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ABSTRACT
MICHAEL LINDSEY PENNELL: BAYESIAN SEMIPARAMETRIC

METHODS FOR LONGITUDINAL, MULTIVARIATE, AND SURVIVAL
DATA.

(Under the direction of Dr. David Dunson.)

In many biomedical studies, the observed data may violate the assumptions of

standard parametric methods. In these situations, Bayesian methods are appealing

since nonparametric priors, such as the Dirichlet process (DP), can incorporate a priori

knowledge regarding the shape or location of an unknown distribution and exact in-

ferences are available using Markov chain Monte Carlo methods. Despite the promise

of Bayesian nonparametric methods, computation can be difficult under large sample

sizes. In addition, there is a paucity of methods for multiple event time data and for

testing across multiple groups.

In this dissertation, we propose three methods which address important compu-

tational, modelling, and testing issues in Bayesian nonparametrics. Our first method

is a computationally simple approach to fitting Bayesian semiparametric random ef-

fects models to large longitudinal data sets. Our approach involves fitting a model to a

smaller set of pseudo-data, which is constructed using expert opinion. The research was

motivated by data from the Collaborative Perinatal Project, which was a prospective

epidemiology study consisting of over 30,000 children.

We next develop a dynamic frailty model which accounts for age-dependent changes

in susceptibility to a repeated health event, such as the occurrence of new tumors. Our

model generalizes the traditional shared frailty model for multiple event time data

to accommodate smooth, time dependent trends in the frailty, baseline hazard, and

covariate effects. We also relax our assumptions on the frailty using DP priors.

Lastly, we present a Bayesian nonparametric method for testing for changes in a

response distribution with an ordinal predictor. The research was motivated by data

from toxicology studies, in which dose may affect both the shape and location of the

response distribution. Using a generalization of the dynamic mixture of DPs (Dunson,

2006, Biostatistics, to appear), we test for equivalence in the unknown distribution

across dose groups and estimate threshold doses. Our method accommodates multi-

variate responses without complication.
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CHAPTER 1

INTRODUCTION

In many analysis settings, the observed data do not possess the characteristics of a

known distribution. For example, count data can often have a larger proportion of zeros

than would be anticipated under the Poisson distribution (Carota and Parmigiani, 2002;

Dunson, 2004). Time to event data can also have characteristics such as non-monotone

hazards that contradict the behavior of parametric models such as the Weibull. When

violations of assumptions are minor, fully parametric methods should be adequate,

but in more extreme cases these methods can be overly restrictive making inferences

questionable.

Such problems have motivated the vast literature on nonparametric statistical meth-

ods. Robust frequentist methods exist for conducting two-sample tests (e.g., the

Wilcoxon and Kolmogorov-Smirnov tests) and estimating distributions (e.g., the Ka-

plan Meier and Nelson-Aelen estimates of the survival function and cumulative baseline

hazard). Semiparametric regression models also exist which only require assumptions

regarding the link function between covariates and the response. For example, Cox’s

partial likelihood (1975) can be used to estimate regression coefficients in the propor-

tional hazards model without assuming a specific distribution for the event times.

Although it is common for one to doubt the exact distributional form of certain

data, usually there is some a priori intuition regarding its behavior. Bayesian nonpara-

metric methods are advantageous in this respect since they provide convenient methods

of incorporating prior information regarding the shape of a distribution into inferences.

Some examples of commonly used nonparametric priors include the Dirichlet process

(Ferguson, 1973, 1974), Pólya tree (Ferguson, 1974; Lavine, 1992, 1994), and neutral to

the right processes (Doksum, 1974; Ferguson and Phadia, 1979). These priors can often

be centered on a known distribution making it possible to both use the parametric form



when appropriate and to move away from it when its fit is poor. Bayesian computation,

often through the use of Markov chain Monte Carlo (MCMC) methods (Gelfand and

Smith, 1990; Tierney, 1994), provides exact posterior estimates of the unknown dis-

tribution as well as parameters and other functionals of interest. Frequentist methods

typically rely on asymptotic evaluations which can be particularly troublesome in non-

parametric settings where the number of unknown parameters increases with sample

size.

Despite the promise of Bayesian nonparametric methods, computation can be diffi-

cult. Advances in Gibbs sampling methodologies (e.g., MacEachern, 1994; West et al.,

1994; MacEachern and Müller, 1998; Neal, 2000) have made Bayesian nonparametrics

more feasible, but these approaches have some limitations. In particular, the commonly

used Pólya urn sampler for Dirichlet process mixture models (MacEachern, 1994; West

et al., 1994) is not computationally feasible for large data sets, such as those from

multi-center longitudinal studies. Variational approaches (Blei and Jordan, 2006) are

more efficient for large samples, but do not use true posterior distributions for inference.

Another limitation of Bayesian nonparametrics is its lack of breadth. For instance,

there are very few nonparametric or semiparametric Bayesian methods for multiple

event time data. These data are common in biomedical studies in which the event of

interest may be repeated infections, hospitializations, or recurrences of disease. Some

examples include chemoprevention and cocarcinogenicity studies measuring the rate of

appearance of palpable tumors of the skin and breast of animals exposed to a known

carcinogen (Dunson, 2000; Gail et al., 1980; Forbes and Sambuco, 1998). Current meth-

ods for analyzing these of data, such as the shared frailty model (Vaupel et al., 1979;

Clayton and Cuzick, 1985), account for correlations between tumors from the same

animal using random effects. However since animal-specific susceptibility may unex-

pectedly change with age, generalizations of these models are needed to allow frailties to

vary dynamically; ideally, such methods would be nonparametric and computationally

efficient.

There has also been little consideration of Bayesian nonparametric testing in the

k-sample setting. In particular, there are no Bayesian methods which test for changes

in the shape of a response distribution across an ordinal predictor. Such methods would

be appealing for toxicology data since differences amongst subjects in their response to

treatment may cause changes in variance, skewness, or modality with dose. In these

settings, methods which test for changes in the location parameter of a distribution

(e.g., the method of Gopalan and Berry, 1998) may ignore important dosages.

2



In this dissertation, we provide an introduction to Bayesian nonparametric inference

and propose three semiparametric methods which address some of the computational,

modelling, and testing issues mentioned above.

In Chapter 2, we provide a literature review of Bayesian nonparametric priors with

particular attention given to the Dirichlet process and other priors used in hierarchical

models and survival analysis.

In Chapter 3, we describe an empirical Bayes method which makes fitting semi-

parametric random effects models feasible for large data sets. The method uses expert

elicitation to construct a smaller set of pseudo-data which summarizes the scientifically

important differences in the response and predictor values. We then fit a random effects

model to the pseudo-data, assigning a nonparametric Dirichlet Process prior (DPP) to

the random effects. This method was motivated by data from the Collaborative Peri-

natal Project (CPP), which was a prospective epidemiology study consisting of over

30,000 children.

In Chapter 4, we propose a semiparametric dynamic frailty model for multiple

event time data, which is motivated by data from studies of tumorigenesis. The model

presents many interesting innovations over current methods including a computation-

ally simple method of introducing correlation amongst time dependent frailties, piece-

wise constant hazards, and dynamic regression coefficients. We also relax our assump-

tions on the frailty using DPPs. To illustrate our method, we analyze data from a

cancer chemoprevention study.

In Chapter 5, we discuss a Bayesian nonparametric method for testing for changes

in a response distribution across an ordinal predictor, such as dose. Using a dynamic

mixture of Dirichlet processes (DMDP; Dunson, 2006), we allow the response distribu-

tion to change flexibly at each level of the predictor. In addition, we assign hierarchical

priors to the mixture weights to obtain probabilities of no effect of the predictor and

to identify thresholds in toxicology data, such as the lowest observed adverse effects

level (LOAEL). The method also provides a natural framework for performing tests

across multiple outcomes. We apply our method to simulated data and real data from

a genotoxicity experiment.

Finally, we summarize our proposed methods in Chapter 6 and discuss some chal-

lenges for future research.

3



CHAPTER 2

BAYESIAN NONPARAMETRIC

INFERENCE

Using the notation of Walker et al. (1999), let Y1, . . . , YN
iid∼ F be defined on some space

Ω. In the Bayesian parametric framework, F would be a known distribution function,

PΘ, and priors would be assumed for the unknown parameters Θ. Nonparametric

inference presents a different line of thinking in that F is treated as an unknown function

with prior PΩ.

Seemingly the most popular nonparametric prior is the Dirichlet process (Ferguson

1973, 1974) due to its ease in implementation. Some important applications and theo-

retical work with the Dirichlet process include Antoniak (1974), Susarla and Van Ryzin

(1976), Sethuraman (1994), Escobar (1994), MacEachern (1994), West et al. (1994),

Escobar and West (1995), Bush and MacEachern (1996), Mukhopadhyay and Gelfand

(1997), Kleinman and Ibrahim (1998), MacEachern and Müller (1998), Neal (2000),

Kottas and Gelfand (2001), Carota and Parmigiani (2002), and Dunson (2004). Some

more general classes of priors have also demonstrated good properties in certain appli-

cations such as the Pólya tree (Ferguson, 1974; Lavine, 1992, 1994; Muliere and Walker,

1997; Walker and Mallick, 1997; Hanson and Johnson, 2002) and neutral to the right

processes (Doksum, 1974; Kalbfleisch, 1978; Ferguson and Phadia, 1979; Hjort, 1990).

Reviews of previous work in Bayesian nonparametric inference can be found in Walker

et al. (1999) and Müller and Quintana (2004). In addition, summaries of nonpara-

metric priors used in survival analysis are provided by Ibrahim et al. (2001). We will

begin this chapter with a detailed discussion of the Dirichlet process and later we will

provide brief discussions of the Pólya tree (Section 2.2) and independent and dependent

increments models, including neutral to the right processes (Section 2.3).



2.1 The Dirichlet Process

2.1.1 General Framework

The Dirichlet process was originally introduced by Ferguson (1973, 1974) as a conve-

nient method of eliciting a nonparametric prior for F using the Dirichlet distribution,

which we now define. For a (k − 1)-dimensional vector of positive random variables,

(z1, . . . , zk−1), the (k− 1)-variate Dirichlet distribution, Dirichlet(α1, . . . , αk) is defined

by the joint density

f(z1, . . . , zk−1) =

(
Γ(α)∏k
j=1 Γ(αj)

)( k−1∏
j=1

z
αj−1
j

)(
1−

k−1∑
j=1

zj

)αk−1

, (2.1)

where
∑k−1

j=1 zj ≤ 1, α =
∑k

j=1 αj, and

E(Zj) =
αj
α

Var(Zj) =
αj(α− αj)

α2(α+ 1)
. (2.2)

Now consider the disjoint subsets of Ω, B1, . . . , Bk, where Ω =
⋃k
j=1Bj. For an

axis of values, B1, . . . , Bk can be thought of as the set of non-overlapping intervals

which comprise the axis. The Dirichlet process prior (DPP), F ∼ DP(α0F0), assumes

that (F (B1), . . . , F (Bk)) has a Dirichlet distribution with parameters (α0F0(B1), . . . ,

α0F0(Bk)), where F0 is a known distribution, or base measure, and α0 is a precision

parameter which accounts for deviations from this parametric structure. As shown

by Ferguson (1973), the posterior distribution of F is also a Dirichlet process with

parameter α0F0 +N ·FN , where FN is the empirical cdf. Thus, by choosing a small α0,

one can obtain a diffuse prior, causing posterior estimates to be more data driven.

A couple of different authors have provided tractable representations of the DP. For

instance, Blackwell and MacQueen (1973) developed a Pólya urn representation of the

DP, which has proven useful in the development of Gibbs sampling algorithms (e.g.,

Escobar and West, 1995; MacEachern, 1994; West et al., 1994). This representation is

described in greater detail in Section 2.1.3. Sethuraman (1994) developed an alternative

5



representation of the DP where G ∼ DP(α0G0) implies that

G =
∞∑
i=1

wi(v)δθi

θi
iid∼ G0 and wi(v) = vi

∏
j<i

(1− vj) where vj
iid∼ Beta(1, α0), (2.3)

δθi
denotes a point mass at θi, and v = {v1, v2, . . .}. The mixing proportions wi(v) in

the above representation are generated by successively breaking a “stick” of unit length

into an infinite number of pieces, and thus (2.3) is often referred to as the stick-breaking

representation of the DP. This representation makes it clear that G is discrete under a

DPP, a result that was previously shown by Blackwell (1973).

2.1.2 Dirichlet Process Mixture (DPM)

The discrete nature of the DP is obviously problematic under a continuous Y. A simple

solution to this problem is to use a Dirichlet process mixture or DPM (Antoniak, 1974).

Consider a random vector yi of length ni whose distribution, F , is known and dependent

upon a set of latent variables φi. In a Dirichlet process mixture, the DPP is shifted

to φi to ensure that yi has a continuous distribution while still relaxing distributional

assumptions. Thus, the model has the following hierarchical structure:

yi|φi ∼ F (·;φi)

φi|G ∼ G (2.4)

G|α0,ψ0 ∼ DP
(
α0G0(·;ψ0)

)
,

where ψ0 are the parameters of the parametric base measure G0. Using the stick-

breaking representation of the DP, the DPM can also be described by the following

process:

yi|zi ∼ F (·;θzi
) zi|v ∼ Multinomial(w(v)) i = 1, . . . , N

vj|α0 ∼ Beta(1, α0) θj|ψ0 ∼ G0(·;ψ0) j = 1, 2, . . . , (2.5)

where zi indicates the mixture component with which yi is associated and w(v) =

{w1(v), w2(v), . . .}.
A simple example of a DPM is the seminal work by Escobar (1994) whose objective

6



was to provide nonparametric estimates of normal means. The hierarchical structure of

this model is simply Yi ∼ N(µi, σ
2), µi ∼ G, and G ∼ DP(α0G0). Other authors have

used the DPM for density estimation (e.g., West et al., 1994; Escobar and West, 1995)

and to construct semiparametric hierarchical models, as discussed in Section 2.1.4.

As noted by Neal (2000), sometimes a Dirichlet process mixture is referred to as

a Mixture of Dirichlet processes (MDP) in the literature because the full conditional

posterior of G is an MDP (Antoniak, 1974). However, this characterization will be

avoided since models are usually characterized by their prior distributions and not

their posteriors (Neal, 2000).

2.1.3 Computation under the DPM

Pólya Urn Gibbs Sampling

As mentioned earlier, the Pólya urn representation of the DP (Blackwell and MacQueen,

1973) has motivated Gibbs sampling methods for the DPM. Given Φ = {φ1, . . . ,φN}
constitute a set of exchangeable random variables, when G is integrated over its DPP

it can be shown that Φ may be generated according to the sequence (Escobar, 1994):

φ1 ∼ G0

φ2|φ1 ∼ αG0 + δφ1

α0 + 1
...

φN |φ1, . . . ,φN−1 ∼
αG0 +

∑N−1
j=1 δφj

α0 +N − 1
, (2.6)

As noted by West et al. (1994), any realization of φ1, . . . ,φN lies in a set of K ≤ N

distinct values or clusters, with common values θ = {θ1, . . . ,θK}. Thus, the conditional

prior of φi given φ
(i)
i = {φj : j 6= i} is:

(
α0

α0 +N − 1

)
G0 +

(
1

α0 +N − 1

) K(i)∑
j=1

n
(i)
j δθ(i)

j
, (2.7)

where φ
(i)
i takes on K(i) distinct values, n

(i)
j of which have the common value θ

(i)
j .

7



From (2.7), the full conditional posterior of φi follows immediately

π(φi|Y,φ(i)
i ) = qi0Gi0 +

K(i)∑
j=1

qijδθ(i)
j
, (2.8)

where Y denotes the total data and each qij is a multinomial probability given by

qij =

{
c · α0hi(yi) j = 0

c · n(i)
j fj(yi|θj) j > 0,

where

• Gi0 is the posterior obtained by updating the base measure G0 with the likelihood,

or equivalently

dGi0(φi) ∝ fi(yi|φi)dG0(φi),

• hi(yi) is the observed value of the marginal density of yi under the base measure,

hi(yi) =

∫
fi(yi|φi)dG0(φi)

• c is a normalization constant

The predictive distribution of a future φi, φN+1 is also easily obtained under the Pólya

urn representation of the DP,

π(φN+1|φ) =

(
α0

α0 +N

)
G0 +

(
1

α0 +N

) K∑
j=1

njδθj
. (2.9)

For more details on these prior, posterior, and predictive distributions, please see

MacEachern (1994) and West et al. (1994).

As demonstrated by Escobar (1994) and Escobar and West (1995), posterior com-

putation may proceed using a Gibbs sampling algorithm which updates Φ from (2.8).

However, this approach is subject to slow mixing since θ is rarely updated. Thus, based

on the initial ideas of MacEachern (1994), West et al. (1994), propose a more efficient

algorithm which updates the number of clusters (K), the configuration of subjects, and

the unique values at each iteration of the MCMC. Let S = {S1, . . . , SN} define a set of

configuration indicators, where Si = j if φi = θj. The full conditional posterior of Si
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follows from (2.8),

P (Si = j|Y,θ(i)) = qij. (2.10)

Thus, the sampling algorithm proceeds as follows:

1. Given the values of θ and S obtained from the previous iteration of a Gibbs

sampler, sample S1, . . . , SN from (2.10) with a new φi drawn from Gi0 when

Si = 0.

2. Given the updated values of K and S, update θ using the posteriors,

π(θj|Y,S) ∝
( ∏
i:Si=j

fi(yi|θj)
)
dG0(θj), (2.11)

for j = 1, . . . , K.

The computational ease of DPMs depends upon whether or not the base measure is

conjugate; i.e., does G0 result in Gi0 from the same family of distributions. When G0 is

conjugate, hi(yi) has a closed form and posterior computation is simple using the above

sampling algorithm. However, when conjugacy does not hold, more complex sampling

algorithms must be used. West et al. (1994) proposed estimating hi(yi) using either nu-

merical quadrature or a Monte Carlo simulation which uses the average value of f(yi|φi)
over several values of φi sampled from G0. An alternative method was proposed by

MacEachern and Müller (1998) which avoids numerical integration. Under their ap-

proach, N candidate atoms are sampled from G0 at each iteration: θK+1, . . . ,θK+N .

If n
(i)
l > 0 for subject i currently in cluster l, then φi is sampled according to the

probability function,

π(φi|θ(i),Y) ∝
(

α0

K + 1

)
f(yi|θK+i)δθK+i

+
K∑
j=1

qijδθj
, (2.12)

else if n
(i)
l = 0, φi is unchanged with probability (K − 1)/K and with probability

1/K it is sampled from (2.12) with the minor modification that K is replaced with

K − 1. More recently, Neal (2000) proposed a related algorithm which samples m ≥ 1

candidate atoms for each subject, thus increasing the probability that each subject

belongs to their own cluster. In the same article, Neal also describes a method in which

cluster membership is updated using Metropolis steps.
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Other Methods

Although Pólya urn sampling methods are easy to implement, in some situations they

can be slow to converge and mix poorly, even when MacEachern’s (1994) and West et

al.’s (1994) algorithms are used. For instance, Jain and Neal (2004) note that when

two or more mixture components have similar parameter values, the Gibbs sampler

can become trapped in a local mode that corresponds to an incorrect clustering of data

points. To address this issue, Jain and Neal proposed a Metropolis-Hastings procedure

which increases the efficiency of cluster assignment by splitting and merging entire

clusters at each step of the MCMC.

Another limitation of the Pólya urn sampling methods is that they do not provide

direct samples from the DP. As a result, one cannot estimate credible intervals for the

functional assigned the DPP. To address this issue, several authors have proposed com-

putational algorithms which sample from a truncated version of Sethuramans’ (1994)

stick-breaking representation. For instance, Ishwaran and James (2001) proposed a

blocked Gibbs sampler which updates the atoms, weights, and remaining hyperparam-

eters from their joint distributions. For related approaches see Muliere and Tardella

(1998), Ishwaran and James (2002), and Gelfand and Kottas (2002).

Some other computational methods for DPMs include alternatives to MCMC sim-

ulation. For example, importance sampling-type methods have been proposed by Liu

(1996) and MacEachern et al. (1999). Newton and Zhang (1999) also proposed a

predictive recursion method for estimating predictive distributions. Although these

approaches are faster than Gibbs sampling, the importance sampling methods can pro-

duce large Monte Carlo error and predictive recursion tends to over-smooth (see, e.g.,

Quintana and Newton, 2000).

Recently, Blei and Jordan (2006) proposed a Variational Bayes (VB) approach to in-

ference for the DPM. Under the stick-breaking representation (2.5), let z = (z1, . . . , zN)′

denote the mixture indicators for N subjects. The VB approach replaces the joint pos-

terior of the stick-breaking parameters, π(v,θ, z|Data), with a variational distribution

which truncates the stick-breaking process at M atoms:

q(v,θ, z) =
M−1∏
m=1

Beta(vm; am, bm)
M∏
m=1

q∗(θm;ηm)
N∏
i=1

Multinomial(zi;πm), (2.13)

where q∗() denotes a distribution in the exponential family and am, bm,ηm,πm m =

1, . . . ,M are known as variational parameters, whose values are chosen to maximize a

10



lower bound on the log-marginal likelihood. As opposed to MCMC, VB has a single

optimization criterion that can be used to assess convergence. In addition, Blei and

Jordan have provided empirical evidence that VB is much faster than MacEachern’s

(1994) Gibbs sampler and Ishwaran and James’ (2001) blocked Gibbs approach. How-

ever, a major disadvantage of this method relative to the MCMC approaches is that

the estimates from VB are based on an approximation instead of the true posterior.

Hyperparameter estimation

As mentioned above, the base measure in the DPM, G0, is usually fixed or assumed to

come from a parametric family of distributions with a fixed hyperprior placed on its

parameters, Ψ0 (see, e.g., West et al., 1994; Escobar and West, 1995; MacEachern and

Müller, 1998). However, some authors have considered nonparametric estimation of G0.

For instance, some have assigned DPPs (e.g., Teh et al., 2006) or DPMs (e.g., Tomlinson

and Escobar, 1999) to G0. MacAuliffe et al. (2006) describe another approach in

which G0 is estimated every T ∗ iterations of the MCMC using kernel density estimates

constructed from θ.

A few authors have also proposed methods for estimating α0 from the data. For

example, West (1992) assigned a gamma prior to α0, while Carota and Parmigiani

(2002) proposed a regression model. Liu (1996) developed sequential imputation and

Gibbs sampling methods for approximating the MLE of α0 (see also MacAuliffe et al.,

2006).

2.1.4 Random Effects Modelling

The computational methods developed for DPMs have made nonparametric modelling

of random effects feasible. For instance, when a DPP with a normal base measure is

assigned to the unknown distribution of a random block effect (e.g., Bush and MacEach-

ern, 1996) or a random coefficient (e.g., Kleinman and Ibrahim, 1998) in a linear model,

conjugacy is achieved and computation may proceed using West et al.’s (1994) method.

Hierarchical count data can also be modelled by a conjugate DPM by specifying a

gamma base measure in the DPP for the random effect distribution (see, e.g., Dunson,

2004). However, as discussed in Mukhopadhyay and Gelfand (1997), a conjugate G0

does not exist in all hierarchical generalized linear models, such as logistic regression.

In these settings, posterior computation requires a more intensive approach, such as

MacEachern and Müller’s (1998) method.
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Although DPMs improve the flexibility of random effects models, smoothness of the

random effect distribution is compromised due to the almost surely discrete restriction

of the DPP. However, this problem can be fixed by adding another level of hierarchy to

the model; i.e. one may assume that G is fixed given the latent variables νi and assign

a DPP to the unknown distribution of νi. For example, Müller and Rosner (1997) use

a DPM to model subject-specific coefficients within a nonlinear model for blood count

data.

Some authors have developed generalizations of the DP to allow the distributions

of random effects or other latent variables to depend on covariate values. For exam-

ple, dependent nonparametric processes have been proposed by Cifarelli and Regazzini

(1978), MacEachern (1999, 2000), Müller et al. (2004), Dunson (2006), and Dunson

and Pillai (2004). In Chapter 5, we will discuss these methods in more detail and

propose a generalization of the Dunson (2006) approach.

2.2 The Pólya Tree

2.2.1 General Framework

Another common nonparametric prior is a generalization of the Dirichlet process known

as the Pólya tree or PT for short(Ferguson, 1974; Lavine, 1992, 1994). The Pólya tree is

defined by an infinite set of binary partitions of the space Ω. Let B0 and B1 be obtained

by splitting Ω into two pieces. B0 and B1 are split into (B00, B01) and (B10, B11),

respectively, and this process is repeated ad infinitum. For some m, let ε = ε1 · · · εm
with εk ∈ {0, 1} for k = 1, . . . ,m so that ε defines a unique set of partitions, Bε. A

random probability measure F on Ω is said to have a Pólya tree prior if there exists

nonnegative numbers A = (α0, α1, α00, . . .) and random variables C = (C0, C00, C10, . . .)

such that

1. All random variables in C are independent

2. For every ε, Cε0 ∼ Beta(αε0, αε1)

3. For every m = 1, 2, . . . and every ε = ε1 · · · εm,

F (Bε1...εm) =

( m∏
j=1;εj=0

Cε1···εj−10

)( m∏
j=1;εj=1

(1− Cε1···εj−10)

)
, (2.14)
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where the first terms (for j = 1) are interpreted as C0 and 1 − C0 (Lavine, 1992).

The formal shorthand notation is F ∼ PT(Π,A), where Π is the set of partition

probabilities.

An attractive feature of the Pólya tree prior is that it is conjugate, i.e. F |Y ∼
PT(Π,A|Y), where A|Y = αε + nε and nε is the number of observations from Y in Bε

(Ferguson, 1974; Lavine, 1994). Thus, when y1, . . . , yN are all uncensored, the posterior

predictive distribution of a future observation, YN+1, follows immediately

P (YN+1 ∈ Bε) =
m∏
k=1

αε1···εk + nε1···εk
αε1···εk−10 + αε1···εk−11 + nε1···εk−1

. (2.15)

2.2.2 Applications

A Pólya tree priors can be centered on a probability distribution, F0, by taking the

partitions to coincide with percentiles of F0 and assuming that αε0 = αε1 = αε for each

ε (Lavine, 1992). At level m, this would correspond to the partitions

Bj = {(F−1
0

(
(j − 1)/2m

)
, F−1

0

(
j/2m

)
} for j = 1, . . . , 2m, where F−1

0 (0) = −∞ and

F−1
0 (1) = ∞. To facilitate computation, C is terminated at some finite level M and

attention is restricted to the r = 2M partitions given by πM = (B1, . . . , BM) (Lavine,

1992).

Some additional attention must be given to the choice of αε. As seen in (2.15), as

αε decreases for each m, the posterior predictive distribution of YN+1 approaches the

empirical cdf. Thus, in this sense, αε is similar to the parameter α0 in the DP in that

it quantifies the prior confidence in the base distribution. However, interpreting αε as

a precision parameter is limiting since it also determines the smoothness of F (Lavine,

1992). To see this trait, consider the probability of two Yi’s taking on the same value,

P (Yi = y|Yj = y) =
∞∏
k=1

αε1···εk + 1

αε1···εk−10 + αε1···εk−11 + 1
. (2.16)

According, to Mauldin et al. (1992), (2.16) equals 0 is a sufficient condition for a

continuous F , which can be approached by allowing αε to increase with m. Ferguson

(1974) claims that αε = m2 implies that F is continuous with probability one, which

Lavine (1992) calls a “sensible canonical choice” for αε. Alternatively, the Pólya tree

may be specialized to the Dirichlet process by choosing αε = α/(2m), but as mentioned

previously, this ensures that F is discrete (Blackwell, 1973; Ferguson, 1973).

Under censored data, the partitions of the Pólya tree must coincide with observed
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censoring times to maintain conjugacy (Muliere and Walker, 1997). Thus in order

to center the tree on a given distribution, Muliere and Walker (1997) propose setting

each αε = γmF0(Bε), where γm is a constant. This method not only ensures that

E(F (Bε)) = F0(Bε), but it also allows one to specify γm such that the continuity of F

is ensured. In addition, the predictive probabilities retain a simple form,

P (YN+1 ∈ Bε) =
m∏
k=1

αε1···εk + nε1···εk
αε1···εk−10 + αε1···εk−11 + nε1···εk−1

− sε1···εk−1

, (2.17)

where sε1···εk−1
is the number of observations censored in Bε.

In some recent applications, Pólya tree priors have been used to model random error

or subject-specific random effects in semiparametric regression models. For example,

Walker and Mallick (1997) assigned Pólya tree priors to random effects in hierarchical

generalized linear models and frailty models. Although the full conditional posterior of

F is tractable, the conditional posteriors of the random effects are not. Thus, computa-

tion requires either an indirect sampling method to obtain values of the random effects

(e.g., Metropolis sampling) or constructing additional latent variables to achieve conju-

gacy. These methods are more computationally intensive than the Pólya urn sampling

methods for the DPM.

Another disadvantage of the Pólya tree is its sensitivity to the choice of partitions.

This latter problem may be alleviated by using a mixture of Pólya trees in which the

parameters of the centering distribution, F0, and/or A are random. This approach also

improves computational efficiency since it does not require one to choose F0 with a

large enough variance to cover the support of F . Hanson and Johnson (2002) used a

mixture of Pólya trees in an accelerated failure time model.

2.3 Independent and Dependent Increments Models

2.3.1 Neutral to the Right Processes

The Dirichlet process is also a special case of a general set of nonparametric priors

known as neutral to the right (NTTR) processes. As defined by Doksum (1974), a

distribution function, F (t), is NTTR if it can written in the form F (t) = 1 − e−Y (t)

where Y (t) is a process with independent increments and

1. Y (t) is nondecreasing a.s.
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2. Y (t) is right continuous a.s.

3. limt→−∞ Y (t) = 0 a.s.

4. limt→∞ Y (t) = ∞ a.s.

Y (t) has at most a countably finite number of discontinuity points t1, t2, . . . with

independent jumps W1,W2, . . . NTTR priors are generally specified in terms of the

differences

Z(t) = Y (t)−
∑
j

Wj1(tj ≤ t <∞),

which do not have any points of discontinuity. As is the case with PT priors, NTTR

priors are always conjugate (Doksum, 1974).

Some special cases of NTTR processes have proven to be useful in Bayesian sur-

vival analysis. For example, Kalbfleisch (1978) used a special NTTR process known

as the gamma process to develop a semiparametric proportional hazards model. In

Kalbfleisch’s model, Y (t) = Λ0(t), the cumulative baseline hazard function, and Z(t)

is the increment in Λ0(t) at time t. Using a finite set of partitions of the time axis,

0 < τ1 < · · · < τM < ∞, Z(τj)
iid∼ Ga(c0z0(τj), c0) where z0(τj) is an initial guess at

the true value of the increment and c0 is a precision parameter for j = 1, . . . ,M . Hjort

(1990) also developed discrete time and continuous time beta process priors for the

increments in the cumulative baseline hazard. The gamma and beta processes are easy

to implement (due to conjugacy) and provide a simple structure for incorporating a

priori knowledge about the hazard function into analyses.

2.3.2 Dependent Increments Models

Although NTTR priors have some nice properties, the independent increments assump-

tion may not be reasonable in some settings. In particular, one would typically expect

the hazards from adjacent time intervals to be correlated a priori. To address this

issue, some authors have proposed generalizations. Let λ0j denote the baseline hazard

over the jth partition of the time axis. To induce correlation, Aslanidou et al. (1998)

modelled the baseline hazard using the discrete time martingale process of Arjas and

Gasbarra (1994):

λ0j|λ01, . . . , λ0(j−1) ∼ Ga

(
ν,

ν

λ0(j−1)

)
. (2.18)
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In (2.18), the smoothness of the baseline hazard is controlled by the value of ν. Sinha

(1998) proposed an alternate model for the baseline hazard which uses a correlated

process described by Gamerman (1991):

log(λ0(j+1)) = log(λ0j) + ej+1 ej+1 ∼ N(0, σ2). (2.19)

Sinha’s prior only requires assumptions on the level of smoothing between adjacent

intervals. However, posterior computation requires the use of a posterior likelihood,

and thus future predictions cannot be made. More recently, Nieto-Barajas and Walker

(2002) developed a Markov gamma process for piecewise constant hazards. Their ap-

proach induces correlation through the use of latent Poisson and gamma random vari-

ables and has a convenient conjugacy property.
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CHAPTER 3

EMPIRICAL BAYES FITTING

OF SEMIPARAMETRIC

RANDOM EFFECTS MODELS

TO LARGE DATA SETS

3.1 Introduction

When multilevel data are compiled from a large study, multiple centers, or lengthy

followups, the number of observations can become massive. In these situations, it

can be difficult to fit random effect models (Laird and Ware, 1982) using standard

frequentist (e.g., Wolfinger et al., 1994) and Bayesian (e.g., Zeger and Karim, 1991)

methods due to convergence or memory problems. These difficulties are illustrated by

data collected in the Collaborative Perinatal Project (CPP), a prospective epidemiologic

study of pregnant women and their children in the U.S. from 1959-1974. Recently,

Chen et al. (2006) examined the relationship between maternal smoking habits and

childhood obesity within N = 34, 866 children in the CPP using generalized estimating

equations, or GEE (Liang and Zeger, 1986). Although GEE allowed the authors to

perform inferences on population mean effects, it would have also been interesting to

assess how smoking varied in its effect across the children. In addition, a random

effects model would have relaxed assumptions on missingness by requiring only missing

at random (MAR) instead of missing completely at random (MCAR). Unfortunately,

investigators were unable to fit random effects models to the CPP data using frequentist

or Bayesian methods due, in part, to the large sample size. For example, SAS PROC



MIXED failed to converge.

When a data set is large, as in the CPP, it would also be advantageous to use the

abundant information to relax assumptions of models, such as normality of random

effects. Bayesian nonparametric or semiparametric methods are attractive in these

settings since the random effect distribution can be assigned a prior which reflects a

priori knowledge about the shape or location. For instance, a Dirichlet process prior

(DPP) may be assigned to the random effect distribution (see, for example, West et al.,

1994, Bush and MacEachern, 1996, Mukhopadhyay and Gelfand, 1997, and Kleinman

and Ibrahim, 1998), which reduces the number of random effects to a set of K ≤ N

unique values. Each of these K clusters represent subjects with common latent traits

which may include interesting genetic or environmental factors worthy of future study.

Despite the promise of the DPP, K increases rapidly with N which can lead to a

scientifically implausible and computationally impractical number of clusters when N

is very large.

Unfortunately, few authors have considered adapting the computational methods

for the DPP to handle large data sets. Although Blei and Jordan’s (2006) variational

inference method can substantially reduce computation time, especially for large N ,

the approach relies on replacing the true posterior density with a lower bound having

unknown accuracy. Potentially, the particle filtering methods described by Chopin

(2002), Ridgeway and Madigan (2003), and Balakrishnan and Madigan (2006) could

be generalized to make Bayesian nonparametric inference feasible for large data sets. In

this paper, we consider an alternate approach which involves scaling-down the size of the

data prior to performing MCMC. Existing methods for data squashing include methods

which fit models to both real and generated data, also known as pseudo-data, which

are representative of the complete data. For example, DuMouchel et al. (1999) and

Madigan et al. (2002) construct pseudo-data using a moment matching and likelihood-

based approach, respectively, while Owen (2003) uses a random sample of the complete

data. Huang et al. (2005) proposed a related Bayesian method for fitting hierarchical

models, though their approach is parametric and involves combining posteriors from

several sub-samples of the data.

Motivated by the CPP data, we propose a data squashing procedure for fitting

semiparametric random effects models to large, longitudinal data sets. Our method

consists of two stages. First, a multivariate clustering procedure is used to identify

G << N groups of scientifically indistinguishable subjects, meaning that differences

between subjects in each group are so small that they would not be considered signifi-
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cant by an expert of the subject matter. In the second stage, we use a DPP to model

the G cluster means, further clustering the groups from the first stage. By applying

the DPP to the cluster means instead of the complete data, we reduce both the com-

putation time and the number of latent classes. In addition, our use of expert opinion

improves the scientific justification of clustering. For discussion of the importance of

expert elicitation, refer to Kadane and Wolfson (1998), Meyer and Booker (2001), and

Garthwaite et al. (2005).

In Section 3.2, we discuss the CPP data and previous results. In Section 3.3, we

propose the method. Section 3.4 contains a series of simulation examples, Section 3.5

applies the approach to the CPP data, and Section 3.6 discusses the results.

3.2 Maternal Smoking and Childhood Growth Data

As described by Broman (1984), the Collaborative Perinatal Project (CPP) was a

large prospective study of pregnancy and childhood development. The study consisted

of 55, 043 pregnancies enrolled at 12 study centers in the U.S. between 1959 to 1965

and included measurements obtained from children starting at birth and concluding

at age 8. The investigators targeted 20 different outcomes in the study including the

presence of mental and communicative disorders in the children and physical growth.

The CPP measured smoking during pregnancy and child height and weight at fol-

lowup visits. Chen et al. (2006) used the measurements at birth and at years 1, 3, 4,

7, and 8 to determine the effects of maternal smoking on childhood growth amongst

34,866 children (17,348 boys and 17,518 girls). Categories of smoking exposure included

(1) never smoked, (2) ex-smokers, and (3) currently smoking based on questionnaire

data at registration or subsequent prenatal visits. Being unable to implement random

effects models due to the large sample size, the authors used GEE to demonstrate that

mothers who smoked during pregnancy had infants with lower birth weight, but by age

8, these children had a greater risk of being overweight.

As mentioned in Section 3.1, mixed effects models have several advantages including

their ability to assess heterogeneity across subjects and relaxed assumptions on miss-

ingness. In exploratory analyses of the data, we found that the heavier children at age

4 were more likely to miss followups at ages 7 and 8. Thus, the MCAR assumption of

GEE may be violated. In this paper, we wish to address these concerns by fitting a

random effects model to the CPP data. We focus on the effects of smoking on weight in

females to illustrate the approach as Chen et al. found the largest effect in this group.
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3.3 Methods

3.3.1 General Motivation

For i = 1, . . . , N , let yi = (yi1, . . . , yini
)′ denote a set of ni longitudinal measurements

on subject i. Letting Xi = (xi1, . . . ,xip) denote a set of predictors, we focus on the

linear random effects model

[
yi |bi,Xi

]
∼ N

(
Xibi, τ

−1Ini

)
, (3.1)

where Ini
is an ni × ni identify matrix and bi = (bi1, . . . , bip)

′ ∼ H, an unknown

distribution with mean β and covariance V.

As N becomes very large and both ni and p remain modest, many subjects have

essentially identical values with yi ≈ yj and Xi ≈ Xj for many different pairs i, j. Out-

comes, such as weight, that are treated as continuous are often truncated or rounded

when recorded, limiting the number of unique values in the data. In addition, val-

ues which are so close that a subject matter expert would consider them scientifically

indistinguishable can be grouped together without loss of important information. Un-

der these circumstances, the data are adequately summarized by values for G << N

clusters. For an observation i in cluster g let

ygi = yg + εgi

Xgi = Xg + ∆gi bgi = bg + φgi (3.2)

where yg, Xg, and bg are the cluster-specific means of the response, predictors, and ran-

dom effects, εgi and φgi are random variables, and ∆gi is a matrix of constants. When

the G clusters adequately represent the heterogeneity in the data, the observed values

of εgi, φgi, and ∆gi are all approximately zero. Thus, β = E(bi) can be reasonably

estimated by

β̂ =
1

N

N∑
i=1

bi =
1

N

G∑
g=1

∑
i∈g

(bg + φgi) ≈
1

N

G∑
g=1

mgbg = β̃, (3.3)

where mg is the number of subjects in cluster g.

Instead of fitting models to all N subjects, we propose an alternative approach in

which we fit our model to the pseudo-sample, (y∗1,X
∗
1), . . . , (y

∗
G,X

∗
G), where (y∗g,X

∗
g)

represents the typical subject in cluster g (i.e., y∗g = yg and X∗
g = Xg). In Section
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3.2, we recommend a strategy for initial clustering of the N subjects in G groups. In

Section 3.3, we propose a flexible Stage 2 clustering procedure which uses a DPP to

avoid restrictions on H. Section 3.4 describes the MCMC algorithm and in Section 3.5

we discuss our approach to inference.

3.3.2 Stage 1 Clustering

We propose a stratified methodology to generate the first stage clusters. Although

related to the data-sphere method used by DuMouchel et al. (1999), our procedure is

geared to the random effects problem and incorporates knowledge of subject matter

experts. Subject-specific data are first divided into q strata based on categorical pre-

dictors. For example, if there are two categorical predictors, one dichotomous and one

with three levels, q should equal 6. Within each stratum, we wish to develop clusters of

scientifically indistinguishable subjects based on the values of the continuous variables,

i.e., the longitudinal responses and continuous predictors. For subject i in stratum j,

we denote the values of these variables as wji = (wji1, . . . ,wjipji
)′. For ease in exposi-

tion, we will temporarily assume that pji = pj for i = 1, . . . ,Mj, where pj is the number

of continuous variables for each subject in stratum j and Mj is the stratum frequency.

Prior to clustering, we transform wji to zji = (zji1, . . . , zjipj
)′, where

zjik =
(wjik − wjk)

swjk

,

and wjk and swjk
denote the mean and standard deviation, respectively, of the kth

continuous variable in stratum j.

Let the z-scores in stratum j be divided into Gj clusters whose location in pj-space

are represented by a set of data points or seeds, cj1, . . . , cjGj
, where cjl = (cjl1, . . . , cjlpj

)′

and cjlk is the average value of the kth standardized variable in cluster l. We assume

that both the number of clusters and locations are unknown a priori, but through

expert elicitation, we define a threshold r such that

d(zji, cjl) =

√√√√ pj∑
k=1

(zjik − cjlk)2 ≤ r (3.4)

for subject j, i in cluster j, l. Thus, in a cluster of scientifically indistinguishable sub-

jects, r is the elicited maximum distance between the data of a single subject and the
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cluster seed, or the maximum radius of a cluster.

To elicit r, we recommend performing a set of exploratory cluster analyses and

presenting the results to one or more subject matter experts. These analyses may be

performed using a set of historical data, or alternatively, one stratum of the current

data. In the latter method, the data used to elicit r will also be used in the second

stage of the analysis, thus creating a sort of an empirical Bayes approach. In our

analysis of the CPP data, we treated the data on male children of never smokers as

our historical data, and we used it to choose an appropriate r for the female subjects.

In our exploratory analyses, we used a range of r values to cluster the longitudinal

weight of males with complete data (i.e., with followups at ages 0, 1, 3, 4, 7, and

8). Following each analysis, we plotted the growth curves from subjects in the cluster

with largest radius (see Figure 3.1). Using these plots, we asked a panel of experts

on body weight research (2 MD’s, a PhD in Nursing, and an Exercise Physiologist)

to tell us which clusters (each indexed by a radius, r) contain curves with potentially

significant differences. In our example, 3 out of 4 panel members agreed that when

r ≤ 2.14, the growth curves in each cluster were not significantly different. Thus,

r = 2.14 was the obvious choice for the CPP. In other applications where there is

substantial disagreement across the experts, the average elicited value could be used

instead. Our method for choosing r is similar to the use of opinion pools to combine

probability distributions elicited by several experts; for an example see Cooke and

Goossens (2000).

Once we have specified r, we apply the following three-step methodology to cluster

the continuous data in stratum j:

Step 1. Initialize cluster seeds.

Initialize Gj at 1 and let c
(0)
j1 = zj1. For i = 2, . . . ,Mj, if d∗ji = minl d(zji, c

(0)
jl ) > r,

then increment Gj by 1 and define a new seed, c
(0)
jGj

= zji.

Step 2. Iteratively update the seeds. Initialize an index variable, t, at 1 and

perform the following steps:

2.1 For i = 1, . . . ,Mj, if d∗ji ≤ r assign zji to the cluster with the closest seed.

2.2 For l = 1 . . . , Gj compute

c
(t)
jl =

1

mjl

∑
i∈j,l

zji,
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FIGURE 3.1: Plots used to elicit maximum radius, r, for CPP data. The subjects used
in the analyses were male children of non-smoking mothers who were measured at each
follow-up (N = 1, 115). Each plot consists of 10 growth curves from the cluster with
the largest radius, r. These curves correspond to the subjects furthest from and closest
to the cluster seed, as well as 8 randomly chosen subjects.
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where mjl is the number of subjects currently in cluster j, l. Let 0 ≤ ν < 1

denote a pre-specified convergence criterion such that changes in the cluster

seeds less than or equal to ν · d∗j0 are permissible, where d∗j0 denotes the

minimum distance between the initial seeds. If maxl d(c
(t)
jl , c

(t−1)
jl ) > ν · d∗j0,

then increment t by 1 and repeat Steps 2.1 and 2.2, otherwise proceed to

Step 3.

Step 3. Construct final clusters.

3.1 Repeat Step 2.1 using c
(t)
j1 , . . . , c

(t)
jGj

.

3.2 For all i : d∗ji > r, assign zji to its own cluster and update the value of Gj

accordingly.

Step 1 of our method is related to the leader algorithm (Hartigan, 1975), while Step 2

can be thought of as a form of k-means clustering (MacQueen, 1967) since the cluster

seeds are the means of the observations assigned to each cluster when the algorithm

is iterated until complete convergence (i.e., ν = 0). A proof of convergence of our

algorithm is provided in Appendix A. After completing Steps 1-3 for j = 1, . . . , q, we

compute the means of the untransformed variables in each cluster, wjl =
∑

i∈(j,l) wji.

As mentioned in Section 3.1, these data (plus the values of any categorical predictors)

will constitute our G =
∑q

j=1Gj pseudo-subjects.

The above method is attractive for many large data sets since it leads to the quick

formulation of first stage clusters chosen to have minimal scientifically-important dis-

tances between them. By choosing r based on expert elicitation, we induce a prior on

the clustering process. Our initialization method then uses this prior to identify the

most important separations in the data. Another attractive feature of our method is

that all three steps may be implemented using PROC FASTCLUS (SAS, version 9)

and sample code is available upon request from the authors.

In many longitudinal studies, including the CPP, pji 6= pji′ for several pairs (j, i), (j, i′)

due to missing followups. A simple solution is to stratify by missingness, but sometimes

the number of patterns may be too numerous to make this feasible. For instance, there

are 58 different missingness patterns in the CPP data. Thus, to resolve this problem,

we recommend stratifying by the most common patterns and assigning the remaining

subjects to the stratum for which they have the least number of missing variables. In

each of these strata, the initial cluster seeds are chosen using subjects with complete

data. Then, in Steps 2 and 3, subjects with missing observations are assigned to clusters
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based on adjusted distances,

dadj(zji, cjl) =

√
pj
pji

∑
(zjik − cjlk)2, (3.5)

where the sum is taken over the pji nonmissing variables for subject i in cluster j. As

before, these subjects may still be assigned to their own cluster if d∗ji > r in Step 3,

and thus, we do not ignore any important outliers.

3.3.3 Dirichlet process clustering

In the remaining sections of this chapter, we will drop the stratum index from the Stage

1 clusters and refer to the pseudo-data as (y∗1,X
∗
1), . . . , (y

∗
G,X

∗
G). For pseudo-subject

g = 1, . . . , G, we assume

[y∗g |X∗
g,b

∗
g, τ ] ∼ N(X∗

gb
∗
g, τ

−1In∗g)

b∗g ∼ H H ∼ DP(αH0), (3.6)

where n∗g is the number of measurements on pseudo-subject g, H0 is a known distribu-

tion, and α is a precision parameter. In all the examples we will consider, H0 = N(µ,

D).

As discussed in Section 2.1.3, if we marginalize over the DPP for H, the sequence

of random effects, b∗1, . . . ,b
∗
G, follows a Polya urn scheme (Blackwell and MacQueen,

1973), i.e.,

b∗k|b∗1, . . . ,b∗k−1

{
= b∗j with probability 1

α+k−1

∼ H0 with probability α
α+k−1

,
(3.7)

for j < k and k = 2, . . . , G. Thus, under the DPP, the random effects are clustered

into K ≤ G different groups whose random effects are θ1, . . . ,θK , where θl ∼ H0 for

l = 1, . . . , K (MacEachern, 1994).

Let S1,i ∈ {1, . . . , G} and S2,i ∈ {1, . . . , K} index the stage 1 and 2 clusters of

subject i, respectively. Given the frequencies of our Stage 1 clusters, m1, . . . ,mG, the

probability that two, randomly selected subjects are in the same Stage 1 cluster is

Pi,i′ = Pr(S1,i = S1,i′) =
G∑
g=1

(
mg

2

)(
N
2

) , (3.8)
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which follows from the multivariate hypergeometric distribution. Also, under the DPP,

the probability that two pseudo-subjects are grouped together is 1/(α+ 1) (Antoniak,

1974). Therefore, a priori,

Pr(S2,i = S2,i′) = Pi,i′ +
1− Pi,i′

α+ 1
≥ 1

α+ 1
. (3.9)

Thus, our method increases the prior probability that two subjects are clustered to-

gether, relative to a DPP applied to N subjects. As a result, our prior favors a smaller,

but more scientifically justified, number of clusters.

3.3.4 Posterior Computation

Computation under the DPP proceeds using the West et al. (1994) Pólya urn sampler

described in Section 2.1.3 and the details regarding both the full conditional posterior

distributions of b∗1, . . . ,b
∗
G and the sampling algorithm are provided in Appendix B.

The major difference between our implementation and the standard use of the sampler

is that our conditional posteriors in terms of G pseudo-subjects instead of N subjects.

It is important to note that if we were to apply the DPP to N random effects, instead

of G, the MCMC would iterate very slowly for large samples and computation may

be infeasible. In addition, the large matrices needed to update values for N subjects

can cause memory problems in certain software, such as Matlab. This latter difficulty

prevented us from applying the DPP to each subject in the CPP data.

To reduce the sensitivity of the Stage 2 clustering to subjectively chosen hyperpa-

rameters, we recommend placing hyperpriors on µ, D, τ , and α. For our models, we

use the priors

π(µ) = N(µ0,Σ0) π(D−1) = W(d0,D0)

π(τ) = Ga(ψτ0, ψ) π(α) = Ga(a, b),

where W(·, d0,D0) is the Wishart density with degrees of freedom d0 and mean D0.

Please see Appendix B for the full conditional posterior densities of these hyperparam-

eters. Since each of the above priors are conjugate, it is straightforward to update the

values of the hyperparameters within the MCMC using Gibbs steps.

26



3.3.5 Methods for Inference

In Section 3.3.1 , we demonstrated that population-average effects, β, can be estimated

by a weighed mean of b1, . . . ,bG. Although the DPP is applied to cluster means,

b∗1, . . . ,b
∗
G are computed based on one pseudo-subject and, as a result,

Cov

(
1

N

∑
g=1

mgb
∗
g

)
> Cov(β̃) =

1

N
V.

However, given β, a transformation can be made,

ḃg = m−1/2
g b∗g + (1−m−1/2

g )β,

which preserves the mean for b∗g, but changes the covariance to V/mg so that

Cov

(
1

N

G∑
g=1

mgḃg

)
=

1

N
V.

Based on the above results, we make a similar, posterior transformation of b∗1, . . . ,b
∗
G,

which ensures that the variance of the population effects is reflective of the cluster

size. Following convergence, let b∗(t)g denote the value of b∗g observed at iteration t,

t = 1, . . . , T . Prior to calculating the population mean, we replace b∗(t)g with

b̃
(t)

g = m−1/2
g b∗(t)g + (1−m−1/2

g )b∗g, (3.10)

where b∗g =
∑T

t=1 b∗(t)g /T . Note that for large T , Cov(b∗g) approaches 0 and, thus, we do

not (significantly) inflate the variances of b̃g by estimating the posterior mean. In the

special case where mg=1, we simply have b̃
(t)

g = b∗(t)g , and as the first stage cluster sizes

grow, we shrink back towards the mean of the samples. By doing shrinkage within the

first stage clusters instead of across the clusters, we do not obscure or mask non-normal

features in the random effect distribution.

Now that we have corrected our estimates of the cluster-specific means, population

effects can be estimated at each iteration of the MCMC as

β̂
(t)
(∗) =

1

N

G∑
g=1

mgb̃
(t)

g . (3.11)

Thus, linear combinations of β̂(∗) can be used to test hypotheses about the average
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effects of the predictors, similar to what is done with fixed effects in mixed models.

Inferences about heterogeneity can be based on the posterior clustering of the ran-

dom effects. As in Bigelow and Dunson (2005), the Dirichlet process clustering can be

summarized by post-processing the results from the MCMC using a hierarchical cluster-

ing procedure such as single linkage, which is also known as nearest-neighbors (Sneath,

1957). In this paper, we define a new set of Stage 2 clusters k = 1, . . . , K∗ where for

each pseudo-subject g in cluster k, there exists some other pseudo-subject g∗ such that

Pr(Sg = Sg∗) ≥ p∗, where, under the West et. al (1994) sampling algorithm for the

DPM, Sg indicates the cluster membership of pseudo-subject g. To ensure adequate

separation between our clusters, we choose p∗ = 0.5 in our analyses. This clustering

procedure can be implemented using the linkage and cluster functions in MATLAB

(version 6). As seen in our analysis of the CPP data, the cluster-specific longitudinal

trajectories and the proportion of subjects per cluster are useful in identifying outliers

in the data.

3.4 Simulation Studies

We applied the approach to three simulated data examples. In each case, the true

model for yi given bi was yi ∼ N(Xibi, I6) where Xi = (xi0,xi1,xi2) with xi0 = 16,

xi1 = ui ·16, ui ∈ {0, 1}, and xi2 = (0, 1, 3, 4, 7, 8)′/8 for i = 1, . . . , N . The predictor xi2

can be thought of as the age at followup for subject i and ui as an exposure indicator,

where
∑N

i=1 ui = N/2 in cases 1-3.

3.4.1 Case 1: Latent Class Data

In the first case, we simulated a single data set of size N = 2000 using the discrete

distribution

bi =



θ1 = (2.26, 0.46, 20.35)′ with probability 0.0792

θ2 = (3.14, 1.34, 22.76)′ 0.2969

θ3 = (3.30, 1.50, 23.20)′ 0.3065

θ4 = (3.46, 1.66, 23.64)′ 0.2969

θ5 = (4.77, 2.97, 27.23)′ 0.0205,

which has mean β = (3.25, 1.45, 23.06)′. We will refer to all i : bi = θj as Class j.

We applied our approach for r = 2.14 (elicited value), r = 1.66, and r = 0 (complete
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data). Diffuse priors were chosen for µ and τ with µ0 = (15, 0, 0)′, Σ0 = 100 ·I3, τ0 = 1,

and ψ = 0.1. The prior for D was centered on the identity matrix, with d0 = 3. We

also let α ∼ Ga(a, 1) where we let a = 0.25 for r = 2.14 and r = 1.66, but chose a = 0.1

for the complete data to induce a similar prior for K across G. The MCMC was run for

25,000 iterations in each analysis with the first 5,000 iterations discarded as a burn-in

and with every 10th sample collected to thin the chain. To speed up computation, we

sampled each Sg conditional on the random effect values at the previous iteration.

Table 3.1 provides estimates of K and the population effects from our MCMC. Both

the number of clusters and the values of the regression parameters are similar across

r. In addition, the elicited r reduced computation time by approximately 19 hours,

relative to complete data, which demonstrates the efficiency of our method.

After post-processing the results of our MCMC using nearest neighbor clustering, we

obtained 4 Stage 2 clusters. One cluster consisted of an outlier from Class 2 but, as seen

in Table 3.2, the remaining clusters demonstrate good agreement with the subjects’ true

clusters: one cluster consists of mostly Class 1 subjects, another is primarily comprised

of subjects from Classes 2-4, while the third only contains subjects from Class 3. Thus,

under the elicited r, our method effectively separated the extreme outliers (Class 5)

from the rest of the data and, although less successful, was able to isolate most of

the moderate outliers (Class 1). In addition, the parameter estimates within each

cluster, β̂(∗1), β̂(∗2), and β̂(∗3), are comparable to the true values within Classes 1, 2-

4, and 5, respectively. Under r = 1.66 and r = 0, the parameter estimates of the

three largest clusters were similar to those listed in Table 3.2. However, the number

of singleton clusters increased as r decreased. This exemplifies the importance of the

expert elicitation as the value of r will significantly impact the number of outliers in

Stage 2.

3.4.2 Cases 2-3: Continuous Random Effects

In Case 2, bi ∼ N
(
β, diag(ω)

)
, where β = (3.3, 1.5, 23.2)′ and ω = (0.4, 0.4, 3)′, while

in Case 3

bi ∼ 0.65 · N
(
β1, diag(ω1)

)
+ 0.35 · N

(
β2, diag(ω2)

)
,

where β1 = (2.9, 1.1, 22.2)′, β2 = (4, 2.25, 25)′, ω1 = (0.075, 0.1, 1)′, and

ω2 = (0.175, 0.2, 2)′. Since computation was more intensive than in Case 1, we reduced

our sample sizes to 1000 in each study. The Stage 1 clustering and MCMC proceeded

as in Case 1, but with different priors for α; in Case 2, a = 1 for r > 0, while in Case
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TABLE 3.1: Means and 95% credible intervals for K and β̂(∗) from simulation case 1.
The true values of the population effects were β = (3.25, 1.45, 23.06)′.

r G K β̂(∗)0 β̂(∗)1 β̂(∗)2

2.14 93 7.06 3.21 1.47 23.03
(4, 14) (3.18, 3.25) (1.42, 1,52) (22.98, 23.07)

1.66 215 8.2 3.25 1.44 23.03
(4, 18) (3.22, 3.29) (1.39, 1.49) (22.98, 23.08)

0 2000 8.3 3.25 1.45 23.02
(4, 15) (3.21, 3.29) (1.40, 1.49) (22.97, 23.07)

3, a = 3 for r = 2.14 and a = 2 for r = 1.66. In both cases, a = 0.5 when r = 0.

Under normal random effects, the parameter estimates under r = 2.14 were virtually

identical to those provided by a random effects model fit to the complete data (see Table

3.3). However, when the random effects came from a mixture of normals, it appears as if

r = 2.14 underestimates the variability in the population, resulting in population effects

which are slightly biased. Note that in simulating data from a mixture of normals, we

do not account for the expert opinion that there are no important differences within

each cluster. Hence, these results demonstrate the robustness of our method to r. Also,

even for a sample size of 1,000 choosing r = 2.14 instead of r = 0 reduced computation

time from approximately 1.5 days to less than an hour and the computational gain will

increase with sample size.

3.5 Analysis of the CPP Data

3.5.1 Methods

We now return to the CPP data discussed in Section 3.2. In our analysis, we considered

modelling the longitudinal weight of girls by age and exposure category: child of never
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TABLE 3.2: Summary of Stage 2 clusters from simulation case 1. Parameter estimates
are the posterior means and 95% credible intervals within each cluster. The table omits
one singleton cluster consisting of a subject from Class 2. Clusters are ordered by the
magnitude of their parameter estimates.

Class Frequencies Parameter Estimates

Cluster

(k) Nk 1 2-4 5 β̂(∗k)0 β̂(∗k)1 β̂(∗k)2

1 175 173 2 0 2.20 0.28 20.63

(2.09, 2.30) (0.15, 0.41) (20.48, 20.78)

2 1785 1 1784 0 3.26 1.56 23.19
(3.23, 3.30) (1.50, 1.61) (23.15, 23.24)

3 39 0 0 39 5.41 2.83 26.31
(5.21, 5.62) (2.60, 3.07) (26.0, 26.1)
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TABLE 3.3: Means and 95% credible intervals for K and β̂(∗) from simulation cases 2
and 3. The true values of the population effects were approximately β = (3.3, 1.5, 23.2)′

in each case.

Case 2

r G K β̂(∗)0 β̂(∗)1 β̂(∗)2

2.14 81 54.5 3.33 1.48 23.21
(44, 65) (3.26, 3.40) (1.34, 1.61) (23.14, 23.27)

1.66 163 94 3.36 1.44 23.19
(76.5, 111) (3.29, 3.42) (1.32, 1.57) (23.12, 23.26)

0 1000 492.3 3.34 1.49 23.21
(439.5, 541) (3.28, 3.41) (1.38, 1.60) (23.15, 23.29)

Case 3

2.14 48 31.6 3.23 1.71 23.27
(23, 40) (3.17, 3.28) (1.57, 1.85) (23.21, 23.33)

1.66 101 55.0 3.30 1.45 23.32
(41, 69) (3.24, 3.36) (1.32, 1.59) (23.26, 23.39)

0 1000 301.1 3.28 1.53 23.30
(238.5, 357.5) (3.22, 3.35) (1.42, 1.64) (23.23, 23.37)
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smoker (N1 = 6, 684), ex-smoker (N2 = 1, 849), or current smoker (N3 = 8, 985). In

Stage 1, we stratified by exposure and the four most common missingness patterns: no

missing data, missing followup at year 8, missing followups at years 3 and 8, and lost to

followup following year 1. Within each stratum, we clustered under r = 2.14(pj/6)1/2

where pj is the number of followups under the missingness pattern in stratum j. Note

that the correction, (pj/6)1/2, is the reciprocal of the correction used in (3.5). These

Stage 1 analyses generated G = 526 clusters across the 12 strata.

In Stage 2, we modelled the weight of pseudo-subject g using an intercept, x∗g0,

indicators of smoking exposure (x∗g1 for ex-smokers and x∗g2 for current smokers), mean

age at each followup (x∗g3), and ex-smoker by age (x∗g4) and current smoker by age (x∗g5)

interactions. Age was centered around the mean value amongst the pseudo-subjects

(3.16) and was assumed to have a linear effect due to the relatively few ages at which

measurements were collected.

We used the same priors for τ , µ, and D as in the simulations and assigned a

Ga(0.5,1) to α to express an a priori belief in few second stage clusters. We ran our

MCMC for 45,000 iterations following a burn-in of 10,000, otherwise implementing as

in Section 4.

3.5.2 Results

As in Chen et al. (2006), our estimated population effects suggest that a mother’s

smoking habits during pregnancy had a significant impact on the growth of female chil-

dren. As seen in Table 3.4, the 95% credible intervals for the smoking-age interactions

(β4 and β5) obtained using our method (denoted G-DPP) are above 0, suggesting that

the effects of smoking on child weight increased with age. To describe the smoking

effect, we provide estimates of the ex-smoker and current smoker effects at birth (ηE0

and ηC0) and age 8 (ηE8 and ηC8). At birth, the children of ex-smokers and current

smokers were leaner than the children of never smokers, with the decrease being highly

significant, Pr(ηC0 < 0) and Pr(ηE0 < 0) > 0.99, but similar across the two groups,

Pr(ηC0 < ηE0)=0.668. However, at age 8, children in both exposure groups were sig-

nificantly heavier, Pr(ηC0 > 8) and Pr(ηE8 > 0) > 0.999, with the increase in weight

being greater in the children of ex-smokers, Pr(ηE0 > ηC8) = 0.997. It is likely that

some or most of the ex-smoker effect is due to confounding as Chen et al. found that

adjustment for covariates such as center and pre-pregnancy weight resulted in an in-

significant ex-smoker effect. However, the authors found that a current smoker effect
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did persist following adjustment for confounders.

Table 3.4 also presents smoking effect estimates obtained using GEE as in Chen

et al.’s (2005) covariate adjusted models. Although the GEE estimates suggest a sig-

nificant effect of smoking on child weight, there is no significant ex-smoker by age

interaction (p = 0.141). It is not surprising that GEE provides a flatter slope for the

ex-smoker effect since, under the assumption of MCAR, it does not allow a child’s ob-

served weight to be related to her missingness pattern, which, as discussed in Section

2, appears to be the case in the CPP.

Another common method for large data sets is to fit a model to a random sub-sample

of the data. Thus, we compared our population effect estimates to those obtained from

fitting a semiparametric random effects model to two random samples of size 1752

(denoted RS1-DPP and RS2-DPP in Table 3.4). In each case, the ex-smoker effects

had wide credible intervals and were insignificant. However, the results for the current

smoker effects were not consistent across the random samples; in one sample the effect

increased with age, while in the other sample, the effect was insignificant. These results

demonstrate two key weaknesses of fitting a model to a random sample: a loss of power

to detect an effect of a rare exposure and, since the method is sensitive to outliers in

the data, dependence on the sample chosen. Our method does not suffer from either

weakness since we preserve all scientifically important differences in Stage 1 and, by

weighting our population effects by cluster size, we ensure that our estimates are re-

flective of the complete data. The two-stage methodology is also more computationally

efficient; in this example it took approximately 30 more hours to complete the MCMC

for RS1- and RS2-DPP.

Figure 3.2 summarizes the Dirichlet process clustering of the pseudo-subjects in

Stage 2. Although the posterior mean and 95% credible interval for K were 10.2 (6,

17), the clustering probabilities, i.e. Pr(Sg = Sg∗), indicate that many of these Stage 2

clusters are not well separated. However, we could identify outliers in the data when we

post-processed the Dirichlet process clustering. We found that 15,740 subjects belong

to a sub-population with “normal” traits, labelled “(1)” in Figure 3.2, and that 40

subjects (20 non-smokers, 2 ex-smokers, and 18 current smokers) belong to a small

outlier cluster, labelled “(2).” The children in Cluster 2 are substantially heavier than

the normal subjects and have steeper growth curves: Cluster 2 subjects averaged 3.5

kg at birth and 53 kg at age 8, while normal subjects averaged 3.1 kg at birth and

26.1 kg at age 8. The remaining 1,738 subjects in the CPP data were represented by

pseudo-subjects who were not grouped with another pseudo-subject in at least half of
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the iterations. Although some of these subjects appear to be outliers with unusual

growth patterns, most (1,722) were lost to follow-up following birth or year 1 and the

DPP could not accurately classify them due to their limited data. Had we not stratified

by missingness in Stage 1, it is likely that many of these subjects would be grouped with

the normal subjects. However, we discourage this practice as it increases the amount

of imputation in the Stage 1 clusters.

Figure 3.3 provides the posterior mean of the ex-smoker and current smoker effects

within the normal sub-population and Cluster 2 as well as the mean effect values for

the remaining pseudo-subjects. As expected, the posterior means for normal subjects

are similar to the population estimates. Other subjects have larger effect values. In

particular, the average ex-smoker effect in Cluster 2 is 7.8 kg at age 7 and the average

current smoker effect is 2.7 kg at age 8. In addition to exhibiting unusual growth, the

children in Cluster 2 also had mothers who were, on average, 17.2 kg heavier prior to

pregnancy than the mothers of normal children. This is an important result as Chen

et al. (2006) found that pre-pregnancy weight is one of the strongest confounders of

the association between smoking and child growth.

35



T
A

B
L
E

3.
4:

P
op

u
la

ti
on

eff
ec

ts
of

sm
ok

in
g

in
C

P
P

an
al

y
si

s.
T

h
e

D
P

P
es

ti
m

at
es

li
st

ed
ar

e
m

ea
n
s
an

d
95

%
cr

ed
ib

le
in

te
rv

al
s;

95
%

co
n
fi
d
en

ce
in

te
rv

al
s

ar
e

li
st

ed
fo

r
th

e
G

E
E

re
su

lt
s.

E
x
-s

m
o
k
e
r

e
ff
e
ct

s
C

u
rr

e
n
t

sm
o
k
e
r

e
ff
e
ct

s

M
e
th

o
d

β
4

η E
0

η E
8

β
5

η C
0

η C
8

G
-D

P
P

0.
11

-0
.0

8
0.

82
0.

07
-0

.1
0

0.
45

(0
.0

8,
0.

14
)

(-
0.

15
,
-0

.0
2)

(0
.6

1,
1.

02
)

(0
.0

5,
0.

09
)

(-
0.

15
,
-0

.0
5)

(0
.2

9,
0.

60
)

G
E

E
0.

03
-0

.0
04

0.
40

0.
05

-0
.1

4
0.

27
(-

0.
01

,
0.

06
)

(-
0.

11
,
0.

10
)

(0
.2

3,
0.

58
)

(0
.0

3,
0.

07
)

(-
0.

17
,
-0

.1
1)

(0
.0

9,
0.

44
)

R
S
1-

D
P

P
-0

.0
8

0.
16

-0
.4

5
0.

07
-0

.1
4

0.
39

(-
0.

17
,
0.

03
)

(-
0.

07
,
0.

31
)

(-
1.

14
,
0.

36
)

(-
0.

00
1,

0.
15

)
(-

0.
27

,
-0

.0
1)

(-
0.

11
,
1.

00
)

R
S
2-

D
P

P
-0

.0
9

0.
12

-0
.6

0
-0

.0
1

-0
.1

3
-0

.2
1

(-
0.

18
,
0.

01
)

(-
0.

12
,
0.

35
)

(-
1.

27
,
0.

14
)

(-
0.

07
,
0.

06
)

(-
0.

26
,
0.

01
)

(-
0.

66
,
0.

29
)

36



3.6 Discussion

We have proposed a two-stage clustering procedure for fitting Bayesian semiparamet-

ric random effects models to large data sets. Our method uses expert elicitation to

generate a smaller, biologically meaningful, pseudo-sample of data that summarize the

important differences in the complete data. Then, by applying the DPP to these data,

we substantially decrease the computational burden and generate scientifically inter-

esting clusters in the posterior. Simulation studies have shown that our method can

detect true trends in the data under discrete and continuous random effects, though

there may be a small bias for multimodal, continuous distributions.

In applying our method to the CPP data, we have provided the first random effects

analysis of the smoking data. Although our overall conclusions on the effect of maternal

smoking during pregnancy are similar to those in Chen et al. (2006), we have also

shown that their GEE methodology may have underestimated the effects of smoking

on child weight. Our semiparametric method also allows inferences on heterogeneity

in the smoking effects as well as the identification of clusters of subjects with large

regression coefficients. Some of these outliers could be explained by confounders that

were omitted from our model, such as maternal weight. Others likely reflect data entry

or recording errors, and thus, an attractive feature of our approach is that inferences

on subjects in the larger clusters are not sensitive to these outliers.

Although our method was motivated by a specific example, it can easily be extended

to handle data with a slightly different form, or studies with different analysis objectives.

For example, in studies where models are constructed for predictive purposes, one

can use the pseudo-subjects to predict the random effects of future subjects. This

methodology should work well for large data sets where the probability of a future

outlier, dissimilar from previous outliers, is low. In some prospective epidemiology

studies, there may be interest in fitting a model with many covariates, as was the case

in Chen et al.’s analysis of the CPP. In these settings, it may be necessary to modify

our first stage clustering to improve efficiency; for example, the clustering could be

stratified based on propensity scores (Rosenbaum and Rubin, 1983) rather than across

each covariate level. Finally, it would be interesting to modify our method to handle

data with a large number of measurements on each subject, as in menstrual diary data

(e.g., Harlow et al., 2000).
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FIGURE 3.2: Dirichlet process clustering of CPP data. The order of the pseudo-
subjects corresponds to the order of the singleton clusters in a dendrogram generated
in Matlab (version 6). This dendrogram summarized nearest-neighbors clustering of the
pseudo subjects using 1-Pr(Sg = Sg∗) as the distance measure. The arrows denote sub-
jects in the normal sub-population “(1)” (pseudo-subjects 1-425 in the figure). Cluster 2
(labelled “(2)”) contains pseudo-subjects 430-453, while the remaining pseudo-subjects
were not clustered with another pseudo-subject in at least half of the iterations.
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FIGURE 3.3: Mean smoking effects in the CPP data. Clusters 1 and 2 correspond
to the groups of pseudo-subjects denoted in Figure 3.2. The solid, unlabelled lines
correspond to the remaining pseudo-subjects. Effect estimates were computed up to
the last followup of the exposed subjects. Estimates for unexposed pseudo-subjects are
omitted.
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CHAPTER 4

BAYESIAN SEMIPARAMETRIC

DYNAMIC FRAILTY MODELS

FOR MULTIPLE EVENT TIME

DATA

4.1 Introduction

Many biomedical studies are designed to assess covariate effects on the time to recur-

rence of health-related outcomes, such as infections, hospitalizations, or recurrences

of disease. For example, data of this type are collected in chemoprevention and car-

cinogenicity studies measuring the rate of appearance of palpable tumors of the skin

and breast of mice (Gail et al., 1980; Forbes and Sambuco, 1998; Dunson, 2000). In

these experiments, a rich set of data are available for each mouse, including times of

appearance of each lesion, total number of tumors, and time of death.

A number of methods have been proposed to analyze tumor multiplicity data in-

cluding recent work by Dunson and Dinse (2000) and Sinha et al. (2002). These articles

relied on frailty-type models (Vaupel et al., 1979; Clayton and Cuzick, 1985) to acco-

modate baseline heterogeneity in risk of developing tumors. In these models, random

effects (or frailties) measure an animal’s risk relative to that for other individuals in

the population, accounting for covariates. Standard shared and multivariate (Sargent,

1998) frailty models treat the frailties as time-independent factors, and hence do not

allow a subject’s risk to evolve dynamically as they age. Such formulations may be

overly-restrictive when applied to tumorigenicity data, since biological changes occur-



ring with age result in complex and unanticipated trends in susceptibility to tumor

development. A likely trend is that animals getting tumors relatively early may not be

at higher risk later in life.

Recently, several authors have proposed more flexible, dynamic formulations. Yue

and Chan (1997) and Yau and McGilchrist (1998) introduced a proportional hazard

model for inter-recurrence times in which a subject’s frailty changes following each

event, and Lam et al. (2002) developed a related approach for the proportional odds

model. In tumorigenicity studies, a time-varying frailty structure may be more realistic

since it is more natural to model individual-specific risk as changing with age instead

of according to previous occurrences of tumors. Relevant methods have been proposed

by Henderson and Shimakura (2003), who developed a longitudinal Poisson regression

model with gamma frailties which vary with time, and Paik et al. (1994), who proposed

a proportional hazards frailty model with a time-specific random factor. Although

promising, these methods involve complicated likelihoods and difficult computation,

particularly when one considers generalizations (e.g., for joint modelling).

Bayesian approaches have several advantages for data collected from tumorigenicity

studies, including ease of computation via MCMC, ability to incorporate prior infor-

mation (e.g., from historical controls), and exact inferences on different aspects of

the tumor response (time to first tumor, total tumor burden, etc). Unfortunately, in

the Bayesian literature there has been limited consideration of dynamic frailty models

and methods for multiple event time data in general. For recent Bayesian references

on frailty models for multiple event time and multivariate survival data, refer to pa-

pers by Gustafson (1997), Sahu et al. (1997), Walker and Mallick (1997), Sargent

(1998), Aslanidou et al. (1998), Sinha (1998), Chen and Sinha (2002), Dunson and

Chen (2004), Sinha and Maiti (2004)), as well as a review in Ibrahim et al. (2001).

Härkänen et al. (2003) proposed an innovative approach based on a model that al-

lows subject-specific frailty trajectories to vary according to a latent class structure.

In many settings, including animal tumorigenicity studies, it may be more natural to

suppose that the age-specific risk trajectories vary according to a continuum, with each

subject potentially having their own unique pattern.

Motivated by the tumor multiplicity application, we propose a Bayesian semipara-

metric dynamic frailty model. Our methodology generalizes the shared frailty model to

allow time-varying frailties and regression coefficients. In addition, we use a multiplica-

tive parameterization to introduce autocorrelation and smooth the time trajectories.

To improve flexibility, we consider a nonparametric treatment of the frailty distribution
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using a model which is related to the Dirichlet process (DP) mixture (Antoniak, 1974).

For references on related approaches using DP mixtures in Bayesian analyses, refer to

West et al. (1994), Bush and MacEachern (1996), Mukhopadhyay and Gelfand (1997),

Müller and Rosner (1997), Kleinman and Ibrahim (1998), and Dominici and Parmigiani

(2001). In addition, an alternative nonparametric approach for recurrent event time

data was proposed by Ishwaran and James (2004). In this paper, we use DP priors to

allow uncertainty in the distributions of a shared frailty and multiplicative innovations

on this frailty. By centering the semiparametric model on a conditionally-conjugate

dynamic gamma model, we facilitate posterior computation and lack of fit assessments

of the parametric model using predictive distributions.

Section 4.2 proposes the model and prior structure. Section 4.3 outlines an MCMC

algorithm for posterior computation. Section 4.4 applies the method to data from a

cancer chemoprevention study, and Section 4.5 discusses the results.

4.2 Dynamic Frailty Model

4.2.1 Model Specification and Frailty Structure

Consider a study measuring the times of occurrence of repeated events within N sub-

jects. The rate of event occurrence for subject i (i = 1, . . . , N) at time t is denoted

λi(t). We partition the time axis into M finely-spaced intervals, T1, T2, . . . , TM , where

Tj = (τj−1, τj], 0 = τ0 < τ1 < τ2 < . . . < τM , and τM is the maximum follow-up time in

the study. The intervals are chosen to be sufficiently narrow so that it can be assumed

that λi(t) = λij for all t ∈ Tj, j = 1, . . . ,M .

Suppose that subject i is followed for t∗i time units, where t∗i ∈ TMi
and Mi ≤ M .

Under these specifications, let ξi = (ξi1, . . . , ξiMi
)′ denote a vector of time-varying

frailties for subject i, and let xij = (xij1, . . . , xijp)
′ be a vector of p predictors for

subject i and time interval Tj. We focus on models having the following structure:

λij = ξijλ0jg(xij;βj), (4.1)

where λ0j is the baseline hazard for the jth interval, g(·) is a known link function

mapping from < → <+, and βj are interval-specific regression parameters. We further

express the baseline hazard as λ0j = λ̂0j∆j, where λ̂0j is an initial guess at the baseline

hazard (e.g., estimated from historical control data or based on expert elicitation) and

42



∆j is a multiplicative deviation from this guess.

Similar to what is done by Paik et al. (1994), the frailties are decomposed into

time-independent and -dependent components:

ξij = φi

j∏
h=1

φih, (4.2)

where φi is a subject-specific shared frailty and φih is the multiplicative innovation

over time interval h. This multiplicative structure provides a convenient framework for

imposing autocorrelation amongst the frailties. To demonstrate this feature, consider

a model in which φi ∼ Ga(ψ1, ψ1) independently of φih
iid∼ Ga(ψ2, ψ2), h = 1, . . . ,Mi.

Given these distributions, the correlation between frailties from intervals j and j + d

(d > 0) is

Corr(ξij, ξi,j+d) =

√
ψd2{(1 + ψ1)(1 + ψ2)j − ψ1ψ

j
2}

(1 + ψ1)(1 + ψ2)j+d − ψ1ψ
j+d
2

. (4.3)

Under the above model, ψ1 provides an overall measure of between subject heterogeneity

while ψ2 can be thought of as both a smoothing parameter for the frailty trajectories

and a measure of temporal heterogeneity within each subject.

Although we have observed that this dynamic gamma model performs well with

some data, it can lead to spurious inferences when the actual distributions of the

frailty components are distinctly non-gamma. For example, Walker and Mallick (1997)

demonstrated that frailty distributions may differ across predictor-level resulting in

multi-modal distributions when all the frailties are pooled together. With this in mind,

we propose a semiparametric model which is flexible to unanticipated trends in the

frailty.

For subject i and interval Tj, let rij denote the time at risk and let Zij denote

the number of events experienced. Then, under expressions (4.1) and (4.2) with a DP

specification for the distributions of φi and φij, we have:

Zij
ind.∼ Poisson

(
rijφi

( j∏
h=1

φih

)
λ0jg(xij,βj)

)
φi

ind.∼ G1 φij
ind.∼ Gj+1

G1 ∼ DP(α01G01) Gj+1 ∼ DP(α02G02), (4.4)

where DP(α0G0) denotes the Dirichlet process centered on G0 with precision α0, and
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we assume G01 is Ga(ψ1, ψ1) and G02 is Ga(ψ2, ψ2). This structure is centered on the

dynamic gamma frailty model described above, but we allow the true frailty distribu-

tion to deviate from the parametric form. The amount of uncertainty in the gamma

assumption for the two frailty components is controlled by the hyperparameters α01 and

α02, with small values of these parameters corresponding to little faith in the gamma

forms.

Since G1, G2, . . . , GM+1 are modelled as discrete distributions under the Dirichlet

process (Blackwell, 1973), there will be common values of the shared frailties and

multiplicative innovations across subjects under (4.4). Thus, our method identifies

clusters of subjects whose genetic traits convey a similar level of susceptibility at the

outset of the study as well as clusters of subjects who experience similar increases in

their susceptibility over each time interval. These latter clusters may identify subjects

who experienced similar, unobserved events, such as subjects who experienced changes

in gene expression that increased their susceptibility to developing new tumors.

4.2.2 Priors for Model Deviations and Regression Parameters

As with the frailties, the multiplicative deviations from the initial baseline hazard

estimates are separated into time dependent and independent components:

∆j = ν0

j∏
h=1

νh. (4.5)

Assuming ν0 ∼ Ga(κ, κ) and νj
iid∼ Ga(ψ3, ψ3) for j = 1, . . . ,M , we have a convenient

structure for introducing autocorrelation amongst the model deviations

Corr(∆j,∆j+d) =

√
ψd3{(1 + κ)(1 + ψ3)j − κψj3}
(1 + κ)(1 + ψ3)j+d − κψj+d3

, (4.6)

where κ controls the degree of shrinkage of the posterior towards λ̂0, and ψ3 measures

smoothness in the deviations from the prior estimate. An appealing feature of this prior

in the context of the tumor multiplicity application is that the prior variance increases

with time. In many applications, events are known to be rare early and one can obtain

a good prior estimate early on, but at later times there is much more uncertainty.

Although many other correlated prior processes have been proposed for the baseline

hazard (cf. Arjas and Gasbarra, 1994; Gamerman, 1991; Gustafson et al., 2003), our
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proposed structure is practically appealing for complex models since it retains the

conditional conjugacy properties of the Gamma process (Kalbfleisch, 1978) without the

need to introduce any additional latent variables (cf. Nieto-Barajas and Walker, 2002).

These properties are highlighted in the following section on posterior computation.

A similar prior structure can be used to provide smooth trajectories for predictor

effects. This technique is an alternative to dynamic covariate models based on random

walks (cf. Gamerman, 1991; Sargent, 1997) and can simplify computation in certain

applications. We consider the typical exponential link function, g(xij;βj) = ex
′
ijβj .

However, our priors are developed in terms of the following re-parameterization of

βj = (βj1, . . . , βjp)
′:

γ∗jk = eβjk =

j∏
l=1

γlk,

where γ∗jk = λi(t;xijk = c + 1)/λi(t;xijk = c) for t ∈ Tj is the multiplicative change in

hazard (i.e., hazard ratio) at time t attributable to a unit increase in the kth predictor,

and γlk = γ∗lk/γ
∗
l−1,k is the multiplicative innovation in this hazard ratio experienced

over time interval Tl. In the absence of prior information about the effect of the kth

predictor, it is reasonable to assume γlk
iid∼ Ga(ψ4, ψ4) priors for the multiplicative

increments on the hazard function. The prior is centered on no effect for a predictor

with the degree of shrinkage and smoothness in the regression function controlled by

the hyperparameter ψ4, as is clear from the following expression:

Corr(γ∗jk, γ
∗
j+d,k) =

√
ψd4{(1 + ψ4)j − ψj4}
(1 + ψ4)j+d − ψj+d4

. (4.7)

In cases in which one has prior information about the regression function, the prior

structure above could be used to model multiplicative deviations from these initial

estimates. This approach is closely related to our priors for the baseline hazard. An-

other extension that may be useful in some applications, would be to allow the level of

smoothing to vary across predictors. These generalizations are straightforward and we

focus on the simple case for ease in exposition.
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4.2.3 Elicitation of Hyperpriors

To reduce the sensitivity of analyses to subjectively chosen hyperparameters, we con-

sider the use of hyperpriors in building our dynamic frailty model. A priori we assume

that ψ1 ∼ Ga(a1, b1) and ψ2 ∼ Ga(a2, b2) to obtain some information from the data

about the variance components of the frailties. Although a diffuse prior would be rea-

sonable for ψ1, allowing the level of between subject heterogeneity to be determined

by the data, we recommend using an informative prior for ψ2 centered on values which

reflect the expected amount of correlation between Poisson counts from adjacent time

intervals.

One could additionally specify gamma hyperpriors for ψ3 and ψ4, but preliminary

results suggest that it can be difficult to specify a prior that ensures sufficient smoothing

of the baseline hazard and predictor effects, since the likelihood tends to dominate

the prior even for moderate sample sizes. Thus, to avoid over-fitting, we recommend

choosing values of ψ3 and ψ4 which reflect both one’s a priori intuition about the level

of autocorrelation between time intervals and one’s confidence in the initial guess of the

baseline hazard. We also recommend performing a sensitivity analysis of this choice.

Hyperpriors for α01 and α02 may also be elicited to determine the amount of deviation

from the gamma frailty structure in the data, though we prefer to fix these parameters

to avoid over-parameterization.

4.3 Posterior Computation

4.3.1 MCMC Methodology

In applications with moderate to large sample sizes and lengthy followups, our model

will result in a large number of latent variables and unknown parameters. Fortunately,

due to the conditionally conjugate structure of the priors, computation can proceed

fairly easily using a hybrid MCMC algorithm consisting of Gibbs and Metropolis-

Hastings steps (Gelfand and Smith, 1990; Tierney, 1994). For the complete details

regarding the full conditional posterior distributions and updating algorithm of our

MCMC, please see Appendix C.

For simplicity, our methods assume that data are right censored and that censoring is

non-informative. To modify our MCMC algorithm to accommodate interval-censored

data, one can simply include data augmentation steps for sampling the exact event

times for interval-censored observations. In addition, dependent censoring may be
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accommodated by incorporating the time-varying frailty as a predictor in a model for

the censoring time. These models would generalize the shared frailty models of Liu

et al. (2004).

Our proposed MCMC methodology performed well when applied to simulated data.

Posterior estimates of the time-varying hazard ratios and future predictions of the

hazard function tended to agree closely with the true values, even when the prior for the

baseline hazard was poorly specified. As expected, results were somewhat sensitive to

the prior when sample sizes were small. However, robustness improved with increasing

sample sizes, likely reflecting the borrowing of information across time and hyperprior

structure.

4.3.2 Identifiability and Computational Issues

As for most latent variable models, some identifiability restrictions are needed. In prac-

tice, ν1 and φi1 should be fixed at 1, since these parameters have the same contributions

to likelihood as ν0 and φi, i = 1, . . . , N . We also recommend fixing ν0 since there may

be a tendency for weak identifiability between ν0 and the mean of G1, leading to slow

mixing of the MCMC algorithm.

Another issue in implementation is the choice of knots for the piecewise constant

hazard. The typical frequentist approach of choosing intervals at the unique failure

times (see, e.g., Breslow, 1974) is inappropriate from a Bayesian perspective, since

it involves using the data to choose priors. By choosing autocorrelated priors which

borrow information across intervals, our approach allows for tightly spaced intervals.

However, we recommend choosing knots so that intervals are at least as wide as the

inter-exam times; data are not informative about changes on a finer scale, and the

computational burden increases with the number of intervals.

4.4 Chemoprevention Application

4.4.1 Data Analysis

We illustrate our approach using data from a study of the effect of canthaxanthin, a

carotenoid found in fruits and vegetables, on chemically induced mammary carcino-

genesis (Grubbs et al., 1991). This data set has previously been used as an example

by both Kokoska et al. (1993) and Dunson and Dinse (2000). The study consisted of

119 Sprague-Dawley rats administered one of four diets beginning at 34 days of age:
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(1) 3390 mg/kg canthaxanthin, (2) 1130 mg/kg canthaxanthin, (3) 328 mg/kg retinyl

acetate, or (4) vehicle control. There were 30 rats in treatment groups 1-3 and 29 in

group 4. At age 55 days, each rat was administered 15 mg of a known carcinogen

DMBA by gavage. Regular palpations began at 75 days of age and, in general, were

performed twice a week until 235 days of age, or 180 days following administration of

DMBA.

Our analysis focused on the tumor occurrence times, as measured from DMBA

administration, of rats in treatment groups 1,2, and 4. We partitioned the study period

into 24 time intervals, with each interval having a length of one week except for the

first and last intervals (22 and 4 days respectively). When the animals died naturally

or were sacrificed at the end of the study period, an extensive pathological examination

was conducted to find tumors that may be undetectable by palpation. For this reason,

we allowed for a multiplicative increase in the baseline hazard of tumor detection at the

final examination by introducing an additional parameter, ω, into our model. Thus,

the model we used has the following form:

λij = φiν0λ̂0jω
Iij

j∏
h=1

φihνhγ
xi1
h1 γ

xi2
h2 , (4.8)

where Iij = 1 if j = Mi and 0 otherwise and xik = 1 if subject i is in treatment group k

and 0 otherwise, k = 1, 2. Assigning a Ga(aω, bω) prior to ω results in the conditional

posterior,

π(ω|·) = Ga

(
aω +

N∑
i=1

ZiMi
, bω +

N∑
i=1

riMi
φiλ̂0Mi

ν0

Mi∏
h=1

φihνhγ
xi1
1h γ

xi2
2h

)
, (4.9)

where the notation ω|· denotes ω given all other variables.

In this study of cancer initiation, the retinyl acetate group (3) can be considered

as a second control group, since it is known that this treatment is only effective in

decreasing promotion (Grubbs et al., 1991). Thus, these data were used to choose the

prior for the baseline hazard. In particular, we fit a Poisson regression model with a

cubic polynomial in time to the group 3 data and used the resulting fitted curve as

λ̂0. We chose Ga(5,0.5) and Ga(25,0.5) priors for ψ1 and ψ2, respectively, to express

belief in low between and within subject heterogeneity, but high levels of autocorrelation

amongst the frailties. Since tumor incidence should be negligible in the first three weeks

of the study, we assumed γ11 = γ12 = 1. In addition, to express modest confidence in
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the gamma frailty assumptions, we set α01 = α02 = 5. Finally, we let ψ3 = ψ4 = 50 to

induce high levels of smoothing in both the baseline hazard and treatment effects, and

set aω = 3 and bω = 1 to reflect our a priori belief that more tumors are observed in

the exam following sacrifice.

Using our MCMC methodology, we ran a chain of 55,000 iterations with the first

5,000 discarded as a burn-in. To reduce storage requirements, every 10th observation

was saved to thin the chain. It took approximately 4 hours to complete a Matlab

(version 7.0) program run in batch on the statistical server at UNC-Chapel Hill (20

1.05 GHz processors).

Figure 4.1 provides the mean and pointwise 95% credible intervals for the haz-

ard ratios comparing the canthaxanthin dose groups to control. Although the haz-

ard ratios are initially near one, as time progresses they decrease toward a plateau

between weeks 10-26. The posterior mean and 95% credible interval for the aver-

age hazard ratio over this interval is γ̂∗[10,26]2 = 0.553 (0.343, 0.863) in the low dose

group and γ̂∗[10,26]1 = 0.489 (0.304, 0.758) in the high dose group. In addition, the

estimated posterior probabilities of a chemopreventive effect in the two groups for

this interval are Pr(γ∗[10,26]2 < 1 |Y) = 0.995 and Pr(γ∗[10,26]1 < 1 |Y) = 0.999, with

Pr(γ∗[10,26]2 > γ∗[10,26]1 |Y) = 0.676, suggesting highly significant, but similar, effects

overall in the two dose groups.

As discussed by Kokoska et al. (1993) and Dunson and Dinse (2000), in the presence

of a significant effect on tumor incidence, there is typically interest in assessing which

aspects of the tumor response profile are most affected. In particular, tumor biologists

wish to distinguish effects on multiplicity (total number of tumors) and latency (time

to tumor onset). In our model, the effects of treatment group k on multiplicity may be

evaluated by computing the posterior probability PMk = Pr(ΛkM/Λ0M < 1|Y), where

ΛkM is the cumulative hazard at sacrifice for an animal in treatment group k (k = 1, 2)

with frailty ξi = 1 (i.e., the prior mean in the dynamic gamma model) and Λ0M is the

cumulative baseline hazard. Also, for k = 1, 2, a beneficial effect of treatment k on

latency may be evaluated by computing PLk = Pr(µ0 < µk|Y) where

µk =
M∑
j=1

j

(
λ0jω

1(j=M)γ∗jk(τj − τj−1)∑M
h=1 λ0hω1(h=M)γ∗hk(τh − τh−1)

)
, (4.10)

which is the expected interval of onset of an animal in treatment group k, again as-

suming ξi = 1, and µ0 is the expected interval of onset for a control animal with the
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FIGURE 4.1: Posterior means (—) and pointwise 95% credible intervals (- - -) for
hazard ratios comparing rats fed (a) 1130 mg/kg and (b) 3390 mg/kg canthaxanthin
to mice administered a vehicle control diet.
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same frailty. We found that both the low and high doses of canthaxanthin substan-

tially decreased tumor burden, (PM1 and PM2 > 0.99), but there was no evidence of

a beneficial effect on latency (PL1 = 0.156, PL2 = 0.392). Dunson and Dinse (2000)

made similar conclusions regarding latency and multiplicity effect, however, they de-

fined these phenomena in terms of both observed and induced, but unobserved tumors.

By restricting our attention to observed tumors only, our method is not subject to bi-

ological assumptions on latent tumors. In addition, our dynamic frailty model is more

biologically realistic than their shared frailty approach, and thus should provide a more

realistic description of the canthaxanthin effect.

As seen in Figure 4.2, a substantial proportion of animals have frailties which evolve

dynamically. In addition, two animals not depicted in the graphs have trajectories

which increase toward values greater than four. These trends suggest that there are

unmeasured factors which are affecting tumor incidence and a closer examination of

the animals’ genetic and physical traits should be made.

4.4.2 Goodness of Fit and Sensitivity Analyses

Goodness of fit can be assessed by comparing the predictive distribution of the weekly

tumor counts with observed values in the data set. As seen in Figure 4.3, weekly

predictions of tumor incidence prior to sacrifice agree with mortality adjusted means in

the data. Assuming sacrifice at week 26, the posterior mean and 95% credible interval

for the number of tumors discovered during the final exam are 0.520 (0.307, 0.808) for

the vehicle control group, 0.285 (0.142, 0.509) for the low dose group, and 0.234 (0.111,

0.420) for the high dose group, which are in agreement with observed means (0.714,

0.167, and 0.222 tumors for the vehicle, low dose, and high dose groups, respectively).

We tested the sensitivity of our methodology to frailty assumptions by comparing

the results using the priors from the previous section (denoted DPM1) against the

fully parametric dynamic gamma model and the results obtained using an analysis

with less confidence in the gamma assumption, expressed by letting α01 = α02 =

2 (DPM2). As seen in Figure 4.4, the predictive distributions of the frailties differ

somewhat across each model. Most notably, low a priori confidence in the base model

causes the distribution of φN+1 to be more skewed and to have a fatter right tail.

However, as seen in Table 4.1, parameter estimates and predictive probabilities are

robust.

A second sensitivity analysis was performed for the smoothing parameters by re-
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FIGURE 4.2: Posterior mean frailty trajectories for animals administered (a) vehicle,
(b) 1130 mg/kg canthaxanthin, and (c) 3390 mg/kg canthaxanthin. Figure omits
trajectories of animals 67 and 75 in the vehicle group due to their extreme values.
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FIGURE 4.3: Observed (×) and predicted weekly tumor incidence prior to sacrifice for
rats administered (a) a vehicle, (b) 1130 mg/kg canthaxanthin, and (c) 3390 mg/kg
canthaxanthin. The pointwise 95% credible intervals (- - -) for the means (—) were
calculated based on 1000 draws from the predictive distributions at each iteration of
our MCMC algorithm.
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TABLE 4.1: Sensitivity analysis of parameter estimates (mean and 95% credible inter-
vals) and posterior probabilities from chemoprevention application.

Model

Parameter DPM1 DPM2 DPM3 Dynamic Gamma

γ∗[10,26]1 0.489 0.485 0.420 0.482

(0.304, 0.758) (0.304, 0.748) (0.254, 0.669) (0.305, 0.735)

γ∗[10,26]2 0.553 0.548 0.480 0.546

(0.343, 0.863) (0.341, 0.855) (0.289, 0.758) (0.345, 0.845)

ω 7.95 7.87 7.60 8.01
(5.34, 11.19) (5.23, 11.26) (5.01, 10.82) (5.41, 11.26)

ψ1 5.94 5.99 5.97 5.26
(2.03, 12.80) (2.04, 12.97) (2.03, 13.02) (2.03, 12.36)

ψ2 48.8 48.0 49.5 50.7
(32.4, 69.9) (31.0, 68.9) (32.2, 70.5) (34.0, 70.8)

Probability

PM1 0.999 > 0.999 > 0.999 0.999

PM2 0.998 0.999 > 0.999 0.998

PL1 0.156 0.139 0.167 0.167

PL2 0.392 0.360 0.399 0.394
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FIGURE 4.4: Comparison of predictive frailty distributions obtained using the dynamic
gamma model (—), DPM1 (- - -), and DPM2 (· · · ). The densities of frailties from
intervals (a) 1 (φN+1), (b) 11 (ξN+1,11), and (c) 24 (ξN+1,24) were approximated using
a normal kernel smoother (width=0.05) applied to a posterior sample size of 500,000
(100 draws from the predictive distribution were taken at each iteration).
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peating the analysis with ψ3 = ψ4 = 25 and α01 = α02 = 5 (denoted DPM3). Although

Table 4.1 demonstrates that lower levels of smoothing decrease the estimated hazard

ratios somewhat, conclusions regarding multiplicity and latency effects do not change.

In addition, lowering ψ3 and ψ4 does not substantially improve goodness of fit.

4.5 Discussion

In this paper, we have developed a flexible method for inference in multiple event time

data. Our method provides a convenient framework for smoothing hazard functions

and time-dependent frailty trajectories and covariate effects. An appealing feature of

our approach is the incorporation of dynamic frailties with nonparametric distributions.

Even in a data set comprised of fairly homogeneous animals, our model is capable of

identifying age-dependent shifts in susceptibility. By comparing the individuals’ frailty

trajectories, one can identify unusual individuals for genotyping and further examina-

tion. However, even in applications where the frailty is of no interest to the researcher,

it would still be necessary to account for these trends to improve the accuracy of future

predictions.

Although our proposed method accommodates a wide variety of time-dependent

trends and distributions, the computational burden may not pay off in certain situa-

tions. In particular, studies of rare events or with few exam times may have minimal

information in the data about time-varying frailty distributions. Although one could

still apply our method in such a case, there may be minimal Bayesian learning and

the prior would be utilized strongly in extrapolating over time. In these situations, a

simple frequentist analysis may suffice.

By using Dirichlet process priors for a shared frailty and multiplicative innovations

on the frailty, we have provided a less restrictive modelling framework than parametric

alternatives. As mentioned previously, these priors ensure that the posterior distribu-

tions of the frailties are almost surely discrete (Blackwell, 1973; Ferguson, 1973). This

restriction could be removed by using Pólya tree priors (Lavine, 1992, 1994) instead

of the Dirichlet process, as was done by Walker and Mallick (1997) in the context of

a shared frailty. However, a simpler alternative would be to model each φi and φij

using a Dirichlet process mixture. Although we did not consider such a methodology,

this would be straightforward since it would just involve adding another level to the

hierarchy.

Several extensions of our method would be interesting to pursue. For example, one
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could consider priors with a mixture structure to allow selection of the frailty form. In

particular, selection between no frailty, a shared frailty, and a dynamic frailty for each

predictor. This approach would be a generalization of recent work by Dunson and Chen

(2004). A formal method for testing for lack of fit of the dynamic gamma model would

also be of interest. For instance, Berger and Guglielmi’s (2001) method for comparing

parametric and nonparametric models could potentially be adapted to our framework.

The results from these lack of fit tests could be used to determine if the dynamic gamma

model, or our nonparametric extension, should be used for data from similar studies.

Another possible direction would be to apply our nonparametric framework to allow

dynamic random effects in generalized linear models for longitudinal data and for joint

modelling of longitudinal and survival data.
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CHAPTER 5

NONPARAMETRIC BAYES

TESTING OF CHANGES IN A

RESPONSE DISTRIBUTION

WITH AN ORDINAL

PREDICTOR

5.1 Introduction

In many biomedical studies, there is interest in evaluating changes in a response dis-

tribution across an ordinal predictor. For example, toxicologists are often interested in

assessing whether several biological responses vary in distribution with dose. In such

settings, normality assumptions are typically not justified and there are biological rea-

sons to expect changes in not only the location but also the variance and shape with

dose. In particular, when there is substantial heterogeneity amongst subjects in their

biological response to treatment due to variation in gene expression, timing of the cell

cycle, and other factors, changes in variance, skewness, and even modality are natural.

Some frequentist nonparametric methods have been proposed for testing for trends

across an ordinal predictor. In toxicology studies, Jonckheere’s test (Terpstra, 1952;

Jonckheere, 1954) is often used to test for stochastic order of a single outcome across

dose groups. Related methods for multiple outcomes include Dietz’s multivariate gen-

eralization of Jonckheere’s Test (1989), Dietz and Killeen’s (1981) test for a monotone

trend in time, and O’Brien’s (1984) rank-sum-type test (also refer to Huang et al.,



2005). Unfortunately, these methods are most sensitive to changes in the location of a

distribution and may ignore important trends in shape (see, for example, footnote in

Jonckheere, 1954). In contrast, k-sample tests based on empirical distribution functions

(e.g, Ahmad, 1976; Kiefer, 1959) are sensitive to changes in distribution shape, but not

changes in location and scale.

As mentioned in Chapter 1, Bayesian nonparametric approaches have several ad-

vantages over frequentist alternatives, including the ability to incorporate prior infor-

mation (e.g., from historical controls) and exact inferences on unknown distributions.

There is an extensive literature on nonparametric estimation (for a review see Chapter

2) and several methods are available for Bayesian nonparametric testing of goodness

of fit (e.g., Berger and Guglielmi, 2001; Carota and Parmigiani, 1996; Verdinelli and

Wasserman, 1998). However, there has been very little consideration of Bayesian non-

parametric testing of differences in distributions across multiple groups. Gopalan and

Berry (1998) describe an approach which uses a nonparametric Dirichlet process prior

(DPP; Ferguson, 1973, 1974) to perform multiple comparisons, but the method only

compares distribution means. Dunson and Taylor’s (2005) quantile regression approach

can assess the effects of the predictor on both the center of the distribution and the

tails, but the method is not fully Bayesian and is not easily extended to multiple out-

comes. Basu and Chib (2003) proposed an approach which compares semiparametric

models using Bayes factors. This method may be promising when there are only 2-3

levels of an ordinal predictor. However, in toxicology studies with several dose groups,

this approach would be unwieldy when one considers each possible contrast between

dose groups.

In analyzing data from multiple groups, one would typically be interested not only

in testing but also in estimation of group-specific distributions. Such estimation can

potentially be accomplished by fitting a DP mixture (DPM; Antoniak, 1974) model

separately to the different dose groups. For some references on applications of DPMs,

refer to Sections 2.1.2 and 2.1.4. The disadvantage of such an approach is its inability to

model trends and borrow information across the different dose groups, which is partic-

ularly important in applications having a modest number of subjects per group. Note

that applications of the Basu and Chib (2003) procedure to test differences between

groups would also have this disadvantage.

An alternative to using separate DPMs is to consider the dose group-specific dis-

tributions as a collection of dependent unknown distributions, which are assigned a

dependent nonparametric prior. Dependent nonparametric priors have been the focus
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of a growing body of literature. In the early work of Cifarelli and Regazzini (1978),

dependence was induced through a regression model within the parametric base mea-

sure of the DP (for related work see Mira and Petrone, 1996; Tomlinson and Escobar,

1999; Carota and Parmigiani, 2002; Giudici et al., 2003). Although the method is

straightforward, it has limited flexibility. Other authors proposed inducing nonpara-

metric dependence by parameterizing random measures as products of DP distributed

factors, though within a different framework than ours (see, e.g., Gelfand and Kottas,

2001 and our dynamic frailty model in Chapter 4). MacEachern (1999; 2000) proposed

a dependent Dirichlet process (DDP) which characterizes dependency by defining a

stochastic process for the atoms in the Sethuraman (1994) stick-breaking characteriza-

tion of the DP. This approach has been successfully applied in ANOVA (De Iorio et al.,

2004) and spatial (Gelfand et al., 2004) applications. A limitation is the assumption

of fixed weights on the atoms, which does not allow new features to appear as dose

increases. To solve this problem, Dunson (2006) proposed a dynamic mixture of DPs

(DMDP), which is related to a mixture structure originally proposed by Müller et al.

(2004) to combine inferences across related nonparametric models. More flexible de-

pendent nonparametric priors for continuous predictors have been proposed by Griffin

and Steel (2006), Dunson and Pillai (2004), and Duan et al. (2005).

Motivated by tractability in addressing the problem of nonparametric Bayes testing

of changes with dose, we focus here on generalizing the Dunson (2006) approach. Our

goal is to obtain posterior probabilities for local and global null hypotheses correspond-

ing to equivalence in an unknown distribution between groups. Instead of requiring

exact equivalence, we treat the distributions in adjacent groups as effectively equiva-

lent if the total variation norm between their probability measures is less than ε. To

borrow information across groups while assigning probabilities to the local null and al-

ternative hypotheses, we use a hierarchical modification of the DMDP. Using an MCMC

implementation, we obtain posterior model probabilities for the local and global hy-

potheses from a single run, while also producing posterior distributions for thresholds

and estimates of group-specific distributions. These group-specific estimates will rely on

borrowing of information from multiple groups, with an adaptive degree of shrinkage.

Multiple response data can be accommodated without complication.

In Section 5.2, we describe our generalization of the DMDP and hyperprior struc-

ture. In Section 5.3, we outline a MCMC methodology for testing and estimation. In

Section 5.4, we evaluate our approach using simulated data. In Section 5.5 we apply our

method to a large data set from a genotoxicity experiment. In Section 5.6 we discuss
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the results and future work.

5.2 Nonparametric Model and Prior Structure

5.2.1 General Framework

Let yhi be a vector of q continuous outcomes measured on subject i (i = 1, . . . , nh)

in group h (h = 1, . . . , d) and Xh be a score for group h, where Xh−1 < Xh < Xh+1.

In a toxicological study, Xh is the dose administered to each animal in group h with

X1 = 0 representing the control group. Throughout Sections 5.2 and 5.3, we will

assume that multiple outcomes are available, although in the case of a single outcome

the simplification is straightforward. To relax distribution assumptions, we assume

that yhi ∼ Fh which has the density function

fh(yhi) =

∫
N(yhi;µhi,Σhi)dGh(µhi,Σhi), (5.1)

where Gh is unknown. Hence, the density of y in group h is characterized as a non-

parametric mixture of multivariate Gaussian densities, with the mixture distribution

varying across groups. It is well known that mixtures of normals can accurately ap-

proximate any distribution.

It is clear that differences in the mixture distributions, Gh and Gh+1, imply differ-

ences in the outcome distributions, Fh and Fh+1. Hence, we focus on testing for changes

in the mixture distributions. In particular, our focus is on local null hypotheses charac-

terizing differences in adjacent groups and on global hypotheses representing intersec-

tions of these local hypotheses. As in the Kolmogorov-Smirnov test, we could specify

a point null hypothesis which requires G1, . . . , Gd to be exactly equivalent. However,

many have argued that point nulls are artificial and would almost never be observed in

practice (see, e.g., Berger and Delampady, 1987; Nickerson, 2000). In this paper, we use

a more realistic null hypothesis under which the distributions are effectively eqivalent

across groups. We formalize this hypothesis below.

Abusing notation, let G1, . . . , Gd denote probability measures corresponding to the

mixture distributions for the different groups. In addition, let B denote any Borel set

such that B ∈ B, with B ⊂ <q and B the Borel sigma-algebra of subsets of <q, and let
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the total variation norm of Gh+1 −Gh be defined as

||Gh+1 −Gh||TV = max
B∈B

∣∣∣∣Gh+1(B)−Gh(B)

∣∣∣∣.
We compare the local null hypothesis

H0h : ||Gh+1 −Gh||TV ≤ ε (5.2)

against the alternative

H1h : ||Gh+1 −Gh||TV > ε, (5.3)

where ε is some small constant such that when H0h holds, there is no appreciable

difference in the mixture distributions across these two groups. The global null of no

changes in the response distribution across groups corresponds to the intersection of

these local nulls,

H0 :
d−1⋂
h=1

H0h, (5.4)

which we will test against the global alternative of at least one change in distribution

across adjacent groups,

H1 : ∃ h : ||Gh+1 −Gh||TV > ε. (5.5)

5.2.2 DMDP Model

In addition to conducting hypothesis tests, we would like to estimate the density in

each dose group. As mentioned in Section 5.1, a promising approach would be to

assign a dependent nonparametric process to G1, . . . , Gd thereby allowing us to borrow

information across groups. Using the method of Müller et al. (2004), we could let

Gh = πG0 + (1 − π)G∗
h for h = 1, . . . , d, where G0 is a global probability measure

and G∗
h is an innovation measure specific to group h, with G0, G

∗
1, . . . , G

∗
d assigned

independent nonparametric priors. However, this approach results in an over-specified

model in that d + 1 random measures are incorporated to characterize d unknown

distributions. Teh et al. (2006) proposed an alternative model which assumes that the

Gh are drawn from DPPs with a common DP-distributed base measure G0. However,

these hierarchical priors treat the groups as exchangeable. To incorporate information
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on ordering in the groups, Dunson (2006) proposed a dynamic mixture of Dirichlet

processes (DMDP), which is conceptually related to the Müller et al. (2004) approach,

but avoids the over-specification problem.

We first consider the case of two groups (d = 2). To induce dependency, we model

the mixture distributions using the following DMDP:

G1 ∼ DP(α0G0)

G2 = (1− π1)G1 + π1G
∗
1 G∗

1 ∼ DP(α1G01), (5.6)

where 0 ≤ π1 ≤ 1 and G∗
1 is an innovation distribution that characterizes changes in

the mixture distribution of y caused by increasing the group score from X1 (e.g., dose

= 0) to X2 (e.g., dose > 0). Note that the DMDP implies the following densities for y

in groups 1 and 2:

f1(y) =

∫
N(y;µ,Σ)dG1(µ,Σ)

f2(y) = (1− π1)f1(y) + π1

∫
N(y;µ,Σ)dG∗

1(µ,Σ). (5.7)

Hence the distribution of y in group 2 is a mixture of the distribution in group 1 and

a different DP mixture of normals characterized by mixture distribution G∗
1. This is a

natural model for toxicology data since we would expect that the distribution in the

treatment group, F2, shares features with the distribution in the control group, F1,

but that innovations may have occurred due to stress induced by the test chemical.

The amount of borrowing information from the control control group and the level of

innovation are represented by the weights (1− π1) and π1 respectively.

In the above model, it is convenient to choose G0 ≡ G01, with these base mea-

sures having a conjugate normal-inverse Wishart form: dG0(µ,Σ) = N(µ;µ0, κΣ) ·
W(Σ−1;V0, v0), where W(·;V0, v0) denotes the Wishart density with mean V0 and

degrees of freedom v0. In this case, our nonparametric prior for F1 is centered on a

multivariate t-distribution, while the prior for F2 is centered on a mixture of multivari-

ate t-distributions. As α0 and α1 increase, we place more weight on this parametric

base model for the unknown densities. By choosing hyperprior densities for α0 and α1

(as we describe in Section 5.2.4), the method can adapt flexibly to accommodate lack

of fit in the multivariate t components.
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Under the DMDP, the total variation norm of G2 −G1 is

||G2 −G1||TV = max
B∈B

∣∣∣∣G2(B)−G1(B)

∣∣∣∣
= max

B∈B

∣∣∣∣(1− π1)G1(B) + π1G
∗
1(B)−G1(B)

∣∣∣∣
= π1||G∗

1 −G1||TV , (5.8)

which implies the following null hypothesis:

H0 : ||G∗
1 −G1||TV ≤ ε/π1. (5.9)

Thus, our null hypothesis can be expressed in terms a different total variation norm

whose upper bound is defined by two parameters, ε and π1.

Extending our model to d groups, we let

Gh = (1− πh−1)Gh−1 + πh−1G
∗
h−1

=

{ h−1∏
l=1

(1− πl)

}
G1 +

h−1∑
l=1

{ h−1∏
m=l+1

(1− πm)

}
πlG

∗
l

= ωh1G1 +
h−1∑
l=1

ωh,l+1G
∗
l

G∗
l ∼ DP (αlG0), for l = 1 . . . , h− 1, (5.10)

where ωh = (ωh1, . . . , ωhh)
′ are probability weights on the different components in the

mixture and h = 2, . . . , d. We also have the local nulls

H0h : ||G∗
h −Gh||TV ≤ ε/πh (5.11)

with H0 being the intersection of H01, . . . , H0,d−1.

5.2.3 Model Space Prior

Note that in the two sample case, H0 holds for any fixed ε if: 1.) π1 is sufficiently small,

regardless of G1 and G∗
1 2.) if G1 is sufficiently close to G∗

1 in total variation distance,

regardless of π1. Hence, the value of π1 and the independent DPPs on G1 and G∗
1

control the prior probability allocated to H0. If probability close to zero is allocated to

H0, then we may expect the posterior probability of H0 to be small unless the sample
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size is large, clearly an unappealing property in most applications. Thus, we want to

be able to control the prior probability allocated to H0.

We first consider the possibility of controlling Pr(H0) through the priors for G1

and G∗
1. The DPPs G1 ∼ DP(α0G0) and G∗

1 ∼ DP(α1G0) imply that G1(B) ∼
Be(α0G0(B), α0[1 − G0(B)]) and G∗

1(B) ∼ Be(α1G0(B), α1[1 − G0(B)]), respectively.

It is easy to verify numerically, through simulating from the above beta distributions

over a grid of values for G0(B), that Pr(||G∗
1 − G1||TV < ε) ≈ 0, for ε close to zero

regardless of the values of α0 and α1. Thus zero probability is allocated by the total

variation component, which implies that Pr(H0) is entirely controlled by π1.

Based on the above statements, one can effectively replace H0 in (5.9), with π1 ≤ ε∗,

where ε∗ is also close to zero. Also, using similar arguments, we can replace the local

nulls in the d-group setting, equation (5.11), with

H0h : πh ≤ ε∗h. (5.12)

Note that under these new local null hypotheses, we have a new global alternative:

H1 : ∃ h : πh > ε∗h. (5.13)

To control the prior probability allocated to H0, we propose a prior for πh which is

a mixture of its distribution under H0h and H1h. Our priors are related to those used

by George and McCulloch (1993) and Ishwaran and Rao (2003) to perform Bayesian

variable selection. Let ζh be a latent indicator variable that equals 1 when the local

null H0h is true and 0 otherwise and let Pr(ζh = 1) = p0h. Given ζh, our prior for πh

has the following form:

πh|ζh ∼ ζhBe(πh; a0h, b0h) + (1− ζh)Be(πh; a1h, b1h) for h = 1, . . . , d− 1. (5.14)

The first component of the mixture, Be(a0h, b0h), is chosen to be essentially a spike at

zero; a good default prior is Be(1, 99) which is centered on a 1% chance of an outlier

under H0h and has a 99th percentile of 0.05, which is a reasonable choice for ε∗h. A

good default choice for Be(πh; a1h, b1h) is the noninformative prior Be(1, 1).

In the above mixture, p0 = (p01, . . . , p0h)
′ is chosen to reflect prior knowledge about

the chances of H0 being true. For example, to assign equal prior weight to H0 and H1,

p0 should be chosen to satisfy Pr(H0)=
∏d−1

h=1 p0h = 0.5. Under the Bayesian Bonferroni

method of Westfall et al. (1997), this may be achieved by setting p01 = · · · = p0,d−1 =
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0.51/d. However for large d, the probability of each local null hypothesis is nearly 1,

which can make this approach overly conservative. We instead use a model space prior

described by Hans and Dunson (2005). This approach induces dependency in the local

null hypotheses by assuming p0h = p0 for h = 1, . . . , d− 1 where p0 ∼ Be(ap, bp) and ap

and bp are chosen so that on average Pr(H0)=0.5, i.e., E(pd−1
0 ) = 0.5. This implies that

ap and bp must satisfy the following:

0.5 =

∫ 1

0

pd−1
0

Γ(ap + bp)

Γ(ap)Γ(bp)
p
ap−1
0 (1− p0)

bp−1dp0

=
Γ(ap + bp)Γ(ap + d− 1)

Γ(ap)Γ(ap + bp + d− 1)
. (5.15)

As in Hans and Dunson, we impose the constraint ap + bp = 1 to represent unit infor-

mation in the prior and solve (5.15) numerically for ap and bp.

5.2.4 Hyperpriors for DP Parameters

To decrease the sensitivity of analyses to a subjectively chosen G0, we assign the follow-

ing hyperpriors to κ and µ0: κ
−1 ∼ Ga(aκ, bκ) and µ0 ∼ N(β,Ω). Escobar and West

(1995) use a similar hyperprior structure to fit a DP mixture of normals to an outcome

from a single group of subjects. They demonstrated that the modality of f(y) is most

sensitive to small values of κ. Thus, we recommend a diffuse prior for κ centered on

large values. We also recommend a diffuse prior for µ0 in which β represents one’s best

guess at the overall mean of y.

A conjugate Wishart prior may also be assigned to V0 (see West et al., 1994).

However, under a diffuse prior for κ, our model may not converge unless the prior

for V0 is very informative. Thus, similar to what has been done in applications of

DP mixtures of normals to galaxy data (Escobar and West, 1995) and neurological

data (West and Turner, 1994; Cao and West, 1996), we recommend fixing V0 using

an estimate obtained from historical data, or alternatively, at values under which a

N(β,V0) distribution sufficiently covers an expected range of values of y. We also

recommend fixing v0 on low integer values, though larger values may be used if there

is substantial prior information about V0.

The values of α = (α0, α1, . . . αd−1)
′ may also be fixed to represent one’s intuition

about the number of normal mixture components added in moving between two groups

(for a related approach see Escobar and West, 1995). We instead choose to estimate
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these quantities from the data and assume αh ∼ Ga(aγh
, bγh

) a priori for h = 0, 1, . . . , d−
1. In practice, one may favor priors which assign high prior probability to low values of

α since this implies that the number of mixture components is small (Antoniak, 1974)

and a very flexible density estimator can be produced with few mixture components.

Hence, a reasonable choice is aγh
= aγ = 1 and bγh

= bγ = 1.

5.3 Posterior Computation

In this section, we provide the full conditional posteriors from our DMDP and discuss

methods for hypothesis testing and density estimation. We have placed the details

regarding our Gibbs sampling algorithm in Appendix D, since it is closely related to

the West et al. (1994) method described in Section 2.1.3.

5.3.1 Full Conditional Posterior Distributions

To simplify notation, let φhi = {µhi,Σhi}. As in Dunson (2006), the derivation of our

full conditional posterior distributions involves re-writing the model in (5.10) as

φhi =
h∑
l=1

1(Mhi = l)ξhil

Mhi ∼ Multinomial(1, . . . , h;ωh1, . . . , ωhh)

ξhil ∼ G∗∗
l , G

∗∗
l ∼ DP (αlG0), for l = 1, . . . , h, (5.16)

where G∗∗
l = G1 for l = 1 and G∗∗

l = G∗
l−1 for l = 2, . . . , h.

Let θl = (θ′l1, . . . ,θ
′
lKl

)′ denote the unique values of ξl = {φhi : Mhi = l;h =

l, . . . , d; i = 1, . . . , nh}, where θlr = {µ∗lr,Σ∗
lr} and µ∗lr and Σ∗

lr are the (l, r)th unique

values of the mean and dispersion parameters, respectively. Let ml and mlr denote

the total number of subjects having Mhi = l and φhi = θlr, respectively. Also, let

θ
(hi)
l , K

(hi)
l ,m

(hi)
l , and m

(hi)
lr denote the values obtained after excluding subject h, i.

Under this notation, the full conditional prior of φhi is

h∑
l=1

ωhl

{(
αl−1

αl−1 +m
(hi)
l

)
G0 +

K
(hi)
l∑
r=1

(
m

(hi)
lr

αl−1 +m
(hi)
l

)
δ
θ

(hi)
lr

}
, (5.17)
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where δθ denotes a degenerate distribution with all its mass at θ. Letting

ω
(hi)
hl0 =

ωhl · αl−1

αl−1 +m
(hi)
l

and ω
(hi)
hlr denote the multiplier on δ

θ
(hi)
lr

in (5.17), the full conditional posterior distri-

bution for φhi is as follows:

h∑
l=1

{
ω̃

(hi)
hl0 G0hi +

K
(hi)
l∑
r=1

ω̃
(hi)
hlr δθ(hi)

lr

}
, (5.18)

where

ω̃
(hi)
hl0 = c · ω(hi)

hl0 · t(yhi; v0 − q + 1,µ0,V
∗
0)

V∗
0 =

v0(1 + κ)

v0 − q + 1
·V0

ω̃
(hi)
hlr = c · ω(hi)

hlr · N(yhi;µ
∗
lr,Σ

∗
lr)

dG0hi(φhi) = W

(
Σ−1
hi ;V0hi, v0 + 1

)
· N

(
µhi;

κ

κ+ 1
(yhi + κ−1µ0),

κ

κ+ 1
Σhi

)
V0hi =

1

v0 + 1

(
v0 ·V0 +

1

κ+ 1
(yhi − µ0)(yhi − µ0)

′
)

and t(·; v,µ,V) denotes the multivariate t density with v degrees of freedom, location

parameter, µ, and scale V. Gibbs sampling may proceed by sampling directly directly

from (5.18). However to improve mixing, we apply the algorithm described in Appendix

D.

Given p0 and M = {Mhi i = 1, . . . , nh;h = 1, . . . , d}, the probability that ζh = 1

(i.e., H0h is true) is

p∗0h =
p0

p0 + (1− p0) ·BFh
, (5.19)

where BFh is the Bayes factor for H1h versus H0h,

BFh =
C(a1h, b1h) · C(a∗0h, b

∗
0h)

C(a0h, b0h) · C(a∗1h, b
∗
1h)

,
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with

a∗kh = akh +
d∑

j=h+1

nj∑
i=1

1(Mji = h+ 1),

b∗kh = bkh +
d∑

j=h+1

nj∑
i=1

1(Mji < h+ 1), k = 0, 1

and C(a, b) = Γ(a + b)/(Γ(a) · Γ(b)). Given each ζh, πh and p0 have the following

posteriors:

π(πh|·) = ζhBe(a∗0h, b
∗
0h) + (1− ζh)Be(a∗1h, b

∗
1h) h = 1, . . . , d− 1 (5.20)

π(p0|·) = Be

(
ap +

d−1∑
h=1

ζh, bp + d− 1−
d−1∑
h=1

ζh

)
, (5.21)

where the notation a|· denotes a given all other variables. The full conditional posteriors

for µ0 and κ are similar to those provided in Escobar and West (1995), while the

conditional posterior for αh is as in West (1992), with the modification that the relevant

number of clusters and sample size are Kh+1 and mh+1, respectively, h = 0, 1, . . . , d−
1. As seen in Appendix D, it is straightforward to sample from the full conditional

posterior distributions of each of these variables using Gibbs steps.

5.3.2 Hypothesis Testing

The global null may be formally evaluated using Rao-Blackwellization (Gelfand and

Smith, 1990). For T iterations of the MCMC with a burn-in of Tb iterations, we

compute

P̂r(H0|Data) =
1

T − Tb

T∑
t=Tb+1

Pr(ζ1 = · · · = ζd−1 = 1|p(t)
0 ,M

(t))

=
1

T − Tb

T∑
t=Tb+1

d−1∏
h=1

p
∗(t)
0h , (5.22)

where the superscript (t) denotes a value sampled at iteration t. Using the common

convention of using posterior probabilities as Bayesian alternatives to p-values, one

may reject H0 if (5.22) is < 0.05. However, it is more appropriate to consider posterior

probabilities as measures of evidence than measures of significance. Thus, we also
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recommend reporting that there is evidence against H0 when the posterior probabilities

are only moderately small (i.e., between 0.05 and 0.1).

An attractive feature of our methodology is that we can test local hypotheses within

the same Markov chain used to test H0. Since we properly calibrate our prior for p0

to give equal prior probability to H0 and H1, the posterior probabilities of these local

nulls do not need to be adjusted (see Westfall et al., 1997). For instance, the posterior

probability of a distribution change between groups h and h+ 1 would be the average

value of p∗0h over T − Tb iterations. In toxicology studies, there is also interest in

comparing each dose group to control (group 1). Under our methodology, the null

hypothesis of no difference in the distributions of groups 1 and h is

H∗
0,h−1 : πj ≤ ε∗j j = 1, . . . , h− 1 (5.23)

and we estimate its posterior probability as

P̂r(H∗
0,h−1|Data) =

1

T − Tb

T∑
t=Tb+1

h−1∏
j=1

p
∗(t)
0j . (5.24)

5.3.3 Density Estimation

The predictive density of a future φh,nh+1 can be easily obtained at each iteration of

the MCMC:

π(φh,nh+1) =
h∑
l=1

{
αl−1

αl−1 +ml

· dG0(φh,nh+1) +

Kl∑
r=1

(
mlr

αl−1 +ml

)
δθlr

}
. (5.25)

This implies that the predictive density of yh,nh+1 is

fh,nh+1(y) = ω0 · t(y; v0 − q + 1,µ0,V
∗
0) +

h∑
l=1

Kl∑
r=1

ωhlr · N(y;µ∗lr,Σ
∗
lr), (5.26)

where the multivariate t-density results from integrating N(·;µh,nh+1,Σh,nh+1) over G0,

and ω0 and ωhlr are the respective multipliers on dG0(φh,nh+1) and δθlr
in (5.25). Fol-

lowing T iterations, the Rao-Blackwellized estimate,

f̄h,nh+1(y) =
1

T − Tb

T∑
t=Tb+1

f
(t)
h,nh+1(y), (5.27)
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may be computed over a grid of values and compared to the observed data to evaluate

goodness of fit.

In a toxicology study, one would also be interested in the posterior density of the

lowest observed adverse effects level (LOAEL). Assuming that any change in the dis-

tribution relative to group 1 is an adverse effect, we can estimate the posterior density

of the LOAEL as follows:

P̂r(LOAEL = h|Data) =
1

T − Tb

T∑
t=Tb+1

(1− p
∗(t)
0,h−1)

h−2∏
j=1

p
∗(t)
0j h = 2, . . . , d

P̂r(LOAEL = d+ 1|Data) =
1

T − Tb

T∑
t=Tb+1

d−1∏
j=1

p
∗(t)
0j , (5.28)

where a LOAEL of d + 1 implies that the LOAEL is greater than the largest dose

considered in the study. Hans and Dunson (2005) use a similar approach to estimate

the posterior density of the LOAEL under umbrella orderings.

5.4 Simulation Studies

5.4.1 Description of Data

We performed three simulation studies to evaluate the performance of our methodology.

In each simulation case, we generated a vector of three responses for each subject,

yhi = (yhi1, yhi2, yhi3)
′, from a mixture of five multivariate normal distributions:

fh(yhi) =
5∑
j=1

whjN(yhi;µj, τj · I3),

where µj = (µj1, µj2, µj3)
′ and whj ∝ exp(γj0 + (h − 1)γj1) for h = 1, . . . , 6 and

i = 1, . . . , 30. For each mixture component, µjk = xj + k − 1 where xj is a constant.

The parameter values used in the simulations are provided in Table 5.1. Cases

1 and 2 differed only in their values of the mixture probabilities; in Case 1 we let

γj0 = 1 and γj1 = 0 for j = 1 . . . , 5 to simulate under a null model, while in Case 2 the

mixture probabilities varied with predictor level. As seen in Figure 5.1, the right tails

of the marginal densities of y1 become heavier with predictor level in Case 2 while, in

Case 3, the modality of the distribution changes across h. The latter case may arise

in toxicology experiments in which gene×dose interactions cause sub-populations to
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TABLE 5.1: Parameter values for the mixture components in simulation cases 2 and 3.

Case 2

j
Parameter 1 2 3 4 5

xj -0.6 -0.5 -0.4 0.5 1
τj 0.16 0.25 0.36 0.903 1.323
γj0 1 1 1 -3 -3
γj1 -1 -0.25 -0.25 0.25 0.75

Case 3

xj -2 -1 0 1 2
τj 0.16 0.25 0.36 0.903 1.323
γj0 -3 -3 1 -3 -3
γj1 1 0.5 0 0.5 1

respond differently to treatment. The marginal densities of y2 and y3 follow a similar

trend with dose, though their location parameters differ. Five data sets were simulated

under each case.

5.4.2 Univariate Analyses

We first performed a univariate analysis on y1 in order to compare our methodology

to standard frequentist methods. In each case, we assumed µ0 ∼ N(0, 100), κ−1 ∼
(0.5, 50), and αh ∼ Ga(1, 1) for h = 1, . . . , d a priori and let v0 = 4 and V0 = 1.

In our mixture priors for π1, . . . , π5, we let a0h = a1h = b1h = 1 and b0h = 99 for

h = 1, . . . , d− 1, as recommended in Section 5.2.3, and p0 ∼ Be(0.725, 0.275) to assign

equal prior probability to H0 and H1. We ran our MCMC for a total 25, 000 iterations,

discarding the first 5,000 as a burn-in, and saved every 10th iteration to thin the chain.

Our method correctly assigned high probability to H0 in Case 1 (> 0.87 for each

data set) and very low posterior probability to H0 in Cases 2 and 3 (as seen in Table

5.2). These results were consistent with the p-values from a k-sample Kolmogorov-

Smirnov test (Kiefer, 1959), while both Jonckheere’s test and the Kruskal-Wallis test
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FIGURE 5.1: Marginal density of y1 at each predictor level in simulation cases 2 and
3.

failed to reject the null in 1/5 Case 2 simulations and 5/5 Case 3 simulations. Since

stochastic ordering was violated in Case 3, it is not surprising that Jonckheere’s test

was insignificant. Being sensitive to location but not shape changes, the Kruskal-Wallis

test appeared to have lower power than our approach, which can detect any change in

the distribution.

In addition to assessing evidence of any change across the groups, it is of interest to

identify dose groups that differ from control. We compared our approach to methods

commonly used for toxicology data, Dunn’s method (1964) and Williams’ (1986) mod-

ification of Shirley’s method (1977). We also compared our method to (d−1) 2-sample

Kolmogorov-Smirnov tests performed under a Bonferroni correction. As seen in Table

5.2, our method found clear evidence that groups 5 and 6 differed from group 1 in 5/5

Case 2 simulations. In contrast, Shirley’s method, which assumes a monotone trend

across groups, found a significant difference in 4/5 simulations while Dunn’s method

and the Kolmogorov-Smirnov tests were more conservative. In Case 3, our method indi-

cated that groups 3-6 were all clearly different from group 1. The Kolmogorov-Smirnov

tests were more conservative and suggested group-related trends that were inconsistent

with the simulated data; in two data sets a lower group was significantly different from
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group 1, while a higher group was not found to differ from baseline.

5.4.3 Multivariate Analyses

We next repeated our analyses using a multivariate approach. In addition to testing

for a predictor effect on the distribution of y, in Cases 2 and 3 we also tested for an

effect on the joint distribution of y1, z1, z2 and y1, y2, z2, where (zhi1, zhi2) ∼ N(0, I2) for

h = 1, . . . , 5 and i = 1 . . . , 30 independently of yhi. The purpose of these latter tests

were to evaluate the performance of our multivariate method under varying numbers of

affected outcomes. The implementation was very similar to that of univariate analyses,

with µ0 ∼ N(0, I3) a priori and V0 = I3.

As in the univariate analyses, our method gave high posterior probability to H0 in

Case 1; the range of the posterior probabilities was 0.774-0.970 across the five data

sets. Figure 5.2 summarizes the results for Cases 2 and 3. In Case 2, the posterior

probabilities of H0, H
∗
04, and H∗

05 were close to zero in each analysis. However, the

posterior probabilities of H∗
01, H

∗
02 and H∗

03 increased as we decreased the number of

y’s (the affected outcomes) in our model. This suggests that our method is conserva-

tive when only one outcome is moderately affected, which is a desirable feature for a

multivariate method. In Case 3, the results were more consistent across the number of

affected outcomes since the distribution changes in y were more substantial.

5.5 Genotoxicity Example

5.5.1 Data and Methods

We considered data from a genotoxicity study which used the comet assay (single-cell

electrophoresis) to measure the effects of oxidative stress on DNA strand breaks. These

data were previously analyzed in Dunson (2006), Dunson et al. (2003), and Dunson and

Taylor (2005). In the comet assay, cells are embedded in agarose on a microscope slide

and lysed to remove all cellular proteins. The cells are then subjected to electrophoresis

to determine the extent of DNA damage; after being stained with ethidium bromide,

intact DNA will appear as a single sphere under a fluorescent microscope while broken

DNA fragments will migrate from the nucleus giving the image a comet-like appearance.

Using imaging software, several surrogates of DNA strand breaks can be obtained
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TABLE 5.2: Posterior probabilities of global and local null hypotheses for the uni-
variate analysis of y1 in simulation cases 2 and 3. The letters in superscript denote
that the following frequentist tests were significant at the 0.05 level: J=Jonckheere,
KW=Kruskal-Wallis, KS=Kolmogorov-Smirnov, S=Shirley, D=Dunn.

Case 2

Data
set H0 H∗

01 H∗
02 H∗

03 H∗
04 H∗

05

1 0.024KS 0.823 0.753 0.700 0.029 0.024KS

2 < 0.001J,KW,KS 0.834 0.570 0.376 < 0.001S,D < 0.001S,D,KS

3 0.003J,KW,KS 0.802 0.655 0.016 0.003S 0.003S,D,KS

4 < 0.001J,KW,KS 0.895 0.771 0.240 < 0.001S,D < 0.001S,D

5 < 0.001J,KW,KS 0.547 0.464 0.395 0.020S < 0.001S,D,KS

Case 3

1 < 0.001KS 0.076 0.036 < 0.001KS < 0.001KS < 0.001KS

2 < 0.001KS 0.459 0.009 < 0.001KS < 0.001KS < 0.001KS

3 < 0.001KS 0.560 < 0.001KS < 0.001 < 0.001KS < 0.001KS

4 < 0.001KS 0.155 < 0.001 < 0.001 < 0.001KS < 0.001

5 < 0.001KS 0.696 0.010 < 0.001KS < 0.001KS < 0.001KS
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FIGURE 5.2: Posterior probabilities of global and local null hypotheses for the mul-
tivariate analyses in simulation cases 2 and 3. Labels for y-axes denote the different
outcomes used in each analysis. Data points correspond to results from data sets 1
(+), 2 (o), 3 (*), 4 (·), and 5 (×). As a point of reference for evaluating each posterior
probability, we have provided a dashed line at 0.1
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including length of the comet tail and % DNA in the comet tail. Previous analyses

of comet assay data have shown that these surrogates are non-Gaussian even after

transformation (Duez et al., 2003; Dunson et al., 2003), and thus are a particularly

interesting example for our methodology. For a discussion of statistical issues related

to comet assay data see Lovell et al. (1999).

The data set we analyzed consisted of human lymphoblast cells exposed to 5 different

concentrations of hydrogen peroxide (0, 5, 20, 50, and 100 µM H2O2). The goal of this

experiment was to determine the sensitivity of the comet assay to detect DNA damage

induced by H2O2, a known genotoxic agent. Several surrogates of the frequency of

DNA strand breaks were measured for 100 cells in each dose group. However, we focus

our analyses on the two best surrogates: y1 = % tail DNA and y2 = Olive tail moment

(OTM), which is (% tail DNA)×(distance between center of head and center of tail).

Our implementation was identical to that described in the simulation studies, with

a few exceptions. Based on the range of surrogate values reported in Duez et al.

(2003), we chose β = (50, 10)′, V011 = 180, V022 = 10, and V012 = V021 = 38.2, where

V0ij denotes element (i, j) of V0. Note that we chose a large value for the covariance

because % tail DNA and OTM are likely to be highly correlated. However, since we are

uncertain about how well these mean and variance values represent the current data,

we chose a relatively diffuse prior for µ0, N(β, 6 ·V0), and let v0 = 4. Also, using the

guidelines in Section 5.2.3, we assumed p0 ∼ Be(0.7, 0.3) a priori.

5.5.2 Results

Our method provided strong evidence in favor of an effect of H2O2 on the frequency

of DNA strand breaks as P̂r(H0|Data) < 0.001. As demonstrated by the posterior

predictive densities in Figure 5.3, treatment with H2O2 changes the joint distribution

of the % tail DNA and OTM from a unimodal distribution favoring small values to

a multi-modal distribution supporting large levels of DNA damage. While genotoxic

effects are evident at the smallest dose of H2O2 (the posterior probability that 5 µM

is the LOAEL is > 0.999), they appear to level off at the higher doses since there

is no appreciable difference in the distributions of the 20, 50, and 100 µM groups;

P̂r(No difference|Data) = 0.816. Figure 5.3 demonstrates that these densities are in

agreement with the observed data, supporting goodness of fit.

Although previous analyses of this data set have also demonstrated a relationship

between H2O2 and the frequency of DNA strand breaks, we have provided several new
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FIGURE 5.3: Posterior predictive density of % tail DNA and OTM in each dose group.
The density presented for doses 20-100 µM H2O2 was averaged across the 20, 50 and
100 µM dose groups. ‘·’ denotes an observation.

pieces of information. For instance, neither the latent response models fit by Dunson

et al. (2003) and Dunson (2006) nor the quantile regression approach of Dunson and

Taylor (2005) provided a formal method for testing for changes across dose groups and

for estimating threshold doses. In genetic epidemiology studies of DNA repair it is

important to use minimal doses of the test agent to avoid high levels of cell death,

which make the comet assay unreliable. Hence our finding that 20 µM is a threshold

level for DNA damage has important implications for future experiments. Another

advantage of our method is our ability to obtain smooth, nonparametric estimates of

the joint density of the surrogates. Potentially, the information in these estimates (e.g.,

the number of normal mixture components in each dose group) could be used to elicit

priors in future analyses of related experiments.

5.6 Discussion

In this chapter, we have proposed a nonparametric method which models distribution

changes across an ordinal predictor and provides a formal approach for Bayesian testing

of local and global changes across groups. Our method provides more informative

results than many frequentist k-sample tests and, as demonstrated in simulation studies,

may be more sensitive to changes in distributional shape. In addition, our method can
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perform inferences on multivariate distributions and identify thresholds.

Although our method is relatively simple to program, the computational burden

increases substantially with both sample size and the dimension of the response. For

example, it took 23 hours to complete the MCMC for our analysis of the comet assay

data using a Matlab (version 7.0) program run in batch on the statistical server at

UNC-Chapel Hill (20 1.05 GHz processors); in comparison, it took approximately five

hours to complete a single chain in our univariate analyses of the simulated data.

Thus, a more efficient computational method would likely be necessary for massive,

high dimensional data sets. One promising approach may be to develop a Variational

Bayes (VB) implementation (see Blei and Jordan, 2006).

Some extensions of our method may also serve as exciting areas of future research.

For example, a formal method of incorporating historical data would be useful in many

applications, such as toxicology studies with extensive historical control databases.

These data could potentially be used to generate an empirical estimate of G0 for our

model. It may also be of interest to incorporate order restrictions into our method

which ensure that the the quantiles of the response are non-decreasing with dose. This

extension would be related to the nonparametric approaches for stochastic ordering

described by Gelfand and Kottas (2001) and Hoff (2003).
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CHAPTER 6

CONCLUDING REMARKS

6.1 Overview

In this dissertation, we have proposed Bayesian semiparametric methods which address

computational and substantive problems in biomedical data. Our work was motivated

by real data examples from epidemiology and toxicology studies.

In Chapter 3, we developed a method which makes fitting semiparametric random

effects models feasible for large data sets. The research was motivated by a computa-

tional problem that arose in collaborative research on the effect of maternal smoking on

child growth in the Collaborative Perinatal Project (CPP). Our approach uses expert

elicitation to generate a smaller data set which we model using a Dirichlet process mix-

ture (DPM). Simulation studies demonstrated that our method is accurate and requires

less computation time than DPMs fit to the complete data. We also presented the first

random effects analysis of the CPP data and demonstrated that previous analyses using

GEE may have generated biased estimates.

The problems we addressed in Chapters 4 and 5 were more substantive. In Chapter

4, we generalized the shared frailty model for multiple event time data to account for

time-dependent changes in susceptibility across subjects, such as rats in a study of

palpable tumors. Our method models smooth trends in the hazard, covariate effects

and frailty, while relaxing distribution assumptions on the frailty using nonparametric

priors. By accounting for changes in frailty in our chemoprevention example, we pro-

vided a more realistic description of the canthaxanthin effect than previous analyses

which used shared frailty-type models.

Finally, in Chapter 5 we proposed a Bayesian method for testing for changes in

an outcome distribution with an ordinal predictor. The approach is attractive for



toxicology data because it is sensitive to changes in distribution shape with dose (such

as changes in skewness and modality) and can model trends across multiple outcomes.

When we applied our method to genotoxicity data, we found that the modality of the

bivariate distribution of % tail DNA and Olive tail moment (two surrogates of DNA

damage) changes with the dose of H2O2. We also identified an interesting threshold

that could have interesting implications for future experiments.

6.2 Future Research

At the end of Chapters 3-5, we discussed some possible extensions of our methods and

areas of future research. We would like to briefly revisit a couple of issues that arose

and discuss how they relate to more general problems in Bayesian inference.

In the discussion sections of Chapters 3 and 5, we mentioned that our methods may

need to be modified to improve efficiency under high dimensional models (discussed in

Chapters 3 and 5) or large data sets (discussed in Chapter 5). We anticipate that this

will be an ongoing problem for Bayesian methods as many future biomedical studies,

including large scale prospective studies and genetic epidemiology studies, will produce

massive amounts of information that need to be analyzed quickly. In addition, high

dimensional models will continue to play an integral role in the analysis of epidemi-

ology data to ensure proper adjustment for confounders. Such issues have motivated

the development of fast alternatives to traditional MCMC such as subsampling (Huang

and Gelman, 2005), particle-filters (Chopin, 2002; Ridgeway and Madigan, 2003; Bal-

akrishnan and Madigan, 2006), variational inference methods (e.g., Blei and Jordan,

2006), and our two-stage method in Chapter 3. However, we must continue to increase

the number of computational tools available to ensure that Bayesian inference is viable

in these settings.

The other issue issue we would like to address was noted at the conclusion of Chap-

ter 4. In Section 4.5, we mentioned the possibility of removing the almost discrete

restriction on our frailties using either a DPM or Pólya tree (Lavine, 1992, 1994). The

DPM extension would be conceptually straightforward, though we would sacrifice par-

simony in our model and may increase the computational burden. This is exemplifies

a trade-off that exists in Bayesian nonparametrics. Ideally, one would like to choose

priors that most accurately reflect their prior beliefs (e.g., that the frailty distribution

is continuous) but since these models are more challenging to fit, people often adhere to

simpler priors such as the DP. Thus, a continuing challenge will be to develop methods
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which strike a balance between flexibility and computational convenience.
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APPENDIX A

PROOF OF CONVERGENCE OF

STAGE 1 CLUSTERING

ALGORITHM IN CHAPTER 3

In Step 2 of our Stage 1 clustering algorithm we wish to minimize the modified squared

error, Qj(zj, cj) =
∑Mj

i=1Qji(zji, cj), where zj = (z′j1, . . . , z
′
jMj

)′, cj = (c′j1, . . . , c
′
jGj

)′,

and

Qji(zji, cj) =

{
(d∗ji)

2 d∗ji ≤ r

r2 d∗ji > r.

Thus, the proof of convergence of the algorithm involves showing two conditions: 1.)

changing the cluster assignment of a subject does not increase the modified square error,

Qj(zj, cj), denoted Qj hereafter 2.) updating the seed of a cluster does not increase

Qj.

1. Let Qji denote the contribution of subject j, i to Qj prior to cluster assignment

and Q∗
ji denote its value afterward. At iteration t, if subject j, i is:

a.) moved from cluster j, l to cluster j, l′ then

Q∗
ji = d2(zji, c

(t−1)
jl′ ) < d2(zji, c

(t−1)
jl ) = Qji.

b.) assigned to cluster j, l′ after not being assigned to a cluster at iteration t− 1

then

Q∗
ji = d2(zji, c

(t−1)
jl′ ) ≤ r2 = Qji.

c.) not assigned to a cluster after being in cluster l at iteration t− 1 then

Q∗
ji = r2 ≤ d2(zji, c

(t−1)
jl ) = Qji.
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In each case, changing the cluster assignment of j, i does not increase its contri-

bution to Qj, thus demonstrating that Condition 1 holds.

2. Following the (t)th iteration of Step 2.1, the contribution of cluster j, l to Qj is

Q∗
jl =

∑
i∈jl

pj∑
k=1

(zjik − c
(t−1)
jlk )2

=
∑
i∈jl

pj∑
k=1

(zjik + c
(t)
jlk − c

(t)
jlk − c

(t−1)
jlk )2

=
∑
i∈jl

pj∑
k=1

(zjik − c
(t)
jlk)

2 +mjl

pj∑
k=1

(c
(t)
jlk − c

(t−1)
jlk )2

+2
∑
i∈jl

pj∑
k=1

(zjik − c
(t)
jlk)(c

(t)
jlk − c

(t−1)
jlk )

=
∑
i∈jl

pj∑
k=1

(zjik − c
(t)
jlk)

2 +mjl

pj∑
k=1

(c
(t)
jlk − c

(t−1)
jlk )2

≥
∑
i∈jl

pj∑
k=1

(zjik − c
(t)
jlk)

2 = Qjl,

where Qjl is the contribution of cluster j, l to Qj following Step 2.2. This demon-

strates that updating the seed of a cluster does not increase its contribution to

Qj, thereby completing the proof of convergence. Similar arguments can be used

to prove convergence of k-means clustering under squared-error loss (MacQueen,

1967).
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APPENDIX B

MCMC METHODOLOGY FOR

CHAPTER 3

B.1 Methods for updating the random effects

Conditional on the other random effects, the prior for b∗g is the mixture distribution

[b∗g|θ,n(g), α] ∼
(

α

α+G− 1

)
H0 +

(
1

α+G− 1

) K∑
k=1

n
(g)
k δθk

, (B.1)

where θ = (θ′1, . . . ,θ
′
k)
′, n(g) = (n

(g)
1 , . . . , n

(g)
K )′, n

(g)
k is the number of pseudo-subjects

(other than g) with common random effect value θk, and δθk
denotes a degenerate

distribution at θk. After incorporating the likelihood for pseudo-subject g, f(y∗g|b∗g),
the full conditional posterior distribution of each b∗g can be derived as

[b∗g|y∗g, α,θ,n(g)] ∼ qg0Hg0 +
K∑
k=1

qgkδθk
, (B.2)

where

qgk =

{
c · α · h(y∗g) k = 0,

c · n(g)
k · f(y∗g|θk) k > 0,

Hg0 is a normal distribution with mean µg = Ug(D
−1µ + τX∗′

g y∗g) and covariance

matrix Ug = (D−1 + τX∗′
g X∗

g)
−1,

h(y∗g) =

(
τ

2π

)n∗g
2

|D|−1/2|Ug|1/2 · exp

{
− 1

2

(
τy∗

′

g y∗g + µ′D−1µ− µ′gU−1
g µg

)}
,

and c is a normalization constant.

In order to update the random effect values from their full-conditional posteriors,

we propose an MCMC algorithm which parallels that of MacEachern (1994) and West
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et al. (1994):

1. For g = 1, . . . , G, sample a random variable, Sg ∈ {0, 1, . . . , K}, which equals k

with probability qgk. When Sg = 0, sample b∗g from Hg0 and increment K by one;

for Sg = k > 0 set b∗g = θk.

2. For k = 1, . . . , K update θk from its full conditional posterior, which is N(µθk
,Rk),

where

µθk
= Rk(D

−1µ+ τ
∑
g:Sg=k

X∗′
g y∗g), Rk = (D−1 + τ

∑
g:Sg=k

X∗′
g X∗

g)
−1. (B.3)

Note that updating θk changes the value of b∗g for all g such that Sg = k.

B.2 Methods for updating the hyperparameters

Under the priors specified in Section 3.3.4 , the hyperparameter values may be updated

by adding the following steps to our MCMC:

3. Sample µ from

π(µ|θ,D) = N

(
Σµ(Σ−1

0 µ0 + D−1
K∑
k=1

θk),Σµ

)
, (B.4)

where Σµ = (Σ−1
0 +KD−1)−1.

4. Sample D−1 from

π(D−1|θ,µ) = W

(
d0 +K,D0 +

K∑
k=1

(θk − µ)(θk − µ)′
)
. (B.5)

5. Sample τ from

π(τ |e∗1, . . . , e∗G) = Ga

(
ψτ0 +

n∗

2
, ψ +

1

2

G∑
g=1

e∗
′

g e∗g

)
, (B.6)

where n∗ =
∑G

g=1 n
∗
g and e∗g = (y∗g −X∗

gb
∗
g).
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6. Sample α from

π(α|z,K) = πzGa

(
a+K, b− log(z)

)
+(1−πz)Ga

(
a+K−1, b− log(z)

)
, (B.7)

where
πz

(1− πz)
=

(a+K − 1)

G
(
b− log(z)

)
and π(z|α,K) = Be(α + 1, G). As noted by West (1992) α may be updated by

first sampling z from π(z|α,K) and then sampling α from (B.7).

The MCMC methodology proceeds by iterating over Steps 1-6 for a large number of

iterations and discarding a burn-in period to allow convergence. However, to speed

up computation, we recommend sampling each Sg conditional on the random effect

values at the previous iteration. Although this modification may slow convergence

down slightly, it is unlikely that it will affect posterior summaries obtained from long

chains.
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APPENDIX C

MCMC METHODOLOGY FOR

CHAPTER 4

C.1 Full Conditional Posterior Distributions

Let Y = {Z1, . . . ,ZN ; t∗1, . . . , t
∗
N ;X1, . . . ,XN} denote the observed data, where Zi =

(Zi1, . . . , ZiMi
)′ and Xi = (xi1, . . . ,xiMi

)′. Also, let Φ = {φi, φij, i = 1, . . . , N ; j =

1 . . . ,Mi}, ν = (ν0, ν1, . . . , νM)′, and Γ = {γhk, h = 1 . . . ,M ; k = 1, . . . , p}. Given the

above notation, the likelihood is proportional to

L(Φ,ν,Γ|Y) =
N∏
i=1

Mi∏
j=1

(
φiν0λ̂0j

j∏
h=1

φihνh

p∏
k=1

γ
xijk

hk

)Zij

× exp

{
− rijφiν0λ̂0j

j∏
h=1

φihνh

p∏
k=1

γ
xijk

hk

}
. (C.1)

Under the dynamic gamma model, the full conditional posterior distributions of the φi

and φij’s are also gamma due to the Poisson form of (C.1):

π(φi|·) = G∗
i = Ga

(
ψ1 + Z∗

i , ψ1 +m∗
i

)
(C.2)

π(φis|·) = G∗
is = Ga

(
ψ2 + Z∗

is, ψ2 +m∗
is

)
, (C.3)

where the notation a|· denotes a given all other variables and Z∗
i =

∑Mi

j=1 Zij, Z
∗
is =∑Mi

j=s Zij

m∗
i = ν0

∑Mi

j=1 rijλ̂0j

∏j
h=1 φihνh

∏p
k=1 γ

xijk

hk

m∗
is = φiν0

∑Mi

j=s rijλ̂0j(
∏j

h=1 νh
∏p

k=1 γ
xijk

hk )
∏j

f 6=s φif ,
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for s = 1, . . . ,Mi. The full conditional posterior densities of the elements of ν and Γ

are

π(ν0|·) = Ga

(
κ+

N∑
i=1

Z∗
i , κ+

N∑
i=1

φi

Mi∑
j=1

rijλ̂0j

j∏
h=1

φihνh

p∏
k=1

γ
xijk

hk

)
(C.4)

π(νs|·) = Ga

(
ψ3 +

∑
i∈Rs

Z∗
is, ψ3 + ν0

∑
i∈Rs

φi

Mi∑
j=s

rijλ̂0j

j∏
f 6=s

νf

j∏
h=1

φih

p∏
k=1

γ
xijk

hk

)
(C.5)

π(γsk|·) ∝ exp

{(
ψ4 +

∑
i∈Rs

M∑
j=s

Zijxijk

)
log(γsk)− γskψ4

−ν0

∑
i∈Rs

M∑
j=s

rijφiλ̂0j

j∏
h=1

φihνh

p∏
l=1

γ
xijl

hl

}
, (C.6)

where Rs = {i : Mi ≥ s}, for s = 1, . . . ,M .

When the Dirichlet process is used to model the frailty terms, the full conditionals

of φi and φis are not G∗
i and G∗

is. Using the Pólya urn representation of the Dirichlet

process (Blackwell and MacQueen, 1973; MacEachern, 1994; West, 1990), one can show

that the prior distribution of φi given φ(i) = (φ1, . . . , φi−1, φi+1, . . . , φN)′ is the mixture

(
α01

α01 +N − 1

)
G01 +

(
1

α01 +N − 1

) K(i)∑
l=1

n
(i)
l δθ(i)l

, (C.7)

where δθ denotes the degenerate distribution with all its mass at θ, and the prior for

φis given φ
(i)
s = {φi′s : i′ ∈ Rs, i

′ 6= i} and Ns total subjects in Rs is

(
α02

α02 +Ns − 1

)
G02 +

(
1

α02 +Ns − 1

) K
(i)
s∑

l=1

n
(i)
sl δθ(i)sl

, (C.8)

where θ(i) and θ
(i)
s denote the K(i) and K

(i)
s unique values of φ(i) and φ

(i)
s , respectively,

n
(i)
l elements of φ(i) have value θ

(i)
l , and n

(i)
sl elements of φ

(i)
s have value θ

(i)
sl . After

factoring in the likelihood, the full conditional posterior of φi is

qi0G
∗
i +

K(i)∑
l=1

qilδθ(i)l
(C.9)
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where

qil =


c1α01C(ψ1,ψ1)

C(ψ1+Z∗
i ,ψ1+m∗

i )
l = 0

c1n
(i)
l (θ

(i)
l )Z

∗
i exp{−θ(i)

l m
∗
i } l > 0,

C(a, b) = ba/Γ(a), and c1 is a normalizing constant. Similarly, the full conditional

posterior of φis (s = 1, . . . ,Mi) is

qis0G
∗
is +

K
(i)
s∑

l=1

qislδθ(i)sl
(C.10)

where

qisl =


cs+1α02C(ψ2,ψ2)
C(ψ2+Z∗

is,ψ2+m∗
is)

l = 0

cs+1n
(i)
sl (θ

(i)
sl )Z

∗
is exp{−θ(i)

sl m
∗
is} l > 0.

Thus, the full conditional distributions of φi and (φi1, . . . , φiMi
)′ are mixtures of the

gamma posteriors obtained under the dynamic gamma model and multinomial distri-

butions with support on the unique values of each frailty component.

C.2 Updating Algorithm

In order to sample efficiently under the Dirichlet process mixture, we invoke a sampling

scheme similar to that provided by MacEachern (1994) and West et al. (1994). Let

there be K unique values in (φ1, . . . , φN)′ and Ks unique values in {φis : i ∈ Rs}, which

we denote by θ = (θ1, . . . , θK)′ and θs = (θs1, . . . , θsKs)
′, respectively, for s = 1 . . . ,M .

We also define the discrete random variables Si and Sis such that Si = k if φi = θk and

Sis = l if φis = θsl, for i ∈ Rs. Our MCMC algorithm proceeds as follows:

1. Sample ν0 from (C.4), given the current values of Φ, ν1, . . . , νM , and Γ.

2. Sample Si, for i = 1, . . . , N from a multinomial distribution with Pr(Si = l) = qil,

for l = 0, 1, . . . , K(i), with a new φi drawn from G∗
i if Si = 0.

3. Given the updated values of K and S1, . . . , SN , generate a new θ by sampling

each θk from its full conditional posterior distribution, Ga
(
ψ1 +

∑
i:Si=k

Z∗
i , ψ1 +∑

i:Si=k
m∗
i

)
, for k = 1, . . . , K. Assign the appropriate value of θ(i) to φi as

indicated by Si.
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4. For s = 1, . . . ,M , perform the following steps:

a.) For i ∈ Rs, sample Sis from the multinomial distribution with Pr(Sis = l) =

qisl, for l = 0, 1, . . . , K
(i)
s , with a new φis drawn from G∗

is if Sis = 0.

b.) Update θs by sampling each θsl from the full conditional posterior,

Ga
(
ψ2 +

∑
i:Sis=l

Z∗
is, ψ2 +

∑
i:Sis=l

m∗
is

)
, for l = 1, . . . , Ks. Assign the ap-

propriate value of θ
(i)
s to φis.

c.) Sample νs from (C.5).

d.) Sample γsk from (C.6) for k = 1, . . . , p.

5. Update ψ1 and ψ2. Let K∗ =
∑M

s=1Ks. Under the DP model, the full conditional

posterior densities of ψ1 and ψ2 depend only on θ and θ1, . . . ,θM ,

π(ψ1|·) ∝
(

ψψ1

1

Γ(ψ1)

)K

ψa1−1
1 exp

{
− ψ1

(
b1 +

K∑
k=1

(θk − log θk)

)}
(C.11)

π(ψ2|·) ∝
(

ψψ2

2

Γ(ψ2)

)K∗

ψa2−1
2 exp

{
− ψ2

(
b2 +

M∑
s=1

Ks∑
k=1

(θsk − log θsk)

)}
, (C.12)

while under the dynamic gamma frailty model, the posteriors depend on each

φi and φij, respectively. Since (C.11) and (C.12) do not have closed forms, we

recommend updating ψ1 and ψ2 using a Metropolis-Hastings random walk.

In our analysis of the chemoprevention data (Section 4.4), we modified the algorithm

slightly to speed up computation. In steps 2 and 4a, we sampled each Si and Sis

using the cluster configuration at the previous iteration, which is similar to the method

described in Appendix B.

It is also fairly straightforward to sample from predictive distributions at each it-

eration of the Gibbs sampler. Given φ and φ1, . . . ,φM , the frailty of a future subject,

ξN+1, may be predicted by sampling from the distributions

π(φN+1|φ) =

(
α01

α01 +N

)
G01 +

(
1

α01 +N

) K∑
l=1

nlδθl
(C.13)

π(φN+1,s|φs) =

(
α02

α02 +Ns

)
G02 +

(
1

α02 +Ns

) Ks∑
l=1

nslδθsl
(C.14)

for s = 1, . . . ,M . Count data for a future subject may then be simulated using the

non-homogeneous Poisson process in equation (4.4).
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APPENDIX D

MCMC METHODOLOGY FOR

CHAPTER 5

Let Shi = (0, l) if φhi is allocated to a new cluster in mixture component l and Shi =

(r, l) if φhi = θ
(hi)
rl . At each iteration of our MCMC, we update the parameters in our

model using the following steps:

1. Sample each Shi from its full conditional posterior distribution which is multino-

mial with Pr(Shi = (r, l)|·) = ω̃hlr, for l = 1, . . . , h, r = 0, 1, . . . , Kh. Whenever

Shi = (0, l) sample a new value for φhi from G0hi and assign subject h, i to their

own cluster in component l.

2. Given the updated values of S = {Shi, h = 1, . . . , d; i = 1, . . . , nh}, for l = 1, . . . , d

and r = 1, . . . , Kl sample θlr from

W

(
Σ∗−1
lr ; v0 +mlr, v0V0 + V∗

0lr

)
· N

(
µ∗lr;κ

∗(κ−1µ0 +
d∑
h=l

∑
i:Shi=(l,r)

yhi), κ
∗Σ∗

lr

)
,

(D.1)

where

V∗
0lr = v0V0 +

d∑
h=l

∑
i:Shi=(l,r)

(yhi − µ0)(yhi − µ0)
′

and κ∗ = κ/(1 + κ ·mlr).

3. For h = 1, . . . , d− 1 sample: a.) ζh from (5.19) and b.) πh from (5.20).

4. Sample p0 from (5.21).

5. For h = 0, 1, . . . , d−1 sample a latent variable, uh, from π(uh|αh,mh+1) = Be(αh+
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1,mh+1) and then sample αh from its full conditional posterior

π(αh|uh, Kh+1,mh+1) = puhGa(αh; aγh
+Kh+1, bγh

− log(uh))

+(1− puh)Ga(αh; aγh
+Kh+1 − 1, bγh

− log(uh)),

(D.2)

where
puh

1− puh
=

aγh
+Kh+1 − 1

mh+1(bγh
− log(uh))

.

6. Sample µ0 from π(µ0|·) = N(µ0;β
∗,Ω∗) where

β∗ = Ω∗
(
Ω−1β +

1

κ

d∑
h=1

Kh∑
r=1

Σ∗−1
hr µ

∗
hr

)

Ω∗ =

{
Ω−1 +

1

κ

d∑
h=1

Kh∑
r=1

Σ∗−1
hr

}−1

.

7. Sample κ−1 from

π(κ−1|·) = Ga

(
κ−1; aκ+

1

2

d∑
h=1

Kh+1, bκ+
1

2

d∑
h=1

Kh∑
r=1

(µ∗hr−µ0)
′Σ∗−1

hr (µ∗hr−µ0)

)
.

(D.3)
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