Abstract

Photochemical oxidant models are used to determine the level of control of anthropogenic hydrocarbon and nitrogen oxide emissions needed to meet the national ambient air quality standard for ozone. Current models have sophisticated representations of the physical processes controlling the sources, sinks, transport and transformations of tropospheric trace gasses. The output from these models is often simply the time dependent concentration of the trace gasses. This makes it difficult to understand exactly why the model predicts what it does. It is desirable to perform a mass balance analysis of the model output to determine the relative importance of the physical processes and chemistry which control the gas concentrations simulated by the model. A mass balance analysis would provide:

- · a tool for understanding how a model or how a specific chemical mechanism works;
- insights into the source of urban oxidant problems and the appropriateness of various control strategies;
- the ability to treat urban areas as large chemical reactors which process anthropogenic trace gas emissions before they are released to the free troposphere.

In Chapter 2, I describe modifications to a photochemical oxidant model OZIPR, a research version of EPA's Ozone Isopleth Plotting Program (OZIPP). OZIPR produces output that includes time integrated reaction rates for each reaction, and time integrated dilution, deposition and emissions for each trace gas. I then describe a FORTRAN program, IRREVAL, which can be used to analyze the integrated reaction rates and provide a series of tables showing mass balance information for ozone, nitrogen oxides, OH radicals, and other species of importance. In Chapter 7, I use OZIPR and the Empirical Kinetic Modeling Approach to evaluate the sensitivity of VOC control requirement predictions to CO concentrations. Doubling the initial and aloft CO concentrations increased the VOC control requirement from 23 to 43%. I used these model simulations as an example to illustrate the use of the IRREVAL analysis program.

Acknowledgements

I thank Dr. Harvey Jefffries for his help in developing the integrated rate analysis method and for his critical review of the source code and this manuscript. My support while performing this work was provided by a University of North Carolina Board of Governor's Fellowship and by U.S. Environmental Protection Agency Cooperative Agreement 5-35397/0-110-4630.

Contents

1	Introduction	1
	Background	1
	History of the OZIPM Model	2
	GOAL OF THIS WORK	3
2	Modifications to OZIPR	5
	Accuracy of Integrated Reaction Rates	8
3	IRREVAL Input Files	4
	CMD Input File	4
	CMP Input File	5
	IRR Input File	5
4	Algorithms	8
	Some Simple Examples	8
	Removing Cycling Processes	1
	Replacing Intermediates	4
	Using EVALUATE for a Full Mass Balance	7
	Time Dependent Analysis	10

5	IRREVAL Output Files	35
	BAL Output File	35
	O3 Output File	38
	NOX Output File	38
	HOX Output File	41
	HC Output File	44
	TIM Output File	47
6	IRR Commands	54
7	Example IRREVAL Analysis	60
	Introduction	60
	EKMA Method	60
	Single Trajectory O3 Production	62
	Design Value Simulations	71
	Control Case Simulations	71
	Doubled CO Simulations	74
	VOC Control Requirement Prediction	78
8	Concluding Remarks	84
	Future Modifications to IRREVAL	85
	Appendix A	87

.

iv

Figures

1.	Flow Chart of Subroutine Calls in OZIPR			6
2.	'OH Propagation			42
3.	'OH Chain Reaction			43
4.	O3 and NOx Profiles for Base Case and 2xCO Simulations		. 1	63
5.	Radical and HC Profiles for Base Case and 2xCO Simulations			65
6.	Pie chart of O3 sources for base case and doubled CO simulations			68
7.	Bar graph comparing VOC reacted, O3 yields and O3 production for each source			70
8.	Plots of new O3 production, the 'OH chain length and percent 'OH consumed			
	by organics for the base case. CO simulations		. '	72
9.	Design Value Simulation O3 and NOx profiles		. '	71
10.	Pie chart comparing O3 production in base case original and control simulations		. '	73
11.	Bar graph comparing VOC reacted and O3 yields in base case original and			
	control simulations			75
12.	Pie chart comparing O3 production in 2xCO simulation and control 2xCO sim-			
	ulation			77
13.	Bar graph comparing VOC reacted and O3 yields in 2xCO case and 2xCO control			
	simulations			79
14.	Bar graph comparing O3 production for VOC and non-VOC sources			81

۷

Tables

1.	Example OZIPR input file					9
2.	Example IRR File					11
3.	Example CMP File					13
4.	Example CMD Input File					16
5.	Simple BAL output File					20
6.	Command File with Cycles Removed					22
7.	BAL file with Cycles Removed					23
8.	BAL for XO2 File with Cycles Removed					25
9.	NO2 Sources with Cycles Removed and XO2 Replaced					28
10.	Example BAL Output File					37
11.	Example O3 Output File					39
12.	Example NOx Output File					40
13.	Example HOx Output File					45
14.	Example HC Output File					46
15a.	Example TIM Output File					48
15b.	Example TIM Output File					49
16.	TI2 Output File Showing Composition of NO2.					51
17.	TI4 Output File Showing Cumulative On Production					52
18.	Summary of OZIPR Simulations					61
19a.	Time dependent On Mass Balance for Base Case					66
19b.	Time dependent yields for the Base Case.			0	:	66
20n.	Time dependent On Mass Balance for 2xCO Case		0		C	67
20b.	Time dependent yields for the 2xCO case		0		÷	67
21.	Time Dependent 'OH summary for base case and 2xCO case					71
22	"OH summary for the original base case and controlled base case simulations					76
23	Time dependent OH summary for 2xCO and controlled 2xCO simulations			•		80
	A me dependent of summary for they and controlled they amulations .					00

Introduction

Background

Ozone (O_3) is a trace species normally present in the troposphere at concentrations below 60 parts per billion volume (ppbv). O_3 can be transported to the troposphere from the stratosphere or produced directly in the troposphere by photo-chemical reactions of nitrogen oxides ($NO_x = NO + NO_2$), hydrocarbons (HC) and carbon monoxide (CO). These compounds are precursors to the formation of O_3 . The simplest reaction sequence leading to O_3 production is:

 $\begin{array}{rcl} \text{CO} + & \text{OH} & + & (\text{O}_2) & \longrightarrow & \text{HO}_2^{\circ} + & \text{CO}_2 \\ & & \text{HO}_2^{\circ} & + & \text{NO} & \longrightarrow & \text{NO}_2 + & \text{OH} \\ & & & \text{NO}_2 & \xrightarrow{-\text{h}\nu} & \text{NO} & + & \text{O}(3P) \\ & & & \text{O}(3P) + & \text{O}_2 & \longrightarrow & \text{O}_3 \end{array}$

 $CO + 2O_2 \longrightarrow CO_2 + O_3$

Net Reaction:

HC and NO_x also react to produce O_3 in a similar but more complicated mechanism. HC and NO_x precursors are emitted both by natural sources and by human activities. Globally, biogenic and anthropogenic sources of NO_x and HC are highly uncertain but are roughly of the same magnitude [Logan et al., 1981]. Anthropogenic emissions, however, are concentrated in urban areas. Under conditions which enhance O_3 formation, O_3 concentrations in or near urban areas often range from 120 to over 300 ppbv. O_3 formation is enhanced by clear skies and stagnant air masses which reduce dispersion of precursors.

Ozone is also a strong oxidant which can react with and damage sensitive surfaces. The U.S Environmental Protection Agency (EPA) has designated O₃ as one of seven criteria pollutants and has set National Ambient Air Quality Standards

Introduction

for O_3 as a maximum one hour average concentration of 120 ppbv. Any state which exceeds the 120 ppbv standard more than 4 times in 3 years must develop a State Implementation Plan (SIP) demonstrating how the state will attain the standard. A SIP includes emissions inventories of volatile organic compounds (VOC) and NO_x, control measures designed to reduce the emissions, and a modeling study demonstrating that the controls are sufficient to attain the standard. Compounds such as CO, methane and ethane react relatively slowly, so EPA has defined VOC to be those hydrocarbons which react faster than ethane.

Both VOC and NO_x are needed for O_3 production to occur. In theory, one could reduce O_3 by reducing VOC emissions alone, NO_x emissions alone, or both VOC and NO_x emissions simultaneously. If the air mass were NO_x rich and VOC poor, it would be easier to meet the standard by controlling just VOC emissions. If the air mass were NO_x poor and VOC rich, it might be easier, and more economical, to control only NO_x emissions. In some case, it might be necessary to control both VOC and NO_x . In the past, EPA has encouraged only VOC controls but has allowed NO_x controls if modeling studies demonstrated them to be effective. There currently exists some controversy over which type of control is more effective and more economical [*Chameides et al.*, 1988].

History of the OZIPM Model

The EPA has sponsored basic research in photochemical mechanisms and the development of photochemical oxidant models. Until recently, EPA has recommended two modeling approaches for use in the SIP O_3 attainment demonstration. One approach requires the use of sophisticated three-dimensional airshed models. The second method, the Empirical Kinetic Modeling Approach (EKMA), is described in detail by *Hogo and Gery* [1988]. EKMA requires multiple simulations of O_3 production with a range of initial VOC and NO_x concentrations. The computer program which performs the simulations is called the Ozone Isopleth Plotting with Optional Mechanism - Version 4 (OZIPM4). OZIPM4 was based on an earlier program called the Ozone Isopleth Plotting Package (OZIPP). Although current revisions to the Clean Air Act may require the use of the more sophisticated airshed models, EPA has continued to sponsor work on the Ozone Isopleth Method. The most recent is a research oriented version of OZIPP called OZIPR.

Like the earlier versions, OZIPR is a simple trajectory model. The user specifies the initial VOC and NO_x concentrations, typically at 8 AM at the city center. OZIPR then models a column of air moving from the city center to the location of the observed O_3 maximum. Emissions along the trajectory are added to the column,

GOAL OF THIS WORK

Introduction

and the height of the column is allowed to rise following a specified mixing height profile. The species within the column may be diluted by the mixing height rise, or species may be entrained from air aloft. For example, if the initial O_3 in the column is zero and the aloft air contains 40 ppb O_3 , then O_3 will be entrained into the box until the O_3 concentration in the column reaches 40 ppb. If it exceeds 40 ppb, then O_3 in the column will be diluted until the mixing height rise ends. For guidance on using OZIPR see Gery and Crouse [1990]. For a complete description of the model, its assumptions and limitations, see Hogo and Gery [1988].

OZIPR models the reacting species in the column of air by solving a stiff system of ordinary differential equations using a Gear-type method. There is one equation for the concentration of each species \dot{x} :

$$\frac{dC_i}{dt} = \frac{\partial C_i}{\partial t}\Big|_{reac} + \frac{\partial C_i}{\partial t}\Big|_{emis} + \frac{\partial C_i}{\partial t}\Big|_{dilution} + \frac{\partial C_i}{\partial t}\Big|_{entrain} + \frac{\partial C_i}{\partial t}\Big|_{deposition}$$

The term $\partial C_i/\partial t|_{reac}$ is the sum of chemical production and chemical loss of species *i* at the current time. It is determined by calculating the rates of each reaction in the chemical mechanism. OZIPR, like most photochemical models, does not normally calculate the mass of species *i* which reacted during the time interval; it need only calculate the rate of change to correctly predict the concentration at the end of the time interval. The normal output of OZIPR, and most models, is the concentration profile of each species as a function of time. In fact, the user need not even see the concentration profiles. Using the EKMA approach, OZIPR reports the O₃ maximum for each simulation and the predicted control VOC requirement. The concentration profiles can be requested. In addition, the rate of each reaction can be requested at certain intervals. This information is, however, difficult to extract and difficult to interpret.

GOAL OF THIS WORK

Jeffries [1984] developed a method of analysis which integrates the reaction rates over time. Using his Photochemical Kinetics Simulation System (PKSS) he produces a file containing the integrated reaction rate for each reaction in the mechanism. This is the total mass, in parts per million volume (ppm), of a species with a coefficient of one, that was produced or consumed in that reaction. For example, an integrated reaction rate (IRR) of 3.0 ppm for the reaction:

 $NO + O_3 \longrightarrow NO_2 + O_2$

would indicate that 3 ppm of NO were consumed, 3 ppm of O₃ were consumed, and 3 ppm of NO₂ were produced. By summing over all the reactions, one can calculate

Introduction

GOAL OF THIS WORK

the total mass of any species produced and consumed during the simulation. Using this method, Jeffries explained the final O_3 concentration predicted by the model in terms of the ppm of new 'OH radicals produced, the chain length of 'OH propagation reactions, and the ppm of NO_2 and O_3 produced per ppm of new 'OH, (with new 'OH defined as photolytic sources of 'OH radicals).

Integrated reaction rates can also be used to perform a mass balance analysis on any species in the reacting system and to gain insights that are not possible by simply looking at the concentration profiles and O_3 maximum. For example, an integrated raction rate analysis could be used to determine how much O_3 is produced by each VOC in the VOC mixture. The process of extracting the information from the integrated rates is, however, very tedious. A computer program is needed to perform the analysis. Furthermore, the computer program must be general enough that it can read any reaction mechanism and its integrated rate file.

This report describes a FORTRAN computer program, IRREVAL, which performs an integrated rate analysis for any reaction mechanism and any photochemical model which produces output files in the correct format. Chapter Two begins by describing modifications made to OZIPR to produce the integrated rate file. Chapter Three describes the format of the OZIPR output files which are read as input files by IRREVAL. Chapter Four describes a simple example mass balance analysis which illustrates the algorithms used in IRREVAL. Chapter Five contains a more detailed listing and description of the IRREVAL output files, and Chapter Six contains a listing of IRREVAL commands and explains their use. Finally, Chapter Seven describes an example analysis using IRREVAL on a number of OZIPR simulations designed to study the sensitivity of urban O₃ formation to CO concentrations.

Modifications to OZIPR

2

I made several modifications to OZIPR to produce the integrated reaction rate file. In this section I will briefly review the operation of the numerical solver in OZIPR. I will then discuss modifications made to OZIPR and the equations used to integrate the rates. Finally, I will present integrated reaction rate output and discuss the accuracy of the integration scheme used.

OZIPR uses a Gear-type numerical integration scheme to solve the system of differential equations and to predict the species concentration profiles. The method used is described by *Hogo and Gery* [1988] and in more detail by *Spellman and Hindmarsh* [1975]. The integration begins with a time step of 10^{-10} minutes and uses the total rate of change of each species to predict the concentration at the end of the time step. A variable-order, Taylor-series-type polynomial is used to more accurately predict the concentration in subsequent steps. This allows larger time steps to be used. The Jacobian matrix containing the partial derivatives of the rate of change of each species with respect to each other species is used to correct the concentrations, update the Taylor series polynomial, and estimate the error at each step. The FORTRAN subroutines which perform the numerical integration are described below.

Figure 1 summarizes subroutine calls made by the numerical solver in OZIPR. In the OZIPR computer code OZIPMAIN is the main code which reads input files and controls the model run. SIM is the first routine called by OZIPMAIN after the input files are read. SIM sets up and controls the individual simulations and provides much of the time step dependent output. SIM calls DRIVES which is the driver routine for the integration scheme. At each time step, DRIVES calls the subroutines which implement the Gear integration scheme. These routines will also call DIFFUN which calculates the rate of change of each species due to chemical reactions, emissions, entrainment, dilution, and deposition. Several attempts may be made with successively smaller

Modifications to OZIPR

Figure 1. Flow chart of subroutine calls in OZIPR. Ellipses contain subroutines or new calls to subroutines added for the integrated rate calculations.

time steps to predict the concentrations within the specified error tolerance. After successfully reaching a time at which output was requested, DRIVES returns control to SIM. SIM writes to the output files and then returns to DRIVES to continue the integration.

I added to OZIPR a command called IRR (integrated reaction rates) which creates two new output files, an integrated reaction rate file (*.IRR) and a compressed mechanism listing file (*.CMP). These are the input files used to run the postprocessing program IRREVAL. The *.IRR file contains time integrated reaction rate for each reaction in the mechanism, and then lists the initial concentrations, final concentrations and time integrated emissions, net dilution, and deposition terms for each species in the mechanism.

I added the following FORTRAN subroutines to OZIPR to create the *.IRR and *.CMP files:

MECCMP.FOR IRRINIT.FOR REINITIRR.FOR IRRMASBAL.FOR I also made several modifications to the numerical solver described above to integrate the reaction rates. When the IRR command is used, OZIPMAIN will call IRRINIT before calling SIM to save the initial species concentration in the array initconc. OZIPMAIN then begins the simulation by calling SIM. After successfully completing a time step (as described above), DRIVES makes one additional call to DIFFUN passing it the current time and species concentrations. These are used to calculate the instantaneous rates of reactions, emissions, and deposition. The rates are integrated by averaging the rate from the current time with the rates from the previous time step and multiplied by the length of the time step. This calculates the incremental change in mass:

$$\Delta R_j^t \approx \left(k_i^t \prod_{1 \le j \le 3} C_j^t + k_i^{t-1} \prod_{1 \le j \le 3} C_j^{t-1}\right) \frac{\Delta t}{2}$$

where ΔR_j^i is the integrated reaction rate for the time step in units of ppm, k_i is the rate constant for reaction *i*, and C_j are the reactants in reaction *i*.

The integrated rates of diluted emissions, total emissions, net entrainment, and deposition are also calculated for each species. The increment of production or loss of species *i* due to process *k* during each time interval t - 1 to *t* is calculated as:

$$\Delta C_{k,i}^{t} \approx \left(\frac{dC_{i}}{dt} \Big|_{k}^{t} - \frac{dC_{i}}{dt} \Big|_{k}^{t-1} \right) \frac{\Delta t}{2}$$

To summarize, the instantaneous rates at each time step is averaged with the rate from the previous time step and then multiplied by the length of the time step. This calculates the incremental change in mass, in units of ppm, during the time step.

At the end of the simulation OZIPMAIN calls IRRMASBAL. IRRMASBAL sums the chemical loss and production of each species, and then calculates the predicted final concentration using a mass balance on all the sink/source terms for each species. Finally, IRRMASBAL writes the integrated reaction rate for each reaction and the integrated rates of change due to the various sink and source terms for each species to the *.IRR file.

Table 1 lists an example OZIPR input file which illustrates the use of the 188 command. When the OZIPR command:

IRR = CMP;

Modifications to OZIPR

Table 1. Example OZIPR input file using IRR command

```
1 | Example OZIPR input file with IRR Command
 2 af:\ozipr\mec\mecn.cb4
 3 @f:\ozipr\mec\zenn.cb4
 4 PLACE >
            CITY = Atlanta, GA;
                               LON = 84.417,
                                                 TZone = 4,
            LAT = 33.65,
 5
            YEAR = 1984,
                              HONTH = 6,
                                                 DAY = 4; <
 6
 7 BOUNdary >
 8 REAC =
 9 PAR,
                0.5640,
                             0.4980,
                                          0.4980,
10 ETH,
                0.0370,
                             0.0340,
                                          0.0340,
                             0.0200,
                                          0.0200,
11 OLE,
                0.0350,
                0.0890,
                             0.0420,
                                          0.0420,
12 TOL,
13 XYL,
                             0.0260,
                                          0.0260,
                0.1170,
                                          0.0700,
                0.0210,
                             0.0700,
14 FORM,
15 ALD2,
                0.0520,
                             0.0370,
                                          0.0370,
16 NR,
                0.0850,
                             0.2730,
                                          0.2730;
17
        IFRACtion_NO2 = 0.25;
18
        TRANsport =
         O3SUrface = 0,
19
                   = 0.039,
20
         03ALoft
21
         HCSUrface = 0.038,
22
         HCALoft
                    = 0.02,
23
         NOXSUrface = 0,
         NOXALoft = 0,
24
25
         COSU
                    = 1.2,
26
         COAL
                    = 0.5;< (BOUN)
27
     HET > DILU =
               MHINITIAL = 250,
28
                                     (DF = 510)
               HHFINAL = 1515;<
29
                                     (DF = 630)
30 TITLE > Base Case 0.6:0.1, Std VOC <
31 af:\inc_reac\base.ems
32 MODIFY > AC = 0.00001; <
33 TIME > 800, 2100 <
34 IRR = TIME, CMP;
35 CALC >
36
       NHOC = 0.6;
       NOX = 0.1;
37
38
       PRINT [BRIEF] =
39
         TINI=60,
40
         TSTE=60;
41
       FILE[1]=ALL;< (CALC)
42 END.
```

is used, OZIPMAIN will call the subroutine MECCMP which creates a *.CMP file that contains an abbreviated form of the mechanism listing the reactants and products for each reaction. Example *.IRR and *.CMP files are shown in Table 2 and Table 3. They are described in detail in Chapter 3.

Integrated rate output can also be requested at specified time intervals during the simulation using the OZIPR command:

IRR = TIME;

The time intervals for IRR output are specified using the TINIT and TSTEP options under the PRINT command (default values are 60 minutes). This is the same command used to specify the time interval at which to print species concentrations to the screen and to the OZIPR *.OUT file. When OZIPR reaches one of these output time intervals, DRIVES returns to SIM to write the output. If the IRR = TIME; option is used, IRRMASBAL will be called each time DRIVES returns to SIM. This will cause the integrated rates for the time interval to be printed to the *.IRR file for each output interval. IRRMASBAL will also call REINITIRR to re-initialize the integrated rate arrays for the next time interval.

Accuracy of Integrated Reaction Rates

We need a test to verify that the method used above to integrate the rates is performing adequately. If the method is sound, one would expect a mass balance on the integrated rates to predict nearly the same final concentration as does the Gear method. The subroutine IRRMASBAL performs the mass balance and writes the Gear predicted concentrations and the mass balance calculated concentrations to the IRR file. Table 2 is the IRR file created by the OZIPR input file shown in Table 1. The last two columns of the second page of Table 2 shows the comparison of the OZIPR predicted final concentrations to the final concentrations calculated using a mass balance on the integrated rates. The two values for the final concentrations are nearly equal for species with significant concentrations at the end of the simulation. For example, OZIPR predicts a final O₃ concentration of 0.1444 ppm, and a mass balance on the integrated rates also predicts a final O₃ concentration of 0.1444 ppm.

The final concentrations differ for species which approach zero concentration at the end of the simulation. This occurs because of round-off errors when summing relatively large sink and source terms that nearly cancel out. For example, several ppb of 'OH may react during the simulation, but the final concentration is nearly

8

Modifications to OZIPR

Accuracy of Integrated Reaction Rates

e.e

zero. The discrepancy occurs at final concentrations lower than 10⁻⁸ ppm. This is essentially zero and may be neglected.

10 %

Accuracy of Integrated Reaction Rates

Modifications to OZIPR

Table 2. Example IRR file created from the OZIPR input file shown in Table 1.

IRR

"Base (Case 0.6:0.1, Std VOC"		
1-09/29	/90 1/:14:2/"		
I"KXN N	o Int sate		1 (000///2200/015-02
(1)	4.151654049375572+00	(45)	1.09000042/994912-02
(2)	5.519360446440632+00	(44)	1.100/29/0340/022-03
(3)	4.002363331378082+00	(45)	7.100140472017002-04
(4)	3.00001/0/2394932-04	(40)	1.090331331022116-02
())	4.900020240247985-05	(4/)	5.2090//01/556592-02
(0)	4.09808000113115E-05	(48)	5.04/519290/8/23E-02
6 0	1.89740009972245E-02	(49)	4.78/7/564193362E-05
(8)	1.30293045499928E+00	(50)	7.33516621482771E-04
(9)	7.098911409940882-02	(51)	4.21381514210/8/2-03
(10)	6.13601937618200E-02	(52)	1.721383151361528-02
CID	9.625929059791822-05	(53)	9.100038/5/5/5048-03
(12)	1.799814879978292-05	(54)	4.09556861921389E-03
(13)	5.32501027765866E-03	(55)	1.01058142969628E-05
(14)	4.327427457538082-03	(56)	1.89491298546057E-05
(15)	1.433333003846202-02	(50)	4.08054398030878E-03
(10)	1.794973383006712-06	(58)	4.32897314842512E-04
(10)	5.191556000982872-03	(59)	7.12430830/99501E-0/
(18)	3.831593/57/2563E-05	(60)	5.2411/6509632//E-06
(19)	5.11733006035255E-03	(61)	3.122562234348/1E-03
(20)	5.14944861606306E-05	(62)	2.03403584042478E-04
(21)	6.47762242533742E-08	(63)	1.84414720728490E-03
(22)	6.26221481954433E-03	(64)	6.16203718485416E-04
(23)	5.85598452339812E-03	(65)	1.42272027576837E-03
(24)	1.09179186726886E-04	(66)	1.66052432376600E-03
(25)	1.36818038400354E-10	(67)	7.18848599254689E-04
(26)	2.42100444288025E-02	(68)	1.383050796820468-03
(20)	5.13348/23413648E-04	(69)	5.1224611/503/21E-04
(28)	1.0/3260643303/5E-01	C 705	3.592529936117388-04
(29)	8.69611250035314E-02	C 713	2.85556312473819E-05
(30)	8.69270601187410E-02	(72)	3.35405320131073E-03
(31)	2.50874350310208E-05	(73)	5.80309844377548E-04
(32)	2.09113025370469E-03	(74)	1.63464467140638E-03
(33)	1.70133949693297E-03	(75)	0.0000000000000E+00
(34)	1.75096423736573E-04	(76)	0.000000000000E+00
(35)	3.22647730929988E-04	(77)	0.0000000000000E+00
(36)	3.72808690770314E-02	(78)	0.0000000000000E+00
(37)	1.49206616471732E-02	(79)	5.65245621722099E-02
(38)	6.18464466803960E-03	(80)	4.20964992618864E-04
(39)	1.06643652779432E-02	(81)	2.59288563342004E-03
(40)	2.40768978595708E-06	(82)	1.81303732083587E+01
(41) .	5.49877140165445E-06	;	
(42)	5.74738432788049E-06		

Modifications to OZIPR

"NO2 " 2.50E-02 4.34E+00 4.35E+00 -4.25E-02 1.52E-03 3.0E-03 1.587E-03 1.567E-19 -8.287E-08 "03 @ 0.00E+00 5.51E+00 2.81E-02 0.00E+00 0.0E+00 1.547E-19 -8.287E-08 "NO3 @ 0.00E+00 0.51E+00 2.66E-02 -1.03E-07 0.00E+00 0.0E+00 0.00E+00 -8.279E-09 "NO2 @ 0.00E+00 1.38E-01 -2.02E-07 0.00E+00 0.0E+00 4.735E-06 4.97E-09 -9.536E-08 "NO2 @ 0.00E+00 5.15E-00 5.0E+03 5.0E+07 0.00E+00 0.0E+00 4.755E-02 1.575E-02 "NNA @ 0.00E+00 5.15E+03 5.26E+03 5.26E+03 5.26E+02 5.16E+03 <th>1"spe</th> <th>ci</th> <th>enthitial</th> <th>Reacted</th> <th>Produced</th> <th>WWNet Entra</th> <th>In""Enia"</th> <th>"Tot Enis"</th> <th>"Final C</th> <th>"Cale C"</th>	1"spe	ci	enthitial	Reacted	Produced	WWNet Entra	In""Enia"	"Tot Enis"	"Final C	"Cale C"
"NO " 7.50E-02 4.20E+00 4.15E+00 -5.50E-02 2.89E-02 5.7E-02 3.271E-03 1.061E-05 "O " 0.00E+00 5.51E+00 4.75E-09 0.00E+00 0.5E-19 -8.287E-08 "NO3 " 0.00E+00 5.46E+00 5.51E+00 2.81E-02 0.00E+00 0.0E+00 1.547E-19 -8.287E-08 "NO3 " 0.00E+00 2.45E+02 2.46E+02 1.03E+07 0.00E+00 0.0E+00 6.332E+05 6.332E+05 6.332E+05 6.342E+05 6.342E+05 6.342E+05 6.342E+05 6.342E+05 6.342E+05 6.342E+05 6.342E+05 6.342E+05 6.352E+05 7.53E+08 1.99PE+04 1.79PE+02 7.09E+02 7.02E+07 0.00E+00 0.0E+00 2.00E+04 1.99PE+04 1.99PE+04 1.99PE+04 3.75E+02 3.53E+05 3.53E+02 1.953E+02 1.953E+	"NO2		2.50E-02	4.34E+00	4.35E+00	-4.25E-02	1.52E-03	3.0E+03	1.587E-03	1.581E-03
"0 # 0.00E+00 5.51E+00 5.51E+00 2.479E-09 0.00E+00 0.0E+00 1.567E-19 -8.287E-08 "03 # 0.00E+00 5.40E+00 5.51E+00 2.41E+02 0.00E+00 0.0E+00 1.444E-01 "N03 # 0.00E+00 2.45E+02 2.46E+02 -1.03E+07 0.00E+00 0.0E+00 6.332E+05 6.340E+05 "D10 # 0.00E+00 7.09E+02 -1.56E+10 0.00E+00 0.0E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.382+01 1.20E+07 0.00E+00 0.0E+00 4.735E+04 4.596E+06 "M20 #.00E+00 5.15E+03 5.19E+03 -6.09E+07 0.00E+00 0.0E+00 1.635E+07 9.168E+07 "MN03" 0.00E+00 5.96E+03 6.26E+03 -2.96E+04 0.00E+00 0.0E+00 1.635E+07 1.63E+07 "MNA" 0.00E+00 5.96E+03 6.26E+03 -2.96E+04 0.00E+00 0.0E+00 1.635E+07 1.63E+07 "MNA" 0.00E+00 5.96E+03 6.26E+03 -3.35E+06 0.00E+00 <t< td=""><td>"NO</td><td></td><td>7.50E-02</td><td>4.20E+00</td><td>4.15E+00</td><td>-5.50E-02</td><td>2.89E-02</td><td>5.7E-02</td><td>3.271E-08</td><td>1.061E-05</td></t<>	"NO		7.50E-02	4.20E+00	4.15E+00	-5.50E-02	2.89E-02	5.7E-02	3.271E-08	1.061E-05
**03 **0.00E+00 5.51E+00 2.81E+02 0.00E+00 0.0E+00 1.444E+01 1.444E+01 **N03 **0.00E+00 2.45E+02 2.46E+02 -1.03E+07 0.00E+00 0.0E+00 6.332E+05 6.340E+09 **N01 **0.00E+00 7.09E+02 7.09E+02 -1.56E+10 0.00E+00 0.0E+00 0.00E+04 1.99E+04 **N02 2.00E+04 1.33E+01 1.33E+01 -2.02E+07 0.00E+00 0.0E+00 4.917E+09 -9.536E+08 **N02* 0.00E+00 2.07E+01 2.07E+03 0.00E+00 0.0E+00 4.735E+05 4.596E+05 **N02* 0.00E+00 5.15E+03 5.19E+03 -6.09E+07 0.00E+00 0.0E+00 1.953E+02 1.953E+02 **N00* 0.00E+00 5.15E+03 6.26E+03 -2.96E+04 0.00E+00 0.0E+00 1.953E+02 1.953E+02 **N00* 0.00E+00 5.96E+03 6.26E+02 -7.41E+06 0.00E+00 0.0E+00 1.633E+06 1.566E+03 **N00* 0.00E+00 3.291E+03 3.291E+03 3.291E+03 3.291E+03 3.291E+03 3.291E+03	"0		0.00E+00	5.51E+00	5.51E+00	-4.79E-09	0.00E+00	0.0E+00	1.567E-19	-8.287E-08
K03 # 0.00E+00 2.45E-02 2.46E-02 +1.03E-07 0.00E+00 0.0E+00 6.332E-05 6.340E-05 **ND # 0.00E+00 7.09E-02 7.09E-02 +1.56E-10 0.00E+00 0.0E+00 0.00E+00 4.97E-09 **ND # 0.00E+00 1.38E-01 1.38E-01 -2.02E-07 0.00E+00 0.0E+00 4.97E-09 -9.536E-08 **NO2 # 0.00E+00 5.15E-03 5.19E-03 -6.09E-07 0.00E+00 0.0E+00 3.526E-05 3.530E-05 **NA05 0.00E+00 5.15E-03 5.19E-03 -6.09E-07 0.00E+00 0.0E+00 3.526E-05 3.530E-05 **NA05** 0.00E+00 5.15E-03 5.19E-03 -2.96E-04 0.00E+00 0.0E+00 1.63E-07 9.168E-07 **NA08 0.00E+00 8.69E-02 -7.41E-06 0.00E+00 0.0E+00 3.291E-03 3.291E-03 **NA0 0.00E+00 3.72E-02 3.56E-02 2.18E-03 4.632E-03 4.633E-03 *4.633E-03 **LD2* 1.20E+00 3.72E-02 3.24E-02 -1.54E-02 2.18E-03 6.0E-03 2.339E-03 <td>"03</td> <td></td> <td>0.00E+00</td> <td>5.40E+00</td> <td>5.51E+00</td> <td>2.81E-02</td> <td>0.00E+00</td> <td>0.0E+00</td> <td>1.444E-01</td> <td>1.4448-01</td>	"03		0.00E+00	5.40E+00	5.51E+00	2.81E-02	0.00E+00	0.0E+00	1.444E-01	1.4448-01
"01D " 0.00E+00 7.09E-02 7.09E-02 -1.56E-10 0.00E+00 0.0E+00 2.00E+00 -8.279E-09 "%Z0 " 2.00E+04 1.13E-02 0.00E+00 0.00E+00 0.0E+00 2.00E+04 1.999E+04 "M01 " 0.00E+00 1.38E-01 2.02E+07 0.00E+00 0.0E+00 4.917E-09 -9.536E-08 "M20 " 0.00E+00 5.15E-03 5.19E-03 -6.09E-07 0.00E+00 0.5E+00 4.97E-03 3.526E-05 3.530E-05 "WA0 " 0.00E+00 5.15E-03 5.19E-03 -2.94E-04 0.00E+00 0.0E+00 3.526E-05 3.530E-02 "WA0 " 0.00E+00 5.96E-02 8.69E-02 -7.41E-06 0.00E+00 0.0E+00 3.291E-03 3.291E-03 "#C0 " 1.20E+00 3.72E-02 3.56E-02 -5.88E-01 0.00E+00 0.0E+00 5.774E-06 5.734E-03 4.633E-03 "#LD2" 1.63E-02 1.76E-02 1.69E-02 -1.59E-02 2.70E-03 4.63E-03 2.339E-03 2.339E-03 "#LD2" 0.00E+00 7.04E-02 7.24E-02 -2.29E-07 0.00E+00	"NO3		0.00E+00	2.45E-02	2.46E-02	-1.03E-07	0.00E+00	0.0E+00	6.332E-05	6.340E-05
"N20 " 2.00E+04 1.13E-02 0.00E+00 0.00E+00 0.0E+00 0.0E+00 2.000E+04 1.999E+04 "N01 " 0.00E+00 1.38E-01 1.38E-01 -2.02E+07 0.00E+00 0.0E+00 4.017E+09 -9.536E+08 "N02 " 0.00E+00 2.07E+01 -2.29E+06 0.00E+00 0.0E+00 4.735E+06 4.8966+06 "N205" 0.00E+00 5.15E+03 5.19E+03 -6.09E+07 0.00E+00 0.0E+00 3.526E+03 3.530E+05 "NN03" 0.00E+00 5.96E+03 6.26E+03 -2.96E+04 0.00E+00 0.0E+00 1.953E+02 1.953E+02 "NNA" 0.00E+00 8.69E+02 3.35E+06 0.00E+00 0.0E+00 3.291E+03 3.291E+03 "HOR" 1.52E+02 3.17E+02 3.24E+02 -1.34E+02 2.18E+03 4.9E+03 4.633E+03 4.633E+03 "HO2" 1.63E+02 1.76E+02 1.69E+02 -2.29E+07 0.00E+00 0.0E+00 5.774E+06 5.784E+06 "H20" 1.63E+02 1.76E+02 1.59E+02 -3.21E+01 5.86E+02 1.34E+03 4.632E+03 <	"01D		0.00E+00	7.09E-02	7.09E-02	-1.56E-10	0.00E+00	0.0E+00	0.000E+00	-8.279E-09
"OH # 0.00E+00 1.38E-01 1.38E-01 -2.02E+07 0.00E+00 0.0E+00 4.917E-09 -9.536E+08 "H02 # 0.00E+00 2.07E+01 2.07E+01 -2.29E+06 0.00E+00 0.0E+00 3.526E+05 3.530E+05 "HN03# 0.00E+00 5.15E+03 5.19E+03 -6.09E+07 0.00E+00 0.0E+00 3.526E+05 3.530E+05 "HNN0# 0.00E+00 5.96E+03 -6.09E+07 0.00E+00 0.0E+00 1.953E+02 1.958E+02 "HNN0# 0.00E+00 5.96E+02 -6.26E+03 -2.96E+04 0.00E+00 0.0E+00 1.633E+07 9.168E+07 "PNA # 0.00E+00 8.69E+02 3.59E+03 -3.35E+06 0.00E+00 0.0E+00 3.291E+03 3.291E+03 "#C0 # 1.20E+00 3.72E+02 3.56E+02 -5.88E+01 0.00E+00 0.0E+00 4.633E+03 4.633E+03 "#LD2# 1.63E+02 1.76E+02 1.59E+02 2.70E+03 6.0E+03 2.339E+03 2.339E+03 "#LD2# 1.63E+02 5.73E+02 5.73E+02 5.11E+04 0.00E+00 0.0E+00 5.774E+06 5.774E+06 <t< td=""><td>***20</td><td></td><td>2.00E+04</td><td>1.13E-02</td><td>0.00E+00</td><td>0.00E+00</td><td>0.00E+00</td><td>0.0E+00</td><td>2.000E+04</td><td>1.9995+04</td></t<>	***20		2.00E+04	1.13E-02	0.00E+00	0.00E+00	0.00E+00	0.0E+00	2.000E+04	1.9995+04
"HO2 " 0.00E+00 2.07E-01 2.07E-01 -2.29E-06 0.00E+00 0.0E+00 4.735E-06 4.896E-06 "HX05" 0.00E+00 5.15E-03 5.19E-03 -6.09E-07 0.00E+00 0.0E+00 3.526E-05 3.530E-05 "HKN03" 0.00E+00 5.13E-04 2.50E-02 -4.97E-03 0.00E+00 0.0E+00 1.953E-02 1.953E-02 "HON0" 0.00E+00 5.96E-03 6.26E-03 -2.96E-04 0.00E+00 0.0E+00 1.633E-06 1.566E-06 "WK02" 0.00E+00 8.69E-02 3.74E-02 3.56E-02 -5.48E-01 0.00E+00 0.0E+00 3.291E-03 3.291E-03 "C0 " 1.20E+00 3.72E-02 3.56E-02 -1.34E-02 2.18E-03 4.632E-03 4.633E-03 4.633E-03 "ALD2" 1.63E-02 1.76E-02 1.69E-02 -1.59E-02 2.70E-03 6.0E+00 5.774E+06 5.774E+06 <td>"OH</td> <td></td> <td>0.00E+00</td> <td>1.388-01</td> <td>1.38E-01</td> <td>-2.02E-07</td> <td>0.00E+00</td> <td>0.0E+00</td> <td>4.917E-09</td> <td>-9.536E-08</td>	"OH		0.00E+00	1.388-01	1.38E-01	-2.02E-07	0.00E+00	0.0E+00	4.917E-09	-9.536E-08
"N205" 0.00E+00 5.15E-03 5.19E-03 -6.09E-07 0.00E+00 0.0E+00 3.526E-05 3.530E-05 "HN03" 0.00E+00 5.13E-04 2.50E-02 -4.97E-03 0.00E+00 0.0E+00 1.953E-02 1.953E-02 "HON0" 0.00E+00 5.96E+03 6.26E+03 -2.96E+04 0.00E+00 0.0E+00 1.633E+06 1.566E+06 "#NA 0.00E+00 8.09E+02 8.69E+02 -7.41E+06 0.00E+00 0.0E+00 1.633E+06 1.566E+06 "#A20" 0.00E+00 3.72E+02 3.55E+02 -5.88E+01 0.00E+00 0.0E+00 3.291E+03 "#C0 " 1.20E+00 3.77E+02 3.24E+02 -1.34E+02 2.18E+03 4.9E+03 4.633E+03 4.633E+03 "#LD2" 1.63E+02 1.69E+02 -1.59E+02 2.70E+03 6.0E+03 2.339E+03 2.339E+03 "#C203" 0.00E+00 7.04E+02 7.04E+02 2.18E+03 4.0E+03 1.642E+05 1.645E+05 "#X02" 0.00E+00 5.074E+02 5.26E+02 5.11E+04 0.00E+00 0.0E+00 1.642E+05 1.645E+05	"802	H.	0.00E+00	2.07E-01	2.07E-01	-2.29E-06	0.00E+00	0.0E+00	4.735E-06	4.896E-06
"HN03" 0.00E+00 5.13E-04 2.50E-02 -4.97E-03 0.00E+00 0.0E+00 1.953E-02 1.953E-02 "HON0" 0.00E+00 5.96E-03 6.26E-03 -2.96E-04 0.00E+00 0.0E+00 8.163E-07 9.168E-07 "PNA " 0.00E+00 8.69E-02 8.69E-02 -7.41E-06 0.00E+00 0.0E+00 1.633E-06 1.566E-06 "H202" 0.00E+00 3.72E-02 3.56E-02 -5.88E-01 0.00E+00 0.0E+00 6.101E-01 6.101E-01 "FORM" 1.52E-02 3.17E-02 3.24E-02 -1.34E+02 2.18E+03 4.9E-03 4.633E-03 4.632E-03 5.774E-06 5.774E-06 5.784E-06 *********	"N205		0.00E+00	5.15E-03	5.19E-03	-6.09E-07	0.00E+00	0.0E+00	3.5268-05	3.530E-05
"HONO" 0.00E+00 5.96E+03 6.26E+03 -2.96E+04 0.00E+00 0.0E+00 8.163E+07 9.168E+07 "PNA " 0.00E+00 8.69E+02 8.69E+02 -7.41E+06 0.00E+00 0.0E+00 3.291E+03 3.291E+03 "HONO" 1.20E+00 3.72E+02 3.56E+02 -5.88E+01 0.00E+00 0.0E+00 6.101E+01 6.101E+01 "FORH" 1.52E+02 3.17E+02 3.24E+02 -1.34E+02 2.18E+03 4.9E+03 4.633E+03 4.633E+03 "ALD2" 1.63E+02 1.76E+02 1.69E+02 -1.59E+02 2.70E+03 6.0E+00 5.77E+06 5.78E+03 "ALD2" 1.63E+00 7.04E+02 7.04E+02 -2.29E+07 0.00E+00 0.0E+00 1.642E+05 1.463E+05 "PAN " 0.00E+00 5.73E+02 5.73E+02 -3.21E+01 5.86E+02 1.3E+01 1.642E+05 1.464E+05 "PAR " 3.57E+01 1.72E+02 -2.19E+02 -3.21E+01 5.86E+02 1.3E+01 5.563E+02 5.564E+02 "K02 " 0.00E+00 1.32E+02 1.32E+03 1.60E+00 1.516E+05	"HNO3		0.00E+00	5.13E-04	2.50E-02	-4.97E-03	0.00E+00	0.0E+00	1.9538-02	1.953E-02
"PNA # 0.00E+00 8.69E-02 8.69E-02 -7.41E-06 0.00E+00 0.0E+00 1.633E-06 1.566E-06 "H202" 0.00E+00 4.97E-04 3.79E-03 -3.35E-06 0.00E+00 0.0E+00 3.291E-03 3.291E-03 "C0 " 1.20E+00 3.72E-02 3.56E-02 -5.88E-01 0.00E+00 0.0E+00 6.101E-01 6.101E-01 "FORH" 1.52E-02 3.17E-02 3.24E-02 -1.34E-02 2.18E-03 4.09E-03 4.633E-03 4.633E-03 "ALD2" 1.669E-02 1.59E-02 2.70E-03 6.0E-03 2.339E-03 2.339E-03 "C203" 0.00E+00 7.04E-02 7.04E-02 2.29E-07 0.00E+00 0.0E+00 1.642E+05 5.784E-06 "X02 " 0.00E+00 5.073E-02 5.71E-04 0.00E+00 0.0E+00 1.642E+05 1.462E+05 "PAR " 3.57E-01 1.72E-02 -2.19E-02 -3.21E-01 5.86E-02 1.3E+01 1.642E+05 1.116E+05 "R0R " 0.00E+00 2.59E-03 2.60E-03 5.93E+07 0.00E+00 0.0E+00 1.116E+05 1.116E+05	"HONO	n.	0.00E+00	5.96E-03	6.26E-03	-2.96E-04	0.00E+00	0.0E+00	8.163E-07	9.168E-07
##202# 0.00E+00 4.97E-04 3.79E-03 -3.35E-06 0.00E+00 0.0E+00 3.291E-03 3.291E-03 #CD 1.20E+00 3.72E-02 3.56E-02 -5.88E-01 0.00E+00 0.0E+00 6.101E-01 6.101E-01 #FORH# 1.52E-02 3.17E-02 3.24E-02 -1.34E-02 2.18E-03 4.9E-03 4.633E-03 4.633E-03 #ALD2# 1.63E-02 1.76E-02 1.69E-02 -1.59E-02 2.70E-03 6.0E-03 2.339E-03 2.339E-03 #C203# 0.00E+00 7.04E-02 7.04E-02 2.29E-07 0.00E+00 0.0E+00 5.774E+06 5.784E-06 #X02 0.00E+00 5.73E-02 5.73E-02 -1.16E-06 0.00E+00 0.0E+00 1.642E+05 1.645E+05 #PAR 0.00E+00 5.04E+02 5.26E+02 -5.11E+04 0.00E+00 0.0E+00 1.710E+03 1.710E+03 #VAR 0.00E+00 5.074E+02 5.26E+02 -5.11E+04 0.00E+00 0.0E+00 1.116E+05 1.116E+05 #VAR 0.00E+00 1.32E+03 2.60E+03 5.93E+07 0.00E+00 0.0E	PNA		0.00E+00	8.69E-02	8.69E-02	-7.41E-06	0.00E+00	0.0E+00	1.633E-06	1.566E-06
"CO " 1.20E+00 3.72E-02 3.56E-02 -5.88E-01 0.00E+00 0.0E+00 6.101E-01 6.101E-01 "FORH" 1.52E-02 3.17E-02 3.24E-02 -1.34E-02 2.18E-03 4.9E-03 4.633E-03 4.633E-03 "ALD2" 1.63E-02 1.76E-02 1.69E-02 -1.59E-02 2.70E-03 6.0E-03 2.339E-03 2.339E-03 "C203" 0.00E+00 7.04E-02 7.04E-02 -2.29E-07 0.00E+00 0.0E+00 5.774E-06 5.784E-06 "X02 " 0.00E+00 5.73E-02 5.73E-02 -1.16E-06 0.00E+00 0.0E+00 1.642E-05 1.645E-05 "PAN " 0.00E+00 5.04E-02 5.26E-02 -5.11E-04 0.00E+00 0.0E+00 1.710E-03 1.710E-03 "PAR " 3.57E-01 1.72E-02 -2.19E-02 -3.21E-01 5.86E-02 1.3E-01 5.63E-02 5.564E-02 "X02N" 0.00E+00 2.59E-03 2.60E-03 5.93E-07 0.00E+00 0.0E+00 1.116E-05 1.116E-05 "R0R " 0.00E+00 1.32E-02 1.32E-03 1.48E-03 3.467E-04	=H202		0.00E+00	4.97E-04	3.79E-03	-3.35E-06	0.00E+00	0.0E+00	3.291E-03	3.291E-03
"FORM" 1.52E-02 3.17E-02 3.24E-02 -1.34E-02 2.18E-03 4.633E-03 4.633E-03 "ALD2" 1.63E-02 1.76E-02 1.69E-02 -1.59E-02 2.70E-03 6.0E-03 2.339E-03 2.339E-03 "C203" 0.00E+00 7.04E-02 7.04E-02 -2.29E-07 0.00E+00 0.0E+00 5.774E+06 5.784E-06 "X02 " 0.00E+00 5.73E-02 5.73E-02 -1.16E-06 0.00E+00 0.0E+00 1.642E+05 1.645E+05 "PAN " 0.00E+00 5.04E-02 5.26E+02 -5.11E+04 0.00E+00 0.0E+00 1.710E+03 1.710E+03 "PAR " 3.57E+01 1.72E+02 -2.19E+02 -3.21E+01 5.86E+02 1.3E+01 5.563E+02 5.564E+02 "X02N" 0.00E+00 2.59E+03 2.60E+03 -5.93E+07 0.00E+00 0.0E+00 1.116E+05 1.116E+05 "ROR " 0.00E+00 1.32E+02 -7.79E+11 0.00E+00 0.0E+00 8.209E+13 -7.118E+10 "CLE " 1.08E+02 4.51E+03 0.00E+00 4.97E+04 4.098E+04 "TOL "	-00		1.20E+00	3.728-02	3.56E-02	-5.88E-01	0.00E+00	0.02+00	6.101E-01	6.101E-01
"ALD2" 1.63E-02 1.76E-02 1.69E-02 -1.59E-02 2.70E-03 6.0E-03 2.339E-03 2.339E-03 "C203" 0.00E+00 7.04E-02 7.04E-02 -2.29E-07 0.00E+00 0.0E+00 5.774E+06 5.784E+06 "X02 " 0.00E+00 5.73E+02 5.73E+02 -1.16E+06 0.00E+00 0.0E+00 1.642E+05 1.645E+05 "PAN " 0.00E+00 5.04E+02 5.26E+02 -5.11E+04 0.00E+00 0.0E+00 1.710E+03 1.710E+03 "PAR " 3.57E+01 1.72E+02 -2.19E+02 -3.21E+01 5.86E+02 1.3E+01 5.563E+02 5.564E+02 "X02M" 0.00E+00 2.59E+03 2.60E+03 -5.93E+07 0.00E+00 0.0E+00 1.116E+05 1.116E+05 "R0R " 0.00E+00 1.32E+02 -7.79E+11 0.00E+00 0.0E+00 1.535E+05 1.549E+05 "CLE " 1.08E+02 4.51E+03 0.00E+00 -8.17E+03 1.81E+03 4.0E+03 3.467E+04 3.469E+04 "TOL " 7.85E+03 1.84E+03 0.00E+00 -6.92E+03 1.32E+03 2.9E+03	*FORM		1.52E-02	3.17E-02	3.248-02	-1.34E-02	2.182-03	4.9E-03	4.633E-03	4.633E-03
"C203" 0.00E+00 7.04E-02 7.04E-02 -2.29E-07 0.00E+00 0.0E+00 5.774E+06 5.784E+06 "X02 " 0.00E+00 5.73E+02 5.73E+02 -1.16E+06 0.00E+00 0.0E+00 1.642E+05 1.645E+05 "PAN " 0.00E+00 5.04E+02 5.26E+02 -5.11E+04 0.00E+00 0.0E+00 1.710E+03 1.710E+03 "PAR " 3.57E+01 1.72E+02 -2.19E+02 -3.21E+01 5.86E+02 1.3E+01 5.563E+02 5.564E+02 "X02W" 0.00E+00 2.59E+03 2.60E+03 -5.93E+07 0.00E+00 0.0E+00 1.116E+05 1.116E+05 "R0R " 0.00E+00 1.32E+02 -7.79E+11 0.00E+00 0.0E+00 8.209E+13 -7.118E+10 "CLE " 1.08E+02 4.51E+03 0.00E+00 -8.17E+03 1.81E+03 4.0E+03 1.535E+05 1.549E+05 "TOL " 7.85E+03 1.84E+03 0.00E+00 -0.0E+00 9.856E+09 2.796E+09 "TOL " 7.85E+03 1.32E+03 -1.32E+03 2.9E+03 4.097E+04 4.098E+04 "CRS "	"ALDZ		1.63E-02	1.768-02	1.69E-02	-1.59E-02	2.70E-03	6.0E-03	2.339E-03	2.339E-03
"X02 # 0.00E+00 5.73E-02 5.73E-02 -1.16E-06 0.00E+00 0.0E+00 1.642E+05 1.645E+05 "PAN # 0.00E+00 5.04E+02 5.26E+02 -5.11E+04 0.00E+00 0.0E+00 1.710E+03 1.710E+03 "PAR # 3.57E+01 1.72E+02 -2.19E+02 -3.21E+01 5.86E+02 1.3E+01 5.563E+02 5.564E+02 "X02W # 0.00E+00 2.59E+03 2.60E+03 -5.93E+07 0.00E+00 0.0E+00 1.116E+05 1.116E+05 "R0R # 0.00E+00 1.32E+02 1.32E+02 -7.79E+11 0.00E+00 0.0E+00 8.209E+13 -7.118E+10 "CLE # 1.08E+02 4.51E+03 0.00E+00 -8.17E+03 1.81E+03 4.0E+03 1.535E+05 1.549E+05 "ETH # 1.17E+02 3.33E+03 0.00E+00 -9.99E+03 1.92E+03 4.3E+03 3.467E+04 4.098E+04 "TOL # 7.85E+03 1.84E+03 0.00E+00 -6.92E+03 1.32E+03 2.9E+03 4.097E+04 4.098E+04 "TO2 # 0.00E+00 2.03E+03 2.75E+03 -1.48E+04 0.00E+00 0.0E+00 4.637E+11 -6.464E+11 "OPEN* 0.00E+00<	*c203		0.00E+00	7.04E-02	7.04E-02	-2.29E-07	0.00E+00	0.0E+00	5.774E-06	5.784E-06
"PAN # 0.00E+00 5.04E-02 5.26E-02 -5.11E-04 0.00E+00 0.0E+00 1.710E-03 1.710E-03 "PAR # 3.57E-01 1.72E-02 -2.19E-02 -3.21E-01 5.86E-02 1.3E-01 5.563E-02 5.564E-02 "X02M" 0.00E+00 2.59E-03 2.60E-03 -5.93E-07 0.00E+00 0.0E+00 1.116E-05 1.116E-05 "ROR " 0.00E+00 1.32E-02 1.32E-02 -7.79E-11 0.00E+00 0.0E+00 8.209E-13 -7.118E-10 "CLE " 1.08E-02 4.51E-03 0.00E+00 -8.17E-03 1.81E+03 4.0E+03 1.535E+05 1.549E+05 "ETH " 1.17E-02 3.33E+03 0.00E+00 -9.99E+03 1.92E+03 4.3E+03 3.467E+04 4.098E+04 "TOL " 7.85E+03 1.84E+03 0.00E+00 -6.92E+03 1.32E+03 2.9E+03 4.097E+04 4.098E+04 "TOL " 7.85E+03 2.03E+03 2.75E+03 -3.78E+04 0.00E+00 0.0E+00 9.856E+09 2.796E+09 "TO2 " 0.00E+00 2.03E+03 1.45E+08 0.00E+00 0.0E+00 4.637E+11 <	"x02		0.00E+00	5.73E-02	5.73E-02	-1.16E-06	0.00E+00	0.05+00	1.642E-05	1.645E-05
"PAR " 3.57E-01 1.72E-02 -2.19E-02 -3.21E-01 5.86E-02 1.3E-01 5.563E-02 5.564E-02 "X02H" 0.00E+00 2.59E-03 2.60E-03 -5.93E-07 0.00E+00 0.0E+00 1.116E-05 1.116E-05 "R0R " 0.00E+00 1.32E-02 1.32E-02 -7.79E-11 0.00E+00 0.0E+00 8.209E-13 -7.118E-10 "CLE " 1.08E-02 4.51E-03 0.00E+00 -8.17E-03 1.81E+03 4.0E+03 1.535E+05 1.549E+05 "ETH " 1.17E-02 3.33E+03 0.00E+00 -9.99E+03 1.92E+03 4.3E+03 3.467E+04 3.469E+04 "TOL " 7.85E+03 1.84E+03 0.00E+00 -6.92E+03 1.32E+03 2.9E+03 4.097E+04 4.098E+04 "TOL " 7.85E+03 2.37E+03 2.75E+03 -3.78E+04 0.00E+00 0.0E+00 9.856E+09 2.796E+09 "TO2 " 0.00E+00 2.03E+03 1.48E+04 0.00E+00 0.0E+00 4.637E+11 -6.464E+11 "OPEN" 0.00E+00 9.00E+04 1.05E+03 -1.48E+04 0.00E+00 0.0E+00	"PAN		0.00E+00	5.04E-02	5.26E-02	-5.11E-04	0.00E+00	0.02+00	1.710E-03	1.710E-03
"X02H" 0.00E+00 2.59E-03 2.60E-03 -5.93E-07 0.00E+00 0.0E+00 1.116E-05 1.116E-05 "ROR " 0.00E+00 1.32E-02 1.32E-02 -7.79E-11 0.00E+00 0.0E+00 8.209E-13 -7.118E-10 "CLE " 1.08E-02 4.51E-03 0.00E+00 -8.17E-03 1.81E+03 4.0E+03 1.535E+05 1.549E+05 "ETH " 1.17E-02 3.33E+03 0.00E+00 -9.99E+03 1.92E+03 4.3E+03 3.467E+04 3.469E+04 "TOL " 7.85E+03 1.84E+03 0.00E+00 -6.92E+03 1.32E+03 2.9E+03 4.097E+04 4.098E+04 "CRES" 0.00E+00 2.37E+03 2.75E+03 -3.78E+04 0.00E+00 0.0E+00 9.856E+09 2.796E+09 "TO2 " 0.00E+00 2.03E+03 1.45E+08 0.00E+00 0.0E+00 4.637E+11 -6.464E+11 "OPEN" 0.00E+00 9.00E+04 1.05E+03 +1.48E+04 0.00E+00 0.0E+00 4.538E+06 4.550E+06 "KGN " 0.00E+00 1.38E+03 +6.75E+09 0.00E+00 0.0E+00 1.467E+05	"PAR		3.57E-01	1.728-02	-2.19E-02	-3.21E-01	5.86E-02	1.3E-01	5.563E-02	5.564E-02
"ROR " 0.00E+00 1.32E-02 1.32E-02 -7.79E-11 0.00E+00 0.0E+00 8.209E-13 -7.118E-10 "CLE " 1.08E-02 4.51E-03 0.00E+00 -8.17E-03 1.81E+03 4.0E+03 1.535E+05 1.549E+05 "ETH " 1.17E-02 3.33E+03 0.00E+00 -9.99E+03 1.92E+03 4.3E+03 3.467E+04 3.469E+04 "TOL " 7.85E+03 1.84E+03 0.00E+00 -6.92E+03 1.32E+03 2.9E+03 4.097E+04 4.098E+04 "CRES" 0.00E+00 2.37E+03 2.75E+03 -3.78E+04 0.00E+00 0.0E+00 9.856E+09 2.796E+09 "TO2 " 0.00E+00 2.03E+03 2.145E+08 0.00E+00 0.0E+00 4.637E+11 -6.464E+11 "OPEN" 0.00E+00 9.00E+04 1.05E+03 -1.48E+04 0.00E+00 0.0E+00 4.538E+06 4.550E+06 "KR " 0.00E+00 1.38E+03 -6.75E+09 0.00E+00 0.0E+00 4.538E+06 4.550E+06 "KGL " 0.00E+00 2.21E+03 2.68E+03 -4.59E+04 0.00E+00 0.0E+00 1.467E+05	"XOZN		0.00E+00	2.59E-03	2.60E-03	-5.93E-07	0.00E+00	0.0E+00	1.116E-05	1.116E-05
"CLE # 1.08E-02 4.51E-03 0.00E+00 -8.17E-03 1.81E+03 4.0E+03 1.535E+05 1.549E+05 "ETH # 1.17E-02 3.33E+03 0.00E+00 -9.99E+03 1.92E+03 4.3E+03 3.467E+04 3.469E+04 "TOL # 7.85E+03 1.84E+03 0.00E+00 -6.92E+03 1.32E+03 2.9E+03 4.097E+04 4.098E+04 "CRES# 0.00E+00 2.37E+03 2.75E+03 -3.78E+04 0.00E+00 0.0E+00 9.856E+09 2.796E+09 "TO2 # 0.00E+00 2.03E+03 2.03E+03 -1.45E+08 0.00E+00 0.0E+00 4.637E+11 -6.464E+11 "OPEN" 0.00E+00 9.00E+04 1.05E+03 -1.48E+04 0.00E+00 0.0E+00 4.538E+06 4.550E+06 "CR0 # 0.00E+00 1.38E+03 -6.75E+09 0.00E+00 0.0E+00 4.538E+06 4.550E+06 "KGLY# 0.00E+00 2.21E+03 2.68E+03 -4.59E+04 0.00E+00 0.0E+00 1.467E+05 1.468E+05 "X1L # 8.89E+03 3.35E+03 0.00E+00 0.0E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00	"ROR		0.00E+00	1.32E-02	1.32E-02	-7.79E-11	0.005+00	0.0E+00	8.209E-13	-7.118E-10
"ETH " 1.17E-02 3.33E-03 0.00E+00 -9.99E-03 1.92E-03 4.3E-03 3.467E-04 3.469E-04 "TOL " 7.85E-03 1.84E-03 0.00E+00 -6.92E-03 1.32E-03 2.9E-03 4.097E-04 4.098E-04 "CRES" 0.00E+00 2.37E-03 2.75E-03 -3.78E-04 0.00E+00 0.0E+00 9.856E-09 2.796E-09 "TO2 " 0.00E+00 2.03E-03 2.03E-03 -1.45E-08 0.00E+00 0.0E+00 4.637E-11 -6.464E-11 "OPEN" 0.00E+00 9.00E-04 1.05E-03 -1.48E-04 0.00E+00 0.0E+00 4.538E-06 4.550E-06 "CRD " 0.00E+00 1.38E-03 1.38E-03 -6.75E-09 0.00E+00 0.0E+00 4.538E-10 7.863E-10 "MGLY" 0.00E+00 2.21E-03 2.68E-03 -4.59E-04 0.00E+00 0.0E+00 1.467E-05 1.468E-05 "XTL " 8.89E-03 3.35E-03 0.00E+00 -7.03E-03 1.52E-03 3.4E-03 2.74E-05 2.745E-05 "ISOP" 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00	"OLE		1.08E-02	4.51E-03	0.00E+00	-8.17E-03	1.81E-03	4.0E-03	1.535E-05	1.5492-05
"TOL " 7.85E-03 1.84E-03 0.00E+00 -6.92E-03 1.32E-03 2.9E-03 4.097E-04 4.098E-04 "CRES" 0.00E+00 2.37E-03 2.75E-03 -3.78E-04 0.00E+00 0.0E+00 9.856E-09 2.796E-09 "TO2 " 0.00E+00 2.03E-03 2.03E-03 -1.45E-08 0.00E+00 0.0E+00 4.637E-11 -6.464E-11 "OPEN" 0.00E+00 9.00E-04 1.05E-03 -1.48E-04 0.00E+00 0.0E+00 4.538E-06 4.550E-06 "CRD " 0.00E+00 1.38E-03 1.38E-03 -6.75E-09 0.00E+00 0.0E+00 4.538E-10 7.863E-10 "MGLY" 0.00E+00 2.21E-03 2.68E-03 -4.59E-04 0.00E+00 0.0E+00 1.467E-05 1.468E-05 "XTL " 8.89E-03 3.35E-03 0.00E+00 -7.03E-03 1.52E-03 3.4E-03 2.74E-05 2.745E-05 "ISOP" 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 "HR " 6.13E+01 1.81E+01 -5.22E-02 8.83E-03 1.9E-02 1.793E-02 1.793E-02<	"ETH		1.17E-02	3.33E-03	0.00E+00	-9.99E-03	1.92E-03	4.3E-03	3.467E-04	3.4698-04
"CRES" 0.00E+00 2.37E-03 2.75E-03 -3.78E-04 0.00E+00 0.0E+00 9.856E-09 2.796E-09 "TO2 " 0.00E+00 2.03E-03 2.03E-03 -1.45E-08 0.00E+00 0.0E+00 4.637E-11 -6.464E-11 "OPEN" 0.00E+00 9.00E-04 1.05E-03 -1.48E-04 0.00E+00 0.0E+00 4.538E-06 4.550E-06 "CRD " 0.00E+00 1.38E-03 1.38E-03 -6.75E-09 0.00E+00 0.0E+00 4.538E-10 7.863E-10 "MGLY" 0.00E+00 2.21E-03 2.68E-03 -4.59E-04 0.00E+00 0.0E+00 1.467E-05 1.468E-05 "XYL " 8.89E-03 3.35E-03 0.00E+00 -7.03E-03 1.52E-03 3.4E-03 2.734E-05 2.745E-05 "ISOP" 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 "KR " 6.13E-02 1.81E+01 1.81E+01 -5.22E-02 8.83E-03 1.9E-02 1.793E-02 1.793E-02	"TOL		7.85E-03	1.84E-03	0.00E+00	-6.92E-03	1.32E-03	2.9E-03	4.097E-04	4.098E-04
"TO2 " 0.00E+00 2.03E-03 2.03E-03 -1.45E-08 0.00E+00 0.0E+00 4.637E-11 -6.464E-11 "OPEN" 0.00E+00 9.00E-04 1.05E-03 -1.48E-04 0.00E+00 0.0E+00 4.538E-06 4.550E-06 "CR0 " 0.00E+00 1.38E-03 1.38E-03 -6.75E-09 0.00E+00 0.0E+00 4.538E-10 7.863E-10 "MGLY" 0.00E+00 2.21E-03 2.68E-03 -6.59E-04 0.00E+00 0.0E+00 1.467E-05 1.468E-05 "XYL " 8.89E-03 3.35E-03 0.00E+00 -7.03E-03 1.52E-03 3.4E-03 2.734E-05 2.745E-05 "ISOP" 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.0E+00 0.0E+00 0.0E+00 0.00E+00 "HR " 6.13E-02 1.81E+01 1.81E+01 -5.22E-02 8.83E-03 1.9E-02 1.793E-02 1.793E-02	"CRES		0.005+00	2.37E-03	2.75E-03	-3.78E-04	0.00E+00	0.0E+00	9.8568-09	2.7962-09
"OPEN" 0.00E+00 9.00E+04 1.05E+03 -1.48E+04 0.00E+00 0.0E+00 4.538E+06 4.550E+06 "CRD " 0.00E+00 1.38E+03 1.38E+03 -6.75E+09 0.00E+00 0.0E+00 6.389E+10 7.863E+10 "MGLY" 0.00E+00 2.21E+03 2.68E+03 -4.59E+04 0.00E+00 0.0E+00 1.467E+05 1.468E+05 "XYL " 8.89E+03 3.35E+03 0.00E+00 -7.03E+03 1.52E+03 3.4E+03 2.734E+05 2.745E+05 "ISOP" 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 "NR " 6.13E+02 1.81E+01 1.81E+01 -5.22E+02 8.83E+03 1.9E+02 1.793E+02 1.793E+02	"TO2		0.00E+00	2.03E-03	2.03E-03	-1.45E-08	0.00E+00	0.0E+00	4.637E-11	-6.464E-11
"CRD " 0.00E+00 1.38E-03 1.38E-03 -6.75E-09 0.00E+00 0.0E+00 6.389E-10 7.863E-10 "MGLY" 0.00E+00 2.21E-03 2.68E-03 -4.59E-04 0.00E+00 0.0E+00 1.467E-05 1.468E-05 "XYL " 8.89E-03 3.35E-03 0.00E+00 -7.03E-03 1.52E-03 3.4E-03 2.734E-05 2.745E-05 "ISOP" 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.0E+00 0.0E+00 0.000E+00 "KR " 6.13E-02 1.81E+01 1.81E+01 -5.22E-02 8.83E-03 1.9E-02 1.793E-02 1.793E-02	"OPEN		0.00E+00	9.00E-04	1.05E-03	-1.48E-04	0.00E+00	0.0E+00	4.538E-06	4.550E-06
"MGLY" 0.00E+00 2.21E-03 2.68E-03 +4.59E-04 0.00E+00 0.0E+00 1.467E-05 1.468E-05 "XYL " 8.89E-03 3.35E-03 0.00E+00 -7.03E-03 1.52E-03 3.4E-03 2.734E-05 2.745E-05 "ISOP" 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.0E+00 0.0E+00 0.000E+00 0.000E+00 "MR " 6.13E-02 1.81E+01 1.81E+01 -5.22E-02 8.83E-03 1.9E-02 1.793E-02 1.793E-02	"CRO		0.00E+00	1.388-03	1.38E-03	-6.75E-09	0.00E+00	0.0E+00	6.389E-10	7.863E-10
"XYL " 8.89E-03 3.35E-03 0.00E+00 -7.03E-03 1.52E-03 3.4E-03 2.734E-05 2.745E-05 "ISOP" 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.0E+00 0.0E+00 0.000E+00 0.000E+00 "KR " 6.13E-02 1.81E+01 1.81E+01 -5.22E-02 8.83E-03 1.9E-02 1.793E-02 1.793E-02	"HGLY		0.00E+00	2.21E-03	2.68E-03	-4.59E-04	0.00E+00	0.0E+00	1.467E-05	1.4688-05
"ISOP" 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000E+00 0.000	"XTL		8.89E-03	3.35E-03	0.00E+00	-7.03E-03	1.52E-03	3.4E-03	2.734E-05	2.745E-05
"HR " 6.13E-02 1.81E+01 1.81E+01 -5.22E-02 8.83E-03 1.9E-02 1.793E-02 1.793E-02	"ISOP		0.00E+00	0.00E+00	0.00E+00	0.002+00	0.00E+00	0.0E+00	0.000E+00	0.000E+00
	"KR		6.13E-02	1.81E+01	1.812+01	-5.22E-02	8.832-03	1.96-02	1.793E-02	1.793E-02

Table 2a. Example IRR File, cont

12

0

Accuracy of Integrated Reaction Rates

-

Modifications to OZIPR

.

	Table 3. Example CMP file created from the OZIPR input file shown in
	Table 1. The CMP file has been further modified to include CH4 and
	ORNIT.
RECH	
(1)	NO2+NO+O
(2)	0+03
(3)	03+N0=N02
(4)	0+N02=N0
(5)	0+H02=N03
(6)	040=802
(7).	03+N02=N03
(8)	03=0
(9)	03=010
C 103	010=0
(11)	H20+01D=2.0*0H
(12)	03+0H=H02
(13)	03+H02=0H
(14)	NO3=0.89*NO2+0.89*0+0.11*NO
(15)	NO3+NO=2.0*NO2
C 163	N03+N02=N0+N02
(17)	N03+N02=N205
C 18)	N205+H20=2.0*HN03
(19)	N205=N03+N02
(51)	METH+OH=XO2+FORM+HO2
(52)	PAR+OH=0.87*X02+0.13*X02N+0.11*H02+0.11*ALD2+0.76*RCR+-0.11*PAR+0.13*C02
(53)	ROR=1.1*ALD2+0.96*X02+0.94*H02+-2.10*PAR+0.04*X02N+0.020*ROR
(54)	ROR=HO2+CO2
(55)	RCR+NO2=ORNIT
(56)	0+0LE=0.63*ALD2+0.38*H02+0.28*X02+0.3*C0+0.2*FORM+0.02*X02N+0.22*PAR+0.2*OH
(50)	OH+OLE=FORM+ALD2+XD2+HO2+-1.*PAR
(58)	05+0LE=0.5*ALD2+0.74*FORM+0.33*CO+0.44*H02+0.22*X02+0.1*OH++1.00*PAR+0.93*CO2
(59)	NOS+OLE=0.91=X02+0.09=X02N+FCRN+ALD2+-1.=PAR+NO2
(60)	0+ETH=FORH+0.7*X02+CD+1.7*H02+0.3*DH
(61)	GALETH=X02+1.50-FGKA+H02+0.22-ALD2
(02)	G3+ETA=F0RA+U.42*C0+0.12*R02*0.58*C02
(03)	UN+10L=0.00*X02+0.30*CKES+0.44*H02+0.30*102+0.00*Ak0
(04)	102+N0=0.9*N02+0.9*H02+0.9*O/EN+0.1*OKN11
(65)	102=LKES+HU2
(00)	UNT-CRES-COOLUNOT
(67)	REGAUGE-CRUTANUS
(60)	
(70)	0754-52034024070.37 400370341030410 304100
(71)	APERION-AUCTE. COTE. TOCTECOTTORTOLET AND
(7)	CUENTUS=0.03-ALD2T0.02-C203T0.1-FORMT0.03-A02T0.09-C0T0.00-00T0.10-N02T0.2-N0LTT
(71)	MAATLEV.17 NOCTO.37 NOCTO.27 NOCTO.27 NOCTO.27 NOCTO.37 NOTO.37 NOTO.37 NOCTO.37 NOCTO.37 NOCTO.37 NOCTO.37 NOCTO.37 NOCTO.37 NOCTO.37 NOCTO.37 NOTO.37 NOTO.37 NOCTO.37 NOCTO.37 NOCTO.37 NOCTO
(76)	NCI X=C2034U024C0
1 753	ALL 1-02037 AUCTO
1 763	0141507-00-00 AUG-00-00 AUG-00-00 AUG-00-00-00-00-00-00-00-00-00-00-00-00-00
(77)	
(78)	NO3+150P=X02N+0RN1T
(79)	X02+N0=N02
(80)	x02+x02=
(81)	XO2N+NO=ORWIT
(82)	NR=NR

0.2*ARO

3

IRREVAL Input Files

Three files are required as input for the IRREVAL program: (1) an *.CMD input file which identifies the *.CMP and *.IRR input files and allows the user to give commands for processing them; (2) an *.CMP input file containing an abbreviated form of the mechanism used for the simulation; and (3) an *.IRR input file containing the integrated reaction rate for each reaction, and the sink and source terms for each species. The *.CMP and *.IRR files must be created by using the IRR command when running OZIPR or the /I command line option when running PKSS. Each input file is described in detail below.

CMD Input File

The *.CMD file can be created using any text editor.

It has an unstructured format subject to the following rules:

- Comments are allowed between curly brackets and on lines with the ! symbol in column one.
- Blank spaces and blank lines are ignored, although blank spaces can be used to separate numbers or words.
- The first significant line must begin with the @ symbol in column one and then the directory pathway and name of the CMP file. The second significant line also begins with the @ symbol and lists the directory and name of the IRR file. Only the file name need be given for files in the same directory as the CMD file. A semicolon is not required after the file name.
- Commands must end with a semicolon. Commands may be given in any order with these exceptions: the CYCLES command should precede the REPLACE command; the BALANCE or EVALUATE command should be last; and the

IRR Input File

CMD file must end with the END command and a punctuation mark. Commands are described in Chapter Six.

An example CMD file is shown in Table 4.

CMP Input File

The *.CMP file is created at runtime by OZIPR and PKSS. The * is replaced by the file name of the OZIPR input file or the PKSS initial condition (*.IC) file name. The CMP file lists the reactants, products, and product coefficients for each reaction in the mechanism, but it excludes rate constants and documentation in the mechanism file. An example CMP file was shown in Table 3.

In most cases, the user will further modify the CMP file before using it with IRREVAL. In many photochemical models, the mechanism has been simplified by ignoring unreactive products or treating some species implicitly. The user can restore the missing species by using a text editor to add them to the reactions in the CMP file. For example, CB4 treats CH_4 implicitly by writing a reaction with 'OH and modifying the rate constant to account for the CH_4 concentration. For IRR to calculate the CH_4 contribution to O_3 production, CH_4 must be added to the 'OH reaction. In the CMP file in Table 3, CH_4 has been added as a reactant to Reaction 51. The user can also add other species to the analysis, for example CO_2 or organic nitrates can be added as products in the appropriate reactions. Currently, the generic name ORNIT is coded into the Subroutine OUTNO2.FOR and should be used for all organic nitrogen sinks to get a correct balance in the NO_y table in the *.NOX output file.

When adding species to the CMP file, no blank spaces are allowed between the equal sign and the first product. Comments can be included between curly brackets or on lines with the ! symbol in the first column. When adding reactants to the CMP file, e.g. CH₄, the IRR file must include source terms for the reactants. (If a species is reacting it must have a source.) If CH₄ is not included in the OZIPR mechanism, OZIPR automatically adds an initial concentration of 1.79 ppm CH₄ to the sink/source section of the IRR file.

IRR Input File

An example *.IRR file was shown in Table 2. The *.IRR input file begins with the IRR command and is followed by one or more lines of documentation enclosed in double quotes. The first line of documentation is printed at the beginning of **IRREVAL** Input Files

Table 4. Example CMD input file

IRR Input File

```
1 | Example CHD file using EVALUATE command.
3 af:\irr\base.cmp
4 Sbase.irr
5
 6 NOY . NO3, N205*2, HNO3, HONO, PNA, PAN, ORNIT;
 7 NEW (New Radical Reactions) =
8 11, (H20+01D=2.0*OH)
9 23, (HONO=OH+NO)
10 30, (PHA=H02+N02)
11
   34, (H202=2.*OH)
12 38, (FORM=2.*H02+CO)
13 45, (ALD2=X02+2.*H02+CO+FORM)
14 54, (ROR=HO2)
15 65, (TO2=CRES+HO2)
16 69, (OPEN=C203+H02+C0)
   74, (HGLY=C203+H02+CO)
17
           40,42,56,58,60,62,71,75,77, (0 and 03 rxns)
18
10
20
21 CYCLES = "PHA Cycle", "PAN Cycle", "HONO Cycle", "H2O2 Cycle",
            "03/NO2 Chemistry" = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 15, 16, 17, 18, 19],
22
23
            "03/HOx Cycle" = [12, 13];
24
25 ORGANIC = CO, METH, PAR, 2"ETH, 2"OLE, 7"TOL, 8"XYL, FORM, 2"ALD2,
              C203, NGLY, OPEN, CRES, CRO, ROR, TO2, 2"PAN;
26
27
28 REPLACE = XO2, CO, FORM, C2O3, ALD2, CRO, ROR, MGLY, OPEN,
29
            CRES, TO2, PAN, ETH, PAR;
30
31 EVAL;
32 END.
```

all output files. For OZIPR, there is one line of documentation which will be the title from the OZIPR *.INP file. For *.IRR files from PKSS, the first line of documentation is saved, others are ignored. The IRR file then contains a list of integrated reaction rates with each value separated by at least one blank space. Comments in curly brackets can be included to identify reaction numbers or other documentation. The number of integrated reaction rates must be equal to the number of reactions listed in the CMP file. This occurs naturally if the correct CMP file is used, but no additional checking is performed to verify that the named CMP file corresponds to the mechanism which was used to generate the IRR file. The last integrated reaction rate is followed by a semicolon. The IRR file then has a section listing sink and source terms for each species. In OZIPR IRR files, each line begins with the species name enclosed in double quotes and then nine numbers separated by blanks spaces. In order these are:

Initial concentration,

- 2) Chemical loss,
- Chemical production,
- 4) Net entrainment,
- Emissions (ppm) corrected for dilution,
- 6) Total emissions (ppm) into a box with the initial mixing height,
- Deposition,
- 8) Final concentration calculated by OZIPR, and
- Final concentration as determined from a mass balance on the the integrated rates.

The sink/source section ends with a semicolon. The chemical loss and production terms are used to check the mass balance on each species and are not used by IRREVAL. Deposition is read by IRREVAL but is not yet included in the output files.

OZIPR will create time dependent IRR files if the IRR = TIME; command is used in the OZIPR *.INP file. Time dependent IRR files have the following structure:

```
IRR = n

"Title from OZIPR input file."

Time = x

I"Rxn Ho" "Int Rate"

( 1) y1

( 2) y2

...
```

where n is the number of time intervals, x is the time in minutes at the end of the i^{th} time interval, and the yi values are the integrated reaction rates. The IRR file will have an integrated reaction rate and a sink/source section for each of n time intervals. Each time interval begins with the time = x line and ends with a semicolon. The last interval has the | symbol after the semicolon.

Time dependent output provides a more realistic analysis of the contributions of initial NO_2 , chemically produced NO_2 , and individual organics to the final O_3 concentration.

Algorithms

Some Simple Examples

IRREVAL started as a simple program designed to show the reactions which produced or consumed any given species. It has gradually evolved into a more comprehensive program. It utilizes several complicated algorithms which can provide a detailed mass balance analysis of key species in photochemical oxidant mechanisms. I will begin with a very simple implementation of IRREVAL, illustrate its use, and then explain why more detailed information is desired. This will show the motivation for the addition of new features to the simple case. It will also illustrate their value and serve as an introduction to the algorithms used to implement each feature.

I will use the example IRR file shown in Table 2, and the example compressed mechanism file shown in Table 3. These files were generated from the example OZIPR input file shown in Table 1. For this example, OZIPR predicted a final O_3 concentration of 144.47 ppb. The goal is to understand why OZIPR predicted this value, or, in other words, to explain how and why this amount of O_3 was produced.

The mechanism in Table 4 shows that O_3 is chemically produced exclusively by:

$$O(3P) + O_3 \longrightarrow O_3$$
 (R2)

The IRR file shows that this reaction produced 5.519 ppm of O_3 . To understand the O_3 production, we must determine what produced the O(3P) (triplet state monatomic oxygen). The mechanism shows that O(3P) is produced in four different reactions, and that O(3P) is formed largely from NO_2 which is produced in more than 15 different reactions. It quickly becomes very tedious to identify and sum the reactions which

Some Simple Examples

Algorithms

produce these species. In the simplest case, IRREVAL can be used to show the processes which produce or consume any species in the mechanism. I used the simple command (CMD) file:

af:\irr\base.cmp abaseave.irr End.

which identifies the compressed mechanism and IRR files to be analyzed. If no other commands are listed, the program prompts the user first for a search type and then for a species name with the menu:

Enter number for search type:

(1) Show Production of a Species
 (2) Show Consumption of a Species
 (3) Show Reaction Products
 (4) Do all 3 searches
 (5) Ouit

Enter Search Type (Choices are 1 to 4, 5 to exit):

I used search type (1) to request the production of O_3 , O(3P), and NO_2 . The resulting mass balance file (BAL) is shown in Table 5. The structure of the BAL file is explained in detail in Chapter 4: IRREVAL Output Files.

Table 5 shows all sources of O_3 , O(3P), and NO_2 . In line 9, it reports the final O_3 concentration of 0.1445 ppm determined from a mass balance of sink and source terms. Line 5 shows the gross chemical O_3 production of 5.51936 ppm. Line 7 shows that net O_3 entrainment from air aloft contributed an additional 0.02818 ppm, or 0.508% of the gross O_3 sources.

We can attempt to trace O_3 production back to its original sources by examining how O(3P) was produced. Line 14 of Table 5 shows that 75.2% of O(3P) is produced from photolysis of NO₂, and in line 15, 23.6% is produced from photolysis of O₃. Tracing the O₃ source back one step farther, we see in line 26 that 91.82% of the NO₂ was produced by

$$O_3 + NO \longrightarrow NO_2$$
 (R3)

In other words, O_3 is produced from O(3P), most of the O(3P) is produced from NO_2 , and most of the NO_2 is produced from O_3 . It is difficult to determine which came Algorithms

Table 5. Example of a simple BAL output file showing sources of O₃, O(3P), and NO₂.

```
2 03 is produced in reactions:
 3 Percent Rxn No.
                                    IRR Nass
                                 -> 5.519E+00 * ( 1.000*03 )
   100.00 Rxn 2 0
 5 Total 03 Produced:
                         5.51936
                                   99.492%
 6 Init 03 Conc:
                          .00000
                                     .000%
                          .02818
                                     .508%
 7 03 Net Entrainment:
                         5.54754
 8 TOTAL 03:
 9 Final 03 Conc:
                          .14450
                                    2.605%
                         5.40305
                                   97.395X
10 03 Reacted:
11 ............
                         ...........
                                     0
12 0 is produced in reactions:
13 Percent Rxn No.
                                    IRR Mass
                                 -> 4.152E+00 * ( 1.000*NO + 1.000*0 )
14
    75.21 Rxn 1 NO2
    23.60 Rxn 8 03
15
                                 -> 1.303E+00 * ( 1.000*0 )
                                 -> 6.136E-02 * ( 1.000*0 )
16
      1.11 Rxn 10 01D
                                                                         .110*NO 3
17
       .07 Rxn 14 NO3
                                     4.327E-03 * ( .890*N02 +
                                                               .890*0 +
                                 ->
                        5.51980
                                100.000%
18 Total O Produced:
                         .00000.
                                    .000x
19 Init O Conc:
20 TOTAL O:
                        5.51980
                          .00000
                                     .000%
21 O Wet Dilution:
22 Final O Conc:
                         .00000
                                    .000x
                                 100.000%
23 O Reacted:
                        5.51980
24 -----
                                     NO2
25 NO2 is produced in reactions:
26 Percent Rxn No.
                                    IRR Mass
                                 -> 4.002E+00 * ( 1.000*W02 )
27
    91.82
           Rxn 3
                   03+NO
                                 -> 4.699E-05 * ( 1.000*NO2 )
28
       .00
           Rxn 6
                   O+NO
                                 -> 4.327E-03 * ( .890*NO2 +
29
       .09
           Rxn 14
                   NO3
                                                               .890*0 + .110*NO )
                                 -> 1.433E-02 * ( 2.000*H02 )
           Rxn 15
                   NO3+NO
30
       .66
       .12 Rxn 19
                                 -> 5.117E-03 * ( 1.000*N03 + 1.000*N02 )
31
                   N205
                                 -> 1.030E-04 * ( 1.000*NO2 )
32
       .00 Rxn 20
                   NO
                                 -> 1.092E-04 * ( 1.000*NO2 )
                   OH+ HONO
33
       .00 Rxn 24
34
       .00 Rxn 25
                   HONO
                                 -> 2.736E-10 * ( .500*NO + .500*NO2 )
35
      2.46 Rxn 28
                   H02+N0
                                 -> 1.073E-01 * ( 1.000*OH + 1.000*NO2 )
                   PNA
36
      1.99 Rxn 30
                                 -> 8.693E-02 * ( 1.000*H02 + 1.000*N02 )
                                 -> 2.509E-05 * ( 1.000*NO2 )
       .00 Rxn 31
37
                   CH+PHA
38
       .39
           Rxn 46
                   C203+NO
                                    1.697E-02 * ( 1.000*HO2 + 1.000*XO2 + 1.000*FORH + 1.000*HO2 + 1.000*CO2
                                 ->
39
                                    5.048E-02 * ( 1.000*C203 + 1.000*NO2 )
      1.16
           Rxn 48
                   PAN
                                 .>
40
      .00
           Rxn 59
                   NO3+OLE
                                     7.124E-07 * ( .910*X02 + .090*X02N + 1.000*FORM + 1.000*ALD2 +-1.000*PA
                                 .>
41
       .01
           Rxn 64
                   T02+NO
                                     6.162E-04 * ( .900*NO2 +
                                                               .900*HO2 + .900*OPEN + .100*ORNIT )
                                 ->
42
     1.30 Rxn 79 X02+NO
                                 ->
                                    5.652E-02 * ( 1.000*NO2 )
43 Total NO2 Produced:
                          4.35906
                                    99.395X
44 Init NO2 Conc:
                                      .570%
                           .02500
45 NO2 Diluted Emissions
                           .00152
                                      .035%
                           .00304 ppm)
46 (Total Emissions were
47 TOTAL NOZ:
                          4.38558
48 NO2 Wet Dilution:
                           -.04256
                                       .970%
49 Final NO2 Conc:
                           .00158
                                      .036%
50 NO2 Reacted:
                          4.34144
                                    98.993%
```

Removing Cycling Processes

first, the O_3 or the NO_2 . This phenomenon arises from the rapid interconversion of NO_1 , NO_2 , and O_3 in the reactions:

 $NO_2 \xrightarrow{hv} NO + O(3P)$ (R1)

Algorithms

$$O(3P) + O_2 \longrightarrow O_3$$
 (R2)

$$O_3 + NO \longrightarrow NO_2$$
 (R3)

Although NO₂ photolyzes and produces O₃ on a time scale of minutes, the NO₂ is rapidly reproduced by reaction with O₃. As a result, the observed concentrations may change very slowly over a period of hours. This illustrates the process of a psuedo-steady-state. The species are rapidly reacting, but the concentration does not change significantly over short time periods. Because we are attempting to explain a small increase in the net O₃ concentration, it would be more useful to know the net O₃ production from the NO₂/O₃ cycle shown above.

Removing Cycling Processes

IRREVAL includes a CYCLES command which allows the user to identify a group of reactions which are part of a cycling process. The program then sums the mass of each species produced or consumed in those reactions. The net production (or loss) of each species is then stored in the product coefficients in a single net reaction. The integrated reaction rate of the single net reaction is assigned a value of one because it is more convenient to store the mass reacted in the product coefficients than in the integrated reaction rate array. Details on the use of the CYCLES command is explained in Chapter 6: IRREVAL Commands. This Section explains how the CYCLES comman works.

In any photochemical oxidant mechanism, there will be several processes which cycle or interconvert species. In addition to the NO_2/O_3 cycle described above, peroxyacetylnitrate (PAN) and pernitric acid (PNA) also cycle NO_2 in the reactions:

$$NO_2 + C_2O_3 \longrightarrow PAN$$
 (R47)

$$PAN \longrightarrow NO_2 + C_2O_3$$
 (R48)

and

$$|O_2 + HO'_2 \longrightarrow HO_2 NO_2$$
 (R29)

$$HO_2NO_2 \longrightarrow NO_2 + HO_2$$
 (R30)

In Table 5, lines 28 to 30, 35 and 38 show that another 4% of the total chemical NO₂ production was actually recycled NO₂ from the NO₃, HO₂NO₂ and PAN cycles. Only

Table 6. Command file with all major cycles in CB4 removed.

about 4.2% was produced from new sources (lines 34, 37 and 41) in the reactions:

 $HO_2 + NO \longrightarrow NO_2 + OH$ (R28)

 $C_2O_3 + NO \longrightarrow NO_2 + \dots$ (R46)

$$XO_2 + NO \longrightarrow NO_2$$
 (R79)

Table 6 shows a command file which uses the CYCLES command to remove all major cycling processes in the Carbon Bond Four (CB4) mechanism. The resulting net production of O_3 , O(3P), and NO_2 are shown in Table 7.

Line 6 of Table 7 shows that there was a net photochemical production of only 0.12411 ppm O_3 compared to 5.51936 ppm of gross O_3 production in line 5 of Table 5. In line 8, net entrainment of O_3 is now seen to be 18.339% of the net O_3 sources. The major species in the net O_3/NO_2 Chemistry cycle (now stored in a single reaction with coefficient units of ppm) in lines 4 and 5 are:

$$0.136NO_2 + 0.010H_2O \longrightarrow 0.135NO + 0.124O_3 + 0.019OH +$$

The yield of O_3 per NO₂ consumed in this net reaction is less than one because the cycle includes (1) the effect of odd oxygen losses in nitrate chemistry and (2) the loss of odd oxygen in the reaction:

$$O(1D) + H_2O \longrightarrow 2'OH$$

Monatomic oxygen production and losses have approximately cancelled out (lines 13 to 22). Lines 28 and 33 of Table 7 show that 59.14% and 31.11% of the net NO₂ production resulted from the reactions of NO with HO₂ and NO with XO₂. Another 9.63\% came from reactions of other organic intermediates with NOin lines 29 and 32. In lines 35 and 36, initial NO₂ and emissions of NO₂ produced another 0.02651 ppm of NO₂.

I will use "gross chemical production" and "gross chemical loss" to refer to chemical production and chemical loss of a species before cycling reactions are

Removing Cycling Processes

Algorithms

Table 7. BAL file with all major cycles in CB4 removed.

```
1 ------- 03
 2 03 is produced in reactions:
 3 Percent Rxn No.
                                  IRR Mass
 4 100.00 Rxn 1 03/NO2 Chemistr-> 1.000E+00 * C -.136*NO2 + .135*NO + .000*O + .124*03 +
                                                                                         .000*N03
                                        + .000*010 + -.010*H20 + .019*0H + .000*H205 + .000*HN03)
 5
                                 81.661%
 6 Total 03 Produced:
                         .12411
                         .00000
                                   .000%
 7 Init 03 Conc:
                         .02787
 8 03 Net Entrainment:
                                 18.339%
 9 TOTAL 03:
                         .15198
10 Final 03 Conc:
                         .14442
                                 95.023%
                         .00756
                                  4.977%
11 OJ Reacted:
13 0 is produced in reactions:
                                  IRR Mass
14 Percent Rxn No.
                                                                                         .000*N03
15 100.00 Rxn 1 03/NO2 Chemistr-> 1.000E+00 * ( -.136*NO2 + .135*NO + .000*0 + .124*03 +
                                        + .000*010 + -.010*H20 + .019*0H + .000*H205 + .000*HN03)
16
                               100.000%
17 Total O Produced:
                        .00003
                        .00000
18 Init O Conc:
                                  .000%
                        .00003
19 TOTAL O:
20 O Net Dilution:
                         .00000
                                   .015%
21 Final O Conc:
                        .00000
                                 -.935%
                        .00003
22 O Reacted:
                               100.205%
24 NOZ is produced in reactions:
25 Percent Rxn No.
                                  IRR Mass
      .06 Rxn 20 NO
                               -> 1.020E-04 * ( 1.000*NO2 )
26
                               -> 1.000E+00 * ( .000*NO + .000*NO2 + .000*HONO + -.001*OH)
      .06 Rxn 21 HONO Cycle
27
    59.14 Rxn 28 H02+NO
                               -> 1.071E-01 * ( 1.000*0# + 1.000*NO2 )
28
29
     9.33
          Rxn 46
                 C203+NO
                               -> 1.689E-02 * ( 1.000*W02 + 1.000*X02 + 1.000*FORM + 1.000*H02 )
30
      .00
          Rxn 59 NO3+OLE
                               -> 5.390E-07 * ( .910*X02 + .090*X02N + 1.000*FORM + 1.000*ALD2
31
                                              + -1.000*PAR + 1.000*N02 }
      .30 Rxn 64 T02+NO
                               -> 6.127E-04 * ( .900*NO2 + .900*HO2 + .900*OPEN )
32
    31.11 Rxn 79 X02+NO
                               -> 5.634E-02 * ( 1.000*H02 )
33
34 Total NO2 Produced:
                                  87.232%
                          .18112
35 Init NO2 Conc:
                          .02500
                                  12.041%
                          .00151
36 NO2 Diluted Emissions
                                    .727%
                         .00301 ppm)
37 (Total Emissions were
38 TOTAL NO2:
                          .20763
39 NO2 Net Dilution:
                          -.04224
                                   20.346%
40 Final NO2 Conc:
                          .00185
                                    .891%
                                  78.763%
41 NO2 Reacted:
                          .16353
```

23

removed. "Total chemical production" and "total chemical loss" will refer to the production or loss after all cycling processes are removed.

I will define the total sources of NO_2 during the simulation as the sum of the chemical NO_2 production (after the removal of cycling processes) plus the NO_2 contributed by physical processes such as emissions, initial concentration, or net entrainment. For any species j:

Total Sources = Total Chemical Production + Initial + Emissions + Net Entrainment

The total sources of NO₂ must be balanced by sink processes. Sinks are chemical reaction losses, net dilution to the air aloft, deposition and final concentration:

Total Sinks = Total Chemical Loss + Net Dilution + Deposition + Final Concentration

Chemical loss of NO_2 can result in production of either O_3 or other nitrogen products such as HNO_3 or organic nitrates. I will define the O_3 yield per NO_2 produced as the number of O_3 molecules produced from NO_2 divided by the total sources of NO_2 in the simulation.

Replacing Intermediates

Using Table 7 it is now possible to attribute the chemical production of O_3 back to the processes which produced the NO_2 . Thirty-one percent of NO_2 was produced by XO_2 . (XO_2 is an operator used in CB4 to represent the conversion of NO to NO_2 by all RO_2 .) XO_2 is produced by the decomposition of organic compounds. It would be informative to know which organics produced the XO_2 . This would enable us to attribute the O_3 production back to the organics which produced the XO_2 . The REPLACE command can be used to perform these calculations. To explain the replace function, I will first perform a mass balance on XO_2 . Using the command file in Table 6, I requested search type (4) for XO_2 . The new BAL file is shown in Table 8. XO_2 is produced by 19 different reactions of organics. It is consumed (lines 43 and 44) in only two reactions:

$$XO_2 + NO \longrightarrow NO_2$$
 (R79)

$$XO_2 + XO_2 \longrightarrow$$
 (R80)

and 0.029% is unreacted (line 39) and is present as final concentration. The last section in Table 8 shows that for each ppm of XO_2 that reacts, 0.986 ppm of NO are consumed and 0.986 ppm of NO_2 are produced (lines 49 to 51).

Replacing Intermediates

Algorithms

Table 8. BAL file for XO2 with all major cycles in CB4 removed.

2 XO2 is produced in reactions: 3 Percent Rxn No. IRP MASS -> 7.087E-04 = (1.000*X02 + 2.000*H02 + 1.000*C0 + 1.000*FORM) 4 1.24 Rxn 45 ALD2 -> 1.689E-02 * (1.000*NO2 + 1.000*XO2 + 1.000*FORM + 1.000*HO2 5 29.56 Rxn 46 C203+ND 6 + 1.000*002) -> 8.391E-05 * (1.000*X02 + 1.000*FORM + 1.000*H02 + 1.000*C02) 7 .15 Rxn 49 C203 -> 7.108E-04 * (.790*FORM + .790*X02 + -.210*H02 + .790*0H) -> 4.195E-03 * (1.000*X02 + 1.000*FORM + 1.000*H02) .98 Rxn 50 C203 8 9 7.34 Rxn 51 HETH+CH 26.12 Rxn 52 +0H -> 1.716E-02 * (.870*X02 + .130*X02N + .110*H02 10 + .110*ALD2 + .760*ROR +-1.110*PAR) -> 9.131E-03 * (1.100*ALD2 + .960*XO2 + .940*HO2 +-2.100*PAR + .040*XO2N + -.980*ROR) 11 12 15.34 Rxn 53 13 -> 1.882E-05 * (.630*ALD2 + .380*KO2 + .280*XO2 14 .01 Rxn 56 O+OLE .300*C0 + .200*FORM + .020*X02N 15 .220*PAR + .200*OH) 16 17 7.07 Rxn 57 OH+OLE -> 4.040E-03 * (1.000*FORM + 1.000*ALD2 + 1.000*X02 18 + 1.000*HO2 +-1.000*PAR) .16 Rxn 58 03+CLE 4.282E-04 * (.500*ALD2 + .740*FORM + .330*CD + .440*HO2 19 ** 20 + .220*X02 + .100*OH +-1.000*PAR + .930*C02) -> 5.390E-07 * (.910*X02 + .090*X02H + 1.000*FORM .00 Rxn 59 HO3+OLE 21 22 + 1.000*ALD2 +-1.000*PAR + 1.000*NO2) 23 -> 5.210E-06 * (1.000*FORM + .700*X02 + 1.000*CO .01 Rxn 60 O+ETH 24 + 1.700*H02 + .300*OH) 5.45 Rxn 61 OH+ETH 25 -> 3.113E-03 * (1.000*X02 + 1.560*FORM + 1.000*H02 + .220*ALD2) -> 1.839E-03 * (.080*X02 + .360*CRES + .440*W02 + .560*T02) -> 1.658E-03 * (.400*CRO + .600*X02 + .600*W02 + .300*OPEN) 26 .26 Ran 63 OH+TOL 27 1.74 Rxn 66 OH+CRES 3.587E-04 * (1.000*x02 + 2.000*C0 + 2.000*H02 28 .63 Rxn 70 OPEN+OH -> 29 + 1.000*C203 + 1.000*FORM) .00 Rxn 71 OPEN+03 30 -> 2.790E-05 * (.030*ALD2 + .620*C203 + .700*FORH + .030*X02 .690*C0 + .080*CH + .760*H02 + .200*HGLY) 31 -> 3.338E-03 * (.700*H02 + .500*X02 + .200*CRES + .800*HGLY + 1.100*PAR + .300*T02) 32 2.92 Rxn 72 OH+XYL 33 1.01 Rxn 73 OH+HGLY -> 5.790E-04 * (1.000*x02 + 1.000*C203) 34 35 Total XO2 Produced: .05715 100.000X 36 Init XO2 Conc: .00000 .000% .05715 37 TOTAL XO2: 38 XO2 Het Dilution: .00000 .002% 39 Final XO2 Conc: .00002 .029% 40 XO2 Reacted: .05713 99.969% 41 XO2 is Consumed in the Following Reactions: 42 Percent Rxn No. IRR Mass 43 98.62 Rxn 79 X02+ND -> 5.634E-02 * (1.000*NO2) 1.38 Rxn 80 X02 -> 7.873E-04 * () 44 45 Total XO2 Reacted: 5.712736E-02 46 The products of XO2 are: 47 Product Mass Yield per Percent of **48** Species Produced XO2 Total Prod .05634 NO2 40 .98622 1.293 50 XO2 -.05713 -1.00000 -99.969 -.05634 -.98622 51 NO -1.328

a

How REPLACE Works

The REPLACE command algorithm is divided into two FORTRAN subroutines. DECOMPOSE.FOR identifies all reactions in which XO_2 is consumed and creates a single net reaction, or array, which has negative coefficients for species that are consumed with XO_2 and positive coefficients for species that are produced from XO_2 . Each coefficient is divided by the total mass of XO_2 reacted. This converts the array to production (or loss) of each product per XO_2 reacted. The array is then multiplied by the fraction of the total XO_2 source which is consumed in chemical reactions (in this case 99.97%). This gives a replacement array which has production (or loss) of each product per XO_2 produced. In this example, each XO_2 that is produced results in the consumption of 0.9859 NO and production of 0.9859 NO₂. Thus, we know that for any source which produces 1 ppm of XO_2 , that XO_2 will react to produce 0.9859 ppm of NO₂.

The second subroutine, REPLACE.FOR, then passes through the mechanism and identifies reactions where XO_2 is produced. The product coefficient of XO_2 in a reaction is multiplied by the replacement array, and the values are added to the products of the reaction. XO_2 is then eliminated from the products in that reaction.

Finally, the reactions with XO_2 as a reactant must be removed or corrected. If XO_2 is only produced chemically, then reactions with XO_2 as a reactant are deleted (because the mass of reactants consumed in these reactions has been distributed among the reactions which produced the XO_2). If some fraction of XO_2 is contributed by other sources, such as initial concentration, then the reactions with XO_2 as a reactant are reduced only by the fraction of total XO_2 sources due to chemical production. For example, if 10% of HCHO were present initially and 90% was chemically produced, reactions of HCHO would be multiplied by 0.1. The remaining mass in the HCHO reactions would be distributed among the reactions which produce HCHO.

I added the command "REPLACE = XO_2 ;" to the command file shown in Table 6 and requested production of NO₂. The resulting BAL file is shown in Table 9. The effect of replacing XO₂ can now be seen by comparing NO₂ production in Table 8 and Table 9. The 31% of NO₂ which had been produced by XO₂ is now distributed among the 19 reactions which produce XO₂. For example in reaction 51, CH₄ produced (4.195E-3)(0.986) ppm of NO₂, or 2.28% of chemical NO₂ production (line 13). In addition, CH₄ produces HCHO and HO₂ which also react to produce NO₂. The RE-PLACE command can be used on most species which are produced as intermediates in the reaction mechanism. If HCHO is replaced, the HCHO replacement array will be

Using EVALUATE for a Full Mass Balance

substituted for HCHO in reactions which produce HCHO. The reactions with HCHO as a reactant will be reduced by the fraction of total HCHO sources due to chemical production.

It is inconvenient to enter species names interactively, so a BALANCE command was added to allow the user to list the species names in the command file. The program will then show production, consumption, and the net products of each species listed in the BALANCE command. It will not prompt the user for species names.

Using EVALUATE for a Full Mass Balance

Usually, the user will request a balance on many of the species in the mechanism. This creates a very large BAL file and contains much information that may be of little interest. It would be difficult to scan the BAL file for key information. An EVALUATE command will extract the important information from the BAL file and organize it into tables in the O_3 , NO_x , HO_x , and HC output files. Examples of these files are presented and explained in Chapter Five: IRREVAL Output Files. This section continues with an explanation of the algorithms used to produce the files.

To produce the O_3 , NO_x , HO_r and HC files, several new commands and special rules must be introduced. When the EVALUATE command is used, the species HO_2° and NO_2 should not be replaced. This is because IRREVAL calculates the number of molecules of O_3 produced per HO_2° produced (Yield NO_2 per HO_2°) and the number of molecules of O_3 produced per NO_2 produced (Yield O_3 per NO_2). IRREVAL stores the production of HO_2° and NO_2 from each organic, and these yields are used to calculate the O_3 production. For example, the CH₄ reaction must be in the form:

 $CH_4 + OH \longrightarrow + xNO_2 + yHO_2 + ...$

To repeat, NO₂ and HO₂ should not be REPLACED when the EVALUATE command is used.

IRREVAL distinguishes between organic and inorganic reactions. The user must identify which species are organic using the ORGANIC command. The NO_x table contains a nitrogen balance, so the user must also identify nitrogen containing compound using the NOY command. The HOX file shows 'OH radical initiation, propagation, and termination. The user must identify the 'OH initiation reactions using the NEW command. An example CMD file using these commands was shown in Table 5.

Algorithma

CID

Table 9. BAL file showing NO₂ sources with XO₂ replaced and all major cycles in CB4 removed. NO2 NO2 is produced in reactions: 3 Percent Rxn No. IRR Mass

4	.06	Rxn 20	NO	- >	1.020E-04	* (1.000*NO2)
5	.06	Rxn 21	HONO Cyc	te ->	1.0002+00	* (.000*NO + .000*NO2 + .000*KONO +001*OH)
6	59.14	Rxn 28	HO2+NO	->	1.071E-01	* (1.000*OK + 1.000*H02)
7	.39	Rxn 45	ALD2	->	7.087E-04	C 2.000*HOZ + 1.000*CO + 1.000*FORM
8						+986*NO + .986*NO2)
9	18.52	Rxn 46	C203+NO	>	1.6892-02	* (1.986*NOZ + 1.000*FORM + 1.000*HOZ +986*NO)
10	.05	Rxn 49	C203	.,	8.391E-05	* (1.000*FORM + 1.000*HO2 +986*NO + .986*NO2)
11	.31	Rxn 50	C203	- >	7.108E-04	* C .790*FORM +210*HO2 + .790*OH
12						+ 779*K0 + . 779*K02)
13	2.28	Rxn 51	METH+CH	->	4.195E-03	* (1.000*FORM + 1.000*HO2 +986*ND + .986*ND2)
14	8.13	Rxn 52	+0H	- >	1.7165-02	* (.130*x02# + .110*802 + .110*ALD2 + .760*808
15						+-1.110*PAR +858*NO + .858*NO2)
16	4.77	Rxn 53		->	9.131E-03	* (1.100*ALD2 + .940*HO2 +-2.100*PAR + .040*X024
17						+980*ROR +946*ND + .946*NO2)
18	.00	Rxn 56	O+OLF		1.8825-05	* (.630*ALD2 + .380*NO2 + .300*CD + .200*FORM
19					+ .020*x	02W + .220*PAR + .200*DH +276*ND + .276*ND2)
20	2.20	8xn 57	CH+OLF		4.040F-03	* (1.000*FORM + 1.000*ALD2 + 1.000*NO2
21						+-1.000*PAR + 986*N0 + .986*N02)
22	.05	Run 58	03+01 F	->	4.282F-04	* C .500*ALD2 + .740*E08H + .330*C0 + .440*H02
23					+ 100*0	# ++1 000*PAR + . 010*CH2 + - 217*K0 + .217*K0 2)
24	.00	Prn 50	HOTAO F		5 100F-07	* / 000*YA2W + 1 000*E02W + 1 000*4102
25		BALL 27	HOUTOLL		3.3702.01	A-1 0004040 + 1 8074902 + - 807490 1
26	00	Pvn 40	DAETH		5 2105-04	• / 1 000*FORM + 1 000*CO + 1 700*W02
27			UTEIN		3.2102-00	+ 300000 + - 400000 + 4000002 3
28	1 40	Pvn 61			T 1117.01	* / 1 SADECOPH + 1 0008002 + 22084102
20	1.07	BAIL OI	ON*CIN		3.1132-03	
30	08		OVATO		1 8305-03	*
31			ON-TOL		1.0372-03	4 - 0704W0 + 0704W02 3
12	10		102+10		4 1275-04	* 0/9-NU + .0/9-NU2 } 0008005W + 1008009011 1
11	54	Bun 44	NULFORE		1 4595-04	- (.900-802 + .900-802 + .900-07EN + .100-06811)
11		KAN OO	CHACKES		1.0306-03	- (.400-040 + .000-802 + .300-0PEN
75	20	Pwm 70			1 5975-04	*3YE NU * .3YE NUE }
74	.20	KAN TO	OPERTON		3.30/6-04	- { 2.000-00 + 2.000-N02 + 1.000-0205
30		Bun 71			3 7005.05	+ 1.000 FORM + YOO NU + . YOO NU2)
70	.00	KAN /1	UPEN+US		2.1902-03	- (.030-ALD2 + .620-C203 + .700-FORM + .690-C0
20				+.000-	UN + ./00-HU	2 + .200"AULT + .200"AR0 +050"NO + .050"NO2)
39	.91	KXn 72	OH+XTL	->	3.3388-03	• (.700*HO2 + .200*CRES + .800*HGLY + 1.100*PAR
40						+ .300*T02 + .500*C02 +493*W0 + .493*W02)
41	.32	Rxn 73	OH+MGLY	->	5.790E-04	* (1.000*C203 +986*NO + .986*NO2)
42	A	12.1		aires a		
43 Total NO2 Produced:				.18112	87.232%	
44 Init NO2 Conc:				.02500	12.041%	
45 NO2 Diluted Emissions				.00151	.727%	
46 (Total Emissions were				.00301 P	om)	
47 TOTAL NO2:				.20763	Tour write	
48	NO2 Net	Dilution	11	04224	20.346%	
49	Final NO	2 Conc:		.00185	.891%	
50	NOZ Reac	ted:		.16353	78.763%	

28

Using EVALUATE for a Full Mass Balance

Algorithms

IRREVAL will process the CYCLES and REPLACE commands and produce a modified mechanism array with considerably fewer reactions then the original reaction. The number of reactants in each reaction however, will increase. For example, reactions of C_2O_3 (an organic intermediate) will have been eliminated, but each reaction which produced C_2O_3 will contain all of the species that C_2O_3 ultimately produced in its degradation reactions. The WRITE command can be used at any time to see the current form of the mechanism array. The program will then store the amount of HO₂ and NO₂ produced and the amount of 'OH consumed by each organic species, reactions in which NO_y is produced or consumed, and reactions in which 'OH is produced and consumed. The rate of O₃ production from the *i*th hydrocarbon could then be calculated as:

$$\frac{\partial O_3}{\partial t}\Big|_{HC_i} = \frac{dHC_i}{dt} \left(\frac{\partial HO_2}{\partial HC_i} \frac{\partial NO_2}{\partial HO_2} + \frac{\partial NO_2}{\partial HC_i} \right) \frac{\partial O_3}{\partial NO_2}$$
(A)

The production of O3 from initial NO2 could be calculated as:

$$\frac{\partial O_3}{\partial t}\Big|_{NO_{2initial}} = \frac{dNO_{2initial}}{dt} \frac{\partial O_3}{\partial NO_2} \tag{B}$$

If the integrated reaction rates are given simply as the total integrated rate for the entire simulation period, it is not possible to integrate the derivatives in equations (A) and (B), but the derivatives can be approximated as:

$$\int \frac{dHC_i}{dt} dt = \Delta HC_i$$
$$\frac{\partial HO_2}{\partial HC_i} \approx \frac{\Delta HO_2}{\Delta HC_i}$$
$$\frac{\partial NO_2}{\partial HC_i} \approx \frac{\Delta NO_{2i}}{\Delta HC_i}$$

 $\frac{dNO_2}{dHO_2} \approx \frac{\Delta NO_2}{\Delta HO_2} = \text{Yield of } NO_2 \text{ per } HO_2^{\circ} \text{ produced (ppm/ppm)}$

 $\frac{dO_3}{dNO_2} \approx \frac{\Delta O_3}{\Delta NO_2} = \text{Yield of } O_3 \text{ per } NO_2 \text{ produced (ppm/ppm)}$

and then the integrals over time of equations (A) and (B) can be approximated as:

$$[O_3]_i = \Delta HC_i \left(\frac{\Delta HO_{2i}}{\Delta HC_i} \frac{\Delta NO_2}{\Delta HO_2} + \frac{\Delta NO_{2i}}{\Delta HC_i} \right) \frac{\Delta O_3}{\Delta NO_2}$$

Time Dependent Analysis

Algorithms

$$[O_3]_{initial}NO_2 = \Delta NO_{2initial} \frac{\Delta O_3}{\Delta NO_2}$$

where ΔO_3 is the incremental production of O_3 in ppm.

The yield of NO₂ per HO₂ produced is calculated by summing NO₂ production in reactions of HO₂, and then dividing by the total HO₂ sources in the simulation (after eliminating all cycling of NO₂ and HO₂).

 $\frac{\Delta NO_2}{\Delta HO_2} = \frac{\text{Sum of } NO_2 \text{ production in } HO_2 \text{ reactions}}{\text{Total } HO_2 \text{ production}}$

Its value is listed at the end of the *.HC output file. The yield of O_3 per NO_2 produced is calculated by dividing O_3 production in the O_3/NO_2 chemistry cycle by total NO_2 sources.

$$\frac{\Delta O_3}{\Delta NO_2} = \frac{\text{Sum of } O_3 \text{ production in } NO_2 \text{ reactions}}{\text{Total } NO_2 \text{ production}}$$

Its value is listed in the *.NOX output file.

The *.O3 file will show the mass of each organic reacted, the O₃ yield per organic reacted, and the total O₃ attributed to each organic. Appendix A shows the chain reaction of ethene and illustrates the calculation of $\delta O_3/\delta ETH$. These output files are described in detail in chapter 5.

Time Dependent Analysis

The method described in the previous section provides an aproximation of how the predicted O_3 is produced. Its major weakness is that the calculated yields of O_3 per NO_2 and NO_2 per HO_2 in equations (A) and (B) are calculated as averages for the entire simulation period. In this example, chemical production of O_3 was 124 ppb. The total sources of NO_2 were 181 ppb chemical production plus 26 ppb of initial NO_2 and NO_2 emissions, for a total of 207 ppb NO_2 . So, averaged over the simulation period, for each ppb of NO_2 produced, 0.6 ppb of O_3 are produced. The initial NO_2 concentration is 25 ppb, so using this method (0.6)(25) = 15 ppb of O_3 is attributed to the initial NO_2 . Likewise, for each ppb of NO_2 produced by an organic species, 0.6 ppb of O_3 is attributed to that organic.

The efficiency of conversion of NO_2 to O_3 , however, varies as a function of time. In the early morning, NO is high and little net production of O_3 occurs, so much of the initial NO_2 may be lost to dilution. Chemical NO_2 production is largest later in
Time Dependent Analysis

Algorithms

the day when NO_2 is converted more efficiently to O_3 . The yields of these conversion processes must be known as a function of time to correctly attribute O_3 production to the various sources. The IRR • TIME command saves the integrated reactions rates periodically, e.g. at 60 minute intervals, throughout the simulation. This allows a complete mass balance analysis to be performed for each interval, and the yields of conversion processes can be calculated for each interval.

This appoach gives a more accurate description of the contribution of initial NO_2 and chemically produced NO_2 to the O_3 production. It treats more accurately all of the time-dependent yields and conversion processes. For example, the yield of conversion of HO_2 to NO_2 depends on the abundance of NO. A compound which produced HO_2 late in the day when NO is depleted would not have the same impact on O_3 production as a compound which produced HO_2 earlier in the day.

This approach also presents new difficulties. In the time-averaged case, the simulation consisted of one interval. O₃produced from species present at the beginning of the simulation could be attributed to the initial concentration of those species.

In the time-dependent case, the simulation is divided into several intervals. At the beginning of any interval after the first, there will be some concentration of each species, *e.g.* NO₂. This NO₂ can be partially attributed to NO₂ present at the beginning of the simulation and partially attributed to the various new sources of NO₂ during each interval after the beginning of the simulation. I have tried to distinguish the initial NO₂ present at the beginning of the first interval from that present at the beginning of subsequent intervals by calling the latter "old NO₂" or the "current concentration at the beginning of the interval".

OZIPR reports the concentration of NO₂ at the beginning of any interval (the "old NO₂"), but IRREVAL must determine what fraction of the old NO₂ is left over from initial NO₂ and what fraction has been produced chemically since the beginning of the simulation. (Remember that NO₂ is rapidly photolyzed, so that the identical NO₂ molecule which was initially present will no longer exist, but, because of the psuedo-steady-state equilibrium, an NO₂ formed from the initial NO₂ may be present.)

I included an algorithm (described below) to trace the NO_2 produced from each source and from each species in the mechanism. I assumed that the rate of NO_2 production is constant during an interval and that the rate loss processes are constant and act proportionally to the concentration of NO_2 present from each Algorithms

source at any given time. I will use the following simple example to describe the algorithim and the calculations it performs:

Suppose a simulation consists of one interval lasting one hour. At the beginning of the interval there is an initial NO₂ concentration of 100 ppb. Another 50 ppb of NO₂ is emitted linearly during the interval, and NO₂ loss occurs linearly during the interval with a total loss of 30 ppb. Let

 $X_{1,t}$ = the concentration of NO₂ due to initial NO₂ at time t

 $X_{2,t}$ = the concentration of NO₂ due to NO₂ emissions at time t

 $X_{T,t} = X_{1,t} + X_{2,t} = \text{total NO}_2$ concentration at time t

 $P_{2,t} = \text{rate of new NO}_2$ from emissions = 50 ppb/hr

 $P_{T,t} = \text{total production rate of NO}_2$ from all new sources

 $L_t = \text{loss rate of NO}_2 = 30/\text{hr}$

At time t = 0, $X_{2,0} = 0$ and $X_{T,0} = X_{1,0} = 100$ ppb. X_T can be expressed as a function of time:

$$X_{T,t} = X_{T,t-1} + (P_{T,t} - L_t)t$$

and the rate of change of X_1 and X_2 are linear first-order differential equations:

$$\frac{dX_1}{dt} = -L(\frac{X_1}{X_T})$$
$$\frac{dX_2}{dt} = P_2 - L(\frac{X_2}{X_T})$$

which can also be expressed as:

$$\frac{dX_1}{X_1} = -\frac{Ldt}{X_{T,0} + (P_T - L)t} \tag{C}$$

$$\frac{dX_2}{dt} + \frac{X_2L}{X_{T,0} + (P_T - L)t} = P_2 \tag{D}$$

The analytical solutions to (C) and (D) are:

$$X_{1} = X_{1,0} \left(\frac{X_{T,0} + (P_{T} - L)t}{X_{T,0}} \right)^{\left(\frac{L}{L - P_{T}}\right)}$$
(E)

$$X_{2} = \frac{P_{2}}{P_{T}} \left[X_{T,0} + (P_{T} - L)t \right] + X_{2,0} X_{T,0}^{L/(L-P_{T})} - X_{T,0}^{P_{T}/(P_{T} - L)} [X_{T,0} + (P_{T} - L)t]^{L/(L-P_{T})}$$
(F)

For the example given above, 76 ppb of the initial NO_2 would be left and 44 ppb of emmitted NO_2 would have accumulated by the end of the hour.

For each additional source of new NO₂, for example, chemical production by organic species j, equation (F) is solved with the appropriate values for $X_{j,0}$ and P_j .

Source and sink terms are not linear in a typical simulation, but a simulation can be split into intervals with nearly linear sink and source terms. In OZIPR the command IRR = TIME; is used to request time dependent intergrated reaction rate output. The time interval for output is set using the command PRINT> TSTEP=x; <. The default time interval is one hour.

To summarize this discussion, in a time-dependent IRREVAL analysis, NO₂ present at the end of interval t is made up of some mass that was present initially and some mass that was produced since the beginning of the simulation. At the beginning of interval t + 1, IRREVAL requires a method to determine how much of the current NO₂ concentration is attributed to initial NO₂ and how much is attributed to new production in all previous intervals.

I added two subroutines to implement the algorithms described above. Subroutine SAVEPROD.FOR saves the amount of NO₂ each organic during each interval. SAVEPROD is called after cycles have been eliminated and before species have been replaced. SAVEPROD.FOR builds an array P(i,j) which is the mass in ppm of species *i* produced by source *j*. The subroutine INTSPE.FOR then uses P(i,j) to solve equations (E) and (F) above for NO₂. It updates an array X(i,j), where X(i,j)is the mass in ppm of species *i* attributed to source *j*, and

$$XT(i) = \sum_{j=1}^{n} X(i, j)$$

is the current concentration of species i.

The same problem occurs for intermediates species which are eliminated using the REPLACE command, e.g. FORM and C203 in CB4. When the REPLACE command is used, IRREVAL attempts to attribute O_3 produced from intermediates to the primary organic which originally produced the intermediate. In a timeaveraged analysis, the chemically produced fraction of these species is eliminated. The fraction present initially or emitted is considered a primary organic and is not eliminated. In a time-dependent analysis, each replaced species will have a non-zero Algorithms

concentration at the beginning of each interval after the first. The "old" concentration at the beginning of each of these intervals must be correctly attributed to the sources which produced the species in the earlier intervals. The same method described above for NO_2 is used to determine, in each interval, the fraction of the "old" intermediate concentration to be attributed to each primary organic species.

The calculation is further complicated, however, for replaced organic intermediates because a replaced species may be produced by another replaced species. I used the method described above for NO_2 to calculate X(i,j) for each replaced species, where i is an index for the replaced species and j is an index showing which organic species produced replaced species i. I then added another subroutine, ELIMREP.FOR, to sort the array X(i,j). It attributes all production of species i to primary organics. Briefly, when a source species j is itself a replaced species, the array X(j,k) is used to determine which species produced the j, so that the mass of i produced by j is attributed to the organic species which produced j.

The primary goal of these calculations is to attribute the O_3 production from intermediates to primary organics. The subroutine TIMOUT.FOR checks if O_3 is conserved in the substitution process. If O_3 is lost, a message is printed to the TI3 output file and the O_3 production by each organic is increased to make up for the lost mass.

IRREVAL can be used in three different modes which determine the number of output files. In the simplest case, the user wishes to view detailed information about the sources, sinks and reactions of one or several species. The CMP and IRR input files must be specified; the CYCLES and REPLACE commands may be used to eliminate cycling processes and intermediates; and the IGNORE and NEW commands may be used to determine the number and types of species shown in the output. Species names can be entered interactively or the BALANCE command can be used to list the species for which an analysis is desired. Output is listed in the *.BAL file.

The EVALUATE command performs a complete mass balance analysis of organic and nitrogen containing species. It creates the additional output files *.O3, *.NOX, *.HOX, and *.HC, where the * is replaced by the name of the command file. Figure 5 showed a typical CMD file used for CB4 which illustrates the EVALUATE command. This CMD file was used to generate the output files listed below.

If a time dependent IRR file is used, the complete analysis is performed for each interval in the *.IRR file. The O_3 , NO_y , HO_x and HC Tables are written to the output files for each interval, so these files may be as large as 100K. The *.BAL file may be larger than one Mbyte, and it is possible to avoid creating it with the SUPPRESS command. Four additional files are then created which summarize key time dependent information. These are *.TIM, *.TI2, *.TI3 and *.TI4. Each output file is described below.

BAL Output File

An example BAL file is shown in Table 10. When IRREVAL reads the mechanism, it

will combine coefficients of species which occur twice in the reaction. (This simplifies the analysis.) The BAL file will first list reactions which have been modified by combining coefficients. For example, the reaction

NO3 + NO2 ---- NO + NO2 + 02

generates the message shown in line 5 of Figure 10.

The BAL file then displays information for the reactions which were summed using the CYCLES command. Line 9 lists the reactions which were found to contain HONO and which are summed to calculate the net cycle reaction. Lines 11 and 12 show the net reaction produced by the summation. In net cycle reactions, the reaction's integrated reaction mass is set to 1.0 while the mass of species reacted and produced is actually stored in the net reaction coefficents. This simplifies the summing of masses for species which occur in reations which have different integrated masses.

A warning message will occur for species which are found to have no source, as in lines 14 to 15. In this case, odd oxygen was summed with the CYCLE command so that atomic oxygen sinks and sources cancelled out. As discussed in Section 2, there are small errors in the mass balance for each species so that line 16 shows a small amount of O reacted while none is produced. The difference is small in this case so no error has occurred, but this warning message can indicate problems when the error is large or if a species expected to be present has zero sources.

Lines 19 to 23 show the message displayed when a species is replaced. The replacement array is shown in lines 21 and 22. It is the sum of all species produced by or reacted with the replaced species. In this simple example, one NO is consumed by XO_2 to produce one NO_2 . The yields are less than the "Percent Reacted" because some XO_2 reacts with itself to form no products.

For each species listed in the BALANCE or EVALUATE commands, the detailed mass balance information is in a block with three sections. Table 3 shows an example output for CO. The first section, lines 26 to 41 lists all reactions which produce CO and the percent produced via each reaction. The amount produced by a given reaction is the product of the integrated reaction rate (first number after the arrow) an the CO product coefficient. Lines 35 to 40 then show all sinks and sources of CO. The second section, lines 43 to 46, lists all reactions which consume **BAL Output File**

1

IRREVAL Output Files

```
Table 10. Example BAL Output File
```

```
2
 3
                                                   .00*NO2
                                     -> 1.00*NO
 5
   Adjusted Rxn 16 NO3
 6
     Cycle = HONO Cycle
 7
 8
    Rxns found =
 9
   Summed Reactions:
                     21 21 22 23 24 25
10
    Net Reaction is:
     .00038530*NO
                   .00000011*#20
                                   .00049225*OH
11
12
       -> .00010695*NO2 .00027835*HONO
13
   Warning: Species "O" had O Total Mass in IRMB.
14
15
    Prod = .00 Init conc = .00 Emiss =
                                            .00
   Sun Reacted = 5.257712E-05
16
17
19
   Replaced specie is: XO2
20
   Prod Specie Yield per XO2 produced
                       .9767
21
       NOZ
22
       NO
                      -.9767
23
   Percent Reacted =
                      99.926 X
24
25
    co
   CO is produced in reactions:
26
27
   Percent via
                                    irr prod
28
     43.27 Rxn 37 FORM+OH
                                           .172E-01 * ( 1.000*H02 + 1.000*C0 )
                                       •>
     16.93 Rxn 38 FORM
                                           .672E-02 * ( 2.000*H02 + 1.000*C0 )
29
                                       ->
30
     29.10 Rxn 39 FORM
                                           .115E-01 * ( 1.000*C0 )
                                       ->
31
                                           .257E-05 * ( 1.000*0H + 1.000*H02 + 1.000*C0 )
       .01 Rxn 40 FORM+0
                                       ->
32
       .23 Rxn 62 03+ETH
                                       ->
                                           .217E-03 * ( 1.000*FORM + .420*CD + .120*HO2 )
                                            .558E-03 * ( 1.000*C203 + 1.000*H02 + 1.000*C0 )
33
       1.41 Rxn 69 OPEN
                                       ->
34
      4.55 Rxn 74 HGLY
                                            .180E-02 * ( 1.000*C203 + 1.000*N02 + 1.000*C0 )
                                       ->
35
   Total CO produced is
                           .03965
                                    3.199%
36
   Init CO conc was
                          1.20000
                                   96.801%
   TOTAL CO .
37
                          1.23965
   CO Net Dilution was
                           -.55157
                                    44.494%
38
                           .64863
   Final CO Conc =
                                   52.324%
39
40 CO Reacted =
                            .03945
                                     3.183%
41 (net entrainment only added to total if positive)
42
43 CD is consumed in rxns below to produce:
44
   Percent via
                                           .03945 * ( 1.000*HO2 )
45 100.000 Rxn 36 OH+CO
                                       ->
                      reacted was
46 Total CO
                                    3.945234E-02
47
48 The products of CO are:
49 prod specie production Yield per CO % of Tot Prod
50 HO2
                  .0394523
                              1.00000
                                         30.280
                  -.0394523
                              -1.00000
                                         -27.806
51
    OH
                             -1.00000
52 CO
                 -.0394523
                                         -3.183
```

CO and the percent of the total reacted lost via each reaction. The third section, lines 48 to 52, contains a row for each species that is produced by or reacts with CO. The first column is the name of species *i*, the second column is the amount of species *i* produced (or reacted if negative), the third column is the yield of species *i* per CO reacted. The fourth column is the percent of total species *i* sources that is produced (or lost) by reactions involving CO. In this example, 30% of the total HO'_2 is produced by CO, while 28% of the 'OH is consumed by CO.

If the WRITE command is used, the mechanism and integrated reaction rate arrays will appear in the BAL file. Warnings may also occur in the mass balance blocks if IRREVAL finds that species i is producing species j in one reaction and species j is producing species i in another reaction.

O3 Output File

The *.O3 file will contain "Table 1: Ozone Production". See Table 11 for an example O_3 file. A row for each hydrocarbon shows the amount of the hydrocarbon (HC) reacted (ppm), the number of NO₂ molecules produced per HC reacted, the total NO₂ production (ppm) due to each HC, the O₃ production (ppm) due to each HC, the fraction of total O₃ sources due to each HC, and number of O₃ molecules produced per HC reacted. Similar information is shown for each inorganic reaction which produces NO₂ (lines 17 to 19). Lines 21 to 28 summarize the processes which produce or consume O₃. There are two error checks in Figure 11. Line 26 compares the total O₃ sources calculated by IRREVAL to the total sources given in the IRR file. The total should be very close to 100%. Lines 28 and 29 compare the final O₃ concentration calculated by IRR with that calculated by mass balance within the IRR file.

Line 9 of Table 11 shows that the average yield of O_3 (ppm) per ETH (ppmV) reacted is 1.735. Appendix A shows the chain reaction of ethene and illustrates the calculation of $\Delta O_3/\Delta$ ETH.

NOX Output File

The *.NOX file contains a table labled "Table 2: NO_X Balance" (see Table 12 for an example NOX file). The NOX file has rows showing individual chemical sources and sinks for NO in ppm, for NO_2 in both ppm and percent, and for NO_z in ppm, $(NO_z = NO_y - NO_x)$. Conservation of nitrogen requires that, within any row, the total of NO_y sources must equal the total of NO_y sinks, where $NO_y = NO + NO_2 + NO_2$. Lines 16

NOX Output File

Table 1	11. Exam	ple O ₃	outp	out file
---------	----------	--------------------	------	----------

Source	Reacted(ppnV)	YN02/ppm	NO2 Prod	03 Proc	XTot 03	Y03/ppm
Organic Sources	1		A	- 2.00		-
CO	.03621	.908	.03289	.01996	13.11	.551
METH	.00421	2.408	.01015	.00616	4.04	1.461
PAR	.02360	2.947	.05876	.03566	23.42	1.788
ETH	.00333	2.858	.00952	.00578	3.79	1.735
OLE	.00451	3.593	.01082	.00657	4.31	2.180
TOL	.00184	2.424	.00447	.00271	1.78	1.471
XYL	.00335	4.664	.01564	.00949	6.23	2.830
FORM	.01112	.808	.00898	.00545	3.58	.490
ALD2	.00932	2.846	.02652	.01609	10.57	1.727
**************	**********					
Organic Subtotal	.09750	1.823	.17775	.10787	70.84	1.106
Inorganic Reacti	ions					
Rxn 20 NO			.00010	.00006	.04	
RXN 21 HOND C)	cle		.00011	.00007	.04	
Inorganic Subton	al		.00021	.00013	.08	
Total Org+Inorg	Prod		.17796	.10800	70.92	
03 from old HO2			.02500	.01517	9.96	
NO2 Emissions			.00152	.00092	.61	6. Que -
Net 03 Entrainme	mt			.02818	18.51	
TOTAL OJ Sources				.15228	100.00	
03 Reacted				.00779	5.12	
Final OS Conc				.14449		
Correct conc fre	IRR IRR			.14450		

to 20 show the contribution of initial concentrations, emissions, dilution, and final concentration to the NO_y balance. Within each set of paired source/sink columns (for NO_1 , NO_2 , NO_2) mass conservation requires that the total sources must equal the total sinks. In addition, for NO_2 , the summed NO_2 sources and sinks calculated by IRR are compared to the correct total NO_2 sources. Thus, in Table 12, line 22 of the "%" column should be 100%. This is a check for errors in the routine which identifies and sums NO_2 production.

Lines 24 to 28 summarize important information from Table 12 which can be used to compare different reacting systems or different photochemical mechanism. O₃ is produced (perhaps exclusively) by photolysis of NO₂. Line 24 shows the fraction of total sources of NO₂ consumed in the O₃/NO₂ chemistry cycle. The value will depend on which reactions are included in the O₃/NO₂ cycle. I normally include the O₃ and NO₂ photolysis reactions, inorganic NO₃ reactions and the O(1D) + H₂O reaction (see the command file in Figure 5 for a complete list of reaction numbers). This choice of reactions removes all cycling effects of photolysis reactions on NO₂

NOX Output File

Reaction	NC	1		NOZ			NOZ . NO	· NOx
	Sources	Sinks	Sourc	es X	Sinks	*	Sources	Sinks
Total Organic Rxns	.00000	.07411	.07043	34.44	.00000	.00	.00441	.00074
and the second states and		1.224.2	1.					
Rxn 28 NO+HO2->NO2+OH	and and	.10733	. 10733	52.48			Courses.	10000
Rxn 1 03/HO2 Chemistry	.13570	.00000	.00000	.00	.13613	66.57	.00044	.00000
Rxn 20 WO	.00000	.00010	.00010	.05	.00000	.00	.00000	.00000
Rxn 21 HONO Cycle	.00000	.00041	.00011	.05	.00000	.00	.00030	.0000
Rxn 26 OH+NO2	.00000	.00000	.00000	.00	.02421	11.84	.02421	.0000
Rxn 29 PKA Cycle	.00000	.00000	.00000	.00	.00001	.00	.00001	.0000
Rxn 81 XO2N+ND	.00000	.00259	.00000	.00	.00000	.00	.00259	.0000
Rxn 27 OK+HNO3	.00000	.00000	.00000	.00	.00000	.00	.00051	.0005
Total Chemical Rxns	.13570	.18453	.17797	87.03	.16035	78.41	.03247	.0012
Initial Concentration	.07500		.02500	12.23			.00000	
Emissions	.02892		.00152	.74			.00000	
Net Dilution		.05507			.04256	20.81		.0058
Final Concentration		.00001			.00158	.77		.0254
Totals	.23961	.23961	.20449	100.00	.20449	100.00	.03247	.0324
Fraction of NO2 Consumed	In Photoly	sis Rans	66	5706				
Fraction of NO2 Consumed i	in Non-Pho	tolysis Rx	ns = .11	8436				
Fraction of NO2 Unreacted			.21	5858				
Yield 03 per NO2 Photolysed	d			1652				
Yield 03 per NO2 Produced			.60	6893				

Table 12. Example NOx output file

and O_3 . Line 27 shows the average yield of O_3 per NO₂ consumed in the O_3/NO_2 chemistry cycle. It is a measure of the extent to which NO₃ chemistry and 'OH production remove odd oxygen from the system. When NO₂ concentrations are high, there may be a net loss of odd oxygen in these reactions, and the yield of O_3 per NO₂ photolysed would be zero.

Line 25 shows the fraction of NO_2 sources consumed in reactions other than the O_3/NO_2 chemistry cycle. This is a measure of how effectively reactions with 'OH and organic intermediates remove NO_2 from the system.

Line 26 is the fraction of NO_2 sources that are unreacted, either as final NO_2 or NO_2 dilution. Finally, line 28 shows the yield of O_3 per molecule of NO_2 produced. It should be equal to the product of lines 24 and 27.

Line 24 showed that 66% of the total NO_2 source, or 136 ppb, was consumed in the O_3/NO_2 chemistry cycle. It would be physically incorrect to conclude that only 136 ppb of NO_2 photolyzed. In fact, NO_2 rapidly photolyzes to produce O_3 and NO HOX Output File

throughout the day. And much of the O_3 and NO rapidly react to reproduce NO_2 . As discussed in Section 4, the total NO_2 used here is the sum of NO_2 sources after all cycling processes are removed. The 136 ppb of NO_2 consumed in the O_3/NO_2 chemistry is the mass of NO_2 which reacted fo form O_3 and was not subsequently converted back to NO_2 .

HOX Output File

VOCs react primarily with 'OH radicals in a chain-type reaction sequence. Chainreactions consist of a radical initiation step, a propagation step, and a radical termination step. A radical is a species with an unpaired electron, also called a "free" electron. Free electrons are created in pairs by photolysis reaction of photo-acceptor species. For example, photolysis of O₃:

$$O_3 \xrightarrow{hv} O_2 + O(1D)$$

creates O(1D) which can then abstract a hydrogen atom from water:

$$O(1D) + H_2O \longrightarrow OH + OH$$

creating two "new" 'OH radicals. New 'OH radicals can also be generated by the photolysis of organic photo-acceptors such as aldehydes:

and the subsequent reaction of NO with HO':

HO'2 + NO ----- 'OH + NO2

An 'OH radical can react with a VOC in the propagation step. For example, 'OH abstracts an H atom from an CH_4 :

 $CH_4 + OH \longrightarrow CH_3 + H_2O$

Molecular oxygen adds to the radical to form a methylperoxy radical.

 $CH_3^{\circ} + O_2 \longrightarrow CH_3O_2^{\circ}$

The methylperoxy radical converts an NO to NO_2 , forming a methoxy radical, and O_2 abstracts an H atom from the methoxy radical to form HO'_2 .

 $CH_3O_2^{\circ} + NO \longrightarrow CH_3O^{\circ} + NO_2$ $CH_3O^{\circ} + O_2 \longrightarrow HCHO + HO_2^{\circ}$

Figure 2. Propagation of 'OH radicals by reaction with a single VOC.

and the HO₂ can then react with NO regenerating the 'OH radical.

$$HO_2 + NO \longrightarrow OH + NO_2$$

The net reaction for this propagation chain is:

 $CH_4 + 2O_2 + 2NO \longrightarrow HCHO + 2NO_2 + H_2O$

The chain-termination reactions are those in which radicals are lost by the recombination of free electrons, e.g.:

 $HO_2^{\cdot} + HO_2^{\cdot} \longrightarrow H_2O_2^{\cdot}$ $OH + NO_2 \longrightarrow HNO_3^{\cdot}$

If a mixture is to produce a significant amount of O_3 , there must be a source of "new" 'OH radicals which start and maintain the chain process. In the early morning, photolysis of HCHO or HONO are often significant sources of new 'OH, while later in the day, photolysis of O_3 may produce much of the new 'OH.

To produce O_3 , the VOC mixture must also regenerate significant quantities of 'OH in the propagation step. In other words, the rate of chain propagation reactions must be large compared to the rate of chain termination reactions. Because of chain termination reactions, less than one 'OH is regenerated from each 'OH which reacts with an organic. A propagation factor for an individual VOC_j can be defined as the number of 'OH radicals produced in the final step of the chain. In Figure 2, p_i is the number of 'OH radicals regenerated per 'OH that reacts with VOC_i. The value of p_i must be less than or equal to one. (It would be equal to one if there were no chain termination reactions.)

The propagation factor of the mixture is the sum of the propagation factors of the individual VOCs weighted by the fraction of 'OH which reacts with each VOC. Chain termination reactions have a propagation factor of zero. Figure 3 illustrates

HOX Output File

the 'OH chain-reaction. Photolysis reactions generate q new 'OH radicals. The second box in Figure 3 represents the propagation and consumption of 'OH radicals in chain-propagation and chain-termination reactions. For each 'OH consumed, p_{mix} 'OH radicals are regenerated in proagation reactions, where p_{mix} is the propagation factor of the mixture. If p_{mix} is low, termination reactions are fast relative to propagation reactions. The total amount of 'OH reacted, Q, is:

$$Q = q + qP_{mix} + qP_{mix}^2 + \ldots + qP_{mix}^\infty$$
$$Q = \frac{q}{1 - P_{mix}}$$

The 'OH chain length is defined as the total 'OH reacted per new 'OH produced and can be calculated as:

OH Chain Length =
$$\frac{Q}{q}$$

OH Chain Length = $\frac{1}{1 - P_{mix}}$

The propagation reactions described above also produces new organic photoacceptors. These can photolyses to produce additional new 'OH radicals. As a result,

the number of new 'OH radicals produced will depend on

- The actinic flux,
- The prescence of photo-acceptor species in the mixture, and
- The production of new photo-acceptors in the chemical mechanism

One method of characterizing O_3 production is in terms of the sources of new 'OH radicals and the propagation factor or chain length of the mixture. This is useful both as an explanation of how the O_3 is formed, and as a tool for comparing O_3 production predicted using different photochemical mechanisms. The HOX file contains information on the 'OH cycle described above.

The *.HOX output file contains the three tables labeled: "Table 4: New OH Sources"; "Table 5: OH Propagation"; and "Table 6: HOx Mass Balance" (see the example file in Table 13). If the NEW command has been used to identify reactions producing new HO_x radicals, the table labeled "Table 4" will list the contribution of individual organic species and individual inorganic reactions to new 'OH. The 'OH radicals produced from new HO_2' radicals are also considered to be new. If organic photo-acceptors are produced as intermediates by a primary hydrocarbon, new 'OH will be attributed to the primary hydrocarbons which produced the organic photo-acceptor.

The table labeled "Table 5" lists the contribution of individual organic species to 'OH propagation. The first pair of colums shows the ppb of 'OH reacted with each organic. The third column shows the ppb of HO₂ produced by each organic. The fourth and fifth colums show the 'OH produced by reactions of each organic. This is calculated as the product of the HO₂ production and the yield of 'OH per HO₂. The last column in "Table 5" is the propagation factor for each organic. It is the number of 'OH molecules regenerated by the organic per molecule of 'OH consumed by reactions of the organic. The last line in "Table 12" shows the average 'OH chain length. A low chain length might indicate a large loss of 'OH radicals with NO₂ or inefficient conversion of HO₂ to 'OH under low NO conditions.

The table labeled "Table 6" shows a mass balance on 'OH and HO₂ sinks and sources.

HC Output File

An *.HC output file is produced if either the PATHWAYS or SHOW commands are used. The PATHWAYS command produces a table labeled "Table 7: Pathway

HC Output File

Table	e 13. E	xampl	e HOx o	utput file				
Table 4: New OH S	ources							
**************	******						******	
Source		New OH	New HO2	Tot New O	H L of	Total		
		(199-07	199007	(, , , , , , , , , , , , , , , , , , ,				
METH		.0	1.05	.98	2.3	8		
PAR		.0	6.45	6.06	14.6	7		
ETH			1.40	1.31	3.1	8		
OLE		.0	1.30	1.22	2.9	5		
TOL		.0	1.28	1.20	2.9	2		
XYL		.00	4.86	4.56	11.0	5		
FORM		.00	4.33	4.06	9.8	4		
ALD2		.00	2.81	2.64	6.3	9		
Rxn 1 03/NO2 Ch	enistry	19.20	.00	19.26	46.6	3		
Total New Radicals		19.20	23.48	41.30	100.0	0		

Table 5: OH Propag	ation (b	ased on	OH Yield p	er H02= .93	84)			
Constant		*****	und Band	Tab Of Dear	*****			
species	(ppb)	ALOSS	(ppb)	(ppb)	AProp	Facto	r	
	T6 31	27 83	74 74	TT 00	78 35			
VETU	50.21	61.02	50.21	5 21	50.25	.930		
DID	24.74	30 64	5.30	10 17	20.11	.930		
PAR	£0.10	20.50	19.52	10.13	20.41	.0/0		
CIE	5.15	1.90	5.11	1.79	5.10	.931		
ULE	3.41	4.05	5.11	4.19	5.39	.910		
TOL	5.05	2.35	2.40	2.0	2.55	.151		
XIL	6.02	4.02	5.23	4.91	5.53	.816		
FORM	5.56	4.27	5.56	5.21	5.87	.938		
ALDZ	11.32	8.69	10.18	9.56	10.76	.845		
Organic Total Average OH Chain	104.88 Length =	80.59 3.15	94.67	88.84	100.00	.847		
**************	******				*******	******		
Table 6: HOx Mass	Balance							
Table 6: HOx Mass	Balance Loss	H02 XL	ss Prod	HOZ XProd	Loss OH	TLoss	Prod Of	1 XProd
Table 6: HOx Mass	Loss (ppb)	HO2 XL	oss Prod (pp	HOZ XProd	Loss OH (ppb)	Loss	Prod Of (ppb)	1 1Prod
Table 6: HOx Mass	Loss (ppb)	HO2 %LC	oss Prod (pp	HOZ XProd 6)	Loss CH (ppb)	Loss	Prod Ok (ppb)	1 XProd
Table 6: HOx Mass Inorganic Rxns	Balance Loss (ppb	HO2 XLC	oss Prod (pp	HOZ XProd b)	Loss OH (ppb)	¥Loss	Prod Ok (ppb)	1 XProd
Table 6: HOx Mass Inorganic Rxns Rxn HO2+NO->OH+NO	Loss (ppb)	HO2 XLC	ess Prod (pp	HOZ XProd (d)	Loss OH (ppb) .00	%Loss	Prod Or (ppb)	82.47
Table 6: HOx Mass Inorganic Rxns Rxn HO2+NO->OH+NO 03/NO2 Chemistry	Loss (ppb)	HO2 XLC	84 .	HOZ XProd (b) 00 .00	Loss CH (ppb) .00 .00	.00 .00	Prod 0k (ppb) 107.33 19.26	82.47 14.80
Table 6: HOx Mass Inorganic Rxns Rxn HO2+NO->OH+NO 03/NO2 Chemistry 03/HOx Cycle	Loss (ppb)	.33 90.	84 . 98 .	HO2 XProd b) 00 .00 00 .00 00 .00	Loss OH (ppb) .00 .00	.00 .00 .00	Prod 0((ppb) 107.33 19.26 3.53	82.47 14.80 2.71
Table 6: HOx Mass Inorganic Rxns Rxn HO2+NO->OH+NO O3/NO2 Chemistry O3/HOx Cycle HONO Cycle	Balance Loss (ppb) 2 107. 3	.33 90. .00	84 . 98 . 00 .	HO2 XProd b) 00 .00 00 .00 00 .00 00 .00	Loss CH (ppb) .00 .00 .00 .52	.00 .00 .00 .40	Prod 0% (ppb) 107.33 19.26 3.53 .00	82.47 14.80 2.71 .00
Table 6: HOx Mass Inorganic Rxns Rxn HO2+NO->OH+NO O3/NO2 Chemistry O3/HOx Cycle HONO Cycle OH+NO2	Balance Loss (ppb) 2 107 3	.33 90. .00 . .00 .	84 . 98 . 00 . 98 . 00 .	H02 XProd b) 00 .00 00 .00 00 .00 00 .00 00 .00	Loss CH (ppb) .00 .00 .00 .52 24.21	.00 .00 .00 .40 18.60	Prod 0% (ppb) 107.33 19.26 3.53 .00 .00	82.47 14.80 2.71 .00 .00
Table 6: HOx Mass Inorganic Rxns Rxn HO2+NO->OH+NO O3/NO2 Chemistry O3/HOx Cycle HOHO Cycle OH+NO2 PNA Cycle	Balance Loss (ppb) 2 107	.02 XLC	84 . 98 . 00 . 98 . 00 . 00 .	H02 XProd b) 00 .00 00 .00 00 .00 00 .00 00 .00 00 .00	Loss CH (ppb) .00 .00 .00 .52 24.21 .03	.00 .00 .00 .40 18.60 .02	Prod 0% (ppb) 107.33 19.26 3.53 .00 .00	82.47 14.80 2.71 .00 .00
Table 6: HOx Hass Inorganic Rxns Rxn HO2+NO->OH+NO O3/NO2 Chemistry O3/HOx Cycle HOHO Cycle OH+NO2 PNA Cycle H2O2 Cycle	Balance Loss (ppb) 2 107 3	.02 XLC	84 . 98 . 00 . 98 . 00 . 00 . 15 .	H02 XProd b) 00 .00 00 .00 00 .00 00 .00 00 .00 00 .00 00 .00	Loss CH (ppb) .00 .00 .00 .52 24.21 .03 .00	.00 .00 .00 .40 18.60 .02 .00	Prod 0% (ppb) 107.33 19.26 3.53 .00 .00 .00 .03	82.47 14.80 2.71 .00 .00 .00 .02
Table 6: HOx Mass Inorganic Rxns Rxn HO2+NO->OH+NO O3/NO2 Chemistry O3/HOx Cycle HOHO Cycle OH+NO2 PNA Cycle H2O2 Cycle OH+ENO3	Balance Loss (ppb) 2 107 3	.02 XLC .03 90. .00	84 . 98 . 00 . 98 . 00 . 00 . 00 . 15 . 00 .	H02 XProd b) 00 .00 00 .00 00 .00 00 .00 00 .00 00 .00 00 .00 00 .00	Loss CH (ppb) .00 .00 .00 .52 24.21 .03 .00 .51	.00 .00 .00 .40 18.60 .02 .00 .39	Prod 0% (ppb) 107.33 19.26 3.53 .00 .00 .00 .03 .00	82.47 14.80 2.71 .00 .00 .00 .02 .00
Table 6: HOx Mass Inorganic Rxns Rxn HO2+NO->OH+NO O3/NO2 Chemistry O3/HOx Cycle HOHO Cycle OH+NO2 PNA Cycle H2O2 Cycle OH+ENO3	Balance Loss (ppb) 2 107 3	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	84 . 98 . 98 . 00 . 98 . 00 . 15 . 00 .	H02 XProd b) 00 .00 00 .00 00 .00 00 .00 00 .00 00 .00 00 .00	Loss CH (ppb) .00 .00 .00 .52 24.21 .03 .00 .51	.00 .00 .00 .40 18.60 .02 .00 .39	Prod 0% (ppb) 107.33 19.26 3.53 .00 .00 .00 .03 .00	82.47 14.80 2.71 .00 .00 .00 .02 .00
Table 6: HOx Mass Inorganic Rxns Rxn HO2+NO->OH+NO O3/NO2 Chemistry O3/HOx Cycle HOHO Cycle OH+NO2 PNA Cycle H2O2 Cycle OH+ENO3 Inorganic Subtota	Balance Loss (ppb) 2 107 3 7	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	84 . 98 . 00 . 98 . 00 . 00 . 00 . 15 . 00 .	H02 XProd b) 00 .00 00 .00 00 .00 00 .00 00 .00 00 .00 00 .00 00 .00	Loss CH (ppb) .00 .00 .00 .52 24.21 .03 .00 .51 25.26	.00 .00 .00 .40 18.60 .02 .00 .39	Prod 0% (ppb) 107.33 19.26 3.53 .00 .00 .00 .03 .00 130.14	82.47 14.80 2.71 .00 .00 .00 .02 .00
Table 6: HOx Mass Inorganic Rxns Rxn HO2+NO->OH+NO O3/NO2 Chemistry O3/HOx Cycle HONO Cycle OH+NO2 PNA Cycle H2O2 Cycle OH+ENO3 Inorganic Subtota Organic Subtota	Balance Loss (ppb) 2 107 3 7	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	84 . 98 . 98 . 98 . 00 . 98 . 00 . 98 . 98 . 00 . 98 . 99 . 00 . 118.	H02 XProd b) 00 .00 00 .00 00 .00 00 .00 00 .00 00 .00 00 .00 00 .00 15 100.00	Loss CH (ppb) .00 .00 .00 .52 24.21 .03 .00 .51 25.26 104.88	.00 .00 .00 .40 18.60 .02 .00 .39 19.41 80.59	Prod 0% (ppb) 107.33 19.26 3.53 .00 .00 .00 .03 .00 130.14 .00	82.47 14.80 2.71 .00 .00 .00 .02 .00
Table 6: HOx Mass Inorganic Rxns Rxn HO2+NO->OH+NO O3/NO2 Chemistry O3/HOx Cycle HONO Cycle OH+NO2 PNA Cycle H2O2 Cycle OH+NO3 Inorganic Subtota Organic Subtota Final Concentrati	Balance Loss (ppb) 2 107 3 7 1 1 118	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	84 . 98 . 98 . 98 . 00 . 98 . 00 . 15 . 00 . 99 . 99 . 00 118. 00	H02 XProd b) 00 .00 00 .00 00 .00 00 .00 00 .00 00 .00 00 .00 00 .00 15 100.00	Loss CH (ppb) .00 .00 .00 .52 24.21 .03 .00 .51 25.26 104.88 .00	.00 .00 .00 .40 18.60 .02 .00 .39 19.41 80.59 .00	Prod 0% (ppb) 107.33 19.26 3.53 .00 .00 .00 .03 .00 130.14 .00	82.47 14.80 2.71 .00 .00 .00 .02 .00

45

HC Output File

Table 14.	Example	HC	output	file
-----------	---------	----	--------	------

Table 7:	Pathway Spec	ific Yields								
Percent F	Reacted		YOH	Y03	¥802	YNO2	YFORM	Het YOH	Het	103
.42%	0000 Rxn 56	O+OLE	26	.00	.95	.78	.17	.63	1.00	
89.97%	0040 Rxn 57	OH+OLE	-1.91	.00	2.25	1.76	.52	.20	2.31	
9.59%	0004 Rxn 58	03+OLE	44	-1.00	1.21	.60	.35	.69	.03	
.02%	0000 Rxn 59	NO3+OLE	91	.00	1.25	2.67	.52	.26	2.31	
100.00% .	.00447 ppm OL	E	-1.77	10	2.15	1.64	-50	.25	2.08	0.7
Table 8:	Gross Organi	c Productio	n of K	ey Specie	5					
	**********					*******				***
Source	Reacted(ppn)	FORM Prod	Y FO	RM X	HO2 Pro	OKY bo	2 1	NO2 Pro	NY D	02
Organic Re	actions				-31.75		20.00			-
CO	.036206	.00000	.000	.00	.03621	1.000	30.64	.00000	.000	.00
NETH	.004214	.00153	.363	13.00	.00660	1.567	5.59	.00415	.985	5.89
PAR	.023394	.00262	.112	22.26	.02577	1.102	21.81	.03483 1	.489	49.46
ETH	.003331	.00195	.585	16.59	.00651	1.953	5.51	.00361 1	.084	5.13
OLE	.004474	.00150	.335	12.75	.00640	1.431	5.42	.00491 1	.097	6.97
TOL	.001844	.00021	.116	1.82	.00368	1.996	3.11	.00113	.612	1.60
XYL	.003354	.00095	.284	8.10	.01010	3.011	8.55	.00708 2	.111	10.05
FORM	.011119	.00000	.000	.00	.00989	.889	8.37	.00000	.000	.00
ALD2	.009319	.00299	.321	25.47	.01299	1.394	11.00	.01472 1	.579	20.90

Organic To	tal .097255	.01175	.121		.11815	1.215		.07043	.724	
Organic F	ORM productio	on .01175	40.	251%						
Init FORM	conc was	.01526	52.	270%						
FORM Enis	sions were	.00218	7.	480%						
TOTAL FOR	=	.02919								
FORM Net	Dilution	01344	46.	043%						
Final FOR	M Conc .	.00463	15.	872%						
FORM Read	ted	.01112	38.	2861						
Yield OH	per 802 .	.93842								
Yield NO2	per 802 -	.90828								
rield 03	per NO2 =	.60689								

Specific Yields". An example *.HC file is shown in Table 14. For each organic listed in the PATHWAY command, it shows the mass and fraction of that organic reacted in each of the reactions which consume it. It also shows the yields of key species produced per VOC reacted in units of ppm/ppm. The first two columns show yield for the 'OH and O_3 consumed directly in reactions with the organic. The third and fourth columns show HO₂ and NO₂ yields. The fifth column shows the yield of the species requested in the SHOW command. The last two columns show the net yield of 'OH and O_3 , where the yields of 'OH per HO₂, NO₂ per HO₂, and O_3 per NO₂ are used to calculate the net yield:

46

TIM Output File

Net Yield 'OH =
$$\left(\frac{\partial' OH}{\partial VOC_j}\right)_{direct} + \frac{\partial HO'_2}{\partial VOC_j}\frac{\partial' OH}{\partial HO'_2}$$

Net Yield $O_3 = \left(\frac{\partial O_3}{VOC_j}\right)_{direct} + \left(\frac{\partial NO_2}{\partial VOC_j} + \frac{\partial HO'_2}{\partial VOC_j}\frac{\partial NO_2}{\partial HO'_2}\right)\frac{\partial O_3}{\partial NO_2}$

The sum of the VOC reacted and average yields are shown in the last row for each species.

If the SHOW command is used, IRREVAL produces a table labeled "Table 8: Organic Production of Key Species." The first two columns list the organic species and the mass of each reacted in ppm. If the species requested in the SHOW command is HCHO, the next three columns will show the total ppm of HCHO produced by each organic, the yield of HCHO from each VOC_j per VOC_j reacted, and the percentage of total HCHO production contributed by each organic. The table shows the same information for HO₂ and NO₂ production by each organic.

TIM Output File

IRREVAL currently produces three time dependent output files when a time dependent *.IRR input file is read.

The first time dependent output file is *.TIM. It contains a table labeled "Table 1a: Time Dependent O_3 Mass Balance" (see Table 15). It shows the O_3 production, in ppm, from: initial NO_2 , emissions of NO_2 , net O_3 entrainment, and chemical production of NO_2 . It also shows chemical loss of O_3 during each time interval. The sink and source terms across a row sum to give the final O_3 concentration, at the end of the interval, in the last column.

The *.TIM file contains a second table labeled "Table 2a: Time Dependent O_3 Chemical Production" (see Table 15a). It summarizes important chemical reaction information for each time interval. The first column of "Table 2a" in Table 15a shows the end time of the time interval. The second column, " $dVOC_r$ ", shows the mass (ppm) of organics reacted during each interval. The third column " $dHO_2/dVOC_r$ " shows the average production of HO₂ per VOC reacted (ppm/ppm) during the interval. The fourth " dNO_2/dHO_2 " shows the average yeild of NO₂ per HO₂ produced (ppm/ppm) during the interval. The fifth column " $dNO_2/dVOC_r$ " shows the average production of NO₂ per VOC reacted (ppm/ppm). The sixth column " $dNO_{2t}/dVOC_r$ " is the average production of NO₂ per VOC (ppm/ppm) during the interval calculated as:

ain

IRREVAL Output Files

Table 15a. Example TIM output file

"Command File is base.cmd" "Output File created at 15:43 on 10/05/90" "Base Case 0.6:0.1, Std VOC"

TOT=	.00000	.00520	.00048	.02818	.12981	.01929	.14450
780	.14475	.00000	.00000	.00000	.00000	.00025	.14450
720	.14366	.00000	.00000	.00000	.00169	.00061	.14475
661	.13992	.00000	.00000	.00000	.00479	.00107	.14366
603	.13208	.00000	.00000	.00000	.00941	.00160	.13992
541	.11846	.00000	.00001	.00000	.01522	.00164	.13208
482	.09478	.00000	.00000	.00000	.02487	.00121	.11846
420	.07446	.00002	.00001	00263	.02341	.00051	.09478
361	.05699	.00018	.00005	00224	.01974	.00028	.07446
300	.04321	.00056	.00011	00136	.01466	.00018	.05699
241	.03081	.00117	.00015	.00059	.01064	.00015	.04321
182	.01908	.00135	.00013	.00500	.00537	.00013	.03081
122	.00774	.00000.	.00000	.01290	.00000	.00157	.01908
60	.00219	.00000	.00000	.01565	.00000	.01010	.00774
1	.00000	.00192	.00000	.00026	.00000	.00000	.00219

"Table 2: Time Dependent 03 Chem Prod"

Contraction of the local distance of the loc												1
		"dx02"	*dN02*	"dN02"	"dwo2t"	"d03"	"d03"	"d03o"	"doN02"	"d03n"	"d03p"	Î
"Time"	"dVCr"	"dVCr"	"dH02"	"dVCr"	"dvcr"	"dNO2"	"dVCr"	"dt"	"dVCr"	"dt"	"dt"	
1	.00005	.7135	.9893	.4345	1.1404	.0768	.0376	.000005	.0000	.000000	.000005	
60	.00518	.8023	.9994	.5640	1.3659	.0000	.0000	.000000	.0117	.000000	.000000	
122	.00754	.9398	.9992	.6639	1.6030	.0000	.0000	.000000	1.8097	.000000	.000000	
182	.00735	1.0961	.9990	.7432	1.8382	.1711	.3145	.002312	2.4274	.003054	.005366	
241	.00788	1.2401	.9987	.8113	2.0499	.3129	.6414	.005056	2.2598	.005574	.010630	
300	.00850	1.3677	.9982	.8605	2.2258	.4147	.9229	.007842	1.9262	.006787	.014629	
361	.00983	1.4549	.9963	.8656	2.3151	.5338	1.2357	.012148	1.4370	.007540	.019688	
420	.01123	1.4750	.9871	.8085	2.2644	.6526	1.4777	.016587	.9252	.006777	.023364	
482	.01267	1.4611	.9150	.7463	2.0832	.7622	1.5878	.020118	.4902	.004734	.024852	
541	.00877	1.4826	.7468	.7940	1.9011	.7711	1.4659	.012852	.3457	.002337	.015190	
603	.00569	1.5260	.6332	.8990	1.8652	.7500	1.3990	.007957	.3330	.001421	.009378	
661	.00277	1.5755	.5910	1.0492	1.9804	.6733	1.3333	.003698	.5700	.001064	.004763	
720	.00102	1.6245	.4992	1.2367	2.0477	.4528	.9272	.000945	1.5884	.000733	.001678	
780	.00023	1.5052	.2155	.9514	1.2758	0003	0004	.000000	7.5694	.000000	000001	
Ave	.08871	1.3310	.9062	.7961	2.0013	5043	1.0092	089521	1 1081	040021	1205/2	

d03o -- organic produced 03 d03n -- older chem K02 produced 03 d03p -- total chemical produced 03 **TIM Output File**

Table 15b. Example TIM output file

"Table 2(b): Time Dependent OH Summary" " " "dnOH" "% nOH" "% nOH" "OH" "dOH" "OH Terminat" "Time" "ppb" "organ" "inorg" "Ch.L." "dHO2" "%org" "%inorg" 1 .02 99.7 .3 2.33 .9942 69.1 30.8

60	1.50	98.6	1.4	2.84	.9997	76.2	23.8	
122	2.41	93.1	6.9	2.92	.9995	75.0	25.0	
182	3.13	82.1	17.9	2.76	.9994	71.9	28.1	
241	4.17	70.9	29.1	2.68	.9992	71.5	28.5	
300	5.20	62.2	37.8	2.66	.9986	72.4	27.6	
361	6.23	55.9	44.1	2.70	.9969	74.7	25.3	
420	7.00	51.9	48.1	2.86	.9878	79.7	20.3	
482	6.88	47.8	52.2	2.95	.9330	86.3	13.7	
541	5.07	41.0	59.0	2.70	.8141	91.2	8.8	
603	3.05	40.4	59.6	2.65	.7543	93.0	7.0	
661	1.34	49.6	50.4	3.06	.7718	93.3	6.7	
720	.36	67.0	33.0	3.96	.7994	93.1	6.9	
780	.05	84.8	15.2	5.11	.8237	93.0	7.1	
	100 million (1990)	1 / m / m / m						

Ave 46.48 58.5 41.5 2.81 .9367 80.4 19.6 Hote: PPM new OH is normalized to 60 min intervals.

$$\frac{dNO_t}{dVOC_r} = \frac{dHO_2}{dVOC_r}\frac{dNO_2}{dHO_2} + \frac{dNO_2}{dVOC_r}$$

The eighth column, " $dO_3/dVOC_r$ ", is the O_3 production per VOC reacted during the interval calculated as:

$$\frac{dO_3}{dVOC_r} = \frac{dNO_{2t}}{dVOC_r} \frac{dO_3}{dNO_2}$$

where dO_3/dNO_2 is the yield of O_3 per NO_2 produced (ppm/ppm) shown in the seventh column. The ninth column is the direct O_3 production from organics during the interval calculated as:

$$\frac{dO_{3o}}{dt} = \frac{dO_3}{dVOC_r} \frac{dVOC_r}{dt}$$

As described in Section 3, the NO_2 present at the beginning of any interval can be attributed in part to initial and emitted NO_2 and to chemical production of NO_2 in earlier intervals. The eleventh column shows the O_3 produced from this beginning or "older" NO_2 during the interval. Using the method described in Section 3, this O_3 production is attributed to the various sources which originally produced the NO_2 . The last column in "Table 2a" shows the total O_3 production during the interval.

TIM Output File

61 D

The *.TIM file contains a third table labeled "Table 2b: Time Dependent 'OH Summary" (see Table 15b). The first column shows the end time of the time interval. The second through fourth columns show the number of new 'OH radicals (ppb) formed during each interval, and the percentage produced by organic and inorganic reactions. More detailed information for each time step is contained in the *.HOX file. The fifth column "OH Ch.L." shows the 'OH chain length during each interval. The product of "new 'OH" and "Chain Length" is the total 'OH produced in the interval. The sixth column shows the average yield of 'OH per HO'₂ produced (ppm/ppm) during the interval which affects the 'OH chain length. The last two columns in "Table 2b" show the percentage of 'OH which reacts with organic and inorganic compounds during each interval.

The values shown in the tables labeled "Table 2a" and "Table 2b" are included to give insight into the time dependence of factors effecting O_3 production. The changes in these values for different simulations may also give insight into the factors effecting changes in O_3 production for different simulations or different mechanisms.

The second time dependent output file is *.TI2 (see Table 16. It contains a table labeled "Table 3" which shows the mass of NO_2 attributed to each source process at the beginning of each interval. The mass of NO_2 attributed to each source at the beginning of each interval is calculated using the algorithm described in Section 4. It is used to correctly attribute O_3 production to the sources which originally produced the NO_2 .

An example TI4 output file is shown in Table 17. The TI4 file shows the cumulative O_3 production by each VOC and from initial NO_2 , emitted NO_2 , entrained O_3 , and inorganic sources of NO_2 . It also shows the cumulative chemical loss of O_3 and the cumulative O_3 total.

The inorganic production of NO2 could be from the reactions:

 $\begin{array}{c} HO_2NO_2 \xrightarrow{hv} NO_2 + HO'_2 \\ NO + NO & \longrightarrow NO_2 \\ NO'_3 & \xrightarrow{hv} NO_2 + O \end{array}$

or other inorganic reactions. A time averaged analysis of O_3 production shows that inorganic reactions generally produce less than 0.1% of total NO_2 . In a time dependent analysis, however, the total appears to be about 2%. This is due primarily to the production of NO_2 from entrained O_3 in the first few intervals. This NO_2 production is classified as inorganic. The fraction of this NO_2 which photolyses later TIM Output File

Table 16. TI2 Output File Showing Composition of NO₂ as a function of time.

"Command File is base.cnd" "Output File created at 15:43 on 10/05/90" "Base Case 0.6:0.1, Std VOC"

	T۵	ble	3:	Contr	ibut	ans	to	Current	NO2	Concentrations
--	----	-----	----	-------	------	-----	----	---------	-----	----------------

Tine	Current	Init	Ial	Eniss	ons	Entral	ment	Produc	tion	Total
	Conc	ppm	x	ppm	x	ppm	x	ppm	x	x
0	.0250	.0250	100.00	.0000	.00	.0000	.00	.0000	.00	100.00
1	.0230	.0229	99.65	.0000	.09	.0000	.00	.0001	.26	99.97
60	.0284	.0140	49.37	.0007	2.49	.0000	.00	.0136	48.14	99.98
122	.0264	.0079	30.01	.0006	2.32	.0000	.00	.0178	67.67	99.98
182	.0220	.0037	16.98	.0004	1.85	.0000	.00	.0178	81.16	99.97
241	.0179	.0013	7.48	.000Z	1.08	.0000	.00	.0164	91.44	99.96
00	.0146	.0003	2.30	.0001	.57	.0000	.00	.0141	97.13	99.96
561	.0104	.0000	.36	.0000	.16	.0000	.00	.0104	99.48	99.94
420	.0062	.0000	.02	.0000.	.02	.0000	.00	.0062	99.96	99.90
82	.0030	.0000	.00	.0000	.01	.0000	.00	.0030	99.99	99.81
541	.0019	.0000	.00	.0000	.04	.0000.	.00	.0019	99.96	99.68
503	.0016	.0000	.00	.0000	.02	.0000	.00	.0016	100.04	99.67
561	.0016	.0000	.00	.0000	.03	.0000	.00	.0016	99.90	99.55
720	.0017	.0000	.00	.0000	.01	.0000	.00	.0017	99.99	99.64
780	.0016	.0000	.00	.0000	.01	.0000	.00	.0016	99.99	99.60

in the day to produce O_3 is attributed to an inorganic source. Total net O_3 entrainment is also totaled separately. The contribution of O_3 entrainment to the final O_3 concentration could be calculated as a fraction of the total net O_3 entrainment and the NO₂ produced from O_3 entrainment.

An inaccuracy in the time dependent analysis of the accumulation and subsequent reactions of inorganic NO₂ reservoirs such as NO₃ and HO₂NO₂ may also contribute to the inorganic source of NO₂. For example, NO₃ may accumulate early in the simulation while NO₂ levels are high. The NO₃ photolyses later in the simulation. In a time dependent analysis, no information is saved about the NO₂ sources which contributed to production of NO₃ earlier in the day. When NO₃ reacts to produce NO₂ later in the day, the O₃ produced from this NO₂ is incorrectly attributed to inorganic reactions. The NO₂ production from NO₃ should actually be attributed to the other sources of the NO₂ which originally produced the NO₃. The error this causes is small because the O₃ attributed to inorganic sources is generally less than 2%, however, the computer code could be modified in the future to perform more sophisticated calculations.

TIM Output File

Table 17. TI4 Output File Showing Cumulative O₃ Production and average O₃ yields per VOC.

"Command File is base.cmd" "Output File created at 15:43 on 10/05/90" "Base Case 0.6:0.1, Std VOC"

"Table 1b: Cum Organic Specie Contributions to 03 (ppbv)"

"Tine"	*00*	· ·KETH	# *PAR	· ·ETH	# POLE	" "TOL	* *XYL	. FORM	" "ALD2	1
1	3.193E-04	3.844E-05	1.0488-03	2.314E-04	5.102E-04	8.3968-05	4.500E-04	1.091E-03	9.206E-04	
60	3.193E-04	3.844E-05	1.0488-03	2.314E-04	5.102E-04	8.396E-05	4.500E-04	1.091E-03	9.206E-04	
122	3.193E-04	3.844E-05	1.0488-03	2.314E-04	5.102E-04	8.396E-05	4.500E-04	1.091E-03	9.206E-04	
182	4.178E-01	8.849E-02	1.158E+00	2.729E-01	5.635E-01	1.171E-01	7.717E-01	3.518E-01	6.962E-01	
241	1.520E+00	3.615E-01	3.911E+00	9.257E-01	1.814E+00	3.969E-01	2.516E+00	8.348E-01	1.975E+00	
300	3.462E+00	9.014E-01	8.325E+00	1.941E+00	3.511E+00	8.340E-01	4.828E+00	1.238E+00	3.443E+00	
361	6.757E+00	1.900E+00	1.521E+01	3.412E+00	5.465E+00	1.469E+00	7.330E+00	1.545E+00	4.927E+00	
420	1.1692+01	3.503E+00	2.459E+01	5.178E+00	7.119E+00	2.223E+00	9.231E+00	1.740E+00	6.039E+00	
482	1.791E+01	5.688E+00	3.579E+01	6.870E+00	8.163E+00	2.9268+00	1.026E+01	1.843E+00	6.660E+00	
541	2.1692+01	7.154E+00	4.3468+01	7.727E+00	8.580E+00	3.264E+00	1.060E+01	1.875E+00	6.905E+00	
603	2.3682+01	7.986E+00	4.878E+01	8.150E+00	8.868E+00	3.427E+00	1.085E+01	1.888E+00	7.001E+00	
661	2.4582+01	8:374E+00	5.157E+01	8.344E+00	9.060E+00	3.504E+00	1.102E+01	1.894E+00	7.043E+00	
720	2.4862+01	8.496E+00	5.257E+01	8.410E+00	9.144E+00	3.531E+00	1.1102+01	1.896E+00	7.058E+00	
780	2.4868+01	8.496E+00	5.257E+01	8.410E+00	9.144E+00	3.5312+00	1.110E+01	1.896E+00	7.058E+00	

"Tin	e""Inorganic	*Init NO2*	"Enis NO2	" "Init Q	" "Dilu O	S* *Reac O	3" "Tot 03"
1	1.5588-04	1.920E+00	1.610E-03	0.000E+00	2.641E-01	-4.610E-04	2.190E+00
60	1.5588-04	1.920E+00	1.6102-03	0.000E+00	1.592E+01	-1.010E+01	7.742E+00
122	1.5588-04	1.920E+00	1.6102-03	0.000E+00	2.882E+01	-1.167E+01	1.908E+01
182	9.380E-01	3.274E+00	1.355E-01	0.000E+00	3.382E+01	-1.180E+01	3.081E+01
241	1.761E+00	4.441E+00	2.872E-01	0.000E+00	3.441E+01	-1.195E+01	4.321E+01
300	2.186E+00	4.996E+00	3.944E-01	0.000E+00	3.305E+01	-1.213E+01	5.6988+01
361	2.385E+00	5.174E+00	4.492E-01	0.000E+00	3.081E+01	-1.240E+01	7.443E+01
420	2.477E+00	5.199E+00	4.626E-01	0.000E+00	2.8182+01	-1.292E+01	9.471E+01
482	2.509E+00	5.200E+00	4.664E-01	0.000E+00	2.818E+01	-1.413E+01	1.183E+02
541	2.544E+00	5.200E+00	4.721E-01	0.000E+00	2.818E+01	-1.576E+01	1.319E+02
603	2.580E+00	5.200E+00	4.741E-01	0.000E+00	2.818E+01	-1.736E+01	1.397E+02
661	2.609E+00	5.200E+00	4.754E-01	0.00CE+00	2.818E+01	-1.843E+01	1.434E+02
720	2.626E+00	5.200E+00	4.7568-01	0.0006+00	2.8185+01	-1.904E+01	1.445E+02
780	2.626E+00	5.2005+00	4.756E-01	0.000E+00	2.818E+01	-1.929E+01	1.443E+02

"Specie"	"Total React"	" "03 Yield"	"03 Prod"		
	(ppbv)	*(ppbv/ppbv)*	"(ppbv)"		
8	36.000	.690	24.857		
HETH	4.214	2.016	8.496		
PAR	23.602	2.228	52.572		
ETH	3.331	2.524	8.410		
OLE	4.513	2.026	9.144		
TOL	1.844	1.915	3.531		
XYL	3.354	3.308	11.095		
FORM	6.700	.283	1.896		
ALD2	5,151	1.370	7.058		

TIM Output File

IRREVAL Output Files

1

The last section in the TI4 file shows the total mass (ppm) of each VOC reacted, the total O_3 production attributed to each VOC, and the production of O_3 per VOC (ppm/ppm) averaged over the simulation.

53

BALANCE = name1, name2, ... name;

USE: The user lists the species names for which a mass balance is desired. If ORGANIC is defined, the name ORGANIC can be used instead of listing individual hydrocarbon names. Commas are optional.

DISCUSSION: The BALANCE command performs a simple mass balance on the listed speciess with the output written to the *.BAL file. To obtain a complete mass balance, the ORGANIC command must be used to identify hydrocarbons, and then the EVALUATE command must be used.

CYCLES = "cyclename1" [= R1, R2, ... Rn], "cyclename2" [= R1, R2, ... Rn];

USE: Each cycle name is enclosed in double quotes. The user can specify which reactions to sum by placing an equal sign and brackets with reaction numbers after the cycle name closing quote. If reaction numbers are not specified, IR-REVAL assumes that the first word in the cycle name is a species name, and all reactions in which that species occurs are summed to produce a net reaction. Commas or blank spaces may be used as separators.

DISCUSSION: The CYCLES command allows the user to sum the reactants and products for a set of reactions to determine net chemical loss and production for each species. This is useful when reactions rapidly interconvert two species. For example, consider the reactions

(1)

$$0 + 0_2 \longrightarrow 0_3$$
 (2)

 $NO + O_3 \longrightarrow NO_2 + O_2$ (3)

Reactions (1) and (2) rapidly convert NO₂ to O₃ while (3) rapidly converts O₃ to NO₂. This cyclic process, and other inorganic processes such as the NO₃ and CH₃C(=O)O₂NO₂ cycles, dominate both NO₂ production and NO₂ consumption within the system, but the net effect of these cyclic processes on the NO₂ concentration is small. Typically, organic oxidation reactions provide the bulk of the net increase in NO₂ and hence are responsible for net increases in O₃. Because of the cycling processes, organic NO₂ production is a small fraction of gross NO₂ production and its significance is difficult to analyze unless net NO₂ production is calculated. By using the CYCLES option for each set of reactions which rapidly cycles NO₂, the sources of net increases in NO₂ and O₃ are easily determined. Figure 5 shows an Example CMD file. All of the major processes in CB4 which cycle any species have been summed to form net reactions making it easier to determine which processes contribute to net changes in species concentrations.

END.

USE: The END command is always the last command in the CMD file. It should be followed by a semi colon or period. Lines after END are ignored.

EVALUATE;

USE: This should be the last command before the END command. The OR-GANIC command must first be used to identify hydrocarbons.

DISCUSSION: IRREVAL performs a complete mass balance analysis of O_3 , NO_y and HO_x production with output to the *.O3, *.NOy, *.HOx, and *.HC output files. Time dependent output files are created if a time dependent IRR file is used.

IGNORE = species1, species2, ... species;

DISCUSSION: If the mechanism in the *.CMP file contains speciess which are unimportant to the user, for example H_2O , M, O_2 or N_2 , they can be deleted from the mechanism with the IGNORE command. This is useful for complicated mechanisms which are near the IRREVAL internal array memory limits.

IRR [= n]

USE: The IRR command must precede the IRR file or be the first significant line of the IRR file. If a time dependent IRR file is used, n must be the number of intervals. This line is inserted automatically by OZIPR when it creates the IRR file. The structure of the IRR file is described in detail in Chapter 3.

MECH = ...;

USE: This command must immediately precede or be at the beginning of the *.CMP file. A detailed description of the CMP file is give in Chapter 3. The CMP file ends with a semicolon.

 $NEW = R_1, R_2, ..., R_n;$

USE: Reaction numbers are listed for reactions which are chain initiators, normally photolysis reactions which produce new 'OH radicals. If intermediate organic radicals are produced in the photolysis reaction, they should be the last species replaced in the REPLACE command. This allows new 'OH produced from the organic radicals to be attributed to the photolysis reaction.

DISCUSSION: Tropospheric gas phase chemistry is driven primarily by 'OH radical attack on organic molecules. The organics can react to regenerate 'OH radicals creating a chain reaction. The intensity of the reacting system and the amount of O_3 produced will depend both on the number of new 'OH radicals formed and the average chain length, or the number of times an 'OH radical reacts before being lost in a chain terminating reaction. Typical reactions in each step of the chain are listed below:

 $\begin{array}{cccc} O_3 & \stackrel{hv}{\longrightarrow} O(1D) + O_2 & (INITIATION) \\ O(1D) + H_2O & \longrightarrow 2^{\circ}OH & \\ & & HCHO \stackrel{hv}{\longrightarrow} CO & + 2HO_2^{\circ} \\ & & HO_2^{\circ} & + NO & \longrightarrow ^{\circ}OH & + NO_2 \end{array}$ $\begin{array}{cccc} CO + \stackrel{\circ}{OH} & + (O_2) & \longrightarrow CO_2 & + HO_2^{\circ} & (PROPAGATION) \\ & & HO_2^{\circ} & + NO & \longrightarrow ^{\circ}OH & + NO_2 \end{array}$

56

 $OH + NO_2 \longrightarrow HNO_3$ (TERMINATION)

The NEW command must be used to identify which reactions are sources of new 'OH radical (initiation reactions). IRREVAL will then perform a detailed mass balance on 'OH and HO₂ with the output in the *.HOX file. IRREVAL assumes that 'OH formed in any reactions other than those listed after the NEW command are formed in chain propagation reactions. It then calculates the average chain length. The number of new 'OH radicals generated and the average chain length can be valuable in comparing and understanding differences in O_3 predictions from different simulations or with different mechanisms. If a time dependent IRR input file is used, The number of new 'OH radical and chain length are listed as a function of time in the *.TIM output file.

NOY = species₁[x_1] species₂[x_2] ... species_n[x_n];

USE: Identifies speciess which contain nitrogen. An optional * symbol and coefficient may follow the species name to define the number of nitrogen atoms in each species. The default value is one. The name ORNIT should be added to the *.CMP file for reactions in which nitrogen sinks were ignored in the mechanism and ORNIT should be included in the list of NOY speciess.

DISCUSSION: IRREVAL will attempt to perform a complete mass balance on nitrogen containing compounds. However, the NOY command must be used to identify nitrogen containing compounds. NO and NO₂ are treated separately and need not be listed with NOY. Output is in the *.NOX file. Organic nitrates are typically ignored by compressed mechanisms. Currently, the name ORNIT is coded into subroutine OUTNO2, so ORNIT must be added to reactions which ignored organic nitrates in the *.CMP file in order to obtain a correct NOY balance.

ORGANIC = species₁[x_1] species₂[x_2] ... species_n[x_n];

DISCUSSION: The ORGANIC command allows the user to define a list of organic molecules. It must be used if the EVALUATE command is used to request a complete mass balance analysis. If ORGANIC is defined, it can be used in the BALANCE command instead of listing individual hydrocarbons. An optional * symbol and coefficient may follow the species name to define the number of carbon atoms in each species.

PATHWAY = species₁, species₂, ... species_n;

DISCUSSION: IRREVAL normally shows the yields of key speciess for each organic. However, some organics may react via several different reactions. The PATHWAY command allows the user to request reaction specific yields and the fraction reacted via each pathway for organics that react via multiple pathways.

PKSS;

USE: PKSS and OZIPR input IRR files have a slightly different structure because OZIPR includes terms for emissions, deposition and entrainment. If a PKSS input IRR file is used, the PKSS command must be given before the IRR file is specified. The default case is an OZIPR IRR file.

REPLACE = species₁, species₂, ... species_n;

USE: The REPLACE command replaces intermediate reaction products with their final products. Up to 30 speciess can be replaced. If the NEW command is used, organic radicals produced in photolysis reactions should be the last species replaced. This allows new 'OH produced by the organic radical to be attributed to the photolysis reaction which produced the organic radical.

DISCUSSION: Hydrocarbon oxidation reactions produce intermediates which may undergo further reactions before ultimately producing HO₂, NO₂ and unreactive final products. It is often desirable to know the amount of NO₂ produced from the initial reactants rather than from the intermediates. The REPLACE command eliminates intermediates by replacing them with their final products.

The REPLACE command only operates on the fraction of species i which is produced chemically. If i is present initially but is not produced, the REPLACE command has no effect. If i is both present initially and produced chemically, i will be replaced wherever it is produced, and the integrated reaction rate for reactions in which i is consumed will be reduced by the fraction of i which is chemically produced. If the only source of i is chemical production, reactions consuming i are eliminated. Mass is conserved because speciess reacting with i are carried over as negative products in the reactions which produced i.

The algorithm used to implement the REPLACE command is described in more detail in Chapter 4.

SUPPRESS;

DISCUSSION: Normally, IRREVAL creates an *.BAL file which has detailed information about array manipulations and mass balance calculations. The *.BAL file can be larger than one Mbyte for time dependent IRR input files. The SUPPRESS option prevents IRREVAL from writing to the *.BAL file.

SHOW = species;

DISCUSSION: The SHOW command will generate detailed information on the production of one species (in addition to the detailed information created for O_3 , noy, and HO_x). The SHOW speciesname is typically HCHO, CO, or H_2O_2 . Output is in the *.HC and *.TI3 output files.

WRITE;

DISCUSSION: The WRITE command causes the current form of mechanism array and integrated reaction rates to be printed to the *.BAL file. The output has a special character and a number before each reaction: an "o" or an "i" signifies either an organic or an inorganic reaction. Organic reactions are those containing any species listed in the ORGANIC command. The number indicates the number of carbons among the organic reactants. This is important because IRREVAL uses it to avoid double counting NO₂ production in reactions where two organics react. The WRITE command can be used at any time and may be used several times to see how the mechanism and integrated reaction rate arrays change after the use of other commands.

Example IRREVAL Analysis

Introduction

This chapter illustrates a typical analysis which can be performed using IRREVAL. I used OZIPR and the Empirical Kinetic Modeling Approach (EKMA) to test the sensitivity of predicted O_3 maximums and predicted VOC control requirements to the initial and aloft CO concentrations. I used a base case simulation which was similar to a simulation used by Chamedies (1988) in his study of biogenic hydrocarbons. In this chapter I will:

- Describe the EKMA method and the OZIPR input files used,
- Show the impact of doubling CO concentrations on the predicted O₃ maximum and VOC control requirement,

as

- Use IRREVAL to compare O₃ production in the base case simulation to the doubled CO (2xCO) trajectory simulation, and
- Use IRREVAL to compare the base case control scenario simulation to the 2xCO control scenario simulation.

EKMA Method

OZIPR includes an EKMA option which can be used to predict VOC control requirements. The user must specify the observed one-hour average maximum O_3 concentration (the design value) and the measured initial VOC to NO_x ratio for a typical O_3 episode. OZIPR then performs a series of simulations, adjusting the initial VOC and NO_x concentrations at the specified ratio until it matches the design value. After matching the design value, OZIPR performs several more simulations lowering the VOC concentration until it matches the O_3 standard of 120 ppbV. This method is empirical because it arbitrarily changes the measured initial concentra-

EKMA Method

tions to match the design value. Normally, the change made in the measured initial concentrations must be within the uncertainty range of the measured values.

The initial concentrations used are the average concentrations measured in the city center from 6 to 9 AM. These represent both the initial concentration and early morning emissions of VOC and NO_x . The emissions through the rest of the day are input as a multiple of the 6 to 9 AM concentrations. Thus, the VOC and NO_x emissions levels can be changed simply by changing the 6 to 9 AM concentrations.

I used the OZIPR input file shown in Table 1 as a base case scenario. I used an initial VOC to NO_x ratio of 6:1 and an O₃ design value of 147 ppb. In the base case I used a CO surface concentration of 1.2 ppm and a CO aloft concentration of 0.5 ppm. The surface concentration of 1.2 ppm was recommended for Atlanta by the EPA. This value was chosen based on CO measurements in Atlanta on high O₃ days. The mean concentration of the measurements was 1.2 ppm with a one standard deviation uncertainty of ± 0.85 ppm (Baugues, 1988). The CO aloft concentration of 0.5 ppm is the default value.

I used OZIPR to perform a single trajectory simulation using initial concentrations of 600 ppbC VOC and 100 ppb NO_x. OZIPR predicted a maximum one-hour average O₃ concentration of 144.7 ppb. I used the same simulation conditions with the EKMA option to predict the control requirement. OZIPR used initial VOC and NO_x concentrations of 627 ppbC and 104 ppbv to match the O₃ design value of 147 ppbv. It then reduced the VOC concentration by 23.2% to meet the O₃ standard of 120 ppb. These results are summarized in the first three columns of Table 18.

		Bas	se Case		Doubled CO			
Simulation		NO _x (ppbv)	VOC O ₃ (ppbC) (ppbv)		NO _x (ppbv)	voc (ppbC)	O3 (ppbv)	
Trajectory		100	600	144.7	100	600	159.1	
Design Day		104	627	147.0	80	477	147.0	
Control Demo		104	481	120.0	80	274	120.0	
Control Requirement				23.2%			42.5%	

Table 18. Summay of OZIPR Simulations.

I then modified the OZIPR input file by doubling the surface and aloft CO

Example IRREVAL Analysis

concentrations to 2.4 ppm and 1.0 ppm, respectively. I repeated the single trajectory simulation and the EKMA simulations for the doubled CO (2xCO) case. The results are summarized in the last three columns of Table 18. In the single trajectory simulation, doubling CO increased the O_3 maximum from 144.7 to 159.1 ppm. To match the design day O_3 value, OZIPR had to use initial VOC and NO_x concentrations about 25% lower in the 2xCO case than in the base case. As a result, the EKMA control calculation uses *lower* initial VOC and NO_x concentrations for the 2xCO control case than for base control case. The predicted VOC requirement increased from 23.2% for the base case to 42.5% for the 2xCO case.

Single Trajectory 03 Production

We would like to understand why a relatively small increase in the O_3 maximum led to relatively large increase in the VOC control requirement. I will begin by comparing the concentration profiles for the base case and 2xCO case single trajectory simulations. Figure 4 compares the O_3 , NO_2 and NO profiles for the two simulations. The top plot in Figure 4 shows that O_3 increased more rapidly and reached a higher value in the 2xCO case. It is difficult to see the change in the NO and NO_2 profiles. The second plot shows the percent change in the 2xCO concentration profiles relative to the base case. This is calculated as:

Percent Change =
$$100 \frac{(C_{2xCO} - C_{base})}{C_{base}}$$

This is a more effective way to show the change in concentration when the change is small. Figure 5 shows the percent change in radical and VOC concentration profiles.

Some qualitative observations can be made from the comparison profiles in Figure 4 and Figure 5. The 2xCO profiles of NO_2 increased and NO decreased slightly in the first 200 minutes of the simulation. This suggests increased conversion of NO to NO_2 by organic radicals. The 'OH concentration was slightly lower for the first 200 minutes in the 2xCO case due to the increased CO radical sink, but the 'OH concentration was larger in the 2xCO case from 200 to 400 minutes. VOCs react more rapidly in the 2xCO case even though there is greater competition with CO. 'OH is a important NO_x sink and by 400 minutes, the NO_x concentration has decreased significantly. This causes a rapid increase in HO_2' and H_2O_2 concentrations and a decrease in 'OH. After 450 minutes, the 2xCO system is NO_x depleted and becomes less reactive. The final VOC concentrations are higher in the 2xCO case.

Comparing the profiles gives a qualitative feeling for the changes caused by increasing CO. We can get a more quantitative understanding by using the integrated rates. Single Trajectory O3 Production

Example IRREVAL Analysis

Table 19a shows production and loss of O_3 in units of ppm for each interval of the base case simulation. Table 20a shows the same information for the 2xCO simulation. Comparing the last row of each table, we see that chemical production of O_3 increased from 129.8 ppb to 147.3 ppb. Net entrainment of O_3 decreased from 28.2 ppb to 25.6 ppb, and chemical loss of O_3 increased from 19.3 to 20.3 ppb.

We would like to know in more detail which VOCs caused the chemical production of O_3 . Figure 6 and Figure 7 were prepared from the TI4 output file. Figure 6 is a pie-chart showing the percentage of O_3 production attributed to each source. Production of O_3 by CO increased from 15.2% of the total in the base case to 26.2% of the total in the 2xCO case. Figure 7 is a bar graph comparing the mass of each VOC reacted, the O_3 yield per VOC reacted, and the total O_3 production from each VOC for the two cases. It shows that, except for PAR, the mass of each VOC reacted is virtually unchanged when CO is increased. This suggests that increased 'OH propagation from the extra CO compensates for increased competition with CO for 'OH radicals. In addition, the O_3 yields per VOC are nearly the same so O_3 production from each VOC is approximately the same in the two simulations. Slightly less CH₄ and PAR reacted which indicates that there was increased competition for 'OH late in the day when 'OH concentrations were lower. Most of the change in O_3 production, 22 ppb, is attributed to the increase from 36 to 67 ppb of CO reacted.

We know that more O_3 was produced because more CO reacted. Now we would like to understand why more CO reacted. Table 21 shows the time dependent 'OH tables from the TIM output file for the two simulations. Comparing the second column, we see that nearly identical amounts of new 'OH radicals were produced in both simulations for the first four intervals. The fifth column, however, shows that the 'OH chain length was about 15% greater during the first four intervals in the 2xCO case. Looking at the last two columns, we see that a larger percentage of 'OH reacted with organics (where CO is included with organics) in the 2xCO case. The greater 'OH chain length occurs in the 2xCO case because more 'OH reacts with CO, which has a high propagation factor, and less 'OH reacts in chain termination reactions with NO_x. Figure 8 show the production of new 'OH, the 'OH chain length and the percentage of 'OH consumed with organics and CO.

After the fourth interval, the O_3 concentration is higher in the 2xCO case and O_3 photolysis begins to contribute more new 'OH as well. The increase in O_3 production from the longer chain length is accelerated by the production of more new 'OH radicals from the increased O_3 . Taking the product of the total new 'OH and the average chain length in the last rows of each table, we see that a total of 158 ppb of 'OH were produced in the 2xCO case compared to only 130 ppb in the base case.

Example IRREVAL Analysis

			*********				**********	
"Time"	Init 03**I	nit NO2**E	nis NO2""E	intrain**Ch	en Prod*	"Chem Loss	s" "Final"	
	00000	00102	00000	00026	00000	00000	00210	•••
60	.00219	.00000	.00000	.01565	.00000	.01010	.00774	
122	.00774	.00000	.00000	.01290	.00000	.00157	.01908	
182	.01908	.00135	.00013	.00500	.00537	.00013	.03081	
241	.03081	.00117	.00015	.00059	.01064	.00015	.04321	
300	.04321	.00056	.00011	00136	.01466	.00018	.05699	
361	.05699	.00018	.00005	00224	.01974	.00028	.07446	
420	.07446	.00002	.00001	00263	.02341	.00051	.09478	
482	.09478	.00000	.00000	.00000	.02487	.00121	.11846	
541	.11846	.00000.	.00001	.00000	.01522	.00164	.13208	
603	.13208	.00000	.00000	.00000	.00941	.00160	.13992	
661	.13992	.00000.	.00000	.00000	.00479	.00107	.14366	
720	.14366	.00000	.00000	.00000	.00169	.00061	.14475	
780	.14475	.00000	.00000	.00000	.00000	.00025	.14450	
"TOT"	.00000	.00520	.00048	.02818	.12981	.01929	.14450	-

Table 19a. Time dependent 03 Mass Balance for Base Case.

Table 19b. Time dependent yields for the Base Case.

												2
		"dH02"	*cN02*	"dN02"	"dNO2t"	"d03"	*d03*	"d03o"	"doNO2"	"d03n"	"d03o"	1
"Time"	"dVCr"	"dVCr"	"dH02"	"dVCr"	"dVCr"	"dN02"	"dVCr"	"dt"	"dVCr"	"dt"	"dt"	
1	.00005	.7135	.9893	.4345	1.1404	.0768	.0876	.000005	.0000	.000000	.000005	
60	.00518	.8027	.9994	.5642	1.3664	.0000	.0000	.000000	.0117	.000000	.000000	
122	.00753	.9411	.9992	.6648	1.6052	.0000	.0000	.000000	1.8121	.000000	.000000	
182	.00733	1.0989	.9990	.7451	1.8430	.1711	.3153	.002312	2.4338	.003054	.005366	
241	.00785	1.2452	.9987	.8147	2.0583	.3129	.6441	.005056	2.2691	.005574	.010630	
300	.00845	1.3752	.9982	.8653	2.2380	.4147	.9280	.007842	1.9368	.006787	.014629	
361	.00977	1.4645	.9963	.8713	2.3304	.5338	1.2439	.012148	1.4465	.007540	.019688	
420	.01114	1.4857	.9871	.8143	2.2808	.6526	1.4884	.016587	.9319	.006777	.023364	
482	.01258	1.4721	.9150	.7519	2.0988	.7622	1.5997	.020118	.4939	.004734	.024852	
541	.00870	1.4936	.7468	.7999	1.9153	.7711	1.4768	.012852	.3483	.002337	.015190	
603	.00565	1.5371	.6332	.9055	1.8768	.7500	1.4092	.007957	.3355	.001421	.009378	
661	.00275	1.5868	.5910	1.0567	1.9945	.6733	1.3429	.003698	.5741	.001064	.004763	
720	.00101	1.6359	.4992	1.2454	2.0621	.4528	.9337	.000945	1.5996	.000733	.001678	
780	.00023	1.5156	.2155	.9580	1.2846	0003	0004	.000000	7.6218	.000000	000001	
Ave	.08822	1.3393	.9062	.8005	2.0123	.5043	1.0147	.089521	1.2049	.040021	.129542	

d03o -- organic produced 03 d03n -- older chem NO2 produced 03 d03p -- total chemical produced 03
Single Trajectory O3 Production

Example IRREVAL Analysis

"Time"	Init 03**1	nit NO2**E	als NO2**E	intrain##Ch	en Prod"	"Chem Los	s" "Final"
	********				*********	********	
1	.00000	.00192	.00000	.00026	.00001	.00000	.00219
61	.00219	.00000	.00000	.01573	.00000	.01000	.00792
121	.00792	.00000.	.00000.	.01245	.00000	.00101	.01936
181	.01936	.00151	.00015	.00485	.00622	.00014	.03196
241	.03196	.00123	.00016	.00021	.01233	.00016	.04572
302	.04572	.00055	.00011	00192	.01814	.00021	.06241
362	.06241	.00014	.00005	00278	.02397	.00034	.08346
420	.08346	.00001	.00001	00321	.02842	.00073	.10798
483	.10798	.00000	.00000.	.00000	.02715	.00169	.13347
540	.13347	.00000.	.00001	.00000	.01480	.00189	.14642
602	.14642	.00000	.00000	.00000	.00967	.00181	.15431
661	.15431	.00000	.00000.	.00000	.00503	.00123	.15813
721	.15813	.00000	.00000	.00000	.00169	.00070	.15912
780	.15912	.00000	.00000	.00000	00009	.00037	.15876
"TOT"	.00000	.00536	.00050	.02560	.14734	.02027	.15876

Table 20a. Time dependent 03 Mass Balance for 2xCO Case.

Table 20b. Time dependent yields for the 2xCO case.

-	H H	"dH02"	"dN02"	"dN02"	"dkozt"	*d03*	"d03"	"d03o"	"doxo2"	"d03n"	"dQ3p"
			Series.			GHUS			orer		
1	.00006	.7342	.9893	.4027	1,1290	.0768	.0867	.000005	.0000	.000000	.000005
61	.00574	.8211	.9994	.5115	1.3321	.0000	.0000	.000000	.0112	.000000	.000000.
121	.00826	.9453	.9992	.5805	1.5250	.0000	.0000	.000000	1.6962	.000000	.000000.
181	.00873	1.0775	.9989	.6189	1.6952	.1881	.3189	.002786	2.0869	.003429	.006215
241	.00990	1.1879	.9986	.6376	1.8237	.3382	.6168	.006109	1.8534	.006209	.012318
302	.01189	1.2734	.9977	.6333	1.9038	.4586	.8731	.010383	1.4177	.007732	.018115
362	.01421	1.3152	.9945	.5909	1.8989	.5798	1.1009	.015639	1.0062	.008287	.023926
420	.01700	1.3094	9731	.5169	1.7910	.6984	1.2508	.021268	.6012	.007139	.028408
483	.01797	1.3039	.8660	.4864	1.6156	.7774	1.2559	.022569	.3265	.004562	.027130
540	.01118	1.3251	.7139	.5355	1.4816	.7537	1.1166	.012485	.2714	.002287	.014772
602	.00759	1.3504	.6343	.6013	1.4579	.7277	1.0609	.008048	.2878	.001589	.009637
661	.00382	1.3828	.5990	.7032	1.5315	.6464	.9899	.003777	.4998	.001233	.005010
721	.00137	1.4174	.5047	.8452	1.5606	.4108	.6411	.000379	1.4199	.0008000	.001678
780	.00028	1.3190	.2100	.6443	.9213	0395	0364	000010	7.3134	000081	000091
Ave	.11800	1.2365	.8966	.5720	1.6792	.5246	.8808	.103937	.9239	.043184	.147122
	*******	*******							*******		*********

d03o -- organic produced 03 d03n -- older chem NO2 produced 03 d03p -- total chemical produced 03

Example IRREVAL Analysis

Figure 6. Pie chart of O3 sources for base case and 2xCO simulations.

Single Trajectory O3 Production

The increase in O₃ production in the 2xCO simulation can be explained by:

- the increase in the fraction of 'OH consumed by CO and the decrease in 'OH consumed in reactions with NO₂;
- the subsequent increase in 'OH chain length, total 'OH production and mass of HC and CO consumed;
- a small increase in the yield of O₃ per NO₂ resulting from the decrease in the reaction of 'OH with NO₂, and
- the production of more new 'OH as the O₃ concentration increases.

Finally, it should be noted that Figure 5 showed a small decrease in the 'OH concentration in the first 200 minutes of the 2xCO case but there is actually an increase in the mass of 'OH reacted.

0

0

Q11

Figure 7. Bar graph comparing VOC reacted, O₃ yields and O₃ production for each source for the base case and 2xCOsimulations.

Table 21. Time Dependent 'OH summary for base case and 2xCO case.

	"dnOH"	"X nOH"	"X nOH"	NOK* *	Total=	"dOH"	"OH Tern	aination"	
"Time"	"ppb"	"organ"	"inorg"	"Ch.L."	*OH*	"dH02"	"Xorg"	"Xinorg"	
1	.01	99.7	.3	2.59	.04	.9942	69.1	30.8	
60	1.34	98.5	1.5	3.17	4.25	.9997	76.2	23.8	
122	2.33	92.9	7.1	3.02	7.03	.9995	75.0	25.0	
182	3.12	82.0	18.0	2.77	8.63	.9994	71.9	28.1	
241	4.09	70.4	29.6	2.73	11.17	.9992	71.5	28.5	
300	4.95	60.3	39.7	2.79	13.81	.9986	72.4	27.6	
361	5.68	51.6	48.4	2.97	16.84	.9969	74.7	25.3	
420	6.05	44.3	55.7	3.31	20.03	.9878	79.7	20.3	
482	5.74	37.5	62.5	3.53	20.26	.9330	86.3	13.7	
541	4.33	30.9	69.1	3.16	13.67	.8141	91.2	8.8	
603	2.62	30.8	69.2	3.08	8.07	.7543	93.0	7.0	
661	1.12	39.6	60.4	3.65	4.09	.7718	93.3	6.7	
720	.28	57.8	42.2	4.97	1.41	.7994	93.1	6.9	
780	.05	82.9	17.1	5.61	.26	.8237	93.0	7.1	

Ave 41.78 53.8 46.2 3.12 130.48 .9367 80.4 19.6

Note: PPN new OH is normalized to 60 min intervals."Double CD Surf and Alof, 0.6:0.1, Std VOC"

"Doubled CO Case"

		"dnOH"	"X nOH"	"X nOH"	-04-	"Total"	"dOH"	-OH Ter	mination"
	ine	-bbo.	-organ-	-inorg-	-un.L	-04-	-0402-	-rog-	"Al norg-
	1	.01	99.7	.3	2.87	.04	.9941	72.2	27.8
	61	1.33	98.4	1.6	3.57	4.74	.9997	78.9	21.1
	121	2.32	92.8	7.2	3.43	7.98	.9995	78.0	22.0
	181	3.14	81.6	18.4	3.19	9.99	.9994	75.7	24.3
3	241	4.08	69.3	30.7	3.19	13.03	.9990	75.7	24.3
	302	5.12	58.4	41.6	3.33	17.04	.9983	77.0	23.0
	362	6.00	49.0	51.0	3.61	21.69	.9953	79.8	20.2
	420	6.46	41.0	59.0	4.07	26.30	.9779	84.8	15.2
1	483	6.05	32.5	67.5	3.97	24.06	.8993	90.1	9.9
	540	4.58	26.8	73.2	3.42	15.64	.7959	93.3	6.7
	602	2.78	27.9	72.1	3.41	9.48	.7647	94.4	5.6
-5	661	1.20	36.4	63.6	4.09	4.89	.7878	94.6	5.4
- 2	721	.29	54.6	45.4	5.58	1.64	.8169	94.4	5.6
2	780	.05	82.0	18.0	5.93	.28	.8393	94.3	5.7
Av	e	43.43	50.8	49.2	3.63	157.76	.9316	84.1	15.9

Note: PPH new OH is normalized to 60 min intervals.

Figure 8. New O₃ production, the 'OH chain length and percent 'OH consumed by organics for the base case.

Design Value Simulations

As described above, the empirical aspect of EKMA is the iterative search for initial VOC and NO_x concentrations, at the specified ratio, that produce the observed O_3 maximum. In this example, more O_3 production occurs when CO is increased, so EKMA must use lower initial VOC and NO_x concentrations in the high CO simulation. While CO is not a VOC, it is chemically similar to VOCs. Increasing CO has the same effect as increasing the VOC to NO_x ratio. This is evident from the design value simulations in Table 18. The 2xCO simulation begins with an initial NO_x concentration of only 80 ppb compared to 104 ppb in the base case. As a result, NO_x controls will be relatively more attractive in the 2xCO simulation.

Figure 9 shows plots of the O_3 , NO_x , NO and HNO_3 profiles for the base case and 2xCO design value simulations. The O_3 concentration increases more rapidly in the 2xCO case, but it also becomes NO_x depleted earlier in the day. As a result, both simulations match the O_3 design value of 147 ppb.

Control Case Simulations

Table 18 showed that the control requirement increased from 23.2% for the base case to 42.5% in the 2xCO case. To understand why such a large increase occurred, I will first compare the original base case trajectory simulation to the controlled base case simulation and then compare the original 2xCO simulation to the controlled 2xCO simulation.

Figure 10 presents pie charts for the original base case simulation and the controlled base case simulation. In the original base case simulation, total O_3 production was 164 ppb. 19 ppb of O_3 reacted to give the final concentration of 144.7 ppb. In the controlled simulation, total O_3 production was 138 ppb Reactions of O_3 consumed 18 ppb to give the final concentration of 120 ppb. In these pie charts, "inorganic O_3 " includes net entrainment of O_3 and O_3 produced from initial NO₂ and emissions of NO₂.

The contribution of inorganic sources increased from 36.5 ppb in the original base case to 44.0 ppb in the controlled base case. This is due to increased net entrainment of O_3 in the controlled base case. The O_3 concentration rises more slowly in the controlled case, so more O_3 is entrained. The O_3 in the air aloft creates a buffering effect on the O_3 modeled concentration. If the O_3 concentration increases slowly, aloft air contributes more O_3 by entrainment. If the O_3 concentration increases repaidly, less O_3 is entrained and more O_3 is lost by dilution.

In the control simulation for the base case scenario, initial VOC and emissions of VOC were reduced by 23.3%. The contribution of O_3 from VOCs fell from 93.7 to 66.8 ppb, or 29%. The initial CO and CH₄ concentrations were unchanged, yet O_3 production from CO and CH₄ fell by about 20%. Figure 11 compares the amount of each VOC reacted for the two simulations, the average of O_3 per each VOC reacted, and the contribution of O_3 from each VOC. The middle bar graph in Figure 11 shows that the O_3 yields for each VOC, CO and CH₄ decreased slightly. The top bar graph shows that the change in O_3 production from each source is largely due to the decrease in the mass of the species reacted.

We would expect less VOC to react because the VOC levels have been reduced by 23%. We would like to understand why less CO and less CH_4 reacted, and why the O₃ yields were lower in the control simulation.

Table 22 shows the time dependent 'OH tables from the TIM output files for the original base case and controlled base case simulations. Looking at the second Control Case Simulations

Doubled CO Simulations

and third columns of both tables, we see that there is a significant reduction in organic production of new 'OH radicals throughout the simulation in the controlled case. This is due in part to the reduction in the initial aldehyde concentrations in the controlled case. Comparing the fifth column shows that the 'OH chain length was also lower in the controlled case for the first 480 minutes of the two simulation. The last two columns show that the 'OH chain length is lower in the control case because a larger fraction of 'OH radicals are consumed in chain-terminating inorganic reactions. The combination of fewer new 'OH radicals from the reduction in aldehyde photolysis (due to the lower initial VOC concentration) and the lower 'OH chain length creates a more slowly reacting mixture. The O_3 concentration rises more slowly, and thus fewer new 'OH radicals are produced by O_3 photolysis. As a result, a total of only 104 ppb of 'OH is produced in the control case compared to 130 ppb in the original base case simulation. The last row of the two tables shows that only 75.3% or 78.3 ppb of the 'OH reacted with CO and organics in the control case compared to 80.4% or 105 ppb in the base case.

This also explains the decrease in the O_3 yield per VOC reacted in the control case. A larger fraction of NO_2 is consumed in the chain terminating reaction with 'OH in the control case, so the yield of O_3 per NO_2 is also reduced.

Doubled CO Simulations

Figure 12 shows pie charts for the 2xCO simulation and the control 2xCO simulations. In the control scenario, CO contributes 31.5% or 43.3 ppb of the total O₃ production. This can be compared to the base case control scenario in Figure 6, where CO contributed only 14.8% or 20.4 pbb of total O₃ production. In the 2xCO case, there is greater O₃ production from uncontrollable sources, so the VOC emissions must be more severely controlled to meet the standard. In the base case simulation, VOCs could produce 66.8 ppb of O₃ and still meet the standard. In the 2xCO simulation, VOCs can produce only 44.0 ppb of O₃.

In the 2xCO simulation, O_3 production from VOCs must be reduced from 90 ppb to 44 pbb. The precise level of VOC control required will depend on the amount of VOC which reacts and the yield of O_3 per VOC. The VOC reacted will depend on the amount of new 'OH produced and the 'OH chain length. Figure 13 compares the mass in pbb of each VOC reacted, the O_3 yields, and total O_3 production for the 2xCO simulations. The O_3 yields are nearly the same for both cases, but the mass of VOCs reacted has decreased by more than 50%. This is due in part to the 49% VOC reduction and to the reduction in production of 'OH radicals. Table 23 shows that production of new 'OH radicals has fallen from 43.4 ppb to only 26.7 pbb. CO has Doubled CO Simulations

Figure 11. Bar graph comparing VOC reacted and O₃ yields in base case original and control simulations.

			Chiefortes					
	"dnOH"	*% nOH*	"X nOH"	POH ·	"Total"	"dOH"	"OH Te	mination
"Tipe"	"ppb"	"organ"	"inorg"	"Ch.L."	*OX*	"dH02"	"Xog"	"Xinorg"
1	.01	99.6	.4	2.35	.03	.9939	64.4	35.6
60	1.06	98.2	1.8	2.90	3.08	.9997	72.5	27.5
121	1.77	92.1	7.9	2.85	5.06	.9996	72.1	27.9
181	2.45	80.5	19.5	2.64	6.47	.9995	69.1	30.9
240	3.11	68.7	31.3	2.60	8.09	.9994	68.4	31.6
302	3.84	59.2	40.8	2.63	10.11	.9992	68.7	31.2
361	4.37	51.6	48.4	2.73	11.95	.9987	70.0	30.0
420	4.66	45.7	54.3	2.94	13.69	.9974	72.7	27.3
486	4.40	41.6	58.4	3.28	14.41	.9931	76.8	23.2
545	3.66	39.9	60.1	3.68	13.49	.9791	81.6	18.4
601	2.38	41.3	58.7	4.06	9.66	.9533	85.2	14.8
660	1.12	47.8	52.2	4.60	5.13	.9319	87.3	12.7
721	.28	62.8	37.2	5.60	1.56	.9152	87.7	12.3
780	.04	81.7	18.3	4.78	.21	.8790	87.7	12.3
ve	33.30	55.7	44.3	3.11	103.64	.9858	75.3	24.7
Note:	PPM net	OH is i	44.3 normalize	d to 60 i	103.64	.9858	75.3	24.7
Note: Double	PPH ner	OH is notrol C	44.3 normalize ase [#]	3.11 d to 60 m	103.64 nin inte	.9858	75.3 *CH Te	24.7
Note: "Double "Time"	33.30 PPM ner ed CO Co "dnOH" "ppb"	OH is n ontrol C "X nOH" "organ"	44.3 normalize ase" "X nOH" "inorg"	3.11 d to 60 m "OH"	103.64 min inte "Total" "OH"	.9858 rvals. *d0H* *dH02*	"CH Te: "Xog"	24.7 mination "Xinorg"
Note: "Double "Time"	33.30 PPK net ed CO Co "dnOH" "ppb"	55.7 OH is nontrol C "X noH" "organ" 99.5	44.3 normalize ase" "X nOH" "inorg" .5	3.11 d to 60 m MOH# 4 "Ch.L."	103.64 min inte "Total" "OH" .02	.9858 rvals. "d0H" "dH02" .9937	*OH Te *Xog* 67.3	24.7 mination "Xinorg" 32.7
Note: Double Time"	33.30 PPK net ed CD Co "dnOH" "ppb" .01 .67	SS.7 OH is nontrol C "X noH" "organ" 99.5 97.0	44.3 normalize ase" "X nOH" "inorg" .5 3.0	3.11 d to 60 m "OH" " "Ch.L." 2.64 3.34	103.64 in inte "Total" "OH" .02 2.24	.9858 rvals. *d0H* *dH02* .9937 .9997	"CH Te: "Xog" 67.3 75.1	24.7 mination "Xinorg" 32.7 24.9
Note: "Double "Time" 1 61 120	33.30 PPH ner ed CO Co "dnOK" "ppb" .01 .67 1.15	55.7 OH is nontrol C "% noH" "organ" 99.5 97.0 87.2	44.3 normalize ase" "% nOH" "inorg" .5 3.0 12.8	3.11 d to 60 m "OH" " "Ch.L." 2.64 3.34 3.36	103.64 in inte "Total" "OH" .02 2.24 3.88	.9858 rvals. *d0H* *dH02* .9937 .9997 .9996	*OH Te *Xog* 67.3 75.1 75.3	24.7 mination "Xinorg" 32.7 24.9 24.7
Note: "Double "Time" 1 61 120 182	33.30 PPH net ed CO Co "dnOH" "ppb" .01 .67 1.15 1.66	55.7 OH is nontrol C "% noH" "organ" 99.5 97.0 87.2 71.4	44.3 normalize ase" "% nOH" "inorg" .5 3.0 12.8 28.6	3.11 d to 60 m "OH" " "Ch.L." 2.64 3.34 3.36 3.25	103.64 ain inte "Total" "OH" .02 2.24 3.88 5.39	.9858 rvals. *d0H* *dH02* .9937 .9997 .9996 .9994	*0H Te: *Xog* 67.3 75.1 75.3 74.0	24.7 mination "Xinorg" 32.7 24.9 24.7 26.0
Note: "Double "Time" 1 61 120 182 241	33.30 PPH net ed CO Co "dnOH" "ppb" .01 .67 1.15 1.66 2.30	55.7 OH is nontrol C "% noH" "organ" 99.5 97.0 87.2 71.4 58.4	44.3 normalize ** nOH* ** nOH*	3.11 d to 60 m "OH" " "Ch.L." 2.64 3.34 3.36 3.25 3.34	103.64 ain inte "Total" "OH" .02 2.24 3.88 5.39 7.68	.9858 rvals. *d0H* *dH02* .9937 .9997 .9996 .9994 .9993	*0H Te: *Xog* 67.3 75.1 75.3 74.0 74.6	24.7 mination "Xinorg" 32.7 24.9 24.7 26.0 25.4
Note: "Doubl." "Time" 1 61 120 182 241 301	33.30 PPH net ed CO Co "dnOH" "ppb" .01 .67 1.15 1.66 2.30 2.97	55.7 OH is nontrol C "% noH" "organ" 99.5 97.0 87.2 71.4 58.4 49.5	44.3 normalize ** nOH* ** nOH* ** nOH* ** nOH* ** nOH* ** nOH* ** nOH* ** nOH* ** nOH* ** nOH*	3.11 d to 60 s "OH" " ch.L." 2.64 3.34 3.36 3.25 3.34 3.50	103.64 ain inte "Total" "OH" .02 2.24 3.88 5.39 7.68 10.40	.9858 rvals. *d0H* *dH02* .9937 .9997 .9996 .9994 .9993 .9990	*0H Te: *Xog* 67.3 75.1 75.3 74.0 74.6 75.8	24.7 mination "Xinorg" 32.7 24.9 24.7 26.0 25.4 24.2
Note: "Doubl." "Time" 1 61 120 182 241 301 361	33.30 PPH net ed CO Co "dnOH" "ppb" .01 .67 1.15 1.66 2.30 2.97 3.59	55.7 OH is nontrol C "X noH" "organ" 99.5 97.0 87.2 71.4 58.4 49.5 42.4	44.3 normalize ** nOH* ** n	3.11 d to 60 a "OH" " "Ch.L." 2.64 3.34 3.36 3.25 3.34 3.50 3.76	103.64 ain inte "Total" "OH" .02 2.24 3.88 5.39 7.68 10.40 13.50	.9858 rvals. *d0H* *dH02* .9937 .9997 .9996 .9994 .9993 .9990 .99981	75.3 *OH Te: *Xog* 67.3 75.1 75.3 74.0 74.6 75.8 77.6	24.7 mination "Xinorg" 32.7 24.9 24.7 26.0 25.4 24.2 25.4 24.2 22.4
Note: "Doubl." "Time" 1 61 120 182 241 301 361 420	33.30 PPH net ed C0 C0 "dn0H" "ppb" .01 .67 1.15 1.66 2.30 2.97 3.59 3.92	55.7 • OH is nontrol C • * noH * organ 99.5 97.0 87.2 71.4 58.4 49.5 42.4 36.8	44.3 normalize ** nOH* ** n	3.11 d to 60 a "OH" " "Ch.L." 2.64 3.34 3.36 3.25 3.34 3.50 3.76 4.21	103.64 ain inte "Total" "OH" .02 2.24 3.88 5.39 7.68 10.40 13.50 16.51	.9858 "vals. "doH" "dwo2" .9937 .9997 .9996 .9994 .9993 .9990 .9990 .9981 .9950	75.3 *OH Te: *Xog* 67.3 75.1 75.3 74.0 74.6 75.8 77.6 80.6	24.7 mination "Xinorg" 32.7 24.9 24.7 26.0 25.4 25.4 25.4 24.2 22.4 19.4
Note: "Doubl." "Time" 1 61 120 182 241 301 361 420 483	33.30 PPH net ed C0 C0 "dn0H" "ppb" .01 .67 1.15 1.66 2.30 2.97 3.59 3.92 3.89	55.7 OH is nontrol C "X noH" "organ" 99.5 97.0 87.2 71.4 58.4 49.5 42.4 36.8 32.5	44.3 normalize ** nOH* ** n	*0H" *0H" *0H" *0H 2.64 3.34 3.36 3.25 3.34 3.50 3.76 4.21 4.80	103.64 ain inte "Total" "OH" .02 2.24 3.88 5.39 7.68 10.40 13.50 16.51 18.70	.9858 "vals. "doH" "dilo2" .9937 .9997 .9996 .9994 .9993 .9990 .9981 .9950 .9826	75.3 *OH Te: *Xog* 67.3 75.1 75.3 74.0 74.6 75.6 80.6 80.6 84.8	24.7 mination "Xinorg" 32.7 24.9 24.7 26.0 25.4 25.4 24.2 22.4 19.4 15.2
Note: "Doubl." "Time" 1 61 120 182 241 301 361 420 483 542	33.30 PPH net ed C0 C0 C0 "dnOH" "ppb" .01 .67 1.66 2.30 2.97 3.59 3.92 3.89 3.26	55.7 OH is nontrol C "X noH" "organ" 99.5 97.0 87.2 71.4 58.4 49.5 42.4 36.8 32.5 29.5	44.3 normalize *X nOH* *inorg* .5 3.0 12.8 28.6 41.6 50.5 57.6 63.2 67.5 70.5	3.11 d to 60 m "Ch.L." 2.64 3.34 3.36 3.35 3.34 3.50 3.76 4.21 4.80 5.09	103.64 ain inte "Total" "OH" .02 2.24 3.88 5.39 7.68 10.40 13.50 16.51 18.70 16.58	.9858 "vals. "doH" "doH" -9937 .9997 .9997 .9996 .9994 .9993 .9994 .9993 .9994 .9993 .9994 .9950 .9826 .9477	75.3 *OH Te: *Xog* 67.3 75.1 75.3 74.0 74.6 75.8 774.6 80.6 80.6 88.8	24.7 mination "Xinorg" 32.7 24.9 24.7 26.0 25.4 24.2 25.4 24.2 22.4 15.2 11.4
Note: "Doubl." "Time" 1 61 120 182 241 361 420 483 542 604	33.30 PPH net ed CO C C "dnOH" "ppb" .01 .67 1.15 1.66 2.30 2.97 3.59 3.59 3.99 3.26 2.03	55.7 OH is nontrol C "X noH" "organ" 99.5 97.0 87.2 71.4 58.4 49.5 42.4 36.8 32.5 29.5 29.6	44.3 mormalize *X nOH* *inorg* .5 3.0 12.8 28.6 41.6 50.5 57.6 63.2 67.5 70.5 70.4	3.11 d to 60 m "Ch.L." 2.64 3.34 3.36 3.25 3.34 3.50 3.76 4.21 4.20 5.09 5.09	103.64 ain inte "Total" "OH" .02 2.24 3.88 5.39 7.68 10.40 13.50 16.51 16.51 16.58 10.33	.9858 "vals. "doH" "dH02" .9937 .9997 .9996 .9994 .9993 .9990 .9994 .9993 .9990 .9981 .9950 .9826 .9477 .9071	75.3 *OH Te: *Xog* 67.3 75.1 75.3 74.0 74.6 75.8 77.6 80.6 80.6 88.6 88.6 91.0	24.7 mination "Xinorg" 32.7 24.9 24.7 26.0 25.4 24.2 22.4 19.4 19.4 19.4 11.4 9.0
Note: "Doubl." "Time" 1 61 120 182 241 361 420 483 542 604 661	33.30 PPH net ed CO C C "dnOH" "ppb" .01 .67 1.15 1.66 2.30 2.97 3.59 3.92 3.92 3.92 3.92 3.89 6.203 2.03	55.7 OH is nontrol C "% noH" "organ" 99.5 97.0 87.2 71.4 58.4 49.5 42.4 36.8 32.5 29.6 36.0	44.3 mormalize ** nOH* ** nOH* ** inorg* .5 3.0 12.8 28.6 41.6 50.5 57.6 63.2 67.5 70.5 70.5 70.4 64.0	3.11 d to 60 s "OH" " "Ch.L." 2.64 3.36 3.25 3.34 3.50 3.76 4.21 4.20 5.09 5.09 5.64	103.64 ain inte "Total" "OH" .02 2.24 3.88 5.39 7.68 10.40 13.50 16.51 18.70 16.58 10.33 4.92	.9858 "vals. "dOH" "dH02" .9937 .9997 .9997 .9996 .9994 .9993 .9990 .9994 .9993 .9990 .9981 .9950 .9826 .9477 .9071 .8961	75.3 *OH Te: *Xog* 67.3 75.1 75.3 74.0 74.6 75.8 77.6 80.6 84.8 88.8 88.8 89.0 92.0	24.7 mination "Xinorg" 32.7 24.9 24.7 26.0 25.4 24.2 22.4 19.4 15.2 11.4 9.0 8.0
Note: "Doubl." "Time" 1 61 120 182 241 301 361 420 483 542 604 661 720	33.30 PPH net ed CO C "dnOH" "ppb" .01 .67 1.15 1.66 2.30 2.97 3.59 3.92 3.89 3.26 2.03 .87 .21	55.7 OH is i ontrol C "% nOH" "organ" 99.5 97.0 87.2 71.4 58.4 49.5 42.4 36.8 32.5 29.6 36.0 51.1	44.3 mormalize ** nOH* ** nOH* ** inorg* .5 3.0 12.8 28.6 41.6 50.5 57.6 63.2 67.5 70.5 70.4 64.0 48.9	3.11 d to 60 s "OH" " "Ch.L." 2.64 3.36 3.25 3.34 3.50 3.76 4.21 4.60 5.09 5.09 5.64 6.90	103.64 ain inte "Total" "OH" .02 2.24 3.88 5.39 7.68 10.40 13.50 16.51 18.70 16.58 10.33 4.92 1.43	.9858 "vals. "dOH" "dH02" .9937 .9997 .9996 .9994 .9994 .99981 .9950 .9826 .9477 .9071 .8951 .8954	75.3 "OH Te: "Xog" 67.3 75.1 75.3 74.0 74.6 75.8 77.6 80.6 84.8 88.6 91.0 92.1	24.7 mination "Xinorg" 32.7 24.9 24.7 26.0 25.4 24.2 22.4 19.4 15.2 11.4 9.0 8.0 7.9
Note: "Doubl." "Time" 1 61 120 162 241 301 361 420 483 542 604 661 720 780	33.30 PPM net ed C0 C0 "dn0H" "ppb" .01 1.67 1.15 1.66 2.30 2.97 3.59 3.92 3.92 3.92 3.26 2.03 .87 .21 .03	55.7 OH is nontrol C "X noH" "organ" 99.5 97.0 87.2 71.4 58.4 49.5 42.4 36.8 32.5 29.5 29.6 36.0 51.1 74.3	44.3 normalize ** nOH* ** n	3.11 d to 60 s "OH" " "Ch.L." 2.64 3.34 3.36 3.25 3.34 3.50 3.76 4.21 4.80 5.09 5.09 5.64 6.90 6.28	103.64 ain inte "Total" "OH" .02 2.24 3.88 5.39 7.68 10.40 13.50 16.51 18.70 16.58 10.33 4.92 1.43 .18	.9858 "vals. "doH" "dilo2" .9937 .9997 .9997 .9996 .9994 .9993 .9990 .9994 .9993 .9990 .9981 .9950 .9950 .9477 .9071 .8961 .8954 .8743	75.3 *OH Te: *Xog* 67.3 75.1 75.3 74.0 75.6 80.6 80.6 80.6 84.8 88.6 91.0 92.0 92.1 92.1	24.7 mination "Xinorg" 32.7 24.9 24.7 26.0 25.4 24.2 25.4 24.2 22.4 19.4 15.2 11.4 9.0 8.0 7.9 8.0

Table 22. 'OH summary for the original base case and controlled base case simulations..

Doubled CO Simulations

Doubled CO Trajectory Simulation O3 Production

a high propagation factor, so the high CO concentration causes a large OH chain length. The chain length was 3.63 in the 2xCO case but increased to 4.24 in the controlled CO case. The total 'OH production in the 2xCO case is 158 ppb compared to 113 ppb in the 2xCO control case.

Even though new 'OH radical production from the photolysis of aldehydes was significantly reduced in the controlled CO case, the efficient propagation of 'OH radicals by CO still produced a large number of radicals.

VOC Control Requirement Prediction

In the discussion above, we gained some insight into how the O_3 production occurred in each simulation. Doubling the CO concentration increased 'OH propagation and increased the mass of CO reacted. In the 2xCO design simulation, CO produced more O_3 so lower initial VOC and NO_x concentrations were used to reproduce the design value. This information should improve our understanding of why the predicted VOC control requirement nearly doubled in the 2xCO case and help us to judge if these results seem physically plausible.

Figure 14 shows the production of O_3 attributed to VOC sources and non-VOC sources for each of the design value and control case simulations. Non-VOC sources include O_3 production by CO and CH₄. The base case VOC control requirement was 23.2%. Figure 14 shows that for the base case simulations, the production of O_3 by VOCs was reduced from 96.7 ppb in the design case to 66.8 ppb in the control case, or by 31%. Using the TI4 output files, I summed the mass of VOC reacted (after converting to units of ppbC) and found that the mass of VOC reacted fell from 88.3 ppbC in the design case to 63.8 ppbC in the control case, a reduction of 27%. The average yield of O_3 per ppbC fell from 1.10 to 1.05. The 23.2% reduction in VOC reacted new O_3 production and 'OH propagation causing a 27% reduction in VOC reacted. The yield of O_3 per ppbC fell because of the increase in the reaction of 'OH with NO₂.

The 2xCO control prediction was 42.5%. For the 2xCO simulations, production of O_3 by VOCs was reduced from 78 ppb in the 2xCO simulation to 44 ppb in the controlled 2xCO simulation, or by 44%. The mass of VOC reacted fell from 69.9 ppbC in the design case to 39.0 ppbC in the control case, a 43% reduction.

To summarize, Figure 14 shows that when CO concentrations are doubled, VOCs contribute a smaller fraction of the total O₃ production, and a greater level of VOC control is required to meet the standard. Non-VOC sources contribute a greater

Figure 13. Bar graph comparing VOC reacted and O₃ yields in 2xCO case and 2xCO control simulations.

መ

10

Table 23	Time	dependent	.OH	summary	for	2xCO	and	controlled
2xCO	simulations.							

	"dnOH"	"X nOH"	"X nOH"	-CH-	"Total"	"dOH"	"OH Te	rmination
"Time"	"ppb"	"organ"	"inorg"	"Ch.L."	-04-	"dHO2"	"Tog"	"Xinorg"
1	.01	99.7	.3	2.87	.04	.9941	72.2	27.8
61	1.33	98.4	1.6	3.57	4.74	.9997	78.9	21.1
121	2.32	92.8	7.2	3.43	7.98	.9995	78.0	22.0
181	3.14	81.6	18.4	3.19	9.99	.9994	75.7	24.3
241	4.08	69.3	30.7	3.19	13.03	.9990	75.7	24.3
302	5.12	58.4	41.6	3.33	17.04	.9983	77.0	23.0
362	6.00	49.0	51.0	3.61	21.69	.9953	79.8	20.2
420	6.46	41.0	59.0	4.07	26.30	.9779	84.8	15.2
483	6.05	32.5	67.5	3.97	24.06	.8993	90.1	9.9
540	4.58	26.8	73.2	3.42	15.64	.7959	93.3	6.7
602	2.78	27.9	72.1	3.41	9.48	.7647	94.4	5.6
661	1.20	36.4	63.6	4.09	4.89	.7878	94.6	5.4
721	.29	54.6	45.4	5.58	1.64	.8169	94.4	5.6
780	.05	82.0	18.0	5.93	.28	.8393	94.3	5.7
lve	43.43	50.8	49.2	3.63	157.76	.9316	84.1	15.9
Note: Double	PPH nes	OH is n	normalize loft, 0.6	d to 60 i	sin inte d VOC=	rvals.		
Note: Double	PPN nes	oH is not A	hormalize	d to 60 m	nin inte d VOC= Total=	rvals.	*CK Te	mination
Note: Double	PPM new CO Sur "dnOH" "ppb"	f and A "X nOH" "organ"	normelize loft, 0.6 "X nOH" "inorg"	d to 60 m :0.1, Sto "CH" "Ch.L."	Total" "OH"	"dox" "dx02"	"CH Ter "Xog"	mination "Xinorg"
Note: Double "Time"	PPN new CO Sur "dnOH" "ppb" .01	of and Al "X nOH" "organ" 99.5	normalize loft, 0.6 "X nOH" "inorg" .5	d to 60 s :0.1, Sto "CH" "Ch.L."	Total" "OH" .02	"dox" "dox" "dxo2"	"CH Ter "Xog" 67.3	mination "Xinorg" 32.7
Note: Double Time"	CO Sur "dnOH" "ppb" .01 .67	OH is n f and A "X nOH" "organ" 99.5 97.0	normalize loft, 0.6 "X nOK" "inorg" .5 3.0	d to 60 m 10.1, Sto "CH" "Ch.L." 2.64 3.34	Total" "OH" .02 2.24	"dok" "dok" "dxo2" .9937 .9997	"CH Te "Xog" 67.3 75.1	mination "Xinorg" 32.7 24.9
Note: Double Time" 1 61 120	PPN nes CO Sur "dnOH" "ppb" .01 .67 1.15	OH is n f and A "X nOH" "organ" 99.5 97.0 87.2	normalize loft, 0.6 "% nOK" "inorg" .5 3.0 12.8	d to 60 m 10.1, Sto "CH" "Ch.L." 2.64 3.34 3.36	"Total" "OH" .02 2.24 3.88	"dDH" "dDH" "dHO2" .9937 .9997 .9996	*CH Ter *Xog* 67.3 75.1 75.3	mination "Xinorg" 32.7 24.9 24.7
Note: "Double "Time" 1 61 120 182	PPN ner CO Sur "dnOH" "ppb" .01 .67 1.15 1.66	OH is n f and A "X nOH" "organ" 99.5 97.0 87.2 71.4	normalize Noft, 0.6 "% nOK" "inorg" .5 3.0 12.8 28.6	d to 60 m :0.1, Sto "CR" "Ch.L." 2.64 3.34 3.36 3.25	"Total" "OH" .02 2.24 3.88 5.39	"dDH" "dDH" "dHO2" .9937 .9997 .9996 .9994	*CH Te *Zog* 67.3 75.1 75.3 74.0	32.7 24.9 24.7 26.0
Note: "Double "Time" 1 61 120 182 241	PPH nes co sur "dn0H" "ppb" .01 .67 1.15 1.66 2.30	OH is n f and A "X nOH" "organ" 99.5 97.0 87.2 71.4 58.4	normalize Noft, 0.6 "% nOK" "inorg" .5 3.0 12.8 28.6 41.6	d to 60 m :0.1, Sto "CR" "Ch.L." 2.64 3.34 3.36 3.25 3.34	"Total" "OH" .02 2.24 3.88 5.39 7.68		*CH Te *Zog* 67.3 75.1 75.3 74.0 74.6	32.7 24.9 24.7 26.0 25.4
Note: "Double "Time" 1 61 120 182 241 301	PPH nes co sur "dn0H" "ppb" .01 .67 1.15 1.66 2.30 2.97	OH is r f and A "X nOH" "organ" 99.5 97.0 87.2 71.4 58.4 49.5	normalize Normalize "X nOH" "inorg" .5 3.0 12.8 28.6 41.6 50.5	d to 60 m :0.1, Sto "CR" "Ch.L." 2.64 3.34 3.36 3.25 3.34 3.50	"Total" "OH" .02 2.24 3.88 5.39 7.68 10.40		*CK Ter *Zog* 67.3 75.1 75.3 74.0 74.6 75.8	32.7 24.9 24.7 26.0 25.4 24.2
Note: "Double "Time" 1 61 120 182 241 301 361	PPH nes co sur "dn0H" "ppb" .01 .67 1.15 1.66 2.30 2.97 3.59	OH is r f and A "X nOH" "organ" 99.5 97.0 87.2 71.4 58.4 49.5 42.4	normalize ** nOH **	d to 60 m :0.1, Sto "CR" "Ch.L." 2.64 3.34 3.36 3.25 3.34 3.50 3.76	"Total" "OH" "04" .02 2.24 3.88 5.39 7.68 10.40 13.50		*CH Ter *Xog* 67.3 75.1 75.3 74.0 74.6 75.8 77.6	32.7 24.9 24.7 26.0 25.4 24.2 22.4
Note: "Double "Time" 1 61 120 182 241 301 361 420	PPH nes co sur "dnoH" "ppb" .01 .67 1.15 1.66 2.30 2.97 3.59 3.92	OH is r f and A "X nOH" "organ" 99.5 97.0 87.2 71.4 58.4 49.5 42.4 36.8	normalize ** nOH **	d to 60 s :0.1, Sto "CH" "Ch.L." 2.64 3.34 3.36 3.25 3.34 3.50 3.76 4.21	"Total" "OH" "0H" .02 2.24 3.88 5.39 7.68 10.40 13.50 16.51		*CH Ter *Xog* 67.3 75.1 75.3 74.0 74.6 75.8 77.6 80.6	32.7 24.9 24.7 26.0 25.4 24.2 22.4 19.4
Note: "Double "Time" 1 61 120 182 241 301 361 420 483	PPH nes co sur "dnoH" "ppb" .01 .67 1.15 1.66 2.30 2.97 3.59 3.92 3.89	OH is 1 "I and A "I now" "organ" 99.5 97.0 87.2 71.4 58.4 49.5 42.4 36.8 32.5	normalize ** nOH **	d to 60 s :0.1, Sto "CH" "Ch.L." 2.64 3.34 3.36 3.25 3.34 3.50 3.76 4.21 4.80	"Total" "OH" "0H" .02 2.24 3.88 5.39 7.68 10.40 13.50 16.51 18.70		*CH Te *Xog* 67.3 75.1 75.3 74.0 74.6 75.8 77.6 80.6 84.8	32.7 24.9 24.7 26.0 25.4 24.2 22.4 19.4 15.2
Note: "Double "Time" 1 61 120 182 241 301 361 420 483 542	PPH nes co sur "dnoH" "ppb" .01 .67 1.15 1.66 2.30 2.97 3.59 3.92 3.89 3.26	OH is 1 "1 and A "2 nOH" "organ" 99.5 97.0 87.2 71.4 58.4 49.5 42.4 36.8 32.5 29.5	normalize ** nOH **	d to 60 s :0.1, Sto "CH" "Ch.L." 2.64 3.34 3.36 3.25 3.34 3.50 3.76 4.21 4.80 5.09	"Total" "OH" "0H" .02 2.24 3.88 5.39 7.68 10.40 13.50 16.51 18.70 16.58		*CH Ter *Xog* 67.3 75.1 75.3 74.0 74.6 75.8 77.6 80.6 84.8 88.6	32.7 24.9 24.7 26.0 25.4 24.2 22.4 19.4 15.2 11.4
Note: "Double "Time" 1 61 120 182 241 301 361 420 483 542 604	PPH nes co sur "dnoH" "ppb" .01 .67 1.15 1.66 2.30 2.97 3.59 3.92 3.89 3.26 2.03	OH is 1 "I and A "I now" "organ" 99.5 97.0 87.2 71.4 58.4 49.5 42.4 36.8 32.5 29.5 29.6	normalize ** nOH **	d to 60 s :0.1, Sto "CH" "Ch.L." 2.64 3.34 3.36 3.25 3.34 3.50 3.76 4.21 4.80 5.09 5.09	"Total" "OH" "0H" "0H" .02 2.24 3.88 5.39 7.68 10.40 13.50 16.51 18.70 16.58 10.33		*CH Ter *Xog* 67.3 75.1 75.3 74.0 74.6 75.8 77.6 80.6 84.8 88.6 91.0	32.7 24.9 24.7 26.0 25.4 24.2 22.4 19.4 15.2 11.4 9.0
Note: "Double "Time" 1 61 120 182 241 301 361 420 483 542 604 661	PPH nes co sur "dnoH" "ppb" .01 .67 1.15 1.66 2.30 2.97 3.59 3.92 3.89 3.26 2.03 .87	OH is 1 "I and A "I note" "organ" 99.5 97.0 87.2 71.4 58.4 49.5 42.4 36.8 32.5 29.5 29.6 36.0	normalize ** nOH **	d to 60 s :0.1, Sto "CH" "Ch.L." 2.64 3.34 3.36 3.25 3.34 3.50 3.76 4.21 4.80 5.09 5.09 5.64	"Total" "OH" "0H" "0H" .02 2.24 3.88 5.39 7.68 10.40 13.50 16.51 18.70 16.58 10.33 4.92		*CH Ter *Xog* 67.3 75.1 75.3 74.0 74.6 75.8 77.6 80.6 84.8 88.6 91.0 92.0	32.7 24.9 24.7 26.0 25.4 24.2 22.4 19.4 15.2 11.4 9.0 8.0
Note: "Double "Time" 1 61 120 182 241 301 361 420 483 542 604 661 720	PPH nes CO Sur "dnOH" "ppb" .01 .67 1.15 1.66 2.30 2.97 3.59 3.92 3.89 3.26 2.03 .87 .21	OH is 1 "I and A "I and A "T nOH" "organ" 99.5 97.0 87.2 71.4 58.4 49.5 42.4 36.8 32.5 29.5 29.6 36.0 51.1	normalize ** nON** ** nON** ** inorg** .5 3.0 12.8 28.6 41.6 50.5 57.6 63.2 67.5 70.5 70.4 64.0 48.9	d to 60 s :0.1, Sta "CH.L." "Ch.L." 2.64 3.34 3.36 3.34 3.36 3.34 3.50 3.76 4.21 4.80 5.09 5.64 6.90	"Total" "OH" "OH" "OH" "OH" "OH" "OH" "OH" "O		*CH Tel *Xog* 67.3 75.1 75.3 74.0 74.6 80.6 80.6 84.8 88.6 91.0 92.0 92.1	32.7 24.9 24.7 26.0 25.4 24.2 22.4 19.4 15.2 11.4 9.0 8.0 7.9
Note: Double "Time" 1 61 120 182 241 301 361 420 483 542 604 661 720 780	PPN nes CO Sur "dnOH" "ppb" .01 .67 1.15 1.66 2.30 2.97 3.59 3.92 3.89 3.26 2.03 .87 .21 .03	OH is r f and A "X nOH" "organ" 99.5 97.0 87.2 71.4 58.4 49.5 42.4 36.8 32.5 29.5 29.6 36.0 51.1 74.3	normalize Normalize *X nOK* *inorg* .5 3.0 12.8 28.6 41.6 50.5 57.6 63.2 67.5 70.4 64.0 48.9 25.7	d to 60 f :0.1, Str "0H" "Ch.L." 2.64 3.34 3.36 3.25 3.34 3.50 3.76 4.21 4.80 5.09 5.69 5.69 5.64 6.90 6.28	"Total" "OH" "0H" "0H" "0H" "0H" "0H" "0H" "0H	-vels. -d0H -d0H -9937 .9997 .9996 .9994 .9993 .9990 .9981 .9950 .9826 .9477 .9071 .8961 .8954 .8743	*CH Ter *Zog* 67.3 75.1 75.3 74.0 74.6 75.8 77.6 80.6 80.6 84.8 88.6 91.0 92.0 92.1 92.1	32.7 24.9 24.7 26.0 25.4 22.4 19.4 19.4 15.2 11.4 9.0 8.0 7.9 8.0

VOC Control Requirement Prediction

Figure 14. Bar graph comparing O₃ production from VOC and non-VOC sources for design value and control simulations.

fraction of the O_3 production in the control scenario. This suggests that CO and NO_x control strategies should be considered in addition to the VOC control strategy.

Concluding Remarks

Traditionally, air pollution models produce output in the form of concentration profiles. In some models, instantaneous rates of reaction can be included in the output, but these are difficult to analyze.

The integrated rate analysis method can significantly improve our understanding of model predictions. It saves information on the rates of reactions which is lost in simple concentration profiles. Integrated rates are useful because they show what happens over some time interval rather than an instantaneous point in time.

The IRREVAL program automates the analysis of the integrated rates. It enables the user to eliminate the confusing effect of groups of reactions which rapidly interconvert species. It can use a mass balance on intermediate species to show the final products of a species after all of the intermediates in its degradation chain have reacted.

IRREVAL evolved from a program which performed a simple mass analysis on a given species. As a result, it was not planned nor designed for efficiency. It has the advantage that the origin of values in each output file can be understood by going back to more primitive output files. For example, the values given in an 'OH summary table in the TIM file can be traced back to the complete HO_x balance performed each interval in the HOx output file. The source of values given in the HO_x balance can be found in the BAL output file. This is very useful for debugging errors when the program is modified.

IRREVAL has several potential applications which were not developed in the example in Chapter 7. It could be used, for example, to perform a complete carbon mass balance. It has the advantage that unreactive species, such as CO₂, which were

Future Modifications to IRREVAL

Concluding Remarks

ignored in the model can be reintroduced into the compressed mechanism file and included in the IRREVAL analysis.

It would also be useful for comparing different chemical mechanisms. The ability to attribute O_3 production to specific organics and to show the new 'OH production and 'OH chain length over time would be especially useful for comparing mechanisms.

Future Modifications to IRREVAL

Several improvement should be made in the program. Currently, the program shows simply the total production of O_3 from each source. Some sources produce O_3 at different times in the simulation, and O_3 losses occur during the simulation. It would be useful to know the fraction of the final concentration of O_3 attributed to each source as well as the total amount of O_3 produced by each source. This can be done using the algorithm that is currently used for NO_2 .

Some O_3 is lost in the algorithm which eliminates the replaced species for the time dependent analysis. This is usually less than 3% of the total O_3 production. Currently, the lost mass is recovered by redistributing it among the primary VOCs. This error should be reduced.

The content and structure of the output files will also continue to be changed or improved. It might be desireable to produce plots instead of tables for some of the output.

The method of analysis developed in this work could eventually be applied to the Urban Airshed model and to regional scale models.

References

- Baugues, K., Selection of Initial 6-9 A.M. Concentrations of Carbon Monoxide for use in EKMA, Draft Report, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, 1988.
- Chamedies W. L., R. W. Lindsay, J. Richardson, and C. S. Kiang, The Role of Biogenic Hydrocarbons in Photochemical Smog: Atlanta as a Case Study, Science, 241, 1473-1475, 1988.
- Gery, M. W. and R. R. Crouse, Users Guide for Executing OZIPR, Order No. 9D2196NASA, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, 1990.
- Hogo, H. and M. W. Gery, Users Guide for Executing OZIPM-4 with CBM-IV or Optional Mechanisms, Volume 1, Contract No. 68-02-4136, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, 1988.
- Jeffries, H. E., Photochemical Reaction Mechanism Analysis Method Applied to Two Mechanisms, Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, Manuscript, 1984.
- Logan J. A., M. J. Prather, S. C. Wolfsy, and M. B. McElroy, Tropospheric Chemistry: A Global Perspective, J. Geophys. Res., 86, 7210-7254, 1981.
- Spellman, J. W., and A. C. Hindmarsh, GEARS: Solution of Ordinary Differential Equations Having a Sparse Jacobian Matrix, UCID-30116, University of California, Livermore, California, 1975.

Appendix A

As described in Chapter 4, the O_3 production from each VOC is calculated by summing the final NO_2 and HO_2 production from each VOC at the end of its reaction chain. For example, for ethene (ETH) the equation

$$\frac{\Delta O_3}{\Delta ETH} = \left(\frac{\Delta HO_2}{\Delta ETH} \frac{\Delta NO_2}{\Delta HO_2} + \frac{\Delta NO_2}{\Delta ETH}\right) \frac{\Delta O_3}{\Delta NO_2}$$

is used to calculate the O₃ yield per ETH, where

ΔNO_2	Production of NO ₂ from HO ₂
ΔHO ₂ =	Total Production of HO ₂
$\Delta 0_3$	Production of O ₃ from NO ₂
ANO2	Total Production of NO ₂

 $\Delta NO_2/\Delta HO_2$ is listed at the end of the *.HC output file and $\Delta O_3/\Delta NO_2$ is listed at the end of the *.NOX output file.

Figure 15 shows the ETH chain reaction and the pathways which produce HO₂ and NO₂. The first level in the the tree shows the production of each intermediate per ppm of ETH reacted. Lower levels show the mass (ppm) of final products produced per ppm of intermediate produced in the previous step. For example, reactions of ETH produce 0.0272 ppm of CO per ppm of ETH reacted. When CO reacts, it produces one HO₂, but only 3% of the total CO reacts in this simulation, so each ppm of CO produced by ETH causes 0.03 ppm additional production of HO₂.

The production of NO₂ or HO₂ in each path of the chain reaction is calculated by taking the product of the coefficients at each level in the tree. The production of NO₂ and HO₂ per ETH are then found by summing HO₂ and NO₂ production in each path. For example, in Figure 15, NO₂ production per ETH is calculated as

$$\frac{\Delta \text{NO}_2}{\Delta \text{ETH}} = (0.9385)(0.9850) + 0.2062 \Big\{ 0.4706 \Big[0.7364 + (0.8811)(0.9850) \Big] \\ + \Big[(0.0198)(0.9850) \Big] \Big\}$$

= 1.084 ppm/ppm

and HO₂ per ETH production is

 $\Delta HO_2^{\circ}/\Delta ETH = 1.953 \text{ ppm/ppm}$

Figure 15. Example Calculation of $\Delta O_3/\Delta ETH$. Numbers show the products in ppm per ppm of reactant produced (see text).

Appendix A

From the *.HC and *.NOX output files in Table 12 (line 28) and Table 14 (second line from end)

$$\Delta NO_2/\Delta HO_2 = 0.9083 \text{ ppm/ppm}$$

 $\Delta O_3 / \Delta NO_2 = 0.6069 \text{ ppm/ppm}$

so the O₃ yield per ETH reacted is

 $\Delta O_3 / \Delta ETH = \{(1.9530)(0.9083) + 1.084\}(0.6069)$ = 1.735

This is the value shown in line 9 of the *.03 output file in Table 11.

The calculation is more complicated for a time dependent analysis. The O_3 production from ETH is calculated during each interval, but some intermediates produced in ETH reactions in one interval may not react until later intervals. For example, ETH may react in the first interval to produce ALD2. This ALD2 may react in the second and third intervals to produce FORM, and this FORM may react in the second through sixth intervals. One can plot $\Delta O_3 / \Delta ETH$ as a function of time, but it might be difficult to intepret this plot because the O_3 production does not occur in the same interval as the ETH reaction. The O3 production from ETH can be summed over the entire simulation, however, and an average O₃ yield can be calculated. The average values for a time dependent analysis are listed at the end of the *.TI4 output file. They provide a better approximation of the O3 yield per VOC because the time dependent analysis considers the time dependence of the varoius chemical reactions. For the example output files in Chapter 5, the timeaveraged analysis gave a $\Delta O_3 / \Delta ETH = 1.735$, while the time dependent analysis gave $\Delta O_3/\Delta ETH = 2.542$. The large difference between the two values occurs because the time-averaged analysis overestimates the contribution of initial NO₂ to O₃ production and underestimates the contribution of chemically produced NO2.