
Mary Parmelee. Design For Change: Ontology-Driven Knowledgebase Applications For
Dynamic Biological Domains. A Master’s Paper for the M.S. in I.S. degree. November,
2002. 107 pages. Advisor: Brad Hemminger

Post-genomic biology is producing a plethora of rapidly changing complex data. Yet

extracting useful information from this data is limited by current knowledge management

methodologies. Biological knowledge management is complicated by ambiguous

nomenclature, cultural differences between biologists and computer scientists, and

conventional database technology that was not designed to support rapidly changing

complex domains. A recent trend in ontology-driven database design has emerged to

address this challenge. While ontologies provide effective knowledge models, attempts

to transform ontologies into knowledgebases have revealed an impedance mismatch or

ontology transformation gap. A unique methodology called Ultra-Structure Theory (UT)

may provide an ontology transform solution that supports large scale, dynamic biological

domains by expressing the complexity in data rather than programming code. This thesis

aims to survey ontology and database theory and methodologies, and describe how UT

integrates and extends them to provide a flexible, semantically expressive knowledgebase

solution using standard relational database technology.

Headings:

Application software – Development

Information storage and retrieval--Design

Information systems—Design

Knowledge representation

Ontology

DESIGN FOR CHANGE: ONTOLOGY–DRIVEN KNOWLEDGEBASE

APPLICATIONS FOR DYNAMIC BIOLOGICAL DOMAINS

by
Mary C. Parmelee

A Master's paper submitted to the faculty
of the School of Information and Library Science
of the University of North Carolina at Chapel Hill

in partial fulfillment of the requirements
for the degree of Master of Science in

Information Science.

Chapel Hill, North Carolina

November, 2002

 Approved by:

 Advisor

 2

Table of Contents
1 Introduction………………………………………………………………….. 3
2 Background and Significance………………………………………………... 6

2.1 The Critical Bottleneck……………………………………………… 6
2.2 The Cultural Divide…………………………………………………. 7
2.3 The Nomenclature Problem…………………………………...…….. 7
2.4 The Complexity Problem……………………………………………. 9
2.5 The Current World View of Computer Systems…………………….. 10
2.6 The Ontology Transformation Gap………………………………….. 19
2.7 Bridging the Gap While Providing for Change………………….…... 21

3 Ontologies…………………………….…………………………………...….. 21
3.1 Ontological Theory…………………………...……...…………….… 21
3.2 Knowledge Representation…………………………………………... 25
3.3 Ontological Methodologies………………………………………….. 31
3.4 Ontological Perspectives…………………………………………….. 39

4 Database Methodologies……………………………………………………... 47
4.1 Relational Databases…………………………………………...……. 47
4.2 Object Oriented Databases…………………………………………... 51
4.3 Relational to Object Oriented Comparison………………………….. 53
4.4 Hybrid databases…………………………………………………….. 55

5 Ontology Driven Database Applications in Biology……………………….... 55
5.1 The Gene Ontology………………………………………………….. 56
5.2 EcoCyc Pathways……………………………………………………. 60

6 Ultra-Structure Theory…………………….…………………………………. 64
6.1 Conceptual Distinctions……………...……………………………… 64
6.2 Ontological Methodology………………………………………….... 65
6.3 Transformation Methodology……………………………………….. 70
6.4 Ultra-Structure Systems Design Strategy……………..…………….. 78
6.5 Ultra-Structure Applications……………………………………...…. 79

7 Analysis……………………………………………………………………… 84
7.1 Alleviating the Critical Bottleneck…………………………………... 84
7.2 Overcoming the Cultural Divide…………………………………….. 84
7.3 Reconciling Nomenclature…………………………………………... 85
7.4 Managing Complexity……………………………………………….. 86
7.5 Integrating and Extending Current Systems…………………………. 86
7.6 Bridging the Ontology Transformation Gap……………………….... 89

8 Discussion……………………………….……………………………………. 92
8.1 Potential Challenges and Future Research………………………..…. 92
8.2 Ontology Issues……………………………………………………… 93
8.3 User Related Challenges………………………………………..….... 93
8.4 Scalability Issues…………………………………………………….. 95
8.5 Inferencing Challenges………………………………………………. 95
8.6 Conclusions…………………………………………...……………... 96
Figure Legend………………………………………………………………… 100

 3

1. INTRODUCTION

The emergence of post-genomic biological disciplines, high throughput data acquisition

methods, and large-scale science projects are rapidly generating a plethora of complex,

biological data. While the advent of disruptive technologies such as such as mass

spectrometry and microarray technology will eventually lead to rapid knowledge

discovery and new biological paradigms, current knowledge management methodologies

are a limiting factor. However, clinically significant discovery remains dependent upon

scientists' ability to access the data, understand it, make statistical inferences based on it,

and share it among the scientific community.

One of the major challenges of post-genomic biological research is to develop

methodologies that manage this data in a context that enables the scientist to translate raw

data into workable models and viable hypotheses. Due to the volume and complexity of

the data, computers are required for data processing and storage. Although the use of

computers effectively addresses information bottleneck issues that are created by volume,

the complexity issue is exacerbated by a legacy of ambiguous genetic nomenclature, a

cultural gap between biologists and computer scientists, rapidly changing functional

requirements, and an impedance mismatch between knowledge representation and

database technologies.

 4

Since databases are the storage medium for biological data, devising a framework for

organizing and manipulating complex biological data is inherently dependent upon the

optimization of database design and implementation for knowledge management.

Data models and the databases that are derived from them will need to reflect intricate

semantic relationships between millions of biological entities. These models will be

subject to frequent change and even radical transformation as experimental results deepen

our understanding of large biological networks. Standard information system

development processes are not designed to address these issues.

A recent trend in ontology-based design methods has emerged as a means of providing a

logical semantic framework for organizing biological data. The intentional use of

ontologies is twofold: to make them available to the biological community as a semantic

resource in hope of developing defacto standards for knowledge representation, and to

use them as a basis for database design. Early nomenclature management projects have

developed into knowledge leveraging initiatives, that are developing large ontology-

driven knowledgebases. Projects such as Ecocyc and The Gene Ontology have recently

made great strides in capturing biological knowledge including complex processes of

simple biological organisms.

While ontologies provide an effective framework for representing biological knowledge

on an abstract level, efforts to map ontologies to database structures have revealed an

impedance mismatch or ontology transformation gap. Extracting knowledge from

complex biological systems requires the enforcement of a myriad of semantic constraints

 5

or rules that interact to form a body of knowledge. The ontology transformation gap

refers to the incompatibility or mismatch between ontology and database knowledge

representation systems. Without the development of extensive programmatic

augmentation, current database modeling techniques and methodologies are too rigid to

represent the multidimensional semantic constraints and syntactic dependencies that are

required for accurate knowledge representation. Even more flexible object oriented

databases have significant limitations.

Database design approaches that use existing methodologies are likely to hit a complexity

barrier at a fairly low level of usability and are not conducive to the rapid change of the

domain. Efforts to map ontologies directly within the confines of a standard relational

design require complex queries or extensive programming code in order to maintain

semantic consistency; and progress in developing new knowledge representation tools

have met with only limited success. This approach often results in suites of specialized

tools and new query languages that are expensive to develop, difficult to learn, and face

constant reprogramming in order to keep pace with the rapidly changing domain.

This thesis aims to describe a unique ontology–driven approach to database design

known as Ultra-Structure Theory (UT). UT integrates current theoretical and

methodological perspectives, and extends them to provide a practical and logically valid

methodology that bridges the ontology transformation gap and accommodates perpetual

change.

 6

This thesis will provide a foundation for analysis by: outlining the issues affecting

biological knowledgebase design, describing ontological and database theory and

methodologies, reviewing ontology-based biological database methodologies, and

describing UT principles and applications. Finally, I will provide a comparative analysis

of the advantages of UT over existing methodologies, followed by a discussion of

potential challenges, and future research.

2. BACKGROUND AND SIGNIFICANCE

Designing a repository that represents or simulates dynamic complex biological

knowledge poses a multifaceted challenge. This section will outline the dimensions of

the problem, and introduce the benefits of an Ultra-Structure approach.

2.1 The Critical Bottleneck

Although there has been a great deal of progress in the field of biological knowledge

management, the rate of production and increased complexity of biological data

continues to outpace current knowledge management capabilities. For example,

GenBank, the largest of the genomic databases, now accommodates >1010 nucleotides

of nucleic acid sequence data and doubles in size every year (Roos, 2001). Since its

inception in 1992 Genbank has stored its data in flat files, which are the relational

equivalent of storing everything in one table. There is little structure and no

mechanism for representing semantic relationships. What's more, acquiring data from

flat files requires a specialized computer program that reads the file before the data

can be downloaded and must be updated if the file format changes.

 7

The disparity between biological data production and useful data access and analysis

is likely to increase downstream in the absence of effective knowledge management

and transformation techniques. Research organizations who develop computer

systems that capture and apply the knowledge of domain experts, and make it

accessible in a flexible and cost effective manner will have a competitive advantage.

2.2

2.3

The Cultural Divide

The recent blending of the disciplines of computer science (CS) and biology has not

been without friction. Stanford molecular geneticist David Botstein, referred to it as

the "two culture" problem. Botstein theorizes that biologist's perception of open,

interesting problems might not appeal to computer scientists or mathematicians.

Moreover, since each discipline has a highly technical and complex jargon, effective

communication of problems, concepts and ideas is troublesome. Few scientists have

expert knowledge of both computer science and biological research. However, an

increasing number of computer science projects will be driven by biological

problems. These problems will likely not be pursued by biologists (Fujimura, 1995).

The Nomenclature Problem

"Biologists would rather share their toothbrush than share a gene
name," says Michael Ashburner, joint head of the European
Bioinformatics Institute (EBI) at Hinxton near Cambridge, and one of
GO's founders. "Gene nomenclature is beyond redemption."
(Pearson, 2001)

 8

Nomenclature problems in human genetics were first recognized in the 1960's. By

1979, guidelines for human gene nomenclature were presented at the Edinburgh

Human Genome Meeting (HGNC, 2001). However, resistance by the scientific

community to conform to nomenclature standards and the recent discovery that

closely related genes often exist in different organisms has significantly escalated the

terminological discord (Pearson, 2001).

The severity of the problem was recently documented when a research team in Oslo

Norway developed computer software to search for biological associations between

genes based on their co-occurrence in published paper abstracts. Testing the software

involved scanning over 10 million records in the Medline database. The scan

identified 22,008 distinct human genes of which 10,352 had aliases. For example, the

gene, SELL, or selectin L. had 15 aliases. Contributing to the problem is over 4,000

gene abbreviations that refer to multiple genes, and numerous gene homographs

between different species. One example is the yeast homologue of the human gene

PMS1, which is named PMS2; while yeast PMS1 corresponds to human PMS2

(Pearson, 2001).

Two international nomenclature workshops, held in 1997 (Blake) and 1999 (White),

concluded that due to the severity of the problem, the only cross-species attempt to

standardize gene names would be for mammals.

 9

2.4 The Complexity Problem

Emerging, data-rich biological domains such as structural and functional proteomics

epitomize rapidly changing complex systems. Rapid change of a complex

information domain evokes new perspectives or world views that attempt to explain

domain dynamics. Complex systems theory takes a holistic approach in analyzing

complex systems. This theory exemplifies the Gestaltian phrase, "The whole is

more than the sum of its parts". In this world view, systemic outcomes represent the

simultaneous interactive properties and behaviors of all parts of a complex system.

These behaviors and properties are governed by similar universal principles.

All complex systems have universal properties. Considering these global properties

of complex systems, can lead to the comprehension of system specifics in the context

of their commonalities. Identifying the universal properties of a system, characterizes

the system at a high level of abstraction. These universal simplifications can impose

a system structure that enables observers to perceive a system's integrated network of

perceptual patterns. Articulation of these principles enable us to approach the study

of particular systems with systematic guidance (Bar Yam, 2002).

In his recent publication , "Unifying Principles in Complex Systems", Yaneer Bar-

Yam of the New England Complex Systems Institute in Cambridge, MA, outlines the

goals of complex systems research (2002).

• Understand the development and mechanisms of patterns of behavior

• Understand the unifying principles of organization

 10

• Understand what is universal and what is not

• What are the classes of universal behavior and the boundaries between them

• What are the relevant parameters for description or for affecting

 the behavior of the system

• Develop the ability to capture and represent specific systems, rather than just

accumulate data about them. In this context: to describe relationships, know

key behaviors, recognize relevance of properties to function, and to simulate

dynamics and response.

• Achieve a major educational shift toward unified understanding of systems,

and patterns of system behavior.

These goals are applicable to any complex system including computer systems.

Recognizing the unifying principles of biological systems as well as that of the

computer systems in which we represent them, will produce patterns of function

that have a much higher resilience to failure and error and a higher adaptability to

changing conditions and rules. Many tools designed for specific domains can be

adapted for more general use by recognizing their universal applicability (Taylor,

2001).

2.5

2.5.1

The Current World View of Computer Systems

Systems engineering

Current systems engineering methodologies use a set of predetermined functional

requirements as a roadmap for information system development. Defining

 11

functional requirements can be characterized as defining a snapshot of the

information landscape or worldview from the end user's perspective. Figure 1

represents a typical pattern of current systems development. This method works

well for relatively stable information domains. However, functional requirements

are more descriptive than prescriptive and thus are dependent upon changes in the

end user's state of knowledge in the context of observed changes in the

information domain itself.

Although recent user-centric techniques such as "Contextual Design" (Beyer and

Holtzblatt, 1999) and "Pragmatic Product Development" (2002) have improved

the development process of functional requirements, and rapid prototyping is

enabling developers to accommodate changing functional requirements during

system development, there is currently no design methodology that focuses on

optimizing information systems to accommodate rapid, continuous change (Long

and Denning, 1995). Figures 2 (InContext, 2002) and 3 (Pragmatic

Marketing.com, 2002) diagram the "Contextual Design" and "Pragmatic Product

Development" methods. Even advanced requirements development that uses

predictive analytics for determining functional requirements such as the "Decision

Cycle Method" are based on design time optimization.

A relatively new and dynamic biological domain such as genomics is difficult if

not impossible to predict. There will likely be numerous unexpected results as

experimental inferences are elucidated. The well publicized overestimate of the

 12

number of genes comprising the human genome is one example of the potential

for inaccuracy in scientific predictions. Many biological disciplines are changing

so rapidly that modeling systems based on static functional requirements is no

longer an effective methodology for defining system requirements.

 13

Fi
gu

re
 1

:
Ty

pi
ca

l s
of

tw
ar

e
de

ve
lo

pm
en

t
lif

e
cy

cl
e

 14

Fi
gu

re
 2

:
C

on
te

xt
ua

l
D

es
i g

n

 15

Fi
gu

re
 3

:
Pr

ag
m

at
ic

 M
ar

ke
tin

g

 16

2.5.2 Database applications

All computer data is stored in a digital (0 or 1) binary format. The current world

view of digitally stored data recognizes computer programs as a special kind of

data that contains encoded instructions for the manipulation of application or end

user data (Whatis, 2002). Computer programs are written in a programming

language and translated to binary format by a compiler or assembler.

Data is human readable information that is typically written in natural language

by an end user and then converted to binary format. Data represent the facts that

are accessed, managed, and updated by programs, they provide the parameters

within which programs must act upon the data. All actions or procedures of an

application are controlled by programs that are written based on a static world

view at the time the program was created. End-users are able to modify only data

or the facts that the software manipulates, not the actions or procedures that

control the data (Long and Denning, 1995).

Databases are computer applications that manage collections of data. As with all

applications, the algorithms that define and manipulate the data are represented in

programs such as queries and stored procedures. Therefore, changes or

manipulation of the data typically involves adding, deleting or modifying

software code. Changing code requires knowledge of one or more programming

languages and frequent changes can be expensive and time consuming (Long and

Denning, 1995).

 17

2.5.3

2.5.4

Knowledge based systems

There is no standard definition of what constitutes a knowledgebase. Typically a

knowledgebase is composed of a database of domain specific information that is

optimized for knowledge extraction (Whatis, 2002). Optimization is achieved by

expressing the facts and rules of the domain in a knowledge representation

language. This expression often takes the form of an ontology, a concrete

specification of the abstract concepts that define a domain (FOLDOC, 2002).

Inference engines are software algorithms that use the rules of logic governing

knowledgebases to infer or learn new facts by deductive reasoning.

Knowledgebases and the inference engines that manipulate them are called

knowledge based systems.

Expert systems

While knowledge based systems in general are designed to capture and extract

knowledge from a knowledgebase, expert systems use a similar rule-based

approach to simulate the knowledge of a domain expert. Knowledge is collected

in the form of a rule base. A rule base is the set of all possible rules that are

applicable to a given domain. These rules generally take an "If fact→Then

conclusion" deductive format. Multiple facts can be strung together to reach more

specific conclusions. The expert system inference engine processes the rules and

generates new rules and facts from existing rules and facts by finding rules that

will fire based on given or known facts.

 18

Typically, an expert system will have an interface that asks the user a series of

questions. The answers become the "seeds" or factors from which the inference

engine bases it's conclusion. The inference engine then traverses the decision

tree, comparing these facts to every rule in the system. It reaches a conclusion

based on which rules match the given facts. Figure 4 is a simplified diagram of

an expert system that identifies birds (Beck, 2002).

An example of a rule for an eagle might be:

IF Large AND Flies AND Has a crest AND is Bald →THEN Is an Eagle.

Figure 4: Expert system model

Expert systems have high speed, high consistency, and perfect attention to detail.

(Long and Denning, 1995). Rule bases can contain over a thousand rules,

however rules are not equal to mathematical proofs. They are closer to heuristic

rules of thumb. Due to the heuristic nature of expert systems, their accuracy can

 19

decline significantly as the number of rules increase or the domains broadens.

Hence, expert systems do not scale well for broad complex biological systems.

2.6 The Ontology Transformation Gap

Ontologies capture the semantic knowledge of complex systems via logical

abstraction. They characterize the focus or aboutness of a domain by mapping the set

of representational concepts and the range of interrelations between concepts to form

the domain network as a whole. Their logical principles overlap considerably with

complex and expert systems theory.

The intricate semantic network of ontologies is typically formalized in a complex

ontology metalanguage such as DAML+ OIL (Darpa Agent Markup Language +

Ontology Inference Layer). These knowledge representation languages are

semantically expressive and syntactically flexible enough to provide a contextual

framework that preserves the semantic linkages of an ontology in a machine readable

syntax. Ontology metalanguages are intended for use by sophisticated inference

engines or agents that will crawl the proposed Semantic Web (Future WWW) and

perform complex queries. However, these engines do not yet exist in their proposed

form.

Recently ontology–driven database design has gained tremendous popularity in the

biological community as a method of addressing the nomenclature and complexity

issues of the discipline. Although many long term, large scale ontology driven

 20

database projects are underway, no clear methodology for mapping ontologies to

database schemas has been developed. Transforming biological ontologies to

database schemas requires the ability to express the syntactics of the schema based on

the semantic constraints imposed by the ontology (Biskup, 1998). Semantics and

syntactics represent complementary aspects of language, that together provide

meaning in context.

The ontological transformation gap describes an impedance mismatch between

current ontology and database schemas. This gap makes it difficult to translate

ontologies within the constructs of standard models such as Entity-Relation diagrams,

and even more difficult to translate into standard relational schemas. The structure of

the relational schema requires the use of complex queries written in a DDL (data

definition programming language) to capture most contextual semantic

representations. Object models offer more flexibility and support for complex data

types that enable more expressive semantic representations, but they are slow to

retrieve simple data types, are more programatically intensive than relational database

designs, and have scalability and support issues.

While biological ontologies have already contributed greatly to solving complexity

and nomenclature problems, their benefits for database design are limited by this

schematic mismatch, which can be ameliorated by an efficient transformation

methodology.

 21

2.7

3 ONTOLOGIES

Bridging the Gap While Providing for Change

While current information systems design methodologies are sufficient for modeling

most types of systems, typically the rate of change of a system is considered only in

the context of system maintenance. As biology and computer science continue to

integrate and expand, the velocity and pervasiveness of change and complexity of the

domain will increase dramatically. As a result, new systems design methodologies

will emerge that blend features of current models and extend them to design for

change. Ultra-Structure Theory is one such methodology.

The first layer of the Semantic Web consists of ontologies and taxonomies ... A
huge amount of this is being done very desperately in the realm of biotech, for the
human genome and new drug development. (Tim Berners Lee, August 30, 2001
keynote at Software Development East in Boston.)

3.1 Ontological Theory

Applied ontology is a form of knowledge representation. Its principles were derived

from philosophical ontology, which is the study of being or existence. Although

general ontologies exist that are not grounded in a specific domain, they do not apply

to the subject matter discussed in this thesis. Hence, I will concentrate this

discussion on domain ontologies.

Ontologies represent the complex whole of a conceptual space or domain by

specifying the sum of its parts or the set of entities that exist within that space, and

the set of interactions or relationships that hold between those entities. Ontologies

 22

are typically guided by logical rules of inference, usually in the same first order logic,

"If→Then" form that is used by expert systems. Yet, they can range from intuitive

natural language ontologies with no formalized logic to formal ontologies expressed

in explicitly stated axioms. In this section I will begin by defining ontologically

related conceptual distinctions, followed by a brief outline of the logical principles

and premises that are inherent in ontology metalanguages.

3.1.1 Conceptual distinctions

3.1.1.1 The semantic triad

The purpose of developing a domain ontology is to create a semantically based

organizational schema or semiotic view of a domain. The goal is to provide a

common semantic structure for exchanging information about that domain.

For example, in order to apply the genetic information that is being catalogued

in numerous databases worldwide, biologists need the ability to identify

related genes across databases. This is currently a daunting task due to the

lack of semantic interoperability among these resources. Nomenclature

standardization is not feasible, and numeric classification by ID has met with

only limited success (Pearson, 2001). Ontologies provide the rich semantics

that enables biologists to makes sense of a complex information space. The

semantic benefit of ontologies has often been diagrammed as a semantic triad

(Figure 5) in which a symbol evokes a concept of a something real.

 23

Figure 5: Semantic triad

Concept

“Jaguar“

3.1.1.2 Semiotics

Semiotics is the study of signs. Its two main branches are semantics and

syntactics. Signs can be any symbol of expression that we associate with an

object or a concept. In the development of ontologies the signs that we are

typically concerned with are words. Semantics is the study of the conceptual

meaning that we attach to signs or symbols. It is related to the function of a

sign. The second branch of semiotics is syntactics, which is the arrangement

or order of signs. When applied to language, syntax is referred to as grammar

(Whatis, 2002). As I stated in the background section, semantics and

syntactics are complementary properties of a language. Together they provide

meaning in context. There is a positive relationship between semantic and

syntactic flexibility. A syntax with a narrow range usually limits the range of

semantic expressivity of that language (Stevens, 2000).

 24

3.1.1.3 Sortal vs. non-sortal predicates

The notion of sortal vs. non-sortal predicates is important for distinguishing

between predicates that are required for the definition of a concept (sortal) and

more characteristic predicates (non-sortal) that describe aspects or attributes

other than identifiers of a concept. Guarino defines a sortal predicate as:

• countable, e.g. the predicate allows a given object to be identified

amongst other kinds of objects

• temporally stable, i.e. if the predicate holds for an object at a given

time, it also holds for the same object at another time

• ontologically rigid, e.g. an object cannot lose a sortal property without

losing its identity.

In contrast, non-sortal predicates, supply properties only for individuals

already distinguished (Guarino, 1994). For example, compare the predicates

'red' and 'apple' to describe a concept of fruit. While the non-sortal predicate

'red' may be disassociated from the concept without affecting its identity,

removing the sortal predicate 'apple' from the fruit concept causes it to lose

its fruit 'type' identity (Guarino, 1994). The distinction of temporal stability

is particularly important for conceptualizing a complex changing domain.

This distinction is evident in the fact that an apple can be green before it is

ripe and red afterward, but an apple is an apple for as long as it exists as a

 25

type of fruit. These principles provide a guideline for determining whether

predicates should be defined as classes or properties of classes.

3.2 Knowledge Representation

Since applied ontologies are specifications by design, their logical principles are

inherently woven into the framework of the knowledge representation languages or

metalanguages in which they are expressed. Hence, I will describe the principles of

ontology in the context of these language systems.

3.2.1 Frames

Frame-based ontologies take an object-oriented approach to characterizing

ontologies that is similar to object oriented theory (OO). A frame is like an OO

class that represents a class of objects or instances. Like OO the frames system

has associated slots that are similar to OO attributes. The concepts in these slots

may be frames themselves with their own set of attributes. Slots have type

constraints such as 'kind-of' that allow for type-subtype subsumption inheritance.

Frames also allow for the declaration of instances with the 'instance-of' slot. The

semantic constraints of frames are described in the Open Knowledge Base

Connectivy (OKBC) standard. Frames are intuitive and provide basic reasoning

for the development of simple taxonomic hierarchies (Stevens, 2000).

 26

3.2.2 Description logics

Rather than locking the ontology into a hierarchical tree structure, description

logics (DL) generate taxonomies on the fly by describing but not defining

primitive concepts and relationships then combining them to create complex

concepts and relationships. For example the concepts of protein and reaction can

be joined with the relationship catalyzes to define the composite concept of

enzyme, a protein that catalyzes a reaction. The goal is to create ontology-based

expert systems that allow an inference engine or reasoner to automatically

generate new concepts based on the combinations of existing concepts thereby

automatically generating logically consistent taxonomies. Description logics

provide for richly expressive ontologies. The trade off is that more expressive

languages require a more complex, processor intensive reasoner, which could be a

scalability issue for complex systems (Stevens, 2000).

3.2.3 Hybrid systems

More recently metalanguages such as DAML+OIL have combined the benefits of

frame based and description logic models. Table 1 is a summary of ontological

definitions, and Tables 2 and 3 outlines the description logic as the set of

constructors and axioms associated with DAML+OIL (Stevens, 2002).

 27

CONCEPT DESCRIPTION EXAMPLE

Concepts class, set, type, predicate event
, idea, object

 Properties concepts that are attributes of
other concepts weight, age, location

 Taxonomy hierarchy of terms representing
concepts with inherited properties

Dog → mammal
 is a

Relationship action, process, role, function Runs, catalyzes, freezes
Primitive
concepts

Properties are necessary but not
sufficient

All cats have tails but
not all tails belong to cats

Defined
concepts

Properties are both necessary and
sufficient

All cats purr and only cats purr
If mew→Then a cat

Constraints Data type, cardinality, domain,
range

String, max=1,
Biology, 0 <= X <= 10

Instances A concrete member of a class Concept = person
Instance=Mary Parmelee

 Nominal Concepts not instantiated by type Italian cat = cat born in Italy

An ontology concepts+properties+axioms+valu
es+nominals Ontoweb Portal

knowledgebase ontology+instances Clinical domain KB
Knowledge
based system

Ontology+instance+inference
engine Cyc Knowledgebase

Metalanguages
Data structuring framework for
ontology expression

relational model, frames,
description logics

Table 1: Ontological Concepts Summary (Stevens,2002)

 28

Ta
bl

e
2:

 (S
te

ve
ns

, 2
00

2)

 29

Ta
bl

e
3:

 (S
te

ve
ns

, 2
00

2)

 30

3.2.4 Other metalanguages

Ontologies may also be expressed in various types of markup languages that were

not specifically designed to represent ontologies. The most prevalent of these is

the Resource Description Framework (RDF), a semantic markup language that

was designed to facilitate resource discovery and semantic interoperability of

World Wide Web (WWW), resources. RDF is a sanctioned standard of the World

Wide Web Consortium (W3C), and is the primary language associated with the

W3C Semantic Web project. Because RDF was designed to represent the

semantics of existing heterogeneous WWW resources, it is a highly flexible and

semantically expressive language.

The cornerstone of RDF is the RDF statement or triple, which captures semantics

by linking resources in a subject, (has) predicate, (points to) object format. RDF

data models are visualized as graphs that reflect the semantic connections

between resources. Figure 6 (Lassila,1999)is an excerpt from the RDF model and

syntax specification that illustrates a basic RDF triple statement and it's associated

data model that represents the sentence "Ora Lassila is the creator of the resource

http://www.w3.org/Home/Lassila". In the data model, the sentence subject is

represented as an oval, the predicate as the connecting arc between subject and

object, and the object as a rectangle. The arc is directional, with the arrow always

pointing from the subject to the object of the sentence.

 31

Figure 6: RDF statement and graph model

 Subject (Resource) http://www.w3.org/Home/Lassila
 Predicate (Property) Creator
 Object (literal) "Ora Lassila"

3.3 Ontological Methodologies

There is no standard methodology for building ontologies. There are a variety of

stage-based models, and a few evolving prototype models. Yet there are a number of

commonalities that roughly correlate to standard systems analysis practices.

Regardless of the particulars of each model the following phases apply to most

existing methodologies (Stevens, 2000):

• Setting domain and range: most methodologies develop at least a loose

representation of the reference domain boundaries in order to determine the

ontology's purpose and scope. These may range from informal verbal

definitions to formal specifications including functional requirements.

• Knowledge Acquisition: The process of acquiring the knowledge that will

sufficiently represent the reference domain. The main sources are domain

 32

experts, but may also include documentation, artifacts, observations, relevant

literature and other ontologies.

• Conceptualization: This is the backbone of the ontology. It is where the bulk

of the logical assumptions and inferences are determined which enables the

ontology to take semantic shape. It involves identifying key concepts that are

representative of the domain, defining them based on their properties

determining the relationships that hold between them, and thereby structuring

domain knowledge into a conceptual schema.

• Documentation: Creating an informal specification of the ontology including

concept definitions, and notation of the logical assumptions that identify the

properties and relationships. Ideally this process would integrate standardized

definitions and cite their sources as well as provide a detailed documentation

of the methodology.

• Formalization: Formalizing the ontology in a machine readable format. This is

typically an ontology metalanguage but could also be a database schema and

associated programming code.

• Testing: This involves prototyping the ontology for purposes of testing based

on a given set of criteria. Criteria might be in the form of competency

questions, verifying requirements, or comparing the ontology's performance

against other types of ontologies.

 33

3.3.1

3.3.1.1

Stage based models

Stage based methodologies can be divided into three strategy types based on

where the organization process begins in terms of the concepts representing the

source or reference domain: top down, bottom up and middle out. In this section,

I will describe each strategy in the context of example ontologies to which they

apply.

Top down strategy

As the name implies, top down strategies are built on a general to specific axis.

They begin with broad, high level concepts, then map increasingly more

specific concepts and their attributes into a into a type-subtype hierarchy.

Maedche and Staab (2001) claim to "capture the commonalities of virtually all

ontology models" with a frame based top down strategy of evaluation they call

"a semiotics view of ontologies". This strategy defines an ontology as a

lexicon containing two reference functions that link terminology, syntax, and

semantics: a set of concepts including a single root concept classified in the

form of a taxonomy; and template slots, which represent relations specifying a

concept-relation or domain-range pair.

Its overall structure is a lexicon containing the union of sets of signs for

concepts and relationships. Elements of the formalization process satisfy both

reference functions. The taxonomy serves as syntactical reference function

linking the terminology to a structured syntax, while the concept-relation pairs

 34

provide semantic constraints that give the structure meaning. All concepts are

taxonomically related by transitive inheritance of root characteristics, meaning

each sub-type concept inherits the characteristics of its supertype or parent

concept. Finally, the template slots can be satisfied indirectly by range of

value restrictions affecting properties.

3.3.1.2 Bottom up strategy

Bouaud's "Methodological Principles For Structuring Ontologies" suggests

that ontologies should be built from the bottom up in a tree hierarchy, leading

to the root of "Entity". Bouaud proposes that we must first fix the meanings

of terms or "normalize" them on order to compensate for the computer's lack

of ability to interpret semantically. This process is called "fixing the necessary

intensional conditions of types." In order to normalize terms we "type" them

by relating them to domain concepts or categories of thought and then making

subsumption-based inferences that rely on the meaning of these category

types. A category type is defined intensionally in terms of necessary and

sufficient conditions, then it is expressed extensionally in its essential

characteristics or properties. These types become the basic modules or

building blocks of the ontology.

Following normalization, building of the ontological tree structure is guided by

four principles of structural organization. First, the similarity principle defines

the basic meaning of a taxonomic link. It states that a "child" type inherits the

 35

characteristics of the type that subsumes it, called its "parent" type. The

specificity principle states that a child type must have a "specific difference"

from its parent type, a distinctive property that the parent type lacks. Third,

the opposition principle, organizes siblings in "opposition types" that are both

distinct and incompatible with each other. The final principle, the unique

semantic axis principle, combines principals one and two in requiring that all

(child) subtypes differ from their (parent) supertype by a common property or

axis, and from sibling subtypes by a unique property or value (Bouaud,1995).

The resulting tree structure is a subsumption hierarchy in which the semantic

meaning of each type is dependent upon both its position in the tree and its

intensional distinction from other types (Bouaud, 1995). In this manner, the

semantic infrastructure is built into the controlled vocabulary itself, and

defined by the total set of relations between classes and properties. Moreover,

deriving the ontological terminology from existing vocabulary and then

building the semantic rules of inference into this vocabulary, maximizes the

communication function, while minimizing ontological restrictions (Jacob,

1997).

3.3.1.3 Middle out strategy

The middle out life cycle is modeled by Uschold and King's "Enterprise

Ontology" (1995, as cited in Jones, et al, 1998). In the first stage the

ontologist identifies a clear scope and focus for the ontology via a written

 36

statement of purpose. This is followed by a "middle out" scoping process that

begins with identifying the core (key) concepts in an ordered list. Then the

hierarchy is built out from these concepts through generalization or

specialization. Next, the ontology is formalized or coded into a formal

language. Finally, the ontology is evaluated based on one or more frames of

reference, such as practical application in the form of implementation testing.

The first step of this approach contrasts with evolving prototype models such

as the Methontology and IDEF5 models, which have specifications, but no

clear statement of purpose (Jones et al, 1998). One weakness of the

"Enterprise Ontology's" strategy is its lack of guidelines for identifying key

concepts (Jones et al, 1998). However, this process is easily supplemented

with guidelines adopted from current ontological analysis such as Bouaud's

"Methodological Principles for Structuring an Ontology" (1995), and

Guarino's notion of sortal vs. non-sortal predicates (as cited in Jones, et al,

1998).

The "Toronto Virtual Enterprise" (TOVE) ontology, developed by

Grunninger and Fox (1995, as cited in Jones, et al, 1998) shares a stage based,

middle out strategy with the "Enterprise Ontology". However, TOVE's

fundamental distinction from other ontologies lies in it's definitional

processes. TOVE identifies ontological concepts and their relational terms

through indirect specification in the form of "competency questions", while

 37

the "Enterprise Ontology" use a more direct, brainstorming approach (Jones,

et al, 1998). The former bases ontological terminology on the language of the

developing ontologist, while the latter defines ontological terminology based

on the existing language of the domain. Another distinguishing feature of

TOVE is that it defines terminological semantics directly with stated axioms,

while the "Enterprise Ontology" implies semantic rules of inference via the

coherence of the relational structure rather than stating them directly (Jacob,

1997). Lastly, because TOVE bases the ontology on the task of question

formulation, its potential for reusability is limited (Jones et al, 1998).

Lastly, it's important to note that ontologies are rarely fully defined in a single

linear process. Inefficiencies in the form of inaccuracies or omissions will

likely emerge with further implementation testing. These must be corrected

through extension or refinement of the ontology. This "unspecified feedback

loop" highlights the fact that although stage-based approaches appear to be

linear, building ontologies is always an iterative and dynamic process.

3.3.2 Evolving prototype strategy

The quintessential evolving prototype methodology is the Methontology, which

advocates simultaneous knowledge acquisition, integration, documentation, and

evaluation of the ontology. What makes this methodology unique is that it is

designed as a domain expert ontology development guide. The conceptualization

is prototyped by creating a set of intermediate representations that "bridge the gap

 38

between how people think about a domain and the languages in which ontologies

are formalized" (Blaquez et. al., 1998).

The methodology includes detailed instructions on building these intermediate

representations of the ontology. Since the modeling process is incremental, it

builds from simple associations to more complex iterations. This methodology,

enables domain experts who are unfamiliar with ontology development methods

to build ontologies themselves (Blaquez et. al., 1998).

An ontology editor further guides the domain expert in the development process

and automatically codes the ontology in a knowledge representation language.

Automatic encoding both expedites the formalization process, and enables the

domain expert to transform the ontology into machine readable form without

learning complicated coding languages. Figure 7 is an overview of the

Methontology process.

 Figure 7: Methontology development process

 39

3.4

3.4.1

Ontological Perspectives

The majority of ontological methodologies conceptualize based on an object oriented

world view of the reference domain, centralizing the ontology around concepts that

represent the things or objects in a domain. Recently however, a new emphasis on

modeling more varied world views have extended the functionality and application of

ontologies to include process, meta-ontologies, and semantically integrated ontology

networks.

Process ontologies

Process ontologies take a process rather than object-oriented world view of the

reference domain. Although process ontologies are not new, they are gaining

more attention recently as appropriate methodologies for optimizing the semantic

expressiveness of process oriented domains. Process ontologies essentially invert

the object oriented world view. It essentially groups objects based on the common

processes that they apply to rather than their common definitions of existence.

This enables organization of a reference domain based on the meaning of its

function or what it "does", rather than what it "is". Figure 8 diagrams a process

ontology that was developed by developed Klein and Bernstein (2002) have a

process ontology methodology that models web services for the purpose of

facilitating information retrieval. Process ontologies can be derived from existing

process models such as work flow models using standard modeling primitives

such as tasks subtasks, resources, inputs, outputs, and exceptions.

 40

Figure 8: Process ontology diagram

The key components of a process based ontology as defined by Klein and

Bernstein (2002) are:

• Attributes: Processes can be annotated with attributes that capture such

information as a textual description, and typical performance values such

as how long a process takes to execute.

• Decomposition: A process can be modeled as a collection of processes that

• can in turn be broken down or “decomposed” into sub-processes.

• Resource Flows: All process steps can have input and output ports through

which resources flow. One innovation we use is to recognize that

 41

processes can be divided into ‘core’ activities as well as those involved in

coordinating the flow of resources between core activities This insight

allows us to abstract away details about how sub-processes coordinate with

each other, allowing more compact service descriptions without sacrificing

significant content.

• Mechanisms: Processes can be annotated with the resources they use (as

opposed to consume or produce). For example, the Internet can serve as a

mechanism for a process.

• Exceptions: Processes typically have characteristic ways they can fail and,

in at least some cases, associated schemes for anticipating and avoiding or

detecting and resolving them. This is captured by annotating processes

with their characteristic ‘exceptions’, and mapping them to processes

describing how these exceptions can be handled.

Another factor that Klein and Bernstein stress is the notion of accounting for

every possible use for a given process. They address this issue with a specialized

process query language (PQL) that defines query algorithms to retrieve processes

not explicitly indexed as serving a given purpose. They accomplish this using

query mutation operators (2002).

 42

3.4.2

3.4.3 Meta-ontologies

Upper level ontologies

Upper level ontologies are important for ontology sharing and integration of

domain ontologies. They map high level generic or core concepts that represent

interdomain commonalities. They can include generalizations of process or task

as well objects and concepts. Figure 9 shows the Sowa’s upper ontology (Sowa,

2001)

Figure 9: Sowa's Upper Level Ontology

Meta-ontologies are ontologies that conceptualize other ontologies. They can be

object or process oriented. Meta-ontologies describe metadata about ontologies

 43

and their associated elements. Meta-ontologies can also be used as a sort of

ontology prototyping system for capturing changes of an evolving ontology called

an evolution ontology. Figure 10 is an example of a meta-ontology that models

interoperability issues between two ontologies called the Semantic Translation

Ontology or RDFT (Stevens, 2002).

Figure 10: Meta-ontology example

3.4.4 Integrated ontologies

Integrated ontologies are concerned with combining and blending existing domain

ontologies that were not originally designed for interoperability. The source

ontologies may have conflicting formats, and may be defined using incompatible

approaches or different domains. The goal of integrative ontologies is to

transform disparate source ontologies into a common view of the application

 44

domain (Missikoff, 2002). The European Information Society Technologies

(IST) project has developed the "Harmonize" Local As View (LAV) approach to

ontology integration.

Harmonize researchers have identified two main groups of "clashes", that they

attribute to "differences in the conceptual schemas of two applications attempting

to cooperate"(Missikoff, 2002):

• Lossless clashes: are clashes that can be reconciled without loss of

information. Examples include:

o naming clashes, where two terms represent the same concept

o structural clashes, where information elements are grouped

differently

o unit clashes, where the same concepts are represented with different

units of measure.

• Lossy clashes: cannot be reconciled without loss of information. These

usually involve Precision gaps, where the same concept is represented at

different levels of granularity. Examples include:

o Measured vs. approximated information.

o Specific versus general descriptors such as 'structural protein' vs,

just 'protein'.

Harmonize has developed a frame-based ontology integration metalanguage

called the Object Process Actor modeling language (OPAL) and associated

 45

ontology management system called SymOntoX. The SymOntoX interface shows

an integrated domain view that divides ontologies into layers representing levels

of concept granularity. The top layer or upper domain ontology (UDO) contains

high level concepts such as 'actor', 'process', 'event' and 'goal'. The bottom layer

or lower domain ontology contains primitive concepts such as Dalton or

molecule.

It is relatively easy to find common or agreed upon definitions at the upper and

lower end of the spectrum. The more divergent middle layer contains the

application ontology. This ontology can vary dramatically between applications

depending on the problems encountered, logic used, methodology, cultural

differences and underlying technology, which "often contaminates the conceptual

model" (Missikoff, 2002). For instance, nomenclature problems are likely to

surface here for a genomic application.

Harmonize comprises and provides for the domain expert, a descriptive

framework called an Integrated Meta Ontology (IM) for a given domain. This

framework consists of set of upper and lower level concepts derived from domain

industry standards. Participants who would like to exchange information without

changing their proprietary schema can simply annotation their local conceptual

schema (LCS) with the concepts provided by harmonize. Annotation involves

assembling primitive constructs or concepts from the IM to map defined concepts

in the LCS.

 46

The annotated LCS provides a semantic reference for each local schema for the

purpose of information exchange. In this manner the harmonize system acts as an

ontology translator enabling participants to both export and import information

according to their unique schema. Local schemas are transformed to a common

representation for exchange called the Harmonise Interoperability Representation

(HIR). Harmonize is currently developing a model for the European tourism

industry (Missikoff, 2002). Figure 11 is an overview diagram of the harmonize

approach to ontology integration.

Figure 11: Harmonize ontology integration system

Local Schema

Customisation phase

TO1

Customisation
Tool

Harmonise
Template

Custom
Reconciliation

Rules

Reconciliation
Engine

Cooperation phase

TO1

Local Data

Custom Harmonise
Gateway

Harmonised
data

Minimum
Ontology

 47

4 DATABASE METHODOLOGIES

Database methodologies are essentially logical collections of constructs used to define

and represent data structure and relationships. They include conceptual models that

represent logical data representation, and physical models that represent how the data is

structured in the database (Yang, 2002). Although biological databases encompass a

wide range of database methodologies, in general, most major projects use either the

relational or object-oriented approach. In this section, I will provide a brief overview of

relational, object oriented and hybrid databases and their methodologies

4.1 Relational Databases

Relational databases are represented as a collection of data entities, stored in tabular

format. Each table is called a relation and is stored as a separate file in the database.

Relations hold sets of entities that are semantically linked by their common

characteristics. Relations are linked to each other by their unique identifiers or

primary key attributes.

4.1.1 Entities as tables

An entity is a person, place, thing or event about which data is being stored.

An attribute is a characteristic or property of an entity. Each row or tuple in a

relation represents an entity and each column an attribute of that entity. The

semantic linkage within a relation is represented by the intersecting field between

an entity and its characteristic or attribute (Yang , 2002). The intersection value

represents a single characteristic of the associated entity. Relations apply no

 48

syntactic constraints to attribute order. Figure 12 illustrates the structural

representation of a relation (Berners-Lee, 2002).

Figure 12: Relation example
A

ttr
ib

ut
e

Entity Value

The tabular structure of the relational database constrains semantic linkages to

binary relations of primitive or atomic entities. Other intrarelation constraints

include (Yang, 2002):

• Attributes have range of values called a domain

• Attributes within a column must have the same data type (eg. string,

integer)

• Entities (rows) must be uniquely identified by one or more key attributes

called a primary key (entity integrity)

• Key attributes must not depend on other attributes to describe the entity

• Non-key attributes are functionally dependent on key attributes

 49

4.1.2 Interrelational structure

Relational models also represent interrelations or relationships between tables.

Semantic expressiveness is supported in relational models primarily by linking

related tables by their key attributes to form an interconnected network of

relations. While uniquely identifying entities with primary keys ensures entity

integrity, linking tables with primary keys, called foreign keys, ensures referential

integrity. This means that tables having foreign key dependencies or matching

foreign keys in related tables, can not be deleted, hence the semantic linkages are

preserved. Figure 13 represents a simple relational model with primary to foreign

key relationships that depicts a student, enrollment, course relationship (Yang ,

2002).

AMSAT

AVSAT

TYPE

ABDate

ASFName

ASLName

PKSPID

STUDENT

ASemester

AEnrollYear

FKCourseID

AMidGrade

TYPE

AFinGrade

FKSPID

ENROLLED_IN

CPK

ACredit Hours

AILName

AIFName

TYPE

PKCourseID

COURSE

FK = Foreign K ey

CPK = Co mposite Pr imary K ey

CAC = Compo sit e Attribut e
Component

PK = Primary Key

A = Attribute

ATTRIBU TE TYPE KEY

l

Basic hierarchical co

mutually exclusive (d
Figure 13: Relational mode

nstraints such as supertype-subtype relationships, as well as

isjoint) and overlapping sibling relationships are also

 50

supported. Figure 14 diagrams an example of hierarchical constraints describing

faculty and student types of people (Yang , 2002).

Figure 14: Relational hierarchy

O = overlapping
D = disjoint

d

O

O

supertype/subtype

subtype

supertype

4.1.3 Query languages

The structure of the relational model provides a framework of primitive semantic

linkages from which more complex semantic relationships are expressed through

query languages or programming. Based on relational algebra rules, queries filter

large sets of relational data by selecting specific rows and columns, applying

parameter constraints that return data within a specific range of values, and

deriving data via functions. A sample query for the relational model in Figure 14

might be: "What are the names of all students who are enrolled in a theology

course with course number T2?"

This query would take three steps:

• Find CourseID =T2 in the COURSE table

 51

• Find CourseID =T2 in the ENROLLED_IN table and return all associated

student (SPID) numbers

• Find student (SPID) numbers in the STUDENT table and return

associated Student Names

4.2 Object Oriented (OO) Databases

Object oriented database design combines database design with object programming

language. OO defines a database as a set of objects, properties and operations.

4.2.1 Entities as objects

Database Objects are modeled as OO programming language objects. While

relational databases fragment complex data into pieces of atomic or primitive

data, by storing data together with the methods to access that data, called

encapsulation, object oriented databases are able to store complex data types.

They also support a wide range of data types including user defined data types.

4.2.2 Relationships and navigation

Object oriented design supports four types of semantic relationships: inheritance

or type-subtype, association, whole-part (aggregation), part –whole (inverse)

(Chandler and Hand, 2002).

Querying of objects, called navigation, involves searching objects for pointers to

other objects. This paradigm is more semantically expressive and flexible than

the relational model. Figure 16 illustrates the same student, enrollment, course

 52

relationship as the relational model in Figure 15. This example shows two

student objects and a course object, the enroll relation is handled with code and

interobject pointers. The student objects have information about what courses

that student is taking and the course object has information about which students

are enrolled in that course (Chandler and Hand, 2002).

COURSE OBJECT

Figure 15: Object model example

STUDENT OBJECTS

Querying for the names of all students enrolled in course number T2 would be a

two step process written in the same programming code as the defined objects:

• Search the COURSE Index and find CourseID=T2)

 53

• Follow Student Pointers to STUDENT object and return each associated

student name

4.3 Relational to Object Oriented Comparison

Since the basic relationships between entities are built into the data structure of

relational databases, in general they are best applied to domains with a large number

of data instances, but simple relationships. Object oriented designs are more suited to

complex data schemas because interobject relationships are handled totally with

navigational algorithms (Fernstrom, 2000). Table 4 is a relational object oriented

comparison that was written by Christer Fernstrom as a technology briefing report for

the RENAISSANCE ESPIRIT Project, a database research project at Lancaster

University (2000).

 54

Table 4: Relational to Object Oriented Database Comparison

 RELATIONAL OBJECT ORIENTED

complex
data types

- supports binary large objects
(BLOBs) which are essentially
very large database columns
- database columns must
generally be simple data
elements, rather than
structures and arrays

- supports complex data types,
including user defined data types

locating data - fast at locating simple data
types
- no support for searching or
indexing BLOBs

- usually slower than RDBMS when
locating simple data types
- sophisticated algorithms used to
search for data within complex data
types

language
standards

- Major RDBMS's use a
standard language (SQL2 /
SQL92) with vendor-specific
extensions. SQL is both a
data definition language
(DDL) and a data
manipulation language
(DML).

- Many ODBMS's support object
query language (OQL) and object
definition language (ODL) which are
part of the larger Object Data
Management Group (ODMG)
standard. There are varying degrees of
compliance amongst ODBMS vendors
with the overall ODMG standard.
- unlike RDBMS's which use SQL
Insert, Update, Delete, data
manipulation is performed in the
programming language by invoking
methods on the object -- this allows
for better object encapsulation.

functions /
methods on
DBMS

- provides triggers / stored
procedures which are written
in the native DBMS language
- function / method inheritance
not supported

- object methods are typically written
in a selected OO programming
language (usually C++, Java or
Smalltalk)
- object/method inheritance is
supported

 55

4.4 Hybrid Databases

In the past five years, most major relational database management systems (RDBMS)

have incorporated basic object features such as triggers and binary large objects (or

BLOBs). These features are designed to handle the increased application complexity

required to manage complex data types such as audio and video as well as the

demand for more sophisticated searching indexing and query optimization for

complex data types. The result is a hybrid system called an Object Relational

Database Management System (ORDBMS) or universal servers. Some of the key

features that ORDBMSs provide are user defined data types and functions, enhanced

search and indexing features, and expanded support for programming languages

(Fernstrom, 2000)

5 ONTOLOGY-DRIVEN DATABASE APPLICATIONS IN BIOLOGY

There are a numerous ontology driven biological database projects currently under

development worldwide. For example, model organism databases (MODs) such as

EcoCyc model specific organisms, controlled vocabulary (nomenclature) projects such as

the Gene Ontology (GO) are concerned with semantic interoperability among the

biological community, and pathway databases model metabolic pathways of specific

organisms. While describing the range of development methodologies of these projects

is beyond the scope of this study, I will summarize two representative projects that

characterize leading methodological approaches: the GO nomenclature database and the

EcoCyc Pathways knowledge based system.

 56

5.1 The Gene Ontology

GO was developed by a consortium of MOD database curators for the purpose of

resolving gene nomenclature issues in gene related database annotation. Instead of

attempting to reconcile the existing nomenclature system, GO aims to develop a

consistent annotation system that describes and relates genes based on their

characteristic functions rather than their organism of origin.

The goal of the GO project is to address the gene nomenclature problem by

developing a standardized controlled vocabulary to describe the function, processes,

and location of a gene product for use as standardize gene annotation across model

organism databases. Curators from database projects such as the Drosophila

community's FlyBase, the Saccharomyces Genome Database, and the Mouse Genome

Database, joined forces to develop a centralized database of terms that models the

function of genes in all organisms (Pearson, 2001).

5.1.1 Ontological methodology

GO uses a frame-based process ontology methodology as the basis for database

schema development. GO is actually three separate ontologies that specify gene

function, process, and cellular location, with a combined total of over 10,000

concepts. These upper level concepts are organized into type-subtype and class-

property hierarchies using the frame defined relationships `is a kind of'' and `is

part of ' to specify gene product roles (Stevens, 2002).

 57

Every concept in the GO ontology is manually assigned by curators who attach

gene instances to GO terms and resolve any nomenclature collisions. Common

issues such as homographs referring to different processes are typically resolved

by adding disjoint subtypes to the representing hierarchy. GO coordinator Midori

Harris describes the process, "The vocabularies are dynamic - a work in progress"

(Stevens, 2000). Figure 16 is an example of the GO as rendered in the AmiGO

ontology browser (GO, 2002).

 Figure 16: GO ontology hierarchy

 58

Although GO supports multiple inheritance type-subtype (multiple types or

parents for one subtype) and synonymous relationships, many of the relationships

in GO are expressed implicitly or inferred by position in the hierarchy (Stevens,

2000). This approach imposes syntactic dependencies that will likely result in

significant scalability issues for direct database schema implementation in rapidly

changing domains. For relational schemas direct mapping could easily involve a

network of thousands of tables representing specific nodes in the hierarchy, and

for object oriented schemas it would involve the programmatic creation of

thousands of complex objects and their respective interconnecting persistent

pointers.

5.1.2 Transform methodology

GO does not prescribe a specific methodology for ontology to database transform,

nor does it recommend implementation in a specific database technology.

However, the project has implemented the GO in a My SQL relational database

that addresses schema complexity by incorporating an RDF style graph model.

This model allows for schema simplification by grouping type-subtype concepts

into common tables and denormalizing recursive relationships with a graph path

layer that represents all hierarchical relationships in the schema. This is

accomplished with two types of graph path tables, one represents the graph nodes

that identify two concepts as ancestor and child and assigns them a unique graph

ID and the other is represents the graph arcs that assign each term to a graph ID.

Figure 17 is an excerpt of the GO schema that illustrates how graph path

represents hierarchical relationships.

 59

Ais_root

Aname

AIs_obsolete

TYPE

Aterm_type

Aacc

PKid

TERM

FKterm term1_id

FKterm term2_id

Arelationship_type_id

TYPE

Arelationship_type

PKid

TERM2 TERM

Arank

FKterm_id

TYPE

FKgraph_path_id

GRAPH_PATH2TERM

FKterm2_id

TYPE

FKterm1_id

PKid

GRAPH_PATH

CPK

FK = Foreign Key

CPK = Composite Primary Key

PK = Primary Key

A = Attribute

ATTRIBUTE TYPE KEY

Figure17: GO to graph path relations

FKterm term1_id

FKterm term2_id

Arelationship_type_id

TYPE

Arelationship_type

PKid

TERM2 TERM

FKterm2_id

TYPE

FKterm1_id

PKid

GRAPH_PATH

This method puts some of the ontology modeling complexity into the data, which

greatly simplifies the data model. However, due to the atomic nature of

relational database design, one side effect of this method is a more complicated

query process in order to reassemble these relationships. For instance, the GO

database site provides the following query as an example of how to retrieve all

subtypes or child terms of the term 'transmembrane receptor':

SELECT rchild.*
FROM term AS rchild, term AS ancestor, graph_path
WHERE graph_path.term2_id = rchild.id and

 graph_path.term1_id = ancestor.id and
 ancestor.name = 'transmembrane receptor'

 60

5.2 EcoCyc Pathways Expert System

EcoCyc is a bioinformatics MOD that was developed by the Stanford Research

Institute (SRI) an non-profit research center. EcoCyc describes the structure and

function of the E. coli (Escherichia coli) bacterium. The goal of the project is to

facilitate a system-level understanding of E. coli.

5.2.1 Ontological methodology

Like GO, EcoCyc uses a frame based ontology. However, EcoCyc uses its

ontology as a direct roadmap for an object oriented database schema. EcoCyc

version 5.6 has over 1700 concepts that are encoded as objects in the EcoCyc

database, including key concepts in biochemistry and molecular biology, their

associated properties and relationships among those objects (Stevens, 2000).

Figure 18 shows an excerpt of the EcoCyc Pathways object hierarchy.

 61

Figure 18: Pathways hierarchy example

5.2.2 Transform methodology

5.2.2.1 The knowledgebase

One of the key developers of EcoCyc, Peter Karp (2001) describes the

EcoCyc database as follows:

An interconnected web of frames (objects) stored in a frame
knowledge representation system (similar to an object-
oriented DB). Each frame represents a distinct biological
object (such as a gene or a protein), and the labeled
connections between those frames represent distinct
semantic relationships among the objects, such as the
relationship of a gene to its protein product, or the
relationship of a protein to a reaction that it catalyzes.

 62

Karp argues that by encoding scientific theories in symbolic form, we "open

new realms of analysis and understanding for theories that would otherwise be

too large and complex for scientists to reason with effectively". Based on this

analogy, Karp has dubbed EcoCyc a ' computational symbolic theory" which

he defines as a database that "structures a scientific theory within a formal

ontology so that it is available for computational analysis"(2001). Table 5

describes the number and types of objects in the EcoCyc version 5.6

knowledgebase.

OBJECT CLASS OBJECT COUNT
Pathways 165
Reactions 2604
Enzymes 905
Transporters 162
Genes 4393
Transcription Units 629
Promoters 740
DNA-Binding Transcriptional Regulators 100
DNA Binding Sites 854
Citations 3508

Table 5: EcoCyc Knowledgebase Objects

Encoding scientific theories in a symbolic knowledgebase refers to the ability

of a knowledge based system to infer relationships from the interpretation and

synthesis of experimental results. Providing this type of value added summary

data can aid scientists in checking theories for accuracy and consistency (Karp,

2001).

 63

5.2.2.2 The production system

Logical reasoning within a knowledge based system is accomplished using

expert systems technology usually in the form of a production system. A

production system consists of a set of rules and corresponding propositions

that the production system recognizes as being true. The rules are in first order

logic "IF→Then" form of A^B→C^D. This translates to the system as, If A

and B are present, then C and D. An inference engine searches for rules that

contain the variables on the "If" side, then fires them by adding the variables

on the "Then" side.

For EcoCyc, the production system consists of a computationally translated

production rule for every metabolic reaction in the database and a proposition

for each known growth nutrient of E. coli. Early experimental results are

encouraging. The system is able to verify that M63 minimal growth medium

is able to produce all 41 essential E. coli compounds.

EcoCyc's use of object oriented database technology allows for greater semantic

expressivity and resilience to rapid schema changes. The adaptation of expert

systems technology for symbolic computing, in Peter Karp's words," represents a

distinct nonnumerical style of computing that, allows us to exploit the power of

computational qualitative theories" (2001). Yet this implementation of a

knowledgebase is programmatically intensive and relies on a suite of add-on tools that

are costly to develop and maintain. Since it is based on current expert systems and

 64

object oriented technologies, it will be subject to the scalability limitations of its

underlying technologies and transformation methodology.

6 ULTRA-STRUCTURE THEORY

Ultra-Structure Theory (UT) was developed by Jeff Long as a theory of systems design in

1985. It aims to optimize computer representation of complex, conditional and changing

rules by finding and modeling the unchanging features of changing systems (Long and

Denning, 1995). Ultra-Structure has a unique world view of complex systems and

processes that distinguishes itself in three main ways:

i. the application of a higher level of abstraction than other systems

ii the rule-centric approach to system organization

iii abstraction of both the system domain (relational DB) the reference

 (real world) domain

6.1 Conceptual Distinctions

UT is loosely based on the work of linguist Noam Chomsky. In 1957, Chomsky

developed an abstract theory of language called the Theory of Transformational

Grammar. Chomsky postulates that every intelligible sentence conforms not only to

specific grammatical rules of the language in which it is spoken, but also to “deep

structures,” which represent a universal grammar that is innate to the human brain and

is language independent. Chomsky and other linguists have formulated

transformational rules, that transform the grammatical structure of sentences while

preserving their semantic meaning. The hypothesis is that to accurately describe the

grammar of a human language, you must discover its deep structure. Transformation

 65

rules applied to the deep structure transform the surface structure or spoken sentence

into immeasurable syntactic combinations. In this manner, transformational rules can

describe the set of all the sentences that can possibly be formed in any language

(Lechte, 1994)

6.2 Ontological Methodology

6.2.1 The world as a process

Like GO, UT has a process ontology style world view that conceptualizes what a

domain does rather than what it is. The aim is to analyze reference domain

processes and model them in an evolving prototype fashion until all logically

possible processes are represented, not just within the domain of the system being

modeled, but in the larger set of systems in which that domain exists. Long argues

that like Chomsky's universal deep structure of grammar for all languages, all sets

of systems share a deep structure. By studying the processes of domains within a

given set, transformation rules can be extracted that eventually lead to the

discovery of the deep structure of the entire complex system. The set of all games

or all music are examples of complex systems to which UT has been applied.

6.2.2 Rules as process abstractions

Ultra-Structure theorizes that since all processes are governed by rules, as such

they can be abstracted to, and represented by first order logical rules in an

"If→Then" format. Here, Ultra-Structure applies the same logical rules of

inference that are used in ontologies and expert systems to capture the semantic

 66

knowledge of complex systems via abstraction. Abstractions manage the

complexity of a system by modularizing specific concepts into more general

concepts, thereby improving system tractability.

Rules are a more abstract form of description because they are semantically

expressive and unambiguous. For example they describe behavior as well as

mechanism, and the set of rules explicitly defines the ontology of the system they

describe. "If→Then" rules can be used to describe virtually any type of

relationship between two or more concepts including user defined relationships.

UT uses a specific type of conditional "If→Then" rules. Instead of the typical

format of If A is true than decide that B must be true, UT declares that If A is true

then consider B before deciding what is true. This is a more expressive form of

declaration in that it allows for the consideration of variables that may or may not

be relevant to a decision. Variables may be strung together to represent more

complex considerations (Long and Denning, 1995). The set of all rules describing

a system represent a constituent structure analysis of the reference domain.

6.2.3 Ruleforms as rule abstractions

A scientific law is a set of one or more rules that generalizes the natural behavior

of a system. Once a scientific law is accurately represented and tested it will

reliably predict phenomena in the system to which it applies. In the domain of

thermodynamics for example, the ideal gas law (PV = nRT) states that a gas is at

thermodynamic equilibrium when the pressure and volume of a gas is equal to the

 67

product of the number of moles, the gas constant and temperature. (chemPages,

2002). This law combines the rules of thermodynamics to reliably predicting

phenomena in the system (the universe) to which it applies. In this respect

scientific laws are an abstraction of a set of one or more rules that modularizes

every possible combination of its constituent rules.

Ultra-Structure refers to laws of a reference system as ruleforms. Long argues

that to understand complex systems, we must raise them to a level of abstraction

above the observable structure, and even above the rules themselves, to the deep

structure of ruleforms that govern the rules. Long suggests that, "Rules may be

defined in terms of sets, with each set having a specified and limited possible

range or set of values. A particular rule in this definition is a particular ordered

sequence of these values" (Long and Denning, 1995). For example, a particular

rule for the first law of thermodynamics would refer to a specific instance or

value for each variable. Hence, like scientific laws, ruleforms are an abstraction

of the constituent rules that comprise them.

Ruleforms can be decomposed into an ordered set of underlying domains that

Long calls "universals". A universal is a domain or class of entities that represents

the single most general level of semantic abstraction of its members. This class

includes any subtypes or variations that are defined by individual instances of

rules. Universals themselves are defined by a set of constituent rules that declare

the existence of domain members. In this manner, constituent rules are abstracted

 68

into more complex compound rules, and the set of all applicable compound rules

are further abstracted into ruleforms or scientific laws of a system.

Long claims that "Ruleforms are to rules, what ordinary algebra is to arithmetic."

They are abstract generalizations of the structural concepts and relationships of a

system. Just as algebra uses symbols to abstractly represent numbers in order to

generalize the laws of arithmetic, Ultra-Structure uses universals to abstractly

represent entities in order to generalize the laws of a system. Long specifies his

extension of Chomsky's theory in the "Ruleform Hypothesis", which states:

Complex system structures are created by not-necessarily complex
processes; and these processes are created by the animation of operating
rules. Operating rules can be grouped into a small number of classes
whose form is prescribed by "ruleforms". While the operating rules of a
system change over time, the ruleforms remain constant. A well-designed
collection of ruleforms can anticipate all logically possible operating rules
that might apply to the system, and constitutes the deep structure of the
system (Long and Denning, 1995).

6.2.4 Structural layers

UT represents the reference system in three main levels of abstraction or structure:

the surface structure, middle structure and deep structure. The surface structure is

composed of the set of all entities, processes, relationships, and observable

behaviors that are governed by the rules defined in the system. It is the

unabstracted complex view of the actual system as a whole from which UT

extracts the rules of the system. The middle structure abstracts the surface

structure and expresses that abstraction in the form of the set of all constituent

 69

rules that govern the processes or behaviors of the surface structure. Long claims

that these rules "generate the surface structure". Finally, the deep structure is

comprised of ruleforms, the combinatorial set of ordered universals from which all

rules are constructed. According to Long, the deep structure specifies the system's

ontology by answering the questions that define the essence of the system, such as

(Long, 2001):

• What is common among all systems of type X?

• What is the fundamental nature of type X systems?

• What are the primary processes and entities involved in type X systems?

• What makes systems of type X different from other systems?

Figure 19 illustrates the three structural layers of a UT defined system (Long.2001).

observable
behaviors

rules

form of rules

surface structure

middle structure

deep structure
constrains

generates

Figure 19: Ultra-Structure structural layers of abstraction

 70

6.2.5 Substructure

A unique abstraction of the UT methodology is the substructure, which consists of

the set of universals of a system. This is the abstraction of the particular objects

of a system to classes of objects. Object classes represent not just physical

objects, but the semantic dimensions that characterize the behavior of a complex

system such as location, measurement, time period and relationship. These

classes are defined by rules that declare the existence of the class and all of its

subtypes. This would normally be the centralized structure that an ontology

would subdivide into a type-subtype hierarchy from which a data model would be

derived. But in UT this hierarchy is not reflected in the data model. Instead it is

encapsulated into a set of complex data types that share global properties and can

be manipulated much like objects in an OO database. Assembling universals into

ruleforms constitutes a new representation of an upper ontology using a DL like

methodology to create rule structure on the fly by forming complex rules from

primitive rule components.

6.3 Transformation Methodology

Just as ORDBMS systems are emerging to integrate the best features of relational and

object oriented technology, UT theory was developed with the goal of integrating the

best features of knowledgebase and database technologies to create large expert

systems that are capable of representing extreme complexity. Jeff Long explains,

A million records is small by database system standards, but a million
rules is essentially an impossible number for a traditional expert system

 71

to manage. We expect to be able to effectively handle very large
numbers of rules, numbering in the hundreds of thousands, using Ultra-
Structure techniques.

UT was designed to be implemented within a standard relational database system. By

disregarding conventional distinctions between algorithms and data and redefining the

semantic constraints of relational database design, UT has created a new level of

abstraction that overcomes the limitations imposed by conventional design

methodologies and tabular database structure.

6.3.1 Abstracting the notational system

Perhaps the most inventive abstraction of UT is that of the notational system.

Long is a notational engineer who eloquently postulates why notation is the

limiting factor of defining complex systems:

Abstraction spaces are discoveries, not inventions. We need a more
systematic way to develop and settle abstraction spaces. We may have
competence in using complex systems but we still don’t “understand”
complex systems. This is not because of the nature of the systems, but
rather because our notational systems – our abstractions -- are inadequate.
The notational systems one habitually uses influences the manner in which
one perceives his environment: the picture of the universe shifts from
notation to notation. Every notational system has limitations: a
“complexity barrier”. Using the wrong, or too-limited, a notational system
is inescapably self-defeating (2001).

UT abstracts the notational system by redefining the semantic framework of

relational design to provide a more expressive and modifiable abstraction space.

6.3.2 Redefining semantic constraints

 UT redefines the purpose of relational database tables from containers of atomic

components of complex entities and their relationships, to containers of the rules

 72

themselves. Instead of the relational paradigm, where standard manipulation of

component parts must be reassembled and manipulated by the conditional rules of

a programming or query language, 99% of the rules of a UT system can be

expressed in the data and curated by domain experts. These are the conditional

rules of the middle structure, which contains all of the knowledge of the reference

domain, expressed as data content. Expressing the rules of a system as data

enables domain experts to insert delete and modify the rules of the knowledgebase

in a simple native language format that is easy to understand and implement.

6.3.3 Abstracting the syntactic space

UT extends the functionality of the structural or syntactic space of the standard

relational database table by imposing a semantic place value constraint to support

ruleform order. Place value assigns meaning based on content and location. In

the Hindu-Arabic numeral system, place value is column position as a placeholder

of 10. In rule forms, place value is the column position as a place holder of the

universal and the domain (universal) value of a particular rule. Figure 20

diagrams the UT place value concept.

 73

Figure 20: Place value example

 U
ni

ve
rs

al

Rule Value

Each ruleform is implemented as a table that is designed to model the format of

the rules rather than the rules themselves. Table rows are the rules, which are

composed of the ordered set of individual attribute values in a ruleform.

Attributes values are of two types, factors and considerations. Each ruleform

contains at least one factor and one consideration. Factors represent the "If" side

of the "If →Then" rule format. They are the conditions by which the

considerations should be evaluated. Factors are the unique primary keys for each

rule (row), following standard normalization rules. Considerations are the "Then"

side of the "If →Then" rule format. They are non-primary key attributes that hold

the variables to be considered before a conclusion can be drawn. Figure 21

diagrams a ruleform with factors and considerations.

 74

Rule

U
ni

ve
rs

al

U
ni

ve
rs

al

Consideration Factor

Figure 21: Ruleform example

6.3.4 Rule types and ruleforms

In general, ruleforms model the syntax of all system rules called operating rules.

However, there are several subsets of operating rules that take on characteristic

ruleforms. The main distinction between types of operating rules is between

existential and compound rules. Existential rules declare entities to exist and

specify one or more considerations regarding the entities. Minimally, they take an

identifier →descriptor ruleform. An example would be name→description.

Compound rules relate existential rules by foreign keys (FK), which become

compound rule factors and considerations. There are several subtypes of

compound rules that have characteristic rule forms.

 75

Network rules relate recursive relationships between entities within the same

universal or domain. They typically take the minimal form, "universal1 FK 1,

relationship FK, universal1 FK 2". For example, if an existential ruleform

declares a universal called "resource" contains two rules, one declaring the

existence of a publication and the other an author; and the relationship existential

ruleform declares a relationship called is_written_by, then the network rule would

be publication FK (e.g. name), (is_written_by) FK, author FK (e.g. name). In

this manner the network table relates one "resource" to another similar to the way

that RDF triples relate subject, predicate and object.

Other compound rule types include authorization rules, protocol rules and

metarules. Authorization rules relate entities from different universals, defining

systematic relationships such as part→whole, sequencing and rules of precedence.

Protocol rules define related work processes such as conditional steps in a

procedure. Finally, metarules, are complex rules for reading other rules.

Metarules have query characteristics in that they are factor value filtering

mechanisms. They create custom views or masks of factor value subsets by

specifying relationship values. While other rules are clearly reference domain

knowledge and as such are expressed entirely in the data, metarules function in a

gray area between reference and information system knowledge, hence for

efficiency reasons, simple metarules may be hard coded. Since more complex

 76

metarules are more transitory, they are expressed as ruleforms. Figure 22

illustrates typical ruleforms for various types of rules.

U2, R1

Key

E=Entity
F=Factor
U=Universal
R=Relationship
C=Consideration

U1, E2

Figure 22: Rule types and ruleforms

C

Factor set

U4, CU3, F1U2, F1 U1, F1

U1, E1F

Network Rules Existential Rules

 Authorization Rules

6.3.5 Animation procedures

Along with ruleforms, animation procedures comprise the inference engine or

"competency rule engine" (CoRE) of a UT system. Although more specific code

may be necessary for rare circumstances, in general, animation procedures are

rule-form specific routines that act on universal classes of rules within the rule-

form. The main advantage of a process-centric approach to abstraction is that the

members of a class of objects share common processes and properties and

 77

therefore can be manipulated globally with the same programming routine or

method. For example, all mammals are warm blooded, all time periods have a

beginning and an end, and all measurements have units.

While most programming code is written at the middle (rule) level of abstraction,

animation procedures need to code little to no specific rules. Instead animation

procedures use the information provided by ruleforms to determine which rules

will be read in what order, and which will be executed. In this way, animation

procedures resemble OO navigation methods. Essentially, putting the rules in the

data rather than in the programming frees the inference engine to define,

determine and execute only "what" the system processes should do, the "who,

when, where, why, and how" rules are defined in the data. In the "CoRE

Hypothesis", UT claims that an incredibly small number of ruleforms and

animation procedures can define even the most complex and dynamic of systems

(Long and Denning, 1995).

The CoRE Hypothesis

UT can create “Competency Rule Engines”, or CoREs, consisting
of <50 ruleforms, that are sufficient to represent all rules found
among systems sharing broad family resemblances, e.g. all
corporations. Their definitive deep structure will be permanent,
unchanging, and robust for all members of the family, whose
differences in manifest structures and behaviors will be represented
entirely as differences in operating rules. The animation
procedures for each engine will be relatively simple compared to
current applications, requiring less than 100,000 lines of code in a
third generation language.

Table 5 provides a summary of UT concepts.

 78

Table 5:Ultra-Structure Concepts Summary

Natural Language Term Ultra-Structure
Instance Name

Ultra-Structure
Level Name

U-S Implementation

behavior, physical
entities and
relationships, processes

particular(s) surface structure system behavior

rules, laws, constraints,
guidelines, rules of
thumb

rule(s) middle structure data and some software
(animation procedures)

(no standard or common
term)

ruleform(s) deep structure tables

(no standard or common
term)

universal(s) sub-structure attributes, fields

tokens, signs or symbols token(s) notational structure character set

6.4 Ultra-Structure Systems Design Strategy

Ultra-Structure uses an evolving prototype approach that is similar to that of

the Methontology. Ontology development, documentation, ontology

transform, system development and knowledge curator training are all

produced simultaneously using rapid prototyping. A typical systems design

lifecycle for a large scale project involves iterative expansion and refinement

of the prototype until the representative set of ruleforms for the domain is

defined. This can usually be accomplished within six months of continuous

development and with 4-6 versions of the prototype. Documentation consists

of a running tally of functional requirements called a function list, and a

detailed encyclopedia of concept definitions and design assumptions

Rapid prototyping enables the domain expert to visualize and explore the

abstraction space to determine where the system needs to be expanded, while

gaining knowledge curator training. Like the Methontology's evolving

 79

prototype methodology, UT provides the same intermediate representations

that "bridge the gap between how people conceive a domain, and how it is

formalized" (Blaquez et. al., 1998).

Discovering the deep structure of a reference domain of any ontology is akin

to assembling a jigsaw puzzle, determining where the more obscure pieces fit

only becomes apparent in the context of a partially assembled framework.

Actively participating in the development process allows the domain expert to

directly assemble the puzzle, rather than describe how it should be assembled.

This method provides the context for discovery of obscure pieces that are not

predictable and would otherwise be overlooked.

6.5 Ultra-Structure Applications

UT has been implemented in several large scale applications including included

order-entry through cash-application, financial and cost accounting, inventory and

purchasing, equipment and facilities maintenance, executive information, automatic

software documentation systems.

6.1.1 Business application

While UT has been implemented in many business applications, One application

that handles order entry, inventory control and billing, has been in continuous

operation since 1986. This application supported the organization's growth from

$13 million to $100 million in annual revenue.

 80

During this time, annual maintenance costs have remained stable at approximately

$12,000. Since maintenance is handled by knowledge curators, there is no need to

employ any permanent IT staff. Compared to the 1% of revenue standard industry

cost estimates, the UT system has been 98% less expensive to maintain.

6.1.2 Document classification application

Document classification System More recently, UT has been implemented by the

US Department of Energy (DOE) as an expert system security clearance classifier

of government documents. The system includes a large knowledgebase of over

100,000 rules representing a broad range of key document concepts. This

program was awarded the “Hammer Award” by Vice President Gore’s office in

October 1998.

6.1.3 mRNA translation prototype

Experimental UT implementations have been created for legal systems, games,

artificial life, music and most recently a biological prototype application that

models mRNA translation to polypeptide.

The mRNA prototype, called CoRE 576, has demonstrated functionality as an

mRNA to polypeptide translation simulator and sample tracking system. It

includes a Network Propagation Engine (NPE) was implemented that performs

modus ponens deductions based on the protein expression knowledge rules that

 81

are expressed as data in the knowledgebase to determine the contra relationship

between entities. A simple example of a contra deduction is,

If A = B→Then B = A.

The knowledge model is designed to accommodate all logically possible

relationships occurring during translation and can be easily extended to include

new levels of organization by simply adding the appropriate rules to the data.

Table 6 illustrates entries in a network table relating bioentities.

BIOENT

Adenine

+H2N

Acid

Glycine

mRNA

+HN Mo

mRNA-0

The NPE ani

where contra
Table 6: CoRE 576 Network Rules Example
ITY1 RELCODE SEQNO BIOENTITY2

AlsoKnownAs 1 A

MustHavePart 3 Nitrogen

IsA 1 Molecule by type

MustHavePart 2 Hydrogen

Transcribes 1 Nuclear DNA

lecules MustBePartOf 1 Histadine Molecules

0001 MustHavePart 2 Adenine

mation procedure, examines the rules in the knowledgebase, deduces

 relationships exist, generates inferred network rules, and populates

 82

the database with them. Figure 23 illustrates the NPE process and Figure 24 is the

physical relational diagram for the CoRE 576 prototype.

Figure 23: NPE example contra generator

 83

Fi
gu

re
 2

4:
 U

ltr
a-

St
ru

ct
ur

e

re
la

tio
na

l m
od

el

in
 M

S
A

cc
es

s

 84

7 ANALYSIS

UT approaches the multifaceted challenge of representing dynamic complex systems in a

database format with a multidimensional ontology transformation methodology. This

section describes how UT addresses the various aspects of the problem, and how UT uses

ontological abstractions to create a new level of conceptual encapsulation. This new

conceptual level, effectively transforms ontologies into manageable database schemas.

7.1 Alleviating the Critical Bottleneck

The disparity between biological data production and useful data access and analysis

is essentially a knowledge processing issue. The inability of current systems design

to accommodate rapid changes in the parameters of knowledge processing models is a

limiting factor. Instead of encoding logical rules into production systems to

manipulate the data, putting the knowledge rules of the reference domain in the data

enables domain experts to quickly and directly customize the system by simply

changing the data. The result is a high throughput knowledge processing system that

is malleable enough to meet the needs of a rapidly changing complex environment in

a cost effective manner.

7.2 Overcoming the Cultural Divide

The steep bi-directional learning curve between the two highly complex

disciplines of computer science and biology along with the divergent interests of the

scientists who study them, has created a knowledge gap that hampers the development of

effective knowledge processing systems. UT addresses the cultural divide by separation

 85

of system knowledge from reference domain knowledge. UT accomplishes this by

abstracting the rules themselves. Since the same encoded methods can manipulate

encapsulated classes of objects (universals), these classes can be manipulated like object

oriented classes or packages. This frees the programmer to model "what" the system

does without needing to know the encapsulated details of the who, where, when, and

how.

These details represent the knowledge of the reference domain and are modeled in the

data by domain experts. In this manner UT has devised a way to modify relational

schemas so that their content can be manipulated in an object oriented fashion.

Essentially this enables the programmer to encode in animation procedures, only the rules

that manipulate the behavior of complex objects, while the biologist models the detailed

knowledge of the reference domain in the data. Hence, each expert is able to model the

part of the system about which they are both interested and knowledgeable.

7.3 Reconciling Nomenclature

The UT reference knowledge model is extensible and flexible enough to reconcile

innumerable gene name variants via network ruleforms. Domain experts add new

synonymous relationships by simply adding new rules in a network ruleform. In this

manner, nomenclature variants can be reconciled and gene names aliased on an ongoing

basis so that domain experts can gradually build a nomenclature lexicon or controlled

vocabulary into the knowledge model.

 86

7.4 Managing Complexity

UT takes a complex theory style holistic approach to analyzing complex systems. UT

identifies the classes of universal behavior and the boundaries between them as well as

the relevant parameters for affecting system behavior, and then expresses these concepts

explicitly in the knowledge management system in the form of logical rules. This

methodology introduces a new level of abstraction that captures and represents the

knowledge of the reference system, rather than just accumulates data about it.

Identifying the universal properties of a system, characterizes the system at a high level

of abstraction. This high level view of the reference system enables scientists to

understand the system's complexity in the context of an integrated network of perceptual

patterns.

7.5 Integrating and Extending Current Systems

Managing the reference system addresses only part of the methodology challenge.

Developing a methodology for representing complex systems in an information

system really involves the compatibility and integration of two complex systems. The

reference system and the knowledge representation system that expresses it. In this

case the knowledge representation system consists of database design methodologies

and the database itself. The most relevant parameters for description or for affecting

the behavior of both systems are system size, complexity, and rate of change. These

factors must be compatible between the two systems or an impedance mismatch

occurs. Table 6 summarizes these combinations.

 87
s

SYSTEM

Representational System

Real System

Representational System

Real System

Current relational technology

size, but relatively simple com

technology accommodates co

Projects such as the Ecocyc p

of refining ontology-based da

perform logical reasoning. Y

complexity and change, but d

these conventional systems d

each of their technologies.

Instead of developing a static

UT creates an environment o

domain expert. The rules tha

and modified in the data to m

order to achieve this function

conventional systems design
Table 6: System Parameter
SIZE COMPLEXITY RATE OF CHANGE

Large Complex Fast

Small Simple Slow

Small Simple Slow

Large Complex Fast

 such as that of the GO project is optimized for large

plexity and slow rates of change. OO database

mplexity and size but not a rapid rate of change.

athways database have clearly demonstrated the benefits

tabase projects into expert systems with the ability to

et, current expert systems technology can handle

oes not scale well. UT effectively modifies and extends

esign methodologies, to incorporate the advantages of

 system based on a snapshot of functional requirements,

f perpetual system development that is controlled by the

t govern system processes can be easily deleted, updated

eet the needs of changing functional requirements. In

ality, UT significantly modifies and redefines

methodology in four ways.

 88

First, UT redefines the arbitrary distinctions between programming code and data.

From a holistic perspective, the most relevant distinction between programming code

and data is with respect to change. The data is easily changed without affecting the

structure of the physical system, the code is difficult to change, requires special

knowledge of a programming language and often requires interpretation of needs to a

programmer in the form of functional requirements. There is no real boundary that

precludes defining and manipulating data with data. This allows UT to put most of

the production system rules in the data rather than in programming code.

Second, UT redefines the purpose of database applications from capturing and

managing collections of data, to capturing and managing the knowledge of domain

experts. Essentially, this means changing the goal of conventional database design

from optimization for data retrieval, to optimization for knowledge extraction.

Third, UT encapsulates the reference knowledge model into knowledge objects

(universals). Discovery of this substructure overcomes the expert systems size barrier

by simplifying the data model to a manageable level of complexity for encoded rules,

and it translates well within the constraints of a standard relational schema.

Finally, UT abstracts the relational model itself by imposing place value order and

representing complex instead of atomic data types. This creates a semantic

framework for representing complex data types in the data itself rather than in the

structure of the relational model and programming languages.

 89

7.6 Bridging the Ontology Transformation Gap
Ontology-based annotation projects such as GO and EcoCyc have developed large

detailed ontologies for representing simple organisms and narrow domains based on

biochemical function. These ontologies consist of a logical categorization of object

representations and may include processes, behaviors and characteristics. The entities

defined within the ontologies are then mapped to database schemas.

The level of abstraction of current ontologies including meta-ontologies is the set of

observable objects, and events within the reference domain. This level of abstraction

works well for narrow domains and relatively simple systems, yet as complexity

increases so does the number of objects and the interactions between them. This is

evidenced in the almost non-existent reuse of ontologies for biological domains

(Stevens, 2000), the GO's lack of a unifying upper ontology and the fact that MODs

of simple organisms such as E. coli are extremely complex, time consuming and

expensive to develop and maintain. Representing the knowledge associated with a

more complex organism will require unifying semantic spaces into manageable high

level views that characterize system complexity in the context of an integrated

network of perceptual patterns. Discovery of this view requires a higher level of

semantic abstraction than current ontologies provide.

UT uses an integrated system of modularized ontologies to capture the semantic

knowledge of the reference system and raise it to a new level of abstraction. The

 90

knowledge representation (KR) system includes the standard use of ontologies such

as those used by GO and Ecocyc to characterize the detailed knowledge of the

reference domain. Then UT takes ontologies the next level of abstraction by

modeling not just the objects and behaviors of the system, but the logic that governs

and predicts them.

While knowledge changes and behaviors vary, the logic underlying them never

changes. UT aims to abstract system logic and express it in a rule-based ontology.

Instead of applying the rules to the objects in the system UT applies the objects in the

system to the rules. It defines a world view of the reference domain in terms of rules

of varying specificity. It distinguishes rule types based on the functions that they

support, then it maps the rules, and thus the logic that they represent directly to the

knowledgebase.

The rules that apply to domain expert or reference system knowledge are expressed

explicitly in the data. These rules represent the middle structure and constitute a

standard ontology expressed in axioms. The middle structure is semantically

integrated using foreign keys and ruleforms rather than a physical hierarchical

structure. Eliminating a physical hierarchical representation of objects allows for the

grouping of related objects into classes based on the common rules that govern them.

These classes become the objects of the highest level of abstraction, the deep

structure. This method is similar to Bouaud's concept normalization for fixing the

 91

necessary intensional conditions of types, which forms the basic building blocks of

the ontology.

The deep structure constitutes a meta-level ontology that represents a new level of

logical abstraction. Like Chomsky's transformational grammar, UT abstracts the rules

of observable behavior into a network of logical patterns. The patterns capture the

underlying logic that governs and predicts those behaviors. This logic is expressed in

ruleforms, which are complex rule objects that define rules based on the logical

patterns of order of their classes. The ruleform method enables the organization of

thousands of rules into very few ruleforms. Figure 25 diagrams the hierarchy of the

rule ontology.

Meta NetworkAuthorization

Rule

Protocol

Compound

Ruleform

Existential

Figure 25: UT Logic Ontology

 92

The metalevel of abstraction reduces the complexity of the global schema to a more

compact knowledge representation that it is easily mapped to a standard relational

database without sacrificing content. All of the more detailed, more variant and

complex relationships are represented in the data as modular local schemas that are

integrated by the global schema. This means that more complexity mostly means

just larger tables which relational databases are well equipped to accommodate.

Place value constraints offer a third syntactic dimension in which to express

semantic constraints within the relational paradigm. Together, the explicit rules,

ruleforms and the place value framework constitute an ontology metalanguage that is

semantically expressive and syntactically flexible enough to preserve the semantic

linkages of an ontology in standard relational database form. This method applies

established ontological principles such as Boaud's intensional typing without

requiring an elaborate hierarchical structure. The semantic meaning of concepts are

dependent upon their intensional distinction from other types and their position in the

ruleform rather than in a hierarchy.

8 DISCUSSION

8.1 Potential Challenges and Future Research

Major challenges and areas of future research concentration related to the

implementation of UT in biological domains include:

• Ontological issues

 93

• User interface issues

• Scalability issues

• Inferencing issues

8.1.1 Ontology issues

Numerous biological ontologies exist that characterize narrow biological domains.

Together these conceptualizations specify a broad range of biological knowledge.

Yet they vary widely in scope and granularity (Stevens, 2000). A major challenge

in creating a generalized model of biology in a UT system is the integration and

extension of these disparate information models into a single global schema.

Reconciling lossy and non-lossy clashes related to ontology integration and

transformation is likely to be a complicated and time consuming effort. However,

once developed, the resulting global schema should be easily maintained by

domain experts and general enough to be used as a defacto standard for the

annotation of future biological knowledgebases.

8.1.2 User related challenges

The two main user related challenges are the development of an intuitive and

efficient ontology editor and the knowledge curator training of domain experts.

An ontology editor is a user interface that allows domain experts to effectively

interact with the reference ontology. A system of this size and complexity may

contain over 100,000 rules that must be accessible to the domain expert in a

navigable format. The editor interface will need to group rules into manageable

 94

subsets that are intuitive and easy to visualize. This can be accomplished using

standard usability testing and interface design methodologies.

Along with the use of the ontology editor interface, domain experts will need to be

trained to preserve data integrity by entering data in a consistent manner. The

integrity constraints of the underlying database, augmented with data entry

constraints in the editor interface and animation procedures can handle most data

integrity errors such as circulatory errors where an entity is defined as a subtype of

itself and indirect repetition where an entity is defined as a direct subclass of a

parent and grandparent entity (e.g. dog as a canine, canine as an animal, dog as an

animal) (Stevens, 2000).

However, there is the possibility of entering nonsense data or data that is factually

incorrect. Since the knowledgebase assumes that all manually entered is factually

correct, therefore incorrect data will produce incorrect inferencing results. The

ability of expert systems to produce valid results is wholly dependent on the

quality of the data on which its assumptions are based. Knowledge curators must

be made aware of this vulnerability and be responsible for ensuring the accuracy

of rules entered into the system. The accuracy of data can be validated by

tracking associated source or citation data, identity of the person entering the data,

and the timestamp information, as well as by assigning authority rankings to the

data.

 95

8.1.3 Scalability issues

Although UT systems have been implemented in large commercial domains, none

of these applications match the complexity of post-genomic biology.

Theoretically, UT should scale to extremely high levels of complexity that

encompass the whole of a natural kind or family of systems such as all businesses

or all biology. However, this hypothesis has only been partially tested. No UT

system to date currently describes all the aspects of a given natural kind of system

such as biology.

Unforeseen scalability issues may exist that will only be revealed at high levels of

complexity. These may include limits on the knowledgebase systems themselves

or on the semantic interoperability mechanisms of UT theory in broad ranging

domains. The underlying technology was not intended for supporting complex

semantic interoperability networks and may exhibit unforeseen limits in

scalability. Although not as likely, similar limitations of the theory mechanisms

themselves may emerge. For example the system may reach the point of

complexity where there are too many rules to manage effectively. Future research

to test the limits of the platform can only be accomplished by implementing the

system in conditions of increasing complexity.

8.1.4 Inferencing challenges

The inferencing capabilities of UT systems represent the most challenging and

most exciting aspect of future research. Assuming a base knowledge of valid

 96

information, UT inferencing may eventually be used for hypothesis testing

simulation, visualization and in silico modeling of biology. Future UT systems

may perform more sophisticated statistical inferencing for hypothesis testing and

knowledge extraction.

8.2 Conclusions

Although UT integrates and extends current methodologies, it is not a new theory. In

fact it predates most of the methodologies mentioned in this thesis. All of the

ontology methodologies, as well as OO theory were practically nonexistent when UT

was developed in 1985. The goal of this thesis is to identify UT as an ontology driven

database methodology, to relate the parallel development and theoretical

commonalities that exist between UT and more recent ontology driven database

methodologies, and to explore UT an ontology transform solution.

UT is an ontology-driven database design methodology that may effectively address

the dynamic functional requirements of complex biological systems. By integrating

and extending current theoretical and methodological perspectives, UT has developed

two key mechanisms that significantly increase its semantic expressivity while

providing for rapid change.

First, transferring the part of the production system that represents the reference

domain entirely to the data within a standard relational database structure enables

biologists to directly customize the system without the need for programming. It

 97

empowers biologists to act as knowledgebase curators who are able to quickly and

directly adapt the rules governing the reference system as domain knowledge

changes. This mechanism gives ultimate flexibility and power to the domain expert

and effectively accommodates rapid, perpetual change.

Second, UT expands the world view of relational database design to include place

value order and the use of complex objects as attributes, which provides a new

syntactic dimension for semantic expressivity. This high-performance,

transformation mechanism provides a simple, yet complete semantic bridge for

ontology transformation.

The inventor of the modern skyscraper, architect Louis Sullivan coined the term,

"Form follows function." Sullivan posited that just as natural forms, such as eyes,

ears and wings, reflect specific functions, man made forms should reflect the

functional purpose for which they are built. He redirected the world view of

architectural design to focus on creating forms that are designed for optimal strength,

efficiency and functionality rather than style or beauty. Sullivan's theory was

developed to address the increasing demand for larger, stronger, more functional

buildings as a result of the industrial age.

As a result of the current technological age, the application of computers is increasing

the complexity, as well as the velocity and pervasiveness of change of almost every

scientific discipline. Post-genomic biological disciplines, high throughput data

acquisition methods, and large-scale science projects has put biology at the forefront

 98

of this phenomenon. The rapidly increasing volume and complexity of information

being produced by the biological community has created a demand for cost effective

knowledge management systems that are flexible enough to accommodate rapid

change and semantically expressive enough to capture the knowledge of complex

systems in an intuitive format.

Just as Sullivan's methodology resulted in the development of new types of structures

(skyscrapers) that reflected the emerging functional requirements of the industrial

age, systems design methodologies such as UT are emerging to address the functional

requirements of the technological age.

UT lets form follow function by applying well known principles for ontology

development such as Bouaud's intensional types without requiring the construction of

a complex hierarchy or database schema. By expressing the complexity in data rather

than programming code, UT provides a flexible semantically expressive

knowledgebase solution using standard relational database technology. The resulting

knowledge management systems provide a practical ontology transform mechanism

for capturing and managing the knowledge of complex biological systems while

accommodating rapid change. UT's rule based approach creates a unique form of

knowledge representation that extends the world view of current methodologies to

reflect the function of dynamic complex systems.

 99

Acknowledgements

Thanks to Jeff Long and Melissa Kimball for their extensive mentoring efforts to help me

understand UT and apply it to real world problems. Thanks to Len Olszewski and John

MacMullen for inspiring me, and to my advisor, Brad Hemminger for guiding and

tolerating me. Thanks to Chris Goolsby and Eloise Currie for your understanding and

encouragement. Finally, special thanks to my husband Howard, without whose patience

and care, this paper and in fact this Master's degree would not have been possible.

 100

Figure Legend

Figure 1: Typical software development life cycle…………………………… 13

Figure 2: Contextual Design ………………………………………………….. 14

Figure 3: Example Pragmatic Marketing……………………………………… 15

Figure 4: Expert system model………………………………………………… 18

Figure 5: Semantic triad ………………………………………………………. 23

Figure 6: RDF statement and graph model …………………………………… 31

Figure 7: Methontology development process ………………………………… 38

Figure 8: Process ontology diagram .…………………………………………… 40

Figure 9: Sowa's Upper Level Ontology……………………………………….. 42

Figure 10: Meta-ontology example ……………………………………………. 43

Figure 11: Harmonize ontology integration system …………………………… 46

Figure 12: Relation example …………………………………………………. 48

Figure 13: Relational model example …………………………………………. 49

Figure 14: Relational hierarchy ………………………………………………… 50

Figure 15: Object model example ……………………………………………… 52

Figure 16: GO ontology hierarchy ……………………………………………. 57

Figure17: GO to graph path relations ………………………………………… 59

Figure 18: Pathways hierarchy example ………………………………………. 61

Figure 19: Ultra-Structure structural layers of abstraction …………………… 69

Figure 20: Place value example……………………………………………….. 73

Figure 21: Ruleform example………………………………………………….. 74

Figure 22: Rule types and ruleforms…………………………………………… 76

Figure 23: NPE example contra generator ……………………………………. 82

Figure 24: Ultra-Structure sample model in MS Access ……………………… 83

Figure 25: UT Logic Ontology ………………………………………………… 91

 101

References

Bar-Yam, Yaneer (In Press, 2002). Unifying Principles In Complex Systems.
 Online: http://necsi.org/projects/yaneer/ComplexSystems.pdf

Beck, Howard. University of Florida. Agricultural decision support systems.
 Online: http://hammock.ifas.ufl.edu/ABE6644/expertsystems.html

Berners Lee, Tim. August 30, 2001 keynote speech at Software Development East,
 Boston, MA. In [Alexandra Weber Morales "Web founder seeks simplicity" Show
 Daily Online, 2001] http://www.sdgnews.com/sd2001es_006/sd2001es_006.htm

Beyer, Hugh and Karen Holtzblatt. (1999). Contextual Design ACM Press New York,
 NY, USA PP 32 - 42

Biskup, J. (1998). Achievements of relational database schema design theory revisited.
 In B. Thalheim and L.Libkin, editors, Semantics in Databases, volume LCNS 1358,
 Springer Verlag, pp. 29-54.

Blake JA, Davisson MT, Eppig JT, Maltais LJ, Povey S, White JA, Womack JE. (1997).
 A Report on the International Nomenclature Workshop held May 1997 at The
 Jackson Laboratory, Bar Harbor, Maine U.S.A. Genomics 45: 464-468.

Blazquez, M., M. Fernadez, J.M. Garcia-Pinar, and A. Gomez-Perez. Building
 Ontologies at the Knowledge Level using the Ontology Design Environment. In
 Proceedings of the 11th Knowledge Acquisition Workshop, KAW98, Banff, Canada,
 April 1998.

Bouaud, J., Bachimont, B., Charlet, J., & Zweigenbaum, P. (1995). Methodological
 principles for structuring an "ontology". (Report No. DIAM Rapport Interne RI-95-
 148). Paris: Dpartment Intelligence Artificielle et Mdecine [DIAM]. [Presented at
 the IJCAI'95 Workshop on Basic Ontological Issues in Knowledge Sharing, 19
 August 1995, Montreal, Canada.].
 Online: http://citeseer.nj.nec.com/bouaud95methodological.html

Chandler, Jane and Steve.Hand. (1998). INTRODUCTION TO OBJECT-ORIENTED
 DATABASES. Online:http://www.dis.port.ac.uk/~chandler/OOLectures/database/
 database.htm - Relational_Model

InContext Enterprises, Inc. (2002). Contextual Design Diagram
 Online:http://www.incent.com/cd/cdhow.html

FOLDOC Free Online Dictionary Of Computing: http://wombat.doc.ic.ac.uk/foldoc/

 102
Fujimura, Joan H. (1995). A View of Japanese Genome Informatics. Genome
 Informatics News, Vol. 2, No. 4.
 Online: http://www.genome.ad.jp/documents/news/A9510.html

Guarino, Nicola, Massimiliano Carrara and Pierdaniele Giaretta.(1994). An Ontology of
 Meta-Level Categories LADSEB-CNR Int. Rep. 6/93

HGNC (Human gene nomenclature Committee Homepage). (2001)
 Online: http://www.gene.ucl.ac.uk/nomenclature/activities.shtml

Jacob, E.K., & Albrechtsen, H. (1997). Constructing reality: the role of dialogue

in the development of classificatory structures. In I.C. McIlwaine (Ed.), Knowledge
organization for information retrieval: Proceedings of the 6th International Study
Conference on Classification Research, 14-16 June 1997, London (pp 42-50). The
Hague, Netherlands: International Federation for Documentation.

Jones, D., Bench-Capon, T., & Visser, P. (1998).
 Methodologies for ontology development. In IT&KNOWS Conference, XV

IFIP World Computer Congress, Budapest, August 1998. Available at:
http://citeseer.nj.nec.com/135323.html

Karp, P. D. (2001). Pathway Databases: A Case Study in Computational Symbolic
 Theories. Science Magazine. Volume 293, Number 5537, Issue of 14 Sep 2001, pp.
 2040-2044. Online URL: http://www.ai.sri.com/pkarp/pubs/01science.html

Klein, Mark and Abraham Bernstein.(2002). Searching for services on the semantic web
 using process ontologies. In The Emerging Semantic Web - Selected papers from the
 first Semantic Web Working Symposium, Isabel Cruz, S. Decker, J. Euzenat, and D.
 McGuinness, Eds. Amsterdam: IOS press, 2002, pp. 159-172.
 Online: http://www.semanticweb.org/SWWS/program/full/paper2.pdf

Lassila, Ora. Ralph R. Swick.ed.(1999). Resource Description Framework (RDF)
 Model and Syntax Specification. World Wide Web Consortium (W3C).
 Online: http://www.w3.org/TR/REC-rdf-syntax/

Lechte, John. (1994). Fifty Key Contemporary Thinkers. New York: Routledge
 Online adaptation: http://pratt.edu/~arch543p/help/Chomsky.html

Long, J. (1999). A new notation for representing business and other rules. In Long, J.
 (guest editor), Semiotica Special Issue: Notational Engineering, Volume 125-1/3

Long, J., and Denning, D. (1995) Ultra-Structure: A design theory for complex systems
 and processes. In Communications of the ACM

 103
Maedche, A., and S. Staab. (2001). Comparing ontologies:

similarity measures and a comparison study. (Internal Report No. 408).
Karlsruhe, Germany: Institute AIFB, University of Karlsruhe.
Online: http://citeseer.nj.nec.com/439130.html

Missikoff, Michele. (2002). Harmonise: An Ontology-Based Approach for Semantic
 Interoperability. In ERCIM News No. 51. Online:
 http://www.ercim.org/publication/Ercim_News/enw51/missikoff.html

Pearson, Helen (2001). Biology's name game. Nature Online:
 http://www.nature.com/nsu/010607/010607-12.htm

Pragmatic Marketing development. Pragmatic Product Development Diagram
 Online: http://www.pragmaticmarketing.com/seminars/grids.asp

Fernstrom, Christer. Technology Briefing Report Databases. RENAISSANCE Esprit
 Project 22010 Online:http://www.comp.lancs.ac.uk/projects/
 RenaissanceWeb/project/Acrobat/Databases.pdf

Roos, David S. (2001). Trying to Swim in a Sea of Data Bioinformatics Science
 magazine 291 (5507) 1260
 (Online): http://www.sciencemag.org/cgi/content/full/291/5507/1260

Stevens, Robert, Carole A. Goble and Sean Bechhofer (2000). Ontology-based
 Knowledge Representation for Bioinformatics. Department of Computer Science and
 School of Biological Sciences, University of Manchester (online).
 Online: http://www.cs.man.ac.uk/~stevensr/onto

Stevens, Robert (2002), ontology final presentation Parts I and II
 Online:http://www.cs.man.ac.uk/~carole/old/GGF/FinalTutorial/GGFpart2.ppt

Smith, Mark. (2002). Strategic Assessment Guide: DecisionCycle Methodology.
 Intelligent Enterprise. Figures 1 and 4. Online:
 http://www.intelligententerprise.com/online_only/saguide2002/saguide.shtml

Sowa, John. (2001) Upper level ontology diagram
 Online:http://users.bestweb.net/~sowa/ontology/toplevel.htm

Taylor, Mark C. (2001). The Moment of Complexity: Emerging Network Culture
 University of Chicago Press. Excerpt Online: http://www.fathom.com/feature/122486

Whatis.com Online computer science reference
 http://searchvb.techtarget.com/sDefinition/0,,sid8_gci211545,00.html

White JA, Apweiler R, Blake JA, Eppig JT, Maltais LJ, Povey S. (1999). Report of the
 Second International Nomenclature Workshop (INW2). Genomics 62: 320-323.

 104
Yang, Zijiang. (2002). Using and Designing Database Systems. Course notes.
 Online: http://aml.yorku.ca/~zyang/3220a/3220A1.ppt

	The Cultural Divide
	The Nomenclature Problem
	The Complexity Problem
	The Current World View of Computer Systems
	Systems engineering
	
	
	Ontological Theory
	Ontological Methodologies
	Ontological Perspectives
	DATABASE METHODOLOGIES
	Database methodologies are essentially logical collections of constructs used to define and represent data structure and relationships. They include conceptual models that represent logical data representation, and physical models that represent how the
	ONTOLOGY-DRIVEN DATABASE APPLICATIONS IN BIOLOGY
	Ontological Methodology

	Table 5:Ultra-Structure Concepts Summary
	SYSTEM

	DISCUSSION
	The inventor of the modern skyscraper, architect Louis Sullivan coined the term, "Form follows function." Sullivan posited that just as natural forms, such as eyes, ears and wings, reflect specific functions, man made forms should reflect the functional
	Chandler, Jane and Steve.Hand. (1998). INTRODUCTION TO OBJECT-ORIENTED
	DATABASES. Online:http://www.dis.port.ac.uk/~chandler/OOLectures/database/
	database.htm - Relational_Model

