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ABSTRACT 

MEGAN ARLENE RÚA: The Role of Mutualists in Plant Response to Pathogen 
Infection 

(Under the direction of Charles E. Mitchell) 
 

Plants interact with a diversity of microorganisms including enemies and 

mutualists. Plant pathogens and mutualistic fungi are two classes of microorganisms that 

directly impact the plant and may in turn alter each other’s success. While their roles 

have often been considered independently, few researchers have considered their 

concurrent role. Dynamics of these two groups of widespread microbes may modify plant 

nutrient allocation in response to abiotic environmental changes. Furthermore, early 

models suggest that mutualists and pathogens may profoundly impact not only their 

shared host plant, but each other. In one of the first thorough explorations of three-species 

interactions, I use both experimental and theoretical approaches to investigate the 

interaction between plants, their pathogenic enemies and fungal mutualists in the context 

of changing abiotic conditions.  

In two separate greenhouse experiments I show that mutualistic strategy is 

important for determining the direction of change by which mutualists alter pathogen 

dynamics. In additional work, I also confrim the reverse can also be true in that pathogen 

infection influences mutualists. Both mathematical theory and an experiment indicate that 

a pathogen can alter host-mutualist dynamics and consequently alter long-term co-

existence of a host and a mutualist. Finally, my thesis shows that changing abiotic 
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environmental conditions can modify the relationships between hosts, mutualists and 

pathogens. Using greenhouse and field experiments, I demonstrate that increases in 

atmospheric CO2, temperature and precipitation all modify mutualist-host-pathogen 

relationships. Overall, my thesis demonstrates that mutualists and pathogens can have 

important impacts on not only the host but also on the success of each other. Such 

dynamics can be further modified by changes in the abiotic environment. Precipitation, 

temperature, and atmospheric CO2 are all expected to continue to change for the 

foreseeable future. Thus, in order to make accurate projections about ecosystem, 

community or population dynamics, changes in microorganisms and their interactions 

must be included in those projections. 
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CHAPTER I: I NTRODUCTION  

Plants interact with a diversity of microorganisms, including both enemies and 

mutualists. Plant pathogens and mutualistic fungi are two classes of microorganisms that 

directly impact the plant and may in turn alter each other’s success. Despite their 

ubiquitous nature, little research attention has been given to the interaction of multiple 

microorganisms as they alter host growth and the success of each other. Early three-

species models have shown that the third player can alter the intensity, outcome and even 

the symbiotic state (mutualistic or parasitic) of an association (Bronstein and Barbosa 

2002). Furthermore, dynamics of these two groups of widespread microbes may modify 

plant nutrient allocation in response to abiotic environmental changes. In one of the first 

thorough explorations of three-species interactions, I used both experimental and 

theoretical approaches to investigate the interaction between plants, pathogens and 

mutualists under changing abiotic conditions. 

Plant hosts provide an important ecological arena in which to examine 

multispecies interactions. Specifically, plant phenotypes can be fundamentally altered by 

microbes, which may provide novel nutritional and defense pathways via their influence 

on plant biochemical pathways (Friesen et al. 2011). Plant pathogens are one type of 

enemy which may capitalize on such phenotypic changes (Rúa et al. 2011); however, not 

all pathogen-plant interactions are created equal. Plants vary in the severity of disease 

symptoms, perhaps due to differences in tolerance (ability of the plant to recover after 
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infection), susceptibility (probability of infection when exposed to the pathogen) or 

resistance (ability of the plant to defend against infection). Often plant tolerance traits are 

positively associated with traits involved with resource acquisition such as root biomass, 

the ability to shunt carbon from roots to shoots after foliar damage, leaf area, and 

photosynthetic rate (Strauss and Agrawal 1999, Stowe et al. 2000). Conversely, tolerance 

may also be negatively associated with plant resistance traits like concentrations of 

secondary compounds (Strauss and Agrawal 1999, Stowe et al. 2000).  

Variation is common within different enemy-host-mutualist interactions. Few 

theoretical studies have examined such three-way interactions (but see (Bennett et al. 

2006)), and a unifying framework is lacking.  Further, most studies consider the plant as 

the key component for determining the outcome of such three species interactions. 

Realigning theoretical models to instead utilize the mutualist as the center of focus may 

prove a more efficient way to explain the large amount of variation surrounding these 

interactions. Mutualism classes can be grouped based on the nature of the benefits they 

exchange with their partners (Bronstein and Barbosa 2002): nutritional mutualisms 

(partners provide each other with essential limiting nutrients) and protection mutualisms 

(one partner provides protection from biotic or abiotic environmental stresses for the 

other partner) are two examples of traditionally recognized mutualisms (Bronstein and 

Barbosa 2002). The fundamental characteristics describing the differences between each 

of these types of mutualistic relationships may explain some of the variation by which 

mutualists have been shown to influence plant-enemy interactions.  

 When exploring the interaction of mutualists and pathogens it is important to study 

not only the interactions themselves, but their responses under varying abiotic 
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environments. The extent to which plant-microbe interactions are mutalistic or parasitic 

may often be a function of resource availability, which is currently being altered by 

global change. Few studies have directly investigated how such interactions are altered in 

the context of global change. For example, since viral pathogens and fungal mutualists 

can be integral players in plant allocation of carbon, the growth, fecundity and population 

dynamics of these two groups of widespread microbes may modify plant performance in 

response to elevated CO2 (Malmstrom and Field 1997, Johnson et al. 2005). Additionally, 

association with one particular class of mutualist - foliar endophytic fungi - may bolster a 

plant’s ability to withstand changes to temperature and precipitation regimes 

(Stuedemann and Hoveland 1988, Arachevaleta et al. 1989).  In order to advance our 

understanding of host-mutualist-enemy interactions, I investigated the relationship 

between a viral pathogen and two different types of mutualists (a nutrition mutualist and 

a protection mutualist) under varying abiotic conditions. I explored multiple aspects of 

this relationship by combining, greenhouse/lab work, field studies, and a new theoretical 

model of enemy-mutualist-host interactions. Using greenhouse experiments, we tested 

the roles mutualists play in altering plant response to viral infection (Chapter 2 and 3). 

First we considered whether a nutritional mutualist, arbuscular mycorrhizal fungi (AMF), 

alters host response to pathogen pressure when soil nutrients and atmospheric 

concentrations of carbon dioxide (CO2) are altered (Chapter 2). We then explored 

whether a protective mutualist, foliar endophytic fungi, alters host response to pathogen 

pressure and vector abundance (Chapter 3). The nature of these three-way interactions 

was further pursued through the use of field studies.  We explored the role that 

endophytic fungi plays in viral disease dynamics under varying precipitation and 
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temperature regimes within a managed grassland (Chapter 4). Finally, theoretical work 

exploring multispecies interactions has only recently attempted to dissect enemy-

mutualist interactions (Bennett et al. 2006), but previous models have neglected to 

include pathogens. Since pathogen-mutualist affiliations are characterized by a more 

intimate connection (primarily they both exist internally in the host), their interactions 

may exhibit different dynamics then generic plant-enemy relationships. Therefore, we 

created and analyzed a model of the interaction of a fungal mutualist, a viral pathogen 

and their shared host in order to explore pathogen-specific influences on three way 

species interactions (Chapter 5).   

CHAPTER SUMMARIES 

Chapter 2: Elevated CO2 spurs reciprocal positive effects between a plant virus and an 

arbuscular mycorrhizal fungus 

While many studies have considered the individual effects of pathogens and 

mutualists on their hosts, few studies have investigated interactions among microbial 

mutualists and pathogens in the context of global change. Together with Dr. Kent Burkey 

at the USDA, Dr. Shuijin Hu at North Carolina State University, Dr. James Umbanhowar 

at the University of North Carolina at Chapel Hill and my advisor, Dr. Charles Mitchell, I 

experimentally tested the interactive effects of increased atmospheric CO2 concentration, 

soil phosphorus supply, an ecologically important nutrition mutualist (AMF), and a 

widespread viral pathogen. Under elevated CO2, mycorrhizal association increased viral 

titer, and virus infection reciprocally increased the colonization of roots by mycorrhizal 

hyphae. This indicates that when carbon was abundant, the mycorrhizal fungus and the 

virus interacted to stimulate one another’s performance. Additionally, virus infection 
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decreased plant allocation to root biomass, increased the accumulation of phosphorus in 

leaves, as well as modulated the effects of elevated CO2 and (for one plant species) of 

phosphorus addition on mycorrhizal colonization of roots.  These results emphasize the 

importance of interactions among multiple microorganisms for plant performance in the 

context of global change. Overall, our research indicates that these mutualist and 

pathogenic organisms interact to alter each other’s success, and predicts these interactions 

will respond to changes in resource availability under global change.  

Chapter 3: Fungal endophyte infection and host cultivar jointly modulate host response 

to an aphid-transmitted viral pathogen 

With Drs. Rebecca McCulley (University of Kentucky) and Charles Mitchell, we 

investigated how an aphid-transmitted viral pathogen and a protection mutualist (an 

endophytic fungus) alter host growth and allocation for two different genotypes of the 

same grass host. While endophyte infection reduced the negative impact of virus 

infection on root allocation, it also rendered one host genotype more sensitive to the 

negative impacts of virus infection on tillering. Further, endophyte infection decreased 

vector production, abundance of adult aphids and total number of aphids on the host, but 

this did not interact with virus infection status. These results indicate that many of the 

beneficial effects provided by endophytic infection arise not from the alteration of host 

interactions with the vectors (aphids), but rather by changing host responses to viral 

infection. These results highlight the importance of exploring multi-species 

microorganism interactions at the individual level in order to more fully understand 

community and ecosystem level interactions. 
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Chapter 4: Impacts of climate drivers, host species identity, and fungal endophyte 

infection on the prevalence of three virus species in a grassland ecosystem 

Under climate change, shifts in precipitation and temperature regimes are 

expected to impact ecosystem structure and function. These impacts may be determined 

by feedbacks between plants and their microbes, including both endophytic fungal 

symbionts and viral pathogens. In collaboration with Drs. McCulley and Mitchell, I 

considered the role of biotic and abiotic factors in shaping disease dynamics within a 

managed grassland. After one growing season, all species were tested for infection with 

three species of barley and cereal yellow dwarf viruses (B/CYDVs). B/CYDVs are aphid-

vectored, host-generalist plant viruses that are widespread in natural and agricultural 

grasslands. Since endophytes produce alkaloids which can deter aphids from feeding, 

B/CYDV prevalence should be lower in endophyte-infected plants. However, endophyte 

infection can also confer drought resistance to its host by increasing host water uptake 

and storage while reducing transpiration loss. This may increase aphid feeding under 

drought conditions which could increase the prevalence of B/CYDVs despite endophyte 

induced alkaloids. Thus, how alterations to temperature and precipitation regimes will 

alter these interactions remains unclear. 

Plant species identity influenced risk of pathogen infection, as the odds of 

infection with one or more B/CYDV viral species were higher for Bluegrass and 

Dallisgrass compared to Tall Fescue (endophyte-infected or endophyte-free) or 

Goosegrass. The environmental context provided by abiotic factors also had a strong 

impact on viral disease dynamics in grasslands. Precipitation decreased overall viral 

prevalence for plants in this system during the course of the final growing season, but it 
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had a relative positive effect for endophyte-infected plants. Also in 2011, but regardless 

of endophyte infection, elevated heat by itself increased virus prevalence for tall fescue. 

This effect may have been driven by vector population size, as aphid presence was 

greater in high temperature plots.   

Overall, our investigation suggests that disease dynamics in managed grasslands 

are complex, with both biotic and abiotic factors having important roles. Thus, changes in 

climate which alter temperature and precipitation regimes are likely to have strong 

impacts for disease dynamics by not only altering vector presence but also by changing 

the prevalence of individual viral species; which can scale up to changes in overall 

disease dynamics. 

Chapter 5: The effect of mutualists on pathogen-host dynamics 

In order to examine the interaction of a fungal mutualist, viral pathogen and their 

shared host, Dr. Umbanhowar and I created and analyzed a dynamic systems model 

based on classic Lotka-Volterra model of predation.  Both microbes were assumed to 

alter the uptake and use of soil nutrients by the plant. Qualitative analysis of nullclines 

demonstrated the presence of threshold dynamics that depend on both the productivity of 

the system and the strength of the plant-fungal mutualism. In particular, at very low 

resource availability, plants are obligately dependent on their mutualist to forage for soil 

resources.  Further, we identified complex equilibria states such that the enemy depends 

on mutualist for persistence, but could also cause the extinction of the mutualist.   

In order to more accurately quantify these dynamics, we derived our parameter 

values from a greenhouse experiment and from the literature, and used them to 

numerically simulate the system.  The plant-enemy dynamics were cyclical, indicating 
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that the microbes may enhance the abundance of one another or hinder the success of one 

another. Further parameter exploration demonstrated that if the pathogen is too 

exploitative it drives the host and fungus extinct. On the other hand, if the fungus is not 

effective enough as a mutualistic partner, the pathogen can drive the host extinct before 

the fungus is able to establish. In summation, association with mutualists can alter host-

enemy interactions, and the reverse is also true in that enemies may alter host-mutualist 

interactions. 
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CHAPTER II: E LEVATED CO2 SPURS RECIPROCAL POSITIVE EFFECTS BETWEEN A 

PLANT VIRUS AND AN ARBUSCULAR MYCORRHIZAL FUNGUS  

Abstract 

Plants form ubiquitous associations with diverse microbes.  These interactions range from 

parasitism to mutualism, depending partly on resource supplies that are being altered by 

global change.  While many studies have considered the separate effects of pathogens and 

mutualists on their hosts, few studies have investigated interactions among microbial 

mutualists and pathogens in the context of global change. Here we experimentally test the 

interactive effects of increased atmospheric CO2 concentration, soil phosphorus supply, 

mycorrhizal association and virus infection on the performance of a widespread, 

ecologically important mutualist and pathogen infecting two wild grass species. Under 

elevated CO2, mycorrhizal association increased the titer of virus infections, and virus 

infection reciprocally increased the colonization of roots by mycorrhizal hyphae. Thus, 

when carbon supply was increased, the mycorrhizal fungus and the virus stimulated one 

another’s performance. These results indicate that plant mutualists and pathogens can 

alter each other’s success, and predict that these interactions will respond to increased 

resource availability under global change. Additionally, virus infection decreased plant 

allocation to root biomass, increased the accumulation of phosphorus in leaves, and 

modulated effects of elevated CO2 and phosphorus addition on mycorrhizal colonization 

of roots.  Overall, this study emphasizes the importance of interactions among multiple 

microorganisms for plant performance in the context of global change. 
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Introduction 

Effects of increased atmospheric CO2 on plant growth and productivity are 

expected to occur both directly via plant physiological responses (Lee et al. 2001) and 

indirectly via impacts on microbes that associate with plants (Malmstrom and Field 1997, 

Johnson et al. 2005). Plant pathogens and arbuscular mycorrhizal (AM) fungi are two 

ubiquitous classes of microorganisms that can directly impact plant allocation of carbon, 

and may in turn indirectly alter each other’s success (Bennett et al. 2006, Smith and Read 

2008). Elevated CO2 generally increases the positive impact of AM fungi on plant growth 

(Treseder 2004). Additionally, elevated CO2 can reduce the negative impacts of pathogen 

infection on plant growth, increasing disease tolerance (Malmstrom and Field 1997). 

Together, these studies suggest the potential for interactive effects of plant pathogens and 

AM fungi on plant performance under elevated CO2.  Yet, there have been no studies 

considering their joint impact on plant performance under elevated CO2. Thus, the goals 

of this experiment were to explore the independent and interactive effects of a viral plant 

pathogens, fungal mutualists and changing resource levels as they impact plant 

performance.   

Plants often simultaneously support mutualists and are attacked by natural 

enemies, creating the potential for interactions that impact plant performance. A meta-

analysis of plant-enemy-mutualist interactions concluded that, on average, the presence 

of mutualists lessens the negative effect of enemies on plant performance (Morris et al. 

2007). However, the impact of AM fungi on the performance of plants exposed to natural 

enemies depended upon the identity of the enemy examined (Borowicz 2001). In 

addition, the effects of enemy damage on plant performance can depend on the identity of 
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the plant mutualist (Bennett and Bever 2007). The context dependency and variability 

highlighted by these studies demonstrates that we cannot safely extrapolate from one type 

of interaction for another, so understanding interactions between mycorrhizal fungi and 

plant viruses will require direct study of those systems.  

Mutualists and natural enemy interactions are often mediated by their shared host.  

Theoretical models predict that, by improving plant nutrition and tolerance, AM fungi 

will also increase enemy populations (Bennett et al. 2006).  This prediction may be 

relevant to effects of AM fungi on plant viruses, with plant phosphorus as the 

mechanism.  Among natural enemies, viruses may be particularly limited by phosphorus 

availability within hosts because they are comprised chiefly of nucleic acids, which have 

a relatively high concentration of phosphorus (Clasen and Elser 2007). AM fungi 

generally increase plant phosphorus concentration under both ambient and elevated CO2 

conditions (Smith and Read 2008).  Therefore, host plants associating with mycorrhizal 

fungi may have higher viral titer due to their higher shoot phosphorus content. There is 

some evidence in agricultural systems which suggest an increase in viral titer as a result 

of association with mycorrhizae (Daft and Okusanya 1973, Schonbeck 1979), but such 

reports are limited.  

The impact of global change on plant communities may be mediated through 

indirect effects, including via pathogens (Burdon et al. 2006). Because pathogens do not 

fix carbon, such indirect effects must begin with effects of elevated CO2 on plant 

physiology. Although the effect of CO2 can vary considerably across plant species and 

environmental gradients (Lee et al. 2001), plants grown under elevated CO2 generally 

show increased levels of photosynthates (Pritchard et al. 1999, Ward et al. 2005), 
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potentially increasing the resources available to pathogens infecting the host plant 

(Clasen and Elser 2007, Alexander 2010). Alternatively, elevated CO2 may alter plant-

pathogen interactions by changing plant defense traits, including those traits associated 

with tolerance and resistance (Burdon et al. 2006). Elevated CO2 can alter traits that are 

associated with pathogen tolerance, the capacity to vegetatively or reproductively 

compensate for damage by enemies (Strauss and Agrawal 1999). Specifically, elevated 

CO2 can enhance traits associated with tolerance such as photosynthetic capacity, root 

biomass, and carbon stores (Strauss and Agrawal 1999, Ainsworth and Long 2005), 

leading to an increase in plant tolerance of infection (Malmstrom and Field 1997). 

Overall, changes in plant performance and physiology in response to elevated CO2 may 

change the growth, fecundity and population dynamics of pathogens (Alexander 2010).  

Just as with plant pathogens, alterations of plant physiology due to elevated CO2 

may in turn impact mycorrhizal fungi (Johnson et al. 2003, Treseder 2004, Klironomos et 

al. 2005). The carbon limitation hypothesis suggests that when carbon is limiting, such as 

can occur under ambient CO2 or under foliar herbivory, AM fungal growth will be 

reduced because carbon will be preferentially allocated to parts of the plant or soil pool 

other than AM fungi (Gehring and Whitham 2002). Therefore we expect that elevated 

CO2 will alter plant physiology to increase the available carbon to AM fungi, thereby 

strengthening the mutualism by increasing one currency of the mutualism. A meta-

analysis of atmospheric CO2 studies found that mycorrhizal fungi consistently and 

significantly increased their growth in response to elevated CO2 (Treseder 2004). 

However, mycorrhizae have also been reported to reduce their beneficial effects on plant 

biomass under elevated CO2 (Johnson et al. 2003, Johnson et al. 2005).  
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In total, association with mutualists can alter plant-enemy interactions, and 

enemies can also alter plant-mutualist interactions. In addition, elevated CO2 can alter 

both plant-pathogen and plant-mutualist interactions. Together, this suggests that elevated 

CO2 will alter interactions between plant pathogens and mutualists.  Yet to date, no 

experimental studies have examined the effects of elevated CO2 on plants associating 

with both mutualists and pathogens. 

Materials and Methods 

Study System 

Barley and cereal yellow dwarf viruses (B/CYDVs) are a group of aphid-

transmitted generalist viral pathogens that infect over 150 crop and noncrop grasses 

(D'Arcy 1995, Halbert and Voegtlin 1995). Infection is systemic and localized to the 

phloem where it causes necrosis and disruption of carbohydrate translocation (Irwin and 

Thresh 1990, D'Arcy 1995). BYDV infection stunts plant growth (Malmstrom et al. 

2005a), reduces root/shoot ratio (Kolb et al. 1991) and reduces longevity.  B/CYDVs are 

obligately transmitted by aphids, including the globally common aphid species 

Rhopalosiphum padi (L.).  

AM fungi are ubiquitous plant symbionts that play an important role in the 

acquisition of less mobile mineral nutrients, particularly phosphorus (Smith and Read 

2008). In return, AM fungi receive carbohydrates from the plant. In addition to altering 

leaf level photosynthesis (Smith and Read 2008), AM fungi can increase plant root 

growth (Bryla and Eissenstat 2005).  

For this experiment we used two C3 Eurasian annual host plants, Bromus 

hordeaceus and Avena fatua, known invaders of Western US grasslands (Malmstrom et 
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al. 2005b). These host plants were chosen because they are both colonized by AM fungi 

(Hu et al. 2005, Rillig 2006) and are hosts for B/CYDVs (Malmstrom et al. 2005b). To 

ensure genetically diverse hosts, experimental seed from multiple wild plants was hand-

collected in Oregon and germinated in the experimental pots. When multiple germinates 

were observed, plants were thinned down to one plant. Plants were watered every three 

days. 

Experimental Conditions 

The experiment was conducted in the CO2 exposure facility at the USDA-ARS 

Air-Quality greenhouse at North Carolina State University in Raleigh, NC. The CO2 

facility consists of a 9m x 12m greenhouse bay containing 20 continuously stirred tank 

reactor (CSTR) chambers, each measuring 1.2m in diameter by 1.4 m tall (Chen et al. 

2007). Gasses were dispensed and monitored in a laboratory adjacent to the greenhouse. 

A blower system provided a constant flow of charcoal-filtered air through each CSTR. 

For those chambers assigned to an elevated CO2 treatment, compressed CO2 was added to 

the air entering the CSTR. To maintain CO2 at a constant concentration, a rotameter was 

used to control flow. The potential heating effect of the chambers was alleviated by air 

which was continuously moved through the CSTR. Monitoring of CO2 concentration was 

accomplished using computer-activated solenoid valves to direct gas exiting the CSTR 

into infrared analyzers (model 6252, LiCor Inc., Lincoln, NE, USA).  

Experimental design and treatments 

The experiment was established in a split-plot design with atmospheric CO2 

concentration (ambient and elevated CO2) as the whole plot factor with three chambers 

per CO2 concentration level. Targeted treatments of either ambient or elevated CO2 
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concentration (ambient + 200 ppm) were randomly assigned to each chamber within a 

block. The CO2 concentration in elevated chambers is within the range of concentrations 

predicted by the IPCC for the end of this century (IPCC 2001). Measured values for 

ambient and elevated CO2 treatments during the study were 387±11 and 581±11 ppm, 

respectively. AM fungi (mycorrhizal and non-mycorrhizal), virus (infected and 

uninfected) and phosphorus (addition and ambient) were manipulated as subplot factors 

at the individual plant level in a full-factorial design.  

Individual plants were grown in D60 Deepots (Steuwe and Sons Inc., Oregon, 

USA). We were interested in the effects of phosphorus and mycorrhizae on plants 

growing under very nutrient-poor conditions.  Each plant received 800 g of steam-

sterilized field soil in a mixture of one part sandy loam with two parts of pure sand (by 

mass). Field soil was collected from a site adjacent to the CSTR facility and steam 

sterilized to remove any existing soil microbes. The very nutrient-poor soil resulted in 

slow plant growth, which allowed the plants to grow for an extended period without 

producing enough biomass to become either light-limited or root-bound. To inoculate 

plants with AM fungi, we added 50 g of active mycorrhizal spore inoculum per pot. We 

used commercially available inoculum AM120 from Reforestation Technologies 

International (Salinas, CA, USA) which consists of the AM fungal species Glomus 

intraradices. Control plants received 50 g of autoclave sterilized inoculum to control for 

potential changes in nutrient content due to the inoculum. To ensure that, aside from the 

AM fungus, the same soil microbial community was added to all treatments. All pots 

received 100 mL of microbial filtrate solution filtrated by Whatman No. 1 filter paper 

from 10.0 g AM inoculum (in which mycorrhizal spores were removed) to correct for 
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possible differences in the microbial community and mineral content between 

mycorrhizal and no mycorrhizal treatments. Plants in the phosphorus addition treatment 

received 1.42 g of triple super phosphate [Ca(H2PO4)
2] per pot, mixed into the soil before 

planting.  

To infect plants with virus, we used an isolate of Barley yellow dwarf virus – PAV 

(hereafter referred to as BYDV for brevity) that has previously been used in inoculation 

experiments (Cronin et al. 2010). This isolate was obtained in August 2007 from a 

naturally infected Bromus vulgaris individual in Oregon; since collection, it has been 

maintained (approximately three transmission cycles per year) in laboratory plants of the 

Avena sativa cultivar Coast Black Oats. The virus isolate has yet to be sequenced and is 

not currently in GenBank .Virus inoculations occurred approximately two weeks after 

germination when plants were at the two leaf stage. Uninfected aphids of the species R. 

padi were fed in petri dishes for 72 hours on infected plant tissue. Five infected aphids 

were then transferred to each experimental plant, at which time a plastic / nylon mesh cap 

was placed on plants to prevent the spread of aphids. Aphids were allowed to feed on 

each experimental plant for 48 hours and then uncapped.  Plants were then sprayed with a 

horticultural oil solution (SAF-T-SIDE, ClawEl Specialty Products, Pleasant Plains, IL) 

to kill the aphids.  Mock-inoculated plants received the same treatment but uninfected 

aphids were fed on uninfected tissue prior to being transferred to experimental plants. To 

test the plants for BYDV infection and to quantify relative viral titer concentration, a 

compound indirect double-antibody sandwich Enzyme-linked Immunosorbent Assay 

(ELISA; Agdia Inc., Elkhart, IN, USA) was used on 0.1-0.3g wet aboveground tissue 

collected from experimental plants when they were harvested (Cronin et al. 2010).  
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Plants were allowed to grow for five and a half months and then harvested. At 

harvest, plants were separated into above- and belowground portions. Both above- and 

belowground biomass was placed in a drying oven. Plants were dried at 60˚C for a 

minimum of 72 hours to obtain dry biomass values. Soils were frozen and stored at -20˚C 

until they could be processed. The belowground fraction was washed to separate roots 

from soil. A subset of the roots from each individual were collected before drying, 

stained with trypan blue following the methods outlined in (Koske and Gemma 1989) and 

scored for intraradical AM fungal colonization using the magnified gridline intersect 

method (McGonigle et al. 1990). Using this method, the percentage of root length 

colonized by intraradical hyphae was measured using a compound microscope (200-

400x).  

Plant phosphorous concentration was determined using the dry ash/acid extraction 

method (Stable Isotope/Soil Biology Laboratory of the University of Georgia’s Odum 

School of Ecology).  

Statistical Analysis 

Plants that did not survive or did not become inoculated with the appropriate 

treatment were eliminated from analyses, resulting in 339 total plants (162 A. fatua and 

177 B. hordeaceus). We used several response variables to assess experimentally induced 

changes in plant performance. To assess changes in allocation we used root fraction. Root 

fraction (root biomass divided by total plant biomass) quantifies the portion of the plant’s 

total biomass allocated to roots. We measured root mass and fraction because BYDV is 

known to have strong negative effects on root biomass of crop plants (Irwin and Thresh 

1990, D'Arcy and Burnett 1995) and AM fungi exist within the root portion of the host 
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plant. Total plant biomass was the sum of all above-and below-ground biomass. To 

account for the portion of aboveground tissue removed for ELISA, we used a wet/dry 

conversion factor. To calculate this conversion factor, aboveground material minus 

ELISA tissue was weighed immediately after harvest and divided by the weight of the 

same aboveground material after drying. The dry weight for tissue removed from ELISA 

was then added to complete the total biomass metric.  After removing material for 

ELISA, 91 of the 339 total plants did not have enough plant material for phosphorus 

analysis and were removed from analyses for this response variable. Thus, analyses 

considering percent leaf phosphorus as a response variable used 248 plants. 

To evaluate specific microbe responses subsets of the dataset were used for 

analyses. To assess AM fungal response, hyphal colonization can be used as a measure of 

fungal performance (Smith and Read 2008). Higher percent colonization values can also 

indicate a greater proportion of plant resource allocation to mycorrhizae (Smith et al. 

2009, Smith 2009). To assess treatment-induced changes in hyphal colonization, analyses 

were limited to only those plants that received active mycorrhizal inoculum and had 

greater than 5% colonization, resulting in 168 total plants for this response variable. In 

order to assess viral responses, we used relative viral titer. Viral titer is the concentration 

of virus present in plant tissue. ELISAs generate optical density (OD) values that can be 

used as a measure of relative viral titer (Cronin et al. 2010). While compounds in healthy 

plant sap can influence OD values, comparison of OD values from infected plants with 

OD values from healthy control plants of the same species indicated that the variation 

among treatments in OD values from infected plants was several times greater than could 

be explained by compounds in healthy sap. This indicates that most of the variation in 
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optical density of infected plants was caused by titer, and therefore our observed optical 

density data can be used to indicate viral titer. To assess treatment effects on viral titer, 

analyses were limited to plants indicated infected with BYDV based on ELISA, resulting 

in 161 total plants for this response variable.  

All data were analyzed using R (v.2.13.1, R Foundation for Statistical Computing, 

Vienna Austria) with the ‘lme4’ package  and the ‘lmer’ function (Bates and Maechler 

2009). Data from the experiment was subjected to analysis of variance using general 

linear models with appropriate error terms to a split plot design. Response variables were 

log transformed to fit model assumptions of homogeneity of variances when necessary. 

Differences within in a treatment were determined using Tukey’s HSD with the ‘glht’ 

function of the ‘multcomp’ package (Hothorn et al. 2010). When interactions included 

plant species, Tukey’s tests were performed within each species since main effects 

already indicated differences between species. Appendix A2 includes full statistical 

model tables for all response variables. 

Results 

Viral Titer 

As an indicator of relative viral titer (concentration) in leaf tissue, we analyzed 

optical density (OD) values from ELISAs. Plant association with mycorrhizal fungi 

increased the OD of virus infections under elevated CO2, but not under ambient CO2 

(AM fungi × CO2 interaction: F1,141=4.622, p=0.033; Fig. 2.1).  Phosphorus addition 

decreased OD for A. fatua, but not for B. hordeaceus (phosphorus × plant species 

interaction: F1,141=4.26, p=0.0409; Appendix A1.1).  

AM Fungal Colonization 
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Mirroring the effect of mycorrhizal fungi on relative viral titer, virus infection 

increased hyphal colonization of roots by mycorrhizal fungi 69% under elevated CO2, but 

not under ambient CO2 (CO2 × virus interaction: F1,148=11.4, p=0.0009; Fig. 2.2A).  

Looking at the same interaction another way, elevated CO2 increased hyphal colonization 

of virus-infected plants more than virus-uninfected plants.  Further, phosphorus addition 

decreased hyphal colonization 37% under elevated CO2, but not under ambient CO2 (CO2 

× phosphorus interaction: F1,148=10.5, p=0.0015; Fig. 2.2B). Phosphorus addition also 

decreased mycorrhizal colonization of virus-infected B. hordeaceus, but not A. fatua or 

virus-uninfected B. hordeaceus (virus × phosphorus × plant species interaction: 

F1,148=4.62, p=0.033; Fig. 2.3).  Finally, elevated CO2 increased hyphal colonization of 

both plant species, and more for A. fatua than B. hordeaceus (CO2 × plant species 

interaction: F1,148=13.6, p=0.0003; Appendix A1.2). 

Plant Biomass and Root Fraction  

Across all treatments and both plant species, virus infection reduced root fraction 

by 20% (F1,300=45.2, p<0.0001; Fig. 2.4A) and tended to decrease total plant biomass by 

8.6% (F1,300=2.92, p=0.088; Fig. 2.4B).  Elevated CO2 increased total plant biomass of 

non-mycorrhizal Avena fatua, but not mycorrhizal A. fatua or Bromus hordeaceus (AM 

fungi × CO2 × plant species interaction: F1,300=4.4, p=0.037, Appendix A1.3).  Across all 

treatments, B. hordeaceus individuals had 52% less total biomass (F1,300=79.1, p<0.0001) 

and 43% smaller root fraction than A. fatua ( (F1,300=126.2, p<0.0001).  

Leaf Phosphorus Concentration 

Phosphorus addition to the soil increased phosphorus concentration in leaves of 

both species, and more for A. fatua than B. hordeaceus (phosphorus × plant species 
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interaction: F1,257=61.9, p<0.0001; Appendix A1.4). Virus infection also increased leaf 

phosphorus concentration for both species, and more for A. fatua than B. hordeaceus 

(virus × plant species interaction: F1,257=5.15, p=0.0241; Fig. 2.5). Mycorrhizal fungi did 

not increase leaf phosphorus concentration (F1,257=0.21, p=0.644).  

Discussion 

Changes in abiotic resource supply have been hypothesized to alter plant 

interactions with microbes (Suding et al. 2008). Our results support this concept, showing 

that alterations in resource supply can influence performance of both pathogenic and 

mutualistic plant-associated microbes. In turn, effects on these microbes can influence 

not only their host but also the performance of each other.  

General ecological theory has predicted that host associations with mutualists may 

increase enemy populations and thus the severity of enemy damage (Bennett et al. 2006). 

The stoichiometric hypothesis for virus production (Clasen and Elser 2007) leads to a 

more specific prediction: the association of plants with arbuscular mycorrhizal fungi may 

increase the titer of virus infections, because AM fungi typically increase host 

phosphorus concentration (Smith et al. 2009).  Our experimental results partially 

supported this prediction in that virus infections of plants with AM fungi had 20% higher 

relative titers than did infections of plants without AM fungi (Fig. 2.1).  However, AM 

fungi did not significantly increase host tissue phosphorus (Table A2.5), which suggests 

that the viral response did not result from the transfer of phosphorous to the plant from 

AM fungi. This does not completely rule out a role for phosphorus because our 

phosphorus data was collected at the leaf level, rather than at the level most relevant to 

the virus, which is restricted to the phloem (Irwin and Thresh 1990, Jensen and D'Arcy 
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1995).  However, physiological mechanisms other than phosphorus transfer may be 

important. Our finding that AM fungi increased viral titer under elevated CO2, but not 

under ambient CO2 (Figure 1) suggests that the flow of carbon may also be important in 

viral production (Malmstrom and Field 1997).   

Additionally, the viral pathogen stimulated fungal performance as measured by 

hyphal colonization (Fig. 2.2A). Specifically, virus infection increased hyphal 

colonization of roots under elevated CO2. By the same token, elevated CO2 increased 

hyphal colonization of virus-infected plants more than virus-uninfected plants.  Also, 

virus infection interacted with phosphorus addition to alter fungal performance for one 

plant species. Phosphorus addition decreased fungal colonization for virus-infected B. 

hordeaceus, but not for virus-free B. hordeaceus or for A. fatua (Fig. 2.3). Together, 

these results suggest the possibility that the virus derives a fitness benefit under elevated 

CO2 by stimulating its host to invest more in a mutualism.  While the possible selective 

pressures behind this are unclear, one possible physiological mechanism involves sucrose 

conductance via phloem. Typically, B/CYDVs disrupt the flow of carbohydrates, 

including sucrose flow through the plant (Irwin and Thresh 1990, Jensen and D'Arcy 

1995, Malmstrom and Field 1997), which may interfere with or induce the signaling 

pathways for AM fungi and phosphorous transport. However, in Avena sativa grown 

under elevated CO2, BYDV had the opposite effect on nocturnal reduction of total 

soluble sugar plus starch in leaves, and in particular virus infection increased the export, 

respiration, or conversion of sucrose by 30% (Malmstrom and Field 1997).  This may 

have both provided more carbohydrate to AM fungi, and triggered the plant’s phosphorus 
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starvation response, thereby stimulating greater colonization of roots by AM fungi (Smith 

et al. 2011).    

Within host individuals, pathogen populations can be limited by nutrient supplies 

(Smith et al. 2005, Smith 2007). For example, in an algal-viral system where post-

infection viral production was reduced in low-phosphorus host cultures, presumably as a 

result of insufficient intracellular phosphorus for production of phosphorus-rich viral 

particles (Clasen and Elser 2007). The universally high phosphorus concentration of 

nucleic acids, the main component of viruses, suggests that low phosphorus concentration 

may similarly constrain production and titer of viruses infecting terrestrial plants. This 

stoichiometric hypothesis predicts that soil phosphorus amendments will increase viral 

titer in experimental plants. Effects of phosphorus amendment on the prevalence of virus 

infection in a field experiment were consistent with this hypothesis, although relative 

virus titer and leaf phosphorus concentration were not analyzed (Borer et al. 2010).  In 

the first experiment to consider the role of BYDV and leaf phosphorus concentration in 

wild grasses, we demonstrated the reverse in that soil phosphorus amendment 

significantly decreased relative viral titer for A. fatua and had no effect on titer for B. 

hordeaceus (Appendix A1.1). This result indicates that effects of phosphorous supply on 

viral titer can vary among host species, perhaps depending on their physiological uptake 

rate or allocation of phosphorus. 

In addition to altering microbe performance, changes in resources can also have 

direct effects on plant biomass and allocation. In a previous study, elevated CO2 

increased the biomass of BYDV-infected Avena sativa more than uninfected plants 

(Malmstrom and Field 1997), suggesting that elevated CO2 counterbalances the decrease 
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in plant carbon uptake caused by BYDV infection. We did not see such a 

counterbalancing effect in our experiment. This may be because we used two wild host 

species which have not been selected for agronomic yield, whereas Malmstrom and Field 

(1997) used A. sativa, an agricultural species which could react differently to changes in 

CO2 availability due to differences in evolutionary history.  

Elevated CO2 and mycorrhizal fungal colonization often jointly stimulate plant 

growth, but such responses can vary with host-fungal species identity (Johnson et al. 

2003, Klironomos et al. 2005). In our experiment, elevated CO2 increased total biomass 

of non-AM-fungal A. fatua, but not of AM-fungal A. fatua, or of B. hordeaceus 

(Appendix A3). AM fungi had no net impact on total biomass of B. hordeaceus or of A. 

fatua plants under elevated CO2, even though elevated CO2 stimulated AM fungal 

colonization of both plant species (Appendix A1.2). This result suggests that AM fungi 

did not stimulate plant biomass despite increased activity as measured by hyphal 

colonization of roots.  

Our two study plant species were similar in life history and growth form, as well 

as in serving as common hosts for mycorrhizal fungi, aphids, and viruses, yet they often 

differed in their responses to our experimental manipulations. While such differences 

may be idiosyncratic, study of a larger number of host species may reveal these to be part 

of a broader pattern. For instance, both A. fatua and B. hordeaceus fall along a 

phenotypic continuum in leaf ecophysiological traits which may influence not only the 

way they respond to biotic factors such as mycorrhizae or pathogen infection, but also to 

abiotic factors (Wright et al. 2004, Cronin et al. 2010). Further study of the combined 

effects of abiotic and microbial drivers in such a broader ecological context may be key 
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to understanding and predicting large-scale changes to ecosystems (Treseder 2004, 

Suding et al. 2008). 
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Figure 2.1. Effect of mycorrhizal colonization on viral titer. Across plant species and 
phosphorus treatment, mycorrhizal colonizaton (+AMF vs. –AMF) increased relative 
viral titer as measured by Optical Density (OD) value for plants under elevated CO2 but 
had no effect under ambient CO2. Data shown are means ± SEM; letters indicate 
significant pairwise differences between means (Tukey’s HSD; p<0.05). 
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Figure 2.2. Results for root colonization by AMF. Across plant species, virus infection 
increased root colonization by mycorrhizal fungi under elevated CO2 but not under 
ambient CO2 (A). Phosphorus addition (+P vs. –P) decreased root colonization by 
mycorrhizal fungi under elevated CO2 but not ambient CO2 (B). Data shown are means ± 
SEM; letters indicate significant pairwise differences between means within each figure 
panel (Tukey’s HSD; p<0.05). 
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Figure 2.3. The role of phosphorus, viral infection and host species for root 
colonization by AMF. Phosphorus addition (+P vs. –P) did not alter root hyphal 
colonization for (A) A. fatua or (B) virus-uninfected (–virus) B. hordeaceus but decreased 
hyphal colonization for virus-infected (+virus) B. hordeaceus.  Data shown are means ± 
SEM; letters indicate significant pairwise differences between means within each figure 
panel (Tukey’s HSD; p<0.05). 
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Figure 2.4. Plant response to virus infection. Virus infection decreased root fraction 
(A) and tended to decrease total plant biomass (B). Data shown are means ± SEM. 
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Figure 2.5. Leaf phosphorus concentration. Across mycorrhizal status, virus infection 
increased leaf phosphorus concentration, and more for A. fatua than B. hordeaceus.  Data 
shown are means ± SEM; letters indicate significant pairwise differences between means 
(Tukey’s HSD; p<0.05). 
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CHAPTER III: F UNGAL ENDOPHYTE INFECTION AND HOST CULTIVAR JOINTLY  

MODULATE HOST RESPONSE TO AN APHID -TRANSMITTED VIRAL PATHOGEN  

Abstract 

1). Despite their ubiquitous nature, interactions between multiple microorganisms 

and their effect on not only host growth but also one another’s success have received 

limited scientific attention.  In this study, we investigated how an aphid-transmitted viral 

pathogen and a mutualistic endophytic fungus altered host growth and allocation.  

2). In a greenhouse experiment, we manipulated endophyte status and virus 

infection (Barley Yellow Dwarf Virus - PAV) of two tall fescue cultivars. We assessed 

host, virus and vector responses. 

3). Endophyte infection mitigated the negative impact of the virus on root 

allocation but also allowed the virus to decrease host tillering. Both of these effects had 

either host or endophyte genotype dependent responses. Endophyte infection universally 

decreased reproduction and abundance of aphid vectors, and this did not interact with 

host plant virus infection status.  

4). These results indicate that some of the beneficial effects provided by 

endophyte infection do not arise strictly from altering host interactions with the vector 

(aphids), but also occur by changing host responses to viral infection. Furthermore, these 

results emphasize the importance of exploring multi-species microbial interactions and 

genotype controls on these interactions in order to more fully understand their role in 

community and ecosystem level dynamics. 
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Introduction 

Plant hosts are often confronted simultaneously with a diverse array of 

microorganisms, including both pathogens and mutualists (Arnold 2007, Pieterse and 

Dicke 2007, Friesen et al. 2011). The close relationships between hosts and their 

microbes are characterized by a high degree of recognition and signaling between the 

plant and the associated microbe at molecular, morphological and physiological levels 

(Harrison 2005). Furthermore, association with microbes can alter plant phenotypes by 

supplying novel nutritional and defense pathways for the plant as well as influencing 

plant biochemical pathways (Friesen et al. 2011). Such alterations in plant phenotypes 

due to association with one microbe may in turn alter plant relationships with other 

microbes. These relationships may be altered either directly via the shared host or 

indirectly via a third player such as an arthropod vector.  For example, mutualistic 

microbes can help protect plants against pathogens either by increasing plant defense 

against pathogens themselves, or by increasing plant defense against herbivores, 

including arthropods that transmit pathogens (Clay and Schardl 2002, Hartley and Gange 

2009).  Thus, a broad community context may be important for understanding at least 

some of these microbial interactions (Saunders et al. 2010). Despite this recognition, few 

studies examine the impact of interactions among multiple microorganisms on host 

growth and allocation, or the impact of different microorganisms on each other’s success. 

Here we investigate how the interaction of a foliar endophytic fungus and an arthropod-

transmitted plant virus interact with plant cultivar to influence host growth and allocation, 

and the performance of both the virus and its arthropod vector. 
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A majority of plant-infecting viruses are dependent upon arthropod vectors for 

transmission between hosts (Nault 1997, Hogenhout et al. 2008). Therefore, virus 

ecology is often dependent on the population dynamics, host preference, and movement 

of vectors (Power and Flecker 2008). Barley and cereal yellow dwarf viruses (B/CYDVs) 

are a widespread group of aphid-transmitted, generalist viral pathogens that have 

provided a model system for plant-virus-vector interactions (Gray and Gildow 2003). For 

example, consumption of B/CYDV-infected host tissue often increases aphid fecundity, 

with some variation among host, vector and virus species (Power and Gray 1995). 

Additionally, increased abundance of aphid vectors generally increases the rate at which 

B/CYDVs are transmitted to healthy plants (Burnett and Gill 1976, Jensen and D'Arcy 

1995, Power and Gray 1995). Thus, plant characteristics that alter vector population 

dynamics are likely to alter their transmission of viruses.   

Many agronomic and wild grass species host endophytic fungi in the Ascomycete 

family Clavicipitaceae. These endophytes receive nutrients, protection, reproduction and 

dissemination via seeds from the plant (Schardl et al. 2004). In return, the host receives a 

variety of services from the symbiont including increased soil nutrient uptake 

(Malinowski et al. 2000) and increased drought resistance (Arachevaleta et al. 1989, 

Malinowski and Belesky 2000).  In addition, many of these endophytes are thought to 

provide herbivore deterrence via the production in planta of several distinct classes of 

biologically active alkaloids that can reduce arthropod feeding, population size, and 

consequent damage for the host plant (Clay 1990, Schardl et al. 2004). However, benefits 

to the host provided by fungal alkaloid production can vary among herbivore species, 

host species, endophyte genotypes, and host genotype (Cheplick 1998, Faeth 2002).  
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Endophyte-produced alkaloids may influence aphid-transmitted plant pathogens because, 

among insect herbivores, aphids are some of the most negatively affected by endophyte 

infection (Hartley and Gange 2009). Endophytes commonly deter aphid consumption and 

reduce aphid fecundity (Schardl and Phillips 1997, Hartley and Gange 2009).  

For viruses transmitted by aphids and other arthropods, the arthropod deterrence 

that results from endophyte infection may in turn decrease the severity of virus infection 

for the host plant. Transmission of B/CYDVs to the plant from the aphid typically 

requires several hours of aphid feeding (Power and Gray 1995), so decreased aphid 

feeding duration as a result of endophyte infection may decrease transmission of 

B/CYDVs to the plant. Furthermore, a decreased number of feeding aphids can decrease 

the titer of resulting virus infections (Power and Gray 1995), so impacts of endophytes on 

both aphid population size and feeding duration may reduce the titer of resulting virus 

infections in endophyte-infected hosts. In turn, reduced virus titer can both decrease the 

negative impacts of infection on the host plant, and increase the amount of feeding time 

necessary for uninfected aphids to acquire the virus from the plants (Power and Gray 

1995).   

Another way in which endophytes may influence B/CYDV infections is through 

the alteration of biochemical pathways related to pathogen defense. Infection by 

endophytes may result in mismatches between plant and pathogen signaling, including 

both toxin-based defenses and recognition-based defenses (Sullivan et al. 2007). For 

example, initiation of induced defenses against plant pathogens can depend on the 

recognition of specific pathogen molecules (Voinnet 2005). If endophytes disrupt this 
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recognition pathway, they broaden the potential for mismatches and result in changes in 

pathogen protection of the host via endophyte infection.  

Within grass-fungal endophyte associations, such as that of tall fescue 

(Schedonorus phoenix = Festuca arundinacea) and Neotyphodium coenophialum, 

endophytes can produce a suite of alkaloid compounds that deters both mammalian and 

insect herbivory (Schardl et al. 2004). So called ‘common toxic’ genotypes of these 

endophytes have been demonstrated to consistently deter arthropods in agroecosystems 

(Breen 1994), but such deterrence may change with time and abiotic conditions (Hunt 

and Newman 2005, Rasmussen et al. 2007). ‘Novel’ forms of some of these endophytes 

exist and generally lack the ability to produce the mammalian active compounds but 

retain the compounds important in deterring arthropod herbivores (Malinowski and 

Belesky 2006).  It is possible that host plants infected with novel endophytes may 

respond differently to virus infection than those infected with the common toxic strain of 

the endophyte. The limited previous research suggests that novel endophyte infected 

hosts may be at a competitive disadvantage compared to common toxic endophyte 

infected individuals when exposed to biotic stresses, such as herbivory, and abiotic 

stresses, such as variation in growing conditions (Malinowski and Belesky 2006). 

Additionally, there is evidence to suggest that novel endophytes do not provide the same 

degree of protection from aphids as common toxic endophytes (Hunt and Newman 2005). 

Specifically, intrinsic rates of growth for enclosed populations of aphids were greatest for 

those aphids fed on endophyte-free plants, slower on novel endophyte-infected plants and 

slowest (or no growth at all) on the plants infected with the common toxic strain of 

endophyte (Hunt and Newman 2005). Therefore, we predict that novel endophyte 



52 

 

infection will provide less aphid deterrence, and consequently less protection for the host 

from virus infection, then common toxic endophytes.  

Much of the previous research on virus-endophyte-aphid interactions has centered 

on community-level studies. These studies have generally focused on the impacts of such 

interactions on agriculturally important host species, with conflicting results. For 

example, studies that attempted to correlate B/CYDV prevalence and the incidence of 

endophyte infection for Lolium perenne (perennial ryegrass) found no correlation (Guy 

1992), while studies considering tall fescue have found that endophyte-infected plants 

were less likely to be infected by B/CYDVs (Mahmood et al. 1993, Guy and Davis 

2002).  On the other hand, most plant populations are genetically diverse, and the benefits 

of endophyte infection can vary among host genotypes (Cheplick 1998). Yet, this 

previous research has not considered potential impacts of host genotypic differences 

within the same species. Therefore our research, which examines both host and fungal 

endophyte genotypic effects of endophyte-host-B/CYDV interactions, can serve to 

inform both future and past community level explorations of these interactions. 

Here, we present the first experiment evaluating the interaction of virus infection 

and endophyte infection as they relate to impacts on the host. Specifically, we explore 

how endophyte and host cultivar interact with virus infection to alter vector abundance, 

host biomass, allocation and tillering. Such impacts are likely to play a crucial role not 

only in agroecosystems but in natural ecosystems, where fungal endophytes and 

B/CYDV are also common (Mitchell and Power 2006).  

Materials and Methods 

Study System 
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Barley and cereal yellow dwarf viruses (B/CYDVs) are a group of aphid-

transmitted generalist viral pathogens that infect over 150 crop and noncrop grasses 

(D'Arcy 1995, Halbert and Voegtlin 1995). B/CYDV infection is systemic and localized 

to the phloem where it causes necrosis and disruption of carbohydrate translocation 

(Irwin and Thresh 1990, D'Arcy 1995). Impacts of infection include stunted plant growth, 

reduced root/shoot ratio and reduced longevity (Kolb et al. 1991, Malmstrom et al. 

2005a).  B/CYDVs are obligately transmitted by aphids, including the globally common 

aphid species Rhopalosiphum padi (L.).  

Tall fescue (Schedonorus phoenix = Lolium arundinaceum = Festuca 

arundinacea) is a cool-season grass that has been widely planted for forage in the United 

States due to its ability to tolerate high temperatures, drought conditions and grazing 

(Stuedemann and Hoveland 1988). Many of the properties that make S. phoenix attractive 

for use as a forage species can be attributed to the symbiotic fungal endophyte 

Neotyphodium coenophialum (Clay and Schardl 2002). It is estimated that between 75 

and 85% of S. phoenix in the US is infected with the common toxic form of N. 

coenophialum (Ball et al. 1993, Clay and Schardl 2002). Tall fescue provides a valuable 

model system to investigate microbe-microbe interactions because pair-wise host–fungus 

interactions and mechanisms for microbe-microbe competition have been well-described 

in this system (Saunders et al. 2010). 

Experimental design, treatments and conditions 

We used two S. phoenix cultivars, KY 31 and PDF. Experimental seed for the KY 

31 cultivar was either endophyte free (E-) or contained the common toxic strain of N. 

coenophialum (CTE+). Seed for the PDF cultivar was either endophyte free (E-), infected 
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with the common toxic strain of endophyte (CTE+), or was infected with a novel strain of 

N. coenophialum (AR 584E+). Seed from the PDF cultivar was obtained from the Noble 

Foundation in Ardmore, Oklahoma, and seed from the KY 31 cultivar was obtained from 

the University of Kentucky. Plants were germinated in experimental pots. When multiple 

germinates were observed, plants were thinned down to one plant per pot. Plants were 

watered every three days. 

The experiment was conducted in the greenhouse at the University of North 

Carolina at Chapel Hill. In each of the five host-endophyte treatments above, we 

manipulated virus infection (infected and uninfected) at the individual pot level. This was 

replicated three times per block for five blocks, yielding a total of 150 experimental 

plants. Individual plants were grown in D60 Deepots (Steuwe and Sons Inc., Oregon, 

USA). Each plant received 800 g of steam sterilized soil in a mixture of one part sandy 

loam soil with two parts of pure sand (by mass).  

To infect plants with virus we used the FA2K298 isolate of Barley yellow dwarf 

virus – PAV (hereafter referred to as BYDV for brevity).  This isolate was collected on 

June 21, 1998 from Avena sativa in Central NY State, and has previously been used in 

inoculation experiments (Power and Mitchell 2004, Hall et al. 2010).  Since collection, it 

has been maintained (approximately three transmission cycles per year) in laboratory 

plants of A. sativa cultivar Coast Black Oats.  The virus isolate has been partially 

sequenced; see GenBank accession numbers DQ285674 and DQ286379 (Hall 2006). 

Virus inoculations occurred approximately two weeks after plant germination. Uninfected 

aphids of the species R. padi were fed in petri dishes for 72 hours on infected plant tissue. 

Five infected aphids were then transferred to each experimental plant, at which time a 
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cap, constructed of clear plastic and nylon mesh, was placed on plants to prevent the 

spread of aphids. Aphids were allowed to feed on each experimental plant for 48 hours 

and then uncapped.  In order to assess vector feeding responses, the number of apterous 

(unwinged) adult aphids, alate (winged) adult aphids, and juvenile nymph aphids 

(whether apterous or alate) were counted for each plant. Plants were then sprayed with a 

horticultural oil solution (SAF-T-SIDE, ClawEl Specialty Products, Pleasant Plains, IL) 

to kill remaining aphids.  Mock-inoculated plants received the same treatment, but 

uninfected aphids were fed on uninfected tissue prior to being transferred to experimental 

plants. To test the plants for BYDV infection and to quantify relative viral titer 

(concentration), a compound indirect double-antibody sandwich Enzyme-linked 

Immunosorbent Assay (ELISA; Agdia Inc., Elkhart, IN, USA) was used on 0.1-0.3 g wet 

aboveground tissue from experimental plants (Cronin et al. 2010). Five plants that were 

inoculated with infected aphids but did not become infected with BYDV were removed 

from the analysis for a total of 145 experimental plants. 

Plants were allowed to grow for six weeks after inoculation and then harvested. 

At harvest, plants were separated into above- and below-ground portions. Soils were 

frozen and stored at -20˚C until they could be washed. The belowground fraction was 

washed to separate roots from soil.  Both above- and below-ground biomass samples 

were oven-dried at 60˚C for a minimum of 72 hours to obtain dry biomass values.  

Statistical Analysis 

We used several response variables to assess experimentally induced changes in 

plant performance. To assess changes in plant allocation, we used root fraction, root 

biomass divided by total plant biomass. BYDV is known suppress root allocation (Irwin 
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and Thresh 1990, D'Arcy and Burnett 1995); therefore, this root fraction is an important 

indicator of virus impact. Total plant biomass was the sum of all above- and below-

ground biomass. To account for the portion of above-ground tissue removed for ELISA, a 

wet/dry conversion factor was calculated based on the ratio of wet/dry biomass and 

applied to the ELISA weight. This estimated dry mass was then added to complete the 

total biomass metric.  We quantified tillering, a component of vegetative growth that can 

be sensitive to damage from natural enemies (Jewiss 1972), by counting the number of 

tillers per plant. In order to assess viral responses, we used relative viral titer. Viral titer is 

the measure of the concentration of virus present in plant tissue. ELISAs generate optical 

density values that can be used as a measure of the relative viral titer (Cronin et al. 2010). 

To assess the impacts of endophyte genotype and host cultivar on viral titer we 

considered only those plants infected with virus. 

We performed two sets of statistical analyses to answer two different sets of 

questions.  In order to assess cultivar x endophyte interactions, we excluded plants of the 

PDF cultivar infected with the novel endophyte AR 584 because there was no equivalent 

cultivar-endophyte combination for the KY 31 cultivar. For the same reason, to assess the 

role of endophyte cultivar in altering plant-virus-vector interactions, we excluded plants 

of the KY 31 cultivar and considered only the PDF cultivar. 

All data were analyzed using R (v.2.13.1, R Foundation for Statistical Computing, 

Vienna Austria) with the ‘lme4’ package and the ‘glmer’  and ‘lmer’ functions (Bates and 

Maechler 2009). Data from the experiment was subjected to analysis of variance using 

general linear models with greenhouse block as a random effect. Response variables were 

log transformed to fit model assumptions of homogeneity of variances when necessary. 
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Differences within a treatment were determined using Tukey’s HSD with the ‘glht’ 

function of the ‘multcomp’ package (Hothorn et al. 2010). Appendix B2 includes tables 

of the full statistical models for all response variables. 

Results 

Plant Biomass and Allocation  

Common toxic endophyte infection significantly decreased total plant biomass of 

the KY 31 cultivar, but tended to increase total plant biomass of the PDF cultivar 

(endophyte x cultivar: F1,105  =5.794, p=  0.018, Fig. 3.1A). Within the PDF cultivar, total 

plant biomass did not differ between plants infected with novel vs. the common toxic 

endophyte genotypes (Tukey HSD: p=0.938); however, endophyte-free plants produced 

less biomass than plants infected with the common toxic endophyte (Tukey HSD: 

p=0.043; Fig. 3.1B). Across all endophyte and host cultivar treatments, virus infection 

decreased total plant biomass by 70% (F1, 105= 15.65, p = 0.0001). Virus infection 

decreased both root (F1,105=21.1, p <.0001) and shoot biomass (F1,105=11.94, p= 0.0008), 

neither of which was significantly altered by common toxic endophyte infection alone (p 

> 0.7). However, while virus infection decreased the root fraction of endophyte-free 

plants (Tukey HSD: p=0.0097), common toxic endophyte infection greatly reduced the 

magnitude of this effect and rendered it statistically non-significant (Tukey HSD: 

p=0.3648 Fig. 3.2). Within the PDF cultivar, the fungal endophyte genotype had no 

significant effect on root fraction (F2,79 = 0.2902, p = 0.749) or interaction with the virus 

(F2,79 = 2.098, p =  0.1295). 

Tiller Number 
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Virus infection decreased the number of tillers produced per plant for common 

toxic endophyte-infected plants from the KY 31 cultivar, but not endophyte-free KY 31, 

or the PDF cultivar regardless of endophyte status (virus x cultivar x endophyte: z = 

2.329, p = 0.0198; Fig. 3.3A). Across virus treatments, infection of PDF by either the 

common toxic (z = 3.663, p = 0.0003) or the novel endophyte (z= 1.900, p = 0.0575) 

increased the number of tillers produced compared to the endophyte-free PDF plants, but 

there was no difference in tiller number between plants infected by the novel endophyte 

or the common toxic endophyte (z=-0.880, p = 0.6530, Fig. 3.3B). 

Aphid Abundance 

Across host cultivars, common toxic endophyte infection decreased the number of 

nymphs (z = -1.882, p = 0.059; Fig. 3.4A), apterous adult aphids (z = -2.162, p = 0.031; 

Fig. 3.4B) and the number of total aphids (nymphs + apterous adults + alate adults; z = -

3.068, p = 0.0022; Fig. 3.4C).  Production of aphid nymphs (juveniles) was lower for 

those aphids that fed on the PDF cultivar (z = -2.557, p = 0.0106) compared to those that 

fed on KY 31, and for those aphids that fed on virus-infected vs. virus-free tissue (z = -

2.965, p = 0.003). There were no treatment interactions that significantly influenced 

nymph abundance (p > 0.2). Within the PDF cultivar, endophyte infection and genotype 

did not influence aphid nymph abundance (p >0.9), aphid adult abundance (p > 0.7) or 

total aphid abundance (p > 0.7).     

Viral Titer 

As an indicator of relative viral titer in leaf tissue, we analyzed optical density 

(OD) values from ELISAs for virus-infected hosts only. Averaged across endophyte 

statuses, optical density values for the KY 31 cultivar were 91 percent higher than for the 
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PDF cultivar (F1,48=11.98, p = 0.0011; Fig 3.5). On average, OD values were 33% lower 

in endophyte-infected plants than in endophyte-free plants, but this was not statistically 

significant (F1,48=1.775,p = 0.1891), and there was no effect of endophyte infection on 

ODs within either the KY 31 cultivar (F1,23 = 1.549, p = 0.2259) or within the PDF 

cultivar (p > 0.30). 

Discussion 

While BYDV infection universally reduced plant biomass in our experiment, our 

results indicate that endophyte infection benefited the plant by reducing the severity of 

virus impacts on belowground plant allocation. Further, endophyte infection had impacts 

on vector abundances, although such impacts did not translate to significant impacts on 

viral titer.  Finally, virus infection, endophyte infection, and host cultivar interacted to 

control production of new tillers, a key component of growth in perennial grasses such as 

tall fescue. 

Since arthropod vectors play a pivotal role in the transmission of most plant 

viruses (Power and Flecker 2008), we predicted that the arthropod deterrence that results 

from endophyte infection (Schardl et al. 2004) would decrease the severity of virus 

infection for endophyte-infected hosts. Specifically, we predicted that endophyte 

presence would lower virus titer by decreasing aphid feeding time and production (Power 

and Gray 1995). Lower titers should then result in plants that are less severely impacted 

by virus infection than endophyte-free, viral-infected plants. In terms of total plant 

biomass, our results did not support this hypothesis, as total biomass was not influenced 

by endophyte-virus interactions. But in terms of biomass allocation, our results were 

consistent with the hypothesis because endophyte infection greatly reduced virus impacts 
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on root allocation. While infection with B/CYDVs typically decreases root allocation for 

infected hosts (Irwin and Thresh 1990), common toxic endophyte infection ameliorated 

this effect. This change in host growth may allow common toxic endophyte-infected 

hosts to survive longer and tolerate virus infection better in a field setting. 

Our results indicate that host cultivar is also important for considering virus-

endophyte interactions. Relative viral titer was much higher in the KY 31 cultivar than in 

the PDF cultivar. While endophyte infection tended to increase overall plant biomass for 

plants from the PDF cultivar, endophyte infection significantly decreased overall plant 

biomass for the more common KY 31. Furthermore, the relationship between endophyte 

infection and host cultivar in response to viral infection was important for determining 

the number of tillers produced. While virus infection decreased the number of tillers 

produced for endophyte-infected plants in the KY 31 cultivar, there was no 

corresponding effect of virus infection for endophyte-infected plants in the PDF cultivar. 

This result may reflect variation in alkaloid and metabolic profiles among different host 

genotype-endophyte combinations within the same host species (Faeth et al. 2002, 

Rasmussen et al. 2008). Differences in alkaloid profiles may explain why endophyte 

infection can increase herbivory on some host species (Faeth and Shochat 2010, Jani et 

al. 2010) while typically decreasing herbivory in other host species (Clay and Schardl 

2002, Schardl et al. 2004, Saikkonen et al. 2010). Furthermore, differences in metabolic 

profiles due to host genotype-endophyte interactions are substantial, contributing to 

differences in herbivory (Rasmussen et al. 2008), maybe even more so than alkaloid 

production (Rasmussen et al. 2009). Thus, it is possible that the alkaloid and metabolic 
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profiles of different host-genotype-endophyte combinations can have differential effects 

on the virus and/or the vector. 

The primary mechanism by which we predicted virus-endophyte interactions to 

occur is via alterations to the arthropod vector. Consumption of B/CYDV-infected host 

tissue commonly increases aphid fecundity (Jensen and D'Arcy 1995), but endophytes 

deter aphid consumption and fecundity (Schardl and Phillips 1997, Hartley and Gange 

2009). As expected, endophyte infected plants, both common toxic and novel genotypes, 

supported lesser aphid production, abundance of adult aphids and total number of aphids. 

There were also additional differences due to host cultivar in which the PDF cultivar 

decreased production of aphid nymphs compared to KY 31. Contrary to some previous 

work (Jensen and D'Arcy 1995), virus-infected plants produced fewer nymphs than virus-

free plants. Phenology of infection (particularly the degree of phloem degeneration) has 

been identified as an important driver of aphid response to plant infection (Gildow 1983, 

Power and Gray 1995). Therefore, changes in the phenology of infection due to either 

cultivar or endophyte association may be responsible for decreasing aphid abundances on 

virus-infected plants.  

A typical characteristic of the host-endophyte association is the production of 

herbivore-deterring alkaloids, which can have detrimental effects on mammals with the 

common toxic form of the endophyte (Schardl et al. 2004). It has previously been shown 

that novel endophytes can invoke different degrees of protection from herbivores and 

environmental stresses compared to the common toxic strain (Hunt and Newman 2005, 

Malinowski and Belesky 2006). In our study, novel endophytes and common toxic 

endophytes did not invoke different host responses to viral infection or differences in 
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aphid reproduction. Within the PDF cultivar, we saw no differences in nymph, adult or 

total aphid abundance due to the presence of the novel endophyte compared to the 

common toxic endophyte infected and endophyte-free plants. Additionally, the common 

and novel endophytes increased overall biomass and tiller production similarly compared 

to endophyte free plants. . This indicates that in our study, the novel endophyte AR 584 

provided the same degree of benefit in terms of pathogen protection from B/CYDVs as 

the common toxic endophyte for this host cultivar. Furthermore, there were no significant 

interactions between virus infection and endophyte genotype for overall plant biomass, 

root fraction or tiller production. Thus, the different alkaloid profiles produced by these 

two endophytes do not appear to be important in altering virus interactions, suggesting 

that alkaloids are not the mechanism for these interactions. 

In conclusion, these results indicate that much of the benefit endophyte infection 

provides plants exposed to insect-transmitted virus infection arises not from decreasing 

vector fecundity and abundance, but rather from altered host biomass allocation in 

response to virus infection. Thus our work provides a largely unconsidered, but perhaps 

general, mechanism by which one microbe can alter plant phenotypic response to other 

microbes, and also illustrates the complex genotype interactions between the plant host 

and fungal endophyte that challenges our understanding of this system (Friesen et al. 

2011). 
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Figure 3.1. Biomass response to endophyte infection. Common toxic endophyte 
infection decreased total plant biomass for the KY 31 cultivar but did not have a 
significant effect on the PDF cultivar (A).  Within the PDF cultivar, infection with the 
novel endophyte increased total biomass in comparison to endophyte-free plants (B). 
Data shown are means ± SEM; letters indicate significant pairwise differences between 
means within each panel (Tukey’s HSD; p<0.05). 
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Figure 3.2. Root Fraction by virus and endophyte infection. Across host cultivars and 
considering only the common toxic endophyte genotype, virus infection decreased root 
fraction of endophyte-free plants but not of endophyte-infected plants. Data shown are 
means ± SEM; letters indicate significant pairwise differences between means (Tukey’s 
HSD; p<0.05). 
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Figure 3.3. Average tiller number by endophyte and virus infection status. 
Considering only the common toxic endophyte, virus infection significantly decreased 
tiller production for endophyte-infected plants in the KY 31 cultivar only (A). Across 
virus infection status, infection with the novel endophyte or the common toxic endophyte 
increased tiller production for the PDF cultivar (B). Data shown are means ± SEM; letters 
indicate significant pairwise differences between means (Tukey’s HSD; p<0.05). 

 

  



67 

 

Figure 3.4. Viral titer by genotype. Averaged across host cultivar, common toxic 
endophyte infection (‘y’) decreased the abundance of aphid nymphs (A), abundance of 
apterous adult aphids (B), and total abundance of aphids (C).  Data shown are means ± 
SEM. 
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Figure 3.5. Aphid response to endophyte infection. The KY 31 cultivar had 
significantly higher relative viral titer as measured by Optical Density (OD) value then 
the PDF cultivar. Data shown are means ± SEM. 
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CHAPTER IV: I MPACTS OF CLIMATE DRIVERS , HOST SPECIES IDENTITY , AND FUNGAL 

ENDOPHYTE INFECTION ON THE PREVALENCE OF THREE VIRU S SPECIES IN A GRASSLAND 

ECOSYSTEM 
 

Abstract 

Under climate change, alterations to precipitation and temperature regimes are 

expected to impact ecosystem structure and function. These impacts may be determined 

by feedbacks between plants and associated microbes, including both endophytic fungal 

symbionts and viral pathogens. To test the role of biotic and abiotic factors in shaping 

virus prevalence in a managed grassland, we experimentally manipulated air temperature 

and precipitation, and after one growing season, evaluated four co-occurring grass 

species for infection by three species of barley and cereal yellow dwarf viruses 

(B/CYDVs).  For one dominant grass species, tall fescue, we also manipulated fungal 

endophyte infection status, and tracked changes in viral prevalence over an additional 

two growing seasons for a total of three growing seasons. Plant species identity played a 

strong role in determining virus prevalence; Kentucky bluegrass and dallisgrass were 

more frequently infected than either tall fescue (endophyte-infected or endophyte-free) or 

Indian goosegrass. Both elevated temperature and elevated precipitation also had strong 

impacts on virus prevalence, but these effects varied among years and interacted with 

fungal endophyte symbiosis for tall fescue.  In plots receiving additional precipitation in 

2011, endophyte infection increased virus prevalence in tall fescue.  Also in 2011, but 
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regardless of endophyte infection, elevated heat by itself increased virus prevalence for 

tall fescue. This effect of heat on virus prevalence may have been driven by vector 

population size because the viruses are obligately aphid-transmitted, and aphids were 

found more frequently in heated plots. Overall, our investigation suggests that both biotic 

and abiotic factors have important roles in disease dynamics in managed grasslands. 

Impacts of climate change on virus prevalence in grasslands may depend on the 

responses of aphid vectors, and the presence of endophytic fungal symbionts. 

Introduction 

Plants often interact with a diverse array of microorganisms, including enemies 

and mutualists (Gehring and Bennett 2009, Bennett 2010). For example, plant pathogens 

and mutualistic fungi are two classes of microorganisms that directly impact the plant and 

may in turn alter each other’s success (Malinowski and Belesky 2006, Saikkonen et al. 

2006). Furthermore, specific attributes of each species of microorganism may make them 

more or less likely to interact either directly or indirectly via their shared host or a third 

player such as an arthropod vector (Mitchell and Power 2006).  Thus, a broad community 

context may be important for understanding microbial dynamics and their effects on 

community and ecosystem dynamics.  

Here we consider the role of biotic and abiotic factors in shaping disease 

dynamics in a managed grassland. Grasslands cover just under half of the earth’s land 

surface and provide multiple ecosystem services including: livestock production, 

maintenance of soil cover and biodiversity, as well as sequestration and storage of 

atmospheric CO2 (Chakraborty 2001). Managed grasslands are often composed of a 

diverse group of forage species, including cool- and warm-season physiologies, sod-
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forming or bunch growth forms, and grass, forb or legume functional groups (Burton and 

Hanna 1995). Such diverse species typically vary in their susceptibility and capacity to 

transmit generalist pathogens, which may lead to differences in the prevalence of virus 

infections among species and communities over space and time(Alexander 2010).  

In addition to species identity and community composition, other biotic factors 

influencing may determine disease dynamics in managed grasslands. For example, fungal 

endophytes form symbiotic relationships with many plants. Fungal endophytes are 

estimated to occur in 20-30% of grass species (Leuchtmann 1992), across diverse 

ecological habitats (Vandenkoornhuyse et al. 2002), and on all continents with the 

exception of Antarctica (White 1994, Clay 1998).  While the interaction between fungal 

endophytes and wild grass hosts in natural ecosystems can vary from mutualism to 

parasitism (Faeth and Fagan 2002, Saikkonen et al. 2010), the interactions of two 

important agricultural forage grasses, perennial rye grass (Lolium perenne) and tall fescue 

(Schedonorus phoenix = Lolium arundinaceum = Festuca arundinacea), with their 

Clavicipitaceous fungal endophytes are predominantly mutualistic (Clay and Schardl 

2002). Specifically, endophytes enhance nutrient uptake (Malinowski et al. 2000, 

Newman 2003, Franzluebbers and Stuedemann 2005), increase drought tolerance 

(Arachevaleta et al. 1989, Malinowski and Belesky 2000), and provide protection from 

plant enemies including herbivores and some pathogens (Mahmood et al. 1993, Clay and 

Schardl 2002). These characteristics have led to widespread use of endophyte-infected 

plants in managed grasslands (Easton et al. 1994). Among herbivores, endophytes are 

particularly effective against aphids, reducing their feeding and abundance (Hartley and 

Gange 2009).  Aphid population dynamics, host preference, and movement are pivotal to 



72 

 

the ecology of plant viruses (Power 2008). Arthropod vectors, particularly sucking 

insects like aphids, represent a majority of virus vectors and therefore their movement 

and host preference can control disease dynamics (Nault 1997, Hogenhout et al. 2008). 

Endophyte infection has negative effects on aphid preference and often decreases aphid 

fecundity (Hartley and Gange 2009), which may decrease pathogen transmission 

(Lehtonen et al. 2006). As such, endophytes are expected to play a key role in disease 

dynamics for managed grasslands. 

In addition to these biotic factors, climate variability and change are likely to also 

influence disease dynamics. Changes in temperature and precipitation are expected to 

have impacts not only on plants (Luo et al. 2001, Knapp et al. 2002) but on plant diseases 

as well (Burdon et al. 2006). Climate change projections for the next 50-100 years in the 

southeastern U.S., and some other regions of the earth, predict that average annual 

rainfall may change by 10-30% and mean annual temperature will increase 

approximately 2ºC (IPCC 2007). Furthermore, minimum nighttime temperatures are 

projected to increase more than daytime maximum temperatures, and winter temperatures 

are projected to increase more than summer temperatures (Meehl et al. 2000, IPCC 

2007). The seasonal nature of such changes in climate is likely to have serious direct 

effects for plant pathogens. As much as 99% of a pathogen population may be killed 

annually over the winter (Burdon and Elmqvist 1996); therefore, an increase in disease 

severity is expected as overwintering success of the pathogen increases with elevated 

winter temperatures (Harvell et al. 2002, Fabiszewski et al. 2010). Additionally, observed 

changes in vector overwintering and oversummering suggest that vector-transmitted 

diseases are also likely to have strong responses to changes in temperature (Bale et al. 
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2002, Newman 2003, Fabre et al. 2005, Garrett et al. 2006). Specifically, we expect 

increases in temperature to increase vector abundance, which will lead to an increase in 

the prevalence of vectored pathogens within the plant community (Fabre et al. 2005). 

Climate change and endophyte infection may interact to control disease dynamics 

in managed grasslands. While there is still some variation in predictions, drought 

conditions are expected to change across regional scales (IPCC 2007). Under drought 

conditions, endophyte-infected tall fescue individuals generally replace endophyte-free 

individuals (Arachevaleta et al. 1989, Clay and Schardl 2002), suggesting that endophyte 

infection enhances drought tolerance. While the physiological mechanisms remain 

unclear, it has been suggested that endophytes alter the plant in several ways that may 

contribute to drought protection including: promoting deeper and denser roots, altering 

stomatal behavior, increased water tissue storage and  enhanced osmotic adjustment in 

the meristem (Elmi and West 1995, Malinowski and Belesky 2000). Furthermore, 

endophytes may also increase alkaloid production when grown in drought conditions 

(Arachevaleta et al. 1989) and this increase in alkaloid concentration may act as osmotic 

protection for the plant (Schardl et al. 2004). This suggests that under drier conditions, 

such as frequently accompany higher temperatures (Arachevaleta et al. 1989), endophyte-

infected plants may be more succulent but contain higher concentrations of anti-herbivore 

alkaloids than endophyte-free plants.  It is currently unknown what the combined effect 

of these responses would be on arthropod herbivores and the pathogens they transmit.  

Decreased aphid abundance and virus prevalence on endophyte-infected plants could 

result from increased temperature if the effects of increased alkaloid production outweigh 

those of more succulent tissue on aphid preference and performance.  Conversely, if the 
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effects of more succulent tissue outweigh those of increased alkaloid production, then 

increased temperature may increase aphid abundance and virus prevalence on endophyte-

infected plants.   

Here we present an experimental test of climate change drivers interacting with 

endophyte infection status to shape disease dynamics of a group of aphid-transmitted 

viruses in a managed grassland ecosystem. We manipulated temperature and precipitation 

regimes and tested the impacts on aphid abundances and the prevalence of virus 

infections. Additionally, we tested the roles that host identity and fungal endophytes play 

in disease dynamics. 

Materials and Methods 

Study System 

Barley and cereal yellow dwarf viruses (B/CYDVs) are a group of viral pathogens 

that infect only grasses (Poaceae), including over 150 crop and noncrop species (D'Arcy 

1995, Halbert and Voegtlin 1995). Infection is systemic through the phloem, where it 

causes necrosis and disruption of carbohydrate translocation (Irwin and Thresh 1990, 

D'Arcy 1995). Infection by B/CYDVs stunts plant growth (Malmstrom et al. 2005a), 

reduces root/shoot ratio (Kolb et al. 1991) and reduces longevity (D'Arcy and Burnett 

1995).  B/CYDVs are obligately transmitted by aphids.  

Tall Fescue (S. phoenix) is a cool season grass that was introduced to North 

America and has been widely planted  as a forage species due to its ability to tolerate 

high temperatures, drought conditions and grazing (Stuedemann and Hoveland 1988). 

Many of the properties that make S. phoenix attractive for use as a forage species can be 

attributed to its ability to form a symbiosis with the fungal endophyte Neotyphodium 
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coenophialum (Clay and Schardl 2002). It is estimated that 75-85% of S. phoenix in the 

U.S. is infected with N. coenophialum (Ball et al. 1993, Clay and Schardl 2002). This 

plant-fungus association provides a valuable model system for investigations of host-

microbe-microbe interactions because they can build on previous studies of pair-wise 

host–fungus interactions and mechanisms for microbe-microbe competition (Saunders et 

al. 2010). 

Field Data 

This research project is located in a managed grassland or pasture  at the 

University of Kentucky’s Spindletop Agricultural Farm near Lexington, KY (Brosi 

2011). Heat and precipitation were factorially manipulated among 20 plots divided into 

five blocks. All climate manipulations were based on the long-term average climate 

conditions of the site and future projections for the region. Plots designated as 

+precipitation received a 30% increase in long-term mean annual precipitation applied 

only during the growing season. Using a hexagonal array of infrared heaters mounted to 

posts and oriented toward the center of the hexagonal plots (two heaters per side), 

temperature was increased 3ºC over that of adjacent ambient plots, day and night, year-

round for those plots designated as + heat. Treatments began in May 2009. In the spring 

of 2008, plots were seeded with a mixture of forage grass species including: tall fescue 

(S. phoenix) from the Kentucky 31 genotype planted at 50:50 common toxic endophyte-

infected:endophyte-free, Bermuda grass (Cynodon dactylon) and Kentucky bluegrass 

(Poa pratensis). Naturally occurring crabgrass was also present.  

Three times throughout the growing season, plots were mowed to remove 

aboveground biomass, simulating haying events. The diversity and richness of all plant 
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species were quantified at each mowing.  From these initial species lists, four host species 

were identified for testing for B/CYDV infection because of their even distribution in all 

treatment plots. Samples of P. pratensis, Eleusine indica (Indian goosegrass) and 

Paspalum dilatatum (dallisgrass) were collected at the final mowing of the year on 

September 29, 2009. Individual leaves were harvested from random plants across the 

plots at 8cm from the soil surface. Samples were kept on ice in coolers and transported 

back to the lab. Virus infection status for S. phoenix (endophyte-infected and endophyte-

free individuals) was assessed for three consecutive years using samples collected at the 

final mowing of each year (29 September 2009, 7 October 2010, 12 October 2011).   

Presence of the endophyte was determined using a monoclonal antibody test specific for 

N. coenophialum (Hiatt et al. 1999) in which plant material was assessed by blotting plant 

material onto Trans-Blot Transfer Medium pure nitrocellulose membranes (Bio-Rad 

Laboratories, Hercules, CA). While the tall fescue material was being tested for 

endophyte infection, the remaining plant material was stored in a -20ºC freezer at the 

McCulley Lab at the University of Kentucky. After endophyte infection status of 

individual tillers was determined, remaining plant material was sent overnight to the 

Mitchell Lab at the University of North Carolina at Chapel Hill. A compound indirect 

double-antibody sandwich Enzyme-linked Immunosorbent Assay (ELISA; Agdia Inc., 

Elkhart, IN, USA) was used on 0.1-0.3 g wet aboveground tissue to assay samples for the 

B/CYDV species BYDV-PAV, BYDV-MAV, and CYDV-RPV. Infection with one or 

more of these species indicates a positive infection status for the B/CYDV group. 

Vector response to the climate treatments was assessed using field aphid surveys 

that were conducted in May 2010. Approximately twenty randomly chosen endophyte-
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infected S. phoenix plants, and twenty randomly chosen endophyte-free S. phoenix and P. 

pratensis plants per experimental unit were searched for aphids (Appendix C2.1). Sample 

sizes for S. phoenix are slightly unbalanced because frequencies of endophyte-infected 

plants changed between 2009 and 2010, likely as a result of experimental manipulations 

(McCulley, personal observation).  

Data Analysis 

All data were analyzed using WinBUGS (Lunn et al. 2000) and R (v.2.13.1, R 

Foundation for Statistical Computing, Vienna Austria). The ’bugs’ function within the 

‘arm’ package was used to link the two programs (Gelman et al. 2012). Because 

treatments were applied to individual hexagons rather than individual plants, we used 

hexagon as a random effect in a mixed effects model to examine treatment effects on 

viral prevalence.  

Using Bayesian methods, we fit a logistic regression with additive effects for 

treatment and species using a product Bernoulli (individual binary) model. The 

probability model for the data specifies a different probability model for each hexagonal 

experimental unit and has a binomial distribution.  In the BUGS model the fixed effects 

portion of the model was: 

�������� 	  �� 
  ����,� 
  … . . ����,� 

where x variables are indicator variables for plot-level characteristics for all q regression 

coefficients. To specify the parameter portion of the model, the regression coefficients 

were given a normal prior, β~N(0, 1.0e-5). In order to get the Markov chains tracking in 

the right area of the parameter space, we started with an informative prior (β~N(0, 1.0e-

3)) for the intercept and intercept variance (for the first 1000 iterations). We then 
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switched to a BUGS model with uninformative priors, discarded the chains up until that 

point except for the last values which were used as starting values for the new chains, and 

then continued to fit the model. 

We performed two sets of analyses in order to assess host species-level impacts 

on virus prevalence and long-term endophyte effects in tall fescue. In order to quantify 

host species-level impacts on virus prevalence, we used data collected in 2009 on four 

host species (dallisgrass, Indian goosegrass, Kentucky bluegrasss and endophyte-infected 

and endophyte-free tall fescue). To assess host-level impacts on virus prevalence, we fit 

all possible treatment and species combinations for dummy variables representing effects 

of ‘+Heat’, ‘+Precipitation’, ‘Dallisgrass’, ’Goosegrass’, ‘Bluegrass’, and ‘E+Fescue’ 

(common toxic endophyte-infected vs. endophyte-free S. phoenix) using the samples 

collected in September 2009. To examine model fit, we generated 100,000 replicates of 

posterior predictive data for all data models. Posterior distributions were summarized by 

95% Bayesian credible intervals (i.e. BCI; the 0.025 and 0.975 quantiles of the posterior 

distribution). Treatment combinations from the best model were then used to examine the 

probability of infection with individual viral species BYDV-PAV, BYDV-MAV and 

CYDV-RPV as well as the probability of co-infection with BYDV-PAV + BYDV-MAV, 

BYDV-PAV+CYDV-RPV and BYDV-MAV+CYDV-RPV. We focus on results with 

strong support, specifically those for which the 95% Bayesian credible intervals did not 

overlap zero. 

In order to quantify long term impacts on virus prevalence we used data collected 

on endophyte-infected and endophyte-free tall fescue over a three year period (2009-

2011). To assess long term impacts of the treatments on virus prevalence, we fit full 
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models using dummy variables for all possible treatments, endophyte status (free vs. 

infected) and sampling date (year) and their combinations. We tested effect on the 

probability of infection of tall fescue with one or more viral species (B/CYDV) as well as 

infection with individual viral species (BYDV-PAV, BYDV-MAV, CYDV-RPV). 

However, the relatively low prevalence of co-infection in tall fescue prevented us from 

testing effects on the probability of co-infection by multiple viral species. 

The likelihood of aphid presence was also assessed. We fit all possible treatment 

and species combinations for dummy variables representing effects of ‘+Heat’, 

‘+Precipitation’, ‘Bluegrass’, and ‘PosFescue’ (endophyte-infected S. phoenix) using the 

abundance data collected in May 2010. We examined model fits for aphid models in the 

same we examined model fits for virus prevalence models. We generated 100,000 

replicates of posterior predictive data for all data models and posterior distributions were 

summarized by 95% Bayesian credible intervals. 

For both the aphid data and the 2009 virus prevalence data, we fit a global model 

and a set of reduced models that embodied hypotheses about the effects of biotic and 

abiotic variables, then selected a best model for further analysis and inference based on 

deviance information criterion (DIC) statistics (Spiegelhalter et al. 2002). There were two 

models of 2009 overall virus prevalence with strong support: one that included dummy 

variables for all species, the heat treatment, the precipitation treatment and the interaction 

between precipitation and heat (DIC = 306.6; Appendix C2.2, Model 5), and another that 

was identical except for lacking the interaction between precipitation and heat 

(DIC=304.8; Appendix C2.2, Model 6). Because the primary goal of the experiment was 

to test the interaction between precipitation and heat, we proceeded with analyses using 
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the model that included the interaction. To allow direct comparison to effects on overall 

virus prevalence, we used models with the same explanatory variables to analyze effects 

on each virus species and on coinfections. While several models of aphid abundance had 

similarly strong support based on DIC (Appendix C2.2), Model 7 (including the factorial 

effects of temperature and precipitation, but no effect of endophyte) was the only model 

in which all of the effective sample sizes were considered adequate (equal to 1000), so 

we used this model as the best model. The 2009-2011 tall fescue data was fit with a 

global model. 

Results 

Effects of Host Species Identity on Virus Prevalence:  

Host species differed strongly in their likelihood of infection by viruses at the 

virus group, individual virus species and co-infection levels (Table 4.1; Fig. 4.1). Across 

climate change treatments, the mean prevalence of virus infection was 26% for Kentucky 

bluegrass, 24% for dallisgrass, 16% for Indian goosegrass, 11% for endophyte-free 

fescue and 13% for endophyte-infected fescue (Appendix C1.1). Relative to endophyte-

free fescue, dallisgrass was more likely to be infected by any virus, by BYDV-MAV, 

CYDV-RPV, and all three pairwise co-infections (Table 4.1).  Kentucky bluegrass was 

more likely to be infected by any virus, by BYDV-MAV, CYDV-RPV, and by co-

infections including CYDV-RPV (BYDV-PAV + CYDV-RPV and BYDV-MAV + 

CYDV-RPV; Table 4.1). Goosegrass was more likely to be infected by BYDV-MAV and 

by co-infections including BYDV-MAV (BYDV-MAV+BYDV-PAV and BYDV-MAV 

+ BYDV-RPV; Table 4.1). Host species did not vary in likelihood of infection by 

BYDV-PAV, even though it was the most prevalent virus overall (Appendix C1.2). 



81 

 

Finally, across all hosts sampled in 2009, while neither the heat nor precipitation 

treatment by itself altered virus prevalence, the combination of elevated heat and 

precipitation decreased the likelihood of co-infection by BYDV-PAV and BYDV-MAV 

(Table 4.1).   

Effects of Endophyte Infection on Virus Prevalence in Tall Fescue:  

Increased heat and precipitation began to impact the prevalence of B/CYDV 

infection in tall fescue after three years of the experimental treatments, in 2011. In that 

year, elevated heat by itself increased the likelihood of virus infection in both endophyte-

free and endophyte-infected tall fescue (��2011H = 2.173, BIC = 0.087 to 4.59; Table 4.2).  

In the same year, in communities that received ambient heat and increased precipitation, 

endophyte infection increased virus prevalence (��2011PE+ = 14.6, BIC = 1.24 to 35.1; 

Table 4.2).     

Effects of Climate Drivers on Aphid Abundances:  

Increased temperature by itself increased the likelihood of aphids being present 

(��Heat = 1.178, BIC = 0.031 to 2.436), while increased precipitation by itself (��Precipitation = 

-0.433, BIC = -2.039 to 1.249), and the combination of increased precipitation and heat 

(��PrecipitationHeat = -0.546, BIC = -2.572 to 1.301), did not influence the likelihood of aphids 

being present in a plot (Fig. 4.2; Appendix C2.1). 

Discussion 

Here we explored how biotic and abiotic factors impact disease dynamics in a 

managed grassland. We found strong effects of host species on the prevalence of three 

aphid-transmitted viruses. By the end of the experiment, elevated heat increased the 

prevalence of both aphids feeding on, and viruses infecting, the dominant grass species, 
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tall fescue. Also at the end of the experiment, precipitation regime modulated an effect of 

endophyte infection on virus prevalence in tall fescue, demonstrating the potential for 

interactions between biotic and abiotic factors.   

Our results suggest that Kentucky bluegrass and dallisgrass may be important 

players for disease dynamics in managed grasslands. The odds of infection with one or 

more B/CYDV viral species were higher for Kentucky bluegrass and dallisgrass 

compared to tall fescue (endophyte-infected or endophyte-free) or Indian goosegrass. 

Furthermore, Kentucky bluegrass and dallisgrass were more likely to be infected with the 

less common viral species CYDV-RPV and BYDV-MAV, and (along with Indian 

goosegrass), more likely to be coinfected by CYDV-RPV and BYDV-MAV.  Such 

differences in infection prevalence among host species could be a result of species 

specific characteristics which alter a host’s ability to support vector populations, transmit 

infection to new hosts, and/or ability to become infected (LoGiudice et al. 2003, Borer et 

al. 2007, Cronin et al. 2010). These differences among host species can lead to effects of 

host community composition on virus prevalence (Borer et al. 2010, Delmiglio et al. 

2010), suggesting that communities that include Kentucky bluegrass and dallisgrass will 

support greater virus prevalence.  This effect could be magnified if the presence of these 

species increases virus transmission to other host species (Power and Mitchell 2004). 

Ultimately, such pathogen spillover could result in virus-mediated apparent competition, 

which may facilitate invasion of native grasslands (Malmstrom et al. 2005b, Malmstrom 

et al. 2007).  Moreover, when host species vary in the degree to which they support 

pathogens, then effects of climate change on the relative abundance of host species may 
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have important consequences on pathogen transmission and diversity (Harvell et al. 2002, 

Fabiszewski et al. 2010). 

Abiotic variables can also have a strong impact on viral disease dynamics in 

grasslands (Seabloom et al. 2009, Power et al. 2011). In a large-scale survey of the 

prevalence of B/CYDVs along a 2000-km latitudinal gradient in the western United 

States and Canada, prevalence declined with increasing precipitation (Seabloom et al. 

2010). Our experimental manipulations of precipitation partially support this finding, as 

elevated precipitation had an overall negative effect on virus prevalence in tall fescue that 

became significant in the final year of the experimental treatments, except for endophyte-

infected individuals. Plant mutualists such as foliar endophytes often positively affect 

plants when they are subjected to drought stress (Arachevaleta et al. 1989, Compant et al. 

2010), but the response of such relationships to additional precipitation is not as well 

established. In a different study, elevated precipitation and endophyte infection interacted 

to increase concentrations of cellulose and hemicellulose in tall fescue (Brosi et al. 2011), 

which should decrease palatability to herbivores and possibly alter disease resistance 

(Vorwerk et al. 2004). Similarly, aphids tend to prefer plants with lower leaf percent 

carbon (Borer et al. 2009). Such changes in tissue chemistry may explain the increase in 

virus prevalence in endophyte-infected plants under increased precipitation.  These 

results suggest endophyte infection may be an important player in determining disease 

dynamics under any future increases in precipitation.   

Increased temperature may also alter disease dynamics in managed ecosystems. 

While some pathogens may be limited by increased temperature, others may benefit from 

decreased overwintering time or changes in vector behavior (Burdon et al. 2006, Garrett 
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et al. 2006, Fabiszewski et al. 2010). In our study, elevated temperature increased aphid 

presence, which translated to increased viral prevalence in the final year of the 

experiment, 2011. This supports previous field work with the aphid species R. padi that 

indicated increased temperatures in the spring and summer promotes the production of 

viruliferous aphids in the fall (Fabre et al. 2005). Theoretical results examining aphid 

response to increased temperature indicate increases in aphid presence and abundance 

due to increased temperature, but they also indicate that these populations exhibit 

complex dynamics that make them unstable over time (Zhou et al. 1997).  This instability 

in aphid dynamics over time may lead to instability in disease dynamics over time. 

Surprisingly we did not see an interaction between endophyte infection and virus 

prevalence. This may be because the proportion of endophyte infected tall fescue 

decreased over time (Jim Nelson, personal communication) or because the effect of 

precipitation interacted with endophyte infection more strongly.  

 Changes in climate will not only result in areas that are hotter or wetter, but also 

areas with simultaneous increases in both temperature and precipitation (IPCC 2007). 

Predictions of viral disease dynamics for such situations are unclear as previous 

experimental manipulations often neglected this key component (Jones 2009). Here, the 

interaction of increasing temperature and precipitation did not change the odds of being 

infected with B/CYDV, perhaps simplifying predictions.  

Overall, our field experiment revealed effects of abiotic factors, biotic factors and 

their interaction on disease dynamics in a managed ecosystem. The results suggest that 

impacts of climate change on virus prevalence in grasslands may depend on the responses 

of host species identity, aphid vectors, and the presence of endophytic fungal symbionts. 
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This complexity emphasizes the importance of considering multiple factors in the 

response of long-term disease dynamics to changes in temperature and precipitation 

regimes (Burdon et al. 2006, Alexander 2010). 
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Figure 4.1. Bayesian credible intervals for the log odd ratio of virus infection. 
Bayesian credible intervals for the log odds ratio of virus infection in three host species 
and endophyte-infected tall fescue, relative to endophyte-free tall fescue (the 
denominator of each odds ratio) from a Markov chain Monte Carlo simulation describing 
B/CYDV infection. The likelihood of virus infection was greater for Kentucky bluegrass 
and dallisgrass. The red-dotted line indicates equal odds of infection, and the red ‘x’ 
indicates observed means using a frequentist model. 
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Figure 4.2. Bayesian credible intervals for the log odds ratio of aphid presence. 
Bayesian credible intervals for the effects of elevated heat (‘H’), elevated precipitation 
(‘P’), and elevated heat and precipitation (‘HP’) on aphid presence, relative to ambient 
heat and precipitation. Increased heat by itself increased the log odds ratio of aphids 
being present. The red-dotted line indicates equal odds of infection, and the red ‘x’ 
indicates observed means using a frequentist model. 
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Table 4.1. Parameter estimates from the binomial model describing virus infection in 2009.  Parameter estimates 
(marginal posterior means) from the binomial model for the effects of increased Heat, increased Precipitation (‘Precip’), their 
interaction, and host species on the log odds ratio of virus infection, relative to endophyte-free Schedonorus phoenix or to 
ambient heat and precipitation. Heated plots received an increase in temperature of 3ºC, day and night, year-round. 
Precipitation (‘Precip’) plots received a 30% increase in long-term mean annual precipitation applied during the growing 
season. Plots designated as ‘Heat x Precip’ received both treatments. Species include “Bluegrass” (Poa pratensis), 
“Dallisgrass” (Paspalum dilatatum), “Goosegrass” (Eleusine indica) and “E+ Fescue” (endophyte-infected Schedonorus 
phoenix).  95% Bayesian credible intervals (i.e. the 0.025 and 0.975 quantiles of the posterior distribution) are shown in 
parentheses below each parameter estimate; bold font indicates those that do not cover zero. 

 
 

Heat Precip Heat x  
Precip 

Bluegrass Dallisgrass Goosegrass E+ Fescue 

B/CYDVs -0.2 -0.4 0.2 1.0 0.9 0.4 0.2 
(-0.7 to 0.3) (-0.9 to 0.1) (-0.6 to 1.0) (0.5 to 1.6) (0.3 to 1.5) (-0.2 to 0.9) (-0.2 to 0.6) 

Individual Virus Species 
PAV -0.3 -0.3 0.0 -0.1 0.3 -0.2 0.3 

(-1.0 to 0.4) (-1.0 to 0.4) (-0.9 to 1.0) (-0.9 to 0.7) (-0.5 to 1.0) (-0.9 to 0.5) (-0.2 to 0.7) 
MAV  -0.1 0.0 -0.3 5.3 5.5 5.3 1.6 

(-1.1 to 0.9) (-1.0 to 1.0) (-1.7 to 1.0) (3.1 to 8.9) (3.3 to 9.1) (3.1 to 8.8) (-1.1 to 5.2) 
RPV -0.2 -0.7 0.6 1.0 1.9 0.3 0.1 

(-1.0 to 0.6) (-1.6 to 0.1) (-0.7 to 1.8) (0.1 to 1.8) (1.1 to 2.7) (-0.7 to 1.2) (-0.7 to 0.8) 
Co-Infections 
PAV+RPV  -1.4 -0.3 1.3 -24.1 3.3 1.0 0.7 

(-3.7 to 0.5) (-2.0 to 1.0) (-1.3 to 4.1) (-67.7 to -0.2) (2.0 to 5.1) (-1.2 to 3.1) (-0.9 to 2.6) 
PAV+MAV  -1.1 -0.4 -25.7 -23.5 4.8 4.2 1.7 

(-2.9 to 0.4) (-1.8 to 1.0) (-71.2 to -1.4) (-67.8 to 1.5) (2.6 to 7.9) (2.0 to 7.5) (-1.0 to 4.9) 
MAV+RPV  0.0 0.0 -0.8 3.8 4.9 3.7 0.5 

(-1.7 to 1.5) (-1.5 to 1.5) (-3.5 to 1.6) (1.5 to 7.0) (2.8 to 7.8) (1.5 to 6.8) (-3.2 to 4.1) 
  



89 

 

Table 4.2. Parameter estimates from the binomial model describing Schedonorus 
phoenix virus infection 2009-2011. Parameter estimates (marginal posterior means) 
from the binomial model for the effects of heat (‘H’), precipitation (‘P’), year, and 
endophyte infection (‘E+’) on the log odds ratio of virus infection, relative to endophyte-
free Schedonorus phoenix or to ambient heat and precipitation or to 2009. Parameter 
estimates and 95% BCIs are shown for each treatment combination; bold font indicates 
those that do not cover zero. 

Treatment Parameter Estimate BCI 
P -0.302 (-1.24 to 0.624) 
H -1.08 (-2.11 to -0.096) 
E+ 0.026 (-0.75 to 0.769) 
2010 0.15 (-0.671 to 0.966) 
2011 -0.489 (-2.50 to 1.04) 
HP 0.857 (-0.558 to 2.33) 
P E+ 0.061 (-1.05 to 1.18) 
H E+ 0.731 (-0.424 to 1.96) 
2010P -0.132 (-1.46 to 1.15) 
2011P -13.2 (-33.5 to -0.549) 
2010H 0.813 (-0.428 to 2.16) 
2011H 2.173 (0.087 to 4.59) 
2010 E+ -0.053 (-1.27 to 1.13) 
2011 E+ -1.1 (-4.62 to 1.72) 
HP E+ -0.758 (-2.40 to 0.941) 
2010HP -1.23 (-3.42 to 0.713) 
2011HP 11.6 (-1.61 to 32.2) 
2010P E+ -0.265 (-2.27 to 1.63) 
2011P E+ 14.6 (1.24 to 35.1) 
2010H E+ -1.33 (-3.48 to 0.674) 
2011H E+ 0.344 (-3.36 to 4.50) 
2010HP E+ 2.01 (-1 to 4.98) 
2011HP E+ -13.2 (-33.4 to 0.746) 
 

 



90 

 

 

 

CHAPTER V: T HE EFFECT OF MUTUALISTS ON PATHOGEN -HOST DYNAMICS  
 

Abstract 

Theoretical explorations of interspecific species interactions have traditionally 

been studied from a pairwise point of view. This has led to the development of an 

extensive body of theory on both mutualisms and disease, but neglects multiple species 

interacting with the same host at the same time. We developed a model of the interactions 

among a fungal mutualist, a viral pathogen and their shared plant host, which we 

parameterized using a greenhouse experiment.  Both microbes were assumed to alter the 

uptake and use of soil nutrients by the plant. We found that the productivity of the system 

and the strength of the plant-fungal mutualism influenced community dynamics. In 

particular, plants are obligately dependent on their mutualist to forage for soil resources 

at low resource availability and facultatively dependent on their mutualist at high 

resource availability.  If the fungus is not a sufficiently effective mutualistic partner, then 

the pathogen drives the host extinct before the fungus can fully establish. Further, the 

natural enemy can both depend on the presence of the fungal mutualist for persistence 

and cause it to go extinct. We observed cyclic plant-enemy population dynamics. 

Specifically, the enemy causes instability in the model such that it drives the plant below 

a threshold where the enemy can persist, which allows the plant and fungus populations 

to rebound, which then allows the enemy to re-invade and repeat the cycle. Thus, the 
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natural enemy can both depend on the presence of the fungal mutualist for persistence 

and cause it to go extinct. Further, these results indicate that the microbes may interact to 

facilitate or inhibit one another. In total, association with mutualists can alter host-enemy 

interactions, and the reverse is also true in that enemies may alter host-mutualist 

interactions. 

Introduction 

Interspecific species interactions can take a variety of forms. Often such 

interactions vary in space and time. They also differ both quantitatively and qualitatively, 

including from mutualistic, in which both species benefit, to parasitism, in which one 

species receives a net benefit and the other receives a net detriment. Historically, 

ecologists have thought about such interactions as pairwise with one symbiont and one 

host; however, recent research has begun to consider multispecies interactions as they co-

occur within an ecological community (Bruno et al. 2003, Gehring and Bennett 2009, 

Bennett 2010). Therefore, research that considers multispecies interactions is the next 

step towards understanding ecological communities (Strauss and Irwin 2004, Morris et al. 

2007, Van Der Putten 2009). 

The influence of multispecies interactions on host development, growth and 

performance has been an area of developing interest in both terrestrial and aquatic 

ecosystems (Bronstein and Barbosa 2002, Bruno et al. 2003, Little and Currie 2009). In 

three-species systems, the third player can alter the intensity, outcome and even the 

symbiotic state (mutualistic or parasitic) of an association (Bronstein and Barbosa 2002). 

For example, specialized microfungal parasites that infect fungal gardens which are 
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cultivated by ants as an obligate mutualist can stabilize cooperation between the ants and 

the cultivated fungus and thus keep the mutualism honest (Little and Currie 2009). 

Plant hosts provide an ecologically important arena with which to examine 

multispecies interactions. For example, plant phenotypes can be fundamentally altered by 

microbes that influence biochemical pathways and provide plants access to microbial 

biochemical pathways, impacting both host nutrition and defense against natural enemies 

(Friesen et al.). Additionally, plants are experimentally tractable and thus experimental 

manipulations of multispecies interactions are possible (i.e., Chapter 2, 3 of this 

dissertation).  

One key determinant of the outcome of interactions among diverse organisms 

within host plants appears to be the location of each interactor. While there is still much 

variation in such interactions, in general, aboveground organisms tend to negatively 

impact belowground organisms but the reverse is not always true (van Dam and Heil 

2011). Specifically, aboveground herbivores generally reduce the performance of 

belowground organisms, but belowground herbivores more often facilitate feeding of 

aboveground herbivores (van Dam and Heil 2011).  

Furthermore, the effects of enemy damage on plant performance often depend on 

the identity of the plant mutualist. Fungal mutualists such as foliar endophytic fungi and 

mycorrhizal fungi can have differential impacts on plant hosts and their enemies. Sucking 

insects such as aphids are often negatively affected by endophytes but respond positively 

to mycorrhizae, and leaf-chewers tend to be negatively affected by both types of fungi 

(Hartley and Gange 2009, Koricheva et al. 2009). Additionally, there is variation in 

effects of fungal mutualists on plant tolerance to enemies within a fungal type. Different 
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mycorrhizal fungal species can increase, decrease, or have no effect on plant tolerance to 

herbivory (Bennett and Bever 2007). Theoretical models predict improved nutrition and 

increased tolerance in plants associating with mycorrhizal fungi will result in larger 

enemy populations (Bennett et al. 2006). Empirical evidence to test this prediction with 

actual herbivore or pathogen enemies is lacking; however, research exploring the 

interaction between a pathogen and mycorrhizal fungi under elevated CO2 indicates, 

mycorrhizal association increased the titer of virus infections, and virus infection 

reciprocally increased the colonization of roots by mycorrhizal hyphae (Chapter 2, this 

dissertation). This suggests that this mutualist and pathogenic organism interact to alter 

each other’s success.   

Conversely, the presence of mutualists may lessen the negative effect of enemies 

on plant performance (Morris et al. 2007) Chapter 3, this dissertation). A possible 

mechanism for this could be that mutualists induce plant chemical defenses (Friesen et al. 

2011). Belowground organisms commonly induce defense responses that extend 

aboveground and vice versa (Bezemer and van Dam 2005). On the other hand, plant 

tolerance to herbivore enemies can be negatively correlated with mycorrhizal fungal 

hyphal density, which suggests that herbivory can reduce mycorrhizal fungal benefits by 

decreasing hyphae (Garrido et al. 2010).  

Furthermore, enemy identity can also influence the outcome of plant-enemy-

mutualist interactions. The impact of interactions of mycorrhizal fungi with either 

belowground pathogens or aboveground herbivores on plant performance depended upon 

the specific type of enemy examined (Borowicz 2001, Gehring and Whitham 2002). 

Microbial pathogens are one type of enemy whose impact on agroecosystems is well 
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known (Mitchell and Power 2006), but their influence on natural community dynamics is 

not as well understood (Alexander 2010, Rúa et al. 2011). Recent efforts have been made 

to incorporate pathogens into ecological community research. For example, experimental 

removal of foliar fungal pathogens in a UK grassland revealed that fungi significantly 

reduced aboveground plant biomass and promoted plant diversity (Allan et al. 2010). 

Furthermore, the impact of pathogen infection on the host plant can vary widely because 

host plants vary in resistance and tolerance to infection (Barrett et al. 2009). Since 

microbial mutualists have been known to alter plant physiological traits associated with 

pathogen resistance and tolerance (Friesen et al. 2011), the association of a mutualist may 

be one way in which a host can increase its tolerance to pathogen attack (Bennett et al. 

2006). 

While experiments suggest that pathogen-host-mutualist interactions have the 

potential to create system dynamics, only a few theoretical studies have explored these 

interactions. Bennett et al. (2006) examined how effects of a mutualist on the values of 

the parameters in the Rosenzweig and MacArthur (1963) consumer-resource model alter 

the stability and equilibrium abundance of plant and enemies. We extended this model to 

allow the presence of enemies to alter the plant-fungal interaction and to consider 

changes in the host-enemy-mutualist framework over time.  

Model Description and Analyses 

To more fully explore the relationship between microbial abundances and host 

responses, we developed and analyzed a model of interactions between populations of a 

plant host, a pathogen and a mutualist.  The model assumes that both pathogen and 

mutualist have direct impact on the ability of plants to take up a single limiting nutrient.  
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Appendix D describes the full model.  Here, we describe the non-dimensionalized version 

that we analyzed. The model of three differential equations (1) describing the changes in 

abundances of the plant host (H) , its fungal mutualist (M) and microbial enemy (P) .  

��
�� 	 � � � � �

��� �� !  �" � #�  

��
�� 	 � � � ���$ �%

���  �& ! �� ! �' � ��    (1) 

�%
�� 	 � � %

��% ! (  

The model reflects the following set of simple assumptions about the effects of 

the environment and interactions on the population growth rate.  All three species have a 

constant loss rate.  The plant population is limited by a single limiting nutrient that is not 

shared by the other two species and is instantaneously recycled into the environment.  

The uptake rate of this nutrient is increased in a linear fashion with the abundance of the 

mutualist and declines as an inverse of the pathogen.  The pathogen population increases 

as an increasing function of plant abundance that saturates with increasing pathogen 

populations.  The mutualist population also increases with increasing plant abundance 

and their benefit saturates with increase plant abundance.  We note that neither microbe 

directly alters the growth rate of the other. Since our model is primarily concerned with 

the interaction of a fungal mutualist and a plant pathogen, throughout the remainder of 

our model analyses we will refer to the mutualist as the fungus or fungal mutualist and 

the microbial enemy as the pathogen. 

Nullsurface analysis was used to determine general model behavior.  Invasion 

criteria can inferred in some cases by taking the plant-fungal mutualist phase plane and 

projecting the nullsurfaces onto it (Umbanhowar and McCann 2005). This is made 

possible because nullsurfaces of both fungi and enemy do not vary with changes in 
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enemy density so these surfaces are constant as enemy density changes. These analyses 

demonstrate several qualitatively different and biologically important outcomes from the 

model.   

These outcomes can be categorized in several ways.  First, the plant-mutualist 

interaction can have one or two non-trivial positive equilibria. In the case of one 

equilibria, the equilibrium is stable.  In the case there are two equilbria, there is one stable  

equilibrium and one saddle. In this situation, when plant and fungal initial populations are 

below a set of abundances (a separatrix) the plant-fungal populations will tend towards a 

lower, trivial equilibrium with either both species extinct, or where plants are present in 

the absence of mutualist.  In the single nontrivial equilibrium, three alignments of the 

pathogen nullcline represent three different biological interesting outcomes: pathogen-

induced exclusion of mutualists, three-species coexistence, and mutualist-enabled 

pathogen persistence (Figure 5.1A).  In the presences of threshold behavior, similar 

outcomes exist, but in this case, the presence of pathogens can drive the plant and 

mutualists to abundances below the separatrix.  This leads to two biologically interesting 

outcomes—one where pathogens require mutualists in order to be present in the system 

while simultaneously driving plant populations below threshold abundances sufficient to 

maintain its own population.  Second, if the plant is a truly obligate mutualist, the 

pathogen can drive all three species extinct.    

Numerical analysis 

Invasion criteria are not sufficient, by themselves, to demonstrate the global 

persistence of the interacting populations and the stability of the equilibria. To further 

explore qualitative changes in the behavior of our model, we used numerical simulation 
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with explicit parameter estimates. The model was parameterized with values derived 

from a greenhouse experiment (Appendix D) and literature searches when necessary 

(Table 5.1A, 5.1B).  Additional parameter analyses were completed to determine the 

effect of different ranges in parameter values on host, pathogen and mutualist 

abundances. All analyses were completed in MATLAB R2010b (MathWorks, Natick, 

MA) or with the ‘vode’ function of the ‘deSolve’ package (Soetaert et al. 2011) in R 

(v.2.13.0, R Foundation for Statistical Computing, Vienna Austria).  

A nutrient threshold exists that determines the relationship between the host and 

the fungal mutualist, and consequently the stability of the system. At nutrient values less 

than this threshold, the mutualism is obligate for the plant, and the enemy increases in 

abundance, which drives the host and mutualist below their threshold abundances, 

leading to stability of the system (Fig. 5.2A). In contrast, when the nutrient parameter (n) 

is set equal to a relatively high value of 100, nullcline analysis suggests, and numerical 

simulation confirms, that pathogen persistence is facilitated by the presence of the 

mutualist. In this situation, the fungal mutualist increases the host equilibrium abundance 

enough that the pathogen can invade. At nutrient values greater than this threshold, the 

association with the mutualist is facultative for the plant, which allows the enemy to 

persist and results in cycling of the three species model (Fig. 5.2B). 

Varying the strength of the mutualism and enemy effects further changes equilibrium 

responses of the model. When the effective rate of the fungus (k) is increased, stable limit cycles 

occur under both facultative (high n) and obligate (low n) mutualistic situations. Only the enemy 

increases in amplitude but the minimum population abundances also change when the mutualist is 

facultative (Fig. 5.2B). However, across the range of fungus effective rates, at high nutrient 

values the plant-enemy cycles drive the plant to low enough levels that the fungus is excluded but 
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is able to recover (Fig. 5.3C,F). Nullcline analysis at a high and intermediate nutrient value 

support these dynamics (Fig. 5.3,B,C). When the mutualist is obligate at low nutrient values, 

there are no cycles (Fig. 5.3A) which is also demonstrated with numerical integration (Fig. 5.2A). 

The effect of enemy efficiency (c) on stability is similar to that of nutrient inputs.  

High values of either parameter destabilize the system and thereby prevent three-species 

coexistence, echoing the paradox of enrichment (Rosenzweig 1971).  At low enemy 

efficiencies and as nutrient supply is increased, the outcome shifts from a situation in 

which the enemy is excluded because plant densities are too low to support the presence 

of the pathogen (Fig. 5.4A, Fig.5.5A) to three-species coexistence facilitated by the 

presence of the fungus (Fig. 5.4B), and eventually to host extinction due to an 

overabundance of pathogen that drives the host extinct before the fungus can invade (Fig. 

5.4C, Fig. 5.5B). At high enemy efficiencies and as nutrient supply is increased, the 

outcome shifts from enemy exclusion because of low plant densities (Fig. 5.4D) to host 

extinction due to high pathogen abundance (Fig. 5.4E,F), and intermediate nutrient 

supply rates do not allow three-species coexistence (e.g. Fig. 5.4E).  

Discussion 

This paper has explored the equilibrium dynamics surrounding the interspecific 

interaction of two plant microbes and their host. Additionally, it has explored the 

threshold dynamics surrounding different parameter values. We found that pathogen 

persistence can be facilitated by the presence of the fungal mutualist. Moreover, the type 

of mutualistic association (facultative vs. obligate) was very important for enemy 

persistence and stability. For our model, the type of mutualism is determined by a 

nutrient threshold such that below it the mutualist-host relationship is obligate while 

above the threshold the mutualist-host relationship is facultative. This shift in relationship 
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changes the host-pathogen dynamics such that the negative effect of the pathogen 

decreases with increasing nutrients. Such shifts in dynamics indicate that microbes may 

facilitate or inhibit one another. 

One way in which microbes may appear to inhibit one another but actually 

facilitate one another’s existence can be viewed through theoretical work on exploiters in 

mutualistic relationships. Symbiotic relationships in which one species cheats a mutualist 

of potential benefits without reciprocating have often been considered destabilizing to 

mutualisms (Bronstein 2001). Using a continuous-time model of the yucca–yucca moth 

system involving plants, pollinating seed parasites and nonpollinating seed parasites, 

Morris et al. (2003) demonstrated a  mutualist-exploiter relationship such that 

competition plays an important role in three-species co-existence. Furthermore, exploiters 

can invade the stable mutualism and coexist with mutualists in the presence of weak 

intra- and interspecific competition (Morris et al. 2003). Long–term persistence of 

mutualisms in which a cheater is present is also possible when there is asymmetrical 

competition within species for the commodities (resources) offered by mutualistic 

partners but the cheater will drive itself and consequently the system extinct if there is no 

cost for the cheater (Ferriere et al. 2002).  Our model demonstrates similar dynamics in 

that for co-existence to occur, a series of negative feedbacks must occur in which the 

enemy drives itself extinct, allowing for the rebound of the plant and mutualist 

populations, followed by reinvasion of the enemy. One of the limitations of our model is 

that it is an ecological model and does not consider the potential for evolution to change 

the interaction parameters; however, the existence of threshold dynamics is a good 
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indicator of the limits in this system which may prevent long-term persistence or co-

existence. 

Due to the complexity of mutualisms and pathogenic relationships, the existence 

of threshold dynamics is not surprising. As previous models with exploiters have 

indicated, division of resource use such that both partners exchange commodities at 

levels which satisfy each other without damaging their own success is important for long-

term model persistence (Ferriere et al. 2002). We demonstrate the importance of nutrient 

thresholds for determining the type of mutualistic association.  We have assumed that 

microbes only interact via changes in host abundance.  However, these microbes may 

interact more directly by changing host quality. For example, by altering host nutrition, a 

mutualist may stimulate enemy population growth (Bennett et al. 2006). This may be 

particularly true for viral pathogens which can be phosphorus limited if the host has a 

high C:P ratio (Clasen and Elser 2007). Mycorrhizal fungi are ubiquitous plant symbionts 

that play an important role in the acquisition of less mobile mineral nutrients, particularly 

phosphorus (Smith and Read 2008). In return, mycorrhizal fungi receive carbohydrates 

from the plant. In addition to altering leaf level photosynthesis (Smith and Read 2008), 

mycorrhizal fungi can increase plant root growth (Bryla and Eissenstat 2005). Since 

mycorrhizal fungi increase plant phosphorus (Tang et al. 2006, Smith and Read 2008), it 

is possible that host plants associating with mycorrhizal fungi may have higher viral 

pathogen loads due to the higher shoot phosphorus content. Thus, such increases in plant 

phosphorus due to mycorrhizal association may allow the plant to support a higher viral 

titer load that if viruses are phosphorus-limited (Clasen and Elser 2007, Borer et al. 

2010). There is some evidence in agricultural systems which show an increase in viral 
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titer as a result of association with mycorrhizae (Daft and Okusanya 1973, Schonbeck 

1979), but such reports are limited.   

In addition to resource partitioning, the spatial structure of multispecies 

interactions is important for co-existence. Currently, in addition to not being explicit 

about nutrient flow through the system, our model is spatially homogenous which limits 

our understanding of the exact infection structure. Experimental evidence with multiple 

mutualistic fungi indicates that host plants are able to preferentially allocate resources to 

beneficial fungi, which can overcome the cost of the mutualism and allow the beneficial 

fungi to increase (Bever et al. 2008). The same may be true for host-pathogen-mutualist 

relationships where the host may preferentially allocate to the mutualist as a way to 

overcome the negative effects of the pathogen, although empirical evidence considering 

such possibilities is lacking.  

The model we analyzed is a mean-field model that assumes that no spatial 

structure in plant-microbe associations.  This approach conflates the process of 

transmission and within host growth for both the fungal mutualist and natural enemy. In 

real populations of plants, individual plants may be infected or not by both mutualistic 

fungi and pathogens.  All three could potentially have different ability to disperse, 

leading to spatial structure in the amount and extent of cross infectivity.  Molofsky et al 

(2001) showed how limited dispersal can have dramatic effects on population dynamics 

where threshold behaviors are present; however analyses of spatial structure are beyond 

the scope of the current analysis. These results have important implications for microbe 

host dynamics. Despite their common occurrence, such microbe-microbe interactions are 

often neglected. We demonstrate that a series of negative feedbacks as a result of host-
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enemy dynamics create instability in the host-mutualist model, leading to instability in 

the full model, suggesting the importance of such three-way interactions for 

understanding community processes. 
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Figure 5.1. Isocline analysis for our model.
alter population dynamics of host
predator-prey equations to reflect host
of these equations (red=plant, black=mutualist, blue=enemy), and total nutrient 
availability (in green). In A, we have a situation in which the enemy is excluded because 
plant densities are too low to support the presence of the pathogen. In 
species co-existence. The pathogen keeps the plant at low abundances but the fungus can 
still invade. In C the pathogen can drive the plant to low enough levels that the fungus 
cannot invade. Finally, in D we have three species coexistence such that pathogen 
existence is facilitated by the presence of the fungi. Specifically the fungi increas
threshold of the enemy enough so that the enemy can invade. The increasing fungus 
threshold increases plant abundance which increases the carrying capacity of the plant for 
the pathogen (essentially how much enemy the plant can support) which finally
the pathogen threshold for the system.
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Figure 5.2. Numerical integration across the plant-mutualist nullcline space, 
constant k. Numerical integration across the plant-mutualist nullcline space simulated 
over time under varying nutrient inputs at a constant fungal effective rate (k=0.154). 
These dynamics inform the nullcline dynamics demonstrated in Figure 5.3 A,C. Nutrient 
rates increase from N=25 (obligate mutualist, panel A) and N=100 (facultative mutualist, 
panel B). In order to ensure equilibrium dynamics, a 300 step time transient was run and 
the following 300 steps are graphed below. 
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Figure 5.3. Nullclines for the enemy graphed on the plant-mutualist nullcline space, 
varying k. Nullclines for the enemy graphed on the plant-mutualist nullcline space when 
you alter the strength of the plant-mutualist relationship (k) and nutrient input (N). Panels 
A-C represent nullclines of increasing nutrient inputs at a low fungal effective rate 
(k=0.2) and panels D-F represent nullclines of increasing nutrient inputs at high fungal 
effect rates (k=0.75). 
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Figure 5.4. Nullclines for the enemy graphed on the plant-mutualist nullcline, varying c. 
Nullclines for the enemy graphed on the plant-mutualist nullcline space under varying 
strength of the plant-enemy relationship (c) and nutrient input (N). Panels A-C represent 
nullclines of increasing nutrient inputs at a low enemy efficiency (c=0.2) and panels D-F 
represent nullclines of increasing nutrient inputs at high enemy efficiency (c=1.75).
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Figure 5.5. Numerical integration across the plant-mutualist nullcline space, constant 
c=1.75. Numerical integration across the plant-mutualist nullcline space under varying 
nutrient inputs at a constant enemy effective rate. These dynamics inform the nullcline 
dynamics demonstrated in Figure 5.4A,C. Nutrient rates are N=25 (obligate mutualist, 
panel A) and  N=100 (facultative mutualist, panel B). In order to ensure equilibrium 
dynamics, a 300 step time transient was run and the following 300 steps are graphed 
below. 

 



108 

 

Table 5.1a. Nondimensionalized parameters and their dimensionalized components, as well as their biological meaning. 
 
NonDimensionalized  
Parameter 

Components Biological Meaning 

f ")
"'**** 

Scaled plant death rate 

i +)
"',)***** 

Scaled resource uptake of plant  

k -*
,) 

Scaled benefit of mutualism to plant  

n &./.******** 0) 1 ,)
"'****  

Scaled productivity 

d "2****
"'****  

Scaled enemy loss 

c �)
�0) 1 ,)� 

Scaled enemy benefit from plant 

b 3* 1 "'****
�0) 1 ,)� 

Plant self-limitation in pathogen benefit 
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Table 5.1b. Dimensionalized parameters and their biological meaning and source. 
Dimensionalized 
Parameter 

Units Meaning Value Source 

&./.******** g/m2 Maximum soil nutrient concentration Varies  

"'**** nmol/m2/day Mutulist biomass loss rate  (estimated 
by respiration rate) 

0.0211 (Staddon et al. 2003) 

") nmol/m2/day Plant biomass loss  rate (estimated by 
respiration rate) 

0.06829 (Fredeen and Field 1995) 

+) g/day/ m2 Resource uptake rate of plant in 
absence of mutualist 

0.001065 Experiment 

�) m2/g/s Viral growth per gram of plant 0.1* Estimated 

0) m2/g/s Rate of resource gained by the 
mutualist from the plant 

4.323651 Experiment 

-* m2/g Plant nutrient uptake benefit from 
mutualist  

0.154* (Newman and Ritz 1986) 

"2****  Virus death rate 0.074 (Eweida et al. 1988) 

,) g/m2 Mutualist self-limitation in benefit 
from plant 

0.0218 (Jakobsen and Rosendahl 
1990) 

� ) m2/g Pathogen interference with nutrient 
uptake 

NA  

3* m2/g Plant self-limitation in benefit to 
enemy 

NA  

*Unless varied for parameter exploration
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CHAPTER VI:  CONCLUSIONS 

It has long been acknowledged that plant species interact with biotic and abiotic 

factors, but such research has tended to focus on simple pairwise biotic interactions 

(Piculell et al. 2008, Tylianakis et al. 2008). The progression from two species 

interactions to multispecies interactions is an area of developing interest in ecological 

research (Bruno et al. 2003, Gehring and Bennett 2009, Bennett 2010). My thesis 

examines the interaction of two classes of microorganisms (mutualists and pathogens) as 

they relate to one another and their shared host in the context of changing abiotic 

conditions. We found that 1) mutualists alter pathogen dynamics but mutualistic strategy 

determines the direction of change, 2) pathogens alter mutualist dynamics and 3) abiotic 

context can change the relationship between host, mutualists and pathogens. 

The identity of the commodities exchanged in a host-mutualist relationship may 

determine the effects of the mutualism on a pathogen infecting the host (Bronstein and 

Barbosa 2002, Ferriere et al. 2002). My thesis suggests that mutualistic strategy is 

important for determining the direction of change by which mutualists alter pathogen 

dynamics (Chapter 2, 3). In a greenhouse experiment, the protection mutualist foliar 

endophytic fungi decreased relative viral titer (Chapter 3).  This may have been due to 

decreased vector feeding duration (Power and Gray 1995) as a result of endophyte-

induced alkaloid production that deters arthropod feeding (Clay and Schardl 2002). 

However, this did not translate into decreased pathogen prevalence for endophyte-
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infected plants in the field (Chapter 4). In contrast, by altering host nutrition, resource 

mutualists may stimulate enemy populations (Bennett et al. 2006). Mycorrhizal fungi are 

a type of resource mutualist characterized by the exchange of carbohydrates from to the 

plant for less mobile mineral nutrients, particularly phosphorus (Smith and Read 2008); 

this exchange of carbon for phosphorous may be important for viral pathogens which can 

be phosphorus limited if the host has a high C:P ratio (Clasen and Elser 2007). In a 

greenhouse experiment, increased leaf phosphorus concentration did not correspond to 

increased relative virus titer, but when carbon was abundant (under elevated CO2), the 

mutualistic association increased relative viral titer (Chapter 2).  

Second, both mathematical theory and empirical work indicated that a pathogen 

can alter host-mutualist dynamics (Chapters 2, 5), which implies that a pathogen may 

impact long-term co-existence of a host and mutualist (Chapter 5). Under elevated CO2, 

virus infection stimulated mycorrhizal colonization (Chapter 2). While the mechanism for 

this result remains unclear, it is possible that an increase in accessibility to plant carbon 

as a result of phloem degeneration caused by the virus (Irwin and Thresh 1990, D'Arcy 

1995) leads to more available carbon for the fungus and thus stimulates colonization. 

These results suggest the possibility that the virus derives a fitness benefit by stimulating 

its host to invest more in a mutualism.  Furthermore, we were able to use a dynamic 

systems model to demonstrate that the introduction of an enemy can disrupt the stability 

of a mutualist-host relationship by inducing cyclic dynamics and imposing a threshold in 

nutrient supply necessary for co-existence (Chapter 5). 

Finally, changing abiotic environmental conditions can modify the relationships 

between host, mutualists and pathogens. It has previously been hypothesized that the 
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impact of global change on plant communities may be mediated through indirect effects, 

including via pathogens (Burdon et al. 2006). We tested this hypothesis with both 

arbuscular mycorrhizal fungi and foliar endophytic fungi. While experimentally elevated 

CO2 spurred a pathogen and mutualist to reciprocally increase each other’s abundances, 

this did not translate to significant changes in host biomass (Chapter 2). On the other 

hand, experimentally elevated precipitation and temperature altered virus prevalence in 

the field (Chapter 4). Specifically, in the final year of a three year experiment, increased 

precipitation increased viral prevalence for endophyte-infected plants (Chapter 4). 

Furthermore, increased temperature increased virus prevalence, but this affect does not 

appear to be driven by vector behavior as vector abundance was higher for plots with 

increased heat compared to those with ambient temperature (Chapter 4). As different 

viral species are transmitted by different vector species (Power and Gray 1995), it is 

possible that different vectors will have different responses to increased temperature and / 

or precipitation, which will lead to variation in viral species response to these abiotic 

vectors. Our results supported this hypothesis, with some virus species increasing in 

prevalence, and others decreasing in prevalence under elevated precipitation and 

temperature (Chapter 4). Furthermore, these differential responses among virus species 

have important implications for co-infection dynamics (Chapter 4). 

Overall, my thesis demonstrates that mutualists and pathogens can have important 

impacts on not only the host but also on the success of each other. Such dynamics can be 

further modified by changes in the abiotic environment. Further study of the combined 

effects of abiotic and microbial drivers in such a broader ecological context may be key 

to understanding and predicting large-scale changes to ecosystems (Treseder 2004, 
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Suding et al. 2008), particularly as they relate to climate change. Further, the impact of 

global change on plant communities may be mediated through indirect effects, including 

via pathogens (Burdon et al. 2006). Precipitation, temperature, and atmospheric CO2 are 

all expected to continue to increase for the foreseeable future (IPCC 2001). Thus, in order 

to make accurate projections about ecosystem, community or population dynamics, 

changes in microorganisms must be included in those projections. 

  



114 

 

APPENDICES 
Appendix A Supplementary Material for Chapter 2. 

A1. Supplementary Figures 

A1.1. The role of phosphorus addition in altering viral titer. Across mycorrhizal 
status, phosphorus addition (+P vs. –P) decreased relative viral titer as measured by 
ELISA Optical Density (OD) value for (A) A. fatua but not for (B) B. hordeaceus. Data 
shown are means ± SEM; letters indicate significant pairwise differences between means 
(Tukey’s HSD; p<0.05). 
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A1.2. Role of elevated CO2 and host species on root colonization by AMF. Elevated 
CO2 increased root colonization for both Avena fatua and Bromus hordeaceus.  Data 
shown are means ± SEM; letters indicate significant pairwise differences between means 
(Tukey’s HSD; p<0.05). 
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A1.3.Effect of CO2 and host species on total biomass. Elevated CO2 increased total 
plant biomass of (A) non-mycorrhizal (–AMF) Avena fatua, but not mycorrhizal (+AMF) 
A. fatua, or (B) Bromus hordeaceus.  Data shown are means ± SEM; letters indicate 
significant pairwise differences between means within each figure panel (Tukey’s HSD; 
p<0.05). 
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A1.4. Role of phosphorus and host species in altering leaf phosphorus concentration.  
Across mycorrhizal status, adding phosphorus (+P vs. –P) increased leaf phosphorus 
concentration (Percent P) for both species, and more for A. fatua than B. hordeaceus. 
Data shown are means ± SEM; letters indicate significant pairwise differences between 
means (Tukey’s HSD; p<0.05). 
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A2. Full Statistical Models. 

The following tables present the full statistical models. The following statistical models 
assess the effects of the four experimental factors: elevated concentration of atmospheric 
CO2, infection with Barley yellow dwarf virus – PAV (BYDV), phosphorus fertilization 
(P), association with arbuscular mycorrhizal fungi (AMF), and plant species identity 
(Plant.Species). For analysis details, see the Methods section. (Significance codes for all 
tables: P < 0.001 '***'; 0.001 < P < 0.01 '**'; 0.01 < P < 0.05 '*'; 0.05 < P < 0.1 '.') 
 
Table A2.1. Model of Optical Density values, estimating relative virus titer.  
Analyses for only virus-infected plants. 
                            numDF denDF  F-value p-value 
(Intercept)                     1   141 672.9046  <.0001 *** 
CO2                             1     4   2.0610  0.2244 
AMF                             1   141   5.8797  0.0166 * 
P                               1   141   0.2103  0.6472 
Plant.Species                   1   141 127.4004  <.0001 *** 
CO2:AMF                         1   141   4.6221  0.0333 * 
CO2:P                           1   141   1.4982  0.2230 
AMF:P                           1   141   1.9809  0.1615 
CO2:Plant.Species               1   141   0.5847  0.4458 
AMF:Plant.Species               1   141   0.4695  0.4944 
P:Plant.Species                 1   141   4.2592  0.0409 * 
CO2:AMF:P                       1   141   0.7243  0.3962 
CO2:AMF:Plant.Species           1   141   0.0005  0.9819 
CO2:P:Plant.Species             1   141   0.5054  0.4783 
AMF:P:Plant.Species             1   141   2.5531  0.1123 
CO2:AMF:P:Plant.Species         1   141   0.0536  0.8173 

 
Table A2.2. Model of percent hyphal colonization.  
Analyses for only +AMF plants. 
                              numDF denDF  F-value p-value 
(Intercept)                       1   148 389.2756  <.0001 *** 
CO2                               1     4  97.1052  0.0006 ** 
BYDV                              1   148  12.6762  0.0005 ** 
P                                 1   148   8.6521  0.0038 ** 
Plant.Species                     1   148  65.8728  <.0001 *** 
CO2:BYDV                          1   148  11.3842  0.0009 ** 
CO2:P                             1   148  10.4575  0.0015 ** 
BYDV:P                            1   148   0.1737  0.6774 
CO2:Plant.Species                 1   148  13.6390  0.0003 ** 
BYDV:Plant.Species                1   148   1.0928  0.2976 
P:Plant.Species                   1   148   1.5033  0.2221 
CO2:BYDV:P                        1   148   1.3709  0.2435 
CO2:BYDV:Plant.Species            1   148   0.0004  0.9834 
CO2:P:Plant.Species               1   148   1.0642  0.3040 
BYDV:P:Plant.Species              1   148   4.6216  0.0332 * 
CO2:BYDV:P:Plant.Species          1   148   0.0949  0.7585 
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Table A2.3. Model of Total Plant Biomass. 
                                  numDF denDF  F-value p-value 
(Intercept)                           1   300 839.3783  <.0001 *** 
CO2                                   1     4   9.8449  0.0349 * 
BYDV                                  1   300   2.9217  0.0884 . 
AMF                                   1   300   2.7306  0.0995 . 
P                                     1   300   0.8499  0.3573 
Plant.Species                         1   300  79.1084  <.0001 *** 
CO2:BYDV                              1   300   2.1262  0.1458 
CO2:AMF                               1   300   0.3004  0.5841 
BYDV:AMF                              1   300   0.7018  0.4028 
CO2:P                                 1   300   0.2365  0.6271 
BYDV:P                                1   300   0.0226  0.8805 
AMF:P                                 1   300   0.0019  0.9648 
CO2:Plant.Species                     1   300   0.0886  0.7662 
BYDV:Plant.Species                    1   300   0.0326  0.8569 
AMF:Plant.Species                     1   300   0.0756  0.7835 
P:Plant.Species                       1   300   0.8353  0.3615 
CO2:BYDV:AMF                          1   300   0.0938  0.7597 
CO2:BYDV:P                            1   300   0.0272  0.8692 
CO2:AMF:P                             1   300   0.1678  0.6824 
BYDV:AMF:P                            1   300   0.1709  0.6796 
CO2:BYDV:Plant.Species                1   300   0.1644  0.6854 
CO2:AMF:Plant.Species                 1   300   4.3878  0.0370 * 
BYDV:AMF:Plant.Species                1   300   2.5077  0.1143 
CO2:P:Plant.Species                   1   300   0.3930  0.5312 
BYDV:P:Plant.Species                  1   300   0.0028  0.9581 
AMF:P:Plant.Species                   1   300   0.0574  0.8108 
CO2:BYDV:AMF:P                        1   300   2.5409  0.1120 
CO2:BYDV:AMF:Plant.Species            1   300   0.0002  0.9884 
CO2:BYDV:P:Plant.Species              1   300   0.0162  0.8988 
CO2:AMF:P:Plant.Species               1   300   1.4087  0.2362 
BYDV:AMF:P:Plant.Species              1   300   0.0943  0.7589 
CO2:BYDV:AMF:P:Plant.Species          1   300   1.5617  0.2124 
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Table A2.4. Model of Root Fraction. 
                                  numDF denDF  F-value p-value 
(Intercept)                           1   300 3406.312  <.0001 *** 
CO2                                   1     4    3.334  0.1419 
BYDV                                  1   300   45.136  <.0001 *** 
AMF                                   1   300    2.005  0.1578 
P                                     1   300    2.069  0.1513 
Plant.Species                         1   300  126.211  <.0001 *** 
CO2:BYDV                              1   300    0.009  0.9251 
CO2:AMF                               1   300    0.166  0.6841 
BYDV:AMF                              1   300    0.039  0.8431 
CO2:P                                 1   300    0.701  0.4031 
BYDV:P                                1   300    0.533  0.4661 
AMF:P                                 1   300    0.804  0.3706 
CO2:Plant.Species                     1   300    0.095  0.7578 
BYDV:Plant.Species                    1   300    2.468  0.1173 
AMF:Plant.Species                     1   300    1.366  0.2435 
P:Plant.Species                       1   300    1.072  0.3014 
CO2:BYDV:AMF                          1   300    0.001  0.9742 
CO2:BYDV:P                            1   300    1.569  0.2113 
CO2:AMF:P                             1   300    0.132  0.7169 
BYDV:AMF:P                            1   300    1.633  0.2023 
CO2:BYDV:Plant.Species                1   300    0.160  0.6893 
CO2:AMF:Plant.Species                 1   300    0.002  0.9686 
BYDV:AMF:Plant.Species                1   300    0.014  0.9073 
CO2:P:Plant.Species                   1   300    0.222  0.6377 
BYDV:P:Plant.Species                  1   300    2.598  0.1080 
AMF:P:Plant.Species                   1   300    1.545  0.2148 
CO2:BYDV:AMF:P                        1   300    1.740  0.1881 
CO2:BYDV:AMF:Plant.Species            1   300    0.317  0.5736 
CO2:BYDV:P:Plant.Species              1   300    0.745  0.3887 
CO2:AMF:P:Plant.Species               1   300    0.882  0.3484 
BYDV:AMF:P:Plant.Species              1   300    0.433  0.5108 
CO2:BYDV:AMF:P:Plant.Species          1   300    0.793  0.3739 
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Table A2.5. Model of Percent Leaf Tissue Phosphorus 
                                  numDF denDF  F-value p-value 
(Intercept)                           1   257 430.0927  <.0001 *** 
CO2                                   1     4   0.1134  0.7533 
BYDV                                  1   257   0.4281  0.5135 
AMF                                   1   257   0.2145  0.6436 
P                                     1   257 147.2944  <.0001 *** 
Plant.Species                         1   257 387.8527  <.0001 *** 
CO2:BYDV                              1   257   1.5980  0.2073 
CO2:AMF                               1   257   0.0016  0.9681 
BYDV:AMF                              1   257   0.0002  0.9876 
CO2:P                                 1   257   1.0135  0.3150 
BYDV:P                                1   257   0.2781  0.5984 
AMF:P                                 1   257   0.7003  0.4035 
CO2:Plant.Species                     1   257   0.0851  0.7708 
BYDV:Plant.Species                    1   257   5.1518  0.0241 * 
AMF:Plant.Species                     1   257   0.0011  0.9734 
P:Plant.Species                       1   257  61.9365  <.0001 *** 
CO2:BYDV:AMF                          1   257   1.5256  0.2179 
CO2:BYDV:P                            1   257   0.2159  0.6426 
CO2:AMF:P                             1   257   0.0676  0.7951 
BYDV:AMF:P                            1   257   0.8494  0.3576 
CO2:BYDV:Plant.Species                1   257   1.9750  0.1611 
CO2:AMF:Plant.Species                 1   257   0.1092  0.7413 
BYDV:AMF:Plant.Species                1   257   0.1335  0.7152 
CO2:P:Plant.Species                   1   257   0.0617  0.8040 
BYDV:P:Plant.Species                  1   257   0.7651  0.3826 
AMF:P:Plant.Species                   1   257   0.4683  0.4944 
CO2:BYDV:AMF:P                        1   257   1.6479  0.2004 
CO2:BYDV:AMF:Plant.Species            1   257   0.0112  0.9157 
CO2:BYDV:P:Plant.Species              1   257   0.0104  0.9187 
CO2:AMF:P:Plant.Species               1   257   1.7082  0.1924 
BYDV:AMF:P:Plant.Species              1   257   1.9863  0.1599 
CO2:BYDV:AMF:P:Plant.Species          1   257   0.6841  0.4090  
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Appendix B Supplementary Materials for Chapter 3 

B1. Supplementary Figures 

B1.1. Tiller number by endophyte infection status for PDF. Across virus infection 
status, infection with the novel endophyte or the common toxic endophyte increased tiller 
production. Data shown are means ± SEM; letters indicate significant pairwise 
differences between means (Tukey’s HSD; p<0.05). 

 

  

A 
A 

B 
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B2. Full Statistical Models 

Tables B2.1, B2.3, B2.5, B2.7, B2.9, B2.11, B2.12, B2.13, B2.17 present the full 

statistical models that were used to assess the effects of the three experimental factors: 

infection with Barley yellow dwarf virus – PAV (-BYDV vs. +BYDV), host cultivar 

(PDF vs. KY 31) and endophyte infection (E- vs. CTE+; excluding the novel endophyte 

PDF 584). Tables B2.2, B2.4, B2.6, B2.8, B2.10, B2.14, B2.15, B2.16, B2.18b present 

the models that were used to assess the effects of two experimental factors within the 

PDF cultivar: virus presence (-BYDV vs. +BYDV) and endophyte genotype (Seed.Type: 

PDF E- vs. PDF E+ vs. PDF 584). For analysis details, see the Methods section. 

(Significance codes for all tables: P < 0.001 '***'; 0.001 < P < 0.01 '**'; 0.01 < P < 0.05 

'*'; 0.05 < P < 0.1 '.') 

B2.1. Model of Total Plant Biomass 
                     numDF denDF   F-value p-value 
(Intercept)              1   105 108.16962  <.0001 *** 
BYDV                     1   105  15.64519  0.0001 *** 
Endophyte                1   105   0.07895  0.7793 
Cultivar                 1   105   0.03010  0.8626 
BYDV:Endophyte           1   105   0.15490  0.6947 
BYDV:Cultivar            1   105   0.78317  0.3782 
Endophyte:Cultivar       1   105   5.79355  0.0178 * 
BYDV:Endophyte:Cultivar  1   105   0.02726  0.8692 

B2.2. Model of Total Plant Biomass: within the PDF cultivar 
                numDF denDF  F-value p-value 
(Intercept)         1    79 94.81344  <.0001 *** 
BYDV                1    79 10.07562  0.0021 *** 
Seed.Type           2    79  1.70956  0.1876 
BYDV:Seed.Type      2    79  0.57409  0.5655 

B2.3. Model of Root Biomass 
                     numDF denDF   F-value p-value 
(Intercept)              1   105 157.94545  <.0001 *** 
BYDV                     1   105  21.10247  <.0001 *** 
Endophyte                1   105   0.02609  0.8720 
Cultivar                 1   105   2.41767  0.1230 
BYDV:Endophyte           1   105   0.00516  0.9429 
BYDV:Cultivar            1   105   0.00497  0.9439 
Endophyte:Cultivar       1   105   3.28763  0.0727 . 
BYDV:Endophyte:Cultivar  1   105   0.02955  0.8638 

B2.4. Model of Root Biomass: within the PDF cultivar 
                numDF denDF   F-value p-value 
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(Intercept)         1    79 103.49826  <.0001 *** 
BYDV                1    79  12.83383  0.0006 ** 
Seed.Type           2    79   2.72537  0.0717 . 
BYDV:Seed.Type      2    79   0.48900  0.6151 

 
B2.5. Model of Shoot Biomass 
                     numDF denDF   F-value p-value 
(Intercept)              1   105 108.43510  <.0001 *** 
BYDV                     1   105  11.93453  0.0008 ** 
Cultivar                 1   105   0.09953  0.7530 
Endophyte                1   105   0.08930  0.7657 
BYDV:Cultivar            1   105   1.25313  0.2655 
BYDV:Endophyte           1   105   0.27055  0.6041 
Cultivar:Endophyte       1   105   5.91432  0.0167 * 
BYDV:Cultivar:Endophyte  1   105   0.02165  0.8833 

 
B2.6. Model of Shoot Biomass: within the PDF cultivar 
                numDF denDF   F-value p-value 
(Intercept)         1    79 104.30478  <.0001 *** 
BYDV                1    79   8.58912  0.0044 ** 
Seed.Type           2    79   1.36517  0.2613 
BYDV:Seed.Type      2    79   0.58524  0.5594 

 
B2.7. Model of Root Fraction 
                     numDF denDF  F-value p-value 
(Intercept)              1   105 571.1717  <.0001 *** 
BYDV                     1   105   6.9477  0.0097 ** 
Endophyte                1   105   0.0769  0.7821 
Cultivar                 1   105   1.4787  0.2267 
BYDV:Endophyte           1   105   2.8354  0.0952 . 
BYDV:Cultivar            1   105   0.8626  0.3551 
Endophyte:Cultivar       1   105   1.2749  0.2614 
BYDV:Endophyte:Cultivar  1   105   0.5225  0.4714 
 

B2.8. Model of Root Fraction: within the PDF cultivar 
          numDF denDF  F-value p-value 
(Intercept)         1    79 608.4623  <.0001 *** 
BYDV                1    79   6.8896  0.0104 * 
Seed.Type           2    79   0.2902  0.7489 
BYDV:Seed.Type      2    79   2.0979  0.1295 

B2.9. Model of Tiller Number 
                          Estimate Std. Error z value Pr(>|z|)     
(Intercept)                2.40214    0.08337  28.813  <.0001 *** 
Cultivar                  -0.11783    0.10303  -1.144  0.2528     
Endophyte                  0.03526    0.10486   0.336  0.7367     
BYDV                      -0.02720    0.11508  -0.236  0.8132     
Cultivar:Endophyte         0.17490    0.14938   1.171  0.2416     
Cultivar:BYDV             -0.18578    0.17017  -1.092  0.2749     
Endophyte:BYDV            -0.44573    0.17173  -2.595  0.0095 **  
Cultivar:Endophyte:BYDV    0.55688    0.23906   2.329  0.0198 *   
 

B2.10. Model of Tiller Number: within the PDF cultivar 
                       Estimate Std. Error z value Pr(>|z|)     
(Intercept)             2.28447    0.09304  24.553  < 2e-16 *** 
BYDV                   -0.21641    0.12562  -1.723 0.0849 .   
Seed.TypePDF584         0.37589    0.10263   3.663 0.0003 *** 
Seed.TypePDFE+          0.20203    0.10636   1.900 0.0575 .   
BYDV:Seed.TypePDF584   -0.04087    0.16249  -0.252 0.8014     
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BYDV:Seed.TypePDFE+     0.12663    0.16642   0.761 0.4468     
 

B2.11. Model of nymph production by the aphid Rhopalosiphum padi 
                         Estimate Std. Error z value Pr(>|z|)     
(Intercept)                1.0531     0.1525   6.906  <.0001 *** 
Cultivar                  -0.6702     0.2621  -2.557  0.0106 *   
BYDV                      -0.8168     0.2755  -2.965  0.0030 **  
Endophyte                 -0.4733     0.2515  -1.882  0.0598 .   
Cultivar:BYDV              0.4983     0.4288   1.162  0.2452     
Cultivar:Endophyte         0.4470     0.3984   1.122  0.2618     
BYDV:Endophyte            -0.2049     0.4764  -0.430  0.6672     
Cultivar:BYDV:Endophyte    0.3490     0.6637   0.526  0.5990 

B2.12. Model of adult aphid abundance for the aphid Rhopalosiphum padi 
                         Estimate Std. Error z value  Pr(>|z|)     
(Intercept)               0.87547    0.16667   5.253   <.0001 *** 
Cultivar                 -0.21622    0.24952  -0.867   0.3862     
BYDV                      0.34831    0.21768   1.600   0.1096     
Endophyte                -0.62415    0.28868  -2.162   0.0306 *   
Cultivar:BYDV            -0.41977    0.34483  -1.217   0.2235     
Cultivar:Endophyte        0.50391    0.39935   1.262   0.2070     
BYDV:Endophyte            0.01942    0.37604   0.052   0.9588     
Cultivar:BYDV:Endophyte   0.38851    0.53138   0.731   0.4647         

 
B2.13 Model of total aphid abundance for the aphid Rhopalsiphum padi 
                         Estimate Std. Error z value Pr(>|z|)     
(Intercept)               1.85630    0.10206  18.188  <.0001 *** 
Cultivar                 -0.52130    0.16721  -3.118  0.0018 **  
BYDV                     -0.16990    0.15087  -1.126  0.2601     
Endophyte                -0.52506    0.17113  -3.068  0.0022 **  
Cultivar:BYDV             0.11583    0.24254   0.478  0.6330     
Cultivar:Endophyte        0.46303    0.25851   1.791  0.0733 .   
BYDV:Endophyte           -0.06272    0.25581  -0.245  0.8063     
Cultivar:BYDV:Endophyte   0.24665    0.37134   0.664  0.5066     

B2.14. Model of nymph production by the aphid Rhopalosiphum padi: within the PDF 
cultivar 
Coefficients: 
                     Estimate Std. Error z value Pr(>|z|)   
(Intercept)           0.38299    0.21320   1.796   0.0724 . 
BYDV                 -0.31845    0.32856  -0.969   0.3324   
Seed.TypePDF584       0.12783    0.29233   0.437   0.6619   
Seed.TypePDFE+       -0.02632    0.30896  -0.085   0.9321   
BYDV:Seed.TypePDF584  0.23507    0.43753   0.537   0.5911   
BYDV:Seed.TypePDFE+   0.14410    0.46207   0.312   0.7551   

 
B2.15. Model of adult aphid abundance for the aphid Rhopalosiphum padi: within the 
PDF cultivar 
                      Estimate Std. Error z value Pr(>|z|)     
(Intercept)           0.65925    0.18570   3.550 0.000385 *** 
BYDV                 -0.07146    0.26743  -0.267 0.789312     
Seed.TypePDF584       0.06669    0.25834   0.258 0.796290     
Seed.TypePDFE+       -0.12025    0.27595  -0.436 0.663010     
BYDV:Seed.TypePDF584  0.44413    0.35496   1.251 0.210859     
BYDV:Seed.TypePDFE+   0.40793    0.37545   1.087 0.277255     

 
B2.16 Model of total aphid abundance for the aphid Rhopalsiphum padi: within the 
PDF cultivar 
Coefficients: 
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                      Estimate Std. Error z value Pr(>|z|)     
(Intercept)           1.33500    0.13245  10.079   <2e-16 *** 
BYDV                 -0.05407    0.18990  -0.285    0.776     
Seed.TypePDF584       0.26101    0.17623   1.481    0.139     
Seed.TypePDFE+       -0.06204    0.19376  -0.320    0.749     
BYDV:Seed.TypePDF584  0.10671    0.24979   0.427    0.669     
BYDV:Seed.TypePDFE+   0.18393    0.26918   0.683    0.494     

 
B2.17. Model of Model of Optical Density values, estimating relative virus titer.  
Analyses for only virus-infected plants. 
                   Estimate Std. Error t value Pr(>|t|)     
(Intercept)          2.2200     0.2881   7.707  <.0001 *** 
Endophyte           -0.5259     0.3849  -1.366  0.1783     
Cultivar            -1.0565     0.3914  -2.699  0.0096 **  
Endophyte:Cultivar   0.2556     0.5325   0.480  0.6334    
 

B2.18. Model of Model of Optical Density values, estimating relative virus titer.  
Analyses for only virus-infected plants. 
a) within the KY cultivar 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  2.2200     0.3162   7.020 3.74e-07 *** 
Endophyte   -0.5259     0.4226  -1.244    0.226  

b) within the PDF cultivar 
                 Estimate Std. Error t value Pr(>|t|)     
(Intercept)        1.1635     0.2291   5.077 9.81e-06 *** 
Seed.TypePDF584   -0.3187     0.3131  -1.018    0.315     
Seed.TypePDFE+    -0.2702     0.3182  -0.849    0.401 
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Appendix C Supplementary Material for Chapter 4 

C1. Supplementary Figures 

C1.1. The proportion of plants infected by a virus varied among host species. The 
proportion of plants infected by a virus varied among host species. Total counts of host 
plants tested are shown in white and infected plants are shown in grey across all 
experimental units. (A) Virus infection rates for the 2009 data were: 26% for Kentucky 
bluegrass (26/99), 24% for dallisgrass (21/88), 16% for Indian goosegrass (26/159), 11% 
for endophyte-free S. phoenix (‘E- Fescue’, 53/470) and 13% for endophyte-infected S. 
phoenix (‘E+ Fescue’, 53/396). (B) Virus infection rates for the 2009-2011 S. phoenix 
data were: 12.2 % for endophyte-free S. phoenix (‘E- Fescue’, 93/762) and 13.4% for 
endophyte-infected S. phoenix (‘E+ Fescue’, 88/657). 

 

A 

B 
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C1.2. The proportion infected with each viral species for all plants. The proportion 
infected (number infected / total number tested) for all plants with each viral species 
(BYDV-PAV, BYDV-MAV, CYDV-RPV) for the 2009 data across host species (A) and 
the 2009-2011data on S. phoenix (B). Plants tested positive for BYDV-PAV most 
frequently and tested positive for BYDV-MAV least frequently. 
 

 

A 

B 
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C2. Supplementary Tables 

Table C2.1. Frequencies of climate change treatment × species combinations for 
aphid counts. The total number of aphids observed on endophyte-free Schedonorus 
phoenix (‘E- Fescue’), endophyte-infected S. phoenix (‘E+ Fescue’) and Poa pratensis 
(‘Bluegrass’) in each climate change treatment. Heated (‘H’) plots received an increase in 
temperature of 3ºC, day and night, year-round. Precipitation (‘P’) plots received a 30% 
increase in long-term mean annual precipitation applied during the growing season. Plots 
designated as ‘HP’ received both treatments and control (‘C’) plots were exposed to 
ambient temperatures and precipitation. 

Treatment Species 
E- Fescue E+ Fescue Bluegrass 

Num. 
Aphids 

Num. 
Plants 

Num. 
Aphids 

Num. 
Plants 

Num. 
Aphids 

Num. 
Plants 

C 3 36 2 26 9 100 
H 11 48 6 30 17 100 

HP 4 48 4 30 12 100 
P 4 41 0 24 7 100 
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Table C2.2. Model comparisons with DIC values for models describing virus infection in 2009.  Treatments include 
increased heat (‘H’), increased precipitation (‘P’), and increased heat x precipitation (‘HP’). Heated plots received an increase 
in temperature of 3ºC, day and night, year-round. Precipitation (‘Precip’) plots received a 30% increase in long-term mean 
annual precipitation applied during the growing season. Plots designated as ‘Heat x Precip’ received both treatments. Species 
include “blue” (Kentucky Bluegrass, Poa pratensis), “dallis” (Dallisgrass, Paspalum dilatatum), “goose” (Goosegrass, 
Eleusine indica) and “pos” (endophyte-infected Tall Fescue Schedonorus phoenix).The posterior mean of the deviance minus 
the deviance of the posterior means (pD) is an approximation of the true number of parameters and is used to calculate the 
Deviance information criteria (DIC). DIC is an estimate of expected predictive error (lower deviance is better). 

 

  

 Model pD DIC 
1 P+ H+ HP + blue + dallis + goose + pos + blueH + dallisH + gooseH + posH + blueP + dallisP  

+ gooseP + posP + blueHP + dallisHP + gooseHP + posHP 
23.1 325.4 

2 P+ H+ HP + blue + dallis + goose + pos + blueH + dallisH + gooseH+ posH + blueP + dallisP  
+ gooseP + posP 

19.3 319.3 

3 P+ H+ HP + blue + dallis + goose + pos + blueH + dallisH + gooseH + posH 15.0 311.1 
4 P+ H+ HP + blue + dallis + goose + pos + blueP + dallisP + gooseP + posP 15.2 313.6 
5 P+ H+ HP + blue + dallis + goose + pos 11.1 306.6 
6 P+ H+  blue + dallis + goose + pos 9.9 304.8 
7 P+H+HP 7 317.9 
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Table C2.3. Models of aphid presence compared based on DIC values. Treatments 
include increased heat (‘H’), increased precipitation (‘P’), increased heat and 
precipitation (‘HP’), and endophyte infection (‘speciespos’). The posterior mean of the 
deviance minus the deviance of the posterior means (pD) is an approximation of the true 
number of parameters and is used to calculate the Deviance information criteria (DIC). 
DIC is an estimate of expected predictive error (lower deviance is better). 

 

  

Model pD DIC 
1 P + H + speciespos + HP + speciesposP + speciesposH + speciesposHP 10.3 84.4 
2 P + H + speciespos + HP + speciesposP + speciesposH 9.8 87.3 
3 P + H + speciespos + HP + speciesposP 9.1 86.2 
4 P + H + speciespos + HP + speciesposH 8.9 85.3 
5 P + H + speciespos + HP 8.3 84.5 
6 P + H + speciespos 7.2 83.2 
7 P + H + HP 7.2 82.9 
8 P + H 6.0 81.3 
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C3. Full Statistical Models 

Frequentist models. A binomial model was fit with the function ‘lmer’ of the lme4 package 
(Bates and Maechler 2009). The random effects variance and standard deviation due to each 
hexagon was not properly estimated using this method (all estimates are essentially zero) for 
2009 community level data (Table C3.1) and aphid abundance data (Table C3.3). 

Table C3.1. Summary for model of virus infection described by heat, precipitation or host 
species 
Generalized linear mixed model fit by the Laplace approximation  
Formula: cbind(y, n - y) ~ H * P * species + (1 | hex)  
   Data: new.dat1  
   AIC   BIC logLik deviance 
 150.4 203.6  -54.2    108.4 
Random effects: 
 Groups Name        Variance   Std.Dev.   
 hex    (Intercept) 3.5406e-13 5.9503e-07 
Number of obs: 93, groups: hex, 20 
 
Fixed effects: 
                            Estimate Std. Error z value Pr(>|z|)     
(Intercept)                -1.670684   0.250065  -6.681 2.37e-11 *** 
Hhi                        -1.003464   0.442892  -2.266   0.0235 *   
Phi                        -0.275226   0.387872  -0.710   0.4780     
species2Blue                0.517996   0.530878   0.976   0.3292     
species2Dallis              0.518001   0.530878   0.976   0.3292     
species2Goose               0.397730   0.495367   0.803   0.4220     
species2Pos Fescue          0.048817   0.370646   0.132   0.8952     
Hhi:Phi                     0.822970   0.608410   1.353   0.1762     
Hhi:species2Blue            1.211688   0.783496   1.547   0.1220     
Hhi:species2Dallis          1.175311   0.728035   1.614   0.1064     
Hhi:species2Goose           0.330525   0.871755   0.379   0.7046     
Hhi:species2Pos Fescue      0.655897   0.604946   1.084   0.2783     
Phi:species2Blue            0.540602   0.755927   0.715   0.4745     
Phi:species2Dallis         -0.276835   0.980128  -0.282   0.7776     
Phi:species2Goose           0.002254   0.653159   0.003   0.9972     
Phi:species2Pos Fescue      0.051260   0.549985   0.093   0.9257     
Hhi:Phi:species2Blue       -1.296564   1.099479  -1.179   0.2383     
Hhi:Phi:species2Dallis     -0.899508   1.579541  -0.569   0.5690     
Hhi:Phi:species2Goose      -0.763592   1.182826  -0.646   0.5186     
Hhi:Phi:species2Pos Fescue -0.721435   0.854113  -0.845   0.3983     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
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Table C3.2. Summary for model of Tall Fescue (Schedonorus phoenix) virus infection 
described by heat, precipitation, endophyte-infection status or year 
Generalized linear mixed model fit by the Laplace approximation  
Formula: cbind(y, n - y) ~ H * P * species * year + (1 | hex)  
   Data: new.dat2.TF  
   AIC   BIC logLik deviance 
 160.1 229.8 -55.05    110.1 
Random effects: 
 Groups Name        Variance Std.Dev. 
 hex    (Intercept) 0.065597 0.25612  
Number of obs: 120, groups: hex, 20 
 
Fixed effects: 
                                     Estimate Std. Error z value Pr(>|z|)     
(Intercept)                          -1.69134    0.27673  -6.112 9.85e-10 *** 
Hhi                                  -1.01829    0.47485  -2.144   0.0320 *   
Phi                                  -0.28291    0.42286  -0.669   0.5035     
speciesPos Fescue                     0.04937    0.37434   0.132   0.8951     
year2010                              0.17687    0.41886   0.422   0.6728     
year2011                             -0.20385    0.80370  -0.254   0.7998     
Hhi:Phi                               0.82157    0.65478   1.255   0.2096     
Hhi:speciesPos Fescue                 0.67877    0.60984   1.113   0.2657     
Phi:speciesPos Fescue                 0.05415    0.55435   0.098   0.9222     
Hhi:year2010                          0.78439    0.66596   1.178   0.2389     
Hhi:year2011                          1.88627    1.06057   1.779   0.0753 .   
Phi:year2010                         -0.12045    0.64022  -0.188   0.8508     
Phi:year2011                        -16.00949 2280.20132  -0.007   0.9944     
speciesPos Fescue:year2010           -0.08276    0.61182  -0.135   0.8924     
speciesPos Fescue:year2011           -0.88737    1.34242  -0.661   0.5086     
Hhi:Phi:speciesPos Fescue            -0.72132    0.86135  -0.837   0.4024     
Hhi:Phi:year2010                     -1.17916    1.01997  -1.156   0.2477     
Hhi:Phi:year2011                     14.60172 2280.20157   0.006   0.9949     
Hhi:speciesPos Fescue:year2010       -1.20523    1.00867  -1.195   0.2321     
Hhi:speciesPos Fescue:year2011        0.15921    1.64937   0.097   0.9231     
Phi:speciesPos Fescue:year2010       -0.23686    0.93635  -0.253   0.8003     
Phi:speciesPos Fescue:year2011       17.07624 2280.20172   0.007   0.9940     
Hhi:Phi:speciesPos Fescue:year2010    1.86125    1.49216   1.247   0.2123     
Hhi:Phi:speciesPos Fescue:year2011  -15.91917 2280.20219  -0.007   0.9944     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
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Table C3.3. Summary for model of aphid presence described by heat, precipitation, or their 
interaction 
Generalized linear mixed model fit by the Laplace approximation  
Formula: cbind(y, n - y) ~ P * H * species + (1 | hex)  
   Data: TF  
   AIC   BIC logLik deviance 
 41.78 56.76 -11.89    23.78 
Random effects: 
 Groups Name        Variance Std.Dev. 
 hex    (Intercept)  0        0       
Number of obs: 39, groups: hex, 20 
 
Fixed effects: 
                            Estimate Std. Error z value Pr(>|z|)     
(Intercept)                 -2.39789    0.60302  -3.976 6.99e-05 *** 
Phi                          0.17328    0.80041   0.216   0.8286     
Hhi                          1.18487    0.69395   1.707   0.0877 .   
speciesPos Fescue           -0.08702    0.95148  -0.091   0.9271     
Phi:Hhi                     -1.35815    1.01554  -1.337   0.1811     
Phi:speciesPos Fescue      -18.18778 5771.46059  -0.003   0.9975     
Hhi:speciesPos Fescue       -0.08625    1.10976  -0.078   0.9380     
Phi:Hhi:speciesPos Fescue   18.88711 5771.46067   0.003   0.9974     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
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Appendix D Supplementary Material for Chapter 5 

Dimensionalized Equations 

Dimensionalized differential equations describing the changes in abundances of the plant 

host ��4
�� , it’s mutualist ��5

��   and microbial enemy ��6
��  . Non-dimensionalization was 

undertaken to simplify the dimensionalized equations. Thus equations (2) were scaled by 

biomass and time. Doing so folded parameters 3* (pathogen modified for the interaction with 

plants) and � ) plant modifier for the interaction with pathogens) into larger non-dimensionalized 

parameters (Table 5.1a,b). 
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(2) 

Parameterization 

 Literature values were chosen based on studies that used the same species of host (Avena 

fatua), mycorrhizae (Glomus spp.) and/or pathogen (barley and cereal yellow dwarf viruses - 

BYDV). The value of the d parameter (plant respiration rate) was calculated from (Fredeen and 

Field 1995) in which A. fatua monoculture grown in phytocells at ambient CO2. The 

belowground respiration was reported in units µmol m-2 s-l but converted to nmol m-2 day-1. 

The fungal respiration rate ("'****) was calculated using data from (Staddon et al. 2003) in which 

carbon turnover in the extraradical mycelium was measured. Fungal respiration rate was 
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calculated as moles of carbon per hyphal density as a function of root biomass per rate of hyphal 

turnover and reported in units nmol m-2 day-1. The virus death rate ("2****) was calculated using 

data from (Eweida et al. 1988) in which the concentration of BYDV virus particles was 

measured over time. Virus death rate was calculated as the exponential decay (B 	  C DE�F�G�
FH  

�  ) of 

virus concentration.  To obtain "2****, coefficients were extracted from a linear model fit to the log 

ratios of virus concentration (the instantaneous lambda). The per fungal biomass increase in 

resource uptake (-*) is the instantaneous uptake rate of 32P from the soil reported in (Newman and 

Ritz 1986). The per plant effect on fungal growth (,)) is evaluated as the density of hyphae 

divided by the amount of carbon from the plant. This value was obtained from (Jakobsen and 

Rosendahl 1990) in units (mg C dm -2 h -1) and converted to g C m-2 by adjusting the rate to 

account for the amount of time the experiment was run and converting mg C to g C. 

 Two parameters were calculated from a greenhouse experiment. The resource uptake rate 

of the plant in absence of a mutualist (+)) was evaluated as the maximum growth rate of the plant. 

This value was obtained by using growth values over time and logistics. Specifically, we 

evaluated the log of the ratio of the longest leaf lengths of plants without mycorrhizae at the end 

of the experiment to the longest leaf lengths at the beginning of the experiment by the longest 

leaf length at the beginning of the experiment. The slope of this line represents the instantaneous 

rate of growth or the maximum growth rate of the plant (+)). Resource gained as a function of 

plant density (0)) was also calculated from the same greenhouse experiment. This value was 

calculated by multiplying the host photosynthetic capacity by its leaf area ratio for plants 

infected with virus and associating with mycorrhizae. 
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Greenhouse experimental design and treatments 

One pathogen system which has been explored more fully is the influence of Barley and 

Cereal Yellow Dwarf Viruses (B/CYDVs) on the conversion of pacific grasslands from native 

perennials to invasive annuals (Malmstrom et al. 2005b, Borer et al. 2007). B/CYDVs are a 

group of aphid-vectored generalist viral pathogens that infect over 150 crop and noncrop grasses 

(D'Arcy 1995, Halbert and Voegtlin 1995). Infection is systemic and localized to the phloem 

where it causes necrosis and disruption of carbohydrate translocation (Irwin and Thresh 1990, 

D'Arcy 1995). This induces many physiological host responses including: stunted plant growth 

(Malmstrom et al. 2005a) , reduced root/shoot ratio (Kolb et al. 1991) and reduced longevity.   

In January 2008 a five month experiment was conducted factorially manipulating 

arbuscular mycorrhizal fungi (mycorrhizal and no-mycorrhizal) and virus (infected and 

uninfected). For this experiment we used the Eurasian annual host plant Avena fatua. This host 

plant was chosen because it is colonized by mycorrhizal fungi (Hu et al. 2005, Rillig 2006) and 

is a hosts for B/CYDVs (Malmstrom et al. 2005b). Experimental seed was hand-collected in 

Oregon. 

Individual plants were grown in D60 Deeppots (Steuwe and Sons Inc., Oregon, USA). 

Each plant received 600 g of steam sterilized soil in a mixture of one part soil (Metromix 400) 

with two parts of pure sand (by mass). To inoculate plants with mycorrhizal fungi, we added 50 

g of active mycorrhizal spore inoculum per pot. We used inoculum which consists of spores from 

the mycorrhizal fungal species Glomus intraradices, Gigaspora margarita, and Scutellospora 

heterogama. To control for potential changes in nutrient content due to the inoculum, control 

plants received 50 g of autoclave sterilized inoculum. All pots received 50 mL of microbial 
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filtrate solution filtrated by Whatman No. 1 filter paper from 10.0 g AM inoculum (in which 

mycorrhizal spores were removed) to correct for possible differences in the microbial community 

and mineral content between mycorrhizal and no mycorrhizal treatments. 

To infect plants with virus we used an isolate of Barley yellow dwarf virus – PAV 

obtained from a naturally infected Bromus vulgaris and maintained in Avena sativa cultivar 

Coast Black Oats. Virus inoculations occurred approximately two weeks after germination. 

Uninfected aphids of the species Rhopalosiphum padi (L.) were fed in petri dishes for 72 hours 

on infected plant tissue. Five infected aphids were then transferred to each experimental plant, at 

which time the plants were capped to prevent the spread of aphids. Aphids were allowed to feed 

on each experimental plant for 48 hours.  Plants were then sprayed with a horticultural oil 

solution (SAF-T-SIDE, ClawEl Specialty Products, Pleasant Plains, IL) to kill the aphids.  

Mock-inoculated plants received the same treatment but uninfected aphids were fed on 

uninfected tissue prior to being transferred to experimental plants. To test the plants for BYDV-

PAV infection and to quantify relative viral titer concentration, a compound indirect double-

antibody sandwich Enzyme-linked Immunosorbent Assay (ELISA; Agdia Inc., Elkhart, IN, 

USA) was used on aboveground tissue from experimental plants (Cronin et al. 2010).  

Plants were allowed to grow for five months and then harvested. Each week the longest 

leaf was measured. We measured photosynthetic capacity (Amax: µmol CO2 m-2 s-1) on the 

youngest, fully mature leaf of a ramet using a CIRAS-2 gas exchange analyzer fitted with a rice 

cuvette (PP Systems, MA, USA).  At harvest, plants were separated into above- and 

belowground portions. Both above- and belowground biomass was placed in a drying oven. 

Plants were dried at 60˚C for a minimum of 72 hours to obtain dry biomass values. Soils were 
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frozen and stored at -20˚C until they could be processed. The belowground fraction was washed 

to separate roots from soil. A subset of the roots from each individual were collected before 

drying, stained with trypan blue following the methods outlined in (Koske and Gemma 1989) 

and scored for intraradical AM colonization using the magnified gridline intersect method 

(McGonigle et al. 1990). Using this method the percentage of root length colonized by 

intraradical hyphae was measured using a compound microscope (200-400x). 

 

 

  



140 

 

REFERENCES 

Ainsworth, E. A. and S. P. Long. 2005. What have we learned from 15 years of free-air CO2 
enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy. 
New Phytologist 165:351-371. 

Alexander, H. M. 2010. Disease in Natural Plant Populations, Communities, and Ecosystems: 
Insights into Ecological and Evolutionary Processes. Plant Disease 94:492-503. 

Allan, E., J. van Ruijven, and M. Crawley. 2010. Foliar fungal pathogens and grassland 
biodiversity. Ecology 91:2572-2582. 

Arachevaleta, M., C. W. Bacon, C. S. Hoveland, and D. E. Radcliffe. 1989. Effect of the tall 
fescue endophyte on plant response to environmental stress. Agronomy Journal 81:83-90. 

Arnold, A. E. 2007. Understanding the diversity of foliar endophytic fungi: progress, challenges, 
and frontiers. Fungal Biology Reviews 21:51-66. 

Bale, J. S., G. J. Masters, I. D. Hodkinson, C. Awmack, T. M. Bezemer, V. K. Brown, J. 
Butterfield, A. Buse, J. C. Coulson, J. Farrar, J. E. G. Good, R. Harrington, S. Hartley, T. 
H. Jones, R. L. Lindroth, M. C. Press, I. Symrnioudis, A. D. Watt, and J. B. Whittaker. 
2002. Herbivory in global climate change research: direct effects of rising temperature on 
insect herbivores. Global Change Biology 8:1-16. 

Ball, D. M., J. F. Pedersen, and G. D. Lacefield. 1993. The Tall-Fescue Endophyte. American 
Scientist 81:370-379. 

Barrett, L., G., J. M. Kniskern, N. Bodenhausen, W. Zhang, and J. Bergelson. 2009. Continua of 
specificity and virulence in plant host-pathogen interactions: causes and consequences. 
New Phytologist 183:513-529. 

Bates, D. and M. Maechler. 2009. lme4: Linear mixed-effects models using S4 classes. 

Bennett, A. 2010. The role of soil community biodiversity in insect biodiversity. Insect 
Conservation and Diversity 3:157-171. 



141 

 

Bennett, A. E., J. Alers-Garcia, and J. D. Bever. 2006. Three-way interactions among mutualistic 
mycorrhizal fungi, plants, and plant enemies: Hypotheses and synthesis. American 
Naturalist 167:141-152. 

Bennett, A. E. and J. D. Bever. 2007. Mycorrhizal species differentially alter plant growth and 
response to herbivory. Ecology 88:210-218. 

Bever, J. D., S. C. Richardson, B. M. Lawrence, J. Holmes, and M. Watson. 2008. Preferential 
allocation to beneficial symbiont with spatial structure maintains mycorrhizal mutualism. 
Ecology Letters 12:13-21. 

Bezemer, T. M. and N. M. van Dam. 2005. Linking aboveground and belowground interactions 
via induced plant defenses. Trends in Ecology & Evolution 20:617-624. 

Borer, E. T., V. T. Adams, G. A. Engler, A. L. Adams, C. B. Schumann, and E. W. Seabloom. 
2009. Aphid fecundity and grassland invasion: invader life history is the key. Ecological 
Applications 19:1187-1196. 

Borer, E. T., P. R. Hosseini, E. W. Seabloom, and A. P. Dobson. 2007. Pathogen-induced 
reversal of native dominance in a grassland community. PNAS 104:5473-5478. 

Borer, E. T., E. W. Seabloom, C. E. Mitchell, and A. G. Power. 2010. Local context drives 
infection of grasses by vector-borne generalist viruses. Ecology Letters 13:810-818. 

Borowicz, V. A. 2001. Do arbuscular mycorrhizal fungi alter plant-pathogen relations? Ecology 
82:3057-3068. 

Breen, J. P. 1994. Acremonium Endophyte Interactions with Enhanced Plant Resistance to 
Insects. Annual Review of Entomology 39:401-423. 

Bronstein, J. L. 2001. The exploitation of mutualisms. Ecology Letters 4:277-287. 

Bronstein, J. L. and P. Barbosa. 2002. Multitrophic/multispecies mutualistic interactions: the role 
of non-mutualists in shaping and mediating mutualisms.in T. Tscharntke and B. A. 
Hawkins, editors. Multitrophic Level Interactions. Cambridge University Press, West 
Nyack, NY, USA. 



142 

 

Brosi, G. B. 2011. The response of tall fescue and its fungal endophyte to climate change. 
Masters’ Theses. University of Kentucky. Paper 126. 
http://uknowledge.uky.edu/gradschool_theses/126 

Brosi, G. B., R. L. McCulley, L. P. Bush, J. A. Nelson, A. T. Classen, and R. J. Norby. 2011. 
Effects of multiple climate change factors on the tall fescue-fungal endophyte symbiosis: 
infection frequency and tissue chemistry. New Phytologist 189:797-805. 

Bruno, J. F., J. J. Stachowicz, and M. D. Bertness. 2003. Inclusion of facilitation into ecological 
theory. Trends in Ecology & Evolution 18:119-125. 

Bryla, D. and D. Eissenstat. 2005. Respiratory costs of mycorrhizal associations. Pages 207–224 
in H. Lambers and M. Ribas-Carbo, editors. Plant respiration: from cell to ecosystem. 
Dordrecht, Kluwer. 

Burdon, J. J. and T. Elmqvist. 1996. Selective sieves in the epidemiology of Melampsora lini. 
Plant Pathology 45:933-943. 

Burdon, J. J., P. H. Thrall, and L. Ericson. 2006. The Current and Future Dynamics of Disease in 
Plant Communities. Annual Review of Phytopathology 44:19-39. 

Burnett, P. A. and C. C. Gill. 1976. The Response of Cereals to Increased Dosage with Barley 
Yellow Dwarf Virus. Phytopathology 66:646-651. 

Burton, G. W. and W. W. Hanna. 1995. Bermudagrass. Page 421 in R. F. Barnes, D. A. Miller, 
and C. J. Nelson, editors. Forages – An introduction to grassland agriculture. Iowa State 
University Press, Ames. 

Chakraborty, S. 2001. Grassland plant diseases: management and control. Pages 223-230 in 
Proceedings of the XIXth International Grassland Congress, San Pedro, Brazil. 

Chen, X. I. N., C. Tu, M. G. Burton, D. M. Watson, K. O. Burkey, and S. Hu. 2007. Plant 
nitrogen acquisition and interactions under elevated carbon dioxide: impact of 
endophytes and mycorrhizae. Global Change Biology 13:1238-1249. 



143 

 

Cheplick, G. P. 1998. Genotypic variation in the regrowth of Lolium perenne following clipping: 
effects of nutrients and endophytic fungi. Functional Ecology 12:176-184. 

Clasen, J. L. and J. J. Elser. 2007. The effect of host Chlorella NC64A carbon : phosphorus ratio 
on the production of Paramecium bursaria Chlorella Virus-1. Freshwater Biology 52:112-
122. 

Clay, K. 1990. Fungal Endophytes of Grasses. Annual Review of Ecology and Systematics 
21:275-297. 

Clay, K. 1998. Fungal endophyte infection and the population dynamics of grasses. . Pages 255-
285 in G. P. Cheplick, editor. Population Biology of Grasses. Cambridge University 
Press, UK. 

Clay, K. and C. Schardl. 2002. Evolutionary origins and ecological consequences of endophyte 
symbiosis with grasses. American Naturalist 160:S99-S127. 

Compant, S., M. G. A. van der Heijden, and A. Sessitsch. 2010. Climate change effects on 
beneficial plant-microorganism interactions. Fems Microbiology Ecology 73:197-214. 

Cronin, J. P., M. E. Welsh, M. G. Dekkers, S. T. Abercrombie, and C. E. Mitchell. 2010. Host 
physiological phenotype explains key epidemiological parameters. Ecology Letters 
13:1221–1232. 

D'Arcy, C. 1995. Symptomatology and host range of barley yellow dwarf. Pages 9-28 in C. 
D'Arcy and P. A. Burnett, editors. Barley Yellow Dwarf: 40 years of progress. APS 
Press, St. Paul MN. 

D'Arcy, C. and P. A. Burnett, editors. 1995. Barley Yellow Dwarf: 40 years of progress. APS 
Press, St. Paul, MN. 

Daft, M. J. and B. O. Okusanya. 1973. Effect of Endogone Mycorrhiza on Plant Growth. V. 
Influence of Infection on the Multiplication of Viruses in Tomato, Petunia and 
Strawberry. New Phytologist 72:975-983. 



144 

 

Delmiglio, C., M. N. Pearson, R. A. Lister, and P. L. Guy. 2010. Incidence of cereal and pasture 
viruses in New Zealand's native grasses. Annals of Applied Biology 157:25-36. 

Easton, H. S., C. K. Lee, and R. D. Fitzgerald. 1994. Tall fescue in Australia and New Zealand. 
New Zealand Journal of Agricultural Research 37:405-417. 

Elmi, A. A. and C. P. West. 1995. Endophyte infection effects on stomatal conductance, osmotic 
adjustment and drought recovery of tall fescue. New Phytologist 131:61-67. 

Eweida, M., P. Oxelfelt, and K. Tomenius. 1988. Concentration of virus and ultrastructural 
changes in oats at various stages of barley yellow dwarf virus infection. Annals of 
Applied Biology 112:313-321. 

Fabiszewski, A. M., J. Umbanhowar, and C. E. Mitchell. 2010. Modeling landscape-scale 
pathogen spillover between domesticated and wild hosts: Asian soybean rust and kudzu. 
Ecological Applications 20:582-592. 

Fabre, F. d. r., M. Plantegenest, L. Mieuzet, C. A. Dedryver, J.-L. Leterrier, and E. Jacquot. 
2005. Effects of climate and land use on the occurrence of viruliferous aphids and the 
epidemiology of barley yellow dwarf disease. Agriculture, Ecosystems &Environment 
106:49-55. 

Faeth, S. H. 2002. Are endophytic fungi defensive plant mutualists? Oikos 98:25-36. 

Faeth, S. H., L. P. Bush, and T. J. Sullivan. 2002. Peramine Alkaloid Variation in Neotyphodium-
Infected Arizona Fescue: Effects of Endophyte and Host Genotype and Environment. 
Journal of Chemical Ecology 28:1511-1526. 

Faeth, S. H. and W. F. Fagan. 2002. Fungal Endophytes: Common Host Plant Symbionts but 
Uncommon Mutualists. Integr. Comp. Biol. 42:360-368. 

Faeth, S. H. and E. Shochat. 2010. Inherited microbial symbionts increase herbivore abundances 
and alter arthropod diversity on a native grass. Ecology 91:1329-1343. 



145 

 

Ferriere, R., J. L. Bronstein, S. Rinaldi, R. Law, and M. Gauduchon. 2002. Cheating and the 
evolutionary stability of mutualisms. Proceedings of the Royal Society of London. Series 
B: Biological Sciences 269:773-780. 

Franzluebbers, A. J. and J. A. Stuedemann. 2005. Soil carbon and nitrogen pools in response to 
tall fescue endophyte infection, fertilization, and cultivar. Soil Science Society of 
America Journal 69:396-403. 

Fredeen, A. L. and C. B. Field. 1995. Contrasting leaf and ‘ecosystem’ CO2 and H2O exchange 
in Avena fatua monoculture: Growth at ambient and elevated CO2. Photosynthesis 
Research 43:263-271. 

Friesen, M. L., S. S. Porter, S. C. Stark, E. J. von Wettberg, J. L. Sachs, and E. Martinez-
Romero. 2011. Microbially Mediated Plant Functional Traits. Annual Review of 
Ecology, Evolution, and Systematics 42:23-46. 

Garrett, K. A., S. P. Dendy, E. E. Frank, M. N. Rouse, and S. E. Travers. 2006. Climate Change 
Effects on Plant Disease: Genomes to Ecosystems. Annual Review of Ecology Evolution 
and Systematics 44:489-509. 

Garrido, E., A. E. Bennett, J. Fornoni, and S. Y. Strauss. 2010. Variation in arbuscular 
mycorrhizal fungi colonization modifies the expression of tolerance to above-ground 
defoliation. Journal of Ecology 98:43-49. 

Gehring, C. and A. Bennett. 2009. Mycorrhizal Fungal-Plant-Insect Interactions: The Importance 
of a Community Approach ENVIRONMENTAL ENTOMOLOGY 38:93-102. 

Gehring, C. A. and T. G. Whitham. 2002. Mycorrhiza-herbivore interactions: population and 
community consequences. Pages 295-320 in M. van der Heijden and I. Sanders, editors. 
Mycorrhizal Ecology. Springer, New York. 

Gelman, A., Y.-S. Su, M. Yajima, J. Hill, M. G. Pittau, J. Kerman, and T. Zheng. 2012. Data 
Analysis Using Regression and Multilevel/Hierarchical Models. 

Gildow, F. E. 1983. Influence of Barley Yellow Dwarf Virus-Infected Oats and Barley on 
Morphology of Aphid Vectors. Phytopathology 73:1196-1199. 



146 

 

Gray, S. and F. E. Gildow. 2003. Luteovirus-aphid interactions. Annual Review of 
Phytopathology 41:539-566. 

Guy, P. L. 1992. Incidence of Acremonium lolii and lack of correlation with barley yellow dwarf 
viruses in Tasmanian perennial ryegrass pastures. Plant Pathology 41:29-34. 

Guy, P. L. and L. T. Davis. 2002. Variation in the incidence of Barley yellow dwarf virus and in 
the ability of Neotyphodium endophytes to deter feeding by aphids (Rhopalosiphum 
padi) on Australasian tall fescue. Australasian Plant Pathology 31:307-308. 

Halbert, S. E. and D. J. Voegtlin. 1995. Biology and taxonomy of vectors of barley yellow dwarf 
virus. Pages 217-256 in C. D'Arcy and P. A. Burnett, editors. Barley Yellow Dwarf: 40 
years of progress. APS Press, St. Paul, MN. 

Hall, G. 2006. Selective constraint and genetic differentiation in geographically distant barley 
yellow dwarf virus populations. Journal of General Virology 87:3067-3075. 

Hall, G. S., J. S. Peters, D. P. Little, and A. G. Power. 2010. Plant community diversity 
influences vector behaviour and Barley yellow dwarf virus population structure. Plant 
Pathology 59:1152-1158. 

Harrison, M. J. 2005. Signaling in the arbuscular mycorrhizal symbiosis. Annual Review of 
Microbiology 59:19-42. 

Hartley, S. E. and A. C. Gange. 2009. Impacts of Plant Symbiotic Fungi on Insect Herbivores: 
Mutualism in a Multitrophic Context. Annual Review of Entomology 54:323-342. 

Harvell, C. D., C. E. Mitchell, J. R. Ward, S. Altizer, A. P. Dobson, R. S. Ostfeld, and M. D. 
Samuel. 2002. Climate Warming and Disease Risks for Terrestrial and Marine Biota. 
Science 296:2158-2162. 

Hiatt, E. E., N. S. Hill, J. H. Bouton, and J. A. Stuedemann. 1999. Tall Fescue Endophyte 
Detection: Commercial Immunoblot Test Kit Compared with Microscopic Analysis. Crop 
Sci. 39:796-799. 



147 

 

Hogenhout, S. A., E. D. Ammar, A. E. Whitfield, and M. G. Redinbaugh. 2008. Insect vector 
interactions with persistently transmitted viruses. Annual Review of Phytopathology 
46:327-359. 

Hothorn, T., F. Bretz, P. Westfall, R. M. Heiberger, and A. Schuetzenmeister. 2010. 
Simultaneous Inference in General Parametric Models. 

Hu, S., J. Wu, K. O. Burkey, and M. K. Firestone. 2005. Plant and microbial N acquisition under 
elevated atmospheric CO2 in two mesocosm experiments with annual grasses. Global 
Change Biology 11:213-223. 

Hunt, M. G. and J. A. Newman. 2005. Reduced herbivore resistance from a novel grass–
endophyte association. Journal of Applied Ecology 42:762-769. 

IPCC. 2001. Climate Change 2001: The Scientific Basis. Cambridge University Press, 
Cambridge. 

IPCC. 2007. Climate Change 2007: Synthesis Report. Intergovernmental Panel on Climate 
Change, Geneva, Switzerland. 

Irwin, M. E. and J. M. Thresh. 1990. Epidemiology of Barley Yellow Dwarf - a Study in 
Ecological Complexity. Annual Review of Phytopathology 28:393-424. 

Jakobsen, I. and L. Rosendahl. 1990. Carbon flow into soil and external hyphae from roots of 
mycorrhizal cucumber plants. New Phytologist 115:77-83. 

Jani, A. J., S. H. Faeth, and D. Gardner. 2010. Asexual endophytes and associated alkaloids alter 
arthropod community structure and increase herbivore abundances on a native grass. 
Ecology Letters 13:106-117. 

Jensen, S. G. and C. J. D'Arcy. 1995. Effects of barley yellow dwarf on host plants. Pages 55-74 
in C. D'Arcy and P. A. Burnett, editors. Barley Yellow Dwarf: 40 years of progress. APS 
Press, St. Paul, MN. 

Jewiss, O. R. 1972. Tillering in grasses - it's significance and control*. Grass and Forage Science 
27:65-82. 



148 

 

Johnson, N. C., J. Wolf, and G. W. Koch. 2003. Interactions among mycorrhizae, atmospheric 
CO2 and soil N impact plant community composition. Ecology Letters 6:532-540. 

Johnson, N. C., J. Wolf, M. A. Reyes, A. Panter, G. W. Koch, and A. Redman. 2005. Species of 
plants and associated arbuscular mycorrhizal fungi mediate mycorrhizal responses to 
CO2 enrichment. Global Change Biology 11:1156-1166. 

Jones, R. A. C. 2009. Plant virus emergence and evolution: Origins, new encounter scenarios, 
factors driving emergence, effects of changing world conditions, and prospects for 
control. Virus Research 141:113-130. 

Klironomos, J. N., M. F. Allen, M. C. Rillig, J. Piotrowski, S. Makvandi-Nejad, B. E. Wolfe, and 
J. R. Powell. 2005. Abrupt rise in atmospheric CO2 overestimates community response in 
a model plant-soil system. Nature 433:621-624. 

Knapp, A. K., P. A. Fay, J. M. Blair, S. L. Collins, M. D. Smith, J. D. Carlisle, C. W. Harper, B. 
T. Danner, M. S. Lett, and J. K. McCarron. 2002. Rainfall Variability, Carbon Cycling, 
and Plant Species Diversity in a Mesic Grassland. Science 298:2202-2205. 

Kolb, F. L., N. K. Cooper, A. D. Hewings, E. M. Bauske, and R. H. Teyker. 1991. Effects of 
Barley Yellow Dwarf Virus on Root-Growth in Spring Oat. Plant Disease 75:143-145. 

Koricheva, J., A. C. Gange, and T. Jones. 2009. Effects of mycorrhizal fungi on insect 
herbivores: a meta-analysis. Ecology 90:2088-2097. 

Koske, R. E. and J. N. Gemma. 1989. A modified procedure for staining roots to detect VA 
mycorrhizas. Mycological Research 92:486-488. 

Lee, T. D., M. G. Tjoelker, D. S. Ellsworth, and P. B. Reich. 2001. Leaf gas exchange responses 
of 13 prairie grassland species to elevated CO2 and increased nitrogen supply. New 
Phytologist 150:405-418. 

Lehtonen, P. T., M. Helander, S. A. Siddiqui, K. Lehto, and K. Saikkonen. 2006. Endophytic 
fungus decreases plant virus infections in meadow ryegrass (Lolium pratense). Biology 
Letters 2:620-623. 



149 

 

Leuchtmann, A. 1992. Systematics, distribution, and host specificity of grass endophytes. 
Natural Toxins 1:150-162. 

Little, A. and C. Currie. 2009. Parasites may help stabilize cooperative relationships. BMC 
Evolutionary Biology 9:124. 

LoGiudice, K., R. S. Ostfeld, K. A. Schmidt, and F. Keesing. 2003. The ecology of infectious 
disease: Effects of host diversity and community composition on Lyme disease risk. 
Proceedings of the National Academy of Sciences of the United States of America 
100:567-571. 

Lunn, D. J., A. Thomas, N. Best, and D. Spiegelhalter. 2000. WinBUGS: A Bayesian modelling 
framework: Concepts, structure, and extensibility. Statistics and Computing 10:325-337. 

Luo, Y., S. Wan, D. Hui, and L. L. Wallace. 2001. Acclimatization of soil respiration to warming 
in a tall grass prairie. Nature 413:622-625. 

Mahmood, T., R. C. Gergerich, E. A. Milus, C. P. West, and C. J. Darcy. 1993. Barley Yellow 
Dwarf Viruses in wheat, endophyte-infected and endophyte-free tall fescue, and other 
hosts in Arkansas. Plant Disease 77:225-228. 

Malinowski, D. P., G. A. Alloush, and D. P. Belesky. 2000. Leaf endophyte Neotyphodium 
coenophialum modifies mineral uptake in tall fescue. Plant and Soil 227:115-126. 

Malinowski, D. P. and D. P. Belesky. 2000. Adaptations of Endophyte-Infected Cool-Season 
Grasses to Environmental Stresses: Mechanisms of Drought and Mineral Stress 
Tolerance. Crop Science 40:923-940. 

Malinowski, D. P. and D. P. Belesky. 2006. Ecological importance of Neotyphodium spp. grass 
endophytes in agroecosystems. Grassland Science 52:1-14. 

Malmstrom, C. M. and C. B. Field. 1997. Virus-induced differences in the response of oat plants 
to elevated carbon dioxide. Plant Cell and Environment 20:178-188. 



150 

 

Malmstrom, C. M., C. C. Hughes, L. A. Newton, and C. J. Stoner. 2005a. Virus infection in 
remnant native bunchgrasses from invaded California grasslands. New Phytologist 
168:217-230. 

Malmstrom, C. M., A. J. McCullough, H. A. Johnson, L. A. Newton, and E. T. Borer. 2005b. 
Invasive annual grasses indirectly increase virus incidence in California native perennial 
bunchgrasses. Oecologia 145:153-164. 

Malmstrom, C. M., R. Shu, E. W. Linton, L. A. Newton, and M. A. Cook. 2007. Barley yellow 
dwarf viruses (BYDVs) preserved in herbarium specimens illuminate historical disease 
ecology of invasive and native grasses. Journal of Ecology 95:1153-1166. 

McGonigle, T. P., M. H. Miller, D. G. Evans, G. L. Fairchild, and J. A. Swan. 1990. A New 
Method which Gives an Objective Measure of Colonization of Roots by Vesicular-
Arbuscular Mycorrhizal Fungi. New Phytologist 115:495-501. 

Meehl, G. A., F. Zwiers, J.-L. Evans, T. Knutson, and L. W. Mearns, Penny. 2000. Trends in 
Extreme Weather and Climate Events: Issues Related to Modeling Extremes in 
Projections of Future Climate Change. . Bulletin of the American Meteorological 
Society: 81:427-436. 

Mitchell, C. E. and A. G. Power. 2006. Disease dynamics in plant communities. Pages 58-72 in 
S. K. Collinge and C. Ray, editors. Disease Ecology: Community structure and pathogen 
dynamics. Oxford University Press, Oxford. 

Molofsky, J., J. D. Bever, and J. Antonovics. 2001. Coexistence under positive frequency 
dependence. Proceedings of the Royal Society of London. Series B: Biological Sciences 
268:273-277. 

Morris, W., F., J. Bronstein, L., and W. Wilson, G. 2003. Three-way coexistence in obligate 
mutualist-exploiter interactions: The potential role of competition. American Naturalist 
161:16. 

Morris, W. F., R. A. Hufbauer, A. A. Agrawal, J. D. Bever, V. A. Borowicz, G. S. Gilbert, J. L. 
Maron, C. E. Mitchell, I. M. Parker, A. G. Power, M. E. Torchin, and D. P. Vazquez. 
2007. Direct and interactive effects of enemies and mutualists on plant performance: A 
meta-analysis. Ecology 88:1021-1029. 



151 

 

Nault, L. R. 1997. Arthropod transmission of plant viruses: a new synthesis. Annals of the 
Entomological Society of America 90:521-541. 

Newman, E. I. and K. Ritz. 1986. Evidence on the pathways of phosphorous transfer between 
vesicular-arbuscular mycorrhizal plants New Phytologist 104:77-87. 

Newman, J. A. 2003. Climate change and cereal aphids: the relative effects of increasing CO2 
and temperature on aphid population dynamics. Global Change Biology 10:5-15. 

Piculell, B. J., J. D. Hoeksema, and J. N. Thompson. 2008. Interactions of biotic and abiotic 
environmental factors in an ectomycorrhizal symbiosis, and the potential for selection 
mosaics. Bmc Biology 6:11. 

Pieterse, C. M. J. and M. Dicke. 2007. Plant interactions with microbes and insects: from 
molecular mechanisms to ecology. Trends in Plant Science 12:564-569. 

Power, A. G. 2008. Community Ecology of Plant Viruses. Pages 15-26  Plant Virus Evolution. 
Springer Berlin Heidelberg. 

Power, A. G., E. T. Borer, P. Hosseini, C. E. Mitchell, and E. W. Seabloom. 2011. The 
community ecology of barley/cereal yellow dwarf viruses in Western US grasslands. 
Virus Research 159:95-100. 

Power, A. G. and A. S. Flecker. 2008. The role of vector diversity in disease dynamics. Pages 
30-47 in R. Ostfeld, F. Keesing, and V. Eviner, editors. Infectious Disease Ecology: 
Effects of Ecosystems on Disease and of Disease on Ecosystems. Princeton University 
Press, Princeton, NJ. 

Power, A. G. and S. M. Gray. 1995. Aphid transmission of barley yellow dwarf viruses: 
Interactions between viruses, vectors, and host plants. Pages 259-289 in C. D'Arcy and P. 
A. Burnett, editors. Barley Yellow Dwarf: 40 years of progress. APS Press, St. Paul, MN. 

Power, A. G. and C. E. Mitchell. 2004. Pathogen spillover in disease epidemics. The American 
Naturalist 164:S79-S89. 



152 

 

Pritchard, S. G., H. H. Rogers, S. A. Prior, and C. M. Peterson. 1999. Elevated CO2 and plant 
structure: a review. Global Change Biology 5:807-837. 

Rasmussen, S., A. Parsons, and J. Newman. 2009. Metabolomics analysis of the Lolium perenne-
Neotyphodium lolii symbiosis: more than just alkaloids? Phytochemistry Reviews 8:535-
550. 

Rasmussen, S., A. J. Parsons, S. Bassett, M. J. Christensen, D. E. Hume, L. J. Johnson, R. D. 
Johnson, W. R. Simpson, C. Stacke, C. R. Voisey, H. Xue, and J. A. Newman. 2007. 
High nitrogen supply and carbohydrate content reduce fungal endophyte and alkaloid 
concentration in Lolium perenne. New Phytologist 173:787-797. 

Rasmussen, S., A. J. Parsons, K. Fraser, H. Xue, and J. A. Newman. 2008. Metabolic Profiles of 
Lolium perenne Are Differentially Affected by Nitrogen Supply, Carbohydrate Content, 
and Fungal Endophyte Infection. Plant Physiology 146:1440-1453. 

Rillig, M. C. 2006. Climate change effects on fungi in agroecosystems. Pages 211-230 in P. C. 
D. Newton, R. A. Carran, G. R. Edwards, and P. A. Niklaus, editors. Agroecosystems in 
a Changing Climate. CRC Press. 

Rosenzweig, M. L. 1971. Paradox of Enrichment: Destabilization of Exploitation Ecosystems in 
Ecological Time. Science 171:385-387. 

Rosenzweig, M. L. and R. H. MacArthur. 1963. Graphical Representation and Stability 
Conditions of Predator-Prey Interactions. The American Naturalist 97:209. 

Rúa, M. A., E. C. Pollina, A. G. Power, and C. E. Mitchell. 2011. The role of viruses in 
biological invasions: friend or foe? Current Opinion in Virology 1:68-72. 

Saikkonen, K., P. Lehtonen, M. Helander, J. Koricheva, and S. H. Faeth. 2006. Model systems in 
ecology: dissecting the endophyte-grass literature. Trends in Plant Science 11:428-433. 

Saikkonen, K., S. Saari, and M. Helander. 2010. Defensive mutualism between plants and 
endophytic fungi? Fungal Diversity 41:101-113. 



153 

 

Saunders, M., A. E. Glenn, and L. M. Kohn. 2010. Exploring the evolutionary ecology of fungal 
endophytes in agricultural systems: using functional traits to reveal mechanisms in 
community processes. Evolutionary Applications 3:525-537. 

Schardl, C. L., A. Leuchtmann, and M. J. Spiering. 2004. Symbioses of grasses with seedborne 
fungal endophytes. Annual Review of Plant Biology 55:315-340. 

Schardl, C. L. and T. D. Phillips. 1997. Protective Grass Endophytes: Where are they from and 
where are they going? Plant Disease 81:430-438. 

Schonbeck, F. 1979. Endomycorrhizas in relation to plant diseases. Pages 271-280 in Soil-borne 
plant pathogens 

International Symposium on Factors Determining the Behavior of Plant Pathogens in Soil: 
International Congress of Plant Pathology : Munich, Germany. Academic Press. 

Seabloom, E. W., E. T. Borer, A. Jolles, and C. E. Mitchell. 2009. Direct and indirect effects of 
viral pathogens and the environment on host fitness: invasive grasses in California. 
Journal of Ecology. 

Seabloom, E. W., E. T. Borer, C. E. Mitchell, and A. G. Power. 2010. Viral diversity and 
prevalence gradients in North American Pacific Coast grasslands. Ecology 91:721-732. 

Smith, F. A., E. J. Grace, and S. E. Smith. 2009. More than a carbon economy: nutrient trade and 
ecological sustainability in facultative arbuscular mycorrhizal symbioses. New 
Phytologist 182:347-358. 

Smith, R. D. 2009. Plant-mycorrhiza percent infection as evidence of coupled metabolism. 
Journal of Theoretical Biology 259:172-175. 

Smith, S. E., I. Jakobsen, M. GrÃ¸nlund, and F. A. Smith. 2011. Roles of Arbuscular 
Mycorrhizas in Plant Phosphorus Nutrition: Interactions between Pathways of 
Phosphorus Uptake in Arbuscular Mycorrhizal Roots Have Important Implications for 
Understanding and Manipulating Plant Phosphorus Acquisition. Plant Physiology 
156:1050-1057. 

Smith, S. E. and D. Read. 2008. Mycorrhizal Symbiosis. 3rd edition. Elsevier, London. 



154 

 

Smith, V. 2007. Host resource supplies influence the dynamics and outcome of infectious 
disease. Integrative and Comparative Biology 47:310-316. 

Smith, V. H., T. P. Jones, and M. S. Smith. 2005. Host nutrition and infectious disease: an 
ecological view. Frontiers in Ecology and the Environment 3:268-274. 

Soetaert, K., T. Petzoldt, and R. W. Setzer. 2011. General solvers for initial value problems of 
ordinary differential equations (ODE), partial differential equations (PDE), differential 
algebraic equations (DAE), and delay differential equations (DDE). 

Spiegelhalter, D. J., N. G. Best, B. P. Carlin, and A. Van Der Linde. 2002. Bayesian measures of 
model complexity and fit. Journal of the Royal Statistical Society: Series B (Statistical 
Methodology) 64:583-639. 

Staddon, P. L., C. B. Ramsey, N. Ostle, P. Ineson, and A. H. Fitter. 2003. Rapid Turnover of 
Hyphae of Mycorrhizal Fungi Determined by AMS Microanalysis of 14C. Science 
300:1138. 

Stowe, K. A., R. J. Marquis, C. G. Hochwender, and E. L. Simms. 2000. The evolutionary 
ecology of tolerance to consumer damage. Annual Review of Ecology and Systematics 
31:565-595. 

Strauss, S. Y. and A. A. Agrawal. 1999. The ecology and evolution of plant tolerance to 
herbivory. Trends in Ecology & Evolution 14:179-185. 

Strauss, S. Y. and R. E. Irwin. 2004. Ecological and evolutionary consequences of multispecies 
plant-animal interactions. Annual Review of Ecology Evolution and Systematics 35:435-
466. 

Stuedemann, J. A. and C. S. Hoveland. 1988. Fescue endophyte: History and impact on animal 
agriculture. Journal of Production Agriculture 1:39-44. 

Suding, K. N., I. W. Ashton, H. Bechtold, W. D. Bowman, M. L. Mobley, and R. Winkleman. 
2008. Plant and microbe contribution to community resilience in a directionally changing 
environment. Ecological Monographs 78:313-329. 



155 

 

Sullivan, T. J., J. Rodstrom, J. Vandop, J. Librizzi, C. Graham, C. L. Schardl, and T. L. Bultman. 
2007. Symbiont-mediated changes in Lolium arundinaceum inducible defenses: evidence 
from changes in gene expression and leaf composition. New Phytologist 176:673-679. 

Tang, J. J., J. Chen, and X. Chen. 2006. Response of 12 weedy species to elevated CO2 in low-
phosphorus-availability soil. Ecological Research 21:664-670. 

Treseder, K. K. 2004. A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and 
atmospheric CO2 in field studies. New Phytologist 164:347-355. 

Tylianakis, J. M., R. K. Didham, J. Bascompte, and D. A. Wardle. 2008. Global change and 
species interactions in terrestrial ecosystems. Ecology Letters 11:1351-1363. 

Umbanhowar, J. and K. McCann. 2005. Simple rules for the coexistence and competitive 
dominance of plants mediated by mycorrhizal fungi. Ecology Letters 8:247-252. 

van Dam, N. M. and M. Heil. 2011. Multitrophic interactions below and above ground: en route 
to the next level. Journal of Ecology 99:77-88. 

Van Der Putten, W. H. 2009. A multitrophic perspective on functioning and evolution of 
facilitation in plant communities. Journal of Ecology 97:1131-1138. 

Vandenkoornhuyse, P., S. L. Baldauf, C. Leyval, J. Straczek, and J. P. W. Young. 2002. 
Extensive Fungal Diversity in Plant Roots. Science 295:2051. 

Voinnet, O. 2005. Induction and suppression of RNA silencing: insights from viral infections. 
Nature Review Genetics 6:206-220. 

Vorwerk, S., S. Somerville, and C. Somerville. 2004. The role of plant cell wall polysaccharide 
composition in disease resistance. Trends in Plant Science 9:203-209. 

Ward, J., I. T. Baldwin, M. M. Caldwell, G. Heldmaier, R. B. Jackson, O. L. Lange, H. A. 
Mooney, E. D. Schulze, U. Sommer, J. R. Ehleringer, M. Denise Dearing, and T. E. 
Cerling. 2005. Evolution and Growth of Plants in a Low CO2. Pages 232-257 in M. M. 
Caldwell, G. Heldmaier, R. B. Jackson, O. L. Lange, H. A. Mooney, E. D. Schulze, and 



156 

 

U. Sommer, editors. A History of Atmospheric CO2 and Its Effects on Plants, Animals, 
and Ecosystems. Springer-Verlag. 

White, J. 1994. Taxonomic relationships among the members of the Balansieae (Clavicipitales). 
Pages 3-20 in C. W. Bacon and J. F. White, editors. Biotechnology of endophytic fungi 
of grasses. CRC Press, Boca Raton, FL. 

Wright, I. J., P. B. Reich, M. Westoby, D. D. Ackerly, Z. Baruch, F. Bongers, J. Cavender-Bares, 
T. Chapin, J. H. C. Cornelissen, M. Diemer, J. Flexas, E. Garnier, P. K. Groom, J. Gulias, 
K. Hikosaka, B. B. Lamont, T. Lee, W. Lee, C. Lusk, J. J. Midgley, M.-L. Navas, U. 
Niinemets, J. Oleksyn, N. Osada, H. Poorter, P. Poot, L. Prior, V. I. Pyankov, C. Roumet, 
S. C. Thomas, M. G. Tjoelker, E. J. Veneklaas, and R. Villar. 2004. The worldwide leaf 
economics spectrum. Nature 428:821-827. 

Zhou, X., J. N. Perry, I. P. Woiwod, R. Harrington, J. S. Bale, and S. J. Clark. 1997. Temperature 
Change and Complex Dynamics. Oecologia 112:543-550. 

 
 
 


