
ANALYSIS OF INFORMATION COLLECTION RULE DATA TO ASSESS THE 
IMPACT OF WATER QUALITY AND TREATMENT ON DISINFECTION 

BYPRODUCT OCCURRENCE IN DRINKING WATER 
 

Alexa Obolensky 
 

A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in 
partial fulfillment of the requirements for the degree of Doctor of Philosophy in the 
Department of Environmental Sciences and Engineering, School of Public Health 

 

Chapel Hill 
2007 

 
Approved by, 
 

Advisor: Philip C. Singer 
 

Reader: Douglas J. Crawford-Brown 
 

Reader: Charles N. Haas 
 

Reader: Lawrence L. Kupper 
 

Reader: Hiba M. Shukairy 
 

Reader: Howard S. Weinberg 



ii

ABSTRACT 

Alexa Obolensky: Analysis of Information Collection Rule Data to Assess the Impact of 
Water Quality and Treatment on Disinfection Byproduct Occurrence in Drinking Water 

(Under the direction of Philip C. Singer) 
 

Information Collection Rule (ICR) data were analyzed to investigate relationships 

between water quality and treatment processes and occurrence of disinfection byproducts 

(DBPs) in drinking water. A new metric developed to quantify extent of halogen substitution 

in different byproduct classes indicated strong interclass correlations among bromine 

fractions in dihaloacetic acids (X2AAs), trihalomethanes (THMs), trihaloacetic acids 

(X3AAs), and dihaloacetonitriles (X2ANs). These measurements were sensitive to censored 

data handling. Bromine fraction covariance properties were applied in a test for multivariate 

outliers to identify data entry or analytical errors which was used in database screening.

Database screening indicated a high level of ICR data quality. Recovery of

categorical descriptors substantially amplified the data set. Data patterns showed expected

relationships between source water quality and disinfection practices. Plants with high

organic precursor concentrations preferentially employed chloramines and avoided

prechlorination. Plants with high bromide levels also tended to employ chloramines although

bromide occurrence did not impact prechlorination practice. Variability in applied chlorine

dose among ICR plants diminished when dose was normalized to total organic carbon

(TOC); the median chlorine to TOC ratio was 1.54 mg Cl2/mg C.

Multiple linear regression models for finished water DBP concentrations at chlorine

plants indicated significant shifts across compound classes in the direction and magnitude of
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influence for bromide, alkalinity, pH, chlorine consumed, and organic precursor

concentrations. Results suggested that alkalinity serves as an indicator of organic matter

hydrophobicity and reactivity towards DBP formation. pH effects were in accord with

current understanding, though observed large differential impacts across species within THM

and X3AA classes were not previously noted. Model results suggested that chlorine

consumed after initial dose is less relevant for X2AA formation than for other DBPs

examined. Based on model projections, use of alternative disinfectants in combination with

subsequent chlorination led to substantially lower DBP concentrations compared to use of

free chlorine alone. Chloral hydrate, an exception, was enhanced under certain ozone

treatment conditions. Model projections indicated that softening treatment led to substantial

reductions of brominated THM and X2AA species, and all X3AA species, though total

organic halogen was unaffected. Softening effects were attributed to improved organic

precursor removal.
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CHAPTER 1: INTRODUCTION 

 

1.1 BACKGROUND 

Disinfection byproducts (DBPs) in drinking water are a significant public health 

concern due to their ubiquity, limited chemical identification, and poorly understood health 

effects. Halogenated organic DBPs are formed when chlorine used in water treatment, for 

disinfection or other purposes, reacts with natural organic matter (NOM) and halide ions 

(bromide and possibly iodide) present in source waters. The phenomenon of DBP formation 

was first recognized in 1974 with the discovery of trihalomethanes (THMs) in drinking 

water, long after the practice of water chlorination was firmly established and credited with 

the elimination of waterborne cholera and typhoid epidemics in the United States (Bellar, 

Lichtenberg, and Kroner 1974; Rook 1974; Murphy and Craun 1999). Following many years 

of laboratory and plant-scale research, and different regulatory actions to control DBP 

formation, the Information Collection Rule (ICR) was mandated to provide a comprehensive 

survey of treatment and occurrence data related to DBPs and microbial pathogens at all large 

water utilities in the United States (U.S. EPA 1996a). The ICR generated the largest database 

of DBP field data ever assembled. Analyses of these data, which became fully available in 

2002, are the subject of this dissertation. 
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1.1.1 DBP Formation 

Since the discovery of THMs as chlorination byproducts, hundreds of chemical 

byproducts of disinfection have been detected in treated drinking water (Richardson 1998, 

2003; Krasner et al. 2006). The most prevalent halogenated chlorination byproducts on a 

weight basis are THMs, followed by haloacetic acids (HAAs), chloral hydrate, 

haloacetonitriles, haloketones, and chloropicrin (Quimby et al. 1980; Christman et al. 1983; 

Krasner et al. 1989; Stevens et al. 1989). Taken together, these commonly identified 

compounds account for between 20 and 60% of organically bound halogen produced during 

chlorination of natural waters, as characterized by measurement of total organic halogen 

(TOX) concentration (Krasner et al. 1989; Singer and Chang 1989; Singer et al. 1995; 

Shukairy et al. 2002). On a weight basis, the THMs and HAAs typically comprise more than 

50% of the identified DBPs in chlorinated drinking water (Richardson 1998). 

Byproducts of drinking water chlorination are the result of oxidation and substitution 

reactions between chlorine added for disinfection and NOM present in virtually all source 

waters. Naturally occurring bromide ion in the source water also plays an important role as 

an inorganic DBP precursor because of its rapid oxidation to bromine by chlorine, and the 

subsequent participation of bromine in bromination reactions. Iodide is present in much 

lower concentrations than bromide in source waters and is oxidized to unreactive iodate by 

free chlorine (Bischel and von Gunten 1999). However, under certain treatment conditions, 

available iodide may become incorporated into halogenated organic DBPs since it reacts with 

monochloramine to yield free iodine, which can participate in iodination reactions with NOM 

(Hansson 1987; Bischel and von Gunten 1999; Plewa et al. 2004). 

The structure and composition of NOM and its reactivity with chlorine have been the 

subject of extensive research (Christman et al. 1983, 1989; Barrett et al. 2000). NOM is not a 
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specific chemical compound but consists of a complex mixture of organic molecules ranging 

widely in molecular weight. It is comprised largely of heterogeneous macromolecular 

structures produced from condensation of terrestrial vegetative decay products such as 

lignins, tannins, polysaccharides, and other biogenic compounds (Shapiro 1957; Christman 

and Oglesby 1971; Leenheer and Croue 2003). These products can be regarded as precursors 

to fossil fuels and their “age” and the oxygen conditions of their formation environment 

influence their chemical composition, and thus their reactivity with chlorine. NOM in surface 

waters may also include algal exudates and cellular algal decay products to varying extents, 

depending on conditions. Thus, NOM composition and reactivity with chlorine (or bromine) 

varies by source water as well as across time for a given water.  

A variety of types of reactive chemical centers in natural organic matter are likely to 

act as DBP precursors. Important centers for halogen substitution include electron-rich sites 

on aromatic rings, such as those activated by an ortho- or para-substituted hydroxy or 

methoxy substituent (Norwood et al. 1980; de Leer et al. 1985; Norwood et al. 1987; 

Christman et al. 1989; Reckhow, Singer, and Malcom 1990). Aliphatic structures with a beta-

diketone moiety or other enolizable group are also highly labile towards oxidative halogen 

substitution (Reckhow and Singer 1985; Christman et al. 1989). For DBPs with more than 

one halogen substituent, the formation process involves sequential halogen substitution 

reactions. For all DBPs, the final product or intermediates must be separated from the larger 

parent molecule by oxidative and/or hydrolytic cleavage. Therefore DBP formation reactions 

are multi-step processes. The amorphous and varied nature of the organic substrate and the 

complexity of the formation reactions have precluded development of mechanistically-based 

kinetic models for DBP formation that might provide a deterministic approach to predicting 
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DBP levels under specific treatment conditions. Nevertheless, researchers studying model 

compounds considered representative of NOM substructures have suggested plausible 

mechanisms for the formation of various DBPs and provided rational explanations for 

observed product mixtures and pH effects (de Leer et al. 1985; Reckhow and Singer 1985). 

Researchers have characterized and quantified NOM by a number of methods 

including analysis of oxidative degradation products, molecular weight distribution, acid- and 

base-soluble fractionation (e.g., humic acids, fulvic acids, hydrophilic and hydrophobic 

fractions), nuclear magnetic resonance spectroscopy, and elemental composition (Norwood 

et al. 1987; Christman et al. 1989; Amy et al. 1992; Krasner et al. 1996a; Croue et al. 1999; 

Leenheer et al. 2000). For water treatment process control, NOM is most routinely quantified 

by measurement of Total Organic Carbon (TOC) and Ultraviolet Absorbance at 254 

nanometers (UV254). Because of its strong response to conjugated double bond systems that 

are generally the most prevalent reactive sites for chlorine attack, UV254 is a more specific 

measure of organic DBP precursor concentration than TOC. Dissolved Organic Carbon 

(DOC), defined as the portion of TOC passing through a 0.45 micron filter, typically 

accounts for 90% or more of the TOC in drinking water sources. The ratio UV254/DOC, 

termed Specific Ultraviolet Absorbance (SUVA), has become an established parameter for 

comparing the reactivity towards chlorine of NOM from different sources (Edzwald et al. 

1985; Najm et al. 1994; Krasner et al. 1996a, 1997). 

The basis of DBP formation control strategies is reduction of the concentrations and 

duration of NOM and chlorine in contact with one another. This can be achieved by replacing 

chlorine with an alternative disinfectant, moving some or all chlorine addition downstream of 

TOC removal processes in a treatment train, enhancing TOC removal processes, or some 
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combination of these approaches. Alternative disinfectants include monochloramine, ozone, 

chlorine dioxide, and ultraviolet light irradiation (UV). Though ozone and chlorine dioxide 

are effective in reducing DBPs associated with chlorine, they each generate other DBPs of 

concern and their implementation is considerably more complex and costly (Culp 1984; 

Werdehoff and Singer 1987; Myers 1990; Cavanagh et al. 1992; Miltner et al. 1992; Trussell 

1992; Glaze et al. 1993). UV is a comparatively new technology for drinking water 

disinfection that has thus far not been associated with DBP formation (Zheng et al. 1999). It 

may become widely implemented in the U.S. over the next decade because of its 

effectiveness for inactivating protozoan organisms resistant to chlorine (e.g., 

Cryptosporidium), as well as viruses and bacteria, without yielding DBPs. However, UV 

does not provide a residual disinfectant and thus secondary disinfection with a chlorine-based 

product remains necessary where a residual is required. 

Lowering TOC concentration prior to disinfectant addition limits the concentration of 

organic precursors available for DBP formation reactions and, in doing so, reduces the 

oxidant demand of the water and hence the disinfectant dose needed to achieve a target 

residual concentration at the end of subsequent treatment steps (which is the regulatory basis 

for disinfection credit). TOC removal during water treatment is a central area of research 

addressing DBP control and other water treatment objectives. Fortunately, the fraction of 

NOM most labile towards DBP formation reactions is also the fraction most easily removed 

during conventional coagulation, settling, and filtration (Chadik and Amy 1983; Krasner et 

al. 1997; Randtke 1999). However, for most treatment plants, it is not possible to simply 

move chlorine addition downstream of these clarification processes without implementing 

significant additional changes in treatment. Chlorine application upstream of coagulation 
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may be employed for iron and manganese oxidation, for algae and/or biofilm control in 

basins and pipes, and for disinfection credit (where adequate residence time is not available 

in downstream basins). To control THMs, many conventional drinking water treatment plants 

have substantially lowered the concentration of chlorine applied to raw water or, where 

feasible, moved their primary chlorine addition point downstream of the clarification basins 

(Singer 1994; AWWA 2000). 

As mentioned, monochloramine is one alternative to chlorine for disinfection. 

Chlorine and ammonia react together to form monochloramine (also called “combined” 

chlorine, in contrast to “free” chlorine). THM formation is largely arrested when ammonia is 

added to chlorinated water to produce a combined chlorine residual (Symons et al. 1981; 

Speitel 1999). However, monochloramine is a much weaker biocide than free chlorine and 

thus its use for primary disinfection in treatment plants is usually limited by the long contact 

times or high disinfectant doses needed to obtain required disinfection credits (Haas 1999). 

Chloramine application is more difficult to control because of the complex pH-dependent 

chemistry involved in the equilibria between chlorine, ammonia, and the three chloramine 

species: mono-, di-, and trichloramine (Morris 1967; Wajon and Morris 1980; Jafvert and 

Valentine 1992; Speitel 1999). However, because monochloramine is less reactive than free 

chlorine, it can provide a more persistent residual in water moving through a distribution 

system. For this reason, and for the benefit of controlling THMs, monochloramine has come 

into widespread use for secondary disinfection in finished water leaving the treatment plant 

(Duke et al. 1980; Singer et al. 1982; Speitel 1999; Seidel et al. 2005). Unfortunately recent 

research indicates that carcinogenic nitrosamines may represent a previously unrecognized 

class of chloramination byproducts, raising a new specter of concern about the use of this 
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alternate disinfectant (Najm and Trussell 2001; Choi and Valentine 2002; Mitch and Sedlak 

2002; Gerecke and Sedlak 2003; Valentine et al. 2005). 

THMs have been studied extensively since their discovery as drinking water DBPs 

(Rook 1974; Bellar, Lichtenberg, and Kroner 1974). THMs are terminal byproducts which 

tend to be stable in drinking water distribution systems and continue to form as long as 

organic substrates are present and a free chlorine residual persists. HAAs and other 

halogenated DBPs have not been studied as extensively as THMs and their formation 

kinetics and stability are less well characterized. HAAs tend to form faster than THMs 

(Reckhow and Singer 1984), some of the HAA species are known to decompose at elevated 

pH levels (Reckhow and Singer 1985; Krasner et al. 1989), and some of the species are 

subject to biodegradation in the absence of a chlorine residual (Williams et al. 1994; 

Baribeau et al. 2006). Recent research has shown that trihalogenated haloacetaldehyde and 

HAA species decompose to yield corresponding THM compounds as products (Xie and 

Reckhow 1996; Zhang and Minear 2002). Decomposition rates for these compounds increase 

rapidly with temperature and with the number of bromine substituents on the individual 

species. After THMs, HAAs and haloacetaldehydes are the most prevalent chlorination 

byproducts (Blank et al. 2002; Richardson 2003; Krasner et al. 2006). Other DBPs, such as 

di- and trichloropropanone and di- and trichloroacetonitrile, generally present in lower 

concentrations, are also known to decompose and the trihalogenated classes may yield THMs 

under certain conditions (Trehy and Bieber 1981; Bieber and Trehy 1983; Croue and 

Reckhow 1989). Thus, especially in warm temperatures or long distribution system transit 

and/or storage times, these higher molecular weight metastable DBP species may convert to 
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THMs. This is an important consideration in studying distributions of DBP species both 

within and between different compound classes. 

Interest in DBP halogen substitution patterns has increased due to research indicating 

that brominated DBP compounds may have more adverse health effects than their fully 

chlorinated counterparts (Zavaleta et al. 1999). Controlled laboratory studies have shown that 

bromine incorporation into HAAs parallels that of bromine incorporation into THMs 

(Pourmaghaddas et al. 1993; Cowman and Singer 1996). Though this has not been 

thoroughly demonstrated using field data, a recent study by Roberts et al. (2002) using a 

subset of ICR data, suggests that bromine incorporation into trihaloacetic acids parallels that 

of bromine incorporation into THMs. Similar parallels in bromine substitution patterns 

between the dihaloacetic acids and dihaloacetonitriles have been observed in field data 

collected at the Philadelphia Water Department (Obolensky 1998). In controlled laboratory 

experiments, several researchers have examined the effects of water quality and treatment 

factors on the extent of bromine substitution in THMs and HAAs (Minear and Bird 1980; 

Oliver 1980; Amy et al. 1991; Summers et al. 1993; Shukairy, Miltner, and Summers 1994; 

Krasner et al. 1996b; Shukairy and Summers 1996; Symons et al. 1996). These studies have 

established that the degree of bromine substitution in DBPs is driven by source water 

bromide concentration, the ratio between bromide and organic precursor concentrations 

(which can be altered through treatment), and the ratio between bromide and chlorine dose, 

reaction time, and temperature. 

In summary, factors that need consideration in studying the formation, occurrence, 

and relative distribution of DBP compounds in drinking water include: water temperature; 

pH of chlorination and distribution; source water bromide concentration; TOC concentration 
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at the point of chlorine contact; chemical characteristics of NOM in the water (e.g., SUVA, 

hydrophilic vs. hydrophobic DOC distribution); type of disinfection scenario (chlorination 

only, chloramination only, chlorination/chloramination, or ozonation/chlor(am)ination); 

points of disinfectant addition relative to precursor removal and other treatment steps; 

disinfectant dose, contact time, and residual concentration; and conditions affecting 

biodegradation and/or hydrolytic loss of DBPs in the distribution system. Interactions 

between these factors may be expected. For example, the importance of biodegradation may 

depend on pH, temperature, and chlorine residual. Similarly, hydrolytic loss pathways can be 

pH dependent. Many of the reactions are under kinetic control and thus are strongly impacted 

by temperature. 

1.1.2 Regulatory History and the ICR 

Since the discovery of DBPs in chlorinated drinking water in 1974, water treatment 

practices have adjusted in response to evolving Safe Drinking Water Act (SDWA) 

regulations and their ammendments addressing DBPs (Singer 1994). Soon after the 

identification of chloroform and other THM species as chlorination DBPs in drinking water, 

the U.S. Environmental Protection Agency (EPA) set an interim Maximum Contaminant 

Level (MCL) for total THMs (TTHM, the sum of four chlorinated and brominated THMs) 

(U.S. EPA 1979). Addressing the potential chronic risk from bladder cancer, this rule limited 

the annual average of quarterly system-wide TTHM concentrations to 100 µg/L for 

community water systems that added a disinfectant to their treatment process and served 

10,000 or more persons. Following this relatively quick action, the complexity of the DBP 

issue became increasingly apparent, and it took almost twenty years for the next step in DBP 

regulations to be enacted. 
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During the 1980’s and 1990’s many new (non-THM) DBPs were discovered, 

including those produced from alternative disinfectants, the effects of treatment processes on 

DBP formation were becoming better-understood, and health effects research was 

progressing (Singer 1994; Symons 1999). However, large uncertainties surrounding DBP 

health risks contrasted with the comparatively well understood acute risks from waterborne 

microbial pathogens (Murphy and Craun 1999). Given the intrinsic conflict between water 

treatment goals for controlling DBP formation and inactivating microbial pathogens, and the 

consequent potential for adverse unintended consequences from treatment modifications 

implemented to address one or the other issue in isolation, a carefully balanced regulatory 

approach was needed to address these risks in concert (Craun, Hauchman, and Robinson 

2001). This need prompted linkage of SDWA microbial and DBP rule development tracks 

into a two-staged cluster of paired regulations (U.S. EPA 1994a). In support of this phased 

rulemaking, the ICR was designed to obtain field data needed to characterize plant-specific 

tradeoffs associated with simultaneous control of DBP and microbial risks (U.S. EPA 1994b, 

1996a). ICR monitoring was completed in December 1998 and the data started to become 

available the following year. 

The Stage 1 Disinfectants and Disinfection Byproducts Rule (Stage 1 D/DBP Rule), 

promulgated in 1998, expanded applicability of DBP provisions to small systems (i.e., 

systems serving < 10,000 persons), lowered the TTHM MCL, established new MCLs for the 

sum of five HAAs and for specific byproducts of ozone (bromate) and chlorine dioxide 

(chlorite), set limits on residual disinfectant concentrations, and mandated NOM (TOC) 

removal as a treatment technique for DBP control (U.S. EPA 1998a). The Interim Enhanced 

Surface Water Treatment Rule was issued concurrently with the Stage 1 D/DBP Rule to 
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address microbial pathogens, in particular epidemic risk from the protozoan parasite 

Cryptospridium (U.S. EPA 1998b). 

The Stage 2 D/DBP Rule, promulgated in 2006, further expands the applicability of 

DBP provisions to all systems that deliver disinfected water, encompassing consecutive 

systems that distribute purchased treated water without adding additional disinfectant (U.S. 

EPA 2000a, 2003, 2006a; Scharfenaker 2001). This new rule does not establish MCLs for 

additional DBPs or change the numerical values of existing MCLs, but substantially modifies 

DBP monitoring programs, compliance calculations, and reporting requirements in a manner 

that will further drive down DBP occurrence levels for many utilities. Under previous rules, 

quarterly results from locations with high DBP levels could be offset by corresponding 

results from other locations with low concentrations in the same system, because only the 

quarterly mean across all monitoring sites was considered in the reported annual average. 

Under the new provisions, annual average THM and HAA MCLs must be met for each 

individual monitoring location in each public water system. Moreover, under the Initial 

Distribution System Evaluation provision, siting of these monitoring locations must be newly 

optimized to ensure that monitoring captures high occurrence levels. Additionally, the Stage 

2 Rule requires reporting and follow-up operational evaluation if any individual DBP 

monitoring result (i.e., not the annual average) exceeds a particular threshold value. This 

latter provision was a compromise to address concern over possible acute 

reproductive/developmental health risks, that is, risks stemming from short-duration 

exposure. These risks were the subject of extensive discussion during the negotiated 

rulemaking for Stage 2 (U.S. EPA 2006a). Although data supporting acute health effects 

from DBPs were not considered adequate to warrant changing the compliance basis of 



12

enforceable MCLs from annual average values to individual sample values, it was agreed that 

drawing attention to elevated discrete DBP results would heighten awareness, leading to 

better understanding and control of distribution system operations, and helping to avoid 

future MCL violations. In practice, water utilities will most likely work hard to avoid these 

exceedances, both to escape reporting requirements and to avert negative public perceptions. 

The Long Term 2 Enhanced Surface Water Treatment Rule (LT2), addressing the issue of 

endemic risk from Cryptosporidium, was promulgated in concert with the Stage 2 D/DBP 

Rule (U.S. EPA 2006b).  

ICR data were used extensively to support development of the companion Stage 2 

and LT2 Rules. However, analyses conducted in that context focused on national data 

distributions, development of treatment and occurrence baselines, and model projections for 

regulatory impact forecasting. One of the motivations for the research behind this dissertation 

was the rich source of untapped information available from the ICR survey. 

Over the past three decades, laboratory studies conducted under controlled conditions 

have provided important insights into factors affecting DBP formation (Rook 1978; Babcock 

and Singer 1979; Minear and Bird 1980; Oliver 1980; Christman et al. 1983; Reckhow and 

Singer 1984; Stevens et al. 1989; Cowman and Singer 1996; Shukairy and Summers 1996; 

Symons et al. 1996). In order to establish effects, many laboratory studies have employed 

conditions outside the range of general applicability for water treatment (e.g., extreme 

chlorine doses or bromide levels, buffered synthetic waters). Various findings from these 

research efforts have been borne out in limited field monitoring studies (Arguello et al. 1979; 

Brett and Calverly 1979; Veenstra and Schnoor 1980; Otson, Williams, and Bothwell 1981; 

Nieminski, Chaudhuri, and Lamoreaux 1993; Singer, Obolensky, and Greiner 1995; Arora, 
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LeChevallier, and Dixon 1997), and isolated field observations have often been corroborated 

by laboratory investigations (Williams, Rindfleisch, and Williams 1994; Williams, Williams, 

and Gordon 1996). However, previous field monitoring studies have been too limited in 

scope and scale to permit extensive use of statistical methods for drawing inferences from 

observational data sets. For a complex dynamic system such as formation of DBPs during 

water treatment, this type of analysis requires simultaneous control for numerous variables. It 

is also important that data be structured, collected in a consistent format, and acquired with 

comparable analytical methodologies and quality assurance. ICR data provide the scale and 

consistency needed to perform valid statistical analyses of observational data. The data cover 

all seasons and represent water quality, treatment, and distribution system characteristics 

across a nationally representative set of source waters, treatment plants, and distribution 

conditions. 

1.2 RESEARCH OBJECTIVES 

The overall objective of this research was to use standard statistical methodologies 

and the power of the large ICR dataset to isolate the effects of water quality and treatment on 

observed DBP concentrations, including individual compound concentrations, class and 

subclass total concentrations, and relative concentrations and halogen speciation patterns 

within and between compound classes. The research also encompassed review, screening, 

and descriptive summary of relevant information in the database.  

Specific goals of the research included application of multivariate analyses to 

characterize intra- and interclass bromine substitution patterns in four classes of DBPs 

monitored under the ICR: THMs, dihaloacetic acids (DHAAs or X2AAs), trihaloacetic acids 

(THAAs or X3AAs), and dihaloacetonitriles (DHANs). As a component of the database 
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screening effort, findings from the analysis of comparative speciation patterns were applied 

to identify anomalous ICR results for individual analytes and thereby improve the database 

for subsequent analyses. Insights about speciation patterns also supported formulation of 

models to estimate brominated THAA species concentrations that were not reported, so that 

the option of using this expanded database would be available for subsequent analyses. A 

second main goal of the research was to apply multiple linear regression models as tools to 

elucidate the influences of water quality and treatment factors on DBP formation and 

occurrence. 

Findings from this research are expected to improve understanding of DBP formation 

and occurrence and the effects of water quality characteristics and treatment practices under 

true field conditions. This information should allow utilities to better evaluate control 

strategies that limit overall DBP formation as well as the formation of selected DBPs, and 

thereby assist them in complying with regulations and reducing consumer exposure to DBPs. 

Because ICR source waters, treatment plants, and distribution systems capture the spectrum 

of conditions across the United States very well, this information should be relevant and 

useful for a wide audience of utilities, consultants, and regulatory agencies. This research 

was also expected to demonstrate how better information could be obtained from monitoring 

data to assist in future decision-making for utilities, regulators, and public health 

professionals. 

1.3 ORGANIZATION OF THESIS 

This thesis contains four papers that are in different stages of preparation or 

publication. These papers are presented as Chapters 2 through 5. Chapter 2, published in 

Environmental Science and Technology in 2005, is entitled “Halogen substitution patterns 
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among disinfection byproducts in the Information Collection Rule database,” and deals with 

the correlation of halogen substitution patterns in different DBP compound classes and the 

impact of censored data handling. Employing a new metric developed in this research, the 

bromine fractions of halogen in four DBP classes were treated as a multivariate response 

variable and a quality assurance application of a test for multivariate outliers was 

demonstrated. Chapter 3, published in the Journal of Environmental Engineering in 2007, is 

entitled “Information Collection Rule data evaluation and analysis to support impacts on 

disinfection by-product formation,” and describes the database screening and review effort 

undertaken for this research and their results, and provides summaries and general analysis of 

key ICR water quality and treatment data relevant to DBP formation. Included is a 

demonstration of the dependence between water quality conditions and disinfection practices. 

Chapter 4, entitled “Development and interpretation of models to describe the impacts of 

water quality and treatment on DBP formation using the ICR database,” describes the 

development and interpretation of multiple linear regression models to describe relationships 

between water quality and treatment factors and finished water DBP concentrations. The 

emphasis is on use of these models as analytical rather than predictive tools. Many of the 

findings were consistent with current understanding of factors affecting DBP formation, such 

as pH and bromide effects. Results suggested that alkalinity, not previously included in DBP 

regression models, was an indicator of NOM characteristics such that higher alkalinity waters 

preferentially yielded higher concentrations of certain DBP species. Chapter 5, entitled 

“Applications of models to describe the impacts of water quality and treatment on DBP 

formation using the ICR database,” demonstrates applications of the models to evaluate the 

impact of various treatment factors on finished water DBP concentrations. Specifically, point 
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of chlorine addition (at raw or settled/filtered water), use of alternative disinfectants 

(monochloramine, ozone, or chlorine dioxide), and softening were examined. Chapters 4 and 

5 are draft manuscripts planned for submission to Environmental Science and Technology as 

companion papers. 

The overall findings of the research are summarized in Chapter 6, along with 

recommendations for further applications of the tools developed, and some discussion of the 

advantages and limitations of the regression model as a tool for studying observational field 

data. Appendices A and B provide supplemental information for Chapters 2 and 4, 

respectively.  



CHAPTER 2: HALOGEN SUBSTITUTION PATTERNS AMONG DISINFECTION 

BYPRODUCTS IN THE INFORMATION COLLECTION RULE DATABASE 

Reproduced with permission from Alexa Obolensky and Philip C. Singer, 2005, “Halogen 
substitution patterns among disinfection byproducts in the Information Collection Rule 
database.” Environmental Science and Technology 39(8), 2719–2730. Copyright 2005 
American Chemical Society. 

 

2.1 INTRODUCTION 

Because of limited understanding of health effects for individual disinfection 

byproduct (DBP) compounds, analytical obstacles, and lack of water treatment and 

occurrence data for most non-trihalomethane (THM) species, U.S. Environmental Protection 

Agency (EPA) regulations include drinking water maximum contaminant levels only for 

sums of trihalomethane and haloacetic acid (HAA) species concentrations (U.S. EPA 1998, 

2003). Including chlorinated and brominated homologues, THMs comprise four species 

while HAAs comprise nine species, which include two monohaloacetic acids (MHAAs), 

three dihaloacetic acids (DHAAs), and four trihaloacetic acids (THAAs). THMs are 

regulated as “total THM”, the sum of all four brominated and chlorinated species’ 

concentrations, and HAAs are regulated as HAA5, the sum of five of the nine brominated 

and chlorinated HAA species’ concentrations. HAA5 includes two MHAA species, two 

DHAA species, and one THAA species, excluding three brominated THAA species and one 

brominated DHAA species. Available data suggest that brominated DBP compounds may 

have more adverse health effects than their fully chlorinated counterparts (Bull et al. 2001; 
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Richardson 2003). Recent research has also drawn attention to the occurrence and potential 

health effects of iodinated byproducts (Weinberg et al. 2002; Plewa et al. 2004). Thus, 

insight into halogen substitution patterns in drinking water DBP data is  important for 

improving understanding of DBP formation, occurrence, and exposure in drinking water as 

part of the overall goal of  public health protection through optimized treatment and 

appropriate regulation. 

Many researchers have demonstrated how water quality and treatment factors 

influence levels of bromine substitution in THM and HAA byproduct classes (Minear and 

Bird 1980; Oliver 1980; Gould, Fitchhorn, and Urheim 1983; Krasner et al. 1989, 1990, 

1996, 2002; Poumoghaddas et al. 1993; Symons et al. 1993, 1996; Shukairy et al. 1994; 

Cowman and Singer 1996; McLain, Obolensky, and Shukairy 2002). Concentrations of 

brominated THM and HAA species have been shown to increase with source water bromide 

concentration, the ratio between bromide and total organic carbon (TOC) concentrations at 

the point of chlorination, and the ratio between bromide and chlorine. Shifts from chlorinated 

to brominated species concentrations with increasing source water bromide levels have also 

been observed in non-THM/HAA byproduct classes such as haloacetonitriles (Krasner et al. 

1990, 1996, 2002), cyanogen halides (Krasner et al. 1990), halonitromethanes (Krasner et al. 

2001, 2002), haloaldehydes (Krasner et al. 2002), haloketones (Krasner et al. 2001), and 

halofuranones (Suzuki and Nakanishi 1995; Onstad 2003). Fewer studies have attempted to 

characterize or quantify interrelationships among halogen substitution patterns across 

different DBP classes (Krasner et al. 1989, 1990; Suzuki and Nakanishi 1995; Roberts et al. 

2002; Onstad 2003). This paper reports on characterization of interrelationships among 

halogen substitution patterns within and across DBP compound classes and demonstrates 
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how these interdependencies can be utilized for analytical quality assurance purposes. 

Further work will apply the findings to DBP occurrence modeling and will examine the 

influence of water quality and treatment factors on inter- and intra-class bromine substitution 

patterns. 

The Information Collection Rule (ICR) provides the largest database of drinking 

water DBP monitoring data collected to date and reflects the wide variation in water quality 

and treatment conditions across large U.S. utilities (those serving 100,000 or more persons) 

for the 1997-1998 monitoring period (U.S. EPA 1996a; McGuire, McLain, and Obolensky 

2002). These data include species concentrations representing 10 classes or subclasses of 

chlorination byproducts and, considering brominated and chlorinated compounds, include 

complete homologue series concentrations for 5 of these groups: MHAAs, DHAAs, THAAs, 

THMs, and dihaloacetonitriles (DHANs). Generally speaking the mono-, di-, and tri- 

haloacetic acid groups (i.e. MHAAs, DHAAs, and THAAs) are subclasses of the HAA class. 

However, their distinct behavior with respect to factors influencing formation and decay in 

water treatment and distribution systems necessitate their separate consideration in most 

analyses, including the present one. To make the current discussion less cumbersome, the 

HAA subclasses will be referred to as distinct classes henceforth. ICR DBP data were 

collected quarterly. Corresponding source water quality data (collected monthly), including 

bromide and TOC concentrations, are available for each DBP sampling period for each 

treatment plant. The rigor and consistency of quality assurance standards and analytical 

methodologies employed during ICR data collection, together with the large size of the 

database, render these data especially suitable for statistical analysis of speciation patterns 

within and across DBP compound classes. Wysock et al. (2002) provide a summary ICR 
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implementation and data collection procedures and Fair et al. (2002) describe analytical 

quality assurance programs and precision and accuracy results. 

2.2 METHODS 

This work utilized data collected quarterly under the ICR from July 1997 through 

December 1998 by 297 large U.S. drinking water utilities comprising 500 water treatment 

plants and their distribution systems (U.S. EPA 1996a; McGuire, McLain, and Obolensky 

2002). Data were obtained from the U.S. EPA Auxiliary 1 Database Version 5.0 (Aux 1), a 

Microsoft Access relational database designed for public access (U.S. EPA 2000b). Records 

retained for this analysis were distribution system and simulated distribution system (SDS) 

samples from all non-blending ICR treatment plants that used only free chlorine for primary 

or secondary disinfection (no ozone, chlorine dioxide, or chloramine) and added no 

additional source water in the treatment train beyond the plant influent. In the ICR, “non-

blending” plants are those for which distribution system samples could be confidently 

ascribed to the finished water from one particular treatment plant. ICR SDS samples were 

treatment plant finished water samples incubated at ambient water conditions for a time 

equivalent to the estimated distribution detention time of a specific ICR sample location. 

Obolensky and Frey (2002) discuss DBP results for ICR distribution system and SDS 

samples. The analysis centers on reported analytical results for THM, DHAA, THAA, and 

DHAN species as listed in 2.1 (because of consistently low concentrations MHAA results 

were not included). The resulting data set contained records for a total of 6565 sample 

observations with non-missing values for all species within at least one of the four DBP 

classes considered. Table 2.1 shows the number of records available for each class 

individually. Out of the total number of records, 4641 had complete data for both THM and 
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DHAA classes; 2961 had complete data for THM, DHAA, and DHAN classes; and 948 had 

complete data for all four classes. The smaller number of records having complete THAA 

data is because ICR monitoring of three of the brominated THAA species was optional. The 

data utilized in this analysis represent 283 of the 500 ICR treatment plants overall, including 

68 plants with complete data for the THAA class. The overall median source water bromide 

concentration for applicable plant/sampling periods was 22 µg/L. Approximately 25% of the 

samples were associated with source water bromide exceeding 50 µg/L while 10% of the 

samples were associated with source water bromide exceeding 100 µg/L. This compares to 

median, 75th, and 90th percentiles of 35 µg/L, 83 µg/L, and 160 µg/L, respectively, for the 

ICR dataset overall. For each sampling period at each treatment plant, the Br/TOC ratio was 

computed using influent water bromide concentration and TOC concentration at the first 

point of chlorine addition in the treatment train. Boundaries of Br/TOC quartiles were 

determined based on the entire ICR data set and were used to group data for trend analysis. 
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Table 2.1   DBP species included in analysis, associated ICR minimum reporting levels 
(MRLs), total numbers of sample records, and numbers of records with below MRL results 

MRLa

DBP 
Class DBP Species Abbreviation 

(µg/L) (µmol/L) 
x 103

Nb
N

below 
MRL 

%
below 
MRL 

chloroform CHCl3 1.0 8.4 5858 505 9% 
bromodichloromethane CHBrCl2 1.0 6.1 5858 511 9% 
dibromochloromethane CHBr2Cl 1.0 4.8 5858 1669 28% 

THM 

bromoform CHBr3 1.0 4.0 5858 4301 73% 

trichloroacetic acid Cl3AA 1.0 6.1 1080 94 9% 
bromodichloroacetic acid BrCl2AA 1.0 4.8 1080 88 8% 
dibromochloroacetic acid Br2ClAA 2.0 7.9 1080 789 73% 

THAA 

tribromoacetic acid Br3AA 4.0 13.5 1080 1056 98% 

dichloroacetic acid Cl2AA 1.0 7.8 5268 261 5% 
bromochloroacetic acid BrClAA 1.0 5.8 5268 1093 21% DHAA 

dibromoacetic acid Br2AA 1.0 4.6 5268 3529 67% 

dichloroacetonitrile Cl2AN 0.5 4.6 4880 789 16% 
bromochloroacetonitrile BrClAN 0.5 3.2 4,880 1,438 29% 
dibromoacetonitrile Br2AN 0.5 2.5 4,880 2,355 48% 

DHAN 

 
a Minimum reporting level, MRLs were uniform across ICR laboratories. 
b Count of records with non-missing values for all species in class with at least one species > MRL. 

 

Queries were written in Aux 1 to tabulate data for export to SAS (SAS Institute, Cary 

NC). All data processing and analysis was conducted in the SAS software environment. The 

handling of data with below minimum reporting level (MRL) results was an important 

consideration because of the high prevalence of these censored results in the dataset. In this 

case the data were left-censored, meaning the numerical values were unknown except for 

their being below the fixed reporting limit cutoff. Table 2.1 shows that within each DBP 

class the fraction of censored records increased sharply with the number of bromine 

substituents on a species. Moreover, MRLs were not uniform within or between classes. 

MRLs for DHAN species, 0.5 µg/L, were lower than those for most other DBPs (1.0 µg/L) 

while MRLs for brominated THAA species increased with the number of bromine 

substituents. In the most extreme case, the very high tribromoacetic acid (Br3AA) MRL of 
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4.0 µg/L compounded with the generally lower occurrence concentration levels for 

brominated compounds resulted in 98% of Br3AA analytical results being censored. To date, 

most analyses and summaries of ICR DBP data have employed uniform replacement values 

of zero for below MRL results because interest was generally focused on upper ranges of 

occurrence distributions (McGuire, Mclain, and Obolensky 2002). For example, tabulated 

class-sum DBP concentrations in the Aux 1 database (e.g., TTHM and HAA5) were 

computed using zero in place of any below MRL component species result. However, 

because MRLs differed within and between classes and affected large fractions of data, this 

uniform zero replacement method could result in under-representation of species with higher 

MRL values and thereby introduce differential bias into halogen composition estimates that 

are of central interest for this analysis. 

To assess the impact of censored data handling for this research, results were 

compared using three approaches which are termed here “Zero”, Half-MRL”, and Level”. 

The Zero method has been described above, that is all left-censored analytical results were 

assigned a replacement concentration value of zero. With the exception of Br2ClAA and 

Br3AA, the Half-MRL method used replacement values equal to half the compound-specific 

MRL (see Table 2.1). Because of the comparatively high MRLs for Br3AA (4.0 µg/L) and 

Br2ClAA (2.0 µg/L) and the large percentage of samples with below MRL entries, censored 

data replacement values for these two analytes were not uniformly set to half the MRL but 

were assigned on the basis of reported BrCl2AA concentrations for the same sample as 

follows. Censored Br2ClAA values were set to 0.5 µg/L if BrCl2AA for the same sample was 

below MRL. Otherwise, censored Br2ClAA values were set to 1.0 µg/L (half the MRL). 

Censored Br3AA values were set to 0.5 µg/L if both BrCl2AA and Br2ClAA for the same 
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sample were below MRL. Otherwise, censored Br3AA values were set to 1.0 µg/L unless 

Br2ClAA for the same sample was ≥ 2.0 µg/L in which case censored Br3AA values were set 

to 2.0 µg/L (half the MRL). 

The third censored data handling approach, the Level method, was designed to 

equalize censoring levels between analogous THAA and THM species and between 

analogous DHAA and DHAN species. Accordingly, censoring cutoffs for CHBr2Cl and 

CHBr3 were increased to 2.0 and 4.0 µg/L, respectively to match the MRL-censoring levels 

of corresponding THAA species (i.e., Br2ClAA and Br3AA). Similarly, censoring cutoffs for 

the three DHAN species were increased from 0.5 µg/L to 1.0 µg/L to match MRL-censoring 

levels for the corresponding DHAA species. Replacement concentration values of zero were 

then applied to all censored data. 

The extent of bromine substitution in a DBP class, for an individual sample, was 

characterized by bromine fraction of total molar halogen in the class, as described by 

Equation 2.1. For convenience, this measure is termed bromine fraction. To obtain the 

bromine fraction value for any class, molar bromine concentration and total molar halogen 

concentration were computed for each compound in the class. After summing molar bromine 

and total molar halogen concentrations across all species in the class, bromine fraction was 

determined as the ratio between class-sum bromine and class-sum total halogen. Table 2.2 

provides illustrative calculations of bromine fraction for THAA and DHAA sample data. 

Similar calculations apply for THM and DHAN classes, respectively. 

 

( )
( ) ( )

( ) ( )∑
∑

×

×
=

Species

Species

Class halogen #conc.molar 

bromine #conc.molar 

X
Br  (2.1) 
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Table 2.2   Outline of THAA and DHAA bromine fraction calculations for individual sample 
concentration data 

 THAA   

Cl3AA BrCl2AA Br2ClAA Br3AA  
Conc. (µg/L) 6.5 12.0 5.8 4.0  
Mol. Wt. (g/mol) 163.4 207.8 252.4 296.7  
Conc. (µmol/L) 0.0398 0.0577 0.0230 0.0135  
# Br 0 1 2 3  
# Halogen (X) 3 3 3 3  
µmol-Br/L 0.0000 0.0577 0.0460 0.0404 Σ = 0.1442 
µmol-X/L 0.1193 0.1732 0.0689 0.0404 Σ = 0.4020 

 

Br/X (mol/mol)     0.359  (36 %) 
 

DHAA  
Cl2AA BrClAA Br2AA  

Conc. (µg/L) 7.2 14.0 5.0  
Mol. Wt. (g/mol) 128.9 173.35 217.8   
Conc. (µmol/L) 0.0559 0.0808 0.0230   
# Br 0 1 2   
# Halogen (X) 2 2 2   
µmol-Br/L 0.0000 0.0808 0.0459  Σ = 0.1267 
µmol-X/L 0.1117 0.1615 0.0459  Σ = 0.3192 

 

Br/X (mol/mol)     0.397  (40 %) 
 

In an earlier approach to quantifying the extent of bromine substitution in THMs, 

Gould and coworkers (1983) developed the bromine incorporation factor, η, which ranges 

from 1, for 100% CHCl3, to 3, for 100% CHBr3. This metric, describing moles bromine per 

mole THM, has been used by many researchers studying the influence of water quality and 

treatment conditions on bromine incorporation in THMs (Shukairy, Miltner, and Summers 

1994; Krasner et al. 1996b; Symons et al. 1996; McLain, Obolensky, and Shukairy 2002). 
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Some studies have also adapted η to measure bromine incorporation in other byproduct 

classes or subclasses (Shukairy, Miltner, and Summers 1994). However the range of η

depends on the number of halogens in the compound class or subclass, making comparisons 

across classes difficult. Straightforward interclass comparisons of extents of bromine 

substitution are possible using the bromine fraction metric presented here because it is 

normalized in the same manner for all byproduct classes regardless of the number of halogen 

substituents in the class, and all values range from zero to one. 

For each ICR DBP sample, bromine fraction was determined for the THM, DHAA, 

THAA, and DHAN classes as data permitted (i.e., non-missing data were required for all 

species in the class) after making appropriate replacements for censored concentration 

values. Because bromine fraction is undefined when the class-sum total halogen 

concentration (denominator of bromine fraction) is zero, such data were counted as null 

observations for the class in question and could not be included in subsequent analyses. This 

only impacted the data set compiled using the Zero method for censored data handling and 

involved relatively few sample records. 

Nonparametric correlation was used in the analysis of bromine fraction data. Because 

of their strongly skewed distributions, least-squares regression and Pearson correlation 

(standard R-squared), which assume normally distributed data, are not valid procedures for 

these variables. Spearman’s Rank correlation was used to characterize pairwise associations 

between class bromine fractions. This statistic, equivalent to a Pearson correlation computed 

from ranks of the observation values rather than from the values themselves (differences may 

stem from ties in data ranks, that is, repeated values), indicates the presence and strength of a 
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monotonic association between two variables, as opposed to a linear association indicated by 

the Pearson correlation (Townend 2002). 

For each sample, the relative extent of bromine substitution in two DBP classes was 

characterized by the ratio between the two corresponding bromine fraction values. Thus, a 

class pair ratio of 1 would indicate equivalent extents of bromine substitution in the two 

classes, a ratio above 1 would indicate a greater extent of bromine substitution in the class 

represented by the ratio numerator, and a ratio below 1 would indicate a greater extent of 

bromine substitution in the class represented by the ratio denominator. Bromine fraction 

ratios were determined for each of the six possible class pairs (considering the four DBP 

classes examined). Since ratios are undefined in the case of a zero-valued denominator and 

the choice of denominator for any particular class pair ratio was arbitrary, sample 

observations for a class pair were excluded from this particular analysis if either bromine 

fraction value was zero. 

The four or fewer measures of bromine incorporation on an individual water sample 

(i.e., bromine fractions for THM, DHAA, DHAN, and THAA classes) were treated 

statistically as a multivariate response. A test for multivariate outliers developed by Caroni 

and Prescott (1992) was performed to identify outliers on the basis of their effects on the 

covariance structure of the data. This test was applied according to the approach 

demonstrated by Pennell (2002) in an application to environmental data. The method 

employs sequential application of Wilk’s test for a single outlier using a conservative 

Bonferroni approach to controlling the Type I error rate for a pre-specified maximum number 

of outliers while controlling for swamping and masking effects. Swamping may occur when 

observations are tested as a group and some observations are erroneously identified as 
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outliers due to the extremeness of other points in the group. Masking describes the failure to 

identify single outliers due to the presence of less extreme outliers still present in the data set. 

The method assumes that a p-dimensional variate follows a multivariate normal distribution 

with homogeneous variance (homoscedasticity). In this case p=4 or less. Because the 

bromine fraction measures exhibit strong departures from normality and homoscedasticity, 

an arcsine transformation was applied to each of the four measures to improve adherence to 

distributional assumptions of the statistical test. The arcsine transformation, commonly 

employed for proportion data, involves converting the original proportion variable, Yi, to Yi'

according to Equation 2.2. 

 

( )5.0-15.0' sin2 iii YmY ××= (2.2) 

 

In Equation 2.2, mi is the sample size, or denominator of the proportion, and Yi' is 

given in radians (Draper and Smith 1996). Since the proportion represented by Yi for this 

application is molar bromine divided by total molar halogen, mi is the total molar halogen for 

the sample observation, for the class in question (see Equation 2.1). 

Four-way, three-way, two-way, and one-way outlier tests were performed on subsets 

of observations having bromine fraction values correspondingly for four, three, two, or one 

of the four compound classes. The four-way test was performed on the subset of observations 

with data for all four classes. The three-way test was performed on the four subsets of 

observations having data for THM, DHAA, and DHAN; THM, DHAA, and THAA; THM, 

THAA, and DHAN; and DHAA, THAA, and DHAN. The two-way test was performed on 

the six subsets of observations having data for THM and DHAA; THM and DHAN; THM 
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and THAA; DHAA and DHAN; THAA and DHAN; and DHAA and THAA. Finally, the 

one-way test was performed on the four subsets of observations having data for THM, 

DHAA, DHAN, and THAA, respectively. Using this approach, a single observation could be 

included in several different outlier tests. The analysis was conducted this way so that, when 

evaluating any particular combination of classes for the presence of outliers, the largest 

possible data set would be utilized. One-way tests were included to help discern which 

outliers may have been identified on the basis only of extremeness in the univariate 

distribution rather than on discordance with respect to interclass bromine substitution 

patterns. Test results were merged by sample observation identification number and 

observations identified as outliers in any test were tagged, retaining information about which 

tests they were identified in. Bromine fraction data were plotted and outlier results were 

reviewed by graphic inspection and by examination of underlying DBP species concentration 

data. SAS programming code for conducting the multivariate outlier tests is provided in 

Appendix A (Obolensky and Singer 2005, Supplemental Information). 

2.3 RESULTS 

2.3.1 Extents of Bromine Substitution 

Unless otherwise stated, results presented here are from analysis employing the Zero 

censored data handling method. Results using the alternative approaches are shown for 

comparison to demonstrate the impact of censored data handling on measures of absolute and 

relative extents of bromine substitution. Figure 2.1 shows box and whisker plots illustrating 

distributions of bromine fraction values for the four DBP compound classes considered. For 

each class, the extent of bromine substitution varied widely over the whole data set, 
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reflecting the broad range of water quality and treatment conditions for six quarters of data 

from 283 treatment plants (68 plants for THAA). Roberson (2002) discusses hydrological 

conditions for the ICR monitoring period in historical context. Unusually wet conditions 

across much of the U.S. during this time period, compared to average conditions over the 

past century, could mean that bromide levels for some ICR source waters were lower than 

what might normally be expected. This would have a downward influence on extents of 

bromine substitution in DBPs from affected utilities. The greatest variability in extent of 

bromine substitution was observed in the DHAN class. This is a function, in part, of 

consistently low absolute DHAN species concentration levels such that small shifts in 

composition translate to large differences in bromine fraction. Using the Zero censored data 

handling method, median bromine fraction values for the THM, DHAA, THAA, and DHAN 

classes were 10.1%, 7.9%, 8.7%, and 17.2%, respectively. All of the distributions were 

strongly right-skewed, that is, skewed toward higher values. The bromide to TOC ratio 

(Br/TOC) associated with each sampling event explained much of the bromine incorporation 

variability for each class, as expected on the basis of previous research (Shukairy et al. 1994; 

Krasner et al. 1996; Symons et al. 1996). Figure 2.2 shows the distributions of THM bromine 

fraction within approximate Br/TOC quartiles, demonstrating the strong trend of increasing 

extent of bromine substitution with higher Br/TOC levels. It is evident from Figure 2.2 that a 

large amount of variation in bromine fraction occurs within the higher Br/TOC ranges, 

indicating that the Br/TOC ratio alone does not fully explain the extent of bromine 

substitution in THMs. Similar patterns were observed for the other three DBP classes 

examined. In laboratory experiments, the degree of bromine substitution in THMs has also 

been found to depend on the ratio between source water bromide and applied chlorine dose 
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(Oliver 1980; Symons et al. 1993, 1996; Krasner et al. 1996b) and on characteristics of 

natural organic matter comprising the TOC (Liang and Singer 2003). These relationships 

were not further examined in the present analysis which centers on interdependencies among 

extents of bromine substitution in different byproduct classes rather than their absolute 

levels. Further work  currently underway will address the influence of water quality and 

treatment factors on extents of bromine substitution in different DBP classes. 
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Figure 2.1   Distributions of bromine fraction in THM, DHAA, THAA, and DHAN classes 
(N = 5858, 5268, 1080, and 4880, respectively) showing 10th, 25th, 50th, 75th, and 90th 
percentiles for each class. 
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Figure 2.2   Distributions of THM bromine fraction for different ranges of Br/TOC (ratio 
between influent bromide and TOC at the first point of chlorine addition) showing 10th, 25th, 
50th, 75th, and 90th percentiles for each range; N = 1524, 1323, 1303, and 802 for increasing 
Br/TOC ranges. 

2.3.2 Relative Extents of Bromine Substitution and InterClass Bromine Fraction 
Correlations  

Although extents of bromine substitution in each DBP class varied widely across the 

data set overall, bromine fractions in the different classes were strongly correlated on a 

sample-by-sample basis. Figure 2.3 illustrates this for a subset of 106 sample records 

covering data for five treatment plants (Group 1). Data were plotted for 5 plants at a time, 

grouped by sequential ID numbers, because this allowed adequate resolution of individual 

observations. The group shown in Figure 2.3 was selected for illustration because it 

encompassed a wide range in bromine fractions for the different DBP classes (due to a wide 

range in bromide levels) and included plants reporting data for all four THAA species. The x-

axis positions in Figure 2.3 and subsequent similar plots correspond to individual water 

samples ordered by plant, sampling period, and sampling location. Figure 2.3a shows 

bromine fraction results for THM and DHAA classes and illustrates the extremely close 

correspondence and near equivalence between extents of bromine substitution in these two 
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classes, for any particular sample. The same sample observations are shown in Figures 2.3a–

2.3c. Figure 2.3b adds results for the THAA class, showing that the extent of bromine 

incorporation in THAAs closely follows that in THMs and DHAAs, at equal or slightly 

lower levels. Adding DHAN results to the plot, Figure 2.3c shows that the correspondence 

between bromine fractions in different classes is maintained with inclusion of a fourth DBP 

class. The samples represented on the far right side of the plots have missing bromine 

fraction results for the DHAA and THAA classes. In contrast to the THAA class, the extent 

of bromine incorporation in DHANs tended to consistently exceed that in THMs and 

DHAAs. These data show how interclass correlations persist among bromine fraction results 

for all four classes examined while levels of bromine incorporation fluctuate widely. Plant 

influent bromide concentrations for these data ranged from 30 to 240 µg/L (median 72 µg/L), 

TOC at the first point of chlorination ranged from 0.4 to 4.1 mg/L (median 2.2 mg/L), and 

Br/TOC ratios ranged from 0.012 to 0.686 mg/mg (median 0.033 mg/mg). The phenomenon 

of interclass bromine fraction correspondence prevailed across the entire data set. Additional 

examples showing data for two more five-plant groups with different water quality 

conditions are provided in Figure 2.4 (Group 2) and Figure 2.5 (Group 3).  
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Figure 2.3   Bromine fraction data for five ICR plants (Group 1) showing all data for (a) 
THM and DHAA classes, (b) THM, DHAA, and THAA classes, and (c) THM, DHAA, 
THAA, and DHAN classes; N = 106, Br 30–240 µg/L (median = 72 µg/L), TOC <0.7–4.1 
mg/L (median = 2.2 mg/L), Br/TOC 0.012–0.686 mg/mg (median = 0.033 mg/mg). 

(a) 

(c) 

(b) 
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Figure 2.4   Bromine fraction data for five ICR plants (Group 2) showing all data for THM, 
DHAA, THAA, and DHAN classes; N = 120, Br <20–120 µg/L (median = 24 µg/L), TOC 
1.5–7.1 mg/L (median = 2.4 mg/L), Br/TOC 0.004–0.036 mg/mg (median = 0.013 mg/mg). 
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Figure 2.5   Bromine fraction data for five ICR plants (Group 3) showing all available data 
for THM, DHAA, THAA, and DHAN classes; N = 109, Br <20–100 µg/L (median = 25 
µg/L), TOC 0.9–3.6 mg/L (median = 2.0 mg/L), Br/TOC 0.003–0.041 mg/mg (median = 
0.041 mg/mg). 
 

The scatterplot array in Figure 2.6 includes results for the entire dataset, plotted to 

illustrate the six possible pairwise associations among the bromine fraction measures for the 
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four DBP classes. Dashed diagonal lines are provided as reference points for equivalence 

between bromine fractions for the class pair and do not signify statistical or modeling output. 

The number of observations (N) and Spearman’s Rank correlation coefficient (SR) specific to 

each bromine fraction class pair are indicated on the individual plots in Figure 2.6. 

Correlation coefficients, ranging from 0.745 to 0.939 for the six pairwise associations, were 

all statistically significant (p < 0.0001). The strongest correlations were observed for the 

THAA class with coefficients of 0.938, 0.939, and 0.862 for associations with THM, DHAA, 

and DHAN classes, respectively. 
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Figure 2.6   Scatterplot array of bromine fraction in four DBP classes showing all data 
(number of observations [N] and Spearman’s Rank correlation coefficient [SR] shown on 
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Empirical distributions of class pair bromine fraction ratios are illustrated with box 

and whisker plots in Figure 2.7. For the class pairs DHAA/THM, THAA/THM, 

THAA/DHAA and DHAA/DHAN median values of bromine fraction ratios were 0.96, 0.79, 

0.80, and 0.60, respectively. This indicates that bromine incorporation in DHAAs tended to 
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be nearly equivalent to that in THMs (96%) whereas bromine incorporation in THAAs 

tended to somewhat lower than in THMs (79%) or in DHAAs (80%). Bromine incorporation 

in DHANs was substantially higher than in any other DBP class examined. As shown in 

Figure 2.7, the median bromine fraction of halogen in DHAAs was only 60% that in DHANs 

or, equivalently, bromine incorporation in DHANs was 167% that in DHAAs at the median 

level. Similarly, bromine incorporation in DHANs was 160% that in THMs at the median 

(not shown in Figure 2.7). Furthermore, DHAN bromine fraction exceeded THM bromine 

fraction in 89% of samples. 
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Figure 2.7   Distributions of ratios between bromine fractions for four class pairs (N = 3627, 
946, 852, 2964 for DHAA/THM, THAA/THM, THAA/DHAA, and DHAA/DHAN, 
respectively). 

2.3.3 Effect of Censored Data Handling 

Measures of absolute and relative extent of bromine incorporation in different DBP 

classes were significantly impacted by the method employed for censored data handling. 

Data shown in Figures 2.1–2.7 reflect use of the Zero censored data replacement method. 
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Figure 2.8 compares empirical distributions of the ratio [THAA_Br/X]/[THM_Br/X] for 

three different censored data replacement methods. Both alternatives to the Zero method 

resulted in higher relative extents of bromine incorporation in THAAs compared to THMs. 

For the Level and Half-MRL methods, median [THAA_Br/X]/[THM_Br/X] values were 

0.88 and 1.17, respectively, compared to 0.79 for the Zero method. The Half-MRL method 

also resulted in much greater variability in [THAA_Br/X]/[THM_Br/X], evidenced by the 

wider interquartile range and more strongly skewed distribution in Figure 2.8. This is 

attributable to the variety of replacement values employed for brominated THAA species in 

the Half-MRL method, compared to fixed replacement values in each of the other methods. 

The median values of [DHAA_Br/X]/[DHAN_Br/X] increased from 0.60 for the Zero 

method to 0.67 for the Level method, a similar effect to that seen for 

[THAA_Br/X]/[THM_Br/X].   The Half-MRL method, yielding a median value of 0.63, had 

much less effect on [DHAA_Br/X]/[DHAN_Br/X] than on [THAA_Br/X]/[THM_Br/X]. 

This is attributable to the lower censored data replacement values and the smaller portion of 

censored data for DHAAs compared to THAAs. 
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3 Below-MRL Handling Methods
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Figure 2.8   Distributions of the ratio between THAA and THM bromine fractions using three 
different methods for censored data replacement: Zero, Level, and Half-MRL. 
 

Given the high MRLs for Br2ClAA (2.0 µg/L) and Br3AA (4.0 µg/L) in the ICR 

database and the fact that greater fractions of sample observations were censored for these 

analytes compared to the corresponding THM species which had MRLs of 1.0 µg/L (see 

Table 2.1), it is reasonable to conclude that uniform replacement of censored concentration 

values with zero imposed a downward bias on THAA bromine fractions compared to THM 

bromine fractions. Conversely, the Half-MRL method probably exerts an upward bias on 

THAA bromine fractions compared to THM bromine fractions because of higher 

replacement values for censored brominated HAA concentrations. For instance, using the 

Half-MRL method, 75% of censored Br2ClAA results were replaced with 1.0 µg/L whereas 

all censored CHBr2Cl results were replaced with 0.5 µg/L. Similarly, 80% of censored 

Br3AA results were replaced with 1.0 µg/L (58%) or 2.0 µg/L (22%) whereas all censored 

CHBr3 results were replaced with 0.5 µg/L. The remaining 25% of censored Br2ClAA results 

and 20% of censored Br3AA results were replaced with 0.5 µg/L. 
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With respect to relative extents of bromine incorporation across byproduct classes, 

the Level method of censored data replacement was expected to remove differential 

censoring bias from comparisons between THM and THAA classes and between DHAA and 

DHAN classes. Although only eight records had measurable concentrations of all THAA and 

THM species, the median value of [THAA_Br/X]/[THM_Br/X] for those records was 0.94, 

closest to that obtained for the whole data set using the Level method for censored data 

handling. This supports the premise that the true ratio between THAA and THM bromine 

fractions is probably closer to 1.0, as it is for the ratio between DHAA and THM bromine 

fractions. Lower estimates may be biased by high MRLs for brominated THAA species and 

the practice of replacing left-censored analytical results with zero values in data analyses. A 

much larger number of records (778) were available with measurable concentrations of all 

DHAA and DHAN species. The median [DHAA_Br/X]/[DHAN_Br/X] value for these 

records was 0.68, in very close agreement with the value of 0.67 obtained for the entire data 

set using the Level method. 

With consideration for censored data handling, this analysis shows that, while extents 

of bromine incorporation in DHAAs, THMs, and THAAs (to a somewhat lesser extent) tend 

to be comparable, significantly more bromine is taken up in DHANs. Censored data 

replacement is shown here to have a nontrivial impact on evaluations of DBP halogen 

composition when data are subject to differential censoring (because of unequal MRLs). In 

an earlier analysis of ICR THM and HAA data, Roberts et al. (2002) used the expectation of 

parallel interclass bromine substitution patterns to develop predictive models for brominated 

THAA species on the basis of measured THM species and Cl3AA concentrations. The 

authors found that ratios between BrCl2AA and Cl3AA sample concentrations (i.e., 
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BrCl2AA/Cl3AA) tended to be equivalent to corresponding THM species ratios for the same 

sample (i.e., CHBrCl2/CHCl3) but that Br2ClAA/Cl3AA ratios were consistently lower than 

corresponding CHBr2Cl/CHCl3 ratios. Negative bias on Br2ClAA concentration values 

stemming from use of the zero censored data replacement approach probably accounted for 

some of the observed differences. 

Pourmoghaddas et al. (1993) and Cowman and Singer (1996) raised the issue of 

relative instability of the brominated THAA species. This may be a contributing factor to 

lower extents of bromine substitution in distribution system THAAs compared to THMs. 

First-order decay rates for THAA species in aqueous solution increase with the number of 

bromine substituents (i.e., Br3AA > Br2ClAA > BrCl2AA) with decay being negligible for 

Cl3AA (Zhang and Minear 2002). Moreover, THAA species decomposition proceeds through 

decarboxylation to yield the corresponding THM species so that bromine fraction loss in the 

THAA class is accompanied by bromine fraction gain in the THM class. For five days 

detention at 23°C, Zhang and Minear’s decay rates translate to approximate losses of 20, 3.5, 

and 0.5% for Br3AA, Br2ClAA, and BrCl2AA, respectively (Zhang and Minear 2002). 

Taking into consideration accompanying increases in brominated THMs and the lower 

typical temperatures (mean 18.8 °C) and estimated detention times (mean 27 h) for the ICR 

samples examined here, it is plausible that brominated THAA decay contributed to the 

somewhat lower extent of bromine substitution in THAAs compared to THMs observed in 

this work and by Roberts et al. (2002). 

With regard to the higher extent of bromine substitution in DHANs compared to 

THMs, DHAAs, or THAAs, one explanation could involve differences in formation kinetics. 

Researchers have established that bromine reacts faster than chlorine in halogen substitution 
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reactions (Oliver 1980; Gould, Fitchhorn, and Urheim 1983; Symons et al. 1996; Westerhoff, 

Chao, and Mash 2004). For most ICR plant-sampling periods under study, bromide 

concentrations were limited relative to other reactants involved in DBP formation (i.e., 

organic precursor levels and applied chlorine dose). Therefore kinetic competition among 

labile halogen substitution sites on organic precursors would influence apportionment of 

available bromine. If DHANs form quickly compared to the other DBP classes they would 

take up more of the limited available bromine. The finding of substantially higher extents of 

bromine substitution in DHANs compared to THMs or HAAs suggests that the presence of 

nitrogen as an activating agent in the aromatic ring structures of organic precursors facilitates 

halogen substitution more so than other activating agents. This is consistent with the findings 

of Reckhow, Singer, and Malcom (1990). 

Results show that the Level method reduced differential bias between bromine 

fraction measures for different DBP classes and thereby allowed for a truer picture of relative 

extents of bromine incorporation across classes. However, because the approach involves 

discarding perfectly good analytical results, it is undesirable for most applications. The Half-

MRL method produced positive bias in THAA bromine fraction and increased its variance 

substantially. Because the remaining analyses discussed here concern interdependence 

among DBP class bromine fraction measures rather than their absolute or relative levels, the 

Zero method for censored data handling was employed to retain precision in the covariance 

structure of the data. The comparison of simple censored data handling methods was 

conducted here primarily as a sensitivity analysis to demonstrate the potential impact such 

handling can have on conclusions drawn from data analysis. This issue, not commonly 

addressed in DBP studies, is especially important  to consider in data analysis involving 



44

classes of DBPs that occur predominantly near reporting limits. More sophisticated 

approaches to filling in censored data may be useful in future studies (Helsel and Gilliom 

1986; El-Shaarawi 1989; Haas and Jacangelo 1993; Liu, Kolpin, and Meeker 1997; Taylor et 

al. 2001; Lubin et al. 2004). 

2.3.4 Multivariate Outlier Detection 

As discussed, the test for multivariate outliers is premised on assumptions of 

normally distributed variables with homogeneous variance. Figures 2.9 and 2.10 illustrate the 

effect of the arcsine transform on conditioning THM bromine fraction data to better meet 

these assumptions (see Equation 2.2). Comparison of the histograms in Figure 2.9 shows that 

the transformation substantially improved the THM bromine fraction distribution insofar as it 

could be better approximated by a normal distribution. Skewness was reduced from 1.98 to 

1.04 and kurtosis was reduced from 3.38 to 1.52. Figure 2.10, which describes distributions 

of THM bromine fraction for sequential deciles of the data, shows how the arcsine 

transformation reduced variance inhomogeneity. In the untransformed data there was a strong 

tendency towards increasing variability at higher bromine fraction values, as evidenced by 

progressively increasing interquartile ranges (represented by the box heights). Although not 

entirely removed, this tendency is reduced in the transformed data which has more consistent 

variability throughout the data range. Similar improvements in data condition, with respect to 

meeting distributional assumptions, through application of the arcsine transformation were 

obtained for the DHAA, THAA, and DHAN class bromine fraction variables. 
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Figure 2.11 provides an example of multivariate outlier detection test results, showing 

transformed bromine fraction data for samples from 5 treatment plants (Group 3). The 

untransformed bromine fraction data for this group of samples were shown in Figure 2.5. 

One sample among the 98 observations, indicated by the star plotting symbol, has a clearly 

discordant DHAA bromine fraction value and was successfully identified as a multivariate 

outlier by the test. The discordant nature of this sample is less clearly evident from graphic 

inspection of the untransformed data in Figure 2.5. The transformation’s pre-multiplier term 

more heavily weights data for samples with higher absolute molar halogen concentrations 
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while the arcsine function magnifies the lower end of the proportion scale (see Equation 2.2). 

This reshaping of the data dampens differences between bromine fraction values for 

extremely low concentration samples, emphasizes differences for higher concentration 

samples, and helps distinguish differences in the low bromine fraction range. Thus, the line 

traces in Figure 2.11 are quite different than for the corresponding untransformed data in 

Figure 2.5. Most notably, the line trace for THM has moved up, due to higher absolute 

concentrations, that for DHAN has moved down, due to much lower absolute concentrations, 

and the discordant DHAA value stands out more prominently. The discordant point was 

identified as an outlier in both the three-way multivariate outlier test involving THM, 

DHAA, and DHAN and in the two-way test involving THM and DHAA. However, it was not 

identified as an outlier in the two-way test involving DHAA and DHAN, probably because 

the large amount of scatter in DHAN bromine fraction rendered this test less sensitive. 

Inspection of species data for the identified sample revealed a reported BrClAA result (35.0 

µg/L) that was an order of magnitude higher than reported BrClAA concentrations for the 

other four samples from the same plant/sampling period (range 5.1-6.7 µg/L). No other DBP 

species’ results for the sample in question were unusual compared to corresponding data for 

other samples from the same plant/sampling period. The anomalous result was assumed to 

reflect a decimal place data entry error (i.e., the analytical result was probably 3.5 µg/L). 

Additional examples of the use of the arcsine transform and multivariate outlier detection test 

for identifying discordant values are presented in Appendix A (Obolensky and Singer 2005, 

Supplemental Information). 
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Figure 2.12 provides an overview of multivariate outlier test results. Included are 

scatterplots of transformed bromine fraction data for DBP class pairs (DHAA vs. THM, 

THAA vs. THM, THAA vs. DHAA, and DHAN vs. THM), showing all sample observations 

with identified multivariate outliers circled. The plots show that the majority of identified 

outliers were points in the periphery of the data cloud, indicating that the method was 

successful at capturing observations manifesting discordancy with respect to interclass 

bromine substitution patterns. Because such plots can only show two class-dimensions at a 

time, some outlier points may fall within the expected distribution (the data cloud) because 

they were discordant with respect to a DBP class not shown on that particular plot. For 

example, there are five THM bromine fraction values in the plot of DHAN vs. THM (lower 

left quadrant) that fall within the data cloud (points labeled a through e in Figure 2.12). 
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However, these samples were outliers based on discordancy between THM and DHAA 

bromine fraction values, not between THM and DHAN bromine fraction value. The five 

points can be found in the periphery of the data cloud in the plot of DHAA vs. THM (upper 

left quadrant). This is a shortcoming of the two-dimensional data presentation. 
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Overall, 48 of the 6,565 sample observations in the data set were identified as outliers 

in this analysis. Reported species concentration data for these samples were carefully 

reviewed in the context of concurrent data for the same plant/sampling period, as exemplified 
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by discussion of Figure 2.11. Twelve of these observations were associated with extreme 

values of transformed THM bromine fraction for samples having elevated THM 

concentrations dominated by brominated species but negligible concentrations of other 

measured DBPs. Half of these samples were from a single water utility. These 12 

observations are not indicated as outliers in Figure 2.12. Of the remaining 36 identified 

outliers, 7 were associated with lower than expected DHAA bromine fraction values in 

samples with low DHAA concentrations and censored data for brominated DHAA species. 

These results may be related to DHAA degradation. Fourteen identified outliers were 

associated with fairly obvious data entry errors such as misplaced decimal points or 

interchanged species entries. The remaining 15 outlier samples had one or more DBP species 

with an anomalously high or low concentration value that would suggest a need for 

chromatogram review. Finally, graphic inspection of all results in the form of plots similar to 

Figure 2.11 indicated that six observations exhibiting discordancy with respect to interclass 

bromine substitution patterns were not identified by the outlier tests. 

The finding that patterns of bromine substitution in different DBP compound classes 

are highly correlated has important implications for DBP research beyond its potential 

applicability for quality assurance data review purposes. Given that these patterns were found 

to be consistent across all four compound classes examined here, it is likely that they extend 

to other DBP classes such as haloketones, halopicrins, haloacetaldehydes, and halofuranones 

(MX and brominated homologues) where brominated species are not routinely measured. 

Indeed, earlier studies have noted correspondences between species with analogous halogen 

substitution in different DBP classes. Using data from a field survey Krasner et al. (1990) 

noted that dihaloacetic acid concentrations correlated with chloroform concentrations but not 
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with any other of the THM species. Suzuki and Nakanishi (1995) observed good correlation 

between analogous compounds in the THM and trihalo-5-hydroxy-2(5H)-furanone (i.e. MX 

and BMX1-3) classes. Onstad (2003) found brominated HAAs, but not brominated THMs, to 

be good predictors for brominated furanones. The high degree of interdependence between 

extents of bromine substitution in different DBP classes indicates the presence of much 

redundant information in the set of discrete concentration measurements for individual 

species. The current work demonstrates how this phenomenon can be applied to augment 

traditional QA/QC procedures through the identification of discordant samples for further 

analytical review. Many other applications relevant for water treatment and health effects 

studies can be envisioned, including development of predictive relationships for DBP species 

that are difficult to measure, and optimization of monitoring strategies. For example, for 

certain objectives, measurement results for a limited subset of species from a group of DBP 

compound classes might provide aqequate information about concentration levels of all 

members of the classes. 



CHAPTER 3: INFORMATION COLLECTION RULE DATA EVALUATION AND 

ANALYSIS TO SUPPORT IMPACTS ON DISINFECTION BY-PRODUCT 

FORMATION 

 

3.1 BACKGROUND AND INTRODUCTION 

The Information Collection Rule (ICR) was designed to obtain water quality, water 

treatment, and occurrence information needed for development of Safe Drinking Water Act 

regulations governing control of pathogenic microorganisms and disinfection by-products 

(DBPs) in drinking water (U.S. EPA 1994a,b, 1996a). The rule required all large public 

water systems in the United States (those serving populations of 100,000 or more) to report 

sampling results for water quality and microbiological and DBP parameters, and to provide 

detailed information about treatment plant design and operations. The 296 affected utilities, 

ranging across 49 states and territories, reported ICR data from 500 water treatment plants 

and their source waters and distribution systems for 18 monthly monitoring periods from July 

1997 through December 1998. Additional data from DBP precursor removal studies (U.S. 

EPA 1996a, 2000c; Hooper and Allgeier 2002; DiGiano and Bond 2004) and protozoan 

method performance studies (Connell et al. 2000; Messner and Wolpert 2002) augment ICR 

monitoring results. 

Preparation for and implementation of the ICR was a very large and complex 

undertaking on the part of the U.S. Environmental Protection Agency (U.S. EPA), the 
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American Water Works Association, participating utilities, and analytical laboratories. 

Extensive requirements governing sample collection, analytical methods, laboratory 

certification, and quality control applied to data collection and reporting activities. The ten 

guidance manuals and five instructional videos published by the U.S. EPA for ICR 

implementation reflect the effort involved (Wysock et al. 2002). A data acquisition and 

reporting system was designed to ensure that validated ICR data met rigorous quality 

assurance standards developed for the program. The overall process involved data 

submission and validation, U.S. EPA summary report generation, utility and laboratory 

review of summary reports, and resubmission to correct errors. These review cycles 

controlled data entry and omission errors to the extent feasible. Validated ICR data were 

housed in a centralized Oracle database system (ICR Fed) (Oracle Corporation, Redwood 

Shores, CA) and a primary auxiliary Microsoft Access database (Aux 1) (Microsoft 

Corporation, Redmond WA) was subsequently developed to facilitate ICR data retrieval and 

analysis by the public (U.S. EPA 2000b). Fair et al. (2002) discuss the quality assurance 

program for ICR analytical data and present precision and accuracy results for chemical 

analytes. 

ICR sampling locations included treatment plant influents, points immediately 

downstream of treatment train unit processes, finished waters, entry points to the distribution 

system for blended systems (i.e., systems with water blended from different plants), and 

distribution system sites. ICR samples and plant information were collected monthly unless 

stated otherwise. Finished water samples were collected at a point after all treatment 

processes were complete, including clearwell storage and the final point of disinfectant 

addition. Standard water quality variables (pH, alkalinity, hardness, temperature, and 
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turbidity), total organic carbon (TOC), ultraviolet absorbance at 254 nm (UV254), and 

residual disinfectant concentrations were monitored at plant influents and key points through 

treatment plant process trains, depending on process configurations and disinfectant addition 

points. Bromide and ammonia were also monitored at treatment plant influents. DBP samples 

were collected quarterly at filter effluent locations if chorine was added upstream, at all 

finished water locations, at points of entry to the distribution system (for blended systems), 

and at four distribution system locations for each treatment plant. Standard water quality 

variables and free and total chlorine were monitored concurrently at all DBP sample 

collection points.  

For each unit process, the basin (or pipe) volume and flow rate for the sampling date 

were reported together with the identity, formula, and dose of any chemicals or disinfectants 

added. Sequence numbers associated with each unit process indicated the upstream-

downstream order of processes in each treatment train. Additional reported plant and utility 

information included influent and effluent flow rates, wholesale and retail population served, 

flow and type of any additional waters blended into the treatment train after the influent, 

sludge processing data, and information about the water resources serving the plant intakes. 

The ICR provides the largest comprehensive drinking water database collected to 

date. It represents water quality, treatment, and distribution system characteristics across a 

nationally representative set of source waters, treatment plants, and distribution conditions 

for the 1997–1998 monitoring period. ICR data were used extensively to support 

development of the Stage 2 Disinfection Byproducts Rule and the Long Term 2 Enhanced 

Surface Water Treatment Rule through construction of treatment and occurrence baselines 

for regulatory impact forecasting (U.S. EPA 2000a; Scharfenaker 2001; U.S. EPA 2006a,b). 
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McGuire, McLain, and Obolensky (2002) report on the data analyses conducted for that 

effort. 

The work reported herein is part of a study being conducted to extract and analyze 

valuable and previously untapped information about DBPs from the ICR database. The large 

scale of the database, together with the rigor and consistency of quality assurance standards 

and analytical methodologies employed for data collection, render the data especially suitable 

for a statistically based analysis of observational data. A thorough study of these data is 

expected to contribute to an improved understanding of DBP formation and occurrence and 

the effects of water quality characteristics and treatment practices on DBP formation under 

field conditions. This information should help utilities better evaluate control strategies that 

limit overall DBP formation, as well as the formation of selected DBPs, and assist them in 

complying with regulations and reducing consumer exposure to DBPs. Because ICR source 

waters, treatment plants, and distribution systems capture the spectrum of conditions across 

the United States, results of this study should be relevant and useful for a wide audience of 

utilities, consultants, and regulatory agencies. 

3.2 OBJECTIVES 

The primary objectives of this paper are to present sampling distributions for 

important water quality and treatment parameters influencing DBP formation, and to provide 

documentation of ICR data handling and analysis methods in support of this objective. This 

characterization of the database was needed for ongoing statistical analysis of 

interrelationships among the data and should be of general benefit to investigators utilizing 

these data. For example, Obolensky and Singer (2005) provide an analysis of ICR DBP 

halogen speciation patterns and Archer and Singer (2005) address relationships between 
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source water quality and the removal of TOC and UV absorbing substances. ICR DBP 

occurrence data are not presented here but have been summarized, along with 

microbiological data and other ICR information, in McGuire, McLain, and Obolensky 

(2002). 

Underlying this characterization of the ICR database are results of data-screening and 

review efforts conducted from an end-user’s perspective. Confidence in conclusions drawn 

from analysis of any data set depends on the soundness of the database and the transparency 

of data-handling and analysis methodologies. Despite the extensive ICR quality assurance 

program, the sheer quantity of ICR descriptive information and analytical results suggests the 

inevitability that some of these data may be faulty. For example, utility data entry errors that 

remained uncorrected during the formal ICR data review processes generally were beyond 

the control or remedy of database management or technical intervention. Anomalous data 

entries, occasionally encountered in the course of this study, had the potential to distort 

analysis results. Additionally, some missing data appeared to be recoverable. Hence, a 

secondary objective of the current research was to systematically review DBP-related water 

quality and treatment data in order to identify, flag, and possibly correct outliers or missing 

results in a rational and justifiable manner before conducting further analyses. This additional 

quality assurance effort allows subsequent analyses of ICR data to be based on the best 

possible data set and avoids conclusions based on faulty or incomplete data. Methodologies 

employed for this review are documented here together with the findings. 

3.3 ANALYSIS PROCEDURES 

ICR data were obtained from the U.S. EPA Auxiliary 1 Database Version 5.0 (Aux 1, 

U.S. EPA 2000b). The “AUX 1 Tables/Entity Types Details Report,” included in the 
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database, documents the requirements involved in populating Aux 1, the public database, 

from validated data in the original Oracle data repository, ICR Fed. Data from Aux 1 tables 

were joined to create an analytical data set of ICR treatment plant process train and water 

quality information for export to and subsequent analysis in the SAS software environment 

(SAS Institute, Cary, N.C.). The analytical data set was modified (see the following) to 

enable use of censored data (analytical results below the minimum reporting level, or MRL) 

and to reflect data screening and review efforts undertaken for the current research. 

Because statistical distributions for many water quality variables tend to be lognormal 

and/or strongly positively skewed, logarithmic plotting scales are employed here and the 

median is used to characterize central tendency (mean values are provided in tabular 

summaries to permit comparisons with other data sets). Box and whisker plots, used to 

illustrate and compare data distributions, indicate the median (central horizontal line), 

interquartile range (25th–75th percentile, box boundary), 10th percentile (lower whisker) and 

90th percentile (upper whisker) values, with results outside the 10th–90th percentile levels 

shown as discrete points.  

Analysis of variance (ANOVA) methods were used to test hypotheses about 

population means of water quality and treatment variables among different data subgroups 

defined by levels of classification variables (e.g., source water type, disinfectant type, etc.). 

Because ICR data are generally unbalanced (i.e., numbers of observations differ among 

subgroups), least-squares means were used in comparisons for multiway ANOVA tests. The 

Tukey-Kramer multiple comparison adjustment for p values was used when more than one 

pair of means was compared in a particular analysis (SAS Institute 1999). With the exception 

of pH, ANOVA was conducted on log-transformed response variables in order to better meet 
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the method’s assumption of normally distributed data. The nonparametric Spearman’s rank 

correlation on untransformed data was used to measure correlation where needed. 

3.3.1 Censored Data 

Aux 1 analytical results that were below the MRL were replaced with one-half the 

ICR analyte-specific MRL value (MRLs are listed in the Aux 1 table “TUXANLYT” and 

discussed in U.S. EPA 1996b). Accordingly, below MRL results for bromide, TOC, and 

UV254 (represented by “−999” in Aux 1) were replaced with 0.01, 0.35 mg/L, and 0.0045 

cm-1, respectively. TSUVA (L mg−1 m−1 units), a variant of specific ultraviolet absorbance 

(SUVA) using TOC in place of dissolved organic carbon (because the latter parameter was 

not measured as part of the ICR program), was derived as 100×UV254/TOC. ICR MRL 

values for chlorine residual and ammonia concentrations were not specified as such but the 

data entry software did not allow input of numbers below 0.1 mg/L. Censored values for 

these analytes (i.e., values <0.1 mg/L), represented by “−333” entries in Aux 1, were 

uniformly replaced with 0.05 mg/L in the analytical data set, following the half-MRL 

approach used for other analytes and treating the minimum 0.1 mg/L entry as the MRL. 

3.3.2 Process Train Logic 

Several treatment parameters related to DBP formation were derived using SAS data 

step programming logic. At the unit process level, these parameters included hydraulic 

residence time (HRT) and process effluent chlorine residual concentration. Theoretical HRT, 

in minutes, was calculated as V/(694.44×Q) using reported process volume (V, in gal.) and 

flow rate (Q, in million gallons per day, or MGD) data. In the case of missing or zero-valued 

data for volume (less than 0.5% of records), HRT was set equal to the reported T50 value 



60

(the time required for 50% of the water to pass through the basin in question). For unit 

processes downstream of chlorine or ammonia addition, chlorine contact time was set equal 

to the HRT and the associated chlorine residual concentration was determined as the nearest 

available downstream result prior to further disinfectant or blended water addition. 

Derived parameters at the plant/month level included: prechlorination practice (yes or 

no); number of chlorine addition points; water quality results at each point of chlorine 

addition; influent bromide/TOC ratio (mg Br/mg TOC); bromide/chlorine ratio (mg Br/mg 

Cl2, using first chlorine dose); total chlorine dose; chlorine/TOC ratio (mg Cl2/mg TOC, 

using total chlorine dose and TOC concentration at the first chlorination point); total 

ammonia dose; chlorine/ammonia ratio (mg Cl2/mg N, using first ammonia dose and sum of 

existing free chlorine residual and concurrent chlorine dose, if necessary, at the point of 

ammonia addition); and overall disinfection category (see the following). A plant-month was 

classified as practicing prechlorination unless a clarification process preceded the first point 

of chlorine addition. Flocculation, sedimentation, filtration, and the use of solids contact 

clarifiers, adsorption clarifiers, membrane filtration, slow sand filtration, and granular 

activated carbon filtration were considered clarification processes for this purpose. Nine 

overall disinfection categories were determined on the basis of Aux 1 categories for 

treatment plant disinfection type (WTP_DIS: CL2=free chlorine; CL2_CLM=free chlorine 

and chloramines; CLM=chloramines; CLX=chlorine dioxide; or O3=ozone) and distribution 

system disinfection type (DS_DIS: CL2 or CLM), with consideration for whether ozone and 

chlorine dioxide plants also used free chlorine during treatment. 
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3.3.3 Data Screening 

The data review conducted for this work addressed both questionable and missing 

records, encompassing Aux 1 monthly plant and treatment data, and water quality results for 

influent through finished water samples. Questionable data were flagged and missing data for 

categorical variables were replaced (see the following) with appropriate values where 

possible. In a few cases questionable numerical data were replaced with corrected values 

using methods described in the Results section. Resulting flags, replacement values, and 

explanations were compiled in a project quality assurance table. 

Due to the presence of a few unrealistically high reported bromide concentrations, all 

bromide results from plants having any bromide result above 1 mg/L were screened. TOC 

data were examined for all plant/months where reported TOC concentration at the first point 

of chlorine addition was ≥1 mg/L higher than at the plant influent. Similarly, UV254 data 

were examined where this difference exceeded 0.5 cm-1. Aux 1 values for both UV254 and 

TOC are averages of reported duplicate sample results and validated ICR data had to meet a 

20% sample pair relative percent difference limit for these analytes. Assuming this would 

reduce the chance of utility data entry error, anomalous Aux 1 data for these parameters were 

flagged only in cases of extreme discrepancy. All Aux 1 pH results below 4.0 or above 11.0 

were examined to determine their plausibility. pH values below 2.0, considered implausible 

for full-scale treatment, were flagged. Otherwise, results were compared with upstream and 

downstream values, and with results for the same location in other sampling periods. Unit 

process flow and volume records were screened as a quality assurance measure for derived 

chlorine contact time estimates. For each distinct process at each plant, the relative ranges for 

flow and volume were calculated as (maximum value - minimum value)/(average value). 
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Data were examined further if the relative range for flow or volume exceeded 1.0 for a unit 

process. 

Null (missing) values for categorical variables describing source water type 

(MSRC_CAT), plant disinfectant type (WTP_DIS), and distribution system disinfectant type 

(DS_DIS) were traceable to deviations from various Aux 1 requirements for underlying 

primary information. Appropriate replacement values for these entries could usually be 

determined with confidence based on underlying water resource and process information. 

Additionally, some Aux 1 WTP_DIS and DS_DIS entries that were incorrect due to faulty 

underlying disinfectant process information were replaced with corrected values. Data were 

also examined wherever MSRC_CAT, WTP_DIS, DS_DIS, or MWTPTYPE (treatment plant 

type) values varied across the 18-month ICR period for an individual plant. 

Graphical analysis was used to aid in reviewing water quality and treatment 

information. Plots of monthly data were scanned for unusual fluctuations in water quality or 

disinfectant dose across sampling months and data were examined more closely as needed. 

Plots of individual plant/month data, illustrating patterns of water quality data and 

disinfectant doses through the process train, were used to assess data consistency within and 

between sampling months. 
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3.4 RESULTS 

3.4.1 Data Screening 

Results of the data screening and review effort are summarized in Table 3.1, which 

lists the total number of Aux 1 records and the number and percent of entries flagged or 

replaced for each parameter considered. 

Table 3.1   Aux 1 Data Screening and Review Results 

Parameter 
Number of 

Aux 1 
records 

Number of 
records 

replaceda

Number of 
records 
flaggedb

% of 
records 
affected 

Bromide 8,720 12 — 0.13 
pH 50,350 — 20 0.04 
TOC 31,895 — 37 0.12 
UV254 31,930 1 32 0.10 
MWTPTYPE 8,953 3 — 0.03 
MSRC_CAT 8,953 482 — 5.4 
WTP_DIS 8,953 1,797 — 20.1 
DS_DIS 8,953 227 — 2.5 
Chlorine dose 14,489 — 296 2.0 
Ammonia dse 3,030 — 25 0.8 
Residual free Cl2 30,139 — 164 0.5 
Residual total Cl2 31,490 — 101 0.3 
Unit process volume 39,595 — 217 0.5 
Unit process flow 43,000 — 491 1.1 
aMissing or questionable value replaced in analytical data set. 
bValue tagged as questionable in analytical data set. 

 

Very few data were flagged for bromide, TOC, UV254, or pH. Seven questionable 

bromide results for one plant were replaced after determining that decimal placement data 

entry errors had been made (this was verified with utility personnel at the plant in question). 

Five additional bromide results from four other plants were replaced based on decimal 

placement data entry errors. Flagged TOC and UV254 results involved substantial and 
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implausible increases or decreases in the parameter value across a treatment train for a 

plant/month or across sampling months at the same plant. For example, a plant having 

flocculation tank effluent TOC concentrations typically in the 2−3 mg/L range reported 30 

mg/L at this location in one month, although influent TOC was below 5 mg/L. In another 

case, an extremely high flocculation tank effluent UV254 result of 0.810 cm-1, far outside the 

expected range for this parameter, was five times greater than the plant influent result. 

Besides the 14 pH results below 2.0, six other pH results were flagged based on 

inconsistencies with data for upstream/downstream samples or with samples for the same 

location in other sampling periods. 

As indicated in Table 3.1, replacement values were determined for substantial 

numbers of MSRC_CAT and WTP_DIS entries (5 and 20% of ICR records, respectively). 

These were mostly replacement of missing values. Some corrections to WTP_DIS (42) and 

DS_DIS (51) entries were made after discovering errors in process train disinfection 

information. Three MWTPTYPE values of “OTH” (other) for one treatment plant were 

corrected after verifying with the plant that the same conventional process was used 

throughout the ICR period. 

Reasons for flagged flow and volume data included apparently mistaken loss or gain 

of digits in data entry, substantial change in the process flow across plant-months without 

corresponding change in volume (or vice versa), intermittent zero flow entry for a major 

process with normal volume entry (or vice versa), and unit process flow values substantially 

higher than a plant’s finished water flow for the same month. Unit process flow and volume 

data were employed to estimate chlorine contact times. Less than 1% of calculated chlorine 

contact times for unit processes downstream of chlorine addition were affected by flagged 
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flow or volume records. Reasons for flagging chlorine and ammonia dose and chlorine 

residual records included large discrepancies in doses across sampling months at a given 

plant (e.g., 50 mg/L Cl2 at a plant normally dosing 5 mg/L), chlorine doses of zero reported 

with concurrent measurable downstream chlorine residual levels for processes where a plant 

normally applied chlorine, and anomalous chlorine residual patterns across treatment trains 

within a given plant/month. Overall, 2% of chlorine dose values and less than 1% of 

ammonia dose values and chlorine residual measurements were flagged (see Table 3.1). 

3.4.2 ICR Data Summary 

ICR data discussed in the remainder of this paper reflect the above-described review 

effort. Statistical analyses and data summaries are based on an analytical data set that 

excludes flagged records and incorporates replacement values as noted in Table 3.1.  

3.4.2.1 Influent Water Quality 

Influent water quality data for TOC, bromide, UV254, and TSUVA are summarized 

in Table 3.2. Side-by-side box and whisker plots in Figure 3.1 show distributions of TOC 

results after grouping data by source water type (Figure 3.1a: “GW” for ground water and 

“SW” for surface water) and type of secondary disinfectant (Figure 3.1b: “CL2” for free 

chlorine, “CLM” for combined chlorine). Surface water sources (N = 5429) had significantly 

higher TOC concentrations than ground water sources (N = 1941; p <0.0001). Fifty-five 

percent of influent sample TOC concentrations were below the MRL of 0.7 mg/L for ground 

waters, compared to less than 2% for surface waters. Conversely, only 21% of ground water 

TOC concentrations exceeded 2.0 mg/L, compared to 71% for surface waters. However, the 

distribution of influent TOC data for ground waters was skewed such that extreme values 
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(>10 mg/L) were actually more prevalent in ground waters (5.4%) than in surface waters 

(1.3%). It is noteworthy that these very high ICR ground water TOC sources were all in the 

State of Florida. 
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Table 3.2 Summary of Influent Water Quality
TOC (mg/L as C) Bromide (mg/L) UV254 (cm-1) TSUVA (L/mg m)

Category N Mean Median N Mean Median N Mean Median N Mean Median

All Categories 7,522 2.82 2.35 7,981 0.072 0.035 7,536 0.088 0.060 6,873 2.91 2.54

Sourcea

GW 1,941 1.83 0.35 2,137 0.103 0.065 1,915 0.061 0.012 1,759 2.74 1.75

SW 5,429 3.18 2.65 5,772 0.060 0.030 5,472 0.097 0.073 4,980 2.97 2.63

Residualb

CL2 5,146 2.04 1.85 5,479 0.051 0.029 5,136 0.060 0.041 4,681 2.81 2.33

CLM 2,375 4.53 3.60 2,501 0.117 0.073 2,399 0.147 0.102 2,191 3.11 2.83

Source Residual

GW CL2 1,644 0.81 0.35 1,806 0.086 0.050 1,612 0.022 0.005 1,486 2.63 1.29

CLM 297 7.47 8.00 331 0.195 0.140 303 0.272 0.321 273 3.38 3.42

SW CL2 3,414 2.62 2.35 3,638 0.034 0.021 3,439 0.078 0.056 3,112 2.90 2.54

CLM 2,014 4.15 3.50 2,133 0.105 0.061 2,032 0.130 0.098 1,867 3.09 2.79

Residual Pre-Cl2
c

CL2 Yes 3,524 1.63 1.50 3,802 0.056 0.030 3,564 0.048 0.032 3,245 2.74 2.13

No 1,517 3.01 2.70 1,624 0.040 0.027 1,472 0.091 0.074 1,338 2.99 2.65

CLM Yes 1,558 3.56 3.18 1,655 0.115 0.071 1,584 0.112 0.088 1,441 3.04 2.70

No 775 6.54 4.95 817 0.121 0.076 781 0.221 0.142 716 3.30 3.08
aData with source type “MIX” or “PUR” (purchased finished water) not included.
b1 plant/month could not be classified.
c148 plant/months could not be classified.
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Figure 3.1   Box and whisker plots of influent TOC concentrations subset by major source 
water type (a) and type of secondary disinfectant (b) 

ICR data indicate that influent TOC levels strongly impacted disinfection practices. 

As illustrated by Figure 3.1b, TOC levels were significantly lower at plants using free 

chlorine for secondary disinfection (N = 5146; median TOC = 1.85 mg/L) than at plants 

using chloramines (N = 2375; median TOC = 3.60 mg/L) (p <0.0001). Chloramine use was 

uncommon with influent TOC concentrations below 2.0 mg/L (only 252 out of 3,025 

plant/months) but almost universal where influent TOC concentrations exceeded 10 mg/L 

(170 out of 176 plant/months). Virtually all ground water plants with even moderate TOC 

concentrations used chloramines for secondary disinfection. For ground water plants using 

(a) (b) 
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free chlorine, influent TOC concentrations were below 2 mg/L in more than 90% of 

plant/months whereas the median TOC concentration for ground water plants using 

chloramines was 8 mg/L. Overall, the median ICR plant influent TOC level was 2.35 mg/L 

and chloramines were used in 32% of ICR plant/months (see Table 3.2). 

The practice of prechlorination was also associated with influent waters having lower 

TOC levels. Distributions of influent TOC concentration for prechlorinating and 

nonprechlorinating plants are compared in Figure 3.2 which plots data separately for all 

plants (Figure 3.2a), plants using free chlorine as a secondary disinfectant (Figure 3.2b), and 

plants using combined chlorine as a secondary disinfectant (Figure 3.2c). Influent TOC levels 

were significantly lower at plants practicing prechlorination than at plants applying the first 

chlorine dose downstream of a clarification process. This was true for the data set overall, for 

free chlorine and combined chlorine plants considered separately, and for ground and surface 

water plants considered separately (p <0.0001 in all cases) (see Table 3.2). Overall, the 

median influent TOC concentration was 2.0 mg/L for prechlorinating plants, compared to 3.2 

mg/L for nonprechlorinating plants. Prechlorination was practiced in 69% of ICR 

plant/months overall, but only in 22% of plant/months with very high TOC concentrations 

(>10 mg/L). However, all of these prechlorinating high-TOC plants used chloramines for 

secondary disinfection and almost half also used either chlorine dioxide or ozone in the 

treatment plant (compared to <5% of nonprechlorinating high-TOC plants). 
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Figure 3.2   Box and whisker plots of influent TOC concentrations for all plants (a), plants 
using free chlorine for secondary disinfection (b) and plants using combined chlorine for 
secondary disinfection (c), with data in each group subset by prechlorination practice 

As an indicator of organic DBP precursor concentration, TOC is a key factor 

influencing disinfection practices. Effective DBP control requires limiting free chlorine 

contact with DBP precursors, and thus regulations include mandated precursor removal 

levels in the treatment plant. The data in Figures 3.1 and 3.2 show that, in order to limit DBP 

formation, plants with higher TOC concentrations tend to use combined chlorine as a 

secondary disinfectant and/or must practice chlorination downstream of clarification, after 

appreciable TOC has been removed. In an earlier analysis of ICR data addressing the 

(b) (a) (c) 
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prevalence of alternative disinfectant use in relation to both source water TOC and bromide 

levels, McGuire and Hotaling (2002) demonstrated some trends similar to those observed 

here. Chen and Regli (2002) also noted the general dependence of ICR disinfectant use on 

source water quality. 

Figure 3.3 illustrates distributions of influent bromide concentration data according to 

source water type (Figure 3.3a) and secondary disinfectant type (Figure 3.3b). Ground waters 

had significantly higher bromide concentrations than surface waters (p <0.0001), with 

median values of 0.065 and 0.030 mg/L for ground and surface waters, respectively (see 

Table 3.2). Bromide concentrations exceeding 0.1 mg/L were twice as prevalent in ground 

waters (33%) than in surface waters (15%), though the highest bromide concentration, 2.23 

mg/L, was observed in a surface water impoundment. Higher influent bromide levels were 

also seen at plants using chloramines for residual disinfection (median 0.073 mg/L) 

compared to plants using free chlorine (median 0.029 mg/L), and this difference was 

statistically significant for the data set overall and for both ground and surface water plants 

considered separately (p <0.0001 in all cases). Thus, the data indicate that, in addition to 

organic DBP precursor level, source water bromide level influences secondary disinfection 

practices. This was also observed by McGuire and Hotaling (2002). Like TOC, bromide is a 

key DBP precursor, so contact of free chlorine with waters containing high concentrations of 

bromide in the presence of organic precursors must be limited in order to maintain regulatory 

compliance. Hence, waters with elevated bromide concentrations are more likely to use 

combined chlorine as a secondary disinfectant, as evidenced by Figure 3.3b. It should be 

noted that, although bromide and TOC data have opposing tendencies with respect to source 

water type, the two parameters are uncorrelated (Spearman correlation coefficient = 0.148). 
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Thus, their influences on disinfection practices can be considered to be independent and 

additive. 
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Figure 3.3   Box and whisker plots of influent bromide concentrations subset by major source 
water type (a) and type of secondary disinfectant (b) 

Unlike the pattern observed for TOC, there was little difference in bromide levels on 

the basis of prechlorination practice (see Table 3.2). The difference was marginally 

significant for ground water plants (p = 0.027) and for plants using chloramines (p = 0.010), 

with lower bromide concentrations at prechlorinating plants in each of these subgroups, but 

not significant for plants using surface water or plants using free chlorine. This makes sense 

(a) (b) 
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because clarification processes, which are capable of removing appreciable amounts of TOC, 

generally have no effect on bromide concentrations, and thus high bromide levels alone 

would not be expected to influence prechlorination practices.  

As illustrated by Figure 3.4, higher bromide concentrations coupled with lower TOC 

concentrations translated to significantly higher Br/TOC ratios for ground waters compared 

to surface waters (p <0.0001). The median Br/TOC ratio for ground waters (0.085 mg/mg) 

was almost an order of magnitude higher than that for surface waters (0.011 mg/mg). This is 

important from the standpoint of formation and occurrence of individual brominated DBP 

compounds because the Br/TOC ratio strongly influences the extent of bromine substitution 

in DBPs (Symons et al. 1993, 1996; Shukairy and Summers 1996; Obolensky and Singer 

2005). Although ground waters generally have lower TOC concentrations than surface 

waters, they may in some cases yield higher concentrations of certain brominated DBP 

compounds due to their much higher Br/TOC ratios. Br/Cl2 ratios (not shown) exhibited 

patterns similar to those found for Br/TOC except that the contrast between ground and 

surface water data was less pronounced. The median Br/Cl2 ratio for ground waters was 

0.030 mg/mg, compared to 0.013 mg/mg for surface waters. 
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water type 

Patterns of influent UV254 data were very similar to those observed for TOC with 

respect to source water type and disinfection practices (see Table 3.2). This is not surprising 

considering that UV254 absorbance, like TOC concentration, is a good indicator, perhaps 

better, of DBP formation potential (Croue et al. 1999; Liang and Singer 2003). UV254 

absorbance values for ground waters, free chlorine plants, and prechlorinating plants were 

substantially lower than for surface waters, combined chlorine plants, and nonprechlorinating 

plants, respectively, with all differences statistically significant at the 0.001 level. 
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Influent TSUVA values differed to a much lesser extent with respect to source water 

type and disinfection practices than did corresponding absolute TOC and UV254 values (see 

Table 3.2). There was no statistically significant difference between influent TSUVA levels 

for ground and surface waters. Slightly lower TSUVA levels at free chlorine plants, 

compared to chloramine plants, were statistically significant at the 0.0001 level. Differences 

with respect to prechlorination practice were statistically significant for free chlorine plants, 

with slightly lower TSUVA levels at prechlorinating plants compared to nonprechlorinating 

plants (p <0.0001), but not for plants using postchloramination (see Table 3.2). Thus, the data 

indicate that, on a nationwide basis, NOM characteristics, as measured by TSUVA, are less 

of a driver for disinfection choices than the absolute TOC concentration or UV254 

absorbance. 

3.4.2.2 Treatment Information 

Chlorine and ammonia doses were analyzed from several standpoints, including 

number of chlorine addition points, pH at the first point of chlorine addition, total applied 

chlorine and ammonia doses, Cl2/TOC ratio, Br/Cl2 ratio, and Cl2/N ratio. Free and combined 

chlorine contact times and residual concentrations were examined up to the point of entry to 

the distribution system (finished water). Chlorine dose data were available for 7236 

plant/months, encompassing 422 ICR treatment plants. Plants without chlorine dose 

information usually had no process train information and were of the type categorized in Aux 

1 as disinfected ground water (“DIS/GW”), unfiltered surface water (“UNFILT/SW”), or 

disinfected purchased finished water (“DIS/WHSALE”). These plants, including almost half 

of the ICR plants served by ground water (57 out of 132), are not represented in any analyses 

addressing disinfectant dose or other process train data. 
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Total applied chlorine dose results are summarized in Table 3.3. The overall median 

total chlorine dose was 3.6 mg/L, with a dose of 7.5 mg/L or less employed in 90% of ICR 

plant/months. Up to four points of chlorine addition were used at ICR treatment plants, one 

or two locations being the most common pattern. Overall, the fractions of plant/months 

having one, two, three, or four applied chlorine locations were 36, 52, 11, and 1%, 

respectively, and there was no meaningful difference between these frequencies on the basis 

of secondary disinfectant type. Total chlorine dose increased significantly with the number of 

dosing points in plants using free chlorine as a secondary disinfectant but not in plants using 

combined chlorine for secondary disinfection. 



77

Table 3.3 Summary of ICR Plant/Month Chlorine Doses by Disinfection Practices

Total chlorine dose (mg/L as Cl2)
[Total Cl2 dose]/[TOC]

(mg Cl2)/(mg C)
Cl2/NH3 (mg Cl2/mg N)b

Category N plants a N Mean Median N Mean Median N Mean Median

All categories 422 7,236 4.2 3.6 6,259 2.13 1.54 2,321 5.96 4.80

Overall disinfection type

CLM 30 379 5.7 5.9 268 1.55 1.27 236 8.00 5.46

CLO2/CLM 9 115 6.0 6.0 93 1.61 1.65 114 4.43 4.68

O3/CLM 7 97 3.9 3.9 92 1.14 1.14 96 5.19 4.83

Cl2/ClM 124 1,919 5.5 5.0 1,681 1.95 1.60 1,731 5.69 4.66

CLO2/CL2/CLM 4 54 4.5 4.3 54 1.68 1.71 50 6.54 6.50

O3/CL2/CLM 7 96 6.7 4.6 85 1.41 1.35 94 8.02 6.34

CL2 283 4,211 3.5 2.8 3,684 2.37 1.60

CLO2/CL2 16 232 3.6 3.1 198 1.54 1.35

O3/CL2 10 133 2.7 2.5 104 1.28 1.14

Secondary disinfection

CL2 298 4,576 3.5 2.8 3,986 2.30 1.55

CLM 162 2,660 5.5 5.0 2,273 1.83 1.52
aTotal number of plants (overall or for CL2 and CLM groups) is less than sum across disinfection types because plants that varied practices are represented in
more than one category.
bChlorine value in calculation is the sum of the existing chlorine residual and concurrent chlorine dose at point of ammonia addition.
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Generalizations about differences in total chlorine dose with respect to overall 

disinfection category are constrained by the sparseness of data for many of the categories 

(see Table 3.3). Five of the nine disinfection categories are represented by ten or fewer 

treatment plants and most of the data fall into just two categories (“CL2” and “CL2/CLM”). 

Nevertheless, certain comparisons of interest can be made by considering the nine 

disinfection categories in three groups: no free chlorine used (chloramines either alone or in 

combination with chlorine dioxide or ozone); both free chlorine and chloramines used (with 

or without the conjunctive use of chlorine dioxide or ozone); and no chloramines used (free 

chlorine alone or in combination with chlorine dioxide or ozone). Considering plant/months 

with no free chlorine contact (first three categories in Table 3.3), chlorine dose was 

significantly lower (p <0.01) when ozone was employed in conjunction with chloramines 

(“O3/CLM”) than when chloramines were used alone (“CLM”) or in combination with 

chlorine dioxide (“CLO2/CLM”). Median total chlorine doses for these three categories were 

3.9, 5.9, and 6.0 mg/L, respectively (see Table 3.3). In contrast, considering plant/months 

using free chlorine in conjunction with chloramines, there was no significant difference in 

chlorine dose based on additional disinfectant use (“CL2/CLM,” “CLO2/CL2/CLM,” or 

“O3/CL2/CLM”). The same was true for plant/months with no chloramine use (“CL2,” 

“CLO2/CL2,” or “O3/CL2”). Unlike ozone plants that also utilized free chlorine, ozone 

plants that used only combined chlorine (i.e., “O3/CLM”) were probably using ozone for 

primary disinfection as part of their DBP control strategy, satisfying a substantial portion of 

the organic oxidant demand through ozone contact, and lessening the total chlorine dose 

required to achieve their target residual concentrations. Plants using both ozone and free 

chlorine were most likely using ozone for alternate purposes such as preoxidation or taste and 
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odor control, without employing high enough doses to significantly affect organic oxidant 

demand. 

Overall, plants using chloramines applied significantly higher chlorine doses than 

plants without any ammonia addition (p <0.0001). The median and 90th percentile total 

chlorine doses for chloramine plants were 5.0 and 9.1 mg/L, respectively. Corresponding 

values for free chlorine plants were 2.8 and 6.0 mg/L (see under “Secondary disinfection” 

heading in Table 3.3). Higher doses at chloramine plants are in accord with their higher TOC 

concentrations, as discussed earlier in connection with Figure 3.1, and their consequent 

higher chlorine demands, necessitating the use of chloramines as a measure to limit DBP 

formation. 

Cl2/TOC ratios were much less variable than absolute chlorine doses, with median 

Cl2/TOC values for the nine disinfection categories ranging from 1.14 to 1.71 mg/mg (see 

Table 3.3). The coefficient of variation among these nine median values was 16%, compared 

to 30% for the absolute dose values. This stems from the fact that total chlorine dose and 

TOC at the first point of chlorine addition were correlated (Spearman rank correlation 

coefficient 0.576), an indication that chlorine dose is driven in large part by the concentration 

of organic material. When normalized to TOC, chlorine doses (i.e., Cl2/TOC ratio) at free 

chlorine plants were actually higher than at chloramine plants (p <0.0001), although this 

difference was small in magnitude (see Table 3.3). Among chloramine plants, there were no 

significant differences in Cl2/TOC ratio based on additional oxidant use (i.e., “CLM” versus 

“O3/CLM” or “CLO2/CLM,” “CL2/CLM” versus “O3/CL2/CLM” or “CLO2/CL2/CLM”). 

However, significantly lower Cl2/TOC ratios were applied at plants using chlorine dioxide (p
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= 0.0002) or ozone (p <0.0001) in conjunction with free chlorine, compared to plants using 

free chlorine alone. 

Very high Cl2/TOC ratios (5 mg/mg or more) were utilized in a small fraction of 

plant/months (4%). These were almost exclusively at plants with very low TOC 

concentrations (75% <1 mg/L). About half of these data represented disinfected ground water 

(“DIS/GW”) and “OTHER/GW” plants. These high Cl2/TOC ratios are consistent with the 

use of chlorine for nondisinfection purposes, such as iron and manganese removal, as 

indicated by unit process information for many of these plants. The high Cl2/TOC ratios at 

plants with low TOC concentrations account, in part, for the significantly higher (p <0.0001) 

Cl2/TOC ratios observed at ground water plants (compared to surface water plants), at free 

chlorine pants (compared to chloramine plants), and at prechlorinating plants (compared to 

nonprechlorinating plants). 

Table 3.3 also provides statistics for Cl2/N ratio at the point of ammonia addition for 

plants using chloramines, grouped by disinfection category. For the data set overall, the 

median Cl2/N value was 4.80 mg/mg, corresponding closely to a 1:1 molar Cl2/N ratio. 

However, Cl2/N ratios were highly variable, with an overall coefficient of variation of 71% 

(within-category coefficients of variation ranged from 18 to 83%). Use of free chlorine in 

conjunction with chloramines (“CL2/CLM”) was the predominant method of disinfection for 

plants employing chloramines, accounting for three quarters of all plant/months (124 plants). 

The next most prevalent chloramine disinfection category was chloramines used alone 

(“CLM,” 30 plants). The latter plants had significantly higher Cl2/N ratios than “CL2/CLM” 

plants (p <0.0001), with a median value of 5.46 mg/mg. Due to the small numbers of plants 

involved, there is no statistical significance to the apparently higher Cl2/N ratios for 
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CLO2/CL2/CLM and O3/CL2/CLM plants, compared to other disinfection categories. There 

were a substantial number of plant/months with extreme Cl2/N ratios. About 10% of the 

results showed Cl2/N molar ratios in excess of 2:1. Extreme values may stem, in part, from 

inaccuracies in ammonia dose, chlorine dose, or chlorine residual values, with the further 

possibility of compounded errors. Chen and Regli (2002) also noted the substantial variation 

in Cl2/N ratios and suggested it might reflect the challenge ICR plants faced in maintaining 

appropriate ratios in response to fluctuating water quality. 

Aside from the minor categories of slow sand filtration and membrane filtration 

which were employed at a limited number of ICR plants, pH conditions were very similar 

among the five nonsoftening treatment categories (unfiltered surface water, disinfected and 

“other” groundwater, conventional, and direct or in-line filtration), with median chlorination 

pH values between 7.4 and 7.6 and interquartile ranges all within pH 6.8–8.0. Significantly 

higher pH values at softening plants compared to all other treatment categories (p <0.0001) 

reflects use of lime or caustic soda for precipitative softening processes. The median pH 

value at the first point of chlorination for softening plants was 9.1, with values ranging as 

high as 12.1, and fewer than 1% of plant/months below pH 7.0. For the purposes of this 

discussion, softening plants include all 5 ICR softening treatment categories: single- and two-

stage softening, split- and complex parallel treatment softening; and coagulation-

sedimentation softening.  

Table 3.4 summarizes unit process HRT and chlorine contact results. Considering 

major processes and referring to median HRT, chlorine contact time was shortest in rapid 

mix basins (1 min), followed by filters (27 min), flocculation basins (50 min), and 

sedimentation basins and clearwells (259 and 275 min, respectively). Overall, 60% of rapid 
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mix processes had upstream chlorine addition, compared to 62% for flocculation basins, 67% 

for sedimentation basins, 88% for filtration processes, and 98% for clearwells. For 

chloramine plants, the fractions of unit processes having upstream ammonia addition were 

29% for rapid mix basins, 35% for flocculation basins, 41% for sedimentation basins, 43% 

for filtration processes, and 80% for clearwells. Accordingly, almost one-third of plants using 

chloramines added ammonia at the head of the plant, another 14% added ammonia before the 

filters, and another 37% added ammonia after the filters, prior to the clearwell. The 

remaining 20% of plants added ammonia after the clearwell, at the point of entry to the 

distribution system. 
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Table 3.4 Summary of Residual Chlorine Data for Processes with Free or Combined Chlorine Contact

Free Cl2 contact Combined Cl2 contact

Process
typea

N
plants

Median
HRT
(min.)

N process/
months

N
process/ months

with chlorine
contact

Nb
Median
free Cl2

(mg/L as Cl2)
% <0.1 Nb

Median
total Cl2

(mg/L as Cl2)
% <0.1

PRE 49 303.4 801 151 129 0.40 17.05 — — —

RAP 311 1.0 6,022 3,613 2,583 1.10 3.52 649 3.20 0.89

FLC 291 50.1 5,512 3,424 2,283 0.90 3.37 774 3.00 1.12

SED 285 259.1 5,694 3,771 2,585 0.60 7.66 902 2.80 1.22

FIL 376 27.0 6,499 5,718 4,322 0.80 9.35 1,078 2.80 1.08

CLR 368 274.8 6,716 6,576 4,054 1.20 1.23 1,999 2.70 0.05

DCB 46 75.5 8,47 808 506 1.20 7.31 140 3.10 0.00

SCC 61 147.1 1,097 570 445 0.40 11.24 93 3.00 0.00

RCB 23 6.3 446 160 43 0.20 6.98 78 2.30 0.00

OCB 22 9.1 1,778 339 285 0.10 37.54 — — —

GAC 10 21.7 174 72 72 0.05 68.06 — — —
aPRE = presedimentation , RAP = rapid mix, FLC= flocculation basin, SED = sedimentation, FIL = filtration, CLR = clearwell, DCB = disinfection contact
basin, SCC = solids contact clarifier, RCB = recarbonation basin, OCB = ozone chamber, GAC = granular activated carbon.
bN = number of process/months with chlorine residual data available.
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As shown in Table 3.4, process effluent chlorine residuals were considerably lower 

and more variable for processes with free chlorine contact than for combined chlorine 

processes. Among major process types (RAP, FLC, SED, FIL, CLR, see Table 3.4), median 

total chlorine concentrations for combined chlorine processes ranged from 2.7 to 3.2 mg/L, 

while median free chlorine concentrations for free chlorine processes ranged from 0.6 to1.2 

mg/L. For free chlorine processes, differences among residual free chlorine concentration 

levels by process type were all statistically significant (p <0.0001). For chloramine processes, 

none of the process types was distinct in this respect. For major process types, below-

reportable chlorine residual concentrations (<0.1 mg/L) were much more common for free 

chlorine processes (1–9%) than for combined chlorine processes (<2%). These patterns are in 

accord with the greater stability of combined chlorine and the higher chlorine doses applied 

at plants utilizing chloramines (see Table 3.3).  

The relative uniformity of process effluent chlorine concentrations reflects the fact 

that chlorine doses are designed to achieve target residual concentrations. Given this relative 

uniformity and the large variation in HRTs across process types, when Cefft values (i.e., the 

product of HRT and process effluent residual chlorine concentration) are computed for 

purposes of quantifying disinfection potential, the effect of HRT dwarfs that of chlorine 

residual so that Cefft patterns are very similar to those for HRT with respect to process type. 

Thus, the largest Cefft values were generally found for sedimentation basins and clearwells. 

3.5 CONCLUSIONS 

Results of the data review efforts conducted for this study demonstrate that the ICR 

data collection program succeeded in achieving a high level of data quality for parameters 
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related to DBP formation. For all parameters examined, 2% or fewer records were identified 

as potentially faulty. By filling in significant numbers of missing entries for categorical 

descriptors of source water and disinfection types in this research, a more complete database 

was available for further analysis compared to previous efforts. In keeping with a transparent, 

objective, and systematic process for database analysis, it was important that this review be 

undertaken prior to use of the data set for statistical analyses of interrelationships in the data, 

and that data-handling and analysis methodologies be properly documented. 

Analysis of ICR water quality and treatment data revealed several dominant patterns. 

Driven by DBP control considerations, plants with higher precursor concentrations tended to 

use chloramines and to avoid prechlorination. Overall, chloramines were used in 32% of ICR 

plant/months and prechlorination was practiced in 69% of plant/months. Nationwide, 

absolute TOC concentration and UV254 absorbance were more important drivers for 

treatment choices than the ratio of the two parameters (TSUVA), which reflects NOM 

characteristics. Likewise, plants with elevated levels of bromide in their raw water tended to 

use chloramines. The influences of bromide and TOC concentrations on disinfection 

practices appear to be independent of one another. ICR data indicated that chlorine doses 

were generally set to achieve a target residual at unit process effluents, typically about 1 

mg/L for free chlorine processes and 3 mg/L for combined chlorine processes. The ratio 

between applied chlorine dose and TOC fell within a relatively narrow range, regardless of 

disinfection scheme, with an overall median ratio of 1.5 mg Cl2 per mg C. A subset of plants 

with very low TOC concentrations using relatively high chlorine doses for nondisinfection 

purposes comprised an exception. Significantly higher chlorine doses were employed at 

chloramine plants compared to free chlorine plants, but this distinction largely disappeared 
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when chlorine doses were normalized to TOC. Although ratios of chlorine to ammonia-

nitrogen at chloramine plants varied widely, the overall median value of 4.8 mg Cl2/mg N 

was very close to the theoretical 1:1 molar ratio required for monochloramine formation. 

The sampling distributions for important water quality and treatment parameters 

presented in this paper, based on a screened and more complete ICR database than utilized 

previously (McGuire, McLain, and Obolensky 2002), provides an overview of 

comprehensive industry-wide statistics for water quality and treatment in the 1997–1998 

time frame. This should be of general interest to other investigators and provides a basis for 

further research on important drinking water quality and treatment issues, supporting 

development of a better understanding of DBP formation and control. 



CHAPTER 4: DEVELOPMENT AND INTERPRETATION OF MODELS TO 

DESCRIBE THE IMPACTS OF WATER QUALITY AND TREATMENT ON 

DBP FORMATION USING THE ICR DATABASE 

 

4.1 BACKGROUND AND INTRODUCTION 

Multiple linear regression models (regression models) were used to study 

relationships between water quality, treatment processes, and DBP formation employing full-

scale water treatment plant data from the Information Collection Rule (ICR). This type of 

model provides an efficient statistical approach to isolating and quantifying interrelated 

effects on DBP formation from simultaneously varying factors in a single data set, and lends 

itself to straightforward interpretation. A long history exists of developing regression models 

based on data from controlled laboratory experiments. Chowdhury and Amy (1999) review 

these and other DBP modeling efforts. The best known regression models were developed by 

Amy and coworkers using data from bench chlorination experiments (Amy, Chowdhury, and 

Chadik 1987; Amy et al. 1998). These models became the basis for the U.S. EPA's Water 

Treatment Plant Simulation Program (EPA Model, Harrington, Chowdhury, and Owen 

1992), used extensively to support regulatory development through forecasting DBP 

production under specified water quality and treatment conditions (Solarik et al. 2000; 

Swanson et al. 2002). Little work has been done developing this type of model from 

observational field data (Moore, Tuthill, and Polakoff 1979; Otson, Williams, and Bothwell 
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1981; Golfinpoulos et al. 1998) although, at least conceptually, it provides an excellent 

analytical tool for studying such data. Limitations include the need for a large data set that 

includes key water quality and treatment variables with consistent information structure. 

Availability of the ICR database (U.S. EPA 2000b), containing DBP data and associated 

water quality and treatment information from a comprehensive survey of large U.S water 

utilities, provided a unique opportunity to apply regression modeling techniques to the 

analysis of real water treatment plant data. Descriptive aspects of the ICR program and a 

number of data analyses are provided by McGuire, McLain, and Obolensky (2002). 

Obolensky, Singer, and Shukairy (2007) summarize specific data used in this research and 

outline associated data handling methodologies. 

Models developed for the present research have a mathematical structure similar to 

that used for the EPA Model. However, the focus on using regression models as an 

investigative tool to examine complex relationships between water quality, treatment, and 

DBP occurrence, as is done in this research, differs fundamentally from previous modeling 

efforts aimed at predicting DBP concentrations. Although forecasting per se was not a goal 

of the current work, the models developed herein needed to perform adequately in a 

predictive capacity so that large error terms would not preclude detecting and comparing 

effects of interest. The size and structure of the ICR database was considered ample for 

developing models with sufficient performance to support the research goals. Like previous 

DBP regression models, the current models are developed empirically based on a rational 

framework and do not derive from kinetic rate expressions describing elemental chemical 

reaction steps. The molecular-level mechanistic understanding of DBP formation needed for 

such deterministic models does not currently exist, although some attempts have been made 
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to approach modeling from this perspective (Kavanaugh et al. 1980; Adin et al. 1981; Clark 

1998; Gang et al. 2002; Sohn et al. 2004). Reaction pathways for DBP formation involve 

complex arrays of halogen addition, substitution, oxidation, hydrolysis, and decarboxylation 

steps in parallel and in series. Although studies with model compounds have shed much 

insight into these processes (Boyce and Hornig, 1983; Reckhow and Singer 1985), the varied 

and changing chemical nature of organic DBP precursors in natural waters have precluded 

identification or measurement of specific substrates needed to develop deterministic models. 

Acknowledging practical limitations to describing DBP formation at a fundamental level, the 

rational empirical modeling framework encompasses current knowledge of basic drivers for 

DBP formation in drinking water and includes the variables characterizing water quality and 

treatment processes that are easily obtained and commonly monitored. Accordingly, these 

empirical models can be used to gain a better understanding of how DBPs are related to 

water quality and process parameters in real, dynamic treatment systems. 

4.2 SCOPE OF RESEARCH 

ICR data were used to develop models for DBP concentrations in finished water from 

treatment plants using only free chlorine for disinfection prior to distribution (chlorine 

plants). Separate models were developed for twelve individual DBP compounds, total 

organic halogen (TOX), THM4 (sum of 4 trihalomethanes), X2AA (sum of three dihaloacetic 

acids), X3AA (sum of 4 trihaloacetic acids), and HAA9 (sum of 9 haloacetic acids) (see 

Table 4.1). The twelve DBP species modeled were chloroform (CHCl3), 

bromodichloromethane (CHBrCl2), dibromochloromethane (CHBr2Cl), bromoform (CHBr3), 

dichloraoacetic acid (Cl2AA), bromochloroacetic acid (BrClAA), dibromoacetic acid 
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(Br2AA), trichloroacetic acid (Cl3AA), bromodichloroacetic acid (BrCl2AA), 

dibromochloroacetic acid (Br2ClAA), tribromoacetic acid (Br3AA), and chloral hydrate 

(trichloroacetaldehyde hydrate, Cl3AH). DBP species and class sum variables were modeled 

in molar concentration units to facilitate interpretation. TOX was modeled in reported 

weight-based chlorine-equivalent concentration units. Although HAA9 models implicitly 

account for monochloroacetic acid and monobromoacetic acid occurrence, no attempt was 

made to model the individual monohaloacetic acid species due to their consistently low 

concentrations in the database and the relatively large uncertainties associated with their 

analysis (Weinberg 2000; Fair et al. 2002; Domino et al. 2004). 



91

Table 4.1   Dependent variables: summary of data  

Variable DBP 
Class N

M
in

c

M
ax

M
ea

n

M
ed

ia
n

90
th

%
ile

C
V

%

M
R

L

%
<

M
R

L

CHCl3 (µg/L) THM 1118 0.5 180 22 17 45 84 1.0 0.5 

CHBrCl2 (µg/L) THM 1131 0.5 48 7.7 6.0 16 85 1.0 6.6 

CHBr2Cl (µg/L) THM 1130 0.5 34 3.2 1.5 8.6 138 1.0 39.2 

CHBr3 (µg/L) THM 1130 0.5 19 0.8 0.5 1.6 141 1.0 84.7 

Cl2AA (µg/L) X2AA 1096 0.5 72 12 9.9 22 75 1.0 1.8 

BrClAA (µg/L) X2AA 1092 0.5 24 2.8 2.1 6.0 93 1.0 21.3 

Br2AA (µg/L) X2AA 1100 0.5 14 1.0 0.5 2.3 116 1.0 75.0 

Cl3AA  (µg/L) X3AA 1083 0.5 74 11 8.4 21 86 1.0 5.8 

BrCl2AA (µg/L) a X3AA 313 0.5 16 3.4 2.6 7.5 85 1.0 15.3 

Br2ClAA (µg/L) a X3AA 291 0.5 11 1.6 1.0 3.5 93 2.0 73.5 

Br3AA (µg/L) a X3AA 235 0.5 9.3 1.2 1.0 2.0 85 4.0 98.7 

Cl3AH (µg/L) X3AH 1012 0.5 46 3.8 2.7 8.2 97 0.5 19.3 

TOX (µg/L as Cl) n/a 1102 25 1010 147 122 280 69 50 9.8 

THM4 (µg/L) n/a 1111 2.0 214 33 28 64 71 n/a n/a 

X2AA (µg/L) n/a 1088 1.5 76 15 13 29 66 n/a n/a 

X3AA (µg/L) a n/a 234 2.0 62 15 13 27 66 n/a n/a 

HAA9 (µg/L) a n/a 228 5.0 112 30 27 52 56 n/a n/a 

BrCl2AA (µg/L) b X3AA 998 0.4 22 3.5 2.8 7.1 84 n/a n/a 

Br2ClAA (µg/L) b X3AA 975 0.5 11 1.4 1.0 2.6 80 n/a n/a 

Br3AA (µg/L) b X3AA 920 0.5 9.3 1.1 1.1 1.2 47 n/a n/a 

X3AA (µg/L) b n/a 916 2.0 91 17 14 32 69 n/a n/a 

HAA9 (µg/L) b n/a 844 5.0 150 34 29 63 61 n/a n/a 
a reported ICR analytical results 
b including projected data for brominated X3AA species 
c minimum values reflect replacement of below MRL data with 0.5*MRL (further adjustment for Br2ClAA 

and Br3AA described in Appendix B) 
 

Model independent variables, listed in Table 4.2, describe water quality and treatment 

characteristics of potential importance in determining finished water DBP levels. Models 
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were restricted to finished water DBP concentrations at chlorine plants in order to limit 

influences related to alternative disinfectant use and distribution system transit and 

transformations, thereby providing a base case for further study of these and other effects. 

ICR plants using only free chlorine tended to have lower DBP precursor levels (Obolensky, 

Singer, and Shukairy 2007) than those in which combined chlorine was used. This restriction 

affects the design matrix and thus, potentially, the ability of associated models to detect 

effects that might be discernible given a wider range of independent variable values. The data 

domain is a fundamental consideration in any modeling work and findings must be 

interpreted in this context.  

Table 4.2   Independent variables: summary of data 

Variable N M
in

M
ax

M
ea

n

M
ed

ia
n

90
th

%
ile

C
V

%

M
R

L

%
<

M
R

L

Turbidity (NTU) a 1186 0.01 200 8.2 2.7 20 201 0.01 0 

Bromide (mg/L) a 1150 0.01 0.96 0.03 0.02 0.07 130 0.02 45 

Temperature (°C) a 1213 0.4 33.5 16.4 16 26 44 n/a n/a 

Alkalinity (mg/L as CaCO3) a 1189 1.0 342 76 62 165 87 1 0 

TOC (mg/L) b 1074 0.35 7.8 2.1 2.0 3.3 45 0.7 2.8 

UV254 (cm-1) b 1043 0.005 0.342 0.047 0.039 0.081 72 0.009 1.0 

Cl2 Consumed (mg/L as Cl2) c 1095 0.09 11.8 1.98 1.6 3.5 75 n/a n/a 

Cl2 Contact Time (h) c 1125 0.2 745 15.5 8.2 23 273 n/a n/a 

pH d 1213 6.1 10.6 7.8 7.7 8.8 9 n/a n/a 

Cl2 Residual (mg/L as Cl2) d 1190 0.3 5.5 1.6 1.4 2.7 49 0.1 0 

Cl2 Point e 1180 0 1 0.67 n/a n/a n/a n/a n/a 
a plant influent 
b at first point of chlorine addition in process train 
c cumulative from plant influent  
d finished water 
e categorical variable representing first chlorine addition point at raw (1) or settled water (0) 
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4.3 METHODS AND PROCEDURES 

4.3.1 Statistical Basis for Models 

ICR data were collected by large U.S. utilities in 1997-1998 but the water quality and 

treatment domain encompassed can be presumed to be representative of the population of 

large utilities over time, more generally. Assumptions requiring validity for hypothesis 

testing with linear regression include independent random sampling and normally distributed 

errors with equal variance (Kleinbaum et al. 1998). Independence implies that individual 

observations are not influenced by one another such as might be the case for observations 

close in time or space, or related in some other way resulting in unaccounted for correlations. 

Random sampling implies lack of bias in the sampling method such that each member of the 

statistical population being sampled has an equal probability of being selected as an 

observation. Normally distributed errors with equal variance means that residual values (i.e. 

differences between model predictions and observed values) follow a gaussian distribution 

for any fixed combination of values for the independent variables (or equivalently, for a 

given predicted value) and that the variance of this distribution is homogeneous across the 

range of predicted values. Neither the dependent nor independent variables must be normally 

distributed to meet these assumptions. However, error terms are unlikely to be gaussian if the 

dependent variable distribution is skewed. A good spread in independent variable values 

facilitates detection of effects and helps increase parameter estimate precision (Chambers et 

al. 1983). 

The assumption of independence should be valid because, although each ICR plant 

was sampled six times (six quarters in the 18-month monitoring period), several months 
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elapsed between sampling events at each of the plants. Quarterly DBP sampling was 

employed in the ICR to impose a random sampling design (and obtain seasonal 

representation) and there is no reason to suspect bias in the grab sampling method used for 

obtaining water samples, or in the manner that engineering and treatment data were reported. 

Although third and fourth calendar quarters are more heavily represented in the ICR data set 

than first and second calendar quarters, seasonal bias is presumed to be accounted for by 

inclusion of water quality and treatment information reflective of seasonal effects. 

Assumptions of normally distributed errors with equal variance were tested in the course of 

model development. 

4.3.2 Design Matrix and Data Handling 

ICR data were obtained from the U.S. EPA Auxiliary 1 Database Version 5.0 (Aux 1, 

U.S. EPA 2000b) and screened prior to use. Data screening involved recovery of missing 

classification data generated during Aux 1 production (e.g. descriptors of source water and 

disinfection types), flagging of questionable reported data, and corrections of obvious 

decimal place data entry errors, and is described elsewhere (Obolensky, Singer, and Shukairy 

2007; Obolensky and Singer 2005). Flagged data were not used in modeling work reported 

here. Data handling and analysis were conducted in the SAS software environment (SAS 

Institute, Cary NC). To ensure meaningful association between finished water DBP 

concentrations and source water quality and treatment practices, data for plants treating 

purchased finished water or adding any additional blended source to the treatment train were 

excluded from the data set. Data for treatment plants classified in Aux 1 as disinfected 

wholesale, disinfected groundwater, other groundwater, or other were also excluded: 
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disinfected wholesale plants treated purchased finished water so treatment information is 

incomplete; disinfected groundwater plants generally had no treatment train (missing model 

input data); and the two other cited plant types utilized oxidants for non-disinfection 

purposes (e.g., iron or manganese control) which could obscure relationships of interest. 

There were 1,224 finished water DBP records meeting the stated criteria, representing 225 of 

the 500 ICR treatment plants and comprising 43% of Aux 1 finished water DBP records. 

Tables 4.1 and 4.2 summarize the data for dependent and independent model variables, 

respectively, where missing values account for N < 1,224. 

4.3.3 Censored Data 

ICR measurement results below the minimum reporting level (MRL), i.e. censored 

data, were replaced with one-half the analyte-specific MRL (see Tables 4.1 and 2). 

Exceptions were made for Br2ClAA and Br3AA because of their high MRLs (2.0 and 4.0 

µg/L, respectively) and the belief that the half-MRL method would bias their occurrence data 

upwards. Instead, an approach based on intraclass halogen patterns was employed (see 

Appendix B). Tables 4.1 and 4.2 show the fractions of data affected by MRL censoring. 

4.3.4 Brominated X3AA Species Measurement Data and Estimation 

All ICR plants were required to report data for 6 of the 9 chlorinated and brominated 

HAA species. Approximately one third of the plants optionally reported data for the 

remaining three brominated X3AA species that make up HAA9 (BrCl2AA, Br2ClAA, and 

Br3AA, see Table 4.1). To augment these reported data, missing BrCl2AA, Br2ClAA, and 

Br3AA values were estimated using simple projection models that depended on reported 

THM species and Cl3AA data according to Equations 4.1-4.3, where molar concentrations 
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are used. These models, based on the concept of parallel halogen speciation patterns in 

different DBP classes (Obolensky and Singer 2005), are modifications of the models of 

Roberts, Singer, and Obolensky (2002) by addition of slope and intercept fitting parameters 

which were assumed to be one and zero, respectively, in the previous work. 

 

[BrCl2AA] = C + k*[Cl3AA]*[CHBrCl2]/[CHCl3] (4.1) 

[Br2ClAA] = C + k*[ Cl3AA]*[CHBr2Cl]/[ CHCl3] (4.2) 

[Br3AA] = C + k*[ Cl3AA]*[CHBr3]/[ CHCl3] (4.3) 

 

Slope, k, and intercept, C, parameters were obtained by least-squares regression using 

data for all ICR samples except those from plants treating purchased finished water or adding 

an additional blended source to the treatment train. Accordingly, more than 2,500 records 

from approximately 140 treatment plants were used to calibrate Equations 4.1-4.3. The fitted 

equations were used to estimate concentrations of BrCl2AA, Br2ClAA, and Br3AA for 

samples without reported results and thereby increase the available data for subsequent 

multiple linear regression modeling of these species and the aggregate DBP measures that 

include them (i.e., X3AA and HAA9).  

4.3.5 Model Independent Variables 

Independent variables used for model building, listed in Table 4.2, included water 

quality descriptors (turbidity, bromide, temperature, alkalinity, total organic carbon (TOC), 

ultraviolet absorbance at 254 nm (UV254), pH, and total chlorine residual), chlorine 

consumed, free chlorine contact time, and a coded variable to describe the location of first 
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chlorine addition in the treatment train (1 = raw water, 0 = settled/filtered water). Plant 

influent sample results were used for turbidity, bromide, temperature, and alkalinity. Results 

at the first point of chlorine addition in the treatment train were used for TOC, and UV254. 

Chlorine consumed was calculated as the difference between total applied chlorine dose 

through the plant and total residual chlorine in the finished water. Free chlorine contact time 

was calculated as the sum of unit process hydraulic residence times from the first point of 

chlorine addition. Finished water sample results were used for pH and chlorine residual. 

Extraction of these data from the Aux 1 database and relevant computations are discussed 

elsewhere (Obolensky, Singer, and Shukairy 2007). 

Adjustment of chlorine consumed to account for ammonia demand was rejected after 

initial consideration because it resulted in poorer model results, perhaps due to inaccuracy in 

reported influent ammonia data. The decision to use finished water pH values was based on 

an analysis of lime and caustic soda addition in ICR plants and a determination that the 

finished water location would, overall, provide the best single representation of pH 

conditions during chlorine contact. Other independent variables initially considered for 

inclusion in the models were found to be redundant with those listed in Table 4.2 because of 

collinearity or model construction. These included calcium hardness, total hardness, chlorine 

dose, and the ratio variables UV254/TOC, bromide/TOC, and bromide/Cl2. Calcium hardness 

and total hardness were linearly dependent with alkalinity (r > 0.9). Alkalinity was retained 

as a variable because it is the most commonly reported of the three related measurements. 

Chlorine consumed and chlorine dose were linearly dependent by construction (r > 0.9): 

chlorine consumed equals dose minus residual and dose is driven by a target residual goal 

which is approximately constant relative to much larger differences in chlorine dose 
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(Obolensky, Singer, and Shukairy, 2007). Chlorine consumed was retained as an independent 

variable instead of dose because it has been used extensively in previous laboratory studies 

and modeling work.  

Because distributions of turbidity and chlorine contact time data were strongly 

positively skewed and had large coefficients of variation (see Table 4.2), these variables were 

log-transformed for scale adjustment. After determining that models were optimized by log 

transformation of dependent variables (see below), the benefits of transforming remaining 

independent variables were evaluated with respect to linearity of relationships with the log-

transformed dependent variables (determined by pearson correlation and graphic inspection) 

and/or uniformity in the spread of values (determined by graphic inspection). Accordingly, 

bromide, chlorine consumed, TOC, UV254, and chlorine residual were log-transformed. 

Thus, information provided by the ratio variables cited above was implicit in individual 

model terms (e.g., log(UV254/TOC) = log(UV254)-log(TOC), etc.). 

4.3.6 Correlation Matrices 

Table 4.3 provides the matrix of Pearson correlation coefficients for continuous 

independent variables after applicable transformation. As expected, TOC and UV254, both of 

which are measures of natural organic matter (NOM) concentration before oxidant addition, 

were fairly strongly correlated (r = 0.655). Chlorine consumed was moderately correlated 

with temperature (r = 0.411) because chlorine reactions are accelerated at higher temperature 

and chlorine doses are increased to account for this; Chlorine consumed was also moderately 

correlated with both TOC (r = 0.430) and UV254 (r = 0.453) due to substantial chlorine 

demand exerted by NOM. Weaker but noteworthy correlations existed between bromide and 
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alkalinity (r = 0.370), bromide and temperature (r = 0.351), UV254 and turbidity (r = 0.306), 

and TOC and turbidity (r = 0.286). In many U.S. surface waters, bromide tends to increase 

with temperature as hot weather coincides with dry conditions and greater opportunities for 

salt water intrusion and groundwater infiltration into surface supplies (ground waters 

generally have higher bromide concentrations than surface waters). The latter would tend to 

also increase alkalinity in surface waters, which may account in part for a relationship 

between bromide and alkalinity. In surface waters impacted by wastewater flows and 

associated constant bromide loading, decreased dilution during hot dry periods can result in 

higher bromide concentrations. Turbidity may be an indicator of runoff which introduces 

fresh organic material into surface waters, accounting for the positive correlations with 

UV254 and TOC. 

Table 4.4 provides the matrix of Pearson correlation coefficients between dependent 

and independent variables after applicable log transformations. The aggregate DBP measures 

(THM4, X2AA, X3AA, HAA9, and TOX) were all moderately correlated with chlorine 

consumed, TOC, and UV254 (r > 0.4). THM4 was more strongly correlated with temperature 

(r = 0.48) than were the other aggregate measures (r < 0.34). The absence of correlation 

between pH and THM4 as well as the negative correlation between X3AA and pH (r =

−0.35) are also noteworthy. 
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Table 4.3 Correlation matrix of independent variables after log transformation as needed for model development

Variable a

tu
rb

id
ity

 

br
om

id
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m
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lin
ity

 

TO
C

 

U
V
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C
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C
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co
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e 

pH
 

C
l 2
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turbidity 1.000
bromide 0.156 1.000

temperature 0.099 0.351 1.000
alkalinity 0.013 0.370 0.044 1.000

TOC 0.286 0.275 0.194 0.024 1.000
UV254 0.306 0.240 0.172 -0.008 0.655 1.000

Cl2 consumed 0.217 0.262 0.411 0.073 0.430 0.453 1.000
Cl2contact time -0.046 -0.096 -0.168 -0.025 -0.088 -0.062 0.064 1.000

pH -0.121 -0.031 -0.096 0.099 -0.070 -0.025 -0.133 0.022 1.000
Cl2residual 0.240 0.214 0.244 0.081 0.215 0.161 0.254 -0.162 -0.040 1.000

aall variables log- transformed except alkalinity, temperature, and pH
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Table 4.4 Pearson correlation coefficients between independent and dependent variables after log transformation as needed for model
development

Independent
Variablesa

Dependent
Variblesa

tu
rb

id
ity

 

br
om
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tu
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TO
C

 

U
V

25
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pH
 

C
l 2
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CHCl3
0.243 0.007 0.391 -0.279 0.480 0.515 0.596 0.062 0.016 0.213

CHBrCl2
0.319 0.611 0.463 0.181 0.510 0.349 0.542 -0.019 -0.170 0.279

CHBr2Cl 0.138 0.784 0.347 0.413 0.200 0.059 0.204 0.022 -0.060 0.185

CHBr3
0.028 0.558 0.191 0.312 0.060 0.066 0.046 0.015 0.054 0.058

Cl2AA 0.210 -0.081 0.268 -0.306 0.470 0.455 0.470 -0.060 -0.060 0.230

BrClAA 0.309 0.606 0.399 0.258 0.420 0.250 0.414 -0.051 -0.140 0.331

Br2AA 0.056 0.663 0.272 0.364 0.130 0.133 0.143 -0.026 0.015 0.163

Cl3AA 0.179 -0.132 0.217 -0.390 0.380 0.424 0.512 0.084 -0.290 0.199

BrCl2AA 0.249 0.489 0.301 0.091 0.440 0.314 0.463 -0.001 -0.380 0.301

Br2ClAA 0.079 0.665 0.258 0.279 0.190 0.111 0.214 -0.012 -0.180 0.239

Br3AA 0.021 0.412 0.137 0.143 0.270 0.186 0.161 -0.029 -0.190 0.232

Cl3AH 0.189 0.036 0.452 -0.187 0.395 0.317 0.565 0.180 -0.132 0.174
THM4 0.272 0.277 0.477 -0.126 0.520 0.522 0.647 0.062 -0.002 0.255
X2AA 0.240 0.103 0.339 -0.197 0.510 0.466 0.510 -0.064 -0.080 0.277
X3AA 0.192 0.067 0.281 -0.266 0.410 0.434 0.545 0.077 -0.350 0.230
HAA9 0.241 0.092 0.309 -0.251 0.510 0.478 0.546 0.007 -0.190 0.278
TOX 0.257 0.174 0.281 -0.173 0.550 0.560 0.487 -0.066 -0.120 0.279

aall variables log- transformed except alkalinity, temperature, and pH
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Several strong trends were evident across species within the THM, X2AA, and X3AA 

classes. With increasing bromine substitution in each class, correlations with chlorine 

consumed, TOC, and UV254 tended to drop sharply while correlations with alkalinity and 

bromide tended to increase sharply. Each of the fully chlorinated species (i.e., CHCl3,

Cl2AA, Cl3AA, Cl3AH) were either uncorrelated with or weakly inversely correlated with 

both bromide and alkalinity. Cl3AA and BrCl2AA were the only species having any notable 

correlation with pH (r = −0.290 and −0.380, respectively). Correlations for aggregate 

variables reflect the domination of chlorinated DBP species in this data set, which stems 

from the relatively low bromide conditions at the chlorine plants under study (median 

bromide concentration = 0.02 mg/L; see Table 4.2). ICR plants with high bromide 

concentrations tended to use chloramines and thus were not included in this analysis 

(Obolensky et al. 2007). 

Variable selection results for the regression models will be strongly dependent on 

relationships shown in these correlation matrices. Independent variables having strong simple 

correlations with dependent variables are likely to be selected as statistically significant 

unless their effects are accounted for by other terms in the model. However, the absence of 

strong simple correlation with the dependent variable does not preclude an independent 

variable from being an important predictor. For example, although the influence of pH on 

THM formation is well known (Oliver and Thurman 1983; Reckhow and Singer 1985; 

Stevens et al. 1989; Liang and Singer 2001), no simple correlation existed between pH and 

THM4 or any individual THM species, as shown in Table 4.4. A weakly correlated variable 

may have discernible influence after controlling for other factors in the model; the ability to 
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elucidate such relationships is a primary reason for developing and employing the regression 

model in this research. 

4.3.7 Model Building Procedure 

Regression models were specified using a cross-validation approach (Muller and 

Fetterman 2003). Previous DBP models have either lacked validation or been validated 

retrospectively, so that any associated acceptance criteria were not considered during model 

development (Edzwald, Becker, and Wattier 1985; Amy, Chadik, and Chowdhury 1987; 

Amy et al. 1998; Golfinopoulos et al. 1998; Gang et al. 2002; Sohn et al. 2004). Formally 

testing exploratory results on an independent data set increases confidence that the chosen 

model reflects underlying relationships among variables and is not merely a best fit to the 

particular data at hand. This approach also controls Type I error inflation caused by 

performing multiple tests for significance with the same dataset. For each model, a portion of 

the data (usually half) was used in an exploratory process to identify significant variables and 

develop the regression model, while the remaining data were reserved for model validation. 

The following nine steps were taken to select and validate models: 1) identify candidate 

independent variables, adjust their scale and/or location, generate polynomial and/or 

interaction terms; 2) randomly split data set and reserve validation data; 3) assess collinearity 

among independent variables and intercept, discarding collinear terms; 4) identify optimal 

dependent variable transform from Box-Cox series; 5) conduct residual diagnostics to assess 

validity of assumptions and model specification, and check for outliers and influential 

observations; 6) select model using stepwise regression, adjusted R2, and Mallows' Cp 

criteria (Daniel and Wood 1971); 7) perform cross-validation with reserved data; 8) pool data 
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to recalibrate parameter estimates for validated model and repeat residual diagnostics; 9) if 

validation fails, repeat from step 2 with larger exploratory data fraction. 

Based on preliminary results for THM4 and X2AA, second-order terms did not 

increase model precision meaningfully and were thus not utilized. Box-Cox analysis 

indicated use of log transformation as the optimum choice for all dependent variables. The 

SAS Reg procedure was used to select model independent variables while model validation 

computations were carried out using the SAS Interactive Matrix Language procedure. Using 

parameter estimates from the preferred model, adjusted R2 and predicted values of the 

independent variable were computed for both the exploration and validation data subsets. 

Bias was considered acceptable if R2 for the validation data was within ten percent of that for 

the exploration data (Muller and Fetterman 2003). Further details of the model development 

procedure are provided in the Supplemental Information (see Appendix B). 

4.4 RESULTS AND DISCUSSION 

4.4.1 Brominated X3AA Species Estimation 

Table 4.5 lists the fitting parameters and R2 values for Equations 4.1-4.3. The fit for 

BrCl2AA was very good (R2 = 0.876), while that for Br2ClAA was fair (R2 = 0.671) and that 

for Br3AA was very poor (R2 = 0.229). Lower precision for Br2ClAA and Br3AA estimates 

may be partly attributable to measurement uncertainty associated with low occurrence levels 

and high MRLs for these compounds (67 and 97% of results, respectively, were below 

MRL). However, model precision was not improved by dropping censored data. Low 

recovery and accuracy in quantitative analysis of the brominated X3AA species (Munch et al. 

2000; Domino et al. 2004) probably depressed reported concentrations and contributed 
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substantially to scatter in the models. These analytical methodology problems are known to 

affect Br2ClAA and Br3AA more than BrCl2AA (Weinberg 2000), commensurate with the 

model fitting results. 

Table 4.5  Brominated X3AA species data and fitting parameters for Equations 4.1-4.3 
Model Results 

Variable N MRL 
(µg/L) 

N >
MRL 

MRL 
replacement N a R2 Intercept Slope 

BrCl2AA 4122 1 3408 0.5 3943 0.8756 0.422 0.804 

Br2ClAA 3767 2 1230 0.5-1.0b 3600 0.6712 0.770 0.418 

Br3AA 2773 4 79 0.5-3.0b 2663 0.2295 1.014 0.270 
a records used to parameterize model (data sets having required CHCl3, Cl3AA and brominated THM data) 
bsee SI 

 

As expected, intercepts for Equations 4.1-4.3 corresponded to censored data 

replacement values. Model slopes decreased sharply with the number of bromine 

substituents: from 0.804 for BrCl2AA to 0.418 for Br2ClAA to 0.270 for Br3AA (see Table 

4.5). Thus, the ratios of brominated X3AA species to Cl3AA tended to be lower than 

analogous THM species ratios (e.g., Br2ClAA/Cl3AA < CHBr2Cl/CHCl3), and the 

magnitude. This disparity increased sharply with the number of bromine substituents, in 

conformance with the order of methylated solvent extract stability and overall analytical 

method recovery, supporting the hypothesis that analytical method issues account, in part, for 

depression of brominated X3AA concentrations relative to proportionate levels projected 

from THM species patterns. Results are also consistent with the order of chemical stability 

for brominated X3AAs in water (Zhang and Minear 2002). Moreover, because X3AA decay 

proceeds through decarboxylation, yielding the THM species analogue (e.g., Br3AA decays 

to CHBr3), these losses simultaneously enrich the brominated THMs (see also Heller-

Grossman et al. 1993). Because THMs are terminal byproducts, the same can be expected for 
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brominated species in other classes of trihalogenated DBPs (e.g., haloacetaldehydes, 

haloketones,  and halopicrins).  

The last five rows in Table 4.1 summarize the augmented data set for BrCl2AA, 

Br2ClAA, Br3AA, X3AA, and HAA9, based on application of Equations 4.1-4.3 using the 

fitting parameters from Table 4.5  to estimate missing data. Together, the three brominated 

X3AA species represented, on average, 13% of HAA9 on a molar basis in the augmented 

database. Because BrCl2AA was the dominant brominated X3AA species for ICR treatment 

plants and it was well estimated by Equation 4.1, the lack of precision for Br2ClAA and 

Br3AA estimates should have a minimal impact on projected X3AA and HAA9 values. 

4.4.2 Regression Model Formulation 

Equation 4.4 shows the generalized multiple linear regression model with 

abbreviations for turbidity (turb), bromide (br), temperature (temp), TOC (toc), UV254 (uv), 

alkalinity (alk), chlorine consumed (cl2), chlorine contact time (t), chlorine residual (res), and 

Cl2 point (precl2). Units are as shown in Tables 4.1 and 4.2. 

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) precl2kreslogkpHktlogk2cllogkuvlogk

toclogkalkktempkbrlogkturblogkinterceptDBPlog

precl2resphtcl2uv

tocalktempbrturb

++++++

+++++=
(4.4) 

 

Results for THM4 are used to illustrate the model development procedure. Further 

details are provided in the Supplementary Information (Appendix B). Using half the 

available data for exploratory analysis (N = 357, excluding records with missing data for any 

candidate variables), stepwise regression indicated that eight of the eleven variables were 
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significant at the 0.05 level. Adjusted R2 and Mallow's Cp statistics confirmed the choice of 

eight variables as optimal. The best eight-variable model had an adjusted R2 of 0.70 for the 

exploratory data and 0.65 for the validation data, indicating acceptable cross-validation 

shrinkage of 7.7% (i.e., < 10%). This model was then re-calibrated using the combined data 

set (N = 741) to obtain final parameter estimates and model statistics. The overall model was 

highly significant (F statistic p < 0.0001) and all variables were significant at the 0.001 level 

and had variance inflation factors below 2.0. The parameterized THM4 model is shown in 

Equation 4.5. 

 

( ) ( )
( ) ( ) ( ) ( )reslog*167.0pH*087.0tlog*119.02cllog*291.0uvlog*326.0

toclog*188.0alk*0.0005temp*015.0371.1THM4log
+++++

+−+−=
(4.5) 

 

The final validated model provided a good fit to the data overall (R2 = 0.707), as 

illustrated by Figure 4.1, showing predicted versus observed values for log(THM4). Residual 

diagnostic plots are shown in Figure 4.2: the error variance was reasonably homogeneous 

across the range of predicted values (Figure 4.2a) and the residuals were well approximated 

by a normal distribution (Figure 4.2b). The Kolmogorov-Smirnov empirical distribution 

function test statistic p value of 0.055 indicated a normal distribution, although the residuals 

were slightly negatively skewed (Figure 4.2b inset). Partial regression leverage plots did not 

suggest non-linear effects for any of the independent variables or the presence of obvious 

outliers or influential observations warranting examination. Thus, the assumptions required 

for hypothesis testing using the model were considered valid. Model results are summarized 

in Tables 4.6 and 4.7, showing parameter estimates and key statistics for final validated 
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models for DBP species and aggregate DBP variables, respectively. Because CHBr3, Br2AA, 

Br2ClAA, and Br3AA exhibited consistently low concentrations in the data set (85, 75, 74, 

and 99% of results were below the MRL, respectively (see Table 4.1)), results were not 

acceptable for these brominated species and thus they are not shown in Table 4.6. All final 

validated models were significant at the 0.0001 level. Results are discussed further below. 
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Table 4.6 DBP species model results

a) Parameter estimates

Model Intercept Turb Br Temp Alk TOC UV254 Cl2
consumed

Cl2
contact

time
pH Cl2

residual Cl2 point

CHCl3 -1.935 -0.2393 0.0170 -0.0012 0.1993 0.4450 0.3824 0.0921 0.1133
CHBrCl2 -0.984 0.0483 0.4723 0.0088 0.4013 0.2493
CHBr2Cl -1.247 0.0501 0.9070 0.0073 0.0009 0.1624 -0.2569 0.1174
Cl2AA -1.284 -0.2779 0.0069 -0.0009 0.2864 0.3189 0.3898 -0.1010
BrClAA -1.456 0.0472 0.4083 0.0054 0.0007 0.2820 0.1710 0.1890 -0.0621
Cl3AA -0.653 -0.0681 -0.2814 -0.0015 0.1645 0.4376 0.5563 0.0673 -0.0775 0.1732
BrCl2AA -0.532 0.3224 0.3320 0.1966 0.0526 -0.1247 0.1987
Cl3AH -2.787 -0.2072 0.0225 -0.0008 0.4220 0.3852 0.2051

b) Model statistics
t statistics for parameter estimates

Model N a Adj R2 b p c

Intercept Turb Br Temp Alk TOC UV254 Cl2
consumed

Cl2
contact

time
pH Cl2

residual
Cl2

point

CHCl3 730 0.6854 9 -15.0 -9.2 13.5 -8.6 4.1 11.2 11.9 5.0 10.1
CHBrCl2 848 0.6579 6 -19.9 3.8 20.7 7.7 10.3 9.0
CHBr2Cl 783 0.6721 8 -11.8 3.2 29.1 5.3 5.8 2.8 -5.6 5.5
Cl2AA 749 0.5042 8 -13.3 -9.1 4.8 -5.5 5.3 7.1 11.1 -5.3
BrClAA 808 0.5647 9 -21.9 3.2 14.2 4.1 4.9 6.6 5.4 3.9 -3.4
Cl3AA 697 0.5762 10 -3.9 -3.8 -8.4 -8.4 2.6 8.4 14.5 2.7 -5.3 3.0
BrCl2AA 737 0.5127 7 -5.0 13.1 7.7 6.6 2.6 -10.5 4.3
Cl3AH 758 0.5514 7 -36.8 -6.6 14.7 -4.7 8.4 10.5 9.0
a number of records used to parameterize model
b adjusted R-squared
c number of model parameters including intercept
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Table 4.7 THM4, X2AA, X3AA, HAA9, and TOX model results

a) Parameter estimates

Model Intercept Turb Br Temp Alk TOC UV254 Cl2
consumed

Cl2
contact

time
pH Cl2

residual Cl2 point

THM4 -1.3708 0.0146 -0.0005 0.1881 0.3258 0.2905 0.1186 0.0871 0.1667
X2AA -1.1353 -0.1531 0.0072 0.2497 0.2488 0.3239 0.1310 -0.0917
X3AA 0.0776 -0.0455 -0.0009 0.3826 0.4282 0.0450 -0.0885
HAA9 -0.5038 0.0034 -0.0008 0.2072 0.1970 0.3434 -0.0577
TOX 2.4590 -0.0007 0.3037 0.3673 0.2260 0.2689

b) Model statistics
t statistics for parameter estimates

Model N a Adj R2 b p c

Intercept Turb Br Temp Alk TOC UV254 Cl2
consumed

Cl2
contact

time
pH Cl2

residual
Cl2

point

THM4 741 0.7073 9 -14.4 14.7 -4.7 4.9 10.2 11.2 7.7 9.6 4.8
X2AA 737 0.4822 8 -13.3 -6.1 5.6 5.1 6.2 10.3 2.9 -5.2
X3AA 655 0.4819 7 0.65 -3.0 -5.8 10.3 13.3 2.2 -7.0
HAA9 595 0.4964 7 -7.4 2.8 -5.9 4.4 5.1 11.2 -3.4
TOX 764 0.4963 6 36.8 -5.2 6.3 9.2 7.5 6.2
a number of records used to parameterize model
b adjusted R-squared
c number of model parameters including intercept
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It was not always the case that stepwise regression results and patterns of adjusted R2

and Mallow's Cp statistics pointed to the same number of variables for model inclusion, as 

observed for THM4. Best judgment was used considering the available information and 

model selection was repeated if validation failed or any of the selected variables were not 

significant at the 0.05 level. In all cases, low variance inflation factors indicated that standard 

errors of parameter estimates were not adversely affected by collinearity and that initial 

efforts at addressing this through elimination of variables were effective (see Supplemental 

Information in Appendix B). Model residuals were slightly negatively skewed in all cases, 

but Kolmogorov-Smirnov statistic p values always exceeded 0.01, indicated lack of strong 

departure from normality. Figure 4.3 illustrates the model fits for CHBrCl2, BrCl2AA, X2AA, 

and TOX. 
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As Figure 4.1 illustrates, the THM4 model had a slight tendency toward 

overprediction at low concentrations. This was a consistent issue for all the DBP models (see 

Figure 4.3) and indicated some type of misspecification that was not identifiable from 

residual diagnostics. Attempts to address this were made through two alternate modeling 

approaches. Considering that analytical uncertainty for very low concentration data might be 

responsible for the problem, the model was reformulated after truncating the data set at 

different minimum THM4 values (note that log THM4(µmol/L) = −1.5 is equivalent to 3.8 

µg/L CHCl3) However, the misspecification pattern persisted and appeared to worsen as 

higher truncation levels were tested. Another potential source of model misspecification was 

conceptualizing the treatment train as a single input/output process whereas, in reality, it is a 

series of unit processes with continuously changing water quality conditions and often 

multiple chlorine application points. Because DBP results were available for filtered water 

locations, alternative models for THM4 and X2AA were developed based on conceptualizing 

the treatment train as sequential raw to filtered water, and filtered to finished water process 

segments. This approach did not alleviate the misspecification and yielded poorer models 

with unacceptable residual patterns. However, the analysis showed that the pattern of 

overprediction at low concentrations was associated only with records for incremental 

filtered to finished water DBP formation for plants adding chlorine upstream of  filtration, 

suggesting that these secondary stages of DBP formation were more difficult to describe in 

the linear modeling framework (see Supplemental Information in Appendix B). Absent a 

clear way to account for this with available data, the original unsegmented model formulation 

was considered the best approach within the framework of a multiple linear regression 

model. 
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4.4.3 DBP Species Model Results 

DBP species model results are summarized in Table 4.6. Table 4.6a lists the 

parameter estimates (i.e., intercept and coefficients for each independent variable) and Table 

4.6b shows the numbers of records available to parameterize each model, adjusted R2 values, 

numbers of parameters in the model, and t statistics (the parameter estimate normalized by its 

standard error) for each parameter. A parameter's t statistic indicates the direction of 

influence, relative magnitude, and statistical significance of the model variable. Thus, it 

provides a basis for comparing the influence of variables within and between models. 

The DBP species models show several important trends within the THM, X2AA, and 

X3AA classes. Bromide was a significant variable for all DBP species and its influence 

changed in sign and magnitude with the number of bromine substituents (see Table 4.6b). 

Bromide had a moderately negative influence on all fully chlorinated species: t statistics 

ranged from −6.6 to −9.2 for CHCl3, Cl2AA, Cl3AA, and Cl3AH. With a single bromine 

substituent, bromide became a strongly positive predictor and was the most significant 

variable in each model: t statistics ranged from 13.1 to 20.7 for CHBrCl2, BrClAA, and 

BrCl2AA. The t statistic for bromide in the CHBr2Cl model was 29.1 and it accounted for 

90% of the variation explained by the model overall.  

The role of alkalinity in these DBP species models followed a pattern similar to that 

seen for bromide, but with generally lower significance levels. Alkalinity had a negative 

influence on all the fully chlorinated species but became a positive factor with bromine 

substitution (CHBr2Cl and BrClAA). This result was somewhat surprising. Previous DBP 

models have not included alkalinity as an independent variable, although one early study 

noted a negative correlation between alkalinity and CHCl3 formation (Otson et al. 1981). 
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Given the inclusion of bromide in the models, the role of alkalinity cannot be attributed to its 

moderate correlation with bromide (see Table 4.4). However, results are consistent with 

alkalinity being an indicator of NOM hydrophobicity and reactivity. Archer and Singer 

(2006) demonstrated that the UV254/TOC ratio, an indicator of NOM hydrophobicity and 

reactivity toward DBP formation, tended to decrease with increasing alkalinity in ICR raw 

waters, and related this to immobilization of hydrophobic NOM under the high ionic strength 

and high hardness conditions of such waters. Thus, high alkalinity waters are enriched in 

hydrophilic NOM. Because reactive DBP precursor sites are more concentrated in 

hydrophobic NOM fractions compared to hydrophilic fractions, fewer reactive centers for 

DBP formation would be available per unit of TOC in such waters. The higher bromide to 

precursor ratios would lead to greater extents of bromine substitution in high alkalinity 

waters, for fixed bromide and TOC levels. Observed  alkalinity patterns in the DBP species 

models, which control for both TOC and bromide, are in accord with this concept. In 

laboratory studies of NOM isolates, Liang and Singer (2003) found hydrophilic NOM 

fractions to be more reactive towards bromine substitution than hydrophobic fractions, for a 

fixed bromide to TOC ratio. This increased reactivity may be attributable to lower precursor 

concentrations in hydrophilic NOM, per unit TOC, and consequently higher bromide to 

precursor ratios. It may also be related to halogen substitution being more important than 

oxidation for reaction centers in hydrophilic NOM, compared to those in hydrophobic NOM, 

because bromine is a stronger reagent than chlorine for halogen substitution, whereas 

chlorine is a stronger oxidant (Rook et al. 1978; Boyce and Hornig 1983; Johnson and Jensen 

1986). The absence of correlation between alkalinity and either UV254 (Table 4.2) or the 

UV254/TOC ratio (not shown) in the current data set, as observed by Archer and Singer 
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(2006), may be a consequence of the predominantly low organic precursor levels for ICR 

chlorine plants considered here (Obolensky, Singer, and Shukairy 2007) or may be related to 

covariances in the dataset that mask such a relationship. Nevertheless, the interpretation of 

alkalinity's association with NOM reactivity is consistent with the observed role of UV254 in 

the DBP species models. The influence of UV254, when present in the models, was always 

opposite in direction to that for alkalinity (see Table 4.6). 

Chlorine consumed and organic precursor measures (TOC and UV254) were 

significant variables in almost all DBP species models (see Table 4.6b). With respect to 

numbers of bromine substituents, these terms exhibited trends opposite to those seen for 

alkalinity and bromide. With t statistics ranging from 10.5 to 14.5, chlorine consumed had a 

strong positive influence on all fully chlorinated species (CHCl3, Cl2AA, Cl3AA, and 

Cl3AH); chlorine consumed was less important for species with one bromine substituent (t

statistics ranged from 5.4 to 9.0 for CHBrCl2, BrClAA, and BrCl2AA); with two bromine 

substituents, chlorine consumed was not a significant variable for CHBr2Cl. TOC exerted a 

significant influence in all DBP species models and UV254 provided additional information 

in 4 of the 8 models. Considering these two variables together, the influence of organic 

precursors decreased overall with increasing numbers of bromine substituents within each 

DBP class. In particular, UV254 had a strong positive influence on most of the fully 

chlorinated species (CHCl3, Cl2AA, and Cl3AA) but was either absent (CHBrCl2, BrClAA, 

and BrCl2AA) or had a negative influence (CHBr2Cl) on brominated compounds. Without 

interaction terms, the models indicate that higher UV254 absorbance at fixed TOC and 

bromide levels (a decrease in bromide to precursor ratio) is associated with higher 
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chlorinated DBP concentrations and lower brominated DBP concentrations, consistent with 

the general hypothesis discussed above. 

Temperature was the most significant variable in both CHCl3 (t = 13.5) and Cl3AH (t

= 14.7) models; there appeared to be a pattern of declining significance for temperature with 

increasing bromine substitution across the THM class. This may reflect the kinetic 

disadvantage of chlorine relative to bromine in substitution reactions, which is leveled to 

some extent with increasing temperature (Oliver 1980). Curiously, temperature was not 

identified as an important variable in either of the X3AA species models but was moderately 

significant in both X2AA species models (t < 5). Cl3AH was the only DBP species in which 

chlorine contact time was found to be a highly significant model variable. 

pH was identified as an important variable in only three of the eight DBP species 

models. Notably, pH had a strong positive influence on CHCl3 formation but was not 

identified as an important predictor for either of the brominated THM species modeled. 

Conversely, pH exerted a negative influence on both X3AA species, with a substantially 

greater effect on BrCl2AA than on Cl3AA. pH was not a significant variable in either X2AA 

species model. These findings are generally consistent with a large body of research showing 

enhanced CHCl3 and THM4 formation at high pH, enhanced Cl3AA and X3AA formation at 

low pH, and minimal effect of pH on X2AA species formation (Oliver and Thurman 1983; 

Reckhow and Singer 1985; Reckhow, Singer, and Malcom 1990; Stevens et al. 1989; 

Pourmaghaddas et al. 1993; Liang and Singer 2003). A mechanistic explanation by Reckhow 

and Singer (1985) for the opposite effects of pH on THMs and X3AAs entailed their 

production from a common intermediate wherein base hydrolysis at an alpha carbonyl center 

favors cleavage to yield the THM analogue. It is difficult to explain the much stronger 
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observed negative influence of pH on BrCl2AA, compared to Cl3AA with no corresponding 

pattern observed for the THM species. BrCl2AA decomposition has been shown to be 

insensitive to pH (Weinberg 2000; Zhang and Minear 2002), so base-hydrolysis of formed 

BrCl2AA cannot account for this. However, the results are consistent with Cowman and 

Singer's (1996) findings that brominated HAAs were more enhanced than chlorinated HAAs 

for pH 6 chlorination of NOM isolates relative to pH 8 chlorination, suggesting that bromine 

substitution reactions are more favored at a lower pH. 

Although turbidity and chlorine residual appeared in several of the DBP species 

models, there was no clear pattern to their inclusion and significance levels were generally 

low (t ≤ 4.3). The categorical variable Cl2 point, distinguishing whether plants applied their 

first chlorine dose to raw or settled/filtered water, was a significant predictor for both X2AA 

species but not for any other DBP species modeled. The negative coefficient sign indicated 

that plants practicing pre-chlorination (Cl2 point = 1) formed lower X2AA levels than plants 

that delayed chlorine addition until after clarification processes (Cl2 point = 0), other factors 

being fixed. This finding was counter-intuitive because clarification processes are known to 

reduce NOM reactivity towards DBP formation. Closer examination of treatment practices 

for the two groups of plants suggested that the analysis was confounded by differences in the 

number of chlorine doses utilized by plants practicing pre-chlorination, compared to those 

with delayed chlorine addition. After controlling for this difference, re-formulated models 

indicated that pre-chlorination had a small positive influence in two of the DBP species 

models. This is addressed further in a separate paper (see Chapter 5). 
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4.4.4 DBP Class Sum and TOX Models 

Table 4.7 summarizes model results for aggregate DBP measures (THM4, X2AA, 

X3AA, HAA9, and TOX). Chlorine consumed, organic precursor variables (TOC and 

UV254), and alkalinity were moderately significant in all models, with the exception of 

alkalinity for the X2AA model. Interestingly, bromide appeared only in the X2AA model, 

where alkalinity was absent. The bromide and alkalinity parameters were consistently 

negative, reflecting dominance of the aggregate DBP measures by fully chlorinated DBP 

species in the low bromide data set under study. As discussed above, the influences of 

bromide and alkalinity on DBP concentrations strongly depended on the extent of bromine 

substitution in a particular compound and were always negative for fully chlorinated species. 

Similarly, the high level of significance of chlorine consumed for all five models was 

commensurate with its greater importance for chlorinated species than for brominated 

species. UV254, present in all aggregate DBP models, tended to be a more significant 

predictor than TOC, which was present in 4 of the 5 models. Temperature was highly 

significant only for THM4, consistent with its strong influence on CHCl3 (see Table 4.6b). 

Similarly, pH was significant only for THM4 (positive) and X3AA (negative), reflecting its 

importance and direction of influence in the CHCl3, Cl3AA, and Cl2BrAA models discussed 

above. 

The wide differences observed among individual DBP species models within the 

THM, X2AA, and X3AA classes suggest that aggregate DBP model results will be strongly 

dependent on the extent of bromine substitution in the particular data set used for model 

development. This is determined by water quality conditions, which tend to drive treatment 

conditions. In addition to such intraclass differences among DBP species models, distinctions 
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between classes or subclasses (interclass differences) would be expected to shape TOX 

model results. The data set analyzed here encompassed moderate pH, low bromide, and low 

organic precursor conditions (see Table 4.2) and DBPs were dominated by the fully 

chlorinated species in each class (see Table 4.1). Thus, models for TOX and DBP class or 

subclass sums were driven by the factors influencing these fully chlorinated species. 

Different results might be expected for data sets with higher pH, bromide, or organic 

precursor levels that shift the composition of TOX and/or DBP class/subclass sums with 

respect to either intraclass or interclass speciation patterns. For this reason, interpretation of 

models for total class sum or TOX concentrations, with respect to the influences of water 

quality and treatment, may not be as generally applicable as corresponding interpretation of 

model results for individual species. The same caveat would apply to use of aggregate 

models for predicting future values. 

 



CHAPTER 5: APPLICATIONS OF MODELS TO DESCRIBE THE IMPACTS OF 

TREATMENT ON DBP FORMATION USING THE ICR DATABASE 

 

5.1 BACKGROUND AND INTRODUCTION 

A previous paper described development of multiple linear regression models for 

disinfection byproducts (DBPs) based on Information Collection Rule (ICR) data, and their 

use as analytical tools for the study of relationships between DBP formation and water 

quality and treatment processes (see Chapter 4). This paper presents extended applications of 

the this modeling work to examine the specific impacts of point of chlorination, alternative 

disinfectant use, and softening treatment on finished water DBPs. The research was 

performed as part of a broader study aimed at extracting untapped information related to 

DBPs from the ICR (Obolensky and Singer, 2005; Obolensky, Singer, and Shukairy 2007). 

Linear regression models were used as a platform for analysis of these data because of their 

ability to isolate and characterize effects from numerous factors of influence that vary 

simultaneously in a data set, and to provide for straightforward interpretation. The empirical 

models, based on current knowledge of drivers for DBP formation in drinking water, 

encompass commonly measured variables representing water quality and treatment 

processes. These included: turbidity, bromide, temperature,  and alkalinity (plant influent); 

total organic carbon (TOC) and ultraviolet absorbance at 254 nm (UV254) (at the first point 

of chlorine addition in the treatment train); pH and total chlorine residual (plant finished 
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water); chlorine consumed (through the plant); chlorine contact time in the plant; and a coded 

variable to describe the location of first chlorine addition in the treatment train (1 =  raw 

water, 0 = settled/filtered water). 

Control of halogenated DBP formation in water treatment is accomplished by limiting 

the contact of chlorine with reactive organic precursors present in natural water. This may be 

effected by reducing concentrations of chlorine, organic substrates, or both. Coagulation and 

softening processes can remove substantial fractions of TOC during treatment, lowering 

concentrations of organic matter that exert chlorine demand and act as substrates in DBP 

formation reactions. Thus, for a given set of water quality and treatment conditions, moving 

the point of chlorine addition forward in the treatment train from the head of the plant to a 

location following clarification can lead to significant reductions in finished water DBP 

concentrations. Stevens and coworkers (1976) identified point of chlorine addition as the 

most important factor for trihalomethane (THM) control, and early laboratory and full scale 

studies showed the associated benefit of delayed chlorine addition (Babcock and Singer 

1979; Young and Singer 1979). Moving the point of chlorination was the most common 

treatment modification implemented in the U.S. to lower total trihalomethane (TTHM) for 

compliance with the 1979 Interim TTHM Rule rule, according to a 1987 survey (McGuire 

and Meadow 1988). Since these early studies, research has addressed optimization of 

coagulation and softening for natural organic matter (NOM) and DBP precursor reduction, 

since these processes were originally designed and employed for particulate (e.g. turbidity), 

color, or hardness removal (Randtke 1999). As part of an integrated DBP control strategy, 

Safe Drinking Water Act regulations now require specified percentages of TOC removal 

between influent and finished water (linked to source water conditions), though utilities are 
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not restricted from adding chlorine upstream of settled water in the treatment train since this 

practice is often driven by competing treatment objectives (U.S. EPA 1998a). Though most 

ICR plants (67%) applied chlorine to raw water, those that delayed chlorine addition until 

settled or filtered water locations had significantly higher organic precursor levels (i.e. TOC 

and UV254), indicating that this practice was implemented for DBP control (Obolensky, 

Singer, and Shukairy 2007). 

Because NOM in source waters is composed of a varied mixture of complex 

macromolecular structures that preclude specific chemical identification, measurements of 

bulk water properties (e.g. ultraviolet absorbance, TOC, color) and other indirect approaches 

(e.g. resin fractionation, molecular size, 13C NMR, model compound studies) have been used 

to characterize NOM, its role in DBP formation, and its alteration or removal in drinking 

water treatment processes (Croue et al. 1999). Research has shown that certain types of 

moieties in NOM are more or less reactive towards DBP formation, and that specific DBP 

yields (i.e. per unit carbon) correlate with UV254 and activated aromatic content (Reckhow, 

Singer, and Malcom 1990). Thus UV254 is a more specific indicator of DBP formation 

potential than TOC. Hydrophobic and hydrophilic NOM components, differentiated by resin 

fractionation methods, have been shown to differ substantially with respect to DBP 

formation. Hydrophobic NOM fractions (humic substances, including humic and fulvic 

acids) generally have greater aromatic content, higher UV254, higher molecular weight, and 

higher chlorine consumption and DBP formation yields than corresponding hydrophilic 

NOM fractions, regardless of origin (Reckhow, Singer, and Malcom 1990; Croue et al. 

1999). NOM fractions have also been found to differ with respect to relative formation yields 

of specific DBP classes (Croue et al. 1999; Marhaba and Van 2000; Liang and Singer 2003). 
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For example, aliphatic (i.e., non-aromatic) fractions have been found to contain more THM 

precursors than HAA precursors. At the same time, differences in chemical and structural 

properties render hydrophobic NOM more amenable to removal by coagulation and softening 

processes than hydrophilic NOM so that, in addition to lowering absolute TOC 

concentrations, these clarification processes alter TOC composition, preferentially removing 

UV254 absorbance and DBP precursor moieties over organic carbon generally (Babcock and 

Singer 1979; Chadik and Amy 1987; Randtke 1999; Liang and Singer 2001; Archer and 

Singer 2006). Therefore plants that delay chlorine addition until after NOM removal 

processes are expected to have lower specific DBP yields (per unit carbon) and possibly 

different relationships between DBP formation and other water quality and treatment factors, 

compared to plants chlorinating raw water. Liang and Singer (2001, 2003) found that 

precursors for THMs, dihaloacetic acids (X2AAs), and trihaloacetic acids (X3AAs) were 

removed to different extents by coagulation processes, and related this to differences in 

hydrophobicity and aromaticity of organic structures serving as substrates for the different 

classes of DBPs. Reckhow, Singer, and Malcom (1990) found that highly conjugated 

structures (i.e. aromatic and hydrophobic NOM) were enriched in Cl3AA precursors, 

compared to precursors for CHCl3, Cl2AA, or total organic halogen (TOX) generally, and 

related this to a proposed reaction mechanism wherein the pathway to Cl3AA was stabilized 

by conjugation. Thus, one objective of the current research was to evaluate the specific 

impact of delayed chlorine addition on DBP and TOX formation at ICR plants while 

accounting for related effects (e.g. TOC, UV254, chlorine consumed, and chlorine contact 

time). 
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A second objective of the current research was to examine the impact of alternative 

disinfectant use on DBP formation at ICR plants. Application of alternative 

oxidants/disinfectants by water utilities to replace some or all their use of free chlorine has 

been an important aspect of DBP control in the U.S. since the 1979 THM regulation (Singer 

1994). Use of chloramines to arrrest continued THM formation, especially in distribution 

system transit, has been widespread. Historically, chlorine dioxide was applied during 

drinking water treatment primarily for taste and odor control (Hoehn and Gates 1999). After 

THMs became regulated, application of chlorine dioxide as a preoxidant/predisinfectant in 

place of chlorine became an important THM control strategy, since it acts primarily an 

oxidant and produces few halogenated byproducts. A survey of 35 U.S. water utilities 

utilizing chlorine dioxide indicated that reducing THM formation was the main purpose for 

its use in 65% of systems (Dietrich et al. 1992). Not surprisingly, the mean source water 

TOC concentration for these systems was quite high (7.65 mg/L), while EPA's consideration 

at the time of a 1 mg/L limit on total oxychloride residuals (sum of ClO2, ClO2
−, and ClO3

−)

effectively limited chlorine dioxide doses to an average of 1.24 mg/L (Werdehoff and Singer 

1987). The low concentrations of organohalogens formed with chlorine dioxide contact are 

thought to be products of trace free chlorine used in its generation or produced as a reaction 

product of chlorine dioxide and phenolic moieties in NOM (Werdehoff and Singer 1987; 

Richardson 1998; Hoehn and Gates 1999). 

Ozone has also been used as an alternative oxidant/disinfectant for control of 

halogenated DBPs and many other treatment objectives (e.g. taste and odor control, iron and 

manganese oxidation, disinfection, coagulant aid, removal of color and micropollutants), 

though the potential for bromate formation has presented a challenge for ozonation of  high 
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bromide waters, and ozone reacts to form nonhalogenated DBPs such as formaldehyde. 

Ozone may also form halogenated DBPs in the presence of bromide. Ozone differs 

significantly from chlorine dioxide in that, in addition to selective direct oxidation pathways, 

it can act through highly reactive and nonselective hydroxyl radical reactions. Ozone is most 

effective for controlling halogenated DBPs when used as replacement for chlorine as a 

preoxidant/predisinfectant. Neither chlorine dioxide nor ozone leads to appreciable loss of 

TOC, although both oxidants alter NOM by reacting with DBP and TOX precursor sites 

(Werdehoff and Singer 1987; Reckhow 1999). Preozonation may improve particle removal in 

coagulation but may also lower the efficiency of TOC and DBP precursor removal in 

coagulation, due to oxidative cleavage of NOM into smaller, more highly charged and 

hydrophilic molecules (Randtke 1999; Reckhow 1999), though lower ozone doses have been 

demonstrated not to diminish TOC removal (Dowbiggin and Singer 1989). Some research 

has indicated that ozone consumes Cl3AA precursors but not Cl2AA precursors and that 

ozone may enhance the formation of certain compounds like haloketones and 

haloacetaldehydes (Reckhow and Singer 1984; Reckhow 1999). In a survey of twelve 

utilities treating high TOC or high bromide waters, Krasner and coworkers (2006) found that 

alternative disinfectants generally (i.e. chloramines, chlorine dioxide, and ozone) favored 

formation of dihalogenated DBPs over their trihalogenated analogues. Krasner et al. (2006) 

postulated that the preferential formation of dihalogenated acetaldehydes in ozone plants was 

attributable sequential chlorine substitution reactions with formaldehyde that was a product 

of prior ozone contact. Depending on treatment conditions, ozonation may lead to increased 

formation of some brominated DBP species following subsequent chlorination (e.g. Br2AA 

and CHBr2Cl), due to increased bromide to chlorine and/or bromide to precursor ratios 
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resulting from precursor oxidation and reduced chlorine demand, which led to lower chlorine 

doses (Miltner, Shukairy, and Summers 1992; Reckhow 1999; Westerhoff et al. 2000). 

Ozone reacts much more slowly with bromide than with organic DBP precursors, but 

generated hypobromous acid may react to yield bromoform or other fully brominated DBPs 

even in the absence of downstream free chlorine contact. 

Softening treatment is distinguished from conventional treatment by the use of high 

pH conditions and addition of lime and/or sodium hydroxide to effect the removal of 

hardness ions from high alkalinity waters. With respect to influences on DBP formation, 

important characteristics of softening treatment include the characteristically high alkalinity 

source waters, the high pH of treatment, and the formation of calcium carbonate precipitates 

during treatment. Since both ozone and chlorine dioxide decompose at high pH, many 

softening plants rely on chloramines to control THM formation, especially those with high 

TOC source waters. Increases in THMs and decreases in TOX with elevated pH are well 

known (Oliver and Thurman 1983; Fleischaker and Randtke 1983; Reckhow and Singer 

1985). Studies have shown dramatic reductions in Cl3AA yields at high pH with little effect 

on Cl2AA yields (Miller and Uden 1983; Reckhow and Singer 1985; Stevens et al. 1989; 

Reckhow, Singer, and Malcom 1990; Liang and Singer 2001), and reduced 

trichloroacetaldehyde (Cl3AH) formation at high pH (Miller and Uden 1983). Due to the 

selective adsorption and precipitation of strongly ultraviolet-absorbing high molecular weight 

constituents, soft water systems contain greater proportions of high molecular weight 

dissolved organic matter than hard water systems. These differences have been observed in 

limnology studies. In an analysis of data for 55 lakes, Stewart and Wetzel (1981) showed that 

the loss of high molecular weight humic material was related to calcium concentrations, and 
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that both fluorescense and absorbance declined as dissolved calcium increased. Liming of 

acidified scandinavian lakes, increasing pH and calcium concentrations, was found to lower 

proportions of high molecular weight in in lake outlet NOM (Anderson, Alberts, and Takacs 

2000). Thus, the effects of softening treatment on DBP formation are expected to stem from 

source water quality, treatment pH, and NOM alteration and removal in the plant. The third 

objective of this research was to apply multiple linear regression models to investigate these 

effects.  

5.2 METHODS 

Using regression models, the effects of point of chlorine addition, alternative 

disinfectant use, and softening treatment were examined for TOX and eight DBP species: 

namely chloroform (CHCl3); bromodichloromethane (CHBrCl2); dibromochloromethane 

(CHBr2Cl); dichloroacetic acid (Cl2AA); bromochloroacetic acid (BrClAA); trichloroacetic 

acid (Cl3AA); bromodichloroacetic acid (BrCl2AA); and chloral hydrate 

(trichloroacetaldehyde hydrate, Cl3AH). Procedures used for ICR data handling and model 

development are described in Chapter 4 (see also Appendix B). Five sets of finished water 

DBP models were utilized, each set comprising nine distinct models corresponding to the 

above-listed dependent variables. Models were based on various subsets of data from ICR 

plants using only free chlorine for disinfection (chlorine plants), according to requirements of 

the particular analysis. The first set of models are referred to here as chlorine plant models. 

These models, described in detail in Chapter 4, were based on data for all chlorine plants 

with some exceptions. Additional sets of models were based on data for chlorine plants 

applying the first chlorine dose to raw or unclarified water (raw water models); chlorine 
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plants applying the first chlorine dose to settled or filtered water (settled water models); 

chlorine plants using a single chlorine dose (single dose models); and chlorine plants using 

conventional treatment (conventional plant models, see following). 

The influence of point of chlorine addition on DBP formation was evaluated through 

the role of a binary classification variable in chlorine plant models (Cl2 point=1 for raw, 0 for 

settled/filtered) and by comparing results for raw and settled water models. The former 

approach provides more power for detecting a main effect (i.e. point of chlorination). The 

latter approach allows for observing how point of chlorination might modify the effects of 

other factors present in the models, without necessitating use of interaction terms which 

introduce collinearity and present interpretation challenges. To control for possible 

confounding effects of multiple chlorine doses, the binary classification variable Cl2 point 

was also tested in the single dose models. 

Chlorine plant models were used as the baseline for evaluating alternative 

disinfectants' impacts on DBP formation. For plants utilizing chloramines, ozone, or chlorine 

dioxide, the chlorine plant models were employed to estimate concentrations of finished 

water DBPs that would be expected under existing water quality and treatment conditions 

without alternative disinfectant use. Discrepancies between observed results and model 

predictions were then attributed to the alternative disinfectant application, under the 

assumption that the models controlled for other significant influences on DBP formation. 

This assumption should be valid to the extent that these other influences were represented in 

the models. The relative percent difference (RPD) between predicted and observed values 

was used to characterize alternative disinfectant treatment effects. The RPD, computed as 

[observed-predicted]/predicted, was computed for each data point after back-transformation 
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to express results in µmol/L units (or µg Cl/L for TOX), since models utilized log-

transformed dependent variables. Thus, negative RPDs indicated that, under the specified 

treatment (i.e. alternative oxidant), DBPs were lower than would be expected in its absence, 

or equivalently that DBP formation was reduced by use of the treatment. Conversely, 

positive RPDs indicated that DBPs were higher than expected, or that DBP formation was 

enhanced by the treatment. 

In an approach analogous to that used for the alternative disinfectant analysis, the 

impact of softening treatment on DBP formation was evaluated using predictions from 

conventional plant models as the baseline. With input data from softening plants, the 

conventional plant models were employed to estimate concentrations of finished water DBPs 

that would be expected under existing water quality and treatment conditions in the absence 

of softening treatment (i.e. under conventional treatment), with differences between predicted 

and observed values attributed to the effect of softening. RPD values were used to quantify 

effects, as described above. A second approach to evaluating effects of softening treatment 

on DBP formation entailed conducting tests of statistical significance on a binary treatment 

classification variable (1 for softening, 0 for conventional) using the chlorine plant models 

(which spanned both conventional and softening treatment plants). 

It was important that the design matrix for conventional plant models encompass the 

data domain of softening plants, in order that water quality and treatment effects (other than 

softening practice) impacting DBP formation would be adequately accounted for in 

generating predicted DBP values, and that model boundary conditions would not be violated. 

Distributions of model independent variables for conventional and softening plants were thus 

compared within categories of source water type (ground water versus  surface water) and 
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treatment plant disinfectant type (chlorine versus chlorine/ chloramine) to identify a subset of 

data on which to base conventional plant models that could be appropriately applied to data 

from softening plants. Among model independent variables, alkalinity, pH, and TOC 

exhibited the greatest overall differences between conventional and softening plants. As 

expected, softening plants had a significantly higher alkalinity range than conventional 

plants, regardless of source water or disinfectant type category. TOC and pH differences 

between conventional and softening plants were much more pronounced for 

chlorine/chloramine plants (Cl2/ClM) than for chlorine plants: a substantial fraction of 

softening Cl2/ClM plants had TOC and pH values well outside the range for conventional 

Cl2/ClM plants. However, TOC and pH values for softening chlorine plants were within the 

range of values for conventional chlorine plants. Therefore, conventional plant models were 

based on data for conventional plants using chlorine only, and the evaluation of softening 

treatment was restricted to plants using free chlorine disinfection. This also allowed the 

analysis of softening effects to be isolated from the influence of chloramine use. Although all 

conventional chlorine plants utilized surface water sources, it was not considered necessary 

to limit the analysis of softening effects only to plants using surface water (note that about 

half the softening chlorine plants utilized ground water sources). Although there were some 

distinctions between data characteristics of softening chlorine plants based on source type 

(e.g. higher turbidity and chlorine consumed at surface water plants), data from the ground 

water softening plants were within the ranges for conventional chlorine plants. 
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5.3 RESULTS AND DISCUSSION 

5.3.1 Point of Chlorine Addition 

As previously reported, the binary Cl2 point variable was identified as a significant 

predictor in X2AA species models (Cl2AA and BrClAA), but not in models for THM species 

(CHCl3, CHBrCl2, or CHBr2Cl), X3AA species (Cl3AA or BrCl2AA), Cl3AH, or TOX (see 

Chapter 4). The negative coefficient sign for Cl2 point in the X2AA species models indicated 

that plants applying chlorine to raw water (raw water plants) formed lower X2AA 

concentrations than plants applying chlorine to settled or filtered water (settled water plants), 

controlling for other factors represented in the models (i.e. turbidity, bromide, temperature, 

alkalinity, TOC, UV254, chlorine consumed, and chlorine residual). This was 

counterintuitive and prompted further investigation. A comparison of results for separate raw 

and settled water models showed that much better fits were obtained for settled water models 

(R2 = 0.6252-0.7443, n = 230-331), compared to raw water models (R2 = 0.3774-0.6561, n = 

475-549), despite the much larger data set available for the latter group. These precision 

differences were most pronounced for the X2AA species models (60-70% improvement for  

settled over raw models, compared to 10-30% improvement for X3AAs, THMs, Cl3AH, or 

TOX). Although reasons for the superiority of settled water models were not immediately 

clear, these results confirmed the existence of a significant distinction for the X2AA DBP 

class with respect to the impact of chlorination practices. 

Recognizing that use of multiple chlorination points was not accounted for in the 

models heretofore, treatment practices were examined to determine how they may have 

affected the results. The number of applied chlorine doses was found to differ substantially 
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based on the location of first applied chlorine dose. Most raw water plants used two chlorine 

doses whereas settled water plants most often used one chlorine dose. Table 5.1 shows that 

85% of raw water plants applied additional chlorine downstream of the first applied dose, 

compared to 46% for settled water plants. Considering the fraction of total dose applied at the 

first chlorination point (which decreased with the number of addition points used), raw water 

plants applied 38% of their total dose at downstream points, compared to only 19% for 

settled water plants (weighted averages from Table 5.1). Thus, organic precursor model input 

variables (i.e. TOC and UV254), for which values at the first point of chlorine addition were 

employed, more accurately reflected conditions during chlorine contact for settled water 

plants than for raw water plants, a plausible explanation for the generally better performance 

of settled water models. Given the much greater importance of this distinction for X2AAs, 

results indicate that initial chlorine dose and corresponding precursor conditions are 

especially relevant for X2AA formation. 

Table 5.1   Summary of chlorine application practices by location of first dose and total 
number of chlorine addition points in the treatment train 

location of first 
Cl2 dose n doses n n plants % of data 

mean fraction of 
total dose at first 

Cl2 location 
1 119 28 15% 100%
2 506 110 64% 61%
3 157 44 20% 40%

raw water 

4 10 3 1% 32%

1 211 50 54% 100%
2 151 35 39% 62%

settled/filtered 
water 

3 26 6 7% 37%
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In single dose models, the classification variable Cl2 point was only found to be 

weakly significant for Cl3AA and Cl3AH, with positive coefficients indicating the formation 

of higher concentrations at raw water plants, controlling for other factors present in the 

models. The Cl2 point variable was not significant for other DBP species or TOX in the 

single dose models. The general lack of importance of Cl2 point as an influential predictor 

could stem from the predominantly low organic precursor levels in the data set (chlorine 

plant TOC 90th percentile = 3.3 mg/L), which was more pronounced when considering the 

subset of plants using a single chlorine dose (TOC 90th percentile = 2.9 mg/L). It may also be 

that other variables in the models adequately accounted for any effects of delayed chlorine 

addition on DBP formation (e.g. UV254, chlorine consumed, and chlorine contact time). 

It was noteworthy that single dose models exhibited the same strong patterns with 

respect to directions of influence and significance levels for bromide, alkalinity, chlorine 

consumed, TOC, UV254, and pH as were previously observed in models for all chlorine 

plants, providing validation of those trends (see Chapter 4). Although based on substantially 

fewer data (n ~ 200 compared to ~ 700-800), models for plants with a single chlorine dose 

provided much better fits to the data in all cases except for THM species, where little 

difference was observed. The most dramatic improvement in fit was observed for Cl2AA, 

with an increase in adjusted R2 from 0.5042 (all chlorine plants) to 0.7119 (plants with a 

single chlorine dose) (see Figure 5.1). 
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5.3.2 Alternative Disinfectants 

Results for CHBrCl2 are used to illustrate analysis of the impacts of alternative 

disinfectants on DBP formation. Figure 5.2 shows scatter plots of model predictions versus 

observed values for logmolar CHBrCl2 concentration, for each disinfectant type (1:1 

reference lines superimposed). The chlorine plant CHBrCl2 model included as independent 

variables influent turbidity, bromide, and temperature, TOC at the first point of chlorine 

addition, and chlorine consumed through the plant. Points to the left of the reference lines in 

Figure 5.2 indicate observed concentrations lower than estimated values. Points to the right 

of the line indicate observed concentrations exceeding estimated values. Figure 5.2a 

illustrates the model's fit for chlorine plant data, showing that overprediction and 

underprediction were similar in prevalence and extent. In contrast, Figures 5.2b-5.2d show 

that observed CHBrCl2 concentrations at plants using chloramines, chlorine dioxide, or ozone 

were predominantly lower than would be expected under existing water quality and treatment 

conditions, in the absence of alternative disinfectants. This can be interpreted as indicating 

that alternative disinfectant use led to a reduction in CHBrCl2 formation. Plot symbols in 

Figures 5.2b-5.2d differentiate disinfectant subcategories: chloramines used with or without 

free chlorine; chlorine dioxide used in conjunction with chloramines and/or free chlorine; 

ozone used in conjunction with chloramines and/or free chlorine. For example, the data in 

Figure 5.2c shows that CHBrCl2 levels were consistently and significantly lower than 

expected only when chlorine dioxide was used without free chlorine (i.e. ClO2/ClM). For 

chlorine dioxide plants using free chlorine (with or without chloramines), CHBrCl2 levels 

tended to be close to or slightly lower than expected for chlorine plants. 
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Histograms of the distributions of RPD values from Figure 5.2 are shown in Figure 

5.3, without distinction for disinfectant subcategories. Note that models were developed 

using log transformed dependent variables (see Figure 5.2), but RPD values were computed 

from back-transformed results, to allow for more straightforward interpretation. Back-

transformation caused the skewness in RPD distributions seen in Figure 5.3. Nevertheless, 

the shift towards negative RPD values for alternative disinfectants is strongly evident. 

Results indicate that use of chloramines (Figure 5.3b) and chlorine dioxide (Figure 5.3c) had 

similar overall impacts on CHBrCl2 formation, lowering finished water concentrations by 29 

and 34%, respectively, on average, compared to expected values for use of chlorine alone. 

Ozone resulted in larger and more consistent CHBrCl2 reduction (Figure 5.3d), with a mean 

RPD of −45%. 



140

0

10

20

30

40

50

%

N 848.0

Mean 0.08

Median 0.01
C

l2

0

10

20

30

40

50

%

N 397.0

Mean -0.29

Median -0.33C
lM

0

10

20

30

40

50

%

N 73.00

Mean -0.34

Median -0.41C
lO

2

-0.9 -0.6 -0.3 0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3 3.3 3.6 3.9

0

10

20

30

40

50

%

N 65.00

Mean -0.45

Median -0.75

O
3

RPD
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concentrations and values predicted from chlorine plant model: data for a) free chlorine 
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Results for all analytes are summarized in Table 5.2, showing mean RPD values for 

each disinfectant category and subcategory. Effects for alternative disinfectants should be 

evaluated in relation to results for free chlorine plants, which comprise the baseline for this 

analysis. As shown in the first row of Table 5.2, mean RPD values for free chlorine plants 

ranged from +2.7% to +14.6%, reflecting the slight tendency of models towards 

underprediction at high values (see Figure 5.2a and Chapter 4). With the exception of TOX 

and BrCl2AA, the overall impacts of chloramines and chlorine dioxide were comparable for 

each analyte, based on mean RPDs for the disinfectants (compare second and third rows of 

Table 5.2). Reductions on the order of 20-30% were observed for THM species and Cl3AH, 

with smaller effects for BrClAA, and negligible effects for Cl2AA. The mean reduction in 

BrCl2AA formation was much greater for chlorine dioxide than for chloramines whereas the 

opposite was true for TOX. For most DBPs, ozone led to substantially greater overall 

reductions than either chloramines or chlorine dioxide, on average (see fourth row of Table 

5.2). In marked contrast to all other analytes and alternative disinfectants, results indicated 

that Cl3AH formation was enhanced by use of ozone. It should be noted here that all ICR 

plants utilizing chlorine dioxide or ozone applied these oxidants in conjunction with free 

chlorine and/or chloramines (see below).  
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Table 5.2 Mean relative percent difference between predicted and observed values for DBP species (as µmol/L) and TOX (as µg/L as
Cl) by disinfection categories and subcategories

Disinfectant N CHCl3 CHBrCl2 CHBr2Cl Cl2AA BrClAA Cl3AA BrCl2AA Cl3AH TOX

Cl2 only 697-848 +9.7% +8.1% +2.7% +11.9% +4.3% +14.6% +4.7% +9.5% +12.7%
any ClM 368-409 -30.6% -29.3% -21.4% +8.7% -14.8% -16.5% -16.9% -34.5% -33.4%
any ClO2 64-75 -25.1% -34.5% -32.5% +5.4% -17.4% -22.1% -37.3% -32.6% -5.6%
any O3 51-65 -45.9% -45.0% -14.9% -26.3% -49.8% -61.6% -51.9% +18.6% -28.1%

Cl2/ClM 297-340 -21.9% -21.5% -15.8% +15.4% -7.1% -7.8% -9.5% -27.5% -28.7%
ClM 69-76 -67.9% -62.7% -46.4% -20.3% -48.3% -54.1% -46.0% -65.1% -56.5%

ClO2/Cl2 36-44 -0.3% -15.0% -14.1% +16.3% +2.1% -15.1% -28.5% -1.2% +25.9%
ClO2/Cl2/ClM 9-10 -14.4% -10.8% +27.3% +16.3% +3.5% +45.8% +22.1% +8.4% -28.4%

ClO2/ClM 18-23 -74.7% -84.8% -79.5% -19.7% -68.1% -67.6% -83.6% -92.3% -55.5%

O3/Cl2 18-28 -43.5% -29.4% +12.0% -49.1% -42.1% -65.1% -59.5% +11.4% +8.7%
O3/Cl2/ClM 21-24 -30.4% -42.8% -30.9% -3.6% -49.4% -51.1% -61.4% +78.7% -44.5%

O3/ClM 12-15 -79.2% -80.0% -42.5% -20.4% -60.2% -74.5% -27.1% -70.4% -59.3%
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Analysis of results within alternative disinfectant subcategories suffered from small 

sample size (especially for chlorine dioxide and ozone subcategories), and associated greater 

uncertainty. Nevertheless it is important to note the substantial variation associated with 

differences in oxidant/disinfectant application. As shown in Table 5.2 and Figure 5.4, 

reductions on the order of 50-70% were observed for all DBPs except Cl2AA when 

chloramines were employed alone (ClM), compared to corresponding reductions of only 7-

30% when free chlorine was applied with chloramines (Cl2/ClM).  With conjunctive use of 

free chlorine, chloramines appeared to have no effect on Cl2AA formation, whereas 

chloramines used alone resulted in a moderate 20% reduction in Cl2AA, on average. With the 

possible exception of TOX, the benefits of chlorine dioxide appeared to be limited primarily 

to plants employing chlorine dioxide with no conjunctive free chlorine use (ClO2/ClM). Use 

of free chlorine in conjunction with chlorine dioxide appeared to enhance formation of 

several analytes (CHBr2Cl, Cl3AA, BrCl2AA), although results were highly variable among 

the DBP species and must be interpreted with caution due to the sparseness of data (see Table 

5.2). As with chloramine and chlorine dioxide, ozone generally led to much greater 

reductions in formation of the halogenated DBPs studied here when no free chlorine was 

utilized (O3/ClM), as compared to use of ozone together with free chlorine (O3/Cl2 or 

O3/Cl2/ClM). However, unlike chlorine dioxide, there was little evidence of ozone enhancing 

formation of these DBPs, with the exception of Cl3AH. The previously noted overall mean 

increase in Cl3AH for ozone treatment was attributable to a small subset of plants in the 

O3/Cl2/ClM category (see Table 5.2 and Figure 5.4). Although most of the seven plants in 

this category had substantially lower than expected Cl3AH concentrations, data for two plants 

with extreme RPD values between +170% and +650% skewed both the subcategory and 
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overall ozone category means. These two plants applied chlorine following preozonation of 

high TOC raw waters. Thus, the potential for ozone to enhance Cl3AH formation may be 

associated only with a particular set of treatment conditions. 
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Figure 5.4 Mean relative percent difference between observed DBP concentrations and chlorine plant model predictions, by
disinfectant category (see Table 5.2 for N values)
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The generally greater impact on DBP formation of ozone, compared to chlorine 

dioxide treatment, can be related to differences in application practices for the two oxidants. 

For the ICR plants in question, chlorine dioxide was used primarily as a preoxidant at low 

doses whereas ozone was used in several configurations including pre- and/or post-

ozonation, with much higher doses. Statistics listed in Table 5.3 show that, on an equivalent 

basis, the overall mean ozone dose (0.12 meq/L) was an order of magnitude greater than the 

mean chlorine dioxide dose (0.013 meq/L). Although ICR data collection preceeded 

implementation of the national Maximum Contaminant Level for chlorite, chlorine dioxide 

doses were probably constricted by the understanding that approximately 70% of applied 

chlorine dioxide is reduced to chlorite (Werdehoff and Singer 1987; Lykins and Griese 

1986). Table 5.3 also shows that plants using no free chlorine (i.e. ClO2/ClM or O3/ClM) 

applied higher oxidant doses than those using free chlorine in conjunction with chlorine 

dioxide or ozone. Thus, higher alternative oxidant doses were generally associated with 

greater control of DBP formation. 
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Table 5.3   Summary of ozone and chlorine dioxide doses: mg/L [meq/L] 

n * n
plants mean median min max 

ClO2/Cl2 68 16 0.8 [0.011] 0.5 [0.007] 0.1 [0.001] 2.1 [0.031]
ClO2/Cl2/ClM 10 4 0.8 [0.012] 1.0 [0.015] 0.2 [0.003] 1.3 [0.019]

ClO2/ClM 42 9 1.1 [0.017] 1.1 [0.016] 0.5 [0.007] 2.0 [0.030]

Any ClO2 120 29 0.9 [0.013] 1.0 [0.015] 0.1 [0.001] 2.1 [0.031]

O3/Cl2 40 10 1.8 [0.08] 1.5 [0.06] 0.4 [0.02] 5.0 [0.21]
O3/Cl2/ClM 26 7 3.1 [0.13] 2.5 [0.11] 0.5 [0.02] 7.0 [0.29]

O3/ClM 16 3 5.0 [0.21] 3.3 [0.14] 1.2 [0.05] 17.0 [0.71]

Any O3 82 20 2.9 [0.12] 1.7 [0.07] 0.4 [0.02] 17.0 [0.71]

* DBP results not available for all sampling months 
 

Both ozone and chlorine dioxide treatment are expected to lower specific NOM 

reactivity towards halogenated DBP formation by oxidizing precursor sites without 

significantly diminishing TOC concentration. Thus, for a given input TOC value (i.e. TOC at 

the first point of chlorine addition), lower DBP yields would be expected following exposure 

to these oxidants, and the magnitude of this impact would increase with oxidant dose. For 

plants using these oxidants with no free chlorine, substantial fractions of organic chlorine 

demand would be consumed without significant changes in TOC or formation of chlorinated 

DBPs. Models should have accounted for reduced chlorine demand through the chlorine 

consumed variable, athough yields on the basis of TOC (i.e. model slope for TOC) would be 

expected to decrease, accounting in part for the lower than expected DBP concentrations. 

Since ozone and chlorine dioxide may both react with source water bromide to generate 

hypobromous acid, the potential for bromine substitution reactions would remain, even in the 

absence of free chlorine. This may explain why CHBr2Cl, the only dibrominated compound 
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studied here (no tribrominated compounds were studied), was the also the only DBP other 

than Cl3AH which increased, on average, for any ozone treatment category (see O3/Cl2 in 

Table 5.2 and Figure 5.4). 

5.3.3 Softening Treatment 

Results of the analysis of softening treatment's impacts on DBP formation are 

illustrated in Figure 5.5 for CHBrCl2. The fit of the conventional plant CHBrCl2 model is 

shown in Figure 5.5a. Figure 5.5b shows that, for softening chlorine plants, observed 

CHBrCl2 concentrations were predominantly lower than values predicted from the 

conventional plant model, with no apparent distinction with respect to source water type. 

Results indicate that softening treatment was associated with substantial reduction of 

CHBrCl2 formation, characterized by a mean RPD of −31%. Results for all analytes are 

summarized in Figure 5.6 which shows mean RPD values side by side for conventional and 

softening plants, indicating that softening treatment resulted in moderate to large relative 

reductions in CHBrCl2, CHBr2Cl, BrClAA, Cl3AA, BrCl2AA, and Cl3AH concentrations, but 

had little effect on CHCl3, Cl2AA, or TOX. One plausible explanation for softening 

treatment's impact in generally lowering DBP concentrations could be related to the effect of 

coprecipitative removal of reactive NOM precursors due to the affinity of higher molecular 

weight hydrophobic NOM for complexation with calcium precipitates (Randtke 1998). 

Before further consideration of these findings, some discussion of the models used for this 

analysis is warranted, especially with regard to the role of pH. 
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Figure 5.6   Mean relative percent difference between observed DBP concentrations and 
conventional chlorine plant model predictions for conventional chlorine plants (CONV) and 
softening chlorine plants (SOFT) 

 

There was some concern that pH effects of softening treatment might not have been 

adequately captured in models based on conventional plant data because relatively few of 

those data represented the high pH conditions prevalent in softening treatment. If significant 

pH effects were not captured in the model, they might account for the apparent effects of 

softening, illustrated in Figure 5.6. In the chlorine plant models, which were based on data 

from both conventional and softening plants, pH was identified as a highly significant 

variable for CHCl3 (positive effect) and BrCl2AA (negative effect), with a moderate 

influence on Cl3AA (negative effect) (see Chapter 4). However, for the conventional plant 
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models used as the baseline for softening analysis here, pH was identified only as a weakly 

significant variable in CHCl3, CHBrCl2, and Cl3AH models (all positive effects), but was not 

present in either of the X3AA species models. A comparison of pH sampling distributions for 

conventional and softening chlorine plants shows that less than 10% of data from 

conventional plants exceeded pH 9, whereas almost 50% of the data for softening plants were 

in this high range (see Figure 5.7). This suggests that the conventional plant data may not 

have provided adequate leverage to detect the influence of pH on X3AA species formation in 

corresponding models. An unaccounted for negative influence of high pH on Cl3AA and 

BrCl2AA formation could explain the significant apparent reduction of these species 

associated with softening treatment (see Figure 5.6). However, the same reasoning cannot not 

be extended to explain the apparent effects of softening on CHBrCl2, CHBr2Cl, BrClAA, and 

Cl3AH, since pH was either accounted for in the conventional plant models for these species 

or not expected to exert a strong influence. 
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Figure 5.7   Distributions of finished water pH at conventional and softening chlorine plants 

 

A related issue concerning pH effects being sufficiently captured in the conventional 

plant models was the choice of location type in the treatment train from which to obtain 

representative pH data, as pH levels change through the treatment train. Since it was 

impractical to uniquely extract, for each treatment plant and sampling month, the most 

relevant pH value with respect to chlorine exposure, a decision had to be made about which 

location yielded the most appropriate value considering the data set overall  (e.g. influent, 

settled water, first point of chlorine addition, etc.). On the basis of an analysis of pH 

adjustment practices, finished water was judged to best represent pH conditions during 
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chlorine contact in ICR chlorine plants, overall, so this value was used consistently for model 

input (see Chapter 4). However, conventional and softening plants differed fundamentally 

with respect to pH adjustment between the initial chlorine application point and finished 

water. For softening plants, finished water pH was always either equal to or lower than pH at 

the first point of chlorine addition: on average the difference was 0.6 pH units, ranging up to 

3 pH units. Thus, even with pH present in the model, actual pH conditions during chlorine 

contact in softening plants would tend to be more alkaline than represented by the finished 

water value used for model input. On the other hand, for conventional plants, upward and 

downward pH adjustments between the first point of chlorine addition and finished water 

were of similar frequency, with typically larger upwards adjustments (mean 0.8, max 4 pH 

units) than downward adjustments (mean 0.5, max 5 pH units). As a sensitivity test for the 

choice of pH location in the models, an alternative set of models was developed using pH 

data from the location of first chlorine dose, instead of finished water. In these models, pH 

was not identified as a significant variable for any of the DBPs examined, regardless of 

whether the models were based on data for all chlorine plants or just for conventional 

chlorine plants. This provided a validation of the choice of finished water location as the 

preferred alternative for pH model input data. 

Given the concern over whether conventional plant models adequately represented 

important pH effects, especially for the X3AA species, the impacts of softening on DBP 

formation were evaluated using a second approach. This involved  testing a binary 

classification variable (1 for softening, 0 for conventional) for statistical significance in the 

original chlorine plant models, which included pH effects for CHCl3, Cl3AA, and BrCl2AA. 

These tests indicated that softening treatment had a highly significant negative influence on 
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CHBr2Cl, BrClAA, Cl3AA, and BrCl2AA formation, a marginally significant negative 

influence on CHBrCl2, and Cl3AH formation, and no effect on CHCl3, Cl2AA, or TOX. 

These findings were consistent with those described above in conjunction with Figure 5.6, 

lending credence to the hypothesis that softening treatment has beneficial impacts on DBP 

reduction through NOM removal, apart from effects strictly related to treatment pH. 

 



CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS 

 

This dissertation presents results of statistical analyses of the Information Collection 

Rule database addressing DBP occurrence patterns and their relationships with water quality 

conditions and treatment practices. Review, screening, and descriptive summary of the 

database were also conducted to support the research goals. 

 

6.1 CONCLUSIONS 

A new metric to quantify the extent of specific halogen substitution in any byproduct 

class was developed and used to examine bromine fractions of total halogen in each of four 

byproduct classes (THMs, X2AAs, X3AAs, and X2ANs (DHANs)). This metric facilitates 

direct interclass comparisons of halogen speciation patterns because it is normalized the same 

way for each byproduct class and ranges from zero to one, regardless of the number of 

halogen substituents in that class. In each class examined, bromine fraction ranged widely 

across the data set overall, and within subsets of data for narrow bromide ranges. However, 

on an individual sample basis, the four bromine fractions were strongly interdependent, 

indicating a high degree of redundancy in the 14 individual compounds’ monitoring data. 

Bromine fractions in the X2AA and THM classes were nearly identical whereas bromine 

fractions in the X3AA and X2AN classes were 10% lower and 60% higher, on average, than 

in the THM class, respectively. The lower extent of bromine substitution in the X3AA class is 
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hypothesized to be related to brominated X3AA species stability and/or analytical methods 

issues, whereas the higher extent of bromine substitution in X2AN is hypothesized to be 

related to faster formation kinetics of the more basic nitrogen-containing organic substrates. 

The bromine fraction measurements, particularly for the X3AA class, were significantly 

impacted by censored data handling because of higher MRLs and lower occurrence levels for 

brominated compounds in the ICR data. Correlation among the four bromine fractions 

motivated their treatment as a multivariate response. Application of a test for multivariate 

outliers successfully exposed inconsistencies associated with data entry or analytical error. 

ICR database screening and review resulted in flagging questionable data for

exclusion from subsequent analyses and recovery of a large number of missing categorical

variable records, affording a more reliable and complete data set for subsequent study. The

sparseness of flagged data indicated a high level of ICR data quality for information relevant

to this research. A summary of data patterns revealed strong associations between

disinfection practices and source water quality conditions: plants with high concentrations of

organic precursors preferentially employed chloramines and avoided prechlorination; plants

with high bromide levels also tended to employ chloramines although bromide did not

impact prechlorination practice. Though plants employing chloramination used significantly

higher chlorine doses than plants using only free chlorine, when normalized to TOC this

difference largely disappeared. The median chlorine to TOC ratio in the ICR data set was

1.54 [mg Cl2]/[mg C]. Applied chlorine to ammonia-nitrogen ratios at chloramine plants

varied widely but the median value was near the theoretical 1:1 molar ratio for

monochloramine formation. Significantly higher bromide to TOC ratios at ground water
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plants, compared to surface water plants, resulted from the typically lower TOC and higher

bromide levels in ground waters.

Multiple linear regression models for finished water DBPs at chlorine plants indicated

significant changes in the direction and magnitude of the influence of bromide, alkalinity,

chlorine consumed, and organic precursor concentrations (TOC and UV254) on

concentrations of individual DBP species across compound classes. Results suggested that

alkalinity serves as an indicator of NOM hydrophobicity and reactivity towards DBP

formation. In agreement with previous research, pH was found to have a positive influence

on CHCl3 formation, a negative influence on X3AA species formation, and no significant

impact on X2AA species. The large differential impacts of pH observed across species within

the THM and X3AA classes in these regression models have generally not been noted in

previous studies. Modeling results for aggregate DBP class sums and TOX concentrations

reflected the dominance of the data set by chlorinated DBPs, suggesting that inferences from

models for these types of aggregate variables are less generally applicable than inferences

from models for specific individual compounds.

A degree of misspecification in some of the regression models was traced, in part, to

effects of multiple chlorine dose applications. This impacted Cl2AA most strongly, such that

model precision increased almost 50% when data were restricted to those for plants using a

single chlorine dose. Results suggest that chlorine consumed in subsequent stages of

treatment (after initial chlorine dose) are less relevant for X2AA species formation than for

other DBPs examined. After controlling for the number of applied chlorine doses in the

treatment train, the location of chlorine addition (raw or settled/filtered water) did not have a

strong influence on DBP concentrations, based on models that accounted for TOC, UV254,

chlorine consumed, and chlorine contact time.
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Use of chloramines, chlorine dioxide, and ozone were each shown to result in

substantially lower DBP concentrations relative to levels projected from models developed

for plants using free chlorine alone under otherwise identical water quality and treatment

conditions. For most DBPs examined, these differences were greatest for ozone, which may

be related more to treatment practices than to intrinsic oxidant properties (ozone doses were

generally much higher than chlorine dioxide doses). A notable exception was Cl3AH which

was shown to be elevated under certain ozone treatment conditions, namely application of

chlorine following preozonation of high TOC waters.

For softening treatment, many of the DBP species studied were found to be much

lower than projected using models developed for conventional treatment, other conditions

being equal. Significant impacts were observed for brominated THM and X2AA species and

for all X3AA species. TOX appeared to be unaffected, which may be explained by the

relatively small contribution of the affected species to TOX in this dataset. It was

hypothesized that the effect of softening treatment on limiting DBP formation is related to

improved organic precursor removal.

6.2 RECOMMENDATIONS 

Findings of this research point to several recommendations in the area of DBP 

monitoring, data analysis, and regression modeling. The examination of halogen substitution 

patterns by graphic inspection of arcsine-transformed bromine fraction results is 

recommended as a simple screening step for quality assurance when more than one class of 

DBP monitoring data is collected. The concept of parallel halogen substitution patterns 

should be further tested as data are obtained for other classes of DBPs such as tri- and di- 



159

haloacetaldehydes and halopicrins, which have not been widely monitored to-date. Censored 

data handling methods may significantly impact inferences from data analysis when 

moderate to large fractions of data are below MRL, and study reports should state the 

methods employed for processing censored data as a matter of course. This has not generally 

been practiced in DBP research to date, and is a particular concern for studies addressing 

HAA9 in view of the different MRLs for many of the species. Methodological problems 

associated with brominated X3AA species analysis must be considered in interpretation of 

existing data and it is strongly recommended that recent advances in method development be 

adopted for future studies so that better information about occurrence and formation of this 

important class of DBPs can be obtained (Domino et al. 2004). 

Whereas most of the variables found to be important predictors of DBP formation in 

this research are usually obtained in laboratory and field studies, source water alkalinity, 

though usually available, has not generally been utilized as an indicator of NOM 

characteristics with respect to DBP formation. It is recommended that future studies routinely 

consider alkalinity together with TOC and UV254 as indicators of organic precursor 

characteristics.  

Regression modeling has been shown to be a valuable tool for analysis of full-scale 

water treatment plant data. However, important treatment factors may be difficult to 

represent explicitly as model variables so that their effects must be controlled for by 

subsetting data. This may lead to small data sets that lack the power to demonstrate 

significant trends, or limited data ranges for important variables. The latter concern stems 

from the fact that inherent relationships exist between water quality and treatment. For 

example, plants using only free chlorine for disinfection tend to have a narrow range of 
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source water TOC concentrations, and plants using conventional treatment generally don’t 

operate under the high pH conditions used in softening. Significant effects may become non-

discernable without sufficient leverage in the design matrix. No simple solution to these 

challenges can be recommended here, but awareness of these issues should inform study 

design. Finally, whether regression models are developed for the purpose of prediction or as 

tools for data analysis, validation is essential to ensure that the models developed describe 

inherent relationships among variables and do not merely provide a best fit to the particular 

data set at hand. Accordingly, appropriate validation procedures must be considered as part 

of any overall study design. 
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APPENDIX A:  SUPPORTING INFORMATION FOR CHAPTER 2 

Reproduced with permission from Alexa Obolensky and Philip C. Singer, 2005, “Halogen 
substitution patterns among disinfection byproducts in the Information Collection Rule 
database.” Environmental Science and Technology 39(8), 2719–2730, Supporting 
Information. Copyright 2005 American Chemical Society. 
 

A.1   ADDITIONAL EXAMPLES OF MULTIVARIATE OUTLIER DETECTION 

TEST RESULTS 

 

Figure A.1 shows transformed bromine fraction data for distribution system samples 

from 5 treatment plants. Identified multivariate outliers (2) are indicated by star symbols. 

DBP species data for the plant/sampling-periods with outliers are shown in Tables A.1 and 

A.2. Both outliers were due to unexpectedly high bromine fraction in the DHAA class. Data 

review suggests that the below minimum reporting level result for DCAA in outlier 1.1 

(location D) is in error, causing an elevated DHAA bromine fraction value for this sample 

(see Table 1). For the second outlier, the reported DBAA result of 206 µg/L for outlier 1.2 

(location A) almost certainly represents a data entry error. A value of 2.6 µg/L would be 

commensurate with results for other locations from the same plant/sampling-period (see 

Table A.2). 
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Figure A.1   Arcsine transformed bromine fraction data for 5 plants showing detected 
outliers; N=121, Br <20-150 µg/L (median= <20 µg/L), TOC 0.4-5.8 mg/L (median= 1.7 
mg/L), Br/TOC 0.003-0.171 mg/mg (median= 0.011 mg/mg) 

Table A.1   Distribution system sample DBP species concentration data (µg/L) for 
plant/sampling-period of outlier 1.1 in Figure A.1; below minimum reporting level results 
represented as zero; location identified as outlier indicated by asterisk 

LOC 

C
H

C
L3

BD
C

M

D
BC

M

C
H

BR
3

D
C

A
A

BC
A

A

D
BA

A

TC
AA

BD
C

AA

D
BC

AA

TBA
A

D
C

AN

BC
A

N

D
BA

N

A 31.0 11.0 2.5 0.0 14.0 3.2 0.0 14.0 3.6 0.0 0.0 2.6 1.2 1.0
B 41.0 12.0 2.5 0.0 17.0 3.7 0.0 19.0 4.9 0.0 0.0 2.6 1.0 0.5
C 45.0 15.0 5.1 0.0 17.0 4.9 1.0 18.0 5.2 0.0 0.0 2.3 1.3 0.8
D * 42.0 12.0 2.5 0.0 0.0 17.0 4.4 15.0 3.6 0.0 0.0 2.6 1.0 0.5
E 90.0 10.0 1.9 0.0 62.0 7.1 0.0 36.0 5.4 0.0 0.0 0.7 0.0 0.0

1.1 
1.2 



163

Table A.2   Distribution system sample DBP species concentration data (µg/L) for 
plant/sampling-period of outlier 1.2 in Figure A.1; below minimum reporting level results 
represented as zero; location identified as outlier indicated by asterisk 

LOC 

C
H

C
L3

BD
C

M

D
BC

M

C
H

BR
3

D
C

A
A

BC
A

A

D
BA

A

TC
AA

BD
C

AA

D
BC

AA

TBA
A

D
C

AN

BC
A

N

D
BA

N

A * 47 16.0 206.0 0.0 14.0 3.2
B 50 29.0 7.5 1.3 0.0 20.0 3.1 0.0 18.0 3.7 1.8 0.5
C 51 34.0 7.9 1.3 0.0 21.0 3.1 0.0 19.0 3.9 1.8 0.6
D 52 25.0 6.5 1.1 0.0 18.0 3.0 0.0 16.0 3.5 1.7 0.5
E 53 32.0 7.2 1.0 0.0 22.0 3.1 0.0 20.0 3.9 1.8 0.5

Figure A.2 shows transformed bromine fraction data for distribution system samples 

from a second set of 5 treatment plants. Identified multivariate outliers (1 in this example) are 

indicated by star symbols. DBP species data for the plant/sampling-period with an outlier are 

shown in Table A.3. The outlier (location A) was due to unexpectedly high bromine fraction 

in the DHAA class. Data review suggests that reported values for both DCAA and BCAA 

(60 µ/L and 30 µ/L, respectively) represent data entry errors involving decimal place shift 

(i.e. analytical result were probably 6.0 µ/L and 3.0 µ/L, respectively). 
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Figure A.2   Arcsine transformed bromine fraction data for 5 plants showing detected 
outliers; N=118, Br <20-40 µg/L (median= <20 µg/L), TOC 1.3-6.2 mg/L (median= 2.0 
mg/L), Br/TOC 0.002-0.011 mg/mg (median= 0.005 mg/mg) 

 

Table A.3   Distribution system sample DBP species concentration data (µg/L) for 
plant/sampling-period of outlier 2.1 in Figure A.2; below minimum reporting level results 
represented as zero; location identified as outlier indicated by asterisk 

LOC 

C
H

C
L3

BD
C

M

D
BC

M

C
H

BR
3

D
C

A
A

BC
A

A

D
BA

A

TC
AA

BD
C

AA

D
BC

AA

TBA
A

D
C

AN

BC
A

N

D
BA

N

A * 17.0 5.3 0.0 0.0 67.0 30.0 0.0 9.3 1.6 0.0 0.0
B 25.0 6.4 1.1 0.0 9.4 1.6 0.0 8.5 1.2 0.0 0.0
C 23.0 5.8 0.0 0.0 10.0 1.7 0.0 8.0 1.3 0.0 0.0
D 29.0 6.5 0.0 0.0 8.8 1.5 0.0 10.0 0.0 0.0 0.0
E 24.0 6.2 1.0 0.0 12.0 1.8 0.0 9.7 1.4 0.0 0.0

2.1 
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Figure A.3 shows transformed bromine fraction data for distribution system samples 

from a third set of 5 treatment plants. Identified multivariate outliers (4) are indicated by star 

symbols. DBP species data for the plant/sampling-periods with outliers are shown in Tables 

A.4-A.6. The first two outliers, due to unexpectedly high bromine fraction in the DHAA 

class, are from the same plant/sampling-period (locations A and C, see Table A.4) and appear 

to involve decimal place data entry errors in BCAA (i.e. analytical results were probably 3.0 

µg/L and 3.8 µg/L, not 30 µg/L and 38 µg/L). The third and fourth outliers, due to 

unexpectedly low THM bromine fraction values of zero, from two sampling periods at the 

same treatment plant, are both attributable to below minimum reporting level BDCM results 

that are incommensurate with THM species results for other locations in the same sampling-

periods (see Tables A.5-A.6). A third similar anomalous result from this plant was not 

identified as an outlier because of measurable bromoform (location E, Table A.6). The THM 

data pattern shown in Table A.6, wherein no dibromochloromethane was reported for 

samples with measurable bromodichloromethane and bromoform, suggests a general problem 

with THM data for this plant/sampling-period. 
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Figure A.3   Arcsine transformed bromine fraction data for 5 plants showing detected 
outliers; N=90, Br <20-61 µg/L (median= 0.030 µg/L), TOC 2.6-6.7 mg/L (median= 3.2 
mg/L), Br/TOC 0.001-0.020 mg/mg (median= 0.020 mg/mg) 

 

Table A.4   Distribution system sample DBP species concentration data (µg/L) for 
plant/sampling-period of outliers 3.1 and 3.2 in Figure A.3; below minimum reporting level 
results represented as zero; locations identified as outlier indicated by asterisk 

LOC 

C
H

C
L3

BD
C

M

D
BC

M

C
H

BR
3

D
C

A
A

BC
A

A

D
BA

A

TC
AA

BD
C

AA

D
BC

AA

TBA
A

D
C

AN

BC
A

N

D
BA

N

A * 60.0 10.2 0.0 0.0 36.0 30.0 0.0 33.0 6.9 2.4 0.0
B 87.6 12.9 1.1 0.0 68.0 3.4 1.3 50.0 7.6 2.9 0.0
C * 65.0 10.1 0.0 0.0 70.0 38.0 0.0 49.0 6.8 2.6 0.0
D 114.0 15.1 1.4 0.0 67.0 3.2 0.0 52.0 7.1 2.4 0.0
E 102.0 13.0 1.2 0.0 72.0 3.9 1.3 51.0 7.2 2.6 0.0

3.1 
3.3 

3.4 
3.2 
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Table A.5   Distribution system sample DBP species concentration data (µg/L) for 
plant/sampling-period of outlier 3.3 in Figure A.3; below minimum reporting level results 
represented as zero; location identified as outlier indicated by asterisk 

LOC 

C
H

C
L3

BD
C

M

D
BC

M

C
H

BR
3

D
C

A
A

BC
A

A

D
BA

A

TC
AA

BD
C

AA

D
BC

AA

TBA
A

D
C

AN

BC
A

N

D
BA

N

A * 43.0 0.0 0.0 0.0 74.0 2.5 2.7 39.0 4.2 2.1 0.0 
B 38.0 7.5 0.0 0.0 68.0 1.7 0.0 34.0 4.1 2.1 0.0 
C 42.0 8.2 0.0 0.0 71.0 2.8 0.0 52.0 4.6 2.1 0.0 
D 37.0 7.3 0.0 0.0 60.0 2.0 0.0 35.0 4.9 0.8 0.0 
E 53.0 9.8 0.0 0.0 72.0 2.3 0.0 40.0 5.4 2.5 0.0 

Table A.6   Distribution system sample DBP species concentration data (µg/L) for 
plant/sampling-period of outlier 3.4 in Figure A.3; below minimum reporting level results 
represented as zero; location identified as outlier indicated by asterisk 

LOC 

C
H

C
L3

BD
C

M

D
BC

M

C
H

BR
3

D
C

A
A

BC
A

A

D
BA

A

TC
AA

BD
C

AA

D
BC

AA

TBA
A

D
C

AN

BC
A

N

D
BA

N

A 42.3 10.1 0.0 1.2 17.8 2.1 0.0 19.9 0.0 2.4 0.7
B 52.9 9.9 0.0 1.5 28.5 2.0 0.0 40.6 0.0 2.5 0.7
C * 59.2 0.0 0.0 0.0 42.9 3.0 0.0 34.7 0.0 2.8 0.7
D 66.9 11.5 0.0 1.3 47.9 3.9 0.0 55.3 0.0 2.4 0.7
E 52.3 0.0 0.0 1.4 42.2 2.6 0.0 42.4 0.0 2.0 0.7

Figure A.4 shows transformed bromine fraction data for distribution system samples 

from a fourth set of 5 treatment plants. Identified multivariate outliers (3) are indicated by 

star symbols. DBP species data for the plant/sampling-periods with outliers are shown in 

Tables A.7-A.9. The first two outliers are from September and December sampling, 

respectively, at the same ICR plant. The first outlier, due to an unexpectedly low bromine 

fraction value in the THAA class is attributable to the below minimum reporting level 

DBCAA result at location E (see Table A.7). The second outlier is attributable to very high 

THM species concentrations at location D (an “AVG” type ICR location) and probably does 
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not represent data entry or analytical error (see Table A.8). It is noteworthy that THM 

concentrations at this location were also high (relative to other locations) in the September 

sampling round (Table A.7), but not as extreme as in December. The third outlier in Figure 

A.4, due to an unexpectedly low DHAA bromine fraction value (zero) is attributable to 

below minimum reporting level results for both brominated DHAA species (BCAA and 

DBAA) while brominated DBPs occurred at moderate concentrations in the THM and 

DHAN classes for the same location (see Table A.9). 
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Figure A.4   Arcsine transformed bromine fraction data for 5 plants showing detected 
outliers; N=128, Br <20-280 µg/L (median= 120 µg/L), TOC <0.7-2.6 mg/L (median= 0.8 
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Table A.7   Distribution system sample DBP species concentration data (µg/L) for 
plant/sampling-period of outlier 4.1 in Figure A.4; below minimum reporting level results 
represented as zero; location identified as outlier indicated by asterisk 

LOC 

C
H

C
L3

BD
C

M

D
BC

M

C
H

BR
3

D
C

A
A

BC
A

A

D
BA

A

TC
AA

BD
C

AA

D
BC

AA

TBA
A

D
C

AN

BC
A

N

D
BA

N

A 0.0 0.0 4.3 11.0 0.0 0.0 3.6 0.0 0.0 0.0 0.0 0.0 0.6 3.5
B 0.0 0.0 4.5 11.0 0.0 0.0 3.5 0.0 0.0 0.0 0.0 0.0 0.6 3.5
C 0.0 1.4 6.5 15.0 0.0 0.0 4.5 0.0 0.0 0.0 0.0 0.0 0.6 4.3
D 3.6 5.4 9.2 15.0 1.8 1.8 4.6 1.7 1.9 2.1 0.0 0.8 1.0 4.3
E * 0.0 2.0 6.8 14.0 0.0 1.0 4.5 0.0 1.3 0.0 0.0 0.0 0.7 4.0

Table A.8   Distribution system sample DBP species concentration data (µg/L) for 
plant/sampling-period of outlier 4.2 in Figure A.4; below minimum reporting level results 
represented as zero; location identified as outlier indicated by asterisk 

LOC 

C
H

C
L3

BD
C

M

D
BC

M

C
H

BR
3

D
C

A
A

BC
A

A

D
BA

A

TC
AA

BD
C

AA

D
BC

AA

TBA
A

D
C

AN

BC
A

N

D
BA

N

A 0.0 1.0 4.3 7.7 2.0 2.6 3.8 2.4 2.8 2.6 0.0 0.0 0.6 2.4
B 0.0 1.2 5.1 9.0 0.0 0.0 3.1 0.0 0.0 0.0 0.0 0.0 0.6 2.5
C 0.0 2.2 8.6 14.0 0.0 1.5 4.2 0.0 1.1 2.2 0.0 0.0 0.9 3.6
D * 7.0 10.0 15.0 39.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 1.1 3.8
E 0.0 3.3 10.0 15.0 0.0 1.6 4.6 0.0 1.1 2.2 0.0 0.0 0.9 3.7

Table A.9   Distribution system sample DBP species concentration data (µg/L) for 
plant/sampling-period of outlier 4.3 in Figure A.4; below minimum reporting level results 
represented as zero; location identified as outlier indicated by asterisk 

LOC 

C
H

C
L3

BD
C

M

D
BC

M

C
H

BR
3

D
C

A
A

BC
A

A

D
BA

A

TC
AA

BD
C

AA

D
BC

AA

TBA
A

D
C

AN

BC
A

N

D
BA

N

A 0.0 0.0 0.0 1.6 0.0 0.0 0.0 0.0 0.
0

0.0 0.0
B 0.0 0.0 1.0 3.2 8.5 4.4 2.4 4.1 0.

0
0.0 0.5

C 13.0 16.0 13.0 3.0 7.5 3.9 2.3 3.5 2.
6

1.5 1.2
D 4.4 5.6 5.0 2.1 2.5 1.3 1.1 1.1 0.

8
0.5 0.5

E * 13.0 17.0 14.0 3.3 2.8 0.0 0.0 0.0 2.
7

1.6 1.2
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A.2   SAS PROGRAM CODE FOR MULTIVARIATE OUTLIER TEST 

 
*****************************************************************************************************; 
* CARONI & PRESCOTT MULTIVARIATE OUTLIER DETECTION METHOD  
 MODIFIED FROM PENNELL (2002) 
* 4 MACROS DEFINED FOR p=4, 3, 2, 1 CORRESPONDING TO MV DIMENSION 
* K= # outliers to check 
* ALPHA = experimentwise typeI error 
* INPUT = data in 
* OUTPUT = data out 
* LIBR=library for output file 
*****************************************************************************************************; 
 
/* p=4 */ 
%MACRO OUT4(K,ALPHA,INPUT,OUTPUT,LIBR); 
 proc iml; 
 use &input; 
 /* use arcsine transformed variables */ 
 read all var{thmpctbrt thaapctbrt dhaapctbrt dhanpctbrt} into X; /* X is n x 4 */ 
 read all var{event_id} into ID; /* ID is n x 1 */ 
 ALPHA=&ALPHA; 
 do j=1 to &K; 
 n=nrow(X); 
 if j=1 then n1=n; /* n1 is original number of observation */ 
 XBAR=(X[:,]); /* XBAR is 1 x p, averages across observations */ 
 ONE=J(n,1,1); /* ONE is n x 1 column vector of 1's */ 
 XBARN=ONE*XBAR[,1]||ONE*XBAR[,2]||ONE*XBAR[,3]||ONE*XBAR[,4];  
 /* XBARN is n x p */ 
 A=(X-XBARN)`*(X-XBARN); /* A is p x p */ 
 do i=1 to N;  
 /* N is number of observations at current iteration of the K-loop */ 
 Xi=X[i,]; /* i-th row of X */ 
 WTEMP=1-((N/(N-1))*(XI-XBAR)*inv(A)*(XI-XBAR)`); /* ith Wilk's lr statistic */ 
 if i=1 then W=WTEMP; else W=W//WTEMP;  
 /* W becomes n x 1 col vector of Wilk's */ 
 end; /* end i loop*/ 
 W=ID||X||W; /* W is n x 6 */ 
 create wilks from W; append from W; close wilks; /* read into data set to sort */ 
 sort data=wilks by COL6; /* sort so smallest Wilk's statistic is first observation */ 
 use wilks; 
 read all var{COL1 COL2 COL3 COL4 COL5 COL6} into TEMP;  
 /* read data set into n x 6 matrix */ 
 close wilks; 
 STEP=1+(n1-n); /* there will be a total of K steps */ 
 /* check for tie in smallest Wilk's statistic */ 
 *TIECHK=TEMP[1:2,1:6]; 
 *mattrib TIECHK label='2 smallest W' colname=({ID THM THAA DHAA DHAN W}); 
 *print TIECHK; 
 OUT=TEMP[1,]; /* new 1x6 OUT matrix holds one observation with smallest Wilk's */ 
 PVAL=probbeta(OUT[1,6],(N-5)/2,2);  
 /* Wilk's statistic p-value from Beta distribution */ 
 BONALPHA=ALPHA/N; 
 CRIT10=betainv(BONALPHA,(N-5)/2,2);  
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/* crit. value of Beta distr. at bonferoni alpha level */ 
 OUT=STEP||N||OUT||PVAL||CRIT10||BONALPHA;  
 /* one record for output matrix, 12 variables */ 
 if j=1 then OUT2=OUT; else OUT2=OUT2//OUT;  
 /* build up output matrix from K rows */ 
 /* drop observation with smallest (most sign.) Wilk's from data set before next j */ 
 ID=TEMP[2:N,1]; /* n-1 column vector of IDs*/ 
 X=TEMP[2:N,2:5]; /* (n-1)x4 */ 
 end; /* end j loop */ 
 create &libr..&output from OUT2; append from OUT2; close &libr..&output; 
 run; /* run proc iml */ 
proc sort data=&libr..&output(rename=(COL1=STEP COL2=N COL3=EVENT_ID COL4=THMpctbrt 
 COL5=thaapctbrt COL6=dhaapctbrt COL7=dhanpctbrt COL8=W COL9=PVAL  
 COL10=CRIT10 COL11=BONALPHA10));  
 by descending step;  
 run; 
data &libr..&output; set &libr..&output; 
 format THMpctbrt thaapctbrt dhaapctbrt dhanpctbrt 5.3 pval bonalpha10 9.7 w crit10 8.6; 
 retain maxl &output; drop maxl; 
 &output=1; 
 if _n_=1 then maxl=1; 
 if (w>crit10 and maxl) then delete; else maxl=0; 
 run; 
proc sort data=&libr..&output; by event_id;  
 run; 
%MEND OUT4; 
 

/* p=3 */ 
%MACRO OUT3(K, ALPHA, INPUT, OUTPUT, LIBR, VAR1, VAR2, VAR3); 
proc iml; 
 use &input; 
 ** use arcsine transformed variables ; 
 read all var{&VAR1 &VAR2 &VAR3} into X; /* X is n x 3 */ 
 read all var{event_id} into ID; /* ID is n x 1 */ 
 ALPHA=&ALPHA; 
 do j=1 to &K; 
 n=nrow(X); 
 if j=1 then n1=n; /* n1 is original number of observation */ 
 XBAR=(X[:,]); /* XBAR is 1 x p, averages across observations */ 
 ONE=J(n,1,1); /* ONE is n x 1 column vector of 1's */ 
 XBARN=ONE*XBAR[,1]||ONE*XBAR[,2]||ONE*XBAR[,3]; /* XBARN is n x p */ 
 A=(X-XBARN)`*(X-XBARN); /* A is p x p */ 
 do i=1 to N; /* N is number of observations at current iteration of the K-loop */ 
 Xi=X[i,]; /* i-th row of X */ 
 WTEMP=1-((N/(N-1))*(XI-XBAR)*inv(A)*(XI-XBAR)`);  
 /* i-th Wilk's likelihood ratio statistic */ 
 if i=1 then W=WTEMP; else W=W//WTEMP;  
 /* W becomes n x 1 column vector of Wilk's statistics */ 
 end; /* end i loop*/ 
 W=ID||X||W; /* W is n x 5 */ 
 create wilks from W; append from W; close wilks; /* read into data set to sort */ 
 sort data=wilks by COL5; /* sort so smallest Wilk's statistic is first observation */ 
 use wilks; 
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read all var{COL1 COL2 COL3 COL4 COL5} into TEMP;  
 /* read data set back into n x 6 matrix */ 
 close wilks; 
 STEP=1+(n1-n); *print STEP; /* there will be a total of K steps */ 
 /* check for tie in smallest Wilk's statistic */ 
 *TIECHK=TEMP[1:2,1:5]; 
 *mattrib TIECHK label='2 smallest W' colname=({ID &VAR1 &VAR2 &VAR3 W}); 
 *print TIECHK; 
 OUT=TEMP[1,]; /* new 1x6 OUT matrix holds one observation with smallest Wilk's */ 
 PVAL=probbeta(OUT[1,5],(N-4)/2,1.5);  
 /* Wilk's statistic p-value from Beta distribution */ 
 BONALPHA=ALPHA/N; 
 CRIT10=betainv(BONALPHA,(N-4)/2,1.5);  
 /* critical value of Beta distribution at bonferoni alpha level */ 
 OUT=STEP||N||OUT||PVAL||CRIT10||BONALPHA;  
 /* one record for output matrix, 12 variables */ 
 if j=1 then OUT2=OUT; else OUT2=OUT2//OUT;  
 /* build up output matrix from K rows */ 
/* drop observation with smallest (most significant) Wilk's statistic from data set before next j */ 
 ID=TEMP[2:N,1]; /* n-1 column vector of IDs*/ 
 X=TEMP[2:N,2:4]; /* (n-1)x3 */ 
 end; /* end j loop */ 
 create &libr..&output from OUT2; append from OUT2; close &libr..&output; 
 run; /* run proc iml */ 
 
proc sort data=&libr..&output(rename=(COL1=STEP COL2=N COL3=EVENT_ID COL4=&VAR1 
 COL5=&VAR2 COL6=&VAR3 COL7=W COL8=PVAL COL9=CRIT10  
 COL10=BONALPHA10));  
 by descending step;  
 run; 
data &libr..&output; set &libr..&output; 
 format &VAR1 &VAR2 &VAR3 5.3 pval bonalpha10 9.7 w crit10 8.6; 
 retain maxl &output; drop maxl; 
 &output=1; 
 if _n_=1 then maxl=1; 
 if w>crit10 and maxl then delete; else maxl=0; 
 run; 
proc sort data=&libr..&output; by event_id;  
 run; 
%MEND OUT3; 
 
/* p=2 */ 
%MACRO OUT2(K, ALPHA, INPUT, OUTPUT, LIBR, VAR1, VAR2); 
proc iml; 
 use &input; 
 ** use arcsine transformed variables ; 
 read all var{&VAR1 &VAR2} into X; /* X is n x 2 */ 
 read all var{event_id} into ID; /* ID is n x 1 */ 
 ALPHA=&ALPHA; 
 do j=1 to &K; 
 n=nrow(X); 
 if j=1 then n1=n; /* n1 is original number of observation */ 
 XBAR=(X[:,]); /* XBAR is 1 x p, averages across observations */ 
 ONE=J(n,1,1); /* ONE is n x 1 column vector of 1's */ 
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XBARN=ONE*XBAR[,1]||ONE*XBAR[,2]; /* XBARN is n x p */ 
 A=(X-XBARN)`*(X-XBARN); /* A is p x p */ 
 do i=1 to N; /* N is number of observations at current iteration of the K-loop */ 
 Xi=X[i,]; /* i-th row of X */ 
 WTEMP=1-((N/(N-1))*(XI-XBAR)*inv(A)*(XI-XBAR)`);  
 /* i-th Wilk's likelihood ratio statistic */ 
 if i=1 then W=WTEMP; else W=W//WTEMP;  
 /* W becomes n x 1 column vector of Wilk's statistics */ 
 end; /* end i loop*/ 
 W=ID||X||W; /* W is n x 4 */ 
 create wilks from W; append from W; close wilks; /* read into data set to sort */ 
 sort data=wilks by COL4; /* sort so smallest Wilk's statistic is first observation */ 
 use wilks; 
 read all var{COL1 COL2 COL3 COL4} into TEMP;  
 /* read data set back into n x 6 matrix */ 
 close wilks; 
 STEP=1+(n1-n); *print STEP; /* there will be a total of K steps */ 
 /* check for tie in smallest Wilk's statistic */ 
 *TIECHK=TEMP[1:2,1:4]; 
 *mattrib TIECHK label='2 smallest W' colname=({ID &VAR1 &VAR2 W}); 
 *print TIECHK; 
 OUT=TEMP[1,]; /* new 1x6 OUT matrix holds one observation with smallest Wilk's */ 
 PVAL=probbeta(OUT[1,4],(N-3)/2,1);  
 /* Wilk's statistic p-value from Beta distribution */ 
 BONALPHA=ALPHA/N; 
 CRIT10=betainv(BONALPHA,(N-3)/2,1);  
 /* critical value of Beta distribution at bonferoni alpha level */ 
 OUT=STEP||N||OUT||PVAL||CRIT10||BONALPHA;  
 /* one record for output matrix, 12 variables */ 
 if j=1 then OUT2=OUT; else OUT2=OUT2//OUT;  
 /* build up output matrix from K rows */ 
/* drop observation with smallest (most significant) Wilk's statistic from data set before next j */ 
 ID=TEMP[2:N,1]; /* n-1 column vector of IDs*/ 
 X=TEMP[2:N,2:3]; /* (n-1)x4 */ 
 end; /* end j loop */ 
 create &libr..&output from OUT2; append from OUT2; close &libr..&output; 
 run; /* run proc iml */ 
proc sort data=&libr..&output(rename=(COL1=STEP COL2=N COL3=EVENT_ID COL4=&VAR1  
 COL5=&VAR2 COL6=W COL7=PVAL COL8=CRIT10 COL9=BONALPHA10));  
 by descending step;  
 run; 
data &libr..&output; set &libr..&output; 
 format &VAR1 &VAR2 5.3 pval bonalpha10 9.7 w crit10 8.6; 
 retain maxl &output; drop maxl; 
 &output=1; 
 if _n_=1 then maxl=1; 
 if w>crit10 and maxl then delete; else maxl=0; 
 run; 
proc sort data=&libr..&output; by event_id;  
 run; 
%MEND OUT2; 
 
/* p=1 */ 
%MACRO OUT1(K, ALPHA, INPUT, OUTPUT, LIBR, VAR1); 
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proc iml; 
 use &input; 
 ** use arcsine transformed variables ; 
 read all var{&VAR1} into X; /* X is n x 1 */ 
 read all var{event_id} into ID; /* ID is n x 1 */ 
 ALPHA=&ALPHA; 
 do j=1 to &K; 
 n=nrow(X); 
 if j=1 then n1=n; /* n1 is original number of observation */ 
 XBAR=(X[:,]); /* XBAR is 1 x p, averages across observations */ 
 ONE=J(n,1,1); /* ONE is n x 1 column vector of 1's */ 
 XBARN=ONE*XBAR[,1]; /* XBARN is n x p */ 
 A=(X-XBARN)`*(X-XBARN); /* A is p x p */ 
 do i=1 to N; /* N is number of observations at current iteration of the K-loop */ 
 Xi=X[i,]; /* i-th row of X */ 
 WTEMP=1-((N/(N-1))*(XI-XBAR)*inv(A)*(XI-XBAR)`);  
 /* i-th Wilk's likelihood ratio statistic */ 
 if i=1 then W=WTEMP; else W=W//WTEMP;  
 /* W becomes n x 1 column vector of Wilk's statistics */ 
 end; /* end i loop*/ 
 W=ID||X||W; /* W is n x 3 */ 
 create wilks from W; append from W; close wilks; /* read into data set to sort */ 
 sort data=wilks by COL3; /* sort so smallest Wilk's statistic is first observation */ 
 use wilks; 
 read all var{COL1 COL2 COL3} into TEMP; /* read data set back into n x 6 matrix */ 
 close wilks; 
 STEP=1+(n1-n); *print STEP; /* there will be a total of K steps */ 
 /* check for tie in smallest Wilk's statistic */ 
 *TIECHK=TEMP[1:2,1:3]; 
 *mattrib TIECHK label='2 smallest W' colname=({ID &VAR1 W}); 
 *print TIECHK; 
 OUT=TEMP[1,]; /* new 1x6 OUT matrix holds one observation with smallest Wilk's */ 
 PVAL=probbeta(OUT[1,3],(N-2)/2,0.5);  
 /* Wilk's statistic p-value from Beta distribution */ 
 BONALPHA=ALPHA/N; 
 CRIT10=betainv(BONALPHA,(N-2)/2,0.5);  
 /* critical value of Beta distribution at bonferoni alpha level */ 
 OUT=STEP||N||OUT||PVAL||CRIT10||BONALPHA;  
 /* one record for output matrix, 12 variables */ 
 if j=1 then OUT2=OUT; else OUT2=OUT2//OUT;  
 /* build up output matrix from K rows */ 
/* drop observation with smallest (most significant) Wilk's statistic from data set before next j */ 
 ID=TEMP[2:N,1]; /* n-1 column vector of IDs*/ 
 X=TEMP[2:N,2:2]; /* (n-1)x4 */ 
 end; /* end j loop */ 
 create &libr..&output from OUT2; append from OUT2; close &libr..&output; 
 run; /* run proc iml */ 
proc sort data=&libr..&output(rename=(COL1=STEP COL2=N COL3=EVENT_ID COL4=&VAR1  
 COL5=W COL6=PVAL COL7=CRIT10 COL8=BONALPHA10));  
 by descending step;  
 run; 
data &libr..&output; set &libr..&output; 
 format &VAR1 5.3 pval bonalpha10 9.7 w crit10 8.6; 
 retain maxl &output; drop maxl; 
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&output=1; 
 if _n_=1 then maxl=1; 
 if w>crit10 and maxl then delete; else maxl=0; 
 run; 
proc sort data=&libr..&output; by event_id;  
 run; 
%MEND OUT1; 
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APPENDIX B:  SUPPORTING INFORMATION FOR CHAPTER 4 

 

B.1   HALF-MRL METHOD CENSORED DATA REPACEMENT FOR Br2ClAA 

AND Br3AA 

Under the “Half-MRL” censored data replacement method used for this research, 

adjustments were made for the two brominated X3AA species with high ICR MRLs. The 

replacement value for censored Br2ClAA (MRL = 2.0 µg/L) was either 0.5 or 1.0 µg/L and 

depended on the sample's reported BrCl2AA concentration. The replacement value for 

censored Br3AA (MRL = 4.0 µg/L) was either 0.5, 1.0, 2.0, or 3.0 µg/L and depended on the 

sample's reported BrCl2AA and Br2ClAA concentrations. This approach was expected to 

provide a more accurate reflection of true occurrence levels for these species than uniform 

replacement with any single fixed value in the wide range between zero and the MRL. 

Censored Br2ClAA was set to half  the MRL (1.0 µg/L) only if measurable BrCl2AA 

was reported. Otherwise censored Br2ClAA was set to 0.5 µg/L. Censored Br3AA was set to 

half  the MRL (2 µg/L) if measurable Br2ClAA was reported. If the reported Br2ClAA 

concentration exceeded 3 µg/L then censored Br3AA was set to 3 µg/L. If Br2ClAA was 

below MRL but BrCl2AA was measurable, censored Br3AA was set to 1.0 µg/L. If Br2ClAA 

and BrCl2AA were both below MRL then Br3AA was set to 0.5 µg/L. 
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B.2   VARIABLE CONDITIONING  

Adjustments in scale and/or location may be needed to avoid computational 

instabilities arising from widely disparate ranges or magnitudes among independent 

variables. Linear dependencies among independent variables also can cause computational 

problems and result in unstable parameter estimates with inflated variance. Second or higher-

order model terms representing interaction or polynomial effects can improve model fit but 

they introduce collinearity problems and greatly increase the complexity of interpretation. 

The latter consideration is especially relevant for this research which focused on model 

interpretation rather than prediction. The benefit of second-order terms was evaluated 

accordingly. Based on theoretical considerations, temperature and pH were expected to have 

the greatest potential for interaction effects so interactions terms involving these variables 

were considered, as well as a quadratic term for temperature to describe a potential nonlinear 

effect. Interactions with chlorine addition point were included to account for the preferential 

removal of DBP precursors by coagulation. Altogether, 14 second-order terms were included 

in model testing. Terms higher than second-order were not considered. 

B.3   VALIDATION DATA  

A random number from the uniform distribution on the interval (0,1) was generated 

with the SAS RANUNI function.  This was used to assign records to either the exploration or 

validation subset based on a specified cutoff. Using the computer clock to initialize the seed 

stream ensured a different record allocation each time the operation was repeated.  
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B.4   COLLINEARITY ASSESSMENT 

A variable with negligible or small variance (i.e. nearly constant value) would tend to 

be collinear with the intercept term in the design matrix (constant value of 1). Collinearity 

between the intercept and main independent variables was assessed with principal component 

analysis using the SAS princomp procedure. Due to its small variance (see Table 4.2), pH 

exhibited moderate collinearity with the intercept. pH was retained as a candidate variable 

because the collinearity was not severe and pH is known to significantly influence DBP 

formation. Collinearity among the 11 main independent variables (see Table 4.2) was 

assessed with eigenanalysis and decomposition of the variances of the estimates with respect 

to each eigenvalue, using the SAS reg procedure and collinoint option. A collinearity 

problem occurs when a component associated with a high condition index contributes 

strongly (variance proportion > 0.5) to the variance of two or more variables (SAS 1999). 

The condition number (i.e. highest condition index) for the data set was 3.3, indicating that 

dependency among the main independent variables would not seriously affect parameter 

estimates. A condition number above 10 has been suggested as evidence of weak 

dependencies and one above 30 as potentially problematic (Belsley, Kuh, and Welch 1980). 

Collinearity among independent variables was reassessed after inclusion of second-order 

terms. As expected, due to inherent dependencies between second-order terms and main 

variables, there was a substantial amount of collinearity among the 25 variables. After 

stepwise removal of 5 second-order terms, the condition number was reduced from 68 to 24. 

The 9 second-order terms remaining for model development included chlorine addition point 

interactions (with alkalinity, bromide, TOC, chlorine consumed, and chlorine contact time), 
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temperature interactions (with TOC, chlorine consumed, and chlorine contact time), and the 

quadratic temperature term.  

B.5   DEPENDENT VARIABLE TRANSFORMATION  

The Box-Cox series of transforms was applied to the dependent variable according to 

Equation B.1, where Ygm is the geometric mean of Y. This series maintains the Y units so the 

sum of squared errors (SSE) can be compared directly in selecting the best π value (Muller 

and Fetterman 2003). Residual plots and SSE from least-squares regression were compared 

for π values of -1, 0, 0.5, and 1, corresponding to reciprocal, log, square root, and no 

transformation. The optimal π was identified as that yielding minimal SSE with acceptable 

residual patterns. 
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Box-Cox analysis led to use of log transformation for all dependent variables: SSE 

were minimized for both log and square root transforms (with negligible difference), and 

residual patterns were acceptable in both cases. The log transform was chosen for simplicity 

and for consistency with previous modeling work.  

 



180

B.6   RESIDUAL DIAGNOSTICS  

Model residuals were examined to evaluate conformance with theoretical 

assumptions of the linear model and to check for evidence of model misspecification. 

Studentized residuals were used for these diagnostics. This form of residual is normalized by 

a standard error computed without the current observation. Because the standard error 

shrinks if an outlier is excluded, outlier points are emphasized by this treatment. Scatter plots 

of model residuals versus predicted dependent variables were examined for variance 

homogeneity and patterns indicating non-linearity or other model misspecification. Partial 

regression leverage plots were also reviewed to check for outliers and signs of non-linear 

effects with respect to individual independent variables. Residual normality was evaluated by 

histogram inspection and the Kolmogorov-Smirnov test statistic. 

B.7   VARIABLE SELECTION AND MODEL VALIDATION 

The SAS reg procedure was used to select model independent variables.  The 

procedure was first run using stepwise selection with significance levels for independent 

variables to enter and remain in the model set at 0.5 and 0.05, respectively. This imposed a 

minimal barrier to variables entering the model but only retained them if their significance 

level stayed below 0.05 (F-statistic, p-value). Stepwise selection results were used to suggest 

the appropriate number of variables, but the outcome was not taken as the optimal model. 

The reg procedure was repeated using the R-squared selection method to compute Mallows' 

Cp and adjusted R2 statistics for the best 4 models (i.e. highest R2) of each size in a range 

bracketing the suggested number of variables. The adjusted R2 statistic is an alternative to R2

that accounts for the number of parameters in the model, affording better comparisons 
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between models of different size. Adjusted R2 and (Cp-1) were plotted as a function of the 

number of variables to identify the optimal model size. This was taken as the point where 

additional variables no longer increased precision meaningfully and/or where (Cp-1) 

approached the number of regressors. Daniel and Wood (1971) and Muller and Fetterman 

(2003) discuss the use of Cp to guide model selection. Cp is an estimate of the total variance 

of prediction (random plus bias) and, thus, minimizing Cp is desirable. Theoretically, a 

model with minimal bias should have an expected value for Cp equal to the number of 

parameters in the model (including intercept). Daniel and Wood (1971) note that the correct 

region is where Cp values for a group of models begin to diverge. The model with the 

smallest R2 for the optimal size was chosen. Figure B.1 shows the adjusted R2 and Cp plots 

for the THM4 model. 

Based on results for THM4 and X2AA models, it was determined that use of second-

order terms was not warranted in the models. Thus, second-order terms were neglected in 

further model selection. 
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Figure B.1   Plots used to guide variables selection in exploratory THM4 model development 
showing results for best 4 models in each size: a) adjusted R2, and b) Mallow's Cp-1  with 1:1 
reference line as a function of number of regressors in model 
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B.8   SEGMENTED MODELING APPROACHES 

A potential source of model misspecification was conceptualizing the treatment train 

as a single input/output process whereas, in reality, it is a series of unit processes with 

continuously changing water quality conditions and often multiple chlorine application 

points. Although data were available for most of the important water quality variables 

through each process in the treatment trains, DBP results were only available for filtered 

water (if chlorine was added upstream) and finished water. Exploiting these data, alternative 

models for THM4 and X2AA were developed based on conceptualizing the treatment train as 

two segments: raw to filtered water, and filtered to finished water. This was expected to 

provide better characterization of specific water quality and treatment conditions relevant to 

incremental DBP formation in each segment. Data were re-processed to obtain appropriate 

records for each segment as in Table 4.2; the classification variable Cl2 point was dropped for 

this analysis. Filtered water DBP results (where available) were associated with water quality 

and treatment conditions for the raw to filtered water segment of the treatment train. 

Incremental finished water DBP results (i.e. finished water concentration minus filtered 

water concentration) were associated with the filtered to finished water segment. Records for 

the two segments were then modeled both separately and in aggregate. 

The THM4 model for combined segment records showed the same misspecification 

problem as seen in the original model but fit the data more poorly (R2 decreased from 0.707 

to 0.510) and had unacceptable residual patterns. No improvement was found when models 

were developed separately for the two segment types, although results were noticeably better 

for the raw to filtered water segment records (R2 = 0.540) than for the filter to finished water 

segment records (R2 = 0.379): the misspecification persisted in each model. However, when 
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predictions from the combined segment model were segregated according to treatment 

configuration, the misspecification pattern was found to be limited to filter to finished water 

incremental THM4 formation for plants adding chlorine before filtration (Figure B.2b). 

There was substantial scatter for raw to filtered water segment data (Figure B.2a) but no 

trend of overprediction at low values and/or underprediction at high values. Finished water 

THM4 for plants with no chlorine addition before filtration (Figure B.2c) or without any 

filter process (Figure B2.d) were both quite well represented by the model, though there were 

relatively few data of these type. Results of the segmented model analysis for X2AA were 

similar to those shown for THM4.  
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Figure B.2   Predicted versus observed log10[THM4] results for segmented model subset by 
record type: a) raw to filtered water segments, b) filtered to finished water segments for 
plants adding chlorine upstream of filter, c) filtered to finished water segments for plants 
with no chlorine upstream of filter, d) raw to finished water segments for plants with no filter 
process 

Results of the segmented model analysis were provocative and suggested that 

subsequent stages of DBP formation following initial exposure to chlorine and filtration were 

difficult to describe in the current framework. However, there was no clear way to account 

a) b) 

c) d) 
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for this with the available data, given the poor results for the segmented approach. Therefore, 

the original model formulation was determined to be the best approach within the framework 

of a multiple linear regression model, given the available data and the primary goal of 

providing a relatively straightforward platform for examining the effects of water quality and 

treatment on DBP formation. 
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