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ABSTRACT

Yuan Jin: Rheology and Flow of Mucus in Human Bronchial Epithelial
Cell Cultures

(Under the direction of M. Gregory Forest)

The propulsion of mucus in human airways toward the trachea by the collective and coordinated

action of cilia, known as mucociliary clearance, remains an outstanding modeling and computational

challenge. A model system for mucociliary clearance is provided by human bronchial epithelial (HBE)

cell cultures that generate macroscopic mean rotational flow. We coarse grain the coordinated

cilia propulsion into an imposed dynamic velocity condition on the flat base of a cylinder. A

multi-mode Giseskus nonlinear viscoelastic constitutive model derived from rheological data of

mucus is employed for the mucus layer. The full system of governing equations for the transient and

stationary axisymmetric flow field and air-mucus interface is solved numerically. Our modeling is

the first step toward a platform for several purposes: to test accuracy of the constitutive modeling

of mucus; to build a faithful model of the cilia-mucus boundary condition; to simulate both the

flow and stress fields throughout the mucus layer; to explore the linear and nonlinear viscoelastic

behavior of the mucus flow; and to explore the advection-diffusion process of a drug concentration

dropped at the surface of the cell culture, and illustrate how the absorption by the bottom plate

varies versus the initial drop position and the diffusion coefficient.
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CHAPTER 1

RHEOLOGY OF MUCUS

1.1 Introduction to Viscoelastic Fluid

For elastic solids, when undergoing deformation, the stress is always proportional to strain (defor-

mation) but independent of the rate of the strain, in accordance with the Hooke’s law. For viscous

fluids, the stress is proportional to the rate of the strain, but independent of the strain itself, in

accordance with the Newton’s Law. Viscoelastic materials are intermediate between elastic solids

and viscous fluids and may exhibit behaviors which combine liquid-like and solid-like characteristics

[7] [15] [18]. Examples of viscoelastic materials may include food, polymers, bio-fluids, as well as

the mucus inside human air-way and lung that we will focus on in Chapter 2. One example of

viscoelastic behavior is the so-called Weissenberg or rod-climbing effect [5]. When a rod is set to

rotate in a Newtonian fluid, the inertial force push the material to the outside of the container.

However, for some viscoelastic fluids, stress will develop along the normal axes of the flow field

and push the fluids to ”climb” up along the rotating rod. The relations between stress, strain

and their time dependences of a viscoelastic material are described by the constitutive equations

[7] [15] [18]. In this chapter, we illustrate the dynamic modulus for viscoelastic fluid in small

amplitude oscillatory shear (SAOS) (Section 1.2). And we review the techniques for modeling

nonlinear viscoelastic properties in large amplitude oscillatory shear (LAOS) (Section 1.2). Both

the SAOS and LAOS are rheological experiments that are commonly used to probe the viscoelastic

properties of complex fluids. We introduce three simple linear constitutive models (Section 1.3) and

two nonlinear viscoelastic models (Section 1.3).

1.2 Small Amplitude Oscillatory Shear

When viscoelastic materials are subjected to a small amplitude sinusoidally oscillating strain, the

stress is neither exactly in phase with the strain (as it would for a elastic solid), nor 90◦ out of
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phase (as it would for a viscous liquid), but is somewhere in between [15].

In small amplitude oscillatory shear (SAOS) experiment [15], one imposes a sinusoidal strain

and measure the resulted stress. The strain is γ = γ0 sin(ωt), the strain rate is γ̇ = γ0 cos(ωt), and

the resulted stress can be decomposed as,

σ = G∗γ0 sin(ωt+ δ)

= G∗γ0[sin(ωt) cos(δ) + cos(ωt)sin(δ)]

= (G∗ cos(δ)) · γ0 sin(ωt) + (G∗ sin(δ)) · γ0 cos(ωt)

= [G
′ · sin(ωt) +G

′′ · cos(ωt)]γ0

= G
′
γ +

G
′′

w
γ̇

G
′

and G” are the storage and loss modulus of the viscoelastic materials. The storage modulus

measure the stored energy, representing the elastic portion; and the loss modulus measure energy

dissipated as heat, representing the viscous portion.

1.3 Simple Mechanical Models for Viscoelastic Materials

Solid-like behavior is described by Hooke’s Law, and represented by a spring [Figure 1.1] mechanical

analog.

τ = Gγ

where τ is the stress, G is the elastic modulus of the material, and γ is the strain.

Figure 1.1: ”Spring” element of solid-like behavior

Liquid-like behavior is described by Newton’s law, and represented by using a dashpot [Figure 1.2]

mechanical analog:

τ = ηγ̇
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where τ is the stress, η is the viscosity of the material, and γ̇ is the strain rate.

Figure 1.2: ”Dashpot” element of liquid-like behavior

Viscoelastic behavior has elastic and viscous components, and can be modeled as linear com-

binations of springs and dashpots, respectively. Each model differs in the arrangement of these

elements.

• Maxwell model

Constitutive equation,

ηγ̇ =
η

G
σ̇ + σ

Figure 1.3: Illustration of Maxwell model

• Kelvin-Voigt model

Constitutive equation,

ηγ̇ +Gγ = σ

• Jeffrey model

Constitutive equation,

(η1 + η2)σ̇ +Gσ = η2Gγ̇ + η1η2γ̈
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Figure 1.4: Illustration of Kelvin-Voigt model

Figure 1.5: Illustration of Jeffrey model

1.3.1 Nonlinear Constitutive Models

• Giesekus model

The Giesekus model [8] is based on the concept of anisotropic drag between the solvent and

polymer molecules. The latter is represented by Hookean dumbbells immersed in a Newtonian

solvent. The constitutive equation is

λτ (1) + τ +
αgλ

ηp
τ · τ = 2ηpD,

where αg is a so-called mobility parameter; λ is the fluid relaxation time; and ηp = η0 − ηs

is the polymer viscosity, with η0 the zero shear viscosity. The strain rate tensor is 2D =

(∇v)T + (∇v), and the upper convected derivative is defined as,

(·)(1) =
∂

∂t
− v ·∇(·)− (∇v)T · (·)− (·) · (∇v).

• Rolie-Poly model

The Rolie-Poly model [17] also arises from molecular theory, where the polymer molecules are

modeled as chains that can relax out of their entanglements through reptation, retraction,
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convection, and convective constraint release mechanisms. In differential form the model is

given by

λτ (1) + τ + 2
λ

λR
(1− ftr) [(1 + βRP ftr)τ +G0I] = 2ηpD,

where

ftr =

√
3

3 + tr(τ/G0)
.

Here the plateau modulus is G0 = η0/λ and the two relaxation times in the model are the

reptation time λ and the retraction time λR.

1.4 Large Amplitude Oscillatory Shear Analysis

For oscillatory shear experiment, when the strain amplitude is sufficiently large, the material response

will become nonlinear and the SAOS modulus G
′

and G” are no longer sufficient. Because G
′

and G”

in SAOS are based on the assumption that the stress response is purely sinusoidal (linear). However,

a nonlinear stress response is not a perfect sinusoid and the viscoelastic modulus are not uniquely

defined. Therefore, other techniques are needed for quantifying the nonlinear material response

under LAOS deformation [5].

The mathematical structure of the nonlinear stress response is fully captured by the higher

Fourier harmonics,

σ = γ0
∑
n:odd

{
G′n sin(nωt) +G′′n cos(nωt)

}
The intensity of the higher harmonics could work as a measure of nonlinearity, but these coefficients

lack a clear physical interpretation [5].

Another qualitative measure of nonlinear viscoelastic response is the Lissajous curves [22] [5].

Elastic Lissajous curves show the plot of oscillatory stress versus input strain, whereas in viscous

Lissajous curves one plots the stress against the rate of strain. For an elastic solid, the elastic

Lissajous curves are represented by straight lines and viscous Lissajous curves by circles, while the

opposite is true for a viscous fluid. In the small amplitude regime for a generic viscoelastic fluid,

both Lissajous curves are ellipses. Departures from an ellipse signal that the nonlinear LAOS regime

has been reached.

Cho et al. [4] proposed stress decomposition (SD) into elastic and viscous contributions based
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on geometric considerations. They showed that these contributions are one-to-one functions of the

strain and the strain rate respectively, so that they become one-dimensional lines in the elastic and

viscous Lissajous curves. This overcomes the problem of characterizing two-dimensional ellipses in

the Lissajous curves. They proved that for LAOS there exists one unique decomposition(denote

x = γ and y = γ̇/ω)

σ(x, y) = σ
′
(x, γ0) + σ

′′
(y, γ0)

where σ
′
(x) and σ

′′
(y) represent ”elastic” stress and ”viscous”.

Ewoldt et al. [6] then used Chebyshev polynomials as orthonormal basis functions to further

decompose these stresses into harmonic components having physical interpretations.

σ
′
(x) = γ0

∑
n odd

en(ω, γ0)Tn(x)

σ
′′
(y) = γ0

∑
n odd

vn(ω, γ0)Tn(y)

They developed several nonlinear metrics for LAOS using the Chebyshev coefficient above. These

metrics also have a direct geometrical representation in the Lissajous curves, and have the advantage

of not being based on individual harmonic contributions.For example, e3 > 0 indicates strain-

stiffening, e3 < 0 indicates strain-softening, v3 > 0 indicates shear-thickening, and v3 < 0 indicates

shear thinning.
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CHAPTER 2

MODELING OF MUCUS FLOW IN HBE CELL CULTURE

2.1 Introduction

The propulsion of mucus in human airways to the trachea by the collective, coordinated action

of cilia, known as mucociliary clearance, remains an outstanding modeling and computational

challenge. A predictive model has medical relevance since failure to clear mucus from the airways

leads to chronic, even fatal, lung infections. Additionally, the causal relationship between mucus

rheology and mucociliary clearance remains an open problem in the field. The three major modeling

components of mucociliary clearance are: a constitutive model for mucus based on rheological data,

a mechanism (forcing condition) for mucus propulsion either by individual cilia or carpets of cilia,

and numerical methods to solve the full system of equations [25]. Validation of each component

in airway simulations is essentially impossible due to the lack of in vivo experimental data and

resolution of airway mucus transport.

A transformative model system for the study of mucociliary clearance is provided by human

bronchial epithelial (HBE) cell cultures, whereby an epithelial tissue, a layer of fluid surrounding

the cilia, and an overlying mucus layer, are grown in a cylindrical dish [Figure 2.2] [9]. These cell

cultures generate macroscopic mean flow in a clockwise or counterclockwise motion, forming what

appears from above as a rotating vortex or mucus hurricane [Figure 2.4].

Our goal here is to simulate the flow of mucus in a HBE cell culture, both as a first modeling

step to aid experimental studies, and as a constitutive model test for mucus against cell culture

observations. We employ a multi-mode Giesekus nonlinear viscoelastic constitutive law for the mucus

layer. The Giesekus model is a canonical nonlinear constitutive model that captures shear thinning

and first and second normal stress generation in shear [8]. In this chapter, multiple modes are

used to approximate the broad relaxation spectrum of mucus. We coarse grain the cilia propulsion

mechanism into an imposed dynamic velocity condition on the flat base of a cylinder. In addition,
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the air-mucus interface is treated as a free boundary, whose shape is investigated with the effect

of surface tension. We develop a numerical algorithm and implement it to solve the full system of

governing equations for the transient and stationary axisymmetric flow field and air-mucus interface,

and explore the mass transport of mucus as a function of the Giesekus constitutive properties and the

imposed driving condition at the lower plate. We studied the nonlinear viscoelastic properties of our

multi-mode Giesekus constitutive model in the cell culture. And we explore the advection-diffusion

process of a drug concentration dropped at the surface of the cell culture.

Figure 2.1: Mucociliary clearance in human airway (David Hill)

2.1.1 HBE Cell Cultures

The primary human bronchial epithelial (HBE) airway cell culture is an invaluable model system of

the human airway. These cultures, developed by Lencher and coworkers [16], grow to confluence

with cell differentiation into goblet cells that produce mucin proteins and ciliated cells that sprout

active cilia, forming epithelial tissue that draws nutrients and water from the reservoir below the

membrane. Within weeks, an air-mucus interface forms over a mucus layer of ∼ 10−50 microns, with

a periciliary liquid layer (PCL) between mucus and tissue approximately 7 microns thick. Ciliated

cells (∼ 200 per ciliated cell, each ∼ 8 microns long at full extension of the power stroke) coordinate

their individual power-return stroke with ∼ 10− 15Hz frequency, propelling the mucus layer in the

culture either clockwise or counterclockwise. From above, the flow pattern resembles a hurricane,

8



and thus the expression mucus hurricanes was born [Figure 2.4A]. Once coordinated transport of the

mucus layer is established, fluorescent tracer particles [19], [2], gold nanorods [21], or endogenous

cellular debris [21], [3] can be tracked to gain flow profile information. For cultures whose cilia

synchronize and transport mucus around the dish, a true ex vivo model assay is provided for a

detailed study of a wide range of pulmonary physiology. Cells are obtained from donors of various

disease populations including Chronic Obstructive Pulmonary Disease (COPD) and Cystic Fibrosis,

reproducing acquired and genetic mutations, thereby serving as a model for disease pathology and

as a testbed for flow and rheological consequences of drug or physical therapies.

Figure 2.2 shows a picture of one HBE cell culture from David Hill’s lab. Figure 2.3 illustrates

the detailed dimensions of the HBE cell culture. The radius of the cell culture is around 13.3mm.

The height of cell culture is around 12.3mm, and the depth of the mucus layer in HBE cell cultures

ranges from 10− 50µm [11]. Therefore, we have a relatively large aspect-ratio of the cell culture

radius over the depth of the mucus layer, which ranges from 1000− 50.

Figure 2.2: Schematic of an HBE Cell Culture

In this work, experimental data from micro and macrorheology are used to construct a nonlinear

constitutive model of mucus. We refer to recent studies of biochemical composition [14] [9] [11]

properties of sputum, and cell culture mucus. For this initial study, we avoid the open question
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Figure 2.3: HBE Cell Culture Geometry (John Melnick)

of cilia-mucus propulsion, and idealize the forcing mechanism of the power and return stroke as

though the cilia were uniformly synchronized. The actual momentum transfer mechanism between

the PCL and mucus layers remains one of the most important unsolved problems in lung mechanics.

We do not address this problem in the current paper, since to do so would require detailed modeling

of fully three-dimensional fluid flow, single and coordinated nonlinear viscoelastic fluid-structure

interactions, and a heterogeneous, dynamic, cilia-PCL-mucus boundary condition. Instead, we

coarse grain the PCL as a moving solid boundary, averaging out the scales of the coordinated cilia

to study the mean mucus transport features due to a homogeneous dynamic cilia carpet consisting

of a power stroke and a return stroke.

2.1.2 Mucus Flow in HBE Cell Cultures

Due to the cylindrical geometry of the culture wares used in the growth of HBE cultures, mucus

transport in these system is rotational, forming so-called mucus ”hurricanes” [Figure 2.4A] [19] that

serve as the basis of the modeling of mucociliary transport presented herein. Experiments reveal a

rotational velocity of the mucus layer that is approximately linear in the radial distance from the
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center as shown in Figure 2.4B.

Figure 2.4: Demonstration of rotational mucus transport in HBE cell cultures. (A) Traces of 1 mm
fluorescent micro-spheres at the culture surface from a 5 second time lapse exposure. (B) Linear
velocities of the particles versus distance from the center of rotation. Data extrapolated from [21].
With the rotational flow, the mucus tend to swell up in the middle of the HBE cell culture, forming
a dome shape for the free surface of the mucus flow, see Figure 2.5.

Also note here that though the cilia carpet and mucus layer cover the whole cell culture, the

observed mucus ”hurricane” only forms at the middle part of the cell culture, which makes the

radius of the mucus ”hurricane” less than 13.3mm and could be as low as around 4mm.

Figure 2.5: Surface shape of an HBE cell culture shows the dome at the center [21]

2.1.3 Axisymmetric Assumption

As noted above, for this study we suppress heterogeneity of the cilia forcing condition, tantamount

to a two-dimensional long-wave limit of the ciliary metachronal wave. The ciliated carpet is thereby

replaced by a flat rigid disc that moves with a prescribed, non-monotonic, angular velocity that
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mimics the power and return strokes of cilia. This coarse-graining of the cilia carpet is self-consistent

with axisymmetry of the three flow variables, pressure, and free surface, affording a reduction in the

computation from three to two space dimensions, as shown in Figure 2.6.

With the axisymmetric assumption, the computational domain consists of a cylinder of radius

R and height Z, and a layer of viscoelastic fluid of initial uniform height H. The fluid is set into

motion by a rotating disk at the bottom of the cylinder with an imposed angular velocity, ω, which

we vary to mimic forward and return strokes of cilia. By axisymmetry, each scalar variable depends

only on (r, z); therefore, the computational domain is a 2D rectangle [0, R]× [0, Z] [Figure 2.6 left].

The air-liquid interface is free, with surface tension estimated from the literature [13], as explained

below.

Figure 2.6: HBE cell culture in cylindrical coordinates and reduction from 3D cylinder to 2D
rectangular region based on the axisymmetric assumption
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2.2 Model Equations

For an incompressible, isothermal, non-Newtonian fluid, the conservation of mass and momentum

equations are,

∇ · u = 0

ρ(
∂u

∂t
+ u · ∇u) = −∇p+ ηs∆u+∇ · τ + ρg

where ρ is the fluid density and ηs is the solvent viscosity. To close the system, a constitutive

equation for the extra stress tensor τ is needed. We use both linear and nonlinear viscoelastic data

from cell culture mucus to construct the constitutive model, as explained in Section 2.3. We assume

a multi-mode nonlinear viscoelastic model,

τ =
∑

τi

where each mode is governed by a constitutive equation of the so-called Giesekus form,

τi + λiτi(1) +
αλi
ηp,i

τi · τi = ηp,iγ̇

here, for each mode, λi is a relaxation time and ηp,i is the polymer contribution to the viscosity. The

total viscosity, η0, is the sum of the solvent and mode contributions, η0 = ηs +
∑
ηp,i. In addition,

γ̇ = (∇u +∇uT )is the rate of strain tensor, and the subscript notation τ (1) denotes the upper

convected derivative (that guarantees the model is invariant under rigid body motions or coordinate

changes), given by

τ(1) =
∂τ

∂t
+ u · ∇τ − τ · ∇u−∇uT · τ

In the Giesekus model, α is the tunable nonlinearity parameter, called the mobility parameter; in

the limit α = 0 , the Giesekus model reduces to the Upper Convected Maxwell (UCM) model. The

UCM model captures the fundamental viscoelastic property of normal stress generation in shear

flows, whereas the quadratic nonlinearity of the mobility term in the Giesekus model is necessary to

capture shear thinning.
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2.2.1 Nondimensionalizaion

The characteristic scales are chosen as follows. Time is scaled by the rotation frequency of the

lower plate, ω, the fluid velocity is scaled by the angular velocity of the outer edge of the disk, ωR,

the characteristic stress is taken to be a total viscous stress ωη0, and the characteristic pressure is

chosen as ρω2R2, so that the dimensionless time, velocity, stress, and pressure (denoted by prime

superscripts) become

t′ = tω, u′ =
u

ωR
, τ ′ =

τ

η0ω
, P ′ =

P

ρω2R2
, r′ =

r

R
, z′ =

z

R

The key dimensionless groups are identified as the Reynolds number Re, Weissenberg number We

(normalized elastic relaxation time), the ratio of solvent viscosity to total viscosity βs, and the

Froude number Fr (inertia relative to gravity):

Re =
ρωR2

η0
, We = λLω, βs =

ηs
η0
, F r =

ω2R

g

where λL is chosen as the longest elastic relaxation time within the multimode Giesekus model.

Dropping the prime superscript, the non-dimensional governing and constitutive equations are

∇ · u = 0

∂u

∂t
+ u · ∇u = −∇p+

βs
Re

∆u+
1

Re
∇ · τ +

1

Fr
êZ

τi +Weλ̃iτi(1) +
Weλ̃i
βi

α(τi · τi) = βiγ̇

where λ̃i = λi/λL, βi = ηp,i/η0 and êz is the unit vector in the z-direction.

2.3 Data-derived Nonlinear Constitutive Model

To select the modeling parameters for the multi-mode Giesekus model, our approach is to use

experimental data to identify linear (small amplitude) storage and loss moduli across a physiological

frequency range, and then to use a discrete set of UCM modes (α = 0) that gives a fit to the

experimental data. We use data generated from a fixed-strain frequency sweep in a cone and plate
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TA Instruments AR-G2 rheometer and a 2.5wt% HBE mucus sample, representative of the healthy

range of human lung mucus. The data and corresponding fit using five UCM modes is shown in

Figure 2.7(A), with the parameter results shown in Table 2.3.

Figure 2.7: (A) Linear dynamic storage (G) and loss (G) moduli data (solid, open dots) for 2.5wt%
HBE mucus across a frequency range, together with the corresponding fit to 5 UCM modes. (B)
Viscosity vs. shear rate data for 2.5wt% HBE mucus and corresponding fit to a sum of 5 Giesekus
modes. The curve shown is the best fit under the condition 0α0.5. Model parameters are given in
Table 1. Data courtesy of Jeremy Cribb and David Hill.

The shear thinning of mucus is captured by the mobility parameter , which we restrict to the

range 0 ≤ α ≤ 0.5, since values greater than 0.5 result in non-monotonic flow curves. To find the

best fit for the nonlinear mobility parameters per Giesekus mode, we use rheometric data of the

shear-thinning flow curve (the viscosity versus shear rate), as shown in Figure 2.7(B).

Mode Relaxation time [s] Modulus [Pa] Giesekus parameter α

1 0.0089 3.3472 0.2

2 0.0821 0.7551 0.3

3 0.4660 0.5350 0.5

4 3.1290 0.4543 0.5

5 49.733(λL) 0.8486 0.5

2.4 Coarse-graining of the Cilia Carpet Driving Conditions

The beating of a single cilia is periodic and asymmetric, as illustrated in Figure 2.8, which consists

two phases : a forward power stroke (or effective stroke) in which the tips of the fully extended cilia

15



penetrate the mucus layer, and a return stroke (or recovery stroke) in which the cilia do not engage

the mucus layer but still induce some mild backflow. All the cilia that forms the cilia carpet at the

bottom of the cell culture beat in a coordinated fashion, create metachronal wave and propel the

mucus to rotate in the cell culture. The rotational movement of the mucus induced by the cilia

carpet is also periodic and asymmetric. According to our experimental observation, because of the

cilia forcing condition at the bottom, mucus moves in the angular direction about 10µm in one

forward cycle of 0.1s and then moves about 5µm in one backward cycle of 0.1s near the edge of the

cell culture.

Figure 2.8: Movement of a single cilium: power stroke and recovery stroke. Data replotted from
[23] and adapted from [10].

We coarse grain the cilia propulsion mechanism into an imposed dynamic velocity condition

uθ |z=0 on the flat base of a cylinder. As mentioned in Section 2.1.2, the rotational velocity of the

mucus ”hurricane” is approximately linear in the radial distance from the center. Therefore, as a

first step, we model the cilia driving condition with an angular velocity ω, where uθ |z=0= ωr

If we use a simple constant angular velocity ω = ω0, resulting profile is the so-called swirling

flow. This does not match the periodic and asymmetric driving force of the cilia carpet. However,

swirling flow provide us a simple case where we can benchmark our numerical method, as well as

compare the difference between Newtonian fluid and our nonlinear viscoelastic fluid.
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In order to simulate the two phases of cilia driving condition, we use a periodic angular velocity

with potential to change directions, ω = f(t), and f(t) is a piece-wise sinusoidal function, given by

f(t) =


P0 sin(ωpt), for 0 < t < π

ωp

R0 sin(ωrt), for 0 < t < π
ωp

+ π
ωr

where P0 and R0 are the largest angular velocity amplitudes during the power and recovery strokes,

and ωp and ωr are the frequencies of the power and recovery strokes.

Figure 2.9: The oscillatory driving condition f(t) imposed at the bottom plate to mimic cilia power
and return strokes and match experimental observation

We could select a typical set of P0, R0, ωp and ωr based on our experimental observation,

π

ωp
= 0.1,

pi

ωr
= 0.1

∫ 0.1

0
P0 sin(ωpt)dt = 1× 10(−5),

∫ 0.1

0
R0 sin(ωrt)dt = 5× 10(−6)

Therefore we have P0 = 1.57× 10−2s−1, R0 = 7.9× 10−3s−1, ωp = 10πHz and ωp = 10πHz.This

driving condition is shown in Figure 2.9. Those parameter values are chosen to match some of our

experiment observations, therefore they are a reasonable set of parameters for mucus flow the HBE

cell culture. For real mucus ”hurricane” in HBE cell culture, depend on the different radius of the
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”hurricanes” and different observed rotational velocities, the corresponding parameters of P0 and

R0 could be as high as four times of the above P0 and R0.

Note here that uθ |z=0 is a sinusoidal function in time and a linear function in r. Below in

Section 2.7, where we wish to apply large amplitude oscillatory shear analysis, we would imposed a

sinusoidal shear strain(refer to Section 1.4) rather than a sinusoidal uθ. In that case, we would have

a different type of driving for uθ |z=0(discussed in detail in Section 2.7).

2.5 Numerical Methods

No-slip flow boundary conditions are imposed at the solid walls of the cylinder, bottom and right

edges of the rectangle in Figure 2.6. Along the central axis of the cylinder, r = 0, we impose a

vanishing Neumann condition in the radial coordinate on all flow variables.

Driving conditions at the bottom plate is discussed in Section 2.4. At the bottom corner of the

cell culture, we use a boundary layer adjustment for the driving velocity, given by,

uθ |z=0
adjusted = uθ |z=0 ∗(1− e

(r2−R2)
ε )

where ε is a small number close to zero. This numerical boundary layer adjustment is also consistent

with experimental observation that mucus ”hurricane” only exist at the middle of the cell culture.

The air-mucus interface is a free moving surface. The surface tension of the air-mucus interface

is in the range of 30− 34mN/m [13]. The boundary condition at this free surface is stress balance

boundary condition. The effect of the surface tension is incorporated into the stress balance condition

through capillary pressure:

n̂ · T · n̂ = Pcap

n̂ · T · t̂ = 0

Pcap = σκ

where n̂ and t̂ are the local unit normal and tangential vectors,T = −pI + τ , is the total stress

tensor, Pcap is the capillary pressure, σ is the surface tension, and κ is the curvature.

Finite difference method is used with a staggered grid. For the Navier-Stokes part of the fluid
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Figure 2.10: Marker and Cell method illustration

equations, we use projection method [1]. Marker and Cell (MAC) method [20] is used here to track

the movement of the free surface. In the MAC method, artificial massless trackers are placed near

the free surface and are transported according to the fluid velocity. Cells are flagged as fluid cells,

surface cells and empty cells based on the location of all markers [Figure 2.10]. Those markers are

able to track the free surface movement.

At each time step, the numerical method [24] runs as following:

Step 1, Calculate an arbitrary pressure field P̃ (r, z, t0) at the free surface that satisfies the free

surface boundary condition at t = t0

Step 2, Projection method for Navier-Stokes part of the model equation: first calculate an

intermediate velocity field ũ(r, z, t) using the finite difference form of the momentum equation with

correct boundary conditions, with

u(r, z, t) = ũ(r, z, t)−∇ϕ(r, z, t)

∇2ϕ(r, z, t) = ∇ · ũ(r, z, t)

P (r, z, t) = P̃ (r, z, t0) + ϕ(r, z, t)/dt

solve the above Poisson equation; then compute the velocity field and update the pressure

Step 3, Integrate the stress constitutive equations using finite difference method and forward

Euler time integration
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Step 4, Update the locations of marker particles and re-flag all the cells.

dr

dt
= ur,

dz

dt
= uz

Step 5, Calculate the shape of the free surface; then find the curvature and surface tension.

2.6 Results

2.6.1 Swirling Flow: Compare Newtonian Fluid with Viscoelastic Fluid

This study of swirling flow is chosen to benchmark the algorithm and to compare the behavior of

Newtonian and viscoelastic fluids, prior to a study of HBE cell cultures. We examine the swirling

flow of 4 different types of fluids: viscous, viscoelastic with a single UCM mode, viscoelastic with a

single Giesekus mode, and multi-mode Giesekus with 5 modes given in Table 2.3.

The parameters used in the following numerical simulations are: cell culture radius R = 1×10−2m,

height Z = 1 × 10−4m, initial depth of mucus H = 5 × 10−5m , solvent viscosity ηs = 1mPa · s,

surface tension σ = 3× 10−2N/m.

For the single mode UCM and Giesekus models, we use polymer viscosity ηp = 10Pa · s, and

relaxation time λ = 10s. In addition, the rotational driving velocity uθ |z=0, of the cilia carpet at

the bottom of the HBE cell culture has a constant angular velocity (swirling flow) ω = ω0. We use

ω0 = 1.57× 10−2s−1, the same as the largest angular velocity of the oscillatory driving condition in

Section 2.4.

In Figure 2.11, we show the development of secondary flow patterns at various times at the

beginning stages of the swirling flow for Newtonian fluid. Here secondary flow refers to the (ur, uz)

components of the velocity field, since uθ is the primary velocity component for a rotational flow.

At early times, an outward centrifugal force causes the fluid near the rotating disk to flow radially

outward, up the sidewalls of the cylinder, inward along the top, and finally down near the center. A

vortex is formed here. After a certain amount of time, the flow will reach a quasi-steady state.

The same type of flow is shown for viscoelastic fluids in Figure 2.12, Figure 2.13 and Figure 2.14.

At early times, the secondary flow pattern and vortex is similar to those in Newtonian case. However,

as time evolves, this apparently stationary structure destabilizes, breaks up, and forms a new vortex
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with opposite orientation. This reverse orientation in the secondary flow is a classical consequence

of the generation of normal stresses in viscoelastic fluids; a property shared in all our viscoelastic

models. In the quasi-steady state of viscoelastic fluids, the fluid near the rotating disk flows radially

inward, up the center of the cylinder, inward along the top, and finally down near the sidewalls. In

stark contrast, for Newtonian fluids, the flow near the center is downward while upward near the

wall (Figure 2.16). This phenomenon has been long recognized in swirling cylindrical flow, called

the so-called Quelleffeck [5], an analog of the Weissenberg effect of rod climbing [5].

The mass flux rate across the θ = 0 plane for all the studied fluids is shown in Figure 2.17. For

Newtonian fluids the mass flux is increasing during the transients and eventually reaches a plateau

in steady state. However, for single-mode Giesekus and UCM model fluids, in the early transient

the mass flux rate first increases similar to the Newtonian flow, then decreases monotonically while

converging to steady state. The maximum mass flux rate arises during the formation of the reverse

vortex at the bottom corner of the cell culture. For the 5-mode Giesekus model, the transient mass

flux rate is non-monotone reflecting the effects of having more than one relaxation modes. Since

each fluid model has finite memory, the stationary mass transport rates are identical, irrespective

of the differences in secondary flow patterns. Thus there is no enhancement of mass transport for

unidirectional swirling flow due to viscoelasticity at steady state.

2.6.2 Numerical Mucus Flow in Cell Culture

In this section, we conduct the numerical simulation for the mucus flow in HBE cell culture. We

use the 5-modes Giesekus model from Section 2.3 as our constitutive model for mucus. And the

cilia driving condition is modeled as a piece-wise sinusoidal angular velocity function f(t) at the

bottom plate given by

f(t) =


P0 sin(ωpt), for 0 < t < π

ωp

R0 sin(ωrt), for 0 < t < π
ωp

+ π
ωr

where P0 = 1.57× 10−2s−1, R0 = 7.9× 10−3s−1, ωp = 10πHz and ωp = 10πHz[Section 2.4].

We first examine the secondary flow profiles in Figure 2.18. As before, the early transient

matches the viscous fluid structure, which then destabilizes and reverses orientation of the vortex,
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Figure 2.11: Transient process of the flow field for a Newtonian fluid; the velocity field in the plot is
the secondary flow (ur vs uz) and the color map in the background is the primary flow uθ
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Figure 2.12: Transient process of the flow field for a a single mode UCM fluid; the velocity field in
the plot is the secondary flow (ur vs uz) and the color map in the background is the primary flow uθ
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Figure 2.13: Transient process of the flow field for a single mode Giesekus fluid with α = 0.3; the
velocity field in the plot is the secondary flow (ur vs uz) and the color map in the background is
the primary flow uθ
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Figure 2.14: Transient process of the flow field for a 5 modes Giesekus fluid with parameters specified
in Table 2.3; the velocity field in the plot is the secondary flow (ur vs uz) and the color map in the
background is the primary flow uθ
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Figure 2.15: The stationary secondary flow field and streamlines for nonlinear viscoelastic mucus
model in the middle of the cell culture (left) and at the edge of the cell culture (right).

Figure 2.16: Free surface shape at steady state for the swirling flow with different types of fluids

26



Figure 2.17: Mass transport flux rate across the θ = 0 plane for the swirling flow with different
types of fluids

creating a downward flow near the wall and upward flow at the center of the culture. The mass flux

rate across the θ = 0 plane is shown in Figure 2.19 for all four constitutive models (viscous, 1-mode

UCM, 1-mode Giesekus, 5-mode Giesekus), with the result that after differences due to transients ,

they all converge to the same bulk flow rate for the pulsatile lower plate driving condition.

Next in Figure 2.20, we analyze the primary flow field, uθ, in particular, the envelopes of uθ

across the gap, as well as the displacement time series at the edge of the cell culture at different

heights. The resulting envelopes of the velocity exhibit a linear dependence across the gap. It can be

shown that the shear strain and shear rate envelopes across the gap are also linear, corresponding to

the so-called gap loading limit that is designed and exploited in rotational rheometers [26] [7]. We

note that this gap loading behavior holds for this current set of parameters, and we return below to

explore conditions that induce nonlinear primary flow behavior and departures from the gap-loading

limit.
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Figure 2.18: Flow field for a 5 modes Giesekus fluid with parameters specified in Table 2.3 with
the oscillatory driving condition in Section 2.4; the velocity field in the plot is the secondary flow
(ur vs uz)
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Figure 2.19: Mass transport flux rate across one θ = 0 plane with oscillatory driving condition for 5
modes Giesekus fluid with parameters specified in Table 2.3;

Figure 2.20: Left: Velocity envelopes in angular direction at the edge of cell culture; Right:
displacement in angular direction at the edge of cell culture at different heights for 5 modes Giesekus
fluid with parameters specified in Table 2.3;
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2.7 Large Amplitude Oscillatory Shear(LAOS) Analysis of Nonlinearity

The linear primary flow profiles and shear strain and shear rate envelopes from the last section

imply two things: the flow conditions fall within the gap-loading regime and the driving conditions

induce a linear viscoelastic response, i.e., steady state results from Giesekus models overlap with

those of the UCM model. However, to rigorously assess the linear or nonlinear regime for the given

driving conditions, the standard procedure is to impose a sinusoidal shear strain at the bottom

plate, rather than the angular velocity boundary condition of our simulations thus far. Then one

checks for higher harmonic generation in the flow field [12] [4] [6]. The oscillatory driving condition

at the bottom of the cell culture for uθ does not imply a sinusoidal shear strain. Therefore, we

calculate the driving condition for uθ that is equivalent to an imposed sinusoidal shear strain.

imposed shear strain at bottom plate = γ0 sin(ωt)

imposed shear rate = γ0ω cos(ωt)

shear rate =
1

2
(
∂uθ
∂r
− uθ

r
)

uθ(r, z, t) |z=0 = C · r + 2γ0ω cos(ωt) · r · log(r), C is a constant (2.1)

where C is an arbitrary constant. With the above uθ that results in a sinusoidal driving shear strain,

we can apply the standard nonlinear (Fourier) viscoelastic metrics for large amplitude oscillatory

shear [12].

We choose a set of parameters for the equation above such that the theta-component of the

velocity resembles the conditions imposed in the previous section, as illustrated in Figure 2.21.

We calculate the Fourier decomposition of the resulting shear strain, shear rate and shear

stress. We found that there are no higher harmonics greater than 3% of the fundamental harmonic.

Furthermore, everywhere in the cell culture, the shear strain is a sine function and the shear rate is

a cosine function. Figure 2.22 shows the envelopes of shear strain and shear stress across the height

of the cell culture at radius r = 0.5R.

Figure 2.23 shows the normalized Lissajous curves at different locations of our cell culture.

Lissajous curves offer a qualitative analysis of the stress waveforms [22]. Elastic Lissajous curves
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show the oscillatory stress as a parametric function of the strain, whereas viscous Lissajous curves

show the stress against the rate of strain. In this way, for an elastic solid, the elastic Lissajous

curves are represented by straight lines and viscous Lissajous curves by circles, while the opposite is

true for a viscous fluid. In the small amplitude regime for a generic viscoelastic fluid, both elastic

and viscous Lissajous curves are ellipses. Any departure from a perfect ellipse signals that the

nonlinear LAOS regime has been reached.

Figure 2.21: Left: Driving condition for uθ where uθ is a sinusoidal function of time; Right: Driving
condition for uθ where shear strain is a sinusoidal function of time

These results imply that, with the prescribed magnitude of the imposed angular velocity, the

solution resides in the gap-loading and the linear regime of the viscoelastic model. Since we are in

the linear regime, we can characterize the viscoelasticity of the mucus flow by calculating the linear

storage modulus G
′
, and loss modulus G

′
, versus position in the culture [Figure 2.24].

Next, we explore the implications relative to linear and nonlinear flow when the mucus ”hurricane”

is localized in the middle of the cell culture and does not extend all the way to the culture wall.

The effective radius of mucus flow is therefore smaller than the cell culture radius R=10mm. In the

next simulation, we set the effective radius of the mucus flow as 5mm instead of 10mm and change

the magnitude of the oscillatory driving velocity accordingly to match the experimental observation.

Figure 2.25 shows the envelopes of shear strain and shear stress across the height of the cell culture

at radius r = 0.5*R. They no longer scale linearly across the gap. Since the strain (and strain rate)
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Figure 2.22: The envelopes of shear strain(left) and shear stress(right) across the gap at r = 0.5 ∗R

Figure 2.23: Normalized Lissajous curves of shear stress VS shear strain (left) and shear stress VS
shear rate (right) at different positions of the cell culture
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Figure 2.24: Storage Modulus G
′

(Left) and Loss Modulus G
′′

(Right) everywhere in the cell culture

no longer scale linearly and the shear stress is not constant across the gap, Figure 2.26 indicates that

for these conditions, the system is no longer in the gap-loading limit. The next step is to determine

whether or not the model response is linear or nonlinear. Figure 2.26 shows LAOS analysis results at

r=0.4*R and h=0.4*H, where the Lissajous curves now show a nonlinear response. These nonlinear

response can be quantified by means of the stress decomposition [4] and Chebyshev expansion [6].

For oscillatory shear with an imposed sinusoidal strain, the resultant stress can be decomposed into

elastic and viscous stresses by using symmetry arguments [4]. Ewoldt and McKinley suggested an

orthogonal decomposition of the elastic and viscous stresses using Chebyshev polynomials [6]. The

signs of third harmonic Chebyshev coefficients e3 (elastic stress) and 3 (viscous stress) indicate the

nature of the elastic and viscous nonlinearities. For our data e3 < 0 and 3 > 0 implying the local

mucus flow at this position in the culture is strain-softening and shear-thickening.

We now characterize nonlinearity of the mucus flow for reasonable ranges of cell culture parameters

with the 5-mode Giesekus mucus model with parameters in Table 2.3. Figure 2.27 shows the linear

and nonlinear regime for mucus flow with respect to the aspect ratio of the hurricane (radial extent

versus mucus depth) and mean driving velocity uθ at r=0.5*R. When the aspect ratio is less than

100 and the mean uθ is greater than 70 µm/s, the mucus transport resides in the nonlinear regime

. A similar characterization of nonlinear mucus response can be carried out versus constitutive

characterization of mucus, which we omit.
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Figure 2.25: The envelopes of shear strain(left) and shear stress(right) across the gap at r = 0.5 ∗R
with R = 5mm.

2.8 Advection-diffusion of Drug Concentrations

In this section, we consider the scenario when an initial concentration of drug (or dye) is dropped at

the surface of the mucus layer, which besides being transported by the underlying velocity field, it

can diffuses freely in the HBE cell culture. We assume the drug does not alter the mucus properties

or flow field and that there is no affinity between the mucus gel network and the diffusing particles.

We further assume that the PCL-mucus interface absorbs any drug concentration that reaches it.

Finally, we use the flow fields obtained from our previous results using the 5-mode Giesekus model

from Table 1 and the cilia driving condition in Section 2.4.

For a drug concentration C with constant diffusion coefficient D, the transport of C inside the

mucus flow can be describe by the following advection-diffusion equation

∂C

∂t
= D∆(C)−∇ · (uC) + S

where S is the source of the concentration. Here we assume we have an initial concentration of C0

and no extra source, i.e. S = 0. In cylindrical form, the equation becomes

∂C

∂t
= D[

1

r

∂

∂r
(r
∂C

∂r
) +

1

r2
∂2C

∂θ2
+
∂2C

∂z2
]− ur

r

∂

∂r
(rC)− uθ

r

∂C

∂θ
− uz

∂C

∂z
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Figure 2.26: LAOS analysis for nonlinear viscoelasticity at r = 0.4 ∗ R and h = 0.4 ∗ H with
R = 5mm.
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Figure 2.27: Characterizing the linear and nonlinear regime for mucus flow with respect to the
aspect-ratio and mean driving uθ at r = 0.5 ∗R
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We assume axisymmetry of the flow, but depending on the symmetry of the initial concentration C0,

the advection-diffusion of C inside the cell culture might or might not be axisymmetric. However, if

C0 is axisymmetric, the concentration will remain so. In this case the advection-diffusion equation

reduces to

∂C

∂t
= D[

1

r

∂

∂r
(r
∂C

∂r
) +

∂2C

∂z2
]− ur

r

∂

∂r
(rC)− uz

∂C

∂z

The boundary condition at the bottom plate is absorbing. The above equations are solved using

a finite different method. The unsteady velocity field is extracted from the stationary results in

Section 2.6.2.

Initially, a unit mass of drug is initially deposited in a small circular domain at the center of the

surface of the cell culture, that is we set C0 to be a disk of unit concentration with radius 0.1 mm

at the center of the air-mucus interface. Figure 2.28 depicts the surface of the cell culture and the

red dot is the domain of initial uniform concentration of the drug.

Figure 2.28: Initial drug concentration type 1; Blue disk shows the surface of the cell culture; red
disk is the initial concentration of unit drug at the surface.

Using this initial condition, we investigate the effect of the diffusion coefficient on the distribution

of drug concentration in space and time. The dimensionless Peclet number, Pe, describes the relation

37



of advection relative to diffusion,

Pe =
advective transport rate

diffusive transport rate
=
L · V
D

where L is the characteristic length, which is our case is 1× 10−2m (length of the radius), V is the

characteristic flow velocity, which is our case is 1× 10−9m/s (mean local velocity in the r direction,

note the mean local velocity in the θ direction is 1× 10−4m/s). The diffusion coefficient D that I

used here ranges from 1× 10−15,1× 10−14,· · · ,1× 10−8,1× 10−7 m2/s . Therefore the corresponding

Pe are 1× 10−4, 1× 10−3, 1× 10−2, 1× 10−1, 1, 1× 102, 1× 103, 1× 104.

Figure 2.29 and Figure 2.30 shows the advection-diffusion process for the drug concentration

with Pe = 0.1 and Pe = 10 under the initial condition in Figure 2.28. Note that those figures are

plotted in a reduced 2D rectangle because of the axisymmetric assumption, see Figure 2.6 for details.

And as we can see from those plots, it seems like the drug is primarily diffusing in the z direction,

but not in the r direction. This perception is incorrect. It only looks this way because of the large

aspect-ratio we have for the HBE cell culture (10mm length of radius and 50µm depth of mucus

give us an aspect-ratio of 200). Therefore, with this large aspect-ratio and initial condition, most of

the drug would be absorbed by the bottom plate long before it makes any significant transport in

the radial direction.

Figure 2.31 shows the percentage of the drug concentration absorbed at the bottom plate by the

exterior domain to the initial circle of drug concentration. When Pe is small (D is large), almost

no drug will be absorbed on the outer part of the bottom plate . Since the drug primarily diffuses

in the z direction because of the large aspect-ratio (10 mm radius, 50 µm depth, or aspect ratio

of 200). Therefore, with this large aspect ratio and initial condition, most of the drug would be

absorbed in a slightly larger radius domain at the bottom plate, with minimal radial diffusion and

minimal influence of advection by the mucus flow. Even when Pe = 1× 104 (D = 1× 10−15m2/s ),

only 5.2% of the drug concentration is absorbed by the outer part” of the bottom plate. Hence the

effect of mucus flow on the absorption of the drug concentration is minimal under these conditions.

Figure 2.31 shows the time it takes for 95% of the drug concentration to be absorbed by the outer

part of the bottom plate as a function of Pe.

If our purpose is for the drug to be absorbed ”evenly” by the whole bottom plate of the cell

38



Figure 2.29: The advection-diffusion of the drug concentration with Pe = 0.1 in the mucus flow
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Figure 2.30: The advection-diffusion of the drug concentration with Pe = 10 in the mucus flow
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Figure 2.31: The percentages of the drug concentration absorbed by outer part” of the bottom
plate in the end versus Peclet number Pe

Figure 2.32: The time it takes for 95% of the drug concentration to be absorbed by the bottom of
the cell culture versus Peclet number Pe

41



culture, the initial drop in Figure 2.28 would not result in our goal. We could instead initially

spread the drug evenly on the entire surface of the mucus flow. Or more efficiently, we could take

advantage of mucus ”hurricane”, and drop the drug along a radius with θ = 0 of the surface of the

mucus flow, see Figure 2.33.

Next we explore different domains of deposition of the drug at the air-mucus interface (Figure

2.33). To quantify absorption across the different initial conditions, we measure the percentage of

the drug absorbed by a fan in the bottom plate with − π
12 < θ < π

12 , as illustrated in Figure 2.34.

This part takes up 1
12 (or 8.33%) portion of the entire bottom disk and is in the opposite direction

as the initial distribution of drug. If the drug is evenly absorbed by the bottom plate, this fan area

would absorb 8.33% of the total drug concentration. The closer the percentage absorbed by this fan

area is to 8.33%, the more effective the influence of advection. Figure 2.35 shows the result of the

percentage of drug concentration absorbed by the fan area in the bottom plate versus Peclet number.

We can see when Pe < 0.1, the drug transport is not effective; when Pe > 1, the drug transport is

effective and when Pe > 102, the drug transport is extremely effective since the percentage is quite

close to the ”perfect” score of 8.33%.

Figure 2.33: Initial drug concentration type 1; Blue disk shows the surface of the cell culture; red
line is the initial concentration of unit drug at the surface.
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Figure 2.34: Initial drug concentration type 1; Blue disk shows the bottom of the cell culture; the
red fan stands for the area where − π

12 < θ < π
12 .

Figure 2.35: Percentage of drug concentration absorbed by the fan area in the bottom plate versus
Peclet number Pe.
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2.9 Validating the Numerical Methods

The numerical methods we use here are adopted from [24]. Marker and Cell (MAC) method [20]

is used here to track the movement of the free surface. In the MAC method, artificial massless

trackers are placed near the free surface and are transported according to the fluid velocity. Cells

are flagged as fluid cells, surface cells and empty cells based on the location of all markers. Those

markers are able to track the free surface movement. A second order finite difference method is

used to discretized the space derivative on a staggered grid. Forward Euler scheme is used here for

the time integration.

2.9.1 Convergence

In the following test, we use 4 different sizes of grids (30 by 30, 40 by 40, 50 by 50 and 60 by 60)

to calculate the flow field and free surface shape of the swirling flow (constant angular driving

velocity) of the same singe mode UCM fluid, with We=1.0. After the flow reaches quasi-steady

state, we check the free surface shapes and the velocity field at the middle height of the cylinder to

see whether the numerical results converges or not.

The following four figures [Figure 2.36 to 2.39] show the results. From [Figure 2.36 to 2.38]

about the velocities components, it’s easy to see that the code converges as the grid gets finer. And

last figure [Figure 2.39] about the free surface suggests that the free surface curve also converges,

but with a slower rate.

2.9.2 Benchmarking

Here we first compare the evolution of the tangential velocities [Figure 2.40] after the stop of

the rotating disk with the result [Figure 14] from [27]. Then we compare the tangential velocity

distribution for a single mode UCM fluid after stabilization [Figure 2.41], with the result [Figure 6]

from [27]. By looking at Figure 2.40 and 2.41, we can see that the result for tangential velocity

distribution from our numerical method matches the result from [27] [Figure 6 and 14]. This should

suggest that our numerical algorithm is correct.

As we have seen in Section 2.6.1, one significant difference between viscoelastic fluid and

Newtonian fluid in swirling flow is that viscoelastic fluid has the so called Quelleffekt [5]. The free
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Figure 2.36: Convergence test: ur at the middle height for a single UCM fluid

Figure 2.37: Convergence test: uz at the middle height for a single UCM fluid
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Figure 2.38: Convergence test: utheta at the middle height for a single UCM fluid

Figure 2.39: Convergence test: free surface shape for a single UCM fluid
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Figure 2.40: The evolution of the tangential velocities after the stop of the rotating disk for a single
mode UCM fluid

Figure 2.41: Tangential velocity distribution for a single mode UCM fluid after stabilization
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surface of the viscoelastic fluid flows upwards along the axisymmetric swirling axis, rather than

downwards as in the case of Newtonian fluid. Its like rod-climbing without a rod. And a bulge is

generated at the upper surface of the fluid, which can be characterized by its vertical displacement

along the axis of symmetry as illustrated in Figure2.42.

Figure 2.42: Illustration of Quelleffekt

In [5], Debbaut and Hocq studied the relationship between the displacement h (displacement

in z-direction at the middle of the surface) and H (initial free surface height). In their numerical

experiment they used Johnson-Segalman model to model a 2.5% aqueous polyacrylamide solution.

Here I did the similar experiment with a single mode Giesekus fluid with α = 0.3, and plot the same

type of results that Debbaut and Hocq had for Johnson-Segalman model in [5]. Although exact

match is not possible here, we focused on the trend and qualitative matching between our results

and their results. In Figure 2.43 cited from [5], Debbaut and Hocq plot the free surface shape for

various values of H and the displacement h of the upper surface along the axis of symmetry as a

function of H for Johnson-Segalman model. In Figure 2.44 and 2.44, we plot the same figures but

with our algorithm for a single mode Giesekus fluid. By comparing our results in Figure 2.44 and

2.45 and their results in Figure 2.43, both the shape of free surface and the relation between the

displacement and initial surface height match with each other qualitatively. Given the fact that we

used a different fluid model from theirs and the overall trends are the same, I believe this partially

justifies our numerical code successfully captures the movement of the free surface.
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Figure 2.43: From [5]: free surface shapes for various H (a); Displacement h of the upper surface
along the axis of symmetry as a function of H (b). Both for Johnson-Segalman model to model a
2.5% aqueous polyacrylamide solution.

Figure 2.44: Displacement h of the upper surface along the axis of symmetry as a function of H for
a single mode Giesekus fluid with α = 0.3.
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Figure 2.45: Free surface shapes for various H for a single mode Giesekus fluid with α = 0.3.
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CHAPTER 3

CONCLUSIONS

These are the first steps toward mucus flow in HBE cell culture simulations, with an idealized

coarse-graining of the cilia forcing condition. First, we clearly show nonlinear viscoelasticity captures

the simplest of observations: normal stress generation in shear leads to the peak of the free surface

in the middle of the culture and a depression at the walls, and the corresponding flow profile is

consistent with these free surface observations. Second, we characterized the linear and nonlinear

viscoelastic regimes versus the radius and mean rotational velocity of the mucus ”hurricane”; and

designed viscoelastic metrics to study the property of mucus across the whole cell culture. Third,

we examined the advection-diffusion process of a drug concentration dropped at the surface of the

mucus flow against different drug diffusion coefficient. The absorption of the drug by the bottom

plate of the cell cultures is explored for different initial concentrations and diffusion coefficient. And

we illustrated the ”flaw” of the absorption due to the large aspect-ratio and showed how to improve

the effectiveness of the absorption. The future work includes the generalization of the code to 3D

and extend the cilia forcing boundary conditions to experimentally measured metachronal wave

patterns.
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