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1. INTRODUCTION 

The emergence of post-genomic biological disciplines, high throughput data acquisition 

methods, and large-scale science projects are rapidly generating a plethora of complex, 

biological data.  While the advent of disruptive technologies such as such as mass 

spectrometry and microarray technology will eventually lead to rapid knowledge 

discovery and new biological paradigms, current knowledge management methodologies 

are a limiting factor.  However, clinically significant discovery remains dependent upon 

scientists' ability to access the data, understand it, make statistical inferences based on it, 

and share it among the scientific community. 

 

One of the major challenges of post-genomic biological research is to develop 

methodologies that manage this data in a context that enables the scientist to translate raw 

data into workable models and viable hypotheses.  Due to the volume and complexity of 

the data, computers are required for data processing and storage.  Although the use of 

computers effectively addresses information bottleneck issues that are created by volume, 

the complexity issue is exacerbated by a legacy of ambiguous genetic nomenclature, a 

cultural gap between biologists and computer scientists, rapidly changing functional 

requirements, and an impedance mismatch between knowledge representation and 

database technologies.   
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Since databases are the storage medium for biological data, devising a framework for 

organizing and manipulating complex biological data is inherently dependent upon the 

optimization of database design and implementation for knowledge management. 

Data models and the databases that are derived from them will need to reflect intricate 

semantic relationships between millions of biological entities.  These models will be 

subject to frequent change and even radical transformation as experimental results deepen 

our understanding of large biological networks.  Standard information system 

development processes are not designed to address these issues.    

 

A recent trend in ontology-based design methods has emerged as a means of providing a 

logical semantic framework for organizing biological data.  The intentional use of 

ontologies is twofold: to make them available to the biological community as a semantic 

resource in hope of developing defacto standards for knowledge representation, and to 

use them as a basis for database design.  Early nomenclature management projects have 

developed into knowledge leveraging initiatives, that are developing large ontology-

driven knowledgebases.  Projects such as Ecocyc and The Gene Ontology have recently 

made great strides in capturing biological knowledge including complex processes of 

simple biological organisms.   

 

While ontologies provide an effective framework for representing biological knowledge 

on an abstract level, efforts to map ontologies to database structures have revealed an 

impedance mismatch or ontology transformation gap.  Extracting knowledge from 

complex biological systems requires the enforcement of a myriad of semantic constraints 
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or rules that interact to form a body of knowledge.  The ontology transformation gap 

refers to the incompatibility or mismatch between ontology and database knowledge 

representation systems.  Without the development of extensive programmatic 

augmentation, current database modeling techniques and methodologies are too rigid to 

represent the multidimensional semantic constraints and syntactic dependencies that are 

required for accurate knowledge representation.  Even more flexible object oriented 

databases have significant limitations. 

 

Database design approaches that use existing methodologies are likely to hit a complexity 

barrier at a fairly low level of usability and are not conducive to the rapid change of the 

domain.  Efforts to map ontologies directly within the confines of a standard relational 

design require complex queries or extensive programming code in order to maintain 

semantic consistency; and progress in developing new knowledge representation tools 

have met with only limited success.  This approach often results in suites of specialized 

tools and new query languages that are expensive to develop, difficult to learn, and face 

constant reprogramming in order to keep pace with the rapidly changing domain.   

 

This thesis aims to describe a unique ontology–driven approach to database design 

known as Ultra-Structure Theory (UT).  UT integrates current theoretical and 

methodological perspectives, and extends them to provide a practical and logically valid 

methodology that bridges the ontology transformation gap and accommodates perpetual 

change.   
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This thesis will provide a foundation for analysis by: outlining the issues affecting 

biological knowledgebase design, describing ontological and database theory and 

methodologies, reviewing ontology-based biological database methodologies, and 

describing UT principles and applications.  Finally, I will provide a comparative analysis 

of the advantages of UT over existing methodologies, followed by a discussion of 

potential challenges, and future research. 

 

2. BACKGROUND AND SIGNIFICANCE 

Designing a repository that represents or simulates dynamic complex biological 

knowledge poses a multifaceted challenge.  This section will outline the dimensions of 

the problem, and introduce the benefits of an Ultra-Structure approach. 

 

2.1  The Critical Bottleneck 

Although there has been a great deal of progress in the field of biological knowledge 

management, the rate of production and increased complexity of biological data 

continues to outpace current knowledge management capabilities.  For example, 

GenBank, the largest of the genomic databases, now accommodates >1010 nucleotides 

of nucleic acid sequence data and doubles in size every year (Roos, 2001).  Since its 

inception in 1992 Genbank has stored its data in flat files, which are the relational 

equivalent of storing everything in one table.  There is little structure and no 

mechanism for representing semantic relationships.  What's more, acquiring data from 

flat files requires a specialized computer program that reads the file before the data 

can be downloaded and must be updated if the file format changes. 
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The disparity between biological data production and useful data access and analysis 

is likely to increase downstream in the absence of effective knowledge management 

and transformation techniques.  Research organizations who develop computer 

systems that capture and apply the knowledge of domain experts, and make it 

accessible in a flexible and cost effective manner will have a competitive advantage. 

 

2.2 

2.3 

The Cultural Divide  
 

The recent blending of the disciplines of computer science (CS) and biology has not 

been without friction.  Stanford molecular geneticist David Botstein, referred to it as 

the "two culture" problem.  Botstein theorizes that biologist's perception of open, 

interesting problems might not appeal to computer scientists or mathematicians.  

Moreover, since each discipline has a highly technical and complex jargon, effective 

communication of problems, concepts and ideas is troublesome.  Few scientists have 

expert knowledge of  both computer science and biological research.  However, an 

increasing number of computer science projects will be driven by biological 

problems.  These problems will likely not be pursued by biologists (Fujimura, 1995). 

 

The Nomenclature Problem 

"Biologists would rather share their toothbrush than share a gene 
name," says Michael Ashburner, joint head of the European 
Bioinformatics Institute (EBI) at Hinxton near Cambridge, and one of 
GO's founders.  "Gene nomenclature is beyond redemption."     
(Pearson, 2001) 
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Nomenclature problems in human genetics were first recognized in the 1960's.  By 

1979, guidelines for human gene nomenclature were presented at the Edinburgh 

Human Genome Meeting (HGNC, 2001).  However, resistance by the scientific 

community to conform to nomenclature standards and the recent discovery that 

closely related genes often exist in different organisms has significantly escalated the 

terminological discord (Pearson, 2001).   

 

The severity of the problem was recently documented when a research team in Oslo 

Norway developed computer software to search for biological associations between 

genes based on their co-occurrence in published paper abstracts.  Testing the software 

involved scanning over 10 million records in the Medline database.  The scan 

identified 22,008 distinct human genes of which 10,352 had aliases.  For example, the  

gene, SELL, or selectin L.  had 15 aliases.  Contributing to the problem is over 4,000 

gene abbreviations that refer to multiple genes, and numerous gene homographs 

between different species.  One example is the yeast homologue of the human gene 

PMS1, which is named PMS2; while yeast PMS1 corresponds to human PMS2 

(Pearson, 2001).   

 

Two international nomenclature workshops, held in 1997 (Blake) and 1999 (White), 

concluded that due to the severity of the problem, the only cross-species attempt to 

standardize gene names would be for mammals.   
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2.4 The Complexity Problem 

 
Emerging, data-rich biological domains such as structural and functional proteomics 

epitomize rapidly changing complex systems.  Rapid change of a complex 

information domain evokes new perspectives or world views that attempt to explain 

domain dynamics.  Complex systems theory takes a holistic approach in analyzing 

complex systems.  This theory exemplifies the Gestaltian phrase, "The whole is 

more than the sum of its parts".  In this world view, systemic outcomes represent the 

simultaneous interactive properties and  behaviors of all parts of a complex system.  

These behaviors and properties are governed by similar universal principles. 

  
All complex systems have universal properties.  Considering these global properties 

of complex systems, can lead to the comprehension of system specifics in the context 

of their commonalities.  Identifying the universal properties of a system, characterizes 

the system at a high level of abstraction.  These universal simplifications can impose 

a system structure that enables observers to perceive a system's integrated network of 

perceptual patterns.  Articulation of these principles enable us to approach the study 

of particular systems with systematic guidance (Bar Yam, 2002).   

 

In his recent publication , "Unifying Principles in Complex Systems",  Yaneer Bar-

Yam of the New England Complex Systems Institute in Cambridge, MA, outlines the 

goals of complex systems research (2002).   

• Understand the development and mechanisms of patterns of behavior 

• Understand the unifying principles of organization 
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• Understand what is universal and what is not 

• What are the classes of universal behavior and the boundaries between them 

• What are the relevant parameters for description or for affecting 

 the behavior of the system 

• Develop the ability to capture and represent specific systems, rather than just 

accumulate data about them.  In this context: to describe relationships, know 

key behaviors, recognize relevance of properties to function, and to simulate 

dynamics and response. 

• Achieve a major educational shift toward unified understanding of systems, 

and patterns of system behavior. 

 

These goals are applicable to any complex system including computer systems.  

Recognizing the unifying principles of biological systems as well as that of the 

computer systems in which we represent them, will produce patterns of function 

that have a much higher resilience to failure and error and a higher adaptability to 

changing conditions and rules.  Many tools designed for specific domains can be 

adapted for more general use by recognizing their universal applicability (Taylor, 

2001). 

 

2.5 

2.5.1 

The Current World View of Computer Systems  
 
 

Systems engineering  

Current systems engineering methodologies use a set of predetermined functional 

requirements as a roadmap for information system development.  Defining 
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functional requirements can be characterized as defining a snapshot of the 

information landscape or worldview from the end user's perspective.  Figure 1 

represents a typical pattern of current systems development.  This method works 

well for relatively stable information domains.  However, functional requirements 

are more descriptive than prescriptive and thus are dependent upon changes in the 

end user's state of knowledge  in the context of observed changes in the 

information domain itself.   

  

Although recent user-centric techniques such as "Contextual Design" (Beyer and 

Holtzblatt, 1999) and "Pragmatic Product Development" (2002) have improved 

the development process of functional requirements, and rapid prototyping is 

enabling developers to accommodate changing functional requirements during 

system development, there is currently no design methodology that focuses on 

optimizing information systems to accommodate rapid, continuous change (Long 

and Denning, 1995).  Figures 2 (InContext, 2002)  and 3 ( Pragmatic 

Marketing.com, 2002) diagram the "Contextual Design" and "Pragmatic Product 

Development" methods.  Even advanced requirements development that uses 

predictive analytics for determining functional requirements such as the "Decision 

Cycle Method" are based on design time optimization.   

 

A relatively new and dynamic biological domain such as genomics is difficult if 

not impossible to predict.  There will likely be numerous unexpected results as  

experimental inferences are elucidated.  The well publicized overestimate of the 
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number of genes comprising the human genome is one example of the potential 

for inaccuracy in scientific predictions.  Many biological disciplines are changing 

so rapidly that modeling systems based on static functional requirements is no 

longer an effective methodology for defining system requirements.   
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2.5.2 Database applications 

All computer data is stored in a digital (0 or 1) binary format.  The current world 

view of digitally stored data recognizes computer programs as a special kind of 

data that contains encoded instructions for the manipulation of application or end 

user data (Whatis, 2002).  Computer programs are written in a programming 

language and translated to binary format by a compiler or assembler.   

 

Data is human readable information that is typically written in natural language 

by an end user and then converted to binary format.  Data represent the facts that 

are accessed, managed, and updated by programs, they provide the parameters 

within which programs must act upon the data.  All actions or procedures of an 

application are controlled by programs that are written based on a static world 

view at the time the program was created.  End-users are able to modify only data 

or the facts that the software manipulates, not the actions or procedures that 

control the data (Long and Denning, 1995).   

 

Databases are computer applications that manage collections of data.  As with all 

applications, the algorithms that define and manipulate the data are represented in 

programs such as queries and stored procedures.  Therefore, changes or 

manipulation of the data typically involves adding, deleting or modifying 

software code.  Changing code requires knowledge of one or more programming 

languages and frequent changes can be expensive and time consuming (Long and 

Denning, 1995). 
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2.5.3 

2.5.4 

Knowledge based systems  

There is no standard definition of what constitutes a knowledgebase.  Typically a 

knowledgebase is composed of a database of domain specific information that is 

optimized for knowledge extraction (Whatis, 2002).  Optimization is achieved by 

expressing the facts and rules of the domain in a knowledge representation 

language.  This expression often takes the form of an ontology, a concrete 

specification of the abstract concepts that define a domain (FOLDOC, 2002).  

Inference engines are software algorithms that use the rules of logic governing  

knowledgebases to infer or learn new facts by deductive reasoning.  

Knowledgebases and the inference engines that manipulate them are called 

knowledge based systems. 

 

Expert systems 

While knowledge based systems in general are designed to capture and extract 

knowledge from a knowledgebase, expert systems use a similar rule-based 

approach to simulate the knowledge of a domain expert.  Knowledge is collected 

in the form of a rule base.  A rule base is the set of all possible rules that are 

applicable to a given domain.  These rules generally take an "If fact→Then 

conclusion" deductive format.  Multiple facts can be strung together to reach more 

specific conclusions.  The expert system inference engine processes the rules and 

generates new rules and facts from existing rules and facts by finding rules that 

will fire based on given or known facts.   
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Typically, an expert system will have an interface that asks the user a series of 

questions.  The answers become the "seeds" or factors from which the inference 

engine bases it's conclusion.  The inference engine then traverses the decision 

tree,  comparing these facts to every rule in the system.  It reaches a conclusion 

based on which rules match the given facts.  Figure 4 is a simplified diagram of 

an expert system that identifies birds (Beck, 2002). 

An example of a rule for an eagle might be: 

IF Large AND Flies AND Has a crest AND is Bald →THEN  Is an Eagle. 

 

Figure 4: Expert system model

 

 

 

 

 

 

 

 

 

Expert systems  have high speed, high consistency, and perfect attention to detail.  

(Long and Denning, 1995).  Rule bases can contain over a thousand rules,  

however rules are not equal to mathematical proofs.  They are closer to heuristic 

rules of thumb.  Due to the heuristic nature of expert systems, their accuracy can 
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decline significantly as the number of rules increase or the domains broadens.  

Hence, expert systems do not scale well for broad complex biological systems. 

 

2.6 The Ontology Transformation Gap 

Ontologies capture the semantic knowledge of complex systems via logical 

abstraction.  They characterize the focus or aboutness of a domain by mapping the set 

of representational concepts and the range of interrelations between concepts to form 

the domain network as a whole.  Their logical principles overlap considerably with 

complex and expert systems theory.   

 

The intricate semantic network of ontologies is typically formalized in a complex 

ontology metalanguage such as DAML+ OIL (Darpa Agent Markup Language + 

Ontology Inference Layer).  These knowledge representation languages are 

semantically expressive and syntactically flexible enough to provide a contextual 

framework that preserves the semantic linkages of an ontology in a machine readable 

syntax.  Ontology metalanguages are intended for use by sophisticated inference 

engines or agents that will crawl the proposed Semantic Web (Future WWW) and 

perform complex queries.  However, these engines do not yet exist in their proposed 

form.   

 

Recently ontology–driven database design has gained tremendous popularity in the 

biological community as a method of addressing the nomenclature and complexity 

issues of the discipline.  Although many long term, large scale ontology driven 
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database projects are underway, no clear methodology for mapping ontologies to 

database schemas has been developed.  Transforming biological ontologies to 

database schemas requires the ability to express the syntactics of the schema based on 

the semantic constraints imposed by the ontology (Biskup, 1998).  Semantics and 

syntactics represent complementary aspects of language, that together provide 

meaning in context.   

 

The ontological transformation gap describes an impedance mismatch between 

current ontology and database schemas.  This gap makes it difficult to translate 

ontologies within the constructs of standard models such as Entity-Relation diagrams, 

and even more difficult to translate into standard relational schemas.  The structure of  

the relational schema requires the use of complex queries written in a DDL (data 

definition programming language) to capture most contextual semantic 

representations.  Object models offer more flexibility and support for complex data 

types that enable more expressive semantic representations, but they are slow to 

retrieve simple data types, are more programatically intensive than relational database 

designs, and have scalability and support issues.   

 

While biological ontologies have already contributed greatly to solving complexity 

and nomenclature problems, their benefits for database design are limited by this 

schematic mismatch, which can be ameliorated by an efficient transformation 

methodology. 
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2.7 

3 ONTOLOGIES 

Bridging the Gap While Providing for Change  

While current  information systems design methodologies are sufficient for modeling 

most types of systems, typically the rate of change of a system is considered only in 

the context of system maintenance.  As biology and computer science continue to 

integrate and expand, the velocity and pervasiveness of change and complexity of the 

domain will increase dramatically.  As a result, new systems design methodologies 

will emerge that blend features of current models and extend them to design for 

change.  Ultra-Structure Theory is one such methodology.   

 

 
The first layer of the Semantic Web consists of ontologies and taxonomies ...  A 
huge amount of this is being done very desperately in the realm of biotech, for the 
human genome and new drug development.  (Tim Berners Lee, August 30, 2001 
keynote at Software Development East in Boston.) 

 
 

3.1 Ontological Theory  

Applied ontology is a form of knowledge representation.  Its principles were derived 

from philosophical ontology, which is the study of being or existence.  Although 

general ontologies exist that are not grounded in a specific domain, they do not apply 

to the subject matter discussed in this thesis.  Hence, I will concentrate this  

discussion on domain ontologies. 

  

Ontologies represent the complex whole of a conceptual space or domain by 

specifying the sum of its parts or the set of entities that exist within that space, and 

the set of interactions or relationships that hold between those entities.  Ontologies 
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are typically guided by logical rules of inference, usually in the same first order logic, 

"If→Then" form that is used by expert systems.  Yet, they can range from intuitive 

natural language ontologies with no formalized logic to formal ontologies expressed 

in explicitly stated axioms.  In this section I will begin by defining ontologically 

related conceptual distinctions, followed by a brief outline of the logical principles 

and premises that are inherent in ontology metalanguages. 

 

3.1.1 Conceptual  distinctions 

 

3.1.1.1 The semantic triad 

The purpose of developing a domain ontology is to create a semantically based 

organizational schema or semiotic view of a domain.  The goal is to provide a 

common semantic structure for exchanging information about that domain.  

For example, in order to apply the genetic information that is being catalogued 

in numerous databases worldwide, biologists need the ability to identify 

related genes across databases.  This is currently a daunting task due to the 

lack of semantic interoperability among these resources.  Nomenclature 

standardization is not feasible, and numeric classification by ID has met with 

only limited success (Pearson, 2001).  Ontologies provide the rich semantics 

that  enables biologists to makes sense of a complex information space.  The 

semantic benefit of ontologies has often been diagrammed as a semantic triad 

(Figure 5) in which a symbol evokes a concept of a something real. 
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Figure 5: Semantic triad 

Concept

“Jaguar“ 

 

 

 

3.1.1.2 Semiotics 

Semiotics is the study of signs.  Its two main branches are semantics and 

syntactics.  Signs can be any symbol of expression that we associate with an 

object or a concept.  In the development of ontologies the signs that we are 

typically concerned with are words.  Semantics is the study of the conceptual 

meaning that we attach to signs or symbols.  It is related to the function of a 

sign.  The second branch of semiotics is syntactics, which is the arrangement 

or order of signs.  When applied to language, syntax is referred to as grammar 

(Whatis, 2002).  As I stated in the background section, semantics and 

syntactics are complementary properties of a language.  Together they provide 

meaning in context.  There is a positive relationship between semantic and 

syntactic flexibility.  A syntax with a narrow range usually limits the range of 

semantic expressivity of that language (Stevens, 2000). 
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3.1.1.3 Sortal vs.  non-sortal predicates 

The notion of sortal vs.  non-sortal predicates is important for distinguishing 

between predicates that are required for the definition of a concept (sortal) and 

more characteristic predicates (non-sortal) that describe aspects or attributes 

other than identifiers  of a concept.  Guarino defines a sortal predicate as:  

• countable, e.g.  the predicate allows a given object to be identified 

amongst other kinds of objects  

•  temporally stable, i.e.  if the predicate holds for an object at a given 

time, it also holds for the same object at another time 

• ontologically rigid, e.g.  an object cannot lose a sortal property without 

losing its identity.   

 

In contrast, non-sortal predicates, supply properties only for individuals 

already distinguished (Guarino, 1994).  For example, compare the predicates 

'red' and 'apple' to describe a concept of fruit.  While the non-sortal predicate 

'red' may be disassociated from the concept without affecting its identity, 

removing the sortal predicate 'apple' from the fruit concept causes it to lose 

its fruit 'type' identity (Guarino, 1994).  The distinction of  temporal stability 

is particularly important for conceptualizing a complex changing domain.  

This distinction is evident in the fact that an apple can be green before it is 

ripe and red afterward, but an apple is an apple for as long as it exists as a 
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type of fruit.   These principles provide a guideline for determining whether 

predicates should be defined as classes or properties of classes.   

 

3.2  Knowledge Representation 

Since applied ontologies are specifications by design, their logical principles are 

inherently woven into the framework of the knowledge representation languages or 

metalanguages in which they are expressed.  Hence, I will describe the principles of 

ontology in the context of these language systems. 

 

3.2.1 Frames 

Frame-based ontologies take an object-oriented approach to characterizing 

ontologies that is similar to object oriented theory (OO).  A frame is like an OO 

class that represents a class of objects or instances.  Like OO the frames system 

has associated slots that are similar to OO attributes.  The concepts in these slots 

may be frames themselves with their own set of attributes.  Slots have type 

constraints such as 'kind-of' that allow for type-subtype subsumption inheritance.  

Frames also allow for the declaration of instances with the 'instance-of' slot.  The 

semantic constraints of frames are described in the Open Knowledge Base 

Connectivy (OKBC) standard.  Frames are intuitive and provide basic reasoning 

for the development of simple taxonomic hierarchies (Stevens, 2000).
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3.2.2  Description logics 

Rather than locking the ontology into a hierarchical tree structure, description 

logics (DL) generate taxonomies on the fly by describing but not defining 

primitive concepts and relationships then combining them to create complex 

concepts and relationships.  For example the concepts of protein and reaction can 

be joined with the relationship catalyzes to define the composite concept of 

enzyme, a protein that catalyzes a reaction.  The goal is to create ontology-based 

expert systems that allow an inference engine or reasoner to automatically 

generate new concepts based on the combinations of existing concepts thereby 

automatically generating logically consistent taxonomies.  Description logics 

provide for richly expressive ontologies.  The trade off is that more expressive 

languages require a more complex, processor intensive reasoner, which could be a 

scalability issue for complex systems (Stevens, 2000).   

  

3.2.3  Hybrid systems 

More recently metalanguages such as DAML+OIL have combined the benefits of 

frame based and description logic models.  Table 1 is a summary of ontological 

definitions, and Tables 2 and 3 outlines the description logic as the set of 

constructors and axioms associated with DAML+OIL (Stevens, 2002). 
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CONCEPT  DESCRIPTION  EXAMPLE 

Concepts class, set, type, predicate event 
, idea, object  

 Properties concepts that are attributes of 
other concepts weight, age, location  

 Taxonomy hierarchy of terms representing 
concepts with inherited properties  

Dog  →  mammal      
        is a 

Relationship  action, process, role, function Runs, catalyzes, freezes    
Primitive 
concepts 

Properties are necessary but not 
sufficient 

All cats have tails but  
not all tails belong to cats 

Defined 
concepts 

Properties are both necessary and 
sufficient 

All cats purr and only cats purr  
If mew→Then a cat 

Constraints Data type, cardinality, domain, 
range 

String, max=1, 
Biology, 0 <= X <= 10 

Instances A concrete member of a class Concept = person 
Instance=Mary Parmelee 

 Nominal Concepts not instantiated by type Italian cat = cat born in Italy 

An ontology concepts+properties+axioms+valu
es+nominals Ontoweb Portal 

knowledgebase ontology+instances Clinical domain KB 
Knowledge 
based system 

Ontology+instance+inference 
engine Cyc Knowledgebase 

Metalanguages 
Data structuring framework for 
ontology expression 
 

relational model, frames, 
description logics 

Table 1: Ontological Concepts Summary (Stevens,2002) 
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3.2.4  Other metalanguages 

Ontologies may also be expressed in various types of markup languages that were 

not specifically designed to represent ontologies.  The most prevalent of these is 

the Resource Description Framework (RDF), a semantic markup language that 

was designed to facilitate resource discovery and semantic interoperability  of 

World Wide Web (WWW), resources.  RDF is a sanctioned standard of the World 

Wide Web Consortium (W3C), and is the primary language associated with the  

W3C Semantic Web project.  Because RDF was designed to represent the 

semantics of existing heterogeneous WWW resources, it is a highly flexible and 

semantically expressive language.   

  

The cornerstone of RDF is the RDF statement or triple, which captures semantics 

by linking resources in a subject, (has) predicate, (points to) object format.  RDF 

data models are visualized as graphs that reflect the semantic connections 

between resources.  Figure 6 (Lassila,1999)is an excerpt from the RDF model and 

syntax specification that illustrates a basic RDF triple statement and it's associated 

data model that represents the sentence "Ora Lassila is the creator of the resource 

http://www.w3.org/Home/Lassila".  In the data model, the sentence subject is 

represented as an oval, the predicate as the connecting arc between subject and 

object, and the object as a rectangle.  The arc is directional, with the arrow always 

pointing from the subject to the object of the sentence. 
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Figure 6: RDF statement and graph model 

 
 Subject (Resource)   http://www.w3.org/Home/Lassila  
 Predicate (Property)  Creator 
 Object (literal)   "Ora Lassila" 

 

 

 
 

3.3 Ontological Methodologies 

There is no standard methodology for building ontologies.  There are a variety of 

stage-based models, and a few evolving prototype models.  Yet there are a number of 

commonalities that roughly correlate to standard systems analysis practices.  

Regardless of the particulars of each model the following phases apply to most 

existing methodologies (Stevens, 2000): 

• Setting domain and range: most methodologies develop at least a loose 

representation of the reference domain boundaries in order to determine the 

ontology's purpose and scope.  These may range from informal verbal 

definitions to formal specifications including functional requirements. 

• Knowledge Acquisition: The process of acquiring the knowledge that will 

sufficiently represent the reference domain.  The main sources are domain 
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experts, but may also include documentation, artifacts, observations, relevant 

literature and other ontologies.   

• Conceptualization: This is the backbone of the ontology.  It is where the bulk 

of the logical assumptions and inferences are determined which enables the 

ontology to take semantic shape.  It involves identifying key concepts that are 

representative of the domain, defining them based on their properties 

determining the relationships that hold between them, and thereby structuring 

domain knowledge into a conceptual schema. 

• Documentation: Creating an informal specification of the ontology including 

concept definitions, and notation of the logical assumptions that identify the 

properties and relationships.  Ideally this process would integrate standardized 

definitions and cite their sources as well as provide a detailed documentation 

of the methodology. 

• Formalization: Formalizing the ontology in a machine readable format.  This is 

typically an ontology metalanguage but could also be a database schema and 

associated programming code. 

•  Testing: This involves prototyping the ontology for purposes of testing based 

on a given set of criteria.  Criteria might be in the form of competency 

questions, verifying requirements, or comparing the ontology's performance 

against other types of ontologies. 
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3.3.1 

3.3.1.1 

Stage based models 

Stage based methodologies can be divided into three strategy types based on 

where the organization process begins in terms of the concepts representing the 

source or reference domain: top down, bottom up and middle out.  In this section, 

I will describe each strategy in the context of example ontologies to which they 

apply.   

 

Top down strategy 

As the name implies, top down strategies are built on a general to specific axis.  

They  begin with broad, high level concepts, then map increasingly more 

specific concepts and their attributes into a into a type-subtype hierarchy.  

Maedche and Staab (2001) claim to "capture the commonalities of virtually all 

ontology models" with a frame based top down strategy of evaluation they call 

"a semiotics view of ontologies".  This strategy defines an ontology as a 

lexicon containing two reference functions that link terminology, syntax, and 

semantics: a set of concepts including a single root concept classified in the 

form of a taxonomy; and template slots, which represent relations specifying a 

concept-relation or domain-range pair. 

 

Its overall structure is a lexicon containing the union of sets of signs for 

concepts and relationships.  Elements of the formalization process satisfy both 

reference functions.  The taxonomy serves as syntactical reference function 

linking the terminology to a structured syntax, while the concept-relation pairs 
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provide semantic constraints that give the structure meaning.  All concepts are 

taxonomically related by transitive inheritance of root characteristics, meaning 

each sub-type concept inherits the characteristics of its supertype or parent 

concept.  Finally, the template slots can be satisfied indirectly by range of 

value restrictions affecting properties.   

 

3.3.1.2 Bottom up strategy 

Bouaud's "Methodological Principles For Structuring Ontologies" suggests 

that ontologies should be built from the bottom up in a tree hierarchy, leading 

to the root of  "Entity".  Bouaud proposes that we must first fix the meanings 

of terms or "normalize" them on order to compensate for the computer's lack 

of ability to interpret semantically.  This process is called "fixing the necessary 

intensional conditions of types."  In order to normalize terms we "type" them 

by relating them to domain concepts or categories of thought and then making 

subsumption-based inferences that rely on the meaning of these category 

types.  A category type is defined intensionally in terms of necessary and 

sufficient conditions, then it is expressed extensionally in its essential 

characteristics or properties.  These types become the basic modules or 

building blocks of the ontology.   

 

Following normalization, building of the ontological tree structure is guided by 

four principles of structural organization.  First, the similarity principle defines 

the basic meaning of a taxonomic link.  It states that a "child" type inherits the 
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characteristics of the type that subsumes it, called its "parent" type.  The 

specificity principle states that a child type must have a "specific difference" 

from its parent type, a distinctive property that the parent type lacks.  Third, 

the opposition principle, organizes siblings in "opposition types" that are both 

distinct and incompatible with each other.  The final principle, the unique 

semantic axis principle, combines principals one and two in requiring that all 

(child) subtypes differ from their (parent) supertype by a common property or 

axis, and from sibling subtypes by a unique property or value (Bouaud,1995). 

 

The resulting tree structure is a subsumption hierarchy in which the semantic 

meaning of each type is dependent upon both its position in the tree and its 

intensional distinction from other types (Bouaud, 1995).  In this manner, the 

semantic infrastructure is built into the controlled vocabulary itself, and 

defined by the total set of relations between classes and properties.  Moreover,  

deriving the ontological terminology from existing vocabulary and then 

building the semantic rules of inference into this vocabulary, maximizes the 

communication function, while minimizing ontological restrictions (Jacob, 

1997).   

 

3.3.1.3 Middle out strategy 

The middle out life cycle is modeled by Uschold and King's "Enterprise 

Ontology" (1995, as cited in Jones, et al, 1998).  In the first stage the 

ontologist identifies a clear scope and focus for the ontology via a written 
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statement of purpose.  This is followed by a "middle out" scoping process that 

begins with  identifying the core (key) concepts in an ordered list.   Then the 

hierarchy is built out from these concepts through generalization or 

specialization.  Next, the ontology is formalized or coded into a formal 

language.  Finally, the ontology is evaluated based on one or more frames of 

reference, such as practical application in the form of implementation testing.   

 

The first step of this approach contrasts with evolving prototype models such 

as the Methontology and IDEF5 models, which have specifications, but no 

clear statement of purpose (Jones et al, 1998).  One weakness of the 

"Enterprise Ontology's" strategy is its lack of guidelines for identifying key 

concepts (Jones et al, 1998).  However, this process is easily supplemented 

with guidelines adopted from current ontological analysis such as Bouaud's 

"Methodological Principles for Structuring an Ontology" (1995), and 

Guarino's notion of sortal vs.  non-sortal predicates (as cited in Jones, et al, 

1998).   

 

The "Toronto Virtual Enterprise" (TOVE) ontology, developed by 

Grunninger and Fox (1995, as cited in Jones, et al, 1998) shares a stage based, 

middle out strategy with the "Enterprise Ontology".  However, TOVE's 

fundamental distinction from other ontologies lies in it's definitional 

processes.  TOVE identifies ontological concepts and their relational terms 

through indirect specification in the form of  "competency questions", while 
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the "Enterprise Ontology" use a more direct, brainstorming approach (Jones, 

et al, 1998).  The former bases ontological terminology on the language of the 

developing ontologist, while the latter defines ontological terminology based 

on the existing language of the domain.  Another distinguishing feature of  

TOVE is that it defines terminological semantics directly with stated axioms, 

while the "Enterprise Ontology" implies semantic rules of inference via the 

coherence of the relational structure rather than stating them directly (Jacob, 

1997).  Lastly, because TOVE bases the ontology on the task of question 

formulation, its potential for reusability is limited (Jones et al, 1998).   

 

Lastly, it's important to note that ontologies are rarely fully defined in a single 

linear process.  Inefficiencies in the form of inaccuracies or omissions will 

likely emerge with further implementation testing.  These must be corrected 

through extension or refinement of the ontology.  This "unspecified feedback 

loop" highlights the fact that although stage-based approaches appear to be 

linear, building ontologies is always an iterative and dynamic process.   

 

3.3.2 Evolving  prototype strategy 

The quintessential evolving prototype methodology is the Methontology, which 

advocates simultaneous knowledge acquisition, integration, documentation, and 

evaluation of the ontology.  What makes this methodology unique is that it is 

designed as a domain expert ontology development guide.  The conceptualization 

is prototyped by creating a set of intermediate representations that "bridge the gap 
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between how people think about a domain and the languages in which ontologies 

are formalized" (Blaquez et.  al., 1998).   

The methodology includes detailed instructions on building these intermediate 

representations of the ontology.  Since the modeling process is incremental, it 

builds from simple associations to more complex iterations.  This methodology, 

enables domain experts who are unfamiliar with ontology development methods 

to build ontologies themselves (Blaquez et.  al., 1998).   

An ontology editor further guides the domain expert in the development process 

and automatically codes the ontology in a knowledge representation language.  

Automatic encoding both expedites the formalization process, and enables the 

domain expert to transform the ontology into machine readable form without 

learning complicated coding languages.  Figure 7 is an overview of the 

Methontology process. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 Figure 7: Methontology development process
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3.4 

3.4.1 

Ontological Perspectives 

The majority of ontological methodologies conceptualize based on an object oriented 

world view of the reference domain, centralizing the ontology around concepts that 

represent the things or objects in a domain.  Recently however, a new emphasis on 

modeling more varied world views have extended the functionality and application of 

ontologies to include process, meta-ontologies, and semantically integrated ontology 

networks.   

 

Process ontologies 

Process ontologies take a process rather than object-oriented world view of the 

reference domain.  Although process ontologies are not new, they are gaining 

more attention recently as appropriate methodologies for optimizing the semantic 

expressiveness of process oriented domains.  Process ontologies essentially invert 

the object oriented world view.  It essentially groups objects based on the common 

processes that they apply to rather than their common definitions of existence.  

This enables organization of a reference domain based on the meaning of its 

function or what it "does", rather than what it "is".  Figure 8 diagrams a process 

ontology that was developed by developed Klein and Bernstein (2002) have a 

process ontology methodology that models web services for the purpose of 

facilitating information retrieval.  Process ontologies can be derived from existing 

process models such as work flow models using standard modeling primitives 

such as tasks subtasks, resources, inputs, outputs, and exceptions. 
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Figure 8: Process ontology diagram 

 

The key components of a process based ontology as defined by Klein and  

Bernstein (2002) are:   

• Attributes: Processes can be annotated with attributes that capture such 

information as a textual description, and typical performance values such 

as how long a process takes to execute. 

• Decomposition: A process can be modeled as a collection of processes that  

• can in turn be broken down or “decomposed” into sub-processes. 

• Resource Flows: All process steps can have input and output ports through 

which resources flow.  One innovation we use is to recognize that 
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processes can be divided into ‘core’ activities as well as those involved in 

coordinating the flow of resources between core activities This insight 

allows us to abstract away details about how sub-processes coordinate with 

each other, allowing more compact service descriptions without sacrificing 

significant content. 

• Mechanisms: Processes can be annotated with the resources they use (as 

opposed to consume or produce).  For example, the Internet can serve as a 

mechanism for a process. 

• Exceptions: Processes typically have characteristic ways they can fail and, 

in at least some cases, associated schemes for anticipating and avoiding or 

detecting and resolving them.  This is captured by annotating processes 

with their characteristic ‘exceptions’, and mapping them to processes 

describing how these exceptions can be handled. 

 

 
Another factor that Klein and Bernstein stress is the notion of accounting for 

every possible use for a given process.  They address this issue with a specialized 

process query language (PQL) that defines query algorithms to retrieve processes 

not explicitly indexed as serving a given purpose.  They accomplish this using 

query mutation operators (2002).   
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3.4.2 

3.4.3 Meta-ontologies 

Upper level ontologies 

Upper level ontologies are important for ontology sharing and integration of 

domain ontologies.  They map high level generic or core concepts that represent 

interdomain commonalities.  They can include generalizations of process or task 

as well objects and concepts.  Figure 9 shows the Sowa’s upper ontology (Sowa, 

2001) 

 

  

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9: Sowa's Upper Level Ontology 

 
 

 

Meta-ontologies are ontologies that conceptualize other ontologies.  They can be 

object or process oriented.  Meta-ontologies describe metadata about ontologies 
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and their associated elements.  Meta-ontologies can also be used as a sort of 

ontology prototyping system for capturing changes of an evolving ontology called 

an evolution ontology.  Figure 10 is an example of a meta-ontology that models 

interoperability issues between two ontologies called the Semantic Translation 

Ontology or RDFT (Stevens, 2002). 

 

 

Figure 10: Meta-ontology example 

 
 

 

 

 

 

 

 

 

 

 

 

 

3.4.4 Integrated ontologies 

Integrated ontologies are concerned with combining and blending existing domain 

ontologies that were not originally designed for interoperability.  The source 

ontologies may have conflicting formats, and may be defined using incompatible 

approaches or different domains.  The goal of integrative ontologies is to 

transform disparate source ontologies into a common view of the application 
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domain (Missikoff, 2002).  The European Information Society Technologies 

(IST) project has developed the "Harmonize" Local As View (LAV) approach to 

ontology integration.   

 

Harmonize researchers have identified two main groups of "clashes", that they 

attribute to "differences in the conceptual schemas of two applications attempting 

to cooperate"(Missikoff, 2002): 

• Lossless clashes: are clashes that can be reconciled without loss of 

information.  Examples include:  

o naming clashes, where two terms represent the same concept 

o structural clashes, where information elements are grouped 

differently   

o unit clashes, where the same concepts are represented with different 

units of measure. 

 

• Lossy clashes: cannot be reconciled without loss of information.  These 

usually involve Precision gaps, where the same concept is represented at 

different levels of granularity.  Examples include:  

o Measured vs.  approximated information. 

o Specific versus general descriptors such as 'structural protein' vs, 

just 'protein'. 

 
Harmonize has developed a frame-based ontology integration metalanguage 

called the Object Process Actor modeling language (OPAL) and associated 
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ontology management system called SymOntoX.  The SymOntoX interface shows 

an integrated domain view that divides ontologies into layers representing levels 

of concept granularity.  The top layer or upper domain ontology (UDO) contains 

high level concepts such as 'actor', 'process', 'event' and 'goal'.  The bottom layer 

or lower domain ontology contains primitive concepts such as Dalton or 

molecule.   

  

It is relatively easy to find common or agreed upon definitions at the upper and 

lower end of the spectrum.  The more divergent middle layer contains the 

application ontology.  This ontology can vary dramatically between applications 

depending on the problems encountered, logic used, methodology, cultural 

differences and underlying technology, which "often contaminates the conceptual 

model" (Missikoff, 2002).  For instance, nomenclature problems are likely to 

surface here for a genomic application.   

Harmonize comprises and provides for the domain expert, a descriptive 

framework called an Integrated Meta Ontology (IM) for a given domain.  This 

framework consists of set of upper and lower level concepts derived from domain 

industry standards.  Participants who would like to exchange information without 

changing their proprietary schema can simply annotation their local conceptual 

schema (LCS) with the concepts provided by harmonize.  Annotation involves 

assembling primitive constructs or concepts from the IM to map defined concepts 

in the LCS.   
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The annotated LCS provides a semantic reference for each local schema for the 

purpose of information exchange.  In this manner the harmonize system acts as an 

ontology translator enabling participants to both export and import information 

according to their unique schema.  Local schemas are transformed to a common 

representation for exchange called the Harmonise Interoperability Representation 

(HIR).  Harmonize is currently developing a model for the European tourism 

industry (Missikoff, 2002).  Figure 11 is an overview diagram of the harmonize 

approach to ontology integration. 

           

Figure 11: Harmonize ontology integration system 
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4 DATABASE METHODOLOGIES 
 
Database methodologies are essentially logical collections of constructs used to define 

and represent data structure and relationships.  They include conceptual models that 

represent logical data representation, and physical models that represent how the data is 

structured in the database (Yang, 2002).  Although biological databases encompass a 

wide range of database methodologies, in general, most major projects use either the 

relational or object-oriented approach.  In this section, I will provide a brief overview of 

relational, object oriented and hybrid databases and their methodologies  

 
4.1 Relational Databases 

Relational databases are represented as a collection of data entities, stored in tabular 

format.  Each table is called a relation and is stored as a separate file in the database.  

Relations hold sets of entities that are semantically linked by their common 

characteristics.  Relations are linked to each other by their unique identifiers or 

primary key attributes. 

 

4.1.1 Entities as tables 

An entity is a person, place, thing or event about which data is being stored.   

An attribute is a characteristic or property of an entity.  Each row or tuple in a 

relation represents an entity and each column an attribute of that entity.  The 

semantic linkage within a relation is represented by the intersecting field between 

an entity and its characteristic or attribute (Yang , 2002).  The intersection value 

represents a single characteristic of the associated entity.  Relations apply no 
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syntactic constraints to attribute order.  Figure 12 illustrates the structural 

representation of a relation (Berners-Lee, 2002). 

 

Figure 12: Relation example 
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The tabular structure of the relational database constrains semantic linkages to 

binary relations of primitive or atomic entities.  Other intrarelation constraints 

include (Yang, 2002): 

• Attributes have range of values called a domain   

• Attributes within a column must have the same data type (eg.  string, 

integer) 

• Entities (rows) must be uniquely identified by one or more key attributes 

called a primary key (entity integrity) 

• Key attributes must not depend on other attributes to describe the entity 

• Non-key attributes are functionally dependent on key attributes 
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4.1.2 Interrelational structure 

Relational models also represent interrelations or relationships between tables.  

Semantic expressiveness is supported in relational models primarily by linking 

related tables by their key attributes to form an interconnected network of 

relations.  While uniquely identifying entities with primary keys ensures entity 

integrity, linking tables with primary keys, called foreign keys, ensures referential 

integrity.  This means that tables having foreign key dependencies or matching 

foreign keys in related tables, can not be deleted, hence the semantic linkages are 

preserved.  Figure 13 represents a simple relational model with primary to foreign 

key relationships that depicts a student, enrollment, course relationship (Yang , 

2002). 
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nstraints such as supertype-subtype relationships, as well as 

isjoint) and overlapping sibling relationships are also 
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supported.  Figure 14 diagrams an example of hierarchical constraints describing 

faculty and student types of people (Yang , 2002). 

 
  

 
Figure 14: Relational hierarchy 
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4.1.3 Query languages 

The structure of the relational model provides a framework of primitive semantic 

linkages from which more complex semantic relationships are expressed through 

query languages or programming.  Based on relational algebra rules, queries filter 

large sets of  relational data by selecting specific rows and columns, applying 

parameter constraints that return data within a specific range of values, and 

deriving data via functions.  A sample query for the relational model in Figure 14 

might be: "What are the names of all students who are enrolled in a theology 

course with course number T2?"   

 

This query would take three steps:   

• Find CourseID =T2 in the COURSE table  
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• Find CourseID =T2 in the ENROLLED_IN table and return all associated 

student (SPID) numbers  

• Find student (SPID) numbers in the STUDENT table and return 

associated Student Names  

 
 

4.2 Object Oriented (OO) Databases   

Object oriented database design combines database design with object programming 

language.  OO defines a database as a set of objects, properties and operations.   

4.2.1 Entities as objects 

Database Objects are modeled as OO programming language objects.  While 

relational databases fragment complex data into pieces of atomic or primitive 

data, by storing data together with the methods to access that data, called 

encapsulation, object oriented databases are able to store complex data types.  

They also support a wide range of data types including user defined data types.   

4.2.2 Relationships and navigation 

Object oriented design supports four types of semantic relationships: inheritance 

or type-subtype, association, whole-part (aggregation), part –whole (inverse) 

(Chandler and Hand, 2002). 

Querying of objects, called navigation, involves searching objects for pointers to 

other objects.  This paradigm is more semantically expressive and flexible than 

the relational model.  Figure 16 illustrates the same student, enrollment, course 
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relationship as the relational model in Figure 15.  This example shows two 

student objects and a course object, the enroll relation is handled with code and 

interobject pointers.  The student objects have information about what courses 

that student is taking and the course object has information about which students 

are enrolled in that course (Chandler and Hand, 2002). 
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Figure 15: Object model example 
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Querying for the names of all students enrolled in course number T2 would be a  

two step process written in the same programming code as the defined objects: 

• Search the COURSE Index and find CourseID=T2)  
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• Follow Student Pointers to STUDENT object and  return each associated 

student name    

 

4.3 Relational to Object Oriented Comparison 

Since the basic relationships between entities are built into the data structure of 

relational databases, in general they are best applied to domains with a large number 

of data instances, but simple relationships.  Object oriented designs are more suited to 

complex data schemas because interobject relationships are handled totally with 

navigational algorithms (Fernstrom, 2000).  Table 4 is a relational object oriented 

comparison that was written by Christer Fernstrom as a technology briefing report for 

the RENAISSANCE ESPIRIT Project, a database research project at Lancaster 

University (2000). 
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Table 4: Relational to Object Oriented Database Comparison 

  RELATIONAL   OBJECT ORIENTED  

complex 
data types 

- supports binary large objects 
(BLOBs) which are essentially 
very large database columns  
- database columns must 
generally be simple data 
elements, rather than 
structures and arrays 

- supports complex data types, 
including user defined data types 

locating data - fast at locating simple data 
types 
- no support for searching or 
indexing BLOBs 

- usually slower than RDBMS when 
locating simple data types 
- sophisticated algorithms used to 
search for data within complex data 
types 

language 
standards 

- Major RDBMS's use a 
standard language (SQL2 / 
SQL92) with vendor-specific 
extensions.  SQL is both a 
data definition language 
(DDL) and a data 
manipulation language 
(DML). 

- Many ODBMS's support object 
query language (OQL) and object 
definition language (ODL) which are 
part of the larger Object Data 
Management Group (ODMG) 
standard.  There are varying degrees of 
compliance amongst ODBMS vendors 
with the overall ODMG standard. 
- unlike RDBMS's which use SQL 
Insert, Update, Delete, data 
manipulation is performed in the 
programming language by invoking 
methods on the object -- this allows 
for better object encapsulation. 

functions /  
methods on 
DBMS 

- provides triggers / stored 
procedures which are written 
in the native DBMS language 
- function / method inheritance 
not supported 

- object methods are typically written 
in a selected OO programming 
language (usually C++, Java or 
Smalltalk) 
- object/method inheritance is 
supported 
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4.4 Hybrid Databases   

In the past five years, most major relational database management systems (RDBMS) 

have incorporated basic object features such as triggers and binary large objects (or 

BLOBs).  These features are designed to handle the increased application complexity 

required to manage complex data types such as  audio and video as well as the 

demand for more sophisticated searching indexing and query optimization for 

complex data types.  The result is a hybrid system called an Object Relational 

Database Management System (ORDBMS) or universal servers.  Some of the key 

features that ORDBMSs provide are user defined data types and functions, enhanced 

search and indexing features, and expanded support for programming languages 

(Fernstrom, 2000) 

 

5 ONTOLOGY-DRIVEN DATABASE APPLICATIONS IN BIOLOGY 

There are a numerous ontology driven biological database projects currently under 

development worldwide.  For example, model organism databases (MODs) such as  

EcoCyc model specific organisms, controlled vocabulary (nomenclature) projects such as 

the Gene Ontology (GO) are concerned with semantic interoperability among the 

biological community, and pathway databases model  metabolic pathways of specific 

organisms.  While describing the range of development methodologies of these projects 

is beyond the scope of this study, I will summarize two representative projects that 

characterize leading methodological approaches: the GO nomenclature database and the 

EcoCyc Pathways knowledge based system.     
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5.1 The Gene Ontology 

GO was developed by a consortium of  MOD database curators for the purpose of 

resolving gene nomenclature issues in gene related database annotation.   Instead of 

attempting to reconcile the existing nomenclature system, GO aims to develop a 

consistent annotation system that describes and relates genes based on their 

characteristic functions rather than their organism of origin.   

 

The goal of the GO project is to address the gene nomenclature problem by 

developing a standardized controlled vocabulary to describe the function, processes, 

and location of a gene product for use as standardize gene annotation across model 

organism databases.  Curators from database projects such as the Drosophila 

community's FlyBase, the Saccharomyces Genome Database, and the Mouse Genome 

Database, joined forces to develop a centralized database of terms that models the 

function of genes in all organisms (Pearson, 2001). 

 

5.1.1 Ontological methodology 

GO uses a frame-based process ontology methodology as the basis for database 

schema development.  GO is actually three separate ontologies that specify gene 

function, process, and cellular location, with a combined total of over 10,000 

concepts.  These upper level concepts are organized into type-subtype and class-

property hierarchies using the frame defined relationships `is a kind of'' and `is 

part of ' to specify gene product roles (Stevens, 2002).   
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Every concept in the GO ontology is manually assigned by curators who attach 

gene instances to GO terms and resolve any nomenclature collisions.  Common 

issues such as homographs referring to different processes are typically resolved 

by adding disjoint subtypes to the representing hierarchy.  GO coordinator Midori 

Harris describes the process, "The vocabularies are dynamic - a work in progress" 

(Stevens, 2000).  Figure 16 is an example of the GO as rendered in the AmiGO 

ontology browser (GO, 2002). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 16: GO ontology hierarchy 
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Although GO supports multiple inheritance type-subtype (multiple types or 

parents for one subtype) and synonymous relationships, many of the relationships 

in GO are expressed implicitly or inferred by position in the hierarchy (Stevens, 

2000).  This approach imposes syntactic dependencies that will likely result in 

significant scalability issues for direct database schema implementation in rapidly 

changing domains.  For relational schemas direct mapping could easily involve a 

network of thousands of tables representing specific nodes in the hierarchy, and 

for object oriented schemas it would involve the programmatic creation of 

thousands of complex objects and their respective interconnecting persistent 

pointers. 

 

5.1.2 Transform methodology 

GO does not prescribe a specific methodology for ontology to database transform,  

nor does it recommend implementation in a specific database technology.  

However, the project has implemented the GO in a My SQL relational database 

that addresses schema complexity by incorporating an RDF style graph model.  

This model allows for schema simplification by grouping type-subtype concepts 

into common tables and denormalizing recursive relationships with a graph path 

layer that represents all hierarchical relationships in the schema.  This is 

accomplished with two types of graph path tables, one represents the graph nodes 

that identify two concepts as ancestor and child and assigns them a unique graph 

ID and the other is represents the graph arcs that assign each term to a graph ID.  

Figure 17 is an excerpt of the GO schema that illustrates how graph path 

represents hierarchical relationships. 
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This method puts some of the ontology modeling complexity into the data, which 

greatly simplifies the data model.  However, due to the atomic nature of 

relational database design, one side effect of this method is a more complicated 

query process in order to reassemble these relationships.  For instance, the GO 

database site provides the following query as an example of how to retrieve all 

subtypes or child terms of the term 'transmembrane receptor': 

SELECT  rchild.*  
FROM term AS rchild, term AS ancestor, graph_path 
WHERE graph_path.term2_id = rchild.id and  

   graph_path.term1_id = ancestor.id and  
   ancestor.name = 'transmembrane receptor' 
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5.2 EcoCyc Pathways Expert System 

EcoCyc is a bioinformatics MOD that was developed by the Stanford Research 

Institute (SRI) an non-profit research center.  EcoCyc describes the structure and 

function of the E.  coli (Escherichia coli) bacterium.  The goal of the project is to 

facilitate a system-level understanding of E.  coli.   

5.2.1 Ontological methodology 

Like GO, EcoCyc uses a frame based ontology.  However, EcoCyc uses its 

ontology as a direct roadmap for an object oriented database schema.  EcoCyc 

version 5.6 has over 1700 concepts that are encoded as objects in the EcoCyc 

database, including key concepts in biochemistry and molecular biology, their 

associated properties and relationships among those objects (Stevens, 2000).  

Figure 18 shows an excerpt of the EcoCyc Pathways object hierarchy.   
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Figure 18: Pathways hierarchy example

 

5.2.2 Transform methodology 

5.2.2.1 The knowledgebase 

One of the key developers of EcoCyc, Peter Karp (2001) describes the 

EcoCyc database as follows: 

An interconnected web of frames (objects) stored in a frame 
knowledge representation system (similar to an object-
oriented DB).  Each frame represents a distinct biological 
object (such as a gene or a protein), and the labeled 
connections between those frames represent distinct 
semantic relationships among the objects, such as the 
relationship of a gene to its protein product, or the 
relationship of a protein to a reaction that it catalyzes.   
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Karp argues that by encoding scientific theories in symbolic form, we "open 

new realms of analysis and understanding for theories that would otherwise be 

too large and complex for scientists to reason with effectively".  Based on this 

analogy, Karp has dubbed EcoCyc a ' computational symbolic theory" which 

he defines as a database that "structures a scientific theory within a formal 

ontology so that it is available for computational analysis"(2001).  Table 5 

describes the number and types of objects in the EcoCyc version 5.6  

knowledgebase. 

 

 

 
  

OBJECT CLASS  OBJECT COUNT 
Pathways 165 
Reactions 2604 
Enzymes  905 
Transporters 162 
Genes 4393 
Transcription Units  629 
Promoters 740 
DNA-Binding Transcriptional Regulators 100 
DNA Binding Sites 854 
Citations 3508 

Table 5: EcoCyc Knowledgebase Objects 

 
 

 

 

 

 

Encoding scientific theories in a symbolic knowledgebase refers to the ability 

of a knowledge based system to infer relationships from the interpretation and 

synthesis of experimental results.  Providing this type of value added summary 

data can aid scientists in checking theories for accuracy and consistency (Karp, 

2001).   
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5.2.2.2 The production system 

Logical reasoning within a knowledge based system is accomplished using 

expert systems technology usually in the form of a production system.  A 

production system consists of a set of rules and corresponding propositions 

that the production system recognizes as being true.  The rules are in first order 

logic "IF→Then" form of A^B→C^D.  This translates to the system as, If A 

and B are present, then C and D.  An inference engine searches for rules that 

contain the variables on the "If" side, then fires them by adding the variables 

on  the "Then" side.   

 

For EcoCyc, the production system consists of a computationally translated 

production rule for every metabolic reaction in the database and a proposition 

for each known growth nutrient of E.  coli.  Early experimental results are 

encouraging.  The system is able to verify that M63 minimal growth medium 

is able to produce all 41 essential E.  coli compounds.   

 

EcoCyc's use of object oriented database technology allows for greater semantic 

expressivity and resilience to rapid schema changes.  The adaptation of expert 

systems technology for symbolic computing, in Peter Karp's words," represents a 

distinct nonnumerical style of computing that, allows us to exploit the power of 

computational qualitative theories" (2001).  Yet this implementation of a 

knowledgebase is programmatically intensive and relies on a suite of add-on tools that 

are costly to develop and maintain.  Since it is based on current expert systems and 
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object oriented technologies, it will be subject to the scalability limitations of its 

underlying technologies and transformation methodology. 

  
6 ULTRA-STRUCTURE THEORY  
  
Ultra-Structure Theory (UT) was developed by Jeff Long as a theory of systems design in 

1985.  It aims to optimize computer representation of complex, conditional and changing 

rules by finding and modeling the unchanging features of changing systems (Long and 

Denning, 1995).  Ultra-Structure has a unique world view of complex systems and 

processes that distinguishes itself in three main ways:  

i.  the application of a higher level of abstraction than other systems  

ii  the rule-centric approach to system organization 

iii    abstraction of both the system domain (relational DB) the reference  

       (real world) domain 

 

6.1 Conceptual Distinctions 

UT is loosely based on the work of linguist Noam Chomsky.  In 1957, Chomsky 

developed an abstract theory of language called the Theory of Transformational 

Grammar.  Chomsky postulates that every intelligible sentence conforms not only to 

specific grammatical rules of the language in which it is spoken, but also to “deep 

structures,” which represent a universal grammar that is innate to the human brain and 

is language independent.  Chomsky and other linguists have formulated 

transformational rules,  that transform the grammatical structure of sentences while 

preserving their semantic meaning.  The hypothesis is that to accurately describe the 

grammar of a human language, you must discover its deep structure.  Transformation 
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rules applied to the deep structure transform the surface structure or spoken sentence 

into immeasurable syntactic combinations.  In this manner, transformational rules can 

describe the set of all the sentences that can possibly be formed in any language 

(Lechte, 1994)  

 

6.2 Ontological Methodology 

 
6.2.1 The world as a process 
 
Like GO, UT has a process ontology style world view that conceptualizes what a 

domain does rather than what it is.  The aim is to analyze reference domain 

processes and model them in an evolving prototype fashion until all logically 

possible processes are represented, not just within the domain of the system being 

modeled, but in the larger set of systems in which that domain exists.  Long argues 

that like Chomsky's universal deep structure of grammar for all languages, all sets 

of systems share a deep structure.  By studying the processes of domains within a 

given set, transformation rules can be extracted that eventually lead to the 

discovery of the deep structure of the entire complex system.  The set of all games 

or all music are examples of complex systems to which UT has been applied. 

 

6.2.2 Rules as process abstractions 

Ultra-Structure theorizes that since all processes are governed by rules, as such 

they can be abstracted to, and represented by first order logical rules in an 

"If→Then" format.  Here, Ultra-Structure applies the same logical rules of 

inference that are used in ontologies and expert systems to capture the semantic 
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knowledge of complex systems via abstraction.  Abstractions manage the 

complexity of a system by modularizing specific concepts into more general 

concepts, thereby improving system tractability. 

 

Rules are a more abstract form of description because they are semantically 

expressive and unambiguous.  For example they describe behavior as well as 

mechanism, and the set of rules explicitly defines the ontology of the system they 

describe.  "If→Then" rules can be used to describe virtually any type of 

relationship between two or more concepts including user defined relationships.  

UT uses a specific type of conditional "If→Then" rules.  Instead of the typical 

format of If A is true than decide that B must be true, UT declares that If A is true 

then consider B before deciding what is true.  This is a more expressive form of 

declaration in that it allows for the consideration of variables that may or may not 

be relevant to a decision.  Variables may be strung together to represent more 

complex considerations (Long and Denning, 1995).  The set of all rules describing 

a system represent a constituent structure analysis of the reference domain. 

 

6.2.3 Ruleforms as rule abstractions 

A scientific law is a set of one or more rules that generalizes the natural behavior 

of a system.  Once a scientific law is accurately represented and tested it will 

reliably predict phenomena in the system to which it applies.  In the domain of 

thermodynamics for example, the ideal gas law (PV = nRT) states that a gas is at 

thermodynamic equilibrium when the pressure and volume of a gas is equal to the 
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product of the number of moles, the gas constant and temperature.  (chemPages, 

2002).  This law combines the rules of thermodynamics to reliably predicting 

phenomena in the system (the universe) to which it applies.  In this respect 

scientific laws are an abstraction of a set of one or more rules that modularizes 

every possible combination of its constituent rules. 

 

Ultra-Structure refers to laws of a reference system as ruleforms.  Long argues 

that to understand complex systems, we must raise them to a level of abstraction 

above the observable structure, and even above the rules themselves, to the deep 

structure of ruleforms that govern the rules.  Long suggests that, "Rules may be 

defined in terms of sets, with each set having a specified and limited possible 

range or set of values.  A particular rule in this definition is a particular ordered 

sequence of these values" (Long and Denning, 1995).  For example, a  particular 

rule for the first law of  thermodynamics would refer to a specific instance or 

value for each variable.  Hence, like scientific laws, ruleforms are an abstraction 

of the constituent rules that comprise them.   

 

Ruleforms can be decomposed into an ordered set of underlying domains that 

Long calls "universals".  A universal is a domain or class of entities that represents 

the single most general level of semantic abstraction of its members.  This class 

includes any subtypes or variations that are defined by individual instances of 

rules.  Universals themselves are defined by a set of constituent rules that declare 

the existence of domain members.  In this manner, constituent rules are abstracted 



 68

into more complex compound rules, and  the set of all applicable compound rules 

are further abstracted into ruleforms or scientific laws of a system. 

 

Long claims that "Ruleforms are to rules, what ordinary algebra is to arithmetic." 

They are abstract generalizations of the structural concepts and relationships of a 

system.  Just as algebra uses symbols to abstractly represent numbers in order to 

generalize the laws of arithmetic, Ultra-Structure uses universals to abstractly 

represent entities in order to generalize the laws of a system.  Long specifies his 

extension of Chomsky's theory in the "Ruleform Hypothesis", which states: 

Complex system structures are created by not-necessarily complex 
processes; and these processes are created by the animation of operating 
rules.  Operating rules can be grouped into a small number of classes 
whose form is prescribed by "ruleforms".  While the operating rules of a 
system change over time, the ruleforms remain constant.  A well-designed 
collection of ruleforms can anticipate all logically possible operating rules 
that might apply to the system, and constitutes the deep structure of the 
system (Long and Denning, 1995). 

 

6.2.4 Structural layers  

UT represents the reference system in three main levels of abstraction or structure: 

the surface structure, middle structure and deep structure.  The surface structure is 

composed of the set of all entities, processes, relationships, and observable 

behaviors that are governed by the rules defined in the system.  It is the 

unabstracted complex view of the actual system as a whole from which UT 

extracts the rules of the system.  The middle structure abstracts the surface 

structure and expresses that abstraction in the form of the set of all constituent 
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rules that govern the processes or behaviors of the surface structure.  Long claims 

that these rules "generate the surface structure".  Finally, the deep structure is 

comprised of ruleforms, the combinatorial set of ordered universals from which all 

rules are constructed.  According to Long, the deep structure specifies the system's 

ontology by answering the questions that define the essence of the system, such as 

(Long, 2001): 

• What is common among all systems of type X? 

• What is the fundamental nature of type X systems? 

• What are the primary processes and entities involved in type X systems? 

• What makes systems of type X different from other systems? 

Figure 19 illustrates the three structural layers of a UT defined system (Long.2001). 
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Figure 19: Ultra-Structure structural layers of abstraction 
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6.2.5 Substructure 
 
A unique abstraction of the UT methodology is the substructure, which consists of 

the set of universals of a system.  This is the abstraction of  the particular objects 

of a system to classes of objects.  Object classes represent not just physical 

objects, but the semantic dimensions that characterize the behavior of a complex 

system such as location, measurement, time period and relationship.  These 

classes are defined by rules that declare the existence of the class and all of its 

subtypes.  This would normally be the centralized structure that an ontology 

would subdivide into a type-subtype hierarchy from which a data model would be 

derived.  But in UT this hierarchy is not reflected in the data model.  Instead it is 

encapsulated into a set of complex data types that share global properties and can 

be manipulated much like objects in an OO database.  Assembling universals into 

ruleforms constitutes a new representation of an upper ontology using a DL like 

methodology to create rule structure on the fly by forming complex rules from 

primitive rule components. 

 

6.3 Transformation Methodology 

Just as ORDBMS systems are emerging to integrate the best features of relational and 

object oriented technology, UT theory was developed with the goal of  integrating the 

best features of knowledgebase and database technologies to create large expert 

systems that are capable of representing extreme complexity.  Jeff Long explains,  

A million records is small by database system standards, but a million 
rules is essentially an impossible number for a traditional expert system 
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to manage.  We expect to be able to effectively handle very large 
numbers of rules, numbering in the hundreds of thousands, using Ultra-
Structure techniques. 

UT was designed to be implemented within a standard relational database system.  By 

disregarding conventional distinctions between algorithms and data and redefining the 

semantic constraints of relational database design, UT has created a new level of 

abstraction that overcomes the limitations imposed by conventional design 

methodologies and tabular database structure. 

 

6.3.1 Abstracting the notational system 

Perhaps the most inventive abstraction of UT is that of the notational system.  

Long is a notational engineer who eloquently postulates why notation is the 

limiting factor of defining complex systems:   

Abstraction spaces are discoveries, not inventions.  We need a more 
systematic way to develop and settle abstraction spaces.  We may have 
competence in using complex systems but we still don’t “understand” 
complex systems.  This is not because of the nature of the systems, but 
rather because our notational systems – our abstractions -- are inadequate.  
The notational systems one habitually uses influences the manner in which 
one perceives his environment: the picture of the universe shifts from 
notation to notation.  Every notational system has limitations: a 
“complexity barrier”.  Using the wrong, or too-limited, a notational system 
is inescapably self-defeating (2001).   

 
UT abstracts the notational system by redefining the semantic framework of 

relational design to provide a more expressive and modifiable abstraction space. 

 

6.3.2 Redefining semantic constraints 

 UT redefines the purpose of relational database tables from containers of atomic 

components of complex entities and their relationships, to containers of the rules 
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themselves.  Instead of  the relational paradigm, where standard manipulation of 

component parts must be reassembled and manipulated by the conditional rules of 

a programming or query language, 99% of the rules of a UT system can be 

expressed in the data and curated by domain experts.  These are the conditional 

rules of the middle structure, which contains all of the knowledge of the reference 

domain, expressed as data content.  Expressing the rules of a system as data 

enables domain experts to insert delete and modify the rules of the knowledgebase 

in a simple native language format that is easy to understand and implement.   

 

6.3.3 Abstracting the syntactic space 

UT extends the functionality of the structural or syntactic space of the standard 

relational database table by imposing a semantic place value constraint to support 

ruleform order.  Place value assigns meaning based on content and location.  In 

the Hindu-Arabic numeral system, place value is column position as a placeholder 

of 10.  In rule forms, place value is the column position as a place holder of the 

universal and the domain (universal) value of a particular rule.  Figure 20 

diagrams the UT place value concept.   
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Figure 20: Place value example
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Each ruleform is implemented as a table that is designed to model the format of 

the rules rather than the rules themselves.  Table rows are the rules, which are 

composed of the ordered set of individual attribute values in a ruleform.  

Attributes values are of two types, factors and considerations.  Each ruleform 

contains at least one factor and one consideration.  Factors represent the "If" side 

of the "If →Then" rule format.  They are the conditions by which the 

considerations should be evaluated.  Factors are the unique primary keys for each 

rule (row), following standard normalization rules.  Considerations are the "Then" 

side of the "If →Then" rule format.  They are non-primary key attributes that hold 

the variables to be considered before a conclusion can be drawn.  Figure 21 

diagrams a ruleform with factors and considerations. 



 74

 

 
 

Rule

U
ni

ve
rs

al
 

U
ni

ve
rs

al
 

Consideration Factor 

 

Figure 21: Ruleform example 

 

 

 

 

 

 

 

 

 

 
 

6.3.4 Rule types and ruleforms  

In general, ruleforms model the syntax of all system rules called operating rules.  

However, there are several subsets of operating rules that take on characteristic 

ruleforms.  The main distinction between types of operating rules is between 

existential and compound rules.  Existential rules declare entities to exist and 

specify one or more considerations regarding the entities.  Minimally, they take an  

identifier →descriptor ruleform.  An example would be name→description.  

Compound rules relate existential rules by foreign keys (FK), which become 

compound rule factors and considerations.  There are several subtypes of 

compound rules that have characteristic rule forms.   
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Network rules relate recursive relationships between entities within the same 

universal or domain.  They typically take the minimal form, "universal1 FK 1, 

relationship FK, universal1 FK 2".  For example, if an existential ruleform 

declares a universal called "resource" contains two rules, one declaring the 

existence of a publication and the other an author; and the relationship existential 

ruleform declares a relationship called is_written_by, then the network rule would 

be publication FK (e.g.  name), (is_written_by) FK, author FK (e.g.  name).  In 

this manner the network table relates one "resource" to another similar to the way 

that RDF triples relate subject, predicate and object.  

  

Other compound rule types include authorization rules, protocol rules and 

metarules.  Authorization rules relate entities from different universals, defining 

systematic relationships such as part→whole, sequencing and rules of precedence.  

Protocol rules define related work processes such as conditional steps in a 

procedure.  Finally, metarules, are complex rules for reading other rules.   

 

Metarules have query characteristics in that they are factor value filtering 

mechanisms.  They create custom views or masks of factor value subsets by 

specifying relationship values.  While other rules are clearly reference domain 

knowledge and as such are expressed entirely in the data, metarules function in a 

gray area between reference and information system knowledge, hence for 

efficiency reasons, simple metarules may be hard coded.  Since more complex 
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metarules are more transitory, they are expressed as ruleforms.  Figure 22 

illustrates typical ruleforms for various types of rules. 
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Figure 22: Rule types and ruleforms 
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6.3.5 Animation procedures 

Along with ruleforms, animation procedures comprise the inference engine or 

"competency rule engine" (CoRE) of a UT system.  Although more specific code 

may be necessary for rare circumstances, in general, animation procedures are 

rule-form specific routines that act on universal classes of rules within the rule-

form.  The main advantage of a process-centric approach to abstraction is that the 

members of a class of objects share common processes and properties and 
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therefore can be manipulated globally with the same programming routine or 

method.  For example, all mammals are warm blooded, all time periods have a 

beginning and an end, and all measurements have units.   

 

While most programming code is written at the middle (rule) level of abstraction, 

animation procedures need to code little to no specific rules.  Instead animation 

procedures use the information provided by ruleforms to determine which rules 

will be read in what order, and which will be executed.  In this way, animation 

procedures resemble OO navigation methods.  Essentially, putting the rules in the 

data rather than in the programming frees the inference engine to define, 

determine and execute only "what" the system processes should do, the "who, 

when, where, why, and how" rules are defined in the data.  In the "CoRE 

Hypothesis", UT claims that an incredibly small number of ruleforms and 

animation procedures can define even the most complex and dynamic of systems 

(Long and Denning, 1995). 

The CoRE Hypothesis  

UT can create “Competency Rule Engines”, or CoREs, consisting 
of <50 ruleforms,  that are sufficient to represent all rules found 
among systems sharing broad family resemblances, e.g.  all 
corporations.  Their definitive deep structure will be permanent, 
unchanging, and robust for all members of the family, whose 
differences in manifest structures and behaviors will be represented 
entirely as differences in operating rules.  The animation 
procedures for each engine will be relatively simple compared to 
current applications, requiring less than 100,000 lines of code in a 
third generation language. 

Table 5 provides a summary of UT concepts. 
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Table 5:Ultra-Structure Concepts Summary 
 

Natural Language Term Ultra-Structure 
Instance Name 

Ultra-Structure  
Level Name 

U-S Implementation 

behavior, physical 
entities and 
relationships, processes 

particular(s) surface structure system behavior 

rules, laws, constraints, 
guidelines, rules of 
thumb 

rule(s) middle structure data and some software 
(animation procedures) 

(no standard or common 
term) 

ruleform(s) deep structure tables 

(no standard or common 
term) 

universal(s) sub-structure attributes, fields 

tokens, signs or symbols token(s) notational structure character set 

 

6.4 Ultra-Structure Systems Design Strategy 

Ultra-Structure uses an evolving prototype approach that is similar to that of 

the Methontology.  Ontology development, documentation, ontology 

transform, system development and knowledge curator training are all 

produced simultaneously using rapid prototyping.  A typical systems design 

lifecycle for a large scale project involves iterative expansion and refinement 

of the prototype until the representative set of ruleforms for the domain is 

defined.  This can usually be accomplished within six months of continuous 

development and with 4-6 versions of the prototype.  Documentation consists 

of a running tally of functional requirements called a function list, and a 

detailed encyclopedia of concept definitions and design assumptions 

Rapid prototyping enables the domain expert to visualize and explore the 

abstraction space to determine where the system needs to be expanded, while 

gaining knowledge curator training.  Like the Methontology's evolving 
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prototype methodology, UT provides the same intermediate representations 

that "bridge the gap between how people conceive a domain, and how it is 

formalized" (Blaquez et.  al., 1998).   

Discovering the deep structure of a reference domain of any ontology is akin 

to assembling a jigsaw puzzle, determining where the more obscure pieces fit 

only becomes apparent in the context of a partially assembled framework.  

Actively participating in the development process allows the domain expert to 

directly assemble the puzzle, rather than describe how it should be assembled.  

This method provides the context for discovery of obscure pieces that are not 

predictable and would otherwise be overlooked. 

6.5 Ultra-Structure Applications 

UT has been implemented in several large scale applications including included 

order-entry through cash-application, financial and cost accounting, inventory and 

purchasing, equipment and facilities maintenance, executive information, automatic 

software documentation systems.   

 

6.1.1 Business application 

While UT has been implemented in many business applications, One application 

that handles order entry, inventory control and billing, has been in continuous 

operation since 1986.  This application supported the organization's growth from 

$13 million to $100 million in annual revenue.
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During this time, annual maintenance costs have remained stable at approximately 

$12,000.  Since maintenance is handled by knowledge curators, there is no need to 

employ any permanent IT staff.  Compared to the 1% of revenue standard industry 

cost estimates, the UT system has been 98% less expensive to maintain. 

 

6.1.2 Document classification application 

Document classification System More recently, UT has been implemented by the 

US Department of Energy (DOE) as an expert system security clearance classifier 

of government documents.  The  system includes a large knowledgebase of over 

100,000 rules representing a broad range of key document concepts.  This 

program was awarded the “Hammer Award” by Vice President Gore’s office in 

October 1998.   

 

6.1.3 mRNA translation prototype 

Experimental UT implementations have been created for legal systems, games, 

artificial life, music and most recently a biological prototype application that 

models mRNA translation to polypeptide. 

 

The mRNA prototype, called CoRE 576, has demonstrated functionality as an 

mRNA to polypeptide translation simulator and sample tracking system.  It 

includes a Network Propagation Engine (NPE) was implemented that performs 

modus ponens deductions based on the protein expression knowledge rules that 
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are expressed as data in the knowledgebase to determine the contra relationship 

between entities.  A simple example of a contra deduction is,  

If A = B→Then B = A.   

 

The knowledge model is designed to accommodate all logically possible 

relationships occurring during translation and can be easily extended to include 

new levels of organization by simply adding the appropriate rules to the data.  

Table 6 illustrates entries in a network table relating bioentities.   
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Table 6: CoRE 576 Network Rules Example 
ITY1 RELCODE SEQNO BIOENTITY2 

AlsoKnownAs 1 A 

MustHavePart 3 Nitrogen 

IsA 1 Molecule by type 

MustHavePart 2 Hydrogen 

Transcribes 1 Nuclear DNA 

lecules MustBePartOf 1 Histadine Molecules 

0001 MustHavePart 2 Adenine 

mation procedure, examines the rules in the knowledgebase, deduces 

 relationships exist, generates inferred network rules, and populates 
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the database with them.  Figure 23 illustrates the NPE process and Figure 24 is the 

physical relational diagram for the CoRE 576 prototype. 

 

Figure 23: NPE example contra generator 
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7 ANALYSIS 

UT approaches the multifaceted challenge of representing dynamic complex systems in a 

database format with a multidimensional ontology transformation methodology.  This 

section describes how UT addresses the various aspects of the problem, and how UT uses 

ontological abstractions to create a new level of conceptual encapsulation.  This new 

conceptual level, effectively transforms ontologies into manageable database schemas.   

 

7.1 Alleviating the Critical Bottleneck 

The disparity between biological data production and useful data access and analysis 

is essentially a knowledge processing issue.  The inability of current systems design 

to accommodate rapid changes in the parameters of knowledge processing models is a 

limiting factor.  Instead of encoding logical rules into production systems to 

manipulate the data, putting the knowledge rules of the reference domain in the data 

enables domain experts to quickly and directly customize the system by simply 

changing the data.  The result is a high throughput knowledge processing system that 

is malleable enough to meet the needs of a rapidly changing complex environment in 

a cost effective manner. 

 

7.2 Overcoming the Cultural Divide 

The steep bi-directional learning curve between the two highly complex 

disciplines of computer science and biology along with the divergent interests of the 

scientists who study them, has created a knowledge gap that hampers the development of 

effective knowledge processing systems.  UT addresses the cultural divide by separation 
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of system knowledge from reference domain knowledge.  UT accomplishes this by 

abstracting the rules themselves.  Since the same encoded methods can manipulate 

encapsulated classes of objects (universals), these classes can be manipulated like object 

oriented classes or packages.  This frees the programmer to model "what" the system 

does without needing to know the encapsulated details of the who, where, when, and 

how.   

 

These details represent the knowledge of the reference domain and are modeled in the 

data by domain experts.  In this manner UT has devised a way to modify relational 

schemas so that their content can be manipulated in an object oriented fashion.  

Essentially this enables the programmer to encode in animation procedures, only the rules 

that manipulate the behavior of complex objects, while the biologist models the detailed 

knowledge of the reference domain in the data.  Hence, each expert is able to model the 

part of the system about which they are both interested and knowledgeable.      

      

7.3 Reconciling Nomenclature 

The UT reference knowledge model is extensible and flexible enough to reconcile 

innumerable gene name variants via network ruleforms.  Domain experts add new 

synonymous relationships by simply adding new rules in a network ruleform.  In this 

manner, nomenclature variants can be reconciled and gene names aliased on an ongoing 

basis so that domain experts can gradually build a nomenclature lexicon or controlled 

vocabulary into the knowledge model.   
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7.4 Managing Complexity 

UT takes a complex theory style holistic approach to analyzing complex systems.  UT 

identifies the classes of universal behavior and the boundaries between them as well as 

the relevant parameters for affecting system behavior, and then expresses these concepts 

explicitly in the knowledge management system in the form of logical rules.  This 

methodology introduces a new level of abstraction that captures and represents the 

knowledge of the reference system, rather than just accumulates data about it.  

Identifying the universal properties of a system, characterizes the system at a high level 

of abstraction.  This high level view of the reference system enables scientists to 

understand the system's complexity in the context of an integrated network of perceptual 

patterns.   

 

7.5 Integrating and Extending Current Systems 

Managing the reference system addresses only part of the methodology challenge.  

Developing a methodology for representing complex systems in an information 

system really involves the compatibility and integration of two complex systems.  The 

reference system and the knowledge representation system that expresses it.  In this 

case the knowledge representation system consists of database design methodologies 

and the database itself.  The most relevant parameters for description or for affecting 

the behavior of both systems are system size, complexity, and rate of change.  These 

factors must be compatible between the two systems or an impedance mismatch 

occurs.  Table 6 summarizes these combinations.   
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of refining ontology-based da
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each of their technologies.   
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UT creates an environment o

domain expert.  The rules tha

and modified in the data to m

order to achieve this function
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Table 6: System Parameter
SIZE COMPLEXITY RATE OF CHANGE

Large Complex Fast 

Small Simple Slow 

Small Simple Slow 

Large Complex Fast 

 such as that of the GO project is optimized for large 

plexity and slow rates of change.  OO database 

mplexity and size but not a rapid rate of change.  

athways database have clearly demonstrated the benefits 

tabase projects into expert systems with the ability to 

et, current expert systems technology can handle 

oes not scale well.  UT effectively modifies and extends 

esign methodologies, to incorporate the advantages of 

 system based on a snapshot of functional requirements, 

f perpetual system development that is controlled by the 

t govern system processes can be easily deleted, updated 

eet the needs of changing functional requirements.  In 

ality, UT significantly modifies and redefines 

methodology in four ways. 
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First, UT redefines the arbitrary distinctions between programming code and data.  

From a holistic perspective, the most relevant distinction between programming code 

and data is with respect to change.  The data is easily changed without affecting  the 

structure of the physical system, the code is difficult to change, requires special 

knowledge of a programming language and often requires interpretation of needs to a 

programmer in the form of functional requirements.  There is no real boundary that 

precludes defining and manipulating data with data.  This allows UT to put most of 

the production system rules in the data rather than in programming code. 

 

Second, UT redefines the purpose of database applications from capturing and 

managing collections of data, to capturing and managing the knowledge of domain 

experts.  Essentially, this means changing the goal of conventional database design 

from optimization for data retrieval, to optimization for knowledge extraction. 

 

Third, UT encapsulates the reference knowledge model into knowledge objects 

(universals).  Discovery of this substructure overcomes the expert systems size barrier 

by simplifying the data model to a manageable level of complexity for encoded rules, 

and it translates well within the constraints of a standard relational schema.   

 

Finally, UT abstracts the relational model itself by imposing place value order and 

representing complex instead of atomic data types.  This creates a semantic 

framework for representing complex data types in the data itself rather than in the 

structure of the relational model and programming languages.   
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7.6 Bridging the Ontology Transformation Gap 
Ontology-based annotation projects such as GO and EcoCyc have developed large 

detailed ontologies for representing simple organisms and narrow domains based on 

biochemical function.  These ontologies consist of a logical categorization of object 

representations and may include processes, behaviors and characteristics.  The entities 

defined within the ontologies are then mapped to database schemas.   

 

The level of abstraction of current ontologies including meta-ontologies is the set of 

observable objects, and events within the reference domain.  This level of abstraction 

works well for narrow domains and relatively simple systems, yet as complexity 

increases so does the number of objects and the interactions between them.  This is 

evidenced in the almost non-existent reuse of ontologies for biological domains 

(Stevens, 2000), the GO's lack of a unifying upper ontology and the fact that MODs 

of simple organisms such as E.  coli are extremely complex, time consuming and 

expensive to develop and maintain.  Representing the knowledge associated with a 

more complex organism will require unifying semantic spaces into manageable high 

level views that characterize system complexity in the context of an integrated 

network of perceptual patterns.  Discovery of this view requires a higher level of 

semantic abstraction than current ontologies provide. 

 

UT uses an integrated system of modularized ontologies to capture the semantic 

knowledge of the reference system and raise it to a new level of abstraction.  The 
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knowledge representation (KR) system includes the standard use of ontologies such 

as those used by GO and Ecocyc to characterize the detailed knowledge of the 

reference domain.  Then UT takes ontologies the next level of abstraction by 

modeling not just the objects and behaviors of the system, but the logic that governs 

and predicts them.   

  

While knowledge changes and behaviors vary, the logic underlying them never 

changes.  UT aims to abstract system logic and express it in a rule-based ontology.  

Instead of applying the rules to the objects in the system UT applies the objects in the 

system to the rules.  It defines a world view of the reference domain in terms of rules 

of varying specificity.  It distinguishes rule types based on the functions that they 

support, then it maps the rules, and thus the logic that they represent directly to the 

knowledgebase. 

 

The rules that apply to domain expert or reference system knowledge are expressed 

explicitly in the data.  These rules represent the middle structure and constitute a 

standard ontology expressed in axioms.  The middle structure is semantically 

integrated using foreign keys and ruleforms rather than a physical hierarchical 

structure.  Eliminating a physical hierarchical representation of objects allows for the 

grouping of related objects into classes based on the common rules that govern them.  

These classes become the objects of the highest level of abstraction, the deep 

structure. This method is similar to Bouaud's concept normalization for fixing the 
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necessary intensional conditions of types, which forms the basic building blocks of 

the ontology.    

 

The deep structure constitutes a meta-level ontology that represents a new level of 

logical abstraction.  Like Chomsky's transformational grammar, UT abstracts the rules 

of observable behavior into a network of logical patterns.  The patterns capture the 

underlying logic that governs and predicts those behaviors.  This logic is expressed in 

ruleforms, which are complex rule objects that define rules based on the logical 

patterns of order of their classes.  The ruleform method enables the organization of 

thousands of rules into very few ruleforms.  Figure 25 diagrams the hierarchy of the 

rule ontology. 

 

Meta NetworkAuthorization

Rule

Protocol

Compound 

Ruleform

Existential

Figure 25: UT Logic Ontology
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The metalevel of abstraction reduces the complexity of the global schema to a more 

compact knowledge representation that it is easily mapped to a standard relational 

database without sacrificing content.  All of the more detailed, more variant and 

complex relationships are represented in the data as modular local schemas that are 

integrated by the global schema.  This means that more complexity mostly means 

just larger tables which relational databases are well equipped to accommodate.   

 

Place value constraints offer a third syntactic dimension in which to express 

semantic constraints within the relational paradigm.  Together, the explicit rules, 

ruleforms and the place value framework constitute an ontology metalanguage that is 

semantically expressive and syntactically flexible enough to preserve the semantic 

linkages of an ontology in standard relational database form.  This method applies 

established ontological principles such as Boaud's intensional typing without 

requiring an elaborate hierarchical structure.  The semantic meaning of concepts are 

dependent upon their intensional distinction from other types and their position in the 

ruleform rather than in a hierarchy. 

 

8 DISCUSSION 

8.1 Potential Challenges and Future Research 

Major challenges and areas of future research concentration related to the 

implementation of UT in biological domains include: 

• Ontological issues 
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• User interface issues 

• Scalability issues 

• Inferencing issues 

 

8.1.1 Ontology issues 

Numerous biological ontologies exist that characterize narrow biological domains.  

Together these conceptualizations specify a broad range of biological knowledge.  

Yet they vary widely in scope and granularity (Stevens, 2000).  A major challenge 

in creating a generalized model of biology in a UT system is the integration and 

extension of these disparate information models into a single global schema.  

Reconciling lossy and non-lossy clashes related to ontology integration and 

transformation is likely to be a complicated and time consuming effort.  However, 

once developed, the resulting global schema should be easily maintained by 

domain experts and general enough to be used as a defacto standard for the 

annotation of future biological knowledgebases. 

 

8.1.2 User related challenges 

The two main user related challenges are the development of an intuitive and 

efficient ontology editor  and the knowledge curator training of domain experts.  

An ontology editor is a user interface that allows domain experts to effectively 

interact with the reference ontology.  A system of this size and complexity may 

contain over 100,000 rules that must be accessible to the domain expert in a 

navigable format.  The editor interface will need to group rules into manageable 
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subsets that are intuitive and easy to visualize.  This can be accomplished using 

standard usability testing and interface design methodologies.   

 

Along with the use of the ontology editor interface, domain experts will need to be 

trained to preserve data integrity by entering data in a consistent manner.  The 

integrity constraints of the underlying database, augmented with data entry 

constraints in the editor interface and animation procedures can handle most data 

integrity errors such as circulatory errors where an entity is defined as a subtype of 

itself and indirect repetition where an entity is defined as a direct subclass of a 

parent and grandparent entity (e.g.  dog as a canine, canine as an animal, dog as an 

animal) (Stevens, 2000). 

 

However, there is the possibility of entering nonsense data or data that is factually 

incorrect.  Since the knowledgebase assumes that all manually entered is factually 

correct, therefore incorrect data will produce incorrect inferencing results.  The 

ability of expert systems to produce valid results is wholly dependent on the 

quality of the data on which its assumptions are based.  Knowledge curators must 

be made aware of this vulnerability and be responsible for ensuring the accuracy 

of rules entered into the system.  The accuracy of data can be validated by 

tracking associated source or citation data, identity of the person entering the data,  

and the timestamp information, as well as by assigning authority rankings to the 

data. 
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8.1.3 Scalability issues 

Although UT systems have been implemented in large commercial domains, none 

of these applications match the complexity of post-genomic biology.  

Theoretically, UT should scale to extremely high levels of complexity that 

encompass the whole of a natural kind or family of systems such as all businesses 

or all biology.  However, this hypothesis has only been partially tested.  No UT 

system to date currently describes all the aspects of a given natural kind of system 

such as biology.   

 

Unforeseen scalability issues may exist that will only be revealed at high levels of 

complexity.  These may include limits on the knowledgebase systems themselves 

or on the semantic interoperability mechanisms of UT theory in broad ranging 

domains.  The underlying technology was not intended for supporting  complex 

semantic interoperability networks and may exhibit unforeseen limits in 

scalability.  Although not as likely, similar limitations of the theory mechanisms 

themselves may emerge.  For example the system may reach the point of 

complexity where there are too many rules to manage effectively.  Future research 

to test the limits of the platform can only be accomplished by implementing the 

system in conditions of increasing complexity. 

 

8.1.4 Inferencing challenges 

The inferencing capabilities  of UT systems represent the most challenging and 

most exciting aspect of future research.  Assuming a base knowledge of  valid 
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information, UT inferencing may eventually be used for hypothesis testing 

simulation, visualization and in silico modeling of biology.  Future UT systems 

may  perform more sophisticated statistical inferencing for hypothesis testing and 

knowledge extraction. 

 

8.2 Conclusions 

Although UT integrates and extends current methodologies, it is not a new theory.  In 

fact it predates most of the methodologies mentioned in this thesis.  All of the 

ontology methodologies, as well as OO theory were practically nonexistent when UT 

was developed in 1985.  The goal of this thesis is to identify UT as an ontology driven 

database methodology, to relate the parallel development and theoretical 

commonalities that exist between UT and more recent ontology driven database 

methodologies, and to explore UT an ontology transform solution.   

 

UT is an ontology-driven database design methodology that may effectively address 

the dynamic functional requirements of complex biological systems.  By integrating 

and extending current theoretical and methodological perspectives, UT has developed 

two key mechanisms that significantly increase its semantic expressivity while 

providing for rapid change.   

 

First, transferring the part of the production system that represents the reference 

domain entirely to the data within a standard relational database structure enables 

biologists to directly customize the system without the need for programming.  It 
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empowers biologists to act as knowledgebase curators who are able to quickly and 

directly adapt the rules governing the reference system as domain knowledge 

changes.   This mechanism gives ultimate flexibility and power to the domain expert 

and effectively accommodates rapid, perpetual change.   

 

Second, UT expands the world view of relational database design to include place 

value order and the use of complex objects as attributes, which provides a new 

syntactic dimension for semantic expressivity.  This high-performance, 

transformation mechanism provides a simple, yet complete semantic bridge for 

ontology transformation.   

 

The inventor of the modern skyscraper, architect Louis Sullivan coined the term, 

"Form follows function."  Sullivan posited that just as natural forms, such as eyes, 

ears and wings, reflect specific functions, man made forms should reflect the 

functional purpose for which they are built.  He redirected the world view of 

architectural design to focus on creating forms that are designed for optimal strength, 

efficiency and functionality rather than style or beauty.  Sullivan's theory was 

developed to address the increasing demand for larger, stronger, more functional 

buildings as a result of the industrial age. 

 
As a result of the current technological age, the application of computers is increasing 

the complexity, as well as the velocity and pervasiveness of change of almost every 

scientific discipline.  Post-genomic biological disciplines, high throughput data 

acquisition methods, and large-scale science projects has put biology at the forefront 
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of this phenomenon.  The rapidly increasing volume and complexity of  information 

being produced by the biological community has created a demand for cost effective 

knowledge management systems that are flexible enough to accommodate rapid 

change and semantically expressive enough to capture the knowledge of complex 

systems in an intuitive format.   

 

Just as Sullivan's methodology resulted in the development of new types of structures 

(skyscrapers) that reflected the emerging functional requirements of the industrial 

age, systems design methodologies such as UT are emerging to address the functional 

requirements of the technological age.   

 

UT lets form follow function by applying well known principles for ontology 

development such as Bouaud's intensional types without requiring the construction of 

a complex hierarchy or database schema.  By expressing the complexity in data rather 

than programming code, UT provides a flexible semantically expressive 

knowledgebase solution using standard relational database technology.  The resulting 

knowledge management systems provide a practical ontology transform mechanism 

for capturing and managing the knowledge of complex biological systems while 

accommodating rapid change.  UT's rule based approach creates a unique form of 

knowledge representation that extends the world view of current methodologies to 

reflect the function of dynamic complex systems.   
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