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Abstract

We construct a Generalized Empirical Likelihood estimator for a GARCH(1,1) model
with a possibly heavy tailed error. The estimator imbeds tail-trimmed estimating equations
allowing for over-identifying conditions, asymptotic normality, efficiency and empirical like-
lihood based confidence regions for very heavy-tailed random volatility data. We show the
implied probabilities from the tail-trimmed Continuously Updated Estimator elevate weight
for usable large values, assign large but not maximum weight to extreme observations, and
give the lowest weight to non-leverage points. We derive a higher order expansion for GEL
with imbedded tail-trimming (GELITT), which reveals higher order bias and efficiency
properties, available when the GARCH error has a finite second moment. Higher order
asymptotics for GEL without tail-trimming requires the error to have moments of sub-
stantially higher order. We use first order asymptotics and higher order bias to justify the
choice of the number of trimmed observations in any given sample. We also present robust
versions of Generalized Empirical Likelihood Ratio, Wald, and Lagrange Multiplier tests,
and an efficient and heavy tail robust moment estimator with an application to expected
shortfall estimation. Finally, we present a broad simulation study for GEL and GELITT,
and demonstrate profile weighted expected shortfall for the Russian Ruble - US Dollar ex-
change rate. We show that tail-trimmed CUE-GMM dominates other estimators in terms
of bias, mse and approximate normality.
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1 Introduction

We develop a Generalized Empirical Likelihood estimator for a potentially very heavy tailed

GARCH(1,1) process by tail-trimming estimating equations. The setting is motivated by recent

intense interest in information theoretic methods (Smith, 1997; Imbens, 1997; Kitamura, 1997;

Antoine, Bonnal, and Renault, 2007), including the higher order properties of GEL estimators

(Newey and Smith, 2004; Anatolyev, 2005), coupled with empirical evidence that the distribu-

tions of many financial returns have very heavy tails (e.g. Embrechts, Kluppleberg, and Mikosch,

1997; Wagner and Marsh, 2005; Ibragimov, 2009; Hill, 2015b) and exhibit volatility clustering

(Bollerslev, 1986).

The time series of interest is a stationary ergodic scalar process {yt} with increasing σ-fields

=t ≡ σ({yτ} : τ ≤ t) and a strong-GARCH(1,1) representation

yt = σtεt where εt is iid, E[εt] = 0 and E[ε2t ] = 1 (1)

σ2
t = ω0 + α0y2

t−1 + β0σ2
t−1, where ω0 > 0, α0, β0 ≥ 0, and α0 + β0 > 0.

The assumption α0 + β0 > 0 safeguards against well known estimation boundary problems,

although allowing α0 = 0 and/or β0 = 0 merely requires an additional functional limit theory

(Andrews, 1999; Francq and Zaköıan, 2004). Assume Θ is a compact subset of points θ =

[ω, α, β]′ that contains θ0 as an interior point, and the stationarity and ergodicity condition

E[ln(α + βε2t )] < ∞ holds (Nelson, 1990; Bougerol and Picard, 1992):

Θ ⊆
{
θ ∈ (0,∞)× (0, 1)× (0, 1) : E

[
ln
(
α + βε2t

)]
<∞

}
. (2)

We work with a linear strong-GARCH model solely to focus ideas and to motivate the use of

tail-trimming to deliver a robust GEL estimator. An extension of our methods to higher order

GARCH processes is trivial. In order to include a model of the conditional mean, however, a

more nuanced trimming approach is required since the relevant QML estimating equations may

have heavy tailed iterative terms which impact the resulting Jacobian in a more complicated way.

See Appendix B for a brief discussion concerning an ARMA-GARCH model.1 Our asymptotic

1We show how to construct trimmed estimating equations, and note that no additional moment conditions
on yt are required. Francq and Zaköıan (2004, Theorem 3.2), however, show that the QML estimator requires
yt itself to have a finite fourth moment, a tremendous requirement in practice since many finanncial time series
show evidence of heavy tails (for evidence and further references, see Ibragimov, 2009; Aguilar and Hill, 2015;
Hill, 2015b).
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theory relies heavily on uniform asymptotics for stationary mixing data,2 hence whether our

required results extend to non-stationary cases is not yet known.3

The iid assumption for εt implies our trimmed QML-type estimating equations are martingale

differences. This simplifies estimation since smoothing is not required (cf. Owen, 1990, 1991;

Kitamura, 1997; Kitamura and Stutzer, 1997), and this leads to sharp details concerning how

the implied probabilities relate information about usable sample extremes. Furthermore, the iid

assumption allows us to explicitly show how higher order bias is reduced by reducing trimming.

We can easily allow for weakly dependent errors by smoothing the estimating equations, but

the cost is far fewer details about how the smoothed implied probabilities translate information

about extremes, and essentially no information about how trimming impacts higher order bias.4

Since the latter two are key contributions in this paper, we simply focus on iid errors.

Construct volatility and error functions

σ2
t (θ) = ω + αy2

t−1 + βσ2
t−1(θ) and εt(θ) = yt/σt(θ) where θ = [ω, α, β]′ ∈ R3,

and let mt(θ) denote estimating equations based on {yt, σt(θ)}, a stochastic mapping mt : Θ →
Rq with q ≥ 3 that satisfies the global identification condition

E [mt(θ)] = 0 if and only if θ = θ0 for unique θ0 in compact Θ ⊂ R3.

In Section 2 we note that σ2
t (θ) is not observed, and utilize an iterated approximation.

We consider equations mt(θ) ∈ Rq, q ≥ 3, based on QML score equations, with added over-

identifying restrictions based on stochastic weights wt(θ) ∈ Rq−3. Hence, we use:

mt(θ) =
(
ε2t (θ)− 1

)
×xt(θ) ∈ Rq, q ≥ 3, where xt(θ) ≡ [s′t(θ), w

′
t(θ)]

′
and st(θ) ≡

1

σ2
t (θ)

∂

∂θ
σ2
t (θ).

2See the proof of Lemma A.5 in the technical appendix Hill and Prokhorov (2014). This result is crucial for

showing the estimating equations {m̂∗n,t(θ),m∗n,t(θ)}, defined below, satisfy supθ∈Θ ||n−1/2Σ
−1/2
n (θ)

∑n
t=1{m̂∗n,t(θ)

− m∗n,t(θ)}|| = op(1), while a uniform limit is required since the tail-trimmed estimating equations are nonlinear
functions of θ. See especially the proof of Theorem 5.2 in Appendix A.4.

3Some uniform limit theory for QML score components in the nonstationary GARCH case is presented in
Jensen and Rahbek (2004b, Lemma 5) and Linton, Pan, and Wang (2010, Lemma 5). These arguments, how-
ever, do not cover our required property supθ∈Θ{1/n1/2|

∑n
t=1(si,t(θ) − E [si,t(θ)])|} = Op(1), where st(θ) ≡

(∂/∂θ) lnσ2
t (θ) and σ2

t (θ) = ω + αy2
t−1 + βσ2

t−1(θ). We use a uniform limit theory in Doukhan, Massart, and
Rio (1995) for stationary mixing data to prove the required results.

4This follows since higher order bias is a function of higher moments of tail-trimmed partial sums. These
moments are simple functions of trimming fractiles only in the case of iid errors, and otherwise we are limited to
deducing bounds for these moments (see, e.g. Hill, 2012, 2015a,b) which do not illuminate how trimming impacts
higher order bias.
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Implicitly if q = 3 then xt(θ) = st(θ), while q > 3 aligns with over-identifying restrictions E[(ε2t−
1)wi,t] = 0 for i = 1, ..., q − 3. We assume wt(θ) is =t−1-measurable, continuous and differentiable.

Identification E[(ε2t − 1)xt] = 0 and E[ε2t ] = 1 imply xt must be integrable, while st is square

integrable when α0 + β0 > 0 (Francq and Zaköıan, 2004), hence we assume wt is integrable.

Instrument classes other than QML-equations are obviously possible (cf. Skoglund, 2010). The

use of QML-equations is known to result in an efficient (exactly identified) GMM estimator in

the sense of Godambe (1985), cf. Li and Turtle (2000). Further, since the instrument st is square

integrable, if xt contains only lags of st then heavy tail challenges arise solely due to the error εt.

Several recent papers consider properties of QML and LAD estimators of GARCH under

heavy tailed errors. Hall and Yao (2003) derive the QML estimator limit distribution for

linear GARCH when εt belongs to a domain of attraction of stable law with tail exponent κ ∈
[2, 4]. They show that the convergence rate is n1−2/κ/L(n) for slowly varying5 L(n)→∞, where

n1−2/κ/L(n) < n1/2 for any κ ∈ [2, 4]. See also Berkes and Horvath (2004) for consistency results.

Although QML for GARCH is robust to heavy tails in possibly non-stationary yt, as long as εt

has a finite fourth moment, in small samples it is known to exhibit bias (e.g. Lumsdaine, 1995;

Gonzalez-Rivera and Drost, 1999; Berkes and Horvath, 2004; Jensen and Rahbek, 2004a).

A finite variance E[ε2t ] < ∞ appears indispensable for obtaining an asymptotically normal

estimator. Linton, Pan, and Wang (2010) prove
√
n-convergence and asymptotic normality of

the log-LAD estimator arg minθ∈Θ

∑n
t=1 | ln y2

t − lnσ2
t (θ)| for non-stationary GARCH provided

εt has a zero median. See also Peng and Yao (2003) for earlier work with iid errors. Zhu and Ling

(2011) show the weighted Laplace QML estimator is
√
n-convergent and asymptotically normal

if εt has a zero median and E|εt| = 1. They only require E[ε2t ] < ∞, but in practice GARCH

models are typically used under the assumption E[ε2t ] = 1 irrespective of the estimator chosen.

The classic assumption E[ε2t ] = 1 coupled with E|εt| = 1 seems to severely limit the available

distributions for εt. Berkes and Horvath (2004) tackle non-Gaussian QML which for identification

requires moment conditions either beyond, or in place of, the traditional E[εt] = 0 and E[ε2t ] =

1. Thus, in general these estimators are not technically for Bollerslev’s (1986) seminal GARCH

model (1) in which independence and E[ε2t ] = 1 imply identically σ2
t = E[y2

t |=t−1], and they

naturally do not allow for over-identifying restrictions.

Hill (2015a) uses a variety of trimming and weighting techniques for QML and method of

moments estimators for heavy tailed GARCH. However, over-identifying restrictions are not

allowed, profiles weights are not developed and therefore efficient moment estimators are not

treated, and the empirical likelihood method for inference is not considered. See also Hill (2013)

5Recall slowly varying L(n) satisfies L(ξn)/L(n) → 1 as n → ∞ for all ξ > 0.
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for a related least squares theory for autoregressions. Notice, though, that moment conditions

not used for estimation can always be tested using heavy tail robust methods (Hill and Aguilar,

2013), while a large variety of model specification tests can be rendered heavy tail robust (Hill,

2012; Hill and Aguilar, 2013; Aguilar and Hill, 2015). Moreover, higher order asymptotics have

evidently never been used for determining a reasonable negligible trimming strategy.

The present paper extends the line of heavy tail robust estimation and inference in Hill and

Aguilar (2013), Aguilar and Hill (2015) and Hill (2012, 2013, 2015a,b) to a GEL framework and to

the empirical likelihood method. As in those papers we apply a heavy tail robust, but negligible,

data transform to the estimating equations. We allow over identifying restrictions with one-step

estimation and inference that leads to Gaussian asymptotics by exploiting tail-trimming. GMM

and GEL allow for over-identifying restrictions whereas the M-estimators developed in Hill (2013,

2015a) naturally do not. Over-identifying restrictions can reveal exploitable information about

the data generating process, an idea dating at least to Owen (1990, 1991) and Qin and Lawless

(1994), cf. Antoine, Bonnal, and Renault (2007). The classic example is IV estimation (see,

e.g., Guggenberger and Smith, 2008). Indeed, in the GARCH model, moment conditions tie

model parameters to the unconditional variance when it exists, an idea exploited in the variance

targeting literature (cf. Engle and Mezrich, 1996; Hill and Renault, 2012) and for iid data stated

in Qin and Lawless (1994, Example 1). As another example, model parameters identify the tail

index by a moment condition (see Basrak, Davis, and Mikosch, 2002, e.g.).

The empirical likelihood method has the great advantage of allowing inference without co-

variance matrix estimation by inverting the likelihood function (Owen, 1990). See Section 2 for

development of the infeasible and feasible estimators, and characterization of the rate of con-

vergence. Standard and profile-weighted moment estimators are treated in Section 5, and are

used for heavy tail robust (and efficient) score, Lagrange Multiplier, and Likelihood Ratio tests.

Such tests can be used as heavy tail robust model specification tests, including GARCH order or

the presence of GARCH effects, so they can be used as model selection tools.6 However, testing

when a parameter value is on the boundary of the maintained hypotheses leads to non-standard

asymptotics (Andrews, 2001).

In Section 3 we show that the implied probabilities derived from the tail-trimmed Contin-

uously Updated Estimator, which are especially tractable, differentiate between usable large

values (i.e. values near the trimming threshold) and damaging extremes that are trimmed for

estimation. Large values serve as leverage points and accelerate convergence rates, yet very large

values impede normality and are therefore trimmed. Thus, extremes receive elevated weight, but

6We thank a referee for pointing out this possibility to us.
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near-extremes that are not trimmed receive the most weight. We use the implied probabilities

from tail-trimmed GEL to perform heavy tail robust and efficient tests of over-identification.

Similar test statistics, without trimming, have been considered by Kitamura and Stutzer (1997),

Newey and Smith (2004), and Smith (2011) amongst others.

In Section 4 we derive a higher order expansion for our estimator along the lines of Newey

and Smith (2004, Sections 3 and 4). In the case of GARCH model estimation with QML-type

estimating equations, GEL requires E[ε6t ] <∞ for a second order expansion (necessary for bias)

and E[ε10
t ] <∞ for a third order expansion, while GELITT always only needs E[ε2t ] <∞ for any

higher order expansion. GELITT bias decomposes into bias due to the GEL structure (when

higher moments exist) and bias due to trimming. This is irrelevant for bias-correction since a

composite bias estimator as in Newey and Smith (2004, Section 5) removes higher order GELITT

bias whether due to the GEL form or trimming. Moreover, it does not require extreme value

theory and therefore tail index estimation as in Hill (2015b).

We also show that under mild assumptions (higher order) bias is always small if few observa-

tions are trimmed, and monotonically smaller in the case of EL or exact identification. By first

order asymptotics the rate of convergence is higher if the rate of trimming is nearly the sample

size n, a feature common to M-estimators for GARCH models with negligible trimming, and to

mean estimation, cf. Hill (2012, 2015b,a). Thus, trimming at a rate nearly equal to ζn, e.g.

ζn/ ln(n), is optimal as long as a small ζ is used. The usefulness of this combination is revealed

by simulation in Section 8, and elsewhere (Aguilar and Hill, 2015; Hill, 2012, 2013, 2015b,a; Hill

and Aguilar, 2013). Together, the use of higher order asymptotics to minimize and estimate bias

marks a sharp improvement over existing tail-trimming methods for M-estimators (Hill, 2013,

2015b,a). In that literature, only first order asymptotics exist which, as in the present paper,

invariably points toward elevating trimming by errors, but says little about the implications for

trimming on bias.

We then use the probability profiles in Section 6 for tail-trimmed moment estimation which

is shown to have the same efficiency property as without trimming. We generalized theory

developed in Smith (2011) for GEL estimators to the heavy tail case, while Smith (2011) extends

theory in Back and Brown (1993) and Brown and Newey (1998). As an example, in Section 7 we

use the profiles for efficient and heavy tail robust estimation of a conditionally heteroscedastic

asset’s expected shortfall. We derive the limit distribution of a bias-corrected profile weighted tail-

trimmed estimator, making a more efficient version of Hill’s (2015b) robust estimator. Further,

we improve on Hill’s (2015b) proposed strategy for optimally estimating bias, and derive the

appropriate limit theory.

A simulation study follows in Section 8. This is unique in the literature since the merit of
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GEL estimators (untrimmed or trimmed) have not been thoroughly studied for GARCH model

estimation.7 We use EL, CUE and ET criteria, with and without trimming, and for trimming we

use our higher order bias minimization theory for selecting the trimming fractile. Tail-trimmed

CUE performs best overall in terms of bias, mse, and approximate normality, evidently due to

the easily solved quadratic criterion and the fact that trimming a few errors per sample improves

sampling properties. This is a useful result that may be of independent interest since EL with or

without trimming has lower higher order bias in theory. That theory, however, does not account

for substantial computational differences across GEL estimators, giving substantial credence to

the argument for simplicity in Bonnal and Renault (2004) and Antoine, Bonnal, and Renault

(2007). It also further demonstrates that trimming very few observations can have a strong

positive impact on estimator performance, as shown also in Hill (2013, 2015a).

Finally, we perform a small scale empirical study based on financial returns in order to

demonstrate our GEL estimator, and our robust, efficient and bias-improved estimator of the

expected shortfall. We leave concluding remarks for Section 10.

The theory of GEL to date is designed for sufficiently thin tailed equations such that asymp-

totic normality is assured. See Qin and Lawless (1994), Hansen, Heaton, and Yaron (1996),

Imbens (1997), Kitamura (1997), Kitamura and Stutzer (1997), Imbens, Spady, and Johnson

(1998), Smith (1997, 2011), Newey and Smith (2004), and Antoine, Bonnal, and Renault (2007)

for early contributions and broad theory developments. In a GARCH framework with QML-

type equations and only lags of st as instruments, we need E[ε4t ] < ∞ (cf. Francq and Zaköıan,

2004), but a far more restrictive moment condition is needed if least squares-type equations are

used (see Francq and Zaköıan, 2000). Moreover, as discussed above, a higher order asymptotic

expansion for GEL estimators of GARCH models with QML-type equations require prohibitive

moment conditions, up to E[ε10
t ] <∞ for a third order expansion. Nevertheless, GEL estimators

have beneficial properties: asymptotic bias of GEL does not grow with the number of estimating

equations, contrary to GMM in well known cases, while bias-corrected EL is higher order asymp-

totically efficient (see Newey and Smith, 2004; Anatolyev, 2005). The higher order properties

arise from different first order conditions for different GEL criteria, while first order asymptotics,

including efficiency, are insensitive to the criteria, whether there is weak identification or not

(cf. Newey and Smith, 2004; Guggenberger and Smith, 2008). We show that GELITT obtains

the same type of higher order expansion as GEL, without the requirement of higher moments.

Hence, the higher order bias and efficiency properties of GEL extend to GELITT under far less

stringent conditions.

7Chan and Ling (2006) develope EL theory for AR-GARCH models, but only study a unit root test, and
otherwise we are not familiar with other published simulation studies of GEL for GARCH.
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Empirical likelihood for heavy tail robustness and for GARCH has limited use to date. Peng

(2004) uses the empirical likelihood method for heavy tail robust confidence bands of the mean,

and other than a similar use for tail parameter inference (Worms and Worms, 2011) there do

not appear to be any other extensions to robust estimation. Chan and Ling (2006) develop

empirical likelihood for GARCH and random walk-GARCH, where E[ε4t ] <∞ and α0 + β0 < 1,

both unrealistic restrictions for many financial time series. Further, they only study a unit root

test by simulation and therefore do not report GEL estimator properties for GARCH. Two-step

GMM estimation for GARCH is treated in Skoglund (2010), amongst others.

We use the following notation. The Lp-norm for a matrixA≡ [Ai,j] is ||A||p ≡ (
∑

i,j E|Ai,j|p)1/p.

The spectral norm is ||A|| = (λmax(A′A))1/2 where λmax is the maximum eigenvalue. K > 0 is a

finite constant whose value may change; ι, δ > 0 are tiny constants; and N is a positive integer.
p→ and

d→ denote convergence in probability and in distribution. → denotes convergence in || · ||.
an ∼ bn implies an/bn → 1 as n → ∞. Id is a d-dimensional identity matrix. L(n) → ∞ is a

slowly varying function whose value or rate may change from line to line. An intermediate order

sequence {kn} satisfies kn ∈ {1, ..., n − 1}, and kn → ∞ and kn/n → 0 as n → ∞.

2 GEL with Tail-Trimming

We initially work with the unobserved process {σ2
t (θ)} and derive an infeasible estimator of θ0.

We then derive parallel results for the feasible estimator based on an iterated approximation to

σ2
t (θ). Drop θ0 throughout, e.g. σ2

t = σ2
t (θ

0), xt = xt(θ
0).

2.1 Tail-Trimmed Equations

Our first task is to trim the equations mi,t(θ) when they obtain an extreme value. Hill and

Renault (2010) use mi,t(θ) itself to gauge when an extreme value occurs. Since mt may be

asymmetric this requires asymmetric trimming which in general induces small sample bias. In

the present setting by a standard first order expansion we know asymptotics depend solely on

εt(θ) and xt(θ). However, st(θ) = (∂/∂θ) lnσ2
t (θ) has an L2-bounded envelope supθ∈N0

|si,t(θ)|
on some compact subset N0 ⊆ Θ containing θ0 (cf. Francq and Zaköıan, 2004), hence only εt(θ)

and the added weights wt(θ) in xt(θ) can be sources of extremes in mt(θ). We therefore trim by

these components separately.

Let zt(θ) denote εt(θ) or wi,t(θ), and define the two-tailed process and its order statistics:

z
(a)
t (θ) ≡ |zt(θ)| and z

(a)
(1)(θ) ≥ · · · ≥ z

(a)
(n)(θ) ≥ 0.
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Let {k(ε)
n , k

(w)
i,n } for i ∈ {1, ..., q − 3} be intermediate order sequences. We use intermediate

order statistics ε
(a)

(k
(ε)
n )

(θ) and w
(a)

i,(k
(w)
i,n )

(θ) to gauge when an extreme observation occurs, a common

practice in the extreme value theory and robust estimation literatures. See Hill (2011) for

references. Now define indicator functions for trimming

Î
(ε)
n,t(θ) ≡ I

(
|εt(θ)| ≤ ε

(a)

(k
(ε)
n )

(θ)
)

Î
(w)
i,n,t(θ) ≡ I

(
|wi,t(θ)| ≤ w

(a)

i,(k
(w)
i,n )

(θ)

)
and Î

(x)
n,t (θ) ≡


q−3∏
i=1

Î
(w)
i,n,t(θ) if q > 3

1 if q = 3,

and tail-trimmed variables and equations

ε̂∗n,t(θ) ≡ εt(θ)Î
(ε)
n,t(θ) and ŵ∗n,t(θ) ≡ wt(θ)Î

(w)
n,t (θ) and x̂∗n,t(θ) ≡

[
st(θ)

′, ŵ∗n,t(θ)
]′

m̂∗n,t(θ) ≡

(
ε̂∗2n,t(θ)−

1

n

n∑
t=1

ε̂∗2n,t(θ)

)
× x̂∗n,t(θ). (3)

As in Hill (2015a) and Aguilar and Hill (2015), we re-center εt(θ) after trimming to eradicate

small sample bias that arises from trimming. This allows for intrinsically simpler symmetric

trimming even if εt has an asymmetric distribution.

If over-identifying restrictions are not used such that xt(θ) = st(θ), then we use

m̂∗n,t(θ) ≡

(
ε̂∗2n,t(θ)−

1

n

n∑
t=1

ε̂∗2n,t(θ)

)
× st(θ) where ε̂∗n,t(θ) ≡ εt(θ)Î

(ε)
n,t(θ).

If any added instrument wi,t has a finite variance then we do not need to trim by it. It is easy to

show, however, that if we trim by all components in wt(θ) then it is asymptotically equivalent to

only trimming by those elements with an infinite variance (cf. Hill, 2015a, 2013). We therefore

assume that each wi,t(θ) is trimmed in order to reduce notation.

Although st(θ) has an L2-bounded envelope, in small samples components of st(θ) may be

influenced by large observations yt−1. Consider that in the case of no GARCH effects α0 + β0 =

0, it follows st = (ω0)−1 × [1, y2
t−1, ω

0]′. Thus, in view of continuity, if α0 + β0 is close to zero then

||st|| may be large when yt−1 is large. Although Gaussian asymptotics does not require trimming

by yt−1, we find that an improved robust GEL estimator uses extremal sample information from

9



yt−1 for trimming, even when α0 + β0 is far from zero. In this case the trimmed covariates are

x̂∗n,t(θ) ≡
[
ŝ∗n,t(θ)

′, ŵ∗n,t(θ)
]′

where ŝ∗n,t(θ) ≡ st(θ)Î
(y)
n,t−1 and Î

(y)
n,t−1 ≡ I

(
|yt| ≤ y

(a)

(k
(y)
n )

)
. (4)

Since the asymptotic theory for our GEL estimator with x̂∗n,t(θ) defined as [st(θ)
′, ŵ∗n,t(θ)

′]′ or

[ŝ∗n,t(θ)
′, ŵ∗n,t(θ)

′]′ is the same, we simply assume the former to reduce notation in the proofs.

2.2 Estimator

Let ρ :D→ R+ be a twice continuously differentiable concave function, with domainD containing

zero. Write ρ(i)(u) = (∂/∂u)iρ(u), i = 0, 1, 2, and ρ(i) = ρ(i)(0), and assume the normalizations

ρ(0) = ρ(0) = 0 and ρ(1) = ρ(2) = −1. If ρ(u) = −u2/2 − u we have the Continuously Updated

Estimator or Euclidean Empirical Likelihood (cf. Antoine, Bonnal, and Renault, 2007); ρ(u) =

ln(1 − u) for u < 1 leads to Empirical Likelihood; ρ(u) = 1 − exp{u} represents Exponential

Tilting.

The GEL estimator with Imbedded Tail-Trimming (GELITT) solves a classic saddle-point

optimization problem (Smith, 1997; Newey and Smith, 2004; Smith, 2011):

θ̂n = arg min
θ∈Θ

sup
λ∈Λ̂n(θ)

{
1

n

n∑
t=1

ρ
(
λ′m̂∗n,t(θ)

)}
and λ̂n = arg sup

λ∈Λ̂n(θ̂n)

{
1

n

n∑
t=1

ρ
(
λ′m̂∗n,t(θ̂n)

)}
, (5)

where Λ̂n(θ) contains those λ such that sample λ′m̂∗n,t(θ) ∈ D with probability one:

Λ̂n(θ) =
{
λ : λ′m̂∗n,t(θ) ∈ D a.s., t = 1, 2, ..., n

}
.

The non-smoothness of m̂∗n,t(θ) is irrelevant as long as wi,t(θ) are differentiable, and εt(θ) and

wi,t(θ) have smooth distributions (Parente and Smith, 2011; Hill, 2015a, 2013).

Asymptotics for [θ̂′n, λ̂
′
n]′ requires non-random threshold sequences associated with the sample

order statistics. Let positive sequences of functions {c(ε)
n (θ), c

(w)
i,n (θ), } satisfy for any θ ∈ Θ

P
(
|εt(θ)| ≥ c(ε)

n (θ)
)

=
k

(ε)
n

n
and P

(
|wi,t(θ)| ≥ c

(w)
i,n (θ)

)
=
k

(w)
i,n

n
. (6)

Thus, for example, ε
(a)

(k
(ε)
n )

(θ) estimates c
(ε)
n (θ) since ε

(a)

(k
(ε)
n )

(θ) is the sample k
(ε)
n /n upper two-

tailed quantile. Since we assume below that εt(θ) and wt(θ) have continuous distributions, such

sequences {c(ε)
n (θ), c

(w)
i,n (θ)} exist for all θ and any choice of fractiles {k(ε)

n , k
(w)
i,n }. Now define

10



trimming indicator functions

I
(ε)
n,t(θ) ≡ I

(
|εt(θ)| ≤ c(ε)

n (θ)
)

and I
(w)
i,n,t(θ) ≡ I

(
|wi,t(θ)| ≤ c

(w)
i,n (θ)

)
,

write the composite covariate indicator I
(x)
n,t (θ) =

∏q−3
i=1 I

(w)
i,n,t(θ), and define tail-trimmed variables

and equations

ε∗n,t(θ) ≡ εt(θ)I
(ε)
n,t(θ) and w∗n,t(θ) ≡ wt(θ)I

(w)
n,t (θ)

m∗n,t(θ) ≡
(
ε∗2n,t(θ)− E

[
ε∗2n,t(θ)

]) (
x∗n,t(θ)− E

[
x∗n,t(θ)

])
.

In view of the re-centering of εt(θ) for m̂∗n,t(θ) in (3), it can be shown that asymptotics for θ̂n

are grounded on m∗n,t(θ). See the appendix.

Notice by error independence, re-centering, and =t−1-measurability of xt, it follows m∗n,t is a

martingale difference with respect to =t since

E
[
m∗n,t|=t−1

]
=
(
x∗n,t − E

[
x∗n,t
])
× E

[(
ε∗2n,t − E

[
ε∗2n,t
]
)
)
|=t−1

]
= 0. (7)

2.3 Main Results

Define moment suprema for εt(θ), and wi,t(θ) provided over-identifying weights are used:

κε(θ) ≡ sup {α > 0 : E|εt(θ)|α <∞} and κi(θ) ≡ sup {α > 0 : E|wi,t(θ)|α <∞} .

Note that κε = ∞ or κi = ∞ are possible, for example if εt is Gaussian, or wi,t is bounded.8 Let

Θ1,i ⊆ Θ be the set of all θ such that κi(θ) ≤ 1, where Θ1,i may be empty. Drop θ0 such that κε

= κε(θ
0) and κi = κi(θ

0).

We require the following moment, memory and tail properties.

Assumption A.

1. zt(θ) ∈ {εt(θ), wi,t(θ)} have for each θ ∈ Θ strictly stationary, ergodic, and absolutely continu-

ous non-degenerate finite dimensional distributions that are uniformly bounded: supa∈R,θ∈Θ{(∂/∂a)P (zt(θ)

≤ a)} < ∞ and supa∈R,θ∈Θ ||(∂/∂θ)P (zt(θ) ≤ a)|| < ∞.

2. κi > 1 and κε > 2. If κε ≤ 4 then P (|εt| > a) = da−κε(1 + o (1)) where d ∈ (0,∞). If Θ1,i is

8Consider an ARCH(1) model σ2
t = ω0 + α0y2

t−1 with ω0, α0 > 0. Then, for example, the weights xt(θ) =
[st(θ)

′, st−1(θ)′]′ are bounded since st(θ) is uniformly bounded.

11



not empty such that κi(θ) ≤ 1 for some θ, then P (|wi,t(θ)| > c)} = di(θ)c
−κi(θ)(1 + o(1)) where

infθ∈Θ1,i
di(θ) > 0, infθ∈Θ1,i

κi(θ) > 0 and o(1) is not a function of θ.

3. wt(θ) is =t−1-measurable, continuous, differentiable, and E[supθ∈Θ |wi,t(θ)|ι] < ∞ for some

tiny ι > 0.

4. kn/n
ι → ∞ for some tiny ι > 0.

Remark 1 Distribution continuity and differentiability of mt(θ) = (ε2t (θ) − 1)xt(θ) ensure a

unique solution to the GELITT estimation problem exists (cf. Cizek, 2008; Hill, 2015a, 2013).

Remark 2 Paretian tails in the heavy tail case simplify characterizing tail-trimmed moments by

Karamata’s Theorem, while tail-trimmed moments arise in the GELITT estimator scale, defined

below. We impose a Paretian tail on wi,t(θ) when κi(θ) ≤ 1 since the mapping wi,t : Θ → R is

not here defined. If the mapping were known then in principle we would only need to consider

wi,t.

Remark 3 We impose a lower bound on how fast the number of trimmed extremes kn increases

in order to simplify proving a uniform law of large numbers for tail-trimmed dependent data.

See Lemma A.4 in the appendix, and its proof in Hill and Prokhorov (2014).

Remark 4 If wt(θ) only contains lags of st(θ) then supθ∈Θ ||wt(θ)|| is L2-bounded in view of α

+ β > 0 (Francq and Zaköıan, 2004), hence Θ1,i is empty and A.3 holds.

We now state the main results. Let 0 be a q × 1 vector of zeros. Define all parameters

ϑ0 ≡ [θ0′,0′]′ ∈ Rq+3 and ϑ̂n ≡ [θ̂′n, λ̂
′
n]′ ∈ Rq+3,

and define covariance and scale matrices

Σn(θ) ≡ E
[
m∗n,t(θ)m

∗
n,t(θ)

′] ∈ Rq×q (8)

Jn(θ) ≡ −E
[(
x∗n,t(θ)− E

[
x∗n,t(θ)

])
(st(θ)− E [st(θ)])

′] ∈ Rq×3

Vn(θ) ≡ nJn(θ)′Σ−1
n (θ)Jn(θ) ∈ R3×3

An ≡

[
Vn 0

0 nP−1
n

]
∈ R(q+3)×(q+3) where Pn ≡ Σ−1

n − Σ−1
n Jn

(
J ′nΣ−1

n Jn
)−1 J ′nΣ−1

n ∈ Rq×q.

12



The mean-centered Jacobian Jn arises from the re-centered error in the estimating equations

m̂∗n,t(θ) = (ε̂∗2n,t(θ)− 1/n
∑n

t=1 ε̂
∗2
n,t(θ))× x̂∗n,t(θ), since this is asymptotically equivalent tom∗n,t(θ) =

(ε∗2n,t(θ) − E
[
ε∗2n,t(θ)

]
)) × (x∗n,t(θ) − E

[
x∗n,t(θ)

]
).

We first prove consistency from first principles, since a standard first order expansion for

asymptotic normality involves an estimator of Jn. We can only analyze the latter asymptotically

if we first know θ̂n
p→ θ0. See Appendix A for all proofs.

Theorem 2.1 Under Assumption A θ̂n
p→ θ0 and n1/2Σ

1/2
n λ̂n = Op(1).

Second, θ̂n and λ̂n are jointly asymptotically normal.

Theorem 2.2 Under Assumption A A1/2
n (ϑ̂n − ϑ0)

d→ N(0, Iq+3), in particular V1/2
n (θ̂n − θ0)

d→ N(0, I3).

Remark 5 The GELITT scales An and Vn are identical in form to the scales for the conventional

GEL estimator (Newey and Smith, 2004).

Remark 6 By the martingale difference property, E[ε2t ] = 1 and dominated convergence, it

follows

Σn = E
[(
ε∗2n,t − E

[
ε∗2n,t
])2
]
× E

[(
x∗n,t − E

[
x∗n,t
]) (

x∗n,t − E
[
x∗n,t
])′]

∼
(
E
[
ε∗4n,t
]
− 1
)
× E

[(
x∗n,t − E

[
x∗n,t
]) (

x∗n,t − E
[
x∗n,t
])′]

.

Hence, in the case of exact identification xt(θ) = st(θ) we have Jn = E[(st − E[st])(st − E[st])
′]

and therefore

Vn ∼ n
1

E
[
ε∗4n,t
]
− 1

E
[
(st − E [st]) (st − E [st])

′] .
Similarly, when xt(θ) contains only st(θ) and its lags then

‖Vn‖ ∼ Kn
1

E
[
ε∗4n,t
] .

The same order applies whenever xt is square integrable, e.g. it only contains st and its lags. In

this case if Xt ≡ xt − E[xt] and St ≡ st − E[st] then:

Vn ∼ n
1

E
[
ε∗4n,t
]
− 1
V where V = J ′Σ−1

x J , J = −E [XtS
′
t] and Σx = E [XtX

′
t] .

Hence (n/(E[ε∗4n,t] − 1))1/2(θ̂n − θ0)
d→ N(0,V−1).
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Remark 7 If E[ε4t ] <∞ and xt is square integrable then GELITT obtains the same asymptotic

distribution as the untrimmed GEL estimator: n1/2(θ̂n − θ0)
d→ N(0, (E[ε4t ] − 1)V−1), with V

defined above.

Remark 8 Notice

nP−1
n = nΣn

(
I − Jn

(
J ′nΣ−1

n Jn
)−1 J ′nΣ−1

n

)−1

∼ KnΣn

hence λ̂n has a faster rate of convergence than θ̂n when E[ε4t ] = ∞. Indeed, by Theorem 2.1 the

rate is n1/2||Σn||1/2 ∼ Kn1/2E[ε∗4n,t] × ||E[x∗n,tx
∗′
n,t]|| which is greater than n1/2 when E[ε4t ] = ∞.

The rate of convergence can be easily obtained if over-identifying weights wt are square

integrable, e.g. wt only contain lags of the score st, since then xt is L2-bounded and the Jacobian

Jn = −E[(x∗n,t − E[x∗n,t])(st − E[st])
′] is uniformly bounded: lim supn→∞ ||Jn|| ≤ K. In order

to see this, by construction of the thresholds and power law Assumption A.2, if κε ∈ (2, 4] then

c
(ε)
n = d1/κε(n/k

(ε)
n )1/κε . Therefore if E[ε4t ] =∞ then by Karamata’s Theorem9

κε ∈ (2, 4) : E
[
ε∗4n,t
]
∼ 4

4− κε
(
c(ε)
n

)4
P
(
|εt| > c(ε)

n

)
=

4

4− κε
d4/κε

(
n

k
(ε)
n

)4/κε−1

(9)

κε = 4 : E
[
ε∗4n,t
]
∼ d ln(n).

In either case κε = 4 or κε ∈ (2, 4) it follows

E
[
ε∗4n,t
]
− 1 = E

[
ε∗4n,t
]
× (1 + o(1)) . (10)

Combine Theorem 2.2 with (9) and (10) to deduce the next result.

Corollary 2.3 Let Assumption A hold, and if q > 3 then let wt be square integrable. Then

κε ∈ (2, 4) :
n1/2(

n/k
(ε)
n

)2/κε−1/2

(
θ̂n − θ0

)
d→ N

(
0,

4

4− κε
d4/κε × V−1

)

κε = 4 :

(
n

ln(n)

)1/2 (
θ̂n − θ0

)
d→ N

(
0, d× V−1

)
9See Theorem 0.6 in Resnick (1987). The case κε = 4 follows by observing if κε = 4 then c

(ε)
n = d1/4(n/k

(ε)
n )1/4,

hence for finite a > 0 there exists K > 0 such that E[ε4t I
(ε)
n,t] =

∫ (c(ε)n )4

0
P (|εt| > u1/4)du = K +

∫ (c(ε)n )4

a
u−1du =

K + 4d ln(c
(ε)
n ) ∼ K + d ln(n) ∼ d ln(n).
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where V ≡ J ′Σ−1
x J with J ≡ −E[(xt − E [xt])(st − E [st])

′] and Σx ≡ E[(xt − E [Xt])(xt −
E [xt])

′].

As long as εt has an unbounded fourth moment κε ∈ (2, 4], the rate of convergence is o(n1/2).

If κε ∈ (2, 4) then by maximizing the trimming amount k
(ε)
n and therefore making k

(ε)
n arbitrarily

close to a fixed portion ζn of n where ζ ∈ (0, 1), we can optimize the rate of convergence. Simply

let k
(ε)
n ∼ n/gn for gn →∞ at a slow rate to deduce θ̂n can be made as close to n1/2-convergent

as we choose. A parametric rule for k
(ε)
n is convenient, for example

k(ε)
n = [ζn/ ln (n)] where ζ ∈ (0, 1]. (11)

Then for any κε ∈ (2, 4) we have

n1/2

(ln (n))2/κε−1/2

(
θ̂n − θ0

)
d→ N (0,V (ζ, κε, d)) , with V (ζ, κε, d) ≡ 1

ζ4/κε−1

4

4− κε
d4/κε × V−1.

(12)

In this case the rate of convergence is identical to Quasi-Maximum Tail-Trimmed Likelihood

in Hill (2015a) since the estimating equations are identical or similar to QML score equations.

Thus, when κε ∈ (2, 4] the GELITT estimator converges faster than QML as long as k
(ε)
n ∼ n/gn

for slow gn → ∞ (see Hill, 2015a).

Notice that by letting ζ be large we can diminish the asymptotic variance V (ζ, κε, d). By

first order asymptotics, it is always better to trim more extreme values per sample since we

achieve both a higher rate of convergence and lower asymptotic variance. However, in Section 4

we exploit higher order asymptotics and show that the higher order bias of GELITT is smaller

when trimming is reduced.10 In the case of EL or exact identification, the bias monotonically

decreases as trimming is reduced. Indeed, it is easily revealed by simulation that a greater

amount of trimming induces small sample bias for standard GEL criterion, e.g. EL, CUE, and

ET. Thus, while first order efficiency and the rate of convergence are augmented with a trimming

rule like (11) with large ζ, higher order bias is reduced by setting ζ small, e.g. ζ = .05 as we do

in the Section 8 simulation study.

In principle, there is an optimal trimming rule implied by the combination of the first and

higher order asymptotic arguments. However, a higher order mean-squared-error will favor

efficiency in heavy tailed cases since the higher order variance will dominate the squared bias.

Minimizing this mean-squared-error is not practical since it will simply lead to setting k
(ε)
n close

10We thank a referee for suggesting that second order asymptotics can be useful in justifying optimal trimming
rules.
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to n. Nevertheless, the preceding points to a dominant strategy: elevate the rate of convergence

while controlling higher order bias by elevating the rate k
(ε)
n → ∞ as n → ∞ and, for a given

sample, by setting k
(ε)
n as a small value relative to n.

Finally, although the GELITT rate is optimized to its upper bound n1/2 when k
(ε)
n = [ζn], we

cannot use a fixed portion since θ̂n need not be consistent for θ0. This follows since 1/n
∑n

t=1 ε̂
∗2
n,t

p→ [0, 1) under Assumption A, hence the centered error ε̂∗2n,t(θ) − 1/n
∑n

t=1 ε̂
∗2
n,t(θ) in m̂∗n,t(θ) may

not identify θ0 (see, e.g., Sakata and White, 1998; Mancini, Ronchetti, and Trojani, 2005). If the

distribution of εt were assumed, this bias can in theory be removed by simulation-based indirect

inference, as in Cantoni and Ronchetti (2001) and Ronchetti and Trojani (2001).

2.4 Feasible GELITT

In practice σ2
t (θ) cannot be computed for t ≤ 1, so an iterated approximation must be used.

Define

ht(θ) = ω̃ > 0 for t = 0, and ht(θ) = ω + αy2
t−1 + βht−1(θ) for t = 1, 2, ... (13)

where ω̃ is not necessarily an element of θ0. Write hθt (θ) ≡ (∂/∂θ)ht(θ) and hθ,θt (θ) ≡ (∂/∂θ)hθt (θ).

Under Assumption A it can be shown that stationary and ergodic solutions to (13) and the

corresponding equations for hθt (θ) and hθ,θt (θ) exist (see Lemma A.7 in Hill, 2014a, cf. Meitz and

Saikkonen, 2011).

Now replace σ2
t (θ) with ht(θ) and define

ε̊t(θ) ≡
yt

ht(θ)1/2
and s̊t(θ) ≡

1

ht(θ)
hθi,t(θ) and x̊t(θ) ≡ [̊st(θ)

′, ẘt(θ)
′]
′
.

We write ẘt(θ since the added instruments may be a function of ht(θ), for example when ẘt(θ)

contains lags of s̊t(θ). The tail-trimmed versions are

̂̊ε∗n,t(θ) ≡ ε̊t(θ)I
(
|̊εt(θ)| ≤ ε̊

(a)

(k
(ε)
n )

(θ)
)

and ̂̊x∗n,t(θ) ≡ [̊st(θ)′, ̂̊w∗n,t(θ)′]′
ε̊∗n,t(θ) ≡ ε̊t(θ)I

(
|̊εt(θ)| ≤ c(ε)

n (θ)
)

and x̊∗n,t(θ) ≡
[̊
st(θ)

′, ẘ∗n,t(θ)
′] ,

hence the equations are

̂̊m∗i,n,t(θ) ≡
(̂̊ε∗n,t(θ)− 1

n

n∑
t=1

̂̊ε∗n,t(θ)
) ̂̊x∗i,n,t(θ)
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m̊∗i,n,t(θ) ≡
(̊
ε∗n,t(θ)− E

[̊
ε∗n,t(θ)

]) (
x̊∗n,t(θ)− E

[
x̊∗n,t(θ)

])
,

and the feasible estimators are

̂̊
θn = arg min

θ∈Θ
sup

λ∈Λ̂n(θ)

{
1

n

n∑
t=1

ρ
(
λ′ ̂̊m∗n,t(θ))

}
and

̂̊
λn = arg sup

λ∈Λ̂n(
̂̊
θn)

{
1

n

n∑
t=1

ρ

(
λ′ ̂̊m∗n,t(̂̊θn)

)}
.

Define
̂̊
ϑn ≡ [

̂̊
θ
′

n,
̂̊
λ
′

n]′. The feasible and infeasible estimators have the same limit distribution.

The proof is similar to the proof of Theorem 2.3 in Hill (2015a) and is therefore omitted.

Lemma 2.4 Under Assumption A A1/2
n (
̂̊
ϑn − ϑ̂n)

p→ 0.

We only work with the infeasible ϑ̂n in all that follows for the sake of notational ease.

3 Extremal Information of Implied Probabilities

Recall ρ(1)(u) = (∂/∂u)ρ(u). By the GELITT first order condition it is easy to show the implied

probabilities or profiles have a classic form (Antoine, Bonnal, and Renault, 2007; Newey and

Smith, 2004)

π̂∗n,t(θ) =
ρ(1)

(
λ̂′nm̂

∗
n,t(θ)

)
∑n

t=1 ρ
(1)
(
λ̂′nm̂

∗
n,t(θ)

) where λ̂n = arg sup
λ∈Λ̂n(θ̂n)

{
1

n

n∑
t=1

ρ
(
λ′m̂∗n,t(θ̂n)

)}
. (14)

See Appendix A.3 for derivation of the first order condition, equation (A.8). The profiles π̂∗n,t(θ)

promote an empirical counterpart to the GELITT identification condition E[m∗n,t(θ
0)] = 0 since

π̂∗n,t(θ) ∈ [0, 1],
∑n

t=1 π̂
∗
n,t(θ) = 1, and by the first order condition

∑n
t=1 π̂

∗
n,t(θ)m̂

∗
n,t(θ̂n) = 0.

We begin by gleaning information about extremes from π̂∗n,t(θ) in the case of tail-trimmed

CUE due to its tractability. Since ρ is quadratic in this case we have (Antoine, Bonnal, and

Renault, 2007)

π̂∗n,t(θ) =
1 + λ̂′nm̂

∗
n,t(θ)∑n

t=1

{
1 + λ̂′nm̂

∗
n,t(θ)

} . (15)

Now define the set of time indices at which an error is trimmed:

Î∗n(θ) ≡
{
t : ε̂∗n,t(θ) = 0

}
and Î∗n ≡ Î∗n(θ0).
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Thus, since ε̂∗n,t(θ) ≡ εt(θ)Î
(ε)
n,t(θ)

∏q−3
i=1 Î

(w)
i,n,t(θ), then t ∈ Î∗n(θ) when εt is large, or any over-

identifying weight wi,t(θ) is large. Then for any t ∈ Î∗n(θ) we have m̂∗n,t(θ) = −(1/n
∑n

s=1 ε̂
∗2
n,s(θ))

× x̂∗n,t(θ) a.s., hence by dominated convergence and limit theory developed in the appendix:

m̂∗n,t(θ) = −x̂∗n,t(θ)× (1 + op(1)) . (16)

By imitating arguments in Antoine, Bonnal, and Renault (2007, Theorem 3.1),π̂∗n,t(θ) has

the decomposition

π̂∗n,t(θ) =
1

n
− 1

n
m̂∗n(θ)′Σ̌−1

n (θ)×
{
m̂∗n,t(θ)− m̂∗n(θ)

}
(17)

where

m̂∗n(θ) ≡ 1

n

n∑
t=1

m̂∗n,t(θ) and Σ̌n(θ) ≡ 1

n

n∑
t=1

{
m̂∗n,t(θ)− m̂∗n(θ)

}
m̂∗n,t(θ)

′.

Since m̂∗nΣ̌−1
n m̂∗n > 0 a.s. and m̂∗n

p→ 0, it follows by (16) and (17) that periods with a trimmed

error have an elevated profile π̂∗n,t:

π̂∗n,t =
1

n
+

1

n
m̂∗n
′Σ̌−1

n m̂∗n +
1

n
m̂∗n
′Σ̌−1

n x̂∗n,t × (1 + op(1)) =
1

n
+

1

n
m̂∗n
′Σ̌−1

n m̂∗n (1 + op(1)) >
1

n
a.s.

Lemma 3.1 We have π̂∗n,t > 1/n with probability approaching one for each period t with a

trimmed error (due to a large error and/or large over-identifying weight).

We can go further by applying limit theory presented in the appendix to (17) to obtain

π̂∗n,t =
1

n
+

1

n2

{
1

n1/2
Σ−1/2
n

n∑
t=1

m̂∗n,t

}′{
1

n1/2
Σ−1/2
n

n∑
t=1

m̂∗n,t

}
(1 + op(1))

=
1

n
+

1

n2
×X 2

q × (1 + op(1)) =
1

n

(
1 +

1

n
×X 2

q × (1 + op(1))

)
where t ∈ Î∗n, where X 2

q is a chi-squared random variable with q degrees of freedom. Since

such π̂∗n,t satisfy n2(π̂∗n,t − 1/n)
d→ X 2

q and π̂∗n,t = n−1 + n−2X 2
q (1 + op(1)) ∈ [0, 1], apply the

Helly-Bray Theorem to deduce on average π̂∗n,t is 1/n + q/n2 + op(1/n
2) in periods in which an

extreme error occurs.

Lemma 3.2 E[π̂∗n,t | t ∈ Î∗n] = 1/n + q/n2 + op(1/n
2)).

Although periods with extremes are deemed damaging for asymptotics, this does not imply

they are uninformative. Indeed, they do not receive the least informative, or uniform, profile
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value 1/n. Rather, tail-trimmed CUE assigns periods with exceptionally large errors or weights

an elevated (relative to uniform 1/n) probability, roughly on average 1/n + q/n2 for large n.

But this begs the question regarding which periods are being assigned smaller or larger profiles

in general. Decomposition (17) and limit theory in the appendix reveal in any period t

π̂∗n,t =
1

n

(
1 +

1

n
X 2
q (1 + op(1))

)
− 1

n

{
1

n1/2
Σ−1/2
n

n∑
t=1

m̂∗n,t

}′
× 1

n1/2
Σ−1/2
n m̂∗n,t (1 + op(1))

=
1

n

{
1 +

1

n
X 2
q −Z ′ ×

1

n1/2
Σ−1/2
n m̂∗n,t

}
(1 + op(1)) ,

where Z is a standard normal random variable on Rq that satisfies identically X 2
q = Z ′Z. Now

assume n is sufficiently large that 1/n
∑n

t=1 ε̂
∗2
n,t ≈ 1 hence m̂∗n,t ≈ (ε̂∗2n,t − 1)x̂∗2n,t.

An asymptotic random draw {yt}∞t=1 with a propensity for large errors εt and therefore large

m̂∗n,t > 0 implies a larger likelihood that Z ′ × Σ
−1/2
n m̂∗n,t > 0. But this implies π̂∗n,t < n−1{1 +

n−1X 2
q } for many periods t when a large error occurs. Thus, in an asymptotic draw when a large

error is not particularly rare then any given t with a large error is not especially informative:

the ascribed profile weight is closer to the flat weighted value n−1 than in periods of extreme

values. Put differently, a period t that “goes with the flow” is not particularly useful for efficient

moment estimation by profiling weighting. In fact, in a sample with many large εt, any period

with a very large εt that is not so large as to be trimmed is, in probability, the least useful in

the sense of receiving the smallest π̂∗n,t.

Contrariwise, periods that go “against the flow,” that is, periods when m̂∗n,t < 0, are assigned

the largest π̂∗n,t. This arises either when εt is small and wi,t are not extreme values such that

ε̂∗2n,t < 1, or εt and/or wi,t are so large that εt is trimmed hence m̂∗n,t ≈ − x̂∗2n,t. Intuitively, large

values are useful only if they portray dispersion or leverage: a large m̂∗n,t > 0 amongst many

large positive m̂∗n,t does not provide much useful information. See also Back and Brown (1993)

for a classic interpretation of π̂∗n,t.

4 Higher Order Asymptotics and Fractile Choice

In Appendix A.3 we derive the first order expansion:

A1/2
n

(
ϑ̂n − ϑ0

)
= −InΣ−1/2

n

1

n1/2

n∑
t=1

m∗n,t (1 + op(1)) , (18)
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where In ∈ R3×q satisfies I ′nIn = I3. The expansion with op(1) replaced with 0 is identical to

the GEL first order expansion in Newey and Smith (2004, eq. (A.8)). Since m∗n,t is a martingale

difference with E[m∗n,tm
∗′
n,t] = Σn for any fractile sequences {k(ε)

n , k
(w)
i,n }, expansion (18) is not

helpful for understanding how k
(ε)
n influences small bias. Further, in terms of efficiency for the

GARCH parameter estimator θ̂n, a choice of k
(ε)
n nearly equal to ζn for ζ ∈ (0, 1) will minimize Vn

by Corollary 2.3. Thus, by first order asymptotics the best guidance we have is to use k
(ε)
n ∼ n/gn

for essentially any slowly increasing gn → ∞, e.g. k
(ε)
n = [ζn/ ln(n)]. In this case Corollary 2.3

shows that larger ζ is associated with a lower asymptotic variance. In simulation experiments,

however, it is easily seen that a small ζ leads to sharp inference since only then is the small

sample bias reduced.

We now shed some light on bias by formally deriving a higher order expansion and use higher

order bias to gauge what an optimal number of trimmed observations k
(ε)
n should be. We also

propose a bias-corrected estimator that corrects for bias due to the GEL structure and due to

tail-trimming.

In order to reduce the number of trimming fractiles considered, and without affecting the

applicability of our derivations, assume over-identifying instruments wt are square integrable

(e.g. xt contains only lags of st) and therefore need not be trimmed:

m∗n,t(θ) ≡
(
ε∗2n,t(θ)− E

[
ε∗2n,t(θ)

])
(xt(θ)− E [xt(θ)]) where ε∗n,t(θ) ≡ εt(θ)I

(ε)
n,t(θ).

Allowing for trimming on the error and instruments would substantially complicate the ex-

pansion, but the salient features of our analysis below would still carry over: trimming few

observations promotes smaller higher order bias.

4.1 Higher Order Expansion

Similar to (18), we need only look to arguments in Newey and Smith (2004) to obtain a higher

order expansion. Let {z∗n,t} be a tail-trimmed random variable. In order to express an asymp-

totically valid derivative of a tail-trimmed object, let z∗n,t(θ) ≡ zt(θ)In,t(θ) where zt(θ) is differ-

entiable, In,t(θ) ∈ {0, 1} and infθ∈Θ In,t(θ)
p→ 1, and define11

∂̊

∂̊θ
z∗n,t(θ) ≡

(
∂

∂θ
zt(θ)

)
× In,t(θ).

11The asymptotic theory supporting the use of such a derivative can be found in the appendices Hill (2013,
2015a).
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Define

M∗
n,t(ϑ) ≡ ρ(1)

(
λ′m∗n,t(θ)

)
×

 ∂̊

∂̊θ
m∗n,t(θ)

′λ

m∗n,t(θ)


G∗n(ϑ) ≡ E

[
∂̊

∂̊ϑ
M∗

n,t(ϑ)

]
, G∗j,n(ϑ) ≡ E

[
∂̊2

∂̊ϑj ∂̊ϑ
M∗

n,t(ϑ)

]
, G∗j,k,n(ϑ) ≡ E

[
∂̊3

∂̊ϑj ∂̊ϑk∂̊ϑ
M∗

n,t(ϑ)

]

A∗n,t ≡
∂̊

∂̊ϑ
M∗

n,t −G∗n and ψ∗n,t ≡ −G∗−1
n M∗

n,t.

Since arguments merely mimic the proof of Lemma A.4 and Theorem 3.1 in Newey and Smith

(2004), we prove the following claim in Hill and Prokhorov (2014). Write z̃n ≡ 1/n1/2
∑n

t=1 z
∗
n,t.

Theorem 4.1 Under Assumption A and ||E[wtw
′
t]|| < ∞:

ϑ̂n − ϑ0 =
1

n1/2
ψ̃∗n +

1

n
Q1

(
ψ̃∗n

)
+

1

n3/2
Q2

(
ψ̃∗n

)
+Op

((
E
[
ε∗4n,t
])2

n2

)
, (19)

where Q1(ψ̃∗n) ≡ −G∗−1
n {Ã∗nψ̃∗n + 1/2

∑q+3
i=1 ψ̃

∗
i,nG

∗
i,nψ̃

∗
n} and Q2(ψ̃∗n) ≡ −G∗−1

n Qn, with

Qn = Ã∗nQ1

(
ψ̃∗n

)
+

1

2

q+3∑
i=1

{
ψ̃∗i,nG

∗
i,nQ1(ψ̃∗n) +Qi,1(ψ̃∗n)G∗i,nψ̃

∗
n + ψ̃∗i,nG

∗
i,nψ̃

∗
n

}
+

1

6

q+3∑
i,j=1

ψ̃∗i,nψ̃
∗
j,nG

∗
i,j,nψ̃

∗
n.

If k
(ε)
n ∼ n/L(n) for some slowly varying L(n) → ∞ then for any κε > 2:

ϑ̂n − ϑ0 =
1

n1/2
ψ̃∗n +

1

n
Q1

(
ψ̃∗n

)
+Op

(
L(n)

n3/2

)
for slowly varying L(n)→∞ (20)

hence the asymptotic (higher order) bias for any κε > 2 is Bias(ϑ̂n) = n−1E[Q1(ψ̃∗n)].

Remark 9 Since ψ̃∗n is a function of ε∗2n,t and Ã∗n is a function of ε∗4n,t, it is easily verified that

||E[Q1(ψ̃∗n)]|| ∼ KE[ε∗6n,t] and ||E[Q2(ψ̃∗n)]|| ∼ KE[ε∗10
n,t ]. If we were to disband with trimming

and use a third order expansion as above, then we need E[ε10
t ] < ∞ just to deduce E[Q1]

represents asymptotic (higher order) bias, cf. Rothenberg (1984) and Newey and Smith (2004).

The analysis in Newey and Smith (2004) of higher order GEL properties, like bias and efficiency,

therefore presumes the existence of substantially higher moments than may in fact exist for many

macroeconomic and financial time series. Of course, expansion (19) relies on a third order Taylor
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expansion with a remainder: using only a second order expansion reduces the higher moment

burden for GEL to E[ε6t ] <∞. Negligible tail-trimming, however, allows us to impose only E[ε2t ]

< ∞ and still retain the same structure of higher order terms for GELITT.

Remark 10 The higher order terms are complicated by tail trimming. Notice ϑ̂n exhibits two

forms of dynamics: one due to the GEL structure itself, and one due to trimming:

ϑ̂n − ϑ0 =

{
1

n1/2
ψ̃n +

1

n
Q1

(
ψ̃n

)
+

1

n3/2
Q2

(
ψ̃n

)}
+Op

((
E
[
ε∗4n,t
])2

n2

)
+

1

n1/2

(
ψ̃∗n − ψ̃n

)
+

1

n

(
Q1

(
ψ̃∗n

)
−Q1

(
ψ̃n

))
+

1

n3/2

(
Q2

(
ψ̃∗n

)
−Q2

(
ψ̃n

))
,

where terms without ”∗” do not have trimming. Notice {·} contains GEL higher order terms

(Newey and Smith, 2004, Theorem 3.4), and the remaining terms describe the impact of trim-

ming. Thus if E[ε10
t ] < ∞ then the GELITT (higher order) bias is E[Q1(ψ̃∗n)]/n = E[Q1(ψ̃n)]/n

+ {E[Q1(ψ̃∗n)] − E[Q1(ψ̃n)]}/n, hence

Bias(GELITT ) = Bias(GEL) + Bias(trimming).

Remark 11 Result (20) shows n−1E[Q1(ψ̃∗n)] expresses higher order bias when k
(ε)
n ∼ n/L(n)

for slowly varying L(n) → ∞, ultimately due to Karamata theory. Recall that such a trimming

rate optimizes the rate of convergence.

4.2 Higher Order Bias and Fractile Choice

In principle a higher order mean-squared-error can be computed and this can be minimized,

or at least inspected, in order to select the trimming fractile. We focus on bias n−1E[Q1(ψ̃∗n)]

in order to conserve space since the (higher order) variance is a tedious function of trimmed

moments, even if only based on n−1/2ψ̃∗n + n−1Q1(ψ̃∗n). See also Newey and Smith (2004, p.

234). Nevertheless, bias reveals salient features that will carry over to (higher order) mean-

squared-error computation.

Recall the criterion function notation ρ(i)(u) = (∂/∂u)iρ(u), and now assume ρ(3)(u) exists, as

it does for EL, CUE and ET. Independence of the errors implies that E[Q1(ψ̃∗n)] for GELITT has

the same form as E[Q1(ψ̃n)] for GEL. The proof of the following result closely follows arguments

in Newey and Smith (2004, proof of Theorem 4.2), and otherwise uses easily derived forms for

tail-trimmed GEL components for GARCH model estimation. See Hill and Prokhorov (2014)

for a proof.
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Theorem 4.2 Write Xt ≡ xt − E[xt] and St ≡ st − E[st], and define E (1)
n ≡ E[ε∗2n,t], E

(i)
n ≡

E[(ε∗2n,t − E
[
ε∗2n,t
]
)i] for i = 2, 3, J = −E[X ′tSt], Σx ≡ E[XtX

′
t], H ≡ (J ′Σ−1

x J )−1J ′Σ−1
x ∈

R3×q, P ≡ Σ−1
x − Σ−1

x J (J ′Σ−1
x J )−1J ′Σ−1

x and a ≡ [aj]
q
j=1 where

aj ≡
1

2
tr

{(
J ′Σ−1

x J
)−1 × E

[
∂2

∂θ∂θ′
{(
ε2t − 1

)
Xj,t

}]}
.

Under Assumption A, ||E[wtw
′
t]|| < ∞ and k

(ε)
n ∼ n/L(n) for slowly varying L(n) → ∞:

Bias
(
ϑ̂n

)
=

1

n


1

E (1)
n

H

{
E (2)
n

E (1)
n

(
−
(
E (1)
n

)3

a+ E [StX
′
tHXt]

)
+
E (3)
n

E (2)
n

(
1 +

ρ3

2

)
E [X ′tXtPXt]

}

1

E (2)
n

P

{
E (2)
n

E (1)
n

(
−
(
E (1)
n

)3

a+ E [StX
′
tHXt]

)
+
E (3)
n

E (2)
n

(
1 +

ρ3

2

)
E [X ′tXtPXt]

}
 .

This implies a decomposition for Bias(θ̂n) depending on whether εt has higher moments.

Corollary 4.3 Under Assumption A, ||E[wtw
′
t]|| < ∞ and k

(ε)
n ∼ n/L(n) for slowly varying

L(n) → ∞ we have Bias(θ̂n) = B(GMTTM)
n + B(ΣTT )

n , where

B(GMTTM)
n ≡ 1

n

E (2)
n(
E (1)
n

)2H (−a+ E [StX
′
tHX ′t]) (21)

B(ΣTT )
n ≡ 1

n

E (3)
n

E (1)
n E (2)

n

H
(

1 +
ρ3

2

)
E [X ′tXtPXt] .

If E[ε4t ] < ∞, such that E (2) ≡ E[(ε2t − 1)2] <∞, then B(GMTTM)
n = B(GMM)

n + B(TTGMM )
n , where

B(GMM)
n ≡ 1

n
E (2)H (−a+ E [StX

′
tHX ′t]) (22)

B(TTGMM )
n ≡ 1

n

 E (2)
n(
E (1)
n

)2 − E
(2)

H (−a+ E [StX
′
tHX ′t]) .

If E[ε6t ] < ∞, such that E (3) ≡ E[(ε2t − 1)3] <∞, then B(ΣTT )
n = B(Σ)

n + B(TTΣ)
n , where

B(Σ)
n ≡ 1

n

E (3)

E (2)
H
(

1 +
ρ3

2

)
E [X ′tXtPXt] and B(TTΣ)

n ≡ 1

n

{
E (3)
n

E (1)
n E (2)

n

− E
(3)

E (2)

}
H
(

1 +
ρ3

2

)
E [X ′tXtPXt] .
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Remark 12 The first term B(GMTTM)
n in (21) is the bias associated with optimal (one-step)

Generalized Method of Tail-Trimmed Moments [GMTTM], hence the estimating equations are

(∂/∂θ′)E[m∗n,t(θ)]|θ0Σ−1
n mn,t(θ), cf. Hansen (1982) and Hill and Renault (2010). The second term

B(ΣTT )
n is the bias associated with estimating the tail-trimmed estimating equation covariance.

GELITT and GEL therefore have identical higher order bias forms: when ρ3 = −2 (e.g. EL),

or in the exactly identified case (hence P = 0), then Bias(θ̂n) = B(GMTTM)
n (notice in a GARCH

framework in general E[S ′tStSi,t] 6= 0). Thus, under exact identification or tail-trimmed EL, it is

logical to expect GELITT bias to be comparatively small. In simulation experiments, however,

tail-trimmed EL performs well, but CUE leads to even lower bias in many cases, evidently due

to the fact that its quadratic criterion is far easier to handle computationarlly (cf. Bonnal and

Renault, 2004; Antoine, Bonnal, and Renault, 2007). See Section 8.

Remark 13 If higher moments exist then GELITT bias decomposes into GEL bias and bias

due solely to trimming. For example, if E[ε4t ] < ∞ such that standard asymptotics apply (since

xt is square integrable), then B(GMTTM)
n is simply bias B(GMM)

n for optimal (one-step) GMM, plus

bias B(TTGMM )
n that arises from tail-trimming. Since GELITT bias can be estimated as in Newey

and Smith (2004, Section 5), the bias-corrected estimator both removes higher order GEL bias

(when it exists), and bias due to tail-trimming. See Section 4.3

Exactly how the amount of trimming impacts estimator’s (higher order) bias depends inti-

mately on tail decay and therefore on the tail-trimmed moments E (i)
n as n increases, as well as on

the moments E[XtX
′
t], E[Xt(−sj,tst + (∂/∂θj)st)], and E[XtX

′
txi,t], and the moment functions

H and P . A general understanding is therefore not available, but details can be gleaned if the

errors have Paretian tails. In this case, a choice of a smaller k
(ε)
n results in a smaller bias.

Lemma 4.4 Let P (|εt| ≥ a) = da−κε(1 + o(1)) for d > 0 and κε > 2, let Assumption A hold,

and assume ||E[wtw
′
t]|| < ∞ and k

(ε)
n ∼ n/L(n) for slowly varying L(n) → ∞. Then, B(GMTTM)

n

and B(ΣTT )
n are small for small k

(ε)
n . Therefore Bias(θ̂n) is relatively small when k

(ε)
n is small.

Moreover, if higher order moments of the error term exist then the bias due to trimming is close

to zero when k
(ε)
n is small.

In order to know whether B(GMTTM)
n and B(ΣTT )

n move in the same or opposite direction as

k
(ε)
n increases, we require the signs of −a + E[StX

′
tHX ′t] and (1 + ρ3/2)E[X ′tXtPXt], which is

difficult to determine except in special cases. If the criterion is EL such that ρ3 = −2, or if there

is exact identification such that P = 0, then B(ΣTT )
n = 0. This gives us the next result.
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Corollary 4.5 Let P (|εt| ≥ a) = da−κε(1 + o(1)) for d > 0 and κε > 2, let Assumption A

hold, and assume ||E[wtw
′
t]|| < ∞ and k

(ε)
n ∼ n/L(n) for slowly varying L(n) → ∞. Let the

criterion be EL or assume xt = st. Then, Bias(θ̂n) = B(GMTTM)
n monotonically decreases as

k
(ε)
n decreases. If higher order moments of the error term exist, then bias due to trimming is

monotonically closer to zero for smaller k
(ε)
n .

Remark 14 Recall the dual conclusions that by first order asymptotics when k
(ε)
n is close to ζn

then the GELITT scale Vn is increased such that efficiency is augmented, and that n−1E[Q1(ψ̃∗n)]

represents (higher order) bias. So the (higher order) bias is reduced and (first order) efficiency

is augmented when, for example, k
(ε)
n = [ζn/ ln(n)] and ζ is small. In order for trimming to

have any impact at all in terms of producing an approximately normal GELITT estimator for

a particular sample when the errors are heavy tailed, clearly k
(ε)
n ≥ 1 for each n, hence ζ cannot

be too small. We find ζ ∈ [.025, .075] works well, and in the simulation study below we focus

on ζ = .05, translating to k
(ε)
n = 1 when n = 100 and k

(ε)
n = 2 when n = 250. We also show

that a variety of trimming fractile rules lead to similar results, but in general a small but rapidly

increasing k
(ε)
n is best for higher order bias reduction both in theory and in practice.

4.3 Bias-Corrected GELITT

In general, setting k
(ε)
n small relative to n will lead to a relatively small bias. There is, however,

always the bias due to the higher order terms depicted in Theorem 4.1, cf. Newey and Smith

(2004). We now estimate the bias using implied probabilities, but the empirical distribution may

also be used. Define Jacobian, Hessian, and covariance estimators:

Ĵ (π)
n ≡ −

n∑
s=1

π̂∗n,t(θ̂n)

(
xt(θ̂n)−

n∑
s=1

π̂∗n,t(θ̂n)xt(θ̂n)

)
×

(
st(θ̂n)−

n∑
s=1

π̂∗n,t(θ̂n)st(θ̂n)

)′

Σ̂(π)
x ≡

n∑
s=1

π̂∗n,t(θ̂n)

(
xt(θ̂n)−

n∑
s=1

π̂∗n,t(θ̂n)xt(θ̂n)

)(
xt(θ̂n)−

n∑
s=1

π̂∗n,t(θ̂n)xt(θ̂n)

)′

Ĥ(π)
n ≡

(
Ĵ (π)′
n Σ̂(π)−1

x Ĵ (π)
n

)−1

Ĵ (π)′
n Σ̂(π)−1

x and P̂(π)
n = Σ̂(π)−1

x − Σ̂(π)−1
x Ĵ (π)

n Ĥ(π)
n

â
(π)
j,n ≡

1

2
tr

{(
Ĵ (π)′
n Σ̂(π)−1

x Ĵ (π)
n

)−1

×
n∑
s=1

π̂∗n,t(θ̂n)
∂2

∂θ∂θ′

{(
ε2t (θ̂n)− 1

)
sj,t(θ̂n)

}}
and â(π)

n =
[
â

(π)
j,n

]3

j=1

Ê (π)
1,n ≡

n∑
t=1

π̂∗n,t(θ̂n)ε̂∗2n,t(θ̂n) and Ê (π)
i,n ≡

n∑
t=1

π̂∗n,t(θ̂n)
(
ε̂∗2n,t(θ̂n)− Ê (π)

1,n

)i
for i = 2, 3.
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Define the bias estimator components:

B̂(GMTTM)
n ≡ 1

n

Ê (π)
2,n(
Ê (π)

1,n

)2 Ĥ
(π)
n

(
−â(π)

n +
1

n

n∑
t=1

StX
′
tĤ(π)

n X ′t

)

B̂(ΣTT )
n ≡ 1

n

Ê (π)
3,n

Ê (π)
1,n Ê

(π)
2,n

Ĥ(π)
n

(
1 +

ρ3

2

) 1

n

n∑
t=1

X ′tXtP̂(π)
n Xt.

The GELITT bias estimator is B̂n(θ̂n) = B̂(GMTTM)
n + B̂(ΣTT )

n , and in the case of EL or exact

identification we use B̂(θ̂n) = B̂(GMTTM)
n . The bias-corrected GELITT estimator is then:

θ̂(bc)
n = θ̂n − B̂n(θ̂n).

The estimator θ̂
(bc)
n has the same limit distribution as θ̂n, and is higher order unbiased provided

k
(ε)
n ∼ n/L(n).

Theorem 4.6 Under Assumption A,||E[wtw
′
t]|| <∞ and k

(ε)
n ∼ n/L(n) for slowly varying L(n)

→ ∞ we have Bias(θ̂
(bc)
n ) = 0 and V1/2

n (θ̂
(bc)
n − θ0)

d→ N(I3).

5 Robust Testing

We now use GELITT theory to construct a scale estimator, and robust versions of tests of over-

identifying restrictions. A natural estimator of the GELITT scale Vn ≡ nJ ′nΣ−1
n Jn is V̂n(θ) ≡

nĴn(θ)′Σ̂−1
n (θ)Ĵn(θ) where

Ĵn(θ) ≡ − 1

n

n∑
t=1

(
x∗n,t(θ)− X̂n (θ)

)(
st(θ)− Ŝn (θ)

)′
and Σ̂n(θ) ≡ 1

n

n∑
t=1

m̂∗n,t(θ)m̂
∗
n,t(θ)

′,

with X̂n (θ) ≡ 1/n
∑n

t=1 x
∗
n,t(θ) and Ŝn (θ) ≡ 1/n

∑n
t=1 st(θ). In the case of exact identification

a more compact estimator is possible since Jn = −E[(st − E[st]) × (st − E[st])
′], and by

dominated convergence and independence Σn ∼ E[(ε̂∗4n,t − 1)] × Jn, hence Vn ∼ nJn/(E[ε̂∗4n,t] −
1). In this case we can use V̂n(θ) = nĴn(θ)/(1/n

∑n
s=1 ε̂

∗4
n,t(θ) − 1). Efficient versions of these

estimators substitute the empirical probabilities 1/n for the implied probabilities π̂∗n,t(θ̂n): see

Section 6.

Theorem 5.1 Under Assumption A, V̂n(θ̃n) = Vn(1 + op(1)) for any θ̃n
p→ θ0.
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Next, recall the GEL weights have two parts xt(θ) = [st(θ)
′, wt(θ)

′], so that the proposed

over-identifying moment conditions are based on wt(θ) : Θ → Rq−3. It is therefore interesting

to test the assumption E[(ε2t − 1)wt] = 0 without imposing higher moments on εt or wt. A

theory for heavy tail robust moment condition tests is presented in Hill (2012) and Hill and

Aguilar (2013), but those papers treat the plug-in estimator as not necessarily using those

moment conditions for estimation, and they do not exploit empirical information about the

data generating process for efficient moment estimation. Define the GELTT criterion function

Q̂n (θ, λ) ≡ 1/n
∑n

t=1 ρ(λ′m̂∗n,t(θ)). Recalling ρ(0) = 0, the heavy tail robust trilogy test statistics

are Likelihood Ratio LRn = 2nQ̂n(θ̂n, λ̂n), score Sn = nm̂∗n(θ̂n)′Σ̂−1
n (θ̂n)m̂∗n(θ̂n) and Lagrange

Multiplier LMn = nλ̂′nΣ̂n(θ̂n)−1λ̂n. The score statistic Sn is identical in form to the heavy tail

robust test statistic in Hill and Aguilar (2013), while all three statistics are equivalent under the

null with probability approaching one. See Smith (1997) for original contributions in the GEL

literature, cf. Hansen (1982).

Theorem 5.2 Under Assumption A and q > 3 with E[(ε2t − 1)wt] = 0 we have LRn,Sn,LMn
d→ χ2(q − 3) hence all three statistics are asymptotically equivalent under the null. Further, if

E[(ε2t − 1)wt] 6= 0 then LRn,Sn,LMn
p→ ∞.

A classical Wald statistic for linear or nonlinear restrictions is also easily constructed. Let

R : Θ → RJ for J ≥ 1 be a continuous, differentiable function such that D(θ) ≡ (∂/∂θ)R(θ) is

continuous and has full column rank, and ϕ ∈ RJ . The null hypothesis is R(θ0) = ϕ, and the

Wald statistic is Wn ≡ (R(θ̂n) − ϕ)′[D(θ̂n)V̂n(θ̂n)−1D(θ̂n)′]−1(R(θ̂n) − ϕ).

Theorem 5.3 Under Assumption A and R(θ0) = 0 we have Wn
d→ χ2(J), and if R(θ0) 6= 0

then Wn
p→ ∞.

Remark 15 In a more general setting, standard asymptotic tests for GMM and GEL estimators

are overly sized in small samples (see, e.g., Hall and Horowitz, 1996; Inoue and Shintani, 2006),

and bootstrap methods are possibly invalid when over-identifying restrictions are present (Hall

and Horowitz, 1996). Various bootstrap techniques have been suggested to improve on the small

sample performance of Wald tests and tests of over-identification (e.g., Hall and Horowitz, 1996),

and for QML inference for GARCH models with heavy tailed errors (e.g. Hall and Yao, 2003).

The latter is key since the bootstrap is valid for thin tailed and exceptionally heavy tailed data

(i.e. heavier than a power law), but not necessarily when the data have power law tails and

unbounded higher moments (see Hall, 1990). In the present setting under the null, our Wald

statistic is, to a first order approximation, a quadratic form of a self-standardized sum of tail-

trimmed estimating equations: Wn = DHnΣ
1/2
n ZnZ ′nΣ

1/2
n H′nD′+ op(1) where D = D(θ0), Hn =
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(J ′nΣ−1
n Jn)−1J ′nΣ−1

n and Zn = [Zi,n]qi=1 = Σ
−1/2
n n−1/2

∑n
t=1m

∗
n,t. Although self-standardization

ensures standard asymptotics since Zn
d→ N(0, Iq), this is hairline: the self-standardized tail-

trimmed equations Zi,n have a unit variance E[Z2
i,n] = 1, but asymptotically have unbounded

moments greater than two when E[ε4t ] = ∞ since E|Zi,n|2+ι → ∞ for ι > 0. Whether bootstrap

techniques are valid in this case is unknown, and therefore not tackled in this paper.

6 Robust and Efficient Moment Estimation

In this section we estimate a set of moments E[gt(θ
0)], where gt = [gi,t]

h
i=1 : Θ → Rh for h ≥

1 is =t-measurable, integrable, stationary, ergodic, a.s. continuous and differentiable on Θ-a.e.

Implicitly gt may depend on other parameters although we do not express it. Examples are the

Jacobian and covariance matrices used for test statistic constructions; unconditional moments of

yt, σ
2
t or εt; conditional moments like the expected shortfall of a financial asset; and tail moments

including those used to characterize tail indices (see Hill, 2010, for theory and references). We

show that the use of π̂∗n,t(θ), rather than the empirical probabilities 1/n, leads to a non-trivial

efficiency improvement for a heavy tail robust moment estimator, mimicking classic results in

Back and Brown (1993), Brown and Newey (1998) and Smith (2011).

Consider heavy tail robust estimation under the premise that E[g2
i,t(θ

0)] < ∞ is unknown.

Define tail specific observations g
(−)
i,t (θ) ≡ gi,t(θ)I(gi,t(θ) < 0) and g

(+)
i,t (θ) ≡ gi,t(θ)I(gi,t(θ) ≥ 0),

let g
(·)
i,(j)(θ) be the order statistics g

(+)
i,(1)(θ) ≥ g

(+)
i,(2)(θ) ≥ · · · and g

(−)
i,(1)(θ) ≤ g

(−)
i,(2)(θ) ≤ · · · and let

k
(g)
1,i,n and k

(g)
2,i,n be intermediate order statistics. Similar to methods in Hill (2012, 2015b) and

Hill and Aguilar (2013), for heavy tail robust estimation we tail-trim gi,t:

ĝ∗i,n,t(θ) ≡ gi,t(θ)Î
(g)
i,n,t(θ) = gi,t(θ)I

(
g

(−)

i,(k
(g)
1,i,n)

(θ) ≤ gi,t(θ) ≤ g
(+)

i,(k
(g)
2,i,n)

(θ)

)
.

The uniform (or flat) and profile weighted sample mean estimators are

ĝ
∗
n(θ) ≡ 1

n

n∑
t=1

ĝ∗n,t(θ) and ĝ
∗(π)

n (θ) ≡
n∑
t=1

π̂∗n,t(θ)ĝ
∗
n,t(θ).

In the tail-trimmed CUE case we can use the profile formulas (15)-(17) to deduce that ĝ
∗(π)

n (θ)

is a sample version of an unbiased minimum variance estimator E[ĝ∗n,t (x)], that is ĝ
∗(π)

n (θ) = ĝ
∗
n(θ)

− m̂
∗
n(θ)′Σ̌n(θ)−1 × ĉov(ĝ∗n,t(θ), m̂

∗
n,t(θ)), where ĉov(a, b) ≡ 1/n

∑n
t=1 at{bt − b}. Thus, ĝ

∗(π)

n (θ)

is asymptotically best in the class of estimators with the form ĝ
∗
n(θ) − m̂

∗
n(θ)′A. See Bonnal and

Renault (2004, Corollary 3.5).
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The asymptotic theory for ĝ
∗(π)

n (θ) requires the non-stochastic positive functions {c(g)
1,i,n(θ), c

(g)
2,i,n(θ)}

that g
(−)

i,(k
(g)
1,i,n)

(θ) and g
(+)

i,(k
(g)
2,i,n)

(θ) estimate:

P
(
g

(−)
i,t (θ) < −c(g)

1,i,n(θ)
)

=
k

(g)
1,i,n

n
and P

(
g

(+)
i,t (θ) > c

(g)
2,i,n(θ)

)
=
k

(g)
2,i,n

n
.

Define a deterministically trimmed version

g∗i,n,t(θ) ≡ gi,t(θ)I
(g)
i,n,t(θ) = gi,t(θ)I

(
−c(g)

1,i,n(θ) ≤ gi,t(θ) ≤ c
(g)
2,i,n(θ)

)
,

and associated Jacobian, covariance and scale matrices

Υn ≡
1

n

n∑
s,t=1

E
[(
g∗n,s − E

[
g∗n,s
]) (

g∗n,t − E
[
g∗n,t
])′]

and Γn ≡
1

n

n∑
s,t=1

E
[
g∗n,sm

∗′
n,t

]
Gi,j,n ≡

∂

∂θj
E
[
gi,t(θ)I

(g)
i,n,t(θ)

]
|θ0

Vn ≡ Υn −G′nΣ−1
n Jn

(
J ′nΣ−1

n Jn
)−1

Γ′n − Γn
(
J ′nΣ−1

n Jn
)−1 J ′nΣ−1

n Gn

+G′n
(
J ′nΣ−1

n Jn
)−1

Gn − ΓnPnΓ′n.

Notice Γn = 1/n
∑n

s≥t=1E[g∗n,sm
∗′
n,t] by the martingale difference property of m∗n,t.

Asymptotic theory is again expedited if we assume gi,t(θ) have power law tails when E[g2
i,t(θ)]

= ∞. Define Θ
(g)
2,i = {θ ∈ Θ : E[g2

i,t(θ)] = ∞}.

Assumption B. If supθ∈ΘE[g2
i,t(θ)] = ∞ then gi,t(θ) has for each t a common power-law tail

P (|gi,t(θ)| > m) = d
(g)
i (θ)c−κ

(g)
i (θ)(1 + o(1)) where inf

θ∈Θ
(g)
2,i
κ

(g)
i (θ) > 0, κ

(g)
i = κ

(g)
i (θ0) > 1,

inf
θ∈Θ

(g)
2,i
d

(g)
i (θ) > 0 and o(1) is not a function of θ.

Theorem 6.1 Let {yt, εt, σ2
t , wt, gt} satisfy Assumptions A and B, and assume n1/2V

−1/2
n {E[g∗n,t]

− E[gt]} → 0. Then n
1/2
n V

−1/2
n {ĝ∗(π)

n (θ̂n) − E[gt]}
d→ N(0, Ih). If max{κ(g)

1 , κ
(g)
2 } ≥ 2 and k

(g)
i,n

→ ∞ at a slowly varying rate then n1/2V
−1/2
n {E[g∗n,t] − E[gt]} → 0 holds.

Remark 16 The scale Vn has a classic form, denoting long-run dispersion of g∗n,t by Υn, am-

plified by sampling error due to θ̂n, and corrected by the efficiency improvement afforded by

π̂∗n,t(θ̂n). In the nonparametric case gt(θ) = gt and we have Gn = 0. Hence the scale reduces to

Vn = Υn − ΓnPnΓ′n revealing a pure efficiency gain by exploiting the profile probabilities with

over-identification rather than empirical probabilities (see Antoine, Bonnal, and Renault, 2007;
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Smith, 2011). Under exact identification Pn = 0, so of course there is no efficiency gain when

gt(θ) = gt.

Remark 17 Consistent estimators of Gn, Υn and Γn are easy to derive as in Section 5. A

quadratic form ĝ
∗(π)

n (θ̂n)′V̂−1
n ĝ

∗(π)

n (θ̂n) can then be used to test E[gt] = 0. If we simply use ĝ
∗
n(θ)

then

ĝ
∗
n(θ̂n)′Υ̂−1

n (θ̂n)ĝ
∗
n(θ̂n) with a consistent HAC estimator Υ̂n(θ̂n) is identical to the tail-trimmed

moment condition test statistic in Hill and Aguilar (2013).

Remark 18 Consider the scalar case h = 1 for simplicity. The identification assumption

n1/2V
−1/2
n {E[g∗n,t] − E[gt]} → 0 is superfluous if tails are not too heavy and trimming is fairly

light. Otherwise, the assumption implies that we assume asymmetric trimming is set such that

E[g∗n,t]→ E[gt] rapidly enough for asymptotic unbiasedness in the limit distribution of ĝ
∗(π)

n (θ̂n).

An alternative method is to use intrinsically easier symmetric trimming ĝ∗i,n,t(θ) = gi,t(θ)I(|gi,t(θ)|
≤ g

(a)

i,(k
(g)
i,n)

(θ)) coupled with a bias correction estimator such that identification n1/2V
−1/2
n {E[g∗n,t]

− E[gt]} → 0 is not needed. See Section 7, and see Hill (2015b) for further results and references.

Remark 19 If each E[g2
i,t] <∞ then trimming for gt is not required. We can, however, still use

the GELITT profiles for a more efficient moment estimator since n1/2V
−1/2
n (

∑n
t=1 π̂n,t(θ̂n)gt(θ̂n)

− E [gt])
d→ N(0, Ih), where Gi,j,n ≡ (∂/∂θj)E[gi,t(θ)]|θ0 , Υn ≡ 1/n

∑n
s,t=1E[gsg

′
t], Γn(θ) ≡

1/n
∑n

s,t=1E
[
gsm

∗′
n,t

]
and so on.

Remark 20 The profiles can be exploited for an efficient GELITT scale estimator V̂(π)
n (θ) ≡

nĴ (π)
n (θ)′Σ̂

(π)
n (θ)−1Ĵ (π)

n (θ). Define X̂
(π)
n (θ) ≡

∑n
s=1 π̂

∗
n,t(θ)x

∗
n,t(θ), Ŝ

(π)
n (θ) ≡

∑n
s=1 π̂

∗
n,t(θ)st(θ) and

Ê (π)2
n (θ) ≡

∑n
s=1 π̂

∗
n,t(θ)ε̂

∗2
n,t. Define equations m̂∗n,t(θ) ≡ (ε̂∗2n,t − Ê∗2n (θ))x∗n,t(θ). Then use Ĵ (π)

n (θ) ≡
-
∑n

s=1 π̂
∗
n,t(θ)(x

∗
n,t(θ) − X̂

(π)
n (θ)) × (st(θ) − Ŝ(π)

n (θ))′ and Σ̂
(π)
n (θ) ≡

∑n
t=1 π̂

∗
n,t(θ)m̂

∗
n,t(θ)m̂

∗
n,t(θ)

′.

7 Example - Expected Shortfall

There are many interesting examples of efficient and robust moment estimation for GARCH

processes. We present one concerning the expected shortfall [ES] of an asset, which has not

evidently been treated in the GEL literature.

Recall the ES of yt ∈ R with E|yt| <∞ is the conditional expected loss ESα ≡ −E[yt|yt ≤ qα]

= −α−1E[ytI(yt ≤ qα)] > 0, where −qα > 0 is the Value-at-Risk for risk level α ∈ (0, 1). If E[y2
t ]

< ∞ then an efficient and asymptotically normal estimator is based on the GELITT profiles:

ÊS
(π)

n,α(θ) ≡ −α−1
∑n

t=1 π̂
∗
n,t(θ)ytI(yt ≤ q̂n,α) where q̂n,α consistently estimates qα. Hill (2015b)
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uses tail-trimming to deliver asymptotically normal and unbiased ES estimators for possibly

infinite variance processes. We extend that theory here to allow for profile weighting.12 We first

apply Theorem 6.1 to a biased, profile-weighted tail-trimmed ES estimator, and then present a

new result for a bias-corrected estimator.

7.1 Profile-Weighted Tail-Trimmed ES

The heavy tail robust profile-weighted version is

ÊS
∗(π)

n,α ≡ −
1

α

n∑
t=1

π̂∗n,tytI
(
y

(−)

(k
(y)
n )
≤ yt ≤ y[αn]

)
where π̂∗n,t ≡ π̂∗n,t(θ̂n),

where y
(−)
t ≡ ytI(yt < 0), k

(y)
n →∞, and k

(y)
n /n→ 0. Trivially y

(−)

(k
(y)
n )

< y[αn] a.s. as n→∞ since

k
(y)
n /n → 0, so assume n is large enough that y

(−)

(k
(y)
n )

< y[αn] a.s. Define positive deterministic

thresholds {l(y)
n } by P (−l(y)

n ≤ yt) = k
(y)
n /n, hence by dominated convergence:

− 1

α
E
[
y∗n,t
]

= − 1

α
E
[
ytI
(
−l(y)

n ≤ yt ≤ qα
)]
→ ESα.where y∗n,t ≡ ytI

(
−l(y)

n ≤ yt ≤ qα
)
.

It is easy to alter Theorem 6.1 to allow for a central order upper bound y[αn], since under

Assumption A yt is stationary and geometrically β-mixing (e.g. Nelson, 1990; Carrasco and Chen,

2002), hence y[αn] = qα + Op(1/n
1/2). See, e.g., Mehra and Rao (1975). Define

Υn ≡
1

n

n∑
s,t=1

E
[(
y∗n,s − E

[
y∗n,s
]) (

y∗n,t − E
[
y∗n,t
])]

and Γn ≡
1

n

n∑
s≥t=1

E
[
y∗n,sm

∗′
n,t

]
Vn ≡ Υn − ΓnPnΓ′n and Bn ≡ −

1

α
E
[
ytI
(
yt ≤ −l(y)

n

)]
.

As long as yt satisfies Assumption A, and since Assumption B is superfluous by measurability,

it follows by Theorem 6.1

n1/2

V
1/2
n

{
ÊS

∗(π)

n,α + Bn − ESα
}

d→ N
(
0, α−2

)
.

The scale form Vnfollows since θ̂n only enters π̂∗n,t. Thus, we can only achieve an efficiency gain

12We use the central order statistic q̂n,α = y[αn] for simplicity, similar to Chen (2008) and Hill (2015b). See
Scaillet (2004) and Linton and Xiao (2013) for smoothed kernel estimators. See Linton and Xiao (2013) for
non-standard limit theory for conventional ES estimators when yt has a regularly varying distribution tail with
index κ ∈ (1, 2).
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if over-identifying conditions are used, since otherwise Vn = Υn and hence ÊS
∗(π)

n,α has the same

asymptotic properties as the flat-weighted estimator of Hill (2015b).

7.2 Bias-Corrected Profile-Weighted Tail-Trimmed ES

Unless κ1 ≥ 2, and trimming is light k
(y)
n = O(ln(n)), the bias does not vanish: (n1/2/V

1/2
n )|Bn|

→ ∞ (Hill, 2015b, Section 1). Hill (2015b) presents a bias corrected version of the flat weighted

ES estimator ÊS
∗
n,α ≡ α−1n−1

∑n
t=1 ytI(y

(−)

(k
(y)
n )
≤ yt ≤ y[αn]). The same methods and theory can

be easily applied to ÊS
∗(π)

n,α in view of n3/2||Σn||1/2-consistency of the profiles π̂∗n,t, cf. Lemma

A.12 in the appendix. We present the bias correction here and refer the reader to Hill (2015b)

for theory details on the bias form.13

Let κ1 be the left tail index, P (yt ≤ −c) = d1c
−κ1(1 + o(1)), cf. Basrak, Davis, and Mikosch

(2002). The expected shortfall exists only if κ1 > 1 (for risk measure theory in the very heavy

tailed case, see, e.g. Garcia, Renault, and Tsafack, 2007; Ibragimov, 2009). Hill (1975)’s estimator

of κ1 is κ̂1,mn ≡ (1/mn

∑mn
i=1 ln(y

(−)
(i) /y

(−)
(mn)))

−1, where {mn} is an intermediate order sequence.

The bias estimator is

B̂n ≡ −
1

α

(
κ̂1,mn

κ̂1,mn − 1

k
(y)
n

n
y

(−)

(k
(y)
n )

)

and the bias-corrected estimator is ÊS
(bc)(π)

n,α ≡ ÊS
∗(π)

n,α + B̂n. If yt were known to be symmetrically

distributed, then κ1 can be estimated using |yt|, allowing for more observations and therefore

a sharper estimator. As in Hill (2015b), we select mn from a window of such fractiles such

that ÊS
(bc)(π)

n,α is close to the asymptotically unbiased untrimmed estimator, provided κ̂1,mn > 1.

Write mn(ξ) ≡ [ξmn] where 0 < ξ ≤ ξ ≤ ξ̄ for some chosen {ξ, ξ̄} ∈ (0,∞), and write B̂n(ξ) to

show dependence on ξ. Then the ”optimally” bias corrected estimator is ÊS
(bc∗)(π)

n,α ≡ ÊS
∗(π)

n,α +

B̂n(ξ̂n), where

ξ̂n = arg inf
ξ≤ξ≤ξ̄:κ̂1,mn(ξ)>1

{∣∣∣ÊS∗(π)

n,α + B̂n(ξ)− ẼS
(π)

n,α

∣∣∣}
with untrimmed ẼS

(π)

n,α ≡ −α−1
∑n

t=1 π̂
∗
n,tytI(yt ≤ y[αn]). As long as yt satisfies a second order

power law property in order to ensure κ̂1,mn = κ1 + Op(1/m
1/2
n ), and mn/k

(y)
n → ∞, then κ̂1,mn

does not affect asymptotics (similar to Hill, 2015b, Theorem 2.2).

Hill (2015b) only considers a flat weighted version of ÊS
(bc∗)(π)

n,α . The bias estimator B̂n(ξ̂n),

however, may exhibit enough sampling error that ÊS
∗(π)

n,α is closer to ẼS
(π)

n,α than is the bias

13See also Peng (2001), cf. Csörgo, Horváth, and Mason (1986), who evidently originally proposed a different
version of this bias-correction for iid data.
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corrected ÊS
(bc∗)(π)

n,α . In practice we therefore use whichever estimator is best:

ÊS
(obc)(π)

n,α ≡ ÊS
(bc∗)(π)

n,α I
(∣∣∣ÊS(bc∗)(π)

n,α − ẼS
(π)

n,α

∣∣∣ < ∣∣∣ÊS∗(π)

n,α − ẼS
(π)

n,α

∣∣∣) (23)

+ ÊS
∗(π)

n,α I
(∣∣∣ÊS(bc∗)(π)

n,α − ẼS
(π)

n,α

∣∣∣ > ∣∣∣ÊS∗(π)

n,α − ẼS
(π)

n,α

∣∣∣) .
In Theorem 7.1, we show that if k

(y)
n = o((ln(n))a) for some a > 0, then ÊS

∗(π)

n,α is chosen with

probability approaching one if and only if κ1 ≥ 2, since only then is ÊS
∗(π)

n,α unbiased in its limit

distribution.

The limit distribution of the flat weight ES estimator is based on the joint asymptotic behavior

of the tail-trimmed ytI(−l(y)
n ≤ yt ≤ qα) and the tail process {I(yt ≤ −l(y)

n ) − E[I(yt ≤ −l(y)
n )]}

which governs the order statistic y
(−)

(k
(y)
n )

in the bias estimator B̂n. Under profile weighting clearly

π̂∗n,t = π̂∗n,t(θ̂n), and therefore m∗n,t, will also affect asymptotics. In addition to the long-run

variance Υn and covariance Γn, we therefore need the following. Recall Σn ≡ E[m∗n,tm
∗′
n,t], define

variables:

Wn,t ≡
[
Y∗n,t,m∗′n,t, In,t

]′
where Y∗n,t = y∗n,t−E

[
y∗n,t
]

, In,t ≡
(

n

k
(y)
n

)1/2

(I (yt ≤ −ln)− E [(yt ≤ −ln)]) ,

and define long run variances and covariances:

In ≡
1

n

n∑
s,t=1

E [In,sIn,t] and Ψn ≡
1

n

n∑
s≥t=1

E
[
In,sm∗n,t

]
Γn ≡

1

n

n∑
s≥t=1

E
[
y∗n,sm

∗′
n,t

]
and Φn ≡

1

n

n∑
s,t=1

E
[
Y∗n,sIn,t

]

Wn ≡
1

n

n∑
s,t=1

E
[
Wn,sW ′n,t

]
=

 Υn Γn Φn

Γ′n Σn Ψ′n

Φn Ψn In

 .
Define a scale Sn ≡ D′nWnDn where Dn ≡ [1,−ΓnPn, (κ1 − 1)−1(k

(y)
n /n)1/2l

(y)
n ]′, and define a

linear combination of scales:

SVn ≡ SnI
(∣∣∣ÊS(bc∗)(π)

n,α − ẼS
(π)

n,α

∣∣∣ < ∣∣∣ÊS∗(π)

n,α − ẼS
(π)

n,α

∣∣∣)
+ VnI

(∣∣∣ÊS(bc∗)(π)

n,α − ẼS
(π)

n,α

∣∣∣ > ∣∣∣ÊS∗(π)

n,α − ẼS
(π)

n,α

∣∣∣) .
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Theorem 7.1 Let Assumption A hold, let P (yt ≤ −c) = d1c
−κ1(1 + O(c−ξ1)) for some d1, ξ1

> 0 and κ1 > 1, and let mn → ∞, mn = O((ln(n))a) for any chosen a > 0, and mn/k
(y)
n →

∞. Then (a). (n/Sn)1/2(ÊS
(bc∗)(π)

n,α − ESα)
d→ N(0, α−2); (b). (n/SVn)1/2(ÊS

(obc)(π)

n,α − ESα)
d→ N(0, α−2); and (c). SVn = Sn + op(1) if and only if κ1 < 2 and SVn = Vn + op(1) if and

only if κ1 ≥ 2.

Remark 21 Under second order power law tail decay P (yt ≤ −c) = d1c
−κ1(1 + O(c−ξ1)) we

need observations from sufficiently far out in the tails mn = O(n2ξ1/(2ξ1+κ1)) to ensure κ̂1,mn

= κ1 + Op(1/m
1/2
n ). See Haeusler and Teugels (1985). Since ξ1 and κ1 are unknown, we

impose mn = O((ln(n))a) as a viable sufficient condition. The bound kn = o(mn) ensures tail

exponent estimators do no affect the limit distribution of ÊS
(bc∗)(π)

n,α and ÊS
(obc)(π)

n,α . However,

kn = o((ln(n))a) also implies the untrimmed estimator ẼS
(π)

n,α used to determine SVn does not

affect asymptotics.

A flat-weighted estimator estimator ÊS
(obc)

n,α can similarly be defined. We also present the

limit theory for ÊS
(obc)

n,α since this also contains a bias estimation improvement over Hill’s (2015b)

ÊS
(bc∗)
n,α . Define S̃n = D̃′nWnD̃n where D̃n = [1, 0, (κ1 − 1)−1(k

(y)
n /n)1/2l

(y)
n ]′, and:

S̃Υn = S̃nI
(∣∣∣ÊS(bc∗)

n,α − ẼSn,α
∣∣∣ < ∣∣∣ÊS∗n,α − ẼSn,α∣∣∣)+ΥnI

(∣∣∣ÊS(bc∗)
n,α − ẼSn,α

∣∣∣ > ∣∣∣ÊS∗n,α − ẼSn,α∣∣∣) ,
with untrimmed ẼSn,α ≡ −α−1n−1

∑n
t=1 ytI(yt ≤ y[αn]). We omit a proof of the following since

it is similar to the proof of Theorem 7.1.

Theorem 7.2 Let Assumption A hold, let P (yt ≤ −c) = d1c
−κ1(1 + O(c−ξ1)) for some d1, ξ1

> 0 and κ1 > 1, and let mn → ∞, mn = O((ln(n))a) for any chosen a > 0, and mn/k
(y)
n →

∞. Then (a). (n/S̃n)1/2(ÊS
(bc∗)
n,α − ESα)

d→ N(0, α−2); (b). (n/S̃Υn)1/2(ÊS
(obc)

n,α − ESα)
d→

N(0, α−2); and (c). S̃Υn = S̃n + op(1) if and only if κ1 < 2, and S̃Υn = Υn + op(1) if and

only if κ1 ≥ 2.

The scales Vn, Sn and SVn are easily estimated. Construct P̂(π)
n using Σ̂

(π)
n and Ĵ (π)

n .

Let Υ̂n, În, Γ̂n,, Ψ̂n and Φ̂n be consistent estimators of the long-run variances Υn and In and

covariances Γn, Ψn and Φn, e.g. Γ̂n =
∑n

s≥t=1Kn((s − t)/γn)ysI(y
(−)

(k
(y)
n )
≤ ys ≤ y[αn])m̂

∗
n,t(θ̂n)′

where Kn(·) is the kernel function with bandwidth γn → ∞, γn = o(n). Further, we require

D̂n ≡

1,−Γ̂nP̂(π)
n ,− 1

κ̂1,mn − 1

(
k

(y)
n

n

)1/2

y
(−)

(k
(y)
n )

′ and În,t ≡
(

n

k
(y)
n

)1/2
{
I
(
yt ≤ −y(−)

(k
(y)
n )

)
− k

(y)
n

n

}
.
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Notice −y(−)

(k
(y)
n )

estimates l
(y)
n in Dn. Now compute Ŵn from the above estimators, and:

V̂n ≡ Υ̂n − Γ̂nP̂(π)
n Γ̂′n and Ŝn ≡ D̂′nŴnD̂n (24)

ŜVn ≡ ŜnI
(∣∣∣ÊS(bc∗)(π)

n,α − ẼS
(π)

n,α

∣∣∣ < ∣∣∣ÊS∗n,α − ẼS(π)

n,α

∣∣∣)
+ V̂nI

(∣∣∣ÊS(bc∗)(π)

n,α − ẼS
(π)

n,α

∣∣∣ > ∣∣∣ÊS∗(π)

n,α − ẼS
(π)

n,α

∣∣∣) .
Similarly ̂̃SΥn ≡ ̂̃SnI(|ÊS

(bc∗)
n,α − ẼSn,α| < |ÊS

∗
n,α − ẼSn,α|) + Υ̂nI(|ÊS

(bc∗)
n,α − ẼSn,α| > |ÊS

∗
n,α

− ẼSn,α|), where ̂̃Sn is constructed like Ŝn.

Consistency V̂n/Vn
p→ 1 and Ŝn/Sn

p→ 1 follow from Assumption A and limit theory argu-

ments in the appendix. See Hill and Aguilar (2013) and Hill (2015b) for limit theory for kernel

variance estimators under tail-trimming for a large class of kernels, and see Hill (2015b) for a

similar scale estimator result under flat weighing. Last, ŜVn/SVn
p→ 1 follows from V̂n/Vn

p→
1 and Ŝn/Sn

p→ 1, and ̂̃SΥn/S̃Υn
p→ 1 can likewise be shown.

8 Simulation Study

In this section we study the small sample behavior of the GELITT estimators. We draw 10, 000

samples {yt}nt=1 of size n ∈ {100, 250} from a GARCH(1,1) process yt = σtεt with σ2
t = 1 +

.3y2
t−1 + .6σ2

t−1. The starting value is σ2
1 = 1, and we simulate 2n observations and retain the last

n for estimation. The errors εt are iid with either a standard normal distribution, or a symmetric

Pareto distribution P (εt > ε) = P (εt < −ε) = (1/2)(1 + ε)−κ with tail index κ ∈ {2.5, 4.5}. In

the latter case we standardize εt to ensure E[ε2t ] = 1.

8.1 Base-Case

We estimate θ0 = [1, .3, .6]′ by GELITT and non-trimmed GEL using empirical likelihood, CUE

and exponential tilting criteria ρ(·). The iterated volatility process used for estimation is h1(θ)

= ω and ht(θ) = ω + αy2
t−1 + βht−1(θ). In order to reduce notation, we simply write feasible

variables as εt(θ) ≡ yt/ht(θ) and st(θ) ≡ (∂/∂θ) ln(ht(θ)), etc. The estimating equations are

mt(θ) ≡ (ε2t (θ) − 1)xt(θ) with xt(θ) = st(θ) or xt(θ) = [s′t(θ), s
′
t−1(θ)]′ hence q = 3 or 6.

As discussed following Corollaries 2.3 and 4.5, and Lemma 4.4, the GELITT rate of conver-

gence is optimized with k
(ε)
n close to ζn for ζ ∈ (0, 1), while higher order bias is reduced by using a

small ζ. Further, lightly trimming the score equations st(θ) improves finite sample performance,
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although it is not needed in theory since ||E[sts
′
t]|| < ∞. In the base-case we therefore trim

εt(θ) using a fractile k
(ε)
n = max{1, [.05n/ ln(n)]}, and we trim st(θ) based on extremes of yt−1

generating the trimmed variable ŝ∗n,t(θ) = st(θ)I(|yt| ≤ y
(a)

(k
(y)
n )

) with k
(y)
n = max{1, [.2 ln(n)]}.

Since n ∈ {100, 250} the fractiles are just {k(ε)
100, k

(y)
100} = {1, 1} and {k(ε)

250, k
(y)
250} = {2, 1}. This

combination promotes excellent over-all small sample results.

In Sections 8.2 and 8.3 we inspect how our estimator responds to variations from these

specifications by studying parameter values for IGARCH and explosive GARCH models, and

variations on the trimming fractiles.

Solving the GEL optimization problem posses well known problems due to the saddle point

construction. We therefore roughly follow Guggenberger (2008) and search over a fine grid

within Θ. We uniformly randomly select 100,000 {λ, θ} from [−.1, .1]q × [0, 1]3 and use only

those points {λ, θ} that satisfy α + β ≤ 1 to ensure a stationary solution. This leads to

roughly 3500 λ′s and θ′s, thus the typical grid has over 12,000,000 couplets {λ, θ}. Except

for CUE, for each θ we do a grid search for the ”inner” optimization problem to find λ̂n(θ) =

arg supλ∈Λ̂n(θ){1/n
∑n

t=1 ρ(λ′m̂∗n,t(θ))} where only EL restricts Λ̂n(θ) above and beyond the grid

Λ. Since CUE is quadratic, we use its analytic solution λ̂n(θ) = −(
∑n

t=1 m̂
∗
n,t(θ)m̂

∗
n,t(θ)

′)−1 ×∑n
t=1 m̂

∗
n,t(θ), cf. Bonnal and Renault (2004, eq. (3.3)). Then for the ”outer” optimization

problem we do a grid search to find θ̂n = arg minθ∈Θ{1/n
∑n

t=1 ρ(Λ̂n(θ)′m̂∗n,t(θ))}.14

We also compute θ0 by QML, and by Hill’s (2015a) Quasi-Maximum Tail-Trimmed Likelihood

[QMTTL], Peng and Yao’s (2003) Log-LAD and Zhu and Ling’s (2011) Weighted Laplace QML

[WLQML]. The QMTTL criterion is
∑n

t=2{lnht(θ) + εt(θ)}În,t(θ) where În,t(θ) ≡ I(|εt(θ)| ≤
ε

(a)

(k
(ε)
n )

(θ))×I(|yt−1| ≤ y(a)

(k
(y)
n )

) with k
(ε)
n = [.05n/ ln(n)] and k

(y)
n = [.2 ln(n)]. The Log-LAD criterion

is
∑n

t=2 | ln ε2t (θ)|. The WLQML criterion is
∑n

t=2{lnh
1/2
t (θ) + |εt(θ)|}wt where the weights wt

are computed as Zhu and Ling (2011): wt = (max{1, C−1
∑∞

i=1 i
−9|yt−iI(|yt−i| > C)|})−4 where

C = y
(a)
(.05n) and yt−i = 0 ∀i ≥ t. In these cases we use a grid search over 10,000 uniformly

randomly selected points θ ∈ [0, 1]3 subject to α + β ≤ 1.

We report the simulation bias, mean squared error and 95% confidence region for θ0
3 = β0 =

.6 across the 10,000 sample paths. The confidence region is computed by evaluating the profile

empirical likelihood ratio function 2
∑n

t=1 ρ(λ̂′nm̂
∗
n,t(θ)) evaluated at θ̂n, with increments ±.005

on θ̂n,3, and choosing the endpoints based on when we reject the empirical likelihood ratio test

14Guggenberger (2008) focuses on a scalar iid regression model where the parameter is unrestricted in theory.

He uses a gradient-Hessian method for the inner optimization problem to solve for λ̂n(θ) due to global concavity,

and a grid search to find θ̂n. We have a multivariate problem where θ0 is naturally bounded. Further, due to the
iterative and therefore nonlinear nature of ht(θ) = ω + αyt−1 + βht−1(θ), we simply use a grid search for both
inner and outer optimization problems by selecting entire vector points λ and θ. In view of computing ht(θ) for
each θ, this is quite computationally intensive.
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null hypothesis. The simulation results for θ0
2 = α = .3 are qualitatively similar, and in general

estimation results are similar for a range of values of (α0, β0). The intercept ω0, however, is

more challenging and generally results in an estimator with greater dispersion. This becomes

particularly accute when ω0 is close to zero as typically arises with financial data, and as is

commonly encountered with QML and related estimators.

We also report the Kolmogorov-Smirnov statistic scaled by its 5% critical value. The statistic

is computed from the standardized sequence {(θ̂(r)
n,3− θ0

3)/sR}Rr=1 where {θ̂(r)
n,3}Rr=1 is the sequence

of R = 10, 000 independent estimates of θ0
3, and s2

R ≡ 1/R
∑R

r=1(θ̂
(r)
n,3 − θ0

3)2 is a simulation

estimator of E[(θ̂
(r)
n,3 − θ0

3)2]. Finally, we perform t-tests of the hypotheses that θ0
3 is θ3 ∈ {.6,

.5, .35, 0} and we report rejection frequencies at the 5% level. We reject the null hypothesis

when |(θ̂(r)
n,3 − θ3)/sR| > 1.96, hence the test is performed under the assumption the estimator

is asymptotically normal. This fails to be true for GEL and QML when E[ε4t ] = ∞ hence size

distortions are expected.

Simulation results for the base-case are reported in Tables 1 and 2. In the GEL and GELITT

cases we only show results using over-identifying restrictions q = 6 since the exact identification

results are similar. QML, WLQML, and Log-LAD exhibit comparatively large bias, where the

small sample problems with QML are well known and lead to large t-test size distortions (see

Section 1). Further, although Log-LAD and Weighted Laplace QML are robust in theory to

heavy tails, since they are asymptotically normal when E[ε2t ] < ∞ and E[ε4t ] = ∞, they are not

robust in small samples (see also Hill, 2015a). Indeed, each non-GEL estimator in this study, with

the exception of QMTTL, deviates from normality and exhibits t-test size distortions. QMTTL

compares well with the robust GEL counterparts, but relative to tail-trimmed CUE has a larger

bias and mean squared error.

The GEL estimators by comparison are sharper than the non-GEL estimators, and trimming

leads to estimators that are closer to normally distributed and have accurate t-test size. The

most promising estimator is tail-trimmed CUE: in most cases it has the lowest bias and mse,

and is closest to normally distributed. A plausible explanation is the quadratic criterion form:

the estimator can be computed more easily which leads overall to small computation error, while

trimming improves any estimator’s approximate normality (cf. Hill, 2013, 2015a). It is also

substantially faster to compute.

These findings are key since GELITT estimators have the same first order asymptotics, and

GELITT and GEL are identical asymptotically when E[ε4t ] < ∞. Moreover, the EL criterion

(with or without trimming) promotes smaller higher order bias. Thus, the simplicity of the CUE

criterion form, and the sampling improvement associated with trimming a few sample extremes,

leads to a dominant estimator.
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8.2 IGARCH and Explosive GARCH

Our next experiment uses different GARCH parameter values such that α0 + β0 ≥ 1. We

consider IGARCH {α0, β0} = {.4, .6} or {.3, .7} and explosive GARCH {α0, β0} = {.45, .6} or

{.35, .7} and focus on the CUE criterion due to its dominant performance above. The explosive

cases are easily verified to be stationary.15 The search grid is now restricted to α + β ≤ 1.1.

We use the same trimming fractile for εt as above, k
(ε)
n = max{1, [.05n/ ln(n)]}. However,

since yt now has heavier tails, the score weights st(θ) ≡ (∂/∂θ) ln(ht(θ)) are more volatile in

small samples, which leads to greater small sample bias then when {α0, β0} = {.3, .6}.16 We

therefore increase the fractile k
(y)
n = max{1, [.5 ln(n)]} which implies {k(ε)

n , k
(y)
n } = {1, 2} when

n = 100 and {k(ε)
n , k

(y)
n } = {2, 3} when n = 250. We show in Section 8.3 that related fractile

values also lead to competitive GELITT results when base-case values {α0, β0} = {.3, .6} are

used, hence the preceeding fractiles {k(ε)
n , k

(y)
n } may be used in general. Tables 3 and 4 show the

GELITT estimator works well, even when yt is very heavy tailed.

8.3 Trimming Variations

We now alter the trimming specifications for GELITT in order to see how various rules impact

our estimator. We use the same base-case parameter values α0 = .3 and β0 = .6. In view of the

redundance of some results, and the relatively strong performance of CUE under tail-trimming

as reported above, we only coincide the CUE criterion.

We do two experiments. In the first, we compute bias and Kolmogorov-Smirnov [KS] statistics

over a grid of trimming fractiles {k(ε)
n , k

(y)
n }. In this case, we only use Paretian εt with index κ =

2.5 and sample size n = 100. In the second we fix either k
(ε)
n or k

(y)
n and inspect bias, mse, the KS

test and t-tests for each εt distribution and sample size n. Since the former reveals the essential

details that we desire, we present the latter in the supplemental material Hill and Prokhorov

(2014).

See Figures 1 and 2 for a plot of simulation bias and the KS statistic scaled by its 5% critical

value. The plots are over a grid {k(ε)
n , k

(y)
n } ranging from {1, 1} to {12, 23}. Smaller k

(ε)
n aligns

with lower bias and KS values for evidently any k
(y)
n . Furthermore, for fixed k

(ε)
n , bias and the

KS statistic increase noticeably only when k
(y)
n is fairly large.

15We drew R = 1, 000, 000 observations of iid εt from normal and Paretian distributions, and computed
1/R

∑R
t=1 ln(α0 + β0ε2t ). The 99.99% asymptotic confidence bands are below zero, providing evidence of station-

arity (cf. Nelson, 1990).
16A possible reason is the iterated volatility process h2

1(θ) = ω and h2
t (θ) = ω + αy2

t−1 + βh2
t−1(θ) tends to

under-approximate σ2
t (θ) in small samples, hence standardized GARCH processes in small samples tend to be

heavier tailed than the true process. See Hill (2015c) for evidence.
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9 Empirical Application - Expected Shortfall

We estimate the parameters of a GARCH model and the expected shortfall for financial returns

series. We use the same data studied in Hill (2015b) in order to compare results. The data are

the Hang Seng Index [HSI] for June 3, 1996 - May 31, 1998, and the Russian Ruble - U.S. Dollar

exchange rate for Jan. 1, 1999 - Oct. 29, 2008. The Ruble period lies between major financial

crises in Russia, and globally. See Hill (2013, 2015b) and Ibragimov (2009) for evidence that

these series are heavy tailed, and likely have an infinite variance over the chosen sample period.

We take each series {xt} and compute the daily log returns yt = ln(xt) − ln(xt−1), resulting in

489 and 2449 returns for the HSI and Ruble, respectively. See Figure 1 in Hill (2015b) for plots

of returns, and tail index confidence bands.

We pass each series through a GARCH(1,1) filter using tail-trimmed CUE with k
(ε)
n =

max{1, [.05n/ ln(n)]} and k
(y)
n = max{1, [.2 ln(n)]}, as in the base-line simulation experiment.

We compute the optimal bias-corrected profile weighted expected shortfall ÊS
(obc)(π)

n,α and flat

weighted ÊS
(obc)

n,α at risk levels α = .05. The estimates are computed over rolling sub-samples of

size 250 days, hence there are 2,200 and 240 windows for the Ruble and HSI, respectively. We use

the same fractiles as in Hill (2015b, Section 3): tail trimming with k
(y)
n = min{1, [.25n2/3/(ln(n))2ι]}

and tail index estimation with mn(φ) = min{1, φ[k
(y)
n (ln(n))ι]} and φ ∈ [.05,M] whereM = 20

for the HSI andM = 7 for the Ruble. Hill (2015b) usesM = 7 in both cases, but we find using

a much larger upper bound improves our bias corrected estimator during the most volatility

periods.

We compute 95% asymptotic confidence bands ÊS
(obc)

n,α ± 1.96 × ( ̂̃SVn/n)1/2 and ÊS
(obc)(π)

n,α

± 1.96 × ( ŜVn/n)1/2 using estimators ̂̃SVn and ŜVn detailed in, and following, (24). As in Hill

(2015b, Section 4), where appropriate for variance and covariance estimators, we use a Barlett

kernel and bandwidth γn = n.25. We also compute the non-trimmed expected shortfall estimator

with flat and profile weighting, where the latter is based on tail-trimmed CUE. We use the same

kernel method for computing the asymptotic scale, and compute asymptotic confidences bands

under the assumption a second moment exists.

Figures 3-5 contain the rolling window results. We focus the discussion on the HSI in Fig-

ures 3 and 4 since the results for the Ruble are similar. There are four noticeable outcomes.

First, Figure 3 shows the flat or profile weighted convex combinations {ÊS
(obc)

n,α , ÊS
(obc)(π)

n,α } are

nearly equivalent to the untrimmed ES estimator with flat or profile weighting. Although our

plots do not show this, we find this occurs primarily from the expanded range mn(φ) on φ ∈
[.05, 20] relative to Hill’s (2015b) [.05, 7]. The estimator ÊS

(bc∗)
n,α used in Hill (2015b), and the

profile weighted version ÊS
(bc∗)(π)

n,α , both with φ ∈ [.05, 7], deviate from the untrimmed estima-
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tors during later windows, windows that contain the most volatile periods. When these extremes

are trimmed, they can render a trimmed estimator comparatively more biased. Further, it is

harder to estimate large bias well since large bias by construction implies a greater trimmed

mean distance from the tails, while the bias estimator is based on a tail moment approxima-

tion that is sharper in the extreme tails by construction (i.e. it is sharper when the trimmed

mean portion is comparatively small). The difficulty in estimating bias during volatile periods is

ameliorated primarily by optimizing bias over a greater range of tail fractiles, but also by using

{ÊS
(obc)

n,α , ÊS
(obc)(π)

n,α } since they cannot be farther from the untrimmed mean.

The same outcome occurs with the Ruble during the crisis year 1999, in which volatility

was at its highest during the sample period. The estimates in Hill (2015b) deviate from the

untrimmed estimator more than the estimates computed here, but all roughly converge during

the low volatility period starting roughly in 2000.

Second, Figure 3 shows {ÊS
(obc)

n,α , ÊS
(obc)(π)

n,α } are slightly more volatile than the untrimmed

estimator, precisely due to the bias estimator.

Third, from Figure 4 we see that the confidence bands for the untrimmed estimator are very

large, indicating greater dispersion in the non-tail trimmed data. The estimated variance for the

untrimmed estimator, with or without profile weighting, is roughly 100 to 1000 times larger due

to the exceptionally large values that remain when tail-trimming is not used, and the greatest

discrepancy occurs during the later windows since these have the largest sample values.

Fourth , the use of profile weights leads to slightly tighter confidence bands, as theory predicts.

Although it is difficult to see, the variance estimates are roughly 1% − 5% smaller with profile

weights in the case of tail-trimming, but only roughly .5%. − 1% smaller when tail-trimming is

not used due to the large dispersion of this estimator.

10 Concluding Remarks

We develop heavy tail robust Generalized Empirical Likelihood estimators for GARCH models

by tail-trimming the errors in QML-type estimating equations. Feedback erodes the rate of con-

vergence below n1/2 when the errors have an infinite fourth moment, but tail-trimming permits

asymptotically standard inference. In heavy tailed cases, the rate can always be pushed as close

to n1/2 as we choose by using a simple rule of thumb for trimming. Tail-trimming in a GEL

framework offers both heavy tail robustness and implied probabilities for efficient and robust

moment estimation and inference, and we show how the profile weights in the CUE case aug-

ment weight on observations based on whether the error is very large or not. A higher order bias
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characterization coupled with first order asymptotics gives new details about what a reasonable

trimming strategy should be. We use the profiles for efficient and heavy tail robust expected

shortfall estimation, and propose an improved bias correction, with new limit theory and scale

estimation. The GEL estimator works well in controlled experiments, where tail-trimmed CUE

is especially promising. Finally, improvements to the bias-corrected tail-trimmed expected short-

fall estimator lead to a superb approximation to the sample mean with low dispersion, made

evident by an application to financial returns. Future work should focus on the bootstrap or

related sub-sampling techniques for tail-trimmed heavy tailed data, in order to ease anticipated

size distortions from GEL-related test statistics. Further, although we present a (higher order)

bias corrected tail-trimmed GEL estimator, we leave for future research a study of its finite

sample performance.
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A Appendix: Proofs of Main Results

We first introduce notation used in the proofs. We then present supporting lemmas used to
prove the main results. Finally, we prove the main theorems.

A.1 Notation

Throughout op (1) does not depend on θ and λ, unless otherwise specified. ”w.p.a.1 ” means
”with probability approaching one”.

In order to reduce the number of cases and to keep notation simple, we assume xt is square
integrable and not trimmed, and whenever useful we assume exact identification xt = st. Hence

ε̂∗n,t(θ) = εt(θ)Î
(ε)
n,t(θ) and m̂∗n,t(θ) =

(
ε̂∗2n,t(θ)−

1

n

n∑
t=1

ε̂∗2n,t(θ)

)
× xt(θ).
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The proofs below extend to the over-identification case where wt contains lags of st, and can be
easily generalized to allow for other =t−1-measurable wt that require trimming. Similarly, we
augment Assumption A.2 and impose power law tails on εt in general:

P (|εt| > a) = dεa
−κε (1 + o (1)) where dε ∈ (0,∞) and κε ∈ (2,∞) . (A.1)

We compactly write throughout:

d = dε, κ = κε, kn = k(ε)
n and cn = c(ε)

n .

Recall

Λ̂n(θ) =
{
λ : λ′m̂∗n,t(θ) ∈ D, t = 1, 2, ..., n

}
and Λn =

{
λ : sup

θ∈Θ

∥∥λ′Σ1/2
n (θ)

∥∥ ≤ Kn−1/2

}
.

We require a criterion and moments based on the trimmed equations m∗n,t(θ) that use non-
stochastic thresholds:

Q̂n(θ, λ) ≡ 1

n

n∑
t=1

ρ
(
λ′m̂∗n,t(θ)

)
and Q̃n(θ, λ) ≡ 1

n

n∑
t=1

ρ
(
λ′m∗n,t(θ)

)
Λn ≡

{
λ : sup

θ∈Θ

∥∥λ′Σ1/2
n (θ)

∥∥ ≤ Kn−1/2

}
m∗n(θ) ≡ 1

n

n∑
t=1

m∗n,t(θ) and m̂∗n(θ) ≡ 1

n

n∑
t=1

m̂∗n,t(θ) and mn ≡ sup
θ∈Θ

∥∥E [m∗n,t(θ)]∥∥ .
Asymptotic arguments require covariance and Jacobian components for tail-trimmed equations:

Σ̂n(θ) ≡ 1

n

n∑
t=1

m̂∗n,t(θ)m̂
∗
n,t(θ)

′ and Σ̃n(θ) ≡ 1

n

n∑
t=1

m∗n,t(θ)m
∗
n,t(θ)

′ (A.2)

Ĵn,t(θ) ≡

(
∂

∂θ
ε2t (θ)× Î

(ε)
n,t(θ)−

1

n

n∑
t=1

∂

∂θ
ε2t (θ)× Î

(ε)
n,t(θ)

)
xt(θ)

+

(
ε2t (θ)Î

(ε)
n,t(θ)−

1

n

n∑
t=1

ε2t (θ)Î
(ε)
n,t(θ)

)
∂

∂θ
xt(θ)

Non-negligible trimming, and distribution continuity and non-degeneracy, ensure

lim inf
n→∞

‖mn‖ > 0 and lim inf
n→∞

‖Σn‖ > 0, and Σ−1
n exists as n→∞.

Assumption A holds throughout. Then {yt, σ2
t (θ)} on Θ are stationary, ergodic, and geomet-

rically β-mixing on Θ by (2), cf. Nelson (1990) and Carrasco and Chen (2002). Therefore, wt(θ)
is geometrically β-mixing since it is =t−1-measurable, and εt(θ) = εtσt/σt(θ) is stationary and
ergodic.
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Since E(supθ∈Θ |σ2
t /σ

2
t (θ)|)p < ∞ for any p > 0, cf. Francq and Zaköıan (2004, eq. (4.25)),

it follows the product convolution εt(θ) = εtσt/σt(θ) has a power law tail with the same index κ
> 2 (Breiman, 1965):

P (|εt(θ)| > a) = d(θ)a−κ (1 + o (1)) , inf
θ∈Θ

d(θ) ∈ (0,∞) , and o (1) does not depend on θ.

(A.3)
By construction of cn(θ) in (6), therefore,

cn(θ) = d(θ)1/κ (n/kn)1/κ . (A.4)

Similarly supθ∈N0
|si,t(θ)| is Lp-bounded for any p > 2 and some compact subset N0 ⊆ Θ con-

taining θ0. This follows by a trivial generalization of arguments in Francq and Zaköıan (2004,
Section 4.2). Therefore, in the exact identification case by independence mi,t(θ) = (ε2t (θ) −
1)si,t(θ) = (ε2tσ

2
t /σ

2
t (θ) − 1)si,t(θ) has a power-law tail with index κ/2 (see, e.g., Breiman, 1965):

P (|mi,t(θ)| > a) = di(θ)a
−κ/2 (1 + o (1)) , inf

θ∈Θ
di(θ) ∈ (0,∞) , and o (1) does not depend on θ.

(A.5)
The trimmed moment En(θ) ≡ E[ε4t (θ)I(|εt(θ)| ≤ cn(θ))] can be characterized by case by

invoking (A.3), (A.4) and Karamata’s Theorem (cf. Theorem 0.6 in Resnick, 1987):

if κ = 4 : (0,∞)← inf
θ∈Θ

{
En(θ)

ln(n)

}
≤ sup

θ∈Θ

{
En(θ)

ln(n)

}
→ (0,∞) (A.6)

if κ < 4 : (0,∞)← inf
θ∈Θ

{
En(θ)

c4
n(θ)(kn/n)

}
≤ sup

θ∈Θ

{
En(θ)

c4
n(θ)(kn/n)

}
→ (0,∞) .

Similarly, by (A.5) and Karamata’s Theorem, Mi,j,n(θ) ≡ E[m∗i,n,t(θ)m
∗
j,n,t(θ)] satisfies

if κ = 4 : (0,∞)← inf
θ∈Θ

{
Mi,j,n(θ)

ln(n)

}
≤ sup

θ∈Θ

{
Mi,j,n(θ)

ln(n)

}
→ (0,∞) (A.7)

if κ < 4 : (0,∞)← inf
θ∈Θ

{
Mi,j,n(θ)

c4
n(θ)(kn/n)

}
≤ sup

θ∈Θ

{
Mi,j,nθ)

c4
n(θ)(kn/n)

}
→ (0,∞) .

A.2 Preliminary Results

We require several supporting lemmata in order to prove the main theorems. Proofs are presented
in the supplemental material Hill and Prokhorov (2014). First, we repeatedly exploit uniform
bounds on the thresholds cn(θ) and covariance Σn(θ), and a uniform law for the intermediate

order sequence {ε(a)
(kn)(θ)}.

Lemma A.1 (threshold bound) supθ∈Θ{c4
n(θ)/||Σn(θ)||} = o(n).

Lemma A.2 (covariance bound) supθ∈Θ ||Σn(θ)|| = o(n).

Lemma A.3 (uniform threshold law) supθ∈Θ |ε
(a)
(kn)(θ)/cn(θ) − 1| = Op(1/k

1/2
n ).
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Next, we require a variety of laws of large numbers for possibly very heavy tailed random
variables. We therefore present a basic result here for general use.

Lemma A.4 (generic ULLN) Let {zt(θ)} be a strictly stationary geometrically β-mixing pro-
cess, with Paretian tail P (|zt(θ)| > z) = d(θ)z−κ(θ)(1 + o(1)), d(θ), κ(θ) ∈ (0,∞). Define the
tail trimmed version z∗n,t(θ) ≡ zt(θ)I(|zt(θ)| ≤ cn(θ)), where P (|zt(θ)| > cn(θ)) = kn/n = o(1),
and kn →∞. Let kn/n

ι → ∞ for some tiny ι > 0. Then supθ∈Θ |1/n
∑n

t=1{z∗n,t(θ) − E[z∗n,t(θ)]}
× (1 + op(1))| p→ 0 where op(1) that may be a functions of θ.

We must show asymptotics are grounded on m∗n,t(θ), we require consistent covariance and
Jacobian estimators, and a central limit theorem for tail-trimmed equations.

Lemma A.5 (approximation) supθ∈Θ ||n−1/2Σ
−1/2
n (θ)

∑n
t=1{m̂∗n,t(θ) − m∗n,t(θ)}|| = op(1).

Lemma A.6 (covariance consistency) Recall Σ̃n and Σ̂n in (A.2), and assume θ̃n
p→ θ0. a.

Σ̃n(θ̃n) = Σn(1 + op(1)); and b. Σ̂n(θ̃n) = Σn(1 + op(1)).

Lemma A.7 (Jacobian consistency) 1/n
∑n

t=1 Ĵn,t(θ̃n) = Jn × (1 + op(1)) for any θ̃n
p→ θ0.

Lemma A.8 (CLT) n−1/2Σ
−1/2
n

∑n
t=1m

∗
n,t

d→ N(0, Iq).

The next set of results are classic supporting arguments for GEL asymptotics, cf. Newey and
Smith (2004), augmented to account for tail-trimming and heavy tails.

Lemma A.9 (uniform GEL argument) supθ∈Θ,λ∈Λn{max1≤t≤n |λ′m∗n,t(θ)|}
p→ 0,

supθ∈Θ,λ∈Λn {max1≤t≤n |λ′m̂∗n,t(θ)|}
p→ 0 and Λn ⊆ Λ̂n(θ) w.p.a.1. ∀θ ∈ Θ. In particular

supθ∈Θ,λ∈Λn {max1≤t≤n |λ′{m̂∗n,t(θ) − m∗n,t(θ)}|}
p→ 0.

Lemma A.10 (constrained GEL) Consider any sequence {θ̃n}, θ̃n ∈ Θ, θ̃n
p→ θ0, such that

||m∗n(θ̃n)|| = Op(||Σn||1/2/n1/2). Then λ̄n ≡ arg maxλ∈Λ̂n(θ̃n){Q̂n(θ̃n, λ)} exists w.p.a.1, λ̄n =

Op(||Σ̃n(θ̃n)||−1/2n−1/2) = op(1), and supλ∈Λ̂n(θ̃n){Q̂n(θ̃n, λ)} ≤ ρ(0) + Op(||Σ̃n(θ̃n)||−1n−1).

Lemma A.11 (equation limit) m∗n(θ̂n) = Op(||Σn||1/2/n1/2) = op(1).

Lemma A.12 (profile weight) Let π̃∗n,t(θ) ≡ ρ(1)(λ̃′nm̂
∗
n,t(θ))/

∑n
t=1 ρ

(1)(λ̃′nm̂
∗
n,t(θ)). If λ̃n =

Op(||Σn||−1/2n−1/2) where Op(·) is not a function of θ, then supθ∈Θ max1≤t≤n |π̂∗n,t(θ) − 1/n| =

Op(||Σn||−1/2/n3/2).

Remark 22 λ̃n = Op(||Σn||−1/2n−1/2) holds for the GELITT multipliers λ̂n by Theorem 2.1.
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A.3 Proofs of Theorems 2.1 and 2.2

Proof of Theorem 2.1.

Step 1. Consider θ̂n. By ULLN Lemma A.4 |m∗n(θ̂n) − E[m∗n,t(θ̂n)] × (1 + op(1))|| p→ 0 and

by Lemma A.11 m∗n(θ̂n)
p→ 0. Hence, by the triangle inequality ||E[m∗n,t(θ̂n)] × (1 + op(1))|| p→

0, therefore E[m∗n,t(θ̂n)] → 0.
Now, observe that E[m∗n,t(θ)] is continuous, by dominated convergence E[m∗n,t(θ)]→ 0 if and

only if θ = θ9, and by construction E[m∗n,t(θ
0)] = 0 for 1 ≤ t ≤ n and n ≥ 1. At any other θ̃

6= θ0 it follows by the definition of a limit that ||E[m∗n,t(θ̃)]|| > 0 for all n ≥ N and some N
≥ 1. Therefore θ0 is the unique point that satisfies E[m∗n,t(θ

0)] = 0 for all n ≥ N . Combine

E[m∗n,t(θ̂n)] → 0 and E[m∗n,t(θ)] = 0 if and only if θ = θ0 for all n ≥ N to deduce by continuity

that ||θ̂n − θ0|| ≤ δ for any δ > 0 with probability approaching one. Hence θ̂n
p→ θ0.

Step 2. Now consider λ̂n. In view of θ̂n
p→ θ0 by Step 1, and m∗n(θ̂n) = Op(||Σn||/n1/2) by

Lemma A.11, the conditions of Lemma A.10 are satisfied for θ̂n. Therefore λ̂n exists and λ̂n =
Op(||Σ̃n(θ̂n)||−1/2n−1/2) which is Op(||Σn||−1/2n−1/2) by covariance consistency Lemma A.6.a.

Proof of Theorem 2.2. The proof is similar to arguments in Newey and Smith (2004, p.

240-24). Write ρ̂
(i)
n,t ≡ ρ(i)(λ̂′nm̂

∗
n,t(θ̂n)) and ρ̊

(i)
n,t ≡ ρ(i)(λ′n,∗m̂

∗
n,t(θ̂n)) for some 0 ≤ ||λn,∗|| ≤ ||λ̂n||

that may be different in different places. Let θn,∗ satisfy ||θn,∗ − θ0|| ≤ ||θ̂n − θ0|| which may be
different in different places. Define

M̂n (θn,∗, λn,∗) ≡

 0
1

n

n∑
t=1

ρ̂
(1)
n,tĴn,t(θ̂n)′

1

n

n∑
t=1

ρ̊
(1)
n,tĴn,t(θn,∗)

1

n

n∑
t=1

ρ̊
(2)
n,tm̂

∗
n,t(θn,∗)m̂

∗
n,t(θ̂n)′

 .
and

An ≡
[
n (J ′nΣ−1

n Jn) 0
0 nP−1

n

]
, Mn ≡ −

[
0 J ′n
Jn Σn

]
, M−1

n = −
[
− (J ′nΣ−1

n Jn)
−1 Hn

H′n Pn

]
Hn ≡

(
J ′nΣ−1

n Jn
)−1 J ′nΣ−1

n and Pn ≡ Σ−1
n − Σ−1

n Jn
(
J ′nΣ−1

n Jn
)−1 J ′nΣ−1

n and Vn ≡ n
(
J ′nΣ−1

n Jn
)
.

Notice max1≤t≤n |ρ̊(i)
n,t + 1| p→ 0 follows directly from Lemmas A.10 and A.9 since ||λn,∗|| ≤ ||λ̂n||

= Op(||Σn||−1/2n−1/2) by Theorem 2.1.

Step 1. The first-order-condition is

n∑
t=1

ρ(1)
(
λ̂′nm̂

∗
n,t(θ̂n)

)
×

[
Ĵn,t(θ̂n)′λ̂n
m̂∗n,t(θ̂n)

]
= 0 a.s. (A.8)

This follows by combining classic GEL optimization theory with optimization theory when es-
timating equations are trimmed. The former is grounded on seminal arguments due to Newey
and Smith (2004, p. 240-241) based on the saddle point optimization problem (5). The latter
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involves almost sure differentiability of trimmed equations that are continuous functions of con-
tinuously distributed random variables, developed in Cizek (2008, Appendices). See also Parente
and Smith (2011).

Further, for some ||θn,∗ − θ0|| ≤ ||θ̂n − θ0|| and ||λn,∗|| ≤ ||λ̂n|| that may be different in
different places:

0 =

[
0′,

1

n

n∑
t=1

m̂∗′n,t

]′
+ M̂n (θn,∗, λn,∗)×

(
ϑ̂n − ϑ0

)
. (A.9)

This can be verified by using theory developed in Hill (2013, Appendix B) and Hill (2015a,
Appendix B) for similar first order expansions under tail-trimming, in order to expand the first
order equations (A.8) around ϑ0 as in Newey and Smith (2004, p. 240-241).

Step 2. Covariance and Jacobian consistency Lemmas A.6 and A.7 apply in view Theorem
2.1, and 0 ≤ ||λn,∗|| ≤ ||λ̂n|| and ||θn,∗ − θ0|| ≤ ||θ̂n − θ0||. Combine that with ρ(i)(0) = −1 for

i = 1, 2, and uniform GEL argument Lemma A.9 to obtain M̂n = Mn(1 + op(1)). Now exploit
expansion (A.9) to solve

ϑ̂n − ϑ0 = −M−1
n

[
0′

1

n

n∑
t=1

m̂∗′n,t

]′
× (1 + op(1)) .

By Lemma A.5 n−1/2Σ
−1/2
n

∑n
t=1{m̂∗n,t− m∗n,t} = op(1), hence by the construction of An and CLT

Lemma A.8, we have that:

A1/2
n (ϑ̂n − ϑ0) = −A1/2

n

[
HnΣ

1/2
n /n1/2

PnΣ
1/2
n /n1/2

]
Σ−1/2
n

1

n1/2

n∑
t=1

m∗n,t (1 + op(1))
d→ N (0, Iq+3) . (A.10)

This completes the proof.

A.4 Remaining Proofs

Proof of Lemma 4.4. We have by direct integration and Karamata theory

κε ∈ (2, 2i) : E
[
ε2it I

(
|εt| ≤ c(ε)n

)]
∼ 2i

2i− κε
d2i/κε ×

(
n

k
(ε)
n

)2i/κε−1

= $(i) ×
(

n

k
(ε)
n

)2i/κε−1

κε = 2i : E
[
ε2it I

(
|εt| ≤ c(ε)n

)]
∼ d ln (n)

κε > 2i : E
[
ε2it I

(
|εt| ≤ c(ε)n

)]
∼ E

[
ε2it
]
− κε
κε − 2i

d2i/κε ×

(
k

(ε)
n

n

)1−2i/κε

= E
[
ε2it
]
− ξ(i) ×

(
k

(ε)
n

n

)1−2i/κε

.

Now treat k
(ε)
n as a continuous argument k ∈ [0, n), and write E (1)

n (k) ≡ 1 − ξ(1)(k/n)1−2/κε ,
etc., and

B(GMTTM)
n (k) ≡ 1

n

E (2)
n (k)(
E (1)
n (k)

)2H (−a+ E [StX
′
tHX ′t])
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B(ΣTT )
n (k) ≡ 1

n

E (3)
n (k)

E (1)
n (k)E (2)

n (k)
H
(

1 +
ρ3

2

)
E [X ′tXtPXt]

We have

∂

∂k
B(GMTTM)
n (k) =

 1

n

E (2)
n (k)(
E (1)
n (k)

)2

(
∂

∂k
ln E (2)

n (k)− 2
∂

∂k
ln E (1)

n (k)

)×H (−a+ E [StX
′
tHX ′t])

= Dn(k)×H (−a+ E [StX
′
tHX ′t]) .

In order to deduce the sign of Dn(k), first notice E (1)
n ∼ 1 − ξ(1)(k

(ε)
n /n)1−2/κε and

∂

∂k
ln E (1)

n (k) = −

1

n

(n
k

)2/κε
ξ(1)

(
1− 2

κε

)
1− ξ(1)

(
k

n

)1−2/κε
< 0.

Now, if κε ∈ (2, 4) then E (2)
n ∼ $(2)(n/k

(ε)
n )4/κε−1 − (1 − ξ(1)(k

(ε)
n /n)1−2/κε)2 = o(n), hence

for all n ≥ N and some N :

∂

∂k
E (2)
n (k) = − 1

n

(n
k

)4/κε

{(
4

κε
− 1

)
$(2) − 2

(
1− 2

κε

)
ξ(1)

(
1− ξ(1)

(
k

n

)1−2/κε
)(

k

n

)2/κε
}
< 0.

It is easy to check Dn(k) > 0 for all k, all n ≥ N , and some N since E (1)
n ↗ 1 and (∂/∂k)E (i)

n <

0. Therefore B(GMTTM)
i,n (k) and (∂/∂k)B(GMTTM)

i,n (k) have the same sign. Similarly:

∂

∂k
B(ΣTT )
n (k) =

{
1

n

E (3)
n

E (1)
n (k)E (2)

n (k)

(
∂

∂k
ln E (3)

n (k)− ∂

∂k
ln E (1)

n (k)− ∂

∂k
ln E (2)

n (k)

)}
×H

(
1 +

ρ3

2

)
E [X ′tXtPXt]

= Fn(k)×H
(

1 +
ρ3

2

)
E [X ′tXtPXt] ,

where Fn(k) > 0 for all k, n ≥ N , and some N . Thus, in the heavy tail case B(GMTTM)
n and

B(ΣTT )
n can each be made small by using a smaller k

(ε)
n .

If κε = 4 such that E (2)
n ∼ d ln(n) − (1 − ξ(1)(k

(ε)
n /n)1/2)2 then for large enough n:

∂

∂k
E (2)
n (k) =

(
1− ξ(1)

(
k

n

)1/2
)
ξ(1) 1

n

(n
k

)1/2

> 0.

Then (∂/∂k) ln E (2)
n (k) < 0 is of order O(n−1(n/k)1/2/ ln(n)), but (∂/∂k) ln E (1)

n (k) < 0 is of order
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O(n−1(n/k)1/2), hence Dn(k) > 0 for large enough n. Similarly Fn(k) > 0 hence again B(GMTTM)
n

and B(ΣTT )
n are small for small k

(ε)
n .

Next suppose κε > 4 and consider bias decomposition B(GMTTM)
n = B(GMM)

n + B(TTGMM )
n in

(22) such that trimming only effects B(TTGMM )
n , write

B(TTGMM )
n (k) =

1

n

 E (2)
n (k)(
E (1)
n (k)

)2 − E
(2)

H (−a+ E [StX
′
tHX ′t]) ,

and note as

∂

∂k
B(GMTTM)
n =

∂

∂k
B(TTGMM )
n (k) = Dn(k)×H (−a+ E [StX

′
tHX ′t]) .

In this case E (2)
n ∼ (E[ε4t ] − ξ(2)(k

(ε)
n /n)1−4/κε) − (1 − ξ(1)(k

(ε)
n /n)1−2/κε)2. Then

∂

∂k
ln E(2)

n (k)− 2
∂

∂k
ln E(1)

n (k)

= −

1

n

(n
k

)2/κε

{(
1− 4

κε

)
ξ(2)

(n
k

)2/κε
− 2

(
1− ξ(1)

(
k

n

)1−2/κε
)(

1− 2

κε

)
ξ(1)

}

E(2) +

(
1− ξ(2)

(
k

n

)1−4/κε
)
−

(
1− ξ(1)

(
k

n

)1−2/κε
)2 + 2

1

n

(n
k

)2/κε
ξ(1)

(
1− 2

κε

)
E(1) − ξ(1)

(
k

n

)1−2/κε

= − 1

n

(n
k

)2/κε


{(

1− 4

κε

)
ξ(2)

(n
k

)2/κε
− 2

(
1− ξ(1)

(
k

n

)1−2/κε
)(

1− 2

κε

)
ξ(1)

}

E(2) +

(
1− ξ(2)

(
k

n

)1−4/κε
)
−

(
1− ξ(1)

(
k

n

)1−2/κε
)2 −

2ξ(1)

(
1− 2

κε

)
E(1) − ξ(1)

(
k

n

)1−2/κε


→ −∞ as k → 0.

Therefore B(TTGMM )
n (0) = 0 and (∂/∂k)B(TTGMM )

n (k) → −∞ as k → 0 hence B(TTGMM )
n (k) < 0

∀n in a neighborhood of 0. Further, (∂/∂k)B(TTGMM )
n (k) < 0 for any fixed k and large enough n

hence B(TTGMM )
n (k) < 0 for large enough n. Since k

(ε)
n /n → 0 it therefore follows that B(TTGMM )

n

is monotonically closer to zero for smaller k
(ε)
n .

It remains to characterize B(ΣTT )
n . By mimicking the arguments above, first it can be shown

that if κε ∈ (4, 6] then B(ΣTT )
n is small for small k

(ε)
n . Second, if κε > 6 then B(ΣTT )

n = B(Σ)
n +

B(TTΣ)
n where B(TTΣ)

n is monotonically closer to zero for smaller k
(ε)
n .

Proof of Theorem 4.6. Note ||Σn|| ∼ KE[ε∗4n,t] and ||Vn|| ∼ Kn/E[ε∗4n,t]. Further, k
(ε)
n ∼

n/L(n) implies E|ε∗n,t|p = O(L(n)) for any p ≥ 2 and slowly varying L(n) → ∞: the bound is
trivial if E|εt|p < ∞ and otherwise follows from Paretian tail decay and Karamata theory.

Consider the claim Bias(θ̂
(bc)
n ) = 0. Let {Ĥn, ân, P̂n} denote {Ĥ(π)

n , â
(π)
n , P̂(π)

n } with π̂∗n,t(θ̂n)

replaced with 1/n, and define E∗1,n = 1/n
∑n

t=1 ε
∗2
n,t(θ̂n) and E∗i,n = 1/n

∑n
t=1(ε∗2n,t(θ̂n) − E∗1,n)i for i

= 2, 3. By the argument used to prove Lemma A.5 we can replace ε̂n,t with ε∗n,t, and by Theorem
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2.1 and A.12 we can replace π̂∗n,t(θ̂n) with 1/n. In particular:

V1/2
n (B̂n(θ̂n)− B∗n(θ̂n)) = op(1) (A.11)

where

B∗n(θ̂n) =
1

n

E∗2,n(
E∗1,n
)2 Ĥn

(
−ân +

1

n

n∑
t=1

StX
′
tĤnX

′
t

)
+

1

n

E∗3,n
E∗1,nE∗2,n

Ĥn

(
1 +

ρ3

2

) 1

n

n∑
t=1

X ′tXtP̂nXt.

Bias(θ̂
(bc)
n ) = 0 can therefore be shown by applying the method of proof of Theorems 4.1 and 4.2

to the argument used in Newey and Smith (2004, proof of Theorem 5.1).

The remaining claim V1/2
n (θ̂

(bc)
n − θ0) follows if we show V1/2

n B̂n(θ̂n) = op(1). Define Bn ≡
Bias(θ̂n). We have

∥∥∥V1/2
n B̂n(θ̂n)

∥∥∥ ≤ ( n

E
[
ε∗4n,t
])1/2

‖Bn‖+

(
n

E
[
ε∗4n,t
])1/2 ∥∥∥B̂n(θ̂n)− Bn

∥∥∥ . (A.12)

By Corollary 4.3 and E|ε∗n,t|p = O(L(n)) for any p ≥ 2 the first term in (A.12) satisfies:(
n

E
[
ε∗4n,t
])1/2

‖Bn‖ ≤ K

(
n

E
[
ε∗4n,t
])1/2

× 1

n
E
[
ε∗4n,t
]

+K

(
n

E
[
ε∗4n,t
])1/2

1

n

E
[
ε∗6n,t
]

E
[
ε∗4n,t
] (A.13)

= K

(
1

n
E
[
ε∗4n,t
])1/2

+K
1

n1/2

E
[
ε∗6n,t
](

E
[
ε∗4n,t
])3/2

= o(1).

Next, use (A.11) to deduce the second term in (A.12) satisfies(
n

E
[
ε∗4n,t
])1/2 ∥∥∥B̂n(θ̂n)− Bn

∥∥∥
≤ 1(

E
[
ε∗4n,t
])1/2

n1/2

∥∥∥∥∥∥∥
E∗2,n(
E∗1,n

)2 Ĥ(π)
n

(
−ân +

1

n

n∑
t=1

StX
′
tĤ(π)

n X ′t

)
− E(2)

n(
E(1)
n

)2H (−a+ E [StX
′
tHX ′t])

∥∥∥∥∥∥∥
+

1(
E
[
ε∗4n,t
])1/2

n1/2

∥∥∥∥∥ E∗3,n
E∗1,nE∗2,n

Ĥ(π)
n

(
1 +

ρ3

2

) 1

n

n∑
t=1

X ′tXtP̂(π)
n Xt −

E(3)
n

E(1)
n E(2)

n

H
(

1 +
ρ3

2

)
E [X ′tXtPXt]

∥∥∥∥∥
= A1,n +A2,n.

By using the limit theory developed in Appendix A.2 it can be shown E∗i,n/E
(i)
n = 1 + op(1), Ĥ(π)

n

= H + op(1), ân = a + op(1), and

1

n

n∑
t=1

StX
′
tĤ(π)

n X ′t = E [StX
′
tHX ′t] + op(1) and

1

n

n∑
t=1

X ′tXtP̂(π)
n Xt = E [X ′tXtPXt] + op(1).
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Therefore, coupled with E|ε∗n,t|p = O(L(n)), it follows:

A1,n ≤ K
E (2)
n(

E
[
ε∗4n,t
])1/2

n1/2

∣∣∣∣∣ E (1)
n(
E∗1,n
)2

E∗2,n
E (2)
n

− 1

∣∣∣∣∣ (A.14)

∼ K
E
[
ε∗4n,t
](

E
[
ε∗4n,t
])1/2

n1/2

∣∣∣∣∣ E (1)
n(
E∗1,n
)2

E∗2,n
E (2)
n

− 1

∣∣∣∣∣ = op

(E [ε∗4n,t]
n

)1/2
 = op (1) .

Similarly A2,n = op(1). Combine (A.12)-(A.14) to prove the required result.

Proof of Theorem 5.1. The claim follows from covariance and Jacobian consistency Lemmas
A.6 and A.7.

Proof of Theorems 5.2 and 5.3. The claims forWn ≡ R(θ̂n)′[D(θ̂n)V̂n(θ̂n)−1D(θ̂n)′]−1R(θ̂n)
follow from continuity of D(θ) and R(θ), Theorems 2.1, 2.2, and 5.1, and the mapping theorem.

Now consider the likelihood ratio statistic LRn = 2nQ̂(θ̂n, λ̂n) . Define m̂∗n(θ)≡ 1/n
∑n

t=1 m̂
∗
n,t(θ),

m∗n(θ) ≡ 1/n
∑n

t=1 m
∗
n,t(θ), and Hn ≡ (J ′nΣ−1

n Jn)−1J ′nΣ−1
n . Similar to Newey and Smith (2004,

p. 240-241), by a second order Taylor expansion of Q̂(θ̂n, λ̂n) around λ = 0, with ρ̊
(i)
n,t ≡

ρ(i)(λ′n,∗m̂
∗
n,t(θ̂n)) and ||λn,∗|| ≤ ||λ̂n||,

2nQ̂(θ̂n, λ̂n) = 2n

[
−λ̂′nm̂∗n(θ̂n) +

1

2
λ̂′n

1

n

n∑
t=1

ρ̊
(2)
n,tm̂

∗
n,t(θ̂n)m̂∗n,t(θ̂n)′λ̂n

]
. (A.15)

Use (A.10) to deduce n1/2P−1/2
n λ̂n = −n1/2P−1/2

n Pnm∗n × (1 + op(1)) + op(1), hence λ̂n = −Pnm∗n
× (1 + op(1)). Further, by the same argument following expansion (A.9), coupled with uniform
approximation and Jacobian consistency Lemmas A.5 and A.7, and estimator expansion (A.10):

m̂∗n(θ̂n) = m∗n + J ′n
(
θ̂n − θ0

)
× (1 + op(1)) = m∗n + J ′nV−1/2

n V1/2
n Hnm

∗
n × (1 + op(1))

= m∗n + J ′nHnm
∗
n × (1 + op(1)) = m∗n + J ′n

(
J ′nΣ−1

n Jn
)−1 J ′nΣ−1

n m∗n,× (1 + op(1)) ,

hence Σ−1
n m̂∗n(θ̂n) = Pnm∗n × (1 + op(1)). Therefore λ̂n = −Σ−1

n m̂∗n(θ̂n) × (1 + op(1)). Plug the
latter into (A.15) and invoke covariance consistency Lemma A.6 twice to deduce

LRn = 2nQ̂(θ̂n, λ̂n) = nm̂∗n(θ̂n)′Σ−1
n m̂∗n(θ̂n)× (1 + op(1)) = nm̂∗n(θ̂n)′Σ̂−1

n m̂∗n(θ̂n)× (1 + op(1)) .

The limit for LRn under Assumption A and the null hypothesis E[(ε2t − 1)wt] = 0 now
follows from covariance consistency Lemma A.6, and Theorem 2.1 in Hill and Aguilar (2013).
Conversely, if E[(ε2t − 1)wt] 6= 0 then it is straightforward to alter the proof of Theorem 2.1

to show under Assumption A that there exists a unique point θ̃ ∈ Θ satisfying θ̂n
p→ θ̃ where

E[mt(θ̃)] − m = 0 for some non-zero m ∈ Rq. This follows since εt(θ̃) is square integrable, and
and {εt(θ̃), xt(θ̃)} are stationary and geometrically on Θ. Lemmas A.5 and A.7 can be modified
accordingly in view of stationarity. The claim can then be proven along the lines of Theorem
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2.2 in Hill and Aguilar (2013). The remaining claims for LMn and Sn follow similarly.

Proof of Theorem 6.1. The following extends arguments in Bonnal and Renault (2004,
Corollary 3.6), Smith (2011, Theorem 3.1), and Hill and Aguilar (2013, proof of Theorem 2.1).
Since gt is =t-measurable, stationary, continuous and differentiable on Θ-a.e., it suffices to work
with [g∗n,t(θ)

′,m∗n,t(θ)
′]′ throughout in view of approximation theory for tail-trimmed equations

developed in Hill (2015a,b, 2013) and Hill and Aguilar (2013). We therefore need only prove

n1/2V
−1/2
n (g∗(π)

n (θ̂n) − E[g∗n,t])
d→ N(0, Ih) where g∗(π)

n (θ) =
∑n

t=1 π̂
∗
n,t(θ̂n)g∗n,t(θ̂n).

By a Taylor expansion of π̂∗n,t around λ = 0, use Lemma A.9 to deduce

π̂∗n,t =
1

n
+

 ρ̊
(2)
n,tλ̂

′
nm
∗
n,t(θ̂n)∑n

s=1 ρ̊
(1)
n,s

−
ρ̊

(1)
n,t

∑n
s=1 ρ̊

(2)
n,smn,s(θ̂n)′λ̂n[∑n

s=1 ρ̊
(1)
n,s

]2

× (1 + op(1))

where ρ̊
(i)
n,t ≡ ρ(i)(λ′n,∗m̂

∗
n,t(θ̂n)) and ||λn,∗|| ≤ ||λ̂n||. By virtue of Lemmas A.9 and A.11 and Theo-

rem 2.1 we have max1≤t≤n |ρ̊(i)
n,t + 1| p→ 0, ||m∗n(θ̂n)|| = Op(||Σn||1/2/n1/2), and λ̂n = Op(||Σn||−1/2n−1/2),

and from Lemma A.12 supθ∈Θ |
∑n

t=1 π̂
∗
n,t(θ) − 1| = Op(||Σn||−1/2n−1/2) = Op(n

−1/2). Hence

π̂∗n,t(θ̂n) =
1

n
+

1

n

{
λ̂′nm

∗
n,t(θ̂n)× (1 + op(1)) +Op(n

−1)
}

and
n∑
t=1

π̂∗n,t(θ̂n) = 1 +Op(n
−1/2).

(A.16)
Arguments similar to the first order expansion (A.9) in the proof of Theorem 2.2, and covariance
consistency Lemma A.6, can be used to verify

1

n

n∑
t=1

(
g∗n,t(θ̂n)− E[g∗n,t]

)
×m∗n,t(θ̂n)′ = Γn × (1 + op(1))

1

n

n∑
t=1

(
g∗n,t(θ̂n)− E[g∗n,t]

)
=

1

n

n∑
t=1

(
g∗n,t − E[g∗n,t]

)
+Gn

(
θ̂n − θ0

)
× (1 + op (1)) .

Hence

n∑
t=1

π̂∗n,t(θ̂n)
{
g∗n,t(θ̂n)− E

[
g∗n,t
]}

(A.17)

=
1

n

n∑
t=1

(
g∗n,t(θ̂n)− E

[
g∗n,t
])

+
1

n

n∑
t=1

(
g∗n,t(θ̂n)− E

[
g∗n,t
])
×m∗n,t(θ̂n)′λ̂n × (1 + op(1))

+
1

n

n∑
t=1

(
g∗n,t(θ̂n)− E

[
g∗n,t
])
×Op(1/n)

=
1

n

n∑
t=1

(
g∗n,t − E

[
g∗n,t
])

+Gn(θ̂n − θ0)× (1 + op(1)) + Γnλ̂n × (1 + op(1)) .
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Moreover, by the proof of Theorem 2.2:[
θ̂n − θ0

λ̂n

]
= −

[
Hn

Pn

]
1

n

n∑
t=1

m∗n,t × (1 + op(1)) . (A.18)

Combine (A.17) and (A.18) to deduce:

g∗(π)
n (θ̂n)− E[gt] = [Ih,−GnHn − ΓnPn]

1

n

n∑
t=1

[
g∗n,t − E[gt]
m∗n,t

]
× (1 + op(1)) .

In conjunction with the supposition n1/2V
−1/2
n {E[g∗n,t] − E[gt]} → 0, and by the construction of

Vn, it now follows:

n1/2V−1/2
n

(
g∗(π)
n (θ̂n)− E[gt]

)
= V−1/2

n × [Ih,−GnHn − ΓnPn]

[
Υn Γn
Γ′n Σn

]1/2

×
[

Υn Γn
Γ′n Σn

]−1/2
1

n1/2

n∑
t=1

[
g∗n,t − E[g∗n,t]
m∗n,t

]
× (1 + op(1))

=

[
Υn Γn
Γ′n Σn

]−1/2
1

n1/2

n∑
t=1

[
g∗n,t − E[g∗n,t]
m∗n,t

]
× (1 + op(1)) .

Recall E[m∗n,t] = 0 by the martingale difference property. Therefore, by measurability and
the geometrically β-mixing property, a generalization of CLT Lemma A.5 in Hill (2015a), cf.

Lemma B.6 in Hill and Aguilar (2013), extends to [g∗n,t−E[g∗n,t],m
∗′
n,t]
′, hence n1/2V

−1/2
n (g∗(π)

n (θ̂n)

− E[g∗n,t])
d→ N(0, Ih).

Finally, n1/2V
−1/2
n {E[g∗n,t] − E[gt]} → 0 holds in the special case max{κ(g)

1 , κ
(g)
2 } ≥ 2 and k

(g)
i,n

→ ∞ at a slowly varying rate. See Corollary 1.3 in Hill (2015b).

Proof of Theorem 7.1. In order to reduce notation we drop the risk level α, and we write
kn = k

(y)
n .

Claim (a). We prove the claim for the bias-corrected estimator ÊS
(bc)(π)

n . Following argu-

ments in Hill (2015b), by using mn/kn → ∞ it can be shown (n1/2/S
1/2
n ){ÊS

(bc∗)(π)

n − ÊS
(bc)(π)

n,α }
p→ 0.. Define

In,t ≡
(

n

k
(y)
n

)1/2

(I (yt ≤ −ln)− E [(yt ≤ −ln)]) and B∗n ≡
1

κ1 − 1

k
(y)
n

n
l(y)
n

ĝ∗n,t ≡ ytI
(
y

(−)

(k
(y)
n )
≤ yt ≤ y[αn]

)
and g∗n,t ≡ ytI

(
−l(y)

n ≤ yt ≤ qα
)
.

We first show the limit distribution of (n1/2/S
1/2
n ){

∑n
t=1 π̂

∗
n,tĝ

∗
n,t + B̂n − E[gt]} is identical
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to the distribution limit of

n1/2

S
1/2
n

(
n∑
t=1

π̂∗n,tg
∗
n,t + B∗n − E[gt]

)
(A.19)

=
n1/2

S
1/2
n

 n∑
t=1

π̂∗n,tg
∗
n,t − E

[
g∗n,t
]

+
1

κ1 − 1

(
k

(y)
n

n

)1/2

l(y)
n

1

n

n∑
t=1

In,t

 .

The property mn/k
(y)
n → ∞ can be shown to ensure κ̂1,mn does not affect asymptotics be

replicating arguments in Hill (2015b, proof of Theorem 2.2), hence B̂n can be replaced with

B∗n for asymptotic arguments. Similarly, I(y
(−)

(k
(y)
n )
≤ yt ≤ y[αn]) can be replaced with I(−l(y)

n

≤ yt ≤ qα), cf. Hill (2015a,b, 2013) and Hill and Aguilar (2013). Moreover, (k
1/2
n /n)l

(y)
n =

K(kn/n)1−1/κ1/k
1/2
n → 0 given κ1 > 1, and by arguments presented in Hill (2015a,b, 2013):

k
1/2
n (y

(−)
(kn)/l

(y)
n + 1) = κ−1

1 n−1/2
∑n

t=1 In,t + op (1). Finally, by arguments in Peng (2001, p. 259-

264) it can be shown (n/Sn)1/2{E
[
g∗n,t
]

+ (κ1 − 1)−1(kn/n)l
(y)
n − E[gt]} → 0. The preceding

properties together prove (A.19).
Next, use the fact that g∗n,t is not a function of θ to deduce from the proof of Theorem 6.1:

n∑
t=1

π̂∗n,t
(
g∗n,t + E

[
g∗n,t
])

= [1,−ΓnPn]
1

n

n∑
t=1

[
g∗n,t − E

[
g∗n,t
]

m∗n,t

]
× (1 + op(1)) . (A.20)

Combine (A.19) and (A.20) to obtain by asymptotic equivalence:

n1/2

S
1/2
n

(
n∑
t=1

π̂∗n,tĝ
∗
n,t + B̂n − E[gt]

)

=
n1/2

S
1/2
n

[
1,−ΓnPn,

1

κ1 − 1

(
kn
n

)1/2

l(y)
n

]
1

n

n∑
t=1

 g∗n,t − E
[
g∗n,t
]

m∗n,t
In,t

× (1 + op(1)) .

Therefore, by the definitions of Dn, Wn,t, Wn, and Sn, and by a generalization of CLT Lemma
A.5 in Hill (2015a), cf. Lemma B.6 in Hill and Aguilar (2013):

n1/2

S
1/2
n

(
n∑
t=1

π̂∗n,tĝ
∗
n,t + B̂n − E[gt]

)
=

(
1

S
1/2
n

D′nW1/2
n

)
W−1/2

n

1

n1/2

n∑
t=1

Wn,t×(1 + op(1))
d→ N (0, 1) .

Claims (b) and (c). Write Pn ≡ P (|ÊS
(bc∗)(π)

n,α − ẼS
(π)

n,α| < |ÊS
∗(π)

n,α − ẼS
(π)

n,α|). Since k
(y)
n

= o((ln(n))a) for some a > 0, then (n/Sn)1/2|Bn| → ∞ if κ1 < 2 and (n/Sn)1/2|Bn| → 0 if κ1

≥ 2 by using the order of Sn derived in Step 1, and arguments in Hill (2015b, Section 1). Both
claims are therefore proved in Step 2 if we show Pn → 1 when κ1 < 2, and Pn → 0 when κ1 ≥
2.
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Step 1. We first determine the order of Sn. By Lemma A.1 in Hill (2015b) 1/n
∑n

s,t=1E[Y∗n,sY∗n,t]
= E[Y∗2n,t] × O(rn) and 1/n

∑n
s,t=1E[In,sIn,t] = E[I2

n,t] × O(r̃n) = O(r̃n), where {rn, r̃n} are se-
quences of positive numbers, rn = O(ln(n)), rn = O(1) if κ1 > 2, and r̃n = O(1). Therefore:

Sn ∼ K

Υn − ΓnPnΓn +K

(
k

(y)
n

n

)1−2/κ1

In


= K

 1

n

n∑
s,t=1

E
[
Y∗n,sY∗n,t

]
− ΓnPnΓ′n +K

(
k

(y)
n

n

)1−2/κ1

1

n

n∑
s,t=1

E [In,sIn,t]


∼ K

E [Y∗2n,t]
(
rn − r̃n

∥∥E [Y∗n,tm∗′n,t]∥∥2

E
[
Y∗2n,t

]
‖Σn‖

)
+K

(
k

(y)
n

n

)1−2/κ1


∼ K

E [Y∗2n,t] (rn −K) +K

(
k

(y)
n

n

)1−2/κ1
 .

Now use Karamata theory, and k
(y)
n = o(mn), to deduce Sn ∼ K if κ1 > 2, Sn = O((ln(n))2) if

κ1 = 2, and if κ1 < 2 then

Sn ∼ K

((
n

mn

)2/κ1−1

O (ln(n)) +K

(
n

k
(y)
n

)2/κ1−1
)

= K

(
n

k
(y)
n

)2/κ1−1

(1 + o(1)) .

Step 2: Observe:

Pn = P
(∣∣∣ÊS(bc∗)(π)

n,α − ẼSn,α
∣∣∣ < ∣∣∣ÊS∗(π)

n,α − ẼSn,α
∣∣∣)

= P

(∣∣∣∣∣
(
n

Sn

)1/2
{

1

α

n∑
t=1

π̂∗n,tytI
(
yt < y

(−)

(k
(y)
n )

)
− B̂n

}∣∣∣∣∣
<

∣∣∣∣∣
(
Vn

Sn

)1/2(
n

Vn

)1/2
{

1

α

n∑
t=1

π̂∗n,tytI
(
yt < y

(−)

(k
(y)
n )

)
− Bn

}
+

(
n

Sn

)1/2

Bn

∣∣∣∣∣
)

= P

(
|Z1,n| <

∣∣∣∣∣
(
Vn

Sn

)1/2

Z2,n +

(
n

Sn

)1/2

Bn

∣∣∣∣∣
)
,

say, where Vn is the scale for ÊS
∗(π)

n,α . In view of Claim (a), and Theorem 6.1, each Zi,n
d→

N(0, 1). If κ1 < 2 then (n/Sn)1/2|Bn| → ∞ hence Pn → 1. If κ1 > 2 then (n/Sn)1/2|Bn| → 0,

and |Z1,n − Z2,n|
p→ 0 and Vn/Sn → 1 follow by noting (k

(y)
n /n)1/2l

(y)
n = K(k

(y)
n /n)1/2−1/κ1 →

0, hence Sn = Vn + o(1). Then for some standard normal random variable Z, Pn = P (|Z +
op(1)| < |Z + op(1)|) → 0. The case κ1 = 2 resulting in Pn → 0 is similar.
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B Appendix: Tail-Trimmed Equations for ARMA-GARCH

We now show how to construct robust estimating equations for an ARMA(1,1)-GARCH(1,1)
model. An extension to ARMA(p, q)-GARCH(r, s) is identical. The model is

yt = w0 + a0yt−1 + b0ut−1 + ut and ut = σtεt,
∣∣a0
∣∣ < 1, εt is iid, E[εt] = 0, E[ε2t ] = 1 (B.1)

σ2
t = ω0 + α0u2

t−1 + β0σ2
t−1, where ω0 > 0, α0, β0 ≥ 0, α0 + β0 > 0, E[ln(α0 + β0ε2t )] <∞.

Assume a0 6= −b0 to rule out common roots. Collect ARMA parameters ψ ≡ [w, a, b]′ and
GARCH parameters δ ≡ [ω, α, β] and write θ ≡ [ψ′, δ′].

Define ut(ψ) ≡ yt − w − ayt−1 − but−1(ψ), σ2
t (θ) = ω + αu2

t−1 + βσ2
t−1(θ), εt(θ) = ut(ψ)/σt(θ)

and

υψ,t(ψ) ≡ ∂

∂ψ
ut(ψ) hence υψ,t(ψ) = − [1, yt−1, ut−1(ψ)]′ − bυψ,t−1(ψ)

$ψ,t(θ) ≡ 2
1

σt(θ)
[1, yt−1, υψ,t−1(ψ)′]

′
and sc,t(θ) ≡

∂

∂c
lnσ2

t (θ).

The QML score equations are mt(θ) ≡ [mψ,t(θ)
′,mδ,t(θ)

′], where

mψ,t(θ) ≡
(
ε2t (θ)− 1

)
sψ,t(θ) + εt(θ)$ψ,t(θ) and mδ,t(θ) ≡

(
ε2t (θ)− 1

)
sδ,t(θ).

The second set mδ,t(θ) are just the usual equations for a GARCH model. The first set mψ,t(θ)
reflects ARMA parameters, in particular the additive term εt(θ)$ψ,t(θ) imbeds an iterative
relationship through the moving average component. In the AR-GARCH case we simply have

mψ,t(θ) ≡
(
ε2t (θ)− 1

)
sψ,t(θ) + 2εt(θ)

1

σt(θ)
[1, yt−1]′ .

It is also useful to look at the Jacobian of mt(θ) under the initial assumption that it exists,
since we can target trimming in the equations mt(θ) to ensure Jacobian robustness. We have

∂

∂θ
E [mt] = −

[
E
[
sψ,ts

′
ψ,t

]
+ 1

2
E
[
$ψ,t$

′
ψ,t

]
, E

[
sδ,ts

′
ψ,t

]
E
[
sψ,ts

′
δ,t

]
, E

[
sδ,ts

′
δ,t

] ] .
Now look at each component of mt(θ) and the Jacobian products sψ,ts

′
ψ,t, $ψ,t$

′
ψ,t, etc., to

see how mt(θ) should be trimmed. First, εt has a second moment, hence εt(θ)$ψ,t(θ) does not
need to be trimmed by εt(θ). Second, Francq and Zaköıan (2004, eq.’s (4.44), (4.49) and p.629)
verify sδ,t is square integrable, and |(∂/∂ψi) lnσ2

t | ≤ K|υi,ψ,t| hence sψ,t is square integrable
only if ut (and therefore yt) is. Third, by iterating on (∂/∂ψ)ut−1 it can be shown that υψ,t =
−[1, yt−1, ut−1]′ − bυψ,t−1 has a second moment only if the ARMA error ut does (Francq and
Zaköıan, 2004, p. 630). Similarly, since σ2

t ≥ ω0 > 0 a.s., we need only trim the components
yt−1 and υψ,t−1(ψ)′ in $ψ,t(θ) ≡ 2σ−1

t (θ)[1, yt−1, υψ,t−1(ψ)′]′.
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In terms of first order robustness, we therefore need only trim ε2t (θ) by εt(θ); trim each element
of sδ,t and sψ,t by all elements of sψ,t; and iteratively trim each stochastic element of υψ,t(ψ) by
both yt−1 and ut−1(ψ). Define trimming indicators:

Î
(y)
n,t ≡ I

(
|yt| ≤ y

(a)

(k
(y)
n )

)
and Î

(u)
n,t (θ) ≡ I

(
|ut(θ)| ≤ u

(a)

(k
(u)
n )

(θ)
)

Î
(sψ)
n,t (θ) ≡

3∏
i=1

I

(
|si,ψ,t(θ)| ≤ s

(a)

i,ψ,(k
(sψ)

i,n )
(θ)

)
and trimmed variables

ε̂∗n,t(θ) ≡ εt(θ)Î
(ε)
n,t(θ), û

∗
n,t(θ) ≡ ut(θ)Î

(u)
n,t (θ)Î

(y)
n,t (θ), ŷ

∗
n,t ≡ ytÎ

(u)
n,t (θ)Î

(y)
n,t (θ, ŝ

∗
n,·,t(θ) = s·,t(θ)Î

(sψ)
n,t (θ)

υ̂∗n,ψ,1(ψ) ≡ − [1, 0, 0]′ and υ̂∗n,ψ,t(ψ) = −
[
1, ŷ∗n,t−1, û

∗
n,t−1(ψ)

]′ − bυ̂∗n,ψ,t−1(ψ)

$̂∗ψ,n,t(θ) ≡ 2σ−1
t (θ)

[
1, ŷ∗n,t−1, υ̂

∗
n,ψ,t−1(ψ)′

]′
.

The trimmed equations are therefore

m̂∗n,ψ,t(θ) ≡

(
ε̂∗2n,t(θ)−

1

n

n∑
t=1

ε̂∗2n,t(θ)

)
ŝ∗n,ψ,t(θ) + εt(θ)$̂

∗
ψ,n,t(θ)

m̂n,δ,t(θ) ≡

(
ε̂∗2n,t(θ)−

1

n

n∑
t=1

ε̂∗2n,t(θ)

)
ŝ∗n,δ,t(θ).

First order asymptotics reveals the Jacobian satisfies (∂/∂)E[m̂∗n,t(θ)] = J ∗n (1 + o(1)) where J ∗n
= (∂/∂)E[m∗n,t(θ)](1 + o(1)). It also reveals J ∗n has the product $t(θ)$̂

∗
ψ,n,t(θ)

′ which con-
tains yt−1û

∗
n,t−1(ψ) and ŷ∗n,t−1ut−1(ψ): both are suitably trimmed since each (û∗n,t−1(ψ), ŷ∗n,t−1)

are trimmed with the compound indicator Î
(u)
n,t (θ)Î

(y)
n,t (θ). The approximate Jacobian J ∗n also

has sψ,t(θ)ŝ
∗
n,δ,t(θ), whichis robust to heavy tails precisely by trimming sδ,t(θ) by sample ex-

tremes of sψ,t(θ). And so on: m̂∗n,t(θ) ≡ [m̂∗n,ψ,t(θ)
′, m̂∗n,δ,t(θ)

′]′ is suitably trimmed, in particular
||(∂/∂θ)E[m̂∗n,t]|| < ∞.

Francq and Zaköıan (2004, Assumption A10, Theorem 3.2) require yt itself to have a finite
fourth moment in order to obtain an asymptotically normal QML estimator of model (B.1).
Under trimming, we do not require any additional moment conditions on yt.
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TABLE 1: Base Casea : Estimation Results for β0 = .6

εt ∼ P̄2.5 and κy = 1.5e

n = 100 n = 250

Bias RMSb KSc 95% CRd Bias RMS KS 95% CR

TT-EL .0059 .1696 1.332 .245, .854 -.0005 .1483 1.186 .475, .745
TT-CUE .0022 .1690 1.034 .189, .881 .0006 .1399 1.245 .363, .791
TT-ET -.0056 .1758 1.145 .215, .849 .0012 .1412 1.192 .399, .761
EL -.0019 .1695 1.435 .234, .858 .0132 .1374 2.464 .312, .824
CUE -.0057 .1789 1.277 .173, .881 -.0079 .1555 1.867 .259, .869
ET -.0030 .1801 1.840 .206, .857 .0075 .1382 1.414 .302, .826
WLQMLf .0490 .3523 2.231 .221, .841 -.0382 .2652 1.182 .286, .795
Log-LAD -.0691 .3771 3.078 .198, .799 .0026 .2587 1.454 .412, .747
QMTTL .0032 .2307 1.342 .179, .868 .0007 .1676 1.082 .323, .796
QML -.0462 .1236 3.97 .212, .846 -.0324 .0761 2.189 .212, .847

εt ∼ N(0, 1) and κy = 4.1

n = 100 n = 250

Bias RMS KS 95% CR Bias RMS KS 95% CR

TT-EL -.0068 .1096 .9453 .340, .783 .0058 .0792 1.312 .458, .745
TT-CUE -.0038 .1012 1.192 .369, .771 .0022 .0803 .6871 .421, .769
TT-ET -.0042 .1086 .9532 .389, .796 .0035 .0799 1.132 .453, .750
EL -.0002 .1052 .8061 .392, .791 .0071 .0799 1.564 .456, .748
CUE -.0012 .1094 .6799 .377, .801 .0092 .0802 1.267 .414, .808
ET -.0024 .1104 .9488 .381, .788 .0033 .0823 1.512 .456, .747
WLQML -.0814 .3891 3.113 .314, .812 .0146 .2596 2.102 .412, .800
Log-LAD -.0639 .2987 2.573 .354, .802 -.0599 .2354 2.865 .427, .786
QMTTL -.0325 .1034 1.892 .400, .846 -.0123 .0723 1.298 .435, .765
QML -.1022 .1497 3.599 .180, .769 -.0921 .1332 2.893 .243, .751

a. Base-case trimming fractiles are k
(ε)
n = [.05n/ ln(n)] and k

(y)
n = [.2 ln(n)].

b. The square root of the empirical mean squared error.
c. The Kolmogorov-Smirnov statistic divided by the 5% critical value: KS > 1 indicates rejection of

normality at the 5% level.
d. Simulation average 95% confidence region for θ0

3 = .6 computed by the empirical likelihood method.
e. Tail index of yt is κy.

17

f. GEL and GELITT estimators are computed using weights xt(θ) = [s′t(θ), s
′
t−1(θ)]′. TT denotes

”tail-trimmed”, e.g. TT-EL is GELITT with the EL criterion.
f. WLQML is Weighted Laplace QML; QMTTL is Quasi-Maximum Tail-Trimmed Likelihood.

17The GARCH process {yt} satisfies P (|yt| > a) = da−κy (1 + o(1)) and E|α0ε2t + β0|κy/2 = 1. We draw

R = 10, 000 iid εt from P2.5 or N(0, 1) and report arg minκ∈K |1/R
∑R
t=1 |α0ε2t + β0|κ/2 − 1| where K =

{.001, .002, ..., 10}.
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TABLE 2 : Base Casea : t-testsb at 5% level for β0

εt ∼ P̄2.5 and κy = 1.5

n = 100 n = 250

H0 H1
1 H2

1 H3
1 H0 H1

1 H2
1 H3

1

TT-ELc .041d .592 .869 .951 .045 .818 .970 1.00
TT-CUE .042 .568 .815 .925 .042 .840 .982 1.00
TT-ET .039 .617 .852 .926 .053 .829 .976 1.00
EL .030 .638 .874 .928 .038 .810 .959 .927
CUE .038 .443 .704 .856 .035 .775 .948 .990
ET .038 .609 .832 .911 .051 .807 .954 .980
WLQMLe .001 .004 .006 .368 .002 .101 .238 .486
Log-LAD .029 .103 .275 .813 .028 .870 1.00 1.00
QMTTL .043 .496 .718 .817 .046 1.00 1.00 1.00
QML .059 .878 1.00 1.00 .093 1.00 1.00 1.00

εt ∼ N(0, 1) and κy = 4.1

n = 100 n = 250

H0 H1
1 H2

1 H3
1 H0 H1

1 H2
1 H3

1

TT-EL .047 .903 1.00 1.00 .053 1.00 1.00 1.00
TT-CUE .047 .830 .970 1.00 .047 1.00 1.00 1.00
TT-ET .048 .934 1.00 1.00 .048 1.00 1.00 1.00
EL .056 .944 1.00 1.00 .061 1.00 1.00 1.00
CUE .055 .923 1.00 1.00 .053 1.00 1.00 1.00
ET .059 .899 1.00 1.00 .046 1.00 1.00 1.00
WLQML .004 .086 .151 .428 .008 .085 .222 .579
Log-LAD .028 .067 .118 .329 .034 .410 .639 .980
QMTTL .053 .980 1.00 1.00 .052 1.00 1.00 1.00
QML .063 .188 .449 .625 .067 .320 .476 .688

a. Base-case trimming fractiles are k
(ε)
n = [.05n/ ln(n)] and k

(y)
n = [.2 ln(n)].

b. The true β0 = .6. The hypotheses are H0: β = .6; H1
1: β = .5; H2

1: β = .35; and H3
1: β = 0.

c. GEL and GELITT estimators are computed using weights xt(θ) = [s′t(θ), s
′
t−1(θ)]′. TT denotes

”tail-trimmed”, e.g. TT-EL is GELITT with the EL criterion.
d. Rejection frequencies at the 5% level.
e. WLQML is Weighted Laplace QML. QMTTL is Quasi-Maximum Tail-Trimmed Likelihood.
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TABLE 3: IGARCH etc.a : TT-CUE Results for β0

n = 100 n = 250

εt ∼ P̄2.5 and κy = 1.5

α0, β0 Bias RMSb KSc 95% CRd Bias RMS KS 95% CR

.30,.60 -.006 .178 1.17 .109, .907 .002 .129 1.04 .253, ..890

.40,.60 .009 .179 1.13 .093, .905 -.001 .136 1.09 .132, .867

.30,.70 -.008 .158 1.21 .092, .943 -.006 .114 .986 .355, .912

.45,.60 .005 .155 1.10 .107, .910 .006 .138 1.05 .167, .860

.35,.70 -.009 .147 1.18 .172, .945 -.007 .118 1.04 .271, .898

εt ∼ N(0, 1) and κy = 4.1

α0, β0 Bias RMS KS 95% CR Bias RMS KS 95% CR

.30,.60 -.001 .097 .740 .343, .841 .006 .088 .851 .348, .835

.40,.60 -.004 .105 .985 .322, .821 -.003 .075 .720 .415, .779

.30,.70 .005 .098 .993 .420, .931 .005 .077 .994 .483, .862

.45,.60 .007 .098 1.12 .354, .808 -.006 .071 1.05 .398, .778

.35,.70 .008 .103 1.15 .370, .863 -.006 .079 .987 .451, .820

a. GARCH and IGARCH models are considered. Trimming fractiles are k
(ε)
n = [.05n/ ln(n)]

and k
(y)
n = [3 ln(n)].

b. The square root of the empirical mean squared error.
c. The Kolmogorov-Smirnov statistic divided by the 5% critical value: KS > 1 indicates rejection of

normality at the 5% level.
d. Simulation average 95% confidence region for β0 computed by the empirical likelihood method.
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TABLE 4 : IGARCH etc.a : TT-CUE t-testsb at 5% level for β0

n = 100 n = 250

εt ∼ P̄2.5 and κy = 1.5

α0, β0 H0 H1
1 H2

1 H3
1 H0 H1

1 H2
1 H3

1

.30,.60 .044c .521 .752 .865 .045 .822 .954 1.00

.40,.60 .042 .549 .787 .906 .045 .729 .922 .993

.30,.70 .053 .760 .931 .978 .045 .962 1.00 1.00

.45,.60 .045 .649 .893 .947 .044 .741 .940 1.00

.35,.70 .053 .840 .952 .985 .047 .929 1.00 1.00

εt ∼ N(0, 1) and κy = 4.1

α0, β0 H0 H1
1 H2

1 H3
1 H0 H1

1 H2
1 H3

1

.30,.60 .041 .931 1.00 1.00 .043 1.00 1.00 1.00

.40,.60 .039 .832 1.00 1.00 .042 1.00 1.00 1.00

.30,.70 .042 .958 1.00 1.00 .053 1.00 1.00 1.00

.45,.60 .042 .882 1.00 1.00 .043 1.00 1.00 1.00

.35,.70 .044 .856 1.00 1.00 .048 1.00 1.00 1.00

a. GARCH and IGARCH models are considered. Trimming fractiles are k
(ε)
n = [.05n/ ln(n)]

and k
(y)
n = [3 ln(n)].

b. The hypotheses are H0: β = β0; H1
1: β = β0 − .1; H2

1: β = β0 − .25; and H3
1: β = 0.

c Rejection frequencies at the 5% level.
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Figure 1: Simulation bias for tail-trimmed CUE. The plot is over grid of trimming fractiles
{kε, ky}. The model is yt = εtσt and σ2

t = 1 + .3y2
t−1 + .6σ2

t−1, where εt has power law tails with
index κ = 2.5, and the sample size n = 100.

Figure 2: Kolmogorov-Smirnov statistic scaled by its 5% critical value for tail-trimmed CUE.
The plot is over grid of trimming fractiles {kε, ky}. The model is yt = εtσt and σ2

t = 1 + .3y2
t−1

+ .6σ2
t−1, where εt has power law tails with index κ = 2.5, and the sample size n = 100.
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(a) Ruble: Windows 1-500: Years 1999-2000 (b) Ruble: Windows 501-2200: Years 2001-2008

(c) HSI

Figure 3: Rolling window expected shortfall: comparison of trimmed and untrimmed estimators.
untrimmed are untrimmed expected shortfall estimates; tt opt are tail-trimmed estimation with
optimal bias correction; and tt bc (Hill 2014b) are bias corrected tail-trimmed estimates with
the fractile mn(φ) range used in Hill (2015b). In each case flat or profile weighting are used.
Hill (2015b) only computes tt bc (flat). We break the Ruble rolling windows into two groups
to highlight the crisis year 1999 (the initial 248 trading days), the most volatile period in the
sample. The Ruble panel (a) is 1999-2000 and panel (b) is 2001-2008. The HSI panel (c) is
1996-1998.

68



(a) untrimmed, flat weighted (b) untrimmed, profile weighted

(c) tail-trimmed with optimal bias correction,
flat weighted

(d) tail-trimmed with optimal bias correction,
profile weighted

Figure 4: Rolling window expected shortfall estimates for HSI daily returns.
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(a) untrimmed, flat weighted (b) untrimmed, profile weighted

(c) tail-trimmed with optimal bias correction,
flat weighted

(d) tail-trimmed with optimal bias correction,
profile weighted

Figure 5: Rolling window expected shortfall estimates for Ruble daily returns.
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