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ABSTRACT 

Jessica Bullins Girault: Brain Structural Maturation and Cognitive Abilities in Early Life 
(Under the direction of John Gilmore) 

 

The first two years of life mark the most dynamic period of postnatal brain maturation, 

during which time cortical expansion and myelination reach peak developmental rates. Cortical 

morphology and white matter (WM) microstructure have been linked to cognition in older adults 

and children, yet we know remarkably little about how the brain matures to support emergent 

cognition. This is a critical gap in knowledge, as the first years of life mark a sensitive period in 

child development when atypical brain and behavioral phenotypes may become apparent. In this 

report, we examined cortical thickness (CT), surface area (SA), and WM fiber integrity in 450 

typically-developing children at birth, age 1, and age 2 in association with assessments of motor, 

language, and general cognitive abilities at ages 1 and 2. Results revealed that generally thicker, 

larger cortices and more mature WM tract properties in early life related to better performance 

on cognitive tasks, suggesting that increased synaptogenesis, elaborations in dendritic 

arborization, and myelination may confer benefits for infant cognitive development. We found 

several expected brain-cognition relationships, with CT in regions associated with motor 

planning and execution and regions associated with language processing and production related 

to motor and language scores, respectively. Results between cognition and WM integrity were 

less specific, with tract properties across many fibers spanning the brain relating to cognition 

across domains. This finding, along with the fact that the majority of significant WM results 

were of a predictive nature, prompted further study into the organization of WM at birth and 
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future outcomes. Using a deep learning approach, we successfully predicted 2-year cognitive 

outcomes using WM connectivity patterns at birth. Taken together, these results suggest that 

cortical structure and the organization and microstructural integrity of WM pathways at birth 

serve as a foundation upon which subsequent fine-tuning of brain structure takes place to support 

emergent cognition in infancy and toddlerhood. These findings offer novel insight into how 

prenatal and postnatal brain structural maturation support infant and toddler cognitive abilities 

and fills important gaps in our current understanding of the neurobiology of emergent language, 

motor, and cognitive abilities in early life.   
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PREFACE 

 Chapter 1 contains introductory and background information relevant to this 

dissertation. The chapter ends with an outline of the research aims presented in this report. The 

sections in this chapter on neurodevelopment, MRI, and brain development have been previously 

published (Bullins J, Jha SC, Knickmeyer RC, Gilmore JH. (2016). Brain Development During 

the Preschool Period. The Handbook of Preschool Mental Health (2nd Edition). Ed. Joan Luby. 

New York: The Guilford Press.) 

 Chapter 2 is a research chapter presenting findings from a study of the predictive ability 

of early cognitive scores for school-age intelligence. This chapter is a published manuscript 

(Girault, J. B., et al. (2018). The predictive value of developmental assessments at 1 and 2 for 

intelligence quotients at 6. Intelligence, 68, 58–65.) 

 Chapter 3 is a research chapter that addresses our first specific aim detailing the 

associations between cortical structure and cognition.  

 Chapter 4 is a research chapter addressing our second specific aim describing 

associations between white matter tract maturation and cognition in early life. This chapter is a 

manuscript currently under review at Human Brain Mapping.  

 Chapter 5 is a research chapter presenting findings from a study of the predictive ability 

of white matter connectivity at birth for future cognitive outcomes.  

 Chapter 6 contains a summary of findings, integration of results, outline of contributions 

to the field, developmental mechanisms, and potential future directions for research. 

All references are presented at the end of this report.  
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CHAPTER ONE: INTRODUCTION1 

For more than a century, scientists have studied the neural underpinnings of behavior. In 

the past few decades, developmental neuroscientists have made remarkable advances in 

understanding the genetic and cellular mechanisms governing the formation of neural circuitry 

important for human cognition. We have been able to understand how neurons form, how their 

identities are decided, how they connect to form functional groups, and how these connections 

are modified by experience. In the course of these discoveries it has become clear that humans 

have a unique and prolonged period of neurodevelopment that is largely marked by fine-tuning 

of circuitry beginning postnatally and extending into early childhood when the foundations of 

motor, language, and executive functions are established.  

In this introductory chapter I will discuss brain development that occurs postnatally and 

into the preschool period, with a special emphasis on the brain’s most rapid period of dynamic 

growth in the first two years of life. The chapter will begin with an introduction to the 

mechanisms of brain development and the use of magnetic resonance imaging as a tool for 

studying the human brain. Following this introduction, I will provide a detailed picture of how 

the brain develops in early life. Afterwards we will explore the role of brain development in 

                                                        
1 The sections in this chapter on prenatal and early postnatal brain development, imaging human 
brain development, and macrostructural human brain development and corresponding figures 
have been previously published (Bullins J, Jha SC, Knickmeyer RC, Gilmore JH. (2016). Brain 
Development During the Preschool Period. The Handbook of Preschool Mental Health (2nd 
Edition). Ed. Joan Luby. New York: The Guilford Press.). Text and figures have been reprinted 
with the permission of Guilford Press, with additional editing by the author. 
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cognitive development, and review evidence that the first two years of life mark a sensitive 

period in human brain development that may have important implications for subsequent 

cognitive and behavioral development. Finally, I will conclude by presenting the rationale and 

aims for this dissertation project.  

 

PRENATAL AND EARLY POSTNATAL BRAIN DEVELOPMENT 
 

Brain development is governed by both genetic mechanisms and environmental 

exposures. Timed, spatially defined gene expression determines how the brain wires itself by 

controlling the birth, differentiation, and migration of neurons and their synaptic connectivity. 

After their birth, neurons take on a distinct morphology, migrate to a specific location, and make 

connections with a target cell population. These processes take the brain, which begins with a 

smooth (lissencephalic) surface, and shape it into a convoluted structure wired together by 

axonal fiber bundles. 

 

Neurogenesis and Migration 

Brain development begins around the 2nd week of gestation with the formation of the 

neural tube, which divides into three sections that will give rise to the forebrain, midbrain, and 

hindbrain. A further division of the forebrain vesicle into the telencephalon and diencephalon 

occurs, from which the cerebral cortex and subcortical structures will arise, respectively (Stern, 

2001; Stiles & Jernigan, 2010). Following these divisions are cascades of cellular events that 

signal the beginning of neurogenesis at the subventricular zone around week five. Neurons then 

differentiate and migrate to their designated position in the now-forming layers of the cortex 

(Stiles & Jernigan, 2010). This process takes place in an ‘inside-out’ manner, with the oldest 
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born neurons migrating to the outermost layer. Neuronal migration peaks between the 12th -20th 

weeks of gestation (de Graaf-Peters & Hadders-Algra, 2006). 

 

Synaptogenesis and Pruning  

Following migration, neurons extend axons and dendrites to form connections to their 

synaptic partners.  Studies in primates have shown that synapses begin to form shortly after 

neurogenesis and are continually remodeled thereafter, with peak refinement taking place largely 

after week 20 and continuing into the perinatal period (Kostović, Judas, Rados, & Hrabac, 2002). 

Brain systems develop at temporally distinct rates with synaptogenesis reaching its most mature 

prenatal-state in somatosensory regions earlier than visual ones (Kostović & Rakic, 1990). 

Dendritic arborization and synaptogenesis accelerate in the third trimester and by gestational 

week 32, the cortex has adult-like laminar structure (P. Rakic, 1995). In week 34 synaptogenesis 

peaks, with 40,000 new synapses formed every second – a process that continues into postnatal 

life (P. Rakic, Bourgeois, & Goldman-Rakic, 1994). To balance with the over-production of 

synapses, pruning occurs via apoptosis to cull unnecessary or incorrect connections (S. Rakic & 

Zecevic, 2000). Studies in human cortex find rapid development of synapses, dendritic spines 

and dendritic tree complexity that peaks in the first few years of life (Huttenlocher & Dabholkar, 

1997; Petanjek, Judas, Kostović, & Uylings, 2008; Petanjek et al., 2011). 

 

Myelination  

Once neurons are positioned in the cortex and have sent out their local connections via 

dendritic trees, they extend long-range axons that form fiber bundles connecting different 

cortical and subcortical regions. These axons will later be wrapped in a lipophilic substance 

called myelin to form the white matter of brain (Dubois, Dehaene-Lambertz, Kulikova, & 
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Poupon, 2014; Stiles, Brown, Haist, & Jernigan, 2015). Myelination is a crucial process for the 

enhancement of neural signaling, as myelin is an electrical insulator that allows for fast 

information transfer between neurons. Myelination begins during week 28 and follows an inside-

out, back to front manner, such that subcortical regions myelinate first (Brody, Kinney, Kloman, 

& Gilles, 1987). At birth, relatively few axons are sheathed in myelin, and thus the majority of 

this process occurs in the first years of life. White matter maturation is largely concurrent with 

experience-dependent plasticity and learning (Dubois et al., 2014). 

 

Brain Development during Early Life  

In the early postnatal period glial proliferation, axonal formation, and dendritic 

arborization result in dramatic increases in brain volume and cortical surface area while synaptic 

pruning acts to regulate these processes (Gilmore et al., 2007; Knickmeyer et al., 2008; Lyall et 

al., 2015). Concurrently, but much more slowly, myelination results in an increase of white 

matter volume and a maturation of microstructural integrity along tracts (Geng et al., 2012; 

Knickmeyer et al., 2008). The development of gray and white matter via synaptogenesis, 

pruning, synaptic remodeling, and myelination are fundamental to establishing neural circuits. 

How these specific processes contribute to shaping brain development in the preschool period 

will be discussed following a critical introduction to magnetic resonance imaging and its uses for 

the in-vivo study of the human brain.  

 

IMAGING HUMAN BRAIN DEVELOPMENT 
 

Magnetic resonance imaging (MRI) has vastly increased our understanding of the living 

human brain through its applications for studying cortical and subcortical structures via structural 
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MRI (sMRI), white matter tractography via diffusion tensor MRI (DTI), and brain functional 

activation and connectivity via functional MRI (fMRI). MRI has become increasingly popular 

for studying trajectories of human brain development as it poses no medical threat and provides 

unparalleled access to the human brain in-vivo.  

 

Principles of MRI  

MRI is based on the principles of nuclear magnetic resonance (NMR), which relies on 

atomic nuclei having different physical properties that can be identified analytically. MRI 

capitalizes on this concept and uses different magnetic frequencies to disrupt nuclei, causing 

naturally spinning protons to align with the magnetic field. These protons can then be knocked 

out of alignment by a second, short magnetic pulse; the rate at which they realign to the magnetic 

field will differ based on the local environment of the proton – or in other words will differ based 

on the type of tissue in which the proton resides. MRI can distinguish between the brain’s two 

main tissue types – gray matter and white matter (WM) – and cerebral spinal fluid (CSF). The 

intensity of gray matter, WM, and CSF will be largely dependent on the acquisition parameters 

of the MRI, and this principle can be helpful in assessing brain structure (see different examples 

of MRIs across early development in Figure 1.1).  

 

Structural MRI  

sMRI uses different image types (T1w, T2w; Figure 1.1) to delineate gray matter 

containing cell bodies, glia, and unmyelinated connections from WM containing myelinated (or 

pre-myelinated) axons (Prastawa, Gilmore, Lin, & Gerig, 2005; Zatorre, Fields, & Johansen-

Berg, 2012). Differentiating these two tissue types can give us great insight into how the brain is 



 6 

structured and is useful for analyzing the cortical surface, the WM skeleton, and subcortical 

nuclei. The longest-standing image analysis technique for sMRI is the generation of brain 

volumes, beginning with the calculation of CSF volumes in the late 1980s (Condon et al., 1986). 

This requires segmenting the brain into tissue types based on their intensity and calculating the 

amount of each tissue in the entire brain (global volumes), or in a specific region of interest 

(ROI) within the brain. These volumes reflect the number of 3D pixels (voxels) within the image 

that match the contrast intensity of each tissue type. Voxels are typically 1mm3 - 2mm3 and can 

contain anywhere from several thousand to tens of thousands of neurons (Lenroot & Giedd, 

2006). It was found in a post-mortem study that there were ~7,000 neurons/1mm3 in the 

amygdala and ~40,000 neurons/1mm3 in the cortex of a 3-year-old human brain (Schumann & 

Nordahl, 2011). This highlights that human neuroimaging, while reflective of underlying neural 

mechanisms, has limited ability to reveal information at the microscopic level. In addition to 

volumetric analyses, the field has advanced to examining the cortical surface through 3D 

reconstructions. This can involve measuring cortical surface area, thickness, and gyrification 

(Lyall et al., 2015; Wang et al., 2014). sMRI can also be used to study the size and shape 

morphometry of subcortical nuclei and lateral ventricles (Styner, Gerig, Lieberman, Jones, & 

Weinberger, 2003). 

 

Diffusion Tensor MRI 

DTI is a powerful MRI technique for the visualization and characterization of WM in the 

brain. DTI capitalizes on the principles of diffusion and the fact that water diffuses differently in 

gray matter and CSF than in WM. In CSF and among cell bodies in gray matter, water is allowed 

to diffuse freely in an isotropic manner. However, axons coated in myelin restrict water to 
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diffuse along a principle direction, creating anisotropic diffusion. DTI can capture measures of 

both the degree and directionality of diffusion. The degree of diffusion (usually indexed by a 

measured called fractional anisotropy or FA) describes the microstructure of the WM bundles, 

for example higher values of FA reflect higher degrees of myelination (Feldman, Yeatman, Lee, 

Barde, & Gaman-Bean, 2010). Understanding the directionality of the water diffusion is critical 

for fiber tract reconstruction, which allows us to probe different anatomical and functional 

pathways in the brain. While powerful, DTI has limitations in its ability to resolve crossing fibers 

and thus track with the same anatomical precision as tracer studies in postmortem tissue (Qiu, 

Mori, & Miller, 2015). Interpretations of DTI results may also undermine the importance of 

water in other biological mechanisms like membrane and protein dynamics (Qiu et al., 2015; C. 

Thomas et al., 2014).  

 

Functional MRI 

 fMRI is used to detect changes in the blood oxygen level-dependent (BOLD) signal 

generated by an increase in deoxygenated blood (which has a different magnetic signal that 

tissue or arterial blood following neural activation (Gore, 2003). fMRI can be combined with 

cognitive and behavioral assessments to measure how the brain performs tasks or responds to 

particular stimuli, typically referred to as task-based fMRI. The brain can also be studied at rest 

(resting-state fMRI) – meaning that no stimuli are used to evoke responses, but neuronal activity 

is still present and synchrony can be observed between connected brain regions (Biswal, Yetkin, 

Haughton, & Hyde, 1995). Coordinated activity reveals large-scale neural networks that can be 

extracted during resting-state or task-based fMRI and provide insight into how the brain 

functions (Bullmore & Sporns, 2009). fMRI has limitations, including a lag in temporal 
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resolution and the inability to distinguish between excitatory or inhibitory activation (Gore, 

2003). 

 

Imaging the Brain during Early Development  

Neuroimaging studies of infants and young children have inherent challenges and 

limitations. Subject cooperation and movement in the scanner as well as the need to collect data 

while sleeping in very young children prove difficult in a practical sense. Image analysis during 

this period also has unique challenges including low contrast to noise ratio, contrast changes and 

intensity inhomogeneity due to myelination, small and variable size of anatomical shapes, and 

rapid changes in morphology over time (Prastawa et al., 2005). Despite these technical 

limitations, MRI has proved to be an invaluable tool for studying human brain development.  

 

MACROSTRUCTURAL HUMAN BRAIN DEVELOPMENT 
 

Brain maturation during the preschool period is marked by dynamic and expansive 

anatomical and functional growth. The brain experiences its most rapid period of growth in the 

first two years of life – doubling in size during the first year and reaching 80% of adult volume 

by the second year (Knickmeyer et al., 2008). The brain continues to grow and reshape itself at a 

slower rate from 2 to 6 years, when it has obtained 90% of its adult volume (Lenroot & Giedd, 

2006). This growth is the result of many complex mechanisms that contribute to the development 

of the cortex, subcortical nuclei, and white matter pathways that lay the foundations that will be 

built upon and remodeled via mechanisms of plasticity and learning throughout the lifespan.  
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The Developing Cortex  

The volume of the cortex nearly doubles in the first year of life, and the majority of this 

growth is driven by the expansion of gray matter which likely reflects underlying dendritic 

arborization, axonal elongation and remodeling, and glial proliferation (Gilmore et al., 2007; 

2012; Knickmeyer et al., 2008). The second year of life shows more modest growth, with 

cortical gray matter volume increasing around 18% (Figure 1.2; (Gilmore et al., 2012)). The 

cortex also exhibits regionalized differences in volumetric growth rates, with primary motor and 

sensory cortices growing slower in the first year of life than association cortices, a pattern that 

continues into the second year (Gilmore et al., 2012). Studies of cortical thickness (CT) and 

surface area (SA) have shown that this volumetric increase in gray matter in the first few years of 

life is primarily driven by SA expansion, which doubles from birth to two years of age (Lyall et 

al., 2015).  

At birth the primary sensory and motor cortices are the thinnest, while thicker regions 

include the association cortices related to higher-order functioning. These patterns are generally 

stable throughout the first two years, with thinner regions growing more slowly than thicker 

regions in the first year (average increase of 30%) and less overall growth taking place in the 

second year (5% increase) when the cortex has reached 97% of adult thickness values (Figure 

1.3; (Li, Nie, Wang, Shi, Lyall, et al., 2014b; Lyall et al., 2015)). Studies of children age 5-11 

showed thinning across large areas of the cortex and showed a low rate of thickening in Broca’s 

and Wernicke’s areas which are important for language development (Sowell et al., 2004). 

Recent studies of children (4 years and older) and adults show that CT decreases across the 

lifespan at steady rates (Amlien et al., 2016; Brown & Jernigan, 2012). This highlights that CT 
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develops fastest in the first years of life and that this period may uniquely exhibit rapid 

thickening.  

SA expansion does not follow the same patterning as CT and also develops at different 

rates, in line with research showing that these two components of cortical structure are 

genetically distinct (Chen et al., 2013; Lyall et al., 2015; Panizzon et al., 2009). The expansion of 

the cortex is regionally heterogeneous, with growth rates from birth to two years ranging from 7-

150% and the fastest growing regions being sensory-specific association cortices (Figure 1.3; 

(Lyall et al., 2015)). Rapid growth of visual, auditory, and sensorimotor cortices may be related 

to the expansion of topographic maps from sensory input and experience. SA exhibits its fastest 

period of growth in the first two years of life, and by age two has reached 69% of adult values 

(Lyall et al., 2015), and continues to slowly grow until peaking around age 12 and then declining 

thereafter (Amlien et al., 2016; Raznahan et al., 2011). This suggests that the first two postnatal 

years mark a critical period for the regulation of cortical and total brain size – an idea supported 

by studies of children with autism spectrum disorder who exhibit increased SA before age two 

(Hazlett et al., 2011). 

To allow for the drastic increase in SA relative to the skull, cortical gyrification increases 

in early development as well. Major cortical folding of gyri and sulci are present at birth, and 

only tertiary folding structures undergo development after birth (Li et al., 2013). In the first year 

of life, cortical gyrification increases 16%, followed by 6% in the second year (Figure 1.3; (Li, 

Nie, Wang, Shi, Lyall, et al., 2014b)). Regionalized differences in cortical gyrification are 

observed, with association areas being the highest, meaning they have the most cortex exposed to 

the outer surface (Li, Nie, Wang, Shi, Lyall, et al., 2014b). The spatial location of sulci was 

found to be consistent across this developmental window, and also related to overall brain 
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volume, once again highlighting that cortical folding is an important mechanism for early brain 

growth (Meng, Li, Lin, Gilmore, & Shen, 2014).  

 

Growth of Subcortical Nuclei 

Subcortical maturation in the first years of life follows the same general growth pattern as 

the rest of the brain, with the largest increase in volume in the first year and a more modest level 

of growth thereafter (Gilmore et al., 2012; Raznahan et al., 2014; Utsunomiya, Takano, Okazaki, 

& Mitsudome, 1999). The majority of subcortical nuclei (amygdala, thalamus, caudate, putamen, 

pallidum) double in size in the first year, except for the hippocampus, which increases about 

85% in volume (Figure 1.2; (Gilmore et al., 2012)). Findings from a sample of infants scanned 

from birth to 3 months of age recapitulate these findings, showing that the hippocampus grows 

most slowly (47% increase) when compared to other subcortical nuclei (52-66% increase) (D. 

Holland et al., 2014). Another study of children from 3 to 13 months found that the putamen 

grows faster than the rate of overall brain growth during this period (Choe et al., 2013). Later 

studies show that from age 5-25 there is a gradual increase in subcortical volumes, which peak in 

during puberty (earlier in females than males), up to a few years after the peak in cortical 

volumes (Raznahan et al., 2014). These data suggest that subcortical nuclei grow rapidly in the 

first years of life and are later modified as part of the developmental process during adolescence.  

 

Cerebellar Growth  

The cerebellum is the fastest brain structure in the first two years of life, growing 240% 

in volume from birth to 2 years of age (Figure 1.2; (Knickmeyer et al., 2008)). In the first 90 

days alone the cerebellum doubles in size (D. Holland et al., 2014), and shows accelerated 
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growth beyond that of total brain growth from 3 to 13 months of age (Choe et al., 2013). Given 

the important role of the cerebellum in motor function, its dramatic growth may be required to 

facilitate rapid motor gains in early life.  

 

White Matter Maturation 

WM volume grows slightly over 10% in the first year of life and about 20% in the second 

(Figure 1.2; (Knickmeyer et al., 2008)), however, there is much maturational change that is not 

reflected by volume growth, but instead via changes in diffusion signal due to myelination and 

organization of axons. Postmortem studies have shown that myelination occurs rapidly from 

mid-gestation through the first two years of life and follows a strict topographical pattern, with 

myelination occurring in proximal before distal, sensory before motor, projection before 

association, and occipital before frontal fiber pathways (Brody et al., 1987). 

Myelination increases the most in the first year of life, reflected by fiber tracts exhibiting 

a 9-44% increase in anisotropic diffusion (indexed by FA), most of which increase more than 

25% (Figure 1.4; (Geng et al., 2012; Gilmore et al., 2007)). The second year shows a much 

lower increase in FA ranging from 5-9% (Figure 1.4; (Geng et al., 2012)).  More direct 

assessment of myelin content in-vivo by studies of myelin water fraction (MWF) show that by 

2.5 years myelin content in the brain has reached 80% of adult values (Deoni, Dean, 

O’Muircheartaigh, Dirks, & Jerskey, 2012). At birth, callosal tracts connecting the hemispheres 

are less myelinated, but have more organized axonal and fascicular structures than other tracts 

and also mature the fastest in the first two years. Projection tracts responsible for sensory and 

motor functions are the most myelinated and mature at birth, and mature at the slowest rate 

thereafter. Association tracts for higher-level integration (arcuate, uncinate, and inferior 
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longitudinal fasciculus) are consistently lower in maturational state than other tracts from birth to 

two years of age (Geng et al., 2012). These results are in line with the early maturation of 

sensory and motor skills and the later development of higher order processing (Qiu et al., 2015).  

 

Functional Brain Development 

The functional development of the human brain during the first two years of life is just as 

complex and dynamic as its structural development. Studies of resting-state functional 

connectivity networks in young children reveal that visual and sensorimotor networks are present 

at birth and mature rapidly in the first two years of life (Lin et al., 2008). In particular, it was 

shown that connectivity in sensorimotor cortices precedes that in the visual areas and that percent 

brain volume contributing to the signal increased with age (Lin et al., 2008). This work 

highlights both the temporal and spatial dynamics of functional brain development in early life, 

and is in line with the progression of synaptogenesis in the cortex (Kostović & Rakic, 1990). 

In addition to changes in cortical activity, the topology or “structure” of brain networks 

also develops in early life. From birth to two years, changes in topology are shown by a shift 

from immature, short-range connections at birth to adult-like, long-range connections that are 

important for efficient information transfer between anatomically distant regions (Di Martino et 

al., 2014; Gao et al., 2011). This maturation is reflected by an increase in density of longer 

connections from 25% at birth to 46% in the first year and roughly the same in the second 

(Figure 1.4; (Gao et al., 2011)). Interestingly, there are different hubs (connection centers) in 

early life than in adulthood. While adults have hubs in higher-order processing regions such as 

the prefrontal and medial-parietal regions, neonates and infants show hubs in regions more 

associated with motor and visual skills (Gao et al., 2011). Studies in older children (7-9 years) 
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reveal that there are still stark contrasts between brain network architecture between children and 

adults, which is in agreement with the prolonged maturation of higher-order cognitive systems 

(Fair et al., 2008). 

Studies of canonical brain networks in infants and young children reveal interesting 

patterns of development. The default mode network (DMN)– present during rest and 

representative of undirected mental states– is comprised of functional synchrony between the 

posterior cingulate cortex (PCC), medial prefrontal cortex, lateral temporal cortex and inferior 

parietal lobule and has been related to behavioral performance and emotional measures 

(Greicius, 2008). At birth the DMN is incomplete and primitive in nature, but then expands in 

both space and connectivity strength during the first year of life, and by age two it is largely 

similar to that observed in adults (Gao, Zhu, et al., 2009b). During this age range, we see that the 

PCC portion of the network is the strongest, and may be the main hub of the network from a 

developmental standpoint (Gao, Zhu, et al., 2009b). 

Dorsal attention networks follow a similar pattern of development, expanding from an 

immature network at birth to a more adult-like network by two years of age (Gao et al., 2013). 

This improvement in overall network integration occurs most rapidly in the first year and 

coincides with the functional specialization of the default and dorsal attention networks. 

Specifically, in neonates the hub regions between the two networks are largely overlapped, but 

this spatial overlap is significantly reduced at one year and nearly vanishes by two years (Gao et 

al., 2013). This suggests that networks at birth interact and house similar functions but become 

progressively specialized to their specific roles through experience and learning.  
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BRAIN STRUCTURE, FUNCTION, AND EMERGING COGNITION 

 It is generally thought that the fundamental prerequisites for cognitive development are 

established in-utero and continue to develop across the first years of life, as sensory and motor 

systems develop first, followed by systems that support higher-order integration in adults. 

However, it remains largely unknown how the brain matures to support the emergence of 

complex cognition in infancy and toddlerhood. A plethora of developmental cognitive science 

research has revealed that the infant is surprisingly capable of many complex tasks such as 

recognizing their native language (Mehler et al., 1988), imitating facial gestures and movements 

(Meltzoff & Moore, 1977), and discriminating numerical information (Izard, Sann, Spelke, & 

Streri, 2009). Before the age of 2, infants develop social skills (Hamlin, Wynn, & Bloom, 2007), 

interpret the goals of an actor (Southgate, Johnson, & Csibra, 2008), represent hidden objects 

(Luo, Baillargeon, Brueckner, & Munakata, 2003), and begin to learn the syntax structure 

important for language comprehension and production (Marquis & Shi, 2012). However, it is 

still quite difficult to determine the age of emergence of such cognitive tasks and others in 

preverbal infants. Infants are limited in language and motor skills that prevent their response to 

specific cognitive tasks, therefore their lack of response could either indicate that the cognitive 

function being tested is not present, or the infant lacks the ability to respond in a way that we 

would canonically recognize in relation to that specific ability (Cusack, Ball, Smyser, & 

Dehaene-Lambertz, 2016).  

Neuroscience offers a lens through which to view the emergence of cognition in infancy 

by allowing one to probe, non-invasively, neural responses to cognitive tasks without requiring a 

direct response from the infant (Cusack et al., 2016).  By combining such tools with a 

developmental study design, researchers gain access to the neural architecture that supports, and 
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is adaptively refined by, human cognitive development. During the last decade, brain imaging of 

infants has shaken the dogma that frontal brain areas are too immature to be active in infants 

(Cusack et al., 2016). Functional connectivity research has shown that there is an active frontal 

component to resting state networks as early as the fetal period (Thomason et al., 2014) that 

continues to be active through infancy and into toddlerhood (Gao et al., 2011; 2013; 2015a; Gao, 

Alcauter, Smith, Gilmore, & Lin, 2015b; Gao et al., 2014; Gao, Zhu, et al., 2009b; Lin et al., 

2008). Recent work has begun to probe these frontal networks to reveal that there is a 

specification to frontal activation based on different stimuli. For example, the presentation of 

sentences, and presumably verbal working memory, engages the inferior frontal gyrus (which 

houses Broca’s area) in preverbal infants (Dehaene-Lambertz et al., 2006), whereas exposure to 

the native language, and thus speech perception, in infants recruits the dorsolateral prefrontal and 

inferior parietal cortices, which store phonological information in adults (Dehaene-Lambertz, 

Dehaene, & Hertz-Pannier, 2002). Additionally, distinct responses have been shown to the 

mother’s voice and an unknown female voice in the middle prefrontal and orbitofrontal areas 

(Dehaene-Lambertz et al., 2010). These findings challenge the classical view that higher-order 

regions are inconsequently active in young infants, but instead suggests that the frontal cortex is 

developing to support emerging cognition in infancy (Cusack et al., 2016).  

Parallel studies of infant structural brain development also reveal that the brain is 

constructed in-utero to support cognition. The majority of research on infant brain structure and 

cognition comes from studies of prematurely born infants. This body of research highlights two 

main points: (1) premature children have less developed brains a birth and often show signs of 

cognitive delays in early life, and (2) early brain structure can be predictive of later cognitive 

outcomes (Peterson et al., 2000). More recent work in typically developing children supports the 
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predictive ability of early brain structure and maturational profiles for general cognitive ability 

(Deoni et al., 2014; O’Muircheartaigh et al., 2014). Interestingly, differences in the maturational 

profiles of WM in the first few years of life were seen between children who score above, at, and 

below average on the Mullen Scales of Early Learning (Deoni et al., 2014; O’Muircheartaigh et 

al., 2014). Another study showed WM tracts associated with working memory in adults were 

also related to working memory scores in 1 year olds, even after controlling for general 

developmental level (Short et al., 2013). Thalamo-cortical connectivity is also related to working 

memory at both 1 and 2 years of age, indicating an important role for sensory-integration 

networks in early cognition (Alcauter et al., 2014). It should be noted, however, that the 

relationships between brain and cognitive measures are typically moderate and may fluctuate 

with age (Walhovd et al., 2016), suggesting that additional variables which may influence brain 

and cognitive development, such as socioeconomic status (Noble et al., 2015), deserve further 

attention in studies of how the brain develops to support cognition.  

Cognitive development, like brain development, is an ongoing process that begins at birth 

and continues across the lifespan. Cognitive development involves the reshaping and fine-tuning 

of cortical circuits as part of neuro-plastic responses to environmental input and experience. 

Neuroimaging work suggests that infant learning takes place within cognitive circuitry that is 

already wired similarly to that of the adult brain, and that the brain at birth provides a biological 

framework that favors learning (Cusack et al., 2016). Additional work is needed to understand 

how the brain matures during the dynamic period of early postnatal development to support 

emergent cognition in normative development.  The primary research from this dissertation work 

presented in the following chapters seeks to address this gap in knowledge and will further delve 

into associations between brain structure and cognition in infancy and toddlerhood.  
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THE FIRST TWO YEARS OF LIFE: A SENSITIVE PERIOD IN BRAIN 
DEVELOPMENT 
 

The first two years of life mark an exceptionally dynamic, rapid period of postnatal 

development during which the rate of brain structural maturation far surpasses that of other 

developmental stages. Cognitive neuroscientists and developmental psychologists alike view the 

first few years of life as a sensitive period of human development, during which time the effects 

of early life experiences are strong and exact potentially lasting consequences on child 

development. Such sensitive periods in development are of interest to researchers and clinicians 

because they represent times in development during which certain capacities are readily shaped 

by experience (Knudsen, 2004), and thus are both vulnerable to insult and amenable to 

intervention.  

Work from the Bucharest Early Intervention Project has demonstrated that the effects of 

experience in early life shapes the structure of the brain and subsequent cognitive abilities. This 

study followed three groups of children in Bucharest, Romania: an institutionalized group who 

lived virtually their whole lives in an institutional setting, a foster care group which includes 

children who were institutionalized a birth and then placed in foster homes, and a never-

institutionalized group of children living with their biological families in the Bucharest region 

(Tierney & Nelson, 2009).  Results from this study revealed that children raised in institutional 

settings lack experiences that stimulate healthy growth and thus show patterns of physical and 

cognitive growth that are stunted and delayed. Brain activity patterns in these children are also 

significantly different when compared to children that have never been institutionalized 

(Marshall, Fox, Bucharest Early Intervention Project Core Group, 2004). Importantly, these 

studies revealed that children who were placed in foster care before the age of 2 showed patterns 

of brain activity (Marshall, Reeb, Fox, Nelson, & Zeanah, 2008), IQ performance (Nelson et al., 
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2007), and language abilities (Windsor, Glaze, Koga, Bucharest Early Intervention Project Core 

Group, 2007) that were more similar to never-institutionalized children than do those children 

placed in foster care after turning 2 years old. This body of work suggests that early experience 

and the early life environment are critical for supporting normative, “healthy” brain and 

cognitive development.  

Additional neuroimaging work suggests that not only does environmental deprivation 

shape the development of the brain, but that varying levels of access to recourses – as indicated 

by differences in socioeconomic status – are reflected in brain structural and functional 

developmental trajectories in the first years of life. A study of volumetric brain growth from birth 

to age 4 found that, from infancy, children of low-income families had lower volumes of gray 

matter in frontal and parietal cortices (Hanson et al., 2013). This study also found that overall 

trajectories of gray matter growth during infancy and childhood differed based on socioeconomic 

status, such that children from low-income families had slower trajectories of brain development. 

Interestingly, a graded effect was revealed, such that families from middle socioeconomic 

standing showed an intermediate trajectory between slow-growing gray matter volumes in low-

income and faster developing gray matter volumes in high-income offspring (Hanson et al., 

2013). A study of functional resting state networks across infancy and toddlerhood found modest 

associations between maternal education and household income (as proxy measures of 

socioeconomic status) at 6 months of age such that higher education and income levels 

associated with stronger functional brain connectivity in sensorimotor and default-mode 

networks (Gao et al., 2015a). Taken together, these results suggest that access to resources may 

play an important role in children’s brain development. Such findings are supported by animal 

model research showing that enriched environments during pup rearing is associated with 
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changes in brain structure including increases in dendritic branching and length, the number of 

dendritic spines and the size of synapses on certain neurons, as well as improved learning and 

memory and anxiety reduction (Nithianantharajah & Hannan, 2006). 

The promise for intervention during this sensitive period of brain development is 

becoming apparent. A randomized controlled trial of a developmental intervention, marked by 

sensory-motor stimulation, found that early intervention starting within 72 hours of preterm birth 

(gestational age between 28 and 33 weeks) and continuing until 2 weeks of age (corrected for 

prematurity), improved neurobehavioral functioning, increased coherence between frontal and 

occipital brain regions, and resulted in higher anisotropy levels (as a reflection of more mature 

fibers) in the left internal capsule (Als et al., 2004). This same trial found that the behavioral 

improvements were apparent at 9-month follow-up as well (Als et al., 2004), though other 

studies have suggested that brief early interventions may not have consequences beyond 

toddlerhood (Orton, Spittle, Doyle, Anderson, & Boyd, 2009). In order to aid in the improvement 

of outcomes for children at risk, it is imperative to establish a clear understanding of how the 

brain matures to support cognition, and use this information to build evidence-based 

interventions that consider the brain as a biological framework for cognitive development.  

Additionally, it is becoming increasingly apparent that neurodevelopmental disorders, 

like autism spectrum disorder (ASD), have their origins in very early brain development. 

Research on children at risk for developing ASD has amounted much evidence in the last decade. 

Some of the most prominent findings include cerebral enlargement in early childhood (Hazlett et 

al., 2011; M. D. Shen et al., 2013) and atypical development of functional and structural 

connectivity (Wolff et al., 2012; 2017). Additional differences include cortical structure, corpus 

callosum morphology, and extra-axial cerebrospinal fluid volumes (Hazlett et al., 2011; M. D. 
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Shen et al., 2013; Wolff et al., 2015). These differences in early brain development occur 

between control groups, children at risk who do not develop ASD, and those who have risk and 

do develop ASD – providing insight into how risk can either convert to clinical diagnosis or 

subclinical symptomatology. Differences in these developmental trajectories can be observed as 

early as 6 months of age using both neuroimaging and cognitive assessments (Wolff et al., 2015), 

and recent work has found that using machine learning techniques brain images from 6 months 

of age can be used to predict ASD diagnoses at 24 months, a classification that is largely driven 

by cortical morphological features (Hazlett et al., 2017). This suggests that alterations in brain 

development precede cognitive deficits and call for a deeper, clearer understanding of how the 

brain matures to support complex cognition in early infancy so that interventions can be targeted 

to promote optimal brain development, and thus improved cognitive and behavioral outcomes.  

Studies of infants of mothers with SCZ have also produced insights into the perinatal and 

early life abnormalities present in these high-risk offspring. Our group presented the first 

evidence that neonatal brain structure may be abnormal in males at risk for SCZ (Gilmore, Kang, 

et al., 2010a). This study found that male offspring of mothers with SCZ had larger than normal 

gray matter, CSF, and lateral ventricle volumes when compared to controls (Gilmore, Kang, et 

al., 2010a). Interestingly, at-risk female offspring did not differ from healthy subjects. High-risk 

male offspring also show a more disconnected phenotype, with altered gray matter and WM 

connectivity at birth (F. Shi et al., 2012). Cortical structure may also be altered in high-risk 

neonates (Li et al., 2016). Studies of childhood onset SCZ (defined as having a clinical diagnosis 

before age 13) show subjects with childhood onset SCZ have distinct neurodevelopmental 

trajectories marked by progressive loss of gray matter, delayed and disrupted WM maturation, 

and a progressive decline in cerebellar volume from around age 7 into the teenage years 
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(Rapoport & Gogtay, 2011). There is still a critical need to study how SCZ, and other 

neurodevelopmental disorders, unfold.  

Developmental trajectory research holds the key to understanding when, where, and how 

alterations in brain maturation occur and contribute to changes in phenotypic outcomes. It is 

likely that the variety of existing neurodevelopmental disorders are produced by a vast array of 

deviations from normal trajectories of growth. While some disorders may reflect a delay or 

acceleration in neurodevelopmental processes, others may show a halting of the process 

altogether, or worse yet, a complete “derailment” from normality (Shaw, Gogtay, & Rapoport, 

2010). Understanding how early, sensitive, periods of brain maturation contribute to typical 

cognitive abilities will provide invaluable insights into the neurobiological framework that 

supports adaptive cognitive development. Only when we have a clear picture of how normal 

variation in brain structure contributes to typical variation in cognitive abilities will we truly be 

able to identify atypical trajectories and mechanistically study the underlying pathophysiology.  

 
 

RATIONALE AND DISSERTATION AIMS 
 

Much work has been done to chart the developmental patterns of early postnatal brain 

maturation. It has been shown that the cortex grows rapidly during this time, with dramatic 

cortical surface area expansion and dynamic thickening and thinning of the cortex occurring in 

the first two years of life (Li, Lin, Gilmore, & Shen, 2015; Li, Nie, Wang, Shi, Lyall, et al., 

2014b; Lyall et al., 2015). Concurrently, but on a more protracted timeline, white matter fibers 

become more mature and myelinated (Gao, Lin, et al., 2009a; Geng et al., 2012), with peak 

myelination rates occurring in the first year of life (Dubois et al., 2014). Both cortical structure 

(Burgaleta, Johnson, Waber, Colom, & Karama, 2014; Colom et al., 2013; Schnack et al., 2015; 
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Shaw et al., 2006) and white matter fiber maturation (Penke et al., 2010; Zatorre et al., 2012) 

have been linked to cognition in older children and adults, but little work has been done to study 

how these morphological features of the developing brain support emergent cognition in infancy 

and toddlerhood. Given that the first two years of life constitute a sensitive period of both brain 

and cognitive development (Tierney & Nelson, 2009), and that the emergence of cognitive 

deficits and atypical brain phenotypes associated with neurodevelopmental disorders, including 

autism spectrum disorder, during this developmental period (Hazlett et al., 2011; Wolff et al., 

2015), it is of critical importance to establish a clear understanding of the neurobiological 

framework that supports adaptive cognition.  

The work presented in this dissertation aimed to examine the relationships between 

human brain structural maturation and cognitive abilities in the first two years of life in a 

typically-developing sample of infants and toddlers. The ultimate goal of this work is to identify 

the neurobiological framework that supports early cognitive development. Insights from this 

work will aid in our understanding of what neurodevelopmental processes contribute to adaptive 

development, how brain-cognition relationships emerge and evolve across infancy and into 

toddlerhood, and how trajectories of structural brain maturation contribute to differences in 

cognitive abilities. These goals were achieved by pursuing the aims and supplementary studies 

outlined below: 

 

Study 1 / Chapter 2: Understand the predictive value of early developmental assessments 
for later intelligence in our sample. 

 
Much work has been done to understand the continuity and stability of intelligence across 

the lifespan, and it has been found that school-age intelligence quotients (IQs) are fairly stable 

predictors of adult ability (Bradway & Thompson, 1962; Deary, Pattie, & Starr, 2013; Deary, 
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Whiteman, Starr, Whalley, & Fox, 2004; McCall, 1977). However, studies in younger children 

and infants have been less conclusive – with correlations between infant and toddler scores of 

general ability explaining anywhere from <1% to 25% of the variance in cognitive scores at school 

age (Bayley, 1949; McCall, Hogarty, & Hurlburt, 1972). These early studies generally found that 

the later a test was given during infancy and toddlerhood, the more predictive it was of future 

school-age ability. Additionally, no study had reported the correlations between the Mullen Scales 

of Early Learning (Mullen, 1995) – the primary cognitive assessment used in the Early Brain 

Development Study at UNC and for this dissertation work – and later child IQs.  

In this study, we assessed the predictive value of the Mullen Scales of Early Learning 

(MSEL) Early Learning Composite Score (ELC) at ages 1 and 2 for Stanford Binet abbreviated 

IQ scores (ABIQ) at age 6 in 512 child participants with at least one infant ELC score and a 6-year 

ABIQ score. We generated correlations between ELC and ABIQ scores that account for the family 

structure of our dataset (i.e. twin-pairs and siblings) and used a data-driven variable selection 

technique to identify which child and demographic factors contributed to the prediction of 6-year 

scores. As a sensitivity analysis, we also separated our sample based on gestational age a birth and 

birth complications to test for potential differences in predictive ability based on perinatal 

complications. We also split the sample into twin and single-born children to test for potential 

effects of gestational number on the predictive ability of cognition across early life. We 

hypothesized that scores at age 2 would be better predictors of ABIQ scores at age 6 and the MSEL 

ELC score would have similar predictive value to other developmental assessments.  

 

 

 



 25 

Aim 1 / Chapter 3: Determine the relationships between cortical maturation and cognition 
in the first two years of life. 

 
Mounting evidence indicates the neocortex as a morphological correlate of intelligence and 

cognitive ability in adolescents and adults. Cortical thickness (CT) and surface area (SA) have 

been independently (Burgaleta et al., 2014; Colom et al., 2013; Shaw et al., 2006) and recently, 

jointly (Schnack et al., 2015) linked to cognitive ability in older children and adults. A longitudinal 

study in children and adolescents showed that the rate of change in CT was more predictive of 

cognitive ability than any static measurement of thickness (Shaw et al., 2006), suggesting that the 

dynamic pattern of cortical development and maturation drive individual differences in cognitive 

ability. Despite the amount of research investigating the neural correlates of cognition in older 

children and adults, very little work has been done to determine the correlations between cognitive 

ability and cortical structure in early life when developmental trajectories of CT and SA are rapidly 

unfolding (Li et al., 2015; Lyall et al., 2015).  

In this aim, we sought to determine the association between CT and SA following birth, at 

age 1, and at age 2 and cognitive measures of general ability, language, motor, and visual reception 

skills at ages 1 and 2 years in a sample of 487 healthy children. Using this unique longitudinal 

dataset, we tested cross-sectional relationships between CT and SA and cognition at ages 1 and 2, 

predictive relationships between CT and SA at birth and age 1 for future cognitive performance, 

and how changes in CT and SA across the first two years of life relate to cognitive performance at 

age 2. We hypothesized that CT and SA measures in the first two years of life would be related to 

present and future cognitive performance, that brain-cognition relationships would be similar to 

those found in adults, and that trajectories of cortical maturation will be important for cognition at 

age 2. This study is the first to investigate how CT and SA contribute to cognitive ability in the 
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early postnatal period in a normative sample and our results identify the first neuroanatomical 

correlates of cognition during this age range in a large cohort of healthy young children. 

 

Aim 2 / Chapter 4: Identify relationships between WM tract development and cognitive 
abilities in the first two years of life.  
 

The rapid development of postnatal white matter (WM) development has been well studied 

in-vivo using diffusion tensor imaging (DTI), a technique that probes the diffusivity of water 

molecules in the brain. In WM, diffusion anisotropy, commonly measured by fractional anisotropy 

(FA), is high, while isotropic diffusion, measured by axial and radial diffusivity (AD, RD), is low 

relative to gray matter and unmyelinated WM (Dubois et al., 2014). In the first two years of life, 

these metrics change rapidly as fibers are organized into bundles, premyelination is initiated, and 

myelination occurs; FA increases, while AD and RD decrease (Dubois et al., 2014; Geng et al., 

2012). Post-mortem studies have shown that myelination in early life follows an inside-out, front-

to-back progression in the brain (Brody et al., 1987), and neuroimaging studies of WM 

development report similar findings (Deoni et al., 2011; Gao, Lin, et al., 2009a; Geng et al., 2012). 

While it appears that the sequence of myelination mirrors that of cognitive development, given 

that myelination occurs in primary sensory tracts before motor tracts and in projection pathways 

before higher-order association pathways (Guillery, 2005), it remains largely unknown as to how 

WM matures to support cognition (Walhovd, Tamnes, & Fjell, 2014).  

There is significant evidence to support a link between cognition and WM microstructure, 

as determined with diffusion weighted imaging in adults (Zatorre et al., 2012), including findings 

correlating the integrity of major WM fiber bundles with information processing speed in healthy 

older adults (Penke et al., 2010), language learning in young adults (Mamiya, Richards, Coe, 

Eichler, & Kuhl, 2016), and improvements in working memory through training (Takeuchi et al., 
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2010). Recent studies have begun to elucidate the links between early WM development and 

cognition in healthy infants and toddlers (Deoni et al., 2014; S. J. Lee et al., 2017; 

O’Muircheartaigh et al., 2013; Short et al., 2013), but there is still a critical need to understand 

how tract-specific measures of WM contribute to early cognitive abilities. 

The goal of this aim is to determine the relationship of tract-based measures of FA, AD, 

and RD derived from neonatal, 1-year, and 2-year DTIs to cognitive measures of general ability, 

language, motor, and visual reception skills at ages 1 and 2 years in a sample of 447 healthy 

children. We hypothesized that tract-based measures of WM integrity would be related to present 

(cross-sectional) and future (longitudinal) cognitive ability, with more mature properties (higher 

FA, lower AD and RD) relating to better cognitive performance. We also explored how trajectories 

of maturation across the first two years of life in these WM tracts predicted cognitive ability at age 

2, which to our knowledge, has not been done on a tract-by-tract basis.  

 

Study 3 / Chapter 5: Determine the predictive ability of infant white matter connectivity 
for subsequent cognitive ability at age 2.  
 

In a complementary approach to that of Aim 2, we decided to probe the relationships 

between WM structural connectivity and cognition. This approach allows us to take a more circuit-

level approach of investigating brain connectivity, rather than considering the maturation of tracts 

in terms of myelination. At birth, the human brain is a highly connected network of largely 

unmyelinated axons that will serve as the foundation upon which future fine-tuning of cortical 

circuitry takes place. By week 30 of gestation, major pathways underlying rich-club organization 

in the brain are established (Ball et al., 2014), and by birth white matter (WM) networks exhibit a 

small world architecture (Yap et al., 2011), suggesting that the foundational wiring of brain 

circuitry is established in-utero and is in place by the time of normal birth, a finding which has 
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been supported by tractography studies (Dubois et al., 2008; Huang et al., 2006). Recent studies 

have begun to reveal interesting links between individual differences in structural connectomic 

features in pediatric populations and future cognitive and behavioral performance (Ball et al., 

2015; Kawahara et al., 2017; Wee et al., 2016). 

In this study, we extend work from the burgeoning new field of developmental connectomics 

to study how WM connectomes at birth relate to individual differences in cognitive abilities at age 

2, across a period of rapid, dynamic brain development (Geng et al., 2012; Gilmore et al., 2012; 

Knickmeyer et al., 2008; Lyall et al., 2015), in a heterogeneous sample of 115 infant participants 

followed longitudinally. The goals of this project were to (1) determine the predictive ability of 

WM connectomes at birth for subsequent cognition, and (2) identify features of the WM 

connectome at birth that are particularly important for determining individual differences in 

cognitive abilities in toddlerhood. In order to achieve these goals, we used a deep learning 

approach to classify infants based on their cognitive performance at age 2 using features from WM 

connectomes at birth. Specifically, we classified participants as scoring below average (BA), 

average (AV), or above average (AA) on the Mullen Early Learning Composite (ELC) at age 2 

(Mullen, 1995), an assessment of general cognitive ability in infants and young children. To probe 

the generalizability of the results obtained from this approach, we trained and tested the model in 

a sample of full term (n = 78) infants and replicated our findings in a sample of preterm (n = 37) 

infants that were unknown to the classification model. Next, in order to directly predict the ELC 

score itself, and thus gain an understanding how precisely our method can predict future 

performance, we fed the strength of the classification accuracy for each infant into a regression 

prediction model. Finally, we employed a backtrack fingerprinting approach (Hazlett et al., 2017) 

to extract the features of the WM connectome at birth that were important for classifying 
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participants based on their cognitive performance at 2 years of age. We expected that WM 

connectivity at birth would be predictive of future cognitive ability at age 2.  

 The research presented in this dissertation is the first comprehensive study of brain 

structural maturation and cognitive abilities in healthy children.  We report the first major findings 

linking brain structure in the first two years of life to present and future abilities, and are the first 

to predict cognitive outcomes at age 2 with high accuracy using white matter connectivity profiles 

at birth. Additionally, we report the first study of the predictive value of the Mullen Scales of Early 

Learning for subsequent cognition. These results fill a critical gap in the literature and provide 

important insight into brain-cognition relationships across a sensitive period of development. We 

additionally report the usefulness of structural neuroimaging measures as biomarkers of cognitive 

abilities during infancy and toddlerhood and discuss our results in the context of important 

environmental factors like socioeconomic status. Our findings provide foundational information 

about how the brain matures to support cognition that will be important for the field as we continue 

to try and understand how individual differences in brain development contribute to both adaptive 

and maladaptive cognitive and behavioral outcomes.
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Figure 1.1. Structural MRIs of the brain from birth to 6 years.  

T1-weighted (top) and T2-weighted (bottom) images are shown for a single subject taken shortly 
after birth through age 6 years. 
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Figure 1.2. Brain volumetric growth from birth to two years.   

Brain volumetric growth is shown for cortical gray matter (GM), total brain volume, subcortical volume, and cortical WM volume as a 
percent change relative to values at birth.  
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Figure 1.3. Cortical development from birth to 2 years.  

Growth rates are shown for cortical gray matter (GM) volume, SA, CT, and gyrification index as a percent change relative to values at 
birth.  
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Figure 1.4. White matter and functional connectivity development from birth to 2 years.  

Growth rates are shown for cortical gray matter (GM) volume, FA, cortical WM volume, and connection density as a percent change 
relative to values at birth.  
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CHAPTER TWO: THE PREDICTIVE VALUE OF DEVELOPMENTAL 
ASSESSMENTS AT AGE ONE AND TWO YEARS FOR INTELLIGENCE 

QUOTIENTS AT AGE SIX2 
 

INTRODUCTION   
Decades of research have revealed that intelligence is related to mental health, academic 

achievement, occupational status, life success, and longevity (Deary et al., 2013; Gottfredson, 

1997; Keyes, Platt, Kaufman, & McLaughlin, 2016; Whalley & Deary, 2001). Twin and family 

studies find that the continuity of intelligence across the lifespan is driven largely by genetic 

factors, though environmental influences are notable during childhood (Bartels, Rietveld, Van 

Baal, & Boomsma, 2002; Bishop et al., 2003; Brant et al., 2013). Intelligence is also a marker of 

brain development and functioning, including trajectories of structural maturation across the 

lifespan (Schnack et al., 2015; Shaw et al., 2006) and patterns of functional brain activation (Gray, 

Chabris, & Braver, 2003) differing based on cognitive ability. Genome-wide association studies 

show that genes linked to brain development are markers of individual differences in cognitive 

ability (Davies et al., 2016), and that genetic correlations between intelligence in childhood and 

old age are high (Deary et al., 2013). This body of research highlights that intelligence is 

dynamically influenced by biological and environmental processes that contribute to unique 

developmental trajectories. 

Much work has been done to understand the continuity and stability of intelligence across 

the lifespan, and it has been found that school-age intelligence quotients (IQs) are fairly stable 

                                                        
2 This chapter has been previously published (Girault JB, et al. (2018). The Predictive Value of 
Developmental Assessments at 1 and 2 for Intelligence Quotients at 6. Intelligence, 68, 58–65). 
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predictors of adult ability (Bradway & Thompson, 1962; Deary et al., 2004; 2013; McCall, 1977). 

However, studies in younger children and infants have been less conclusive. In a sample of roughly 

fifty children, the Berkley Growth Study revealed that infant test scores (averaged between ages 

10, 11, and 12 months) modestly correlated with school age scores (averaged between ages 5, 6, 

and 7 using different assessments; r = 0.20), while scores averaged between ages 18, 21, and 24 

months correlated highly (r = 0.50) with school-age scores (Bayley, 1949). In a 1972 review 

(McCall et al.), data were combined from four studies (including the Berkley Growth Study) using 

different cognitive tests; the median correlation reported between 19-30 month test scores and 5-

7 year scores (r = 0.41) was similar to those observed by Bayley and colleagues (1949), while the 

correlation between school-age scores and scores from 7-12 month-olds was notably smaller (r = 

0.06). In general, it was found that the later a test is given during infancy and toddlerhood, the 

better its predictive ability for subsequent outcomes (McCall et al., 1972). 

Recent studies of the predictive value of such assessments focus almost exclusively on at-

risk populations such as premature and very-low-birth-weight cohorts (Bode, DʼEugenio, 

Mettelman, & Gross, 2014; Hack et al., 2005; Leversen et al., 2012; Potharst et al., 2012; Soysal 

et al., 2014). Results from these studies provide conflicting evidence about the predictability of 

early tests for subsequent performance, which may be due to the unique characteristics of these at-

risk populations, where some children overcome early deficits while others remain on a delayed 

trajectory. For example, infant scores from very premature children (Bode et al., 2014), those with 

neurological impairments (Hack et al., 2005) or perinatal complications (Potharst et al., 2012) were 

more highly correlated with their subsequent school-age performance, whereas infant scores 

showed limited predictive value for premature children without major impairments (Leversen et 

al., 2012).  
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 Other recently published work reporting correlations between infant and school-age 

cognitive scores include large-scale twin and family studies. In a sample of over 1,000 twins and 

biological and adopted siblings, Bishop and colleagues (2003) found that infant scores at ages 1 

and 2 correlated with principle components derived from cognitive tests at age 7 (r = 0.18 and 

0.37, respectively; related participants included in correlations). Another study of 14,000 twins in 

the UK found that parent reports of 2-year-olds’ cognitive ability was correlated with phone-

administered portions of cognitive tests at age 7 (r = 0.23) (Stumm, Gale, Batty, & Deary, 2009). 

It is important to note that determining the predictive ability of infant cognition for subsequent 

intelligence scores was not the primary purpose of either of those studies.  

The generalizability of much of the previous work is limited by small sample sizes (Bayley, 

1949; Fagan, Holland, & Wheeler, 2007; McCall, Eichorn, Hogarty, Uzgiris, & Schaefer, 1977), 

focus on special populations (Bode et al., 2014; Hack et al., 2005; Leversen et al., 2012; Potharst 

et al., 2012; Soysal et al., 2014), or lack of participant diversity (Bishop et al., 2003; Ronalds, De 

Stavola, & Leon, 2005). Results from twin-only studies, while large-scale, may also be difficult to 

generalize to other populations given that twins have lower IQs in childhood (Bishop et al., 2003; 

Ronalds et al., 2005), and potentially different cognitive developmental trajectories than single-

born children. Therefore, it remains unknown how well the correlations between infant and school-

age intelligence reported in the literature generalize across more diverse samples.  

The goal of the present study is to investigate the predictive value of cognitive assessments 

at 1 and 2 years of age for subsequent IQ at age 6 in a relatively large, heterogeneous, longitudinal 

sample of single- and twin-born children. This study is novel in several respects. First, it is one of 

the largest studies of the predictive ability of infant cognitive scores for school-age intelligence to 

date, with 521 subjects in the sample. Second, results are derived from a sample that is generally 
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representative of the U.S. population (U S Census, 2016b), whereas many previous studies were 

conducted in predominantly Caucasian-only samples, or those with less than 10% of participants 

from other racial or ethnic groups. Finally, to our knowledge, this is the first study to test the 

predictive ability of the Early Learning Composite (ELC) from the Mullen Scales of Early 

Learning (MSEL; (Mullen, 1995) for school-age intelligence scores in a healthy sample, despite 

its use in several longitudinal studies of development in the context of brain-behavior relations and 

its widespread use in autism spectrum disorders research (Deoni et al., 2014; Gilmore et al., 2007; 

S. J. Lee et al., 2017; Wolff et al., 2012). We expected ELC scores to show similar correlations 

with school-age intelligence scores as those reported using other infant tests, with scores at age 2 

being a stronger predictor of IQ at age 6 than measures at age 1. In order to test the robustness of 

our findings and compare our results with those previously published, we also ran sensitivity 

analyses subdividing the sample into subsets with and without birth complications (prematurity 

and/or perinatal complications), and split by gestation number into twins and singletons. We 

expected that our results would be similar between the full sample and the subset without birth 

complications, but hypothesized that the premature subset may show a different trend based on 

previously reported inconsistencies in the literature with this at-risk group. We also expected 

similar predictive patterns between early cognition and later IQ in twins and singletons given the 

similarity in effect sizes reported across samples in the literature. Finally, we explored the effects 

of demographic factors on infant and school-age cognitive scores, expecting that variables related 

to socioeconomic status (SES) and perinatal characteristics would be both predictive of and related 

to individual differences in ability.  
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MATERIALS AND METHODS  
Participants 

Participants were part of the UNC Early Brain Development Study of early childhood brain 

development in singletons and twins (Gilmore et al., 2007). Pregnant women were recruited during 

the second trimester of pregnancy at the Prenatal Diagnostic Clinics of the University of North 

Carolina Hospital and Duke University Medical Center by flyers and study staff. Mothers were 

excluded from the current study for pregnancy complications (major illness, using illegal drugs, 

or severe infection), or a diagnosis of a major psychiatric disorder. All offspring participants, born 

between 2003 and 2014, underwent cognitive testing at ages 1, 2, and 6 years. We retrospectively 

identified 521 children with at least cognitive test scores from at least two ages, no major medical 

issues, and no psychiatric diagnoses up to age 6. We chose to exclude subjects on the basis of 

maternal and child psychiatric diagnoses as we have a substantial enrichment of this population in 

our total subject pool due to recruiting mothers with psychiatric illness as part of other lines of 

research in the lab. Our sample is generally representative of the local area (U S Census, 2016a) 

and the U.S. population (U S Census, 2016b) in terms of race and ethnicity, though our sample 

over-represents African Americans in both regards (12.9% of local population, 13.3% of national 

population, 21.3% of our sample), and under-represents Asians (5.7% of national population, 1.5% 

of our sample) and American Indians (1.3% of national population, 0.4% of our sample), compared 

to current national statistics. Hispanics are underrepresented in these data (8.4% of national 

population, 4.8% of our sample) because some children could not undergo cognitive testing in 

English. Table 2.1 outlines the demographic characteristics of the entire sample. Informed written 

consent and parental permission were obtained for all participants and all study protocols were 

approved by the Institutional Review Boards of UNC and Duke. 
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In sensitivity analyses testing the robustness of our results, we subdivided the sample into 

subsets with and without birth complications and split by gestation number into twins and 

singletons. Those with birth complications (n = 116, 22% of entire sample) included all subjects 

born at <32 weeks gestation and spending >24 hours in the neonatal intensive care unit (NICU). 

Twin versus singleton analyses were only conducted on subjects without birth complications (n = 

405, 78% of entire sample) to avoid an over-representation of very premature subjects in the twin 

sample. We compared a sample of 175 twins to 230 singletons. For details on demographics for 

the subsets, see Table S2.1 and Table S2.2.  

 

Cognitive Assessments  

Cognitive ability was assessed in the Infant and Child Assessment lab at the Frank Porter 

Graham Child Development Institute at UNC-Chapel Hill. Experienced testers were trained and 

supervised by a developmental psychologist with extensive assessment experience. At ages 1 and 

2 years, we used the Mullen Scales of Early Learning (MSEL). At age 1, infants were assessed 

while being held in the lap of a parent, guardian, relative, or, rarely, study staff in the case of twins 

if only one parent or relative accompanied the family. At age 2, children were seated on their own 

during testing, with a parent, guardian, or relative present in the room. Performance on the four 

MSEL cognitive Scales (Visual Reception, Fine Motor, Expressive and Receptive Language) are 

conventionally combined into an Early Learning Composite (ELC) standard score (range: 49-155, 

M =100, SD =15). The ELC has high internal consistency (median = 0.91) and reliability (median 

= 0.84 for the cognitive scales during these testing ages), and principal factor loadings of the scales 

lend support for the construct validity of the ELC as a general measure of cognitive ability (Mullen, 

1995).  
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The MSEL was used in this prospective study of brain development specifically because 

of its potential to capture uneven development in different cognitive abilities (Akshoomoff, 2006; 

De Giacomo & Fombonne, 1998; Filipek et al., 1999). Compared to the commonly used second 

edition of the Bayley Scales of Infant Development (Bayley II; (Bayley, 1993)), which was the 

version available at the start of this longitudinal study, the MSEL has the advantage of providing 

standardized T-scores that factor in age at testing for each of the scales, as well as age equivalent 

independent measures of gross and fine motor, visual reception, and expressive and receptive 

language scores. In contrast, the Bayley II generated a Mental Developmental Index (MDI) which 

assessed cognition through evaluating sensory perception, knowledge, memory, problem solving, 

and early language that could not be decomposed to probe specific cognitive versus language 

deficits (Lowe, Erickson, Schrader, & Duncan, 2012). Due to the fact that, as part of the larger 

study of brain development, we were collecting data on a heterogeneous population including 

infants born to mothers with diagnosed psychiatric illness, we wanted to ensure the ability to test 

specific deficits in distinct developmental domains (i.e. language vs. motor). Importantly, 

however, the ELC standard score derived from the fine motor, visual reception, expressive, and 

receptive language scales is highly correlated with the Bayley MDI (r = 0.70, n = 103 between 6 

and 15 months of age), according to a study presented in the MSEL technical manual (Mullen, 

1995).  

Intelligence at age 6 was assessed in the same Infant and Child Assessment lab by 

experienced testers, supervised by the same developmental psychologist, using the 5th Edition of 

the Stanford-Binet Intelligence Scales (SB5; (Roid, 2003)). At age 6, children were typically tested 

alone while a parent was present directly outside the room on the other side of one-way glass, but 

parents were given the option to sit in the room as the SB5 was administered. The outcome used 
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in this analysis is the abbreviated IQ (ABIQ) measure (range: 50-150, M =100, SD =15) derived 

from scores on the verbal knowledge and non-verbal fluid reasoning tasks reflecting the child’s 

lexical knowledge and ability to solve problems. These two tests serve as the “routing” tests, which 

are used to determine the entry level for subsequent tests of verbal and non-verbal abilities. The 

ABIQ has an internal consistency of 0.91 and a test-retest reliability of 0.84, and correlates highly 

with the full-scale IQ, which can only be derived from significantly longer testing sessions (Roid, 

2003). 

A total of 509 1-year ELC scores (ELC1), 499 2-year ELC scores (ELC2), and 275 6-year 

ABIQ scores (ABIQ6) were used in this study. All included participants had at least two test scores, 

487 had both ELC scores, 263 had ELC1 and ABIQ6, 253 had ELC2 and ABIQ6, and 241 had all 

three cognitive assessment scores. Our participants, on average, performed slightly better on the 

MSEL and SB5 than the normalization samples (Table 2.1).  

 

Statistical Analysis 

The relation between ELC scores and ABIQ6 was estimated using Generalized Estimating 

Equations (GEE) treating each family (twins and siblings) as a cluster, accounting for possible 

correlations in observational data from twins and siblings.  GEE estimates allow for consistent 

estimates of the relationship between ELC and ABIQ6 even if there is correlation within families 

(twins and siblings). Unlike other methods that can account for such correlation, like mixed effects 

models, GEE estimates are consistent even if the underlying correlation structure between families 

is unknown or misspecified. Using methods similar to Yan and Fine (2004) which allow for 

modelling the effects of covariates on the correlation parameters, we were able to estimate 

correlations between infant cognitive scores for the same participant over time and for scores 
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between twins and siblings. These analyses permitted covariates in the model for predicting 

ABIQ6 scores, with the best fitting model selected using quasi-Akaike’s Information Criterion 

(QIC) (Pan, 2004). Potential variables included sex, gestation number (twin or singleton), 

gestational age at birth (days), maternal and paternal education (years), chronological age at the 

time of the assessment administration (days), and the number of months since start of assessment 

collection in the study (to account for possible drift in cognitive testing administration due to 

changes in personnel over the 10-year study period), as well as the interaction between all the 

variables and cognitive scores. Initially models were run including only ELC scores as explanatory 

variables. QIC was used to determine whether the model with only ELC1, only ELC2, or both was 

best. Next, in addition to the ELC scores, covariates mentioned above were added to the model. 

The final model selected through QIC to predict ABIQ6 included ELC2, sex, age at SB5 testing, 

paternal education, gestation number, and months since start of SB testing. Additionally, models 

were run using the same approach to estimate the relation between ELC1 and ELC2 scores and 

demographic variables. We also used the GEE model to calculate correlations between ELC1, 

ELC2, and ABIQ6 scores so that we can estimate the variance in later ABIQ explained by early 

cognitive performance, allowing for comparison to previously published works.  

Some of our infants were lost to follow up or were not old enough to have taken the SB5 

at the time of data analysis. Of those old enough to have taken the SB5 at age 6, 32% of subjects 

did not take the test. We investigated the missingness using a binomial GEE in which the outcome 

variable was a binary indicator variable for whether or not the child had an ABIQ6 score. Potential 

explanatory variables were ELC1, ELC2, calendar year and month for taking the ELC1 test, 

maternal and paternal education, gestation number and gestational age at birth. An independent 

working correlation matrix was used with each family treated as a cluster. The final model was 
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chosen using QIC and is reported in Table 2.2. We found that increased paternal education resulted 

in reduced likelihood of follow-up 6-year SB5 assessments, possibly related to changing paternal 

employment locations (and thus a family relocation) in the 4 to 5 years following the earlier 

assessments. Given the recruitment area and proximity to the University, it is possible that fathers 

may have completed graduate degrees, internships, or residencies at the University and relocated 

afterwards. The data showed trending significance for taking the MSEL at age 1 later in the study 

increasing the odds of a follow up, while conversely suggesting that higher ELC1 scores resulted 

in a decreased likelihood of 6-year follow-up. Since participants were not lost to follow up at 

random, a linear mixed model was employed as a sensitivity check because they are valid under a 

weaker missing at random assumption and provide a check the GEE findings. Results were highly 

similar between the two models and only the GEE is reported here (see Table S2.3) for linear 

mixed model results).  

 

RESULTS  
Prediction of 6-year ABIQ  

 Models using only ELC scores as predictors of ABIQ6 scores revealed that a one-point 

increase in ELC1 and ELC2 predicts an increase in ABIQ6 of 0.16 points (SE = 0.06, p = 0.01), 

and 0.41 points (SE = 0.06, p = <0.001), respectively (Table 2.3). Uncorrected scatterplots of these 

data can be seen in Figure 2.1(B-C). When both ELC scores were in the model together, ELC1 

was not predictive of ABIQ6, while a one-unit increase in ELC2 increased the expected ABIQ6 

by 0.40 points (SE = 0.06, p = <0.001). This demonstrates that after controlling for ELC2, the 

additional knowledge of ELC1 does not significantly contribute to the prediction of ABIQ6. 

Correlations calculated between ELC1, ELC2 and ABIQ6 based on the GEE model reveal that 
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ELC1 scores account for 2.8% of the variance in ABIQ6 (r = 0.169, SE = 0.066), while ELC2 

scores account for 21.3% of the variance in ABIQ6 (r = 0.461, SE = 0.061). It should be noted that 

the GEE estimates are model coefficients and should be interpreted such that unit-wise increases 

in each predictor variable result in a unit-wise change in the response variable, while GEE 

correlations are measures of the strength of a linear association between predictor and response 

variables that can be interpreted similarly to Pearson’s correlations. The similarity in magnitude 

between the GEE estimates and correlations is coincidental, as they compare different associations 

between scores.  

Results from the full model (Table 2.4) estimated a one-point increase in ELC2 predicted 

an increase in ABIQ6 of 0.28 (SE = 0.06, p = <0.001), when holding all other covariates constant. 

A one-day increase in age at 6-year testing led to an increase in expected ABIQ6 of 0.04 points 

(SE = 0.02, p = <0.001). Date of the 6-year assessment was not significantly related to ABIQ6 (SE 

= 0.04, p = 0.06). Every additional year of paternal education accounted for an increase of 1.18 

points in offspring ABIQ6 (SE = 0.25, p = <0.001). In a separate model, we replaced paternal with 

maternal education, and results were highly similar (Table S2.4) This was expected given the 

strong correlations between maternal and paternal education (r =0.67), and their correlations with 

household income (r = 0.49 and r = 0.42, respectively) in our sample. There was a trend for males 

to score 2.77 points lower than females at age 6, though it did not reach statistical significance (SE 

= 0.02, p = 0.08). The strongest predictor of ABIQ6 was gestation number; when controlling for 

all other covariates, twins scored 6.11 points lower than singletons (SE = 1.61, p = <0.001). 

Gestational age at birth was not selected in the model.  

In a set of sensitivity analyses, we tested the robustness of the predictive value of ELC 

scores for ABIQ6. We found that results from the full sample were in line with those found in a 
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subset of participants without birth complications (n = 405; ≥32 weeks gestation, ≤ 24 hours in the 

neonatal intensive care unit (NICU)), though they did not replicate in a subset of children born 

very prematurely or with birth complications (n = 116; <32 weeks gestation, >24hrs in NICU). 

When comparing the predictive ability of infant cognitive scores for ABIQ6 between twins (n = 

157) and singletons (n = 230), we found that predictions were stronger among twins, particularly 

from age 1 to age 6. See Table 2.5 for a summary of results across samples.  

 

Infant Cognitive Scores 

We estimated correlations between ELC1 and ELC2 scores to be 0.30 (SE = 0.05, p = 

<0.001) and found that correlations between scores of twins (r = 0.70, SE = 0.06, p = <0.001) and 

siblings (r = 0.41, SE = 0.22, p = 0.06) taken at the same age were higher than those for the same 

child over time (results verified with Pearson correlations; Table 2.6). Scatterplots showing 

unadjusted associations between ELC1 and ELC2 are shown in Figure 2.1(A). The model 

investigating the relation between infant scores and other demographic variables (Table 2.7) 

revealed that at age 1, twins did not score significantly lower than singletons (p = 0.39), but by age 

2, twins scored 11.47 points lower than single-born children, when all other variables in the model 

are held constant (se = 2.46, p = 1.60E04). Every additional year of paternal education predicted 

an increase of 1.61 points in ELC2 (se = 0.25, p = 1.20E-04), but a decrease of 0.53 points in ELC1 

(se=0.19, p=7.01E-03). Holding all other variables constant, each additional day of age led to a 

decrease in expected ELC1 of 0.16 points (se=0.5, p=1.02E-03), and a 0.14-point increase in ELC2 

(se= 0.06, p=0.02). Finally, each additional month after the start of data collection led to an 

expected increase in ELC1 scores of 0.15 points (se=0.02, p= 6.50E-12), but did not significantly 

impact ELC2 scores (p=0.12), holding all other variables constant.   
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DISCUSSION  
In the present study, we show that scores on cognitive assessments at age 2 are significant 

predictors of intelligence scores at age 6 in a large, heterogeneous sample. As expected, scores at 

age 1 were far less predictive. These associations are of similar magnitude to those published in 

the literature on typically developing samples and twins using other infant developmental 

assessments (Bayley, 1949; Bishop et al., 2003; McCall, 1977), where correlations between scores 

taken around age 2 and age 6 ranged from 0.37 to 0.50 compared to our finding of a correlation of 

0.46. This suggests that the MSEL has similar predictive power to other infant tests. Importantly, 

we also show that the relation between infant and school-age ability vary based on individual 

difference factors including prematurity, birth complications resulting in extended NICU stay, and 

gestation number. Together, these results extend our understanding of the predictive value of infant 

cognitive tests for later intelligence by informing us of the extent to which such predictions have 

the ability to generalize to more diverse populations.  

 The low predictive ability of cognitive tests at age 1, which accounted for less than 3% of 

the variance in 6-year cognitive performance, may be related to the large dependence of many 

tests, including the MSEL, on language comprehension, which is limited at this age, and items that 

involve maternal report. Mothers differ: some are able to readily provide a list of words their 

children know and understand, while others are less prepared to present such a list, but may provide 

additional information over the course of the assessment. Infants and toddlers also differ 

dramatically in their comfort with the testing environment. Some infants are comfortable from 

beginning of the testing session, in a new place, with new people, to use the words that they know, 

or to respond by copying what the tester had demonstrated, while others take significantly more 

time to acclimate to the testing environment. 
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In addition, the absence of strong prediction may also be related to the generally inevitable 

lack of methodological continuity in the testing of various constructs across early childhood, given 

the dramatic changes in skill levels in multiple domains between infants and 5- to 7-year-old 

children, and the differences in the test items given at these very different ages. As skills and test 

items become more similar, one would expect increasing concordance; this is certainly a 

developmental issue, as the repertoire that is available to the infant changes dramatically over this 

overall time frame. This may be partly reflected in our finding that correlations between infant 

scores from family members taken at the same age are stronger than the correlations between 

scores for the same child at ages 1 and 2. 

Finally, some developmentalists, such as Piaget, would argue that a discontinuous shift in 

cognitive processing occurs between the first and second year of life such that younger infants are 

limited to more sensorimotor based forms of cognition that later shift to representational thinking 

by age 2 which is more consistent with cognition in adults (Müller, Carpendale, & Smith, 2011). 

This could account for the lack of correlation seen between the scores at ages 1 and 6, though more 

recent work would suggest that cognitive development is more continuous than previously thought, 

such that even very young infants possess at least a very rudimentary conceptual system (Mandler, 

2007; Moore & Meltzoff, 2004). Elements of such a rudimentary conceptual system may be 

demonstrated in clever research designs, but may not be present in many of the items in traditional 

assessments.  

It is important to highlight that even though scores at age 2 are better predictors than those 

obtained at age 1, every ELC2 point only accounted for a predicted increase of 0.41 points in 

ABIQ6 scores, accounting for roughly 21% of the variance in 6-year scores, leaving a large portion 

of variability unexplained. This is in line with previous research concluding that early cognitive 
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scores should not be used alone to identify infants at-risk for future poor performance (Colombo, 

1993). Also of note, we observed an increase in cognitive scores from the beginning of the study 

to the end of assessment collection for ELC1, but not ELC2 or ABIQ6. This may be related to 

changes in personnel, an increase in their experience and training, or changes in the larger 

community environment or subject population over time. Because we noticed this trend, we 

controlled for months since the start of data collection, which is approximately a decade long; 

however, this might be considered as a limitation of our study.  

  In our sample, we observed that twins score more than 6 points lower on the ABIQ6 than 

singletons. These findings are consistent with previous reports (Ronalds et al., 2005), but often go 

undiscussed in heritability studies of cognition (Bishop et al., 2003; Stumm & Plomin, 2015). 

Importantly, we found that the predictive ability of scores at ages 1 and 2 for subsequent school-

age IQ were notably higher for twins compared to singletons, with the ELC1 being nearly three 

times as predictive in twins. This may be due to differences in demographic characteristics between 

families of twins and singletons in our sample, however Ronalds and colleagues (2005) found that 

twins have lower IQ scores at ages 7 and 9 than singleton children in the same family. The lower 

intelligence scores of twins may reflect reduced fetal growth and shorter gestation, though we 

excluded participants that were born very prematurely and spent more than a day in the NICU in 

our sensitivity analyses. Additionally, none of our models selected gestational age at birth as a 

significant factor predicting infant or school-age cognitive scores. However, it is important to note 

that MSEL scores were adjusted for gestational age at birth, and thus hinder our ability to 

understand the impact of gestational age on scores at ages 1 and 2. The notable increase in 

predictive ability of infant scores for 6-year IQ scores in twins remains puzzling, but could 
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potentially be related to twin-twin interactions or twin-specific parenting styles (Rutter & 

Redshaw, 1991) that could shape the child’s learning environment across development.  

Another important factor contributing to cognitive scores was parental education, which 

may be a proxy of SES effects, as paternal and maternal education in this sample are highly 

correlated with each other and with household income. SES has been found to be significantly 

associated with the development of intelligence in a large twin study, with those from low SES 

families scoring approximately 6 points lower on IQ tests at age 2 than those from high SES 

backgrounds – an effect that nearly tripled by age 16 (Stumm & Plomin, 2015). The effects of 

parental education were smaller in our sample, with every additional year of either maternal or 

paternal education contributing to an increase of roughly 1 point in children’s 6-year scores.  

Our sample contained a subset of participants born prematurely or with birth complications 

resulting in a stay in the NICU. When we included this at-risk group in our main analysis, it did 

not change the findings. However, when analyzed alone, we observed particularly low, non-

significant correlations between infant cognitive scores and school-age IQ. This sample only 

included participants without any major medical issues or psychiatric disorders up to age 6, and 

thus we may have analyzed a potentially “resilient” group. These findings echo those showing that 

premature children without neurological abnormalities have the lowest predictions from infancy 

to later outcomes (Hack et al., 2005), presumably because there is more variability in outcomes. 

Alternatively, the predictive value of infant tests in at-risk groups may be inherently lower because 

other factors, such as access to resources and postnatal care, are more important or deterministic 

than early test scores in predicting later outcomes.  

Our study revealed important information about the predictive ability of infant cognitive 

scores for school-age IQ; namely that by age 2, infant cognitive ability is a fairly strong predictor 
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of outcomes 4 years later, across a period marked by tremendous cognitive gains (Kagan, 

Herschkowitz, & Herschkowitz, 2005). These results would suggest that the foundations of later 

intelligence are largely in place by age 2, which is in line with work illustrating the heightened 

plasticity of the first two postnatal years for both cognitive and brain development (Gilmore et al., 

2012; Lyall et al., 2015; Nelson et al., 2007). Importantly, this work is also in agreement with the 

large body of research highlighting the long-lasting impact of early life experience on subsequent 

development (Lupien, McEwen, Gunnar, & Heim, 2009; Sonuga-Barke et al., 2017). Taken 

together, these results emphasize that this period of early childhood, particularly before age 2, is 

one that deserves additional study from developmental science and intervention-based 

perspectives. Interestingly, individual difference factors relating to cognition in this study, namely 

paternal education, have also been linked to infant brain structure (Knickmeyer et al., 2016), 

highlighting the need for future studies of the potential mechanisms by which brain-cognition 

relations emerge across ontogeny and may be influenced by sociodemographic factors. Finally, 

studies that focus on identifying measures of cognitive continuity across early development will 

be key to understanding how infant abilities may form the basis of later intelligence.   
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Table 2.1: Sample Characteristics  
  Mean (Std Dev)/Percent 
Sex (% Male) 50.10 
Gestation (% Twins) 52.4 
Gestational Age at Birth (Days) 260.58 (20.47) 
Duration in NICU* (Days) 4.48 (12.86) 
Days Since Birth ELC1 393.36 (26.86) 
Days Since Birth ELC2 759.48 (30.25) 
Days Since Birth ABIQ6 2230.84 (62.72) 
ELC1 114.34 (13.45) 

ELC2 108.16 (15.33) 
ABIQ6 104.03 (14.14) 
Maternal Education (Years) 15.90 (3.07) 
Paternal Education (Years) 15.42 (3.29) 

Total Household Income ($) 79,053.56 (57,440.40) 
Maternal Ethnicity (%)  
White/Black/Asian/Indian 76.8 / 21.3 / 1.5 / 0.4 
Hispanic 4.8 
Paternal Ethnicity (%)  
White/Black/Asian/Indian/Unknown 70.4 / 24.2 / 3.3 / 0.6 / 1.5 
Hispanic 5.4 

*NICU = Neonatal Intensive Care Unit 

 

 

 

Table 2.2: Model of Missing Data 
Parameter Estimate Standard Error P-Value 
Intercept 4.24 1.37 2.00E-03 
ELC1 -0.02 0.01 0.08 

Paternal Education in Years -0.13 0.04 1.70E-03 

Months Since Start of 1yr MSEL Testing 0.01 0.01 0.06 
Scale 1.01 0.09   
n=361, 264 clusters    
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Table 2.3: ELC Scores as Predictors of ABIQ6 
  ELC1     ELC2     Both     

  
Estimate Standard 

Error 
P-Value Estimate Standard 

Error 
P-Value Estimate Standard 

Error 
P-Value 

ELC1 0.16 0.06 0.0125    0.03 0.06 0.58 
ELC2    0.41 0.06 3.00E-12 0.40 0.06 1.70E-10 
QIC 1249   1199   1201   

 
 

 

 
Table 2.4: Full GEE Model Predicting ABIQ6  

  Parameter Estimate Standard Error P-Value 
Mean Intercept 107.28 1.59 < 2E-16 
 ELC2 (centered) 0.28 0.06 1.50E-06 

 Sex (Male) -2.77 1.59 0.08 
 Age in Days (centered) 0.04 0.02 7.64E-03 
 Paternal Education in Years (centered) 1.18 0.25 2.30E-06 
 Gest Number (Twin) -6.11 1.61 1.50E-04 
 Months Since Start of SB5 Testing 0.07 0.04 0.06 

Scale Intercept 119 13.1   
n=235, 174 clusters. Note: males and twins are base variables for binary sex and gestation number covariates. 
 

 

 

 

Table 2.5: The Predictive Value of ELC Scores for ABIQ6 Across Samples 
  ELC1 ELC2 

Sample N Estimate SE P-Value Estimate SE P-Value 
Full Sample 521 0.16 0.06 0.012 0.41  0.06 3.00E-12 
≥32wks, ≤24hr NICU 405 0.17 0.08 0.030 0.43 0.06 6.10E-15 
<32wks, >24hr NICU 116 0.11 0.11 0.309 0.26 0.18 0.150 
Twins 175 0.31 0.11 0.006 0.45 0.90 <0.001 
Singletons 230 0.12 0.09 0.210 0.39 0.07 9.00E-08 

Note: Results compiled from GEE models using only ELC1 or ELC2 as predictors. Bolded and highlighted results 
are significant. 
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Table 2.6: Within Subject and Within-Family Correlations of ELC Scores  
 GEE Correlations Pearson Correlations 

 r Standard Error P-value r P-value 
Same Child Over Time 0.30 0.05 1.97E-09 0.30 1.00E-11 
Twins Same Age 0.70 0.06 < 2.2E-16 0.78 < 2.2E-16 
Siblings Same Age 0.41 0.22 0.06 0.45 1.51E-04 

 

 

 

Table 2.7: Full GEE Model Predicting ELC Scores 
Parameter Estimate Standard Error P-Value 
Intercept 200.56 27.25 1.80E-13 
Year 2 -71.97 35.60 0.04 
Sex (Male) -2.21 1.18 0.06 
Gest Number (Twin) -1.79 2.09 0.39 
Gestational Age at Birth -0.08 0.05 0.09 
Paternal Education in Years -0.53 0.19 7.01E-03 
Age in Days -0.16 0.05 1.02E-03 

Months Since Start of 1yr MSEL Testing 0.15 0.02 6.50E-12 

Year 2*Gest Number (Twin) -9.26 2.46 1.60E-04 
Year 2*Paternal Education in Years 1.61 0.25 1.20E-10 
Year 2*Age in Days 0.14 0.06 0.02 
Year 2*Months Since Start of 2yr MSEL Testing  -0.05 0.03 0.12 

Note: Because the reference group for year (i.e. year 1 or year 2) is year 1, the coefficients for effects of year 2 are 
calculated by adding the coefficients for the single term (i.e. Gestation Number (Twin)) plus the coefficient for the 
interaction term (i.e. Year 2 * Gest Number (Twin)).  
 

 

 



 

 

Figure 2.1. Relationships between ELC1, ELC2, and ABIQ6.  

Raw plots of the relationships between ELC1 and ELC2 (A), ELC1 and ABIQ6 (B), and ELC2 and ABIQ6 (C).  
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Table S2.1 Demographics of Children with and without Birth Complications 
 ≥32wks gestation, ≤24hrs NICU <32wks gestation, >24hrs NICU 
  Mean (Std Dev)/Percent Mean (Std Dev)/Percent 
Sex (% Male) 52.84 40.52 
Gestation (% Twins) 43.21 84.48 
Gestational Age at Birth (Days) 268.36 (12.67) 233.42 (19.33) 
Duration in NICU (Days) 0.04 (0.21) 19.95 (20.90) 
Days Since Birth ELC1 386.74 (23.35) 417.27 (25.12) 
Days Since Birth ELC2 751.62 (25.34) 787.59 (29.74) 
Days Since Birth ABIQ6 2223.30 (65.66) 2253.03 (46.88) 
ELC1 114.61 (13.61) 113.40 (12.86) 
ELC2 109.30 (15.18) 104.18 (15.28) 
ABIQ6 105.18 (13.97) 100.64 (14.17) 
Maternal Education (Years) 16.19 (3.03) 14.91 (2.98) 
Paternal Education (Years) 15.72 (3.36) 14.38 (2.81) 
Total Household Income ($) 81574.19 (58371.10) 70,607.23 (53,588.50) 
Maternal Race / Ethnicity (%)   
White/Black/Asian/Indian 78.77/19.01/1.98/0.25 69.83/29.31/0.00/0.86 
Hispanic 4.69 5.17 
Paternal Race / Ethnicity (%)   
White/Black/Asian/Indian/Unknown 71.85/21.98/3.95/0.25/1.98 65.52/31.90/0.86/1.72/0.00 
Hispanic 5.19 6.03 

 

 

 

Table S2.2 Demographics of Twin and Singleton Comparison Samples 
  Twins  Singletons  
  Mean (Std Dev)/Percent Mean (Std Dev)/Percent 
Sex (% Male) 60.57 46.96 
Gestational Age at Birth (Days) 257.99 (7.79) 276.25 (9.61) 
Duration in NICU (Days) 0.07 (0.26) 0.02 (0.15) 
Days Since Birth ELC1 399.19 (23.37) 377.31 (18.43) 
Days Since Birth ELC2 765.31 (23.47) 741.50 (21.68) 
Days Since Birth ABIQ6 2227.04 (55.33) 2220.22 (73.18) 
ELC1 113.11 (13.73) 115.74 (13.44) 
ELC2 103.59 (14.13) 113.53 (14.55) 
ABIQ6 100.42 (13.62) 109.13 (13.05) 
Maternal Education (Years) 15.83 (3.15) 16.46 (2.92) 
Paternal Education (Years) 15.30 (3.20) 16.04 (3.45) 
Total Household Income ($) 83825.02 (68305.99) 79807.19 (49288.12) 
Maternal Race / Ethnicity (%)   
White/Black/Asian/Indian 73.71/24.00/1.71/0.57 82.61/15.22/2.17/0.00 
Hispanic 5.14 4.35 
Paternal Race / Ethnicity (%)   
White/Black/Asian/Indian/Unknown 62.86/29.14/5.71/0.00/2.29 78.70/16.52/2.61/0.43/1.74 
Hispanic 5.14 5.22 
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Table S2.3 Linear Mixed Effects Model Predicting ABIQ6 – Full Sample 
  Parameter Estimate Standard Error P-Value 
Fixed Effects Intercept 107.62 1.62 < 2E-16 
 ELC2 (centered) 0.28 0.05 1.24E-07 

 Sex (Male) -2.94 1.53 0.05 
 Age in Days (centered) 0.04 0.02 0.02 
 Paternal Education in Years (centered) 1.17 0.24 7.64E-07 
 Gest Number (Twin) -6.02 1.74 5.43E-04 
 Months Since Start of SB5 Testing 0.06 0.04 0.08 

Random Effects Twins (SD) 5.55   
  Residual (SD) 9.37     
n=235, 181 clusters    

 

 

 

 

Table S2.4 Full GEE Model Predicting ABIQ6 – Maternal Education  
  Parameter Estimate Standard Error P-Value 
Mean Intercept 106.66 1.63 < 2E-16 
 ELC2 (centered) 0.30 0.06 1.40E-06 

 Sex (Male) -1.95 1.62 0.23 
 Age in Days (centered) 0.04 0.02 1.34E-02 
 Maternal Education in Years (centered) 0.94 0.26 3.00E-04 
 Gest Number (Twin) -6.01 1.67 3.30E-04 

 Months Since Start of SB5 Testing 0.08 0.04 0.05 
Scale Intercept 125 13.7   
n=235, 174 clusters    
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CHAPTER THREE: CORTICAL STRUCTURE AND COGNITION  
IN INFANTS AND TODDLERS 

 

INTRODUCTION 
Mounting evidence indicates the neocortex as a morphological correlate of intelligence and 

cognitive ability in adolescents and adults. Regional and hemispheric cortical gray matter volumes 

have been positively correlated with cognitive ability from late childhood into adulthood (Narr et 

al., 2007; Posthuma et al., 2003). More recent studies have begun to break down cortical volume 

into its two main constituents: cortical thickness (CT) and surface area (SA). These more specific 

measures of cortical morphology have also been independently (Burgaleta et al., 2014; Colom et 

al., 2013; Posthuma et al., 2002; Shaw et al., 2006) and recently, jointly (Schnack et al., 2015) 

linked to cognitive ability. A longitudinal study in children and adolescents showed that the rate 

of change in CT was more predictive of cognitive ability than any static measurement of thickness 

(Shaw et al., 2006), suggesting that the dynamic pattern of cortical development and maturation 

drive individual differences in cognitive ability. Despite the amount of research investigating the 

neural correlates of cognition in older children and adults, very little work has been done to 

determine the correlations between cognitive ability and cortical structure in early life when 

developmental trajectories of CT and SA are rapidly unfolding (Li et al., 2015; Lyall et al., 2015).  

The first two years of postnatal brain development are marked by robust growth and 

dynamic cortical maturation. Cortical gray matter doubles in volume during the first year of life, 

and by age 2 the brain has reached 80% of its adult volume (Gilmore et al., 2012; Knickmeyer et 

al., 2008). The rapid growth of the cortex during infancy is driven primarily by the expansion of 
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SA, which increases at more than three times the rate of CT (Lyall et al., 2015). Interestingly, CT 

reaches 97% of its adult value by age 2 and shows similar heterogeneous cortical patterns to those 

seen in adults (Lyall et al., 2015), indicating that CT, while slower growing than SA, is largely 

determined during this critical period of brain development. The differential developmental 

patterns of CT and SA are no surprise, as these two cortical components are controlled by 

genetically distinct mechanisms (Chen et al., 2013; 2012; 2011; Panizzon et al., 2009), and 

differentially influenced by prenatal and perinatal child-level and environmental factors (Jha et al., 

2018). While neonatal SA is primarily influenced by sex, birth weight, and gestational age at birth, 

neonatal CT is impacted by environmental variables including parental education level and 

maternal ethnicity, as well as postnatal age at the time of scan (Jha et al., 2018). These studies 

further highlight the need to decompose volumetric studies of the cortex into CT and SA, which 

are distinctly influenced by genetic and environmental factors that may in turn shape cognition.  

During the early postnatal period, rapid gray matter growth coincides with the acquisition 

and refinement of sensorimotor, visual, and language skills that allow for information processing 

and the development of cognition (Kagan et al., 2005). Studies in older children and adults reveal 

that increased CT in a distributed network of cortical regions associated with intellectual 

performance including the dorsal lateral prefrontal cortex, anterior cingulate gyrus, inferior parietal 

cortex, and regions in the temporal cortex (Burgaleta et al., 2014; Goh et al., 2011; Karama et al., 

2009; 2011; Narr et al., 2007; Shaw et al., 2006; Sowell et al., 2004). While less is known about 

the relationship with SA and cognition, recent studies have shown positive correlations between 

regional SA and cognitive ability in areas spanning the frontal and prefrontal cortices in young 

adults (Colom et al., 2013), frontal, lateral temporal and inferior parietal cortices in older adults 

(Vuoksimaa et al., 2015), and total SA across the lifespan (Schnack et al., 2015). However, little 
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work has been done to confirm that these same relationships between cortical structure and 

cognition exist in early life.  

It is important to elucidate the postnatal neuroanatomical correlates of cognitive 

functioning so that patterns of typical development can be identified early in life. Understanding 

normal brain-behavior relationships may be the key to identifying aberrant developmental patterns 

in children at risk for diseases associated with alterations in cognitive functioning and cortical 

structure such as schizophrenia (Cannon et al., 2015; Nenadic, Yotter, Sauer, & Gaser, 2014; 

Rimol et al., 2012), autism (Hazlett et al., 2011; 2017), and attention deficit hyperactivity disorder 

(Shaw et al., 2012). A recent study demonstrating that infant cortical structure at six months of age 

was highly predictive of later ASD diagnosis (Hazlett et al., 2017), emphasizes the urgency of 

studying and understanding how cortical morphology relates to cognition during the early 

postnatal period.  

In the present study, we sought to determine the association between CT and SA following 

birth, at age 1, and at age 2 and cognitive measures of general ability, language, motor, and visual 

reception skills at ages 1 and 2 years in a sample of 487 healthy children. Using this unique 

longitudinal dataset, we tested cross-sectional relationships between CT and SA and cognition at 

ages 1 and 2, predictive relationships between CT and SA at birth and age 1 for future cognitive 

performance, and how changes in CT and SA across the first two years of life relate to cognitive 

performance at age 2. This information will offer insights into how cortical morphology relates to 

cognition in early life and will aid in our understanding of how useful CT and SA are as biomarkers 

of ability during infancy and toddlerhood. We hypothesized that CT and SA measures in the first 

two years of life would be related to present and future cognitive performance, that brain-cognition 

relationships would be similar to those found in adults, and that trajectories of cortical maturation 
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will be important for cognition at age 2. Our study is the first to investigate how CT and SA 

contribute to cognitive ability in the early postnatal period in a normative sample and our results 

identify the first neuroanatomical correlates of cognition during this age range in a large cohort of 

healthy young children. 

 

MATERIALS AND METHODS 

Participants  

Participants were part of the UNC Early Brain Development Study, an ongoing study of 

human brain development in singletons and twins (Gilmore et al., 2007). Pregnant women were 

recruited from outpatient obstetrics and gynecology clinics at the University of North Carolina 

Hospitals and Duke University Medical Center. Mothers were excluded from the study for major 

illness or use of illegal drugs during pregnancy. All offspring underwent magnetic resonance 

imaging shortly after birth, and at ages 1 and 2 years. Cognitive assessments were also collected 

at 1- and 2-year visits. We retrospectively identified 487 subjects with at least one structural 

magnetic resonance image (sMRI) that produced usable CT and SA data and at least one cognitive 

assessment who met the following inclusion criteria: no diagnosis of major psychiatric disorder in 

the mother, born at ≥ 32 weeks gestation (moderately premature to full term), spent ≤ 24 hours in 

the neonatal intensive care unit following birth, had no major abnormalities noted on any MRI, 

and had no major medical issues or illnesses reported up to age 2. Table 3.1 outlines the 

demographic characteristics of the sample. Informed written consent and parental permission was 

obtained from at least one parent of all child participants and all study protocols were approved by 

the University of North Carolina at Chapel Hill’s Institutional Review Board. 
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Image Acquisition 

All sMRIs used in this study were acquired between 2004 and 2014 using either a Siemens 

Allegra head-only 3T scanner (neonates: N = 355 (85%), 1-year-olds: N = 230 (85 %), 2-year-

olds: N = 151 (77%)) or a Siemens TIM Trio 3T scanner (neonates: N = 63 (15%), 1-year-olds: N 

= 40 (15 %), 2-year-olds: N = 45 (23%)), which replaced the Allegra in 2011 (Siemens Medical 

System, Inc., Erlangen, Germany). Infants were scanned during unsedated, natural sleep after 

being fitted with earplugs and secured using a vacuum-fixed immobilization device.  

Proton density and T2 weighted structural images for neonates were acquired on the 

Allegra using a turbo-spin echo sequence (TSE, TR = 6200ms, TE1 = 20ms, TE2 = 119ms, flip 

angle = 150°, spatial resolution = 1.25mm x 1.25mm x 1.95mm, N = 166) or a “fast” turbo-spin 

echo sequence using a decreased TR, a smaller image matrix, and fewer slices (TSE, TR range = 

5270ms-5690ms, TE1 range = 20ms-21ms, TE2 range = 119ms-124ms, flip angle = 150°, spatial 

resolution = 1.25mm x 1.25mm x 1.95mm, N = 189). For the Trio, participants were initially 

scanned using a TSE protocol (TR=6200ms, TE1=17, TE2=116ms, flip angle=150°, spatial 

resolution= 1.25mm x 1.25mm x 1.95 mm, N = 4) while the rest were scanned using a 3DT2 

SPACE protocol (TR=3200ms, TE=406, flip angle=120°, spatial resolution= 1mm x 1mm x 1mm, 

N=58). 

T1-weighted images for 1- and 2-year-olds were acquired on the Allegra using a 3D 

magnetization prepared rapid gradient echo sequence (MP-RAGE TR = 1880-1900ms, TE = 

4.38ms, flip angle = 7°, spatial resolution = 1mm x 1mm x 1mm, N = 381). T1 images on the Trio 

were collected using a lower echo time (MP-RAGE TR = 1860-1900ms, TE = 3.74ms, flip angle 

= 7°, spatial resolution = 1mm x 1mm x 1mm, N = 95).  
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All T1 and T2 weighted MRIs used in this study were visually inspected by two expert 

raters. Raters scored images based on motion artifacts on a scale from 1 to 4, with 1 being the 

highest quality images with no visible artifacts to slight artifacts in a few slices and 4 being the 

lowest quality images with moderate to heavy artifacts in a few to many slices. Each rater 

underwent an inter- and intra-reliability test and each image was scored by two raters. Raters score 

were averaged, unless they differed by two or more points, in which case raters met to discuss the 

image and generate a consensus score. Raters also determine the usability of the image, where 

images of the poorest quality (category 4) were excluded if the artifacts spanned more than a few 

slices.  

 

Image Analysis  

CT and SA measures were derived using a pipeline previously described by Li et al. (2016) 

and Jha et al. (2018). All MR images were preprocessed for tissue segmentation using a standard 

infant-specific pipeline (Li et al., 2013) that includes automated skull-stripping and manual editing 

of non-brain tissue, removal of the cerebellum and brain stem, corrections for intensity 

inhomogeneity, and rigid alignment of T1- and T2-weighted images into an average atlas space 

(F. Shi et al., 2011). Gray matter, white matter (WM), and cerebrospinal fluid (CSF) were 

segmented by applying a standalone infant-specific patch driven coupled level sets method (Wang 

et al., 2014). Non-cortical regions were masked and tissues were divided into the left and right 

hemisphere. A deformable surface method (Li, Nie, Wang, Shi, Gilmore, et al., 2014a; Li et al., 

2012) was applied to the tissue segmentations in order to reconstruct the inner, middle, and outer 

cortical surfaces. This method involved a topological correction of WM volume to ensure spherical 

topology, a tessellation of the corrected WM to generate a triangular mesh, and the deformation of 
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the inner mesh towards the reconstruction of each cortical surface while preserving the initial 

topology. All surfaces for the left and right hemisphere were visually examined for accurate 

mapping. 

The inner surface was defined as the boundary between gray matter and WM, and the outer 

surface as the boundary between the gray matter and CSF. A third surface, the middle cortical 

surface, was defined as the layer lying in the geometric center of the inner and outer surfaces of 

the cortex. CT was computed for each vertex as the average value of the minimum distance from 

the inner to the outer and outer to the inner surfaces. SA was computed based on the central cortical 

surface. The cortical surface was parcellated into 78 cortical regions of interest (ROI) based on an 

infant-specific parcellation atlas (Gilmore et al., 2012; Tzourio-Mazoyer et al., 2002), as shown in 

Jha et al. (2018). The average CT and total SA for each ROI were calculated as a mean of the 

values at each vertex within the region. 

 

Cognitive Assessments  

Cognitive ability was assessed at ages 1 and 2 using the Mullen Scales of Early Learning 

(MSEL). Child measures of gross motor (GM), fine motor (FM), visual reception (VR), expressive 

and receptive language (EL, RL) were collected by experienced testers. Performance on the latter 

four MSEL cognitive scales were analyzed as raw scores, and their age-standardized t-scores were 

combined into an Early Learning Composite (ELC) standardized score (range: 49-155, mean =100, 

sd =15). The ELC has high internal consistency (median = 0.91) and reliability (median = 0.84 for 

the cognitive scales during these testing ages), and principal factor loadings of the scales lend 

support for the construct validity of the ELC as a general measure of cognitive ability (Mullen, 

1995), much like an intelligence quotient.  The primary measure of interest for this study was the 
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ELC, though we also investigated MSEL raw scale scores (not normalized for age) for each of the 

four cognitive domains. We specifically chose to study raw scores because we are interested in 

understanding how a child’s actual performance relates to brain development, instead of 

attempting to interpret the relationships between brain development and a child’s degree of 

difference from a normative sample, a rationale which has been previously described (Naigles et 

al., 2017). A subset of the MSEL assessments (4% and 6% of MSEL tests at ages 1 and 2, 

respectively) were conducted in Spanish to match the native language of the child. Descriptive 

statistics of the MSEL scores can be seen in Table 3.2.  

 

Statistical Analysis  

We tested our primary hypothesis that CT and SA in early life is related to cognitive ability 

by calculating raw, unadjusted Pearson’s correlations between global, overall average CT, total 

SA, and regional CT and SA and each MSEL score over time. All possible cross-sectional and 

predictive relationships were assessed: (1) CT and SA at birth correlating with MSEL scores at 

ages 1 and 2, (2) CT and SA at age 1 correlating with MSEL scores at age 1 and 2, and (3) CT and 

SA at age 2 correlating with MSEL scores at age 2.  

We then investigated the usefulness of CT and SA as a biomarker of cognitive ability in 

very young children by modelling the effects of CT and SA on MSEL scores while controlling for 

other factors that are known to relate to the MSEL scores: gestational age at birth, age at testing, 

sex, and maternal education level. We additionally included a nuisance variable, MSEL test date 

(DATEMSEL), controlling for the number of months since study inception to account for any sample 

drift or variation in cognitive testing administration due to personnel turnover during the ten-year 
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data collection period. These factors were previously identified in overlapping samples (Chapter 

2 / Chapter 4, manuscripts under review).  

We additionally probed relationships between child and demographic factors and global 

and regional CT and SA. We found that total and regional SA at birth are correlated with 

gestational age at birth, as has been previously reported by our group (Jha et al., 2018), such that 

longer gestation is associated with larger total and regional SA (Figure 3.1D). These effects are 

largely not present at ages 1 and 2 (Figure 3.1E-F). We also replicated findings from Jha et al. 

(2018) showing that higher levels of maternal education are associated with thinner cortices in 

offspring at birth (Figure 3.2A), and that infants who were born prematurely had thicker cortices 

following preterm birth (Figure 3.1A). We also found that total SA at birth, age 1, and age 2 were 

positively correlated with maternal education level (Figure 3.2D-F), and regional associations 

between maternal education and SA emerge at age 1 and persist to age 2 (Figure 3.2E-F).  Finally, 

we found that relationships between CT and gestational age at birth change over time such that 

later born infants have thicker cortices at age 1 and 2 while preterm infants have thinner cortices 

(Figure 3.1B-C).  

To account for such relationships in the data, all adjusted correlations included gestational 

age, age at MSEL testing, sex, maternal education, and gestation number, along with nuisance 

variables controlling for MRI scanner (Allegra or Trio) and MSEL test date. These adjusted models 

were constructed in a similar manner to the raw Pearson’s correlations, such that both cross-

sectional and predictive relationships were assessed. 

Finally, as an exploratory analysis, we employed a longitudinal modeling technique to test 

whether trajectories of CT and SA development across the first two years of life are related to 

cognitive development. Specifically, we tested if CT and SA at birth (as a reflection of prenatal 



 66 

brain development; CT0, SA0), the change in these properties in the first year of postnatal life 

(dCT1,0, SA1,0; calculated as a simple subtraction of the parameter at the earlier age from that of 

the later age), or the change in CT and SA in the second year of life (dCT2,1, dSA2,1) related to 

MSEL 2-year scores, our latest testing point. To do this, we used linear mixed effects models 

predicting 2-year scores including all three time points (i.e.  CT0, dCT1,0, and dCT2,1) 

simultaneously while controlling for gestational age (GA), maternal education (MEDUY), age at 

MSEL testing (AgeMSEL), sex and nuisance variables related MRI scanner (Scanner) and MSEL 

test date (DATEMSEL). Only subjects with complete longitudinal data– scans at birth, age 1, and 

age 2 and cognitive data at age 2 – were included in these analyses, and one twin from each pair 

was treated as a repeated measure. The statistical model for CT predicting ELC at age 2 (ELC2) is 

shown below:  

!"#$ 	= 	'( + '*+,#-( 	+	'./01,,3#-4,( 	+ 	'./05,13#-$,4 	+ 	'6+78	 +

	'+9:;<=>
8?@ABCD 	+	'E:FG@H	 +	'ACIJKL!MNO	 +	'BPQRR:S,TUVWW@X( 	+

	'BPQRR:S1TUVWW@X4 	+ 'BPQRR:S5TUVWW@X$ 	+	'I+0C;<=>M8-!ABCD + Y  

 

where !"#$ is the dependent variable and #-(, 3#-4,(,	3#-$,4 , 78, 8?@ABCD, G@H, L!MNO, 

TUVWW@X(, TUVWW@X4, TUVWW@X$, and M8-!ABCD  are the independent variables, and Y is the random 

error.  The model for SA predicting any MSEL 2-year score were constructed in the same manner. 

Sample sizes for all analyses are reported in Table 3.3. All results from CT and SA analyses 

are corrected for multiple comparisons using False Discovery Rate (Benjamini & Hochberg, 

1995), such that each model predicting MSEL scores using regional cortical measurements is 

corrected for the number of ROIs analyzed. Sensitivity analyses were also performed where we 

additionally corrected for cubic root of ICV (for regional CT results), and total SA (for regional 
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SA results), and motion score. All statistical analyses were performed using SAS statistical 

software, version 9.4.  

 

RESULTS 

Average CT 

Results from unadjusted correlation analyses revealed no significant correlations between 

average CT at birth or age 1 and ELC scores at age 1, however average CT at age 1 was positively 

correlated with ELC scores at age 2 (r = 0.14, p <0.05; Figure 3.3D). Average CT at birth and age 

1 were positively correlated with GM scores at age 1 (r = 0.11, p <0.05 and r = 0.14, p <0.05, 

respectively; Figure 3.3A, Figure 3.3B). Average CT at age 1 was positively correlated with 

concurrent FM, EL, and RL scores at age 1 (r = 0.19, p < 0.01, r = 0.15, p <0.05, and r = 0.13, p 

<0.05, respectively; Figure 3.3B). Average CT at ages 1 and 2 were positively correlated with RL 

scores at age 2 (r = 0.19, p < 0.01 and r = 0.17, p <0.05; Figure 3.3D-E), and average CT at age 2 

was positively correlated with EL scores at age 2 (r = 0.16, p <0.05; Figure 3.3D).  

 After controlling for covariates (gestational age at birth, gestation number, sex maternal 

education level, scanner, and MSEL test date), average CT at age 1 remained significantly 

positively correlated with GM at age 1, and GM at age 1 (r = 0.13, p < 0.05) is still significantly 

correlated with future average CT at age 2 (r = 0.21, p < 0.01). Average CT at birth is no longer 

significantly correlated with GM scores at age 1, and average CT at age 1 is no longer significantly 

correlated with FM, EL, or RL at age 1. Average CT at ages 1 and 2 remain significantly positively 

correlated with RL scores at age 2 (r = 0.19, p < 0.01 and r = 0.17, p < 0.05), and average CT at 

age 2 remains significantly correlated with EL at age 2 (r = 0.16, p <0.05).  
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Regional CT  

Results from unadjusted correlation analyses revealed no significant correlations between 

regional CT at birth or age 1 and ELC scores at age 1. CT at age 1 in the left precentral gyri, 

bilateral regions in the frontal and prefrontal cortices, regions overlapping with Broca’s area in the 

right hemisphere, bilateral anterior cingulate, bilateral middle temporal gyri, and regions in the 

bilateral parietal cortices were positively correlated with ELC scores at age 2, while CT in the 

bilateral lingual gyri were negatively associated with ELC scores at this age (Figure 3.4). CT at 

age 2 in the right insula was positively correlated with ELC scores at age 2 (Figure 3.5). 

CT at age 1 was correlated with concurrent motor scores. CT at age 1 in the left frontal 

middle, occipital superior, and left postcentral gyri, the left paracentral lobule, and the bilateral 

superior parietal cortices was positively correlated with GM scores at age 1 (Figure 3.4), while 

CT in the left olfactory cortex was negatively correlated with GM at the same age. CT at age 1 in 

the left primary motor cortex, bilateral regions in the frontal, prefrontal, and parietal cortices, 

bilateral anterior cingulate, right superior and middle temporal cortices, right olfactory cortex, and 

right middle cingulate were positively correlated with FM scores at age 1(Figure 3.4). 

Additionally, CT at age 1 in the right frontal interior triangularis, which overlaps with Broca’s 

area, was positively correlated with concurrent RL scores at age 1 (Figure 3.4). There were no 

significant correlations between CT at birth, age 1, or age 2 and 1-year VR or EL scores.  

CT at age 1 was correlated with language scores at age 2. CT at age 1 in the bilateral 

primary motor cortex, bilateral regions in the frontal cortex, bilateral middle temporal gyri, and 

bilateral anterior cingulate was positively correlated with EL scores at age 2 (Figure 3.4). CT at 

age 1 in bilateral regions in frontal and parietal cortices, including regions covering Wernicke’s 

and Geschwind’s areas, the bilateral middle temporal gyrus, regions overlapping with Broca’s area 
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in the right hemisphere, the bilateral anterior cingulate, and right middle cingulate were positively 

correlated with RL scores at age 2 (Figure 3.4). CT at age 2 in the left primary motor, right frontal 

inferior operculum overlapping with Broca’s area, and right frontal middle orbital cortex were 

positively related to concurrent EL scores at age 2; CT at this age in the right insula was positively 

correlated with RL scores at age 2 (Figure 3.5). CT in the right insula at age 2 was also positively 

correlated with VR scores at the same age. CT in the left lingual gyrus at age 2 was negatively 

correlated with 2-year FM scores (Figure 3.5).  

After controlling for covariates, all associations between GM and FM at age 1 and CT at 

age 1 are no longer present, except the relationship between the superior parietal cortex and 1-year 

GM scores. Average CT at age 1 is still significantly correlated with GM scores at age 1 (r = 0.13, 

p < 0.05) and GM scores at age 1 remain significantly correlated with future average CT at age 2 

(r = 0.21, p < 0.01). However, average CT at birth is no longer significantly correlated with GM 

scores at age 1, and average CT at age 1 is no longer related to concurrent FM, EL, or EL scores. 

As for associations with cognitive scores at age 2 after covariate correction, many of the 

associations between CT at age 1 and EL scores at age 2 remain (Figure 3.5), and the associations 

between CT in the right insula and the ELC, VR, and RL scores also remain significant (Figure 

3.5). Average CT at age 1 remains significantly correlated with RL scores at age 2 (r = 0.18, p 

<0.05), and average CT at age 2 is still associated with EL and RL scores at the same age (r = 0.18, 

p < 0.05 and r = 0.19, p < 0.05, respectively).  

 

Total SA  

Results from unadjusted correlation analyses revealed no significant correlations between 

total SA at birth or age 1 and ELC scores at age 1, however total SA at birth was positively 
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correlated with ELC scores at age 2 (r = 0.17, p <0.01; Figure 3.3C). There were no significant 

correlations between total SA at birth or age 1 and 1-year MSEL scale scores. Total SA at birth 

was positively correlated with FM, EL, and RL scores at age 2 (r = 0.17, p <0.01, r = 0.11, p <0.05, 

and r = 0.16, p <0.01, respectively; Figure 3.3C), and total SA at age 2 was positively correlated 

with VR scores at age 2 (r = 0.17, p <0.05; Figure 3.3E).  

 After controlling for covariates there are no longer any significant correlations between 

total SA at birth and ELC, FM, EL, or RL scores at age 2, or total SA at age 2 and concurrent VR 

scores. 

 

Regional SA 

There were no significant unadjusted correlations between regional SA and ELC scores at 

age 1. SA at birth in the left precentral gyrus, bilateral postcentral gyri, bilateral regions in the 

frontal and parietal cortices, right insula, bilateral middle cingulate, right posterior cingulate, left 

lingual, bilateral occipital medial, bilateral fusiform, bilateral precuneus, and bilateral middle and 

inferior temporal gyri are positively correlated with the ELC at age 2 (Figure 3.6). There were no 

significant correlations between SA at ages 1 or 2 and 2-year ELC scores. 

There were sparse results between regional SA and cognition at age 1. SA at birth in the 

right heschl’s gyrus is positively correlated with GM scores at age 1 (r = 0.17, p < 0.05; not visible 

in Figure 3.6). There are no significant relationships between regional SA at any age and FM, EL, 

RL, or VR scores at age 1.  

Regional SA at birth in the left precentral, bilateral postcentral gyri, bilateral regions in the 

frontal, parietal, temporal, and occipital cortices, the bilateral insula, bilateral anterior and middle 

cingulate cortices, right posterior cingulate, right parahippocampal, left lingual, bilateral fusiform, 
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and bilateral precuneus were positively correlated with FM scores at age 2 (Figure 3.6). SA at 

birth in the bilateral frontal middle orbital, left middle cingulate, bilateral fusiform, and bilateral 

middle temporal gyri were positively related to RL scores at age 2 (Figure 3.6).  

Sparse results were also noted between regional SA at ages 1 or 2 and 2-year cognitive 

scores. SA at age 2 in the right middle temporal gyrus was positively correlated with VR scores at 

the same age (r = 0.26, p < 0.01). There were no significant correlations between regional SA at 

any age and GM or EL scores at age 2. 

After controlling for covariates, there are no significant correlations between regional SA 

at birth and cognition at ages 1 or 2. Significant correlations emerge between SA at age 1 in the 

right precentral gyrus and FM scores at age 2 (r = 0.24, p <0.05). Correlations also emerge between 

SA at age 1 in the left frontal middle orbital gyrus and at age 2 in the right middle temporal gyrus 

and VR scores at age 2 (r = 0.24, p < 0.05 and r = 0.29, p < 0.01, respectively). All other correlations 

between SA at ages 1 or 2 and cognitive scores are no longer significant.  

 

Longitudinal Analyses  

Longitudinal analyses revealed no significant relationships between the developmental 

change in CT or SA during the first or second year of life and cognitive scores at age 2 when 

adjusting for other covariates in the model.  

 

Sensitivity Analyses  

Controlling for ICV (cubic ICV for CT or total SA for regional SA results) or motion score 

in addition to other covariates did not substantially change the majority of results. Controlling for 

motion score did rescue significant results between CT at age 1 and future RL scores at age 2 in 
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regions overlapping with Broca’s, Wernicke’s and Geschwind’s areas and regions in the temporal 

lobe that were no longer significant after adjusting for covariates (Figure 3.7). Results between 

average CT and cognition were largely the same, though a significant correlation emerged after 

controlling for motion between CT at birth and RL scores at age 2 (r = 0.18, p < 0.05). Additionally, 

controlling for motion recovered significant correlations between total SA at birth and FM scores 

at age 2 (r = 0.11, p < 0.05) and total SA at age 2 and VR scores at the same age (r = 0.15, p < 

0.05), which were significant in raw Pearson’s correlation analyses and not significant after 

adjusting for basic covariates.  

 

DISCUSSION 
In the present study, we report the first associations between global and regional CT and 

SA and cognitive abilities in infants and toddlers. We found that that generally thicker, larger 

cortices in early life related to better performance on cognitive tasks testing motor, language, and 

visual reception abilities, suggesting that increased synaptogenesis, elaborations in dendritic 

arborization, or delayed myelination may confer benefits for infant cognitive development. We 

found several expected brain-cognition relationships, with regions associated with motor planning 

and execution correlating with FM and GM scores and regions associated with language 

processing and production relating to EL and RL scores. We generally found more significant 

relationships between CT and cognition than SA and cognition in infancy and toddlerhood; though 

regional SA at birth was widely associated with 2-year ELC and FM scores. Analyses controlling 

for variables related to children’s cognitive scores, including maternal education level, sex, 

gestational age, and gestation number, reveal that correlations are greatly weakened and largely 

no longer significant after adding these variables in to the model. This suggests that while there 

are relationships between CT, SA, and cognition during this developmental period, their effect 
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sizes are small and other readily-available child-level and environmental variables may be better 

suited as predictors of future outcome than MRI-derived measures of cortical structure. However, 

some correlations did survive adjustment for covariates, which highlighted the relationship 

between CT in the right insula at age 2 and concurrent VR, EL, RL, and ELC scores. Other 

relationships that survived adjustment include expected brain-cognition relationships between 2-

year CT in regions overlapping Broca’s area and the superior temporal gyrus and EL scores at age 

2, and SA in the right precentral gyrus at age 1 correlating with future FM performance at age 2. 

Finally, our longitudinal models revealed that there were no significant associations between 

developmental changes in CT and SA in the first or second year of life, suggesting that associations 

between the rates of cortical thinning and cognition often reported in studies of older children and 

adults (Schnack et al., 2015; Shaw et al., 2006) may emerge later in development.   

In general, we found that thicker, larger cortices related to better cognitive performance 

across domains in many regions that canonically support motor, language, and general cognition. 

ELC scores at age 2, a measure overall cognitive ability, were predicted by regionally larger SA 

in areas spanning the bilateral frontal, temporal, parietal, and medial cortices at birth. CT at age 1 

was correlated with future ELC scores at age 2 in a set of bilateral regions constrained to the fronto-

parietal network and anterior cingulate implicated in cognitive control and attentional processes 

(Cai et al., 2016), and the middle temporal and lingual gyri which are responsible for processing 

sensory information (Jung & Haier, 2007). Interestingly, these regions map extremely well to those 

implicated in the parieto-frontal integration theory of intelligence based on a review of human 

neuroimaging studies (Jung & Haier, 2007), suggesting that the structural development of this 

cognitive network is set in place during early infancy. Finally, we also found that CT in the right 

insula at age 2 was correlated with concurrent cognitive ability, which is interesting given the 
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insula’s role in integrating information across distinct cognitive and emotional networks (Chang, 

Yarkoni, Khaw, & Sanfey, 2013). Our findings that cortical structure at birth and age 1 predict 

future cognition at age 2, and that cognition at age 2 is related to current cortical structure suggest 

that cognitive abilities are, at least in part, determined by preceding prenatal and postnatal brain 

development and related to present cortical structure in regions important for general cognition 

and network integration. We found no associations between early cortical structure and general 

cognitive ability at age 1, which may be due to the transient nature of cognitive scores at this age 

which have little bearing on later performance (Chapter 1, manuscript under review).   

 Many expected structure-function relationships were found between infant cortical 

structure and early cognitive abilities. CT in several regions involved in sensory motor processing 

at age 1 were related to concurrent GM ability. These regions include the left postcentral gyrus 

housing the homunculus, bilateral superior parietal cortex involved in motor planning and visuo-

motor integration (Desmurget et al., 1999), left paracentral lobule related to motor and sensory 

processing (Rizzolatti & Luppino, 2001), left frontal middle gyrus which is thought to relay goal-

directed motor behavior (Corbetta & Shulman, 2002), as well as the left occipital superior cortex 

involved in spatial visual processing (Haxby et al., 1991). Overall, this suggests that GM scores at 

age 1 are linked to the structure of primary motor and association cortices responsible for 

movement and movement planning. This further suggests that cortical structures by the end of the 

first year of life, at least in primary sensory and sensory association areas, are developed to perform 

domain-specific functions as seen in older children and adults. Such a hypothesis is in line with 

cortical maturational trajectories during this developmental period, such that sensory and motor 

regions of the cortex mature at a faster rate than higher-order association areas (Lyall et al., 2015).   
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Thicker cortices at age 1 also related to concurrent FM scores in several regions involved 

in motor behaviors including the left precentral, left frontal superior and bilateral frontal middle 

cortices which relay goal-directed attentional and motor behaviors (Corbetta & Shulman, 2002), 

the bilateral anterior cingulate, right middle cingulate, left postcentral, and the bilateral superior 

and inferior parietal cortices involved in motor planning (Rizzolatti & Luppino, 2001). Regions 

involved in language processing were also found to be related to FM scores at age 1, including 

regions housing Broca’s, Wernicke’s and Geschwind’s areas, and the right superior and middle 

temporal cortices. The interdependencies of the MSEL tasks may drive such results, as language 

comprehension is important for completing FM tasks on the MSEL, for example the child needs 

to follow directions related to stacking blocks, turning pages in a book, and inserting pennies into 

a slot. Additionally, larger SA in regions spanning the cortex at birth were related to higher FM 

scores at age 2, suggesting an association between prenatal brain growth and subsequent motor 

development through infancy.  

Language scores at age 1 were generally not related to cortical structure across infancy, 

though receptive language in 1-year-olds was found to positively correlate with CT in a region 

which comprises part of Broca’s area. Many correlations of a predictive nature, however, were 

present between CT at age 1 and future language scores at age 2. CT in regions in the frontal, 

parietal, occipital, temporal, and midline association cortices related to higher order processing, 

motor, visual and language processing at age 1 predicted EL and RL scores. Finally, thicker right 

insular cortices at age 2 was significantly associated with higher receptive language scores at the 

same age, while thicker cortex in regions overlapping Broca’s area were related to expressive 

language. Additionally, SA in a small set of regions at birth – the bilateral frontal middle orbital, 

middle temporal, and fusiform gyri, as well as the left middle cingulate – were predictive of future 
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receptive language outcomes at age 2. Results appeared to be less domain specific with language 

scores, such that language regions (Broca’s, Geschwind’s, middle temporal gyri), sensory-motor 

regions (occipital cortices, primary motor cortex), and regions responsible for higher-order 

cognition (cingulate, prefrontal cortex) were found to associate with language scores at age 2. This 

could be due to the non-specific nature of the language assessments, which often rely on other 

related cognitive constructs like auditory memory and auditory-visual integration (Mullen, 1995), 

or could possibly reflect a large-scale cortical network that is involved in early language learning 

that later becomes fine-tuned to adult-like regions through interactive specialization (M. H. 

Johnson, 2000; 2011), as has been previously suggested (Redcay, Haist, & Courchesne, 2008; 

Swanson et al., 2015). 

Thicker cortices have been consistently linked to better cognitive performance in older 

children and adults (Burgaleta et al., 2014; Choi et al., 2008; Colom et al., 2013; Goh et al., 2011; 

Karama et al., 2011; Luders, Narr, Thompson, & Toga, 2009; Narr et al., 2007; Schnack et al., 

2015; Shaw et al., 2006; Sowell et al., 2004), and we have now extended these results to 

demonstrate early postnatal origins of such relationships starting around age 1. Fewer studies have 

focused on relationships between SA and cognition, but those that have demonstrate that larger 

SA is related to higher general intelligence (Colom et al., 2013; Fjell et al., 2015; Vuoksimaa et 

al., 2015; Yang et al., 2013). Our work showing that SA at birth is related to future cognition is 

consistent with these findings and suggests that prenatal mechanisms driving SA expansion in-

utero may be particularly important for emerging cognition. The fact that generally thicker, larger 

cortices correlated with better performance suggests that increased synaptogenesis, elaborations in 

dendritic arborization, or delayed myelination, and thus prolonged plasticity, confer benefits for 

cognitive development.  Some of our regional CT results were of the opposite direction, with 
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thinner cortices predicting better cognitive scores. These findings may suggest that some brain 

regions have a differential association between CT and cognition, which has been shown 

previously (Goh et al., 2011; Shaw et al., 2006). Finally, global analyses revealed that greater total 

SA and average CT were related to better cognitive outcomes across infancy, suggesting that 

mechanisms driving CT and SA development across the brain may be important for cognitive 

development in the first two years of life.  

The majority of significant results from these analyses were between CT, as opposed to 

SA, and cognition. CT and SA have been shown to be genetically distinct in studies of twins (Chen 

et al., 2013; Panizzon et al., 2009). In support of this idea, studies have shown that polymorphisms 

in microcephaly genes affect regional SA in humans (Rimol et al., 2010), while rodent studies 

have found that manipulation of transcription factors Ngn1/2 and Tlx during development results 

in changes to CT, but not SA (Pontious, Kowalczyk, Englund, & Hevner, 2007). The radial unit 

hypothesis suggests that SA is determined by the number of cortical minicolumns, which is 

dependent upon the rate of cell proliferation and programmed cell death within symmetrically-

dividing radial glial cells of the ventricular zone (P. Rakic, 2009). CT, however, is thought to be 

determined by changes in proliferation kinetics of asymmetrically-diving neural progenitor cells 

as well as changes in the size or number of neurons or glia and their processes (P. Rakic, 1995; 

2009). Bennet and colleagues (2011) estimated that the volume of gray matter in the adult human 

cortex is composed mainly of dendrites (30% of cortical volume) and axons (29%), suggesting 

that the positive associations between CT and cognition are likely due to greater amounts of axonal 

processes and thus increased cortico-cortical connectivity (Lyall et al., 2015). The recently 

proposed supragranular layer hypothesis (Nowakowski, Pollen, Sandoval-Espinosa, & Kriegstein, 

2016) posits that around mid-neurogenesis, radial glial scaffolds become discontinuous, during 
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which time self-renewing divisions of outer radial glial cells increase the SA of the supragranular 

layers, while neurogenic divisions of these glial cells increase the thickness of these layers. This 

highlights a particularly interesting evolutionary mechanism for the expansion of the suprgranular 

layers which are thought to give rise to many primate-specific cognitive abilities (Nowakowski et 

al., 2016), and further suggests that neurodevelopment beginning in the second trimester of 

pregnancy may be particularly important for establishing the foundations of cortico-cortical 

connections important for cognition.  

It has been shown that CT and SA follow different developmental trajectories across early 

infancy (Lyall et al., 2015) and adulthood (Schnack et al., 2015), further supporting the 

conceptualization of CT and SA as relatively independent processes which may have differential 

associations to cognition. A recent study found that neonatal CT and SA are impacted by different 

sets of environmental factors, with SA more strongly influenced by sex and obstetric history and 

CT more strongly influenced by socioeconomic and ethnic disparities (Jha et al., 2018). This study 

also found that during the neonatal period, heterogeneous growth patterns were observed in 

regional CT, while heterogeneity in regional SA growth was nominal (Jha et al., 2018). In light of 

our own results, this suggests that perhaps CT, shaped more by environmental experiences, is 

dynamically changing in early life to support experience-dependent learning and cognitive 

development in infancy and toddlerhood, whereas SA at birth, shaped largely by genetic and 

prenatal factors, may set the stage for future cortical expansion and have a more global brain-wide 

association with cognition thereafter.   

In light of the environmental influences exacted on both brain and cognitive development, 

it is no surprise that the majority of our results are no longer significant after adding these variables 

to the model. Regional CT and SA, on average, accounted for between about 3-5% of the variance 
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in cognitive scores when no other variables were included in the model, highlighting that while 

there are correlations between cortical structure and cognition during these ages, they are modest 

at best. These correlations are of a similar magnitude to those previously reported (Schnack et al., 

2015; Shaw et al., 2006) suggesting that the strength of the associations between cortical structure 

and cognition are similar across development. In comparison, maternal education and gestational 

age at birth account for roughly 14% and 12%, respectively, of the variance in children’s 2-year 

cognitive scores, dwarfing the effects of cortical structure on cognition. We also found influences 

of maternal education and gestational age at birth on cortical structure, with maternal education 

accounting for less than 2% of the variation in CT and SA at birth, 8% of the variation in SA at 

age 1, and less than 4% of the variation in SA at age 2. Gestational age at birth only influenced 

neonatal cortical structure, accounting for roughly 4% of the variance in CT and 11% of the 

variance in SA. This suggests that maternal education and gestational age at birth exact influences 

on both brain and cognitive development and deserve further systematic study to understand the 

mechanisms by which these influences occur.  Additionally, we found that controlling for motion 

in addition to other covariates rescued some correlations between CT and cognition, particularly 

with language scores, suggesting that motion may contribute added noise to the imaging data that 

should be considered.  

Interestingly, however, some results do survive correction for covariates, which suggests 

these regions may play a potentially important role in contributing to individual differences in 

cognitive development in infancy and toddlerhood and are perhaps informative neuroimaging 

biomarkers. The relationship between CT in the right insula at age 2 and concurrent VR, EL, RL, 

and ELC scores highlights a potentially interesting role for the insular cortex in general cognitive 

functioning. Mounting evidence from functional MRI studies suggest that the insula is 
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instrumental in integrating disparate functional systems involved in processing affect, 

sensorimotor information, and general cognition and is well suited to provide an interface between 

feelings, cognition, and action (Chang et al., 2013). Our findings suggest that by age 2, the insula 

may be structurally developing to support such a role in cognitive processing. Other recent work 

suggests that the development of the insula may warrant further study, as the insula is a high-

expanding cortical region during childhood and adolescence (Fjell et al., 2015), and disruptions in 

its regulation of central executive and default mode networks has been implicated in pathogenic 

states including schizophrenia (Namkung, Kim, & Sawa, 2017). Additional relationships that 

survived adjustment include expected brain-cognition relationships between 2-year CT in regions 

overlapping Broca’s area and the superior temporal gyrus and EL scores at age 2, and SA in the 

right precentral gyrus at age 1 correlating with future FM performance at age 2. These findings 

indicate that by age 1, the primary motor cortex is structurally developed to support future motor 

function and that by age 2 cortical areas responsible for speech production and language processing 

are organized to provide a foundation for burgeoning language abilities in toddlerhood.    

From a developmental perspective, we identified both a predictive and cross-sectional 

nature between cortical structure and cognition in early life. We found that SA at birth and CT at 

ages 1 and 2 were important for future cognitive performance at 2 years of age. This indicates that 

SA at birth holds important information for future cognitive development, but may not be directly 

linked to cognition at ages 1 and 2. This may be due to smaller sample sizes at these ages which 

limit our ability to detect significant effects, or perhaps other cortical properties, like CT, are more 

important for determine cognition at later ages. We did, however, find that total SA at age 2 was 

related to concurrent visual reception scores, suggesting the association with SA at later ages is 

detectable, even if weak, at the global level. Relationships between CT and cognition emerge at 
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age 1 and persist through age 2 in this sample, studies in older children and adults would suggest 

this association likely continues throughout the lifespan (Schnack et al., 2015; Shaw et al., 2006). 

Finally, the majority of our results were of a predictive nature, which indicates that the 

development of cortical structures prior to cognitive assessments may be more important for 

determining cognition than structure at the time of assessment.  

To our surprise, we found no associations between developmental changes in CT and SA 

across the first two years of life with cognitive abilities at age 2.  This may be a limitation of 

smaller sample sizes with full longitudinal data, or a relatively low number of sampling points for 

the imaging data (birth, age 1, and age 2). Alternatively, it could suggest that the associations 

between the rates of cortical maturation and cognition often reported in studies of older children 

and adults (Schnack et al., 2015; Shaw et al., 2006) may emerge later in development, especially 

given that these studies associated cortical thinning with cognition, while in early brain 

development, most of the cortex is still thickening across the first two years of life (Lyall et al., 

2015). This also highlights that developmentally distinct mechanisms contribute to cognition 

across the lifespan. In infancy, thickening of the cortex, through increased cortico-cortical 

connections via synaptogenesis and dendritic arborization, confers cognitive benefits. In later 

childhood and into adolescence however, cortical thinning that occurs (Raznahan et al., 2011; 

Walhovd et al., 2016; Wierenga, Langen, Oranje, & Durston, 2014) via apoptotic mechanisms 

contributing to synaptic pruning and circuit refinement, reflects greater cognitive abilities 

(Schnack et al., 2015; Shaw et al., 2006). Finally, in adulthood, work suggests that thicker cortices, 

likely a reflection of slowed apoptotic mechanisms and conservation of neurons and their 

connections, confer benefits during aging (Schnack et al., 2015). This body of work highlights the 
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importance of taking a developmental perspective in studying brain-cognition relationships which 

adaptively fluctuate across ontogeny.  

Strengths of this study include the use of a large, normative sample including longitudinal 

neuroimaging and laboratory-based cognitive assessments and the implementation of cutting-edge 

pediatric image analysis methods. Limitations reflect the inherent difficulties of studying infants 

and toddlers, including shifts in image contrast that can affect cortical surfaces measures 

(Walhovd, Fjell, Giedd, Dale, & Brown, 2017), and issues with testing young children including 

temperament and language abilities. Additionally, we did find that controlling for motion impacted 

some findings, suggesting that consideration of motion should be handled in a systematic way 

when performing such analyses. Despite these limitations, our study substantially contributes to 

the field by offering insights into how cortical structure across infancy and toddlerhood is related 

to emerging cognition.  

This study is the first to investigate the relationships between CT, SA, and emerging 

cognitive abilities in a large, normative sample. We report novel findings that larger surface area 

at birth and thicker cortices at ages 1 and 2 confer a cognitive advantage in infancy and 

toddlerhood. We find many expected brain-cognition relationships, suggesting that cortical areas 

supporting language, motor, and general cognitive abilities are structurally developed to support 

adult-like functions as early as 1 year of age. We also found that CT may be a particularly important 

morphological indicator of ability, which is influenced by environmental variables that shape both 

brain and cognition. Taken together, this work highlights the importance of prenatal and early 

postnatal cortical development for cognition in infants and toddlers.
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Table 3.1 Participant Demographics 

Child Characteristics  N, Mean (SD, Percent) 

Gestational Age at Birth (Days) 266.89 (12.31) 
Birth Weight (grams) 3011.0 (572.76) 
Stay in NICU 21 (4.31%) 
Age at Neo MRI (days) 25.73 (11.12) 
Age at 1yr MRI (days) 391.60 (22.02) 
Age at 2yr MRI (days) 755.63 (26.10) 
Age at 1yr Mullen (days) 388.10 (22.91) 
Age at 2yr Mullen (days) 752.77 (26.99) 
Male 259 (53.18%) 
Female 228 (46.82%) 
Single Gestation 237 (48.67%) 
Twin Gestation 250 (51.33%) 
Zygosity   

Dizygotic Twins  144 (58.54%) 
Monozygotic Twins  88 (35.77%) 
Opposite Sex Twins  14 (5.69%) 

Parental Characteristics *  

Maternal Age (years) 30.25 (5.39) 
Paternal Age (years) 32.38 (6.16)  

Mother Education (years) 15.63 (3.29) 
Father Education (years) 15.21 (3.67)  
Total Household Income ($) $74,538 ($54,526) 
Maternal / Paternal Race   

White  375 (77.00%) / 349 (71.66%) 
American Indian or Alaskan Native 2 (0.41%) / 1 (0.21%) 
African American 97 (19.92%) / 109 (22.38%) 
Asian 13 (2.67%) / 20 (4.11%) 
Not Reported 0 (0%) / 8 (1.64%) 

Maternal / Paternal Ethnicity   
Hispanic 51 (10.47%) / 57 (11.70%) 
Non-Hispanic 436 (89.53%) / 425 (87.27%) 
Not Reported 0 (0%) / 5 (1.03%) 

*reported at the time of the child's birth  
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Table 3.2. Descriptive Statistics of Mullen Scores 

 YEAR 1 (N = 469) YEAR 2 (N = 375) 
 Mean(SD)  Mean(SD)  

ELC 115.95 (13.26)  107.60 (15.17)  
GM-rs 18.05 (2.88)  27.30 (1.85)  
FM-rs 17.42 (1.72)  25.62 (2.09)  
VR-rs 17.9 (2.18)  27.13 (3.45)  
EL-rs 14.15 (1.96)  23.99 (3.65)  
RL-rs 14.18 (2.05)  26.0 (3.18)  

 

 



 

 

Figure 3.1 Gestational age and CT and SA across infancy and toddlerhood. 

Gestational age at birth associations are shown for both regional and average CT at birth, age 1, and age 1 (A-C) and total and regional SA (D-F). 
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Figure 3.2. Maternal Education and CT and SA across infancy and toddlerhood.  

Maternal education associations are shown for both regional and average CT at birth, age 1, and age 1 (A-C) and total and regional SA (D-F).
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Table 3.3. Sample Sizes Across Experiments 

 
N (% of entire sample) 

Neonatal CT/SA - 1yr MSEL 402 (82.55%) 
Neonatal CT/SA - 2yr MSEL 319 (65.50%) 
1yr CT/SA - 1yr MSEL  269 (55.24%) 
1yr CT/SA - 2yr MSEL 206 (42.30%) 
2yr CT/SA - 2yr MSEL  183 (37.58%) 
Longitudinal Model 81 (16.63%) 



 

 

Figure 3.3. Significant correlations between average CT and total SA and MSEL scores. 

Significant correlations are shown between MSEL scores at age 1 and CT and SA at birth (A) and age 1 (B), and MSEL scores at age 2 and CT and 
SA at birth (C), age 1 (D), and age 2 (E).  
 

Significant Correlations between Average CT and Total SA and MSEL at Ages 1 and 2
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Figure 3.4. Significant raw, unadjusted correlations between CT at age 1 and cognitive abilities at ages 1 and 2.  

Significant raw correlations are shown between regional CT at age 1 and ELC, GM, FM, VR, EL, and RL scores at ages 1 and 2. Significant 
associations are colored by the strength of correlation, with positive associations show in yellow-to-red colors and negative associations shown in 
blue. All results are FDR corrected for multiple comparisons and significant at the level of p < 0.05.  
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Figure 3.5. Significant raw and adjusted correlations between CT at age 2 and cognitive abilities at age 2. 

Significant correlations are shown between regional CT at age 2 and ELC, GM, FM, VR, EL, and RL scores at age 2 for both raw correlations and 
those adjusted for covariates. Significant associations are colored by the strength of correlation, with positive associations show in yellow-to-red 
colors and negative associations shown in blue. All results are FDR corrected for multiple comparisons and significant at the level of p < 0.05.  
 

CT at age 2 and Cognitive Ability at Age and 2

NoSigResults_LH.vtk

NoSigResults_LH.vtk NoSigResults_RH.vtk

NoSigResults_RH.vtk CT2_EL2_Raw_LH.vtk

CT2_EL2_Raw_LH.vtk CT2_EL2_Raw_RH.vtk

CT2_EL2_Raw_RH.vtk

CT2_ELC2_Raw_LH.vtk

CT2_ELC2_Raw_LH.vtk CT2_ELC2_Raw_RH.vtk

CT2_ELC2_Raw_RH.vtk

CT2_FM2_Raw_LH.vtk

CT2_FM2_Raw_LH.vtk CT2_FM2_Raw_RH.vtk

CT2_FM2_Raw_RH.vtk CT2_RL2_Raw_LH.vtk

CT2_RL2_Raw_LH.vtk
CT2_RL2_Raw_RH.vtk

CT2_RL2_Raw_RH.vtk

CT2_VR2_Raw_LH.vtk

CT2_VR2_Raw_LH.vtk CT2_VR2_Raw_RH.vtk

CT2_VR2_Raw_RH.vtk

NoSigResults_LH.vtk

NoSigResults_LH.vtk NoSigResults_RH.vtk

NoSigResults_RH.vtk

NoSigResults_LH.vtk

NoSigResults_LH.vtk NoSigResults_RH.vtk

NoSigResults_RH.vtk

CT2_ELC2_ADJ_LH.vtk

CT2_ELC2_ADJ_LH.vtk
CT2_ELC2_ADJ_RH.vtk

CT2_ELC2_ADJ_RH.vtk

SA2_VR2_ADJ_RH.vtk

-0.300

-0.100

0.100 

0.300 

0.500 

EL
C

G
M

FM

VR
EL

R
L

2yr - RAW 2yr - ADJUSTED 2yr - RAW 2yr - ADJUSTED

CT2_EL2_ADJ_LH.vtk

CT2_EL2_ADJ_LH.vtk CT2_EL2_ADJ_RH.vtk

CT2_EL2_ADJ_RH.vtk

CT2_RL2_ADJ_LH.vtk

CT2_RL2_ADJ_LH.vtk
CT2_RL2_ADJ_RH.vtk

CT2_RL2_ADJ_RH.vtk

CT2_VR2_ADJ_LH.vtk

CT2_VR2_ADJ_LH.vtk
CT2_VR2_ADJ_RH.vtk

CT2_VR2_ADJ_RH.vtk90 



 

 

Figure 3.6. Significant raw, unadjusted correlations between regional SA at birth and cognition at ages 1 and 2.  

Significant raw correlations are shown between regional SA at birth and ELC, GM, FM, VR, EL, and RL scores at ages 1 and 2. Significant 
associations are colored by the strength of correlation, with positive associations show in yellow-to-red colors and negative associations shown in 
blue. All results are FDR corrected for multiple comparisons and significant at the level of p < 0.05.
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Figure 3.7 Effects of correcting for motion.  

Raw, unadjusted correlations between CT at age 1 and RL scores at age 2 (top), are shown in comparison with null results when adjusting for 
covariates (middle), and rescued regional results when additionally controlling for main covariates and motion (bottom). Significant associations are 
colored by the strength of correlation, with positive associations show in yellow-to-red colors and negative associations shown in blue. All results 
are FDR corrected for multiple comparisons and significant at the level of p < 0.05
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 CHAPTER FOUR: WHITE MATTER MICROSTRUCTURAL 
DEVELOPMENT AND COGNITIVE ABILITY IN THE FIRST TWO 

YEARS OF LIFE3  
 

INTRODUCTION 
The first two years of life mark an accelerated, dynamic period of postnatal brain 

development in the human lifespan. During this time, the brain more than doubles in size 

(Knickmeyer et al., 2008), the cortex expands rapidly (Li, Nie, Wang, Shi, Lyall, et al., 2014b; 

Lyall et al., 2015), and the rate of brain white matter (WM) myelination peaks (Dubois et al., 

2014). The rapid development of postnatal WM development has been well studied in-vivo using 

diffusion tensor imaging (DTI), a technique that probes the diffusivity of water molecules in the 

brain. In WM, diffusion anisotropy, commonly measured by fractional anisotropy (FA), is high, 

while isotropic diffusion, measured by axial and radial diffusivity (AD, RD), is low relative to 

gray matter and unmyelinated WM (Dubois et al., 2014). In the first two years of life these metrics 

change rapidly as fibers are organized into bundles, premyelination is initiated, and myelination 

occurs; FA increases, while AD and RD decrease (Dubois et al., 2014; Geng et al., 2012). Post-

mortem studies have shown that myelination in early life follows an inside-out, front-to-back 

progression in the brain (Brody et al., 1987), and neuroimaging studies of WM development report 

similar findings (Deoni et al., 2011; 2012; Gao, Lin, et al., 2009a; Geng et al., 2012). During this 

same period, the cognitive capacities of infants advance from that of basic functions to complex 

                                                        
3 This chapter is currently under review at Human Brain Mapping (Girault JB, et al. (Under 
Review). White Matter Microstructural Development and Cognitive Ability in the First Two 
Years of Life.). 
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tasks including the refinement of fine and gross motor skills, processing of visual cues, and the 

comprehension and production of language. While it appears that the sequence of myelination 

mirrors that of cognitive development, given that myelination occurs in primary sensory tracts 

before motor tracts and in projection pathways before higher-order association pathways (Guillery, 

2005), it remains largely unknown as to how WM matures to support cognition (Walhovd et al., 

2014).  

It is hypothesized that one potential mechanism by which the brain mediates cognition is 

through optimized, rapid information transfer between connected cortical and subcortical regions 

via myelinated axons (Mabbott, Noseworthy, Bouffet, Laughlin, & Rockel, 2006; Nagy, 

Westerberg, & Klingberg, 2004). Axons wrapped in myelin sheaths conduct action potentials and 

neuronal signals at much faster rates due to the insulative properties of myelin (Dubois et al., 

2014). Additionally, it has been shown that myelination can occur in an activity-dependent 

manner, such that oligodendrocytes appear to selectively myelinate axons which receive more 

input from neurons (Fields, 2015; Wake et al., 2015), thus myelination likely plays a crucial role 

in shaping structural connectivity, communication between brain regions, and ultimately learning 

and cognition. Given that the sequential development of myelination in the brain mirrors cognitive 

development, myelination may be a prerequisite for the development of specific cognitive domains 

in early life. Additionally, neural activity that occurs during learning may accelerate myelination 

and increase WM integrity, a process that could be particularly prominent during early life when 

learning occurs rapidly.  

There is significant evidence to support a link between cognition and WM microstructure, 

as determined with diffusion weighted imaging in adults (Zatorre et al., 2012), including findings 

correlating the integrity of major WM fiber bundles with information processing speed in healthy 
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older adults (Penke et al., 2010), language learning in young adults (Mamiya et al., 2016), and 

improvements in working memory through training (Takeuchi et al., 2010). However, there have 

been few studies of how these WM-cognition relationships emerge across ontogeny, particularly 

during the early postnatal period of rapid WM maturation development (Gao, Lin, et al., 2009a; 

Geng et al., 2012; Knickmeyer et al., 2008; Mukherjee et al., 2002) when individual differences in 

neurodevelopment may have lasting consequences on cognitive ability. 

Recent studies have begun to elucidate the links between early WM development and 

cognition in healthy infants and toddlers. WM integrity of fiber tracts supporting working memory 

in adults were related to visuospatial working memory performance in 1-year-olds (Short et al., 

2013), suggesting that tract-specific functionality may arise very early in life.  Studies of myelin 

water fraction (MWF), a more direct assessment of myelin content in the brain, found that 

trajectories of MWF across the first five years of life were related to cognitive ability (Deoni et 

al., 2014), and that growth trajectories of individual WM regions were related to language and 

general cognitive abilities in young children (O’Muircheartaigh et al., 2013).  Finally, Lee and 

colleagues (2017) found that common factors of DTI parameters from twelve major fiber bundles 

linked to cognition in adults were related to and predictive of cognitive performance across the 

first two years of life. Taken together, these studies suggest that both global and local WM 

development may be reflective of cognitive development across the early childhood.  

The goal of this study is to determine the relationship of tract-based measures of FA, AD, 

and RD derived from neonatal, 1-year, and 2-year DTIs to cognitive measures of general ability, 

language, motor, and visual reception skills at ages 1 and 2 years in a sample of 447 healthy 

children, extending our previous study of DTI common factors (S. J. Lee et al., 2017). This 

information will help to better understand how these measures of WM microstructure perform as 
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biomarkers of present and future cognitive ability, especially when taking into account other, 

readily-available child and demographic variables. We hypothesized that tract-based measures of 

WM integrity would be related to present (cross-sectional) and future (longitudinal) cognitive 

ability, with more mature properties (higher FA, lower AD and RD) relating to better cognitive 

performance. We also explored how trajectories of maturation across the first two years of life in 

these WM tracts predicted cognitive ability at age 2, which to our knowledge, has not been done 

on a tract-by-tract basis.  

 

MATERIALS AND METHODS 
Participants  

Participants were part of an ongoing study of human brain development in singletons and 

twins (Gilmore et al., 2007; S. J. Lee et al., 2017). Pregnant women were recruited from outpatient 

obstetrics and gynecology clinics at the University of North Carolina Hospitals and Duke 

University Medical Center. Mothers were excluded from the study for major illness or use of illegal 

drugs during pregnancy. All offspring underwent magnetic resonance imaging shortly after birth, 

and at ages 1 and 2 years. Cognitive assessments were also collected at 1- and 2-year visits. We 

retrospectively identified 447 subjects with at least one diffusion weighted image (DWI) that 

produced usable quantitative tractography data and at least one cognitive assessment who met the 

following inclusion criteria: no diagnosis of major psychiatric disorder in the mother, born at ≥ 32 

weeks gestation (moderately premature to full term), spent ≤ 24 hours in the neonatal intensive 

care unit following birth, had no major abnormalities noted on any MRI, and had no major medical 

issues or illnesses reported up to age 2. Table 4.1 outlines the demographic characteristics of the 

sample. Informed written consent and parental permission was obtained from at least one parent 
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of all child participants and all study protocols were approved by the University of North Carolina 

at Chapel Hill’s Institutional Review Board.  

 

Image Acquisition 

DWI data were acquired using a single-shot echo-planar imaging spin-echo sequence at 3T 

on either a Siemens Allegra head-only scanner or a Siemens Tim Trio (Siemens Medical System, 

Inc., Erlangen, Germany), which replaced the Allegra in 2011. For earlier collected Allegra DWI 

data, a 6-direction protocol was used with the following parameters: Repetition Time (TR)/ Echo 

Time (TE) = 5,200/73 ms, slice thickness = 2 mm, and in-plane resolution = 2 x 2 mm2, with a 

total of 45 slices in 6 unique directions using b value of 1,000 s/mm2 and 1 baseline image (b value 

= 0) per sequence. This sequence was repeated five times (generating a total of 35 DWIs) to 

improve signal-to-noise. For the remaining Allegra DWI data, 42 directions of diffusion 

sensitization were acquired with a b value of 1,000 s/mm2 in addition to seven baseline (b value = 

0) images (generating a total of 49 DWIs). The parameters for the 42-direction data were as 

follows: TR/TR/Flip angle = 7,680/82/90°, slice thickness = 2mm, and in-plane resolution = 2 x 2 

mm2, with a total of 60 to 72 slices. The rest of the study subjects scanned on the Tim Trio followed 

the same sequencing parameters as the 42-direction Allegra protocol detailed above. For 

information on the number of scans collected with each scanner and protocol, see Table 4.2.  

 

Diffusion Tensor Imaging Analysis  

A study-specific, automated quality control (QC) protocol was applied to all raw DWI data 

using DTIPrep (http://www.nitrc.org/projects/dtiprep) which detected slice-wise and gradient-

wise intensity and motion artifacts and corrected for motion and eddy current effects (Oguz et al., 
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2014). Diffusion images with large motion artifacts and missing or corrupted gradients were 

excluded from further processing. Skull and non-brain tissue were removed using Brain Extraction 

Tool (S. M. Smith, 2002), and tensors were estimated using a weighted least-squares algorithm 

(Goodlett, Fletcher, Gilmore, & Gerig, 2009). The neonatal and pediatric (1- and 2-yr) DTI atlases 

(https://www.nitrc.org/projects/uncebds_neodti) were created using the UNC-UTAH NAMIC 

DTI framework (www.nitrc.org/projects/dtiatlasbuilder) outlined by Verde and colleagues (2014). 

A total of 45 homologous tracts were defined in both atlases using streamline tractography in 3D 

Slicer (http://www.slicer.org). For basic descriptions of the subset of 29 tracts used in our analyses, 

see Figure 4.1; for details on tractography, see the appendix from Lee et al. (2015). Pair-wise 

registration was performed to map individual subject DTIs into atlas space. Resulting deformation 

fields were used to map atlas fibers into individual subject space, where profiles of from FA, AD, 

and RD were extracted at evenly spaced points (arc lengths) along each fiber tract (DTI-Reg, 

DTIAtlasFiberAnalyzer; http://www.slicer.org). Each tract from each subject underwent QC prior 

to statistical analysis using FADTTSter (http://www.nitrc.org/projects/fadttster); subjects were 

excluded on a tract-by-tract basis if their correlations with the population average FA profile was 

<0.70. Some tracts were less reliably reproduced in individuals and had higher failure rates than 

others. Average FA, AD, and RD values were computed for each tract. Additionally, terminal arc 

lengths from some tracts were not included in tract-average calculations due to high noise.  

 

Cognitive Assessments 

Cognitive ability was assessed at ages 1 and 2 using the Mullen Scales of Early Learning 

(MSEL). Child measures of gross motor (GM), fine motor (FM), visual reception (VR), expressive 

and receptive language (EL, RL) were collected by experienced testers. Performance on the latter 
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four MSEL cognitive scales were analyzed as raw scores, and their age-standardized t-scores were 

combined into an Early Learning Composite (ELC) standardized score (range: 49-155, mean =100, 

sd =15). The ELC has high internal consistency (median = 0.91) and reliability (median = 0.84 for 

the cognitive scales during these testing ages), and principal factor loadings of the scales lend 

support for the construct validity of the ELC as a general measure of cognitive ability (Mullen, 

1995), much like an intelligence quotient.  The primary measure of interest for this study was the 

ELC, though we also investigated MSEL raw scale scores (not normalized for age range) for each 

of the four cognitive domains. We specifically chose to study raw scores because we are interested 

in understanding how a child’s actual performance relates to brain development, instead of 

attempting to interpret the relationships between brain development and a child’s degree of 

difference from a normative sample, a rationale which has been previously described (Naigles et 

al., 2017). A subset of the MSEL assessments (5% and 7% of MSEL tests at ages 1 and 2, 

respectively) were conducted in Spanish to match the native language of the child. Descriptive 

statistics of ELC scores can be seen in Table 4.1, statistics for all other cognitive raw scale scores 

at ages 1 and 2 and correlations between cognitive scores across time can be seen in Table S4.1 

and Table S4.2.  

 

Statistical Analysis  

 We tested our primary hypothesis that early brain WM microstructure is related to 

cognitive ability by calculating raw, unadjusted Pearson’s correlations between tract-average FA, 

AD, and RD and each MSEL score over time. All possible cross-sectional and predictive 

relationships were assessed: (1) WM at birth correlating with MSEL scores at ages 1 and 2, (2) 
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WM at age 1 correlating with MSEL scores at age 1 and 2, and (3) WM at age 2 correlating with 

MSEL scores at age 2 (See Figure 4.2 for schematic).  

We then investigated the usefulness of WM microstructure as a biomarker of cognitive 

ability in very young children by modelling the effects of WM microstructure on MSEL scores 

while controlling for other factors that are known to relate to the MSEL scores: gestational age at 

birth, age at testing, sex, and maternal education level. We additionally included a nuisance 

variable, MSEL test date (DATEMSEL), controlling for the number of months since study inception 

to account for any sample drift or variation in cognitive testing administration due to personnel 

turnover during the ten-year data collection period. These factors were previously identified in an 

overlapping sample by Girault et. al. (Chapter 1, manuscript under review), and were further 

confirmed in the current dataset using mixed effects models. Mixed model results relating child 

and demographic factors to MSEL scores are summarized in Table S4.3 and are discussed below. 

Factors influencing 1-year MSEL scores were chronological age at testing, MSEL test date, 

gestational age at birth, and sex. All of these variables had very small impacts on changes in MSEL 

scores at age 1; with a one-unit increase in age at MSEL, MSEL test date, and gestational age 

accounting for less than a tenth of a point of change in MSEL scores. Sex differences were more 

pronounced, with males scoring more than two points lower than females on the ELC at age 1. 

MSEL scores at age 2 were most consistently related to maternal education, with every 

additional year of education conferring nearly a two-point increase in ELC scores. Some scales 

significantly varied based on age at testing, though the effect sizes were quite small. Gestational 

age at birth was positively related to fine motor and expressive language scores at age 2, where ten 

additional days in the womb relating to a 0.5-point increase in fine motor and a 0.8-point increase 

in expressive language scores. Sex effects were more pronounced, with males scoring 
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approximately one point lower on fine motor and visual reception, and nearly five points lower on 

the ELC at age 2. Gestation number significantly impacted 2-year ELC and receptive language 

scores, with twins scoring 5.6 points and 1.24 points lower than singletons, respectively.  

We additionally probed relationships between child and demographic factors and DTI 

parameters by tract. We found that FA, AD, and RD at birth are strongly correlated with gestational 

age at birth, as has been previously reported (Dubois et al., 2014; Geng et al., 2012; Partridge et 

al., 2004) such that greater time in the womb reflects greater maturation (higher FA, lower AD and 

RD; Table S4.4). These effects are largely not present at ages 1 and 2. This may be due to the 

significantly lower inter-subject variability in DTI metrics at ages 1 and 2 when compared to birth 

(Table S4.5). Given the strong relationship between gestational age and gestation number (r = -

0.71, p < 0.0001), we also split the sample into twins and singletons and found that the correlations 

between gestational age and DTI parameters followed the same pattern for AD and RD, although 

FA at birth was correlated only with gestational age in singletons; twins exhibited weaker 

correlations between FA and gestational age such that they did not reach statistical significance. 

Sex differences were observed in a few tracts at birth and at age 1; females exhibited lower AD in 

the bilateral ILF and higher FA in the bilateral UNC at birth and lower AD in the bilateral ILF and 

splenium at age 1. Maternal education was not found to correlate with AD or RD at any age, but 

was correlated with FA at age 1 in three tracts: the bilateral CF-M (left: r = 0.18, p = 0.033; right: 

r = 0.20, p = 0.020) and the right CT-Par (r = 0.20, p = 0.020). 

To account for such relationships in the data, all adjusted correlations and mixed models 

included gestational age, age at MSEL testing, sex, maternal education, and gestation number, 

along with nuisance variables controlling for DTI protocol information (A6, A42, T42) and MSEL 

test date. These adjusted models were constructed in a similar manner to the raw Pearson’s 
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correlations, such that both cross-sectional and predictive relationships were assessed (Figure 4.2). 

Models included partial Pearson’s correlations – for ease of comparing effect sizes to unadjusted 

correlations – and mixed-effects models, which allow us to account for the relatedness of twins in 

our sample by treating one twin from each pair as a repeated measure with compound symmetric 

covariance structure.  

Due to the strong correlations of FA, AD, and RD at birth along all tracts with gestational 

age, and the modest association between gestational age and MSEL scores at age 2, an analysis 

was also performed to test the hypothesis that white matter at birth mediates the impact of 

gestational age at birth on cognition at age 2. The mediation analysis involved four steps: (1) show 

that gestational age at birth and ELC scores at age 2 are correlated, (2) show that gestational age 

at birth is correlated with the mediator, FA, AD, and RD at birth, treating the mediator as a response 

variable, (3) show that FA, AD, and RD at birth affect ELC scores at age 2 while controlling for 

gestational age, and (4) use a Sobel test to evaluate the significance of the mediation. All steps 

were tested using linear regression models, with FA, AD, and RD for each tract tested separately.  

Finally, as an exploratory analysis, we employed a longitudinal modeling technique to test 

whether trajectories of brain development across the first two years of life are related to cognitive 

development. Specifically, we tested if brain WM at birth (as a reflection of prenatal brain 

development; FA0, AD0, RD0), the change in WM properties in the first year of postnatal life 

(dFA1,0, dAD1,0, dRD1,0; calculated as a simple subtraction of the parameter at the earlier age from 

that of the later age), or the change in WM properties in the second year of life (dFA2,1, dAD2,1, 

dRD2,1) related to MSEL 2-year scores, our latest testing point. To do this, we used linear mixed 

effects models predicting 2-year scores including all three WM measures (i.e.  FA0, dFA1,0, and 

dFA2,1) simultaneously while controlling for gestational age (GA), maternal education (MEDUY), 
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age at MSEL testing (AgeMSEL), sex and nuisance variables related to DTI protocol at each age 

(ScanDir) and MSEL test date (DATEMSEL). Only subjects with complete longitudinal data– scans 

at birth, age 1, and age 2 and cognitive data at age 2 – were included in these analyses, and one 

twin from each pair was treated as a repeated measure. The statistical model for FA predicting 

ELC at age 2 (ELC2) is shown below:  

!"#$ 	= 	'( + '*+,-.( 	+	'/*+0,,2-.3,( 	+ 	'/*+4,02-.$,3 	+ 	'5+6.	 +

	'+789:;<
.=>?@AB 	+	'C8DE>F	 +	'?AGHIJ!KLM	 +	'@NOPP8Q,RSTUKVW( 	+

	'@NOPP8Q0RSTUKVW3 	+ '@NOPP8Q4RSTUKVW$ 	+	'G+XA9:;<
K.Y!?@AB + Z  

 

where !"#$ is the dependent variable and -.(, 2-.3,(,	2-.$,3 , 6., .=>?@AB, E>F, J!KLM, 

RSTUKVW(, RSTUKVW3, RSTUKVW$, and K.Y!?@AB  are the independent variables, and Z is the random 

error.  The models for AD and RD predicting any MSEL 2-year score were constructed in the same 

manner. 

Sample sizes for all analyses are reported in Table S4.6. All results from DTI analyses are 

corrected for multiple comparisons using False Discovery Rate (Benjamini & Hochberg, 1995), 

such that each model predicting MSEL scores using tract data is corrected for the number of tracts 

analyzed per DTI parameter (FA, AD, RD). For the unadjusted Pearson’s correlations between 

DTI parameters and MSEL scores which did not include gestation number as a covariate, we also 

split the sample into twins and singletons to test for the potential group differences in brain-

cognition associations. All statistical analyses were performed using SAS statistical software, 

version 9.4.  
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RESULTS 
The Predictive Value of WM for Present and Future Cognition 

Unadjusted Pearson’s correlations were computed between tract-average FA, AD, and RD 

at birth, and ELC scores at ages 1 and 2 (Table 4.3, Table 4.4).  There were no significant 

correlations of FA, AD, or RD for any tract at birth with ELC scores at age 1 (Table 4.3).  In 

contrast, there were widespread significant correlations across multiple tracts between, FA, AD, 

and RD, and FA at birth and ELC score at 2 years (Table 4.4).  Correlations with AD and RD were 

negative, such that lower, or more mature values were associated with higher scores, while higher 

(more mature) FA values at birth were associated with higher scores at age 2.  DTI parameters at 

age 1 were not significantly associated with ELC scores at the same age (Table 4.5), and only a 

single negative association of FA in the right CGC tract at age 1 and 2-year ELC scores was found 

(Table S4.7).  There were also very few significant cross-sectional associations of tract-based DTI 

parameters with ELC scores, only 2 at age 1 (FA in the left CT-M and splenium) and none at age 

2 (Table S4.8).  

Examination of relationships between the five MSEL scales (fine and gross motor, 

expressive and receptive language, visual reception) and tract-based DTI parameters revealed 

interesting associations.  There were widespread significant associations of FA, AD, and RD 

across most tracts at birth and fine motor scores at age 1 (Table 4.3).  In addition, there were 

several significant associations between AD and RD at birth and expressive and receptive language 

at age 1, especially in cortico-thalamic, arcuate, and association tracts, including the IFOF, ILF, 

SLF, and CGC.  There were widespread associations of FA and RD at birth with gross motor and 

receptive language at age 2 and widespread associations of AD and RD at birth with fine motor 

and expressive language at age 2 (Table 4.4). FA in several association tracts at birth were 

correlated with visual reception at age 2. There were no significant associations between year 1 
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DTI parameters and year 2 MSEL scales except for FA in the left CGC and receptive language 

and FA in the right ARC-TP and fine motor scores.   

There were widespread cross-sectional associations of FA and RD with gross and fine 

motor scores at age 1; AD was less frequently associated with motor scores.  AD, and especially 

RD, was associated with expressive language at age 1 (Table 4.5).  There were no cross-sectional 

associations at age 2.  

Sensitivity analyses splitting the sample into twins and singletons revealed similar results 

(data not shown). Most correlations were of a similar magnitude and direction, although they did 

not always reach statistical significance, likely due to a reduction in sample sizes.  

 

DTI Measures of WM as Biomarkers of Cognitive Ability  

A very different pattern of associations emerged after adjusting correlations for covariates, 

including gestational age, gestation number, age at assessment, sex, MSEL test date, maternal 

education, and DTI protocol. A summary of the number of statistically significant results across 

analyses and by parameter (FA, AD, RD) can be seen in Figure 4.3. 

As with the unadjusted results, there were no significant correlations between DTI 

parameters in any tract at birth and ELC scores at age 1; there were fewer significant associations 

with fine motor and receptive language scale scores. (Table 4.6).  In contrast to the widespread 

significant unadjusted associations between DTI parameters at birth and MSEL scores at age 2, 

there were none for adjusted correlations (Table S4.9).  There were no significant associations for 

DTI parameters at age 1 and any MSEL score at age 2 (Table S4.10). 

There were fairly widespread cross-sectional associations at age 1 for and FA and RD and 

ELC scores, in contrast to no significant associations for unadjusted correlations (Table 4.7).  
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However, there were fewer significant correlations with fine and gross motor scores, and no 

correlations with expressive language compared to unadjusted results.  At age 2, adjusted and 

unadjusted results were very similar; there were no significant associations, except AD in left 

ARC-FP and right ILF with receptive language (Table S4.11). 

Linear mixed models treating each twin from a twin-pair as repeated measures were 

conducted to account for the relatedness of twins. The results from these analyses are highly similar 

to those from partial correlations, though fewer FA results are found to be significant, possibly due 

to the reduction in the number unique subjects, and the ELC at age 2 was found to be positively 

related to AD in the left SLF.  

 
 
Mediation Analysis 

 Analyses testing for the mediating effect of WM at birth on the association between 

gestational age and ELC scores at age 2 returned no significant results for any tract, and thus 

including FA, AD, or RD at birth had no impact on the association between gestational age and 

2yr ELC scores. Mediation analyses were conducted on the entire sample, a subset of subjects 

excluding one twin from each pair, and the singletons only – results (not shown) were highly 

similar between models.  

 

Longitudinal Changes in WM and 2-year Cognitive Scores 

Mixed effects models testing for the relationships between WM properties at birth (FA0, 

AD0, RD0), the change in WM properties from birth to age 1 (dFA1,0, dAD1,0, dRD1,0) and the 

change from age 1 to age 2 (dFA2,1, dAD2,1, dRD2,1), while controlling for covariates, revealed a 

few significant results (Table 4.8). Higher ELC scores were predicted by a slower decrease in AD 

from 1 to 2 years in the right SLF.  Higher receptive language scores at age 2 were predicted by 
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slower decreases in RD from 1 to 2 years in several tracts including the bilateral ARC-FT, right 

CF-M, right ARC-TP, right CT-PM, the left CT-M, left CGC, left IFOF, left ILF, and left SLF.  

Higher receptive language scores were also predicted by a faster decrease from 1 to 2 years in RD 

in the left CT-PFC, and less increase in FA in the left CT-Par. Higher gross motor scores were 

predicted by a slower increase in FA from birth to 1 year in the left UNC, while higher visual 

reception was predicted by higher FA at birth in the left CT-PM. 

 

DISCUSSION 
In the present study, we found widespread unadjusted correlations between tract-average 

measures of FA, AD, and RD at birth and cognitive outcomes at ages 1 and 2, suggesting that 

white matter microstructure at birth is modestly predictive of cognitive function at age 2 years.  

We also found that WM microstructure at age 1, especially RD, was related to concurrent 

cognition, suggesting that RD may be a particularly important factor reflecting individual 

differences in WM development at this age.  Analyses controlling for variables related to children’s 

cognitive scores and WM integrity, such as maternal education, sex, and gestational number, reveal 

that FA, AD and RD at birth may not be useful biomarkers of infant ability, as correlations 

weakened and became nonsignificant as other covariates with stronger associations to cognition 

were introduced in the model. However, some correlations between FA and AD at birth and fine 

motor and receptive language scores at age 1, as well as correlations between FA, AD, and RD at 

age 1 and concurrent ELC and gross and fine motor scores remained significant. Finally, our 

exploratory analysis investigating the relationship between developmental trajectories of tract-

based WM from birth to age 2 and cognition at age 2 revealed that generally slower rates of change 

in RD in the second year of life, possibly reflecting more protracted myelination, related to better 
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receptive language scores across a few projection and many association fibers, some of which are 

known support language development in children and adults. Taken together, our findings suggest 

that early postnatal WM integrity is important for infant cognition, though its role in cognitive 

development should be considered alongside other important child and demographic factors, such 

as sex, gestational age and gestation number, and maternal education level.  

 

White Matter at Birth and Future Cognition 

 The majority of the significant correlations were found between WM measures at birth and 

subsequent cognition, and the remaining findings were largely between WM at age 1 and 

concurrent cognition. This suggests that WM microstructure at birth carries particularly important 

information for future cognitive development, even up to two years post-birth. The brain undergoes 

substantial development in utero, with processes of neurogenesis and neural migration dominating 

during the majority of the second trimester, followed by synapse formation and refinement 

occurring during the late second into the third trimester. Around week 28 of gestation, 

oligodendrocytes begin to myelinate long-range axons, though relatively few axons are fully 

myelinated at birth (Stiles, Reilly, Levine, Trauner, & Nass, 2012). At birth, major fiber bundles 

are present, organized, and “adult-like” in their structure, enough so to be reliably reproduced in 

our study and others (Dubois et al., 2008; Dubois, Hertz-Pannier, Dehaene-Lambertz, Cointepas, 

& Le Bihan, 2006; Hermoye et al., 2006) using neuroanatomically-driven fiber tractography 

techniques. Brain connectivity studies using probabilistic tractography have also shown that hubs 

of major WM networks found in adults are in place by 30 weeks gestation (Ball et al., 2014). Taken 

together, the findings suggest that prenatal brain development sets the stage for foundational WM 

microstructure and subsequent infant cognitive abilities.  
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 The lack of significant brain-cognition relationships between WM at ages 1 and 2 and 

general cognition at age 2 is puzzling given that cognitive ability at age 2 is a more stable predictor 

of school-age intelligence (Chapter 1, manuscript under review). The lack of such findings could 

be attributed to reduced power to detect effects from smaller sample sizes. Alternatively, given 

that the standard deviation in FA, AD, and RD among individuals is significantly lower at ages 1 

and 2 than at birth, is possible that individual differences between WM integrity at these ages lack 

the ability, on their own, to predict variance in cognitive scores at age 2. Finally, it is also possible 

that WM integrity at ages 1 and 2 represent transient individual differences without long-term 

consequences.  

 

RD: A Marker of Overall White Matter Integrity During Brain Development 

 Of all uncorrected correlations, RD accounted for the largest proportion of the significant 

findings, while AD and FA accounted for equal portions of the remaining findings. As expected, 

the direction of findings suggest that better cognitive scores are associated with greater levels of 

maturation in fiber bundles (lower RD and AD, higher FA). Interpreting the biological mechanisms 

underlying changes in diffusion parameters is not trivial, especially in the context of early 

development when many processes may simultaneously contribute to the diffusion signal. In 

humans, RD and FA change most rapidly across the first years of life, with AD showing lower 

rates of maturation (Geng et al., 2012). Additionally, tracts do not appear to maintain the same 

rank-order (i.e. lowest RD tracts at birth are not the lowest RD tracts at age 2), suggesting that 

rates of RD development could be important individual difference factors (Geng et al., 2012). 

Finally, Dubois and colleagues (Dubois et al., 2014) posit that, while FA and AD are good markers 

of fiber organization and are sensitive to characterizing fiber compactness and structure, the 
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interpretation of their changes across early development may be difficult to discern given that they 

may increase or decrease in response to various developmental events including premyelination 

(FA increases, AD increases), myelination (FA increases, AD could decrease or remain the same), 

and the myelination of crossing fibers (FA decreases as the secondary bundle myelinates, AD 

decreases).  On the other hand, RD consistently decreases across the different stages of WM 

development, making it a relatively strong marker of overall maturation, particularly during 

infancy (Dubois et al., 2014). Our findings echo this, with RD being the most consistent predictor 

of cognition in infants. However, we found no relationships between RD and cognition at age 2, 

suggesting that there may be a ceiling effect in the developmental trajectory of RD, making it 

difficult to relate to variation in cognitive scores at this age.  

 Interestingly, previous work had identified that common factors of AD at birth, age 1, and 

age 2 were related to ELC scores at ages 1 and 2 whereas common factors of FA and RD at only 

age 1 were related to ELC scores (S. J. Lee et al., 2017). The apparent differences in findings are 

likely best explained by the inherent differences in the study design and methodology.  The 

previous study investigated correlations between data-derived common factors of DTI parameters 

with the goal of studying groups of developmentally-related tracts and their associations with child 

ability, whereas in this study we directly performed tract-wise correlations to achieve a better 

understanding of the neurobiology of early cognition by probing specific brain-cognition 

relationships. Additionally, Lee and colleagues (2017) performed their factor analysis using twelve 

major fiber bundles implicated in cognition in older adults (Penke et al., 2010), whereas in the 

present study we included seventeen more tracts which included motor, sensorimotor, and higher-

order association fibers like the SLF, IFOF, and additional segments of the arcuate. However, 

importantly, these studies do have commonalities among their major findings, which are discussed 
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further below, and include the age-specific nature of brain-cognitions relationships, very similar 

effect sizes, and the potentially important role for protracted WM development in supporting 

cognition.  

 

White Matter Spanning the Brain is Associated with Cognition Across Domains  

 Generally, we found widespread relationships between WM tracts and cognitive scores, 

suggesting that global brain WM integrity is related to cognition at early ages, as opposed to tract-

specific findings. This is particularly true for WM at birth and its relationships to cognition in 

infancy; fine motor, expressive language, and receptive language scores are all correlated with 

similar tracts, which include arcuate language tracts, sensory relay projection tracts, and higher-

order association tracts. The same is true for the correlations between all motor and language scores 

at age 1 and concurrent WM integrity. Such widespread associations are not surprising as 

microstructure is highly correlated across tracts at birth (S. J. Lee et al., 2017). At age 1, however, 

visual reception scores appear to have more functionally-specific correlations with tracts shown to 

be related to visual processing in adults and children. For example, the bilateral ILF, the right SLF, 

and the splenium were found to relate to visual reception at age 2, and it is known that the SLF 

and ILF play important roles in the processing of visual information (Shinoura et al., 2009; 

Thiebaut de Schotten et al., 2011) and the splenium may also support visual perception through 

interhemispheric transfer of visual information (C. G. Gross, Bender, & Mishkin, 1977) as well as 

visual orienting (Elison, Wolff, et al., 2013b).  

 The widespread associations found between WM integrity and infant cognition may also 

be the result of imprecise measurement of specific cognitive tasks in infancy due to the difficulty 

of testing infants and tapping individual cognitive constructs which often depend on language 
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skills for instruction and response. Infant cognitive tasks also rely heavily on a child’s fine motor 

skills, and thus the observed correlations between infant cognition across domains and 

sensorimotor projections tracts from the brainstem and thalamus to the cortex are likely true 

associations, given the types of cognitive tasks administered. Additionally, widespread 

correlations may be reflective of the highly plastic nature of the infant brain, in which tracts have 

yet to develop their functionally specific role in cognition. Alternatively, the high correlations of 

WM properties between tracts (S. J. Lee et al., 2017) and coordinated development among tracts 

at these ages may make it difficult to discern which tracts are specifically contributing to domain-

specific cognition. A previous study from our group also found global associations between a 

common factor of WM development and general infant cognition (S. J. Lee et al., 2017), while 

another earlier study showed tract-specific correlations with working memory scores (Short et al., 

2013), suggesting that tapping specific cognitive domains using different task-based assessments 

may be necessary to identify functionally specific results.   

 

WM Integrity as a Biomarker of Cognition  

 To determine how informative WM microstructure is as a biomarker of infant cognition, 

we tested for the effects of WM on MSEL scores while controlling for other variables correlated 

with infant cognition in our sample. In doing so, we found that many of the brain-cognition 

relationships observed with unadjusted Pearson’s correlations were no longer significant and 

substantially reduced in effect size. There were no longer any significant correlations between WM 

at birth and 2-year MSEL scores. Many fewer correlations were found between WM at birth and 

fine motor and receptive language scores at age 1, and they were not with RD, but with FA and 

AD.  
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 Interestingly, correlations between ELC scores and WM at age 1 emerged after controlling 

for covariates, mostly with RD, and spread across nearly all WM tracts tested. Similar patterns of 

findings remained between WM at age 1 and concurrent gross and fine motor scores; no 

correlations remained with receptive or expressive language or visual reception scores after 

controlling for covariates. Brain-cognition correlations were detected between AD at age 2 and 

receptive language scores at age 2 in the left ARC-TP and SLF, two tracts which run parallel to 

each other and have been implicated in language. However, the direction of effect is opposite of 

what we would expect; that is, higher AD being correlated with better scores. This opposite 

relationship with AD has been observed before between AD at ages 1 and 2 and cognition at age 

2 (S. J. Lee et al., 2017), and may suggest that children with more protracted AD development in 

language tracts perform better on these assessments. Taken together, we can see that while WM at 

birth no longer remains a good predictor of later outcomes, concurrent brain-cognition 

relationships at age 1 either emerge or remain largely similar, and several functionally specific 

relationships emerge at age 2 between tract WM and receptive language scores, suggesting that 

the usefulness of WM as a biomarker varies over time. The age-specific nature of the relationships 

between WM and cognition in the first two years of life were also noted in a previous study (S. J. 

Lee et al., 2017). This varying nature in brain-cognition relationships across development may be 

due to the differences in the reliability of infant cognitive scores across ages, potential differences 

in the impact of covariates on cognition over time, or simply limitations of our neuroimaging 

measures to capture subtle, but likely important, dynamic brain-cognition relationships in a single 

snapshot.  

 The effect sizes noted in our study are relatively weak, with the absolute value of adjusted 

correlations between WM tract properties and infant and toddler cognitive scores ranging from 
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0.13 to 0.25. These effect sizes are nearly identical to those from a previous publication using a 

factor analysis approach (S. J. Lee et al., 2017), and very similar to those reported in older adults 

between general factors explaining WM and processing speed (Penke et al., 2010). Effect sizes 

reported in studies linking WM to working memory in 1-year-olds (Short et al., 2013) and adults 

(Takahashi et al., 2010) show slightly higher correlations ranging from roughly 0.3 to 0.5. Taken 

together, these findings suggest that WM microstructure has very modest associations with general 

ability and slightly higher associations with specific domains such as working memory, but 

interestingly, these associations appear to be relatively stable across development. 

 

Longitudinal Trajectories of WM Development and Cognition 

  As an exploratory analysis, we employed a longitudinal model to test whether trajectories 

of brain development across the first two years of life are related to cognitive scores at age 2. We 

found that generally slower decreases in RD from age 1 to 2, and to a lesser extent AD, predicted 

better cognitive scores, namely receptive language scores. Between ages 1 and 2, slower rates of 

change in AD in the right SLF predicted higher ELC scores at age 2, while slower rates of change 

in RD in a few projection tracts, the bilateral ARC-FT, and the left lateralized CGC, IFOF, ILF, 

and SLF predicted higher receptive language scores. These relationships suggest that a prolonged 

period of WM development and plasticity may be beneficial in creating WM pathways that better 

support subsequent cognitive development, and in this case particularly language development, in 

young children. However, faster decreases in RD from ages 1 to 2 in the left CT-PFC did predict 

higher receptive language scores at age 2, suggesting the effects may be tract-specific. This 

highlights the dynamic nature of early WM development and its relationship to cognition. 

 Of note, the receptive language scale is the only inter-sensory scale on the MSEL, meaning 
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that both auditory and visual information are presented during the course of testing. Infants and 

toddlers are tested on their ability to understand verbal instructions, auditory-spatial, and auditory-

quantitative concepts, such as relative position, size, and length comparisons. For this reason, it is 

promising that we were able to identify that developmental rates of change in RD in tracts that are 

known to relate to language (ARC-FT, SLF), as well as tracts which are part of the visual 

information processing stream (IFOF, ILF), were related to receptive language scores at age 2. 

Some studies have also shown that the IFOF and ILF play a role in language, though their exact 

functions remain unclear (Mandonnet, Nouet, Gatignol, Capelle, & Duffau, 2007; Moritz-Gasser, 

Herbet, & Duffau, 2013). The CGC was also implicated in receptive language ability; the CGC is 

primarily thought to play a role in higher-order cognitive control in adults (Metzler-Baddeley et 

al., 2012; Takahashi et al., 2010) and it may serve a similar role in infants and toddlers. 

Additionally, we found that protracted development of both AD and RD in the SLF related to 

higher ELC and receptive language scores at age 2, respectively. The SLF has been implicated in 

a variety of cognitive functions including working memory (Short et al., 2013; Vestergaard et al., 

2011) and language (Alexander, Naeser, & Palumbo, 1987; Kreisler et al., 2000). Protracted 

development of the SLF has been previously reported from birth to age 5 (Zhang et al., 2007), 

suggesting that prolonged maturation and possibly prolonged plasticity in this fiber tract may be 

particularly important for children’s cognitive development. A study of myelin content in the brain 

during early life found that children with more protracted global myelin developmental trajectories 

performed better on cognitive assessments (Deoni et al., 2014), suggesting that the effect may also 

be global. 
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The Contribution of Demographic Factors to WM Microstructure and Cognition  

 Demographic factors contributed to both brain WM properties and cognitive scores across 

infancy. WM microstructural properties at birth were strongly correlated with gestational age, such 

that greater time in the womb reflected greater maturation (higher FA, lower AD and RD) as has 

been previously reported in several studies (Dubois et al., 2014; Geng et al., 2012; Partridge et al., 

2004). Effects of gestational age on DTI measures were not observed at later ages, though research 

in the field suggests differences in WM properties between preterm and full-term infants may 

persist into childhood (Constable et al., 2008; Yung et al., 2007). We found that the relationships 

between gestational age and AD and RD were observed in both twins and singletons, though FA 

was not related to gestational age in twins. A previous study from our group found that there were 

no differences in the relationship between FA and gestational age between twins and singletons 

when modelling developmental trajectories of FA in regions-of-interest from major WM fibers 

using Gompertz functions (Sadeghi, Gilmore, & Gerig, 2016), suggesting that the lack of 

correlation between FA and gestational age in twins seen here could be related to the tract-based 

method or linear modeling approach and deserves further study. We observed sex differences in a 

few tracts at birth and age 1, with females exhibiting more mature tract properties in the bilateral 

ILF at birth and age 1, the bilateral UNC at birth, and the splenium of the corpus callosum at age 

1, suggesting that females in our sample exhibit greater maturation in areas connecting the 

temporal poles to the frontal and occipital cortices. We suggest caution in the interpretation of 

these results as the goal of this study was not to investigate sex differences in brain development, 

but to consider them in the context of contributing to differences in brain-cognition relationships. 

Maternal education was not found to correlate with AD or RD in any tract, at any age, and only 

correlated with FA in 3 of 29 tracts at age 1, specifically corticofugal tracts connecting to the motor 
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cortex and the right corticothalamic projection to the parietal cortex. 

 Cognitive scores also varied as a function of certain demographic factors. MSEL scores 

between ages 1 and 2 were moderately correlated (0.24 ≤ r ≤ 0.34) and influenced by both unique 

and overlapping sets of demographic and child factors. MSEL scores at age 1 were influenced, 

though only mildly, by age-related variables including chronological age at testing, MSEL test 

date, and gestational age at birth, whereas gestational age at birth is only related to fine motor and 

expressive language scores at age 2. Maternal education was only related to MSEL scores at age 

2, with each additional year of maternal education accounting for a nearly two-point increase in 

ELC scores in offspring; the difference between a mother having a high-school education and a 

college degree conferred roughly a 7-point (nearly half a standard deviation) advantage to their 

offspring. This effect could be due to shared genetics between mother and child (Deary et al., 

2013), greater socioeconomic advantages (Stumm & Plomin, 2015), potential differences in 

parenting based on education level (Carr & Pike, 2012), or likely some combination of all three. 

Our finding that only MSEL scores at age 2, and not age 1, are related to maternal education level 

is likely due to the increased sophistication of the assessment demands in the 2-year measurements, 

which then also have a higher correlation with later childhood intelligence, whereas measures at 

age 1 are less reliably related to a child’s later performance (Chapter 1, manuscript under review).   

 Scores at both ages were impacted by sex, with females scoring roughly 2.5 points higher 

on the ELC at age 1 and nearly 5 points higher on the ELC at age 2 than males. Early differences 

in cognition between the sexes have been reported, although these differences appear to attenuate 

with age (Stumm & Plomin, 2015). The factor with the largest impact on ELC scores was gestation 

number; by age 2, twins scored 5.6 points lower on the age-standardized ELC than did singletons. 

Differences in cognitive scores between twins and singletons have been previously reported in this 
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sample and others, with a roughly 6-point difference in IQ being noted across the lifespan (Bishop 

et al., 2003; Ronalds et al., 2005; Stumm & Plomin, 2015).  

 Taken together, we can see that there are both shared and unique demographic factors that 

contribute to WM microstructure and cognitive scores across the first two years of life. Namely, 

gestational age at birth seems to have an important contribution to WM integrity at birth, but 

relatively little contribution to later WM. Gestational age at birth has a direct effect on ELC scores 

at age 2 which are not mediated by WM at birth, however when gestational age at birth is included 

alongside other variables including maternal education and gestational number, its effect on 

cognition at age 2 is minimal. Alternatively, maternal education significantly impacts offspring 

MSEL scores at age 2, but has little to no bearing on earlier MSEL scores or WM development. 

Sex and gestation number, on the other hand, contribute, at least to some extent, to both brain and 

cognitive development across infancy and into toddlerhood.  

 

Limitations 

 Results should be considered in the context of several limitations. Interpreting measures of 

WM microstructure derived from DTI is not trivial. While we have some knowledge as to how 

FA, AD and RD develop over time, and how they may relate to primary developmental processes 

such as fiber organization, premyelination, and myelination, we cannot be certain that other 

confounding factors such as crossing fibers and partial volume effects are not influencing the 

diffusion of water molecules in the brain (Dubois et al., 2014; Vos, Jones, Viergever, & Leemans, 

2011). The quantitative tractography method utilized in this study was well suited to discern 

specific brain-cognition associations, however the majority of our results did not show tract-

specific functionality, nor very many parameter-specific trends, and therefore it may be more 
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fruitful to characterize WM development in early life using connectomics approaches which may 

be better descriptors of global WM structure and do not necessitate interpreting diffusion metrics. 

The generalizability of our study may also be impacted by the relatively large sample of twin-born 

subjects in our dataset. However, despite observed cognitive differences between twins and 

singletons, we suspect that patterns of brain-cognition relationships are similar across groups, 

given that there were not major differences in WM development between twins and singletons. 

Finally, there are inherent limitations with studying infants and toddlers with regards to both 

imaging techniques and cognitive assessments. Motion in the scanner is always a concern, but to 

mitigate these effects we performed rigorous automated and manual quality control on both the 

scans and individual tracts from each subject and excluded subjects with data that were not of 

usable quality. Cognitive assessments are often difficult to collect in young children due to limited 

language and variable temperament, however our data were collected by experienced testers and 

independently reviewed to ensure that scores reflect child ability.    

 

Conclusion  

 Our study has shown that there are widespread correlations between tract-average measures 

of FA, AD, and RD at birth and cognitive outcomes at ages 1 and 2. We also found that WM 

microstructure at age 1 was related to concurrent cognition. We demonstrated that RD may be a 

particularly important marker of individual differences in WM development, and that protracted 

development of RD, possibly reflecting prolonged plasticity, in many tracts between the ages of 1 

and 2 is correlated with better receptive language and general cognitive performance. We also 

found that cognition at age 2 was poorly predicted by WM properties across infancy when other 

child and demographic factors were included in the model. Namely, maternal education and 
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gestational number were most highly correlated with 2-year cognitive scores. Taken together, our 

findings suggest that early postnatal WM integrity is important for infant cognition, though its 

usefulness in predicting cognitive outcomes is limited when considered alongside other important 

child and demographic factors. Future research is needed to better understand how global WM 

organization relates to cognitive development in early life. Longitudinal studies of complex 

network organization using non-linear multivariate approaches may be more fruitful. 
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Table 4.1 Participant Demographics 
Child Characteristics  N, Mean (SD, Percent) 

Gestational Age at Birth (days) 266.68 (12.44) 
Birth Weight (grams) 2984.3 (581.20) 
Stay in NICU 19 (4.25%) 
Age at Neo MRI (days) 27.25 (15.08) 
Age at 1yr MRI (days) 90.65 (24.90) 
Age at 2yr MRI (days) 756.48 (31.30) 
Age at 1yr Mullen (days) 388.60 (23.43) 
Age at 2yr Mullen (days) 752.99 (26.58) 
1yr ELC 116.37 (12.88) 
2yr ELC 107.75 (15.51) 
Male / Female 240 (53.69%) 
Female 207 (46.31%) 
Single Gestation 211 (47.20%) 
Twin Gestation 236 (52.80%) 
Zygosity   

Dizygotic Twins  137 (58.80%) 
Monozygotic Twins  85 (36.48%) 
Opposite Sex Twins  11 (4.72%) 

Parental Characteristics *  
Maternal Age (years) 30.23 (5.47) 
Paternal Age (years) 32.11 (5.96) 
Mother Education (years) 15.61 (3.37) 
Father Education (years) 15.19 (3.68) 
Total Household Income ($) $74,128 ($55,575) 
Maternal / Paternal Race   

White  339 (75.84%) / 319 (72.50%) 
American Indian or Alaskan Native 2 (0.45%) / 0 (0%) 
African American 95 (21.25%) / 103 (23.41%) 
Asian 11 (2.46%) / 18 (4.09%) 

Maternal / Paternal Ethnicity   
Hispanic 50 (11.19%) / 58 (13.12%) 
Non-Hispanic 397 (88.81%) / 384 (86.88%) 

*reported at the time of the child's birth  
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Table 4.2. Diffusion Tensor Imaging Acquisition Protocols 
Scan frequencies are listed by year and scanner and direction protocol. Percentages for each scanner and 
direction combination are listed by year and for all scans.  
 

Scanner & Direction Neonate Year 1 Year 2 Total Scans 

Allegra, 6 Direction (A6) 183 (55.12%) 87 (34.12%) 61 (33.70%) 331 (43.1%) 
Allegra, 42 Direction (A42) 100 (30.12%) 119 (46.67%) 78 (43.09%) 297 (38.67%) 
Trio, 42 Direction (T42) 49 (14.76%) 49 (19.22%) 42 (23.30%) 140 (18.23%) 

 

 
 
 

 

Figure 4.1. Neonatal and Pediatric White Matter Tracts.  
Tracts analyzed in the study are displayed. Abbreviations for tracts are as follows: Arcuate fronto-parietal 
(ARC-FP), fronto-temporal (ARCT-FT), and temporo-parietal (ARC-TP) segments, cingulum (CGC), 
superior longitudinal fasciculus (SLF), inferior longitudinal fasciculus (ILF), inferior fronto-occipital 
fasciculus (IFOF), uncinate (UNC), genu, rostrum, splenium, corticofugal motor tracts (CF-M; pink, 
partially transparent to show parallel CT-M), and the corticothalamic prefrontal (CT-PFC), premotor (CT-
PM), motor (CT-M; dark maroon indicated with a black arrow), and parietal (CT-Par) tracts. To denote left 
or right, “(L)” or “(R)” are added to tract abbreviations in tables. Tracts on display are from the neonatal 
atlas; 1 and 2-year tracts are structurally similar, but were constructed in pediatric atlas space as described 
in the methods. 
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Figure 4.2. Study Schematic.  

We tested for possible predictive (dashed lines) and cross-sectional (solid lines) brain-cognition 
relationships in our dataset. Arrows between each imaging and MSEL collection time-point indicates a 
tested relationship.  
 



 

Table 4.3. Unadjusted Pearson’s Correlations between DTI Parameters at Birth and Cognitive Scores at age 1.  
Shaded cells are statistically significant, with negative correlations shown in red and positive correlations shown in green.  Significant cells are 
shaded from lightest to darkest based on significance level: ≤ 0.05, ≤ 0.01, ≤ 0.001. 

 ELC - 1yr GM - 1yr FM - 1yr EL - 1yr RL - 1yr VR - 1yr 
Tract AD0 RD0 FA0 AD0 RD0 FA0 AD0 RD0 FA0 AD0 RD0 FA0 AD0 RD0 FA0 AD0 RD0 FA0 

ARC-FP (L) 0.00 -0.02 0.06 -0.13 -0.12 0.06 -0.14 -0.19 0.23 -0.07 -0.09 0.10 -0.07 -0.09 0.13 -0.04 -0.08 0.13 
ARC-FP (R) -0.06 -0.09 0.12 -0.04 -0.03 0.02 -0.10 -0.14 0.17 -0.07 -0.07 0.05 -0.14 -0.16 0.16 -0.11 -0.13 0.15 
ARC-FT (L) -0.06 -0.05 0.05 -0.08 -0.06 0.01 -0.14 -0.20 0.23 -0.08 -0.08 0.05 -0.11 -0.11 0.11 -0.09 -0.10 0.10 
ARC-FT (R) -0.05 -0.09 0.11 -0.10 -0.08 0.04 -0.18 -0.21 0.22 -0.10 -0.12 0.11 -0.15 -0.15 0.12 -0.09 -0.10 0.11 
ARC-TP (L) -0.06 -0.08 0.11 -0.05 -0.07 0.14 -0.08 -0.12 0.19 -0.08 -0.11 0.08 -0.08 -0.09 0.08 -0.12 -0.13 0.11 
ARC-TP (R) -0.06 -0.07 0.08 -0.08 -0.10 0.09 -0.17 -0.20 0.21 -0.13 -0.13 0.10 -0.15 -0.14 0.09 -0.09 -0.09 0.08 
CF-M (L) -0.11 -0.12 0.07 -0.13 -0.16 0.13 -0.25 -0.25 0.15 -0.12 -0.17 0.15 -0.14 -0.17 0.13 -0.10 -0.10 0.07 
CF-M (R) -0.14 -0.14 0.08 -0.10 -0.15 0.12 -0.24 -0.27 0.20 -0.17 -0.18 0.13 -0.18 -0.17 0.10 -0.08 -0.12 0.10 
CGC (L) -0.15 -0.08 -0.07 -0.14 -0.13 0.01 -0.19 -0.23 0.12 -0.15 -0.12 -0.01 -0.17 -0.14 0.00 -0.06 -0.06 0.03 
CGC (R) -0.08 -0.07 0.00 -0.08 -0.12 0.10 -0.12 -0.21 0.18 -0.10 -0.13 0.08 -0.13 -0.14 0.04 -0.03 -0.04 0.03 
CT-M (L) -0.12 -0.11 0.06 -0.14 -0.14 0.09 -0.27 -0.26 0.18 -0.13 -0.17 0.15 -0.17 -0.15 0.08 -0.13 -0.11 0.06 
CT-M (R) -0.12 -0.11 0.05 -0.13 -0.14 0.09 -0.28 -0.26 0.17 -0.16 -0.16 0.09 -0.17 -0.16 0.08 -0.10 -0.11 0.09 
CT-Par (L) -0.11 -0.11 0.08 -0.15 -0.16 0.10 -0.24 -0.25 0.20 -0.12 -0.16 0.15 -0.17 -0.16 0.11 -0.09 -0.09 0.06 
CT-Par (R) -0.13 -0.12 0.08 -0.13 -0.16 0.14 -0.24 -0.25 0.20 -0.16 -0.18 0.13 -0.16 -0.17 0.13 -0.08 -0.10 0.08 
CT-PFC (L) -0.07 -0.06 0.06 -0.13 -0.10 0.04 -0.18 -0.20 0.21 -0.10 -0.10 0.10 -0.11 -0.10 0.10 -0.08 -0.09 0.09 
CT-PFC (R) -0.06 -0.05 0.03 -0.13 -0.10 0.01 -0.17 -0.19 0.19 -0.10 -0.09 0.05 -0.09 -0.08 0.08 -0.05 -0.07 0.08 
CT-PM (L) -0.09 -0.09 0.07 -0.12 -0.10 0.05 -0.23 -0.24 0.19 -0.15 -0.15 0.12 -0.14 -0.14 0.10 -0.10 -0.11 0.07 
CT-PM (R) -0.09 -0.09 0.06 -0.12 -0.11 0.04 -0.23 -0.25 0.19 -0.15 -0.13 0.08 -0.16 -0.15 0.08 -0.09 -0.12 0.10 
IFOF (L) -0.05 -0.07 0.06 -0.14 -0.10 0.01 -0.15 -0.21 0.21 -0.12 -0.12 0.06 -0.10 -0.10 0.07 -0.02 -0.07 0.11 
IFOF (R) -0.06 -0.08 0.06 -0.15 -0.12 0.04 -0.16 -0.21 0.22 -0.12 -0.12 0.07 -0.13 -0.12 0.08 -0.05 -0.08 0.10 
ILF (L) -0.07 -0.08 0.04 -0.09 -0.08 0.03 -0.13 -0.21 0.21 -0.11 -0.11 0.04 -0.11 -0.10 0.05 -0.04 -0.08 0.09 
ILF (R) -0.09 -0.09 0.06 -0.16 -0.12 0.02 -0.18 -0.25 0.22 -0.12 -0.12 0.06 -0.16 -0.13 0.05 -0.10 -0.09 0.05 
SLF (L) -0.06 -0.05 0.00 -0.11 -0.10 0.05 -0.19 -0.21 0.17 -0.04 -0.07 0.09 -0.09 -0.10 0.08 -0.09 -0.09 0.06 
SLF (R) -0.10 -0.13 0.13 -0.05 -0.04 0.02 -0.17 -0.19 0.15 -0.07 -0.10 0.09 -0.15 -0.18 0.14 -0.12 -0.14 0.14 
UNC (L) -0.08 -0.09 0.10 -0.09 -0.07 0.01 -0.16 -0.20 0.22 -0.10 -0.10 0.08 -0.10 -0.10 0.09 -0.05 -0.08 0.10 
UNC (R) -0.08 -0.08 0.07 -0.12 -0.10 0.04 -0.18 -0.21 0.20 -0.10 -0.10 0.07 -0.11 -0.10 0.07 -0.06 -0.08 0.08 
CC-Genu -0.05 -0.08 0.09 -0.12 -0.10 0.07 -0.18 -0.23 0.24 -0.09 -0.11 0.10 -0.08 -0.10 0.11 -0.06 -0.08 0.10 
CC-Rostrum -0.05 -0.08 0.09 -0.10 -0.11 0.07 -0.17 -0.22 0.20 -0.08 -0.09 0.08 -0.07 -0.09 0.08 -0.06 -0.09 0.09 
CC-Splenium -0.08 -0.09 0.06 -0.10 -0.12 0.07 -0.13 -0.25 0.25 -0.12 -0.18 0.14 -0.09 -0.11 0.07 -0.05 -0.07 0.09 
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Table 4.4. Unadjusted Pearson’s Correlations between DTI Parameters at Birth and Cognitive Scores at age 2.  
Shaded cells are statistically significant, with negative correlations shown in red and positive correlations shown in green. Significant cells are 
shaded from lightest to darkest based on significance level: ≤ 0.05, ≤ 0.01, ≤ 0.001. 

 ELC - 2yr GM - 2yr FM - 2yr EL - 2yr RL - 2yr VR - 2yr 
Tract AD0 RD0 FA0 AD0 RD0 FA0 AD0 RD0 FA0 AD0 RD0 FA0 AD0 RD0 FA0 AD0 RD0 FA0 

ARC-FP (L) -0.21 -0.22 0.19 -0.14 -0.15 0.14 -0.17 -0.16 0.12 -0.16 -0.16 0.14 -0.14 -0.17 0.18 -0.17 -0.18 0.14 
ARC-FP (R) -0.19 -0.18 0.13 -0.08 -0.10 0.10 -0.09 -0.09 0.08 -0.19 -0.17 0.11 -0.12 -0.15 0.12 -0.13 -0.13 0.10 
ARC-FT (L) -0.23 -0.19 0.07 -0.08 -0.11 0.13 -0.19 -0.16 0.07 -0.20 -0.15 0.03 -0.17 -0.16 0.08 -0.13 -0.12 0.06 
ARC-FT (R) -0.22 -0.20 0.14 -0.13 -0.11 0.09 -0.16 -0.15 0.09 -0.16 -0.15 0.11 -0.17 -0.17 0.14 -0.15 -0.14 0.11 
ARC-TP (L) -0.12 -0.13 0.09 -0.12 -0.14 0.07 -0.07 -0.09 0.07 -0.11 -0.12 0.07 -0.10 -0.11 0.04 -0.01 -0.03 0.06 
ARC-TP (R) -0.21 -0.22 0.18 -0.08 -0.09 0.14 -0.15 -0.17 0.13 -0.18 -0.17 0.13 -0.16 -0.17 0.17 -0.16 -0.15 0.14 
CF-M (L) -0.15 -0.17 0.11 -0.06 -0.14 0.16 -0.16 -0.15 0.07 -0.11 -0.14 0.11 -0.06 -0.14 0.15 -0.07 -0.11 0.09 
CF-M (R) -0.13 -0.20 0.17 -0.06 -0.14 0.16 -0.15 -0.18 0.12 -0.12 -0.16 0.13 -0.04 -0.16 0.20 -0.07 -0.13 0.13 
CGC (L) -0.16 -0.16 0.03 -0.11 -0.14 0.09 -0.15 -0.17 0.05 -0.17 -0.15 -0.01 -0.09 -0.11 0.05 -0.06 -0.09 0.06 
CGC (R) -0.20 -0.14 -0.06 -0.10 -0.13 0.07 -0.20 -0.16 -0.05 -0.16 -0.12 -0.04 -0.11 -0.09 0.00 -0.15 -0.11 -0.02 
CT-M (L) -0.21 -0.19 0.11 -0.10 -0.15 0.15 -0.20 -0.17 0.08 -0.18 -0.16 0.11 -0.13 -0.15 0.14 -0.12 -0.13 0.09 
CT-M (R) -0.16 -0.21 0.19 -0.07 -0.15 0.20 -0.17 -0.19 0.14 -0.13 -0.16 0.13 -0.08 -0.15 0.18 -0.08 -0.14 0.16 
CT-Par (L) -0.17 -0.18 0.13 -0.10 -0.15 0.15 -0.16 -0.17 0.11 -0.16 -0.15 0.11 -0.09 -0.14 0.15 -0.08 -0.13 0.13 
CT-Par (R) -0.17 -0.20 0.16 -0.11 -0.17 0.18 -0.15 -0.19 0.15 -0.15 -0.16 0.10 -0.08 -0.15 0.17 -0.09 -0.15 0.14 
CT-PFC (L) -0.16 -0.15 0.11 -0.13 -0.13 0.12 -0.17 -0.18 0.13 -0.13 -0.12 0.09 -0.12 -0.12 0.11 -0.10 -0.09 0.07 
CT-PFC (R) -0.15 -0.17 0.16 -0.09 -0.13 0.16 -0.19 -0.20 0.16 -0.12 -0.13 0.12 -0.10 -0.13 0.16 -0.08 -0.10 0.11 
CT-PM (L) -0.20 -0.21 0.13 -0.11 -0.12 0.11 -0.19 -0.17 0.09 -0.19 -0.18 0.11 -0.12 -0.16 0.16 -0.12 -0.14 0.12 
CT-PM (R) -0.16 -0.20 0.17 -0.08 -0.14 0.17 -0.19 -0.19 0.12 -0.16 -0.17 0.12 -0.06 -0.15 0.20 -0.06 -0.13 0.15 
IFOF (L) -0.12 -0.19 0.21 -0.12 -0.14 0.15 -0.16 -0.20 0.18 -0.11 -0.15 0.14 -0.07 -0.15 0.19 -0.06 -0.12 0.17 
IFOF (R) -0.16 -0.19 0.19 -0.13 -0.14 0.15 -0.17 -0.21 0.19 -0.15 -0.16 0.13 -0.10 -0.16 0.19 -0.08 -0.12 0.15 
ILF (L) -0.13 -0.20 0.20 -0.09 -0.13 0.13 -0.12 -0.18 0.17 -0.13 -0.15 0.12 -0.08 -0.17 0.21 -0.07 -0.14 0.17 
ILF (R) -0.21 -0.25 0.19 -0.14 -0.14 0.10 -0.15 -0.21 0.19 -0.19 -0.20 0.12 -0.15 -0.22 0.19 -0.13 -0.18 0.17 
SLF (L) -0.19 -0.17 0.08 -0.08 -0.14 0.17 -0.15 -0.14 0.07 -0.19 -0.16 0.07 -0.12 -0.13 0.10 -0.10 -0.10 0.05 
SLF (R) -0.19 -0.21 0.15 -0.11 -0.16 0.17 -0.18 -0.19 0.15 -0.18 -0.20 0.14 -0.15 -0.15 0.10 -0.11 -0.13 0.11 
UNC (L) -0.19 -0.22 0.22 -0.12 -0.14 0.16 -0.21 -0.22 0.19 -0.15 -0.16 0.15 -0.13 -0.17 0.19 -0.10 -0.15 0.17 
UNC (R) -0.22 -0.23 0.19 -0.13 -0.14 0.15 -0.22 -0.23 0.18 -0.19 -0.18 0.13 -0.14 -0.17 0.17 -0.11 -0.14 0.16 
CC-Genu -0.19 -0.19 0.14 -0.10 -0.12 0.12 -0.21 -0.21 0.16 -0.13 -0.13 0.10 -0.13 -0.14 0.12 -0.11 -0.11 0.08 
CC-Rostrum -0.20 -0.17 0.09 -0.09 -0.14 0.15 -0.20 -0.20 0.13 -0.14 -0.12 0.07 -0.14 -0.12 0.08 -0.12 -0.09 0.04 
CC-Splenium -0.09 -0.21 0.22 -0.11 -0.12 0.11 -0.10 -0.17 0.15 -0.08 -0.22 0.23 -0.04 -0.17 0.23 -0.06 -0.13 0.16 
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Figure 4.3. Summary of tract-based correlations with early cognitive abilities.  

Summary files display the number of tracts with significant correlations to MSEL scores (ELC = Early Learning Composite, GM = Gross Motor, 
FM = Fine Motor, EL = Expressive Language, RL = Receptive Language, VR = Visual Reception) for each predictive and cross-sectional 
relationship for raw (A-E) and adjusted (F-J) analyses. 
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Table 4.5. Unadjusted Pearson’s Correlations between DTI Parameters at age 1 and Cognitive Scores at age 1.  
Shaded cells are statistically significant, with negative correlations shown in red and positive correlations shown in green. Significant cells are 
shaded from lightest to darkest based on significance level: ≤ 0.05, ≤ 0.01, ≤ 0.001.  

 ELC - 1yr GM - 1yr FM - 1yr EL - 1yr RL - 1yr VR - 1yr 
Tract AD1 RD1 FA1 AD1 RD1 FA1 AD1 RD1 FA1 AD1 RD1 FA1 AD1 RD1 FA1 AD1 RD1 FA1 

ARC-FP (L) -0.01 -0.07 0.04 -0.04 -0.19 0.18 -0.02 -0.18 0.19 -0.04 -0.18 0.15 0.04 -0.12 0.13 0.00 -0.15 0.16 
ARC-FP (R) -0.04 -0.11 0.05 -0.06 -0.17 0.16 -0.10 -0.20 0.13 -0.05 -0.17 0.14 -0.11 -0.11 0.01 -0.12 -0.16 0.05 
ARC-FT (L) -0.17 -0.09 0.00 -0.12 -0.19 0.14 -0.09 -0.17 0.13 -0.18 -0.17 0.06 -0.09 -0.07 0.03 -0.15 -0.11 0.06 
ARC-FT (R) -0.09 -0.11 0.07 -0.10 -0.17 0.19 -0.14 -0.22 0.19 -0.17 -0.19 0.13 -0.12 -0.13 0.10 -0.15 -0.22 0.17 
ARC-TP (L) -0.05 -0.13 0.13 -0.06 -0.20 0.22 -0.06 -0.22 0.22 -0.13 -0.24 0.18 0.01 -0.12 0.16 -0.09 -0.21 0.19 
ARC-TP (R) 0.02 -0.09 0.11 0.01 -0.15 0.22 -0.04 -0.19 0.22 -0.12 -0.18 0.11 -0.05 -0.11 0.10 -0.06 -0.18 0.17 
CF-M (L) -0.07 -0.18 0.16 -0.13 -0.23 0.18 -0.15 -0.22 0.15 -0.19 -0.21 0.13 -0.04 -0.18 0.16 -0.03 -0.13 0.13 
CF-M (R) -0.07 -0.10 0.08 -0.16 -0.23 0.18 -0.14 -0.20 0.15 -0.14 -0.17 0.12 -0.08 -0.15 0.12 -0.07 -0.05 0.03 
CGC (L) -0.08 -0.06 -0.02 -0.05 -0.21 0.16 -0.08 -0.15 0.09 -0.11 -0.13 0.03 -0.06 -0.07 -0.01 -0.07 -0.09 0.02 
CGC (R) -0.07 -0.09 0.03 -0.08 -0.21 0.12 -0.05 -0.16 0.10 -0.11 -0.17 0.06 -0.04 -0.09 0.04 -0.10 -0.12 0.02 
CT-M (L) -0.01 -0.16 0.19 -0.22 -0.26 0.16 -0.14 -0.19 0.12 -0.17 -0.19 0.11 -0.07 -0.19 0.16 -0.01 -0.14 0.16 
CT-M (R) -0.13 -0.10 0.02 -0.24 -0.25 0.15 -0.17 -0.14 0.04 -0.18 -0.10 0.02 -0.17 -0.13 0.00 -0.10 -0.04 -0.03 
CT-Par (L) -0.09 -0.15 0.13 -0.22 -0.25 0.16 -0.11 -0.22 0.22 -0.21 -0.27 0.15 -0.14 -0.17 0.11 -0.07 -0.11 0.12 
CT-Par (R) -0.09 -0.08 0.03 -0.19 -0.17 0.11 -0.23 -0.22 0.10 -0.18 -0.19 0.10 -0.14 -0.13 0.07 -0.11 -0.06 0.00 
CT-PFC (L) -0.08 -0.03 -0.05 -0.17 -0.21 0.16 -0.18 -0.20 0.12 -0.10 -0.08 0.03 -0.02 -0.01 -0.02 -0.09 -0.04 -0.04 
CT-PFC (R) -0.11 -0.11 0.01 -0.21 -0.22 0.10 -0.15 -0.25 0.19 -0.18 -0.17 0.04 -0.04 -0.09 0.07 -0.08 -0.11 0.06 
CT-PM (L) 0.01 -0.13 0.17 -0.14 -0.20 0.16 -0.07 -0.19 0.19 -0.11 -0.14 0.11 -0.04 -0.12 0.12 -0.01 -0.09 0.11 
CT-PM (R) -0.09 -0.10 0.04 -0.25 -0.24 0.12 -0.17 -0.18 0.08 -0.17 -0.12 0.04 -0.15 -0.10 0.00 -0.10 -0.05 -0.02 
IFOF (L) -0.06 -0.11 0.06 -0.10 -0.23 0.18 -0.01 -0.22 0.24 -0.05 -0.16 0.13 -0.06 -0.11 0.07 -0.04 -0.14 0.10 
IFOF (R) -0.12 -0.10 0.05 -0.04 -0.26 0.26 -0.02 -0.25 0.27 -0.08 -0.20 0.17 -0.07 -0.12 0.10 -0.04 -0.15 0.12 
ILF (L) -0.07 -0.14 0.10 -0.16 -0.26 0.21 -0.04 -0.24 0.27 -0.09 -0.18 0.15 -0.07 -0.15 0.14 -0.02 -0.18 0.20 
ILF (R) -0.08 -0.13 0.11 -0.12 -0.24 0.23 -0.06 -0.26 0.29 -0.11 -0.25 0.24 -0.08 -0.16 0.13 0.01 -0.17 0.20 
SLF (L) -0.11 -0.08 0.00 -0.10 -0.17 0.14 -0.13 -0.21 0.17 -0.13 -0.17 0.09 -0.11 -0.12 0.05 -0.12 -0.14 0.09 
SLF (R) -0.19 -0.09 -0.03 -0.13 -0.13 0.07 -0.19 -0.19 0.08 -0.16 -0.13 0.04 -0.14 -0.07 -0.02 -0.19 -0.11 0.00 
UNC (L) -0.04 -0.03 0.01 -0.03 -0.16 0.15 -0.03 -0.14 0.15 -0.05 -0.08 0.06 -0.02 -0.02 0.01 -0.04 -0.03 0.00 
UNC (R) -0.02 -0.06 0.04 0.04 -0.19 0.21 0.00 -0.20 0.21 -0.03 -0.10 0.08 0.07 -0.07 0.12 -0.05 -0.08 0.04 
CC-Genu -0.03 -0.03 0.03 -0.27 -0.23 0.12 -0.11 -0.24 0.24 -0.18 -0.17 0.13 -0.15 -0.12 0.07 -0.11 -0.06 0.01 
CC-Rostrum -0.07 -0.02 -0.02 -0.17 -0.23 0.17 -0.20 -0.25 0.19 -0.16 -0.12 0.04 -0.09 -0.06 0.03 -0.19 -0.11 0.02 
CC-Splenium -0.10 -0.19 0.19 -0.10 -0.23 0.24 -0.06 -0.23 0.30 -0.17 -0.24 0.21 -0.16 -0.19 0.17 -0.14 -0.18 0.15 
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Table 4.6. Adjusted Pearson’s Correlations between DTI Parameters at Birth and Cognitive Scores at age 1.  
Shaded cells are statistically significant, with negative correlations shown in red and positive correlations shown in green. Significant cells are 
shaded from lightest to darkest based on significance level: ≤ 0.05, ≤ 0.01, ≤ 0.001.  

 ELC - 1yr GM - 1yr FM - 1yr EL - 1yr RL - 1yr VR - 1yr 
Tract AD0 RD0 FA0 AD0 RD0 FA0 AD0 RD0 FA0 AD0 RD0 FA0 AD0 RD0 FA0 AD0 RD0 FA0 

ARC-FP (L) -0.03 -0.07 0.13 -0.13 -0.12 0.06 -0.02 -0.06 0.14 -0.02 -0.06 0.10 -0.06 -0.08 0.12 -0.02 -0.02 0.06 
ARC-FP (R) -0.06 -0.10 0.14 -0.05 -0.04 0.03 -0.03 -0.06 0.10 -0.04 -0.05 0.04 -0.14 -0.15 0.14 -0.11 -0.12 0.12 
ARC-FT (L) -0.04 -0.08 0.13 -0.07 -0.06 0.01 -0.03 -0.09 0.15 -0.01 -0.05 0.08 -0.08 -0.09 0.11 -0.04 -0.04 0.03 
ARC-FT (R) -0.07 -0.10 0.12 -0.09 -0.07 0.02 -0.07 -0.09 0.11 -0.06 -0.07 0.07 -0.14 -0.13 0.08 -0.05 -0.05 0.05 
ARC-TP (L) -0.01 -0.04 0.11 -0.05 -0.08 0.15 0.04 0.02 0.09 0.02 -0.02 0.04 -0.07 -0.09 0.09 -0.08 -0.08 0.04 
ARC-TP (R) -0.07 -0.07 0.09 -0.07 -0.08 0.08 -0.05 -0.08 0.11 -0.07 -0.07 0.07 -0.14 -0.11 0.05 -0.05 -0.03 0.00 
CF-M (L) -0.14 -0.13 0.07 -0.08 -0.13 0.11 -0.17 -0.14 0.05 -0.07 -0.12 0.12 -0.14 -0.14 0.08 -0.08 -0.02 -0.04 
CF-M (R) -0.15 -0.15 0.09 -0.06 -0.10 0.09 -0.17 -0.16 0.10 -0.12 -0.12 0.09 -0.20 -0.14 0.05 -0.05 -0.04 0.01 
CGC (L) -0.09 -0.11 0.06 -0.10 -0.10 0.03 -0.08 -0.13 0.14 -0.05 -0.09 0.09 -0.14 -0.15 0.06 -0.03 -0.01 -0.02 
CGC (R) -0.01 -0.07 0.10 -0.03 -0.08 0.11 -0.02 -0.09 0.14 0.00 -0.07 0.13 -0.10 -0.13 0.05 0.01 0.04 -0.05 
CT-M (L) -0.16 -0.15 0.10 -0.08 -0.12 0.10 -0.17 -0.16 0.10 -0.07 -0.13 0.16 -0.18 -0.14 0.07 -0.10 -0.03 -0.03 
CT-M (R) -0.14 -0.13 0.09 -0.08 -0.11 0.09 -0.19 -0.14 0.08 -0.09 -0.11 0.09 -0.17 -0.14 0.06 -0.04 -0.02 -0.01 
CT-Par (L) -0.11 -0.13 0.11 -0.09 -0.13 0.10 -0.13 -0.14 0.13 -0.04 -0.11 0.15 -0.15 -0.14 0.09 -0.06 -0.02 -0.03 
CT-Par (R) -0.13 -0.14 0.13 -0.08 -0.15 0.14 -0.15 -0.14 0.11 -0.10 -0.13 0.13 -0.17 -0.15 0.11 -0.04 -0.03 0.00 
CT-PFC (L) -0.08 -0.10 0.13 -0.13 -0.11 0.05 -0.06 -0.09 0.14 -0.05 -0.08 0.13 -0.11 -0.11 0.12 -0.05 -0.04 0.02 
CT-PFC (R) -0.06 -0.08 0.11 -0.13 -0.10 0.03 -0.06 -0.09 0.12 -0.05 -0.06 0.09 -0.08 -0.09 0.11 0.00 -0.02 0.02 
CT-PM (L) -0.10 -0.11 0.10 -0.06 -0.07 0.05 -0.11 -0.13 0.13 -0.08 -0.11 0.13 -0.13 -0.13 0.10 -0.03 -0.02 0.00 
CT-PM (R) -0.11 -0.11 0.09 -0.09 -0.09 0.05 -0.11 -0.12 0.11 -0.09 -0.09 0.08 -0.16 -0.13 0.07 -0.04 -0.04 0.01 
IFOF (L) -0.02 -0.09 0.14 -0.12 -0.11 0.04 -0.03 -0.10 0.15 -0.05 -0.08 0.09 -0.07 -0.09 0.09 0.03 -0.02 0.05 
IFOF (R) -0.03 -0.10 0.15 -0.14 -0.12 0.06 -0.04 -0.11 0.16 -0.05 -0.08 0.10 -0.09 -0.11 0.11 0.01 -0.03 0.06 
ILF (L) -0.03 -0.09 0.11 -0.08 -0.09 0.05 -0.04 -0.12 0.15 -0.04 -0.08 0.07 -0.08 -0.09 0.06 0.00 -0.02 0.03 
ILF (R) -0.07 -0.11 0.11 -0.17 -0.11 0.00 -0.08 -0.16 0.16 -0.06 -0.08 0.06 -0.12 -0.12 0.07 -0.02 -0.03 0.03 
SLF (L) -0.06 -0.08 0.08 -0.11 -0.10 0.03 -0.10 -0.11 0.09 0.01 -0.05 0.11 -0.08 -0.10 0.09 -0.07 -0.04 -0.02 
SLF (R) -0.14 -0.17 0.16 -0.08 -0.06 0.03 -0.10 -0.11 0.10 -0.07 -0.10 0.09 -0.18 -0.20 0.13 -0.12 -0.13 0.10 
UNC (L) -0.07 -0.11 0.16 -0.12 -0.09 0.04 -0.05 -0.11 0.17 -0.05 -0.08 0.11 -0.11 -0.12 0.12 -0.04 -0.05 0.05 
UNC (R) -0.07 -0.11 0.14 -0.13 -0.14 0.09 -0.07 -0.11 0.15 -0.05 -0.08 0.11 -0.12 -0.13 0.11 -0.06 -0.05 0.04 
CC-Genu -0.04 -0.10 0.14 -0.12 -0.12 0.09 -0.05 -0.12 0.17 -0.02 -0.08 0.12 -0.05 -0.09 0.12 -0.02 -0.03 0.05 
CC-Rostrum -0.02 -0.08 0.12 -0.10 -0.13 0.10 -0.04 -0.11 0.14 0.00 -0.05 0.09 -0.05 -0.08 0.09 -0.02 -0.03 0.04 
CC-Splenium -0.04 -0.10 0.11 -0.10 -0.09 0.03 -0.04 -0.15 0.18 -0.07 -0.13 0.13 -0.06 -0.05 0.02 0.02 0.01 0.01 
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Table 4.7. Adjusted Pearson’s Correlations between DTI Parameters at age 1 and Cognitive Scores at age 1.  
Shaded cells are statistically significant, with negative correlations shown in red and positive correlations shown in green. Significant cells are 
shaded from lightest to darkest based on significance level: ≤ 0.05, ≤ 0.01, ≤ 0.001. 

 ELC - 1yr GM - 1yr FM - 1yr EL - 1yr RL - 1yr VR - 1yr 
Tract AD1 RD1 FA1 AD1 RD1 FA1 AD1 RD1 FA1 AD1 RD1 FA1 AD1 RD1 FA1 AD1 RD1 FA1 

ARC-FP (L) -0.04 -0.13 0.13 0.01 -0.08 0.09 -0.04 -0.10 0.10 0.01 -0.06 0.08 0.04 -0.03 0.05 -0.05 -0.08 0.07 
ARC-FP (R) 0.00 -0.16 0.15 0.05 -0.07 0.13 -0.01 -0.14 0.15 0.10 -0.06 0.14 -0.01 -0.03 0.01 -0.06 -0.09 0.04 
ARC-FT (L) -0.10 -0.11 0.12 -0.03 -0.10 0.12 -0.06 -0.11 0.11 -0.06 -0.07 0.05 0.00 0.01 0.02 -0.12 -0.04 0.04 
ARC-FT (R) -0.04 -0.14 0.17 0.03 -0.06 0.13 -0.07 -0.13 0.13 -0.04 -0.07 0.07 0.00 -0.01 0.04 -0.09 -0.12 0.10 
ARC-TP (L) -0.06 -0.17 0.17 0.04 -0.07 0.13 -0.03 -0.14 0.14 -0.04 -0.12 0.11 0.06 -0.02 0.07 -0.11 -0.14 0.09 
ARC-TP (R) 0.02 -0.15 0.17 0.14 -0.01 0.15 0.02 -0.12 0.16 -0.02 -0.06 0.05 0.01 -0.02 0.03 -0.03 -0.13 0.11 
CF-M (L) -0.18 -0.22 0.14 -0.05 -0.15 0.13 -0.20 -0.18 0.08 -0.14 -0.11 0.05 -0.07 -0.13 0.09 -0.09 -0.08 0.04 
CF-M (R) -0.12 -0.14 0.10 -0.08 -0.17 0.15 -0.15 -0.16 0.09 -0.06 -0.09 0.08 -0.05 -0.11 0.08 -0.08 0.01 -0.04 
CGC (L) -0.11 -0.19 0.11 0.03 -0.15 0.17 -0.09 -0.14 0.08 -0.04 -0.08 0.06 -0.04 -0.08 0.04 -0.08 -0.13 0.06 
CGC (R) -0.06 -0.17 0.11 0.01 -0.15 0.14 -0.02 -0.13 0.11 -0.01 -0.10 0.08 0.02 -0.07 0.08 -0.09 -0.12 0.04 
CT-M (L) -0.12 -0.21 0.19 -0.14 -0.19 0.13 -0.17 -0.16 0.07 -0.11 -0.11 0.06 -0.10 -0.16 0.11 -0.04 -0.11 0.10 
CT-M (R) -0.18 -0.15 0.08 -0.16 -0.24 0.19 -0.16 -0.13 0.05 -0.10 -0.07 0.04 -0.15 -0.12 0.03 -0.10 -0.01 -0.03 
CT-Par (L) -0.11 -0.22 0.19 -0.15 -0.15 0.10 -0.09 -0.19 0.19 -0.12 -0.18 0.11 -0.12 -0.14 0.07 -0.07 -0.09 0.08 
CT-Par (R) -0.13 -0.14 0.10 -0.10 -0.10 0.08 -0.19 -0.19 0.11 -0.08 -0.12 0.08 -0.07 -0.09 0.08 -0.05 -0.01 -0.02 
CT-PFC (L) -0.18 -0.20 0.15 -0.12 -0.21 0.24 -0.19 -0.25 0.19 -0.05 -0.11 0.14 -0.04 -0.07 0.09 -0.14 -0.11 0.03 
CT-PFC (R) -0.18 -0.21 0.13 -0.16 -0.16 0.09 -0.16 -0.22 0.16 -0.14 -0.12 0.05 -0.04 -0.06 0.06 -0.10 -0.08 0.02 
CT-PM (L) -0.15 -0.22 0.16 -0.06 -0.14 0.14 -0.11 -0.19 0.15 -0.09 -0.09 0.06 -0.11 -0.11 0.07 -0.08 -0.09 0.04 
CT-PM (R) -0.17 -0.17 0.09 -0.17 -0.22 0.16 -0.15 -0.17 0.11 -0.08 -0.09 0.07 -0.13 -0.10 0.01 -0.10 -0.03 -0.02 
IFOF (L) -0.04 -0.17 0.15 -0.05 -0.15 0.13 -0.03 -0.19 0.18 0.01 -0.08 0.09 -0.06 -0.04 0.01 -0.05 -0.09 0.04 
IFOF (R) -0.06 -0.14 0.12 -0.01 -0.16 0.18 -0.02 -0.19 0.20 -0.01 -0.08 0.09 -0.04 -0.01 0.01 -0.04 -0.07 0.03 
ILF (L) -0.03 -0.16 0.17 -0.10 -0.16 0.14 -0.04 -0.19 0.20 -0.01 -0.06 0.07 -0.03 -0.06 0.05 -0.02 -0.12 0.11 
ILF (R) -0.01 -0.14 0.18 -0.07 -0.10 0.11 -0.04 -0.17 0.20 -0.03 -0.10 0.12 -0.02 -0.02 0.02 0.05 -0.06 0.10 
SLF (L) -0.14 -0.13 0.09 0.00 -0.06 0.08 -0.10 -0.13 0.12 -0.04 -0.05 0.05 -0.08 -0.04 0.00 -0.13 -0.07 0.02 
SLF (R) -0.16 -0.16 0.10 -0.01 -0.06 0.08 -0.14 -0.17 0.12 -0.03 -0.07 0.09 -0.05 -0.04 0.04 -0.16 -0.10 0.02 
UNC (L) -0.10 -0.20 0.15 0.00 -0.17 0.19 -0.05 -0.14 0.14 -0.01 -0.09 0.09 -0.05 -0.06 0.03 -0.10 -0.08 -0.02 
UNC (R) -0.03 -0.16 0.15 0.08 -0.15 0.22 -0.03 -0.17 0.17 0.02 -0.06 0.09 0.06 -0.05 0.10 -0.10 -0.05 -0.03 
CC-Genu -0.09 -0.14 0.15 -0.14 -0.17 0.13 -0.04 -0.19 0.21 -0.07 -0.14 0.16 -0.08 -0.09 0.07 -0.06 0.01 -0.04 
CC-Rostrum -0.08 -0.12 0.12 -0.05 -0.19 0.21 -0.13 -0.22 0.20 -0.03 -0.08 0.09 0.03 0.00 0.04 -0.11 -0.05 -0.02 
CC-Splenium 0.03 -0.12 0.17 0.05 -0.09 0.15 0.05 -0.14 0.23 0.00 -0.06 0.08 0.01 -0.02 0.05 0.00 -0.04 0.04 
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Table 4.8. Developmental Changes in DTI Parameters Relate to Cognitive Scores at age 2.  
Results from mixed effects models predicting MSEL scores at age 2 from DTI parameters at birth (FA0, AD0, RD0) and changes in DTI 
parameters in the first (dFA1,0, dAD1,0, dRD1,0) and second (dFA2,1, dAD2,1, dRD2,1) year of life. Models are adjusted for sex, gestation number, 
gestational age, maternal education, age at MSEL testing, MSEL test date, and DTI protocol. 
 

Tract MSEL Score Effect Estimatea Interpretationb Std. Errorc DFd FDR Pvalf N Subsg N Obsh 

SLF (R)  ELC 2 dAD2,1  2.29 x 105 Slower Decrease, Higher Score 6.20 x 104 37.29 0.020 52 57 

ARC-FT (L) RL2 dRD2,1  4.32 x 104 Slower Decrease, Higher Score 1.49 x 104 16.38 0.028 58 66 

ARC-FT (R) RL2 dRD2,1  6.07 x 104 Slower Decrease, Higher Score 2.19 x 104 25.60 0.028 59 65 

ARC-TP (R) RL2 dRD2,1  5.29 x 104 Slower Decrease, Higher Score 1.78 x 104 32.99 0.020 59 67 

CF-M (R)  RL2 dRD2,1 4.50 x 104 Slower Decrease, Higher Score 1.04 x 104 6.94 0.017 58 66 

CGC (L) RL2 dRD2,1 4.25 x 104  Slower Decrease, Higher Score 1.12 x 104 12.32 0.017 56 64 

CT-M (L) RL2 dRD2,1 4.14 x 104 Slower Decrease, Higher Score 9.42 x 103 7.07 0.017 59 67 

CT-PM (R)  RL2 dRD2,1 5.02 x 104  Slower Decrease, Higher Score 1.08 x 104 9.41 0.017 59 57 

IFOF (L) RL2 dRD2,1 3.72 x 104 Slower Decrease, Higher Score 9.6 x 103 9.86 0.017 59 67 

ILF (L) RL2 dRD2,1 2.73 x 104 Slower Decrease, Higher Score 1.26 x 104 23.32 0.017 55 61 

SLF (L) RL2 dRD2,1 3.42 x 104 Slower Decrease, Higher Score 9.28 x 103 9.19 0.020 56 63 

CT-Par (L) RL2 dFA2,1 -62.22 Slower Increase, Higher Score 10.77 5.41 0.049 59 67 

UNC (L) GM2 dFA1,0  -68.30 Slower Increase, Higher Score 5.20 4.69 0.002 58 66 

CT-PFC (L) RL2 dRD2,1 -2.19 x 104 Faster Decrease, Higher Score 6.29 x 103 6.78 0.028 59 66 
CT-PM (L) VR2 FA0 100.51 Greater at birth, Higher Score 29.88 47.25 0.044 59 67 

aModel estimate 
bInterpretation: higher MSEL scores at age 2 are predicted by slower decreases over time in AD or RD (positive estimates), slower increases in FA (negative estimates), faster 
decreases in AD or RD, or greater FA at birth (positive estimate).  
cStandard error 
dDegrees of freedom 
fFDR-corrected p-value 
gNumber of unique subjects in the analysis 
hNumber of total subjects in the analysis, treating one twin from each pair as repeated measures 
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Table S4.1. Descriptive Statistics of Mullen Scales of Early Learning Scores 
Descriptive statistics (Mean(SD)) are shown for all cognitive scores at ages 1 and 2 for the full sample, and the sample split by sex and gestation 
number.  For the full sample the range of scores [Min, Max] are shown. Sample sizes for each group are also reported, with Wilcoxon p-values 
testing for group differences reported for sex and gestation. Stars denote significance level (* ≤ 0.05, ** ≤ 0.001, *** < 0.0001). 

 Full Sample   Sex  Gestation Number 

YEAR 1 N = 432  Female 
(N=200) 

Male 
(N=232)  P-value  Singletons 

(N=205) 
Twins 
(N=227)  P-value 

ELC 116.37(12.88) [78, 150]  117.52(13.13)  115.38(12.60) 0.0463*  116.68(13.15) 116.09(12.64) 0.7329 
GM 18.13(2.90) [10, 27]  18.40(2.94)  17.90(2.85) 0.0651  17.83(2.97) 18.39(2.82) 0.0513 
FM 17.46(1.70) [11 22]  17.49(1.58)  17.44(1.79) 0.9131  17.68(1.56) 17.26(1.79) 0.0232* 
VR 17.95(2.17) [9, 26]  18.26(2.19) 17.68(2.12) 0.0073**  17.84(2.30) 18.05(2.04) 0.2907 
EL 14.25(1.84) [8, 21]  14.43(1.92)  14.09(1.76) 0.096  14.26(1.93) 14.23(1.76) 0.8029 
RL 14.21(1.96) [8, 24]  14.53(2.12) 13.93(1.76) 0.0013**  14.15(1.71) 14.26(2.16) 0.8628 

          

YEAR 2 N = 350  Female 
(N=153) 

Male 
(N=197)  P-value  Singletons 

(N=170) 
Twins 
(N=181)  P-value 

ELC 107.75(15.51) [67, 147]  110.65(15.44) 105.49(15.22) 0.0019**  113.34(14.57) 102.46(14.52) <.0001*** 
GM 27.40(1.82) [21, 33]  27.38(1.76) 27.42(1.86) 0.9788  27.45(1.90) 27.35(1.74) 0.8084 
FM 25.64(2.13) [17, 31]  25.93(2.16) 25.41(2.09) 0.0276*  26.19(1.76) 25.12(2.32) <.0001*** 
VR 27.07(3.49) [17, 38]  27.61(3.52) 26.65(3.42) 0.0027**  27.77(3.52) 26.41(3.34) <.0001*** 
EL 24.11(3.59) [14, 34]  24.67(3.69) 23.68(3.46) 0.0062**  25.17(3.36) 23.12(3.53) <.0001*** 
RL 25.97(3.19) [15, 37]  26.24(2.97) 25.77(3.35) 0.3141  26.95(3.25) 25.06(2.86) <.0001*** 

 
Table S4.2. Pearson’s Correlations between MSEL Scores at Ages 1 and 2 
Within-subject Pearson’s correlations (r) were computed for all cognitive scores at ages 1 and 2. All scores are significantly correlated between 
years, though correlations are of only modest strength.  
 r p-value N 
MCOMP 0.27 5.64E-07 335 
GM 0.30 1.98E-08 335 
FM 0.34 8.64E-11 336 
VR 0.25 4.86E-06 335 
EL 0.25 3.24E-06 336 
RL 0.24 9.58E-06 336 
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Table S4.3. Mixed Model Summary Results Relating Covariates to MSEL Scores. 
Mixed models were run testing for relationships between MSEL scores and all child and demographic factors of interest – chronological age at 
MSEL testing (days), MSEL test date (months since start of data collection), maternal education (years), gestational age at birth (days), gestation 
number (singleton vs. twin), and sex (male vs. female). Gestation number and Sex were represented as categorical variables and results are 
presented here showing singletons (S) relative to twins and males (M) relative to females. Cells highlighted in gray represent significant results. 
 

  Age at Testing Test Date Maternal Education Gestational Age at 
Birth Gestation Number Sex 

  Estimate P-val Estimate P-val Estimate P-val Estimate P-val Estimate P-val Estimate P-val 

Y
EA

R
 1

 M
SE

L 

ELC -0.12 0.0004 4.7E-03 <0.0001 -0.26 0.2247 -0.09 0.2416 1.21 0.5208 -2.48 0.05 

GM 0.04 <0.0001 7.3E-04 <0.0001 -0.07 0.1343 0.05 0.0050 -0.32 0.442 -0.47 0.0993 

FM 0.03 <0.0001 2.4E-04 0.0123 -0.02 0.5324 0.04 0.0002 0.37 0.1191 0.10 0.5304 

EL 0.02 <0.0001 7.4E-04 <0.0001 -0.08 0.0078 0.03 0.0195 0.12 0.65 -0.38 0.0325 
RL 0.03 <0.0001 5.2E-04 <0.0001 -0.03 0.3675 0.03 0.0109 -0.03 0.9114 -0.48 0.0098 
VR 0.04 <0.0001 3.5E-04 0.0044 0.04 0.1997 0.03 0.0119 -0.04 0.9041 -0.51 0.0158 

Y
EA

R
 2

 M
SE

L ELC -0.02 0.6338 8.5E-04 0.3389 1.77 <0.0001 0.16 0.0879 5.60 0.0138 -4.71 0.0032 
GM 0.01 0.0707 -2.2E-04 0.0802 0.04 0.2582 0.01 0.4874 0.06 0.8539 0.04 0.846 
FM 0.02 0.0015 1.0E-04 0.4308 0.11 0.0022 0.05 0.0005 0.40 0.2109 -0.59 0.01 
EL 0.02 0.0034 3.5E-04 0.1025 0.30 <0.0001 0.08 0.0003 0.76 0.1645 -1.15 0.0025 
RL 0.01 0.1182 1.3E-04 0.5157 0.35 <0.0001 0.03 0.1566 1.24 0.0116 -0.58 0.093 
VR 0.01 0.0757 2.5E-06 0.9909 0.36 <0.0001 0.02 0.4223 0.86 0.111 -1.07 0.0057 

132 



 133 

Table S4.4 Correlations Between Gestational Age and DTI Parameters at Birth 
Pearson’s correlations between Gestational Age at Birth and AD, RD, and FA at birth are shown by tract 
with FDR-corrected p-values.  

  AD RD FA 

Tract N Pearson's r fdr p-val Pearson's r fdr p-val Pearson's r fdr p-val 

ARC-FP (L) 311 -0.36 <.0001 -0.39 <.0001 0.36 <.0001 
ARC-FP (R) 274 -0.29 <.0001 -0.31 <.0001 0.25 <.0001 
ARC-FT (L) 328 -0.34 <.0001 -0.37 <.0001 0.29 <.0001 
ARC-FT (R) 326 -0.34 <.0001 -0.37 <.0001 0.31 <.0001 
ARC-TP (L) 218 -0.38 <.0001 -0.42 <.0001 0.33 <.0001 
ARC-TP (R) 331 -0.37 <.0001 -0.39 <.0001 0.30 <.0001 
CF-M (L) 332 -0.30 <.0001 -0.36 <.0001 0.25 <.0001 
CF-M (R) 332 -0.30 <.0001 -0.37 <.0001 0.27 <.0001 
CGC (L) 323 -0.36 <.0001 -0.34 <.0001 0.07 0.1931 
CGC (R) 304 -0.32 <.0001 -0.36 <.0001 0.12 0.0386 
CT-M (L) 332 -0.35 <.0001 -0.38 <.0001 0.28 <.0001 
CT-M (R) 332 -0.35 <.0001 -0.40 <.0001 0.32 <.0001 
CT-Par (L) 332 -0.30 <.0001 -0.34 <.0001 0.26 <.0001 
CT-Par (R) 332 -0.33 <.0001 -0.38 <.0001 0.29 <.0001 
CT-PFC (L) 332 -0.39 <.0001 -0.41 <.0001 0.33 <.0001 
CT-PFC (R) 332 -0.39 <.0001 -0.41 <.0001 0.35 <.0001 
CT-PM (L) 332 -0.38 <.0001 -0.39 <.0001 0.25 <.0001 
CT-PM (R) 332 -0.39 <.0001 -0.42 <.0001 0.30 <.0001 
IFOF (L) 332 -0.35 <.0001 -0.43 <.0001 0.37 <.0001 
IFOF (R) 331 -0.37 <.0001 -0.43 <.0001 0.38 <.0001 
ILF (L) 330 -0.29 <.0001 -0.39 <.0001 0.31 <.0001 
ILF (R) 332 -0.32 <.0001 -0.41 <.0001 0.32 <.0001 
SLF (L) 318 -0.32 <.0001 -0.36 <.0001 0.25 <.0001 
SLF (R) 290 -0.36 <.0001 -0.35 <.0001 0.18 0.0024 
UNC (L) 330 -0.48 <.0001 -0.49 <.0001 0.40 <.0001 
UNC (R) 328 -0.48 <.0001 -0.51 <.0001 0.42 <.0001 
Genu 332 -0.42 <.0001 -0.43 <.0001 0.35 <.0001 
Rostrum 332 -0.46 <.0001 -0.46 <.0001 0.34 <.0001 
Splenium 332 -0.29 <.0001 -0.31 <.0001 0.17 0.0018 
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Table S4.5 Intersubject Variability in DTI Metrics Between Ages 
Average standard deviations (SD) across tracts at birth, age 1, and age 2 were calculated. Two-tailed t-
tests were used to test for significant differences in SD in AD, RD, and FA between age groups. (A) 
displays the average SD for each metric and age. (B) displays results of significance testing. At birth, the 
SD were significantly larger than those at ages 1 or 2. Only SD in RD was significantly different between 
ages 1 and 2, with higher SD at age 1. 
 
(A) Birth Age 1 Age 2 
AD 7.00E-05 4.09E-05 4.04E-05 
RD 7.74E-05 3.42E-05 3.00E-05 
FA 2.10E-02 1.85E-02 1.89E-02 

 
(B) Birth vs. 1yr Birth vs. 2yr 1yr vs. 2yr 
 t-value p-value t-value p-value t-value p-value 
AD 11.35063 < .00001 11.77944 < .00001 0.24671 0.806033 
RD 15.64213 < .00001 17.40542 < .00001 2.94221 0.004733 
FA 2.76695 0.007653 2.0861 0.041567 -0.46684 0.642429 

 
Table S4.6 Sample Sizes Across Analyses 
Average sample sizes across all 29 tracts, the percent of the total subject sample (N = 447), and the range 
of sample sizes across tracts are reported for each primary analysis. For mixed effects models, sample size 
characteristics are reported for unique subjects, along with the sample size and range of the repeated 
measures sample (one twin per twin-pair). 
 

 Pearson's Correlations Mixed Effects Models 
  Unique Subs Rep. Meas. 

 
N (% of entire sample); [Min, 

Max] 
N (% of entire sample); 

[Min, Max] 
N [Min, 
Max] 

Neo DTI - 1yr MSEL 307 (69%); [207, 317] 253 (57%); [181, 259] 56 [28, 60] 
Neo DTI - 2yr MSEL 251 (56%); [168, 260] 212 (47%); [151, 217] 43 [20, 46] 
1yr DTI - 1yr MSEL  251 (56%); [232, 254] 204 (46%); [190, 206] 48 [43, 49] 
1yr DTI - 2yr MSEL 193 (43%); [176, 195] 161 (36%); [150, 163] 33 [27, 33] 
2yr DTI - 2yr MSEL  169 (38%); [160, 171] 137 (31%); [130, 138] 33 [29,33] 
Longitudinal 

 
57 (13%); [39, 59] 7 [4, 8] 

 
 



 

Table S4.7. Unadjusted Pearson’s Correlations Between DTI Parameters at age 1 and 2yr MSEL Scores. 
Shaded cells are statistically significant, with negative correlations shown in red and positive correlations shown in green. Significant cells are 
shaded from lightest to darkest based on significance level: ≤ 0.05, ≤ 0.01, ≤ 0.001.  
 White Matter at age 1 and 2yr MSEL Scores 
 ELC - 2yr GM - 2yr FM - 2yr EL - 2yr RL - 2yr VR - 2yr 

Tract AD1 RD1 FA1 AD1 RD1 FA1 AD1 RD1 FA1 AD1 RD1 FA1 AD1 RD1 FA1 AD1 RD1 FA1 
ARC-FP (L) 0.03 -0.05 0.05 0.04 0.09 -0.06 -0.02 -0.11 0.12 0.05 -0.03 0.05 0.21 0.01 -0.03 0.02 -0.04 0.05 
ARC-FP (R) -0.05 0.03 -0.08 -0.05 0.08 -0.11 -0.09 -0.05 -0.01 -0.03 0.03 -0.07 0.04 0.07 -0.13 -0.06 0.01 -0.06 
ARC-FT (L) -0.06 0.01 -0.02 0.05 0.10 -0.06 -0.14 -0.08 0.05 -0.04 0.03 -0.06 0.02 0.07 -0.10 -0.07 0.00 -0.01 
ARC-FT (R) -0.01 -0.03 0.02 0.01 0.04 -0.03 -0.05 -0.09 0.10 0.01 0.03 -0.04 0.07 0.02 -0.03 -0.04 -0.07 0.05 
ARC-TP (L) -0.09 -0.03 -0.03 0.06 0.05 -0.02 -0.11 -0.10 0.05 -0.04 -0.02 -0.04 0.05 -0.02 -0.10 -0.10 -0.03 -0.03 
ARC-TP (R) 0.01 -0.07 0.12 0.12 -0.01 0.13 0.06 -0.13 0.23 -0.01 -0.06 0.07 0.11 -0.03 0.06 -0.06 -0.06 0.05 
CF-M (L) -0.10 -0.12 0.07 0.13 0.07 -0.01 -0.04 -0.12 0.09 -0.12 -0.09 0.02 0.15 -0.06 0.06 -0.07 -0.08 0.05 
CF-M (R) -0.02 -0.15 0.18 0.11 0.05 0.00 0.01 -0.14 0.19 -0.04 -0.10 0.10 0.12 -0.07 0.12 -0.02 -0.11 0.14 
CGC (L) -0.15 0.02 -0.12 0.05 0.04 0.00 -0.15 -0.05 -0.04 -0.12 0.02 -0.12 0.05 0.07 -0.14 -0.07 0.04 -0.09 
CGC (R) -0.21 0.12 -0.24 0.03 0.10 -0.07 -0.20 0.02 -0.16 -0.15 0.14 -0.22 -0.09 0.16 -0.25 -0.17 0.10 -0.21 
CT-M (L) -0.09 -0.11 0.03 0.07 0.03 -0.04 -0.07 -0.13 0.06 -0.10 -0.06 -0.02 0.05 -0.04 0.02 -0.04 -0.07 0.03 
CT-M (R) 0.04 -0.09 0.11 0.08 0.01 0.01 0.02 -0.08 0.11 0.02 -0.05 0.06 0.10 0.00 0.05 0.07 -0.01 0.06 
CT-Par (L) -0.08 -0.06 0.03 0.04 0.05 -0.02 -0.13 -0.10 0.05 -0.08 -0.03 -0.07 -0.01 -0.02 0.01 -0.07 -0.07 0.05 
CT-Par (R) 0.02 -0.01 0.05 0.01 0.06 -0.09 -0.06 -0.09 0.09 0.05 0.01 0.02 0.08 0.05 0.00 0.04 0.00 0.05 
CT-PFC (L) -0.04 -0.03 -0.01 0.03 0.00 0.04 -0.07 -0.07 0.04 0.03 0.02 -0.03 0.08 -0.02 -0.05 -0.04 -0.01 -0.04 
CT-PFC (R) -0.03 -0.06 0.01 0.05 0.03 0.01 -0.05 -0.13 0.10 0.01 0.00 -0.01 0.09 0.00 -0.05 -0.04 -0.06 0.01 
CT-PM (L) -0.04 -0.06 0.05 0.14 0.16 -0.10 -0.07 -0.10 0.06 -0.05 0.00 -0.03 0.14 0.03 0.03 -0.05 -0.06 0.04 
CT-PM (R) 0.00 -0.06 0.05 0.04 0.03 -0.03 -0.02 -0.09 0.09 0.00 -0.03 0.01 0.09 0.03 0.01 0.04 -0.01 0.03 
IFOF (L) -0.01 0.00 0.00 0.09 0.03 0.03 -0.12 -0.13 0.06 0.03 0.04 -0.02 0.08 0.07 -0.07 -0.02 0.01 -0.01 
IFOF (R) -0.11 -0.05 -0.02 0.08 0.03 0.03 -0.16 -0.16 0.08 -0.05 0.00 -0.03 0.08 0.06 -0.09 -0.10 -0.05 -0.01 
ILF (L) 0.01 0.01 0.00 0.11 0.02 0.06 -0.10 -0.11 0.06 0.01 0.08 -0.08 0.14 0.03 -0.04 0.03 0.02 0.00 
ILF (R) -0.07 -0.07 0.06 0.09 0.03 -0.01 -0.12 -0.15 0.12 -0.06 -0.02 0.01 0.07 0.00 0.01 -0.06 -0.09 0.08 
SLF (L) -0.07 -0.06 0.00 0.02 0.08 -0.05 -0.10 -0.09 0.05 -0.03 -0.05 0.00 0.20 -0.04 -0.06 -0.07 -0.07 0.00 
SLF (R) 0.02 -0.03 0.04 0.00 0.10 -0.12 -0.05 -0.08 0.05 0.02 0.01 -0.02 0.15 0.01 0.00 0.01 -0.03 0.04 
UNC (L) -0.02 -0.09 0.08 0.14 0.08 0.04 -0.07 -0.17 0.14 0.01 -0.02 0.02 0.15 0.02 0.00 -0.03 -0.08 0.06 
UNC (R) -0.03 -0.04 0.02 0.14 0.03 0.08 -0.10 -0.15 0.09 0.05 -0.01 0.02 0.10 0.04 -0.04 -0.03 -0.03 0.00 
CC-Genu 0.02 0.07 -0.11 0.06 -0.02 0.08 -0.03 -0.03 0.01 0.04 0.07 -0.09 0.09 0.09 -0.12 0.03 0.12 -0.16 
CC-Rostrum -0.10 0.04 -0.14 -0.05 -0.13 0.15 -0.12 -0.07 0.01 -0.07 0.04 -0.12 -0.10 0.07 -0.16 -0.10 0.05 -0.15 
CC-Splenium 0.04 0.02 0.01 0.02 0.10 -0.09 -0.01 -0.07 0.11 0.01 0.00 0.01 0.01 0.03 -0.02 0.02 0.02 0.00 
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Table S4.8. Unadjusted Pearson’s Correlations Between DTI Parameters at age 2 and 2yr MSEL Scores. 
Shaded cells are statistically significant, with negative correlations shown in red and positive correlations shown in green. Significant cells are 
shaded from lightest to darkest based on significance level: ≤ 0.05, ≤ 0.01, ≤ 0.001. 
 White Matter at age 2 and 2yr MSEL Scores 
 ELC - 2yr GM - 2yr FM - 2yr EL - 2yr RL - 2yr VR - 2yr 

Tract AD2 RD2 FA2 AD2 RD2 FA2 AD2 RD2 FA2 AD2 RD2 FA2 AD2 RD2 FA2 AD2 RD2 FA2 
ARC-FP (L) 0.17 0.03 0.06 -0.05 -0.07 0.02 -0.06 -0.09 0.05 0.19 -0.01 0.11 0.21 0.09 0.01 0.12 0.04 0.02 
ARC-FP (R) -0.02 0.12 -0.15 -0.03 -0.02 -0.01 -0.08 -0.04 -0.02 0.03 0.08 -0.09 0.04 0.13 -0.14 -0.04 0.09 -0.13 
ARC-FT (L) 0.00 0.03 -0.04 -0.08 -0.06 0.00 -0.13 -0.09 0.02 0.04 0.00 0.00 0.02 0.12 -0.12 -0.02 0.06 -0.09 
ARC-FT (R) 0.03 0.03 -0.03 -0.01 -0.05 0.04 -0.05 -0.09 0.08 0.05 -0.01 0.01 0.07 0.07 -0.06 -0.03 0.04 -0.08 
ARC-TP (L) 0.04 0.00 0.04 -0.10 -0.10 0.02 -0.05 -0.10 0.09 0.05 0.00 0.02 0.05 0.05 -0.01 0.02 0.03 0.02 
ARC-TP (R) 0.04 0.03 0.02 0.02 -0.09 0.08 -0.06 -0.10 0.09 0.05 0.01 0.03 0.11 0.05 0.03 -0.01 0.07 -0.07 
CF-M (L) 0.07 0.09 -0.06 0.13 0.09 -0.03 0.02 0.06 -0.06 0.09 0.05 0.01 0.15 0.12 -0.04 0.03 0.02 -0.02 
CF-M (R) 0.10 -0.06 0.15 -0.03 -0.15 0.13 -0.05 -0.11 0.09 0.04 -0.03 0.07 0.12 0.01 0.10 0.09 -0.07 0.14 
CGC (L) 0.00 -0.01 0.03 -0.11 -0.07 0.02 -0.09 -0.13 0.09 0.02 0.02 0.01 0.05 0.06 0.00 0.05 0.00 0.03 
CGC (R) -0.13 0.15 -0.20 0.09 0.05 0.01 -0.06 0.17 -0.16 -0.13 0.05 -0.13 -0.09 0.17 -0.20 -0.16 0.11 -0.18 
CT-M (L) 0.00 -0.01 0.03 -0.11 -0.07 0.02 -0.09 -0.13 0.09 0.02 0.02 0.01 0.05 0.06 0.00 0.05 0.00 0.03 
CT-M (R) 0.05 0.04 0.00 -0.05 -0.03 -0.01 -0.15 -0.05 -0.03 0.06 0.05 0.00 0.10 0.08 -0.01 0.06 0.07 -0.02 
CT-Par (L) 0.02 0.03 0.04 -0.13 -0.11 0.03 -0.10 -0.11 0.09 -0.02 0.10 -0.11 -0.01 0.01 0.02 0.08 0.05 0.09 
CT-Par (R) 0.08 0.03 0.04 -0.13 -0.05 -0.05 -0.10 -0.10 0.07 0.07 0.05 -0.01 0.08 0.01 0.02 0.12 0.04 0.06 
CT-PFC (L) 0.11 0.15 -0.13 -0.05 -0.11 0.11 -0.05 -0.02 -0.05 0.13 0.12 -0.04 0.08 0.08 -0.07 0.12 0.19 -0.18 
CT-PFC (R) 0.06 0.05 -0.06 -0.02 -0.11 0.08 -0.07 -0.06 -0.04 0.13 0.10 -0.03 0.09 0.05 -0.04 0.00 0.02 -0.07 
CT-PM (L) 0.11 0.01 0.09 -0.10 -0.03 -0.02 -0.10 -0.08 0.03 0.09 0.05 0.03 0.14 0.03 0.07 0.14 0.01 0.12 
CT-PM (R) 0.04 0.04 0.00 -0.10 -0.07 -0.01 -0.16 -0.05 -0.05 0.07 0.03 0.03 0.09 0.08 -0.02 0.06 0.07 -0.01 
IFOF (L) 0.10 0.02 0.06 0.03 -0.06 0.07 -0.01 -0.07 0.06 0.14 0.00 0.11 0.08 0.06 0.00 0.10 0.04 0.04 
IFOF (R) 0.01 -0.01 0.00 0.01 -0.04 0.05 -0.11 -0.13 0.06 0.07 0.00 0.04 0.08 0.04 -0.03 -0.01 0.01 -0.04 
ILF (L) 0.13 0.05 0.07 0.01 -0.08 0.06 0.01 -0.04 0.06 0.16 0.05 0.09 0.14 0.07 0.05 0.12 0.07 0.03 
ILF (R) 0.03 -0.02 0.06 0.00 -0.08 0.06 -0.07 -0.13 0.14 0.05 0.01 0.03 0.07 0.01 0.03 0.02 -0.03 0.05 
SLF (L) 0.14 0.02 0.06 -0.07 -0.06 0.02 -0.03 -0.05 0.02 0.18 0.03 0.09 0.20 0.07 0.04 0.08 0.03 0.01 
SLF (R) 0.14 0.01 0.09 -0.03 -0.02 -0.03 -0.04 -0.12 0.10 0.13 0.01 0.07 0.15 0.02 0.09 0.06 0.03 0.01 
UNC (L) 0.11 0.12 -0.02 0.00 -0.02 0.04 -0.04 -0.04 0.02 0.15 0.07 0.07 0.15 0.17 -0.05 0.12 0.17 -0.08 
UNC (R) 0.03 0.08 -0.03 0.06 -0.04 0.08 -0.06 -0.05 0.00 0.04 0.03 0.03 0.10 0.14 -0.04 0.00 0.08 -0.07 
CC-Genu 0.03 0.13 -0.13 -0.09 -0.16 0.11 -0.10 0.02 -0.06 0.07 0.06 0.00 0.09 0.15 -0.13 -0.01 0.13 -0.17 
CC-Rostrum -0.12 0.10 -0.17 -0.10 -0.15 0.11 -0.11 0.05 -0.11 -0.01 0.05 -0.03 -0.10 0.06 -0.12 -0.15 0.09 -0.19 
CC-Splenium 0.00 -0.09 0.17 -0.03 -0.11 0.10 -0.01 -0.14 0.19 0.00 -0.11 0.19 0.01 -0.05 0.10 -0.03 -0.09 0.15 
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Table S4.9. Adjusted Pearson’s Correlations Between DTI Parameters at Birth and 2yr MSEL Scores. 
Shaded cells are statistically significant, with negative correlations shown in red and positive correlations shown in green. Significant cells are 
shaded from lightest to darkest based on significance level: ≤ 0.05, ≤ 0.01, ≤ 0.001.  
 White Matter at Birth and 2yr MSEL Scores - Adjusted 
 ELC - 2yr GM - 2yr FM - 2yr EL - 2yr RL - 2yr VR - 2yr 

Tract AD0 RD0 FA0 AD0 RD0 FA0 AD0 RD0 FA0 AD0 RD0 FA0 AD0 RD0 FA0 AD0 RD0 FA0 
ARC-FP (L) -0.07 -0.08 0.08 -0.15 -0.14 0.10 -0.05 -0.04 0.02 -0.02 -0.03 0.05 -0.02 -0.04 0.07 -0.09 -0.09 0.06 
ARC-FP (R) -0.06 -0.05 0.05 -0.09 -0.09 0.07 0.00 0.00 0.02 -0.09 -0.07 0.05 -0.02 -0.03 0.04 -0.06 -0.05 0.05 
ARC-FT (L) -0.08 -0.05 -0.01 -0.09 -0.10 0.08 -0.07 -0.04 0.00 -0.07 -0.02 -0.04 -0.04 -0.03 0.00 -0.04 -0.03 0.01 
ARC-FT (R) -0.07 -0.05 0.05 -0.15 -0.12 0.07 -0.03 -0.02 0.00 -0.03 -0.01 0.02 -0.05 -0.04 0.05 -0.07 -0.06 0.06 
ARC-TP (L) 0.03 0.03 -0.01 -0.12 -0.12 0.03 0.05 0.05 -0.03 0.02 0.03 -0.03 0.00 0.01 -0.05 0.06 0.05 0.03 
ARC-TP (R) -0.04 -0.05 0.09 -0.08 -0.09 0.12 -0.01 -0.03 0.03 -0.03 -0.02 0.04 -0.02 -0.03 0.09 -0.06 -0.05 0.08 
CF-M (L) -0.04 -0.05 0.03 -0.10 -0.15 0.13 -0.08 -0.03 -0.04 -0.01 -0.02 0.03 0.02 -0.04 0.07 -0.01 -0.03 0.03 
CF-M (R) -0.02 -0.07 0.08 -0.09 -0.15 0.14 -0.07 -0.05 0.01 -0.02 -0.02 0.02 0.06 -0.05 0.11 -0.01 -0.05 0.06 
CGC (L) 0.00 -0.04 0.05 -0.15 -0.15 0.03 -0.02 -0.06 0.07 -0.03 -0.03 0.00 0.04 0.00 0.04 0.04 -0.02 0.07 
CGC (R) -0.06 -0.02 -0.07 -0.15 -0.13 0.00 -0.09 -0.05 -0.08 0.00 0.02 -0.04 0.03 0.02 -0.01 -0.07 -0.05 -0.03 
CT-M (L) -0.08 -0.07 0.03 -0.15 -0.15 0.11 -0.09 -0.05 -0.02 -0.05 -0.04 0.03 -0.02 -0.04 0.05 -0.04 -0.05 0.04 
CT-M (R) -0.01 -0.06 0.08 -0.09 -0.15 0.17 -0.06 -0.07 0.03 0.01 -0.02 0.03 0.05 -0.03 0.08 0.02 -0.05 0.09 
CT-Par (L) -0.05 -0.07 0.05 -0.15 -0.15 0.11 -0.06 -0.06 0.01 -0.05 -0.03 0.01 -0.01 -0.04 0.06 -0.03 -0.07 0.08 
CT-Par (R) -0.03 -0.08 0.08 -0.15 -0.18 0.15 -0.05 -0.07 0.05 -0.04 -0.03 0.00 0.03 -0.05 0.08 -0.02 -0.08 0.09 
CT-PFC (L) -0.01 0.00 -0.02 -0.13 -0.11 0.07 -0.04 -0.04 0.00 0.01 0.04 -0.04 0.01 0.02 -0.02 -0.01 0.01 -0.04 
CT-PFC (R) 0.00 -0.01 0.02 -0.10 -0.11 0.11 -0.06 -0.06 0.04 0.02 0.03 -0.02 0.02 0.01 0.03 0.01 0.00 0.01 
CT-PM (L) -0.06 -0.08 0.06 -0.14 -0.11 0.07 -0.08 -0.04 -0.01 -0.06 -0.05 0.03 0.01 -0.04 0.08 -0.03 -0.06 0.06 
CT-PM (R) 0.00 -0.05 0.07 -0.11 -0.14 0.12 -0.08 -0.05 0.00 -0.03 -0.02 0.01 0.08 -0.01 0.10 0.04 -0.02 0.07 
IFOF (L) 0.01 -0.02 0.06 -0.14 -0.13 0.09 -0.04 -0.06 0.05 0.01 0.01 -0.01 0.03 0.01 0.04 0.01 -0.02 0.06 
IFOF (R) -0.01 -0.03 0.04 -0.15 -0.13 0.10 -0.03 -0.06 0.05 -0.02 0.01 -0.03 0.01 -0.01 0.04 0.00 -0.02 0.05 
ILF (L) -0.02 -0.04 0.06 -0.10 -0.12 0.08 -0.01 -0.04 0.07 -0.03 0.00 -0.01 0.00 -0.03 0.08 -0.01 -0.03 0.07 
ILF (R) -0.05 -0.08 0.08 -0.13 -0.14 0.09 -0.02 -0.06 0.08 -0.07 -0.04 -0.02 -0.02 -0.06 0.09 -0.03 -0.07 0.10 
SLF (L) -0.07 -0.07 0.04 -0.10 -0.14 0.14 -0.05 -0.04 0.03 -0.08 -0.06 0.02 -0.02 -0.04 0.05 -0.05 -0.04 0.02 
SLF (R) -0.06 -0.12 0.16 -0.11 -0.15 0.14 -0.07 -0.11 0.13 -0.05 -0.11 0.16 -0.03 -0.05 0.07 -0.03 -0.08 0.12 
UNC (L) -0.01 -0.04 0.07 -0.13 -0.13 0.11 -0.06 -0.07 0.05 0.01 0.01 0.00 0.03 0.00 0.04 0.01 -0.03 0.07 
UNC (R) -0.05 -0.05 0.06 -0.15 -0.13 0.09 -0.08 -0.08 0.05 -0.03 -0.01 -0.01 0.01 0.00 0.03 -0.01 -0.04 0.07 
CC-Genu -0.04 -0.04 0.03 -0.11 -0.11 0.08 -0.08 -0.09 0.06 0.02 0.01 0.00 0.00 0.00 0.01 -0.02 -0.03 0.01 
CC-Rostrum 0.02 0.00 0.01 -0.10 -0.12 0.11 -0.05 -0.06 0.04 0.06 0.04 -0.01 0.05 0.03 0.00 0.02 0.01 -0.01 
CC-Splenium 0.03 -0.11 0.19 -0.10 -0.12 0.08 -0.01 -0.06 0.08 0.01 -0.12 0.18 0.06 -0.08 0.18 0.01 -0.06 0.12 
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Table S4.10. Adjusted Pearson’s Correlations Between DTI Parameters at age 1 and 2yr MSEL Scores. 
Shaded cells are statistically significant, with negative correlations shown in red and positive correlations shown in green. Significant cells are 
shaded from lightest to darkest based on significance level: ≤ 0.05, ≤ 0.01, ≤ 0.001.  
 White Matter at age 1 and 2yr MSEL Scores - Adjusted 

 ELC - 2yr GM - 2yr FM - 2yr EL - 2yr RL - 2yr VR - 2yr 
Tract AD1 RD1 FA1 AD1 RD1 FA1 AD1 RD1 FA1 AD1 RD1 FA1 AD1 RD1 FA1 AD1 RD1 FA1 

ARC-FP (L) 0.02 -0.02 0.01 -0.07 0.01 -0.05 -0.08 -0.13 0.10 0.05 0.01 0.00 0.01 0.03 -0.07 0.00 -0.04 0.03 
ARC-FP (R) -0.09 0.03 -0.12 -0.13 0.03 -0.10 -0.11 -0.07 -0.01 -0.01 0.05 -0.10 -0.07 0.06 -0.17 -0.09 -0.01 -0.08 
ARC-FT (L) -0.07 0.05 -0.06 -0.06 0.05 -0.06 -0.17 -0.09 0.07 -0.02 0.08 -0.09 -0.04 0.10 -0.13 -0.08 0.01 -0.02 
ARC-FT (R) -0.07 -0.02 -0.01 -0.08 -0.01 -0.02 -0.10 -0.11 0.12 -0.03 0.05 -0.09 -0.01 0.05 -0.09 -0.10 -0.07 0.03 
ARC-TP (L) -0.08 0.02 -0.08 -0.05 -0.02 -0.03 -0.14 -0.09 0.02 0.01 0.06 -0.08 -0.13 0.03 -0.14 -0.09 0.01 -0.06 
ARC-TP (R) -0.01 -0.04 0.07 0.02 -0.11 0.15 0.02 -0.13 0.20 0.01 0.01 0.00 0.03 0.01 0.03 -0.08 -0.02 0.00 
CF-M (L) -0.13 -0.07 0.01 -0.05 -0.04 0.01 -0.12 -0.13 0.08 -0.14 -0.04 -0.03 -0.07 -0.03 -0.01 -0.12 -0.05 0.00 
CF-M (R) -0.01 -0.10 0.13 -0.01 -0.04 0.03 -0.01 -0.14 0.20 -0.02 -0.07 0.08 0.03 -0.04 0.06 -0.04 -0.08 0.10 
CGC (L) -0.09 -0.01 -0.04 -0.05 -0.06 0.01 -0.13 -0.12 0.05 -0.04 0.02 -0.04 -0.07 0.04 -0.09 0.00 0.01 -0.01 
CGC (R) -0.20 0.08 -0.21 -0.07 0.03 -0.08 -0.21 -0.06 -0.09 -0.08 0.11 -0.15 -0.16 0.12 -0.22 -0.16 0.04 -0.16 
CT-M (L) -0.13 -0.08 0.00 -0.10 -0.04 -0.04 -0.17 -0.14 0.04 -0.14 -0.03 -0.05 -0.07 -0.02 0.00 -0.07 -0.05 0.02 
CT-M (R) 0.02 -0.03 0.05 -0.03 -0.05 0.02 -0.04 -0.09 0.11 -0.02 -0.04 0.03 0.07 0.03 0.00 0.03 0.00 0.03 
CT-Par (L) -0.12 -0.07 0.02 -0.10 -0.09 0.02 -0.20 -0.15 0.08 -0.05 0.02 -0.07 -0.07 -0.03 0.00 -0.10 -0.08 0.05 
CT-Par (R) -0.01 0.06 -0.06 -0.07 -0.01 -0.05 -0.10 -0.08 0.05 0.05 0.10 -0.09 0.02 0.09 -0.11 -0.01 0.03 -0.02 
CT-PFC (L) -0.10 -0.06 -0.01 -0.05 -0.05 0.04 -0.13 -0.12 0.08 0.02 0.04 -0.04 -0.13 -0.08 -0.04 -0.08 -0.03 -0.02 
CT-PFC (R) -0.12 -0.08 0.00 -0.02 0.01 -0.03 -0.13 -0.15 0.09 -0.05 0.00 -0.05 -0.08 -0.02 -0.08 -0.12 -0.09 0.02 
CT-PM (L) -0.09 -0.08 0.03 0.00 0.09 -0.10 -0.16 -0.14 0.05 -0.09 0.00 -0.05 0.01 -0.01 0.00 -0.10 -0.09 0.04 
CT-PM (R) -0.04 -0.03 0.01 -0.08 -0.02 -0.04 -0.10 -0.11 0.09 -0.07 -0.02 -0.02 0.04 0.04 -0.04 -0.02 -0.01 0.01 
IFOF (L) -0.07 0.03 -0.09 0.02 -0.01 0.02 -0.18 -0.12 0.01 0.03 0.09 -0.08 -0.07 0.07 -0.13 -0.06 0.02 -0.05 
IFOF (R) -0.14 0.01 -0.09 0.00 -0.04 0.05 -0.20 -0.15 0.05 -0.05 0.05 -0.09 -0.07 0.08 -0.14 -0.13 -0.02 -0.05 
ILF (L) -0.02 0.05 -0.08 0.03 -0.04 0.06 -0.14 -0.11 0.03 0.02 0.15 -0.14 -0.04 0.03 -0.09 0.02 0.04 -0.04 
ILF (R) -0.11 -0.04 -0.01 0.00 -0.05 0.04 -0.16 -0.15 0.08 -0.09 0.03 -0.07 -0.05 0.01 -0.05 -0.11 -0.07 0.03 
SLF (L) -0.05 0.00 -0.03 -0.10 0.01 -0.06 -0.13 -0.08 0.05 0.02 0.02 -0.02 -0.05 0.01 -0.09 -0.06 -0.03 -0.01 
SLF (R) -0.05 -0.02 -0.03 -0.10 0.04 -0.13 -0.11 -0.12 0.05 0.00 0.04 -0.06 -0.01 0.03 -0.07 -0.05 -0.03 0.01 
UNC (L) -0.10 -0.04 -0.03 0.04 0.06 -0.01 -0.14 -0.15 0.09 0.00 0.06 -0.08 -0.07 0.04 -0.09 -0.09 -0.07 0.00 
UNC (R) -0.06 -0.01 -0.04 0.03 0.01 0.01 -0.19 -0.15 0.03 0.05 0.03 -0.03 -0.01 0.05 -0.07 -0.07 -0.02 -0.03 
CC-Genu -0.09 0.07 -0.14 -0.05 -0.04 0.04 -0.14 -0.08 0.03 -0.05 0.05 -0.10 -0.06 0.07 -0.14 -0.05 0.10 -0.16 
CC-Rostrum -0.23 -0.02 -0.14 -0.09 -0.11 0.09 -0.20 -0.11 0.01 -0.14 0.00 -0.12 -0.18 0.01 -0.16 -0.19 0.00 -0.15 
CC-Splenium 0.07 0.03 0.00 -0.02 0.03 -0.06 0.04 -0.08 0.13 0.06 0.03 0.01 0.02 0.04 -0.04 0.06 0.04 -0.01 
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Table S4.11. Adjusted Pearson’s Correlations Between DTI Parameters at age 2 and 2yr MSEL Scores. 
Shaded cells are statistically significant, with negative correlations shown in red and positive correlations shown in green. Significant cells are 
shaded from lightest to darkest based on significance level: ≤ 0.05, ≤ 0.01, ≤ 0.001.  
 White Matter at age 2 and 2yr MSEL Scores - Adjusted 

 ELC - 2yr GM - 2yr FM - 2yr EL - 2yr RL - 2yr VR - 2yr 
Tract AD2 RD2 FA2 AD2 RD2 FA2 AD2 RD2 FA2 AD2 RD2 FA2 AD2 RD2 FA2 AD2 RD2 FA2 

ARC-FP (L) 0.19 0.03 0.08 -0.09 -0.09 0.04 -0.04 -0.07 0.05 0.20 -0.01 0.11 0.23 0.08 0.02 0.14 0.05 0.05 
ARC-FP (R) 0.03 0.09 -0.07 -0.06 -0.03 0.00 0.00 -0.03 0.04 0.08 0.08 -0.05 0.09 0.10 -0.06 -0.02 0.07 -0.06 
ARC-FT (L) 0.09 0.04 0.02 -0.04 -0.08 0.04 -0.06 -0.07 0.08 0.09 0.01 0.04 0.11 0.13 -0.06 0.09 0.08 -0.02 
ARC-FT (R) 0.05 0.07 -0.03 0.00 -0.05 0.06 0.01 -0.04 0.07 0.05 0.03 -0.01 0.11 0.11 -0.06 0.01 0.07 -0.06 
ARC-TP (L) 0.13 0.03 0.05 -0.12 -0.12 0.02 0.03 -0.05 0.08 0.12 0.04 0.01 0.13 0.08 0.00 0.10 0.05 0.03 
ARC-TP (R) 0.15 0.07 0.05 0.02 -0.10 0.10 0.04 -0.04 0.10 0.14 0.05 0.06 0.22 0.08 0.08 0.07 0.11 -0.03 
CF-M (L) 0.06 0.03 0.00 0.10 0.06 -0.02 0.01 0.05 -0.06 0.06 0.00 0.05 0.14 0.07 0.01 -0.03 -0.06 0.03 
CF-M (R) 0.03 -0.06 0.09 -0.05 -0.16 0.12 -0.05 -0.09 0.07 -0.01 -0.01 0.01 0.06 0.01 0.03 0.03 -0.07 0.09 
CGC (L) -0.08 -0.04 0.01 -0.17 -0.07 0.00 -0.12 -0.12 0.05 -0.07 0.01 -0.03 -0.04 0.04 -0.03 -0.04 -0.02 0.00 
CGC (R) -0.05 0.12 -0.13 0.12 0.05 0.03 0.02 0.15 -0.11 -0.06 0.04 -0.08 -0.02 0.16 -0.14 -0.10 0.08 -0.12 
CT-M (L) -0.08 -0.04 0.01 -0.17 -0.07 0.00 -0.12 -0.12 0.05 -0.07 0.01 -0.03 -0.04 0.04 -0.03 -0.04 -0.02 0.00 
CT-M (R) -0.03 0.00 -0.01 -0.07 -0.05 0.00 -0.18 -0.08 -0.02 0.01 0.03 -0.02 0.03 0.03 -0.01 0.00 0.04 -0.03 
CT-Par (L) 0.01 0.00 0.08 -0.17 -0.18 0.06 -0.05 -0.07 0.09 -0.04 0.10 -0.10 -0.03 -0.03 0.04 0.11 0.02 0.14 
CT-Par (R) 0.07 0.05 0.02 -0.17 -0.07 -0.04 -0.08 -0.05 0.03 0.04 0.09 -0.07 0.06 0.01 0.00 0.10 0.04 0.06 
CT-PFC (L) 0.05 0.07 -0.06 -0.09 -0.18 0.17 -0.05 -0.05 0.01 0.10 0.09 -0.02 0.00 -0.01 0.00 0.05 0.10 -0.11 
CT-PFC (R) -0.04 -0.01 -0.04 -0.02 -0.11 0.09 -0.09 -0.07 0.00 0.08 0.09 -0.05 0.01 0.01 -0.03 -0.07 -0.01 -0.07 
CT-PM (L) 0.03 -0.06 0.10 -0.15 -0.04 -0.05 -0.11 -0.08 0.03 0.04 0.03 0.01 0.07 -0.02 0.08 0.06 -0.05 0.11 
CT-PM (R) -0.06 -0.02 -0.01 -0.14 -0.07 -0.03 -0.21 -0.07 -0.05 -0.01 -0.01 0.01 0.00 0.03 -0.03 -0.03 0.03 -0.03 
IFOF (L) 0.08 -0.03 0.10 0.02 -0.10 0.10 0.01 -0.05 0.06 0.11 -0.04 0.13 0.05 0.01 0.03 0.09 -0.01 0.09 
IFOF (R) 0.06 -0.02 0.04 0.03 -0.06 0.08 -0.06 -0.08 0.05 0.10 -0.01 0.07 0.13 0.04 0.01 0.05 -0.01 0.02 
ILF (L) 0.12 0.02 0.09 -0.02 -0.13 0.07 0.01 -0.01 0.04 0.11 0.03 0.08 0.11 0.03 0.07 0.10 0.02 0.05 
ILF (R) 0.01 -0.04 0.07 -0.01 -0.11 0.08 -0.05 -0.08 0.10 0.01 0.02 0.01 0.05 -0.01 0.04 0.01 -0.05 0.08 
SLF (L) 0.19 0.04 0.10 -0.09 -0.08 0.04 0.01 -0.02 0.04 0.21 0.05 0.10 0.25 0.07 0.09 0.13 0.04 0.05 
SLF (R) 0.17 0.00 0.13 -0.02 -0.03 0.00 0.04 -0.10 0.13 0.16 0.02 0.08 0.19 0.01 0.13 0.09 0.03 0.05 
UNC (L) 0.10 0.05 0.05 -0.04 -0.08 0.07 -0.02 -0.06 0.07 0.16 0.04 0.11 0.13 0.11 0.01 0.08 0.07 0.00 
UNC (R) 0.08 0.02 0.05 0.08 -0.07 0.12 -0.02 -0.06 0.04 0.08 0.00 0.08 0.15 0.11 0.03 0.02 0.02 0.01 
CC-Genu -0.03 0.05 -0.05 -0.07 -0.16 0.12 -0.10 -0.03 0.02 0.02 0.00 0.05 0.05 0.09 -0.08 -0.04 0.10 -0.13 
CC-Rostrum -0.14 0.02 -0.09 -0.08 -0.16 0.12 -0.09 0.02 -0.06 -0.03 0.00 0.02 -0.12 -0.01 -0.06 -0.14 0.04 -0.14 
CC-Splenium 0.07 -0.07 0.18 0.01 -0.10 0.09 0.08 -0.07 0.17 0.04 -0.12 0.19 0.07 -0.01 0.08 0.05 -0.04 0.13 
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CHAPTER FIVE: WHITE MATTER CONNECTOMES AT BIRTH 
ACCURATELY PREDICT COGNITIVE ABILITIES AT AGE TWO 

 

INTRODUCTION 
At birth, the human brain is a highly connected network of largely unmyelinated axons that 

will serve as the foundation upon which future fine-tuning of cortical circuitry takes place via 

processes including synaptogenesis, dendritic arborization, and myelination (Dubois et al., 2014). 

By week 30 of gestation, major pathways underlying rich-club organization in the brain are 

established (Ball et al., 2014), and by birth white matter (WM) networks exhibit a small world 

architecture (Yap et al., 2011), suggesting that the foundational wiring of brain circuitry is 

established in-utero and is in place by the time of normal birth, a finding which has been supported 

by tractography studies (Dubois et al., 2008; Huang et al., 2006). The structural connectome, as a 

physical network, has important implications for both cortical structural development (Essen, 

1997) and functional brain connectivity (Hagmann et al., 2010; Park & Friston, 2013; Sporns, 

2013). 

The structural connectome is more adult-like at birth than the functional connectome, with 

structural hubs including regions in the medial frontal, parietal, and hippocampal areas (Huang et 

al., 2015; van den Heuvel et al., 2015) along with regions in the posterior cingulate and insula 

(Ball et al., 2014), whereas functional networks at birth have hubs in primary sensory, auditory, 

and sensorimotor areas (Cao, He, Dai, Liao, et al., 2017a; Fransson, Åden, Blennow, & 

Lagercrantz, 2010). Interestingly, cross-sectional developmental studies have shown that coupling 

between structural and functional networks increases from 30 weeks gestation into adulthood 
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(Hagmann et al., 2010; van den Heuvel et al., 2015). This body of work highlights the possibility 

that early-maturing structural connectomes serve as the initial foundation upon which diverse 

functional networks are built (Cao, Huang, & He, 2017b). 

Importantly, the structural connectome must provide enough flexibility to support dynamic 

large-scale functional reorganization that has been shown to occur during cognitive tasks (J. R. 

Cohen & D'Esposito, 2016). Recent studies have begun to reveal interesting links between 

individual differences in structural connectomic features in pediatric populations and future 

cognitive and behavioral performance. White matter connections between the thalamus and cortex 

have been related to cognitive abilities at age 2 in preterm infants (Ball et al., 2015), and structural 

connectomes at birth have been used to derive unique subject communities that were related to 

maternal reports of child behaviors at ages 2 and 4 in full-term infants (Wee et al., 2016). A recently 

developed methodological approach for using deep convolutional neural networks outlined the 

utility of this method in predicting cognitive and motor scores at age 2 from structural connectomes 

at birth in very preterm infants (Kawahara et al., 2017). Additionally, WM tractography in infants 

revealed that the microstructural integrity of fiber pathways spanning the brain at birth was 

important for 2-year cognition across domains (Chapter 3, manuscript under review). This recent 

work suggests that WM connectivity at birth, and the microstructural integrity of these 

connections, are important for future cognitive and behavioral outcomes in toddlerhood.  

 In the present study, we extend work from the burgeoning new field of developmental 

connectomics to study how WM connectomes at birth relate to individual differences in cognitive 

abilities at age 2, across a period of rapid, dynamic brain development (Geng et al., 2012; Gilmore 

et al., 2012; Knickmeyer et al., 2008; Lyall et al., 2015), in a heterogeneous sample of infant 

participants followed longitudinally. The goals of this project were to (1) determine the predictive 
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ability of WM connectomes at birth for subsequent cognition, and (2) identify features of the WM 

connectome at birth that are particularly important for determining individual differences in 

cognitive abilities in toddlerhood. In order to achieve these goals, we used a deep learning 

approach to classify infants based on their cognitive performance at age 2 using features from WM 

connectomes at birth. Specifically, we classified participants as scoring below average (BA), 

average (AV), or above average (AA) on the Mullen Early Learning Composite (ELC) at age 2 

(Mullen, 1995), an assessment of general cognitive ability in infants and young children. To probe 

the generalizability of the results obtained from this approach, we trained and tested the model in 

a sample of full term infants and replicated our findings in a sample of preterm infants that were 

unknown to the classification model. Next, in order to directly predict the ELC score itself, and 

thus gain an understanding how precisely our method can predict future performance, we fed the 

strength of the classification accuracy for each infant into a regression prediction model. Finally, 

we employed a backtrack fingerprinting approach (Hazlett et al., 2017) to extract the features of 

the WM connectome at birth that were important for classifying participants based on their 

cognitive performance at 2 years of age.  

 

MATERIALS AND METHODS 
Participants 

Participants were part of the ongoing Early Brain Development Study at UNC Chapel Hill 

(Gilmore et al., 2007; S. J. Lee et al., 2017). Pregnant women were recruited from outpatient 

obstetrics and gynecology clinics at the University of North Carolina Hospitals and Duke 

University Medical Center. All offspring underwent magnetic resonance imaging shortly after 

birth and were followed through early childhood, receiving cognitive assessments at age 2. We 
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retrospectively identified 115 infants with 42-direction diffusion weighted images (DWI), T1- and 

T2-weighted MRIs, and reconstructed white matter (WM) surfaces who passed our quality control 

(see section below on Network Generation) and successfully completed cognitive assessments at 

age 2. We did not exclude participants for perinatal complications, medical illness, or potential 

developmental delay based on cognitive assessments; our goal was to use the most heterogeneous 

dataset available to us for the prediction analysis. Additionally, 14% (n = 16) of infants in our 

sample were born to mothers with a diagnosed psychiatric illness. To test for the robustness of the 

classification, we built our classification model using data from full term (FT) infants (≥ 37 weeks 

gestation; n = 78) and applied it to preterm (PT) infants (< 37 weeks; n= 37). Informed written 

consent and parental permission was obtained from at least one parent of all child participants and 

all study protocols were approved by the University of North Carolina at Chapel Hill’s Institutional 

Review Board. 

 

Cognitive Assessment  

Cognitive ability was assessed at age 2 using the Mullen Scales of Early Learning (MSEL) 

(Mullen, 1995). Child measures of fine motor, visual reception, expressive and receptive language 

were collected by experienced testers. Age-standardized t-scores from these four scales were 

combined into an Early Learning Composite (ELC) standardized score (range: 49-155, mean =100, 

sd =15). The ELC has high internal consistency (median = 0.91) and reliability (median = 0.84 for 

the cognitive scales during these testing ages), and principal factor loadings of the scales lend 

support for the construct validity of the ELC as a general measure of cognitive ability (Mullen, 

1995), much like an intelligence quotient.  
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Image Acquisition 

All MRI and DWI images used in this study were acquired between 2009 and 2012 using 

either a Siemens Allegra head-only 3T scanner (N=85) or a Siemens TIM Trio 3T scanner (N=30), 

which replaced the Allegra in 2011 (Siemens Medical System, Inc., Erlangen, Germany). Infants 

were scanned during unsedated, natural sleep after being fitted with earplugs and secured using a 

vacuum-fixed immobilization device.  

Proton density and T2 weighted structural images were acquired on the Allegra using a 

turbo-spin echo sequence (TSE, TR = 6200ms, TE1 = 20ms, TE2 = 119ms, flip angle = 150°, 

spatial resolution = 1.25mm x 1.25mm x 1.95mm, N = 6) or a “fast” turbo-spin echo sequence was 

collected on the Allegra using a decreased TR, a smaller image matrix, and fewer slices (TSE, TR 

range = 5270ms-5690ms, TE1 range = 20ms-21ms, TE2 range = 119ms-124ms, flip angle = 150°, 

spatial resolution = 1.25mm x 1.25mm x 1.95mm, N=79). For the Trio, participants were initially 

scanned using a TSE protocol (TR=6200ms, TE1=17, TE2=116ms, flip angle=150°, spatial 

resolution= 1.25mm x 1.25mm x 1.95 mm, N = 4) while the rest were scanned using a 3DT2 

SPACE protocol (TR=3200ms, TE=406, flip angle=120°, spatial resolution= 1mm x 1mm x 1mm, 

N=26). 

T1-weighted images were acquired on the Allegra using a 3D magnetization prepared rapid 

gradient echo sequence (MP-RAGE TR = 1820ms, TE = 4.38ms, flip angle = 7°, spatial resolution 

= 1mm x 1mm x 1mm, with matrix dimensions of 256 x 192, N = 5 or 256 x 144, N = 80). T1 

images on the Trio were collected using a lower echo time (MP-RAGE TR = 1820ms, TE = 

3.75ms, flip angle = 7°, spatial resolution = 1mm x 1mm x 1mm, N = 30).  

DWI data were acquired using a single-shot echo-planar imaging spin-echo sequence. For 

all DWI data, 42 directions of diffusion sensitization were acquired with a b value of 1,000 s/mm2 



 145 

in addition to seven baseline (b value = 0) images (generating a total of 49 DWIs). The parameters 

for the 42-direction data were as follows: TR/TR/Flip angle = 7,680/82/90°, slice thickness = 2mm, 

and in-plane resolution = 2 x 2 mm2, with a total of 60 to 72 slices.  

 

WM Surface Generation 

Cortical surfaces for each infant were generated using a pipeline previously described (Jha 

et al., 2018; Li et al., 2016). All MR images were preprocessed for tissue segmentation using a 

standard infant-specific pipeline (Li et al., 2013). Specific steps included skull stripping and 

manual editing of non-brain tissue, removal of the cerebellum and brain stem, corrections for 

intensity inhomogeneity, and rigid alignment of T2-weighted images into an average atlas space 

(F. Shi et al., 2011).  Gray matter, white matter (WM), and cerebrospinal fluid (CSF) were 

segmented by applying a standalone infant-specific patch driven coupled level sets method (Wang 

et al., 2014). Non-cortical regions were masked and tissues were divided into the left and right 

hemisphere. A deformable surface method (Li et al., 2012; Li, Nie, Wang, Shi, Gilmore, et al., 

2014a) was applied to the tissue segmentations in order to reconstruct the WM and gray matter 

surfaces. This method involved a topological correction of WM volume to ensure spherical 

topology, a tessellation of the corrected WM to generate a triangular mesh, and the deformation of 

the WM mesh towards the reconstruction of each cortical surface while preserving the initial 

topology. All surfaces for the left and right hemisphere were visually examined for accurate 

mapping. The cortical surface, and corresponding WM surface, was parcellated into 78 regions of 

interest based on an infant-specific parcellation atlas (Gilmore et al., 2012; Tzourio-Mazoyer et 

al., 2002), see Jha et al. (Jha et al., 2018) for visualizations. For probabilistic tractography, only 

the WM surfaces were used. 
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Structural Network Generation  

A study-specific, automated quality control (QC) protocol was applied to all raw DWI data 

using DTIPrep (www.nitrc.org/projects/dtiprep) which detected slice-wise and gradient-wise 

intensity and motion artifacts and corrected for motion and eddy current effects (Oguz et al., 2014). 

Diffusion images with large motion artifacts and missing or corrupted gradients were excluded 

from further processing. Skull and non-brain tissue were removed using Brain Extraction Tool (S. 

M. Smith, 2002), and tensors were estimated using a weighted least-squares algorithm (Goodlett 

et al., 2009). All infants with cortical surfaces, T1 images, and DWIs that passed QC (N = 246) 

were collected. T1 images were registered into DWI space using a rigid registration in ANTS. A 

deformation field was computed from the T1 images to the DWIs using ANTS. The deformation 

field was applied to the cortical surfaces. The registration of all the WM surfaces to the DWIs were 

visually inspected in 3D Slicer to ensure accuracy in alignment; 219 cases (89%) passed 

registration QC. Our dataset was derived from the 219 who passed QC and who were followed up 

and have cognitive testing data at age 2, this resulted in a dataset of 115 infants.  

 Probabilistic tractography was performed using CIVILITY (Puechmaille, Styner, & Prieto, 

2017), a cloud-based interactive tool for the processing and visualization of white matter 

connectome data. CIVILITY utilizes FSL tools bedpostx, probtrackx2 (Behrens, Berg, Jbabdi, 

Rushworth, & Woolrich, 2007). Prior to tractography, Bayesian estimation of diffusion parameters 

was computed to allow for data-driven selection of the number of supported fiber orientations at 

each voxel (bedpostx), accounting for multiple orientations and crossing fibers (Behrens et al., 

2007). For our analyses, we used two tensors for voxel fitting. ExtractSurfaceLabels 

(https://github.com/NIRALUser/ExtractLabelSurfaces) was then used to extract each region from 

the WM surface and update a seed list for tractography. Probabilistic tractography was then 
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performed using probtrackx2 (Behrens et al., 2007), with the number of samples (streamlines per 

voxel) set to 3000, a step-length of 0.75mm, and seed sphere sampling size of 0.5mm.  

 Resulting matrices (78 x 78) containing the number of streamlines connecting each region 

of interest (ROI) were then normalized such that the degree of region-to-region connections were 

scaled from 0 to 1. The normalized matrices were used in the deep learning approach described 

below.  

 

ELC 2-year Score Prediction Pipeline  

As illustrated in Figure 5.1, the proposed two-step pipeline approach (i.e. the output of one 

model becomes the input to a second model) includes the construction of two models: 

classification followed by prediction. Since infant WM connectivity is used to predict a precise 

ELC score at age 2, it may be unrealistic to construct one model, i.e. single neural network, that 

has a reasonable amount of accuracy without dramatically overfitting it. To mitigate overfitting, 

the proposed design splits one difficult machine learning problem into two easier ones. More 

specifically, we start with an easier classification problem (ELC group classification) that is then 

followed by a more difficult prediction problem (ELC 2-year score prediction). This design choice 

is very reasonable and practical: Essentially, the ELC classification model directs an infant WM 

connectome to one of three fine-tuned ELC 2-year score prediction models based on an above 

average (AA), average (AV), or below average (BA) ELC group classification. In general, our 

pipeline is applied as follows: First an infant WM connectome is reshaped into a connectivity 

feature vector, which is then input to the ELC classification model. Next, the ELC group 

classification result is directed to the matching 2-year ELC prediction model (AA, AV, or BA). 



 148 

Finally, the ELC group classification value, or confidence value, is input into the ELC group 

prediction model and a 2-year ELC score is found. 

 

ELC 2-year Score Prediction Pipeline Training   

Both models (classification and prediction) in our pipeline are trained and tested using a 

10-fold cross-validation strategy, furthermore our cross-validation approach only uses FT infant 

WM connectomes. In general, the cross-validation strategy first evenly divides (as best as possible) 

infants into ten different folds, where no twin pair is in the same fold, then infants are randomly 

assigned to each fold, and the ratio of BA, AV, and AA infants are maintained in each fold. At 

each iteration, one-fold (i.e. the left-out fold) is used to test the model, and the remaining nine 

folds are used to train the model. The iterative strategy terminates when each fold becomes the test 

fold. At completion, ten different trained pipelines (classification model and prediction model) are 

created.  

For the ELC group score classification model, the optimal momentum (pm) and learning 

rate (plr) neural network model parameters were found by incorporating a grid search procedure in 

our cross-validation strategy. Specifically, an independent two-dimension grid-search procedure 

was performed for each left-out-fold, where the values stored at grid coordinate (pm, plr) were the 

mean and standard deviation classification values. In particular, pm was adjusted in increments of 

0.05 starting at 0.001 and ending at 1.0, while plr was adjusted in increments of 0.0001 starting at 

0.0005 and ending at 0.01. When the grid-search completes, the parameter values that achieved 

the highest classification accuracy are selected. It should be noted that when the decay value was 

set to a particularly small value (~10-6), it had little to no effect on the classification accuracy, so 

this model parameter was not included in our grid-search procedure. 
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ELC 2-year Group Score Classification Model  

The upper triangular portion of the 78 x 78 FT infant WM connectivity matrices were 

reshaped into one dimensional connectivity feature vectors where each connectivity feature vector 

has 3,003 WM connections. The connectivity feature vectors, along with their associated group 

ELC classification labels, were then used to train a dense neural network that defines one input 

layer, five hidden layers, and one output layer. In particular, the input layer has 3003 neural 

network nodes, one for each WM connection in the connectivity feature vector, and the output 

layer has 3 neural network nodes, one for each ELC group score. One additional supervised 

learning layer was added when the model is trained that also has 3 neural network nodes. Once the 

supervised training step completes the supervised training layer was removed, and the number of 

neural network nodes in the output layer were used for ELC group score classification. For 

example, given a connectivity feature vector if the output of the neural network is AA=0.2, 

AV=0.65 and BV=0.4, then the infant is classified as average (AV) with confidence equal to 0.65. 

More specifically, classification confidence is a real number in [0 1], where a value of one implies 

the neural network is 100% confident the infant was assigned to the correct ELC group.  

 

ELC 2-year Score Prediction Models  

The ELC group confidence values generated of the ELC 2-year group score model were 

then used to train three different linear regression models (one for each ELC group) that were used 

to predict the actual ELC score at age 2. For each prediction model, one predictor variable (ELC 

group confidence) and one response variable (2-year ELC score) were used to train the linear 

regression model, e.g. only AA neural network ELC group confidence values and their 

corresponding 2-year ELC scores were used to train the AA 2-year ELC score prediction model. 
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In general, the linear regression model exploits a very intuitive relationship, for example, AA ELC 

group confidence values should be correlated with AA 2-year ELC scores. Furthermore, if the 

linear regression model has a high correlation coefficient, then this suggests the ELC group 

predication model can accurately find a precise 2-year ELC score, that is a 2-year ELC score 

prediction model is fine-tuned to the associated ELC group.  

 

Extraction of the Connectivity Fingerprint  

To identify the WM connectivity features driving classification accuracy, and thus 

important for predicting future cognitive performance, a backtrack approach similar to that 

described by Hazlett et al. (2017) was employed to identify a systematic WM connectivity pattern, 

or connectivity fingerprint for short. In general, our approach works its way backward through the 

layers of the trained neural network (using FT infants only) to the input layer, and follows the 

nodes that have the largest contribution to the layer directly above. When the backtrack approach 

completes each WM connection, in the connectivity feature vector, is assigned a normalized 

weight that indicates its contribution to classification accuracy, i.e. higher weight confers greater 

contribution. Next, using the assigned weight values the connectivity fingerprint is formed by 

including only those WM connections that account for top 20% of the total weight.  

 

Application of the ELC 2-year Prediction Pipeline  

Even though the 10-fold cross-validation strategy provides a standard approach to 

objectivity measure ELC classification and prediction accuracy of FT infants, the concern then 

becomes: (1) Can we achieve similar prediction accuracy of the approach when applied to infant 

WM connectome data that are not full term, and (2) using the ten different prediction pipelines, 
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created by the 10-fold cross-validation strategy, how should the ELC 2-year score be reported? To 

address these two concerns the ELC prediction pipeline was used to predict the 2-year ELC score 

of a second WM connectome dataset that only included PT infants. Since the prediction pipelines 

are trained using FT infants, this would closely simulate a real setting where the term of the 

pregnancy may be more variable (i.e. does not go full term). Furthermore, many model-based 

approaches may typically predict a single ELC 2-year score, which may not be statistically 

meaningful. Instead, given a WM connectome, our approach will generate ten 2-year ELC scores 

(one for each prediction pipeline), then the prediction results can be used to estimate a mean 2-

year ELC score with standard deviation. 

 

RESULTS  
Participants  

Parental and child demographic information for 78 full term (born at ≥ 37 weeks gestation; 

FT) and 37 preterm (< 37 weeks; PT) infant participants are presented in Table 5.1. PT infants 

were born earlier (t = 13.17, df = 51, p < 0.0001) weighed less at birth (t = 9.39, df = 70, p < 

0.0001), and had longer stays in the neonatal intensive care unit (NICU; t = -5.35, df = 36, p < 

0.0001) following birth. In an effort to achieve term-age equivalent data, PT infants were scanned 

later after birth (t = -8.39, df = 52, p < 0.0001) and brought back later for their 2-year cognitive 

assessments (t = -6.57, df = 71, p < 0.0001). Twins were over-represented in the PT compared to 

FT group (c2 = 1.09, df = 1, p < 0.0001). There were no demographic differences between PT and 

FT groups based on maternal or paternal age, education level, or income, nor were there any 

differences in mean 2-year ELC scores or male to female ratios. The range of gestational age at 

birth and ELC scores for FT and PT infants is shown in Figure 5.2.  
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Classification of ELC Score Group  

Classification labels were generated by grouping infants into three categories based on their 

performance on the 2-year ELC relative to others in our sample: above average (AA; NFT = 18, 

NPT = 9) average (AV; NFT = 41, NPT = 19), and below average (BA; NFT = 19, NPT = 9). The ELC 

score group (BA, AV, BA) classification model was trained on the 78 FT infants using a 10-fold 

cross-validation approach and achieved 79% (SD = 2.68%) accuracy. We additionally tested our 

approach on the 37 PT infants using each trained model generated by our 10-fold approach, where 

classification accuracy was determined as the mean accuracy across all 10 ELC score group 

models. The PT classification accuracy was 74% (SD = 2.68%). 

 

Prediction of ELC Scores  

Results comparing the predicted ELC score to actual scores can be seen in Figure 5.3A for 

FT infants and Figure 5.3B for PT infants. Correlations between predicted and actual scores were 

high for both FT (r = 0.947, df = 76, p < 0.0001) and PT infants (r = 0.967, df = 35, p < 0.0001; 

for mean predicted score across 10 folds). The mean absolute error across individuals for the 

prediction was 4.3 points for FT and 3.14 points for PT infants.   

 

Connectivity Fingerprint  

The connectivity fingerprint shown in Figure 5.4 defines 20 brain regions, and 30 WM 

connections that are important for accurate classification based on ELC score group (BA, AV, 

AA). Highest degree brain regions important for classification (Figure 5.4B) include the left 

frontal inferior triangularis (comprising part of Broca’s area), right insula, and right supplemental 

motor area, right rectus gyrus, and left anterior cingulate. Additional brain regions of lower degree 
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that contribute to classification include the bilateral precentral (primary motor cortex) and frontal 

superior medial gyri, the right frontal inferior orbital gyrus, left insula, right middle cingulate, right 

parahippocampus, right angular gyrus, and left calcarine, fusiform and parietal superior gyri.  

WM connections with the highest contribution to classification (Figure 5.4A) include 

connections between the pre- and post-central gyri in the left hemisphere, and long-range 

connections between the primary visual cortex and frontal inferior triangularis in the left 

hemisphere, the occipital inferior cortex and precentral gyrus in the right hemisphere, and the 

primary visual cortex and precentral gyrus in the left hemisphere. Cross-hemispheric connections 

of high weight (weight > 7) included connections between the parts of the right supplemental motor 

area (rolandic operculum) and frontal inferior triangularis in the left hemisphere, and a connection 

between the left superior parietal cortex and frontal inferior triangularis in the right hemisphere.  

 

DISCUSSION 
Using a developmental connectomics framework coupled with a deep learning approach, we 

have demonstrated the ability to accurately predict an infant’s cognitive performance at age 2 using 

WM connectivity matrices generated from scans at birth. Specifically, we demonstrated that taking 

a two-step approach by first classifying infants based on their cognitive performance group – 

below average, average, and above average – and then using results from this group classification 

to directly predict ELC scores, allowed us to achieve estimates of children’s cognitive scores two 

years later that are highly correlated with their actual scores. Importantly, we found that our 

prediction model, which was trained using WM data from term-born infants, was applicable to 

preterm infants, despite known associations between prematurity and altered WM development 

(Elitt & Rosenberg, 2014). Finally, to our knowledge, we report the first results identifying regions 

in the neonatal WM connectome that are important for supporting emergent cognitive abilities at 
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age 2 in both full-term and preterm infants. This study demonstrates the importance of fetal brain 

development for subsequent cognition and suggests that the WM connectome may be an important 

biomarker of cognitive abilities during early postnatal development that deserves further study. 

A distributed WM network consisting of nodes spanning the cortex at birth – with the highest 

degree nodes confined to the frontal lobe, namely an area comprising part of Broca’s area in the 

left hemisphere, and right insula – contributed to classification accuracy based on cognitive scores 

two years post-birth. These findings are consistent with previous reports that rich club regions in 

the infant WM connectome include regions in the medial frontal cortex and insula (Ball et al., 

2014). Interestingly, studies linking infant WM connectomes to parental reports of children’s 

behavior at age 4 also found connectivity to the right insula to be an important predictor of future 

externalizing behavior (Wee et al., 2016), and Kawahara and colleagues found a WM hub in the 

middle frontal gyrus in preterm infants to be related to cognitive abilities at age 2 (Kawahara et 

al., 2017). These findings, along with the results from our study, suggest that frontal lobe WM 

connections and connections to the insula play an important role in early learning and cognition. 

This is no surprise, as the frontal lobe plays a critical role in executive function and general 

intelligence (J. Duncan et al., 2000), and the insula has been shown to integrate information across 

brain networks responsible for cognition and emotion (Chang et al., 2013). Additionally, 

functional connectivity in the left pre- language area (which will later become Broca’s area) in the 

fetal brain was predictive of gestational age at birth, with later-born infants showing higher 

connectivity to left language regions in-utero than those who would go on to be born preterm 

(Thomason et al., 2017). This research, along with our finding that structural connectivity at birth 

to Broca’s area is related to future cognition, suggests that the development of language circuitry 

that occurs in-utero is important for postnatal cognitive development.   
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Cortico-cortical connections that were most important to classifying infants based on their 

cognitive scores two years later include connections between sensory, motor, and language 

regions. Our finding that short range connections between the primary motor and somatosensory 

cortices are predictive of future cognition is particularly interesting given the importance of motor 

development to cognitive development in infancy, which allows for infant exploration, perceptual 

learning, and social interaction (Campos et al., 2000; Gibson & Pick, 2000).A recent study found 

that at age 1, several brain functional networks, including motor networks spanning the pre- and 

post-central gyri, were important for present and future gross motor performance (Marrus et al., 

2018). This suggests a potential role for the in-utero development of somato-motor structural 

connectivity that may lay the foundation for the emergence of functional connections that support 

motor and cognitive development in infancy. Additionally, we found that long-range connections 

between regions in the occipital cortex and primary motor cortex were also important for 

prediction, suggesting that visuo-motor integration, a known component of motor development in 

children (Kulp, 1999) that is disrupted in children with autism spectrum disorders (Nebel et al., 

2016), may be subserved by WM connections established during fetal brain development. Finally, 

long-rage cortico-cortical connections between a region housing Broca’s area in the left 

hemisphere and the left primary visual cortex, right rolandic operculum, and left superior parietal 

cortex were also important for predicting future cognition, suggesting that connectivity to the left 

inferior frontal language areas may play an important role in infant cognition.  

Results from this study suggest that WM connectomes at birth, as a reflection of fetal brain 

development, have important implications for future cognitive developmental capacities in 

children. Structural connections in the developing brain are built through genetically regulated 

cascades of cellular events that govern neurogenesis and migration and promote an exuberance of 
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connections via processes of axon guidance, synaptogenesis and dendritic arborization (Stiles & 

Jernigan, 2010). In the final trimester, the infant structural connectome undergoes substantial 

refinement through apoptotic mechanisms that promote pruning of neuronal processes, a process 

which continues through early postnatal life (Innocenti & Price, 2005). Despite the substantial 

amount of axonal pruning during the end of gestation and during the first two postnatal months, 

we are still able to use WM connectivity features at birth, from a group of full-term and preterm 

infants, to predict future outcomes. This suggests that the foundational wiring of the brain 

important for future cognition is set in place in-utero, and may have lasting impacts on child 

development.  

Neuroimaging research has greatly improved our understanding of human brain function and 

development; however, it has largely fallen short of informing clinical or educational practice that 

improves people’s lives (Gabrieli, Ghosh, & Whitfield-Gabrieli, 2015). Thus, as the field 

advances, there is a critical need to identify neuroimaging biomarkers that can aid in improving 

diagnostic criteria and identifying people at risk for poor mental health and cognitive outcomes so 

that adequate interventions can be designed and implemented.  Our study using non-invasive 

neuroimaging biomarkers, in this case WM connectomes, to predict infants’ future cognitive 

performance is an important step in this direction. Machine learning, and particularly deep 

learning, have been instrumental in neuroimaging research by allowing abstract and complex 

patterns between brain structural and functional features and cognitive and clinical phenotypes to 

be revealed (D. Shen, Wu, & Suk, 2017; Vieira, Pinaya, & Mechelli, 2017). In this study, we 

trained a deep learning classification model to use infant WM connectomes at birth to predict 

future cognitive outcomes 2 years post-birth. The classification accuracies were relatively high; 

we achieved 79% in full-term and 73% in preterm infants. These results are quite remarkable 
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considering the substantial amount of refinement that the WM network, and underlying fiber tracts, 

will undergo in the first two postnatal years (Dubois et al., 2014; Gao, Lin, et al., 2009a; Geng et 

al., 2012), coupled with the fact that we performed a multi-class classification based on normal 

variation in general cognitive abilities, as opposed to a binary outcome based on clinical diagnosis.  

Given the potential clinical relevance of predicting cognitive scores directly, we used 

classification strengths from the ELC group classification model as inputs in a regression 

prediction model to estimate each infant’s future cognitive score at age 2. This two-step process 

achieved very high correlations between predicted and actual scores, within just a few points of 

the actual score in many cases. The mean absolute error between predicted and actual scores are, 

on average, comparable to the standard errors of measurement for the ELC, which range between 

about 3 and 4 score points for 2-year-olds, and reflect a band of error around the mean, or “true”, 

score that would be obtained if an individual could be tested repeatedly without influences of 

practice or other factors (Mullen, 1995). This level of accuracy is imperative if you wish to use 

neuroimaging markers, or ‘neuromarkers’, to guide cognitive and behavioral interventions in 

young children. Another recent study proposed a deep learning approach for directly predicting 

cognitive scores at age 2 from WM networks of preterm infants; however, the correlations between 

the predicted and ground-truth scores were much weaker, with correlations of only 0.19 for general 

cognitive scores and 0.31 for motor scores (Kawahara et al., 2017). This suggests that taking the 

difficult problem of direct score prediction from neuroimaging data, and breaking it down into two 

tractable problems – a group-level classification followed by regression prediction model – may 

be a better suited approach. This idea is further supported by findings in adults, where Finn and 

colleagues (Finn et al., 2015) used functional connectivity fingerprints to predict individual 

differences in fluid intelligence and found correlations of 0.50 between actual and predicted scores. 
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Results of that magnitude, while important findings, do not provide high enough correlations for 

use in an applied setting. While our method is far from ready for clinical application, it shows 

promise for the ability to directly predict scores with good accuracy, which may be particularly 

important for identifying infants at birth who are at risk for going on to score in clinically 

significant ranges of developmental delay.  

Importantly, our models, which are trained using data from full-term infants, robustly predicted 

future cognitive scores with similar accuracy using WM connectomes from preterm infants. 

Preterm birth is associated with alterations in WM microstructural development (Partridge et al., 

2005) and cortical development (Rathbone et al., 2011). Preterm infants are at risk for poor 

cognitive outcomes (Bode et al., 2014) and neurodevelopmental disorders including attention 

deficit hyperactivity disorder and autism, which have been linked to disruptions in brain 

connectivity (Liston, Cohen, Teslovich, Levenson, & Casey, 2011; Uddin, Supekar, & Menon, 

2013). Additionally, recent investigations of functional connectivity in human fetuses in-utero 

found that those that went on to be born prematurely showed altered connectivity patterns that 

occurred in a graded manner, such that the most premature infants showed the most altered 

connectivity patterns in-utero (Thomason et al., 2017). This work suggests that negative outcomes 

associated with prematurity may have origins in pre-existing intrauterine neurological conditions, 

as opposed to extrauterine factors occurring after preterm birth. Despite the inherent differences 

between brain development in full-term and preterm infants, our ability to accurately predict 

cognitive scores in both groups suggests there exists an underlying set of organizational principles 

that govern structural network topology and have important implications for cognitive 

development. This highlights the potential usefulness of WM connectomes as neuromarkers of 

cognition across heterogeneous infant populations.  
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This study has many strengths. Our sample included both full-term and preterm infants with 

high resolution diffusion magnetic resonance imaging data followed longitudinally for cognitive 

assessment. The methods employed in this study are cutting edge and allow for a data-driven 

approach to identifying regions in the WM connectome related to future cognitive abilities. 

Additionally, we replicated our findings in a preterm sample that is clinically distinct and was 

unknown to the model which was trained on the full-term sample. Finally, to our knowledge, we 

conducted the first study to assess the predictive ability of WM connectomes at birth for future 

cognitive outcomes in full-term and preterm subjects. Despite these strengths, our study has 

limitations including the use of a cortical-only atlas for probabilistic tractography, which does not 

consider cortico-subcortical connections which may be important for emerging cognition (Ball et 

al., 2015). Also, while our sample size is comparable to other studies of this nature, it will be 

important to replicate these findings in other longitudinal datasets, for example, using data from 

the publicly available Baby Connectome Project.  

 In conclusion, findings from this study revealed that the infant WM connectome is 

predictive of cognitive performance at age 2, which highlights the importance of WM development 

in-utero for subsequent cognition. We also report the first evidence of WM structural hubs and 

connections that have implications for cognitive abilities in toddlerhood in a healthy sample.  Our 

work has implications for screening and intervention, and suggests that future work should focus 

on identifying the ways in which prenatal mechanisms of WM development are influenced by 

genetic factors as well as the intra- and extrauterine environment to shape individual differences 

in structural connectomes that serve as a biological foundation for learning.  
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Figure 5.1. Approach for predicting ELC scores at age 2 from WM connectomes at birth. 

Data were preprocessed to reshape WM connectivity matrices (78 x 78 cortical regions) at birth into 
connectivity feature vectors by computing the reciprocal of the coefficient of variation (i.e. the ratio of the 
mean to standard deviation) of the fiber count for each pairs of regions (78 x 77/2 = 3003 region pairs). 
Classification labels were generated by grouping subjects into three categories based on their performance 
on the 2-year ELC relative to others in our sample: above average (AA) average (AV), and below average 
(BA). A classification model predicting ELC group (BA, AV, AA) was then trained and tested on the 78 
FT subjects using a leave-one-out cross-validation approach. Finally, classification strengths (average 
accuracy across testing folds for each subject) were then fed into a regression prediction model to directly 
estimate the ELC score at age 2 for each ELC group. 



 

 
Table 5.1. Participant Demographic Information 

 Full Term (N = 78)  Preterm (N = 37)    

 Mean (SD)  Mean (SD) T-test* df P-value 

Gestational Age Birth (days) 272.40 (9.28)  238.68 (14.21) 13.17 51 <0.0001 
Birth Weight (grams) 3095.10 (480.52)  2188.22 (485.13) 9.39 70 <0.0001 
Stay in NICU (days) 0.01 (0.11)  10.89 (12.37) -5.35 36 <0.0001 
Age at MRI (days) 23.14 (9.86)  45.19 (14.47) -8.39 52 <0.0001 

Age at 2yr MSEL (days) 747.36 (22.0)  779.08 (25.14) -6.57 63 <0.0001 

2yr ELC 106.4 (15.93)  105.19 (15.85) 0.40 71 0.6922 

Maternal Age (years) 29.97 (5.76)  29.95 (6.14) 0.02 67 0.9812 
Paternal Age (years) 32.42 (5.98)  32.0 (8.40) 0.28 54 0.7843 
Maternal Education (years) 14.96 (3.30)  15.89 (3.23) -1.44 72 0.1533 
Paternal Education (years) 15.01 (3.73)  15.36 (2.98) -0.52 85 0.601 
Household Income ($) $72,260 (62,909)  $88,537 (64,870) -1.23 65 0.2213 
 N  N Chi Sq.  P-value 

Male / Female 41 / 37  24 / 13 1.09  0.2975 
Singleton / Twin 49 / 29  4 / 33 25.27  <0.0001 

* calculated using Welch’s two-sample, two-tailed t-test assuming unequal variance 
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Figure 5.2. Participant Gestational Age at Birth and ELC Distributions.  

Participant distributions for gestational age at birth (A) and ELC scores at age 2 (B) are presented. Data 
from FT subjects are shown in blue and PT subjects are shown in orange.  
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Figure 5.3 Correlations between actual and predicted 2-year cognitive scores.  

Estimated ELC scores generated through regression prediction models are plotted against each FT 
infant’s actual ELC score, along with linear regression lines (blue line) and shaded 95% confidence 
intervals (A). Regression prediction models were run for each classification fold for PT infants, and 
estimated ELC scores for each fold are shown in (B), along with the linear regression line (black line) for 
the mean predicted score across folds and a 95% confidence interval for the regression fit.  



 

 

Figure 5.4: Connectivity fingerprint of WM connections driving ELC group classification accuracy.  

Results from the backtrack approach identifying features of the input WM connectomes that are most responsible for ELC group classification 
accuracy are shown in (A), where nodes (brain regions) in this fingerprint subnetwork are colored by degree (number of connections to the node) 
and edges are colored by their weight (0,10). Highest degree nodes (degree > 2) in the subnetwork are visualized in (B) along with a listing of 
these anatomical regions from the parcellation atlas. 

A

B ROI Degree
Frontal Inferior Triangularis (L) 4
Insula (R) 4
Supplemental Motor Area (R) 3
Rectus (R) 3
Anterior Cingulate (L) 3
Precentral (L,R) 2
Frontal Inferior Orbital (R) 2
Frontal Superior Medial (L,R) 2
Insula (L) 2
Middle Cingulate (R) 2
Parahippocampus (R) 2
Calcarine (L) 2
Fusiform (L) 2
Parietal Superior (L) 2
Angular Gyrus (R) 2

L R

L R

Degree

Edge Weight

0 10

1 42 3

32 4

Degree
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CHAPTER SIX: INTEGRATION, CONCLUSIONS,  
AND FUTURE DIRECTIONS 

 

SUMMARY OF FINDINGS  
 The work presented in the dissertation comprises the first comprehensive study of how 

cortical structure and white matter organization and integrity in the first two years of life relate to 

individual differences in language, motor, and cognitive abilities in infancy and toddlerhood.  

In Study 1/Chapter 1 we established that the Mullen Scales of Early Learning composite 

score (ELC) at age 2 is predictive (at a similar level to other developmental assessments) of 

school-age intelligence, while scores at age 1 are far less predictive. We also reported that twins 

score significantly lower than singletons by age 6, and that infants born very prematurely or with 

birth complications had variable IQ outcomes at age 6 that were not predicted by infant scores.  

In Aim 1/Chapter 2 we examined the relationships between CT and SA and cognitive 

performance across infancy and toddlerhood in a large, normative sample. Our findings – the 

first report of the associations between global and regional CT and SA and cognitive abilities in 

this age range – suggested that generally thicker, larger cortices in early life confer cognitive 

benefits in infancy and toddlerhood. The majority of our findings were with CT. We found 

several expected brain-cognition relationships, with CT in regions associated with motor 

planning and execution and regions associated with language processing and production related 

to motor and language scores, respectively. Results were weakened when other demographic 

variables, including gestational age and maternal education level, were included in the model. 

Finally, our longitudinal models revealed no significant associations between developmental 
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changes in CT and SA in the first or second year of life. Taken together, our findings suggest 

that:  (1) cognitive abilities in early life are, at least in part, determined by preceding prenatal and 

postnatal brain development and related to present cortical structure in regions important for 

cognition, (2) CT in this age range appears to be a stronger morphological indicator of cognition, 

(3) processes that drive SA expansion prenatally and CT expansion in infancy – namely 

synaptogenesis, dendritic arborization, and the elaboration of other cellular processes and 

connections – may be important for building circuitry that supports emergent cognition, and (4) 

cortical measures are modest biomarkers, at best, accounting for a relatively small percentage of 

the variance in cognitive scores compared to other demographic factors like maternal education.  

In Aim 2/Chapter 3 we examined the associations between WM tract integrity and 

cognitive abilities in the first two years of life in a typically-developing sample. Results from this 

study revealed widespread associations between FA, AD, and RD at birth and cognitive abilities 

at ages 1 and 2, and widespread associations between RD at age 1 and concurrent cognition. 

Controlling for demographic variables greatly weakened brain-cognition results. Longitudinal 

analyses revealed that generally slower rates of change in RD in the second year of life were 

related to better language performance in tracts known to support higher-order cognition. These 

findings suggest that: (1) WM microstructure at birth plays a role in supporting cognitive 

abilities across infancy, (2) RD may be a particularly important biomarker of overall WM 

development, (3) myelination, fiber organization, and axon diameter may be important for 

supporting cognitive development in early life, and (4) protracted myelination, and thus 

increased plasticity, in the second year of life may be important for language learning. 

In Study 3/Chapter 4 we extended our findings from Aim 2 to determine the predictive 

value of WM connectivity at birth for general cognitive ability at age 2. In this study, we used a 
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deep learning approach to classify infants based on their cognitive scores at age 2 using WM 

connectomes at birth. We were able to classify both full-term and preterm infants as scoring 

below average, average, or above average on cognitive assessments at age 2 with very good 

accuracy. We were also able to use results from these models to directly predict each infant’s 2-

year ELC score. Predicted scores were highly correlated with actual scores. These results 

highlight: (1) the importance of in-utero WM network development for building the structural 

foundation that supports cognitive development in toddlerhood, (2) that WM networks can serve 

as a strong biomarker of future cognition when the analytic approach involves the WM network 

and can account for complex relationships between brain and cognitive data, and (3) that 

mechanisms controlling circuit formation, including neurogenesis and axon guidance, may be 

particularly important for wiring the brain to support cognition.  

These findings offer novel insight into how prenatal and postnatal brain structural 

maturation support infant and toddler cognitive abilities and fill important gaps in our current 

understanding of the neurobiology of emergent language, motor, and cognitive abilities in early 

life.   

CONTRIBUTIONS TO THE FIELD  
Developmental Assessments: A Modern Take on Prediction 

 In Study 1/Chapter 1 we reported, for the first time, the predictive ability of the Mullen 

Scales of Early Learning ELC score for school-age IQ. The MSEL is used in ongoing studies of 

brain development in both normative populations (Deoni et al., 2014; O’Muircheartaigh et al., 

2013) and in samples with children at risk for neurodevelopmental disorders including ASD 

(Marrus et al., 2018; Swanson et al., 2015). We have now provided evidence that ELC scores 

from the MSEL at age 2 can be considered predictive of school-age IQ in a similar manner to 
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other commonly used developmental assessments like the Bayley (Bayley, 1993). While our 

findings were in line with much other work in the field showing the predictive value of infant 

tests for later outcomes, we added important insight into how these predictions hold across twins 

and singletons, between children with and without birth complications, and in a more racially 

and ethnically diverse sample than had been used in past literature. Our study also includes the 

most recently born sample of children to date, which may be important given the reported 

increases in IQ over generations (Blair, Gamson, Thorne, & Baker, 2005; Flynn & Weiss, 2007), 

and the potential impacts of technology on child development that may not have been captured in 

older-born samples (Radesky & Christakis, 2016). Finally, our results also suggest that averaging 

Mullen scores between age 1 and age 2, as has been done in some prior work under the rationale 

of using a more “stable” measurement, may not be appropriate as the 1-year scores are 

significantly less predictive than the 2-year scores of later childhood performance.  

 

Insights into Brain-Cognition Relationships in an Unprecedented Sample 

 The studies presented in this dissertation provide the first account of brain-cognition 

relationships in a large, normative sample of infants and toddlers. The few studies that have 

reported relationships between WM integrity and cognitive ability in the first years of life used 

less than half the number of participants we have in our sample (Deoni et al., 2014; 

O’Muircheartaigh et al., 2013), report findings in smaller samples split between controls and at-

risk children (Swanson et al., 2015; Wolff et al., 2012), or focus exclusively on premature infants 

(Cui et al., 2017; Keunen et al., 2017; Ullman et al., 2015; Woodward, Clark, Bora, & Inder, 

2012). There have been no prior studies of CT and SA development during early infancy and its 

associations to cognition. Therefore, results from this study provide the first comprehensive 
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evidence of structural brain-cognition relationships in early infancy. The generalizability of our 

work goes far beyond what is currently available in the literature, and allows for hypothesis 

generation that is needed to push the field forward as we attempt to uncover how the brain 

matures to support cognitive development in early life.  

 Additionally, we studied multiple cognitive domains including gross motor, fine motor, 

visual reception, expressive language and receptive language, as well as general cognition. This 

depth of work has not been reported in healthy children of this age range, to our knowledge, in 

the field of developmental cognitive neuroscience. We provide key insights into which brain 

regions and white matter fibers are related to each cognitive domain, allowing for a clear picture 

to emerge concerning structure-function relationships and the contribution of brain structures to 

multiple cognitive domains. While one might expect to find adult-like structure-function 

relationships, our findings suggest that this is not always the case, and provides researchers with 

insight into the unique neurobiology that supports emergent language, motor, and general 

cognitive skills in the first years of life.  

 

The Neurobiology and Neuroimaging Biomarkers of Early Cognitive Development 

In Aim 1/Chapter 2, we found many important relationships between cortical structure 

and cognition. However, regional CT and SA, on average, accounted for only between 3-5% of 

the variance in cognitive scores when no other variables were included in the model. This 

highlights that while there are correlations between cortical structure and cognition during these 

ages, they are modest at best. Results that survived correction for covariates suggested that CT in 

the right insula may be a particularly useful biomarker of cognition in this age range, and that the 

cellular organization of the insular cortex by age 2 may be important for concurrent cognitive 
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abilities. This is particularly interesting given that the insula is thought to play an important role 

in integrating disparate functional brain systems (Chang et al., 2013), is a high-expanding 

cortical region with potential evolutionary significance (Fjell et al., 2015), and has been 

implicated in pathogenic states including schizophrenia (Namkung et al., 2017). These corrected 

analyses also revealed findings indicating that by age 1, the primary motor cortex is structurally 

developed to support future motor function and that by age 2 cortical areas responsible for 

speech production and language processing are organized to provide a foundation for burgeoning 

language abilities in toddlerhood. 

Results from Aim 2/Chapter 3 revealed that WM microstructural relationships with 

cognition were generally less specific, and indicated that brain-wide WM integrity at ages 1 and 

2 was important for supporting cognition across domains. The effect sizes of the correlations 

found were of a similar magnitude to those between CT, SA, and cognition – explaining between 

2-8% of the variation in cognitive scores – once again suggesting modest brain-cognition 

associations. Longitudinal analyses revealed that protracted development in RD in many higher-

order tracts including the bilateral SLF, bilateral fronto-temporal segment of the arcuate, the 

right temporo-parietal arcuate, left cingulum bundle, bilateral cortico-thalamic projections, and 

left IFOF, ILF, and uncinate were related to higher language and general cognitive scores. This 

work suggests that initially global WM integrity at birth and age 1 followed by specific 

protracted development in higher-order tracts in the second year of life lay the foundations for 

cognitive abilities in infancy and toddlerhood.  

Using a machine learning approach, we were able to dramatically improve the usefulness 

of brain measures as biomarkers of future cognitive scores. The direct correlations between brain 

measures – CT, SA, and regional WM integrity – explained less than 8% of the variance in 
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cognitive scores, which are in line with effect sizes seen in adolescent and adult samples (Colom 

et al., 2013; S. J. Lee et al., 2017; Penke et al., 2010; Shaw et al., 2006). Results from Study 

2/Chapter 4 revealed correlations between actual and predicted cognitive scores of 0.95. This is 

substantially better than correlations between actual and predicted scores in other published 

findings of 0.19 - 0.31 in young children (Kawahara et al., 2017) and 0.50 in adults using 

functional data (Finn et al., 2015). These findings highlight that while the direct correlations 

between WM microstructure in any one brain region and cognition are low, the complex, multi-

feature combination of brain phenotypes can be very useful in predicting future outcomes. 

Perhaps this is due the inherent differences between measuring WM microstructure, which 

evolves across the lifespan as the result of local neurodevelopmental processes, namely 

myelination, whereas WM networks arise as the result of global brain developmental 

mechanisms that occur in utero and are refined afterwards, but are largely stable at the time of 

birth.  Finally, we also found that the approach used to perform classification and prediction are 

very important to the prediction accuracy. There is still much work needed to determine the 

potential clinical application of such an approach, but studies in ASD infants using cortical 

morphological features at 6 months to predict ASD diagnosis at 24 months (Hazlett et al., 2017) 

show promise for such techniques moving forward.  

Overall, the findings from this work comprise the first comprehensive study of the 

neurobiology underlying early cognition and highlight the usefulness of WM connectome 

features at birth for predicting 2-year outcomes with high accuracy. These findings contribute to 

the field by offering researchers with hypothesis-generating ideas for future mechanistic study 

into early cognitive development. Specifically, these findings suggest future work should probe 

the structure and connectivity of the insula, WM integrity in higher-order tracts like the SLF, 
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UNC, IFOF, and ILF, and cortical structure and connectivity of frontal, parietal, and temporal 

cortices in relation to emergent cognition in infancy and toddlerhood.  

  

BRAIN DEVELOPMENTAL MECHANISMS: CONTRIBUTIONS TO 
COGNITION 
 One very clear finding emerged from this dissertation work: brain structure at birth is 

predictive of future cognitive outcomes. This focuses our attention to the importance of in-utero 

brain development for building the biological framework that supports cognitive development, 

and gives rise to a key question: what environmental and genetic factors shape prenatal brain 

development to generate subtle variations in brain structure that subserve future individual 

differences in cognitive functioning?  

 

Shaping Prenatal Brain Development: The Role of the Environment and Epigenetics 

As discussed in the introductory chapter, prenatal brain development is a highly regulated 

process governed by genetic mechanisms and environmental exposures. The timing and 

regionalization of gene expression control the birth, differentiation, and migration of neurons and 

their synaptic connectivity, ultimately shaping how the brain is wired. Brain development begins 

with neurulation shortly after conception, then neurogenesis and gliogenesis take place between 

weeks 4 and 12, followed by processes of neural migration which continues through the end of 

gestation, as well as synaptogenesis and apoptosis, and later myelination, that continue after birth 

(Stiles & Jernigan, 2010). Disruptions in any of these processes may have lasting consequences, 

as has been suggested by findings that maternal immune activation (Knuesel et al., 2014), 

maternal stress (Bale, 2015), and maternal drug use (B. L. Thompson, Levitt, & Stanwood, 2009) 



 173 

during pregnancy cause alterations in brain development that increase risk for poor cognitive, 

behavioral, neurological and mental health outcomes in offspring.  

The exact mechanisms by which in-utero insults from stress, viral infection, or drug 

exposure alter brain development remain elusive. However, we do know that epigenetic 

reprogramming of brain development can occur through physiological signals from the maternal 

milieu (cytokines, lipids, stress hormones, glucose, insulin, etc.) that transmit information from 

the in-utero environment to the developing fetus and that physiological disturbances caused by 

maternal stress, infection, and nutrition share some common developmental endpoints including 

increased risk for ASD, schizophrenia, and poor cognitive outcomes (Bale, 2015). The common 

outcomes across insults, coupled with the fact that there are a limited number of biochemical 

inputs that a given cell can respond to, it is likely that different insults act on the same signaling 

cascades and downstream effectors to promote epigenetic changes in DNA methylation (Bale, 

2015). However, many questions remain regarding how these epigenetic processes are promoted, 

and specifically what level of stressor is warranted to activate epigenetic machinery and exact 

change in the developing fetus. Additionally, it will be important to understand whether 

“normative” exposures to stress and inflammation during pregnancy may effect epigenetic 

change, and whether these could contribute to subtle differences in brain development that give 

rise to typical variation in cognitive abilities. Results from our studies demonstrate that maternal 

education (and by proxy socioeconomic status) influences both cortical development at birth and 

subsequent cortical and cognitive development in healthy children, which may suggest that 

stressors associated with lower socioeconomic status epigenetically regulate fetal brain 

development and, subsequently, later brain and cognitive development, though additional work is 

needed to test such a hypothesis. Alternatively, one might expect that inherited genetic material 
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may be more influential on brain development than epigenetic regulation given conditions of a 

relatively homeostatic prenatal maternal environment are met, and that differences in brain 

development associated with socioeconomic status are in fact inherited traits.     

 

Potential Genetic Contributions to Brain Development and General Cognitive Ability 

Twin studies from the Early Brain Development Study at UNC have revealed that total 

intracranial volume, gray matter and white matter volumes, and tract-based measures of WM 

integrity (FA, AD, RD) are highly heritable in early life (Gilmore, Schmitt, et al., 2010b; S. J. 

Lee et al., 2015). These findings are in line with those from studies of adults and aging adults 

and suggest that the heritability of white matter volumes are fairly constant across the lifespan 

while heritability of gray matter volumes may increase from infancy into childhood and 

adulthood (Gilmore, Schmitt, et al., 2010b). General cognitive ability and intelligence are also 

highly heritable, with shared genetic factors accounting for between 50 – 80% of the variation in 

intelligence (Posthuma, de Geus, & Boomsma, 2001). Heritability of intelligence has also been 

shown to increase from infancy (20%) to childhood (40%) to adulthood (60%), possibly through 

gene by environment interactions in which children select, modify, and create environments 

correlated with their genetic propensities (Plomin & Stumm, 2018).  

While both brain structure and intelligence are known to be heritable, the genetic basis of 

neurobiological differences that contribute to normative variations in cognition across the 

population remains unknown. Recent genome wide association studies (GWAS) have begun to 

identify a host of genes important for cognition that are linked to neurodevelopment. One recent 

study found that 187 independent loci from 538 genes were related to educational attainment, 

which is highly correlated with intelligence, in a sample of nearly 250,000 adults (Hill et al., 
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2018). Gene set analyses in this study, which identify groups of genes and their joint effects, 

revealed that genes related to neurogenesis, regulation of nervous system development, 

regulation of cell development, neuronal differentiation, oligodendrocyte differentiation, and 

maintenance of synapses were enriched in their cognitive GWAS results. This implicates a 

variety of neurodevelopmental mechanisms, many of which are processes that occur at high rates 

during fetal development (neurogenesis, neuronal differentiation) and the early postnatal period 

(oligodendrocyte differentiation as a precursor to myelination).  

Another recent study by Davies and colleagues (2016) replicated findings that cognition 

is associated with CADM2 (Ibrahim-Verbaas et al., 2016), a gene on chromosome 3 which 

encodes a synaptic cell adhesion molecule and is important in maintaining synaptic circuitry in 

the central nervous system (L. A. Thomas, Akins, & Biederer, 2008). CADM2 is part of the 

immunoglobulin superfamily and is likely involved in long-term signal depression and 

potentiation (Ibrahim-Verbaas et al., 2016), and has been shown to be widely expressed in the 

developing (postnatal) and adult brain in mice (L. A. Thomas et al., 2008). Long term depression 

and potentiation (LTD, LTP) have long been recognized as the functional expression of neural 

plasticity that is responsible for storing information in the form of memories and promoting 

learning via changes in synaptic strength between neuronal connections (Sweatt, 2016). 

Therefore, the finding that a gene encoding a synaptic cell adhesion molecule involved in 

maintaining synapses and possibly promoting LTP and LTD, is associated with cognition points 

to synaptic plasticity as a possible key player in determining intelligence in humans.  Synaptic 

plasticity is thought to play a crucial role in the maturation of brain circuits as it allows for 

experience-dependent strengthening, and thus preservation, of certain synapses against 

programmed synaptic pruning (Forsyth & Lewis, 2017). Mounting evidence also suggests that 
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disruptions in synaptic plasticity across development may contribute to cognitive deficits and 

psychosis observed in patients with schizophrenia (Forsyth & Lewis, 2017). Results from our 

studies also implicate synaptic plasticity in cognitive development as relative cortical thickness 

across infancy (as a reflection of the number of neurons/synapses/dendrites/ and thus level of 

synaptic pruning) and delayed myelination in the second year of life (and thus prolonged 

synaptic plasticity) were correlated with cognitive outcomes in toddlerhood. However, it is 

important to note that the GWAS studies mentioned above were conducted in middle-aged to 

older adult populations and it is possible that they capture the protective effects of CADM2 and 

cell adhesion molecules on maintaining information processing speed and cognition through 

aging as opposed potential ontogenetic benefits of CADM2 for intelligence.   

Taken together, these results highlight the importance of genes which regulate 

neurodevelopmental processes for adult cognition. Building a clearer understanding of the 

genetic variants that influence brain development and cognition will provide insight into the 

normal variation in these processes which determine many life outcomes including mental 

health, academic achievement, and life success (Deary, Penke, & Johnson, 2010) and may 

ultimately increase our understanding of neurodevelopmental disorders that disrupt brain 

development and cognition.  

 

IMPLICATIONS FOR INTERVENTION-BASED RESEARCH 
 The work presented in this dissertation sheds light on key areas for future intervention 

research. Firstly, we demonstrate that neuroimaging biomarkers at birth can be very accurate 

predictors of infants’ later cognitive performance. These findings open the door to the possibility 

of applying such a method to a large, heterogeneous sample of infants to predict domain-specific 
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cognitive deficits. This could have great clinical utility given the heterogeneous nature of 

neurodevelopmental disorders in terms of both cognitive deficits and brain phenotypes. It would 

be very interesting to combine data from several of the ongoing studies of early brain and 

cognitive development in typically developing (Deoni et al., 2014; D. Holland et al., 2014; Soh 

et al., 2014; Spann, Bansal, Rosen, & Peterson, 2014) and at-risk children (Grewen et al., 2014; 

Hazlett et al., 2017), as well as data that will soon be available through the Baby Connectome 

Project, to build a predictive model of child cognitive abilities. If predictions from such a 

heterogeneous dataset were accurate, this could be a very useful tool for identifying children at 

risk for poor future outcomes and assigning follow-up or intervention targeted to specific 

cognitive and behavioral domains. 

 Our findings also highlighted the importance of the prenatal period and suggest that 

environmental factors like maternal education exact influences on both brain and cognitive 

development. This calls for future research to focus on identifying prenatal characteristics 

important for predicting brain structure at birth and dissecting the causal mechanistic pathway(s) 

between environmental stressors (like low socioeconomic status), brain development, and 

cognition. Such studies would benefit from collecting data from obstetric records on maternal 

and fetal health, utilizing questionnaires to determine levels of maternal psychosocial stress and 

access to quality health care during pregnancy, and collecting biological data, like salivary 

cortisol, to quantitatively capture maternal stress. While there is evidence of associations 

between maternal stress, indexed by maternal cortisol levels, during pregnancy and child 

behavior (Bergman, Sarkar, Glover, & O'Connor, 2010; Davis & Sandman, 2010), there have 

been no studies assessing the effects of maternal stress during pregnancy on human fetal brain 

development. A recent study has demonstrated that infants born to mothers who experienced 
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childhood maltreatment had significantly lower gray matter volumes than control infants (Moog 

et al., 2018), suggesting that the effects of stress can be inter-generational, and deserve future 

study in the context of brain and behavioral development. Identifying which prenatal factors put 

infants at risk for poor cognitive outcomes and understanding the mechanism by which these 

factors alter brain development will be key to implementing effective interventions for at-risk 

children.  

FUTURE DIRECTIONS  
Future directions for the field have been defined above and include (1) investigating the 

epigenetic and genetic contributions brain structure and cognition in infancy, (2) seeking to 

expand the use of neuroimaging biomarkers to predict a wide range of cognitive deficits, and (3) 

systematically studying the effects of maternal health and the prenatal environment on fetal brain 

development. Future directions for this body of work, placed in the larger context of the next 

steps for the field, include (1) using data from other large-scale neuroimaging studies to replicate 

the findings presented in this report, (2) integrating and extending the work from this thesis to 

consider the contributions of gray matter, white matter, and functional connectivity development, 

simultaneously, to infant cognitive development and (3) lengthening the developmental window 

of study to include school-age time-points to gain a clearer picture of how the brain matures 

across early childhood to support complex cognition in young children.  

 

Replicating Findings in other Developmental Samples 

Replicating the findings from our studies are essential to providing a clear picture of the 

neurobiology of early cognitive development. We would hope to see the brain-cognition 

relationships – namely that thicker, larger cortices and more mature WM properties confer better 
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cognitive outcomes – and developmental patterns – brain structure at birth and slower maturation 

of WM in the second year of life predicting later outcomes – observed in our study replicate in 

other samples. It will also be important to extend the findings of our study to include children 

who are not “typically developing” as defined in our study, including children born very preterm 

or spending more than a day in the neonatal intensive care unit, children born to mothers with a 

psychiatric illness, or children who themselves have been diagnosed with a developmental 

disorder. Comparing findings from our relatively healthy sample to those from studies of at-risk 

children will aid in our understanding of how the brain matures to support infant cognition. For 

example, work in children with ASD have shown that the splenium plays an important role in 

language (Swanson et al., 2015) and visual orienting (Elison, Paterson, et al., 2013a) in early life. 

Our results support these observations, as the splenium was found to be related to visual 

reception, but also extend the findings to suggest the splenium also plays a role in motor and 

general cognition in infancy and toddlerhood. Most studies to date have taken a hypothesis-

directed approach to selecting regions or tracts of interest in an a-priori manner based on their 

role in adult cognition (Elison, Paterson, et al., 2013a; Short et al., 2013; Swanson et al., 2015), 

but in doing so may miss important emergent relationships that are demonstrated in our study. 

Future hypothesis-generating work should be done to test the robustness of the findings from our 

study, and better define brain cognition relationships in early life.  

 

Gray Matter, White Matter, and Functional Connectivity: A Multi-Modal Approach 

Structural brain maturation has important implications for functional brain development. 

At birth, the human brain is a highly connected network of largely unmyelinated axons that will 

serve as the foundation upon which future fine-tuning of cortical circuitry takes place via processes 
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including synaptogenesis, dendritic arborization, and myelination (Dubois et al., 2014). The WM 

connectome, as a physical network of axonal connections, is thought to play an important role in 

both the developmental of cortical folding (Essen, 1997) and functional brain connectivity 

(Hagmann et al., 2010; Park & Friston, 2013; Sporns, 2013). Developmental research suggests that 

the WM connectome is more adult-like at birth than the functional connectome (Cao, He, Dai, 

Liao, et al., 2017a; Fransson et al., 2010; Huang et al., 2015; van den Heuvel et al., 2015), and that 

coupling between WM networks and functional networks increases from 30 weeks gestation into 

adulthood (Hagmann et al., 2010; van den Heuvel et al., 2015). This body of work highlights the 

possibility that early-maturing WM connectomes shape cortical development and serve as the 

initial foundation upon which diverse functional networks are built (Cao, Huang, & He, 2017b). 

Yet, very little work has been done to chart the coordinated development of WM connectivity, CT 

across the cortex, and functional connectivity in early postnatal development, and no studies have 

linked multi-modal brain development in infancy and toddlerhood to future cognition.  

While addressing such a research question is quite complex, one potential approach would 

be to generate connectivity matrices of white matter (WM connectivity networks; WCNs) and 

functional connections (functional connectivity networks; FCNs) and compare them with cortical 

structural covariance networks (matrix of correlations between CT in each pair of brain regions; 

CCNs) using the same brain parcellation atlas (Figure 6.1A). It will also be important to see how 

these networks develop across infancy, which would require generating maturational WCNs, 

CCNs, and FCNs that represented the change in connectivity or correlation between brain regions 

from birth to age 1 and from age 1 to age 2 (Figure 6.1B). Finally, the coordination between CT 

covariance, white matter connectivity, and functional connectivity will need to be considered by 

calculating region-to-region correlations between WNCs, FCNs, and CCNs (Figure 6.1C).  
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Based on findings in the literature, I hypothesize that coupling of WCNs and FCNs are 

strongest (Figure 6.2A) and increase across development as functional network topology becomes 

more mature and reflective of the underlying WM architecture (van den Heuvel, Mandl, Kahn, & 

Hulshoff Pol, 2009), with greater strength of connections between brain regions appearing in 

WCNs before FCNs. I would also expect that WCNs are correlated with CCNs and that this 

coupling would be most apparent at the end of the first year of life when peak myelination rates 

would produce changes in the gray matter-white matter boundary which inherently influences CT 

measurements (Sowell et al., 2004) and DTI tractography algorithms through changes in the level 

of anisotropic diffusion in the brain (Dubois et al., 2014). Finally, previous work from our group 

has shown that CCNs are somewhat correlated with FCNs, but interestingly, that FCNs are in place 

before CCNs (Geng et al., 2017), which suggests that perhaps region-specific co-activation of 

functional networks may guide the maturation and refinement of CCNs across development. 

Therefore, I would expect that WCNs are in place first, building the foundation for CCNs, and that 

over time WCNs and FCNs both influence the development of CCNs (Figure 6.2B).  

In terms of links with cognitive development, it will be important to determine (1) if brain 

connectivity features (i.e. region to region connections, or connections to hub regions) important 

for predicting cognition are similar across WCNs, FCNs, and CCNs, (2) at which age or during 

what developmental window these networks are most predictive of future cognition, (3) what the 

relative contributions are of each network to predicting cognitive abilities, and (4) how coordinated 

development of WCNs, FCNs, and CCNs relate to cognitive development. I would expect that 

similar connectivity features for WCNs and FCNs would relate to cognitive performance given 

their hypothesized close coupling, and some overlap in the findings with CCNs (Figure 6.2C)  
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In terms of the developmental timeline, I would expect WCNs and FCNs at birth, CCNs at 

age 1 and 2, and maturational changes in WCNs and FCNs in the second year of life to be 

associated with cognitive outcomes at age 2 (Figure 6.2D). This is based on results from our 

studies which found that WM microstructure and WCNs at birth were predictive of later outcomes, 

WM microstructural changes in the second year of life were related to 2-year scores, and that CT 

at ages 1 and 2 were related to present and future cognition, coupled with the working hypothesis 

that WM network topology at birth drives functional connectivity development. In terms of the 

relative contributions of each network to cognition, I would hypothesize that WCNs and FCNs 

have the highest predictive value (Figure 6.2E) given that they are most developed during this age 

range, and that WCNs may have the most predictive power given that FC networks in early life 

are still relatively immature (Gao, Lin, Grewen, & Gilmore, 2016). Finally, I expect that given the 

known associations between WCNs and FCNs (Park & Friston, 2013),  that the coordinated 

development of these two network types will have the largest impact on infant and toddler 

cognition (Figure 6.2F).  

Results from such a study would be essential in detailing the sequence of structural and 

functional network developing in early life and identifying how coordinated developmental change 

between these networks give rise to emergent cognition in infancy.  

 

Extending the Developmental Window: Can we predict school-age abilities? 

 Determining if the long-term predictive ability of infant brain structure is another major 

next step for this body of work. I propose that we extend the developmental window to test for 

associations between brain structure at birth and cognition at age 6. There is evidence that 

cognition and intelligence become more stable and predictive of adult ability around age 6 



 183 

(Bradway & Thompson, 1962; Deary et al., 2004; 2013; McCall, 1977), and thus if we were able 

to use infant brain structures to predict cognition at this age it would suggest very strong prenatal 

origins of lifetime intelligence. Some existing work suggests that brain volumes (Keunen et al., 

2016) and WM microstructure (Keunen et al., 2017) at birth are predictive of school-age 

cognitive abilities in children born very preterm. I would hypothesize that such predictions 

would likely extend to children born at later gestational ages, and that WM connectivity values 

may serve as the best predictors of later outcomes. By age 6 we also have the opportunity to tap 

in to a variety of cognitive and behavioral domains that are inaccessible in the infant – including 

theory of mind, executive function, and anxiety and depression-like behaviors – which could also 

shed light on the neurobiology supporting the emergence of complex cognitive abilities and 

behavioral traits.  

OVERALL CONCLUSIONS 
In summary, our results reveal that brain structure at birth and across infancy and 

toddlerhood is related to emergent cognitive abilities. We reported that generally thicker, larger 

cortices and more mature WM tract properties in early life related to better performance on 

cognitive tasks, suggesting that increased synaptogenesis, elaborations in dendritic arborization, 

and myelination may confer benefits for infant cognitive development. We found several 

expected brain-cognition relationships with regional CT, while results between cognition and 

WM integrity were less specific. The predictive value of CT or SA in any one brain region or 

WM integrity of any one tract paled in comparison to the predictive ability of cortico-cortical 

WM connectivity for cognitive outcomes at age 2, suggesting that the field should consider 

complex, brain-wide architecture when investigating cognition, at least in this age range. Taken 

together, these results highlight that cortical structure and the organization and microstructural 
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integrity of WM pathways at birth serve as a foundation upon which subsequent fine-tuning of 

brain structure takes place to support emergent cognition in infancy and toddlerhood. These 

findings offer novel insight into how prenatal and postnatal brain structural maturation support 

infant and toddler cognitive abilities and fill important gaps in our current understanding of the 

neurobiology of emergent language, motor, and cognitive abilities in early life.  
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Figure 6.1 Construction of Brain Structural and Functional Networks.  

White matter connectivity networks (WCNs) and functional connectivity networks (FCNs) are constructed 
from region-based connectivity values (relative proportion of tractography streamlines or strength of 
coordinated functional signal, respectively) and cortical covariance networks (CCNs) contain the 
correlations between CT values between each brain region (A). Maturational networks are constructed by 
calculating the developmental change between networks constructed at different ages (B). Coordination 
between networks can conceptualized as the correlation between the connectivity values for each network 
by ROI pair at each age or between maturational networks (C).
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Figure 6.2. Expected Results Concerning Network Coordination, Developmental Timeline, and Predictive Cognitive Ability. 

Expected results include: (A) higher correlations between WCNs and FCNs than with either and CCNs, (B) WCNs develop first, followed by FCNs 
and CCNs, (C) similar regional connectivity and covariance structures across WCNs, FCNs, and CCNs predict cognition, (D) WCNs and FCNs at 
birth, CCNs at ages 1 and 2, and WCNs and FCNs in the second year of life will be the most predictive developmental periods for cognition at age 
2, (E) WCNs will have the greatest predictive power for cognition in early development, followed by FCNs and CCNs, and (F) coordinated 
development between WCN:FCN across the first two years will be correlated with cognition at age 2. 
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