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ABSTRACT

Yunro Chung: Statistical Contributions to Order Restricted Inference for Survival Data
Analysis

(Under the direction of Jason P. Fine and Anastasia Ivanova)

This dissertation aims to study order restricted inference for survival data analysis

where a hazard function is assumed to have a shape restriction with respect to continuous

covariates.

In the first chapter, we consider estimation of the semiparametric proportional haz-

ards model with a completely unspecified baseline hazard function where the effect of a

continuous covariate is assumed isotonic (or monotone) but otherwise unspecified. The

pseudo iterative convex minorant algorithm is proposed to compute the isotonic estima-

tor by optimizing a sequence of pseudo partial likelihood functions. A local consistency is

established for a one-step update of the estimator when an initial value is in a shrinking

neighborhood of the true value. Analysis of data from a recent HIV prevention study

illustrates the practical utility of the methodology in estimating monotonic covariate

effects that are nonlinear.

In the second chapter, we consider additive hazards model with a unimodal hazard

function in a continuous covariate with unknown mode. A quadratic loss function is

defined, which allows efficient computations to estimate the mode and unimodal covariate

effects. The methodology is applied to analyze the data from a recent randomized clinical

trial of cardiovascular disease in kidney transplant patients.

In the third chapter, we focus on multiple continuous covariates for a shape restricted

hazard function. By assuming an additive isotonic structure of the multiple covariates
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under the proportional hazards model, the hazard function is defined as isotonic with

respect to the partial order on the covariates. An efficient computation is proposed by

combining the pseudo iterative convex minorant algorithm and the cycling algorithm.

We use the proposed method to analyze the data from a recent clinical trial with cardio-

vascular outcome.
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CHAPTER 1: INTRODUCTION

1.1 Isotonic Hazard Function of a Univariate Continuous Covariate

Isotonic (or monotone) regression (Robertson et al. 1988) is a nonparametric method

that can be used to explore an association between a covariate and an outcome variable.

An efficient algorithm of the pool-adjacent-violators algorithm (Ayer et al. 1955) is avail-

able. The isotonic regression technique has been extended to survival data analysis, where

the hazard function is assumed to have an isotonic restriction on covariates. Ancukiewicz

et al. (2003) considered the situation where the hazard for an HIV infection increased

when a continuous value of CD4 count decreased. They suggested the full-likelihood

approach to estimate the isotonic hazard function in CD4 count, but their algorithm

was ad hoc, e.g., might not even converge to a local maximum, and appeared computa-

tionally prohibitive in large samples. Alternatively, we suggest the isotonic proportional

hazard model by incorporating an isotonic function to the semiparametric proportional

hazard model (Cox 1972). It allows simple computation by avoiding the estimation of the

baseline hazard in the partial likelihood. We further develop the pseudo iterative convex

minorant algorithm for a large study, which is computationally stable and efficient than

existing methods of iterative quadratic programming and iterative convex minorant al-

gorithm (Groeneboom and Wellner 1992, pp. 69-73). A local consistency is established

for a toy estimator, which is an one step estimator using the pseudo iterative convex

minorant algorithm where the initial value is in a neighborhood of the true value.
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1.2 Unimodal Hazard Function of a Univariate Continuous Covariate

We next focus on a unimodal function, where the hazard function is non-decreasing

and non-increasing on (−∞,M] and [M,+∞), respectively. The pointM is called a mode,

which is generally unknown. We consider the unimodal regression approach (Shoung and

Zhang 2001) that estimated unimodal functions at each hypothetical mode and estimated

the mode to be the value at which the least square function had a minimum value. His

profiling algorithm is directly applicable to the popular proportional hazard model, but

there may be a computational challenge owing to the complicated structure of the partial

likelihood. Alternatively, we consider estimation of the unimodal hazard function under

the semiparametric additive hazard model (Lin and Ying 1994). It defines a quadratic

loss function having a global Hessian matrix, which does not involve parameters. Thus,

once the global Hessian matrix is computed, a standard quadratic programming method

can be performed by profiling the mode.

1.3 Isotonic Hazard Function of Multiple Continuous Covariates

We consider a shape restricted hazard function in multiple continuous covariate. By

assuming an additive isotonic structure of the multiple covariates in the semiparametric

proportional hazard model, we separately added the multiple covariates to the hazard,

assuming each covariate has an isotonic effect. Accordingly, the hazard function is de-

fined as isotonic with respect to a partial order on the covariates. The additive isotonic

structure have been well-studied for a standard regression setting (Bacchetti 1989). He

suggested the cycling algorithm that optimized a univariate isotonic covariate effect with

holding other isotonic covariate effects fixed by iterating the cycle. The simple structure

of the least square function gave a closed form solution, which could be computed by

the pool-adjacent-violators algorithm. In our model, however, the complicated structure

2



of the partial likelihood does not allow the closed form solution, and additional compu-

tations are needed. An efficient computation is obtained by implementing the pseudo

iterative convex minorant algorithm in conjunction with the cycling algorithm.
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CHAPTER 2: LITERATURE REVIEW

2.1 Order Restricted Inference

In this Section, we review literature on order restricted statistical inference based on

three types of the likelihood functions: full-likelihood function for bivariate shape re-

stricted hazard functions in Subsection 2.1.1, separable likelihood function for monotone

response models in Subsection 2.1.2, and non-separable likelihood function for the panel

counting data and case 2 interval censored data 2.1.3.

2.1.1 Constrained Full-likelihood Approach

Ancukiewicz et al. (2003) proposed a full-likelihood approach to estimate hazard

function under monotonicity. Their model is defined as

λ(t, z) = 1 − {1 − λ0(t)}
f(z),

where λ0(⋅) is an unspecified baseline hazard function, and f(⋅) is a monotone increasing

function. They further assume that λ0(⋅) has a range in [0,1), and f(⋅) is non-negative.

Let t1 < ⋯ < ts be the distinct observed failure times, and let z1 < ⋯ < zm be the distinct

covariate values at any of those observed failure time. The full-likelihood function is then

defined as

l(f, λ0) =
m

∑
i=1

s

∑
j=1

[di,jlog{1 − (1 − λ0(tj))
f(zi)} + (ni,j − di,j)f(zi)log{1 − λ0(tj)}], (2.1)
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where di,j and ni,j are the number of patients at risk and the number failed at time tj with

covariate zi, respectively. They propose an algorithm to maximize the full-likelihood by

updating λ0 given f and updating f given λ0 iteratively until convergence. During the

maximization steps, one additional constraint is imposed to have a unique factorization,

where ∑mi=1 f(z) is set to the number of observation n. However, their proposed algorithm

was ad hoc and did not have a global or even local convergence property.

2.1.2 Monotone Response Model with Constrained and Unconstrained Es-

timators

Banerjee (2007) suggested the monotone response model. Consider independent and

identically distributed data {Xi, Zi}ni=1, where Xi∣Zi = z ∼ p(x,ψ(z)), p is a probability

density, and ψ(⋅) is a monotone increasing (or monotone decreasing) function. One

example is the monotone regression model, which is

Xi = ψ(Zi) + εi,

where εi is independent of Zi with mean 0 and variance σ2. Here, Zi is a covariate value

for the ith subject, and Xi is the response value. By assuming εi’s are Gaussian, this

model is expressed as a monotone response, where Xi∣Zi = z ∼ N(ψ(z), σ2). Another

example is the case 1 interval censored model. Let Ui and Zi be an event and observation

times for the ith subject, respectively, and Xi = 1 if Ui ≤ Zi, or Xi = 0 otherwise. Here,

Ui is independent of Zi. A main goal was to estimate F , a survival function of the Ui’s.

It is also expressed as a monotone response model, where Xi∣Zi = z ∼ Bernoulli(F (z)).

Let l(Xi, ψ(Zi)) = −log{p(Xi, ψ(Zi))}. The negative log-likelihood function for the

monotone response model is then defined as

l(x,ψ(z)) =
n

∑
i=1

l(Xi, ψ(Zi)) (2.2)
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Let ψi = ψ(Z(i)), where Z(i) is the ith smallest value among Zi’s. Let X(i) be the response

value corresponded to Z(i). Denote ψ̂ as the minimizer over the monotone constraint

that minimizes ∑ni=1 l(X(i), ψi) subject to ψ1 ≤ ⋯ ≤ ψn. Denote l̇ and l̈ as first and second

derivatives of the negative log-likelihood. It is shown that ψ̂ is a minimizer over the

monotone constraint if and only if

n

∑
j=1

l̇(X(j), ψ̂j) = 0

and
n

∑
j=i

l̇(X(j), ψ̂j) ≥ 0 (i=1,. . . ,n).

By assuming its Hessian matrix is a diagonal and positive define matrix, the minimizer

is characterized by

(ψ̂1, . . . , ψ̂n) = slogcm[
i

∑
j=1

l̈(X(j), ψ̂j),
i

∑
j=1

{ψ̂j l̈(X(j), ψ̂j) − l̇(X(j), ψ̂j)}]

n

i=0

,

where ∑0
i=0 = 0, and slogcm[xi, yi]ni=0 is the vector of slopes (or left derivatives) of the

greatest convex minorant on cumulative sum diagram (xi, yi)’s.

He further suggested an constrained minimizer ψ̂0 by minimizing the negative log-

likelihood function in (2.2) under the monotone constraint and the null hypothesis, H0 ∶

ψ(z0) = θ0. Denote k as the number of Zi’s that are less than or equal to z0. Since the

negative log-likelihood function is separable in terms of Z(i)’s, the minimization problem

can be separated to two minimization problems: minimize ∑ki=1 l(X(i), ψi) subject to

ψ1 ≤ ⋯ ≤ ψk ≤ θ0, and minimize ∑ni=k+1 l(X(i), ψi) subject to θ0 ≤ ψk+1 ≤ ⋯ ≤ ψn. Similar

to the unconstrained minimizer, the constrained minimizer is characterized by

(ψ̂1, . . . , ψ̂k) = slogcm[
i

∑
j=1

l̈(X(j), ψ̂j),
i

∑
j=1

{ψ̂j l̈(X(j), ψ̂j) − l̇(X(j), ψ̂j)}]

n

i=k

∧ θ0
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and

(ψ̂k+1, . . . , ψ̂n) = slogcm[
i

∑
j=1

l̈(X(j), ψ̂j),
i

∑
j=1

{ψ̂j l̈(X(j), ψ̂j) − l̇(X(j), ψ̂j)}]

n

i=k

∨ θ0.

Here, ∧ and ∨ are the minimum and maximum operators, respectively. Based on the

constrained and unconstrained minimizers, he developed likelihood ratio test.

2.1.3 Non-separable Likelihood Frameworks

The isotonic regression technique has been developed under independent and iden-

tically distributed data, where its likelihood function is separable. For example, the

full-likelihood function in (2.1) in Subsection 2.1.2 is separable in terms of zi given λ0.

The likelihood function in (2.2) is also separable in terms of Zi in Subsection 2.1.2. The

separable structure allows a relatively easy computation for an isotonic estimator. On

the other hand, the following paragraphs describe two recent works for order restricted

inference under non-separable likelihood functions, where the non-separation structure is

from dependent data.

A first example is the panel count data (Wellner and Zhang 2000), where each subject

is observed multiple time points with respect to the counts of events. Let N = {N(t) ∶

t ≥ 0} be a counting process with mean function E(N(t)) = Λ0(t), K be an integer-

valued random variable, and T = {Tk,j, j = 1 . . . , k, k = 1,2, . . .} is potential observation

times. Here, N and (K,T ) are independent, and Tk,j−1 ≤ Tk,j for j = 1, . . . , k and k =

1,2, . . .. Denote {N
(i)
Ki
, T

(i)
Ki
,Ki}

n
i=1 as the independent and identically distributed copies

of (N,T,K). By assuming N is a Poisson process that has the independent increment

property, the log-likelihood function for Λ is defined as

l(Λ) =
n

∑
i=1

[
Ki

∑
j=1

(N
(i)
Ki,j

−N
(i)
Ki,j−1)log{Λ(T

(i)
Ki,j

) −Λ(T
(i)
Ki,j−1))} −Λ(T

(i)
Ki,Ki

)],
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which includes only two adjacent parameters at each j. Thus, it is reformulated as

n

∑
i=1

[
Ki

∑
j=1

{∆NKi,jlog(∆ΛKi,j) −∆ΛKi,j}],

where ∆NKi,j = N
(i)
Ki,j

− N
(i)
Ki,j−1, and ∆ΛKi,j = Λ(T

(i)
Ki,j

) − Λ(T
(i)
Ki,j−1). The reformulated

likelihood function was separable in terms of j, so that an isotonic regression method for

independent data was used to make an inference for Λ.

A second example is the case 2 interval censored data. Let {Xi, Ti, Ui}ni=1 be inde-

pendent sample from R3
+, where Xi is an event time with distribution function F0, and

Ti and Ui are observation times with a joint distribution H. Here, Xi and (Ti, Ui) are

independent with Ti ≤ Ui. The log-likelihood for F is then defined as

l(F ) =
n

∑
i=1

[δilogF (Ti) + γilog{F (Ui) − F (Ti)} + (1 − δi − γi)log{1 − F (Ui)}], (2.3)

where δi = I(Xi ≤ Ti), and γi = I(Xi ∈ (Ti, Ui]), and where I(⋅) is the indicator function.

The likelihood function is not separable in terms of Ti. However, it is partially separable

in terms of left, right and interval censoring times. This partial separation plays a key role

in showing consistency (Groeneboom and Wellner 1992) and asymptotic distributional

result (Groeneboom 1996) for the isotonic estimator F̂ .

2.2 Computational Algorithms for Order Restricted Inference

In this section, we review computational algorithms for order restricted inference:

iterative convex minorant algorithm for the case 2 interval censored model in Subsection

2.2.1; the profiling algorithm for the unimodal regression model in Subsection 2.2.2; the

cycling algorithm for additive isotonic model in Subsection 2.2.3.
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2.2.1 Iterative Convex Minorant Algorithm for the Case 2 Interval Censored

Model

The iterative convex minorant algorithm is suggested to solve the case 2 interval

censored data (Groeneboom 1996, pp. 69-73). The fundamental idea of the iterative

convex minorant algorithm is that a convex optimization problem is reduce to a series of

weight isotonic regression problems. The negative log-likelihood of (2.3) is represented

as

ln(F ) = −{∑
j∈I1

logβj + ∑
j∈I2a

log(βk(j) − βj) + ∑
j∈I3

log(1 − βj)},

where βi = F (νi) and k(j) = {k ∶ νk = max(Ui, Vi), νj = min(Ui, Vi), γi = 1, i = 1, . . . , n},

and where I1 = {j ∶ νj = Ui with δi = 1}, I2a = {j ∶ νj = min(Ui, Vi) with γi = 1} and

I3 = {j ∶ νj = Vi with δi + γi = 0} for i = 1, . . . , n and j = 1 . . . , l. Here, ν1 < . . . < νl

is a sorted set of time points among Ui’s with δi = 1 or γi = 1 and Vi’s with γi = 1

or δi + γi = 0 and γi = 0 for i = 1, . . . , n. In order to ensure l(F ) > ∞, it is assumed

that 1 ∈ I1 and l ∈ I3. The goal is to find the maximizer of l(F ) over the convex cone

C = {β ∈ Rl ∶ β1 ≤ ⋯ ≤ βl}. Denote l̇n(F ) as the first derivative of ln(F ). Then, the

convex function ln(F ) is approximated locally near β(0) by a quadratic function

ln(F ) ≈
1

2
{β − β(0) +W (β(0))−1l̇n(β(0))}TW (β(0)){β − β(0) +W (β(0))−1l̇n(β(0))},

where W is a Hessian matrix. By ignoring off-diagonal elements in W , the approximated

quadratic function is reduced to

ln(F ) ≈
1

2

n

∑
i=1

{βi − β
(0)
i +wi(β

(0))−1l̇ni (β
(0))}2wi(β

(0)),

where wi is the ith diagonal element of W , i = 1, . . . , n. This is an identical problem of

estimating the isotonic function β over weight w. Thus, an initial value of β(0) is chosen

9



in C, and then, the series of weight isotonic regression functions are solved by using

either the greatest convex minorant or pool-adjacent-violators algorithm iteratively until

convergence. The convergence criteria is Fenchel’s duality conditions

l

∑
i=1

β̂il̇
n
i (β̂i) = 0

and
l

∑
i=1

βil̇
n
i (β̂i) ≥ 0.

for or all (β1, . . . , βl) ∈ C. A distance stopping criteria may be alternatively used but

it is a weaker condition than Fenchel’s stopping criteria (Wellner and Zhan 1997). An

advantage of the iterative convex minorant algorithm is computational speed, since the

approximated likelihood function has simpler structure by ignoring the off-diagonal ele-

ments in W . At the time when the iterative convex minorant algorithm was suggested,

convergence property was not proven. It was conjectured that Fenchel duality conditions

did not depend on the Hessian matrix, and the Hessian matrix contained only few nonzero

off-diagonal elements. Aragón and Eberly (1992) showed the local convergence under the

(unrealistic) assumption where the jump points of the nonparametric maximum likeli-

hood estimation are determined prior to applying the algorithm. Later, Jongbloed (1998)

modified the iterative convex minorant algorithm to have a global convergence property

by adding a line search algorithm.

2.2.2 Profiling Algorithm for Unimodal Regression

We consider the unimodal regression (Shoung and Zhang 2001) that minimizes

LS(f0) =
n

∑
i=1

{Yi − f0(Xi)}
2, (2.4)
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where (Xi, Yi) are independent and identically distributed sample from (X,Y ), i =

1, . . . , n, and f0 is an unknown unimodal function with an unknown mode m0. To esti-

mate m0, they suggested nonparametric least squares estimator, which is

m̂0 =Xĵ, ĵ = arg min
j=1,...,n

[min
f0∈Fj

LS(f0)], (2.5)

where Fj = {f0 ∶ f0 is a unimodal function with mode Xj}. Let X(i) be the ith largest

value among (X1, . . . ,Xn), and Y(i) be the response value associated with X(i). Then

they separated the minimization problem in (2.4) into two minimization problems:

min
m

∑
i=1

{Y(i) − f0(X(i))}
2 subject to f0(X(1)) ≤ ⋯ ≤ f0(X(m)) (2.6)

min
n

∑
i=m+1

{Y(i) − f0(X(i))}
2 subject to f0(X(m+1)) ≥ ⋯ ≥ f0(X(n)). (2.7)

The isotonic and anti-isotonic regression techniques can be separately performed on (2.6)

and (2.7) with the pool-adjacent-violators algorithm. Let f̂0,j be the estimated unimodal

function at the mode ofX(j). The profiling algorithm is to estimate the unimodal function

f̂0,j by profiling every hypothetical mode X(j), j = 1, . . . , n, and estimate mode by (2.5).

2.2.3 Cycling Algorithm for Additive Isotonic Regression

Bacchetti (1989) extended the isotonic regression model to the additive isotonic model

to include multiple covariates. Let Y i and X i = (X i
1, . . . ,X

i
d) be response scalar and

covariate vector values for the ith subject, respectively, i = 1, . . . , n, Let X(i)
j be the

ith largest value among (X1
j , . . . ,X

n
j ). The additive isotonic model minimizes the least

square function
n

∑
i=1

{Y i − µ1(X
i
1) −⋯ − µd(X

i
d)}

2 (2.8)
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over the additive isotonic constraint where µj(X
(1)
j ) ≤ . . . ≤ µj(X

(n)
j ) for j = 1, . . . , d.

They suggested the cycling algorithm that updated a univariate isotonic function µk while

holding other isotonic functions (µ1, . . . , µk−1, µk+1, . . . , µn) constant. Correspondingly,

the least square function in (2.8) is reduced to

n

∑
i=1

{Ỹ i − µk(X
i
k)}

2, (2.9)

where Ỹ i = Y i −∑
d
j=1,j≠k µj(X

i
j). The reduced least square function in (2.9) has a closed

form over the isotonic constraint µk, which can be computed by using the pool-adjacent-

violators algorithm. By iterating the cycles k = 1, . . . , d,1, . . . , d, . . ., this algorithm is

guaranteed to converge to the minimum value of the least square function in (2.8). On

the other hands, it does not not guarantee the uniqueness of the isotonic minimizer. In

other words, different isotonic estimators might yield the same minimum values of the

least square function in (2.8).
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CHAPTER 3: PARTIAL LIKELIHOOD ESTIMATION OF
ISOTONIC PROPORTIONAL HAZARDS MODELS

3.1 Introduction

In regression analysis, common parametric models, for example, generalized linear

models, may employ shape-restrictions on covariate effects, the simplest being that of

monotonicity. There is extensive literature on nonparametric isotonic regression models,

where the form of a monotone covariate effect is completely unspecified; see Banerjee

(2007). Computational and inferential issues have been well studied, particularly for

likelihood-based estimation of isotonic generalized linear models, where efficient algo-

rithms are available which exploit the geometric properties of the shape-restricted likeli-

hood and which facilitate a careful theoretical analysis of the large sample properties of

the resulting estimators. Unfortunately, these approaches are not easily generalizable to

partial likelihood estimation of the semiparametric isotonic proportional hazards model,

owing to the lack of an independent and identically distributed structure of the partial

likelihood. In survival data settings, constrained nonparametric maximum likelihood

estimation was developed by Ancukiewicz et al. (2003) using ad hoc algorithms. Such

algorithms may not even converge to a local maximum, and appear computationally pro-

hibitive in large samples. The goal of this paper is theoretically justified computation of

isotonic estimators based on partial likelihood in survival data settings.

The closest related work with right censored data is for nonparametric estimation

of the hazard function subject to shape constraints in the absence of covariates. Vari-

ous authors studied maximum likelihood estimation of a hazard function assumed to be
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monotone in time (Grenander 1956, Marshall and Proschan 1965, Rao 1970, Mukerjee and

Wang 1993, Huang and Wellner 1995, Banerjee 2008, Lopuhaä and Nane 2013), including

a 2013 Delft University of Technology PhD thesis by G. Nane, where the baseline hazard

function is not assumed to be monotone in time. With categorical covariates having

regression parameters known to satisfy a monotone ordering, one may post-process un-

restricted partial likelihood estimates using the pool-adjacent-violators algorithm (Ayer

et al. 1955) to obtain restricted estimators, similar to post-processing of likelihood esti-

mators of parametric regression models with categorical covariates. This approach is not

applicable with continuous covariates, owing to the fact that unrestricted estimation is

not possible at all values of the covariate. Specialized methods are needed.

Suppose that T is a failure time, C is a censoring time and Z is a scalar continuous

covariate, where it is assumed that T and C are independent conditionally on Z. Define

X = min(T,C) and ∆ = I(T ≤ C), where I(⋅) is the indicator function. The observed data

consist of n independent and identically distributed replicates of (X,∆, Z), denoted by

{Xi,∆i, Zi} (i = 1, . . . , n). The proportional hazards model (Cox 1972) may be specified

to incorporate monotone covariate effects, that is, λ(t ∣Z) = λ0(t) exp{φ(Z)}, where λ0(t)

is an unspecified baseline hazard function and φ(⋅) is a monotone increasing function.

In the usual Cox model, the form of φ(⋅) is specified parametrically, for example, using

low-order polynomials of Z. These parameters may then be estimated by maximizing the

partial likelihood without imposing further restrictions on the parameters. When φ(⋅) is

monotone but otherwise unspecified, care is needed in defining the estimator using the

partial likelihood, denoted by

pl(φ) =
n

∏
i=1

∏
t≥0

{
eφ(Zi)

∑
n
j=1 Yj(t)e

φ(Zj)
}

dNi(t)

,

where Ni(t) = I(Xi ≤ t,∆i = 1) is a counting process and Yi(t) = I(Xi ≥ t) is an at-risk

process for the ith subject for i = 1, . . . , n.
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Unlike the usual likelihood based formulation for isotonic linear models (Robertson

et al. 1988), the partial likelihood for the isotonic proportional hazards model is a product

integral of terms depending on both time and covariate values, where the parameter φ(⋅)

only enters the partial likelihood at those covariate values in the dataset. To ensure that

estimation is well-defined between those values, we restrict the estimator to be piecewise

constant, which yields a unique estimator with potential jumps at the observed Zi’s.

This assumption is similar to that made in isotonic generalized linear models. For right

censored data, we show that the estimator jumps only at those covariate values which are

associated with observed failure events with ∆i = 1; this is made precise in Subsections

3.2.1-3.2.2.

Calculating the constrained partial likelihood estimator is challenging and does not

follow directly from earlier likelihood analyses of isotonic generalized linear models. The

iterative quadratic programming method for pl(φ) is applicable to find the constrained

estimator, but cannot be efficiently implemented using the pool-adjacent-violators al-

gorithm, may be computationally prohibitive in large samples, and may exhibit poor

convergence properties. The iterative convex minorant algorithm is also theoretically

justified and has been shown to reduce the computational burden in many isotonic esti-

mation problems, but exhibits similar difficulties in our setting. To overcome these issues,

we propose the pseudo iterative convex minorant algorithm which finds the constrained

partial likelihood estimator by iteratively minimizing a constrained pseudo partial likeli-

hood. The convergence properties of pseudo iterative convex minorant algorithm can be

established similar to those for iterative convex minorant algorithm.
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3.2 Constrained partial likelihood estimation

3.2.1 Iterative quadratic programming and iterative convex minorant algo-

rithm without censoring

Define the isotonic estimator of φ(⋅) to be the maximizer of the partial likelihood under

the monotone constraint that φ(Z(1)) ≤ ⋅ ⋅ ⋅ ≤ φ(Z(n)), where Z(i) is the ith smallest value

among Z1, . . . , Zn. One must fix one point of the partial likelihood estimator, otherwise

there is no unique maximizer because all ordered sets of {φ(Z(1)) + δ, . . . , φ(Z(n)) + δ}

yield the same value of the partial likelihood for any δ. We impose an anchor constraint

that φ(K) = δ by prespecifying a constant K in the support of Z prior to the analysis of

the data. Under the anchor constraint, the model fitted is

λ(t ∣Z) = λ0(t)e
φ(Z) = {λ0(t)e

δ}eψ(Z), (3.1)

where ψ(Z) = φ(Z)−δ with ψ(K) = 0. Since the baseline hazard function absorbs exp(δ),

what we actually estimate is not φ(⋅) but ψ(⋅). We regard δ as a nuisance parameter, with

the only difference between ψ(⋅) and φ(⋅) being the reference group defining the hazard

ratio parameters. In other words, ψ(⋅) is vertically shifted from φ(⋅) by δ, where hazard

ratios based on ψ(⋅) and φ(⋅) are identical, i.e., exp{φ(⋅) − φ(K)} = exp{ψ(⋅) − ψ(K)}.

In practice, since ψ(⋅) is only estimable at the observed Z(i)’s, we set ψ(Z(k)) = 0, where

Z(k) is the largest Z(i) ≤K.

Let lN(ψ) denote the negative log partial likelihood,

lN(ψ) = ∑
n

i=1

ˆ ∞

0

[−ψ(i) + log{∑
n

j=1
Y(j)(u)e

ψ
(j)}]dN(i)(u),

where ψ(i) = ψ(Z(i)), and N(i)(u) and Y(i)(u) are counting and at-risk processes corre-

sponding to the subject whose covariate is Z(i). In the sequel, as needed, we drop the
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subparentheses for notational convenience. The score function and Hessian matrix of the

negative log partial likelihood are denoted as U(ψ) and H(ψ), respectively, with elements

us(ψ) =
∂lN(ψ)

∂ψs
= −

ˆ ∞

0

dNs(u) +

ˆ ∞

0

Es(ψ,u)dN̄(u),

hss(ψ) =
∂2lN(ψ)

∂ψ2
s

=

ˆ ∞

0

{Es(ψ,u) −Es(ψ,u)
2}dN̄(u),

hst(ψ) =
∂2lN(ψ)

∂ψs∂ψt
= −

ˆ ∞

0

Es(ψ,u)Et(ψ,u)dN̄(u),

for s, t = 1, . . . , n (s ≠ t), where Es(ψ,u) = Ys(u) exp(ψs)/{∑
n
j=1 Yj(u) exp(ψj)} and

dN̄(u) = ∑
n
i=1 dNi(u).

Theorem 3.1. Suppose that there is no censoring. The negative log partial likelihood

lN(ψ) is convex. It is strictly convex when an anchor constraint is imposed that ψk =

ψ(Z(k)) = 0.

Let Ψk be {ψ ∈ Rn ∶ ψ1 ≤ ⋯ ≤ ψn, ψk = 0}. The problem of maximizing the partial

likelihood over the monotone and anchor constraints is equivalent to minimizing the

strictly convex function lN(ψ) over the convex cone Ψk. We denote the minimizer of

lN(ψ) over Ψk by ψ̂ = (ψ̂1, . . . , ψ̂n), which we refer to as the isotonic partial likelihood

estimator.

To uniquely estimate ψ at covariate values other than those in Z(1), . . . , Z(n), we

assume, similar to previous work on isotonic regression, that the estimator is a right-

continuous step function with jumps at the order statistics of the Zi’s. Under this as-

sumption, the strict convexity in Theorem 3.1 coupled with the following theorem give a

unique characterization of the isotonic partial likelihood estimator:

Theorem 3.2. Suppose that there is no censoring. The isotonic partial likelihood estima-

tor ψ̂ minimizes lN(ψ) over the convex cone Ψk if and only if Fenchel’s duality condition
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holds that ψ̂ ∈ Ψk satisfies

∑
i

j=1
uj(ψ̂) ≤ 0 (i = 1, . . . , k − 1), ∑

n

j=i
uj(ψ̂) ≥ 0 (i = k + 1, . . . , n), (3.2)

∑
n

i=1,i≠k
ψ̂iui(ψ̂) = 0. (3.3)

Moreover, ψ̂ is uniquely determined by (3.2) and (3.3).

Iterative quadratic programming can be applied to find the isotonic partial likelihood

estimator. It is designed to approximate a convex function by a quadratic function

and find a solution by minimizing the quadratic function. A second order Taylor series

approximation of lN(ψ) about ψ0 is

lN(ψ) ≈ lN(ψ0) + (ψ − ψ0)U(ψ0) + (ψ − ψ0)H(ψ0)(ψ − ψ0)/2

=
1

2
{ψ − ξ(ψ0)}H(ψ0){ψ − ξ(ψ0)} + g(ψ0), (3.4)

where ξ(ψ0) = ψ0 −H(ψ0)−1U(ψ0), and g(ψ0) = lN(ψ0) − U(ψ0)H(ψ0)−1U(ψ0)/2 which

does not depend on ψ. The procedure of the iterative quadratic programming method is

that we set an initial value ψ(0) ∈ Ψk, and update ψ(m) ∈ Ψk by minimizing the first term

in (3.4), {ψ(m)−ξ(ψ(m−1))}H(ψ(m−1)){ψ(m)−ξ(ψ(m−1))}, until convergence. The solution

can be found by using a quadratic programming method with equality and inequality

constraints. In the simulations reported in Section 3.4, we find that the procedure may

be numerically unstable, with convergence dependent on the anchor constraint.

A challenge of the iterative quadratic programming method is to compute H(ψ)−1,

whose dimension is the same order as the sample size. This calculation may be compu-

tationally expensive or even infeasible. To simplify the computations, one may apply the

iterative convex minorant algorithm (Groeneboom and Wellner 1992, pp. 69-73) that

replaces H(ψ) with diag{H(ψ)} in the approximated partial likelihood in (3.4), where

diag{H(ψ)} is a diagonal matrix having the same diagonal elements as H(ψ). Then the
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approximated partial likelihood in (3.4) reduces to

1

2
∑

n

i=1
{ψi − ξi(ψ

0)}
2
hii(ψ

0) + g(ψ0), (3.5)

where ξi(ψ0) = ψ0
i − ui(ψ

0)/hii(ψ0). This is identical to finding a monotone increasing

function that minimizes ∑ni=1{ψi − ξi(ψ
0)}2hii(ψ0) over the class of monotone increasing

functions Ψk with weight h. One may use the pool-adjacent-violators algorithm to find

the minimizer (Ayer et al. 1955). The procedure of iterative convex minorant algorithm

is to set an initial value of ψ(0) ∈ Ψk, and apply the pool-adjacent-violators algorithm to

update ψ(m) until convergence. The convergence criteria is based on Fenchel’s duality

condition in Theorem 3.2. It characterizes isotonic estimator ψ̂, and in practice, one

will check this condition and application of the iterative convex minorant algorithm. To

incorporate the anchor constraint, we impose a constraint on iterative convex minorant

algorithm (Banerjee 2007), where at each mth step after applying the pool-adjacent-

violators algorithm, we set ψ(m)

k = 0; ψ(m)

i = 0 if ψ(m)

i > 0 for i = 1, . . . , k − 1; ψ(m)

i = 0 if

ψ
(m)

i < 0 for i = k + 1, . . . , n. The iterative convex minorant algorithm with the anchor

constraint may be unstable, which strongly depends on the choice of the anchor point,

as shown in the simulation studies in Section 3.4.

3.2.2 Pseudo iterative convex minorant algorithms with no censoring

While in theory the anchor constraint has no effect on estimation, in practice the con-

vergence of both iterative quadratic programming method and iterative convex minorant

algorithm may be impacted: different anchor constraints may yield different estimates.

To address this issue, and to reduce the computational burden of the algorithms, we

propose the pseudo iterative convex minorant algorithm via iteratively minimizing the
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constrained pseudo partial likelihood,

lP (ψ ∣ν) = ∑
n

s=1

ˆ ∞

0

{−ψsdNs(u) +E
P
s (ψs, u ∣ν)dN̄(u)}, (3.6)

where EP
s (ψs, u ∣ ν) = Ys(u)eψs/{∑

n
j=1 Yj(u)e

νj} for constants ν1, . . . , νn. The pseudo

partial likelihood score function and Hessian matrix are defined as

uPs (ψs ∣ν) = −

ˆ ∞

0

dNs(u) +

ˆ ∞

0

EP
s (ψs, u ∣ν)dN̄(u),

hPss(ψs ∣ν) =

ˆ ∞

0

EP
s (ψs, u ∣ν)dN̄(u) > 0, (3.7)

hPst(ψs ∣ν) = 0, s, t = 1, . . . , n (s ≠ t). (3.8)

The anchor constraint is not needed for lP (ψ ∣ν) because it is a strictly convex function

by (3.7) and (3.8). Let Ψ = {ψ ∈ Rn ∶ ψ1 ≤ ⋯ ≤ ψn} be the convex cone obtained

by removing the anchor constraint from Ψk. The procedure of pseudo iterative convex

minorant algorithm is

Step 3.1: Set an initial value of ψ̇(0) ∈ Ψk (or ψ̇(0) ∈ Ψ).

Step 3.2: Update ψ̇(m) such that ψ̇(m) = arg minψ∈Ψ l
P (ψ ∣ν = ψ̇(m−1)).

Step 3.3: Repeat Step 3.2 until convergence under the distance stopping criteria

de(ψ̇(m), ψ̇(m−1)) < ε̇ for small ε̇ > 0, where de(x, y) = ∑ni=1 ∣ exp(xi) − exp(yi)∣.

Step 3.4: Let ψ̈i = ψ̇
(m)

i − ψ̇
(m)

k (i = 1, . . . , n) such that ψ̈ = (ψ̈1, . . . , ψ̈n) ∈ Ψk.

Theorem 3.3. The minimizer ψ̇ in Step 3.2 minimizes lP (ψ ∣ν) over the convex cone Ψ

if and only if Fenchel’s duality condition holds that

∑
n

j=i
uPj (ψ̇j ∣ν) ≥ 0 (i = 1, . . . , n) (3.9)
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with equality holding if i = 1, and

∑
n

i=1
ψ̇iu

P
i (ψ̇i ∣ν) = 0. (3.10)

Moreover, ψ̇ is uniquely determined by (3.9) and (3.10).

Theorem 3.4. Suppose that ψ̂+ minimizes ∑ni=1(ψ
+
i −w

−1
i ∆i)

2wi over the class of isotonic

functions in Ψ, where ∆i =
´∞

0
dNi(u) and wi =

´∞
0

[{Yi(u)dN̄(u)}/{∑
n
j=1 Yj(u) exp(νj)}].

Then, ψ̇ = {log(ψ̂+1 ), . . . , log(ψ̂+n)} is the unique minimizer of lP (ψ ∣ν) over Ψ.

In Step 3.2, we are not guaranteed to eventually satisfy the convergence criteria

in Step 3.3, i.e., it is possible to construct data sets and choose starting values such

that the algorithm will not converge. However, in practice we have found this to be

unlikely (see Section 3.4). Moreover, the following theorem indicates that if the algorithm

does converge for any ε̇, then the estimate ψ̈ converges to the unique minimizer of the

constrained partial likelihood in Theorems 3.1 and 3.2 as ε̇→ 0. This provides theoretical

justification for the pseudo iterative convex minorant algorithm.

Theorem 3.5. Suppose that for any ε̇ > 0, there exists r(ε̇) such that the pseudo itera-

tive convex minorant algorithm converges at r(ε̇)th iteration under the distance stopping

criteria de(ψ̇(r(ε̇)), ψ̇(r(ε̇)−1)) < ε̇. Then, as ε̇→ 0, ψ̈ = (ψ̇
(r(ε̇))
1 − ψ̇

(r(ε̇))
k , . . . , ψ̇

(r(ε̇))
1 − ψ̇

(r(ε̇))
k )

converges to the unique minimizer of lN(ψ) over Ψk.

3.2.3 Censoring

Suppose that some failure times are censored. The fact that censored subjects con-

tribute limited information to the partial likelihood restricts the form of the isotonic

partial likelihood estimator. As stated in Proposition 3.6, the isotonic partial likelihood

estimator has jumps only at the covariate values associated with uncensored subjects.

Thus we focus on uncensored subjects and estimate ψ(⋅) at covariate values associated
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with these uncensored subjects. One may view the form of this estimator in line with

traditional survival analysis where the estimated survival function jumps only at the

observed failure times (Kaplan and Meier 1958). To estimate ψ(⋅) computationally, we

suggest replacing a parameter for a censored subject with the parameter for an uncensored

subject having covariate value which is closest to that for the censored subject amongst

all uncensored subjects having smaller covariate values than the censored subject.

Let n⋆ be the number of subjects with observed failure time of the total n subjects,

and Z⋆
i be their covariate values, i = 1, . . . , n⋆. Define n⋆ disjoint intervals of I⋆1 =

(−∞, Z⋆
(1)

)∪[Z⋆
(1)
, Z⋆

(2)
), I⋆2 = [Z⋆

(2)
, Z⋆

(3)
), . . . , I⋆n⋆ = [Z⋆

(n⋆)
,+∞), where Z⋆

(i)
is the ith order

statistic amongst the Z⋆
i ’s. We can then construct the replacement parameters algorithm

where ψ(Zh) is replaced with ψ(Z⋆
i ) if Zh ∈ I⋆i for h = 1, . . . , n; i = 1, . . . , n⋆. Accordingly,

at-risk processes for censored subjects are added to corresponding at-risk processes for

observed subjects such that Y ⋆
i (t) = ∑h∈Ri

Yh(t), where Ri = {h ∶ Zh ∈ I⋆i , h = 1, . . . , n}.

The partial likelihood for censored data is then defined by

plC(ψ⋆) =
n⋆

∏
i=1

∏
t≥0

{
eψ

⋆

i

∑
n⋆

j=1 Y
⋆
j (t)eψ

⋆

j

}

dN⋆

i (t)

,

where ψ⋆i = ψ(Z⋆
(i)

) and N⋆
i (t) is the counting process corresponding to Z⋆

(i)
. We assume

that ψj = ψ⋆1 if Zj < Z⋆
(1)

for j = 1, . . . , n, otherwise ψj is not included in plC(ψ). This

enables estimation of ψ(⋅) at all values of Z including the left side of Z⋆
(1)

. As stated in

Proposition 3.6, the replacement parameters algorithm with plC(ψ) is justified.

Proposition 3.6. Assume that ψj = ψ⋆1 if Zj < Z⋆
(1)

for j = 1, . . . , n. Then the isotonic

partial likelihood estimator has jumps only at Z⋆
i ’s, and thus, the unique maximizer of

plC(ψ) is also the unique maximizer of pl(ψ).

Since plC(ψ) has the same form as pl(ψ), Theorems 3.1 to 3.5 are all valid under
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censored data, so that iterative quadratic programming method, iterative convex mino-

rant algorithm, and pseudo iterative convex minorant algorithm are applicable to find

the unique maximizer of plC(ψ).

3.2.4 Time-dependent covariate

Consider this model λ(t ∣Z(t)) = λ0(t) exp[ψ{Z(t)}], where Z(t) is a time-dependent

covariate. It is assumed that the monotone increasing function ψ(⋅) does not change

over time. Similar to censored data, the fact that the values of the time-dependent

covariates prior to the first observed failure time do not contribute to the partial likelihood

restricts the form of the isotonic partial likelihood estimator. As stated in Proposition

3.7, the isotonic partial likelihood estimator has jumps at the time-dependent covariate

values associated with uncensored subjects only at their failure times. One may use

replacement parameters algorithm where the parameters for subjects having their failure

times observed are substituted for other parameters in the partial likelihood.

Formally, let n⋆ be the number of subjects with observed failure time of the to-

tal n subjects, and Z⋆
i (t) be their covariates for i = 1, . . . , n⋆. Let Z∗

i = Z⋆
i (X

∗
i ),

the ith subject’s covariate at time of failure. Define n⋆ disjoint intervals by I∗1 =

(−∞, Z∗
(1)

) ∪ [Z∗
(1)
, Z∗

(2)
), I∗2 = [Z∗

(2)
, Z∗

(3)
), . . . , I∗n⋆ = [Z∗

(n⋆)
,+∞), where Z∗

(i)
is the ith

order statistic amongst the Z∗
i ’s. We can then construct the replacement parameters

algorithm where ψ(Zh(Xj)) is replaced with ψ(Z∗
(i)

) if Zh(Xj) ∈ Ii for h, j = 1, . . . , n;

i = 1, . . . , n⋆. Accordingly, we express an at-risk process as Y ∗
i (t) = ∑h∈Ri(t) Yh(t), where

Ri(t) = {h ∶ Zh(t) ∈ I∗i , h = 1, . . . , n}. The partial likelihood is then defined as

plD(ψ∗) =
n⋆

∏
i=1

∏
t≥0

{
eψ

∗

i

∑
n⋆

j=1 Y
∗
j (t)eψ

∗

j

}

dN∗

i (t)

,

where ψ∗i = ψ(Z∗
(i)

) and N∗
i (t) is a process corresponding to Z∗

(i)
. Since Z∗

i ’s are only

defined for subjects with observed failure times, plD(ψ) is applicable for both complete
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and censored data with the time-dependent covariate. As stated in Proposition 3.7,

plD(ψ) with the replacement parameters algorithm is justified.

Proposition 3.7. Assume that ψ{Zi(Xj)} = ψ∗1 if Zi(Xj) < Z∗
(1)

for i, j = 1, . . . , n.

Then the isotonic partial likelihood estimator has jumps only at Z∗
i , and thus, the unique

maximizer of plD(ψ) is also the unique maximizer of pl(ψ).

Unlike the censoring case with a time independent covariate where parameters for

censored subjects are replaced, with time-dependent covariates, both censored and un-

censored subjects may have parameters replaced. This may prevent some parameters

from being estimated, when all parameters are replaced by the same parameter at an

observed failure time. Nevertheless, one may still estimate ψ(⋅) by assuming that the

isotonic estimator does not have jumps at a covariate value for the excluded parameters.

Since plD(ψ) has the same form as pl(ψ), iterative quadratic programming method, it-

erative convex minorant algorithm, and pseudo iterative convex minorant algorithm are

applicable to find the unique maximizer of plD(ψ).

3.2.5 Local consistency of the pseudo partial likelihood estimator

We prove the local consistency of the pseudo partial likelihood estimator for a time

independent covariate when an initial guess is sufficiently close to the true value, i.e,

νn,i = ψ0(Zi)+εn,i where ψ0(⋅) is the true monotone increasing function, εn,i are small pos-

itive numbers converging to zero as n go to infinity and νn,i, i = 1, . . . , n, satisfy the mono-

tonicty constraint for each n. Let Pn denote the empirical measure on {Xi,∆i, Zi}ni=1, and

let P denote the true probability measure corresponding to the distribution of {X,∆, Z}.

Denote ψ̇(1) as the minimizer of n−1 times the pseudo partial likelihood in (3.6) with initial

values νn,i, i = 1, . . . , n, i.e. ψ̇(1) = arg minψ∈Ψ Pn{ln(ψ(Z)∣ψ
0
, εn)}, where

ln(ψ(Z)∣ψ
0
, εn) =

ˆ τ

0

[−ψ(Z)dN(t) + Y (t)eψ(Z) Pn{dN(t)}

n−1∑
n
j=1 Yj(t)e

ψ0(Zj)+εn,j
],
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which is strictly convex, where ψ
0
= {ψ0(Z1), . . . , ψ0(Zn)} and εn = {εn,i, . . . , εn,n}. Let

un(ψ(Z)∣ψ
0
, εn) =

ˆ τ

0

[−dN(t) + Y (t)eψ(Z) Pn{dN(t)}

n−1∑
n
j=1 Yj(t)e

ψ0(Zj)+εn,j
],

un(ψ(Z)∣ψ
0
) =

ˆ τ

0

[−dN(t) + Y (t)eψ(Z) Pn{dN(t)}

Pn{Y (t)eψ0(Z)}
],

u(ψ(Z)∣ψ0(Z)) =

ˆ τ

0

[−dN(t) + Y (t)eψ(Z) P{dN(t)}

P{Y (t)eψ0(Z)}
],

where un(ψ(Z) ∣ψ
0
, εn) is the first derivative of ln(ψ(Z) ∣ψ

0
, εn), N(t) = I(X ≤ t,∆ = 1)

and Y (t) = I(X ≤ t). Let Xi,∆i∣Zi = z ∼ p(X,∆∣ψ(z)) and Zi ∼ pz, i = 1, . . . , n, where

p is the product of Lebesgue measure on R+ and counting measure on {0,1} and pz

is a Lebesgue density on Iz where Iz is the domain of Z. Assume {Xi,∆i, Zi}ni=1 are

independent and identical distributed data. Let z0 be an interior point of Iz. Let Θ

denote a parameter space, which is an open subset of R. Assume:

(A1) P{Y (t)} > 0 and E{N(t)} < ∞ for t ∈ (0, τ].

(A2) pz is positive and continuous in a neighborhood of z0.

(A3) ψ(⋅) is continuous and differentiable in a neighborhood of z0 with ∣ψ
′

(z0)∣ > 0.

(A4) Let L = inf{ψ(z) ∶ z ∈ Iz} and U = sup{ψ(z) ∶ z ∈ Iz}. Then, L,U ∈ Θ with

−∞ < L < U < ∞.

(A5) Eθ0{u(θ1 ∣θ0)
2} is uniformly bounded in a compact rectangle containing [L,U]×

[L,U] for θ0, θ1 ∈ Θ.

(A6) For θ0, θ1, θ2 ∈ Θ, Eθ0{u(θ1 ∣θ0)} ≠ Eθ0{u(θ2 ∣θ0)} whenever θ1 ≠ θ2.

Assumptions (A1)−(A3) are standard in survival and isotonic regression models. By

Assumption (A4), ψ0(⋅) is bounded between L and U on Iz. Assumptions (A5) and

(A6) are mild in that u(⋅) is a uniformly bounded and strictly increasing function of θ.

The uniform strong consistency of the isotonic estimator is proven under Assumptions

(A1)−(A6), with the result stated in the following theorem. It holds with censored data.
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Theorem 3.8. Let ψ̇(1) be the first step estimate from the pseudo iterative convex mi-

norant algorithm with νn,i = ψ0(Zi) + εn,i for i = 1, . . . , n. Let z0 be an interior point of

Iz. Take εn,i = cn,i/n, i = 1, . . . , n, such that vi satisfies a monotonicity constraint, where

l ≤ cn,i ≤ u for fixed −∞ < l ≤ u < ∞. Then, there exists σ1 and σ2 where z0 falls in the

interior of [σ1, σ2] such that supz∈[σ1,σ2] ∣ψ̇
(1)(z) − ψ0(z)∣ → 0 almost surely.

This result states that the estimator based on a one-step update is consistent if the

initial value is in an n−1 neighborhood of the true value. The proof, which is given in

Section 3.7, follows from Lemma 2.1 in the detailed version of Banerjee (2007), which can

be found on his webpage (M. Banerjee, University of Michigan) with one modification,

namely establishing that

sup∣Pn[un{ψ(Z)∣ψ
0
, εn}] − P [u{ψ(Z)∣ψ0(Z)}]∣

≤ sup∣Pn[un{ψ(Z)∣ψ
0
, εn}] − Pn[un{ψ(Z)∣ψ

0
}]∣

+ sup∣Pn[un{ψ(Z)∣ψ
0
}] − P [u{ψ(Z)∣ψ0(Z)}]∣ (3.11)

converges to zero almost surely over all bounded monotone increasing functions. We

show that the first term after the ≤ sign in (3.11) converges to zero as n goes to infinity

if εn,i goes to zero sufficiently fast. We then show the convergence of the second term

by using empirical process theory if un{ψ(Z)} is a P -Glivenko-Cantelli function and

P [Y (t) exp{ψ0(Z)}] is bounded away from zero, which is similar to a situation which

has been studied for counting process regression (Kosorok 2007, p.56). It suggests that

if one starts the pseudo iterative convex minorant algorithm sufficiently close to the true

parameters, then the resulting one step estimator is consistent. This local consistency is

similar to what was shown in Chapters 5⋅1 and 5⋅2 of Groeneboom and Wellner (1992),

where they defined their toy estimator as one step of the iterative convex minorant

algorithm starting the iteration at the true parameters. Our toy estimator is valid under
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weaker conditions, in the sense that the initial value is not necessarily equal to the true

value but rather in an n−1 neighborhood of the truth.

3.3 Extensions

3.3.1 Baseline hazard function

As discussed previously, the baseline hazard function λ0(t) and shift parameter δ are

not identifiable, because {λ0(t), φ(Z)} and {λ0(t) exp(δ), φ(Z)− δ} give the same model

in (3.1). Ancukiewicz et al. (2003) deal with this problem by imposing a constraint

∑
n
i=1 φ(Zi) = n, but this may be unstable and the interpretation of the parameter estimates

is complicated, owing to the dependency on n. In Subsection 3.2.1, we imposed the anchor

constraint of ψ(Z) = φ(Z) − δ that allows to estimate λ⋆0(t), where λ⋆0(t) = λ0(t) exp(δ)

is a baseline hazard function including an anchor effect. In fact, it is the same approach

of the standard proportional hazard model that defines a baseline hazard function at

a reference group, ZR. Let Λ⋆
0(t) =

´ t
0
λ⋆0(t) be a cumulative baseline hazard function

including an anchor effect. Then, the profile estimator of the cumulative baseline hazard

function is available,

Λ̂⋆
0(t) =

ˆ t

0

∑
n
i=1 dNi(u)

∑
n
j=1 Yj(u)e

ψ̂{Zj(u)}
,

where ψ̂(⋅) is the isotonic estimator from the partial likelihood.

3.3.2 Additional covariates

Suppose there are an additional p covariates in the model λ(t ∣Z(t),W (t)) = λ0(t) exp[ψ{Z(t)}+

βW (t)], where W (⋅) is a p × 1 dimensional covariate process and β is a p × 1 vector of

regression parameters. The partial likelihood is then defined as

pl(ψ,β) =
n

∏
i=1

∏
t≥0

[
eψ{Zi(t)}+βWi(t)

∑
n
j=1 Yj(t)e

ψ{Zj(t)}+βWj(t)

]

dNi(t)

. (3.12)
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The partial likelihood can be maximized by the following procedure. We set initial

values of (ψ(0), β(0)) ∈ Ψk × Rp. We then update ψ(m) given β = β(m−1) using iterative

quadratic programming method, iterative convex minorant algorithm, or pseudo iterative

convex minorant algorithm, and update β(m) given ψ = ψ(m) using the Newton-Raphson

algorithm, where

β(m) =β(m−1) −H(ψ(m), β(m−1))−1U(ψ(m), β(m−1)),

U(ψ,β) =∑
n

i=1

ˆ ∞

0

{Wi(t) −
∑
n
j=1 Yj(t)e

ψ{Zj(t)}+βWj(t)Wj(t)

∑
n
j=1 Yj(t)e

ψ{Zj(t)}+βWj(t)

}dNi(t),

H(ψ,β) =∑
n

i=1

ˆ ∞

0

[−
∑
n
j=1 Yj(t)e

ψ{Zj(t)}+βWj(t)Wj(t)⊗2

∑
n
j=1 Yj(t)e

ψ{Zj(t)}+βWj(t)

+
{∑

n
j=1 Yj(t)e

ψ{Zj(t)}+βWj(t)Wj(t)}
⊗2

{∑
n
j=1 Yj(t)e

ψ{Zj(t)}+βWj(t)}2

]dNi(t),

where in generalW⊗2 =WW . These two steps are iteratively repeated until convergence.

The convergence criteria is d(ψ(m), ψ(m−1))+d(β(m), β(m−1)) < ε, where d(⋅, ⋅) is Euclidean

distance and ε is a small positive number. The same statement in Proposition 3.7 can

be made, so that the replacement parameters algorithm is justified for pl(ψ,β). Thus,

during the step to update ψ given β = β̂, the iterative quadratic programming method,

iterative convex minorant algorithm or pseudo iterative convex minorant algorithm are

available to optimize the reduced partial likelihood,

plD(ψ, β̂) =
n⋆

∏
i=1

∏
t≥0

{
eψ

∗

i +β̂W
∗

i (t)

∑
n⋆

j=1 Y
○
j (t, β̂)e

ψ∗j
}

dN∗

i (t)

,
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where Y ○
i (t, β̂) = ∑h∈Ri(t) Yh(t) exp{β̂Wh(t)}, and W ∗

i (t) is the covariate vector process

corresponding to Z∗
(i)
.

3.4 Simulations

We conducted simulation studies to examine the performance of iterative quadratic

programming method, iterative convex minorant algorithm, and pseudo iterative convex

minorant algorithm. As a gold standard, we also evaluated the pseudo partial likelihood

by setting ν to the true value in lP (ψ ∣ν). For the first part of the simulation studies, we

considered a time independent covariate Z that was generated from a uniform distribu-

tion on (0,1). Three forms of monotone increasing functions on the interval (0,1) were

considered: φ(Z) = Z, φ(Z) = Z1/2 and φ(Z) = Z2. The failure time was then generated

from a proportional hazards model with baseline hazard function being exponential with

scale parameter α = 1. The same scenarios were used for the second part of the simulation

study with a time-dependent covariate Z(t). The time-dependent covariate was piecewise

constant. To construct Z(t), we generated independent uniform (0,1) random variables

on disjoint time intervals (xj−1, xj], where x0 = 0, x1 = 0⋅22, x2 = 0⋅44, . . . , x9 = 2, x10 = +∞.

The censoring times were independently generated from a uniform distribution giving

30% censoring. We repeated the simulations 500 times with sample sizes 100, 500 and

1000. We set stopping values of ε and ε̇ to 10−3 and 10−5, respectively. Two anchor

points were considered, K = 0⋅5 and K = 0. For each data set an initial value of ψ(0)
i for

i = 1, . . . , n, was set to ∣γ̂∣Z̄i, where Z̄i = Z(i) − Z(k), and γ̂ was the estimated coefficient

of Z̄i from the standard Cox model.

The anchor effect was evaluated for iterative quadratic programming method and iter-

ative convex minorant algorithm by comparing the two isotonic estimates. We define the

percentage of matches as MC = ∑
500
r=1MCr/500, where MCr = 1 if maxi∈{1,...,n} ∣ψ̂1

r(Zi) −

{ψ̂2
r(Zi) − ψ̂

2
r(0⋅5)}∣ < 0⋅001, and MCr = 0 otherwise. Here, ψ̂kr (⋅) is an estimated
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monotone increasing function for the rth data set for r = 1, . . . ,500, where k = 1 for

K = 0⋅5 and k = 2 for K = 0. Note that for pseudo iterative convex minorant al-

gorithm, by construction, the estimates are the same for all anchor constraints. To

evaluate the performance of the different algorithms, we computed the integrated mean

squared error
´ 1

0
E{ψk(Z) − ψ̂k(Z)}2dZ for k = 1,2, where ψk(Z) = φ(Z) − φ(K). Based

on equally spaced grid points of zg’s between 0⋅001 and 0⋅999, the integrated mean

squared error was approximated by ∑Rr=1∑
G
g=1{ψ

k(zg) − ψ̂kr (zg)}
2/(GR), with G = 1000

grid points and R = 500 simulation runs. We also computed the percentage of conver-

gence based on Fenchel’s duality condition in Theorem 3.2, maxi∈{1,...,k−1}∑
n
j=i uj(ψ̂) < ε,

mini∈{k+1,...,n}∑
n
j=i uj(ψ̂) > −ε and ∣∑

n
j=1,j≠k ψ̂juj(ψ̂)∣ < ε. To demonstrate Theorem 3.5,

after pseudo iterative convex minorant algorithm converged under the distance stopping

criteria, we additionally check Fenchel’s duality condition to report the percentage of

convergence.

Tables 3.1 and 3.2, reported in the Web Supplement, show simulations results for

time independent and time-dependent covariates. Non-convergent cases are excluded for

calculating the integrated mean squared error, the matched case percentage, and the

computing time. The pseudo iterative convex minorant algorithm has good convergence

results in agreement with Theorem 3.5. In addition, the pseudo iterative convex minorant

algorithm dramatically improves the computational speed, especially with large sample

sizes. As the iterative quadratic programming method needs to calculate the inverse

of the full Hessian matrix, computational time increases cubically with the number of

observed failure events. Both iterative quadratic programming method and iterative

convex minorant algorithm fail to converge using Fenchel’s duality condition in roughly

10% of datasets. The results for iterative convex minorant algorithm depends heavily on

the anchor constraint. In particular, the iterative convex minorant algorithm is extremely

slow when the anchor is set to 0. The results for pseudo iterative convex minorant
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algorithm, as well as for iterative quadratic programming method, do not depend on

the anchor constraint. For small sample sizes, iterative quadratic programming method

and iterative convex minorant algorithm have larger integrated mean squared errors than

pseudo iterative convex minorant algorithm, but that the differences vanish as the sample

size increases. As expected, the pseudo partial likelihood with known ν has the smallest

integrated mean squared error.

3.5 HIV data

The Breastfeeding, Antiretroviral and Nutrition study was a randomized trial con-

ducted between April 21, 2004 and Jan 28, 2010 in Liongwe, Malawi (Jamieson et al.

2012). 2369 pairs of HIV-infected breastfeeding mothers and their uninfected infants

were randomized to one of the three groups: a maternal antiretroviral regimen (n = 849),

daily infant nevirapine (n = 852), or standard of care as control (n = 668). A primary

endpoint of the trial was HIV transmission to the infant. Infants were scheduled to be

tested for HIV every few weeks up to 48 weeks after the birth. By 48 weeks there were 76,

62, and 74 infants observed to be HIV infected in the maternal antiretroviral, nevirapine,

and control arms, respectively. The Breastfeeding, Antiretroviral and Nutrition study

measured mothers’ CD4 count (cells per mm3) at the baseline, which has been shown

to be an important predictor of mother to child transmission. Lower CD4 counts are

indicative of a weakened immune system and typically are associated with higher levels

of virus in HIV infected individuals. Therefore it is reasonable to assume the hazard

of transmission of HIV from mother-to-infant decreases monotonically as a function of

CD4 count. A standard Cox model with CD4 included in the linear predictor showed

a decreasing hazard in the CD4 count (estimated hazard ratio=0⋅864 for a 100 unit in-

crease in CD4; P < 0⋅01), adjusted for the group effect (estimated hazard ratio=0⋅769 for

antiretroviral versus control; estimated hazard ratio=0⋅620 for nevirapine versus control).
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Table 3.1: Simulation results for time independent covariates: IMSE multiplied by 103

(median CPU time in seconds), convergence percentage and matched case percentage.
The first and second lines are for anchor points of K = 0⋅5 and K = 0 respectively.

Type φ(Z) n
IQM ICM PICM PPL
IMSE Conv MC IMSE Conv MC IMSE Conv MC IMSE

Comp Z 100 281(2) 88% 100% 1359(1) 91% 75% 156(0) 95% 100% 81(0)
281(1) 88% 118(3) 86% 156(0) 95% 81(0)

500 33(134) 89% 100% 79(15) 89% 81% 32(0) 99% 100% 20(0)
33(43) 89% 28(140) 87% 32(0) 99% 20(0)

1000 17(827) 89% 100% 26(65) 90% 87% 18(2) 99% 100% 17(1)
17(505) 89% 17(1279) 87% 18(1) 99% 17(1)

Z1/2 100 367(1) 89% 100% 1803(0) 91% 82% 133(0) 93% 100% 80(0)
367(1) 89% 104(3) 84% 133(0) 93% 80(0)

500 35(145) 89% 100% 138(11) 89% 90% 28(0) 98% 100% 19(0)
35(44) 89% 25(105) 87% 28(0) 98% 19(0)

1000 16(1078) 90% 100% 39(54) 90% 95% 16(1) 99% 100% 14(1)
16(684) 90% 15(1032) 89% 16(1) 99% 14(1)

Z2 100 205(1) 87% 100% 632(0) 91% 61% 166(0) 97% 100% 64(0)
205(1) 87% 117(3) 87% 166(0) 97% 64(0)

500 32(145) 88% 100% 66(14) 89% 63% 32(0) 99% 100% 19(0)
32(45) 88% 29(315) 84% 32(0) 99% 19(0)

1000 16(1190) 88% 100% 23(61) 89% 66% 18(1) 100% 100% 17(1)
16(573) 88% 17(1932) 78% 18(1) 100% 17(1)

Cens Z 100 316(1) 89% 100% 841(0) 91% 75% 184(0) 99% 100% 40(0)
316(0) 89% 145(1) 90% 184(0) 99% 40(0)

500 39(48) 89% 100% 39(8) 89% 83% 42(0) 100% 100% 31(0)
39(18) 89% 39(118) 88% 42(0) 100% 31(0)

1000 22(290) 90% 100% 23(39) 91% 87% 23(1) 100% 100% 10(1)
22(172) 90% 23(561) 89% 23(1) 100% 10(1)

Z1/2 100 268(1) 89% 100% 722(0) 91% 82% 161(0) 98% 100% 40(0)
316(0) 89% 133(2) 90% 161(0) 98% 40(0)

500 36(39) 89% 100% 38(6) 90% 92% 38(0) 100% 100% 29(0)
36(19) 89% 35(74) 89% 38(0) 100% 29(0)

1000 20(328) 90% 100% 21(31) 92% 94% 21(1) 100% 100% 10(1)
20(238) 90% 21(727) 92% 21(1) 100% 10(1)

Z2 100 280(1) 88% 100% 650(0) 91% 63% 194(0) 99% 100% 53(0)
280(0) 88% 145(2) 89% 194(0) 99% 53(0)

500 38(39) 88% 100% 38(6) 89% 66% 41(0) 100% 100% 34(0)
38(20) 88% 39(118) 87% 41(0) 100% 34(0)

1000 21(302) 88% 100% 22(32) 90% 69% 23(1) 100% 100% 10(1)
21(237) 88% 22(905) 85% 23(1) 100% 10(1)

IQM: iterative quadratic programming; ICM: iterative convex minorant algorithm;
PICM: pseudo iterative convex minorant algorithm; PPL: pseudo partial likelihood;
Comp: complete case; Cens: censoring case (about 30%); IMSE: integrated mean
squared error; Conv: convergence percentage; MC: matched case percentage.
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Table 3.2: Simulation results for time-dependent covariates: IMSE multiplied by 103

(median CPU time in seconds), convergence percentage and matched case percentage.
The first and second lines are for anchor points of K = 0⋅5 and K = 0 respectively.

Type φ{Z(t)} n
IQM ICM PICM PPL
IMSE Conv MC IMSE Conv MC IMSE Conv MC IMSE

Comp Z(t) 100 223(2) 83% 100% 860(1) 84% 80% 127(0) 99% 100% 67(0)
223(1) 83% 127(3) 82% 127(0) 99% 67(0)

500 38(169) 88% 100% 87(24) 89% 87% 32(5) 99% 100% 35(4)
38(71) 88% 32(257) 88% 32(5) 99% 35(4)

1000 21(998) 92% 100% 40(124) 92% 89% 19(31) 100% 100% 19(31)
21(800) 92% 19(1849) 90% 19(31) 100% 19(30)

Z(t)1/2 100 289(2) 74% 100% 838(0) 77% 85% 135(0) 98% 100% 38(0)
289(1) 74% 98(3) 75% 135(0) 98% 38(0)

500 38(179) 90% 100% 104(20) 90% 91% 31(5) 99% 100% 31(4)
38(61) 90% 30(279) 90% 31(4) 99% 31(4)

1000 18(928) 93% 100% 34(89) 93% 95% 17(31) 100% 100% 9(30)
18(917) 93% 17(1551) 93% 17(30) 100% 9(30)

Z(t)2 100 207(2) 89% 100% 820(1) 86% 65% 117(0) 98% 100% 41(0)
207(1) 89% 103(4) 85% 117(0) 98% 41(0)

500 34(164) 89% 100% 60(24) 89% 69% 32(5) 99% 100% 22(5)
34(61) 89% 31(260) 87% 32(5) 99% 22(5)

1000 18(1110) 88% 100% 18(134) 89% 71% 18(31) 100% 100% 9(31)
18(732) 88% 18(1782) 87% 18(31) 100% 9(31)

Cens Z(t) 100 283(1) 84% 100% 266(0) 80% 75% 207(0) 100% 100% 159(0)
283(1) 84% 159(2) 79% 207(0) 100% 159(0)

500 48(59) 88% 100% 81(13) 89% 83% 43(5) 100% 100% 46(4)
48(25) 88% 41(137) 89% 43(4) 100% 46(4)

1000 26(360) 87% 100% 26(64) 86% 89% 27(31) 100% 100% 38(30)
26(180) 87% 26(792) 86% 27(31) 100% 38(30)

Z(t)1/2 100 189(1) 84% 100% 442(0) 84% 83% 151(0) 99% 100% 126(0)
189(1) 84% 131(2) 83% 151(0) 99% 126(0)

500 40(57) 87% 100% 40(12) 87% 89% 41(4) 100% 100% 51(4)
40(30) 87% 40(128) 87% 41(4) 100% 51(4)

1000 24(368) 87% 100% 24(65) 87% 91% 25(30) 100% 100% 32(30)
24(243) 87% 24(884) 87% 25(30) 100% 32(30)

Z(t)2 100 238(1) 84% 100% 342(0) 82% 68% 165(0) 99% 100% 104(0)
238(1) 84% 130(2) 81% 165(0) 99% 104(0)

500 39(58) 88% 100% 39(12) 89% 67% 39(5) 100% 100% 20(4)
39(26) 88% 39(159) 87% 39(5) 100% 20(4)

1000 22(360) 87% 100% 22(72) 88% 82% 23(31) 100% 100% 64(30)
22(275) 87% 23(816) 85% 23(31) 100% 64(30)

IQM: iterative quadratic programming; ICM: iterative convex minorant algorithm;
PICM: pseudo iterative convex minorant algorithm; PPL: pseudo partial likelihood;
Comp: complete case; Cens: censoring case (about 30%); IMSE: integrated mean
squared error; Conv: convergence percentage; MC: matched case case percentage.

33



The extent to which the effect of CD4 is adequately captured by a simple proportional

hazards model is unclear.

We fit the isotonic model assuming only a monotone relationship between the hazard

and CD4 count. The model was fit using the pseudo iterative convex minorant algorithm

in Subsection 3.3.2 with anchor constraint K = 300. Choosing K = 200, K = 500, or

K = 1000 yielded the same results, except that the iterative convex minorant algorithm

did not converge when K = 200. Standard Cox models were also fit using polynomials

of order one, two, and three for CD4. Treatment group indicators were included in all

models using a linear term as in (3.12).

Figure 3.1 displays the hazard ratios based on the estimated isotonic and polyno-

mial functions. The isotonic partial likelihood estimator does not have jumps between

the CD4 counts of 1100 and 2000 because the corresponding 23 infants are all censored.

Historically, individuals with HIV have been started on antiretroviral when their CD4

dipped below some cut-off between 200 and 500 cells per mm3 because this range would

correspond to higher viral load and greater infectiousness. The isotonic estimator pro-

vides a clear picture of this phenomenon, with a rapid decrease in risk occurring up to

CD4 count 500 followed by a gradual levelling for larger counts. After adjusting for the

monotone effect on CD4 count, the estimated hazard ratio is 0⋅762 for antiretroviral ver-

sus control, and 0⋅621 for nevirapine versus control, similar to the standard proportional

hazards analysis.

The polynomial models do not provide particularly good fit compared to the iso-

tonic estimator over this range except the cubic model. This is further supported by

goodness-of-fit statistics calculated by stratifying individuals by CD4 quantiles (Parzen

and Lipsitz 1999), where the goodness-of-fit statistics has an asymptotic chi-square dis-

tribution with three degrees of freedom. The cubic polynomial and isotonic models have

smaller goodness-of-fit statistics (cubic, 0⋅1; isotonic, 0⋅2) than the simpler models do
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Figure 3.1: The Breastfeeding, Antiretroviral and Nutrition study. Estimated hazard
ratios based on the isotonic partial likelihood estimator (black solid) and standard pro-
portional hazards models with polynomials of order one (grey solid), two (dashed) and
three (dot-dashed). The reference group is CD4 count equal to 200. The circles indicate
HIV infections.

(linear, 4⋅5; quadratic, 2⋅3), where smaller goodness-of-fit statistics indicates a better

model. However, the cubic term is not significant (P = 0⋅11), and the estimated hazard

ratio inexplicably increases between 500 and 1000, e.g., an infant whose mother has CD4

count of 900 has 1⋅108 times higher risk of HIV infection than an infant whose mother has

CD4 count of 600. This demonstrates that simple parametric models may not adequately

capture the nonlinear effect of CD4 count on mother to child transmission of HIV. An al-

ternative approach to using low-dimensional polynomials could entail higher-dimensional

parametric models, e.g., using splines. However, such an approach would require adding

a monotonicity constraint to preclude results similar to those of the cubic polynomial

model here.

3.6 Discussion

It remains to formally establish the global consistency and asymptotic distribution of

the estimator. It is somewhat unclear how to apply earlier theoretical developments for
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Figure 3.2: Quantile-quantile plot of simulated sample versus Chernoff’s distribution at
z0 = 0⋅1 with no censoring and ψ(z) = z. (a) n = 100; (b) n = 500; (c) n = 1000.

likelihood based analyses of isotonic regression models, as the log partial likelihood is not

a sum of independent terms, because the partial likelihood has a non-separable structure

at each failure time in terms of T(i)’s and Z(i)’s. This problem is made more challenging

by the fact that each term in the partial likelihood involves multiple parameters, with the

number of parameters increasing as the sample size increases. This differs from the usual

set-up, where each term involves a single parameter, or possibly a small fixed number of

parameters. Regarding the asymptotic distribution, a natural conjecture which follows

previous work on isotonic estimation, is that our estimator has a n1/3 rate of convergence

and that n1/3{ψ̂n(z0)−ψ(z0)} converges to C(z0)Z, where C(z0) is constant depending on

z0 and Z is a Chernoff distribution random variable. Figure 3.2 shows quantile-quantile

plots of the sample quantiles versus theoretical quantiles from Chernoff’s distribution

(Groeneboom and Wellner 2001). The linearity of the plots as the same size increases

support this conjecture. Other scenarios show similar behaviors (results not shown).

Future work is needed to rigorously derive the asymptotic properties of the isotonic

estimators proposed in this paper.
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3.7 Technical Details for Chapter 3

Proof of Theorem 3.1. We first prove the convexity by showing xH(ψ)x ≥ 0 for any

x ≠ 0 ∈ Rn. For notational convenience, we will drop ψ in the Hessian matrix. Since

hst ≤ 0 for s, t = 1, . . . , n (s ≠ t),

xHx = ∑
n

s=1
hssx

2
s + 2∑∑s<t

hstxsxt

= ∑
n

s=1
hssx

2
s +∑∑s<t

{(−hst)
1
2xs + (−hst)

1
2xt}

2
+∑∑s<t

(hstx
2
s + hstx

2
t )

= ∑∑s<t
{(−hst)

1
2xs + (−hst)

1
2xt}

2
+∑

n

s=1
{hssx

2
s +∑s<t

(hstx
2
s + hstx

2
t )}

= ∑∑s<t
{(−hst)

1
2xs + (−hst)

1
2xt}

2
+∑

n

s=1
{hss +∑

n

t=1,t≠s
hst}x

2
s.

The first term is greater than or equal to 0, so the convexity holds by showing that the

second term is 0, which is

hss +∑
n

t=1,t≠s
hst =

ˆ ∞

0

{Es(ψ,u) −Es(ψ,u)
2 −∑

n

t=1,t≠s
Es(ψ,u)Et(ψ,u)}dN̄(u)

=

ˆ ∞

0

Es(ψ,u){1 −∑
n

t=1
Et(ψ,u)}dN̄(u) = 0

for s = 1, . . . , n. The last equality holds because∑nt=1Et(ψ,u) = {∑
n
t=1 Yt(u)e

ψt}/{∑
n
j=1 Yj(u)e

ψj} =

1. Therefore, the Hessian matrix is semi-positive definite.

We next prove the strict convexity by imposing the anchor constraint where ψk = 0.

Similarly, for any y ≠ 0 ∈ Rn with yk = 0,

yHy = ∑∑
s<t,s≠k,t≠k

{(−hst)
1
2ys + (−hst)

1
2yt}

2
+

n

∑
s=1,s≠k

{hss +
n

∑
t=1,t≠s,t≠k

hst}y
2
s .

37



The second term is strictly greater than 0 because

hss +
n

∑
t=1,t≠s,t≠k

hst =

ˆ ∞

0

{Es(ψ,u) −Es(ψ,u)
2 −

n

∑
t=1,t≠s,t≠k

Es(ψ,u)Et(ψ,u)}dN̄(u)

=

ˆ ∞

0

Es(ψ,u){1 −∑
n

t=1,t≠k
Et(ψ,u)}dN̄(u) ≥ Es(ψ,X(1)){1 −∑

n

t=1,t≠k
Et(ψ,X(1))}

≥
eψs

∑
n
j=1 e

ψj
(1 −

∑
n
t=1,t≠k e

ψt

∑
n
j=1 e

ψj
) > 0

for s = 1, . . . , n (s ≠ k). Thus, under the anchor constraint, the Hessian matrix is positive

definite so that lN(ψ) is strictly convex.

Proof of Theorem 3.2. Since lN(ψ) is a convex function and Ψk is a convex cone,

Lemma 2.1 (Groeneboom 1996) is directly applicable, where ψ̂ minimizes lN(ψ) over Ψk

if and only if

∑
n

i=1,i≠k
ψiui(ψ̂) ≥ 0 for all ψ ∈ Ψk, (3.13)

∑
n

i=1,i≠k
ψ̂iui(ψ̂) = 0. (3.14)

Since (3.14) is the same as (3.3), we claim that (3.13) is equivalent to (3.2). Suppose that

ψ̂ satisfies (3.13). Let αi = ψi−ψi+1 for i = 1, . . . , k−1 and αi = ψi−ψi−1 for i = k+1, . . . , n.

For any ψ ∈ Ψk, ith element of ψ is expressed as ∑k−1
j=i αj for i = 1, . . . , k − 1, or ∑ij=k+1αj

for i = k + 1, . . . , n. Thus,

0 ≤
n

∑
i=1,i≠k

ψiui(ψ̂) =
k−1

∑
i=1

ψiui(ψ̂) +
n

∑
i=k+1

ψiui(ψ̂) =
k−1

∑
i=1

{
k−1

∑
j=i

αj}ui(ψ̂) +
n

∑
i=k+1

{
i

∑
j=k+1

αj}ui(ψ̂)

= ∑
k−1

i=1
{∑

i

j=1
uj(ψ̂)}αi +∑

n

i=k+1
{∑

n

j=i
uj(ψ̂)}αi, (3.15)

which yields (3.2) because αi ≤ 0 for i = 1, . . . , k − 1 and αi ≥ 0 for i = k + 1, . . . , n. The

other direction is trivial, because (3.15) is greater than or equal to zero when (3.2) holds.
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If k = 1 (or k = n), then it is easily shown that the first (or second) inequality in (3.2) is

removed, because the left (or right) term in (3.15) is removed.

The uniqueness condition holds, since lN(ψ) is a strictly convex function from Theo-

rem 3.1, where the same statement is made by Proposition 1.1 (Groeneboom and Wellner

1992).

Proof of Theorem 3.3. The proof is analogous to that of Theorem 3.2. Since lP (ψ ∣ν)

satisfies the conditions of Lemma 2.1 (Groeneboom 1996) over the convex cone Ψ, ψ̇

minimizes lP (ψ ∣ν) over Ψ if and only if

∑
n

i=1
ψiu

P
i (ψ̂i ∣ν) ≥ 0 for all ψ ∈ Ψ, (3.16)

∑
n

i=1
ψ̂iu

P
i (ψ̂i ∣ν) = 0. (3.17)

Since (3.17) is the same as (3.10), we claim that (3.16) is equivalent to (3.9). Suppose

that ψ̇ satisfies (3.16). By setting αi = ψi − ψi−1 for i = 1, . . . , n with ψ0 = 0,

0 ≤
n

∑
i=1

ψiu
P
i (ψ̂i ∣ν) =

n

∑
i=1

{
i

∑
j=1

αj}u
P
i (ψ̂i ∣ν) = {

n

∑
j=1

uPj (ψ̂j ∣ν)}α1 +
n

∑
i=2

{
n

∑
j=i

uPj (ψ̂j ∣ν)}αi,

which yields (3.9) because αi ≥ 0 for i = 2, . . . , n. The other direction is trivial.

The uniqueness condition holds because lP (ψ ∣ν) is strictly convex due to (3.7).

Proof of Theorem 3.4. Using the max-min formula (Robertson et al. 1988, pp.23-24),

the isotonic estimator ψ̂+i have the closed form solution of maxs≤i mint≥i∑
t
j=s ∆j/∑

t
j=swj

for i = 1, . . . , n. Let Mb = {b1, . . . , bnb
} be a block of consecutive indices b1, . . . , bnb

for

b = 1, . . . ,B, where ψ̂+b1−1 < ψ̂
+
b1
= ⋯ = ψ̂+bnb

< ψ̂+bnb
+1, with ψ̂

+
0 = −∞ and ψ̂+n+1 = ∞. Since ψ̂+i
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is constant on Mb, the max-min formula gives the following inequality, which is

ψ̂+a ≤
∑
a
i=b1 ∆i

∑
a
i=b1 wi

⇔
a

∑
i=b1

(−∆i + ψ̂
+
i wi) ≤ 0

for a ∈ Mb with equality holding when a = bnb
. The above two inequalities are the

same because wi’s are strictly positive for i = 1, . . . , n. Since ∑i∈Mb
(−∆i + ψ̂+i wi) = 0 for

b = 1, . . . ,B and ∪Bb=1Mb = {1, . . . , n}, then

0 ≤
n

∑
j=1

(−∆j + ψ̂
+
j wj) −

i−1

∑
j=1

(−∆j + ψ̂
+
j wj) =

n

∑
j=i

(−∆j + ψ̂
+
j wj) (i = 1, . . . , n) (3.18)

with equality holding when i = 1, and

0 =
B

∑
b=1

∑
i∈Mb

(−∆i + ψ̂
+
i wi) =

B

∑
b=1

∑
i∈Mb

(−∆i + ψ̂
+
i wi) log(ψ̂+i ) =

n

∑
i=1

(−∆i + ψ̂
+
i wi) log(ψ̂+i ), (3.19)

where ∑0
j=1 = 0. Let ψ̇i = log(ψ̂+i ). The logarithmic transformation is well defined because

ψ̂+i > 0 for i = 1, . . . , n. Then, (3.18) and (3.19) are expressed as ∑nj=i{−∆j + exp(ψ̇i)wj}

and ∑ni=1{−∆i + exp(ψ̇i)wi}ψ̇i, respectively, which yield Fenchel’s duality condition in

(3.9) and (3.10). Thus, by Theorem 3.3, ψ̇ is the unique minimizer of lP (ψ ∣ν) over Ψ.

Proof of Theorem 3.5. In the proof, we write r instead of r(ε̇) for a notational

convenience. We first note that

∣ui(ψ̈) − u
P
i (ψ̇

(r)
i ∣ ψ̇(r−1))∣ = ∣ui(ψ̇

(r)) − uPi (ψ̇
(r)
i ∣ ψ̇(r−1))∣

=

ˆ ∞

0

∣{Ei(ψ̇
(r), t) −EP

i (ψ̇(r), t ∣ ψ̇(r−1))}dN̄(t)∣ ≤ µde(ψ̇
(r), ψ̇(r−1)) < µε̇, (3.20)

40



for i = 1, . . . , n (i ≠ k), where

0 < µ = max
i∈{1,...,n}

ˆ ∞

0

[
Yi(t)eψ̇

(r)
i dN̄(t)

{∑
n
j=1 Yj(t)e

ψ̇
(r)
j }{∑

n
j=1 Yj(t)e

ψ̇
(r−1)
j }

] < ∞.

Next, since ψ̇(r), which is the unique minimizer of lP (ψ ∣ ψ̇(r−1)) over Ψ, satisfies

Fenchel’s duality condition in (3.9) and (3.10) in Theorem 3.3, we establish the follow-

ing inequality and equality conditions by using (3.20) in conjunction with the triangle

inequality, where the first inequality in (3.9) shows

0 ≥
n

∑
j=1

uPj (ψ̇
(r)
j ∣ ψ̇(r−1)) −

n

∑
j=i+1

uPj (ψ̇
(r)
j ∣ ψ̇(r−1)) =

i

∑
j=1

uPj (ψ̇
(r)
j ∣ ψ̇(r−1)) (i = 1, . . . , k − 1),

which implies

i

∑
j=1

uj(ψ̈) ≤
i

∑
j=1

{uj(ψ̈) − u
P
j (ψ̇

(r)
j ∣ ψ̇(r−1))} ≤ ∣

i

∑
j=1

uj(ψ̈) − u
P
j (ψ̇

(r)
j ∣ ψ̇(r−1))∣ ≤ iµε̇, (3.21)

the second inequality in (3.9) shows

0 ≤
n

∑
j=i

uPj (ψ̇
(r)
j ∣ ψ̇(r−1)) (i = k + 1, . . . , n),

which implies

n

∑
j=i

uj(ψ̈) ≥
n

∑
j=i

{uj(ψ̈) − u
P
j (ψ̇

(r)
j ∣ ψ̇(r−1))} ≥ −∣

n

∑
j=i

uj(ψ̈) − u
P
j (ψ̇

(r)
j ∣ ψ̇(r−1))∣ ≥ −(n − i + 1)µε̇,

(3.22)

and the equality in (3.10) shows

0 =
n

∑
i=1

ψ̇
(r)
i uPi (ψ̇

(r)
i ∣ ψ̇(r−1)) =

n

∑
i=1

(ψ̇
(r)
i − ψ̇

(r)
k )uPi (ψ̇

(r)
i ∣ ψ̇(r−1)) + ψ̇

(r)
k

n

∑
i=1

uPi (ψ̇
(r)
i ∣ ψ̇(r−1))

=
n

∑
i=1,i≠k

ψ̈uPi (ψ̇
(r)
i ∣ ψ̇(r−1)),
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which implies

∣
n

∑
i=1,i≠k

ψ̈iui(ψ̈)∣ = ∣
n

∑
i=1,i≠k

ψ̈i{ui(ψ̈) − u
P
i (ψ̇

(r)
i ∣ ψ̇(r−1))}∣≤

n

∑
i=1,i≠k

∣ψ̈i∣µε̇. (3.23)

Finally, suppose that the pseudo iterative convex minorant algorithm converges un-

der the stopping value of ε̇ > 0. As ε̇ converges to zero, all the bounds in (3.21) - (3.23)

converge to zero for each fixed n, which yield Fenchel’s duality condition in (3.2) and

(3.3). Thus, by Theorem 3.2, ψ̈ converges to the unique minimizer of lN(ψ) over Ψk.

Proof of Proposition 3.6. Under censored data, pl(ψ) can be reformulated as

pl(ψ) =
n

∏
i=1

ˆ ∞

0

{
eψi

∑
n
j=1 Yj(t)e

ψj
}

dNi(t)

=
n⋆

∏
i=1

ˆ ∞

0

{
eψ

⋆

i

∑
n
j=1 Yj(t)e

ψj
}

dN⋆

i (t)

. (3.24)

Suppose that jth subject is censored, where Z⋆
(h)

≤ Zj ≤ Z⋆
(h+1)

for h = 1, . . . , n⋆ with

Z⋆
(n⋆+1)

= ∞. Since ψj is only included in the denominator in (3.24), pl(ψ) is maximized

when ψj = ψ⋆h. If Zj ≤ Z⋆
(1)

, then pl(ψ) is maximized when ψj = ψ⋆1 by the assumption.

This shows that the isotonic estimator has jumps only at Z⋆
i . Thus, the denominator in

(3.24) can be reduced to ∑n
⋆

j=1 Y
⋆
j (t) exp(ψ⋆j ), and thus, (3.24) can be reduced to plC(ψ).

It follows that the unique maximizer of plC(ψ) is also the unique maximizer of pl(ψ).

Proof of Proposition 3.7. This proof is analogous to that of Proposition 3.6. Under

censored data with a time-dependent covariate, pl(ψ) can be reformulated as

pl(ψ) =
n

∏
i=1

ˆ ∞

0

{
eψ{Zi(t)}

∑
n
j=1 Yj(t)e

ψ{Zj(t)}
}

dNi(t)

=
n⋆

∏
i=1

ˆ ∞

0

{
eψ(Z

∗

i )

∑
n
j=1 Yj(t)e

ψ{Zj(t)}
}

dN∗

i (t)

. (3.25)

Likewise, pl(ψ) is maximized only when ψ{Zi(Xj)} in the denominator in (3.25), i, j =

1, . . . , n, is replaced with one of ψ(Z∗
h)’s for h = 1, . . . , n⋆. This shows that the isotonic
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estimator has jumps only at Z∗
h . Thus, the denominator in (3.25) can be reduced to

∑
n⋆

j=1 Y
∗
j (t) exp{ψ(Z∗

j )}, and thus, (3.25) can be reduced to plD(ψ). It follows that the

unique maximizer of plD(ψ) is also the unique maximizer of pl(ψ).

Proof of Theorem 3.8. We follow from Lemma 2.1 in the detailed version of Banerjee

(2007) on his webpage (M. Banerjee, University of Michigan). Denote ψ̃n minimizes

Pn{ln(ψ(Z) ∣ ψ
0
, εn)} among all monotonically increasing functions between L and U .

Since (1 − ζ)ψ̃n + ζψ0 is a monotonically increasing function between L and U for ζ > 0,

we have

lim
ζ→0+

Pn{ln(ψ̃n(Z)∣ψ
0
, εn)} − Pn{ln((1 − ζ)ψ̃n(Z) + ζψ0(Z)∣ψ

0
, εn)}

ζ
≤ 0.

It follows that

Pn{un(ψ̃n(Z)∣ψ
0
, εn)(ψ̃n(Z) − ψ0(Z))} ≤ 0. (3.26)

We claim that for every ω ∈ Ω, there exists a set Ω with P (Ω) = 1 such that

∣Pn,ω{un(ψ̃n(Z)∣ψ
0
, εn)(ψ̃n(Z) − ψ0(Z))} − P{u(ψ̃n(Z)∣ψ

0
)(ψ̃n(Z) − ψ0(Z))}∣

≤ ∣Pn,ω{un(ψ̃n(Z)∣ψ
0
, εn)(ψ̃n(Z) − ψ0(Z))} − Pn,ω{un(ψ̃n(Z)∣ψ

0
)(ψ̃n(Z) − ψ0(Z))}∣

+ ∣Pn,ω{un(ψ̃n(Z)∣ψ
0
)(ψ̃n(Z) − ψ0(Z))} − P{u(ψ̃n(Z)∣ψ0(Z))(ψ̃n(Z) − ψ0(Z))}∣

(3.27)

converges to zero almost surely as n go to infinity over all bounded monotone increasing

function, where Pn,ω is the empirical measure on {Xi(ω),∆i(ω), Zi(ω)}ni=1. Take εn,i =

cn,i/n, i = 1, . . . , n, such that νn,i = ψ0(Zi) + cn,i/n satisfies a monotone constraint, where

cn,i has finite lower and upper bounds of l and u, respectively. The first term in (3.27) is
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bounded above by

=

ˆ τ

0

∣{n−1
∑

n

j=1
Yj(t)e

ψ0(Zj)(1 − ecn,j/n)}
Pn,ω{Y (t)eψ(Z)(ψ0(Z) − ψ̃n(Z))}Pn,ω{dN(t)}

Pn,ω{Y (t)eψ0(Z)}{n−1∑
n
j=1 Yj(t)e

ψ0(Zj)+cn,j/n}
∣

≤

ˆ τ

0

[Pn,ω{Y (t)eU max{∣1 − eu/n∣, ∣1 − el/n∣}}
Pn,ω{Y (t)eU(U −L)}Pn,ω{dN(t)}

Pn,ω{Y (t)eL}Pn,ω{Y (t)eL+l/n}
]

= max{∣e−l/n − e(u−l)/n∣, ∣e−l/n − 1∣}

ˆ τ

0

Pn,ω{dN(t)}e2(U−L)(U −L), (3.28)

since ψ̃n(⋅) and ψ0(⋅) have finite lower and upper bounds of L and U , respectively, by

Assumption (A4). Since exp(−1/n) converges to 1 as n go to infinite, (3.28) converges

to zero, where the other terms in (3.28) converges to constant times
´ τ

0
P{dN(t)}, which

is finite by Assumption (A1). Thus, the first term in (3.27) converges to zero. For

the second term in (3.27), since a class of bounded monotone increasing function is

P -Glivenko-Cantelli by Lemma 2.1 in the detailed version of Banerjee (2007) on his

webpage (M. Banerjee, University of Michigan) and N is P -Glivenko-Cantelli by Lemma

4.1 (Kosorok 2007), then un(ψ̃n(Z)∣ψ
0
)(ψ0(Z)−ψ̃n(Z)), which is a continuous function of

P -Glivenko-Cantelli functions, is P -Glivenko-Cantelli by standard preservation property

of Glivenko-Cantelli class in Theorem 3 (van der Vaart and Wellner 2000, pp. 115-

133) provided that it has an integral envelope. The integrable envelope is simply given

by, for example, constant times ∣u(U ∣ L)∣ by Assumption (A5). The denominator in

u(ψ̃n(Z) ∣ψ0(Z)) is bounded away from 0 by Assumption (A1). Thus, the second term

converges to zero almost surely, where a similar statement in (3.27) is made by Kosorok

(2007, p.56).

Fix an ω ∈ Ω. By the Helly selection theorem, {ψ̃n,ω(⋅)} has a convergent subsequence

{ψ̃nk,ω(⋅)} that converges to a monotonically increasing right continuous function ψ̄ω(⋅)
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bounded by L and U . This implies that

lim
k→∞

Pnk,ω{un(ψ̃nk,ω(Z)∣ψ
0
)(ψ0(Z)− ψ̃nk,ω(Z))} = P{u(ψ̄ω(Z)∣ψ0(Z))(ψ0(Z)− ψ̄ω(Z))}.

(3.29)

To show this, (3.29) is expressed as

Pnk,ω{un(ψ̃nk,ω(Z)∣ψ
0
)(ψ0(Z) − ψ̃nk,ω(Z))} − P{u(ψ̃nk,ω(Z)∣ψ0(Z))(ψ0(Z) − ψ̃nk,ω(Z))}

+ P{u(ψ̃nk,ω(Z)∣ψ0(Z))(ψ0(Z) − ψ̃nk,ω(Z))} − P{u(ψ̄ω(Z)∣ψ0(Z))(ψ0(Z) − ψ̄ω(Z))},

where the first two term converges to zero by (3.27), and the second term is expressed as

ˆ
z∈Iz

[Eψ0(z){u(ψ̃nk,ω(z))}(ψ0(z) − ψ̃nk,ω(z)) −Eψ0(z){u(ψ̄ω(z))}(ψ0(z) − ψ̄ω(z))]pz(z)dz,

which converges to zero by the dominated convergence theorem.

In conjunction (3.26) with (3.29),

0 ≥

ˆ
z∈Iz

Eψ0(z){u(ψ̄ω(z)∣ψ0(z))}(ψ̄ω(z) − ψ0(z))pz(z)dz =

ˆ
z∈Iz

η(z)dz, (3.30)

where

η(z) = [Eψ0(z){u(ψ̄ω(z)∣ψ0(z))} −Eψ0(z){u(ψ0(z)∣ψ0)}][ψ̄ω(z) − ψ0(z)]pz(z).

Suppose that ψ̄ω(z) > ψ0(z). Then, u(ψ̄ω(z) ∣ψ0(z)) ≥ u(ψ0(z) ∣ψ0(z)). Consequently,

Eψ0(z){u(ψ̄ω(z))} ≥ Eψ0(z){u(ψ0(z))} and [Eψ0(z){u(ψ̄ω(z))}−Eψ0(z){u(ψ0(z))}][ψ̄ω(z)−

ψ0(z)] ≥ 0. The same inequality holds when ψ̄ω(z) < ψ0(z). It is obvious that (3.30)

equals zero when ψ̄ω(z) = ψ0(z). Thus, (3.30) is greater than or equal to 0, and it is

equal to 0.

Fix a < b in the interior of Iz such that a < z0 < b, where η(z) is a right continuous
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function on (a, b). Suppose that η(z) ≠ 0 at any point z ∈ (a, b). Then η(z) > 0,

because [Eψ0(z){u(ψ̄ω(z) ∣ ψ0(z))} − Eψ0(z){u(ψ0(z) ∣ ψ0(z))}] and [ψ̄ω(z) − ψ0(z)] are

both strictly positive. The right continuity of η(z) with Assumptions (A2) and (A6)

implies that (3.30) is strictly positive, which is a contradiction. Hence, we conclude

that η(z) = 0 for z ∈ (a, b), and thus, ψ̄ω(z) = ψ0(z) for z ∈ (a, b). Since ψ0(⋅) is a

continuous function by Assumption (A3), supz∈[σ1,σ2] ∣ψ̃n,ω(z) − ψ0(z)∣ converges to zero

on any compact set [σ1, σ2] of (a, b). Furthermore, since ψ0(⋅) has a strictly positive

derivative in a neighborhood of z0 by Assumption (A3) then ψ̃n,ω(z) lies strictly between

L and U for each z ∈ [σ1, σ2] and for each ω ∈ Ω by choosing σ1 and σ2 sufficiently close

to z0. Now, we compute ψ̇(1)
n,ω(z), and then, set ψ̃n,ω(z) = ψ̇

(1)
n,ω(z) if L < ψ̇

(1)
n,ω(z) < U ;

ψ̃n,ω(z) = L if ψ̇(1)
n,ω(z) < L; ψ̃n,ω(z) = U if ψ̇(1)

n,ω(z) > U . Consequently, ψ̃n,ω(z) = ψ̇
(1)
n,ω(z)

if L < ψ̃n,ω(z) < U . It follows that supz∈[σ1,σ2] ∣ψ̇
(1)
n,ω(z) − ψ0(z)∣ converges to zero on any

compact set [σ1, σ2] of (a, b). This shows strong consistency of ψ̇(1)(⋅) for ψ0(⋅).

For censored data, the same argument can be made for strong consistency by defining

empirical and probability measures on {Xi,∆i = 1, Zi} and {X,∆ = 1, Z}, respectively,

where the isotonic estimator has only a jump at Zi with ∆i = 1, i = 1, . . . , n, by Proposition

3.6.
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CHAPTER 4: SHAPE RESTRICTED ADDITIVE HAZARD
MODELS: MONOTONE, UNIMODAL AND U-SHAPE HAZARD

FUNCTIONS

4.1 Introduction

In many survival studies, a hazard function is assumed to have a shape restriction on a

covariate such as monotone increasing or monotone decreasing hazard. In Chapter 3, we

suggested the isotonic proportional hazard models denoted by λ(t ∣ Z) = λ0(t) exp{φ(Z)},

where λ0(⋅) was an unspecified baseline hazard function, φ(⋅) was a monotone function,

and Z was a scalar continuous covariate. This model is only valid under the proportional

hazard assumption. Furthermore, it might be computationally inefficient and unsta-

ble to maximize the partial likelihood (Cox 1972) with large sample sizes owing to the

complicated nonlinear structured of the partial likelihood, with a large dimensionality

(Gorst-Rasmussen and Scheike 2012). In cases where the proportionality assumption is

violated or sample size is large, the additive hazards model may be a useful alternative.

The model assumes that the effect of a risk factor is added to the hazard, defined as

λ(t ∣ Z) = λ0(t) + φ(Z). (4.1)

By following Lin and Ying (1994)’s approach, its loss function is defined as a quadratic

function, which is formulated in Subsection 4.2.1. This simple structure may simplify

computations, compared to the complicated structure of the partial likelihood.

The purpose of this paper is efficient and theoretically justified computation for esti-

mating φ(⋅) in (4.1) under a shape restriction such as a monotone, unimodal or U-shaped
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constraint. Specifically, our focus is on a unimodal hazard function, where the hazard is

monotone increasing and monotone decreasing on the intervals of (−∞,M] and [M,+∞),

respectively. The point M is called a mode which is generally unknown. We consider

the approach of Shoung and Zhang (2001), who minimized a least squares function over

a class of all unimodal functions. They proposed a profiling algorithm that estimated

unimodal functions at all hypothetical modes and then a mode at which the loss function

had a minimum. The profiling algorithm is directly applicable to our model. The sim-

ple structure of our quadratic loss function yields a global Hessian matrix that does not

depend on any parameter. Thus, once the global Hessian matrix is computed, we can

perform a standard quadratic programming method with a unimodal constraint within

profiling the mode.

With large sample sizes, the global Hessian matrix may be quite time consuming to

invert in the quadratic programming method owing to the high dimensionality, where

the dimension of Hessian matrix and number of hypothetical modes are the same order

as the sample size. Furthermore, unlike the least square function in the unimodal regres-

sion, our loss function is not separable in terms of observed covariate values so that the

global Hessian matrix is not a diagonal but rather a full matrix. To overcome this chal-

lenge, we propose the quadratic pool-adjacent-violators algorithm which estimates the

unimodal hazard function by minimizing a sequence of pseudo approximated loss func-

tions. Computational efficiency is gained from the fact that each pseudo loss function

has a closed form solution, and an efficient computation of the pool-adjacent-violators

algorithm (Ayer et al. 1955) is easily implemented to the profiling algorithm.

We define the loss function in Subsection 4.2.1. The quadratic programming method

and quadratic pool-adjacent-violators algorithm are described in Subsection 4.2.2 and

Subsection 4.2.3 respectively, without censoring. Censoring and time-dependent covari-

ates are described in Subsections 4.2.4 and 4.2.5, respectively. Extensions to estimation
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of monotone or U-shape hazard, estimation of baseline hazard function and inclusion of

additional covariates are described in Section 4.3. In simulation results reported in Sec-

tion 4.4, the quadratic pool-adjacent-violators algorithm improves computational speeds

compared to the quadratic programming method with bias and mean square error re-

ductions. An analysis of a cardiovascular disease dataset in Section 4.5 illustrates the

practical utility of our methodology in estimating mode with a nonlinear covariate effect.

All proofs are given in Section 4.6.

4.2 Shape restricted additive hazard model

4.2.1 Data set-up and loss function

Suppose that T is a failure time and C is a censoring time. Assume that T and C are

conditionally independent on Z. Let X =min(T,C) and ∆ = I(T ≤ C), where I(⋅) is the

indicator function. The observed data consist of n independent and identically distributed

replicates of (X,∆, Z), denoted by {Xi,∆i, Zi} for i = 1, . . . , n. DefineNi(t) = ∆iI(Xi ≤ t)

as a counting process and Yi(t) = I(Xi ≥ t) as an at-risk process for the ith subject.

Denote Z(i) as the ith smallest value amongst Z1, . . . , Zn. Under the isotonic proportional

hazard model, the ith element of the (negative) score function uNi (φ) is defined as

uNi (φ) =

ˆ ∞

0

{−dN(i)(t) + Y(i)(t)e
φ(Z

(i))dΛ̃0(φ, t)} (4.2)

for i = 1, . . . , n, where N(i)(t) and Y(i)(t) are the counting and at-risk processes corre-

sponding to Z(i), respectively, and where

Λ̃0(φ, t) =

ˆ t

0

∑
n
i=1 dNi(u)

∑
n
j=1 Yj(u)e

φ(Zj)
.
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Based on Lin and Ying (1994)’s approach to the additive hazard model in (4.1), we mimic

the score function (4.2), which is

ui(φ) =

ˆ ∞

0

{−dN(i)(t) + Y(i)(t)dΛ̂0(φ, t) + Y(i)(t)φ(Z(i))dt} (4.3)

for i = 1, . . . , n, where

Λ̂0(φ, t) =

ˆ t

0

∑
n
i=1{dNi(u) − Yi(u)φ(Zi)du}

∑
n
j=1 Yj(u)

. (4.4)

By plugging Λ̂0(φ, t) in (4.4) into ui(φ) in (4.3), we reformulate the score function in

(4.3) as

ui(φ) = ∑
n

j=1
{hijφ(Z(j))} − qi, (4.5)

where

hij =

ˆ ∞

0

{Y(i)(t)I(i = j) −
Y(i)(t)Y(j)(t)

∑
n
s=1 Y(s)(t)

}dt, (4.6)

qi =

ˆ ∞

0

dN(i)(t) −

ˆ ∞

0

{Y(i)(t)
∑
n
l=1 dN(l)(t)

∑
n
s=1 Y(s)(t)

} (4.7)

for i, j = 1, . . . , n. Accordingly, we define the quadratic loss function as

l(φ) =
1

2
φTHφ − φT q, (4.8)

where φ = {φ(Z(1)), . . . , φ(Z(n))}
T . Here, H and q are an n × n matrix and an n × 1

vector with elements in (4.6) and (4.7), respectively. An important point is that the loss

function is a quadratic function and H does not involve any unknown parameters in φ.
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4.2.2 Quadratic programming method with no censoring

We want to find a minimizer in φ of the loss function in (4.8) under shape restrictions,

such as a monotone, unimodal or U-shaped constraint on φ. In this section, we focus

on the unimodal function φ where is monotone increasing and monotone decreasing on

(−∞,M] and [M,+∞), respectively, along with the modeM . The monotone or U-shaped

function φ is described in Section 4.3.

We first assume that the mode M is known. As stated in Theorem 4.1 below, we

impose an anchor constraint φ(M) = δ for a constantM to guarantee a unique minimizer

of the loss function. Under the anchor constraint, the model being fitted in (4.1) is

reformulated by

λ(t ∣ Z) = {λ0(t) + δ} + ψ(Z), (4.9)

where ψ(⋅) = φ(⋅) − δ with ψ(M) = 0. Since the baseline hazard function absorbs δ, our

focus is on estimation of ψ(⋅), not φ(⋅). The vertical shift parameter δ is regarded as a

nuisance parameter, because the only difference between φ(⋅) and ψ(⋅) is the reference

group for defining the hazard difference parameters. In other words, hazard differences

based on φ(⋅) and ψ(⋅) are identical, where φ(⋅) −φ(ZR) = ψ(⋅) −ψ(ZR) for any reference

value ZR. In practice, since ψ(⋅) is only estimable at the observed Z(i)’s, we set ψ(Z(m)) =

0, where Z(m) is the largest Z(i) ≤M .

Theorem 4.1. Suppose that there is no censoring. The loss function l(ψ) is convex. It

is strictly convex when an anchor constraint is imposed that ψ(Z(m)) = 0.

Let ψi = ψ(Z(i)), i = 1, . . . , n. Denote Ψm = {ψ ∈ Rn ∶ ψ1 ≤ . . . ≤ ψm, ψm+1 ≥ . . . ≥

ψn, ψm = 0} which is a convex cone. Then, the problem of minimizing the loss function

under the unimodal and anchor constraints is equivalent to the problem of minimizing

the strictly convex quadratic function l(ψ) over the convex cone Ψm. We denote ψ̂ =

(ψ̂1, . . . , ψ̂n) as the unimodal minimizer of l(ψ) over Ψm. To estimate ψ at covariates
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values other that those in Z(1), . . . , Z(n), we assume that the unimodal estimator is a

right continuous step function with potential jumps at Z(i)’s. Under this assumption,

the uniqueness of the unimodal estimator is established in the following theorem:

Theorem 4.2. Suppose that there is no censoring. The unimodal estimator ψ̂ minimizes

l(ψ) over the convex cone Ψm if and only if Fenchel’s duality condition holds that ψ̂ ∈ Ψm

satisfies

∑
i

j=1
uj(ψ̂) ≤ 0 (i = 1, . . . ,m − 1), ∑

n

j=i
uj(ψ̂) ≤ 0 (i =m + 1, . . . , n) (4.10)

with equality holding if i =m + 1, and

∑
n

i=1,i≠m
ψ̂iui(ψ̂) = 0 (4.11)

Moreover, ψ̂ is uniquely determined by (4.10) and (4.11).

A quadratic programming method can be performed with equality and inequality

constraints, which gives the unique minimizer that satisfies Fenchel’s duality conditions

in (4.10) and (4.11) in Theorem 4.2.

We next assume thatM is unknown, which is a more general case. We apply a profiling

algorithm that estimates the unimodal hazard functions at all hypothetical modes and

estimates the mode to be the value at which the loss function has a minimum value,

which is formalized as

M̂ = [Z(m̂) ∶ m̂ = arg minm∈(1,...,n){minψ∈Ψm l(ψ)}]. (4.12)

Since the global Hessian matrix is available in (4.6), which does not depend on any

parameters in ψ, the quadratic programing method is easily performed by profiling the

mode.

52



4.2.3 Quadratic pool-adjacent-violators algorithm with no censoring

Unlike unimodal linear regression under the additive hazards model, the global Hes-

sian matrix is not a diagonal but rather a full matrix. When sample sizes increase, it is

a challenge to handle the full Hessian matrix in the quadratic programming method. In

particular, when the mode is unknown, it may be quite time consuming to perform the

quadratic programing method at every hypothetical mode owing to high dimensionality,

where both the dimension of the Hessian matrix and the number of hypothetical modes

are of the same order as the sample size.

To improve the computational speed, we suggest the quadratic pool-adjacent-violators

algorithm that estimates the unique minimizer of the loss function l(ψ) over Ψm by

minimizing a sequence of pseudo loss functions. By regarding some parameter ψ as a

known constant ν, we approximate l(ψ) in (4.8) by

l(ψ) = ∑
n

i=1
{

1

2
hiiψ

2
i + (∑

n

j=1,j≠i
hijψiψj) − qiψi}

≈ ∑
n

i=1
{

1

2
hiiψ

2
i + (∑

n

j=1,j≠i
hijψiνj) − qiψi}

=
1

2
∑

n

i=1
(ψi −

qi −∑
n
j=1,j≠i hijνj

hii
)

2

hii + g(ν) = l
P (ψ ∣ ν), (4.13)

where g(ν) = 2−1∑
n
i=1(qi − ∑

n
j=1,j≠i hijνj)

2h−1
ii which does not depend on ψ. The pseudo

loss function lP (ψ ∣ ν) in (4.13) is a strictly convex function because the pseudo Hessian

matrix is a diagonal matrix having the diagonal elements of hPii = hii > 0, i = 1, . . . , n, and

the pseudo score function is defined as uPi (ψ ∣ ν) = hiiψi +∑
n
j=1,j≠i hijνj − qi.

Let Ψ̇m = {ψ ∈ Rn ∶ ψ1 ≤ . . . ≤ ψm, ψm+1 ≥ . . . ≥ ψn} be the convex cone obtained by

removing the anchor constraint from Ψm. Denote ψ̇ as the unimodal minimizer of lP (ψ∣ν)

over Ψ̇m. The procedure of quadratic pool-adjacent-violators algorithm is described by

the following steps:

Step 4.1: Choose an initial value of ψ(0) ∈ Ψ̇m (or ψ(0) ∈ Ψm).
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Step 4.2 Update ψ̇(r) such that ψ̇(r) = arg minψ∈Ψ̇m l(ψ ∣ ψ̇(r−1)).

Step 4.3: Repeat Step 4.2 until convergence, where its convergence criteria is d(ψ̇(r), ψ̇(r−1)) =

∑
n
i=1 ∣ψ̇

(r)
i − ψ̇

(r−1)
i ∣ < ε̇ for small ε̇ > 0.

Step 4.4: Do a vertical shift, ψ̈i = ψ̇
(r)
i − ψ̇

(r)
m , i = 1, . . . , n, where ψ̈ ∈ Ψm.

The pseudo loss function lP (ψ ∣ ν) in (4.13) has the form of the least square function.

Thus, ψ̇ ∈ Ψm has a closed form solution that satisfies Fenchel’s duality condition in (4.14)

and (4.15) Theorem 4.3 below, which can be easily computed by using increasing and

decreasing pool-adjacent-violators algorithm on the convex cones {ψ ∈ Rm ∶ ψ1 ≤ . . . ≤ ψm}

and {ψ ∈ Rn−m ∶ ψm+1 ≥ . . . ≥ ψn}, separately.

Theorem 4.3. The unimodal estimator ψ̂ minimizes l(ψ) over the convex cone Ψ if and

only if Fenchel’s duality condition holds that ψ̇ ∈ Ψ satisfies

∑
i

j=1
uPj (ψ̇ ∣ ν) ≤ 0 (i = 1, . . . ,m), ∑

n

j=i
uPj (ψ̇ ∣ ν) ≤ 0 (i =m + 1, . . . , n), (4.14)

with equality holding if i =m or i =m + 1, and

∑
n

i=1
ψ̇iu

P
i (ψ̇ ∣ ν) = 0 (4.15)

Moreover, ψ̇ is uniquely determined by (4.14) and (4.15).

After the iterative pool-adjacent-violators algorithm converges in Step 4.3, the anchor

constraint is imposed by the vertical shift in Step 4.4. It guarantees that the vertically

shifted unimodal estimate ψ̈ is the unique minimizer of l(ψ) over Ψm, as stated in the

following theorem:

Theorem 4.4. Suppose that for any ε̇ > 0, there exists r(ε̇) such that the quadratic pool-

adjacent-violators algorithm converges at r(ε̇)th iteration under the distance stopping

criteria d(ψ̇(r(ε̇)), ψ̇(r(ε̇))−1) < ε̇. Then, as ε̇ → 0, ψ̈ = (ψ̇
(r(ε̇))
1 − ψ̇

(r(ε̇))
k , . . . , ψ̇

(r(ε̇))
1 − ψ̇

(r(ε̇))
k )

converges to the unique minimizer of l(ψ) over Ψm.

54



4.2.4 Censoring

Suppose that some subjects’ failure times are censored. Under the proportional hazard

assumption, the isotonic estimator jumps only at the covariate values associated with

observed failure events by Proposition 3.6. Since our approach was based on a mimicked

score function from the proportional hazard model in Subsection 4.2.1, we also restricted

our unimodal estimator to a right continuous step function with jumps at the covariate

values associated with uncensored subjects. Based on this restriction, we apply the

replacement parameters algorithm that replaces a parameter for a censored subject with

the parameter for an uncensored subject having covariate value which is closest to that

for the censored subject amongst all uncensored subjects having smaller covariate values

than the censored subject. This approach is formalized below.

Let n⋆ be the number of subjects having observed failure time out of the total n

subjects, and Z⋆
i be their covariates for i = 1, . . . , n⋆. Define n⋆ disjoint intervals by

I⋆1 = (−∞, Z⋆
(1)

) ∪ [Z⋆
(1)
, Z⋆

(2)
), I⋆2 = [Z⋆

(2)
, Z⋆

(3)
), . . . , I⋆n⋆ = [Z⋆

(n⋆)
,+∞), where Z⋆

(i)
is the

ith smallest value among Z⋆
1 , . . . , Z

⋆
n⋆ . We can then apply the replacement parameters

algorithm that replaces ψ(Zh) with ψ(Z⋆
i ) if Zh ∈ I⋆i for h = 1, . . . , n, i = 1, . . . , n⋆.

Accordingly, the loss function for censored data is defined by

lC(ψ⋆) =
1

2
ψ⋆TH⋆ψ⋆ − ψ⋆T q⋆,

where ψ⋆ = {ψ(Z⋆
(1)

), . . . , ψ(Z⋆
(n⋆)

)}T , h⋆ij = ∑s∈Ri∑t∈Rj
hst, q⋆i = ∑s∈Ri

qs and Ri = {s ∶ Zs ∈

I⋆i , s = 1, . . . , n}. We assume that ψj = ψ⋆1 if Zj < Z⋆
(1)

, j = 1, . . . , n, for censored subjects

whose covariate value is smaller then the smallest value for uncensored subjects. This is

needed to estimate ψ(⋅) at all values of Z including [Z(1), Z
⋆
(1)

). As stated in Proposition

4.5, lC(ψ⋆) is a strictly convex quadratic function when an anchor constraint is imposed.

Thus, Theorems 4.2−4.4 are all valid for lC(ψ⋆), so that either the profiling quadratic
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programming method or profiling quadratic pool-adjacent-violators algorithm is directly

applicable to lC(ψ⋆).

Proposition 4.5. Assume that ψj = ψ⋆1 if Zj < Z⋆
(1)

, j = 1, . . . , n. The loss function

lC(ψ⋆) is strictly convex when an anchor constraint is imposed that ψ⋆m = ψ(Z⋆
(m)

) = 0.

4.2.5 Time-dependent covariates

We consider a time-dependent covariate Z(t) in the additive hazard model of λ(t ∣

Z(t), ψ) = λ0(t) + ψ(Z(t)). We assume that ψ(⋅) does not change over time. Under the

proportional hazard assumption, the isotonic estimator jumps only at the time-dependent

covariate values associated with uncensored subjects only at their failure times. Since our

approach was based on a mimicked score function from the proportional hazard model

in Subsection 4.2.1, we also restricted our unimodal estimator to a right continuous step

function with jumps at the time-dependent covariate values at their observed failure

times. Based on this restriction, we apply the replacement parameters algorithm where

the parameters for subjects having their failure times observed are substituted for other

parameters in the loss function. This approach is formalized below.

A challenge is that the number of parameters in the loss function is potentially much

larger than the total sample size because the time-varying covariate may result in different

ψ(Zi(Xj)) at each observed failure time for a given subject i = 1, . . . , n. To alleviate this

problem, we assume that the unimodal estimator is a right continuous step function

which jumps only at Zi(X∗
i ), where X∗

i is the ith subject’s failure time. Based on this

assumption, one may use replacement parameters algorithm where the parameters for

subjects having their failure times observed are substituted for other parameters in the

loss function.

Formally, let n⋆ be the number of subjects having observed failure time, and let

Z⋆
i (t) be their covariates for i = 1, . . . , n⋆. Let Z∗

i = Z
⋆
i (X

∗
i ) be the ith subject’s covariate
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at time of failure. Define n⋆ disjoint intervals by I∗1 = (−∞, Z∗
(1)

) ∪ [Z∗
(1)
, Z∗

(2)
), I∗2 =

[Z∗
(2)
, Z∗

(3)
), . . . , I∗n⋆ = [Z∗

(n⋆)
,+∞), where Z∗

(i)
is the ith smallest value among Z∗

1 , . . . , Z
∗
n⋆ .

We can then apply the replacement parameters algorithm that replaces ψ(Zh(Xj)) with

ψ(Z∗
i ) if Zh(Xj) ∈ Ii for h, j = 1, . . . , n and i = 1, . . . , n⋆. Accordingly, the loss function is

then defined as

lD(ψ∗) =
1

2
ψ∗TH∗ψ∗ − ψ∗T q∗,

where h∗ij =
´∞

0
{∑s∈Ri(u)∑t∈Rj(u) hst(u)}dt, q

∗
i =
´∞

0
{∑s∈Ri(u) qs(u)}, Ri(u) = {s ∶ Zs(u) ∈

I∗i , s = 1, . . . , n} and ψ∗ = {ψ(Z∗
(1)

), . . . , ψ(Z∗
(n⋆)

)}T . Here, hst(u) and qs(u) are the

quantities inside the integrals in (4.6) and (4.7) respectively, where hst(u) = Ys(u)I(s =

t)−{Ys(u)Yt(u)}/{∑
n
l=1 Yl(u)} and qs(u) = dNs(u)−Ys(u){∑

n
v=1 dNv(u)}/{∑

n
l=1 Yl(u)} for

s, t = 1, . . . , n. Since Z∗
i ’s are only defined for those who have observed failure time, lD(ψ∗)

with replacement parameters algorithm is also applicable for censored data with the

time-dependent covariate. However, unlike the censoring case with a time independent

covariate that replaces parameters for censored subjects only, both the uncensored and

cenceored cases with the time-dependent covariate require replacing, which may lead

to certain parameters vanishing from the loss function. To ensure valid estimations,

we further assume that the unimodal estimator does not have jumps at a covariate

value associated with the excluded parameters. Then, Theorems 4.2−4.4 are all valid for

lD(ψ∗), so that either the profiling quadratic programming method or profiling quadratic

pool-adjacent-violators algorithm is directly applicable to lD(ψ∗).

Proposition 4.6. Assume that ψ(Zi(Xj)) = ψ∗1 if Zi(Xj) < Z⋆
(1)

, i, j = 1, . . . , n. The

loss function of lD(ψ∗) is strictly convex when an anchor constraint is imposed that

ψ∗m = ψ(Z∗
(m)

) = 0.
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4.3 Extension

4.3.1 Monotone and U-shape hazard functions

The unimodal shape restricted hazard model is allowed to include a monotone hazard

function by setting the mode M to the left or right boundary of the covariate values.

In other words, the unimodal function ψ(⋅) is changed to a monotone increasing (or

monotone decreasing) function if we set M to Z(n) (or Z(1)). A U-shape hazard function

is accommodated by reversing the order of the unimodal constraint before and after

the mode. Since the monotone or U-shape constraint is expressed as a convex cone,

the quadratic pool-adjacent-violators algorithm is applicable to compute the constrained

estimator.

4.3.2 Baseline hazard function

It is not possible to estimate the baseline hazard function λ0(t) and vertical shift

parameter δ. They are not identifiable because {λ0(t), φ(Z)} and {λ0(t) + δ, φ(Z) − δ}

give the same model in (4.1). Under the anchor constraint ψ(Z) = φ(Z)−δ in Subsection

4.2.2, one may estimate λ⋆0(t), where λ⋆0(t) = λ0(t) + δ is a baseline hazard function

including an anchor effect. This approach is needed for the the standard additive hazard

model to estimate a baseline hazard function at a reference group. Hence, the baseline

hazard function including the anchor effect can be computed by plugging ψ̂ into Λ̂0(ψ, t)

in (4.4), where ψ̂ is the constrained estimator from the quadratic loss function.

4.3.3 Additional covariates

Suppose that there exist an additional p covariates. We include those covariates in the

model λ(t ∣ Z,W (t)) = λ0(t)+ψ(Z)+βTW (t), whereW (⋅) is a p×1 dimensional covariate

process and β is a p × 1 vector of regression parameters. Taking the same approach as

in Subsection 4.2.1, we mimic the score function from the isotonic proportional hazard
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model with additional covariates. We define the quadratic loss function as

lA(θ) =
1

2
θTHAθ − θT qA,

where θ = (ψT , βT )T , qA = (qT , q○T )T and

HA =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

H H3

(H3)T H○

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where H○ and q○ are an p × p matrix and an p × 1 vector, respectively, defined as

H○ =
n

∑
i=1

ˆ ∞

0

Yi(t){Wi(t) − W̄ (t)}
⊗2
dt,

q○ =
n

∑
i=1

ˆ ∞

0

{Wi(t) − W̄ (t)}dNi(t),

and H3 is an n × p matrix with elements

h3ij =

ˆ ∞

0

Yi(t){Wij(t) −
∑
n
s=1 Ys(t)Wsj(t)

∑
n
l=1 Yl(t)

}dt

for i = 1, . . . , n and j = 1, . . . , p. Here, W̄ (t) = ∑
n
j=1 Yj(t)Wj(t)/∑

n
l=1 Yl(t) and W⊗2 =

W TW . Detailed derivations are available in Section 4.6.

For fixed β, lA(θ) reduces to the quadratic function lA(ψ ∣ β) = ψTHψ/2 − ψT q3(β),

where q3(β) = q − H◇β. Similarly, for fixed ψ, lA(θ) reduces to the quadratic func-

tion lA(β ∣ ψ) = βTH○β/2 − βT q2(ψ), where q2(ψ) = q○ − (H◇)Tψ. Thus, we can esti-

mate ψ and β by the following steps. Set initial values of (ψ(0), β(0)) ∈ Ψm × Rp. Up-

date ψ(m) given β = β(m−1) by using the quadratic pool-adjacent-violators algorithm

for lA(ψ ∣ β), and update β(m) given ψ = ψ(m) which has the closed form solution

β(m) = H○−1q2(ψ(m)). Repeat the updates until convergence, where the convergence

criteria is d(ψ(m), ψ(m−1)) + d(β(m), β(m−1)) < ε for a small positive ε. Since lA(ψ ∣ β)
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has the same form as the quadratic loss function in (4.8), the replacement parameters

algorithm described in Subsections 4.2.4 and 4.2.5 is directly applicable to censored data

with time independent covariate and time-dependent covariate, respectively.

4.4 Simulations

We investigated the performance of quadratic programming method and quadratic

pool-adjacent-violators algorithm through simulation studies. As a gold standard, one-

step quadratic pool-adjacent-violators algorithm was considered by setting ν to the true

value in the pseudo loss function. For the first part of the simulation studies, we con-

sidered a time independent covariate Z. The time independent covariate was generated

from a uniform distribution on (0,1). Three forms of unimodal functions on the interval

(0,1) were considered: φ(Z) = −∣Z −M ∣, φ(Z) = −∣Z −M ∣1/2 and φ(Z) = −∣Z −M ∣2,

where M=0⋅25, 0⋅50 and 0⋅75. The failure time was then generated from an additive

hazards model with a constant baseline hazard function. The censoring time was in-

dependently generated from a uniform distribution yielding approximately 30% censor-

ing. For the second set of simulation studies, the same scenarios were used with a

time-dependent covariate Z(t), where Z(t) was piecewise constant. We constructed

Z(t) by generating independent uniform (0,1) random variables on disjoint time inter-

vals (xj−1, xj], where x0 = 0, x1 = 0⋅22, x2 = 0⋅44, . . . , x9 = 2, x10 = +∞. We simulated

500 replicates with sample size n = 100, 500 and 1000. To demonstrate Theorem 4.4,

we additionally checked Fenchel’s duality conditions in Theorem 4.2 for the converged

value of the quadratic pool-adjacent-violators algorithm: maxj∈(1,...,m−1){∑
i
j=1 uj(ψ̈)} < ε;

maxj∈(m+1,...,n){∑
n
j=i uj(ψ̈)} < ε; ∣∑

n
j=m+1 uj(ψ̈)∣ < ε; ∣∑

n
i=1,i≠m ψ̈iui(ψ̈)∣ < ε. The stopping

values of ε and ε̇ were set to 10−3 and 10−5, respectively. For each data set an initial value

for the quadratic pool-adjacent-violators algorithm was set to ∣γ̂∣Z̄iI(i ≤ m) − ∣γ̂∣Z̄iI(i ≥

m), where Z̄i = Z(i) − Z(m) and γ̂ was estimated coefficient of Z̄i from the standard
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additive hazard models.

First we conducted the simulations with known mode M and evaluated the perfor-

mance of the algorithms by computing the integrated mean square error
´ 1

0
E[φ○(Z) −

ψ̂○(Z)]2dZ, where φ○(Z) = φ(Z) − φ(0) and ψ̂○(Z) = ψ̂(Z) − ψ̂(0). This was approxi-

mated by ∑Rr=1∑
G
g=1[φ

○(zg) − ψ̂○r(zg)]
2/(GR) based on equally spaced grid points of zg’s

between (0⋅001, 0⋅999), where G = 1000 grid points and R = 500 simulation runs. Here,

points inM±0⋅005 were excluded from the grid points to compute integrated mean square

error because the unimodal estimator might be unstable around the mode (Robertson

et al. 1988, p.326). Second we conducted the simulations with unknown mode M using

the profiling algorithm. We then additionally evaluated bias and mean squared error,

∑
R
r=1(M̂r −M)/R and ∑Rr=1(M̂r −M)2/R, respectively, where M̂r was the estimated mode

for rth simulated dataset. Likewise, M±0⋅005 points from the unimodal estimators were

excluded to compare the loss functions during the profiling algorithm in (4.12).

Tables 4.1 and 4.2 show simulations results for time independent and time-dependent

covariates, respectively. For known mode, integrated mean square error decreases as sam-

ple size increases for both quadratic programming method and quadratic pool-adjacent-

violators algorithm with reasonable computation speeds. The quadratic pool-adjacent-

violators algorithm converges 100% for all scenarios, which is in agreement with Theorem

4.4. For unknown mode, both quadratic programming and quadratic pool-adjacent-

violators algorithms have relatively large integrated mean square error, bias and mean

square error in small sample size, but these decreases as sample size increases. The

quadratic programming method is quite slow for large sample sizes. For example, when

sample size is 1000, it takes approximately 5 seconds for known mode and 1000×5=5000

seconds (83 minutes) for unknown mode, since the quadratic programming method is

performed at every hypothetical mode. On the other hand, the quadratic pool-adjacent-

violators algorithm dramatically improves computational speed. When sample size is
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1000, it takes less than one minute for all scenario and is orders of magnitude faster

than the quadratic programming method. Here the computation time does not include

time for calculating Hessian matrix in order to compare the algorithms. Both quadratic

programming method and quadratic pool-adjacent-violators algorithm have similar per-

formances as the gold standard one-step quadratic pool-adjacent-violators algorithm in

terms of integrated mean square error of the unimodal estimator, bias and mean square

error of the mode estimator.

4.5 Folic acid for vascular outcome reduction in transplantation study

Folic Acid for Vascular Outcome Reduction in Transplantation (FAVORIT) study

was a multicenter double-blind randomized controlled clinical trial to investigate if vita-

min supplementation reduces risk of cardiovascular disease (CVD) in kidney transplant

recipients (Bostom et al. 2011). Four thousand one hundred ten study participants were

enrolled between August 2002 and January 2007 and followed up every six months thor-

ough January 2010. Patients were randomized to a multivitamin that included either a

high-dose or low-dose of folic acid (5 or 0 mg), vitamin B6 (50 or 1.4 mg), and vitamin

B12 (1000 or 2 microg). The outcome of interest was any of the following nine events:

(1) CVD death, (2) myocardial infarction, (3) resuscitated sudden death, (4) stroke, (5)

coronary artery revascularization, (6) lower extremity revascularization or amputation

above the ankle for severe arterial disease, (7) carotid endarterectomy or angioplasty,

(8) abdominal aortic aneurysm repair, or (9) renal artery revascularization. A total of

584 CVD events were observed. Diastolic and systolic blood pressure was measured at

baseline on all participants. The mean arterial pressure (Gevers et al. 1993) was then

calculated as a weighted average of diastolic and systolic blood pressure with a weight of

one third and two thirds, respectively. The mean arterial pressure ranged from 55⋅0 to

167⋅8 with the sample mean of 97⋅6±12⋅9 mmHg.
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Table 4.1: Simulation results for time independent covariate: IMSE multiplied by 105

(CPU time in seconds), bias multiplied by 103 and MSE multiplied by 103 for known and
unknown modes, where φ1 = −∣Z −M ∣, φ2 = −∣Z −M ∣1/2 and φ3 = −∣Z −M ∣2.

M φ(Z) n
QPM QPAVA QPAVA True
Known Unknown Known Unknown Known Unknown
IMSE IMSE B/M IMSE IMSE B/M IMSE IMSE B/M

0⋅25 φ1 100 79 (0) 230 (0) 125/77 82 (0) 230 (0) 125/77 80 (0) 224 (0) 125/77
500 16 (1) 55 (225) 14/20 15 (0) 55 (7) 14/20 15 (0) 55 (2) 14/19
1000 12 (5) 18 (3648) 7/12 12 (0) 18 (47) 7/12 11 (0) 18 (19) 7/12

φ2 100 84 (0) 311 (0) 183/105 87 (0) 311 (0) 183/105 85 (0) 303 (0) 184/106
500 23 (1) 64 (224) 77/47 21 (0) 64 (6) 77/47 21 (0) 64 (2) 78/47
1000 17 (6) 26 (3684) 55/31 17 (0) 26 (44) 55/31 17 (0) 26 (19) 55/31

φ3 100 55 (0) 129 (0) 86/56 58 (0) 129 (0) 86/56 56 (0) 126 (0) 86/56
500 10 (1) 29 (220) 0/9 9 (0) 29 (7) 0/9 8 (0) 29 (2) -1/9
1000 6 (5) 15 (3620) -2/4 6 (0) 15 (49) -2/4 6 (0) 15 (19) -2/4

0⋅5 φ1 100 40 (0) 216 (0) 6/64 42 (0) 216 (0) 6/64 40 (0) 209 (0) 6/64
500 10 (1) 42 (222) -4/28 10 (0) 42 (6) -4/28 10 (0) 41 (2) -5/28
1000 7 (5) 13 (3663) -5/13 8 (0) 13 (44) -5/13 7 (0) 13 (19) -5/13

φ2 100 51 (0) 350 (0) 12/74 53 (0) 350 (0) 12/74 52 (0) 341 (0) 12/74
500 16 (1) 64 (218) -12/50 16 (0) 64 (6) -12/50 16 (0) 63 (2) -12/50
1000 13 (5) 23 (3574) -3/37 13 (0) 23 (41) -3/37 13 (0) 23 (18) -4/37

φ3 100 27 (0) 99 (0) 4/53 28 (0) 99 (0) 4/53 26 (0) 96 (0) 4/53
500 6 (1) 20 (220) -1/11 6 (0) 20 (6) -1/11 5 (0) 20 (2) -1/12
1000 3 (5) 7 (3610) 0/5 4 (0) 7 (46) 0/5 4 (0) 7 (19) -1/5

0⋅75 φ1 100 30 (0) 220 (0) -127/74 34 (0) 220 (0) -127/74 32 (0) 213 (0) -127/74
500 7 (1) 38 (219) -29/23 10 (0) 38 (7) -29/23 9 (0) 37 (2) -28/23
1000 3 (5) 9 (3623) -11/12 3 (0) 9 (47) -11/12 3 (0) 8 (19) -10/12

φ2 100 40 (0) 328 (0) -161/95 38 (0) 328 (0) -161/95 36 (0) 319 (0) -162/95
500 12 (1) 52 (212) -80/45 13 (0) 52 (6) -80/45 13 (0) 51 (2) -80/45
1000 6 (5) 15 (3503) -46/28 6 (0) 15 (43) -46/28 6 (0) 15 (18) -47/28

φ3 100 22 (0) 115 (0) -93/55 23 (0) 115 (0) -93/55 22 (0) 112 (0) -93/55
500 6 (1) 21 (181) -3/10 7 (0) 21 (6) -3/10 7 (0) 20 (2) -4/10
1000 2 (5) 6 (3007) 0/5 2 (0) 6 (43) 0/5 2 (0) 5 (17) 0/5

QPM: quadratic programming method; QPAVA: quadratic pool-adjacent-violators
algorithm; QPAVA True: one-step QPAVA from true initial value; Known: mode is
known; Unknown: mode is unknown; IMSE: integrated mean squared error; B/M:
bias/mean squared error.
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Table 4.2: Simulation results for time-dependent covariate: IMSE multiplied by 105

(CPU time in seconds), bias multiplied by 103 and MSE multiplied by 103 for known and
unknown modes, where φ1 = −∣Z(t) −M ∣, φ2 = −∣Z(t) −M ∣1/2 and φ3 = −∣Z(t) −M ∣2.

M φ(Z(t)) n
QPM QPAVA QPAVA True
Known Unknown Known Unknown Known Unknown
IMSE IMSE B/M IMSE IMSE B/M IMSE IMSE B/M

0⋅25 φ1 100 21 (0) 55 (1) 104/57 21 (0) 55 (0) 103/57 22 (0) 56 (0) 103/57
500 15 (1) 26 (244) 15/18 15 (0) 26 (7) 15/18 16 (0) 26 (2) 15/18
1000 14 (5) 15 (4077) 18/11 14 (0) 15 (46) 18/11 14 (0) 16 (20) 18/11

φ2 100 33 (0) 60 (1) 151/85 33 (0) 60 (0) 151/85 35 (0) 62 (0) 152/85
500 23 (1) 39 (331) 71/43 23 (0) 39 (8) 71/43 23 (0) 39 (3) 71/43
1000 23 (5) 24 (5394) 42/28 23 (0) 24 (55) 42/28 23 (0) 24 (24) 41/28

φ3 100 11 (0) 21 (0) 47/35 11 (0) 21 (0) 47/35 12 (0) 22 (0) 47/35
500 7 (1) 15 (133) 0/10 7 (0) 15 (5) 0/10 7 (0) 15 (2) 0/10
1000 6 (5) 8 (2241) -3/4 6 (0) 8 (30) -3/4 6 (0) 8 (13) -3/4

0⋅5 φ1 100 15 (0) 38 (1) -4/52 14 (0) 38 (0) -4/52 15 (0) 39 (0) -4/52
500 8 (1) 16 (280) 9/20 8 (0) 16 (7) 9/20 8 (0) 16 (3) 8/20
1000 7 (5) 9 (4616) 3/13 7 (0) 9 (50) 3/13 7 (0) 9 (22) 3/13

φ2 100 25 (0) 62 (1) 6/68 25 (0) 62 (0) 6/68 27 (0) 63 (0) 6/68
500 16 (1) 29 (361) -11/46 16 (0) 29 (8) -11/46 16 (0) 30 (3) -11/46
1000 15 (5) 18 (5877) -5/39 15 (0) 18 (58) -5/39 15 (0) 18 (26) -5/38

φ3 100 8 (0) 19 (0) -19/35 8 (0) 19 (0) -19/35 8 (0) 19 (0) -18/35
500 3 (1) 7 (160) 2/9 3 (0) 7 (5) 2/9 3 (0) 7 (2) 2/9
1000 3 (5) 4 (2688) -7/4 3 (0) 4 (34) -7/4 3 (0) 4 (15) -7/4

0⋅75 φ1 100 9 (0) 27 (0) -107/59 10 (0) 27 (0) -107/59 10 (0) 28 (0) -107/59
500 3 (1) 13 (243) -31/20 3 (0) 13 (7) -31/20 3 (0) 13 (2) -31/20
1000 3 (5) 4 (4138) -8/11 3 (0) 4 (46) -8/11 3 (0) 4 (20) -9/11

φ2 100 15 (0) 47 (1) -154/90 15 (0) 47 (0) -154/90 16 (0) 48 (0) -154/90
500 7 (1) 18 (333) -81/43 7 (0) 18 (8) -81/43 7 (0) 18 (3) -81/43
1000 6 (5) 8 (5454) -41/29 6 (0) 8 (55) -41/29 6 (0) 8 (24) -41/29

φ3 100 6 (0) 12 (0) -61/36 6 (0) 12 (0) -61/36 7 (0) 12 (0) -61/36
500 2 (1) 9 (136) -12/11 2 (0) 9 (5) -12/11 2 (0) 9 (2) -12/11
1000 1 (5) 2 (2208) 4/5 1 (0) 2 (29) 4/5 1 (0) 2 (13) 4/5

QPM: quadratic programming method; QPAVA: quadratic pool-adjacent-violators
algorithm; QPAVA True: one-step QPAVA from true initial value; Known: mode is
known; Unknown: mode is unknown; IMSE: integrated mean squared error; B/M:
bias/mean squared error.
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The mean arterial pressure is known to have a U-shape relationship with the CVD

with low and high values associated with increased risk (Berbari and Manci 2010, p.95).

Table 4.3 displays the relationship between mean arterial pressure and CVD estimated

from the FAVORIT data. The rate of CVD is higher when the mean arterial pressure is

below the 20th percentile and when the mean pressure is above the 80th percentile. The

CVD rate is lower for the value of the mean arterial pressure between the 20th and 80th

percentiles. In the standard Cox model, the proportional hazards assumption is violated

for the mean arterial pressure (P = 0⋅02), and the additive hazards assumption would be

an alternative.

We fit an additive hazards model assuming a U-shaped relationship between the mean

arterial pressure and CVD. The profiling quadratic pool-adjacent-violators algorithm was

used to estimate the mode and U-shape hazard function, with the method described in

Subsection 4.3.3 to adjust for treatment effect. Figure 4.1 displays the estimated U-shape

hazard function in the mean arterial pressure where location of the mode is estimated

to be at 77. The black dots indicate the values of the mean arterial pressure associated

with observed CVD event, which are potential jump points for the U-shape estimate,

as discussed in Subsection 4.2.4. The estimated hazard function shows the U-shaped

relationship, with relatively large jumps at 60 and 146 of the mean arterial pressure.

We additionally fit the standard additive hazards models with polynomials of degree

2 (α1Z̄+α2Z̄2+α3Trt), piecewise linear (β1Z̄lt+β2Z̄rt+β3Trt) and piecewise polynomials

of degree 2 (γ1Z̄lt +γ2Z̄2
lt +γ3Z̄rt +γ4Z̄2

rt +γ5Trt) in Figure 4.1, using the estimated mode,

77, from the U-shape additive hazards model. Here, Z̄ is the mean arterial pressure

centered at 77, Z̄lt = Z̄I(Z̄ ≤ 0), Z̄rt = Z̄I(Z̄ > 0) and Trt is a treatment group indicator

with a reference group of the low folic acid. The parametric polynomials do not provide

a good fit particularly for the increased risk at the lower mean arterial pressure, except

maybe for the piecewise 2nd degree polynomials. However, the piecewise 2nd degree
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Table 4.3: Rate of CVD events by quantiles.

Quintile Range The number Patient year The number Rate
(%) of MAP of patients at risk of CVD events (per 1000)
0-20 55-87 808 3038 125 41
20-40 87-94 802 3178 103 32
40-60 94-100 810 3171 119 38
60-80 100-107 802 3062 114 37
80-100 107-168 799 2736 121 44

MAP: mean arterial pressure.

polynomials result in a W-shape rather than a U-shape. In particular, the risk increases

sharply between 70 and 80 of the mean arterial pressure, which is not supported by the

data. Thus, polynomials appear not to be well suited to capture the nonlinear effect

of the mean arterial pressure. Furthermore, such models might be hard to interpret

(α̂1 = −4 × 10−4, P = 0⋅20; α̂2 = 1 × 10−5, P = 0⋅06; β̂1 = −7 × 10−4, P = 0⋅70; β̂2 = 2 × 10−4,

P = 0⋅23; γ̂1 = 7 × 10−2, P = 0⋅06; γ̂2 = 1 × 10−3, P = 0⋅10; γ̂3 = −8 × 10−4, P = 0⋅06;

γ̂4 = 2 × 10−5, P = 0⋅02). Note that one needs to know the value of the mode to have a

good parametric estimation. We used the estimate of the mode obtained from fitting the

U-shape additive hazard model. It is not clear how to specify the value of the mode for a

parametric model if a preliminary estimate of the mode is not available. The treatment

effect was not significant in all models (α̂3 = 7 × 10−3, P = 0⋅82; β̂3 = 5 × 10−4, P = 0⋅85;

γ̂5 = 5 × 10−4, P = 0⋅87; 3 × 10−3 for the U-shape additive hazards model).

4.6 Technical Details for Chapter 4

Proof of Theorem 4.1 It is obvious that the loss function is convex because it is a

quadratic function. Under the anchor constraint ψm = ψ(Z(m)) = 0, we prove the strict

convexity by showing xTHx ≥ 0 for any x ≠ 0 ∈ Rn−1. Since hij ≤ 0 for i, j = 1, . . . , n (i ≠
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Figure 4.1: FAVORIT study: U-shape (black solid) versus standard additive hazards
models with polynomials of degree 2 (grey solid), piecewise linear (dashed), piecewise
polynomials of degree 2 (dot-dashed). The black dots indicate CVD events.

j, i ≠m,j ≠m),

xTHx =
n

∑
i=1,i≠m

hiix
2
i + 2 ∑∑

i<j,i≠m,j≠m

hijxixj

=
n

∑
i=1,i≠m

hiix
2
i + ∑∑

i<j,i≠m,j≠m

{(−hij)
1
2xi − (−hij)

1
2xj}

2
+ ∑∑
i<j,i≠m,j≠m

(hijx
2
i + hijx

2
j)

= ∑∑
i<j,i≠m,j≠m

{(−hij)
1
2xi − (−hij)

1
2xj}

2
+

n

∑
i=1,i≠m

{hiix
2
i + ∑

i<j,i≠m,j≠m

(hijx
2
i + hijx

2
j)}

= ∑∑
i<j,i≠m,j≠m

{(−hij)
1
2xi − (−hij)

1
2xj}

2
+

n

∑
i=1,i≠m

{hii +
n

∑
j=1,j≠i

hij}x
2
i .

The first term is greater than or equal to 0, so the strict convexity holds by showing that

the second term is strictly greater than 0 because

hii +∑
n

j=1,i≠j,j≠m
hij =

ˆ ∞

0

{Yi(u) −
Yi(u)2

∑
n
s=1 Ys(u)

−
Yi(u)∑

n
j=1,j≠i,j≠m Yj(u)

∑
n
s=1 Ys(u)

}du

=

ˆ ∞

0

Yi(u)Ym(u)

∑
n
s=1 Ys(u)

du ≥
1

n
X(1) > 0. (4.16)

for i = 1, . . . , n (i ≠m).
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Proof of Theorem 4.2 Since l(ψ) is a convex function and Ψm is a convex cone, Lemma

2.1 (Groeneboom 1996) is directly applicable, where ψ̂ minimizes l(ψ) over Ψm if and

only if

∑
n

i=1,i≠m
ψiui(ψ̂) ≥ 0 ∀ψ ∈ Ψm, (4.17)

∑
n

i=1,i≠m
ψ̂iui(ψ̂) = 0. (4.18)

Since (4.18) is the same as (4.11), we claim that (4.17) is equivalent to (4.10). Suppose

that ψ̂ satisfies (4.17). Let αi = ψi − ψi+1 for i = 1, . . . ,m − 1 and αi = ψi − ψi−1 for i =

m+1, . . . , n. For any ψ ∈ Ψm, ith element of ψ is expressed as ∑m−1
j=i αj for i = 1, . . . ,m−1,

or ∑ij=m+1αj for i =m + 1, . . . , n. Thus,

0 ≤
n

∑
i=1,i≠k

ψiui(ψ̂) =
m−1

∑
i=1

ψiui(ψ̂) +
n

∑
i=m+1

ψiui(ψ̂)

=
m−1

∑
i=1

{
m−1

∑
j=i

αj}ui(ψ̂) +
n

∑
i=m+1

{
i

∑
j=m+1

αj}ui(ψ̂)

= ∑
m−1

i=1
{∑

i

j=1
uj(ψ̂)}αi +∑

n

i=m+2
{∑

n

j=i
uj(ψ̂)}αi + {∑

n

j=m+1
uj(ψ̂)}αm+1,

(4.19)

which yields (4.10) because αi ≤ 0 for i = 1, . . . ,m− 1,m+ 2, . . . , n. The other direction is

trivial.

The uniqueness condition holds, since l(ψ) is a strictly convex function from Theo-

rem 4.1, where the same statement is made by Proposition 1.1 (Groeneboom and Wellner

1992).

Proof of Theorem 4.3 The proof is analogous to that of Theorem 4.2. Since lP (ψ ∣ ν)

satisfies the conditions of Lemma 2.1 (Groeneboom 1996) over the convex cone Ψ, ψ̇
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minimizes l(ψ∣ν) over Ψ if and only if

∑
n

i=1
ψiu

P
i (ψ̂i ∣ ν) ≥ 0 ∀ψ ∈ Ψ, (4.20)

∑
n

i=1
ψ̂iu

P
i (ψ̂i ∣ ν) = 0. (4.21)

Since (4.18) is the same as (4.15), we claim that (4.20) and (4.14) are equivalent. Suppose

that ψ̇ satisfies (4.20). Let αi = ψi − ψi+1 for i = 1, . . . ,m − 1 and αi = ψi − ψi−1 for

i =m + 2, . . . , n with αm = ψm and αm+1 = ψm+1. Then

0 ≤ ∑
n

i=1
ψiu

P
i (ψ̂ ∣ ν) = ∑

m

i=1
ψiu

P
i (ψ̂ ∣ ν) +∑

n

i=m+1
ψiu

P
i (ψ̂ ∣ ν)

= ∑
m

i=1
{∑

m

j=i
αj}u

P
i (ψ̂ ∣ ν) +∑

n

i=m+1
{∑

i

j=m+1
αj}u

P
i (ψ̂ ∣ ν)

= ∑
m−1

i=1
{∑

i

j=1
uPj (ψ̂ ∣ ν)}αi + {∑

m

j=1
uPj (ψ̂ ∣ ν)}αm

+∑
n

i=m+2
{∑

n

j=i
uPj (ψ̂ ∣ ν)}αi + {∑

n

j=m+1
uPj (ψ̂ ∣ ν)}αm+1,

which yields (4.14) because αi ≤ 0 for i = 1, . . . ,m− 1,m+ 2, . . . , n. The other direction is

trivial.

The uniqueness condition holds because lP (ψ ∣ ν) is a strictly convex function.

Proof of Theorem 4.4 In the proof, we write r instead of r(ε̇) for a notational conve-

nient. First, we show that for i = 1, . . . , n (i ≠m),

ui(ψ̈) = {∑
n

j=1
hijψ̈j} − qi = {∑

n

j=1
hijψ̇

(r)
j } − ψ̇

(r)
m {∑

n

j=1
hij} − qi = ui(ψ̇

(r)), (4.22)
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where the last equality holds because

∑
n

j=1
hij = hii +∑

n

j=1,j≠i
hij =

ˆ ∞

0

{Yi(u) −
Yi(u)2

∑
n
s=1 Ys(u)

−
Yi(u)∑

n
j=1,i≠j Yj(u)

∑
n
s=1 Ys(u)

}du

=

ˆ ∞

0

Yi(u)

∑
n
s=1 Ys(u)

{∑
n

s=1
Ys(u) − Yi(u) −∑

n

j=1,n≠i
Yj(u)}du = 0. (4.23)

Thus, by (4.22), we show that

∣ui(ψ̈) − u
P
i (ψ̇

(r)
i ∣ ψ̇(r−1))∣ = ∣ui(ψ̇

(r)) − uPi (ψ̇
(r)
i ∣ ψ̇(r−1))∣ = ∑

n

j=1,j≠i
∣hij{ψ̇

(r)
j − ψ̇

(r−1)
j }∣

≤ µd(ψ̇(r), ψ̇(r)) < µε̇ (4.24)

for i = 1, . . . , n (i ≠m), where µ = maxi∈{1...,n} maxj∈{1,...,n} ∣hij ∣ < ∞.

Next, since ψ̇(r)
i , which is the unique minimizer of lP (ψ∣ψ̇(r−1)

i ), satisfies Fenchel’s

duality condition in (4.14) and (4.15) in Theorem 4.3, we establish the following inequality

and equality conditions by using (4.24) in conjunction with the triangle inequality, where

the first inequality in (4.14) shows

i

∑
j=1

uPj (ψ̇
(r)
j ∣ ψ̇

(r−1)
j ) ≤ 0 (i = 1, . . . ,m − 1),

which implies

i

∑
j=1

uj(ψ̈) ≤
i

∑
j=1

{uj(ψ̈) − u
P
j (ψ̇

(r)
j ∣ ψ̇

(r−1)
j )} ≤ ∣

i

∑
j=1

{uj(ψ̈) − u
P
j (ψ̇

(r)
j ∣ ψ̇

(r−1)
j )}∣ ≤ iµε̇, (4.25)

the second inequality in (4.14) shows

n

∑
j=i

uPj (ψ̇
(r)
j ∣ ψ̇

(r−1)
j ) ≤ 0 (i =m + 1, . . . , n),
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which implies

n

∑
j=i

uj(ψ̈) ≤
n

∑
j=i

{uj(ψ̈) −u
P
j (ψ̇

(r)
j ∣ ψ̇

(r−1)
j )} ≤ ∣

n

∑
j=i

{uj(ψ̈) −u
P
j (ψ̇

(r)
j ∣ ψ̇

(r−1)
j )}∣ ≤ (n−m+ 1)µε̇,

(4.26)

and the equality in (4.15) shows

0 =
n

∑
i=1

ψ̇
(r)
i uPi (ψ̇

(r)
i ∣ ψ̇(r−1)) =

n

∑
i=1

(ψ̇
(r)
i − ψ̇

(r)
m )uPi (ψ̇

(r)
i ∣ ψ̇(r−1)) + ψ̇

(r)
m

n

∑
i=1

uPi (ψ̇
(r)
i ∣ ψ̇(r−1))

=
n

∑
i=1,i≠m

ψ̈iu
P
i (ψ̇

(r)
i ∣ ψ̇(r−1)) + ψ̇

(r)
m {

m

∑
i=1

uPi (ψ̇
(r)
i ∣ ψ̇(r−1)) +

n

∑
i=m+1

uPi (ψ̇
(r)
i ∣ ψ̇(r−1))}

=
n

∑
i=1,i≠m

ψ̈iu
P
i (ψ̇

(r)
i ∣ ψ̇(r−1))

which implies

∣
n

∑
i=1,i≠m

ψ̈iui(ψ̈)∣ = ∣
n

∑
i=1,i≠m

ψ̈i{ui(ψ̈) − u
P
i (ψ̇

(r)
i ∣ ψ̇(r−1))}∣ ≤

n

∑
i=1,i≠m

∣ψ̈i∣µε̇. (4.27)

By (4.24), we choose nµε̇ as an upper bounce for (4.25) and (4.26) and ±{∑
n
i=1,i≠k ψ̈i}µε̇

as upper and lower bounces for (4.27).

Finally, suppose that the quadratic pool-adjacent-violators algorithm converges un-

der the stopping value of ε̇ > 0. As ε̇ converges to zero, all the bounds in (4.25) - (4.27)

converge to zero for each fixed n, which yield Fenchel’s duality condition in (4.10) and

(4.11). Thus, by Theorem 4.2, ψ̈ converges to the unique minimizer of lN(ψ) over Ψm.

Proof of Proposition 4.5 By the assumption, Ri is not an empty set for i = 1, . . . , n⋆(i ≠

m). Since lC(ψ⋆) has the same form as l(ψ), we can directly follow the proof in Theorem
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4.1 by showing (4.16), which is

h⋆ii +∑
n⋆

j=1,i≠j,j≠m
h⋆ij = ∑s∈Ri

{hss +∑t∈Ri,t≠s
hst +∑

n⋆

j=1,j≠i,j≠m∑t∈Rj
hst}

= ∑s∈Ri
{hss +∑t∈Ri,t≠s

hst +∑t∈∪n⋆
j=1,j≠i,j≠mRj

hst}

= ∑s∈Ri
{hss +∑

n

t=1,t≠s,t/∈Rm
hst} > 0 (4.28)

for i = 1, . . . , n⋆ (i ≠ m). The last equality holds because Ri’s are mutually exclusive

set with ∪n
⋆

j=1Rj = {1, . . . , n}, and the last inequality holds by (4.23) with hst < 0 for

t = 1, . . . , n (s ≠ t). It is easy to check that h⋆ij < 0 for i, j = 1, . . . , n (i ≠ j, i ≠ m,j ≠ m),

since off diagonal elements of hij in (4.6) is strictly negative. Thus, lC(ψ⋆) is a strictly

convex function under an anchor constraint.

Proof of Proposition 4.6 Assume that there exists at least one time point of Ẋi among

X∗
1 , . . . ,X

∗
n⋆ such that Ri(Ẋi) ≠ ∅ nor Rm(Ẋi) ≠ ∅ for i = 1, . . . , n⋆ (i ≠m). Since lD(ψ∗)

has the same form as l(ψ), we can directly follow the proof in Theorem 4.1 by showing

(4.16), which is

h∗ii +
n⋆

∑
j=1,i≠j,j≠m

h∗ij =

ˆ ∞

0
∑

s∈Ri(u)

{hss(u) + ∑
t∈Ri(u),t≠s

hst(u) +
n⋆

∑
j=1,j≠i,j≠m

∑
t∈Rj(u)

hst(u)}du

=

ˆ ∞

0
∑s∈Ri(u)

{hss(u) +∑t∈Ri(u),t≠s
hst(u) +∑t∈∪n⋆

j=1,j≠i,j≠mRj(u)
hst(u)}du

=

ˆ ∞

0
∑s∈Ri(u)

{hss(u) +∑t∈∪n
j=1,j≠mRj(u),t≠s

hst(u)}du

=

ˆ ∞

0
∑s∈Ri(u)

{Ys(u) −
Ys(u)2

∑
n
l=1 Yl(u)

−
Ys(u)∑t∈∪n⋆

j=1,j≠mRj(u),t≠s
Yt(u)

∑
n
l=1 Yl(u)

}du

=

ˆ ∞

0
∑s∈Ri(u)

{
Ys(u)∑t∈{1,...,n}∖{∪n⋆

j=1,j≠mRj(u)}
Yt(u)

∑
n
l=1 Yl(u)

}du

≥
{∑s∈Ri(Ẋi

Ys(Ẋi)}{∑t∈Rm(Ẋi)
Yt(Ẋi)}

∑
n
l=1 Yl(Ẋi)

(Ẋi − Ẋi−1) > 0 (4.29)
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for i = 1, . . . , n⋆ (i ≠ m), where ∖ is set difference and X0 = 0. The third equality holds

because Rj(u)’s are mutually exclusive sets for u > 0. It is easy to check that h∗ij < 0 for

i, j = 1, . . . , n (i ≠ j, i ≠ m,j ≠ m). Thus, lD(ψ∗) is a strictly convex function under an

anchor constraint.

Detailed Derivation for Subsection 4.3.3We show the derivation for the loss function

of the shape restricted hazard function with additional covariates in Subsection 4.3.3.

We consider the isotonic proportional hazard model λ(u ∣ Z,W (u)) = λ0(u) exp{ψ(Z) +

βTW (u)}, where the negative log likelihood function is defined as

lN(ψ,β) =
n

∑
i=1

ˆ ∞

0

{−ψi − β
TWi(u) + log(

n

∑
j=1

Yj(u)e
ψj+β

TWj(u))}dNi,

and the score function of lN(ψ,β) is derived as

uN,ψi =
∂lN(ψ,β)

∂ψi
=

ˆ ∞

0

{−dNi(u) +
Yi(u)eψi+β

TWi(u)

∑
n
j=1 Yj(u)e

ψi+βTWi(u)

n

∑
s=1

dNs(u)}

=

ˆ ∞

0

{−dNi(u) + Yi(u)e
ψi+β

TWi(u)dΛ̃0(φ,β, u)}

uN,βs =
∂lN(ψ,β)

∂βs
=

n

∑
i=1

ˆ ∞

0

{−Wis(u) +
∑
n
j=1 Yj(u)e

ψj+β
TWj(u)wjs(u)

∑
n
j=1 Yj(u)e

ψj+βTWj(u)
}dNi(u)

=
n

∑
i=1

ˆ ∞

0

Wis(u){−dNi(u) + Yi(u)e
ψi+β

TWi(u)dΛ̃0(φ,β, u)}

for i = 1, . . . , n and s = 1, . . . , p, where Λ̃0(φ,β, t) =
´ t

0
{∑

n
i=1 dNi(u)}/{∑

n
j=1 Yj(u)e

ψi +

βTWi(u)}. By mimicking the score functions uN,ψ and uN,β, we define a score function
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in our model, which is

uψi =

ˆ ∞

0

{−dNi(u) + Yi(u)ψidu + Yi(u)β
TWi(u)du + Yi(u)Λ̂0(φ,β, t)}

=

ˆ ∞

0

n

∑
j=1

hij(u)ψjdu −

ˆ ∞

0

qi(u) +

ˆ ∞

0

Yi(u)
p

∑
s=1

{Wis(u) − W̄s(u)}βsdu

uβs =
n

∑
i=1

ˆ ∞

0

Wis(u){−dNi(u) + Yi(u)ψidu + Yi(u)β
TWi(u)du + Yi(u)Λ̂0(φ,β, t)}

=
n

∑
i=1

ˆ ∞

0

Yi(u){Wis(u) − W̄s(u)}
p

∑
t=1

{Wit(u) − W̄t(u)}βtdu

−
n

∑
i=1

ˆ ∞

0

{Wis(u) − W̄s(u)}dNi(u) +
n

∑
i=1

ˆ ∞

0

Yi(u){Wis(u) − W̄s(u)}ψi

for i = 1, . . . , n and s = 1, . . . , p, where W̄s(u) = {∑
n
j=1 Yj(u)wjs(u)}/{∑

n
j=1 Yj(u)} and

Λ̂0(φ,β, t) =
´ t

0
{∑

n
i=1{dNi(u)−Yi(u)φidu−Yi(u)βTWi(u)du}}/{∑

n
j=1 Yj(u)}. Correspond-

ingly, the loss function is defined as ψTHψ/2+βTH○β/2+ψTH3β −ψT q −βT q○, which is

the same as lA(θ).
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CHAPTER 5: ADDITIVE ISOTONIC PROPORTIONAL HAZARDS
MODELS

5.1 Introduction

The isotonic proportional hazards model is a useful nonparametric method to esti-

mate an isotonic (or monotone) covariate effect on a hazard function under the natural

assumption that the the hazard was isotonic in a continuous covariate. In Chapter 3,

an efficient computation of pseudo iterative convex minorant algorithm was proposed

to estimate the isotonic covariate effect. The method, however, only handled a single

continuous covariate. When more than one continuous covariate exists, multivariate ex-

tension of the isotonic regression (Robertson et al. 1988, p.12) have been studied. Denote

φj(⋅) as an isotonic function, where φj(x) ≤ φj(y) whenever x ≤ y, j = 1, . . . , p with p ≥ 2.

The function having the additive isotonic structure φ(⋅) = ∑pj=1 φj(⋅) is said to be isotonic

with respect to a partial order, where φ(x) ≤ φ(y) whenever xj ≤ yj for all j = 1, . . . , p.

Here, x = (x1, . . . , xp) and y = (y1, . . . , yp). The additive isotonic structure has been

well-studied in a standard uncensored regression setting with independent and identi-

cally distributed data (Bacchetti 1989, Morton-Jones et al. 2000, Mammen and Yu 2007,

Cheng 2009) but not for the right censored data.

In this paper, we suggest the additive isotonic proportional hazards model by incor-

porating the additive isotonic function in the proportional hazards model. That is, we

assume

λ(t ∣ Zi) = λ0(t)e
φ1(Zi1)+⋯+φp(Zip), (5.1)

where λ0(⋅) is an unspecified baseline hazard function and Zi = (Zi1, . . . , Zip) is the ith
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subject’s p × 1 continuous covariate vector with p ≥ 2. Accordingly, the hazard function

is defined as the isotonic function with respect to the partial order on the covariates.

The partial likelihood (Cox 1972) is then well defined, as formulated in Subsection 5.2.1.

Thus, φ(⋅) in (5.1) can be estimated by maximizing the partial likelihood under additive

isotonic constraints, without simultaneous estimation of the baseline hazard function.

Classically, φ(⋅) is specified parametrically such as low order polynomials of Zi. In our

case, however, φ(⋅) is isotonic but otherwise unspecified, and thus, a special technique is

needed to obtain the constrained estimator.

Bacchetti (1989) considered the additive isotonic regression that incorporated the ad-

ditive structure of isotonic functions to the standard regression setting. He suggested a

cyclic algorithm that updated a univariate φj(⋅) by iterating, j = 1, . . . , p,1, . . . , p, . . ., un-

til convergence, holding the other parameters {φ1(⋅), . . . , φj−1(⋅), φj+1(⋅), . . . , φp(⋅)} fixed.

The simple structure of the least squares function gave a closed form solution for φj(⋅)

in each univariate optimization, which could be computed by the pool-adjacent-violators

algorithm (Ayer et al. 1955). The cyclic algorithm is directly applicable to our model

with the partial likelihood and has a convergence property as shown in Theorem 5.2.

On the other hand, the complicated structure of the partial likelihood does not yield a

closed form solution, and more complex computation is needed, i.e. double iterations are

needed where one is from the univariate optimization and the other is from the cyclic

optimization. Computational efficiency and stability may depend on the univariate opti-

mization method. We implement the pseudo iterative convex minorant algorithm in the

cycling algorithm.

In Subsection 5.2.1, we define the partial likelihood with multiple covariates having an

additive isotonic structure. The cyclic and univariate optimization methods are described

in Subsections 5.2.2 and 5.2.3, respectively, without censorship. Our model is extended to

allow censorship and multiple time-dependent covariates in Subsections 5.2.4 and 5.2.5,
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respectively. A separate estimator for baseline hazard function and the inclusion of

additional covariates are described in Section 5.3. In simulation study in Section 5.4, the

cyclic pool-adjacent-violators algorithm increases computational speed, with moderate

bias and mean square error reductions. An analysis of a cardiovascular disease dataset

demonstrates the practical utility of our methodology in estimating nonlinear covariate

effects under the additive isotonic structure.

5.2 Additive isotonic proportional hazards models

5.2.1 Data set-up and partial likelihood

Suppose that T is a failure time, C is a censoring time and Z = (Z1, . . . , Zp) is a p×1

vector of continuous covariates with p ≥ 2, where T and C are conditionally independent

on Z. Define X = min(T,C) and ∆ = I(T ≤ C), where I(⋅) is the indicator function. The

observed data consist of n replicates of (X,∆,Z), denoted by (Xi,∆i,Zi) for i = 1, . . . , n,

where Zi = (Zi1, . . . , Zip). Under the additive isotonic proportional hazards model in

(5.1), the partial likelihood is defined as

pl(φ) =
n

∏
i=1

∏
t≥0

{
eφ1(Zi1)+⋯+φp(Zip)

∑
n
s=1 Ys(t)e

φ1(Zs1)+⋯+φp(Zsp)
}

dNi(t)

, (5.2)

where φ = {φj(Zij), i = 1, . . . , n, j = 1, . . . , p}, Ni(t) = I(Xi ≤ t,∆i = 1) is a counting

process and Yi(t) = I(Xi ≥ t) is an at-risk process for the ith subject, i = 1, . . . , n. Since

the parameter φ only enters the partial likelihood at the observed covariate values in the

dataset, we restrict the estimator to be piecewise constant with potential jumps at Zij’s

for i = 1, . . . , n and j = 1, . . . , p.
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5.2.2 Cyclic optimization

Denote φ̂ as the maximizer of the partial likelihood under the additive isotonic con-

straint φj(Z(1)j) ≤ ⋅ ⋅ ⋅ ≤ φj(Z(n)j) for j = 1, . . . , p, where Z(i)j is the ith smallest value

among Z1j, . . . , Znj. Similarly to the univariate case, we impose an anchor constraint that

φj(Kj) = δj by prespecifying a constant Kj. Otherwise, {φj(Z(1)j)±δj, . . . , φj(Z(n)j)±δj}

yields the same value to pl(φ). Under the anchor constraint, the model in (5.1) is refor-

mulated as

λ(t ∣ Zi) = λ0(t)e
φ1(Zi1)+⋯+φp(Zip) = {λ0(t)e

δ}eψ1(Zi1)+⋯+ψp(Zip), (5.3)

where δ = δ1 + ⋯ + δp and ψj(⋅) = φj(⋅) − δj with ψj(Kj) = 0 for j = 1, . . . , p. Since the

baseline hazard function absorbs δ, what we actually estimate is ψj(⋅), not φj(⋅). We

regard δ as a nuisance parameter, with the only difference between ψj(⋅) and φj(⋅) being

the reference group defining the hazard ratio parameters. In other words, hazard ratios

based on φj(⋅) and ψj(⋅) are identical, i.e., exp{φj(⋅) − φ(Kj)} = exp{ψj(⋅) − ψj(Kj)}

for j = 1, . . . , p. Practically we set Kj to Z(kj)j, where Z(kj)j is the closest value to Kj

among Z(i)j’s, because ψj(⋅) is only identifiable at Z(i)j’s. Denote the negative log partial

likelihood as

lplN(ψ) = ∑
n

i=1

ˆ ∞

0

[−{ψi1 +⋯ + ψip} + log{∑
n

s=1
Ys(u)e

ψs1+⋯+ψsp}]dNi(u), (5.4)

where ψ = {ψij, i = 1, . . . , n, j = 1, . . . , p}, and ψij = ψj(Zij).

Lemma 5.1. The negative log partial likelihood lplN(ψ) is convex.

Denote Ψ = Ψk1
1 × ⋯ × Ψ

kp
p , where Ψ

kj
j = {ψ ∈ Rn ∣ ψ(1)j ≤ . . . ≤ ψ(n)j, ψ(kj)j = 0} is

a convex cone for j = 1, . . . , p, where ψ(i)j = ψj(Z(i)j). The problem of maximizing the

partial likelihood under the anchor and isotonic constraints is equivalent to minimizing
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the convex function lplN(ψ) over the convex cone Ψ. We compute this by using the

cyclic algorithm, as stated in the following steps:

Step 5.1: Set an initial value ψ(0)
j ∈ Ψj for j = 1, . . . , p

Step 5.2: Update ψ(r)
j ∈ Ψ

kj
j , j = 1, . . . , p, iteratively by regarding the other parameters

{ψ
(r)
1 , . . . ,ψ

(r)
j−1,ψ

(r−1)
j+1 ,⋯ψ

(r−1)
p } are fixed in the partial likelihood.

Step 5.3: Repeat the cycle r = 1,2, . . . in Step 5.2 until convergence, where the con-

vergence criterion is ∑pj=1 d(ψ
(r)
j ,ψ

(r−1)
j ) < ε for small ε > 0 and Euclidean distance d(⋅, ⋅).

Theorem 5.2. Assume that lplN(ψ) > −∞ on Ψ. Let ψ(r) = {ψ
(r)
ij , i = 1, . . . , n, j =

1, . . . , p} generated by the cyclic algorithm from any starting values in Ψ. Then, lplN(ψ(r))

converges to minψ∈ΨlplN(ψ) as r →∞.

The univariate optimization in Step 5.2 is further explained in the next subsection. As

stated in Theorem 5.2, the cyclic algorithm has a convergence property, regardless of the

starting value. On the other hand, it does not guarantee the uniqueness of the isotonic

estimator, because different isotonic estimators may possibly yield the same minimum

value to lplN(ψ) in (5.4). The same situation occurs for the additive isotonic regression

(Bacchetti 1989) where different isotonic estimators may yield the same minimum value

for the least squares function.

5.2.3 Univariate optimization without censoring

In this subsection, we focus on the univariate estimation ψ̂j in Step 5.2 for the

cyclic algorithm. Holding the other parameters {ψ1,⋯,ψj−1,ψj+1,⋯,ψp} fixed, we reduce

lplN(ψ) in (5.4) to

lN(ψj) = ∑
n

i=1

ˆ ∞

0

[−ψ(i)j + log{∑
n

s=1
Y(s)j(u)e

ψ
(s)j}]dN(i)(u) +C, (5.5)
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where Y(s)j(u) = Y(s)(u) exp{∑
n
l=1,l≠j ψ(i)l}, and C = ∑

n
i=1

´∞
0

{∑
n
s=1,s≠j ψ(i)s}dN(i)(u) which

does not involve the parameter ψj. Here, N(i)(t) and Y(i)j(t) are the counting and at-

risk processes corresponding to the subject whose covariate is Z(i)j. In the sequel, we

drop the subparentheses for notational convenience, as needed. By including other fixed

parameters {ψ1,⋯,ψj−1,ψj+1,⋯,ψp} to Ysj(u), we define lN(ψj) in (5.5), which is the

same likelihood for the univariate isotonic proportional hazards model. Thus, we may

apply the pseudo iterative convex minorant algorithm to compute ψ̂j.

The procedure of the pseudo iterative convex minorant algorithm is described as fol-

lows. Let wi(ψj) =
´∞

0
[{Yij(u)∑

n
l=1 dNl(u)}/{∑

n
s=1 Ysj(u) exp(ψsj)}] and ∆i =

´∞
0
dNi(u)

be a censoring indicator for i = 1, . . . , n. Set an initial value of ψ̇(0)
j ∈ Ψj, where Ψj = {ψ ∈

Rn ∣ ψ1j ≤ ⋯ ≤ ψnj}. We then solve ψ+
j = arg minψj∈Ψj

∑
n
i=1{ψij −wi(ψ̇

(a−1)
j )}2wi(ψ̇

(a−1)
j ),

which can be easily computed by using the pool-adjacent-violators algorithm, and take

log transformation ψ̇(a)
j = {log(ψ+1j), . . . , log(ψ

+
nj)}. Repeat this until convergence, where

the convergence criterion is de(ψ̇
(a)
j , ψ̇

(a−1)
j ) = ∑

n
i=1 ∣ exp(ψ̇

(a)
ij ) − exp(ψ̇

(a−1)
ij )∣ < ε̇ for small

ε > 0. After it converges at the bth step, the anchor constraint is imposed by vertical

shift, ψ̈ij = ψ̇
(b)
ij − ψ̇

(b)
kjj

for i = 1, . . . , n. This guarantees that whenever ε̇ converges to zero,

ψ̈j converges to ψ̂j.

An advantage of the pseudo iterative convex minorant algorithm is its efficient com-

putation, using the pool-adjacent-violators algorithm iteratively. On the other hand, it

may not have a global convergence property, due to the complicated structure of the

partial likelihood. The other existing computations of iterative quadratic programming

and iterative convex minorant algorithm (Groeneboom and Wellner 1992, pp. 69-73) are

known to be unstable owing to inverting a large Hessian matrix and imposing an anchor

constraint, respectively. We examine the performances of the algorithms in simulation

studies in Section 5.4.
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5.2.4 Censoring

Suppose that failure times of some subjects are censored. Since censored subjects

contribute limited information to the partial likelihood, the isotonic estimator jumps

only at the covariate value associated with the failure events, as stated in Proposition

5.3 below. Let n⋆ be the number of subjects with observed failure time out of the

total n subjects and Z⋆
i = (Z⋆

i1, . . . , Z
⋆
ip) be their covariate vector for i = 1, . . . , n⋆. Let

ψ⋆ij = ψj(Z⋆
(i)j

) for i = 1, . . . , n⋆ and j = 1, . . . , p, where Z⋆
(i)j

is the ith order statistic

amongst Z⋆
1j, . . . , Z

⋆
n⋆j.

Proposition 5.3. Assume that ψhj = ψ⋆(1)j if Zhj < Z
⋆
(1)j

, h = 1, . . . , n. Then, the isotonic

estimator jumps only at Z⋆
i , i = 1, . . . , n⋆.

It does not affect that the partial likelihood is a convex function in Lemma 5.1,

and the cyclic algorithm is directly applicable to optimize the partial likelihood. On

the other hand, one modification is needed for the univariate optimization, because the

number of parameters is reduced from n to n⋆. Define n⋆ disjoint intervals of I⋆1j =

(−∞, Z⋆
(1)j

) ∪ [Z⋆
(1)j

, Z⋆
(2)j

), I⋆2j = [Z⋆
(2)j

, Z⋆
(3)j

), . . . , I⋆n⋆j = [Z⋆
(n⋆)j

,+∞). Under Proposition

5.3, we define the partial likelihood by

plC(ψ⋆
j ) =

n⋆

∏
i=1

∏
t≥0

{
eψ

⋆

ij

∑
n
s=1 Y

⋆
sj(t)e

ψ⋆sj
}

dN⋆

i (t)

,

where Y ⋆
ij(t) = ∑h∈R⋆ij Yhj(t), R

⋆
ij = {h ∶ Zhj ∈ I⋆ij, h = 1, . . . , n}, and N⋆

i (t) is the counting

process corresponding to Z⋆
(i)j

. The assumption, ψhj = ψ⋆(1)j if Zhj < Z
⋆
(1)j

for h = 1, . . . , n,

allows estimation on the all values of Z including the left side of Z⋆
(1)j

. Since log of

plC(ψ⋆
j ) has the same form as lN(ψj) in (5.5), the pseudo iterative convex minorant

algorithm is directly applicable for plC(ψ⋆
j ),
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5.2.5 Time-dependent covariates

Consider the model λ(t ∣ Zi(t)) = λ0(t) exp{ψ1{Zi1(t)} + ⋯ + ψp{Zip(t)}}, where

Zi(t) = {Zi1(t), . . . , Zip(t)} is a p×1 time-dependent covariates vector for the ith subject,

i = 1, . . . , n. We assume that the isotonic function ψj(⋅) does not change over time for

j = 1, . . . , p. The partial likelihood is defined as

pl(ψ) =
n

∏
i=1

∏
t≥0

{
eψ1{Zi1(t)}+⋯+ψp{Zip(t)}

∑
n
s=1 Ys(t)e

ψ1{Zs1(t)}+⋯+ψp{Zsp(t)}
}

dNi(t)

. (5.6)

The values of the time-dependent covariates prior to the observed failure time con-

tribute limited information to the partial likelihood, which restricts the form of the iso-

tonic partial likelihood estimator, as stated in the Proposition 5.4 below. Formally let n⋆

be the number of subjects with observed failure time, and Z⋆
ij(t) be their covariate vector

value for i = 1, . . . , n⋆ and j = 1, . . . , p. Let Z∗
i = (Z∗

i1, . . . , Z
∗
ip), where Z∗

ij = Z
⋆
ij(X

∗
i ) and

X∗
i is the ith subject’s failure time. Let ψ∗ij = ψj(Z∗

(i)j
) for i = 1, . . . , n⋆ and j = 1, . . . , p,

where Z∗
(i)j

is the ith order statistic amongst Z∗
1j, . . . , Z

∗
n⋆j.

Proposition 5.4. Assume that ψhj = ψ∗1j if Zhj(Xi) < Z∗
(1)j

for i, h = 1, . . . , n, Then, the

isotonic estimator jumps only at Z∗
i , i = 1, . . . , n⋆.

Similarly to the censored data in Subsection 5.2.4, the cycling algorithm is directly ap-

plicable, but one modification is needed for the univariate optimization. Define n⋆ disjoint

intervals of I∗1j = (−∞, Z∗
(1)j

) ∪ [Z∗
(1)j

, Z∗
(2)j

), I∗2j = [Z∗
(2)j

, Z∗
(3)j

), . . . , I∗n⋆j = [Z∗
(n⋆)j

,+∞).

Under Proposition 5.4, we defined the partial likelihood by

plD(ψ∗
j ) =

n⋆

∏
i=1

∏
t≥0

{
eψ

∗

ij

∑
n
s=1 Y

∗
sj(t)e

ψ∗sj
}

dN∗

i (t)

,

where Y ∗
ij(t) = ∑h∈R∗ij Yhj(t), R

∗
ij = {h ∶ Zhj ∈ I∗ij, h = 1, . . . , n}, and N∗

i (t) is the counting

process corresponding to Z∗
(i)j

. Since log of plD(ψ∗
j ) has the same form of lN(ψj) in
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(5.5), the pseudo iterative convex minorant algorithm is directly applicable to plD(ψ∗
j ).

5.3 Extension

5.3.1 Baseline hazard function

We are not able to estimate the baseline hazard function λ0(t) and vertical shift

parameter δ in (5.3), because they are not identifiable as discussed in Subsection 5.2.2

above. Instead, we can estimate the baseline hazard function including an anchor effect

λ⋆0(t), where λ⋆0(t) = λ0(t) exp(δ). This is the same approach to estimate a baseline

hazard function at a reference group in the standard Cox model. Thus, Breslow (1972)’s

estimator can be directly applicable, which is

Λ̂⋆
0(t, ψ̂) =

ˆ t

0

∑
n
i=1 dNi(u)

∑
n
j=1 Yj(u)e

ψ̂1{Zj1(u)}+⋯+ψ̂p{Zjp(u)}
,

where Λ⋆
0(t, ψ) is a profiled estimator of the cumulative baseline hazard function including

an anchor effect, and ψ̂(⋅) is the isotonic estimator from the partial likelihood.

5.3.2 Additional covariates

Suppose that there exists additional q covariates. We include those covariates to the

model λ(t ∣ Zi(t),Wi(t)) = λ0(t) exp{ψ1{Zi1(t)} + ⋯ + ψp{Zip(t)} + βTWi(t)}, where β

is q × 1 regression parameter and Wi(t) = {Wi1(t),⋯,Wiq(t)} is q × 1 covariates vector

for i = 1, . . . , n. The partial likelihood is defined as

pl(φ) =
n

∏
i=1

∏
t≥0

{
eψ1{Zi1(t)}+⋯+ψp{Zip(t)}+β

TWi(t)

∑
n
s=1 Ys(t)e

ψ1{Zs1(t)}+⋯+ψp{Zsp(t)}+βTWi(t)
}

dNi(t)

.

The partial likelihood can be maximized by the following step. We set an initial

value of (ψ(0),β(0)) ∈ Ψ × Rq. We then update ψ(m) given β = β(m−1) using the cyclic

pseudo iterative convex minorant algorithm, and update β(m) given ψ = ψ(m) using the
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Newton-Raphson algorithm β(m) = β(m−1) −H(ψ(m),β(m−1))−1U(ψ(m),β(m−1)), where

U(ψ,β) = ∑
n

i=1

ˆ ∞

0

{Wi(t) −
∑
n
l=1 Y

○
l (t,ψ)eβ

TWl(t)Wl(t)

∑
n
s=1 Y

○
s (t,ψ)eβTWs(t)

}dNi(t),

H(ψ,β) = ∑
n

i=1

ˆ ∞

0

[−
∑
n
l=1 Y

○
l (t,ψ)eβ

TWl(t)Wl(t)⊗2

∑
n
s=1 Y

○
s (t,ψ)eβTWs(t)

+
{∑

n
l=1 Y

○
l (t,ψ)eβ

TWl(t)Wl(t)}
⊗2

{∑
n
s=1 Y

○
s (t,ψ)eβTWs(t)}2

]dNi(t),

where Y ○
i (t,ψ) = Yi(t) exp{ψ1(Zi1(t)) + ⋯ + ψp(Zip(t))} and W⊗2 = W TW . Repeat

these updates until convergence, where the convergence criteria is ∑pj=1 d(ψ
(m)

j ,ψ
(m−1)
j )+

d(β(m),β(m−1)) < ε for small ε > 0.

5.4 Simulations

We performed simulation studies to examine the performance of the cyclic pseudo it-

erative convex minorant algorithm, as well as the cyclic iterative quadratic programming

and cyclic iterative convex minorant algorithm. As a gold standard, we also evaluated

one-step update using the pseudo iterative convex minoramt algorithm from the true

initial value. For the first part of the simulations, we considered time independent co-

variates with p = 2, where Z = (Z1, Z2) were independently generated from a uniform

distribution on (0,1). Three combinations of isotonic functions were considered on (0,1):

{ψ1(z) = z,ψ2(z) = z}, {ψ1(z) = z,ψ2(z) = z2}, and {ψ1(z) = z2, ψ2(z) = z}. The failure

time was then generated from the additive isotonic proportional hazard with a constant

baseline hazard function. The right censoring time was then independently generated

from a uniform distribution with approximately 30% censoring. We repeated the sim-

ulations 500 times with n = 100, 500 and 1000. The anchor constraints were set to

K1 = K2 = 0⋅5. For each data set, the initial values of ψ0 ∈ Ψ was set from the stnadard

Cox model with a linear function of γ1Z1 + γ2Z2, i.e. ψ(0)
j = {∣γj ∣Z̄1j, . . . , ∣γj ∣Z̄nj} for

j = 1,2, where Z̄ij = Z(i)j − Z(kj)j. For the second part of the simulations, we consider

84



time-dependent covariates Z = {Z1(t), Z2(t)}. By assuming the time-dependent covari-

ates are piecewise constant, we generate each Zj(t), j = 1,2, from uniform distribution

on (0,1), independently, with disjoint time intervals. Other scenarios are the same as the

setting in the first simulation.

For the evaluation of the performance among the algorithms, we computed integrate

mean square error,
´ 1

0
E{ψj(Z) − ψ̂j(Z)}2dZ for j = 1,2, where ψj(Z) = φj(Z) − φj(Kj)

and ψ̂r(⋅) is an estimated isotonic function for the rth data set for r = 1, . . . ,500. It is

approximated by ∑Rr=1∑
G
g=1{ψj(zg)− ψ̂j,r(zg)}

2/(GR) based on equally spaced grid points

of zg’s between 0⋅001 and 0⋅999, with G = 1000 grid points and R = 500 simulation runs.

Then, the total integrated mean square error is computed by summing the two integrate

mean square error for ψ̂1 and ψ̂2.

Tables 5.1 and 5.2 show simulations results for time independent and time-dependent

covariates. We exclude non-convergent cases for calulating the integrated mean squared

error and the computing time. The pseudo iterative convex minorant algorithm has al-

most 100% convergence results in the cycling algorithm, except few non-convergence cases

for time-dependent covariate. The other existing methods of the iterative quadratic pro-

gramming and iterative convex minorant algorithm give unstable results, approximately

10-30% convergence failures. The iterative quadratic programming requires the inversion

of a high dimensional Hessian matrix from the partial likelihood, which leads to unstable

convergence results and large computational burdens. The anchor constraint is origi-

nally designed for a sparse Hessian matrix without the anchor constraint, and it does

not perform well with our partial likelihood having full Hessian matrix, with an anchor

constraint imposed. The pseudo iterative convex minorant algorithm dramatically im-

proves computational speed, e.g. approximately 20 seconds, 9 minutes and 1 hours from

the pseudo iterative convex minorant algorithm, iterative convex minorant algorithm and
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Table 5.1: Simulation results for time independent covariates: IMSE multiplied by 105,
CPU time in seconds and convergence percentage.

Type φ1 φ2 n
IQM ICM PICM PICM.true
IMSE(1/2) Cpu(Cv) IMSE(1/2) Cpu(Cv) IMSE(1/2) Cpu(Cv) IMSE(1/2)

Comp Z Z 100 19(9/10) 8(75) 270(130/140) 2(84) 74(39/35) 0(100) 14(7/7)
500 10(5/5) 491(85) 20(7/12) 90(87) 12(6/6) 5(100) 9(6/3)
1000 9(4/4) 4945(86) 10(5/5) 597(88) 9(5/5) 21(100) 8(6/2)

Z Z2 100 20(10/11) 9(75) 253(136/117) 1(83) 73(40/34) 0(100) 14(7/7)
500 10(5/5) 431(85) 14(8/6) 74(88) 11(6/5) 4(100) 8(6/2)
1000 8(5/3) 4115(85) 10(7/3) 431(88) 9(5/4) 17(100) 8(6/2)

Z2 Z 100 20(10/10) 8(75) 233(63/170) 2(83) 68(32/36) 0(100) 14(7/7)
500 10(4/5) 497(84) 18(6/13) 88(87) 12(5/7) 5(100) 9(6/3)
1000 8(3/5) 4689(86) 9(4/5) 607(88) 9(4/5) 20(100) 8(6/2)

Cens Z Z 100 24(12/11) 11(80) 47(16/30) 1(83) 47(25/22) 0(100) 17(8/8)
500 11(5/6) 225(86) 12(6/6) 50(87) 12(6/6) 3(100) 9(6/3)
1000 9(5/5) 1752(86) 9(5/5) 314(87) 10(5/5) 12(100) 9(6/2)

Z Z2 100 24(12/12) 13(80) 30(13/18) 1(83) 46(25/22) 0(100) 17(9/9)
500 11(6/5) 208(86) 11(6/5) 44(88) 12(6/6) 2(100) 9(6/3)
1000 9(5/4) 1418(86) 9(5/4) 265(87) 9(5/4) 10(100) 8(6/2)

Z2 Z 100 23(12/11) 11(79) 45(15/30) 1(83) 47(26/21) 0(100) 17(8/8)
500 11(5/6) 222(86) 16(5/11) 49(87) 13(6/7) 3(100) 10(6/3)
1000 9(4/5) 1774(85) 9(4/5) 330(87) 9(4/5) 12(100) 9(6/2)

IQM: iterative quadratic programming; ICM: iterative convex minorant algorithm;
PICM: pseudo iterative convex minorant algorithm; PICM.true: One step PICM
from true initial value; Comp: complete case; Cens: censoring case (about 30%);
IMSE: (total) integrated mean squared error (IMSE for φ1 / IMSE for φ2); Cpu(Cv):
computing time in second. (convergence percentage).

iterative quadratic programing method for the complete data with time-independent co-

variate and n = 1000. The integrated mean squared errors decrease when sample size

increases for all methods. As expected, the one step pseudo iterative convex minorant

algorithm has the smallest integrated mean squared error.

5.5 Data analysis

Folic Acid for Vascular Outcome Reduction in Transplantation (FAVORIT) study

was a multicenter double-blind randomized controlled clinical trial to investigate if vita-

min supplementation reduces risk of cardiovascular disease (CVD) in kidney transplant

recipients (Bostom et al. 2011). Four thousand one hundred ten study participants were
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Table 5.2: Simulation results for time-dependent covariates: IMSE multiplied by 105,
CPU time in seconds and convergence percentage.

Type φ1 φ2 n
IQM ICM PICM PICM.true
IMSE(1/2) Cpu(Cv) IMSE(1/2) Cpu(Cv) IMSE(1/2) Cpu(Cv) IMSE(1/2)

Comp Z Z 100 21(11/10) 1(33) 68(31/36) 0(40) 186(119/67) 0(100) 18(9/8)
500 6(3/3) 222(48) 9(3/6) 73(62) 24(10/14) 29(100) 6(3/3)
1000 4(2/2) 1996(70) 5(2/3) 552(80) 5(2/3) 244(99) 4(2/2)

Z Z2 100 20(11/10) 1(39) 90(55/35) 1(46) 206(104/102) 0(100) 18(9/9)
500 7(4/3) 251(71) 11(6/6) 91(78) 90(73/17) 28(100) 6(3/3)
1000 4(2/2) 2166(86) 4(2/2) 572(88) 4(2/2) 242(99) 4(2/2)

Z2 Z 100 21(11/10) 1(41) 147(35/112) 1(48) 248(103/145) 0(100) 18(9/9)
500 7(3/3) 257(69) 10(3/7) 93(79) 104(55/50) 29(100) 6(3/3)
1000 4(2/2) 2108(86) 4(2/2) 600(88) 6(3/2) 242(99) 4(2/2)

Cens Z Z 100 23(12/11) 4(77) 57(46/11) 1(80) 110(50/60) 0(100) 20(11/10)
500 8(4/4) 128(90) 8(4/4) 58(90) 58(36/22) 23(100) 8(4/4)
1000 5(3/3) 952(86) 5(3/3) 379(86) 6(3/3) 181(100) 5(3/2)

Z Z2 100 23(12/12) 2(71) 42(12/30) 1(74) 260(163/98) 0(100) 22(11/11)
500 8(4/4) 129(85) 8(4/4) 58(85) 35(16/19) 21(100) 8(4/4)
1000 5(3/2) 954(86) 5(3/2) 357(87) 14(3/11) 175(100) 5(3/2)

Z2 Z 100 24(11/12) 2(74) 31(11/20) 1(76) 216(107/108) 0(100) 21(10/11)
500 8(4/4) 124(84) 8(4/4) 59(85) 61(49/12) 22(100) 8(4/4)
1000 5(2/3) 933(86) 5(2/3) 386(87) 22(5/16) 178(100) 5(3/3)

IQM: iterative quadratic programming; ICM: iterative convex minorant algorithm;
PICM: pseudo iterative convex minorant algorithm; PICM.true: One step PICM
from true initial value; Comp: complete case; Cens: censoring case (about 30%);
IMSE: (total) integrated mean squared error (IMSE for φ1 / IMSE for φ2); Cpu(Cv):
computing time in second (convergence percentage).
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enrolled between August 2002 and January 2007 and followed up every six months thor-

ough January 2010. Each patient was randomized to a multivitamin that included either

a high-dose or low-dose of folic acid (5 or 0 mg), vitamin B6 (50 or 1.4 mg), and vitamin

B12 (1000 or 2 microg). The outcome of interest was any of the following nine events:

(1) CVD death, (2) myocardial infarction, (3) resuscitated sudden death, (4) stroke, (5)

coronary artery revascularization, (6) lower extremity revascularization or amputation

above the ankle for severe arterial disease, (7) carotid endarterectomy or angioplasty, (8)

abdominal aortic aneurysm repair, or (9) renal artery revascularization. A total of 584

CVD events were observed.

It is of interest to examine the effect of the systolic blood pressure (SBP) and age,

both measured at baseline, on CVD. An average age was 52 years with the range from

32 to 84. The average SBP was 136⋅0 mm Hg with SBP ranging from 70⋅0 to 247⋅5. We

fit the isotonic proportional hazards model with polynomials 1, α1SBP+α2age+α3Trt,

and polynomias 2, β1SBP+β2SBP2 + β3age+β4age2 + β5Trt, where Trt is the treatment

group with a reference group of the low folic acid. In Figure 5.1, the polynomials 1

show that both SBP and age have significant effect on the risk of CVD with the increase

direction (α̂1 = 13 × 10−3, P < 0⋅01; α̂2 = 37 × 10−3, P < 0⋅01; α̂3 = 27 × 10−3, P = 0⋅75). The

polynomials 2 also shows the increase direction except that the risk of CVD decreases

after age 70 (β̂1 = 86 × 10−4, P = 0⋅62; β̂2 = 13 × 10−6, P = 0⋅82; β̂3 = 13 × 10−2, P < 0⋅01;

β̂4 = −85 × 10−5, P = 0⋅049; β̂5 = 28 × 10−3, P = 0⋅73). A parametric polynomial model,

however, may be too simplistic to capture nonlinear effects of SBP and age on CVD.

Alternatively, we fit the additive isotonic proportional hazards model only assuming

that the risk of CVD is monotonically increasing in SBP and age. First, we fit a univariate

isotonic proportional hazards model with SBP, and separately with age, adjusted for

the treatment group. Second, we fit the additive isotonic proportional hazards model

including both SBP and age and adjusted for the treatment group using the algorithm
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described in Subsection 5.3.2. The anchor points were set to the maximum value for both

covariates: 247⋅5 for SBP and 84 for age.

Figure 5.1 displays the estimated isotonic functions from univariate and additive

isotonic proportional hazards models. Black dots are the values associated with observed

CVD, which are potential jump points. The risk of CVD increases gradually in SBP

in the univariate isotonic proportional hazards model. On the other hand, the additive

isotonic proportional hazards model gives constant CVD risk in SBP up to 157 mm Hg

with three possible cut-point values around 160, 175 and 190 mm Hg. The constant

risk of SBP before 157 mm Hg agrees with Port et al. (2000) where the risk of CVD

mortality was constant before the lower 70% of the SBP, with a sharp increase at the

upper 20% of the systolic blood pressure ((lower 70%, upper 20%): (141, 148) for males

and (142, 151) for females, respectively, for 45-54 years; (148, 159) for males and (158,

167) for females, respectively, for 55-64 years; (158, 169) for males and (168, 177) for

females, respectively, for 65-74 years). In addition, the identified cut-point values agree

with the American Heart Association recommendation (as shown in the American Heart

Association webpage titled Understanding Blood Pressure Readings) that suggested three

stages of hypertension 1, hypertension 2 and hypertensive crisis at the systolic blood

pressure 140, 160 and 180, respectively. According to the additive isotonic proportional

hazards model, people older than 60 have a constant risk of CVD after adjusting for SBP.

The effect of treatment was not significant (exp(α̂3) = 1⋅027, P = 0⋅75; exp(β̂5) = 1⋅029,

P = 0⋅73; Hazard ratio=1⋅027 from the additive isotonic proportional hazards model).

5.6 Technical Details for Chapter 5

Proof of Lemma 5.1 Since a sum of convex functions is a convex function, we can prove

the convexity of lplN(ψ) in (5.4) by showing that the left and right parts of lplN(ψ) are
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Figure 5.1: FAVORIT study: Estimated hazard ratios. Univariate isotonic proportional
hazards model (black solid), additive isotonic proportional hazards model (dashed) and
standard additive proportional hazards mode with polynomials of 1 (grey solid) and 2
(dot dashed). Left is for systolic blood pressure. Right is for age. The circles indicate
CVD events.

convex, respectively. It is obvious that the left part is convex because it is a linear func-

tion. The right part is convex because it is a composition of strictly increasing convex

functions.

Proof of Theorem 5.2 The proof is directly followed from the theorem 1 (Bacchetti

1989) by showing the following three conditions. First, lplN(ψ) is a convex function by

Lemma 5.1. Second, Ψ is a convex and compact cone, because each Ψ
kj
j is a convex and

compact cone, j = 1, . . . , p. Last, for each univariate optimization, lN(ψj) has a unique

minimizer over Ψ
kj
j by Theorem 3.1.

Proof of Proposition 5.3 Under censored data, the partial likelihood in (5.2) reduces

to

pl(ψ) =
n⋆

∏
i=1

∏
t≥0

{
eψ1(Z

⋆

i1)+⋯+ψp(Z⋆ip)

∑
n
s=1 Ys(t)e

ψ(Zs1)+⋯+ψ(Zsp)
}

dN⋆

i (t)

. (5.7)

In (5.7), the parameters for uncensored subjects are included in both numerator and
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denominator, while the parameters for censored subjects are only included in the denom-

inator. Thus, the partial likelihood is maximized when the parameters for uncensored

subjects are minimized, which occur among the parameters for uncensored subjects be-

cause of the order restriction. When Zhj < Z⋆
(1)j

for h = 1, . . . , n, ψhj is set to ψ⋆
(1)j

for

each j = 1, . . . , p by the assumption. It shows that the isotonic estimator jumps only at

Z⋆
i , i = 1, . . . , n⋆.

Proof of Proposition 5.4 The proof is analogous to that of Proposition 5.3. Under

censored data with time-dependent covariates, the partial likelihood in (5.6) reduces to

n⋆

∏
i=1

∏
t≥0

{
eψ1(Z

∗

i1)+⋯+ψp(Z∗ip)

∑
n
s=1 Ys(t)e

ψ1{Zs1(t)}+⋯+ψp{Zsp(t)}
}

dN∗

i (t)

(5.8)

In (5.8), the parameters at Z∗
1 , . . . , Z∗

n are included in both numerator and denominator,

while the other parameters are only included in the denominator. Thus, the partial

likelihood is maximized, when the other parameters are minimized, which occur among

the parameters in the numerator because of the order restriction. When Zhj(Xi) < Z∗
(1)j

for i, h = 1, . . . , n, ψj(Zhj) is set to ψj(Z∗
1j) for each j = 1, . . . , p by the assumption. It

shows that the isotonic estimator jumps only at Z∗
i , i = 1, . . . , n⋆.
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CHAPTER 6: SUMMARY AND FUTURE RESEARCH

In this dissertation, we have studied order restricted inference for survival data analy-

sis, where a hazard function has an order restriction on continuous covariates. In Chapter

3, we proposed the isotonic proportional hazards model with an algorithm that can han-

dle large datasets. The proposed model captured a nonlinear and isotonic effect of a

covariate for a hazard function, with completely unspecified baseline hazard function. In

Chapter 4, we proposed a shape restricted additive hazard model. This model is particu-

larly useful when a unimodal hazard function with an unknown mode is being estimated.

We also proposed the quadratic pool-adjacent-violators algorithm to use when a stan-

dard quadratic programming may be computationally limiting in this model. In Chapter

5, we generalized the isotonic proportional hazard model to include multiple continuous

covariates under the additive structure. We developed and efficient way to compute the

estimates by combining the pseudo iterative convex minorant algorithm and the cycling

algorithm.

Classical order restricted inference has focused on independent and identically dis-

tributed observations, where likelihood functions are separable in terms of observed co-

variate values. Under the separable structure of the likelihood function, large sample

properties were well-studied. An efficient computation was also developed to compute

isotonic estimator, such as the pool-adjacent-violators algorithm. The order restricted

inference has been extended to the survival data analysis, where the hazard function was

isotonic in time. In this case, the likelihood function is separable in terms of observed

time points, and therefore, the isotonic regression techniques can be easily extended. We
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investigated the estimation of the order restricted hazard function in continuous covari-

ate without making any assumptions on relationship with time. The partial likelihood,

therefore, does not have a separable structure in terms of the observed covariate values

or time points. This brings a number of challenges.

One challenge is to establish the consistency and asymptotic properties of the isotonic

partial likelihood estimator in Chapter 3. We conjectured that the isotonic estimator

converged to the Chernoff distribution, as supported by our simulation studies in Section

3.6. A rigorous proof is not yet available as the log partial likelihood is not a sum of

independent terms and therefore it is not clear how to apply existing theory developed

for the case of independent terms. For the same reason, it was a challenge to establish the

consistency property for the mode estimator from the shape restricted additive hazard

function in Chapter 4. In Chapter 5, we studied isotonic hazard function in multiple

covariates under the additive isotonic structure. This model assumes independent effects

of the covariates but can be extended to include interaction terms.
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