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ABSTRACT 

SUSHMITA JHA: Role of NLRs in neuroinflammation, demyelination and 

remyelination in the CNS                                                                              

(Under the direction of Dr Jenny P-Y Ting) 

Sterile inflammation in the brain is recognized as a key component of many neurological 

diseases including multiple sclerosis (MS), amyotrophic lateral sclerosis, Parkinson’s 

disease, and Alzheimer’s disease. An understanding of the mechanisms by which 

neuroinflammation occurs and the molecular mediators involved in this process is necessary 

for identification of potential therapeutic targets. The NLR gene family members have 

emerged as important regulators of immunity and inflammation due to their genetic linkage 

to several human immunologic diseases. In this study, our goal was to ascertain the role of 

NLR dependent cellular pathways in neuroinflammation, demyelination and remyelination. 

An in vivo cuprizone-induced mouse model of demyelination and remyelination along with 

ex vivo primary cell culture assays were utilized.  Mice deficient in NLRP3 (Nlrp3
-/-

), IL-1

(IL-1
-/-

), caspase-1 (casp1
-/-

), P2X7R (P2X7R
-/-

), IL-18 (IL-18
-/-

) and NLRC4 (Nlrc4
-/-

) were 

used for these studies. 
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1.1 ABSTRACT 

The nucleotide-binding, leucine rich repeat (NLR) proteins are a recently discovered 

family of intracellular pathogen and danger signal sensors. NLRs have emerged as important 

contributors to innate immunity in animals. Although the physiological relevance of these 

genes remains elusive, gene mutations in some of the family members leads to several 

autoinflammatory diseases. The association of mutations in NLR genes to autoinflammatory 

diseases indicates an important function of these genes in inflammation in vivo. This chapter 

reviews the NLR gene family, the NLR inflammasomes, role of inflammasome forming NLR 

proteins in inflammatory diseases and the possible use of some of these NLRs as 

pharmacological targets.   
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1.2 THE NLR GENE FAMILY 

The nucleotide-binding, leucine rich repeat (NLR) gene family is an evolutionarily 

conserved family of genes, important for immune function in animals  (1). There are more 

than 20 NLR genes in humans.  

The NLR gene family members were discovered by their structural similarity to the 

MHC class II gene master regulator, the class II transactivator (CIITA) (2). NLR genes 

encode cytoplasmic proteins with a tripartite domain structure that is conserved with a 

subclass of plant disease resistance genes. This tripartite structure consists of a variable N 

terminal effector domain, a central nucleotide binding domain (NBD) and a variable number 

of C terminal leucine rich repeats (LRRs). Figure 1.1 provides the domain organization of 

some of the NLRs.  

FIGURE 1.1 Domain Organization of NLRs.

NLR proteins have a conserved tripartite structure consisting of an N-terminal effector domain, a central 

nucleotide binding domain (NBD) and a variable number of C-terminal leucine rich repeats (LRRs). The 

following abbreviations have been used here: PYR, pyrin domain; CARD, caspase activating and recruitment 

domain; BIR, baculovirus inhibitor of apoptosis repeat; TE, transcription enhancer and FIIND, function to find 

domain.   
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The NLRs are responsible for rapid sensing of pathogen-associated molecular 

patterns (PAMPs) such as bacterial cell wall components; lipopolysaccaride (LPS), 

lipoproteins and flagellin (3-7), and bacterial and viral nucleic acids(3, 8). In addition, NLRs 

also sense danger associated molecular patterns (DAMPs) such as ATP (9), uric acid (10, 

11), amyloid -  (12), hyaluronan and heparan sulfate (13). Recognition of PAMPs and 

DAMPs by NLR proteins can result in assembly of a caspase-1 activating multi-protein 

complex referred to as the “inflammasome” (14). This is similar to the cytoplasmic multi-

protein complexes assembled for activation of caspase-9 and caspase-8 referred to as the 

apoptosome (containing Apaf-1) and the death-inducing signaling complex (Fas/CD95-

DISC) respectively (15-17). The protein components of the caspase activating platforms are 

present as inactive monomers that oligomerize on exposure to the activating PAMP or 

DAMP signal. Inflammasome formation results in cleavage of caspase-1 from its inactive pro 

protein form to its active mature form. This active caspase-1 then processes the cleavage of 

pro-IL-1  and pro-IL-18 to IL-1  and IL-18, respectively. While IL-1  and IL-18 are the 

most widely studied targets of caspase-1 two recent studies have identified more than 70 new 

targets of caspase-1 ranging from chaperones, cytoskeletal and translation machinery, 

glycolysis and immune proteins (18, 19).  Both IL-1  and IL-18 are proinflammatory 

cytokines.  Release of proinflammatory cytokines and chemokines recruits immune cells 

(such as macrophages/microglia, B cells and T cells) to the site of infection or injury leading 

to phagocytosis of the pathogen or  removal of danger signal, release of antimicrobial 

compounds and inflammation, resulting in resolution of infection and/or cell death. The three 

well known inflammasomes, the NLRP1, NLRP3 and NLRC4 inflammasome complexes and 
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their key component proteins will be discussed in some detail here. Figure 1.2 depicts the 

triggering PAMPs and DAMPs and key component proteins of the four inflammasomes 

discussed here. 

1.3 THE NLR INFLAMMASOMES 

The NLRP3 inflammasome: One of the NLR genes, NLR family, Pyrin-domain 

containing 3 (NLRP3, also Cryopyrin, Nalp3, PYPAF1, CIAS1) is critical for processing of 

caspase-1 and consequently the proinflammatory cytokines interleukin-1beta (IL-1 ) and 

interleukin-18 (IL-18) from their inactive pro- forms to their mature active form (20). In the 

presence of bacterial products such as bacterial RNA (8, 21), certain toxins such as; nigericin 

(Streptomyces hygroscopicus) and maitotoxin (marine dinoflagellates), cellular danger 

signals such as ATP (9), uric acid crystals (10), hyaluronan and heparan sulfate (13, 22) and 

amyloid-  (12), environmental danger signals such as  asbestos and silica (23, 24) and alum 

and its adjuvants (23, 25) NLRP3 forms a multi-protein complex with the adaptor protein 

apoptosis-associated speck-like protein containing a CARD (ASC) (20) and pro-caspase-1 

referred to as the NLRP3 inflammasome. Association of NLRP3 with ASC is required for 

recruitment of pro-caspase-1 (26).  The CARD domain of ASC is utilized to recruit pro-

caspase-1by CARD-CARD interactions, thus leading to processing of pro-caspase1 to active 

caspase-1. Caspase-1 is in turn critical for processing and release of IL-1  and IL-18 (27).
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FIGURE 1.2 The NLR Inflammasomes.

In response to pathogen-associated molecular patterns (PAMPs) or damage-associated molecular 

patterns (DAMPs) the NLRs are activated to form multi-protein caspase activating platforms referred to as 

inflammasomes. The NLRP1 inflammasome when activated by muramyl dipeptide or anthrax lethal toxin can 

recruit pro-caspase-1 via direct CARD-CARD interactions and cause its autocatalytic cleavage to mature 

caspase-1. The activated caspase-1 can then process IL-1  and IL-18 from their inactive pro-protein to mature 

active forms. The NLRP3 inflammasome is activated in response to several PAMPs and DAMPs including but 

not restricted to nucleic acids (8, 21, 28, 29), LPS (8), lipooligosaccharide (30), muramyl dipeptide (31), ATP 

(9), uric acid crystals (10), hyaluronan and heparan sulfate (22) and amyloid-  (12), asbestos and silica (23, 24). 

NLRP3 forms a multi-protein inflammasome complex with the adaptor protein apoptosis-associated speck-like 

protein containing a CARD (ASC) and pro-caspase-1. Association of NLRP3 with ASC is required for 

recruitment of pro-caspase-1. The CARD domain of ASC is utilized to recruit pro-caspase-1 by CARD-CARD 

interactions, thus leading to processing of pro-caspase-1 to active caspase-1. Caspase-1 is in turn critical for 

processing and release of IL-1  and IL-18. The NLRC4 inflammasome is a cytosolic sensor of flagellin and 

pathogens such as Salmonella typhimurium, Shigella flexneri and Legionella pneumophila (3-7, 26, 32).

NLRC4 forms a homo-oligomeric inflammasome with caspase-1.  The C-terminal 35 amino acid fragment of 

flagellin is sensed by NAIP5 leading to a NAIP5 dependent cell death while full length flagellin induces NAIP5 

independent but NLRC4 dependent cell death and IL-1  release (33).  

The NLRP1 inflammasome: The human NLR family, Pyrin-domain containing 1

(NLRP1, also NALP1, CARD7, DEFCAP, CLR17.1) inflammasome was the first caspase-1 

activating inflammasome to be identified (34). There is only 1 NLRP1 gene in humans in 

contrast to 3 paralogs in mice; Nlrp1a, Nlrp1b, Nlrp1c (35). The NLRP1 protein in humans 
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consists of an N terminal pyrin domain, central; NBD, NBD associated domain (NAD), LRR, 

and function to find (FIIND) domains, and a C terminal CARD domain. The mouse 

counterparts vary in structure from the human protein; Nlrp1a lacks the N terminal pyrin 

domain, Nlrp1b lacks both the pyrin and NAD domains and Nlrp1c lacks all but the NBD 

and LRR domains. Initial studies on NLRP1 using cell extracts suggested that the NLRP1 

inflammasome in humans consisted of NLRP1, caspase-1, caspase-5 (not present in mice) 

and ASC (36, 37). Further studies revealed that even though the presence of ASC is not 

required for processing of caspase-1 by the NLRP1 inflammasome it does augment this 

function (38). The mouse Nlrp1b inflammasome is activated in response to Bacillus 

anthracis (39) and this activation is attributable to the anthrax lethal toxin. Faustin et al.

utilized a cell-free system with recombinant NLRP1 inflammasome components to show a 

two step mechanism of inflammasome assembly and caspase-1 activation in response to the 

peptidoglycan component muramyl dipeptide (MDP) (38). Subsequently, Hsu et al. showed 

that MDP stimulation of macrophages leads to association of NLRP1 with NOD2 (39). Gel 

filtration experiments revealed a complex consisting of NLRP1, NOD2 and caspase-1.  

Moreover, Bacillus anthracis infection also induces NOD2 and caspase-1 dependent IL-1

secretion. These results suggest the existence of a NLRP1 and NOD2 containing 

inflammasome, and the potential for MDP to activate both NLRP1 and NOD2.  However 

there is no data to show that MDP binds to either NLRP1 or NOD2, thus how MDP activates 

this pathway is unclear.

The NLRC4 inflammasome: NLR family, Caspase Recruitment domain containing 

4 (NLRC4, also IPAF, CLAN, CARD12) is a cytosolic sensor of flagellin and flagellated 

pathogens such as Salmonella typhimurium (5, 26) and Legionella pneumophila (3) and non-
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flagellated pathogens such as Shigella flexneri (7) and Pseudomonas aeruginosa (32).

NLRC4 forms a homo-oligomeric inflammasome with caspase-1 (26). NLRC4 was shown to 

be highly expressed in human brain, bone marrow and the human monocytic cell line THP-1 

by RT-PCR (40). Initial characterization of NLRC4 in human tissues and cell lines 

demonstrated its direct association with the CARD domain of procaspase-1 through CARD-

CARD interactions (40, 41). This interaction can cause autocatalytic processing of 

procaspase-1 to Caspase-1 (40). A constitutively active NLRC4 could cause autocatalytic 

processing of procaspase-1 leading to caspase-1 dependent apoptosis in transfected cells (40). 

In macrophages, activation of the NLRC4 inflammasome by cytoplasmic flagellin leads to 

caspase-1 activation and IL-1  release (4, 5, 26).  NLRC4 can interact directly with 

procaspase-1 through CARD-CARD interaction, however direct interaction of ASC with 

NLRC4 has not been demonstrated.  Nonetheless, ASC-deficient macrophages show 

defective caspase-1 activation and IL-1  release in response to Salmonella, Shigella and 

Pseudomonas infection indicating that the function of NLRC4 is ASC-dependent (7, 26, 32).

The NAIP5 inflammasome:  NLR apoptosis-inhibitory protein 5 (NAIP5 also 

BIRC1, NLRB1) is also a cytosolic sensor of flagellin. While the human genome has one 

Naip5 gene, there are 7 paralogs of NAIP, Naip1-7, in mice (42). Based on co-

immunoprecipitation studies utilizing over-expressed Myc-tagged NAIP and HA- tagged 

NLRC4 in HEK293 cells, these two proteins can co-associate, suggesting that they can be 

part of the same caspase-1 activating inflammasome (43). Recently, Lightfield et al. reported 

a novel role of NAIP5 in inflammasome activation in response to the C-terminus of flagellin 

and Legionella pneumophila infection (33). Interestingly, while transduction of macrophages 

with a C-terminal 35 amino acid fragment of flagellin led to NAIP5-dependent cell death, 
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full length flagellin induced NAIP5 independent but NLRC4 dependent cell death and IL-1

release. Moreover, since NLRC4 can sense some non-flagellated bacteria (7, 32) this might 

point to a mechanism for differential sensing of bacteria via regulation of inflammasome 

components. However, NAIP5 has no caspase domain, and it needs NLRC4 to activate pro-

caspase 1.  Thus NAIP5 appears to possess NLRC4 dependent and independent functions. 

1.4 THE NLR INFLAMMASOME END PRODUCTS

Caspase-1, IL-1  and IL-18:  Activation of the NLRP1, NLRP3 and NLRC4 

inflammasomes leads to processing of inactive pro-caspase-1 to active caspase-1. Caspase-1 

is an inflammatory caspase whose activation by the inflammasomes leads to its processing of 

the proinflammatory cytokines IL-1  and IL-18. Caspase-1 levels are significantly increased 

in peripheral blood mononuclear cells from MS patients (44). Moreover, caspase-1 is known 

to contribute to the pathology of EAE (45, 46).

IL-1  (Interleukin-1 ) is a 17kDa proinflammatory cytokine that is essential for 

innate immune responses. IL-1  is released primarily by microglia and macrophages in the 

central nervous system (CNS). IL-1  promotes leukocyte infiltration by inducing expression 

of many cytokines, chemokines and adhesion molecules. The release of IL-1  also mobilizes 

neutrophils and other immune cells to help resolve infections and promote wound healing. 

Chronic release of IL-1  however, can be detrimental and cause skin rashes, inflammatory 

arthritis, and systemic fever. It is for this reason that IL-1  production is very tightly 

regulated at the levels of transcription, translation and release. IL-1  is produced as an 

inactive precursor that has to be cleaved by caspase-1 to generate the mature active form.  
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IL-18 (Interleukin-18) is an 18kDa member of the IL-1 family of cytokines. IL-18 is 

produced by several immune and non-immune cells including monocytes, macrophages, 

splenocytes, keratinocytes, microglia, macrophages and astrocytes (47-49). In the CNS, IL-

18 induces microglial production of proinflammatory cytokines such as IL-1 , TNF  and 

matrix metalloproteinases (MMPs). Extravasation of polymorphonuclear leukocytes (PMNs) 

and monocytes/macrophages is amplified by IL-18 dependent upregulation of intercellular 

adhesion molecule-1 (ICAM-1) on endothelial cells. 

1 .5 INFLAMMASOME NLRS AND INFLAMMATORY DISEASE:  

It has been recently proposed that NLR related inflammatory diseases can be 

classified into 3 categories based on mutations of core components of the inflammasome 

complexes (intrinsic inflammasomopathies), accessory or regulatory proteins upstream or 

downstream of the inflammasome complex (extrinsic inflammasomopathies) and disease 

resulting from aberrant activation of the inflammasome complex (acquired or complex 

inflammasomopathies) (50, 51). Table 1.2 provides a list of the disease associated mutations 

discussed in this section. 

Intrinsic inflammasomopathies: 

Cryopyrin-associated Periodic Syndromes (CAPS or cryopyrinpathies)- Autosomal 

dominant mutations in NLRP3 in humans leads to three autoinflammatory syndromes 

collectively referred to as Cryopyrin-associated Periodic Syndromes (CAPS or 

cryopyrinpathies) (52, 53 , 54-56). Gain of function mutations of NLRP3, cause a lowered 

activation threshold which leads to IL-1  secretion even in the absence of a stimulus in vitro

(34, 57). All CAPS are characterized by increased levels of IL-1  in the absence of infection.

CAPS consist of a spectrum of diseases ranging from the mild such as Familial Cold
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Autoinflammatory Syndrome (FCAS), to the intermediate such as Muckle Wells Syndrome 

(MWS) and the severe such as Chronic Infantile Neurological, Cutaneous and Articular 

syndrome (CINCA) also known as Neonatal-Onset Multisystem Inflammatory Disease

(NOMID). All three syndromes present with fever, urticaria-like rash and varying degrees of 

arthropathy and neurological manifestations (1, 58-60). Of the 3 CAPS, FCAS consists of the 

mildest symptoms including cold-induced urticaria and mild arthralgia.  MWS is 

intermediate with spontaneous urticaria (not cold-induced), sensorineural hearing loss, 

arthralgia and in some cases renal amyloidosis. CINCA is the most severe with spontaneous 

urticaria, deforming arthropathy, sensorineural hearing loss, and chronic aseptic meningitis. 

 In 2001 Hoffman et al, sequenced regions of chromosome 1q44, this region was 

known to contain mutations that lead to FCAS and MWS (61). This screening approach led 

to the discovery of 4 distinct mutations in exon 3 of a 9 exon gene that segregated with the 

disorder in 3 families with FCAS and 1 family with MWS. This gene is now referred to as 

NLRP3. NLRP3 is a cytoplasmic protein that is expressed in monocytes, macrophages, 

granulocytes, dendritic cells, non-keratinized epithelial cells, osteoblasts, uroepithelial cells, 

and T and B cells (62, 63). NLRP3 is composed of 3 distinct domains the N terminal pyrin 

domain (PYD), the central nucleotide binding domain (NBD), and the C terminal leucine- 

rich repeats (LRRs). All 84 of the disease associated mutations lie within exon 3 which 

encodes the central NBD of NLRP3 (64). The PYD of NLRP3 is essential for homotypic 

interactions with PYD domain of other proteins. The NBD is thought to be involved in 

oligomerization of NLRP3 to form the inflammasome complex. The LRR domain is 

suggested to mediate interaction with intracellular or extracellular PAMPs or DAMPs albeit 

no evidence has been reported.   Several studies reported the role of NLRP3 in response to 
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bacterial RNA, dsRNA, viral RNA, uric acid crystals, TLR ligands and ATP in Nlrp3-

deficient mice (8-10, 20, 21). Recently, the Strober and Hoffman labs separately generated 

mice expressing mutations corresponding to human FCAS or MWS mutations (65, 66). 

Meng et al. generated a mouse expressing the R258W mutation corresponding to the human 

R260W substitution (66). Brydges et al. generated two lines of mice carrying the A350V and 

L351P mutations corresponding to the human A352V and L353P mutations downstream of a 

LoxP –flanked Neomycin resistance cassette in reverse orientation (65). When these mice 

were crossed with Cre recombinase expressing mice they would express the mutated NLRP3 

protein in all tissues (CreZ), in myeloid cells only (CreL), or after exposure to tamoxifen 

(CreT).  The mice generated by both studies developed severe cutaneous lesions associated 

with inflammatory cell infiltrates, recapitulating some of the urticaria-like skin lesions in 

MWS patients. Interestingly, both studies could recapitulate human disease by either 

expressing mutant NLRP3 only in myeloid cells (65) or by generation of bone marrow 

chimeras with the mutant R258W protein in bone marrow cells (66). Moreover, both groups 

found that the disease phenotype was only partially dependent on IL-1  and was dependent 

on the expression of mutated NLRP3 in antigen presenting cells and not in T cells.

Vitiligo – This is an autoimmune disease resulting from destruction of melanocytes 

causing patches of depigmented skin in patients. Vitiligo patients are at a higher risk for 

development of other autoimmune diseases such as rheumatoid arthritis, diabetes, lupus and 

thyroid disease.  Fine scale association analyses of patients with vitiligo identified Nlrp1

variants that are associated with development of vitiligo alone (67). The mechanism by 

which NLRP1 leads to skin hypopigmentation in vitiligo remains unknown.  
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NLR Mutation(s) 

(Amino acid change) 

Disease 

association 

Reference 

NLRP3 A439V, V198M, E627G, A352V FCAS and MWS (61) 

R260W, D303N, T348M, A439T, and G569R FCAS and MWS (58) 

F575S, Q306L, T436N, H358R, M662T, D303N, 

F309S

CINCA (62) 

L264H, D303N, A374N, Y570C, F523L CINCA (59) 

L353P FCAS (60) 

T348M, E354D, L632N,R260L, R260P, D303N, 

D303G, F309S, T405P, T436I, Y570C 

CINCA (56) 

NLRP1 L155H Vitiligo (67) 

NLRP12 R284X,  V635T Guadeloupe 

Variant Periodic 

Fever Syndrome 

(68) 

TABLE 1.1 Disease associated mutations in inflammasome forming NLRs  

Extrinsic inflammasomopathies: 

Extrinsic inflammasomopathies are diseases arising from defects in NLR proteins that are not 

part of an inflammasome complex or from defects in NLR protein associated proteins.

Familial Mediterranean fever (FMF) - FMF is one of the most common 

autoinflammatory diseases. It affects individuals of Mediterranean ancestry and the carrier 

rates can be as high as 1 in 3 (69).  FMF is characterized by acute attacks of fever and 

inflammation of the joints (arthritis), skin (pustular skin disease), pleura (pleuritis) or 

peritoneum (peritonitis) (70). These episodes may last 12-72 hours to days. FMF is clinically 

divided into 2 sub types: type 1 is characterized by short episodes of peritonitis, synovitis, 

pleuritis, pericarditis and meningitis while type 2 is characterized by amyloidosis. Before the 

development of therapy, amyloidosis frequently led to renal failure by age 40. 

   Segregation analyses of families manifesting FMF symptoms led to the discovery 

that FMF is a single-gene recessive disorder with incomplete penetrance (51). Further 

linkage studies established the FMF susceptibility locus to the short arm of chromosome 16. 
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All genes within the 200-kb region were screened for disease associated mutations which led 

to the discovery of the Mediterranean fever (MEFV) gene. MEFV consists of 10 exons 

covering 15kb of DNA which encodes a 781 amino acid protein called pyrin.  

Pyrin is expressed in peritoneal and synovial fibroblasts, granulocytes, dendritic cells 

and monocytes (71, 72).  Pyrin is composed of four domains: the N terminal pyrin domain 

and 3 C terminal domains including- a B box zinc finger domain (B-box), an  helical coiled 

coil domain (CC) and a B30.2 (PRYSRPY) domain. The B-box domain is necessary and 

sufficient for interactions with the proline serine threonine phosphatase interacting protein 

(PSTPIP1) (73). The B-box can also act as an intramolecular inhibitor by binding to the PYD 

domain and thus inhibiting pyrin interactions with ASC which occur via PYD-PYD 

interactions (74). The CC domain is required for homotrimer formation during the ASC 

pyroptosome formation (74).   The B30.2 domain plays a role in interaction with the NBD of 

NLRP3 (75). Pyrin can also bind to caspase-1 via its B30.2 domain thus reducing caspase-1 

activation (75, 76).

Mice expressing a truncated form of pyrin produce increased amounts of caspase-1 

and IL-1  in response to stimuli such as a LPS and IL-4 (77). Most mutations associated with 

FMF in humans affect the B30.2 domain however; the contributions of these to the clinical 

disease remain uncertain (75).     

Recent studies utilizing the human monocytic cell line, THP1, have suggested that 

PSTPIP1 interaction with pyrin can induce pyrin interaction with ASC leading to formation 

of a pyroptosome complex which can cause procaspase-1 cleavage to active caspase-1 (74, 

78).
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Crohn’s disease and Ulcerative colitis- Crohn’s disease (CD) and ulcerative colitis 

(UC) are collectively referred to as inflammatory bowel disease (IBD). IBD constitutes 

chronic disease of the gastrointestinal tract with unknown etiology. The prevalence of UC 

and CD are between 150-200 per 100,000 in western countries (79).  Though the etiology 

remains unknown both genetic predisposition and intestinal microflora are known to 

contribute to the pathology.

UC is characterized primarily by pathology of the colon, though the rectum is 

involved in 95% of the patients. Inflammation is limited to the mucosa and consists of 

continuous but variable severity of ulceration, edema and hemorrhage along the length of the 

colon. Acute and chronic inflammation is characterized by infiltration of PMNs and 

mononuclear cells, crypt abscesses, distortion of the mucosal glands and goblet cell 

depletion.

In contrast to UC, CD can affect any part of the gastrointestinal tract from the 

oropharynx to the perianal area. The common locations in decreasing order are the ileocecal 

region, followed by the terminal ileum, diffuse small bowel and colon. The pathology 

consists of small superficial ulcers over a Peyer’s patch and focal chronic inflammation that 

can extend to the submucosa and can lead to granuloma formation.  

Even though, mononuclear cells from the lamina propria of UC and CD patients show 

enhanced TNF, IL-6 and IL-1 secretion (80), no NLR gene has been implicated in the 

pathology of UC yet.  Inheritance of CD was known to be linked to chromosome 16. Using 

linkage and genetic association analyses two groups simultaneously discovered that 

mutations in NOD2 gene showed strongest linkage to CD (81, 82).
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NOD2 is expressed primarily by myeloid lineage cells. The NOD2 protein has two N-

terminal CARD domains , a central NBD domain and 10 C terminal LRRs. NOD2 interacts 

with RICK/RIP2, via CARD-CARD interactions, to activate the NF-  and mitogen-

activated protein (MAP) kinase signaling pathways (83-86). The NBD domain has ATP-

binding activity and the LRRs mediate intracellular recognition of bacterial cell wall 

component MDP by an unknown mechanism (87).  While most CD mutations are found in 

the NOD2 gene, three mutations in the C-terminal account for 80% of the NOD2 associated 

CD patients.

The mechanisms by which CD mutations lead to inflammatory bowel disease remain 

largely unknown. Thus far, the results obtained from animal studies vary with the cell types 

under study. BMDMs from mice with a CD associated NOD2 mutation exhibit increased NF-

 activity and IL-1  in response to MDP (86). This is consistent with increased NF-

activation in lamina propria of CD patients (88) however, PBMCs from these patients show 

decreased activation in response to MDP (89, 90).  Another study utilizing MDP activation of 

NOD2 showed a down regulation of multiple TLR induced responses (91). This may provide 

a possible mechanism for increased susceptibility to intestinal inflammation following 

exposure to gut microflora.  

NOD2 is not the only gene involved in innate immunity that is also involved with 

CD. More than 30 genetic disease susceptibility factors associated with CD have been 

identified in humans such as several autophagy related genes such as ATG16L1 and Irgm.

Mice deficient in Atg16L1 exhibit abnormalities in granule exocytosis from their Paneth 

cells, similar to that seen in CD patients (92). Moreover these mice are also more susceptible 

to chemical-induced colitis in an IL-1  dependent manner (93).  Irgm deficient mice have a 
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defective capacity to clear intracellular pathogens (94, 95). These findings suggest a complex 

interplay between NOD2, autophagy genes and other immunity genes that could affect 

susceptibility to CD.

Blau syndrome- Blau syndrome is characterized by granulomatous uveitis, arthritis, 

and skin rashes with camptodactyly (flexion contractures of the fingers and toes) (96). Blau 

syndrome is caused by mutations in the NOD2 gene. In contrast to CD mutations that target 

the LRR, in Blau syndrome the mutations target the NBD of NOD2.  

Pyogenic Arthritis Pyoderma Gangrenosum and Acne syndrome (PAPA) – Patients

with PAPA syndrome manifest episodic destructive arthritis that may lead to periosteal 

proliferation and ankylosis. Skin manifestations range from severe cystic acne on the face, 

chest or back to pyoderma gangrenosum, an ulcerating skin condition that can be triggered 

by minor trauma. Linkage studies in patients with PAPA lead to chromosome 15q (97). 

Further studies lead to the discovery of two mutations within the gene encoding PSTPIP1.

PSTPIP1 is expressed in hematopoietic tissues including spleen and peripheral blood 

leukocytes (73). The PSTPIP1 protein contains a CIP4 domain, CC domain and a SH3 

domain. The CC and SH3 domains are utilized for interaction with the B-box domain of 

pyrin (73). Mutations in PSTPIP1 lead to its hyperphosphorylation which increases its 

avidity for pyrin (73, 74). Cell lines co-transfected with PAPA-associated PSTPIP1 mutants 

and pyrin show increased IL-1  production (73).

Complex or acquired inflammasomopathies: 

Complex or acquired inflammasomopathies arise from aberrant inflammasome activation by 

environmental or endogenous stimuli. 
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Gout/ Pseudogout – Gout and pseudogout are rheumatic diseases caused by 

deposition of monosodium urate (MSU) and calcium pyrophosphate dihydrate (CPPD) 

crystals respectively, in joints and periarticular tissues.  This deposition can lead to acute or 

chronic inflammation of the joints. MSU and CPPD crystals increase caspase-1 activation 

and IL-1  release from murine macrophages in an NLRP3 and ASC dependent manner (10). 

The importance of IL-1  in gout studied in mice was further supported by the resistance of 

mice deficient in the IL-1 and TLR signaling adaptor protein MyD88 to MSU induced 

inflammation (98).  While TLR deficient mice still showed inflammation, the IL-1  receptor 

deficient mice did not thus indicating a specific role for IL-1 signaling in the pathology. 

Finally, bone marrow reconstitution experiments established that IL-1 receptor expression in 

non-hematopoietic cells and hematopoietic cells is required for initiation of inflammation 

upon MSU stimulation indicating IL-1  engagement to its receptor in this model.  

Alzheimer’s disease- Alzheimer’s disease (AD) is a neurodegenerative disease that 

affects more than 20 million individuals worldwide and approximately 4.5 million Americans 

(99). Amyloid-  oligomers lead to the pathogenic lesions in AD.  Amyloid-  oligomers and 

fibrils have been shown to signal via the TLRs leading to inflammatory responses (100). 

However, TLR signaling can also be neuroprotective since it aids in recruitment of T cells 

and enhances phagocytosis and clearance of amyloid  by microglia (101). NLR 

inflammasomes are known to trigger release of IL-1  and IL-18. These cytokines are 

upregulated in both brain and plasma of patients with AD (102-104). Amyloid  oligomers 

are known to be more potent inducers of IL-1  release than fibrillar amyloid . Moreover, 

transgenic Alzheimer’s mice express increased IL-1  staining in reactive astrocytes that 

surround the amyloid  plaques. Human brain autopsy studies from AD patients show 
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increased release of IL-1  from microglia in AD brain than normal brain after amyloid 

peptide stimulation (105).   

Halle et al., recently showed that, amyloid  protein when phagocytosed by human 

microglia could activate the Nlrp3 inflammasome and cause IL-1  release (12). Amyloid-

phagocytosis induces lysosomal destabilization and subsequent release of cathepsin B which 

leads to NLRP3 inflammasome activation. 

Asbestosis and Silicosis- Prolonged inhalation of asbestos and silica lead to two 

environmentally induced forms of pulmonary fibrosis referred to as asbestosis and silicosis 

respectively. Alveolar macrophages from individuals with prolonged exposure to asbestos 

exhibit enhanced IL-1  release (106). Moreover, Nlrp3-deficient mice show decreased IL-1

release in response to asbestos and silica (23, 24) indicating a role for NLRP3 in the immune 

response to asbestos and silica. Silica crystals once phagocytosed cause lysosomal damage 

leading to release of the lysosomal protease cathepsin B which can activate the cytoplasmic 

NLRP3 inflammasome. Inhibition of phagosomal acidification or cathepsin B impairs 

NLRP3 inflammasome activation (23).  In the bleomycin (BLM)-induced lung injury model 

of fibrosis, the NLRP3 inflammasome is triggered by local uric acid release in response to 

DNA damage and degradation after BLM injury suggesting that uric acid may be one of 

triggering DAMPs in lung fibrosis and disease (107).  

Guadeloupe Variant Periodic Fever Syndrome (FCAS2) - This syndrome was first 

reported in two families in Guadeloupe and thus named Guadeloupe Variant Periodic Fever 

Syndrome (68). Based on the similarities in symptoms to FCAS this syndrome is also 

referred to as FCAS2. Individuals with this syndrome present with cold-induced 
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heterogeneous symptoms including fever, arthralgia, myalgia, sensorineural hearing loss, 

aphthous ulcers and lymphadenopathy.  

Genetic studies in patients with Guadeloupe Variant Periodic Fever Syndrome 

revealed 2 missense mutations, 1 nonsense mutation and 1 deletion mutation, in the Nlrp12

gene. The nonsense mutation caused a truncation within the NBD domain of the protein 

while the splice mutation caused a deletion of the C-terminal LRRs.  NLRP12 was 

recognized as one of the few NLR proteins that can suppress NF-  signaling (108, 109).

Both the missense mutations in Nlrp12 caused a reduction in the suppression of NF-

signaling by NLRP12, while the NBD mutation caused a more significant impact on normal 

NLRP12 induced NF-  signaling as compared to the LRR mutation.

1. 6 NLRS IN THE BRAIN 

The initial characterization of NLRs lead to the belief that they were expressed in cells that 

contributed to innate immunity such as monocytes, macrophages and dendritic cells. 

However, recent research has confirmed that they are almost ubiquitously expressed 

throughout the human body. Interestingly, different inflammasome components show 

distinct, non-overlapping tissue and cellular distribution suggesting different roles in 

different cell types (110). Even though, the expression of the activating surface receptors 

upstream of the inflammasome (such as TLRs and purinergic receptors such as P2X7R) and 

downstream signaling molecules of inflammasome activation (such as IL-1 , IL-18 and 

caspase-1) is well characterized in the normal and diseased CNS, the expression of NLRs in 

the CNS remains largely uncharacterized. Some NLRs such as, NLRP2 (111), NLRP10 

(112), NLRX1 (113) and NAIP4 (113, 114) have been shown to be expressed in brain tissue 
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by RT-PCR however, their cellular localization remains undetermined. Here we present some 

recently published findings regarding the expression of NLRs in the brain.  A summary of the 

findings is reported in Table1.2. 

Microglia:  

Historically, the CNS was thought to be an immunologically privileged site because it 

lacks lymphatic drainage and is physically separated from the rest of the body by a blood 

brain barrier. However it is well established now that there is an intact immune surveillance 

of the CNS. Microglia are hematopoietic-derived, resident immune cells of the CNS. 

Microglia constitute approximately 10% of the cells in the CNS. During development 

microglia function to structure neuronal architecture while in adults they remain dormant 

until challenged. Once activated microglia perform several functions. They phagocytose 

microbes, apoptotic cells and debris, present antigens to T cells and release several cytokines 

and chemokines including but not restricted to IL-1 , TNF- , IL-18 and IL-6.  Several NLRs 

have been reported to be expressed in microglia including the MHC class II transactivator 

(CIITA) (115, 116), NOD2 and NLRP3.  The NLR adaptor protein ASC is also expressed by 

microglia (117). 

Astrocytes:

Astrocytes perform several diverse roles in the CNS. Astrocytes are essential to 

neuronal survival and maintaining the blood brain barrier. They provide nutrients such as 

glucose to neurons and play a key role in the repair and scarring process in the brain. 

Astrocytes have their foot processes in close contact with endothelial cells and therefore 

encounter T cells first. Astrocytes can act as APCs since IL-1 detected in the supernatants of 

cultured astrocytes is capable of T cell activation. Moreover, APCs express MHC class II 
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antigens and astrocytes can be made to express these by the T cell-derived factor IFN- .

Similar to microglia, astrocytes express a wide variety of NLRs including the MHC class II 

transactivator (CIITA) (116, 118), NOD1 and NOD2.The adaptor protein ASC is also 

expressed by astrocytes (117).

Neurons:

Even though most NLR proteins are expressed by cells that come in contact with 

antigens such as microglia, macrophages and astrocytes, recent research has shown that 

several NLR family members are expressed in neurons. Kummer et al. showed that NLRP1 

is expressed by pyramidal neurons (110).  Shortly after this discovery, a NLRP1 

inflammasome consisting of NALP1, ASC, caspase-1, caspase-11 (the rodent ortholog of 

human caspase-5) and the X-linked inhibitor of apoptosis protein (XIAP) was shown to be 

present in rat spinal cord motor neurons, utilizing protein co-immunoprecipitation and 

immunofluorescence experiments (117). NAIP1, an NLR involved in inhibition of cell death, 

is known to be predominantly expressed in neurons, macrophages and/or dendritic cells (119-

122).

Mature Oligodendrocytes:

Oligodendrocytes are the myelin-producing cells of the CNS. ODG progenitors give 

rise to mature myelinating oligodendrocytes. Very little is known about the expression of 

NLR proteins in oligodendrocytes or their progenitors. The NLR adaptor protein ASC is 

known to be expressed by mature oligodendrocytes (117). NLRP1 was recently shown to be 

expressed by oligodendrocytes in the mouse cerebral cortex by immunohistochemistry (110). 

These authors also found a nuclear expression of NLRP1 in their study.   
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NLR 

(HUGO 

nomenclature) 

Alternative or 

previous name(s) 

Expression References 

Apaf1 Brain {Yoshida, 1998 #233} 

CIIta MHC2TA, C2TA Microglia, Astrocytes {Stuve, 2002 #238}, 

{O'Keefe, 1999 #237} 

Naip1 Spinal Motor neurons {Holcik, 2000 #232} 

{Pari, 2000 #257} 

Naip4  Brain and Spinal cord 

 (by RT-PCR) 

{Gotz, 2000 #256} 

{Pari, 2000 #257} 

NLRC3 Nod3, CLR16.2 {Conti, 2005 #24} 

NLRC4 IPAF, Card12  Brain  

Cellular localization 

unknown 

{Poyet, 2001 #128} 

NLRP1 NALP1,CARD7, 

DEFCAP,CLR17.1 

Pyramidal neurons, 

oligodendrocytes 

{de Rivero Vaccari, 

2008 #234} 

NLRP10 NALP10,NOD8, 

PYNOD,CLR11.1 

Brain (by RT-PCR) {Wang, 2004 #258} 

NLRP12 Monarch1,PYPAF7,C

LR19.3 

NLRP2 NALP2, 

PYPAF2,CLR19.9 

Brain (by RT-PCR) {Kinoshita, 2005 #235} 

NLRP3 CIAS1, Cryopyrin, 

Pyrin 1,  

Microglia, macrophages 

 (by RT-PCR) 

NLRX1 Nod9, CLR11.3 Brain (by RT-PCR) 

Cellular localization 

unknown 

{Tattoli, 2008 #249} 

NOD1 CARD4, CLR7.1 Astrocytes {Sterka, 2006 #254} 

{Rodriguez-Martinez, 

2005 #251} 

NOD2  Astrocytes, microglia  {Rodriguez-Martinez, 

2005 #251; Chen, 2008 

#252; Guo, 2006 #253; 

Sterka, 2006 #254} 

ASC

(NLR Adaptor 

protein) 

Astrocytes, ODGs, 

microglia 

{de Rivero Vaccari, 

2008 #234} 

   

Table 1.2: Nomenclature and expression of NLR family members in the CNS
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1. 6 ENDOGENOUS INITIATORS OF INFLAMMASOME ACTIVATION IN THE 

BRAIN 

The NLR genes, particularly those associated with the inflammasome function, have 

gained much interest as sensors of pathogen associated molecular patterns (PAMPs) as well 

as damage-associated molecular patterns (DAMPs), however their roles in inflammatory 

disorders of the brain have not been extensively studied. This section lists the known and 

possible endogenous activation stimuli in the brain for the NLRP1, NLRP3 and NLRC4 

inflammasomes. 

ATP and K
+

efflux:

Extracellular ATP availability in the CNS is a balance of release and enzymatic 

degradation. Pathological events such as mechanical or metabolic stress, inflammation, 

cellular injury, or changes in ionic environment can stimulate ATP release leading to 

widespread increase in ATP concentrations that can activate P2X7Rs on microglia and 

astrocytes.  P2X7Rs are ATP gated ion channels that are activated at ATP concentrations of 

1mM whereas other P2X receptors are activated at concentrations of  100µM. P2X7Rs are 

expressed on monocytes, macrophages, microglia, astrocytes, dendritic cells, mast cells and 

lymphocyte populations (123-127). Continuous ligation of P2X7Rs causes their 

transformation into pores as large as 900 Da and consequently to cell death (128). Recent 

research utilizing macrophages from Nlrp3
-/-

 and C57Bl/6 mice has shown that pannexin-1 is 

critical for caspase-1 activation and IL-1  secretion in LPS-stimulated macrophages pulsed 

with ATP (9, 129). The role of P2X7Rs during inflammation in experimental autoimmune 

encephalomyelitis (EAE) remains controversial, one study utilizing the MOG 35-55 model of 

EAE on P2X7R
-/-

mice showed delayed EAE (130) while another study utilizing the same 
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model and bone marrow chimera studies suggested exacerbated EAE in P2X7R
-/-

mice (131) 

and in chimeras transplanted with P2X7R
-/-

mice bone marrow.  

ATP and K
+
 efflux have also been shown to be involved in cerebral injury. 

Intracellular K
+

is known to decrease during hypoxic and ischemic injury. Decrease in 

intracellular K
+
 activates the NLRP3 and NLRP1 but not the NLRC4 inflammasome(s) 

(132). K
+
 efflux is also involved in activation of NLRP1 inflammasome and release of IL-1

from cultured spinal motor neurons (117).  

Myelin:  

Myelin is a lipid rich membranous insulation of axons in the CNS and PNS that is 

critical for neuronal conduction. The protein content and structure of myelin varies between 

the CNS and PNS (133). Axonal damage, mature oligodendrocyte or Schwann cell death, 

leads to demyelination and accumulation of myelin debris. Clearance of myelin debris by 

macrophages and microglia is central to the repair mechanisms during demyelination in both 

central and peripheral nervous system diseases (134). Removal of myelin debris is critical for 

resolution of inflammation, further death of oligodendrocytes and differentiation of ODG 

progenitors for remyelination (135).  Myelin phagocytosis is an important feature of EAE as 

well as autoimmune diseases such as multiple sclerosis. Both CNS and PNS myelin proteins 

can cause murine macrophages to release proinflammatory cytokines such as TNF- , IL-12, 

and angiotensin converting enzyme (ACE) (136). Proinflammatory cytokines, such as TNF- 

 and IL-1  are known to induce mature oligodendrocyte death in vitro and in vivo leading to 

a vicious cycle of neuroinflammation. Myelin basic protein (MBP) is a protein common to 

both CNS and PNS myelin. Treatment of cultured oligodendrocytes with exogenous MBP 

causes a rapid and dose dependent death caused by rapid and sustained increase in 
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intracellular calcium (137). However, treatment of cultured oligodendrocytes with MBP 

peptides does not lead to their death, suggesting that the degradation of MBP during 

demyelination may prevent further cell death (137). Myelin debris can activate the 

complement system to form membrane attack complexes that disintegrate intact myelin (138, 

139). Moreover, myelin debris impairs remyelination in the adult rat CNS by inhibiting 

oligodendrocyte precursor cell differentiation (135, 140). There are several receptor 

complexes that are involved in myelin phagocytosis including scavenger receptors I and II 

(SR-A I/II), complement receptor 3 (CR-3), Galectin-3 and the Fc gamma receptor (Fc R)

(141-145).  It is possible that following myelin phagocytosis the NLRP3 inflammasome is 

activated and results in modulating phagocytosis by affecting expression or signal 

transduction of some of the receptors required for myelin phagocytosis.   

1. 7 NLRS IN NEUROINFLAMMATION 

Neuroinflammation is a key component of many neurological diseases including 

multiple sclerosis (MS), amyotrophic lateral sclerosis, Parkinson’s disease and Alzheimer’s 

disease (AD). An understanding of the mechanisms by which neuroinflammation occurs, and 

the molecular mediators involved in this process, is necessary for identification of potential 

therapeutic targets.

Role of NLRs in multiple sclerosis (MS): MS is an inflammatory neurodegenerative 

disease, that affects more than 2.5 million individuals worldwide (146). The severely 

debilitating symptoms of MS, including sensory and motor dysfunctions, and reduced 

cognitive function, result from demyelination and neuroinflammation of the central nervous 

system (CNS) (147-152). There are three different categories of experimental CNS 

demyelination- i) Toxin-induced (cuprizone, ethidium bromide and lysolecithin, ii) 
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autoimmune-induced (experimental autoimmune encephalomyelitis (EAE) and iii) virus-

induced (theiler’s murine encephalomyelitis virus (TMEV), Semliki forest virus (SFV)). The 

cuprizone induced and the EAE models will be discussed in detail here since this forms the 

basis of my thesis project. 

A. The cuprizone model of CNS demyelination and remyelination Copper

is an essential trace element that is required for a number of enzymes involved in the 

electron transport chain (cytochrome oxidase), skin and hair pigmentation 

(Tyrosinase), skeletal development (ascorbate oxidase), elastin and collagen cross 

linking (lysyl oxidase), and breakdown of dopamine, norepinephrine and epinephrine 

(monoamine oxidase). Inability to absorb copper in the hereditary disease, Menkes 

kinky hair syndrome, leads to skin, hair and connective tissue disturbances and 

progressive neurological deficits leading to lethality by age 3 (153, 154). Cuprizone 

(bis-cyclohexanone-oxaldihydrazone) is a copper chelator that when fed in the diet 

leads to copper deficiency and predictable CNS demyelination. Oligodendrocytes are 

particularly sensitive to low concentrations of cuprizone that leaves other cells 

unaffected (155, 156). The mechanism of cuprizone-induced demyelination remains 

unknown however, it has been hypothesized that cuprizone-induced disturbance in 

mitochondrial function and energy metabolism in oligodendrocytes leads to 

demyelination (156). Cuprizone causes disruption in formation of myelin by causing 

a reduction in myelin basic protein (MBP) and myelin-associated glycoproteins 

(MAG) (157).

Dr. Glenn K. Matsushima established the cuprizone-induced model of 

demyelination and remyelination in the C57Bl/6 strain to take advantage of the many 
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transgenic and knockout mice available on this genetic background. In this model 

mice are fed ground chow containing 0.2% cuprizone ad libidum for 6 weeks. At this 

low concentration cuprizone fed in the diet manifests CNS demyelination without 

systemic toxicity, as measured by gross liver histology and liver function tests for 

aspartate aminotransferase (AST), alanine aminotransferase (ALT), bilirubin, alkaline 

phosphatase and albumin (156, 158). During cuprizone treatment mice show lethargic 

movement, approximately 10% weight loss and altered gait (159). Demyelination and 

immune cell recruitment are monitored at the mid-line corpus callosum, at the fornix 

region. At the end of 5 weeks of cuprizone diet demyelination is complete but mice 

are fed cuprizone for one more week to ensure complete demyelination in all mice. 

After 6 weeks the mice are returned to normal chow to allow for remyelination. There 

is an increase in ODG progenitors during demyelination with maximum infiltration 

after 5 weeks of cuprizone treatment and by the end of 9 weeks of start of treatment 

remyelination is complete. Untreated control mice were maintained on a diet of 

normal pellet chow.   

There are several advantages of the cuprizone model: 1) It exhibits type III 

and IV MS neuropathology characterized by microglial infiltration and astrogliosis in 

the absence of T cell infiltrates thus allowing for study of the role of the innate 

immune system of the CNS in neuroinflammation 2) Both demyelination and 

remyelination follow a predictable time course 3) Cuprizone-induced demyelination 

occurs at major nerve tracts such as the corpus callosum and cerebellar peduncles that 

can be located easily and studied reproducibly. 4) Cuprizone can be easily 

administered through ground chow.  
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Figure 1.3. Schematic of cuprizone-induced model of CNS demyelination 

Our laboratory uses cuprizone to induce demyelination in the brain of C57Bl/6 mice as a model for MS. Mice 

are fed 0.2 % cuprizone mixed in ground chow ad libidum for 6 weeks after which they are returned to normal 

chow to allow for remyelination. Demyelination is maximal at 5 weeks of cuprizone treatment and 

remyelination is complete 10 weeks after starting treatment (4 weeks after cuprizone withdrawal).  

B. Experimental Autoimmune Encephalomyelitis (EAE) is a widely used 

model of MS. EAE is induced in mice by active priming with whole myelin proteins 

or specific myelin peptide epitopes in adjuvant. EAE can also be induced by adoptive 

transfer of myelin-specific CD4+ T cells. The symptoms of EAE are varied and can 

mimic different clinical manifestations of human MS. Unlike the cuprizone model, in 

EAE, the blood brain barrier is breached and myelin damage is T-cell mediated.      

During MS an autoimmune attack is triggered against myelin. This is characterized 

by recruitment and proliferation of microglia and astrocytes, release of pro-inflammatory 

cytokines such as IL-1 , IL-18 and TNF , demyelination, death of the myelin-producing 

ODG cells and axonal loss. IL-1  levels in the cerebrospinal fluid (CSF) of MS patients 
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correlates with disease susceptibility, severity and progression (160, 161). IL-1

immunoreactivity has been shown in activated microglia and macrophages during EAE in 

rats (162). Treatment with either soluble IL-1 receptor (sIL-1R) or IL-1 receptor antagonist 

(IL-1Ra) reduced clinical signs of EAE in rats (162, 163). IL-1  is cytotoxic to mature 

oligodendrocytes both in vivo and in vitro and causes proliferation of both microglia and 

astrocytes. Moreover, IL-18 levels are elevated in demyelinating cerebral lesions of MS 

patients and mice with a deletion of IL-18 (IL-18
-/-

) are resistant to EAE. Expression of IL-18 

and its receptor on oligodendrocytes is greater in brain tissue from patients with active MS 

than in patients with silent MS or from neuropathologically normal subjects. 

Role of NLRs in other diseases of the CNS: 

As described previously in this section mutations in NLRP3 in humans leads to three 

autoinflammatory syndromes - FCAS, MWS and CINCA that are collectively referred to as 

CAPS(52-56). All CAPS are characterized by increased levels of IL-1  in the absence of 

infection. CINCA patients often display chronic aseptic meningitis which is reversed after 

treatment with the IL-1  receptor antagonist Anakinra (164). This is indicative of a role for 

NLRP3 in neuroinflammation.   

1.8 NLRS IN REMYELINATION  

Regulation of oligodendrogenesis by progenitors is a potential therapeutic 

intervention for functional loss after demyelination in MS.  Previous studies have shown that 

remyelination is dramatically reduced in IL-1
-/-

mice in the cuprizone model (158). This 

reduction in remyelination was attributed to defect in generation of mature GSTpi
+
 mature 

ODG cells in spite of normal accumulation of NG2
+
 ODG progenitor cells (158). It was 

proposed that IL-1  regulates remyelination via regulation of IGF-1 which is critical for 
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conversion of ODG progenitors to mature oligodendrocytes (165).  Subsequent studies with 

transgenic mice that expressed IGF-1 constitutively, confirmed the role of IGF-1 in inhibition 

of mature ODG death by apoptosis (166, 167). Thus, it is possible that NLRs via their 

regulation of IL-1  and IL-18 processing and consequently IGF-1 can regulate 

oligodendrogenesis and remyelination. 

1. 9 NLRS AS POTENTIAL PHARMACOLOGICAL TARGETS IN 

NEURODEGENERATIVE DISEASES 

Activation of the various inflammasome complexes discussed here leads to activation 

of caspase-1 and subsequent production of the proinflammatory cytokines IL-1  and IL-18. 

While specific drugs interfering with inflammasome components are under development, 

there have been several clinical studies exploring the modification of the IL-1  pathway 

owing to its central role in several diseases. Modulation of IL-1  function has been 

approached at 3 levels: firstly, the release of IL-1  can be blocked by inhibition of upstream 

pathways (168, 169), secondly, the released cytokine can be neutralized or its receptor 

blocked to prevent downstream signaling (168, 170), and finally, the signaling mechanisms 

in the target cells can be blocked by disrupting further downstream signaling pathways (171-

176). A detailed list of the available drugs targeting the above mentioned steps of regulation 

for the IL-1  pathway along with their mechanism of action is provided in Table 1.2. There 

are some caveats in the use of some of the inhibitors since they can inhibit not only the IL-1

but also the IL-18 pathways. A better understanding of the underlying mechanism for each 

disease would provide more accurate targets.  Target specificity would also enable a more 

accurate control of pathology. CAPS symptoms remain the gold standard, which can be 

reversed by treatments of the IL-1 receptor antagonist Kineret
®

. While some of these drugs 
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are efficacious in relieving symptoms (170, 172-176), several others are in clinical trials or 

remain to be tested in humans awaiting further studies of their mode of action and/or effects 

in animal models of disease (168, 169).  

Action Target Drug  

(Company) 

Description Reference 

Suppression of IL-1

production: 

Caspase-1 inhibition Caspase-1 Pranalcasan 

(Aventis/Vertex) 

VX-740; VX-765 (168) 

IL-1

posttranslational  

processing 

Unknown CP424174, CP412245 

(Pfizer) 

Diarylsulphonyl 

urea

(168) 

IL-1  production 

inhibitor

Unknown CJ14877, CJ14897 

(Pfizer) 

Pyridine-2-

carboxylates

(168) 

Unknown LL-Z1217a 

(Pfizer) 

Terpenoid lactone (168) 

Suppression of IL-1

release:

    

IL-1  release 

inhibitors

Unknown CP424174  

(Pfizer) 

Diarylsulphonyl 

urea

(168)) 

Neutralization of 

secreted IL-1 :

    

IL-1  Anakinra  

(Kineret, Amgen) 

rhuIL-1Ra (168) 

IL-1 IL-1trap 

(Regeneron/Novartis) 

Human IL-

1R1:IgG1 protein 

(168) 

IL-1 CDP-484 

(Celltech)

PEGylated Antibody (168) 

Inhibition of IL-1R 

signal transduction: 

    

MyD88 inhibitors MyD88 † hydrocinnamoyl-l-

valyl pyrrolidine 

MyD88 mimic (70, 73) 

 † ST2825 

(Sigma-Tau) 

Peptidomimetic (172)  

IRAK-4 inhibitors IRAK-4 † Names unavailable Amides, 

imidazo[1,2-

a]pyridine 

compounds 

(76-78) 

† May also inhibit IL-18R and TLR signal transduction 

TABLE 1.3 Pharmacological inhibitors targeting IL-1  production, release or action   

1. 10 CONCLUDING REMARKS 

The association of the NLRs with several immunological diseases suggests a role for 

these proteins in both innate and adaptive immunity. Recent studies are beginning to unfold 

the role of this family in immune regulation and dysregulation however, a plethora of 
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questions remain unanswered.  Firstly how is the diversity of PAMPs and DAMPs sensed 

and differentiated from self molecules? Secondly how does such a wide range of symptoms 

in CAPS arise from mutations that are relatively clustered in the NBD of NLRP3? Thirdly is 

there a cross talk between the different inflammasome pathways and do they compensate for 

each other?  Finally what are the DAMPs and PAMPs that might activate the inflammasome 

pathways in complex immune diseases such as type II diabetes, multiple sclerosis and 

atherosclerosis? Considering the vibrant research in this field, significant progress is likely to 

resolve several of these issues. 



CHAPTER II 

NLRP3 REGULATES NEUROINFLAMMATION AND THE CLEARANCE OF MYELIN 

DEBRIS IN THE CNS 
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2.1 ABSTRACT 

Sterile inflammation is increasingly recognized as an important contributor to a host of CNS 

disorders however its regulation in the brain remains poorly understood.  NLRP3 is a key 

component of the inflammasome complex which also includes ASC and procaspase-1.  In the 

immune system, inflammasome formation is primarily triggered by membrane P2X7R

engagement leading to cleavage-induced maturation of caspase-1 and IL-1 /IL-18. This work 

shows that expression of the Nlrp3 gene was increased over 100 fold in a neurotoxin 

(cuprizone)-induced demyelination and neuroinflammation model.  Mice lacking the Nlrp3

gene exhibited reduced neuroinflammation, demyelination and oligodendrocyte loss in this 

model. This outcome is also observed for mice lacking caspase-1, while mice lacking IL-1

were indistinguishable from wild-type controls indicating that the Nlrp3-mediated function is 

independent of IL-1 . The absence of P2X7R reduced neuroinflammation but not 

demyelination suggesting that this pathway does not affect the latter.  Further analyses 

revealed that macrophages from Nlrp3
-/-

 and casp1
-/-

mice but not controls exhibited 

augmented capacity to phagocytize myelin and clear myelin debris.  This difference did not 

extend to latex beads or bacteria which agrees with the differential regulation of distinct 

phagocytosis pathways. These results suggest that NLRP3 plays an important role in a 

neurologic disease model by exacerbating CNS inflammation but also by a novel function 

evoking myelin clearance.  Thus the therapeutic inhibition of NLRP3 might not only reduce 

sterile CNS inflammation but also enhance the clearance of CNS debris which has broad 

implications for resolving other CNS diseases.    
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2.2 INTRODUCTION 

Sterile inflammation refers to inflammation that is not caused by microbial pathogens, 

and is recognized as a key component of many neurological diseases including multiple 

sclerosis (MS), Parkinson’s disease, and Alzheimer’s disease. MS results from 

neuroinflammation characterized by infiltration of microglia and astrocytes, enhanced 

expression of cytokines/chemokines, demyelination and axonal loss (148, 149). An 

understanding of the mechanisms by which neuroinflammation affects demyelination is 

necessary to identify potential therapeutic targets.      

Several families of innate immune receptors or sensors have been identified, with the 

NLR genes receiving significant attention due to their genetic linkage to human immunologic 

diseases and their role in immune regulation (1, 2). Among NLRs, NLRP3 represents a core 

component of a caspase-1-activating inflammasome complex, comprised of an NLR protein, 

the adaptor molecule ASC (Apoptosis associated Speck-like protein containing a CARD) and 

procaspase-1 (20, 177).  Activated caspase-1 in turn cleaves and activates over seventy 

substrates including the proinflammatory cytokines interleukin-1beta (IL-1 ) and IL-18 (18, 

19). NLRP3 forms an inflammasome in response to bacterial RNA and toxins (8, 21), ATP 

(9), uric acid (10), hyaluronan (22), amyloid-  (12), asbestos, silica (23, 24) and alum (23, 

25). Mutations in the human NLRP3 gene have been identified in dominantly-inherited 

autoinflammatory syndromes collectively referred to as CAPS (Cryopyrin-associated 

Periodic Syndromes) (56, 122) characterized by hyperactivation of the inflammasome 

complex and increased IL-1  (56, 164).  CAPS symptoms have been reversed by treatments 

with the IL-1 receptor antagonist Kineret
®

(178).  Although the role of NLRP3 in CAPS is 
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well known, its role in other inflammatory diseases, including CNS inflammation, is less 

understood.

In this study we utilized the cuprizone-induced mouse model of demyelination to 

evaluate the role of NLRP3 in sterile CNS inflammation.  This model has several advantages: 

1) It exhibits type III and IV MS neuropathology characterized by microglial infiltration and 

astrogliosis in the absence of T cell infiltrates (147); 2) it is easily induced by administering 

cuprizone through the chow; 3) the disease course follows a predictable time course, and 4) 

demyelination has a reproducible pathology involving major nerve tracts such as the corpus 

callosum and cerebellar peduncles that are easily located (156).  Using the cuprizone model, 

we studied mice deficient in genes encoding NLRP3 (Nlrp3
-/-

), caspase-1 (casp1
-/-

), IL-1

(IL-1
-/-

), IL-18 (IL-18
-/-

), and P2X7R (P2X7R
-/-

) as a way to examine the role of the NLRP3 

inflammasome complex in neuroinflammation and demyelination in vivo. We found a 

significant role for the NLRP3 inflammasome pathway in the activation of 

neuroinflammation, but we also found an additional function for this pathway in the 

clearance of myelin debris.
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2.3 MATERIALS AND METHODS 

Mice.

Nlrp3
-/-

mice were provided by Millennium pharmaceuticals through Drs. Fayaz 

Sutterwala and Richard Flavell (Yale University), and were further backcrossed to C57BL/6 

mice for a total of nine generations. Casp1
-/-

were provided by Dr. Richard Flavell. P2X7R
-/-

were obtained from Beverly Koller (UNC-CH). C57BL/6 mice (WT) were purchased from 

the National Cancer Institute (Bethesda, MD) and Jackson Research Labs (Bar Harbor, ME). 

All mice were 8-10 weeks old prior to the start of treatment. All animal procedures 

conducted were approved by the Institutional Animal Care and Use Committee of UNC at 

Chapel Hill.  IL-1
-/-

mice were kindly provided by Dr. David Chaplin (University of 

Alabama, Birmingham) (179). Breeder pairs for IL-18
-/-

mice were purchased from Jackson 

laboratories (Bar Harbor, ME) and bred in house to generate mice needed for our studies. 

Cuprizone treatment. 

  8-10 weeks old male mice were fed 0.2% cuprizone [oxalic 

bis(cyclohexylidenehydrazide)] (Aldrich, St. Louis, MI) mixed into ground chow ad libidum

for 6 weeks to induce progressive demyelination. Untreated control mice were maintained on 

a diet of normal pellet chow. During cuprizone treatment mice showed lethargic movement, 

weight loss (Fig 2.10), ruffled hair and altered gait as described earlier (158, 159)

Tissue preparation.

Mice were deeply anesthetized and intra-cardially perfused with phosphate-buffered 

saline (PBS) followed by 4% paraformaldehyde (PFA). Brains were removed, post-fixed in 

PFA, and embedded in paraffin. 5-µm coronal sections were cut at the fornix region of the 

corpus callosum. For frozen sections, mice were perfused and post-fixed as described earlier. 
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Brains were allowed to sink in 30% sucrose in PBS and snap frozen on dry ice in OCT. 5µm

and 20µm coronal sections were cut at the fornix region of the corpus callosum for 

immunohistochemistry (IHC) and in situ hybridization respectively. All analyses were 

restricted to the mid-line corpus callosum as described previously (158, 180, 181).

Staining.

To examine demyelination, paraffin sections were rehydrated through a graded series 

of alcohol washes and stained with Luxol fast blue-periodic acid-Schiff’s base (LFB-PAS; 

Sigma, St. Louis, MI) as described previously (158, 180, 181). Sections were read by three 

double-blinded readers and graded on a scale from 0 (complete myelination) to 3 (complete 

demyelination). Higher scores indicate greater pathology. For the detection of 

microglia/macrophages, tissue sections were rehydrated and permeabilized with 0.1% 

Triton/PBS for 20 min at room temperature and then incubated with Ricinus communis

agglutinin-1 (RCA-1) lectin (1:500, Vector, Burlingame, CA) at 37 °C for 1hr. Only RCA-1
+

cells with observable 4', 6’-diamidino-2-phenylindole (DAPI) stained nucleus were included

in the quantification.

Immunohistochemistry (IHC). 

IHC was performed on 5-µm paraffin embedded sections that were deparaffinized 

and rehydrated through alcohols as described earlier. For the detection of mature 

oligodendrocytes, the sections were processed by boiling in antigen unmasking solution 

(1:100, Vector, Burlingame, CA) for 13 min in a microwave. These sections were 

permeabilized with 0.1% Triton/PBS for 20 min and incubated with 2% normal goat serum 

in 0.1% triton-PBS for 20 min at room temperature. Subsequently, the sections were 

incubated with rabbit anti mouse polyclonal antibody anti- GST  (1:500, Stressgen, Ann 
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Arbor, MI) at 4°C overnight. Sections were then washed in PBS and incubated with the 

appropriate biotinylated antibody against primary antibody (1:100, Vector, Burlingame, CA) 

and texas red-conjugated avidin (1:500, Vector, Burlingame, CA). The sections were washed 

and incubated with Alexa Fluor conjugated 594.  To detect astrocytes, sections were 

incubated with 5% normal goat serum in 0.1% triton-PBS for 20 min at room temperature. 

Subsequently, the sections were washed and incubated with rabbit anti-cow monoclonal 

antibody (1:100, DAKO) and goat-anti-rabbit-fluorescein conjugated secondary antibody 

(1:100, Vector, Burlingame, CA).  For the detection of myelin basic protein (MBP) sections 

were permeabilized with 0.1% Triton/PBS for 10 min and incubated with 5% normal goat 

serum in 0.1% triton-PBS for 20 min at room temperature. Subsequently, the sections were 

incubated with mouse monoclonal antibody anti-MBP (1:1000, Steinberger) at 4°C 

overnight. Sections were then washed in PBS and incubated with anti-mouse IgG conjugated 

with texas red (1:1000, Vector, Burlingame, CA) for 45mins at room temperature.  For the 

detection of 2’, 3’-cyclic nucleotide phosphodiesterase (CNPase), the sections were 

processed by boiling in antigen unmasking solution (1:100, Vector, Burlingame, CA) for 13 

min in a microwave. These sections were permeabilized with 0.1% Triton/PBS for 20 min 

and incubated with 5% normal goat serum (NGS) in 0.1% Triton-PBS for 20 min at RT. 

Subsequently, the sections were incubated with chicken polyclonal antibody to CNPase 

(1:500, chemicon, Billerica, MA) at RT for 1h. Sections were then washed in PBS and 

incubated with rabbit polyclonal to chicken IgY biotin (1:500, Abcam, Cambridge, MA) for 

1h at RT. After PBS washes the sections were incubated with Alexa 594-conjugated avidin 

(1:500, Invitrogen) for 1h at RT. 
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Immunopositive cells with an observable DAPI stained nucleus were counted blindly 

twice. Cell counts are averages of at least 9 and up to 14 mice per time point.  

Imaging.

All cell counts are within the mid line of the corpus callosum, confined to an area of 

0.033 mm
2
. An Olympus BX-40 microscope with camera (optronics engineering) and Scion 

image acquisition software was used for taking images.   

Reverse transcription-PCR and quantitative real-time reverse transcription-PCR.

Total RNA was isolated from a dissected region of the brain containing the corpus 

callosum of wild-type and Nlrp3
-/ -

mice at several points during and after cuprizone 

treatment. RNA isolation was performed using Trizol reagent (Ambion) under RNase-free 

conditions (158). 

In situ Hybridization. 

3 mice per time point were perfused with PBS followed by a solution of 4% PFA.

20-µm OCT embedded frozen sections were cut at the fornix region of the corpus callosum. 

These sections were processed for in situ hybridization at the UNC neuroscience center in

situ hybridization core.

Primary cell culture.

Bone marrow derived macrophages were extracted from femurs of WT, Nlrp3
-/-

and

casp1
-/-

mice.  The cells were cultured as described previously (182).

Phagocytosis Assays.

A schematic for all the phagocytosis assays is provided in figure 2.7 a. For 

phagocytosis of fluorescent beads, 0.25×10
6
 cells per well were incubated with 0.25×10

8

beads for 0, 30, 60 and 120 minutes at 37°C. Each experimental set consisted of an untreated 
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control and a negative control for phagocytosis, treated with 10µM cytochalasin D a known 

inhibitor of phagocytosis. For myelin phagocytosis experiments, myelin was extracted from 

adult C57BL/6 mouse brains as described previously. A schematic of myelin extraction from 

adult mouse brain is provided in figure 2.7b. Myelin was labeled with the lipophilic dye 1, 

1’-dioctadecyl-3, 3, 3’, 3’-tetramethylindocarbocyanine perchlorate (DiI; Molecular probes: 

SKU# D-282) as described previously. 0.25× 10
6
 cells/well in 24-well culture dish was 

incubated with 20µg labeled myelin for 0, 30, 60 and 120 minutes at 37°C. After 

phagocytosis non- ingested myelin was removed by washing the cells twice with media and 

once with PBS. For Escherichia coli (E. coli) phagocytosis experiments, E. coli strain 

O114:B4 (ATCC) transformed with the pEGFP plasmid (Clontech), to express GFP were 

kindly provided by our collaborator Dr. Glenn Matsushima. E. coli were cultured to log 

phase in Luria broth (LB) containing ampicillin. 0.25× 10
6
 cells/well in 24-well culture dish 

were incubated with 0.25× 10
8

E. coli for 0, 30, 60 and 120 minutes at 37°C.  After 

phagocytosis non-ingested E. coli were removed by washing the cells twice with media and 

once with PBS.  

The internalization of myelin beads or E. coli was quantified by measuring the mean 

cellular fluorescent intensity by flow cytometry. A Beckman coulter (Dako) CyAn ADP flow 

cytometer was used for all the above mentioned experiments. Experiments were repeated at 

least four times and the significance was determined by using student’s t-test. Differences 

were considered statistically significant if p < 0.05. 

Confocal microscopy was used to visualize myelin and bead phagocytosis by 

macrophages. For this, 0.25×10
6
 cells were plated on 24 well glass bottom plates and after 2 
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hours of phagocytosis, the cells were washed thrice with PBS and fixed with 2% 

paraformaldehyde for 10 minutes. Subsequently, cells in the wells were stained with RCA as 

described previously in the staining section.  A Zeiss LSM5 Pascal confocal laser scanning 

microscope was used for all the confocal microscopy. 

Protein analysis.

Total protein was extracted from the forebrains of cuprizone-treated and untreated 

control C57BL/6 mice. Briefly, corpus callosi were homogenized on ice in 600µl of RIPA 

buffer containing protease inhibitors. The homogenate was centrifuged at 10000g for 15mins 

at 4°C. Supernatants were used for further analyses.  For protein extraction from cultured 

cells, 0.25×10
6
 cells were lysed in 0.25 ml RIPA buffer by rotating cell at 4°C for 20 minutes 

followed by centrifugation at 13100rpm for 20 minutes. The supernatants were used for 

further analyses. Protein concentrations were determined using a coomasie (Bradford) 

protein assay kit (Pierce).  IL-1  levels were determined by ELISA (optiEIA ELISA, BD).     

Transmission electron microscopy (TEM).

3 mice per time point were perfused with PBS followed by a solution of 4% PFA and 

2.5% glutaraldehyde. Brains were sliced into 1-mm sections, and the section corresponding 

to the region of the fornix was trimmed and reoriented so that a cross-section of the corpus 

callosum was achieved. Thin sections were cut, stained with uranyl acetate and lead citrate 

and analyzed as previously described.

Statistical Analysis.

Data are expressed as mean s.e.m. Unpaired Student's t tests were used to 

statistically evaluate significant differences. Differences were considered statistically 

significant if p < 0.05.
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2.4 RESULTS 

Nlrp3 expression is increased in the cuprizone model of demyelination 

Nlrp3 transcript expression in the CNS of cuprizone treated C57BL/6 mice was 

examined by real-time PCR amplification.  It was found to increase progressively to more 

than 120 fold by the 4 week time point of a course of cuprizone-induced demyelination (Fig. 

2.1a). This increase coincided with the peak of inflammatory cell infiltration, demyelination 

and mature oligodendrocyte death. Since commercial antibodies for mouse NLRP3 are of 

poor quality, we evaluated the production of IL-1  as a surrogate indicator of NLRP3 protein 

activation.  Protein lysates from corpus callosi of cuprizone treated mouse brains analyzed by 

ELISA showed a similar increase in IL-1  protein as Nlrp3 mRNA, supporting a functional 

increase in NLRP3 activity (Fig. 2.1b). Moreover, these studies corroborate results from an 

earlier study that quantified the number of IL-1
+
 cells during cuprizone-induced 

demyelination and remyelination (165).  To further assess Nlrp3 expression, we also 

analyzed Nlrp3 expression in control untreated and 5 week cuprizone treated brains of 

C57BL/6 control and Nlrp3
-/-

mice as negative control by in situ hybridization using a 

digoxigenin labeled antisense probe to detect Nlrp3. A sense strand probe was also included 

as negative control. Nlrp3 expression is evident in untreated C57BL/6 control brains (Fig. 

2.1c).

Recruitment of microglia and astrocytes is delayed in Nlrp3
-/-

 mice 

To explore if NLRP3 has a role during cuprizone-induced sterile inflammation, we 

used mice lacking the Nlrp3 gene.  WT and Nlrp3
-/-

 mice showed similar reduction in weight 

during the course of cuprizone treatment (Fig. 2.9). We first examined if deletion of this gene 
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in mice had an effect on microglial accumulation and astrogliosis (Fig. 2.1c-f).  Microglia are 

resident immune cells of the CNS (183). Activated microglia can phagocytose myelin debris, 

present antigens to T cells, and release cytokines and chemokines (183, 184). Activated 

astrocytes and microglia perform several overlapping roles during neuroinflammation (185). 

Microglial and astroglial populations at the corpus callosum were identified by Ricinus

communis agglutinin-1 (RCA-1) lectin and glial fibrillary acidic protein (GFAP) staining, 

respectively (Fig. 2.1d-e). Untreated, age-matched (0 Wk) Nlrp3
-/-

mice and C57BL/6 (WT) 

controls showed no difference in the quantitation of microglia and astrocytes at the corpus 

callosum (Fig. 2.1d-g).  A histological representation of these data is shown in Figs. 2.1d-e, 

and quantitation is shown in Figs. 2.1f-g.  At 3, 3.5 and 4 weeks of cuprizone treatment, there 

was a progressive and significant (P= 0.02 at 3 Wks, P= 0.05 at 3.5 Wks, P= 0.01 at 4 Wks) 

reduction in microglial infiltration in Nlrp3
-/-

mice relative to WT controls (Fig.2.1f). 

Similarly, there was a progressive and statistically significant reduction in astrogliosis in the 

Nlrp3
-/-

 mice at weeks 3 and 4 of cuprizone treatment (Fig. 2.1g, P=0.03 at 3 Wks, P=0.001

at 4 Wks). These results indicate that NLRP3 enhances microglia accumulation and 

astrogliosis in the affected tissues. After 5 weeks of cuprizone treatment, microglial 

accumulation and astrogliosis between Nlrp3
-/-

and C57BL/6 control animals were similar 

(Fig. 2.1f-g). This is consistent with other studies of the cuprizone model wherein the 

removal of inflammatory genes has not affected neuropathology after this time point (158, 

165).

Demyelination is delayed in cuprizone-treated Nlrp3
-/-

 mice
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A second component of the cuprizone model that is relevant to human diseases is the 

demyelination process. To assess if NLRP3 plays a role in demyelination and in the loss of 

mature oligodendrocytes, Nlrp3
-/-

 mice along with age matched WT control mice were 

treated with cuprizone for 3, 3.5, 4 and 5 weeks.  Representative scoring of the extent of 

demyelination as measured by Luxol fast blue-periodic acid Schiff (LFB-PAS) staining is 

shown in Fig. 2.2a. Slides were read by three blinded readers on a scale of 0 (no 

demyelination) to 3 (complete demyelination). WT mice showed significant demyelination 

initiating at the 3 week time point and continuing to the end of the study at the 5 Wk time 

point (Fig. 2.2b). Nlrp3
-/-

mice showed a significant delay in demyelination at the 3, 3.5 and 

4 week time points when compared to WT controls (Fig. 2.2b). LFB is a screening assay for 

myelin which requires further verification with more specific stains such as glutathione S 

transferase pi subunit (GST ), a marker of the mature oligodendrocyte population. Prior to 

cuprizone treatment (0 Wk), Nlrp3
-/-

mice and WT controls showed no difference in mature 

oligodendrocyte populations at the corpus callosum as shown in Fig. 2.2c.  After 3, 3.5 and 4 

weeks of cuprizone treatment, the reduction of mature oligodendrocytes was attenuated in 

Nlrp3
-/-

mice relative to C57BL/6 controls. A quantitation of the composite data is shown in 

Fig. 2.2d (P=0.004 at 3 Wks, P=0.02 at 3.5 Wks and P=0.002 at 4 Wks). After 5 weeks of 

cuprizone treatment, Nlrp3
-/-

and WT control mice showed no difference in demyelination 

and mature oligodendrocyte death (Fig. 2.2d).  Together, these data indicate that NLRP3 

delays demyelination but does not obviate this process.  This is consistent with studies of 

other inflammatory genes in the cuprizone model (158, 165, 180, 181).  As an additional 

analysis of oligodendrocytes, a CNPase stain was performed and showed similar results (Fig. 

2.2e).
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Demyelination, mature oligodendrocyte death, astrogliosis and microglial infiltration 

during cuprizone-induced demyelination are independent of IL-1

The above results indicate the importance of NLRP3 in pathology associated with the 

cuprizone model; hence we examined the role of an inflammasome end-product, i.e. IL-1 , in

this model. An earlier study of IL-1
-/-

mice showed delayed remyelination but no difference 

in demyelination in the cuprizone model, although this latter issue was only peripherally 

addressed in that report (165).  To elaborate on these results, we performed a more extensive 

analysis of cuprizone-induced demyelination in IL-1
-/-

mice.  IL-1
-/-

mice showed no 

difference in demyelination (Fig. 2.3a), loss of GST  mature oligodendrocyte (Fig. 2.3b), 

accumulation of microglia (Fig. 2.3c) or astrogliosis (Fig. 2.3d) during demyelination. This 

indicates that all of the measured neuropathology observed in the cuprizone model is IL-1

independent.

Cuprizone-induced microglial accumulation, astrogliosis and demyelination are caspase-1 

dependent

NLRP3 is required for the processing of caspase-1, which in turn cleaves IL-1  and 

IL-18 (Sutterwala et al., 2006).  To establish if NLRP3-dependent CNS inflammation and 

demyelination are caspase-1 dependent, we studied casp1
-/-

mice. casp1
-/-

 and WT mice 

showed a statistically significant difference in the extent of demyelination as measured by 

LFB (Fig. 2.4a) and in the number of mature oligodendrocyte as detected by GST

immunostaining after cuprizone treatment (Fig. 2.4b).  casp1
-/-

mice also showed delayed 

microglial infiltration and astrogliosis when compared to WT controls (Fig. 2.4c and d). 
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These results suggest that the phenotype of casp1
-/-

mice is similar to mice deficient in the 

Nlrp3 gene. 

The role of IL-18 in demyelination and neuroinflammation 

Age-matched untreated (0 Wk) IL-18 
-/-

mice and C57BL/6 WT controls showed no 

difference in numbers of microglia and astrocytes at the corpus callosum (Fig 2.5c-d). At 

3weeks of cuprizone treatment there was progressive and significant reduction (p< 0.05)  in 

microglial infiltration in IL-18
-/-

mice relative to WT controls (Fig. 2.5e). Similarly, there 

was an overall trend of reduced astrogliosis in the IL-18
-/-

 mice at week 3. After 4 and 5 

weeks of cuprizone treatment there was no difference in microglial accumulation and 

astrogliosis between IL-18
-/-

and C57BL/6 controls (Fig. 2.5e-f). To study the role of IL-18 

in demyelination we utilized staining for myelin and mature ODGs. WT mice showed 

significant demyelination initiating at the 3 week time point and continuing to the end of the 

study at the 5 week time point (Fig 2.5b).  IL-18
-/-

mice showed a significant delay in 

demyelination at the 3 week time point when compared to WT controls (Fig 2.5b). Further

verification with GST  , a marker of mature ODG population showed that prior to cuprizone 

treatment (0 Wk) IL-18 
-/-

mice and C57BL/6 controls showed no difference in mature ODG 

populations at the corpus callosum as shown in Fig. 2.5c.  At 3 weeks of cuprizone treatment, 

the reduction of mature ODGs was attenuated in IL-18
-/-

mice relative to C57BL/6 controls. 

A quantitation of the composite data is shown in Fig. 2.5d. After 4 and 5 weeks of cuprizone 

treatment, there was no difference in demyelination and mature ODG death between IL-18
-/-

and C57BL/6 control mice (Fig. 2.5d) indicating that IL-18 delayed demyelination but did 

not obviate this process.
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Cuprizone-induced microglial accumulation and astrogliosis but not demyelination is 

dependent on P2X7R

ATP mediated activation of P2X7R, a membrane associated ATP-gated ion channel, 

has been linked to the activation of the NLRP3 inflammasome and consequently to the 

activation of caspase-1 and IL-1  release (9).  To test if cuprizone-induced 

neuroinflammation is dependent on the engagement and activation of P2X7R, we examined 

P2X7R
-/-

mice (186).  Demyelination, mature oligodendrocyte number, microglial infiltration 

and astrogliosis were studied in the cuprizone model as described earlier. P2X7R
-/-

 and WT 

controls showed no difference in the kinetics or extent of demyelination or mature 

oligodendrocyte depletion (Fig. 2.6a and b).  However, P2X7R
-/-

 mice showed significantly 

reduced microglial infiltration and astrogliosis (Fig. 2.6c and d, P=0.005 and P <0.05 

respectively).  These results indicate that P2X7R is involved in the inflammatory response 

observed in the cuprizone model, but not with the demyelination process.   

Myelin phagocytosis is enhanced in Nlrp3
-/-

macrophages

The data presented thus far suggest that NLRP3, caspase-1 and P2X7R all exacerbate 

the extent of inflammation as measured by microglial activation and astrogliosis.  However, 

NLRP3 and caspase-1 also mediate a function that is distinguishable from IL-1  and P2X7R

in the eventual loss of myelin and mature oligodendrocyte numbers.  Microglia/macrophages 

and astrocytes are active sensors of the CNS milieu where they sample their environment by 

highly mobile processes (such as filopodia) (183).  Microglia sense their environments 

through surface receptors or intracellular sensors after phagocytosis. During demyelination, 
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microglia are responsible for several proinflammatory as well as anti-inflammatory roles, one 

of the most important being the removal of myelin debris by phagocytosis (184, 187). 

Removal of myelin debris is critical for the resolution of inflammation, death of 

oligodendrocytes and recruitment of oligodendrocyte progenitors for remyelination (135, 

184).  To investigate the role of NLRP3 in myelin phagocytosis, macrophages were isolated 

from WT, Nlrp3
-/-

and casp1
-/-

mice.  We first established conditions for the phagocytosis of 

latex beads, bacteria and myelin.  A schematic for the experimental design is provided in Fig 

2.7. Macrophages from C57BL/6 mice readily phagocytized fluorescent latex beads (Fig. 

2.8a, second row). Treatment with cytochalasin D (cytD), a known inhibitor of phagocytosis, 

was used as a negative control for all treatment groups (Fig. 2.8a; also Fig. 2.10c). Similarly, 

these cells readily phagocytized E. coli (Fig. 2.8a, fourth and fifth rows) and myelin (Fig. 

2.8a, bottom two rows).  Myelin phagocytosis was studied by incubating macrophages with 

myelin that was labeled with the fluorescent carbocyanine lipophilic dye 1, 1’-dioctadecyl-3, 

3, 3’, 3’-tetramethylindocarbocyanine perchlorate (DiI).  To explore if loss of the Nlrp3 gene 

affected phagocytosis, macrophages prepared from WT controls, Nlrp3
-/-

 and casp1
-/-

 were 

incubated with beads, E. coli or DiI-labeled myelin (Figs. 2.8b-d respectively) for 0, 30, 60 

and 120 min. Internalization was measured over time by flow cytometry.  Nlrp3
-/-

, casp1
-/-

and WT cells phagocytized beads or bacteria to a comparable extent with similar kinetics 

profiles (Figs. 2.8b and c).  In contrast, the internalization of DiI-labeled myelin was greatly 

increased in Nlrp3
-/-

 mice at all three time points when compared to control cells (Fig. 2.8d). 

Myelin phagocytosis by casp1
-/-

macrophages was also enhanced at two time points but not at 

the last time point.  These findings suggest that NLRP3 and caspase-1 negatively impacts 

myelin phagocytosis which is important for myelin clearance. An examination of P2X7R
-/-
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cells did not show such a decrease of myelin phagocytosis (not shown),  thus providing a 

mechanism to explain how NLRP3 and caspase-1 but not P2X7R exacerbate CNS disease 

outcome via a new pathway. 

Role of NLRP3 in remyelination     

Regulation of oligodendrogenesis by progenitors is a potential therapeutic 

intervention for the functional loss after demyelination in MS. Previous studies in the 

cuprizone model have shown that; 1) remyelination is dramatically reduced in IL-1
-/-

mice(165), 2) IL-1  regulates remyelination via regulation of IGF-1 which is critical for 

conversion of ODG progenitors to mature ODGs (165, 188) 3)Transgenic mice expressing 

IGF1 constitutively have reduced mature ODG death by apoptosis (166, 167). We 

hypothesized that NLRP3 via its regulation of IL-1  processing and consequently IGF-1 may 

regulate oligodendrogenesis and remyelination. Our data with Nlrp3
-/-

 mice during 

remyelination (8, 10 and 12 week time points) indicate that remyelination remains unchanged 

relative to C57Bl/6 controls by GST pi and LFB/PAS staining, and TEM analysis (Fig 2.9).
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2.5 DISCUSSION 

 The NLR genes, particularly those associated with the inflammasome function, have 

secured much interest as sensors of pathogen associated molecular patterns (PAMPs) as well 

as damage-associated molecular patterns (DAMPs); however, their roles in CNS 

inflammatory disorders have not been extensively studied (9, 10, 182). In this report we 

provide evidence that NLRP3 has a role in regulating neuroinflammation and demyelination 

in a mouse model of cuprizone-induced demyelination. However the outcome is much more 

complex than anticipated.  We found that one of the end products of the inflammasome, 

namely IL-1 , has no role in any of the pathologic events that were investigated.

Conventional inflammasome components including NLRP3, caspase-1 and P2X7R all 

exacerbated inflammatory readouts such as microglial accumulation and astrogliosis, but 

only NLRP3 and caspase-1 enhanced demyelination and accelerated the loss of mature 

oligodendrocytes.  Additionally, a cell-based investigation indicates that NLRP3 and 

caspase-1 decreased the capability of macrophages to phagocytose and therefore clear myelin 

debris.  These data reveal a novel and important role for NLRP3 that has not been 

appreciated previously. 

NLRP3 is known for its classic role in the formation of a multi-protein complex with 

ASC and pro-caspase-1 that is critical for caspase-1 cleavage and maturation, which in turn is 

important for the processing of pro-IL-1 /IL-18 to mature IL-1 /IL-18.  In the CNS, IL-1  is 

released primarily by microglia and macrophages (165). IL-1  promotes leukocyte 

infiltration by inducing expression of many cytokines, chemokines and adhesion molecules 

(189). The release of IL-1  also mobilizes neutrophils and other immune cells to aid in 

resolving infections and promoting wound healing. Chronic release of IL-1  is detrimental as 
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it can contribute to skin rashes, inflammatory arthritis, and systemic fever (164). For this 

reason, IL-1  production is tightly regulated at the levels of transcription, translation and 

release.  Previous studies examining the role of IL-1  in neuroinflammation have not yielded 

consistent findings. IL-1  levels in the cerebrospinal fluid (CSF) of MS patients correlate 

with disease susceptibility, severity and progression (160, 161). IL-1  immunoreactivity has 

been found in activated microglia and macrophages during EAE in rats (162). Treatment with 

either soluble IL-1 receptor (sIL-1R) or IL-1 receptor antagonist (IL-1Ra) reduce clinical 

signs of EAE in rats (163, 190). IL-1  is cytotoxic to mature oligodendrocytes both in vivo

and in vitro, while stimulating proliferation of both microglia and astrocytes (191).

However, IL-1
-/-

mice also display delayed remyelination indicating a reparative role of IL-

1  (165).  Our study of IL-1
-/-

mice in the cuprizone model showed no differences in 

demyelination, microglial infiltration, astrogliosis or mature oligodendrocyte death after 0, 3, 

and 4 weeks of cuprizone treatment. This indicates that the demyelination observed in the 

cuprizone model is IL-1  independent even though IL-1  levels increase concurrent with 

inflammatory cell infiltration during demyelination (165).  

Since IL-1
-/-

mice did not replicate the demyelination as seen in Nlrp3
-/-

 mice we 

explored the role of caspase-1 and IL-18 in demyelination. Caspase-1 has been implicated in 

both human and mouse neuroinflammation.  Caspase-1 levels are significantly increased in 

peripheral blood mononuclear cells from MS patients (44). Moreover, caspase-1 is known to 

contribute to the pathology of EAE (45, 46). Our studies with casp1
-/-

mice showed delayed 

microglial infiltration, astrogliosis, reduction in mature oligodendrocyte depletion and a 

delay in demyelination.
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IL-18 is an 18kDa member of the IL-1 family of cytokines. IL-18 is produced by several 

immune and non-immune cells including monocytes, macrophages, splenocytes, 

keratinocytes, microglia, macrophages and astrocytes (47-49). In the CNS, IL-18 induces 

microglial production of proinflammatory cytokines such as IL-1  and TNF  and matrix 

metalloproteinases (MMPs). Extravasation of polymorphonuclear leukocytes (PMNs) and 

monocytes/macrophages is amplified by IL-18 dependent upregulation of intercellular 

adhesion molecule-1 (ICAM-1) on endothelial cells. IL-18 levels are elevated in 

demyelinating cerebral lesions of MS patients (192-194). Moreover, expression of IL-18 and 

its receptor on oligodendrocytes is greater in brain tissue from patients with active MS than 

in patients with silent MS or from neuropathologically normal subjects (195).  In 

experimental autoimmune encephalomyelitis (EAE) a murine model of MS in which the

induction of myelin basic protein (MBP)-specific CD4
+
 T cells secreting cytokines, 

particularly IFN-  and TNF- , results in limb paralysis, elevated IL-18 mRNA is seen in the

CNS of EAE rats at onset and during the disease (196, 197). However,  EAE studies with 

mice deficient in IL-18 (IL-18
-/-

) remain controversial, while Shi et al., reported that IL-18
-/-

mice are resistant to EAE (198), Gutcher et al., reported that IL-18
-/-

mice are susceptible to 

EAE  but IL-18 receptor  deficient mice (IL-18R
-/-

) are resistant to EAE indicating the role 

of a ligand other than IL-18 acting via IL-18R  to cause EAE (199). IL-18
-/-

 mice replicated 

the data obtained with Nlrp3
-/-

 mice at the 3 week time point of demyelination. 

Several studies have shown that caspase-1 has numerous targets beside IL-1  and IL-

18, with more than seventy substrates (18, 19).  The above results led us to explore 

mechanisms mediated by NLRP3 other than those mediated by loss of IL-1 .  One possible 

mechanism is the role of NLRP3 in myelin phagocytosis.  This idea is largely stimulated by 
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the role reported for TLRs in phagocytosis, although we appreciate the controversy regarding 

those findings (200-202). Our data suggest that Nlrp3
-/-

 and casp1
-/-

macrophages show an 

increased ability to phagocytose myelin debris, but not latex beads nor bacteria.  This finding 

is important as it reflects a novel function for the NLRP3 protein.  Myelin phagocytosis is an 

important component of the pathology observed in both EAE and MS patients.  A prevailing 

model supported by data considers that clearance of myelin debris by macrophages and 

microglia is central to the repair mechanisms that follow demyelination in both central and 

peripheral nervous system diseases (136, 138, 177, 203, 204). Myelin debris can activate the 

complement system to form membrane attack complexes that disintegrate intact myelin 

(139). Moreover, myelin debris impairs remyelination in the adult rat CNS by inhibiting 

oligodendrocyte precursor cell differentiation (135). Therefore, myelin debris removal is 

critical for resolution of demyelination and for creating a pro-regenerative environment after 

demyelination. We provide evidence that bone marrow derived macrophages from Nlrp3
-/-

and casp1
-/-

 mice have increased myelin phagocytosis as compared to WT. This corroborates 

our in vivo data with Nlrp3
-/-

and casp1
-/-

 mice that showed delayed demyelination.  Thus,

Nlrp3
-/-

and casp1
-/-

 mice show an efficient removal of myelin debris which affects 

demyelination, myelin regeneration and oligodendrocyte recovery.  This implicates a new 

mechanism by which NLRP3 and caspase-1 might exacerbate neurodegeneration in vivo.

It remains unclear how NLRP3 exerts its effects on phagocytosis. There are several 

receptor complexes that are involved in myelin phagocytosis including scavenger receptors I 

and II (SR-A I/II) (143, 145), complement receptor 3 (CR-3), galectin-3 (144) and the Fc 

gamma receptor (Fc R) (205).  It is possible NLRP3 affects any, some or all of these 

receptors by affecting their expression or signal transduction pathways required for optimal 



55

myelin phagocytosis.  It is intriguing that NLRP3 does not negatively affect the phagocytosis 

of bacteria or latex beads.  This may have physiologic implications, since key host responses 

to bacterial infection are the uptake of bacteria by macrophages and the resultant production 

of IL-1 .  Thus it would be counterproductive if NLRP3, a main route by which IL-1

maturation occurs to combat microbes, would then negate anti-bacterial responses by 

inhibiting bacterial phagocytosis.  Instead our data show that NLRP3 only affects the 

phagocytosis of myelin debris but not of bacteria, consistent with the anti-bacterial role of 

NLRP3.

The endogenous triggers of NLRP3 activation in the CNS and in the cuprizone-

induced model of demyelination remain undescribed. It is known that cell death at the site of 

inflammation or injury can cause increases of local ATP concentration to ranges of 1-10mM 

due to the release of cytoplasmic stores (123, 206). Unlike other P2X receptors, P2X7Rs are 

activated at concentrations of >1mM. Continuous ligation of P2X7R can lead to cell death by 

the formation of large pores in the cell membrane (128). These pores are formed by a P2X7R

associated protein, pannexin-1.  Recent research utilizing macrophages from Nlrp3
-/-

and

C57BL/6 mice demonstrated that pannexin-1 is critical for caspase-1 activation and IL-1

secretion in LPS-stimulated macrophages pulsed with ATP (128, 129).  In addition, P2X7R

deficient (P2X7R
-/-

) mice show suppression of EAE (130). Thus we tested the hypothesis that 

ATP released from cuprizone-induced apoptosis within oligodendrocytes might initiate 

NLRP3 inflammasome activation and propagation of demyelination.  However, our results 

with P2X7R
-/-

mice showed modestly delayed microglial infiltration and astrogliosis, but no 

effect on demyelination or oligodendrocyte numbers.  These results suggest that P2X7R

contributes to neuroinflammation, but not demyelination, in a modest way.  Thus activation 
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of P2X7R does not contribute to in vivo loss of oligodendrocytes in the cuprizone-induced 

model of demyelination.

In summary, the dual roles of NLRP3 in exacerbating neuroinflammation and 

inhibiting myelin debris clearance, along with a lack of its role in remyelination indicate that 

inhibition of NLRP3 may prove to be a valuable therapeutic approach for demyelinating 

diseases such as MS.  The results show that the neuroinflammatory component of the disease 

model is mediated by an NLRP3-, caspase-1- IL-18- and P2X7R-dependent pathway. 

However, the clearance of myelin debris is limited to NLRP3 and caspase-1.  This finding 

has broad implications for the clearance of CNS cellular debris in other acute and chronic 

degenerative diseases, including amyloid-  in Alzheimer’s disease, myelin in mechanical 

injury involving axonal transection and in Guillain-Barré syndrome, cell debris in stroke, and 

dead synapses plus retinal ganglion cells in glaucoma and aging (184).    
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Figure 2.1- Increases in NLRP3 expression coincide with peak disease symptoms in the 

cuprizone model.  a. Nlrp3 mRNA increases during cuprizone-induced demyelination. 

Nlrp3 transcript was detected by real time PCR and the quantity at 0 Wk set to 1. Nlrp3

mRNA increased progressively reaching a maximum of ~120 fold after 5 weeks of cuprizone 

treatment concurrent with microglia/macrophage recruitment. b. Increase in IL-1  release is 

concurrent with the increase in Nlrp3 expression during demyelination. IL-1  release was 

measured by ELISA.  c. Nlrp3 is expressed in the adult mouse brain. Nlrp3 RNA was 

detected by in situ hybridization. d. Microglial recruitment to the corpus callosum was 

reduced in Nlrp3
-/-

 mice.  Microglia were detected by RCA lectin staining (red). DAPI was 

used to label nuclei (blue). e. Astrogliosis was reduced in Nlrp3
-/-

 mice.  GFAP (green) was 

used to detect astrocyte accumulation in the corpus callosum.  Inset shows isotype control for 

GFAP antibody. RCA
+
 or GFAP

+
 cells with an observable DAPI stained nucleus were 

counted blindly twice. Cell counts are averages of between 9 and 14 mice per time point. f.

Microglial infiltration was quantitated and found to be significantly reduced in Nlrp3
-/-

 mice 

(white bars) during demyelination (P= 0.02 at 3 Wks, P= 0.05 at 3.5 Wks, P= 0.01 at 4 Wks).

g. Astrocyte accumulation was quantitated and found to be significantly reduced in Nlrp3
-/-

mice during demyelination (P=0.03 at 3 Wks, P=0.001 at 4 Wks). In f-g, *P< 0.05, 

**P<0.01; n=9-14; error bars, s.e.m.  
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Figure 2.2- NLRP3 exacerbates demyelination and mature oligodendrocyte death in the 

corpus callosum during demyelination. a. The schematic depicts the scale for scoring of 

demyelination. Each slide was scored by 3 independent blinded readers on a score of 0 (no 

demyelination) to 3 (complete demyelination). All scores are restricted to the midline corpus 

callosum (boxed area). b. Nlrp3
-/-

 mice (open circles) show delayed demyelination as 

compared to WT controls (filled circles). Demyelination was quantitated by Luxol fast blue 

(LFB)/ periodic acid schiff’s (PAS) staining. Each circle represents the averaged observed 

LFB score from three readers for one mouse. The mean value of each data set is depicted by 

a red line. c. Mature myelinating oligodendrocytes in the corpus callosum were increased 

during cuprizone treatment of WT and Nlrp3
-/-

 mice as identified with GST  staining (red). 

DAPI was used to label nuclei (blue). Inset shows isotype control. d. Nlrp3
-/-

 mice (white 

bar) show a significant delay in the loss of mature oligodendrocytes as compared to WT 

controls (black bars) (P=0.004 at 3 Wks, P=0.02 at 3.5 Wks and P=0.002 at 4 Wks). Mature 

oligodendrocyte depletion was quantitated by counting GST
+
 cells that co-localized with a 

DAPI positive nucleus. Each image was scored twice in a blind manner. Average counts with 

standard error are depicted here. e. CNPase staining of paraffin-embedded 5µm brain 

sections from Nlrp3
-/-

 and WT control mice during demyelination shows delayed loss of 

myelin in the corpus callosum of Nlrp3
-/-

 mice. Representative images for 9 - 14 mice per 

time point are shown. In d, *P< 0.05, ***P<0.005; error bars, s.e.m.  
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Figure 2.3- IL-1  is not required in demyelination, astrogliosis, microglial infiltration 

and mature oligodendrocyte depletion. a. IL-1
-/-

 mice exhibit no difference in 

demyelination. Each circle represents the averaged observed LFB score from three readers 

for one mouse. Demyelination was quantitated by Luxol fast blue (LFB)/ periodic acid 

schiff’s (PAS) staining. IL-1
-/-

 mice (open circles) show no difference in demyelination as 

compared to WT controls (filled circles).  b. IL-1
-/-

 mice (white bars) exhibit no difference 

in mature oligodendrocyte number as compared to age-matched WT controls (black bars) 

(P=0.29 at 3 Wks, and P=0.16 at 4 Wks).  Mature oligodendrocytes were measured by the 

GST
+

stain at the corpus callosum. c. IL-1
-/-

 mice (white bars) exhibit no difference in 

microglial infiltration as compared to age-matched WT controls (black bars) (P=0.56 at 3 

Wks, and P=0.15 at 4 Wks). Microglia were measured by RCA
+

staining at the corpus 

callosum after 3 and 4 wks of cuprizone treatment. d. IL-1
-/-

 mice (white bars) exhibit no 

difference in astrogliosis when compared to age-matched WT controls (black bars) (P=0.80

at 3 Wks, and P=0.26 at 4 Wks).  Astrocytes were measured by the GFAP
+

stain at the corpus 

callosum after 3 and 4Wks of cuprizone treatment. GFAP was used to detect astrocyte 

accumulation in the corpus callosum. RCA
+
 or GFAP

+
 cells with an observable DAPI stained 

nucleus were counted blindly twice. Cell counts for b, c and d are averages of between 6 and 

10 mice per time point. 
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Figure 2.4- Roles of caspase-1 in demyelination, mature oligodendrocyte depletion, 

microglial infiltration and astrogliosis. a. casp1
-/-

 (open circles) and age-matched WT mice 

(filled circles) exhibit a difference in the extent of demyelination.  b. casp1
-/-

 mice (white 

bars) and age-matched WT controls (black bars) exhibit a difference in mature 

oligodendrocyte number (P=0.001 at 3 Wks, P=0.45 at 4 Wks and P=0.39 at 5 Wks).  c. 

casp1
-/-

 mice (white bars) exhibit reduced microglial infiltration at the corpus callosum when 

compared to age-matched WT controls (black bars) (P=0.008 at 3 Wks, P=0.05 at 4 Wks and 

P=0.19 at 5 Wks).  d. casp1
-/-

 mice (white bars) exhibit reduced astrogliosis at the corpus 

callosum when compared to age-matched WT controls (black bars) (P=0.02 at 3 Wks, 

P=0.01 at 4 Wks and P=0.37 at 5 Wks).  Demyelination was quantitated by Luxol fast blue 

(LFB)/ periodic acid schiff’s (PAS) staining, mature oligodendrocyte by GST , microglia by 

RCA and astrocytes by GFAP staining as described in Fig. 3. *P< 0.05, **P<0.01,

***P<0.005; error bars, s.e.m. Cell counts for b-d are averages of between 6 and 12 mice per 

time point. 
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Figure 2.5- Roles of IL-18 in demyelination, mature oligodendrocyte depletion, 

microglial infiltration and astrogliosis. a. IL-18
-/-

 mice (white bars) exhibit reduced 

microglial infiltration at the corpus callosum when compared to age-matched WT controls 

(black bars) (P=0.008 at 3 Wks).  b. IL-18
-/-

 mice (white bars) exhibit reduced astrogliosis at 

the corpus callosum when compared to age-matched WT controls (black bars) (P=0.02 at 3 

Wks). c. IL-18
-/-

 mice (white bars) and age-matched WT controls (black bars) exhibit a 

difference in mature oligodendrocyte number (P=0.001 at 3 Wks).  d. IL-18
-/-

 (open circles) 

and age-matched WT mice (filled circles) exhibit a difference in the extent of demyelination. 

Demyelination was quantitated by Luxol fast blue (LFB)/ periodic acid schiff’s (PAS) 

staining, mature oligodendrocyte by GST , microglia by RCA and astrocytes by GFAP 

staining as described in Fig. 3. *P< 0.05, **P<0.01, ***P<0.005; error bars, s.e.m. Cell 

counts for b-d are averages of between 6 and 8 mice per time point. 
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Figure 2.6- Roles of P2X7R in demyelination, mature oligodendrocyte depletion, 

microglial infiltration and astrogliosis.  a. P2X7R
-/-

 (open circles) and WT mice (filled 

circles) show no difference in demyelination during the course of cuprizone treatment. b. 

P2X7R
-/-

 (white bars) and WT (black bars) mice show no difference in mature 

oligodendrocyte depletion during cuprizone treatment (P=0.43 at 3.5Wk, P=0.93 at 4Wk, 

P=0.45 at 5Wk). c. P2X7R
-/-

 (white bars) mice show reduced microglial infiltration when 

compared to WT mice (black bars) (P=0.005 at 4Wk). d. P2X7R
-/-

 mice (white bars) show

reduced astrogliosis when compared to WT mice (black bars).  LFB/PAS (panel a), GST

(panel b), RCA (panel c) and GFAP (panel d) were used to detect myelination, mature 

oligodendrocyte, microglia and astrocytes in the corpus callosum, respectively as described 

in Fig. 3. *P< 0.05, **P<0.01, ***P<0.005; error bars, s.e.m. Cell counts for b-d are 

averages of between 4 and 8 mice per time point.
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Figure 2.7- Schematic for experimental design of phagocytosis assays and myelin 

extraction from mouse brain a. Ex vivo phagocytosis assay experimental design. Bone

marrow derived Macrophages were activated by overnight incubation with LPS. These 

macrophages were then incubated with fluorescent beads, E.coli or myelin.  Fluorescent 

bead, GFP-E.coli, and DiI -labeled myelin ingestion was quantitated by FACS and visualized 

by confocal microscopy. Culture supernatants were used for ELISA. b. Schematic for 

myelin extraction from adult mouse brain. Adult C57Bl/6 mouse brain was homogenized in 

0.32M sucrose. This homogenate was loaded in the middle of a discontinuous sucrose 

density gradient and separated by ultracentrifugation at 80,000g. The resulting crude myelin 

fraction was homogenized in cold water to release any axoplasmic content. A final 

centrifugation step resulted in isolation of myelin as a pellet that was resuspended in PBS and 

labeled with the lipophilic dye DiI.
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Figure 2.8- Nlrp3
-/-

and casp1
-/-

macrophages show enhanced myelin phagocytosis. a.

Macrophages readily phagocytose beads, E.coli, and myelin.  Fluorescent latex bead, GFP-

E.coli, and DiI -labeled myelin ingestion was visualized by confocal microscopy.  

Macrophages were stained with RCA lectin (green in all panels except in E.coli where RCA 

is red). Myelin (red), bead (blue) and E.coli (green) phagocytosis is blocked by cytD in the 

medium, compatible with the process of phagocytosis. b. Nlrp3
-/-

, casp1
-/-

 and WT 

macrophages exhibit no difference in the phagocytosis of fluorescent latex beads. Primary 

BMDM were incubated with fluorescent-labeled latex beads for 0, 30, 60 and 120 min. The 

Mean fluorescent intensity (MFI) of latex beads was measured by flow cytometry. c.

Phagocytosis of GFP-E.coli by Nlrp3
-/-

 , casp1
-/-

and WT BMDMs is not different. BMDM

were analyzed by flow cytometry as described in panel b, except cells were incubated with E.

coli expressing GFP.  d. Phagocytosis of fluorescently-labeled myelin is enhanced in Nlrp3
-/-

and casp1
-/-

 BMDM when compared to WT BMDMs. BMDM were isolated and analyzed by 

flow cytometry as described in panel b, except cells were incubated with DiI-labeled myelin.

Mean fluorescent intensity (MFI) of DiI-Myelin was measured by flow cytometry. 

Representative graphs based on 3 experiments each for E.coli and beads, and 5 experiments 

for myelin are shown here.  
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Figure 2.9- Hypothetical model for the role of the Nlrp3 inflammasome in myelin 

phagocytosis.   Myelin is phagocytosed by macrophages by multiple surface receptors 

including the complement receptor (CR-3), Scavenger receptors (SR-A I/II) and the Fc 

gamma receptor (Fc R). Once internalized via the phagosome, lysosomal enzymes degrade 

the myelin in the phagolysosme. By an unknown mechanism myelin phagocytosis activates 

the cytosolic Nlrp3 which inhibits myelin phagocytosis thus exacerbating inflammation 

(microglial recruitment and astrogliosis) and delaying recruitment of ODG progenitor cells.  
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Figure 2.10- No difference in weight of Nlrp3
-/-

and control WT mice during cuprizone 

induced demyelination. 8-10 weeks old, male, Nlrp3
-/-

and control WT mice were fed 0.2% 

cuprizone mixed into ground chow ad libidum for 6 weeks to induce progressive 

demyelination. Untreated control mice were maintained on a diet of normal pellet chow. 

Nlrp3
-/-

and control WT mice showed no difference in weight during cuprizone treatment.

Weights (in grams on y axis) are averages of at least 9 and up to 14 mice per time point. 
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Figure 2.11 -Quantitation of macrophage staining with CD11b-APC and CD45-perCP 

antibodies and myelin phagocytosis by flow cytometry. a. Macrophages stained with 

CD11b-APC show significantly higher fluorescent staining intensity compared to staining 

with isotype control antibody conjugated with APC. b. Macrophages stained with CD45-

perCP show significantly higher fluorescent staining intensity compared to staining with 

isotype control antibody conjugated with perCP. c. Treatment with cytochalasin D inhibited 

myelin phagocytosis by macrophages leading to significantly decreased fluorescent intensity 

compared to macrophages that phagocytosed myelin in the absence of cytochalasin D.  
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Figure 2.13 Remyelination in Nlrp3
-/-

 mice remains unchanged 

a. Nlrp3
-/-

 (open circles) and age-matched WT mice (filled circles) exhibit no difference in 

the extent of remyelination at the 8, 10 and 12 week time points.  b. Nlrp3
-/-

 (white bars) and 

age-matched WT mice (filled bars) exhibit no difference in the extent of remyelination at the 

8 and 10 week time points.  c.TEM analysis in Nlrp3
-/-

 mice during remyelination indicates 

that remyelination remains unchanged relative to C57Bl/6 controls at the 10 week time point 

of remyelination. Remyelination was quantitated by Luxol fast blue (LFB)/ periodic acid 

schiff’s (PAS) staining and mature oligodendrocyte by GST  as described earlier.



CHAPTER III 

A NOVEL ROLE FOR NLRC4 IN THE REGULATION OF INFLAMMATION, 

DEMYELINATION AND MYELIN DEBRIS CLEARANCE IN THE CNS  

Parts of this chapter have been adapted from Sushmita Jha, Leslie Freeman, Siddharth Y. 

Srivastava and Jenny P.-Y. Ting, A novel role for the NLR family member NLRC4 in 

regulation of neuroinflammation and demyelination, Glia, 2009, Manuscript in preparation. 
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3.1 ABSTRACT 

As a continuation of our studies to identify NLR family members involved in 

neuroinflammation we chose to analyze mice with a genetic deletion of Nlrc4 (Nlrc4
-/-

). The 

NLRC4 protein has a well documented role as a cytosolic sensor of flagellin, flagellated and 

some non-flagellated pathogens however, it’s role in inflammation remains unknown.  

NLRC4 can associate with procaspase-1 and cause its autocatalytic cleavage to active 

caspase-1. Caspase-1 in turn can cause cleavage induced maturation of over seventy 

substrates including the proinflammatory cytokines IL-1  and IL-18. 

In this study we demonstrate a previously unknown role of NLRC4 in inflammation, 

demyelination and myelin debris clearance in a mouse model of cuprizone-induced 

demyelination. Nlrc4
-/-

mice showed delayed astrogliosis, microglial infiltration, mature 

oligodendrocyte death and demyelination during cuprizone treatment. These results along 

with our previous study that showed a role for NLRP3 and caspase-1 in demyelination, 

neuroinflammation and myelin debris clearance raises the possibility for the existence of 

multiple pathways upstream of caspase-1 activation in the CNS.  
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3.2 INTRODUCTION 

Neuroinflammation is a component of several diseases including, multiple sclerosis, 

Parkinson’s disease and Alzheimer’s disease.  NLR family, Caspase Recruitment domain 

containing 4 (NLRC4, also IPAF, CLAN, CARD12) protein is a cytosolic sensor of flagellin, 

flagellated pathogens such as Salmonella typhimurium (4, 5, 26),and Legionella pneumophila

(3) and non-flagellated pathogens such as Shigella flexneri (7) and Pseudomonas aeruginosa

(32). NLRC4 forms a homo-oligomeric inflammasome with caspase-1 (26). Initial 

characterization of NLRC4 in human tissues and cell lines demonstrated its direct association 

with the CARD domain of procaspase-1 through CARD-CARD interactions (40, 41). This 

interaction can cause autocatalytic processing of procaspase-1 to caspase-1 (40). A 

constitutively active NLRC4 could cause autocatalytic processing of procaspase-1 leading to 

caspase-1 dependent apoptosis in transfected cells (40). In macrophages, caspase-1 activation 

and IL-1  release by cytoplasmic flagellin requires NLRC4 (4, 5, 26).   

The role of NLRC4 in inflammation remains unknown. In this study we utilized the 

cuprizone-induced mouse model of demyelination to evaluate the role of NLRC4 in 

neuroinflammation.  The cuprizone model is an ideal model to study the role of the innate 

immune system of the CNS in neuroinflammation and demyelination. It exhibits type III and 

IV MS neuropathology characterized by microglial infiltration and astrogliosis in the absence 

of T cell infiltrates (147). Demyelination and neuroinflammation are easily induced by 

administering cuprizone through the chow. The disease follows a predictable time course 

along with a reproducible pathology involving major nerve tracts such as the corpus callosum 

and cerebellar peduncles (156). This model also allows for the study of factors that affect 

inflammation in the CNS that accompany demyelination.  Using the cuprizone model, we 
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studied mice deficient in the gene encoding NLRC4 (Nlrc4
-/-

), as a way to examine the role 

of the NLRC4 in neuroinflammation and demyelination in vivo. We found a significant role 

for the NLRC4 inflammasome pathway in the activation of neuroinflammation, but we also 

found an additional function for this gene in the clearance of myelin debris.    



85

3.3 MATERIALS AND METHODS 

Mice.

Nlrc4
-/-

mice were provided by Dr Vishwa Dixit (Genentech), which were further 

backcrossed to C57BL/6 mice for over nine generations. C57BL/6 mice were purchased from 

the National Cancer Institute (Bethesda, MD) and Jackson Research Labs (Bar Harbor, ME). 

All mice were 8-10 weeks old prior to the start of treatment. All animal procedures 

conducted were approved by the Institutional Animal Care and Use Committee of UNC at 

Chapel Hill.   

Cuprizone treatment. 

 8-10 weeks old male mice were fed 0.2% cuprizone [oxalic bis (cyclohexylidenehydrazide)]

(Aldrich, St. Louis, MI) mixed into ground chow ad libidum for 6 weeks to induce 

progressive demyelination. Untreated control mice were maintained on a diet of normal 

pellet chow. During cuprizone treatment mice showed lethargic movement, weight loss (Fig. 

3.7), ruffled hair and altered gait as described earlier (158, 159). 

Tissue preparation.

Mice were deeply anesthetized and intra-cardially perfused with phosphate-buffered saline 

(PBS) followed by 4% paraformaldehyde (PFA). Brains were removed, post-fixed in PFA, 

and embedded in paraffin. 5-µm coronal sections were cut at the fornix region of the corpus 

callosum. 5µm coronal sections were cut at the fornix region of the corpus callosum for 

immunohistochemistry (IHC). All analyses were restricted to the mid-line corpus callosum as 

described previously (158, 180, 181).

Staining.
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To examine demyelination, paraffin sections were rehydrated through a graded series of 

alcohol washes and stained with Luxol fast blue-periodic acid-Schiff’s base (LFB-PAS; 

Sigma, St. Louis, MI) as described previously(158, 180, 181). Sections were read by three 

double-blinded readers and graded on a scale from 0 (complete myelination) to 3 (complete 

demyelination). Higher scores indicate greater pathology. For the detection of 

microglia/macrophages, tissue sections were rehydrated and permeabilized with 0.1% 

Triton/PBS for 20 min at room temperature and then incubated with Ricinus communis

agglutinin-1 (RCA-1) lectin (1:500, Vector) at 37 °C for 1hr. Only RCA-1
+
 cells with 

observable 4', 6’-diamidino-2-phenylindole (DAPI) stained nucleus were included in the 

quantification.  

Immunohistochemistry(IHC). 

IHC was performed on 5-µm paraffin embedded sections that were deparaffinized and 

rehydrated through alcohols as described earlier. For the detection of mature 

oligodendrocytes, the sections were processed by boiling in antigen unmasking solution 

(1:100, Vector) for 13 min in a microwave. These sections were permeabilized with 0.1% 

Triton/PBS for 20 min and incubated with 2% normal goat serum in 0.1% triton-PBS for 20 

min at room temperature. Subsequently, the sections were incubated with rabbit anti mouse 

polyclonal antibody anti- GST  (1:500, Stressgen) at 4°C overnight. Sections were then 

washed in PBS and incubated with the appropriate biotinylated antibody against primary 

antibody (1:100, Vector) and texas red-conjugated avidin (1:500, Vector). The sections were 

washed and incubated with Alexa Fluor conjugated 594.  To detect astrocytes, sections were 

incubated with 5% normal goat serum in 0.1% triton-PBS for 20 min at room temperature. 

Subsequently, the sections were washed and incubated with rabbit anti-cow monoclonal 
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antibody (1:100, DAKO) and goat-anti-rabbit-fluorescein conjugated secondary antibody 

(1:100, Vector).   Immunopositive cells with an observable DAPI stained nucleus were 

counted blindly twice. Cell counts are averages of at least 9 and up to 14 mice per time point.  

Imaging.

All cell counts are within the mid line of the corpus callosum, confined to an area of 0.033 

mm
2
. An Olympus BX-40 microscope with camera (optronics engineering) and Scion image 

acquisition software was used for taking images.   

Reverse transcription-PCR and quantitative real-time reverse transcription-PCR.

Total RNA was isolated from a dissected region of the brain containing the corpus callosum 

of wild-type and Nlrc4
-/-

mice at several points during and after cuprizone treatment. RNA

isolation was performed using Trizol reagent (Ambion) under RNase-free conditions. The 

primers used were Nlrc4 forward, AATTCAGATGGGCAGACAGG, Nlrc4 reverse, 

GAGCCCTATTGTCACCAGGA, GAPDH forward, CTTCACCACCATGGAGAAGGC, 

GAPDH reverse, GGCATGGACTGTGGTCATGAG.  

Primary cell culture.

Bone marrow derived macrophages were extracted from femurs of WT, Nlrc4
-/-

, casp1
-/-

and

Nlrp3
-/-

mice.  Cells were cultured as described previously (182).  

Phagocytosis Assays.

For myelin phagocytosis experiments, myelin was extracted from adult C57BL/6 

mouse brains as described previously (207). Myelin was labeled with the lipophilic dye 1, 1’-

dioctadecyl-3, 3, 3’, 3’-tetramethylindocarbocyanine perchlorate (DiI; Molecular probes: 

SKU# D-282) as described previously (208). 0.25× 10
6
 cells/well in 24-well culture dish was 

incubated with 20µg labeled myelin for 0, 30, 60 and 120 minutes at 37°C. After 
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phagocytosis non- ingested myelin was removed by washing the cells twice with media and 

once with PBS. The internalization of myelin was quantified by measuring the mean cellular 

fluorescent intensity by flow cytometry. A Beckman coulter (Dako) CyAn ADP flow 

cytometer was used for all the above mentioned experiments. Experiments were repeated at 

least four times and the significance was determined by using student’s t-test. Differences 

were considered statistically significant if p < 0.05.

Confocal microscopy was used to visualize myelin phagocytosis by macrophages. For 

this, 0.25×10
6
 cells were plated on 24 well glass bottom plates and after 2 hours of 

phagocytosis, the cells were washed thrice with PBS and fixed with 2% paraformaldehyde 

for 10 minutes. Subsequently, cells in the wells were stained with RCA as described in the 

staining section.  A Zeiss LSM5 Pascal confocal laser scanning microscope was used for all 

the confocal microscopy. 

Statistical Analysis.

Data are expressed as mean ±s.e.m. Unpaired Student's t tests were used to 

statistically evaluate significant differences. Differences were considered statistically 

significant if p < 0.05.
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3.4 RESULTS 

NLRC4 expression is increased in the cuprizone model of demyelination 

Nlrc4 mRNA was examined by reverse transcriptase PCR (Fig 3.1b). Previous reports 

have shown that NLRC4 protein is highly expressed in mouse brain (40). The CNS of 4 week 

cuprizone treated C57BL/6 mice and Nlrc4
-/-

mice was examined for NLRC4 expression by 

IHC using an antibody against mouse NLRC4. NLRC4 expression was detected after 4 

weeks of cuprizone induced demyelination in WT C57BL/6 but not in Nlrc4
-/-

mice (Fig. 

3.1a). This time point coincides with peak inflammatory cell infiltration, demyelination and 

mature ODG death.   

Recruitment of microglia is delayed in Nlrc4
-/-

 mice 

To explore if NLRC4 has a role during cuprizone-induced neuroinflammation, we 

examined microglial accumulation in mice lacking NLRC4 (Nlrc4
-/-

) (Fig. 3.2a-b). Microglia 

are resident immune cells of the CNS that can phagocytose myelin debris, present antigens to 

T cells, and release cytokines and chemokines. The microglia populations at the corpus 

callosum were studied by Ricinus communis agglutinin-1 (RCA-1) lectin staining (Fig. 3.2a). 

Age-matched untreated (0 Wk) Nlrc4 
-/-

mice and C57BL/6 WT controls showed no 

difference in numbers of microglia at the corpus callosum (Fig 3.2b). At 3 and 4 weeks of 

cuprizone treatment there was progressive and significant reduction in microglial infiltration 

in Nlrc4
-/-

mice relative to WT controls (Fig. 3.2b, P=0.03 at 3 Wks and P=0.002 at 4 Wks). 

After 5 weeks of cuprizone treatment there was no difference in microglial accumulation 

between Nlrc4
-/-

and C57BL/6 controls (Fig.3.2b). This is consistent with other studies of the 

cuprizone model wherein the removal of an inflammatory gene did not affect pathology past 
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this time point (158, 180, 181).  These results indicate that NLRC4 contributes to microglia 

accumulation at the corpus callosum during demyelination . 

Astrogliosis is delayed in Nlrc4
-/-

 mice 

Astrocytes are the other cell population that contributes to cuprizone-induced 

neuroinflammation. We examined astrogliosis in mice lacking NLRC4 (Nlrc4
-/-

) (Fig. 3.3 a-

b). Activated astrocytes perform several overlapping roles with microglia with respect to 

neuroinflammation. The astrocyte populations at the corpus callosum was studied by glial 

fibrillary acidic protein (GFAP) staining (Fig. 3.3 a). Age-matched untreated (0 Wk) Nlrc4 
-/-

mice and C57BL/6 WT controls showed no difference in numbers of astrocytes at the corpus 

callosum (Fig 3.3b). At 3 and 4 weeks of cuprizone treatment there was progressive and 

significant reduction in astrogliosis in the Nlrc4
-/-

 mice at week 3 and 4, (Fig. 3.3b, P=0.002

at 3 Wks and P=0.009 at 4 Wks). After 5 weeks of cuprizone treatment there was no 

difference in astrogliosis between Nlrc4
-/-

and C57BL/6 controls (Fig. 3.3b). These results 

indicate that NLRC4 contributes to astrogliosis in the CNS during demyelination. 

Demyelination is delayed in cuprizone-treated Nlrc4
-/-

 mice  

Another component of the cuprizone model that is relevant to human disease is the 

demyelination process. To assess if NLRC4 plays a role in demyelination and the loss of 

mature oligodendrocytes (ODG), Nlrc4
-/-

 mice along with age matched C57BL/6 control 

(WT) mice were treated with cuprizone for 3, 4 and 5 weeks. Representative scoring of the 

extent of demyelination as measured by Luxol fast blue-periodic acid Schiff (LFB-PAS) 

staining is shown in Fig. 3.5a. Slides were read by three blinded readers on a scale of 0 (no 

demyelination) to 3 (complete demyelination). WT mice showed significant demyelination 

initiating at the 3 week time point and continuing to the end of the study at the 5 week time 
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point (Fig 3.5b). Nlrc4
-/-

mice showed a significant delay in demyelination at the 3 week 

time point when compared to WT controls (Fig 3.5b). LFB is a screening assay for myelin 

which requires further verification with more specific stains such as glutathione S transferase 

pi subunit (GST ), a marker of mature ODG population. Prior to cuprizone treatment (0 Wk)

Nlrc4
-/-

mice and C57BL/6 controls showed no difference in mature ODG populations at the 

corpus callosum as shown in Fig. 3.4b. At 4 weeks of cuprizone treatment, the depletion of 

mature ODGs was attenuated in Nlrc4
-/-

mice relative to C57BL/6 controls. A quantitation of 

the composite data is shown in Fig. 3.4 b (P=0.019 at 4 Wks). After 5 weeks of cuprizone 

treatment, there was no difference in demyelination and mature ODG death between Nlrc4
-/-

and C57BL/6 control mice (Fig. 3.4b) indicating that NLRC4 delayed demyelination but did 

not obviate this process.  This is consistent with studies of other inflammatory genes in the 

cuprizone model (180, 181, 209).

Myelin phagocytosis is enhanced in Nlrc4
-/-

 macrophages

Our data thus far suggests that NLRC4 exacerbates neuroinflammation as measured 

by microglial accumulation and astrogliosis and also affects demyelination and mature ODG 

depletion.  As described previously microglia/macrophages and astrocytes actively sample 

their environment. Microglia sense their environments via surface receptors and intracellular 

sensors such as TLRs and NLRs respectively (183). One of the several roles performed by 

microglia is clearance of cellular debris including but not restricted to myelin. Removal of 

myelin debris is critical for resolution of inflammation, prevention of further death of ODGs 

and recruitment of ODG progenitors for remyelination.  To investigate the role of NLRC4 in 

myelin phagocytosis we isolated macrophages from WT and Nlrc4
-/-

mice along with Nlrp3
-/-

and casp1
-/-

 mice as positive controls for enhanced myelin phagocytosis.  Nlrc4
-/-
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macrophages showed significantly increased phagocytosis of myelin as compared to WT 

controls and similar levels as compared to Nlrp3
-/-

and casp1
-/-

 macrophages (Fig. 3.6b).

Myelin phagocytosis was studied by incubating macrophages with myelin that was labeled 

with the fluorescent carbocyanine, lipophilic dye, 1, 1’-dioctadecyl-3, 3, 3’, 3’-

tetramethylindocarbocyanine perchlorate (DiI) for 120 minutes. Myelin internalization was 

measured over time by flow cytometry. Myelin internalization was also visualized by 

confocal microscopy. 0.25 X10
6
 macrophages were plated in glass bottom 24 well plates 

(Fig. 3.6a, panel i). Internalization was detectable at 120 minutes (Fig. 3.6a, panel ii). 

Treatment with cytochalasin D, a known inhibitor of phagocytosis, was used as a negative 

control (Fig. 3.6a, panel iii). These findings suggest that NLRC4 might negatively affect 

myelin phagocytosis which is important for myelin clearance.   
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3.5 DISCUSSION 

NLRC4 protein is abundant in the adult mouse brain (40) and can associate with 

procaspase-1 to form the NLRC4 inflammasome. Caspase-1 has been shown to be important 

for the processing of over 70 substrates including the cytokines IL-1  and IL-18(18, 19). 

Several studies have demonstrated the role of caspase-1 and its target proteins IL-1  and IL-

18 in neuroinflammation however, the role of NLRC4 or its endogenous triggers in the CNS 

remain undescribed. Our studies with NLRP3 deficient (Nlrp3
-/-

) mice in the cuprizone 

model showed a NLRP3/caspase-1/IL-18-dependent but IL-1  independent mechanism 

which leads to demyelination and the loss of mature oligodendrocytes. Moreover, our results 

in Nlrp3
-/-

 mice showed that NLRP3 deficiency delayed but did not obviate demyelination 

and neuroinflammation. These results raised the possibility of the involvement of other NLR 

proteins possibly capable of processing caspase-1 in neuroinflammation and demyelination.   

Here, we provide evidence that Nlrc4
-/-

mice exhibit delayed demyelination and 

neuroinflammation in the cuprizone induced mouse model of demyelination. Moreover 

stimulated by our earlier finding that Nlrp3
-/-

 and casp1
-/-

macrophages show an increased 

ability to phagocytose myelin debris we investigated myelin phagocytosis in macrophages 

from Nlrc4
-/-

mice. Bone marrow derived macrophages from Nlrc4
-/-

mice have increased 

capacity for myelin phagocytosis as compared to WT macrophages, this enhanced 

phagocytosis was similar to that observed with Nlrp3
-/-

and casp1
-/-

 macrophages.  

Myelin phagocytosis is an important component of MS pathology.  Macrophage and 

microglial clearance of myelin debris is critical to repair mechanisms following 

demyelination in both central and peripheral nervous system diseases (136, 138, 177, 203, 

204). Myelin debris has dual proinflammatory and anti-regenerative functions, firstly, myelin 
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debris can activate the complement system to form membrane attack complexes that 

disintegrate intact myelin (139) and secondly, myelin debris inhibits oligodendrocyte 

precursor cell differentiation in the adult rat CNS thus impairing remyelination (135). 

Therefore, myelin debris removal is critical for both resolution of demyelination and for 

creating an environment conducive for remyelination. This corroborates our in vivo data that 

showed delayed demyelination in Nlrc4
-/-

mice.   

It remains unclear how NLRC4 exerts its effects on phagocytosis. Myelin consists of 

protein and lipid components. One possible mechanism for the involvement of NLRC4 in 

myelin phagocytosis is the known structural homology between myelin basic protein (MBP) 

and flagellin (210). The structural homology between the flagellin of Borrelia burgdorferi

and myelin basic protein led to the “mistaken-self” hypothesis for the autoimmune attack 

against myelin leading to demyelination observed during neuroborreliosis. Myelin differs in 

composition from other plasma membranes in its unusually high lipid content. Lipids 

constitute 70-75% dry weight of myelin (211). The molar ratio of lipids is 2:2:1:1 for 

cholesterol/ phospholipid/ galactolipid/ plasmalogen. Another possible mechanism could be 

that after phagocytosis phospholipids in myelin are degraded by phospholipase A2 causing 

release of lysophosphatidylcholine (LPC) (212). LPC can suppress maturation and release of 

IL-1  in mouse microglial cells (213).  

In addition there are several receptor complexes that are involved in myelin 

phagocytosis including scavenger receptors I and II (SR-AI/II) (143, 145), complement 

receptor 3 (CR-3), galectin-3 (144), Fc gamma receptor (Fc R) (205), and the low-density 

lipoprotein receptor-related protein 1(LRP-1) (214).  It is possible that NLRC4 affects any, 
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some or all of these receptors by affecting their expression or signal transduction pathways 

required for myelin phagocytosis.

In summary, the dual roles of NLRC4 in exacerbating neuroinflammation and 

inhibiting myelin debris clearance indicate that inhibition of NLRC4 may prove to be a 

valuable therapeutic approach for demyelinating diseases such as MS.  These results show 

that neuroinflammation, demyelination and myelin debris clearance in this disease model are 

mediated by an NLRC4-dependent pathway.  
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Figure 3.1- Expression of NLRC4 in the CNS a. 4 week cuprizone treated WT  mice brains 

were examined for NLRC4 expression by IHC using an antibody against mouse NLRC4. 

NLRC4 expression (green) was detected after 4 weeks of cuprizone induced demyelination in 

WT but not in Nlrc4
-/-

mice (Fig. 3.1a). RCA (red) was used to detect microglia at the corpus 

callosum.  DAPI was used to label nuclei (blue). b. RT-PCR was used to detect Nlrc4 mRNA 

levels in total RNA from brains of cuprizone treated and untreated WT and Nlrc4
-/-

 mice. 

GAPDH was used as a positive control and water control was included as a negative control 

for the PCR reaction. 



98

0

500

1000

1500

2000

0 3 4 5R
C

A
+

ce
lls

p
er

sq
m

m

Weeks of cuprizone treatment

WT
Nlrc4

-/-

4 Wk0 Wk

WT

Nlrc4
-/-

a

b

***

*

P
A

S
sc

o
re

0

1

2

3

0 3 4 5

Weeks of cuprizone treatment

Nlrc4 -/-

WT

c



99

Figure 3.2- Role of NLRC4 in immune cell infiltration. a. Nlrc4
-/-

 mice (open circles) 

show reduced cellularity as compared to WT controls (filled circles). Cellularity was 

quantitated by periodic acid schiff’s (PAS) staining. Each circle represents the averaged 

observed PAS score from three readers for one mouse. The mean value of each data set is 

depicted by a red line.  b. Nlrc4
-/-

 mice exhibit reduced microglial accumulation as compared 

to age-matched WT controls. Microglial cells were measured by RCA
+

staining at the corpus 

callosum after 3 and 4Wks of cuprizone treatment. RCA (red) was used to detect microglial 

accumulation in the corpus callosum.  DAPI was used to label nuclei (blue). c. Quantitation

of microglial accumulation showed reduced microglia  at the midline corpus callosum in 

Nlrc4
-/-

 mice (open bars) after 3 and 4 weeks of cuprizone treatment (P=0.03 at 3 Wks and 

P=0.002 at 4 Wks).  *P< 0.05, **P<0.01, ***P<0.005; error bars, s.e.m. Cell counts are 

averages of between 4 and 11 mice per time point.
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Figure 3.3- Role of NLRC4 in astrogliosis. Nlrc4
-/-

 mice exhibit reduced astrogliosis when 

compared to age-matched WT controls as measured by GFAP
+

cell population at the corpus 

callosum after 3 and 4Wks of cuprizone treatment. a. GFAP (green) was used to detect 

astrocyte accumulation in the corpus callosum.  DAPI was used to label nuclei (blue). b.

Quantitation of astrogliosis showed significantly reduced astrocytes at the midline corpus 

callosum in Nlrc4
-/-

 mice (open bars) after 3 and 4 weeks of cuprizone treatment (P=0.002 at 

3 Wks and P=0.009 at 4 Wks). *P< 0.05, **P<0.01, ***P<0.005; error bars, s.e.m. Cell 

counts are averages of between 4 and 11 mice per time point.
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Figure 3.4- Role of NLRC4 in mature ODG depletion. Nlrc4
-/-

 mice show a significant 

decrease in oligodendrocyte death during demyelination. a. GST  (red) was used as a marker 

to detect mature myelinating oligodendrocyte accumulation. DAPI was used to label nuclei 

(blue). b. Quantitation of GST
+
 cells showed significantly more  oligodendrocytes at the 

midline corpus callosum in Nlrc4
-/-

 mice (open bars) after 4 weeks of cuprizone treatment 

(P=0.019 at 4 Wks). *P< 0.05, **P<0.01, ***P<0.005; error bars, s.e.m. Cell counts are 

averages of between 4 and 11 mice per time point.
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Figure 3.5- Role of NLRC4 in demyelination. Nlrc4
-/-

 mice (open circles) show delayed 

demyelination as compared to WT controls (filled circles). Each slide was scored by 3 

independent blinded readers on a score of 0 (no demyelination) to 3 (complete 

demyelination). All scores are restricted to the midline corpus callosum (boxed area).

Demyelination was quantitated by Luxol fast blue (LFB)/ periodic acid schiff’s (PAS) 

staining. Each circle represents the averaged observed LFB score from three readers for one 

mouse. The mean value of each data set is depicted by a red line. 
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Figure 3.6- Role of NLRC4 in myelin phagocytosis. a. Macrophages readily phagocytose 

DiI-labeled myelin. 0.25 X10
6
 macrophages were plated in 24 well plates. These 

macrophages were incubated with DiI-labeled myelin (red) for 2 hours.  Myelin phagocytosis 

was visualized by confocal microscopy (panel ii). As negative control samples were treated 

with cytochalasin D a known inhibitor of phagocytosis, in the medium (panel iii). 

Cytochalasin D blocked myelin phagocytosis.  b. Phagocytosis of fluorescently-labeled 

myelin was enhanced in Nlrc4
-/-

macrophages when compared to WT macrophages. 

Macrophages were isolated and analyzed by flow cytometry as described previously in the 

methods section. Mean fluorescent intensity (MFI) of DiI-Myelin was measured by flow 

cytometry. Nlrp3
-/-

and casp1
-/-

 BMDMs were used as positive controls of myelin 

phagocytosis. Data from 4 experiments are shown here.  
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Figure 3.7 Weight of Nlrc4
-/-

and control WT mice was similar during cuprizone 

induced demyelination. 8-10 weeks old, male, Nlrc4
-/-

and control WT mice were fed 0.2% 

cuprizone mixed into ground chow ad libidum for 5 weeks to induce progressive 

demyelination. Untreated control mice were maintained on a diet of normal pellet chow. 

Nlrc4
-/-

and control WT mice showed no difference in weight during cuprizone treatment.

Weights (in grams on y axis) are averages of at least 4 and up to 11 mice per time point. 
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The role of the NLR family members as sensors of PAMPs and DAMPs is a field of 

extensive study however their role in neuroinflammation and demyelination remains largely 

unexplored. As discussed in detail in chapter 1, mutations in NLRP3 in humans leads to three 

autoinflammatory syndromes - FCAS, MWS and CINCA that are collectively referred to as 

CAPS(52-56). CINCA patients often display chronic aseptic meningitis which is reversed 

after treatment with the IL-1  receptor antagonist Anakinra (164). This is indicative of a role 

for NLRP3 in neuroinflammation. The aim of this dissertation was to firstly; elucidate the 

possible contribution of NLRP3 to neuroinflammation, demyelination and remyelination, 

secondly to determine the molecular mediators and mechanisms of NLRP3 dependent 

regulation of neuroinflammation and demyelination and lastly to identify other NLRs that 

could play pro- or anti-inflammatory roles in demyelination. To address these questions we 

utilized a two pronged approach utilizing an in vivo cuprizone-induced mouse model of 

neuroinflammation, demyelination and remyelination and ex vivo macrophage based assays. 

Our studies utilized an extensive panel of mice deficient in genes encoding either NLRs or 

their signaling/effector components including, Nlrp3
-/-

, casp-1
-/-

, P2X7R
-/-

, IL-1
-/-

, IL-18
-/-

and Nlrc4
-/-

 mice. Table 4.1 summarizes the findings from these studies.  

1. Neuroinflammation, demyelination and myelin debris clearance in the cuprizone 

model is NLRP3 inflammasome dependent.   As described in detail in chapter 2 mice 

lacking Nlrp3 and caspase-1 exhibited reduced neuroinflammation, demyelination and 

mature oligodendrocyte loss in the cuprizone-induced demyelination and 

neuroinflammation model. The absence of IL-1  did not affect disease outcome, while 

the absence of P2X7R reduced neuroinflammation but not demyelination.  Macrophages 

from Nlrp3
-/-

 and casp-1
-/-

 but not WT mice exhibited augmented capacity to phagocytize 
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and clear myelin debris.  This ability was specific to myelin phagocytosis and did not 

extend to phagocytosis of latex beads or bacteria.

Several new research opportunities and questions arise as a result of these studies; 

firstly what are the DAMPs that might activate the inflammasome pathways in the CNS, 

in complex immune diseases such as multiple sclerosis? Secondly, what are the surface 

receptors on microglia/macrophages and potentially astrocytes that could sense myelin 

and activate downstream signaling pathways leading to the activation of the 

inflammasome related or other NLRs?  

Is the expression of the receptors involved in myelin phagocytosis regulated 

by expression of NLRP3?

Several surface molecules are important for myelin phagocytosis, including 

complement-receptor-3 (CR-3), scavenger-receptor-AI/II (SR-AI/II) and Fc gamma receptor 

(Fc R) (138, 143, 145, 215, 216). Recent data also implicate the Mac-3 molecule (also 

known as galectin-3) (144) and the low-density lipoprotein receptor-related protein 1(LRP-1) 

in myelin phagocytosis (214).  Downstream signaling pathways necessary for myelin 

phagocytosis include Ras, PI3K, and PLC .

Our preliminary studies have shown that myelin phagocytosis by CD11b and SRAI/II 

is independent of NLRP3 expression. Suggesting that, further studies investigating the 

expression of other receptors such as Mac-3, LRP-1 and Fc R during myelin phagocytosis in 

WT and Nlrp3
-/-

macrophages are required. Additional experiments could include blocking 

myelin phagocytosis by antibodies against these receptors to establish if one or more 

receptors are responsible for the increased myelin phagocytosis that is observed in Nlrp3
-/-
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macrophages. Anti-CR3 (216), anti-Fc R (141), anti-SRA-I/II (143) and anti-Mac3 blocking 

antibodies (144) have been successfully used previously to reduce myelin phagocytosis.    

Does NLRP3-regulated myelin phagocytosis rely on conventional myelin 

phagocytosis signaling pathways? 

The Ras, PI3K, and PLC  signaling pathways have been shown to be necessary for 

myelin phagocytosis pharmacological inhibitors against specific components of these 

pathways could be used to elucidate their relative contribution to myelin phagocytosis in WT 

and Nlrp3
-/-

macrophages. The PI3K pathway inhibitors, Ly294002 and wortmannin and the 

PLC inhibitors, 3-nitrocoumarin (3-NC) and U-73122 have been extensively studied and 

can be used for these studies (141-144).

How does the increased myelin phagocytosis in Nlrp3
-/-

macrophages correlate 

with in vivo delay in demyelination in Nlrp3
-/-

mice?

Macrophage and microglia mediated myelin debris phagocytosis has been reported in 

multiple sclerosis plaques as well as mouse models of CNS and PNS neuroinflammatory 

disorders (217, 218). To study myelin phagocytosis in vivo Oil red O (ORO) staining is 

performed.  ORO is a lipophilic dye that stains myelin degradation products such as 

triglycerides and lipoproteins.  ORO staining and/or antibody mediated detection of MBP 

along with a microglial markers (such as RCA or CD11b) can be used to study microglial 

myelin phagocytosis. A recent study of mice deficient in the Axl gene (Axl
-/
) showed that 

cuprizone-treated Axl
-/-

 mice exhibit delayed myelin debris clearance (219).  While WT mice 

showed robust ORO staining after 4 weeks of cuprizone treatment Axl
-/-

 did not show ORO 

staining until 6 weeks. Our preliminary studies with Nlrp3
-/-

mice show strong ORO staining 

after 5 weeks of cuprizone treatment.  Since our ex vivo data utilizing mouse macrophages 
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showed increased phagocytosis in Nlrp3
-/-

 macrophages as compared to WT macrophages a 

comprehensive study utilizing ORO staining to examine myelin phagocytosis in vivo in mice 

from 2 to 5 weeks after start of cuprizone treatment will allow for a better understanding of 

the role of NLRP3 in myelin phagocytosis in vivo.

2. Remyelination in the cuprizone model is NLRP3 independent.  Regulation of 

remyelination is a potential therapeutic intervention for MS. Previous studies in the 

cuprizone model have shown that remyelination is dramatically reduced in IL-1
-/-

 mice 

(165). IL-1  regulates remyelination via its regulation of IGF-1 which is critical for 

conversion of ODG progenitors to mature ODGs (165, 188). Moreover, transgenic mice 

constitutively expressing IGF1 have reduced mature ODG death by apoptosis (166, 167). 

Thus, we hypothesized that NLRP3 via its regulation of IL-1  processing and 

consequently IGF-1 may regulate oligodendrogenesis and remyelination. However our 

data with Nlrp3
-/-

 mice during remyelination (8, 10 and 12 week time points) indicated 

that remyelination remains unchanged relative to C57Bl/6 controls by GST pi and 

LFB/PAS staining, and TEM analysis. Interestingly our preliminary data with 

remyelination utilizing IL-18
-/-

 mice showed that these animals have more rapid 

remyelination as compared to WT controls at the same time point, indicating that IL-18 

may be detrimental to remyelination in vivo. These findings are novel in that they provide 

inhibition of a NLRP3 as a novel therapeutic intervention for MS. Earlier studies with 

other mediators of neuroinflammation and demyelination have been inconsequential in 

terms of clinical translation due to the dual role of these mediators in demyelination and 

remyelination. Thus, compromising their therapeutic use. Moreover, this is the first report 
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documenting the role of IL-18 during remyelination. A detailed analysis of ODG 

progenitor cell population and their proliferation as compared to WT controls during 

remyelination in the cuprizone model may yield interesting insight into the mechanistic 

role of IL-18 in remyelination. In addition a study of casp-1
-/-

 and IL-1
-/-

/IL-18
-/-

mice 

during remyelination may also provide a better understanding of the relative contribution 

of these molecules towards remyelination in this model.  To establish the role of caspase-

1 and IL-18 in ODG progenitor proliferation BrdU incorporation in NG2
+
 ODG 

progenitor cell population can be studied as described previously (158). NG2
+
 BrdU

+

cells can be detected by immunofluorescence for NG2 and quantitated. Moreover, IGF-1 

expression in casp-1
-/-

 and IL-1
-/-

/IL-18
-/-

mice versus WT control mice can be studied by 

IGF-1 ELISA.

3. Neuroinflammation, demyelination and myelin debris clearance in the cuprizone 

model is NLRC4 dependent. Considering the delay but not complete abolition of 

demyelination and neuroinflammation in the cuprizone model our final question explored 

the existence of other NLRs that could compensate for the loss of NLRP3.  Since NLRP3 

dependent caspase-1 cleavage is required for neuroinflammation and demyelination in 

our model we explored other NLR proteins that could cleave caspase-1. NLRC4 can 

associate with procaspase-1 and cause its autocatalytic cleavage to active caspase-1. 

However, NLRC4 is a cytosolic sensor for flagellin, flagellated and some non-flagellated 

pathogens so we expected that NLRC4 would not contribute to inflammation in the 

cuprizone model. Interestingly, our data with Nlrc4
-/-

mice showed delayed astrogliosis, 

microglial infiltration, mature oligodendrocyte death and demyelination. Nlrc4
-/-

mice 
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also showed a similarity to Nlrp3
-/-

mice in terms enhanced ability to clear myelin debris. 

These results raise the possibility of the existence of multiple contributing pathways 

upstream of caspase-1 activation that could lead to demyelination and 

neuroinflammation. The known structural homology between myelin basic protein 

(MBP) and flagellin or regulation of NLRC4 by myelin lipid mediators could provide a 

possible explanation. As in the case of NLRP3 regulated myelin debris clearance the 

identity of surface receptors involved in myelin phagocytosis and mechanism of delivery 

to the cytosolic NLR sensor remains unexplored. Future studies investigating the role of 

lipid and protein components of myelin such as by utilizing purified myelin basic protein 

or inhibitors of phospholipase A2 in phagocytosis experiments with macrophages from 

WT and Nlrc4
-/-

mice could provide much insight into the mechanism and mediators of 

myelin phagocytosis.
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Table 4.1. Summary of cuprizone studies 
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