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ABSTRACT 

CHRISTOPHER MATTHEW SCULL:  

THE ROLE OF PLATELET-MACROPHAGE INTERACTIONS IN 

INFLAMMATION AND WOUND HEALING 

(Under the direction of Dr. Thomas H. Fischer) 

 

During the normal response to injury, platelets and the proteins of the 

coagulation cascade achieve hemostasis by forming a platelet-rich clot.  Platelets 

are later removed from the wound site by macrophages.  This phase of wound 

healing, known as the late inflammatory phase, also involves the release of many 

cytokines which amplify the leukocyte response. This inflammatory phase is 

dysfunctional in patients who suffer from impaired wound healing, which often 

predisposes them to infection and/or increased time to wound closure.  A better 

understanding of how inflammation resolves during normal wound healing may 

help identify new methods of intervention for patients who suffer from impaired 

wound healing.   

The overall goal of this dissertation is to better define the role of platelet-

macrophage interactions in the resolution of inflammation and wound healing.  

We hypothesize that platelet-macrophage interactions enhance the inflammatory 

response during cutaneous wound healing.  The first part of this work 

characterizes the mechanisms that regulate macrophage phagocytosis of 
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autologous platelets, including analysis of common surface proteins on the 

platelets and macrophages and their potential role for internalization of platelets.  

Using in vitro phagocytosis assays and analysis by microscopy, we analyzed the 

conditions necessary for platelet uptake, the role of platelet activation in this 

process, and the role of sulfated polysaccharides in inhibiting this process.   

The second part of this work focuses on the inflammatory consequences of 

platelet-macrophage interactions. Cytokines secreted from resting and LPS-

activated macrophages were analyzed during co-incubation of macrophages with 

either apoptotic cells or activated platelets.  We also tested the in vivo role of one 

particular cytokine, IL-23, in cutaneous wound healing using both IL-23 knockout 

mice and their wild-type littermates.   

The overall conclusions of this work suggest that macrophage 

phagocytosis of autologous platelets correlates with platelet activation, yet occurs 

independently of platelet surface P-selectin and phosphatidylserine.  Secondly, 

platelet uptake enhances macrophage activation and pro-inflammatory cytokine 

secretion, which is in sharp contrast to the macrophage response following 

phagocytosis of apoptotic cells.  Finally,  in vivo studies suggest that in the 

absence of IL-23 expression, wound healing is slightly impaired.
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CHAPTER I 

INTRODUCTION 

THE PUBLIC HEALTH RELEVANCE OF WOUND CARE 

Wound healing is a critical part of the resolution of many disease 

processes and medical interventions.  Regardless of whether the tissue injury 

results from trauma, a disease process, or a medical intervention, the body must 

be able to mount a reparative response.  The time required for proper wound 

healing can affect the length of hospital stay for any patient, from those in 

orthopedics receiving joint replacements to patients in the burn unit receiving skin 

grafts.     

The inability to properly repair a wound can itself be the cause of 

hospitalization. Chronic wounds are characterized by either delayed repair or 

frequent recurrence as compared to normally repaired tissue (1, 2).  These 

wounds are difficult to treat, frequently infected, and often lead to lower extremity 

amputation.  Non-healing wounds continue to be the leading cause of non-

traumatic amputation in the United States, resulting in more than 80,000 lower 

extremity amputations in the US alone in 2003 (3).    Although impaired wound 

healing has several causes, such as malnutrition (4), immunodeficiency (5), and 

certain medications (6), the most common systemic cause is diabetes mellitus, a 

 



 

condition which affects over 20 million Americans (3).  The increasing prevalence 

of diabetes has resulted in a sharp rise in hospitalizations for chronic wounds, 

which are also often called ulcers.  In 2003 alone, more than 870,000 

hospitalized diabetic patients had some form of lower extremity disease, and 

more than 250,000 of them were hospitalized primarily for inflammatory ulcers or 

related complications (3).   In 2007, the cost of treating chronic diabetic 

complications (including impaired wound healing) totaled more than $58 billion in 

the US, which was more than double the cost of direct treatment of diabetes ($27 

billion) (7).  

Despite the prevalence of complications associated with wound healing 

across so many disciplines, many questions on the basic principles of wound 

healing remain.  From a biological standpoint, chronic wounds are characterized 

by excessive inflammation (2, 8, 9).  The normal inflammatory processes that 

occur during wound healing are often delayed in initiation and/or prolonged 

beyond the normal time of resolution (1, 2, 8, 10).  Some studies have identified 

defects in the cells that normally participate in wound healing, although the exact 

cause of these defects in wound repair is unclear (8, 10).   

Clinical advances in wound care have attempted to address the issues of 

infection and inflammation in chronic wounds, and several therapies are currently 

being developed.  These include negative pressure (vacuum assisted) devices 

(11), various growth factors and gels for topical application (12-15), and several 

dressings designed to enhance wound closure (16-18). Despite such advances, 

the complexity of non-healing wounds has presented many challenges for new 
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therapies.  Research in this field is complicated by the fact that the exact 

mechanisms regulating inflammation in normal wound repair are also not 

completely understood (19).   

OVERVIEW OF NORMAL WOUND REPAIR 

The complicated process of normal wound repair is divided into several 

overlapping phases (20).  In response to injury, platelets and the proteins of the 

coagulation cascade achieve hemostasis by forming a platelet-rich fibrin clot.  

Some of these proteins, such as thrombin, in addition to other plasma proteins 

such as activated complement, increase vascular permeability and attract 

neutrophils and monocytes to the wound site (21). 

The clot provides a provisional matrix and a reservoir of growth factors for 

the inflammatory cells that arrive during the inflammatory phases (22).  In the 

early inflammatory phase, the wound site is dominated by neutrophils which are 

drawn to the clot by the chemoattractant complement components C3a and C5a.  

In the absence of bacterial contamination, the neutrophil response generally 

subsides within a few days.  Additionally, depletion of circulating neutrophils in 

aseptic experimental models of wound healing has demonstrated that neutrophils 

are not absolutely required for normal wound healing (23).       

Apoptotic neutrophils, wound debris, and platelets are removed from the 

wound site by macrophages during the late inflammatory phase of wound 

healing.  During this time (6-8 days after injury), the number of monocyte-derived 

cells in the wound space peaks and there is an additional burst of secreted 
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cytokines which amplify the leukocyte response (24).  Although many of the 

cytokines have overlapping functions, others, such as IL-6, are absolutely 

required for normal wound repair (25).  These cytokines and growth factors have 

autocrine effects which transition the monocytes into inflammatory macrophages.  

In addition to phagocytosis of wound debris and amplification of the monocyte 

response, macrophages also secrete additional cytokines and growth factors 

required for generating granulation tissue.   

As the inflammation resolves, a remodeling phase begins in which 

fibroblasts and other cells migrate into the granulation tissue and angiogenesis 

begins, while epithelial cells complete the wound closure (19).  T lymphocytes 

are also involved in normal remodeling, although the exact T cell subset is still 

being characterized (26-29).  The process of remodeling and scar resolution, 

performed mainly by fibroblasts, may continue for weeks.  

The mechanisms that regulate the transition from the inflammatory phase 

to the remodeling phase of wound healing are not well understood.  A major 

focus of this work is the non-hemostatic effect of platelets on these inflammatory 

phases of wound repair.   

PLATELETS IN HEMOSTASIS AND WOUND REPAIR 

Platelet Function at Wound Sites: 

Platelets are anucleate cells which are essential for normal hemostasis, 

and the hemostatic role of platelets has been studied extensively.  Following 

injury, platelets adhere to wound sites by binding to exposed extracellular matrix 
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proteins, primarily von Willebrand Factor (VWF) (30, 31) and collagen (32, 33).  

Platelets also aggregate with one another and form a temporary plug with fibrin 

which prevents additional blood loss.  

The process of platelet activation and aggregation results in many critical 

changes to the platelet surface.  Integrins already on the surface of the platelet, 

such as the αIIbβ3 complex, undergo conformational changes to mediate adhesion 

and aggregation (34).  Other proteins within the granules of the platelet, such as 

Factor V (35), P-selectin (36, 37), and CD40L (38-40), are translocated to the 

platelet surface where they interact with coagulation proteins and leukocytes.   

The plasma membrane of activated platelets also loses its phospholipid 

asymmetry during activation which results in surface exposure of 

phosphatidylserine (41, 42).  Overall, the surface of the activated platelet 

provides a hemostatic surface for the propagation of the coagulation cascade 

and generation of large amounts of thrombin, which in turn cleaves fibrinogen 

into fibrin and forms a stable clot (43, 44). 

Proteins within the platelet granules are not restricted only to the surface 

of the activated platelet.  Platelet activation also causes the complete release of 

the contents of the secretory granules, which include adhesion molecules, 

chemokines, coagulation and fibrinolytic factors, and other growth factors (45).  

These proteins in turn can react with other proteins and cells within the wound 

environment.   

Although the role of platelets in hemostasis has been well characterized, 

the platelet impact on inflammation and the later stages of wound healing has 
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only recently been addressed.  In studies of dermal wound healing in mice, 

thrombocytopenia results in significantly higher numbers of macrophages and T 

cells within the wound, suggesting a role for platelets in regulating the 

inflammatory response (46).  Additionally, there are several indirect lines of 

evidence for the impact of platelets on inflammation and wound healing.  

Platelets are present in the wound space from the initial coagulation phase 

through the late inflammatory phase, and they release a variety of proteins that 

may regulate inflammation and thrombosis (47).   Several secretory products of 

platelets, such as platelet-derived growth factor (PDGF) and transforming growth 

factor-beta (TGF-β), stimulate a pro-inflammatory effect on other wound healing 

cells (48-50).  Platelets can also activate a portion of their own secreted TGF-β, 

which then induces monocyte chemotaxis and growth factor production (51, 52).  

Interestingly, autologous platelets have been proposed as a therapeutic 

treatment for wound healing because they are such a rich source of these 

beneficial growth factors (53).  

 

Platelet Clearance Mechanisms: 

Platelets are normally cleared from circulation by macrophages either at 

wound sites or in the spleen or liver (54-58).  Although the clearance mechanism 

of normal platelets has not been resolved, several studies have examined the 

mechanisms by which macrophages clear different types of platelets, such as 

opsonized platelets, chilled (blood-bank stored) platelets, and platelets aged at 

normal body temperature (59-62).   
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In the case of autoimmune response to autologous platelets, platelets 

become coated with IgG-containing autoantibodies, or opsonized, and are 

cleared more quickly than non-opsonized platelets via Fc-receptors on 

macrophages (63).  The clearance of opsonized platelets is a central 

characteristic of conditions involving autoimmune thrombocytopenia, such as 

Anti-phospholipid Syndrome, Wiskott-Aldrich syndrome, and Systemic Lupus 

Erythematosus (64-67).  These conditions can be worsened by additional 

bacterial infection because phagocytosis of opsonized platelets is also enhanced 

by platelet-bound LPS (68).   Patients who are treated with the anticoagulant 

heparin can also develop autoantibodies against platelets, which specifically 

recognize a complex between heparin and Platelet Factor 4 on the platelet 

surface (69, 70).   

Early storage protocols for platelets at the blood bank involved keeping 

platelets refrigerated to limit bacterial contamination.  However, chilled platelets 

are rapidly cleared from circulation (59, 71).  Chilled platelets contain surface 

clusters of GPIbα which triggers their phagocytosis by macrophages, primarily in 

the liver, via an αMβ2 integrin-dependent manner (59, 72-74). Removal of sialic 

acid, for example by neuraminidase during viral infection, also triggers integrin-

dependend platelet removal by liver macrophages (75, 76).  Blocking β-N-

acetylglucosamine residues of the GPIbα protein preserves the in vitro function of 

chilled platelets (77), and modification of chilled platelets by glycosylation 

restores their in vivo circulation times, but only for platelets that have been chilled 

for two hours or less (78, 79).   
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The known effects of refrigeration on platelets have resulted in storage 

protocols in which isolated platelets are stored at room temperature, but only for 

5-7 days due to loss of hemostatic function.  This phenomenon is known as 

storage lesion, and is associated with platelet activation (80).  Both stored 

platelet concentrates and individual in vitro studies have implicated platelet 

activation in platelet concentrates.  Studies on how platelets normally age are 

complicated by the ability to track aged platelets in vivo, although one canine 

study has suggested that platelets express phosphatidylserine in vivo during 

aging (81).  In vitro experiments have demonstrated that platelets aged at 37oC 

for 24hrs become activated as determined by increased expression of 

phosphatidylserine and P-selectin (62).  However, despite the increased 

expression of surface P-selectin, both in vitro and in vivo experiments have 

shown that platelet clearance occurs independently of P-selectin (62, 82, 83).  

Platelet aging has been compared to a programmed cell death process, and 

thrombin-activation of platelets triggers an apoptotic phenotype as characterized 

by phosphatidylserine exposure, mitochondrial inner transmembrane potential 

depolarization, expression of pro-apoptotic proteins Bax and Bak, and activation 

of the apoptosis marker caspase-3 (84).  There is also evidence that platelet 

aging results in metalloproteinase-dependent degradation of platelet GPIbα, 

which reduces platelet function (85).  Uptake of activated or aged platelets is 

thought to be mediated by scavenger receptors on the macrophage because it is 

inhibited by the polysaccharide (and savenger receptor ligand) fucoidan (62).  
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However, neither a specific molecule on activated or aged platelets nor a specific 

macrophage receptor for this process has been identified.   

Despite the studies on chilled, opsonized, and aged platelets, no study 

has identified the mechanism by which macrophages interact with fresh platelets 

that have not been altered by ex vivo storage conditions or immune responses.  

Furthermore, no study has addressed the mechanism by which autologous 

human platelets interact with macrophages.  These conditions are critically 

different from those mentioned above because, under normal conditions, 

autologous platelets do not form GPIbα clusters or become coated with 

antibodies.  The most relevant work, therefore, may be the studies regarding 

clearance of aged platelets. 

Importantly, the literature reviewed here has examined platelet clearance 

mechanisms accomplished by splenic or hepatic macrophages, or macrophages 

cultured in vitro.  These mechanisms can be considered similar to what may 

happen during platelet clearance at wound sites, although there are no studies 

that specifically examine platelet clearance in tissues other than the liver or 

spleen.   Phagocytic clearance of cells other than platelets is discussed in the 

fifth section of this chapter.   

MONOCYTE-PLATELET INTERACTIONS IN THE CIRCULATION 

The interaction between platelets and monocytes, the precursors of 

macrophages, has been studied far more extensively than that of platelets and 

terminally differentiated macrophages.  Platelets and monocytes interact in 
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circulating blood under two circumstances:  in the formation of platelet-monocyte 

aggregates and in the recruitment of leukocytes to inflamed endothelium. 

Platelet-monocyte aggregates are significant because activation of the monocyte 

ligand for P-selectin (PSGL-1) results in several pro-inflammatory downstream 

effects (47, 86).  Additionally, the P-selectin interaction with PSGL-1 is required 

for monocyte recruitment to inflamed endothelium during a variety of conditions 

(87, 88). 

Beyond the mechanism of platelet-monocyte binding, additional studies 

have identified some pro-inflammatory effects of platelet-leukocyte interactions.  

Binding to activated platelets increases monocyte expression of interleukins (ILs) 

and matrix metalloproteinases (MMPs), including IL-1β, IL-8, Monocyte 

Chemoattractant Protein-1 (MCP-1) and MMP-9 (89-94).  Platelet binding also 

stimulates monocytes to release an increased amount of superoxide anion (95).  

Studies using fresh human monocytes have also demonstrated that phagocytosis 

of platelets, but not latex beads or zymosan, enhances monocyte survival and 

renders them refractive to FAS-ligand induced apoptosis (96).  

Despite the previously characterized interactions between platelets and 

undifferentiated monocytes, the focus of the remainder of this dissertation is on 

how platelets interact with differentiated monocyte-derived macrophages.  It is 

important, however, to be mindful of the ability of monocytes to become activated 

by engagement of PSGL-1, as well as the potential for platelets do induce pro-

inflammatory cytokines in macrophage precursors.   
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MACROPHAGES AND PHAGOCYTOSIS IN WOUND REPAIR 

Macrophage Function at Wound Sites: 

Just as platelets are essential for normal hemostasis, monocyte-derived 

macrophages are also essential for normal wound repair.  This fact has been 

demonstrated in macrophage-depleted animals that exhibit defective wound 

repair (97).  Macrophages at the wound site maintain the ability to further amplify 

the inflammatory response because, unlike platelets, they have the ability to 

continually synthesize and secret growth factors and cytokines.    

Monocytes, the precursors of macrophages, are recruited to wound sites 

by complement fragments (C5a) (98), β-chemokines (MCP-1, MIP-1α) (99, 100), 

and other growth factors such as PDGF and TGF-β (49). Monocytes quickly 

differentiate into macrophages, as characterized by increased levels of lysosomal 

enzymes, increased expression of complement receptors and scavenger 

receptors, and increased phagocytic capabilities (101).  The first major function 

of macrophages is degradation of the extracellular matrix, which is accomplished 

by secreting proteinases such as MMPs, elastases, and acid hydrolases.  

Macrophage phenotype is also significantly influenced by the extracellular 

environment, and effective wound repair requires a critical balance of cytokines 

at the wound site.  In the environment of such complex stimuli, macrophages are 

capable of functioning in both degradative and reparative processes in sequential 

fashion (102).   Thus, macrophages perform a second, reparative, function by 

secreting many cytokines that recruit additional macrophages to the wound site 

and stimulate fibroblast proliferation and collagen synthesis.   
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A third major function of macrophages at the wound site is phagocytosis of 

wound debris.  Senescent cells and matrix fragments are internalized and 

degraded within the lysosomal system. This wound debris includes apoptotic 

cells as well as platelets within the clot.  Although these components are 

commonly grouped together and termed “wound debris,”  there no studies which 

have demonstrated how macrophages recognize activated platelets as part of 

this debris.   

 

Ligands and Receptors Involved in Phagocytosis:  

Particle recognition and phagocytosis, as well as the resulting downstream 

effects, are unique to the precise conditions surrounding the phagocyte and 

target cell. As a result there are many overlapping mechanisms for recognition 

and internalization of other cells by macrophages. One component shared by all 

types of phagocytosis is the formation of a phagocytic cup following actin 

polymerization (103).  The extent to which actin is utilized and the kinetics of 

particle uptake are partially dependent on the size of the target cell (104).  

In the context of immunology, there are two overlapping mechanisms of 

macrophage phagocytosis: Complement-mediated and Fc-mediated (105-109).  

Complement-mediated phagocytosis occurs when components of the 

complement system, primarily C1q, bind to foreign cells and pathogens such that 

they can interact with macrophages, primarily through complement receptor 3 

(CR3) (106, 110, 111).  Fc-mediated phagocytosis refers to the interaction 

between the Fc-region of IgG-containing antibodies and one of several isoforms 
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of the Fc-receptor on macrophages (108).  Because C1q can also interact with 

IgG and IgM, the same cell could be internalized solely by complement-mediated 

mechanisms, Fc-mediated mechanisms, or a combination of the two (112). 

Phagocytosis by either receptor, in turn, activates different signaling pathways for 

phagocytosis.  For example, complement-mediated phagocytosis requires intact 

microtubules but not active protein tyrosine kinases (113).  Fc-receptor-mediated 

phagocytosis, however, requires tyrosine kinases but not intact microtubules 

(113).   

Despite the well-studied mechanisms of phagocytosis during immune 

responses, perhaps the body of work most relevant to this dissertation is the 

collection of studies regarding macrophage phagocytosis of apoptotic cells (in the 

absence of opsonization) because activated platelets share many characteristics 

with apoptotic cells.  However, the features of apoptotic cell clearance are 

complex because so many variations exist in the type of phagocyte or target cell 

involved.  Generally speaking, macrophage phagocytosis of apoptotic cells, 

which also requires actin polymerization, is regulated by intracellular cAMP 

levels, can be inhibited by oxidative stress, and often involves scavenger 

receptors (114-119).   

There have now been several classes of scavenger receptors that have 

been identified (120).  Collectively, these receptors are thought to recognize a 

broad range of molecular patterns on target cells.  Thrombospondin, which was 

first identified on platelets, is known to form a bridge between platelets and the 

scavenger receptor CD36 (121, 122).  In addition to scavenger receptors, the 
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Mer receptor tyrosine kinase is another important receptor for apoptotic cells, 

which is bridged via Gas6 (123-125). Phagocytosis of apoptotic cells can also be 

CD14-dependent, which can inhibit macrophage ability to respond to LPS (126).    

Loss of sialic acid on apoptotic cells results in exposed side-chain sugars that are 

recognized by lectin receptors on macrophages (127) and this mechanism is 

similar to the one described above regarding chilled platelets.   

One of the most well-studied ligands for phagocytosis of apoptotic cells is 

phosphatidylserine (128, 129).  However, a specific and unique macrophage 

receptor for phosphatidylserine has not been identified.  Rather, cooperation 

between receptors, in addition to recognition of phosphatidylserine, is often the 

case.  These cooperative effects often involve integrin signaling.  For example, 

CD36 can cooperate with other integrins, such as the αvβ3 integrin, to facilitate 

uptake of apoptotic cells (130-132).  Another integrin, αvβ5 also plays a role in 

recognition and internalization of apoptotic cells (133).  A final example is that of   

CD44-mediated phagocytosis, which can also be blocked by antibodies against 

CD11b (the integrin αM) (134).  In the context of wound healing, efficient 

phagocytosis of apoptotic neutrophils via β-2 integrins on macrophages is 

required for normal wound healing (135). 

A macrophage receptor required for phagocytosis of fresh, autologous 

human platelets has not been identified.  The exact surface changes on the 

activated platelet which are required for recognition and internalization by 

macrophages also have not been described.       
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Inflammatory Consequences of Phagocytosis: 

Phagocytosis of apoptotic cells is critically important because of the 

delicate balance between proinflammatory and anti-inflammatory stimuli.  For 

example, apoptotic cells can induce cholesterol efflux from macrophages, but if 

cells become apoptotic by means of external stress, such as cholesterol loading, 

the response from the phagocyte can be pro-inflammatory (136, 137).  If the cells 

are not removed from tissues before becoming necrotic, the inflammatory 

response may be enhanced (138, 139).  Additionally, phagocytosis of dying cells 

can have profound consequences in chronic inflammatory diseases, such as 

atherosclerosis (140, 141). 

Based on how cells normally undergo apoptosis, macrophage 

phagocytosis of apoptotic cells is generally an anti-inflammatory event, which 

suppresses the secretion of pro-inflammatory cytokines such as IL-1β, IL-8, and 

TNF-α (114, 115, 142). Macrophage contact with apoptotic cells or 

phosphatidylserine inhibits the IL-12 family of cytokines, which includes IL-12, IL-

23, and IL-27 (143, 144).  This effect may also occur by simply ligating 

macrophages Fc-receptors (145, 146). Other studies have shown that although 

Phosphatidylserine serves as a marker for phagocytosis, it alone cannot trigger 

inflammatory suppression (147, 148).  The immunosuppressive effect of 

phagocytosis of apoptotic cells is regulated at the transcriptional level and also 

occurs in conjunction with increased levels of TGF-β and PGE2 (114, 142, 149).  

The immunosuppressive effects of apoptotic cells occur through several signaling 

pathways such as the MAPK-ERK pathway and the SOCS-STAT pathway (147).   
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The effects of phagocytosis on macrophages also depend on both the 

classical or alternative pathways of macrophage activation (150, 151). Much of 

the immunosuppressive effects of apoptotic cells have been shown to occur in 

macrophages that are cultured in a pro-inflammatory “type 1” phenotype.     

Macrophages that exert a less inflammatory phenotype and express high levels 

of IL-10, or are treated with glucocorticoids actually exhibit enhanced 

phagocytosis of apoptotic cells (152, 153).   

The only known work regarding platelet-macrophage interactions has 

been done in the field of atherosclerosis and suggests that phagocytosis of 

platelets increases lipid accumulation and exacerbates inflammation within 

advanced atherosclerotic lesions (55, 154, 155).  The generation of foam cells 

has also been associated with platelet phagocytosis (156). However, the 

inflammatory effects of platelet phagocytosis by macrophages in normal 

conditions and wound healing are not well understood.      

THE ROLE OF IL-23 IN INFLAMMATION 

IL-23-mediated signaling: 

As mentioned above, regulation of cytokine expression during wound 

healing is critical for resolution of the inflammatory response.  Several cytokine 

families have been identified.  The interleukins, a group of leukocyte-secreted 

cytokines are further divided by structure and function.  The IL-6/IL-12 family of 

cytokines is of particular interest because they are produced by cells of the 

innate immune system but have profound influences on adaptive cell-mediated 
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immunity.  IL-12 is the best characterized cytokine of this group.  IL-23, a 

heterodimer that shares a subunit with IL-12, is a recently discovered member of 

this cytokine family (157, 158).  

Until recently, CD4+ T cells were categorized as either helper type-1 (Th1) 

or type 2 (Th2).  Th1 responses occur primarily through the action of interferon-

gamma (IFN-γ).  For example, the IL-12/IFN-γ pathway induces cytotoxic factors 

important for the direct killing of microbes or infected cells.  Th2 cells are thought 

to be involved in humoral immunity via secretion of IL-4, IL-5 and IL-13.   

The effects of IL-23 are different from the classical Th1 and Th2 

responses (159).  It has recently been discovered that IL-23 acts on T cell 

function by inducing the production of IL-17.  This new subset of T cells has been 

described as Th17 cells (160). IL-23-induced IL-17 production is considered pro-

inflammatory and, in addition to its effects on fibroblasts, it acts on both epithelial 

and endothelial cells, as well as keratinocytes(157).   The IL-23/IL-17 pathway is 

implicated in  several processes of both normal and pathological inflammation 

(157, 161-166).  It has also been demonstrated in vivo that IL-23 is a distinct 

regulator of the development of chronic inflammation (162, 163, 165).   

 

The role of IL-23 in psoriasis: 

Although IL-23 has not been identified in normal skin, it is strongly 

implicated in psoriasis.  Psoriasis is a chronic inflammatory condition that occurs 

in the skin, and is characterized by excessive inflammation and hypertrophic 

scarring.  This autoimmune disease is partially mediated by T lymphocytes. 
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However, the T-cell mediated tissue damage arises from macrophage-derived IL-

23 production.  A role for IL-23 has also been shown experimentally, which 

imiquimod (a TLR 7/8 ligand) was used to induce psoriasis.  In this system, the 

disease is almost completely absent in mice deficient for the IL-23 receptor (167). 

Immunohistochemical analysis of human psoriasis lesions have shown 

expression of IL-23 by macrophages (and also dendritic cells) in situ and these 

cells also express high levels of IL-23 in ex vivo analysis (168).  However, the 

exact cause for macrophage production of IL-23 in psoriasis has not been 

identified.  Interestingly, IL-12/IL-23 inhibitors are being developed for the 

treatment of this disease (169).  

Overall, macrophage-derived IL-23 plays a role in several autoimmune 

reactions, and its downstream effects lead to T-cell mediated inflammation, 

epidermal hyperplasia, and fibroblast proliferation (161, 170).  When occurring in 

the skin, these effects manifest as psoriasis.  However, a role for IL-23 in the 

normal wound response by macrophages has not been tested. 

CONCLUSION 

The work presented in this dissertation better defines how inflammation 

resolves during normal wound healing, which may help identify new points of 

intervention for patients who suffer from impaired wound healing.  Chapter 2 of 

this dissertation details the experiments performed to determine how 

macrophage phagocytosis of autologous platelets is regulated.  Chapter 3 

focuses on the inflammatory consequences of the macrophage response to 

 18



 

platelets.  Chapter 4 addresses the in vivo role of IL-23 in wound healing.  

Finally, Chapter 5 summarizes the major conclusions presented in this work and 

provides an overview for future research in this field.  The research in this 

dissertation contributes to our understanding of how platelet-macrophage 

interactions may play a significant role in the inflammatory component of many 

pathologies.   
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CHAPTER II 

PHAGOCYTOSIS OF AUTOLOGOUS PLATELETS BY HUMAN 

MACROPHAGES IS ENHANCED BY PLATELET ACTIVATION AND 

INHIBITED BY SULFATED POLYSACCHARIDES 

 

INTRODUCTION 

Phagocytic clearance of cells within the circulation and surrounding 

tissues occurs daily in both normal and pathological settings. Cells that have 

become apoptotic as part of their normal life cycle are recognized and cleared by 

phagocytosis in a non-phlogistic manner (171-173).  Infected cells can also 

trigger clearance by phagocytosis by displaying immune recognition patterns on 

their membranes (174-176).  The importance of phagocytosis is emphasized by 

common conditions involving impaired phagocytosis, which may manifest as 

persistent infections or chronic inflammatory lesions such as diabetic ulcers and 

atherosclerotic plaques (141, 177-180).  Importantly, the mechanisms regulating 

a phagocytic event are unique to the particular phagocyte and target cell. 

Although several different cell types are capable of phagocytosis, 

macrophages are the dominant phagocyte of the reticuloendothelial system 

(RES).  Phagocytic clearance of infected or apoptotic cells occurs primarily in the 

spleen, but macrophages also maintain tissue homeostasis by clearing apoptotic 

cells and debris at sites of injury and inflammation (181).  During their

 



 

 differentiation from primary monocytes, macrophages acquire specialized 

receptors and machinery for recognizing and clearing both apoptotic and infected 

cells (182).  For example, during immune responses macrophages utilize 

complement and Fc- receptors to recognize and clear cells that are opsonized by 

activated complement or autoantibodies (105, 107).  In clearing apoptotic cells, 

macrophages use various other overlapping receptors such as scavenger 

receptors and integrins that function uniquely or in cooperation with each other 

depending on the exact target cell (116, 118, 126, 127, 130, 133, 138).         

Platelets are anucleate cells which normally circulate in a discoid (resting) 

shape, but play an integral role in maintaining vascular integrity.  These small 

anucleate cells adhere to activated endothelium or underlying basement 

membrane components and alter their shape and membrane to provide a surface 

upon which coagulation reactions can occur (32, 33, 183).  Regardless of 

whether a vascular injury occurs in cutaneous tissue or internally, platelets are 

necessary to generate a stable clot.  Within their 8-10 day lifespan, platelets can 

become activated either in the circulation or during adherence at a site of injury, 

and in this process they become targeted for destruction by the RES (62).  The 

process of platelet activation involves several changes to the cell surface, such 

as expression of P-selectin and loss of membrane asymmetry (37, 41, 42).  

These changes in the platelet membrane may provide molecular signals to 

macrophages that trigger phagocytosis. 

The precise mechanism by which macrophages recognize and 

phagocytose activated platelets remains to be identified.      Circulation studies in 
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mice and in vitro using aged platelets have indicated that platelet clearance 

occurs independently of platelet-surface P-selectin, but may involve scavenger 

receptors on macrophages (62, 82, 83).  Although the phagocytosis of opsonized 

or otherwise altered platelets has been well studied, the phagocytosis of freshly 

isolated, activated, autologous platelets has not been examined.  Here we use a 

completely human in vitro system to examine the phagocytosis of fresh 

autologous platelets by human monocyte-derived macrophages (MDMs).   We 

show here that phagocytosis of fresh autologous activated platelets correlates 

with platelet activation, yet occurs independently of P-selectin and 

phosphatidylserine exposure.  We also examine the inhibition of platelet 

phagocytosis by fucoidan and show that inhibition of platelet uptake by 

polysaccharides is dependent on the sulfate content of the polymer.   

 

MATERIALS AND METHODS 

Monocyte-derived Macrophages 

Human monocytes were isolated and cultured using techniques similar to 

those previously described (184, 185). Blood from healthy human donors was 

collected into citrate and Peripheral Blood Mononuclear Cells (PBMCs) were 

isolated by using Lymphoprep (Accurate Chemical) according to the 

manufacturer’s instructions.  Monocytes were further isolated by plating the 

PBMCs on gelatin-coated tissue culture flasks for 45min at 37deg followed by 10 

washes with PBS to remove non-adherent lymphocytes.  Monocytes (>95% 

purity as assessed by flow cytometry) were then detached from the flasks by 
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incubation in 10mM EDTA for 2min at 37deg.  Monocytes (500ul @ 500,000/ml) 

were then plated in 24-well plates overnight in RPMI 1640 + 10% FBS + 10ng/ml 

recombinant human GM-CSF (R&D Systems).  Monocytes were plated on glass 

coverslips for SEM analysis and plastic tissue-culture plates for all other 

experiments.  Media was changed on day 2 and day 5.  By day 7, this procedure 

yields 250,000 cells per well that are >95% CD14+ CD45+ CD68+ CD1a- as 

assessed by flow cytometry.  There were no detectable platelets in the wells on 

day 7, when the monocyte-derived macrophages (MDMs) were used for co-

incubation experiments.   

 

Platelets  

Platelets were isolated from whole blood collected in ACD from healthy 

human donors nd spun 15min at 500g to generate platelet-rich plasma (PRP).  

PRP was pelleted 10min at 800g at the platelet pellet was washed 2 times in 

citrated saline (pH 6.8).  Some platelet samples were degranulated by incubating 

1ml of platelets (250,000/ul in citrated saline) with 10ul of10uM calcium 

ionophore A21387 (Sigma) for 15min on rocker at room temperature, then 

washed three times with citrated saline.    Platelets were fluorescently labeled 

with Cell Tracker Green CMFDA (invitrogen) as previously described.(186)  After 

the final wash, platelets were resupsended in warm serum-free RPMI for 15min 

at 37deg. 

For flow cytometric analysis, fresh or ionophore-treated platelets 

(250,000/ul) were incubated in either citrated saline or serum-free RMPI media 
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for 1hr at 37deg.  A 10ul aliquot was stained with either FITC-anti-CD62P 

(Biolegend) or FITC-Annexin-V (Biolegend).    

 

Phagocytosis Experiments 

Thirty minutes prior to the start of each experiment, the MDMs were 

washed 3X with PBS and incubated with 500ul fresh RPMI.  In some 

experiments the media was supplemented with 10% autologous human serum.    

A 25ul aliquot of fluorescently labeled platelets (250,000/ul) was added to each 

well of macrophages.  Platelets and macrophages were co-incubated for 45min, 

then washed 3 times with PBS to remove free platelets.  Warm trypsin-edta was 

then added to the macrophages and cells were incubated 15min at 37deg.  

Macrophages were then collected and fixed in 1% cold paraformaldehyde and 

analyzed by flow cytometry within 1 hour. 

 

Phagocytosis inhibitors 

As a broad phagocytosis inhibitor, some wells received latrunculin (1ug/ml 

final).  To inhibit Fc-mediated phagocytosis, macrophages were treated with 

heat-aggregated IgG (100ug/ml final, aggregated by heating at 65deg for 20min 

and centrifuging 10min at 14,000g).  P-selectin interaction with 

monocyte/macrophage PSGL-1 was blocked by incubating 

monocytes/macrophages with 10ug/ml anti-PSGL-1 (clone KPL-1, Biolegend) for 

30min prior to the co-incubation experiments.  Heparin sulfate, dextran suflate 

and fucoidan were from Sigma.  GlcNac polymers were similar to those 
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previously described (187) and were kind gifts from Marine Polymer 

Technologies (Danvers, MA).  Stock solutions of polysaccharides were dissolved 

in serum-free media to final concentrations of 25mg/ml.   

 

 

RESULTS 

Macrophage Phagocytosis of Autologous Platelets 

To examine the interaction between human MDMs and autologous 

platelets, we utilized an in vitro co-culture system consisting of 7-day old MDMs 

to which we added freshly isolated autologous platelets.  The use of autologous 

platelets excludes the possibility that platelet-macrophage interactions are the 

result of an immune response triggered by the recognition of platelets as 

‘foreign.’  MDMs and platelets were first co-cultured in serum-free RPMI media 

and examined by SEM and TEM at various time points to visualize the interaction 

between these two different cell types.  As shown in Figure 2-1A, we observed 

platelets interacting with MDMs within as little as 10min.  Free platelets appeared 

activated as indicated by their irregular shape and extended pseudopodia.  At the 

40min time point,  platelets near the macrophages had become entrapped by a 

network of macrophage filopodia.  Although the macrophages were firmly 

attached to the coverslip and did not migrate, they appeared to direct groups of 

filopodia in the direction of nearby platelets that had settled on the dish.  

Visualization of these cultures suggests that the interaction between human  
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macrophages and activated, autologous platelets occurs in vitro, and that it 

occurs in the absence of additional serum factors.  The SEM analysis, in addition 

to time-lapse confocal microscopy (not shown),  revealed that entrapped platelets 

are drawn towards the macrophages, which suggests that the platelet-

macrophage interaction results in phagocytosis.  

Platelet phagocytosis was confirmed by TEM as shown in Figure 2-1B.  

Incubation in serum-free RPMI media did not cause platelet degranulation, and 

therefore both free and internalized platelets can be identified by their unique 

granular structure.  Internalized platelets appear both outside and within 

macrophages in this time frame (Figure 2-1B).  Most macrophages internalized 

more than one platelet.   

Phagocytosis of autologous platelets was also analyzed using 

fluorescence microscopy and flow cytometry.  Platelets were fluorescently  

labeled with CMFDA-Cell Tracker Green and co-incubated with MDMs for 45 

minutes.  As shown in Figure 2-2, we observed uptake of the fluorescent 

platelets as confirmed by the presence of punctate fluorescence within the 

macrophages. Adherent, but not internalized platelets were removed by treating 

the MDMs with trypsin at the end of the co-incubation period.  Non-trypsinized 

cells contain both internalized and adherent platelets (Figure 2-2B), whereas 

trypsin treatment removed the adherent platelets (Figure 2-2C).   As a negative 

control, and to confirm the role of actin polymerization in phagocytosis, MDMs 

were pretreated with the actin inhibitor latrunculin (Figure 2-2D).  Treatment with 

latrunculin inhibited phagocytosis, but not binding, demonstrating that the  
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Figure 2-2. Analysis of Platelet-Macrophage Interactions by Fluorescence 
Microscopy.   Representative cytospin preparations of MDMs co-incubated with 
platelets (45min in serum-free media) and fixed prior to collection (100X, light 
microscopy left panels and corresponding fluorescence image in right panels).  
Culture conditions were MDMs alone (A), MDMs + platelets (B), MDMs + 
platelets followed by treatment with trypsin (C), MDMs + platelets + latrunculin 
(D).  Green fluorescence indicates the CMFDA label (platelets) and blue 
indicates DAPI staining (macrophage nucleus).    
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fluorescent dye is only transferred to the macrophages when the platelets are 

internalized.    

 

Phagocytosis of autologous platelets occurs independently of 

phosphatidylserine and P-selectin 

Having confirmed phagocytosis of freshly isolated autologous platelets in this in 

vitro system, we next examined the role of platelet activation in this process.  

When freshly isolated, washed human platelets are incubated in serum-free 

RPMI media they develop some shape change (see SEM micrographs, Figure 

1), which suggests that some platelet activation has occurred in this in vitro 

system. We therefore used flow cytometry to more accurately examine platelet 

activation status in different culture conditions.  Freshly isolated human platelets 

were incubated in warm serum-free RPMI media for 20min in the presence and 

absence of thrombin or the calcium ionophore A21387, and compared to fresh 

(resting) platelets incubated in citrated saline.  Platelets were analyzed for 

expression of P-selectin, an alpha granule component expressed during early 

platelet activation, and phosphatidylserine, a membrane lipid exposed on the 

surface of completely (and irreversibly) activated platelets.  Incubation in serum-

free media alone resulted in a near ten-fold increase in P-selectin expression but 

did not induce surface expression of phosphatidylserine (Figure 2-3A).  In fact, 

platelets incubated in serum-free RPMI for up to 2 hours did not express levels of 

phosphatidylserine higher than controls (not shown).  Treatment of platelets with 

either thrombin or calcium ionophore A21387, agents known to cause complete  
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Figure 2-3.  Flow Cytometry of Platelets and Macrophages.  
A.  Platelet Activation in Culture Media.  Platelets (1ml at 250,000/ul) were 
isolated from fresh human PRP and incubated for 1hr at 37deg in either citrated 
saline, RPMI media, or RPMI + 1 U thrombin.  Following the incubation period, a 
10ul aliquot of platelets was stained with FITC-anti-CD62P or FITC-annexin-V for 
20min at room temp. Cells were then fixed and analyzed immediately by flow 
cytometry.  Three independent platelet preparations were analyzed using 
unlabeled platelets, as CMFDA labeling is known to have no effect on platelet 
activation (186). 
B. Phagocytosis of fresh autologous platelets depends on the platelet 
activation state, but does not require serum.   Shown are the average of 5 
independent experiments using a different platelet-monocyte donor for each 
experiment.  Phagocytosis was determined by averaging the number of FL1+ 
macrophages (versus untreated control) in a 10,000 macrophage sample 
analyzed by flow cytometry. 
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degranulation and irreversible platelet activation (188), resulted in even higher 

levels of P-selectin and also increased surface expression of phosphatidylserine 

(Figure 2-3A).  

Because trypsin treatment removes adherent platelets from the 

macrophages (Figure 2-2C), we were able to quantify phagocytosis by flow 

cytometry because only the macrophages that have fully internalized platelets 

generate a fluorescence signal.  When freshly isolated platelets were incubated 

in serum-free RPMI media and added in excess to 7-day old macrophages,  50-

60% of the macrophages internalized at least one platelet within 45min (Figure 2-

3B).  As expected, pretreatment of the MDMs with the actin inhibitor latrunculin 

almost completely blocked phagocytosis, confirming the role of actin 

polymerization that occurs in all cases of phagocytosis.  The presence of 10% 

autologous human serum had no significant effect on phagocytosis, which is 

significant because it excludes the possibility that the platelet-macrophage 

interaction requires a soluble serum-bound “bridging” molecule, such as IgG, 

complement, or Gas6.  Furthermore, the phagocytosis of platelets incubated only 

in RPMI media suggests that just mild platelet activation, in the absence of 

complete degranulation, is sufficient to trigger phagocytosis.   Additionally, our 

flow cytometry results indicate that phagocytosis of autologous platelets occurs in 

the absence of phosphatidylserine exposure.  Although phagocytosis was 

enhanced when the platelets did express phosphatidylserine, we conclude that 

surface exposure of phosphatidylserine is not an absolute requirement for 

phagocytosis of platelets.   
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Figure 2-4. Phagocytosis of fresh autologous platelets by macrophages is 
P-selectin independent.  Fresh monocytes or 7-day old MDMs were pre-
incubated with a PSGL-1 blocking antibody (clone KPL-1, 1ug/ml final) for 30min 
at 37deg prior to incubation with fresh platelets for 1 hour.  Monocytes were then 
fixed with 1% paraformaldehyde and analyzed immediately by flow cytometry 
(10,000 counts collect).  Macrophages were treated with trypsin to remove 
adherent platelets, fixed in 1% paraformaldehyde and analyzed immediately by 
flow cytometry.   
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The amount of phagocytosis increased if the platelets were pre-stimulated 

with either calcium ionophore A23187 (not shown) or thrombin, suggesting that 

phagocytosis of platelets correlates with platelet activation.   We next specifically 

tested the role of P-selectin in regulating phagocytosis because platelet uptake 

correlated with expression of P-selectin (Figure 2-3).  As a comparative control, 

we used fresh autologous monocytes, which are known to bind activated 

platelets via interactions between P-Selectin on platelets and P-Selectin 

Glycoprotien-1  (PSGL-1) on monocytes (189).  Fresh monocytes or 7-day old 

MDMs were pre-incubated with a PSGL-1 blocking antibody prior to incubation 

with fresh platelets.  We chose to block the receptor on the macrophages, rather 

than P-selectin on the platelets, because the PSGL-1 blocking antibody is 

extremely effective in blocking this interaction, and because treating the platelets 

with an anti-P-selectin antibody could result in platelet opsonization, predisposing 

them to Fc-mediated uptake.  As shown in Figure 2-4, the PSGL-1 blocking 

antibody inhibited the formation of platelet-monocyte complexes by almost 90%, 

but had no effect on platelet phagocytosis by 7-day old macrophages.  These 

results suggest that phagocytosis of autologous activated platelets occurs 

independently of platelet P-selectin.  Additionally, the interaction between platelet 

P-selectin and leukocyte PSGL-1 may only be significant for circumstances 

involving circulating monocytes, but not for differentiated macrophages.   
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Figure 2-5. Platelet Uptake is Inhibited by Fucoidan, but not by Agg-IgG.  
MDMs were washed and incubated with serum-free RPMI alone, RPMI + heat-
aggregated IgG (1mg/ml), or RPMI + Fucoidan (250ug/ml) for 30min prior to the 
addition of CMFDA-platelets  or CMFDA-opsonized-RBCs .  After 45min co-
incubation, cells were treated with trypsin, collected, and analyzed for 
fluorescence by flow cytometry. Shown are the average number of FL1+ 
macrophages in a given 10,000 macrophage sample for 3 independent 
experiments.   
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Phagocytosis of fresh platelets occurs independently of Fc-receptors, but 

may involve Scavenger Receptors 

We next investigated the role of two common macrophage phagocytosis 

mechanisms: those mediated by Fc-Receptors and those mediated by 

Scavenger-Receptors.  Activated platelets secrete IgG from their granules and 

contain surface-bound IgG which could be recognized by macrophage Fc-

receptors (190).  To test this possibility, macrophage Fc-receptors were blocked 

by treating the cells with heat-aggregated IgG, which down regulates Fc-

mediated phagocytosis (107, 191).  This treatment inhibited uptake of opsonized 

RBCs, but did not affect phagocytosis of freshly isolated platelets or 

degranulated platelets (Figure 2-5).  These results suggest that macrophage 

phagocytosis of autologous platelets is not an Fc-mediated process. 

Fucoidan is a sulfated polysaccharide and a known Scavenger Receptor 

ligand (192, 193).  Incubation of macrophages with fucoidan inhibited platelet 

uptake by approximately 50% (Figure 2-5).  This suggests that macrophage 

phagocytosis of autologous platelets may be mediated by type A Scavenger 

Receptors.    

 

Platelet uptake is inhibited by sulfated polysaccharides 

 In addition to fucoidan, there are several other polysaccharides which 

exert varying effects on blood and platelets, although their specific interactions 

with macrophage phagocytosis receptors are less clear.  We tested dextran 

sulfate and heparin sulfate for their ability to inhibit platelet phagocytosis.  All  
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Figure 2-6. Inhibition of Platelet Phagocytosis by sulfated polysaccharides.  
MDMs were washed with PBS and pre-treated with serum-free RPMI + 250ug/ml 
of either fucoidan, dextran sulfate, or heparin sulfate.  After 30min of pre-
treatment, an excess of freshly isolated activated autologous CMFDA-labeled 
platelets were added and the system incubated for an additional 45min.  
Macrophages were then analyzed by flow cytometry as described above.    
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three compounds are essentially composed of linked sugar residues which 

contain with various degrees of sulfate moieties attached to the sugars.  Addition 

of equivalent amounts of fucoidan, dextran sulfate, and heparin sulfate to the in 

vitro system all resulted in significant inhibition of platelet phagocytosis (Figure 2-

6).  Heparin sulfate had the most profound effect on platelet phagocytosis, 

inhibiting phagocytosis by over 70%.  An equivalent amount of the non-sulfated 

polysaccharide glycogen had no significant effect on platelet phagocytosis, which 

suggests that sulfation is a key component to the inhibition of phagocytosis by 

these polymers. To test the hypothesis that sulfate is a required component for 

inhibition of platelet uptake by polysaccharides, polymers of n-acetylglucosamine 

(GlcNac) were prepared with various degrees of sulfation, and were tested in 

comparison to polymers of the same molecular weight but having the sulfate 

moiety replaced by carboxylation or deacetylation.  Only sulfated polymers were 

effective in inhibiting platelet phagocytosis, whereas the carboxylated and 

deacetylated polymers had no effect (Figure 2-7).  These results suggest that 

polysaccharides only inhibit platelet phagocytosis if the polymer is sulfated, and 

that increased degree of sulfation leads to a stronger inhibitory effect of the 

polymer. 

Because the sulfated polymers could be interacting with either the 

macrophages alone, the platelets alone, or both, we performed additional  

experiments to test the hypothesis that sulfated polysaccharides are interacting 

with macrophage receptors.  When the macrophages were pretreated with 

polysaccharides, and then washed just prior to adding platelets to the system,  
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Figure 2-7. Effect of polymer sulfation on inhibition of platelet 
phagocytosis.  MDMs were washed with PBS and pre-treated with serum-free 
RPMI + 250ug/ml of polymer.  After 30min of pre-treatment, an excess of freshly 
isolated activated autologous CMFDA-labeled platelets were added and the 
system incubated for an additional 45min.  Macrophages were then analyzed by 
flow cytometry as described above.  Shown  is the average of three independent 
experiments. 

 

 
 
Figure 2-8. Effect of washing with polymer pre-treatment of MDMs.  MDMs 
were washed with PBS and pre-treated with serum-free RPMI + 250ug/ml of 
polymer.  Then, in half of the samples (shown in red), the macrophages were 
washed again 3X with PBS prior to adding the platelets.    An excess of freshly 
isolated activated autologous CMFDA-labeled platelets were added and the 
system incubated for an additional 45min.  Macrophages were then analyzed by 
flow cytometry as described above.  Shown  is the average of three independent 
experiments. 
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the inhibitory effect on phagocytosis was largely lost (Figure 2-8).  However, flow 

cytometry experiments using FITC-labeled polysaccharides demonstrated that 

with polymers, washed, and then added to the macrophages (Figure 2-9).  These 

results suggest that the polysaccharides must be present during the co- the 

FITC-polymers can bind to both macrophages and platelets (not shown).  

Phagocytosis was also not significantly affected if the platelets were pre-treated 

incubation in order to inhibit platelet uptake.  The sulfated polysaccharides can 

be removed from both platelets and macrophages by vigorous washing. 
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Figure 2-9. Pre-treatment of platelets with sulfated polysaccharides.  
Activated CMFDA-labeled platelets were incubated for 30min with polymers 
(250ug/ml) and then washed 3 times with citrated saline before adding to the 
macrophages.  The phagocytosis assay was then performed as described above.  
Shown are the average of 3 independent experiments.   
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DISCUSSION 

Phagocytosis is an important means of clearing both immunologically 

compromised cells as well as apoptotic cells.  Monocyte-derived macrophages 

are efficient phagocytes in organs of the RES and within injured tissues.   

However, the process of platelet clearance by macrophages is poorly 

understood.  

Platelets contribute to the maintenance of tissue homeostasis throughout 

the body, and in response to injury or senescence they become activated.  

During platelet activation, several changes in the cell membrane occur which 

may lead to recognition and clearance by macrophages.  We therefore sought to 

determine the role of several common receptors and ligands that might be 

involved in this process. This work presents the first study examining the 

interaction between human monocyte-derived macrophages and fresh, 

autologous, activated platelets.   

We have demonstrated phagocytosis of fresh autologous, activated, 

platelets by monocyte-derived macrophages using an entirely human in vitro 

system.  Uptake of freshly isolated platelets is dependent on actin 

polymerization, but occurs independently of any soluble serum factors.  

Additionally, phagocytosis of platelets is enhanced with platelet activation. 

Because phagocytosis correlates with platelet activation, we would expect 

no phagocytosis to occur in the presence of quiescent platelets. However, the 

use of RPMI culture media prevents such experiments from being done because 

RPMI media alone causes platelet activation (Figure 2-3A), probably due to the 
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presence of calcium and phosphate.  Additionally, the use of platelet inhibitors 

such as EDTA or prostaglandin, which may have maintained the platelets in a 

resting state, also could not be used because they would also affect macrophage 

function.  Thus, one disadvantage of our system is that the platelet-macrophage 

interaction using activated platelets could not be compared to an interaction in 

which the platelets were in a truly resting state.  The interaction involving 

activated platelets, therefore, remained the focus of this work.  

The fact that phosphatidylsine exposure is not a requirement for 

phagocytosis of activated platelets is somewhat surprising, because it is a well 

documented ‘eat me’ signal for the phagocytosis of many cells (194-197). 

Examples of phosphatidylserin-independent uptake of apoptotic cells have been 

reported, but are rare (198).  

Although P-selectin binding to PSGL-1 is critical for platelet-monocyte 

interactions, we have shown that it does not play a role in platelet interactions 

with monocyte-derived macrophages (Figure 2-4).  Our findings are supported by 

additional in vivo work that has shown that clearance of infused activated 

platelets in mice occurs independently of P‐selectin (82). Interestingly, recent 

studies have demonstrated that platelets can be phagocytosed by resting 

neutrophils, but the process does involve phosphatidylserine and P-selectin 

(199). 

Other work on platelet phagocytosis has focused on modified platelets 

such as chilled platelets, opsonized platelets, and aged platelets (59, 63-65, 72-

74, 77), each of which involves distinct changes to the platelet surface.  Aged 
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platelets most closely resemble freshly activated platelets because during aging 

platelets increase expression of phosphatidylserine and P‐selectin (62).  

Interestingly, Brown et al. have shown in vitro that phagocytosis of aged platelets 

is not inhibited by P-selectin antibodies or Phospho-L-serine (62).  Together 

these studies suggest that macrophages may recognize freshly activated 

platelets in the same way that they clear aged platelets.         

Macrophages have evolved to use many surface receptors for 

phagocytosis such as complement receptors, Fc-receptors, scavenger receptors 

and integrins.  We have shown here that platelet phagocytosis is neither 

complement, nor Fc-mediated (Figures 2-3 and 2-4).  We have also shown 

inhibition of platelet phagocytosis by the scavenger receptor ligand fucoidan.  

However, the effect was largely lost when the fucoidan was washed out of the 

system.  One possible explanation for this effect is that fucoidan binds to 

macrophage receptors, but with such a low affinity that the vigorous washing can 

disrupt the interaction.  Other studies utilizing fucoidan to inhibit scavenger-

receptor phagocytosis did not wash out the fucoidan prior to the phagocytosis 

assay (62).   

We also observed a significant decrease in platelet phagocytosis when the 

macrophages were treated with dextran sulfate and heparin sulfate, which are 

ligands of different forms of scavenger receptors.  Interestingly, the 

polysaccharides heparin sulfate and dextran sulfate have been associated with 

thrombocytopenia, in which a complex between the polymer  and surface-bound 

Platelet Factor 4 is recognized by autoantibodies (70).  Our results, however, 
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suggest that sulfated polysaccharides actually inhibit platelet phagocytosis, at 

least in the absence of antibodies against heparin-PF4.  Furthermore, fucoidan is 

the only polymer of the three that is a known ligand of macrophage scavenger 

receptors, which supports the possibility that there are other receptors, or a 

combination of receptors, involved in the recognition and uptake of fresh, 

autologous, activated platelets. 

We have shown that inhibition of platelet phagocytosis by sulfated 

polysaccharides also correlates with the degree of sulfation of the 

polysaccharide.  Although flow cytometry analysis suggested that both platelet 

and macrophages can interact with sulfated polymers (not shown), the effect of 

washes after polymer treatment suggests that the interaction is not particularly 

stable.  Sulfated polysaccharides such as fucoidan have also been shown to act 

as anticoagulants (200).  The interaction of sulfated polysaccharides with both 

platelets and macrophages warrants further study. 

Although a specific macrophage receptor and platelet ligand involved in 

platelet phagocytosis remain to be identified, the system presented here exhibits 

a completely human in vitro representation of the phagocytosis of fresh, 

autologous, activated platelets.  We have demonstrated for the first time that 

phagocytosis of freshly isolated autologous platelets by MDMs occurs 

independently of phosphatidylersine and P-selectin.  Additionally, we have shown 

that uptake of fresh activated platelets is inhibited by sulfated polysaccharides 

and may involve macrophage scavenger receptors.  Future studies using this 

system may shed additional light on the mechanism of platelet phagocytosis as 
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well as identify novel polymers that can prolong platelet survival by inhibiting 

phagocytosis.   
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CHAPTER III 

PHAGOCYTOSIS OF AUTOLOGOUS PLATELETS ENHANCES 

INFLAMMATORY RESPONSES BY HUMAN MACROPHAGES  

INTRODUCTION 

Macrophages are critical effector cells that regulate both normal and 

pathological inflammatory processes through cytokine production.  During normal 

inflammatory processes, such as wound healing, the interaction of macrophages 

with damaged tissue and cells stimulates secretion of pro-inflammatory cytokines 

(20, 175, 201).  Some of these macrophage-derived cytokines, such as TNF-α, 

IL-6, and IL-23, work to destroy microbial pathogens, amplify the macrophage 

response, or recruit additional leukocyte subsets (202, 203).  As these processes 

occur, the inflammatory stimuli dissipate and macrophages begin to secrete 

different cytokines, such as IL-10 and TGF-β, which dampen the pro-

inflammatory response and stimulate angiogenesis(51, 152, 202).  The changing 

cytokine expression during normal inflammatory processes is a result of the 

changes in inflammatory stimuli detected by macrophages(204, 205).  

In pathological settings such as diabetic ulcers and atherosclerotic 

plaques, macrophage cytokine production is improperly regulated and 

inflammatory stimuli are not adequately eliminated (8, 10, 54, 206).  

Macrophages in these settings produce an excess of pro-inflammatory cytokines, 

 



 

which drives additional tissue injury and prevents resolution of the inflammation. 

The underlying mechanisms that explain why some inflammatory reactions 

resolve normally, and others do not, is an area of active investigation.   

Several recent studies have focused on the interaction of macrophages 

with other cells within the inflammatory microenvironment.  A major function of 

macrophages at sites of inflammation is to remove other cells from the lesion by 

phagocytosis, which can have profound effects on cytokine production by 

macrophages (144, 174).  The response by macrophages following phagocytosis 

can vary depending on the condition of the cell being cleared (136, 142, 147).  

The present work is focused on the macrophage interaction with either apoptotic 

cells or platelets, both of which are found in a wide range of inflammatory 

settings.  

The macrophage response following phagocytosis of apoptotic cells is 

immunosuppressive (105, 114, 144, 173).  Macrophage phagocytosis of 

apoptotic cells down regulates pro-inflammatory cytokines such as IL-6 and IL-12 

(114, 115, 143).  It has also been shown in LPS-activated human macrophages 

that phagocytosis of apoptotic cells inhibits secretion of IL-1β, IL-8, and TNF-

alpha (142). This process of immunosuppresion occurs in conjunction with 

increased expression of anti-inflammatory cytokines, such as IL-10, and growth 

factors such as TGF-β (207).  The phagocytosis of apoptotic cells during wound 

healing is often considered a major turning point from the inflammatory phase of 

wound healing to the remodeling phase that involves angiogenesis.   
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Platelets, on the other hand, are an often overlooked part of the 

inflammatory milieu.  Indeed, the primary function of platelets is to adhere to sites 

of injury and aggregate so that the coagulation cascade can propagate.  

However, the formation of a platelet-rich clot culminates in the release of many 

cytokines and growth factors which have profound effects on inflammation (48-

51).  Platelets remain at the wound site until the clot is separated from the skin 

(in the case of cutaneous wound healing) or components of the clot are cleared 

by phagocytes (208, 209).  Phagocytosis of activated platelets occurs during the 

macrophage response to injury and also within inflammatory lesions such as 

atherosclerotic plaques and intestinal lesions of colitis patients  (40, 54, 140, 154, 

210).   

It is unknown if the inflammatory effects of platelet phagocytosis are the 

same as the effects of phagocytosis of apoptotic cells.   Activated platelets 

express CD40L, a pro-inflammatory molecule, and phosphatidylserine, an anti-

inflammatory lipid that is also found on apoptotic cells (40-42).  Although 

circulating platelets can exert a pro-inflammatory on circulating monocytes (47, 

86), their effect on differentiated macrophages, particularly at sites of 

inflammation and repair, is not clear.   

We show here that in human monocyte-derived macrophages, co-

incubation with autologous platelets results in an inflammatory profile that is 

opposite to the macrophage response following phagocytosis of apoptotic cells.  

Platelets failed to induce the wound healing protein TGF-β, but enhanced 

secretion of pro-inflammatory cytokines TNF-alpha, IL-6, and IL-23.    
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Furthermore, we show that enhancement of cytokine levels is CD40L dependent 

and can be reversed if the platelets are loaded with the glucocorticoid 

dexamethasone.  These results have wide ranging implications for both normal 

and pathological inflammation.  

METHODS 

Cells  

To prepare MDMs, blood from healthy human donors was collected into 

citrate and Peripheral Blood Mononuclear Cells (PBMCs) were isolated by using 

Lymphoprep (Accurate Chemical) according to the manufacturer’s instructions.  

Monocytes were further isolated by plating the PBMCs on gelatin-coated tissue 

culture flasks for 45min at 37deg followed by 10 washes with PBS to remove 

non-adherent lymphocytes.  Monocytes (>95% purity as assessed by flow 

cytometry) were then detached from the flasks by incubation in 10mM EDTA for 

2min at 37deg.  Monocytes (500ul @ 500,000/ml) were then plated in 24-well 

plates overnight in RPMI 1640 + 10% FBS.  On Day 2, fresh media + 10ng/ml 

recombinant human GM-CSF was added.  Media was changed again on day 5.  

By day 7, this procedure yields 250,000 cells per well that are >95% CD14+ 

CD45+ CD68+ CD1a- as assessed by flow cytometry.  There were no detectable 

platelets in the wells on day 7, when the monocyte-derived macrophages 

(MDMs) were used for co-incubation experiments.  

To prepare platelets, blood from healthy human donors was collected into 

ACD and spun 15min at 500g to generate platelet-rich plasma (PRP).  PRP was 
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pelleted 10min at 800g at the platelet pellet was washed 2 times in citrated saline 

(pH 6.8).  Platelets were activated by resuspending in warm serum-free RPMI 

media for 15min at 37deg.  For degranulated platelets, 1ml of platelets 

(250,000/ul) were incubated with 10ul of calcium ionophore A21387 (Sigma) for 

15min on rocker at room temperature, then washed three times with citrated 

saline.    Dexamethasone-loaded platelets were prepared by incubated 1ml of 

platelets (250,000/ul) in citrated saline with 5ul of dexamethasone (10mM in 

DMSO) for 15min on rocker at room temperature.  Platelets were then washed 

three times with citrated saline to remove unbound dexamethasone. 

 To prepare apoptotic cells, PBMCs were isolated as above, and following 

monocyte-adherence to gelatin-coated flasks the non-adherent lymphocytes 

were collected.  These cells were >99% CD14 positive as measured by flow 

cytometry.  Cells were rendered apoptotic (Annexin-V positive, Propidium Iodide 

negative) by UV-irradiation for 10min followed by overnight incubation in RPMI + 

10% FBS at 37deg + 5% CO2. 

Co-incubation Experiments 

Each well of MDMs was washed 3 times with PBS and incubated with 

fresh RPMI + 10% autologous human serum.  Activated, degranulated, or 

dexamethasone-loaded platelets (5x106) were added to each well.  Some wells 

also received LPS (100ng/ml).  Cells that were treated with dexamethasone 

alone received an equivalent volume of dexamethasone as was added for 

platelet-loading.   
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After 24hrs, supernatants were collected, spun 10min at 14,000g, and 

frozen at -80deg.  Cytokines were measured by ELISA using capture and 

detection antibodies (eBioscience) per the manufacturer’s instructions.  

Cytokines were measured in duplicate and averaged. 

In some experiments, the amount of protein secreted was normalized to 

the amount secreted by macrophages treated with LPS alone.  Each experiment 

was performed 5 times using 5 different MDM donors.  In each experiment, the 

platelets added were from the same donor as the MDMs.   

 

 

RESULTS 

Platelets do not induce cytokine secretion in resting macrophages 

The precise culture conditions of macrophages in vitro can impact 

potential cytokine production, and resting macrophages usually require direct 

stimulation in order to produce detectable levels of any cytokine.  To determine if 

platelets could provide an effective stimulus for cytokine production in resting 

macrophages, we added freshly isolated platelets to 7-day old autologous MDMs 

and co-cultured them for 24hrs.  We then analyzed the supernatants for levels of 

TNF-α, IL-6, IL-23, and TGF-β and compared them to untreated macrophages 

and macrophages activated with LPS. 

As shown in Table 3-1, none of the analyzed cytokines were produced by 

untreated macrophages.  LPS stimulation, although variable between donors, 
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induced robust amounts of the pro-inflammatory cytokines TNF-α, IL-6, and IL-

23.   Co-incubation with platelets failed to induce secretion of any of the tested 

cytokines. Co-culture with apoptotic cells also failed to induce pro-inflammatory 

cytokine secretion, but did result in secretion of the wound healing growth factor 

TGF-β.  These results suggest that under resting conditions in vitro, both 

platelets and apoptotic cells are relatively inert, and they are incapable of 

inducing an inflammatory response on their own.   

Platelets enhance LPS-induced macrophage activation 

Having analyzed the baseline activation of our resting MDM cultures, we 

next measured the effects of platelets on activated macrophages.   We activated 

macrophages with LPS, which activates a variety of overlapping intracellular 

signaling pathways that are involved in the pro-inflammatory gene expression 

that occurs during wound healing (211). Two different types of platelets were 

used in the co-culture experiments: activated and degranulated.  Activated 

platelets, prepared by incubating platelets in serum-free RPMI medium, are 

representative of circulating activated platelets and express markers of surface 

activation such as P-selectin and CD40L.  Degranulated platelets, prepared by 

stimulation with the calcium ionophore A21387, are completely and irreversibly 

activated and maintain surface exposure of phosphatidylserine, in addition to P-

selectin and CD40L.   

The pro-inflammatory cytokines TNF-α, IL-6, and IL-23 were measured in 

macrophage supernatants after stimulation with LPS for 24hrs and co-culture 

with either apoptotic cells or autologous platelets.  We have previously used this    
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  TNF-α IL-6 IL-23 TGF-β 

PLATELETS ND ND ND ND 

APOPTOTIC  CELLS ND ND ND 120 +/- 78 

LPS CONTROL 3682 +/- 1116 3253 +/- 1312 266 +/- 168 not analyzed 

UNTREATED CONTROL ND ND ND ND 

 

Table 3-1. Cytokine Expression in Resting Macrophages.  Human MDMs 
(2.5x105) were co-incubated with autologous platelets (5x106) , apoptotic 
lymphoctyes (5x106) , or LPS (1ug/ml) for 24hrs in RPMI media + 10% 
autologous human serum.  Cytokines were measured by ELISA and values are 
expressed in pg/ml.  Results are the average of at least 3 independent 
experiments using different human donors.  ND = none detected. 
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co-culture system and verified that the conditions described here are conducive 

to phagocytosis of platelets or apoptotic cells by macrophages.    In order to 

account for inter-donor variability, in each experiment the cytokine levels were 

normalized to the amount of cytokine produced by LPS stimulation alone. 

When compared to LPS stimulation alone, macrophage co-incubation with 

apoptotic cells inhibited LPS-induced secretion of all three pro-inflammatory 

cytokines (Figure 3-1).  However, co-incubation with activated platelets enhanced 

macrophage secretion of TNF-α, IL-6, and IL-23 (Figure 3-1).  Induction of pro-

inflammatory cytokines in the presence of platelets was 20-60% higher than the 

levels obtained by LPS treatment alone.  Furthermore, the macrophage cytokine 

secretion was enhanced to a similar degree after co-incubation with both types of 

platelets.  These data suggest that both partially activated platelets (P-selectin 

and CD40L positive) and completely degranulated platelets (P-selectin, CD40L, 

and Phosphotidylserine positive) enhance LPS-induced macrophage activation.  

Platelet can therefore exert a pro-inflammatory effect on activated macrophages 

even after complete activation, which is a process that has been compared to 

apoptosis.       

 

CD40L antibodies reduce platelet-dependent effects on LPS-activated 

macrophages 

Activated platelets express CD40L, a known pro-inflammatory molecule 

that is known stimulate macrophages via their CD40 receptors.  Therefore, we  
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Figure 3-1. Platelets enhance, while apoptotic cells inhibit, LPS-induced 
cytokine secretion.  Human MDMs were co-incubated with 5x106 autologous 
platelets or apoptotic lymphocytes in the presence of 10% autologous human 
serum and 1ug/ml LPS.  Cytokine levels were measured in the culture 
supernatant after 24hrs.  In each experiment, cytokines were measured by 
ELISA and normalized to the amount of cytokine secreted by macrophages 
treated with LPS only (relative expression = 1).  Shown are the average of 5 
independent experiments. Asterisks indicate instances in which the relative 
cytokine expression from platelet co-incubation reached a statistically significant 
difference from co-incubation with apoptotic cells (Student’s t-test, (*) = p < 0.05, 
(**) = p < 0.0001). 
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tested the hypothesis that CD40L on the platelet surface is responsible for the 

enhanced macrophage cytokine secretion observed during co-incubation with 

platelets.  Fresh platelets were opsonized with either a control antibody 

(recognizing platelet CD42b) or an anti-CD40L blocking antibody. Although we 

did not observe enhanced IL-6 expression in the presence of anti-CD42-

opsonized platelets, these control platelets did enhance macrophage secretion of 

TNF-α and IL-23 in a manner similar to activated platelets (Figure 3-2).  The 

enhanced secretion of TNF-α and IL-23 was reduced when the platelets were 

opsonized with the CD40L-blocking antibody, and relative cytokine levels were 

similar to those obtained by treatment with LPS alone (Figure 3-2).  These results 

suggest that CD40-CD40L signaling may be responsible for the enhancement of 

LPS-induced macrophage activation by platelets.  In the absence of CD40-

CD40L signaling, platelets do not have a significant impact on LPS-induced 

cytokine production. 

 

Glucocorticoids reverse the platelet effect on macrophages 

 Although the platelet effect on macrophage cytokine expression may be a 

necessary part of normal wound healing,  enhancement of macrophage 

activation by platelets might be detrimental to the resolution of inflammation.  

Enhancement of macrophage cytokine expression might be particularly 

counterproductive in inflammatory lesions where excessive inflammation is 

causing further tissue destruction and inflammation, such as in diabetic ulcers 

and atherosclerotic plaques.  We therefore sought a treatment that would not  
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Figure 3-2. CD40L blockade reduces platelet enhancement of LPS-induced 
macrophage cytokine secretion.  Fresh platelets (100ul @ 25,000/ul) were 
incubated in serum-free RPMI medium with 1ug of anti-CD42b or anti-CD40L 
antibody for 20min at 37deg prior to being added to 7-day old MDMs with 1ug/ml 
LPS.  Supernatants were collected 24hrs later, cytokines measured by ELISA 
and values normalized to the amount of cytokine produced by LPS treatment 
alone (relative expression = 1).  Shown are the average of 4 independent 
experiments.  In each experiments, freshly isolated autologous platelets were 
used.  Asterisk (*) indicates a statistically significant difference between control 
platelets and anti-CD40L platelets (p < 0.05). 
 

 

 

 

 

 

 

 57



 

only neutralize the platelet effect, but actually reverse it.  In effect, we sought a 

method for rendering platelets to be more anti-inflammatory, much like apoptotic 

cells.   

 Glucocorticoids have powerful anti-inflammatory and immunosuppressive  

effects on macrophages.  Based on the knowledge that platelets can bind 

glucocorticoids via glucocorticoid receptors (212), we tested the hypothesis that 

glucocorticoid-bound platelets would be less inflammatory than normal activated 

platelets.  Pilot studies were performed to determine the kinetics and saturating 

concentration of dexamethasone loading into platelets (not shown).  

Dexamethasone-loaded platelets, from which excess dexamethasone had been 

washed, were added to LPS-activated macrophages in the same system as 

above.  As shown in Figure 3-3, the levels of cytokines produced after co-culture 

with dexamethasone-loaded platelets were inhibited to 30-50% of the levels 

produced by stimulation with LPS alone.  These results demonstrate that the 

effect of dexamethasone loading on the ability of platelets to enhance cytokine 

secretion goes beyond neutralization of the platelet effect.  Rather, the 

dexamethasone-loaded platelets actually inhibit the LPS-induced cytokine 

production by macrophages.   
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Figure 3-3. Dexamethasone-loaded platelets inhibit LPS-induced 
macrophage activation.  Freshly isolated platelets were left untreated or loaded 
with dexamethasone as described in Methods.  Platelets and LPS (1ug/ml) were 
added to 7-day old MDMs and supernatants collected 24hrs later.  Cytokines 
were measured by ELISA and normalized to the cytokine amounts produced by 
macrophages stimulated with LPS only (relative expression = 1).  Shown are the 
average of 5 independent experiments.  Asterisks (*) indicate statistically 
significant differences (p < 0.01) between unmodified and dexamethasone-
loaded platelets.  Data for activated platelets, used for comparsion, is the same 
as in Figure 3-1.  
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DISCUSSION 

Phagocytosis of surrounding cells by macrophages has important 

consequences for macrophage cytokine production.  Under normal inflammatory 

conditions, clearance of apoptotic cells by macrophages triggers a transition from 

pro-inflammatory cytokine production to anti-inflammatory cytokine production.        

Activated platelets are also a major component of the inflammatory 

environment and share many characteristics of apoptotic cells (62).  Previous 

work suggests that macrophages phagocytose platelets in the context of wound 

repair, but the consequences of this interaction with respect to the inflammatory 

state of the macrophages were unknown.  We have shown here that the 

inflammatory response by macrophages is not the same when interacting with 

activated platelets as it is for phagocytosis of apoptotic cells.    

Our initial observations demonstrated that neither platelets nor apoptotic 

cells elicited an inflammatory response in resting macrophages.  This was 

expected because in vitro cultured macrophages express very few cytokines and 

are overall very metabolically inactive.  However, cell-cell interactions in wound 

healing do not involve ‘resting’ macrophages.  During differentiation at the wound 

site, macrophages become far more activated than in vitro MDMs.  The early 

populations of macrophages at wound sites are representative of ‘classically’ 

activated macrophages, as they are responding to the endogenous signals 

released primarily from neutrophils during the first stage of wound healing (213).   

Thus, in our subsequent experiments, we sought to mimic an activation state in 

our macrophage population in vitro that would recapitulate the phenotype of the 
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macrophages present in wound healing in vivo.  To do so, we utilized bacterial 

LPS as a means of activating macrophages in our culture system.  Although LPS 

is a bacterial component recognized specifically at the cell surface by TLR4 and 

CD14, it activates a variety of overlapping intracellular signaling pathways that 

are involved in pro-inflammatory gene expression (211).  Thus LPS-activated 

macrophages are a good representation of classically activated macrophages 

found at wound sites.   

In the present study, apoptotic cells inhibited production of pro-

inflammatory cytokines by LPS-activated macrophages in co-culture. TNF-α, IL-

6, and IL-23 were all inhibited.  These results are in agreement with previous 

findings for TNF-α, IL-1β, IL-8, IL-12 (142-144), and are extended to now include 

IL-6 and IL-23.  In contrast to the effect of apoptotic cells, activated platelets  

enhanced pro-inflammatory cytokine secretion from LPS-activated macrophages.  

These results extend previous studies which have highlighted the inflammatory 

effects of platelet interactions with circulating monocytes.  Binding of primary 

monocytes to activated platelets increases monocyte expression of interleukins 

and matrix metalloproteinases (MMPs), including IL-1β, IL-8,  monocyte 

chemoattractant protein-1 (MCP-1) and MMP-9 (89-92).  We have shown here 

that differentiated activated macrophages also generate a pro-inflammatory 

response to platelets which suggests that the macrophage receptor(s) that trigger 

the inflammatory response to activated platelets is also present on primary 

monocytes.    
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We have also identified a potential role for platelet CD40L in the 

enhancement of macrophage activation by platelets.  Platelets opsonized with a 

CD40L-blocking antibody did not exhibit pro-inflammatory cytokine levels that 

were significantly different from those produced by LPS treatment alone.  

Platelets opsonized with a control antibody (anti-CD42b) did induce secretion of 

TNF-α and IL-23 at levels much higher than those produced by LPS treatment 

alone.   

The lack of enhanced IL-6 expression in response to anti-CD42-opsonized 

platelets was unexpected.    One possible explanation for this result is that IL-6 

expression is regulated differently from TNFα and IL-23.  The IgG component of 

the opsonizing antibody could down regulate gene expression of IL-6 without 

affecting the other cytokines.  Down regulation of cytokine expression after Fc-

receptor ligation has been reported previously (145, 146). 

In our completely human in vitro system, we observed high variability 

between individual donors and experiments.  Donor variability in human 

monocytes in response to LPS has been observed in other studies (214, 215).  

Despite the variability in the actual cytokine levels, the trends observed in 

comparing co-culture experiments to LPS-activation alone were consistent and 

statistically significant.   

Interestingly, autologous platelets and platelet gels have been indicated as 

a therapeutic for non-healing wounds (14, 53).  The proposed mechanisms for 

this approach are based on the plethora of growth factors contained in platelets, 

and the ability of platelets and their secretory products to stimulate wound 
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healing cells in vitro.  Given our results presented here, it is tempting to speculate 

that platelets might provide the necessary stimulation to correct deficient cytokine 

production.  IL-6 is a required cytokine for wound closure (216), and we have 

demonstrated that its expression by activated macrophages is enhanced in the 

presence of activated platelets.  However, chronic wounds are complex and often 

exhibit excessive and dysregulated inflammation.  Therefore, stimulation of 

macrophages by platelets may not be effective if the wound site is already 

overburdened by inflammation.  Furthermore, the inability of platelets to induce 

expression of TGF-β suggests that they may not be an ideal tool for mediating 

the transition from the inflammatory phase of wound healing to the remodeling 

and angiogenic phases.  More investigation of the temporal and spatial 

requirements of cytokine expression in normal and chronic wounds is needed. 

This work suggests that platelets may also play an important role in other 

inflammatory settings.  Inflammatory lesions such as atherosclerotic plaques and 

intestinal colitis lesions are characterized by macrophage infiltrates and are 

exacerbated by CD40L-mediated inflammation (40, 210, 217, 218).  From a 

therapeutic standpoint, the platelet effect on macrophage activation might be 

undesirable.  We have shown here that platelets can be loaded with 

gluococorticoids and subsequently used to inhibit LPS-induced macrophage 

activation.  This may provide a new therapeutic option for modulating aberrant 

inflammation.
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CHAPTER IV 

THE IN VIVO ROLE OF IL-23 DURING NORMAL WOUND HEALING 

INTRODUCTION 

IL-23 is a member of the IL-6/IL-12 family of cytokines, which are 

produced by cells of the innate immune system but have profound influences on 

both innate and adaptive cell-mediated immunity.  IL-12, the best characterized 

cytokine of this group, is a heterodimer composed of one p40 subunit and one 

p30 subunit.  IL-23 is also a heterodimer, and is composed of the same p40 

subunit as IL-12, dimerized to a unique p19 subunit (157, 158).  

IL-23 has important functions in both innate and adaptive immunity.  

However, the effects of IL-23 are different from the classical Th1 and Th2 

responses (159).  It has recently been discovered that IL-23 drives differentiation 

of a subset of T cells which produce IL-17, which are called Th17cells (160).  IL-

23-mediated Th17 function is considered weakly pro-inflammatory, but can 

stimulate proliferation in fibroblasts, keratinocytes, epithelial and endothelial cells 

(157).  More important, perhaps, is the growing evidence that the IL-23/IL-17 

pathway is an essential component in many cases of pathological autoimmune 

inflammation (157, 161-166).  These include central nervous system encephalitis, 

arthritis, inflammatory bowel disease, and psoriasis.

 



 

Psoriais is a chronic inflammatory skin condition that is characterized by 

the presence of dry red, scaly plaques (219).  These lesions are the result of 

excessive inflammation and proliferation of epidermal cells, although the exact 

triggering mechanism for formation of these plaques is unclear.  A major 

component in the pathogenesis of psoriasis is the recruitment and activation of T 

lymphocytes (220).  Furthermore, the T-cell mediated tissue damage arises from 

macrophage-derived IL-23 production (221).  The requirement for IL-23 has been 

shown in experimental models of psoriasis in which disease was prevented in 

both IL-23 deficient animals, as well as animals deficient for the IL-23 receptor 

(167). Immunohistochemical analysis of human psoriasis lesions have shown 

expression of IL-23 by macrophages (and also dendritic cells) in situ (168).  

These macrophages and dendritic cells also express high levels of IL-23 when 

analyzed ex vivo (168).  However, the exact cause for macrophage production of 

IL-23 in psoriasis has not been identified.  Interestingly, IL-12/IL-23 inhibitors are 

being developed for the treatment of this disease (169).   

Despite the known role of IL-23 in autoimmune inflammatory pathologies, 

there is no known role for IL-23 in normal inflammatory processes.  Given the 

effects of IL-23 on so many cell types involved in wound repair, in addition to its 

essential role the pathogenesis of psoriasis, we have tested the hypothesis that 

IL-23 also plays a role in normal cutaneous wound healing.  We show here that 

wound healing is slightly impaired in IL-23 deficient mice.   
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METHODS 

Mice 

Breeder mice that were heterozygous for the IL-23 p19 allele were obtained from 

the Mutant Mouse Regional Center (MMRRC, University of California - Davis).  

Mice were cross bred to generate mice that were either wild type or homozygous 

knockout for the p19 allele.  Genotype was confirmed by PCR.   

Wound healing experiments 

All wound healing experiments were performed on 8-week old mice in 

accordance with the Institutional Animal Care and Use Committee (IACUC) 

guidelines.  For the entire surgery portion of the experiment, mice were 

maintained in an aseptic environment under inhaled anesthesia (Isoflurane) with 

supplemental oxygen.  Once the animal was anesthetized, the hair on the back 

was shaved and depilated (using Nair®) to expose clean skin.  After cleaning the 

entire area with 70% alcohol, a sterile 10mm punch biopsy was used to create a 

full-thickness wound in the center of the back of the mouse.  Any bleeding was 

controlled immediately with sterile gauze.  The animal was then removed from 

the anesthesia apparatus and allowed to regain consciousness before being 

returned to a clean cage.  All mice were housed individually following surgery. 

 Beginning 24 hours after surgery, and every other day after, mice were 

briefly anesthetized and their wounds were photographed.  Digitized images 

were used to calculate the wound area using the ImageJ software.   
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Histological analysis 

At selected time points, animals were euthanized and tissues collected in 

formalin for histological processing.   Paraffin-embedded skin tissues were cut in 

5µm sections and stained with Hematoxylin and Eosin for analysis of cell 

infiltrates.   

RESULTS 

Rate of wound closure 

To determine if IL-23 was necessary for wound healing in vivo, we 

performed wound healing experiments on both wild-type and IL-23 knockout 

mice.  Large (10mm diameter) wounds on the backs were left untreated and 

allowed to heal normally over the course of 2-3 weeks.  The average wound size 

created at the start of the experiment was the same for both genotypes.  

Beginning 24hrs after wounding, and every other day after that, the wounds were 

measured and the calculated wound size was compared to the original wound 

size for that particular animal. As shown in Figure 4-1, over the first 24hrs, the 

wound size decreased by about 20% in both normal and IL-23 -/- mice.  During 

days 2-5 post-wounding, the size of the wounds on the IL-23 -/- mice did not 

significantly decrease, while the wild-type wounds progressed towards closure.  

The difference in the amount of wound area remaining was statistically different 

between the genotypes 5 days after wound healing.  However, after day 5, the 

wound healing of both types of mice followed a similar rate and there was no 

statistically significant difference between the two groups. 
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IL-23 could possibly affect several aspects of wound healing, which we 

addressed by histological analysis.  No difference between wild type and IL-23 

knockout mice was seen histologically in unwounded skin (Figure 4-2).  The first 

leukocytes to respond during normal wound healing are neutrophils, and IL-23 

has been shown to regulate neutrophil homeostasis (222, 223).  However, as 

shown in Figure 4-2, within 24hrs after wounding both genotypes exhibited 

similar neutrophil infiltrate into the clot.   Since the proposed source of IL-23 in 

the skin is macrophages and dendritic cells (168), we also compared 

macrophage infiltration into the wound site across genotypes, yet no significant 

diference was detected (Figure 4-2).  Overall, the loss of IL-23 expression had 

little effect on normal cutaneous wound healing in mice.   
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Figure 4-1. Wound closure is impaired in IL-23 -/- mice. Full thickness 
wounds were created on the backs of 8-week old mice and measured every 
other day.  Asterisk (*) indicates that the difference between wild-type and IL-23 
knockout wounds were statistically significant on day 5.   

 

 

 

 

 

 

 

 

 

 

 69



 

 
A 

        
B 

           
C 

                 
 

Figure 4-2. Histological analysis of wound healing in wild-type and IL-23 -/- 
mice.  Histological sections of wild-type (left) and knockout (right) mice were 
analyzed before wounding (A), 3 days after wounding (B) and 5 days after wound 
(C).  Arrows in (B) identify the band of neutrophils infiltrating the clot.  Nuclei in 
(C) are indicative of macrophage morphology. 
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DISCUSSION 

The cytokine IL-23 plays an important role in both innate and adaptive 

immunity (165).  IL-23-mediated inflammation drives T-cell differentiation, as well 

as proliferation of fibroblasts, keratinocytes, and epithelial cells (157).  

Furthermore, IL-23 is highly expressed in the skin during the autoimmune 

conditions known as psoriasis.  Because of the stimulatory effect of IL-23 on 

other wound healing cells as well as its expression by macrophages, we 

hypothesized that IL-23 expression was a part of the normal wound healing 

response. 

 There was no significant difference in wound healing between wild type 

and IL-23 deficient mice with respect to time required for wound closure.  While 

only statistically significant at day 5 post-wounding, we did observe that mice 

deleted for IL-23 maintained larger wound area during the first 5 days of healing 

when compared to wild type controls.  Histologically, however, there were no 

apparent differences in leukocyte infiltration during this period.  Based on 

previous studies of IL-23 in the psoriasis model, we presume that macrophages 

are likely the primary source of IL-23 at the wound site in our mouse model, yet 

the effect on wound healing appeared to occur prior to, and during the initial 

stages of, macrophage influx at the wound site. This suggests that perhaps a 

different cell population within the wound space produces IL-23 in response to 

tissue injury.  The lack of available antibodies for paraffin-embedded tissue 

sections prevented the identification of IL-23-expressing cells in the wild type 

mice.   
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 The reason that loss of IL-23 did not have a significant effect on wound 

healing is probably due to overlapping functions of cytokines within the 

inflammatory environment.  For example, both IL-23 and the inflammatory 

cytokine IL-6 are known to stimulate keratinocytes via phosphorylation of STAT3 

(25, 224).  In contrast to our results in the present study, IL-6 deficient mice 

suffer from impaired wound healing, which suggests that IL-6 is probably the 

main effector for stimulation of keratinocytes.  Even in the absence of IL-23, the 

function of IL-6 is likely enough to ensure that keratinocyte proliferation and 

wound closure are not significantly affected.  Although injection of IL-23 into the 

skin induces what amounts to a wound healing response (161), there does not 

appear to be a requirement for IL-23 in normal cutaneous wound healing.  The 

functions of IL-23 remain restricted to autoimmune pathologies.   
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CHAPTER V 

OVERALL CONCLUSIONS AND FUTURE DIRECTIONS 

SUMMARY 

The overall goal of this dissertation was to examine the role of platelet-

macrophage interactions in inflammation and wound healing.  We first 

determined how  macrophage phagocytosis of autologous platelets is affected by 

platelet activation and sulfated polysaccharides.  These experiments revealed 

several interesting findings about the role of common platelet activation markers 

in the recognition and internalization of platelets by macrophages.  A distinct role 

for sulfonation was also identified in the inhibitory effects of polysaccharides in 

this process.  Next, the inflammatory consequences of platelet phagocytosis by 

macrophages were studied and new details emerged about the pro-inflammatory 

effects of platelets.   A new platelet-based therapeutic for the treatment of 

inflammatory diseases was also designed and tested. Finally, in vivo studies 

further investigated the role of IL-23 expression in wound closure.   These overall 

conclusions, their impact on the current field, and recommended future studies 

are described in detail below. 

 



 

MECHANISMS OF PLATELET PHAGOCYTOSIS BY MACROPHAGES 

 Platelets play a central role in maintaining vascular integrity, and they 

respond to injury by adherence, activation, and aggregation.  The process of 

platelet activation has been well characterized and involves many changes to the 

surface of the cell (42).  Of particular interest to the work described in this 

dissertation are the platelet activation markers phosphatidylserine, P-selectin, 

and CD40L, which support coagulation reactions, monocyte adherence, and 

leukocyte activation respectively (36-39, 183, 210).  None of these three markers 

are expressed on the cell surface of resting platelets, yet they rapidly translocate 

to the platelet surface during activation.  Regardless of whether platelets become 

activated by injury or senescence, they are targeted for clearance by the RES 

when they become activated (57, 62, 81).     

We have shown in this dissertation that interactions of platelets with 

macrophages, the main phagocyte of the RES, can be recapitulated in vitro, 

establishing a model system in which we could durther explore mechanisms of 

platelet recognition and internalization by macrophages.  Several previous 

studies have examined the clearance mechanism of altered platelets, such as 

chilled platelets or platelets affected by storage lesion (57, 59, 62, 67, 75, 77, 79, 

81, 82).  The work presented here, however, is the first to examine the interaction 

between freshly isolated, unmodified platelets with autologous macrophages.  

Our system was entirely comprised of human components and autologous cells 

so as to avoid confounding factors such as an immune responses by phagocytes 

or the recognition of platelets as ‘non-self.’   
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 We first validated our model by determining that macrophage 

phagocytosis of autologous platelets occurs in an actin-dependent manner, 

which agrees with previous studies of many different types of phagocytosis (105).  

We also demonstrated that phagocytosis of autologous platelets occurs in 

serum-free conditions.  The ability of macrophages to phagocytose platelets in 

the absence of serum excludes the possibility that normal platelet phagocytosis 

is  an ‘immune-mediated’ function mediated by processes such as opsonization 

with complement or IgG, because such processes require serum factors (68, 

104, 105, 107, 108, 110-112, 190, 225). 

Phagocytosis of autologous platelets by macrophages also correlates with 

platelet activation.  Our system was not capable of investigating platelet-

macrophage interactions using true ‘resting’ platelets.  However, macrophages 

internalized platelets that were only partially activated and had not reached the 

irreversible phase of phosphatidylserine exposure.  This finding is significant 

because it suggests that platelets may be targeted to the RES after only slight 

activation, which can result from a variety of systemic conditions such as shock, 

inflammation, infection, or even some medications (226-230).  Therefore, future 

studies should consider the possibility that partial platelet activation targets cells 

to the RES.  The downstream effects of such interactions are discussed in the 

last two sections of this chapter.     

Additionally, flow cytometric analysis of our assay conditions revealed that 

platelet phagocytosis is enhanced when platelets are fully activated.  We 

therefore investigated the role of platelet activation markers in phagocytosis of 
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platelets and determined that neither the P-selectin-PSGL-1 interaction, nor 

phosphatidylserine exposure are required for platelet phagocytosis by 

macrophages.  Nonetheless, some cell surface changes must occur on the 

platelet to trigger clearance by the RES, and future studies should focus on other 

cell surface changes that occur during platelet activation.  

We also examined macrophage phagocytic receptors in the process of 

platelet phagocytosis.  In agreement with the lack of an immune response to 

autologous platelets, neither complement nor Fc-receptors are needed for 

platelet uptake.  In agreement with studies on aged platelets, we did identify a 

possible role for scavenger receptors in platelet uptake, because platelet 

phagocytosis was inhibited by the polysaccharide fucoidan, a known scavenger 

receptor ligand (192).  Future studies should investigate the role of other 

macrophage receptors with tools such as function-blocking antibodies or RNAi.   

 We then further examined the inhibitory effect of sulfated polysaccharides 

on platelet phagocytosis by macrophages.  A variety of sulfated polysaccharides 

inhibited platelet phagocytosis, and the degree of sulfation correlated with each 

polymer’s ability to inhibit phaogyctosis.  These results are significant because 

sulfated polysaccharides have been used as anticoagulant drugs yet can also 

induce thrombocytopenia (69, 70, 200, 231, 232).  For example, heparin has 

been used extensively in the clinic to reduce the risk of thrombosis, yet it can be 

recognized by autoantibodies when bound to the platelet surface (70).  A critical 

search continues, therefore, to identify drugs that can inhibit thrombosis without 

significantly raising the risk of bleeding.  The results presented in this dissertation 
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suggest that sulfated polysaccharides may actually prevent platelet phagocytosis 

in the absence of autoantibodies.  Therefore, this system can be used in 

conjunction with existing platelet assays to screen compounds for their effect on 

both platelet function and clearance under a variety of experimental conditions.   

PLATELET-MACROPHAGE INTERACTIONS IN WOUND HEALING 

The wound healing environment remains a complex and poorly 

understood system.  Nonetheless, a non-hemostatic role for platelets in 

regulating skin inflammation is emerging (233).   Our in vitro studies suggest that 

activated platelets are more than a simple component of the wound debris.  

Platelets enhance macrophage secretion of IL-6 (an important wound healing 

cytokine) and IL-23, which are important cytokines during the early phases of 

wound healing, prior to any confirmed platelet-macrophage interactions.  Later, 

macrophages interact with activated platelets and this results in an inflammatory 

response that is opposite that which occurs when macrophages clear apoptotic 

cells.   Specifically, apoptotic cells inhibit pro-inflammatory cytokine secretion 

while inducing secretion of anti-inflammatory and pro-wound healing cytokines 

IL-10 and TGF-β, while platelets do not. 

Previous studies have suggested that autologous platelet gels can 

enhance wound healing (14, 53).  Although many questions remain regarding the 

activation of macrophages during wound healing, our results suggest that use of 

autologous platelets in wound care should be carefully considered with respect to 

macrophage activation and cytokine production.  Platelets might be beneficial in 
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circumstances where macrophage stimulation is desired, but detrimental in cases 

where macrophages are already hyperactive.  More investigation of the temporal 

and spatial requirements of macrophage activation during wound healing is 

needed. 

Finally, although IL-23 is essential for autoimmune skin inflammation and 

induces a wound healing response when injected into normal skin (161, 165, 

167, 168, 221),  a significant role for IL-23 in normal cutaneous wound healing 

does not appear to exist.  This cytokine is more likely restricted to development 

of T-cell mediated inflammation and autoimmune disease.   

PLATELET-MACROPAHGE INTERACTIONS IN INFLAMMATION 

The most significant impact of this dissertation is related to the potential 

role of platelets in inflammatory diseases.  A pro-inflammatory effect of platelets 

on circulating monocytes has been demonstrated previously, and circulating 

platelet-monocyte aggregates are a common indication of systemic inflammation 

(91, 93, 94, 96, 234).  The present work has demonstrated that activated 

platelets also enhance LPS-induced macrophage activation by enhancing pro-

inflammatory cytokines.  This is in direct contrast to the effect of apoptotic cells, 

which inhibit macrophage pro-inflammatory cytokine secretion.   

One possible source of the platelet effect on macrophage activation is 

platelet CD40L.  This inflammatory molecule is a potent activator of macrophage 

inflammatory responses (235), and we have shown that it may be partly 

responsible for the observed enhancement of macrophage cytokine expression.  

 78



 

Several diseases such as atherosclerosis and sepsis have implicated a role for 

CD40L in macrophage activation (40, 218, 236).  The role of CD40L in 

inflammatory pathologies is supported by evidence that an entire disease state of 

inflammatory bowel disease can be induced in mice simply by engaging CD40 

receptors within the gut (40, 237). Nonetheless, it is important to consider the 

effect of not only CD40L, but also other platelet-derived mediators, such as 

sphingosine-1-phosphate that may impact the polarization of pro-inflammatory 

macrophages (238). 

The pro-inflammatory cytokines analyzed in this dissertation (TNF-α, IL-6, 

IL-23) can directly exert pro-inflammatory effects on surrounding cells and 

tissues.  Additionally, IL-6 and IL-23 regulate Th17 responses, which are 

characterized by T-cell mediated autoimmune inflammation (159).  Many 

autoimmune diseases such as inflammatory bowel disease (IBD), lupus, sepsis, 

arthritis and psoriasis are characterized by Th17 responses (239-243). Another 

important characteristic of these pathologies is the presence of activated 

platelets (210, 236).  We speculate, therefore, that platelet-macrophage 

interactions may represent a previously unidentified source for the generation of 

Th17-mediated autoimmune inflammatory diseases.  Future studies should 

examine the role of platelet-macrophage interactions in animal models of Th17-

mediated disease.  

  Current clinical approaches to many diseases of inflammation and Th17-

autoimmunity have targeted macrophage activation and/or specific macrophage 

cytokines (153, 204, 244).  One multifunctional, systemic approach is 
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immunosuppression with glucocorticoids (245).  Glucocorticoids such as 

dexamethasone have powerful anti-inflammatory and immunosuppressive 

effects, yet they carry some risks exist with long-term systemic use.  We have 

thus designed a method for preparing ‘anti-inflammatory platelets,’ which inhibit 

macrophage pro-inflammatory cytokine production by targeted delivery of 

glucocorticoids.  These dexamethasone-loaded platelets are effective in inhibiting 

pro-inflammatory cytokine secretion by activated macrophages, which suggests 

that they might be useful in obtaining targeted, localized immunosuppressive 

effects.   However, in vivo studies are needed to determine the efficacy of 

targeting high-dose delivery of glucocorticoids to inflammatory lesions.  

Nonetheless, the in vitro studies presented here are proof of principle and a 

promising start towards this potential new therapy. 

The results of this dissertation suggest that when platelets and 

macrophages co-localize at sites of inflammation, platelets may actively 

participate in the polarization of macrophages.  Given the plasticity of 

macrophage polarization, particularly during inflammatory processes, we further 

speculate that platelet -macrophage interactions represent a new link between 

the innate and adaptive immune response.  Future work in this area should focus 

on identifying platelet-macrophage interactions in vivo so that the effect of 

platelets on macrophage activation can be directly assessed in inflammatory 

pathologies.  
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