
Combinatoric Models of Information Retrieval
Ranking Methods and Performance Measures for

Weakly-Ordered Document Collections

Lewis Church

A dissertation submitted to the faculty of the University of North Carolina at Chapel
Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in
the School of Information and Library Science.

Chapel Hill
2010

Approved by:

Robert M. Losee, Advisor

Robert E. Burgin, Committee Member

Claudia J. Gollop, Committee Member

Jane Greenberg, Committee Member

Richard Marciano, Committee Member

Paul S. Solomon, Committee Member

c© 2010

Lewis Church

ALL RIGHTS RESERVED

ii

Abstract

LEWIS CHURCH: Combinatoric Models of Information Retrieval Ranking
Methods and Performance Measures for Weakly-Ordered Document

Collections
(Under the direction of Robert M. Losee)

This dissertation answers three research questions: (1) What are the characteristics

of a combinatoric measure, based on the Average Search Length (ASL), that performs

the same as a probabilistic version of the ASL?; (2) Does the combinatoric ASL measure

produce the same performance result as the one that is obtained by ranking a collection

of documents and calculating the ASL by empirical means?; and (3) When does the ASL

and either the Expected Search Length, MZ-based E, or Mean Reciprocal Rank measure

both imply that one document ranking is better than another document ranking?

Concepts and techniques from enumerative combinatorics and other branches of math-

ematics were used in this research to develop combinatoric models and equations for

several information retrieval ranking methods and performance measures. Empirical,

statistical, and simulation means were used to validate these models and equations.

The document cut-off performance measure equation variants that were developed in

this dissertation can be used for performance prediction and to help study any vector V

of ranked documents, at arbitrary document cut-off points, provided that (1) relevance

is binary and (2) the following information can be determined from the ranked output:

the document equivalence classes and their relative sequence, the number of documents

in each equivalence class, and the number of relevant documents that each class contains.

The performance measure equations yielded correct values for both strongly- and weakly-

ordered document collections.

iii

Dedication

To my mother, Arlen Elizabeth Church

To the memory of my father, Lewis Church, Sr.

To my wife, Dr. Lila Teresa Church

To all the other wonderful people, far too numerous to mention, who provided

encouragement, inspiration, and believed in me during my academic journey

iv

Acknowledgments

To the casual observer, a doctoral dissertation may appear to be solitary work. Com-

pleting a project of this magnitude requires a network of support, however, and I am

indebted to many people. I am especially grateful to my dissertation advisor and com-

mittee chair, Dr. Robert M. Losee, and his fellow committee members Dr. Robert E.

Burgin, Dr. Claudia J. Gollop, Dr. Jane Greenberg, Dr. Richard Marciano, and Dr. Paul

Solomon.

The original members of my committee remained with me even though this jour-

ney took more time than I expected to complete the dissertation. I especially thank

Dr. Richard Marciano for agreeing to come on as a new committee member at a point

where my dissertation work was at a very advanced stage.

I am indebted to my wife, Lila Teresa Church, who was a doctoral student for most

of the years that I was a doctoral student. She provided much advice and encouragement

during these years. It was wonderful not having to explain to her why I had to study so

much and how my life was continuously being impacted by the many demands that the

doctoral program placed upon me.

I would be remiss if I did not thank Robert Ray, my manager at SAS Institute Inc.

in Cary, North Carolina, for allowing me the flexibility to work full-time at SAS, take

classes (during business hours) at a university that was about 25 miles away, and to make

up the lost time by working longer hours some days after class. Robert, and my other

departmental colleagues at SAS, also provided me with various kinds of encouragement

during the years. Thanks very much! I really appreciated that.

v

There were many other people that provided encouragement to me over the years.

Even if I tried to list them here, I would probably miss more than a few of their names.

So, in lieu of trying to enumerate them, I just want to say, to all of them, that the encour-

agement and other acts of kindness, that you sent my way, were very much appreciated.

Thanks!

vi

Table of Contents

List of Tables xxii

List of Figures xxvii

List of Abbreviations xxxi

List of Symbols and Notation xxxiii

1 Introduction 1

1.1 Research Goals and Questions . 3

1.2 Significance of this Research . 4

1.3 Wider Applicability of the Extended Measures 9

1.4 Summary . 10

2 Background 11

2.1 Several Alternative Measures That Are of Interest 14

2.1.1 Expected Search Length . 15

2.1.2 Mean Reciprocal Rank . 16

2.1.3 MZ-Based E Measure . 17

vii

2.2 Mathematical Presentation and Techniques 17

2.2.1 Notation . 18

2.2.2 Proofs . 18

2.2.3 Probability Theory and Models 19

2.2.4 Simulation . 20

2.2.5 The Query-Document Model 21

2.2.6 The Relationship Between the Query-Document Model and Weak
4-Compositions . 22

2.2.7 Combinatorial Generation and Enumeration Algorithms . . . 27

2.3 Term and Query Operations . 29

2.3.1 Lexical Analysis . 30

2.3.2 Stoplists . 32

2.3.3 Stemming . 34

2.4 An Historical Overview of Information Retrieval Research 35

2.5 IR Performance Evaluation and Test Collections 39

2.5.1 IR Performance Evaluation 40

2.5.2 A Formal Definition of a Test Collection 41

2.5.3 Several Generations of Test Collections 42

2.5.4 Design Requirements for an Ideal Test Collection 44

viii

2.5.5 Text REtrieval Conference (TREC) 45

2.6 Constructing Single Term Queries . 47

2.7 Language Models and Relative Entropy 49

2.8 Statistical Significance in Query System Performance 54

2.9 Significant Sample Sizes for Document Collections and Queries 57

2.10 Summary . 59

3 Method 61

3.1 Instruments . 61

3.1.1 The Cystic Fibrosis Test Collection 62

3.1.2 Synthetic Datasets and Random Sets of Queries 63

3.1.3 PubMed stopword list . 63

3.1.4 Lexical Analyzer . 63

3.1.5 Porter stemmer . 65

3.2 Procedure . 65

3.2.1 Adapt the Cystic Fibrosis test collection 65

3.2.2 Create Synthetic Datasets and Random Sets of Queries 72

3.2.3 Expected Performance of the CF-related and Synthetic Test Col-
lections . 72

ix

3.3 Quality of Ranking Calculations for the Coordination Level Matching,
Inverse Document Frequency, and Decision-Theoretic Ranking Methods 87

3.4 An Example of How to Estimate Q for the CLM Ranking Method . . 97

3.5 The Three Research Questions . 103

3.5.1 What would be the characteristics of a combinatoric measure,
based on the ASL, that performs the same as a probabilistic mea-
sure of retrieval performance, also based on the ASL? 104

3.5.2 Does the ASL measure produce the same performance result as
the result that would be obtained by a process that ranks docu-
ments and, then, calculates the Average Search Length from this
empirical ranking data? . 106

3.5.3 When does the ASL measure and one of these measures (i.e.,
MZE, ESL, and MRR) both imply that one document ranking is
better than another document ranking? 108

3.6 Summary . 109

4 Characteristics of a Combinatoric-Based Quality of Ranking Mea-
sure 110

4.1 Essential Characteristics . 111

4.2 The Document Collection Sample Space and Its Division Into Four Quad-
rants . 113

4.3 Handling Mathematical Singularities 117

4.4 What and Why Do We Count? . 122

4.5 Determining the Number of Qualifying Document Collections for Quad-
rant I (each weak 4-composition in this quadrant represents a document
collection that has at least one relevant document and zero non-relevant
documents) . 123

x

4.6 Determining the Number of Qualifying Document Collections for Quad-
rant II (the single weak 4-composition in this quadrant represents the
empty collection of documents for N = 0) 125

4.7 Determining the Number of Qualifying Document Collections for Quad-
rant III (each weak 4-composition in this quadrant represents a document
collection that has zero non-relevant documents and at least one relevant
document) . 126

4.8 Determining the Number of Qualifying Document Collections for Quad-
rant IV (each weak 4-composition in this quadrant represents a document
collection that has at least one relevant document and at least one non-
relevant document) . 128

4.9 Summary . 139

5 A Combinatoric Model of Q′ for the Coordination Level Matching
Ranking Method 141

5.1 Ranking By Coordination Level Matching 144

5.2 Two Basic Ways to Count the Number of Qualifying Weak 4-Compositions 145

5.3 The Number of Distinct 2-Partitions 147

5.4 Divisor Pairs and Prime Power Factorizations 149

5.5 Basic Divisor Pair-Related Definitions 152

5.6 Number-Theoretic-Based Fundamentals of a Solution 154

5.6.1 The General Constraints . 155

5.6.2 The Form of A Solution that Satisfies the General Constraints 156

5.7 Running Example: Identifying Candidate Document Collections Where
r1s0 = r0s1 . 157

xi

5.8 Counting by the Principle of Inclusion-Exclusion 159

5.8.1 An Overview . 161

5.8.2 Running Example: The Superset for a Set of Divisor Pairs and
Its Cardinality . 162

5.8.3 Applicability of the Principle of Inclusion-Exclusion to This Re-
search . 164

5.8.4 More Basic Definitions and Lemmas 164

5.8.5 Lemmas for the Establishment of Essential Bijections 172

5.8.6 Entity-Relationship Models and Diagrams 185

5.8.7 Running Example: Intersection of Three Sets of Generally Qual-
ifying Weak 4-Compositions 190

5.9 Calculating Q′
CLM for a Document Collection of Size N 194

5.10 A Refinement of the Calculations for Q′
CLM 197

5.10.1 The Number of Qualifying Weak Compositions for Quadrants I,
II, and III . 198

5.10.2 The Number of Qualifying Weak Compositions for Quadrant IV
(each weak 4-composition in this quadrant represents a document
collection that has positive numbers of relevant and non-relevant
documents) When At Least One of the Parameters r1, r0, s1, and
s0 Has a Value of Zero . 199

5.10.3 The Number of Qualifying Weak Compositions for Quadrant IV
(each weak 4-composition in this quadrant represents a document
collection that has positive numbers of relevant and non-relevant
documents) When Each of the Parameters r1, r0, s1, and s0 Has
a Positive Value . 202

xii

5.11 A Further Refinement of the Calculations for Q′
CLM 206

5.11.1 All four of the values assigned to the variables r1, s0, r0, and s1

are identical . 211

5.11.2 Only two of the four values assigned to r1, s0, r0, and s1 are
mutually distinct . 213

5.11.3 Only three of the four values assigned to r1, s0, r0, and s1 are
mutually distinct . 218

5.11.4 All four of the values assigned to r1, s0, r0, and s1 are mutually
distinct . 222

5.12 Mean and Variance . 228

5.13 Example: An Application of the Principle of Inclusion-Exclusion . . . 230

5.13.1 The 1-subsets and Their Cardinalities 232

5.13.2 The 2-subsets and Their Cardinalities 233

5.13.3 The 3-subsets and Their Cardinalities 234

5.13.4 The 4-subset and Its Cardinality 234

5.13.5 The Resultant Cardinality . 235

5.14 Summary . 237

6 Combinatoric Models of Q′ for the Inverse Document Frequency and
Decision-Theoretic Ranking Methods 239

6.1 Combinatoric Model of Q′ for the IDF Ranking Method 241

6.1.1 Mean and Variance . 242

xiii

6.2 Summary for the Inverse Document Frequency Ranking Method . . . 244

6.3 A Combinatoric Model of Q′ for the DT Ranking Method 246

6.3.1 Mean and Variance . 254

6.4 Summary for the DT Ranking Method 257

7 Characteristics of a Combinatoric-Based A and ASL Performance
Measure 259

7.1 Notation and Definitions . 262

7.2 A Combinatoric Model of A . 264

7.2.1 An example of a sample space for an optimal ordering of 8 docu-
ments . 264

7.2.2 Permutations, permutation trees, r-permutations, and r-combina-
tions . 267

7.2.3 Compute the Average Unnormalized Position of a Relevant Doc-
ument from a Sample Space of Orderings 277

7.2.4 Derivation of the Formula for A 282

7.3 Gaussian Polynomials and Some of Their Properties 286

7.3.1 A Motivating Example: The Use of Gaussian Polynomials to Ob-
tain Document Position Distributional Information 287

7.3.2 Reciprocity and Unimodality 289

7.3.3 Additional Important Relationships 290

7.3.4 Performance Evaluation Implications for Information Retrieval
Research . 294

xiv

7.4 Probability Mass Functions, Generating Functions, and Probability Gen-
erating Functions . 295

7.5 The Distribution of the Sums of the Positions of the Relevant Documents
in an Optimal Ranking . 298

7.5.1 Another Motivating Example: The Use of Gaussian Polynomials
and Probability Generating Functions to Obtain Search Length
Means and Variances . 301

7.5.2 Two Functions That Calculate the Sums of the Minimum and
Maximum k Values in a Range of Integers 309

7.5.3 The Example Continued — The Distribution of Total Search
Length Values For Feature Frequency 0 311

7.5.4 The Example Continued — The Distribution of Total Search
Length Values For Feature Frequency 1 312

7.5.5 The Example Continued — The Combined Distribution of Total
Search Length Values . 313

7.6 Useful Definitions and Theorems . 314

7.7 Expected Value and Variance of the Normalized Search Length 317

7.8 Expected Value and Variance of the Unnormalized Search Length . . 322

7.9 Retrieval Status Value, Weights, and Document Ranking 326

7.10 A Family of ASL Measures . 327

7.10.1 The ASL′
r Measure (a refined estimate of the Average Search

Length) . 330

7.10.2 The ASL′
g Measure (the gold standard for estimating the Average

Search Length) . 331

xv

7.11 Summary . 338

8 Validation of the Formulas for the Q′, A′, and ASL′ Measures 340

8.1 The Validation of Q′ . 343

8.1.1 Test Data Generation . 343

8.1.2 Empirical Data Supports the Validation of Q′ 347

8.2 The Validation of Q′ Estimates That Were Obtained by Random Sam-
pling . 348

8.2.1 Test Data Generation . 349

8.2.2 Empirical Data Supports the Validation of Q′ Estimates That
Were Obtained by Random Sampling 350

8.3 The Validation of A′ . 350

8.3.1 Boundary Conditions . 352

8.3.2 The Determination of Cardinalities for Two Combined Sets of
Boundary Conditions . 358

8.3.3 Test Data Generation . 365

8.3.4 Empirical Data Supports the Validation of A′ 368

8.4 The Validation of ASL′ . 369

8.4.1 Test Data Generation . 370

8.4.2 Empirical Data Supports the Derivation of ASL′ 370

8.5 The Validation of ASL′
r . 371

xvi

8.5.1 Test Data Generation . 372

8.5.2 Empirical Data Supports the Validation of ASL′
r 373

8.6 The Validation of ASL′
g . 374

8.6.1 Test Data Generation . 377

8.6.2 Empirical Data Supports the Validation of ASL′
g 378

8.6.3 An Example That Illustrates the Calculation of ASL′
g By Three

Different Methods . 378

8.7 Summary . 384

9 The ASL Performance Measure Variants and Empirical Document
Rankings 385

9.1 The Datasets . 387

9.2 The Analysis . 388

9.3 Summary . 391

10 The ASL Measure and Three Frequently-Used Performance Mea-
sures 393

10.1 Regions of Agreement and Disagreement About Relative Rankings . . 395

10.1.1 More Information About Performance Measure Disagreements 398

10.2 Characteristics to Consider When Comparing Measures 401

10.2.1 Is the Measure Based on the Totality of a Ranking or on a Point
In the Ranking? . 404

xvii

10.2.2 Does the Measure Assume That the Ranked Documents Are Strongly
Ordered? . 406

10.2.3 Is the Measure Based on a Single Query? 411

10.2.4 Is the Measure Defined Even When There Are No Relevant Doc-
uments? . 411

10.2.5 Does an Increase in the Measure’s Value Correspond to an In-
crease in Performance? . 413

10.2.6 Do the Measures Use the Same Range of Values to Report Per-
formance? . 413

10.3 Weakly and Strongly Ordered Rankings 414

10.3.1 What Does “Rank” Mean When Entities Are Weakly Ordered? 418

10.3.2 Nondeterministic Rankings . 418

10.3.3 Smoothing for Nondeterministic Rankings 419

10.4 Several Sum and Binomial Identities 420

10.4.1 Manipulation of Sums . 420

10.4.2 Basic identities . 421

10.4.3 Symmetry . 422

10.4.4 Addition . 423

10.4.5 Convolution identities . 423

10.4.6 Sum of the first n positive integers 424

10.4.7 Sum of several natural numbers 424

xviii

10.4.8 Absorption identities . 425

10.5 A General Framework For Handling Ties 425

10.5.1 Important Commonalities . 429

10.5.2 Commonalities for Precision, Recall, and Average Search Length 432

10.6 Derivations for the ESL, ASL, Precision, Recall, MZE, and RR Measures 441

10.6.1 Expected Search Length . 441

10.6.2 Average Search Length . 454

10.6.3 Precision . 460

10.6.4 Recall . 461

10.6.5 MZ-Based E Measure . 461

10.6.6 Reciprocal Rank . 462

10.7 Operationalizing What It Means For One Document Ranking to be Bet-
ter Than Another Document Ranking 477

10.8 Validation . 478

10.9 Example: Comparing Type-T and Type-D Versions of the ASL Measure 480

10.10Example: Comparing the ASL Measure With the MZE, ESL, and RR
Measures . 487

10.11Summary . 493

11 Summary and Conclusions 497

xix

11.1 Goals . 497

11.2 Questions . 498

11.3 Steps . 499

11.4 Problems Conducting the Research 500

11.5 Findings . 504

11.6 Implications and Recommendations 508

11.7 Future Research . 510

11.8 Summary . 512

Appendices 514

A Creating the Modified Cystic Fibrosis Test Collection 515

A.1 Create the CF′ test collection . 515

A.1.1 Transform the queries . 515

A.1.2 Transform the documents . 516

A.1.3 Transform the relevance judgments 517

A.2 Select the best single term description of each query in the CF′ test
collection . 517

B Turning multiple term queries into single term queries 521

B.1 Example . 521

xx

C The Derivation of A Formula to Calculate the Expected Position of
a Specified Relevant Document in An Equivalence Class 535

D Derivation of the Alternate Equation for Q for the IDF Ranking
Method 540

E The Number of Qualifying Weak 4-Compositions for Selected Rank-
ing Methods 544

Bibliography 547

xxi

List of Tables

3.1 The PubMed Stopword List. 64

3.2 The Single Term Query Descriptions With Plural Frequencies. 70

3.3 Actual Recall and Precision Table For A Query With Four Relevant Doc-
uments. 74

3.4 Interpolated Recall and Precision Table. 75

3.5 A Ranking That Has Multiple Documents With The Same RSV 77

3.6 Expected Actual Recall Position (EARP) Table. 84

3.7 Interpolated Recall and Precision Table. 84

3.8 Sample Space for a 4 Document Collection. 99

3.9 Number of Weak Compositions of Size 4 for Selected Values of N. 103

3.10 Comparing Quality of Ranking Methods. 105

3.11 Ranked List of Ten Documents. 107

4.1 Quadrant I Outcomes. 125

4.2 Quadrant III Outcomes. 127

4.3 Quadrant IV Outcomes (p = 0 and q = 0 and N ≥ 2). 129

4.4 Quadrant IV Outcomes (p = 0 and q ∈ (0, 1) and N ≥ 3). 131

4.5 Quadrant IV Outcomes (p = 0 and q = 1 and N ≥ 2). 131

xxii

4.6 Quadrant IV Outcomes (p ∈ (0, 1) and q = 0 and N ≥ 3). 133

4.7 Quadrant IV Outcomes (p ∈ (0, 1) and q = 1 and N ≥ 3). 135

4.8 Quadrant IV Outcomes (p = 1 and q = 0 and N ≥ 2). 136

4.9 Quadrant IV Outcomes (p = 1 and q ∈ (0, 1) and N ≥ 3). 138

4.10 Quadrant IV Outcomes (p = 1 and q = 1 and N ≥ 2). 139

4.11 Number of Outcomes for the Four Quadrants. 140

5.1 Divisor Pair Mappings for N = 12. 152

5.2 Divisor Pair Mappings for N = 8. 158

5.3 The Divisor Pairs for N = 8 and Their Associated D̃ and G̃ Sets. 160

5.4 Sets of Divisor Pairs, Greatest Common Divisor Pairs, and Cardinalities. 167

5.5 List of the Sixteen Possibilities for Matches/Differences between the Values
of the Corresponding Components (N = no, blank=yes). 174

5.6 The Divisor Pairs for N = 8 and Their Associated Sets. 194

5.7 The Four Possibilities for the Evaluation of S. 210

5.8 The Four Possibilities for Two Duplicate Components. 226

5.9 Number of Qualifying Contributions-Related Values (1 ≤ N ≤ 20). . . . 236

6.1 Outcomes for the Joint Condition p′ ≤ t′ and t′ = m. 242

6.2 Number of Qualifying Contributions-Related Values (1 ≤ N ≤ 20). . . . 245

xxiii

6.3 The Three Cases for the Decision-Theoretic (DT) Condition in Quadrant
IV. 253

6.4 Number of Qualifying Contributions (1 ≤ N ≤ 20). 256

7.1 Feature Weights for Several Ranking Methods. 329

7.2 Document Distribution at the Front and Rear of An Actual Ranking. . . 333

8.1 Minimum Sample Sizes for Estimating Q With the Specified Margin of
Error. 349

8.2 Wilcoxon signed ranks test with continuity correction (α = 0.01, two-
tailed). 351

8.3 The relationships between p, t, p′, t′,A, and A′ when a collection has at
least one relevant document (both A and A′ are defined for each of the 9
categories). 353

8.4 The relationships between p, t, p′, t′,A, and A′ when a collection does not
have any relevant documents (A′ is defined, but A is undefined for each
of the three categories). 353

8.5 Special Scenarios for A and A′ (Before Subsumption). 354

8.6 Combined Sets of Boundary Conditions for A and A′ (After Subsumption). 361

8.7 Combined Set of Boundary Conditions A (The Number of Weak 4-Compo-
sitions When None of the Relevant Documents Contain the Query Term). 363

8.8 Combined Set of Boundary Conditions B (The Number of Weak 4-Com-
positions When There is at Least One Relevant Document and Every
Relevant Document Contains the Query Term). 364

8.9 Feature Weights for Several Ranking Methods. 376

8.10 Document Distribution at the Front and Rear of An Actual Ranking. . . 376

xxiv

9.1 Test Results for Kolmogorov-Smirnov test (two-tailed) for a test collection
of 10 million synthetic documents and 100 unique randomly-generated
queries. 389

10.1 Important Characteristics of the ASL, ESL, MZE, and MRR Performance
Measures. 403

10.2 The MSL and ASL for Each Possible Sequence of Two Relevant Documents
(A & B) and One Non-relevant Document (C). 409

10.3 Important Characteristics of the Extended and Adapted Versions of the
ASL, ESL, MZE, and MRR Performance Measures. 413

10.4 Ranked List of Seventeen Documents (R=relevant). 416

10.5 Values of Selected Performance Measures For All Cut-off Points For Two
Equivalence Classes. The higher ranked equivalence class has 30 docu-
ments, the lower-ranked one has 20 documents. The number of relevant
documents in these classes are, respectively, 10 and 5. 491

10.6 Values of Selected Performance Measures For All Cut-off Points For Two
Equivalence Classes. The higher ranked equivalence class has 20 docu-
ments, the lower-ranked one has 30 documents. The number of relevant
documents in these classes are, respectively, 5 and 10. 492

B.1 The Unigram Language Models for the Documents 524

B.2 The Unigram Language Model for the Corpus 525

B.3 Document Term Probabilities for Query q (before smoothing) 526

B.4 Estimated Probabilities for Query q (before smoothing) 526

B.5 Document Term Probabilities for Query q (after smoothing) 528

B.6 Estimated Probabilities for Query q (after smoothing) 529

B.7 The Unigram Language Model for the Relevance Set 531

xxv

B.8 The Nine Most Discriminating and the Nine Least Discriminating Terms 534

E.1 Number of Qualifying Contributions (1 ≤ N ≤ 40) 544

E.2 Number of Qualifying Contributions (41 ≤ N ≤ 120) 545

E.3 Number of Qualifying Contributions (121 ≤ N ≤ 200) 546

xxvi

List of Figures

2.1 The relationships between the sets of compositions and weak compositions. 23

2.2 The relationships between N , R, S, r0, r1, s0, s1, n0, and n1 can be
succinctly expressed by this 2x2 contingency table. 25

2.3 The Prototypical Experimental Retrieval Performance Evaluation Schema.
Source: Adapted from Mooney (2006). 41

3.1 Recall-precision graph for the data in Table 3.4 on page 75. 75

3.2 Recall-precision graph for the data in Table 3.4. 85

3.3 Recall-precision graphs for the Cystic Fibrosis test collection and its three
derivatives. 88

3.4 Recall-precision graphs for the four derivatives of the Cystic Fibrosis test
collection and a synthetic collection. Each collection has 1239 documents. 89

4.1 The various conditions under which p, q, and t are defined/undefined. . . 115

5.1 Injective, Surjective, and Bijective Functions. 168

5.2 The Bijection Between Sets D̃
(8)
2 and G̃

(8)
2 179

5.3 Example of the Intersection Between Three G̃ Sets When N = 8. 186

5.4 ER Notation. 188

5.5 ER Diagram of the Main Relationships. 191

5.6 This figure corresponds to the discussion in Section 5.9. 195

xxvii

5.7 This figure corresponds to the discussion in Section 5.10. 197

5.8 This figure corresponds to the discussion in Section 5.11. 207

5.9 Plot of the mean (Q′) and standard deviation
(√Q′ (1 −Q′)

)
for B for

the CLM ranking method when 1 ≤ N ≤ 200. 237

6.1 Plot of the mean (Q′) and standard deviation
(√Q′ (1 −Q′)

)
for B for

the IDF ranking method when 1 ≤ N ≤ 200. 244

6.2 Plot of the mean (Q′) and standard deviation
(√Q′ (1 −Q′)

)
for B for

the DT ranking method when 1 ≤ N ≤ 200. 257

7.1 This depicts an optimal ordering of N documents. 265

7.2 This diagram details each of the 15 possible sample points that can occur
in the sample space that is associated with an optimal ordering of 8 doc-
uments (i.e., N = 8), with 5 of the documents having feature frequency 0
and 3 of them having feature frequency 1. 266

7.3 A permutation tree for 4 distinct objects named A, B, C, and D. 269

7.4 A generalized version of a permutation tree for r-permutations. 272

7.5 These are equivalent ways of viewing the number of members in an r-
permutation from a counting perspective. 275

7.6 Distributions of A values for N = 10, 20, and 50, respectively. 285

7.7 The frequency distribution and graph of the probability mass function for
the data in Figure 7.2 on page 266. 298

7.8 The Two General Ranking Possibilities. 328

7.9 RSVs and Their Relation to Query and Document Weights. 329

xxviii

8.1 RSVs and Their Relation to Query and Document Weights. 376

10.1 This figure details the categories of agreement and disagreement on relative
levels of performance for measures m1 and m2 between 2 points i and j in
a ranked vector V of documents, with point i occurring, before, or at, the
same ordinal position as point j. 399

10.2 A Line Plot of the MSL and ASL From the Data in Table 10.2 on page 409. 411

10.3 These are the 6 levels of the RSV factor from Table 10.4 417

10.4 This diagram details the relationship between V (the vector of ranked
documents) and T (the tie vector). 427

10.5 Vpre and Vc have the same number of sequences. 431

10.6 This diagram details the basic relationships that are associated with the
equivalence class Ec that contains document cut-off k for the ASL, preci-
sion, recall, and MZE measures. 436

10.7 This diagram details the basic relationships that are associated with the
equivalence class Ec̃ that contains the sth relevant document for the ESL
measure. 448

10.8 This diagram details the relationships that are associated with the cut-off
class Ec̃ for the ESL measure. 465

10.9 The information in this table is based on a set of documents that has three
equivalence classes, namely, E1, E2, and E3. The E1 equivalence class has
three documents (only 1 is relevant), E2 has five documents (4 of them are
relevant), and E3 also has five documents (but only 2 are relevant). . . . 481

10.10The darkened areas in the plots of first column indicate the areas of dis-
agreement, according to an extended version of the Losee (2000) compari-
son method, between a Type-T version of the ASL measure and a Type-D
version of the ASL on the same collection of 150 documents. 482

xxix

10.11Areas of agreement and disagreement for the ASL measure when it is
compared to the MZE, ESL, and RR performance measures for the BC,
CLM, DT, IDF, RC, and WC ranking methods. 488

10.12The left column contains the distinct plots from Figure 10.11 on page 488,
along with detailed information for each of them. 494

C.1 This diagram details the basic relationships that are associated with the
documents in the equivalence class. 537

xxx

List of Abbreviations

ASK Anomalous State of Knowledge

ASL Average Search Length

CF Cystic Fibrosis

CLM coordination level matching

DB database system

DT decision-theoretic

ESL Expected Search Length

GCD greatest common divisor

IDF inverse document frequency

IR information retrieval

IRS information retrieval system

IRDB information retrieval-database

xxxi

IRDBS information retrieval-database system

MRR Mean Reciprocal Rank

MZE MZ-based E measure

ROC Receiver Operating Characteristics

xxxii

List of Symbols and Notation

[k] the set of the first k positive integers . 22

N number of documents in a collection . 24

R number of relevant documents in a collection 24

S number of non-relevant documents in a collection 24

ni number of documents with feature frequency i 24

ri number of relevant documents with feature frequency i 24

si number of non-relevant documents with feature frequency i . . . 24

(
n
k

)
number of combinations of n things taken k at a time 26

Ck(n) number of compositions of n into k parts . 26

C̃k(n) number of weak compositions of n into k parts 26

C(n, k) number of combinations of n things taken k at a time 26

P (n, k) number of permutations of n things taken k at a time 26

xxxiii

n! number of permutations of n distinct objects 26

Σ summation . 51

log a natural logarithm of a . 51

P (a) probability of event a . 51

P (a|b) probability of event a given that event b has occurred 51

Pr(a) probability of event a . 51

Pr(a|b) probability of event a given that event b has occurred 51

Π multiplication . 52

a ∝ b a is proportional to b . 54

|a| cardinality of set/bag a . 66

�a� the greatest integer that is less than or equal to a 83

�a� the least integer that is greater than or equal to a 83

max(a, b) maximum of a and b . 90

min(a, b) minimum of a and b . 90

xxxiv

N the set of natural numbers . 94

Q quality of a ranking method . 113

τ(N) the number of unique divisors of a positive integer N 151

Z
+ the set of positive integers . 156

A normalized average position of a relevant document 262

ASL Average Search Length . 263

@k document cut-off at position k in ranked vector V of documents 449

ESL@k(V , x) ESL at position k for a request of x documents 449

ASL@k(V) ASL at position k in a ranked vector V of documents 459

P@k(V) precision at position k in a ranked vector V of documents . . . 460

R@k(V) recall at position k in a ranked vector V of documents 461

MZE@k(V) MZE at position k in a ranked vector V of documents 462

RR@k(V) reciprocal rank at position k in a ranked vector V of documents 463

a ← b assign the value denoted by b to a . 515

xxxv

This page intentionally left blank

Chapter 1

Introduction

The purpose of this research was to investigate the characteristics of analytic measures

for studying and predicting the performance of information retrieval (IR) systems and

of systems that had both information retrieval and database capabilities. The use of

these measures for prediction, rather than mainly for retrospection, was quite different

from how many IR performance measures had been used in the past and were currently

being used. Some related work, in a distributed database context, focuses on “analytical

techniques for predicting the performance of various collection fusion scenarios” (Losee

and Church, 2004).

Each of these types of systems was assumed to reference documents that were stored

in a centralized database. In this dissertation, the former type of system was referred

to as an information retrieval system (IRS) and the latter type was referred to as an

information retrieval-database system (IRDBS). In particular, the research concentration

in this dissertation was on a measure known as the Average Search Length (ASL) (Losee,

1998) and two measures that were closely related to it: the normalized average position

of a relevant document (A) and the quality of a ranking method (Q).

This research had four main contributions: (1) combinatoric models for several qual-

ity of ranking measures; (2) combinatoric-based equations for the Average Search Length

(Losee, 1998), the Expected Search Length (Cooper, 1968), the MZ-based E measure (van

Rijsbergen, 1979), and the reciprocal rank measure (Voorhees, 2001) that were defined at

all points in a ranking and yielded correct results for both strongly- and weakly-ordered

document collections; (3) a method that generated graphs which illustrated regions of

agreement and disagreement between two performance measures for a vector of ranked

documents; and (4) a procedure that determined when two performance measures con-

sidered a document ranking for a vector V1 to be better than a document ranking for a

vector V2.

The measures that were developed for this dissertation could aid in the understand-

ing and prediction of system performance for single information retrieval queries that

were submitted to either an information retrieval system or to an integrated informa-

tion retrieval-database system. The mathematical models constructed for this research

produced analytic results that were empirically validated.

There is a multitude of information retrieval performance measures, some more in-

tuitive and easier to understand than others. Generally, a performance measure can be

used in either a predictive or retrospective manner. Many of these measures can be more

easily used retrospectively than predictively due to the problem of parameter estimation.

Each performance measure possesses both strong and weak points. The determination

of which measure is (more) appropriate for a particular situation is influenced by the

goal(s) of the study or the audience.

A particularly appealing measure, one that can be used for either predictive, or ret-

rospective, purposes is the Average Search Length. It was the main measure of interest

in this dissertation. Some of its major strengths are that it is intuitive, easy to explain,

and relatively straightforward to calculate. Another strong point is that it is a single

number measure of performance and that it can be used to characterize the performance

of systems that use ranking functions based on such diverse techniques as the inverse

document frequency (Sparck Jones, 1972; Robertson, 1974; Robertson and Jones, 1976;

2

Croft and Harper, 1979), decision-theoretic ranking (Losee, 1998), and coordination level

matching (Losee, 1987).

1.1 Research Goals and Questions

This research developed combinatorial equations for the Average Search Length (ASL)

measure and its independent variables, namely, the normalized average position of a rele-

vant document (A), and the quality of a ranking method (Q) in a centralized information

retrieval context. This research also extended the ASL, MZ-based E measure (MZE) (van

Rijsbergen, 1979), Expected Search Length (ESL) (Cooper, 1968), and Mean Reciprocal

Rank (MRR) (Voorhees, 2001) measures in two ways: (1) the values of each of these

measures were calculable at an arbitrary position in a ranking and (2) the calculated

values were correct even if the documents in a ranking are weakly-ordered.

Combinatoric arguments were utilized to help develop this descriptive information and

proofs were constructed to show the equivalence of these combinatoric-based equations

with their respective probabilistic counterparts. These entities were used to help char-

acterize and predict the performance of various scenarios when optimal ranking (Losee,

1998), worst-case ranking, random ranking, and various other degrees of non-optimal

ranking were assumed. Definitions of the major concepts, that were introduced above,

immediately follow the statement of the three research questions below.

The research questions were:

1. What would be the characteristics of a combinatoric measure (CM ASL), based on

the ASL, that performs the same as a probabilistic measure of retrieval performance,

also based on the ASL?

2. Does the CM ASL measure produce the same performance results as that of an

actual document ranking? [In other words, is there any statistically significant

difference between the predicted performance and the performances observed in

3

actual rankings?]

3. When does the ASL measure and one of these measures (i.e., MZE (van Rijsber-

gen, 1979), ESL (Cooper, 1968), and MRR (Voorhees, 2001)) both imply that one

document ranking is better than another document ranking?

These three Research Questions (RQs) are occasionally referred to as RQ #1, RQ

#2, and RQ #3, respectively, in the remainder of this dissertation.

1.2 Significance of this Research

The equations and techniques that were developed from this research could be used to

predict and study performance, in terms of the Average Search Length (an intuitive

measure for the user), for the inverse document frequency, coordination level matching,

and decision-theoretic ranking methods ranking methods — without the need to estimate

quality of ranking values from historical data. These equations and techniques could also

be used to determine when two performance evaluation measures consider one document

ranking to be better than another document ranking.

Based on the literature review for this dissertation, a novel aspect of this research was

that these equations were developed by using a largely combinatoric approach. Combi-

natoric techniques and results from combinatorics opened up new avenues of exploration

and provided more insight into how various parameters interacted to affect the inverse

document frequency, coordination level matching, and decision-theoretic ranking meth-

ods.

Another significant feature was that this research extended the work in Losee (2000)

to compare the performance between measures that are “based on the totality of the

search process” (Losee, 2000) (e.g., ASL) as well as those that “determine performance

at a point in the search process” (Losee, 2000) (e.g., MZE, ESL). This provided a way to

4

compare more measures with respect to how well they agreed and disagreed with specific

document rankings. The knowledge gained can help researchers and practitioners better

understand the strengths and weaknesses of various ranking methods.

From an IR perspective, the use of combinatoric techniques means that the typical

IR assumptions of term independence, uniformly distributed values, and equiprobable

events can often be relaxed, or even eliminated, on a joint or individual basis, in order to

develop better and more accurate models. Sometimes, during performance evaluation,

if the probability of an event is not known, then this probability is either estimated or

a subjective probability is provided. Combinatoric techniques often give researchers the

ability to calculate an exact probability which can be used in lieu of an estimated or

subjective one.

In particular, several combinatoric concepts and techniques are used in upcoming

chapters to enable the calculation of exact (or close to exact) values for quality of rank-

ing measures; normalized and unnormalized search lengths; and their associated means

and standard deviations. Each of these are discussed in detail later, starting with the

next chapter. Also, these chapters contain several illustrative examples. The concepts

and techniques that are alluded to at the beginning of this paragraph include, but are

not limited to, probability generating functions, Gaussian polynomials, compositions,

partitions, k-subsets, permutations, combinations, asymptotics, and the Principle of In-

clusion and Exclusion. Citations for these concepts and techniques are provided as they

are introduced in the subsequent chapters.

Historically, the preponderance of performance research in information retrieval (IR)

has been of an experimental nature concerned with effectiveness rather than efficiency

(Vogt, 1999; Grossman and Frieder, 2004).

IR effectiveness deals with retrieving the most relevant information to a user need,
while IR efficiency deals with providing fast and ordered access to large amounts
of information. IR efficiency ensures that systems scale up to the vast amounts of
information available for retrieval, and is of utmost importance to both academic

5

and corporate environments. (Blanco and Silvestri, 2008)

Analytic models (Losee, 1998; Losee and Paris, 1999), where the focus is on prediction

rather than experimentation, do not have the quantity of associated research as does

research based on experimentation. In recent years, though, the interest in analytical

research has increased. A large factor in this has been the ever-increasing size of document

collections and the influence of the World Wide Web (Dong and Watters, 2004). During

this time, there has been significant increases in computational speed (e.g., processor

speed, memory access) and storage capacities with, of course, positive impacts on the

performance of IR systems. However, the gains made in computational speed (which was

growing at a linear rate) were more than offset by the growth of the sizes of document

collections (which were growing at an exponential rate). “While people enjoy having

access to this diverse data, they also have to face the problem of efficiently finding the

information they really want” (Dong and Watters, 2004). This is a burden that should

fall on the system, and not on the user.

A key to alleviating, or ameliorating this burden, is a better understanding of the

search process and the impact that it has on the internal workings of a search engine and

some of the choices that the engine has to make. Given the high degree of interest in the

database and IR research communities in the development of IR systems that are either

built on top of relational database systems or that integrate relational database and

IR capabilities (e.g., IRDB systems), it is crucial that system developers have a better

understanding of the factors that influence ranking, selectivity, and various execution

costs. Analytic models of performance can help provide this insight. In addition, they

can be used to help predict ranking, selectivity, and the choosing of one access plan over

another in an IRDB system.

The primary motivation for the research and industrial interest in information retrieval-

database (IRDB) systems has to do with the nature of today’s applications. “Modern

6

applications such as customer support, health care, and digital libraries require capabil-

ities for both data and text management” (Chaudhuri et al., 2005). Neither traditional

database (DB) management systems nor IR systems are flexible enough to handle these

types of applications because they require that these systems handle both structured data

and text well. DB systems are very good at handling structured data such as customer

records for a business whereas IR systems are good at handling unstructured entities

such as text documents. Neither is much good at handling each other’s bread-and-butter

kinds of applications. Many years ago, when application uses did not have the degree

of overlap that we have today, one could very much just exclusively use an IR or DB

system, depending on the application. However, application requirements have changed

much over just the past decade or so. The passage below provides insight into why

systems that combine both IR and DB functionality are very important today.

DB and IR systems are currently separate technologies. Thirty years ago, the
application classes that drove the progress of these systems were disjoint and did
indeed pose very different requirements: classical business applications like payroll
or inventory management on the DB side, and abstracts of publications or patents
on the IR side. The situation is radically different today. Virtually all advanced
applications need both structured data and text documents, and information fusion
is a central issue. Seamless integration of structured data and text is at the top of
the wish lists of many enterprises. Example applications that would benefit include
the following:

• Customer support systems that track complaints and response threads and
must ideally be able to automatically identify similar earlier requests.

• Health care systems that have access to the electronic information produced
by all hospitals, medical labs, and physicians (with appropriate measures for
privacy and authorization), and have the capability of monitoring trends and
generating early alerts about health crises such as epidemic diseases.

• Intranet search engines for organizations with richly structured data sources
in addition to traditional document repositories. (Chaudhuri et al., 2005)

One key difference between an IR and a DB system is that, normally, an IR system

cannot be simply satisfied with retrieving the results for a query, but also has to order

those results into a sequence. The results that are more likely to be relevant to a user

7

are nearer the front of the sequence than those that are less likely to be relevant. This

process is known as ranking. The primary benefit of ranking is that it puts the results

(e.g., documents) into a known order and thereby saves the user from possibly having to

inspect all of the documents just to find a few useful ones. There are many ways to rank

documents. For example, the vector space model does it one way and the probabilistic

model does it another way (Dominich, 2001). And, within the framework of a particular

model, there are often several variations on that model’s basic ranking algorithm. For

example, the information retrieval literature has a variety of term weighting schemes that

have been considered for the vector space model (Salton and Buckley, 1988; Lee, 1995).

Each model and associated ranking algorithm(s) have their own particular strengths

and weaknesses. No one ranking algorithm always performs better than an arbitrary,

but different, ranking algorithm in every situation. This is due in large part to the

myriad of applications that a retrieval model and ranking algorithm may have to deal

with over a wide spectrum of query-document search models and scenarios. One ranking

algorithm, or method, may work well when the document collection is of moderate size

and, say, it contains a high percentage of relevant documents for the query submitted to

its associated IR (or IRDB) system. Another ranking algorithm may perform well when

the document collection is large but not so well when it is small or of moderate size.

Chaudhuri et al. provide additional justification for why a single ranking algorithm

is inappropriate for all situations, noting that:

1) Flexible scoring and ranking: At the heart of a truly versatile DB&IR sys-
tem is customizable scoring and ranking. Given the wide spectrum of target appli-
cations, it is unlikely that a universal best-compromise solution exists. For example,
while Page-Rank-style authority measures are a great asset for Web search, they
may be meaningless in an intranet setting where authorship and cross-references
are tightly controlled; and a journalist working with a news archive every day may
want the system to automatically learn scoring weights according to her personal
preferences and relevance feedback. At the API level, explicit control over scoring
and score aggregation is essential, despite the widespread belief that only ordinal
ranks matter; sophisticated applications such as metasearch engines need to distin-
guish rankings with all scores close to each other from rankings that have wide gaps

8

in terms of scores. Also, some applications may wish to produce variable-length
result lists by thresholding on absolute scores rather than presenting the top k with
a fixed k, if some of the top k results are only marginally relevant. (Chaudhuri
et al., 2005)

Suppose that, based on certain parameters and their values, it is possible to determine

which of several ranking algorithms will perform better in some situations than in others.

Also, suppose that for a particular document collection and query, an IR (or IRDB)

system can estimate the values of these parameters. These assumptions, if valid, give the

retrieval system the ability to choose the best algorithm in its repertoire for the situation

at hand. This was a major goal of this research and represents one of the ways in which

the research in this dissertation can be applied.

1.3 Wider Applicability of the Extended Measures

The performance measure equation extensions that were developed in this dissertation

for the ASL, MZE, ESL and MRR measures had a wider range of applicability than the

settings that they were used in for the dissertation. These measures, and the methodol-

ogy that was used to develop their associated equations, could also be applied in many

settings where the query-document model was different than the one that was used in

this dissertation.

The reason for this wider applicability is that the calculations for these extended

measures were not directly dependent on a query-document model. Basically, the algo-

rithms that calculated the values for these measures only needed access to two pieces

of information for each of the ranked documents: (1) whether or not the document was

relevant and (2) the retrieval status value (RSV) for the document. From this informa-

tion, the algorithms could determine the following information that was needed by the

combinatoric models for these extended measures: the number of document equivalence

classes, the relative sequence of these classes, the number of documents that each class

9

contained, and the number of relevant documents that each class contained. In addition

to this common information, all the performance measure combinatoric models required

the document cut-off value and, if the measure was the ESL, also required the requested

number of relevant documents. This relevance and RSV information could be obtained

efficiently; to collect this information, only a single had to be made over the documents

in a vector V of ranked documents.

IR performance evaluation software, like the trec eval programs (Voorhees and Har-

man, 2005), often lets the user of that software conflate graded relevance values, or

continuous relevance values, to binary relevance values (Kekäläinen and Järvelin, 2002).

This was accomplished by establishing a threshold value for the relevance value. Any

document that had an RSV that equals or exceeds this threshold value was considered

to be a relevant document by the software; otherwise, the document was considered to

be a non-relevant document.

1.4 Summary

The general research goal of this dissertation was the use of analytic, as contrasted with

retrospective, techniques to construct combinatoric models of IR ranking methods and

performance measures for weakly-ordered document collections. These models could be

used by researchers to predict system performance, to acquire a deeper understanding of

some of the factors that influence how IR performance measures work, and to develop

more accurate formulas for these measures. The main items of interest in this research

were the Average Search Length, the normalized average position of a relevant document

(A), the quality of a ranking method (A), and the development of performance measures

that could be calculated at arbitrary points in a vector of ranked documents and that

yielded correct results even when the documents were weakly-ordered.

10

Chapter 2

Background

Retrieval performance measures attempt to provide some indication of how well an in-

formation retrieval system performed (if used in a retrospective manner) or is expected

to perform (if used in a predictive manner). The Average Search Length is the major

measure that is used in this research. Much terminology and concepts appear as part of

this research. Definitions of many of them are a part of this chapter. It is important to

note that the research that is discussed in this document uses a single term model.

One may naturally wonder “Why is this research limited to just single term queries?”

The main reason is that this single term limit “allows us to fully understand many

retrieval characteristics and options that are far more difficult to understand in a multi-

term case” (Losee, 1998). Another very important reason is that multiple term queries

may introduce confounding factors (Johnson and Christensen, 2004) in a research model.

If the researcher is not cognizant of these factors, or the factors are not identified and

taken into account, then the study may have poor internal validity. A third reason is

that many queries, especially on the Internet, consist of just a single term (Jansen et al.,

1998). A number of issues may arise with multiple term queries — but can be ignored

in the single term case. These include the following issues: If the query terms are not

assumed to be independent, then how are term dependencies handled or modeled? Is

each query term equally important? If not, how are relative weights specified? Must

all of the query terms be present in a document for a match to occur? Do multiple

occurrences of a query term mean that they have more weight than a lesser number of

occurrences?

Each of the above examples represents issues that have the potential to complicate

a retrieval model. The effect of this is that it may hinder the understanding of the

characteristics of the information retrieval (IR) model under investigation.

The discussion of the definitions for the terminology and concepts that are used in

this research starts by stating that the formula for the Average Search Length (Losee,

1998) is

ASL = N
(QA + Q A)

+ 1/2, (2.0.1)

then proceeds by specifying the roles of the independent variables, followed later with

a more in depth treatment of these entities. Briefly, N is the number of documents to

be ranked, Q is the probability that the ranking is optimal, and A is the normalized

expected position of a relevant document from the front (i.e., document position 1) of

the ranking. In the above formula, A is defined as 1−A and Q is defined as 1−Q. The

values of Q and A are in the closed interval [0, 1].

The major part of the process of estimating the ASL involves computing the weighted

mean of A and A with the weights being Q (the proportion of rankings that are optimal)

and Q (the proportion of rankings that are worst-case), respectively.

Hence, given an arbitrary system, its collection of documents, the query, the ranking

algorithm, and the collective characterization in terms of N, Q, and A, the expected

performance of that system can be calculated. There may be other ways, now and in

the future, to estimate the performance of different ranking schemes. They, most likely,

will not be exactly identical to the methods which were the subject of this research.

However, if someone is interested in doing this kind of performance prediction research,

12

the methods they use will likely have much in common with those used in this research.

Documents with a binary query feature with frequency d may be presented to the

user in 1 of 2 distinct orders: all the documents with feature frequency d precede any

document with feature frequency d = 1 − d (optimal ranking) or vice versa (worst-case

ranking). Furthermore, it is assumed that the term weight for d is greater than that for

d. In essence, this holds when the query terms are positive discriminators. If the terms

are not positive discriminators, then the features must be switched (re-parameterized)

so that the product of d and the term weight is greater than the product of d and the

term weight. If we let d = 1, then, in a best-case (or optimal) ranking, all the documents

with feature frequency 1 are retrieved before those with feature frequency 0. Likewise,

in a worst-case ranking, all the documents with feature frequency 0 are retrieved before

those with feature frequency 1.

The mean position, A, on a unit scale, of a relevant document can be computed as

the sum of the weighted positions of those relevant documents with feature frequencies

d and d, respectively. These weighted positions are normed to be in the closed interval

[0, 1]. A document at the front of the ordering has a position of 0 because it is at the

low end of the spectrum (good performance), and a document at the back has a position

of 1 because it is at the high end (bad performance). A can be viewed as the expected

proportion of all documents that must be examined in the search process to reach the

average position of a relevant document in the ordering. It can also be viewed as the

mean normalized position of a relevant document in the ordering.

The variable A is computed by noting that documents with feature frequency d are

at the low end of the A spectrum (good performance) and those with feature frequency

d are at the high end of the spectrum (poor performance). The formula for A is

A =
1 + Pr(d) − Pr(d|rel)

2
. (2.0.2)

13

Notationally, the equation can be simplified by letting p = Pr(d|rel) and t = Pr(d):

A =
1 + t − p

2
. (2.0.3)

A ranking is an ordering or sequencing. With respect to the ranking of documents, in

response to a query, an optimal ranking is a sequence where the documents that contain

the query term are at the front of the sequence and any that do not contain the term

appear after the last document that contains the term in that sequence. A worst-case

ranking is the polar opposite (i.e., all of the documents that contain the term are at the

rear of the sequence, all of the other documents are at the front). A random-case ranking

is a sequencing where it is equally likely for any document, whether or not it contains

the term, to occupy an arbitrary position in that sequence.

2.1 Several Alternative Measures That Are of Inter-

est

Of course, the ASL measure is far from the only measure that can be used to help assess

ranking performance. Some of the many other measures are the Expected Search Length

(ESL) (Equation 2.1.1 on the following page), the Mean Reciprocal Rank (MRR) (Equa-

tion 2.1.3 on page 17), and the MZ-based E measure (MZE) (Equation 2.1.4 on page 17).

These three measures are of great interest for the last of the three research questions being

addressed by this dissertation. The discussion for this third research question takes place

in Chapter 10 (The ASL Measure and Three Frequently-Used Performance Measures).

In Chapter 10, combinatoric-based models are developed for each of these three mea-

sures, and for the Average Search Length (ASL) measure. These models provide an

analytic way to calculate the values of these measures and are very prominent in the

discussions that occur in Chapter 10.

14

2.1.1 Expected Search Length

The ESL (Cooper, 1968) is similar to the Average Search Length. The major difference

is that it counts the mean number of non-relevant documents retrieved before the kth

relevant document is retrieved in a rank-ordered vector V of documents. In other words,

it counts the mean number of non-relevant documents retrieved in order to produce a

given number k of relevant documents. For a query q, a vector V of ranked documents,

and a request for the first x relevant documents, the ESL can be defined as

ESL(V, x) = j +
i · s
r + 1

, (2.1.1)

where l is the level at which the xth relevant document occurs, j is the total number of

documents irrelevant to q in all levels which precede level l in the weak ordering, i is the

number of documents irrelevant to q in level l, s is the number such that the sth relevant

document found in level l of the weak ordering would complete the search for request q,

and r is the number of documents level l which are relevant to q.

Caution must be taken when referring to the Expected Search Length (ESL), though,

because Cooper’s definition is not universally used (Korfhage, 1997). Some researchers in

the IR community have defined the ESL to be the mean number of total documents (i.e.,

both relevant and non-relevant) retrieved in order to obtain the xth relevant document

in a rank-ordered vector V of documents. In other words, this alternative ESL definition

counts the mean number of total documents retrieved in order to produce a given number

x of relevant documents. For example, if the user requests 6 relevant documents and

a mean of 4 non-relevant documents are retrieved before the sixth relevant document

is retrieved, the Cooper version of the ESL calculates the mean number of retrieved

documents as 4 documents whereas the alternate version considers the mean to be 10

documents.

15

2.1.2 Mean Reciprocal Rank

There are several performance evaluation measures in IR that are based on the concept

of reciprocal rank (RR). The most well-known one is the mean reciprocal rank (MRR). It

is used very heavily in the TREC Question Answering (QA) tracks (Voorhees and Tice,

1999; Voorhees, 1999) to assess the performance of an IR system on a set of questions Q.

More formally, the reciprocal rank at document cut-off value k on a rank-ordered

vector V of answers is defined as

RR@k(V) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1/i, if ∃i ≤ k, such that V [i] is a correct answer, and

∀j < i, V [j] is an incorrect answer;

0, otherwise.

(2.1.2)

The above expression indicates that if a correct answer occurs among the first k

answers in a rank-ordered vector V of answers, then the expression’s value is the reciprocal

of the rank that corresponds to the first correct answer. If there is no correct answer

among the first k answers, then the reciprocal rank is defined to be 0. For example,

assume that k = 5 and that correct answers are at ranks 2 and 3. Then the reciprocal

rank is 1/2 because the first correct answer was at rank 2. Now, assume that the first

correct answer is at rank 7. In this case, the reciprocal rank is 0 because the first correct

answer was at a rank that is greater than 5.

According to Lin et al. (2008), two commonly used measures of a QA system’s perfor-

mance are “the top-1 accuracy and the top-5 mean reciprocal rank.” The top-1 accuracy

for a question set Q is the proportion of correct answers that are at rank 1 for the

questions in Q. It is defined as

top-1 accuracy = |{q|q ∈ Q and Vq[1] is a correct answer}|/|Q|,

16

where Vq is a rank-ordered vector of answers for question q. The mean reciprocal rank at

document cut-off k for a vector V of answers is defined as

MRR(Q)@k(V) =

∑
q∈Q

RR@k(Vq)

|Q| , (2.1.3)

where Q is a set of questions, q ∈ Q, and Vq is the rank-ordered vector of answers for

question q. Expressed another way, the MRR is the mean of the reciprocals of the ranks

of the first correct answer that occurs among the top k (in TREC, k = 5) answers in a

ranking for each question. Note that the sets of answers represented by V and Vq are

identical.

2.1.3 MZ-Based E Measure

This measure is based on measurement theory (Bollmann and Cherniavsky, 1981) (as

contrasted to Swets’ E measure which is based on the Receiver Operating Characteristics

(ROC) model (Swets, 1969; Pepe, 2003)).

This measurement theory version of the E measure (MZE) (van Rijsbergen, 1979;

Baeza-Yates and Ribeiro-Neto, 1999; Manning et al., 2008) is defined as

MZE = 1 − 2

P−1 + R−1
, (2.1.4)

where P represents precision and R represents recall.

2.2 Mathematical Presentation and Techniques

This research made use of mathematical proofs, probability theory, probability models,

simulation, and combinatorial enumeration algorithms. Below are brief descriptions of

each accompanied by remarks with respect to their various advantages, disadvantages,

17

and limitations.

2.2.1 Notation

This dissertation used mathematical notation, some of which may be unfamiliar to its

readers. The List of Symbols that starts on page xxxiii contains the symbols and con-

structs that are widely used in this dissertation. The logarithm is the natural logarithm

(i.e., log(x) ≡ loge(x), where e = 2.71828...). In practice, the logarithm base could just

as easily have been 2, 10, 16, or some other positive number greater than 1, because a

logarithm in one base can always be transformed to one in another base by multiplying

it by a constant that is specific to the two bases.

2.2.2 Proofs

“[P]roofs play a central role in mathematics [and in mathematics-related portions of

many of the sciences], and deductive reasoning is the foundation on which proofs are

based” (Velleman, 1994). The proofs that appeared in this dissertation came almost

exclusively from Chapter 5 (calculating Q for the coordination level matching (CLM)

ranking method), Chapter 6 (calculating Q for the inverse document frequency (IDF)

and decision-theoretic (DT) ranking methods), Chapter 7 (calculating A and the ASL),

and Chapter 8 (formula validation). Many of the concepts that were introduced in these 3

chapters needed to be rigorously established. Lemmas (i.e., conjectures) were associated

with these concepts and the validity of each lemma was established by a proof.

When performing research, one often observes patterns and relationships among the

various entities that are being studied. These observations lead to conjectures about

the relationships. The only way one can be sure that such a relationship is true, is by

presenting a valid mathematical proof. Essentially, “a mathematical proof is a convincing

argument that starts from the premises [statements assumed to be true], and logically

18

deduces the desired conclusion” (Bloch, 2000). Two strengths of a proof are that (1)

unlike a theory or hypothesis, it is not falsifiable and that (2) the derivation of a proof

can provide additional insight into a problem. One of the limitations of a proof is that

it is only available within the realm of precisely defined mathematical constructs. Its

power beyond those strictures depends upon the closeness with which the mathematics

models the entity being analyzed.

2.2.3 Probability Theory and Models

Probability theory is the branch of mathematics that deals with the analysis of random

events. One of its main uses, in the research contained in this document, was to con-

struct probability models. A probability model is a scientific model that incorporates

uncertainty. These types of models are also known as stochastic models.

A scientific model is an abstract and simplified description of a given phenomenon.
Certain basic aspects of this phenomenon are isolated as being of primary interest,
and an analogy is drawn between these aspects and some logical structure concern-
ing which we already have detailed information. Scientific models are most often
based on mathematical structures ...

When an investigator builds a mathematical model for a particular natural phe-
nomenon (say, the motion of an asteroid), important elements of this phenomenon
(the position, mass, shape, and speed of the asteroid) are identified with the ba-
sic elements of some mathematical structure (numbers). Certain fundamental facts
connecting the important elements of the phenomenon are restated as axioms relat-
ing the analogous mathematical entities. Finally, the more complex relationships
between the basic elements of the natural phenomenon are made to correspond
to laws or theorems in the mathematical structure. If this correspondence is rea-
sonably valid, the investigator does not have to experiment haphazardly with the
phenomenon to find new facts; instead, logical arguments based on the mathemat-
ical axioms can lead to a theorem that presumably has an analogy to a law of
nature. Experimentation can now be directed toward verifying this law.

The fact that an investigator need only concentrate on the few axioms that define
the mathematical structure of his model leads to a simplification and unification of
his knowledge concerning the natural phenomenon. Every fact known to him can
be reproduced by starting from the axioms and using mathematical logic. Thus,
his discipline becomes a cohesive whole in which all facts are logically interrelated,
rather than merely a list of isolated facts. (Olkin et al., 1994)

19

The above quote describes the concepts of scientific and mathematical models. Basically,

a model is an abstraction of some real world phenomena where the relationships between

the various parts can be modeled mathematically. Often, mathematical rules, or axioms,

can be developed to manipulate and study parts of the model. Many characteristics of

probabilistic models can be determined analytically. However, when these models are

too complex or intractable for analytical treatment, simulation methods are often used

to help answer questions about the phenomena being studied.

2.2.4 Simulation

Simulation is used in Chapter 8 to help estimate the quality of ranking value for large

document collections in situations where it is infeasible to use brute force techniques to

determine these values.

The Latin verb simulare means to imitate or mimic. The purpose of a simulation
model is to mimic the real system so that its behavior can be studied. The model
is a laboratory replica of the real system, a microworld (Morecroft, 1988). By
creating a representation of the system in the laboratory, a modeler can perform
experiments that are impossible, unethical, or prohibitively expensive in the real
world. (Sterman, 1991)

The quote above describes a simulation model and how such a model can be used to

study real systems that may be impractical, or impossible, to study or manipulate by

other means. More specifically, simulation can also be used to study information re-

trieval problems and is an alternative to the experimental approach so prevalent in IR

research. Heine (1981) labels this type of approach a “simulation experiment.” Para-

phrasing Cooper (1971a), these are the 4 situations in which simulation can be a useful

tool: the situation in which it is desired to modify a system that cannot, in practice, be

modified; the situation in which it may be possible to modify the system and observe

the result, but the cost to do so may be prohibitive; the situation in which the system

is so complex it cannot be described in an analytical form; and the situation in which a

system can be described analytically but cannot be solved analytically.

20

According to Law (2006), the main advantages of simulation are that it allows ar-

bitrary model complexity; it circumvents analytically intractable models; it facilitates

what-if and sensitivity analyses; the process of building a model can lead to system im-

provements and greater understanding; and it can be used to verify analytic solutions.

The main disadvantages of simulation are the following: it provides only solution esti-

mates; it only solves one set of parameters at a time; and it can take a large amount of

development and computer time.

2.2.5 The Query-Document Model

In the query-document model that was used in this dissertation, a query consisted of a

single term and each document contained at least one term. The query term may, or may

not, be contained in a document. Multiple occurrences of a term in a document have no

more significance than a single occurrence of the term. A document is either relevant or

non-relevant to a query; that is, the model uses binary relevance.

A particular query and an associated document collection of cardinality N was mod-

eled in this research by a set of ordered arrangements of nonnegative integers. Each

ordered arrangement was a sequence of k > 0 natural numbers that summed to N .

These were known as weak compositions of size k (i.e., weak k-compositions). In this dis-

sertation, the value of k was almost always 4. However, there were a few instances where

k had the value 2 (Sections 5.8.5 and 8.3.1) or where k had the value 3 (Section 8.3.1).

Weak compositions are important to this research because they were used to aid in the

construction of, and reasoning about, some of the performance models that are studied.

The next section contains a detailed discussion of weak compositions and relates them

to this query-document model.

21

2.2.6 The Relationship Between the Query-Document Model

and Weak 4-Compositions

We start this section by providing detailed information about weak and strong com-

positions. After that, we discuss how weak and strong 4-compositions can be used to

represent the query-document model that was used in this dissertation.

If each of the k numbers in an ordered arrangement (such as the type of arrange-

ment that is introduced in Section 2.2.5) must be positive, then the arrangement is not

only a weak k-composition, but is also a (strong) k-composition. The set of (strong)

k-compositions is a proper subset of the set of weak k-compositions. Figure 2.1 on the

following page depicts the relationship between sets of weak compositions and sets of

compositions. From this point on, (strong) compositions are generally referred to as

simply compositions unless the author wants to contrast a (strong) composition with a

weak one. The notation [k], used in the quote below from Bóna (2006), denotes the set

of the first k positive integers, that is, [5] represents the set {1, 2, 3, 4, 5}.
More formally, here are definitions for weak compositions and compositions:

A sequence (a1, a2, ..., ak) of integers fulfilling ai ≥ 0 for all i, and (a1 + a2 + ...
+ ak) = n is called a weak composition of n. If, in addition, the ai are positive for
all i ∈ [k], then the sequence (a1, a2, ... , ak) is called a composition of n. (Bóna,
2006)

For example, the compositions of size 4 of the number 5 are (1, 1, 1, 2), (1, 1, 2, 1),

(1, 2, 1, 1), and (2, 1, 1, 1). An alternative way of viewing them is as ordered sums:

5 = 1 + 1 + 1 + 2

= 1 + 1 + 2 + 1

= 1 + 2 + 1 + 1

= 2 + 1 + 1 + 1.

The weak compositions of size 2 of the number 3 are (0, 3), (1, 2), (2, 1), and (3, 0).

22

C

W

W\C

Figure 2.1: The relationships between the sets of compositions (C) and weak compositions
(W) for a positive integer n into k parts. The circle represents the set of compositions and
the backslash (\) symbol denotes set complementation. The set W\C denotes the weak
compositions that are not simultaneously compositions. That is, the set W\C denotes
the weak compositions that are not members of set C. The gray region represents the
members of W\C.

An alternative viewing is:

3 = 0 + 3

= 1 + 2

= 2 + 1

= 3 + 0.

Now, let us imagine that we have a collection of N documents and a particular single-

term query. Furthermore, let us assume that, for each document, we are interested in

two pieces of information: whether that document is relevant to the query and whether

its bag of terms contains the query term. This divides the document collection into 4

non-overlapping (i.e., mutually exclusive) categories: the documents that are relevant

and contain the query term (r1 denotes the cardinality of this category), the documents

23

that are relevant but do not contain the query term (r0 denotes the cardinality of this

category), the documents that are non-relevant and contain the query term (s1 denotes

the cardinality of this category), and the documents that are non-relevant and do not

contain the query term (s0 denotes the cardinality of this category).

Each of these categories contains anywhere from none to all of the documents in the

collection. No matter how many documents each category contains, though,

r0 + r1 + s0 + s1

must always equal N because each document must be a member of exactly one of these

4 categories. Notationally, let

N = R + S = n0 + n1

represent the total number of documents in a collection with

R = r0 + r1

representing the number of relevant documents and S = s0 + s1 representing the number

of non-relevant documents. Figure 2.2 on the next page uses a contingency table to

depict the relationships between these variables.

The above requirements are very naturally modeled by a set of weak compositions of

size 4 of N . Each weak composition is represented by the following ordered arrangement:

(r1, s0, r0, s1). There is nothing special about this particular arrangement, the sequence

above is just one of 4! = 24 different ways that we could have arranged those 4 distinct

symbols. Two of the remaining 23 possibilities are (r0, r1, s0, s1) and (r0, s0, r1, s1).

Essentially, each weak composition corresponds to one way that a collection of N

24

n0

n1

NR S

r0

r1

s0

s1

query term is present
in the document?

document is relevant?

Yes No

No

Yes

Figure 2.2: The relationships discussed earlier between N , R, S, r0, r1, s0, s1, n0, and
n1 can be succinctly expressed by this 2x2 contingency table.

documents can be divided into 4 non-overlapping (i.e., mutually exclusive) categories.

The set of weak compositions for a particular query and an associated document collection

of cardinality N represents all of the unique ways that N documents could be assigned

to the 4 categories just mentioned above. How to calculate the cardinality of this set is

discussed below.

A primary item of interest in some of the modeling scenarios that this research ex-

plored was the sample space of weak compositions for an N -document collection. More

specifically, the interest was in the generation of the sample space and the number of weak

compositions in this space whose elements satisfied particular mathematical constraints.

This research mainly used weak compositions of size 4 to help determine probabilities or

proportions in various modeling scenarios.

In IR terms, a weak composition of size 4 is a collection of N documents where at

least one of the following conditions must be true: the number of relevant documents

that contain the query term is 0 (i.e., r1 = 0), the number of relevant documents that

do not contain the query term is 0 (i.e., r0 = 0), the number of non-relevant documents

25

that contain the query term is 0 (i.e., s1 = 0), or the number of non-relevant documents

that do not contain the query term is 0 (i.e., s0 = 0).

Also, in IR terms, a composition of size 4 is a collection of N documents where all of

the following conditions must be true: the number of relevant documents that contain

the query term is positive (i.e., r1 ≥ 1), the number of relevant documents that do not

contain the query term is positive (i.e., r0 ≥ 1), the number of non-relevant documents

that contain the query term is positive (i.e., s1 ≥ 1), and the number of non-relevant

documents that do not contain the query term is positive (i.e., s0 ≥ 1).

According to Bóna (2006) and Weisstein (2003), the number of compositions of n into

k parts is given by

Ck(n) =

(
n − 1

k − 1

)
(2.2.1)

and the number of weak compositions of n into k parts is given by

C̃k(n) =

(
n + k − 1

k − 1

)
, (2.2.2)

where
(

n
k

)
denotes the number of combinations of n things taken k at a time, Ck(n)

denotes the number of compositions of n into k parts, and C̃k(n) denotes the number

of weak compositions of n into k parts. Figure 2.1 on page 23 illustrates an impor-

tant relationship between the set of weak compositions of n into k parts and the set of

compositions of n into k parts.

Related symbols that are used later in this work are C(n, k) (an alternate notation

for
(

n
k

)
), P (n, k) to denote the number of permutations of n things taken k at a time,

and n! to denote the number of permutations of n distinct objects.

The first identity above (i.e., Equation 2.2.1) provides a way to determine the cardi-

nality of the sample space when each integer in a composition must be at least 1. The

second identity (i.e., Equation 2.2.2) calculates the cardinality when an integer is allowed

26

to be 0. The latter identity is expected to be of more use in this research mainly because

any of the 4 integers in an ordered arrangement of 4 integers for a modeling scenario

could have the value 0. For example, the weak composition (r1, s0, r0, s1) = (1, 5, 0,

3) represents a nine (e.g., 1 + 5 + 0 + 3 = 9) document collection that has 1 relevant

document where the query term is present, 5 non-relevant documents where the term is

absent, 0 relevant documents where the term is absent, and 3 non-relevant documents

that have the term present.

2.2.7 Combinatorial Generation and Enumeration Algorithms

Basically, enumeration is simply counting. In this research, we were primarily inter-

ested in the use of generation and enumeration algorithms to help validate some of the

combinatoric formulas that were derived as part of the combinatoric-based versions of

the performance models for the ASL. Most of the validation-related discussions in this

dissertation occur in Chapter 8 (Validation of the Formulas for the Q′, A′, and ASL′

Measures). Section 10.8 discusses the validation of the versions of the performance mea-

sures that were derived in Chapter 10 and calculate correct results even when a collection

of documents for a query is weakly-ordered. In Section 10.8, we introduce the notions

of Type-T and Type-D performance measures. Briefly, we use Type-T as an adjective to

denote a performance measure whose calculated values are consistent with the assump-

tion that some of the documents in a vector V of ranked documents may have tied (i.e.,

duplicate) RSVs. And, we use Type-D as an adjective to denote a performance measure

whose calculated values are consistent with the assumption that all the documents in a

vector V must have distinct RSVs.

From the discussion about the query-document model in Section 2.2.5, we can view

27

a weak 4-composition (r1, r0, s1, s0), for an N document collection C, where

N = r1 + r0 + s1 + s0,

as one of the
(

N+3
3

)
unique ways that a query q could partition this collection into 4

mutually distinct parts. Any query q always maps to exactly one of these weak 4-

compositions. No matter how much time, energy, and ingenuity a user has, that user

cannot construct any more than
(

N+3
3

)
unique queries (from the viewpoint of our query-

document pair model). As a simplification, any weak 4-composition (r1, r0, s1, s0) can be

thought of as a “query” for a document collection of size N = r1 + r0 + s1 + s0.

The discussion below is applicable to the combinatorial model that is detailed in

Section 3.3. In this model, we are interested in counting the number of weak compositions

in the sample space that satisfy certain constraints. The question is “How do we do this?”

In some cases, it may be easy to do analytically. In others, we may still be able to do it

analytically, but with the expenditure of a lot more effort and possibly some ingenuity.

An alternative way is to generate all the weak compositions in the sample space, then

count the ones that satisfy the constraints. Another technique would be to count the

qualifying weak compositions, but not to generate them. To help put this in context,

and to provide more background, combinatorial algorithms are discussed below.

According to Kreher and Stinson (1999), combinatorial algorithms exist to investigate

combinatorial structures. They are informally classified according to their main purpose:

generation – construct all the combinatorial structures of a particular type; enumeration

– compute the number of different structures of a different type; and search – find at

least one example of a particular type (if it exists).

Every combinatorial generation algorithm can be trivially modified to also be a com-

binatorial enumeration algorithm; however, the converse is not true (Kreher and Stinson,

28

1999). The modification enhancement is to just add statements to count each combina-

torial structure as it is being generated and to output this tally at the completion of the

generation process.

Analytic formulas can often be used as an alternative to counting via combinatorial

algorithms. The branch of combinatorics associated with the derivation and application

of these formulas is known as enumerative combinatorics (Benjamin and Quinn, 2003;

Bóna, 2007; Charalambides, 2002, 2005; Goulden and Jackson, 1983). However, in many

situations, these analytic formulas can be difficult to derive or are intractable with re-

spect to manipulation. This is the area where combinatorial generation and enumeration

algorithms are often of great help.

If counting is the sole reason for using these algorithms, an enumeration algorithm

is preferred over a generation one, because “it is often easier to enumerate the number

of combinatorial structures of a particular type than to actually list them” (Kreher and

Stinson, 1999). A particular weakness of all combinatorial algorithms – in particular,

combinatorial generation algorithms – is that most combinatorial problems are big. Of-

ten, due to practical constraints such as computer memory size, processor speed, disk

storage requirements, and the computational complexity of the algorithm, the size of the

problem being investigated by a combinatorial algorithm has to be restricted.

2.3 Term and Query Operations

This section describes several of the basic operations that were used to decompose the

queries and documents, that were associated with the Cystic Fibrosis (CF) test collec-

tion, into tokens. Stoplists were applied to these tokens and the remaining terms were

stemmed. The resultant terms were later used to help construct a modified version of the

CF test collection where the original multiple term queries were transformed into single

term queries by a process that is described in Section 2.6.

29

These operations were necessary because the queries and documents that were asso-

ciated with a collection (e.g., the CF test collection) were generally not very useful in

their raw forms. These queries and documents typically needed to undergo several stages

of preprocessing in order to change them from their raw form into a form that was much

more amenable for the kinds of performance studies that occurred in this dissertation.

Basically, preprocessing decomposed the terms in the queries and documents into terms

(words) that were later normalized (via stemming) after non-content terms (e.g., a, the,

of, an) were eliminated by the use of a stoplist.. The remainder of this section provides

more detail about these operations.

2.3.1 Lexical Analysis

Lexical analysis is the first stage of automatic indexing and of query processing. It is

used to analyze a document (or query) to determine its terms and to decompose the

document (or query) into these terms. A software construct known as a lexical analyzer

implements this stage. Basically, a lexical analyzer breaks text into terms. A term may

be a word or a sequence of words (to be discussed subsequently).

There are three ways to implement a lexical analyzer:

• Use a lexical analyzer generator, like the UNIX tool lex (Lesk, 1975), to
generate a lexical analyzer automatically;

• Write a lexical analyzer by hand ad hoc [emphasis added]; or

• Write a lexical analyzer by hand as a finite state machine. (Frakes and Baeza-
Yates, 1992)

Which way is best depends on the situation. If the lexical analyzer is complicated,

then the first way is the best; if the lexical analyzer is simple, then handcrafting the

lexical analyzer (i.e., the second and third ways) may be the implementation technique

of choice. The latter of the handcrafted ways is superior to the other one because the

ad hoc implementation of the lexical analyzer is much more likely to contain errors and

30

inefficiencies. In this research, a lexical analyzer generator was used to produce the lexical

analyzer.

Conceptually, a term in this research corresponded to a single word. This begs the

question: What counts as a word or token in either the query or a document? An easy

reply is that terms consisting solely of letters should be words or tokens. However, Frakes

and Baeza-Yates (1992) indicates that “problems soon arise, however.” Some questions

related to potential problem areas are: Is a string of digits a token or should a token

possibly contain digits? Should hyphenated words be broken into their constituents?

Should other punctuation (e.g., commas, periods) be part of a token? Is the case of

letters of any significance in a word?

In greater detail, Frakes and Baeza-Yates (1992) lists these as potential issues:

• Digits—Most numbers do not make good index terms, so often digits are not
included as tokens. However, certain numbers in some kinds of databases
may be important (for example, case numbers in a legal database). Also,
digits are often included in words that should be index terms, especially in
databases containing technical documents. For example, a database about
vitamins would contain important tokens like “B6” and “B12.” One partial
(and easy) solution to the last problem is to allow tokens to include digits,
but not to begin with a digit.

• Hyphens—Another difficult decision is whether to break hyphenated words
into their constituents, or to keep them as a single token. Breaking hyphen-
ated terms apart helps with inconsistent usage (e.g., “state-of-the-art” and
“state of the art” are treated identically), but loses the specificity of a hy-
phenated phrase. Also, dashes are often used in place of ems, and to mark a
single word broken into syllables at the end of a line. Treating dashes used in
these ways as hyphens does not work. On the other hand, hyphens are often
part of a name, such as “Jean-Claude,” “F-16,” or “MS-DOS.”

• Other Punctuation—Like the dash, other punctuation marks are often used
as parts of terms. For example, periods are commonly used as parts of file
names in computer systems (e.g., “COMMAND. COM” in DOS), or as parts
of section numbers; slashes may appear as part of a name (e.g., ”OS/2”).
If numbers are regarded as legitimate index terms, then numbers containing
commas and decimal points may need to be recognized. The underscore
character is often used in terms in programming languages (e.g., “max size”
is an identifier in Ada, C, Prolog, and other languages).

• Case—The case of letters is usually not significant in index terms, and typi-
cally lexical analyzers for information retrieval systems convert all characters

31

to either upper or lower case. Again, however, case may be important in
some situations. For example, case distinctions are important in some pro-
gramming languages, so an information retrieval system for source code may
need to preserve case distinctions in generating index terms. (Frakes and
Baeza-Yates, 1992)

The lexical analysis in this research adhered to the following choices: case was in-

significant; any nonempty string of letters and digits, not beginning with a digit, was

regarded as a term; and all punctuation, spacing, and control characters were treated as

term delimiters.

2.3.2 Stoplists

Many of the terms that appear in a typical document are not good for indexing. Often,

these are terms that can be ignored because their discrimination value is marginal at

best. A stoplist contains a list of such terms. Salton and Smith (1989) proves that not

all terms are equally good for indexing. They provided a mechanism for selecting good

terms.

Sparck-Jones and Galliers (1996) says that the goodness of index terms had to be

evaluated in an indirect (i.e., extrinsic) way. Basically, the terms’ quality is measured

by how well they perform with respect to some other task. The performance measures

typically used are recall and precision.

Fox (1992) states that lexical analysis starts after the text has been processed and

stored. Here, the purpose is to take a stream of text and convert it into tokens. Many

of these tokens became candidate index terms. Later, after additional processing, a

significant number of these become actual index terms.

A function word is a word such as a preposition, article, auxiliary, or pronoun, that

chiefly expresses grammatical meanings and has little semantic content of its own (Web-

ster’s, 1996). This is in contrast to a content word, that carries semantic content, bearing

reference to the world independently of its position in a sentence (Webster’s, 1996).

32

Salton (1975) recognizes that certain high frequency words were not content-bearing

and, thus, have no positive effect on index term selection. The notion of a stoplist was

developed to exclude these words from being index term candidates.

Various techniques have been proposed in the literature for stoplist construction (Loos

et al., 2005). One way might be termed the “word class” approach. This approach

recognizes that certain classes of words are better content indicators for a document

than others. There are two strategies within this approach. One is to build a generic

stoplist (Hoch, 1994). This list consists of function words. An opposite strategy is to

designate words that fall into certain syntactic classes as content-bearing and to only use

these as index term candidates (Luhn, 1957; Prikhod’ko and Skorokhod’ko, 1982).

Another technique is to include the most frequently occurring words in a stoplist

(Luhn, 1957; Salton and Smith, 1989). According to Moens (2000), there are two vari-

ations on this. The first is to construct a generic stoplist by analyzing a general corpus

(e.g., the Brown Corpus of Standard American English (Wikipedia, 2006)) for the most

frequently used words. The second is to construct a domain-specific stoplist. This stoplist

just focuses on words in the subject area in the domain that the indexing is intended to

take place in. No matter which variation is chosen, a value is chosen to either specify the

maximum cardinality of the stoplist or to define the minimum frequency of occurrence

for a list entry (Moens, 2000).

Since function words tend to have a small number of characters, a shortcut that is

used by some indexing software implementations considers any word at or below a fixed

number of characters to be a function word (Ballerini et al., 1996). However, because

a content word (e.g., mob) could be removed with this scheme, an anti-stopword list

(Knaus et al., 1995) can be created to prevent the unwanted exclusion of short content

words as index terms.

33

A more sophisticated technique for identifying domain-specific stopwords uses machine-

learning techniques. This technique “uses a collection of training texts and information

about their relatedness in the training set (Wilbur and Sirotkin, 1992; Yang and Wilbur,

1996).”

2.3.3 Stemming

There are several varieties of stemming. One commonly used variation normalizes terms

mainly by eliminating variations in their prefixes and suffixes. This form and several

others are discussed in the subsequent paragraphs. No matter what variation of stemming

is used, the main purpose of any variation is to standardize the representation of term

variants. This enhances the chances of matching similar terms (i.e., increases recall) but

blurs the distinction between individual terms (i.e., decreases precision).

Stemming in the field of information retrieval aims at improving the match be-
tween the index terms of query and document text. The chances of matching in-
crease when the index terms are reduced to their word stems. Stemming, thus,
is a recall-enhancing device to broaden an index term in a text search (Salton,
1986). Additionally, stemming reduces the number of index terms by mapping
the morphological variants to a standard form. Consequently, the size of the text
representation decreases, which is beneficial in terms of storage. (Moens, 2000)

In addition to the above description of stemming , Moens (2000) states that “[t]here

are four automatic approaches to stemming.” Those approaches are table lookup method,

affix removal algorithms, letter successor variety stemmers, and the n-gram method.

The table lookup method is the simplest of the 4 approaches. It mandates that a

term and its corresponding stem be stored as a pair in a table or dictionary (Frakes and

Baeza-Yates, 1992).

Affix removal stemmers work by deleting prefixes, suffixes, or both, from a term in

order to reduce it to a stem (Frakes and Baeza-Yates, 1992). Some algorithms may also

transform the resultant stem. According to Moens (2000), stemmers use this approach

more than any of the others. The affix removal stemmers that are most frequently cited in

34

the literature are the Porter stemmer (Porter, 1997), the Lovins stemmer (Lovins, 1968),

the Krovetz stemmer (Krovetz, 1993), and the Lancaster Paice/Husk stemmer (Paice,

1990). The algorithms they employ are heavily dependent on which language they were

written to handle. This is not just a characteristic of the those three stemmers, but

of any affix removal stemmer. Frakes and Fox (2003) is a recent study, using various

measures, that compared how well many of these stemmers perform. The findings from

the study state that that these stemmers have various strengths and weaknesses and that

their differences are statistically significant.

Letter successor variety stemmers (Hafer and Weiss, 1974) use the frequencies of letter

sequences in a body of text as the basis of stemming.

The n-gram method conflates terms based on the number of consecutive characters

they share (Frakes and Baeza-Yates, 1992). If n = 2, the consecutive characters are

called digrams ; if n = 3, they are called trigrams. Even though this method is grouped

with the “stemming” approaches, in actuality, it is not a stemming technique because no

stem is produced. Essentially, this is a statistical procedure that evaluates the n-grams

to see which of them are most similar to those that exist in the n-grams derived from

the index database for the corpus.

2.4 An Historical Overview of Information Retrieval

Research

Information retrieval and the associated research involving it, from the mid-1940s up to

the present day, have been heavily influenced by the times that they were, or are, a part

of and the technology and resources available during those times. It would be remiss to

review the literature of research methodology and methods used in information retrieval

research and experimentation without also commenting about how technology and other

35

factors have changed the research focus in IR over time.

Two major factors in the 1950s contributed to the beginning of IR research. The first

factor was that, at the end of WWII, many “scientific, technical, and patent documents

generated during and shortly after the war necessitated new approaches to organizing,

controlling, storing, retrieving, and accessing documents. Further-more [sic], traditional

classification schemes were not sufficiently discriminating to deal with the rapid growth

of the scientific, medical, and legal journal literature” (Griffiths and King, 2002). Even

though the number of documents released would not be overwhelming by today’s stan-

dards, at that time, they greatly taxed the resources available to process them. More

importantly, those resources were more attuned to processing numeric data rather than

textual information. This shortcoming sparked research into finding effective methods,

tools, and techniques for the indexing of, and the search for, documents. The second fac-

tor was related to the increasing use of computers for processing repetitive tasks. In was

quickly recognized that computers could assist with the representation, storage, retrieval,

and classification of documents.

During the first period, which lasted up until around the mid-1970s, IR research

was concerned with the improvement of search engines (using today’s terminology) for

scientific literature. The major emphasis was on the development and improvement of

computer algorithms so that they could better and more efficiently handle the great

amount of electronic data and information resources (Kagolovsky, 2003). This period

“focused mostly on experimentation and evaluation that attempted to address IR systems

inherent weaknesses. In particular, searching during these early phases exhibited slow

system response times and expensive human intervention” (Griffiths and King, 2002).

Since no IR system is perfect, they all contain flaws (i.e., they retrieve documents that

are not pertinent (non-relevant) to a query and miss pertinent (relevant) ones). Griffiths

and King (2002) says that “[i]n fact, a great deal of effort and controversy in the 1950s

36

and 1960s focused on developing measures and methods for IR experimentation and

evaluation. Much of IR research and design from the 1950s through the 1970s aimed at

reducing these errors”.

Information retrieval systems then were considerably different than the ones that we

encounter today. Two particularly telling comments about the strictures that IR systems

and researchers had to operate under during that period (but not in the later periods)

are those below:

These first systems were hampered by the limited processing power of early com-
puters, and the limited capacity for and high cost of storage. They operated offline,
in a batch processing mode. It was not until the 1970s that IR systems made it
possible for users to submit their queries and obtain an immediate response, allow-
ing them to view the results and modify their queries as needed. The development
of magnetic disk storage and improvements in telecommunications networks at this
time made it possible to provide access to IR systems nationwide. (Rasmussen,
2005)

and

Computers were expensive, difficult to operate, and not very user-friendly. They
were in the hands of engineers, and potential users did not interact with computers
directly. Queries were submitted to the intermediate person, searches were per-
formed in batches, and answers could take days. In the l970s, information systems
were still not powerful enough to store large databases, and were only able to work
with bibliographic databases. As a result, research was focused primarily on devel-
opment and improvement of techniques for storing and retrieving text documents.
(Kagolovsky, 2003).

As a consequence, the research focus was on system issues such as the development

and improvement of algorithms and storage and retrieval techniques. The user was

not a major concern during this period. However, even during this systems-focused

period, researchers were beginning to realize that information retrieval needed to start

incorporating the user into its experiments and studies. This led to a more encompassing

view of IR and the start of the second period.

The second period, from about 1975-1985, began when researchers increasingly saw

the need to make the user an integral part of their work. Salton and McGill (1983)

says that even though “most practitioners interested in the design and operations of

37

actual retrieval systems are concerned only about applied computer science,” that one

must not fail to understand that IR has strong links to both computer science and

“behavioral science, since retrieval systems are designed to aid human activities.” The

impetus for exploring the connection between IR and behavioral science was spurred by

discussion on the concept of “relevance.” Relevance is certainly one of the key pillars

of IR, some might argue that it is the fundamental pillar of IR (Borlund, 2003). A

strong association between relevance and user satisfaction has been accepted by most

researchers. Relevance has been extremely problematic. Schamber (1994) lists 80 factors,

suggested by the IR research literature (Cuadra and Katter, 1967; Rees and Schultz,

1967; Cooper, 1971b, 1973) that she studied for her article, that affect relevance. In

fact, relevance has become so important that it has become an area of study in its own

right (Schamber et al., 1990; Schamber, 1994). Methods for its evaluation have been the

focus of many studies and much debate. Even at the present time, this debate continues.

During this period, users’ actions, thought processes, and characteristics were intensively

examined and discussed. One of the key concepts driving research into the understanding

of users’ cognitive processes with respect to IR has been Belkin’s Anomalous State of

Knowledge (ASK) (Belkin et al., 1982).

The third period, which started around 1985 and is still continuing, has to do with the

realization that information retrieval is inherently an interactive and dynamic process.

Within the last two decades much has changed about users’ information seeking processes.

Technology has certainly been an important factor. During that time, there has been

tremendous advances in computer accessibility for the masses, computational power,

memory, storage (both in quantity and type), price decreases, computer networking,

graphical interfaces, data transfer rates, to name a few. The end result of all of this

is that the user during this period, and probably even more so today, is quite likely to

own her or his own computer and do her or his own searching as contrasted to using

38

an intermediary (e.g., a reference librarian) which was very common during the second

period. Technology during this period greatly enabled the search process, which is highly

interactive, dynamic, and iterative, to be often carried out, solely, by the user, in real-

time instead of in batch. This process of searching for information, obtaining results,

evaluating those results, possibly modifying the query in response to those results, and

then using the refined query to search again, constitutes the body of a loop that may

be repeated several times until the user achieves some degree of satisfaction or gives up.

This is the notion of relevance feedback (Spink and Losee, 1996).

Technologies such as CD-ROM and improved communication networks have widened
the availability of computer-based retrieval systems. Others, such as full-text
databases and hypertext and hypermedia systems, have enlarged our notion of what
constitutes an information record in an information retrieval system. A paradig-
matic shift has occurred in the research front, to user-centered from system-centered
models. (Tague-Sutcliffe, 1992)

Tague-Sutcliffe, in the above quote from the 1992 update to her earlier paper (Tague,

1981), remarks that, in the interim between the publication of these two papers, the IR

paradigm had shifted from system-oriented models to user-centered models. Relevance

feedback is a key feature of many user-centered models.

2.5 IR Performance Evaluation and Test Collections

The experimental approach has been — by far — the predominant way to evaluate the

retrieval performance of an IR system. To contrast, the approach that we chose in this

dissertation was analytical – which could be viewed as being the direct opposite of the

experimental approach. In this dissertation, the goal was predictive, that is, to determine

how well an Information retrieval system, or some part of it, was likely to perform with

some degree of confidence before the system processed a given query. The experimental

approach, by its very nature, concerns itself with retrospective performance evaluation.

In this section, we continue by specifying the main elements in an IR performance

39

evaluation and providing a brief history of early to current day IR test collection de-

velopment. Following that, we provide a formal definition of a test collection and then

discuss some trends that have been occurring in test collection development during the

last decade. Next, we discuss some of the requirements for ‘ideal’ test collections; the

overwhelming preponderance of these requirements come directly from the seminal article

titled Information Retrieval Test Collections (Spärck Jones and van Rijsbergen, 1976).

These requirements are mostly system-centered. Tague-Sutcliffe (1992) lists several ad-

ditional requirements to make the user an integral part of the evaluation and collection

development. Finally, we conclude this section by listing some criteria that help de-

termine whether a specified test collection would be “good” or “bad” for a particular

evaluation study. The test collections that were used in the research for this dissertation

were discussed in Chapter 3 (Method), starting at the beginning there and continuing

for several pages.

2.5.1 IR Performance Evaluation

The experimental approach uses a controlled experiment (i.e., laboratory-style method-

ology) to assess the performance of an IR system. An evaluation using this approach

consists of these 3 elements: a set of queries, a set of documents, and relevance judgments

for the relationship between each query and document in the reference collection. These

three elements, taken together, have been referred to in the IR literature, at various

times, as either a benchmark collection, a reference collection, a test reference collection,

or simply a test collection. Out of these 4 alternatives, we elected to use the phrase

“test collection” in this dissertation. A formal definition of a test collection appears in

Section 2.5.2 on the next page.

Performance is measured by benchmarking. That is, the retrieval effectiveness of a

system is evaluated on a given test collection. Figure 2.3 on the following page represents

40

a prototypical experimental approach. Problems with benchmarking include the follow-

ing: performance data is valid only for the environment under which the IR system is

evaluated, building a benchmark corpus (i.e., the collection of documents) is a difficult

task; using a benchmark without knowing, or respecting, the assumptions, constraints,

and purposes that it was built for, can lead to misleading results.

Algorithm
 under test

Standard
document
collections

Standard
queries

Standard
result

Evaluation

Retrieved
result

Recall,
precision,

fallout,
generality,

mean average precision (MAP),
mean reciprocal rank (MRR),

etc.

Figure 2.3: The Prototypical Experimental Retrieval Performance Evaluation Schema.
Source: Adapted from Mooney (2006).

2.5.2 A Formal Definition of a Test Collection

Definition. An information retrieval model is a quadruple [D,Q,F , R(qi, dj)]
where

(1) D is a set composed of logical views (or representations) for the documents in
the collection.

(2) Q is a set composed of logical views (or representations) for the user infor-
mation needs. Such representations are called queries.

(3) F is a framework for modeling document representations, queries, and their
relationships. [The most important relationship is the one that relates each
query to its set of relevant documents.]

(4) R(qi, dj) is a ranking function which associates a real number with a query
qi ∈ Q and a document representation dj ∈ D. Such ranking defines an
ordering among the documents with regard to the query qi. (Frakes and Baeza-
Yates, 1992)

41

Using parts of the Frakes and Baeza-Yates definition, we define a test collection (TC) as

a triple [D,Q,F] that has elements (1), (2), and (3) from that definition.

The purpose of the above definitions is to provide a formal basis for the notions of

information retrieval model and test collection. These notions are particularly germane

to the material and discussions that occur in Chapter 8 (Validation of the Formulas for

the Q′, A′, and ASL′ Measures), Chapter 9 (The ASL Performance Measure Variants

and Empirical Document Rankings), and Chapter 10 (The ASL Measure and Three

Frequently-Used Performance Measures).

2.5.3 Several Generations of Test Collections

Many of the early test collections are based on small test collections such as CACM (3,204

documents; 64 queries; 1.5 megabytes in size) (Fox, 1983), ISI (also known as CISI) (1,460

documents; 112 queries; 1.3 megabytes in size) (Fox, 1983), CRAN (also known as the

Cranfield collection) (1,400 documents; 225 queries; 1.6 megabytes in size) (Cleverdon,

1997), MED (also known as MED1033) (1,033 documents; 30 queries; 1.1 megabytes in

size) (Salton and Buckley, 1990), and TIME (425 documents; 83 queries; 1.5 megabytes

in size) (http://www.cs.utk.edu/~lsi/corpa.html (last accessed on April 7, 2010)).

Different researchers used different test collections and evaluation techniques.

The Cranfield tests on index language devices (Cleverdon, 1997) was a seminal event

for information retrieval test collection development and performance evaluation. It

established methodologies and procedures that are in use to this present day.

The first generation test collections – CRAN, CACM, CISI, and MED1033 – came

about in the 1960s and 1970s and were characterized by their small size (using today’s

standards). At the time that they appeared though, their sizes were very reasonable

once computer accessibility and cost in addition to storage availability and its costs were

considered. The main emphasis during this time was on ad hoc queries. Quite often

42

the document collections were not full-text. It was not an all unusual to find that a

“document” consisted only of a title, an abstract, and some keywords.

The second generation test collections started in 1992 with the Text REtrieval Con-

ference (TREC). They were orders of magnitude larger than those of the first generation

and used pooling (Jones and van Rijsbergen, 1975) because the collections were so large.

With the first generation test collections, it was possible — if one had enough persever-

ance and time — to find all of the relevant documents for each query. However, this was

not feasible when the test collections started to become real large. Instead of judging

each document, only the documents in the pool are judged. An implicit assumption,

though, is that each relevant document is retrieved by an least one IR system. The

TREC conferences have been of seminal importance to the areas of IR experimentation

and evaluation. A brief history of it and its objectives appear in Section 2.5.5 on page 45.

Test collection development during this area started to incorporate the notion of a “user.”

The third generation test collections started at the end of the 1990s and continue to

today. These collections are associated with well-known efforts such as the Amaryllis

campaign (Landi et al., 1998), CLEF (Kluck, 2003), INEX (Lalmas, 2005; Lalmas and

Tombros, 2007), NTCIR (Kando et al., 1999), and the ongoing development of new and

expanded test collections for TREC (Voorhees and Harman, 2005).

The performance evaluation research discussed in this dissertation occurred during

the third generation test collection period. Performance evaluation in this period, as in

the prior two periods, has been mostly empirical and retrospective. The main contri-

bution of this dissertation research was the creation of equations and procedures based

on analytic and combinatoric concepts that could be used to predict, study, and obtain

a better understanding of IR system performance, under certain circumstances, for a

query or set of queries. The method of performance evaluation used in this dissertation

contrasted sharply with the methods by which performance had been typically evaluated

43

in IR during the third generation period. For example, at the TREC conferences, the

performance evaluation process had been empirical and retrospective; the process used

in this dissertation was analytical and predictive.

Whereas the first generation test collections were for ad hoc information needs, the

second and third generation also developed collections for emerging and specialized re-

trieval areas. For example, the CLEF test collections focused on European languages and

cross-language information retrieval; the INEX test collections were for the evaluation of

XML retrieval in mostly ad hoc situations; and the NCTIR test collections were for East

Asian languages and cross-language information retrieval.

2.5.4 Design Requirements for an Ideal Test Collection

The Spärck Jones and van Rijsbergen (1976) article appears to be the first instance in

the IR literature of a comprehensive and detailed set of design requirements for test

collections. In this article, explicit requirements are specified for test collections, per se,

and also for their individual components (i.e., documents, requests, relevance judgments).

The motivation for these requirements are from their (and the IR research commu-

nity’s’) “[e]xperience with the defects and limitations of past test collections . . . ” (Spärck

Jones and van Rijsbergen, 1976). One omnipresent problem was the small sizes, both in

terms of documents and queries, of many of the collections being used in the research

studies of that era.

Spärck Jones and van Rijsbergen (1976) explicitly states that these design require-

ments were developed from a non-exhaustive survey of approximately 30 text collections

that had been used in various studies which had been reported in the research literature

of that time. The requirements arose from 3 kinds of needs: purely formal needs related

to statistical validity, needs related to the control of variables, and the need to be able

to hopefully extrapolate experimental results to real-world systems.

44

Listed below are the specific requirements for test collections. The Spärck Jones

and van Rijsbergen (1976) article specifies other sets of requirements for documents,

requests, and relevance judgments but these are not given below because they are rather

extensive and are detailed expansions of some of the material that appear as test collection

requirements.

The ideal collection(s) should also exhibit on the other hand variety in different re-
spects, and on the other homogeneity. This is necessary both from an experimental
point of view in that specific devices should be tested both for consistency and for
discrimination; and from the point of view of representation, since test collections
must reflect retrieval environments which are sometimes characterized by variety
and sometimes by homogeneity. Thus we may say that from a material point of
view, the ideal collection(s) should be

1. various in content : i.e. documents and requests should cover a range of
subjects, e.g. science, social science, news, including subjects of difference
specialization and hardness; and
homogeneous in content.

2. various in type: i.e. documents should be of different kinds, e.g. popular,
specialized, survey, etc., requests be e.g. broad, narrow; and
homogeneous in type.

3. various in source: documents should cover a range of journals and journal
types; and
homogeneous in source.

4. various in origin: i.e. documents should represent authors of different origins
and status, requests different users and different needs; and
homogeneous in origin.

5. range over time: documents should be of different dates, and requests of
different dates both for different users and the same user; and
coincide in time.

6. various in natural language; and
homogeneous in natural language. (Spärck Jones and van Rijsbergen, 1976)

2.5.5 Text REtrieval Conference (TREC)

TREC is an annual conference that originated from the TIPSTER program sponsored

by the Defense Advanced Research Projects Agency (DARPA). It became an annual

conference in 1992, co-sponsored by the National Institute of Standards and Technology

45

(NIST) and DARPA. Participants are given parts of a standard set of documents and

topics (from which queries have to be derived) in different stages for training and test-

ing. Participants submit the the values of various measures (e.g., recall, precision, mean

average precision (MAP) (Voorhees, 2000), mean reciprocal rank (MRR) (Voorhees and

Tice, 1999)) for the final document and query corpus and present their results at the

conference.

The motivations for starting TREC were varied. The passages from Hersh (2003) and

Buckley and Voorhees (2005) below provide some insight.

One of the motivations for starting TREC was the observation that much IR eval-
uation research (prior to the early 1990s) was done on small test collections that
were not representative of real-world databases. Furthermore, some companies
had developed their own large databases for evaluation but were unwilling to share
them with other researchers. TREC was therefore designed to serve as a means
to increase communication among academic, industrial, and governmental IR re-
searchers. Although the results were presented in a way that allowed comparison of
different systems, conference organizers advocated that the forum not be a “compe-
tition” but instead a means to share ideas and techniques for successful IR. In fact,
participants are required to sign an agreement not to use results of the conference
in advertisements and other public materials (Hersh, 2003)

In the three to four years immediately preceding TREC-1 [the first TREC confer-
ence], test collection evaluation as seen in published papers had become increasingly
chaotic. Computing resources had become cheap enough so that many more groups
could perform retrieval experiments, but the groups did not agree on how to eval-
uate those experiments. Papers reported scores for only the authors’ preferred
measure, when each of the following was preferred by someone [...]: precision at
ten documents, recall measures, utility, full recall-precision curves, three-point aver-
ages from the recall-precision curves, ten-point averages, and eleven-point averages.
Even when papers reported what they called the same measure — for example, a
three-point average — the implementation of the measure often differed [...]. Thus,
it was unusual that the results presented in any two papers could legitimately be
compared to each other, despite having used the same test collections. This was a
major problem when trying to learn from papers of the era. The reader was never
quite sure whether a single system evaluation comparison showed a poor system
becoming mediocre or a good system actually demonstrating a technique that was
generally useful. (Buckley and Voorhees, 2005)

The objectives of TREC were to provide a common ground (e.g., same set of queries

and documents, same evaluation method) for comparing different IR techniques, to en-

courage participation from industry and academia, and to foster the development of new

46

evaluation techniques, particularly for new applications.

The primary advantages of TREC were the large size of the test collections, the use

of full-text (as contrasted with abstracts), the queries and relevance judgments provided,

the continuous development with support from the U. S. Government, and that the

“careful attention paid to appropriate design criteria will allow unanticipated use in

future experiments to be successful” (Sparck Jones, 2005). Elaborating on this, Sparck

Jones writes:

The TREC collections have been formed with care, to obtain realistic document
files and requests as well as extensive relevance assessments. Moreover, with several
different collections and broadly based relevance pools, the results obtained should
be free from hidden biases and usefully general or generalizable. (Sparck Jones,
2005)

When comparing the results of IR systems, “[a]n important element of TREC is to

provide a common evaluation for the systems. TREC reports a variety of recall- and

precision-based evaluation measures [...]” (Harman, 2005). Four basic types of evaluation

measures were in use at the TREC conferences: summary table statistics, recall-precision

averages, document level averages, and average precision histograms (Baeza-Yates and

Ribeiro-Neto, 1999).

2.6 Constructing Single Term Queries

This research used single term queries. A particularly vexing problem with respect to this

research was that the queries in all of the candidate test collections (described starting on

page 62 in Section 3.1.1) had multiple (as contrasted to single) terms. The question that

quickly appeared was “How do we obtain single term queries for the set of documents

in an arbitrary test collection?” There were several ways to go about this, none of them

were particularly appealing. But, when the query had to be single term, there just were

not many good choices for mapping, or distilling, a multiple term query into a single term

one that had a strong semantic relationship with the intended meaning of the query.

47

One possible way would be to replace each multiple term query by a randomly chosen

term that appeared in the original query. The main advantage of this approach was

that the relevance judgments that came along with the test collection could still be used.

Some rather obvious problems with this were that the random term could be a function

word (e.g., the, a, of) or it could be a content word that had a minimal relationship to

the spirit of the query. For example, suppose the query was related to some aspect of

malaria-eradication efforts by the United Nations, the term bookmark appeared in the

query, and this term was chosen to be the single term representative of this query. The

odds were that this term would not a a good representative for the topic that this query

addresses.

Another possible way might be to select the most frequently occurring content term

in the query as the representative. One problem with this way was that this term may

have a very loose semantic relationship with the meaning of the query. Another problem

might be that there were several content terms that have a frequency that is higher than

that of any of the others. Which one should be chosen?

Still another possible way involved breaking an n-term query into n one-term queries,

then choosing from among these one-term queries the one that had the best semantic

relationship to the multiple term query. If more than one “best” query was found, then

one of them could be randomly chosen as the single term representative.

It is very important to the scientific credibility of any multiple- to single-term distil-

lation technique that the resultant term be as strongly related, as is technically possible,

given the very tight constraint (i.e., reducing many terms to just one) that researchers, or

computer algorithms, often work with, to the set of relevant documents that is associated

with the query. This means that a researcher, or software algorithm, has to be careful

about the manner in which this representative is chosen. It is imperative that whatever

manner is chosen be scientifically defensible.

48

A much better way to effect this single term representation is a strategy that generates

a synthetic single term query for each query in the collection in such a way that the term

best represents the query with respect to its relevance set, and the relevance sets of all the

other other queries, that comprise the query set for the collection. The generated query

for a query and relevance set combination could be viewed as a one-term summarization,

or distillation, of those in the relevance set documents. Note that the best term may not

be one that is in the query. A mechanism to select such a term, using machinery from

language models and information theory, is described in the next section.

2.7 Language Models and Relative Entropy

The language model (LM) approach (Ponte and Croft, 1998) to document ranking is

a probabilistic approach. It differs significantly, however, from the classic probabilistic

model in that it does not attempt to group documents into relevant and non-relevant

categories. The language model approach ranks a document according to how likely its

model would produce the query. In this approach, each document and each query has

its own language model associated with it. A language model for a query-document pair

is a probability distribution over the terms comprising that query-document pair. Since

the number of terms is finite and the distribution is discrete, a language model is a prob-

ability mass function. That means, among other things, we can use information theory

concepts (Cover and Thomas, 2006; Jones and Jones, 2000; Jelinek, 1997; Luenberger,

2006) to compare two language models whose elements range over the same domain.

The mechanism described here is used in Section 3.2.1 to map a multiple term query to

a single term query.

The interest in language models for this research was limited to just using some of the

theory associated with them and information theory to help construct single term queries.

At this point in the discussion, one might naturally ask questions similar to “What was so

49

special about the language model-based approach to picking a single term representative?

Would other approaches have worked just as well, or better? How about just randomly

choosing one of the content words in the query as its single term representative – it

certainly would be a lot simpler than this LM-based approach?” The answers to the first

two questions are discussed below. The answer to the third question is in Section 2.6.

In this dissertation, the primary reasons for selecting this LM approach were that

information retrieval language models seek to model the query generation process, have

a very sound theoretical grounding, and are frequently used in various studies to help with

automatic query generation (Lafferty and Zhai, 2001; Berger and Lafferty, 1999). Another

important reason was that this research may be extended one day to handle multiple

term queries. An attractive feature of choosing the particular distillation approach used

in this dissertation was that the approach could be easily modified to generate two-term

queries, three-term queries, or queries with a somewhat arbitrary number of terms. On

a historical note, Lafferty and Zhai remark:

Interestingly, the very first probabilistic model for information retrieval, namely the
Probabilistic Indexing model of Maron and Kuhns . . . is, in fact, based on the idea
of “query generation.” Conceptually, the model intends to infer the probability
that a document is relevant to to a query based on the probability that a user who
likes the document would have used this query. However, the formal derivation
given in . . . appears to be restricted to queries with only a single term. (Lafferty
and Zhai, 2003)

One technique to selecting a single term query, from one that had multiple terms,

would be to randomly select a term from the original query, but doing this came with its

own share of problems. The research in this dissertation did not have to be concerned

about these problems because there had been a good amount of research based on the

use of the information-theoretic concept of divergence to facilitate term selection in areas

such as automatic query expansion (Cai et al., 2001; Cai and van Rijsbergen, 2004),

model-based feedback (Zhai and Lafferty, 2001), and the generation of queries of various

qualities for blind relevance feedback (Jordan, 2005; Jordan et al., 2006).

50

In particular, we were interested later in making use of the scoring portion (the part

after the Σ (i.e., summation)) symbol of the relative entropy (also known as Kullback-

Leibler divergence) formula (Equation 2.7.1) from information theory to determine which

vocabulary term is the least significant contributor to the divergence between two lan-

guage models. In the notation below, RE is the abbreviation for relative entropy; KL is

the shorthand for Kullback-Leibler divergence; d denotes a document; q denotes a query;

w denotes a word; Mq denotes the language model for query q; Md denotes the language

model for document d; P (w|Mq) denotes the probability that word w occurs in Mq; and

P (w|Md) denotes the probability that word w occurs in Md, and log denotes the natural

logarithm.

Note that the notation for probability that is used later in this particular section is

different from the notation that is used in the remainder of this dissertation. In this

section, namely, Section 2.7, the notation used is the same one that is in the Manning

et al. (2008) block quote that appears at the end of this section. The reason for using

the same notation throughout this section, both inside and outside of the block quote, is

to minimize notational confusion. P (a), in this section, denotes the probability of event

a and P (a|b) denotes the probability of event a given that event b has occurred. Outside

of this section, the author prefers the use of Pr(a) and Pr(a|b), respectively.

The general equation for Kullback-Leibler divergence is

RE(d; q) = KL(d ‖ q) =
∑

w

P (w|Mq) log
P (w|Mq)

P (w|Md)
. (2.7.1)

If we slightly alter Equation 2.7.1, by replacing the symbol for word w with the symbol

t for a term over a vocabulary V, we obtain Equation 2.7.2, a form of the equation that

is more specific to information retrieval.

RE(d; q) = KL(d ‖ q) =
∑
t∈V

P (t|Mq) log
P (t|Mq)

P (t|Md)
. (2.7.2)

51

Relative entropy (Cover and Thomas, 2006; Jones and Jones, 2000; Jelinek, 1997)

measures how dissimilar two probability mass functions are. Smaller values indicate

greater similarity; larger values indicate greater dissimilarity.

How do we obtain P (t|Md)? We typically have to estimate it. A popular way to

do that is via the use of a technique known as maximum likelihood estimation (MLE)

(Law, 2006; Rose and Smith, 2002; Terrell, 1999). MLE is a statistical method for making

inferences about population parameters (e.g., mean, variance) of the underlying probabil-

ity distribution from sample data. The values that are estimated for the parameters are

those that are “most likely” given the sample data; i.e., they have the greatest probability

(likelihood) of obtaining the sample data.

According to Manning et al. (2008), “[t]he probability of producing the query given

the LM Md of document d using maximum likelihood estimation (MLE) and given the

unigram [bag of words] assumption is:

P̂ (q|Md) =
∏
t∈q

P̂mle(t|Md) =
∏
t∈q

tft,d

Ld

, (2.7.3)

where Md is the LM of document d, tft,d is the (raw) term frequency of term t in document

d, and Ld is the number of tokens in document d.” The symbol Π denotes multiplication.

A quick inspection of Equation 2.7.3 readily reveals a possible problem: if the query

has a term t that does not appear in document d, then the MLE probability is 0. What

do we do when a term t is present in the query but is not in the document model? The

passage below provides some insight about this issue.

The classic problem with using LMs is one of estimation (theˆ[i.e., caret] symbol
on the Ps is used above [in Equation 2.7.3] to stress that the model is estimated):
Terms appear very sparsely in documents. In particular, some words will not have
appeared in the document at all, but are possible words for the information need,
which the user may have used in the query. If we estimate P̂ (t|Md) = 0 for a term
missing from a document d, then we get a strict conjunctive semantics: Documents
will only give a query nonzero probability if all of the query terms appear in the
document. Zero probabilities are clearly a problem in other uses of LMs, such as

52

when predicting the next word in a speech recognition application, because many
words will be sparsely represented in the training data. It may seem rather less
clear whether this is problematic in an IR application. This could be thought of as
a human-computer interface issue: Vector space systems have generally preferred
more lenient matching, although recent web search developments have tended more
in the direction of doing searches with such conjunctive semantics. Regardless
of the approach here, there is a more general problem of estimation: Occurring
words are also poorly estimated; in particular, the probability of words occurring
once in the document is normally overestimated, because their one occurrence was
partly by chance. The answer to this . . . is smoothing. But as people have come
to understand the LM approach better, it has become apparent that the role of
smoothing in this model is not only to avoid zero probabilities. The smoothing of
terms actually implements major parts of the term weighting component It
is not just that an unsmoothed model has conjunctive semantics; an unsmoothed
model works badly because it lacks parts of the term weighting component.

Thus, we need to smooth probabilities in our document LMs to discount nonzero
probabilities and to give some probability mass to unseen words. There’s a wide
space of approaches to smoothing probability distributions to deal with this prob-
lem. In Section . . . , we already discussed adding a number(1, 1/2, or a small α) to
the observed counts and renormalizing to give a probability distribution. In this
section, we mention a couple of other smoothing methods that involve combining
observed counts with a more general reference probability distribution. The gen-
eral approach is that a nonoccurring term should be possible in a query, but its
probability should be somewhat close to but no more likely than would be expected
by chance from the whole collection. The general approach is that a non-occurring
term is possible in a query, but no more likely than would be expected by chance
from the whole collection. That is, if tft,d = 0 then

P̂ (t|Md) ≤ cft/T

where cft is the raw count of the term in the collection, and T is the raw size
(number of tokens) of the entire collection. A simple idea that works well in practice
is to use a mixture between a document-specic multinomial distribution and a
multinomial distribution estimated from the entire collection:

P̂ (t|d) = λP̂mle(t|Md) + (1 − λ)P̂mle(t|Mc)

where 0 < λ < 1 and Mc is a language model built from the entire document
collection. This mixes the probability from the document with the general collection
frequency of the word. Such a model is referred to as a linear interpolation LM.
Correctly setting λ is important to the good performance of this model.

. . .

The extent of smoothing in [this model] is controlled by the λ [parameter]: a small
value of λ . . . means more smoothing. This parameter can be tuned to optimize
performance using a line search (or, for the linear interpolation model, by other
methods, such as the expectation maximimization algorithm; . . .). The value need

53

not be a constant. One approach is to make the value a function of the query size.
This is useful because a small amount of smoothing (a “conjunctive-like” search)
is more suitable for short queries, whereas a lot of smoothing is more suitable for
long queries.

To summarize, the retrieval ranking for a query q under the basic LM for IR we
have been considering is given by

P (d|q) ∝ P (d)
∏
t∈q

((1 − λ)P (t|Mc) + λP (t|Md)).

The equation captures the probability that the document that the user had in mind
was in fact d. (Manning et al., 2008)

The expression above of the form a ∝ b denotes that a is proportional to b.

2.8 Statistical Significance in Query System Perfor-

mance

The purpose of much of the research in this dissertation was to show that the combinatoric

results were similar to the empirical results — it was not to obtain the best performance

results. Among the main objects of interest were ranked data and the performance of

various ranking methods with respect to this data. A central question was “How can

it be determined that the combinatoric results are statistically similar to the empirical

results?” A complicating matter was that the ranks are ordinal and the data typically did

not fit any known distribution; therefore, the use of parametric statistics was generally

inappropriate (much more about that topic is discussed later in this section). So, the

question became “Given the nature of the data used in this research and its research goals,

how can statistical significance be determined? What are the appropriate significance

tests to use for this research?”

The Kolmogorov-Smirnov (K-S) goodness-of-fit test (Conover, 1999) and the Mann-

Whitney test (also known as the Wilcoxon signed ranks test) (Conover, 1999) were the

two main significance tests used in this research. The K-S test was used for part of RQ

54

#1 (determining the characteristics of a combinatoric-based ASL performance measure)

and both tests were used for RQ #2 (determining how well the results predicted by a

combinatoric-based ASL matches up with the results obtained from actual document

rankings). The example in Section 3.4 provides more information about the context

in which this research employed the Kolmogorov-Smirnov test. The remainder of this

section discusses general statistical significance issues in IR performance research.

Van Rijsbergen (1979) states that “[o]nce we have our retrieval effectiveness figures

we may wish to establish that the difference in effectiveness under two conditions is

statistically significant. It is precisely for this purpose that many statistical tests have

been designed. Unfortunately, ... there are no known statistical tests applicable to IR.

This may sound like a counsel of defeat but let me hasten to add that it is possible to

select a test which violates only a few of the assumptions it makes.”

The use in IR experiments of formal statistical methods such as significance tests
has been relatively unusual. This gap has to do in part with the difficulty of
establishing the validity of particular tests or even of defining a suitable framework
for such tests (IR experimental data is notoriously difficult to pin down in any neat
statistical model). ... One problem that needs to be addressed when deciding on
a statistical significance test, is what (if any) assumptions can be made about the
shapes of the distributions. Many tests depend on strong assumptions about these
shapes. Unfortunately, IR is notoriously difficult to pin down in this respect. Of
course, the actual distribution will depend on which particular variable is being
measured as well as the circumstances of measurement; but many authors have
pointed to the difficulty of justifying any parametric assumptions. We are therefore
lead towards nonparametric tests (Siegel, 1956). (Robertson, 1990)

An earlier article (Robertson, 1981) discusses some of the difficulties.

Harter and Hert (1997) remarks that “[t]he role of significance testing and other

statistical issues related to retrieval evaluation have not been treated to any great extent

in the retrieval literature. In part this has been because the assumptions underlying

statistical treatment (independence, random sampling, assumptions of normality and

the like) are rarely met by Cranfield instruments”

One implication of the three paragraphs above is that it may be hard to use parametric

tests (e.g., t-test, F -test, analysis-of-variance tests) for significance testing in information

55

retrieval research. Many of the hypothesis-testing procedures used in science and engi-

neering for parametric statistics are based on the assumption that the random samples

are selected from normal populations. Many of these tests are still reliable when there are

slight deviations from normality, especially when the sample size is sufficiently large. If

parametric tests are used, in general, one or more of the statistical assumptions that they

are based on may have been violated and, depending on the degree of violation and the

robustness of the test, the p-value may have a sizable amount of error. Walpole (2002)

remarks that “this is particularly true for the t-test and the F -test.” Depending on the

robustness of the technique and other factors, this may or may not be a problem. If it

does turn out to be a problem, then researchers often have to resort to using nonparamet-

ric (i.e., distribution-free) statistical methods. The primary downside of non-parametric

tests is that “they do not utilize all of the information provided by the sample, and thus

a nonparametric test will be less efficient than the corresponding parametric test. Con-

sequently, to achieve the same power, a nonparametric test will require a larger sample

size than will the corresponding parametric test” (Walpole, 2002).

Van Rijsbergen states, with respect to significance testing in IR, that “[o]n the face of

it non-parametric tests might provide the answer”(van Rijsbergen, 1979). He mentions

one particular case where there is a single set of queries that is used in different retrieval

environments:

Therefore, without questioning whether we have random samples, it is clear that
the sample under condition a is related to the sample under condition b. When
in this situation a common test to use has been the Wilcoxon Matched-Pairs test.
Unfortunately again some important assumptions are not met. The test is done on
the difference Di = Za(Qi) − Zb(Qi), but it is assumed that Di is continuous and
that it is derived from a symmetric distribution, neither of which is normally met
in IR data.

It seems therefore that some of the more sophisticated statistical tests are inappro-
priate. There is, however, one simple test which makes very few assumptions and
which can be used providing its limitations are noted. This one is known in the
literature as the sign test (Siegel29, page 68 and Conover30, page 121). It is appli-
cable in the case of related samples. It makes no assumptions about the form of the
underlying distribution. It does, however, assume that the data are derived from

56

a continuous variable and that the Z(Qi) are statistically independent. These two
conditions are unlikely to be met in a retrieval experiment. Nevertheless, given that
some of the conditions are not met, it can be used conservatively. (van Rijsbergen,
1979)

One particular arena of applicability for nonparametric tests in IR research has to

do with the fact that much of results evaluation in that area involves the comparison

of ranked (i.e., ordinal scale) results. Parametric tests are ill-equipped to deal with

these as the analysis of this ordinal data involves an analysis of ranks. This kind of

analysis can, however, be very naturally handled by their nonparametric counterparts.

Some IR literature examples of, or references to, the use of non-parametric tests in IR

are the following: the Kolmogorov-Smirnov one-sample test for goodness-of-fit (Moon,

1993), the Wilcoxon-Mann-Whitney test (Keen, 1992), the sign test (Downie et al., 2005),

McNemar’s test (Downie et al., 2005), and the Wilcoxon signed ranks test (Downie et al.,

2005). These are just a sampling of the tests that were available for possible use in this

dissertation. Generally, the tests that are used in a particular situation depend very

much on the characteristics of the situation and the researcher’s goals.

2.9 Significant Sample Sizes for Document Collec-

tions and Queries

Robertson is the author of one of the early articles (Robertson, 1981) that solely addresses

methodological issues, in general, and sample sizes for document collections and queries,

in particular. Robertson (1981) states that, for the variable(s) – which may be a measure

(such as recall or precision), a cost, or some other entity – of interest in an experiment or

study, the acquisition of an adequate collection of documents is generally not a problem;

however, obtaining a sufficient number of queries can be very problematic. Additionally,

Robertson (1981) states that the problem is not so much with the number of queries,

but in obtaining a representative sample of them. Also, Robertson (1981) states that

57

“‘trapping’ the queries at an appropriate moment of their existence and obtaining the

necessary co-operation of the requesters, is by no means a trivial task.” Due to that

difficult task, many of the early studies only used a few tens, rather than a few hundreds,

of queries and, thereby, had questionable validity. Another problem with queries, almost

independent of the measure of interest, is that they typically have a wide variation for

that measure whereas the difference between the systems that are being compared can

be relatively small. Robertson’s article goes on to state that time can be a problem with

document collections. Two of the examples given have to do with a collection’s subjects

changing over time or the proportions of the documents for each subject varying over

time.

Robertson (1990) discusses the problem of determining an adequate sample size for

comparing two IR systems that have separate (i.e., independent) samples of requests.

Many Cranfield-style experiments use a “matched-pair” or “repeated measurement” de-

sign. The problem with that, especially with online, interactive, and iterative requests

is that once the user makes a request and responds to the results of that request, she or

he no longer has the same Anomalous State of Knowledge (ASK) (Belkin et al., 1982) as

before. This problem is also known as the learning effect (Harada et al., 2004). Using

a non-matched-pair design is a way to counteract these interaction problems. With the

assumption that the experimental design has independent samples, this paper provides

guidance for determining the sample size calculation for various distributional assump-

tions. There are sample size calculations for rectangular distributions, trapezium distri-

butions, normal distributions, exponential distributions, normal distributions with the

t-test, and binary distributions with the chi-squared test. Near the conclusion of this

paper, Robertson pointed out several limitations of his study: only two IR systems were

involved; its focus was “on a small number of somewhat artificial distributions” (Robert-

son, 1990); the distributions were mainly continuous, “[r]eal-life distributions tend to be

58

a lot messier, and in this respect the results are indicative only” (Robertson, 1990); and it

only provided “for tests of 50% power [...]. Results requiring higher power would involve

[even larger] samples [...]” (Robertson, 1990).

From the earlier paragraphs in this section, it was stated that two of the major

methodological issues that have bedeviled information retrieval researchers had been

how to obtain a representative sample of queries and how to determine an adequate

sample size for research projects. Generally, there has been a scarcity of literature that

solely focused on research methodology for IR system evaluation and that provided some

guidance on those and other issues. The guidance that was available for issues such as

those discussed above was typically buried in the research methods sections of individual

journal articles and was not treated in a comprehensive, cohesive, and uniform way. This

created difficulty in getting started for many scholars new to IR research. Robertson

(2001) says “[t]he methods and techniques associated with the evaluation of IR systems

... tend to be described in the methodology sections of research reports and papers. It

is unusual to see papers or monographs devoted to methodology per se.”

One notable exception to Robertson’s assertion above is the collection of papers edited

by Karen Sparck Jones. That collection (Jones, 1981) is slightly over a quarter century

old now (and somewhat outdated) but “must [still] be regarded as the classic source in

the field” (Robertson, 2001).

2.10 Summary

This chapter introduced the ASL measure, the normalized average search length A, the

notion of a ranking (i.e., a sequence of ordered documents), and the three alternative

measures (i.e., ESL, MRR, MZE) that the performance of the ASL measure is com-

pared with in Chapter 10 (The ASL Measure and Three Frequently-Used Performance

Measures).

59

This chapter also contained discussions on several other topics: the mathematical

machinery (i.e., notation, proofs, probability theory and models, the query-document

model, combinatorial generation and enumeration algorithms) that were used in subse-

quent chapters; term and query operations (i.e., lexical analysis, stoplists, stemming);

an historical view of information retrieval research; IR performance and test collections;

transforming multiple term queries to single term queries; statistical significance; and

significant sample sizes for document collections and queries.

60

Chapter 3

Method

The general method for carrying out this research consisted of steps to obtain the

Cystic Fibrosis (CF) test collection (Shaw et al., 1991) and other instruments that were

used to generate the input data for this research. Afterwards, a new test collection

namely, CF′, was created from the original CF test collection. This new collection was

a slightly modified version of the original collection. The purpose for creating it was to

change the data into a form more suited for the needs of this research.

Additionally, synthetic datasets and random sets of queries were created to help with

the testing and validation of equations that were developed for each of the 3 research

questions. Test data generation, and verification that the analytically-determined re-

sults matched the empirically-determined results, are discussed in detail in Chapter 8

(Validation of the Formulas for the Q′, A′, and ASL′ Measures).

3.1 Instruments

This research used 5 instruments, the main ones were the CF test collection and several

synthetic datasets and sets of random queries. The other instruments were the PubMed

stopword list, a lexical analyzer, and the Porter stemmer. Each of these is discussed

below.

3.1.1 The Cystic Fibrosis Test Collection

The Cystic Fibrosis test collection (Shaw et al., 1991) contains 1239 documents and

100 queries related to medicine. Each document has a document identifier (i.e., did)

associated with it and each query has a query identifier (i.e., qid) associated with it.

These identifiers are unique positive integer values with respect to their document and

query domains. Each of the queries has a relevance set (relset) associated with it. The

relset of a query identifies all the documents that are relevant to that query and the

set of relevance judgments for each relevant document. A relevance judgment is one

of three values: highly relevant, marginally relevant, not relevant. Each set of rele-

vance judgments has cardinality 4 because each query-document pair was judged by 4

individuals. Operationally, a relset for a query q (identified by a qid) is a set that con-

tains the dids of the relevant documents for that query. Associated with each did is

a set of 4 values, with each of the relevance judgments encoded as either 0 (not rele-

vant), 1 (marginally relevant), or 2 (highly relevant). More information about the CF

test collection can be found in Section 3.2.1. The CF test collection is one of sev-

eral collections that were used in this research and can be obtained from links on the

http://people.ischool.berkeley.edu/~hearst/irbook/cfc.html (last accessed on

April 7, 2010) Web page. The major advantage that this collection possessed was that

it was free and readily available for download from several World Wide Web sites. The

main disadvantage, with respect to the single term queries studied in this research, was

that the relevance judgments in this collection were based on multiple term queries. In

order to use any of the queries for this research, each of the multiple term queries needed

to be represented by a single term query. Another disadvantage was that the highest

level “document” information that this collection contained were abstracts.

62

3.1.2 Synthetic Datasets and Random Sets of Queries

The CF test collection was valuable for some of the small scale testing that occurred

during the research that this dissertation undertook. However, it did not have a sufficient

number of queries, number of documents, or queries with certain characteristics, that

were needed in the latter chapters of this dissertation for result validation at the .05 and

.01 significance levels. Synthetic documents and queries were generated to obtain the

necessary numbers and varieties of entities with the desired characteristics.

3.1.3 PubMed stopword list

This is a general list of words that PubMed found to have little value in describing

the information content of the documents in its collection. These words are known as

stopwords (Baeza-Yates and Ribeiro-Neto, 1999; Grossman and Frieder, 2004; Meadow

et al., 2007; Manning et al., 2008) in the information retrieval (IR) literature.

The PubMed stopword list was used to eliminate words that had low discrimination

power, with respect to that domain, from the documents and queries in the Cystic Fibrosis

test collection. The U. S. National Library of Medicine’s official list of stop-words were

obtained via this URL: http://www.ncbi.nlm.nih.gov (last accessed on April 7, 2010).

The official list, as of this date, appears in Table 3.1 on the following page.

3.1.4 Lexical Analyzer

The particular generator used is the one that appears in Figure 7.8 of Frakes and Baeza-

Yates (1992). Its source code was downloaded from this URL: http://www.dcc.uchile.

cl/~rbaeza/iradsbook/irbook.html (last accessed on April 7, 2010).

63

Table 3.1: The PubMed Stopword List.

Stopwords

A a, about, again, all, almost, also, although, always, among, an, and, another, any,

are, as, at

B be, because, been, before, being, between, both, but, by

C can, could

D did, do, does, done, due, during

E each, either, enough, especially, etc

F for, found, from, further

H had, has, have, having, here, how, however

I i, if, in, into, is, it, its, itself

J just

K kg, km

M made, mainly, make, may, mg, might, ml, mm, most, mostly, must

N nearly, neither, no, nor

O obtained, of, often, on, our, overall

P perhaps, pmid

Q quite

R rather, really, regarding

S seem, seen, several, should, show, showed, shown, shows, significantly, since, so,

some, such

T than, that, the, their, theirs, them, then, there, therefore, these, they, this, those,

through, thus, to

U upon, use, used, using

V various, very

W was, we, were, what, when, which, while, with, within, without, would

64

3.1.5 Porter stemmer

The implementation used is the algorithm that appears at the end of Chapter 8 of Frakes

and Baeza-Yates (1992). Its source code was downloaded from this URL: http://www.

dcc.uchile.cl/~rbaeza/iradsbook/irbook.html (last accessed on April 7, 2010).

3.2 Procedure

This section discusses the adaptation of the Cystic Fibrosis test collection, the creation

of the synthetic datasets, and the creation of the sets of random queries.

3.2.1 Adapt the Cystic Fibrosis test collection

This involved preprocessing the Cystic Fibrosis test collection to get it into a form more

amenable for performing this dissertation research. The details of this procedure are

discussed in the next few paragraphs.

Assume that an instance of the CF test collection was represented by [DCF, QCF, JCF].

Notationally, let Dtc, Qtc, and Jtc represent the sets of documents, queries, and relevance

judgments, respectively, for a test collection tc. A query q = q1q2...qm has m ≥ 0 terms,

a document d = d1d2...dn has n ≥ 0 terms. Each document or query may have a different

number of terms than many others of its kind. A document or query was considered trivial

if it had zero terms and nontrivial otherwise. Generally, it was expected that queries

consisted of possibly several terms and documents to consist of many more. However, it

was possible, though highly unlikely, that after stopword removal, a degenerate situation

could occur where a document, or a query, would have no remaining terms. It was

also possible that trivial documents or queries could result in some circumstances. This

research assumed that all documents and queries were nontrivial, both before and after

stopword elimination. Each query-document pair in a collection assumably had a unique

65

numeric identifier and was represented by an ordered pair (i.e., <id, entity>) where

id was the query-document pair identifier and entity was the bag of query-document

pair terms. Each document in a collection had exactly one identifier associated with

it; likewise, each identifier was associated with exactly one document. Stated more

succinctly, there was a bijection (i.e., one-to-one correspondence) between documents and

their identifiers and there also existed a bijection between queries and their identifiers.

Without loss of generality, let the numeric identifiers for the documents in Dtc be integers

that ranged from 1 to |Dtc|, inclusive, and, for queries, ranged from 1 to |Qtc|, inclusive.

The expression |a| denoted, in general, the cardinality of set a (or bag a).

A relevance judgment was an ordered triple <qid, did, rj> which represented the

fact that the query with identifier qid and the document with identifier did had a joint

relevance judgment value of rj. The relevance judgment value can take various forms,

depending on the collection, but, in this research, it was assumed that the form did not

vary within a collection. For example, the relevance judgment value was represented

by an ordered quadruple of natural numbers in the closed interval [0, 2] for the CF

collection. More formally, a CF relevance judgment consisted of judgments by four

distinct individuals and had the structure <rj1, rj2, rj3, rj4> where rji∈{1,2,3,4} ∈ {0, 1, 2}
and each individual judgment had a value of 0 (not relevant), 1 (marginally relevant), or

2 (highly relevant).

The main ideas in the several paragraphs above can be summarized by stating that,

for test collection tc:

Qtc was a set of <qid, bag of query terms> pairs;

Dtc was a set of <did, bag of document terms> pairs; and

Jtc was a set of <qid, did, relevance judgment(s)> triples.

Define access() as the accessor function for an n-tuple of the form <v1, v2, ..., vn>.

66

Informally, an accessor function references a specified element of an n-tuple. Depending

on context, the accessor can be used to either retrieve a value from the n-tuple or to

change one of its values. In a retrieval context, the expression

access(<v1, v2, . . . , vn>, i)

yields vi for i ∈ {1, 2, ..., n}, n > 0; it is undefined, otherwise.

In order to change the CF collection into the form needed by this research, a se-

ries of transformations were applied to its elements. These transformations yielded the

transformed collections CF′ = [DCF′ , QCF′ , JCF′].

DCF and QCF were transformed into DCF′ and QCF′ by, conceptually, first using their

associated stopword lists to remove any terms that are stopwords and placing the results

into DCF′ and QCF′ , respectively. Stemming was then applied to both DCF′ and QCF′ .

Finally, JCF was transformed into JCF′ via a simple mapping process.

Specify the operational definition of relevance

This was very important because the relevance judgment for a query-document pair was

not simply a relevant, or non-relevant, value in the CF test collection. In particular, each

query-document pair had four relevance judgments associated with it (Shaw et al., 1991;

Shaw, 1995). Each judgment was one of three values (i.e., highly relevant, marginally

relevant, not relevant). With these judgments, relevance could be defined in various

ways. Two of the many possible ways that a document could be relevant to a query

were if (1) at least one of its four judgments for that query was ‘highly relevant’ or

‘marginally relevant’ or (2) a document was relevant if at least one judgment for that

query was ‘highly relevant’ and the majority of the remaining judgments were either

’highly relevant’ or ’marginally relevant’. In this research, a document was relevant to a

query for the CF test collection when the condition that was denoted by Way 1 was true.

67

Create the CF′ test collection

This process consisted of first eliminating the stopwords from the queries and the docu-

ments. Next, a new set of relevance judgments associations was built by visiting each of

the original associations and mapping the four relevance judgments there into a single Y

(relevant) or N (not-relevant) judgment. More details about the steps can be found in

Appendix A.1, starting on page 515.

Select the best single term description of each query in the CF′ test collection

This process consisted of using language model theory (Ponte and Croft, 1998; Lafferty

and Zhai, 2001) to determine the best single term to represent a multiple term query

(Jordan et al., 2006). More details about this can be found in Appendix A.2, starting on

page 517.

Create a composite query for each single term description that maps to mul-

tiple queries

Unfortunately, the process of distilling a multiple term query into a single term query was

not guaranteed to produce a unique single term query for each of the original queries once

the entire collection of queries was taken into account. This process resulted in a CF′

test collection that had only 74 unique single term queries out of a possible maximum of

100 unique single term queries. Fifty-eight of these single term representations occurred

1 time, eleven terms occurred 2 times, one term occurred 3 times, three terms occurred

4 times, and one term occurred 5 times.

The question of how the query set was going to be represented immediately arose.

Should the query set only contain the 58 queries that had frequencies of 1? If the answer

was negative, then how should the 16 query terms that had frequencies of two or greater

be handled? Two of the possibilities for representing the queries were: (1) use only the 58

68

queries that corresponded to the query terms that occurred exactly once or (2) augment

these 58 with composite queries for the 16 query terms with frequencies that were two

or greater.

There were two main alternatives for creating the relevance set (of document iden-

tifiers) for a composite query. Conceptually, the first alternative was the creation of a

query-term specific relevance set that consisted of the union of the relevance sets that

were associated with each query in the in the CF′ test collection that was being described

by that term. The other alternative was the creation of a query-term specific relevance

set that consisted of the intersection of these relevance sets. Put another way, a docu-

ment identifier was in the relevance set for a composite query for term t only if it was a

member of the relevance set for at least one of the CF′ queries being described by term

t. In the case of the intersection alternative, a document identifier was in the relevance

set for a composite query for term t only if it was a member of the relevance set for all

of the CF′ queries that were being described by term t.

Table 3.2 on the next page lists the 16 terms that occurred as the single term repre-

sentation of two or more queries. The frequency column for a term indicates the number

of queries in the CF′ test collection that was represented by this term, the number in the

union column is the cardinality of the unioned sets of document identifiers for this term,

and the number in the intersection column is the cardinality of the intersected sets of

document identifiers for this term.

This paragraph contains an example that helps to explain how a composite query was

constructed. Consider the term “vitamin” that appears as term #16 in Table 3.2 on the

following page. It describes exactly three queries in CF′: Query #9, Query #10, and

Query #41. The relevance set for the first query is

{165, 174, 362, 370, 414, 443, 794, 992, 1040, 1115};

69

Table 3.2: The Single Term Query Descriptions With Plural Frequencies.

line term frequency union intersection

1 acid 2 41 0

2 aeroso 2 63 27

3 aeruginosa 4 113 1

4 antibiot 2 90 30

5 class 2 71 11

6 diseas 2 104 17

7 fatti 2 52 14

8 glycoprotein 2 137 12

9 insulin 2 92 15

10 lung 2 111 33

11 pancreat 4 231 2

12 patient 4 303 4

13 polyp 2 33 2

14 saliva 2 50 5

15 sweat 5 164 0

16 vitamin 3 41 2

70

the set for the second query is

{30, 126, 157, 170, 296, 301, 322, 370, 413, 443, 581, 676, 715, 722,

728, 758, 782, 835, 878, 941, 1115, 1215, 1218, 1234, 1239};

and the one for the last query is

{46, 296, 301, 322, 370, 392, 603, 941, 998, 1106, 1107, 1108, 1115, 1184, 1190}.

The cardinalities of these sets are 10, 25, and 15, respectively. The union of these sets

is a set with the cardinality of 41 (instead of 10+25+25=50) because some document

identifiers (e.g., 301, 322, 370, 443, 941, 1115) are members of more than one of these

sets. The intersection of these same 3 sets is a set with the cardinality of 2 because the

only identifiers that appear in all 3 of the sets are identifiers 370 and 1115.

The restriction of the query set to only the 58 queries that corresponded to term

descriptors with a frequency of exactly one was not a viable possibility for this dissertation

because the number of queries with this restriction was less than 60% of the original

number (i.e., too small a yield). In order to have more queries, composite queries were

constructed for the 16 terms that appeared as a descriptor of more than one of the

original queries. Now, the decision was: Should union (i.e., disjunctive) or intersection

(i.e., conjunctive) semantics be used to construct the composite queries? Both approaches

had merits, but the author did not feel that one approach was significantly superior to

the other. Therefore, the author decided to create two versions of the CF′ test collection:

CF′
u (the union version) and CF′

i (the intersection version).

Both versions had, as their core, the queries that corresponded to the 58 terms that

had a frequency of 1. Sixteen composite queries were created for the queries with union

semantics for the relevance sets. However, only 14 composite queries were constructed for

71

the queries that have intersection semantics because lines 1 and 15 of Table 3.2 on page 70

show that the intersected relevance sets for the queries that are described by the terms

“acid” and “sweat,” respectively, do not have any common document identifiers. This

means that the number of queries that were members of the CF′
u and CF′

i test collections

were 74 (58 original single term queries + 16 composite queries) and 72 (58 original

single term queries + 14 composite queries). The number of queries in the combined

test collection, CF′
combined, was 88 (58 original single term queries + 16 composite queries

from CF′
u + 14 composite queries from CF′

i).

3.2.2 Create Synthetic Datasets and Random Sets of Queries

Most of these entities were created on an as-needed basis for the work that occurs in

Chapter 8 (Validation of the Formulas for the Q′, A′, and ASL′ Measures). Chapter 10

uses synthetic data to validate many of the performance measure equations that are

derived there. The specific details of these synthetic datasets and sets of queries are

detailed in Chapters 8 and 10.

3.2.3 Expected Performance of the CF-related and Synthetic

Test Collections

Recall-precision graphs with the standard 11-point interpolated precision, such as those

used in TREC performance evaluations (Harman, 2005), can be used to express some

aspects of how well a ranking algorithm performs. Later, these graphs are used to

illustrate the expected performance of the Cystic Fibrosis test collection, and its three

derivatives, for each of the 6 ranking methods that are used in this dissertation.

72

Brief review of recall-precision graphs

Before discussing the graphs, we provide a brief review of recall-precision graphs and

the procedure that was used to construct them. A recall-precision graph for a query

and its associated document collection illustrates the relationship between the recall and

precision values at different recall points in a sequence of ranked documents as the recall

values increase from 0.0 to 1.0, inclusive. A recall point corresponds to a position in the

sequence where there is a relevant document. The recall value at a point is simply the

number of relevant documents that have been encountered from the front of the sequence

up to, and including, this point, divided by the total number of relevant documents that

are in the collection. For example, in Table 3.3 on the following page, the third relevant

document in the sequence is not encountered until position 5. Since the entire collection

only has four relevant documents, the recall value at this point is 3/4=0.75.

The number of unique recall values is dependent on the number of relevant documents

for a query. Therefore, it can, and often does, vary considerably, from one query to

another. For example, even though there are 10 relevant documents in the collection

that is associated with the data in Table 3.3 on the next page, there are only four unique

recall values because the query only has four relevant documents.

Standard recall points and interpolated precision

Query-dependent variability in the number of distinct recall values is not desirable when

doing performance evaluation over many queries for a collection because it complicates

the evaluation process and the construction of an entity like a recall-precision graph.

TREC eliminates this variability by using 11 standard recall points. These points cor-

respond to the recall values 0.0, 0.1, . . . , 1.0. A question that arises concerns what the

precision value is for recall value 0.0 (because precision is undefined at this point) and

what the precision values are when the query has either less than, or more than, 10

73

relevant documents. The way that TREC evaluation software handles the latter part of

the question is by interpolation. TREC evaluation software calculates the interpolated

precision pinterpolated,r′ at recall value r as being the maximum of the actual precision

values pactual,r that occur at recall values that are greater than, or equal to, actual recall

value r (Harman, 2005; Manning et al., 2008), i.e.,

pinterpolated,r′ = max
r′≥r

pactual,r.

A side effect of this interpolation technique is that the precision value at recall value

0.0 is now defined. Ordinarily, the precision value at this recall point does not exist

because the 0.0 recall point corresponds to the situation where no documents have been

examined. Therefore, the denominator of the expression that calculates precision at this

point is 0. Table 3.4 on the following page enumerates the interpolated precision values

for the information in Table 3.3 and Figure 3.1 on the following page shows the recall-

precision graph for the information in Table 3.4 on the next page. The data for the

recall-precision graph for a set of queries can be obtained in the following way: calculate

the interpolated recall and precision table for each query, then use this data to compute

the mean precision value at each of the 11 recall points.

Table 3.3: Actual Recall and Precision Table For A Query With Four Relevant Docu-
ments.

Rank 1 2 3 4 5 6 7 8 9 10

Relevant? Yes Yes No No Yes No Yes No No No

Precision 1/1 2/2 2/3 2/4 3/5 3/6 4/7 4/8 4/9 4/10

Recall 0.25 0.50 0.50 0.50 0.75 0.75 1.00 1.00 1.00 1.00

74

Table 3.4: Interpolated Recall and Precision Table.

Precision 1 1 1 1 1 1 3/5 3/5 4/7 4/7 4/7

Recall 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

� � � � � �

� � � � �

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Recall

Pr
ec
is
io
n

Figure 3.1: Recall-precision graph for the data in Table 3.4.

75

The complication of duplicate retrieval status values

Duplicate RSVs can cause complications in performance evaluations. Many performance

measure evaluation algorithms do not take into account the potential presence of these

duplicate values and can compute misleading results. Chapter 10 (The ASL Measure

and Three Frequently-Used Performance Measures) contains detailed discussions on the

impact of these duplicate RSVs and develops duplicate-sensitive (i.e., Type-T) versions

of several information retrieval performance measures.

For the convenience of the reader, we repeat the definition of Type-T from page 27.

The term Type-T is used in Chapters 2, 3, and 10 as an adjective to denote a performance

measure whose calculated values are consistent with the assumption that some of the

documents in a vector V of ranked documents may have tied (i.e., duplicate) RSVs. And,

these chapters also use Type-D as an adjective to denote a performance measure whose

calculated values are consistent with the assumption that all the documents in a vector

V must have distinct RSVs.

More specifically, there are two main problems that must be solved before we can

compute recall-precision graphs that correspond to the Cystic Fibrosis test collection,

their derivatives, and the synthetic document test collection. Each of these collections

have many duplicate RSVs in the rankings that are associated with each query for every

one of the 6 ranking methods. Every ranking partitioned the RSVs into 2 clusters, each

of which contained many duplicate values. In order to generate an actual recall and

precision table for a query, test collection, and ranking method combination, we must be

able to calculate the precision for the points in the ranking that each relevant document

appears at in the sequence of ranked documents.

In any cluster, we assume that an arbitrary document in this cluster can equally likely

occupy any of the positions in the cluster. For example, if the cluster has 5 documents,

one of which is relevant, and the sub-sequence that is associated with this cluster occupies

76

positions 4-8, inclusive, then the probability that the relevant document occupies position

4 is 1/5, the probability that it occupies position 5 is 1/5, the probability that it occupies

position 6 is 1/5, the probability that it occupies position 7 is 1/5, and the probability

that it occupies position 8 is 1/5. The same set of identical identical probabilities is

associated with each of the other four documents in this cluster.

Table 3.5 is an example of the ranking of a document collection that has 22 documents.

We use the information in this table to illustrate how to construct an “actual recall” and

precision table for this information. The number of distinct RSVs in the ranking for

this table is 6 (hence, the six clusters). The highest-valued RSV is 6.92 (exactly three

documents have this value for their RSV) and the lowest-valued one is 0.27 (exactly seven

documents have this value for their RSV).

Table 3.5: A Ranking That Has Multiple Documents With The Same RSV

Cluster 1 2 3 4 5 6

RSV of each document in the cluster 6.92 4.43 4.19 3.74 1.05 0.27

Number of Documents 3 4 2 5 1 7

Number of Relevant Documents 1 2 2 0 1 5

Position(s) 1-3 4-7 8-9 10-14 15 16-22

Construction of the Actual and Interpolated Recall and Precision Tables

The construction of the “actual precision” and recall table for the information in Table 3.5

has two primary phases. The first phase determines the expected actual positions of the

relevant documents in each cluster. The second phase uses these expected positions to

determine the respective associated precision values. In order to construct this table and,

later, the corresponding interpolated recall and precision table for Table 3.5, the author

has to rely on some results from Chapter 10 and on mathematics that are not introduced

and discussed until then. This should not be a hindrance, though, because the main

77

purpose of this chapter is to provide an overview of the methodology that the author

intends to use to conduct the research for this dissertation, with the major details of the

research being left for later chapters. Phase 1 uses results from Chapter 10 and Phase

2 uses results from Appendix C. The results that are used in the subsequent discussion

are given without proof of the mathematics that were used to produce them. For the

associated proofs and more details, the interested reader may want to consult Chapter 10

and Appendix C.

The Determination of the Expected Actual Recall Positions

We begin by calculating the expected position of a relevant document in Cluster 1. Note

that this cluster has three documents, with only one of them being relevant. The three

document sequence possibilities appear below. In this enumeration, the letter R denotes a

relevant document whereas the letter N denotes a non-relevant document. The first letter

in each row represents position 1 with the following two consecutive letters representing,

respectively, positions 2 and 3.

RNN

NRN

NNR

Since it is equally likely that the relevant document can occupy any three of the positions

in a sequence, the expected actual position of the relevant document in Cluster 1 is

(1 + 2 + 3)/3 = 6/3 = 2.

Cluster 2 has four documents and only two of them are relevant. In this case, there are

the 6 document position sequence possibilities that are enumerated below. The first letter

in each row represents position 4 with the following three consecutive letters representing,

respectively, positions 5, 6, and 7.

78

RRNN

RNRN

RNNR

NRRN

NRNR

NNRR

Our interest here is in determining the expected actual positions of the first and sec-

ond relevant documents that are encountered when the reader examines the letters in

a sequence in the position order 4, 5, 6, and 7. From a visual inspection of these 6

possibilities, we see that the first relevant document occurs at position 4 three times, at

position 5 two times, and at position 6 one time. This implies that the expected actual

position of the first relevant document is

(4 + 4 + 4 + 5 + 5 + 6)/6 = 28/6 = 42
3
.

Similarly, the expected actual position of the second relevant document over these se-

quences is

(5 + 6 + 7 + 6 + 7 + 7)/6 = 38/6 = 61
3
.

Cluster 3 has two documents, both are relevant. The expected actual positions of their

first and second relevant documents are, respectively, 8 and 9, because the only sequence

possibility is the one that is right below.

RR

Cluster 4 has five documents but none of them are relevant. Therefore, we need

not be concerned with determining the expected actual position of a relevant document

because none exist. Cluster 5 has one document and it is also relevant. The sole sequence

possibility that is associated with it appears immediately below.

79

R

The expected actual position of this document is 15. Cluster 6 has seven documents, only

five of them are relevant. There are
(
7
5

)
= 21 distinct sequence possibilities for this cluster

and five expected actual positions of relevant documents. Instead of enumerating these

21 possibilities, and determining these 5 positions empirically, we analytically determine

them by the results of Lemma C.0.1 on page 535. We state below, without proof, this

lemma.

Lemma C.0.1. Suppose 1 ≤ i ≤ r ≤ n and i, r, n, l ∈ N. Let [l, l + n − 1] represent

positions l, l + 1, . . . , l + n − 1 in an equivalence class of n documents with exactly r

relevant documents. Assuming that a relevant document has the same probability of

occupying any one of these n positions as it does of occupying any one of the other n− 1

positions, the expected mean position for the ith relevant document from the beginning of

the interval is

i − 1 + l + i(n − r)/(r + 1).

Before using this lemma to determine the five expected positions that are associated

with the relevant documents of Cluster 6, let us use it to calculate the expected positions

for Clusters 1, 2, 3, and 5. We demonstrate that these sets of analytically-determined

positions are equal to those that we just obtained empirically by exhaustive enumeration.

This should give us confidence that we can use the analytic method to generate the correct

results for Cluster 6.

For Cluster 1, we have i = l = 1, n = 3, and r = 1. This means that

i − 1 + l + i(n − r)/(r + 1) = 1 − 1 + 1 + 1(3 − 1)/(1 + 1)

= 1 + 2/2

= 2.

80

This position is identical to the position that was calculated earlier by empirical means.

For Cluster 2, we have i varying from 1 to 2, inclusive, with l = n = 4, and r = 2.

This means that, when i = 1,

i − 1 + l + i(n − r)/(r + 1) = 1 − 1 + 4 + 1(4 − 2)/(2 + 1)

= 4 + 2/3

= 42
3

and, when i = 2,

i − 1 + l + i(n − r)/(r + 1) = 2 − 1 + 4 + 2(4 − 2)/(2 + 1)

= 5 + 4/3

= 61
3
.

These two positions are identical to the positions that were calculated earlier by empirical

means.

For Cluster 3, we have i varying from 1 to 2, inclusive, with l = 8 and n = r = 2.

This means that, when i = 1,

i − 1 + l + i(n − r)/(r + 1) = 1 − 1 + 8 + 1(2 − 2)/(2 + 1)

= 8 + 0

= 8

and, when i = 2,

i − 1 + l + i(n − r)/(r + 1) = 2 − 1 + 8 + 2(2 − 2)/(2 + 1)

= 9 + 0

81

= 9.

These two positions are identical to the positions that were calculated earlier by empirical

means.

For Cluster 5, we have i = 1, l = 15, and n = r = 1. This means that

i − 1 + l + i(n − r)/(r + 1) = 1 − 1 + 15 + 1(1 − 1)/(1 + 1)

= 15 + 0

= 15.

This position is identical to the position that was calculated earlier by empirical means.

Finally, for Cluster 6, we can follow a similar procedure to those above to obtain the

set {161
3
, 172

3
, 19, 201

3
, 212

3
} of expected actual positions. These positions constitute the

last set of positions that we needed to determine for our example. Next, we must obtain

the precision value that is associated with each of these positions.

The Determination of the Interpolated Precision Values for An Expected

Actual Recall Position

Generally, the expected actual recall positions are not whole numbers. For example,

four of the expected actual positions (i.e., 161
3
, 172

3
, 201

3
, 212

3
) for Cluster 6 are not whole

numbers. When the expected position is a whole number, we use the Type-T version of

the precision equation, which is located on page 460, to calculate the precision at that

position in the ranking.

However, when the position (e.g., 161
3
) has a fractional part, the precision value at

this expected position must be interpolated. The interpolation process works by first

determining the closest whole numbers l and g that are, respectively, less than this

position and greater than this position. For example, if the position was 161
3
, these

82

numbers would be, respectively, 16 and 17, and, if the position was 212
3
, these numbers

would be, respectively, 21 and 22. The next step in this process is to use the Type-T

version of the precision measure to calculate the precision values at positions l and g.

Let the corresponding precision values be denoted by pl and pg. If we use the variable e

to denote the expected position, then we can use linear interpolation to approximate the

precision value at e. The approximated value is very accurate given that the l and g are

always adjacent points.

Harris and Stöcker (1998) states that the value for f(x), where x1 < x < x2, and

f(x1) and f(x2) are known values, can be determined by this equation:

f(x) =
(x2 − x)f(x1) + (x − x1)f(x2)

x2 − x1

.

Based on this equation, we obtain the following equation for computing the interpolated

precision value when the expected position is strictly between l and g (i.e., the open

interval (l, g)):

pi =
(g − e)pl + (e − l)pg

g − l

=
(g − e)pl + (e − l)pg

1

= (g − e)pl + (e − l)pg.

In general,

pi =

⎧⎪⎪⎨
⎪⎪⎩

pl, if �e� = 	e
;

(g − e)pl + (e − l)pg, otherwise;

where �e� denotes the greatest integer that is less than or equal to e and 	e
 denotes the

least integer that is greater than or equal to e.

83

Culmination of the Example

From the earlier discussions, we know that the set of expected actual positions is

{
2, 42

3
, 61

3
, 8, 9, 15, 161

3
, 172

3
, 19, 201

3
, 212

3

}
.

We can use the Type-T precision method that is developed in Chapter 10 to calculate the

precision value for each integer in this set. This method, in conjunction with our method

to interpolate precision when the expected actual position in not an integer, results in

the information in Table 3.6. The information for the associated interpolated recall and

precision tables appears in Table 3.7.

Table 3.6: Expected Actual Recall Position (EARP) Table.

Precision 0.333 0.392 0.421 0.5 0.556 0.4 0.426 0.447 0.466 0.482 0.497

Recall 1/11 2/11 3/11 4/11 5/11 6/11 7/11 8/11 9/11 10/11 1

EARP 2 4 2
3 6 1

3 8 9 15 16 1
3 17 2

3 19 20 1
3 21 2

3

Table 3.7: Interpolated Recall and Precision Table.

Precision 0.556 0.556 0.556 0.556 0.556 0.497 0.497 0.497 0.497 0.497 0.497

Recall 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Performance graphs

The performance graphs for the best-case, coordination-level, decision-theoretic, and

inverse document frequency ranking methods, for the CF test data, were identical due

to several primary factors: each of the respective rankings contained large numbers of

duplicate retrieval status values; each ranking had, at most, two distinct RSVs; the

influence of binary relevance; and term weights were based upon a term being either

84

� � � � �
� � � � � �

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Recall

Pr
ec
is
io
n

Figure 3.2: Recall-precision graph for the data in Table 3.7 on the previous page.

85

present or absent (i.e., multiple occurrences of a term in a document have the same weight

as a solitary occurrence of the term). From a ranking perspective, even though different

RSV weights were associated with each of these ranking methods, the overall rankings

had identical recall-precision performance characteristics. For a particular ranking, say,

the best-case ranking method, the largest performance differences occurred for recall

values that were less than or equal to 0.5. The precision values were effectively identical

for the recall values that were greater than 0.5.

The shapes of the curves in the performance graph for random-case ranking were very

similar to those for the four ranking methods that were discussed in the immediately prior

paragraph. The main differences for random-case ranking were that there was slightly

more variability in the precision values at each recall-precision point and that, overall,

the precision value at each point appeared to be about 0.15 lower than the corresponding

values for the curves in the first two rows of graphs in Figure 3.3 on page 88. The

curves in the graph for the worst-case ranking method differed significantly from those

of the other 5 ranking methods. Notice that the “curves” were actually lines, that the

precision values different for each curve but is a constant with respect to a particular

curve. Furthermore, these precision values were near zero and differed by approximately

an order of magnitude from the precision values at the corresponding recall-precision

points in the first 2 rows of graphs. The differences were not as great when the curves

from this worst-case ranking were compared to their random-case ranking counterparts.

To summarize, the information in the graphs for the first two rows of ranking methods

indicated that the test collections for these methods, on a performance basis, should be

ranked from best to worst in this order: CF′
u, CF′

combined, CF′
i, and CF′. The information in

Figure 3.3 on page 88 also indicated that the best to worst performance ordering should

be CF′
combined, CF′

u, CF′, and CF′
i. For the worst-case ranking method, the indicated

ordering is CF′
u, CF′

combined, CF′, and CF′
i.

86

Conceptually, the only difference between the 6 performance graphs that are illus-

trated in Figure 3.3 on the following page, and those in Figure 3.4 on page 89, is that

Figure 3.4 also includes performance information about the synthetic test collection. No-

tice that the synthetic test collection curves for the best-case, coordination-level match-

ing, decision-theoretic, inverse document frequency, and random-case ranking methods

indicated that the precision values had a small gradual decrease as the recall values in-

creased and that the ending precision value (at recall value 1.0) for such a curve did

not differ that much, percentage-wise, from the initial value (at recall value 0.0). The

curve for the worst-case ranking method was linear. This was due to the combination of

the actual data values and the algorithm that TREC used to interpolate precision val-

ues. Overall, regardless of ranking method, and at each of the 11 standard recall points,

one can expect significantly better retrieval performance for the queries in the synthetic

document test collection than for those queries in any of the other four test collections.

3.3 Quality of Ranking Calculations for the Coordi-

nation Level Matching, Inverse Document Fre-

quency, and Decision-Theoretic Ranking Meth-

ods

Losee (1998) states that the equation for Q (the degree of optimality) for both the

basic version of inverse document frequency (IDF) algorithm and the coordination level

matching (CLM) algorithm is the same; that is,

QIDF = QCLM = Pr(p > t), (3.3.1)

87

� � �

�

�
�
�
�
� � �

� �
�

�

�

�

�
� � � �

� � �

�

�
�
�
� � � �

� � �

�

�
�
�
� � � �

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

Recall

Pr
ec
is
io
n

BC

� � �

�

�
�
�
�
� � �

� �
�

�

�

�

�
� � � �

� � �

�

�
�
�
� � � �

� � �

�

�
�
�
� � � �

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

Recall

Pr
ec
is
io
n

CLM

� � �

�

�
�
�
�
� � �

� �
�

�

�

�

�
� � � �

� � �

�

�
�
�
� � � �

� � �

�

�
�
�
� � � �

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

Recall

Pr
ec
is
io
n

DT

� � �

�

�
�
�
�
� � �

� �
�

�

�

�

�
� � � �

� � �

�

�
�
�
� � � �

� � �

�

�
�
�
� � � �

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

Recall

Pr
ec
is
io
n

IDF

� � �

�
�
�
� � � � �

� � �

�

�
�

�
�
� � �

�
� �

�

�
�
�
� � � �

�
� �

�
�
�
� � � � �

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

Recall

Pr
ec
is
io
n

RC

� � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � � � � �

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.01

0.02

0.03

0.04

Recall

Pr
ec
is
io
n

WC

Figure 3.3: Recall-precision graphs for the four derivatives of the Cystic Fibrosis test
collection. Each derivative collection has 1239 documents. The number of queries that
are in the CF′, CF′

u and CF′
i test collections are, respectively, 100, 74, and 72. The

number of queries that are in the combined test collection, CF′
combined, is 88. In the plots,

the recall-precision curves CF′, CF′
u and CF′

i, and CF′
combined collections, respectively, are

represented by a black curve with the recall-precision points represented by circles, a blue
curve with the recall-precision points represented by squares, a red dashed curve with the
recall-precision points represented by circles, and a brown curve with the recall-precision
points represented by triangles that point upward. Note that the precision axes are the
same for the first two rows of this figure but are different for the last two rows.

88

� � �
�
�
� � � � � �

� � �
�
�
�
� � � � �

� � �
�
�
� � � � � �

� � �
�
�
�
� � � � �

� � � � � � � � � �
�

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Recall

Pr
ec
is
io
n

BC

� � �
�
�
� � � � � �

� � �
�
�
�
� � � � �

� � �
�
�
� � � � � �

� � �
�
�
�
� � � � �

� � � � � � � � � � �

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Recall

Pr
ec
is
io
n

CLM

� � �
�
�
� � � � � �

� � �
�
�
�
� � � � �

� � �
�
�
� � � � � �

� � �
�
�
�
� � � � �

� � � � � � � � � �
�

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Recall

Pr
ec
is
io
n

DT

� � �
�
�
� � � � � �

� � �
�
�
�
� � � � �

� � �
�
�
� � � � � �

� � �
�
�
�
� � � � �

� � � � � � � � � � �

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Recall

Pr
ec
is
io
n

IDF

� � � � � � � � � � �

� � �
�
� � � � � � �

� � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � � � � �

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Recall

Pr
ec
is
io
n

RC

� � � � � � � � � � �� � � � � � � � � � �� � � � � � � � � � �� � � � � � � � � � �

� � � � � � � � � � �

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Recall

Pr
ec
is
io
n

WC

Figure 3.4: Recall-precision graphs for the four derivatives of the Cystic Fibrosis test
collection and a synthetic test collection. Each collection has 1239 documents. The
number of queries that are in the CF′, CF′

u and CF′
i test collections are, respectively, 100,

74, and 72. The number of queries that are in the combined test collection, CF′
combined,

is 88. The number of queries that are in the synthetic test collection is 100. In the plots,
the recall-precision curves CF′, CF′

u and CF′
i, and CF′

combined collections, respectively,
are represented by a black curve with the recall-precision points represented by circles,
a blue curve with the recall-precision points represented by squares, a red dashed curve
with the recall-precision points represented by circles, and a brown curve with the recall-
precision points represented by triangles that point upward. The recall-precision curve
for the synthetic test collection is represented by the green curve with triangles that
point upward. Over all of the ranking methods, each precision component of the recall-
precision points for the curves that are associated with the synthetic test collection has
a precision value that is greater than 0.5.

89

where p = Pr(d|rel) is the probability of a particular feature with frequency 1 occurring

in a relevant document and t = Pr(d) is the probability of that feature with frequency

1 unconditionally occurring in a document. In this dissertation the word “feature” is

synonymous with the phrase “query term.” Therefore, p can be interpreted as the prob-

ability that a relevant document contains the query term and t can be interpreted as the

probability that any document contains the query term.

This dissertation, however, used a slightly different equation for the QIDF measure.

The very minor difference between Equation 3.3.1 on page 87 and Equation 3.3.2 for this

measure was the handling of a boundary condition when t = 1. The alternate formulation

was

QIDF = Pr(p > t, 0 < t < 1) + Pr(p ≤ t, t = 1)

= Pr(p > t) + Pr(p ≤ t, t = 1). (3.3.2)

Its derivation is discussed in Appendix D.

In this research, a feature frequency of 1 or 0 corresponded, respectively, to the

presence or absence of a single word term in a query or document.

Losee (1998) also states that the equation for Q, for a decision-theoretic (DT) ranking

method based on binary independent features, is

QDT = Pr(p > max(t, q)) + Pr(p ≤ min(t, q)), (3.3.3)

where q = Pr(d|rel) is the probability of a particular feature with frequency 1 occurring in

a non-relevant document. The expression max(t, q) denotes the maximum of t and q and

min(t, q) denotes the minimum of those values. In addition to the notation introduced in

Chapter 2, page 21, Section 2.2.5 (The Query-Document Model), let si = ni − ri, denote

the number of non-relevant documents with feature frequency i ∈ {0, 1}.

90

Weak compositions were used to help construct models to study some performance

aspects of versions of the coordination level matching (CLM), inverse document fre-

quency (IDF), and decision-theoretic (DT) ranking algorithms that appear in Losee

(1998). Three of the primary interests in this research were how to use Equation 3.3.1 on

page 87, Equation 3.3.2 on the preceding page, and Equation 3.3.3 on the previous page

to calculate the quality of ranking measures for the coordination level matching, inverse

document frequency, and the decision-theoretic ranking methods, respectively. Since p

can be expressed as

r1

r0 + r1

, (3.3.4)

t can be expressed as

r1 + s1

r0 + r1 + s0 + s1

, (3.3.5)

and q can be expressed as

s1

s0 + s1

, (3.3.6)

this means that part of the answer to Equation 3.3.1 on page 87, Equation 3.3.2 on

the preceding page, and Equation 3.3.3 on the previous page can be modeled by a set

containing all the weak compositions of size 4 such that

N = r0 + r1 + s0 + s1;

this set is denoted by apwc4N (the set of all possible weak compositions of size 4 for N).

With respect to Equation 2.2.2 on page 26, the number of weak compositions in apwc4N

91

is

C̃4(N) =

(
N + 3

3

)
.

The combinatoric-based quality of ranking formulas that were developed for the CLM

ranking model (shown by Chapter 5) and the IDF ranking model (shown by Section 6.1)

used the parameters p and t; the analogous model for DT ranking (shown by Section 6.3)

used the parameters p, t, and q. In the models associated with Equations 3.3.1 to 3.3.3

on pages 87–90, the values of p, q, and t were not defined for all of the outcomes in the

sample space of weak 4-compositions for a collection of N ≥ 0 documents. Chapter 4

contains a discussion of several techniques for handling singularities.

A weak 4-composition is represented by a 4-tuple of this form: (r1, s0, r0, s1). Using

the formulas given for p and t a few paragraphs back, we can express the relation (shown

by Inequality 3.3.7) that must hold between the r1, s0, r0, and s1 values in any weak

composition for p > t to be true for it. This relationship is not required to hold for every

weak composition in set apwc4N. It must hold, though, for every weak composition that

will contribute a count of 1 to the count of the total number of weak compositions that

meet the criterion p > t. The main idea here is to compute Pr(p > t) by determining the

number of weak compositions in apwc4N, then dividing that number by the cardinality

of that set. An example illustrating how to do that appears later in this section.

In Equation 3.3.1 on page 87, if p > t is true, then

r1

r0 + r1

>
r1 + s1

r0 + r1 + s0 + s1

(3.3.7)

must also be true because that relationship can be obtained by simply substituting

r1

r0 + r1

92

for p and by substituting

r1 + s1

r0 + r1 + s0 + s1

for t in the expression p > t.

After cross-multiplying the corresponding numerator/denominator pairs in Inequal-

ity 3.3.7 on the preceding page, we obtain

r1(r0 + r1 + s0 + s1) > (r0 + r1)(r1 + s1). (3.3.8)

After expansion of the expressions on both sides of the greater-than operator in In-

equality 3.3.8 , we have

r1r0 + r2
1 + r1s0 + r1s1 > r0r1 + r0s1 + r2

1 + r1s1. (3.3.9)

Note that, in Inequality 3.3.9, the first, second, and fourth terms on the left-hand side

of the greater-than operator are equal to the first, third, and fourth terms, respectively,

on the right-hand side of that operator. If we cancel the equivalent terms, we have

������r1r0 + ����r
2
1 + r1s0 +������r1s1 > ������r0r1 + r0s1 + ����r

2
1 +������r1s1 . (3.3.10)

After setting the canceled terms to 0, and then simplifying, we obtain

r1s0 > r0s1.

This relationship can be used to help calculate the total number of events (i.e., the

total number of weak compositions (i.e., document collections) where p > t) in the sample

space that we are concerned with. The number that qualify can be represented by the

93

number of events where the following relationships hold:

r1s0 > r0s1 (3.3.11)

r0 + r1 + s0 + s1 = N (3.3.12)

0 ≤ r0, r1, s0, s1 ≤ N (3.3.13)

r0, r1, s0, s1, N ∈ N. (3.3.14)

This set of constraints can be studied with combinatorial structures and identities.

Basically, it can be modeled with weak compositions of size 4 subject to the constraints

just given above. The symbol N denotes the set of natural numbers.

In this dissertation, the performance of the coordination level matching (CLM), in-

verse document frequency (IDF), and decision-theoretic (DT) ranking measures for a

corpus with N documents, was investigated by using weak compositions of size 4, subject

to certain constraints. For the three measures that are currently being discussing, several

steps were taken in order to calculate Q. First, the number of qualifying weak composi-

tions (denoted by numQualifiers) that satisfied Constraints 3.3.11 to 3.3.14 on the current

page had to be determined. Second, the value of C̃4(N) (denoted by numPossible), the

number of all possible weak compositions of size 4 for N , had to be determined. Third,

the value of numQualifiers/numPossible (denoted by Q) had to be determined.

Of the three steps that were just specified above, the process of determining a formula,

or algorithm, to calculate the number of qualifying weak compositions was where, by

far, the most effort was expended. From preliminary research, it was discovered that the

problem of determining a formula for this value could be broken into several subproblems,

of which only some had closed form (the next paragraph contains a definition) solutions.

There did not appear to be a general formula, of simple or moderate complexity, for

calculating the number of weak compositions of size 4 for an arbitrary natural number

94

subject to Constraints 3.3.11 to 3.3.14 on the preceding page.

A closed form (short for closed formula) solution to an equation is one where the

number of steps to evaluate the formula is independent of the values of its parameters.

A simple motivating example is a one-parameter function f (e.g., the summation-of-

positive-integers function) defined as

f(n) =
n∑

i=1

i, (3.3.15)

where n is the number of integers that are being summed. These integers are positive

integers that range in value from 1 to n, inclusive. If n has the value 0, then

f(0) =
0∑

i=1

i

= 0,

because the starting point (i.e., 1) of the index i is greater than the summation limit

(i.e., 0). A non-trivial example is the calculation of the sum of the values of the first 15

positive integers; that is,

f(15) =
15∑
i=1

i

= 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 + 15

= 120.

The evaluation of this sum involves 14 additions. Suppose we want to perform a calcula-

tion that finds the sum of the first n ≥ 1 positive integers and that binary addition is the

only operation that we are allowed to use to sum the numbers. The calculation of this

sum involves n − 1 additions. In general, if the summation limit n is a positive integer,

95

the number of additions that is necessary to calculate the sum is n − 1, a value that is

one less than the number of values that we wish to sum.

A much better way to go about this is to make use of a well-known summation

identity. A function f2 that uses this identity can be defined as

f2(n) = n(n + 1)/2.

If we use f2 to calculate the same sum as above, we obtain

f2(15) = 15(15 + 1)/2

= 15 · 8

= 120,

the same value that was determined earlier by f, but now in a much more efficient manner.

Notice that the evaluation of f2 only requires three arithmetic operations: an addition,

a multiplication, and a division. So, independent of the value of any positive integer n,

the sum of the first n positive integers for that value of n can always be determined

by a single application of an addition, a multiplication, and a division. This alternate

summation formula is the more desirable one to use because the number of operations to

evaluate it is fixed at 3, whereas the number of operations to evaluate Equation 3.3.15

monotonically increases as the value of n increases.

During the many derivations that occur in the later chapters of this dissertation,

the emphasis is always on obtaining the final equation, or sets of equations, in closed

form. This is not always possible, but it is definitely a goal for these derivations. It

was demonstrated earlier that one benefit of a closed form equation was a hard bound,

independent of the values of the parameter(s) of a function, on the number of steps that

it took to calculate its value. The other major benefit of a closed form expression is that

96

it is generally more analytically-tractable than a non-closed form version.

As an aside, this summation defined by both functions f and f2 can be expressed

from a combinatorial perspective as
(

n+1
2

)
. The identity for this fact is used very often in

many of the formula derivations that appear in later chapters. We revisit this identity,

along with some other useful identities that appear in many of the derivations, in those

chapters.

3.4 An Example of How to Estimate Q for the CLM

Ranking Method

This example shows how to estimate Q for a small document collection using combina-

torics and counting. It discusses how estimated values of Q can provide guidance as to

which ranking method might be the preferred one in a particular situation. It prescribes

a way of determining whether the Q predicted by analytical means is in close agreement

with that determined by random sampling and empirical means. This example concludes

by showing that the use of an exhaustive (e.g., brute force) technique, such as combina-

torial enumeration, to help estimate Q, is rather limited because the maximum number

of weak compositions that we must examine roughly increases by a factor of 8 every time

the number of documents in the collection doubles. Basically, this means that as the

number of documents that we are modeling increases, it eventually leads to a problem

called combinatorial explosion (Reingold et al., 1977). A combinatorial explosion, in

mathematics, describes the effect of functions that have fantastic growth rates as the size

of their input(s) increase. The well-known factorial function that is often encountered in

probability and statistics courses is one such example.

In this example, we show how to estimate Q for the CLM ranking method when

the document collection has 4 documents and thus a cardinality of 4. Combinatorial

97

generation creates a set of C̃4(4) =
(
7
3

)
= 35 weak compositions of size 4 (described in

Table 3.8 on the next page). Combinatorial enumeration determines that there are 35

elements; it does not explicitly generate the set. These elements represent all the possible

ways that 4 documents can be distributed among the 4 cells in the contingency table of

Figure 2.2 on page 25. The model used to estimate Q assumes that each element of the

set is equally likely.

Combinatorial enumeration, combined with Constraint 3.3.11 on page 94, determines

that there are 9 weak compositions that qualify (the qualifying weak compositions in

Table 3.8 on the following page have a ‘yes’ in the last column of the row corresponding

to them). This is the value that is assigned to numQualifiers. The value assigned to

numPossible is 35. Hence, the estimated value for Q is 9
35

= 0.257143. Since the Q value

for an optimal ranking is defined to be 1 (Losee, 1998), this means that the degree of

overlap between the rankings produced by an IDF ranking algorithm and the optimal

ranking algorithm is approximately 25.7%. Another way of interpreting that number is

that, on average, an IDF ranking algorithm performs only about 25.7% as well as the

optimal ranking algorithm with respect to a 4-document collection.

Q values can be used to help decide which of several ranking algorithms would be the

best one to use in certain situations. To make this discussion more meaningful, let us

assume that we have a 10,000 document collection, that the Q value for CLM ranking

is 0.48 for this collection size, that we have 2 other ranking methods, namely, Ranking

Method A and Ranking Method B, and that their respective Q values are 0.5 and 0.75

for this collection size. In this case, Ranking Method B is the best choice because there

is much more overlap between its rankings (as contrasted with those of CLM ranking

and Ranking Method A) and those of the optimal ranking method.

How do we know that a Q that was calculated by, say, analytical means is correct,

or right, for a specified collection size? One way of determining that relies on empirical

98

Table 3.8: Sample Space for a 4 Document Collection.

weak composition r1 s0 r0 s1 r1s0 > r0s1?

1 (0, 0, 0, 4) 0 0 0 4 no

2 (0, 0, 1, 3) 0 0 1 3 no

3 (0, 0, 2, 2) 0 0 2 2 no

4 (0, 0, 3, 1) 0 0 3 1 no

5 (0, 0, 4, 0) 0 0 4 0 no

6 (0, 1, 0, 3) 0 1 0 3 no

7 (0, 1, 1, 2) 0 1 1 2 no

8 (0, 1, 2, 1) 0 1 2 1 no

9 (0, 1, 3, 0) 0 1 3 0 no

10 (0, 2, 0, 2) 0 2 0 2 no

11 (0, 2, 1, 1) 0 2 1 1 no

12 (0, 2, 2, 0) 0 2 2 0 no

13 (0, 3, 0, 1) 0 3 0 1 no

14 (0, 3, 1, 0) 0 3 1 0 no

15 (0, 4, 0, 0) 0 4 0 0 no

16 (1, 0, 0, 3) 1 0 0 3 no

17 (1, 0, 1, 2) 1 0 1 2 no

18 (1, 0, 2, 1) 1 0 2 1 no

19 (1, 0, 3, 0) 1 0 3 0 no

20 (1, 1, 0, 2) 1 1 0 2 yes

21 (1, 1, 1, 1) 1 1 1 1 no

22 (1, 1, 2, 0) 1 1 2 0 yes

23 (1, 2, 0, 1) 1 2 0 1 yes

24 (1, 2, 1, 0) 1 2 1 0 yes

25 (1, 3, 0, 0) 1 3 0 0 yes

26 (2, 0, 0, 2) 2 0 0 2 no

27 (2, 0, 1, 1) 2 0 1 1 no

28 (2, 0, 2, 0) 2 0 2 0 no

29 (2, 1, 0, 1) 2 1 0 1 yes

30 (2, 1, 1, 0) 2 1 1 0 yes

31 (2, 2, 0, 0) 2 2 0 0 yes

32 (3, 0, 0, 1) 3 0 0 1 no

33 (3, 0, 1, 0) 3 0 1 0 no

34 (3, 1, 0, 0) 3 1 0 0 yes

35 (4, 0, 0, 0) 4 0 0 0 no

99

techniques and is briefly described in this paragraph. First, randomly choose M queries

and N documents from a test collection. Assuming, of course, that the test collection has

at least that many documents and queries. The information in the test collection can be

regarded as historical data; we can use it to estimate Q. Apply stemming and stopword

removal to each query and to each document. Represent each relevance judgment as a

binary relevance judgment, if necessary. Since the queries are likely to be multiple term

queries, they need to be transformed to single term queries. A procedure for effecting the

above transformations is described in Section 3.2.1. Next, compute p (the probability that

the query term appears in a relevant document) and t (the proportion of documents that

the query term appears in). If p > t is true for a query, then it contributes a value of 1 to

a tally of how many queries this condition is true for. The Q estimate from historical data

is that tally divided by the number of queries. For example, if M=500 and for 307 queries

p > t was true, then the estimated Q value is 307/500 = 0.614. Finally, one could use the

Kolmogorov-Smirnov goodness-of-fit test (Conover, 1999) to determine if the distribution

functions associated with these two Q values, one calculated by combinatoric techniques,

the other calculated from historical data, are similar. A sketch of how to do this appears

in the paragraph immediately below.

Use the formulas associated with the combinatoric techniques to generate the Q
values for a 1-document collection, a 2-document collection, and so on, continuing up

to, and including, an N-document collection. At the end of this process, we have N

values – one for each possible size (i.e., the number of documents) of the document

collection. For example, if N=100 documents, then we have a Q value for a 1-document

collection, a possibly different Q value for a 2-document collection, and so on, up to,

and including, a 100-document collection. This collection of 100 Q values is used to

construct what Conover (1999) refers to as “[a] hypothesized distribution function” for

Q. The method that was just described is a method to obtain one of the inputs for the

100

Kolmogorov-Smirnov goodness-of-fit test. The other required inputs for this test are the

values that correspond to what Conover calls the “empirical distribution function.” These

values can be obtained as follows: Assume that the test collection has N documents, M

queries, and associated binary relevance judgments. For each collection size cs , from

1 to N, inclusive: randomly choose cs documents, without replacement, and randomly

choose nq ∈ {1, 2, ...,M} queries, without replacement, from the test collection. Use the

procedure described in the previous paragraph to estimate Q for each of the N possible

collection sizes. If N=100, we now have 100 data points, calculated from “historical

data.” These data points correspond to the empirical distribution function. Finally, we

can use techniques described in a general nonparametric statistics text (e.g., Conover

(1999)) or a simulation modeling and analysis one (e.g., Law (2006)) to determine how

good the fit is.

Note that the references to combinatorial generation and enumeration above are for

illustrative purposes. This research developed analytic formulas for calculating the num-

ber of qualifying compositions for particular scenarios. It envisioned using combinatorial

generation and enumeration to assist in validating whatever formulas it derived. In gen-

eral, however, the use of a brute force combinatorial technique such as combinatorial

generation is only feasible when modeling moderate size (e.g., several hundred) docu-

ment collections. This is because, for a fixed number of parts, the number of weak

compositions generated grows very rapidly in terms of the number of documents in a

collection. This quickly leads to the software experiencing running-out-of-memory and

processor-time issues.

Here is an illustration of the growth rate of the number of weak compositions for

a fixed size k. Without loss of generality, let us assume that k = 4. This means that

101

C̃4(N), the number of weak compositions of size 4 for a collection of N documents, is

C̃4(N) =

(
N + 4 − 1

4 − 1

)

=

(
N + 3

3

)

=
(N + 3)(N + 2)(N + 1)N !

3!N !

=
(N + 3)(N + 2)(N + 1)

6

=
N3 + 6N2 + 11N + 6

6
. (3.4.1)

It may be helpful at this point to restate some information about C̃4(N) that was

first stated in Section 2.2.5. This expression represents the number of unique ways that

an N-document collection can be split into 4 mutually exclusive categories such that the

sum of the category cardinalities is always equal to N (the total number of documents

in the collection). The cardinality of each of these categories is an integer in the closed

interval [0, N].

The number, C̃4(N), when calculated for a particular value of N , say 100, is the total

number of weak compositions that a combinatorial enumeration algorithm would have

to examine to determine how many of them had a respective p value (the proportion of

relevant documents that contained the query term) that was greater than their respective

t value (the proportion of all documents that contained the query term).

Based on the formulation of Equation 3.4.1, C̃4(N) is Θ(N3)(Graham et al., 1994);

that is, it has a cubic growth rate and the bound is tight. Table 3.9 on the following page

illustrates how rapidly this function’s values grow as the value of its input parameter

increases. Roughly speaking, doubling the size of its input causes its output to change

by a factor of 8. It helps to demonstrate why brute force combinatorial techniques, while

tractable for very small collection sizes, becomes increasingly intractable as the collection

size scales up. Even a document collection size of merely 1,000 may tax the memory

102

and processor resources that are associated with many personal computers, because the

number of weak compositions that is associated with a collection of this size is over 167

million, according to the table below.

Table 3.9: Number of Weak Compositions of Size 4 for Selected Values of N.

N C̃4(N)

4 35

10 286

20 1,771

50 23,426

100 176,851

500 21,084,251

1,000 167,668,501

3.5 The Three Research Questions

This dissertation provided answers to the three research questions that are detailed below

in the next three subsections. Each of these questions starts with an introduction that

is immediately followed by a discussion of a sequence of actions that, when followed,

provided the answer, or answers, to the question in a later chapter.

103

3.5.1 What would be the characteristics of a combinatoric mea-

sure, based on the ASL, that performs the same as a prob-

abilistic measure of retrieval performance, also based on

the ASL?

This question was answered by performing the following sequence of actions: (1) define

the parameters of a combinatoric model that can be used to characterize the follow-

ing ranking methods: best-case, worst-case, random case, inverse document frequency,

decision-theoretic, and coordination level matching; (2) define each ranking method-

specific model in terms of these parameters; (3) determine a formula to compute the

number of events of interest for each model; and (4) develop a formula that computes

the total number of events that can occur in each model. Next, use the results from the

four steps above to develop combinatoric formulas for the normalized search length(A)

(Losee, 1998) in an optimal ranking and the quality of a ranking (Q) (Losee, 1998). In

particular, the ranking method-specific formula for Q would be its formula corresponding

to (3) divided by its formula corresponding to (4). Then use the formulas for A and Q
to develop the ranking-specific formulas for the various ASL measures. Note that the

expressions for A and Q are independent variables, so to speak, with respect to the for-

mulas for the ASL. The formula for the ASL in Equation 3.5.1 and the equations for the

Q measures in Table 3.10 on the following page are from Losee (1998).

ASL = N
(QA + Q A)

+ 1/2 (3.5.1)

Note that Q = 1−Q and A = 1−A. Both Q and A are real-valued entities in the range

[0, 1] .

Finally, the last step in this process was the development of test data and strategies

to help validate several of the formulas that were developed above. Each test scenario

104

consisted of data, the formulas that were being tested, and the expected results from

applying those formulas. For the smaller datasets, the results were able to be calculated

manually. For the larger ones, a combination of manual calculations and programmatic

calculations by Mathematica (Wolfram, 2003) were used. NOTE: The data created in

this phase was used in the Data Analysis phase to help with the validation of the formulas

developed above.

Table 3.10: Comparing Quality of Ranking Methods.

Ranking Method Q (the degree of optimality)

Best-case QBC = Pr(p > t, p > t) + Pr(p ≤ t, p ≤ t)

= 1

Random QRNDM = (Pr(p > t) + Pr(p ≤ t))/2

= 1/2

Worst-case QWC = Pr(p > t, p ≤ t) + Pr(p ≤ t, p > t)

= 0

Decision-theoretic QDT = Pr(p > t, p > q) + Pr(p ≤ t, p ≤ q)

= Pr(p > max(t, q)) + Pr(p ≤ min(t, q))

Inverse Document Frequency QIDF = Pr(p > t, t > 0) + Pr(p ≤ t, t ≤ 0)

= Pr(p > t)

Coordination Level Matching QCLM = Pr(p > t)

An Example of How to Compute the ASL for Specified N, Q, and A Values

Assume that for a 10 document collection and a single-term query, the ranking

method-specific formulas, developed for this research, were used to calculate A = 0.75,

Q = 0.9, and

ASL = N
(QA + Q A)

+ 1/2

= N (QA + (1 −Q)(1 −A)) + 1/2

= 10 (0.9 ∗ 0.75 + (1 − 0.9) ∗ (1 − 0.75)) + 0.5

105

= 7.5.

This indicates that the average position of a relevant document in the ordering is 7.5

documents from the front of the ranked list (which is worse than the mean rank for

a relevant document if the ranking algorithm randomly ordered documents according

to a uniform distribution), that the normalized position of a relevant document is 0.75

(worse than average because the expected value would be 0.5 from an algorithm than

does random ranking according to a uniform distribution), but that the quality of the

ranking method is 0.9 (which is very good).

3.5.2 Does the ASL measure produce the same performance

result as the result that would be obtained by a process

that ranks documents and, then, calculates the Average

Search Length from this empirical ranking data?

The question was answered by performing the sequence of actions described below.

Develop computer software (e.g., Mathematica, Java (Flanagan, 2005), and/or C++

(Stroustrup, 2000) programs) that implements each of the 6 ranking algorithms that

were mentioned near the beginning of Section 3.5.1. For each query in the CF′ collec-

tion: rank the documents in the collection by each of the 6 ranking algorithms; compute

the predicted ASL value for each ranking method; compute the actual ASL value for

each ranking method; and record this information in a dataset. This dataset has four

columns: one for the query identifier, one for identifying the ranking algorithm, one for

the predicted ASL value, and one for the actual ASL value.

An Example of How to Compute the ASL from A Strongly Ordered Ranking

Assume there is a ranked list of 10 documents for a particular query q and that each

106

document has a distinct retrieval status value (RSV) (Table 3.11 depicts this situation).

From the front to the back of the list, the documents are ranked 1 through 10, inclusive.

Rank 1 is the best rank that a document can have, rank 10 is the worst one. In general,

lower-numbered ranks are more desirable than higher-numbered ranks because the front

of the list is defined to be rank 1.

Table 3.11: Ranked List of Ten Documents.

rank 1 2 3 4 5 6 7 8 9 10

relevant? Yes Yes No No Yes No Yes No No No

term present? Yes No No Yes No Yes Yes Yes No Yes

For this query/ranking method/document set combination, we would compute

ASL = (1 + 2 + 5 + 7)/4 = 3.75.

This would be the “actual” ASL value for this combination. To calculate the “predicted”

ASL value for this combination, we would use the formula for A and the ranking method-

specific formulas for ASL and Q that are developed in Chapters 4 through 7, inclusive.

In order to use these formulas, especially the one for Q (the quality of a ranking

method), we need to calculate the model parameters. These are r0 (the number of

relevant documents where the query term is not present), r1 (the number of relevant

documents where the term is present), s0 (the number of non-relevant documents where

the query term is not present), and s1 (the number of non-relevant documents where the

term is present). For the data in Table 3.11, those values would be: r0 = 2 (because only

documents 2 and 5 meet the criteria for this category), r1 = 2 (because only documents

1 and 7 meet the criteria for this category), s0 = 2 (because only documents 3 and 9

meet the criteria for this category), and s1 = 4 (because only documents 4, 6, 8, and

107

10 meet the criteria for this category). These values can be plugged into the method-

specific formulas to calculate ASL, Q, and A. The ASL value is the “predicted” one and

is recorded in the dataset (that is used later in the analysis phase for this RQ) along

with the “actual” ASL (just computed from the above data), the query identifier, and

the ranking method identifier.

3.5.3 When does the ASL measure and one of these measures

(i.e., MZE, ESL, and MRR) both imply that one docu-

ment ranking is better than another document ranking?

To answer this question, the following two actions were performed. Descriptions of these

actions are detailed thusly.

The first action was to develop a way to compare the performance between measures

that are “based on the totality of the search process” (Losee, 2000) (e.g., ASL) as well

as those measures that “determine performance at a point in the search process” (Losee,

2000) (e.g., MZE, ESL).

The second action was to generate graphs that compared CM ASL (the combinatoric

version of the ASL performance measure) against the MZE, ESL, and RR performance

measures. Note that, for a single query, the MRR and RR performance measures always

yield identical results. We used Measure A and Measure B to denote the measures that

are being compared. The items of interest were the regions of the graphs where 1 of

the 2 measures, say Measure A, indicated that performance was either increasing, or was

staying the same, within a region R, with respect to document positions in a ranked

collection of documents, while performance, according to Measure B, was increasing

within region R.

With respect to the first action, the work in Losee (2000) was extended to handle

the requirements of that action. The Losee work developed techniques for comparing

108

the differences between several measures (e.g., measure theory-based E measure (MZE),

mean reciprocal rank (MRR), expected search length (ESL)) that compared performance

at arbitrary points in the search process. The research for this dissertations extended

that work. In this dissertation research, the mixture of measures were heterogeneous in

nature (i.e., some the measures mentioned in this research question are “point” measures

whereas others were “totality” measures). In Chapter 10 (The ASL Measure and Three

Frequently-Used Performance Measures), the ASL, ESL, MZE, and RR measures were

extended so that they were point measures whose calculated values were consistent with

the assumption that some of the documents in a vector V of ranked documents may have

tied (i.e., duplicate) RSVs.

3.6 Summary

This chapter discussed a strategy for accomplishing the stated research goals of this

dissertation. It introduced the test collections that this research used and other resources

such as the PubMed stopword list, the Cystic Fibrosis test collection, and the Porter

stemmer. It discussed the reason that the Cystic Fibrosis test collection was not in a

form that was appropriate for its intended use in this research and outlined a procedure

to create an adapted version of it that could be used in this research. The detailed

account of how to accomplish the adaptation is located in Appendix A.

In addition to the discussion that is in the first paragraph of this summary, this

chapter provided more detailed statements on the three research questions and more

details on what this research intended to accomplish, particularly with the calculation

of the quality of ranking measures. A small example was provided that showed how the

quality of ranking measure could be calculated for the CLM ranking method.

109

Chapter 4

Characteristics of a

Combinatoric-Based Quality of

Ranking Measure

If the number of terms used in the title of this chapter was required to be restricted

to solely one term, “counting” would be an excellent choice for the title because the

overall purpose of this chapter is to describe how to count some of the outcomes in the

sample space for the combination of an information need, a document collection, and a

ranking method. This chapter discusses characteristics of Average Search Length (ASL)-

related performance models that are factors in the the development of expressions that

compute the cardinality of certain parts of this sample space. In particular, this chapter

shows how the sample space can be divided into 4 parts to make the counting process

easier, details the effects that singularities can have on the counts, provides a solution

that handles these singularities, and concludes with specific expressions that compute

the cardinalities of subsets of the sample space that meet specified restrictions.

This chapter derives many equations and tables for cardinality counting. The major

product of the work in this chapter is Table 4.11 on page 140, at the end of this chapter.

Table 4.11 contains information on the number of outcomes, for certain constraints, of

the sample space of weak 4-compositions for an N -document collection. This number of

outcomes information is used in Chapter 5 and Chapter 6 to help with the derivation of

equations that calculate the quality of ranking for the coordination level matching (CLM),

decision-theoretic (DT), and inverse document frequency (IDF) ranking methods.

In turn, these quality of ranking equations from Chapters 5 and 6, are used in Sec-

tion 7.8 and Section 7.10 to develop equations for the normalized and unnormalized

search lengths, along with equations for the expected value and variance of these search

lengths. These equations from Chapters 5, 6, and 7 also occupy a prominent role in

Chapter 8 during the validation of formulas for the Q′, A′, and ASL′ measures.

The counting for some subsets of the sample space is too complex to discuss in this

general chapter. The counting for these subsets is handled in the more specialized chap-

ters for the CLM, IDF, and DT ranking methods. These two specialized chapters, namely,

Chapter 5 and Chapter 6, immediately follow this one.

4.1 Essential Characteristics

What were the essential characteristics of the ASL-based performance models that en-

abled us to better understand (and predict) the behavior of the CLM, IDF, and DT

performance measures? The essential entities were a document collection, a set of infor-

mation needs (realized by a set of queries), the performance measures themselves, and a

set of parameters that were induced by various combinations of queries and the document

collection.

From the document collection perspective, the most basic piece of information was N,

the cardinality of the collection. Two essential characteristics of the models were binary

relevance and that the single query term was either present or absent in a document.

Since a document could be relevant, or not, and the term may, or may not, be present,

only 4 variables were needed to represent the number of documents for the 2 × 2 = 4

111

possible categories. These variables were r1 (the number of relevant documents where the

query term was present), r0 (the number of relevant documents where the query term was

absent), s1 (the number of non-relevant documents where the query term was present),

and s0 (the number of non-relevant documents where the query term was absent).

The count of relevant documents for a query in a model was represented by the

expression r1 + r0 and the count of non-relevant documents was represented by the

expression s1 + s0. These sums, in conjunction with various conditions on their values,

are represented by Figure 4.1 on page 115. This figure not only gives a hint of the strategy

that is used later to partition the sample space (its cardinality is C̃4(N)), in order to make

various calculations easier and to aid conceptual understanding, but it also references

parameters p (the probability that the query term is present in a relevant document), t

(the probability that an arbitrary document in the collection contains the query term),

and q (the probability that the query term is present in a non-relevant document). These

three parameters were directly derived from the more basic parameters r1, r0, s1, and s0

(shown by Expressions 3.3.4 to 3.3.6 on page 91). Table 3.10 on page 105 shows that the

quality of ranking measures for CLM and IDF are defined in terms of p and t and that

the analogous measure for DT is defined in terms of p, q, and t.

Each of these parameters may be undefined for some events in the sample space. For

example, as long as the document collection is non-empty, t is always defined. However,

depending on the values of r1, r0, s1, and s0, the values of p and q may be defined at

times, and undefined at others, due to a singularity (e.g., a denominator that has a value

of 0). The information in Figure 4.1 on page 115 includes the conditions under which

p, t, and q are either defined or not defined.

Another area of concern was that, even in situations where p, t, and q were all defined,

a particular quality of ranking measure may be undefined. The reason for this was that

various values of these parameters led to situations where a document weighting function

112

was undefined because the denominator in one of more parts of its defining expression

was 0, or the entire expression evaluated to 0 (and was used as input to a logarithmic

function). This situation and the ones in the previous paragraphs are discussed in more

detail below.

4.2 The Document Collection Sample Space and Its

Division Into Four Quadrants

The definitions of the quality of the ranking measures for an N document collection, and

specific ranking methods, are given below along in terms of the parameters p, t, and q.

Definitions of these parameters, as expressions involving the counts r1, r0, s1, and s0,

also appear below.

For any collection of N ≥ 0 documents, there are several quantities that had to be

calculated in order to be able to determine the Q measures for the CLM, IDF, and DT

ranking methods. Their respective equations are

QCLM = Pr(p > t),

QIDF = Pr(p > t) + Pr(p ≤ t, t = 1), and

QDT = Pr(p > max(t, q)) + Pr(p ≤ min(t, q)).

The quantities that needed to be calculated were the size of the sample space (i.e., number

of weak 4-compositions of size N); the number of outcomes where p > t; the number

of outcomes where p > t or the joint conditions p ≤ t and t = 1 hold; the number

of outcomes where p > max(t, q); and the number of outcomes where p ≤ min(t, q).

Being able to calculate the latter 4 quantities, of course, was dependent on being able to

calculate p, t, and q for each outcome in the sample space.

113

For the convenience of the reader, we restate the following information from page 90:

p =
r1

r0 + r1

,

t =
r1 + s1

r0 + r1 + s0 + s1

, and

q =
s1

s0 + s1

.

Figure 4.1 on the following page divides the sample space into 4 quadrants that are based

on the values of the expressions r1 + r0 and s1 + s0. In each of these quadrants, there

is information that specifies whether each of p, t, and q is defined or undefined. The

number of outcomes is also specified for each quadrant.

In information retrieval (IR) terminology, a sample space for a weak-composition of

size k, and N documents, represents all the possible collections of N documents in terms

of the k parameters. For example, k = 4 in many of the discussions in this chapter and

subsequent ones. When k = 4, the parameters are r1, r0, s1, and s0. An outcome is an

element of this sample space and represents exactly one of its collections.

The fourth nonblank line in each quadrant in Figure 4.1 on the next page represents

the number of weak 4-compositions which fall into that quadrant in a collection with

N ≥ 1 documents. This number is 0 for Quadrant II because it is impossible for both

the numbers of relevant and non-relevant documents to simultaneously be 0 when N is

positive. If the number of relevant documents is 0 (i.e., r0 + r1 = 0), and the number of

non-relevant documents is positive (i.e., s0 + s1 > 0), which is the situation in Quadrant

III, then the number of weak 4-compositions is C̃2(N). Similarly, if the number of

non-relevant documents is 0 (i.e., s0 + s1 = 0) and the number of relevant documents is

positive, which is the situation in Quadrant I, then the number of weak 4-compositions for

that quadrant is also C̃2(N). Both of these situations correspond to weak 4-compositions

with a fixed value of 0 for two of its components. Effectively, this means that we are

114

0 > 0

s0 + s1

0

> 0

r0 + r1

p is undefined
q is undefined
t is undefined

0

III

III IV

C̃2(N)

C̃4(N) − C̃2(N)

C̃4(N)C̃2(N)

p is defined
q is undefined

t is defined
C̃2(N)

p is undefined
q is defined
t is defined

C̃2(N)

p is defined
q is defined
t is defined

C̃4(N) − 2C̃2(N)

C̃4(N) − C̃2(N)

Figure 4.1: The various quadrants illustrate the conditions under which p, q, and t are
defined/undefined. The fourth row in each quadrant represents the number of outcomes
in the sample space that meet the conditions for that particular quadrant for a collection
of N ≥ 1 documents. Note that, for positive N , the events in Quadrant II cannot occur;
hence, the number of weak 4-compositions in that quadrant is 0.

115

interested in how many weak 2-compositions there are for N . There are C̃2(N) of them.

Quadrant IV corresponds to those weak 4-compositions where there are at least two

documents, with at least one of them being relevant and at least one of them being non-

relevant. Since any weak 4-composition of N is associated with exactly one quadrant and

the grand total for the quadrants must sum to C̃4(N), the number of weak 4-compositions

for Quadrant IV is C̃4(N) − 2C̃2(N).

To be complete, we need to cover the case where N can also have the value 0, that is,

N = 0. The parameters of interest (i.e., p, q, t) are undefined in each of the 4 quadrants

when N = 0. There is only one quadrant (i.e., Quadrant II) where it is possible to have

a valid weak 4-composition when the collection of documents is empty. The only weak

4-composition that can occur is (0, 0, 0, 0), thereby meaning that the count for Quadrant

II is 1. Quadrants I, III, and IV represent impossibilities because their respective joint

conditions that are a function of r1 + r0 and s1 + s0 cannot be true because at least

one of the 4 values in any weak 4-composition for those quadrants must be a positive

integer. Since it is impossible, for an empty document collection, to construct any weak

4-composition that satisfies the membership conditions for the latter three quadrants,

the counts for Quadrants I, III, and IV must be 0.

The mathematical singularities that arose in some of the computations for p and

q in Quadrants I and III of Figure 4.1 on the preceding page posed problems for our

formulas that determined counts for the inverse document frequency, coordination level

matching, and decision-theoretic document weighting functions because each of those

functions were at least partially dependent on parameters p and t. In Quadrant I, a

singularity was present for each possible value of q because the number of non-relevant

documents was 0, thereby meaning that the denominator in the formula for q was also 0.

Similarly, in Quadrant III, a singularity was present for each possible value of p because

the number of relevant documents was 0, thereby meaning that the denominator in the

116

formula for p was also 0.

Even in Quadrant IV, where p, t, and q were always defined for any weak 4-composition

that was a member of that quadrant, there were singularities that had to be taken into

account for the decision-theoretic document weighting function. This was due to the DT

weighting function being defined as

log

(
p/(1 − p)

q/(1 − q)

)
. (4.2.1)

Similarities occurred in this function when either of the following was true: p = 0, p = 1,

q = 0, or q = 1. There were various ways to adapt the calculations for p, t, and q to

eliminate possible singularities.

For the N = 0 case, the computation of each the p, q, and t values, for any of the 4

quadrants, was impossible due to singularities.

4.3 Handling Mathematical Singularities

In information retrieval, the typical way of handling potential singularities in document-

or term-weighting functions is to modify, or adapt, the formulas in these functions so

that singularities are impossible when the adapted versions of those functions are used

to calculate the weights.

The basic document weighting functions (Losee, 1998; Salton and Buckley, 1988) for

the CLM, IDF, and DT rankings are, respectively, any positive number w; −log (t) ; and

log
(

p/(1−p)
q/(1−q)

)
. This research assumed that the document weight for any CLM ranking

was always w = 1.

Earlier, it was mentioned that the decision-theoretic weighting function that was

used in this dissertation was based on binary independent features. The classic (i.e.,

conventional) way to adapt a weighting function to handle singularities has been to add

117

a small positive integer c to the value in each of the cells of Figure 2.2 on page 25 so

that the modified formulas for p and q always have positive denominators and so that

no other singularities can occur in the DT weighting function. After this adaptation, we

have

p =
r1 + c

r1 + r0 + 2c
,

q =
s1 + c

s1 + s0 + 2c
, and

t =
r1 + s1 + 2c

r1 + r0 + s1 + s0 + 4c
.

When c = 0.5, we have the classic (i.e., conventional) adaptation and, hence,

p =
r1 + 0.5

r1 + r0 + 1
, (4.3.1)

q =
s1 + 0.5

s1 + s0 + 1
, and (4.3.2)

t =
r1 + s1 + 1

r1 + r0 + s1 + s0 + 2
.

Some of the problems with this adaptation are that Equations 4.3.1 and 4.3.2 are not

unbiased estimators of p and q (Shaw, 1995). These equations can overestimate both

p and q when the number of relevant documents is small (van Rijsbergen et al., 1981;

Yu et al., 1983). These equations can also overestimate both p and q when the number

of relevant documents is large (Shaw, 1995). In addition, the “conventional computing

equations can produce illogical outcomes when c = 0.5 dominates the computation of p”

(Shaw, 1995).

One alternative to setting c to one-half (i.e., c = 0.5) is to set it to 1 (i.e., c = 1) (de

Vries and Roelleke, 2005). This setting possesses the same problems that the classic, or

conventional, setting of 0.5 possesses. The difference between the two for the contingency

table of Figure 2.2 on page 25 is that instead of that table having two “virtual documents”

118

(de Vries and Roelleke, 2005) added to it with the c = 0.5 setting, it has 4 with the c = 1

setting. The advantage of this setting is that the value in each cell of the contingency

table is now a whole number. This, conceptually, makes it easier to interpret the values

in each cell of the table as representing a number of documents (real plus virtual), rather

than a number of documents and some fractional adjustment factor.

Another alternative is to set c = n1/N (Robertson, 1986). This “can be expected

to resolve the problems of undefined and over estimated values of [Equation 4.2.1 on

page 117], in most cases” (Shaw, 1995). Shaw cautioned, however, that singularities

could still be present in certain situations where the document collection was small and

its members were subject-related.

In addition, Shaw felt that “[i]t [was] unnecessary and inappropriate, however, to

modify all [emphasis is that of the dissertation author] calculations of defining equations

for [p] and [q] to resolve isolated mathematical singularities” (Shaw, 1995). He proposed

a set of equations for p and q in which the singularities were handled as special cases.

If p = 0 or r1 + r0 = 0, set p = 1/N2. If q = 0 or s1 + s0 = 0, set q = 1/N2. If

p = 1 or q = 1, then set p = 1 − 1/N2 or q = 1 − 1/N2, respectively. Shaw (1995)

states that “[t]he square of collection size insures that probabilities of magnitude 0 are

reasonably estimated in a small set of retrieved documents or a small test collection.”

Shaw continued by noting that these modifications “alter the defining equations only as

needed and resolve previously described computational difficulties.”

After incorporating Shaw’s proposals and extending them so that they include an

empty document collection (i.e., N = 0), and a collection with a single document (i.e.,

N = 1), the result was

119

p′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p, if 0 < p < 1;

10−4, if N ≤ 1 and (r1 = 0 or r1 + r0 = 0);

1 − 10−4, if N = 1 and r1 = 1;

1
N2 , if N ≥ 2 and (r1 = 0 or r1 + r0 = 0);

1 − 1
N2 , if N ≥ 2 and r1 ≥ 1 and r0 = 0.

(4.3.3)

and

q′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q, if 0 < q < 1;

10−4, if N ≤ 1 and (s1 = 0 or s1 + s0 = 0);

1 − 10−4, if N = 1 and s1 = 1;

1
N2 , if N ≥ 2 and (s1 = 0 or s1 + s0 = 0);

1 − 1
N2 , if N ≥ 2 and s1 ≥ 1 and s0 = 0.

(4.3.4)

Shaw (1995) does not directly address the computation of t. The formula below is an

extension of that work and illustrates how to calculate t′.

t′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t, if 0 < t < 1;

10−4, if N ≤ 1 and (r1 + s1 = 0 or N = 0);

1 − 10−4, if N = 1 and r1 + s1 = 1;

1
N2 , if N ≥ 2 and r1 + s1 = 0;

1 − 1
N2 , if N ≥ 2 and r1 + s1 = N.

(4.3.5)

120

The expressions denoted by p′, t′, and q′ replaced those denoted by p, t, and q,

respectively, in the formulas for QCLM, QIDF, and QDT that appeared on the first page

of this chapter.

Therefore, the equations at the beginning of this chapter were rewritten as

Q′
CLM = Pr(p′ > t′),

Q′
IDF = Pr(p′ > t′) + Pr(p′ ≤ t′, t′ = 1 − ε)

= Q′
CLM + Pr(p′ ≤ t′, t′ = 1 − ε), and

Q′
DT = Pr(p′ > max(t′, q′)) + Pr(p′ ≤ min(t′, q′))

where

ε =

⎧⎪⎨
⎪⎩

N−2, if N ≥ 2;

10−4, otherwise.

The use of p′, q′, and t′ in place of their original counterparts also affected the formulas

for the normalized search length (A) and unnormalized search length (ASL) measures.

Their analogous redefinitions were

A′ = (1 − p′ + t′)/2

and

ASL′ = N(Q′A′ + (1 −Q′)(1 −A′)) + 1/2,

respectively, where Q′ was one of Q′
CLM,Q′

DT, or Q′
IDF. Further discussion and use of the

Q′,A′, and ASL′ formulas take place in Chapters 7 and 8.

121

4.4 What and Why Do We Count?

For each ranking method, the objective was to count the number of qualifying outcomes

for that method for a given N (the number of documents in a collection). An outcome

was said to be qualifying, for a ranking method, if its p′, t′, and q′ values satisfied the

conditions for this method. For example, only those outcomes with p′ and t′ values, such

that the condition p′ > t′ held, were qualifying ones for QCLM = Pr(p′ > t′). The Q
value for a particular method was calculated by dividing the count for the method by

the number of weak 4-compositions corresponding to N.

Fundamental to this counting process was the calculation of the p′, t′, and q′ values

for each outcome. These values were used to help determine whether the outcome was a

qualifying one. In order to make these calculations more manageable, separate analyses

were performed for each of the quadrants in Figure 4.1 on page 115. Near the end of

this chapter, the results of these analyses were combined and placed in Table 4.11 on

page 140.

Near the end of each of the analyses in the discussions to follow, the counts are

presented as a 3-tuple (that is denoted as a count contribution triple). The components

of such a triple, from the first component to the last one, are, respectively, the number of

outcomes where the condition p′ > t′ holds, the number of outcomes where the condition

p′ ≤ min(t′, q′) holds, and the number of outcomes where the condition p′ > max(t′, q′)

holds.

Within an analysis, a count contribution triple is only valid under certain conditions.

In particular, one of the major requirements is that the size of a document collection

must equal or exceed a specified threshold in order for the triple to be applicable within

the quadrant that it is associated with. This threshold varies by the characteristics of

a quadrant; it is exactly 0 in Quadrant II (i.e., N=0), 1 in Quadrants I and III (i.e.,

122

N ≥ 1), and ranges from 2 to 4, inclusive, in Quadrant IV, depending on the sub-

condition for a particular count contribution triple. More is written about this in the

various analyses below. Each analysis details how the size condition is determined for its

count contribution triple(s).

Regardless of the number of documents that are in a collection, Quadrants I, II,

and III only have the potential of contributing very small amounts to the count for any

ranking method. In fact, their contribution potential is almost insignificant for large

N. This is because their proportion of the total number of outcomes can be proved to

monotonically decrease as the collection size increases. By contrast, Quadrant IV is

where the overwhelming bulk of the contributions come from for the CLM, IDF, and DT

ranking methods. Except when both p and q are in the open interval (0, 1), closed form

solutions can be obtained for all of the cases discussed for each quadrant in the remainder

of this chapter. These cases show how to derive the closed form solutions.

4.5 Determining the Number of Qualifying Docu-

ment Collections for Quadrant I (each weak 4-

composition in this quadrant represents a doc-

ument collection that has at least one relevant

document and zero non-relevant documents)

This is the first of several sections that develop equations to calculate the contribution

counts for their respective quadrants. The equations that are developed in these sections

are used in subsequent chapters to develop equations that calculate the quality of ranking

values for the coordination level matching, inverse document frequency, and decision-

theoretic methods.

123

The event that corresponds to this subset of the sample space has C̃2(N) = N + 1

outcomes because each outcome has zero non-relevant documents (i.e., s1+s0 = 0) that is

associated with it and there are only N+1 distinct ways in which the weak 2-compositions

that correspond to the positive number of relevant documents (i.e., r1 + r0 > 0) can be

constructed. Table 4.1 on the next page illustrates this and other relationships. Being in

this quadrant implies that the cardinality of the document collection is at least one (i.e.,

N ≥ 1) because the smallest value that the sum r1 + r0 can have is 1.

Since all the documents are relevant in each outcome of this event, due to there not

being any non-relevant documents in this quadrant, the p′ value for an outcome is the

same as the associated t′ value for that outcome. This can be easily proved by first noting

that r1 + r0 > 0 implies that either (1) r1 = 0 and r0 > 0; (2) r1 > 0 and r0 = 0; or (3)

r1 > 0 and r0 > 0. In addition, s1 + s0 = 0 implies that s1 = s0 = 0 because s1 and s0

are both natural numbers.

When r1 = 0 and r0 > 0, both t and p are equal to 0 which means that t′ = p′ = 10−4,

if N = 1; and that t′ = p′ = 1/N2, otherwise. When r1 > 0 and r0 = 0, both t and p

are equal to 1 which means that t′ = p′ = 1 − 10−4, if N = 1; and that t′ = p′ = 1/N2,

otherwise. Finally, when r1 > 0 and r0 > 0, both t and p have the value r1/(r1 + r0).

Since this value is in the open interval (0, 1), and by the formulas (i.e., Equation 4.3.3 on

page 120 and Equation 4.3.3 on page 120) for p′ and t′, we can assert that p′ = p = t′ = t.

So, it follows that in each of the outcomes in this event p′ = t′. The number of outcomes

where p′ > t′ is 0 because we just established that p′ = t′ holds for all outcomes in this

quadrant.

Since s1 + s0 = 0 is always true for each outcome in this quadrant, the calculation

of q for each outcome leads to a singularity for each of these calculations. Therefore,

q′ = 10−4, when N = 1, and q′ = 1/N2, otherwise.

Visual inspection of Table 4.1 on the following page indicates that p′ = t′ ≥ q′ holds

124

when N ≥ 1. The number of outcomes for which p′ > max(t′, q′) is 0. For either N = 1

or N ≥ 2, the number of outcomes for which p′ ≤ min(t′, q′) is 1 and the number for

which p′ > max(t′, q′) is 0. Hence, the count contribution triple is (0, 1, 0) when N ≥ 1 .

Table 4.1: Quadrant I Outcomes.

condition r1 r0 s1 s0 p′ t′ q′

N = 1 0 1 0 0 10−4 10−4 10−4

N = 1 1 0 0 0 1 − 10−4 1 − 10−4 10−4

N ≥ 2 0 N 0 0 1/N2 1/N2 1/N2

N ≥ 2 1 N − 1 0 0 1/N 1/N 1/N2

N ≥ 2 2 N − 2 0 0 2/N 2/N 1/N2

N ≥ 2 · · · · · · 0 0 · · · · · · 1/N2

N ≥ 2 N − 1 1 0 0 (N − 1)/N (N − 1)/N 1/N2

N ≥ 2 N 0 0 0 1 − (1/N2) 1 − (1/N2) 1/N2

4.6 Determining the Number of Qualifying Docu-

ment Collections for Quadrant II (the single weak

4-composition in this quadrant represents the

empty collection of documents for N = 0)

If N = 0, the event that corresponds to this subset of the sample space has one outcome,

namely, (0, 0, 0, 0) associated with it.

On the other hand, if N ≥ 1, then the event that corresponds to this subset of the

sample space has no outcomes associated with it.

Hence, the count contribution triple is (0, 1, 0), if N = 0; otherwise, it is (0, 0, 0).

125

4.7 Determining the Number of Qualifying Docu-

ment Collections for Quadrant III (each weak

4-composition in this quadrant represents a doc-

ument collection that has zero non-relevant doc-

uments and at least one relevant document)

The structure of the analysis for this quadrant is very similar to that for Quadrant I.

The main difference is that we are using q and q′ in those places where we used p and p′,

respectively, in the analysis for Quadrant I.

The event that corresponds to this subset of the sample space has C̃2(N) = N + 1

outcomes, the same number as was present in Quadrant I. This is because each outcome

has zero relevant documents (i.e., r1 +r0 = 0) associated with it and there are only N +1

distinct ways in which the weak 2-compositions corresponding to the positive number of

non-relevant documents (i.e., s1 + s0 > 0) can be constructed. Table 4.2 on the next

page illustrates this and other relationships. Being in this quadrant implies that the

cardinality of the document collection is at least 1 (i.e., N ≥ 1).

All the documents are non-relevant in each outcome of this event, due to there not

being any relevant documents in this quadrant. The q′ value for an outcome is the same

as the associated t′ value for that outcome. This can be easily proved by first noting that

s1 + s0 > 0 implies that either (1) s1 = 0 and s0 > 0; (2) s1 > 0 and s0 = 0; or (3) s1 > 0

and s0 > 0. In addition, r1 + r0 = 0 implies that r1 = r0 = 0 because r1 and r0 are both

natural numbers.

When s1 = 0 and s0 > 0, both t and q are equal to 0 which means that t′ = q′ = 10−4,

if N = 1, and that t′ = q′ = 1/N2, otherwise. When s1 > 0 and s0 = 0, both t and q

are equal to 1 which means that t′ = q′ = 1 − 10−4, if N = 1, and that t′ = q′ = 1/N2,

126

otherwise. Finally, when s1 > 0 and s0 > 0, both t and q have the value s1/(s1 + s0).

Since this value is in the open interval (0, 1), and by the formulas that start on page 120

for q′ and t′, we can assert that q′ = q = t′ = t. So, it follows that, in each of the

outcomes in this event, q′ = t′. The number of outcomes where q′ > t′ is 0 because we

just established that q′ = t′ holds for all outcomes in this quadrant.

Since r1 + r0 = 0 is always true for each outcome in this quadrant, the calculation of

p for each outcome leads to a singularity for each of the outcomes. Therefore, p′ = 10−4

when N = 1 and p′ = 1/N2, otherwise.

Visual inspection of Table 4.2 indicates that p′ ≤ t′ = q′ holds when N ≥ 1. The

number of outcomes for which p′ > max(t′, q′) is 0. For either N = 1 or N ≥ 2,

the number of outcomes for which p′ ≤ min(t′, q′) is N + 1 and the number for which

p′ > max(t′, q′) is 0. The count contribution triple is (0, N + 1, 0) when N ≥ 1.

Table 4.2: Quadrant III Outcomes.

condition r1 r0 s1 s0 p′ t′ q′

N = 1 0 0 0 1 10−4 10−4 10−4

N = 1 0 0 1 0 10−4 1 − 10−4 1 − 10−4

N ≥ 2 0 0 0 N 1/N2 1/N2 1/N2

N ≥ 2 0 0 1 N − 1 1/N2 1/N 1/N
N ≥ 2 0 0 2 N − 2 1/N2 2/N 2/N
N ≥ 2 0 0 · · · · · · 1/N2 · · · · · ·
N ≥ 2 0 0 N − 1 1 1/N2 (N − 1)/N (N − 1)/N
N ≥ 2 0 0 N 0 1/N2 1 − (1/N2) 1 − (1/N2)

127

4.8 Determining the Number of Qualifying Docu-

ment Collections for Quadrant IV (each weak

4-composition in this quadrant represents a doc-

ument collection that has at least one relevant

document and at least one non-relevant docu-

ment)

Quadrant IV is, by far, the most complex quadrant to analyze. The analyses for it use

values of p and q to divide the work into 9 mutually exclusive joint categories. A value

for either p or q is in exactly one of three single categories: it is equal to 0, it is in the

open interval (0, 1), or it is equal to 1. Since the categories can be independently chosen

for each of p and q, the result is a total of 3 × 3 = 9 mutually exclusive joint categories.

Contribution counts when Quadrant IV, p = 0, and q = 0. None of the documents contain

the query term.

The event that corresponds to this subset of the sample space has C2(N) = N − 1

outcomes because each outcome has zero documents with feature frequency 1 associated

with it and there are only N−1 distinct ways in which the 2-compositions that correspond

to the r0 and s0 components can be constructed. Table 4.3 on the next page illustrates

this and other relationships. The first row in the table shows that because the value of

N − 1 must be positive, then N must have a value of at least 2 (i.e., N ≥ 2).

None of the outcomes of this event have any documents with feature frequency 1, the

p′, t′, and q′ values is the same in each outcome. This can be easily proved by noting

128

that

p =
r1

r1 + r0

=
0

0 + r0

=
0

r0

= 0,

t =
r1 + s1

r1 + r0 + s1 + s0

=
0 + 0

0 + r0 + 0 + s0

=
0

r0 + s0

= 0, and

q =
s1

s1 + s0

=
0

0 + s0

=
0

s0

= 0

in this context. It follows that, in each of the outcomes in this event, p′ = t′ = q′ = 1/N2.

This allows us to state that p′ = t′ = q′ holds when N ≥ 2, that the number of outcomes

where p′ > t′ is 0; that the number of outcomes for which p′ ≤ min(t′, q′) is N − 1; and

that the number of outcomes for which p′ > max(t′, q′) is 0. Hence, the count contribution

triple is (0, N − 1, 0).

Table 4.3: Quadrant IV Outcomes (p = 0 and q = 0 and N ≥ 2).

r1 r0 s1 s0 p′ t′ q′

0 1 0 N − 1 1/N2 1/N2 1/N2

0 2 0 N − 2 1/N2 1/N2 1/N2

0 · · · 0 · · · 1/N2 1/N2 1/N2

0 N − 2 0 2 1/N2 1/N2 1/N2

0 N − 1 0 1 1/N2 1/N2 1/N2

Contribution counts when Quadrant IV, p = 0, and q ∈ (0, 1). None of the relevant

documents contain the query term; some, but not all, of the non-relevant documents

contain the query term.

The event that corresponds to this subset of the sample space has C3(N) =
(

N−1
2

)
outcomes because the number of relevant documents with feature frequency 1 is zero and

the numbers of documents in each of the remaining three categories must be positive.

Table 4.4 on page 131 illustrates this and other relationships. From the first row in the

table we can see that because the value of N − 2 must be positive, then N must have a

129

value of at least three (i.e., N ≥ 3).

Since all of the relevant documents have feature frequency 0, p′ = 1/N2 in each

outcome. Since there are no relevant documents with feature frequency 1 in each outcome

of this event, the t′ and q′ values, with respect to an outcome, have the same numerator,

before any simplification, because

t =
r1 + s1

r1 + r0 + s1 + s0

=
0 + s1

0 + r0 + s1 + s0

=
s1

r0 + s1 + s0

= 0 and

q =
s1

s1 + s0

in this context. Due to r0 > 0 being true for each outcome, it follows that, in each

outcome, t′ < q′ is true, too. We also note that with our constraint of N ≥ 2, that p′ < t′

is true, too. Therefore, p′ < t′ < q′ also holds.

This allows us to state that the number of outcomes where p′ > t′ is 0; that the

number of outcomes for which p′ ≤ min(t′, q′) is
(

N−1
2

)
; and that the number of outcomes

for which p′ > max(t′, q′) is 0.

Hence, the count contribution triple is
(
0,

(
N−1

2

)
, 0

)
.

Contribution counts when Quadrant IV, p = 0, and q = 1. None of the relevant documents

contain the query term; all of the non-relevant documents contain the query term.

The event that corresponds to this subset of the sample space has C2(N) = N − 1 out-

comes. This is because each outcome has zero relevant documents with feature frequency

1, has zero non-relevant documents with feature frequency 0 associated with it, and there

are only N − 1 distinct ways in which the 2-compositions that correspond to the r0 and

s1 components can be constructed. Table 4.5 on the next page illustrates this and other

relationships. The first row in the table shows that because the value of N − 1 must be

positive, then N must have a value of at least 2 (i.e., N ≥ 2).

The above allows us to state that each outcome has p′ = 1/N2 and q′ = 1 − (1/N2)

130

Table 4.4: Quadrant IV Outcomes (p = 0 and q ∈ (0, 1) and N ≥ 3).

r1 r0 s1 s0 p′ t′ q′

0 1 1 N − 2 1/N2 1/N 1/(N − 1)
0 1 2 N − 3 1/N2 2/N 2/(N − 1)
0 1 3 N − 4 1/N2 3/N 3/(N − 1)
0 1 · · · · · · 1/N2 · · · · · ·
0 1 N − 3 2 1/N2 (N − 3)/N (N − 3)/(N − 1)
0 1 N − 2 1 1/N2 (N − 2)/N (N − 2)/(N − 1)
0 2 1 N − 3 1/N2 1/N 1/(N − 2)
0 2 2 N − 4 1/N2 2/N 2/(N − 2)
0 2 · · · · · · 1/N2 · · · · · ·
0 2 N − 4 2 1/N2 (N − 4)/N (N − 4)/(N − 2)
0 2 N − 3 1 1/N2 (N − 3)/N (N − 3)/(N − 2)
0 · · · · · · · · · 1/N2 · · · · · ·
0 N − 3 1 2 1/N2 1/N 1/3
0 N − 3 2 1 1/N2 2/N 2/3
0 N − 2 1 1 1/N2 1/N 1/2

associated with it. The t′ value for each outcome can be calculated by the expression

s1/N . Since the value of r0 ranges from 1 to N − 1, inclusive, for the outcomes in

this event, and that value of r0/N is always greater than 1/N2 and is always less than

1 − (1/N2)), we can conclude that p′ < t′ < q′.

Hence, the count contribution triple is (0, N − 1, 0).

Table 4.5: Quadrant IV Outcomes (p = 0 and q = 1 and N ≥ 2).

r1 r0 s1 s0 p′ t′ q′

0 1 N − 1 0 1/N2 (N − 1)/N 1 − (1/N2)
0 2 N − 2 0 1/N2 (N − 2)/N 1 − (1/N2)
0 · · · · · · · · · 1/N2 · · · 1 − (1/N2)
0 N − 2 2 0 1/N2 2/N 1 − (1/N2)
0 N − 1 1 0 1/N2 1/N 1 − (1/N2)

Contribution counts when Quadrant IV, p ∈ (0, 1), and q = 0. Some, but not all, of the

relevant documents contain the query term; none of the non-relevant documents contain

131

the query term.

The event that corresponds to this subset of the sample space has C3(N) =
(

N−1
2

)
outcomes because the number of non-relevant documents with feature frequency 1 is 0

and the numbers of documents in each of the remaining three categories must be positive.

Table 4.6 on the following page illustrates this and other relationships. From the first

row in the table, we can see that because the value of N − 2 must be positive, then N

must have a value of at least three (i.e., N ≥ 3).

Since the number of non-relevant documents with feature frequency 1 is 0 in each

outcome of this event, we have

p =
r1

r1 + r0

,

t =
r1 + s1

r1 + r0 + s1 + s0

=
r1 + 0

r1 + r0 + 0 + s0

=
r1

r1 + r0 + s0

, and

q′ =
1

N2

in this context.

One of our items of interest is in discovering the relationship R (e.g., =, �=, >,≥, <,≤)

between p′, t′, and q′. We start by asserting that p′Rt′ is true for at least one of those 6

relational operators and writing

p′R t′ ≡ r1

r1 + r0

R
r1

r1 + r0 + s0

≡ r1(r1 + r0 + s0) R (r1 + r0)r1

≡ r2
1 + r1r0 + r1s0 R r2

1 + r0r1

≡ r1s0 R 0.

Table 4.6 on the next page indicates that both r1 and s0 have positive values in

132

each outcome. Therefore, R can be either the greater-than relationship or the greater-

than-or-equal-to relationship. The more appropriate one to use in this situation is the

greater-than relationship. Now, we can state that p′ > t′. Since t′ > q′ for all the

outcomes when N ≥ 3, we can also state that p′ > t′ > q′.

Hence, the count contribution triple is
((

N−1
2

)
, 0,

(
N−1

2

))
.

Table 4.6: Quadrant IV Outcomes (p ∈ (0, 1) and q = 0 and N ≥ 3).

r1 r0 s1 s0 p′ t′ q′

1 1 0 N − 2 1/2 1/N 1/N2

1 2 0 N − 3 1/3 1/N 1/N2

1 3 0 N − 4 1/4 1/N 1/N2

· · · · · · 0 · · · · · · · · · 1/N2

1 N − 3 0 2 1/(N − 2) 1/N 1/N2

1 N − 2 0 1 1/(N − 1) 1/N 1/N2

2 1 0 N − 3 2/3 2/N 1/N2

2 2 0 N − 4 2/4 2/N 1/N2

2 · · · 0 · · · · · · 2/N 1/N2

2 N − 4 0 2 2/(N − 2) 2/N 1/N2

2 N − 3 0 1 2/(N − 1) 2/N 1/N2

· · · · · · 0 · · · · · · · · · 1/N2

N − 3 1 0 2 (N − 3)/(N − 2) (N − 3)/N 1/N2

N − 3 2 0 1 (N − 3)/(N − 1) (N − 3)/N 1/N2

N − 2 1 0 1 (N − 2)/(N − 1) (N − 2)/N 1/N2

Contribution counts when Quadrant IV, p ∈ (0, 1), and q ∈ (0, 1). Some, but not all, of

both the relevant and non-relevant documents contain the query term.

The computations of the counts for p′ > t′, p′ ≤ min(t′, q′), and p′ > max(t′, q′) are

discussed in Chapter 5 and Section 6.3.

Contribution counts when Quadrant IV, p ∈ (0, 1), and q = 1. Some, but not all, of the

relevant documents contain the query term; all of the non-relevant documents contain

the query term.

133

The event that corresponds to this subset of the sample space has C3(N) =
(

N−1
2

)
outcomes because the number of non-relevant documents with feature frequency 1 is 0

and the numbers of documents in each of the remaining three categories must be positive.

Table 4.7 on the following page illustrates this and other relationships. From the first

row in the table, we can see that because the value of N − 2 must be positive, then N

must have a value of at least three (i.e., N ≥ 3).

Since the number of non-relevant documents with feature frequency 0 is zero in each

outcome of this event, we have

p =
r1

r1 + r0

,

t =
r1 + s1

r1 + r0 + s1 + s0

=
r1 + s1

r1 + r0 + s1 + 0
=

r1 + s1

r1 + r0 + s1

, and

q′ = 1 − 1

N2

in this context.

One item of interest is in discovering the relationship R (e.g., =, �=, >,≥, <,≤) be-

tween p′, t′, and q′. We start by asserting that p′Rt′ is true for at least one of those 6

relational operators and writing

p′R t′ =
r1

r1 + r0

R
r1 + s1

r1 + r0 + s1

= r1(r1 + r0 + s1) R (r1 + r0)(r1 + s1)

= r2
1 + r1r0 + r1s1 R r2

1 + r1s1 + r0r1 + r0s1

= 0 R r1s1.

Table 4.7 on the next page indicates that both r1 and s1 have positive values in each

outcome. Therefore, R can be either the less-than relationship or the less-than-or-equal-

to relationship. The more appropriate one to use in this situation is the former. Now,

134

we can state that p′ < t′. Since t′ < q′ for all the outcomes when N ≥ 3, we can also

state that p′ < t′ < q′.

Hence, the count contribution triple is
(
0,

(
N−1

2

)
, 0

)
.

Table 4.7: Quadrant IV Outcomes (p ∈ (0, 1) and q = 1 and N ≥ 3).

r1 r0 s1 s0 p′ t′ q′

1 1 N − 2 0 1/2 (N − 1)/N 1 − (1/N2)
1 2 N − 3 0 1/3 (N − 2)/N 1 − (1/N2)
1 3 N − 4 0 1/4 (N − 3)/N 1 − (1/N2)
· · · · · · · · · 0 · · · · · · 1 − (1/N2)
1 N − 3 2 0 1/(N − 2) 3/N 1 − (1/N2)
1 N − 2 1 0 1/(N − 1) 2/N 1 − (1/N2)
2 1 N − 3 0 2/3 (N − 1)/N 1 − (1/N2)
2 2 N − 4 0 2/4 (N − 2)/N 1 − (1/N2)
2 · · · · · · 0 · · · · · · 1 − (1/N2)
2 N − 4 2 0 2/(N − 2) 4/N 1 − (1/N2)
2 N − 3 1 0 2/(N − 1) 3/N 1 − (1/N2)
· · · · · · · · · 0 · · · · · · 1 − (1/N2)

N − 3 1 2 0 (N − 3)/(N − 2) (N − 1)/N 1 − (1/N2)
N − 3 2 1 0 (N − 3)/(N − 1) (N − 2)/N 1 − (1/N2)
N − 2 1 1 0 (N − 2)/(N − 1) (N − 1)/N 1 − (1/N2)

Contribution counts when Quadrant IV, p = 1, and q = 0. All of the relevant documents

contain the query term; none of the non-relevant documents contain the query term.

The event that corresponds to this subset of the sample space has C2(N) = N − 1

outcomes because each outcome has zero relevant documents with feature frequency 0

associated and zero non-relevant documents with feature frequency 1 associated with it.

There are only N − 1 distinct ways in which the 2-compositions that correspond to the

r1 and s0 components can be constructed. Table 4.8 on the following page illustrates this

and other relationships. The first row in the table shows that because the value of N − 1

must be positive, then N must have a value of at least 2 (i.e., N ≥ 2).

135

The information in the first paragraph of this case allows us to state that

p =
r1

r1 + r0

=
r1

r1 + 0
=

r1

r1

= 1,

t =
r1 + s1

r1 + r0 + s1 + s0

=
r1 + 0

r1 + 0 + 0 + s0

=
r1

r1 + s0

, and

q =
s1

s1 + s0

=
0

0 + s0

=
0

s0

= 0

in this context. We can see right away that p > t > q thereby letting us state that

p′ > t′ > q′. Also, from these equations, we can state that p′ = 1− (1/N2) and q′ = 1/N2

in each outcome.

Hence, the count contribution triple is (N − 1, 0, N − 1).

Table 4.8: Quadrant IV Outcomes (p = 1 and q = 0 and N ≥ 2).

r1 r0 s1 s0 p′ t′ q′

1 0 0 N − 1 1 − (1/N2) 1/N 1/N2

2 0 0 N − 2 1 − (1/N2) 2/N 1/N2

· · · 0 0 · · · 1 − (1/N2) · · · 1/N2

N − 2 0 0 2 1 − (1/N2) (N − 2)/N 1/N2

N − 1 0 0 1 1 − (1/N2) (N − 1)/N 1/N2

Contribution counts when Quadrant IV, p = 1, and q ∈ (0, 1). All of the relevant docu-

ments contain the query term; some, but not all, of the non-relevant documents contain

the query term.

The event that corresponds to this subset of the sample space has C3(N) =
(

N−1
2

)
outcomes because the number of relevant documents with feature frequency 0 is zero and

the numbers of documents in each of the remaining three categories must be positive.

Table 4.9 on page 138 illustrates this and other relationships. The first row in the table

shows that because the value of N − 2 must be positive, then N must have a value of at

least three (i.e., N ≥ 3).

136

The information in the first paragraph of this case allows us to state that

p =
r1

r1 + r0

=
r1

r1 + 0
=

r1

r1

= 1,

t =
r1 + s1

r1 + r0 + s1 + s0

=
r1 + s1

r1 + 0 + s1 + s0

=
r1 + s1

r1 + s1 + s0

, and

q =
s1

s1 + s0

in this context.

One of our items of interest is in discovering the relationship R (e.g., =, �=, >,≥, <,≤)

between p′, t′, and q′. We start by asserting that t′R q′ is true for at least 1 of those 6

relational operators. This assertion leads to the derivation of the following equivalence:

t′ R q′ ≡ r1 + s1

r1 + s1 + s0

R
s1

s1 + s0

≡ ((r1 + s1)(s1 + s0)) R ((r1 + s1 + s0)s1)

≡ (r1s1 + r1s0 + s2
1 + s1s0) R (r1s1 + s2

1 + s0s1)

≡ (r1s0) R 0.

Table 4.9 on the following page indicates that both r1 and s0 have positive values in

each outcome. Therefore, R can be either the greater-than relationship or the greater-

than-or-equal-to relationship. The more appropriate one to use in this situation is the

former. Now, we can state that t′ > q′. Since p′ < t′ for all the outcomes when N ≥ 3, we

can also state that p′ > t′ > q′. Hence, the count contribution triple is
((

N−1
2

)
, 0,

(
N−1

2

))
.

Contribution counts when Quadrant IV, p = 1, and q = 1. All of the documents contain

the query term.

The event that corresponds to this subset of the sample space has C2(N) = N − 1

outcomes because each outcome does not have any documents with feature frequency 1

137

Table 4.9: Quadrant IV Outcomes (p = 1 and q ∈ (0, 1) and N ≥ 3).

r1 r0 s1 s0 p′ t′ q′

1 0 1 N − 2 1 − (1/N2) 2/N 1/(N − 1)
1 0 2 N − 3 1 − (1/N2) 3/N 2/(N − 1)
1 0 3 N − 4 1 − (1/N2) 4/N 3/(N − 1)
1 0 · · · · · · 1 − (1/N2) · · · · · ·
1 0 N − 3 2 1 − (1/N2) (N − 2)/N (N − 3)/(N − 1)
1 0 N − 2 1 1 − (1/N2) (N − 1)/N (N − 2)/(N − 1)
2 0 1 N − 3 1 − (1/N2) 3/N 1/(N − 2)
2 0 2 N − 4 1 − (1/N2) 4/N 2/(N − 2)
2 0 · · · · · · 1 − (1/N2) · · · · · ·
2 0 N − 4 2 1 − (1/N2) (N − 2)/N (N − 4)/(N − 2)
2 0 N − 3 1 1 − (1/N2) (N − 1)/N (N − 3)/(N − 2)
· · · 0 · · · · · · 1 − (1/N2) · · · · · ·

N − 3 0 1 2 1 − (1/N2) (N − 2)/N 1/3
N − 3 0 2 1 1 − (1/N2) (N − 1)/N 2/3
N − 2 0 1 1 1 − (1/N2) (N − 1)/N 1/2

associated with it. There are only N − 1 distinct ways in which the 2-compositions that

correspond to the r1 and s1 components can be constructed. Table 4.10 on the next page

illustrates this and other relationships. The first row in the table shows that because the

value of N − 1 must be positive, then N must have a value of at least 2 (i.e., N ≥ 2).

The information in the first paragraph of this case allows us to state that

p =
r1

r1 + r0

=
r1

r1 + 0
=

r1

r1

= 1,

t =
r1 + s1

r1 + r0 + s1 + s0

=
r1 + s1

r1 + 0 + s1 + 0
=

r1 + s1

r1 + s1

= 1, and

q =
s1

s1 + s0

=
s1

s1 + 0
=

s1

s1

= 1

in this context. We can see right away that p = t = q, thereby letting us state that

p′ = t′ = q′. Also, from these equations, we can state that p′ = t′ = q′ = 1 − (1/N2) in

each outcome.

Hence, the count contribution triple is (0, N − 1, 0).

138

Table 4.10: Quadrant IV Outcomes (p = 1 and q = 1 and N ≥ 2).

r1 r0 s1 s0 p′ t′ q′

1 0 N − 1 0 1 − (1/N2) 1 − (1/N2) 1 − (1/N2)
2 0 N − 2 0 1 − (1/N2) 1 − (1/N2) 1 − (1/N2)
· · · 0 · · · 0 1 − (1/N2) 1 − (1/N2) 1 − (1/N2)

N − 2 0 2 0 1 − (1/N2) 1 − (1/N2) 1 − (1/N2)
N − 1 0 1 0 1 − (1/N2) 1 − (1/N2) 1 − (1/N2)

4.9 Summary

The various contribution count results that were obtained from the preceding discussions

for Quadrants I, II, III, and IV were consolidated in Table 4.11 on the following page. This

information is used in Chapter 5 (A Combinatoric Model of Q′ for the CLM Ranking

Method) and Chapter 6 (A Combinatoric Model of Q′ for the IDF and DT Ranking

Methods) to calculate the quality of ranking measures for the methods of interest in

these chapters.

139

Table 4.11: Number of Outcomes for the Four Quadrants (lines 4–12, inclusive, represent
Quadrant IV.)

#
of of of

outcomes outcomes outcomes
size supplemental satisfying satisfying satisfying

LINE QUAD condition condition p′ > t′ p′ ≤ min(t′, q′) p′ > max(t′, q′)
1 I N ≥ 1 0 1 0
2 II N = 0 0 1 0
3 III N ≥ 1 0 N + 1 0
4 IV N ≥ 2 p = 0 and q = 0 0 N − 1 0
5 N ≥ 3 p = 0 and q ∈ (0, 1) 0

(
N−1
2

)
0

6 N ≥ 2 p = 0 and q = 1 0 N − 1 0
7 N ≥ 3 p ∈ (0, 1) and q = 0

(
N−1
2

)
0

(
N−1
2

)
8 N ≥ 4 p ∈ (0, 1) and q ∈ (0, 1) derived in derived in derived in

Chapter 5 Chapter 6 Chapter 6
9 N ≥ 3 p ∈ (0, 1) and q = 1 0

(
N−1
2

)
0

10 N ≥ 2 p = 1 and q = 0 N − 1 0 N − 1
11 N ≥ 3 p = 1 and q ∈ (0, 1)

(
N−1
2

)
0

(
N−1
2

)
12 N ≥ 2 p = 1 and q = 1 0 N − 1 0

140

Chapter 5

A Combinatoric Model of Q′ for the

Coordination Level Matching

Ranking Method

The purpose of this chapter is to develop counting expressions that collectively calculate

the quality of the coordination level matching (CLM) ranking method for a document

collection of size N. Some of these expressions come from the general work that was

discussed in Chapter 4. The work in this chapter, along with that in Chapter 6, enable

us to calculate the ranking method-specific Q′ values that are referenced in many of

the equations that are in Section 7.10 (A Family of ASL Measures), which starts on

page 327, and Section 8.2 (The Validation of Q′ Estimates That Were Obtained by

Random Sampling), which starts on page 348.

The CLM quality of ranking equation, that is derived later in this chapter, is used in

Section 7.8 and Section 7.10 of Chapter 7 to help develop equations for the normalized and

unnormalized search lengths, along with equations for the expected value and variance of

these search lengths. This equation also occupies a prominent role in Chapter 8 during

the validation of formulas for the Q′, A′, and ASL′ measures.

This chapter is the first of two consecutive chapters that derive expressions to help

calculate the quality of a specific ranking method. The next chapter does this for the

inverse document frequency (IDF) and decision-theoretic (DT) ranking methods. Many

ideas and concepts are introduced and developed in this chapter; its material is largely

based on combinatorial arguments and mathematical proofs. Each of these chapters have

a short section that describes the respective ranking method of interest and the derivation

of the quality of ranking measure that is associated with it.

It is usually the norm in the kind of research being undertaken by this dissertation

that any assertion be either formally proved or disproved. Throughout this chapter, and

in the other chapters of this dissertation, there are many assertions that emerge from

parts of this research. Almost invariably, these assertions have a lemma or theorem

associated with them. In this research, formal proofs were provided for these lemmas

and theorems.

For the convenience of the reader, we restate the following concepts from Chapter 2

and Section 4.2. From the information retrieval (IR) perspective of this dissertation,

these concepts cover the notions of weak composition, composition, and sample space.

A weak composition of size 4 represents a collection of N documents where at least

one of the following conditions must be true: the number of relevant documents that

contain the query term is 0 (i.e., r1 = 0), the number of relevant documents that do not

contain the query term is 0 (i.e., r0 = 0), the number of non-relevant documents that

contain the query term is 0 (i.e., s1 = 0), or the number of non-relevant documents that

do not contain the query term is 0 (i.e., s0 = 0).

A strong composition of size 4 represents a collection of N documents where all of

the following conditions must be true: the number of relevant documents that contain

the query term is positive (i.e., r1 ≥ 1), the number of relevant documents that do not

contain the query term is positive (i.e., r0 ≥ 1), the number of non-relevant documents

that contain the query term is positive (i.e., s1 ≥ 1), and the number of non-relevant

142

documents that do not contain the query term is positive (i.e., s0 ≥ 1).

A sample space for a weak-composition of size k, and N documents, represents all the

possible collections of N documents in terms of the k parameters. For example, k = 4

in many of the discussions in this chapter and the discussions in subsequent chapters.

When k = 4, the parameters are r1, r0, s1, and s0. An outcome is an element of this

sample space and represents exactly one of its collections.

On page 121 of Chapter 4, it was stated that the quality of the CLM ranking method

is defined by the following equation:

Q′
CLM = Pr(p′ > t′). (5.0.1)

For N ≥ 0, the value of Q′
CLM can be calculated by determining the count contribution

of the number of weak 4-compositions in the sample space for an N document collection,

when p′ > t′, and then dividing this value by the cardinality of the sample space. The

sample space of weak 4-compositions for a query represents all the possible ways that

queries can induce the partitioning of the document collection into a set of weak 4-

compositions.

In summary, a weak 4-composition for a document collection C of size N represents

the cardinalities that are associated with a partitioning of C into four sets such that

the union of these sets yields C. The four partitions correspond to the set of relevant

documents that contain the query term, the set of relevant documents that do not contain

the query term, the set of non-relevant documents that contain the query term, and

the set of non-relevant documents that do not contain the query term. The associated

cardinalities are represented by r1, r0, s1, and s0, respectively.

For a weak 4-composition, the number of documents in a partition can range from as

few as zero documents to as many documents as there are in the entire collection (i.e.,

N). It is an invariant that, for any weak 4-composition of an N document collection, the

143

sum of the values for the four parts of the composition is always equal to N. In a strong

4-composition, as contrasted with a weak 4-composition, everything that was just stated

above about a weak 4-composition applies, but, in addition, each partition must contain

at least one document and no partition can contain more than N − 3 documents.

5.1 Ranking By Coordination Level Matching

Coordination level matching, also known as simple matching in the IR literature, is one

of the first techniques that researchers used to study the ranking of documents for a

query or set of queries. Conceptually, for a query-document pair, CLM ranking first

determines the distinct terms in both the query q and the document. Next, it calculates

how many distinct terms the query q and document have in common. The resultant value

is the retrieval status value (RSV) for the document. After this process has taken place

for all the documents in the collection that are associated with query q, the documents

are ranked by their RSVs. The ordering, that is induced by the ranking, places the

documents with the higher magnitude RSVs at higher ranks than those documents that

have the lower magnitude RSVs. If two or more documents have the same RSV, these

documents appear consecutively in the ordering, but after those documents that have

higher ranks and before those documents that have lower ranks. Note that ranks are

represented by natural numbers that start at 1 and end at the number of documents N

in a collection. The highest possible rank is 1, the next highest possible rank is 2, and

so on, with the lowest possible rank being N.

Largely due to its simplicity and the way that CLM works, many documents in a

collection may be assigned the same RSV. For example, consider a query q with the set

of terms

{quick, brown, fox, jump, fence}.

144

The documents that contain all five of these terms have an RSV of 5, the ones that only

have 4 of these terms have an RSV of 4, and so on. The documents that contain none of

these terms have 0 as their RSV. Generally, there are likely to be more documents that

do not contain all the query terms than there are documents that contain all of them.

In CLM ranking, it is not at all unusual for there to be large numbers of duplicate RSVs

among the documents. The weight of a document in CLM ranking is a constant c > 0.

5.2 Two Basic Ways to Count the Number of Qual-

ifying Weak 4-Compositions

In IR terms, the calculation (or determination) of the number of weak 4-compositions for

N that satisfy the condition r1s0 > r0s1 (analogous to the condition p′ > t′) is equivalent

to finding the number of collections, over all the possible collections of N documents,

that satisfy the condition r1s0 > r0s1.

There are two basic ways that one can go about developing arithmetic expressions that

compute the number of qualifying weak 4-compositions of N . One is direct, the other

is indirect. The direct way concentrates on how to develop expressions for counting

the number of weak 4-compositions of N that satisfy the restriction that is denoted by

r1s0 > r0s1. Satisfaction of Constraints 3.3.12 to 3.3.14 on page 94 is implicit in the

definition of 4-compositions of N . The indirect way makes use of the fact that

C4(N) = Card4C(N, r1s0 < r0s1) + Card4C(N, r1s0 = r0s1) + Card4C(N, r1s0 > r0s1),

and that it is sometimes easier to calculate the number of weak 4-compositions that satisfy

the restriction r1s0 = r0s1 than it is to compute the number that satisfy r1s0 > r0s1.

The notation Card4C(N, restriction) denotes the number of 4-compositions of N after

the set of 4-compositions of N has been subsetted by the condition that is denoted by

145

restriction. If, for any N , we can prove that the number of weak 4-compositions of N

that satisfy r1s0 < r0s1 is equal to the number of weak 4-compositions of N that satisfies

r1s0 > r0s1, then the number of weak 4-compositions for N can be re-expressed as

C4(N) = 2 · Card4C(N, r1s0 > r0s1) + Card4C(N, r1s0 = r0s1).

This means that if we can compute the number of weak 4-compositions of N that satisfy

r1s0 = r0s1, then we can determine the number of weak 4-compositions of N that satisfy

r1s0 > r0s1 rather easily. The next lemma establishes that the number of weak 4-

compositions that satisfy the condition r1s0 > r0s1 in an N document collection for

a query q has the same value as the number of weak 4-compositions that satisfy the

condition r1s0 < r0s1. This helps us to prove that once we have a way to determine the

number of weak 4-compositions that satisfy r1s0 = r0s1, we also have a way to determine

how many satisfy the condition r1s0 > r0s1. This fact is useful later on in this chapter.

Lemma 5.2.1. The number of weak 4-compositions of N that satisfies r1s0 > r0s1 is

equal to the number of weak 4-compositions of N that satisfies r1s0 < r0s1.

Proof. Any weak 4-composition of N that satisfies r1s0 > r0s1 can be represented by a 4-

tuple where the first component contains the value for r1, the second component contains

the value for s0, the third component contains the value for r0, and the last component

contains the value for s1. Let a, b, c, and d represent an instance of respective values for

these components such that these values satisfy r1s0 > r0s1. For any particular instance

of a 4-tuple, say, (a, b, c, d), that is in the set of weak 4-compositions of N that satisfy

r1s0 > r0s1, the instances (a, b, d, c), (b, a, c, d), and (b, a, d, c) also satisfy this relation

because the products of the values of the first 2 and last 2 components of each instance

are a × b and c × d, respectively.

Each of the four 4-tuple instances in the previous paragraph can be transformed easily

146

into an instance that satisfies r1s0 < r0s1 by the following two actions: interchange the

value of its first component with that of its third component, then interchange the value

of its second component with that of its fourth component. This yields the 4-tuples

(a, b, c, d), (a, b, d, c), (b, a, c, d), and (b, a, d, c), from the 4-tuples (c, d, a, b), (d, c, a, b),

(c, d, b, a), and (d, c, b, a), respectively. By definition of the set of weak 4-compositions

for N , the former set of 4-tuple instances are also members of this set. Furthermore, the

cardinality of the former set is exactly the same as that of the latter set.

5.3 The Number of Distinct 2-Partitions

Compositions, both weak and strong, are an integral part of the many formula derivations

that occur later in this chapter. The two equations for determining the number of weak

and strong compositions appear in Chapter 2, starting on page 26. In addition to needing

these equations, we also need an equation that determines the number of 2-partitions for

the derivations that occur later in Section 5.11.2 and Section 5.11.3 in this chapter.

Partitions and compositions are closely related. In fact, to a large degree, each of

these mathematical structures can be defined in terms of the other one. A partition of

a positive integer n is an unordered sum of positive integers that has the value n. By

contrast, compositions are ordered sums of positive integers and weak compositions are

ordered sums of natural numbers. By convention in mathematics, the value of partition

parts are listed in non-increasing order. For example, when viewed as unordered sums,

the seven partitions of the number 5 are:

5

4 + 1

3 + 2

147

3 + 1 + 1

2 + 2 + 1

2 + 1 + 1 + 1

1 + 1 + 1 + 1 + 1.

There is one partition with 1 part, two partitions with 2 parts, two partitions with 3

parts, one partition with 4 parts, and one partition with 5 parts.

In this dissertation, our interest was in the number of distinct 2-partitions of n. A

2-partition of n is a partition of n that has exactly 2 parts. The distinct 2-partitions of n

can be obtained from the associated 2-partitions by simply discarding the, at most one,

2-partition where both parts have the same value. For example, the 2-partitions of the

number 5 are:

4 + 1

3 + 2.

These are also the distinct 2-partitions of 5 because both parts of the sum have different

values. As another example, consider the 2-partitions of the number 6:

5 + 1

4 + 2

3 + 3.

These partitions include one (i.e., 3+3) that has the same value for both of its parts. If

148

we discard this partition, we obtain the two distinct 4-partitions of 6, that is,

5 + 1

4 + 2.

In partition theory, the partition function Q(n, k) denotes the number of distinct k-

partitions for the positive integer n. The general formula for this particular function

is defined in terms of the partition function P (n, k), which is recursive in nature, and

denotes the number of k-partitions of n. The work in this chapter does not need the use of

the general version of either Q(n, k) or P (n, k), which is good, because relatively simple,

and closed form, versions of these functions only exist for very small (e.g., k=1,2,3,4)

values of k. Based on the work in Comtet (1974), the partition function Q(n, 2), where

n ≥ 1, can be defined as:

Q(n, 2) =

⎧⎪⎪⎨
⎪⎪⎩

n−2
2

, if n is even;

n−1
2

, otherwise.

With the use of the greatest integer function, it can be defined even more succinctly as

Q(n, 2) =

⌊
n − 1

2

⌋
.

5.4 Divisor Pairs and Prime Power Factorizations

A key part of the input to each algorithm that we develop, or use, in subsequent sections

of this chapter is the value of N. The number of divisors that N has, and whether a

collection of these divisors are relatively prime (Rosen et al., 2000; Rosen, 2005), are very

important to the development of each algorithm. Two positive integers are relatively

149

prime if and only if their greatest common divisor is 1. For example, the pairs 2 and

15; 8 and 9; and 27 and 52 are relatively prime because they have no factors in common

other than the number 1. On the other hand, the pair 2 and 14 are not relatively prime

because the number 2 is the largest integer that divides them. Informally, an integer a

is said to divide another integer b when the value denoted by b/a can be expressed as an

integer. For example, 2 divides 6 because 6/2=3. But, 2 does not divide 5 because the

value denoted by 5/2 is 2.5 (which cannot be expressed by an integer).

Let N be a positive integer. The Fundamental Theorem of Arithmetic (Rosen et al.,

2000; Rosen, 2005) states that any positive integer can be written in a unique way as a

product of powers of increasing prime numbers. More precisely,

N = p1
a1p2

a2 . . . pm
am

where p1, p2, . . . , pm are the m unique primes in N ,

2 ≤ p1 < p2 < · · · < pm ≤
√

N,

and ai is the number of times, including zero, that pi occurs in the written representation

of N . Of course, it is assumed in the last sentence that i is an integer with a value

that is between 1 and m, inclusive. The representation of N as a product of powers of

primes is called a prime-power factorization (Rosen, 2005) of N . A primary interest in

this dissertation was how many unique divisors a positive integer N has and the values

of these divisors. The number of these divisors can be computed rather easily if one

has the prime-power factorization of N . The number of unique divisors is simply the

product of the values obtained by adding 1 to the exponent of each of the primes in that

factorization. For example, the prime-power factorization of 12 is 22 · 31. Therefore, we

expect that 12 has (2 + 1)(1 + 1) = 6 unique divisors. Indeed, the unique divisors of 12

150

are 1, 2, 3, 4, 6, and 12.

There are τ(N) divisor pairs of N. Note that the expression τ(N) is standard notation,

used in the area of mathematics known as elementary number theory (Rosen, 2005), to

denote the number of unique positive integer divisors of a positive integer N. In the

set expression below, the divisors of N are assumed to be ascendingly ordered (i.e., the

smallest divisor is denoted by v
(N)
1 , the second smallest is denoted by v

(N)
2 , the third

smallest is denoted by v
(N)
3 , and so on; the largest divisor is denoted by v

(N)
τ(N)). By

definition, the smallest divisor is always 1; the largest one is always N . The set of divisor

pairs of N is

{(v(N)
1 , N/v

(N)
1), (v

(N)
2 , N/v

(N)
2), (v

(N)
3 , N/v

(N)
3), . . . , (v

(N)
τ(N), N/v

(N)
τ(N))},

where v
(N)
1 = 1 and v

(N)
τ(N) = N. A property that is possessed by each divisor pair is that

the product of its two positive integer components is always equal to N . This property

is very important to our subsequent analyses. The set of divisor pairs for 12 (shown by

Table 5.1 on the following page) is

{(1, 12), (2, 6), (3, 4), (4, 3), (6, 2), (12, 1)}.

The set of divisor pairs for 16 is

{(1, 16), (2, 8), (4, 4), (8, 2), (16, 1)}.

For their respective Ns, each of these sets of divisor pairs represents all the possible ways

that two ordered positive integers can be multiplied to yield the product that is equal to

that particular N . Notationally, let d
(N)
i denote the ith divisor pair for N ; that is,

d
(N)
i = (v

(N)
i , N/v

(N)
i) = (v

(N)
i , v

(N)
τ(N)+1−i).

151

For divisor pair d
(N)
i , let d

(N)
i [1] represent the value of its first component (i.e., v

(N)
i [1])

and d
(N)
i [2] represent the value of its second component (i.e., N/v

(N)
i [1]).

Table 5.1: Divisor Pair Mappings for N = 12.

d
(12)
1 d

(12)
2 d

(12)
3 d

(12)
4 d

(12)
5 d

(12)
6

(1, 12) (2, 6) (3, 4) (4, 3) (6, 2) (12, 1)

5.5 Basic Divisor Pair-Related Definitions

Information from the following definitions are used throughout this chapter. Defini-

tions 5.5.0.1 to 5.5.0.6 on pages 152–153, inclusive, are associated with important sets

that are based on the concept of divisor pairs. The other two definitions map a divi-

sor pair to either a set of generally qualifying strong 4-compositions (stated by Defini-

tion 5.5.0.7 on page 153) or to a set of generally qualifying weak 4-compositions (stated

by Definition 5.5.0.8 on page 154). In subsequent sections of this dissertation, the term

composition, used without the modifier weak, is synonymous with the term strong com-

position.

Definition 5.5.0.1. Let the 2-tuple representation of the set of divisor pairs for N be

represented by the set

T (N) = {(a, b) ∈ Z
+ × Z

+|ab = N and a, b ∈ Z
+}.

Definition 5.5.0.2. Let the 4-tuple representation of the set of divisor pairs for strong

4-compositions of N be represented by the set

D(N) = {(w, x, y, z)|(a, b) ∈ T (N) and w + x = a and y + z = b and w, x, y, z ∈ Z
+}.

152

Definition 5.5.0.3. Let the 4-tuple representation of the set of divisor pairs for weak

4-compositions of N be represented by the set

D̃(N) = {(w, x, y, z)|(a, b) ∈ T (N) and w + x = a and y + z = b and w, x, y, z ∈ N}.

Definition 5.5.0.4. Let the set of 4-tuples D
(N)
i , where i ∈ [τ(N)], represent the set

of tuples associated with divisor pair d
(N)
i . This 4-tuple representation of a divisor pair

d
(N)
i for strong 4-compositions is the set

D
(N)
i = {(w, x, y, z) ∈ D(N)|w + x = d

(N)
i [1] and y + z = d

(N)
i [2]}.

Definition 5.5.0.5. Let the set of 4-tuples D̃
(N)
i , where i ∈ [τ(N)], represent the set

of tuples associated with divisor pair d
(N)
i . This 4-tuple representation of a divisor pair

d
(N)
i for weak 4-compositions is the set

D̃
(N)
i = {(w, x, y, z) ∈ D̃(N)|w + x = d

(N)
i [1] and y + z = d

(N)
i [2]}.

Definition 5.5.0.6. The divisor pair weak composition mapping function

dpwcm : N × N × N × N → N × N × N × N

maps the 4-tuple from D
(N)
i or D̃

(N)
i , where i ∈ [τ(N)], to a weak 4-composition where the

product of its first 2 components is always equal to the product of its last 2 components.

It is defined as

dpwcm(w, x, y, z) → (wy, xz, wz, xy).

If the 4-tuple is from the set D
(N)
i , then the weak composition that it is mapped to is also

a strong composition because each element of the weak composition is a positive integer.

153

Definition 5.5.0.7. Let the set of 4-tuples G
(N)
i , where i ∈ [τ(N)], represent the set

of generally qualifying 4-compositions associated with divisor pair d
(N)
i . The 4-tuple

generally qualifying strong composition representation of a divisor pair d
(N)
i is the set

G
(N)
i = {dpwcm(w, x, y, z)|(w, x, y, z) ∈ D

(N)
i }.

Definition 5.5.0.8. Let the set of 4-tuples G̃
(N)
i , where i ∈ [τ(N)], represent the set of

generally qualifying weak 4-compositions associated with divisor pair d
(N)
i . The 4-tuple

generally qualifying weak composition representation of a divisor pair d
(N)
i is the set

G̃
(N)
i = {dpwcm(w, x, y, z)|(w, x, y, z) ∈ D̃

(N)
i }.

5.6 Number-Theoretic-Based Fundamentals of a So-

lution

One of the major goals in this chapter was the derivation of equations that count the

number of weak 4-compositions of N that satisfy r1s0 = r0s1. A weak 4-composition that

satisfies this condition corresponds to a document collection where the condition p′ = t′

is true. That is, the probability p′ that a relevant document in the collection contains

the query term is the same as the unconditional probability t′ that any document in the

collection contains the query term.

Once we are able to determine the number of weak 4-compositions of N that satisfy

condition r1s0 = r0s1, we are able to easily determine the numbers of weak 4-compositions

that satisfy conditions r1s0 < r0s1 and r1s0 > r0s1 by the use of Lemma 5.2.1 on page 146.

After obtaining these numbers, the values of Pr(p′ = t′), Pr(p′ < t′), and Pr(p′ > t′),

respectively, are trivial to determine. All we need to do, then, is to divide these numbers

by C̃4(N), the number of weak 4-compositions of N. By Equation 5.0.1 on page 143, the

154

value for the last of these probabilities (i.e., Pr(p′ > t′)) is the same as the value for

Q′
CLM.

Conceptually, the task that we just discussed in the prior two paragraphs is sim-

ple to explain and understand. Basically, we count the number of qualifying weak 4-

compositions and divide that number by a number that represents the cardinality of all

the possible weak 4-compositions for N. However, while the task above is conceptually

simple, the work to effect the counting is nontrivial. This is a characteristic that is shared

by many enumeration problems.

There is no rule which says that enumeration techniques, even the simplest one,
must have solutions expressible as closed formulas. (Lovász, 2007)

Basically, this statement makes note of the fact that conceptually simple enumeration

problems, like the one that is the focus of this chapter, often have nontrivial solutions

and involve much work. The main enumeration problem that we solve in this chapter

has a nontrivial solution that requires much effort to develop.

Part of the reason that Lovász’s statement is germane to what occurs in this chapter

is because the equations that are associated with the various conditions that appear

in subsequent sections must have integer solutions. Equations of this type are known

as Diophantine equations (Rosen, 2005), and are generally more difficult to solve than

equations that can have real or complex number solutions. Another reason is that, with

the rather general nature of some of these conditions, it is difficult, if not impossible, to

predict whether one or more solutions even exist for an arbitrary positive value of N .

5.6.1 The General Constraints

The collection of general constraints that any solution must satisfy are

r1s0 = r0s1

r0 + r1 + s0 + s1 = N

155

r0, r1, s0, s1 ∈ N

N ∈ Z
+. (5.6.1)

The symbol N denotes the set of natural numbers and the expression Z
+ denotes the

set of positive integers. The set of weak 4-compositions that satisfy these four general

constraints are said to be generally qualifying weak 4-compositions.

5.6.2 The Form of A Solution that Satisfies the General Con-

straints

We are interested in all assignments of values to variables r1, s0, r0, and s0 that satisfy the

general constraints above. By making use of the Fundamental Theorem of Arithmetic

(Rosen, 2005), and the concept of divisors of a positive integer N, we have

N = r1 + s0 + r0 + s1

= d
(N)
i (N/d

(N)
i)

= d
(N)
i d

(N)
τ(N)+1−i

where i ∈ [τ(N)] and d
(N)
i is the ith divisor for N.

Now, if we let d
(N)
i = w + x and d

(N)
τ(N)+1−i = y + z, where w, x, y, z ∈ N, then the

beginnings of a feasible assignment start to form. Based on this, we have

N = d
(N)
i d

(N)
τ(N)+1−i

= (w + x)(y + z)

= wy + xz + wz + xy

where i ∈ [τ(N)]. From this, it is readily seen that one possible assignment that satisfies

156

the general constraints is

r1 ← wy,

s0 ← xz,

r0 ← wz, and

s1 ← xy.

Note that

r1s0 = r0s1 = wxyz

and that

r1 + s0 + r0 + s1 = wy + xz + wz + xy

= (w + x)(y + z)

= N.

Therefore, these assignments satisfy the general constraints. The concept of divisor pairs,

developed earlier in this chapter, can be used to determine specific values for the variables

w, x, y, and z.

5.7 Running Example: Identifying Candidate Docu-

ment Collections Where r1s0 = r0s1

Earlier sections of this chapter introduced several new concepts. Subsequent sections

introduce many more concepts. To aid in the comprehension of these concepts, a running

example for a document collection of size 8 is used throughout the remainder of this

chapter. Table 5.2 lists the divisor pair mappings for N = 8.

157

Table 5.2: Divisor Pair Mappings for N = 8.

d
(8)
1 d

(8)
2 d

(8)
3 d

(8)
4

(1, 8) (2, 4) (4, 2) (8, 1)

We start this running example by showing how Table 5.3 on page 160 provides ap-

plications of Definition 5.5.0.5 (stated on page 153) and Definition 5.5.0.8 (stated on

page 154) for selected divisor pairs. The contents of the analogous tables for Defini-

tion 5.5.0.4 (stated on page 153) and Definition 5.5.0.7 (stated on page 153), if we were

to construct such tables, would be the same as those for Definitions 5.5.0.5 and 5.5.0.8,

respectively, except that all 4-tuples that had at least one component with a value of 0

would not be present. The reason is because the 4-tuples in the tables that are associated

with Definitions 5.5.0.5 and 5.5.0.8 can have parts with a value of 0, but the 4-tuples

in the tables that are associated with Definitions 5.5.0.4 and 5.5.0.7 must have positive

integers for their values.

For example, the D column for divisor pair (2, 4) in the analogous table for Table 5.3,

if this table existed, would only have three members:

(1, 1, 1, 3), (1, 1, 2, 2), (1, 1, 3, 1).

The reason that this example only has three members for a D column for the divisor pair

(2, 4) is because all four components of a D column member are required to be positive

natural numbers (as contrasted with those in the table for a D̃ column that can have

the value 0 as their lower bound). For the divisor pair (2, 4), there is only one ordered

pair possible for 2; that pair is 1+1. There are three ordered pairs that are possible for

4; they are 1+3, 2+2, and 3+1. These facts are evident in the list of three members

above. Notice that the first 2 components of each member are ones (this corresponds

158

to the ordered pair 1+1) and the the last 2 components correspond to the ordered pairs

1+3, 2+2, and 3+1.

5.8 Counting by the Principle of Inclusion-Exclusion

The objects to be counted are those in the union of the various sets G̃
(N)
i , where i ∈ [τ(N)],

for N . Since the intersection of sets G̃
(N)
i and G̃

(N)
j , where i �= j and i, j ∈ [τ(N)], is not

necessarily disjoint, we need to use a general counting technique that computes the correct

cardinality for the union of these sets, even when a particular value may be a member

of more than one of the sets that are being unioned. A well-known general purpose

combinatoric counting technique called the Principle of Inclusion-Exclusion (Riordan,

1958; Comtet, 1974; Goulden and Jackson, 1983; Stanley, 1997; Charalambides, 2002;

Bóna, 2006; Aigner, 2007; Bóna, 2007) possesses this capability.

Definition 5.8.0.1. The Principle of Inclusion–Exclusion (POIE) is a combinatorial

technique that determines the cardinality of a union of n ∈ Z
+, not necessarily disjoint,

sets S1, S2, . . . , and Sn.

∣∣∣∣∣
⋃

1≤i≤n

Si

∣∣∣∣∣ =
n∑

j=1

(−1)j−1
∑

1≤i1<i2<···<ij≤n

|Si1 ∩ Si2 · · · ∩ Sij |.

The notation 1 ≤ i1 < i2 < · · · < ij ≤ n means that the j indices i1, i2, . . . , ij range over

all the j-element subsets of n.

From Definition 5.8.0.1, we see that, in order to use the Principle of Inclusion-

Exclusion, we must be able to determine the cardinality of the intersection of the members

that comprise any non-empty member of the superset of S = {S1, S2, . . . , Sn}. The ques-

tion arises as to what is the cardinality of 2S, the superset of S. The answer to this

question can be determined by calculating the number of distinct subsets that can be

formed from a set of n distinct members.

159

Table 5.3: The Divisor Pairs for N = 8 and Their Associated D̃ and G̃ Sets.

divisor pair D̃ G̃ divisor pair D̃ G̃

(1, 8) (0, 1, 0, 8) (0, 8, 0, 0) (8, 1) (0, 8, 0, 1) (0, 8, 0, 0)

(0, 1, 1, 7) (0, 7, 0, 1) (0, 8, 1, 0) (0, 0, 0, 8)

(0, 1, 2, 6) (0, 6, 0, 2) (1, 7, 0, 1) (0, 7, 1, 0)

(0, 1, 3, 5) (0, 5, 0, 3) (1, 7, 1, 0) (1, 0, 0, 7)

(0, 1, 4, 4) (0, 4, 0, 4) (2, 6, 0, 1) (0, 6, 2, 0)

(0, 1, 5, 3) (0, 3, 0, 5) (2, 6, 1, 0) (2, 0, 0, 6)

(0, 1, 6, 2) (0, 2, 0, 6) (3, 5, 0, 1) (0, 5, 3, 0)

(0, 1, 7, 1) (0, 1, 0, 7) (3, 5, 1, 0) (3, 0, 0, 5)

(0, 1, 8, 0) (0, 0, 0, 8) (4, 4, 0, 1) (0, 4, 4, 0)

(1, 0, 0, 8) (0, 0, 8, 0) (4, 4, 1, 0) (4, 0, 0, 4)

(1, 0, 1, 7) (1, 0, 7, 0) (5, 3, 0, 1) (0, 3, 5, 0)

(1, 0, 2, 6) (2, 0, 6, 0) (5, 3, 1, 0) (5, 0, 0, 3)

(1, 0, 3, 5) (3, 0, 5, 0) (6, 2, 0, 1) (0, 2, 6, 0)

(1, 0, 4, 4) (4, 0, 4, 0) (6, 2, 1, 0) (6, 0, 0, 2)

(1, 0, 5, 3) (5, 0, 3, 0) (7, 1, 0, 1) (0, 1, 7, 0)

(1, 0, 6, 2) (6, 0, 2, 0) (7, 1, 1, 0) (7, 0, 0, 1)

(1, 0, 7, 1) (7, 0, 1, 0) (8, 0, 0, 1) (0, 0, 8, 0)

(1, 0, 8, 0) (8, 0, 0, 0) (8, 0, 1, 0) (8, 0, 0, 0)

(2, 4) (0, 2, 0, 4) (0, 8, 0, 0) (4, 2) (0, 4, 0, 2) (0, 8, 0, 0)

(0, 2, 1, 3) (0, 6, 0, 2) (0, 4, 1, 1) (0, 4, 0, 4)

(0, 2, 2, 2) (0, 4, 0, 4) (0, 4, 2, 0) (0, 0, 0, 8)

(0, 2, 3, 1) (0, 2, 0, 6) (1, 3, 0, 2) (0, 6, 2, 0)

(0, 2, 4, 0) (0, 0, 0, 8) (1, 3, 1, 1) (1, 3, 1, 3)

(1, 1, 0, 4) (0, 4, 4, 0) (1, 3, 2, 0) (2, 0, 0, 6)

(1, 1, 1, 3) (1, 3, 3, 1) (2, 2, 0, 2) (0, 4, 4, 0)

(1, 1, 2, 2) (2, 2, 2, 2) (2, 2, 1, 1) (2, 2, 2, 2)

(1, 1, 3, 1) (3, 1, 1, 3) (2, 2, 2, 0) (4, 0, 0, 4)

(1, 1, 4, 0) (4, 0, 0, 4) (3, 1, 0, 2) (0, 2, 6, 0)

(2, 0, 0, 4) (0, 0, 8, 0) (3, 1, 1, 1) (3, 1, 3, 1)

(2, 0, 3, 1) (2, 0, 6, 0) (3, 1, 2, 0) (6, 0, 0, 2)

(2, 0, 2, 2) (4, 0, 4, 0) (4, 0, 0, 2) (0, 0, 8, 0)

(2, 0, 3, 1) (6, 0, 2, 0) (4, 0, 1, 1) (4, 0, 4, 0)

(2, 0, 4, 0) (8, 0, 0, 0) (4, 0, 2, 0) (8, 0, 0, 0)

160

A member of S may or may not be present in one of its subsets. It is a binary decision

with respect to a member’s presence or absence in a subset. During subset construction,

each member of S can be chosen independently of any other member of that set. The

number of choices at each decision point is 2 and, thus, there are n such decisions to

make. Hence, the number of ways that a subset of S can be chosen is

2 × 2 × · · · × 2︸ ︷︷ ︸
n

= 2n.

This means that the cardinality of the superset of S is 2n and all of its members, except

one (i.e., the empty set), are nonempty sets. The cardinalities of these members range

from 0 (for the empty set) to n (for the set that contains every member). Another way

of deriving this identity is by noticing that the number of j-subsets in 2S is
(

n
j

)
, which

is the number of ways that j distinct objects, without regard to order, can be selected

from n distinct ones. Therefore, the total number of ways is

∑
0≤j≤n

(
n

j

)
= 2n.

This is a well-known identity in enumerative combinatorics (Bóna, 2007; Charalambides,

2002) and provides additional validation for the number of ways that the members of a

subset of S can be chosen.

5.8.1 An Overview

This overview provides a succinct description of the reasoning behind much of the re-

maining part of this section. Section 5.8.6 (Entity-Relationship Models and Diagrams) is

an extension of this overview. By that point, all the necessary concepts have been intro-

duced so that the discussion there, along with the accompanying figure (i.e., Figure 5.5

on page 191) that illustrate the relationships among these concepts, are meaningful.

161

Each divisor pair d
(N)
i , where i ∈ [τ(N)], is represented by a set of 4-tuples D̃

(N)
i .

The dpwcm function bijectively maps the members of D̃
(N)
i to members of G̃

(N)
i in such

a manner that the general constraints are satisfied. The intersection of two arbitrary

sets G̃
(N)
i and G̃

(N)
j , where i, j ∈ [τ(N)], is the set G̃

(N)
i ∩ G̃

(N)
j . The members of this

intersection are those members of G̃
(N)
i that are also members of G̃

(N)
j , and vice versa.

In order to be able to apply the POIE in a setting, it is not mandatory that the

identities of the members of the sets being intersected be known. All that is required by

the POIE is that there exist a way to determine the cardinality of the set that is produced

by the intersection. In this section, our goal is to be able to analytically determine this

cardinality, based solely on properties of the dpwcm function and the G̃
(N)
i and G̃

(N)
j

sets. One way to accomplish this is to develop an equation, or sets of equations, that

can be used to do this analytic determination. Of course, we must also prove that the

determination process computes the same cardinality value, i.e., G̃
(N)
i ∩ G̃

(N)
j , as if we

intersected the actual members of G̃
(N)
i ∩ G̃

(N)
j , and then exhaustively hand-counted how

many members were in the resultant set.

5.8.2 Running Example: The Superset for a Set of Divisor Pairs

and Its Cardinality

The purpose of this part of the running example is to develop some familiarity with the

superset for a set of divisor pairs and the cardinality of this superset. Let

S = {(1, 8), (2, 4), (4, 2), (8, 1)}.

162

Then, 2S (the superset of S) has 24 = 16 members. The cardinalities of the members of

2S range from 0 to 4. The superset of S has only 1 member with cardinality zero, it is

{} (the empty set).

The superset has 4 members with cardinality one. They are

{(1, 8)}, {(2, 4)}, {(4, 2)}, and {(8, 1)}.

The superset of S has 6 members with cardinality two. These members are

{(1, 8), (2, 4)}, {(1, 8), (4, 2)}, {(1, 8), (8, 1)}, {(2, 4), (4, 2)}, {(2, 4), (8, 1)}, and

{(4, 2), (8, 1)}.

The superset has 4 members with cardinality three. These members are:

{(1, 8), (2, 4), (4, 2)}, {(1, 8), (2, 4), (8, 1)},

{(1, 8), (4, 2), (8, 1)}, {(2, 4), (4, 2), (8, 1)}.

The superset has 1 member with cardinality four. It is

{(1, 8), (2, 4), (4, 2), (8, 1)}.

In total, the superset of S has 1 + 4 + 6 + 4 + 1 = 16 members.

163

5.8.3 Applicability of the Principle of Inclusion-Exclusion to

This Research

The problem of determining the number of generally qualifying weak 4-compositions can

be cast into a form that we can use the Principle of Inclusion-Exclusion to help solve it.

This can be accomplished by recognizing that the number of divisor pairs is τ(N) and

that the set that corresponds to Sij , in the context of this dissertation, is G̃
(N)
ij

, where

ij ∈ [τ(N)]. The following definition is an adaptation of the POIE for the information

retrieval problem that we are trying to solve.

Definition 5.8.3.1. The Principle of Inclusion–Exclusion for a document collection of

size N, where n = τ(N), can be stated as

∣∣∣∣∣
⋃

1≤i≤n

G̃
(N)
i

∣∣∣∣∣ =
n∑

j=1

(−1)j−1
∑

1≤i1<i2<···<ij≤n

|G̃(N)
i1

∩ G̃
(N)
i2

· · · ∩ G̃
(N)
ij

|.

The notation 1 ≤ i1 < i2 < · · · < ij ≤ n means that the j indices i1, i2, . . . , ij range over

all the j-element subsets of n.

5.8.4 More Basic Definitions and Lemmas

Before proceeding further, we need to define the equality (and inequality) of two n-tuples

and the intersection of 4-tuples. The associated definitions appear below. The use of

these definitions is an integral part of the proofs of the lemmas that appear in subsequent

sections of this chapter.

Definition 5.8.4.1. Let U = (u1, u2, · · · , un) ∈ N × N × · · · × N and V = (v1, v2, · · · ,

vn) ∈ N×N× · · · ×N, where n ∈ Z
+. The equality of n-tuples is defined as follows: two

n-tuples U and V are equal if and only if ui = vi for all 1 ≤ i ≤ n; otherwise, they are

not equal.

164

Definition 5.8.4.2. Let S1, S2, . . . , Sn be n ≥ 1 sets of 4-tuples. The intersection I of

sets S1, S2, . . . , Sn is I = S1 ∩ S2 . . . ∩ Sn = {(w, x, y, z)|(w, x, y, z) ∈ S1, (w, x, y, z) ∈
S2, . . . , and (w, x, y, z) ∈ Sn}.

When sets are intersected, the result is a set that contains only those members that

appear in each of the sets being intersected. Put another way, the members in the result

set are those that are in common with the members of every other set in the collection

of sets that are being intersected. Along these lines, we define the notions of greatest

common divisor pair (Definition 5.8.4.3), the set of 4-tuple representations of a greatest

common divisor pair (Definition 5.8.4.4 and Definition 5.8.4.5 on the following page),

and the 4-tuple generally qualifying composition of a greatest common divisor pair (Def-

inition 5.8.4.6 on the next page and Definition 5.8.4.7 on the following page). Basically,

these notions are, respectively, multiple index extensions of these three concepts: a divisor

pair, a set of 4-tuple representations of a divisor pair, and a 4-tuple generally qualifying

composition of a divisor pair.

These three concepts, and their associated definitions, are described in the next several

paragraphs. We start by defining a multiple index version of the greatest common divisor

pair and conclude by defining multiple index versions of a divisor pair, a set of 4-tuple

representations of a divisor pair, and a 4-tuple generally qualifying composition of a

divisor pair.

Definition 5.8.4.3. Let d
(N)
i1

, d
(N)
i2

, . . . , d
(N)
ij

, where i1, i2, . . . , ij ∈ [τ(N)], be a collection

of j divisor pairs for a positive integer N . The greatest common divisor pair, denoted

d
(N)
i1,i2,...,ij

, of these divisor pairs is the 2-tuple with the value of its first component being

equal to gcd(d
(N)
i1

[1], d
(N)
i2

[1], . . . , d
(N)
ij

[1]) and the value of its second component being

equal to gcd(d
(N)
i1

[2], d
(N)
i2

[2], . . . , d
(N)
ij

[2]).

Definition 5.8.4.4. Let the set of 4-tuples D
(N)
i1,i2,...,ij

, where i1, i2, . . . , ij ∈ [τ(N)], repre-

sent the set of tuples associated with greatest common divisor pair d
(N)
i1,i2,...,ij

. For strong

165

compositions, this set of 4-tuple representations of a greatest common divisor pair with

j indices is the set

D
(N)
i1,i2,...,ij

= {(w, x, y, z)|w+x = d
(N)
i1,i2,...,ij

[1] and y+z = d
(N)
i1,i2,...,ij

[2] and w, x, y, z ∈ Z
+}.

Definition 5.8.4.5. Let the set of 4-tuples D̃
(N)
i1,i2,...,ij

, where i1, i2, . . . , ij ∈ [τ(N)], rep-

resent the set of tuples associated with greatest common divisor pair d
(N)
i1,i2,...,ij

. For weak

compositions, this set of 4-tuple representations of a greatest common divisor pair with

j indices is the set

D̃
(N)
i1,i2,...,ij

= {(w, x, y, z)|w + x = d
(N)
i1,i2,...,ij

[1] and y + z = d
(N)
i1,i2,...,ij

[2] and w, x, y, z ∈ N}.

Definition 5.8.4.6. Let the set of 4-tuples G
(N)
i1,i2,...,ij

, where i1, i2, . . . , ij ∈ [τ(N)], rep-

resent the set of qualifying strong 4-compositions associated with D
(N)
i1,i2,...,ij

, the 4-tuple

representation of a greatest common divisor pair d
(N)
i1,i2,...,ij

. The 4-tuple generally qualify-

ing composition representation of a greatest common divisor pair is the set

G
(N)
i1,i2,...,ij

= {dpwcm(w, x, y, z)|(w, x, y, z) ∈ D
(N)
i1,i2,...,ij

}.

Definition 5.8.4.7. Let the set of 4-tuples G̃
(N)
i1,i2,...,ij

, where i1, i2, . . . , ij ∈ [τ(N)], rep-

resent the set of qualifying weak 4-compositions associated with D̃
(N)
i1,i2,...,ij

, the 4-tuple

representation of a greatest common divisor pair d
(N)
i1,i2,...,ij

. The 4-tuple generally qualify-

ing weak composition representation of a greatest common divisor pair is the set

G̃
(N)
i1,i2,...,ij

= {dpwcm(w, x, y, z)|(w, x, y, z) ∈ D̃
(N)
i1,i2,...,ij

}.

The second (Section 5.11.2), third (Section 5.11.3), and fourth (Section 5.11.4) cases

of this subproblem rely on the notion of mutually distinct values.

166

Table 5.4: Sets of Divisor Pairs, Greatest Common Divisor Pairs, and Cardinalities.

number of

greatest qualifying number of

common weak qualifying

set of divisor pairs divisor pair compositions compositions

{} undefined undefined undefined
{(1, 8)} (1, 8) 18 0
{(2, 4)} (2, 4) 15 3
{(4, 2)} (4, 2) 15 3
{(8, 1)} (8, 1) 18 0
{(1, 8), (2, 4)} (1, 4) 10 0
{(1, 8), (4, 2)} (1, 2) 6 0
{(1, 8), (8, 1)} (1, 1) 4 0
{(2, 4), (4, 2)} (2, 2) 9 1
{(2, 4), (8, 1)} (2, 1) 6 0
{(4, 2), (8, 1)} (4, 1) 10 0
{(1, 8), (2, 4), (4, 2)} (1, 2) 6 0
{(1, 8), (2, 4), (8, 1)} (1, 1) 4 0
{(1, 8), (4, 2), (8, 1)} (1, 1) 4 0
{(2, 4), (4, 2), (8, 1)} (2, 1) 6 0
{(1, 8), (2, 4), (4, 2), (8, 1)} (1, 1) 4 0

167

Definition 5.8.4.8. Let the values in V = {v1, v2, . . . , vm|m ∈ Z
+} be called mutually

distinct if and only if |V | = m. That is, vi = vj if and only if i = j where 1 ≤ i, j ≤ m.

Definition 5.8.4.9. Let f : X → Y be a function f from a set X to a set Y. Then f

is an injective function, or injection, with the property that, for every y ∈ Y, there is at

most one x ∈ X such that f(x) = y.

Definition 5.8.4.10. Let f : X → Y be a function f from a set X to a set Y. Then f

is an surjective function, or surjection, with the property that, for every y ∈ Y, there is

at least one x ∈ X such that f(x) = y.

Definition 5.8.4.11. Let f : X → Y be a function f from a set X to a set Y. Then

f is an bijective function, or bijection, with the property that, for every y ∈ Y, there is

exactly one x ∈ X such that f(x) = y.

1

2

3

4

C

E

D

B

A

YX

injective (but not surjective)

1

2

3

4

5

C

E

D

B

YX

surjective (but not injective)

1

2

3

4

5

C

E

D

B

A

YX

bijective (both injective and surjective)

(a) (b) (c)

Figure 5.1: Injective, Surjective, and Bijective Functions.

For some input values, dpwcm, the divisor pair weak composition mapping function,

when applied to those values, yields the same result when those inputs are scaled in

certain ways. This fact is important in several of the proofs to follow because it allows

168

the rewriting of dpwcm expressions in some instances. The associated lemmas and their

proofs are as follows.

The next two lemmas (i.e., Lemma 5.8.1 and Lemma 5.8.2 on page 171) enable the

rewriting of some weak 4-compositions by proving that, under certain circumstances,

different ways of expressing these weak compositions are equivalent. These results are

used in subsequent parts of this chapter to help prove other lemmas.

Lemma 5.8.1. Suppose a, b, c, d ∈ N; m ∈ Z
+; and m is a positive divisor of gcd(c, d).

Then dpwcm(ma, mb, c/m, d/m) = dpwcm(a, b, c, d).

Proof. By Definition 5.5.0.6 on page 153, we can write

dpwcm(ma, mb, c/m, d/m) = ((ma)(c/m), (mb)(d/m), (ma)(d/m), (mb)(c/m))

= ((ac)(m/m), (bd)(m/m), (ad)(m/m), (bc)(m/m))

= (ac, bd, ad, bc).

= dpwcm(a, b, c, d).

Since gcd(c, d) denotes the greatest common denominator of c and d, then any positive

divisor m of this gcd also evenly divides c and d.

Example Illustrating How Three Weak 4-Compositions Can Be Equivalent

Under the dpwcm Mapping When N = 12

Assume that N = 12 and that the 4-tuple (0, 1, 4, 8) is one of the weak 4-compositions

that is associated with N. We find below that dpwcm(0, 1, 4, 8) yields (0, 8, 0, 4); that is,

dpwcm(0, 1, 4, 8) = (0 · 4, 1 · 8, 0 · 8, 1 · 4)

= (0, 8, 0, 4) (5.8.1)

169

by Definition 5.5.0.6 on page 153.

We also find that applying the dpwcm function to the weak 4-compositions (0, 2, 2, 4)

and (0, 4, 1, 2) yields the 4-tuple (0, 8, 0, 4) in each instance, the very same result that it

yielded when it was applied earlier to the weak 4-composition (0, 1, 4, 8); that is,

dpwcm(0, 1, 4, 8) = dpwcm(2 · 0, 2 · 1, 4/2, 8/2)

= dpwcm(0, 2, 2, 4)

= (0 · 2, 2 · 4, 0 · 4, 2 · 2)

= (0, 8, 0, 4) (5.8.2)

and

dpwcm(0, 1, 4, 8) = dpwcm(4 · 0, 4 · 1, 4/4, 8/4)

= dpwcm(0, 4, 1, 2)

= (0 · 1, 4 · 2, 0 · 2, 4 · 1)

= (0, 8, 0, 4). (5.8.3)

The reason that the same value was yielded with each application of the dpwcm

function is because the last two values in (0, 1, 4, 8) are the integers 4 and 8. The greatest

common divisor of these two values is 4 (i.e., gcd(4, 8) = 4). The positive integer divisors

of 4 are the numbers 1, 2, and 4.

By Lemma 5.8.1 on the previous page, Equation 5.8.1 on the preceding page can be

rewritten as Equation 5.8.2 with the scaling factor m having the value 2. In essence, this

means that

dpwcm(0, 1, 4, 8) = dpwcm(0, 2, 2, 4).

Similarly, this lemma can be used to rewrite Equation 5.8.1 as Equation 5.8.3. In this

170

case, the scaling factor m is 4. In essence, this means that

dpwcm(0, 1, 4, 8) = dpwcm(0, 4, 1, 2).

Lemma 5.8.2. Suppose a, b, c, d ∈ N; m ∈ Z
+; and m is a positive divisor of gcd(a, b).

Then dpwcm(a/m, b/m, mc,md) = dpwcm(a, b, c, d).

Proof. By Definition 5.5.0.6 on page 153, we can write

dpwcm(a/m, b/m,mc, md) = ((a/m)(mc), (b/m)(md), (a/m)(md), (b/m)(mc))

= ((ac)(m/m), (bd)(m/m), (ad)(m/m), (bc)(m/m))

= (ac, bd, ad, bc)

= dpwcm(a, b, c, d).

Since gcd(a, b) denotes the greatest common denominator of a and b, then any positive

divisor m of this gcd also divides a and b.

Example Illustrating How Two Weak 4-Compositions Can Be Equivalent Un-

der the dpwcm Mapping When N = 12

Assume that N = 12 and that the 4-tuple (2, 4, 1, 1) is one of the weak 4-compositions that

is associated with that number. We find below that dpwcm(2, 4, 1, 1) yields (2, 4, 2, 4);

that is,

dpwcm(2, 4, 1, 1) = (2 · 1, 4 · 1, 2 · 1, 4 · 1)

= (2, 4, 2, 4), (5.8.4)

by Definition 5.5.0.6 on page 153.

We also find that applying the dpwcm function to the weak 4-composition (1, 2, 2, 2)

171

yields the 4-tuple (2, 4, 2, 4), the very same result that it yielded when it was applied

earlier to the weak 4-composition (2, 4, 1, 1); that is,

dpwcm(2, 4, 1, 1) = dpwcm(2/2, 4/2, 2 · 1, 2 · 1)

= dpwcm(1, 2, 2, 2)

= (1 · 2, 2 · 2, 1 · 2, 2 · 2)

= (2, 4, 2, 4). (5.8.5)

The reason that the same value was yielded with each application of the dpwcm

function is because the first two values in (2, 4, 1, 1) are the integers 2 and 4. The greatest

common divisor of these two values is 2 (i.e., gcd(2, 4) = 2). The positive integer divisors

of 2 are the numbers 1 and 2.

By Lemma 5.8.2 on the preceding page, Equation 5.8.4 on the previous page can be

rewritten as Equation 5.8.5 with the scaling factor m having the value 2. In essence, this

means that

dpwcm(2, 4, 1, 1) = dpwcm(1, 2, 2, 2).

5.8.5 Lemmas for the Establishment of Essential Bijections

The next lemma establishes a bijection between the 4-tuple representation D̃
(N)
i1,i2,...,ij

of

the greatest common divisor pair for the divisor pairs that are associated with the values

of the j indices i1, i2, . . . , ij and the set of 4-tuple generally qualifying weak composition

representation G̃
(N)
i1,i2,...,ij

of the greatest common divisor pair for these indices.

Lemma 5.8.3. Suppose r = τ(N) and the j indices i1, i2, . . . , ij range over all the j-

element subsets of r (i.e., 1 ≤ i1 < i2 < · · · < ij ≤ r). Then the function

dpwcm : D̃
(N)
i1,i2,...,ij

→ G̃
(N)
i1,i2,...,ij

172

is bijective.

Proof. A bijective function is one that is both surjective and injective. First, we prove

that the dpwcm function is surjective. After that, we prove that it is also injective.

By Definition 5.8.4.7 on page 166, the function dpwcm maps each member of set

D̃
(N)
i1,i2,...,ij

to at least one of the members in set G̃
(N)
i1,i2,...,ij

. A member in set G̃
(N)
i1,i2,...,ij

can

exist only if it is mapped to by a member of set D̃
(N)
i1,i2,...,ij

. Therefore, the function

dpwcm : D̃
(N)
i1,i2,...,ij

→ G̃
(N)
i1,i2,...,ij

is surjective.

We use proof by contradiction for the injective part of this result. Assume that

the dpwcm function is not injective. Then there exists 4-tuples g1, g2 ∈ D̃
(N)
i1,i2,...,ij

and

h ∈ G̃
(N)
i1,i2,...,ij

, with g1 not equal to g2, such that dpwcm(g1[1], g1[2], g1[3], g1[4]) = h and

dpwcm(g2[1], g2[2], g2[3], g2[4]) = h. This assumption means that there exists at least one

value for i in the set {1, 2, 3, 4} such that the value of g1[i] is different than the value

for g2[i]. Since each component in g1 can be the same, or different, than its counterpart

in g2, and there are four of these components, then there are 24 = 16 possible events.

Table 5.5 on the following page enumerates these events. Possibility 16 cannot be a

candidate because the corresponding components are all in agreement.

Most of these other 15 events cannot occur, though, due to the general requirements

that

g1[1] + g1[2] = g2[1] + g2[2] = d
(N)
i1,i2,...,ij

[1]

and that

g1[3] + g1[4] = g2[3] + g2[4] = d
(N)
i1,i2,...,ij

[2].

If g1[1] has the same value as g2[1], then g1[2] must have the same value as g2[2]. Likewise,

if g1[1] has a different value than g2[1], then g1[2] must have a different value than g2[2].

173

Similar relations hold for the sums g1[3] + g1[4] and g2[3] + g2[4].

An inspection of Table 5.5 reveals that Possibilities 2, 3, 5-12, 14, and 15 cannot

occur because of the general requirements that were just enumerated in the immediately

prior paragraph. As was mentioned earlier, Possibility 16 can be eliminated because it

represents the situation where g1 and g2 are equal; our assumption that dpwcm is not

injective implies that g1 and g2 cannot be equal. This leaves only three events to explore.

The analysis for each of them appears as a separate case below.

Table 5.5: List of the Sixteen Possibilities for Matches/Differences between the Values of
the Corresponding Components (N = no, blank=yes).

possibility 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

g1[1] = g2[1]? N N N N N N N N

g1[2] = g2[2]? N N N N N N N N

g1[3] = g2[3]? N N N N N N N N

g1[4] = g2[4]? N N N N N N N N

Analysis for when none of the values of the corresponding components of g1 and g2 are

equal. This is Possibility 1.

Included among the requirements for this case is the requirement that no pair of corre-

sponding components of g1 and g2 can be equal (i.e., g1[1] �= g2[1], g1[2] �= g2[2], and so

on). By Lemma 5.8.1 on page 169,

dpwcm(g1[1], g1[2], g1[3], g1[4])

can always be rewritten as

dpwcm(m1g1[1], m1g1[2], g1[3]/m1, g1[4]/m1),

174

where m1 represents one of possibly many divisors of the value that is represented by the

greatest common denominator of g1[3] and g1[4].

Similarly, by Lemma 5.8.2 on page 171,

dpwcm(g1[1], g1[2], g1[3], g1[4])

can also be rewritten as

dpwcm(g1[1]/m2, g1[2]/m2, m2g1[3], m2g1[4]),

where m2 represents one of possibly many divisors of the value that is represented by the

greatest common denominator of g1[1] and g1[2].

No matter whether Lemma 5.8.1 on page 169 or Lemma 5.8.2 on page 171 is used to

rewrite

dpwcm(g1[1], g1[2], g1[3], g1[4]),

the respective m-value must be greater than 1 because both

(m1g1[1], m1g1[2], g1[3]/m1, g1[4]/m1),

and

(g1[1]/m2, g1[2]/m2, m2g1[3], m2g1[4]),

are required to be different than

(g1[1], g1[2], g1[3], g1[4]).

175

This means that

(g2[1], g2[2], g2[3], g2[4]) = (m1g1[1], m1g1[2], g1[3]/m1, g1[4]/m1)

= h,

or that

(g2[1], g2[2], g2[3], g2[4]) = (g1[1]/m2, g1[2]/m2, m2g1[3], m2g1[4])

= h.

The other requirement is that, in any rewrite, the sums of the first two components

must equal d
(N)
i1,i2,...,ij

[1] and the sums of the last two components must equal d
(N)
i1,i2,...,ij

[2].

This can only occur when the m-value is 1. If the value of m1 is greater than 1, then the

sum m1g1[1] + m1g1[2] is greater than d
(N)
i1,i2,...,ij

[1]. Similarly, if the value of m2 is greater

than 1, then the sum m2g1[3]+m2g1[4] is greater than d
(N)
i1,i2,...,ij

[2]. Hence, the assumption

that g1 and g2 map to 4-tuples that are equal is false.

Analysis for when the values of the first two corresponding components of g1 and g2 are

not equal but the values for each of the remaining two are equal. This is Possibility 4.

This possibility means that g1 equals

(v1, d
(N)
i1,i2,...,ij

[1] − v1, v3, v4)

and that g2 equals

(w1, d
(N)
i1,i2,...,ij

[1] − w1, v3, v4),

where v1 �= w1, v3 + v4 = d
(N)
i1,i2,...,ij

[2]. The variables v1, v3, v4, and w1 are members of N.

176

By Definition 5.5.0.6 on page 153, dpwcm, the generally qualifying composition map-

ping function, maps g1 to

(v1v3, (d
(N)
i1,i2,...,ij

[1] − v1)v4, v1v4, (d
(N)
i1,i2,...,ij

[1] − v1)v3).

It also maps g2 to

(w1v3, (d
(N)
i1,i2,...,ij

[1] − w1)v4, w1v4, (d
(N)
i1,i2,...,ij

[1] − w1)v3).

In order to complete this part of the proof, we need to investigate the value of g1 and

g2 for these three cases: (1) v3 = 0 and v4 �= 0; (2) v3 �= 0 and v4 = 0; and (3) v3 �= 0

and v4 �= 0. Note that, because the sum v3 + v4 must be a positive integer, at least one

of v3 and v4 must have a value that is greater than 0. The values of v3 and v4 in Case 1

imply that v1v4 �= w1v4; the values in Case 2 imply that v1v3 �= w1v3; and the values in

Case 3 imply that v1v4 �= w1v4 and v1v3 �= w1v3. Collectively, each of these cases means

that there is at least one component in g1 that has a different value than its counterpart

in g2. Hence, the assumption that g1 and g2 map to 4-tuples that are equal is false.

Analysis for when the values of the first two corresponding components of g1 and g2 are

equal but the values for each of the remaining two are not equal. This is Possibility 13.

This means that g1 equals

(v1, v2, v3, d
(N)
i1,i2,...,ij

[2] − v3)

and that g2 equals

(v1, v2, w3, d
(N)
i1,i2,...,ij

[2] − w3)

where v1 + v2 = d
(N)
i1,i2,...,ij

[1] and v3 �= w3. The variables v1, v2, v3, and w3 are members

of N.

177

By Definition 5.5.0.6 on page 153, dpwcm, the generally qualifying composition map-

ping function, maps g1 to

(v1v3, v2(d
(N)
i1,i2,...,ij

[2] − v3), v1(d
(N)
i1,i2,...,ij

[2] − v3), v2v3).

It also maps g2 to

(v1w3, v2(d
(N)
i1,i2,...,ij

[2] − w3), v1(d
(N)
i1,i2,...,ij

[2] − w3), v2w3).

In order to complete this part of the proof, we need to investigate the value of g1 and

g2 for these three cases: (1) v1 = 0 and v2 �= 0; (2) v1 �= 0 and v2 = 0; and (3) v1 �= 0

and v2 �= 0. Note that, because the sum v1 + v2 must be a positive integer, at least one

of v1 and v2 must have a value that is greater than 0. The values of v1 and v2 in Case 1

imply that v2v3 �= v2w3; the values in Case 2 imply that v1v3 �= v1w3; and the values in

Case 3 imply that v2v3 �= v2w3 and v1v3 �= v1w3. Collectively, each of these cases means

that there is at least one component in g1 that has a different value than its counterpart

in g2. Hence, the assumption that g1 and g2 map to 4-tuples that are equal is false.

Summary.

The above cases that are associated with Possibilities 1, 4, and 13 show that the

assumption that the function

dpwcm : D̃
(N)
i1,i2,...,ij

→ G̃
(N)
i1,i2,...,ij

is not injective leads to various contradictions. Hence, the function dpwcm must be

injective. Now that we have shown that the function is both injective and surjective, we

can conclude that it is bijective.

178

Note that Figure 5.2 is an example of one of the many ways that the bijection be-

tween sets such as D̃
(8)
2 and G̃

(8)
2 can be depicted. This relationship was established by

Lemma 5.8.3 on page 172. The next two lemmas also establish bijective relationships.

The relationships established by Lemma 5.8.3 on page 172 and the next two lemmas

(i.e., Lemma 5.8.4 on the next page and Lemma 5.8.5 on page 181) are crucial in the

development of some of the counting expressions that appear later in this chapter.

(0,2,0,4)
(0,2,1,3)
(0,2,2,2)
(0,2,3,1)
(0,2,4,0)
(1,1,0,4)
(1,1,1,3)
(1,1,2,2)
(1,1,3,1)
(1,1,4,0)
(2,0,0,4)
(2,0,3,1)
(2,0,2,2)
(2,0,3,1)
(2,0,4,0)

(0,8,0,0)
(0,6,0,2)
(0,4,0,4)
(0,2,0,6)
(0,0,0,8)
(0,4,4,0)
(1,3,3,1)
(2,2,2,2)
(3,1,1,3)
(4,0,0,4)
(0,0,8,0)
(2,0,6,0)
(4,0,4,0)
(6,0,2,0)
(8,0,0,0)

D̃
(8)
2 G̃

(8)
2

Figure 5.2: The Bijection Between Sets D̃
(8)
2 and G̃

(8)
2 . The dpwcm function maps each

member of the former set to its corresponding member in the latter set.

Lemma 5.8.4 on the next page, the next lemma, shows that there is a bijection

between any set of weak 4-compositions and another set of weak 4-compositions, if this

latter set is constructed in a certain way. For each weak 4-composition c in the original

set, a weak 4-composition is created for an initially empty new set. This member of

179

the new set is a weak 4-composition where the values of the first two components are

the respective values of the first two components of c, except that they have both been

scaled by the same arbitrary positive real number a. Similarly, the last two components

of the new weak 4-composition have, as their respective values, the scaled values of the

last two components of the original weak 4-composition c. The scaling factor in this case

is also a positive real number and is denoted as b. The lemma also establishes that this

transformation is valid whether the values of a and b are the same, or different. The

main use of this lemma is to help with the proof of Lemma 5.8.5 on the following page.

Lemma 5.8.4. Suppose X is a non-empty set of 4-compositions, variables a and b are

positive real numbers, and

Y = {f(w, x, y, z)|(w, x, y, z) ∈ X and f(w, x, y, z) = (aw, ax, by, bz)}.

Then there is a bijection between sets X and Y.

Proof. By the definition of X and Y, the function f is surjective because it maps at least

one member of set X to each member of set Y. The second part of this proof establishes

that the mapping induced by function f is also injective. The technique used is proof by

contradiction.

Let (w1, x1, y1, z1) and (w2, x2, y2, z2) both be members of X. Also, let a ∈ R
+ and

b ∈ R
+ be the scaling factors for the variables w1, x1, w2, x2 and the variables y1, z1, y2, z2,

respectively. Assume that

(w1, x1, y1, z1) �= (w2, x2, y2, z2),

but that

f(w1, x1, y1, z1) = f(w2, x2, y2, z2).

180

Since the scaling factor value for the first two components is independent of the scaling

factor value for the last 2 components, the analyses for these two groups of components

can be handled separately.

Assume that (w1, x1) �= (w2, x2) but that (aw1, ax1) = (aw2, ax2). This implies that

aw1 = aw2 and ax1 = ax2. Due to a being a positive value, it can be further stated that

w1 = w2 and x1 = x2 must also hold. However, this contradicts the assumption that was

made at the beginning of this paragraph because, if both of these conditions hold, then

(w1, x1) �= (w2, x2) must be false.

Now, assume that (y1, z1) �= (y2, z2) but that (by1, bz1) = (by2, bz2). This implies that

by1 = by2 and bz1 = bz2. Due to b being a positive value, it can be further stated that

w1 = w2 and z1 = z2 must also hold. But, this contradicts the assumption that was

made at the beginning of this paragraph because if both of these conditions hold, then

the assertion (w1, x1) �= (w2, x2) must be false.

From the two cases above, it has been established that every member of X maps to

at least one member of Y and, furthermore, that no two members of Y map to the same

member of X (i.e., the mapping is injective). Hence, the mapping between X and Y is

bijective.

The lemma below establishes that, for a non-empty subset of divisor pairs, identified

by j indices, a bijection exists between the intersection of the set of generally qualifying

weak 4-compositions associated with the divisor pairs and the set of 4-tuple representa-

tions of the the greatest common divisor pair for the divisor pairs that are associated

with these j indices.

Lemma 5.8.5. Suppose r = τ(N) and the j indices i1, i2, . . . , ij range over all the j-

element subsets of r (i.e., 1 ≤ i1 < i2 < · · · < ij ≤ r). Then there exists a bijection

between the set G̃
(N)
i1

∩ G̃
(N)
i2

∩· · ·∩ G̃
(N)
ij

and the set D̃
(N)
i1,i2,...,ij

. The cardinality of D̃
(N)
i1,i2,...,ij

is (c1 + 1)(c2 + 1) where c1 = d
(N)
i1,i2,...,ij

[1] and c2 = d
(N)
i1,i2,...,ij

[2]).

181

Proof. Definition 5.5.0.5 on page 153, Definition 5.5.0.6 on page 153, and Definition 5.5.0.8

on page 154 establish the relationship between the 4-tuple representation D̃
(N)
i of a di-

visor pair d
(N)
i and its corresponding weak 4-composition representation G̃

(N)
i . Let the

notation

Ĩ = Ĩ
(N)
i1,i2,...,ij

= G̃
(N)
i1

∩ G̃
(N)
i2

∩ · · · ∩ G̃
(N)
ij

denote a set that contains only the weak 4-compositions that are a member of every

one of the sets being intersected. In other words, Ĩ
(N)
i1,i2,...,ij

contains only the weak 4-

compositions that are common to all of the G̃
(N)
ij

where j ∈ [r]. The shorthand Ĩ is used

for the notation Ĩ
(N)
i1,i2,...,ij

unless there is a statement to the contrary..

The corresponding collection of j divisor pairs d
(N)
ij

, where j ∈ [r], can be represented,

one per line, is composed of these pairs.

(d
(N)
i1

[1] , d
(N)
i1

[2]) (5.8.6)

(d
(N)
i2

[1] , d
(N)
i2

[2]) (5.8.7)

· · · (5.8.8)

(d
(N)
ij

[1] , d
(N)
ij

[2]). (5.8.9)

The “set intersection” analog for the divisor pairs listed just above is the “greatest

common divisor operation.” It is used to compute the largest common factor over the

first component of the respective divisor pairs and the largest common factor over the

second component of the respective divisor pairs. The expression

c1 = c1,{i1,i2,...,ij} = gcd(d
(N)
i1

[1], d
(N)
i2

[1], . . . , d
(N)
ij

[1]) (5.8.10)

182

computes the largest common factor over the first components and the expression

c2 = c2,{i1,i2,...,ij} = gcd(d
(N)
i1

[2], d
(N)
i2

[2], . . . , d
(N)
ij

[2]) (5.8.11)

does the same over the second components. The shorthand c1 and c2 are used for

c1,{i1,i2,...,ij} and c2,{i1,i2,...,ij}, respectively, unless there is a statement to the contrary.

Divisor pairs 5.8.6 to 5.8.9 on the preceding page, by the use of these largest common

factors, can be rewritten as

((d
(N)
i1

[1]/c1) c1, (d
(N)
i1

[2]/c2) c2)

((d
(N)
i2

[1]/c1) c1, (d
(N)
i2

[2]/c2) c2)

· · ·

((d
(N)
ij

[1]/c1) c1, (d
(N)
ij

[2]/c2) c2),

respectively. Note that the values for c1 and c2 are equal to the values of the first and

second components, respectively, of the greatest common divisor pair d
(N)
i1,i2,...,ij

for this

collection of j divisor pairs, that is,

c1 = gcd(d
(N)
i1

[1], d
(N)
i2

[1], . . . , d
(N)
ij

[1]) = d
(N)
i1,i2,...,ij

[1]

and

c2 = gcd(d
(N)
i1

[2], d
(N)
i2

[2], . . . , d
(N)
ij

[2]) = d
(N)
i1,i2,...,ij

[2].

Also, note that the d
(N)
ij

[1]/c1 and d
(N)
ij

[2]/c2 values, where ij ∈ [τ(N)], are positive

integers.

From this rewrite, and by Equation 2.2.2 on page 26, the cardinality of Ĩ is

|Ĩ| =

(
c1 + 2 − 1

2 − 1

)(
c2 + 2 − 1

2 − 1

)
=

(
c1 + 1

2 − 1

)(
c2 + 1

2 − 1

)
= (c1 + 1)(c2 + 1)

183

because there are c1 +1 possible weak 2-compositions for d
(N)
i1,i2,...,ij

[1], c2 +1 possible weak

2-compositions for d
(N)
i1,i2,...,ij

[2], and these sets of weak compositions are independent.

Now, let

Ĩ ′ = Ĩ
(N)′
i1,i2,...,ij

= {(w, x, y, z) ∈ N × N × N × N|w + x = c1 and y + z = c2}.

By Definition 5.8.4.5 on page 166, this is equivalent to writing Ĩ
(N)′
i1,i2,...,ij

= D̃
(N)
i1,i2,...,ij

. The

shorthand Ĩ ′ is used for the notation Ĩ
(N)′
i1,i2,...,ij

when it is clear from the context of use that

they represent the same concept. Each divisor pair d
(N)
ij

, in a collection of j ∈ [m] divisor

pairs {d(N)
i1

, d
(N)
i2

, . . . , d
(N)
ij

}, and using a 4-tuple representation, has the set of mapping

functions

L
(N)
ij

= {fij(w, x, y, z)|(w, x, y, z) ∈ Ĩ ′}

associated with it where the function fij is defined as

fij(w, x, y, z) → ((d
(N)
ij

[1]/c1) w, (d
(N)
ij

[1]/c1) x, (d
(N)
ij

[2]/c2) y, (d
(N)
ij

[2]/c2) z).

By Lemma 5.8.4 on page 180, the mapping between members of Ĩ ′ and L
(N)
ij

is bijective.

There is also a bijective relationship between sets Ĩ and Ĩ ′. By Equation 2.2.2 on page

26, the cardinality of Ĩ ′ is the same as that of Ĩ , that is,

|I ′| = |Ĩ| =

(
c1 + 2 − 1

2 − 1

)(
c2 + 2 − 1

2 − 1

)
=

(
c1 + 1

2 − 1

)(
c2 + 1

2 − 1

)
= (c1 + 1)(c2 + 1).

Also, by that same equation, the cardinality of L
(N)
ij

is

|L(N)
ij

| =

(
c1 + 1

2 − 1

)(
c2 + 1

2 − 1

)
= (c1 + 1)(c2 + 1).

184

Of course, it is no coincidence that the cardinalities of both Ĩ ′ and L
(N)
ij

are the same

because prior discussions in the proof for this lemma have established that the function

fij is bijective.

Assume that L
(N)
ij

and Ĩ ′ exist; that j ∈ [m]; and that (w, x, y, z) is an arbitrary

member of Ĩ ′. The expression M
(N)
ij

is used to denote the members of G̃
(N)
ij

that are also

members of Ĩ .

M
(N)
ij

= {(dpwcm(a, b, c, d)|(a, b, c, d) ∈ L
(N)
ij

}

= {(ac, bd, ad, bc)|(a, b, c, d) ∈ L
(N)
ij

}

= Ĩ .

The above equation for M
(N)
ij

states that if (a, b, c, d) is an arbitrary member of L
(N)
ij

,

then the M
(N)
ij

member that the dpwcm function maps it to is (ac, bd, ad, bc). Furthermore,

M
(N)
ij

and Ĩ are identical sets. Moreover,

M
(N)
i1

= M
(N)
i2

= · · · = M
(N)
ij

= Ĩ

because the 4-tuples that are in Ĩ are exactly those 4-tuples that are in the set

G̃
(N)
i1

∩ G̃
(N)
i2

∩ · · · ∩ G̃
(N)
ij

.

5.8.6 Entity-Relationship Models and Diagrams

There are many concepts that are introduced in the remainder of this section. The

entity-relationship model (ERM) (Chen, 1976) is used to model some of the semantic

185

(0,1,0,7)
(0,3,0,5)
(0,5,0,3)
(0,7,0,1)
(1,0,7,0)
(3,0,5,0)
(5,0,3,0)
(7,0,1,0)

(0,2,0,6)
(0,6,0,2)
(2,0,6,0)
(6,0,2,0) (1,3,3,1)

(3,1,1,3)

(0,0,0,8)
(0,0,8,0)
(0,4,0,4)
(0,8,0,0)
(4,0,4,0)
(8,0,0,0)

(0,4,4,0)
(2,2,2,2)
(4,0,0,4)

(0,2,6,0)
(0,6,2,0)
(1,3,1,3)
(2,0,0,6)
(3,1,3,1)
(6,0,0,2)

G̃
(8)
2

G̃
(8)
3

G̃
(8)
1

Figure 5.3: Example of the Intersection Between Three G̃ Sets When N = 8.

186

relationships between them. Historically, the ERM has been mainly used in the relational

database community to model relationships between entities in a database.

An ERM is realized by an entity-relationship (ER) diagram. There are many nota-

tions to represent ER diagrams. Some of the more widely used ones are Chen notation

(Chen, 1976), IDEFIX notation (Bruce, 1992), Bachman notation (Bachman, 1969),

Martin notation (Martin, 1990), (min,max)-notation (Batini et al., 1992; McFadden and

Hoffer, 1994; Teorey, 1991), the notation used in the UML standard (Jacobson et al.,

1999), and EXPRESS notation (Schenck and Wilson, 1994). Common among these dif-

ferent notations are that rectangles represent entities. Where these notations mainly

differ is in how they represent relationships between entities (Song et al., 1995).

The notation used in an ER diagram is often not sufficient to explain all that is

necessary about the relationships between its entities. Typically, the notation suffices

to explain most aspects of these relationships. What cannot be sufficiently detailed is

normally explained in accompanying documentation.

Definition 5.8.6.1. A one-to-one relationship (1:1) from entity type X to entity type

Y is one in which an X entity maps to at most one Y entity and vice versa.

Definition 5.8.6.2. A one-to-many relationship (1:m) from entity type X to entity type

Y is one in which an X entity can map to any number of Y entities (including zero) and

any Y entity can map to at most one X entity.

Definition 5.8.6.3. A many-to-one relationship (m:1) from entity type X to entity type

Y is one in which an X entity can map to at most one Y entity but a Y entity can map

to any number of X entities.

Definition 5.8.6.4. A many-to-many relationship (m:n) from entity type X to entity

type Y is one in which an X entity can map to any number (including zero) of Y entities

and vice versa.

187

The entity-relationship (ER) diagram in Figure 5.5 on page 191 depicts many impor-

tant concepts from Definitions 5.5.0.1 to 5.5.0.8 on pages 152–154, inclusive, and how

they are related. These concepts may be somewhat abstract to the reader. Before pro-

ceeding farther, it would be helpful to discuss the notation in the figure and to provide

an example to illustrate various aspects of these concepts. The rectangles in this diagram

represent entities, the diamonds represent relationships, and the labels on the connecting

lines represent ordinality and cardinality constraints.

Cardinality refers to the number of instances of one entity type that relate to one

instance of another entity type, whereas ordinality refers to whether the relationship

is optional or mandatory (White, 1994). Both of these terms deal with the number

of occurrences of a relationship. The ordinality value can be viewed as specifying the

minimum number of relationships, the cardinality value can be viewed as specifying the

maximum number of relationships. If the ordinality value is allowed to be 0, then the

relationship is optional. But, if the value is one or greater, the relationship is mandatory.

Figure 5.4 describes notation that is used later in Figure 5.5.

X Y

(a)

X Y

(b)

Figure 5.4: ER Notation. Figure 5.4(a) states that each entity in sets X and Y is related
to exactly one entity in the other set. Figure 5.4(b) states that each entity in set X is
related to at most one element in set Y and that each entity in set Y is related to exactly
one entity in set X.

188

The top portion of Figure 5.5 on page 191 asserts that, for any valid index i, there is

a one-to-one relationship between the elements of the sets D̃
(N)
i and G̃

(N)
i . More precisely,

it asserts that each element in the two sets maps to exactly one in the other set. For

i ∈ τ(N), the dpwcm function maps 4-tuples from a D̃
(N)
i set to generally qualifying

4-compositions in a G̃
(N)
i set (the value of i is the same for both sets). Table 5.3 on

page 160 and Figure 5.2 on page 179 have examples of this kind of mapping.

The figure also asserts that, for some set {i1, i2, . . . , ij} of valid indices, the intersection

of the various G̃
(N)
i sets is the intersection set

G̃
(N)
i1

∩ G̃
(N)
i2

· · · ∩ G̃
(N)
ij

and that there is a one-to-one relationship from an individual G̃
(N)
i to the intersection

set. The reason for this is that the intersection set contains only those elements that

are in each of G̃
(N)
i1

, G̃
(N)
i2

, · · · , and G̃
(N)
ij

. Therefore, any element of an individual G̃
(N)
i ,

where i ∈ {i1, i2, . . . , ij}, that is not also an element of every other G̃
(N)
j , where j ∈

{i1, i2, . . . , ij}, but j �= i, for the specified index set, does not map to any element of the

intersection set. If such an element is represented in all of the other G̃
(N)
i , for the specified

index set, then it maps to exactly one element in the intersection set. Conversely, any

element in the intersection set is always guaranteed to map to exactly one element in

each of the individual G̃
(N)
i sets because the elements in the intersection set are those

that the individual sets have in common.

The bottom portion of Figure 5.5 on page 191 is related to the concepts that were

introduced by Definitions 5.8.4.3 to 5.8.4.7 on pages 165–166, inclusive. Essentially, these

definitions are multiple index extensions of these three concepts: a divisor pair, a set of

4-tuple representations of a divisor pair, and a 4-tuple generally qualifying composition

of a divisor pair.

The main significance of this bottom portion is that it is not necessary to know the

189

elements of the set

G̃
(N)
i1

∩ G̃
(N)
i2

· · · ∩ G̃
(N)
ij

in order to determine its cardinality. The cardinality can be determined by the prop-

erties of the associated divisor pairs for a specified index set. All that is necessary is

this sequence of steps: calculate the column-wise greatest common divisor pair g of the

associated divisor pairs, convert g to its 4-tuple representation, and count its number of

elements. This can also be determined analytically by calculating the number of weak

4-compositions for the first component of g and also for its second component. The prod-

uct of these two numbers is the same as the cardinality of D̃
(N)
i1,i2,...,ij

. Note that Figure 5.5

on the next page also asserts that there is a bijection between any two of the sets

G̃
(N)
i1

∩ G̃
(N)
i2

· · · ∩ G̃
(N)
ij

,

D̃
(N)
i1,i2,...,ij

, and

G̃
(N)
i1,i2,...,ij

.

5.8.7 Running Example: Intersection of Three Sets of Gener-

ally Qualifying Weak 4-Compositions

In the discussion to follow, assume that N = 8. Table 5.2 on page 158 lists the four

divisor pairs that are possible for an N with this value. For the convenience of the

reader, these pairs are repeated below. A positive integer N is related to one or more

divisor pairs by an “integer to divisor pairs” relationship. This relationship is one-to-

many from the set of positive integers to the set of divisor pairs. The set T (N) contains

exactly the divisor pairs for N and the sets D(N) and D̃(N) contain the corresponding

4-tuple representations for 4-compositions and weak 4-compositions, respectively. The

sets D
(N)
i and D̃

(N)
i , respectively, are derived from the sets D(N) and D̃(N).

190

dpcm

D̃
(N)
i1 D̃

(N)
i2 D̃

(N)
ij

G̃
(N)
i1 G̃

(N)
i2

G̃
(N)
ij

D̃
(N)
i1,i2,...,ij

· · ·

· · ·

· · ·

G̃i1 ∩ G̃i2 ∩ · · · ∩ G̃ij

d
(N)
i1,i2,...,ij

dpcm
G̃
(N)
i1,i2,...,ij

dpcmdpcm

match matchmatch

{d(N)
i1

, d
(N)
i2

, . . . , d
(N)
ij

}

convert to weak 4-tuple representation

convert to column-wise gcd

Figure 5.5: ER Diagram of the Main Relationships.

191

For example, the positive integer 8 is related to four divisor pairs (i.e., (1, 8), (2, 4),

(4, 2), (8, 1)). These are precisely the divisor pairs that are enumerated in Table 5.2 on

page 158. The indices of these divisor pairs start at 1 and end at 4 as the table cells

in the bottom row are visited in a left to right manner. By this information, note that

index i has the value 1 for the (1, 8) pair and that it has has the value 4 for the (8, 1)

pair.

The D̃
(N)
i set contains the mapped 4-tuples for divisor pair i. One example that

corresponds to a feasible mapping is this one: d
(8)
2 = (2, 4) and

D̃
(8)
2 ={

(0, 2, 0, 4), (0, 2, 1, 3), (0, 2, 2, 2), (0, 2, 3, 1), (0, 2, 4, 0),

(1, 1, 0, 4), (1, 1, 1, 3), (1, 1, 2, 2), (1, 1, 3, 1), (1, 1, 4, 0),

(2, 0, 0, 4), (2, 0, 1, 3), (2, 0, 2, 2), (2, 0, 3, 1), (2, 0, 4, 0)

}.

The Venn diagram in Figure 5.3 on page 186 depicts the intersection of three sets of

generally qualifying weak 4-compositions. The index set for these three sets is {1, 2, 3}.
Therefore, the sets of generally qualifying weak 4-compositions are G̃

(8)
1 , G̃

(8)
2 , and G̃

(8)
3 .

These sets correspond to those for divisor pairs (1, 8), (2, 4), and (4, 2), respectively.

The divisor pairs for the indices have been rewritten in terms of the common gcd for

each component of the pairs. The common gcd for the first component of each pair is

gcd(d
(8)
1 [1], d

(8)
2 [1], d

(8)
3 [1]) = gcd(1, 2, 4) = 1

and is

gcd(d
(8)
1 [2], d

(8)
2 [2], d

(8)
3 [2]) = gcd(8, 4, 2) = 2

for the second component of each pair. This is evidenced in the multiplicand of each of

192

the rewritten divisor pairs below.

((d
(8)
1 [1]/1)1, (d

(8)
1 [2]/2)) = (1 · 1, 4 · 2)

((d
(8)
2 [1]/1)1, (d

(8)
1 [2]/2)) = (2 · 1, 2 · 2)

((d
(8)
3 [1]/1)1, (d

(8)
1 [2]/2)) = (4 · 1, 1 · 2)

The corresponding multipliers are used to construct the three mapping functions

below. Notice that the multiplier for the first component of a divisor pair is also the mul-

tiplier for the first two variables in its corresponding mapping function and the multiplier

for the second component of a divisor pair is the multiplier for the last two variables in

its corresponding mapping function.

f1(w, x, y, z) = (1 · w, 1 · x, 4 · y, 4 · z) = (w, x, 4y, 4z)

f2(w, x, y, z) = (2 · w, 2 · x, 2 · y, 2 · z) = (2w, 2x, 2y, 2z)

f3(w, x, y, z) = (4 · w, 4 · x, 1 · y, 1 · z) = (4w, 4x, y, z)

Collectively, the information from these mapping functions indicate that the generally

qualifying weak 4-compositions that are in the intersection of sets G̃
(8)
1 , G̃

(8)
2 , and G̃

(8)
3

must meet all of these conditions: the value of each of the four components of the weak

compositions must be evenly divisible by 4 because the least common multiple of the

values 1, 2, and 4 is 4. The only weak compositions in the Venn diagram of Figure 5.3 on

page 186 that meet this condition are the ones that are in the intersection of the three

sets.

193

Table 5.6: The Divisor Pairs for N = 8 and Their Associated Sets.

D̃
(8)
1,2,3 L

(8)
1 L

(8)
2 L

(8)
3 Ĩ ′ M

(8)
1 , M

(8)
2 , M

(8)
3

(0, 1, 0, 2) (0, 1, 0, 8) (0, 2, 0, 4) (0, 4, 0, 2) (0, 2, 0, 0) (0, 8, 0, 0)

(0, 1, 1, 1) (0, 1, 4, 4) (0, 2, 2, 2) (0, 4, 1, 1) (0, 1, 0, 1) (0, 4, 0, 4)

(0, 1, 2, 0) (0, 1, 8, 0) (0, 2, 4, 0) (0, 4, 2, 0) (0, 0, 0, 2) (0, 0, 0, 8)

(1, 0, 0, 2) (1, 0, 0, 8) (2, 0, 0, 4) (4, 0, 0, 2) (0, 0, 2, 0) (0, 0, 8, 0)

(1, 0, 1, 1) (1, 0, 4, 4) (2, 0, 2, 2) (4, 0, 1, 1) (1, 0, 1, 0) (4, 0, 4, 0)

(1, 0, 2, 0) (1, 0, 8, 0) (2, 0, 4, 0) (4, 0, 2, 0) (2, 0, 0, 0) (8, 0, 0, 0)

5.9 Calculating Q′
CLM for a Document Collection of

Size N

The proof of Lemma 5.8.5 provides a closed form expression to calculate the number of

generally qualifying weak 4-compositions for j divisor pairs. This expression is used below

in the proof of Lemma 5.9.1. The proof of Lemma 5.9.2 on page 196 uses the results

of Lemma 5.9.1 to provide an equation that calculates the total number of generally

qualifying 4-compositions for a document collection of size N. Figure 5.6 on the next

page depicts the situation that is discussed in this section.

Lemma 5.9.1. Suppose G̃
(N)
1 , G̃

(N)
2 , . . . , G̃

(N)
m , where m = τ(N) and the j indices

i1, i2, . . . , ij range over all the j-element subsets of m (i.e., 1 ≤ i1 < i2 < · · · < ij ≤ m),

are the sets of generally qualifying weak 4-compositions for a document collection of size

N. Then

∣∣∣∣∣
⋃

1≤i≤m

G̃
(N)
i

∣∣∣∣∣ =
m∑

j=1

(−1)j−1
∑

1≤i1<i2<···<ij≤m

|G̃(N)
i1

∩ G̃
(N)
i2

· · · ∩ G̃
(N)
ij

| (5.9.1)

=
m∑

j=1

(−1)j−1
∑

1≤i1<i2<···<ij≤m

(d
(N)
i1,i2,...,ij

[1] + 1)(d
(N)
i1,i2,...,ij

[2] + 1). (5.9.2)

194

r1s0 < r0s1 r1s0 = r0s1 r1s0 > r0s1

∣∣∣∣∣∣
⋃

1≤i≤m

G̃
(N)
i

∣∣∣∣∣∣ W

indirectindirect

(
N+3
3

) − ∣∣∣⋃1≤i≤m G̃
(N)
i

∣∣∣
2

(
N+3
3

) − ∣∣∣⋃1≤i≤m G̃
(N)
i

∣∣∣
2

Figure 5.6: This figure corresponds to the discussion in Section 5.9. It is assumed that the
document collection is non-empty (i.e., N ≥ 1). The number of weak 4-compositions that
satisfy the restriction r1s0 > r0s1 can be determined if there is a method to calculate the
number of weak 4-compositions that satisfy r1s0 = r0s1. The former value is calculated
by subtracting the latter one from the value for the cardinality of W (the number of weak
4-compositions for N) and then dividing the result by 2. The gray area indicates that
the value for r1s0 = r0s1 is directly calculated whereas the white areas indicate that the
value for r1s0 > r0s1 and r1s0 < r0s1 are indirectly calculated. The symbol W represents
the set of weak 4-compositions for N.

195

Proof. Lemma 5.8.3 on page 172 and Lemma 5.8.5 on page 181 enable the rewriting of

Equation 5.9.1 on page 194 as Equation 5.9.2 on page 194.

Lemma 5.9.2.

The contribution is

⎧⎪⎪⎨
⎪⎪⎩

C̃4(N) −
∣∣∣⋃1≤i≤m G̃

(N)
i

∣∣∣
2

, if N ≥ 1;

0, otherwise;

when the condition p′ > t′ is true.

Proof. The expression ⋃
1≤i≤m

G̃
(N)
i

calculates the number of weak 4-compositions of N ≥ 0 where r1s0 = r0s1. By Lemma 5.2.1

on page 146, the number of weak 4-compositions of N that satisfy r1s0 > r0s1 is the same

as the number of weak 4-compositions of N that satisfy r1s0 < r0s1. Therefore, the num-

ber of weak 4-compositions of N that satisfy p′ > t′ is

C̃4(N) −
∣∣∣⋃1≤i≤m G̃

(N)
i

∣∣∣
2

.

By Equation 2.2.2 on page 26, the cardinality of the sample space of weak 4-compositions

for N is (
N + 3

3

)
.

After dividing the former expression by the latter expression, we obtain

Q′
CLM = Pr(p′ > t′) =

⎧⎪⎪⎨
⎪⎪⎩

C̃4(N)−
˛
˛
˛
S

1≤i≤m G̃
(N)
i

˛
˛
˛

2(N+3
3)

, if N ≥ 1;

0, otherwise.

(5.9.3)

196

5.10 A Refinement of the Calculations for Q′
CLM

An alternate way to derive a POIE-based equation for Q′
CLM is to make use of several

of the closed form expressions that were developed, and verified, in Chapter 4. These

expressions count the number of weak 4-compositions that satisfy the relation p′ > t′ for

an N document collection in all situations, except where the conditions p ∈ (0, 1) and

q ∈ (0, 1) are both true. These expressions correspond to the situation where the value

of at least one component of every weak 4-tuple is 0. Figure 5.7 depicts the situation

that is discussed in this section.

Quadrant I

Quadrant II

Quadrant III

Quadrant IV

W1

W2

W3

W4\C4

C4

r1s0 < r0s1 r1s0 = r0s1 r1s0 > r0s1

N + 1

N + 1

0

0

0

0

0

0

0

indirect

∣∣∣∣∣∣
⋃

1≤i≤m

G
(N)
i

∣∣∣∣∣∣

2
(

N − 1
2

)
+ N − 1

indirect

2
(

N − 1
2

)
+ N − 1

(
N−1
3

) − ∣∣∣⋃1≤i≤m G
(N)
i

∣∣∣
2

(
N−1
3

) − ∣∣∣⋃1≤i≤m G
(N)
i

∣∣∣
2

(
N + 3

3

)
−

(
N − 1

3

)
− 4

(
N +

(
N − 1

2

))︸
︷︷

︸
Figure 5.7: This figure corresponds to the discussion in Section 5.10. It is assumed
that the document collection is non-empty (i.e., N ≥ 1). The cells that do not have a
gray background, nor are labeled indirect, contain values that were determined by the
use of the equations from Table 4.11 on page 140 for determining the number of weak
4-compositions in Quadrants I, II, and III, plus the equation for the number of weak
4-compositions in Quadrant IV that are not also strong compositions. The gray area
represents the value that needs to be calculated so that the number of 4-compositions
in Quadrant IV that satisfy the restriction r1s0 > r0s1 can be indirectly calculated.
The W s in this figure represent weak 4-compositions and the Cs represent strong 4-
compositions. More specifically, W1, W2, W3, and W4, respectively, represent the number
of weak 4-compositions for Quadrants I, II, III, and IV. The symbol C4 represents the
set of strong compositions for Quadrant IV. The expression W4\C4 represents the set of
weak 4-compositions in Quadrant IV that are not simultaneously strong compositions.

We proceed in two stages. The first stage develops the total count for each of the

197

four quadrants, except for those weak 4-compositions that satisfy both p ∈ (0, 1) and

q ∈ (0, 1). The second stage develops the count just for the part of Quadrant IV that

was not covered by the expressions that were developed in the previous chapter. These

weak 4-compositions in the second stage correspond to those that satisfy both p ∈ (0, 1)

and q ∈ (0, 1). These weak 4-compositions are also 4-compositions because the value of

each of their four components is a positive integer.

Part of the discussion in Chapter 4 indicated that we could separate the problem of

determining the count contributions into four subproblems. There is a one-to-one corre-

spondence between the set of subproblems and the set of quadrants. Each subproblem

is concerned with finding the count contribution for the quadrant that it maps to. Once

we find this count for each of the quadrants, we total the counts. The result is the count

contribution for the original problem.

In order to determine the count contributions for this (i.e., CLM) ranking method,

we start by first developing the expressions that count the number of qualifying weak

compositions for Quadrants I, II, and III. After, that we do the same for all of the

categories of Quadrant IV, except for the category where both p′ ∈ (0, 1) and q′ ∈ (0, 1)

hold. Lastly, we develop the count contribution expressions for this remaining part of

Quadrant IV.

5.10.1 The Number of Qualifying Weak Compositions for Quad-

rants I, II, and III

How do we determine the contribution count (i.e., the number of qualifying weak 4-

compositions), when p′ > t′ is true, and the document collection is non-empty, for these

three quadrants? The results of the analyses from Chapter 4 provide the answer. From

the information in Table 4.11 on page 140, the counts for the first three quadrants are 0,

0, and 0, respectively, for a combined count of 0.

198

From an information retrieval perspective, with query q, and a document collection

of size N, the weak 4-compositions that comprise Quadrant I correspond to the situation

where every document in the collection is relevant and the collection has at least one

document (i.e., s0 + s1 = 0 and r0 + r1 > 0). The weak 4-compositions for Quadrant II

correspond to an empty collection (i.e., s0 + s1 = 0 and r0 + r1 = 0). And, the weak

4-compositions for Quadrant III correspond to the situation where every document in the

collection is non-relevant and the collection has at least one document (i.e., s0 + s1 > 0

and r0 + r1 = 0).

Lemma 5.10.1. The total contribution count is 0 when p′ > t′ holds.

Proof. The total contribution is the sum of the values in column 5 of lines 1–3, inclusive,

in Table 4.11 on page 140. It indicates that the count contributions for each of Quadrants

I, II, and III is 0 when p′ > t′ is true. Their collective total is 0.

5.10.2 The Number of Qualifying Weak Compositions for Quad-

rant IV (each weak 4-composition in this quadrant rep-

resents a document collection that has positive numbers

of relevant and non-relevant documents) When At Least

One of the Parameters r1, r0, s1, and s0 Has a Value of

Zero

From an information retrieval perspective, with query q, and a document collection of

size N, the weak 4-compositions that comprise Quadrant IV correspond to the situation

where both the number of relevant and the number of non-relevant documents are positive

(i.e., s0 + s1 > 0 and r0 + r1 > 0). In this particular section, the total contribution count

is for all situations in Quadrant IV, except for those situations where each of the four

199

parameters in a weak 4-composition (r1, s0, r0, s1) has a positive (i.e., greater than zero)

value. The counts for these latter situations are addressed in Section 5.10.3.

The count for this section can also be determined solely from the information in

Table 4.11 on page 140. The following lemma addresses the value for this count.

Lemma 5.10.2.

The count contribution is

⎧⎪⎪⎨
⎪⎪⎩

2

(
N − 1

2

)
+ N − 1, if N ≥ 1;

0, otherwise;

when p′ > t′ holds.

Proof. If p = 0, then r1 = 0 is true; if p = 1, then r0 = 0 is true; if q = 0, then s1 = 0 is

true; and if q = 1, then s0 = 0 is true because, from the discussions in Chapter 4,

p = 0 =⇒ r1

r1 + r0

= 0 =⇒ r1 = 0,

p = 1 =⇒ r1

r1 + r0

= 1 =⇒ r0 = 0,

q = 0 =⇒ s1

s1 + s0

= 0 =⇒ s1 = 0, and

q = 1 =⇒ s1

s1 + s0

= 1 =⇒ s0 = 0.

From the above implications, and the information in Table 4.11 on page 140, we can

see that at least one of the values for r1, r0, s1, and s0 is 0 for eight of the nine mutually

exclusive joint conditions for Quadrant IV that are listed in column 5 of this table. An

inspection of this table reveals that all of the supplemental conditions in Table 4.11 on

page 140 for lines 4-7, inclusive, and lines 9-12, inclusive, have at least one conjunct

where either p = 0, p = 1, q = 0, or q = 1 is true. These conditions cover all of the

Quadrant IV conditions, except for the one where p ∈ (0, 1) and q ∈ (0, 1) are both true.

200

The sum that corresponds to the 8 conditions is

N − 1 + 2

(
N − 1

2

)
,

which is simply the aggregate of the quantities that appear in column 5 of Table 4.11

on page 140 for lines 4–7, inclusive, and lines 9–12, inclusive. The reasoning behind its

derivation follows this sentence. From Table 4.11 on page 140, we see that when N ≥ 2

holds, the partial sum of the contributions is

0 + 0 + (N − 1) + 0 = N − 1.

Additionally, when N ≥ 3 also holds, we must add

0 +

(
N − 1

2

)
+ 0 +

(
N − 1

2

)
= 2

(
N − 1

2

)

to that value because N ≥ 3 implies N ≥ 2. The resultant sum is

N − 1 + 2

(
N − 1

2

)
,

and its value is valid even when N = 1 or N = 2 because the expression

(
N − 1

2

)

vanishes (i.e., has the value 0) when N ∈ Z
+ and 1 ≤ N ≤ 2 is true.

201

5.10.3 The Number of Qualifying Weak Compositions for Quad-

rant IV (each weak 4-composition in this quadrant rep-

resents a document collection that has positive numbers

of relevant and non-relevant documents) When Each of

the Parameters r1, r0, s1, and s0 Has a Positive Value

This section is concerned with determining the count contribution for Quadrant IV when

the conditions p ∈ (0, 1), q ∈ (0, 1), and p′ > t′ all hold. When the first and second

conditions hold, the values of r1, r0, s1, and s0 are all positive. This becomes important

in the discussion below and in those discussions that appear in later chapters.

From an information retrieval perspective, with query q, and a document collection

of size N, the weak 4-compositions that comprise the part of Quadrant IV that is the

focus of this section correspond to the situation where both the number of relevant and

the number of non-relevant documents are positive (i.e., s0 + s1 > 0 and r0 + r1 > 0)

and both p ∈ (0, 1) and q ∈ (0, 1) are true. The counts for this situation cannot be

determined from the information in Table 4.11 on page 140 because the mathematics

and arguments needed to determine these counts are considerably more involved than

any of the mathematics and arguments that appeared in Chapter 4. The derivation of

formulas and techniques that help in determining these counts are the subject of much

of the remainder of this chapter.

Two lemmas appear below. The first of them is associated with the situation where

the values of p and q are strictly between 0 and 1. The first lemma (i.e., Lemma 5.10.3

on the following page) proves that the number of documents that is associated with each

of the four parts of the corresponding 4-compositions must be a positive number. The

second lemma (i.e., Lemma 5.10.4 on the next page) proves that when the values of p

and q are strictly between 0 and 1, then p = p′ is true and q = q′ is true. The results

202

from these lemmas are used in several places in this dissertation.

Lemma 5.10.3. Suppose p ∈ (0, 1) and q ∈ (0, 1) are true. Then r1, r0, s1, and s0 must

all be positive values.

Proof. From Figure 4.1 on page 115, it is evident that both r1 + r0 > 0 and s1 + s0 > 0

must hold for any outcome that is a member of Quadrant IV. The expression

p =
r1

r1 + r0

∈ (0, 1)

implies that the conditions r1 > 0 and r0 > 0 hold because the value of r1 must be

positive in order for p to be positive, but that the value of r0 must be positive, also, so

that the value of p cannot equal or exceed the value 1.

The argument for q is similar to the one above for p. The expression

q =
s1

s1 + s0

∈ (0, 1)

implies that the conditions s1 > 0 and s0 > 0 hold because the value of s1 must be

positive in order for q to be positive, but that the value of s0 must be positive, also, so

that the value of q is always less than the value 1.

Lemma 5.10.4. Suppose p ∈ (0, 1) and q ∈ (0, 1) are true. Then p = p′ and q = q′ are

also true.

Proof. This trivially follows from the definitions of p′ and q′ on page 120 in Section 4.3.

The definition of p′ states that p′ = p when 0 < p < 1 and the analogous definition for q′

states that q′ = q when 0 < q < 1. It is well-known that, for a real value x, such as those

represented by p and q, the expressions 0 < x < 1 and x ∈ (0, 1) are equivalent.

By Lemma 5.10.3, because each of r1, r0, s1, and s0 is positive, the weak 4-compositions

in this section are also 4-compositions. Therefore, in the remainder of this section, we

203

use 4-compositions, the more specific term. The use of this term is not possible either

for Quadrants I, II, and III, or for all of the other 8 conditions for p and q that are listed

in Table 4.11 on page 140 for this quadrant, because at least one of the parameters r1,

r0, s1, and s0 in all of those situations is guaranteed to have a value of 0. Note that, if

any component of a 4-tuple, that consists of all natural numbers, is 0, then this 4-tuple

cannot possibly be a strong 4-composition; it can only be a weak 4-composition.

The Four Cases For This Part of Quadrant IV

The calculations for this part of Quadrant IV can be broken down into several cases:

the four component values are identical; only two distinct values occur among the 4

component values; only three distinct values occur among the 4 component values; and,

lastly, all the component values are unique. The sections below derive expressions for

the contribution that each of these cases make to the overall total.

Unlike the solutions to Quadrants I, II, III, and all categories of Quadrant IV, except

for the one where p ∈ (0, 1) and q ∈ (0, 1), the solutions to this category cannot be

expressed as a closed formula. An algorithm is developed for each one. The algorithms, in

both cases, rely on integer factorization properties of N (Rosen, 2005) and the Principle

of Inclusion-Exclusion (Stanley, 1997; Rosen et al., 2000; Charalambides, 2002; Bóna,

2006; Lovász, 2007; Bóna, 2007).

Lemma 5.10.5. Suppose r = τ(N) and the j indices i1, i2, . . . , ij range over all the j-

element subsets of r (i.e., 1 ≤ i1 < i2 < · · · < ij ≤ r). Then the cardinality of the set

G
(N)
i1

∩ G
(N)
i2

∩ · · · ∩ G
(N)
ij

is (c1 − 1)(c2 − 1) where c1 = d
(N)
i1,i2,...,ij

[1] and c2 = d
(N)
i1,i2,...,ij

[2].

Proof. The proof for this lemma is very similar to that of Lemma 5.8.3 on page 172.

The essential difference is that this lemma is concerned with strong compositions rather

than weak compositions. Therefore, the expression that calculates the cardinality is

based on the strong 2-compositions of c1 = d
(N)
i1,i2,...,ij

[1] and c2 = d
(N)
i1,i2,...,ij

[2], rather than

204

with the weak 2-compositions, as was the situation with Lemma 5.8.3 on page 172. By

Equation 2.2.1 on page 26, the number of strong 2-compositions for c1 is

C2(c1) =

(
c1 − 1

2 − 1

)
=

(
c1 − 1

1

)
= c1 − 1

and the number of strong 2-compositions for c2 is

C2(c2) =

(
c2 − 1

2 − 1

)
=

(
c2 − 1

1

)
= c2 − 1.

Hence, the cardinality of the set G
(N)
i1

∩ G
(N)
i2

∩ · · · ∩ G
(N)
ij

is (c1 − 1)(c2 − 1).

Lemma 5.10.6. Suppose G
(N)
1 , G

(N)
2 , . . . , G

(N)
m , where m = τ(N) and the j indices

i1, i2, . . . , ij range over all the j-element subsets of m (i.e., 1 ≤ i1 < i2 < · · · < ij ≤ m),

are the sets of qualifying 4-compositions with mutually distinct components. Then

∣∣∣∣∣
⋃

1≤i≤m

G
(N)
i

∣∣∣∣∣ =
m∑

j=1

(−1)j−1
∑

1≤i1<i2<···<ij≤m

|G(N)
i1

∩ G
(N)
i2

· · · ∩ G
(N)
ij

| (5.10.1)

=
m∑

j=1

(−1)j−1
∑

1≤i1<i2<···<ij≤m

(d
(N)
i1,i2,...,ij

[1] − 1)(d
(N)
i1,i2,...,ij

[2] − 1). (5.10.2)

Proof. Lemma 5.10.5 on the previous page enables the rewriting of Equation 5.10.1 as

Equation 5.10.2.

After putting all of this together, we obtain

Q′
CLM = Pr(p′ > t′) =

⎧⎪⎪⎨
⎪⎪⎩

2(N−1
2)+N−1+

C4(N)−|S1≤i≤m G
(N)
i |

2

(N+3
3)

, if N ≥ 1;

0, otherwise.

(5.10.3)

205

5.11 A Further Refinement of the Calculations for

Q′
CLM

An alternate way to derive a POIE equation for the number of generally qualifying 4-

compositions is to break the task of determining this number into mutually exclusive parts

and, later, combine the results from these parts. There are two major benefits to this: the

primary one is that it provides additional validation of the proof for Lemma 5.10.6 on the

preceding page; the secondary benefit it that it provides some distributional information

about the number of qualifying 4-compositions that are associated with each part. This

additional information provides more insight about the compositions. Figure 5.8 on the

next page depicts the situation that is discussed in this section.

The four scenarios that are discussed in subsections 5.11.1, 5.11.2, 5.11.3, and 5.11.4

are based on how many unique values there are among those assigned to variables r1,

s0, r0, and s1. These scenarios correspond to exactly 1 distinct value, exactly 2 distinct

values, exactly 3 distinct values, and exactly 4 distinct values, respectively.

Lemma 5.11.1. Suppose G
(N)
1 , G

(N)
2 , . . . , G

(N)
m , where m = τ(N) and the j indices

i1, i2, . . . , ij range over all the j-element subsets of m (i.e., 1 ≤ i1 < i2 < · · · < ij ≤ m),

are the sets of qualifying 4-compositions. Then the number of generally qualifying 4-

compositions for these j indices is

|G(N)
i1

∩ G
(N)
i2

· · · ∩ G
(N)
ij

| =
∣∣∣G(N)

i1,i2,...,ij

∣∣∣
=

∣∣∣G(N)
1;i1,i2,...,ij

∣∣∣ +
∣∣∣G(N)

2;i1,i2,...,ij

∣∣∣ +∣∣∣G(N)
3;i1,i2,...,ij

∣∣∣ +
∣∣∣G(N)

4;i1,i2,...,ij

∣∣∣
= (d

(N)
i1,i2,...,ij

[1] − 1)(d
(N)
i1,i2,...,ij

[2] − 1),

where
∣∣∣G(N)

1;i1,i2,...,ij

∣∣∣ ,
∣∣∣G(N)

2;i1,i2,...,ij

∣∣∣ ,
∣∣∣G(N)

3;i1,i2,...,ij

∣∣∣ , and
∣∣∣G(N)

4;i1,i2,...,ij

∣∣∣ represent the one, two,

206

Quadrant I

Quadrant II

Quadrant III

Quadrant IV

W1

W2

W3

W4\C4

C4

r1s0 < r0s1 r1s0 = r0s1 r1s0 > r0s1

N + 1

N + 1

0

0

0

0

0

0

0

indirect

2
(

N − 1
2

)
+ N − 1

indirect

2
(

N − 1
2

)
+ N − 1

(
N−1
3

) − ∣∣∣⋃1≤i≤m G
(N)
i

∣∣∣
2

(
N−1
3

) − ∣∣∣⋃1≤i≤m G
(N)
i

∣∣∣
2

(
N + 3

3

)
−

(
N − 1

3

)
− 4

(
N +

(
N − 1

2

))︸
︷︷

︸

∣∣∣∣∣∣
⋃

1≤i≤m

G
(N)
i

∣∣∣∣∣∣

Figure 5.8: This figure corresponds to the discussion in Section 5.11. The cells that do not
have a gray background, nor are labeled indirect, contain values that were determined by
the use of the equations from Table 4.11 on page 140 for determining the number of weak
4-compositions in Quadrants I, II, and III, plus the equation for the number of weak
4-compositions in Quadrant IV that are not also strong compositions. The gray area
represents the values that need to be calculated so that the number of 4-compositions in
Quadrant IV that satisfy the restriction r1s0 > r0s1 can be indirectly calculated. The
essential difference between the situation that is being depicted with this figure and that
of Figure 5.7 on page 197 is that the gray region for r1s0 = r0s1 is divided into four non-
overlapping parts. The count contribution for each part is determined, then added to form
a total that is then used to indirectly calculate the number of 4-compositions in Quadrant
IV that satisfy the restriction r1s0 > r0s1. The W s in this figure represent weak 4-
compositions and the Cs represent strong 4-compositions. More specifically, W1, W2, W3,
and W4, respectively, represent the number of weak 4-compositions for Quadrants I, II,
III, and IV. The symbol C4 represents the set of strong compositions for Quadrant IV.
The expression W4\C4 represents the set of weak 4-compositions in Quadrant IV that
are not simultaneously strong compositions.

207

three, and four distinct values scenarios, respectively.

Proof. The proof is divided into four parts, one for the number of distinct values in each

of the four scenarios. There is a lemma and associated proof for each of these scenarios.

These lemmas (i.e., Lemma 5.11.1 on page 211, Lemma 5.11.2 on page 213, Lemma 5.11.3

on page 218, Lemma 5.11.4 on page 222) and their proofs follow this one and are in the

next subsections. The proof for this lemma consists of summing the counting expressions

that are associated with these 4 lemmas and showing that their total value is equal to

(d
(N)
i1,i2,...,ij

[1] − 1)(d
(N)
i1,i2,...,ij

[2] − 1),

which is identical to the value that is associated with the |G(N)
i1

∩G
(N)
i2

· · ·∩G
(N)
ij

| expression

in Lemma 5.10.5 on page 204.

From subsections 5.11.1, 5.11.2, 5.11.3, and 5.11.4, we obtain these equations:

|G(N)
1;i1,i2,...,ij

| = [d
(N)
i1,i2,...,ij

[1] is even] × [d
(N)
i1,i2,...,ij

[2] is even],

|G(N)
2;i1,i2,...,ij

| = 2 × (x [d
(N)
i1,i2,...,ij

[2] is even] + y [d
(N)
i1,i2,...,ij

[1] is even]),

|G(N)
3;i1,i2,...,ij

| = 4 × �(gcd(d
(N)
i1,i2,...,ij

[1], d
(N)
i1,i2,...,ij

[2]) − 1)/2�, and

|G(N)
4;i1,i2,...,ij

| = |G′(N)
4;i1,i2,...,ij

| − 4 × �(gcd(d
(N)
i1,i2,...,ij

[1], d
(N)
i1,i2,...,ij

[2]) − 1)/2�,

where

|G′(N)
4;i1,i2,...,ij

| = (d
(N)
i1,i2,...,ij

[1] − 1 − [d
(N)
i1,i2,...,ij

[1] is even])×

(d
(N)
i1,i2,...,ij

[2] − 1 − [d
(N)
i1,i2,...,ij

[2] is even]),

x = �(d(N)
i1,i2,...,ij

[1] − 1)/2�, and

y = �(d(N)
i1,i2,...,ij

[2] − 1)/2�.

208

In order to simplify the notation that is used in the remainder of this proof, let

A = [d
(N)
i1,i2,...,ij

[1] is even],

B = [d
(N)
i1,i2,...,ij

[2] is even],

C = �(gcd(d
(N)
i1,i2,...,ij

[1], d
(N)
i1,i2,...,ij

[2]) − 1)/2�,

d1 = d
(N)
i1,i2,...,ij

[1], and

d2 = d
(N)
i1,i2,...,ij

[2].

Then the equations for the 4 lemmas can be rewritten as

|G(N)
1;i1,i2,...,ij

| = AB,

|G(N)
2;i1,i2,...,ij

| = 2(xB + yA),

|G(N)
3;i1,i2,...,ij

| = 4C,

|G(N)
4;i1,i2,...,ij

| = (d1 − 1 − A)(d2 − 1 − B) − 4C.

The sum of the values that are associated with these equations is expressed by the

equation

∣∣∣G(N)
i1,i2,...,ij

∣∣∣ =
∣∣∣G(N)

1;i1,i2,...,ij

∣∣∣ +
∣∣∣G(N)

2;i1,i2,...,ij

∣∣∣ +∣∣∣G(N)
3;i1,i2,...,ij

∣∣∣ +
∣∣∣G(N)

4;i1,i2,...,ij

∣∣∣
= (AB) + (2(xB + yA)) + (4C) + ((d1 − 1 − A)(d2 − 1 − B) − 4C)

= AB + 2(xB + yA) + (d1 − 1 − A)(d2 − 1 − B)

= AB + 2(xB + yA) + (d1 − 1)(d2 − 1) − (d1 − 1)B − (d2 − 1)A + AB

= (d1 − 1)(d2 − 1) + 2(AB + xB + yA) − (d1 − 1)B − (d2 − 1)A

209

= (d1 − 1)(d2 − 1) + S.

Note that S = 2(AB+xB+yA)−(d1−1)B−(d2−1)A represents the part of the equation

that is sensitive to whether the values of d1 and d2 are even or odd. In determining the

value of S, there are a total of 4 possibilities that must be considered because the value

of d1 can be even or odd, independent of whether the value of d2 is even or odd. These

possibilities are enumerated in Table 5.7.

The information in the table illustrates that the value of S is 0 for each of the four

possibilities. Hence,

(d1 − 1)(d2 − 1) + S = (d1 − 1)(d2 − 1) + 0

= (d1 − 1)(d2 − 1)

= |G(N)
i1

∩ G
(N)
i2

· · · ∩ G
(N)
ij

|.

From this result, we can conclude that the values that are computed by Lemma 5.10.6

on page 205 and this lemma (i.e., Lemma 5.11.1 on page 206) both compute the same

value for the expression |G(N)
i1

∩ G
(N)
i2

· · · ∩ G
(N)
ij

|.

Table 5.7: The Four Possibilities for the Evaluation of S.

d1 d2 A B x y 2(AB + xB + yA) (d1 − 1)B (d2 − 1)A S

even even 1 1 d1−2
2

d2−2
2 d1 + d2 − 2 d1 − 1 d2 − 1 0

even odd 1 0 d1−2
2

d2−1
2 d2 − 1 0 d2 − 1 0

odd even 0 1 d1−1
2

d2−2
2 d1 − 1 d1 − 1 0 0

odd odd 0 0 d1−1
2

d2−1
2 0 0 0 0

Each of the next 4 subsections provides details for one of the 4 scenarios that are

mentioned at the beginning this section. These subsections correspond to scenarios with

210

exactly 1 distinct value, exactly 2 distinct values, exactly 3 distinct values, and exactly

4 distinct values, respectively.

In these next 4 subsections, the set of 3 conditions, that is,

r1s0 = r0s1,

r0, r1, s0, s1, N ∈ Z
+, and

r0 + r1 + s0 + s1 = N

are referred to as the general constraints. Each of the 4 subsections is associated with

a set of constraints. The constraints for a subsection consist of these three general

constraints and one or more additional constraints. These additional constraints are

given and discussed below.

5.11.1 All four of the values assigned to the variables r1, s0, r0,

and s1 are identical

In this subsection, our goal is to find a systematic way to construct compositions of size

4 for N that satisfy the constraints below and to develop a formula for counting them.

A way to help accomplish this is detailed later in this section.

r1s0 = r0s1

r0, r1, s0, s1, N ∈ Z
+

r0 + r1 + s0 + s1 = N

r1 = s0 = r0 = s1 (5.11.1)

Constraint 5.11.1 states that all four of the variables must have the same value.

The lemma in this subsection proves that the cardinality of the set of greatest common

211

divisor pairs for a non-empty set of 4-compositions is either 0 or 1 when all the compo-

nents of a 4-composition must have the same positive integer value. It also specifies the

conditions under which this is true.

Lemma 5.11.2. Suppose G
(N)
1;i1,i2,...,ij

is the set of qualifying 4-compositions from the set

G
(N)
i1,i2,...,ij

that satisfies the general constraints and Constraint 5.11.1 on the previous page,

where m = τ(N). and the j indices i1, i2, . . . , ij range over all the j-element subsets of

m (i.e., 1 ≤ i1 < i2 < · · · < ij ≤ m). Then

|G(N)
1;i1,i2,...,ij

| =

⎧⎪⎨
⎪⎩

1 : d
(N)
i1,i2,...,ij

[1] is even and d
(N)
i1,i2,...,ij

[2] is even;

0 : otherwise.

Proof. Let w + x = d
(N)
i1,i2,...,ij

[1] and y + z = d
(N)
i1,i2,...,ij

[2]. Also, let w, x, y, z ∈ Z
+. For the

convenience of the reader, the weak composition mapping function of Definition 5.5.0.6

on page 153 is restated here:

dpwcm(w, x, y, z) → (wy, xz, wz, xy).

Assume that

r1 = wy,

s0 = xz,

r0 = wz, and

s1 = xy.

Since the values of r1, s0, r0, and s1 must be identical, the condition

wy = xz = wz = xy

212

must also hold. Inspection of this condition reveals that because wy = wz, we can infer

that y = z. Also, because xz = wz, we can infer that x = w. These implications mean

that we can write

dpwcm(w, x, y, z) = dpwcm(w, w, y, y)

= (wy,wy, wy, wy).

Each of the four components of the 4-tuple generated by this process clearly has the

same value k = wy. Furthermore, it is true that both d
(N)
i1,i2,...,ij

[1] = w + w = 2w and

that d
(N)
i1,i2,...,ij

[2] = y + y = 2y hold. So, N = (2w)(2y) = 4k and r1 = s0 = r0 = s1 = k

are true. The constraints and the manner in which this proof was constructed show

that the only form of N that satisfy these constraints is one in which the value of N

is a positive integer that is evenly divisible by 4, the divisor pair components are even

positive integers, and r1 = s0 = r0 = s1 = N/4. In this situation, there is exactly one

solution. There is no solution in the situation where N = 4k + m with k ∈ Z
+ and

m ∈ [3].

5.11.2 Only two of the four values assigned to r1, s0, r0, and s1

are mutually distinct

The goal, in this case, is to find a systematic way to construct compositions of size 4 for

N that satisfy the constraints below and to develop a formula for counting them. A way

to help accomplish this is detailed later in this section.

r1s0 = r0s1 (5.11.2)

r0 + r1 + s0 + s1 = N

r0, r1, s0, s1, N ∈ Z
+

213

r1 = r0 and s0 = s1 and r1 �= s1 (5.11.3)

r1 = s1 and s0 = r0 and r1 �= s0 (5.11.4)

Collectively, these constraints state that there are only two distinct values (e.g., a and

b, with a �= b) among the four values that are assigned to parameters r1, s0, r0, and s1.

Constraint 5.11.3 and Constraint 5.11.4 state that exactly one variable on the left-hand

side of Equation 5.11.2 on the previous page has the value a and the other one has the

value b. The same statement is true for the right-hand side of this equation.

The upcoming lemma in this subsection proves that the cardinality of the set of

greatest common divisor pairs for a non-empty set of 4-compositions is 0, if N is odd,

but, otherwise, may be positive or zero. It also specifies the conditions under which the

cardinality has a positive value and how to determine this value.

Lemma 5.11.3. Suppose G
(N)
2;i1,i2,...,ij

is the set of qualifying 4-compositions from the

set G
(N)
i1,i2,...,ij

that satisfies the general constraints and either Constraint 5.11.3 or Con-

straint 5.11.4, where m = τ(N) and the j indices i1, i2, . . . , ij range over all the j-element

subsets of m (i.e., 1 ≤ i1 < i2 < · · · < ij ≤ m). Then

|G(N)
2;i1,i2,...,ij

| =

⎧⎪⎨
⎪⎩

2(x [d
(N)
i1,i2,...,ij

[2] is even] + y [d
(N)
i1,i2,...,ij

[1] is even]), if N is even;

0, otherwise;

where x = �(d(N)
i1,i2,...,ij

[1] − 1)/2�, y = �(d(N)
i1,i2,...,ij

[2] − 1)/2�, and the notation [condition]

denotes an expression that evaluates to 1 if condition is true but evaluates to 0, otherwise.

Proof. Let w + x = d
(N)
i1,i2,...,ij

[1] and y + z = d
(N)
i1,i2,...,ij

[2]. Also, let w, x, y, z ∈ Z
+. For the

convenience of the reader, the weak composition mapping function of Definition 5.5.0.6

on page 153 is restated here:

dpwcm(w, x, y, z) → (wy, xz, wz, xy).

214

Assume that

r1 = wy,

s0 = xz,

r0 = wz, and

s1 = xy.

Case 1: The values of r1 and r0 must be identical, the values of s0 and s1 must be

identical, and r1 �= s0.

The first 2 of these 3 conditions mean that the conditions

wy = wz

and

xz = xy

must also hold. From these last 2 conditions, we can infer that y = z. This inferred

condition, plus the r1 �= s0 condition, means that the conditions

(wy �= xz) and (y = z) yield the condition wz �= xz.

From this we can infer that w �= x. These implications mean that we can write

dpwcm(w, x, y, z) = dpwcm(w, x, y, y)

= (wy, xy, wy, xy). (5.11.5)

It can be readily seen from the result of the mapping for Equation 5.11.5 that, because

215

w is not equal to x, then the 4-tuple has exactly two mutually distinct values (i.e., wy

and xy) among its four components. Now, the expression

N = (w + x)(y + z)

can be rewritten as

N = (w + x)(y + y) = (w + x)(2y)

because we established earlier that the condition y = z holds. Since w and x must have

different values, the number a of qualifying strong 4-compositions for the

d
(N)
i1,i2,...,ij

[1] = w + x

part of this case is twice the number of distinct 2-partitions of d
(N)
i1,i2,...,ij

[1] because each

(w, x) pair contributes two permutations to the factor a for this side of the total count.

The number b of qualifying strong 4-compositions for the

d
(N)
i1,i2,...,ij

[2] = 2y

part of this case is either 1 or 0. It is 1 if d
(N)
i1,i2,...,ij

[2] is an even number; otherwise, it is

0. The total number of qualifying strong 4-compositions for this case is the product of a

and b. Note that this product is 0 if d
(N)
i1,i2,...,ij

[2] is an odd number.

Case 2: The values of r1 and s1 must be identical, the values of s0 and r0 must be

identical, and r1 �= s0.

The analysis for this case follows a similar pattern to the one for Case 1. The first 2 of

216

the 3 conditions for this case mean that the conditions

wy = xy

and

xz = wz

must also hold. From these last 2 conditions, we can infer that x = w. This inferred

condition, plus the r1 �= s0 condition, means that the conditions

(wy �= xz) and (x = w) yield xy �= xz.

From this we can infer that y �= z. These implications mean that we can write

dpwcm(w, x, y, z) = dpwcm(w, w, y, z)

= (wy,wz, wz, wy). (5.11.6)

It can be readily seen from the result of the mapping for Equation 5.11.5 on page 215

that, because y is not equal to z, then the 4-tuple has exactly 2 mutually distinct values

(i.e., wy and wz) among its 4 components. Now, the expression

N = (w + x)(y + z)

can be rewritten as

N = (w + x)(y + z) = (2w)(y + z)

because we established earlier that the condition x = w holds. Since y and z must have

217

different values, the number a of qualifying strong 4-compositions for the

d
(N)
i1,i2,...,ij

[2] = y + z

part of this case is twice the number of distinct 2-partitions of d
(N)
i1,i2,...,ij

[2] because each

(y, z) pair contributes 2 permutations to the factor b for this side of the total count. The

number b of qualifying strong 4-compositions for the

d
(N)
i1,i2,...,ij

[1] = 2w

part of this case is either 1 or 0. It is 1 if d
(N)
i1,i2,...,ij

[1] is an even number; otherwise, it is

0. The total number of qualifying strong 4-compositions for this case is the product of a

and b. Note that this product is 0 if d
(N)
i1,i2,...,ij

[1] is an odd number.

5.11.3 Only three of the four values assigned to r1, s0, r0, and

s1 are mutually distinct

The goal in this case is to find a systematic way to construct compositions of size 4 for

N that satisfy the constraints below and to develop a formula for counting them. A way

to help accomplish this is detailed later in this section.

r1s0 = r0s1

r0 + r1 + s0 + s1 = N (5.11.7)

r0, r1, s0, s1, N ∈ Z
+

r0 = s1 =
√

r1s0 and r1 �= s0 (5.11.8)

r1 = s0 =
√

r0s1 and r0 �= s1 (5.11.9)

Constraint 5.11.8 and Constraint 5.11.9 state that 2 of the variables must have the

218

same value (e.g., c) and that the other 2 variables must have values that are different

from each other and that are also different from c. A further requirement is that the

values for both
√

r1s0 and
√

r0s1 must be members of Z
+.

The lemma in this subsection proves that the cardinality of the set of greatest common

divisor pairs for a non-empty set of 4-compositions is always an integral multiple of 4. It

also specifies how to determine this value.

Lemma 5.11.4. Suppose G
(N)
3;i1,i2,...,ij

is the set of qualifying 4-compositions from the

set G
(N)
i1,i2,...,ij

that satisfies the general constraints and either Constraint 5.11.8 or Con-

straint 5.11.9, where m = τ(N) and the j indices i1, i2, . . . , ij range over all the j-element

subsets of m (i.e., 1 ≤ i1 < i2 < · · · < ij ≤ m). Then |G(N)
3;i1,i2,...,ij

| = 4×�(gcd(d
(N)
i1,i2,...,ij

[1],

d
(N)
i1,i2,...,ij

[2]) − 1)/2�.

Proof. Let w + x = d
(N)
i1,i2,...,ij

[1] and y + z = d
(N)
i1,i2,...,ij

[2]. Also, let w, x, y, z ∈ Z
+. For the

convenience of the reader, the weak composition mapping function of Definition 5.5.0.6

on page 153 is restated here:

dpwcm(w, x, y, z) → (wy, xz, wz, xy).

Assume that

r1 = wy,

s0 = xz,

r0 = wz, and

s1 = xy.

Case 1: The values of r0 and s1 must be equal to the square root of the product of r1 and

s0, and r1 �= s0.

219

For the discussion below, let g = gcd(w + x, y + z), the greatest common divisor (GCD)

of the sums w + x and y + z; k1 = (w + x)/g; and k2 = (y + z)/g.

This means that, in this context, r1s0 = r0s1 is equivalent to r1s0 = (r0)
2 and that

r1 + s0 + 2r0 = N . If we assume that g = e + f , we can rewrite Equation 5.11.7 on

page 218 as

N = k1(e + f)k2(e + f)

= k1k2(e + f)2

= k1k2(e
2 + f 2 + 2ef)

= r1 + s0 + 2r0.

From this rewrite, we can state that solutions can be obtained by making assignments

of the form shown in these sets:

{r1 ← k1k2e
2, s0 ← k1k2f

2, r0 ← s1 ← k1k2ef}

or

{r1 ← k1k2f
2, s0 ← k1k2e

2, r0 ← s1 ← k1k2ef}.

In order for these sets of assignments to satisfy Constraint 5.11.8 on page 218, it is

required that the value of e must be different than the value for f . Without this require-

ment, there would only be 1 distinct value being assigned in these sets of assignments,

thereby violating the constraint that there must be 3 distinct values. The manner in

which we calculate these values ensure that this constraint is met and can be proved

rather easily. Without loss of generality, assume that the value of e is less than the value

of f . Therefore, the values represented by e2 and f 2 must be mutually different. Lastly,

because e and f represent different values, it is also true that e2 �= ef and that f 2 �= ef .

220

From this we can see that the values for r1, s0, and r0 are mutually different with the

values for r0 and s1 being equal to each other.

The number of value pairs that satisfy this requirement is the same as the number

of distinct 2-partitions of the sum e + f , that is, �(gcd(d
(N)
i1,i2,...,ij

[1], d
(N)
i1,i2,...,ij

[2]) − 1)/2�.
Since each distinct 2-partition of e + f has 2 representatives in the set {(v1, v2)|v1 + v2 =

e + f, v1 �= v2, v1 ∈ Z
+}, due to symmetry, the overall contribution for this case is

2 × �(gcd(d
(N)
i1,i2,...,ij

[1], d
(N)
i1,i2,...,ij

[2]) − 1)/2�.

Case 2: The values of r1 and s0 must be equal to the square root of the product of r1 and

s0 , and r0 �= s1.

For the discussion below, let g = gcd(w+x, y+z), the GCD of the sums w+x and y+z;

k1 = (w + x)/g; and k2 = (y + z)/g.

The analysis for this case is similar to that for the prior case. The above condition means

that, in this context, r1s0 = r0s1 is equivalent to (r1)
2 = r0s1 and that 2r1 + r0 + s1 = N .

If we assume that g = e + f , we can rewrite Equation 5.11.7 on page 218 as

N = k1(e + f)k2(e + f)

= k1k2(e + f)2

= k1k2(e
2 + f 2 + 2ef)

= 2r1 + r0 + s1.

From this, we can state that solutions can be obtained by making assignments of the

form shown in these sets:

{r1 ← s0 ← k1k2ef, r0 ← k1k2e
2, s1 ← k1k2f

2}

221

or

{r1 ← s0 ← k1k2ef, r0 ← k1k2f
2, s1 ← k1k2e

2}.

In order for these sets of assignments to satisfy Constraint 5.11.9 on page 218, it is

required that the value of e must be different than the value for f . Without this require-

ment, there would only be 1 distinct value being assigned in these sets of assignments,

thereby, violating the constraint that there must be 3 distinct values. The manner in

which we calculate these values ensures that this constraint is met and can be proved

rather easily. Without loss of generality, assume that the value of e is less than the value

of f . Therefore, the values represented by e2 and f 2 must be mutually different. Lastly,

because e and f represent different values, it is also true that e2 �= ef and that f 2 �= ef .

From this we can see that the values for r1, r0, and s1 are mutually different with r1 and

s0 being equal to each other.

The number of value pairs that satisfy this requirement is the same as the number of

distinct 2-partitions of the sum e+f , that is, �(gcd(d
(N)
i1,i2,...,ij

[1], d
(N)
i1,i2,...,ij

[2])−1)/2�. Since

each distinct 2-partition of e + f has two representatives in the set {(v1, v2)|v1 + v2 =

e + f, v1 �= v2, v1 ∈ Z
+}, due to commutativity, the overall contribution for this case is

2 × �(gcd(d
(N)
i1,i2,...,ij

[1], d
(N)
i1,i2,...,ij

[2]) − 1)/2�.
Once we combine the results for the two cases, we find that the total number of

qualifying 4-compositions is 4 × �(gcd(d
(N)
i1,i2,...,ij

[1], d
(N)
i1,i2,...,ij

[2]) − 1)/2�.

5.11.4 All four of the values assigned to r1, s0, r0, and s1 are

mutually distinct

Our goal in this case is similar to that in the immediately prior case: find a systematic

way to construct compositions of size 4 for N that satisfy the constraints below and

to develop a formula for counting them. The main difference between this case and its

immediate predecessor is that the values associated with the four variables r1, s0, r0, and

222

s1 must be mutually distinct.

r1s0 = r0s1

r0 + r1 + s0 + s1 = N

r0, r1, s0, s1, N ∈ Z
+

r0, r1, s0, and s1 have mutually distinct values (5.11.10)

The lemmas in this subsection provide a mechanism to calculate the cardinality of

the set of greatest common divisor pairs for a non-empty set of 4-compositions. The

cardinality calculations they describe are considerably more complex that those discussed

in the previous three subsections. A large portion of this complexity is due to the fact

that the component values must be pairwise distinct.

Lemma 5.11.5. Suppose G
(N)
4;i1,i2,...,ij

is the set of qualifying 4-compositions from the set

G
(N)
i1,i2,...,ij

that satisfies the general constraints and Constraint 5.11.10, where m = τ(N)

and the j indices i1, i2, . . . , ij range over all the j-element subsets of m (i.e., 1 ≤ i1 <

i2 < · · · < ij ≤ m). Then

|G(N)
4;i1,i2,...,ij

| = |G′(N)
4;i1,i2,...,ij

| − 4�(gcd(d
(N)
i1,i2,...,ij

[1], d
(N)
i1,i2,...,ij

[2]) − 1)/2�

where

|G′(N)
4;i1,i2,...,ij

| = (d
(N)
i1,i2,...,ij

[1] − 1 − [d
(N)
i1,i2,...,ij

[1] is even]) ×

(d
(N)
i1,i2,...,ij

[2] − 1 − [d
(N)
i1,i2,...,ij

[2] is even]).

Proof. Every member of G
(N)
i1,i2,...,ij

is of the form (wy, xz, wz, xy), where (w, x, y, x) is a

member of D
(N)
i1,i2,...,ij

. Those members of G
(N)
i1,i2,...,ij

that also qualify for membership in

G
(N)
4;i1,i2,...,ij

are those members that have mutually distinct component values. The number

223

of these members can be determined by first noticing that 4-tuples from D
(N)
i1,i2,...,ij

, where

the values of either the first 2 components, the last 2 components, or all 4 components

are the same, cannot possibly be a member of G
(N)
4;i1,i2,...,ij

because the dpwcm function,

when applied to such a tuple, produces a 4-composition that has the same value for

two or more of its components. Members of D
(N)
i1,i2,...,ij

that have this characteristic (i.e.,

d
(N)
i1,i2,...,ij

[1] is even, d
(N)
i1,i2,...,ij

[2] is even, or both are even) cannot be members of G
(N)
i1,i2,...,ij

because at least one component of the divisor pair d
(N)
i1,i2,...,ij

has an ordered sum of the

form a+a associated with it. This ordered sum form cannot occur for a component when

the value of that component is odd. Let

G
′(N)
4;i1,i2,...,ij

= {dpwcm(w, x, y, z)|(w, x, y, z) ∈ D
(N)
i1,i2,...,ij

, w �= x, and y �= z}.

correspond to the members of D
(N)
i1,i2,...,ij

that do not have associated ordered sums of the

form a + a.

The cardinality of this set, denoted |G′(N)
4;i1,i2,...,ij

|, is

(d
(N)
i1,i2,...,ij

[1] − 1 − [d
(N)
i1,i2,...,ij

[1] is even])(d
(N)
i1,i2,...,ij

[2] − 1 − [d
(N)
i1,i2,...,ij

[2] is even])

and can be viewed as an approximation to the cardinality of G
(N)
4;i1,i2,...,ij

.

All the members of set G
′(N)
4;i1,i2,...,ij

, except for those that have the same value for two

or more of its components, are also members of G
(N)
4;i1,i2,...,ij

. If we can determine how to

count those exceptions, then we can obtain the cardinality of G
(N)
4;i1,i2,...,ij

by subtracting

the number of these exceptions from the cardinality of set G
′(N)
4;i1,i2,...,ij

. The following

paragraphs discuss how to derive an expression for the number of exceptions.

We start by noting that any member of G
′(N)
4;i1,i2,...,ij

, that is an exception, has exactly

two components with the same value. These members are of the form (c, c, d, e) or

(c, d, e, e) with the values for c, d, and e being mutually distinct.

224

When the situation exists where wy = xz is true, the ratio of w to x is the same as

the ratio of z to y. If we let g = a + b = gcd(w + x, y + z) = gcd(d
(N)
i1,i2,...,ij

[1], d
(N)
i1,i2,...,ij

[2]);

k1 = d
(N)
i1,i2,...,ij

[1]/g; and k2 = d
(N)
i1,i2,...,ij

[2]/g, we can rewrite

(d
(N)
i1,i2,...,ij

[1], d
(N)
i1,i2,...,ij

[2]))

as

(k1(a + b), k2(a + b)).

From this, we see that k1a : k1b is equivalent to k2a : k2b. Now, let w = k1a, x = k1b,

y = k2b, and z = k2a. This allows us to write

dpwcm(w, x, y, z) = (wy, xz, wz, xy)

= (k1ak2b, k1bk2a, k1ak2a, k1bk2b)

= (k1k2ab, k1k2ba, k1k2aa, k1k2bb)

= (k1k2ab, k1k2ab, k1k2a
2, k1k2b

2).

When the situation exists where wz = xy is true, the ratio of w to x is the same as

the ratio of y to z. Like before, we can rewrite

(d
(N)
i1,i2,...,ij

[1], d
(N)
i1,i2,...,ij

[2])

as

(k1(a + b), k2(a + b)).

From this, we see that k1a : k1b is equivalent to k2a : k2b. Now, let w = k1a, x = k1b,

225

y = k2a, and z = k2b. This allows us to write

dpwcm(w, x, y, z) = (wy, xz, wz, xy)

= (k1ak2a, k1bk2b, k1ak2b, k1bk2a)

= (k1k2aa, k1k2bb, k1k2ab, k1k2ba)

= (k1k2a
2, k1k2b

2, k1k2ab, k1k2ab).

Each situation discussed above has two possibilities associated with it. The complete

collection of four possibilities for a pair of unequal a and b values is enumerated in

Table 5.8. Since the a and b values used in that table are assumed to be unequal, there

are only three distinct values per row. Therefore, G
′(N)
4;i1,i2,...,ij

has 4�(g − 1)/2� members

that are not eligible to be members of G
(N)
4;i1,i2,...,ij

. Putting this all together, we obtain

|G(N)
4;i1,i2,...,ij

| = |G′(N)
4;i1,i2,...,ij

| − 4�(g − 1)/2�.

Table 5.8: The Four Possibilities for Two Duplicate Components.

situation w x y z wy xz wz xy

(w : x ≡ z : y) ⇒ wy = xz k1a k1b k2b k2a k1k2ab k1k2ab k1k2a
2 k1k2b

2

(w : x ≡ z : y) ⇒ wy = xz k1b k1a k2a k2b k1k2ab k1k2ab k1k2b
2 k1k2a

2

(w : x ≡ y : z) ⇒ wz = xy k1a k1b k2a k2b k1k2a
2 k1k2b

2 k1k2ab k1k2ab

(w : x ≡ y : z) ⇒ wz = xy k1b k1a k2b k2a k1k2b
2 k1k2a

2 k1k2ab k1k2ab

Before proceeding further, we briefly recap what we have established with the last

four lemmas. These lemmas (i.e., Lemma 5.11.2 on page 212, Lemma 5.11.3 on page 214,

Lemma 5.11.4 on page 219, and Lemma 5.11.5 on page 223) developed expressions for

counting the number of events in Quadrant IV when p′ = t′ holds and each of the

226

parameters r1, r0, s1, and s0 have positive integer values. What we are mainly interested

in, though, is the total number of events in Quadrant IV when p′ > t′ holds and the

parameters have positive values.

By Lemma 5.2.1 on page 146, we know that, if we can figure out the count for the

former number of events (i.e., the number of events in Quadrant IV when p′ = t′ holds

and each of the parameters r1, r0, s1, and s0 have positive integer values), then can use

that value to obtain the one for the latter number of events (i.e., the total number of

events in Quadrant IV when p′ > t′ holds and the parameters have positive values). We

can use of one of the several equivalent forms of the Principle of Inclusion-Exclusion to

do that.

Lemma 5.11.1 on page 206 uses this principle to establish a formula for the count of

the former number of events (i.e., the number of events in Quadrant IV when p′ = t′ holds

and each of the parameters r1, r0, s1, and s0 have positive integer values). Later, we use

this result, and the result from Lemma 5.11.6, to count the latter number of events.

Lemma 5.11.6.

The contribution is

⎧⎪⎪⎨
⎪⎪⎩

C4(N) −
∣∣∣⋃1≤i≤m G

(N)
i

∣∣∣
2

, if N ≥ 1;

0, otherwise;

when the conditions p′ > t′, p ∈ (0, 1), and q ∈ (0, 1) are all true.

Proof. The expression ∣∣∣∣∣
⋃

1≤i≤m

G
(N)
i

∣∣∣∣∣
calculates the number of 4-compositions of N ≥ 0 where r1s0 = r0s1. By Lemma 5.2.1

on page 146, the number of 4-compositions of N that satisfy r1s0 > r0s1 is the same as

the number of 4-compositions of N that satisfy r1s0 < r0s1. Therefore, the number of

227

4-compositions of N that satisfy p′ > t′ is

C4(N) −
∣∣∣⋃1≤i≤m G

(N)
i

∣∣∣
2

.

After putting all of this together, we obtain

Q′
CLM = Pr(p′ > t′) =

⎧⎪⎪⎨
⎪⎪⎩

2(N−1
2)+N−1+

C4(N)−|S1≤i≤m G
(N)
i |

2

(N+3
3)

, if N ≥ 1;

0, otherwise.

(5.11.11)

5.12 Mean and Variance

Definition 5.12.0.1. If X is a discrete random variable with probability distribution

f(x), then the expected value (i.e., mean) and variance of X are

E[X] =
∑

x

xf(x)

and

V ar[X] =
∑

x

(x − E[X])2 = E[X2] − (E[X])2, respectively.

Walpole (2002); Blumenfeld (2001); Mood et al. (1973).

Definition 5.12.0.2. Let BooleToNat(x), the Boolean-to-natural-number transforma-

tion function, be defined, as follows, for any Boolean-valued expression x.

BooleToNat(x) =

⎧⎪⎪⎨
⎪⎪⎩

1, if x is true;

0, otherwise.

228

Definition 5.12.0.3. Given a sample space Ω, the discrete random variable B is a

function such that, for each outcome ω ∈ Ω,

B(ω) = BooleToNat(p′ω > t′ω),

where Ω is the set of weak 4-compositions of N, and p′ω and q′ω are the p′ and q′ values,

respectively, for this ω.

The last two definitions can be used to rewrite Q′
CLM to show that Q′

CLM is simply

the expected value, or mean, of B.

Lemma 5.12.1. The expected value of B is Q′
CLM. That is,

E[B] =
∑
ω∈Ω

B(ω)

(
N + 4 − 1

4 − 1

)−1

=

∑
ω∈Ω B(ω)(

N+3
3

)
= Q′

CLM.

Proof. The number of weak 4-compositions for N is
(

N+4−1
4−1

)
, by Equation 2.2.2 on

page 26. These compositions are equally likely, each with a probability of
(

N+4−1
4−1

)−1
. The

random variable B is binary-valued, with values that are either 0 or 1; i.e., B(ω) ∈ {0, 1}.
Each weak 4-composition of N , denoted by ω, where the p′ value is greater than the cor-

responding t′ value, is associated with a B(ω) value of 1; otherwise, the B(ω) value is

0.

Lemma 5.12.2. The variance of B is

V ar[B] = E[B2] − (E[B])2 (5.12.1)

= E[B] − (E[B])2 (5.12.2)

229

= Q′
CLM − (Q′

CLM)2 (5.12.3)

= Q′
CLM(1 −Q′

CLM). (5.12.4)

Proof. Line 5.12.1 follows from Definition 5.12.0.1 on page 228. The value of B(ω) is

always the same as that of (B(ω))2 because, by Definition 5.12.0.3 on page 228, B(ω)

can only take on the values 0 and 1. This is the justification for Line 5.12.2. The

justification for Line 5.12.3 comes from Lemma 5.12.1 on the preceding page because it

established that Q′
CLM is the expected value of B, that is, Q′

CLM = E[B]. The expression

in Line 5.12.4 is a basic factoring of the expression in Line 5.12.3.

5.13 Example: An Application of the Principle of

Inclusion-Exclusion

Many concepts, definitions, and lemmas have been specified in the previous sections.

Some of them may have been harder, or easier, to grasp than others. The purpose of this

example is to enhance the readers’ understanding of these entities. To keep this example

manageable, from the perspective of combinatorial explosion avoidance, it is assumed

that the document collection only has twelve documents (i.e., N = 12).

By the Fundamental Theorem of Arithmetic, N = 22 · 31. Therefore, N has (2 +

1)(1 + 2) = 6 distinct positive integer divisors. Likewise, N also has 6 divisor pairs.

These pairs are (1, 12), (2, 6), (3, 4), (4, 3), (6, 2), and (12, 1); their indexes range from

1 to 6, respectively (e.g., the index of divisor pair (1, 12) is 1, that of divisor pair (2, 6)

is 2, and the index of divisor pair (12, 1) is 6). These divisor pair mappings appear in

Table 5.1 on page 152.

The divisor pairs and their associated D and G sets are listed in Table 5.3 on page 160.

Note that neither divisor pair (1, 12) nor divisor pair (12, 1) appear in this table because

230

each has at least one component that cannot be expressed as a sum of two positive

integers. By Definition 5.5.0.4 on page 153 and Definition 5.5.0.5 on page 153, each

component must be expressible as a sum of two positive integers. Due to this restriction,

the G set for divisor pair (1, 12) is the empty set. For the same reason, the G set for

divisor pair (12, 1) is also the empty set.

The implication of the information in the previous paragraph is that the problem of

determining the number of qualifying 4-compositions for N = 12 can be reduced to the

problem of finding the cardinality of the union of the G sets for just these four divisor

pairs: (2, 6), (3, 4), (4, 3), and (6, 2). The Principle of Inclusion-Exclusion (POIE) is a

general purpose combinatorial technique that can be used to determine this cardinality.

Its use is illustrated in the discussion that constitutes the remainder of this section.

Assume that there are n sets to be unioned. The POIE works by first computing the

sum of the cardinalities of all the 1-subsets, then subtracting the sum of the cardinalities

of the intersection of all the 2-subsets, then adding the sum of the cardinalities of the

3−subset intersection, and so on. This alternation between addition and subtraction

continues up to and including the determination of the the cardinality of the intersection

of all n sets.

231

5.13.1 The 1-subsets and Their Cardinalities

The 1-subsets were obtained from Table 5.3 on page 160 and are made explicit below for

the convenience of the reader.

G̃
(8)
1 = {

(0, 8, 0, 0), (0, 7, 0, 1), (0, 6, 0, 2), (0, 5, 0, 3), (0, 4, 0, 4), (0, 3, 0, 5),

(0, 2, 0, 6), (0, 1, 0, 7), (0, 0, 0, 8), (0, 0, 8, 0), (1, 0, 7, 0), (2, 0, 6, 0),

(3, 0, 5, 0), (4, 0, 4, 0), (5, 0, 3, 0), (6, 0, 2, 0), (7, 0, 1, 0), (8, 0, 0, 0)

}.

G̃
(8)
2 = {

(0, 8, 0, 0), (0, 6, 0, 2), (0, 4, 0, 4), (0, 2, 0, 6), (0, 0, 0, 8), (0, 4, 4, 0),

(1, 3, 3, 1), (2, 2, 2, 2), (3, 1, 1, 3), (4, 0, 0, 4), (0, 0, 8, 0), (2, 0, 6, 0),

(4, 0, 4, 0), (6, 0, 2, 0), (8, 0, 0, 0)

}.

G̃
(8)
3 = {

(0, 8, 0, 0), (0, 4, 0, 4), (0, 0, 0, 8), (0, 6, 2, 0), (1, 3, 1, 3), (2, 0, 0, 6),

(0, 4, 4, 0), (2, 2, 2, 2), (4, 0, 0, 4), (0, 2, 6, 0), (3, 1, 3, 1), (6, 0, 0, 2),

(0, 0, 8, 0), (4, 0, 4, 0), (8, 0, 0, 0)

}.

G̃
(8)
4 = {

(0, 8, 0, 0), (0, 0, 0, 8), (0, 7, 1, 0), (1, 0, 0, 7), (0, 6, 2, 0), (2, 0, 0, 6),

(0, 5, 3, 0), (3, 0, 0, 5), (0, 4, 4, 0), (4, 0, 0, 4), (0, 3, 5, 0), (5, 0, 0, 3),

(0, 2, 6, 0), (6, 0, 0, 2), (0, 1, 7, 0), (7, 0, 0, 1), (0, 0, 8, 0), (8, 0, 0, 0)

}.

232

The sum of their cardinalities is 18 + 15 + 15 + 18 = 66.

5.13.2 The 2-subsets and Their Cardinalities

The 2-subset intersections are listed below.

G̃
(8)
1 ∩ G̃

(8)
2 = {

(0, 0, 0, 8), (0, 0, 8, 0), (0, 2, 0, 6), (0, 4, 0, 4), (0, 6, 0, 2), (0, 8, 0, 0),

(2, 0, 6, 0), (4, 0, 4, 0), (6, 0, 2, 0), (8, 0, 0, 0)

}.

G̃
(8)
1 ∩ G̃

(8)
3 = {

(0, 0, 0, 8), (0, 0, 8, 0), (0, 4, 0, 4), (0, 8, 0, 0), (4, 0, 4, 0), (8, 0, 0, 0)

}.

G̃
(8)
1 ∩ G̃

(8)
4 = {

(0, 0, 0, 8), (0, 0, 8, 0), (0, 8, 0, 0), (8, 0, 0, 0)

}.

G̃
(8)
2 ∩ G̃

(8)
3 = {

(0, 0, 0, 8), (0, 0, 8, 0), (0, 4, 0, 4), (0, 4, 4, 0), (0, 8, 0, 0), (2, 2, 2, 2),

(4, 0, 0, 4), (4, 0, 4, 0), (8, 0, 0, 0)

}.

G̃
(8)
2 ∩ G̃

(8)
4 = {

(0, 0, 0, 8), (0, 0, 8, 0), (0, 4, 4, 0), (0, 8, 0, 0), (4, 0, 0, 4), (8, 0, 0, 0)

}.

233

G̃
(8)
3 ∩ G̃

(8)
4 = {

(0, 0, 0, 8), (0, 0, 8, 0), (0, 2, 6, 0), (0, 4, 4, 0), (0, 6, 2, 0), (0, 8, 0, 0),

(2, 0, 0, 6), (4, 0, 0, 4), (6, 0, 0, 2), (8, 0, 0, 0)

}.

The sum of their cardinalities is 10 + 6 + 4 + 9 + 6 + 10 = 45.

5.13.3 The 3-subsets and Their Cardinalities

The 3-subset intersections are listed below.

G̃
(8)
1 ∩ G̃

(8)
2 ∩ G̃

(8)
3 = {(0, 0, 0, 8), (0, 0, 8, 0), (0, 4, 0, 4), (0, 8, 0, 0), (4, 0, 4, 0), (8, 0, 0, 0)}.

G̃
(8)
1 ∩ G̃

(8)
2 ∩ G̃

(8)
4 = {(0, 0, 0, 8), (0, 0, 8, 0), (0, 8, 0, 0), (8, 0, 0, 0)}.

G̃
(8)
1 ∩ G̃

(8)
3 ∩ G̃

(8)
4 = {(0, 0, 0, 8), (0, 0, 8, 0), (0, 8, 0, 0), (8, 0, 0, 0)}.

G̃
(8)
2 ∩ G̃

(8)
3 ∩ G̃

(8)
4 = {(0, 0, 0, 8), (0, 0, 8, 0), (0, 4, 4, 0), (0, 8, 0, 0), (4, 0, 0, 4), (8, 0, 0, 0)}.

The sum of their cardinalities is 6 + 4 + 4 + 6 = 20.

5.13.4 The 4-subset and Its Cardinality

The 4-subset intersection is

G̃
(8)
1 ∩ G̃

(8)
2 ∩ G̃

(8)
3 ∩ G̃

(8)
4 = {(0, 0, 0, 8), (0, 0, 8, 0), (0, 8, 0, 0), (8, 0, 0, 0)}.

The cardinality is 4.

234

5.13.5 The Resultant Cardinality

By the POIE, the resultant cardinality for these unioned sets is 66 − 45 + 20 − 4 = 37.

This can be verified rather easily by noticing that, of these 37 distinct generally qualifying

weak 4-compositions, several occur multiple times among the members of the G̃ sets.

These 4 members occur four times each:

(0, 0, 0, 8), (0, 0, 8, 0), (0, 8, 0, 0), and (8, 0, 0, 0).

These 4 members occur three times each:

(0, 4, 0, 4), (0, 4, 4, 0), (4, 0, 0, 4), and (4, 0, 4, 0).

These 9 members each occur twice:

(0, 2, 0, 6), (0, 2, 6, 0), (0, 6, 2, 0), (2, 0, 0, 6), (2, 0, 6, 0),

(2, 2, 2, 2), (0, 6, 0, 2), (6, 0, 0, 2), and (6, 0, 2, 0).

The effect of this on the count for the union is that the first sum(i.e., 65) in the

expression for the resultant cardinality of the 1-subsets is an overcount because these 17

members are counted multiple times. In general, the first sum generated by the POIE

process is almost always an overcount. Ultimately, this is corrected by a process that

alternately subtracts and adds subsequent terms that are associated with the remaining

k-subsets where 2 ≤ k ≤ (the number of 1-subsets).

235

Table 5.9: Number of Qualifying Contributions-Related Values (1 ≤ N ≤ 20).

number of total number of Q′ √Q′(1 −Q′)

N qualifying weak 4-comps weak 4-comps (mean) (standard deviation)

1 0 4 0 0

2 1 10 0.1 0.3

3 4 20 0.2 0.4

4 9 35 0.257 143 0.437 059

5 18 56 0.321 429 0.467 025

6 28 84 0.333 333 0.471 405

7 46 120 0.383 333 0.486 198

8 64 165 0.387 879 0.487 267

9 90 220 0.409 091 0.491 666

10 119 286 0.416 084 0.492 908

11 160 364 0.439 56 0.496 334

12 195 455 0.428 571 0.494 872

13 254 560 0.453 571 0.497 84

14 306 680 0.45 0.497 494

15 370 816 0.453 431 0.497 827

16 444 969 0.458 204 0.498 25

17 536 1140 0.470 175 0.499 11

18 615 1330 0.462 406 0.498 585

19 732 1540 0.475 325 0.499 391

20 829 1771 0.468 097 0.498 981

236

50 100 150 200
N

0.1
0.2
0.3
0.4
0.5

Q'

50 100 150 200
N

0.1
0.2
0.3
0.4
0.5

Q ' �1 � Q '�

Figure 5.9: Plot of the mean (Q′) and standard deviation
(√Q′ (1 −Q′)

)
for B for the

CLM ranking method when 1 ≤ N ≤ 200.

5.14 Summary

This chapter presented a combinatoric model of Q′ for the CLM ranking method. It devel-

oped counting expressions to determine the cardinality the subset of weak 4-compositions

for a document collection of size N. The members of this subset were all the members

of the set of weak 4-compositions of N where the values of the members’ components

satisfied the p′ > t′ condition.

The chapter started by developing cardinality-counting expressions for Quadrants I,

II, and III. Following that, similar expressions were developed for all parts of Quadrant

IV, except for the part that corresponded to the joint conditions p ∈ (0, 1) and q ∈ (0, 1).

Most of the effort for the discussion in this chapter was related to the development of the

counting expressions for this exception (as it required special treatment) and to rigorously

prove that these expressions were correct.

It was relatively easy to determine the counting expressions for Quadrants I, II, and

III, and for all parts of Quadrant IV, except for the part that corresponded to the

joint conditions. The reason for this ease was all of the analyses that were discussed in

Chapter 4. Since these analyses developed the basic formulas, all that was needed in

this chapter was a straightforward combination of these formulas to calculate the desired

237

results. The resultant combinations were closed-form expressions.

By contrast, the development of the counting expressions for the part of Quadrant

IV that corresponded to the joint conditions p ∈ (0, 1) and q ∈ (0, 1) was considerably

more complex and involved. The expression development was divided into four mutually

exclusive cases based on the number of distinct values in each 4-composition. Closed-form

expressions were obtained for the first three cases but a closed-form expression was not

possible for the fourth case. This last case required the use of the Principle of Inclusion

and Exclusion.

Many concepts were developed and introduced for the analyses that occurred in this

chapter. Entity-relationship diagrams were used to illustrate the important semantic

relationships between these concepts. Near the end of this chapter, a comprehensive

example was given, and discussed, to help the reader with the understanding of these

concepts and with how the cardinalities were being determined.

Figure 5.9 on the preceding page contains plots of the mean and the standard deviation

values for the CLM ranking method. Table 5.9 on page 236 contains the values that were

used to create the plots of the first 20 mean and standard deviation values. Research for

this chapter indicated that the ordinate (i.e., y-axis) asymptote was 0.5 for both plots.

The research also showed that the plotted values for the mean and standard deviation had

an overall tendency to increase more than they decreased as the number N of documents

in a collection increased from 1 to ∞ (infinity). However, sometimes the mean and

standard deviation values temporarily decreased between points N and N +1, before the

mean and standard deviation values continued their overall increasing trend.

238

Chapter 6

Combinatoric Models of Q′ for the

Inverse Document Frequency and

Decision-Theoretic Ranking

Methods

The purpose of this chapter is to develop counting expressions that collectively cal-

culate the quality of the inverse document frequency (IDF) and decision-theoretic (DT)

ranking methods for a document collection of size N. Some of these expressions come

from the general work that took place in Chapter 4. The work in this chapter, along

with that in Chapter 5, enable the calculation of the ranking method-specific Q′ values

that are referenced in many of the equations that are in Section 7.10 (A Family of ASL

Measures), which starts on page 327, and Section 8.2 (The Validation of Q′ Estimates

That Were Obtained by Random Sampling), which starts on page 348.

The IDF and DT quality of ranking equations, that are derived later in this chapter,

are used in Section 7.8 and Section 7.10 of the next chapter to help develop equations for

the normalized and unnormalized search lengths, along with equations for the expected

value and variance of these search lengths. These equations also occupy a prominent role

in Chapter 8 during the validation of formulas for the Q′, A′, and ASL′ measures.

For the convenience of the reader, we restate the following concepts from Chapter 2

and Section 4.2. From the information retrieval (IR) perspective of this dissertation,

these concepts cover the notions of weak composition, composition, and sample space.

A weak composition of size 4 is a collection of N documents where at least one of the

following conditions is true: the number of relevant documents that contain the query

term is 0 (i.e., r1 = 0), the number of relevant documents that do not contain the query

term is 0 (i.e., r0 = 0), the number of non-relevant documents that contain the query

term is 0 (i.e., s1 = 0), or the number of non-relevant documents that do not contain the

query term is 0 (i.e., s0 = 0).

A strong composition of size 4 is a collection of N documents where all of the following

conditions must be true: the number of relevant documents that contain the query term

is positive (i.e., r1 ≥ 1), the number of relevant documents that do not contain the query

term is positive (i.e., r0 ≥ 1), the number of non-relevant documents that contain the

query term is positive (i.e., s1 ≥ 1), and the number of non-relevant documents that do

not contain the query term is positive (i.e., s0 ≥ 1).

A sample space for a weak-composition of size k, and N documents, represents all

the possible collections of N documents in terms of the k parameters. For example,

k = 4 in many of the discussions in this chapter and subsequent ones. When k = 4,

the parameters are r1, r0, s1, and s0. An outcome is an element of this sample space and

represents exactly one of its collections.

240

6.1 Combinatoric Model of Q′ for the IDF Ranking

Method

IDF ranking is based on the calculation of a retrieval status value (RSV) that favors

terms which are concentrated in only a few documents of a collection. It varies inversely

with the number of documents (i.e., r1 + s1) to which a term is assigned. The typical

weight of a document in IDF ranking is

log
N

n
= − log

n

N
= − log t,

where N is the number of documents in the collection and n = r1 + s1 is the number of

documents that contain the query term.

The quality of the IDF ranking method is defined by the following equation:

Q′
IDF = Pr(p′ > t′) + Pr(p′ ≤ t′, t′ = ε) (6.1.1)

where

ε =

⎧⎪⎨
⎪⎩

N−2, if N ≥ 2;

10−4, otherwise.

Since Q′
CLM = Pr(p′ > t′), we can rewrite Equation 6.1.1 as

Q′
IDF = Q′

CLM + Pr(p′ ≤ t′, t′ = ε). (6.1.2)

Our main task in this chapter is to develop an expression that calculates

Pr(p′ ≤ t′, t′ = ε).

Then, it is a simple matter to combine this expression with the one for Q′
CLM in order to

241

calculate Q′
IDF.

Table 6.1: Outcomes for the Joint Condition p′ ≤ t′ and t′ = m.

condition r1 r0 s1 s0 p′ t′ m

N = 0 0 0 0 0 10−4 10−4 1 − 10−4

N = 1 0 0 1 0 10−4 1 − 10−4 1 − 10−4

N = 1 1 0 0 0 1 − 10−4 1 − 10−4 1 − 10−4

N ≥ 2 0 0 N 0 1/N2 1 − (1/N2) 1 − (1/N2)

N ≥ 2 1 0 N − 1 0 1 − (1/N2) 1 − (1/N2) 1 − (1/N2)

N ≥ 2 2 0 N − 2 0 1 − (1/N2) 1 − (1/N2) 1 − (1/N2)

N ≥ 2 · · · 0 · · · 0 1 − (1/N2) 1 − (1/N2) 1 − (1/N2)

N ≥ 2 N − 1 0 1 0 1 − (1/N2) 1 − (1/N2) 1 − (1/N2)

N ≥ 2 N 0 0 0 1 − (1/N2) 1 − (1/N2) 1 − (1/N2)

Table 6.1 enumerates the possible outcomes for the contribution count associated with

Pr(p′ ≤ t′, t′ = ε).

One can readily see by inspection that the contribution count is N + 1 for N ≥ 0.

Since there are C̃4(N) =
(

N+3
3

)
weak compositions of size 4 in the sample space for

an N -document collection, where N ≥ 0, Equation 6.1.2 on the preceding page can be

rewritten as

Q′
IDF = Q′

CLM +
N + 1(

N+3
3

) . (6.1.3)

6.1.1 Mean and Variance

Definition 6.1.1.1. Given a sample space Ω, the discrete random variable B is a function

such that, for each outcome ω ∈ Ω,

B(ω) = BooleToNat((p′ω > t′ω) or ((p′xω ≤ t′ω) and (t′ω = ε))),

242

where Ω is the set of weak 4-compositions of N, and p′ω and q′ω are the p′ and q′ values,

respectively, for this ω.

The last two definitions can be used to rewrite Q′
IDF to show that Q′

IDF is simply the

expected value, or mean, of B.

Lemma 6.1.1. The expected value of B is Q′
IDF. That is,

E[B] =
∑
ω∈Ω

B(ω)

(
N + 4 − 1

4 − 1

)−1

=

∑
ω∈Ω B(ω)(

N+3
3

)
= Q′

IDF.

Proof. The number of weak 4-compositions for N is
(

N+4−1
4−1

)
, by Equation 2.2.2 on

page 26. These compositions are equally likely, each with a probability of
(

N+4−1
4−1

)−1
. The

random variable B is binary-valued, with values that are either 0 or 1; i.e., B(ω) ∈ {0, 1}.
Each weak 4-composition of N , denoted by ω, where the p′ value is greater than the cor-

responding t′ value, has a B(ω) value of 1; otherwise, the B(ω) value is 0.

Lemma 6.1.2. The variance of B is

V ar[B] = E[B2] − (E[B])2 (6.1.4)

= E[B] − (E[B])2 (6.1.5)

= Q′
IDF − (Q′

IDF)2 (6.1.6)

= Q′
IDF(1 −Q′

IDF). (6.1.7)

Proof. Line 6.1.4 follows directly from the concept of variance in Definition 5.12.0.1

on page 228. The value of B(ω) is always the same as that of (B(ω))2 because, by

Definition 6.1.1.1 on the preceding page, B(ω) can only take on the values 0 and 1. This

243

is the justification for Line 6.1.5 on the previous page. The justification for Line 6.1.6 on

the preceding page comes from Lemma 6.1.1 on the previous page because it established

that Q′
IDF is the expected value of B, that is, Q′

IDF = E[B]. The expression in Line 6.1.7

on the preceding page is a basic factoring of the expression in Line 6.1.6 on the previous

page.

50 100 150 200
N

0.42
0.44
0.46
0.48
0.50

Q'

50 100 150 200
N

0.492
0.494
0.496
0.498
0.500

Q ' �1 � Q '�

Figure 6.1: Plot of the mean (Q′) and standard deviation
(√Q′ (1 −Q′)

)
for B for the

IDF ranking method when 1 ≤ N ≤ 200.

6.2 Summary for the Inverse Document Frequency

Ranking Method

Section 6.1 presents a combinatoric model of Q′ for the IDF ranking method. In this

section, a counting expression is developed to determine the cardinality the subset of weak

4-compositions for a document collection of size N. Since the only difference between the

Q′ values for the coordination level matching (CLM) and IDF ranking methods is the

probability expression

Pr(p′ ≤ t′, t′ = ε) (6.2.1)

244

Table 6.2: Number of Qualifying Contributions-Related Values (1 ≤ N ≤ 20).

number of total number of Q′ √Q′(1 −Q′)

N qualifying weak 4-comps weak 4-comps (mean) (standard deviation)

1 2 4 0.5 0.5

2 4 10 0.4 0.489 898

3 8 20 0.4 0.489 898

4 14 35 0.4 0.489 898

5 24 56 0.428 571 0.494 872

6 35 84 0.416 667 0.493 007

7 54 120 0.45 0.497 494

8 73 165 0.442 424 0.496 674

9 100 220 0.454 545 0.497 93

10 130 286 0.454 545 0.497 93

11 172 364 0.472 527 0.499 245

12 208 455 0.457 143 0.498 16

13 268 560 0.478 571 0.499 541

14 321 680 0.472 059 0.499 219

15 386 816 0.473 039 0.499 273

16 461 969 0.475 748 0.499 412

17 554 1140 0.485 965 0.499 803

18 634 1330 0.476 692 0.499 456

19 752 1540 0.488 312 0.499 863

20 850 1771 0.479 955 0.499 598

245

from Equation 6.1.2 on page 241, the main work that needs to be done is to develop

a counting expression for this expression and, then, combine it with the results from

the immediately previous chapter to obtain an expression to calculate the quality of

ranking measure for the IDF ranking method. The development an expression to calculate

Probability Expression 6.2.1 on page 244 is straightforward and results in a closed-form

expression.

Figure 6.1 on page 244 contains mean and the standard deviation plots for the IDF

ranking method. Table 6.2 on the previous page contains the values that the first 20

points of these plots are based on. Research for this chapter has indicated that the

ordinate (i.e., y-axis) asymptote is 0.5 for both plots. The research has also shown that

the plotted values for the mean and standard deviation, when N ≥ 2, have an overall

tendency to increase, but sometimes temporarily decreases, between points N and N +1

as the number of documents N in a collection increases from 1 to ∞ (infinity).

6.3 A Combinatoric Model of Q′ for the DT Ranking

Method

The decision-theoretic ranking discussed in this dissertation is based on binary term

independence. This type of term independence assumes that a term is either present

or absent in a document and that, if the document has multiple terms, these terms are

mutually independent. Multiple occurrences of a term have the same weight as a solitary

occurrence of the term. The weight of a document in DT ranking is

log
p/(1 − p)

q/(1 − q)
.

246

The equation for Q′ for the decision-theoretic (DT) ranking method is

Q′
DT = Pr(p′ > max(t′, q′)) + Pr(p′ ≤ min(t′, q′)) (6.3.1)

where p′, t′, and q′ are defined starting on page 120 in Chapter 4.

We can determine the number of weak 4-compositions in Quadrant IV, where both

p ∈ (0, 1) and q ∈ (0, 1) are true, that meet the condition ((p′ > max(t′, q′)) or (p′ ≤
min(t′, q′))) by a strategy that involves breaking the problem into 3 pairwise disjoint

cases and counting the number of 4-compositions in each case that meet the condition.

By the Law of Trichotomy (Apostol, 1967), if p′ and q′ are real numbers, then exactly one

of these conditions hold: p′ < q′, p′ = q′, or p′ > q′. Each of these conditions corresponds

to exactly one of the cases.

Lemma 6.3.1. Let x = a/b; y = c/d; z = (a+c)/(b+d); a, b, c, d ∈ Z
+; and 0 < x, y < 1.

If xRy, then xRz and zRy, where R is either the is-less-than (i.e., <), the is-equal-to

(i.e., =), or the is-greater-than (i.e., >) relationship for real numbers.

Proof. The proof is by cases.

If x < y, then x < z and z < y.

Rewriting the antecedent provides these initial equivalences:

x < y ≡ ad < bc

≡ a <
bc

d

≡ ad

b
< c. (6.3.2)

Now, we rewrite the antecedent to provide the following additional equivalences:

x < y ≡ a

b
<

c

d

247

≡ a

b

1 + d
b

1 + d
b

<
c

d

1 + b
d

1 + b
d

≡ a + ad
b

b + d
<

c + bc
d

b + d
. (6.3.3)

Combining Equivalence 6.3.2 on the preceding page, Equivalence 6.3.3, and our assump-

tion that z = (a + c)/(b + d) results in

a + ad
b

b + d
<

a + c

b + d
<

c + bc
d

b + d
≡ x < z < y,

from which we can conclude that, if x < y holds, then x < z and z < y also hold.

If x = y, then x = z and z = y.

This means that the ratio of the value a to the value b is equivalent to the ratio of the

value c to the value d. Since these ratios are equivalent, there exists k1, k2 ∈ Z
+ such that

k1 = a/gab = c/gcd and k2 = b/gab = d/gcd where gab = gcd(a, b) and gcd = gcd(c, d).

The ratio of k1 to k2 is in its simplest form; that is, it is irreducible. So, we have

x =
a

b
=

k1

k2

and y =
c

d
=

k1

k2

.

This allows us to write

a + c

b + d
=

k1 + k1

k2 + k2

=
k1

k2

≡ z = x = y.

Clearly, we can now conclude that if x = y is true, then x = z = y is also true.

If x > y, then x > z and z > y.

This case is very similar to that for the first case (i.e., x < y). Basically, we can transform

248

the reasoning for that case into the reasoning for this case by simply replacing the less-

than sign in the former case by the greater-than sign in this one everywhere that it occurs.

Rewriting the antecedent provides these initial equivalences:

x > y ≡ ad > bc

≡ a >
bc

d

≡ ad

b
> c. (6.3.4)

Now, we rewrite the antecedent to provide the following additional equivalences:

x > y ≡ a

b
>

c

d

≡ a

b

1 + d
b

1 + d
b

>
c

d

1 + b
d

1 + b
d

≡ a + ad
b

b + d
>

c + bc
d

b + d
. (6.3.5)

Combining Equivalence 6.3.4, and Equivalence 6.3.5, and our assumption that z = (a +

c)/(b + d) results in

a + ad
b

b + d
>

a + c

b + d
>

c + bc
d

b + d
≡ x > z > y,

from which we can conclude that, if x > y holds, then x > z and z > y also hold.

The results from Lemma 6.3.1 on page 247 are an integral part of the following

analyses of the three cases (i.e., p′ < q′, p′ = q′, p′ > q′) for the decision-theoretic ranking

method. We can use the lemma’s results by mapping p′, q′, and t′ to the lemma variables

x, y, and z, respectively.

It was previously stated that the quality of ranking equation for the decision-theoretic

249

(DT) ranking method is

Q′
DT = Pr(p′ > max(t′, q′)) + Pr(p′ ≤ min(t′, q′)). (6.3.6)

This equation, in conjunction with the results of Lemma 6.3.1 on page 247, was used to

produce Table 6.3 on page 253. For each of the 3 cases, the table lists the expressions

for the minimum and maximum values of variables t′ and q′; the general condition that

determines the count; and the simplified counting condition after the corresponding im-

plied condition in the first column has been taken into account. The implied conditions

in the first 3 rows of the first column of the table are valid according to the cases for

x < y, x = y, and x > y, respectively, of Lemma 6.3.1 on page 247. The above proof and

the information in Table 6.3 on page 253 establish that the value of t′ is always a value

that is between the values of p′ and q′.

The general condition for the DT ranking method is

(p′ > max(t′, q′)) or (p′ ≤ min(t′, q′)). (6.3.7)

Any event in the Quadrant IV sample space, where both p ∈ (0, 1) and q ∈ (0, 1) hold,

contributes a count of 1 if the general condition holds for that event.

The discussion in this paragraph constitutes an example of how to interpret the

information in Table 6.3 on page 253. The first row of the table corresponds to the

condition where p′ < q′ holds. The implied condition (i.e., p′ < t′ < q′) for this row

allows us to state that the value of min(t′, q′) is t′ and the value of max(t′, q′) is q′ for

this row. After substituting t′ for the minimum value and q′ for the maximum value,

we obtain the expression (p′ > q′) or (p′ ≤ t′) in the fourth column of the first row of

this table. We call this expression the DT condition. The last column of the first row

contains the simplified version of the DT condition, that is, the expression that results

250

after the implied condition for this row has been applied to the DT condition:

(p′ > q′) or (p′ ≤ t′) = false or (p′ ≤ t′) (6.3.8)

= p′ < t′.

The first operand of the left-hand part of the disjunction in Equation 6.3.8 on page 251

can be replaced by the Boolean false value since, by De Morgan’s Laws (Rosen, 1999), it is

impossible for both p′ < q′ (from the implied condition) and p′ > q′ to be simultaneously

true. Also, by repeated applications of De Morgan’s laws, the condition “false or (p′ ≤
t′)” simplifies to the condition p′ < t′.

Notice that the expressions in Table 6.3 on page 253, for the simplified DT conditions,

look very familiar. We have certainly seen them before! More specifically, we have a

counting problem which has some parts that are identical to some of the ones that we

solved back in Section 5.10.3. This means that the bulk of our work has already been

accomplished since we can use those results to develop the count contribution formulas

for this problem.

According to the information in Table 6.3 on page 253, the contribution count for

p′ > max(t′, q′) (6.3.9)

is the same as the contribution count for p′ > t′ and the contribution count for

p′ ≤ min(t′, q′) (6.3.10)

is equal to the contribution count for p′ ≤ t′. Since every event in the sample space

for Quadrant IV, when p′ ∈ (0, 1) and q′ ∈ (0, 1) hold, satisfies the general condition

represented by Expression 6.3.7 on the preceding page, the contribution count for the

251

expression is simply C4(N), the number of 4-compositions of N , because this expression

includes every member of the set of 4-compositions of N .

If, on the other hand, we want to know the individual contribution counts for the

two disjuncts of Expression 6.3.7 on page 250, that is, Expression 6.3.9 on the preceding

page and Expression 6.3.10 on the previous page, then we can use the results from

Section 5.10.3 to obtain the following lemmas.

Lemma 6.3.2.

The contribution count for p′ > max(t′, q′) is

⎧⎪⎪⎨
⎪⎪⎩

C4(N) −
∣∣∣⋃1≤i≤m G

(N)
i

∣∣∣
2

, if N ≥ 1;

0, otherwise;

where p′ ∈ (0, 1) and q′ ∈ (0, 1).

Proof. This proof is the same as that for Lemma 5.11.6 on page 227 because, by the

information in Table 6.3 on the next page, if p′ > max(t′, q′) is true, then p′ > t′ must be

also true.

Lemma 6.3.3.

The contribution count for p′ ≤ min(t′, q′) is

⎧⎪⎨
⎪⎩

C4(N) − ccp′>max(t′,q′), if N ≥ 1;

0, otherwise;

where p ∈ (0, 1), q ∈ (0, 1), and ccp′>max(t′,q′) =
C4(N)−

˛
˛
˛
S

1≤i≤m G
(N)
i

˛
˛
˛

2
.

Proof. As was stated earlier, all of the members of the set of 4-compositions for N

satisfy 6.3.7 on page 250. Since exactly one of the conditions p′ < t′, p′ = t′, p′ > t′ holds

for an arbitrary member of this set, the contribution count for p′ ≤ min(t′, q′) is the

difference between C4(N) and ccp′>max(t′,q′), the contribution count for p′ > max(t′, q′).

252

Table 6.3: The Three Cases for the Decision-Theoretic (DT) Condition in Quadrant IV.

DT condition

case condition min(t′, q′) max(t′, q′) DT condition (simplified)

p′ < q′ (implies p′ < t′ < q′) t′ q′ (p′ > q′) or (p′ ≤ t′) p′ < t′

p′ = q′ (implies p′ = t′ = q′) t′ (or q′) t′ (or q′) (p′ > t′) or (p′ ≤ t′) p′ = t′

p′ > q′ (implies p′ > t′ > q′) q′ t′ (p′ > t′) or (p′ ≤ q′) p′ > t′

From the information in Table 4.11 on page 140 – with the exception of the case in

Quadrant IV where the conditions p ∈ (0, 1) and q ∈ (0, 1) are simultaneously true – we

can calculate the count contributions for (p′ > max(t′, q′)) and (p′ ≤ min(t′, q′)) where

N ≥ 1. The expression for the former condition is

4N − 1 + 2

(
N − 1

2

)
+

C4(N) −
∣∣∣⋃1≤i≤m Q4C

(N)
i

∣∣∣
2

(6.3.11)

and the one for the latter one is

N − 1 + 2

(
N − 1

2

)
+ C4(N) −

C4(N) −
∣∣∣⋃1≤i≤m Q4C

(N)
i

∣∣∣
2

. (6.3.12)

After combining Expressions 6.3.11 and 6.3.12, we obtain a total contribution of

5N − 2 + 4

(
N − 1

2

)
+ C4(N)

= 5N − 2 + 4

(
N − 1

2

)
+

(
N − 1

3

)

=
6(5N − 2)

6
+ 4 · 3

3
· (N − 1)(N − 2)

2!
+

(N − 1)(N − 2)(N − 3)

3!

=
30N − 12

6
+

12(N − 1)(N − 2)

6
+

(N − 1)(N − 2)(N − 3)

6

=
30N − 12 + 12(N − 1)(N − 2) + (N − 1)(N − 2)(N − 3)

6

=
30N − 12 + 12(N2 − 3N + 2) + N3 − 3N2 + 2N − 3N2 + 9N − 6

6

253

=
30N − 12 + 12N2 − 36N + 24 + N3 − 3N2 + 2N − 3N2 + 9N − 6

6

=
N3 + 6N2 + 5N + 6

6

=
(N3 + 6N2 + 5N + 6) + 6N

6
− 6N

6

=
N3 + 6N2 + 11N + 6

6
− N

=
(N + 3)(N + 2)(N + 1)

6
− N

=
(N + 3)(N + 2)(N + 1)

3!
− N

=

(
N + 3

3

)
− N.

With this result, we can state that

Q′
DT = Pr(p′ > max(t′, q′)) + Pr(p′ ≤ min(t′, q′))

=

(
N+3

3

) − N(
N+3

3

) . (6.3.13)

6.3.1 Mean and Variance

Definition 6.3.1.1. Given a sample space Ω, the discrete random variable B is a function

such that, for each outcome ω ∈ Ω,

B(ω) = BooleToNat((p′ω > max(t′ω, q′ω)) or (p′ω ≤ min(t′ω, q′ω))),

where Ω is the set of weak 4-compositions of N, and p′ω and q′ω are the p′ and q′ values,

respectively, for this ω.

The last two definitions can be used to rewrite Q′
DT to show that Q′

DT is simply the

expected value, or mean, of B.

254

Lemma 6.3.4. The expected value of B is Q′
DT. That is,

E[B] =
∑
ω∈Ω

B(ω)

(
N + 4 − 1

4 − 1

)−1

=

∑
ω∈Ω B(ω)(

N+3
3

)
= Q′

DT.

Proof. The number of weak 4-compositions for N is
(

N+4−1
4−1

)
, by Equation 2.2.2 on

page 26. These compositions are equally likely, each with a probability of
(

N+4−1
4−1

)−1
. The

random variable B is binary-valued, with values that are either 0 or 1; i.e., B(ω) ∈ {0, 1}.
Each weak 4-composition of N , denoted by ω, where the p′ value is greater than the cor-

responding t′ value, is associated with a B(ω) value of 1; otherwise, the B(ω) value is

0.

Lemma 6.3.5. The variance of B is

V ar[B] = E[B2] − (E[B])2 (6.3.14)

= E[B] − (E[B])2 (6.3.15)

= Q′
DT − (Q′

DT)2 (6.3.16)

= Q′
DT(1 −Q′

DT). (6.3.17)

Proof. Line 6.3.14 follows directly from the concept of variance in Definition 5.12.0.1

on page 228. The value of B(ω) is always the same as that of (B(ω))2 because, by

Definition 6.3.1.1 on the previous page, B(ω) can only take on the values 0 and 1. This is

the justification for Line 6.3.15. The justification for Line 6.3.16 comes from Lemma 6.3.4

because it established that Q′
DT is the expected value of B, that is, Q′

DT = E[B]. The

expression in Line 6.3.17 is a basic factoring of the expression in Line 6.3.16.

255

Table 6.4: Number of Qualifying Contributions (1 ≤ N ≤ 20).

number of total number of Q′ √Q′(1 −Q′)

N qualifying weak 4-comps weak 4-comps (mean) (standard deviation)

1 3 4 0.75 0.433 013

2 8 10 0.8 0.4

3 17 20 0.85 0.357 071

4 31 35 0.885 714 0.318 158

5 51 56 0.910 714 0.285 156

6 78 84 0.928 571 0.257 539

7 113 120 0.941 667 0.234 373

8 157 165 0.951 515 0.214 788

9 211 220 0.959 091 0.198 08

10 276 286 0.965 035 0.183 691

11 353 364 0.969 78 0.171 192

12 443 455 0.973 626 0.160 244

13 547 560 0.976 786 0.150 583

14 666 680 0.979 412 0.142 001

15 801 816 0.981 618 0.134 33

16 953 969 0.983 488 0.127 433

17 1123 1140 0.985 088 0.121 202

18 1312 1330 0.986 466 0.115 545

19 1521 1540 0.987 662 0.110 388

20 1751 1771 0.988 707 0.105 667

256

50 100 150 200
N

0.80
0.85
0.90
0.95
1.00

Q'

0 50 100 150 200
N

0.1
0.2
0.3
0.4

Q ' �1 � Q '�

Figure 6.2: Plot of the mean (Q′) and standard deviation
(√Q′ (1 −Q′)

)
for B for the

DT ranking method when 1 ≤ N ≤ 200.

6.4 Summary for the DT Ranking Method

The last section in this chapter contains a combinatoric model of Q′ for the DT ranking

method. Similar to the development of the counting expressions for the coordination

level matching and inverse document frequency ranking methods, this section used the

results of the analyses and associated formulas from Chapter 4 to develop some of the

counting expressions that were used in these sections. Except for the situation where the

joint conditions p′ ∈ (0, 1) and q′ ∈ (0, 1) were both true, no derivation work had to be

done in this chapter. For the situation just mentioned, these sections used mathematical

and combinatorial arguments and techniques to develop the counting expressions that

applied to it.

The relevant expressions from Chapter 4 were combined with those that were devel-

oped in this chapter. After simplifying these expressions, the result was a closed-form

expression.

Figure 6.2 contains mean and the standard deviation plots for the DT ranking method.

Table 6.4 on the previous page contains the values that the first 20 points of these plots are

based on. Research for this chapter indicated that the ordinate (i.e., y-axis) asymptote

was 1 for the first plot and was 0 for the second plot. The research also showed that the

257

plotted values were monotonically increasing in the first plot as the number of documents

in a collection increases from 1 to ∞ (infinity) and were monotonically decreasing in the

second plot as the number of documents increased.

258

Chapter 7

Characteristics of a

Combinatoric-Based A and ASL

Performance Measure

This chapter addresses the first of the three research questions that were enumerated

in Section 3.5, which starts on page 103: What would be the characteristics of a combina-

toric measure (CM ASL), based on the Average Search Length (ASL), that performs the

same as a probabilistic measure of retrieval performance, also based on the ASL? More

specifically, Section 3.5.1 contains the initial introduction for this research question. The

ASL measures that are developed in this chapter are used to help with the validation

efforts that are discussed in Chapter 8 and with the answering of the second research

question in Chapter 9.

A central item of interest with respect to each document in a collection is whether a

particular feature is present or absent in that document. If we assume that the documents

are textual (as contrasted to other multimedia types such as image, video, audio, graphics,

or animation) then “features can be keywords, phrases, or structural elements” (Rui

et al., 1999). The number of times that a feature (e.g., term, word, phrase) occurs in a

document is called its feature frequency. If, for example, the term “shoe” occurs five times

in a particular document, the feature frequency for “shoe” equals 5 for that document.

In this chapter, the concept term is always synonymous with the intuitive concept of

word. “North Carolina”, for example, is not considered a term. Instead, it is viewed as

a phrase that consists of two terms (i.e., “North” and “Carolina”). Also, in this chapter,

both relevance and feature frequency are represented as binary values. For relevance, this

means that a term is either relevant or not relevant. For feature frequency, if a feature

(e.g., term, word) is present (i.e., occurs one or more times) in a document, it is said to

have feature frequency 1 regardless of how many times it actually occurs; otherwise, it is

absent and is said to have feature frequency 0.

It is very important to note that the models that are developed in this chapter can

handle binary relevance but cannot handle continuous relevance. The remainder of this

chapter details how binary relevance is incorporated into these models.

Many mathematical concepts were introduced in the previous chapters and used to

help derive many of the equations that first appeared in these chapters. This chapter

also introduces several additional concepts that are crucial to the derivations that take

place in his chapter. Among these prior concepts, and those from this chapter, are

compositions (Andrews, 1984; Andrews and Eriksson, 2004), partitions (Andrews, 1984;

Andrews and Eriksson, 2004), the Principle of Inclusion-Exclusion (Andrews, 1984), the

greatest common divisor (Rosen, 2005), the power set of a set (Rosen, 1999; Rosen et al.,

2000), permutations (Riordan, 1958), and combinations (Riordan, 1958). This chapter

also introduces the statistical concepts of expected value (Terrell, 1999) and variance

(Terrell, 1999). The main mathematical concepts that are introduced in this chapter

are Gaussian polynomials (Andrews, 1984), probability mass functions (Graham et al.,

1994), generating functions (Riordan, 1958; Graham et al., 1994; Charalambides, 2002),

and probability generating functions (Riordan, 1958).

Of course, all of these concepts have a much wider sphere and range of applicability

260

than the uses that they were put to in the previous chapter and are put to in this chapter

and the subsequent ones. It might be helpful to point out some of these additional uses.

This is the purpose of the next few paragraphs.

One large application area for partitions is in statistics, particularly non-parametric

statistics (Barton, 1959; David, 1959; Harary, 1959). There, the interest is often “in

restricted partitions, that is, partitions in which the largest part is, say ≤ N and the

number of parts is ≤ M. This . . . will naturally lead . . . to the Gaussian polynomials

and from there to . . . permutations” (Andrews, 1984). Compositions, combinations, the

Principle of Inclusion-Exclusion, probability mass functions, generating functions, and

probability generating functions are also used very heavily in statistical theory (Bar-

ton, 1959; David, 1959; Harary, 1959; Johnson et al., 2005; Charalambides, 2005) and

in the analysis of algorithms (Dobrushkin, 2009). Generating functions are the “most

important idea in enumerative combinatorics” (Gessel, 1985) and are also heavily used in

mathematical statistics (Terrell, 1999; Rose and Smith, 2002) and applied combinatorics

(Tucker, 1980; Gross, 2008; Roberts and Tesman, 2009).

The Gaussian polynomials, also known as the Gaussian binomials (or the Gaussian co-

efficients or the q-binomial coefficients), are a generalization of the binomials (Gasper and

Rahman, 2004). Mathematicians refer to these q-binomial coefficients as the q-analogs

of the binomial coefficients and they are part of an important class of series known as

the q-series (or q-hypergeometric series or basic hypergeometric series) (Gasper and Rah-

man, 2004). The q-series has wide applicability in many mathematical areas, including

analysis, number theory, combinatorics, physics, and computer algebra (Andrews, 1974,

1986; Fine, 1988; Berndt and Ono, 2001; Rakha and El-Sedy, 2004; Charalambides, 2005;

Johnson et al., 2005).

261

7.1 Notation and Definitions

Notationally, let N = R+S, where R = r0+r1 and S = s0+s1, represent the total number

of documents in a non-empty (i.e., N > 0) collection with R = r0 + r1 representing the

number of relevant documents and S = s0 + s1 representing the number of non-relevant

documents. In this collection, there are n0 total documents with feature frequency 0, n1

total documents with feature frequency 1, r0 relevant documents with feature frequency 0,

r1 relevant documents with feature frequency 1, s0 non-relevant documents with feature

frequency 0, and s1 non-relevant documents with feature frequency 1. An ordering is

represented by a sequence of N documents. By definition, in an optimal ordering, all the

n1 documents with feature frequency 1 appear before any of those with feature frequency

0 (Losee, 1998). Of the N possible positions in the ordering that a document can appear

in, it is assumed that a document is equally likely to occupy any of these positions

but does not share that same position with any other document in the same ordering.

Put another way, each of the N documents is associated with exactly one position in a

specific ordering of N documents and each of the N positions is associated with exactly 1

document. Mathematically, the mapping between documents and positions is a bijection

(Rosen, 1999). Some of the definitions from Chapter 2 are repeated below because they

are used later in this chapter.

The variable A (normalized search length) is computed by noting that documents

with feature frequency 1 are at the low end of the A spectrum (good performance) and

those with feature frequency 0 are at the high end of the spectrum (poor performance).

Let d denote the random variable whose value is 1 for a document if the document

contains the query term (i.e., its feature frequency is 1) and 0 if the document does not

contain the query term (i.e., its feature frequency is 0). Therefore, Pr(d = 1) denotes the

probability that a document in a collection for a query q contains the query term and

Pr(d = 0) denotes the probability that a document does not contain the query term. Of

262

course,

Pr(d = 1) = 1 − Pr(d = 0).

Since d is binary-valued, let d denote the same meaning as d = 1 and let d denote the

same meaning as d = 0. This helps to simplify the notation that is used in subsequent

discussions.

We can use these denotations to state that the formula for the normalized search

length is

A =
1 + Pr(d) − Pr(d|rel)

2
.

Notationally, the equation can be simplified by letting p = Pr(d|rel) (the probability that

a relevant document has a feature frequency of 1) and t = Pr(d) (the probability that

any document has a feature frequency of 1):

A =
1 + t − p

2
. (7.1.1)

The formula for the Average Search Length (ASL) is

ASL = N
(QA + Q A)

+ 1/2. (Losee, 1998)

Briefly, in the above equation for the Average Search length, N is the number of doc-

uments to be ranked, Q is the probability that the ranking is optimal, and A is the

normalized expected position of a relevant document from the front of the ranking. In

the above formula, A is defined as 1 −A and Q is defined as 1 −Q. Both Q and A are

values in the closed interval [0, 1].

263

7.2 A Combinatoric Model of A
A is defined as the normalized average position of a relevant document from the front of

an ordered list (Losee, 1998). The normalized positions are in the closed interval [0, 1].

A document at the front of the list would have a normalized position of 0; a document

at the back of the list would have a normalized position of 1.

The computation of A can be for a single ordering or it can be extended to calculate

the value for a set of orderings (such as those associated with all the possible orderings

for a collection of N documents). This section of the chapter is concerned with the

calculation of A for the latter situation.

We proceed to calculate A by essentially a two-step process: compute the unnormal-

ized average value for A over all of the possible N -document orderings when s0, s1, r0,

and r1 are known; then normalize this value so that it is in the closed interval [0, 1].

Figure 7.1 on the next page describes an optimal ordering of N documents in terms

of the parameters N, s0, s1, r0, and r1. Note that the positions associated with those

documents are unnormalized (for the time being). Figure 7.2 on page 266 imparts con-

creteness to the abstractness associated with Figure 7.1 on the next page. It is an example

that lists the sample space for an 8 document collection for specified values of r1, r0, s1,

and s0. Each row represents a sample point (i.e., a possible sequence of documents in

an optimal ordering) and the column numbers represent document positions within a

sequence. Taken together, the rows constitute an exhaustive enumeration of all of the

sample points in the sample space.

7.2.1 An example of a sample space for an optimal ordering of

8 documents

Consider the sample space depicted in Figure 7.2 on page 266. The parameters of the

collection that it represents are N = n1 + n0 = 8, n1 = r1 + s1 = 3, n0 = r0 + s0 = 5,

264

These documents all have
feature frequency 0.

r0 of these documents are relevant,
the remaining s0 are non-relevant.

r1 of these documents are relevant,
the remaining s1 are non-relevant.

rear

︷ ︸︸ ︷

︸ ︷︷ ︸

These documents all have
feature frequency 1.

front

︷ ︸︸ ︷

︸ ︷︷ ︸12N − 1N n1 + 1n1 + 2 n1

Figure 7.1: This depicts an optimal ordering of N documents. Each of the squares
represents a position in the ordering. The front of the ordering is defined to be at
position 1; the rear of the ordering is at position N .

with r1 = 2, s1 = 1, r0 = 1, and s0 = 4. Documents with feature frequency 1 occupy

positions 1-3, inclusive, whereas documents with feature frequency 0 occupy positions

4-8, inclusive. From Figure 7.2 on the following page, one can readily see that there are

three unique sample points for the documents with feature frequency 1 and five unique

sample points for those with feature frequency 0. Jointly, there are 3 × 5 = 15 sample

points in the sample space when both feature frequencies are involved.

In IR terms, the sample space illustrates the 15 different rankings that are possible

for an 8 document collection that has 2 distinct retrieval status values (RSVs). The

higher-valued RSV has three documents that are associated with it, of which two are of

one kind (i.e., relevant) and the other is of another kind (i.e., non-relevant). The lower-

valued RSV has 5 documents that are associated with it, with one document being of

one kind (i.e., relevant) and the remaining four being of another kind (i.e., non-relevant).

The information in the figure, and in this example, is related to whether a sequence of

ranked documents is weakly ordered (i.e., some of the RSVs are duplicates of other RSVs

265

1 110 0 0 0 0

1 1100 0 0 0

1 11000 0 0

1 1100 00 0

1 1100 0 00

0 0 0 0 0 11 1

00 0 0 0 11 1

000 0 0 11 1

00 00 0 11 1

00 0 00 11 1

0 0 0 0 0 1 1 1

00 0 0 0 1 1 1

000 0 0 1 1 1

00 00 0 1 1 1

00 0 00 1 1 1

8 7 6 5 4 23 1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

position

row

Figure 7.2: This diagram details each of the 15 possible sample points that can occur
in the sample space that is associated with an optimal ordering of 8 documents (i.e.,
N = 8), with 5 of the documents having feature frequency 0 and 3 of them having
feature frequency 1. Of those documents with feature frequency 0, one is relevant (i.e.,
r0 = 1) and four are non-relevant (i.e., s0 = 4) . The documents with feature frequency
1 have two that are relevant (i.e., r1 = 2) and one that is non-relevant (i.e., s1 = 1). In
this diagram, each of the dark background balls represents a single relevant document
whereas each of the light background balls represents a single non-relevant document.
The number inside each ball represents the feature frequency of the document associated
with that ball. Each row represents an ordering of these balls, each column represents a
position in the ordering. Position 1 is defined to be the front of an ordering, position 8
is the rear of an ordering.

266

which means that ties are present) or are strongly ordered (i.e., the RSVs are distinct or

unique). The notions of strong and weak orders are very important during performance

evaluation. Failure for a performance measure to take these kinds of orders into account

can result in erroneous, or misleading, results from a performance evaluation. For exam-

ple, if a performance evaluation, that uses the ASL, assumes that the rankings from the

document collection with the parameters that were specified in the first paragraph of this

subsection is strongly ordered, when in actuality it is weakly ordered, then the ASL that

it calculates can range from a minimum value of 7/3 (i.e., the line 5 ranking in Figure 7.2

on the previous page has three relevant documents at positions 1, 2, and 4 for a sum of

positions that is equal to 7) to a maximum value of 13/3 (i.e., the line 11 ranking has

three relevant documents at positions 2, 3, and 8 for a sum of positions that is equal to

13). These values can be contrasted with the value of 17/6 that the ASL would calculate

if it took into account that the documents are weakly ordered. Section 10.2.2 and Sec-

tion 10.3 contain a detailed discussion of weak orders, strong orders, and how to develop

performance measures whose calculated values are consistent with the assumption that

some of the documents in a vector V of ranked documents may have tied (i.e., duplicate)

RSVs. Measures of this type are referred to by the adjective Type-T in Chapter 10 and,

in that chapter, we develop Type-T versions of the ASL, ESL, MZE, RR, recall, and

precision measures.

7.2.2 Permutations, permutation trees, r-permutations, and r-

combinations

A very important aspect of the calculation of A is being able to analytically determine

the unnormalized average position of a relevant document in an arbitrary sample space.

Given a method to determine the distribution of the positions of relevant documents

in a sample space, we can very easily calculate the average position. Central to these

267

calculations is knowledge of the mathematical concepts of permutations, combinations,

and permutation trees. Brief descriptions of each of these follow in the next few para-

graphs. Those descriptions provide much of the foundation that we use to later prove

two theorems about the distribution of objects in a r-permutation.

A permutation of a set of n distinct objects (i.e., document positions) is an ordered

arrangement of these objects. For example, if there are three distinct objects named A,

B, and C, then there are 3! = 6 ways of ordering them: ABC (A first, B second, and C

third), ACB, BAC, BCA, CAB, CBA. Sometimes, we are interested in ordering r ≤ n

of them where r may be less than n. An ordered arrangement of r members is called

an r-permutation. The 2-permutations of A, B, and C are AB, AC, BA, BC, CA, and

CB. The 1-permutations are A, B, and C. The number of r-permutations of a set of n

distinct objects is P (n, r) = n(n − 1) . . . (n − r + 1) where r ≤ n ≤ 1. In the discussions

to follow, it is assumed that n, r ∈ Z
+ where Z

+ denotes the set of positive integers.

An r-combination of a set of n distinct objects is an unordered selection of r members

from the set. In other words, an r-combination is simply a subset of the set with r objects.

The number of r-combinations of a set of n distinct objects is C(n, r) =
(

n
r

)
= n!

r!(n−r)!

where r ≤ n ≤ 1. The 3-combination of A, B, and C is ABC (because it and ACB, BAC,

BCA, CAB, CBA are all equivalent because order does not matter); the 2-combinations

are AB, AC, BC; and the 1-combinations are A, B, and C.

A permutation tree (Takaoka, 1999; Arce and Tian, 1996; Trippi, 1975) models the

choices available when forming a permutation (Figure 7.3 on the following page shows a

permutation tree for 4 objects). Permutations can be visualized as paths in this tree. In

the literature, there are two main ways to represent a permutation tree: (1) the labels

on the edges represent the choices or (2) the labels on the non-root nodes represent the

choices. Depending on the situation, each representation has its respective advantages

and disadvantages. We use representation (2) in this document. The root node in this

268

A

B

C

D

C

D

B

D

B

C

D

C

D

C

B

B

ABCD

ABDC

ACBD

ACDB

ADBC

ADCB

B

A

C

D

C

D

A

D

A

C

D

C

D

C

A

A

BACD

BADC

BCAD

BCDA

BDAC

BDCA

C

A

B

D

B

D

A

D

A

B

D

B

D

B

A

A

CABD

CADB

CBAD

CBDA

CDAB

CDBA

D

A

B

C

B

C

A

C

A

B

C

B

C

B

A

A

DABC

DACB

DBAC

DBCA

DCAB

DCBA

Depth: 0 1 2 3 4 permutation

Figure 7.3: A permutation tree for 4 distinct objects named A, B, C, and D.

269

representation does not represent any choice, it is just a starting point for the generation

process that is described below.

The labels on the non-root nodes in a permutation tree are surrogates for the objects

that are being permuted. Each unique object has a label that is different from that of

any other object. The labels on the nodes at level 1 of the permutation tree denote

the individual objects that are being permuted. A node label corresponds to an object

contained in the set O = {o1, o2, . . . , on} with |O| = n. To simplify matters, unless stated

otherwise, labels and the objects they denote have the same name. That is, if an object

has the name o1, its label is also o1. Choosing a node in the permutation tree is equivalent

to selecting an object, and permutations are formed by following paths from the root to

the leaves. The concatenation of the n non-root node labels along the path from the root

to a leaf in the tree is the permutation that corresponds to that path.

A permutation tree of n objects is generated recursively; at the root all n objects are

available for selection, so the root has n edges (one for each object) leading to n different

subtrees. At the subtrees of the root only n− 1 objects are available (because one object

has already been selected), so the subtrees of the root each have n − 1 edges leading to

n− 1 subtrees. The missing depth 2 object in each subtree corresponds to the the object

that has been selected at depth 1, and each subtree itself is a permutation tree for n− 1

objects. This process is repeated with the subtrees of the subtrees, and so on, until the

leaves are reached. At that point all objects have been selected; therefore, no objects are

available to continue the process.

This manner in which the the permutation tree is constructed guarantees that all

permutations of n objects correspond to paths in the tree. Also, no two distinct paths

correspond to the same permutation of objects. This implies that there are as many

permutations of n objects as there are paths in a permutation tree for n objects.

Determining the number of paths in a permutation tree is relatively easy. Since n

270

paths emerge from the root (i.e., the number of ways that one of n objects can be chosen),

depth 1 has n nodes. Each of these nodes is the root of a subtree that splits into n − 1

nodes, each of these n− 1 nodes is the root of a subtree that splits into n− 2 nodes and

so on. The original n paths terminate at the leaves by which time they have split into

n(n − 1) . . . 2 · 1 = n! paths (exactly one for each possible permutation).

Now suppose that instead of generating a permutation tree for n distinct objects,

we want to generate one for 1 ≤ r ≤ n objects. This corresponds to the generation of

r-permutations.

The use of a tree to represent the set of r -permutations for n distinct objects pro-

ceeds similarly to that to generating full permutations (i.e., when r = n) and can be

accomplished in the following way: Initially, create a tree with a single node. This is the

root of the tree. Next, create n child nodes of the root. Each of these depth 1 nodes

corresponds to a different object. One can view these depth 1 nodes as representing the

number of ways that one object can be chosen out of a collection of n distinct objects.

The number of ways of doing this is the same as the number of paths from the root to

the newly created depth 1 nodes. This value is P (n, 1), or after simplifying, just n.

Assuming that n ≥ 2, we can extend the tree in the following way to show all the

number of ways that one can generate permutations of two distinct objects. Each node

at depth 1 has n − 1 depth 2 children. These child nodes represent all the objects in O,

except for the one that is represented by the parent node (i.e., the depth 1 node that

is the parent of these children). The number of ways of doing this is the same as the

number of paths from the root to the newly created depth 2 nodes. This value is P (n, 2)

because each of the n depth 1 nodes in the tree has n − 1 children.

In general, a tree to represent r-permutations for a specific value of r has a depth of

r (shown by Figure 7.4 on the next page). Each depth d node, where 0 ≤ d < r, has

n − d depth d+1 nodes as children. Let L = {l1, l2, . . . , ln} be the labels for the objects

271

in O and let there be a bijection f between L and O. Additionally, let Lx be the set of

object labels on the path from the root to an arbitrary node x at depth d in the tree and

let L′
x = L−Lx be the set of n− d object labels that do not appear along that path. To

extend the part of the tree, that has node x as its parent, to depth d + 1, create n − d

children for node x. Each of these children represents a different one of the object labels

in L′. The total number of depth d + 1 nodes in the tree is P (n, d + 1).

All of the possible choices at each depth build on the choices at the immediately

preceding depth. The number of paths to depth r nodes is n(n − 1) . . . (n − r + 2)(n −
r + 1) = P (n, r). If we substitute r − 1 for r in the previous equation, we obtain

P (n, r − 1) = n(n − 1) . . . (n − (r − 1) + 1) = n(n − 1) . . . (n − r + 2). This implies that

P (n, r) = (n − r + 1)P (n, r − 1) which means that each node at depth 2 ≤ d < r has

n − l + 1 child nodes at depth d + 1.

Depth

0

1

2

3

r-1

r

…

m2

m3 mnm1

m1 m4 mn

…

…

…

m2

m3 m4

m1

m3 mn

mn

…

…

mr-1

mr mr+1 mn…

mn

m1 m2 mn-1…

…
…

…
…

…

…
…

…
…

…
…

…
…

…
…

…
…

…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…

…
…

…
…

…

…
…

…
…

…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

Figure 7.4: A generalized version of a permutation tree for r-permutations.

Theorem 7.2.1. Each of the n ≥ r ≥ 1 distinct members in set O = {o1, o2, . . . , on}
occurs rP (n,r)

n
times in the sample space of P (n, r) sample points of r-permutations for

272

that set.

Proof. The proof of this theorem uses induction and arguments that are based on the

manner in which an r-permutation tree is constructed. Earlier discussions established

that any sample space for r-permutations can be represented by such a tree. Let

Freq(n, r) = rP (n,r)
n

and let Prop(n, r, O) be the proposition (i.e., claim or assertion)

that each of the members in set O occurs Freq(n, r) times in the sample space for O.

Case n = r = 1.

This means that Prop(1, 1, O) is true because the root has only one descendant and

rP (n,r)
n

= 1∗P (1,1)
1

= 1∗1
1

= 1.

Case n ≥ 2.

Basis step. Prop(n, 1, O) is true because r = 1 means that there is only one level in the

tree below the root and that these n distinct child nodes labeled o1, o2, . . . , on have the

root as their parent. Hence, each node labeled oi occurs rP (n,r)
n

= 1∗P (n,1)
n

= n
n

= 1 times

because level 1 of the tree only has one instance of each of them.

Inductive step. Assume that Prop(n, l, O) is true for 2 ≤ l < r. We can extend the

permutation tree from one that has r − 1 levels to one that has r levels in the following

way such that Prop(n, r, O) is also true.

Without loss of generality, let p = o1o2 . . . or−1 be an arbitrary r−1-permutation of the

n members of set O. Let set Cp = {o1, o2, . . . , or−1} be the collection of r − 1 objects

that appear in p. Compute C ′
p = O − Cp. The set C ′

p contains n − (r − 1) = n − r + 1

members, each of them corresponding to one of the objects in O that does not appear in

Cp.

All of the possible r-permutations of set O, that have p as a prefix, can be gen-

erated from this r−1-permutation by the three steps that are enumerated below. An

273

r-permutation that has prefix p is a permutation where the length of its sequence of ob-

jects (i.e., the number of objects in the permutation) is one more than r − 1 (the length

of the prefix p). In essence, the first r− 1 objects in such an r-permutation are the same

as those that are in the permutation p = o1o2 . . . or−1. Furthermore, any given object o

has the same position in the r-permutation as it does in the r − 1-permutation p.

1. Make |C ′
p| = n − r + 1 copies of the permutation p.

2. Visit each of these n − r + 1 instances once.

3. Perform the following actions at each visit:

(a) Remove one member from C ′
p, thereby leaving one less member in this set

than it had prior to visiting the current instance.

(b) Append it to the right end of the current instance.

The result of applying this process to an arbitrary r−1-permutation p of set O is the set

of all r-permutations that have p as a prefix (shown by Figure 7.5(a)) on the following

page. The cardinality of this set is n − r + 1. Collectively, the result of applying this

process to the set of all r−1-permutations of O is the set of all r-permutations of O. The

cardinality of this set is

(n − r + 1)P (n, r − 1) = (n − r + 1)n(n − 1)(n − 2) . . . (n − (r − 1) + 1)

= n(n − 1)(n − 2) . . . (n − (r − 1) + 1)(n − r + 1)

= n(n − 1)(n − 2) . . . (n − r + 2)(n − r + 1)

= P (n, r)

and the r-permutations in its sample space have a total of rP (n, r) object occurrences.

274

o1 o2 or-1…o3 … …o4

o1 o2 or-1…o3 … …o4

o1 o2 or-1…o3 … …o4

o1 o2 or-1…o3 … …o4

o1 o2 or-1…o3 … …o4

…
…

or

or+1

or+2

on
…

…

︷
︸
︸

︷

o1 o2 or-1…o3 … …o4

o1 o2 or-1…o3 … …o4

o1 o2 or-1…o3 … …o4

o1 o2 or-1…o3 … …o4

o1 o2 or-1…o3 … …o4

…
…

︷
︸
︸

︷

or or+1 or+2 on

… …

(a)

(b)

Figure 7.5: These are equivalent ways of viewing the number of members in an r-
permutation from a counting perspective.

With respect to the proposition, we need to determine the number of occurrences of

each member of O in this set of r-permutations. The induction hypothesis says that each

object in set O occurs Freq(n, r − 1) times in the set of r−1-permutations of O. Let us

assume that this is true and then figure out how we can use it to compute the number

of r-permutations and convince ourselves that the result is correct.

First, for purposes of counting, let us rearrange the sequences of objects in Fig-

ure 7.5(a) to look like what is depicted in Figure 7.5(b). This makes it easier for one to

see that the number of occurrences for each of the n objects in an r-permutation is

1 × P (n, r − 1) + (n − r) Freq(n, r − 1) =
n Freq(n, r − 1)

r − 1
+ (n − r) Freq(n, r − 1)

=
n Freq(n, r − 1)

r − 1
+

(r − 1)(n − r) Freq(n, r − 1)
r − 1

=
(n + rn − r2 − n + r) Freq(n, r − 1)

r − 1

=
(rn − r2 + r) Freq(n, r − 1)

r − 1

275

=
r(n − r + 1) Freq(n, r − 1)

r − 1

=
r(n − r + 1)

r − 1
Freq(n, r − 1)

= Freq(n, r)

=
rP (n, r)

n

because if Freq(n, r) = rP (n,r)
n

and Freq(n, r − 1) = rP (n,r−1)
n

for n ≥ r ≥ 2, then the

original equation for Freq(n, r) can be rewritten as Freq(n, r) = r(n−r+1)
r−1

Freq(n, r−1).

Theorem 7.2.2. Each of the n ≥ r ≥ 1 distinct members in set O = {o1, o2, . . . , on}
occurs rC(n,r)

n
times in the sample space of r-combinations for that set.

Proof. This follows in a rather straightforward fashion from Theorem 7.2.1 on page 272.

The key point to notice is that this theorem is concerned with combinations rather

than permutations. Therefore, order does not matter and the P (n, r) permutations of n

distinct objects taken r at a time are all equivalent to each other. Hence, C(n, r) = P (n,r)
r!

(Rosen et al., 2000). This means that the number of times that each distinct member in

set O occurs in the sample space of r-combinations is

r P (n,r)
n

r!
=

r P (n, r)

n r!

=
r

n

P (n, r)

r!

=
r

n
C(n, r)

=
r C(n, r)

n
.

276

7.2.3 Compute the Average Unnormalized Position of a Rele-

vant Document from a Sample Space of Orderings

To compute the mean unnormalized position of a relevant document in the sample space

for a collection of N documents, given that we know the values of r1, r0, s1, and s0

for that collection, we need to determine the sum of the numbers that correspond to

the positions associated with each relevant document of a sample point in the sample

space. One way of doing this is, for each sample point, sum up the positions associated

with the relevant documents, and, after calculating these values, compute the grand total

from these sample point-specific sums. How can we use analytic techniques to do the

equivalent of this?

One approach is to take a small case (i.e., a collection of a few documents), construct

the sample space for it, and then study that in the hope of observing some useful insights,

patterns, or relationships that can be used to help develop an analytical solution. Of

course, any conjecture(s) that emanate from this study must be rigorously proved before

they can be used in the solution.

Determining the Sample Space

In an optimal ordering, the positions of the n1 documents with feature frequency 1 are

in the closed interval [1, n1] (shown by Figure 7.1 on page 265) because, by definition,

all the documents with that feature frequency (there are n1 of them) are at the front of

the ordering (and hence appear before any document with feature frequency 0). But, in

a non-optimal ordering, these documents are not guaranteed to be constrained to that

interval. In the latter situation, the positions of those n1 documents (and likewise r1

relevant documents with feature frequency 1) can be anywhere in the closed interval

[1, N]. However, because the formula for A (Losee, 1998) (shown by Equation 7.1.1 on

page 263), also by definition, is with respect to an optimal ordering, the calculations

277

below implicitly assume that the document ordering is optimal.

In an optimal ordering of N documents, there are two groups of non-overlapping

documents: those n1 at the front with feature frequency 1 and those n0 at the back with

feature frequency 0. The documents in each of these groups can be arranged in any order

independent of those in the other group.

The sample space for the documents with feature frequency 1 has a total of C(n1, r1)

sample points because that is the number of ways that r1 positions can be chosen out

of n1 distinct positions when it is irrelevant which one is chosen first, second, third,

etc. Similarly, the sample space for the documents with feature frequency 0 has a total

of C(n0, r0) sample points. Due to the independence mentioned above, the joint sam-

ple space for these two groups is the Cartesian product of these groups and contains

C(n1, r1) × C(n0, r0) sample points.

Calculations

Since ASL, the average search length, is synonymous with the average unnormalized

position of a relevant document, we have

ASL =
sum of the positions occupied by the relevant documents

number of positions occupied by the relevant documents

=
Srel

Nrel

=
Srel,1 + Srel,0

Nrel,1 + Nrel,0

.

The equations for the variables Srel,1, Srel,0, Nrel,1, Nrel,0 and the values they denote appear

below.

Srel,1 = sum of the positions occupied by the relevant documents with d = 1

=
r1

(
n1

r1

)
n1

(
n0

r0

) n1∑
i=1

i

278

=
r1

(
n1

r1

)
n1

(
n0

r0

)(
n1 + 1

2

)
. (7.2.1)

Srel,0 = sum of the positions occupied by the relevant documents with d = 0

=
r0

(
n0

r0

)
n0

(
n1

r1

) N∑
i=n1+1

i

=
r0

(
n0

r0

)
n0

(
n1

r1

)[(
N + 1

2

)
−
(

n1 + 1

2

)]
. (7.2.2)

Nrel,1 = number of the positions occupied by the relevant documents with d = 1

=

[
r1

(
n1

r1

)](
n0

r0

)
. (7.2.3)

Nrel,0 = number of the positions occupied by the relevant documents with d = 0

=

[
r0

(
n0

r0

)](
n1

r1

)
. (7.2.4)

The fraction in Equation 7.2.1 represents the number of times that each of the po-

sitions in the closed interval [1, n1] appears in the sample space and is occupied by a

relevant document. The binomial expression in this equation represents how many com-

binations of relevant document positions in the closed interval [n1 + 1, N] are associated

with each document combination of relevant document positions in the closed interval

[1, n1]. The summation represents the addition of the positions for those documents with

feature frequency 1.

The fraction in Equation 7.2.2 represents the number of times that each of the po-

sitions in the closed interval [n1 + 1, N] appears in the sample space and is occupied

by a relevant document. The binomial expression in this equation represents how many

combinations of relevant document positions in the closed interval [1, n1] is associated

with each document combination of relevant document positions in the closed interval

279

[n1 + 1, N]. The summation represents the addition of the positions for those documents

with feature frequency 0.

The bracketed term in Equation 7.2.3 on the preceding page represents the number

of positions occupied by relevant documents in the sample space for relevant documents

with feature frequency 1. Since each sample point in that space is associated with
(

n0

r0

)
sample points in the sample space for documents with feature frequency 0, the total

number of sample points in the joint sample space is the product of those values.

The bracketed term in Equation 7.2.4 on the previous page represents the number

of positions occupied by relevant documents in the sample space for relevant documents

with feature frequency 0. Since each sample point in that space is associated with
(

n1

r1

)
sample points in the sample space for documents with feature frequency 1, the total

number of sample points in the joint sample space is the product of those values.

The equations above can be simplified further. How to do that is demonstrated below.

Srel = Srel,1 + Srel,0

=
r1

(
n1

r1

)
n1

(
n0

r0

)(
n1 + 1

2

)
+

r0

(
n0

r0

)
n0

(
n1

r1

)[(
N + 1

2

)
−
(

n1 + 1

2

)]

=

(
n1

r1

)(
n0

r0

)[
r1

n1

(
n1 + 1

2

)
+

r0

n0

[(
N + 1

2

)
−
(

n1 + 1

2

)]]
.

Nrel =

[
r1

(
n1

r1

)](
n0

r0

)
+

[
r0

(
n0

r0

)](
n1

r1

)

= (r1 + r0)

(
n1

r1

)(
n0

r0

)
.

Putting all of this together, we obtain

ASL =
Srel

Nrel

= (r0 + r1)
−1

(
r1

n1

(
n1 + 1

2

)
+

r0

n0

[(
N + 1

2

)
−
(

n1 + 1

2

)])
.

280

Now, if we expand the binomial terms, replace N by n1 + n0, and do some minor

simplification, we obtain

ASL = (r0 + r1)
−12−1

(
r1

n1

(n1 + 1)n1 +
r0

n0

[(n1 + n0 + 1)(n1 + n0) − (n1 + 1)n1]

)

= (r0 + r1)
−12−1

(
r1(n1 + 1) +

r0

n0

[(n1 + n0 + 1)(n1 + n0) − (n1 + 1)n1]

)
.

(7.2.5)

For the moment, we concentrate on simplifying the part of the prior equation that is

represented by

r0

n0

[(n1 + n0 + 1)(n1 + n0) − (n1 + 1)n1] . (7.2.6)

After this simplification has been accomplished, we plug that result in our immediately

prior equation for ASL and proceed to derive the final version of this equation. After

multiplying the parenthesized expressions, we obtain

r0

n0

[
n2

1 + n1n0 + n0n1 + n2
0 + n1 + n0 − n2

1 − n1

]
.

After simplification, mainly by eliminating the terms that cancel each other, we have

r0

n0

[
n1n0 + n0n1 + n2

0 + n0

]
= r0 [n1 + n1 + n0 + 1] . (7.2.7)

The final step of deriving a simplified equation for ASL consists of substituting the

expression on the right hand side of Equation 7.2.7 for the part of Equation 7.2.5 that is

represented by Expression 7.2.6. This substitution yields

ASL = (r0 + r1)
−12−1 (r1(n1 + 1) + r0 [n1 + n1 + n0 + 1])

= (r0 + r1)
−12−1 (r1n1 + r1 + 2r0n1 + r0n0 + r0)

281

= (r0 + r1)
−12−1 (r1 + r0 + (r1 + r0)n1 + (n0 + n1)r0)

= (r0 + r1)
−12−1 ((r1 + r0)(n1 + 1) + (n0 + n1)r0)

=
n1 + 1

2
+

r0N

2R

=
R(n1 + 1) + r0N

2R
. (7.2.8)

7.2.4 Derivation of the Formula for A

The formula for A can be derived in an indirect way by computing the ASL and then

rewriting the formula so that it fits the template below. Without loss of generality, if we

assume optimal ranking (i.e., Q = 1), then ASL = NA + 1
2

(the template). The ASL is

simply the unnormalized average of the positions occupied by the relevant documents in

an ordering over all the possible orderings for a collection with N = r0 + r1 + s0 + s1.

For the convenience of the reader, we restate below, from Equation 7.2.8, that

ASL =
R(n1 + 1) + r0N

2R
,

assuming, of course, that the number of relevant documents is at least 1.

After rewriting, we obtain

ASL =
n1 + 1

2
+

r0N

2(r1 + r0)

=
n1

2
+

r0N

2(r1 + r0)
+

1

2

=
n1N

2N
+

r0N

2(r1 + r0)
+

1

2

= N

[
n1

2N
+

r0

2(r1 + r0)

]
+

1

2
. (7.2.9)

282

Therefore,

A =
n1

2N
+

r0

2(r1 + r0)

=
n1

2N
+

r0

2R

=
n1R + r0N

2NR
. (7.2.10)

Figure 7.6 on page 285 contains histograms of the distributions of A values when N =

10, 20, and 50. Note how the histograms become more symmetrical as the value of N

increases.

Lemma 7.2.3. The probabilistic and combinatoric formulas for A are equivalent.

Proof. Since,

Pr(d|rel) =
Pr(d, rel)

Pr(rel)

=
of relevant documents with ff 1

total # of relevant documents

=
r1

R

and Pr(d) = n1/N, then A = (1 + t − p)/2 can be expressed as

Aprobabilistic =
(
1 +

n1

N
− r1

R

)
/2

= (NR + n1R − Nr1)/(2NR). (7.2.11)

Similarly, Equation 7.2.10, that is, A = n1/(2N) + r0/(2R), can be expressed as

Acombinatoric =
n1

2N
+

r0

2R

=
n1R

2NR
+

r0N

2RN

283

=
n1R + r0N

2NR
. (7.2.12)

Since Aprobabilistic and Acombinatoric now have the same denominators, it suffices to just

show that the numerators are equivalent. Below, the notation lhs
?≡ rhs denotes a

situation where the expression on the left-hand side (lhs) of the
?≡ symbol might not be

equivalent to the expression on the right hand side side (rhs) of that symbol.

Equation 7.2.13 asks if the numerators on the final lines of Equations 7.2.11 and 7.2.12

are equivalent. Since term n1R appears once in both numerators, this comparison simpli-

fies to Equation 7.2.14. After factoring out N on the left hand side of the comparison and

permuting the terms on its right hand side, we obtain Equation 7.2.15. Since R = r1+r0,

this comparison can be rewritten as Equation 7.2.16. Obviously, at this point, we can

say that the original numerators were equivalent expressions because Nr0 equals Nr0.

NR + n1R − Nr1
?≡ n1R + r0N (7.2.13)

NR − Nr1
?≡ r0N (7.2.14)

N(R − r1)
?≡ Nr0 (7.2.15)

Nr0
?≡ Nr0 (7.2.16)

Hence, Equation 7.2.11 and Equation 7.2.12 are equivalent, thus allowing us to state

that

Acombinatoric = Aprobabilisticic

=
n1R + r0N

2NR
. (7.2.17)

284

0.2 0.4 0.6 0.8 1.0
A

20

40

60

80

100

frequency

0.2 0.4 0.6 0.8 1.0
A

100

200

300

400

frequency

0.2 0.4 0.6 0.8 1.0
A

200

400

600

800

1000

1200

1400

frequency

Figure 7.6: Distributions of A values for N = 10, 20, and 50, respectively.

285

7.3 Gaussian Polynomials and Some of Their Prop-

erties

In this dissertation, Gaussian polynomials (Andrews, 1984; Andrews and Eriksson, 2004;

Goulden and Jackson, 1983) are of use for two primary reasons: their ability to help

model the distributions of sums of document positions in an optimal ranking and, later,

in Chapter 8, their use in the development of an improved formula for computing the

ASL. Each of these reasons involve finding all the sums of k-subsets of sets of n positive

integers such that k ≤ n and both k and n are natural numbers.

Definition 7.3.0.1. The q-binomial coefficient (also known as Gaussian coefficient or

Gaussian polynomial) is [
n

m

]
q

=
m∏

i=1

1 − qn−m+i

1 − qi

for n, m ∈ N; where N denotes the set of natural numbers.

Theorem 7.3.1. (Andrews, 1984) Let 0 ≤ m ≤ n be integers. The Gaussian polynomial[
n
m

]
q

is a polynomial of degree m (n - m) in q that satisfies the following relations.

[
n

0

]
q

=

[
n

n

]
q

= 1[
n

m

]
q

=

[
n

n − m

]
q[

n

m

]
q

=

[
n − 1

m

]
q

+ qn−m

[
n − 1

m − 1

]
q[

n

m

]
q

=

[
n − 1

m − 1

]
q

+ qm

[
n − 1

m

]
q

lim
q→1

[
n

m

]
q

=
n!

m!(n − m)!
=

(
n

m

)

Proof. The proof of this theorem can be found in Andrews (1984).

286

7.3.1 A Motivating Example: The Use of Gaussian Polynomials

to Obtain Document Position Distributional Information

Let P = {1, 2, 3, 4, 5} be a set of 5 document positions. Assume that there are 3 relevant

documents and that it is equally likely that a relevant document can occupy any one of

these positions. Furthermore, a position can be occupied by, at most, one document.

Hence, n = 5 and k = 3. By the Binomial Theorem, there are

(
n

k

)
=

(
5

3

)
= 10

3-subsets of these positions. These subsets are

{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {1, 4, 5}, {2, 3, 4}, {2, 3, 5}, {2, 4, 5}, and

{3, 4, 5}.

The sums of the positions that correspond to these 3-subsets are

6, 7, 8, 8, 9, 10, 9, 10, 11, and 12,

respectively. Note that in this sums-of-positions distribution the values of 8, 9, and 10

occur with frequency 2 whereas the four remaining values, that is, 6, 7, 11, and 12, each

occur with a frequency of 1. If the sums are ascendingly ordered, the value sequence is

6, 7, 8, 8, 9, 9, 10, 10, 11, 12.

Among the 10 values, only 7 are unique. Gaussian polynomials can be used to determine

this distribution. By Definition 7.3.0.1 on the previous page, the Gaussian polynomial

287

for the given values of n and k is

[
5

3

]
q

=
3∏

i=1

1 − q5−3+i

1 − qi

=
(1 − q3)(1 − q4)(1 − q5)

(1 − q)(1 − q2)(1 − q3)

=
(1 − q4)(1 − q5)

(1 − q)(1 − q2)

=
(1 − q2)(1 + q2)(1 − q5)

(1 − q)(1 − q2)

=
(1 + q2)(1 − q5)

(1 − q)

= (1 + q2)(1 + q + q2 + q3 + q4)

= 1 + q + 2q2 + 2q3 + 2q4 + q5 + q6.

Since the lowest value sum is 1 + 2 + 3 = 6, we need to adjust the previous equation

by that information in order to obtain the distributional information for the values that

were used in this example. This means that we now have

q6

[
5

3

]
q

= q6(1 + q + 2q2 + 2q3 + 2q4 + q5 + q6)

= q6 + q7 + 2q8 + 2q9 + 2q10 + q11 + q12.

From it, we obtain the following distributional information: the lowest-valued sum

(i.e., 6) occurs once, the next lowest-value sum (i.e., 7) occurs once, the third lowest-

valued one (i.e., 8) occurs twice, and so on, with the highest-valued sum (i.e., 12) occur-

ring one time.

288

7.3.2 Reciprocity and Unimodality

In addition to the properties listed in Theorem 7.3.1 on page 286, the Gaussian poly-

nomials (or q-binomial coefficients) have other similar properties to regular binomial

coefficients largely due to their being the q-analogs of these entities. Two of these other

properties that are of interest in this dissertation is that the distributions associated

with q-binomial coefficients are both reciprocal (i.e., symmetrical) and unimodal (i.e.,

monotonic on both sides of the midpoint) .

DEFINITION 3.6. A polynomial p(q) = a0 + a1q + · · ·+ anqn is called reciprocal if
for each i, ai = an−i, equivalently qnp(q−1) = p(q).

DEFINITION 3.7. A polynomial p(q) = a0 + a1q + · · ·+ anqn is called unimodal if
there exists m such that

a0 ≤ a1 ≤ a2 ≤ · · · ≤ am ≥ am+1 ≥ am+2 ≥ · · · an.

. . .

THEOREM 3.9. Let p(q) and r(q) be reciprocal, unimodal polynomials with non-
negative coefficients; then p(q)r(q) is also a reciprocal, unimodal polynomial with
nonnegative coefficients. (Andrews, 1984)

The reciprocal property means that, for a polynomial p(q), if one knows the value v

of coefficient ai, for 0 ≤ i ≤ n, then one does not need to calculate the value of an−i

because its value is also this same value v. A practical aspect of this is that the effort to

calculate these coefficients can be cut approximately in half. That is, one needs to only

calculate the values for the coefficients with indices 0, 1, . . . , �n/2�, inclusive, then use the

reciprocal property to calculate the values that correspond to indices �n/2�+1, �n/2�+2,

. . . , n, inclusive. For example, if n = 5 and a2 = v, then, from the reciprocal property,

we do not need to calculate the value for a5−2 = a3 because we know that it must be the

same as v, the value for a2. Many famous distributions (e.g., the normal distribution (a

continuous distribution), the binomial distribution (a discrete distribution) are reciprocal

(i.e., symmetrical). From a statistical viewpoint, one of the qualities of a reciprocal

distribution is that its mean, median, and mode are the same value.

289

The unimodal property means that the series of ai values first increases up to a point

and then decreases, if the a0 value is different than the a�n/2	 (i.e., middle) value. Another

way to view this is that the value at the beginning (and ending) of the sequence is the

same as the minimum value of the sequence and that the middle value is the same as the

maximum value of the sequence.

The theorem from Andrews (1984) states that the convolution of two polynomials

that are both reciprocal and unimodal, with nonnegative coefficients, yields a new poly-

nomial that is also reciprocal, unimodal, and has no nonnegative coefficients. This means

that when we combine two polynomials that are both unimodal and reciprocal, we are

rewarded with a mixture polynomial that is also unimodal and reciprocal.

The examples in Section 7.5 illustrate the effects of the reciprocal and unimodal

properties. There, in that section, we make use of these properties to determine the

distribution of the sums of the positions of the relevant documents in an optimal ranking.

7.3.3 Additional Important Relationships

The concepts of constrained parts, constrained multiplicities of parts, convolution, and

the Cauchy Binomial Theorem (both plain and extended forms) are very important in

the derivations of the equations for normalized and unnormalized search length. These

concepts are discussed below.

Definition 7.3.3.1. Partitions with constrained parts and constrained multiplicities of

parts.

Let two sets W, of nonnegative integers, and R, of positive integers, be given, with
0 ∈ W . Let p(n, k; W, R) be the number of partitions of n into k parts such that
all of the parts lie in R, and all of their multiplicities lie in W . Then ...

∑
n,k

p(n, k; W, R)xnyk =
∏
r∈R

(∑
k∈W

ykxkr

)
.

From this generating function we can prove many theorems about partitions. (Wilf,
2006)

290

When R ∈ {1, 2, . . . , n} and W ∈ {0, 1}, we have the special case

∑
n,k

p(n, k; {0, 1}, {1, 2, . . . , n})xnyk =
n∏

r=1

(
1∑

k=0

ykxkr

)

=
n∏

r=1

(1 + yxr).

This is the ordinary generating function for determining all the possible sums (and their

frequency counts) when k values, without replacement, are selected from the set of inte-

gers that range from 1 to n, inclusive. This is a very well-known generating function in

the area of combinatorics known as integer partition theory. It is known as the Cauchy

binomial theorem and is formally stated below as a q-series.

Theorem 7.3.2. Cauchy Binomial Theorem

n∏
i=1

(1 + zqi) =
∞∑

m=0

q(
m+1

2)
[
n

m

]
q

zm.

Proof. Gasper and Rahman (2004) contains a proof of this theorem. Their notation,

though, is different than the notation that was used in the above equation.

The Cauchy binomial theorem is used to model the total search lengths for the feature

frequency 1 part of an ordering. Unless this part of an ordering has zero documents, the

theorem, as stated, cannot be used to model the feature frequency 0 part of an ordering

because it assumes that the minimum element in R is 1. However, we can easily extend

the theorem so that it handles any sequence of distinct positive integers in a closed

interval [1 + s, n + s] where s ∈ N, that is, s is a natural number that represents how

many positions the elements in a sequence are to be shifted from lower-indexed positions

to higher-indexed positions.

Theorem 7.3.3. Cauchy Binomial Theorem (extended)

291

n+s∏
i=1+s

(1 + zqi) =
∞∑

m=0

q(
m+1

2)+ms

[
n

m

]
q

zm

Proof. Since
[

n
m

]
q

= 0, when m > n, and
(

m+1
2

)
can be rewritten as m(m + 1)/2,

n+s∏
i=1+s

(1 + zqi) =
n∑

m=0

qm(m+1)/2+ms

[
n

m

]
q

zm.

Basis step. n=1.

1 + q1+sz = q0+0

[
1

0

]
q

z0 + q1+s

[
1

1

]
q

z1

= 1 + q1+sz.

Inductive step. Assume that the induction hypothesis is true for 0 ≤ m ≤ n − 1. For

the inductive step, we must expand

(
n−1∑
m=0

qm(m+1)/2+ms

[
n − 1

m

]
q

zm

)(
1 + qn+sz

)

and extract from it the coefficient of zm.

This coefficient is

qm(m+1)/2+ms

[
n − 1

m

]
q

+ q(m−1)m/2+(m−1)s+n+s

[
n − 1

m − 1

]
q

= qm(m+1)/2+ms

([
n − 1

m

]
q

+ qn−m

[
n − 1

m − 1

]
q

)

= q(
m+1

2)+ms

[
n

m

]
q

.

A generalized form of the binomial theorem (Larsen, 2007) can be used to develop an

292

alternate proof of this theorem.

The next lemma uses the results from the extended version of the Cauchy binomial

theorem to derive an expression that describes the distribution of the total search lengths

for an N document collection that has r1 relevant documents that contain the query term,

r0 relevant documents that do not contain the query term, s1 non-relevant documents

that contain the query term, and s0 non-relevant documents that do not contain the

query term.

Theorem 7.3.4. Let r0, r1, s0, s1 ∈ N represent the parameters of an N-document col-

lection for N = n0 + n1 with n1 = s1 + r1 and n0 = s0 + r0. The distribution of total

search lengths for a collection with these parameters is described by

q(
r0+1

2)+r0·n1+(r1+1
2)
[
n0

r0

]
q

[
n1

r1

]
q

.

Proof. By the extended version of the Cauchy binomial theorem, the expression that de-

scribes the total search length distribution for the feature frequency 0 part of an ordering

is

q(
r0+1

2)+r0·n1

[
n0

r0

]
q

,

when n = n0 and m = r0. Also, by this theorem, the analogous expression for the

distribution for the feature frequency 1 part of an ordering is

q(
r1+1

2)
[
n1

r1

]
q

,

when n = n1 and m = r1.

The expression for the convolution (combined distribution) of total search lengths is

293

the product of the expressions for the individual expressions:

(
q(

r0+1
2)+r0·n1

[
n0

r0

]
q

)(
(q(

r1+1
2)
[
n1

r1

]
q

)

= q(
r0+1

2)+r0·n1+(r1+1
2)
[
n0

r0

]
q

[
n1

r1

]
q

.

This result is used in the next section to help develop generating functions that describe

the distribution of total search lengths.

7.3.4 Performance Evaluation Implications for Information Re-

trieval Research

Gaussian polynomials can be used to help construct combinatoric, probabilistic, and

mathematical models of information retrieval performance measures that sequence the

documents in a collection, with respect to a query q, according to retrieval status values

that are based on nondichotomous (e.g., degrees of relevance, graded relevance assess-

ments) (Cuadra and Katter, 1967; Spink et al., 1998; Tang et al., 1999; Vakkari and

Hakala, 2000; Kekäläinen and Järvelin, 2002), rather than on binary relevance assess-

ments. It is assumed that the set of possible nondichotomous relevance assessments is

finite (i.e., a fixed number of categories), rather than infinite (i.e., continuous relevance),

has a cardinality of at least three, and that the cardinality is moderate in value (e.g., five

to ten assessment categories).

There are two major parameters that can be varied with respect to the assessments:

(1) the number of categories and (2) the relative weight of one category to another.

For example, suppose the categories are the same as those used for the Cystic Fibrosis

test collection (i.e., highly relevant, marginally relevant, not relevant). There is nothing

sacrosanct about these assessments as some studies, such as those in this dissertation,

use less categories (i.e., binary relevance judgments) whereas others use more categories

294

(Cuadra and Katter, 1967; Spink et al., 1998; Tang et al., 1999; Vakkari and Hakala,

2000; Kekäläinen and Järvelin, 2002).

An IR researcher may want to undertake a study where the focus is on investigating

how performance measures are affected as a function of the number of assessment cat-

egories. Another factor that can be studied independently, if desired, is the effect that

different category weights have on the rankings and performance measure evaluations.

For example, the three relevance judgment categories used in the CF test collection could

be given weights of 0, 1, and 2, respectively. In essence, this says that a non-relevant

document has no value and that a highly relevant one has a weight that is twice that of a

marginally relevant one. A researcher might want to, say, study the effect of changing the

weight for a marginally relevant document to 2 and that of a highly relevant document

to 5. One might say here that the the highly relevant document now has a weight that

is larger relative to the marginally relevant document than it did prior to the change.

The above paragraph enumerated examples of some of the types of IR performance

evaluation studies that could be facilitated by the use of Gaussian polynomials for the

study of a performance measure such as the Average Search Length. However, there is

nothing that limits its use to the ASL. It could be adapted, with varying amounts of

ease, to help model distributions of ranked documents for other performance measures.

7.4 Probability Mass Functions, Generating Func-

tions, and Probability Generating Functions

A probability mass function (pmf) defines the probability distribution of a discrete ran-

dom variable, whereas a probability density function (pdf) defines the probability distri-

bution of a continuous random variable. A discrete random variable can only assume

295

integral (i.e., integer) values within an interval, or over several intervals. Similarly, a con-

tinuous random variable can only assume real values. Since the work in this chapter (and

dissertation) only uses discrete random variables, we do not discuss probability density

functions.

A frequency distribution (as contrasted with a probability distribution) specifies the

frequency of each value of a discrete random variable. If this distribution is known, then

it is simple to derive the pmf from it. All one needs to do is to divide each frequency by

the number of events that are in the sample space for the random variable of interest.

Figure 7.7 on page 298 has examples of both of these types of distribution.

A discrete random variable can only assume a finite (though possibly large) number

of values. A discrete probability distribution is often given in the form of a table, a set

of formulas, or a bar chart. The cumulative probability, across the range of values for a

discrete distribution, is always 1. This probability is obtained by summing the associated

probabilities for all values in the range. The summing technique is discrete summation.

A one-variable generating function f is a formal power series in a variable, say, x,

whose coefficients succinctly encode information about a sequence ai that is indexed by

the natural numbers, i.e.,

f(x) =
∞∑
i=0

aix
i

= a0 + a1x + a2x2 + a3x3 + · · · .

The function f(x) encodes information about the sequence of real values a0, a1, a2, a3, and

so on. Generating functions are often employed by mathematicians, combinatorialists,

and statisticians because of their parsimony in encoding information about sequences and

also because of the well-developed theory of power series with non-negative coefficients.

A generating function can also be a function of several variables (like some of those

296

that appear in the next section). A key way in which a formal power series differs from

a power series is that we generally do not have to be concerned about whether a formal

power series converges because we are typically only interested in it for the coefficients

and the exponents that are associated with its terms.

As an example of how a generating function can succinctly encode information, let

f(x) =
1

1 − 2x
.

This generating function can be expanded to show the information that it encodes:

f(x) =
1

1 − 2x

= a0 + 2x + 22x2 + 23x3 + · · · .

We find that the coefficient 2i is associated with each xi, where i is a natural number.

The probability generating function (pgf) of a discrete random variable is a formal

power series representation (i.e., the generating function) of the probability mass function

of the random variable. It is of the form

f(x) =
∞∑
i=0

aix
i

= p0 + p1x + p2x
2 + p3x

3 + · · · ,

where pi represents the probability that the value of the random variable X is equal to

the value of i, that is, Pr(X = i). For example, the pgf f(x) that is associated with the

data that Figure 7.7 is based on is

f(x) = (x7 + 2x8 + 3x9 + 3x10 + 3x11 + 2x12 + x13)/15

= (1/15)x7 + (2/15)x8 + (3/15)x9 + (3/15)x10 + (3/15)x11 + (2/15)x12 + (1/15)x13

297

= (1/15)x7 + (2/15)x8 + (1/5)x9 + (1/5)x10 + (1/5)x11 + (2/15)x12 + (1/15)x13.

1

2

3 3 3

2

1

7 8 9 10 11 12 13

search length

fr
eq
ue
nc
y

frequency distribution

1

15

2

15

1

5

1

5

1

5

2

15

1

15

7 8 9 10 11 12 13

search length

pr
ob
ab
ili
ty

probability mass function

Figure 7.7: Bar charts for the frequency distribution and probability mass function of
the data in Figure 7.2 on page 266. The leftmost part of this figure illustrates that there
are seven distinct search lengths associated with the data. These lengths are 7, 8, 9, 10,
11, 12, and 13, respectively, with frequencies 1, 2, 3, 3, 3, 2, and 1. The rightmost part
of this figure indicates that the probabilities that are associated with the seven distinct
search lengths are 1/15, 2/15, 3/15, 3/15, 3/15, 2/15, and 1/15, respectively, because
the sample space that is associated with this data has 15 events. In the graph for this
probability mass function, the value 3/15 was simplified to 1/5.

7.5 The Distribution of the Sums of the Positions of

the Relevant Documents in an Optimal Ranking

In an optimal ranking, all the documents that contain the query term (i.e., those with

feature frequency 1) appear at the front of the ordering, whereas those that do not contain

the term (i.e., those with feature feature 0) appear immediately after the last document

in the former group of documents. The former group contains n1 total documents, of

which r1 are relevant and n1 − r1, the remainder, are non-relevant. Similarly, the latter

group contains n0 total documents, of which r0 are relevant and n0 − s0, the remainder,

are non-relevant.

298

Assume that a document collection c of size N = n0 + n1, with n0 = r0 + s0 and

n1 = r1+s1, exists with r1, r1, s0, s1 ∈ N. From the sample space determination discussion

in Section 7.2.3, this collection of N documents has C(n0, r0)×C(n1, r1) possible distinct

document orderings, with respect to query q. Let the notation O(q, c) denote the set of

document orderings for query q and collection c. Each of these distinct orderings has

a total of r0 + r1 relevant documents and a total of s0 + s1 non-relevant documents.

The total search length for an individual ordering (Ti), where i ∈ O(q, c), is computed

by finding the position of each of the relevant documents in this ordering i and, then,

summing these values. The mean search length for an individual ordering (Mi) is its Ti

value divided by the number of relevant documents in that ordering.

The total search lengths (TSLs) and mean search lengths (MSLs) can be viewed as

random variables. We are interested in studying the variance of the TSLs and MSLs

for an O(q, c) object that possesses the characteristics that were given in the previous

paragraph. Later, we use these variances to help establish confidence intervals that aid

us in our validation of the ASL. To compute these variances, we need to determine the

TSL and MSL for each individual ordering and, then, compute the mean of these values

over all of the orderings.

The effort starts with determining how the TSLs and MSLs are distributed for the N

document collection c, and specified query q. The distribution determination process for

an ordering consists of these three steps: find the distribution for the group of documents

that have feature frequency 1, find the distribution for the group of documents that have

feature frequency 0, and, then, combine the distributions to obtain the distribution for

the entire ordering.

The combinatorial technique of generating functions (Graham et al., 1994; Charalam-

bides, 2002; Lando, 2003; Wilf, 2006), in conjunction with Gaussian polynomials (An-

drews, 1984; Andrews and Eriksson, 2004; Comtet, 1974), is probably the most direct

299

way to accomplish the task of determining this distribution for arbitrary N , r1, n1, r0,

and n0. A key to constructing the correct generating function G0 is to recognize that the

r0 relevant document positions, selected from the part of the orderings corresponding to

the documents where the term is absent, is equivalent to the process of selecting without

replacement the r0 documents from a population of n0 documents that have positions in

the closed interval [n1 + 1, N]. The ordinary generating function G0 for this part of the

orderings is

G0(x, y, n1, N) =
N∏

i=n1+1

(1 + xiy). (7.5.1)

The analogous ordinary generating function G1 for the part of the ordering corresponding

to the term being present is

G1(x, z, n1) =

n1∏
i=1

(1 + xiz). (7.5.2)

A key to constructing G1 is to recognize that the r1 relevant document positions, selected

from the part of the orderings corresponding to the documents where the term is present,

is equivalent to the process of selecting without replacement the r1 documents from a

population of n1 documents that have positions in the closed interval [1, n1].

The ordinary generating function for the entire ordering, G(x, y, z, n1, N), is simply

the convolution (i.e., product) of the ordinary generating functions for the two parts of

the ordering, namely, G0(x, y, n1, N) and G1(x, z, n1):

G(x, y, z, n1, N) = G0(x, y, n1, N) · G1(x, z, n1). (7.5.3)

In order to determine the distribution of the TSLs and MSLs, we need to first expand

the expression denoted by G(x, y, z). After that, we need to extract the function of x that

300

is the coefficient of the term yr0zr1 . We use the function T (x) to denote the TSL version

of the expressions. The analogous expression for the MSL, M(x), is easily derived from

T (x) as follows: divide each exponent by r0 +r1, the number of relevant documents. The

distribution information can be recovered as follows: the exponent of an x-term in T (x)

represents a total search length v and the coefficient of this term represents the number

of orderings that had total search length v. Similarly, the exponent of an x-term in M(x)

represents a mean search length w and the coefficient of this term represents the number

of orderings that had mean search length w. Basically, we now have the distribution

information, that is, the values that occurred and the frequency for each one.

Definition 7.5.0.1. The convolution C(x), of two ordinary generating functions A(x)

and B(x), is C(x) = A(x)B(x) if and only if ck =
k∑

i=0

aibk−i for k ∈ N where N denotes

the set of natural numbers.

7.5.1 Another Motivating Example: The Use of Gaussian Poly-

nomials and Probability Generating Functions to Obtain

Search Length Means and Variances

This discussion about the distribution of sums is technical and somewhat lengthy. The

running example is intended to facilitate understanding of its main concepts and is used

to help illustrate the process that was just sketched out above. After the end of the

example, there is a more formal treatment of the process and allied concepts. The data

that is used comes from the scenario that is depicted by Figure 7.2 on page 266. The

parameters for it are N = n1 + n0 = 8, n1 = r1 + s1 = 3, n0 = r0 + s0 = 5, with r1 = 2,

s1 = 1, r0 = 1, and s0 = 4. More information on probability generating functions can be

found in the material of Section 7.5.1.

Expanded versions of Equation 7.5.1 on the preceding page and Equation 7.5.2 on the

previous page, the equations for G0(x, y, 3, 8) and G1(x, z, 3), respectively, appear below,

301

with the appropriate value substitutions for parameters n1 and N. These equations are

purposely not in their simplest forms in order to make it easier for the reader to discern

the relationships between the coefficients and exponents of the various terms.

G0(x, y, 3, 8) =
8∏

i=3+1

(1 + xiy)

= (1 + x4y)(1 + x5y)(1 + x6y)(1 + x7y)(1 + x8y)

= (1)y0 +

(x4 + x5 + x6 + x7 + x8)y1 +

(x9 + x10 + 2x11 + 2x12 + 2x13 + x14 + x15)y2 +

(x15 + x16 + 2x17 + 2x18 + 2x19 + x20 + x21)y3 +

(x22 + x23 + x24 + x25 + x26)y4 +

(x30)y5. (7.5.4)

The (x9+x10+2x11+2x12+2x13+x14+x15)y2 term in the G0(x, y, 3, 8) equation has this

interpretation: the number of distinct 2-addend sums that can be constructed from the

set {4, 5, 6, 7, 8} is 7; the sums range in value from 9 to 15, inclusive; and their respective

frequencies are 1,1,2,2,2,1,1. This means that there was exactly one way to obtain the

sum 9 (e.g. 4 + 5); exactly one way to obtain the sum 10 (e.g., 3 + 7); exactly two ways

to obtain the sum 11 (e.g., 4 + 7, 5 + 6); exactly two ways to obtain the sum 12 (e.g.,

4 + 8, 5 + 7); exactly two ways to obtain the sum 13 (e.g., 5 + 8, 6 + 7); exactly one way

to obtain the sum 14 (e.g., 6+8); and exactly one way to obtain the sum 15 (e.g., 7+8).

Equation 7.5.4 can be rewritten, as follows, with the use of Gaussian polynomials as:

G0(x, y, 3, 8) = x0

[
5

0

]
x

y0 + x4

[
5

1

]
x

y1 + x9

[
5

2

]
x

y2 + x15

[
5

3

]
x

y3 + x22

[
5

4

]
x

y4 + x30

[
5

5

]
x

y5

= 1 + x4

[
5

1

]
x

y1 + x9

[
5

2

]
x

y2 + x15

[
5

3

]
x

y3 + x22

[
5

4

]
x

y4 + x30

[
5

5

]
x

y5.

302

The expanded version of Equation 7.5.2 on page 300, the equation for G1(x, z, 3), appears

below as Equation 7.5.5. It is very similar to the expanded form of the equation for

G0(x, z, 3, 8).

G1(x, z, 3) =
3∏

i=1

(1 + xiz)

= (1 + xz)(1 + x2z)(1 + x3z)

= (1)z0 + (x1 + x2 + x3)z1 + (x3 + x4 + x5)z2 + (x6)z3. (7.5.5)

The interpretation of the last line of the equation for G1(x, z, 3) is discussed in the

remainder of this paragraph. The only sum that can be constructed from selecting no

elements of the set {1, 2, 3} is 0. If only one element can be selected, then the sum must

be either 1, 2, or 3. If exactly two elements are selected, without replacement, then the

possible sums are 3, 4, and 5. Finally, the only sum that is possible when exactly three

elements are selected, without replacement, is 6.

Note that the distribution of sum values that are associated with the coefficients of the

various yi and zj in G0(x, y, 3, 8) and G1(x, z, 3), respectively, appear to be symmetrical,

start off being non-monotonically decreasing and, after the midpoint of the distribution

is reached, become non-monotonically increasing. This is an instance of unimodaility.

Equation 7.5.5 can be rewritten, as follows, with the aid of Gaussian polynomials as:

G1(x, y, 3) = x0

[
3

0

]
x

z0 + x1

[
3

1

]
x

z1 + x3

[
3

2

]
x

z2 + x6

[
3

3

]
x

z3

= 1 + x1

[
3

1

]
x

z1 + x3

[
3

2

]
x

z2 + x6

[
3

3

]
x

z3. (7.5.6)

The convolution of G0(x, y, 3, 8) and G1(x, z, 3) yields

G(x, y, z, 3, 8) = G0(x, y, 3, 8) · G1(x, z, 3)

303

= (x0)y0z0 +

(x1 + x2 + x3)y0z1 +

(x3 + x4 + x5)y0z2 +

(x6)y0z3 +

(x4 + x5 + x6 + x7 + x8)y1z0 +

(x5 + 2x6 + 3x7 + 3x8 + 3x9 + 2x10 + x11)y1z1 +

(x7 + 2x8 + 3x9 + 3x10 + 3x11 + 2x12 + x13)y1z2 +

(x10 + x11 + x12 + x13 + x14)y1z3 +

(x9 + x10 + 2x11 + 2x12 + 2x13 + x14 + x15)y2z0 +

(x10 + 2x11 + 4x12 + 5x13 + 6x14 + 5x15 + 4x16 + 2x17 + x18)y2z1 +

(x12 + 2x13 + 4x14 + 5x15 + 6x16 + 5x17 + 4x18 + 2x19 + x20)y2z2 +

(x15 + x16 + 2x17 + 2x18 + 2x19 + x20 + x21)y2z3 +

(x15 + x16 + 2x17 + 2x18 + 2x19 + x20 + x21)y3z0 +

(x16 + 2x17 + 4x18 + 5x19 + 6x20 + 5x21 + 4x22 + 2x23 + x24)y3z1 +

(x18 + 2x19 + 4x20 + 5x21 + 6x22 + 5x23 + 4x24 + 2x25 + x26)y3z2 +

(x21 + x22 + 2x23 + 2x24 + 2x25 + x26 + x27)y3z3 +

(x22 + x23 + x24 + x25 + x26)y4z0 +

(x23 + 2x24 + 3x25 + 3x26 + 3x27 + 2x28 + x29)y4z1 +

(x25 + 2x26 + 3x27 + 3x28 + 3x29 + 2x30 + x31)y4z2 +

(x28 + x29 + x30 + x31 + x32)y4z3 +

(x30)y5z0 +

(x31 + x32 + x33)y5z1 +

(x33 + x34 + x35)y5z2 +

(x36)y5z3. (7.5.7)

304

From this equation, we see that the coefficient of the term y1z2 (this corresponds to

the situation where r0 = 1 and r1 = 2) is

T (x) = x7 + 2x8 + 3x9 + 3x10 + 3x11 + 2x12 + x13. (7.5.8)

This informs us that the total search lengths range from 7 to 13, inclusive. Additionally,

we see that only one ordering had a total search length of 7 and only one had a total

search length of 13; that there were two orderings that had total search lengths of 8

and two that had total search lengths of 12; and that there were three orderings each for

search lengths of 10, 11, and 12. Notice, also, that encoded in the expansion of G(x, y, z),

is distribution information not just for the case where the exponent of y = r0 is 1 and

the exponent of z = r1 is 2, but for all the other situations where r0 ∈ {0, 1, . . . , n0} and

r1 ∈ {0, 1, . . . , n1}.
G(x, y, z, 3, 8) can be rewritten, as follows, with the use of Gaussian polynomials:

G(x, y, z, 3, 8) = G0(x, y, 3, 8) · G1(x, z, 3)

= x0

[
5

0

]
x

y0

(
x0

[
3

0

]
x

z0 + x1

[
3

1

]
x

z1 + x3

[
3

2

]
x

z2 + x6

[
3

3

]
x

z3

)
+

x4

[
5

1

]
x

y1

(
x0

[
3

0

]
x

z0 + x1

[
3

1

]
x

z1 + x3

[
3

2

]
x

z2 + x6

[
3

3

]
x

z3

)
+

x9

[
5

2

]
x

y2

(
x0

[
3

0

]
x

z0 + x1

[
3

1

]
x

z1 + x3

[
3

2

]
x

z2 + x6

[
3

3

]
x

z3

)
+

x15

[
5

3

]
x

y3

(
x0

[
3

0

]
x

z0 + x1

[
3

1

]
x

z1 + x3

[
3

2

]
x

z2 + x6

[
3

3

]
x

z3

)
+

x22

[
5

4

]
x

y4

(
x0

[
3

0

]
x

z0 + x1

[
3

1

]
x

z1 + x3

[
3

2

]
x

z2 + x6

[
3

3

]
x

z3

)
+

x30

[
5

5

]
x

y5

(
x0

[
3

0

]
x

z0 + x1

[
3

1

]
x

z1 + x3

[
3

2

]
x

z2 + x6

[
3

3

]
x

z3

)
.

In this example, our main interest is in the variability of the mean search lengths,

rather than the total search lengths, for the orderings. Since each ordering has r1+r0 = 3

305

relevant documents, we need to adapt T (x) to take this into account. The adaptation

involves dividing each exponent (which represents the total search length of an ordering)

in this function by 3. The resultant ordinary generating function for the discrete variable

X is the function

M(x) = x7/3 + 2x8/3 + 3x9/3 + 3x10/3 + 3x11/3 + 2x12/3 + x13/3.

This function encodes distribution information about the mean search length for the

orderings.

If we assume that each of the 15 lengths are equally likely, then pM(x), the probability

generating function for M(x), is

pM(x) =
1

15
M(x)

= (x7/3 + 2x8/3 + 3x9/3 + 3x10/3 + 3x11/3 + 2x12/3 + x13/3)/15. (7.5.9)

From the previous discussion, it is easy to see that

T (1) = 17 + 2 · 18 + 3 · 19 + 3 · 110 + 3 · 111 + 2 · 112 + 113

= 1 + 2 + 3 + 3 + 3 + 2 + 1

= 15

= C(5, 1) · C(3, 2).

The first and second derivatives of pM(x), with respect to x, are

p′M(x) =
1

15

(
7x4/3

3
+

16x5/3

3
+ 9x2 + 10x7/3 + 11x8/3 + 8x3 +

13x10/3

3

)

306

and

p′′M(x) =
1

15

(
28x1/3

9
+

80x2/3

9
+ 18x +

70x4/3

3
+

88x5/3

3
+ 24x2 +

130x7/3

9

)
,

respectively.

The first derivative, when evaluated at x = 1, computes μ, the mean.Therefore,

μ = p′M(1)

= (7/3 + 16/3 + 9 + 10 + 11 + 8 + 13/3)/15

= 50/15

= 10/3.

The second derivative, when evaluated at x = 1, is

p′′M(1) = (28/9 + 80/9 + 18 + 70/3 + 88/3 + 24 + 130/9)/15

= (1090/9)/15

= 218/27.

The population variance, σ2, can be computed as follows:

σ2 = p′′M(1) + p′M(1) − p′M(1)2

= 218/27 + 10/3 − (10/3)2

= 218/27 + 10/3 − 100/9

= 8/27.

Hence, the population standard deviation is σ =
√

8/27. Since a sample variance s2,

for a population of size N , always differs from the corresponding population variance

307

by a factor of N/(N − 1), the sample variance and sample standard deviation s are

s2 = 8/27 · 15/14 = 20/63 and s =
√

20/63, respectively.

Since the entire population is known, we could simply use the population variance

as our variance. However, if we are using the variance for inferential, as contrasted to

descriptive, purposes then we may want to be a little more conservative, and, instead,

use the sample variance to help construct the confidence intervals for the total search

lengths and mean search lengths.

The coefficients of the various yr0zr1 in the expansion of G(x, y, z), on page 304, seem

to indicate that the distribution of the TSL values for each coefficient are palindromic,

that is, the sequence of values for the x-values read the same from left to right as they do

from right to left. For example, in the expression that corresponds to z1y1, the successive

frequency counts are 1, 2, 3, 3, 3, 2, 1 for the TSLs 5, 6, 7, 8, 9, 10, 11, respectively. This

is an example of reciprocity. Furthermore, not only do we see symmetry of the frequency

counts around the midpoints of the distinct TSL values, when they are arranged, in order,

from the minimum to the maximum, but, we also notice that the frequency counts are

monotonically non-decreasing from the minimum TSL value to the midpoint TSL value

and that the frequency counts are monotonically non-increasing from the midpoint value

to the maximum TSL value. This is an example of unimodality.

If we can prove that the symmetry and monotonicity attributes always hold, then this

is invaluable to us in our validation efforts because that means that it is appropriate to

use a parametric test such as the t-distribution (Walpole, 2002), the normal distribution

(Walpole, 2002), or the beta distribution (Pratt et al., 1995), depending on the size of

the population and other considerations.

308

7.5.2 Two Functions That Calculate the Sums of the Minimum

and Maximum k Values in a Range of Integers

Definition 7.5.2.1. The sum-of-the-minimum-k-values function

minSum : N × N × N → N

with parameters n, k, s ∈ N in positions 1, 2, and 3, respectively, in the parameter list,

and n ≥ k, yields a value that is equal to the sum of the k consecutive nonnegative

integers that are in the range [1 + s, k + s]. This value is equal to k(1 + k)/2 + sk.

Lemma 7.5.1. The sum of the k consecutive nonnegative integers that are in the range

[1 + s, k + s] is equal to k(1 + k)/2 + sk.

Proof.

k+s∑
i=1+s

i =
k+s∑
i=1

i −
s∑

i=1

i

= (k + s)(k + s + 1)/2 − s(s + 1)/2

= k(1 + 2s + k)/2

= k(1 + k)/2 + sk.

Definition 7.5.2.2. The sum-of-the-maximum-k-values function

maxSum : N × N × N → N

with parameters n, k, s ∈ N in positions 1, 2, and 3, respectively, in the parameter list,

and n ≥ k, yields a value that is equal to the sum of the k consecutive nonnegative integers

that are in the range [n − k + 1 + s, n + s]. This value is equal to k(1 − k)/2 + (n + s)k.

309

Lemma 7.5.2. The sum of the k consecutive nonnegative integers that are in the range

[n − k + 1 + s, n + s] is equal to k(1 + k)/2 + sk.

Proof.

n+s∑
i=n−k+1+s

i =
n+s∑
i=1

i −
n−k+s∑

i=1

i

= (n + s)(n + s + 1)/2 − (n − k + s)(n − k + s + 1)/2

= k(1 − k + 2n + 2s)/2

= k(1 − k)/2 + (n + s)k.

Definition 7.5.2.3. The difference-of-sums-of-the-minimum-and-maximum-k-values func-

tion

diffSum : N × N × N → N

with parameters n, k, s ∈ N in positions 1, 2, and 3, respectively, in the parameter list,

and n ≥ k, yields a value that is equal to the difference of the sums of the k consecutive

nonnegative integers that are in the ranges [1 + s, k + s] and [n − k + 1 + s, n + s]. This

value is equal to k(n − k).

Lemma 7.5.3. The difference of the sum of the k consecutive integers in the range

[1 + s, k + s] and the k consecutive ones in the range [n − k + 1 + s, n + s] is equal to

k(n − k).

Proof.

diffSum(n, k, s) = maxSum(n, k, s) − minSum(n, k, s)

= k(1 − k)/2 + (n + s)k − (k(1 + k)/2 + sk)

310

= k(1 − k)/2 − k(1 + k)/2 + (n + s)k − sk

= k(1 − k − 1 − k)/2 + (n + s)k − sk

= −k2 + nk + sk − sk

= k(n − k).

7.5.3 The Example Continued — The Distribution of Total

Search Length Values For Feature Frequency 0

The minimum TSL value for documents with feature frequency 0, minTSL0, corresponds

to the situation where the relevant documents occupy positions n1 +1, n1 +2, . . . , n1 +r0,

inclusive, in an ordering. The maximum TSL value, maxTSL0, corresponds to the the

situation where the relevant documents occupy positions N − r0 + 1, N − r0 + 2, . . . , N ,

inclusive, in an ordering.

The TSL values for y1, when n0 = 5, n1 = 3, r0 = 1, and r1 = 2, are in the closed

interval [4, 8]. This is evidenced by the calculations below. The minimum TSL value for

those documents that do not contain the query term is

minSum(n0, r0, n1) = minSum(5, 1, 3)

= 1(1 + 1)/2 + 3 · 1

= 4

and the maximum one is

maxSum(n0, r0, n1) = maxSum(5, 1, 3)

= 1(1 − 1)/2 + (5 + 3) · 1

311

= 8.

It is also evidenced by the expression (x4 + x5 + x6 + x7 + x8)y1 in the original version

of G0(x, y, 3, 8) and by the extended version of the Cauchy binomial theorem. By this

theorem, the coefficient in G0(x, y, 3, 8) that corresponds to the situation where only one

element of the set {4, 5, 6, 7, 8} can be chosen is

q(
r0+1

2)+r0·n1

[
n0

r0

]
q

= q(
1+1
2)+1·3

[
5

1

]
q

= q4(1 + q + q2 + q3 + q4)

= q4 + q5 + q6 + q7 + q8.

7.5.4 The Example Continued — The Distribution of Total

Search Length Values For Feature Frequency 1

The minimum TSL value for documents with feature frequency 1, minTSL1, corresponds

to the the situation where the relevant documents occupy positions 1, 2, . . . , r0, inclusive,

in an ordering. The maximum TSL value, maxTSL1, corresponds to the situation where

the relevant documents occupy positions n1 − r1 + 1, n1 − r1 + 2, . . . , n1, inclusive, in an

ordering.

By the calculations below, the TSL values for z2, when n0 = 5, n1 = 3, r0 = 1, and

r1 = 2, are in the closed interval [3, 5]. The minimum TSL value for the documents that

contain the query term is

minSum(n1, r1, 0) = minSum(3, 2, 0)

= 2(1 + 2)/2 + 0 · 2

= 3,

312

and the maximum one is

maxSum(n1, r1, 0) = maxSum(3, 2, 0)

= 2(1 − 2)/2 + (3 + 0) · 2

= 5.

It is also evidenced by the expression (x3+x4+x5)z2, in the original version of G1(x, y, 3),

and by the extended version of the Cauchy binomial theorem. By this theorem, the

coefficient in G1(x, y, 3), that corresponds to the situation where exactly two distinct

elements of the set {1, 2, 3} can be chosen, is

q(
r1+1

2)
[
n1

r1

]
q

= q(
2+1
2)
[
3

2

]
q

= q3(1 + q + q2)

= q3 + q4 + q5.

7.5.5 The Example Continued — The Combined Distribution

of Total Search Length Values

The combined distribution is described by the expression

q(
r0+1

2)+r0·n1+(r1+1
2)
[
n0

r0

]
q

[
n1

r1

]
= q(

r0+1
2)+r0·n1+(r1+1

2)
[
n0

r0

]
q

[
n1

r1

]
q

= q(
1+1
2)+1·3+(2+1

2)
[
5

1

]
q

[
3

2

]
q

= q1+3+3

[
5

1

]
q

[
3

2

]
q

= q7(1 + q + q2 + q3 + q4)(1 + q + q2)

= q7(1 + 2q + 3q2 + 3q3 + 3q4 + 2q5 + q6)

313

= q7 + 2q8 + 3q9 + 3q10 + 3q11 + 2q12 + q13.

This corresponds with the expression (x7 +2x8 +3x9 +3x10 +3x11 +2x12 +x13)y1z2 from

Equation 7.5.7 on page 304. The expression

x7 + 2x8 + 3x9 + 3x10 + 3x11 + 2x12 + x13

is identical to the expression that defines T (x), the total search length, in Equation 7.5.8

on page 305. The interpretation of this is that the 8 document collection, with parameters

N = n0 + n1, where n0 = r0 + s0, n1 = r1 + s1, r0 = 1, s0 = 4, r1 = 2, and s1 = 1, over

all the possible sequences of documents, has 7 distinct total search lengths over the

1 + 2 + 3 + 3 + 3 + 2 + 1 = 15

possible sequences. Note that, just like with Equation 7.5.7 on page 304, this expression

informs us that the seven distinct total search lengths range from 7 to 13, inclusive. Also,

we see that only one ordering had a total search length of 7 and only one had a total

search length of 13; that there were two orderings that had total search lengths of 8 and

two that had total search lengths of 12; and that there were three orderings each for

search lengths of 10, 11, and 12.

7.6 Useful Definitions and Theorems

These theorems cover several aspects of expected values, variances, covariances, and

some of their linear transformations. They are useful for the discussions and formula

development in the remainder of this chapter. The proofs of these theorems are provided

in the source(s) cited for each theorem at its end. The notations and styles of exposition

314

used in the sources differed somewhat from each other and, because of that, the author

of this dissertation developed a consistent notation and style that is used to re-express

these theorems.

Definition 7.6.0.1. If X is a discrete random variable with probability distribution

f(x), then the mean or expected value of X is

μ = E[X] =
∑

x

xf(x)

Walpole (2002).

Definition 7.6.0.2. If X is a discrete random variable with probability distribution f(x)

and mean μ, then the variance of X is

σ2 = E[(X − μ)2] =
∑

x

(x − μ)2f(x).

The positive square root of the variance, σ, is called the standard deviation of X

Walpole (2002).

Theorem 7.6.1. If X is a discrete random variable with mean μ, then the variance of

X can also be expressed as

σ2 = E[X2] − μ2

Walpole (2002).

Definition 7.6.0.3. If X and Y are random variables, then the covariance of X and Y

is

Cov[X, Y] = E[XY] − E[X]E[Y]

Walpole (2002).

315

Theorem 7.6.2. If X and Y are two independent random variables, then

Cov[X, Y] = 0

Walpole (2002).

Theorem 7.6.3. If a and b are constants, X is a random variable, and E[X] is the

expected value of X , then

E[aX + b] = aE[X] + b

Walpole (2002).

Theorem 7.6.4. If a and b are constants, X is a random variable, and Var[X] is the

variance of X, then

Var[aX + b] = a2Var[X]

Walpole (2002).

Theorem 7.6.5. If X and Y are are random variables, and g(X, Y) and h(X, Y) are

functions of these variables, then

E[g(X, Y) ± h(X, Y)] = E[g(X, Y)] ± E[h(X, Y)]

Walpole (2002).

Theorem 7.6.6. If X1, X2, . . . , Xn are independent random variables, and a1, a2, . . . , an

are constants, then

V ar[a1x1 + a2x2 + · · · + anxn] = a2
1V ar[X1] + a2

2V ar[X2] + · · · + a2
nV ar[Xn]

Walpole (2002).

316

Theorem 7.6.7. If X and Y are two independent random variables, then

E[XY] = E[X]E[Y]

Walpole (2002).

Theorem 7.6.8. If X and Y are random variables for which Var[XY] exists, then

E[XY] = E[X]E[Y] + Cov[X, Y]

and

Var[XY] = (E[Y])2Var[X]

+ (E[X])2Var[Y]

+ 2E[X]E[Y]Cov[X, Y]

− (Cov[X, Y])2

+ E[(X − E[X])2(Y − E[Y])2]

+ 2E[Y]E[(X − E[X])2(Y − E[Y])]

+ 2E[X]E[(X − E[X])(Y − E[Y])2]

Mood et al. (1973); Blumenfeld (2001).

7.7 Expected Value and Variance of the Normalized

Search Length

The main result of this section is a proof that the value of A is equal to the expected

value of the normalized search length. Another important result is an expression that can

be used to calculate the variance that is associated with the normalized search length.

317

The probability mass functions (pmf s) for the total search lengths are

pT,0(x) =
[yr0]G0(x, y, n1, N)(

n0

r0

) ,

pT,1(x) =
[zr1]G1(x, z, n1)(

n1

r1

) , and

pT,G(x) =
[yr0zr1]G(x, y, z, n1, N)(

n0

r0

)(
n1

r1

) .

These are polynomials that have degrees maxSum(n0, r0, n1), maxSum(n1, r1, 0), and

maxSum(n0, r0, n1) + maxSum(n1, r1, 0), respectively. The respective means are p′T,0(1),

p′T,1(1), and p′T,G(1). Similarly, the respective variances are

p′′T,0(1) + p′T,0(1) − p′T,0(1)2,

p′′T,1(1) + p′T,1(1) − p′T,1(1)2, and

p′′T,G(1) + p′T,G(1) − p′T,G(1)2.

The corresponding means and variances for the mean search lengths can be obtained

in one of two ways: (1) alter the exponents of the addends in the pmfs for the TSLs to

reflect that the pmf is for an MSL rather than a TSL or (2) calculate the means and

variances for the TSLs, but scale them afterwards to obtain the means and variances for

the MSLs.

The first way transforms a TSL pmf into an MSL pmf by dividing the exponent of

each of the TSL’s addends by the number of relevant documents appropriate for that

pmf. These numbers are r0, r1, and r0 + r1, respectively, for the TSLs that correspond to

the relevant documents that do not contain the query term, to the relevant documents

that contain the query term, and to all of the relevant documents.

318

Therefore, the pmfs for the MSLs are

pM,0(x) =
divexp ([yr0]G0(x, y, n1, N), r0)(

n0

r0

) ,

pM,1(x) =
divexp ([zr1]G1(x, z, n1), r1)(

n0

r1

) , and

pM,G(x) =
divexp ([yr0zr1]G(x, y, z, n1, N), r0 + r1)(

n0

r0

)(
n1

r1

)

where each pmf is a function f(x) such that f(x) =
b−a+1∑

i=1

cix
ei , where the smallest and

largest exponents of x in f(x) are a and b, respectively; the coefficient of the ith addend

is ci; the exponent of the ith addend is ei = a + 1− i; and divexp(f(x), d) =
b−a+1∑

i=1

cix
ei/d

is the result of dividing each exponent of f(x) by d.

The second way to calculate MSLs from TSLs makes use of two well-known statistical

transformations (Walpole, 2002) on random variables: one for the mean (Equation 7.6.3

on page 316) and the the other for the variance (Equation 7.6.4 on page 316).

Lemma 7.7.1. The means that are associated with pM,0(x), pM,1(x), and pM,G(x) are the

same as those that are associated with

pT,0(x)/r0, pT,1(x)/r1, and pT,G(x)/(r0 + r1),

respectively.

Proof. Let b = 0, a = 1/r0, and X = TSL0. Then, by Identity 7.6.3 on page 316, the

mean that is associated with pM,0(x) is the same as the one one that is associated with

pT,0(x)/r0. The proofs for pM,1(x) and pM,G(x) are similar and are not discussed here.

Lemma 7.7.2. The variances that are associated with pM,0(x), pM,1(x), and pM,G(x) are

319

the same as those that are associated with

pT,0(x)/r2
0, pT,1(x)/r2

1, and pT,G(x)/(r0 + r1)
2,

respectively.

Proof. Let b = 0, a = 1/r0, and X = TSL0. Then, by Theorem 7.6.4 on page 316, the

variance that is associated with pM,0(x) is the same as the variance that is associated

with pT,0(x)/r2
0. The proofs for pM,1(x) and pM,G(x) are similar and are not discussed

here.

The MSL values are unnormalized. Let Mi denote the unnormalized MSL value for

an individual ordering i ∈ O, where O is the set of all orderings for a collection of

N = r0 + r1 + s0 + s1

documents, and let M̈i denote the corresponding normalized value. Any unnormalized

MSL value can be normalized by subtracting 1/2 from it and, then, dividing that result

by the number of documents in the collection (this transformation makes use of the

results from Equation 7.2.9 on page 282 and Equation 7.2.10 on page 283). Therefore,

M̈i, the normalized version of the Mi value for an individual ordering i can be computed

by this transformation:

M̈i = (Mi − 1/2)/N.

Lemma 7.7.3. The expected value, E[M̈], of the random variable M̈ is A. Its range is

in the closed interval [0, 1].

Proof. Let R = r0 + r1, let c = C(n0, r0) × C(n1, r1), and let O be the set of possible

320

orderings for an N document collection with N = r0 + r1 + s0 + s1. Then

E[M̈] = Σi∈O[((Mi − 1/2)/N) · Pr(i ∈ O)]

= Σi∈O

[
(Mi − 1/2)/N) · 1

c

]

= (Σi∈O(Mi − 1/2))/(cN)

= (cN)−1(Σi∈OMi − Σi∈O1/2)

= (cN)−1(Σi∈OMi − c/2)

= ((cN)−1Σi∈OMi) − 1

2N

= ((cN)−1Srel/R) − 1

2N

= (cNR)−1Srel − 1

2N

= (cNR)−1

[
1

2

(
n1

r1

)(
n0

r0

)
[(r1 + r0)(n1 + 1)] +

1

2

(
n1

r1

)(
n0

r0

)
r0N

]
− 1

2N

= (cNR)−1

[
1

2
c [R(n1 + 1)] +

1

2
c · r0N

]
− 1

2N

= (NR)−1

[
1

2
[R(n1 + 1)] +

1

2
r0N

]
− 1

2N

= (2NR)−1 [R(n1 + 1) + r0N] − R

2NR

= (2NR)−1(Rn1 + R + r0N − R)

=
n1R + r0N

2NR
.

Note that the expression in the last line of the derivation is the same as the expression

for A in Equation 7.2.17 on page 284. Therefore,

A = E[M̈].

321

Lemma 7.7.4. The variance, Var[M̈], of the random variable M̈ is

E[M̈2] −A2.

Proof.

Var[M̈] = E[M̈2] − (E[M̈])2

= E[M̈2] −A2.

7.8 Expected Value and Variance of the Unnormal-

ized Search Length

The main result of this section is a proof that the value of Q for a specific ranking

method is equal to the expected value of the unnormalized search length for this method.

Another important result is an expression that can be used to calculate the variance that

is associated with the unnormalized search length.

Lemma 7.8.1. The expected value of the random variable

L = N(B · M̈ + (1 − B)(1 − M̈)) + 1/2

is

E[L] = N(QA + (1 −Q)(1 −A)) + 1/2,

where B and M̈ are random variables that are assumed to be independent.

Proof. The expressions Cov(B, M̈) and Cov(1 −B, 1 − M̈) are equal to 0 because of the

322

independence assumption and Theorem 7.6.2 on page 316.

E[B · M̈] = E[B]E[M̈] + Cov[B, M̈]

= QA + Cov[B, M̈]

= QA + 0

= QA.

E[(1 − B)(1 − M̈)] = E[1 − B]E[1 − M̈]

+ Cov[1 − B, 1 − M̈]

= (1 −Q)(1 −A) + Cov[1 − B, 1 − M̈]

= (1 −Q)(1 −A) + 0

= (1 −Q)(1 −A).

Therefore,

ASL = E[L] = N(QA + (1 −Q)(1 −A)) + 1/2.

The justifications for the final equation are Theorem 7.6.3 on page 316, Theorem 7.6.5

on page 316, and Theorem 7.6.7 on page 317.

Lemma 7.8.2. The variance of B · M̈, the product of the random variables B and M̈,

assuming statistical independence, is

Var[BM̈] = A2Q(1 −Q) + QVar[M̈].

Proof. The variance can be written initially as

Var[BM̈] = (E[M̈])2V ar[B]

+(E[B])2V ar[M̈]

+Var[B]V ar[M̈].

323

Substitutions yield

Var[BM̈] = A2Q(1 −Q)

+Q2V ar[M̈]

+Q(1 −Q)Var[M̈].

Simplifications yield

Var[BM̈] = A2Q(1 −Q) + QVar[M̈].

Lemma 7.8.3. The variance of (1 − B)(1 − M̈), the product of linear transformations

of random variables B and M̈, assuming statistical independence, is

Var[(1 − B)(1 − M̈)] = (1 −A)2Q(1 −Q) + (1 −Q)Var[M̈].

Proof. Assume that B and M̈ are independent random variables. This means that

Cov(B, M̈) = 0 and that Var[BM̈] can be written as it appears below. The variance

can be written initially as

Var[(1 − B)(1 − M̈)] = (E[1 − M̈])2Var[1 − B]

+(E[1 − B])2Var[1 − M̈]

+Var[1 − B]Var[1 − M̈].

After applying Theorem 7.6.4 on page 316, this equation results:

Var[(1 − B)(1 − M̈)] = (E[1 − M̈])2Var[B]

324

+(E[1 − B])2Var[M̈]

+Var[B]Var[M̈].

Substitutions yield

Var[(1 − B)(1 − M̈)] = (1 −A)2Q(1 −Q)

+(1 −Q)2Var[M̈]

+Q(1 −Q)Var[M̈].

Simplifications yield

Var[(1 − B)(1 − M̈)] = (1 −A)2Q(1 −Q)

+(1 −Q)Var[M̈].

Lemma 7.8.4. The variance of the random variable

L = N(B · M̈ + (1 − B)(1 − M̈)) + 1/2

is

Var[L] = N2
((

2A2 − 2A + 1
)Q(1 −Q) + Var[M̈]

)
.

Proof. The sum of Var[B · M̈] and Var[(1 − B)(1 − M̈)] is

(A2 + 1 − 2A + A2
)Q(1 −Q) + Var[M̈].

325

due to Theorem 7.6.6 on page 316. After simplification, and the application of Theo-

rem 7.6.4 on page 316, the resultant formula is

N2
((

2A2 − 2A + 1
)Q(1 −Q) + Var[M̈]

)
.

7.9 Retrieval Status Value, Weights, and Document

Ranking

Before a collection of documents can be ranked, in conjunction with a query q; ranking

method rm; and parameters r1, r0, s1, s0, and N ; all the documents in the collection

must be assigned a retrieval status value (RSV). The RSV is a weight of how relevant

a document is to a query. The higher this weight, the more relevant a document is

estimated to be; the lower the weight, the less relevant a document is estimated to be.

When documents are non-ascendingly ordered by the RSV, the most relevant documents

are expected to be at the front of the sequence of ranked documents, the least relevant

documents are expected to be at the rear.

In the query-document model used in this dissertation, the RSV is the product of the

query term weight (qtw) and the document term weight (dtw), that is,

RSV = qtw ∗ dtw.

In this model, a document is either relevant or not relevant (binary relevance) and either

has a desired feature or does not have it (the dtw of a document, where the feature

occurs multiple times, is the same as the dtw of a document where the feature occurs

exactly once). For query q and ranking method rm, the dtw is always the same for each

326

document in the collection. According to the information in Table 7.1 on page 329, the

value of this weight is always positive for the coordination level matching (CLM) ranking

method. Its value for the other 5 methods may be negative, zero, or positive, depending

on the values of p, t, and possibly q for the weak 4-composition (r1, s0, r0, s1). Table 7.9

on page 329 details the relationships between the RSVs and the query and document

term weights.

This means that the RSVs for a ranked collection can have, at most, two distinct

values. These are the 5 ranking possibilities: RSVs are either (1) all zeros, (2) all positive

numbers, (3) all negative numbers, (4) a mixture of zero and positive numbers, or (5) a

mixture of zero and negative numbers. If there is a mixture of numbers, there are always

two distinct numbers, one of which is always 0. The ranking algorithm divides these

documents into two clusters — one cluster solely contains documents that have a value

of 0 for their RSV, the other cluster solely contains the documents that do not have a

value of 0 for their RSV. These two general ranking orders are depicted in Figure 7.8 on

the following page.

Possibility (1) can be viewed as a special case of either of the diagrams in Figure 7.8

when n1 = 0 is true. Possibility (2) is a special case of Figure 7.8(a) when n0 = 0 is

true. Similarly, Possibility (3) is a special case of Figure 7.8(b) when n0 = 0 is true.

Possibilities (4) and (5) correspond to Figures 7.8(a) and 7.8(b), respectively.

7.10 A Family of ASL Measures

Definition 7.10.0.4. Let fASL(N, q, a) = N(qa+(1−q)(1−a))+1/2, where N represents

the number of documents in a collection, q represents a quality of ranking value, and a

represents a normalized search length value.

327

rear

︷ ︸︸ ︷
front

︷ ︸︸ ︷

12N − 1N n1 + 1n1 + 2 n1

RSV = 0 RSV > 0(
n0

r0

) (
n1

r1

)

(a)

RSV < 0

rear

︷ ︸︸ ︷
front

︷ ︸︸ ︷

12N − 1N

RSV = 0(
n0

r0

)(
n1

r1

)

n0n0 + 1n0 + 2

(b)

Figure 7.8: The Two General Ranking Possibilities.

328

Table 7.1: Feature Weights for Several Ranking Methods.

Ranking Method Feature Weight

Best-case w = log
(

p/(1−p)
t/(1−t)

)
Worst-case w = − log

(
p/(1−p)
t/(1−t)

)
Random w =

{
Best-case weight : 1/2 of the time;

Worst-case weight : 1/2 of the time.

Decision-theoretic w = log
(

p/(1−p)
q/(1−q)

)
Inverse document frequency w = − log(t)

Coordination-level matching w = c (a positive constant)

> 00< 0

000

< 0 0 > 0

0

1

document term weight

query
term

weight

Figure 7.9: RSVs and Their Relation to Query and Document Weights.

329

With this definition, the earlier equations for ASL and ASL′ can be rewritten, respec-

tively, as

ASL = fASL(N,Q,A)

and

ASL′ = fASL(N,Q′,A′). (7.10.1)

These equations provide the best estimate of the Average Search Length for a query q and

a ranking method rm; with parameters r1, r0, s1, s0, and N ; when the quality of ranking

argument to the fASL function is positive and the associated document term weight dtwrm

is also positive. Note that the quality of ranking measure is positive for all the ranking

methods except for the worst-case ranking method, which has 0 as the value of its quality

of ranking measure.

7.10.1 The ASL′
r Measure (a refined estimate of the Average

Search Length)

A refined estimate of the Average Search Length for a query q, ranking method rm, and

a weak 4-composition (r1, s0, r0, s1) can be obtained by taking the value of the quality

of ranking method and the ranking method-specific document term weight into consid-

eration. The evidence for this assertion comes from the information in Figure 7.8 on

page 328. Notice that when the RSV is negative, all the documents that have feature

frequency 1 are at the rear of the ranked sequence in Figure 7.8(b) on page 328 rather

than being at the front as they are in Figure 7.8(a) on page 328. The implication of this

observation is that the fASL function needs to be re-parameterized in some situations.

Note that the quality of ranking value is positive for all of the ranking methods below,

330

except for worst-case ranking, where it has a value of 0.

Ranking methods with positive Q′ values always order documents with feature fre-

quency 1 at the front of a ranked sequence of documents (shown by Figure 7.8(a)) on

page 328 except when the document term weight for a weak 4-composition (r1, s0, r0, s1)

is negative. In this case, the relative order of the document clusters are reversed and

the situation in Figure 7.8(b) on page 328 occurs. To compensate for this possibility,

the ASL value must be computed by the expression fASL(N,Q, 1 − A), rather than by

fASL(N,Q,A), when the document term weight is negative.

The other situation to consider is the one in which the Q′ value is 0. This only

occurs for the worst-case ranking method. The behavior of this ranking method is the

opposite of best-case ranking. Essentially, its Average Search Length computation has

a behavior that is the opposite of its best-case counterpart. This means that when the

document term weight for a weak 4-composition (r1, s0, r0, s1) is negative, the ASL value

must be computed by the expression fASL(N,Q,A). Otherwise, it must be computed by

the expression fASL(N,Q, 1 −A).

The Average Search Length measure that results from the possible re-parameterization

is referred to as the ASL′
r measure. Here is its description.

ASL′
r =

⎧⎪⎪⎨
⎪⎪⎩

fASL(N,Q′,A′), if (Q′ > 0 and dtwrm ≥ 0) or (Q′ = 0 and dtwrm < 0);

fASL(N,Q′, 1 −A′), if (Q′ > 0 and dtwrm < 0) or (Q′ = 0 and dtwrm ≥ 0).

(7.10.2)

7.10.2 The ASL′
g Measure (the gold standard for estimating the

Average Search Length)

The value of the Average Search Length can also be obtained by mathematically mod-

eling an actual ranking algorithm. The main objects of interest are the distributions

331

of documents at the front and rear of a ranking, assuming, of course, that relevance is

binary, that a term is either present or absent in a document, and that multiple occur-

rences of a term that is present have the same significance as just one occurrence of this

term.

The ASL′
g value (i.e., the gold standard ASL′ value) is the ASL′ value that can be

obtained by performing the following actions. First, generate all the possible sequences

of ranked documents for a query q, a document collection c of N documents, a ranking

method rm, and parameters r1, r0, s1, and s0, where r1 + r0 + s1 + s0 = N, and N,

plus each of the parameters, have values that are constrained to be natural numbers.

Second, compute the total search length (TSL) for each of these sequences. Third, using

the TSLs, compute the mean search length (MSL) for each sequence by dividing its TSL

value by the number of relevant documents in the sequence. Note that each sequence has

the same number of relevant documents. Finally, compute the ASL′
g value by totaling

the MSL values and then dividing that number by the number of sequences. The result

of this is the ASL′
g value for this query q, document collection, and ranking method. The

ASL′
g value for the other combinations of these entities can be obtained by the procedure

that was just described in this paragraph.

The information in Table 7.2 on the following page is based on the information in

Figure 7.8 on page 328 and Figure 7.9 on page 329. The notation nF, nRF, nR, nRR denotes

the number of documents that are in the front cluster of a ranking, the number of relevant

documents among these nF front cluster documents, the number of documents that are

in the rear cluster of a ranking, and the number of relevant documents among these

nR rear cluster documents, respectively. Note that the distributions for the second and

third conditions in Table 7.2 on the next page are equivalent because when the condition

dtwrm = 0 holds, the retrieval status value is 0 for each document in a collection.

For a query, when every document has the same RSV, the calculation of ASL′
g is

332

greatly simplified because there is effectively only a single cluster. In this situation, we

can pretend that either the front cluster does not exist (the second condition in Table 7.2)

or that the rear cluster does not exist (the third condition in Table 7.2). These two

conditions are equivalent. In general, when every document in a collection has the same

RSV for a query, there is only a single cluster and all the documents are members of

this cluster. The information in this paragraph is very important to the discussion in

Section 8.6 (The Validation of ASL′
g).

Table 7.2: Document Distribution at the Front and Rear of An Actual Ranking.

condition nR nRR nF nRF

dtwrm > 0 n0 r0 n1 r1

dtwrm = 0 n1 + n0 r1 + r0 0 0
dtwrm = 0 0 0 n1 + n0 r1 + r0

dtwrm < 0 n1 r1 n0 r0

The Probability Generating Function Approach

We can use the results of Section 7.5 on page 298 to construct a probability generating

function for ASL′
g. The ordinary generating function for the ranked documents that are

at the front of the sequence is

FFfront(x, z, nF) =

nF∏
i=1

(1 + xiz).

The analogous ordinary generating function for the ranked documents that are at the

rear of the sequence is

FFrear(x, y, nF, N) =
N∏

i=nF+1

(1 + xiy).

333

The ordinary generating function for the entire ordering, G2(x, y, z), is the convolu-

tion of the ordinary generating functions for the two parts of the ordering, namely,

FFfront(x, z, , nF) and FFrear(x, y, nF, N):

G2(x, y, z, nF, N) = FFfront(x, z, nF) · FFrear(x, y, nF, N).

Let

F (x) = G2(x, y, z, nF, N)|y=1,z=1

be the expression that is obtained from the expansion of G2 when the value 1 is substi-

tuted everywhere that a y or z appears in the expanded form. This resultant expression,

denoted by F (x), is now a function of just one variable, namely, x, because, for a given

query, the values of nF, nRF, nR, nRR, and N can be treated as constants.

The probability generating function, PGF(x), for ASL′
g can be defined as

PGF(x, nF, nRF, nR, nRR, N) = M(x)/

((
nF

nRF

)(
nR

nRR

))
,

under the assumption that each of the
(

nF

nRF

)(
nR

nRR

)
possible orderings is equally likely and

M(x) is the result of adapting the F (x) equation to take into account that each ordering

has nRR + nRF relevant documents. The adaptation involves dividing each exponent

(which represents the total search length of an ordering) in this function by this number

of relevant documents. For example, if

F (x) = x7 + 2x8 + 3x9 + 3x10 + 3x11 + 2x12 + x13

and the number of relevant documents in each ordering is 3, then

M(x) = x7/3 + 2x8/3 + 3x9/3 + 3x10/3 + 3x11/3 + 2x12/3 + x13/3,

334

is the ordinary generating function for the random variable X. From this, ASL′
g can be

calculated by taking PGF′, the first derivative of PGF with respect to x, and evaluating

the resultant expression at x = 1. That is,

ASL′
g = PGF′(x, nF, nRF, nR, nRR, N)

∣∣
x=1.

(7.10.3)

The Combinatoric Approach

This approach, like the prior one, also makes use of the information in Table 7.2 on

page 333. In addition, it makes use of the result from Lemma 7.2.2 on page 276. Sub-

sequent discussions show that the significant difference between these two approaches to

calculating ASL′
g is that the latter approach is extremely efficient computationally for

large values of N. The advantage of the generating function approach is that it has much

to offer if there is interest in also investigating higher order moments (e.g., variance,

kurtosis, skewness) of the search length function around a constant c. The ASL′
g value is

based on information from the first moment around 0 (i.e., the mean). If this is the only

moment that one is interested in, then there is no need to use the probability generating

function approach as this second approach is much, much more computationally- and

memory-efficient than the former approach.

The first step in the derivation of ASL′
g with this combinatoric approach is to treat

the front and rear RSV clusters in a ranking as independent. To effect this, we develop

situation-specific equations for these clusters and mathematically combine them to pro-

vide an equation for ASL′
g. Since N, the number of documents in a collection, is assumed

to be at least 1, the number of RSV clusters for a collection is either 1 or 2. It is 1

only when all the documents have the same RSV. This occurs only when nR = 0 is true

or nF = 0 is true. In all other situations, there are two clusters. The next step is to

determine the total unnormalized search lengths for each of these three cases. Finally,

335

these results are combined and scaled by the total number of relevant documents to give

ASL′
g.

Lemma 7.10.1. The Average Search Length equation for this approach is

ASL′
g =

⎧⎪⎪⎨
⎪⎪⎩

N + 1

2
, if there is exactly one cluster;

MSLgold,front + MSLgold,rear

nRF + nRR

, otherwise;

where

MSLgold,front =
nRF(nF + 1)

2
,

MSLgold,rear =
nRR(nR + 1)

2
+ shift contribution, and

shift contribution = nRR · nF.

Proof. The proof is by cases.

There is exactly one cluster (i.e., nF = 0 or nR = 0, but not both).

This means that either nF = 0 is true or nR = 0 is true. These conditions cannot be

simultaneously true because the computation of the Average Search Length assumes that

there is at least one relevant document in a collection for a query. Effectively, this is a

special case because the front and the rear clusters are identical in this situation. Without

loss of generality, let N = nR + nF be the total number of documents in the collection

for a query q and let R = nRR + nRF be the total number of relevant documents in the

collection for q.

The document positions range from 1 to N, inclusive. Each of the nRF relevant

documents has the same probability of occupying any of these positions. Only one

document can occupy a position at a time. All documents must occupy one position.

By Lemma 7.2.2 on page 276, each of the N positions occurs exactly
R(N

R)
N

times in

the sample space of R-combinations for these N positions. The weights of these positions

336

are simply their position values. The sum of these weights is

N∑
i=1

i =

(
N + 1

2

)
.

Multiplying this sum by the frequencies of the positions yields

R
(

N
R

)
N

(
N + 1

2

)
,

the total weight of the positions occupied by the relevant documents in the sample space.

The MSLg value is this total weight divided by the cardinality of the sample space, that

is,

MSLg =

R(N
R)

N

(
N+1

2

)(
N
R

)
=

R

N

(
N + 1

2

)

=
R

N

(N + 1)N

2

=
R(N + 1)

2
.

Similarly, the ASL′
g value is the MSLg value divided by R, the number of relevant docu-

ments, that is,

ASL′
g = MSLg/R

=
R(N + 1)

2 R

=
N + 1

2
.

There are two clusters (i.e., nR > 0 and nF > 0).

337

From the results of the previous case, the MSL equation for the front cluster can be ob-

tained from the the MSLexact equation by substituting nRF for R and nF for N everywhere

that they occur in this equation. Therefore, we have

MSLgold,front =
nRF(nF + 1)

2
.

The MSL value for the rear cluster was obtained in a similar manner. Its equation is

MSLgold,rear =
nRR(nR + 1)

2
+ shift contribution,

where

shift contribution = nRR · nF

and represents the contribution to the MSL that the nRR relevant documents make. The

nF part of the shift contribution equation represents the number of positions that the

first position in the rear cluster is from the first position in the front cluster. The Average

Search Length is then calculated by

ASL′
g =

MSLgold,rear + MSLgold,front

nRF + nRR

.

7.11 Summary

The main contributions of this chapter were the development of combinatorial models of

the unnormalized (ASL) and normalized (A) search lengths, a proof that the probabilistic

and combinatorial formulas for A were equivalent, a demonstration of how Gaussian

338

polynomials could be used to develop a combinatoric-based formula for the ASL, how

Gaussian polynomials could be used to provide detailed distributional information on the

sums of the positions of the relevant documents in an optimal ranking, the development

of formulas for the expected value and variance of the ASL and A, and the development

of a family of ASL measures (i.e., ASL′, ASL′
r, ASL′

g) that could be weakly-ordered. The

main result of this weak order was that it is possible to state that a particular measure

is either at least as accurate, or is at most as accurate, as any of the other two ASL

variants in this family.

339

Chapter 8

Validation of the Formulas for the

Q′, A′, and ASL′ Measures

In the past several chapters, various combinatoric-based formulas were developed to help

calculate the Q′ (quality of ranking) values for the coordination level matching (CLM),

inverse document frequency (IDF), and decision-theoretic (DT) ranking methods; to

calculate the value of the A′ (normalized search length) measure; and to calculate the

value of the ASL′ (Average Search Length) measure. The Q′, A′, and ASL′ entities,

respectively, are special analogs of the Q, A, and ASL measures. These special analogs

have been defined so that singularities cannot occur when they are used to calculate

values for the Q, A, and ASL entities. In the great majority of cases, they calculate

exactly the same values as their Q, A, and ASL counterparts. The details of how the

Q′, A′, and ASL′ adaptations of these counterparts were developed can be found in

Section 4.3, which starts on page 117. Various mathematical arguments were used to

prove the validity of these formulas. This section details additional methods that were

used to provide further confidence in the formulas.

The process of validating the value of a particular measure, say Q′ , by more than one

method, is an example of a “valuable and widely used strategy [known as triangulation]

which involves the uses of multiple sources to enhance the rigour of ... research” (Robson,

2002). The common theme throughout this chapter is the validation of measures such as

Q′, A′, and ASL′ by multiple methods.

The random variables B (quality of ranking for a measure), M̈ (normalized search

length) and L (unnormalized search length) were introduced and defined in previous

chapters and are key components of the validation process. In those chapters, formulas

for the mean and variance were derived for each of these random variables. The expected

values of these random variables are the Q′, A′, and ASL′ measures, respectively. In this

validation process, the expected value and variance of each of these random variables

were calculated in two ways: by the formulas developed in earlier chapters and by statis-

tical methods and specially-developed software that obtained their input from specially-

constructed test datasets. Combinatorial generation and enumeration algorithms were

used to help populate these datasets.

In the last section of this chapter, we also discuss the estimation of Q′ values by

random sampling for the CLM and IDF ranking methods. In that section, we use well-

known statistical tests to determine if there is any significant difference between the

estimated Q′ values and the exact ones that were calculated by the techniques that were

developed in the previous chapters. During the validation process that is described in

this chapter, the efficient calculation of Q′ values became increasingly important because,

as the number of documents in a collection increased, the exponential behavior of the

algorithms caused them to require exponential amounts of computational and memory

resources. This resulted in situations where the computation of Q′ values, even for N

(the number of documents in a collection) in the low hundreds, became infeasible. In

practice, it has been found that the efficient calculation of Q′ values was not much of a

concern for small (e.g., 1 ≤ N ≤ 200) document collections but that it rapidly became a

concern as the value of N grew.

The validation that is discussed in this chapter, and the mathematical work that

341

took place in the prior chapters, plus the work that was discussed in subsequent chap-

ters, was accomplished primarily by the use of MathematicaR© (Wolfram, 2003) programs.

The other software and languages used include the statistical programming language R

(Chambers, 2008; Dalgaard, 2008; Rizzo, 2008; Spector, 2008), the mathematical statis-

tics package mathStatica (Rose and Smith, 2002), the general programming language

C (Harbison and Steele, 2002), and the general object-oriented programming language

C++ (Stroustrup, 2000).

MathematicaR© (Wolfram, 2003) is a computer algebra system that has many strengths

in the area of symbolic computation. It is used mainly in scientific and mathematical

fields, engineering, and technical computing. The use of MathematicaR© (Wolfram, 2003)

in the work for this dissertation helped to eliminate the tedium that is often associated

with many of the computations that were performed. The work for this dissertation made

use of its many mathematical functions and its support in these topical areas: calculus,

polynomial algebra, number theory, numbers and precision, equation solving, statistics,

and discrete mathematics.

The R programming language (Chambers, 2008; Dalgaard, 2008; Rizzo, 2008; Spector,

2008), is a popular, free, open source statistical programming language and environment

for statistical computing and graphics. In this dissertation, R was used to help ana-

lyze several kinds of results by applying the Kolmogorov-Smirnov (Conover, 1999) and

Wilcoxon signed ranks (Conover, 1999) tests to various datasets.

The mathStatica toolset was developed by Colin Rose and Murray Smith for doing

work in mathematical statistics (Rose and Smith, 2002), it is an add-on to MathematicaR©.

It was used to help corroborate the expected value and variance equations for the Q
measures that appeared in Chapters 5 and 6.

C (Harbison and Steele, 2002) is a general purpose programming language and C++

is the object-oriented version of the C programming language. The algorithms that

342

were used for lexical analysis, stoplists, and stemming came from code in Frakes and

Baeza-Yates (1992) that was written in C and, therefore, could not be directly used

by MathematicaR©. The solution was to use the MathematicaR© Mathlink API for C in

order to communicate with the compiled version of the code from Frakes and Baeza-

Yates (1992). In order to accomplish this, though, the C code had to undergo moderate

modifications so that it would fit into the MathematicaR© Mathlink API framework. The

author of this dissertation considered this choice to be a much better choice than trying to

reimplement the lexical analysis, stoplists, and stemming code entirely in MathematicaR©.

C++ programs were used to help with creating correct XML (Stanek, 2002) versions of

the Cystic Fibrosis datasets. Some of the XML versions of the Cystic Fibrosis datasets

that were downloaded from the World Wide Web (Berners-Lee and Fischetti, 1999) did

not pass validation by Mathematica’s XML parser. Upon inspection of these datasets,

it was found that parts of these them were not well-formed with respect to the XML

language. Other problems were also found, including that sometimes parts of what

should have been two entries had been merged into one entry.

8.1 The Validation of Q′

8.1.1 Test Data Generation

This section discusses the creation of three datasets, namely, the NAT01(N), cgeRVN,

and analyticRVN datasets. Neither of these datasets was an IR dataset. That is, they

did not contain entities such as queries, documents, or relevance judgments. Instead,

these datasets contained values that could be analyzed by statistical software, such as R,

if necessary, to determine whether the analytically-determined values for Q′ were exactly

equal to the empirically-determined versions of these values. More details are contained

in the subsequent paragraphs.

343

The first stage in the validation of the formulas for Q′
CLM, Q′

IDF, and Q′
DT; for a

collection of 1 ≤ N ≤ 200 documents with parameters r1, s0, r0, and s1; created a

dataset NAT01(N) that provided the data to calculate the random variables BCLM, BIDF,

and BDT. The NAT01(N) dataset has
(

N+3
3

)
rows and three columns (e.g., nat01 CLM,

nat01 IDF, and nat01 DT) that corresponded respectively, to the random variables just

mentioned. This dataset was populated by visiting each member of the set of weak 4-

compositions for N (denoted by W4CN), in turn, and performing the following actions

for each member: (1) construct a new row for the NAT01(N) dataset; (2) set the value for

the column corresponding to a ranking method to 1 if the member meets the qualification

criteria for this method; otherwise, set the value to 0; and (3) insert this row into the

dataset. For example, assume that the ranking method-specific criteria is met for the

CLM and IDF methods but not for the DT method. Then, the row that is inserted into

the dataset had a value of 1 for columns nat01 CLM and nat01 IDF, but had a value of 0

for column nat01 DT. At the conclusion of the visitation process, the number of rows in

the NAT01(N) dataset was equal to the cardinality of set W4CN. Note that, if the value of

N was, say 5, then the name of the dataset was NAT01(5) and that the name of the set of

weak 4-compositions for that value of N was W4C5.

For the convenience of the reader, the decision criteria mentioned in (2) and that ap-

peared in the Mean and Variance sections of the chapters for the QCLM,QIDF, and QCLM

ranking methods are repeated here. For an arbitrary member x of the set of weak 4-

compositions for N,

BCLM
x = BooleToNat(p′x > t′x),

BIDF
x = BooleToNat((p′x > t′x) or ((p′x ≤ t′x) and (t′x = 1 − ε))), and

BDT
x = BooleToNat((p′x > max(t′x, q

′
x)) or (p′x ≤ min(t′x, q

′
x))),

344

where x is a weak 4-composition of N ; p′x, t′x, and q′x are the p′, t′, and q′ values, respec-

tively, for that x; and

ε =

⎧⎪⎨
⎪⎩

N−2, if N ≥ 2;

10−4, otherwise.

The second stage processed the data in the NAT01(N) dataset to generate the expected

value and population variance associated with each of its columns. The expected value

for a column was synonymous with the Q′ value for the ranking method that corre-

sponds to that column. These generated quantities were placed in a new dataset named

cgeEVN (created by combinatorial generation and enumeration (cge)). This dataset had

10 columns:

N,

E nat01 CLM, Var nat01 CLM, nqc nat01 CLM,

E nat01 IDF, Var nat01 IDF, nqc nat01 IDF,

E nat01 DT, Var nat01 DT, and nqc nat01 DT.

The first column, N, represented the number of documents in the collection; the

second (nat01 IDF), fifth (E nat01 IDF), and eighth (E nat01 DT) columns represented

the expected values for the coordination level matching, inverse document frequency,

and decision-theoretic ranking methods, respectively; the third, sixth, and ninth columns

represented the population variances for these methods; and the fourth, seventh, and

tenth columns represented the number of weak 4-compositions that met the qualification

criteria for the respective methods for a collection of N documents. This dataset had

exactly one row for each value of N.

The third stage in the process of data generation for these validation purposes was

to construct a dataset, named analyticEVN, that had the same columns as those that

were in the cgeEVN dataset. The major difference was in the provenance of the values:

the values in this new dataset were derived from the formulas in Chapters 4–7, inclusive,

345

and the Principle of Inclusion-Exclusion (for the CLM and IDF ranking methods), rather

than by combinatorial generation and enumeration. For each value of N, these values

were compared eventually to their counterparts in the former dataset. For example, if

N = 5, the values in the row of the latter dataset, where N = 5, were compared to their

counterparts in the latter dataset where N = 5.

These first two stages (Technique 1) contrasted sharply with the third one (Technique

2) with respect to the generation of expected values and population variances: combi-

natorial generation and enumeration were used for the first two stages whereas analytic

formulas, in conjunction with the Principle of Inclusion and Exclusion, were the main-

stay of the final stage. Technique 1 was inefficient because the cardinality of set W4CN

was Θ(N3) and, even though many of its members had no possibility of being a qualify-

ing weak 4-composition, they still had to be generated and examined; Technique 2 was

much more efficient because it used solely closed-form expressions for the DT ranking

method in conjunction with the concept of divisor pairs to quickly eliminate most of

the non-qualifying weak 4-compositions at the beginning of the data generation process.

The Principle of Inclusion-Exclusion was used later to exclude any 4-compositions that

satisfied the qualification criteria but that are duplicates of other composition that also

satisfied the same criteria.

The cgeRVNand analyticRVN datasets had 200 rows each. In each dataset, the values

for the column named N ranged from 1 to 200, inclusive. The rows represented document

collections that ranged in cardinality from 1 to 200 documents. There were two reasons

that the values were in this range. The more important one was that, except for the

boundary cases (i.e., N = 0 and N = 1), the formulas for Technique (2) were based on

number-theoretic properties rather than specific values of N . The other reason was that,

due to the problem of combinatorial explosion, it was prudent, during testing, to restrict

N to a moderate size. This was a large problem for Technique 1 because the cardinality

346

of W4C(N) was a cubic function of N. It could also be a problem for Technique 2 because

the number of subsets of divisor pairs that had to be intersected was Θ(2τ(N)+1), where

τ(N) was the number of divisor pairs for N. The big-theta notation expression came from

the fact that, since the cardinality of the superset for a set of i divisor pairs was 2i, the

total number of subsets for a collection of N documents was

τ(N)∑
i=1

2i = 2τ(N)+1 − 2.

Table E.1 on page 544, Table E.2 on page 545, and Table E.3 on page 546 in Ap-

pendix E list the nqc nat01 CLM, nqc nat01 IDF, and nqc nat01 DT values for document

collections that range in size from 1 to 200 documents, inclusive. Given an nqc rm value

for a document collection with ranking method rm and size N ≥ 1, the corresponding

E nat01 rm and Var nat01 rm values can be obtained in a straightforward way by the

following two transformations:

E nat01 rm =
nqc nat01 rm(

N+3
3

)
Var nat01 rm = E nat01 rm(1 − E nat01 rm).

8.1.2 Empirical Data Supports the Validation of Q′

Software was developed to compare the 200 observations in the datasets. For each row

in the cgeRVN dataset, identified by a value of v for its column named N, the values

for the remaining columns in that row were compared to their counterparts in the row of

the analyticRVN dataset that also had v for the value of its column that was named

N. The values in corresponding rows of the datasets were found to be equal, that is, the

two techniques generated identical datasets. Therefore, it was concluded that the equa-

tions that were developed in Chapter 4, Chapter 5, and Section 6.1 through Section 6.3,

347

inclusive, to compute the ranking method-specific Q values, are valid.

8.2 The Validation of Q′ Estimates That Were Ob-

tained by Random Sampling

Table 8.1 on the following page shows the minimum sample sizes for estimating Q and

Q′ values with a margin of error of either .01 or .05 for several document collection sizes.

The sample size calculation formula that was used in this dissertation was the one from

Levy and Lemeshow (2008):

n ≥ z2NV 2
x

z2V 2
x + (N − 1)ε2

, (8.2.1)

where n is the minimum sample size, ε is the margin of error, z is the critical value for

a 1 − ε confidence interval (z = 1.95996 for a 95% confidence interval; z = 2.57583 for a

99% confidence interval), N is the population size, and V 2
x is the estimate of the variance.

The true variance is generally unknown and often must be estimated from the range

R of possible values. For Q, the lower bound of this range was 0 and the upper bound

was 1, thereby giving a range of R = 4 − 0 = 4. A common technique that is used to

estimate the sample variance is the R/4 method (Mendenhall et al., 1971; Browne, 2001;

Hozo et al., 2005). With this method, the sample variance estimate is the range divided

by 4. For Q, this meant that

V 2
x = R/4

= (1 − 0)/4

= 1/4.

348

With this result, Inequality 8.2.1 on the previous page simplifies to

n ≥
⌈

z2N/4

z2/4 + (N − 1)ε2

⌉
. (8.2.2)

Table 8.1: Minimum Sample Sizes for Estimating Q With the Specified Margin of Error.

N # of weak 4-comps ME = .01 ME = .05
1 4 4 4
5 56 56 49

101 286 282 165
102 176851 15165 384
103 167668501 16586 385
104 166766685001 16588 385
105 166676666850001 16588 385
106 166667666668500001 16588 385
107 166666766666685000001 16588 385
108 166666676666666850000001 16588 385
109 166666667666666668500000001 16588 385

1010 166666666766666666685000000001 16588 385

8.2.1 Test Data Generation

Inequality 8.2.2 was used to determine the minimum sample sizes for document collections

with sizes that ranged from 1 to 200, inclusive. These sizes were for two margins of error

(i.e., .01 and .05) and were used to estimate the Q′
CLM and Q′

IDF values for all 200

collection ranges. A dataset was created to store these values. Since these values are

not queries, documents, or relevance judgments, this dataset is not an IR dataset. This

dataset had 7 columns:

N,

q CLMgold, q CLM01, q CLM05,

q IDFgold, q IDF01, and q IDF05.

349

This dataset contained one row for each distinct value of N, for a total of 200 rows.

The first column, N, of a row represented the number of documents in a collection.

The second column represented the exact (i.e., actual) Q′
CLM value. The third and

fourth columns represented Q′
CLM values that were estimated from random samples with

.01 and .05 margins of error, respectively. The remaining three columns were the IDF

counterparts of the second, third, and fourth columns, respectively.

8.2.2 Empirical Data Supports the Validation of Q′ Estimates

That Were Obtained by Random Sampling

The Wilcoxon signed ranks test (with continuity correction) (Conover, 1999) was run on

selected columns to determine if there was any significant difference between the means of

the exact Q′ values and their associated means of the estimated values. The 4 hypotheses

and their significance levels are listed in Table 8.2 on the next page, along with the p-

values that were computed by the Wilcoxon signed ranks tests. Each of the p-values were

large and indicated that the differences in the means being compared were well within

the differences expected under the null hypotheses. Therefore, there was no reason to

suspect that the null hypotheses were false.

The practical consequence of these results was that, based on collection size of less

than or equal to 200 documents, random sampling with a .05 margin of error sufficed for

Q′ estimation. If more confidence in the estimated value was required, or desired, then

the Q′ values could be estimated with a smaller margin of error.

8.3 The Validation of A′

The strategy for validating A′, for a document collection of size N ≥ 1, were guided by

the sets of relationships that are enumerated in Table 8.3 on page 353 and in Table 8.4

350

Table 8.2: Wilcoxon signed ranks test with continuity correction (α = 0.01, two-tailed).

H0 : q CLMgold = q CLM01 H0 : q CLMgold = q CLM05

H1 : q CLMgold �= q CLM01 H1 : q CLMgold �= q CLM05

p−value = 0.7215 p−value = 0.1607
action: fail to reject the null hypothesis action: fail to reject the null hypothesis

H0 : q IDFgold = q IDF01 H0 : q IDFgold = q IDF05

H1 : q IDFgold �= q IDF01 H1 : q IDFgold �= q IDF05

p−value = 0.7273 p−value = 0.2227
action: fail to reject the null hypothesis action: fail to reject the null hypothesis

on page 353 for various values of p and t. Jointly, these values defined 12 categories, each

with a set of three relationships between pairs of variable values (i.e., p and t, p′ and t′,

A and A′). Table 8.3 on page 353 enumerates the 9 categories of relationships that exist

when a collection contains at least one relevant document and Table 8.4 on page 353

enumerates the three categories of relationships that exist for a collection that does not

have any relevant documents.

The strategy for validating A′ consisted of both exhaustive and selective checking

of the sets of three analytically-determined conditions that were associated with the 12

categories across different ranges of collection cardinalities. For a particular value of

N ≥ 1 and a weak 4-composition w for that value, w was a member of exactly one of

these 12 categories.

The exhaustive checking involved the enumeration of all the weak 4-compositions for

1 ≤ N ≤ 200, determining which of the 12 categories each weak composition was a

member of, and then determining if the set of three relationships for that category held

for this weak composition. Similarly, the selective checking involved the enumeration of

351

all the weak 4-compositions for 201 ≤ N ≤ 400, determining which of the 11 (instead

of 12) categories each weak composition was a member of, and then determining if the

set of three relationships for that category held for this weak composition. The excluded

category was the one in Table 8.3 on the following page where the joint conditions 0 <

p < 1 and 0 < t < 1 hold. The main reasoning behind excluding this category was

combinatorial explosion and is discussed in greater detail in Section 8.3.3. Essentially,

the selective checking only involved the verification of what can be considered boundary

conditions (i.e., p is either undefined or has the value 0 or 1 whereas t has the value 0 or

1). This is discussed further in Section 8.3.1.

The general conditions for the sameness, or difference, of the A and A′ values in

Table 8.3 on the next page and Table 8.4 on the following page are enumerated in the

first two lines of each cell in the square matrix that is depicted in Table 8.3 on the next

page. The third line of each cell in this table shows that the values for the A and A′

measures are the same for the joint conditions on the main diagonal of the matrix because

−p + t = −p′ + t′

holds for each of the 3 cells there. These conditions do not hold in the other 6 cells of

the figure.

Note that the A measure is only defined for document collections that have at least one

relevant document. By contrast, the analogous measure, A′, is defined for all document

collections that are parameterized by the variables r1, s0, r0, and s1, even if the collection

does not have any relevant documents for a particular query q.

8.3.1 Boundary Conditions

There were only 5 boundary conditions that had to be considered in the validation efforts

for A′. Therefore, the only members of the set of weak 4-compositions that needed to

352

Table 8.3: The relationships between p, t, p′, t′,A, and A′ when a collection has at least
one relevant document (both A and A′ are defined for each of the 9 categories).

t = 0 0 < t < 1 t = 1
p = t = 0 p = 0, p′ = ε p = 0, t = 1

p = 0 p′ = t′ = ε t = t′ p′ = ε, t′ = 1 − ε
A = A′ A �= A′ A �= A′

p = p′, t = 0 p = p′ p = p′, t = 1
0 < p < 1 t′ = ε t = t′ t′ = 1 − ε

A �= A′ A = A′ A �= A′

p = 1, t = 0 p = 1, t = t′ p = t = 1
p = 1 p′ = 1 − ε, t′ = ε p′ = 1 − ε p′ = t′ = 1 − ε

A �= A′ A �= A′ A = A′

Table 8.4: The relationships between p, t, p′, t′,A, and A′ when a collection does not
have any relevant documents (A′ is defined, but A is undefined for each of the three
categories).

t = 0 0 < t < 1 t = 1
p′ = t′ = ε, t = 0 p′ = ε, t = t′ p′ = ε, t = 1, t′ = 1 − ε

p is undefined A is undefined A is undefined A is undefined
A′ = 1/2 A′ = (1 − ε + t′)/2 A′ = 1 − ε

353

be examined were those where at least one of the following 5 conditions was true: (1)

p was undefined, (2) p = 0, (3) t = 0, (4) p = 1, or (5) t = 1. These conditions were

associated with Scenario 1 (none of the documents were relevant), Scenario 2 (none of

the relevant documents contained the query term), Scenario 3 (none of the documents

contained the query term), Scenario 4 (all the relevant documents contained the query

term), and Scenario 5 (all documents contained the query term) below, respectively.

Table 8.5 enumerates them and other pertinent information.

The A measure possibly differs from its A′ counterpart only in 5 scenarios (see Ta-

ble 8.5). In each of these scenarios, the sum r1 + s0 + r0 + s1 equals N. The � (star) in

this table represents an integer value in the closed interval [0, N] whereas the + (plus)

represents an integer value in the closed interval [1, N] . The symbol ε represents a small

value that is close to 0 and is a value that can never occur in the range of possible values

for p or t when N ≥ 1. Its value is N−2 when N ≥ 2 and is 10−4 otherwise.

Table 8.5: Special Scenarios for A and A′ (Before Subsumption).

#
weak

Scenario r1 s0 r0 s1 Comment 4-comps A A′

1 0 � 0 � p is undefined, p′ = ε N + 1 undefined 1 − ε

2 0 � � � p = 0, p′ = ε
(

N+2
2

)
1+t
2

1−ε+t′
2

3 0 � � 0 t = 0, t′ = ε N + 1 1−p
2

1−p+ε
2

4 + � 0 � p = 1, p′ = 1 − ε
(

N+1
2

)
t
2

ε+t′
2

5 + 0 0 + t = 1, t′ = 1 − ε N − 1 1 − p
2

1 − p′+ε
2

Scenario 1: None of the documents were relevant

The value of r1 + r0 is 0; this means that there are no relevant documents and, therefore,

p is undefined. The A′ measure is defined for this scenario because it is a function of

both p′ and t′, which are defined for this scenario.

354

Lemma 8.3.1. The cardinality of the set of weak 4-compositions that correspond to

Scenario 1 is N + 1.

Proof. The r1 and r0 parameters are effectively constants because their values are fixed at

0. The two remaining parameters can have any integer value in the closed interval [0, N] ,

subject to the constraint that s0 + s1 = N. Therefore, this problem has been reduced to

finding the number of weak 2-compositions for N. By Equation 2.2.2 on page 26, this

number is

(
N + 2 − 1

2 − 1

)
=

(
N + 1

1

)

= N + 1.

Scenario 2: None of the relevant documents contained the query term

The number of relevant documents with feature frequency 1 is fixed at 0 (i.e., r1 = 0).

The values of all the other parameters are free to vary.

Lemma 8.3.2. The cardinality of the set of weak 4-compositions that correspond to

Scenario 2 is
(

N+2
2

)
.

Proof. The r1 parameter is effectively a constant because its value is fixed at 0. The three

remaining parameters can have any integer value in the closed interval [0, N] , subject to

the constraint that s0 + r0 + s1 = N. Therefore, this problem has been reduced to finding

the number of weak 3-compositions for N. By Equation 2.2.2 on page 26, this number is

(
N + 3 − 1

3 − 1

)
=

(
N + 2

2

)
.

355

Scenario 3: None of the documents contained the query term

The number of relevant and non-relevant documents with feature frequency 1 is fixed at

0 (i.e., r1 + s1 = 0). The values of all the other parameters are free to vary.

Lemma 8.3.3. The cardinality of the set of weak 4-compositions that correspond to

Scenario 3 is N + 1.

Proof. The r1 and s1 parameters are effectively constants because their values are fixed at

0. The two remaining parameters can have any integer value in the closed interval [0, N] ,

subject to the constraint that s0 + r0 = N. Therefore, this problem has been reduced to

finding the number of weak 2-compositions for N. By Equation 2.2.2 on page 26, this

number is

(
N + 2 − 1

2 − 1

)
=

(
N + 1

1

)

= N + 1.

Scenario 4: All the relevant documents contained the query term

The number of relevant documents with feature frequency 1 is positive (i.e., r1 > 0), the

number of relevant documents with feature frequency 0 is zero (i.e., r0 = 0). The values

of all the other parameters are free to vary.

Lemma 8.3.4. The cardinality of the set of weak 4-compositions that correspond to

Scenario 4 is
(

N+1
2

)
.

Proof. The r0 parameter is effectively a constant because its value is fixed at 0. The r1

parameter must have a value in the closed interval [0, 1]. The two remaining parameters

can have any integer value in the closed interval [0, N] , subject to the constraint that

356

r1 + s0 + s1 = N. Therefore, this problem has been reduced to finding the number of

weak 3-compositions for N − 1. By Equation 2.2.2 on page 26, this number is

(
(N − 1) + 3 − 1

3 − 1

)
=

(
N + 1

2

)
.

Scenario 5: All documents contained the query term

The number of documents with feature frequency 1 is positive (i.e., r1 > 0, s1 > 0), the

number of documents with feature frequency 0 is zero (i.e., r0 + s0 = 0).

Lemma 8.3.5. The cardinality of the set of weak 4-compositions that correspond to

Scenario 5 is N − 1.

Proof. The s0 and r0 parameters are effectively constants because their values are fixed

at 0. The two remaining parameters can have any integer value in the closed interval

[1, N] , subject to the constraint that r1 + s1 = N. Therefore, this problem has been

reduced to finding the number of (strong) 2-compositions for N − 2. By Equation 2.2.1

on page 26, this number is

(
N − 1

2 − 1

)
=

(
N − 1

1

)

= N − 1.

357

8.3.2 The Determination of Cardinalities for Two Combined

Sets of Boundary Conditions

In this subsection, we determine the cardinalities of disjoint sets of boundary condi-

tions. More specifically, we determine the cardinality of the combined sets of weak

4-compositions that correspond to the first three scenarios (i.e., Scenarios 1, 2, 3) and

the last two scenarios (i.e., Scenarios 4, 5). These sets of scenarios corresponded, re-

spectively, to (a) the total number of weak 4-compositions when none of the relevant

documents contained the query term and (b) the number of weak 4-compositions when

there was at least one relevant document and every relevant document contained the

query term. The remainder of this subsection discusses how to determine the values for

(a) and (b).

The Number of Weak 4-Compositions When None of the Relevant Documents

Contain the Query Term

The goal of the next few paragraphs is to determine the cardinality of the combined sets

of weak 4-compositions that correspond to the first three scenarios (i.e., Scenarios 1, 2,

3). A reasonable first attempt at determining this grand cardinality would simply sum

the cardinalities for the first three scenarios. The sum of these cardinalities is

(N + 1) +

(
N + 2

2

)
+ (N + 1) = 2(N + 1) +

(
N + 2

2

)
.

Unfortunately, this sum counts some elements twice and others thrice. For example, when

N equals 5, (r1, s0, r0, s1) = (0, 4, 0, 1) is counted twice and (r1, s0, r0, s1) = (0, 5, 0, 0) is

counted three times. The reason for this overcount is indicated by the r1, s0, r0, s1 patterns

in Table 8.5 on page 354.

These patterns show that some members of the set that corresponds to the situation

358

where none of the documents are relevant (i.e., Scenario 1) are also members of the set

that corresponds to the situation where none of the documents contain the query term

(i.e., Scenario 3), and vice versa. Also, they show that some members of the set for the

situation that corresponds to none of the relevant documents containing the query term

(i.e., Scenario 2) are members of the other two sets. Finally, they show that all members

of the sets for Scenarios 1 and 3 are members of the set for Scenario 2. Hence, the set

of weak 4-compositions that are associated with the pattern for Scenario 2 subsumes the

sets of weak 4-compositions that are associated with the patterns for Scenarios 1 and 2.

Lemma 8.3.6. The cardinality of the total set of weak 4-compositions that correspond

to the combined patterns for Scenarios 1, 2, and 3 is the same as the cardinality of the

set of weak 4-compositions that correspond to the pattern for Scenario 2.

Proof. The r1, s0, r0, s1 patterns in Table 8.5 on page 354 show that the set of weak

4-compositions for Scenario 2 subsumes those for Scenarios 1 and 3. Since the part of

the patterns that are associated with the r1 and s0 parameters are identical for all three

scenarios, we only need to inspect their r0 and s1 parts. The �’s in the r0 and s1 parts for

Scenario 2 are associated with either another � or a zero for Scenarios 1 and 3. Due to

a � having the same meaning in each of the scenarios, and also to it being more general

than a zero, the r0 and s1 parts for Scenario 2 subsume their counterparts for Scenarios

1 and 3. From this we can conclude that the set of weak 4-compositions for Scenario 2

subsume those for Scenarios 1 and 3.

The Number of Weak 4-Compositions When There is at Least One Relevant

Document and Every Relevant Document Contains the Query Term

Similar to the goal for the first three scenarios, the goal of the next few paragraphs is to

determine the cardinality of the combined sets of weak 4-compositions that correspond

to the last two scenarios (i.e., Scenarios 4,5). Like before, a reasonable first attempt at

359

determining this grand cardinality would simply sum the cardinalities for the last two

scenarios. The sum of these cardinalities is

N − 1 +

(
N + 1

2

)
.

Unfortunately, this sum counts some elements twice. For example, when N equals 5,

(r1, s0, r0, s1) = (1, 0, 0, 4) is counted twice. The reason for this overcount is indicated by

the r1, s0, r0, s1 patterns in Table 8.5 on page 354.

These patterns show that some members of the set that corresponds to the situation

where every relevant document contains the query term (i.e., Scenario 4) are also members

of the set that corresponds to the situation where every document contains the query

term (i.e., Scenario 5) and all members of the set for Scenario 5 are members of the

set for Scenario 4. Hence, the set of weak 4-compositions that are associated with the

pattern for Scenario 5 subsumes the set of weak 4-compositions that are associated with

the pattern for Scenario 5.

Lemma 8.3.7. The cardinality of the total set of weak 4-compositions that correspond

to the combined patterns for Scenarios 4 and 5 is the same as the cardinality of the set

of weak 4-compositions that correspond to the pattern for Scenario 4.

Proof. The r1, s0, r0, s1 patterns in Table 8.5 on page 354 show that the set of weak

4-compositions for Scenario 4 subsumes the one for Scenario 5. Since the part of the

patterns that are associated with the r1 and r0 parameters are identical for the two

scenarios, we only need to inspect their s0 and s1 parts. The �’s in the s0 and s1 parts for

Scenario 4 are associated with either another � or a + for Scenario 5. Due to a � having

the same meaning in each of the scenarios and also to it being more general than a +,

the s0 and s1 parts for Scenario 4 subsume their counterparts for Scenario 5. From this

we can conclude that the set of weak 4-compositions for Scenario 4 subsumes the set for

360

Scenario 5.

The Number of Weak 4-Compositions For the Combined Sets of Boundary

Conditions

Table 8.6 lists the combined sets of boundary conditions. From the information there,

the rest of this discussion only needs to concern itself with combined sets A and B. These

are exactly the ones that represent the only weak 4-compositions where corresponding

values of A and A′ differ in a document collection of size N. The remainder of the proof

for this assertion is handled by Lemma 8.3.8.

Table 8.6: Combined Sets of Boundary Conditions for A and A′ (After Subsumption).

Combined Sets of Boundary Conditions r1 s0 r0 s1 # weak 4-comps

A (1, 2, 3) 0 � � �
(

N+2
2

)
B (4, 5) + � 0 �

(
N+1

2

)

Lemma 8.3.8. The number of corresponding A and A′ values that are different for the

weak 4-compositions that are in Scenarios A and B in a document collection of size N is

2

(
N

2

)
. (8.3.1)

Proof. First, we must establish that the sets that are associated with the two combined

scenarios are disjoint. This is readily done by noticing that the r1 parameter for the

first combined scenario must always be a zero whereas the one for the second combined

scenario must always be a positive number. Clearly, on this basis alone, the sets must be

disjoint. The advantage to determining that these sets are disjoint is that the calculations

for the number of situations in each set can be performed independently of each other.

Once these numbers have been determined, we can simply add them in order to obtain

361

the overall, or grand, total because we do not have to worry about the possibility of any

overlap between the members of the sets that correspond to Combined Sets A and B.

Second, using the information in Tables 8.5 on page 354 and 8.6 on the previous

page, we calculate the cardinalities for each combined scenario in the cases below and

total them. The expression for Equation 8.3.1 on the preceding page is the simplified sum

of the expressions in Equation 8.3.2 on the next page and Equation 8.3.3 on page 364 .

Combined Set A (the combining of boundary condition sets 1, 2, and 3).

Several members of the set of weak 4-compositions corresponding to this combined set

of boundary conditions have an undefined p value when their r1 and r0 values are both

0. For each of these members, A does not have a value because p is undefined. A′, by

contrast, has a value of 1− ε. Hence, A and A′ are incomparable for these members, and

there are (
N + 2 − 1

2 − 1

)
= N + 1

of them because s1 + s0 = N when r1 + r0 = 0. Basically, due to these conditions, the

problem of determining how many members of this kind that are in the combined set

can be reduced to the problem of determining the number of weak 2-compositions for

N. This is indicated by the entries in the first row of Table 8.7 on the next page. The

number of weak 4-compositions for the other two conditions that are enumerated in this

table can be determined in a similar manner.

From the pattern for the A = A′ condition, the number of weak 4-compositions

for this pattern reduces to determining the number of weak 2-compositions for N − 1

because r1 = s1 = 0 and the value of s1 must be at least 1. Therefore, the number of

weak 4-compositions for this pattern is

(
(N − 1) + 2 − 1

2 − 1

)
=

(
N

1

)
= N.

362

The number of weak 4-compositions for the A �= A′ condition reduces to determining

the number of weak 3-compositions for N − 2 because r1 = 0 and the values of r0 and

s1 must be at least 1. Therefore, the number of weak 4-compositions that are associated

with this condition is

(
(N − 2) + 3 − 1

3 − 1

)
=

(
N

2

)
. (8.3.2)

Table 8.7: Combined Set of Boundary Conditions A (The Number of Weak 4-Composi-
tions When None of the Relevant Documents Contain the Query Term).

Condition r1 s0 r0 s1 # weak 4-comps

A is undefined 0 � 0 � N + 1
A = A′ 0 � + 0 N

A �= A′ 0 � + +
(

N
2

)
These three conditions are mutually exclusive. This fact can be verified by showing

that the sums of the expressions for their respective numbers of weak 4-compositions

total
(

N+2
2

)
, the expression that appears in the first row of Table 8.6 on page 361, i.e.,

(N + 1) + N +

(
N

2

)
= (2N + 1) + N(N − 1)/2

= (4N + 2 + N(N − 1))/2

= (4N + 2 + N2 − N)/2

= (3N + 2 + N2)/2

= (N + 2)(N + 1)/2

=

(
N + 2

2

)
.

Combined Set B (the combining of boundary condition sets 4 and 5).

From the pattern for the A = A′ condition, the number of weak 4-compositions for this

363

pattern reduces to determining the number of weak 2-compositions for N − 1 because

s0 = r0 = 0 and the value of r1 must be at least 1. Therefore, the number of weak

4-compositions for this pattern is

(
(N − 1) + 2 − 1

2 − 1

)
=

(
N

1

)
= N.

The number of weak 4-compositions for the A �= A′ condition reduces to determining

the number of weak 3-compositions for N − 2 because r0 = 0 and the values of r1 and

s0 must be at least 1. Therefore, the number of weak 4-compositions that are associated

with this condition is

(
(N − 2) + 3 − 1

3 − 1

)
=

(
N

2

)
. (8.3.3)

Table 8.8: Combined Set of Boundary Conditions B (The Number of Weak 4-Composi-
tions When There is at Least One Relevant Document and Every Relevant Document
Contains the Query Term).

Condition r1 s0 r0 s1 # weak 4-comps

A = A′ + 0 0 � N

A �= A′ + + 0 �
(

N
2

)

These two conditions are mutually exclusive. This fact can be verified by showing

that the sums of the expressions for their respective numbers of weak 4-compositions

total
(

N+1
2

)
, the expression that appears in the second row of Table 8.6 on page 361, i.e.,

N +

(
N

2

)
= N + N(N − 1)/2

= (2N + N(N − 1))/2

= (2N + N2 − N)/2

= (N2 + N)/2

364

= N(N + 1)/2

=

(
N + 1

2

)
.

8.3.3 Test Data Generation

The information in Figure 8.3 on page 353 and Figure 8.4 on page 353 was used to help

construct two test programs. The first program generated all the weak 4-compositions for

document collections where 1 ≤ N ≤ 200. The second program only generated weak 4-

compositions for 11 of the 12 categories listed in these figures. That is, it only generated

compositions for the boundary conditions. The excluded category was the one in the

former figure where the conditions 0 < p < 1 and 0 < t < 1 are jointly true. This

latter program handled verification for collections where 201 ≤ N ≤ 400. There were two

main reasons for working with restricted versions of the sample space for this program:

to establish more confidence in the formula for A′ and because of the adverse effects of

combinatorial explosion that were observed with the execution of the first test program.

Each weak 4-composition in the first test program was assigned to 1 of 12 mutually

exclusive categories. Nine of the categories came from those listed in Figure 8.3 on

page 8.3, the other three came from Figure 8.4 on page 353. The conditions in the box

for each category in the figures specify the validation criteria for that category.

For example, when the joint condition p = 0 and t = 0 holds for a given weak

4-composition, it should also be the case that both the corresponding p′ and t′ values

are equal to the appropriate ε for the number of documents in that collection. The

test program computed these values and checked to see if they satisfied the expected

conditions. The test program also checked to see if the computed A and A′ values were

equal. If an affirmative answer was obtained for both of these situations, then the given

365

weak 4-composition passed validation; if not, then it failed validation.

The generation and validation of weak 4-compositions, for even small to moderate

values of N, was time- and memory-intensive. For example, it required over 18 hours

of real-time on the writer’s personal computer to generate and validate all of the weak

4-compositions for 1 ≤ N ≤ 200. The major reason for this was that a large number of

sample points had to be generated due to the cardinality of the set of weak 4-compositions

for N being a cubic function of N. This cardinality grew very rapidly as N increased.

The number of weak 4-compositions that had to be generated and validated for just the

first 200 positive values of N was

200∑
N=1

(
N + 3

3

)
= 70, 058, 750.

As was mentioned earlier, the second test program validated weak 4-compositions

when 201 ≤ N ≤ 400. The problem of combinatorial explosion, even for values of N

as small as a few hundred, was daunting during this validation process and became

exponentially more so as the value of N increased. The time involved in all the weak

4-compositions for 201 ≤ N ≤ 400 would take several days on the writer’s computer.

Since (1) the largest number of weak 4-compositions fell into the category where the

conditions 0 < p < 1 and 0 < t < 1 were jointly true and (2) the results obtained by

the first test program passed validation, it was decided to exclude, from validation, the

weak 4-compositions from (1). This left, for validation, only the weak 4-compositions

that were associated with the boundary conditions.

By the information in Table 8.6 on page 361, the second test program only had to

validate

(
N + 2

2

)
+

(
N + 1

2

)

366

weak 4-compositions for each value of N. The growth rate of the cardinality of this reduced

set of weak 4-compositions was quadratic (shown by Lemma 8.3.9), rather than cubic as

was the growth rate for the non-reduced set of weak 4-compositions. In practical terms,

this made the additional validation efforts feasible for 201 ≤ N ≤ 400 because using an

unrestricted sample space would result in the generation and validation of slightly over

one billion weak 4-compositions (demonstrated by the sum for Equation 8.3.4) versus

approximately 19 million of these kinds of weak compositions (demonstrated by the sum

for Equation 8.3.5 on page 367). The difference between these two sums was over an

order of magnitude.

400∑
N=201

(
N + 3

3

)
= 1, 023, 508, 750. (8.3.4)

400∑
N=201

((
N + 2

2

)
+

(
N + 1

2

))
= 18, 847, 100. (8.3.5)

Lemma 8.3.9. The growth rate of the cardinality of the reduced set of weak 4-compositions

for a document collection of size N is quadratic.

Proof.

(
N + 2

2

)
+

(
N + 1

2

)
=

(N + 2)(N + 1)

2
+

(N + 1)N

2

=
N2 + 3N + 2 + N2 + N

2

=
2N2 + 4N + 2

2

= N2 + 2N + 1

= Θ(N2).

367

8.3.4 Empirical Data Supports the Validation of A′

Two Mathematica R© (Wolfram, 2003) programs were written to implement the test pro-

grams. One program performed exhaustive testing for the sets of weak 4-compositions for

document collections where 1 ≤ N ≤ 200 and the other program did boundary condition

testing for document collections where 201 ≤ N ≤ 400.

These test programs were run and the expected values were compared to the actual

values. The expected and actual values matched exactly for all 70,058,750 weak 4-

compositions generated and examined by the first test program. The same results were

observed for the 18,847,100 weak 4-compositions examined by the second test program.

In addition to performing 11 of the 12 category tests that the program for exhaustive

testing did, the second program also computed the numbers of weak 4-compositions that

met the three conditions in Table 8.7 on page 363 and the 2 conditions in Table 8.8

on page 364. These expected number were compared to the actual numbers of weak

4-compositions for the sets that corresponded to each of these 5 conditions. In all cases,

the expected and actual values were identical. For example, when N = 250, the expected

values were, respectively,

card(A is undefined, combined set A, 250) = 50 + 1 = 251,

card(A = A′, combined set A, 250) = 250,

card(A �= A′, combined set A, 250) =

(
250

2

)
= 31, 125,

card(A = A′, combined set B, 250) = 250, and

card(A �= A′, combined set B, 250) =

(
250

2

)
= 31, 125,

where card(cond, combSet, N) denotes the cardinality of the combined set combSet, for

368

a document collection of size N, when its members are restricted to those that satisfy

condition cond. The conclusion from the results of these tests was an extremely high

confidence level that the equation developed in this dissertation for calculating the A′

measure is correct.

8.4 The Validation of ASL′

The vast majority of the effort that was involved in validating ASL′ was subsumed by

the validation efforts for Q′ and A′. The major remaining tasks were to compare selected

ASL values with selected ASL′ values for several document collection sizes.

The weak 4-compositions (that the ASL′ values are based on) for a specific N were

those with r1 and r0 components that indicated there was at least one relevant document

(i.e., r1 + r0 > 0 was true) for the associated query. This resultant set of weak 4-

compositions has almost as many members as an unfiltered set because the r1 + r0 > 0

filter only excludes N + 1 members of the unfiltered set. This is a negligible amount of

members to exclude because

lim
N→∞

N + 1(
N+3

3

) = 0.

This resultant set for N was divided into two groups. The first group contained all

the members for which the conditions 0 < p < 1 and 0 < t < 1 were simultaneously true;

the second group contained only members not meeting either of those conditions. The

members in the first group were those that should have identical ASL and ASL′ values

because their corresponding p and p′ values should be identical and their corresponding

t and t′ values should also be identical. The members of the second group were all those

where the singularity-handling technique developed in a previous chapter might have

an impact on the calculation of the p′ and t′ values. In general, the members of this

369

group were normally expected to have different p and p′ values. Similarly, they were also

expected to normally have different t and t′ values.

8.4.1 Test Data Generation

The set W of weak 4-compositions for a document collection of size 200 was created.

Three mutually exclusive subsets A, B, and C were created from W in the following way:

the 201 members of W that corresponded to weak 4-compositions that had no relevant

documents were placed in A, all the members of W where the conditions 0 < p < 1 and

0 < t < 1 were simultaneously true were placed in B, and the remaining members of W

were placed in C.

8.4.2 Empirical Data Supports the Derivation of ASL′

Since the ASL is undefined for queries that do not have any relevant documents, the part

of the validation process that involved members of set A only needed to compute the

ASL′ values for the 201 members of set A and compare them to the manually-calculated

ASL′ values for these members. This was done and it was verified that the actual values

and the expected values were exact matches.

The ASL value for each member of set B was expected to be equal to its ASL′

counterpart. This expectation was verified for each member of B.

The ASL and ASL′ values were computed for each member of C and compared to

each other. Except for the situation where

p − t = p′ − t′,

for a member of C, the ASL and its ASL′ values are expected to be different. This was

verified to be true for each member of C.

370

8.5 The Validation of ASL′
r

The validation of this variant of the ASL′ measure, namely, ASL′
r, first had to develop

criteria for the validation.The first set of criteria were conditions for which the ASL′
r, and

ASL′ values should always agree for a specific weak 4-composition and ranking method.

Two conditions emanated from this phase. The second set of criteria involved the han-

dling of expected disagreements between these two values. Conditions were involved to

determine when the ASL′
r value was “better” than the ASL′ value. Better was defined

to mean that the absolute difference between the ASL′
r value and the value v calculated

by an actual ranking was less than or equal to the absolute difference between the ASL′

value and v.

The general condition came directly from the top part of Equation 7.10.2 on page 331:

(Q′ > 0 and dtwrm ≥ 0) or (Q′ = 0 and dtwrm < 0). (8.5.1)

The second condition was obtained by finding all the solutions of

fASL(N,Q′,A′) − fASL(N,Q′, 1 −A′) = 0.

After expanding the fASL references in this equation, we obtained

Q′A′ + (1 −Q′)(1 −A′) − (Q′(1 −A′) + (1 −Q′)A′) = 0.

Simplification yielded

4Q′A′ − 2Q′ − 2A′ + 1 = 0.

371

Factoring produced

(2Q′ − 1)(2A′ − 1) = 0.

Visual inspection indicated that the set of solutions for this equation was

{Q′ = 1/2,A′ = 1/2},

meaning that the second condition was

Q′ = 1/2 or A′ = 1/2. (8.5.2)

The third condition was used to determine compare if the absolute difference between

ASL′
r and ASL′

g was no greater than the absolute difference between ASL′ and ASL′
g. It

was defined as

|ASL′
r − ASL′

g| ≤ |ASL′ − ASL′
g|. (8.5.3)

8.5.1 Test Data Generation

Five sets of test queries were constructed to help determine if the values computed by

the ASL′
r formula were correct. The query sets were for document collection sizes of

10, 15, 20, 25, and 30. The set of test queries for a collection of size N have a one-to-

one correspondence with those in the set of weak 4-compositions of N, after the weak

compositions that correspond to zero relevant documents have been excluded.

Five datasets were created, one for each set of test queries. Each test dataset has 8

columns:

372

query, ranking method,

ASL’, ASL’Refined, ASL’Gold,

condition1, condition2, and condition3.

The first column (query) identified the query (represented as a weak 4-composition). The

second column (ranking method) identified the ranking method. The third through fifth

columns represented the calculated values of the ASL′ measure and its ASL′
r and ASL′

g

variants. The condition1, condition2, and condition3 columns represented the Boolean

values of true and false for Condition 8.5.1 on page 371, Condition 8.5.2 on the previous

page, and Condition 8.5.3 on the preceding page, respectively. Each test dataset had

∑
N∈{10,15,20,25,30}

((
N + 3

3

)
− (N + 1)

)
= 11, 605 (8.5.4)

rows. Collectively, the five datasets had a total of 5 × 11605 = 86, 025 rows.

8.5.2 Empirical Data Supports the Validation of ASL′
r

The values in each dataset were checked to verify that the calculated ASL′
r value for a

query and ranking method combination was always at least as good as the corresponding

ASL′ value for that same combination. The other major check for a query and ranking

method combination was to ensure that its values were identical if and only if either one,

or both, of Condition 8.5.1 on page 371 and Condition 8.5.2 on the preceding page were

true.

These conditions were found to be always true for each of the query and ranking

method combinations in the 5 datasets. From these results, the conclusion was that the

formula for the ASL′
r variant calculated the expected results.

373

8.6 The Validation of ASL′
g

This particular variant of the ASL′ measure, namely, ASL′
g, was introduced in Sec-

tion 7.10.2, starting on page 331. Its value is considered to be the gold standard value

for the ASL′ measure. It is the same value that would be obtained by the following

empirical process: generate all the possible document sequences for a particular ranking

method rm, document collection c, and query q; calculate each sequence’s MSL value;

and, finally, compute the arithmetic mean of these MSL values. The resultant value is

the ASL′
g value.

The main idea behind using analytic techniques to help calculate the ASL′
g measure,

as contrasted to the empirical process that was described in the previous paragraph, is,

ideally, to be able to calculate this measure from just the values of certain parameters

(e.g., r1, r0, s1, s0), that we are already familiar with from previous chapters, and the

feature weight equations, that are given in Table 8.9 on page 376, without having to

physically rank the documents and then having to use brute force techniques to enu-

merate all the possible document sequences. Three methods were developed to check

the correctness of this measure. By the way, this is another example of the strategy

of triangulation (i.e., using multiple techniques to ascertain the correctness of this new

measure).

For the convenience of the reader, the information in Chapter 7 from Table 7.1 on

page 329, Figure 7.9 on page 329, and Table 7.2 on page 333, respectively, is repeated

in Table 8.9 on page 376, Figure 8.1 on page 376, and Table 8.10 on page 376. Also,

for the convenience of the reader, we review the notation that is used in Table 8.10 on

page 376. The dtwrm term denotes the document term weight for ranking method rm (i.e.,

best-case, coordination level matching, decision-theoretic, inverse document frequency,

random, worst-case); nR denotes the number of documents at the rear of a ranking; nRR

denotes the number of relevant documents that are among the nR documents at the rear

374

of a ranking; nF denotes the number of documents at the front of a ranking; and nRF

denotes the number of relevant documents that are among the nR documents at the front

of a ranking.

Three Methods That Calculate the ASL′
g Measure

Method H is a hybrid method because it combines empirical and analytic techniques. It

computes the ASL value by first non-ascendingly sorting the documents by their RSVs.

For a given query q, document collection c, and ranking method rm, the sorting partitions

the documents into, at most, two clusters. The number of documents in each partition,

along with the number of relevant documents in each partition, and the relative positions

of these partitions are used as parameters to the probability generating functions (PGFs)

to calculate the value of the ASL′
g measure.

Method P uses the information in Table 8.9 on the following page and in Table 8.10 on

page 376, in conjunction with a query q; a ranking method rm; the document term weight

function for this method; and the values of r1, r0, s1, and s0 to set up a mathematical

model that uses PGFs to calculate ASL′
g. The documents do not need to be sorted and

are not sorted. Based on the parameter values for r1, r0, s1, and s0, and the weighting

function for a particular ranking method rm, we can determine if the document term

weight is negative, zero, or positive. Once we know this, we can use the information in

Table 8.9 on the next page and Table 8.10 on the following page to help construct a PGF

for the ASL′
g measure.

Method C also uses the information in Table 8.9 on the next page and Table 8.10 on

the following page. Unlike Method P, which uses this information to construct a PGF for

the ASL′
g measure, this method uses this information to develop a set of combinatoric-

based equations to calculate the ASL′
g measure.

375

Table 8.9: Feature Weights for Several Ranking Methods.

Ranking Method Feature Weight

Best-case w = log
(

p/(1−p)
t/(1−t)

)
Worst-case w = − log

(
p/(1−p)
t/(1−t)

)
Random w =

{
Best-case weight : 1/2 of the time;

Worst-case weight : 1/2 of the time.

Decision-theoretic w = log
(

p/(1−p)
q/(1−q)

)
Inverse document frequency w = − log(t)

Coordination-level matching w = c (a positive constant)

> 00< 0

000

< 0 0 > 0

0

1

document term weight

query
term

weight

Figure 8.1: RSVs and Their Relation to Query and Document Weights.

Table 8.10: Document Distribution at the Front and Rear of An Actual Ranking.

condition nR nRR nF nRF

dtwrm > 0 n0 r0 n1 r1

dtwrm = 0 n1 + n0 r1 + r0 0 0
dtwrm = 0 0 0 n1 + n0 r1 + r0

dtwrm < 0 n1 r1 n0 r0

376

8.6.1 Test Data Generation

Five sets of test queries were constructed to help determine if the ASL′
g formulas de-

veloped by the three methods just described were in total agreement on the values that

they calculated. The query sets were for document collection sizes of 10, 15, 20, 25, and

30. The set of test queries for a collection of size N have a one-to-one correspondence

with those in the set of weak 4-compositions of N, after the weak compositions that

correspond to zero relevant documents have been excluded.

Five datasets were created, one for each set of test queries. All ranking methods were

tested, except for random ranking. The random ranking method was excluded because,

for a particular query, the actual ranking method that it uses is always going to be either

the best case or worst case ranking method. It is assumed that if these latter two ranking

methods pass validation, then so would the random ranking method because it it based

on these two methods. The probability is 0.5 that best case ranking is arbitrarily chosen

to implement random ranking; likewise, the probability is 0.5 that the method chosen

would be worst case ranking.

Each test dataset had 4 columns:

query,

ASL’Gold mH, ASL’Gold mP, and ASL’Gold mC.

The first column (query) was the weak 4-composition that represents the query and

the remaining columns represented the ASL′
g values for this query that were computed

by Methods H, P, and C, respectively. Each test dataset has

∑
N∈{10,15,20,25,30}

((
N + 3

3

)
− (N + 1)

)
= 11, 605

rows. Collectively, the five datasets had a total of 5 × 11605 = 86, 025 rows where all

three ASL′
g values in a row must be equal to each other.

377

8.6.2 Empirical Data Supports the Validation of ASL′
g

Software was written to compare all three ASL′
g values in each row of a test dataset. If

the values were found to be identical, an initially zero-valued counter for that test dataset

was incremented by 1. After all the rows for this dataset had been processed, the counter

value was compared to 11,605. If these values were equal to each other, the validation

of the three methods for that dataset (and associated ranking method) was considered a

success.

This testing and validation procedure was followed for all 5 test datasets. In each

row of these datasets, the three ASL′
g values were found to be equal to each other. The

conclusion was that the either of the formulas for these three methods could be used to

correctly determine the exact ASL′
g value.

8.6.3 An Example That Illustrates the Calculation of ASL′
g By

Three Different Methods

The data that appears in Figure 7.2 on page 266 is used in this example to calculate the

value of the ASL′
g measure for the weak 4-composition (r1, r0, s1, s0) = (2, 1, 1, 4). The

documents that correspond to this composition are ordered by the decision-theoretic

(DT) ranking method.

The Hybrid Method (Method H)

The first step of this method is to calculate the retrieval status value (RSV) for each

document. Table 8.9 on page 376 and Table 8.10 on page 376 contain information that

indicates the RSV is 0 for any document that does not contain the query term and it is

RSV = log

(
p/(1 − p)

q/(1 − q)

)

378

for any document that contains the query term. In this example,

p = r1/(r1 + r0)

= 2/3

and

q = s1/(s1 + s0)

= 1/5.

Therefore, the retrieval status value for any document that contains the query term is

RSV = log

(
(2/3)/(1 − 2/3)

(1/5)/(1 − 1/5)

)

= log

(
(2/3)/(1/3)

(1/5)/(4/5)

)

= log

(
2

1/4

)

= log(8)

= 2.07944.

After assigning each document an RSV, the documents are non-ascendingly sorted

by their RSVs. This results in three documents at the front of the ranked vector V of

documents that have 2.07944 as their RSV, followed by five documents that have an

RSV of 0. Two of the three front documents are relevant and only one of the documents

at positions 4-8, inclusive, in V are relevant. We can use this information to construct

the probability generating function (PGF) for the ASL′
g measure with respect to this

situation. Equation 7.5.9 on page 306 describes its probability generating function. This

379

PGF can be stated as

p(x) = (x7/3 + 2x8/3 + 3x9/3 + 3x10/3 + 3x11/3 + 2x12/3 + x13/3)/15.

If we take the first derivative of this function, with respect to x, we obtain

p′(x) =
1

15

(
7x4/3

3
+

16x5/3

3
+ 9x2 + 10x7/3 + 11x8/3 + 8x3 +

13x10/3

3

)
.

Finally, by setting x to 1, we obtain

ASL′
g = p′(1)

= (7/3 + 16/3 + 9 + 10 + 11 + 8 + 13/3)/15

= 50/15

= 10/3.

The Probability Generating Function Method (Method P)

Unlike Method H, this method uses solely analytical means to obtain the value of ASL′
g.

The parameter values that are used to construct the probability generating function are

obtained from the information in Table 8.9 on page 376 and Table 8.10 on page 376.

Just as with Method H, we must first determine whether the RSV for a document

that contains the query term is negative, zero, or positive. We proceed as in Method

H and determine that the values of p, q, and the RSV are, respectively, 2/3, 1/5, and

2.07944. Since (r1, r0, s1, s0) = (2, 1, 1, 4), we have n1 = r1 + s1 = 2 + 1 = 3 and

n0 = r0 + s0 = 1 + 4 = 5. From this, and the information in Table 7.2 on page 333, we

can state that

nR = n0 = 5,

380

nRR = r0 = 1,

nF = n1 = 3, and

nRF = r1 = 2.

We can use this information to construct a probability generating function for ASL′
g.

The ordinary generating function for the ranked documents that are at the front of the

sequence is

FFfront(x, z, nF) =

nF∏
i=1

(1 + xiz)

=
3∏

i=1

(1 + xiz).

The analogous ordinary generating function for the ranked documents that are at the

rear of the sequence is

FFrear(x, y, nF, N) =
N∏

i=nF+1

(1 + xiy)

=
8∏

i=3+1

(1 + xiy)

=
8∏

i=4

(1 + xiy).

The ordinary generating function for the entire ordering, G2(x, y, z), is the convolu-

tion of the ordinary generating functions for the two parts of the ordering, namely,

FFfront(x, z, , nF) and FFrear(x, y, nF, N):

G2(x, y, z, nF, N) = FFfront(x, z, nF) · FFrear(x, y, nF, N)

= FFfront(x, z, 3) · FFrear(x, y, 3, 8).

381

This equation is equivalent to Equation 7.5.7 on page 304. Let

F (x) = [ynRRznRF]
(

G2(x, y, z, nF, N)|y=1,z=1

)
= [y1z2]

(
G2(x, y, z, nF, N)|y=1,z=1

)
= x7 + 2x8 + 3x9 + 3x10 + 3x11 + 2x12 + x13.

be the expression that is obtained from the expansion of G2 when the value 1 is substi-

tuted everywhere that a y or z appears in the expanded form. This resultant expression,

denoted by F (x), is now a function of just one variable, namely, x, because, for a given

query, the values of nF, nRF, nR, nRR, and N can be treated as constants.

Next, we must adjust F (x) for the number of relevant documents (i.e., nRR + nRF =

1 + 2 = 3) that is in each sequence. The result of this adjustment is

M(x) = x7/3 + 2x8/3 + 3x9/3 + 3x10/3 + 3x11/3 + 2x12/3 + x13/3.

From this point onward, the rest of this example proceeds similarly to the example for

Method H. That is,

p(x) = M(x)/15

= (x7/3 + 2x8/3 + 3x9/3 + 3x10/3 + 3x11/3 + 2x12/3 + x13/3)/15

and

p′(x) =
1

15

(
7x4/3

3
+

16x5/3

3
+ 9x2 + 10x7/3 + 11x8/3 + 8x3 +

13x10/3

3

)
.

382

Finally, by evaluating the PGF p′(x) at x = 1, we obtain

ASL′
g = p′(1)

= (7/3 + 16/3 + 9 + 10 + 11 + 8 + 13/3)/15

= 50/15

= 10/3.

The Combinatoric Method (Method C)

This method is based on the result that was established by Lemma 7.10.1 on page 338,

the proof of which relied on combinatoric arguments. According to that result,

ASL′
g =

MSLgold,front + MSLgold,rear

nRF + nRR

where

MSLgold,front =
nRF(nF + 1)

2
,

MSLgold,rear =
nRR(nR + 1)

2
+ shift contribution, and

shift contribution = nRR · nF.

The previous discussion for Method P established that

nR = n0 = 5,

nRR = r0 = 1,

nF = n1 = 3, and

nRF = r1 = 2.

383

Based on that, we have

MSLgold,front =
2(3 + 1)

2
= 4,

MSLgold,rear =
1(5 + 1)

2
+ 1 · 3

= 6, and

ASL′
g =

4 + 6

2 + 1

= 10/3.

8.7 Summary

This chapter discussed the validation efforts for the Average Search Length variants,

the ranking method-specific quality of ranking measures, and the unnormalized average

search length. The formulas for these entities were based on the discussions and work

that were discussed in Chapters 4, 5, 6, and 7. More specifically, test data generation and

the analysis of the studies that were performed on these test datasets were discussed for

each of these entities: Q′ estimates for the coordination level matching, inverse document

frequency, and decision-theoretic ranking methods; the Q′ estimates by random sampling;

the unnormalized average search length A; and the ASL′, ASL′
r, and ASL′

g measures. Each

of these entities had a separate section in this chapter that was devoted to its test data

dataset(s) and the analysis of the results that were obtained from performing various

studies on the test data.

384

Chapter 9

The ASL Performance Measure

Variants and Empirical Document

Rankings

This chapter addresses the second of the three research questions that were enumerated

in Section 3.5, which starts on page 103: Do the measures (i.e., ASL′, ASL′
r) that estimate

the ASL produce the same performance results as the measure (i.e., ASL′
g) that calculates

the same results that would be produced by a process that ranks documents and, then,

calculates the Average Search Length from this empirical ranking data?

This ASL′
g measure calculates the same Average Search Length that would be cal-

culated by empirical means, if the following actions were performed in this sequence:

generate all the possible sequences of ranked documents for a query q, compute their

respective ASL values, and then compute the mean of these values. The resultant value

would be identical to the value for ASL′
g (which is calculated by analytical means).

Section 3.5.2, which starts on page 106, contains the initial introduction for this

research question. Much much information about the ASL′, ASL′
r, and ASL′

g measures

can be found in Section 7.10, which starts on page 327. The ASL′ measure is defined

by Equation 7.10.1 on page 330, the ASL′
r measure is defined by Equation 7.10.2 on

page 331, the probability generating function version of the ASL′
g measure is defined by

Equation 7.10.3 on page 335, and the combinatoric version of this measure is defined by

Lemma 7.10.1 on page 336.

We start to answer this second research question by first establishing the appropriate

hypotheses:

H0 : the estimated and empirical ASL measures for a ranking method

produce the same results

H1 : the estimated and empirical ASL measures for a ranking method

do not produce the same results.

The purpose of this chapter is to determine if three measures that calculate the ASL

by different means are significantly different from each other at either the .05 or .01

significance levels. The ASL′ and ASL′
r measures estimate the ASL by different means

whereas the ASL′
g calculates, by analytic techniques, the same ASL value that would

be obtained empirically if one used brute-force techniques to generate all the possible

sequences for a query, calculated the ASL value for each sequence, and then computed

the mean of these ASL values. The major difference between the ASL′ and ASL′
r measures

is that the ASL′
r measure incorporates two additional pieces of information: whether the

value of the quality of ranking part of its formula is negative, zero, or positive and whether

the document term weight part indicates a negative, zero, or positive value. In theory, if

this additional information is known and and is incorporated in the estimation equation

for the ASL, the ASL′
r measure should produce an estimate that is at least as close to

the ASL′
g value as the ASL′ value is.

The tests in this chapter compare the ASL′ measure with the ASL′
g measure and

the ASL′
r measure with the ASL′

g measure. In both of these comparisons, the ASL′
g

measure is considered the actual ASL measure whereas the ASL′ and ASL′
r measures

386

are considered the estimated measures. In addition to these comparisons, the ASL′
r and

ASL′
g measures are compared with each other. These tests were performed for each of

the 6 ranking methods (i.e., best case, worst case, random, coordination level matching,

inverse document frequency, and decision-theoretic).

The Kolmogorov-Smirnov test is the statistical hypotheses test that was used to assess

the performance results. The Wilcoxon signed ranks test (with continuity correction) was

used to help corroborate the results. The continuity correction version of the Wilcoxon

signed ranks test was used due to the presence of many ties among the retrieval status

values (RSVs) of the ranked documents. One of the primary reasons that these particular

nonparametric tests were chosen, rather than a parametric one such as the paired t-test, is

because the sampling distributions of several of the performance measures are unknown.

We were interested in testing at two significance levels: α = .05 and α = .01. The

rejection region is two-tailed. The decision criterion is as follows. If the test statistic value

falls in the rejection region, we can conclude that there was no statistically significant

evidence of a difference in performance between the estimated and actual ASL′ measures

for a ranking method.

9.1 The Datasets

The queries and documents of the CF′
combined collection were not used in the hypothesis

testing because the data to the testing procedures was assumed to be random. An

analysis of the queries showed that they did not have the characteristics that randomly-

generated generated queries would have for this collection. This is corroborated by the

information in Figure 3.4, on page 89, which shows that the randomly-generated synthetic

test collection has very different performance characteristics, across all 6 of the ranking

methods, than the parts of the graphs that corresponded to variants of the Cystic Fibrosis

test collection.

387

In lieu of using the CF′
combined collection, this study generated random queries for

synthetic datasets of various sizes. In particular, the dataset sizes were 10 million, 100

million, one billion, and 10 billion documents. The numbers of random queries that

were generated for each dataset are 100; 1,000; and 10,000. The results of using the

Kolmogorov-Smirnov to analyze the performance measure data for these 4 × 3 = 12

combinations of dataset sizes and numbers of queries were used to construct 12 tables.

9.2 The Analysis

The performance measure data that was analyzed had many instances of ties (i.e., du-

plicate values). Due to the presence of these values, both the Kolmogorov-Smirnov and

Wilcoxon signed ranks tests issued warnings about the ties. Due to the presence of these

ties, neither test was able to calculate exact p-values; instead, approximate p-values were

issued by these tests.

The inspection of the result tables showed that, across all 12 of the collection size and

number of query combinations, for each ranking method, two of the comparisons exhibited

statistically significant differences at both the α = .05 and the α = .01 significance levels.

The remaining comparison showed that there was no statistically significant difference

for it at either the α = .05 or the α = .01 significance levels.

The results in Table 9.1 on the following page, with respect to the 18 actions that

were taken at both the α = .05 and the α = .01 significance levels, were identical on a

row-by-row basis, to the actions that were taken for the other 11 combinations of dataset

sizes and queries that were mentioned in Section 9.1. The only difference between the

values in Table 9.1 and those in these other 11 tables were the p-values. So, instead of

listing the information from all 12 tables, we use Table 9.1 as the representative for all

12 tables.

In the reject actions, the largest p-value among the 12 tables was 4.366×10−8; for the

388

Table 9.1: Test Results for Kolmogorov-Smirnov test (two-tailed) for a test collection of
10 million synthetic documents and 100 unique randomly-generated queries.

ranking action
method random var 1 random var 2 p-value α = 0.05 α = 0.01

BC ASL′ ASL′
r 1.554e − 15 reject reject

ASL′ ASL′
g 1.554e − 15 reject reject

ASL′
r ASL′

g 1 fail to reject fail to reject

CLM ASL′ ASL′
r 1 fail to reject fail to reject

ASL′ ASL′
g 1.458e − 13 reject reject

ASL′
r ASL′

g 1.458e − 13 reject reject

DT ASL′ ASL′
r 1.554e − 15 reject reject

ASL′ ASL′
g 1.554e − 15 reject reject

ASL′
r ASL′

g 1 fail to reject fail to reject

IDF ASL′ ASL′
r 1 fail to reject fail to reject

ASL′ ASL′
g 1.458e − 13 reject reject

ASL′
r ASL′

g 1.458e − 13 reject reject

RC ASL′ ASL′
r 1 fail to reject fail to reject

ASL′ ASL′
g 1.458e − 13 reject reject

ASL′
r ASL′

g 1.458e − 13 reject reject

WC ASL′ ASL′
r 1.554e − 15 reject reject

ASL′ ASL′
g 1.554e − 15 reject reject

ASL′
r ASL′

g 1 fail to reject fail to reject

389

fail to reject actions, the p-value was 1. Inspection of the dataset contents revealed that,

for all ranking methods, except for the DT ranking method, the reason that the p-value

was 1 was because 100% of the value pairs had exact matches between the values that

were being compared. In the DT case, there were 100% matches for 9 of the combinations

of datasets and the values of the random variables being compared and 42.4-49% exact

matches, and very small differences in the values being compared, for the remaining three

combinations.

The first common theme to emerge from the information in the 12 tables was that

there was always a statistically significant difference between the ASL′ and ASL′
g mea-

sures. The other common theme to emerge was that, for the other two comparisons (i.e.,

ASL′ versus ASL′
r and ASL′

r versus ASL′
g) that are associated with a ranking method,

there was a significant difference between the values that were being compared for equal-

ity by one of the comparisons but there were no significant difference between the values

that were being compared for equality by the other comparison.

The intuitive reason for these themes is that there was a weak ordering between the

accuracy of these ASL performance measure variants. The weak order can be expressed

as

ASL′ � ASL′
r � ASL′

g,

where ma � mb denotes that the absolute difference between the value for measure ma

and the value for ASL′
g is at least as great as the absolute value of the difference between

the value for measure mb and the value for ASL′
g. This is related to the discussion on

page 371 in Section 8.5 and, in particular, to Inequality 8.5.3 on page 372.

Due to this weak ordering, the greater absolute difference in the values is expected

to occur between the values for ASL′ and ASL′
g rather than between the values for ASL′

r

and ASL′
g. Conversely, the smaller absolute differences are expected to occur between the

values for ASL′ and ASL′
r or between ASL′

r and ASL′
g.

390

The information in the immediately previous paragraph contains the reasoning behind

there always being a statistically significant difference between the random variables ASL′

and ASL′
g. This information is also the basis behind there being no statistically significant

difference between the distributions for either the ASL′ and ASL′
r random variables or

between the ASL′
r and ASL′

g ones, but not, both, for each ranking method.

9.3 Summary

This chapter showed the results of using the two-tailed version of the Kolmogorov-

Smirnov test to analyze how well the ASL′, ASL′
r, and ASL′

g measures compared with

each other for performance prediction. Each of the 3 possible measure-to-measure com-

parisons had 3 random sets of queries, with different cardinalities, drawn from synthetic

datasets of 4 different sizes. In total, the Kolmogorov-Smirnov test was run on 216

combinations of ranking methods (there were 6 ranking methods), measure-to-measure

comparisons (there were 3 measure-to-measure comparisons), query sets (there are 3

query sets), and synthetic document sets (there were 4 synthetic document sets). If we

multiply the number of categories for each of these 4 entities, we obtain 6 · 3 · 3 · 4 = 216.

The cardinalities of the sets of randomly generated queries was the same for each

dataset. These cardinalities started at 100 and ended at 10,000. The synthetic dataset

sizes started at 10 million documents and ended at 10 billion documents. There was an

order of magnitude difference between the successive cardinalities for each set of queries.

Similarly, there was the same order of magnitude difference between the cardinalities of

successive sets of documents.

The analysis of the Kolmogorov-Smirnov test results corroborated the theoretical

indications that there was a weak ordering between the three ASL variants that were

being compared. The results analyses showed that there was statistically significant

evidence that the ASL′
g measure was superior to the ASL′ one. The analyses also showed

391

that, in some circumstances, there was no statistically significant difference between the

ASL′ and ASL′
r measures. In other circumstances, the analyses showed that there was

no statistically significant difference between the ASL′
r and ASL′

g measures. This was

true for each ranking method, across all combinations of documents and queries. There

was no ranking method where it was simultaneously true that there was a statistically

significant difference between the comparisons of the ASL′ and ASL′
r measures and the

comparisons of the ASL′
r and ASL′

g measures. From this, we can conclude that, there

was no circumstance where the Kolmogorov-Smirnov test results, when taken as a whole,

indicate that there was no statistically significant difference between the three measures

when they were viewed as a whole.

392

Chapter 10

The ASL Measure and Three

Frequently-Used Performance

Measures

This chapter addresses the last of the three research questions that were enumer-

ated in Section 3.5, which starts on page 103: When does the Average Search Length

(ASL) performance measure and one of these measures (i.e., MZ-based E measure (MZE),

Expected Search Length (ESL), Mean Reciprocal Rank (MRR)) both imply that one doc-

ument ranking is better than another document ranking? More specifically, Section 3.5.3

contains the initial introduction for this research question. In order to help answer this

question, equations were derived for these four performance measures, and the recall and

precision measures, that were consistent with the assumption that the documents in a

ranking may have duplicate (i.e., tied) retrieval status values (RSVs); then, data collec-

tions were developed to test these derivations; and, lastly, the results that were obtained

by the use of these derivations were shown to be consistent with empirical results.

In addition to discussing the impact that duplicate RSVs have on document rankings

and performance evaluation measures, this chapter also discusses these topics: graphi-

cal and analytic ways to compare two performance measures on the basis of how much

they agree or disagree about the relative ranking of two document sequences; defini-

tions of agreement and disagreement; an analytic way to help determine the amount of

agreement and disagreement; characteristics to consider when comparing two measures;

strong and weak orders; a general framework for determining the performance values for

rankings that contain duplicate RSVs; combinatoric derivations for the Expected Search

Length (ESL), Average Search Length (ASL), precision, recall, MZ-based E measure

(MZE), and reciprocal rank (RR) performance measures; and the validation of these

combinatoric-based derivations. This chapter concludes with two examples. The first

example compares values that were generated by an ASL measure consistent with the

assumption that documents may have tied (i.e., duplicate) RSVs with the ASL values

for the best-case, random-case, and worst-case rankings for the same collection of doc-

uments. The last example compares the ASL measure with the MZE, ESL, and RR

measures across 6 types of ranking methods.

The ultimate goal of the work that occurs in this chapter is to support the answering

of the above research question. In order to be able to do this, it was necessary to create

tools that allowed the ASL performance measure to be compared to the ESL, MZ-based E

measure, and Mean Reciprocal Rank (MRR) performance measures. A major problem in

comparing the results of several single value performance measures was that the resultant

values were often incomparable across the measures. For example, does a value of 7.3

from the ASL measure for a query q, and a document collection of size 10,000, indicate

worst performance, the same performance, or better performance than a value of 0.5

from the MZE measure for that same query and document collection? Is there a way

to compare two measures when there may be no standard way to determine the relative

goodness of one value on its scale of measurement with that of another one on a possibly

different scale?

Another factor that must be considered when comparing performance measures is

394

that a sequence of ranked documents may not be strongly-ordered due to the presence of

duplicate RSVs. This was certainly the situation that was encountered in the different

validations and analyses that were discussed in Chapters 8 and 9. Each of the 6 ranking

algorithms produced only two distinct RSVs. As a consequence, the documents were clus-

tered into just two groups. This clustering effect was attributed to the query-document

model that was introduced on page 21 in Section 2.2.5 of Chapter 2. Namely, the model

was concerned with two basic pieces of information: whether a document was relevant to

the single term query and whether the document contained the query term. A direct re-

sult of these assumptions was that the model was very coarse-grained with respect to the

ranking of documents. The ranked vectors of documents in this query-document model

tended to have high numbers of duplicate RSVs because the RSVs in a ranking typically

fell into one of these two categories: (a) zero and a positive value or (2) zero and a neg-

ative value. This resulted in many ties. The subject of ties and how to handle them are

discussed in Section 10.5. Subsequent sections develop versions of the ASL, ESL, MZE,

and several other measures that are consistent with the assumption that documents may

have tied RSVs. Later, the values from these measures, that were consistent with the

assumption that documents may have tied RSVs, were used to compare the performance

of several of the measures at arbitrary points in a ranked vector V of documents.

10.1 Regions of Agreement and Disagreement About

Relative Rankings

The method developed in Losee (2000) helped to answer the research question that was

introduced in the first paragraph of this chapter. This method sidesteps the issue of

the relative worth of values from two different measures. The Losee method works by

directly comparing the value of each measure, at a particular point i from the front of

a vector V of ranked documents, to the value of the same measure at another point j

395

in the same ranking. Then, for each measure, the signed difference (as contrasted with

the absolute value of the difference) of the values of its two points are calculated. A

difference of 0 means that the performance is the same at points i and j, a positive or

negative value indicates that the performance changed. In the case of a change, the sign

of the difference indicates the direction of the change. Assume that point i is no farther

from the front of vector V than is point j. If these points are values on an ordinal scale,

then this means that i ≤ j.

Also, assume that the difference for a particular measure is always calculated by

subtracting the value of the measure at point i from the value of the measure at point j. In

order to determine whether the sign of a difference indicates better or worse performance,

it is necessary to know whether higher values indicate better or worse performance. Lower

values mean better performance for some measures (e.g., ASL, ESL, MZE) whereas higher

values mean better performance for others (e.g., RR). The ASL-ESL-MZE category of

measures was labeled as lower-is-better (LIB), the RR category of measures was labeled

as higher-is-better (HIB).

The Losee (2000) method compares the relative performance of two measures by

determining where they agree and disagree on the ranking of the documents in vector V

at any two arbitrary points in the ranking. The signed differences are used to make this

assessment. The non-negative function NN is used to transform each signed difference

into either the Boolean value true or false. The performance interpretation of a true

value, for an HIB type of measure, was that the performance at point j was as good, or

better, than it was at point i. A false value for an HIB type of measure meant that the

performance was worse at point j than it was at point i. The non-negative function NN

396

is defined on a real number x as

NN(x) =

⎧⎪⎪⎨
⎪⎪⎩

true, if x ≥ 0;

false, otherwise.

If two measures are both LIB types, or are both HIB types, then they are said to

agree on the relative ranking between points i and j when their non-negative function

signed difference values are the same Boolean value (i.e., both transformed differences

are true or both are false); otherwise, they are said to disagree. If one measure is an LIB

type and the other measure is an HIB type, then the signed difference of the LIB type

of value must be negated before the non-negative function is applied to it. The reason

is that erroneous results could occur because lower means better performance with the

LIB type of measure whereas it means worse performance with the HIB type of measure.

The negation has the effect of making both of the values HIB types. In other words, it

effectively normalizes the directionality of “better-ness.”

The pairs of points that correspond to disagreements between the two measures can be

plotted on a graph to visually depict the regions of agreement and disagreement between

the two measures. The points can be colored in an arbitrary, but consistent, way so that

the white areas of the plots correspond to areas where the two measures agree on the

relative rankings of the documents and the darker areas on the graphs correspond to

the regions of disagreement. If the ranges of values for the measures being plotted are

different, then it is advisable to normalize the ranges and plot both measures on axes

where the values are in the closed interval [0, 1].

397

10.1.1 More Information About Performance Measure Disagree-

ments

The method from Losee (2000) was extended in a straightforward manner to provide

more information about the nature of any disagreements. The signed difference that is

obtained from the values of a performance measure at points i and j provides information

on whether the performance at point j is worse than (W), the same as (S), or better than

(B) the performance at point i. The Losee method collapses the latter two categories

into a single category: the performance at point j is the same as, or better than, the

performance at point i. Let SB denote this new category. The extension of the method

did not collapse any categories. It used the categories W, S, and B. Two measures were

defined to be in agreement when their respective categories were equal; otherwise, they

disagreed. Figure 10.1 shows all the possible ways that two measures m1 and m2 can agree

and disagree with respect to their categories. The check marks on the main diagonals

of the two subfigures illustrate when there is agreement between m1 and m2. The white

squares illustrate where these measures disagree.

A key to acquiring this additional information was the use of the sign function rather

than the non-negative function. The sign function is defined on a real number x as

sign(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−1, if x < 0;

0, if x = 0;

+1, otherwise.

The non-negative and sign functions can be also be viewed as mapping a real value x

to a category. The non-negative function maps x ≥ 0 to SB and x < 0 to W. Similarly,

the sign function maps x < 0 to W, x = 0 to S, and x > 0 to B. Figure 10.1(a) shows

that there are four possible combinations of mappings for two performance measures m1

398

m2

W SB

m1
W

SB
�

�

(a)

m2

W S B

m1

W

S

B

�

�

�

(b)

Figure 10.1: This figure details the categories of agreement and disagreement on relative
levels of performance for measures m1 and m2 between two points i and j in a ranked
vector V of documents, with point i occurring, before, or at, the same ordinal position as
point j. For measure mk, where k ∈ {1, 2}, the symbol W denotes that the performance
at point j was worse than it was at point i. The symbol SB denotes that the performance
at point j was either the same (S) as the performance at point i or that it was better
(B) than the performance at point i. The check marks entries on the main diagonal in
each subfigure indicate where the m1 and m2 performance measures agree on the relative
rankings of two distributions of documents. The unmarked squares indicate where the
two measures disagree on the relative rankings. The left half of this figure corresponds
to the Losee method, the right half corresponds to the extended version of this method.

399

and m2 with the non-negative function. Figure 10.1(b) on the previous page shows that

there are 9 possible combinations of mappings for m1 and m2 with the sign function.

The main diagonals in each of these subfigures show those combinations where m1 and

m2 are in agreement; the squares that are not part of the main diagonals correspond to

disagreements between the measures.

In Figure 10.1(a) on the preceding page, there are 2 combinations of disagreement.

The top rightmost square corresponds to the situation where m1 exhibits worse per-

formance at point j than it does at point i whereas m2 exhibits the same, or better,

performance between these two points. The bottom leftmost square corresponds to the

situation where m1 exhibits the same, or better, performance at point j than it does at

point i whereas m2 exhibits that the performance at point j is worse than it was at point

i. When there is a disagreement, if all that we are concerned about is whether one mea-

sure shows worse performance between these two points and the other one measure shows

the same, or better, performance, then Figure 10.1(a) on the previous page, effectively,

only has one type of disagreement.

Figure 10.1(b) on the preceding page shows 6 combinations of disagreements. De-

pending on one’s perspective, there may be 3 or 6 types of disagreement. If it is not

important to identify the measure whose performance decreased, stayed the same, or in-

creased between point i and j, then, because the various combinations of disagreements

are symmetrical around the main diagonal, there are, effectively, only three types of

disagreement: (A) one measure exhibits worse performance at point j than it does at

point i whereas the other measure exhibits the same behavior at point j than it does at

point i; (B) one measure exhibits worse performance at point j than it does at point i

whereas the other measure exhibits better behavior at point j than it does at point i;

and (C) one measure exhibits the same performance at point j that it does at point i

whereas the other measure exhibits the better behavior at point j than it does at point

400

i. However, if it is necessary to also indicate the measure and the change status, then 6

types of disagreement need to be indicated because measure identity information needs

to be associated with each performance status.

The disagreement information for the plots in later sections of this chapter use 6

types of disagreement. The graphs for the Losee method typically consist of white re-

gions (denoting agreement) and dark regions (denoting disagreement). The graphs that

correspond to the extended method may consist of white regions (denoting agreement)

and 6 other distinctly-colored regions to correspond to the 6 kinds of disagreement.

10.2 Characteristics to Consider When Comparing

Measures

The comparison techniques in Losee (2000) require that, for any two measures being

compared, there must be a way to calculate the values of these measures at any point

in a ranking. This means that, for an N -document ranking, each measure’s respective

value must be calculable at any point k in the ranking where 1 ≤ k ≤ N.

Before continuing further, it might be helpful to further clarify the notion of point

that is used in much of the remainder of this chapter. Points are associated with a vector

V of documents that are typically assumed to be ranked in non-ascending order by the

retrieval status value (RSV) of their documents. In this context, a point is merely an

index into V. That is, a point i in V denotes the index of the ith document from the front

of V. For example, assume that vector V has 5 documents. Since V has 5 documents,

it also has five points, or index positions. These points are numbered 1 through 5,

inclusive, with point 1 corresponding to the index of the document at the front of V,

point 2 corresponding to the index of the document next from the front of V, and so on,

with point 5 corresponding to the index of the document at the end of vector V. The

401

document at point i in V can be denoted as V [i] and the RSV at this same point can be

denoted as RSV[i].

The notion of point that was just described in the immediately prior paragraph con-

trasts with another common notion of point, that is, where Pr(X = a) is the point

probability (Terrell, 1999; Walpole, 2002) that the value of the random variable X is ex-

actly a. Unless we state otherwise, the notion of point that we use in most of this chapter

is that of an index position.

Two point measures (i.e., measures that can be calculated up to an arbitrary point

in a ranking) may have different notions of what a point is. For example, the MRR and

ESL are point measures because they are based on performance at a particular point

in a ranking. A point for the MRR is an arbitrary position k from the beginning of a

ranking whereas, for the ESL, a point is a user-specified number of relevant documents

from the beginning of a ranking. Other measures, such as the MZE and ASL, are not

point measures because they are based on the the totality of a ranking (i.e., all of the

points in a ranking) rather than the performance at a particular point in a ranking.

A ranking V can be viewed as a full distribution D where the range of values for

the points are integers in the closed interval [1, card(V)]. Each of the card(V) (i.e., the

cardinality of vector V) distinct points has a single RSV associated with it. The RSVs

over the range of points that is covered by the interval are not necessarily all distinct,

that is, the RSVs may all be the same value, they may all be different values, or they

may be a mixture of different values. Rankings that are based on points x that do not

cover the entire range of points, that is, 1 ≤ x ≤ b < card(V), are analogous to what

is known in the statistics literature as distributions that are truncated from above, or

right-truncated distributions (Johnson et al., 2005). Distributions that use the full range

of values in the closed interval [l, u], where l is the lower bound of the range and u is

the upper bound of the range, can be thought of as full distributions. Rankings that are

402

based on the totality of the points for a vector V are full distributions, rankings that

are based on points that begin at the first position in V and terminate at a position

1 ≤ p < card(V) are right-truncated distributions. Virtually all of the distributions that

we work with in the remainder of this chapter are right-truncated distributions.

Some other characteristics that must be taken into consideration when comparing

measures are: Does the measure calculate values for a single query or a set of queries?

Does the measure assume that the ranked documents are strongly ordered (i.e., each

document has a unique retrieval status value)? Is the measure defined where there are

no relevant documents in the ranking for a query q? Is the measure defined at every

point in a ranking? When the value of the measure increases, does this indicate better

or worse performance? Are the range of values the same for each measure? If not, do the

values need to be normalized? The above characteristics play a major role later on when

we extend and adapt the measures to fit into the framework provided by Losee (2000).

Table 10.1 lists these characteristics for the ASL, ESL, MZE, and MRR measures. The

next section contains a detailed discussion of these characteristics and their individual

importances.

Table 10.1: Important Characteristics of the ASL, ESL, MZE, and MRR Performance
Measures.

measure
characteristic ASL ESL MZE MRR

totality of ranking (T) or point (P)? T P T P
if point:

fixed (F) or variable (V) position from front? — V — F
assumes that the ranking is strongly ordered? N N Y Y
single query (q) or set of queries (Q)? q q q Q
measure defined even when there are no rel. docs? N Y N Y
value of performance measure:

lower is better (LIB) or higher is better (HIB)? LIB LIB LIB HIB
range of values [1, N + 1] [0, N] [0, 1] [0, 1]

403

The previous paragraphs in this section discussed some important characteristics

of the ASL, ESL, MZE, and MRR measures. Table 10.1 on the preceding page lists

the values of these characteristics and facilitates comparing and contrasting them. The

table shows that no two of the measures of interest have the same value for all of the

corresponding characteristics. For example, some of the measures are point measures

whereas other measures are totality ones. However, even the two measures that are

point measures do not have the same notion of what a point is. It is important for

comparison purposes that the the measures have the same values for their corresponding

characteristics. One way to accomplish this is to decide on the desired value for each

characteristic and then create similar measures from the original ones. Basically, the

similar measures can be viewed as adaptations of the original ones.

10.2.1 Is the Measure Based on the Totality of a Ranking or

on a Point In the Ranking?

This is the most important characteristic of the seven because the comparison techniques

that are being used in this chapter require that the measures they use as arguments be

defined for all of the ranks that are associated with a query q, and a ranking V, for a

document collection of size N. These ranks correspond to physical positions starting at

the front of a ranking. The first position in a ranking is numbered 1, the second position

is numbered 2, and so on, with the last position being numbered N.

The above requirement can be handled by computing the value of a measure at an

arbitrary physical position k in a ranking. It means that no matter how many documents

there are in a ranking, the value of the performance measure is based only on the first k

documents in the ordering. In the information retrieval (IR) literature, this truncation

position is commonly referred to as document cut-off at position k.

MRR is naturally defined in terms of a cut-off position k and notationally is often

404

written as MRR@k(V). The MZE measure can very easily be defined in terms of a cut-off

position because it is based on recall and precision. There are numerous references in

the literature, especially with respect to Web searching, where both precision and recall

are only defined for the first k documents in a ranking. Notationally, these variants are

often expressed as P@k(V) and R@k(V), respectively. Hence, they can be used to define

MZE@k(V).

The Average Search Length is based on the totality of a ranking but can very easily

be defined in terms of a cut-off value k. In the prior chapters of this dissertation, care was

taken to always assume that there was at least one relevant document in the collection for

a query q because, otherwise, the ASL would be undefined. When defining a version of the

ASL, that can be calculated at an arbitrary document cut-off point k, one must be aware

of the situation where, even though the collection has at least one relevant document for

a query q, every ranking may not have a relevant document among some of its first k

documents. Therefore, in addition to creating a version of the ASL, namely, ASL@k(V),

that can be calculated at various document cut-off points, a reasonable definition for this

adapted measure must be provided when there are no relevant documents among the

first k documents in a ranking.

The Expected Search Length can be viewed as being based both on the totality of a

ranking, and also as being a point measure. The justification for it being a point measure

is because the number of requested relevant documents x can be viewed as a point in a

ranked vector V. Of course, it is a relative kind of point (rather than a fixed position k

in a ranking) and can vary based on a query, document collection, and set of relevance

judgments combination. The totality justification is due to the fact that the original

version of this measure (i.e., ESL(V, x) does not specify a document cut-off point that is

independent of the relevance of the documents in vector V. Notationally, the version of

this measure, that can be calculated at an arbitrary document cut-off point, is denoted

405

by ESL@k(V, x), where k is the document cut-off point (as above) and x is the number

of relevant documents to retrieve. In essence, ESL@k(V, x) can be viewed as having two

cut-off values: the document cut-off value k and the number of relevant documents x.

The details of how these two cut-offs coexist and influence the measure calculations are

discussed in Section 10.6.

With respect to the discussion in the previous paragraph, where one could argue that

the ESL(V, x) measure has characteristics of both a point measure and a totality measure,

it was treated as a point measure in this dissertation and defined as being equivalent to

the document cut-off version with the cut-off values being the same as the cardinality of

vector V, that is,

ESL(V, x) ≡ ESL@c(V, x),

where c = card(V).

10.2.2 Does the Measure Assume That the Ranked Documents

Are Strongly Ordered?

Many IR performance measures assume that ranked documents are strongly ordered.

Section 10.3 contains a detailed discussion of strong and weak orders. When a ranking

is not strongly ordered, these measures may compute incorrect values because they are

not sensitive to the presence of ties. Ties arise when there are two or more documents

in a ranking that have the same RSV. In such a ranking, it is possible that there may be

more than one distinct RSV with each of them having a set of several documents that

are associated with it. When the value for a measure is not computed correctly, the true

value is either underestimated or overestimated. The differences may be such, that when

comparing how well several measures perform, the relative ranking of these measures can

be affected if the underestimation or overestimation is significant enough.

406

Implications for Performance Evaluation

The assessment of how well a ranking algorithm works in a particular situation is typically

handled by performance evaluation software such as trec eval (Buckley and Voorhees,

2005; Voorhees and Harman, 2005; Voorhees, 2005) and inex eval (Vu and Gallinari, 2005)

that applies one or more performance measures to the output of the ranking software.

At a minimum, the inputs to performance evaluation software usually consist of a query

q and the associated vector of ranked documents. Often, the input also includes the RSV

for each rank and a unique document identifier for each document..

Typically these performance measures assume that a ranking algorithm arranges
the results of a query into a total ordering, i.e. no two results to a query have the
same [RSV]. This assumption is reasonable for scoring functions that map a rich
set of features of the result document to a real-valued score, but it is less warranted
for evaluating the performance of a single discrete feature, e.g. page in-degree, click
count, and page visits. (McSherry and Najork, 2008)

The comments in the quoted passage above are particularly germane, not just to

the performance evaluation efforts in this dissertation, but to IR performance evaluation

in general. Their particular relevance to this dissertation is due to the statement in

Section 4.1 that “[t]wo essential characteristics of the [performance] models [that are

used in this dissertation] are binary relevance and that the single query term is either

present or absent in a document.” A consequence of these characteristics has been that

the ranked lists that were generated by use of the feature weights in Table 7.1 on page 329,

and the query and document weight relationships that were enumerated in Figure 7.9 on

page 329, is that the result is ranked lists that contain a maximum of two distinct RSVs.

Hence, a ranking contains large numbers of documents that have the same RSV.

The IR literature indicated that a common approach to handle this tie problem was

to break ties arbitrarily. This was often done in one of two ways: randomly select one

of the valid sequences or use a document identifier (like what is done in TREC) as the

tie-breaker. For this dissertation, there were problems with both of these ways. First, the

ordering was nondeterministic with random selection. Second, the document identifier

407

as a tie-breaker had at least two drawbacks: (1) multiple documents in a collection could

have the same identifier and (2) several of the documents in a collection may not have a

document identifier. Neither the random selection approach, nor the document identifier

approach, provided a guarantee against either underestimation or overestimation of the

value of the performance measure.

A better approach was to base the value of the performance measure on the average

performance over all of the possible document orderings or sequences with each sequence

considered to be equally likely. This is the approach that was taken in this chapter.

This manner of calculation was not only defendable from a statistical and probabilistic

viewpoint, but it also had another desirable quality – the value of the performance

measure was always deterministic.

An Example of the Estimation Problem

This example illustrates the essence of the estimation problem. Suppose we have a query

q, a document collection of size 3, and the associated relevance judgments. One document

is labeled A, another is labeled B, and the remaining one is labeled C. Documents A and

B are relevant to query q, but document C is not relevant to the query. Assume that the

query q, the three documents, and the set of relevance judgments are input to ranking

software that produces as its output the ranked list of these documents, along with the

RSV at each rank.

If the RSVs of all documents are pairwise distinct (i.e., no two documents have

the same RSV), then the ranked list always corresponds to one of the 6 sequences in

Table 10.2 on the next page. Without loss of generality, let the output of the software

that implements the ranking algorithm be that of Sequence 3 (i.e., Document B is ranked

first, Document A is ranked second, and Document C is ranked third). The evaluation

algorithm calculates that the MSL for this sequence is 3/2. Now, assuming that the query,

408

the document collection, the set of relevance judgments, and the ranking software remain

the same, the software always generates the ranking that corresponds to Sequence 3 no

matter how many times it generates rankings for the fixed set of inputs. The output of the

ranking software is deterministic for the scenario that was described in this paragraph.

In the previous paragraph, we considered the impact that pairwise distinct RSVs had

on the stability of a ranking for certain fixed factors. In this paragraph, we consider

the opposite end of the spectrum — the RSV for Document A is v and the RSVs for

the other two documents are also v (i.e., the RSV is the same for every document). In

this case, all that can be guaranteed from one run of the ranking software to another

run for this fixed set of inputs is that the document ranking corresponds to one of the

6 sequences that are listed in Table 10.2. Multiple runs of the ranking software may

produce a different document sequence each time the software is run. In other words, the

output of the ranking software may be nondeterministic because each of the 6 sequences

is a possible output candidate.

Table 10.2: The MSL and ASL of All Possible Sequences of Two Relevant Documents (A
& B) and One Non-relevant Document (C) When All Three Documents Have the Same
RSV.

rank
sequence 1 2 3 MSL ASL

1 A B C 3/2 2
2 A C B 2 2
3 B A C 3/2 2
4 B C A 2 2
5 C A B 5/2 2
6 C B A 5/2 2

Assume that we wish to compute the ASL from the ranked documents. The effect of

all three documents having the same RSV, with respect to this example, on the calculation

of the ASL is evidenced in Figure 10.2 on page 411 by the variability of the value for

the Mean Search Length (MSL) measure. If adjustments are not made to eliminate the

409

nondeterminism, then the reported ASL is always nondeterministically equal to the MSL

value of one of the 6 sequences.

As it was introduced and defined in a previous chapter, the MSL is specific to an

individual ordering and is calculated by totaling the positions of the relevant documents

in an ordering and then dividing that quantity by how many relevant documents there

are in the ordering. Table 10.2 on the preceding page contains the MSL value for each

of the possible sequences in our example. For the convenience of the reader, we restate

that, in Section 7.10.2, the MSL and ASL were shown to be closely related. In fact, for

this example, the ASL can be obtained by calculating the average of the MSL values.

That is,

ASL = (3/2 + 2 + 3/2 + 2 + 5/2 + 5/2) = 12/6 = 2.

Figure 10.2 on the next page illustrates the variability among the 6 MSL values that were

generated from the data in Table 10.2 on the preceding page. If the evaluation algorithm

assumes that the sequence of documents is strongly-ordered by the RSVs, then one of

the 6 non-distinct MSL values is the value that it calculates for the ASL. But, if all

the documents actually have the same value for their respective RSVs, then the value

that an evaluation algorithm calculates for the ASL is the mean of the 6 MSL values

– provided that the algorithm used is consistent with the assumption that documents

may have tied RSVs. This same ASL value is the one that is calculated no matter which

of the 6 possible sequences the ranking algorithm places the documents in according to

their RSVs. In our example, Figure 10.2 on the next page shows that the ASL value is 2

for all of the 6 sequences even though the MSL value for a sequence may not necessarily

be 2.

410

�

�

�

�

� �

� � � � � �

1 2 3 4 5 6
0

1

2

3

4

� ASL

� MSL

sequence

Figure 10.2: A Line Plot of the MSL and ASL From the Data in Table 10.2 on page 409.

10.2.3 Is the Measure Based on a Single Query?

This chapter compares how well single queries perform rather than a set of queries.

According to the information in Table 10.1 on page 403, all of the four measures listed

there, with the exception of the MRR measure, are single query measures. The MRR

measure can be transformed into a single query measure by restricting the cardinality of

its set of queries to 1 (i.e., the set is a singleton set). With this restriction, the Mean

Reciprocal Rank measure effectively becomes the Reciprocal Rank measure .

10.2.4 Is the Measure Defined Even When There Are No Rel-

evant Documents?

The ESL and RR measures are defined even when there are no relevant documents in

vector V. By contrast, the ASL and MZE measures are undefined when vector V has no

relevant documents.

ASL

What is the appropriate value for the ASL when there are no relevant documents? Should

it be assigned a value of 0? Or should it be assigned the value at the lower end (i.e.,

411

1) or the higher end of the range (i.e., N) for a document collection of size N? The

0 value is not appropriate because lower ASL values indicate better performance than

higher ASL values. Neither of the other two assignments seem appropriate either because

they correspond to a sequence that has one relevant document, and that document is

either the first or last one in the sequence, respectively. The author feels that because

there is some cost associated with the examination of a sequence that does not have any

relevant documents, the assigned value should be at the higher end of the range, but

should not be a valid value within the range. Due to these considerations, the author felt

that a reasonable way to handle a no-relevant-documents sequence in this research was to

assign a value of N + 1 to the ASL. This decision was incorporated into the performance

evaluation model that was used in this dissertation for the ASL.

A way to conceptualize this decision is to imagine that each sequence of N documents

has a virtual relevant document associated with it. That document always occupies a

position that is one past the end of the sequence. That is, it is at position N +1. For ASL

computation purposes, this virtual document only enters into the computation when all

of the prior N documents are non-relevant. In other words, if a sequence has at least

one relevant document, the virtual (and N +1st) document does not play any role in the

computation of the ASL value.

MZE

This measure can be easily modified so that is is well-defined even in the absence of any

relevant document(s) in V (McSherry and Najork, 2008). The definition used in this

dissertation is the one that was developed by McSherry and Najork (2008).

412

10.2.5 Does an Increase in the Measure’s Value Correspond to

an Increase in Performance?

The information in Table 10.3 indicates that lower values for the ASL, ESL, and MZE

measures indicate better performance than do higher values. However, this is not the

case with the RR measure. The opposite is true in that higher values for it indicate

better performance than lower values. These different performance directions must be

accounted for when the measures are compared later in this chapter.

Table 10.3: Important Characteristics of the Extended and Adapted Versions of the ASL,
ESL, MZE, and MRR Performance Measures.

measure
ASL ESL MZE RR

characteristic @k(V) @k(V, x) @k(V) @k(V)

totality of ranking (T) or point (P)? P P P P
if point:

fixed (F) or variable (V) position from front? F F & V F F
assumes that the ranking is strongly ordered? N N N N
single query (q) or set of queries (Q)? q q q q
measure is defined

— even when there are no relevant docs? Y Y Y Y
value of performance measure:

lower (LIB)/higher (HIB) is better LIB LIB LIB HIB
range of values [1, k + 1] [0, k] [0, 1] [0, 1]

10.2.6 Do the Measures Use the Same Range of Values to Re-

port Performance?

Generally, the answer to this question is going to be “no” when investigating the output

from a collection of IR performance measures. The information in Table 10.3 indicates

that it is also “no” for the four measures in it. The typical way to handle measures that

have different ranges of values to assess performance is to normalize these ranges. This

413

normalization approach is the one that is used later in this chapter.

10.3 Weakly and Strongly Ordered Rankings

Essentially, a ranking of entities (e.g., documents, humans, SAT scores) is an ordered

sequence of entities. The particular sequence is largely a function of the ranking function

and the values of one or more designated attributes (ordering variable(s)) associated with

these entities. For a collection of documents, there is likely only a single ordering variable

(the Retrieval Status Value (RSV)); for a human, there might be two ordering variables

(e.g., grade, height) if, say, we wanted to rank students first by their SAT score and then

by height within the score group.. Note that the concept of an RSV is discussed in much

more depth in Section 7.9 (Retrieval Status Value, Weights, and Document Ranking).

Typically, the goal of a ranking endeavor is to place entities into either an ascending

or descending sequence based on the values of their ordering variable(s). However, this is

not always possible due to the possibility that two or more of the entities being ordered

may have identical values for their ordering variables. In this case, the best that we can

do is to place these entities into non-descending and non-ascending orders, respectively.

If all of the entities have distinct (i.e., unique) values associated with their ordering

variables, then the non-descending order would also be an ascending order. Similarly, a

non-ascending order would also be a descending order.

Let n represent the number of ordering variables for a specific ranking and collection

of entities. Then the ordering variables form an n-tuple where the parts, starting at 1,

and ending at n, without skipping any parts, form a sort key. Without loss of generality,

assume that part 1 is the major part of the key, that part 2 is the next most major part

of the key, and so on, with part n being the least major part of the key. The least major

part of a key is also often called the minor part of a key. If there is only one ordering

variable, like with the RSV, then this is as simple as a sort key can be. The solitary

414

ordering variable is both the major and minor part of the sort key. On the other hand, if

there are multiple ordering variables, then these variables must be placed in a key in the

order that is harmonious with the roles that the parts play, that is, the most important

variable, for ranking purposes, should correspond to part 1, the next most important

variable should correspond to part 2, and so on. For example, the sort key would be

(SATscore, height) for the example that was just mentioned in the first paragraph of this

section.

Assume that we have two arbitrary n-tuples

Ki = (pi,1, pi,2, pi,3, . . . , pi,n,)

and

Kj = (pj,1, pj,2, pj,3, . . . , pj,n,)

that represent the sort key values (Ks) for any two arbitrary entities of a collection C of

size N where n ∈ Z
+.

Informally, the entities in C are said to be strongly ordered by the < (less than)

relation if, for all i �= j, the following assertion is true: Ki < Kj implies that pi,x < pj,x

for at least one value of x in the range 1 to n, inclusive, and for all y < x, the assertion

pi,y ≤ pj,y is true. Similarly, the entities can be said to be strongly ordered by the >

(greater than) relation if, for any i �= j, the following assertion is true: Ki > Kj implies

that pi,x > pj,x for at least one value of x in the range 1 to n, inclusive, and for all y < x,

the assertion pi,y ≥ pj,y is true.

Strong ordering implies that each of the entities being ordered has a unique sort key.

If this is not so, then at least two entities have the same sort key values and, hence,

duplicate sort key values are present. In this case, we have a weak order.

415

Notationally, let a ≺ b represent that entity a comes before entity b in a ranking (i.e.,

the rank of entity a is a lower value than the rank of entity b); let a � b represent that

entity a comes after entity b in a ranking (i.e., the rank of entity a is a higher value than

that of entity b); let a � b represent that entity a ranks the same as, or lower than, entity

b; and let a � b represent that entity a ranks the same as, or higher than, entity b. The

first two notations represent strong orders, the last two represent weak orders.

As an example, in Table 10.4, there is a strong order on the values for rank, e.g.,

1 ≺ 2 ≺ 3 ≺ 4 ≺ 5 ≺ 6 ≺ 7 ≺ 8 ≺ 9 ≺ 10 ≺ 11 ≺ 12 ≺ 13 ≺ 14 ≺ 15 ≺ 16 ≺ 17

and a weak order on the values for RSV, e,g.,

12 � 12 � 9 � 3 � 3 � 3 � 2 � 2 � 2 � 1 � 1 � 1 � 1 � 1 � 0 � 0 � 0.

Note that the order is weak for the latter sequence because that sequence has at least

one instance of � that had to be used to relate its ranked entities. Using terminology

from statistics, the RSV variable in this table can be viewed a factor with six levels (i.e.,

unique values), namely, 12, 9, 3, 2, 1, 0. Each of these factor levels, except for the one

that is associated with the value 9, has multiple entities associated with it. Figure 10.3

illustrates these levels and their associated entities.

Table 10.4: Ranked List of Seventeen Documents (R=relevant).

rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

RSV 12 12 9 3 3 3 2 2 2 1 1 1 1 1 0 0 0

relevant? R R R R R R R R R

416

RSV

rank(s)

3

1-2

4-6

7-9

10-14

15-17

12 12

9

33 3

22 2

11 1 1 1

00 0

Figure 10.3: These are the 6 levels of the RSV factor from Table 10.4. The top level
corresponds to the documents at ranks 1 and 2; the bottom one corresponds to the
documents at ranks 15, 16, and 17. The gray boxes represent relevant documents whereas
the white ones represent non-relevant documents. The RSV is at its maximum at the
top level and is at its minimum at the bottom level. The ranking algorithm considers the
documents at higher levels to be better satisfiers of the information need expressed by a
query q than any of those at lower levels. Within a level, it considers all the documents
at that level as being equal satisfiers of the information need. In other words, there is no
significance to the position that a document occupies at a particular level.

417

10.3.1 What Does “Rank” Mean When Entities Are Weakly

Ordered?

When N entities can be strongly ordered, the concept of rank is unambiguous because

no entity has the same sort key value as any other entity in this order. In this case, the

number of factor levels equals N, each factor level has exactly one entity associated with

it, and each entity has exactly one factor level associated with it. In essence, there is a

one-to-one correspondence (i.e., bijection) between the set of factor levels and the set of

entities.

But, what is the rank when two or more sort key values are the same? In this situation,

the only order possible is a weak order and is a more complicated situation than when

the sort key values are distinct (which results in a strong order). Both Table 10.4 on

page 416 and Figure 10.3 on the previous page illustrate the weak ordering of entities.

10.3.2 Nondeterministic Rankings

Without loss of generality, let the output of one run of a ranking algorithm be the sequence

of documents that appear in Table 10.4 on page 416. In this table, the documents with

the highest RSVs occupy ranks that are labeled 1 and 2. These documents consist of one

that is relevant and one that is non-relevant. The non-relevant document is at rank 1 and

the relevant document is at rank 2. As is typical with IR ranking algorithms, documents

are ranked in reverse order of their RSVs. This is also true for the sequence in this table.

Suppose the ranking algorithm is run again with the same input(s), that is, the same

query and the same number N of documents. This time, though, assume that it is the

relevant document that is now at rank 1. This means that the non-relevant document

is now at rank 2. Which sequence of documents is correct? Is it the sequence that is

depicted in Table 10.4 on page 416, or is it the sequence that was obtained from running

the ranking algorithm the second time? The answer is that both are correct because, in

418

general, there is no guarantee that a ranking algorithm retains the same relative ordering

among documents that have the same RSV value. The reason for this non-deterministic

behavior has both practical and theoretical explanations. The practical explanation is

discussed first.

In IR systems, the ranking algorithm is typically effected by sorting the documents

according to their RSV values, but other techniques are also commonly used. As long

as the ranking algorithm separates documents into groups based on their retrieval status

values (i.e., RSVs), and sequences (i.e., orders) these groups such that the particular

ordering relation holds, any of possibly multiple, but equivalent, sequences are possible.

As an example, assume that a sort-based ranking algorithm is used and that the

sort key is the RSV. If the sort has been implemented correctly, the ranking algorithm

uses the sort key value of each document to place these documents into a non-ascending

order. Even if the query and the document collection are constant from one ranking

request to the next one, the sequence of documents may be different for any of several

reasons. One possibility for non-deterministic ranking behavior is that the underlying

sort algorithm may not guarantee that the sort output is stable (i.e., documents that

have the same RSV retain the reverse of their relative input order after the sort has

taken place). Another possibility is that the unsorted documents may have a different

input sequence from one run to the next. A third possibility has to due with memory, disk

space, and buffer size; some sorting algorithms are more sensitive to these than others.

Finally, a fourth possibility has to do with parallelism – the sort may be multi-threaded

rather than single-threaded.

10.3.3 Smoothing for Nondeterministic Rankings

On the theoretical side, consider the fact that a particular level of the RSV factor has,

say, m documents of which r are relevant. Since the documents at this level all have the

419

same RSV, they can be permuted into

m!

r!(m − r)!
=

(
m

r

)

distinct sequences because there are r relevant documents and m − r relevant ones.

Since each of these sequences are equivalent, at least as far as the ranking algorithm

is concerned, and absent any evidence that one of these sequences is more likely than

any of the others, we must average the performance metrics for this level in order to

obtain a truer value of this metric. These considerations become very important when

we discuss the formulas for the Average Search Length, the Expected Search Length, the

MZE measure, and the Reciprocal Rank measures.

10.4 Several Sum and Binomial Identities

The parameters a, b, k, l, m, n, r, s, and q that appear in the identities below are all as-

sumed to be integers. These identities represent the ones that are repeatedly applied in

many of the derivations that take place later in this chapter.

Each identity is presented along with the parameter constraints that apply to their use

in a formula or derivation. The main reference sources for these identities were Graham

et al. (1994), Purdom and Brown (1985), Benjamin and Quinn (2003), and Larsen (2007).

Most of the names that are used for these identities came from Graham et al. (1994).

10.4.1 Manipulation of Sums

These three identities are from Graham et al. (1994). The first one enables a quantity

c, whose value is independent of the summation variable k, to be moved outside the

summation. The second identity enables a single summation to be broken up into two

independent summations. The third identity states that the sum of the ak quantities is

420

equal to the sum of any permutation p(k) of the ak quantities.

∑
k∈K

cak = c
∑
k∈K

ak. (distributive law) (10.4.1)

∑
k∈K

(ak + bk) =
∑
k∈K

ak +
∑
k∈K

bk. (associative law) (10.4.2)

∑
k∈K

ak =
∑

p(k)∈K

ak. (commutative law) (10.4.3)

10.4.2 Basic identities

For n ≥ 0,

(
n

k

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if k < 0 or k > n;

1, if k = 0 or k = n;

n, if k = 1;

n(n − 1) · · · (n − k + 1)/k!, if 2 ≤ k ≤ n.

(10.4.4)

Equation 10.4.4 could easily be viewed as four separate identities. They are being pre-

sented here as just one identity, though, because they are such simple and basic identities

that the author of this dissertation strongly believed that they should be consolidated in

one place.

The first line of this identity states that the number n distinct entities, chosen k at

a time, without regard to order, is 0 if the number of entities that is chosen is negative

(this is an impossible situation) or if the number chosen is greater than the number (i.e.,

n) that is available (another impossible situation). The second line of the identity states

421

that there is only one way to either choose none, or all, of the entities. The third line

states that the number of ways that one entity can be chosen at a time is the same as

the number of distinct entities that are available. Lastly, the fourth line of this identity

states that the number of ways to choose k ≥ 2 entities at a time can be accomplished

by calculating the value of n (the number of entities) times the product of the first k− 1

integers that are smaller than n, and then dividing this value by k! (the number of ways

that k distinct entities can be permuted). For example, if n = 10 and k = 4, the product

of n and the next k − 1 smaller integers is

n(n − 1) · · · (n − (k − 1)) = 10 · 9 · 8 · 7 = 5040.

For n ≥ 0,

(
n

k

)
=

⎧⎪⎪⎨
⎪⎪⎩

n!
k!(n−k)!

, if 0 ≤ k ≤ n;

0, otherwise.

(10.4.5)

This identity expresses the number of n distinct entities, chosen k at a time, in terms

of factorials. The second line of this identity states that is impossible to choose more

entities k than the number n that is available.

10.4.3 Symmetry

For 0 ≤ k ≤ n,

(
n

k

)
=

n!

k!(n − k)!
=

(
n

n − k

)
. (10.4.6)

422

The entities to be chosen k at a time can be viewed as belonging to two distinct categories,

with k of them belonging to one category and the remaining n−k belonging to the other

category. This relationship means that k and n − k can be used interchangeably in the

“choose” (i.e., bottom) part of the binomial. This identity is often used to transform the

“choose” part to a simpler, or more easier to manipulate, form.

10.4.4 Addition

For 0 ≤ k ≤ n, except when n = 0 and k = 0,

(
n

k

)
=

(
n − 1

k

)
+

(
n − 1

k − 1

)
. (10.4.7)

This identity enables the expression of one binomial as the sum of two other similar

binomials provided that certain basic conditions are met.

10.4.5 Convolution identities

The following identities, under certain conditions, of course, allow us to simplify binomial

expression manipulations by replacing a sum of binomial products with just a binomial.

For m ≥ 0, n ≥ 0 :

(
m + n

k

)
=

k∑
j=0

(
m

j

)(
n

k − j

)
. (10.4.8)

(
r + s

m + n

)
=
∑

k

(
r

m + k

)(
s

n − k

)
. (10.4.9)

423

For l ≥ 0, m ≥ 0, and n ≥ q ≥ 0,

(
l + q + 1

m + n + 1

)
=

l∑
k=0

(
l − k

m

)(
q + k

n

)
. (10.4.10)

For n ≥ 0, and 0 ≤ m ≤ l,

(
l + q + 1

m + n + 1

)
=

l−m∑
k=−(q−n)

(
l − k

m

)(
q + k

n

)
. (10.4.11)

10.4.6 Sum of the first n positive integers

For n ≥ 0,

n(n + 1)

2
=

(
n + 1

2

)
=

n∑
j=1

j. (10.4.12)

This identity is one of the most well-known ones in discrete mathematics. It is an identity

that many people who use discrete mathematics and combinatorics learn very early in

their study of basic summations. We make use of it many times in the derivations that

occur in the remainder of this chapter. Note that, by the definition of a binomial, the

sum above can be expressed combinatorially as
(

n+1
2

)
.

10.4.7 Sum of several natural numbers

For a ≥ 0, b ≥ 0, and a ≤ b,

b∑
j=a

j =
b∑

j=1

j −
a−1∑
j=1

j =
b(b + 1)

2
− (a − 1)a

2
. (10.4.13)

This identity is useful when it is necessary to determine the sum of natural numbers in

the closed interval [a, b]. The identity that is represented by Equation 10.4.12 is a special

case of this identity.

424

10.4.8 Absorption identities

The “choose” (i.e., bottom) part of a binomial term, that appears in a summation, often

has a dummy index variable k as part of the expression that resides there. This index

term may appear at multiple places in the expression that is being summed. These

multiple instances make summations more difficult, sometimes in a very complicated

manner. If some of these instances can be removed by “absorbing” them into a nearby

binomial term, this absorption can make manipulation of the entities in the summation

vastly easier. Absorption can be observed in the three identities below. Notice that, in

all three identities, the expression on the right-hand side of the equals sign has one less

instance of k than the corresponding expression on the left-hand side.

For k �= 0,

r

k

(
r − 1

k − 1

)
=

(
r

k

)
. (10.4.14)

For 0 ≤ k ≤ r:

k

(
r

k

)
= r

(
r − 1

k − 1

)
. (10.4.15)

(r − k)

(
r

k

)
= r

(
r − 1

k

)
. (10.4.16)

10.5 A General Framework For Handling Ties

Cooper (1968) appears to be the earliest reference in the IR literature that acknowledged

the presence of ties and suggested a way to adjust for them in the model for a performance

measure. This acknowledgement and adjustment for ties appeared in his 1968 article on

the Expected Search Length (ESL). The ESL measure does not assume that a ranked

425

vector V of documents is strongly-ordered. This measure works correctly with both

weakly- and strongly-ordered sequences of documents. The second earliest reference

in the IR literature to a measure that incorporates the possible presence of ties in its

calculations appears to be the precall measure (Raghavan et al., 1989).

In the first paragraph of this chapter, we remarked that some document rankings

may contain tied, or duplicate, RSVs and that some performance measures calculate

values that are consistent with the assumption that documents may may have tied, or

duplicate, RSVs. In Section 10.2.2, we noted that some performance measures calculate

values that are consistent with the assumption that the RSVs in a document ranking are

distinct. These two types of assumption are mentioned many times in the subsequent

pages of this chapter. In order to help with the economy of expression for measures that

calculate values under these assumptions, we use Type-T as an adjective to denote a

measure whose calculated values are consistent with the assumption that some of the

documents in a vector V of ranked documents may have tied (i.e., duplicate) RSVs and

use Type-D as an adjective to denote a measure whose calculated values are consistent

with the assumption that all the documents in a vector V must have distinct RSVs. Most

of the discussions in the remainder of this chapter involve Type-T performance measures

rather than Type-D ones.

Some of the more recent literature that discusses the presence of ties, the need to

handle them, and the development of either new measures to accommodate them, or

how to adapt some of the most used measures (e.g., MRR, precision, recall, NCDG) to

handle them, are Chiu et al. (2008), Lin et al. (2008), and McSherry and Najork (2008).

The tie-handling framework that is used in the remainder of this chapter comes from

the McSherry and Najork (2008) article. Also, this chapter uses some of the notation

and terminology from this article. Figure 10.4 on the following page introduces several

of the most important concepts and notation.

426

T : t2 · · · · · ·tc+1

1 2 m + 1c + 1

t1 = 0 tm+1 = N

· · ·

E1

· · ·v1 v2 vt2

1 t22

· · ·

Ec Em

· · · vkvtc+1 · · · vtc+1

k tc+1tc + 1

V :

tm + 1 tm+1

· · · vtm+1vtm+1

︸ ︷︷ ︸
window of k − tc documents

Figure 10.4: This diagram details the relationship between V (the vector of ranked
documents) and T (the tie vector) for a document collection of size N. It depicts a
situation where V has m equivalence classes labeled E1, E2, . . . , Em. The first k − tc
positions in subvector Vc comprise the window for document cut-off k. The tie vector T
has m + 1 members and its last m members contain the indices of the last element in
each of the equivalence classes in V. Its first element is special and has the value of 0.
The last element in T is equal to N.

The framework assumes that a vector of ranked documents V exists that has N docu-

ments non-ascendingly ordered by their RSVs. If no two documents have the same RSV,

then the non-ascending order is effectively a descending order. All documents that have

the same RSV belong to the same equivalence class. A ranking can have as few as one

equivalence class (i.e., all the documents have identical RSVs) or as many as N equiv-

alence classes (i.e., all the RSVs are distinct). The classes are labeled E1, E2, . . . , Em

where m is an integer that ranges from a low value of 1 to a value that can be at most

N, the number of documents in the collection.

The indices for vector V range from 1 to N , inclusive. The first element in V is at

index 1, the last element is at index N. The value of the first element in V is denoted by

v1, the value of the second element is denoted by v2, and the value of the last element is

denoted by vN . It is assumed that vector V has m ≥ 1 equivalence classes.

There is a tie vector T that is associated with vector V. This vector has m+1 elements

427

and contains the indices of the last element of each equivalence class. The indices for

vector T range from 1 to m + 1, inclusive. The reason that vector T has m + 1 elements

instead of just m elements is due to its first element having the value 0 (this helps to

simplify some of the computations that are used later to reason about ties). The value

of the first element of T is denoted by t1 (it always has the value 0), the value of the

second element is denoted by t2 (it is the index of the last element in the part of V

that corresponds to the first equivalence class), and the index of the last element in T is

denoted by tm+1 (it always has the value N).

Notationally, let ri and ni denote the number of relevant and total number of docu-

ments, respectively, in Ei. Let

Vi =<vti+1, vti+2, . . . , vti+1
>

denote a subvector of the elements in V. Additionally, let Ri and Ni denote the number

of relevant and total number of documents, respectively, that precede subvector Vi in V.

Finally, let the indicator function IR return a value of 1 if the document that is associated

with vi is a member of the set R of relevant documents for a query q and return a value

of 0, otherwise. That is,

IR(vi) =

⎧⎪⎨
⎪⎩

1, if vi is a member of the set of relevant documents R for a query q;

0, otherwise.

This framework also includes the notion of a document cut-off at index k in the ranked

vector V of documents. The notation Vc denotes the subvector of V that has k as the

index of one of its elements. This subvector is also known as the document cut-off vector

and corresponds to equivalence class Ec. The cut-off window that the kth document is a

part of has k− tc elements and these elements occupy the first k− tc slots of Vc. Overall,

428

this subvector has nc elements of which rc are relevant. The value of the kth element in

V is denoted by vk, where k is an integer in the half open interval (tc, tc+1]. Figure 10.4

on page 427 illustrates many of the important relationships that were just discussed.

10.5.1 Important Commonalities

Vector V can be viewed as consisting of three subvectors of ranked documents. These

subvectors are referred to as the prefix to the document cut-off subvector, the document

cut-off subvector, and the suffix to the document cut-off subvector. The prefix and suffix

are defined as

Vpre =<v1, v2, . . . , vtc>

and

Vsuf =<vtc+1+1, vtc+1+2, . . . , vN >,

respectively.

The documents in Vsuf occur after the document cut-off k and, hence, cannot affect

the rankings in the portion of V (i.e., <v1, v2, . . . , vtc+1 >) that all of the performance

measures, that can calculate their values at an arbitrary document cut-off point k, are

used to calculate their values. This observation allows the performance measure calcula-

tions to ignore the documents in all of the equivalence classes that come after Ec in the

ranking.

The number of possible document sequences that correspond to equivalence classes E1,

E2, . . . , and Ec is

c∏
i=1

ni!

ri!(ni − ri!)
(10.5.1)

because the documents in each equivalence class can be arranged independently of those

in any other equivalence class and each class has, at most, two kinds of documents –

429

relevant and non-relevant ones. It is well-known in combinatorics that the number of

distinct permutations of n documents where there are x of one kind, y of another kind,

and n = x + y, is

n!/(x!y!) =

(
n

x

)
=

(
n

y

)
.

Therefore, Equation 10.5.1 on the preceding page can be written more succinctly as

c∏
i=1

(
ni

ri

)
.

For some of the performance measure derivations that follow this one, it is important to

remember that for each of the
c−1∏
i=1

(
ni

ri

)

possible distinct sequences in Vpre, there are

(
nc

rc

)

possible Vc sequences that are associated with it from the equivalence class Ec. Similarly,

each of the (
nc

rc

)

possible distinct sequences in Vc has

c−1∏
i=1

(
ni

ri

)

possible distinct Vpre sequences associated with it. For computational purposes, the Vc

sequences that correspond to those in Vpre can be viewed as a table of
(

nc

rc

)
sets of Vc

sequences. Likewise, the Vpre sequences that correspond to those in Vc can be viewed as

430

a table of
c−1∏
i=1

(
ni

ri

)

sets of Vpre sequences. This means that the combined number of sequences contained in

each table is
c∏

i=1

(
ni

ri

)
.

Figure 10.5 depicts these relationships.

c∏
i=1

(
ni

ri

)

sequences

(
nc

rc

)
Vpre’s

c−1∏
i=1

(
ni

ri

)
Vc’s

Vc

Vc

Vc

Vc

Vc

Vc

Vc

···

︸
︷︷

︸
︸

︷︷

︸

︸

︷︷

︸

︸
︷︷

︸

Vpre

Vpre

Vpre

Vpre

···
There are

in each table.

Figure 10.5: Each of the
c−1∏
i=1

(
ni

ri

)
distinct sequences in Vpre has

(
nc

rc

)
distinct sequences in

Vc that are associated with it. Conversely, each of the
(

nc

rc

)
distinct sequences in Vc has

c−1∏
i=1

(
ni

ri

)
distinct Vpre sequences associated with it. This means that the combined number

of sequences contained in each table in this diagram is
c∏

i=1

(
ni

ri

)
.

431

10.5.2 Commonalities for Precision, Recall, and Average Search

Length

The precision and recall measures are often defined with respect to the first 1 ≤ k ≤ N

documents of a ranked vector V of documents for a query q. By contrast, the ASL

measure is defined on the totality of a ranking. The definitions commonly encountered

in the information retrieval (IR) literature for these measures assume that the ranking is

strongly ordered.

The reason that these measures are being jointly treated as a group in this subsection

is because the derivation of the combinatoric-based Type-T equations for them, at doc-

ument cut-off k, have certain commonalities that make it easier to treat them together.

The equations for precision and recall that are derived later in Section 10.6 are used later

in that section to derive the equation for the MZE measure. Later, we show that deriving

the document cut-off and Type-T version of the equation for the MZE measure is trivial

once we have the corresponding equations for the precision and recall measures.

The Commonality That is Present in Ec

The commonality is the derivation of an equation for counting the number of relevant

documents among those documents in the cut-off window of k − tc documents over all of

the possible sequences of nc documents in Vc. Each Vc sequence has rc relevant documents

and nc−rc non-relevant documents. The document cut-off window for any sequence that

is a member of Vc always consists of the first k − tc documents in that sequence.

The notion of document cut-off, as was originally explained, was based on a fixed

position 1 ≤ k ≤ N in a vector V of ranked documents. This position is independent

of the characteristics of any performance measure. It is just an arbitrary value that is

decided upon prior to the ranking of a collection of documents for a query. In TREC-1

(Voorhees and Harman, 2005), document cut-offs of 5, 15, 30, 100, and 200 were used to

432

restrict the calculation of the various performance measure values to a relatively small

proportion of the documents that were at the front of the rankings. For example, a

document cut-off of 30 means that the performance measure calculations only consider

the first 30 documents in a ranking. All later documents in such a ranking, no matter

how many, are ignored.

The notion of document cut-off is more nuanced than was explained in the previous

paragraph. Depending on query and collection characteristics, the effective document

cut-off equivalence class may be an equivalence class Ea that precedes equivalence class

Ec. For example, the RR measure is a function of both the location in the ranking where

the first relevant document occurs and of the document cut-off k. This document may

occur in an equivalence class Ea that precedes the one (i.e., Ec) that is associated with

document cut-off k. If this is the case, the documents in Ec can be ignored because they

have no effect on the calculation of the reciprocal rank measure. Actually, a stronger

statement can be made: the documents in all the equivalence classes that succeed those in

Ea can be ignored when calculating the Type-T version of the RR measure at document

cut-off k when the first relevant document occurs in an equivalence class that precedes

Ec. This is discussed further in Section 10.6.6 (Reciprocal Rank).

Looking ahead, we find that the document cut-off equivalence class for the ASL, E,

precision, and recall measures are totally determined by the value of k. The effective

document cut-off equivalence class for these measures coincides with the one that is

determined by k. However, the situation is different for the ESL and reciprocal rank

measures. The effective document cut-off equivalence class for the ESL measure is a

function of the number of requested documents and the document cut-off value k. The

document cut-off equivalence class for the RR measure is a function of where the first

relevant document occurs at and the document cut-off value k. Therefore, the effective

document cut-off classes for these latter two measures may differ from the one that

433

contains the kth document.

A More General Notion of Document Cut-off

In order to make the discussions in the remaining sections of this chapter more under-

standable, and, also, to simplify some of the calculations, we define a more general version

of Ec. Previously, Ec was defined in terms of a fixed position k from the front of a vector

V of ranked documents. This definition was adequate for the measures (e.g., ASL, E,

precision, recall) where the equivalence class Ec for document cut-off k was independent

of the query and document collection combination. On the contrary, this definition was

inadequate for the measures (e.g., ESL and RR) where the effective document cut-off

could occur in an effective document cut-off equivalence class Ec̃ that preceded Ec. Our

revised notion of document cut-off is defined to take into account that the effective doc-

ument cut-off equivalence class may not be solely dependent on the value of k and may

occur in an equivalence class that is indexed by c̃, where c̃ < c.

We propose the following three additional equivalence classes for vector V : Ecfr (the

equivalence class that contains the first relevant document), Ecxr (the equivalence class

that contains the xth relevant document), and Eck (the equivalence class that contains

the kth document). The Ecfr equivalence class is only applicable to the reciprocal rank

derivations. The Ecxr equivalence class is only applicable to the expected search length

derivations. The Eck equivalence class is applicable to all of the derivations.

For a particular collection and query combination, equivalence class Ec̃ is exactly one

of Ecfr , Ecxr , or Eck ; that is, the value of the index c̃ is a value from the set {cfr, ck, cxr}.
The determination of the value of c̃ is specific to a performance ranking measure and

is discussed in the upcoming sections of this chapter. The document cut-off value that

is used in the calculations of the ESL and RR measures may be different than the one

which was originally specified for the length of the document cut-off window; this can

434

occur when c̃ �= ck.

In order to handle these situations, we introduce the notion of an effective document

cut-off k̃ because, in the derivations for the ESL and reciprocal rank measures, it is

necessary to differentiate between the specified document cut-off k and the effective

document cut-off k̃. The value of k̃ is never any greater than that of k because an

effective cut-off value, by definition, can never point to any document that occurs in an

equivalence class that succeeds Eck . The values of k and k̃ are identical for the ASL,

recall, precision, and MZE measures. Similarly, the values of c and c̃ are also identical

for these measures. This gives us

k̃ = k,

c̃ = c = ck, and

Ec̃ = Ec = Eck .

When discussing the derivations for the ASL, recall, precision, and MZE measures, Ec,

instead of Ec̃, and k, instead of k̃, is used for simplicity. The derivations for the ESL and

RR measures uses Ec̃ and k̃ because the effective cut-off value k̃ for these measures may

be less than the specified cut-off value k.

An Equation for the Number of Relevant Documents at Cut-off k

The information in Figure 10.6 on the following page can be used to derive an equation

for the number of relevant documents in the document cut-off window over all of the

possible sequences that could occupy that window of k − tc documents for the ASL,

precision, recall, and MZE performance measures.

The minimum number of relevant documents m could be as few as 0. The maximum

number could be as many as the minimum of the size of the window (i.e., k − tc) and

the number of relevant documents (i.e., rc) in equivalence class Ec. This means that the

435

Ec

of relevant documents:
of non-relevant documents:

· · · vtc+1vtc+1 · · ·

︷ ︸︸ ︷

︸ ︷︷ ︸
of distinct sequences:

simplified expressions:

nc − rc − (k − tc − m)k − tc − m

rc − m0 ≤ m ≤ min(k − tc, rc)

vti+k

k

(
rc − m + (nc − rc − (k − tc − m))

nc − rc − (k − tc − m)

)
(

nc − k + tc
nc − rc − k + tc + m

)
(

m + (k − tc − m)
k − tc − m

)
(

k − tc
k − tc − m

)

︸ ︷︷ ︸

after further simplification:
(

nc − k + tc
rc − m

)(
k − tc

m

)

Figure 10.6: This diagram details the basic relationships that are associated with the
equivalence class Ec for the ASL, precision, recall, and MZE measures. The equivalence
class Ec contains document cut-off k for each of these measures.

436

expression 0 ≤ m ≤ min(k − tc, rc) describes the relationship that must hold for the

number of relevant documents that could be in the document window for Vc. The corre-

sponding number of non-relevant documents that are in this window can be calculated

by subtracting the value of m from the size of the window. This yields the expression

k − tc −m for the number of non-relevant documents that can occupy the remaining po-

sitions in this window. From these expressions, we can state that the number of distinct

ways that the documents could be arranged in the document cut-off window is

(
k − tc

k − tc − m

)
=

(
k − tc

m

)
.

Now, we need to develop analogous expressions for the number of distinct ways that

the remaining

(rc − m) + (nc − rc − (k − tc − m)) = nc − (k − tc)

documents can be arranged in the part of Vc that comes after the document cut-off

window. The rc −m expression in the above equation represents the number of relevant

documents that occupy some of the remaining positions in Vc and the

nc − rc − (k − tc − m)

expression in this equation represents the number of non-relevant documents are placed

in these remaining positions. From this information, we can state that the number of

distinct ways that the remaining nc − (k − tc) documents in Vc can be arranged is

(
nc − (k − tc)

rc − m

)
.

Since these two sets of documents can be arranged independently of each other, the

437

expression (
k − tc

m

)(
nc − (k − tc)

rc − m

)

represents the number of distinct sequences of documents for Vc that can occupy the

document cut-off window, when that window contains exactly m relevant documents.

The expression

min(k−tc,rc)∑
m=0

(
k − tc

m

)(
nc − (k − tc)

rc − m

)

represents the number of distinct document sequences for Vc, over all of the possible

numbers of relevant documents that can occupy positions in the document cut-off window.

Our next goal is to derive a closed form expression for the immediately previous

expression. First, notice that the immediately previous expression can be simplified to

∑
m

(
k − tc

m

)(
nc − (k − tc)

rc − m

)

because the term
(

k−tc
m

)
vanishes when either m is negative or m > k − tc, and the term(

nc−(k−tc)
rc−m

)
vanishes when m > rc. Finally, we can apply Equation 10.4.8 on page 423, one

of the convolution identities, to obtain

(
nc

rc

)
,

the closed form version of the expression. This expression is used in the derivation of the

equations for the ASL, precision, and recall measures.

The sum of the ranks of the relevant documents in the document cut-off window, over

all possible sequences of documents in Vc, is also helpful for determining later derivations.

More specifically, this is something that is necessary to know for the derivation of the

ASL. It is not necessary, nor used, for the precision and recall derivations. Of course,

438

it is possible, perhaps even desirable, that the author of this dissertation should wait

until the ASL derivation section to do this derivation. However, the author chose to do

it here because, from the discussion in the previous paragraphs of this subsection, both

the reader and the author are already familiar with how to develop the counts for Ec.

The expression for the sum of the ranks can be obtained by weighting the summand

value in

∑
m

(
k − tc

m

)(
nc − (k − tc)

rc − m

)

by m, the value of the index variable at the time the summand is evaluated. This gives

us

∑
m

m

(
k − tc

m

)(
nc − (k − tc)

rc − m

)
= (k − tc)

∑
m

(
k − tc − 1

m − 1

)(
nc − (k − tc)

rc − m

)
(10.5.2)

= (k − tc)
∑

m+1≥0

(
k − tc − 1

m

)(
nc − (k − tc)

rc − 1 − m

)
(10.5.3)

= (k − tc)
∑

m≥−1

(
k − tc − 1

m

)(
nc − (k − tc)

rc − 1 − m

)
(10.5.4)

= (k − tc)
∑
m

(
k − tc − 1

m

)(
nc − (k − tc)

rc − 1 − m

)
(10.5.5)

= (k − tc)

(
nc − 1

rc − 1

)
. (10.5.6)

This value is the sum of the ranks for the relevant documents in the document cut-off

window over all the possible distinct sequences that can appear in Vc.

Before continuing this discussion, it would be useful to explain some parts of the

derivation of the previous equation. Equation 10.5.3 was produced from Equation 10.5.2

by doing a change of variable (i.e., replace m by m+1). This starts a series of operations

that help to simplify the equation. A simplification of the summation limits occurs at

Equation 10.5.4. Further simplification of the limits occur at Equation 10.5.5 because the

439

first binomial of the product that is being summed vanishes when m is negative. Finally,

we go from Equation 10.5.5 to Equation 10.5.6 by applying either Equation 10.4.8 or

Equation 10.4.9.

The proportion (
nc − 1

rc − 1

)
/

(
nc

rc

)

is useful later in the derivations of the expressions for precision and recall. We can

simplify it in this way:

(
nc − 1

rc − 1

)
/

(
nc

rc

)
=

(nc − 1)!

(rc − 1)!(nc − rc)!

(
nc!

rc!(nc − rc)!

)−1

(10.5.7)

=
(nc − 1)!

(rc − 1)!(nc − rc)!

rc!(nc − rc)!

nc!
(10.5.8)

=
(nc − 1)!

(rc − 1)!(nc − rc)!

rc(rc − 1)!(nc − rc)!

nc(nc − 1)!
(10.5.9)

=
rc

nc

. (10.5.10)

Before continuing this discussion, it would be useful to explain some parts of the

derivation of the previous equation. Equation 10.5.8 was produced from Equation 10.5.7

by re-expressing the negative power term as a reciprocal. The simplification continued by

expanding the terms rc! and nc! in Equation 10.5.8 into, respectively, the terms rc(rc−1)!

and nc(nc − 1)! in Equation 10.5.9. Finally, there was a transition from Equation 10.5.9

to Equation 10.5.10 that was effected by canceling all the terms in the numerator that

also appeared in the denominator.

An expression for the the mean number of relevant documents in the document cut-off

window of Vc, over all of is possible sequences of ranked documents, can be obtained by

dividing the expression

(k − tc)

(
nc − 1

rc − 1

)
,

from Equation 10.5.6 on the preceding page, by
(

nc

rc

)
, the number of possible sequences

440

of ranked documents for Ec. The resultant expression is

(k − tc)

(
nc − 1

rc − 1

)(
nc

rc

)−1

.

By the result of Equation 10.5.10 on the previous page, this expression can be simplified

to

(k − tc)
rc

nc

=
(k − tc)rc

nc

.

10.6 Derivations for the ESL, ASL, Precision, Re-

call, MZE, and RR Measures

The next 6 subsections discuss the derivation of the equations for the ESL, ASL, precision,

recall, MZE, and RR performance measures. They also discuss the derivations of the

Type-T versions of the precision and recall measures because the Type-T version of the

MZE measure is defined in terms of these two measures. We start our discussion with the

derivation for the ESL measure. The main reason for this is historical because the ESL

measure appears to be the first performance measure in the IR literature that correctly

calculates performance for rankings that may be weakly-ordered.

10.6.1 Expected Search Length

Earlier in this chapter, we mentioned that the ESL can be viewed as being both defined

on the totality of a ranking and as a point measure. The ESL measure assumes that the

441

ranking may be weakly-ordered and is defined as

ESL(V, x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, if x < 1;

j + s
i

r + 1
, if 1 ≤ x ≤ R; and

|V |, otherwise;

(10.6.1)

where V is a ranked vector of documents for a query q, R is the total number of relevant

documents in the collection, l is the level at which the xth relevant document occurs, j is

the total number of documents not relevant to q in all levels which precede level l in the

weak ordering, i is the number of documents not relevant to q in level l, s is the number

such that the sth relevant document found in level l of the weak ordering would complete

the search for request q, and r is the number of documents level l which are relevant to

q.

There are two differences in the above definition from that given in Cooper (1968).

The ESL measure, as defined above (shown by Equation 10.6.1), has been extended to

handle the situation where the requested number of relevant documents is less than 1 and

to handle the situation where the requested number of relevant documents is larger than

the available number of relevant documents. When the requested number of relevant

documents is less than 1, the value of the ESL is 0 because no documents have to be

examined. When the requested number of relevant documents is greater than N, Kraft

and Lee (1979) defines the expected value to be the same as the number of documents

in the collection because the entire collection has to be examined in order to determine

that there are an insufficient number of relevant documents to satisfy the request for x

relevant documents.

We proceed by deriving the analogous set of equations for ESL@k(V, x), the ESL at

document cut-off k. We also show that the Cooper equation (the middle one in Equa-

tion 10.6.1) is a special case of the more general equation for ESL@k(V, x). Cooper (1968)

442

states this middle equation but did not provide its derivation in the article. He did say

that, upon request, a mathematical supplement (Cooper, 1967) to his article on the

ESL was “[o]btainable by mail from the Graduate Library School, University of Chicago,

Chicago, Ill.” The author of this dissertation was not successful in obtaining a copy of

this supplement. That is another reason for providing this derivation and for showing

that it is equivalent to the equation by Cooper. Other reasons for providing this deriva-

tion include showing how these equations can be derived by combinatoric techniques;

illustrating arguments that are similar to those that are used for the document cut-off k

versions of the ASL, MZE, and RR measures; and operationalizing the equation in terms

of the tie-breaking framework and its notation.

The Derivation for ESL@k(V , x)

The number of non-relevant documents contained in any sequence of Vpre is the same as

the number that is contained in any other of these sequences. This is true because the

various document permutations have no effect on the number of non-relevant documents

that are contained by each sequence. That number is the same no matter what positions

the non-relevant documents occupy. Following Cooper’s notation, this value is denoted

by the symbol j. It can be defined as

j = Ncxr − Rcxr ,

where Ncxr and Rcxr denote, respectively, the number of documents and the number of

relevant documents that are contained in the equivalence classes that precede equivalence

class Ecxr . Note that this equivalence class may be different than the one (i.e., Eck) that

the document cut-off k is associated with. The discussion to follow assumes that the xth

relevant document occurs either in subvector Vck or in a subvector that precedes it. The

case where the xth relevant document would occur in a subvector that succeeds Vck is

443

handled separately because it corresponds to a situation where the requested number of

relevant documents do not exist among the first k documents of any of the sequences of

V that are comprised of documents in the first ck equivalence classes.

For a vector V, the values for ck and cxr are defined as follows. Let ck denote the

index of the equivalence class that contains the kth rank. Its definition is

ck =

⎧⎪⎪⎨
⎪⎪⎩

min(S), if card(S) > 0;

undefined, otherwise;

where

S =

{
i

∣∣∣∣∣
((∑

1≤p≤i

np

)
≥ k

)
and 1 ≤ i ≤ m

}

and m is the number of equivalence classes that are associated with vector V. From earlier

discussions, we know that the number of equivalence classes that are associated with a

vector V is the same as the number of distinct RSVs that are associated with V. Let cxr

denote the index of the equivalence class that contains the xth relevant document. Its

definition is

cxr =

⎧⎪⎪⎨
⎪⎪⎩

min(S), if card(S) > 0;

undefined, otherwise;

where

S =

{
i

∣∣∣∣∣
((∑

1≤p≤i

rp

)
≥ x

)
and 1 ≤ i ≤ m

}

and m is the number of equivalence classes that are associated with vector V.

Next, we need to calculate the mean number of non-relevant documents that can ap-

pear before the sth relevant document when the specified cut-off value is k. The effective

444

cut-off position and cut-off equivalence class index pair (k̃, c̃) is determined as follows:

(k̃, c̃) =

⎧⎪⎪⎨
⎪⎪⎩

(k, ck), if cxr = ck;

(tcxr+1, cxr), if cxr < ck.

If cxr > ck, then the relevant document that satisfies the request is in an equivalence

class that comes after Eck (the equivalence class that contains the kth document). In

this case, the request cannot be satisfied and, consequently, ESL@k(V, x) = k.

In the other two cases, where cxr ≤ ck, the ESL@k(V, x) value can be calculated by

determining several quantities. These quantities are referenced several times in the set

of expressions that are developed below. Let

X =
c̃−1∑
p=1

(np − rp)

= Nc̃ − Rc̃

denote the number of non-relevant documents that precede the documents in Vc̃ and let

Y =

(
nc̃

rc̃

)

denote the number of sequences that are in Vc̃.

The summation limit, min(i, k̃ − tc̃ − s), represents the number of non-relevant doc-

uments that can be mixed in with the s − 1 relevant documents that precede the sth

relevant one. With our assumption that the sth relevant document occurs at, or before,

point k in a ranking, the capacity of the cut-off window is k̃− tc̃. At least s of these slots

are occupied by relevant documents. The most non-relevant documents that can precede

the sth relevant document is the minimum of the total number of relevant documents

i and the capacity k̃ of the effective cut-off window minus the slots for the s relevant

445

documents.

From information that was obtained from Figure 10.7 on page 448, we see that the(
(s−1)+m

s−1

)
term in Equation 10.6.2 represents the number of ways that s − 1 relevant

documents and m non-relevant ones can be ranked ahead of the sth relevant document

when the summation limit is the minimum of the values for i (the number of non-relevant

documents in Vc̃) and k̃ − tc̃ − s (the maximum number of remaining documents that

can occupy slots in the document cut-off window once s relevant documents have been

selected for that window). The
(
(r−s)+(i−m)

r−s

)
term represents the number of ways that r−s

relevant documents and i − m non-relevant ones can be ranked behind the sth relevant

one. Since the two sets of orderings are independent, the total number of orderings (Tm)

is simply the product of the two independent orderings. That is, we have

Tm =

(
(s − 1) + m

s − 1

)(
(r − s) + (i − m)

r − s

)
. (10.6.2)

This means that the total number of non-relevant documents that are ranked ahead of

the sth relevant document for a particular value of m is mTm. Summing these up for all

values of m in the range [0, min(i, k̃ − tc̃ − s)] results in these next two equations.

A = mTm

=

min(i,k̃−tc̃−s)∑
m=0

m

(
(s − 1) + m

s − 1

)(
(r − s) + (i − m)

r − s

)
(10.6.3)

and

B = Tm,

=

min(i,k̃−tc̃−s)∑
m=0

(
(s − 1) + m

s − 1

)(
(r − s) + (i − m)

r − s

)
, (10.6.4)

where the variable A denotes the number of non-relevant documents that can appear

446

before the sth relevant document and the variable B denotes the number of sequences in

which the non-relevant documents can appear before the sth relevant document.

From our experience with the manipulation of combinatoric identities, we notice that

Equation 10.6.3 on the preceding page seems to be a possible candidate for simplification

due to the expression

m

(
(s − 1) + m

s − 1

)

that appears in it. By algebraic and combinatorial manipulations, this expression can be

simplified in this way:

m

(
(s − 1) + m

s − 1

)
= m

(
(s − 1) + m

m

)
(by Equation 10.4.6 on page 422)

= m
((s − 1) + m)!

m!(s − 1)!
(by Equation 10.4.5 on page 422)

=
((s − 1) + m)!

(m − 1)!(s − 1)!
(by dividing numerator and denominator by m)

= s
((s − 1) + m)!

(m − 1)!s!
(by multiplying numerator and denominator by s)

= s

(
(s − 1) + m

m − 1

)
(by Equation 10.4.5 on page 422)

= s

(
(s − 1) + m

s

)
. (by Equation 10.4.6 on page 422)

Therefore, Equation 10.6.3 on the previous page can be rewritten as

A = s

min(i,k̃−tc̃−s)∑
m=0

(
(s − 1) + m

s

)(
(r − s) + (i − m)

r − s

)
. (10.6.5)

If we let

C =

(
nc̃

rc̃

)
−

min(i,k̃−tc̃−s)∑
m=0

(
(s − 1) + m

s − 1

)(
(r − s) + (i − m)

r − s

)

= Y − B

447

· · ·︷ ︸︸ ︷
s − 1

0 ≤ m ≤ i

of relevant documents:
of non-relevant documents: i − m

r − s

︷ ︸︸ ︷
· · · vtc̃+1Rvtc̃+1 · · ·

︷ ︸︸ ︷

︸ ︷︷ ︸ ︸ ︷︷ ︸(
(s − 1) + m

s − 1

) (
(r − s) + (i − m)

r − s

)
1# of distinct sequences:

︸︷︷︸s + m

Ec̃

(a)

· · · · · · vtc̃+1Rvtc̃+1 · · ·

(k̃ − tc̃) − (m + s)
slots

(r + i) − (k̃ − tc̃)
slots

s − 1 Rs and m Ns sth
relevant

document

k̃ − tc̃ slots

(r − s) + (i − m)
slots

{
r − s Rs
i − m Ns

︷ ︸︸ ︷︷ ︸︸ ︷

︸ ︷︷ ︸ ︸ ︷︷ ︸
︸ ︷︷ ︸

r + i total slots, with r relevant and i non-relevant documents

(b)

(
r+i
r

)
distinct sequences

Figure 10.7: This diagram details the relationships that are associated with the equiv-
alence class Ec̃ for the ESL measure. Equivalence class Ec̃ contains a total of r + i
documents. It has r relevant documents and i non-relevant ones. The variable s denotes
the number of relevant documents that would complete the request for a query q. The box
with a relevant document R inside it represents that the sth relevant document occurs
at position s + m in subvector Vc̃. The variable m denotes the number of non-relevant
documents that appear before the sth relevant document.

448

denote the number of sequences in which it is impossible for x requested relevant doc-

uments to appear at, or before, document cut-off k in a sequence; then, with these

equations that we developed in the last several paragraphs, we can write the equation

for the ESL at position k in a ranked vector V of documents for a request of x documents

as

ESL@k(V, x) =
XB + A + kC

Y

=
(Nc̃ − Rc̃)B + A + k(Y − B)

Y

=
Nc̃B − Rc̃B + A + kY − kB

Y

=
Nc̃B − Rc̃B + A − kB

Y
+

kY

Y

= k +
B(Nc̃ − Rc̃ − k) + A

Y
. (10.6.6)

The Complete Equation for ESL@k(V, x)

The derivations that resulted in Equation 10.6.6 assumed that at least one relevant

document was requested, but that the total number being requested did not exceed the

maximum number Mx of relevant documents that was possible in vector V between

positions 1 and k̃, inclusive. This maximum value, for a subvector Vc̃, is determined

by first totaling the number of relevant documents that appear in the subvectors that

precede subvector Vc̃. More formally, these are the subvectors Vi, where 1 ≤ i < c̃.

From previous discussions, we know that Rc̃ denotes the total number of relevant

documents in these subvectors. The final step in determining the value of Mx is counting

the maximum number of relevant documents that are possible in the first k̃−tc̃ positions of

subvector Vc̃. This number cannot exceed k̃−tc̃ (the number of positions in the document

cut-off window), nor can it exceed rc̃ (the number of relevant documents in subvector

Vc̃). From these two constraints, we can surmise that the maximum possible number of

relevant documents that can appear in the document cut-off window is the minimum of

449

these two values, that is, min(k̃ − tc̃, rc̃). If we combine this information with our prior

information, we can state that

Mx = Rc̃ + min(k̃ − tc̃, rc̃).

Therefore, Equation 10.6.6 on the previous page is valid when 1 ≤ x ≤ (Rc̃ + min(k̃ −
tc̃, rc̃)). When x (the number of requested relevant documents) is zero, or less, the ESL

is 0 because there are no relevant documents to obtain for this value of x. When the

requested number of relevant documents exceed the number that are possible in the

positions that start at the beginning of the vector V and end at the last position in the

document cut-off window, the ESL is the document cut-off value k. The discussions in

this subsection allow us to state that the complete equation for ESL@k(V, x) is

ESL@k(V, x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, if x ≤ 0;

k, if x > (Rc̃ + min(k̃ − tc̃, rc̃));

k + B(Nc̃−Rc̃−k)+A
Y

, otherwise.

(10.6.7)

Cooper’s Equation as a Special Case of ESL@k(V , x)

Basically, the Cooper equation corresponds to the situation where all of the non-relevant

documents in the collection of N documents can appear before the sth relevant document.

In other words, the size of the document cut-off window is k = N, which means that,

effectively, the performance measure is based on all of the documents instead of just the

first k < N documents in a ranking. This implies that min(i, k̃ − tc̃ − s) = i.

If we use A to denote the number of non-relevant documents that can appear before

the sth relevant document and use B to denote the number of sequences in which the

450

non-relevant documents can appear before the sth relevant document, we have

ESL@k(V, x) = j + A/B. (10.6.8)

A consequence of the values for i and min(i, k̃ − tc̃ − s) being equal is that the

equations for both A and B can be simplified to closed forms by making use of a well-

known convolution identity. Equation 10.4.10 on page 424 states that

(
l + q + 1

m + n + 1

)
=

l∑
k=0

(
l − k

m

)(
q + k

n

)
,

where the conditions n ≥ 0 and 0 ≤ m ≤ l must be true in order for the application of

this identity to be valid.

In order to minimize confusion with the symbols that appear in Equation 10.6.3 on

page 446 and Equation 10.6.4 on page 446, we use the following equivalent identity by

substituting the dummy variables a, b, c, d, and e for the dummy variables k, l, m, n, and

q, respectively. These substitutions yield

(
b + e + 1

c + d + 1

)
=

b∑
a=0

(
b − a

c

)(
e + a

d

)
,

where the conditions d ≥ 0 and 0 ≤ c ≤ b must be true in order for the application of

this identity to be valid.

Based on the following symbol correspondence between it and Equation 10.6.5 on

page 447, we have this mapping:

s − 1 ⇐⇒ e

r − s + i ⇐⇒ b

r − s ⇐⇒ c

451

m ⇐⇒ a

s ⇐⇒ d.

Before we can proceed, there are two questions that we need to ask and get affirmative

answers to. We need to know if s is greater than zero (i.e., the value of s is a positive

integer). The answer is yes because the minimum number of relevant documents that can

be requested is 0. We also need to know if the relationship 0 ≤ r − s ≤ r − s + i is true.

The answer to this question is also yes because we know that the number of non-relevant

documents can never be negative. Therefore, it is valid to apply Equation 10.4.10 on

page 424.

After using the mapping to make the appropriate substitutions, and later commuting

the terms of the binomial product, we obtain

A = s

r−s+i∑
m=0

(
(s − 1) + m

s

)(
(r − s) + (i − m)

r − s

)

= s
r−s+i∑
m=0

(
(r − s) + (i − m)

r − s

)(
(s − 1) + m

s

)
(algebraic commutativity)

= s
∑
m

(
(r − s) + (i − m)

r − s

)(
(s − 1) + m

s

)
(index simplification)

= s

(
r + i

r + 1

)
. (by Equation 10.4.10 on page 424)

Notice that, between the second and third steps of the derivation, the summation was

simplified by replacing the lower and upper bounds on the index of summation with an

unconstrained index that ranges over the entire set of integers. This transformation is

valid because the first term of the binomial product vanishes when m > i and the second

term vanishes when m ≤ 0. By the use of this same identity, we can also simplify B by

452

assuming that the user always requests at least one relevant document.

B =
r−s+i∑
m=0

(
(s − 1) + m

s − 1

)(
(r − s) + (i − m)

r − s

)

=
∑
m

(
(s − 1) + m

s − 1

)(
(r − s) + (i − m)

r − s

)
(index simplification)

=

(
r + i

r

)
. (by Equation 10.4.10 on page 424)

The simplified expressions above for A and B allow the rewriting of Equation 10.6.8 on

page 451 as

ESL = j + A/B

= j + s

(
r+i
r+1

)
(

r+i
r

) . (10.6.9)

The fraction in the second line of Equation 10.6.9 can be simplified in this manner:

(
r+i
r+1

)
(

r+i
r

) =
(r + i)!

(r + 1)!(i − 1)!

(
(r + i)!

r!i!

)−1

=
(r + i)!

(r + 1)!(i − 1)!

r!i!

(r + i)!

=
r!i!

(r + 1)!(i − 1)!

=
i!

(r + 1)(i − 1)!

=
i

r + 1
.

After several combinatorial and algebraic manipulations, Equation 10.6.9 simplifies to

ESL = j + s
i

r + 1
(10.6.10)

where i is the number of non-relevant documents in Ecxr . If this simplified version is

453

rewritten as

ESL = j +
is

r + 1
, (10.6.11)

then it is identical to the equation that appeared in Cooper (1968).

10.6.2 Average Search Length

The Derivation for ASL@k(V)

The Type-D ASL measure is defined as

ASL(V) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

N∑
i=1

i · IR(vi)

N∑
i=1

IR(vi)

, if

(
N∑

i=1

IR(vi)

)
> 0; and

N + 1, otherwise;

where V is a ranked vector of N documents for a query q and IR is an indicator function

for a collection R of relevant documents. The value of IR(a) is equal to 1 if its argument a

represents a relevant document and is equal to 0, otherwise. The effective cut-off position

and cut-off equivalence class index pair (k̃, c̃) is equal to (k, ck).

The Average Search Length at document cut-off k can be largely determined by

totaling the ranks of the relevant documents, starting at rank 1 and including all ranks

up to rank k, and then dividing that total by the number of relevant documents that

were used to compute it. This approach works fine unless one or more of these k-length

sequences do not have any relevant documents. Since all the documents in the collection

are not necessarily being used, due to cut-off k, it is quite possible that, even though the

collection has one or more relevant documents for a query q, none of them are guaranteed

to appear in a ranking at or before rank k. Any ASL calculation that incorporates the

454

notion of an arbitrary document cut-off k must take this case into account. A manner in

which this can be handled is detailed below.

The derivation of the Type-T equation for the ASL proceeds in several steps. Ulti-

mately, the resultant equation consists of an expression for a numerator n and a denom-

inator d. The value of the ASL is calculated by the expression n/d. The value for the

numerator n is the sum of the ranks, across all the sequences of length k, that have a

relevant document associated with the rank plus the number of sequences that consist

entirely of k non-relevant documents multiplied by the weight (i.e., k + 1) for such a se-

quence. The denominator d is the number of the ranks, across all the sequences of length

k, that have a relevant document associated with the rank plus the number of sequences

that consist entirely of k non-relevant documents. The weight of a relevant document in

the numerator is its rank; in the denominator, its weight is 1. The weight of a virtual

document is k + 1 in the numerator and 1 in the denominator. Virtual documents only

enter the calculations for n and d when there are one or more k-length sequences of

non-relevant documents, each with 1 as the starting rank of the respective sequence.

The value for n is the sum of three quantities, the same is true for the value for

d. The expressions that represent the sub-expressions that help compute the values for

these quantities are denoted by A, B, C, D, E, F, G,X, Y, and Z. Below, we discuss each

of these in turn.

First, we define several quantities that are referenced several times in the set of

expressions that is developed below. Let

X =
c−1∏
i=1

(
ni

ri

)
(10.6.12)

denote the number of sequences that are in Vpre, let

Y =

(
nc

rc

)

455

denote the number of sequences that are in Vc, and let

Z =
rc

nc

(
nc

rc

)
(10.6.13)

denote the number of relevant documents that are in each column of Vc.

Now, let A denote the number of relevant documents in Vpre. Its value is the product

of the number of sequences X in Vpre and the number of relevant documents Rc in each

sequence of Vpre. The number of relevant documents is the same for each sequence in Vpre

and can be calculated from the expression

Rc =
c−1∑
i=1

ri.

Their combination yields

A =

(
c−1∏
i=1

(
ni

ri

)) c−1∑
j=1

rj

= XRc,

the number of relevant documents in Vpre.

Let B denote the number of relevant documents that are in the size k − tc window

of the
(

nc

tc

)
sequences that are associated with Vc. These sequences can be visualized as

a table where each sequence corresponds to a row that has nc columns. The proportion

of relevant documents in each column is rc/nc. The equation to calculate the number of

relevant documents in this table is

B = (k − tc)

(
nc

tc

)
rc

nc

= (k − tc)Z.

456

Let C denote the number of sequences in Vc that consist entirely of non-relevant

documents in the document cut-off window. The expression to calculate its value is

C =

(
nc − (k − tc)

(nc − rc) − (k − tc)

)
.

The top part of the binomial in this equation represents the number of documents that

are not part of the window of size k− tc that consists entirely of non-relevant documents.

This set of documents corresponds to those documents that lie outside this window and

contains rc relevant documents and (nc − rc)− (k− tc) non-relevant ones. The number of

distinct sequences of length nc − (k − tc) that can be constructed from these documents

is represented by the binomial that is on the right hand side of the above equation.

Let D denote the sum of all the ranks in Vpre that are associated with a relevant

document. Its value v can be partially calculated by determining the number of relevant

documents in each column of Vpre (a value v that may vary according to the equivalence

class, but, for an equivalence class Ei, is constant – that is, each of the ni columns in

Vpre has the same value v associated with it) and then multiplying that value by the rank

for that column. When this is done for all the equivalence classes that precede Ec, and

totaled, we obtain

D =
c−1∑
i=1

ti+1∑
j=ti+1

ri

ni

(
c−1∏
l=1

(
nl

rl

))
j

=

(
c−1∏
l=1

(
nl

rl

)) c−1∑
i=1

ri

ni

ti+1∑
j=ti+1

j (by Equation 10.4.1 on page 421)

=

(
c−1∏
l=1

(
nl

rl

)) c−1∑
i=1

ri

ni

[
ti+1(ti+1 + 1)

2
− ti(ti + 1)

2

]
(by Equation 10.4.13 on page 424)

=

(
c−1∏
l=1

(
nl

rl

)) c−1∑
i=1

ri

ni

[(
ti+1 + 1

2

)
−
(

ti + 1

2

)]
(by Equation 10.4.12 on page 424)

= X

[(
ti+1 + 1

2

)
−
(

ti + 1

2

)]
. (by Equation 10.6.12 on page 455)

457

The sub-expression

ri

ni

(
c−1∏
l=1

(
nl

rl

))
,

on the first line of the equation for D, represents the number of relevant documents that

are associated with each column in Vpre for equivalence class Ei. The sub-expression

ti+1∑
j=ti+1

ri

ni

(
c−1∏
l=1

(
nl

rl

))
j,

where j denoted the weight for column j, represents the number of relevant documents

in Vpre that are associated with equivalence class Ei (i.e., subvector Vi). Note that the

weight for column j is simply its rank in vector V.

Let E denote the sum of the ranks of all the relevant documents in Vc. The compu-

tation of its value is similar to that for D. The expression to calculate its value is

E =

tc+1∑
j=tc+1

rc

nc

(
nc

rc

)
j

=
rc

nc

(
nc

rc

) tk∑
j=tc+1

j (by Equation 10.4.1 on page 421)

=
rc

nc

(
nc

rc

)[
k(k + 1)

2
− tc(tc + 1)

2

]
(by Equation 10.4.13 on page 424)

=
rc

nc

(
nc

rc

)[(
k + 1

2

)
−
(

tc + 1

2

)]
(by Equation 10.4.12 on page 424)

= Z

(
nc

rc

)[(
k + 1

2

)
−
(

tc + 1

2

)]
. (by Equation 10.6.13 on page 456)

At this point, all except for two of the quantities that we need to compute ASL@k(V)

are in place. The last two are the formulas for the sum of the ranks for a k-length sequence

of non-relevant documents and the number of how many of them there are. The number

458

of k-length sequences that only contain non-relevant documents is

(
nc − (k − tc)

(nc − rc) − (k − tc)

)[(c−1∑
i=1

ri

)
= 0

]
= C[Rc = 0]

= [Rc = 0]C.

Finally, the sum of the ranks for these k-length sequences is

(
nc − (k − tc)

(nc − rc) − (k − tc)

)
(k + 1)

[(
c−1∑
i=1

ri

)
= 0

]
= C(k + 1)[Rc = 0]

= [Rc = 0]C(k + 1)

because each sequence only contains a virtual document at rank k + 1.

Note that the values of both [Rc = 0]C(k + 1) and [Rc = 0]C are 0, if Vpre contains

at least one relevant document, because the expression [Rc = 0] evaluates to 1 when the

number of relevant documents in Vpre is positive. If the number of documents in Vpre is

0, then [Rc = 0] evaluates to 1.

Now, we have the information to compute ASL@k(V). This value can be expressed

as

ASL@k(V) =
DY + EX + [Rc = 0]C(k + 1)

AY + BX + [Rc = 0]C
. (10.6.14)

Again, it is important to emphasize that the expressions that appear after the [Rc = 0]

part, in both the numerator and denominator of this equation, are effectively ignored

whenever any sequence in Vpre contains at least one relevant document.

459

10.6.3 Precision

The Definition of the Type-D Version of P@k(V)

The Type-D version of the precision measure at document cut-off k is typically defined

so that its definition is equivalent to

P@k(V) =

k∑
i=1

IR(vi)

k
,

where V is a ranked vector of N documents for a query q and IR is an indicator function

for a collection R of relevant documents. Its value is equal to 1 if its argument represents

a relevant document and is equal to 0, otherwise. This precision expression has the value

0 when there are no relevant documents among the first k documents.

The Derivation for the Type-T Version of P@k(V)

The Type-T version of the precision measure at document cut-off k is defined as

P@k(V) =

(
Rc +

(k − tc)rc

nc

)
/k,

where the effective cut-off position and cut-off equivalence class index pair (k̃, c̃) is equal

to (k, ck).

460

10.6.4 Recall

The Derivation of the Type-D Version of R@k(V)

The Type-D version of the recall measure at document cut-off k is typically defined so

that its definition is equivalent to

R(V) =

(
k∑

i=1

IR(vi)

)
/

(
N∑

i=1

IR(vi)

)
,

where k is not given explicitly, but is understood to be the number of retrieved documents.

The variables k, q, N,R, V, and IR have the same meanings as they did for the definitions

of P@k(V).

The Derivation for the Type-T Version of R@k(V)

The Type-T version of the recall measure at document cut-off k is defined as

R@k(V) =

(
Rc +

(k − tc)rc

nc

)
/

(
m∑

i=1

ri

)
,

where m is the number of equivalence classes in V for query q and the effective cut-off

position and cut-off equivalence class index pair (k̃, c̃) is equal to (k, ck). This recall ex-

pression is undefined when there are no relevant documents among the first m equivalence

classes.

10.6.5 MZ-Based E Measure

The MZE measure assumes that there is at least one relevant document among N = |V |
documents in vector V. The definition below extends the typical definition so that the

MZE measure is well-defined even when V does not contain any relevant documents.

461

MZE(V) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 − 2

P−1 + R−1
, if V has at least one relevant document

among its first k documents;

1, otherwise.

The variable P represents precision at point k and the variable R represents recall.

The Derivation for MZE@k(V)

The Type-T version of the MZE measure at document cut-off k is defined as

MZE@k(V) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 − 2
(P@k(V))−1+(R@k(V))−1 , if V has at least one relevant docu-

ment among its first k documents;

1, otherwise.

(10.6.15)

The variable P@k(V) represents precision at point k and the variable R@k(V) represents

recall at this point. The effective cut-off position and cut-off equivalence class index pair

(k̃, c̃) is equal to (k, ck).

10.6.6 Reciprocal Rank

The reciprocal rank (RR) (Voorhees and Harman, 2005) is a measure that awards high

values to ranking methods that rank relevant documents near the beginning of a ranking.

Its values are in the range [0, 1]. The mean reciprocal rank (MRR) (Voorhees and Harman,

2005) measure is the variant that is the more well-known of the two. The MRR is the

average of the reciprocal rank over multiple queries. Since the focus in this chapter is on

comparing the performance of single queries, the reciprocal rank, rather than the mean

462

reciprocal rank, is the metric that is used in the comparisons.

The Definition for the Type-D Version of RR@k(V)

The definition of the Type-D version of the reciprocal rank measure is the definition that

is typically given in textbooks and the IR literature. The reciprocal rank at document

cut-off value k on an ordered vector V of documents is defined as

RR@k(V) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1/i, if ∃i ≤ k, such that V [i] is a relevant document, and

∀j < i, V [j] is a non-relevant document;

0, otherwise.

This definition says that the value of the measure is the reciprocal of the rank of the

relevant document in V that has the minimum rank among the first k documents. If

such a document does not exist among the first k, then the value of the RR measure is

0.

Consider the following example in which there are three rows of ranked documents.

RRN

RNR

NRR

Assume that the document cut-off value is three (i.e., k = 3). The RR for each of the

first two rows is 1−1 = 1/1 = 1 because the first relevant document in each row is at rank

1. The RR for the third row is 2−1 = 1/2 because its first relevant document occurs at

rank 2.

Now, assume that k = 1. The RR values for the first two rows are unchanged at 1.

However, the RR value for the third row is now 0 because all of its relevant documents

occur at ranks higher than the cut-off point.

463

The Derivation for the Type-T Version of RR@k(V)

Figure 10.8 on the following page details several important relationships that are used to

help derive an equation for this Type-T version of the RR@k(V) measure. The passage

below states how to compute the value for this version:

To compute the tie-aware reciprocal rank, we first identify the first group Vi con-
taining a relevant result. For each of the values j from ti +1 up to min(ti+1, k), we
compute the fraction of orderings in which the first relevant result occurs at exactly
that position. Multiplying this fraction by 1/j and accumulating over j gives the
correct answer. McSherry and Najork (2008)

Note that the variable i in the above quote identifies the index of the equivalence class

Ei that contains the first relevant document. In the common notation that we have been

using in this chapter, the role of the variable i in the quote is the same as the role of the

variable c in our common notation. Therefore, document cut-off class Ei in the McSherry

and Najork quote would be referred to as document cut-off class Ec in our notation. The

effective cut-off position and cut-off equivalence class index pair (k̃, c̃) is determined as

follows:

(k̃, c̃) =

⎧⎪⎪⎨
⎪⎪⎩

(k, ck), if cfr ≥ ck;

(tcfr+1, cfr), otherwise.

Before the derivation begins, it is helpful to provide an intuitive example to help

conceptualize the process that occurs. This example has 11 documents and 3 equivalence

classes. The first equivalence class has 2 documents, both are non-relevant; the second

equivalence class has 5 documents of which only two are relevant; the third equivalence

has just 4 documents, all of which are relevant. These combine for a total of

(
2

2

)(
5

2

)(
4

4

)
= 1 · 10 · 1 = 10

464

Ec̃

of relevant documents:
of non-relevant documents:

· · · vtc̃+1Rvtc̃+1 · · ·

︷ ︸︸ ︷

︸ ︷︷ ︸ ︸ ︷︷ ︸
1# of distinct sequences:

︸︷︷︸

0

0 ≤ m ≤ min(nc̃ − rc̃, k̃ − tc̃ − 1)

rc̃ − 1

(nc̃ − rc̃) − m

m + 1

1 1

(
(nc̃ − rc̃) − m + (rc̃ − 1)

rc̃ − 1

)
(

nc̃ − m − 1
rc̃ − 1

)
(

0 + m

m

)

simplified expressions:

Figure 10.8: This diagram details the relationships that are associated with the cut-off
class Ec̃ for the RR measure. Equivalence class Ec̃ contains a total of nc̃ documents.
It has rc̃ relevant documents and nc̃ − rc̃ non-relevant ones. The variable m denotes
the number of consecutive non-relevant documents in subvector Vc̃ that precede the first
relevant document in this subvector. These m non-relevant documents occupy positions
tc̃ + 1 to tc̃ + m, inclusive, in Vc̃.

465

ways that these 11 documents can be ranked. These rankings can be viewed as rows in

the ten-row-by-eleven-column table below.

NN RRNNN RRRR

NN RNRNN RRRR

NN RNNRN RRRR

NN RNNNR RRRR

NN NRRNN RRRR

NN NRNRN RRRR

NN NRNNR RRRR

NN NNRRN RRRR

NN NNRNR RRRR

NN NNNRR RRRR

Each row in the table represents one of the possible rankings and the columns represent

the ranks. In order to make it easier to distinguish the document partitioning, according

to their respective equivalence classes, the equivalence classes in each row are separated

by several blanks. The first column in the table represents the documents, across all

sequences, that are at rank 1; the second column represents the documents that are at

rank 2, and so on, with the rightmost column representing those documents that are at

rank 11.

In the previous example, the unstated assumption was that the documents in each

of the three rankings had distinct RSVs. This means that each sequence of ranked

documents was strongly ordered. That is, each of the documents was the only inhabitant

of its equivalence class because there was exactly one sequence that was possible for each

collection of N documents. In this next example, that is not the case because there were

three distinct RSVs among the ranked documents. These resulted in three equivalence

classes with cardinalities of 2, 5, and 4, respectively. Furthermore, these classes yielded

466

10 distinct sequences of ranked documents where, on the conceptual level, one possible

ordering within an arbitrary equivalence class is considered to have the same importance

as any other ordering within this class. In essence, it is best to view the documents

within an equivalence class as being randomly ordered with each one having the same

probability as any of the others to have a certain rank associated with it.

This example shows how to calculate the RR measure for these 10 rankings when the

document cut-off window only has five slots (i.e., k = 5). Notice that the first relevant

document occurs in the second equivalence class. Therefore, V2 is the first subvector that

contains a relevant document. Since k = 5 and the ranks in this subvector range from 3

to 7, inclusive, only its first 5 − 2 = 3 ranks are of interest. From an inspection of the

table, one can determine that 4 out of the 10 rows have a relevant document at rank

3. This corresponds to the situation where the number of non-relevant documents m in

subvector V2 that precede these four relevant ones is 0. This is important later when

we derive the equation for RR@k(V). The reciprocal rank for the first column in V2 is

3−1 and the proportion of documents in that column that are relevant is 4/10. Together,

these combine to give a value of partial RR of 4/10 × 3−1 for that column. The partial

RR values for the next two columns can be determined in a similar manner. The value

for the second column in V2 is 3/10×4−1 because there are only three rows that have one

non-relevant document (i.e., m = 1) at rank 3 that precedes a relevant document at rank

4. The value for the third column is 2/10 × 5−1 because there are only two rows that

have two non-relevant documents (i.e., m = 2) at ranks 3 and 4 that precede a relevant

document at rank 5. With these values, the RR can be calculated as

RR@k(V) = RR@5(V)

= (4/10)3−1 + (3/10)4−1 + (2/10)5−1

= (4/10)(1/3) + (3/10)(1/4) + (2/10)(1/5)

467

= 4/30 + 3/40 + 2/50

=
4 · 20 + 3 · 15 + 2 · 12

600

=
149

600

= 0.248333.

Let cfr denote the index of the equivalence class that the first relevant document is

located in. Its definition is

cfr =

⎧⎪⎪⎨
⎪⎪⎩

min(S), if card(S) > 0;

undefined, otherwise;

where

S =

{
i

∣∣∣∣∣
((∑

1≤p≤i

rp

)
≥ 1

)
and 1 ≤ i ≤ m

}

and m is the number of equivalence classes that are associated with vector V.

From the information in Figure 10.8 on page 465, and equating the value of cfr with

that for c̃, the value of the formula for RR@k(V) can be written initially as

RR@k(V) =

min(nc̃−rc̃,k̃−tc̃−1)∑
m=0

(
0+m

m

)(
(nc̃−rc̃)−m+(rc̃−1)

rc̃−1

)
(

nc̃

rc̃

) (tc̃ + m + 1)−1 . (10.6.16)

We start the explanation of this equation by first discussing the summation range.

The lower end of the range starts at 0 because the summing is over the number of

consecutive non-relevant documents that can appear before the first relevant document

(at rank tc̃+m+1) in Vc̃. The upper end of the range is min(nc̃−rc̃, k̃−tc̃−1). The nc̃−rc̃

part is the number of non-relevant documents that are in Vc̃ and the k̃− tc̃−1 part is the

maximum number of non-relevant documents that can be placed in the document cut-off

window region of Vc̃. The “-1” in the last expression exists because there is a slot in this

468

window that is reserved for the first relevant document in the ranking, this decreases the

effective capacity of the window by 1 slot; hence, the ”-1” adjustment was needed. The

maximum number of non-relevant documents that can be placed in this window is the

minimum of how many slots there are that are available for them (i.e., k̃ − tc̃ − 1) and

the number of non-relevant documents there are in Vc̃ (i.e., nc̃ − rc̃).

The
(
0+m

m

)
term represents the number of ways that the m non-relevant documents

that precede the first relevant one can be arranged m at a time without regard to order.

That can only occur one way because
(
0+m

m

)
=
(

m
m

)
= 1 when m is a natural number.

The
(
(nc̃−rc̃)−m+(rc̃−1)

rc̃−1

)
term represents the number of ways that the remaining nc̃ −

m − 1 documents can be arranged after the m non-relevant ones that precede the first

relevant ones have been chosen. These remaining documents consist of rc̃ − 1 relevant

ones and (nc̃ − rc̃) − m non-relevant ones.

The
(

nc̃

rc̃

)
term represents the number of distinct rankings in Vc̃ when it has nc̃ total

documents and rc̃ of them are relevant. The (tc̃ +m+1)−1 term represents the reciprocal

rank at the column whose rank is tc̃ + m + 1.

The information above, plus other simplifications, allow Equation 10.6.16 on the

preceding page to be rewritten as

RR@k(V) =

(
nc̃

rc̃

)−1 min(nc̃−rc̃,k̃−tc̃−1)∑
m=0

(
(nc̃ − rc̃) − m + (rc̃ − 1)

rc̃ − 1

)
(tc̃ + m + 1)−1

=

(
nc̃

rc̃

)−1 min(nc̃−rc̃,k̃−tc̃−1)∑
m=0

(
nc̃ − m − 1

rc̃ − 1

)
(tc̃ + m + 1)−1. (10.6.17)

The McSherry and Najork Equations for RR@k(V)

McSherry and Najork (2008) provides a set of equations that, together, intend to calculate

the RR@k(V) value. The author of this dissertation found that these equations do not

always calculate the correct value. From the description in their article, that appears

469

below, of how the equations are supposed to work, this author found that the reason

they do not work correctly is due to two typographical errors in the article.

The discussion of matters related to these equations proceed by providing two short

examples of incorrect results, then showing how to correct the equations so that they

provide the expected results. As further validation that the results are correct, the

author shows how Equation 10.6.17 on the previous page and the corrected equations

can cross-validate each other.

The quote below from the McSherry and Najork article lists the original equations,

along with information that helps to rectify the typographical errors:

We compute the fraction of orderings with the first relevant result at position ti +x
by computing for each ti + x the fraction of orderings whose first x elements are
irrelevant, and then computing the difference between adjacent fractions. Taking
those orderings whose first x elements are relevant, minus those whose first x + 1
elements are irrelevant, gives the fraction whose first relevant element is at x. The
fraction f(x, r, n) of the orderings of r out of n relevant elements for which the first
x are irrelevant follows as simple recursive definition:

f(x, r, n) =

⎧⎪⎨
⎪⎩

1 − r

n
if x = 1(

1 − r

n − x + 1
)f(x − 1, r, n)

)
otherwise[.]

Intuitively, each ordering that contributes to f(x−1, r, n) will contribute to f(x, r, n)
if the next element is irrelevant, which occurs when none of the r relevant results
are chosen from the set of n − x + 1 remaining results.

Letting Vi be the first group containing a relevant result,

RR@k(V) =
min(ti+1,k̃)∑

j=ti+1

f(j − ti, ri, ni)
j

[.] (McSherry and Najork, 2008)

The italicization in the first paragraph of the excerpt above did not appear in the article,

it was added by the author of this dissertation to highlight the information as to how

the article authors intended for their equations for RR@k(V) to appear.

As was stated earlier, the equations, as given above in the article, do not compute the

correct value for RR@k(V). For instance, consider the scenario where there is a document

collection with size N = 3 that has two relevant documents and one non-relevant one.

470

Also, assume that all of these documents have the same RSV. Hence, they all belong to

the same equivalence class. The documents in this class can be arranged in only three

orders. These orders are listed immediately below.

RRN

RNR

NRR

The correct RR@1(V), RR@2(V), and RR@3(V) values are, respectively, 2/3, 5/6, and

5/6. The values that are computed from the equation in the McSherry and Najork article

are 1/3, 0, and 0, respectively.

The correction for this equation is straightforward. The key concept to notice is that

the numerator of the RR@k(V) equation should be changed from

f(j − ti, ri, ni)

to

f(j − (ti + 1), ri, ni) − f(j − ti, ri, ni).

because of the “then computing the difference between adjacent fractions” passage in the

McSherry and Najork article. Since this change means that the lower bound of the first

parameter of the function f can now be 0, whereas, before, it was 1, a slight alteration

needs to be made to function f. This alteration means changing the basis case of the

recursion from 1 to 0. No other changes were necessary. The result of these changes are

the revised equations below.

471

The Revised McSherry and Najork (2008) Equations for RR@k(V)

f(x, r, n) =

⎧⎪⎪⎨
⎪⎪⎩

1, if x = 0;(
1 − r

n − x + 1

)
f(x − 1, r, n), otherwise.

(10.6.18)

RR@k(V) =

min(ti+1,k)∑
j=ti+1

f(j − (ti + 1), ri, ni) − f(j − ti, ri, ni)

j
. (10.6.19)

The Revised McSherry and Najork Equations (Expressed in the Common

Notation)

Equations 10.6.18 and Equation 10.6.19 use the variable i to denote the index of the first

group that contains a relevant result. In essence, this is the index of the equivalence class

of the first relevant document. In order to be consistent with previous notation, that used

the variable c in the same role that the variable i is being used in in these equations, we

define Equation 10.6.20 on the following page and Equation 10.6.21 on the next page to be

the analogs of Equation 10.6.18 and Equation 10.6.19, respectively. The only differences

between these two sets of equations are that the following substitutions were made to

transform Equation 10.6.18 and Equation 10.6.19, respectively, into Equation 10.6.20 on

the following page and Equation 10.6.21 on the next page:

tc̃ for ti,

tc+1 for ti+1,

nc̃ for ni, and

rc̃ for ri.

The slightly rewritten, but equivalent, equations appear immediately below.

472

f(x, r, n) =

⎧⎪⎪⎨
⎪⎪⎩

1, if x = 0;(
1 − r

n − x + 1

)
f(x − 1, r, n), otherwise.

(10.6.20)

RR@k(V) =

min(tc̃+1,k)∑
j=tc̃+1

f(j − (tc̃ + 1), rc̃, nc̃) − f(j − tc̃, rc̃, nc̃)

j
(10.6.21)

Lemma 10.6.1. Equation 10.6.20 and Equation 10.6.21, taken jointly, are equivalent to

Equation 10.6.17 on page 469.

Proof. Earlier, it was stated that f(x, r, n) is the fraction of orderings that have x non-

relevant documents in the first x slots of Vc̃. The first step in this proof is to develop a

non-recursive expression for f(x, r, n).

We notice that, for any positive natural number x, the function f recurses x times,

with the values for its successive invocations starting at x and decreasing to 1. This

means that successive values of the n−x+1 part of the Equation 10.6.20 fit the pattern

n − x + 1, n − x + 2, · · · , n − 1, n. With these observations, we can write

f(x, r, n) =
x∏

i=1

(
1 − r

n − i + 1

)
. (10.6.22)

The second step in this proof is to argue that the recursive and non-recursive versions

of function f always yield the same output value when they are presented with the

same values for their input parameters. The manner in which the recursion was unrolled

guarantees that the recursive and non-recursive versions of f are equivalent. Hence,

Equation 10.6.22 yields the same values for its version of function f that Equation 10.6.20

yields for its version of function f when they are invoked with identical input values for

their corresponding arguments. That is, both f functions yield the value 1 when x has

the value 0, both yield the value 0 when x > n − r, and both also yield identical values

473

when 1 < x ≤ n − r.

The third step in this proof is to find a combinatorial equivalent of Equation 10.6.22.

We start by expressing f(x, r, n) in terms of factorials.

f(x, r, n) =
x∏

i=1

(
1 − r

n − i + 1

)

=
x∏

i=1

(
n − i + 1 − r

n − i + 1

)

=
(n − r)(n − r − 1) · · · (n − r − (x − 1))

n(n − 1) · · · (n − (x − 1))

=

(n−r)!
(n−r−x)!

n!
(n−x)!

=
(n − r)!

(n − r − x)!

(n − x)!

n!
. (10.6.23)

From an inspection of Equation 10.6.23, and experience with manipulating factorials, we

notice that we can simplify matters by multiplying f(x, r, n) by
(

n
r

)
. Once we do that,

we obtain

(
n

r

)
f(x, r, n) =

(
n

r

)
(n − r)!

(n − r − x)!

(n − x)!

n!

=
n!

r!(n − r)!

(n − r)!

(n − r − x)!

(n − x)!

n!
. (10.6.24)

From the inspection of this equation, we see that the n! and (n − r)! terms cancel out.

This allows us to rewrite Equation 10.6.24 as

(
n

r

)
f(x, r, n) =

n!

r!(n − r)!

(n − r)!

(n − x − r)!

(n − x)!

n!

=
1

r!

1

(n − x − r)!

(n − x)!

1

=
(n − x)!

r!(n − x − r)!

474

=

(
n − x

r

)
.

The terms in this equation can be rearranged to yield

f(x, r, n) =

(
n

r

)−1(
n − x

r

)
. (10.6.25)

Before proceeding further, we restate Equation 10.6.17 on page 469 below for the

convenience of the reader:

RR@k(V) =

(
nc̃

rc̃

)−1 min(nc̃−rc̃,k̃−tc̃−1)∑
m=0

(
nc̃ − m − 1

rc̃ − 1

)
(tc̃ + m + 1)−1 .

This equation is our combinatorial version of the RR@k(V) measure. We first presented

it on page 469.

Our next goal in this proof is to use Equation 10.6.25 to help show that Equa-

tion 10.6.20 on page 473 and Equation 10.6.21 on page 473, taken jointly, are equivalent

to Equation 10.6.17 on page 469. We continue in the following way.

RR@k(V) =

min(tc̃+1,k)∑
j=tc̃+1

f(j − (tc̃ + 1), rc̃, nc̃) − f(j − tc̃, rc̃, nc̃)

j

=

min(tc̃+1,k)∑
j=tc̃+1

(f(j − (tc̃ + 1), rc̃, nc̃) − f(j − tc̃, rc̃, nc̃)) j−1

=

min(tc̃+1,k)−(tc̃+1)∑
j=0

(f(j, rc̃, nc̃) − f(j + 1, rc̃, nc̃)) (j + tc̃ + 1)−1

=

min(tc̃+1,k)−(tc̃+1)∑
j=0

(f(j, rc̃, nc̃) − f(j + 1, rc̃, nc̃)) (j + tc̃ + 1)−1

=

(
nc̃

rc̃

)−1 min(tc̃+1,k)−(tc̃+1)∑
j=0

((
nc̃ − j

rc̃

)
−
(

nc̃ − (j + 1)

rc̃

))
(j + tc̃ + 1)−1

475

=

(
nc̃

rc̃

)−1 min(tc̃+1,k)−(tc̃+1)∑
j=0

((
nc̃ − j

rc̃

)
−
(

nc̃ − (j + 1)

rc̃

))
(j + tc̃ + 1)−1

=

(
nc̃

rc̃

)−1 min(tc̃+1,k)−(tc̃+1)∑
j=0

(
nc̃ − j − 1

rc̃ − 1

)
(j + tc̃ + 1)−1. (10.6.26)

This proof is just about finished now. The main items to take care of are simplifying the

summation limit and changing the summation index from j to m in Equation 10.6.26.

Once these items have been taken care of, it is going to be evident that Equation 10.6.20

on page 473 and Equation 10.6.21 on page 473, taken jointly, are equivalent to Equa-

tion 10.6.17 on page 469.

We start this final effort by stating that

min(tc̃+1, k) − (tc̃ + 1) = min(tc̃+1 − (tc̃ + 1), k − (tc̃ + 1))

= min(nc̃ − 1, k − tc̃ − 1)

because tc̃+1 is the index of the last element in Vc and tc̃ is the index of the last element

of Vc̃−1. This means that nc̃ = tc̃+1 − tc̃. Therefore, we have

RR@k(V) =

(
nc̃

rc̃

)−1 min(tc̃+1,k)−(tc̃+1)∑
j=0

(
nc̃ − j − 1

rc̃ − 1

)
(j + tc̃ + 1)−1

=

(
nc̃

rc̃

)−1 min(nc̃−1,k−tc̃−1)∑
j=0

(
nc̃ − j − 1

rc̃ − 1

)
(j + tc̃ + 1)−1

=

(
nc̃

rc̃

)−1 min(nc̃−rc̃,k−tc̃−1)∑
m=0

(
nc̃ − m − 1

rc̃ − 1

)
(m + tc̃ + 1)−1 (10.6.27)

because the summation’s binomial term vanishes when m > nc̃ − rc̃. By various transfor-

mations, we have just derived the same equation as Equation 10.6.17 on page 469. This

completes the proof.

476

10.7 Operationalizing What It Means For One Doc-

ument Ranking to be Better Than Another Doc-

ument Ranking

Based on the work in the previous sections of this chapter, we can now define, for the

purposes of the research question that this chapter addresses, what it means to be able

to state when one document ranking is better than another document ranking. Without

loss of generality, assume that the performance values that are being plotted have been

normalized so that they range from 0 to 1, inclusive, that is, the normalized values are

in the closed interval [0, 1]. Therefore, the horizontal and vertical axes of the agreement

and disagreement plots only need to range in value from 0 to 1, inclusive; the area that

is covered by the plot is a unit square. Assume that the two measures are denoted by

Measure M1 and Measure M2, and that the document rankings are denoted by Ranking

R1 and Ranking R2.

Let A1 denote the set of areas for document ranking R1 where, such that for any

a1 ∈ A1, one measure indicates that either performance is increasing, or is staying the

same, for area a1, and that the other measure indicates, for this same area a1, that

performance is increasing. We proceed similarly for document ranking R2. Let A2 denote

the set of areas for document ranking R2 where, such that for any a2 ∈ A2, one measure

indicates that either performance is increasing, or is staying the same, for area a2, and

that the other measure indicates, for this same area a2, that performance is increasing.

Each area in A1 does not overlap with any other area in A1, nor does any area in A2

overlap with any other area in A2. Let the sums of the areas in A1 be denoted by s1.

Since the agreement-disagreement plot area constitutes a unit square, the value of s1 is

simply the proportion of the unit square that the areas in A1 occupy. Similarly, let the

sums of the areas in A2 be denoted by s2. The value of s2 is the proportion of the unit

477

square for ranking R2 that the areas in A2 occupy.

Now, we can state that we consider a document ranking R1 to be better than a

document ranking R2 when the value of s1 is greater than the value for s2. In all other

situations, the document ranking R1 is not considered to be better than document ranking

R2.

10.8 Validation

Synthetic document collections of size 16 were constructed. Each collection had four

equivalence classes with each class containing four documents. Each equivalence class

could have zero to four relevant documents, inclusive, independent of the relevant docu-

ment distributions that were associated with any of the other three classes. This resulted

in 5 choices for each equivalence class (EC) because the class size was fixed at 4 and the

number of relevant documents was allowed to vary from 0 to 4, inclusive, in each class.

Overall, the number of possible EC combinations was 54 = 625.

For each of these combinations, the document cut-off value was varied from 1 to

16 (i.e., the collection size), inclusive. This provided a total of 16 × 625 = 10, 000

unique combinations of equivalence classes and document cut-off values to test for each

performance measure.

MathematicaR© (Wolfram, 2003) programs were developed to inspect each of the

625 EC combinations, by use of brute force techniques, and to calculate the values for

the ASL@k(V), MZE@k(V), RR@k(V), P@k(V), and R@k(V) performance measures.

These values were computed for each of the 16 possible document cut-off points. These

performance measure values, that were determined by brute force techniques, were later

compared to their analytically-determined counterparts to verify that they all matched.

The validation process for the ESL@k(V, x) measure was similar. In addition to

everything that took place to verify the 5 measures that were just previously mentioned, a

478

variable x was introduced to represent the requested number of relevant documents. The

value of this variable was varied from 0 (no documents were requested) to 17 (this number

is one more than the size of the document collection). The lower bound represented a

request that could always be satisfied, the higher bound represented a request that could

never be satisfied. The data generation process that was just described resulted in a total

of 18 × 10, 000 = 18, 000 combinations of equivalence classes, document cut-off values,

and requested numbers of relevant documents to examine. Brute force techniques were

used to do the examination. The performance measure values that were obtained this

way were compared to their analytically-determined counterparts to verify that they all

matched.

In addition to the validation process for the ESL@k(V, x) performance measure, that

was described in the immediately previous paragraph, the author of this dissertation

checked to see if the results that were calculated by this measure were the same as the

results that appeared in a table labeled “Table 8.4 (Expected Search Length Table)”

on page 206 in Korfhage (1997). For the convenience of the reader, this table appears

below as part of Figure 10.9 on page 481. The information in this table was based on

a set of documents that had three equivalence classes, namely, E1, E2, and E3. The E1

equivalence class has three documents (only 1 is relevant), E2 has five documents (4 of

them are relevant), and E3 also has five documents (but only 2 are relevant). For our

Type-T version of the ESL measure, k = 13 because the number of documents in the

collection was 13, and the requested number of relevant documents ranged from 1 to 7,

inclusive. The second column of the table contains the values that were calculated in

Korfhage (1997). The third column of the table contains the corresponding values that

were calculated by our Type-T version of the ESL. Note that, on first glance, the values

appear to be different. The reason for this is that there are two common definitions of

the ESL. This was discussed in Section 2.1.1 on page 15. The Cooper (1968) definition

479

has as its value the mean number of non-relevant documents that must be examined in

order to retrieve a specified number of relevant documents. But, the Korfhage (1997)

definition defines the expected search length as the mean number of non-relevant and

relevant documents that must be examined in order to retrieve a specified number of

relevant documents. There is a simple mapping between a Korfhage ESL value and

the ESL@k(V, x) performance measure: either add the requested number of relevant

documents to the ESL@k(V, x) value or subtract the number from the Korfhage ESL

value. For example, the Korfhage ESL value for three requested documents in Figure 10.9

on the next page is 5.4. The equivalent ESL@k(V, x) value is 5.4 − 3 = 2.4. If we apply

either of these mappings to the expected search length values in the table of Figure 10.9

on the following page, the corresponding values can be shown to be equivalent.

10.9 Example: Comparing Type-T and Type-D Ver-

sions of the ASL Measure

Section 10.2.2 discussed how many performance measures implicitly assume that ranked

vectors of documents are strongly-ordered. Figure 10.2 on page 411, and the discussion

that it was a part of, demonstrated how variability (and overestimation and underesti-

mation of the true value) of the ASL could occur. Figure 10.10 on page 482 illustrates

the overestimation and underestimation that can occur when the document ranking is

weakly-ordered, but the performance measure (e.g., ASL) implicitly assumes that the

document ranking is strongly-ordered.

The document collection in the example for this section is of size 150 and the ranked

vector V of documents has exactly two subvectors because there are only two distinct

RSVs in the collection of documents. This means that there are two equivalence classes

480

Expected Search Length Table

Expected Search Length

(Korfhage)

Expected Search Length

(ESL@13(V,x))

Requested Number of

Relevant Documents (x)

5.07

2

4 6.6

4.0

5

2.6

5.4

2.8

2.0

3

2.24.2

7.8

1.01

2.4

6 10.0

12.0

Figure 10.9: The information in this table is based on a set of documents that has
three equivalence classes, namely, E1, E2, and E3. The E1 equivalence class has three
documents (only 1 is relevant), E2 has five documents (4 of them are relevant), and E3

also has five documents (but only 2 are relevant). The values in the second column are
based on a definition of the ESL that counts the mean number of relevant and non-
relevant documents that must be retrieved in order to retrieve a requested number of
relevant documents. The values in the third column are based on a definition of the ESL
that only counts the mean number of relevant documents that must be examined before
the requested number of relevant documents are retrieved. The values in the second and
third columns are equivalent. For any designated row, the value in the second column
can be converted to the value in the third column by subtracting the requested number
of relevant documents, for this row, from it.

481

front

0 20 40 60 80 100 120 140
kW0

20

40

60

80

100

120

140

kS

0 20 40 60 80 100 120 140
k

20

40

60

80

100

120

140

ASL�k�V�

random

0 20 40 60 80 100 120 140
kW0

20

40

60

80

100

120

140

kS

0 20 40 60 80 100 120 140
k

20

40

60

80

100

120

140

ASL�k�V�

rear

0 20 40 60 80 100 120 140
kW0

20

40

60

80

100

120

140

kS

0 20 40 60 80 100 120 140
k

20

40

60

80

100

120

140

ASL�k�V�

Figure 10.10: The darkened areas in the plots of first column indicate the areas of
disagreement, according to an extended version of the Losee (2000) comparison method,
between a Type-T version of the ASL measure (i.e., ASLT) and a Type-D version of the
ASL(i.e., ASLD) on the same collection of 150 documents. The green areas (located above
the diagonal that starts at (0,0) and goes to (150,150)) in these left-column plots represent
a region where the Type-T version of the ASL indicates that performance is decreasing
but the Type-D version indicates that performance is staying the same. The red areas
(located below the diagonal that starts at (0,0) and goes to (150,150)) in the left-column
plots represent a region where the Type-T version of the ASL measure indicates that
performance is increasing but the Type-D version indicates that performance is staying
the same. The Type-D version always assumes that the vector V of ranked documents
is strongly-ordered. The second column shows plots of the Type-T version of the ASL
measure against Type-D versions. The solid green line represents the ASL values that
were computed by the Type-T version of the ASL measure and the dashed black line
represents the ASL values that were computed by the Type-D version of the ASL measure.
The third column is a table which contains the distributions of the number of plot points
that fall into each of the 9 categories that appear in Figure 10.1 on page 399(b). The first,
second, and third rows of plots in this figure correspond, respectively, to the situations
where the relevant documents in a vector V are at the front of each of its subvectors,
are randomly-distributed within each of its subvectors, and are at the rear of each of its
subvectors. Section 10.9 contains a detailed discussion of this figure.

482

and, hence, two subvectors. The subvector V1 (associated with the higher-ranked equiv-

alence class E1) has sixty documents (20 of these are relevant) whereas the subvector V2

(associated with the the lower-ranked class E2) has ninety documents (40 of these are

relevant).

The number of ways that the documents in V1 can be sequenced is

(
60

20

)

and the number of sequences for V2 is

(
90

40

)
.

Since the documents in each of these two subvectors can be arranged independently of

those in the other subvector, the joint number j of possible sequences is

(
60

20

)(
90

40

)
,

which is approximately 2.51 × 1041. If we assume that each sequence is equally likely,

then a correctly-implemented algorithm for the Type-T version of the ASL computes

the same mean value m for vector V, no matter which of these j sequences is used as

an input to the algorithm. Conceptually, the way that the algorithm does this is to,

first, determine the ASL value for each sequence and, then, calculate the mean of these

individual sequence-specific ASL values. The resultant value is m.

In other words, a Type-T version of the ASL is not concerned with the calculation of

the ASL value for any one particular sequence of documents because all the sequences

that are associated with a given equivalence class are the same, from the perspective

of how many relevant documents they contain, and the calculated value for a specific

483

sequence may not be representative of the ASL value for the equivalence classes as a

whole. Instead, the value that an algorithm for a Type-T version of the ASL calculates

is based on the joint number j of all the |V |-length sequences that are possible for

the documents in vector V. This makes its value independent of the sequence that is

associated with a particular ranking and implies that the computed ASL value is stable

over the possible sequences and is neither an overestimation nor an underestimation of

the ASL value for the ranked vector V of documents. Note that even though there are j

equivalent V -length sequences for the collection of documents that is represented by V,

the documents in this collection can only have one physical order at a time. A Type-D

version of a performance measure algorithm essentially uses the given physical order. A

Type-T measure views this physical order as just one of the j physical orders that are

possible and bases its calculations not just on the given physical order but, also, on the

other j−1 physical orders. It accomplishes this by determining the value of the measure

for each other these j orders and, then, reporting the mean of these values as its result.

Analysis of the Plots

In the plots of Figure 10.10 on page 482, the gray areas (located above the diagonal that

starts at (0,0) and goes to (150,150)) in these left-column plots represent a region where

the Type-T version of the ASL indicates that performance is decreasing but the Type-D

version indicates that performance is staying the same. The red areas (located below

the diagonal that starts at (0,0) and goes to (150,150)) in the left-column plots represent

a region where the Type-T version of the ASL measure indicates that performance is

increasing but the Type-D version indicates that performance is staying the same.

The solid green line in each of the middle-column plots represents the performance

values that are calculated by the Type-T version (labeled ASLt and on the horizontal

axis) of the ASL measure. The black dashed lines represent the values that are calculated

484

by the Type-D version (labeled ASLnt and on the vertical axis) of this measure.

The matrices in the right-column of each row of Figure 10.10 on page 482 contain the

distributions of the number of plot points that fall into each of the 9 joint categories that

appear in Figure 10.1(b) on page 399. The rows in these matrices represent the values

for Type-T versions of the ASL measure whereas the columns represent the values for

Type-D versions of the ASL. The value at the intersection of a row and column represents

the joint value for the Type-T ASL category and the Type-D column category. There

are three categories for each dimension of a matrix: worse (the performance decreased

for the measure between two given points a and b), same (the performance stayed the

same between points a and b), and better (the performance increased between points a

and b). In this figure, the left-hand side categories for a matrix represents those for the

Type-T version of the ASL (i.e., ASLt) measure and the categories that are listed across

the top of the matrix are for the Type-D version of the ASL (i.e., ASLnt).

The row that is labeled front in Figure 10.10 on page 482 is an example of how

the ASL value can be underestimated. The r1 relevant documents in subvector V1 are

positioned at the front of subvector V1 (i.e., they occupy the first r1 positions in V1) and

the r2 relevant documents in subvector V2 are positioned at the front of subvector V2 (i.e.,

they occupy the first r2 positions in V2). This minimizes the ASL (i.e., performance is

increased). Most of the document cut-off points for the middle-column plot of this row

have horizontal coordinates where the vertical coordinates for the Type-D version of the

ASL are less that those of the corresponding Type-T version of the ASL. The mean of

the ASL values that are associated with the dashed line (e.g., calculated by the Type-D

version of the ASL) is lower than the mean of the ASL values that are associated with

the solid line (e.g., calculated by the Type-T version of the ASL). This indicates that the

ASL is underestimated.

The row that is labeled random in Figure 10.10 on page 482 is an example where

485

the documents are randomly-ordered within each subvector. Generally, in this case, the

ASL is neither maximized nor minimized. Rather, its expected value should be the same

value that would be calculated by a Type-T version of the ASL. The middle-column plot

shows that there is much agreement between the performance values that are calculated

by the Type-T and Type-D versions of the ASL measure for the ranked documents. The

mean of the ASL values that are associated with the dashed line (e.g., calculated by

the Type-D version of the ASL) is almost the same as the mean of the ASL values that

are associated with the solid line (e.g., calculated by the Type-T version of the ASL).

This indicates that the mean of the ASL values calculated by the Type-T version of the

ASL measures is approximately equal to the mean ASL that is calculated by the Type-D

measure when the documents within each subvector Vi are randomly ordered..

The row that is labeled rear in Figure 10.10 on page 482 is an example of how the ASL

value can be overestimated. The r1 relevant documents in subvector V1 are positioned at

the rear of subvector V1 (i.e., they occupy the last r1 positions in V1) and the r2 relevant

documents in subvector V2 are positioned at the rear of subvector V2 (i.e., they occupy the

last r2 positions in V2). This maximizes the ASL (i.e., performance is decreased). Most of

the document cut-off points in its middle-column plot have horizontal coordinates where

the vertical coordinates for the Type-D version of the ASL are greater that those of the

corresponding Type-T version of the ASL. The mean of the ASL values that are associated

with the dashed line (e.g., calculated by the Type-D version of the ASL) is higher than

the mean of the ASL values that are associated with the solid line (e.g., calculated by

the Type-T version of the ASL). This indicates that the ASL is overestimated.

It is important to note here that the Type-T version of the ASL should compute

identical values for each of the vectors that are associated with the three rows in the

figure because the number of equivalence classes are the same, the number of documents

(and proportion of relevant documents) in their E1 equivalence classes are the same, and

486

the number of documents (and proportion of relevant documents) in their E2 equivalence

classes are the same.

However, for a Type-D version of the ASL, the sequences all appear to be different,

even though they are not, because the rankings are weakly-ordered. Effectively, there are

V equivalence classes for a Type-D version of the ASL measure. Each of these equivalence

classes is of size 1. The only time that the performance value that would be calculated

by a Type-D version of the ASL would approximate that for a Type-T version in this

situation is when the documents are randomly ranked within their respective subvectors.

This is illustrated by the second row of subfigures in Figure 10.10 on page 482.

10.10 Example: Comparing the ASL Measure With

the MZE, ESL, and RR Measures

Figure 10.11 on the following page uses a small synthetic test collection of 50 documents

(with certain characteristics that are described below) to illustrate that an extended

version of the Losee (2000) method, in conjunction with Type-T versions of the ESL,

MZE, and RR measures, can be used to obtain a better understanding of how the ASL

performance measure compares with these measures for the best-case, coordination level

matching, decision-theoretic, inverse document frequency, random case, and worse case

ranking methods.

The gray areas in the plots represent regions where the ASL measure indicates that

performance is decreasing but the measure that the ASL is being compared to indi-

cates that performance is staying the same. The red areas represent regions where the

ASL measure indicates that performance is increasing but the other measure indicates

that performance is staying the same. The green areas represent regions where the

ASL measure indicates that performance is decreasing but the other measure indicates

487

BC

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
ASL vs. MZE

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
ASL vs. ESL�5�

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
ASL vs. RR

CLM

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

DT

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

IDF

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

RC

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

WC

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 10.11: Areas of agreement and disagreement for the ASL measure when it is
compared to the MZE, ESL, and RR performance measures for the BC, CLM, DT, IDF,
RC, and WC ranking methods. The query-document collection has the characteristic
(r1, r0, s1, s0) = (5, 10, 15, 20). The horizontal and vertical axes represent the proportion
of documents that have been examined at a certain point k in a ranking. The number of
requested relevant documents used for the ESL measure is 5. The white areas represent
regions of agreement, the darker areas represent regions of disagreement. The orange
regions represent areas where the ASL measure indicates that performance is decreasing
whereas the non-ASL measure indicates that performance is increasing. The blue regions
represent areas where the ASL measure indicates that performance is increasing whereas
the non-ASL measure indicates that performance is decreasing. The red regions represent
areas where the ASL measure indicates that performance is increasing whereas the non-
ASL measure indicates that performance did not change. The green regions represent
areas where the ASL measure indicates that performance is decreasing whereas the non-
ASL measure indicates that performance did not change.

488

that performance is increasing. Finally, the blue areas represent regions where the ASL

measure indicates that performance is increasing but the other measure indicates that

performance is decreasing.

The query-document collection description, in terms of the notation that was intro-

duced in Chapter 2, Section 2.2.6, page 24, is (r1, r0, s1, s0) = (5, 10, 15, 20). This states

that 5 of the 15 relevant documents contain the query term whereas the other 10 relevant

documents do not contain the query term. This description also indicates that the col-

lection has 35 non-relevant documents, with 15 of them containing the query term and

the other 20 not containing the query term.

The investigation of the rankings behind the plots in Figure 10.11 on the previous

page showed that the 6 different ranking methods yielded only two equivalence classes

for each ranking. Overall, there were two sets of equivalence classes, namely, sets Sbd

(for the BC and DT ranking methods) and Scirw (for the CLM, IDF, RC, WC ranking

methods). Each of these sets has two members E1 and E2. For set Sbd, the E1 equivalence

class contained 30 documents (ten of them were relevant) and the E2 equivalence class

contained 20 documents (five of them were relevant). For set Scirw, the E1 equivalence

class contained 20 documents (five of them were relevant) and the E2 equivalence class

contained 30 documents (ten of them were relevant).

The reason that there were so few distinct equivalence classes is due to constraints that

were induced on the RSVs by the query-document model (i.e., binary relevance, binary

feature frequency). Our model allowed for very little variation in the RSVs within an

arbitrary ranking. The RSVs either had a value of 0 or some non-zero value z̄. If the

non-zero value was z̄ for any document in the ranking, then all other documents in this

ranking that had non-zero RSVs had the same value z̄ for their RSV. The result was that

the ranking methods, for non-empty collections, produced document orderings that had,

at most, two equivalence classes.

489

The data that was used to produce the plots for the best-case and decision-theoretic

ranking methods appear in Table 10.5 on the following page and the data that was used

to produce the plots for the coordination-level matching, inverse document frequency,

random case, and worst-case ranking methods appear in Table 10.6 on page 492.

Analysis of the Plots

The analyses for the BC and DT ranking methods were identical because their equivalence

classes were both members of the set Sbd. Likewise, the analyses for the CLM, IDF,

RC, and WC ranking methods were identical because their corresponding equivalence

classes, though different from those of the ASL@k(V) and RR@k(V) measures, were also

identical, because they were members of the set Scirw. For the convenience of the reader,

we restate the following: E1, the higher-ranked equivalence class for the BC and DT

ranking methods has 30 documents (ten of them are relevant) and E2, the lower-ranked

equivalence class, has 20 documents (five of them are relevant); the equivalence class E1

for the CLM, IDF, RC, and WC ranking methods has 20 documents (five of them are

relevant) and E2 has 30 documents (ten of them are relevant).

We start our analyses by noticing that the plots indicated that the ASL@k(V) and

MZE@k(V) measures, over all the ranking methods, disagreed on relative rankings much

more than they agreed. The matrix at the end of the first row in Figure 10.12 on

page 494 provided detailed distribution information on the agreement and disagreement

values. There was one kind of agreement and two kinds of disagreement that were present

in the plots. The amount of agreement was 2% and the amount of disagreement was 98%.

The plots indicated that the ASL@k(V) measure and the ESL@k(V, x) measure (when

the requested number of relevant documents is 5), over all the ranking methods, disagreed

on the relative rankings more than they agreed. In this example, for the ESL measure,

we are interested in the mean number of non-relevant documents that must be retrieved

490

Table 10.5: Values of Selected Performance Measures For All Cut-off Points For Two
Equivalence Classes. The higher ranked equivalence class has 30 documents, the lower-
ranked one has 20 documents. The number of relevant documents in these classes are,
respectively, 10 and 5.

k ASL MZE ESL(5) RR k ASL MZE ESL(5) RR

1 1.66667 0.958333 1. 0.333333 26 13.5 0.577236 9.09091 0.555247
2 2.09375 0.921569 2. 0.448276 27 14. 0.571429 9.09091 0.555247
3 2.43846 0.888889 3. 0.500274 28 14.5 0.565891 9.09091 0.555247
4 2.79268 0.859649 4. 0.526273 29 15. 0.560606 9.09091 0.555247
5 3.18383 0.833333 4.99116 0.539872 30 15.5 0.555556 9.09091 0.555247
6 3.61062 0.809524 5.95402 0.547125 31 15.878 0.554348 9.09091 0.555247
7 4.06423 0.787879 6.86118 0.551011 32 16.2619 0.553191 9.09091 0.555247
8 4.53603 0.768116 7.68216 0.55308 33 16.6512 0.552083 9.09091 0.555247
9 5.01949 0.75 8.38879 0.554167 34 17.0455 0.55102 9.09091 0.555247

10 5.51013 0.733333 8.95997 0.554726 35 17.4444 0.55 9.09091 0.555247
11 6.00503 0.717949 9.38485 0.555006 36 17.8478 0.54902 9.09091 0.555247
12 6.50237 0.703704 9.6643 0.55514 37 18.2553 0.548077 9.09091 0.555247
13 7.00105 0.690476 9.81042 0.555203 38 18.6667 0.54717 9.09091 0.555247
14 7.50043 0.678161 9.8446 0.55523 39 19.0816 0.546296 9.09091 0.555247
15 8.00016 0.666667 9.79433 0.555241 40 19.5 0.545455 9.09091 0.555247
16 8.50005 0.655914 9.68948 0.555245 41 19.9216 0.544643 9.09091 0.555247
17 9.00002 0.645833 9.55865 0.555247 42 20.3462 0.54386 9.09091 0.555247
18 9.5 0.636364 9.42597 0.555247 43 20.7736 0.543103 9.09091 0.555247
19 10. 0.627451 9.30897 0.555247 44 21.2037 0.542373 9.09091 0.555247
20 10.5 0.619048 9.21764 0.555247 45 21.6364 0.541667 9.09091 0.555247
21 11. 0.611111 9.15476 0.555247 46 22.0714 0.540984 9.09091 0.555247
22 11.5 0.603604 9.11737 0.555247 47 22.5088 0.540323 9.09091 0.555247
23 12. 0.596491 9.09904 0.555247 48 22.9483 0.539683 9.09091 0.555247
23 12. 0.596491 9.09904 0.555247 48 22.9483 0.539683 9.09091 0.555247
25 13. 0.583333 9.09091 0.555247 50 23.8333 0.538462 9.09091 0.555247

491

Table 10.6: Values of Selected Performance Measures For All Cut-off Points For Two
Equivalence Classes. The higher ranked equivalence class has 20 documents, the lower-
ranked one has 30 documents. The number of relevant documents in these classes are,
respectively, 5 and 10.

k ASL MZE ESL(5) RR k ASL MZE ESL(5) RR

1 1.75 0.96875 1. 0.25 26 14.2143 0.658537 12.5 0.473252
2 2.2875 0.941176 2. 0.348684 27 14.7955 0.650794 12.5 0.473252
3 2.69466 0.916667 3. 0.399854 28 15.3696 0.643411 12.5 0.473252
4 3.04952 0.894737 4. 0.429201 29 15.9375 0.636364 12.5 0.473252
5 3.40249 0.875 4.99968 0.446809 30 16.5 0.62963 12.5 0.473252
6 3.77742 0.857143 5.998 0.45757 31 17.0577 0.623188 12.5 0.473252
7 4.18115 0.840909 6.99278 0.464158 32 17.6111 0.617021 12.5 0.473252
8 4.61208 0.826087 7.98013 0.468149 33 18.1607 0.611111 12.5 0.473252
9 5.06535 0.8125 8.95395 0.470514 34 18.7069 0.605442 12.5 0.473252

10 5.53553 0.8 9.90519 0.471869 35 19.25 0.6 12.5 0.473252
11 6.01768 0.788462 10.8212 0.472607 36 19.7903 0.594771 12.5 0.473252
12 6.50782 0.777778 11.685 0.472984 37 20.3281 0.589744 12.5 0.473252
13 7.00292 0.767857 12.4743 0.473157 38 20.8636 0.584906 12.5 0.473252
14 7.50083 0.758621 13.1607 0.473226 39 21.3971 0.580247 12.5 0.473252
15 8.00014 0.75 13.7087 0.473248 40 21.9286 0.575758 12.5 0.473252
16 8.5 0.741935 14.0748 0.473252 41 22.4583 0.571429 12.5 0.473252
17 9. 0.734375 14.2061 0.473252 42 22.9865 0.567251 12.5 0.473252
18 9.5 0.727273 14.0395 0.473252 43 23.5132 0.563218 12.5 0.473252
19 10. 0.720588 13.5 0.473252 44 24.0385 0.559322 12.5 0.473252
20 10.5 0.714286 12.5 0.473252 45 24.5625 0.555556 12.5 0.473252
21 11.1563 0.703704 12.5 0.473252 46 25.0854 0.551913 12.5 0.473252
22 11.7941 0.693694 12.5 0.473252 47 25.6071 0.548387 12.5 0.473252
23 12.4167 0.684211 12.5 0.473252 48 26.1279 0.544974 12.5 0.473252
24 13.0263 0.675214 12.5 0.473252 49 26.6477 0.541667 12.5 0.473252
25 13.625 0.666667 12.5 0.473252 50 27.1667 0.538462 12.5 0.473252

492

in order to retrieve 5 relevant documents. Our concise notation for that is ESL(5) and

appears in Figure 10.11 on page 488, Table 10.5 on page 491, and Table 10.6 on the

preceding page. The matrix at the end of the second row in Figure 10.12 on the next

page provides detailed distribution information on the agreement and disagreement values

for the BC and DT ranking methods. There were 3 kinds of agreement and 4 kinds of

disagreement. The amount of agreement was 49.56% and the amount of disagreement

was 50.44%. The matrix at the end of the fourth row in Figure 10.12 on the following page

provided detailed distribution information on the agreement and disagreement values for

the CLM, IDF, RC, and WC ranking methods. The amount of agreement was 47.44%

and the amount of disagreement was 52.56%.

The plots for the ASL measures versus the RR measures, over all of the ranking

methods, show that there was 1 kind of agreement and 4 kinds of disagreement. The

matrices at the ends of the third and fifth rows in Figure 10.12 on the next page show that

the amount of agreement was 2% and that the amount of disagreement was 98%. The

only agreements occurred when both measures indicated that the performance was the

same (i.e., did not change) between 2 points. The types of disagreements were the same

for both sets of measures, the only difference was that the proportions of disagreement

kinds had different values in the BC and DT set of ranking methods than they did in

the CLM, IDF, RC, and WC set.

10.11 Summary

This chapter began with the development of a table of important characteristics to con-

sider when comparing points of agreement and disagreement between ranking measures

on the relevant ordering of documents. An example that involved the ASL@k(V) mea-

sure illustrated how a Type-D version of a performance measure could provide different

results than a Type-T version when there were duplicate RSVs in the collection of ranked

493

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
kH0.0

0.2

0.4

0.6

0.8

1.0
kV

0.0 0.2 0.4 0.6 0.8 1.0
kH0.000

0.005

0.010

0.015

kV

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
kH0.0

0.2

0.4

0.6

0.8

1.0
kV

0.0 0.2 0.4 0.6 0.8 1.0
kH0.00

0.05

0.10

0.15

0.20
kV

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
kH0.0

0.2

0.4

0.6

0.8

1.0
kV

0.0 0.2 0.4 0.6 0.8 1.0
kH0.000

0.002

0.004

0.006

0.008

0.010

kV

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
kH0.0

0.2

0.4

0.6

0.8

1.0
kV

0.0 0.2 0.4 0.6 0.8 1.0
kH0.00

0.05

0.10

0.15

0.20

0.25

kV

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
kH0.0

0.2

0.4

0.6

0.8

1.0
kV

0.0 0.2 0.4 0.6 0.8 1.0
kH0.000

0.002

0.004

0.006

0.008

kV

Figure 10.12: The leftmost column contains the 5 distinct plots from Figure 10.11 on
page 488, the other columns contain more detailed information about each plot. The
horizontal and vertical axes of the plots represent the proportion of documents that have
been examined at a certain point k in a ranking. The horizontal axis always represents
the proportional k value for the ASL@k(V) measure and the vertical axis represents the
proportional k value for a non-ASL measure. The graphs in the second column plot
Type-T ASL values against non-ASL Type-T values. The third column provides more
detail about the values from the non-ASL measure. This is important because some of the
values from the non-ASL measure may differ by more than an order of magnitude from
their ASL value counterparts (the graphs in the second column of the third and fifth rows
are an example of this situation). The matrices in the fourth column provide distribution
information about the values that were used to construct the plots in the first column.
The orange regions represent areas where the ASL measure indicates that performance
is decreasing whereas the non-ASL measure indicates that performance is increasing.
The blue regions represent areas where the ASL measure indicates that performance
is increasing whereas the non-ASL measure indicates that performance is decreasing.
The red regions represent areas where the ASL measure indicates that performance is
increasing whereas the non-ASL measure indicates that performance did not change.
The green regions represent areas where the ASL measure indicates that performance is
decreasing whereas the non-ASL measure indicates that performance did not change.

494

documents.

Later, we discussed how to reasonably extend the performance measures so that each

measure was defined at every point in a ranking. We also discussed weak and strong orders

and what “rank” means when the order of the ranked documents is weak rather than

strong. This chapter extended the general framework for handling ties that appeared in

McSherry and Najork (2008) and introduced the notions of an effective document cut-off

equivalence class and an effective document cut-off point.

Combinatoric-based versions of the ASL@k(V), MZE@k(V), RR@k(V), P@k(V),

R@k(V), and ESL@k(V, x) measures were developed. An error in the equation for the

ESL@k(V, x) performance measure, due to a typographical error that occurred in the

McSherry and Najork (2008) article, was pointed out along with a suggested correction.

We discussed how the analytic versions of the ASL, ESL, MZE, RR, recall, and precision

measures were validated.

This chapter concluded with two examples that used plots and distribution matrices

to illustrate how well the ASL measure agreed with the ESL, MZE, and RR measures

on relative rankings for the data that was used in the examples. The first plot compared

results from the Type-T version of the ASL performance measure with results from three

distributions of the same data that assumed a strong ordering of the ranked documents.

The second example involved plots that helped illustrate comparisons of the ASL measure

with the MZE, ESL, and RR performance measures.

How well one performance measure compares with another over a vector of ranked

documents is a function of the characteristics of the two measures, the ranking methods,

the granularity of the RSVs, the number of equivalence classes, and the numbers of

relevant and non-relevant documents within these classes. The complexity of the measure

comparison problem makes it very difficult to issue a general statement about how one

measure compares with another one. Near the end of this chapter, we operationalized

495

what it means, in the context of this chapter, for one document ranking to be considered

better than another document ranking.

The Type-T measures that were developed in this chapter, in conjunction with the

extended version of the Losee comparison method, make important contributions to IR

performance evaluation in that they can be used by researchers to help study, obtain

more insight, and provide a better understanding of the interactions between the factors

that influence how one measure compares with another one for both specific rankings

and collections of rankings.

496

Chapter 11

Summary and Conclusions

This chapter summarizes the work that was discussed in the prior chapters, details

how the research was conducted, discusses difficulties that were encountered, and states

the significant findings. Near the end of this chapter, we discuss some implications of

this research, make some recommendations for future researchers who may want to follow

paths similar to those that were taken for this research, and discuss several possibilities

for extending this research. The most significant aspect of this research was that the

author was able to formulate a theory with respect to information retrieval performance

measures and document ranking methods, centered mainly around composition theory,

partition theory, and enumerative combinatorics; develop a model for this theory; and

empirically validate that the model produced the expected theoretical results.

11.1 Goals

The primary goal of this research was to investigate the use of combinatorics in the devel-

opment of equations for the Average Search Length (ASL) (Equation 2.0.1 on page 12)

performance measure and its independent variables, namely, the normalized average posi-

tion of a relevant document (A) (Equation 2.0.2 on page 13) and the quality of a ranking

method (Q) in a centralized information retrieval context. This research also compared

the performance, as measured by the ASL, with the performances as measured by the

MZ-based E measure (MZE) (Equation 2.1.4 on page 17) (van Rijsbergen, 1979), the

Expected Search Length (ESL) (Equation 2.1.1 on page 15) (Cooper, 1968), and the

Mean Reciprocal Rank (MRR) (Equation 2.1.3 on page 17) (Voorhees, 2001) measures.

Due to the fact that the MRR was being calculated for a single query, as contrasted with

a set of queries, the reciprocal rank (RR) (Equation 2.1.2 on page 16) measure was used

instead of the MRR because these two measures provide identical results when the set of

queries for the MRR only contains one query.

A secondary goal of this research was to demonstrate that the resultant equations

that were developed for this analytic approach produced results that were statistically

the same as the corresponding results that were obtained by empirical means. The author

of this dissertation was successful in attaining all of these goals and in finding answers

for each the three research questions that are enumerated below.

11.2 Questions

1. What would be the characteristics of a combinatoric measure (CM ASL), based on

the ASL, that performs the same as a probabilistic measure of retrieval performance,

also based on the ASL?

2. Does the CM ASL measure produce the same performance results as that of an

actual document ranking? [In other words, is there any statistically significant

difference between the predicted performance and the performances observed in

actual rankings?]

3. When does the ASL measure and one of these measures (i.e., MZE, ESL, and MRR)

both imply that one document ranking is better than another document ranking?

498

11.3 Steps

The steps that were taken to obtain answers for each of these questions began with

the author recognizing that weak 4-compositions of size N ≥ 1 could be used to model

document collections of size N that were described in terms of these 4 parameters (dis-

cussed on page 112): the number of relevant documents that contained the query term,

the number of relevant documents that did not contain the query term, the number of

non-relevant documents that contained the query term, and the number of non-relevant

documents that did not contain the query term. The next step in this process was the

development of equations that were used at several places in this dissertation to calculate

the quality of ranking (i.e., Q) values for the coordination level matching (CLM), inverse

document frequency (IDF) , and decision-theoretic (DT) ranking methods. Descriptions

of the CLM, IDF, and DT ranking methods can be found in Sections 5.1, 6.1, and 6.3,

respectively. These sections start on pages 144, 241, and 246, respectively.

There were several versions of the quality of ranking equations for the CLM, IDF, and

DT ranking methods. The CLM versions are represented by Equation 5.0.1 (on page 143),

Equation 5.9.3 (on page 196), Equation 5.10.3 (on page 205), and Equation 5.11.11

(on page 228). The IDF versions are represented by Equation 6.1.1 (on page 241),

Equation 6.1.2 (on page 241), and Equation 6.1.3 (on page 242). Lastly, the DT versions

are represented by Equation 6.3.1 (on page 247), Equation 6.3.6 (on page 250), and

Equation 6.3.13 (on page 254).

These equations were developed in a manner such that they were well-defined even

when singularities were present. Equations were also developed that could be used to

calculate the expected value and variance of the Q values for the CLM (Equation 5.12

on page 228), IDF (Equation 6.1.1 on page 242), and DT (Equation 6.3.1 on page 254)

ranking methods. Validation of the equations for these ranking methods occurred imme-

diately after this step.

499

Validation mainly consisted of computing the value of a measure by both analytic

and empirical means. In most cases, validation consisted of checking the two values to

determine if they were exact matches (i.e., their values were equal). More specifically,

validation consisted of these six activities: (1) using exact matching to compare the

analytically-determined and empirically-determined ranking method-specific Q′ values;

(2) using the Wilcoxon signed ranks test to compare the Q′ values that were estimated

by random sampling with those values that were determined by analytic means; (3) us-

ing exact matching to compare the analytically-determined A′ values, for 1 ≤ N ≤ 200,

with their empirically-determined counterparts, and for 201 ≤ N ≤ 400, by using ana-

lytic means to generate boundary values that were checked to see if they satisfied pre-

determined boundary conditions; (4) using exact matching to compare the analytically-

determined and empirically-determined ranking method-specific ASL′ values; (5) deter-

mining if analytically-determined ASL′
r (i.e., refined ASL′) values satisfied certain in-

equalities and by checking to determine if an analytically-determined value was an exact

match for the corresponding empirically-determined value; and (6) using exact match-

ing to compare the analytically-determined and empirically-determined ranking method-

specific ASL′
g (i.e., the gold standard ASL′) values.

The next-to-last step in this process tested the hypothesis that there were no statisti-

cally significant differences between the analytically- and empirically-determined values

for the ASL′ measure. The final step determined how well the ASL measured perfor-

mance when it was compared to each of these performance measures: MZE, ESL, and

MRR.

11.4 Problems Conducting the Research

The section discusses 5 major problems that the author encountered when he was con-

ducting the research for this dissertation. The author was able to create solutions for

500

each of these problems. The remainder of this section provides detailed information on

each of the 5 problems.

The first problem concerned combinatorial explosion. This occurred when the num-

ber of documents in a collection became greater than 500. Combinatorial explosion and

space-time limitations prevented exhaustive (i.e., brute force) validation of the count-

ing equations for the quality of ranking measures that were associated with the CLM

and IDF ranking methods. The solution was to only perform brute force validation on

document collections where the cardinality did not exceed 500. In order to validate the

equations that were developed in Chapters 5 and 6 for the coordination level matching

(CLM), inverse document frequency (IDF), and decision-theoretic (DT) ranking methods,

it took over 30 hours of elapsed time on this author’s computer for document collections

where the cardinalities started at 1, and continually increased by step size of 1, until the

cardinality limit of 500 was reached.

The second problem concerned running out of computer memory. This space resource

problem occurred with MathematicaR© during the generation of a given number x of

random weak 4-compositions for the validation work in Chapter 8 that involved the

estimation of Q values for document collections that contained up to 10 billion documents.

Mathematica’s algorithm for a specified number of random weak compositions with k = 4

parts attempted to first generate the set of all the weak 4-compositions for the number N

of documents in a collection. Then it would randomly select x of these weak compositions

as the result. The problem was that the number of weak 4-compositions for N grows at a

cubic rate (shown by Equation 3.4.1 on page 102). For even relatively small values of N,

say N = 1, 000, the cardinality of this set was such that there was not enough memory

to create a set of

C̃4(1000) =

(
1000 + 3

3

)
= 167, 668, 501

weak 4-compositions on the author’s computer. To work around this, the author needed

501

to find an algorithm that conceptually generated these random weak 4-compositions one

at a time, and stopped after it had generated x distinct weak 4-compositions. The

author’s solution to this problem was to create MathematicaR© implementations of the

RANCOM (random composition of n into k parts) and RANKSB (random k-subset of an

n-set) algorithms whose FORTRAN (Friedman and Koffman, 1977) implementations are

detailed in Nijenhuis and Wilf (1978). The RANCOM algorithm invokes the RANKSB

algorithm to do the vast majority of the overall computations. Note that the use of the

term “composition” in Nijenhuis and Wilf (1978) is equivalent to our use of the term

“weak composition.”

The third problem was data-dependent and occurred during hypothesis testing for

Research Question 2 (RQ2). More specifically, the Wilcoxon signed ranks test generated

many N.A. (not available) results because, in the matched pairs version of this test in the

statistical computing and graphics language and environment known as R, the algorithm

for this statistical test eliminates any observations where the observed and actual value

in a matched pair are equal. In the situation that this test was used for in Chapter 9,

many of the sets of values consisted of pairs of observations where either the actual and

predicted values for a pair were identical, or a very high percentage of the pairs had

actual and predicted values that were identical. The author decided to report the results

from the Kolmogorov-Smirnov (K-S) test, instead, because the K-S test was much more

tolerant of matched pairs where the values were equal.

The fourth problem concerned the fact that neither of the ASL, MZE, MRR, and ESL

performance measures could be used to calculate the value of the measure at an arbitrary

point in a ranking and also calculate the correct value of the measure when the document

collection was weakly-ordered. Of the 4 performance measures (i.e., ASL, MZE, MRR,

ESL) that were used to help find the answer for Research Question 3 (RQ3), only the ESL

measure was guaranteed to compute correct results when the document collection was

502

weakly ordered. This was a major problem because the query-document model in this

dissertation used binary relevance, and, instead of using the term occurrence frequency

for a document, all that mattered was whether a query term was present or absent. If the

query term was present in a document, its frequency was considered to be 1; otherwise,

the frequency was considered to be 0. Effectively, both relevance and term frequency

each had only two distinct values, namely, 0 and 1. The result of these choices was that

the rankings that were produced by the best case, coordination level matching, decision-

theoretic, inverse document frequency, random case, and worst case ranking methods

were weakly ordered. This necessitated that three of the performance measures (i.e.,

ASL, RR, MZE), that this research was using needed to be adapted so that they were

able to calculate correct values for rankings that had duplicate retrieval status values.

Another problem was that in order to develop the answer for RQ3, all 4 of these measures

were required to be able to compute their performance values at arbitrary points from

the front of a vector V of ranked documents. The only definitions that satisfied this

requirement were the ones for the precision and recall measures. These problems and

other concerns were thoroughly discussed, and solved, in Section 10.5 (which starts on

page 425).

The fifth, and last, problem concerned a typographical error that the author discov-

ered in the McSherry and Najork (2008) article. The error occurred in the equation that

was developed to calculate the value of the reciprocal rank performance measure, at an

arbitrary point k in a vector V of ranked documents, for a weakly ordered collection of

documents. The version of the equation that was given in the article was incorrect due

to a typographical error. This problem was solved by developing a corrected version of

the RR measure for this dissertation, and proving that it was correct.

503

11.5 Findings

This research demonstrated that it was possible to analytically calculate the Average

Search Length for a document collection of size N ≥ 1, and the 6 given ranking methods,

by utilizing only 4 parameters and these three assumptions: all document distributions of

size N were equally likely, relevance was binary, and a term was either present or absent

in a document. These analytically-determined results were validated by empirical means

and shown to have no significant differences between them and the results that were

empirically-determined. The 6 ranking methods that were involved in this study were

best-case, coordination level matching, inverse document frequency, decision-theoretic,

random, and worst-case ranking.

The main contribution of this research was a set of equations that enabled researchers

to assess or study the performance of various ranking algorithms by analytic prediction

techniques (in contrast to having to set up various experiments) (Losee, 1995). These

equations relied on just 4 parameters: the number of relevant documents that contained

the query term, the number of relevant documents that did not contain the query term,

the number of non-relevant documents that contained the query term, and the number

of non-relevant documents that did not contain the query term. For all document collec-

tions, the sum of the values associated with these parameters was equal to the number of

documents in the collection. Via analytic techniques and specific observations, the qual-

ity of ranking equation for decision-theoretic ranking Q′
DT was found to be dependent on

just a single parameter, namely N, the number of documents in a collection.

By setting up various scenarios, the equations developed in this research could be

used to study how various ranking algorithms perform when entities such as the number

of documents in a collection and the presence, or absence, of a query term in a set

of relevant and non-relevant documents were manipulated. It was envisioned that the

equations developed in this research could lead to a better understanding of some aspects

504

of the document ranking process.

In particular, this research provided the ability to estimate Q (the quality of a ranking

method) with as few as one parameter value in one particular case (i.e., decision-theoretic

ranking); provided a way to compare the Q values for several ranking methods for an

arbitrary document collection size or for an arbitrary range of document collection sizes;

enabled the study of under what condition(s) the quality of each of the ranking methods

(e.g., inverse document frequency, coordination level matching, decision-theoretic rank-

ing) was inferior to, the same as, or superior to the other two; and also enabled the

study of what impact, if any, the size of the document collection had on Q as the size

approached infinity. The next few paragraphs detail the findings that occurred in several

of the chapters.

Chapter 4. The research showed that it was not difficult to adapt the singularity-

handling method (discussed in Section 4.3 which starts on page 117) that was proposed

by Shaw (1995) so that it would work well in the query-document model, that was used

in this dissertation, with respect to the computations of p′, q′, and t′.

Chapter 5. The work in this chapter showed that weak 4-compositions and the Prin-

ciple of Inclusion-Exclusion (discussed in Section 5.8 which starts on page 159) were very

effective in the development of the equations to calculate the Q′
CLM measure. The work

to develop these equations was involved, tedious, laborious, and demonstrated the de-

sirability of using a computer algebra system, such as MathematicaR©, to assist with the

many calculations.

Chapter 6. The equation for Q′
IDF was found to be a simple extension of the one

for Q′
CLM. Practically, there was no significant difference between CLM ranking and IDF

ranking once the number of documents in a collection approached 40. For both of these

ranking methods, the quality of ranking value approached 0.5 (the theoretical expected

value for random ranking). The quality of ranking values for all collections of size N ≥ 1,

505

for the decision-theoretic ranking method, was found to be higher than those values with

corresponding collection sizes for the CLM and IDF ranking methods. For N ≥ 50, the

Q′
DT values approached 1 (the theoretical expected value for best-case ranking). From

about N = 25, and upwards, the mean and standard deviation of the of the Q′
CLM and

Q′
IDF values were found to be approximately the same. Furthermore, these values were

found to be approximately equal to 0.5 at N = 50, and upwards. The standard deviation

of Q′
DT was found to monotonically decrease as the size N of the document collection

increased; it approached 0 around N = 200.

Chapter 7. This chapter was notable for several developments: a combinatorial model

for A, the use of Gaussian polynomials to model search lengths, equations that can be

used to determine the expected value and variance of normalized and unnormalized search

lengths, and refined versions of the ASL measure. The research found that it was pos-

sible to develop a combinatoric equation for A that was equivalent to the probabilistic

version. It was also found that Gaussian polynomials could be used to obtain distribu-

tional information on the sums of the positions of the relevant documents in an optimal

ranking.

Chapter 8. It was found that Q values could be estimated very accurately and

efficiently by random sampling, even when the margin of error for the sampling was

as high as 0.05. It was found that there were no significant differences, at the 95%

confidence level for a two-tailed test using the normal distribution, between the actual Q
values and the estimated Q values. This was true whether the Q values were generated

with a 0.01 or 0.05 margin of error.

Chapter 9. As a whole, the performance measures (i.e., ASL′, ASL′
r) that estimate

the Average Search Length and the performance measure (i.e., ASL′
g) that is calculated

from a process that ranks documents and, then, calculates the Average Search Length

from this empirical ranking data, were found to produce statistically significant different

506

results. Overall, the gold standard ASL measure (i.e., ASL′
g) was found to produce

the same results that would be obtained empirically by the process that was described

earlier in this paragraph, and the refined version of the ASL measure (i.e., ASL′
r) was

found to produce results that were in many cases not as accurate as those produced by

the ASL′
g performance measure. But, on many other occasions, dependent, of course, on

the distribution of documents in the collection, the ASL′
r performance measure produced

results that matched those produced by the ASL′
g measure. Similarly, the ASL′ measure

was often found to produce the same values as the ASL′
r measure but, on other occasions,

the values that it produced deviated more from those produced by the ASL′
g measure

than did the values that were produced by the ASL′
r measure. These three performance

measures were found to conform to this relationship:

|ASL′
r − ASL′

g| ≤ |ASL′ − ASL′
g|.

Chapter 10. The results from this chapter showed that the ASL performance measure

did not always totally agree, or totally disagree, with the MZE, MRR, and ESL measures

on the relative rankings of a document collection. Rather, the agreement-disagreement

plots contained multiple regions; some of these were regions where the ASL and the other

measure agreed on the relative ranking of the documents, whereas there were other regions

that illustrated where these measures disagreed on the relative rankings. The somewhat

surprising finding, at least initially, was that in one of the examples that were constructed

for Chapter 10, out of 18 plots only 5 of them were distinct. Further research showed that

this was attributable to a combination of factors: the distribution of the documents, the

characteristics of the 6 ranking methods that were used, binary relevance, and because the

ranking algorithms considered only whether a term was present or absent in a document.

If a given term was present, and it occurred, say thirty times in a document, it was

treated the same as if the term had occurred just once in the document.

507

11.6 Implications and Recommendations

The document cut-off measures that were developed in this dissertation can be used

to help study any vector V of ranked documents, at arbitrary document cut-off points,

provided that (1) relevance is binary and (2) the following information can be determined

from the ranked output: the equivalence classes and their relative sequence, the number

of documents in each equivalence class, and the number of relevant documents that each

class contains. These measures can be used even when the query-document model allows

more than two possible distinct values for the term frequency component.

The ESL@k(V, x), ASL@k(V), MZE@k(V), RR@k(V) measures produce correct re-

sults even when the document collection is weakly-ordered. For the convenience of the

reader, these measures, their associated defining equations, and the pages that these

equations appear on are listed below.

Measure Defining Equations and Locations

ESL@k(V, x) Equation 10.6.7 on page 450.

ASL@k(V) Equation 10.6.14 on page 459.

MZE@k(V) Equation 10.6.15 on page 462.

RR@k(V) Equation 10.6.16 on page 468 and

Equation 10.6.27 on page 476.

These new measures are guaranteed to deliver results that are at least as accurate as

the standard versions of many of these information retrieval (IR) measures, where the

versions in the IR literature typically assume that the rankings are strongly-ordered. All

of these measures can be used to help study Web ranking because they incorporate the

notion of arbitrary document cut-off points.

The Q values for the CLM, IDF, and DT ranking methods changed very little pro-

portionately after N = 50 (a miniscule number because a typical real-world document

508

collection is almost always going to contain more than 50 documents). Therefore, we

could calculate the Q value at, say, N=50, for a ranking method m, and pretend that

this value was a constant for ranking method m in the same sense that 0 was the expected

constant Q value for worst-case ranking, 0.5 was the constant for random ranking, and

1 was the constant for best-case ranking.

For all practical purposes, the Q values for the CLM and IDF ranking methods were

the same. Therefore, if a study involved both the CLM and IDF ranking measures,

for the same size document collection, we could calculate the Q value for one of these

ranking measures and use it as the Q value for both of them. Analytic techniques for the

determination of ranking method-specific Q values for the query-document model used

in this dissertation produced results that were identical to those that could be obtained

by empirical techniques, but much more efficiently, and at a much lower cost with respect

to computational resources such as, for example, processor time, processor speed, disk

space, disk speed, and memory.

The author recommends that any researcher who contemplates performing similar

research to that which occurred for this dissertation be familiar with many of these topi-

cal areas: elementary number theory (Rosen, 2005), analytic combinatorics (Flajolet and

Sedgwick, 2009), applied combinatorics (Tucker, 1980; Gross, 2008; Roberts and Tesman,

2009), enumerative combinatorics (Liu, 1968; Comtet, 1974; Goulden and Jackson, 1983;

Stanley, 1997; Charalambides, 2002; Bóna, 2006; Aigner, 2007; Bóna, 2007), concrete

and discrete mathematics (Graham et al., 1994; Knuth, 1997; Rosen, 1999; Rosen et al.,

2000; Benjamin and Quinn, 2003; Larsen, 2007), basic hypergeometric series (Slater,

1966; Gasper and Rahman, 2004), the analysis of algorithms (Purdom and Brown, 1985;

Sedgewick and Flajolet, 1996; Knuth, 1997; Dobrushkin, 2009), probability theory and

mathematical statistics (Terrell, 1999; Williams, 2001; Rose and Smith, 2002; Walpole,

2002), nonparametric statistics (Conover, 1999), discrete distributions (Charalambides,

509

2005; Johnson et al., 2005), and differential and integral calculus (Berkey, 1984; Kosmala,

1998). In particular, generating functions (Lando, 2003; Wilf, 2006) should be an area

of concentration, or emphasis, when studying enumerative combinatorics. Of course, the

particular areas that the prospective researcher would need to be familiar with, and the

depths of the familiarities, would greatly depend on that person’s research question(s),

and, hence, could vary from one combination of researcher and research study to another

combination of researcher and research study. Additionally, some familiarity with combi-

natorial algorithms (Reingold et al., 1977; Nijenhuis and Wilf, 1978; Kreher and Stinson,

1999; Pemmaraju and Skiena, 2003; Knuth, 2005a,b, 2006) could prove to be very useful

during the software implementation phase(s) of the research.

11.7 Future Research

This section details several possibilities for extending this research:

1. the extension of the query-document model to handle multiple term queries;

2. the extension of the query-document model so that relevance remains discrete, but

it can have more than two distinct values;

3. the extension of the query-document model so that relevance is continuous;

4. the extension of the query-document model to use actual term frequencies;

5. the elimination of the uniformity assumption, that is, no longer assuming that each

weak 4-composition in the set of weak 4-compositions for a document collection of

size N is as equally likely to be chosen as any other member of this set; and

6. the application of this research to distributed information retrieval performance

contexts.

510

Item 1 represents the most natural extension of the research in this dissertation,

it allows for multiple term queries. But, the possibility that queries may have more

than one term means that the query-document model may need to be enhanced to also

incorporate information on term dependencies, unless the model assumes that the terms

are independent. This independence assumption is a common simplifying assumption in

the IR literature for studies that involve multiple term queries (Losee, 1998; Metzler and

Croft, 2005).

Item 2 extends the query-document model so that relevance can have more than two

distinct values. Relevance is still discrete, but it is no longer dichotomous. That is, there

would be different degrees of relevance (Tang et al., 1999; Kekäläinen and Järvelin, 2002).

Item 3 extends the query-document model to handle continuous relevance. Losee

(1998) proposes a way to incorporate continuous relevance into an analytic model of

text filtering. This way can also be used for information retrieval. The implication of

using the Losee proposal to extend this dissertation research is that the author would,

most likely, need to switch from the discrete mathematical techniques that he used for

this dissertation research and, instead, would need to switch to continuous mathematical

techniques and integral calculus.

Item 4 concerns the extension of the query-document model so that it could handle

actual term frequencies, as contrasted with frequencies that were conflated into just two

values (i.e., 1, if the query term is present in the document; 0, if the query term was

absent). The Losee (1998) article states that term frequencies can be incorporated into an

IR model if these frequencies are considered to be Poisson-distributed (Harter, 1975a,b;

Bookstein, 1983; Raghavan et al., 1983; Losee et al., 1986; Srinivasan, 1990; Fuhr, 1992;

Margulis, 1993; Robertson and Walker, 1994; Ponte and Croft, 1998; Robertson, 2004;

Lee and Lee, 2005). The article goes on to state that even though a Poisson distribution

assumption may not exactly model a particular natural language situation, the accuracy

511

of the model is good enough that it can be used effectively for information retrieval.

Item 5 is an extension that allows the model to weight some sets of weak 4-compositions

for a document collection of size N different than some of the other sets for this collec-

tion. This enables the modeling of situations where document collections with some

characteristics are more, or less, likely to occur than others. If, say, the weight for a

weak 4-composition was a value in the closed interval [0, 1], then a weight of 0 could be

given to those weak 4-compositions that, via prior knowledge, are known not to occur,

even though an instance of them is theoretically possible, if one did not have this prior

knowledge.

Item 6 refers to the applicability of this research to the measuring of IR performance

in distributed information retrieval contexts. Losee and Church (2004) developed ana-

lytical techniques for predicting distributed information retrieval performance in various

collection fusion scenarios for both uniprocessor and multiprocessor scenarios. The re-

search in this dissertation can be used to extend the research on the problems that were

studied in the Losee and Church (2004) article.

11.8 Summary

This research investigated the characteristics of analytic performance measures for study-

ing and predicting the performance of IR systems and of systems that have both infor-

mation retrieval and database capabilities. It used these performance measures for pre-

diction, rather than mainly for retrospection, which is quite different from how many IR

performance measures have been used in the past. These predictive measures were used,

in lieu of empirical techniques, to study the Average Search Length performance mea-

sure for the best case, coordination level matching, decision-theoretic, inverse document

frequency, random case, and worst case ranking methods. The salient feature of this re-

search was the formulation of a theory, with respect to information retrieval performance

512

measures and document ranking methods, that centered mainly around composition the-

ory, partition theory, and enumerative combinatorics; the development of a model for

this theory; and being able to empirically validate the theoretical results that this model

was expected to produce.

Based on the work for this dissertation, the following observations can be made: (1)

this research enabled the modeling of ranking methods and performance measures by the

use of enumerative combinatorics and concepts from number theory, calculus, set theory,

probability theory, statistics, and discrete mathematics; (2) the analytic results from the

equations that were developed for the quality of ranking methods, and the IR perfor-

mance measures, matched the expected results which were obtained empirically by brute

force (i.e., exhaustive) techniques; and (3) the extension of the ASL, ESL, MZE, and RR

performance measures, so that performance could be calculated at arbitrary points in a

ranking, and that also calculate the correct results for weakly-ordered document collec-

tions, open more opportunities for the use of these measures, particularly in situations

(e.g., Web search) where all of the documents in a collection are typically not returned

to the user.

513

Appendices

514

Appendix A

Creating the Modified Cystic

Fibrosis Test Collection

A.1 Create the CF′ test collection

A.1.1 Transform the queries

Build the set of new queries by visiting each of the original queries and eliminating any

stopwords from it. The remaining terms, for each query, after stemming, constitute the

terms of the new version of that query and are the only differences between it and the

original query. The symbol ← denotes assigning the value on its right hand side to the

variable on its left hand side.

515

QCF′ ← the empty set

for each query q ∈ QCF

query id ← access(q, 0)
the bag of stemmed terms ← the empty bag

for each term t ∈ access(q, 1)
if t is not a PubMed stopword

the stemmed term ← Porter stemmer(t)

insert the stemmed term into the bag of stemmed terms

endif

endfor

if the bag of stemmed terms �= the empty bag
insert <query id, the bag of stemmed terms> into QCF′

endif

endfor

A.1.2 Transform the documents

Build the set of new documents by visiting each of the original documents and eliminat-

ing any stopwords from it. The remaining terms, for each document, after stemming,

constitute the terms of the new version of that document and are the only differences

between it and the original document.

DCF′ ← the empty set

for each document d ∈ DCF

document id ← access(d, 0)
the bag of stemmed terms ← the empty bag

for each term t ∈ access(d, 1)
if t is not a PubMed stopword

the stemmed term ← Porter stemmer(t)

insert the stemmed term into the bag of stemmed terms

endif

endfor

if the bag of stemmed terms �= the empty bag
insert <document id, the bag of stemmed terms> into DCF′

endif

endfor

516

A.1.3 Transform the relevance judgments

Build the set of new relevance judgment associations by visiting each of the original

associations and mapping the 4 relevance judgments there into a single Y (relevant) or

N (not-relevant) judgment. The only difference between it and the original association

is that 4 items have been mapped into just 1 item.

JCF′ ← the empty set

for each triple <query id,document id,rj> ∈ JCF

score ← access(rj, 1) + access(rj, 2) + access(rj, 3) + access(rj, 1)
if score ≥ 1

insert <query id,document id,Y> into JCF′

else

insert <query id,document id,N> into JCF′

endif

endfor

A.2 Select the best single term description of each

query in the CF′ test collection

In order to select the best single term, we need to perform the following actions for each

query q in the CF′ test collection. For each query q, let z be the query identifier for it.

Compute the set of document identifiers for the documents that are rele-

vant to q.

docidsq ← { did | <qid, did, rj> ∈ JCF′ and z = qid and rj = Y }.
Compute the relevance set for q.

relsetq ← { <did, doc> | <did, doc> ∈ DCF′ and did ∈ docidsq }.
Define a language model for the relevance set. The language model for relsetq

is calculated by first concatenating all the documents in it to form a single large document

(shown by Equation A.2.1 on the next page). Let this combined document be represented

by R where d1, d2, d3, ..., d|relsetq | are documents from relsetq.

517

R ← d1 ⊕ d2 ⊕ d3 ⊕ ... ⊕ d|relsetq | (A.2.1)

Remember that each element of relsetq is a pair whose second component is a docu-

ment represented as a bag of terms. Informally, we define the effect of the concatenation

operation (i.e., ⊕) on two documents as follows: it unions the bags of terms, preserving

duplicates. That is, if a term t occurs in either of the documents, it must also appear

in the result of the concatenation. Also, only terms that are in at least one of the

documents are eligible for membership in the bag that results from the concatenation

operation. Furthermore, the number of occurrences in the result for a term t is the sum

of the number of times that it appears in both documents — if t occurs n1 ≥ 0 times

in one document and n2 ≥ 0 times in the other one, then it occurs n1 + n2 times in the

result.

The language model can then be determined easily using standard methods described

in Section 2.7 – we estimate the probability of each term by the use of Equation A.2.2

and we apply smoothing by the use of Equation A.2.3,

P̂mle(t|MR) =
tft,MR

dlR
(A.2.2)

Pjm(t|MR) = λP̂mle(t|MR) + (1 − λ)P̂mle(t|Mcorpus) (A.2.3)

P̂mle(t|MR) and P̂mle(t|corpus) are the maximum likelihood estimates for R and the

corpus, respectively. Pjm(t|R) is the Jelinek-Mercer smoothing method.

The weight that is applied to P̂mle(t|MR) is λ = 0.6 in order to be consistent with

the value used in Lavrenko and Croft (2001), Cronen-Townsend and Croft (2002), and

Jordan et al. (2006).

Define a language model for the corpus. The corpus model is estimated from all

518

the documents in the collection. Since this model contains all of the documents, rather

than a subset of them, it is considered to be rather complete with respect to its term

population. Therefore, we assume that the maximum likelihood estimator adequately

approximates it. Hence, no smoothing is applied to the corpus language model.

corpus ← d1 ⊕ d2 ⊕ d3 ⊕ ... ⊕ d|DCF ′ |

where d1, d2, d3, ..., d|DCF ′ | are documents from DCF ′ .

P̂mle(t|Mcorpus) =
tft,Mcorpus

dlcorpus

The maximum likelihood estimator above for a term t that occurs in the corpus is

calculated by counting how many times it occurs in the corpus divided by the total

number of terms in the corpus.

Calculate the contribution that each term t in the vocabulary V makes

to the relative entropy of the two language models (i.e., MR and Mcorpus).

Terms that contribute the least to relative entropy can be viewed as the terms that least

distinguish the relevance set from the corpus. Terms that contribute the most are those

that most distinguish the relevance set from the corpus. The calculation for this term

discrimination value appears immediately below.

term discrimination value(t) = Pjm(t|MR) log
Pjm(t|MR)

P̂mle(t|Mcorpus)

This approach is similar to Cai et al. (2001) who used this scoring function to find

terms for query expansion and to Jordan et al. (2006) who used this function to auto-

matically synthesize queries of varying degrees of quality in their study of blind relevance

feedback.

519

Sort the terms in V based on how much they contribute to relative entropy.

Identify the sorted term that contributes the most to relative entropy. This

term is the one in V that most distinguishes those in the relevance set for the query from

those in the corpus. It is the one that has just now been chosen to represent the single

term version of q and is denoted by q′.

520

Appendix B

Turning multiple term queries into

single term queries

It is important to state that the sole purpose of this example is to illustrate a method

for distilling multiple term queries into a single term query. That is all that it does.

Unfortunately, it takes many pages and a fair amount of calculations to do so. Its

importance to the overall work associated with this dissertation is that it shows how we

create the single term queries that form the query portion of our test collection.

B.1 Example

Assume that we have the six short “documents” below, numbered from 1 to 6, inclusively;

that their associated language models are named M1, M2, ..., M6, respectively; that

punctuation marks are treated as delimiters; and that the case of the words in the

documents is insignificant. For this example, we make matters easier to understand by

choosing not to do term normalization (i.e., stemming and stopword elimination are not

performed). The language models for the documents are in Table B.1 on page 524. Texts

for the six documents follow.

1. The ability to distinguish between acceptable and unacceptable levels of retrieval

performance and the ability to distinguish between significant and non-significant

differences between retrieval results are important to traditional information re-

trieval experiments.

521

Burgin (1999)

2. Discusses issues of diversity in library and information science-education programs

and how these efforts can be addressed positively to better serve students and their

future users. Topics include a historical background, attracting people of diversity

for doctoral programs and faculty positions, curriculum issues, and recruiting.

Gollop (1999)

3. This paper reports on the automatic metadata generation applications (AMeGA)

project’s metadata expert survey. Automatic metadata generation research is re-

viewed and the study’s methods, key findings and conclusions are presented.

Greenberg, Spurgin, and Crystal (2006)

4. Probabilistic document retrieval systems consistent with the 2-Poisson indepen-

dence model outperforms the binary independence model if the terms are dis-

tributed as described by the model’s assumptions.

Losee (1986)

5. Information theory is concerned with the transmission of information, through a

channel, to a receiver. The sender and receiver could be people or machines. In most

cases they are different, but when information is being stored for later retrieval,

the receiver could be the sender at some future time.

Luenberger (2006)

6. Alternatively, the idea of information seeking in context offers encouragement to

loosen the structures of terminology, research foci, methods, and assumptions about

ideal behavior to discover what the role of information in people’s lives is.

Solomon (1999)

522

Let us further assume that we are interested in computing the probability that each

of the documents generated the same particular query q. To figure that out, we need to

estimate the probability of producing the language model Md of document d using max-

imum likelihood estimation (MLE), given the bag of words assumption. We accomplish

this by using MLE to compute the probability of each query term t for language model

Md and then multiplying these individual probabilities to obtain the joint probability.

The probability that a specific term t occurs in a specific document d is estimated by

determining how many times t occurs in d, then dividing that quantity by the number

of terms in d. Equation 2.7.3 on page 52 succinctly expresses what has been discussed in

this paragraph.

We can use Document 1 to illustrate how we obtain these probabilities. That doc-

ument has 33 terms (according to our parsing rules), 21 of which are unique. In the

language model associated with that document, the probability for ability is 2
33

because

that term occurs 2 times out of 33 in that document; the probability for acceptable is

1
33

because that term occurs 1 time out of 33; and the probability for and is 3
33

because

that term occurs 3 times in the document. We can use the same technique to calculate

the probabilities of each unique remaining term appearing in this document. The same

technique can be applied to the terms in the other documents. These document language

model-specific probabilities are listed in Table B.1 on the following page; those for the

corpus are listed in Table B.2 on page 525. Following that, Table B.3 on page 526 lists

the probability of each of the query q terms t (i.e., information, retrieval, performance)

for each of the 6 language models.

Using Equation 2.7.3 on page 52 and the data in Table B.3 on page 526, we can

estimate the probability that each of our 6 language models produced the query q. These

calculations are detailed in Table B.4 on page 526.

523

Table B.1: The Unigram Language Models for the Documents

Model M1 Model M2 Model M3 Model M4 Model M5 Model M6

ability 2
33

a 1
46

amega 1
32

are 1
28

a 2
49

about 1
36

acceptable 1
33

addressed 1
46

and 2
32

as 1
28

and 1
49

alternatively 1
36

and 3
33

and 5
46

applications 1
32

assumptions 1
28

are 1
49

and 1
36

are 1
33

attracting 1
46

are 1
32

binary 1
28

at 1
49

assumptions 1
36

between 3
33

background 1
46

automatic 2
32

by 1
28

be 2
49

behavior 1
36

differences 1
33

be 1
46

conclusions 1
32

consistent 1
28

being 1
49

context 1
36

distinguish 2
33

better 1
46

expert 1
32

described 1
28

but 1
49

discover 1
36

experiments 1
33

can 1
46

findings 1
32

distributed 1
28

cases 1
49

encouragement 1
36

important 1
33

curriculum 1
46

generation 2
32

document 1
28

channel 1
49

foci 1
36

information 1
33

discusses 1
46

is 1
32

if 1
28

concerned 1
49

idea 1
36

levels 1
33

diversity 2
46

key 1
32

independence 2
28

could 2
49

ideal 1
36

non 1
33

doctoral 1
46

metadata 3
32

model 3
28

different 1
49

in 2
36

of 1
33

education 1
46

methods 1
32

outperforms 1
28

for 1
49

information 2
36

performance 1
33

efforts 1
46

on 1
32

poisson 1
28

future 1
49

is 1
36

results 1
33

faculty 1
46

paper 1
32

probabilistic 1
28

in 1
49

lives 1
36

retrieval 3
33

for 1
46

presented 1
32

retrieval 1
28

information 3
49

loosen 1
36

significant 2
33

future 1
46

project 1
32

s 1
28

is 2
49

methods 1
36

the 2
33

historical 1
46

reports 1
32

systems 1
28

later 1
49

of 3
36

to 3
33

how 1
46

research 1
32

terms 1
28

machines 1
49

offers 1
36

traditional 1
33

in 1
46

reviewed 1
32

the 4
28

most 1
49

people 1
36

unacceptable 1
33

include 1
46

s 2
32

two 1
28

of 1
49

research 1
36

information 1
46

study 1
32

with 1
28

or 1
49

role 1
36

issues 2
46

survey 1
32

people 1
49

s 1
36

library 1
46

the 2
32

receiver 3
49

seeking 1
36

of 2
46

this 1
32

retrieval 1
49

structures 1
36

people 1
46

sender 2
49

terminology 1
36

positions 1
46

some 1
49

the 3
36

positively 1
46

stored 1
49

to 2
36

programs 2
46

the 4
49

what 1
36

recruiting 1
46

theory 1
49

science 1
46

they 1
49

serve 1
46

through 1
49

students 1
46

time 1
49

their 1
46

to 1
49

these 1
46

transmission 1
49

to 1
46

when 1
49

topics 1
46

with 1
49

users 1
46

524

Table B.2: The Unigram Language Model for the Corpus

a 3
224 concerned 1

224 historical 1
224 or 1

224 stored 1
224

ability 2
224 conclusions 1

224 how 1
224 outperforms 1

224 structures 1
224

about 1
224 consistent 1

224 idea 1
224 paper 1

224 students 1
224

acceptable 1
224 context 1

224 ideal 1
224 people 3

224 study 1
224

addressed 1
224 could 2

224 if 1
224 performance 1

224 survey 1
224

alternatively 1
224 curriculum 1

224 important 1
224 poisson 1

224 systems 1
224

amega 1
224 described 1

224 in 4
224 positions 1

224 terminology 1
224

and 12
224 differences 1

224 include 1
224 positively 1

224 terms 1
224

applications 1
224 different 1

224 independence 2
224 presented 1

224 the 15
224

are 4
224 discover 1

224 information 7
224 probabilistic 1

224 their 1
224

as 1
224 discusses 1

224 is 4
224 programs 2

224 theory 1
224

assumptions 2
224 distinguish 2

224 issues 2
224 project 1

224 these 1
224

at 1
224 distributed 1

224 key 1
224 receiver 3

224 they 1
224

attracting 1
224 diversity 2

224 later 1
224 recruiting 1

224 this 1
224

automatic 2
224 doctoral 1

224 levels 1
224 reports 1

224 through 1
224

background 1
224 document 1

224 library 1
224 research 2

224 time 1
224

be 3
224 education 1

224 lives 1
224 results 1

224 to 7
224

behavior 1
224 efforts 1

224 loosen 1
224 retrieval 5

224 topics 1
224

being 1
224 encouragement 1

224 machines 1
224 reviewed 1

224 traditional 1
224

better 1
224 experiments 1

224 metadata 3
224 role 1

224 transmission 1
224

between 3
224 expert 1

224 methods 2
224 s 4

224 two 1
224

binary 1
224 faculty 1

224 model 3
224 science 1

224 unacceptable 1
224

but 1
224 findings 1

224 most 1
224 seeking 1

224 users 1
224

by 1
224 foci 1

224 non 1
224 sender 2

224 what 1
224

can 1
224 for 2

224 of 7
224 serve 1

224 when 1
224

cases 1
224 future 2

224 offers 1
224 significant 2

224 with 2
224

channel 1
224 generation 2

224 on 1
224 some 1

224

525

Table B.3: Document Term Probabilities for Query q (before smoothing)

q information retrieval performance

M1
1
33

3
33

1
33

M2
1
46 0 0

M3 0 0 0

M4 0 1
28 0

M5
3
49

1
49 0

M6
2
36 0 0

Table B.4: Estimated Probabilities for Query q (before smoothing)

P̂ (q|M1) = 1
33 · 3

33 · 1
33 = 3

35937

P̂ (q|M2) = 1
46 · 0 · 0 = 0

P̂ (q|M3) = 0 · 0 · 0 = 0

P̂ (q|M4) = 0 · 1
28 · 0 = 0

P̂ (q|M5) = 3
49 · 1

49 · 0 = 0

P̂ (q|M6) = 2
36 · 0 · 0 = 0

526

We find that, except for model M1, these calculated probabilities are 0 because each

of the other models is missing at least one of the query terms. Table B.3 on the preceding

page illustrates this; these are the probabilities that we obtain without smoothing. For

the reasons stated in the quote above from Manning et al. (2008), it is considered good

practice to work with smoothed (rather than non-smoothed) probabilities.

The formula for calculating smoothed probabilities is below.

P̂ (w|d) = λP̂mle(w|Md) + (1 − λ)P̂mle(w|Mc)

The weight that is applied to P̂mle(w|Md) is λ = 0.6, in order to be consistent with

the value used in Lavrenko and Croft (2001), Cronen-Townsend and Croft (2002), and

Jordan et al. (2006). Higher values of λ are more suitable for short queries, lower values

are more suitable for long queries (Manning et al., 2008).

Smoothing ensures that any term that appears in the document collection has a non-

zero probability. The main justification for this “is that a non-occurring term is possible

in a query, but no more likely than would be expected by chance from the whole collec-

tion” (Manning et al., 2008). How do we accomplish this? Basically, we use the concept

of a finite mixture distribution (McLachlan and Peel, 2000) to compute the smoothed

probabilities. In our example, this means that the smoothed probability for a term in

a document is a linear combination of the maximum likelihood estimation probabilities

of the document term and the corresponding corpus term. Since, by definition, a corpus

contains all of the terms in the documents that comprise it, the probability of a cor-

pus term is always non-zero. Also, because 0 < λ < 1, the smoothed probability for a

term in a document typically has a value different than the corresponding non-smoothed

probability. Conceptually, the effect of this is to add to the language model for a doc-

ument, the terms that appear in the corpus but not in the document. Initially, these

added terms have a zero probability. The smoothing process can be viewed as sharing

527

the wealth (i.e., probability mass) of a document among those terms that were added to

the document’s language model but originally only appeared in at least one of the other

documents. Basically, it is redistributing the probability mass so that all terms (including

the added ones – with their initial zero probabilities) of a language model have a nonzero

probability. This is important because the language model is a probability mass function

(i.e., the probabilities of its terms must always sum to 1 and must still be a probability

mass function after the smoothing has occurred. The smoothing process preserves this

property of a language model. This is also important later when we use relative entropy

to calculate how dissimilar two language models are. A key requirement of the relative

entropy calculation is that its two parameters represent probability mass functions. If

they do not, then the value generated by the calculation may lack validity.

Smoothing transformed the information in Table B.3 on page 526 to that in Table B.5.

Utilization of the information in the latter table transformed the information in Table B.4

on page 526 to that in Table B.6 on the following page. Before discussing the information

in the Table B.6 on the next page and its relevance to some of what this research is

attempting to do, it would be a very good idea to show how the information in Table B.5

was derived from that in Table B.3 on page 526.

Table B.5: Document Term Probabilities for Query q (after smoothing)

q information retrieval performance

M1
27
880

391
6160

123
6160

M2
47

1840
1

112
1

560

M3
1
80

1
112

1
560

M4
1
80

17
560

1
560

M5
193
3920

83
3920

1
560

M6
11
240

1
112

1
560

First, we created the corpus by combining the 6 documents into a single document.

This yielded a document with 224 terms, of which 134 were unique. Table B.2 on page 525

528

Table B.6: Estimated Probabilities for Query q (after smoothing)

P̂ (q|M1) = 27
880 · 3191

6160 · 123
6160 = 3.88867 x 10−5

P̂ (q|M2) = 47
1840 · 1

112 · 1
560 = 4.072620896184561 x 10−7

P̂ (q|M3) = 1
80 · 1

112 · 1
560 = 1.9929846938775508 x 10−7

P̂ (q|M4) = 1
80 · 17

560 · 1
560 = 6.776147959183674 x 10−7

P̂ (q|M5) = 193
3920 · 83

3920 · 1
560 = 1.8615522921996787 x 10−6

P̂ (q|M6) = 11
240 · 1

112 · 1
560 = 7.307610544217686 x 10−7

represents the unigram language model Mcorpus for this corpus. Next, we applied the

Jelinek-Mercer smoothing method to compute the smoothed probabilities for each com-

bination of document language model and query term. Finally, we used the results of that

to replace each probability in Table B.3 on page 526 with its corresponding smoothed

probability.

To illustrate, let us compute the smoothed probability for the retrieval term in lan-

guage model M1. The way that we calculate this is similar to the way that we determine

it for all the other document language model/query term combinations.

P̂ (retrieval|M1) = λP̂mle(retrieval|M1) + (1 − λ)P̂mle(retrieval|Mcorpus)

=
6

10
· 3

33
+

(
1 − 6

10

)
5

224

=
6

10
· 3

33
+

4

10
· 5

224

=
18

330
+

20

2240

=
18

330
· 224

224
+

20

2240
· 33

33

=
4032

73920
+

660

73920

=
4032 + 660

73920

=
4692

73920

529

=
12 · 391

12 · 6160

=
��12 · 391

��12 · 6160

=
391

6160

If we sort the estimated probabilities in Table B.6 on the preceding page, from the

highest to the lowest, we find that P̂ (q|M1) > P̂ (q|M5) > P̂ (q|M6) > P̂ (q|M4) >

P̂ (q|M2) > P̂ (q|M3). This means that Document 1 is the most likely document to

have produced the query. This does not exclude the possibility that any of the other 5

documents, however, could have produced the query. All it says is that it is most likely

that it was produced by Document 1. Extra confidence in this result comes from the fact

that the estimated probability for Document 1 is greater than that for Document 5 by

approximately an order of magnitude and that Document 1 was the only document that

contained all three of the query terms.

So far, we have shown how the unigram language model can be used to generate

estimated probabilities that can be used to rank a collection of documents according to

how likely they were to have produced a query q. However, that is not our main interest

in using these models. What we are much more interested in is in determining the best

single term to represent a multiple term query. This is pivotal to the research being

performed in this investigation. Without a way to both do that effectively and having a

very good theoretical basis for doing so, this research could not take place. Section 3.2.1

provides an algorithm for selecting the best single term for a multiple term query. We

use the 6 documents described in this Appendix to provide more detail as to how the

algorithm works.

The first two steps of the algorithm are concerned with finding out what the query

q is and then identifying the set of documents that are relevant to q. Next, we define a

unigram language model MR for the relevance set. A relevance set is simply the group

530

of documents that are known to be relevant to q. These documents are concatenated to

form a single, possibly large, document. From this single document, the unigram language

model for the relevance set is constructed. Following this, we construct a language model

for the corpus (this is the concatenation of all of the documents in the collection to form

a single, possibly large, document). Now that we have a language model for both the

relevance set and the corpus, we can smooth the probabilities in the former language

model so that terms that appear in the corpus, but not in the query, have non-zero

probabilities. The way to do that was discussed earlier in this example.

Suppose that query q consists of just the following three terms – information, retrieval,

research – and that the relevance set for this query has only two documents, namely,

Document 1 and Document 4. Also, let the corpus be the same six document corpora

that we used earlier in this example. Table B.7 lists the terms in the non-smoothed

language model for the relevance set – which has 61 terms, with 40 of them being unique.

Table B.7: The Unigram Language Model for the Relevance Set

ability 2
61

by 1
61

if 1
61

outperforms 1
61

systems 1
61

acceptable 1
61

consistent 1
61

important 1
61

performance 1
61

terms 1
61

and 3
61

described 1
61

independence 2
61

poisson 1
61

the 6
61

are 2
61

differences 1
61

information 1
61

probabilistic 1
61

to 3
61

as 1
61

distinguish 2
61

levels 1
61

results 1
61

traditional 1
61

assumptions 1
61

distributed 1
61

model 3
61

retrieval 4
61

two 1
61

between 3
61

document 1
61

non 1
61

s 1
61

unacceptable 1
61

binary 1
61

experiments 1
61

of 1
61

significant 2
61

with 1
61

The next action that we have to perform is to calculate the contribution that each

term t in the vocabulary V (i.e., the terms in the corpus) makes to the relative entropy

of the two language models (i.e., MR and Mcorpus).

Terms that contribute the least to relative entropy can be viewed as the terms that

least distinguish the relevance set from the corpus. Terms that contribute the most are

531

those that most distinguish the relevance set from the corpus. The function to compute

the discrimination value for a term t is below.

term discrimination value(t) = Pjm(t|MR) log
Pjm(t|MR)

P̂mle(t|Mcorpus)

Using term discrimination value(t), we compute the discrimination power of each

term t, then sort the terms in V based on how much they contribute to relative entropy.

From those terms, we identify the sorted term that contributes the most to relative

entropy. This term is the one in V that most distinguishes those in the relevance set for

the query from those in the corpus. Below is how we calculate the discrimination value

for the term retrieval. First, we calculate the smoothed value for the term, then we use

that value as one of the inputs to the equation for the term discrimination value.

Pjm(retrieval|MR) = λP̂mle(retrieval|MR) + (1 − λ)P̂mle(retrieval|Mcorpus)

=
6

10
· 4

61
+

(
1 − 6

10

)
5

224

=
6

10
· 4

61
+

4

10
· 5

224

=
24

610
+

20

2240

=
24

610
· 224

224
+

20

2240
· 61

61

=
5376

136640
+

1220

136640

=
5376 + 1220

136640

=
6596

136640

=
4 · 1649

4 · 34160

=
�4 · 1649

�4 · 34160

=
1649

34160

532

term discrimination value(retrieval) = Pjm(retrieval|MR) log
Pjm(retrieval|MR)

P̂mle(retrieval|Mcorpus)

=
1649

34160
log

1649/34160

5/224

=
1649

34160
log

(
1649

34160
· 224

5

)

=
1649

34160
log

369376

170800

=
1649

34160
log

112 · 3298

112 · 1525

=
1649

34160
log

��112 · 3298

��112 · 1525

=
1649

34160
log

3298

1525

= 0.0482728 log 2.16262

= 0.0482728 × 0.771322

= 0.0372339

Table B.8 on the following page lists the 9 terms that contribute the most and the

least to the relative entropy between the documents in the relevance set and those in the

corpus. It can be readily seen that the most discriminating term is retrieval and that

there is a tie between of and information for the least discriminating term. This means

that the best single term query for the documents in the relevance set is one that has

the sole term retrieval.

533

Table B.8: The Nine Most Discriminating and the Nine Least Discriminating Terms

Most Discriminating Least Discriminating

term discrimination value term discrimination value

retrieval 0.0372339 receiver -0.00490870

model 0.0333582 people -0.00490870

between 0.0333582 metadata -0.00490870

significant 0.0222388 be -0.00490870

independence 0.0222388 a -0.00490870

distinguish 0.0222388 is -0.00654493

ability 0.0222388 in -0.00654493

the 0.0212690 of -0.00750082

to 0.0124279 information -0.00750082

534

Appendix C

The Derivation of A Formula to

Calculate the Expected Position of a

Specified Relevant Document in An

Equivalence Class

Lemma C.0.1. Suppose 1 ≤ i ≤ r ≤ n and i, r, n, l ∈ N. Let [l, l + n − 1] represent

positions l, l + 1, . . . , l + n − 1 in an equivalence class of n documents with exactly r

relevant documents. Assuming that a relevant document has the same probability of

occupying any one of these n positions as it does of occupying any one of the other n− 1

positions, the expected mean position for the ith relevant document from the beginning of

the interval is

i − 1 + l + i(n − r)/(r + 1).

Proof. The are
(

n
r

)
distinct sequences of documents that are associated with the n po-

sitions in the closed interval [l, l + n − 1]. Each sequence has r relevant documents and

m = n−r non-relevant documents. For an arbitrary sequence, the ith relevant document

in it partitions the sequence into three parts. The first part is the prefix and contains

i− 1 relevant documents and 0 ≤ m ≤ n− r non-relevant documents. These documents

535

can be arranged in any of

(
i − 1 + m

i − 1

)
=

(
i − 1 + m

m

)

orders. The second part of an arbitrary sequence consists of just a single document,

namely, the ith relevant document, which is at the location that corresponds to position

l + (i − 1) + m = l + i − 1 + m

in the sequence. The third part of the sequence is the suffix and consists of the remaining

n − (i + m)

documents; r−i of these documents are relevant and the remaining (n−r)−m documents

are non-relevant. The documents in the suffix can be arranged independently of those in

the first 2 parts of the sequence. The number of such distinct orders is

(
n − (i + m)

r − i

)
=

(
n − i − m)

n − r − m

)
.

Figure C.1 on the next page depicts the relationships that we have just described in this

paragraph.

From the information in the above paragraph, and assuming that each distinct se-

quence is equally likely, the expected position of the ith relevant document xEPIRD, over

all the possible sequences, can be determined by this equation:

xEPIRD =

(
n

r

)−1 n−r∑
m=0

(m + i + l − 1)

(
m + i − 1

m

)(
n − m − i

n − r − m

)

=

(
n

r

)−1

(A + B) (C.0.1)

536

of distinct sequences:
(

r − i + n − r − m

r − i

)(
i − 1 + m

i − 1

)

of relevant documents:
of non-relevant documents: n − r − m0 ≤ m ≤ n − r

r − ii − 1

· · ·· · ·
l + i − 1 + m l + n − 1lpositions:

R

︸ ︷︷ ︸ ︸ ︷︷ ︸
1

Figure C.1: This diagram details the basic relationships that are associated with the
documents in the equivalence class.

where the equations for A and B are detailed below.

As usual, our goal is to reduce an equation, such as this one, to a closed form, if

possible. To make progress towards this goal, we attempt to find closed form expressions

for A and B, and then use these expressions to rewrite Equation C.0.1 on the preceding

page.

A =
n−r∑
m=0

(i + l − 1)

(
m + i − 1

m

)(
n − m − i

n − r − m

)

= (i + l − 1)
n−r∑
m=0

(
m + i − 1

m

)(
n − m − i

n − r − m

)

= (i + l − 1)
n−r∑
m=0

(
m + i − 1

i − 1

)(
n − m − i

r − i

)

= (i + l − 1)

(
n

r

)
. (C.0.2)

B =
n−r∑
m=0

m

(
m + i − 1

m

)(
n − m − i

n − r − m

)
. (C.0.3)

By algebraic and combinatorial manipulations, the expression

m

(
m + i − 1

m

)
,

537

in Equation C.0.3 on the previous page, can be simplified in this way:

m

(
m + i − 1

m

)
= m

((i − 1) + m)!

m!(i − 1)!
(by Equation 10.4.5 on page 422)

=
((i − 1) + m)!

(m − 1)!(i − 1)!
(by dividing numerator and denominator by m)

= i
((i − 1) + m)!

(m − 1)!i!
(by multiplying numerator and denominator by i)

= i

(
(i − 1) + m

m − 1

)
(by Equation 10.4.5 on page 422)

= i

(
(i − 1) + m

i

)
. (by Equation 10.4.6 on page 422)

By the use of this simplification, we can now derive a closed form version of Equation C.0.3

on page 537:

B =
n−r∑
m=0

m

(
m + i − 1

m

)(
n − m − i

n − r − m

)

=
n−r∑
m=0

i

(
(i − 1) + m

i

)(
n − m − i

n − r − m

)

= i
n−r∑
m=0

(
(i − 1) + m

i

)(
n − m − i

n − r − m

)

= i
n−r∑
m=0

(
(i − 1) + m

i

)(
n − m − i

r − i

)

= i

(
n

r + 1

)
. (C.0.4)

At this point, we have closed form versions of the equations for A and B. We can use

this information, along with that from Equation C.0.1 on page 536, to express xEPIRD as

a closed form equation. This can be accomplished by the use of Equation C.0.2 on the

previous page and Equation C.0.4. They enable us to rewrite Equation C.0.1 on page 536

538

as

xEPIRD =

(
n

r

)−1 r∑
m=0

(m + i + l − 1)

(
m + i − 1

m

)(
n − m − i

n − r − m

)

=

(
n

r

)−1

(A + B)

=

(
n

r

)−1(
(i + l − 1)

(
n

r

)
+ i

(
n

r + 1

))

= (i + l − 1) + i

(
n

r + 1

)(
n

r

)−1

= (i + l − 1) + i(n − r)/(r + 1)

because

(
n

r + 1

)(
n

r

)−1

=
n!

(r + 1)!(n − r − 1)!

r!(n − r)!

n!

=
r!(n − r)!

(r + 1)!(n − r − 1)!

=
r!(n − r)(n − r − 1)!

(r + 1)r!(n − r − 1)!

= (n − r)/(r + 1).

This completes the proof.

539

Appendix D

Derivation of the Alternate Equation

for Q for the IDF Ranking Method

The document term weight (DTW) wd for the inverse document frequency (IDF)

ranking method, as stated in Losee (1998), for a document that contains the desired

feature (e.g., term), that is, it has feature frequency 1 is

wd = − log t.

If this document does not contain the feature, that is, it has feature frequency 0, then

its DTW is

wd = 0.

The query term weight (QTW) wq for a query that contains the feature is

wq = 1.

If the query does not contain the feature, its QTW is

wq = 0.

540

The retrieval status value (RSV) for a given query-document pair is a function of the

QTW for the query and the DTW for the document. Its RSV is calculated as

RSVq,d = wq · wd

for the single term query model that is being used in this dissertation.

The idea behind each of the ranking methods in this dissertation is to rank documents

that contain the term ahead of documents that do not contain the term. For a given

query-document pair with query term weight wq and document term weight wd, the

equation for the ranking value that is assigned to that document is effectively

RSVq,d =

⎧⎪⎨
⎪⎩

wd, if wq = 1;

0, otherwise.

The case that is of interest in developing the equation for QCLM is those instances in

which wd = 1. In such an instance, the weight

wd = − log t

increases as t approaches 1. However, when t reaches 1 the weight decreases to 0. Since

logarithms are undefined when their argument is 0, this implies that documents with a

feature frequency of 1 are always ranked ahead of documents with a feature frequency of

0 for the IDF ranking method when the joint conditions

wq = 1 and 0 < p < 1

hold. Documents with a feature frequency of 1 are ranked the same as, or lower than,

documents with feature frequency 0 only when − log(t) ≤ 0. This situation can only

541

occur when t = 1 holds. The discussion in this paragraph leads to the following sequence

of derivations:

QIDF(p, t) = Pr(p > t, t > 0) + Pr(p ≤ t, t ≤ 0) (D.0.1)

= Pr(p > t, t > 0) + Pr(p ≤ t, t = 1) (D.0.2)

= Pr(p > t) + Pr(p ≤ t, t = 1) (D.0.3)

In Chapter 4, it was mentioned that p is undefined for some of the weak 4-compositions

that correspond to some of the queries that can occur in a document collection of size

N. In that chapter, the issue of singularities and some techniques to handle them were

discussed. The result of the discussions there was alternate definitions for p, t, and q

that were able to gracefully handle singularities in the various contexts that these entities

were being used in.

The initial attempt at the modified equation for the quality of the IDF ranking method

yields

QIDF(p′, t′) = Pr(p′ > t′) + Pr(p′ ≤ t′, t′ = 1).

This equation is correct except for the t′ = 1 part. The problem is that 1 is the maximum

value for t but it is not the maximum value for t′. In fact, the maximum value for t′ is

slightly less than the maximum value for its counterpart due to the singularity-handling

technique that was chosen in Chapter 4. Based on this technique,

the maximum value of t′ =

⎧⎪⎨
⎪⎩

1 − N−2, if N ≥ 2;

1 − 10−4, otherwise.

The corrected equation is

QIDF(p′, t′) = Pr(p′ > t′) + Pr(p′ ≤ t′, t′ = 1 − ε),

542

where

ε =

⎧⎪⎨
⎪⎩

N−2, if N ≥ 2;

10−4, otherwise.

543

Appendix E

The Number of Qualifying Weak

4-Compositions for Selected Ranking

Methods

Table E.1: Number of Qualifying Contributions (1 ≤ N ≤ 40)

N nqc CLM nqc IDF nqc DT N nqc CLM nqc IDF nqc DT

1 0 2 3 21 958 980 2003
2 1 4 8 22 1096 1119 2278
3 4 8 17 23 1254 1278 2577
4 9 14 31 24 1388 1413 2901
5 18 24 51 25 1580 1606 3251
6 28 35 78 26 1763 1790 3628
7 46 54 113 27 1962 1990 4033
8 64 73 157 28 2167 2196 4467
9 90 100 211 29 2422 2452 4931

10 119 130 276 30 2630 2661 5426
11 160 172 353 31 2930 2962 5953
12 195 208 443 32 3184 3217 6513
13 254 268 547 33 3484 3518 7107
14 306 321 666 34 3801 3836 7736
15 370 386 801 35 4124 4160 8401
16 444 461 953 36 4449 4486 9103
17 536 554 1123 37 4866 4904 9843
18 615 634 1312 38 5236 5275 10622
19 732 752 1521 39 5638 5678 11441
20 829 850 1751 40 6040 6081 12301

544

Table E.2: Number of Qualifying Contributions (41 ≤ N ≤ 120)

N nqc CLM nqc IDF nqc DT N nqc CLM nqc IDF nqc DT

41 6540 6582 13203 81 47412 47494 95203
42 6955 6998 14148 82 49181 49264 98688
43 7504 7548 15137 83 51004 51088 102257
44 7979 8024 16171 84 52653 52738 105911
45 8508 8554 17251 85 54634 54720 109651
46 9098 9145 18378 86 56568 56655 113478
47 9706 9754 19553 87 58510 58598 117393
48 10244 10293 20777 88 60444 60533 121397
49 10934 10984 22051 89 62612 62702 125491
50 11565 11616 23376 90 64509 64600 129676
51 12268 12320 24753 91 66768 66860 133953
52 12965 13018 26183 92 68935 69028 138323
53 13754 13808 27667 93 71194 71288 142787
54 14454 14509 29206 94 73486 73581 147346
55 15278 15334 30801 95 75786 75882 152001
56 16068 16125 32453 96 78048 78145 156753
57 16960 17018 34163 97 80656 80754 161603
58 17851 17910 35932 98 83027 83126 166552
59 18792 18852 37761 99 85530 85630 171601
60 19615 19676 39651 100 88065 88166 176751
61 20710 20772 41603 101 90850 90952 182003
62 21686 21749 43618 102 93380 93483 187358
63 22680 22744 45697 103 96254 96358 192817
64 23760 23825 47841 104 98888 98993 198381
65 24880 24946 50051 105 101680 101786 204051
66 25973 26040 52328 106 104703 104810 209828
67 27236 27304 54673 107 107696 107804 215713
68 28377 28446 57087 108 110475 110584 221707
69 29638 29708 59571 109 113742 113852 227811
70 30852 30923 62126 110 116674 116785 234026
71 32270 32342 64753 111 119938 120050 240353
72 33480 33553 67453 112 123028 123141 246793
73 35004 35078 70227 113 126504 126618 253347
74 36391 36466 73076 114 129673 129788 260016
75 37800 37876 76001 115 133140 133256 266801
76 39315 39392 79003 116 136565 136682 273703
77 40866 40944 82083 117 140040 140158 280723
78 42394 42473 85242 118 143696 143815 287862
79 44122 44202 88481 119 147286 147406 295121
80 45644 45725 91801 120 150740 150861 302501

545

Table E.3: Number of Qualifying Contributions (121 ≤ N ≤ 200)

N nqc CLM nqc IDF nqc DT N nqc CLM nqc IDF nqc DT

121 154770 154892 310003 161 360428 360590 721603
122 158571 158694 317628 162 366957 367120 734968
123 162424 162548 325377 163 374004 374168 748497
124 166319 166444 333251 164 380689 380854 762191
125 170350 170476 341251 165 387470 387636 776051
126 174216 174343 349378 166 394708 394875 790078
127 178626 178754 357633 167 401886 402054 804273
128 182656 182785 366017 168 408584 408753 818637
129 186988 187118 374531 169 416260 416430 833171
130 191185 191316 383176 170 423407 423578 847876
131 195780 195912 391953 171 430902 431074 862753
132 199945 200078 400863 172 438475 438648 877803
133 204646 204780 409907 173 446254 446428 893027
134 209276 209411 419086 174 453698 453873 908426
135 213768 213904 428401 175 461490 461666 924001
136 218528 218665 437853 176 469284 469461 939753
137 223516 223654 447443 177 477460 477638 955683
138 228179 228318 457172 178 485541 485720 971792
139 233312 233452 467041 179 493772 493952 988081
140 237987 238128 477051 180 501429 501610 1004551
141 243298 243440 487203 181 510330 510512 1021203
142 248466 248609 497498 182 518440 518623 1038038
143 253634 253778 507937 183 527134 527318 1055057
144 258684 258829 518521 184 535588 535773 1072261
145 264296 264442 529251 185 544404 544590 1089651
146 269773 269920 540128 186 553063 553250 1107228
147 275170 275318 551153 187 562056 562244 1124993
148 280797 280946 562327 188 571007 571196 1142947
149 286602 286752 573651 189 579924 580114 1161091
150 292000 292151 585126 190 589118 589309 1179426
151 298150 298302 596753 191 598690 598882 1197953
152 303820 303973 608533 192 607600 607793 1216673
153 309810 309964 620467 193 617504 617698 1235587
154 315791 315946 632556 194 626961 627156 1254696
155 322048 322204 644801 195 636340 636536 1274001
156 328023 328180 657203 196 646121 646318 1293503
157 334646 334804 669763 197 656306 656504 1313203
158 340926 341085 682482 198 665790 665989 1333102
159 347338 347498 695361 199 676302 676502 1353201
160 353616 353777 708401 200 686000 686201 1373501

546

Bibliography

Aigner, M. (2007). A Course in Enumeration, Volume 238 of Graduate Texts in Mathe-
matics. Berlin: Springer.

Andrews, G. E. (1974, October). Applications of basic hypergeometric functions. SIAM
Review 16 (4), 441–484.

Andrews, G. E. (1984). The Theory of Partitions. Cambridge [Cambridgeshire]; New
York, NY, USA: Cambridge University Press.

Andrews, G. E. (1986). q-series: Their Development and Application in Analysis, Num-
ber Theory, Combinatorics, Physics, and Computer Algebra. Number 66 in CBMS
Regional Conference Series in Mathematics. Providence, RI: American Mathematical
Society.

Andrews, G. E. and K. Eriksson (2004). Integer Partitions. Cambridge, UK ; New York:
Cambridge University Press.

Apostol, T. M. (1967). Calculus, Vol. 1: One-Variable Calculus with an Introduction to
Linear Algebra (2 ed.). Waltham, Mass.: Blaisdell Pub. Co.

Arce, G. R. and M. Tian (1996). Order statistic filter banks. IEEE Transactions on
Image Processing 5 (6), 827–837.

Bachman, C. W. (1969). Data structure diagrams. SIGMIS Database 1 (2), 4–10.

Baeza-Yates, R. and B. Ribeiro-Neto (1999, May). Modern Information Retrieval. Ad-
dison Wesley.

Ballerini, J., M. Büchel, R. Domenig, D. Knaus, B. Mateev, E. Mittendorf, P. Schäuble,
P. Sheridan, and M. Wechsler (1996). SPIDER retrieval system at TREC–5. In TREC-
5 Proceedings.

Barton, D. E. (1959). Review: [untitled]. Journal of the Royal Statistical Society. Series
A (General) 122 (1), 102–103.

547

Batini, C., S. Ceri, and S. B. Navathe (1992). Conceptual Database Design: An Entity-
Relationship Approach. Redwood City, CA, USA: Benjamin-Cummings Publishing
Co., Inc.

Belkin, N. J., R. N. Oddy, and H. M. Brooks (1982). ASK For Information Retrieval:
Part I. Background and Theory. Journal of Documentation 38 (2), 61–71.

Benjamin, A. and J. J. Quinn (2003). Proofs That Really Count: The Art of Combina-
torial Proof, Volume Dolciani mathematical expositions ; no. 27. [Washington, DC]:
Mathematical Association of America.

Berger, A. and J. Lafferty (1999). Information retrieval as statistical translation. In
SIGIR ’99: Proceedings of the 22nd annual international ACM SIGIR conference on
Research and development in information retrieval, New York, NY, USA, pp. 222–229.
ACM.

Berkey, D. D. (1984). Calculus. Philadelphia: Saunders College Pub.

Berndt, B. C. and K. Ono (2001). Q-Series With Applications to Combinatorics, Number
Theory, and Physics : A Conference on q-series With Applications to Combinatorics,
Number Theory, and Physics, October 26-28, 2000, University of Illinois. Providence,
R.I.: American Mathematical Society.

Berners-Lee, T. and M. Fischetti (1999). Weaving the Web: The Original Design and
Ultimate Destiny of the World Wide Web. San Francisco, CA, USA: Harper.

Blanco, R. and F. Silvestri (2008). ECIR 2008 Workshop on Efficiency Issues on Infor-
mation Retrieval. SIGIR Forum 42 (1), 59–62.

Bloch, E. D. (2000). Proofs and Fundamentals: A First Course in Abstract Mathematics.
Boston: Birkhäuser.

Blumenfeld, D. (2001). Operations Research Calculations Handbook. Boca Raton: CRC
Press.

Bollmann, P. and V. S. Cherniavsky (1981). Measurement-theoretical investigation of the
mz-metric. In SIGIR ’80: Proceedings of the 3rd annual ACM conference on Research
and development in information retrieval, Kent, UK, UK, pp. 256–267. Butterworth
& Co.

548

Bóna, M. (2006). A Walk Through Combinatorics: An Introduction to Enumeration and
Graph Theory (2nd ed.). New Jersey: World Scientific.

Bóna, M. (2007). Introduction to Enumerative Combinatorics. Boston: McGraw-Hill
Higher Education.

Bookstein, A. (1983, September). Information retrieval: A sequential learning process.
American Society for Information Science 34 (5), 331–342.

Borlund, P. (2003). The concept of relevance in IR. Journal of the American Society for
Information Science and Technology 54 (10), 913–925.

Browne, R. H. (2001, November). Using the sample range as a basis for calculating
sample size in power calculations. The American Statistician 55 (4), 293–298.

Bruce, T. (1992). Designing Quality Databases with IDEF1X Information Models. Dorset
House.

Buckley, C. and E. M. Voorhees (2005). Retrieval system evaluation. In E. Voorhees
and D. K. Harman (Eds.), TREC: experiment and evaluation in information retrieval,
Digital libraries and electronic publishing, Chapter 3, pp. 53–75. Cambridge, Mass.:
MIT Press.

Burgin, R. (1999). The Monte Carlo method and the evaluation of retrieval system
performance. Journal of the American Society for Information Science 50 (2), 181–
191.

Cai, D. and C. J. van Rijsbergen (2004). A case study for automatic query expansion
based on divergence. Technical report, University of Glasgow, Department of Com-
puting Science.

Cai, D., C. J. van Rijsbergen, and J. M. Jose (2001). Automatic query expansion based
on divergence. In CIKM ’01: Proceedings of the tenth international conference on
Information and knowledge management, New York, NY, USA, pp. 419–426. ACM
Press.

Chambers, J. M. (2008). Software for Data Analysis: Programming with R. New York:
Springer.

549

Charalambides, C. A. (2002). Enumerative Combinatorics. Boca Raton: Chapman &
Hall/CRC.

Charalambides, C. A. (2005). Combinatorial Methods in Discrete Distributions. Wiley
series in probability and statistics. Hoboken, N.J: Wiley-Interscience.

Chaudhuri, S., R. Ramakrishnan, and G. Weikum (2005). Integrating DB and IR tech-
nologies: What is the sound of one hand clapping? In CIDR, pp. 1–12.

Chen, P. P. (1976). The entity-relationship model—toward a unified view of data. ACM
Transactions on Database Systems 1 (1), 9–36.

Chiu, J. L.-T., R. T. Lin, H.-J. Dai, and R. T.-H. Tsai (2008). Improving the performance
and stability of question answering system’s accuracy with new feature and evaluation
measurement. In Proceedings of the ICDC’08 2008 International Conference on Digital
Content., Chungli, Taiwan.

Cleverdon, C. (1997). The Cranfield tests on index language devices. In K. Sparck-Jones
and P. Willett (Eds.), Readings in Information Retrieval, pp. 47–59. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc.

Comtet, L. (1974). Advanced Combinatorics: The Art of Finite and Infinite Expansions.
Dordrecht, Boston: D. Reidel Publishing Company.

Conover, W. J. (1999). Practical Nonparametric Statistics. New York: Wiley.

Cooper, M. D. (1971a). Evaluation of Information Retrieval Systems: A Simulation
and Cost Approach. Ph. D. thesis, School of Librarianship, University of California-
Berkeley, Berkeley, Calif. 94720.

Cooper, W. (1968). Expected Search Length: A Single Measure of Retrieval Effective-
ness Based on the Weak Ordering Action of Retrieval Systems. American Documen-
tation 19, 30–41.

Cooper, W. S. (1967). Mathematical supplement to expected search length: A single
measure of retrieval expectedness based on the weak ordering action of retrieval sys-
tems. Xeroxed copy.

Cooper, W. S. (1971b). A definition of relevance for information retrieval. Information

550

Storage and Retrieval 7, 19–37.

Cooper, W. S. (1973). On selecting a measure of retrieval effectiveness, part I: The
‘subjective’ philosophy of evaluation. Journal of the American Society for Information
Science 24 (2), 87–100.

Cover, T. M. and J. A. Thomas (2006). Elements of Information Theory. Hoboken, N.J:
Wiley-Interscience.

Croft, W. and D. Harper (1979). Using probabilistic models of information retrieval
without relevance information. Journal of Documentation 35, 285–295.

Cronen-Townsend, S., Y. Zhou, and W. B. Croft (2002). Predicting query performance.
In SIGIR ’02: Proceedings of the 25th annual international ACM SIGIR conference on
Research and development in information retrieval, New York, NY, USA, pp. 299–306.
ACM Press.

Cuadra, C. A. and R. V. Katter (1967). Experimental studies of relevance judgments.
Technical report, Systems Development Corporation, Santa Monica, CA.

Dalgaard, P. (2008). Introductory Statistics with R (2nd ed.). Springer.

David, F. N. (1959). Review: [untitled]. Biometrika 46 (1/2), 271.

de Vries, A. P. and T. Roelleke (2005). Relevance information: A loss of entropy but
a gain for IDF? In SIGIR ’05: Proceedings of the 28th annual international ACM
SIGIR conference on Research and development in information retrieval, New York,
NY, USA, pp. 282–289. ACM.

Dobrushkin, V. A. (2009). Methods in Algorithmic Analysis. Boca Raton, Fla.: Chapman
& Hall/CRC.

Dominich, S. (2001). Mathematical Foundations of Information Retrieval. Number 12
in Mathematical modelling–theory and applications. Dordrecht; Boston: Kluwer Aca-
demic Publishers.

Dong, L. and C. Watters (2004). Improving efficiency and relevance ranking in infor-
mation retrieval. In WI ’04: Proceedings of the Web Intelligence, IEEE/WIC/ACM

551

International Conference on (WI’04), Washington, DC, USA, pp. 648–651. IEEE Com-
puter Society.

Downie, J. S., K. West, A. Ehmann, and E. Vincent (2005). The 2005 music information
retrieval evaluation exchange (mirex 2005): Preliminary overview. In Proceedings of
the 6th International Conference on Music Information Retrieval (ISMIR), 2005.

Fine, N. J. (1988). Basic Hypergeometric Series and Applications. American Mathemat-
ical Society.

Flajolet, P. and R. Sedgwick (2009). Analytic Combinatorics. New York: Cambridge
University Press.

Flanagan, D. (2005). Java in a Nutshell. Beijing ; Sebastopol, CA: O’Reilly.

Fox, C. (1992). Lexical analysis and stoplists. In Information Retrieval: Data Structures
and Algorithms, Chapter 7, pp. 102–130. Upper Saddle River, NJ, USA: Prentice-Hall,
Inc.

Fox, E. A. (1983). Characterization of two new experimental collections in computer and
information science containing textual and bibliographic concepts. Technical Report
TR83-561, Department of Computer Science, Cornell University, Ithaca, NY.

Frakes, W. B. and R. Baeza-Yates (1992). Information Retrieval: Data Structures and
Algorithms. Englewood Cliffs, N.J: Prentice Hall.

Frakes, W. B. and C. J. Fox (2003). Strength and similarity of affix removal stemming
algorithms. SIGIR Forum 37 (1), 26–30.

Friedman, F. L. and E. B. Koffman (1977). Problem Solving and Structured Programming
in FORTRAN. Reading, Mass.: Addison-Wesley Publishing Company.

Fuhr, N. (1992). Probabilistic models in information retrieval. The Computer Jour-
nal 35 (3), 243–255.

Gasper, G. and M. Rahman (2004). Basic Hypergeometric Series, Volume Encyclopedia
of mathematics and its applications ; v. 96. Cambridge, UK ; New York: Cambridge
University Press.

552

Gessel, I. (1985, April). Review: Combinatorial enumeration. Bulletin (New Series) of
the American Mathematical Society 12 (2), 297–301.

Gollop, C. J. (1999, July). Library and information science education: Preparing librar-
ians for a multicultural society. College & Research Libraries 60 (4), 385–395.

Goulden, I. P. and D. M. Jackson (1983). Combinatorial Enumeration. Somerset, New
Jersey: John Wiley & Sons, Inc.

Graham, R. L., D. E. Knuth, and O. Patashnik (1994). Concrete Mathematics: A
Foundation for Computer Science. Reading, Mass: Addison-Wesley.

Greenberg, J., K. M. Spurgin, and A. Crystal (2006). Functionalities for automatic meta-
data generation applications: a survey of metadata experts’ opinions. International
Journal of Metadata, Semantics and Ontologies 1 (1), 3–20.

Griffiths, J.-M. and D. W. King (2002). US Information Retrieval System Evolution and
Evaluation. IEEE Annals of the History of Computing 24 (3), 35–55.

Gross, J. L. (2008). Combinatorial Methods with Computer Applications. Boca Raton,
FL: Chapman & Hall/CRC.

Grossman, D. A. and O. Frieder (2004). Information Retrieval: Algorithms and Heuristics
(2nd ed.). The Kluwer International Series on Information Retrieval. Springer.

Hafer, M. A. and S. F. Weiss (1974). Word segmentation by letter successor varieties.
Information Storage and Retrieval 10, 371–385.

Harada, S., M. Naaman, Y. J. Song, Q. Wang, and A. Paepcke (2004). Lost in memories:
Interacting with photo collections on PDAs. In JCDL ’04: Proceedings of the 4th
ACM/IEEE-CS joint conference on Digital libraries, New York, NY, USA, pp. 325–
333. ACM Press.

Harary, F. (1959, May). Review: John Riordan, an introduction to combinatorial anal-
ysis. Bulletin of the American Mathematical Society 65 (3), 166–169.

Harbison, S. P. and G. L. Steele (2002). C: A Reference Manual (5th ed.). Upper Saddle
River, N.J.: Prentice-Hall.

553

Harman, D. K. (2005). The TREC Ad Hoc Experiments. In E. Voorhees and D. K.
Harman (Eds.), TREC: experiment and evaluation in information retrieval, Digital
libraries and electronic publishing, Chapter 3, pp. 79–97. Cambridge, Mass.: MIT
Press.

Harris, J. W. and H. Stöcker (1998). Handbook of Mathematics and Computational
Science. New York: Springer.

Harter, S. and C. Hert (1997). Evaluation of information retrieval systems: Approaches,
issues, and methods. In M. E. Williams (Ed.), Annual Review of Information Science
and Technology (ARIST), Volume 32, pp. 3–33. Information Today, Inc.

Harter, S. P. (1975a, July/August). A probabilistic approach to automatic keyword in-
dexing, part I: On the distribution of specialty words in a technical literature. American
Society for Information Science 26 (4), 197–206.

Harter, S. P. (1975b, September/October). A probabilistic approach to automatic key-
word indexing, part II: An algorithm for probabilistic indexing. American Society for
Information Science 26 (5), 280–289.

Heine, M. D. (1981). Simulation, and simulation experiments. In K. Sparck Jones (Ed.),
Information Retrieval Experiment, pp. 179–198. Butterworths.

Hersh, W. R. (2003). Information Retrieval: A Health and Biomedical Perspective, Vol-
ume Health informatics. New York: Springer.

Hoch, R. (1994). Using IR techniques for text classification in document analysis. In
SIGIR ’94: Proceedings of the 17th annual international ACM SIGIR conference on
Research and development in information retrieval, New York, NY, USA, pp. 31–40.
Springer-Verlag New York, Inc.

Hozo, S., B. Djulbegovic, and I. Hozo (2005). Estimating the mean and variance from
the median, range, and the size of a sample. BMC Medical Research Methodology 5 (1),
13.

Jacobson, I., G. Booch, and J. Rumbaugh (1999). The Unified Software Development Pro-
cess. The Addison-Wesley object technology series. Reading, Mass: Addison-Wesley.

Jansen, B. J., A. Spink, J. Bateman, and T. Saracevic (1998). Real life information

554

retrieval: A study of user queries on the web. SIGIR Forum 32 (1), 5–17.

Jelinek, F. (1997). Statistical Methods for Speech Recognition. Language, speech, and
communication. Cambridge, Mass: MIT Press.

Johnson, B. and L. B. Christensen (2004). Educational Research: Quantitative, Qualita-
tive, and Mixed approaches. Boston: Allyn and Bacon.

Johnson, N. L., A. W. Kemp, and S. Kotz (2005). Univariate Discrete Distributions.
Hoboken, N.J: Wiley.

Jones, G. A. and J. M. Jones (2000). Information and Coding Theory, Volume Springer
undergraduate mathematics series. London ; New York: Springer.

Jones, K. S. (1981). Information Retrieval Experiment. Butterworths.

Jones, K. S. and C. J. van Rijsbergen (1975). Report on the need for and provision of an
“ideal” information retrieval test collection. Technical Report British Library Research
and Development Report 5266, University of Cambridge.

Jordan, C. (2005). Comparison of blind relevance feedback algorithms using controlled
queries. Master’s thesis, Dalhousie University Faculty of Computer Science, Canada.

Jordan, C., C. Watters, and Q. Gao (2006). Using controlled query generation to evaluate
blind relevance feedback algorithms. In JCDL ’06: Proceedings of the 6th ACM/IEEE-
CS joint conference on Digital libraries, New York, NY, USA, pp. 286–295. ACM Press.

Kagolovsky, Y. (2003). Terminological problems in information retrieval. Journal of
Medical Systems 27 (5), 399–408.

Kando, N., K. Kuriyama, T. Nozue, K. Eguchi, H. Kato, and S. Hidaka (1999, August).
Overview of IR tasks at the first NTCIR workshop. In Proceedings of the First NTCIR
Workshop on Research in Japanese Text Retrieval and Term Recognition, Tokyo, japan.

Keen, E. M. (1992). Presenting results of experimental retrieval comparisons. Information
Processing and Management 28 (4), 491–502.

555

Kekäläinen, J. and K. Järvelin (2002). Using graded relevance assessments in ir evalua-
tion. Journal of the American Society for Information Science and Technology 53 (13),
1120–1129.

Kluck, M. (2003). Test collection report for the CLEF campaign. Technical Report
CLEF-IST-2000-31002, CLEF Language Evaluation Forum.

Knaus, D., E. Mittendorf, P. Schäuble, and P. Sheridan (1995). Highlighting relevant
passages for users of the interactive SPIDER retrieval system. In In TREC-4 Proceed-
ings.

Knuth, D. E. (1997). The Art of Computer Programming, Volume 1, Fundamental Al-
gorithms (3 ed.). Reading, Mass: Addison Wesley Longman.

Knuth, D. E. (2005a). The Art of Computer Programming, Volume 4, Fascicle 2: Gener-
ating All Tuples and Permutations (Art of Computer Programming). Addison-Wesley
Professional.

Knuth, D. E. (2005b). The Art of Computer Programming, Volume 4, Fascicle 3: Gen-
erating All Combinations and Partitions (Art of Computer Programming). Addison-
Wesley Professional.

Knuth, D. E. (2006). The Art of Computer Programming, Volume 4, Fascicle 4: Gener-
ating All Trees–History of Combinatorial Generation (Art of Computer Programming).
Addison-Wesley Professional.

Korfhage, R. R. (1997). Information Storage and Retrieval. New York: John Wiley &
Sons, Inc.

Kosmala, W. A. J. (1998). Advanced Calculus: A Friendly Approach. Upper Saddle
River, N.J.: Prentice Hall.

Kraft, D. H. and T. Lee (1979). Stopping rules and their effect on expected search length.
Information Processing and Management 15 (1), 47–58.

Kreher, D. L. and D. R. Stinson (1999). Combinatorial Algorithms: Generation, Enu-
meration, and Search, Volume CRC Press series on discrete mathematics and its ap-
plications. Boca Raton, Fla: CRC Press.

556

Krovetz, R. (1993). Viewing morphology as an inference process. In SIGIR ’93: Pro-
ceedings of the 16th annual international ACM SIGIR conference on Research and
development in information retrieval, New York, NY, USA, pp. 191–202. ACM Press.

Lafferty, J. and C. Zhai (2001). Document language models, query models, and risk
minimization for information retrieval. In SIGIR ’01: Proceedings of the 24th annual
international ACM SIGIR conference on Research and development in information
retrieval, New York, NY, USA, pp. 111–119. ACM Press.

Lafferty, J. and C. Zhai (2003). Probabilistic Relevance Models Based on Document and
Query Generation, Volume 13. Kluwer International Series on Information Retrieval.

Lalmas, M. (2005, October). INEX: Evaluating XML retrieval effectiveness. ERCIM
News 63, 56–56.

Lalmas, M. and A. Tombros (2007). Evaluating XML retrieval effectiveness at INEX.
SIGIR Forum 41 (1), 40–57.

Landi, B., P. Kremer, D. Schibler, and L. Schmitt (1998). Amaryllis: An evaluation
experiment on search engines in a french-speaking context. In Proceeding of the First
International Conference on Language Resources & Evaluation LREC. Granada, Spain,
pp. 1211—1214.

Lando, S. K. (2003). Lectures on Generating Functions. Number 23 in Student mathe-
matical library. Providence, RI: American Mathematical Society.

Larsen, M. E. (2007). Summa Summarum. Ottawa, Ont Wellesley, Mass: Canadian
Mathematical Society/Société mathématique du Canada A K Peters.

Lavrenko, V. and W. B. Croft (2001). Relevance-based language models. In SIGIR ’01:
Proceedings of the 24th annual international ACM SIGIR conference on Research and
development in information retrieval, New York, NY, USA, pp. 120–127. ACM Press.

Law, A. M. (2006). Simulation Modeling and Analysis. Boston: McGraw-Hill.

Lee, C. and G. G. Lee (2005). Probabilistic information retrieval model for a dependency
structured indexing system. Information Processing and Management 41, 161–175.

Lee, J. H. (1995). Combining multiple evidence from different properties of weighting

557

schemes. In SIGIR ’95: Proceedings of the 18th annual international ACM SIGIR
conference on Research and development in information retrieval, New York, NY, USA,
pp. 180–188. ACM Press.

Levy, P. S. and S. Lemeshow (2008). Sampling of Populations: Methods and Applications.
Hoboken, N.J: Wiley.

Lin, R. T. K., J. L.-T. Chiu, H.-J. Dai, M.-Y. Day, R. T.-H. Tsai, and W.-L. Hsu (2008).
Biological question answering with syntactic and semantic feature matching and an
improved mean reciprocal ranking measurement. In IRI, Proceedings of the IEEE
International Conference on Information Reuse and Integration, IRI 2008, 13-15 July
2008, Las Vegas, Nevada, USA, pp. 184–189. IEEE Systems, Man, and Cybernetics
Society.

Liu, C. L. (1968). Introduction to Combinatorial Mathematics. New York: McGraw-Hill.

Loos, E. E., S. Anderson, D. H. Day, Jr., P. C. Jordan, and J. D. Wingate (2005).
Glossary of Linguistic Terms. LinguaLinks.

Losee, R. (1987, July). Probabilistic retrieval and coordination level matching. Journal
of the American Society for Information Science 38 (4), 239–244.

Losee, R. M. (1995). Determining information retrieval and filtering performance without
experimentation. Information Processing and Management 31 (4), 555–572.

Losee, R. M. (1998). Text Retrieval and Filtering: Analytic Models of Performance.
Boston: Kluwer.

Losee, R. M. (2000). When information retrieval measures agree about the relative quality
of document rankings. Journal of the American Society of Information Science 51 (9),
834–840.

Losee, R. M., A. Bookstein, and C. T. Yu (1986). Probabilistic models for document
retrieval: A comparison of performance on experimental and synthetic databases. In
SIGIR ’86: Proceedings of the 9th annual international ACM SIGIR conference on
Research and development in informaion retrieval, pp. 258–264.

Losee, R. M. and L. Church (2004). Information retrieval with distributed databases:

558

Analytic models of performance. IEEE Transactions on Parallel and Distributed Sys-
tems 15 (1), 18–27.

Losee, R. M. and L. A. H. Paris (1999). Measuring search engine quality and query
difficulty: Ranking with Target and Freestyle. Journal of the American Society for
Information Science 50 (10), 882–889.

Lovász, L. (2007). Combinatorial Problems and Exercises (Second ed.). Providence, R.I.:
AMS Chelsea Publishing.

Lovins, J. B. (1968). Development of a stemming algorithm. Mechanical Translation and
Computational Linguistics 11, 22–31.

Luenberger, D. G. (2006). Information science. Princeton, NJ: Princeton University
Press.

Luhn, H. P. (1957). A statistical approach to mechanized encoding and searching of
literary information. IBM Journal of Research and Development 1 (4), 309–317.

Manning, C. D., P. Raghavan, and H. Schütze (2008). An Introduction to Information
Retrieval. New York, NY, USA: Cambridge University Press.

Margulis, E. L. (1993). Modelling documents with multiple Poisson distributions. Infor-
mation Processing and Management 29 (2), 215–227.

Martin, J. (1990). Information Engineering Book II: Planning and Analysis (Book 2).
Upper Saddle River, NJ, USA: Prentice-Hall, Inc.

McFadden, F. and J. Hoffer (1994). Modern Database Management (4th ed.). Redwood
City, CA.,: Benjamin/Cummings Publishing.

McLachlan, G. J. and D. Peel (2000). Finite Mixture Models. New York: Wiley.

McSherry, F. and M. Najork (2008). Computing information retrieval performance mea-
sures efficiently in the presence of tied scores. In C. Macdonald, I. Ounis, V. Plachouras,
I. Ruthven, and R. W. White (Eds.), ECIR, Volume 4956 of Lecture Notes in Computer
Science, pp. 414–421. Springer.

559

Meadow, C. T., B. R. Boyce, D. H. Kraft, and C. Barry (2007). Text Information
Retrieval Systems (Third Edition ed.). Library and Information Science. Burlington,
MA: Academic Press.

Mendenhall, W., L. Ott, and R. L. Scheaffer (1971). Elementary Survey Sampling. Bel-
mont, CA: Duxberry Press.

Metzler, D. and W. B. Croft (2005). A Markov random field model for term dependencies.
In SIGIR ’05: Proceedings of the 28th annual international ACM SIGIR conference on
Research and development in information retrieval, New York, NY, USA, pp. 472–479.
ACM.

Moens, M. (2000). Automatic Indexing and Abstracting of Document Texts. Boston:
Kluwer Academic Publishers.

Mood, A. M., F. A. Graybill, and D. C. Boes (1973). Introduction to the Theory of
Statistics. New York: McGraw-Hill.

Moon, S. B. (1993). Enhancing Performance of Full-Text Retrieval Systems Using Rele-
vance Feedback. Ph. D. thesis, The University of North Carolina at Chapel Hill, Chapel
Hill, N.C.

Mooney, R. J. (2006). CS 371R: Information retrieval and web search. Retrieved April 29,
2006 from http://www.cs.utexas.edu/~mooney/ir-course/slides/Evaluation.

ppt.

Morecroft, J. D. W. (1988). System dynamics and microworlds for policy makers. Euro-
pean Journal of Operational Research 35, 301–320.

Nijenhuis, A. and H. S. Wilf (1978). Combinatorial Algorithms For Computers and
Calculators. New York: Academic Press.

Olkin, I., L. J. Gleser, and C. Derman (1994). Probability Models and Applications. New
York, N.Y.: Prentice-Hall College Division.

Paice, C. D. (1990). Another stemmer. SIGIR Forum 24 (3), 56–61.

560

Pemmaraju, S. V. and S. S. Skiena (2003). Computational Discrete Mathematics: Com-
binatorics and Graph Theory with Mathematica. Cambridge, U.K. ; New York: Cam-
bridge University Press.

Pepe, M. S. (2003). The Statistical Evaluation of Medical Tests for Classification and
Prediction. Number 28 in Oxford statistical science series. Oxford; New York: Oxford
University Press.

Ponte, J. M. and W. B. Croft (1998). A language modeling approach to information
retrieval. In SIGIR ’98: Proceedings of the 21st annual international ACM SIGIR
conference on Research and development in information retrieval, New York, NY, USA,
pp. 275–281. ACM Press.

Porter, M. F. (1997). An algorithm for suffix stripping. In Readings in information
retrieval, San Francisco, CA, USA, pp. 313–316. Morgan Kaufmann Publishers Inc.

Pratt, J. W., H. Raiffa, and R. Schlaifer (1995). Introduction to Statistical Decision
Theory. Cambridge, Mass: MIT Press.

Prikhod’ko, S. M. and E. F. Skorokhod’ko (1982). Automatic abstracting from analysis of
links between phrases. Nauchno-TekhnicheskayaInformatsiya, Seriya2 16 (1), 27–32.

Purdom, P. W. and C. A. Brown (1985). The Analysis of Algorithms. New York, N.Y:
Holt, Rinehart and Winston.

Raghavan, V. V., P. Bollmann, and G. S. Jung (1989). Retrieval system evaluation using
recall and precision: Problems and answers. SIGIR Forum 23 (SI), 59–68.

Raghavan, V. V., H.-p. Shi, and C. T. Yu (1983). Evaluation of the 2-Poisson model as
a basis for using term frequency data in searching. SIGIR Forum 17 (4), 88–100.

Rakha, M. A. and E. S. El-Sedy (2004). Application of basic hypergeometric series.
Applied Mathematics and Computation 148, 717–723.

Rasmussen, E. M. (2005). Information retrieval. Retrieved September
12, 2005 from http://www.bookrags.com/sciences/computerscience/

information-retrieval-csci-01.html.

Rees, A. M. and D. G. Schultz (1967). A field experimental approach to the study of

561

relevance assessments in relation to document searching. Technical report, Center for
Documentation and Communication Research, School of Library Science, Case Western
University, Cleveland, OH.

Reingold, E. M., J. Nievergelt, and N. Deo (1977). Combinatorial Algorithms: Theory
and Practice. Englewood Cliffs, N.J: Prentice-Hall.

Riordan, J. (1958). An Introduction to Combinatorial Analysis. New York: John Wiley
& Sons, Inc.

Rizzo, M. L. (2008). Statistical Computing with R. Boca Raton, FL: Chapman &
Hall/CRC.

Roberts, F. S. and B. Tesman (2009). Applied Combinatorics. Boca Raton, Fla: CRC
Press.

Robertson, S. (2001). Evaluation in information retrieval. In M. Agosti, F. Crestani, and
G. Pasi (Eds.), Lecctures in Information Retrieval, Volume 1980 of Lecture Notes in
Computer Science, pp. 81–92. New York, NY, USA: Springer-Verlag New York, Inc.

Robertson, S. E. (1974). Specificity and weighted retrieval. Journal of Documentation 30,
41–46.

Robertson, S. E. (1981). The methodology of information retrieval experiments. In
K. Sparck-Jones (Ed.), Information retrieval experiment, pp. 9–31. London: Butter-
worths.

Robertson, S. E. (1986). On relevance weight estimation and query expansion. Journal
of Documentation 42 (3), 182–188.

Robertson, S. E. (1990). On sample sizes for non-matched-pair IR experiments. Infor-
mation Processing and Management 26 (6), 739–753.

Robertson, S. E. (2004). Understanding inverse document frequency: on theoretical
arguments for IDF. Journal of Documentation 60 (5), 503–520.

Robertson, S. E. and K. S. Jones (1976). Relevance weighting of search terms. Journal
of the American Society for Information Science 27 (3), 129–146.

562

Robertson, S. E. and S. Walker (1994). Some simple effective approximations to the
2-Poisson model for probabilistic weighted retrieval. In SIGIR ’94: Proceedings of the
17th annual international ACM SIGIR conference on Research and development in
information retrieval, New York, NY, USA, pp. 232–241. Springer-Verlag.

Robson, C. (2002). Real World Research: A Resource for Social Scientists and
Practitioner-Researchers. Oxford, UK ; Madden, Mass: Blackwell Publishers.

Rose, C. and M. D. Smith (2002). Mathematical Statistics with Mathematica, Volume
Springer texts in statistics. New York: Springer.

Rosen, K. H. (1999). Discrete Mathematics and Its Applications. Boston: WCB/McGraw-
Hill.

Rosen, K. H. (2005). Elementary Number Theory and Its Applications. Boston: Pear-
son/Addison Wesley.

Rosen, K. H., J. G. Michaels, J. L. Gross, J. W. Grossman, and D. R. Shier (2000).
Handbook of Discrete and Combinatorial Mathematics. Boca Raton: CRC Press.

Rui, Y., T. S. Huang, M. Ortega, and S. Mehrotra (1999, Fall). Information retrieval
beyond the text document. Library Trends 48 (2), 455–474.

Salton, G. (1975). A Theory of Indexing. J. W. Arrowsmith.

Salton, G. (1986). Another look at automatic text-retrieval systems. Communications
of the ACM 29 (7), 648–656.

Salton, G. and C. Buckley (1988). Term-weighting approaches in automatic text retrieval.
Information Processing and Management 24 (5), 513–523.

Salton, G. and C. Buckley (1990). Improving retrieval performance by relevance feedback.
Journal of the American Society for Information Science 41 (4), 288–297.

Salton, G. and M. McGill (1983). Introduction to Modern Information Retrieval. New
York: McGraw-Hill.

563

Salton, G. and M. Smith (1989). On the application of syntactic methodologies in auto-
matic text analysis. In SIGIR ’89: Proceedings of the 12th annual international ACM
SIGIR conference on Research and development in information retrieval, New York,
NY, USA, pp. 137–150. ACM Press.

Schamber, L. (1994). Relevance and information behavior. In M. E. Williams (Ed.),
Annual Review of Information Science and Technology (ARIST), Volume 29, pp. 3–
48. Information Today, Inc.

Schamber, L., M. Eisenberg, and M. S. Nilan (1990). A re-examination of rele-
vance: Toward a dynamic, situational definition. Information Processing and Man-
agement 26 (6), 755–776.

Schenck, D. A. and P. R. Wilson (1994). Information Modeling: The EXPRESS Way.
New York, NY, USA: Oxford University Press, Inc.

Sedgewick, R. and P. Flajolet (1996). An Introduction to the Analysis of Algorithms.
Reading, Mass: Addison-Wesley.

Shaw, W. M. (1995). Term-relevance computations and perfect retrieval performance.
Information Processing and Management 31 (4), 491–498.

Shaw, W. M., J. B. Wood, R. E. Wood, and H. R. Tibbo (1991). The Cystic Fibro-
sis Database: Content and research opportunities. Library and Information Science
Research 12, 347–366.

Siegel, S. (1956). Nonparametric Statistics for the Social Sciences. New York: McGraw-
Hill.

Slater, L. J. (1966). Generalized Hypergeometric Functions. New York: Cambridge
University Press.

Solomon, P. (1999). Information mosaics: Patterns of action that structure. In T. Wilson
and D. K. Allen (Eds.), Exploring the contexts of information behaviour, London, UK,
pp. 150–175. Taylor Graham.

Song, I.-Y., M. Evans, and E. K. Park (1995). A comparative analysis of entity-
relationship diagrams. Journal of Computer & Software Engineering 3 (4), 427–459.

564

Sparck Jones, K. (1972). A statistical interpretation of term specificity and its application
to retrieval. Journal of Documentation 28 (1), 11—21.

Sparck Jones, K. (2005). Metareflections on TREC. In E. Voorhees and D. K. Harman
(Eds.), TREC: experiment and evaluation in information retrieval, Digital libraries
and electronic publishing, Chapter 3, pp. 421–448. Cambridge, Mass.: MIT Press.

Sparck-Jones, K. and J. R. Galliers (1996). Evaluating Natural Language Processing
Systems: An Analysis and Review. Berlin ; New York: Springer.

Spärck Jones, K. and C. J. van Rijsbergen (1976). Information retrieval test collections.
Journal of Documentation 32 (1), 59–75.

Spector, P. (2008). Data Manipulation with R. New York: Springer.

Spink, A., H. Greisdorf, and J. Bateman (1998, September). From highly relevant to
not relevant: Examining different regions of relevance. Information Processing and
Management 34 (5), 599–621.

Spink, A. and R. M. Losee (1996). Feedback in information retrieval. In M. E. Williams
(Ed.), Annual Review of Information Science and Technology (ARIST), Volume 31,
pp. 33–78. Information Today, Inc.

Srinivasan, P. (1990, January). On generalizing the two-Poisson model. American Society
for Information Science 41 (1), 61–66.

Stanek, W. R. (2002). XML Pocket Consultant. Redmond, Wash.: Microsoft Press.

Stanley, R. P. (1997). Enumerative Combinatorics, Volume 1. Cambridge studies in
advanced mathematics ; 49. Cambridge ; New York: Cambridge University Press.

Sterman, J. D. (1991). A skeptic’s guide to computer models. In G. O. Barney (Ed.),
Managing a Nation: The Microcomputer Software Catalog, pp. 209–229. Boulder, CO:
Westview Press.

Stroustrup, B. (2000). The C++ Programming Language. Reading, Mass: Addison-
Wesley.

565

Swets, J. A. (1969). Effectiveness of information retrieval methods. American Documen-
tation 20 (1), 72–89.

Tague, J. (1981). The pragmatics of information retrieval experimentation. In K. S.
Jones (Ed.), Information Retrieval Experiment, pp. 59–102. Butterworths.

Tague-Sutcliffe, J. (1992). The pragmatics of information retrieval experimentation,
revisited. Information Processing and Management 28 (4), 467–490.

Takaoka, T. (1999). An O(1) time algorithm for generating multiset permutations. In
ISAAC ’99: Proceedings of the 10th International Symposium on Algorithms and Com-
putation, London, UK, pp. 237–246. Springer-Verlag.

Tang, R., W. M. Shaw, and J. L. Vevea (1999). Towards the identification of the opti-
mal number of relevance categories. Journal of the American Society for Information
Science 50 (3), 254–264.

Teorey, T. J. (1991). Database Modeling and Design: The Entity-Relationship Approach.
San Mateo, CA.: Morgan Kaufmann Kauffmann.

Terrell, G. R. (1999). Mathematical Statistics: A Unified Introduction, Volume Springer
texts in statistics. New York: Springer.

Trippi, R. R. (1975). Strategies for solving economic problems involving permutations.
Decision Sciences 6 (4), 700–706.

Tucker, A. (1980). Applied Combinatorics. New York: Wiley.

Vakkari, P. and N. Hakala (2000, September). Changes in relevance criteria and problem
stages in task performance. Journal of Documentation 56 (5), 540–562.

van Rijsbergen, C. J. (1979). Information Retrieval. Newton, MA, USA: Butterworth-
Heinemann.

van Rijsbergen, C. J., D. J. Harper, and M. F. Porter (1981). The selection of good
search terms. Information Processing and Management 17, 77–91.

Velleman, D. J. (1994). How to Prove It: A Structured Approach. New York, NY, USA:

566

Cambridge University Press.

Vogt, C. C. (1999). Adaptive Combination of Evidence for Information Retrieval. Ph.
D. thesis, University of California, San Diego.

Voorhees, E. (2001). Overview of the question answering track. In Proceedings of the
TREC-10 Conference, Gaithersburg, MD, pp. 157—165. NIST.

Voorhees, E. and D. K. Harman (2005). TREC: Experiment and Evaluation in Infor-
mation Retrieval. Digital libraries and electronic publishing. Cambridge, Mass.: MIT
Press.

Voorhees, E. M. (1999, November). The TREC-8 question answering track report. In
E. M. Voorhees and D. K. Harman (Eds.), Proceedings of the 8th Text REtrieval Con-
ference, Gaithersburg, Maryland, USA, pp. 77–82.

Voorhees, E. M. (2000). Variations in relevance judgments and the measurement of
retrieval effectiveness. Information Processing and Management 36 (5), 697–716.

Voorhees, E. M. (2005, October/November). Trec: Improving information access through
evaluation. Bulletin of the American Society for Information Science and Technol-
ogy 32 (1), 16–21.

Voorhees, E. M. and D. M. Tice (1999). The TREC-8 question answering track evaluation.
In Proceedings of TREC-8, pp. 84–106.

Vu, H.-T. and P. Gallinari (2005). On effectiveness measures and relevance functions in
ranking inex systems. In G. G. Lee, A. Yamada, H. Meng, and S.-H. Myaeng (Eds.),
AIRS, Volume 3689 of Lecture Notes in Computer Science, pp. 312–327. Springer.

Walpole, R. E. (2002). Probability and Statistics for Engineers and Scientists. Upper
Saddle River, NJ: Prentice Hall.

Webster’s (1996). Webster’s New Universal Unabridged Dictionary. Barnes and Noble.

Weisstein, E. W. (2003). CRC Concise Encyclopedia of Mathematics. Boca Raton:
Chapman & Hall/CRC.

567

White, I. (1994). Using the Booch Method: A Rational Approach. Redwood City, CA:
Benjamin/Cummings Publishing Company.

Wikipedia (2006). Brown corpus.

Wilbur, W. J. and K. Sirotkin (1992). The automatic identification of stop words. Journal
of Information Science 18 (1), 45–55.

Wilf, H. S. (2006). Generatingfunctionology. Wellesley, Mass: A K Peters.

Williams, D. (2001). Weighing the Odds: A Course in Probability and Statistics. Cam-
bridge ; New York: Cambridge University Press.

Wolfram, S. (2003). The Mathematica Book. Champaign, IL: Wolfram Media.

Yang, Y. and J. Wilbur (1996). Using corpus statistics to remove redundant words in
text categorization. Journal of the American Society for Information Science 47 (5),
357–369.

Yu, C. T., C. Buckley, K. Lam, and G. Salton (1983). A generalized term dependence
model in information retrieval. Technical report, Cornell University, Ithaca, NY, USA.

Zhai, C. and J. Lafferty (2001). Model-based feedback in the language modeling approach
to information retrieval. In CIKM ’01: Proceedings of the tenth international confer-
ence on Information and knowledge management, New York, NY, USA, pp. 403–410.
ACM Press.

568

