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Abstract

ELLEN GASPAROVIC: The Blum Medial Linking Structure for Multi—-Region Analysis
(Under the direction of James Damon)

The Blum medial axis of a region with smooth boundary in R"™! is a skeleton-like
topological structure that captures shape and geometric properties of the region and its
boundary. We introduce a structure, called the Blum medial linking structure, which
extends the advantages of the medial axis to configurations of multiple disjoint regions
in order to capture both their individual and “positional” or relative geometry. We use
singularity theory to classify the generic local normal forms of the medial linking struc-
ture for generic configurations of regions in dimensions n < 6, which requires proving
a transversality theorem for families of “multi—distance functions.” We show how in-
variants of the geometry of the regions and their complement may be computed directly
from the linking structure. We conclude with applications of the linking structure to the

analysis of multiple objects in medical images.
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Introduction

We consider a collection of objects in R"*! modeled by disjoint regions with smooth
boundaries. For example, such a collection of regions in R? or R? can be used to model a
collection of objects in a 2D or 3D medical image, which may consist of organs, glands,
arteries, bones, etc. The analysis of one object in the image can be improved using
knowledge of its geometrical relation to neighboring objects (see, e.g., [24] [30] [41]).
Our objective is to introduce a structure which will capture both the geometric and
shape properties of the individual objects as well as their “positional geometry,” which
captures the geometry of the regions relative to one another.

In the case of a single region Q C R™"*! with smooth boundary B, there have been
a number of approaches to capturing the shape of 2. These include the chordal locus
of Brady and Asada [5], the arc—segment medial azis of Leyton [28], the symmetry set
of Bruce, Giblin, and Gibson [8], and the Blum medial azis [2] [3]. Each of these is a
skeletal-like structure in €2 which captures shape properties. However, the Blum medial
axis has proven to be the most useful, and it is the structure we will be extending to
a configuration of regions. The concept of the medial axis was introduced by Blum, an
engineer, in 1967 [2] [3], and was later independently introduced by Milman as the central
set [38]. The Blum medial axis M of €2 is the locus of centers of spheres in € which are
tangent to BB at two or more points (or have a degenerate tangency). On M is defined a
multivalued vector field U from points of M to the points of tangency.

The strengths of the Blum medial axis arise from three directions. First, for generic
regions, the local structure of M as a stratified set has been classified using singularity
theory by Yomdin (n < 3) [47] and Mather (n < 6) [32] (with more detailed analysis for
n = 1,2 by Giblin and Kimia [20]). Second, (M, U) belongs to a more general class of

“skeletal structures” introduced by Damon, who has shown for such structures that the



“medial geometry” of the radial vector field on M completely captures the local and
global geometry of the boundary and the region [13] [14] [15]. Third, a discrete version
of the Blum medial axis and radial vector field, known as a discrete “m-rep” (see [42]
and the many references in [43]), has been an especially effective tool for problems in
medical imaging.

Our goal in introducing the Blum medial linking structure is to extend these advan-
tages to configurations of multiple regions. The linking structure provides a means of
relating the individual medial axes to one another and to the medial axis of the comple-
mentary region. First, we use singularity theory to classify the local normal forms of the
medial linking structure for generic configurations of regions in dimensions n < 6. The
genericity results in the multi-region setting require proving a transversality theorem
for families of “multi—distance functions” defined on a collection of hypersurfaces, which
extends that of Looijenga [29] for a single distance function used in Mather’s proof. This
will require that multiple transversality statements for different distance functions be
satisfied at the same points. It is this simultaneity that brings in additional subtleties
not present in the case of a single distance function.

Second, we extend the medial geometry of a single region to the entire configuration
of regions including their complement. This leads into the third goal of applying the
linking structure to address questions from mathematics and medical imaging for multi—
region shape analysis; these questions are enumerated in Section 2.6 of Chapter 2. We
identify invariants of the positional geometry of a configuration of regions, which may be
computed directly from the linking structure, and construct a “tiered graph” structure
involving the invariants that measures order of importance among regions.

In Chapter 1, we recall the details of the classification of the local structure of the
Blum medial axis of a generic region in R™™ for n < 6. We present a survey of the
results for the medial geometry of a single region in Chapter 2. In Chapter 3, we state
the generic linking classification theorems for dimensions n = 1,2 as well as theorems on

refinements of the stratifications of the boundaries and medial axes to reflect interactions



between regions. We also define multivalued linking vector fields and prove their generic
properties. In Chapter 4, we state and prove the transversality theorem for multi—distance
functions, which is Theorem 4.3.1. We apply the transversality theorem in Chapter 5
to a collection of submanifolds and stratified sets in jet space in order to prove the
collection of theorems stated in Chapter 3. Then, in Chapter 6, we define a piecewise
smooth linking flow on each medial axis within a linking structure, and show how it
can be used to capture both the geometry of individual regions and the geometry in
the complement. Finally, we introduce several measures of comparison of a collection of

regions and organize the results into a tiered graph structure.



CHAPTER 1

Determining the Generic Structure of the Blum Medial Axis

Using Singularity Theory
1.1. Introduction

The objective of this chapter is to present the details of the classification of the
generic structure of the Blum medial axis of a single region. The first half of the chapter
focuses on many of the fundamental definitions and theorems from singularity theory as
developed by Thom [44] and Mather [32] (see also [10], [31], [36]). In Section 1.2, we
recall the notion of right—equivalence of function germs, as well as the notion of a versal
unfolding of such a germ and the infinitesimal criterion for versality. Then, in Section
1.3, we examine the relationship between versality and transversality.

In the second half of the chapter, we introduce the Blum medial axis as the Maxwell
set of the family of distance squared functions associated to a given hypersurface in R***.
In Section 1.4, we present a transversality theorem due to Looijenga [29], which Mather
[32] applied to completely classify for dimensions n < 6 the generic structure of the
Maxwell set. (Yomdin [47] gave a classification for n < 3 using a different method.)
We define Whitney stratified sets in Section 1.5 and give a specific description of the
stratification we obtain in R3. In Section 1.6, we finish with some remarks on the various

notions of codimension that we shall use in this thesis.

1.2. R*—equivalence and versal unfoldings

In this section, we recall the notions of right equivalence of germs of smooth functions

and versal unfoldings of such germs.



Let X be a smooth n—dimensional manifold and let z € X. Consider the smooth
functions f : Uy — R and g : U; — R where U; and U, are open neighborhoods of
x in X. We say that f,g are locally equivalent at x if there exists a neighborhood
x € U C Uy NUy such that f|[U = ¢g|U. This defines an equivalence relation. A local
equivalence class at z is called a germ of a smooth function at (X, z). We denote the
germ determined by the function f by f: (X,z) — (R,y) with f(z) =v.

We can extend this notation to a finite set S = {z1,...,x,} of r distinct points in X.
Two smooth functions f : U; — R and ¢g : Uy — R with Uy, Us open and S C U; NU; are
locally equivalent at S if there is an open U, S C U C Uy N Us, so that f|U = g|U. This
again forms an equivalence relation, and an equivalence class, denoted f : (X, 5) — (R, y)
with f(x;) =y for i =1,...,r, is called a multigerm of a smooth function at S.

By choosing local coordinates at x € X, we may now reduce to the case X = R".
The set of germs at = of smooth functions (R™, ) — R form a local ring which we denote
by &, with maximal ideal m, consisting of germs (R",z) — (R,0). In the special case
that x = 0, we let &, denote the ring of germs at the origin and m,, its unique maximal
ideal. If z = (M, ..., 2() denote coordinates on R", Hadamard’s Lemma implies that
zW . 2™ (viewed as function germs) generate the maximal ideal m,, [7]. Similarly,
let £s denote the ring of multigerms of smooth functions at S = {z,..., .}, so that if

&, denotes the ring of germs of smooth functions at x; € R" fort =1,...,r,
ES:gzl @...EB(C:Q,T.

Also, let mg =m,, ®...@&m,,. Thus, the multigerm f : (R",S) — (R, y) may be viewed
as the r-tuple (f1,..., f.), where for each ¢, f; : (R", z;) — (R,y) is a germ of a smooth
function at x; € R™.

We next recall the notion of right-equivalence (see, e.g., [33], [32]).



Definition 1.2.1. (a) Let f,g € E,. We say [ is right—equivalent, or R—equivalent,

to g if there exists a germ of a diffeomorphism ¢ : (R", x) — (R", x) satisfying

f=go0¢.

We say f is Rt —equivalent to g if, for some constant ¢ € R and ¢ as above,

f=goop+c

(b) Two smooth multigerms f,g € Es are said to be R—equivalent if there ezists a
multigerm of a smooth diffeomorphism ¢ : (R, S) — (R, S), with ¢(x;) = x; for 1 <
1 <r, such that

f=goo.

With such a ¢, f and g are said to be R —equivalent if

f=godte

for some ¢ € R. That is, letting f = (f1,---, f+), 9=(91,---,9:), and ¢ = (¢1,..., D),

the statement that [ is R*-equivalent to g translates to

(fl;---afr):(glo¢1+cu"'7gTo¢T+C)’

Observe that R—equivalence for multigerms requires that the value of f and g at the
points of S be the same, while Rt —equivalence allows f and g to each take on a different
value at S.

Next, we introduce the notion of an unfolding family of functions of an initial multi-

germ f.
Definition 1.2.2. For f € £g, the smooth map germ

F: (R" xR, (S,0)) — R,

(x,w) = Fy(x) = F(z,w)



with Fy(x) = f(x) is said to be an s—parameter unfolding of f.

Following [10], let R/ (s) denote the group of s—parameter unfoldings, which acts on

s—parameter unfoldings of germs f € &g.

Definition 1.2.3. Let F, G : (R" xR?,(S,0)) — R be unfoldings of f € Es. The families

F,G are said to be R}, —equivalent if there exists a multigerm of a diffeomorphism
¢ (R" x R% (5,0)) — (R" x R*/(S,0)),
(z,w) = (¢1(z, w), ¥(w)),
and a smooth function germ C: (R®,0) — R such that
F(z,w) = G(¢(z,w), ¥(w)) + C(w).

Definition 1.2.4. Suppose F' s an s—parameter unfolding of f € Eg, while G is a
p—parameter unfolding of f. A mapping from G to F consists of a smooth germ

¥ (RP0) — (R*,0) such that the unfolding

W*F 1 (R* x R?,(S,0)) = R,
(7, w) = F(2,9(w))

is R} —equivalent to G. The unfolding 1*F is called the pullback of F by 1.

We arrive at the definition of a versal unfolding.

Definition 1.2.5. Let F': (R*xR?,(5,0)) — R be an unfolding of the smooth multigerm
f € E&s. Then F is said to be versal if, for any other unfolding G : (R xRP, (S,0)) — R
of f, there exists ¢ : (RP,0) — (R*,0) such that G and Yv*F are R}, —equivalent.

1.2.1. Infinitesimal versality. In this section, we give an infinitesimal criterion for an

s—parameter unfolding F' of a germ f € &, or a multigerm f € £g to be versal.



Define in &,, the Jacobian ideal

(1.1) J(f):(8f>:5n~{g—£,...,§i}

and the R—vector subspace

OF

(1.2) (OF) =R - {(?_ul oF

,...,aus

o

u=0

The extended tangent space to the RT™—orbit of [ is
(1.3) TR f=(0f) + (1)
and the extended normal space to the R —orbit of f is the space

(1.4) NRF - f=&,/TRS - f.

of . of
ox," 7 Oxy

extended tangent space removes the restriction that 0 must map to 0.)

(The usual tangent space is given by TR*f = m,, - { } + (1), but the

Definition 1.2.6. Let f € &,. The R} —codimension of f is

R —codim(f) = dimg NR} - f.

€

Definition 1.2.7. Let F' be an unfolding of the germ f at x € R™. We say F is an

infinitesimally R™—wversal unfolding of f if
E,=TRI - f+ (OF).

Next, we give the analogous definitions in the multigerm setting. Let F' be an s—
parameter unfolding of f = (fi,..., f.) € Es, so that F = (F},..., F,) where F; is an

unfolding of f; for every ¢ = 1,...,r. Define in g the ideal

Of) = (0f1) x ... x(9fy)



and the vector subspace
(OF) = (O1F, ..., 0:F),

OF;
where 0,F = (0;F1,...,0;F,) for j=1,...,s and 0;F; = . for every i =1,...,r.
u] u=0

As in the single germ setting, the extended tangent space to the R —orbit of f is
(1.5) TR f=(0f) +(1),

the extended normal space to the Rt —orbit of f is the space

(1.6) NRI - f=E&/TR! -,

and the extended R+ —codimension of f is defined as in Definition 1.2.6.

Definition 1.2.8. Let F' be an unfolding of f € Es. Then F is an infinitesimally
Rt —wversal unfolding of f if

Es =TRY - f + (OF).

For both single and multigerms, we have the following fundamental theorem which was
stated for germs by Thom [44] and proven by Mather ([33]). The version for multigerms
was stated by Mather in [32] and a proof follows from the general unfolding theorem in

[16].
Theorem 1.2.9. An unfolding is versal if and only if it is infinitesimally versal.

Thus, the infinitesimal criterion for versality implies that the R} —codimension of f
gives the minimum number of parameters that are needed for f to be versally unfolded.
A versal unfolding F' is said to be miniversal if F' has the least possible number of
parameters.

An important consequence of Theorem 1.2.9 is that it supplies a way to construct
versal unfoldings. The following corollary is for a versal unfolding of a single germ, but

the analogous result holds for a versal unfolding of a multigerm.



Corollary 1.2.10. Let f € &,. Suppose the R} —codimension of f is s, and let wy, . . ., w,
be a basis for NRY - f. Then

F(z,u) = f(x) + wyw () + ... + usws(x)
s a miniversal unfolding of f.

Mather proved the following essential theorem on the uniqueness of versal unfoldings,

which follows from Theorem 1.2.9.

Theorem 1.2.11 (Mather [33]). Any two s—parameter R™—miniversal unfoldings are

1somorphic.

Therefore, any miniversal unfolding has an algebraic normal form. Moreover, any p—
parameter versal unfolding G with p > s is isomorphic to the unfolding F' x id,_, with
F as in Corollary 1.2.10, so G will also have a polynomial normal form.

In addition to the uniqueness theorem, there is another important theorem regarding

versality which establishes its openness property.

Theorem 1.2.12. Let F' : (R™ x R*(S,0)) — R be an R*—versal unfolding of the

multigerm f € Eg, and let

oF ,
X(F) = {(:p,w) ER"xRS;m(x,w)zo,zzl,...,n}

be the critical set of the unfolding. Then there exist neighborhoods W of 0 in R® and U of
S in R™ so that, for allw € W and 8" C X(F)N (U x {w}), F: (R* x R*, (5", w)) - R

is an Rt —wversal unfolding.

Finally, we introduce the notion of finite determinacy of germs [36], which requires
the notion of a k—jet of a smooth function. If f : (R",x) — R is a smooth germ, the

k—jet of f at z, denoted j*f(x), is the list of derivatives

" fx) = (f(z),df (), f(z),...,d" f(2)),

10



which is equivalent to giving the k—th order Taylor expansion of f at z.

Definition 1.2.13. Let f € &£, and suppose that, for some positive integer k, any g €
E, with j*f(0) = j%g(0) is RT—equivalent to f. Then f is said to be finitely k—

determined for R*—equivalence.

Finite determinacy of f implies that it is sufficient to study the k—jet of a finitely de-
termined germ to determine its singularity theoretic properties. If f, g € &, (or Es) are
Rt —equivalent germs, then f is k—determined if and only if ¢ is [36]. We conclude with

a final theorem involving finite determinacy.

Theorem 1.2.14 (Mather [36]). A germ f € &, (or Es) is finitely determined if and

only if f is of finite RT— codimension.

Consequently, by the infinitesimal criterion for versality, a germ f has an Rt—versal
unfolding if and only if f is finitely determined.
In Section 1.3, we shall examine more consequences and fundamental theorems of

versality.

1.3. Versality and transversality

There is a fundamental relationship between versality of unfoldings and transversality
to certain submanifolds of jet space. Before delving into this relationship, we briefly recall
some notation related to jet spaces (see, e.g., [23]).

For smooth manifolds X™ and Y?, let J*(X,Y) denote the k—jet bundle of maps
X — Y with base X and fiber J*(R",R),, the space of jets of functions R* — R at
the point x € R™. Alternatively, J*(X,Y) may be viewed as a bundle over X x Y with
fiber consisting of k—jets of mappings (R™,0) — (RP,0), which we denote by J*(n,p). If
f: X — Y is smooth,

"X = JHXY)

x> j7 f(2)

11



denotes the k—jet extension mapping, which is also smooth. Let a : J¥(X,Y) — X

and 3 : J*(X,Y) — Y denote the source and target mappings, respectively. Next, let

XM = X x...x X\ AX, where AX is the generalized diagonal in X7, i.e.,
—_—

r times

AX = {(z1,...,2,) € X" : x; = x; for some i # j}.

The r-multi k—jet bundle is ,.J*(X,Y) with fiber ,J*(X,Y)g for S = {zy,...,2,} and

base X, and the r-multi k—jet extension of f: X — Y is
g X0 TR XY
(1, .. x) = g f(zy, .. x) = (G f (), .. 55 f ().

The group R™* of k-jets of diffeomorphism germs R” — R™ acts algebraically on the
jet space fiber J*(R™ R),. Namely, if j*¢ € R¥ 2 € J*(R" R) with f € &, such that

j* f is a representative of z, and ¢ € R, then the action is given by

(L.7) oz = " (fo)+e

We obtain a natural action on the multijet space fiber ,J*(R" R)g in the analogous

way, i.e., if ¢ = (¢1,...,¢,) is a multigerm of a diffeomorphism at S, z = (z1,...,2,) €
+JF(R™ R)g with j*f; a representative of z; for i = 1,...,r, and ¢ € R, we have
(1.8) 3¢z =("frod) +e ... i (frodr) o).

In this case, we denote the group of k—jets of diffeomorphism multigerms by ,R*. Because
the action of ,R" on multijets is that of an algebraic group, it follows that these multi—
orbits in ,.J¥(R",R)s under the group action are submanifolds (see Mather [37]). The
simple singularities, which consist of the families of A, D, and E singularities (see, e.g.,
[1]), are those orbits for which there are only a finite number of other orbits within a

sufficiently small neighborhood. We now recall the definitions of A; and Az singularities.

12



Definition 1.3.1. (a) The smooth germ f : (R",0) — (R,0) is said to have an Ay
singularity at 0 for some positive integer k if [ is RT—equivalent to the smooth germ

n—1

g= E:j:xz2 + gF

i=1
(b) The smooth multigerm f : (R",S) — (R,0) with S = {x1,...,x,} is said to have an

Ag singularity at S for an r—tuple = {ki,...,k.} if f is RT—equivalent to

i=1 i=1

n—1 o1
g = (Z(;{;gz))2 + (;I;gn))kﬂrl7 o Z(xri))Q + (:Crn))kr+1> 7

. ,xgn)) are coordinates on the i-th copy of R"™ fori=1,...,r.

These are the only simple multigerms with each germ having a local minimum at 0. In
part (b) above, source coordinates may be chosen independently around each z; € S so
that x; is locally the origin in each copy of R"™. As we shall see in the next section, the Ay
and Az singularities are the relevant orbits for the classification of the generic structure

of the medial axis.

Remark 1.3.2. Other examples of submanifolds of jet space include the Thom-Boardman
singularity submanifolds. For a smooth map f : X — Y with X™ and Y? smooth
manifolds, we may decompose the source space X by singularity type of f in the following

way. Let corank(f) = min(n,p) — (rank(f) at x), and define
SH(f) ={x € X : corank(f) = i}.

If f has corank 0, the k-jet of f is said to be regular. Thom proved that the sets S*(f)

are submanifolds of X [27]. Similarly, we may define the sets

SY(f) = S(fIS'(f))

13



for some nonnegative integer j; continuing the process inductively, we define, for the

sequence [ = {iy,...,4;} with integers i; > ... >4; > 0, the sets

SU(f) = S(fIS™ B2 ()

In [4], Boardman proved that a set of the form S7(f) is a manifold by finding a subman-
ifold X7(X,Y) of J*(X,Y) such that the jet extension mapping

X = JHXY)

satisfies j%f M 2/(X,Y) and j*f~Y(Z1(X,Y)) = SI(f). We refer to the submanifold
Y1(X,Y) as the Boardman manifold with symbol I. Let ! denote the fiber of X!(X,Y),

and let XY = b1 with 1 appearing j times.

Now, let F' be an s—parameter unfolding of f € &£,. The k—jet extension of F'is the

mapping
JRE  R™ x R® — J*(R™ R),
(2, u) = jrF(z,u) = 7 F(-,u)(@),

so that the subscript “1” indicates the jet is taken with respect to the coordinates on R".

There is a natural algebraic identification of this jet space as
(1.9) JER™ R), = &, /mFt!

(see, e.g., [37]), and the fiber J*(n, 1) is identified with
(1.10) J(n,1) =2 m, /mFt,
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Likewise, suppose F' denotes an s—parameter unfolding of the multigerm f € £. The

r—multi k—jet extension of F' is the mapping

JEE (R x R® —  JF(R™, R),

(T1, ..oy Ty u) ijF(m,u) = (ij(-,u)(xl), . ,ij(-,u)(:L‘T)).

We come now to the important theorem that enables one to express the condition

that F' be a versal unfolding of f € £s as a transversality statement.

Theorem 1.3.3 ([32]). Let F' be an s-parameter unfolding of f € Es. Then F is an
Rt —versal unfolding of f if and only if .j¥F is transverse to the orbit of ,j¥F(S,0) in
+J¥(R™, R) under the action of ,R* for sufficiently large k.

1.4. The generic structure of Blum medial axis for n <6

In this section, we present a variant of Thom’s transversality theorem due to Looi-
jenga, as well as an extension of it due to Wall, which apply to families of distance squared
functions. Looijenga’s theorem yields a complete classification of the generic structure
of the Blum medial axis in dimensions n < 6. The genericity results hold for a residual
set of embeddings, and are proven by demonstrating transversality of a jet extension of a

mapping to certain submanifolds of a jet space, then applying the transversality theorem.

1.4.1. Looijenga’s transversality theorem and distance—genericity. Suppose X
is a smooth, compact, connected, n-dimensional manifold, and ¢ : X — R"*! a smooth

embedding. Let

1.11 0s: X xR SR
(1.11) 8 :
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be the family of squared distance functions, and let
vjioy XU x R <V = JF(X,R)
(@1, sz w,0) = (G (PG 0) = w|P(2), - 7 (190 0) = wl ()

denote the r-multi k-jet extension of o4. Looijenga’s transversality theorem applies to
a certain class of submanifolds W of the multijet space ,J*(X,R): those W which are
invariant under addition of constants. This means that, for any ¢ € R, 2 = (21,...,2,) €

W implies that (z1 +¢,..., 2. +¢) € W.

Theorem 1.4.1 (Looijenga [29], [45]). Let W be a smooth submanifold of ,.J*(X,R)

that is invariant under addition of constants. Then
H = {¢ € Emb(X,R"*Y) : . j¥oy is transverse to W}
1s a residual set in the C* topology. If X is compact, the set is open and dense.

We refer to the elements of H as distance-generic embeddings. In [45], Wall proved an
extension of Looijenga’s theorem. Let S™ C R™*! denote the unit n-—sphere, let X and ¢

be as in the statement of Theorem 1.4.1, and define the family of height functions
(1.12) hg: X x 8" =R,

Theorem 1.4.2. Let W be a smooth submanifold of ,J*(X,R) that is invariant under

addition of constants. Then
H = {¢ € Emb(X,R"*") : jFhy is transverse to W}
1s a residual set in the C* topology. If X is compact, the set is open and dense.

1.4.2. Mather’s classification of local normal forms of M. In this section, we first

recall how the Blum medial axis may be defined as the Maxwell set of the family o.
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Then, we explain how Looijenga’s transversality theorem allows its generic structure to

be determined.

Definition 1.4.3. Given a smooth manifold N and a smooth family F': N x R® — R,
the Maxwell set of F is the set of parameters w € R® such that F(-,w) attains an
absolute minimum value at more than one distinct point in N or at a degenerate critical

point.

Let ¢ : X < R"" be a smooth embedding of a smooth compact, connected, n-
dimensional manifold X, where ¢(X) = B is the boundary of a smooth, compact, con-
nected region 0 C R™*! by the Jordan-Brouwer Separation Theorem. Then the medial
axis of {2 is the part of the Maxwell set of o, (defined in (1.11)) that lies in €.

Mather and Yomdin classified the generic local normal forms of the medial axis,
Yomdin for dimension n < 3 [47] and Mather for n < 6 [32]. Moduli appear in dimen-
sion 7 and higher, preventing further smooth classification (although a classification by
topological equivalence becomes possible). Of the simple singularities, only the Aggiq
singularities as defined in Definition 1.3.1 are relevant to the classification as they are

the only simple singularities that have local minima.

Theorem 1.4.4 (Mather [32], Yomdin [47]). For n < 6, let X be a smooth, compact,
connected, n-dimensional manifold, and let ¢ : X < R™ be a smooth embedding with
#(X) = B, where B = 0. Locally, the Mazwell set of o, is diffeomorphic to the Mazwell

set of the R —wersal unfolding of one of the following germs:
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Remark 1.4.5. Mather actually classified the generic normal forms for the family of
distance functions, rather than distance squared. However, the normal forms are the
same if one replaces the family of distance functions with the family of distance squared
functions, which is smooth, due to the fact that these families are R™—equivalent as

unfoldings and therefore have the same types of critical points.
1.5. Stratifications of the medial axis M and boundary B

In this section, we explain how to obtain stratifications of the boundary B and Blum
medial axis M of a region Q C R™! arising from the singular behavior related to the
Maxwell set of the family of distance squared functions. We first recall the notion of
a Whitney stratification, then give the specific details of the boundary and medial axis

stratifications in R3.

1.5.1. Whitney stratifications. In this section, we recall the notation of a stratified

space and, in particular, a Whitney stratified space.

Definition 1.5.1. A closed set M C R"™! is a stratified set if M may be written
as the union of a locally finite collection of smooth, locally closed, disjoint submanifolds
So C R« € I, where I is a partially ordered index set. The submanifolds, called
strata, must satisfy the axiom of the frontier: S, N S_ﬁ % (0 if and only if S, C S_B and

a < 8, where Sz denotes the closure of Sz in R+,

Definition 1.5.2. A closed set M C R"*! is a Whitney stratified set with a Whitney
stratification S = {Sy}taer if M is a stratified set with all pairs of strata satisfying the
Whitney regularity conditions (a) and (b), defined as follows. Given a pair of
strata S, and Sg with S, C Sg, suppose {x;} is a sequence of points in Sg converging to
y € Sa, and {y;} a sequence of points in S, also converging to y. Denote by T the limit
of the sequence of tangent spaces T,,,;Sg, and let v denote the limiting secant line of the
sequence {T;y; }. Then:

(a) T,S, C T, and

(b)rCr.
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Mather proved that Whitney’s condition (b) implies condition (a) [34]. The sequences in
Definition 1.5.2 may not have limits; however, by choosing subsequences, we may assume
they converge.

In Chapter 5, we shall obtain refinements in the following sense of the stratifications

of a collection of boundaries of regions and their medial axes.

Definition 1.5.3. A refinement T = {7T,},cs of a stratification S = {Sy}acr s a

stratification such that every stratum S, is a union of some collection of strata from T.

1.5.2. Stratification of the critical set of family of distance squared functions.
In this section, under the hypotheses of Theorem 1.4.4, we describe the stratification &
of the singular set of the family of distance squared functions o.

For values of n < 6, there is a canonical ,R*-invariant stratification of the multijet
space ,J*(X,R) consisting of strata which are orbits under the action of ,R* on r—
multi k-jets of germs with simple singularities (see [33], [37]). Orbits under an algebraic
group action form a Whitney stratification where they are locally finite, so the canonical
stratification of jet space is Whitney. For a distance—generic embedding ¢, Theorem 1.4.1

implies that the multijet extension mapping
cjfos s X0 xR o JF(X,R)

is transverse to this stratification for sufficiently high k. This implies that the pull-back
of the stratification to X x R**! under ,. jros is also Whitney stratified with strata of
the form rjfadjl(l/%), where W; is a stratum in ,J*(X,R) [34]. Since the stratification
of .J*(X,R) satisfies the boundary condition, so does the pull-back of the stratification;
that is, if W, belongs to the closure of the stratum W; in ,.J*(X,R), then ,,jfa(;l(VVj)
belongs to the closure of ,jfo, ! (W)).

By the uniqueness theorem for versal unfoldings of multigerms (Theorem 1.2.11), o, is
isomorphic to the unfolding F' x id,;;—_,, where F'is a p-parameter miniversal unfolding.

The following local model involving the singular set of the miniversal unfolding F' allows
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one to determine the explicit relationship between the stratification on the medial axis
M and the stratification on B to which it corresponds. Let S; = {x1,...,z,} with each

x; € R, and suppose
(1.13) F:(R"xRP (S,0) = (R,0), Fy(z) = F(z,w)

is a versal unfolding of the multigerm F, = f of singularity type Ag. By the openness of
versality (Theorem 1.2.12), since F' is versal in a neighborhood of (5,0), nearby germs

of f are also versally unfolded. Consider the real algebraic set
(1.14) {(z1,..., 25, w) : F, has a critical point at z;, F(z;,w) =y V j}

for different values of k. It is a real algebraic set since F'is versal and it is defined by the

following algebraic conditions on polynomials:

oF,

E(z) =0, F(zj,w)—y=0for j=1,... k.

r=a,
Therefore, it is Whitney stratified with the stratification inherited from the pull-back of
the canonical stratification of jet space.

For each set of the form in (1.14), its projections onto both R™ and RP yield semi-
algebraic sets by the Tarski-Seidenberg Theorem [27]; therefore, they are also Whitney
stratified by singularity type of F,,. Moreover, the combined images of these projections
will provide the local models for the stratifications of B and M, respectively, since the
singular sets of o4 and F' := F x id,41_, are locally diffeomorphic.

The versality theorem ensures that the projection of the stratum of the singular set of
o, corresponding to Ag singularity type to the parameter space R"™! will be smooth. Let
XA; C M denote this projection. In addition, we can project the stratum to X, which
is diffeomorphic to B under the diffeomorphism ¢ provides. So, let ¥4, C B denote the
projection to B of the stratum for Az singularity type. For an abstract versal unfolding,
it need not be the case that the projection onto the manifold space is an embedding.

One way to see that the X4, stratum on B is smooth is that it is the image of the x4,
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stratum on M under a radial flow that is smooth on the strata of the medial axis; see

Section 2.3 in Chapter 2.

1.5.3. Explicit stratifications of M and B in R3. In this section, we determine the
local structure of the stratifications of M and B in R3 using the generic local normal
forms of o4 given in Theorem 1.4.4.

First, we determine the local models of the x 4r strata on M and the ¥, strata on
B for k=2,3,4. Let F' = (Fy,..., F}) be the standard R —miniversal unfolding of the

A¥ multigerm, i.e.,

Fr1= (xl(cl—)1)2 + (%@1)2 + Ug—1,
Fi= (@) + (7).

§1) = xf) = 0 with critical value u; for j < k

For j =1,...,k, F; has a critical point at
and critical value 0 for F}. The k functions have equal minima when u; = ... = ux_1 =0,
and graphing this gives the A% stratum. To obtain the entire local model, we equate
2 < j < k of the critical values and set them less than or equal to the remaining critical
values. By Theorem 1.2.11, o4 is isomorphic to F’ := F' x ids_;. The codimension in R3
of the x 4 stratum is k — 1, the extended R+t —codimension of the multigerm.

For £ = 2, the local models of the x Az and X2 strata are smooth sheets. When
k = 3, the local model of the 43 stratum on M consists of three half-planes meeting
along a curve, called a Y-branch curve. See Figure 1.1. The corresponding ¥ 3 stratum
on B consists of three smooth curves associated to the same branch curve on M. Finally,
the local model of the x As stratum on M is a single point, called a 6-junction point,

occurring at the intersection of four branch curves and six half-planes. See Figure 1.1.

Using the radial flow, we conclude that the X A4 stratum on B consists of 4 points, each of
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which has three mutually transverse curves passing through it that correspond to three
distinct branch curves on M.

Next, we determine the local models of the x4, stratum on M and the X4, stratum
on B. Let

4 2 2
F = 2] +uwiz] + ugzy + 25

be the standard 2-parameter Rt —miniversal unfolding of an Az singularity. This func-
tion has a critical point provided that 4x§’ + 2uiz; +uy = 0 and zo = 0. A direct
computation shows that, in order to obtain minima, we must have us = 0 and u; < 0
(specifically, it turns out that u; = —2x? to have a minimum). The versal unfolding o
is isomorphic to F’ = F x id;. Since ug is a free parameter in R3, the local model is
a half-plane that is bounded by a curve, known as an edge curve on the medial axis.
See Figure 1.1. An edge curve on the medial axis corresponds to the ¥4, stratum on
the boundary, which is a crest curve consisting of points such that the larger principal
curvature in absolute value at each point is a maximum along the associated principal
direction (see, e.g., [9]).

The local models of the x4, 4, stratum on M and the corresponding X 4, 4, stratum
on B are similarly established. See Figure 1.1 for the local model of the x 4,4, stratum
on M, called a fin point, which is a point at which a branch curve and an edge curve

intersect and end.

a) edge b) Y-branching c) fin creation point d) "6-junction”

FIGURE 1.1. Generic medial azis strata in R3.
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1.6. A note on the notions of codimension

In this dissertation, we shall refer to several types of codimension: the R} —codimension
of a (germ or) multigerm of singularity type Ag as defined in Definition 1.2.6; the codi-
mension as a submanifold of jet space of the orbit of the multigerm under the , R —action;
the codimension in R™*! of the medial axis stratum A,; and the codimension in B of
the corresponding boundary stratum > 4,. In this section, we explain the relationships
that exist among these various notions of codimension.

Suppose the family of distance squared functions o, : (X x R"™ (S wp)) = (R, 2)
is a versal unfolding of the multigerm o4(-,wp) : (X,S5) — (R, 2) of singularity type
Ag with |S] = r. First, recall that the R} —codimension of a multigerm of singularity
type Ag, which we denote by R} —codim(.Ag), equals the number of unfolding parameters
in its miniversal unfolding. If codimgn+1(x.4,) denotes the codimension in R"*! of the

corresponding medial axis stratum x 4,, we know from Section 1.5 that
(1.15) codimpn+1(x4,) = R —codim(Ag).

Second, as mentioned in Section 1.5.2, there is a radial flow on the medial axis that
provides a diffeomorphism between x 4, and the corresponding stratum on the boundary
Y45+ Therefore, since 34, and x4, have the same dimension, and since the codimension
in B of the ¥4, stratum, denoted codimp(¥4,), equals n — dim(X 4, ), it follows from

(1.15) that

(1.16) codimp(X4,) = codimpn+1(xa,) — 1
=R} codim(Ag) — 1.

Third, by the equivalence of versality and transversality, the mapping ,j¥o at (.S, wp)

is necessarily transverse to the orbit of ,jFo (S, wp) under the ,R* group action on jet

space. We let W# denote this orbit, and let codimjs(W#) denote the codimension of

W4 as a submanifold of ,.J*¥(X,R). There is the following relation between the extended
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codimension and the jet space codimension (see, e.g., [8]):
(1.17) codimyg(W?) = R} —codim(Ag) + nr.

We first explain briefly why this relation holds in the r = 1 case. For f € &,, we know
that R} —codim(f) = dimgé&,/J(f) — 1, and

my, J(f) o

n

represents the orbit of the k—jet of f in the jet space fiber m,/m5™! [10]. Then the

n

k+1

codimension of this orbit in m, /m;}

is given by

dimp (m,,/m; ™) / (M, J(f)/mit) = dimg (m,/m, J(f))
= dimg (m,/J(f)) +n
— dimg (£,/J(f)) — 1 +n

(1.18) = R} —codim(f) + n.

The fact that dimg (m,,/m,J(f)) = dimg (m,/J(f)) is due to the fact that f has an
isolated singularity and therefore the ideal J(f)/m,J(f) is of finite codimension, i.e.,
dimg (J(f)/mnJ (f)) = n.

For a multigerm f = (f1,..., f-) with an A singularity, we consider the codimension
of its orbit W as a submanifold in (&, /mﬁ“)r, the multijet space fiber. Using (1.18)
and the fact that the values of each of the f;’s are necessarily equal, we have that the
codimension of W# in (&,/mkEt)" is

r

(r—1)+ Y (Rf-codim(f;) + n).

i=1

Then, since R} —codim(f) = ZR:—codim(fi) + 7 — 1 by (1.6), we see that the codi-
i=1
mension of the orbit in multijet space is indeed given by (1.17).
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CHAPTER 2

Medial Geometry for a Single Region

2.1. Introduction

In this chapter, we present a survey of the results for the medial geometry of a single
region as they apply to the Blum medial axis, with the goal in Chapter 6 of extending
these results to configurations of multiple regions. The Blum medial axis is viewed as
a Whitney stratified set M on which is defined a (multivalued) radial vector field U,
defined from points on M to the points of tangency on the boundary. This is a special
case of a skeletal structure. Earlier work focused on relating the differential geometry
of the boundary of a region with the differential geometry of the medial axis involving
derivatives of the radius function. Damon [14] [15] offered a more direct approach to
studying the geometric properties of a region and its boundary via the medial geometry
of the radial vector field on the medial axis. This involves two variations on the ordinary
differential geometric shape operator and is related to the geometry of the region and its
boundary via a radial flow, as we shall see in Sections 2.2 — 2.4.

Global geometric invariants of the regions and their boundaries are typically expressed
by integrals of appropriate integrands. In Section 2.5, we explain how results from [13]
allow one to compute integrals over the boundary of a region (Section 2.5.2) and over the
region itself (Section 2.5.3) as integrals over the region’s medial axis. Finally, in Section
2.6, we give an overview of the use of single region medial analysis in medical imaging. A
number of medical and mathematical issues arise in extending medial analysis to multiple
regions, and we will address these motivating questions through our development of the

Blum medial linking structure.



2.2. The radial vector field

In this section, we recall the definition and properties of the radial vector field U
defined on the Blum medial axis M of a compact, connected, orientable region  C R"**!
with smooth boundary B.

Let M,e; denote the set of regular points of M that belong to the top-dimensional
strata of M, and let Mgy, denote the union of all remaining strata. These singular
points consist of (1) the set of non—edge points, (2) the set of edge points belonging to
the boundary of M, denoted 0M, and (3) the set of edge closure points belonging to the
closure of the boundary of M, denoted OM).

The radial vector field U on M is a multivalued vector field with one value at each
point o € M for each of the associated tangency points on the boundary B. Let U = r-u,
where u is a multivalued unit vector field on M and the radial function r is a positive
multivalued function on M, or a function which takes one value at each point for each
of the values of U. A smooth value of the vector field U at a smooth point o € M is
a neighborhood V' of xy together with a choice of values of the vector field on V' that
constitute a smooth vector field on V.

The radial vector field satisfies the following properties (see [40] and [14]):

(1) (Behavior at smooth points) For any smooth point zy € M, there are two values
of U that have the same length and make the same angle with the tangent space
T,,M. The values of U corresponding to one side of a neighborhood V' of z
form a smooth vector field.

(2) (Behavior at edge points) For any point g € dM, there is a single value of U
that points away from M and is tangent to the smooth stratum containing x,
in the closure.

(3) (Behavior at singular, non-edge points) Let B.(z) denote a closed ball of radius
e centered at xg € Mgng With zg ¢ OM, and let M, be a local component of xy,
or a connected component of EE(ZL'[)) M M,eg. Then both smooth values of U on M,

smoothly extend to values on the stratum to which xy belongs. Moreover, there
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corresponds to each value of U at z( a connected component C; of B,(x0) \ M,
called a local complementary component of M at xg, into which U(zg) locally

points in the sense defined in [14].

We end this section by recalling two shape operators on the medial axis that capture

the medial geometry of the radial vector field.

Definition 2.2.1. For a non-edge point xo € M, v € T, M, and a choice of smooth

value of the radial vector field U = ru, define the radial shape operator S,,q to be

(2.1) Srad(v) = —projy (g—:) ;

where proj,; denotes projection along U onto the tangent space to the medial axis, Ty, M.
For an edge point xy € M, v € T,,M, and a smooth value of U chosen on one side of

M, define the edge shape operator Sg to be

(22) Sa(v) = —proj (g_“) ,

where proj ' denotes projection along U onto T,,0M @ (n), for n a unit normal vector

field to M.

Let Sy be the matrix representation of S;,q with respect to the basis v = {vy,...,v,}
(resp., Sgv is the matrix representation of Sg with respect to the basis {v,...,v,} in
the source, where vq,...,v,_1 is a basis for T,,0M and v, is a positive multiple of u,

and the basis {v1,...,v,_1,n} in the target). Unlike the case of differential geometry,
Siad 18 not self-adjoint; however, it can be diagonalized and the eigenvalues k,.; of S;.q
are the principal radial curvatures. Likewise, there are n — 1 principal edge curvatures,

which are the generalized eigenvalues kg; of (Sgv, In—11).

2.3. The local and global radial flows

Using the radial vector field U, in [14] Damon defines an outward flow, called the

radial flow, from M to the boundary B of the region €. Since the radial vector field is

27



multivalued and only defined on M, it is not possible to define a global radial flow from
M in the usual way. We first introduce the local version of the flow before explaining

how to obtain a global version.

Definition 2.3.1. The local radial flow i) in a neighborhood V' of a point xqg € M for

a smooth choice of the radial vector field U is given by

(2.3) YV x[0,1] — R™,

(x,t) = () = Y(2,t) = x + tU(z).

We refer to 11, which maps from a region on M to the corresponding region on the
boundary B, as the radial map.

In order to consider both sides of the medial axis simultaneously, we introduce the
notion of the double of the medial axis M, on which a global version of the radial flow is

defined.

Definition 2.3.2. The double of the Blum medial axis M, denoted ZT/[/, 15 the set

—~

M

{(z,U") € M x R™™ | U is a value of U at x}.

As explained in [14], M may be given a topology in the following way. First, for zg € Mg
with a value U(zy) of the radial vector field and a neighborhood V' of xy, a neighborhood
of (z0,U(xo)) € M is given by (V x {Uy}) N M, where {Up} denotes the values of a
continuous extension Uy of U(xg) to V. Next, for a neighborhood V' of a point zy € M,
and a choice of radial vector U(x) that points into some complementary component Cj;,
a neighborhood of (g, U(xo)) € M is the intersection of a set (V' NAC;) x {Up} with M.
Here, V' C V is a neighborhood of xy in R"™ and {Uy} consists of values of a continuous
extension of U(x) to V' N dC;. Damon referred to the neighborhoods in M as abstract
neighborhoods; see Figure 2.1 for an example.

There is a canonical line bundle N on M which is spanned at a point (zg, Up) € M

by Uy. This is a trivial bundle and there are half-neighborhoods of the 0-section N, =
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\
(a) (b) (c)

FIGURE 2.1. FEzample of an abstract neighborhood.
For (a), the local structure of a 3D medial azis near a fin point. For (b) and (c), the

abstract neighborhoods of the two points in M corresponding to the fin point.

{tUs € N : 0 <t <e€}. Then the global radial flow is the map

(2.4) ¢ N — R,

(l’o, tUo> — xg + tUy.

First, it is proven in [14] that there is an € > 0 so that the radial flow N, — R"*!
is a diffeomorphism onto a “tubular neighborhood” of M. In order to establish the
global nonsingularity of the radial flow, we recall three conditions from [14] that the
Blum medial axis satisfies. First, if dr denotes the gradient of the radius function, the

compatibility condition at a point xo € M states that the compatibility 1-form
(2.5) nu(v) =v-U 4+ dr(v)

vanishes at x, for any v € T, M. The compatibility condition ensures that the radial
vector field is orthogonal to the boundary of the region [14]. Second, at any point
xg € M with xg ¢ OM, the radial shape operator S..q satisfies the following radial
curvature condition:

(2.6) r< min{i} for all positive principal radial curvatures x,, of Siaq.

T

Third, at any =y € OM, the edge shape operator Sp satisfies the following edge condition:

RE;

(2.7) r < min{ } for all positive principal edge curvatures kg; of Sg.
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In [14], Damon showed that, given the three conditions listed above, the global radial
flow is a homeomorphism N; — Q (fibering 2\ M with the level sets of the flow) which is
a local diffeomorphism from points (zg, U) with xy € M, and a local piecewise smooth
homeomorphism on a neighborhood of a point (z¢, U) with zq € Mgy, [14].

In Chapter 6, we will introduce an extension of the radial flow called the linking flow.

The integrability of the radial flow will apply to the integrability of the linking flow.

2.4. Medial geometry via the radial and edge shape operators

In this section, we recall how the radial and edge shape operators evolve under the
radial flow. This enables one to find a matrix representation for the radial shape operator
for By, the level hypersurface of the radial flow at time ¢, in terms of the shape operator
on M. In Chapter 6, we extend this notion to determine the behavior of the radial shape
operator under the linking flow.

Damon proved the following two propositions in [15] (Propositions 2.1 and 2.3, re-

spectively).

Proposition 2.4.1. Let zyg € M,., with a smooth value of U and a basis v = {vy,...,v,}
1

of Ty M. Suppose o is not an eigenvalue of the radial shape operator S, at xo. Then, if
r

Ui(xo) = xfy and v denotes the image of v under diyy(xy), the radial shape operator Sy

for By at x, is given by
(2.8) Syt = (I —tr-S,)"'S,.

Proposition 2.4.2. Let xqg € OM with a smooth value of U (corresponding to one side of
M), and let v = {vy,...,v, 1,0}, where v, = u, be a basis of T,,M. Suppose % 1S not
a generalized eigenvalue of (Sgy, In—11). Then, if Pi(xo) = xy and v = {v1, ..., v_1, 0}
denotes the image of v under diy(xy), the radial shape operator Sy for By at x{, is given

by
(29) Sv/t = ([n—l,l —tr - SE,,)_lSEv.
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Remark 2.4.3. When ¢t = 1 in the above propositions, one obtains a matrix represen-
tation for the regular differential geometric shape operator on the boundary B in terms
of the radial and edge shape operators on M. This makes it possible to explicitly relate
the principal radial and edge curvatures with the ordinary principal curvatures on the

boundary (see Theorem 3.2 and Corollary 3.9 in [15]).

2.5. Blum medial axis as a measure space

Global invariants of a region 2 or its boundary B are expressed by integrals over these
spaces. We explain how such invariants can be computed from the medial geometry as
integrals over M as defined in Definition 2.3.2. In Chapter 6, we shall extend these results

to integrals over the complements of multiple regions.

2.5.1. Introduction to integration over the medial axis. We first explain how to
integrate a multivalued function g over the medial axis M, as introduced by Damon in
[13]. Such a multivalued function g lifts to a well-defined function g = gon on M, where
7 denotes the natural projection 7 : M — M. A multivalued measurable (resp., integrable
or continuous) function g on M is a multivalued function such that g is measurable (resp.,
integrable or continuous) on M.

Damon used the Riesz Representation Theorem to prove the existence of a unique
regular positive Borel measure dM on M (Proposition 2.2 in [13]). Then, for a multival-
ued continuous function g on M, the medial integral of g on M is given by integration

with respect to dM. In the Blum case, this measure
(2.10) dM = pdV =u-ndV

is defined on the medial axis itself and is referred to as the medial measure. As above,
n denotes the unit normal vector field on M, w the unit normal radial vector field, and
dV the n-dimensional Riemannian volume measure. (The measure dM has the effect of
correcting for the non-orthogonality of the radial vector field U to M.) Consequently,

regions where the radial vector field is nearly orthogonal to the medial axis contribute
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more to the value of the integral than places where the radial vectors are nearly tangent

to the medial axis (e.g., near the edge or regions with small protrusions).

2.5.2. Computing boundary integrals as medial integrals. The next three results
demonstrate how to compute integrals of functions over a boundary B or over a region
[' C Q as integrals over the medial axis (see [13], Theorem 1, Corollary 2, and Theorem

3, respectively).

Theorem 2.5.1. Suppose (M,U) is the Blum medial azis and radial vector field U for
a region 0 with smooth boundary B. Let f : B — R be a Borel measurable function that

18 1ntegrable with respect to dV', the Riemannian volume measure. Then

(2.11) /B fdv = /1\7 flx+U(x)) - det(I — rSyaq) dM.

Note that f(z+ U(x)) = f(11(x)), which is a function on M, descends to a multivalued

function on M.

Corollary 2.5.2. If R denotes a Borel measurable subset of B and f : R — R is as in
Theorem 2.5.1, then letting R = 17" (R), we have

(2.12) / Fav = / F@ + U(x)) - det(I — rS,0q) dM.

Replacing the function f in Theorem 2.5.1 with the function that is identically equal to

1, we obtain the formula for the volume of B written as a medial integral.

Corollary 2.5.3. Let Q C R"" be a compact region with smooth boundary B and Blum

medial axis M. The n-dimensional volume of B is given by

M

(2.13) vol(B) = / det(] — r.Syqq) dM.

2.5.3. Computing integrals on regions as medial integrals. Let g : 2 — R be a

Borel measurable and Lebesgue integrable function. Using the notation of [13], let

gi(,1) = (g0 P)(w,t) = g(x +tU(x)),
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and ¢ is the multivalued function on M given by

1
g(x) = / g1(x,t) - det(I — trSyq) dt.
0

The next result (Theorem 6 in [13]) establishes how to integrate g over the region 2 as

a medial integral.

Theorem 2.5.4. Suppose (M,U) is the Blum medial axis and radial vector field of a
region 0 C R"". Let g : Q — R be Borel measurable and integrable with respect to

Lebesque measure. Then, g is defined for almost every x € M, integrable on M, and

(2.14) /ng:/ g-rdM.
Q M

FIGURE 2.2. Computing integrals over regions I' C €2 as medial integrals.

Given a Borel measurable function ¢ : 2 — R, it is possible to integrate g over
a smaller region I' C €, as in Figure 2.2. One must first compose g with the radial
flow, compute a line integral over the portion of the radial line within I', then integrate
the resulting function over the medial axis, as M parametrizes such lines [13]. This

Crofton-type formula (Corollary 7 in [13]) is given in the next theorem.

Theorem 2.5.5. Suppose (M,U) is the Blum medial axis and radial vector field of a

region 0 C R"™L. Let T' C Q be a Borel measurable region, and let g : T' — R be a Borel

33



measurable and Lebesque integrable function. If

Gn(x) = /O - 9@+ U (@) - det(I — trS,ya) dt.

then gr is defined for almost all x € M, integrable on M, and

(2.15) / ng:/N gr - rdM.
r M

2.5.4. Examples of integration. In this section, we explicitly compute the formulas
for area and volume of a region Q in R? or R? as integrals over M. These formulas

generalize the classical formulas of Weyl for volumes of tubes and Steiner’s formula.

Example 2.5.6 (n = 2). Suppose 2 C R? is a smooth compact region with smooth
boundary B and Blum medial axis M. In R?, the radial shape operator is simply multi-

plication by k,, the radial curvature of M. Then the following integral is defined:

1 1

1

(2.16) a= / det(I — trSyeq) dt = / (1—trr,) dt=1-— STt
0 0

Using the above formula, we determine the area of €2 to be

area(€)) = /N a-rdM

M
1
(2.17) :/ rdM——/ 72 - K, dM.
M 2w

Example 2.5.7 (n = 3). As above, suppose 2 C R? is a smooth compact region with

smooth boundary B and Blum medial axis M. Since
det(I — trSpeq) = 1 — tr - trace(Syaq) + 217 - det(Spa),
we have

1
1
o = / det(I - trsmd) dt=1-r Hmd + §r2 Kmd7
0
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1
where H,,q = §trace(5’rad) and K,q = det(Siaq). Hence, we determine that the volume

of Q) is given by the following formula:
volume()) = /N a-rdM

M
1
(218) = /N rdM — /N 7’2 : HmddM—f— g/ T‘3 : KmddM.
M

M M

Remark 2.5.8. Although the medial axis is stable under sufficiently small C* pertur-
bations of the boundary, it fails to be stable under small C! perturbations — namely, a
small change on the boundary may produce a large set-theoretic change on the medial
axis. Nevertheless, area/volume undergoes only small changes under sufficiently small
perturbations. In Chapter 6, we shall introduce several measures of comparison for a

collection of regions which involve computing the area and volume of regions extending

into the complement as medial integrals.

2.6. Medial representations in medical imaging

In this section, we describe how medial representations of a single object or region
are utilized by computer scientists in the field of medical imaging. We also describe
work involving multiple regions and identify a number of issues relating to multi-region
analysis, both medical and mathematical in nature, that motivated the work in this
dissertation.

A discretized version of the Blum medial axis was introduced in [42] by Pizer, et
al., who referred to it as a discrete “m-rep” or medial representation of an object. It
is composed of a finite collection of medial atoms consisting of a center point and two
“spokes” or radial vectors. Examples of discrete m-reps in 2 and 3 dimensions appear in
Figures 2.3 and 2.4, respectively.

Pizer, et al. introduced a deformable model approach to shape analysis in medical
images. This approach requires the initial selection of a medial model or template to fit
to an object or organ in an image, with every other instance of the image then defined as

a diffeomorphism applied to the initial model. Obtaining a medial model from a grayscale
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FIGURE 2.3. 2D discrete m—rep used for segmentation of the brainstem [42].

FIGURE 2.4. Discrete m—rep of the kidney and 3D rendering (courtesy of
Medical Image Display and Analysis Group at UNC).

medical image provides a means of segmenting or locating the organ in the image; for an
example, see Figure 2.3 which depicts a segmentation of the brainstem. Moreover, the
deformable model approach allows for comparison of the anatomical structure of organs
based on their medial representations using statistical analysis of populations of regions
performed directly on the discrete m—reps. Such analysis requires a correspondence across
images of the same patient on different days or times, or across images of the same organs
in different patients, and is used for such purposes as discriminating between diseased
and healthy patients. From the medical perspective, another primary objective of such
analysis is in treatment planning to ensure that the accurate amount of treatment (e.g.,

radiation) is delivered to the precise destination.
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FIGURE 2.5. FEzxzample of discrete m—reps of a complex of organs.
On the left, discrete m-reps of the prostate and bladder. On the right, bladder images
produced from the m—reps demonstrating the influence of the prostate on the bladder
[26].

Pizer and other members of the Medical Image Display and Analysis Group at the
University of North Carolina have begun to apply the techniques of single region medial
analysis to multiple objects or regions, such as complexes of organs in the body. We
now describe a number of medical and mathematical issues that arise in the context of
multiple region shape analysis.

First, fundamental questions from the single region setting carry over to multi-region

shape analysis, such as:

(1) How may one perform statistical analysis on images of organ complexes in order

to effectively analyze the images and aid in treatment planning?

Moreover, moving from shape analysis of one object to a collection of objects involves

the examination of the following:

(2) What relationships exist within a collection of objects, including any influences

that objects may exert over other objects?

For example, when the bladder fills, the nearby prostate presses on it and changes its
shape as illustrated in Figure 2.5.

Another issue that arises in the multi—object context is that some organs, such as the
prostate, have a very low degree of across—boundary intensity contrast and are therefore
difficult to accurately segment in an image. It is possible to use nearby objects in the body

such as the pubic bones, which have a higher across—boundary contrast, to statistically
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Caudate

Globus Pallidus

Amygdala

FIGURE 2.6. A second example of a multi—object complex.
Image of subcortical brain structures constructed from multiple m-reps used in a study
of differences in brain structures between autistic and typically developing children [24].

predict the location of the prostate. This issue brings up the following mathematical

question:

(3) How may one obtain a correspondence between regions on nearby objects that
should to some degree be statistically correlated based on their proximity to one

another, as well as examine variations in this correspondence across populations?

Presently, Pizer, et al. employ user-based identification of object or region closeness (see,
e.g., [41], [30], [26]), so one objective in extending medial analysis to multiple regions is
to aid in rigorizing the choice of correspondence between neighboring regions.

Another issue relates to the fact mentioned earlier that organs or portions of objects
in the body may undergo shape or position changes based on the influences of other

nearby organs:
(4) Which objects or regions on objects are most significant within a given collection?

Furthermore, the current deformable model approach used by Pizer, et al. to deform
a complex of objects in an image is based on different orderings that the user places
on the objects and sections of objects, involving properties such as image intensity and

geometric stability [24]. The deformations are comprised of various degrees of locality or
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scale levels, including global deformations applied to every discrete m—rep in an image
to deformations within a portion of a single m-rep. This raises the question of how can
one make the following notion mathematically precise:
(5) How may one study relations among objects or sections of objects at the same
scale level?
In Chapter 6, we shall turn to the topic of how the medial linking structure may be

used to address such questions from both mathematics and medical image analysis.
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CHAPTER 3

Blum Medial Linking Structure as Extension of Medial

Analysis to Multiple Regions

3.1. Introduction

In this chapter, we extend the analysis of the Blum medial axis of a single region to
multiple disjoint regions by introducing the Blum medial linking structure. This structure
is designed to enable us to study the geometry of a collection of regions relative to one
another by capturing the relationships between their medial axes and their interactions
with the exterior medial axis of the complementary region.

We begin Section 3.2 by stating our genericity assumptions and their consequences,
then introduce the notion of medial linking in Section 3.3. In Section 3.4, we expand
upon the classification of Mather and Yomdin described in Chapter 1 by classifying
the generic forms of medial linking in 2 and 3 dimensions, deferring the proofs of the
transversality theorem and transversality conditions that yield these results to Chapters
4 and 5, respectively. As a consequence of the classification theorems, we develop in
Section 3.5 a fundamental component of the linking structure: labeled refinements of
the Whitney stratifications of the boundaries and the medial axes to reflect interactions
between regions. In Section 3.6, we define the final major piece of the linking structure, a
collection of multivalued vector fields defined on the individual regions’ medial axes that
satisfy certain properties in relation to other regions’ medial axes and the medial axis of
the complementary region.

Finally, in Section 3.7, we combine the aforementioned ingredients to define the Blum

medial linking structure associated to a collection of regions. Later, in Chapter 6, we



shall apply the linking structure to address questions of interest from the perspectives of

both mathematics and medical imaging.

3.2. Genericity assumptions

We begin with some initial genericity assumptions from the singqle region case which
we shall further supplement for the multi-region setting. Let X = H X;, where each X;
is a smooth, n-dimensional, compact, connected, orientable manifofg.l Let ¢ : X — R**!
be a smooth embedding, and let ¢|X; = ¢; : X; — R for 4 = 1,...,¢q. For each
i, let B; = ¢;(X;); by the Jordan-Brouwer Separation Theorem, B; bounds a compact
connected region in R™™!, which we denote by €;. We shall restrict our attention to the

subset DEmb(X, R"™!) € Emb(X, R""!) of smooth embeddings satisfying the condition

that Q; N Q; = 0 for i # j. We begin with a simple lemma.

Lemma 3.2.1. The set DEmb(X,R""!) is an open subset of Emb(X, R"*1) in the C*

topology.

PROOF. Let ¢ € DEmb(X,R"™), where ¢(X;) = B; bounds a region ); for every

1=1,...,q, and let 6 = n;ém d(€2;,§2;), where d denotes the minimum distance from €,
i

to ;. Now, 6 > 0 since the (2; are compact, pairwise disjoint, and finite in number. For

any € > 0 and for any i = 1,...,¢q, let
Qf = {z e R"™ 1 d(z, Q) < €}

Assume € < §/4. Observe that, by the triangle inequality and the definition of 4, QNQ5 =
() for i # j. If necessary, shrink € to ensure that 9Q¢ is smooth for every i. That this is

possible follows from the fact that
00 = {z € R"™ : d(x,Q;) = €}

is the image of B; at time € under the eikonal or grassfire flow in the complement, which

is a diffeomorphism for e sufficiently small.
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Next, let
U = {¢ € Bmb(X,R™) : [|¢ — ¢llco < €}.

We will show that U C DEmb(X, R"™!), establishing that DEmb(X, R"™!) is open in the
C° topology.

Let ¢ € U. By the Jordan-Brouwer Separation Theorem, #(X;) = B, bounds a
region € for all i = 1,...,q. To show that ¢y € DEmb(X,R"™!), it suffices to show
that Q) C €, since the collection of 2 is pairwise disjoint. For each i, B C Qf since
l|¢ — || < € it remains to show that 592;, the interior of €2, is also contained in €. To

establish this, we first prove the following claim.
Claim 3.2.2. Q; does not intersect 0.

PROOF. Suppose 5022 N QS # (). Consider the set W := Q; U (R™1\ QF), which is
connected since both 62; and R™™! \ Q¢ are connected and there exists a point in their
intersection (since Q5 C R™™ \ Qf). W does not intersect B. since (02; N B, = and
B; C Q. By the Jordan-Brouwer Separation Theorem applied to B}, the unbounded set
W is contained in the unbounded component of R"*!\ B!. But this contradicts the fact

that Q; is, by definition, in the bounded component. O

Applying the Jordan-Brouwer Separation Theorem to 95, R™1 \ 9Q¢ consists of
exactly two open connected components: Q¢ and R™1\ OF, where Q; denotes the closure
of €. Since 592; is connected and does not intersect 9€) by the claim, it is a subset of
one of the two components of R**1\ 9Q¢. If 5022 C R*1\ QF, then B, € Q) ¢ R™\ Q,
a contradiction to the fact that B; C €X.

Therefore, € C € for every i. Since Q§NQ5 = ) for ¢ # j, it follows that Q;NQ; =0
for i # j, as well. Thus, DEmb(X, R"!) is open in the C° topology, ensuring that it is
also open in the finer C* topology.

O

By the result of Looijenga given in Theorem 1.4.1 in Chapter 1, there is a residual

set of embeddings #Z C Emb(X, R"™!) that satisfy the notion of distance-genericity. A
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second lemma establishes that the subset of these embeddings in which we are interested

is itself a residual set.

Lemma 3.2.3. The set DEmb(X, R"™\NZ is a residual subset of DEmb(X, R"™!), and
is dense in DEmb(X, R"*1).

PROOF. Since Z is residual, let Z = ﬂ(’)j be a countable intersection of open

dense subsets in Emb(X,R"™!). Since DEjmb(X, R™1) is open, for any j, the set
DEmb(X,R"") N O; is also open in DEmb(X,R"*!). Furthermore, for any j, the
set DEmb(X,R"™) N O; is dense in DEmb(X,R"™). This is because, given ¢ €
DEmb(X,R"™), any neighborhood of ¢ that is open in DEmb(X,R""!) is open in
Emb(X,R"™), and therefore must intersect O; since O; is dense in Emb(X,R™*).

Hence, ﬂDEmb(X ,R"1) N O is residual in DEmb(X, R™1) since it is a countable

J
intersection of open dense subsets of DEmb(X, R"*!). By Lemma 3.2.1, DEmb(X, R"*1)

is an open subset of the Baire space Emb(X, R"*1), and therefore is itself a Baire space
[39]. Since a residual subset of a Baire space is dense, it follows that DEmb(X, R"*')N%

is dense in DEmb(X, R"*1). O

From now on, when we refer to a generic embedding, we shall mean an element of a
residual subset of DEmb(X, R"™!) satisfying a precise condition involving transversality
to certain submanifolds of jet space. This transversality condition will be made explicit
in Section 5.3 in Chapter 5. For n < 6, the genericity conditions imply that each disjoint
region €2; will have a Blum medial axis, M;, with the generic local normal forms and
properties given by Mather and Yomdin and described in detail in Chapters 1 and 2. The
genericity assumptions further guarantee that the unbounded complementary region will

also have a generic Blum medial axis, denoted Mj.

3.3. Definition of medial linking

In this section, we shall introduce the concept of medial linking for a collection of

disjoint regions {€2;}7_; with smooth boundaries 0€2; = B; defined by a generic embedding
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¢ : X — R for ¢ € DEmb(X,R""). Let B = HB and Q = HQZ, both B and

are closed because the boundary hypersurfaces and the regions they bound are compact.
Also, let Qy = Q¢, the closure of the region complementary to 2. By the General
Separation Theorem [25], since B has ¢ components, the complement R"*!\ B has ¢ + 1
components; it follows that there is only one unbounded connected component of the
complement. We shall let SQZO denote the interior of this unbounded component of 2.

To each hypersurface B;, i = 1,...,q, we assign a parametrized family of distance
squared functions

o B x Q= R, (z,w) — ||z — w||.

This defines, for each point w € SOZZ-, a smooth map
oi(-,w) : B = R, 1+ oy(z,w) = ||z — w||.

As explained in Section 1.4.2 in Chapter 1, using distance squared rather than distance
ensures smoothness and preserves the singularity theoretic information since both the
distance function and the distance squared function defined on B; x QZ are nonzero with
the same types of critical points.

Additionally, we define a family of functions that measures the squared distance

between points on B and points in the complement:
oo : B x Qp — R, (z,w) = ||z — wl||

The Maxwell set of ¢ is the medial axis of the complement, and we give it a special

name.

Definition 3.3.1. For a collection of disjoint compact connected regions {;}i_, as
above, the linking medial axis, My, is the Blum medial axis of the complementary

region $2g.
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Remark 3.3.2. For now, we assume that the linking medial axis extends indefinitely as
the complement is unbounded. However, in Chapter 6, we shall develop a finite version of
the medial linking structure to be used in applications by assuming that the regions are
contained in a bounded region and truncating the linking medial axis in an appropriate

manner.

Given w; € f))i, distance genericity implies that there is a finite non-empty set S; C B;
such that o;(-,w;) takes on an absolute minimum value y; at the points in S;. Let |S;|
denote the number of elements in S;. If |S;| > 1, or S; = {x} and 0;(-, w;) has a degenerate
minimum at z, then w; is a point on the Blum medial axis M; of ;. We refer to M;
as the internal medial axis of €2;. The points of S; will be called the boundary points
associated to w;, and in turn, w; will be called the internal medial axis point associated
to the points of S;.

Next, we consider a point wy € folo, the unbounded component of the complement.
Then, by distance genericity, there is a finite non-empty set So C B such that, at the
points in Sy, og(-, wy) takes on an absolute minimum value yy. Now, Sy may contain
points from more than one component B;. As above, if [Sy] > 1, or Sy = {z} and
oo+, wp) has a degenerate minimum at x, then wy is a point on the linking medial axis
My. We refer to the points of Sy as the boundary points associated to wy, and we say
wo € My is the linking medial axis point associated to the points of Sy.

It is important to note that not every point on the boundary of a region will have
an associated linking medial axis point. Consider a 2-dimensional example in Figure
3.1. The tangent lines represent the limits of bitangent circles at infinity. The points
1,y € By do not have associated linking medial axis points, as the centers of their
corresponding bitangent circles are both at infinity. For the same reason, all of the
points between x; and x5 on the side of By furthest from the other regions do not have
associated linking medial axis points.

Let wy € M, and suppose that wy has r associated boundary points in Sy C B;

equivalently, each x € Sy has wy as its associated linking medial axis point. Now, each
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FIGURE 3.1. Non-linked portions of regions.
Examples of bitangent circles in the complement whose centers are linking medial axis
points associated to certain boundary points, as well as limits of bitangent circles whose
centers are at infinity (i.e., the two bitangent lines). All of the regions must lie on one
side of a bitangent line in order for it to correspond to a limit of bitangent circles
contained entirely within the complementary region. The darker shading indicates the
region between My and By which does not have linking medial azis points associated to
it.

point x belongs to some B; and is simultaneously associated to a unique internal medial
axis point w; € M;. See Figure 3.2 for an example. Therefore, each = is “playing dual

)

roles,” as it must satisfy multiple conditions as a simultaneous absolute minimum of two
different distance functions: og(-,wy) and o;(-,w;). This brings us to the definition of

various types of linking.

Definition 3.3.3. Suppose there are r distincqt boundary points associated to wy € My,
namely, {le,...,:vjsj iy for zj, € B; and Zsj = r, with possibly s; = 0 for some
values of j. Suppose x;, € B; is associated tjozifhe internal medial axis point w;, € M;.
Then the regions €y, ...,8Q, are said to be linked at {wj,, ... , wj, Yoo If 55, =0 for
some j, then Q; is not included in the list of linked regions.

For a given fized j, if s; = 0 fori # j and s; # 0, we say the region §2; is self-linked
at wj,, . .. , W, -

Linking may consist entirely of linking between distinct regions (i.e., s; =0 or 1 for

all j), entirely of self-linking (i.e., for only one value of j is s; # 0), or it may consist
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FIGURE 3.2. Example demonstrating the dual roles of boundary points in R3.
Here, wq 1s the center of a sphere in the complement that is tri-tangent at the surface
points x1, T, and x3; thus, wy belongs to a branch curve of the linking medial axis.
Furthermore, each point x; € B;,1 = 1,2,3, has an associated internal medial axis point
w;. Here, wy is a point on an edge curve of the medial axis of By, and w; fori= 2,3 is
the center of a bi-tangent sphere with ordinary tangencies at x; and .

of partial linking, which involves both distinct and self-linking. See Figure 3.3 for

examples.

Remark 3.3.4. A couple of remarks are necessary:

(1) We refer to wy € My in Definition 3.3.3 as an associated linking point of any of
the w;, € M;. Now, w;, may have other associated linking points corresponding
to its other associated boundary points. To distinguish between the associated
linking points of wj,, we say wy is its associated linking point in the direction of
U;, where U; is the choice of radial vector at wj, pointing toward wy.

(2) Self-linking includes those cases for which either oy(-, wp) has a single degenerate
minimum at some x; € B;, or o;(-,w;) has an absolute minimum with critical

value y; at a point x; € B; and at finitely many other points in B;.

As mentioned earlier, it is possible for points on M; to be linked to other regions on
one side but not the other. For this reason, we shall in fact consider linking on the level
of the double ]\Z of each medial axis M;, as defined in 2.3.2 in Chapter 2. This enables us

to consider both sides of the medial axis simultaneously and distinguish between the type
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FIGURE 3.3. lllustration of (a) linking between distinct regions, (b) self-
linking, and (c) partial linking.

of linking that is exhibited; see Figure 3.4 for an example. It also allows us to determine

the portion of the medial axis that consists of non-linked points, as defined below.

Definition 3.3.5. The non-linked portion of ]\Z, which we denote by ]\ZOO, consists
of all points (w,U;) € ]\AjZ such that w has no associated linking point in the direction of
Us;. ]\ZOO may consist of more than one connected component. The non-linked portion

of M;, denoted M, consists of those points w € M; with no associated linking points.

FIGURE 3.4. Linking between three regions in R3.
Only a small portion of the linking medial axis is shown for simplicity.

q
Let B>* = HB;’O denote the nonlinked portion of B consisting of points on B asso-
i=1

q
ciated to points in H M;. The following proposition establishes the generic properties

=1
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of the boundary of ]\Zoo in R? and R? by establishing the generic properties of B>. Its
proof requires Wall’s extension of Looijenga’s transversality theorem (Theorem 1.4.2 in

Chapter 1).

Proposition 3.3.6. For a generic embedding ¢ : X — R2?, the boundary of B>® consists
of A? bitangent points. For a generic embedding ¢ : X — R3, the boundary of B>
consists of smooth curves of A? bitangent points ending at either A3 tritangent points or

As tangent points.

PROOF. Let ¢ : X — R"™! for n = 1 or 2 be a generic embedding, and let S™ denote

the unit n—sphere in R"*!. By Theorem 1.4.2, the family of height functions

(3.1) he (B xS (S, w)) — (R,c),

(x,w)—w-x

is a versal unfolding for S C B a finite set of distinct points. Hence, only multigerms of
extended R+ —codimension < n occur generically as the sphere is n—dimensional.

For n = 1, the only R} —codimension 1 versally unfolded multigerm is type A%. If
S = {z1,12} C B, h(-,wy) being of type A} at S corresponds geometrically to wy being
orthogonal to T, B for i = 1,2. Generically, the A% set on B is a set of points bounding
curves of nonlinked points of type A, and the A? points on B then correspond to points
at the boundary of ]\ZOO.

For n = 2, the R} —codimension 1 set of A? points now consists of smooth curves on
B corresponding geometrically to a continuum of bitangent planes with all regions lying
on one side of them. (The bitangent planes are the limits of bitangent spheres contained
entirely inside the complementary region.) In addition, there are two multigerms having
extended R —codimension 2. First, if S = {x1, 22,23} C B, h(-,wy) could generically
be of type A3 at S, which corresponds geometrically to wy being orthogonal to T}, B for
i =1,2,3, i.e., it corresponds to a tritangent plane to B at the points of S. These A3

tritangent points on B occur at the end of two A% curves. Second, (-, wy) may generically
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have an Aj singularity at x; € B, and such an Az point on B also occurs when a smooth
A? curve ends. Therefore, the corresponding boundary of Moo also generically consists

of smooth curves ending at points. |

3.4. Classification of generic medial linking in R? and R?

In this section, we state the classification of the generic local normal forms that a
medial linking structure will exhibit in R? and R3. Before doing so, we shall revisit results
from Chapter 1 on the singularity theory needed to construct generic normal forms for

the families of distance squared functions and their Maxwell sets.

3.4.1. Singularity theory needed for classification. Recall from Section 1.2 in
Chapter 1 that the ring of multigerms of smooth functions f : (R™,S) — (R,0), where
S is a set of r distinct points in R", is the product of r copies of m,. Thus, we may
view a multigerm f : (R",S) — (R, 0) as the r-tuple of mappings (f1,..., f;) with each
fi: (R™,z;) = (R,0) a germ of a smooth function at z; € S C R". Source coordinates
may be chosen independently around each x; € S so that z; is locally the origin in each
copy of R™. We shall restrict our attention to families of multigerms satisfying a specific
requirement.

Suppose the multigerm f : (R”,S) — (R, 0) has an A singularity, so that at z; € S
fori =1,...,r, f; has an Ay, singularity for some positive integer k;. We say that the
family

F=(F,...,F): (R"xRP (S,0) — (R,0)

satisfying F'(z,0) = f(z) is of generic Ag singularity type if the family is a versal un-
folding of the multigerm f. We saw in Section 1.2.1 in Chapter 1 that the versality of F

implies that it has an algebraic normal form. Recall further that the standard miniversal
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unfolding of f is the family F' = (F3,..., F,), where
n—1 k1

(3.2) F, = Z:c? 4 gkt g Z ujrk I
i=1 j=1

n—1 k2

2 ko+1 ko—j

Fy = E :xz + xn2+ + E uk1+jxn2 J’
i=1 =1

n—1 k'r—l

_ 2 kroitl Z kr_1—j

Fo 1= E ,xz + @, S U(ky+...+kp_o)+j Tn ! j?
i=1 j=1

n—1 kr —1
— 2 kr+1 k—7
F. = E i+t E Uky 4.t 1) 45 Tn -
i=1 =1

It is important to mention that, for simplicity, we did not distinguish between the different
coordinates for each function F; above; however, each function is defined on a distinct
copy of R", and thus the coordinates are indeed different in each case. Recall from Section
1.2.1 in Chapter 1 that the number of unfolding parameters in its miniversal unfolding
equals R} -codim(Ag); that is, RS -codim(Ag) = ki + ... + k. — 1.

In the situation at hand, for a point w; € M;, i = 1,...,q, with associated boundary

points in the set S; C B; and |S;| = v;, suppose the multigerm
oi(-,w;)  (By, Si) — (R, )

has an Ag, singularity. Similarly, for a point wy € M, with associated boundary points

in the set Sy C B, |Sg| = r, suppose the multigerm
oo(, wo) 1 (B,50) — (R, o)

has an A, singularity.

Definition 3.4.1. We say that the family

g; . (Bz X Rn+1, (Sl,wz)) — (R,’f‘i)
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is of generic Ag, singularity type if o; is a versal unfolding of the multigerm o;(-, w;).

Stmilarly, we say that the family
oo+ (B x R™, (Sp,w0)) = (R, o)
is of generic A, singularity type if oy is a versal unfolding of the multigerm oq(-, wp).

By the uniqueness theorem for versal unfoldings of multigerms (Theorem 1.2.11 in Chap-
ter 1), o; (resp., og) is isomorphic to the unfolding F; X id,4+1—p, (resp., Fy X idpi1-p,),
where F; (resp., Fy) is a p;—parameter (resp., po—parameter) miniversal unfolding of the
form given in (3.2).

Recall from Section 1.5.2 in Chapter 1 that the versality theorem ensures that the
projection of the stratum of the singular set of o; corresponding to Ag, singularity type
to the parameter space R"*! will be smooth. Let A5, C M, denote this projection. In
addition, let X4, C B; denote the projection to B; of the stratum for Ap, singularity
type. The ¥4, stratum on B; is the image under the radial flow of the x4, stratum on
M;. Since the radial flow is smooth on the strata of the medial axis [14], this ensures that

Y4, is smooth. Furthermore, let ¥4, C B denote the projection to B of the stratum

8;
of the singular set of oy corresponding to A, singularity type, and let x4, denote its
projection to My. Linking occurs when, for some i, there is at least one point z; € B;
such that z; is a singular point of both o;(-,w;) and oy(-,wp). When linking occurs,
the singular sets X Ag, and X 4, intersect on the boundary B;. As will be explained in

Chapter 5, the classification of generic linking depends on the transverse intersection of

these singular sets on the boundaries.

3.4.2. Generic linking classification theorems. The classification for generic medial
linking is expressed using a normal form for the families of versal unfoldings in the
previous section.

q
Definition 3.4.2. Let Sy = {x;,,..., 2, Y=y C B and [Sy| = Zsj = r, with possibly

j=1
s; = 0 for some values of j. Let oo : (B x R"™ (Sy,wp)) — (R, yo) be of generic A,
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singularity type. Also, let S;, C B; be a finite set of distinct points with x;, € S;, N Sp,
and let oy, = (By x R™(S;,w;,)) = (R,y;,) be of generic Ag, singularity type. For
j=1...,qandi =1,...,s;, a generic linking configuration consists of the set
of {0;,} and oy with the requirement that the singular sets ¥4, C B and EA% C B;
intersect transversely in B.

We denote the normal form for a generic linking configuration by
(3.3) (Aot Agy, .. Ag))
or, letting B ={B1,...,05:}, by
(3.4) (A : Ag).

In any dimension, there are four basic categories to which linking configurations
belong:
Type 0 Linking: Smooth strata on internal medial axes linked at a smooth stratum of
the linking medial axis.
Type I Linking: Singular stratum on one internal medial axis linked to smooth/singular
stratum on other internal medial axis at a smooth stratum of the linking medial axis.
Type II Linking: Smooth strata on internal medial axes linked at a singular stratum
of the linking medial axis.
Type III Linking: Singular stratum on one internal medial axis linked to smooth /singular
strata on other internal medial axes at a singular stratum of the linking medial axis.
Next, we state the generic medial linking and medial self-linking classification theo-
rems for dimensions 2 and 3 using the notation in (3.3). The proofs of the theorems will

occupy the next two chapters.

Theorem 3.4.3 (Classification of generic linking in R?). For a residual set of
embeddings of simple disjoint closed curves in R? whose interiors bound disjoint regions,
there are 5 generic linking types, given in Table 3.1. Of these, only the first 4 can occur

for linking between distinct regions, while all 5 can occur for self-linking.
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TABLE 3.1. Generic linking for medial axes in R?.

Linking type | Configuration
0 (A7 : A7, A7)
I (A7 : AT, AY)
(A% : A%? A3)
i (AT A%, A7, A7)
| 11 | (A5 AD) ]

Theorem 3.4.4 (Classification of generic linking in R®). For a residual set of
embeddings of smooth, disjoint, compact, connected surfaces in R? whose interiors bound
disjoint regions, there are 17 generic linking types, given in Table 3.2. Of these, only the

first 13 can occur for linking between distinct regions, but all 17 can occur for self-linking.

TABLE 3.2. Generic linking for medial axes in R3.

Linking type Configuration
0
I

(2 cases)

1 (A7 : Af, AL, A7)
(AF A3 A 4G, 4
(AlAg : A%, A%)

1 (A7 - AT, AT, A])
(A? : A%? A%) A3)
I (A3 A9)
<A3 . Ag)

Remark 3.4.5. There are two distinct cases with generic linking type (A? : A%, A; A3).
Namely, if the A? multigerm corresponding to the linking medial axis point is taken at

x; € B; and z; € B;, and 0;(-,w;) is of generic singularity type A;A; with w; € M; the
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internal medial axis point associated to z;, then the two cases depend on whether z; is

an A; singular point or an As singular point.

FI1GURE 3.5. Example illustrating generic linking possibilities, including
self-linking, in R?.

Example 3.4.6. Consider Figure 3.5. The points labeled (a) and (b) provide examples of
(A% : A2 A?) and (A3 : A?) self-linking, respectively. The point (c) illustrates the generic
linking type (A3 : A2, A2, A?). The three points on the region boundaries that correspond
to (c) are associated simultaneously to the branch point on the linking medial axis and to
top-dimensional strata on the regions’ medial axes. The point (d), which illustrates the
generic linking type (A? : As, A?), belongs to a smooth curve of the linking medial axis

and links a smooth stratum on one internal medial axis to an edge point on the other.

3.5. Detalils of the labeled stratification refinements

The classification of genqeric linking natugally leads to refinements of the usual Whit-
ney stratifications of B = H B; and M = H M;. These refinements will arise from the
Maxwell set related singuli;r1 behavior of tfa:eo versal unfolding o( in addition to that of
each versal unfolding o;,7 = 1,...,q. In this section, we shall define the stratification re-
finements and examine their important features and properties. We remark that, for the
medial axes, the local topological structure of the ordinary stratification identifies each

multigerm type for a point in a stratum. This will no longer be true for the refinement.

Hence, we shall use “labeled refinements.”
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We begin by explaining the process by which the stratifications are refined, which
shows how the stratifications on B and M are related. This process requires us to
study linking on each side of the medial axis separately. This means that for any point
w; € M; \ M, we consider only one of its associated linking points in M, at a time.

In Section 3.3, we introduced the correspondence between points in B; and points in
M;, as well as the correspondence between linking medial axis points in M, and points in
B. The versal unfoldings o; and oy provide these correspondences. From them, we may
determine for any point z; in a given stratum >4, on B; (arising from the singular set
of 0;) its associated point w; in M;, which belongs to the stratum XAg, in M;. Moreover,
we may determine the point in M, associated to x;, which belongs to some stratum of
the usual stratification of Mo. The set of all points in My corresponding to the X4,
stratum on B; are labeled with the kind of singular behavior they represent for o;. We
refer to this set as the image of the X4, stratum on B; in My. (We may also refer to it
as the image of the x a, stratum on M; in My.) Furthermore, each of these points in M,
corresponds to one or more distinct points on other boundaries; we refer to the set of all
corresponding points in B; as the image of the X A, Stratum on B; in B; and label them
accordingly. Finally, any point in B; that belongs to this image is associated to a point
in M;, which enables us to determine the image of the ¥4, stratum on B; in M;.

Likewise, any point in the stratum X 4, on B; (arising from the singular set of oy) has
an associated point in Mj; the set of these associated points form the x4, stratum in
M. Using the process just described, we may determine the images of the ¥4, stratum
on B; in M;, B;, and M;. See Figures 3.6 and 3.7 for an illustration.

With this explanation in mind, we give the following intrinsic definition of a stratum

on B arising from generic linking type.

q
Definition 3.5.1. Let B = HBZ' and let (A, : Ag) be a generic linking configuration

i=1
with B = {p1,..., 5.} as in Definition 3.4.2. A point x; € B; belongs to the stratum on
B corresponding to the configuration (A, : Ag), denoted (S, : ¥5)5, provided the

following conditions hold:
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FIGURE 3.6. Stratification refinement example.
Revisiting Figure 3.4 in order to determine the two sides of the refined stratification of
the medial axis of the middle region.

(b)

(a) (c)

~

\

VRN

FIGURE 3.7. More on the refinement example.
On the left, the refinement due to linking with the leftmost region; on the right, a
portion of the refinement from linking with the far right region.

-

o 1, €X 4y, onB;

o, € ZAﬁi on B;;

o There exists a set of r points Sog C B with x; € Sy such that, for any other point
xj € Sy with xj € Bj, x; € Y4, on B and z; € Yids, ON B;;

o foreveryj=1,...,r, the X 4, stratum, the ZABi stratum, and the images in B;

of the X 4, strata are transverse in B;.
J

Definition 3.5.2. Let .#® denote the collection of all strata of the form in Definition
3.5.1, and let .5 denote the restriction of S5 to B; fori=1,...,q.
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The next theorem establishes a genericity result regarding the stratification in Defi-

nition 3.5.2. We refer the reader to Section 3.2 to recall the precise meaning of a generic

embedding ¢ € DEmb(X, R"1).

Theorem 3.5.3. For a generic ¢ € DEmb(X,R") with n < 6, 75 forms a Whitney
stratification of B.

Theorem 3.5.3 will follow from the combination of Theorem 4.3.1 in Chapter 4 and
the work in Chapter 5. Briefly, the fact that .#® is a Whitney stratification will be a
consequence of the fact given in Section 1.5.2 in Chapter 1 that the canonical stratification
of jet space by singularity type is a Whitney stratification. The transversality results of
the next two chapters will imply that the pull-backs of the stratifications involved in a
generic linking configuration to B will be transverse, and will therefore form a Whitney
stratification of B.

Next, we present the corresponding results for the stratifications of the medial axes.
In Section 3.3, we explained that linking is best understood on the level of the double
]\A/fi for each ¢ = 1,...,q. This is because its topological structure enables us to study
linking with other regions that is exhibited on each side of the medial axis separately. On
the other hand, we shall always consider strata on M, rather than Z/\\/[/o because linking

simultaneously involves both sides of M.

Definition 3.5.4. Let M = ﬁj\z and let (A, : Ag) be a generic linking configuration
with B =A{B1,...,0:} as in l;:}im'tz'on 3.4.2.
(a) A point (w;,U;) € M, belongs to the stratum on M corresponding to the con-
figuration (A, : Ag), denoted (X, : XB)M; provided the following hold:
® w; € XA, on M;
e For j =1,...,r, there exist points x; € B;, w; € M;, and wy € My such that
for every j, the multigerms oo(-,wo) and o;(-,w;) are singular at the point x;,
with wg € x4, on My and w; € XAg, ON M;;

e The images in M; of the collection of x4, and XAg, strata are transverse.
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(b) A point wg € My belongs to the stratum on M, corresponding to the configu-

ration (A, : Ag), denoted (xo : xg)M°, provided the following hold:

® wy € xa, on My;

o There exist points w; € M; and x; € B;, i = 1,...,r, such that for every i, the
multigerms oo(-,wo) and o;(-,w;) are singular at the point x; and w; € XA, ON
M;;

e The images in My of the collection of x4, and XAg, strata are transverse.

Definition 3.5.5. Let .#M denote the collection of all refined strata of M of the form
wn Definition 3.5.4, and let M denote the restriction of M o ]\AjZ fori=1,...,q.

Let /Mo denote the collection of refined strata of My of the form in Definition 3.5.4.

Theorem 3.5.6. For a generic ¢ € DEmb(X, R"™) with n <6, FM s q refinement of
the stratification of]TJ and Mo is a refinement of the stratification of My. Forn = 1,2,

Mo js a Whitney stratification.

The stratifications in Theorems 3.5.3 and 3.5.6 are called the stratifications by
linking type of B, M , and My. Although &% M il not be a Whitney stratification
since M is not embedded in some smooth ambient manifold, the stratification .#% on
B — which is Whitney — may be viewed as a realization of the stratification on M.
For each i = 1,...,q, the boundary of M (resp., ]\Z"o) will be included as part of the
labeled refined stratification .#*% (resp., .7 M) However, due to the absence of linking,
the stratification within M (]\Z‘X’) will not be refined, so it will retain the original
stratification of M; (]\Z)

Generically, the stratifications given in Theorems 3.5.3 and 3.5.6 possess certain prop-

erties.

Theorem 3.5.7. For a generic ¢ € DEmb(X, R") with n < 6, the stratifications ./
of B, M of JT/[/, and Mo of My have the following properties:

(1) The number of generically appearing stratum types is finite.
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FIGURE 3.8. Ezample of generic linking between three distinct regions in R3.

The linking that occurs at (a) is an example of an (A3 : Az, A2, A?) configuration, while
the (A% : Az, A3) configuration is exhibited at (b).

FIGURE 3.9. A portion of the refined stratification for Figure 3.8.
The original strata on each of the medial axes are further decomposed in several places
by transversely intersecting curves and their intersection points.

(2) The codimension in B of the stratum (3, : $5)° € B representing the generic

linking configuration (A, : Ag) is given by the formula

(3.5) codimg((So : Xp)%) = R -codim(Ay) + ZR:—codim(.Agi) —(r+1).

i=1
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(3) Therefore, the codimension in R™ of both the stratum (X : X,B)M e .M and
the stratum (xo : xp)M € LM corresponding to (As = Ag,, ..., Ag,) is given by
(3.6) codimgn+1(Xa : Xg) = Ri codim(Ay) + Z R codim(Ag,) — 7.
i=1
The fact that only a finite number of stratum types occur generically follows from
Mather’s classification in Chapter 1; for n < 6, the dimension is below the dimension when
moduli are introduced (i.e., n = 7). The remainder of Theorem 3.5.7 is a consequence of

a transversality theorem for “multi-distance” functions that will be proven in Chapter 4.

3.6. Linking vector fields

In this section, we extend the multivalued radial vector field U; = r;u; on each medial
axis M; to another multivalued vector field, the linking vector field, defined on M;. This
vector field will relate M; to the other medial axes of a collection of regions and to the
medial axis of the complement, M. The new vector field will be defined on M; \ M/,
and will be multivalued with one value at each point (w,U;) € M; for every associated
linking point of (w, U;). We begin by defining a single-valued linking vector field on the
double M, \ Z\N/[ioo, which descends to the multivalued linking field on M; \ M;®.

Definition 3.6.1. The linking vector field on M, \ ]\A/[/l-"o,
Zi : M\j/\zoo _>Rn-&-l7

associates to a point (w,U;) the vector that points from w to its associated linking point
on My in the direction of U;, as defined in Definition 3.3.3. We also define the linking
function

s My \ M® = RT, (w,U;) = ||Li(w, Uy)|].

The linking vector field L; and linking function Z descend to a multivalued linking vector

field
L M;\ M® — R™H!
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and multivalued linking function

There is the relation L;(w) = {;(w)u;(w), where for each choice of unit radial vector w;

at w e M; \ M, Li(w) is the unique linking vector which is a multiple of u;.

We may rephrase the definitions of linking and self-linking in terms of these vector

fields.

Definition 3.6.2. (a) A medial axis M; exhibits linking with a medial axis M; at points

y € M; and w € M; if there are linking vectors L;(y) and L;(w) satisfying
y+ Li(y) = w+ Lj(w).

(b) A medial axis M; exhibits self-linking at points y,w € M; if there exist linking

vectors L;(y) and L;(w) satisfying

y+ Li(y) = w+ Lj(w).

FIGURE 3.10. A collection of linking vector fields in R2.

The multivalued linking functions have the following generic properties.

Lemma 3.6.3. For a generic ¢ € DEmb(X,R"™) with n < 6, the linking function

C; o M\ M° — RY satisfies the following properties:
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(1) t;(w) > ry(w) for all w € M,;.
(2) If y € M; and w € M; are linked, the associated radial and linking functions

satisfy the relation

(3.7) Ci(y) —ri(y) = li(w) — Tj(w)-

(8) {; is a continuous multivalued function, i.e., ZZ as a function on ]\Aj2 18 continuous.
(4) In addition, lz|xij is smooth on every stratum x;; (for all j in an index set I)

i the refined stratification . M;

PROOF. Property 1 is immediate by definition. Next, for linked points y € M, and
w € M;, the linking vectors L;(y) and L,(w) extend beyond B; and B; in directions
normal to the boundaries (as the linking vectors are in the directions of radial vectors)
and meet in the complement. Thus, Property 2 holds since the values in (3.7) are the
lengths of radial vectors on M, that are based at the point y + L;(y) = w + L;(w).

To prove Property 3, we show that Z is continuous which, by definition, means that
the multivalued linking function /¢; is also continuous. In fact, we shall show that the
linking vector field Zl is continuous, which ensures that E is continuous.

Let (wo,U;) € M; \ M. By the proof of Theorem 5.1 in [14], we know that the
radial map

{Ei : ]\A/jz — By, (w,U;) = w + Ui(w)

is a local homeomorphism from a neighborhood W of (wy, U;) € M; to a neighborhood
V oof x :=wy + U;(wo) € B;. In addition, let w{ = wo + L;(wg) be the associated linking
point of wy in My in the direction of U;; then x = w{ + Up(wy), as well. The result from

[14] also establishes that the radial map
W0 My — B, (w',Up) = w' + Up(w)

is a local homeomorphism from a neighborhood W' of (wy(, Uy) € M, to a neighborhood

V' of x € B;. So, let Vi =V NV’, and restrict the radial maps to neighborhoods W, and
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W so that @Z{ : Wy — Vj and YZ? : W} — Vj are homeomorphisms. It follows that
W) ol Wy — W

is also a homeomorphism; in particular, it is continuous. In addition, the natural projec-

tion map 7 : Mo — My is continuous, as is its restriction to W{; hence, the composition
(3.8) T W5 o (1) o i : Wo — Mo

is continuous. Furthermore, by associating to any point (w,U;) € Wy the vector that
points from w to its image in My under the map in (3.8), one obtains the linking vector
field L; : Wy C ]\A/[/Z \ ]\Z‘X’ — R™*1 Therefore, L; and Z are also continuous.

For Property 4, we show that L; (and thus Z) is smooth on each stratum in the refined
stratification .M of M;. Let (wo, U;) € M; \ M, and let w), := wo + Li(w) € My be
the associated linking point of wq in the direction of U;, with possibly at least one point
(v0,U;) € ]\A/f] \ ]\/7[]90 for some j such that w{ = yo + L;(yo) is the associated linking
point of yo in the direction of U;. If wy € (M;)req, let W be a neighborhood of wy. If
wo € (M,;)sing, choose a smooth value of U; on a neighborhood W of wy, within a local
manifold component or local edge component. By Proposition 4.1, Corollary 4.3, and
Proposition 4.4 in [14], the radial map ¢} : W — B; is a local diffeomorphism from W
to a neighborhood V of x := wy + U;(wy) € B;.

Similarly, @D{ : M; — B; is a local diffeomorphism from a neighborhood O of yy € M;
to a neighborhood U of 2’ := yo + U;(yo) € B;. In addition, the radial map ¢ : My — B
is a local diffeomorphism from a neighborhood W’ of w{, € M, to a neighborhood V' of
x € B;, and from a neighborhood O’ of w; to a neighborhood U’ of 2" € B; for smooth
choices of the vector field U, on these neighborhoods.

Thus, let Wi = W' N O, and restrict to neighborhoods Wy of wy € M; and Vj of

x € B; so that v} : Wy — V, and ¢¥ : W} — V; are diffeomorphisms. Therefore,

(3.9) ()~ oy s Wy — W
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is also a diffeomorphism, and by associating to any point w € W, the vector pointing

from w to its image in M, one obtains the linking vector field on Wj. |

3.7. Definition of the Blum medial linking structure

Now, we have all of the necessary ingredients to define the Blum medial linking struc-

ture for a set of compact disjoint regions in R**.

Definition 3.7.1. Let {Q;}%, be a collection of disjoint regions in R™™ with smooth
boundaries 0Q; = B; defined by a generic embedding ¢ € DEmb(X, R™) forn < 6. The
Blum medial linking structure associated to {Q;}1_, consists of the following:
(1) the set of ¢ Blum medial axes M; for each Q; exhibiting the generic local structure
giwen in Theorem 1.4.4 and multivalued radial vector fields U; = r;u; defined on
the M;;
(2) the collection of multivalued linking functions {¢; - M;\ M — RY}Y_, and mul-
tivalued linking vector fields {L; = l;w;}{_, defined on each M;\ M7 satisfying
the properties in Lemma 3.6.53;

q
(3) a linking stratification Mo jn R™+1\ U Qs
i=1
(4) a Whitney stratification .#5 of each B; by linking type; and
(5) the collection of labeled refinements {5”]‘7" 1, of the stratifications of the M;’s

such that the stratifications satisfy the conclusions of Theorems 3.5.3, 3.5.6, and 3.5.7.

Upon proving the transversality theorem in Chapter 4 and the generic linking classi-
fication results for dimensions n < 6 in Chapter 5, we obtain the following existence

theorem.

Theorem 3.7.2. For n < 6, a generic embedding ¢ € DEmb(X,R"™) has a Blum
medial linking structure. For n =1 or 2, the linking structure has the local forms given

by the classification in Theorems 3.4.3 and 3.4.4.
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CHAPTER 4

A Transversality Theorem for Multi—-Distance Functions

4.1. Introduction

In this chapter, we prove a theorem that extends Looijenga’s transversality theorem,
which applies to a single distance function associated to an embedding of a submanifold,
to multiple distance functions associated to such an embedding. Unlike Looijenga’s
result, our transversality theorem will require that multiple transversality conditions for
different distance functions be satisfied at the same points on a hypersurface.

In Section 4.2.1, we define families of multi-distance functions to which the transver-
sality theorem applies, and introduce a special kind of multijet extension of these func-
tions in Section 4.2.2. Section 4.3 contains the statement of the theorem as well as an
outline of how to prove it. The proof of the theorem, which constitutes the remainder
of the chapter, uses the method for a jet mapping into a subspace of multijet space
and will rely on appropriate “relative” and “absolute” transversality theorems. It will
involve constructing a parametrized family of perturbations of an initial embedding and
showing that a multijet extension of the family is transverse to certain submanifolds of
the subspace of jet space, ensuring that a residual set of members of the family will be
transverse to submanifolds in the subspace.

In Chapter 5, we shall use the transversality theorem to establish the generic linking

classification via transversality conditions.

4.2. Families of multi-distance functions

4.2.1. Definition of a multi-distance function. In this section, we shall introduce
the notion of a multi-distance function as a means of capturing distance from more than

one distinct point in the ambient space to the same point on a boundary hypersurface.



The primary motivation for introducing such a function is to examine the situation when
a hypersurface point simultaneously corresponds to a point on the internal medial axis
of the region the hypersurface bounds, as well as to a point on the linking medial axis of
the complemen:clary region.

Let X = HX“ where each X, is a smooth, n-dimensional, compact, connected,
orientable maléi:flold, and let ¢ € DEmb(X,R"™!). The map ¢ restricts to the ¢ embed-
dings ¢|x, = ¢; : X; — R"" i =1,... ¢, with each ¢;(X;) = B; a compact connected
hypersurface bounding a region ; and satisfying €, N1 Q; = 0 for all ¢ # j.

Let X = X x ... x X\ AX, where AX is the generalized diagonal in X", i.e.,

r times

AX:{(:C]_,...,:ET) GXT: .IZ::U] for Somei#j}.

Similarly, let (R"*1)@+HD) = R"*1 x . x R""'\ AR™!. We order the g+ 1 distinct copies

-

g+ 1 times
of R™™ as R*' x ... x RIFL. For each 4, let

m X x (RPHEHD 5 X« R
be the natural projection, and let

o: X xR 5 R,

be the distance squared function.

Definition 4.2.1. For every i = 1,...,q, the family of multi-distance functions

associated to the embedding ¢;, denoted py,, is given by

4.1 X x (R y R2
( pd)m ’
(l‘i, Up, - - - ,Uq) — (O' O g, 0 O 7TZ‘)("I/'Z‘7'UJO, Ce ,Uq)

= (llgi(w:) — uol*, lloi(xs) — wil[?).
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In general, the family of multi-distance functions associated to the embedding

¢, denoted pg, is the family

(4.2) po : X x (RPTHE@H) 5 R2

(@i, o, - .- uq) = (|li(x:) — uol |, [|oi(a:) — wsl|?),

q

where ©; € X;. Observe that X x (Rt — H (X; x (R™)@)) 5o that the
i=1

restriction py|(X; x (R*H)@t)) = p, .

Thus, the functions are “multi-distance” functions in the sense that they incorporate
multiple functions capturing the squared distance from distinct points in the ambient
space. The transversality theorem will apply to these families of multi-distance functions.
Since the transversality theorem is a result on the level of jet bundles, our focus in the

next section is on taking a special kind of multijet of such functions.

4.2.2. Partial multijet spaces and multi-distance functions. In Section 1.3 in
Chapter 1, we introduced the notions of multijet space and the usual multijet extension
of a mapping. In this section, we shall introduce the notion of a partial multijet extension
for the family p, as a means of specifying the number of points at which the multijet is
taken on each of the ¢ hypersurfaces that comprise X.

For any s € Z7, the usual s-multi k-jet extension of p, is

(4.3) 1 (ps) + X (R — (JHX,R?),
(T1y ooy Ty U0y - -y Ug) — s G ps (s oy - ) (T, T,
where the subscript “1” in j¥(ps) indicates that the jet is taken with respect to the

coordinates on X. Consider an ordered partition of the form s = ¢; + ... + ¢, with each

integer ¢; > 0, and let £ = (¢y,...,¢,). Let

J4
(4.4) X® = x{ x .. x X
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denote a subset of X, where we delete any terms in the product for which ¢; = 0. Also,

if ¢(€) denotes the number of nonzero ¢; in the partition of s, then let
(4.5) (R+1)@®)+1)

denote the subset of (R"*1)(@*1) where we delete any term R;“Ll, 1 =1,...,q, in the
product for which ¢; = 0.

We are interested in restricting the mapping in (4.3) to the space X® x (R*+1)(@(®)+1),
For each i = 1,...,¢q, we denote x; € Xi(gi) by x; = (%, ... ,m%) for z;, € X; for each
j = 1,...,¢;. When restricting the multijet extension mapping in (4.3) to the space

X® x (R™1)@OFD) | we refer to the resulting mapping as the partial £-multi k-jet of P

Definition 4.2.2. Let s = {1 + ...+ {,, {; > 0, be an ordered partition of s € Z*, and

let £ = ({4,...,0,). The partial £-multi k-jet extension of p, is given by

(4.6) ¢jfpy s X® x (RO . Jk(X R?)
(.’.U, 'LL) = (wlu <oy Ly, Ugy - - >uq) = (fljfp¢>1('7 U, U1)<2131>, ce 7qufp¢q('> U, uq)(mq))

Next, we define a subspace of ,J*(X,R?) called the partial £-multi k-jet subspace.

Definition 4.2.3. For £ = ({1,...,{,) an ordered partition of s € Z*, the partial
£-multi k-jet subspace of ,J"(X,R?) is

q
(4.7) BN (X R?) =[] o JH (X0 R?).

i=1
Lemma 4.2.4.
(a) (E® (X, R?) is a smooth submanifold of (J*(X,R?).
(b) ¢E® (X, R?) is a locally trivial fiber bundle over X®.

PRroor. For (a), let

Y JHX R?) = X©)
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denote the multijet source map for ,.J*(X,RR?). Since X® is an open subset of X(*) and
7 is continuous, (7{¥)~1(X®) = ,E®) (X, R?) is an open subset of the smooth manifold
«J¥(X,R?). Therefore, (£® (X, R?) is a smooth submanifold of ,J*(X,R?).

To prove (b), let (21,...,2,) € (E®(X,R?). For z; € ,,J(X;,R?),i =1,...,q, let

x; = (x;,,...,x;, ) be its source points. Then, for i =1,..., ¢, we may choose
1

(4.8) v =[[ v,

where U, is a coordinate neighborhood of Ty for every j = 1,...,¢; and Ui, NU;, = 0
for j # k, so that U; € X' Then if 7\ : , J*(X;,R?) = X denotes the bundle

projection map for i = 1,...,q, we know that
(" NHU) 2 U; x (R? x J*(n,2))"

as . J*(X;,R2) is a locally trivial fiber bundle over X" with fiber (R% x J*(n, 2))&.

Therefore, let

q
(4.9) v =TJvi cx¥,

=1
so that if
0 EW (X, R?) - X©®

denotes the projection map,

(4.10) () HU®) = y® ﬁ (R x J*(n,2))" .

i=1

q .

Thus, (E® (X, R?) — X® is a locally trivial fiber bundle with fiber H (R* x J*(n,2))"
i=1

over the point & = (zy,...,x,) € X®. O

From (4.6), we observe that the partial multijet ,j¥ps (2, u) belongs to (E®) (X, R?)

for all ¢ € DEmb(X,R"*!) ¢ Emb(X,R"!) and for all (z,u) € X® x (R*+1)@®+1),

The transversality theorem that we prove in this chapter holds for a residual subset

70



of DEmb(X,R"!), and the transversality is relative to the submanifold ,E®) (X R?).
Specifically, we require transversality to the special class of closed Whitney stratified
subsets W of ,E® (X, R?) consisting of strata which are invariant under the action of

the group ;R*.

4.3. The transversality theorem

In this section, we state the transversality theorem and provide an outline of its proof.
The essential point of the theorem is that the transversality conditions hold for a subspace
of mappings obtained by applying an operation, and the transversality is relative to a

submanifold of jet space.
4.3.1. Statement of the transversality theorem.

q
Theorem 4.3.1. Let X = HXi where each X; is a smooth, n-dimensional, compact,

i=1
connected, orientable manifold. For £ = ({1,...,4,), let W be a closed Whitney stratified
subset of ¢ E® (X, R?) that is (R*—invariant.
(a) Let Z € X© be compact. Then the set

W = {¢ € DEmb(X,R") : yj¥ps M W in (E® (X, R?) on Z x (R*T)@©&+1)}

1s an open dense subset for the reqular C* topology.

(b) The set
W = {¢ € DEmb(X,R"Y) : pjfps B W in (EW (X, R?) on X x (R*H1)@@+Dy
15 a residual subset for the reqular C* topology.

Note that in Theorem 4.3.1, (b) is a consequence of (a). We may cover X ¥ with

countably many compact sets Z; so that

S; = {¢ € DEmb(X,R"!) : 4j¥py is transverse on Z; x (RO to 177}
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is open and dense in the C* topology by (a); therefore,

W = {¢ € DEmb(X,R"™) : ;¥ p, is transverse on X x (R")@OF) to 177} = ﬂSj
J

is residual.
Before beginning the proof, we shall first give an overview of the steps that are

involved.

4.3.2. Method of proof. The transversality theorem combines elements of Looijenga’s
transversality theorem with elements of relative and absolute versions of Thom’s transver-
sality theorem due to Damon [12]. These theorems involve performing an operation on
a particular space of mappings and obtaining a transversality statement for the resulting
mappings relative to a subspace of jet space.

In general, let H be a Baire space which is a subspace of C*° mappings, and let ¥ :
H — C*°(M, N) be continuous with M and N smooth manifolds. The multijet version
of the relative transversality theorem requires H to have smooth image in ,J*(M,N) in

the following sense.

Definition 4.3.2. [12] The space of mappings H is said to have smooth image in
sJE(M, N) provided that the following two conditions are satisfied:
(a) H® C J*(M,N) is a smooth submanifold, where

HE = LU (N, .. ) f e H, (a1, x,) € MPY;

(b) Given points x = (x1,...,2,) € M®, y = (y1,...,ys) € N*, there are open sets
x € UcC M® y eV C N*® such that for every map h € H, there exists a finite-

dimensional smooth manifold YV C H with h € V such that the famaly

T':MxV— N,

(@, f) = U(f)(x)

72



satisfies the property that the s-multi k-jet extension

JT U xV = J¥U,N),
(z1,..., 26, f) = 35U () (21, ...,z

is a smooth submersion onto ;JH®ONJ*(U, V) at all points {(z, h)} forx € UN(¥(h)*)~1(V).

Theorem 4.3.3 (Relative Multi-Transversality Theorem). [12, Corollary 1.9] Suppose
X C MO and W C ;H® are closed Whitney stratified subsets. If H has smooth image
in ¢J*(M, N), then the set

W ={f € H:,j"U(f) is transverse to W in ;H® on X}

15 residual in the C* topology. If X is compact, the set is open and dense.

For the absolute version of Damon’s transversality theorem, let W C ,J*(M, N) be
either a Whitney stratified submanifold, or a submanifold whose closure W is Whitney
stratified with W as one of the strata; in the second case, the submanifold is said to be
relatively Whitney stratifiable. The next definition explains what it means for ¥ to be

either transverse to W or completely transverse to W (i.e., transverse to W).

Definition 4.3.4. [12] The map ¥ is said to be transverse or completely transverse
to W C J*(M,N) if, given an open subset U C H, © = (x1,...,2,) € M and
y = (y1,...,ys) € N°, there are open sets x € U C M®) y € V C N°® such that for
every map h € U, there exists a finite-dimensional smooth manifold V C U with h € V

such that the family

I':MxV— N,

(@, f) = U(f)(x)

73



satisfies the property that the s-multi k-jet extension

G0 U xV — (JHU,N),

(X1, ..., x5, f) Sjk(\lf(f))(xl, cey T)

is transverse or completely transverse to W N J¥(U, V) at all points {(x,h)} with €
Un((h))H (V).

Theorem 4.3.5 (Absolute Multi-Transversality Theorem). [12, Corollary 1.11]
Suppose X C M and W C ;HW® are closed Whitney stratified subsets, and suppose U
is transverse to W in (J*¥(M,N). Then the sets

I ={f € H:"VU(f) is transverse to W in (J*(M,N) on X}
and
W ={f €H: g"V(f) is completely transverse to W in ,J*(M,N) on X}
are residual in the C* topology. If X is compact, the set is open and dense.

To obtain the new transversality results in this chapter, we must apply the following

hybrid version of Theorems 4.3.3 and 4.3.5.

Theorem 4.3.6 (Hybrid Multi-Transversality Theorem). Let X € M®) and W c ;H®
be closed Whitney stratified subsets, and suppose the continuous map j*V : H —
sJE(M, N) maps into the subbundle JH®). Suppose further that the map U is transverse
to W in the sense of Theorem 4.3.5. Then the set

W ={f € H:,j"U(f) is transverse to W in ;H® on X}

s a residual set in the C* topology. If X is compact, the set is open and dense.

Applying Theorem 4.3.6 to obtain our transversality results requires the following steps.
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(1)

(4.11)

(2)

(4.12)

Define

U : DEmb(X, R™!) = = (X x (R™)(@H) R?)
d) = P

where py is the multi-distance function in Definition 4.2.1. We first show that
the map W is continuous.

We then show that U is transverse to any submanifold W of (E®*) (X, R?) that
is yR T —invariant.

To do so, let € DEmb(X, R"™!) and let (z,u) := (@1,..., @4 U, ..., Uy) €
U® x (RHHEO+) with U® as in (4.9). In the notation of Definition 4.3.4,
our N in this case is R?, so we simply take V' = (R?)* as N is already Euclidean
space. We must find a finite-dimensional smooth manifold V € DEmb(X, R**1)

with ¢ € V such that the family

[ X x (RHE®OH) oy, R2

(x,u,f) = \I’(f)(:t,'u,) = pf(aj’u)

induces a partial multi k-jet extension

T X s (RO 5y JR (X R?),
(@, u, f) = ojips(e, u)

which, at points {(z,u)} x {¢} € U® x (R*1)@®O+) x P is transverse to W
inside o £®) (X, R?). To find such a finite-dimensional manifold V, we modify the
method used for constructing a family of perturbations of an initial embedding
for the case of a single distance function.

Then, we compute the derivative of the map »jfI" by taking the derivatives

with respect to the local coordinates on the surfaces X;, the coordinates in

(R 1) @@+ " and the parameters in V.
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(4) The final step is to use these derivatives to verify that the map in (4.12) is
transverse at the indicated points to submanifolds of (E® (U, R?) with the
¢RT—invariance property. Upon establishing the fact that U satisfies the re-
quired transversality result, Theorem 4.3.1 will follow from an application of the

Hybrid Multi-Transversality Theorem.

4.4. Continuity of ¥

q
PROOF. Let ¢ : X = H X; = R""! be an embedding which restricts to the collection

1
of embeddings ¢; : X; < R"" ¢ = 1,...,q. To show that the map ¥ in (4.11) is
continuous, we shall require one property of continuous mappings in the Whitney C>

topology, which we recall from Proposition 3.5 in Chapter IT of [23].
Lemma 4.4.1. Let X,Y,Z be smooth manifolds. If ¢ :' Y — Z is a smooth map, the
mapping

0. 1 C°(X,Y) = C(X, 2),

f=oof

15 continuous in the C* topology.
Using this, we obtain:
Proposition 4.4.2. The map V in (4.11) is continuous in the C* topology.

PRroOF. It is sufficient to show that, for each i =1, ..., ¢q, the map
U; : DEmb(X;, R™) — C® (X, x (R™TH @ R?) | ¢, — py,
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is continuous. Let id : (R**H)(@t) — (R*+1)@*+) denote the identity map. For any

1=1,...,q, the mapping
Co(X;, R — (X; x (R a+D)| Rl (Rn-‘rl)(q-i-l)) ’
f—= fxid
is continuous. Hence, on the open subset DEmb(X;, R"*!), the mapping
Wi : DEmb(X;, R™) — €™ (X; x (R™H)@HD R+ 5 (R D)

O — ¢ X id

is continuous. Define for any ¢+ = 1,..., ¢ the mapping

R; : R x (R™1)(@+D) _y R2

(@, w0, - ug) = ([l& = uol %, [l —wil[*),

where u; € R?H for all 5. Since R; is smooth, by Lemma 4.4.1, the mapping

Ry : C® (X; X (R (a+D) | Rt (Rn-‘rl)(q—i-l)) — C™ (X; x (R (a+D), Rz) ’
f= Riof

is continuous. Hence, since ¥; = R;, 0); for every i, ¥ is continuous in the C* topology.

a

The remainder of the proof focuses on establishing transversality of the map ¥ to any

¢R T —invariant submanifold W of the partial multijet space.

4.5. Construction of the families of perturbations

Given an embedding ¢ : X — R""! we construct a finite family of perturbations
needed for (4.12). We motivate this by first explaining how to construct a family of

perturbations of an initial embedding to establish Looijenga’s transversality theorem.
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The method we employ to find our family of perturbations V extends the method used

in the case of a single distance function to the multi-distance setting.

Perturbation family for a single distance function. Let V' denote the vector space

of polynomial mappings R"*! — R"*! of degree < k, which have the form

(I'(l), ce 7x(n+1)> = (gl(x(l)a ce 7x(n+1))7 ce Jgn+1<x(1)7 ce 7x(n+1)))7
where, for each j =1,...,n+ 1, the map g; : R"™ — R is a polynomial of degree < k.
n+1
Let o = (v, ..., 0n41) and | := Zaj with 0 < |a| < k; define
j=1
(4.13) We, : R™T — R
n+1
z = (W, 2 s (0, [ [@9) 0, 0),
=1
_
l
n+1
i.e., the monomial H(x(j))af is in the {"* component for [ = 1,...,n + 1. The collection
j=1
{wq,}, ranging over all possible @ with 0 < |a| < kand I =1,...,n+ 1, is a monomial
1+ k
basis for the vector space V', which has dimension d = (n + i + >(n +1). Thus, any
n+1
v € V may be written as v = Z Z Vo, Wa,, Where the vy are the coefficients of the
=1 |a|<k
polynomial mapping.
For each i € {1,...,q} and for choices of nonnegative integers ¢;, we shall construct

a perturbation of the embedding ¢; : X; — R"*!. We shall use the polynomials defined
globally on R"*! to induce local polynomial deformations of these initial embeddings.

We begin with a preliminary lemma.
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Lemma 4.5.1. If V; denotes a sufficiently small open neighborhood of 0 in V,

(4.14) ®; 1 X; x V; = R,

(z,0) = ¢i(x) + (v o ¢) ()

n+1

= ¢i(x) + D Vo (way 0 ¢)(x)

«

15 a family of embeddings.

PROOF. Since (T)Z(x, 0) = ¢;(z) and ¢; is an embedding, and since Emb(X, R"™!) C
C°°(X,R™"!) is an open subset [23], there exists a sufficiently small neighborhood V; of
0 in V so that 5i(~,v) : X; — R is also an embedding for all v € V;. Note that the

map

V = C(X, R

v O(-,v)

is continuous for the C* topology on C*°(X;, R""1). This amounts to showing that the
map v — v o ¢; is continuous. This follows from Proposition 3.9 in [23], which states

that if XY, Z are smooth manifolds and X is compact, the mapping

C¥(X,Y) x C2(Y, Z) — C°(X, Z),
fXg—gof

is continuous in the C* topology. Here, composition on the right with ¢; € C°(X;, R"*1)

is continuous since X; is compact. O

Next, for j =1,...,4;, let V;, denote a copy of the vector space V; so that
(4.15) O X x Vi, —» R
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defined as in (4.14) is, restricted to a sufficiently small neighborhood of 0, a family of

embeddings with v;, € V;,. Let

(416) Kz = Kil X ... X Kiei

be a compact subset of Xi(éi) satisfying I(;, N K;, = 0, j # | with K, a compact neighbor-
hood of x;; for all j. Also, let }N(Z»].,j =1,...,¢;, be disjoint compact subsets of X; such

that K;, C int(l?i ), the interior of lz] Then

0= {X,- \ OK {int(fﬁj)}f;l}

is an open cover of X;. Choose a smooth partition of unity A\; = {A;, }ﬁ;l subordinate to
O such that \;|K;, = 1. Note that we choose the partition of unity in this way since we

shall work entirely within the set {int(/;,)};.

Definition 4.5.2. Let V; .=V, x ... xV,, , and define the family of perturbations

07

(4.17) Q0 X; xV;, — R
L;
(05 03,) = Gi() + Y Ay (@) (05, 0 64) ().
j=1
Remark 4.5.3. Observe that ®;(x,0) = ¢;(x), and that for z € Kj;,, the map reduces

to Cfij(x, v;;) since A; | K, = 1. The fact that ®; is a family of embeddings follows from

the reasoning in the proof of Lemma 4.5.1.

Definition 4.5.4. With ®; as in (4.17), the perturbation of the distance function

18
(4.18) op, : Xi x R"™ x Y, — R,

(T, i v, ) o |[@(2, vy, - 0, —
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Perturbation family for multi-distance functions. Next, we extend the method de-
scribed above for a single distance function to multi-distance functions. We now introduce
the finite dimensional manifold V that is required in (4.12) to show that DEmb(X, R"*1)

has smooth image in ,J*(X,R?).

Definition 4.5.5. With V; as in Definition 4.5.2 fori=1,...,q, define
(4.19) V=V x...xV,

Using this parameter space, we will construct a family of perturbations of the multi-
distance functions and compute the induced partial multijet extension of the resulting

family:.

Definition 4.5.6.
(a) The perturbation family of the multi-distance functions is given by
(4.20) I X x (RHEO oy 5 R?

(miuu(b s ,Uq7’01, s 7’Uq> — (H‘Pl(xl,’vl) - U()H2, H(I)Z(xza,vz) - ui||2)7

where x; € X;,v; € V; fori=1,...,q, and u; ER?“,j:O,...,q.

Z-(ei) . The partial

(b) Let (x,u,v) := (x1,..., T4 U, ..., Uy V1,...,V,), where &; € X

(-mults k-jet extension of I is

(4.21)
) X O x (RO 5y 5 (JF (X, R?),

(x, u,v) = (0, jt (||P1(-,v1) — wol*, [|@1(+, v1) — w|*) (1), .. .,

équ(H(I)q( V) — UOH2> [@y(,vy) — uqHz)(mq))-
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4.6. Computation of derivatives

In this section, we compute all partial derivatives of the families of perturbations
introduced in the previous section, which are necessary to establish the transversality

theorem.

Computing derivatives in the single distance function case. From (4.18), we

obtain the ¢;-multijet mapping

(4.22) i (0g,) s XU X R™ <V, = 0 JM(X, R),

i

(wi,u,vi) = (Il, ey L, U,V e ,’Uiei) — fz]f(H(I)l( Ui ’viéi) — u||2)(1‘1, e ,Igi).

In order to compute the derivative of ,,j¥(0g,) at a point (z,u,0) € K; x R"*1 x V; with
K; as in (4.16), we introduce a suitable coordinate system. We shall apply a translation
and rotation so that ¢;(z) € B; = ¢;(X;) is the origin and B; can be locally given in

Monge form. That is, if (z™),...,2() define local coordinates on X; and «',... &

denote the principal curvatures of B; at the origin, we may write B; as a hypersurface

I .
(n+1) _ (1) )Yy — = ()2
(4.23) x =f(=",.. .z )_2;_1;4;33:3 +...

passing through the origin with tangent plane at the origin equal to the plane z(™+1) = 0.

n)

Then, we may use (1, ..., 2™ as local coordinates for X; so that

b= (@D, 6™ = (2O, 2™ paD ),

The distance squared function o(-,u) : X; — R for u = (uV), ... u™+) € R* is
n+1

(4.24) o(z,u) = ||pi(z) — ul)? = Z(x(j) —u)?,
j=1
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where the last term is (f(z®,...,2™) — «™*))2. Furthermore, each term (v;; o ¢;)(z)

in (4.17) may be written as

n+1
(4.25) (vi, 0 ¢)(x) = Z Z Vi (w5, 0 (2D, 20 H)),
=1 |a|<k
where each monomial w;, ,0¢; is a monomial in z D x™ and 20H) = f(2M) 0 2™),

Using this coordinate system, we compute the derivative of the map in (4.22), which
is explicitly given by:
(4.26)

61 (10, 0) = ulP) (@) = (T (1P, v) = ull®) (@), 7 (193, 0) = ul*)(ze,)) -

To do so, we first compute in Proposition 4.6.1 the partial derivatives of each coordinate

of the map
NP, v) — ul*(2)
evaluated at z = x; and v = 0 for any j € {1,...,¢;}. Then, the derivative of the map

in (4.22) follows from the results of Proposition 4.6.1.

In these computations, we view the k-jet as a k™ degree polynomial in .

Proposition 4.6.1. With the preceding notation, the partial derivatives of
Jil1®@i( v) — ul*()
evaluated at v = 0 and at x = x; are as follows:

(a) Forj=1,...,n,

O IR ) —ulP(0)

= (20 )42t (£ -y 2EY) |

r=x;,v=0
(b) Forj=1,...,n+1,

1 0) (o)

r=x;,v=0
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(c) For any a = (a1, ..., apy1) with |af <k andl=1,...,n+1,

a . Felo n+1 o
O (10, v) - ule) =2Qf'%9@wﬂﬂﬂ(llu<»”)
et v=a;,v=0 m=1 r=a;

PROOF. To prove (a), since ||®;(-, v)—u||*(z) is smooth, we may interchange the order
in which we take the partial derivative with respect to () and the partial derivatives

constituting the jet:

505 (1 0) — ul P(2)

r=x;,v=0 r=x;,v=0
Then
, 0 , 0
it (19 = P @) ) |, = 3 (04000 = lF)
v= T=Tj
, 0
= it (oo~ ul?)
, 9¢i(x)
— 2]f<<;§i(x) — U ) .
ntl (m)
= 24 <Z_1 (@5@ (#) —u ) (—(%U) o
ntl (m)
_ k (m) (m) ¢, ()
_ G _ G y i1y Of
B <2(ij —u)+ 2 <(f_“( ) 8x(j))> Lz
| A, 00" (x)
The last two lines follow from linearity of ji and from the fact that 00 = 1 for
x

m = j and 0 otherwise.
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The proof of (b) uses the same reasoning as the above, i.e.,

) 0
- (—M.) Ii(x) — uHQ)
) ou
= 2]f<¢i($) —u, —m>‘

= —2j{(67 (1) —u1)

505 1 0) — ul P(2)

Zj

r=x;
To prove (c), we first observe that the map

l;

iz, v) = ¢i(x) + > Ay () (vi, 0 65)(x)

=1

reduces to &Dl(x, v;;) for z; € int(Kj;) since \;;|K;; = 1. Therefore, using the notation of

(4.25),
) 9 n+1
(@ v)| = |Gl + Y D v (Wi 0 60)(2)
,U] l v=0 U]a,l =1 |oe| <k v=0

= (W © 83)(2).

It follows that

9 ik 2 o 9
a (I)Z Yy - = (DZ K - 7(I)i Yy - —x
o GRG0 @) | ( a%< (o) u o)) ) 0) -
=2t (o) = v, s, 060
n+1
. l m)\om
= 2} <<¢£><x> —u)(J] ) )
T=Tj m=1
n+1
k—|a l m)\m
=2 ((31 o (@) u) (I =) )
T=Tj m=1
n+1
by linearity and the fact that the monomial H (™) has degree |a|. Specifically, if
m=1

la| < kand I #n+ 1, jf_|a|(gz5(l)) = () since the (k — |a|)-jet of a polynomial of degree

i
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< k —|af is itself. If || = k and | # n + 1, ji%'al((ﬁgl)) = 0, and when [ = n + 1,

O = AT, 2 )). ’

Computing derivatives in the multi-distance function case. In this section, we
once again use Monge coordinates to compute the derivative of the partial multijet ex-
tension mapping in (4.21). We always choose local coordinates (z1), ..., (™) separately
about each point z;; € X; so that in each case, ¢i(xij) is the origin and the tangent plane
at the origin is the coordinate hyperplane (™1 = 0.

Let K; = K;, X ... x K;, be defined as in (4.16), and let

(4.27) K=K x...x K,

£;
so that K is a compact subset of X®. We shall assume that U; = H Ui, C K; so that
j=1

q
Ui, is an open subset of K ; thus, U © = H U; C K. We shall compute the derivative
i=1

of
(4.28) fBi: Xi x (RAFE X R\ A x V) — J*(X;, R?),
(2, ug, wi, v;) = Jt (||Pi(-,v:) — ol [*, [|®i(-, i) — w||*) ()

at any point (z;,,uo, u;,0) € U, X (R x RIF)\ A x V; forany j =1,..., 4. (Asin

Remark 4.5.3, since z;, € K;; by assumption, ; actually maps to
3% (i w5) = ol 18-, 03,) = wil|?) (@)

as defined in (4.14), with v;, € V;,.) We may then determine the derivative of
J1 (13- v5) = ol P, || @i (-, v5) — wil |*) (),

which, in turn, allows us to determine the derivative of the map in (4.21).
Choosing independent local coordinates about each z;;, the following proposition

follows immediately from Proposition 4.6.1.
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Proposition 4.6.2. The partial derivatives of 3; evaluated at v =0 and ¥ = x;, are as
follows:

(a) Forl=1,...,n,

n 0
= ((2<:c<’> -t (- (25)))
(2(a:<l> —ul) 4 25t ((f O (iﬂ))))
o @

where uy’,u;”’ denote the I coordinates of uy and u;.

(429) 0 (5)

(b) Forl=1,...,n+1,

(4.30) () - (—2 (50" (@) —

l
871/((] ) r=x;.,v=0

) ) ,0>,
") - (07 -2 (o) - )| )

auz z=x;.,v=0
J
(c) For any a = (a1, ...,ap41) with |af <k andl=1,...,n+1,

8 e n+1
(3l 5, (B = (2 (51760 @) =) <H<x<m>>am> ,
Ja,l T=Ti =0 m=1 T=4,
n+1
2 (576 () — u?) (H <x<m>>am> ) .
m=1 T=4;

4.7. Completing the proof of Theorem 4.3.1

In this section, we shall begin by proving the theorem that Looijenga needed for his
genericity result in the single distance function case. We shall modify the techniques
used in the proof of this theorem to prove a corresponding transversality result for multi-

distance functions, the final step in the proof of Theorem 4.3.1.

4.7.1. Transversality in the single distance function case.
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Theorem 4.7.1. With K; as in (4.16), the mapping

(4.32) ot (os,) : X xR X Y, — o J" (X, R),

7

(CL‘Z',U,’UZ') = &]f(“q)l( RCEEEE 7”%) - u||2)<ml)

is transverse at any point (x;,u,0) € K; x R xV; to any submanifold W C 4, J*(X;, R)

that is invariant under addition of constants.

PROOF. Let U; = f_[ Us, C K; with U;; C Kj; a coordinate neighborhood of z;; for
=1 ,
all j =1,...,4;, and let V; = H Vi,, so that the local version of the map in Theorem
47108 ~
(4.33)

At Uy x R XV, — Uy x RY x JF(n, 1)4,
(o, > (F501F4 (- v0) —ulP) ), 7B, () — el P) ()

with EIVDij as in (4.15) and v;; € V;;. We shall prove that, at a point (x;, u,0) € U; x R %
Vi, the map A;: i) is a submersion if v # ¢;(z;,) for any j, while ii) if u = ¢;(x;;) for
some j, it is transverse to all submanifolds invariant under addition of constants. Note

that v = ¢;(z;;) for at most one value of j since ¢; is injective.

k+1
T

In what follows, we shall use the algebraic representation &;/m of the tangent
space to R x J¥(n, 1), which was introduced in Section 1.3 in Chapter 1. Although for
the derivative calculations we choose separate local coordinates about each x;; so that
7;, and ¢;(z;;) are the origins in each Monge coordinate system, the ideals m, will not
change.

For i), we first note that d\; : T, U; — T,,U; is the identity. Next, we consider the
projection of \; onto R% x J¥(n,1)%, and restrict to {z;} x {u} x V;, which we identify

(4.34) Ai Vi = R x JF(n, 1)b

88



is a product mapping, we can further restrict to each factor, which we denote by
(4.35) Ayt Vi, = Rx J¥(n, 1)

for j = 1,...,¢;. We identify the target with the ring £, /m~5*1. Taking the product over
all j then yields that (4.34) is a submersion.

Since u # ¢;(x;,), there is some [ € {1,...,n + 1} such that ) # 0. Thus, by
Proposition 4.6.1, the element jf_‘odqbi(x(l)) —uW is a unit in &, /mE. From (4.6.1), we

know that

(4.36)

(1 112:(, v) — ul[*(x))

0
an

a,l

9 ((jf—|a|¢i(x(l)) _ u(l)) <ﬁ(x(m))am)> :

As the monomials x® = H (™) with || < k form a basis for £, /mk*! so will the

€T
m=1
set of elements which are units times these monomials. Thus, the image of d;; contains
a basis and hence d);; is surjective.
For ii), suppose u = ¢;(z;;) for some value of j. For j" # j, Ai,, Is a submersion by i).

Thus, it is enough to consider the map
(4.37) N, Vi, > Rx J¥(n,1).

Then v = 0 for all [ = 1,...,n + 1 since ¢i(xi;) is the origin in its local coordinate

system. The derivative calculation in (4.36) becomes

(4.38) v, (r1®i(, v) — ul[*(2)) - 2 <(jf_a¢i(ff(l)))> (H(if(m))am))
(4.39) o). ﬁ (2o

for I < n+ 1. The monomials {z® - 2% : |a| < k,1 < [ < n} will span mg/mk+!,
so d);; is a submersion onto the subspace m, /t'n”j;r1 of &, /mfc“. Thus, d\; maps onto

(Ep/mbHt=1 @ m, /mEFL. The fact that W is assumed to be invariant under addition
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of constants means that, if (wy,...,wy) € W and ¢ € R, then (w; +¢,...,w, +c¢) € W.

Therefore, the element (1,...,1) € TW and thus ); is transverse to W. O

4.7.2. Transversality in the multi-distance function case. In this section, we shall
prove that W is transverse to any W C ,E® (X, R?) with the ;R —invariance property,

which will complete the proof of Theorem 4.3.1.

Proposition 4.7.2. With K as in (4.27), the mapping
(4.40) gF() : XO x (RO o p & ,EW (X R?),
(@, u,0) = (0,57 (1910, 1) = uol [, || @1+, 01) — wi]]?) (1), ..,
quf (||(1)q< V) — u0||2, | @q(-,vq) — uq||2) (xg))

is transverse at (x,u,0) € K x (R"™)@EO+) %V to any submanifold W of (E*) (X, R?)

that is R —invariant.

q q ZZ
PRrROOF. Let U = H U; = H H Ui, C K; with U;; C K;; a coordinate neighbor-
i=1 i=1 j=1
q q l;
hood of z;, for all j = 1,...,4;, and let V = Hvi — HH Vi.. Fix uy € R3* and
i=1 i=1 j=1

restrict (R"+1)(@@O+D 0 Ly} x (R @O) | Let Z = (2, x ... x Z,) C (R"1)4®) be an
open neighborhood of (uy, ..., u,), with u; € Z; for i = 1,...,q. Locally, ¢j§(I') is given
by
q
(4.41) F() U x {ug} x ZxV = U x [[(R* x J¥(n,2))",
i=1

and it is therefore a product mapping. For each i =1,...,¢q, let

(4.42) B U x {uo} x Zi x Vi = U; x (R* x J¥(n,2))",

(23, w0, us, v5) = g3y (19i(-,vi) = uol P, 1P+, 05) — | [*) ().
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We must show that 3; is transverse to W at (x;, ug, u;, 0). We may further restrict 3; to

each factor
(4.43) Bi; + Uy x {(ug, us)} x Vi, = Uy, x R? x J¥(n, 2),
(2, w0, s, i) = 35 (11Bs, (- v1,) = wol 2, 15, (-, 03,) = il ) ()
for j =1,...,¢;. We represent the tangent space to R? x J*(n,2) algebraically as
(gm/miﬂ)(?)

with x = (z,...,2(™). The projection of df;, onto TUy; is the identity map. At the

point (z;,, ug, 13, 0) € Us, X {(uo,us)} x Vi, Bs, is equal to
(4.44) gt (16 = uol[*, 165 — wl[*) (wi,) = 57 (0(-,u0), o (- ws)) (ws,).

The partial derivatives of 3;; with respect to the parameters in V;, were calculated in

Proposition 4.6.2; namely, for [ =1,... ,n+ 1,

(4.45) 81)? (ﬂlj) . = (2 (jf*|a|¢§l)(:€> . uél)) ( (x(m))am> ’
2 (710! (@) —ul”) (f[(x(m))am))

for varying choices of a with a1 = 0.

Then there are two cases for each i: (1) ¢i(z;;) # uo,u; for any j =1,...,4; or (2)
ug or u; equals ¢;(r;,) for some j (with the other possibly equal to ¢;(z;,) for some k # j
since ug and u; are assumed to be distinct). Furthermore, each of these cases have several

subcases.

e Case 1: We suppose that, for all j = 1,...,0;, ug # ¢5(x;;) and u; # ¢s(x;;).
There are three subcases: (i) the distance squared functions o (-, ug) and o(+, u;)
are nonsingular at the origin in the local coordinate system about x;, (ii) one of

o(+,up) and (-, u;) is nonsingular and the other is singular, or (iii) both (-, ug)
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(4.46)

(4.47)

and o(+, u;) are singular. By expanding (4.24) and taking partial derivatives, one

determines that the condition for o(-,ug) to be singular at the origin is that

and similarly for o(-,u;) and u;. Geometrically, this corresponds to ug and u;
lying on the normal line L;; to B; at the point x;;. In the local Monge coordinates,
L;; is the (") _axis.

For (i), the nonsingularity of o(-,ug) and o(-, u;) means that 3;, (x;;, uo, us, 0)
belongs to the open orbit of jets of nonsingular germs in the fiber R? x J*(n, 2)
under the right equivalence action. By definition, W is /R " —invariant; hence,
it contains an open subset containing j§ (o(-, uo), (-, u;)) (x;,). In this case, 3;,
is transverse to W.

For (ii), suppose for example that o (-, ug) is nonsingular but o (-, u;) is singu-
lar at T Therefore, u; lies on the normal line Lij, so that ugl) =0for1<[<n
and w"™ £ 0, and g ¢ Li;. So, there exists [ such that ud, wS") and
(u(l) D

1 ) (2 8
(4.45), %(5%’) and

a submersion in this case.

(n+1

; ) and uél) are nonzero). Thus, using

) are linearly independent (u

By (Bi,) span (Em/m§+1)(2) by varying o, i.e., §;, is

ja,n+1

Finally, for (iii), suppose o(-,ug) and o(-,u;) are both singular at the origin.
Then ug,u; € Ly, so uél) = ugl) =0for1 <[ <nand u(()"ﬂ) and u§"“> are
distinct and nonzero. Due to the fact that o(-,ug) and o(-,u;) are singular, for

l=1,...,n, (4.45) becomes

. — (2 (x(l)) ( - (x(m))am> .2 (x(l)) (ﬁ(x(m))am>) 7

0
ov

(Bi;)

ja,l
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(4.48)

(4.49)

(4.50)

and for [ =n + 1, (4.45) equals

0 e 0y T (0mya
(B = (2(BTAED, ) — ) IIe ).
vja,n+1 v=0 =1
S “+1>(n )
m=1
where j1 f,(2W 2™ —u(()nH) and 511 £,z ™) — "™ are units
in &, /mktl. Thus, by varying o, a—(@j) for 1 <1 <nand (8i,) span
Uja,l ja,n+l

(@D, u™ ) & (myfmb ).

(2

As W is ¢R*—invariant, the element (1,1) € TW. Then, since (1,1) and

(U(()n+1) , u(n+1)

;) are linearly independent, we conclude that 3;, is transverse to

w.

Case 2: Suppose, for example, that ¢;(z;;) = u; (# uo). Since v; is the origin in
the local Monge coordinate system, ugl) =...= uZ("H) = 0, and the condition
in (4.46) implies that o (-, u;) has a critical point at the origin. From (4.23) and
(4.24), the second derivative of o (-, u;) is degenerate provided that ugnﬂ) =1/k;
for some principal curvature x; of B; at the origin. Since uEnH) =0, o(-,u;) has
a nondegenerate Morse singularity at the origin.

There are two subcases: (a) ug ¢ L;,, or (b) ug € L;,. For both subcases,
instead of using the fact that the projection of df;; onto T'U;; is the identity
mapping, we shall utilize the fact that TT contains T'U;;. This enables us to
utilize the partial derivatives of [3;; with respect to the surface coordinates in
order to establish transversality of §;; to W.

For (a), we know there is at least one [ € {1,...,n} such that u(()l) is nonzero

= (2 (29 - o) <g<x<m>)am> 2(20) ( 11 (x<m>)am>> |
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The element (1,1) € TW; moreover, the invariance of W implies that W contains
an open subset containing ji (o(-,uo), o (-, u;)) (2;,), where o(-,u;) has a Morse

singularity at the origin. Thus, by varying e in (4.50), (Bi;) and TW span

9
ov

ja,l

((W,0)) @ ((1,1)) @ (m2 /mE1)®),

Now, the partial derivative of 3;, with respect to each surface coordinate z®)

was calculated in Proposition 4.6.2:

. nt1)y  Ofi - Of;
- (2(330’) —u) + 24t ((fi —uy™) - ax(p)> 20 + 2y (f a;g(p))) '

0 0
Then, from ——(f;,) for varying o and EeD) (@J) for p = 1,...,n, we may
chxl

obtain all basis elements of (£;/ mk“) of the form ( ),0), (0, 2®)). Therefore,

0
m(@j)

we conclude that the derivatives —(ﬁij) and m(ﬁij), together with TW,
,Uja,l T

span (£,/mk) @

0
Finally, for (b), since o(-, uo) is singular at the origin, ——(f;,) for 1 <1 <n

ja,l
is of the form in (4.47) and (Bs;) is of the form
avja,'rwrl
a k—|x n n - m)\o
A e G2 (2 (7 i) = ) (Hw ) )
Uja,n+1 v=0 m=1
2 <jf_‘a|fi(x(1),...,x("))> (H(:n(m’)“M)) ,

m=1

where u (F) £ 0. As in case (a), the partial derivatives a—(ﬁij) for vary-
Uja,l
0

ing choices of a, and 920 (@J) for p = 1,...,n, together with TW, span

(5m/m1;+1) 2
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Finally, we are able to apply the Hybrid Multi-Transversality Theorem to conclude

that, given any ;R* —invariant Whitney stratified submanifold W of ,E® (X, R?),
W = {6 € DEmb(X,R"™) : ;jfp, is transverse on Zx (R™F)@O+D to W in ,E® (X, R?)}

is an open dense subset provided that Z C X® is compact, and is a residual subset

otherwise. This proves Theorem 4.3.1. O
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CHAPTER 5

Classification Theorems for Generic Linking

5.1. Introduction

In this chapter, we use the transversality theorem proven in Chapter 4 to present
a classification of generic linking in R"*! for n < 6. In Section 5.2, we introduce the
submanifolds to which we shall apply the transversality theorem in order to establish
the classification. This will include all submanifolds of jet space corresponding to link-
ing configurations that, we shall prove, will generically occur, as well as a finite list of
closed Whitney stratified subsets of jet space representing all configurations that will be
generically avoided for codimension reasons.

Then, in Section 5.3, we explain the consequences of Theorem 4.3.1 applied to the
submanifolds in Section 5.2, enabling us to prove the generic linking classification theo-
rems for n = 1,2 (Theorems 3.4.3 and 3.4.4). We also present the classification results
in dimensions 3 < n < 6 in a series of tables in Section 5.5. In Section 5.4, we prove
Theorems 3.5.3, 3.5.6, and 3.5.7 from Chapter 3 regarding the refined stratifications of

the boundaries and medial axes.

5.2. Submanifolds for the transversality theorem

In this section, we introduce the classes of submanifolds and Whitney stratified sets
of the multijet space (E*) (X, R?) to which we will apply the transversality theorem of
Chapter 4. We shall denote this set of submanifolds and stratified sets by ,S. The
submanifolds in ,S will be one of four types: (i) those formed from simple multigerms;
(ii) those formed from the partial multijet orbits from Chapter 4; (iii) those which char-
acterize geometric features of boundary points for self-linking; and (iv) those of higher

codimension which arise as strata of closed Whitney stratified sets.



We begin by recalling the correspondence between submanifolds of jet space and
singularities of smooth functions as orbits of a group action, which we use to determine

the form that the submanifolds will take to which we shall apply Theorem 4.3.1.

5.2.1. Submanifolds for a single distance function. Recall from Section 1.3 in
Chapter 1 that, if NV is a smooth manifold, the group of k—jets of diffeomorphism germs
N — N acts on the jet space fiber J¥(N,R), = J*¥(n,1) x R for + € N. Since the
group action is algebraic, the orbits under the algebraic group action are submanifolds
of the fiber [27]. These are R—orbits which form a subbundle of J*(N,R). Similarly, if
S denotes a set of r distinct points in N, we obtain a corresponding action of ;R on
the multijet space fiber ,J*(N,R)g = (J*(n,1) x R)". These multi-orbits were needed
for Mather’s classification theorem (Theorem 1.4.4 in Chapter 1).

Assume that k£ > 9, and let #7 denote the orbit in J*(X,R), of a germ (X, z) — R
with an A; singularity at . The following finite list gives the specific submanifolds of
J*(X,R), needed for the generic classification of the local normal forms of the medial
axis in dimensions n < 6:

e 7! (denoted by Wit in [32]),

e 73 (denoted by WP in [32]),

e 7% (denoted by W¢ in [32]), and

e 77 (denoted by WP in [32]).
Let W7 denote the subbundle of J*( X, R) with fiber at € X equal to #7.

Let n = a\ W csW3,csW5, c;#™ denote a finite number of choices of the orbits
above for some nonnegative integer coefficients c;, where the ¢; need not be distinct. If

In| =r = ch, let #" denote the submanifold of ,J*(X,R)g consisting of elements

(21,5 2) sjuch that exactly ¢; of the jets are in #° for all 7 and such that all target
values of the z;’s are equal. In our usual notation, #" corresponds to the orbit of a
multigerm of type A,. Let W" denote the subbundle of ,.J*(X,R) over X (") formed from
the orbits #" in the fibers.
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5.2.2. Distinguished class of submanifolds in ,E*)(X R?) corresponding to
linking type. Next, we define the submanifold of the partial multijet space (£* (X, R?)
associated to the linking configuration (A, : Ag,, ..., Ag,) for the multi-distance func-
tion. This involves taking products of the multi—orbits in the previous section.

As in Chapter 4, let £ = (¢4, ..., ¢,) for nonnegative integers ¢;, and let ¢(£) denote
the number of nonzero /;. Lemma 4.2.4 in Chapter 4 showed that ,F® (X, R?) is a locally
trivial fiber bundle with fiber at S = (Si,...,S,) in X® equal to

q
(5.1) ng’f (X RY)s, 2 [ (J4(n,2) x R%)".

i=1 i=1
For the linking configuration (A, : Ag,, ..., Ag,), consider the corresponding multi-orbits
# P in the fibers ,, J*(X;,R)g, for i = 1,...,q. As in the multijet case, the multi-orbits
# P in the fibers over points in Xi(z") fit together to form subbundles W4 in , J*(X;, R)
fori=1,...,q. Then WA x ... x Wh C ﬁgijk(Xi,R) is a subbundle over X®.

Let o = (ay, ..., a,) so that for i = 1, ZZl, q, Wi denotes the subbundle of J*(X,R)
over X; with fiber at x equal to #'“, the orbit of a germ with an A,, singularity. Let
W= (W x JHX,R) x .o x J(XR)) < ox (W xgk(Xq,R) X ... X Jk(Xq,Rz),

-

-1 £g—1

where for each i, (W x J*(X;,R) x ... x J¥(X;,R)) is restricted to lie over Xz-(éi)
q
Therefore, W C H 0. J¥(X;,R) is a fiber bundle over X® and
i=1
q q
Wex W x . ox Wh c [Tad8(X0R) x [] o /¥ (X0 R).
i=1 i=1
Then, let W () denote the restriction of the bundle W xW#t x ... x W54 to lie over X @,
W @B is a smooth submanifold of ,E®*) (X, R?), and it is the submanifold associated to

the linking configuration (Aq : Ag,, ..., Ag, ).

5.2.3. Submanifolds capturing geometric properties of the boundaries. We

next consider certain cases for self-linking, which depend on the differential geometry
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of the hypersurface ¢;(X;) = B;. To do so, we return to the Monge representation as in
Section 4.6 in Chapter 4. If () ... 2™ denote local coordinates on X; and k1, ..., Kn

denote the principal curvatures of B; at the origin, then we may locally write I3; in Monge

form as (M, ..., 2™ f(zM, ... 2™)) where

fW, . 2y = Z 5/@(:17(1))2 + Z aax®.

i=1 |a|>3
Furthermore, we assume that the coordinates are chosen so that k1 > ko > ... > Kk, and
kn < 0. We consider the case where the distance squared function to a point uy has a
critical point, so uéi) =0 for « < n+ 1. In other words, ug lies on the normal line to the

surface at the origin. Then the distance squared function to ug is given by

2
n n

, 1, .
(5.2) o(-up) = Z(I(Z))Q + Z §"f¢(x(’))2 + Z Ga® — U )
i=1 i=1 >3
— Z (1 _ ug”“),.;i) (2®)2 = 2D Z Gaz® + (D)2
i=1 jal>3
2
+ 25/@-(3:(1))2 + Z U™
i=1 lo|>3

If (i) ul"™ = 1/kq, and (ii) if the coefficient of the monomial (z()3 is 0, so that
every quadratic and cubic term of the distance squared function is divisible by one or
more of the monomials ..., 2 then the distance squared function to uy has an
Aj singularity at the origin. This is because, after completing the square to eliminate
terms of degree 3 and 4 in ®,... 2™ one can change coordinates so that the 4-jet

of the distance squared function is of the form (z")* + Z(x(i)f. Since u((]nﬂ) = 1/ky,
i=2

(nt1) ki < 1 by the way the coordinates were

1—ul"k; > 0 for all i > 1 because u"™"
chosen. Thus, the A3 singularity is a local minimum of the distance squared function.
For the (As : A3) linking type, the distance squared function to uy and the distance
squared function to a point u; # ug both have an Az singularity at the origin. This trans-
lates into the following conditions: (1) ug = (0,...,0,u"™) and u; = (0,...,0,u{"™);

» g )
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(2) ul"™™ = 1/k; and u{"™ = 1/k,, with u"T and v{" " having opposite signs so that
uo and u; are on opposite sides of the hypersurface; and (3) the coefficients of the mono-
mials ()% and (2(™)3 are both 0. Now, (3) places two conditions on the hypersurface
B;.

In R3, the condition that the distance squared functions from points ¢ and w; both
have an Aj singularity at the origin implies that the origin belongs to two distinct crest
curves on 3;. (Recall from the description of the A3 case in Section 1.5.3 in Chapter 1 that
a crest curve consists of points satisfying the property that the larger principal curvature
in absolute value at the point is a maximum along the associated principal direction.) The
two principal curvatures k1 and ko, which are of opposite signs, must be equal in absolute
value as they are both maxima along their associated principal directions. This means
the surface B; is locally a saddle. Let z = (), y = 3. A direct calculation shows that
the tangent to the crest line corresponding to ky is along the principal direction x = 0
[9]. Analogously, the tangent to the other crest line corresponding to k; is along the
principal direction y = 0. This implies that the two crest curves are transverse on the
surface B;. The submanifold representing the (As : A3) configuration is a codimension 2

submanifold.

Remark 5.2.1. Note that if the origin were an umbilic point in R?, the distance squared
function from any point u could not have an A singularity at the origin. For, if u® =

1/k1 = 1/Kqg, the Hessian of the distance squared function would have rank 0.

In this thesis, we do not include the details of the corresponding transversality cal-
culations for the (As : Aj3) case in dimensions n > 3, so the genericity of the (Az : Aj3)
linking type is only proven in R3. Other self-linking configurations that involve the dif-
ferential geometric properties of the hypersurface include the configurations (As : As),
(As = A3),(As: A7), (A7 : As), and (A5 : As). We do not include the calculations for the

specific conditions on the differential geometric properties of the surfaces in these cases,
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or the proofs that they are generic. Nevertheless, we do expect all of these self-linking

configurations involving higher order A, singularities to be generic.

5.2.4. Closed stratified sets of higher codimension. The third class of subman-
ifolds arise as strata of a finite list of closed Whitney stratified sets which will include
all linking configurations that will be shown to be non—generic. Within this list, there
are three types of strata: (1) submanifolds for simple multigerms; (2) those in the clo-
sure of a submanifold W(#); and (3) those representing the degeneracy of the geometric
conditions on the surface.

For (1), in his classification of generic medial axis strata for n < 6, Mather gave the

following three submanifolds of J*( X, R), corresponding to strata of codimension > 7:

e #9 (denoted by WF in [32], and see below),
o W = {z € JEX,R), : 3u > 0,p # 1 with 2z = (23 + 23)(2? + pa3) + me},

=3

o W ={z€JNX,R),:2¢ WF, j3z= Z x7,c> 2},
i=c+1
Note that #? denotes the orbit in J*¥(X,R), of a germ (X, z) — R with an Ay singularity

at z, and we let W* denote the corresponding subbundle of J*(X, R). Then the closure of
the smooth submanifold W? is the closed Boardman stratum %', which was introduced
in Section 1.3 in Chapter 1. The submanifold %/ is invariant under the R—action,
whereas #C is a finite union of submanifolds invariant under the group action. #-f and
# have the property that their closures are semi-algebraic sets and thus are Whitney
stratified. We denote by W and W& the corresponding fiber bundles. Similarly, for
sufficiently large k, we identify in (J*(n,1) x R)" the k—multijet orbits of families of
multigerms having R} —codimension > n+2, which have the property that their closures
are Whitney stratified sets. For such a multigerm A,, the closure of the multi-orbit %™

in ,J*(X,R)s = (J*(n,1) x R)" is given for appropriate values of ji by the product
(5.3) W= Wit x ... x Wi x AR,

where %71 C J*(n,1) and AR" denotes the diagonal line in R".
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If W7 denotes the subbundle of ,.J*(X, R) formed from the fibers #7 at S in X", then
W is a stratified set that will contain the k-multijet orbits of families of codimension
> n + 1. Then, transversality to the finite list of Whitney stratified sets establishes
transversality to any other submanifold of higher codimension belonging to the closure

of one of the submanifolds in the list.

For (2), we determine the closure of W(®#) denoted W(e:8), in ,E*) (X R?). Namely,

W(@:B) is given by the product of the closures of the submanifolds that comprise W(@#):
(5.4) W(eB) .= We x Wht x ... x Wha,

where the product on the right-hand side lies over X®. This yields a finite list of closed
Whitney stratified sets in (£®) (X, R?), as Mather’s classification in the single distance
function case implies that there are only a finite number of possibilities of multi—orbits
to consider. In each case, transversality of ¢jfp, to W (@A) will establish transversality
to each stratum of higher codimension in its closure W (@),

For (3), we include the conditions in R* that the distance squared functions from wug
and u; have A, singularities at the origin. From [21], the condition that the distance

squared function from wug has an A, singularity at the origin is
402 + (K — K2)(8cy — K3) = 0,

where b; and ¢y are the coefficients of the monomials 2%y and z#, respectively. Similarly,
from [9], the condition that the distance squared function from u; has an A4 singularity
at the origin is

4[)3 — (Hl — RQ)(SC;L — /€3) = O,

where by and ¢, are the coefficients of the monomials xy? and y*, respectively. This places
two additional conditions on the surface B;, namely, on the fourth—order coefficients ¢
and c4. Likewise, there are conditions for the distance squared functions to have A-j

singularities, although we do not include those calculations. We also point out that there
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are additional submanifolds that represent the degeneracy of the geometric conditions on

a hypersurface for the self-linking configurations listed at the end of Section 5.2.3.

5.3. Consequences of transversality to elements of ,S

In this section, we consider the consequences of Theorem 4.3.1 applied to the three
classes of submanifolds and stratified sets in ,S. Let ¢ € DEmb(X,R"™) with n < 6,
and let P C DEmb(X, R™™) consist of all ¢ € P such that ¢jfp, is transverse to every
element of ,S. The set P is a residual subset of DEmb(X, R"*!) by Theorem 4.3.1.

For ¢ € P, transversality of »j¥p, to W(#) in ,8 yields transversality statements for
certain submanifolds in the product space X ®) x (R”“)(q“)“). In what follows, we show
how transversality of these submanifolds in X® x (R*+1)@®+1) implies transversality
results for certain projections of the submanifolds, which are needed for the classification

of generic linking.

Let (z,u) = (21, ..., %4 U, - - ., Uuy) € XOx (RO where x; = (25, . . . ,xjej) €
g.
X% For j =1 h ehborhoods U, = TTU® where z, € U9 ¢ :
i j=1,...,q, choose neighborhoods J—H ; where x;, € U;" for every 1.
=1

q
Let X := H U; x (RO " and let

j=1
" q
m: X = [JU; x RgH
j=1
and, for j =1,...,q,
WjZ)Z%UjXR;H_I
q

be projections. For s = Z ¢;, we have the jet extension mapping
j=1

q q
ool ue) [ [ U x RG™ = [ [ o,/ (X;, R)

Jj=1 J=1

and for each j, we have
gjij'j(','LLj) : Uj X R;-LJrl — ngk(Xj,R).
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By Theorem 4.3.1, the mapping
(5.5) ei¥ps : X = (EW (X R?)

is transverse to W@ in ,F*®) (X R?). By the way the mapping ¢jFp, is defined (see

(4.40) in Chapter 4), this is equivalent to the following:

(1) sjfao(',uo) o my is transverse to W%,

(2) H(gjjfaj(-, uj) o m;) is transverse to W9 x ... x W which holds if and only
J
if cach o, jfo;(-, u;) is transverse to W¥; and

(3) all of the (¢, jyo;(-,u;) om;) "' (W?) are in general position and their intersection

is transverse to (j¥oq(+, ug) o mo) TL(W).

Now, (2) implies that the distance squared function families 0;,7 = 1,..., ¢ involved in
the configuration are versal unfoldings.

q
Let U = H U ](1), and consider the mapping
j=1

q(é)jfo-O('a UO) : [7 X Rngl - q(f)‘]k<X7 R)

With o = (aq,...,qq), let W C 40 J*(X,R) be the subbundle with fiber at S; in U

equal to
(5.6) W X x W x ARG,

By the way W is defined, the transversality theorem implies that 4 j7(00(-, up)) is

transverse to W, Thus, oy is a versal unfolding of oq(+, ug). Let
(5.7) We = 0@ J1 o0 (-, ug) H(WYY) C U x Ry™
and for j =1,...,q, let

(5.8) W = g0 (- uy) (W) € Uy x RYFL
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Then we have the following spaces in X:

a [ 4
(5.9) Zy:=wex [T TIUY < ry* ]
j=1

1=2
Z; = Wh x [JU: < [[R* j=1,....q
i#i i#i

Then, letting W8 =Wh x ... x Wf/:gq, we obtain

o
Z; = W8 x RiT,
1

q
Jj=

q
and the transversality theorem implies that Zj is transverse to ﬂ Z;in X.
j=1
We now finish the proof that the linking configuration (A, : Ag) is generic. For a

Z O
fixed j € {1,...,q}, let Vy = Rg+1’ Vi = HUJ@xR;Hl’ and Vy = H <H Uk(;Z) > RZ+1> .

i=2 k#j \i=2

Then)z:(?x%x\/lx%. Notethatﬁ/zCﬁx%,W/;b/j C(~]><V1,andthatZois
transverse to Z; in X. Now, 7¢ : X Uisa locally trivial fiber bundle. For every j,
the projection of Z; under 75 is given by
(5.10) Whiy = n5(Z) =5, x [JU,

i#j
and the projection is a submersion (in fact, a diffeomorphism). Here, E/’Bj C U;l) is
diffeomorphic to the stratum X3, on B; under the diffeomorphism between X; and B;

that the embedding ¢ provides. The projection of Z, onto U is also a submersion, and

we let

(5.11) W‘Xﬁ = 7T)~((Z0) = Ela.

Lemma 5.3.1. T/I/;/Bjﬁ 18 transverse to WE(? m (7

PROOF. Let w € W,;Ejﬁﬂﬁ/zﬁ. Then there exists vy € Vp and v; € V; such that

(w,vg) € ﬁ\/&ﬁ x Vo and (w,v;) € I/If/vﬁiﬁ x Vi. Then for any vy € V5, at the point
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(w, vg, v1,v2) € X, we have that

T(W8 x Vy x Vo) + T(We x Vi x Va) = TX
by transversality of Zy and Z;. Applying dm 3 to the above equation, we obtain
(5.12) T, Whis + T,Wes =T,U

since the projections are submersions. O

By projecting both sides of equation (5.12), we obtain

To(3y, x [JU) x Wey =T,U.

i)
If w= (wy,...,w,), then after projecting the above equation onto the U;l) factor, we
obtain
_ 1)
(5.13) T, x Tu, X =T, UL,

where E;j is the projection of 33, onto T3, U ](1). Using the diffeomorphism that ¢ provides,
Lemma 5.3.1 then implies that the strata ¥4, and X Ag, intersect transversely in B. This
holds for all j = 1,...,¢, and we conclude that the linking configuration (A, : Ag) is
generic.

Next, we prove that we obtain a Whitney stratification of U by linking type, which

will imply that the refinement of the boundary stratification is Whitney. Let V3 =

q £
H H U;Z) X R’j”l , so that X = U x V, x V3. We invoke a second lemma that applies

j=1 \i=2

q
to the images of Z; and ﬂ Zj under the projection
j=1

W%ZX—)&X‘/O.
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Now, Wa = 7'(Zo), and let
- q
(5.14) Wh, =n’% ( Zj> =g X ... x Xg, XV,

J=1

where Y, C Uj(l) for each j.

q
Lemma 5.3.2. Let X = U x Vi x Vi. Suppose Zy is transverse to ﬂ Zj i X, with

j=1
q

W%‘Zo — We q fibration and 71';?‘ ﬂ Z; — ﬁ\/_é* a diffeomorphism. Then W* is trans-
j=1
verse to W in U x Vj.

PROOF. Let w € %ﬂﬁ/\a* Then for any v € V5, (w,v) € Zy. Since w € 17[\/5*,
q

there exists w’ € m Zj such that 7' (w') = w. Then w' = (w, ') for some v’ € V3, which
j=1
implies that w’ € Z,. Then we have

T@%+JM<W%XWJ:TQX.
Applying d7r’)?, we obtain at the point w
T, We + T, W8, = T,,(U x Vp).

This proves the lemma. u

Finally, let 77 : U x Vo — U , and we consider the projection of W* under 7, which

is a fibration. Let

(5.15) Wh; =% x...x T
denote this projection, and consider the diffeomorphism

7'('(7|/—VI/'\a — Waﬁ.

Then we apply Lemma 5.3.2 a second time to conclude that X x ... X Z’ﬁq is transverse

to X! in U. Therefore, their images in B under the diffeomorphism are transverse,
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which shows that B is Whitney stratified by the transverse intersections of the strata
corresponding to the external and internal medial axes.

We conclude this section by summarizing the consequences of Theorem 4.3.1 applied
to the elements of ,S. First, transversality to the submanifolds representing orbits of
simple multigerms (see Sections 5.2.1 and 5.2.4) implies the following:

(1) For n < 6, every region Q; C R" j = 1,... ¢, within a generic Blum medial
linking structure has a Blum medial axis exhibiting only the generic local normal

forms given in Theorem 1.4.4. Furthermore, the linking medial axis is generic.

Second, we summarize the consequences of Theorem 4.3.1 applied to the distinguished

submanifolds W (*#) in Section 5.2.2 and the stratified spaces in Section 5.2.4:

(2) For n < 6, a generic Blum medial linking structure exhibits the generic linking

configurations given in Theorems 3.4.3, 3.4.4, and 5.5.1.

As explained in Section 5.2.3, there are also consequences for self-linking as a result
of transversality to submanifolds which involve generic properties for the geometry of
hypersurfaces.

The classification theorems now follow from Theorem 4.3.1 and the work in this

section.

5.4. Proof of Theorems 3.5.3, 3.5.6, and 3.5.7 in Chapter 3

In this section, we prove three theorems from Section 3.5 in Chapter 3 on the generic
stratifications by linking type of the boundaries and medial axes.
First, to prove Theorem 3.5.3, we must show that the stratification .#? in Definition

3.5.1 of Chapter 3 forms a Whitney stratification of B in dimensions n < 6.

PROOF OF THEOREM 3.5.3. Let ¢ € P C DEmb(X,R"*!), and let .2 and /7
denote the Whitney stratifications of B = ¢(X) corresponding, respectively, to the
Maxwell set of g9 and the Maxwell set of o; for ¢ = 1,...,q. Consider the stratum
(24 : ¥g)8 € B corresponding to the linking configuration (A, : Ag). Then %, is a

stratum in Yfz , while X3, is a stratum in 5{2 for every i. Theorem 4.3.1 implies that >,
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and Y, intersect transversely in B for all 7, as explained in Section 5.3. Therefore, since
the stratifications YUK; and ff are Whitney regular and their strata have transverse in-
tersections in B, a well-known theorem implies that their intersection, .5, is a Whitney

stratification of B. O

Next, we prove Theorem 3.5.6 by showing that in R? and R?, .70 is a Whitney

stratification of Mj.

PROOF OF THEOREM 3.5.6. We must show that .70 is a Whitney stratification by
showing that all pairs of strata (x4, : X4s), (Xaa : Xag) With (x4, : Xa,) C m
satisfy Whitney’s condition (b) as defined in Definition 1.5.2 in Chapter 1.

First, let ¢ : X — R? with ¢ € P. In this case, Whitney’s condition (b) holds for
all pairs of strata in .7M° since every stratum (except the smooth one corresponding to
the configuration (A? : A3, A})) is simply a distinguished point on a smooth curve, or a
singular point on the Whitney stratification of M,.

Second, let ¢ : X — R3 with ¢ € P. We begin by pointing out that the strata of .o
associated to the configurations (A2 : A2, A2), (A3 : A2 A2 A%), (A1 . A2 A2 A% A?),
(A1 A3 : A2 A?), and (A3 : A?) correspond to open subsets in the Whitney stratification of
M. Next, consider the strata (x 42 : X a3, XA%)MO and (X 42 : Xas, XA%)MO associated to the

configurations (A% : A3, A?) and (A? : A3, A?), respectively, both of which are contained

in (xa2 : Xa2, Xa2)M0. For sequences of points {yi} in (xa2 : Xa3,Xa2)™ (resp., {y;} in
(Xa2 © XAz Xa2)™0) and {z;} in (xa2 © X2, X22)™ with {z;}, {;} both converging to a
point y € (X2 : XAgs X A%)MO, condition (b) holds since the limit of the secant lines T;y;
is contained in the tangent space to the smooth stratum of M,.

Likewise, consider the strata of .7M° associated to the configurations (A? : A}, A?) and

(A7 : A1 A3, A7), The stratum (X2 : Xa2, Xa2)™ C (X2 Xa3, Xa2)M0, and the stratum

(Xa2 : XA1A37XA%>MO is contained in both (X2 : Xa3, Xa2)™° and (xa2 : X4, Xa2)M0. The

fact that Whitney’s condition (b) holds for these pairs of strata is due to the fact that

the ordinary stratifications on the individual medial axes are Whitney.
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Finally, we consider those strata associated to the 6 remaining configurations in
Theorem 3.4.4: (A2 : A3 A3) (A3 : A3 A3), (A3 @ A3 A3), (A3 . A3 A3 A%), (A3 -
Az, A3 A%), (As + A3), and (Az : A3z). In each case, the x4, stratum on M, and the
images in My of the x A, Strata on M; are transverse, since Theorem 4.3.1 implies that
the corresponding strata on the boundaries, > 4, and X Ag, for every i, are transverse in
B. Each of these 6 strata in .#*° is a point occurring at the transverse intersection of
two smooth curves. If, in each case, y denotes the point and {z;} is a sequence of points
in one of the curves converging to y, then the limit of the secant lines 7;y is the tangent
line to the curve at y because the curve is smooth. We conclude that Whitney’s condition

(b) holds for all pairs of strata in .70, 0

Theorem 3.5.7 establishes the generic properties of the stratifications in Theorems

3.5.3 and 3.5.6 for n < 6, namely:

(1) The number of generically appearing stratum types is finite.
2) The codimension in B of the stratum (3, : X3)8 € .#% representing the generic
B8

linking configuration (A, : Ag) is given by the formula
¢
codimp((q : 85)%) = R -codim(A,) + > R -codim(Ag,) — (q(£) +1).
i=1

(3) The codimension in R"*! of both the stratum (4 : Xﬁ)M € .M and the stratum

(Xa : Xg)Mo € Mo corresponding to (Ay : Ag,, ..., Ag,) is given by

¢
codimpn+1 (X : Xg) = RS codim(A,) + Z RFcodim(Ag,) — q(€).

i=1

PRrROOF OF THEOREM 3.5.7. Let ¢ € P. Property 1 is a consequence of Mather’s
finite classification in Theorem 1.4.4 of the generic local normal forms of the Blum
medial axis in dimensions n < 6. To prove property 2, let W(®#) be the submani-
fold of (E®(X,R?) associated to the configuration (A, : Ag). Let codim, g (W *P))
denote the codimension of W(#) in ,E*) (X ,R?). For ¢ € P, Theorem 4.3.1 im-

plies that codim, ) (W(@#)) equals the codimension of gjf,ogl(W(“ﬁ)) in the space
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X® x (RP+1)@®+1) " and thus also in the space B®) x (R*+1)@®+1)  Now
q
(5.16) codim, g (WB)) = codim_, ye(x.r) (W) + Z codim, 7oy (WF,
i=1
and recall equation (1.17) in Section 1.6 in Chapter 1, which states that the codimension

in .J*(X,R) of W" may be written in terms of R} — codim(.A,):
(5.17) codim(W") in ,J*(X,R) = R —codim(A,) + nr,

where the multi-germ A, is an r—tuple. Using equations (5.16) and (5.17), we find that
dim(B® x (R*1)@O+FD) — codim, g (WD) is given by

Z nl; + (n+1)(q(£) + 1) — ng(€ Z nl; — RS -codim(Aq)—

Z R} -codim(Ag,)

=1

= (n+1)(q(€) +1) — ng(€) — R} -codim(A ZR+ codim(Ag,)
=n— <Rj—codim(.,4a) + Z Rt-codim(Ag,) — (q(£) + 1)) :

Thus, the codimension in B of its projection, denoted codimg((X, : Xg)?), is given by

(5.18)  codimp((Zq : £5)%) = RS -codim(A ZR+ codim(Ag,) — (q(£) + 1).
=1
This proves property 2, and property 3 follows immediately. O

5.5. Classification of generic linking for R* through R’

In this section, we present the classification of generic medial linking configurations
of codimension < n+1 in R"*! for 3 < n < 6. The complete classification for dimensions
3 < n < 6 includes all configurations of codimension < n + 1 in R™"!, but we only
present the new configurations of codimension n 4+ 1 in each successive dimension. The

classification results are given in Tables 5.1 — 5.4. In Table 5.4, we use the notation
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“~” to indicate all A? linking within a linking configuration. We label with a “x” those

self-linking configurations that are not shown to be generic in this dissertation.

Theorem 5.5.1 (Classification of generic linking in R""! for 3 < n < 6). For a
residual set of embeddings of smooth, disjoint, compact, connected hypersurfaces whose
interiors bound disjoint regions in R"™! for 3 < n < 6, the generic linking types include
all generic linking types in R™, as well as the generic linking types of codimension n+1 in
R which are given in Tables 5.1-5.4. Within each of the four tables, the configurations
above the double horizontal lines can occur for linking between distinct regions, while all

configurations in the tables can occur for self-linking.

TABLE 5.1. Generic linking type of codimension 4 in R*.

Linking type Configuration
I (A% : A% AB)
(Af: A, A7)
(A% : A%A%Ai%)
(Al : A}, A})
(A% : AiAlAS)
(A% : A37 Alll)
(A% : Ag,AlAg)

T (A AL, A A )
(A%Aii : A% A%? A%)
M (AT A2 AT, AT)

(A:f : A%? A?a AS)
(Ail)’ . A%, Ag, Ag)
(A7 : AT, AT, A})
(A7 : A}, AL, Ay A5)
(A7 : A}, Af, A7, A7)
(Ail : A%? A%? A%a A3)
(AlAg : A%, A?)
(AlAg : A%, A5)

111 (A, : AN
(Ag . A1A3)
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TABLE 5.2. Generic linking type of codimension 5 in R5.

Linking type Configuration
I (A% . Ag, A5) (A% . A3,A%A3)
(A7 : AT, A5) (AT : AT, AD)
(A7 : A}, A}) (Af: A, A ds)
(A7 : A}, AjAs) (A7 : A}, AjAs)
(A% . Ail) ALII) (A% . A1A3, A1A3)
(A% . A1A3, Ail)
I1 (AS: A2 A3 AT A2 A3 A7) (A1 A5 A2 A3)
I11 (A3 A3 A3 A3) (A3 Az, Az, A3)
(A? : A37 Ai A?) (A:f : A37 A37 A3)
(A? : A%? A?? ALII) (A? : A%) A37 ALII)
(A:{’ . A?, A?, A1A3) (A:{’ . A%, Ag, A1A3)
(A:f : A%A%A?) (A:f : A%7A%7A5)
(A:f : A%A%?A%A?’) (Ail : Ai’?A??A%aA%)
(Ail : A?7A37A%7A%) (Ail : A37A37A%7A%)
(Ail : A%7A%7A%7A%) (Ail : A1A37A%7A%7A%)
(AlAg : A:I’, A?) (AlAg : AZ{)’ A3)
(AlAg . A3, Ag) (A1A3 . Ail, A%)
(AIAS : A1A37A%) (A? : A:%?A%’A%?A%?A%)
(AE) :2A37 A%a A%?QA% 72‘;1%) (A%A?) : A?a A% A%)
A1A3 . Ag, Al? Al
I11 (Ag . A%Ag) (Ag . A5)>I<
(A5 . A?) (A5 . Ag)*
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TABLE 5.3. Generic linking type of codimension 6 in RS,

Linking type Configuration
I (AT : Af, AY) (A7 : Ai‘,As)
(A% . A%,A%Ag) (A A1A3,A Ag)
(A% . A1A3,A?) (A% A Ag,A5)
(A2 : A3 AY) (A2 : A3 A1 As5)
(A7 : A7, A3) (A7 : A, A7A3)
(A2 A37A6) (A% . A3,A1A5)
(A2 Ag,Az) (A% . Ag,A?Ag)
(Al 2 Al? Alf;L%) (A7 : A}, ATA3)
7 2 (11211 :;47’2141)2 2 2 2 2 2 2
II Al Ay AT Ay AT A AL A AAs AT AT A
B I i v Ry K i
(15' 15431 1) (13' 10411y 4315 421 1)
. Eﬁ : ﬁ’ ﬁ?’ f; (ﬁfﬁ ;ﬁ’ o Ai))
1+ 411,43, A3 1 - A143, A3, A3
(Ail)) . AlAg,A:l)),Ail))) (A:f . AlAg,Ag,A:f)
(A7 AT, AT, A) (A7 : A7, AT, AT A3)
(A:% : Ava?7A5) (Ai) : AiAéllaAéll)
(A?:; A%72A§17 Alf;ls) (A??i A%72A1A37 1211143)
(Aé : A%, Az, A?) (A13: A1,2A3,2A11213)
(Aé : A%,A%,Ag) (‘?1 : éllvéllvAl)
(1;11 : 1511»?17/313) (A A41aA3hAQ A52)
(A7 : AT, AT, AjA3) ( AL AT, AT AY)
(Ail : A?>A1A3’A%’A%) ( A3>A%aA%aA2)
(Ail : A1A37A37A%7A%) ( A?vAvafaAQ)
(A]: A2A3, A2 A2 A?) (A A5, A2, A2 A2)
(A1 A3 : AI,A3) (A Az A3 A1 A3)
(A Ag Ag,A ) (AlAg . A1A3,A3>
(AlAg . A?, A%) (AlAg . A%Ag, A%)
(A, As : As, A2) (A3 A3, A3, A2, A2, A2)
(AD: Ay, A3, A2, A2, A2) (A7 : Ay, As, A2, A2, A2)
(A7 : A7, A7, AT, AT, AY) (A7 : A1Ag, AT, AT, AT, AD)
(A2A, : A3, A3, A2) (A2A, : Ay, A3, A2)
(A%AiS : A37 A37 A%) (A%A?) : Aila A%a A%)
6<A%A3 :;41‘%37 ‘g%v %%) ) (A(li : Ail)’v A%v A%%A%QA%? A%)
(AS . Ay, A2, A2 A2 A2 A2) (A As : A3, A?)
(A As : Ay, A?) (A2 A3, A2)
(A2 Ay, A2) (A3A, A3, A2, A2, A2)
(A:%Ag . Ag,A%,A%,A%)
I (A3 - ATAy) (A3 : A3)
(Ag A A5) (A5 . Aéll)
(A5 : A1 A3)
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TABLE 5.4. Generic linking type of codimension 7 in R”.

Linking type

Configuration

(A% . A%Ag, A%Ag) (A% : A%Ag, A5) (A% : A5, A5)
(AT : A7, A7) (AT : A}, Ay Ag) (AT A5, AY)
(A% i AlA5, A1A3) (A% : Ag, A%) (A% . Ag, A1/‘43)
(A2 ABAs, AY) (A2 : A3As, A)As) (A2 AT, A3)
(A2 : AT, Ay) (A2: A A2, AY) (A2: A A2, Ay)
(A2 A2A5, A3) (A2 A2A;5, As) (A2 AA5, A3)
A2 : A4A3, Ag A2 . A7,A3 A2 . A7, Ag
1 1 1 1 1
(A% : Aflgv _) (A% : A?A& _> (A% : A%A?’n _)
(A% : A?Ag,, —) (A% : A1A7, —) (A% . A3A5, —)
I (A5 : ) (A4, A%, 7) (ATAZ: )
(A?Ad : —) (A1A7 . —) (A3A5 : —)
M (AT : AT, AT, A7) (A3 : AT, Ay, A7) (A A, Ay, Ay)

(Ai) : A%Afﬂ’ A?’ A?)
(A? : A5a Ail))a A%)
(A:I) : A?> A?a _)

(Ai) : A1A57 A37 _)

(A3 A3A3, A3 —)
(Ail% : A%? A41L7 A3)

(A:% . A1A3, AlAg, A?)

(A? : Ai A1A3a _)

(A?gl A57 /gllv _)
(Al . A1A3, —)
(A} A7, AT, A3, A7)
(Al : A3, As, A3, Asg)

(1441L : A%’ Ai A37 _>
("441l : A4117 Aélla _>
(‘/4111L : A?? A37 _)
("4111L : A57 A?v _)
(A1: A3A3, —)
(A1 A A3 A3)

(A1A3 : A%f‘é&As)
(AlAS : Au —)
(AlAg : Ag, —)

(A1A3 3/41143,141143)

(A? : Ai A37 A37 _)
A3 AL A, —
iy

(A;Ag : A?,A?,A?;

(A1A3 . Ag, Ag, A3

(A%A3 : A1A37 A?a _)

(A%Ag . A%Ag, —)

("4:‘15 : A%A& Azlia A3)
(A:f . A5,A3, A?)
(A? : A?a A37 _)
(A? : A%a A?a _)

(14:1g . A:{)Ag, Ag, —)

(A:I’ : A4117 A1A37 A:{’)

(A:f : A1A3,A1A37A3)

(A3: A2A3, AL, )

(A“;’ : As, Ay Ag, —)
(A? : A%A57 _)

(Ail : A‘;)?A?7A?>A3)

(Ail : A37A3,A37A3)

(Ail : A1A3>A?>A3, —) (Ail : A1A3,A3,A37 —)

(1441L : Aéllu A37 A37 _)
(1441l : Aéllu A1A3) _)
(A : A2A3 A3, )
(Ail : As, As, _)
(A% DAL A5, —)
(AlAg . A?, Ag)
(AlAg . A5, A?)
(A1As : AA;, —)
(AlAg . Alll, Ail)
(Ai) : A?a A%a A?? _)
(Ai) : A37 A37 A37 _)
(A? : A1A3a A?? _)
(A2 : A3A3,—)
(A%Ai% : A?? Azlia A3)
(A%AB : Azlla A?? _)
(A3A5 : A Az, As, —)
(A%A:'» . A57 _)

(A?l) : A%Ag, Ag, Ag)
(A:i’ . Ag,, Ag, Ag)
(A:f . A1A5, A:f, —>
(Ail)) : A%? A37 _)
(A7 : A}, A}, A
(A:f : Alll, A1A3, Ag)
(A? : A?? A4117 _)
(A? : A%Ag, A1A3, —)
(A? : AI? _)

A3 AlA3, —
(AélE : TA?) ;1:137?:2137?’43)
(14411 : A1A3, Ail)’, A%, —>
(Ail : Azll> Aifv Ai” _)
(A%Aflﬁg’ ﬁéA&)—)
(A 434, 4, )
(Azl1 : A?? _)

(/411 : A%a _)
(A1A3 : AfA3, AD)
(AlAg . A5, Ag)
(AlAg . A1A5, —>
<A1A3 . Ail, A1A3)
(A7 : A}, A}, 43, -)
(A? : A%? Akla _)
(A? . A1A37 A3, —)
(A? : A5> _)
(A%AS : Aili’ Ag, AB)
(A%/é?) : A%??B? _)
<<AA?1 Ajilila 71?41:1;7 _))
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Generic linking type of codimension 7 in R, continued.

Linking type

Configuration

(A? : A?’ A3a _)

(AS: A1 Az, —)

(A1A5 . Ag,Ag)
(A3 : A}, A})
(A% : Aéllv _)

(A;I)A3 : A1A3a _)
(AlAg : A?a _)

(AD: Az, As, —)
(A1A5 . A?, Azl)’)
(A1 A5 - AL —)
(A% : A%? A3)
(A% . AlAg, —)

(A:fA?a : A?aA:%, —) (A?A3  As, As, —)

(AI : A?a _)
(AIA?’) : A37 _>

(A? : A%? _)
<A1A5 . A:f, Ag)
(A1A5 . A1A3, —)
(A% . Ag, Ag)
(A‘fA:; : A?? Ai _)
(A?A?) : Ail) _)
(AI : A37 _)
(A%AS : A?a _)

(A2A5: Az, —) (A1A3: A3 —) (A1Az: Az, —)
II1 (Az: A7) (A3 : ATA3) (Az: A1 A2)
(Az: A2A5) (A : A7) (A5 AD)
(A5 : A2A3) (As @ As)x (A; 2 A3)
(A7 : Az)x
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CHAPTER 6

Applications of the Blum Medial Linking Structure

6.1. Introduction

Now that we have established the generic properties of the Blum medial linking
structure, we shift our focus to applications of the linking structure in multi-region shape
analysis. We begin in Section 6.2 by introducing a linking flow on each region’s medial
axis and deducing its properties. In Section 6.3, we show how the medial geometry in
the complement can be computed directly from the medial geometry of the collection of
internal medial axes. Then in Section 6.4, we show how to compute integrals over regions
in the complement as a sum of integrals over the individual medial axes.

In the second half of the chapter, we begin to address the motivating questions from
medical image analysis given in Section 2.6 in Chapter 2. In Section 6.5, we introduce
invariants involving aspects of the positional geometry of a collection of regions. We use
these invariants, which may be computed directly from the linking structure, to construct
a “tiered graph” that reflects the closeness and significance of the regions relative to one
another. In Section 6.6, we conclude with a brief discussion of future research directions

involving the linking structure.

6.2. Construction of the linking flow

Throughout this chapter, we assume that ¢ : X — R"! is a generic embedding
in DEmb(X, R""!) defining a collection of disjoint regions {€;}%, each with smooth
boundary 0€); = B;, Blum medial axis M;, and radial vector field U;.

In this section, we begin by defining a piecewise smooth local linking flow on each
M; \ M2°, which extends to a piecewise smooth global linking flow on M, \ ]\7/1-0". For

1 =1,...,q, let U; = r;u; and L; = f;u; be the radial and linking vector fields on



M;\ M®. Let V be an open neighborhood of a point xy € M;\ M® with a smooth value
of the vector field L; defined on V', with V' within a local manifold component of z if

(x0, L;) belongs to a singular stratum of M

Definition 6.2.1. For a smooth choice of L; on a neighborhood V' of xy € M;\ M?°, the

local linking flow on M; \ M is the map

(6.1) ®;: V x [0,1] — R"

(x,t) = x4+ xi(z, t)u;(x),

where
2tr;(z) <t<

Xi(xvt) =

—_ DN

21 —t)ri(x) + (2t — Dly(z) =<t

o= O
VAN

Observe that for 0 < ¢ < 1/2, the flow is a scaled version of the local radial flow, and
that the ¢t = % level surface is the boundary B; of §2;. Damon established the local
nonsingularity of the radial flow in [14] (see Section 2.3 in Chapter 2). In the following
proposition, we prove that the second half of the linking flow is locally nonsingular at

points xg € M; \ M® with (z¢, L;) in the smooth stratum of M

Proposition 6.2.2. Let L; = l;u; be a smooth value of the linking vector field in a
neighborhood V' of a point xq € M;\ M with (xq, L;) belonging to the smooth stratum of
M Assume that, on this neighborhood, the radial shape operator (S;).eq on M; satisfies

the following radial linking condition:

1
(6.2) l; < mm{

} for all positive principal radial curvatures k., of (Si)rad-
rj

Then:

(1) The restriction ®; : V x (1/2,1] = R"™ is a local diffeomorphism at (x,t).
(2) ®;(-,t) : V — R"™ is a local embedding at x¢ for 1/2 <t < 1.
(3) ©;(,t)(V) is transverse to the linking line spanned by L; for 1/2 <t < 1.
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PROOF. The proof is very similar to the proof of Proposition 4.1 in [14].
Let V' be a neighborhood of ¢ € (M; \ M;®).eg With L;(xg) a choice of linking vector

at zo and with a smooth extension of L; defined on V. As in Proposition 4.1 in [14],

choose a basis {vy,...,v,} for T, M; and write
ou “
(6.3) on ap; — Z SjkVjs
j=1

where v denotes the column vector with k-th entry vy, (A;), is a matrix with k-th entry

ay, and (5;), is a matrix representation for (5;)raq with kj-th entry sz;. Then

09,
8Uk

or ou; o, ou,;
—Uk+2(1—t) |:a—vk"u,i—|—7“i' 8Uk:| +(2t—1) {a—vkumL&—}

=U + 2(1 — t) [drl(vk) W+ AU — Z TiSjkVj +

Jj=1

(2t — 1)

dgl (Uk) - Uu; + &;akui — Z &sjkvj]

J=1

={2(1 — t)[dr;(vg) + rax] + (2t — 1)[dl;(vg) + Car]} - ui+
i {6kg — [2(1 - t)?”i + (2t - 1)&]5314} * Uy,

In vector notation,

09;

(%

(6.4)

={2(1 = t)[dr;(v) +ri - (A)v] + 2t = 1)[dl;(v) + 4 - (Ai)v]} - wi

+ {1 =201 =t + (2t = D)) - (Sil} -,

where [ is the n x n identity matrix. Also, note that

0P;
ot
Next, the transpose matrix of the Jacobian of ®; at (xg,t) with respect to the bases
0
{E’Ul’ . ,vn} and {u;,v1,...,v,} for the source V x R at (zo,t) and target R™"!,
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respectively, is given by

2(1 — t)[dr;(v) + 7 - (As)]+ | (I —[2(1 = t)ry + (2t — 1)](S)v)T |
(2t = D)[dli(v) + £; - (Ai)y]

where ¢; — r; is nonzero. Also, the transpose of the Jacobian matrix of the flow ®;(-,¢),
written with respect to the basis {vy,...,v,} for T,y M and {u;,vy,...,v,} for R*™ is

given by

By the Immersion Theorem, it suffices to show that this matrix has full rank in order for

®,(-,t) to be a local embedding. Now, the matrix

! I
21— t)r; + (2t — 1)E;

I—{Q(l—t)n—i-(Qt—l)gl}(Sl)v = —{2(1—t)7”2+(2t—1)€z} (Sz)v -

will be non-singular if and only if

1
2(1 — t)m + (Qt — 1)&

(6.6)

is not an eigenvalue of (5;)y for 1/2 < ¢ < 1. Since at ¢ = 1/2, the value of (6.6) is

1 1
—, and at t = 1, the value is —, it follows that all positive eigenvalues of (5;), must
T i

11
not lie in the interval b—, —). But the linking condition (6.2) ensures that all positive
i T

eigenvalues k,, of the radial shape operator are greater than E Therefore, we conclude
that the two transpose Jacobian matrices above have full rank, which proves statements
1 and 2.

Finally, as in [14], the tangent space T, (s ®i(-,t)(V) contains the linking line

spanned by L; only in the case that the matrix I — {2(1 — t)r; + (2t — 1)€;}(S:)y
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is singular. Since this is ruled out by (6.2), T, ®:i(-,t)(V) will be transverse to

Li(xg) = €;(zo)u;(xg), proving statement 3. O

The linking flow extends smoothly to the closure of the smooth stratum of . M;

Corollary 6.2.3. Suppose xo ¢ OM; \ M but (xq, L;) does not belong to the smooth
stratum in the refined stratification M Provided (6.2) holds, statements 1-3 in Propo-
sition 6.2.2 are satisfied for a smooth value of L; on a neighborhood V of xy within a

local manifold component of x.
Finally, we derive the local nonsingularity of the linking flow for points xy € OM;\ M.

Proposition 6.2.4. Let L; = l;u; be a smooth value of the linking vector field on a
neighborhood V' of a point xy € OM; \ M° (or on a local edge manifold component if
xo s an edge closure point). Assume that the edge shape operator (S;)g satisfies the
following edge linking condition on V:
(6.7) l; < mm{é} for all positive principal edge curvatures kg, of (S;)p.

j

Then:

(1) ®;: V x (1/2,1] — R""! is a local diffeomorphism at (xg,t).
(2) @;(-,t) : V — R"™ is a local embedding at xq¢ for 1/2 <t < 1.
(3) @;(-,t)(V) is transverse to the linking line spanned by L; for 1/2 <t < 1.

PROOF. In this case, the proof closely follows the proof of Proposition 4.4 in [14].
Using the methods in Proposition 6.2.2, we may obtain the transpose Jacobian matrix
0
of ®; written with respect to the edge coordinate basis {a, v, ..., } about xy and the

basis {u;, vy, ..., v, 1,n} for R* L

o Taors — 201 — O+ (26 — DE)(S) )T
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where I,,_1, denotes the n x n matrix with 1’s in the first n — 1 diagonal positions and

0 in the last. The matrix I,,_1 1 — {2(1 — t)r; + (2t — 1)¢4;}(S;) gv equals

1
L1 ),
2(1 — t)r; + (2t — 1)¢; 1’1)

—{2(1 = t)r; + (2t — 1)¢;} ((Si)EV —

1
20—t + (2t - 1)¢;
of (S;)gv for 1/2 <t < 1. By the edge linking condition (6.7), it follows that the above

which is nonsingular precisely when is not a generalized eigenvalue

matrix has full rank. The proposition now concludes as in Proposition 6.2.2. |

We utilize the nonsingularity of the grassfire flow in the complement in order to prove

the following important proposition.

Proposition 6.2.5. (M;, L;) satisfies the radial linking condition (6.2) and the edge

linking condition (6.7) as the Blum medial aris and linking vector field of ; C R".

PROOF. The proof is very similar to the proof of Proposition 4.6 in [14].

Let V' be a neighborhood of a point zp € M; \ M®, with (2o, L;) in the smooth
stratum of the refined stratification and with a smooth value of the linking vector field
L; defined on V. (If (x¢, L;) belongs to a singular stratum of .’ M: one may extend a local
component of xy in a neighborhood V' so that z is a point in the interior.) The distance
from a point zg + r;(zo)u;(xo) in B; to a point xg+ (2(1 —t)r;(zo) + (2t — 1)4;(x0))w; (o)
in the complement is given by (2t — 1)(¢;(zo) — 73(xo))ui(xg) for 1/2 < ¢ < 1. At
time t' = (2t — 1)(4;(xo) — ri(xg)), the grassfire flow in the complement will consist
of points satisfying the condition that their distance from the boundary B; along L; is

(2t — 1)(;(zo) — 7i(x0)). Therefore, using local coordinates on V', we may represent the

grassfire flow in the complement as

g(z,t) =z + ri(x)u(z) + (2t — 1)(li(wo) — riz0))wi(2)

=+ (ri(x) + (2t — 1)l (x0) — (2t — D)ry(mo) )us ().
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Thus, its derivative is computed to be

8u,~
avk ’

% i+ (ry + (2t — Dli(o) — (2t — D)ry(ao)) -

and using (6.3), the vector form of the derivative is given by

g_\gf = (dri(v) + (ri + (2t = 1)li(wo) — (2t = V)ri(20))1) - w;

(I = (rp + (2 — D)l(0) — (2t — Drylag) - (Si))T - v,

where 1 is a column vector with all entries equal to 1. Since % = u;, we see that
the transpose Jacobian matrix written with respect to the bases {9/0t' vy, ..., v,} and
{w;,v1,...,v,} in the source and target, respectively, is given by
1 0
(ri + (2t — 1)l;(wo) — (2t — V)ri(wo))1 | (L — (15 + (2t — 1)€;(x)—
+dr;(v) (2t — 1)rizo)) - (Si)v)”

At the point xy, this matrix becomes

1 0
(2t — 1)4i(w0))1 (2t — 1)li(w0)) - (Si)v)”
1

is not an eigenvalue

hich i ingular if and only if
wnicn 1s IlOIlSlIlgll ar 1I and on V1 2(1 — t)?"l(l'()) + (Qt N 1)&(!100)

of (S;)raa. Since the grassfire flow in the complement is nonsingular, we conclude that
1

interval | ——, —) . Since the radial curvature condition ensures that all eigenvalues
€l<l‘0) 17'1'(150)
are less than @) this proves that the radial linking condition (6.2) holds. The proof
Ti(Zo
that the edge linking condition (6.7) holds is analogous. O

is not an eigenvalue for 1/2 < ¢t < 1, i.e., for values in the

123



6.3. Geometry in the complement from the linking structure

In this section, we show how the linking flow enables one to obtain a matrix represen-
tation (Sp). of the radial shape operator (Sp)yaq on the linking medial axis My in terms
of a matrix representation (S;), of the radial shape operator (S;);aq on M; for some i.
This enables one to obtain the geometry in the complement directly from the linking
structure.

The proof of the following proposition closely follows the proof of Proposition 2.1 in

[15] with minor changes.

Proposition 6.3.1. Choose a smooth value of L; on a neighborhood V' of a smooth point
xg € M;\ M2 with respect to the refined stratification, and suppose gl 18 not an eigenvalue
of (Si)raa at xo. Let xf = ®i(xo,1), let {v1,...,v,} be a basis for &}OMi, and for all j,
let {v;} denote the image of {v;} under d®;(xo,1). If (Si)y is a matriz representation
for (S;)raa and v' denotes the image of v in vector form, then the radial shape operator

(S0)raa of the linking medial axis My at x{, has a matriz representation with respect to v’

given by
(6.8) (S0)or = —(I = €; - (Si)w) " (Si)w-

PROOF. Let v’ be the column vector with i—th entry v.. One may easily verify that
8’(111' o c")’u,z-
ov! N Eh)i

(2

(see the proof of Proposition 2.1 in [15]). From (6.3), we know that

Using (6.4), we obtain

r aq)l(a 1)

(6.10) v 5o

= (dl;(v) + b - (A3)o) ui + (I —4; - (S)v)" - v.

124



By assumption, (I —¢; - (S;)y)? is nonsingular, and we may solve for v in (6.10). Since

S0~ Tu (6.9) becomes

Gui
ov’

(6.11) =Al, uy— (I — ;- (S)H)™ (S) T

v

with A?, = (A;)p — (I —£; - (S)T)71- (S)T(dl;(v) + £; - (Ai)w). Then the definition of the

radial shape operator implies that, after the projection onto T, My and taking transposes,
(6.12) (S0)or = —(I — ;- (1)) (S:)w-

The negative sign is needed since u; points in the opposite direction as the unit radial

vector at z( € M,. O

6.4. Integration over regions in the complement

Let I' ¢ R""! be a bognded Borel measurable region that intersects ¢, the region
complementary to () = HQ,-, and possibly one or more of the €);, as illustrated in
Figure 6.1. We also assunlljthat I" does not intersect (2°)>, which is the region outside
of © within which no linking occurs. In this section, we show how to integrate a Borel
measurable and Lebesgue integr?ble function g : R™™! — R over I' as a sum of integrals
over the individual medial axes H M;. The computations given in Section 2.5 in Chapter
2 for integration over a single ;Izlédial axis have natural extensions in the multi-region
setting using the linking functions.

The Blum medial linking structure yields a decomposition of the complement into

linking neighborhoods as follows.

Definition 6.4.1. For fized i,5 € {1,...,q}, the j—th linking neighborhood of M;,

denoted R;;, is the region in R" given by
R ={x+tLi(x) :x € M;\M;*,0<t<1, and Jw € M; with x+L;(x) = w+L;(w)}.

q
The linking neighborhood of M, is the region R; = U Risj-

j=1
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FIGURE 6.1. Ezample of a region I' over which one may integrate.

The proof of the following theorem is similar to the proofs of Theorem 6 and Corollary
7 in [13], which establish how to integrate a function on a region I' C €); as an integral
over its medial axis. (See Theorems 2.5.4 and 2.5.5 in Chapter 2. Here, I' = U r; c R*H
is a bounded Borel measurable region with I'; C R;, so that I" intersects ZQC \ ()=

as well as the interior of one or more €2;, with the only overlaps being along the linking

medial axis.

q

Theorem 6.4.2. Let 2 = H Q; be defined by a generic embedding ¢ € DEmb(X, R"*1),
i=1

and let T = U I'; € R™™ be a bounded Borel measurable region as above. Let g: T — R

be a Borel measurable and Lebesque integrable function, and for each i =1,...,q, let

(6.13) g = /0 xr; - 9(x + tli(x)) - det(I — t4;(S;) raa) dt.

Then for every i, g; is defined for almost all x € ]\A/fi, integrable on ]\Z, and

i=1 7 Mi

q
r
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PROOF. The proof that every g; is defined and integrable follows the same reasoning
as in the proof of Theorem 6 in [13]. We shall show that, for each i,

r; M;

7

by utilizing the linking flow. Asin [13], we reduce to the case of showing that (6.15) holds
on a single compact manifold M;, with boundaries and corners with interior consisting
of points in (M;),ee and with a smooth value of the linking vector field L; defined on M;;.
Then the linking flow ®;(-,) restricted to M;, is a diffeomorphism on the interior for
0 <t<1/2and for 1/2 <t < 1. For the first half of the flow, note that a basic change

of variables shows that
1/2
(6.16) gV =2 / xrine, - (90 ®;)(z,t) - det(I — 2tr;(S;)aa) dt
0

equals the Crofton-type formula for integration given in (2.5.5) in Chapter 2. Then

N0, Mij

For the second half of the flow, let {vy,...,v,} be a basis for T, M;,, let

Ci= (I —[2(1 = t)ri + (2t = L] (S)V)",

n
and denote by C; the linear transformation that maps v; to Z cx;Vs- Recall the medial
k=1

0P,
=2(0; —rj)u; for 1/2 <t <1, we

measure p; = (u;, ;) on M;. Using the fact that T
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obtain by the change of variables formula

@:dV(%, U1y .. ,’Un) :det(2(€z — 7’1')’11/1', d@i(vl), R ,dq)z(’ljn))

:2(& — ri) . det(ui, Ci(’U1), e 7Ci(vn))

:2(&, — Ti) . det((uz, ’I’Ll> ‘n;, CZ'(’Ul), ey C’l(vn))
=2(0; —r;) - det(Cy) - pi - det(ng, v, ..., v,)

:2<€2 — 7"2‘) - det [I - [2(]. - t)?“l + (2t - ].)&](Sl)rad] dMi(Ul, e ,Un).
If we let

(6.17) g2 =2 / 1 xrag, (g0 @) (x,t) - det(I — (2(1 — )r; + (2t — 1)€:)(Si)raa) dt,
1/2

Fubini’s Theorem then implies that

/ ng:/ 3t = ry) dM;,.

Using the change of variables ¢’ = 2tr; for ﬁi(l) in (6.16), and ¢’ = 2(1 —¢t)r; + (2t — 1)¢;

for §§2) in (6.17), we may write
g = / xrino, - 9(x + twi(x)) - det (I — t (S;)raa) dt,
0
2 4
32 =) = / xraa, - 9(x + tui(x)) - det(I — £ (S;)saa) dt.
Thus,
£;
(6.18) 551) - T+ @(2) (=) :/ Xr; * 9(x + tu;(x)) - det(I — ¢ (S;)raa) dt.
0

After a second change of variables, the integral in (6.18) becomes g; - ¢; with g; as in

(6.13).
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Therefore, using the fact that the linking medial axis has measure 0 in R"™!, we

obtain

q
/ng:Z/ gdV
r i=1 /L
q
=Y ( /~ g dM; + /~ 7 —ri)dMZ-)
1=1 i

7 [

q

6.5. Measures of comparison for a collection of regions

In this section, we introduce geometric invariants that measure two specific aspects
of the positional geometry of a collection of regions: namely, closeness and significance.
The invariants, which are computed directly from the Blum medial linking structure,
depend on a notion of closure of the linking structure, and we address this issue first in

Section 6.5.1.

6.5.1. Developing a bounded version of the medial linking structure. Up to
this point, we have viewed the medial linking structure as an infinite structure since
the linking medial axis extends indefinitely in the complement. However, the essential
linking information captured by a collection of linking neighborhoods is concentrated in
particular areas between the regions. Linking between two regions may naturally come
to an end due to the introduction of one or more other regions. For example, in Figure
6.4, linking between the regions with medial axes M, and M3 naturally ends due to the
presence of the regions with medial axes M; and M4. However, there will not be a natural
end to linking for every pair of regions within a given collection, and we require a rigorous
means of obtaining a bounded version of the linking structure.

q
To this end, assume A C R™*! is an ambient region such that Q = U Q; C A. Then

i=1
the intersection 0A N My determines where the linking vector fields should terminate, so
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we restrict the j—th linking neighborhood to R;_,; := R;,; N A, with R; = O R;_,;. For
example, possible choices of enclosing region A are the smallest sphere contja:irlling Q, the
convex hull of 2, a threshold on ¢; or ¢; — r;, or an enclosing region resulting from other
considerations such as physiology of the boundary for medical images.

In what follows, we shall restrict the linking neighborhood R; of M; for every i to the

region R; \ R;_;, so that self-linking does not contribute to the linking neighborhoods.

FIGURE 6.2. [llustration for measuring closeness.

For each pair of regions in Figure 6.2, compare the areas of the portions of the linking
neighborhoods inside the regions to the combined total areas of the linking
neighborhoods. For the pair of regions on the left, the areas inside the regions sum to a
higher percentage of the areas of the linking neighborhoods than do the corresponding
areas for the pair of regions on the right. Hence, from the volumetric perspective, the
pair of regions on the left exhibit a higher degree of closeness.

6.5.2. Distance vs. volumetric approaches to closeness and significance. In
this section, we discuss how distance measures of closeness and significance compare to
volumetric measures of these quantities.

Recall from Section 2.6 in Chapter 2 that one objective in multi-region shape analysis
is to measure proximity of regions to one another. In Figures 6.3 and 6.4, a comparison
of the minimum distances between the region with medial axis M; and the other regions
yields higher measures of closeness in Figure 6.4 than in Figure 6.3. However, the notion

of closeness of regions involves more than simply the minimum distance between two
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regions. In Figure 6.2, since both pairs of regions touch one another, they exhibit the
same degree of closeness as measured by the minimum distance criterion. However,
this notion fails to capture the fact that for the regions on the left, larger portions of
the regions are close and there is less space between the regions. Thus, to adequately
measure closeness, an appropriate measure captures volumetric aspects of portions of the

regions and their complement.

—M,

FIGURE 6.3. Illustration of relative significance of regions.
A small positional change of the region with medial axis My would have little to no
impact on the other regions in the configuration. The area of the portion of the linking
neighborhood inside the region is a very small percentage of the total area of R;.

The notion of significance of a particular region within a collection of regions encom-
passes multiple factors, one of which is proximity to other regions. However, a purely
distance-based measure of significance fails to capture all other aspects of the positional
geometry of a collection of regions. For instance, another factor impacting significance
is the size of the region Q; C R™™'. Recall that vol(€);) may be computed as a medial
integral (see Section 2.5.4 in Chapter 2). The inadequacy of using vol(€2;) to measure
significance lies in the fact that individual region size within a configuration is not mean-
ingful unless it is considered in the context of additional factors, such as the sizes of the

other regions, their proximity to €);, and their positioning relative to one another. An
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FIGURE 6.4. Ezample of how a change in positioning affects significance.

For the region with medial axis My, a small positional change would also alter the
linking neighborhoods of the regions with medial axes My and Ms. For this region, the
value of its significance measure is higher in Figure 6.4 than in Figure 6.3 as the
portion of the linking neighborhood Ry inside the region forms a higher percentage of the
total area of Ry in Figure 6.4.

appropriate volumetric measure of significance of a region should capture how a small
positional change of the region impacts the overall configuration. For example, in Figure
6.3, if the region with medial axis M; were translated or rotated slightly, this would have
a small effect on R;_.», its linking neighborhood with the region with medial axis M,, but
would otherwise have no effect on the other regions in the configuration. On the other
hand, a small translation or rotation of the same region in Figure 6.4 would produce
a greater alteration of the linking neighborhood of the region with medial axis M, and
would also impact the linking neighborhood of the region with medial axis Ms;.

In the next section, we introduce invariants of both closeness and significance which
take values between 0 and 1 and which are defined in terms of volumes. These invariants

may be computed using the medial linking structure.

6.5.3. Measuring closeness and significance of regions from the linking struc-
ture. For a pair of regions €2; and 2;, we define the following measure of closeness, which
we shall denote by C"

VOI(QZ‘ N Ri—)j) + VOl(Qj N Rj_n')
VOl(RZ‘_U') + VOl(Rj_n*) .
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For the region €2;, we define a significance measure, which we shall denote by .5, as follows:

VOl(Qi N Rz)

(6.20) () = — T

Remark 6.5.1. For the case that Q = Q; [, there is a relationship between the two
comparison measures. Since the linking neighborhoods satisfy Ry .o = R; and Ry, =
Ry, the value of C'(£21, ) will be bounded above by the sum of the values of S for each

region, i.e.,

vol(21 N Ry—2) + vol(22 N Ry_y1)
vol(R1_s2) + vol(Ro_1)
vol(21 N Ry) + vol(22 N Ry)
h vol(Ry) + vol(Ry)
vol(21 N Ry)  wol(Q2 N Ry)
vol(Ry) vol(Ry)

= S() + ().

(6.21) C(Q, Q) =

We can combine these two measures to yield a “tiered graph.” Each region 2; rep-
resents a vertex of the graph, with each vertex weighted by the significance measure
S(€2;). There is an edge between two vertices if the regions to which they correspond are
linked. The edge between the vertices representing €2; and €2; is weighted by the value
of C'(€2;,9;). Then the closeness and significance measures may be viewed as defining
“height functions” on the graph since they induce multiple “tiers” or levels of compari-
son among the regions. That is, by first considering the highest values of the comparison
measures and successively filtering the graph into subgraphs, one may obtain orderings
of the regions based on their varying levels of relative significance and proximity to other

regions.

Remark 6.5.2. Although not proven in this dissertation, we believe that the measures
of closeness and significance are continuous under sufficiently small generic perturbations

of the regions, which would provide a stability result for the graph structure.
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We obtain the following proposition for the application of the linking structure to

multi-region shape analysis.

Proposition 6.5.3. Forn < 6, let ¢ € DEmb(X,R"™) be a generic embedding defining
a Blum medial linking structure associated to regions {;}!_,. The closeness and sig-
nificance of the regions and the tiered graph can be computed directly from the linking

structure using the integral formulas (6.24) and (6.25).
PROOF. Define the following multivalued functions on M;:
1
(6.22) ci = / Xunri,; - det(l —t7; (Si)raa) dt,
0
1
(6.23) di — / N, - det(T — 10, (Si)raa) dt.
0

Thus, ¢; is a line integral over the portion of the radial line within Q; N R,_,;, while
d; is a line integral over the portion of the linking line within the entire j—th linking
neighborhood R;_,;. We may then integrate these functions over the medial axis, as M;

parametrizes such lines. Therefore, the formulas for C(€;, ;) and S(§;) are

/ CZ’I"ZdMZ‘i‘/ Cj'T'dej
M; M;

(6.24) C(Q, Q) = :
/N d; - U; dM; + /N d; - l; dM;
Mi Mj
and
/N Ci Ty dMZ
(6.25) S(Q) = Sk

6.6. Future directions

We conclude with a brief discussion of some future extensions involving the Blum

medial linking structure.
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Throughout this dissertation, we assumed that a generic embedding defines a collec-
tion of ¢ disjoint regions. Eventually, we wish to remove the restriction that the regions
be disjoint and allow for the possibility of regions to be tangent along a portion of their
boundaries or lie within other regions. This is a more practical assumption from the
perspective of medical image analysis, and has the potential to be of use in applications
involving the presence of tumors inside organs.

In addition, it is desirable from the perspective of medical image analysis to relax
the conditions on the Blum medial axis of a region and allow for more general medial—
type structures, known as skeletal structures; see [14]. Like the Blum medial axis and
radial vector field, a skeletal structure consists of a Whitney stratified set M and a
multivalued radial vector field U defined on M consisting of vectors that point from
M to the corresponding sphere tangency points on the boundary. However, the radial
vector field of a skeletal structure need not satisfy all of the special properties that are
satisfied in the Blum case; for instance, radial vectors based at the point xqg € M may
have different lengths, may not be orthogonal to the boundary, and they need not make
the same angle with 7}, M. Damon is extending the theory of the linking structure for
the situation in which some or all of the elements in a given collection are defined by
skeletal structures, rather than regions with Blum medial axes.

Furthermore, Pizer is beginning the process of implementing the linking structure
for use in shape analysis involving configurations of objects in medical images. Just as
a medial representation of a single object has proven to be an effective tool in medi-
cal imaging, we hope that the natural extensions of medial analysis which the linking

structure provides will prove beneficial in the area of multi-object shape analysis.
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