
Immersed boundary-finite element model of fluid–structure 
interaction in the aortic root

Vittoria Flamini,
Department of Mechanical and Aerospace Engineering, New York University Tandon School of 
Engineering, Brooklyn, New York, USA

Abe DeAnda, and
Division of Cardiothoracic Surgery, Department of Surgery, University of Texas Medical Branch, 
Galveston, TX.

Boyce E. Griffith
Departments of Mathematics and Biomedical Engineering and McAllister Heart Institute, Phillips 
Hall, Campus Box 3250, University of North Carolina, Chapel Hill, North Carolina, USA, Phone: 
(919) 962-7110, boyceg@email.unc.edu

Abstract

It has long been recognized that aortic root elasticity helps to ensure efficient aortic valve closure, 

but our understanding of the functional importance of the elasticity and geometry of the aortic root 

continues to e-volve as increasingly detailed in vivo imaging data become available. Herein, we 

describe a fluid-structure interaction model of the aortic root, including the aortic valve leaflets, 

the sinsuses of Valsalva, the aortic annulus, and the sinotubular junction, that employs a version of 

Peskin’s immersed boundary (IB) method with a finite element (FE) description of the structural 

elasticity. As in earlier work, we use a fiber-based model of the valve leaflets, but this study 

extends earlier IB models of the aortic root by employing an incompressible hyperelastic model of 

the mechanics of the sinuses and ascending aorta using a constitutive law fit to experimental data 

from human aortic root tissue. In vivo pressure loading is accounted for by a backward 

displacement method that determines the unloaded configurations of the root model. Our model 

yields realistic cardiac output at physiological pressures, with low transvalvular pressure 

differences during forward flow, minimal regurgitation during valve closure, and realistic pressure 

loads when the valve is closed during diastole. Further, results from high-resolution computations 

indicate that although the detailed leaflet and root kinematics show some grid sensitivity, our IB 

model of the aortic root nonetheless produces essentially grid-converged flow rates and pressures 

at practical grid spacings for the high-Reynolds number flows of the aortic root. These results 

thereby clarify minimum grid resolutions required by such models when used as stand-alone 

models of the aortic valve as well as when used to provide models of the outflow valves in models 

of left ventricular fluid dynamics.
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1 Introduction

The aortic root consists of the three semilunar aortic valve cusps, the three sinuses of 

Valsalva, which are bulbous cavities positioned behind each valve leaflet, the aortic annulus, 

where the aortic valve leaflets attach to the aorta, and the sinotubular junction, where the 

sinuses merge into the ascending aorta. The healthy aortic valve acts to ensure unidirectional 

flow of oxygenated blood from the heart to the tissues of the body, including to the heart 

itself via the coronary circulation. Diseases of the aortic valve can result in stenosis or 

regurgitation, and severe aortic valve disease is treated by repairing or by replacing the 

diseased valve with either a mechanical or a bioprosthetic valve [11]. Approximately 50,000 

such procedures are performed each year in the United States [6, 26, 67]. Continuing 

advances in noninvasive in vivo imaging of blood flow and tissue deformation, mechanical 

tests specifically targeted to biological tissues, and computer modeling and simulation 

enable integrative studies of the dynamics and mechanics of the aortic root [41]. Such work 

has the potential to improve both medical devices and surgical procedures used to treat 

patients with valvular heart disease, and also clinical approaches to patient risk assessment 

and treatment planning.

Aortic compliance, and specifically the compliance of the aortic sinuses, has a fundamental 

role in the function of the aortic root. The sinuses act as reservoirs, storing blood during 

systole and then releasing it in diastole to facilitate flow in the coronary arteries [71]. The 

compliance of the sinuses also helps to ensure the proper closure of the aortic valve [4]. 

Further, the shape of the aortic root causes blood to circulate in the sinuses, generating 

vortices that act both on the valve leaflets and on the sinus walls. These vortices generate 

forces that facilitate effective valve closure and act as a regulatory mechanism that 

synchronizes closure [4]. Although this mechanism of efficient valve closure was first 

postulated by Leonardo da Vinci, there remains some debate in the surgical community 

about whether it is important to recreate the anatomic geometry of the native aortic root in 

aortic valve and root replacement procedures [12].

More recently, our understanding of the functional importance of the elasticity and 

anatomical geometry of the aortic root has evolved as increasingly detailed data have been 

acquired on the in vivo deformations that occur during the cardiac cycle. For instance, it has 

been shown that the aortic root undergoes a multi-modal series of conformational changes 

even before the leaflets open [18]. It has been argued that these deformations act to reduce 

shear stresses on the valve leaflets and thereby prolong the life of the native valve leaflets 

[12]. Annular and commissural flexibility may be a key component in this interaction, and 

annular flexibility is lost with the implantation of a stented artificial valve, possibly reducing 

the lifetime of bioprosthetic valve leaflets. The annular commissures also participate in load 

sharing, which reduces peak stresses on the aortic cusps immediately after valve closure. 
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Devices such as the Medtronic 3f Aortic Bioprosthesis attempt to account for both the 

annular and the commissural flexibility of the native root, but despite the theoretical 

advantages offered by such designs, more traditional devices with rigid annuluses still 

dominate clinical practice.

A challenge in modeling and simulating the mechanical response of arteries, including the 

aorta, is that the arterial walls are continuously subjected to substantial intraluminal 

pressures in their in vivo state. Thus, arterial geometries that are derived from in vivo 

imaging generally correspond to a loaded configuration. In addition, as first demonstrated by 

Fung [27] and by Vaishnav and Vossoughi [72], even the unloaded configuration of the 

artery is not stress free. Instead, because of tissue growth and remodeling, the arterial wall 

includes residual stresses and is subject to axial tethering [10, 28, 41]. These factors all 

conspire to make determining the unloaded arterial geometry challenging. Indeed, both the 

deformation due to intraluminal pressure loading and the residual stresses cannot be 

measured directly in vivo, and therefore these quantities must be estimated. Residual 

stresses may be determined from ex vivo experiments, whereas the zero-pressure 

configuration of blood vessels can be determined by solving the inverse elastostatic 

problem.

Different approaches have been developed to solve the inverse elastostatic problem for 

complex arterial geometries derived from medical imaging data. Most of these strategies can 

be grouped in two broad categories. One group of approaches focuses on retrieving the 

initial deformation field and the initial stress field of the artery while keeping the imaging-

derived geometry unaltered. An example of this type of approach is the modified updated 

Lagrangian formulation (MULF) introduced by Gee et al. [31], which is an incremental 

prestressing method that recovers the equilibrium configuration rather than the zero-pressure 

geometry. A second group of approaches determines an unloaded configuration of the vessel 

that, when subjected to intraluminal pressure loading, will inflate to match the imaging-

derived geometry. Among the first to develop a stationary method to solve the inverse 

elastostatic problem were Govindjee and Mihalic [32]. This method was extended by Lu et 

al. [46] to arteries, but this approach does not appear to have been widely used in practice, 

possibly because it requires a modification in the finite element (FE) solution scheme that 

renders this method somewhat difficult to implement within commercial FE analysis 

software. In comparison, the backward incremental method developed by de Putter et al. 

[20] requires updating the deformation gradient and thereby can be implemented with fewer 

modifications to the finite element code. Perhaps the most straightforward approach to 

retrieving the zero-pressure configuration is the backward displacement method proposed by 

Bols et al. [5], which iteratively modifies the coordinates of the reference configuration 

rather than the deformation gradient tensor. We use the backward displacement method in 

this work to recover the unloaded configuration of an idealized model of the aortic root.

While the methods to obtain an estimation of the zero-pressure configuration of a blood 

vessel can be applied to any geometry, determining residual stresses is a local, vessel-

specific task that presently requires harvesting and then destroying the blood vessel. 

Computational approaches to accounting for residual stresses are usually based on an 

assumed ‘open’ configuration, which is subsequently ‘closed,’ thereby reversing the process 
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that releases residual stresses [2, 15]. This approach is difficult to apply to noncylindrical 

geometries and, in particular, cannot be readily applied to imaging-derived geometries [15]. 

A more generic approach to including residual stress in arteries is described in Alastrué et al. 

[2] and is based on a Kröner-Lee decomposition of the deformation gradient tensor. For 

simplicity, we do not consider residual stresses in the present work, although we do account 

for initial strains resulting from in vivo pressure loading.

Most the methods surveyed above have been developed and applied to study aneurysmal 

arteries [31, 46], although applications to normal vessels as well as other pathophysiological 

conditions are possible. Because arterial wall stress distributions are considered good 

predictors of aneurysm rupture, improvements in the accuracy of computed wall stress 

distributions are expected to facilitate improvements in aneurysm rupture prediction. In 

contrast, although the important role of aortic root compliance in valve closure is well 

documented [16, 17], many dynamic analyses of the aortic valve tend to focus on the 

mechanical behavior of the valve leaflets and often model the sinuses and the ascending 

aorta as rigid [34, 38, 74, 78] or as linear elastic materials [14, 49], but experimental data [3] 

show that the sinuses and the ascending aorta exhibit a nonlinear hyperelastic behavior. 

Examples of nonlinear hyperelastic constitutive models used in fluid-structure interaction 

simulations of the aortic root can be found in studies by De Hart et al. [19] and by Weinberg 

and Mofrad [75], which both adopt an arbitrary Lagrangian-Eulerian (ALE) approach. The 

application of ALE fluid-structure interaction schemes to modeling aortic valve dynamics is 

somewhat limited by the remeshing required by such methods as the structure deforms [68]. 

Attempts to tackle this limitation have included restricting the problem to a two-dimensional 

analysis [23] and the implementation of complex remeshing algorithms in three-dimensional 

analyses [13].

An alternative approach to modeling interactions between the blood and the aortic valve and 

root is offered by Peskin’s immersed boundary (IB) method [58], which was introduced to 

simulate cardiac valve dynamics [57] and was subsequently extended to model fluid-

structure interaction in the heart and its valves [34–36,38,44,47,48,51–53,60]. This IB 

approach to fluid-structure interaction is to describe structural stresses and deformations in 

Lagrangian form, and to describe the momentum, viscosity, and incompressibility of the 

coupled fluid-structure system in Eulerian form. Integral transforms with Dirac delta 

function kernels mediate interaction between Lagrangian and Eulerian variables. When 

discretized, the IB formulation of the equations of motion replaces these singular kernel 

functions with regularized kernels that are designed to ensure conservation of physical 

quantities such as force and torque when converting between Lagrangian and Eulerian 

forms. This numerical approach allows the Lagrangian structural mesh to overlay the 

background Eulerian grid in an arbitrary manner, thereby avoiding the need to deploy 

dynamic body-fitted grids. In addition, because the immersed structures move according to a 

common interpolated velocity field, the IB method offers an implicit contact model that 

prevents the valve leaflets from interpenetrating, even when subjected to substantial 

diastolic pressure loads [34, 38]. Related sharp-interface IB methods have also been 

developed and used by Borazjani, Ge, and Sotiropoulos to simulate valvular dynamics for 

models of both rigid and flexible aortic valve prostheses [7, 8]. Previous work demonstrated 

that three-dimensional IB models of the aortic valve can yield physiological cardiac output 
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at realistic pressures [34, 38]. However, we are aware of no previous study that demonstrates 

that Peskin’s IB method yields reasonably well-resolved simulation results for flexible aortic 

valve models in three spatial dimensions at practical grid spacings.

The primary aim of this study is to develop a new fluid-structure interaction model of the 

aortic root that substantially extends earlier IB models of aortic valve dynamics [34,38] by 

including descriptions of the elasticity, distensibility, and dynamics of the aortic sinuses and 

the ascending aorta. Herein, the aortic sinuses and proximal ascending aorta are modeled as 

an incompressible, isotropic, hyperelastic material with an exponential neo-Hookean strain-

energy functional [21, 41] that we fit to experimental data obtained by Azadani et al. [3] 

from human aortic root tissue samples. A separate finite element analysis is employed to 

estimate the unloaded aortic geometry using a method based on the backward displacement 

method of Bols et al. [5]. Our fluid-structure interaction simulations employ hybrid models 

of the aortic root that use a fiber-based description of the thin aortic valve leaflets, as done in 

previous studies [34, 38], along with a finite element-based description [39] of the 

comparatively thick walls of the aortic sinuses and proximal ascending aorta.

In our dynamic analysis, we pace the aortic root model to an essentially periodic steady state 

using a prescribed, periodic left-ventricular pressure waveform. A human Windkessel model 

fit to clinical data [69] provides downstream loading for the aortic root, and a pressure 

waveform, taken from the clinical data set used to parameterize this reduced circulation 

model [55], serves to drive flow through the model. In the overall model, flow rates are not 

prescribed, but rather emerge from the computation. Physiological cardiac output is obtained 

at physiological driving and loading pressures, with low transvalvular pressure differences 

during forward flow, minimal regurgitation during valve closure, and realistic transvalvular 

pressure loads when the valve is closed during diastole.

The aortic root model considered in this work captures the complex interactions between the 

flow, the thin flexible aortic valve cusps, and the deformable walls of the aortic sinuses and 

the ascending aorta. It employs an idealized anatomical geometry, in which the initial and 

reference configurations of the aortic sinuses and valve cusps are assumed to exhibit three-

fold symmetry, but can be extended to more realistic anatomic geometries. This model is 

fully three dimensional in the sense that there are no symmetry conditions imposed on the 

subsequent fluid dynamics or structural kinematics. Using this somewhat idealized model, 

we perform a refinement study to demonstrate that the present methods are able to yield 

essentially grid-converged flow rates and pressures at practical grid spacings. Specifically, 

under grid refinement, only relatively small differences are observed in stroke volume, 

maximum flow velocity, and vessel distensibility and stress distribution. Relatively large 

differences remain in the fine details of the flow in the vicinity of the valve cusps, and in the 

details of the kinematics of the valve cusps and the aortic wall. Higher spatial resolution is 

likely needed to resolve fully the dynamics of the valve during systole. Nonetheless, a key 

contribution of this study is that it demonstrates that bulk flow properties are reasonably 

resolved by IB models of aortic valve dynamics at practical spatial resolutions. These results 

are practically useful for determining minimum grid resolutions when using IB models of 

the outflow valves.
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2 Methods

2.1 Immersed Boundary Formulation

The immersed boundary formulation used herein describes fluid-structure systems in which 

an elastic structure is immersed in a viscous incompressible fluid. It employs a Lagrangian 

description of the structural deformations and the stresses generated by those deformations, 

and an Eulerian description of the momentum, incompressibility, and viscosity of the 

coupled fluid-structure system. In the present model, we employ a fiber-based description of 

the thin valve leaflets, and we describe the aortic wall as an incompressible hyperelastic 

solid. Let q ∈ U ⊂ ℝ2 indicate Lagrangian curvilinear coordinates attached to the valve 

leaflets, with q = (q, r), let X ∈ V ⊂ ℝ3 indicate the Lagrangian material coordinate system 

of the aortic wall, with X = (X, Y, Z), and let x ∈ Ω indicate the Eulerian physical 

coordinates of the physical domain, with x = (x, y, z). The physical position of fiber point q 
at time t is given by ϕ(q, t) ∈ Ω, and the physical position of aortic wall material point X at 

time t is given by χ(X, t) ∈ Ω. We use Ωl(t) ⊂ Ω to indicate the (codimension 1) physical 

region occupied by the valve leaflets at time t, Ωw(t) ⊂ Ω to indicate the (codimension 0) 

physical region occupied by the solid-body model of the vessel wall, and Ωf(t) = Ω \ Ωw(t) to 

indicate the physical region occupied by the fluid at time t.

The equations of motion for the coupled fluid-structure system are:

(1)

(2)

(3)

(4)

(5)

(6)

in which ρ is the mass density, μ is the dynamic viscosity, u(x, t) is the Eulerian velocity 

field of the fluid-structure system, p(x, t) is the Eulerian pressure field of the fluid-structure 

system, f (x, t) is the Eulerian elastic force density generated by deformations to the fiber 

model of the valve leaflets, g(x, t) is the Eulerian elastic force density generated by 

deformations to the solid-body model of the vessel wall, F(q, t) is the Lagrangian elastic 

force density of the fiber model, ℙ(X, t) is the first Piola-Kirchhoff elastic stress tensor of 

the solid model, N(X) is the outward unit normal along ∂V, δ(x) = δ(x) δ(y) δ(z) is the three-
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dimensional Dirac delta function, and  is the material derivative. In the 

present work, we assume uniform mass density ρ and dynamic viscosity μ. These 

assumptions are not essential, however, and versions of the IB method have been developed 

that permit the use of spatially varying mass densities [25, 42, 43, 54, 62, 79] and viscosities 

[25, 62].

Eqs. (1) and (2) are the Eulerian incompressible Navier-Stokes equations. Here, the 

momentum equation (1) is augmented by two Eulerian body force densities. The first of 

these, f (x, t), is determined by eq. (3) to be the Eulerian force density that is equivalent to 

the Lagrangian fiber force density F(q, t). The second body force in (1), g(x, t), is 

determined by eq. (4) to be the Eulerian force density equivalent to the Lagrangian 

description of the forces generated by the solid-body model of the vessel wall, which are 

expressed in terms of ℙ(X, t). Notice that f (x, t) is a singular force density supported on 

Ωl(t). By contrast, g(x, t) is supported on Ωw(t). Away from ∂Ωw(t), g(x, t) is nonsingular, 

although g(x, t) is singular along ∂Ωw(t) where ℙN ≠ 0; see eq. (4).

Eqs. (5) and (6) determine the motions of the immersed structures from the Eulerian material 

velocity field u(x, t). Because of the presence of viscosity throughout the fluid-solid system, 

u(x, t) is continuous, and thus (5) and (6) are equivalent to

(7)

(8)

Because ∇ · u(x, t) = 0, the immersed solid is automatically treated as incompressible in this 

formulation. Specifically, at least in the continuum formulation, there is no need to include 

terms in the elastic strain-energy functional to penalize compressible deformations. Notice 

that this formulation describes the inertia of both the fluid and the solid, and the immersed 

solid bodies are not assumed or required to be in (quasi-static) equilibrium.

In practice, we use a standard C0 finite element method to approximate the deformations and 

stresses of the vessel wall. To do so, it is useful to adopt a weak formulation for the 

structural equations, so that

(9)

(10)

(11)
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(12)

in which G(X, t) is the Lagrangian elastic force density of the aortic wall, U(X, t) is the 

Lagrangian velocity field of the aortic wall, and V(X) is an arbitrary Lagrangian test 

function that is not assumed to vanish on ∂V. In the continuum setting, eqs. (4) and (9)–(10) 

are equivalent definitions for g(x, t); however, these formulations lead to different numerical 

schemes when discretized, and only eqs. (9)–(10) lead directly to a standard nodal finite 

element structural discretization. Further, in the continuum equations, eqs. (11)–(12) are 

equivalent to eq. (6) and to eq. (8). Further details of the numerical methods used in this 

work are described in a brief Appendix.

2.2 Valve Leaflets

2.2.1 Geometry—As in earlier work [34, 38], the leaflet geometry is determined by the 

mathematical theory of the fiber architecture of aortic valve leaflets developed by Peskin 

and McQueen [59]. This theoretical model of valve geometry and fiber architecture derives 

the shape of the leaflets from their function, which is to support a uniform pressure load 

during diastole, when the valve is closed. Each valve leaflet is composed of two families of 

fibers that are orthogonal to each other. One family of fibers runs from commissure to 

commissure, and the other runs from the bottom scalloped edge of the aortic sinus to the free 

edge of the valve leaflet. The leaflets are defined in a closed and loaded configuration; see 

fig. 1. In this configuration, the radius of each leaflet, measured from the tip of the valve to 

the end of the belly region, is 1.45 cm, and the coapting portion of each leaflet is 0.97 cm 

tall. The scale of the leaflets is based on measurements of human aortic roots [61,70]. The 

height of the coapting portion of the leaflet is chosen to be similar to that of the real valve 

while enabling the model valve to support a physiological pressure load when closed.

2.2.2 Mechanical response—The mechanical behavior of the leaflets is described by a 

strain-energy functional E = E[ϕ(·, t)] described previously [34, 38]. Briefly, let the 

curvilinear coordinates q = (q, r) be chosen so that a fixed value of q labels an individual 

fiber, and so that r runs along the fibers. Consequently, (∂ϕ/∂r)/‖∂ϕ/∂r‖ is the unit fiber 

tangent vector. The total elastic energy E is the sum of a stretching energy Es and a bending 

energy Eb,

(13)

(14)

(15)

Eq. (14) accounts for the total stretching energy associated with the fibers, in which ℰs is a 

spatially inhomogeneous local stretching energy with a quadratic length-tension 
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relationship, and eq. (15) accounts for the total bending energy associated with the fibers, in 

which cb is a spatially inhomogeneous bending stiffness and  is the reference 

configuration, which is taken to be the initial configuration. Because the valve leaflets are 

modeled as thin elastic surfaces, the bending resistant energy allows the model to account 

for the thickness of the real valve leaflets. Larger values of cb model a thick, stenotic valve, 

whereas smaller values of cb model a thin, flexible valve. The resulting Lagrangian body 

force density is the Fréchet derivative of E.

Valve leaflet parameters are empirically determined for a fixed leaflet discretization by 

choosing the leaflet stiffness so that the leaflet supports a diastolic load of approximately 80 

mmHg with 10% strain in the family of fibers running from commissure to commissure. 

This leads to a commissural fiber stiffness of 7.5e6 dyne/cm. We further assume that these 

commissural fibers are a factor of 10 stiffer than the radial fibers that run orthogonal to the 

commissural fibers [64]. The bending stiffness is chosen to be approximately the smallest 

value that yields valve leaflets that successfully coapt at the end of systole. These material 

parameters are chosen only to yield a functional valve, and are not represented as 

corresponding to those of an actual valve cusp. Nonetheless, this model of the valve leaflets 

does account for key structures of actual valve cusps, including the prominent collagen 

fibers that run from commissure to commissure and the 10-to-1 anisotropy of real valve 

leaflets [64]. See refs. 38 and 34 for further details, and see also the discussion of the 

limitations of this model in sec. 5. In preliminary studies, a sensitivity analysis was 

conducted for the bending stiffness of the aortic leaflets, and it was found that variations on 

the order of ± 25% in the bending stiffness have little effect on the physiological predictions 

of the models (not shown).

2.3 Aortic Wall

2.3.1 Geometry—An idealized model of the aortic root is constructed, as in previous work 

[34,38]. The dimensions of this model are based on measurements by Swanson and Clark 

[70] of human aortic roots collected at autopsy inflated to a diastolic pressure of 80 mmHg, 

and the geometry of the model is based on measurements by Reul et al. [61] from 

angiograms. The diameter of the aortic portion of the model is 3 cm, whereas the diameter 

of the sinus region, measured from a commissura to the center of a sinus, is 3.5 cm. The 

overall length of the model is of 10 cm, and the distance between the annulus and the aortic 

flow outlet is 7.75 cm. The thickness is constant throughout the model and is 2 mm [66]. In 

our simulations, we employ a semi-rigid model of the left-ventricular outflow tract while 

allowing for a fully flexible description of the aortic sinuses and the ascending aorta. The 

aortic annulus, which is the scalloped line of attachment between the valve leaflets and the 

aortic sinuses, was considered to be the lower boundary of the sinuses; see fig. 1. The aortic 

model used in this study differs from previous work [34,38] in that here we treat the aortic 

sinuses and ascending aorta as an incompressible hyperelastic material, whereas in earlier 

studies it was treated as a rigid structure.

Because the geometry of the valve leaflets is defined in a closed and loaded configuration, it 

is also necessary to specify the geometry of the vessel wall in a loaded configuration, and to 

compute the corresponding unloaded configuration. This configuration will depend on both 

Flamini et al. Page 9

Theor Comput Fluid Dyn. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the prescribed loaded configuration and the constitutive model.1 Because we use a 

constitutive model fit to data obtained from aortic tissue samples with a “J-shaped” stress-

strain relationship (see fig. 2), accounting for initial deformations is also needed to obtain 

realistic deformations at systemic pressure loads. Specifically, if we did not account for 

these initial deformations, the sinuses and ascending aorta would experience unrealistically 

large deformations under even diastolic pressures. To determine the unloaded configuration, 

we employ an iterative method described by Bols et al. [5] detailed in sec. 2.3.3.

2.3.2 Mechanical response—We describe the elasticity of the aortic sinuses and 

ascending aorta using a hyperelastic constitutive model fit to biaxial tensile test data 

collected by Azadani et al. [3] from tissue samples from human aortic sinuses. Because the 

data reported by Azadani et al. indicate a nearly isotropic material response (see fig. 2), in 

this work we model the material response of the aortic sinuses and ascending aorta using an 

isotropic strain-energy functional W with an exponential stress-strain relation,

(16)

in which I1 = I1(ℂ) = tr(ℂ) is the first invariant of the right Cauchy-Green strain tensor ℂ = 
T  and = ∂χ/∂X is the deformation gradient tensor associated with the deformation 

mapping χ : (V, t) ↦ Ω. Material parameters c and b were obtained by least-squares fits to 

experimental data using MATLAB (Mathworks, Inc., Natick, MA, USA). The first Piola-

Kirchhoff stress tensor ℙ is determined from W via

(17)

in which ps is a structural pressure-like term that is chosen to improve the accuracy of the 

stress predictions of the method [29]. As in earlier work [29], we compute ps via

(18)

in which I3 = I3(ℂ) = det(ℂ) is the third invariant of ℂ and βs = 2.5e4 kPa. Thus, ℙ = 0 for 

=  and the structural model provides an energetic penalty for any compressible 

deformations.

2.3.3 Backward displacement method—To determine the unloaded configuration of 

the vessel wall, we use an iterative backward displacement method described by Bols et al. 

[5] implemented using a custom MATLAB script that interfaces with the ABAQUS 

(Dassault Systèmes Simulia Corp., Providence, RI, USA) finite element analysis software. 

Because the constitutive model (16) is not provided by ABAQUS, this model was 

implemented using a UHYPER subroutine.

1Keeping the loaded configuration fixed, if we assume a larger initial pressure, then the result will be larger deformations from the 
computed unloaded configuration to the prescribed loaded configuration, thereby leading to a stiffer model at the prescribed loaded 
configuration. If we assume a smaller initial pressure, then there will be smaller strains from the unloaded to the loaded configuration, 
and thus a more compliant model at the target configuration.
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Let xm denote positions of the finite element mesh nodes in the prescribed loaded 

configuration, let  denote the corresponding nodal positions in the computed reference 

configuration after i iterations of the backward displacement algorithm, and let 

denote nodal positions in the computed loaded configuration when Xi is used as the 

unloaded reference configuration. Notice that xm, , and  are all defined at the nodes of 

the finite element mesh.

The algorithm is straightforward: First, we initialize X0 ≔ x (i.e., we use the deformed 

coordinates as an initial guess for the unloaded configuration). Then, given Xi, Xi+1 is 

determined by

(19)

Notice that if we define the displacement from the computed reference configuration to the 

deformed coordinates at step i by Di = χi − Xi, then (19) is equivalent to

(20)

Thus, the reference coordinates are determined via a backward displacement from the 

deformed configuration. If this process converges, χi → x and we obtain reference 

coordinates X such that χ[X] = x.

The convergence of this iterative process is assessed in terms of the discrete L2 norm of the 

residual x − χi, i.e.

(21)

The routine was judged to have converged once the residual was less than 0.1% of the 

average vessel radius and the change in the residual between two consecutive iterations was 

less than 0.015% of the average radius. In general, obtaining convergence may require the 

use of damping, or of gradually increasing the loading pressure; however, in practice, we 

have found this algorithm to be robust, and neither damping nor incremental loading were 

required for the analyses performed herein.

2.4 Driving and Loading Conditions

A left-ventricular pressure waveform adapted from human clinical data of Murgo et al. [55] 

is prescribed at the upstream inlet of the left-ventricular outflow tract to drive flow through 

the model aortic root, and downstream loading conditions are provided by a three-element 

Windkessel model by Stergiopolus et al. [69] fit to the clinical data of Murgo et al. [55]. As 

in earlier work [34,38], zero pressure boundary conditions are imposed on the boundary of 

the fluid-filled region exterior to the aortic root model. Coupling between the detailed IB 

model and the reduced circulation models is also done as in earlier work [34,38]. Along the 

proximal and distal ends of the vessel, zero-displacement boundary conditions are imposed.
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Because the normal traction boundary conditions are used at both the inlet and the outlet are 

subject to the development of flow instabilities [24], a small amount of flow stabilization is 

applied in the fluid region within a distance of approximately 2h from the boundary. 

Specifically, the net flow rate through the upstream or downstream boundary is first 

determined, and then any local flow that is opposite from the direction of net flow is 

penalized by including additional forcing that acts to avoid localized regions of flow reversal 

on the boundary. The same basic approach is used both for inflow and outflow, and it 

permits the boundary conditions to switch from inflow to outflow conditions based on the 

flow within the interior of the detailed model, and on the pressure differences across that 

model. This stabilization scheme is similar in its physical mechanism to that described by 

Esmaily Moghadam [24], but here we employ interior forcing rather than directly modifying 

the formulation of the physical boundary condition.

2.5 Discretization

In our dynamic fluid-structure interaction simulations, the computational domain is taken to 

be a 10 cm × 10 cm × 10 cm cubic region discretized using a three-level locally refined grid. 

For the purposes of a mesh convergence study, two different fine grid spacings are used: a 

coarser one corresponding to h = 0.78125 mm, which is equivalent to a uniform 128 × 128 × 

128 Eulerian discretization, and a finer one corresponding to h = 0.390625 mm, which is 

equivalent to a uniform 256 × 256 × 256 Eulerian discretization. The curvilinear mesh used 

to discretize the valve leaflets has a physical grid spacing of approximately h/4 for the 

coarser Eulerian discretization, and to h/2 for the finer discretization. The volumetric mesh 

used to discretize the vessel wall uses 23,400 8-node (trilinear) hexahedral elements for the 

aortic root model, which results in an average mesh aspect ratio of 1.93 ± 0.25. A 

preliminary convergence study in ABAQUS was performed to ensure mesh convergence of 

the structural model for both the backward displacement method and the forward FE 

analysis. We use the standard four-point delta function of Peskin [58] for the coarser 

simulations, and a broadened 8-point version of this kernel function for the higher resolution 

simulations, so that the physical extent of the regularized delta functions is the same for both 

spatial resolutions.2 Consequently, the valve leaflets have the same effective thickness with 

respect to the fluid dynamics part of the simulation for both spatial resolutions. We remark 

that the structural response of the leaflets is primarily determined by the structural model 

and not by the effective leaflet thickness “seen” by the fluid model.

A uniform time step size of Δt = 9.94369e-6 s was used with the coarser Eulerian 

discretization, whereas a uniform time step size of Δt = 1.40625e-5 was used for the finer 

Eulerian discretization. These time step sizes are empirically determined to be within a 

factor of  of the largest time step that satisfies the stability restriction of our explicit time 

integration method. CFL numbers are on the order of 0.03 during systole and 0.003 during 

diastole. Thus, the time step size is generally substantially smaller than the maximum stable 

time step size allowed by our fluid solver, for which the CFL number is order 1. For this 

model, the stability is primarily determined by the explicit coupling between the solid and 

2Similar convergence studies, although for substantially different applications, are described in refs. 37 and 29.
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the Eulerian momentum equation. Asymptotically, we expect that for this model, Δt ~ h4 

because of the presence of bending-resistant elastic elements in the model valve leaflets.

3 Results

3.1 Constitutive Parameters

The constitutive model (16) used to describe the mechanical response of the aortic sinuses 

and ascending aorta is fit to biaxial tensile tests of human aortic root tissue samples reported 

by Azadani et al. [3], yielding model parameter values of c = 12.8 kPa and b = 6.9; see fig. 

2. Recall that these material parameters are used in the aortic sinuses and ascending aorta, 

whereas the outflow tract is treated as an essentially rigid structure.

3.2 Unloaded Geometry

The unloaded configuration is determined by assuming that the loaded configuration 

corresponds to a pressure load of 80 mmHg. In fig. 3, panel (a) shows the prescribed loaded 

geometry, and panel (b) shows the computed zero-pressure configuration. Fig. 4 shows the 

convergence history of the backward displacement method. When the computed zero-

pressure geometry is subjected to a 80 mmHg pressure load, the deformed geometry agrees 

with the prescribed geometry to within approximately 15 µm; see fig. 5. The discrepancy 

between the prescribed loaded geometry and the computed loaded geometry is greatest at the 

commissures and smallest along the straight portion of the vessel.

3.3 Fluid-Structure Interaction Analysis

A dynamic fluid-structure interaction analysis is performed that includes four cardiac cycles, 

including an initialization cycle and three cycles in which the model has attained periodic 

steady state. (Data are reported only for the beats in which the model has reached steady 

state.) Fig. 6 shows the prescribed left-ventricular driving pressure along with the computed 

aortic loading pressure determined by the coupled Windkessel model and the computed flow 

rate through the symmetric aortic root. We emphasize that the flow rate is not imposed in the 

model, but rather is predicted by the fluid-structure interaction analysis.

For the simulations using the coarser Cartesian spacing, h = 0.78125 mm, stroke volume is 

96.2 ml in average, peak flow rate is 591.5 ml/s, and cardiac output is 6.5 l/min. For the 

finer Cartesian grid spacing, h = 0.3906 mm, stroke volume is 100.2 ml in average, peak 

flow rate is 643.8 ml/s, and cardiac output is 6.8 l/min. Both sets of simulation results are 

within 15% of the hemodynamic parameters of the subject-specific clinical data used to 

determine the driving pressure and the Windkessel model parameters. Specifically, the 

driving pressure and the Windkessel model parameters used in this work were based on 

clinical measurements from a subject with stroke volume of 100 ml, peak flow rate of 560 

ml/s, and cardiac output of 6.8 l/min, as reported by Murgo et al. [55]. The simulations also 

capture the incisura in the flow profile corresponding to the backward flow generated by the 

leaflets. The backward flow volume is 1.77 ± 0.11 ml, or 1.8% of the stroke volume, for the 

coarser grid spacing, and 1.52 ± 0.059 ml, or 1.5% of the stroke volume, for the finer grid 

spacing. The net forward flow volume (i.e., into the aorta) following leaflet coaptation is 

0.02 ± 0.01 ml. This forward flow results from interactions between the elastic aortic root 
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and the dynamic downstream loading pressure. As the downstream pressure falls during 

diastole, the load on the aortic wall and leaflets decreases and allows the aortic root to 

gradually push fluid into the distal aorta.

The model captures the opening and closing dynamics of the valve at both Cartesian grid 

spacings. Fig. 7 shows the leaflets being pushed apart along with the formation of the 

vortices that help the leaflets to close at the end of systole. Fig. 8 shows that although there 

is some net flow towards the left ventricle as the valve closes, once the valve closes, no 

further flow is allowed between the aorta and the left ventricle.

Fig. 9 shows the distribution of the structural displacements in the aortic root, and fig. 10 

shows displacement as a function of time at four selected locations: the center of the sinus; 

the sinotubular junction; the commissure; and the ascending aorta. Notice that after the first 

cardiac cycle, the displacements are essentially periodic in time. Cartesian grid resolution 

has a minimal effect on the range of displacements except for the displacements measured at 

the commissure. The largest amplitude is observed in the ascending aorta (0.58 ± 0.05 mm) 

and at the sinotubular junction (0.52±0.02 mm). A measure of aortic stiffness is the radial 

pulsation, i.e., the ratio of the difference between the systolic radius and the diastolic radius 

to the average radius [56], which in the present analysis was approximately 3.9% for the 

coarser Cartesian grid spacing and 2.9% for the finer Cartesian grid spacing. Notice that 

radial pulsation is a highly sensitive measure of deformation, and the different values 

obtained for the coarse and fine simulations indicate a relatively small difference in the 

displacements of approximately 0.175 mm, which is less than 0.5h on the highest resolution 

Cartesian grid used in this study. These values are similar to the value of 2.5% reported in 

refs. 41 and 56 for the ascending aorta. The distribution of the displacements was also in 

good agreement with literature data, with the displacements in the aortic root greater in the 

sinotubular junction, and at the commissures than in the sinuses, as reported also by Lansac 

[45].

The distribution of the maximum principal stress in the aortic root follows a distribution 

similar to that of the displacement, with the maximum stresses concentrated in the 

sinotubular junction, just above the sinuses, as shown in fig. 11. Stress in the aortic root 

follows the pulsatile waveform of the pressure; see fig. 12. Both Cartesian grid spacings 

yield similar stress distributions; compare fig. 11 panels (a) and (b), but fig. 12 shows some 

differences along the sinotubular junction and within the sinuses. The maximum principal 

stress in the sinuses is 20% of that observed in the rest of the aortic root. The distribution, 

and the range of the maximum principal stress predicted by our model, is in agreement with 

other analyses available in literature, in particular with the 220 kPa peak of the maximum 

principal stress in the sinotubular junction reported by Conti et al. [14].

4 Discussion

In this work, previous IB models of aortic valve dynamics [34,38] are substantially extended 

by incorporating a deformable model of the aortic sinuses and ascending aorta. This 

extended model is thereby able to more closely replicate the complex in vivo dynamics of 

the real aortic root. As such, it promises to serve as a powerful model for simulations of 
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aortic root behavior and valve dynamics in mechanobiology studies or in the design, testing, 

or selection of medical devices. The dynamic analysis of the aortic valve included four 

complete cardiac cycles, including a single initialization cycle, which are shown to be 

sufficient to yield essentially periodic results. As in previous IB models of aortic valve 

dynamics [34, 38], key hemodynamic parameters, including aortic pressure, maximum flow 

rate, cardiac output, and stroke volume, are in reasonable agreement with physiological 

ranges [22, 76] and are also in good agreement with the patient-specific data [55] used to fit 

the Windkessel model [69] employed in this study. Large oscillations in the flow rate, as 

well as in the deformations, indicate the reverberations of the aortic valve leaflets upon 

closure, and the resonances of the elastic model of the sinuses and ascending aorta; i.e., 

these are the so-called heart sounds that are generated by the aortic valve. Specifically, these 

dynamics are not the result of the explicit time coupling scheme used in the numerical 

method. Further, grid convergence results demonstrate for the first time that the IB method 

is able to yield essentially grid-resolved bulk flow parameters and vessel deformations at 

practical grid spacings.

Many strategies have been developed to determine the zero-pressure geometry of blood 

vessels [1, 5, 20, 31, 65, 73]. Indeed, medical images of arteries always provide the vessel 

geometry in a loaded configuration. It is known, however, that using the imaged geometry as 

the reference geometry of the vessel underestimates the amount of strain present in the blood 

vessel [20]. Among the approaches developed to estimate the zero-pressure geometry of 

blood vessels, we chose an iterative backward displacement approach, as described by Bols 

et al. [5] and by Sellier [65]. Iterative approaches based on geometric considerations are 

straightforward to implement and can be applied to a variety of problems and solvers 

because they require minimal implementation effort. In this work, the backward 

displacement analysis was implemented in ABAQUS and converged to a zero-pressure 

geometry that, when loaded, yielded a deformed configuration that is in good agreement 

with the initially prescribed loaded geometry; see figs. 3–5. However, the deflated geometry 

is quite different from the configuration assumed by a deflated aortic root harvested from a 

body; see fig. 3. This is a drawback of these methods, as shown also in a recent study by 

Wittek et al. [77], in which the unloaded configuration of the aorta is different from an 

unloaded aorta harvested from a body. This mismatch could be the result of many factors, 

such as the choice of the boundary conditions or the need for adding the residual stress to 

balance the level of stress within the aortic wall [28]. We expect that the addition of residual 

stress estimates, planned in future work, will reduce the mismatch between the deflated 

geometry computed and the deflated aortic root observed in vivo.

Interestingly, the addition of a compliant aortic wall did not substantially alter the global 

hemodynamic parameters previously determined by a noncompliant IB aortic root model 

[34]; see fig. 13, which shows that the peak pressure attained by the noncompliant model is 

slightly higher than that obtained in the compliant model, whereas the flow rates are similar 

in both models. This finding might suggest that our vessel wall model is overly stiff despite 

our use of a constitutive model fit to biaxial tensile test data from human aortic tissues 

samples. Another reason for the reduced motility of the aortic root model is the fact that the 

outflow tract of the left ventricle is fixed. In physiological conditions, due to ventricular 

contraction and relaxation, the aortic root moves upwards and sideways with every 
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heartbeat. In this work, we constrained this motion, thus restricting the dynamics of the 

aortic root model. This constraint reduced greatly the accelerations the aortic root is 

subjected to as compared to the physiological conditions.

In contrast, we observed that using a compliant aorta affected more clearly the dynamics of 

valve leaflet closure. Figs. 7(b) and 8(b) show the flow inversion and the distension in the 

sinus, which collects fluid during systolic ejection, and the elastic recoil of the sinus, which 

pushes down on the leaflet during closure. The addition of this mechanism made the model 

substantially more robust. Specifically, in previous work [34] we found that the rigid aortic 

root model required the valve leaflet properties to be very carefully tuned in order for the 

model to remain competent throughout the cardiac cycle. This is in clear contrast to the 

present compliant aortic root model, which yields a competent valve for a relatively broad 

range of leaflet parameters (data not shown). A compliant root provides elastic recoil to 

“push” the leaflets closed and also makes it easier for the nearly-closed leaflets to deform to 

coapt fully and to prevent regurgitation. This is a trait that makes our model more relevant 

physiologically, as aortic valves are continuously remodeled and keep functioning in vivo 

for varying mechanical properties and configurations. Future work will address the impact 

that geometrical characteristics of the ascending aorta, such as length, curvature, and 

tortuosity, have on the FSI simulations. We expect that these changes will not substantially 

alter the bulk flow parameters calculated in this study, but we anticipate that changes in the 

shape of the ascending aorta will affect blood velocity distributions and will generate flow 

pattern qualitatively closer to those seen in vivo.

Similar model predictions were obtained for both Cartesian grid spacings used in this study. 

We observed hemodynamic values that were within 5% of the clinical values reported by 

Murgo et al. [55] except for the peak flow rate, which was within 5% of the values reported 

by Murgo et al. on the coarser Cartesian grid and within 15% on the finer grid. Cardiac 

output and stroke volume were both in very good agreement with the clinical data, within 

4% on the coarser Cartesian grid, and within 1% on the finer grid. In addition, the pulsatile 

radius, a quantity used to measure aortic stiffness, was also shown to be in relatively good 

agreement with literature values in both cases [41].

5 Limitations and Future Work

Work is underway to address some of the limitations of these models. As described 

previously, our present models do not account for the curved geometry of the aortic root, or 

for the residual stresses present in real arterial vessels. We specifically aim to incorporate a 

description of residual stresses and realistic medical imaging-derived anatomic geometries 

into our IB models. Further, the present models use an isotropic model of the aortic sinuses 

and ascending aorta. Although the experimental data that were used to fit this model show 

an essentially isotropic material response, it is known that real aortic tissues have a well-

defined collagen fiber structure with an anisotropic material response. We also aim to 

incorporate a more realistic hyperelastic model of the aortic wall that accounts for families 

of collagen fibers [30] as well as experimentally constrained models of the elasticity of the 

aortic valve leaflets [50]. Further, it is now well known that the valve leaflets are in fact 

layered structures [63]. These details are not accounted for in the present model, and we 
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anticipate that including them in future work will require an important extension of the 

methods presented in this study. Specifically, because the valve leaflets are thin elastic 

structures, we expect that using realistic hyperelastic continuum models to describe the 

mechanics of the valve leaflets will require adopting a nonlinear shell formulation. To our 

knowledge, continuum shell models have not yet been widely used within the framework of 

the IB method, and we anticipate additional computational research will be required to 

implement these types of formulations into our IB simulation framework.

Another limitation of this work is the long run times required by these simulations. Because 

of the small time step sizes required by the present algorithm, each cardiac cycle required 

50,000 or more time steps, requiring on the order of one day per cycle on 32–64 cores of a 

modern high-performance computing (HPC) cluster for the coarse simulations and on the 

order of one week per cycle for the fine-grid simulations. Higher-resolution simulations 

using the present methods and implementation are computationally infeasible at this time. 

We are currently working to develop effective multigrid solvers for stable implicit time 

stepping schemes for the IB method [40]. These methods promise to allow for substantially 

larger time step sizes as well as shorter run times at current grid resolutions. They could also 

enable higher resolution simulations that promise to resolve the fine-scale details eliminate 

the remaining grid-sensitivity observed in the kinematics of the valve leaflets and the 

distensibility of the aortic root.

6 Conclusions

This work has presented a new fluid-structure interaction model of the aortic root that 

extends earlier IB models of the aortic valve by incorporating a finite-strain model of the 

aortic root that uses a constitutive model fit to tensile test data obtained from human aortic 

root tissue specimens. This model captures both the complex fluid dynamics of the flow and 

the finite deformations of the vessel wall, and it yields results that are in good agreement 

with the clinical data that were used to fit the circulation model used in this study, as well as 

to physiological data in the research literature. Finally, a grid convergence study 

demonstrates that nearly grid converged results are obtained at practical spatial resolutions, 

although yet higher spatial resolution, or higher accuracy at present resolutions, is needed to 

obtain fully resolved simulation results.
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Appendix

A Numerical Methods

We summarize the key discretization methods used in this study in this appendix. We use a 

locally-refined staggered-grid discretization of the Eulerian equations along with a finite 
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difference-based discretization of the fiber model of the valve leaflets and a finite element-

based description of the continuum vessel wall model. Our approach is similar to the 

spatially adaptive IB scheme described previously [34], except that here we also employ a 

finite element-based description of the aortic wall, using an approach introduced by Griffith 

and Luo [39].

A.1 Eulerian and Lagrangian spatial discretizations

The physical domain Ω is discretized using a locally-refined Cartesian grid, but for 

simplicity we describe only the uniform-grid version of this method; details on the 

adaptively refined discretization are provided by ref. 34. Let (i, j, k) index the cells of the 

Cartesian grid, and let  indicate the position of the center 

of grid cell (i, j, k), in which h is the Cartesian grid meshwidth and Δx = h3 is the Cartesian 

grid cell volume. The Eulerian velocity field u = (u, υ, w) is approximated at the center of 

each face of the Cartesian grid cells in terms of the velocity component that is normal to that 

face, so that u is approximated at the locations , υ is approximated at the locations 

, and w is approximated at . The Eulerian force densities f and g are 

approximated in the same staggered-grid fashion. The Eulerian pressure p is approximated at 

the centers of the Cartesian grid cells.

The deformations and forces associated with the valve leaflets are approximated on a fiber-

aligned curvilinear mesh. Let l index the nodes of this mesh, and let ϕl and Fl indicate the 

current position and Lagrangian force density of node l, respectively, and let Δql indicate the 

area fraction (quadrature weight) associated with node l. Fl is computed from ϕl using a 

finite difference approximation to the fiber force density; see refs. 38 and 34 for details, 

including relevant finite difference formulae.

The deformations, stresses, and resultant forces associated with the aortic wall are 

approximated on a volumetric Lagrangian mesh. Let e index the elements of this mesh, with 

Ve indicating the volume associated with element e, so that V = ∪eVe, let m index the mesh 

nodes, and let φm (X) indicate the interpolatory Lagrangian finite element basis function 

associated with node m. The structural deformation and elastic force density are 

approximated in a standard manner via

(22)

(23)

in which χm(t) are the nodal positions and Gm(t) are the nodal force densities. The 

deformation gradient is computed by directly differentiating the approximation to χ(X, t), 

and ℙ is evaluated from the approximation to  The nodal values Gm(t) are determined so 

that
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(24)

for all n. This leads to a linear system of equations that defines the nodal force densities in 

terms of the nodal deformations. In practice, these integrals are evaluated element-by-

element using Gaussian quadrature rules that are exact for the left-hand side but are 

generally only approximate for the right-hand side.

A.2 Lagrangian-Eulerian interaction

To couple the Lagrangian and Eulerian discretizations, we employ approximations to the 

integral transforms of the continuum equations that replace the singular Dirac delta function 

δ(x) = δ(x) δ(y) δ(z) by a regularized delta function δh(x) = δh(x) δh(y) δh(z). In our 

computations, we construct the three-dimensional regularized delta function either by using 

the four-point one-dimensional regularized delta function of Peskin [58], or by using a 

broadened version of this function that has a spatial extent of 8 meshwidths. The same 

regularized delta function is used for both the thin model of the valve leaflets and the 

volumetric model of the vessel wall.

For the leaflet model, we employ a Lagrangian-Eulerian coupling approach frequently used 

with the IB method. The Lagrangian forces F = (Fx, Fy, Fz) associated with the leaflets are 

converted into equivalent Eulerian forces f = (fx, fy, fz) via

(25)

(26)

(27)

This amounts to using the trapezoidal rule to discretize the integral transform (3). We 

employ the compact notation

(28)

to express this force-spreading operation. The Eulerian velocity u = (u, υ, w) is used to 

determine the dynamics of the physical positions ϕ = (ϕx, ϕy, ϕz) of the material points of 

the valve leaflets via

(29)

(30)
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(31)

We use the notation

(32)

to express this velocity-restriction operation. Notice that the force-spreading and velocity-

interpolation operators are adjoints, i.e., ℛl[ϕ] = l[ϕ]*.

The Lagrangian-Eulerian coupling scheme used for the vessel model is based on an 

approach developed by Griffith and Luo [39]. This approach is first to construct a force-

spreading operator, and then to determine a velocity-restriction operator that is the adjoint of 

the force-spreading operator. Briefly, for each element e, quadrature points Q(e) are 

determined, and for each quadrature point q ∈ Q(e),  indicates the reference coordinates 

of the quadrature point, and  indicates the quadrature weight associated. The Lagrangian 

force density G = (Gx, Gy, Gz) is converted into the equivalent Eulerian force density g = 

(gx, gy, gz) by discretizing eq. (9), with δ(x) replaced by δh(x), using this quadrature rule, i.e.

(33)

(34)

(35)

Notice that these formulae take advantage of the fact that we may evaluate the 

approximations to G and χ at arbitrary Lagrangian locations. Specifically, we are not 

restricted to evaluating G and χ at the nodes of the finite element mesh. In practice, the 

quadrature rules are dynamically determined to ensure that the physical spacing of the 

quadrature points is on average one-half of a Cartesian meshwidth, even under the presence 

of extremely large structural deformations. We use the notation

(36)

to define the force-spreading operator. To determine the corresponding velocity-restriction 

operator, we introduce a Lagrangian velocity field U = (U, V, W), which is defined in terms 

of nodal velocities Um via

(37)

This velocity field is required to satisfy, for all n,
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(38)

(39)

(40)

This yields a system of linear equations to be solved for the nodal values of U. Notice that 

eqs. (38)–(40) correspond to a discrete component-wise approximation to eq. (12). We use 

the notation

(41)

Notice that ℛw[χ] is a nonlocal operator in the sense that it requires the solution of a system 

of linear equations. Although not shown here, it is the case that ℛw[χ] = w[χ]*. See 

Griffith and Luo [39] for further discussion.

For the models of the leaflets and for the vessel wall, the Lagrangian-Eulerian coupling 

scheme is designed to conserve force and torque [39,58]. Moreover, because adjoint 

operators are used to spread force and to interpolate velocity, the scheme conserves energy 

at least in its semi-discrete (continuous time but discrete space) formulation.

A.3 Time stepping

The time stepping scheme is similar to that of Griffith and Luo [39]. Let Δt indicate the 

(uniform) time step size, and let [tn, tn+1] = [nΔt, (n + 1)Δt] indicate the nth time interval. In 

this subsection, superscript indices always indicate the time step number. The state variables 

u, ϕ, and χ are defined at integer time steps. The pressure p, which is not a state variable of 

the system, is defined at half-integer time steps. Approximations to the state variables and to 

derived quantities such as the Lagrangian forces are also evaluated at half-integer time steps.

The time stepping scheme proceeds as follows. First, predicted intermediate approximations 

to the structural deformations ϕ and χ at time  are determined via

(42)

(43)
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This is an application of the forward Euler time stepping scheme. Lagrangian force densities 

 and  are determined from the predicted structure configurations, and these 

Lagrangian force densities are spread to the Cartesian grid via

(44)

(45)

Next, we solve the discretized incompressible Navier-Stokes equations for un+1 and 

via a Crank-Nicolson-Adams-Bashforth scheme,

(46)

(47)

with

(48)

In the uniform grid case, the discrete operators ∇h, ∇h ·, and  are standard second-order 

accurate staggered-grid finite difference approximations to the gradient, divergence, and 

Laplace operators, respectively [33]. We compute u · ∇hu via a staggered-grid version of 

the piecewise parabolic method (PPM) [33]. On locally-refined Cartesian grids, these 

discrete operators are straightforward extensions of the uniform grid operators [34]. Solving 

eqs. (46) and (47) for un+1 and  requires the solution of the time-dependent Stokes 

equations. The Stokes equations are solved using an iterative Krylov method with a 

multigrid preconditioner derived from the classical projection method [9, 33].

Finally, we determine approximations to the structural deformations at the end of the time 

step via

(49)

(50)

with

(51)
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This is an application of the explicit midpoint rule to the structural dynamics.

In the initial time step, we do not have a value for un−1 as required to evaluate the Adams-

Bashforth approximation to the convective term. Consequently, in the initial time step, we 

employ a two-step Runge-Kutta scheme.

Within each time step, coupling between the detailed fluid-structure interaction model and 

the reduced Windkessel model of the circulation is done as described previously [34,38]. In 

this approach, we perform only a single Stokes solve per time step, except in the initial time 

step, when we perform two Stokes solves within the context of a two-step Runge-Kutta 

scheme.
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Fig. 1. 
Geometrically idealized model of the aortic root. We use Peskin and McQueen’s theoretical 

model of the collagen fiber architecture of aortic valve leaflets [59] to determine the shape 

of the leaflets, panel (a). We use measurements of human aortic roots [61,70] to determine 

the geometry of the outflow tract, the sinuses and the ascending aorta, including dimensions 

determined at 80 mmHg pressure loading [70]. Panel (b) shows a side view and a top view 

of the symmetric aortic root model used in this study.
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Fig. 2. 
Biaxial tensile test data obtained from human aortic root tissue samples by Azadani et al. [3] 

and our fit of the isotropic hyperelastic constitutive model (16) to these data.

Flamini et al. Page 28

Theor Comput Fluid Dyn. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Views of the (a) loaded and (b) unloaded geometry of the aortic root.
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Fig. 4. 
Convergence history of the inverse displacement procedure.
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Fig. 5. 
Contour plots showing the norm of the distance between the prescribed and computed 

loaded geometries. Panels show a side view (a) and a section view (b) of the model used in 

the study. Recall that the unloaded geometry is determined from the loaded geometry. The 

computed loaded geometry is the result of applying a prescribed pressure load to the 

computed unloaded geometry.
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Fig. 6. 
Results of a dynamic fluid-structure interaction analysis of the aortic root over the final three 

simulated cardiac cycles using a coarser Cartesian grid (effective grid resolution of N = 128) 

and a finer Cartesian grid (effective grid resolution of N = 256). (a) Prescribed left-

ventricular driving pressure and computed aortic loading pressure, and (b) computed flow 

rate, in which the vertical lines highlight the moments that the valve leaflets open and close. 

Large oscillations indicate the reverberations of the aortic valve leaflets and vessel wall 
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upon closure. Aortic loading pressure as well as the computed flow rate are measured at the 

outlet of the aortic tract.
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Fig. 7. 
Valve leaflet configurations during valve opening shown at equally spaced times during the 

fourth simulated cardiac cycle for (a) the coarser Cartesian grid (effective grid resolution of 

N = 128) and (b) the finer Cartesian grid (effective grid resolution of N = 256). Panels (c) 

and (d) show the corresponding axial velocity profiles. Panel (e) shows the computed flow 

rates, with the dashed lines indicating the time instants shown in panels (a)–(d).
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Fig. 8. 
Similar to fig. 7, but here showing the dynamics of the closure of the aortic valve during the 

fourth cycle. In this case, the solid lines indicate the instants shown in the figure panels.
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Fig. 9. 
Displacement contours along the aortic root model. Panel (a) shows displacement contours 

along the axial section of the aortic wall during valve opening, shown as the same time 

instants as in fig. 7, for the coarser Cartesian grid spacing. Panel (b) is similar, but here 

shows results for the finer Cartesian grid spacing. Panels (c) and (d) are similar, but here 

show the displacement patterns during valve closure.
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Fig. 10. 
Displacements of the deformable aortic root model at four locations: (a) the straight portion 

of the aorta; (b) just above one of the commissures; (c) the sinotubular junction; and (d) the 

middle of the sinus.
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Fig. 11. 
Maximum principal stress contours along the aortic root model. Panel (a) shows 

displacement contours along the axial section of the aortic wall during valve opening, shown 

as the same time instants as in fig. 7, for the coarser Cartesian grid spacing. Panel (b) is 

similar, but here shows results for the finer Cartesian grid spacing. Panels (c) and (d) are 

similar, but here show the displacement patterns durning valve closure.
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Fig. 12. 
Maximum principal stress of the deformable aortic root model at four locations: (a) the 

straight portion of the aorta; (b) just above one of the commissures; (c) the sinotubular 

junction; and (d) the middle of the sinus.
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Fig. 13. 
Results for the first simulated cardiac cycle are compared to results from previous work that 

used a rigid model of the aortic root [34] (shown with grey dashed lines). We remark that 

the noncompliant aortic root model of ref. [34] employed a different numerical treatment of 

pressure boundary conditions than that used herein, which is similar to the stabilization 

approach of ref. [24]. This earlier work also did not use a finite element structural model for 

the aortic wall.
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