in [rnq-] cells regardless of whether Rnq1-GFP or Rnq1-GFP-

NLS was present (Figure 3.10). 

To explain the increase in Htt toxicity observed in the presence of nuclear [RNQ+] 

prions, we asked if the cellular location of [RNQ+] prions controlled the location of Htt-

103Q (Figure 3.9b). Rnq1-mRFP or Rnq1-mRFP-NLS were expressed at low levels from 

the CUP1 promoter to permit the formation of respective cytosolic and nuclear pools of 

mRFP-tagged [RNQ+] prions. Then, expression of Htt-25Q-GFP or Htt-103Q-GFP from 

the GAL1 promoter was induced for 1 hr and cells were visualized. The site of Rnq1 

localization had no effect on the solubility or distribution of Htt-25Q-GFP (Figure 3.9b 

left columns). Conversely, the location of [RNQ+] prions controlled the subcellular 

location of Htt-103Q-GFP (Figure 3.9b right columns).  Nuclear [RNQ+] prions relocated 

Htt-103Q-GFP to the nucleus through what appeared to be direct interactions as their 

localization was coincidental. The association between [RNQ+] prions and Htt-103Q was 

dependent upon the length of the expanded polyQ-region. In addition, interaction 

between [RNQ+] prions and Htt-103Q appeared specific, because [RNQ+] prions did not  
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Figure 3.9 The presence of [RNQ+] prions in the nucleus exacerbates Htt-103Q toxicity. (a) 
Analysis of cell growth in 5-fold serial dilutions of [RNQ+] cells, which harbored the indicated 
constructs. Rnq1-GFP and Rnq1-GFP-NLS were first expressed at non-toxic levels from a CUP1 
promoter in liquid media containing copper. Then, Htt-25Q-GFP and Htt-103Q-GFP were 
expressed at toxic levels from the GAL1 promoter on galactose plates. (b) The impact of Rnq1-
mRFP-NLS expression on the cellular localization of Htt-25Q-GFP and Htt-103Q-GFP.  
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Figure 3.10 Rnq1-GFP-NLS exacerbates Htt-103Q toxicity in [RNQ+] cells but has no affect 
on Htt-103Q toxicity in [rnq-] cells.  Analysis of cell growth in 5 fold serial dilutions of [RNQ+] 
and [rnq-] cells, which harbored the indicated constructs.  Rnq1-GFP and Rnq1-GFP-NLS were 
first expressed at low non-toxic levels from a CUP1 promoter in liquid media containing copper.  
Then, Htt-103Q-GFP was expressed to toxic levels from the GAL1 promoter on galactose plates. 
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alter the location of another amyloid-like interaction partner, Het-S, that lacks polyQ 

expansions (Figure 3.11) (Taneja et al., 2007).  

To demonstrate a physical interaction between [RNQ+] prions and Htt-103Q, we 

analyzed whether they could form an immunoprecipitable complex. First, endogenous 

Rnq1 was demonstrated to co-precipitate with Htt-103Q-GFP (Figure 3.12a). SDS-

soluble forms of Htt-103Q-GFP protein that are capable of migrating into the SDS-PAGE 

gels showed no substantial co-precipitation with Rnq1. Yet, the SDS-insoluble Htt-103Q 

aggregates, which were incapable of entry into the SDS-PAGE gel, precipitated with 

Rnq1 and could be observed as immuno-reactive bands at the top of western blots. In 

addition, overexpressed Rnq1-GFP and Rnq1-GFP-NLS could also co-immunoprecipitate 

with SDS-resistant Htt-103Q aggregates (Figure 3.12b). Hence, nuclear [RNQ+] prions 

appear to trap Htt-103Q in the nucleus through direct binding to Htt-103Q. 

To explore the mechanism for exacerbation of Htt-103Q toxicity, we investigated 

how nuclear [RNQ+] prions affected the assembly status of Htt-103Q (Figure 3.13).  

Accumulation of [RNQ+] prions in the cytosol had no significant effect on the assembly 

of Htt-103Q into an SDS-resistant species that was detected by filter-trap analysis. In 

addition, Htt-103Q expression had no effect on the assembly of Rnq1 into [RNQ+] prions 

(data not shown). Yet, when nuclear [RNQ+] prions were present, the conversion of Htt-

103Q into tight SDS-resistant aggregates was reduced by 80% (Figure 3.13a).  

The accumulation of a small oligomeric form of polyQ-expanded Htt in the size 

range of a dimer or trimer is linked to Htt toxicity in yeast (Behrends et al., 2006). Thus, 

we asked if decreased formation of SDS-resistant, Htt-103Q assemblies observed in the 

presence of nuclear [RNQ+] prions was associated with the accumulation of similar 
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Figure 3.11 Expression of Rnq1-mRFP-NLS was unable to sequester the non-Q-rich Het-S 
prion to the nucleus. Rnq1-mRFP and Rnq1-mRFP-NLS were first expressed at low, non-toxic 
levels from a CUP1 promoter in liquid media containing copper.  Then, Het-S-GFP was 
expressed from the GAL1 promoter by addition of galactose to the media. The localization of 
Het-S-GFP was monitored in the absence of exogenous Rnq1 (left column) or in the presence of 
exogenous Rnq1-mRFP (middle column) or Rnq1-mRFP-NLS (right column) by fluorescence 
microscopy.  
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Figure 3.12 [RNQ+] prions form an immunoprecipitable complex with high molecular 
weight Htt-103Q. (a) Co-precipitation of endogenous Rnq1 and Htt-103Q in complex with each 
other. Extracts were generated from cells expressing Htt-103Q and endogenous Rnq1 was 
precipitated under native conditions with α-Rnq1. Precipitates were resolved by SDS-PAGE and 
western blots were probed with α-GFP to detect Htt-103Q. (b) Co-precipitation of Rnq1-GFP or 
Rnq1-GFP-NLS and Htt-103Q in complex with each other. Extracts were prepared from cells 
grown in liquid culture that sequentially expressed Rnq1 and Htt fusion proteins as described 
above. Rnq1-GFP and Rnq1-GFP-NLS were precipitated under native conditions by the addition 
α-Rnq1 and western blots were probed with α-GFP to detect the different forms of Rnq1 and Htt. 
 
  



99 
 

detergent-soluble Htt-103Q oligomers (Figure 3.13b). Under control conditions, 70% of 

Htt-103Q in cell extracts migrated on a size exclusion column as a high-molecular weight 

species that was SDS-resistant and could not enter into SDS-PAGE gels. The other 30% 

of Htt-103Q detected behaved as an SDS-sensitive form that could enter into SDS-PAGE 

gels and appeared as a small oligomer. Yet, the presence of nuclear [RNQ+] prions 

dramatically reduced the formation of high-molecular weight, Htt-103Q assemblies. This 

was accompanied by a corresponding increase in the accumulation of SDS-sensitive, 

oligomeric Htt-103Q. Therefore, increased potency of Htt toxicity observed in the 

presence of nuclear [RNQ+] prions is associated with a dramatic decrease in the 

conversion of Htt-103Q into an SDS-resistant species and the accumulation of small Htt-

103Q oligomers. 

We sought to evaluate whether interaction with [RNQ+] prions or the relocation of 

Htt-103Q to the nucleus was the major factor that decreased the cells capacity to detoxify 

Htt-103Q. To approach this question, an NLS was fused to the C-terminus of the GFP 

moiety on Htt-103Q-GFP and the ability of Htt-103Q-GFP-NLS to form SDS-resistant 

aggregates and kill yeast was determined (Figure 3.14). Htt-103Q-GFP-NLS accumulated 

in the nucleus and was more toxic to [RNQ+] cells than Htt-103Q-GFP.  Yet, [rnq-] cells 

tolerated Htt-103Q-GFP-NLS expression (Figure 3.14a and b).  When compared to Htt-

103Q-GFP, the assembly of Htt-103Q-GFP-NLS into high-molecular weight, SDS-

resistant aggregates was reduced by over 60% (Figure 3.14c).  This decrease in the 

formation of SDS-resistant aggregates was accompanied by a significant increase in the 

amount of detergent-soluble, Htt-103Q oligomers that were detected by size-exclusion 

chromatography (Figure 3.14d). These data suggest that the ability of nuclear [RNQ+] 
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Figure 3.13 Nuclear [RNQ+] prions hinder the assembly of Htt-103Q into high molecular 
weight, SDS-resistant aggregates. (a) Filter trap analysis of SDS-resistant Htt-103Q aggregates. 
Htt-103Q retained on the cellulose acetate filter was detected with α-FLAG. Lower panels are 
western blots of cell extracts used in the filter trap assay. (b) Analysis of Htt-103Q assembly 
status by size exclusion chromatography. Htt-103Q was expressed for 2 hrs in cells that harbored 
Rnq1-GFP or Rnq1-GFP-NLS. Upper gels in each set of panels show the quantity of SDS-
resistant Htt-103Q that was incapable of gel entry. Middle gels in each set of panels show the Htt-
103Q which was able to migrate into gels. Lower gels in each set of panels show the mobility of 
either Rnq1-GFP or Rnq1-GFP-NLS. Input represents 10% of the total amount of Htt-103Q-GFP 
protein detected in extracts.  
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Figure 3.14 Htt-103Q-GFP-NLS forms SDS-resistant aggregates with reduced efficiency 
and is dramatically more toxic than Htt-103Q-GFP. (a) Analysis of cell growth in 5 fold serial 
dilutions of [RNQ+] and [rnq-] cells harboring the indicated forms of Htt-103Q that were 
expressed from the GAL1 promoter. (b) Cellular localization of Htt-103Q-GFP and Htt-103Q-
GFP-NLS in [RNQ+] and [rnq-] cells as determined by fluorescence microscopy. (c) Filter trap 
analysis of SDS-resistant Htt-103Q and Htt-103Q-GFP-NLS aggregates. Lower panels are 
western blots of cell extracts used in the filter trap assay. (d) Comparison of Htt-103Q-GFP and 
Htt-103Q-GFP-NLS assembly status in [RNQ+] cells by size exclusion chromatography. Htt-
103Q chimeras were expressed for 2 hrs in cells harboring only endogenous Rnq1.  
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prions to exacerbate Htt-103Q toxicity can be accounted for via their attracting Htt-103Q 

to an environment that has reduced capacity to convert it into an SDS-resistant species. 
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3.4 Discussion  

Herein we demonstrate that yeast partition the model disease proteins, Rnq1 and 

Htt-103Q, between benign and toxic states with reciprocal efficiencies in the cytosol and 

nucleus.  The nuclear environment favors assembly of Rnq1 into benign, amyloid-like 

[RNQ+] prions. Yet, Htt-103Q assembly into SDS-resistant particles is disfavored in the 

nucleus. An important component of the cells defense against Rnq1 and Htt-103Q 

toxicity is their efficient conversion to an SDS-resistant species. Yet, the cytosol and 

nucleus possess unique capacities to package different disease proteins into benign 

assemblies. These data help explain why relocation of disease proteins from the cytosol 

to the nucleus (Davies et al., 1997; Ross, 1997; Saudou et al., 1998) or the nucleus to the 

cytosol exacerbates toxicity (Neumann et al., 2006).  

Data presented suggest several mechanisms by which changes in a disease 

protein’s neighbors influence its localization and toxicity. The assembly of disease 

proteins into tightly aggregated species can represent a protective mechanism, but, 

surprisingly, is not a spontaneous process (Behrends et al., 2006; Cohen et al., 2006; 

Douglas et al., 2008). Different classes of molecular chaperones, whose expression is 

controlled in an age and stress dependent manner, prevent the accumulation of toxic 

detergent-soluble oligomers by facilitating conversion of disease proteins into different 

types of aggregated species (Behrends et al., 2006; Douglas et al., 2008). Increased 

activity of the Hsp40, Sis1, within physiological ranges, shifted the localization of the 

[RNQ+] prion assembly pathway from the cytosol to the nucleus. This relocation 

appeared to result from the retention of native Rnq1 in nuclear [RNQ+] prions, which is 

accomplished by increased prion assembly in this location and the inability of prions to 
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traffic out of the nucleus. Thus, the differential ability of chaperones to function in 

assembly events in the cytosol and nucleus can influence the intracellular location and 

toxicity of disease proteins.  

Modest changes in chaperone activity can also influence the localization and 

conformation of disease protein interaction partners. This can have dramatic downstream 

effects on the disease protein’s localization and environment. This, in turn, has profound 

positive or negative effects on the cell’s ability to detoxify disease proteins. PolyQ 

proteins expose promiscuous interaction surfaces that are capable of interactions with 

other polyQ proteins (Duennwald et al., 2006), which can impact polyQ protein 

localization (Perez et al., 1998). We report that relocation of [RNQ+] prions from the 

cytosol to the nucleus also leads to the accumulation of Htt-103Q in the nuclear 

environment where it is more toxic. Thus, changes in the conformation and/or location of 

human polyQ interacting proteins (Duennwald et al., 2006) has the potential to impact the 

location and detoxification of pathogenic polyQ proteins.     

Several factors may explain the apparent changes in the efficiency of [RNQ+] 

prion formation and Htt-103Q aggregate assembly observed when this process occurs in 

the nucleus instead of the cytosol. First, total Rnq1 levels are comparable when Rnq1 

accumulates in the cytosol or nucleus, yet the nucleus possesses a smaller volume than 

the cytosol. Accumulation in the nucleus may therefore increase the local Rnq1 

concentration and enhance the efficiency of [RNQ+] formation by mass action. However, 

the same logic does not work when Htt-103Q assembly into SDS-resistant aggregates is 

considered. Thus, it is more likely that the cytosol and nucleus contain different levels of 

proteins that either promote or hinder Rnq1 and Htt-103Q detoxification. Hsp104 is a 
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cytosolic shearing factor, whose levels are low in the nucleus (Tkach and Glover, 2008), 

which acts in conjunction with Sis1 to fragment [RNQ+] prions into smaller seeds (Aron 

et al., 2007; Tipton et al., 2008) that are required to promote prion propagation (Chernoff 

et al., 1995) as well as to nucleate formation of toxic Rnq1 species (Douglas et al., 2008). 

In contrast, TriC is a ringed chaperonin required for polyQ detoxification (Behrends et 

al., 2006; Kitamura et al., 2006; Tam et al., 2006) that is localized primarily in the cytosol 

(Kim et al., 1994). Thus, [RNQ+] prion assembly may benefit from the nuclear 

environment because Hsp104 is less active in this compartment. Yet, the absence of TriC 

in the nucleus could explain the enhanced toxicity and reduced aggregation efficiency of 

nuclear Htt-103Q. 

The majority of Sis1 is normally found in the nucleus (Luke et al., 1991), which 

helps explain why subtle elevations in Sis1 levels increase [RNQ+] prion formation in this 

compartment. We surmise that pools of Rnq1 normally traffic between the cytosol and 

nucleus and increasing nuclear Sis1 levels helps drive the fusion of Rnq1 monomers into 

nuclear [RNQ+] prion seeds. However, Type II Hsp40s are known to help retain proteins 

in the nucleus (Cheng et al., 2008; Zhang et al., 2008), so it also possible that Sis1 has a 

direct impact on the nucleocytoplasmic trafficking of Rnq1. Indeed, the non-prion 

domain of Rnq1 contains a hydrophobic Sis1 binding site that closely resembles a 

canonical nuclear export signal (Douglas et al., 2008). Sis1 binding to Rnq1 may 

therefore negatively regulate Rnq1 nuclear export and thereby increase nuclear Rnq1 

levels. However, it was difficult to test this hypothesis because mutation of the putative 

NES within Rnq1 hindered Sis1 binding and altered the aggregation state of Rnq1 (data 

not shown). Nevertheless, it is clear that Hsp40s can directly and indirectly modulate the 
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cellular location where disease proteins are assembled into aggregates. This action can 

have protective or toxic consequences. 
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3.5 Materials and methods 

Strains and Plasmids: Yeast strains W303, YEF473B, BY4742, and 10B-H49 were 

utilized to take advantage of different genetic markers, gene integrations, gene deletions 

and karyogomy defects. W303, MATa and α, can1-100 ade2-1, his3-11,15 leu2-3,112 

ura3-1 trp1-1; YEF473B, MATα, trp1Δ63, leu2Δ, ura3-52, his3Δ200, lys2-8Δ1, NUP49-

GFP::HygB; 10B-H49 MATα, ρ° ade2–1, lys1–1, his3–11,15, leu2–3,112, kar1–1, 

ura3::KANR; BY4742 MATα, his3Δ, leu2Δ, lys2Δ, ura2Δ. All strains harbored Rnq1 in 

its [RNQ+] form and the generation of isogenic [rnq-] strains was accomplished via 

sequential passage of cells on plates containing 3 mM guanidinium-HCl (Douglas et al., 

2008). Strains were transformed with plasmids and cultured in synthetic media as 

previously described (Douglas et al., 2008).  Individual gene deletions in the BY4742 

strain background were obtained from Open Biosystems. Plasmids that express the 

indicated protein under control of the GAL1 promoter include pRS416-RNQ1, pRS416-

RNQ1-GFP, pRS416-RNQ1-GFP L94A, pRS416-RNQ1-GFP-NLS, pRS416-RNQ1-

GFP-NLS L94A, pYES3-SIS1, pYES3-Flag-Htt-103Q-GFP, pYES3-Flag-Htt-25Q-GFP, 

pYES2-Flag-Htt-103Q-GFP, pYES2-Flag-Htt-25Q-GFP and pRS414-Het-S-GFP (Taneja 

et al., 2007). Plasmids that express Rnq1 under control of the CUP1 promoter include 

pRS316-RNQ1-GFP, pRS316-RNQ1-GFP-NLS, pRS315-RNQ1-GFP and pRS315-

RNQ1-GFP-NLS. The mRFP tag (Sato et al., 2005) was subcloned in place of the GFP 

(between SacI and SacII restriction enzyme cut sites) in all of the CUP1 inducible Rnq1 

constructs. The NLS sequence was derived from the HIV SV-40 and encodes the amino 

acid sequence PKKKRKV which was fused to the carboxy-terminus of the GFP or mRFP 

tag.  The NES sequence was derived from the yeast Ssb1 chaperone and encodes the 



108 
 

amino acid sequence KIEAALSDALAALQ which was fused to the C-terminus of GFP.  

The open reading frame of Sup35 was subcloned from genomic DNA between a 5’ 

BamHI and 3’ SacI restriction enzyme cut sites and subcloned into CUP1 inducible 

vector to generate pRS316-Sup35-GFP. The glyceraldehyde-3-phosphate dehydrogenase 

(GPD) promoter controlled expression of pRS315-SSA1, pRS315-HSP104, pRS315-SIS1, 

and pRS414-SIS1. The QuikChange site-directed mutagenesis kit (Stratagene) was used 

to create the indicated point mutations in Rnq1. pKW430 expressed a nucleocytoplasmic 

reporter composed of the following moieties, NLSSV40-NESPKI-2 x GFP (Stade et al., 

1997).  

 

Sytox dye exclusion: W303α cells were sequentially transformed with pRS414-SIS1 or 

pRS414 and then pRS416-RNQ1 or pRS416. Transformants were grown overnight to an 

OD600 of 0.2-0.4 in synthetic media containing raffinose as the carbon source. Galactose 

(2%) was added to the media to induce Rnq1 expression from the GAL1 promoter in 

pRS416-RNQ1. Cells were collected and sytox permeability was measured with a 

FluoSTAR fluorometer (Zakrzewska et al., 2007). 

 

Fluorescence Microscopy:  Rnq1-GFP or Rnq1-mRFP as well as Htt-25Q-GFP and Htt-

103Q-GFP were expressed under control of the indicated inducible promoters. Images 

were captured from live or fixed cells in synthetic liquid media with a Nikon E600 

fluorescence microscope and images were processed with Metamorph and Adobe 

Photoshop Software. The nuclear envelope was delineated via visualization of the nuclear 

pore protein, Nup49-GFP. 
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In the order of expression experiments, cells harbored two distinct plasmids which 

expressed two proteins from either the GAL1 or CUP1 promoters. Cells were grown 

overnight at 30°C in synthetic media containing raffinose (2%) to OD600 of 0.5-1.5. 

Enough Cu++ was present in the media to allow for the visualization of the indicated 

Rnq1-GFP and Rnq1-mRFP protein from the CUP1 promoter.  The media was then 

supplemented with galactose (2%) to induce expression of the indicated protein under 

control of the GAL1 promoter. Following a 1-2 hr incubation, cells were collected and 

photographed live or fixed. 

Cells were stained with DAPI to visualize nuclear DNA. Cells were first fixed 

with 4% formaldehyde for 30 min, washed twice with PBS and permeabilized by 

incubation in 0.5% PBS Triton for 10 min. Cells were then washed twice with PBS, 

incubated for 10 min with DAPI (1 μg/ml), and again washed twice with PBS before 

visualization.   

 

Cytoduction: W303a [RNQ+] cells that harbored pRS416-GAL1-Rnq1-GFP-NLS were 

grown overnight in synthetic dropout media containing raffinose (2%). Once cells 

reached an OD600 of 0.5-1.5, media was supplemented with galactose (2%) and incubated 

for 1-2 hr. Cells were then mated with a [rnq-] strain that is defective in karyogamy,10B-

H49α (Sondheimer and Lindquist, 2000). Prior to mating, 10B-H49α [rnq-] cells 

harboring pRS315-CUP-Rnq1-mRFP, were cultured overnight at 30°C in synthetic 

media. Cells with an OD600 of 0.5-1.5 were supplemented with CuSO4 (50 μM) and 

cultured for an additional 2-3 hrs before mated. Mating was conducted with 2 OD600 units 

of cells from either mating type that were washed with sterile ddH2O, mixed and 
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incubated on YPD plates. Incubations were performed at 30°C for either 30 mins or 2 hrs 

after which cells were scraped and washed with sterile PBS. Mated cells were fixed in 

formaldehyde and stained with DAPI before visualization. 

 

Analysis of Rnq1 and Htt-103Q toxicity: Cell growth on agarose plates was monitored 

in [RNQ+] and [rnq-] W303α strains that harbored pRS416-RNQ1-GFP, pRS416-RNQ1-

GFP-NLS, pYES2-Flag-Htt-103Q-GFP or pYES2-Flag-Htt-103Q-GFP-NLS under 

control of the GAL1 promoter. In the order of expression experiments, cells were 

transformed with two plasmids that expressed the indicated proteins under control of the 

GAL1 or CUP1 promoter. Cells were grown overnight in synthetic media containing 

raffinose (2%) to an OD600 of 1-2 before 5-fold dilutions were spotted onto plates 

containing galactose (2%). Enough Cu++ was present in the synthetic media to allow for 

modest, non-toxic overexpression of the indicated Rnq1 proteins off the CUP1 promoter. 

Plates were incubated for 3-5 days at 30ºC before being photographed. 

 Cell growth in liquid culture was monitored in [RNQ+] W303α strains that 

harbored pRS315-GPD or pRS315-GPD-SIS1 and pYES2 or pYES2-Flag-Htt-103Q-

GFP under control of the GAL1 promoter. Cell cultures in synthetic media containing 

2% raffinose were grown to an O.D. of 4-6 overnight. Cultures were then diluted to an 

O.D of 0.01 and allowed to grow for 4hrs before the addition of 2% galactose to induce 

expression of Htt-103Q. Cell concentration was determined at the indicated time points 

by light scattering at 600 nM. 
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Screen of yeast strains for nuclear trafficking factors required for suppression of 

Rnq1 toxicity. BY4742 strains from the yeast deletion collection that harbored the 

indicated deletions of non-essential genes were sequentially transformed with pRS315-

GPD-SIS1 and then pRS316-CUP1-RNQ1-GFP. Transformants were cultured in 

synthetic media overnight at 30°C to an OD600 of 0.5-2. Enough Cu++ was present in the 

media to allow for Rnq1-GFP expression and visualization. Rnq1-GFP was either 

distributed throughout the whole cell and scored as cytoplasmic or compartmentalized to 

the nucleus. The localization of Rnq1-GFP in different deletions strains was analyzed in 

200 cells from 3-5 separate transformations.   

 

Analysis of SDS-resistant Htt-103Q and Rnq1 aggregates: Monitoring the assembly of 

Rnq1 and Htt-103Q into SDS-resistant aggregates was performed as previously described 

by SDD-AGE (Douglas et al., 2008; Kryndushkin et al., 2003). For filter trap analysis, 

cell extracts were generate in non-denaturing lysis buffer previously described (Douglas 

et al., 2008). The lysate was added to a 2X slot blot sample buffer which contained a final 

concentration of 2% SDS, 75 mM Tris-HCl pH 6.8, 2 mM EDTA, 8% 2-

mercaptoethanol, 2 mM phenylmethysulfonyl fluoride and a protease inhibitor cocktail 

(Roche).  40μl of the final sample was added to the wells of the slot blot apparatus which 

contained an equilibrated cellulose acetate membrane filter (Scherzinger et al., 1997).  

Equilibration of cellulose acetate was achieved by adding 100 μl of 1X slot blot buffer to 

the wells.  The vacuum was never applied to the slot blot apparatus.  Once samples ran 

through the filter and wells appeared dry, 100 μl of 0.1% SDS was added to the wells. 

Once dry, the membranes were washed 3 times in PBS, blocked overnight in 10% milk at 
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4°C and western blotted as previously described (Douglas et al., 2008). PVDF or 

cellulose acetate membranes were probed with α-GFP to visualize Rnq1-GFP and α-Flag 

to visualize Flag-Htt-103Q-GFP. Monitoring protein levels by western blot was 

performed as previously described (Douglas et al., 2008). 

 

Rnq1 co-immunoprecipitation with Htt: Expression of Htt-103Q-GFP in cells 

harboring pYES3-Htt-103Q-GFP was induced by supplementation with 2% galactose. 

Non-denaturing cell extracts were generated 2 hrs later under the conditions described 

(Fan et al., 2004), and α-Rnq1 was added to lysates. Htt-103Q-GFP was 

immunoprecipitated with endogenous Rnq1 and detected with α-GFP by western blot. 

Similarly, Rnq1-GFP and Rnq1-GFP-NLS were immunoprecipitated with α-Rnq1 and 

probed for binding with Htt-25Q-GFP or Htt-103Q-GFP.     

  

Size Exclusion Chromotagraphy: Non-denaturing cell extracts were generated under 

the conditions described (Behrends et al., 2006) and resolved on a Sephacryl S-200 Hi-

Prep column.  Samples were loaded onto the column and collected as previously 

described (Douglas et al., 2008).  
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