PORTAL RESOURCES INFORMATION SYSTEM:
THE DESIGN AND DEVELOPMENT OF AN ONLINE DATABASE FOR
TRACKING WEB RESOURCES

by
Richard Spinks

A Master’s paper submitted to the faculty
of the School of Information and Library Science
of the University of North Carolina at Chapel Hill
in partial fulfillment of the requirements
for the degree of Master of Science in
Information Science

Chapel Hill, North Carolina
April, 2003

Approved by:

Advisor

This paper describes the design and development of a Web-based information system for collecting and organizing information pertaining to Web resources. In particular, the system is intended to support a team of technical writers who are tracking Web resources that are related to the portal software product they document. The system enables the team to identify a resource of interest and evaluate its content, including categorizing the resource, while also denoting various characteristics of the resource, such as its media format or type.

For data input, the proposed system presents Web-based forms constructed with PHP that the user can access from any typical Web browser, and the system stores the collected information in a MySQL database, thereby enabling users to easily query the data at any time and even perform additional analysis of the data, if desired. The system also presents various views of the information in the database, according to selectable criteria, and provides for sorting query results and previewing resources.

Headings:

Web--Databases
Online--Databases
Databases
Information Systems--Design
Table of Contents

Table of Contents.. 1
Project Summary.. 2
 Problem.. 2
 Original Approach ... 2
 User Description .. 3
 Proposed System... 3
User and Task Information... 4
 User Roles.. 4
 User Requirements... 6
 Use Cases and Scenarios ... 7
System Description... 19
 Logical Design for the Database.. 19
 Data Dictionary... 20
 Schema.. 20
 System Architecture... 21
 Security.. 23
Reflections on the Project ... 24
Project Summary

Problem

A team of technical writers is faced with the job of evaluating several hundred online resources that pertain to the product that they are documenting. In particular, the writers need to assess the following for each resource:

- Whether the resource contains essential material that should be included in the product documentation
- The expense of maintaining the information, were it to be included in the product documentation. For example, this estimate could reflect whether the information would require frequent updates to remain current or pose any particular problems for translation.
- Which keywords best describe the resource. These keywords can be selected from a pre-defined list, or the evaluator can enter a new keyword not in the original list.

Original Approach

The list of resources that need to be evaluated had already been compiled, but the original approach that the team intended to take was essentially manual. Subsets of the resource list were to be e-mailed to subject-matter experts on the team, who then would be expected to provide all of the above information in a return e-mail. Once received, the evaluations would have to be manually collated. While this approach might have yielded useful information that the team of writers could take advantage of, there was a
significant amount of labor required. In addition, the benefits attained from the exercise could not easily be leveraged, as any comparison or analyses of the keyword assignments (or other aspects of the data) would also have to be performed by hand.

User Description

The users for this system are technical writers employed by a large software company. As such, members of the user group tend to be experienced with common office software, such as word processing products and e-mail programs, as well as a variety of more specialized software, including HTML authoring tools, document formatting software, graphics programs, and Web browsers.

Proposed System

The proposed system provides for two primary activities pertaining to the Web resources that the users will be evaluating: a general classification exercise and content evaluation. These same activities would be performed even if the users followed the original approach of sending e-mail surveys and manually collating the responses. However, the proposed system goes further by storing the collected information in an SQL database, thereby enabling users to easily query the data at any time and even perform additional analysis of the data, if desired.

For data input, the system presents Web-based forms that the user can access from any typical Web browser. The user can enter information for a Web resource in the form fields, and where appropriate, select various classifying characteristics (such as the
format and type of resource) from drop-down lists and the like. Entries in such selectable controls are pulled directly from lookup tables in the database, ensuring that the Web form displays accurate choices to the user and preventing inadvertent errors in data entry. When the user submits the information for the resource, one or more SQL queries are executed to add the information directly to the database.

The system also presents various views of the information in the database, according to selectable criteria, and provides for sorting query results and previewing resources. To facilitate maintenance, the system also provides Web forms enabling an administrative user to manage the elements in the lookup tables by adding, deleting, or modifying elements as appropriate.

User and Task Information

User Roles

The user set for this system is restricted (at least in theory) to technical writers in a software company who are familiar with a specific software product. However, because the tasks performed by the user can vary in regard to how much specialized product knowledge is required, it is useful to consider the user set in terms of several roles. The different requirements of the roles also affect what the system presents to the user and when. Of course, it is not expected that the user will be confined to a single role but that the user will likely transition from one role to another depending on the task at hand.
The user roles include:

- Resource evaluator
- Resource consumer
- Administrator

Resource evaluator
The resource evaluator adds data to the system, specifically by entering information for a
Web resource and specifying certain classifying information. When the user interacts
with the system as a resource evaluator, the user has a specialized purpose, in that he is
trying to bring to bear his domain knowledge regarding the software product to which the
Web resource pertains. The resource evaluator will likely have a good understanding of
the resource’s content but may not be knowledgeable about the system. Moreover, it is
possible that a resource evaluator could be recruited strictly for the evaluation exercise
and not interact with other parts of the system.

Resource consumer
The resource consumer can be thought of as a more general-purpose user, in that the
resource consumer interacts with the system largely to access the information for the
Web resources. Although the resource consumer might not actually enter new resources,
he is interested in views of the data and wants to use the system to search or browse for
resources.
Administrator
The administrator’s main concern is maintenance of the system. A user acting as an administrator is knowledgeable about the database and its structure. The administrator needs to make updates to the lookup tables that are used to build select lists in the Web forms, as well as delete resource entries that are incorrect or no longer pertinent.

User Requirements
The system addresses the following requirements:

- Support entry of pertinent data for Web resources, such as URL, description, and essential information (resource evaluator)
- Provide selection mechanism for pre-defined data, such as category keyword (resource evaluator)
- Display summary of information before submission (resource evaluator)
- Provide mechanism to request edit or deletion of resource (resource evaluator, resource consumer)
- Search for resources in database, according to keywords or other criteria (resource consumer)
- Sort results according to date, format, and other criteria (resource consumer)
- Preview selected resource (resource consumer)
- Browse resources (resource consumer)
- Edit capability for existing resources (administrator)
- Delete capability for existing resources (administrator)
• Edit capability for contents of lookup tables to add, change, delete entries
 (administrator)

Use Cases and Scenarios

This section describes the primary task areas for the system, including task hierarchy
diagrams for the task areas. For each task area, essential use cases are described, along
with relevant scenarios for the use cases.

To simplify their presentation, the tasks are organized into related groups. Note,
however, that the task grouping used here does not necessarily indicate how tasks are
presented on the user interface. The task areas are:

• **Resource evaluator tasks**, such as adding new resources to the system or
 indicating if a resource contains essential information.

• **Resource consumer tasks**, such as searching for resources or previewing a
 resource.

• **Administrator tasks**, such as deleting a resource or updating a lookup table.
Use Case: Add Resource

<table>
<thead>
<tr>
<th>User Intention</th>
<th>System Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply information for new resource.</td>
<td>Present Add Resource page</td>
</tr>
<tr>
<td>Accept confirmation and submit information</td>
<td>Present summary of information to be added and confirmation message</td>
</tr>
<tr>
<td>Indicate intention to specify essential information for resource</td>
<td>Validate resource information</td>
</tr>
<tr>
<td>Identify essential information</td>
<td>Present confirmation of submission</td>
</tr>
<tr>
<td></td>
<td>Present Essential Information page</td>
</tr>
<tr>
<td></td>
<td>Validate information</td>
</tr>
<tr>
<td></td>
<td>Present confirmation of submission</td>
</tr>
</tbody>
</table>
Scenario 1: Add Resource
[John has been assigned a set of Web resources to evaluate to see if they contain any
information that would be a useful addition to their product documentation. He starts
with the first URL on his list, which turns out to be a technical article on an external Web
site for developers who use the product. Although John considers the article well written
and thorough, he determines that its subject is too specialized and not appropriate for the
product documentation. Even so, he needs to add the resource to the database.]

John accesses the main page for the system with a browser and selects a link indicating
that he wants to add a new resource. He is presented with the Add Resource page (a Web
form) where he enters various pieces of information on the resource, such as its URL, a
brief description of the resource’s contents, and so forth. In addition he selects
identifying characteristics from drop-down lists, such as the type of resource and its
format. Finally he selects one or more category labels that he believes apply to the
resource. When he is satisfied with the information, he clicks the Add Resource button to
submit the information and is presented with a summary page, confirming the resource
was added. He then repeats the process for the other resources he is evaluating.

Scenario 2: Add Resource
[John is in the process of adding several new resources to the system. After successfully
adding the first two, he proceeds to the third.]

While filling in the information for the third resource (an online presentation), John
realizes that there are two points from the presentation that would be good additions to
the product documentation. After adding the third resource and getting the confirmation
page, John clicks the “Identify essential information” link, whereupon he is presented with the Identify Essential Information page. He enters a description of the first point and indicates how much labor would be involved in maintaining the information, if it were added to the product documentation. Then he clicks the Submit Information button, and the page is updated with a list of items added as essential information. John then repeats this for the next point and the list is again updated to show the two items John has specified. When he is done, he clicks the Done button to return to the Add Resource page.

Use Case: Request Edit or Deletion

<table>
<thead>
<tr>
<th>User Intention</th>
<th>System Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specify whether to edit or delete resource</td>
<td>Present Edit or Deletion Request page</td>
</tr>
<tr>
<td>Specify which resource to affect</td>
<td></td>
</tr>
<tr>
<td>Submit request</td>
<td></td>
</tr>
<tr>
<td>Accept confirmation and submit request</td>
<td>Present summary page with confirm option</td>
</tr>
<tr>
<td></td>
<td>Present confirmation that request has been logged</td>
</tr>
</tbody>
</table>

Scenario: Request Edit or Deletion

[Maggie has just finished adding a new resource to the system but has realized that the URL she specified is incorrect.]

From the start page Maggie selects the “Request resource edit or deletion” link and is presented with the Edit or Deletion Request Page. She selects the “Edit” option and then enters the URL of the resource she previously entered into the system to identify the resource. In a text box she describes the change that she needs made, namely to replace the resource’s current URL with a corrected version, which she then pastes into the text.
box. Satisfied with her information, she clicks the Continue button. She is presented with a summary page listing the change being requested, and she clicks the Submit Request button. The system displays a page confirming that Maggie’s edit request has been logged.

Use Case: Search for Resources

<table>
<thead>
<tr>
<th>User Intention</th>
<th>System Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select the attributes with which to scope the search</td>
<td>Present list of search results</td>
</tr>
<tr>
<td>View search results</td>
<td>Present list of search results</td>
</tr>
<tr>
<td>Select column in results to change sort order</td>
<td>Present list of search results, sorted accordingly</td>
</tr>
</tbody>
</table>

Figure 2. Resource consumer tasks.
Scenario: Search for Resources

Jennifer is a writer on the team who wants to see how many Web resources deal with how to implement security with their software product. Although she hasn’t been involved in evaluating resources previously, she is aware of the system and the resource information it contains.

Jennifer accesses the main page for the system with a browser and selects a link indicating that she wants to search the resources in the system. She is presented with the Search page, where she can select from several attributes that will be used to scope the search. From the category drop-down list, she selects “Security” and from the version drop-down list, she selects the most recent product version. She leaves the other search attributes at their default values. She then clicks the Search button and receives a page listing the resources that pertain to the latest version of the product and are associated with the security category. She is interested in the types of resources, such as presentations or tutorials, so she clicks on the “Type” column header to cause the results list to be sorted according to resource type, where she can more easily scan the resources.

Use Case: Browse Resources

<table>
<thead>
<tr>
<th>User Intention</th>
<th>System Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present main page (browse links available from top level)</td>
<td>Present main page (browse links available from top level)</td>
</tr>
<tr>
<td>Select the attribute of interest</td>
<td>Present list of results</td>
</tr>
<tr>
<td>View results</td>
<td>Present list of results, sorted accordingly</td>
</tr>
<tr>
<td>Select column in results to change sort order</td>
<td>Present list of results, sorted accordingly</td>
</tr>
</tbody>
</table>
Scenario: Browse Resources
[Ted is a first-time user of the system and is curious about the kind of information stored in the system.]

From the start page Ted sees the browse links describing the resources in the system. He scans them to get an idea of how the resources are organized and then clicks the “Portlet development” link under the category list. The system presents a list of resources that are associated with the portlet development category.

Use Case: View Resource

<table>
<thead>
<tr>
<th>User Intention</th>
<th>System Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present list of resources (via either previous browse or search)</td>
<td>Select the resource</td>
</tr>
<tr>
<td>Present detailed information for resource</td>
<td>Select to show preview</td>
</tr>
<tr>
<td>Present preview of resource in preview space</td>
<td></td>
</tr>
</tbody>
</table>

Scenario: View Resource
[Continuing from the Browse Resources scenario above, Ted has generated a list of resources he is interested in.]

Ted identifies one resource in particular that he wants to know more about and clicks on that resource from the list. A detailed summary page for the resource is displayed, listing all the information about the resource. Ted then clicks the “Preview resource” link, causing a preview area to be displayed in the browser window and the URL of the resource is loaded into the preview area.
Figure 3. Administrator tasks.
Use Case: Edit Resource

<table>
<thead>
<tr>
<th>User Intention</th>
<th>System Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select the attributes with which to scope the search</td>
<td>Present list of search results</td>
</tr>
<tr>
<td>View search results</td>
<td>Present list of search results</td>
</tr>
<tr>
<td>Select resource to edit</td>
<td>Display page with resource information</td>
</tr>
<tr>
<td>Enter changes to resource information</td>
<td>Validate resource information</td>
</tr>
<tr>
<td>Submit changes</td>
<td>Present confirmation of update</td>
</tr>
</tbody>
</table>

Scenario: Edit Resource
[Laura is performing some maintenance on resource information in the system. She has received a request to modify the category entry for a resource that John has recently added to the system.]

Laura opens the Edit Resource page in a browser, which contains essentially the same fields (to start with) as the Search page. Although she could restrict her search by date or other attribute, she elects to take the defaults, since the results will be sorted by date by default and recent entries will be near the top of the list. A list of resources is displayed, and Laura locates and selects the link for the resource John indicated. A detail summary page for the resource is displayed, with entry fields and drop-down lists enabling editing of the resource’s information. Laura changes the category selection as John requested, and then clicks the Update Resource button. A confirmation page is displayed indicating that the resource information has been changed.
Use Case: Delete Resource

<table>
<thead>
<tr>
<th>User Intention</th>
<th>System Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select the attributes with which to scope the search</td>
<td>Present Delete Resource page</td>
</tr>
<tr>
<td>View search results</td>
<td>Present list of search results</td>
</tr>
<tr>
<td>Select resource to delete</td>
<td>Display warning page</td>
</tr>
<tr>
<td>Submit deletion</td>
<td>Present confirmation of deletion</td>
</tr>
</tbody>
</table>

Scenario: Delete Resource
Laura has received a deletion request from Ted regarding a resource that is in the system but is no longer needed.

Laura opens the Delete Resource page in a browser, which contains essentially the same fields (to start with) as the Search page. Because Ted has provided her with the URL of the resource to be deleted, Laura enters the URL in a search field and clicks the Search button. A list of resources is displayed, in this case containing one entry. Laura clicks the entry, and a warning page is displayed asking if she wants to delete the resource. She clicks the Delete Resource button, and a confirmation page is displayed indicating that the resource has been deleted.

Use Case: Edit Selection List

<table>
<thead>
<tr>
<th>User Intention</th>
<th>System Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select the selection list to be modified</td>
<td>Present Edit Selection List page</td>
</tr>
<tr>
<td>Select element in list (if modifying or deleting)</td>
<td>Present list of elements in list</td>
</tr>
</tbody>
</table>
User Intention

<table>
<thead>
<tr>
<th>User Intention</th>
<th>System Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select whether to add, modify, or delete element</td>
<td>Present add/modify element page or warning page (if deleting)</td>
</tr>
<tr>
<td>Enter/Modify element information (if adding or modifying)</td>
<td>Validate information (if necessary)</td>
</tr>
<tr>
<td>Submit change</td>
<td>Present confirmation page</td>
</tr>
</tbody>
</table>

Scenario 1: Edit Selection List – Add New Element

[The software product the team of writers supports has recently delivered a new release, and although it is still too early for external Web resources specific to that release, Laura decides to go ahead and update the lookup table so that the system will be prepared when such resources are available.]

Laura opens the Edit Selection List page in a browser, which by default lists the current lookup tables in the database (the lookup tables are rendered in the interface as drop-down selection lists). She selects the product version list and clicks the Add Entry button. A page is displayed that lists the elements in the product version list and provides an entry field for new entries. Laura enters the name of the new version and clicks the Add button. The element list is updated and a confirmation message is displayed indicating the change. Because Laura has no other entries to add, she clicks the Done button, which returns her to the Edit Selection List page.

Scenario 2: Edit Selection List – Modify Element

[After adding a new entry to a selection list (see previous scenario), Laura realizes that she entered a typo in the new entry and needs to modify the entry to correct it.]
From the Edit Selection List page, Laura selects the product version list again and clicks the Modify Entry button. A page is displayed that lists the elements in the product version list. Laura selects the incorrect entry from the list, and the entry field is updated with entry’s value. Laura makes her changes to the entry in the field and clicks the Modify button. The element list is updated and a confirmation message is displayed indicating the change. Laura clicks the Done button to return to the Edit Selection List page.

Scenario 3: Edit Selection List – Delete Element

[Finally Laura decides to delete an obsolete entry from the format lookup table, because they have since discovered that the format in question is not applicable.]

From the Edit Selection List page, Laura selects the format list and clicks the Delete Entry button. A page is displayed that lists the elements in the format list. Laura selects the entry that she wants to delete and clicks the Delete button. A warning page is displayed verifying that the deletion is intended. Laura clicks the Continue with Delete button. The element list page is displayed again, with the list updated and a confirmation message displayed indicating the change. Laura clicks the Done button to return to the Edit Selection List page.
System Description

The system is composed of an SQL database that the user interacts with through a Web-based interface. This section describes the components of the system, including:

- Logical design of the database
- Data dictionary
- Database schema
- System architecture

Logical Design for the Database

The ER diagram in Figure 4 presents the entities and relationships that the database supports.

![Figure 4. ER diagram for database.](image)
Data Dictionary

Table 1 displays the data dictionary information for the database.

Table 1. Data dictionary for database.

<table>
<thead>
<tr>
<th>Entity or Relationship</th>
<th>Field Name</th>
<th>Type (refers to MySQL type)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESOURCE</td>
<td>resourceid</td>
<td>integer</td>
<td>Unique identifier for resource</td>
</tr>
<tr>
<td></td>
<td>url</td>
<td>varchar(255)</td>
<td>URL of the resource</td>
</tr>
<tr>
<td></td>
<td>title</td>
<td>varchar(255)</td>
<td>Title of the resource</td>
</tr>
<tr>
<td></td>
<td>datenow</td>
<td>integer</td>
<td>2-digit number representing month the resource was posted</td>
</tr>
<tr>
<td></td>
<td>dateyear</td>
<td>integer</td>
<td>4-digit number representing year the resource was posted</td>
</tr>
<tr>
<td></td>
<td>description</td>
<td>varchar(255)</td>
<td>User-entered description of resource</td>
</tr>
<tr>
<td>SOURCE</td>
<td>sourcename</td>
<td>varchar(156)</td>
<td>Unique name of source where resource resides online</td>
</tr>
<tr>
<td>FORMAT</td>
<td>formatname</td>
<td>varchar(25)</td>
<td>Unique name of format the resource is in</td>
</tr>
<tr>
<td>RESOURCETYPE</td>
<td>typename</td>
<td>varchar(40)</td>
<td>Unique name of resource type to which the resource belongs</td>
</tr>
<tr>
<td>CATEGORY</td>
<td>categoryname</td>
<td>varchar(50)</td>
<td>Unique name of category that describes resource</td>
</tr>
<tr>
<td>PRODUCT</td>
<td>productname</td>
<td>varchar(120)</td>
<td>Unique name of product to which the resource pertains</td>
</tr>
<tr>
<td>ESSENTIALINFO</td>
<td>infoid</td>
<td>integer</td>
<td>Unique identifier of piece of essential information for resource</td>
</tr>
<tr>
<td></td>
<td>infodesc</td>
<td>varchar(255)</td>
<td>Description of the essential information in the resource</td>
</tr>
<tr>
<td></td>
<td>maintenance</td>
<td>enum('Frequent updates', 'Infrequent updates')</td>
<td>Indication of maintenance effort required to keep this piece of essential information up-to-date, if it were included in product documentation</td>
</tr>
<tr>
<td></td>
<td>cmvcddefect</td>
<td>char(5)</td>
<td>Tracking number for piece of essential information. Note: This field is included for future use and is not exposed in current design</td>
</tr>
<tr>
<td></td>
<td>cmvcfamily</td>
<td>varchar(12)</td>
<td>Additional tracking information. Note: This field is included for future use and is not exposed in current design</td>
</tr>
</tbody>
</table>

Schema

The database schema used for the system is presented below:

SOURCE (sourcename)

FORMAT (formatname)

RESOURCETYPE (typename)
System Architecture

The overall architecture of the system is shown in the Figure 5. The primary elements are an SQL database, a PHP Hypertext Preprocessor, and a set of Web-based forms and views.

![System Architecture Diagram](image)

Figure 5. System architecture for portal resources system.
SQL Database
All information for the resources is gathered and stored in an SQL database. Because of
its open source status and widespread availability, the MySQL database is utilized for the
system. The version of MySQL used is 11.18 Distribution 3.23.55, running on a
Windows NT machine.

PHP Hypertext Preprocessor
To provide direct access to the MySQL database through a Web-based interface, PHP is
used to create HTML pages that can contain elements that are generated dynamically
from the contents of the MySQL database. In addition, PHP has the capability to perform
SQL queries and process the results, making it especially suited for integrating the
database with a Web-based interface. The version of PHP used is 4.3.1, running on a
Windows NT machine (co-resident with the MySQL database).

Web-based Forms and Views
The user interface for the proposed system is entirely Web-based, composed of HTML
forms and pages to display information on the resources in the database. As described
above, some portion of the code for these pages is in the PHP scripting language to
provide for real-time communication with the database and to enable direct manipulation
of its contents.

The browser requirement for the system is Internet Explorer 5.5 or later, Netscape 6 or
later, or Opera 5 or later. Although there is no intention to rely much (if at all) on
JavaScript, this browser requirement is driven by the need to be able to preview resources
from the detailed view page (as described in the use cases and scenarios), which are implemented through the use of the `<IFRAME>` tag. Because the users of the system must use up-to-date browsers as part of their day-to-day activities, this requirement is not expected to pose any problems.

Security

After consideration, it was determined that no real security (at least in terms of authorization and authentication) be implemented for this initial implementation of the proposed system. The system itself runs on an internal network that is not accessible to users outside the software company where the users work. To help minimize the chance of data being lost or deleted, the Web pages that are accessed by resource evaluators and resource consumers do not provide the capability to delete resources or otherwise alter their contents once they’re created. To do this, the user must use the online form to send the request to the system administrator.

However, the pages designed for the administrator do have full edit and delete capability. The initial plan to “protect” these pages is simply to not publicize their URLs to any user who is not an administrator (and to mask the directories where these files reside on the Web server). The next iteration of the system would provide for a login mechanism for the administrator when he attempts to access these pages. Although the initial approach is hardly a secure one, the expectation is that there is a low risk of contamination given the team’s insulated environment and, frankly, that there is little interest in the contents of the database outside the team itself.
Reflections on the Project

As is evident from this design document, the development of the use cases and the scenarios in this project occupied a significant portion of the design phase. There was a temptation to rush through the task analysis process and begin building the system outright, largely because working with the technical pieces of a project can convey a sense of progress quickly. However, knowing that the building phase would require a large investment of time in and of itself, I determined that appropriate time applied to the use cases and scenarios would likely limit unnecessary rework and churn later, particularly changes caused by an inadequate understanding of the tasks the interface needed to support. One of the largest benefits that the use cases provided for this project was that they helped to identify issues early on in the process; the scenarios described the user’s interaction with the system, while the system response tables described what the system needed to do and when it needed to do it. Knowing the relationship between the user actions and the system responses influenced my approach to the PHP code, for example helping me decide when a single PHP page or multiple PHP pages should be used for a particular interaction. In addition, the use cases and scenarios lent themselves to the use of pseudocode, short phrases in readable text that are used to explain the specific tasks involved in approaching a programmatic problem. This pseudocode was an important element in implementing the PHP code for the system, making the programming easier.

It is worth noting that this system is a small-scale application. Even with the straightforward interactions and well-scoped tasks that this system tends to have, the use
cases and scenarios proved valuable to improving the efficiency of the development phase. For large and complicated systems, the inclusion of use cases and scenarios becomes even more important, as they can help highlight where functions and components in the system overlap or fall short of supporting the user tasks.