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ABSTRACT 

 

RIMA HAJJO: In Silico Strategies to Study Polypharmacology of G-Protein-Coupled 

Receptors 

(Under the direction of Alexander Tropsha) 

 

The development of drugs that simultaneously target multiple receptors in a rational way 

(i.e., ‗magic shotguns‘) is regarded as a promising approach for drug discovery to treat 

complex, multi-factorial and multi-pathogenic diseases. My major goal is to develop and 

employ different computational approaches towards the rational design of drugs with 

selective polypharmacology towards guanine nucleotide-binding protein (G-protein)-coupled 

receptors (GPCRs) to treat central nervous system diseases. Our methodologies rely on the 

advances in chemocentric informatics and chemogenomics to generate experimentally 

testable hypotheses that are derived by fusing independent lines of evidence. We posit that 

such hypothesis fusion approach allows us to improve the overall success rates of in silico 

lead identification efforts. We have developed an integrated computational approach that 

combines Quantitative Structure-Activity Relationships (QSAR) modeling, model-based 

virtual screening (VS), gene expression analysis and mining of the biological literature for 

drug discovery.  

The dissertation research described herein is focused on: (1) The development of robust 

data-driven Quantitative Structure-Activity Relationship (QSAR) models of single target 

GPCR datasets that will amount to the compendium of GPCR predictors: the GPCR 

QSARome; (2) The development of robust data-driven QSAR models for families of GPCRs 
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and other trans-membrane molecular targets (i.e., sigma receptors) and the application of 

models as virtual screening tools for the quick prioritization of compounds for biological 

testing across receptor families; (3) The development of novel integrative chemocentric 

informatics approaches to predict receptor-mediated clinical effects of chemicals. Results 

indicated that our computational efforts to establish a compendium of computational 

predictors and devise an integrative chemocentric informatics approach to study 

polypharmacology in silico will eventually lead to useful and reliable tools aimed at 

identifying and enriching chemical libraries with compounds that have the desired activities 

for more than one molecular target of interest.  
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CHAPTER 1 

INTRODUCTION 

 

Drugs Acting at Multiple Targets and Selective Polypharmacology as an Important 

Drug Discovery Approach 

 Over the past decade, there has been a decline in the number of new drugs reaching 

the market and being used as effective therapeutics.  Many reasons have been suggested to 

explain this decline in drug development productivity (Bakker et al. 1999, Cascante et al. 

2002, Hood & Perlmutter 2004, van der Greef & McBurney 2005). This led to the suggestion 

that there may be real issues with the core assumptions that framed drug discovery 

approaches in the past two decades (Hopkins 2008). One of the key goals of the rational drug 

design has been the discovery of very selective ligands acting via individual molecular 

targets.  In fact, a highly selective ligand for a given target does not always result in clinically 

efficacious drug because of the redundancy in our biological systems (Frantz 2005, Mencher 

& Wang 2005). Therefore, this one-molecule, one-target approach, which has led to the 

discovery of many blockbuster drugs and will probably remain popular for many years, 

might not be suitable for treating complex multifactorial diseases such as neuropsychiatric 

and neurodegenerative diseases. 
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Polypharmacology (Frantz 2005, Hampton 2004, Keith et al. 2005, Mencher & Wang 

2005, Roth & Kroeze 2006, Wermuth 2004) or the selective promiscuous modulation of 

several molecular targets has been proposed as a promising approach for drug discovery to 

treat complex diseases. Recent studies provided a substantial evidence that compound 

promiscuity is the main reason for the great efficacy of a significant number of approved 

drugs (Hampton 2004, Hopkins et al. 2006, Keith et al. 2005, Mencher & Wang 2005, Roth 

et al. 2004). The growing  understanding of the complexity of biological networks and the 

robustness and redundancy of biological systems challenges the current approaches of single 

target drug discovery including in silico approaches (Hopkins 2007, Hopkins 2008, Roth et 

al. 2000, Roth & Kroeze 2006). Nowadays, medicinal chemists are becoming more interested 

in identifying polypharmacological drugs (i.e., ‗magic shotguns‘) (Armbruster & Roth 2005, 

Roth et al. 2004) that can bind moderately to several targets in a disease-protein network and 

affect the overall outcome significantly (Hopkins et al. 2006, Hopkins 2009, Roth et al. 

2004).  

 Thus, the main goal of polypharmacology is to identify a compound with a desired 

biological profile across multiple targets whose combined modulation will perturb a disease 

state (Hopkins 2008).  The history of drug development of antipsychotics is a clear example 

of the migration from single target approach centered on dopamine D2 to a multiple target 

strategy involving D2 blockade and the recruitment of a wide array of other receptor 

activities. The recent generation of antipsychotics which are called ―atypical‖, approved by 

the U.S Food and Drug Administration (FDA) for use in the treatment of schizophrenia, 

acute mania, bipolar mania, psychotic agitation, bipolar maintenance, and other indications, 
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have interactions with dopaminergic, serotonergic, histaminergic, cholinergic and adrenergic 

receptors (Roth et al. 2004).  

 However, this approach faces many challenges such as the need to process, 

understand, and utilize the available information about drug interactions with multiple 

biological targets. Currently, most of the successful polypharmacological drugs on the 

market have been discovered by serendipity (Roth et al. 2004).  Currently, there is no 

systematic strategy to design and optimize multi-target drugs in traditional drug discovery 

approaches.  Thus, the integration of in silico methods, combined with ligand biological 

profiles against protein assays and gene expression arrays, can provide researchers with a 

novel toolbox to assess polypharmacology (Cavalli et al. 2008).  

G Protein-Coupled Receptors as Molecular Targets to Study Polypharmacology 

G Protein-Coupled Receptors (GPCRs) are promising targets for the discovery of 

novel drugs. They constitute the largest family of membrane proteins that mediate most 

cellular responses to hormones and neurotransmitters and are also responsible for vision, 

olfaction and taste (Rosenbaum et al. 2009). The entire family of currently known and 

verified human GPCRs includes at least 799 unique full-length members (Gloriam et al. 

2007). GPCRs are involved in a multitude of biological responses in all organs and systems 

including the central and peripheral nervous systems. In the latter, particularly important 

functions include neurotransmitter release, cell-to-cell communication, modulation of 

learning and memory, response to psycho-active substances, regulation of neuronal growth 

and differentiation and of glial responses. However, ligands for GPCRs comprise structurally 

very different compounds and often the ligands interact with more than one GPCR, i.e., they 
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are promiscuous. Thus, this group of receptors was chosen to study polypharmacology and to 

fulfill the research aims of my thesis projects. 

 GPCRs present a wide range of opportunities as therapeutic targets in areas including 

cancer, cardiac dysfunction, diabetes, central nervous system disorders, obesity, 

inflammation, and pain. Consequently, GPCRs are major components of pipelines in small 

and large pharmaceutical companies, and many drug discovery projects in academia and 

industry focus exclusively on these receptors. But the path to novel GPCR-targeted 

medicines is not routine. Most GPCR-modulating drugs on the market weren‘t initially 

targeted to a specific protein but were developed on the basis of functional activity observed 

in an assay. That they activated or inhibited a GPCR specifically was only later discovered. 

Post- Human Genome Project, however, targets are the starting points for most drug 

discovery endeavors. And there is still much to be learned about how GPCRs work and how 

they can be selectively modulated.  

Quantitative Structure Activity Relationships Modeling 

QSAR studies rely heavily upon statistics to derive models that relate the biological 

activity of a series of compounds to one or more molecular properties that can be easily 

measured or calculated. Modern QSAR approaches are characterized by the use of multiple 

descriptors of chemical structure combined with the application of both linear and non-linear 

optimization approaches, and a strong emphasis on rigorous model validation to afford robust 

and predictive QSAR models. The goal of QSAR modeling is to establish a trend in the 

descriptor values, which parallels the trend in biological activity. All QSAR approaches 

imply, directly or indirectly, a simple similarity principle, which for a long time has provided 

a foundation for the experimental medicinal chemistry: compounds with similar structures 
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are expected to have similar biological activities.  However the definition of similarity is not 

always simple as it depends on descriptors, variable selection, and similarity functions. 

 The differences in various QSAR methodologies can be understood in terms of the 

types of target property values, descriptors, and optimization algorithms used to relate 

descriptors to the target properties and generate statistically significant models.  Target 

properties can generally be of three types: continuous (i.e., real values covering certain range, 

e.g., IC50 values, or binding constants), categorical related (i.e., classes of target properties 

covering certain range of values, e.g., active and inactive compounds, frequently encoded 

numerically for the purpose of the subsequent analysis as one (for active) or zero (for 

inactive), and categorical unrelated (i.e., classes of target properties that do not relate to each 

other in any continuum, e.g., compounds that belong to different pharmacological classes, or 

compounds that are classified as drugs vs. non-drugs).    The corresponding methods of data 

analysis are referred to as classification or continuous property QSAR. The examples of 

leading QSAR approaches, their applications, and developing trends in the field can be found 

in recent reviews (Fan et al. 2001, Girones et al. 2000, Randic & Basak 2000). 

In silico Receptoromics to Study Polypharmacology 

 One way to identify polypharmacological chemical compounds is to virtually screen 

all potential molecular targets of interest for interactions with these chemicals (Roth 2005). 

Here in, we suggest that one approach to enable virtual screening of the receptorome would 

be to generate a compendium of computational predictors (e.g., QSAR models or structure 

based models). Subsequently, these models can be used for the virtual screening of chemical 

libraries to identify new ligands for the different molecular targets and predict 

polypharmacological matrices for these all chemicals included in these databases. Ultimately, 
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all models can be consolidated in a database of models that can be used for parallel virtual 

screening of chemical compounds, including current medications, for their abilities to 

interact with all known members of the receptorome.  

In silico screening approaches are routinely employed nowadays in academic, 

governmental and commercial sectors and they have become largely applied in drug 

discovery (Armbruster & Roth 2005, Bajorath 2002, Bajorath 2005, Becker 2004, Becker et 

al. 2004, Evers & Klebe 2004, Kitchen et al. 2004, Klabunde et al. 2009). Research 

conducted in our group has demonstrated that the generation of QSAR models and 

subsequent model-based virtual screening of chemical libraries has led to the identification of 

chemically diverse molecules with high success rates in experimental validation tests (Hsieh 

et al. 2008, Oloff et al. 2005, Peterson et al. 2009, Shen et al. 2002, Shen et al. 2004, Tang et 

al. 2009, Tropsha 2006, Tropsha & Pearlman 2000, Tropsha & Wang 2006). This approach 

to drug discovery comprises the following steps: (1) defining the target(s) of interest, (2) 

extracting relevant structure activity data from the biological literature and specialized 

databases, (3) dataset curation, (4) compound representation by suitable chemical descriptors, 

(5) model generation and validation, (6) the application of validated QSAR models for virtual 

screening (VS) of chemical databases to predict binders and, if possible agonists and 

antagonists. Often, the interpretation of chemical descriptors found significant for the success 

of QSAR models can reveal important structural requirements for ligand binding and 

activity. For the most part, this approach has been applied to datasets of compounds tested in 

individual assays characterizing their interaction with a single molecular target. 

Theoretically, QSAR models explore information restricted to the experimental 

knowledge of chemical structures and biological activities of ligands. Hence, this approach is 
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especially important when the X-ray crystal structures for the biological targets of interest 

(e.g., most GPCRs and trans-membrane proteins) are unavailable.  By applying QSAR 

modeling approach to a large number of datasets, we can accumulate a compendium of 

QSAR models representing a variety of different biological targets, and subsequently 

establish a virtual receptorome system to screen molecules simultaneously against an array of 

available models.  Ultimately, we can use these models to obtain a list of common matching 

hits among several receptor families and could link the hits to all predicted biological targets, 

thereby enabling an in silico identification of biological networks (i.e., virtual networks 

formed from the ‗predicted‘ chemical-molecular target activity profiles across a multitude of 

molecular targets) which will possibly be influenced by these compounds (concept explained 

in Fig. 1.1). This approach can also identify selective compounds for each receptor family 

after excluding common hits. An example of a similar approach to broad in silico profiling of 

compound libraries is given by the method PASS (Brady & Stouten 2000), which currently 

allows in silico screening against a large panel of target proteins. However, the datasets 

behind PASS models are not publicly available, which makes it difficult to employ and 

validate alternative techniques to the same datasets. 
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Figure 1.1. Concept of QSAR-based in silico receptoromics enabling a virtual network 

pharmacology approach. 

 

  



9 

 

 Lately, different computational groups have attempted to predict 

polypharmacological effects of chemical molecules (Freyhult et al. 2005, Lapinsh et al. 2002, 

Becker et al. 2004).  As an example on one of the most recent efforts, one group at Indiana 

University used PubChem activity data available at for multiple assays to develop a network 

representation of the assay collection and then applied a bipartite mapping between this 

network and various biological networks (Chen et al. 2009). They claimed that their method 

of mapping to a drug-target network permitted the prioritization of new selective compounds, 

while mapping to other biological networks enabled them to observe interesting target pairs 

and their associated compounds in the context of biological systems. 

It is likely that our studies and these other efforts described above will eventually 

result in useful and reliable tools aimed at enriching chemical libraries in compounds that 

have affinities for more than a single molecular target. We think that a combination of these 

methods will be more powerful than a single method alone as our expertise in the 

computational field has indicated time after time. 

Chemocentric Informatics  

Target-oriented drug discovery has become one of the most popular modern drug 

discovery approaches (Connor et al. 2010, Nicholson et al. 2004, Petak et al. 2010, 

Raamsdonk et al. 2001, Yang et al. 2010). Target-oriented approaches rely on established 

functional associations between activation or inhibition of a molecular target and a disease. 

Modern genomics approaches including gene expression profiling, genotyping, genome-wide 

association, and mutagenesis studies continue to serve as useful sources of novel hypotheses 

linking genes (proteins) and diseases and providing novel putative targets for drug discovery.  
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Recently, functional genomics approaches have been increasingly augmented by 

chemical genomics (Brenner 2004, Darvas et al. 2004, Nislow & Giaever 2003, Salemme 

2003, Zheng & Chan 2002b, Zheng & Chan 2002a), i.e., large scale screening of chemical 

compound libraries in multiple biological assays (Campbell et al. 2010, Hamadeh et al. 2010, 

Kiessling & Splain 2010, Ogorevc et al. 2010, Wagner & Clemons 2009). Chemical 

genomics studies yield data indicating that both physical and functional interactions exist 

between chemicals and their biological targets. Such data (either obtained in chemical 

genomics centers or collected and curated from published literature) is deposited in many 

public and private databases such as the NIMH Psychoactive Drug Screening Program 

(PDSP) (PDSP 2009), PubChem (PubChem 2009), ChEMBL (ChEMBL 2010), WOMBAT 

(Olah et al. 2007) and others (see Oprea and Tropsha (Oprea & Tropsha 2006) for a recent 

review).   

Various in silico techniques have been exploited for analyzing target-specific 

biological assay data. A recent publication by Kortagere and Ekins (Kortagere & Ekins 2010) 

could serves as a good summary of most common target-oriented computational drug 

discovery approaches including: (1) structure based virtual screening (docking and scoring) 

using either experimentally characterized (with X-ray or NMR) or predicted by homology 

modeling structure of the target protein, (2) chemical similarity searching using known active 

compounds as queries, (3) pharmacophore based modeling and virtual screening, (4) 

quantitative structure activity relationship (QSAR) modeling, and (5) network or pathway 

analysis.  
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‘Omics’ Data Types and Repositories 

Data resulting from large-scale gene or protein expression or metabolite profiling 

(often collectively referred to as 'omics' approaches) (Burgun & Bodenreider 2008, Kandpal 

et al. 2009, Polychronakos 2008, Vangala & Tonelli 2007) can be explored not only for 

specific target identification but also in the context of systems pharmacology to identify 

networks of genes (or proteins) that may collectively define a disease phenotype. For 

example, ‗omics‘ data can be used to ask what genes or proteins, or post-translationally 

modified states of proteins are over- (or under-) expressed in patients suffering from a 

particular disease.  These types of data can be found in a number of public repositories such 

as the Gene Expression Omnibus (GEO) (Edgar et al. 2002, Barrett & Edgar 2006), 

GEOmetadb (Zhu et al. 2008b), the Human Metabolome Database (HMDB) (Wishart 2007, 

Wishart et al. 2009), Kinase SARfari (Kinase SARfari 2010), the Connectivity Map (cmap) 

(Lamb et al. 2006), the Comparative Toxicogenomics Database (CTD) (Davis et al. 2009), 

STITCH (Kuhn et al. 2009, Kuhn et al. 2008), GenBank (Burks et al. 1991, Burks et al. 

1990), and others.   

Insights into disease pathology and underlying mechanisms can be revealed by the 

disease ‗gene signature‘, i.e., those genes whose expression varies consistently between 

patients and healthy individuals (controls) (Palfreyman et al. 2002). Gene-expression 

profiling has been often applied to elucidate the mechanisms underlying the roles of 

biological pathway in a disease (DeRisi et al. 1997, Lamb et al. 2003), reveal arcane subtypes 

of a disease (Golub et al. 1999, Perou et al. 2000), and predict cancer prognosis (Pomeroy et 

al. 2002, van, V et al. 2002). At the same time, the treatment of cultured human cells with 

chemical compounds that target a disease can produce a drug related ‗gene signature‘, i.e., 
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differential expression profile of genes in response to the chemical (Altar et al. 2009, Ogden 

et al. 2004, Palfreyman et al. 2002, Le-Niculescu et al. 2007). Recently, a group of scientists 

at the Broad Institute have established the Connectivity Map (cmap) database (see Fig. 1.2 

for concept) to catalog the biological responses of a large number of diverse chemicals in 

terms of their gene expression profiles (Lamb et al. 2006). It has been shown that examining 

the correlations between gene expression profiles characteristic of a disease and those 

modulated by drugs may lead to novel hypotheses linking chemicals to either etiology or 

treatments for a disease (Garman et al. 2008, Golub et al. 1999, Hassane et al. 2008, 

Hieronymus et al. 2006, Lamb et al. 2006, Riedel et al. 2008, Setlur et al. 2008, Zimmer et al. 

2008, Zimmer et al. 2010).  

The cmap database provides an unusual but intriguing example of what we shall call a 

chemocentric ‗omics‘ database and methodology for generating independent and novel drug 

discovery hypotheses.  Indeed, there exists a wealth of information buried in the biological 

literature and numerous specialized chemical databases (ChEMBL 2010,  2004, PDSP 2009, 

PubChem 2009, Olah et al. 2007) linking chemical compounds and biological data (such as 

targets, genes, experimental biological screening results; cf. Baker and Hemminger (Baker & 

Hemminger 2010).  The chemocentric exploration of these sources, either individually or in 

parallel opens up vast possibilities for formulating novel drug discovery hypotheses 

concerning the predicted biological or pharmacological activity of investigational chemical 

compounds or known drugs. The integration and cross-validation of such independent 

structural hypotheses can increase their level of confidence and can be referred to as 

structural hypothesis fusion.  
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Figure 1.2.  The connectivity map concept. Functional relationships between a drug 

(yellow), a gene (green) and a disease (pink) constitute the nodes in this map. Adopted from 

Lamb, J. Nature, 7, 54-60. 
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The Multidimensional Chemocentric Space 

In order to design novel chemocentric informatics approaches to tackle the problems 

of conventional drug discovery projects, we should first understand the chemocentric space 

and how to divide this space into smaller subspaces that could be dealt with separately. The 

chemocentric space is a complex space defined by multiple interconnected dimensions. This 

is schematically represented in Fig.1.3, where molecules, proteins, genes, pathways, and 

diseases are some of the different dimensions represented within the chemocentric space. 

Different types of experimental data, deposited in a multitude of databases, allow for 

connecting pairs of dimensions in this representation. For example, pharmacological data on 

the binding affinities of chemicals to particular proteins allow the mapping of the molecule-

protein space (see Fig.1.3), one of the two-dimensional subspaces defining this 

multidimensional chemocentric space.  
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Figure 1.3. Chemocentric informatics multidimensional space with examples on online 

databases populated with relevant data concerning the two dimensions forming each 

subspace. Dashed red lines show examples of connecting other dimensions and forming new 

subspaces that are not clearly drawn here. 
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Hypothesis Fusion 

Data Fusion is the process of combining multiple data in order to produce new 

information that improves the performance of a system (i.e., in silico model or predictor). 

Data can come from one or many sources. Sources may be similar, or dissimilar. Data fusion 

may be useful for several objectives such as detection, recognition, identification, tracking, 

change detection, decision making, etc. Similarly, hypothesis fusion is the process of fusing 

different hypotheses derived independently from different data types. In all cases, efficient 

fusion schemes may have significant advantages such as: (1) improved confidence in 

decisions due to the use of complementary information, (2) improved performance to 

countermeasures (e.g., outliers in QSAR studies) and (3) Improved performance in adverse 

experimental conditions. This fusion approach was first developed for applications in signal 

processing (Klien 1999) and later on was applied in VS efforts to enable better decisions to 

which small number of molecules should go further for biological testing (Sukumar et al. 

2008, Whittle et al. 2006a, Whittle et al. 2006b).  

Herein, we used hypothesis fusion to cross-examine structural hypotheses that have 

been generated from different sets of data and using different machine learning algorithms 

and then applied for virtual screening of chemical libraries with those hypotheses derived 

from biological network mining efforts. Finally, we accepted accept common hits only based 

on chemical structure identity. 

Overview of Chapter 2: Materials and Methods  

In Chapter 2 we discussed the major computational approaches applied in our studies 

including: (1) QSAR model development, (2) QSAR-based VS, (3) Comparison studies with 

simple similarity searches to evaluate the performance of our QSAR methods, (4) Devising a 
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novel chemocentric informatics approach to study polypharmacology, and (5) Independent 

structural hypothesis fusion. 

Overview of Chapter 3: In silico Receptoromics 

Studies described in this chapter were designed to improve the rigor of QSAR 

modeling techniques to analyze GPCR datasets including the computational data modeling as 

well as novel approaches to tackle difficult problems in modern QSAR modeling such as 

dealing with unbalanced datasets, and applying different validation methods (e.g., consensus 

prediction, applicability domain, consensus predictions thresholds, and external sets) to 

improve the predictive power of models. Models were generated for many GPCRs with a 

special focus on a few receptors that are highly implicated in drug design efforts for 

neuropsychiatric and neurodegenerative diseases. Anti-target GPCRs (e.g., 5-HT2B receptors) 

were given special emphasis as well and will be discussed separately as a model QSAR study 

in Chapter 4.   

The growing  understanding within molecular pharmacology of the complexity of 

biological networks and the robustness and redundancy of biological systems, however, 

challenges the current approaches of single target drug discovery including in silico 

approaches (Hopkins 2007, Hopkins 2008, Roth et al. 2000, Roth & Kroeze 2006). 

Nowadays, medicinal chemists are becoming more interested in identifying 

polypharmacological drugs that can bind moderately to several targets in a disease-protein 

network and affect the overall outcome significantly (Hopkins et al. 2006, Hopkins 2009, 

Roth et al. 2004). Herein, we suggest for the first time receptor-family-based QSAR models 

as computationally inexpensive tools for the quick prioritization of polypharmacological hits 

for further experimental testing against a large panel of receptors. Additionally, the generated 
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receptor family-based models will be highly valuable due to both their biological relevance 

and statistical significance.  

Family based models seem promising tools to statically increase the rigor of the 

generated QSAR models for the following reasons: (1) increased size of datasets, (2) 

increased diversity of datasets, (3) improved applicability domains of the models, (4) 

suitability of the dataset for applying MTL to uncover hidden cross-family relationships and 

family specific chemical features. As a consequence, it is very likely that these models will 

increase the potential of QSAR models to indentify novel leads that are difficult to uncover 

otherwise. 

Overview of Chapter 4: The Development, Validation, and Use of Quantitative 

Structure Activity Relationship Models of 5-Hydroxytryptamine (2B) Receptor Ligands 

to Identify Novel Receptor Binders and Putative Valvulopathic Compounds among 

Common Drugs 

 In this study, we have applied a combinatorial QSAR approach to a dataset of 

800 compounds experimentally annotated as 5-Hydroxytryptamine (2B) (5-HT2B) 

receptor agonists, antagonists and inactives resulting in statistically validated and 

externally predictive models. We will discuss this study in details as an example on our 

QSAR performed herein.  Specifically, we used three different classification methods: k 

nearest neighbor (kNN), classification based on association (CBA), and distance 

weighted discrimination (DWD) and four different descriptor types (Dragon, MolconnZ, 

MOE and subgraphs) to generate classification QSAR models to discriminate between 5-

HT2B actives (agonists and antagonists) from inactives. Predictive models with 
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classification accuracies as high as 0.80 for actives vs. inactives, as estimated on external 

validation sets, were obtained.  

Classification models for actives vs. inactives were further validated by predicting 

an external validation set obtained after we completed the modeling studies. The high 

accuracy of prediction for the second external validation set proved that our models were 

indeed rigorous. Therefore, we posited that our studies afforded a robust computational 

tool to predict potential 5-HT2B activity and consequently prioritize hits for testing in 

functional 5-HT2B assays to predict valvulopathic side effects of drugs and drug 

candidates that act as 5-HT2B agonists. We suggested that this computational predictor 

could be used to eliminate high risk compounds at the early stages of the drug 

development process. To illustrate this point, we have used this predictor retrospectively 

to evaluate the valvulopathic potential of two drugs withdrawn from the U.S. market for 

this reason, i.e., fenfluramine and dextrofenfluramine. Both drugs were not included in 

our modeling set and both were indeed predicted with high confidence as actives for 

binding to 5-HT2B receptors.  

Encouraged by our model validation results, we have applied these models for 

virtual screening of the 59000 compounds in WDI database. Our classification strategies 

identified 122 potential 5-HT2B ligands. Ten structurally diverse VS hits were 

experimentally tested at PDSP. Nine compounds were experimentally confirmed as 5-

HT2B ligands thereby demonstrating a very high success rate of 90%.  

The predictor developed in this report is similar in its potential use to other 

predictors of drug liability such as carcinogenicity and mutagenicity that are widely used 
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in pharmaceutical industry. For instance, the TOPKAT program available in the 

Discovery Studio (Discovery Studio 2008), is a QSAR-based system that generates and 

validates accurate, rapid assessments of various types of chemical toxicity solely from a 

chemical's molecular structure. In contrast, our predictor is a unique specialized tool for 

the prediction of 5-HT2B activity and therefore prioritizing compounds for functional 

testing against 5-HT2B receptors to assess their valvulopathic potential. Therefore, this 

predictor can be used, along with other computational chemical health risk assessment 

tools, to evaluate compounds‘ safety at early stages of the drug development. It can be 

used as well to verify that all drugs available on the market are free from possibly fatal 

valvulopathic risk. This predictor is publicly available at the ChemBench server 

established in the Laboratory for Molecular Modeling (chembench.mml.unc.edu).   

Overview of Chapter 5:  An Integrative Chemocentric Informatics Approach to Drug 

Discovery Based on Structural Hypothesis Fusion 

Herein, we describe a novel integrative chemocentric informatics approach to drug 

discovery that combines structural hypotheses generated from independent analysis of both 

traditional target-specific assay data and those resulting from large scale genomics and 

chemical genomics studies.  Herein, we have focused on the Alzheimer‘s disease as one of 

the most debilitating neurodegenerative diseases with complex etiology and 

polypharmacology.  We have considered and cross-examined two independent but 

complimentary approaches to the discovery of novel putative anti-Alzheimer‘s drugs. First, 

we have employed a traditional target-oriented cheminformatics approach to discovering 

anti-Alzheimer‘s agents. We have built QSAR models of ligands binding to 5-

hydroxytryptamine-6 receptor (5-HT6R), a potential target for the cognitive enhancement in 
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Alzheimer‘s disease (Geldenhuys & Van der Schyf 2009); it has been shown that 5-HT6R 

antagonists can improve memory and cognition in animal models of impaired cognition 

(Holenz et al. 2006). We have then used models developed with the rigorous predictive 

QSAR modeling workflow established and implemented in our laboratory (Tropsha 2010) 

for virtual screening (VS) of the World Drug Index database (WDI) (Daylight 2004) and 

DrugBank (Wishart et al. 2006, Wishart et al. 2008) to identify putative cognition enhancing 

agents with potential utility as anti-Alzheimer‘s agents as compounds predicted to interact 

with 5-HT6R. Second, we have explored (chemo)genomic data available from the cmap 

project (Lamb et al. 2006) to link chemical compounds and the Alzheimer‘s disease without 

making explicit hypotheses about target-specific mechanisms of action, i.e., treating 

Alzheimer‘s disease as a complex polypharmacological disease.  

We then cross-examined and combined common hits regarded as structural 

hypotheses resulting from both approaches (i.e., hypothesis fusion) towards common 

integrated higher-confidence hypotheses supported by two independent lines of 

computationally-based evidence.  Thirteen common hits were tested in 5-HT6R binding 

assays at the NIMH Psychoactive Drug Screening Program (PDSP) and ten were confirmed 

experimentally as having activity. Unexpectedly, we found that the confirmed actives 

included several selective estrogen receptor modulators (SERMs) suggesting that they may 

be potential 5-HT6R actives as we as cognitive enhancing agents in Alzheimer‘s disease. 

Indeed, we have identified clinical evidence in biomedical literature in support of this 

hypothesis.  We believe that approaches discussed in this study can be applied to a large 

variety of systems to identify novel drug-target-disease associations. 
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Overview of Chapter 6: Conclusions and Future Studies 

We think it is likely that our computational efforts described herein and other efforts 

by different groups to study polypharmacology in silico will eventually result in useful and 

reliable tools aimed at enriching chemical libraries in compounds that have affinities for 

more than a single desired molecular target. We think that a combination of these methods 

will be more powerful than a single method alone as our expertise in the computational field 

has indicated time after time. However, our studies revealed some limitations of the current 

available methods that could be improved dramatically in the near future with the availability 

of more specialized databases, better disease signatures, and full matrices of tested chemical-

molecular target interactions.  

  



 

 

CHAPTER 2 

MATERIALS AND METHODS 

Databases and Datasets 

PDSP Ki-DB. PDSP Ki-DB (PDSP 2009) (http://pdsp.med.unc.edu/pdsp.php) 

includes published binding affinities (Ki) of drugs and chemical compounds for receptors, 

neurotransmitter transporters, ion channels, and enzymes. It currently lists more than 47000 

Ki values for more than 700 molecular targets. Ki-DB represents a curated, fully searchable 

database of both published data and data internally-derived from the NIMH-PDSP.  The 

experimental data for Alzheimer‘s disease related target 5-HT6R were extracted from the 

PDSP Ki-DB available in the public domain. The complete 5-HT6R dataset included binding 

affinity data for 250 compounds 

World Drug Index. The world drug index (WDI) (Daylight 2004) is an authoritative 

database for marketed and developmental drugs providing information about internationally 

recognized drug names, synonyms, trade names, trivial names, trial preparation codes, 

compound structures, and activity data. Herein, we used WDI for QSAR-based VS to 

identify putative 5HT6R ligands.  

DrugBank. DrugBank (Wishart et al. 2008) (http://www.drugbank.ca) is a unique 

bioinformatics and cheminformatics resource that combines detailed drug data (i.e., 

chemical, pharmacological, and pharmaceutical) with comprehensive drug target information 

(i.e., sequence, structure, and pathway). Currently, the database contains nearly 4800 drug 
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entries. Herein, we used DrugBank for virtual screening using QSAR models to 

identify putative 5-HT6R ligands among known drugs  

PubChem. PubChem (PubChem 2009) (http://pubchem.ncbi.nlm.nih.gov/) is a public 

repository of chemical structures and their activities obtained from a variety of biological 

assays. The PubChem compound repository presently contains more than 25 million unique 

structures with biological property information provided for many of the compounds. Herein, 

we used PubChem obtain all chemical structures for our datasets in SDF file format. 

Connectivity Map. The connectivity map  (cmap) (Lamb et al. 2006, Lamb 2007) 

(http://www.broadinstitute.org/cmap/) is a unique database for using genomics in drug 

discovery framework. It provides researchers with a systematic solution for the discovery of 

the functional connections between drugs, genes, and diseases. The database (cmap build 02) 

currently houses 7056 genome-wide expression profiles representing 6100 individual 

treatment instances with 1309 bioactive small molecules (i.e., drugs and other biologically 

active compounds). All gene expression profiles included in the cmap were derived from 

treating cultured human cells (MCF7, PC3, HL60, SKMEL5, HepG2, SHSY5Y) with 

chemical compounds.   

 ChemoText. ChemoText (Baker & Hemminger 2010)  is an in-house repository of 

chemical entities, and activity terms (indicating biological effects) extracted from annotations 

provided in Medline records. This resource has different applications in drug discovery 

projects. First, we can use ChemoText in a discovery-mode to formulate independent 

hypotheses about chemical-disease associations according to Swanson‘s ABC rule (Swanson 

1990). Secondly, we can use it as an information retrieval tool to gather relevant data about 

chemical-protein (or gene)-disease connections derived from biomedical literature. In this 
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study, we used ChemoText to retrieve all available biological information about the final 

computational hits predicted by our integrative approach. This analysis helped us in assessing 

the novelty of the produced hypotheses and in validating some of them. 

 STITCH. STITCH (Kuhn et al. 2008, Kuhn et al. 2009) (http://stitch.embl.de/) is a 

tool for searching chemical and protein interaction networks. It integrates information from 

metabolic pathways, crystal structures, binding experiments, and drug-target relationships. 

Inferred information from phenotypic effects, text mining, and chemical structure similarity 

is used to predict relations between chemicals. The database contains interaction information 

for over 68000 chemicals, including 2200 drugs, and connects them to 1.5 million genes 

across 373 genomes. In this study we used STITCH  to analyze chemical-protein networks 

for some computational hits predicted by our QSAR-based VS or the  integrative approach to 

be discussed later. 

NetAffx. NetAffx (Cheng et al. 2004, Liu et al. 2003) (http://www.affymetrix.com) 

gene ontology mining tool is a web-based, interactive tool that permits traversal of the gene 

ontology graph in the context of microarray data. It accepts a list of Affymetrix probe sets 

and renders a gene ontology graph as a heat map colored according to significance 

measurements. It also details and annotates probe sets on Affymetrix GeneChip microarrays. 

In this study we used NetAffx to populate our disease gene signatures with Affymetrix 

U133A probe sets.  

Dataset curation 

 Data curation is a mandatory step in data analysis that must be performed before 

proceeding with any modeling project. Several case studies have been reported by our lab 

where chemical curation of the original ―raw‖ dataset/database resulted in a significant 

http://stitch.embl.de/
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improvement of the outcome of the modeling study (especially, QSAR analysis). The 

different steps that will be used for cleaning chemical records in datasets and databases 

include: the removal of a fraction of data that cannot be appropriately handled by 

conventional cheminformatics techniques such as inorganic compounds, counter-ions and 

mixtures; structure validation; ring aromatization; normalization of specific chemo-types; 

curation of tautomeric forms; addition or deletion of hydrogen atoms; and the deletion of 

duplicates (see Fig. 2.1) (Fourches et al. 2010).  
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Figure 2.1. General workflow of chemical dataset curation developed in our lab (Fourches et 

al. 2010). 
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 For the purposes of this work, all datasets will be curated as follows:  First, all 

molecules will be ―washed‖ using both the Wash Molecules application in MOE (MOE 

2008) (v.2007.09) and ChemAxon Standardizer included in the ChemAxon JChem package 

(JChem 2009). The MOE Wash application normalizes chemical structures by carrying out a 

number of operations including 2D depiction layout, hydrogen correction, salt and solvent 

removal, chirality and bond type normalization, tautomer generation, adjustment and 

enumeration of protonation states. Second, duplicate chemical structures will be removed 

using the Sort and Remove Duplicates functionalities in MOE: keeping one chemical 

structure only if both activities in both cases are the same and removing both if activities 

were different. Activities might differ due to different stereochemistry that is not considered 

in our modeling studies where we only use 2D descriptors that cannot differentiate between 

stereoisomers. Finally, a careful manual inspection step should not be neglected as a last step 

in data curation. Some of the common errors identified during the manual cleaning procedure 

may include: wrong structures, incomplete normalization of chemical bonds, some duplicates 

may still be present despite the use of automated software to remove them, wrong charges, 

presence of explicit hydrogens in a hydrogen depleted structures, incorrect bonds, etc. 
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Computational Methods 

We used the combinatorial QSAR approach using different sets of molecular 

descriptors and applying several machine learning methods to establish the correlation 

between structural descriptors and biological activities. We also devised a novel 

chemocentric informatics approach the course of these studies. 

Combinatorial QSAR Approach 

To achieve QSAR models of the highest internal, and most importantly, external 

accuracy, we apply a combi-QSAR approach (de Cerqueira et al. 2006, Kovatcheva et al. 

2004), which explores all possible combinations of various descriptor types and 

optimization methods along with external model validation.  All modeling attempts are 

conducted according to our predictive QSAR modeling workflow (Fig. 2.2) (Tropsha 

2010). For purposes of this research, descriptors types mentioned earlier and different 

QSAR methods will be explored. We envision QSAR as a highly experimental area of 

statistical data modeling where it is impossible to decide a priori as to which particular 

QSAR modeling method will prove most successful.  Each combination of descriptor sets 

and optimization techniques is likely to capture certain unique aspects of the structure-

activity relationship.  Since our ultimate goal is to use the resulting models as reliable 

activity (property) predictors, combi-QSAR will increase our chances for success.  
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Figure 2.2. Flowchart of predictive QSAR modeling framework based on validated QSAR 

models. 
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Molecular Descriptors 

Molecular descriptors are numerical values that characterize properties of molecules. 

They vary in complexity of encoded information and in computation time. For purposes of 

this research we will be using the so called 2D molecular descriptors due to their relative 

simplicity of calculation, lack of dependence on conformation, and demonstrated ability to 

compete, if not outperform, 3D descriptors in chemical similarity and QSAR studies. Herein, 

five sets of 2D molecular descriptors will be used: 2D Dragon (Dragon 2007), MolConnZ 

(MZ) (MolconnZ 2006), Molecular Operating Environment (MOE) (MOE 2008), subgraph 

descriptors (SG) (Khashan et al. 2005) developed in this laboratory and MACCS structural 

keys (MDL Ltd 1992). Each type of these descriptors will be used separately with different 

machine learning methods in the context of our combi-QSAR strategy. 

DRAGON Descriptors. The Dragon Professional version 5.4 software (Dragon 

2007) was used to calculate 2D descriptors. These included topological descriptors, 

constitutional descriptors, walk and path counts, connectivity indices, information 

indices, 2D autocorrelations, edge adjacency indices, Burden eigenvalues, topological 

charge indices, eigenvalue-based indices, functional group counts, atom-centered 

fragments and molecular properties. The initial descriptor set was reduced by eliminating 

the constant and near-constant variables using built-in functions within the software. The 

pairwise correlations for all descriptors were examined and one of the two descriptors 

with the correlation coefficient R
2
 of 0.95 or higher was excluded. The calculation 

procedures for these descriptors, with related literature references, are reported by 

Todeschini and Consonni (Todeschini & Consonni 2000). Finally, the remaining 
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descriptors were normalized by range-scaling so that their values were distributed within 

the interval 0-1.  

MolConnZ Descriptors. The MolConnZ (MZ) software (MolconnZ 2006) 

available from EduSoft affords the computation of a wide range of topological indices of 

molecular structure. These indices include, but are not limited to, the following 

descriptors: valence, path, cluster, path/cluster and chain molecular connectivity indices 

(Kier & Hall 1976, Kier & Hall 1986, Randic 1975), kappa molecular shape indices (Kier 

1985, Kier 1987), topological (Hall & Kier 1990) and electrotopological state indices 

(Hall et al. 1991a, Hall et al. 1991b, Kellogg et al. 1996, Kier & Hall 1999), differential 

connectivity indices (Kier & Hall 1986, Kier & Hall 1991), graph‘s radius and diameter 

(Petitjean 1992), Wiener (Wiener 1947) and Platt (Platt 1947) indices, Shannon (Shannon 

& Weaver 1949) and Bonchev-Trinajstić (Bonchev et al. 1981) information indices, 

counts of different vertices, counts of paths and edges between different types of vertices 

(http://www.edusoft-lc.com/molconn/manuals/400). Descriptors with zero values or zero 

variance were removed; the remaining descriptors were normalized by range-scaling so 

that their values were distributed within the interval [0-1].  

MOE Descriptors. MOE 2007.09 software (MOE 2008) was used to generate 2D 

MOE descriptors. These included physical properties, subdivided surface areas, atom and 

bond counts, Kier and Hall connectivity (Kier & Hall 1976, Kier & Hall 1986, Randic 

1975) and kappa shape indices (Kier 1985, Kier 1987), adjacency and distance matrix 

descriptors (Balaban 1979, Balaban 1982, Petitjean 1992, Wiener 1947), pharmacophore 

feature descriptors, and partial charge descriptors (MOE 2008). Descriptors with zero 
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values or zero variance were removed; the remaining descriptors were normalized by 

range-scaling so that their values were distributed within the interval [0-1].  

Subgraph Descriptors (SG). Frequent subgraph mining of chemical structures is 

a novel approach to generating fragment descriptors that was developed recently in our 

group (Khashan et al. 2005). SG descriptors are derived from each dataset, i.e., not pre-

defined which gives the advantage of finding important chemical fragments that may 

have not been defined a priori by other fragment descriptor generating methods. The 

fragments are derived based on recurring substructures found in at least a subset of 

molecules (defined by a support value ) in the dataset. These recurring substructures can 

implicate chemical features responsible for compounds‘ biological activities.  

First, chemical structures were converted into labeled, undirected graph 

representations where nodes were labeled by atom types and edges corresponded to 

chemical bonds. Fast frequent subgraph mining (FFSM) algorithm (Huan et al. 2003) was 

then used to find common frequent subgraphs for a given support value (σ), which is one 

of the variables defined by the user that determines the size of the set of subgraphs 

generated using FFSM. Obviously, the larger is the value of the support, the smaller is the 

number of subgraphs descriptors. As the support value decreases, the number of 

subgraphs increases dramatically. Redundant subgraphs were identified and removed 

leaving only the so called ―closed subgraphs‖. A subgraph SGi is closed in a database if 

there exists no supergraph SGj such that SGi ⊆ SGj and σSGi = σSGj.  However, subgraph 

SGi would not be deleted if it also occurs by itself (not as part of the SGj) in the graph 

database. Removing redundant subgraphs (fragments) reduces the number of subgraphs 

descriptors drastically and therefore makes the subsequent calculations more efficient. 
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The frequency of individual ‗closed subgraphs‘ in each molecule of the dataset is 

calculated and used as the descriptor value for each molecule.  

MACCS Structural Keys. 166 MACCS (MDL Ltd 1992) structural keys 

implemented in MOE 2007.09 software (MOE 2008) were used for purposes of simple 

similarity searching using an in-house written script and applying Tanimoto coefficients 

for similarity measures. 

Machine Learning Methods 

Different machine learning algorithms will be used to correlate chemical descriptors 

with the corresponding biological activities. Correlation algorithms including kNN (Zheng & 

Tropsha 2000), super vector machine (SVM) (Cortes & Vapnik 1995), classification based 

on association (CBA) (Liu et al. 2001), distance weighted discrimination (DWD) (Marron et 

al. 2007), MOE (MOE 2008) binary QSAR, and MOE decision tress will be used in this 

research in combination with the descriptor types mentioned earlier. There is no single 

machine learning method that can claim to be uniformly superior to any other. Hence, the 

implementation of combi-QSAR (Kovatcheva et al. 2004, de Cerqueira et al. 2006) (i.e. 

ensemble machine learning), a set of modeling techniques (different molecular descriptors 

and different correlation algorithms) whose individual decisions are combined in some way 

(typically by weighted or un-weighted voting) will be employed to improve the performance 

of the overall modeling system and the success rates of in silico lead identification. 

 k Nearest Neighbors QSAR.  The k nearest neighbors (kNN) QSAR method 

(Zheng & Tropsha 2000) is based on the k nearest neighbors principle and the variable 

selection procedure. It employs the leave-one-out (LOO) cross-validation (CV) procedure 

and a simulated-annealing algorithm (Kirkpatrick et al. 1983, Metropolis et al. 1953) to 
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optimize variable selection. The procedure starts with the random selection of a 

predefined number of descriptors from all descriptors. If the number of nearest neighbors 

k is higher than one, the estimated activities ŷi of compounds excluded by the LOO 

procedure are calculated using the following formula: 
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and dij is Euclidean distances between compound i and its j-th nearest neighbor. 

However, if the number of nearest neighbors k is equal to one, then the estimated activity 

ŷi of the compound will be equal to the activity of this one nearest neighbor. 

The kNN classification algorithm employs an LOO cross-validation procedure on the 

training set and a simulated annealing algorithm in order to select subsets of descriptors, 

which lead to the highest LOO cross-validation correct classification rate (CCR). The 

procedure starts with the random selection of a predefined subset of descriptors from all 

descriptors. If the number of nearest neighbors k is higher than one, estimated activities ŷi of 

compounds excluded by LOO procedure are calculated using the following formula: 
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where yj is the binary activity of the j-th nearest neighbor. Weights wij are defined in Eq. (2), 

where dij is the Euclidean distance between compound i and its j-th nearest neighbor. If k=1, 

then ii yŷ .       

The predicted values are then rounded to the closest integer. After each run, CCR and 

other statistical parameters are calculated as follows: 
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Then, a predefined small number of descriptors are randomly replaced by other descriptors 

from the original pool, and a new CCR value is obtained. If CCR (new) > CCR (old), the 

new set of descriptors is accepted; otherwise, if CCR (new) ≤ CCR (old), the new set of 

descriptors is accepted with probability p = exp ((CCR (new) - CCR (old))/T), or rejected 

with probability (1-p), where T represents the simulated annealing temperature parameter. 

During this process, T is decreasing until a predefined threshold. Thus, the optimal (highest) 

CCR is achieved (Zheng & Tropsha 2000, Xiao et al. 2004). For the prediction, the final set 
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of selected descriptors is used, and expressions (2) and (3) with rounding the predicted 

activity to the closest integer are applied to predict activities of test set compounds. 

Prediction is unreliable, if a representative point of a compound is ―too far‖ from the k 

nearest neighbors representing training set compounds with known activities. To limit the 

model‘s applicability domain, we apply a distance cutoff value between a compound under 

prediction and its nearest neighbors of the training set.  

Support Vector Machines. The description of the original support vector machines 

(SVM) algorithm could be found in many publications (Cortes & Vapnik 1995, Chang & Lin 

2001). Briefly, molecular descriptors are first mapped onto a high dimensional feature space 

using various kernel functions. Then, SVM finds a separating hyperplane with the maximal 

margin in this high dimensional space in order to separate compounds with different 

activities. Models built with this machine learning technique allow the prediction of a target 

property using a set of descriptors solely calculated from the structure of a given compound. 

In this study, we used the WinSVM program developed in our group (freely available for 

academic laboratories upon request) implementing the open-source libSVM package 

(http://www.csie.ntu.edu.tw/~cjlin/libsvm/) (Chang & Lin 2001). The WinSVM program 

provides users with a convenient graphical interface to prepare input data; to split datasets 

into training and test sets; to set up parameters for SVM grid calculations, including iterative 

and simultaneous grid optimization of SVM parameters; to launch and follow calculation 

progress in a powerful graphical interface; to select models with the best prediction accuracy 

on both training and internal test sets; and to apply them to the external evaluation set as an 

ensemble consensus model. The program also allows one to visualize molecular structures 

and various plots, making the use of SVM easier and more appropriate for QSAR modeling 

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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in order to obtain robust and predictive models and apply them to virtual libraries.   

Classification Based on Association. Classification based on association (CBA) 

method integrates both classification rule mining (Breiman et al. 1984, Quinlan 1992), 

which aims to discover a small set of rules in the database that forms an accurate 

classifier, and association rule mining (Agrawal & Srikant 1994), which finds all the 

rules existing in the database that satisfy some minimum support and minimum 

confidence constraints. For association rule mining, the target of discovery is not pre-

determined, while for classification rule mining there is one and only one predetermined 

target. The integration is done by focusing on mining a special subset of association rules, 

called class association rules (CARs). An efficient algorithm is also used for building a 

classifier based on the set of discovered CARs.  

The CBA algorithm (Liu et al. 1998, Liu et al. 1999) consists of two parts, a rule 

generator, which is based on the a priori algorithm for finding association rules, and a 

classifier builder. The candidate rule generator is similar to the a priori one. The 

difference is that CBA updates the support value in each step while the a priori algorithm 

only updates this value once. This allows us to compute the confidence of the ruleitem. A 

ruleitem is of the form: <condset, y> where condset is a set of items, y Y is a class 

label. The support count of the condset (called condsupCount) is the number of cases in 

the dataset (D) that contain the condset.  

Next, a classifier is built from CARs. To produce the best classifier out of the 

whole set of rules would involve evaluating all the possible subsets of it on the training 

data and selecting the subset with the right rule sequence that gives the least number of 

errors. There are 2m such subsets, where m is the number of rules. It is a heuristic 
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algorithm.  Given two rules, ri and rj, ri precedes rj if (1) the confidence of ri is greater 

than that of rj, or (2) their confidences are the same, but the support of ri is greater than 

that of rj, or (3) both the confidences and the supports of ri and rj are the same, but ri is 

generated earlier than rj. If R is a set of generated rules (i.e. CARs) and D the training 

data, the basic idea of the algorithm is to choose a set of high precedence rules in R to 

cover D. The classifier follows this format: <r1, r2, …, rn, default_class>, where ri  R. In 

classifying an unseen case, the first rule that satisfies the case will classify it. If there is 

no rule that applies to the case, it takes on the default class. 

The descriptors used with CBA need to be discrete in nature (Liu et al. 1998) as is 

the case with SG descriptors but not Dragon, MolConnZ or MOE. Hence, this method 

was only used with SG descriptors using CBA (v2.1) software (Liu et al. 2001).  

Distance Weighted Discrimination. Distance weighted discrimination (DWD) 

was initially proposed by Marron and Todd (Marron et al. 2007) with the goal of 

improving the performance of SVM (Cristiainini & Shawe-Taylor 2000, Vapnik 1995) in 

high dimensional low sample size (HDLSS) contexts. The main idea is to improve upon 

the criterion used for ―separation of classes‖ in SVM. SVM has data piling problems 

along the margin, because it is maximizing the minimum distance to the separating plane, 

and there are many data points that achieve the minimum. A natural improvement is to 

replace the minimum distance by a criterion that allows all the data to have an influence 

on the result. DWD does this by maximizing the sum of the inverse distances. This 

results in directions that are less adversely affected by spurious sampling artifacts. The 

major contribution of this new discrimination method is that it avoids the data piling 

problem, to give the anticipated improved generality. Like SVM, DWD is based on 



40 

 

computationally intensive optimization; however, while SVM uses well known quadratic 

programming algorithms, DWD uses interior-point methods for so-called Second-Order 

Cone Programming (SOCP) problems (Alizadeh & Goldfarb 2003). Detailed discussion 

of these issues may be found in Marron and Todd (Marron et al. 2007), which is available 

with the supporting information at https://genome.unc.edu/pubsup/dwd/. All DWD 

computations were performed using the DWD software (Marron 2002) written in Matlab 

(Mathworks 2010) and kindly provided by Dr. Marron.  

Balancing Datasets Using Similarity Searching 

Some of the classification datasets we are dealing with are highly imbalanced, i.e. one 

of the classes (e.g., non-binders) is much larger or smaller than the other class (binders). 

However, highly imbalanced datasets might affect the predictive performance of QSAR 

models negatively. Therefore, only a subset of the larger class of approximately the same size 

of the smaller class will be used for model building with some modeling techniques like k-

nearest neighbors (kNN) that are highly sensitive to imbalanced datasets. This subset will be 

selected to include compounds from the larger class that are most similar to the compounds 

in the smaller class.  

Model Selection and Validation 

 Following our predictive QSAR modeling workflow (Tropsha 2010) (cf.  Fig. 2.2), all 

QSAR models generated to build regression models for binding affinities or to classify 

binders vs. non-binders were validated by predicting both test and external validation sets and 

applying different validation criteria.  

 Dataset Division for Model Building and Validation. All QSAR models generated 

in this research will be validated by predicting external validation sets generated by: (1) 

https://genome.unc.edu/pubsup/dwd/
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Randomly extracting 20% of the dataset using an in-house script, or (2) Extracting 5 different 

external validation sets using external 5-fold cross validation (CV) (Hawkins et al. 2003, 

Kohavi 1995). Datasets employed in QSAR studies were first randomly divided into a 

modeling set and an external validation set (evs). Another level of internal validation was 

achieved by dividing the modeling set into multiple chemically diverse training and test sets 

using the Sphere Exclusion algorithm implemented in our laboratory (Golbraikh & Tropsha 

2002b). These routines are always employed as a part of our predictive QSAR modeling 

workflow to emphasize the fact that training-set-only modeling is not sufficient to obtain 

reliable models that are externally predictive. It should be mentioned that only models that 

are highly predictive on the test sets will be retained for the consensus prediction of the 

external validation sets. Finally, only those models that are shown to be highly predictive on 

both external sets will be used in consensus fashion for virtual screening of external 

compound libraries. 

Model Acceptability Criteria for Rigorous Predictor Development. Several 

publications by our group have recommended a set of statistical criteria which must be 

satisfied by a predictive model (Golbraikh & Tropsha 2002b, Golbraikh & Tropsha 

2002a, Golbraikh et al. 2003, Tropsha 2006, Tropsha & Golbraikh 2007, Tropsha 2010). 

For continuous QSAR, criteria that we will follow in developing activity/property 

predictors are as follows: (i) correlation coefficient R between the predicted and observed 

activities; (ii) coefficients of determination (predicted versus observed activities R, and 

observed versus predicted activities 
2

0'R
 for regressions through the origin); (iii) slopes k 

and k' of regression lines through the origin. We consider a QSAR model predictive, if 
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the following conditions are satisfied  (i) q
2
>0.6; (ii) R

2
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the cross-validated correlation coefficient calculated for the training set, but all other 

criteria are calculated for the test set.  

For classification and category QSAR, a 2 × 2 confusion matrix can be defined (see 

Table 3) in the case when compounds belong to two classes (e.g., active and inactive 

compounds), where N(1) and N(0) are the number of  compounds in the data set that belongs 

to classes (1) and (0) respectively. TP, TN, FP, and FN are the number of true positives, true 

negatives, false positives, and false negatives, respectively. The following classification 

accuracy characteristics associated with confusion matrices are widely used in QSAR 

studies: sensitivity (SE=TP/N(1)), specificity (SP=TN/N(0)), and enrichment E = 

TP*N/[(TP+FP)*N(1)]. In this study, we have employed normalized confusion matrices. A 

normalized confusion matrix can be obtained from the non-normalized one by dividing the 

first column by N(1) and the second column by N(0). Normalized enrichment is defined in 

the same way as E but is calculated using a normalized confusion matrix: En = 

2TP*N(0)/[TP*N(0)+FP*N(1)]. En takes values within the interval of [0, 2] (Golbraikh et al. 

2002, Kovatcheva et al. 2004). The prediction accuracy (correct classification rate, CCRtrain) 

is calculated as in Equation 2.5.  
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Table 2.1. Confusion matrix for binary classification models. 

  Observed class 

(1) 

Observed class 

(0) 

Total 

Predicted 

class (1) 
TP FP TP+FN 

Predicted 

class (0) 
FN TN FN+TN 

Total N(1) = TP+FN N(0) = FP+TN N=TP+FP+FN+TN 
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 Robustness of QSAR Models. Y-randomization test is a widely used validation 

technique to ensure the robustness of a QSAR model (Wold & Eriksson 1995). This test will 

be used to evaluate all generated QSAR models in our research efforts. Applying this test 

includes (i) randomly shuffling the dependent-variable vector, Y-vector (class labels or actual 

activity values) of training sets  and (ii) rebuilding models with the randomized activities (or 

class labels) of the training set. All calculations are repeated several times using the original 

independent-variable matrix. It is expected that the resulting QSAR classification models, 

built with randomized activities for the training set, should generally have low CCRs for 

training, test, and external validation sets. It is likely that sometimes, though infrequently, 

high CCR values may be obtained due to a chance correlation or structural redundancy of the 

training set. However, if some QSAR classification models obtained in the Y-randomization 

test have relatively high CCR it implies that an acceptable QSAR classification model cannot 

be obtained for the given dataset by the particular modeling method used. Y-randomization 

test will be applied to all datasets considered in this research, and the test will be repeated 

five times in each case. 

Virtual Screening 

 Our main goal from model building studies is the prediction of the target properties of 

the compounds in chemical libraries allowing for their immediate prioritization for 

subsequent experimental validation. Therefore, we are seeking to develop and deliver highly 

efficient yet accurate QSAR-based virtual screening and scoring protocols that will 

significantly increase the experimentally validated hit rate of virtual screening. Robust and 

externally predictive QSAR models generated for selected GPCRs were used for VS of 

chemical databases to predict new ligands for these targets. The predicted ligands could 
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become important biological probes or drug candidates. The final compendium of models 

could be potentially useful for predicting biological profiles and side effects of drugs. Our 

search methodologies will be based on chemical similarity estimated in two different ways: 

(1) global similarity based on all descriptors calculated for the modeling set and acts as a 

primary filter that will assure a some level of similarity of the predicted compounds to the 

modeling set, (2) model-based similarity where the predicted compounds possess the 

chemical features (descriptors) that have been chosen by the QSAR model after the variable 

selection process. Model-based similarity implies that few chemical features in the chemical 

structure in fact control the modeled biological property. 

  Applicability Domain. Formally, a QSAR model can predict the target property for 

any compound for which chemical descriptors can be calculated. However, if it is highly 

dissimilar from all compounds of the modeling set, reliable prediction of its activity is 

unlikely to be reached. The concept of applicability domain AD, previously implemented and 

widely used in our laboratory (Zhu et al. 2008a, Zhang et al. 2008a, Tropsha 2003), was 

applied to avoid unreliable prediction. In this study, we defined AD as a distance threshold 

DT between a compound under prediction and its closest nearest neighbors of the training set. 

It was calculated as follows: 

   ZyDT                 (Eq. 2.9) 

where, y  is the mean Euclidean distance between each compound and its k-nearest neighbors 

in the model space of the training set (i.e., k is the parameter optimized during QSAR model 

generation, and the distances are calculated using descriptors selected by the optimized 

model only), σ is the standard deviation of these Euclidean distances, and Z is an arbitrary 

parameter. We set the default value of this parameter Z at 0.5, which formally places the 
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allowed distance threshold at the mean plus one-half of the standard deviation. We also 

defined the AD in the entire descriptor space, i.e., global AD. In this case, the same formula 

(9) is used, k=1, Z=0.5, and Euclidean distances were calculated using all descriptors. Thus, 

if the distances of the external compound from its k nearest neighbors (see above) in the 

training set within either the entire descriptor space or the selected descriptor space exceeded 

these thresholds, no prediction was made.  

 Consensus Prediction. Our experience suggests that consensus prediction of the 

target property for external compounds, i.e., when the compound activity is calculated by 

averaging values predicted by all individual models that satisfy our acceptability criteria, 

always provides the most stable and accurate solution (de Cerqueira et al. 2006, Zhu et al. 

2008a, Kovatcheva et al. 2004). The assumption being that averaging predicted activities of a 

compound over multiple predictive models cancels out the errors of prediction.  In this 

research we will be averaging the predictions for each compound by majority voting for 

QSAR models, using all models passing the validation criteria (CCRtrain, CCRtest and CCRex 

≥ 0.70 for classification models and q
2
 and R

2
 ≥ 0.70 for continuous models). In order to 

determine the confidence in the obtained predictions we need to define a consensus score 

(CS) for each of the predicted hits first. The consensus score can be defined as the average 

predicted value of the target property by all models used for prediction. In this research we 

investigated the performance of different consensus scores when prioritizing hits for 

experimental testing.  

Integrative Chemocentric Informatics Approach  

We have devised an integrative workflow focused on the discovery of new drug 

candidates and finding new uses for existing drugs by fusing predictions generated from 
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different data types and methods. Currently, the workflow (will be discussed in details in 

Chapter 5 as a new integrative methodology based on hypothesis fusion devised herein) 

incorporates three major components: (1) a module for QSAR-based VS of chemical libraries 

to identify new ligands for target proteins, (2) a network-mining module to identify small 

molecule therapeutics for specific diseases without necessarily knowing the underlying 

target-specific mechanism; this module explicitly relies on cmap(Lamb et al. 2006, Lamb 

2007), an external online database (www.broadinstitute.org/cmap/) that links the effects of 

different drugs and diseases using gene expression profiles, and (3) ChemoText (Baker & 

Hemminger 2010), an in-house repository of relationships between chemicals, diseases, 

proteins, and biological processes. The first two modules have been employed extensively for 

studies reported herein. This new approach will be discussed in details in chapter 5. 

Experimental Method 

Radioligand Binding Assays. This screen was performed by the National Institute of 

Mental Health Psychoactive Drug Screening Program (PDSP). Radioligands were purchased 

by PDSP from Perkin-Elmer or GE Healthcare. Competition binding assays were performed 

using transfected or stably expressing cell membrane preparations as previously described 

(Roth et al. 2002, Shapiro et al. 2003) and are available online (http://pdsp.med.unc.edu). All 

experimental details are available online (http://pdsp.med.unc.edu/UNC-

CH%20Protocol%20Book.pdf). 

 Chemistry. Chemical compounds predicted as hits from the virtual screening were 

obtained from commercial suppliers according to their availability. All compounds were 

ordered to have ≥ 95% purity. Additionally, all compounds were subjected to purity 

assessment using LC/MS by the Center for Integrative Chemical Biology and Drug 

http://www.broadinstitute.org/cmap/
http://pdsp.med.unc.edu/UNC-CH%20Protocol%20Book.pdf
http://pdsp.med.unc.edu/UNC-CH%20Protocol%20Book.pdf
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Discovery at UNC-Chapel Hill. LC/MS spectra of all compounds were acquired from an 

Agilent 6110 Series system with UV detector set to 220 nm.  Samples were injected (5 uL) 

onto an Agilent Eclipse Plus 4.6 x 50 mm, 1.8 uM, C18 column at room temperature. A 

linear gradient from 10% to 100% B (MeOH + 0.1% Acetic Acid) in 5.0 min was followed 

by pumping 100% B for another 2 minutes with A being H2O + 0.1% acetic acid.  The flow 

rate was 1.0 mL/min.   

  



 

 

CHAPTER 3 

IN SILICO RECEPTOROMICS: QSAR MODELING OF RECEPTOR SUBTYPES 

AND FAMILIES, MODEL APPLICATION FOR VIRTUAL SCREENING, AND 

EXPERIMENTAL VALIDATION OF COMPUTATIONAL HITS 

Introduction 

In silico screening approaches are routinely employed nowadays in academic, 

governmental and commercial sectors and they have become broadly applied techniques in 

drug discovery (Armbruster & Roth 2005, Bajorath 2002, Bajorath 2005, Becker 2004, 

Becker et al. 2004, Evers & Klebe 2004, Kitchen et al. 2004, Klabunde et al. 2009). Research 

conducted in our group demonstrated that the generation of Quantitative Structure Activity 

Relationship (QSAR) models and subsequent model-based virtual screening of chemical 

libraries has led to the identification of chemically diverse molecules with high success rates 

in experimental validation tests (Hsieh et al. 2008, Oloff et al. 2005, Peterson et al. 2009, 

Shen et al. 2002, Shen et al. 2004, Tang et al. 2009, Tropsha 2006, Tropsha & Pearlman 

2000, Tropsha & Wang 2006). This approach to drug discovery comprises the following 

steps: (1) defining the target(s) of interest, (2) extracting relevant structure activity data from 

the biological literature and specialized databases, (3) dataset curation, (4) compound 

representation by suitable chemical descriptors, (5) model generation and validation, (6) the 

application of validated QSAR models for mining chemical databases to predict binders and, 

if possible agonists and antagonists. Often, the interpretation of chemical descriptors found 

significant for the success of QSAR models can reveal important structural requirements for 
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ligand binding and activity. For the most part, this approach has been applied to datasets of 

compounds tested in individual assays characterizing their interaction with a single molecular 

target. 

The growing  understanding within molecular pharmacology of the complexity of 

biological networks and the robustness and redundancy of biological systems challenges the 

current approaches of single target drug discovery including in silico approaches (Hopkins 

2007, Hopkins 2008, Roth et al. 2000, Roth & Kroeze 2006). Nowadays, medicinal chemists 

are becoming more interested in identifying polypharmacological drugs that can bind 

moderately to several targets in a disease-protein network and affect the overall outcome 

significantly (Hopkins et al. 2006, Hopkins 2009, Roth et al. 2004). Herein, we suggest 

receptor-family-based QSAR models as computationally inexpensive tools for the quick 

prioritization of polypharmacological hits for further experimental testing against a large 

panel of receptors.  

Theoretically, QSAR models explore information restricted to the experimental 

knowledge of chemical structures and biological activities of ligands. Hence, this approach is 

especially important when the X-ray crystal structures for the biological targets of interest 

(e.g., most GPCRs and trans-membrane proteins) are unavailable.  By applying QSAR 

modeling approach to a large number of datasets, we can accumulate a compendium of 

QSAR models representing a variety of different biological targets, and subsequently 

establish a virtual receptorome system to screen molecules simultaneously against an array of 

available models.  Ultimately, we can use these models to obtain a list of common matching 

hits among several receptor families and could link the hits to all predicted biological targets, 

thereby enabling an in silico identification of biological networks that will possibly be 
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influenced by these compounds (concept explained in Fig. 1.1). This approach can also 

identify selective compounds for each receptor family after excluding common hits. An 

example of a similar approach to broad in silico profiling of compound libraries is given by 

the method PASS (Brady & Stouten 2000), which currently allows in silico screening against 

a large panel of target proteins. However, the datasets behind PASS models are not publicly 

available, which makes it difficult to employ and validate alternative techniques to the same 

datasets. 

In this research, we have focused on G-protein Coupled Receptors (GPCRs) and 

related trans-membrane proteins (i.e., Sigma receptors) as promising targets for the drug 

discovery projects targeting polypharmacology. GPCRs constitute the largest family of 

membrane proteins that mediate most cellular responses to hormones and neurotransmitters 

and are also responsible for vision, olfaction and taste (Rosenbaum et al. 2009). The total 

number of currently known and verified human GPCRs consists of at least 799 unique full-

length members (Gloriam et al. 2007). GPCRs have been involved in a multitude of 

biological responses in all organs and systems including the central and peripheral nervous 

systems. In the latter, particularly important functions include neurotransmitter release, cell-

to-cell communication, modulation of learning and memory, response to psycho-active 

substances, regulation of neuronal growth and differentiation and of glial responses.  

However, ligands for GPCRs comprise structurally very diverse compounds and often 

the ligands interact with more than one GPCR, i.e., they are promiscuous. Furthermore, most 

highly effective polypharmacological compounds (e.g., clozapine) are highly promiscuous as 

well and consequently, they often have serious side effects. Although polypharmacology is 

desired for treating many diseases, highly promiscuous compounds are sometimes very toxic. 
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Therefore, we should be investigating new approaches to identify moderately promiscuous 

compounds that have decent binding affinities to few highly desired receptors that belong to 

the same family or different families of receptors. For example, a compound that acts as a 5-

HT2C agonist, 5-HT6 and H3 antagonist might be a good anti-obesity lead/drug. However, 

such compound would be a major health hazard if it activates 5-HT2B receptor subtype since 

the latter activity often leads to undesired cardiovascular effects (Huang et al. 2009, Setola & 

Roth 2005, Setola & Roth 2008). Thus, predicting ligand‘s binding to serotonin and 

histamine families of receptors is very crucial for activity, while binding to other receptor 

families of receptors (or receptor subtypes) would make the drug less safe.   

In this regard, family based models where a compound is regarded as active if it 

interacts with at least one member of the family, and inactive if it shows no (or poor) binding 

affinity against all members of the family, can be useful tools to predict selective 

polypharmacological profiles where promising compounds can be identified and 

experimentally validated for both efficacy and safety, and then may be, modified to achieve 

better activity profiles against the desired pharmacologic targets. Moreover, the use of family 

specific datasets will increase the statistical rigor of the generated QSAR models for the 

following reasons: (1) increased size of datasets, (2) increased chemical diversity of datasets, 

(3) larger applicability domains of the models.  

In this study, we have developed QSAR classification models for ligands interacting 

with several receptor subtypes and families of GPCRs and other trans-membrane proteins as 

part of an ongoing project in our lab; the GPCR QSARome project. The modeled receptor 

families included 5-Hydroxytryptamine (5-HT), adrenergic alpha, dopaminergic, histamine, 

muscarinic, and sigma receptors achieving external classification accuracies as high as 95 %.  
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All models were subjected to rigorous internal and external validation. The results confirmed 

the high external prediction accuracy of our computational models, which led us to conclude 

that these models can be used reliably to screen chemical databases to identify putative 

binders across receptor families. Thus, the models were used for virtual screening (VS) of 

two commercially available databases: the World Drug Index (WDI) (Daylight 2004) and 

DrugBank (Wishart et al. 2006, Wishart et al. 2008). Eleven VS hits from the WDI were 

subjected to parallel binding assays against a panel of trans-membrane protein targets. Nine 

compounds were found to bind to at least one receptor subtype among the predicted families 

with binding affinities between 0.6 - 9000 nM. Thus, these models will be highly valuable to 

assess the potential of chemicals to bind several families of GPCRs in an effort to predict 

interesting polypharmacological profiles. 

Materials and Methods 

Databases and Datasets 

Four databases described in details in chapter 2 were used for purposes of the work 

presented herein, namely: PDSP Ki-DB, WDI, DrugBank, and PubChem. The experimental 

data for receptor family datasets (i.e., for 5-HT, adrenergic alpha, dopamine, histamine, 

muscarinic and sigma receptors) were extracted from the PDSP Ki-DB available in the public 

domain. We used WDI and DrugBank chemical databases for QSAR-based VS to identify 

putative ligands for the studied receptor families, while we used PubChem obtain all 

chemical structures for our datasets in SDF file format. 

Preprocessing of the Datasets 

We used a workflow for chemical data curation that was developed in our lab and 

published recently (Fourches et al. 2010) and described in details in Chapter 2. We assigned 
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the ‗activity‘ class for each compound based on its Ki value(s) obtained from the PDSP and 

according to PDSP specifications as reported at the PDSP website (http://pdsp.med.unc.edu/). 

Compounds with Ki values less than 10 µM were considered binders and assigned to class 1, 

whereas compounds with Ki values more than or equal to 10 µM were considered non-

binders and assigned to class 0.  

Binders to 5-HT family consisted of compounds that bind to any of the following 

receptors: 5-HT1A, 5-HT1B, 5-HT1D, 5-HT1E, 5HT2A, 5-HT2B, 5-HT2C, 5-HT5A, 5-HT6, or 5-

HT7. Binders to the adrenergic alpha receptors consisted of compounds that bind any of the 

following receptor subtypes: alpha1A, alpha1B, alpha 2A, alpha 2B, or alpha 2C. Binders to 

the dopamine family consisted of compounds that bind any of the following receptor 

subtypes: D1, D2, D3, D4 or D5. Binders to the histamine family consisted of compounds that 

bind any of the following receptor subtypes: Binders to the muscarinic family consisted of 

compounds that bind any of the following receptor subtypes: M1, M2, M3, M4, or M5. Binders 

to the sigma family consisted of compounds that can bind either sigma 1 or sigma 2 (or both) 

receptors. 

Dataset Division for Model Building and Validation  

Previously, we and other groups demonstrated that, generally, there is no correlation 

between the statistical parameters of QSAR models for the training set, such as leave-one-out 

(LOO) cross-validation R
2
(q

2
), and the correlation coefficient R

2
 between predicted and 

observed activities of the test set. This statement is also true for classification QSAR models: 

high classification accuracy for the training and the test set usually do not correlate with each 

other. Thus, acceptable statistics for the training set only is insufficient to assume that the 

model also has high external predictive power and QSAR models should be rigorously 

http://pdsp.med.unc.edu/
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validated using external validation sets of compounds which were not used to train the 

models (Golbraikh & Tropsha 2002a). Following our predictive QSAR modeling workflow 

(Tropsha 2010) all QSAR models generated to classify binders vs. non-binders across the 

studied receptor families were validated by predicting both test and external validation sets. 

Each dataset was randomly split into 5 different subsets of nearly equal size to allow for 

external 5-fold cross validation (CV) (Hawkins et al. 2003, Kohavi 1995). In this protocol, 

each subset including 20% of the original dataset was systematically employed as the 

external validation set while the remaining 80% of the compounds constituted the modeling 

set.  

Another level of internal validation was achieved by comparing model performance 

for training and test sets. Herein, all modeling sets (each including 80% of the original 

dataset) were additionally divided multiple times into chemically-diverse training and test 

sets using the Sphere Exclusion program developed in-house and described elsewhere 

(Golbraikh & Tropsha 2002b). The Sphere Exclusion algorithm divides the modeling set into 

multiple pairs of training and test sets to guarantee that at least in the entire descriptor space, 

(i) all representative points of the test set are close to at least one representative point of the 

training set, i.e. test set compounds are within the applicability domain defined by the 

training set; (ii) given the relative sizes of the training and test sets, the highest portion of the 

representative points of the training set are close to representative points of the test set; (iii) 

and the training set is a representative subset of the entire modeling set, i.e., there is no subset 

in the modeling set  not represented by a similar compound in the training set. Here, the 

modeling sets were divided 28-39 times into training and test sets of different sizes. 
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Multiple QSAR models were developed using these training sets and validated using 

the corresponding test sets. Models with high prediction accuracy assessed by statistical 

criteria (cf. Chapter 2) were used for consensus prediction of external validation set 

compounds: each compound was predicted by all models for which it was within the 

applicability domain (refer to Chapter 2 for details), and the consensus predicted value for 

each compound was rounded to the closest integer (class). The predictivity of the models was 

evaluated by the consensus CCR for the external validation set. The model building and 

validation approach is illustrated schematically in Figure 2.2. 

Computational Methods 

Dragon Descriptors. An ensemble of 929 molecular descriptors was computed using  

the Dragon Professional software (version 5.4) (Dragon 2007) for all compounds (with 

explicit hydrogen atoms) in our datasets.  Descriptors included: 0D-constitutional descriptors 

(atom and group counts), 1D-functional groups, 1D-atom centered fragments, 2D-topological 

descriptors, 2D-walk and path counts, 2D-autocorrelations, 2D-connectivity indices, 2D-

information indices, 2D-topological charge indices, 2D-Eigenvalue-based indices, 2D-

topological descriptors, 2D-edge adjacency indices, 2D-Burden eigenvalues, and various 

molecular properties such as octanol-water partition coefficient. Descriptors with low 

variance (standard deviation lower than 0.0001) or missing values were removed. 

Furthermore, if the correlation coefficient between any two descriptors exceeded 95%, one of 

them was removed. The final set used in this QSAR study included 298 descriptors. These 

descriptors were range-scaled, so that their values were within the interval [0, 1]. Definition 

and calculation procedures for Dragon descriptors and the related references are given in the 

Handbook of Molecular Descriptors (Todeschini & Consonni 2000). 
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Machine Learning Methods. Both kNN classification algorithm and SVM were 

used to generate QSAR models herein. All details about these two methods can be found in 

Chapter 2. 

 

Selection and Validation of QSAR Models 

To evaluate the predictive power of the generated QSAR models, CCR (Equation 2.5) 

values for the training, test, and external evaluation set were calculated. We used sensitivity 

(SE) and specificity (SP) (Equations 2.6 and 2.7) as well. SE and SP reflect the accuracy of 

predicting the compounds of active and inactive classes, respectively. We considered a QSAR 

model to have an acceptable predictive power, if both of the following conditions were 

satisfied:  

(i) CCR for the LOO cross-validation of the training set (i.e., ) was at 

least 65%, and CCR for the test set (i.e., ) was also at least 65%;  

(ii) For both training and test sets, SE and SP (i.e.,  ,  ,  , 

) were at least 60%.  

 Applicability domain  

Formally, a QSAR model can predict the target property for any compound for which 

chemical descriptors can be calculated. However, if it is highly dissimilar from all 

compounds of the modeling set, reliable prediction of its activity is unlikely to be reached. 

The concept of applicability domain (AD), previously implemented and widely used in our 

laboratory (Zhu et al. 2008a, Zhang et al. 2008a, Tropsha 2003), was applied to avoid 

unreliable prediction. In this study, we defined AD as a distance threshold DT between a 

compound under prediction and its closest nearest neighbors of the training set according to 
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Equation 2.9 (cf. Chapter 2). In all these studies we set the default value of this parameter Z 

at 0.5, which formally places the allowed distance threshold at the mean plus one-half of the 

standard deviation. We also defined the AD in the entire descriptor space. In this case, the 

same formula (Eq. 2.9) is used, where Z equals to 0.5, using one nearest neighbor (i.e., k=1), 

and Euclidean distances were calculated using all descriptors. Thus, if the distances of the 

external compound from its k nearest neighbors (see above) in the training set within either 

the entire descriptor space or the selected descriptor space exceeded these thresholds, no 

prediction was made.  

In receptor family modeling efforts, diversifying datasets will generally increase the 

distance cutoff (DT) that is calculated using Equation 2.9, because we are increasing the 

average distance between each compound and its nearest neighbors in the training set. We set 

the default value of this parameter Z at 0.5. In this way the distance of the external compound 

from its nearest neighbors in the training set might become below the threshold and 

consequently we will be able to predict more compounds using our family-based models that 

were initially very distant from the training set compounds (i.e., out of applicability domain). 

Robustness of QSAR models 

Y-randomization (randomization of response) is a widely used approach to validate 

the robustness of QSAR models. It consists of rebuilding the models using randomized 

activities of the training set and subsequent assessment of the model statistics. It is expected 

that models obtained for the training set with randomized activities should have significantly 

lower values of CCR for the training or the test set than the models built using training set 

with real activities, or at least these models should not satisfy some of the validation criteria 

mentioned above. If this condition is not satisfied, models built for this training set with real 
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activities are not reliable and should be discarded. This test was applied to all training sets 

obtained by data splits into training and test sets and it was repeated three times for each 

split. 

Virtual Screening and Consensus Prediction Thresholds 

We screened both the WDI and DrugBank databases to derive a predicted 

polypharmacology matrices for all compounds included in these databases and to identify 

common and unique binders for the six studied receptor families. Dragon descriptors were 

generated for each compound in the databases and normalized based on the maximum and 

minimum values of each descriptor in the modeling set. Each validated kNN-Dragon model 

was then used to predict the activities of compounds that were within AD. The results for 

each individual prediction were combined into a consensus prediction: a consensus score 

(CS) was calculated for each compound that was within the ADs of multiple models. The 

consensus scores employed in this study take into account the total number of models used to 

predict the compound‘s activity class (binder or non-binder), and the number of models that 

predicted the compound to belong to a specific class. Since we define two classes of 

compounds, i.e., class 1 (binders) and class 0 (non-binders), some models may predict a 

compound to belong to class 0 and others may predict it to belong to class 1. As a result, a 

consensus score between 0 and 1 will be obtained for each of the predicted compounds.  

Additionally, Different Consensus Prediction Thresholds (CPTs) were then used to 

improve prediction accuracy. To clarify, each individual model could only make binary 

predictions of compounds as either active (value of 1) or inactive (value of 0). However, 

since we integrated predictions from the ensemble of models (that passed the acceptance 

criteria), we could have a situation when different models disagree in their predictions. Thus, 
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the averaged (consensus) predicted activity for each compound may be in the range between 

0 and 1. Formally, compounds with a predicted activity higher than or equal to 0.5 are 

classified as active and those lower than 0.50 are classified as inactive. Obviously, the closer 

the average predicted value to 1 or 0 is, the higher the concordance among all models is and 

the higher is our confidence in annotating compounds as active or inactive, respectively. 

Thus, two additional thresholds reflecting this concordance among predictions could be 

established as a different type of the model applicability domain: for instance, selecting only 

external compounds with predicted activity above 0.90 or below 0.10 would limit the 

selection of compounds from virtual screening library to a set with higher confidence (but of 

course reduces the total number of compounds in the predicted set). Therefore, CPTs were 

employed in this study to select compounds with high prediction confidence: for instance, 

CPT 0.9/0.1 means: (i) compounds with predicted activity higher than the upper threshold 

(0.9) were classified as actives; (ii) compounds with activity lower than 0.1 were classified as 

inactives; and (iii) compounds with the average predicted activity between the two thresholds 

were not assigned to any class (inconclusive). The inconclusive compounds were not 

included in models‘ prediction accuracy calculation. Two different CPTs were tested in this 

study; CPT1 0.90/0.10 and CPT2 0.50/0.49 to analyze their impacts on models‘ predictivity. 

The percentages of models that were used to make prediction for each compound in 

the virtual screening database were recorded as well. We hypothesize that the higher 

percentage of models that give the same prediction for a compound, the more likely the 

compound actually possesses this predicted activity; the smaller the prediction variance 

across all models, the more confidence we have that the predicted biological activity for this 

compound is accurate. For these reasons, a compound was selected as a hypothetical hit, if 
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and only if (i) it was predicted by at least 50% of the selected models (i.e., it was found 

within the ADs of these models) and (ii) among those models, at least 90% of them predicted 

this compound as active for CPT1 (or at least 50 % of them predicted this compound as 

active for CPT2).  

Experimental Validation in Radiologand Binding Assays 

Final common hit compounds from QSAR-based VS across six receptor families 

were purchased and submitted to PDSP for experimental target validation. The experimental 

details are described in Chapter 2. 

Results and Discussion 

QSAR Modeling for Receptor Subtypes 

kNN-Dragon. kNN-Dragon models (classification and regression models) were 

generated for several receptor subtypes included in Table 3.1. First, a validation set (20% of 

the dataset) was excluded from each datasets randomly. The compounds in the remaining 

modeling set (80% of the original dataset) were divided into multiple training and test sets 

(28-35 divisions) using the Sphere Exclusion method implemented in our laboratory 

(Golbraikh & Tropsha 2002b). Multiple QSAR models were generated independently for all 

training sets and applied to the test sets. We accepted classification models with CCR values 

for both the training and test set greater than 0.70. We also accepted models with q
2 

and R
2
 

values greater than or equal to 0.70. These models were used for the prediction of external 

validation sets. Model statistics (i.e., CCRevs, R
2
) based on external sets are provided in Table 

3.1. Additionally, results of the Y-randomization test confirmed that kNN classification 

models with CCRtrain and CCRtest values above or equal to 0.70 were robust. Additionally, 

regression models with q
2
 and R

2
 above or equal 0.70 were also robust. None of the models 
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with randomized class labels of the training set compounds had CCRrand above 0.54 for any 

dataset, and none of the regression models generated with randomized activities for training 

set activities had R
2
 above 0.50. 
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Table 3.1. QSAR Models for Selected GPCRs 

 

GPCR End Point No. Cps Model Type Accuracy 

5-HT2A  Binder/Non-binder 105/61 Classification CCR=0.94 

5-HT2B  Binder/Non-binder 148/607 Classification CCR=0.74 

5-HT2B  Agonist/Antagonist 33/115 Classification CCR=0.84 

5-HT6  Binder/Non-binder 97/79 Classification CCR=0.92 

5-HT6  Binding affinities 60 Continuous R
2
=0.59 

5-HT7  Binder/Non-binder 72/68 Classification CCR=0.84 

5-HT7  Binding affinities 62 Continuous R
2
=0.60 

Alpha2A  Binding affinities 74 Continuous R
2
=0.67 

Alpha2B  Binding affinities 73 Continuous R
2
=0.62 

Alpha2C  Binding affinities 76 Continuous R
2
=0.65 

D1  Binder/Non-binder 56/44 Classification CCR=0.90 

D2  Binder/Non-binder 56/58 Classification CCR=0.85 

D3  Binder/Non-binder 57/49 Classification CCR=0.88 

D4  Binder/Non-binder 60/51 Classification CCR=0.92 

D5  Binder/Non-binder 51/54 Classification CCR=0.97 
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QSAR Modeling to discriminate Actives vs. Inactives for individual Receptor 

Families  

kNN-Dragon. kNN-Dragon models were generated for the six receptor families 

mentioned earlier. First, a validation set (20% of the dataset) was excluded from each 

datasets randomly. The compounds in the remaining modeling set (80% of the original 

dataset) were divided into multiple training and test sets (24-30 divisions) using the Sphere 

Exclusion method implemented in our laboratory (Golbraikh & Tropsha 2002b). Multiple 

QSAR models were generated independently for all training sets and applied to the test sets. 

We accepted models with CCR values for both the training and test set greater than 0.90. 

These models were used for the prediction of external validation sets. Model statistics based 

on external sets are provided in Table 3.2. Additionally, results of the Y-randomization test 

confirmed that kNN classification models with CCRtrain and CCRtest values above or equal to 

0.70 were robust. None of the models with randomized class labels of the training set 

compounds had CCRrand above 0.54 for any dataset.  
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Table 3.2. Performance of kNN classification methods to classify actives vs. inactives across 

six receptor families based on external validation set statistics. 

Family 

Num. 

 Mod
a
 

Confusion Matrix Statistics for the Models 

N1
 b
 N0

 c
 TP TN FP FN SE SP En1 En0 CCReva

d
 

5-HT 282 17 12 11 11 1 6 0.65 0.92 1.77 1.44 0.78 

Alpha
e
 1126 11 15 9 15 0 2 0.82 1.00 2.00 1.69 0.91 

D
f
 619 12 14 11 13 1 1 0.92 0.93 1.86 1.84 0.92 

H
g
 121 11 11 10 10 1 1 0.91 0.91 1.82 1.82 0.91 

M
h
 297 10 13 8 11 2 2 0.80 0.85 1.68 1.62 0.82 

Sigma 104 8 14 7 12 2 1 0.88 0.86 1.72 1.75 0.87 

a
Num. Mod, number of models with CCRtrain and CCRtest ≥ 0.90 (≥ 0.85 for 5-HT); 

b
N1, 

number of actives; 
c
N0, number of inactives; 

d
CCRevs, correct classification rate of the 

consensus models using the external validation set; 
e
Alpha, adrenergic alpha; 

f
D, dopamine; 

g
H, histamine; 

h
M, muscarinic. 
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SVM-Dragon. Models were built for the six receptor families mentioned earlier. 

First, the dataset was divided into five parts. 80% of the original dataset was used as 

modeling sets and an external set included the remaining 20% of the dataset. The compounds 

in all modeling sets were divided into multiple training and test sets (28-40 divisions) using 

the Sphere Exclusion method (Golbraikh & Tropsha 2002b). Multiple QSAR models were 

generated independently for all training sets and applied to the test sets. We accepted models 

with CCR values for both the training and test set greater than 0.70. Then, we applied the 

accepted models for the prediction of external sets. Model statistics based on external 

validation sets are provided in Tables 3.3-3.8. Additionally, results of the Y-randomization 

test confirmed that kNN classification models with CCRtrain and CCRtest values above or 

equal to 0.70 were robust. None of the models with randomized class labels of the training 

set compounds had CCRrand above 0.50 for any dataset.  
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Table 3.3. Performance of SVM classification methods to classify actives vs. inactives 

across 5-HT receptor family based on external validation set statistics. 

Fold 

Num. 

Mod
a
 

Confusion Matrix Statistics for the Models 

N1
b
 N0

c
 TP TN FP FN SE SP En1 En0 CCRevs

d
 

F1 4 22 7 20 5 2 2 0.91 0.71 1.52 1.77 0.81 

F2 12 16 13 14 11 2 2 0.88 0.85 1.70 1.74 0.86 

F3 75 16 13 15 12 1 1 0.94 0.92 1.85 1.87 0.93 

F4 281 15 13 13 12 1 1 0.87 0.92 1.84 1.87 0.89 

F5 71 16 12 13 12 1 2 0.81 1.00 1.81 1.78 0.91 

Average 0.88 0.88 1.74 1.81 0.88 

a
Num. Mod, number of models with CCRtrain and CCRtest ≥ 0.70; 

b
N1, number of actives; 

c
N0, number of inactives; 

d
CCRevs, correct classification rate of the consensus models using 

the external validation set. 
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Table 3.4. Performance of SVM classification methods to classify actives vs. inactives 

across adrenergic alpha receptor family based on external validation set statistics. 

Fold 

Num. 

Mod
a
 

Confusion Matrix Statistics for the Models 

N1
b
 N0

c
 TP TN FP FN SE SP En1 En0 CCRevs

d
 

F1 463 12 15 12 14 1 0 1.00 0.93 1.88 2.00 0.97 

F2 503 12 14 11 14 0 1 0.92 1.00 2.00 1.85 0.96 

F3 458 10 16 10 13 3 0 1.00 0.81 1.68 2.00 0.91 

F4 445 17 9 17 8 1 0 1.00 0.89 1.80 2.00 0.94 

F5 471 11 15 11 14 1 0 1.00 0.93 1.88 2.00 0.97 

Average 0.98 0.91 1.85 1.97 0.95 

a
Num. Mod, number of models with CCRtrain and CCRtest ≥ 0.70; 

b
N1, number of actives; 

c
N0, number of inactives; 

d
CCRevs, correct classification rate of the consensus models using 

the external validation set. 
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Table 3.5. Performance of SVM classification methods to classify actives vs. inactives 

across dopamine receptor family based on external validation set statistics. 

Fold 

Num. 

Mod
a
 

Confusion Matrix Statistics for the Models 

N1
b
 N0

c
 TP TN FP FN SE SP En1 En0 CCRevs

d
 

F1 336 13 13 12 13 0 1 0.92 1.00 2.00 1.86 0.96 

F2 442 11 15 11 13 2 0 1.00 0.87 1.76 2.00 0.93 

F3 516 12 14 12 14 0 0 1.00 1.00 2.00 2.00 1.00 

F4 407 12 14 10 13 1 2 0.83 0.93 1.84 1.70 0.88 

F5 391 10 16 9 16 0 1 0.90 1.00 2.00 1.82 0.95 

Average 0.93 0.96 1.92 1.87 0.95 

a
Num. Mod, number of models with CCRtrain and CCRtest ≥ 0.70; 

b
N1, number of actives; 

c
N0, number of inactives; 

d
CCRevs, correct classification rate of the consensus models using 

the external validation set. 
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Table 3.6. Performance of SVM classification methods to classify actives vs. inactives 

across histamine receptor family based on external validation set statistics. 

Fold 

Num. 

Mod
a
 

Confusion Matrix Statistics for the Models 

N1
b
 N0

c
 TP TN FP FN SE SP En1 En0 CCRevs

d
 

F1 270 10 13 10 13 0 0 1.00 1.00 2.00 2.00 1.00 

F2 117 13 9 12 9 0 1 0.92 1.00 2.00 1.86 0.96 

F3 131 11 12 9 11 1 2 0.82 0.92 1.82 1.67 0.87 

F4 258 10 12 10 12 0 0 1.00 1.00 2.00 2.00 1.00 

F5 397 14 8 10 7 1 4 0.71 0.88 1.70 1.51 0.79 

Average 0.89 0.96 1.90 1.81 0.92 

a
Num. Mod, number of models with CCRtrain and CCRtest ≥ 0.70; 

b
N1, number of actives; 

c
N0, number of inactives; 

d
CCRevs, correct classification rate of the consensus models using 

the external validation set. 
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Table 3.7. Performance of SVM classification methods to classify actives vs. inactives 

across muscarinic receptor family based on external validation set statistics. 

Fold 

Num. 

Mod
a
 

Confusion Matrix Statistics for the Models 

N1
b
 N0

c
 TP TN FP FN SE SP En1 En0 CCRevs

d
 

F1 205 12 11 10 9 2 2 0.83 0.82 1.64 1.66 0.83 

F2 236 8 15 5 10 5 3 0.63 0.67 1.30 1.28 0.65 

F3 70 6 17 6 15 2 0 1.00 0.88 1.79 2.00 0.94 

F4 332 3 19 3 18 1 0 1.00 0.95 1.90 2.00 0.97 

F5 244 5 17 5 16 1 0 1.00 0.94 1.89 2.00 0.97 

Average 0.89 0.85 1.70 1.79 0.87 

a
Num. Mod, number of models with CCRtrain and CCRtest ≥ 0.70; 

b
N1, number of actives; 

c
N0, number of inactives; 

d
CCRevs, correct classification rate of the consensus models using 

the external validation set. 
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Table 3.8. Performance of SVM classification methods to classify actives vs. inactives 

across Sigma receptor family based on external validation set statistics. 

Fold 

Num. 

Mod
a
 

Confusion Matrix Statistics for the Models 

N1
 b
 N0

 c
 TP TN FP FN SE SP En1 En0 CCRevs

d
 

F1 410 9 14 9 14 0 0 1.00 1.00 2.00 2.00 1.00 

F2 290 9 14 9 13 1 0 1.00 0.93 1.87 2.00 0.96 

F3 362 10 12 9 10 2 1 0.90 0.83 1.69 1.79 0.87 

F4 380 6 16 6 15 1 0 1.00 0.94 1.88 2.00 0.97 

F5 390 10 12 9 12 0 1 0.90 1.00 2.00 1.82 0.95 

Average 0.96 0.94 1.89 1.92 0.95 

a
Num. Mod, number of models with CCRtrain and CCRtest ≥ 0.70; 

b
N1, number of actives; 

c
N0, number of inactives; 

d
CCRevs, correct classification rate of the consensus models using 

the external validation set. 
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Comparison between kNN and SVM Models. The performance of kNN and SVM 

classification models for six receptor families, based on validation set statistics, is 

summarized in Figure 3.1. Both kNN and SVM combined with Dragon descriptors performed 

very well in classifying binders vs. non-binders across six receptor families based on external 

validation set statistics (Tables 3.1-3.8), yielding the highest CCRevs of 0.95 for SVM 

classification models for adrenergic alpha, dopamine and sigma receptor families. Best 

performance for kNN models was for the dopamine receptor family with highest CCRevs of 

0.92 followed by kNN models for the adrenergic alpha and histamine receptor families with 

CCRevs values of 0.91 in both cases.  
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Figure 3.1. Comparison of CCR values for the external validation set (CCRevs) for 

different QSAR models developed to classify binders vs. non-binders across six receptor 

families.  
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Descriptor Analysis 

Mechanistic interpretability is frequently regarded as very important feature of QSAR 

models. We generally argue that only models that have been extensively validated on 

external datasets and identified experimentally-confirmed hits should be subjected to 

interpretation.  Furthermore, very few classes of models, specifically, those based on 

(multiple) linear regression and small number of descriptors can afford a relatively 

straightforward interpretation. The interpretation of multi-parametric statistical models 

developed with non-linear optimization algorithms (as in this study) should be attempted 

with great care because of strong and often poorly understood interplay between descriptors. 

Furthermore, although we could foresee that in some cases medicinal chemists may want to 

modify their candidate compounds to enhance or prevent ligand‘s binding to some receptor 

families of interest, the tools developed in this study are predominantly intended for virtual 

screening of libraries of drug candidates to predict compounds with interesting binding 

profiles and perhaps interesting polypharmacological effects. However, any compound 

designed by chemists could be passed through our models to predict its binding potential 

towards different receptor families.   

It needs to be pointed out that variable selection kNN QSAR optimizes the selection 

of a small number of descriptors to produce an acceptable QSAR model. By default, any 

successful QSAR model captures the correlation between variations in descriptor values and 

those in the target property. Thus, the significant correlation could be achieved with a small 

subset of descriptors. However, some other descriptors may serve as essential determinants 

of the compound pharmacological class but not be included in the model because of their low 

variances across the training set (cf. pharmacophoric groups that by default are the same for 
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all active compounds). Therefore, if one searches a database with a small number of variables 

selected by QSAR models, a similarity screen of the database using the entire pool of 

descriptors (global similarity) is necessary in addition to model-based activity prediction (i.e., 

so that not to miss any important structural features essential for biological activity).  

We restricted the discussion in this paper to the most frequent descriptors found by all 

acceptable kNN models used for the prediction of external compounds to stress on the fact 

that the process of variable selection employed as part of model optimization has indeed 

converged on a small number of descriptors. From an initial pool of ca. 300 descriptors, only 

a small set of descriptors was selected for the acceptable QSAR models (see Fig. 3.2). 

Clearly, this small set of MFD was different for the different receptor families which is an 

indication that our models were distinct despite the fact that a large portion of the compounds 

contained in the different datasets was similar (i.e., many compounds were promiscuous with 

binding affinities to different receptor families). All details about top twenty MFD selected 

by successful models for all receptor families can be found in Tables 3.9-3.14. 
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Figure 3.2. The heatmap of descriptor frequencies across receptor families analyzed by hierarchical 

clustering of the pairwise similarities in descriptor frequencies using Euclidean distances and 

normalized frequencies of top twenty MFD. The bar-view is a key for coloring according to 

normalized descriptor frequency based on normalized descriptor frequencies where red color 

indicates most frequent descriptors while blue color denotes least frequent or unused descriptors.  
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Table 3.9. Top twenty most frequently used Dragon descriptors in validated kNN-Dragon 

models to classify binders vs. non-binders against the 5-HT receptor family.  

Descriptor Frequency Interpretation Descriptor Category 

N-074 140 R#N / R=N- Atom-centered 

fragments 

C-006 109 CH2RX  Atom-centered 

fragments 

nArOR 102 Number of ethers (aromatic) Functional group counts 

nRNH2 72 Number of primary amines Functional group counts 

C-008 71 CHR2X Atom-centered 

fragments 

nNq 68 Number of quaternary N Functional group counts 

F-084 65 F attached to C1 (sp2) Atom-centered 

fragments 

nRCONR2 55 Number of tertiary amides 

(aliphatic) 

Functional group counts 

JGI3 53 Topological charge index of 

order 3 

Topological charge 

indices 

BELm3  49 Lowest eigenvalue n. 3 of 

Burden matrix 

Burden eigenvalues 

Depressant-

50 

47 Ghose-Viswanadhan-

Wendoloski antidepressant-

like index at 50% 

Molecular properties 

C-028 46 R--CR--X Atom-centered 

fragments 

nOHs 46 Number of secondary 

alcohols 

Functional group counts 

GATS7m 44 Geary autocorrelation - lag 

7/weighted by atomic masses 

2D autocorrelations 

CIC0 44 Complementary information 

content (neighborhood 

symmetry of 0-order) 

Information indices 

H-047 43 H attached to C1(sp3) / 

CO(sp2) 

Atom-centered 

fragments 

C-005 43 CH3X Atom-centered 

fragments 

O-058 42 Corresponds to =O Atom-centered 

fragments 

GATS5e 42 Geary autocorrelation - lag 

5/weighted by atomic 

Sanderson electronegativities 

2D autocorrelations 
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MATS6p 40 Moran autocorrelation - lag 6 

/ weighted by atomic 

polarizabilities 

2D autocorrelations 
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Table 3.10. Top twenty most frequently used Dragon descriptors in validated kNN-Dragon 

models to classify binders vs. non-binders against the adrenergic alpha receptor family.  

Descriptor Frequency Interpretation Descriptor Category 

nN+ 401 Number of positively 

charged N 

Functional group counts 

C-006 358 CH2RX  Atom-centered fragments 

nNq 309 Number of quaternary N Functional group counts 

H-047 257 H attached to C1(sp3) / 

CO(sp2) 

Atom-centered fragments 

T(O..O) 254 Sum of topological distances 

between O..O 

Topological descriptors 

nTB 230 Number of triple bonds Constitutional descriptors 

nDB 217 Number of double bonds Constitutional descriptors 

O-058 215 Corresponds to =O Atom-centered fragments 

nRSR 211 Number of sulfides Functional group counts 

nArNR2 211 Number of tertiary amines Functional group counts 

F-084 205 F attached to C1 (sp2) Atom-centered fragments 

JGI3 191 Topological charge index of 

order 3 

Topological charge 

indices 

nO 175 Number of oxygen atoms Constitutional descriptors 

Depressant-50 173 Ghose-Viswanadhan-

Wendoloski antidepressant-

like index at 50% 

Molecular properties 

BLTF96 166 Verhaar model of fish base-

line toxicity from 

MLOGP(mmol/l) 

Molecular properties 

MLOGP 164 Moriguchi octanol-water 

partition coefficient 

Molecular properties 

MLOGP2 163 Squared Moriguchi octanol-

water partition coefficient 

Molecular properties 

GATS3m 162 Geary autocorrelation - lag 

3/weighted by atomic masses 

2D autocorrelations 

N-071 159 Ar-NAl2 Atom-centered fragments 

ARR 156 Atomic ratio Constitutional descriptors 
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Table 3.11. Top twenty most frequently used Dragon descriptors in validated kNN-Dragon 

models to classify binders vs. non-binders against the dopamine receptor family.  

Descriptor Frequency Interpretation Descriptor Category 

Depressant-50 309 Ghose-Viswanadhan-

Wendoloski antidepressant-

like index at 50% 

Molecular properties 

BELm3 299 Lowest eigenvalue n. 3 of 

Burden matrix 

Burden eigenvalues 

nNq 259 Number of quaternary N Functional group 

counts 

nN+ 247 Number of positively charged 

N 

Functional group 

counts 

nPyrrolidines 246 Number of pyrrolidines Functional group 

counts 

C-006 238 CH2RX  Atom-centered 

fragments 

F-084 221 F attached to C1 (sp2) Atom-centered 

fragments 

O-058 206 Corresponds to =O Atom-centered 

fragments 

nTB 185 Number of triple bonds Constitutional 

descriptors 

C-008 183 CHR2X Atom-centered 

fragments 

H-047 182 H attached to C1(sp3) / 

CO(sp2) 

Atom-centered 

fragments 

TPSA(NO) 172 Topological polar surface area 

using N, O polar contributions 

Molecular properties 

MLOGP2 171 Squared Moriguchi octanol-

water partition coefficient 

Molecular properties 

nArOH 170 Number of ethers (aromatic) Functional group 

counts 

nO 167 Number of oxygen atoms Constitutional 

descriptors 

MATS6e 166 Moran autocorrelation - lag 6 / 

weighted by atomic Sanderson 

electronegativities 

2D autocorrelations 

nIsothiazoles 164 Number of isothiazoles Functional group 

counts 

Hypertens-80 159 Ghose-Viswanadhan-

Wendoloski antihypertensive-

like index at 80% 

Molecular properties 
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T(O..O) 156 Sum of topological distances 

between O..O 

Topological 

descriptors 

nHDon 147 Number of doner atoms for H-

bonds (N and O) 

Functional group 

counts 
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Table 3.12. Top twenty most frequently used Dragon descriptors in validated kNN-Dragon 

models to classify binders vs. non-binders against the histamine receptor family.  

Descriptor Frequency Interpretation Descriptor Category 

nNq 37 Number of quaternary N Functional group 

counts 

Jhetv 31 Balaban-type index from van der 

Waals weighted distance matrix 

Topological 

descriptors 

JGI2 22 Mean topological charge index of 

order 2 

Topological charge 

indices 

IVDE 22 Mean information content on the 

vertex degree equality 

Information indices 

T(N..I) 21 Sum of topological distances 

between N..I. 

Topological 

descriptors 

nPyridines 21 Number of pyridines Functional group 

counts 

MLOGP2 21 Squared Moriguchi octanol-water 

partition coefficient 

Molecular properties 

nTB 20 Number of triple bonds Constitutional 

descriptors 

nN+ 19 Number of positively charged N Functional group 

counts 

S-107 19 R2S / RS-SR Atom-centered 

fragments 

TPSA(NO) 19 Topological polar surface area 

using N, O polar contributions 

Molecular properties 

Hnar 19 Narumi harmonic topological 

index 

Topological 

descriptors 

Hypertens-80 19 Ghose-Viswanadhan-Wendoloski 

antihypertensive-like index at 

80% 

Molecular properties 

MATS6e 18 Moran autocorrelation - lag 6 / 

weighted by atomic Sanderson 

electronegativities 

2D autocorrelations 

GATS7m 18 Geary autocorrelation - lag 

7/weighted by atomic masses 

2D autocorrelations 

F-084 17 F attached to C1 (sp2) Atom-centered 

fragments 

T(N..N) 17 Sum of topological distances 

between N..N. 

Topological 

descriptors 

Mv 17 Mean atomic van der Waals 

volume (scaled on carbon atom) 

Constitutional 

descriptors 
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nRSR 17 Number of sulfides Functional group 

counts 

JGI3 17 Topological charge index of order 

3 

Topological charge 

indices 
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Table 3.13. Top twenty most frequently used Dragon descriptors in validated kNN-Dragon 

models to classify binders vs. non-binders against the muscarinic receptor family.  

Descriptor Frequency Interpretation Descriptor Category 

nO 111 Number of oxygen atoms Constitutional 

descriptors 

nArOH 84 Number of ethers (aromatic) Functional group 

counts 

GATS8v 66 Geary autocorrelation - lag 

8/weighted by atomic van der 

Waals volumes 

2D autocorrelations 

nNq 58 Number of quaternary N Functional group 

counts 

C-006 51 CH2RX  Atom-centered 

fragments 

BLTD48 51 Verhaar model of Daphnia base-

line toxicity from MLOGP 

(mmol/l) 

Molecular properties 

nR11 50 Number of 11-memebered rings Constitutional 

descriptors 

nCrs 49 Number of ring secondary C(sp3) Functional group 

counts 

T(O..O) 47 Sum of topological distances 

between O..O 

Topological 

descriptors 

C-008 45 CHR2X Atom-centered 

fragments 

Psychotic-80 44 Ghose-Viswanadhan-Wendoloski 

antipsychotic-like index at 80% 

Molecular properties 

nN(CO)2 44 Number of imides (-thio) Functional group 

counts 

MATS1p 43 Moran autocorrelation - lag 1 / 

weighted by atomic polarizabilities 

2D autocorrelations 

O-062 42 O- (negatively charged) Atom-centered 

fragments 

O-060 41 Al-O-Ar / Ar-O-Ar / R..O..R / R-

O-C=X 

Atom-centered 

fragments 

D/Dr09 40 distance detour ring index of order 

9 

Topological 

descriptors 

GATS4m 40 Geary autocorrelation - lag 

4/weighted by atomic masses 

2D autocorrelations 

nN+ 40 Number of positively charged N Functional group 

counts 
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GATS1v 39 Geary autocorrelation - lag 

1/weighted by atomic van der 

Waals volumes 

2D autocorrelations 

H-047 39 H attached to C1(sp3) / CO(sp2) Atom-centered 

fragments 
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Table 3.14. Top twenty most frequently used Dragon descriptors in validated kNN-Dragon 

models to classify binders vs. non-binders against the sigma receptor family.  

Descriptor Frequency Interpretation Descriptor Category 

Depressant-50 68 Ghose-Viswanadhan-

Wendoloski antidepressant-like 

index at 50% 

Molecular properties 

nO 35 Number of oxygen atoms Constitutional 

descriptors 

C-006 28 CH2RX  Atom-centered 

fragments 

TPSA(NO) 26 Topological polar surface area 

using N, O polar contributions 

Molecular properties 

RBN 23 Number of rotatable bonds Constitutional 

descriptors 

nH 21 Number of hydrogen atoms Constitutional 

descriptors 

C-008 21 CHR2X Atom-centered 

fragments 

C-020 20  =CX2 Atom-centered 

fragments 

BLI 20 Kier benzene-likeliness index Topological descriptors 

nNq 20 Number of quaternary N Functional group 

counts 

F-084 19 F attached to C1 (sp2) Atom-centered 

fragments 

MATS7e 16 Moran autocorrelation - lag 7 / 

weighted by atomic Sanderson 

electronegativities 

2D autocorrelations 

CIC1 16 Complementary information 

content (neighborhood 

symmetry of 1-order) 

Information indices 

MSD 15 Mean square distance index 

(Balaban) 

Topological descriptors 

EEig13d 15 Eigenvalue 13 from edge adj. 

matrix weighted by dipole 

moments 

Edge adjacency indices 

H-052 15 H attached to CO(sp3) with 1X 

attached to next C 

Atom-centered 

fragments 

C-040 14 R-C(=X)-X / R-C#X / X=C=X Atom-centered 

fragments 

GATS5m 14 Geary autocorrelation - lag 

5/weighted by atomic masses 

2D autocorrelations 
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GATS8m 14 Geary autocorrelation - lag 

8/weighted by atomic masses 

2D autocorrelations 

T(F..F) 14 Sum of topological distances 

between F..F. 

Topological descriptors 
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We were also able to identify several common MFD across almost all six receptor 

families. These descriptors included: nN+, the number of positively charged nitrogen atoms 

(functional group counts); C-006, CH2RX (atom centered fragments); nNq, number of 

quaternary nitrogens (functional group counts); T(O..O), sum of topological distances 

between O..O (Topological descriptors); nO, number of oxygen atoms (constitutional 

descriptors); O-058, corresponds to =O (atom centered fragments); MLOGP, Moriguchi 

octanol-water partition coefficient (molecular properties). See Tables 3.9-3.14 for further 

details.  

Virtual Screening and Experimental Validation 

Our primary aim from generating family-based models is to provide a fast, large scale 

system that allows for virtual activity profiling across receptor families to predict 

polypharmacology profiles and consequently establish virtual biological networks. Since our 

models proved to be reasonably accurate based on external validation set statistics, we used 

the best models to mine a large external database of approved and potential drugs for putative 

binders to six receptor families. An important condition that assures reliable predictions by 

the model is the use of AD. Therefore, two types of AD were employed in the virtual 

screening of compound databases. The first is a local AD which is defined for each of the 

individual classification models and using a z threshold of 0.5. The second is a global AD 

that acts as a filter and ensures some level of global similarity between the predicted 

compounds and the compounds in the modeling set. Herein, we kept the latter AD as an 

optional filter because we wanted to explore a larger and more diverse set of compound.  

In an attempt to identify putative binders across all six receptor families (5-HT, 

adrenergic alpha, dopamine, histamine, muscarinic and sigma), validated consensus kNN and 
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SVM models for six different receptor families were used for virtual screening of 59000 and 

4678 molecules within the WDI and DrugBank chemical libraries subsequently. Refer to 

scheme 1 for steps of VS process. 

Eleven structurally diverse hits (1-11, see Table 3.15) were selected from the final 

consensus virtual screening hits of the WDI for further experimental validation taking into 

account both their commercial availability and cost. We also took into account that these 

eleven hits were predicted as binders for almost all receptor families. All eleven hits were 

tested at the PDSP in radioligand binding assays across all receptor subtypes of the six 

receptor families mentioned above. See Table 3.16 for details. 
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Table 3.15. Eleven VS hits selected from WDI Chemical library. 

Cp. 

ID 

Structure/Name PDSP 

ID 

Therapeutic Class/Use 

1 

 
Bephenium 

14816 

 

Anthelmintic 

2 

 
Clidinium 

14817 

 

An anticholinergic drug. 

3 

Clomifene 

13499 

 

SERM 

4 

Fendiline 

 

14821 

 

Calcium channel blocker 

5 

Fluspirilene 

14815 

 

Antipsychotic 
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6 

 

 
Lobeline 

14824 

 

VMAT2 ligand, it also inhibits the 

reuptake of dopamine and 

serotonin, acts as a mixed agonist-

antagonist at nicotinic 

acetylcholine receptors, and an 

antagonist at μ-opioid receptors.[ 

7 

 
LY-294002 

14825 

 

Morpholino derivative of 

quercetin . It is a potent inhibitor 

of phosphoinositide 3-kinase s 

(PI3Ks) 

8 

Prestwick-559 

14814 

 

Drug used in scientific research 

which acts as a moderately 

selective dopamine D3 receptor 

partial agonist. 

9 

Raloxifene 

13505 

 

SERM 

10 

Tamoxifen  

13506 

678 

10572 

SERM 

11 

Toremifene 

16514 

 

SERM 
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Table 3.16.  Experimental validation results for the 11 computational hits predicted to be 

ligands to six families of receptors as a result of QSAR-based mining of the WDI chemical 

screening library (see text for abbreviations). 
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Compound 

5-HT Adrenergic Dopamine 

kNN 

CS 

SVM 

CS 

Exp. kNN 

CS 

SVM 

CS 

Exp. kNN 

CS 

SVM 

CS 

Exp. 

Bephenium 0.94 1.00 NB 0.93 0.96 B 0.87 0.99 B 

Clidinium 0.84 0.88 NB 0.94 0.94 NB 0.71 0.69 NB 

Clomiphene 0.97 0.98 B 0.95 1.00 B 0.96 0.94 B 

Fendiline 0.86 0.95 B 0.93 0.99 B 0.87 0.98 B 

Fluspirilene 0.96 0.98 B 0.99 1.00 B 0.94 0.87 B 

Lobeline 0.73 0.98 B 0.88 1.00 B 0.75 0.94 B 

LY-294002 0.79 1.00 B 0.69 0.99 NB 0.64 0.91 NB 

Prestwick-559 0.97 1.00 B 1.00 1.00 B 0.84 1.00 B 

Raloxifene 0.90 1.00 B 0.90 1.00 B 0.87 0.98 B 

Tamoxifen 0.99 1.00 B 0.95 1.00 B 0.99 1.00 B 

Toremifene 0.99 1.00 B 0.96 1.00 B 0.98 1.00 B 

kNN Accuracy1
a
 

 

82% 

  

82% 

  

82% 

 kNN Accuracy2
b
 

 

86% 

  

88% 

  

100% 

 SVM Accuracy1
c
 

 

82% 

  

82% 

  

82% 

 SVM Accuracy2
d
 

 

90% 

  

82% 

  

91% 

 

Compound 

Histamine Muscarinic Sigma 

kNN 

CS 

SVM 

CS 

Exp. kNN 

CS 

SVM 

CS 

Exp. kNN 

CS 

SVM 

CS 

Exp. 

Bephenium 0.94 0.99 NB 0.48 0.98 NB 0.84 0.99 B 

Clidinium 0.77 0.84 B 0.14 0.82 B 0.72 0.78 B 

Clomiphene 0.92 0.97 B 0.81 0.97 B 0.95 0.96 B 

Fendiline 0.95 0.97 B 0.69 0.98 B 0.85 0.98 B 

Fluspirilene 0.93 0.95 B 0.84 0.94 B 1.00 0.92 B 

Lobeline 0.97 0.97 B 0.46 0.97 B 0.71 0.96 B 

LY-294002 0.64 0.97 NB 0.34 0.96 NB 0.74 0.95 NB 

Prestwick-559 0.97 1.00 B 0.66 1.00 B 1.00 1.00 B 

Raloxifene 0.89 0.99 B 0.52 0.99 B 0.86 0.99 B 

Tamoxifen 0.94 1.00 B 0.75 1.00 NB 0.90 1.00 B 

Toremifene 0.93 1.00 B 0.77 1.00 B 0.95 1.00 B 

kNN Accuracy1 

 

82% 

  

72% 

  

91% 

 kNN Accuracy2 

 

88% 

  

100% 

  

100% 

 SVM Accuracy1 

 

82% 

  

72% 

  

91% 

 SVM Accuracy2 

 

82% 

  

72% 

  

91% 
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a
kNN Accuracy1, accuracy of consensus kNN models at a CPT of 0.51/0.49; 

b
kNN 

Accuracy2, accuracy of consensus kNN models at a CPT of 0.90/0.10; 
c
SVM Accuracy1, 

accuracy of consensus SVM models at a CPT of 0.51/0.49; 
d
SVM Accuracy2, accuracy of 

consensus SVM models at a CPT of 0.90/0.10. 
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Experimental validation results indicated that both kNN and SVM combined with 

Dragon descriptors performed very well on almost all compounds and across all receptor 

family models with predictions accuracies ranging from 82% to 100%. In case of 5-HT 

family models both kNN and SVM achieved overall prediction accuracies of 82% and 86 % 

applying CPTs of 0.51/0.49 and 0.90/0.10 consecutively. Similarly, the prediction accuracy 

of adrenergic alpha models was 82% for both kNN and SVM with a CPT of 0.50/0.49, while 

applying a CPT of 0.90/0.10 increased the accuracy of kNN predictions up to 88% (SVM 

prediction accuracy remained unchanged). Generally, applying a strict CPT of 0.90/0.10 

improved the prediction accuracy of our models especially in case of kNN models. See Table 

14 for comparison between model predictions and experimental validation results for all 

eleven VS hits across the six receptor families. 

Biological Relevance 

In addition to using the models for virtual screening to prioritize hits for further 

experimental validation (see section about virtual screening and experimental validation), we 

predicted a full polyphamacology matrix for 46079 compounds in the WDI database (see Fig. 

3.3). Accumulating such matrices using different computational tools developed by all many 

computational groups and making them publicly available, will shape the future of in silico 

receptoromics; we can compare the binding/activity potential for a compound against a 

specific receptor or receptor family by comparing all predictions for this compound across a 

multitude of computational tools. A consensus prediction generated from all these predictors 

is more likely to hold the accurate answer/prediction. 
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Figure 3.5. The heatmap of kNN CS for 46079 compounds in the WDI across six receptor 

families analyzed by hierarchical clustering of the pairwise similarities in descriptor frequencies using 

Euclidean distances and CSs. The bar-view is a key for coloring according to CS where red color 

indicates CS greater than 0.50 (i.e., binders/actives) while blue color denotes least CS < 0.50 (i.e., 

non-binders/inactives). 
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Conclusions 

QSAR models are becoming increasingly attractive as robust computational tools for virtual 

screening due to both their computational efficiency and success rates [reviewed in (Tropsha & 

Golbraikh 2007) as well as in a recent monograph (Varnek & Tropsha 2008). In this study, we have 

developed internally validated and externally predictive QSAR models for the classification 

of compounds into binders and non-binders across six different receptor families (5-HT, 

adrenergic alpha, dopaminergic, histamine, muscarinic, and sigma). We have shown that by 

using the kNN and SVM modeling strategies (combined with Dragon descriptors) as well as 

CPTs, it is possible to develop QSAR models with high external prediction accuracy.  

The analysis of most frequent descriptors selected by QSAR models helps interpret 

the binding affinity to different receptor families in terms of chemical features. For example, 

we found that some functional group descriptors were frequently used in accepted kNN-

Dragon models across almost all six receptor families, suggesting they may play a critical 

role in defining binding affinities of organic compounds to biogenic amine GPCRs and sigma 

receptors. These descriptors included: the number of positively charged nitrogen atoms, the 

number of quaternary nitrogens, the sum of topological distances between O..O, the number 

of oxygen atoms (constitutional descriptors); and octanol-water partition coefficients.  

Encouraged by our model validation results, we have applied these models for virtual 

screening of the 59000 compounds in WDI database and 4678 compounds in DrugBank. 

Eleven structurally diverse VS hits were prioritized and experimentally tested at PDSP in 

radioligand binding assays. Nine compounds were found to bind to at least one receptor 

subtype among the predicted families with binding affinities between 0.6 - 9000 nM. Thus, 
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these models will be highly valuable to assess the potential of chemicals to bind several 

families of GPCRs in an effort to predict interesting polypharmacological profiles. 

These predictors will be made publicly available at the ChemBench server established 

in the Laboratory for Molecular Modeling (chembench.mml.unc.edu).   

 



 

 

CHAPTER 4 

THE DEVELOPMENT, VALIDATION, AND USE OF QUANTITATIVE 

STRUCTURE ACTIVITY RELATIONSHIP MODELS OF 5-

HYDROXYTRYPTAMINE (2B) RECEPTOR LIGANDS TO IDENTIFY NOVEL 

RECEPTOR BINDERS AND PUTATIVE VALVULOPATHIC COMPOUNDS 

AMONG COMMON DRUGS 

Introduction 

During the last decade, several drugs have been shown to cause cardiac valvulopathy 

in humans. The initial discovery of drug-induced valvulopathy occurred when the anorectic 

drug fenfluramine (approved by the FDA in 1973), one of the active ingredients of the 

anorectic drug combination fen-phen, was found to increase the risk of developing two 

potentially serious conditions, pulmonary hypertension and valvular heart disease (VHD), in 

individuals receiving these medications to treat obesity (Connolly et al. 1997). More recently, 

a group at the Mayo Clinic reported VHD in patients taking the anti-Parkinson drug 

pergolide (Pritchett et al. 2002). After the initial 2002 report, other cases of VHD associated 

with pergolide or other dopamine agonists such as cabergoline used as anti-parkinsonian 

drugs were identified (Peralta et al. 2006, Yamamoto et al. 2006, Yamamoto & Uesugi 

2007). In January of 2007, the New England Journal of Medicine published two large 

European studies that independently verified the association of VHD with pergolide and 

carbergoline (Schade et al. 2007, Zanettini et al. 2007). Finally, on March 29, 2007, the Food 

and Drug Administration issued a Public Health Advisory for the voluntary market 
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withdrawal of pergolide. These stunning withdrawals of drugs from the market 

stressed the importance of elucidating the mechanism by which these drugs induce 

valvulopathy and of determining the valvulopathic risk that may be associated with new drug 

candidates or even existing drugs. 

To date, all but two of the VHD-associated drugs are ergoline derivatives 

(dihydroergotamine, methysergide, pergolide and carbergoline) (see Table 1). The two non-

ergoline VHD-associated drugs are fenfluramine (Connolly et al. 1997) and 3,4-

methylenedioxymethamphetamine (MDMA, ecstasy) (Droogmans et al. 2007, Setola et al. 

2003), both of which are amphetamine analogues (see Table 4.1). Thus, it appears that 

compounds from both the ergoline and phenylisopropylamine families can produce VHD 

(Setola & Roth 2008).  
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Table 4.1. Chemical structures of marketed drugs known as 5-HT2B receptor agonists and 

associated with VHD. 

Compound Structure 

Name 

PubChem 

CID 

5-HT2B 

Agonist VHD 

 

Carbergoline  

54746 

Yes Yes 

 

Dihydroergota

mine 10531 

Yes Yes 

 

Fenfluramine 

3337 

Yes Yes 

 

MDA  

1614 

Yes ??
a
 

 

MDMA  

1615 

Yes Yes 
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Methylergonov

ine  

8226 

Yes Yes 

 

Pergolide  

47811 

Yes Yes 

a
Unknown. 
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There is increasing evidence that activation of serotonin 2B receptors (5-HT2B) may 

play a significant role in the pathogenesis of drug-induced valvulopathy (Rothman et al. 

2000, Roth 2007, Berger et al. 2009). For instance, VHD-associated drugs such as 

fenfluramine (Setola & Roth 2005), ergotamine (Setola & Roth 2005), pergolide (Newman-

Tancredi et al. 2002, Setola et al. 2003) and cabergoline, and/or selected active metabolites 

(such as norfenfluramine and methylergonovine) (Setola & Roth 2005), all potently activate 

5-HT2B receptors. Chemically similar medications that do not activate 5-HT2B receptors (e.g., 

lisuride) seemingly do not cause valvular heart disease, further implicating the 5-HT2B 

receptor—but not other receptors that bind ergopeptines/ergolines and phenylisoproylamines 

with high affinity—in the pathogenesis of heart-valve disease (Roth 2007).  

Additionally, valvulopathy-associated drugs have been shown to induce DNA 

synthesis in
 
cultured interstitial cells from human cardiac valves via 5-HT2B receptor 

activation (Setola et al. 2003). It has been suggested that the valvulopathy
 
induced by 5-HT2B 

receptor agonists is caused by the inappropriate mitogenic
 
stimulation of normally quiescent 

valve cells, resulting in
 
an overgrowth valvulopathy (Roth 2007, Setola et al. 2003). 

Although the precise signaling pathways underlying drug-induced valvulopathy remain 

elusive, 5-HT2B receptors are known to activate mitogenic pathways through the
 

phosphorylation of Src kinase and extracellular regulated kinases
 
(ERK), as well as through 

receptor tyrosine kinase transactivation (Nebigil et al. 2000a, Nebigil et al. 2000b), consistent 

with a role in regulating heart valve interstitial cell proliferation.  

The discoveries that 5-HT2B receptors were (1) abundantly expressed in heart valves 

(Fitzgerald et al. 2000), (2) activated by fenfluramine and its metabolite, norfenfluramine 

(Fitzgerald et al. 2000, Rothman et al. 2000), and (3) activated by other valvulopathy-
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inducing drugs (Rothman et al. 2000, Setola et al. 2003) suggested that 5-HT2B receptors 

were involved in the etiology of valvulopathy (Fitzgerald et al. 2000, Rothman et al. 2000). 

Subsequently, several other 5-HT2B agonists were also found to be valvulopathogenic (Setola 

et al. 2003). Since 5-HT2B agonists have the potential of causing valvulopathic side-effects, it 

has been suggested that all pharmaceuticals should be screened for activity at 5-HT2B 

receptors prior to further commercial development (Levy 2006, Roth 2007).  

Similar to experimental high throughput screening (HTS), virtual screening (VS) is 

typically employed as a ‗hit‘ identification tool (Stahura & Bajorath 2004). The experimental 

screening of all molecules against all biological targets is generally cost- and time-

prohibitive. Therefore, pre-selection of compounds by VS that have a reasonable probability 

to act against a given biological target is highly attractive. Typically, VS approaches imply 

the use of structure based methodologies; nevertheless, we have repeatedly advocated for the 

use of ligand based cheminformatics approaches such as QSAR models in virtual screening 

(reviewed in a recent monograph (Varnek & Tropsha 2008)).  

Herein, we report on the development of in silico screening tools for identifying 

compounds with potentially serious valvulopathic side effects. These tools can be employed 

as filters to flag and de-select the potentially harmful compounds at the preclinical stage of 

drug development, thereby potentially avoiding significant economic and human health 

consequences incurred at later stages of drug discovery. To achieve this goal, validated and 

externally predictive, binary QSAR models were generated for 5-HT2B active vs. inactive 

compounds as defined in 5-HT2B functional assays. Similar studies to develop QSAR models 

for 5-HT2B actives vs. inactives were reported recently by Chekmarev et al (Chekmarev et al. 

2008). However, in our investigations we considered a larger dataset that contained the most 
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complete set of all known valvulopathogens reported by Huang et al (Huang et al. 2009) and 

we validated our predictions experimentally in binding assays.  

To obtain the most statistically robust and predictive models, we have employed the 

combinatorial QSAR strategy (de Cerqueira et al. 2006, Kovatcheva et al. 2004) 

implemented as part of our predictive QSAR modeling workflow (reviewed in Tropsha and 

Golbraikh (Tropsha & Golbraikh 2007)). All models were subjected to rigorous internal and 

external validation. The results confirmed the high external prediction accuracy of our 

computational models, which led us to conclude that these models can be used reliably to 

screen chemical databases to identify putative 5-HT2B actives. Screening the WDI database 

using these models led to the identification of 122 possible 5-HT2B actives; 10 of these 

computational hit compounds were experimentally tested in 5-HT2B radioligand binding 

assays at the NIMH Psychoactive Drug Screening Program (PDSP), UNC Chapel Hill 

(http://pdsp.med.unc.edu/). Experiments confirmed that 9 out of 10 compounds were true 

actives implying a hit rate of 90%. These results indicate the reliability of our computational 

models as efficient predictors of compounds‘ affinity towards 5-HT2B receptors. We suggest 

that the computational models developed in this study could be used as drug liability 

predictors similar to commonly used predictors (Mohan et al. 2007, Simon-Hettich et al. 

2006) of other undesired side effects such as carcinogenicity (Benfenati et al. 2009, Ruiz et 

al. 2008, Venkatapathy et al. 2009), mutagenicity (Benfenati et al. 2009, Papa et al. 2008, 

Zhang et al. 2008b), PGP binding (de Cerqueira et al. 2006), or hERG binding (Ekins et al. 

2002, Garg et al. 2008, Seierstad & Agrafiotis 2006, Yoshida & Niwa 2006). Our models can 

be used to flag compounds that are expected to bind to 5-HT2B receptors but they cannot 

distinguish agonists from antagonists.  Nevertheless, as demonstrated in this study, these 

http://pdsp.med.unc.edu/
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putative 5-HT2B binders can be tested in functional assays for their potential to activate 5-

HT2B receptors to further assess their valvulopathic potential.   

Materials and Methods 

Dataset 

 The PDSP recently screened roughly 2200 FDA-approved drugs and investigational, 

drug-like molecules against 5-HT2B receptors(Huang et al. 2009). However, this modeling 

study was initiated prior to the completion of the screening of the entire compound library. 

At the time this study began, screening against 5-HT2B receptors had been completed for 800 

compounds. This set became the basis for our model development. After preprocessing of the 

800-compound dataset and deleting duplicates, the final dataset consisted of a class of 146 

‗actives‘, and another class of 608 ‗inactives‘. Detailed PDSP protocols are available online 

(http://pdsp.med.unc.edu/) and in Huang et al (Huang et al. 2009). All chemical structures 

were obtained from PubChem (PubChem 2009) as SDF files. By the time our modeling 

studies were completed, functional data for the remainder of the 2200 compounds (1400 

compounds) had become available. These ‗new‘ data became a source for additional, 

independent validation sets.  

 

Preprocessing of the Dataset 

 For the purposes of this work, the data were curated as follows:  First, all molecules 

were ―washed‖ using the Wash Molecules tool in MOE (MOE 2008) (v.2007.09). Using this 

tool, we processed chemical structures by carrying out several standard operations including 

http://pdsp.med.unc.edu/
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2D depiction layout, hydrogen correction, salt and solvent removal, chirality and bond type 

normalization (all details are found in the MOE manual (MOE 2008)). Second, we used 

ChemAxon Standardizer (ChemAxon JChem 2010) to harmonize the representation of 

aromatic rings. Finally, the analysis of the normalized molecular structures resulted in 

detection of 46 duplicate compounds (i.e., different salts or isomeric states). The functional 

data for duplicated compounds were found to be identical, so in each case a single example 

was removed. The curated subset of the original 5-HT2B dataset used in this work contains 

754 unique organic compounds (146 actives and 608 inactives). All details about the dataset 

are available in Supporting Information. 

Dataset Division for Model Building and Validation 

All QSAR models generated in this study to classify actives vs. inactives were 

validated by predicting two external validation sets. Each dataset employed in QSAR studies 

was first randomly divided into a modeling and a validation sets. Additionally, as described 

above, an independent validation set became available after we completed our modeling 

studies. Details about this external set are available in Supporting Information, and in Huang 

et al (Huang et al. 2009).  

Another level of internal validation was achieved by comparing model performance 

for training and test sets. This approach is always employed as a part of our predictive QSAR 

modeling workflow (Tropsha 2010) to emphasize the fact that training-set-only modeling is 

not sufficient to obtain reliable models that are externally predictive (Golbraikh & Tropsha 

2002a). Thus, for each collection of descriptors, the modeling sets were further partitioned 

into multiple chemically diverse training and test sets of different sizes using the Sphere 
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Exclusion method implemented in our laboratory (Golbraikh & Tropsha 2002b). Only 

models that were highly predictive on the test sets were retained for the consensus prediction 

of the external validation sets. Finally, only those models that were shown to be highly 

predictive on both external sets were used in consensus fashion for virtual screening of 

external compound libraries. 

Computational Methods 

A combinatorial QSAR approach (Combi-QSAR) (de Cerqueira et al. 2006, 

Kovatcheva et al. 2004) was used to generate classification models for actives vs. inactives 

(Fig. 4.1). In this study, four types of descriptors were applied in combination with three 

types of statistical methods.  
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Figure 4.1. The workflow for QSAR model building and validation as applied to the 5-HT2B 

dataset (see text for abbreviations). 
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Molecular Descriptors 

Four sets of molecular descriptors were considered in our modeling studies: Dragon 

(Dragon 2007), MZ (MolconnZ 2006), MOE (MOE 2008), and SG descriptors (Khashan et 

al. 2005) developed in this laboratory. Each type of these descriptors was used separately 

with each of the classification methods in the context of our Combi-QSAR strategy. All 

details about descriptors are mentioned in Chapter 2. 

Balancing the Dataset Using Similarity Searching 

The dataset used for model building was imbalanced, consisting of 146 actives vs. 

608 inactives. Therefore, only a subset of the larger class of inactives of approximately the 

same size as the actives was used in model building unless otherwise indicated. This subset 

was selected to include inactives that were most similar to the actives. Given the vast array of 

available chemical descriptors and the large number of similarity measures, it is always 

difficult to decide a priori which combination of descriptors/similarity metrics to use. This 

problem has been highlighted in several recent publications (Holliday et al. 2002, Sheridan & 

Kearsley 2002). Therefore, similarity searching studies were performed using three types of 

molecular descriptors: fingerprints (FP), Dragon, and MZ, and applying two similarity 

metrics, i.e., Euclidean distance and Tanimoto coefficient (Tc). The similarity cutoff was 

chosen to obtain the most balanced (with roughly equal number of compounds from each 

class) subset of compounds.  

Fingerprints. 166 MACCS (MDL Ltd 1992) structural keys implemented in MOE 

2007.09 software were calculated for all compounds. The similarity searching was performed 

using an in-house written script applying Tanimoto coefficients for similarity measures.  
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Dragon Descriptors. Normalized Dragon descriptors of the original dataset were 

employed to calculate similarities between all compounds in the dataset using Euclidean 

distance as similarity metric; variable similarity thresholds were used to down-sample the 

larger class (inactives). Although many schemes could be considered for down-sampling the 

larger classes, we used the similarity threshold based approach since it restricts the larger 

class to compounds most similar to the smaller class molecules. This approach makes it more 

challenging to develop statistically significant models capable of discriminating smaller class 

compounds from most chemically similar molecules in the larger class. Therefore, it 

increases the robustness of the binary QSAR models.  

MolConnZ Descriptors. Similar procedures to those described above for Dragon 

descriptors were used. 

QSAR Methods 

We used the kNN classification method (Zheng & Tropsha 2000), CBA (Liu et al. 

1998, Liu et al. 1999), and DWD (Marron et al. 2007)  . All details about these methods are 

discussed in Chapter 2. 

Robustness of QSAR Models 

Y-randomization test is a widely used validation technique to ensure the robustness of 

a QSAR model (Wold & Eriksson 1995). This test includes (i) randomly shuffling the 

dependent-variable vector, Y-vector of training sets (class labels in this study) and (ii) 

rebuilding models with the randomized activities (class labels) of the training set. All 

calculations are repeated several times using the original independent-variable matrix. It is 

expected that the resulting QSAR classification models, built with randomized activities for 
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the training set, should generally have low CCRs for training, test, and external validation 

sets. It is likely that sometimes, though infrequently, high CCR values may be obtained due 

to a chance correlation or structural redundancy of the training set. However, if some QSAR 

classification models obtained in the Y-randomization test have relatively high CCR it 

implies that an acceptable QSAR classification model cannot be obtained for the given 

dataset by the particular modeling method. Y-randomization test was applied to all datasets 

considered in this study, and the test was repeated five times in each case. 

Applicability Domains of kNN QSAR Models  

Formally, a QSAR model can predict the target property for any compound for which 

chemical descriptors can be calculated. However, since the training set models are developed 

in kNN QSAR modeling by interpolating activities of the nearest neighbor compounds, a 

special applicability domain (i.e., similarity threshold) should be introduced to avoid making 

predictions for compounds that differ substantially from the training set molecules (Shen et 

al. 2004).  

The similarity was estimated using Euclidean distances in high-dimensional 

descriptors space. Compounds with the smallest distance between them have the highest 

similarity. The distribution of distances (pairwise similarities) of compounds in our training 

set is computed to produce an applicability domain threshold, DT, calculated as in Equation 

2.9. 

In this study two types of applicability domains were employed. First, a global 

applicability domain that ensures some level of global similarity (using all descriptors for 

similarity calculations) between the predicted compounds and the compounds in the 
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modeling set. The second is a local domain which is the applicability domain of each of the 

individual models using only descriptors used for the model building.  

Consensus Prediction 

Our experience suggests that consensus prediction of the target property for external 

compounds, i.e., when the compound activity is calculated by averaging values predicted by 

all individual models that satisfy our acceptability criteria always provides the most stable 

and accurate solution (Zhu et al. 2008a). In general, consensus prediction implies averaging 

the predictions for each compound by majority voting for classification QSAR models, using 

all models passing the validation criteria (e.g., CCRtrain ≥ 0.70 and CCRtest ≥ 0.70). In order to 

determine the confidence in the obtained predictions we need to define a consensus score. 

The consensus scores employed in this study take into account the total number of models 

used to predict the compound‘s activity, and the number of models that predicted the 

compound to belong to a specific class. Since we define two classes of compounds, i.e., class 

1 (actives) and class 0 (inactives), some models may predict a compound to belong to class 0 

and others may predict it to belong to class 1. As a result, a consensus score between 0 and 1 

will be obtained for each of the predicted compounds. As an additional measure of 

confidence (and an additional applicability domain criterion) we only accepted those 

predictions that had an average predicted value (consensus score) above 0.70 (for actives) or 

below 0.30 (for inactives).  

Virtual Screening and Compound Selection for Experimental Validation  

To identify putative actives, validated consensus models generated for 5-HT2B ligands 

were used for virtual screening of ca. 59,000 molecules within the WDI(Daylight 2004) 
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chemical library; the selection of hits was limited by the applicability domains of each 

models. 122 compounds were identified as VS hits (by consensus agreement between all 

accepted models, see Table S1 of Supporting Information for details) and 10 structurally 

diverse and commercially available hits were purchased from different suppliers and tested at 

PDSP in 5-HT2B radioligand binding assays.  

Results and Discussion 

Combinatorial QSAR Modeling of 5-HT2B Actives vs. Inactives 

Balancing the Dataset. The original dataset of 146 actives and 608 inactives was 

first balanced by downsizing the class of inactives. Similarity searching between active and 

inactive compounds using Tc cutoff of 0.7 resulted in 195 inactives (that were similar to at 

least one active compound with Tc above 0.7), which were combined with the 146 actives to 

form the modeling set of 342 compounds. Dragon and MZ descriptors were generated for 

this 342-compound modeling set to be used separately with kNN. However, similarity 

searching using Dragon and MZ descriptors and applying Euclidean distance-based threshold 

resulted in a 304- (146 actives and 158 inactives) and 325-compound (146 actives and 179 

inactives) modeling sets respectively. Thus, slightly different modeling sets were used 

depending on the type of descriptors. 

kNN Classification. kNN method was used with each of the following descriptor 

types: DRAGON, MZ, MOE, and SG descriptors. Models were built for the three datasets 

resulting from the down-sampling of the original dataset. First, a validation set (15-20% of 

the dataset) was excluded from each of the resulting datasets randomly. The compounds in 

the remaining modeling set (85-80% of the original dataset) were divided into multiple 
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training and test sets (28-40 divisions). Multiple QSAR models were generated 

independently for all training sets and applied to the test sets. Generally, we accepted models 

with CCR values for both the training and test set greater than 0.70. kNN combined with 

subgraphs and Dragon descriptors were the two best performing methods based on validation 

set statistics (Table 4.2). kNN-subgraphs (kNN-SG) had a CCRevs = 0.80, while kNN-Dragon 

gave a CCRevs = 0.72.  

Results of the Y-randomization test confirmed that kNN classification models with 

CCRtrain and CCRtest values  0.70 were robust. None of the models with randomized class 

labels of the training set compounds had CCRrand > 0.54 for any dataset.  
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Table 4.2. Performance of kNN classification methods to classify actives vs. inactives based 

on external validation set statistics. 

Model 

Num. 

Mod
a
 

Confusion Matrix Statistics for the Models 

N1
b
 N0

c
 TP TN FP FN SE SP En1 En0 CCRevs

d
 

A
f
 908 26 34 20 23 11 6 0.77 0.68 1.41 1.49 0.72 

B
g
 235 38 36 22 20 16 16 0.58 0.56 1.13 1.14 0.57 

C
h
 619 32 38 17 29 9 15 0.53 0.76 1.38 1.24 0.65 

D
i
 387 30 40 16 29 11 14 0.04 0.73 0.26 1.90 0.63 

E
j
 123 30 40 20 26 14 10 0.67 0.65 1.31 1.32 0.66 

F
k
 93 30 40 23 33 7 7 0.77 0.83 1.63 1.56 0.80 

a
Num. Mod, number of models with CCRtrain and CCRtest ≥ 0.70; 

b
N1, number of actives; 

c
N0, number of inactives; 

d
CCRevs, correct classification rate of the consensus models using 

the external validation set; 
e
CCRrand, correct classification rate of the random models using 

the external validation set; 
f
A, kNN-Dragon; 

g
B, kNN-MZ; 

h
C, kNN-Dragon-FP;

 i
D, kNN-

MZ-FP; 
j
E, kNN-MOE-FP; 

 k
F, kNN-SG. 
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Classification Based on Association. The CBA method was applied to classify the 

dataset using SG descriptors. A dataset of 342 compounds (146 actives and 196 inactives), 

resulting from the downsizing process with FP and Tanimoto distances, was used. The 

dataset was split randomly into training (267 compounds) and validation sets (75 

compounds). A total of 1371 closed frequent subgraphs were generated with FFSM (see 

Methods in Chapter 2) from the training set using a support value of 12% and a maximum 

size limit of the fragments of 7. The training set consisting of 267 compounds (111 actives 

and 156 inactives) was then used to build the classifier in CBA. The classifier gave a CCRtrain 

of 0.79. Then the validation set consisting of 75 compounds (35 actives and 40 inactives) was 

used to assess the robustness of the classifier. The CCRevs was 0.65 which is not as high as 

the CCR value for the training set.  

DWD Modeling. The DWD method was applied to classify the dataset using Dragon 

descriptors. A dataset of 304 compounds (146 actives and 158 inactives), resulting from the 

downsizing process with Dragon descriptors and Euclidean distances, was used. The dataset 

was split randomly into training (244 compounds) and validation sets (60 compounds). A 

total of 387 Dragon descriptors were generated for the training set. The training set 

consisting of 244 compounds (120 actives and 124 inactives) was then used to build the 

DWD model. The DWD model was able to group compounds in this dataset based on their 

biological classes with a CCRevs = 0.70 (TP=18, TN=24, FP=10, FN=8), setting the cutoff at 

―0.15‖. DWD was further used to rank Dragon descriptors according to their importance for 

discriminating the two classes of compounds (actives vs. inactives). DWD uses class label 

information where positive (for actives) and negative (for inactives) signs are assigned to 

each descriptor value to indicate its importance to the corresponding class. The top 20 highly 
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weighted descriptors (based only on weights‘ values and ignoring the signs) are presented in 

Table 4.3.  
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Table 4.3. Top twenty highly weighted Dragon descriptors by DWD for 5-HT2B actives vs. 

inactives. 

Descriptor  DWD Weight Interpretation 

JGI9 2.07E-01 Mean topological charge index of order 9 

nRNR2 1.99E-01 Number of tertiary amines (aliphatic) 

C-006 1.79E-01 CH2RX 

C-024 1.66E-01 R--CH--R 

T(N..F) 1.52E-01 Sum of topological distances between N..F 

H-047 1.51E-01 H attached to C1 (sp3)/CO (sp2) 

H-049 -1.42E-01 H attached to C3(sp3)/C2(sp2)/C3(sp2)/C3(sp) 

C-027 -1.38E-01 R--CH--X 

JGI10 -1.38E-01 Mean topological charge index of order 10 

GATS7e 1.38E-01 Geary autocorrelation - lag 7 / weighted by atomic 

Sanderson electronegativities 

PCR 1.35E-01 Ratio of multiple path count over path count 

nBnz 1.32E-01 Number of benzene-like rings 

H-051 -1.30E-01 H attached to alpha-C 

GATS8m 1.21E-01 

Geary autocorrelation - lag 8/weighted by atomic 

masses 

C-013 1.16E-01 CRX3 

C-034 -1.14E-01 R--CR..X 

BELe8 1.14E-01 Lowest eigenvalue n. 8 of Burden matrix / weighted by 

atomic Sanderson electronegativities 

JGI5 -1.11E-01 Mean topological charge index of order 5 

nN+ -1.10E-01 Number of positively charged nitrogen 

GATS3p 1.08E-01 Geary autocorrelation - lag 3 / weighted by atomic 

polarizabilities 
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Comparison of Binary QSAR Approaches for Classifying 5-HT2B Actives vs. Inactives 

The performance of different binary QSAR approaches employed as part of 

combinatorial QSAR strategy for 5-HT2B, and based on validation set statistics, is 

summarized in Figure 4.2. kNN-SG, and kNN-Dragon were the best performing methods for 

classifying 5-HT2B actives vs. inactives based on validation set statistics (Table 4.2), yielding 

the highest CCRevs of 0.80 in case of kNN-SG. On the contrary, kNN-MZ was the worst 

performing method with a CCRevs of 0.57 which was very close to random. It was also 

interesting to see that kNN-SG performed much better than CBA-SG with CCRevs = 0.80 in 

the former case and 0.65 in the latter. These results confirm the importance of employing the 

combinatorial QSAR approach to find the most predictive QSAR method/descriptor 

combination for each specific dataset.  
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Figure 4.2. Comparison of CCR values for the external validation set (CCRevs) for different 

QSAR models developed to classify actives vs. inactives. CCRevs values for models built 

with both real (blue) and randomized (red) activities of the training sets are shown (see text 

for abbreviations).  
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Our models also indicated that the nature of the descriptors used has a dramatic effect 

on the performance of the modeling methods. It was clear that MOE and MZ descriptors did 

not perform very well in all tested cases irrespective of the applied modeling techniques. On 

the contrary, Dragon descriptors afforded most significant models with all methods and in all 

tests, for both validation and external sets.  

Model Validation by Predicting Drugs Known to be 5-HT2B Actives and 

Valulopathogens 

Both fenfluramine and dexfenfluramine (known to be 5-HT2B actives and agonists, 

which were not included in our modeling sets) were predicted as 5-HT2B actives using 

consensus models to classify actives vs. inactives. The consensus scores using kNN-Dragon 

were 0.79 for both compounds. Our previous studies suggest that consensus prediction that is 

based on the results obtained by all validated predictive models always provides the most 

stable solution(Zhu et al. 2008a). A 5-HT2B active compound can have consensus scores in 

the interval [0.5-1.0]. The closer value to 1.0 the greater is the confidence in the prediction. 

Therefore, we can claim that both compounds were predicted as actives with statistically 

significant consensus scores.  

These results highlight the predictive power of our validated models that could have 

predicted the possible dangerous side effects of these two drugs by suggesting that they may 

be 5-HT2B actives. This prediction would have suggested that these compounds should be 

tested experimentally in 5-HT2B functional assays and prevented from further development as 

potentially unsafe medicines. This example illustrates the potential use of models developed 

in this study as computational drug safety alerts.  
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Model Validation by Predicting an External Set 

An additional 16-compound set was obtained from PDSP after we finished out 

modeling studies. This external set was used to further assess the robustness and the 

predictive power of our models. All 16 compounds were 5-HT2B actives including 4 agonists 

and 12 antagonists.   

The 16 external compounds were predicted using all consensus models built to 

classify actives vs. inactives. kNN-Dragon was the best performing method on this external 

set with a CCRex of 0.81. Predictions were made by applying local model applicability 

domains with Z = 0.5 (see Applicability Domain of kNN QSAR Models). It was interesting 

to find that kNN-Dragon had CCR ≥ 0.72 with both the validation (CCRevs = 0.72) and the 

external (CCRex = 0.81) sets. However, kNN-SG (the best performing method on validation 

sets) was not as good with the external set (CCRex = 0.65) as it was with the validation set 

(CCRevs = 0.80). CBA-SG gave a CCRex = 0.65, which was consistent with its performance 

with the validation set (CCRevs = 0.65) but less than CCRtrain (0.79). The latter results using 

SG descriptors with kNN and CBA might be due to the limitation that frequent subgraphs are 

derived from the training set compounds; therefore, it is possible that fragments that are 

frequent in the external set are not represented in the frequent subgraphs used for prediction. 

Our current applicability domain filter, which is calculated using the fragments in the training 

set, does not account for this possibility. It is clear that a more stringent applicability domain 

filter could be applied in this case, which uses the distribution of subgraphs counts between 

the training and test set, but this has not been implemented yet within our current method.  

The Importance of Variable Selection  
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Since kNN-Dragon was the best performing method to classify actives vs. inactives 

based on the results for all validation sets, we thought it would be interesting to check the 

performance of kNN using all 387 Dragon descriptors, generated for the actives vs. inactives 

modeling set, without variable selection. The results of this test are shown in Table 4.4. 

Comparison of modeling results for kNN-variable-selection (CCRevs = 0.72) vs. kNN-

without-variable-selection (CCRevs = 0.52) clearly indicates that variable selection is a vital 

part of modeling. Furthermore, the top 20 most frequent descriptors (MFD) selected by kNN 

models (Table 4.5) and top 20 highly weighted descriptors by DWD based only on weights 

and ignoring the sign (Table 4.3) were used independently with the kNN method (with no 

variable selection) to predict actives vs. inactives (Table 4.3). Models built with either the top 

20 DWD-selected Dragon descriptors or MFD from Dragon-kNN and using 1-5 nearest 

neighbors gave CCRevs ~ 0.5 (Table 4.3). These results illustrated again that SA-based 

variable selection procedures implemented in our kNN QSAR method (Zheng & Tropsha 

2000) lead to models with the highest external predictive power as compared to any other 

approach not relying on variable selection for model optimization.  
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Table 4.4. Comparison between different kNN-Dragon QSAR models generated with or 

without variable selection. 

Mod. 

Num. 

Mod
a
 

Confusion Matrix Statistics for the Models 

N1
b
 N0

c
 TP TN FP FN SE SP En1 En0 CCRevs

d
  

Cover

-age
e
 

A
f
 908 26 34 20 23 11 6 0.77 0.68 1.41 1.49 0.72 100% 

B
g
 1 26 34 10 22 10 8 0.38 0.65 1.13 1.36 0.52 83% 

C
h
 1 26 34 14 15 19 9 0.54 0.44 0.98 1.12 0.49 95% 

D
i
 1 26 34 14 15 19 9 0.54 0.44 0.98 1.12 0.49 95% 

a
Num. mod, number of models with CCRtrain and CCRtest ≥ 0.70; 

b
N1, number of actives; 

c
N0, 

number of inactives; 
d
CCRevs, correct classification rate of the consensus models using the 

external validation set; 
e
Coverage, percentage of predicted external compounds; 

f
A, kNN-

Dragon;
 g

B, kNN-Dragon-NVS where kNN model was generated using all 387 Dragon 

descriptors with no variable selection and 1 nearest neighbor (NN); 
h
C, kNN-Dragon-MFD 

where the kNN model was generated with top twenty most frequent Dragon descriptors and 

1NN; 
i
D, kNN-Dragon-DWD where the kNN model was generated with top twenty highly 

weighted Dragon descriptors by DWD and one NN.
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Table 4.5. Top twenty most frequently used Dragon descriptors in validated kNN-Dragon 

models to classify 5-HT2B actives vs. inactives. 

Descriptor  Frequency Interpretation 

nN=C-N< 157 Number of amidine derivatives 

C-027 152 R--CH--X 

MATS5v 151 Moran autocorrelation - lag 5 / weighted by atomic van 

der Waals volumes 

GATS5v 148 Geary autocorrelation - lag 5 / weighted by atomic van 

der Waals volumes 

C-033 146 R--CH..X 

MATS4v 135 Moran autocorrelation - lag 4 / weighted by atomic van 

der Waals volumes 

MLOGP2 135 Squared Moriguchi octanol-water partition coeff. 

(logPˆ2) 

N-074 131 R#N / R=N- 

nR=Cp 130 Number of terminal primary C(sp2) 

MATS4m 128 Moran autocorrelation - lag 4 / weighted by atomic 

masses 

nFuranes 128 Number of furanes 

C-035 125 R--CX..X 

nArNR2 119 Number of tertiary amines (aromatic) 

nPyrroles 119 Number of pyrroles 

nPyridines 118 Number of Pyridines 

nArCO 118 Number of ketones 

nROCON 117 Number of (thio-) carbamates (aliphatic) 

nBeta-Lactams 117 Number of Beta-Lactams 

H-053 114 H attached to CO(sp3) with 2X attached to next C 

C-008 113 CHR2X 
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Mechanistic interpretability is frequently regarded as very important feature of QSAR 

models. We generally argue that only models that have been extensively validated on 

external datasets and identified experimentally-confirmed hits should be subjected to 

interpretation.  Furthermore, very few classes of models, specifically, those based on 

(multiple) linear regression and small number of descriptors can afford a relatively 

straightforward interpretation. The interpretation of multi-parametric statistical models 

developed with non-linear optimization algorithms (as in this study) should be attempted 

with great care because of strong and often poorly understood interplay between descriptors. 

Furthermore, although we could foresee that in some cases medicinal chemists may want to 

modify their candidate compounds to prevent 5HT2B binding, the tools developed in this 

study are predominantly intended for virtual screening of libraries of drug candidates to flag 

and possibly eliminate compounds that are likely to bind 5HT2B receptor, not to design new 

compounds; and any compound designed by chemists could be passed through our models.  

Therefore, we only restricted the discussion in this paper to the most frequent descriptors 

found by all acceptable kNN models and the most highly weighted descriptors selected by 

DWD to stress that the process of variable selection employed as part of model optimization 

has indeed converged on a small number of descriptors. 

Virtual Screening of the World Drug Index Database to Identify Putative 5-HT2B 

Ligands  

Since our models proved to be reasonably accurate based on two external validation 

sets, we used the best models to mine a large external database of approved and potential 

drugs for putative 5-HT2B actives. An important condition that assures reliable predictions by 

the model is the use of AD. Therefore, two types of AD were employed in the virtual 
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screening of compound databases. The first is a global AD that acts as a filter and ensures 

some level of global similarity between the predicted compounds and the compounds in the 

modeling set. The second is a local AD which is defined for each of the individual 

classification models.  

The WDI database of ca. 59000 compounds (approved or investigational drugs) was 

used for virtual screening (Fig. 4.3). This original collection had many duplicates (i.e., many 

salt forms for the same chemical entity). The duplicates were removed using MOE: keeping 

unique structures and deleting duplicates. We also removed all compounds included in our 

modeling and external validation sets. Dragon descriptors were generated for the remaining 

46859 unique compounds in the database; 926 compounds were excluded because Dragon 

was unable to calculate at least one of the descriptors generated for the modeling set. The 

remaining 45933 compounds were then subjected to a global AD filter for the actives vs. 

inactives modeling set using a strict Z cutoff of 0.5 (which formally places the allowed 

pairwise distance threshold at the mean of all pairwise distance distribution for the training 

set plus one-half of the standard deviation). Obviously, increasing the AD would increase the 

number of computational hits identified by virtual screening. However, our experience 

suggests that such increase is typically accompanied by the decrease in prediction accuracy.  

Additionally, we required that the nearest neighbor in the modeling set of a compound from 

the virtual library be an active. The resulting 7286 compounds were then classified into 

actives vs. inactives using DWD-Dragon classifier resulting in 891 actives. Next, all kNN-

Dragon models with CCRtrain and CCRtest ≥ 0.70 were employed in consensus fashion to 

predict these 891 compounds resulting in a selection of the 500 active hits. At this point, SG 

descriptors were generated for these 500 molecules. CBA-SG classifier followed by kNN-SG 
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consensus models were used as final filters for the determination of 122 compounds regarded 

as putative 5-HT2B actives.   
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Figure 4.3. Steps of the virtual screening of the WDI database to identify putative 5-HT2B 

ligands (see text for the abbreviations). 
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Experimental Validation 

Ten structurally diverse hits (1-10, see Table 4.6) were selected from the final 

consensus virtual screening hits for further experimental validation taking into account both 

their commercial availability and cost (see Table 4.6). To our satisfaction, nine compounds 

were confirmed to inhibit 5-HT2B radioligand binding, which implies a hit rate of 90 %. Ki 

values were in the range 0.8 – 3,127 nM, with 4 compounds having Ki values < 100 nM. The 

four highest affinity compounds were: 4 (Ki=33 nM, see Fig. 4 (A)), 7 (Ki=0.8 nM, see Setola 

et al, 2003 (Setola et al. 2003)), 9 (Ki=70 nM, see Fig. 4 (B)), and 10 (Ki=69 nM, see Fig. 4 

(C)). It should be noted that 7, though not included initially in our dataset, was known to be a 

valvulopathic compound and had been tested against 5-HT2B receptors in both binding 

(Ki=0.8 nM) (Setola et al. 2003) and functional assays (pEC50 for 5-HT2B-Mediated calcium 

flux = 7.67) (Huang et al. 2009). In order to determine the activity of the remaining eight 5-

HT2B ligands, all compounds were tested at the PDSP in 5-HT2B functional assays. Results 

indicated that methylergometrine was the only compound among the nine 5-HT2B ligands 

that possessed strong agonist activity.  
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Table 4.6.  Experimental validation results for the 10 computational hits predicted as 5-HT2B 

ligands as a result of QSAR-based mining of the WDI chemical screening library. 

Chemical Structure/ 

Name 

PubChem 

CID 

PDSP 

ID 

Predicted 

5-HT2B Activity 

Experimental 

Ki (nM) 

 
(1) 6-Fluoromelatonin 

43922 14809 Active 2,495.0 

 
(2) Adrenoglomerulotropin 

71028 14807 Active 491.0 

 
(3) CGP-13698 

114709 14806 Active >10,000 

 
(4) DO-897 

3038495 14814 Active 33.1 

 
(5) Fendiline 

 

3336 14821 Active 3,217.0 
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(6) Fluspirilene 

1715104 14815 Active 151.4 

(7) Methylergometrine 

4140 27769 Active 0.8 

 
(8) PIM-35 

195658 14805 Active 1,617.0 

 
(9) PNU-96415E 

9909648 13513 Active 69.6 

 
(10) Raloxifene 

15940170 13505 Active 69.0 

 

 

 

 

 



135 

 

 

Figure 4.4. Competition binding at 5-HT2B receptors for (A) 4 (triangle) and SB206553 

(square), (B) 9 (triangle) and SB206553 (square), and (C) 10 (triangle) and chlorpromazine 

(square), versus [3H]LSD. 
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This low hit rate of 11.1% for identifying validated agonists is in fact not surprising in 

light of Huang et al (Huang et al. 2009) major finding that potent 5-HT2B receptor agonism is 

a relatively rare occurrence among drugs and drug-like compounds. However, to arrive at 

such conclusions, Huang et al screened a composite library containing three publicly 

available collections of FDA-approved and investigational medications and one internally 

compiled library. Of the approximately 2200 compounds screened, 27 5-HT2B receptor 

agonists were identified; thus, the validated hit rate was 1.2%.  

These results illustrate that the validated QSAR workflow, as employed in this paper, 

could be used as a general tool for identifying 5-HT2B ligands by the means of virtual 

screening of chemical libraries using rigorously built QSAR models. As we demonstrated in 

this study, our models identify a relatively small number of VS hits making it feasible to 

employ experimental tools to validate predictions in 5-HT2B binding and functional assays. 

Ten compounds selected from a large external library have been tested experimentally in this 

proof-of-concept study resulting in very high experimentally confirmed hit rate. The list of 

all compounds predicted to be 5-HT2B actives is available in Appendix I. 

To verify the diversity of the experimentally validated hits, we have compared the 

results of QSAR-based virtual screening with simple similarity searches. Similarity 

calculations were done using two different descriptor-metric combinations: (1) MACCS 

structural keys and Tanimoto coefficients (as a standard similarity searching approach, see 

Table 4.7 and Figure 4.5) and (2) Dragon descriptors and Euclidean distances (to compare 

directly with our best performing QSAR models of kNN-Dragon, see Table 4.8 and Figure 

4.6.  The nearest neighbor compounds (based on Tanimoto similarities and MACCS keys) 

from the active compounds in the dataset and the 10 experimentally validated VS hits are 
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reported in Table 4.9. Results of similarity analyses indicated that neither technique would be 

able to efficiently identify the diverse hits obtained with our methods. Hence, our studies 

illustrated the power of combi-QSAR-based VS in prioritizing compounds (which are not 

just close analogs of the modeling set compounds) from screening libraries to achieve high 

success rates when experimentally validated.  
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Table 4.7. Virtual screening recovery results using Tanimoto similarities and 166 MACCS 

keys. 

Tanimoto 

Coefficient 

46406 WDI 

Compounds 

122 VS  

Hits 
10 Tested 

Hits 

≥ 0.9 286 2 2 

≥ 0.8 1341 4 3 

≥ 0.7 7048 13 8 

≥ 0.6 21431 38 9 

≥ 0.5 36719 81 9 

≥ 0.4 44208 115 10 

≥ 0.3 45860 122 10 

≥ 0.2 46220 122 10 

≥ 0.1 46301 122 10 

≥ 0.0 46406 122 10 
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Figure 4.5. The heatmap of the similarity between the 146 5-HT2B actives from the modeling 

set and 46406 WDI compounds. Virtual screening compounds included in WDI were 

analyzed by estimating pairwise structural similarities with modeling set actives using 

Tanimoto coefficients and 166 MACCS structural keys. The bar-view is a key for coloring 

according to similarity/dissimilarity based on Tanimoto coefficients where red color indicates 

most similar compounds while blue color denotes least similar compounds. 
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Table 4.8. Virtual screening recovery results using Euclidean distances and 903 Dragon 

descriptors. 

Euclidean 

Distance 

54933WDI 

Compounds 

122 VS  

Hits 

10 Tested  

Hits 

≤ 0.5 157 0 0 

≤ 1.0 948 3 3 

≤ 1.5 4191 10 6 

≤ 2.0 9835 30 7 

≤ 2.5 16411 54 9 

≤ 3.0 22419 73 10 

≤ 3.5 27200 86 10 

≤ 4.0 31035 96 10 

≤ 4.5 34008 102 10 

≤ 5.0 36340 116 10 

≤ 5.5 38106 119 10 

≤ 6.0 39528 120 10 

≤ 6.5 40714 121 10 

≤ 7.0 41550 122 10 

≤ 10.0 43738 122 10 

≤ 50.0 45692 122 10 

≤ 100 45880 122 10 

≤ 120 45932 122 10 

≤ 130 45933 122 10 
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Figure 4.6. The heatmap of distances between the 146 5-HT2B actives from the modeling set 

and 45933 WDI compounds. Virtual screening compounds included in WDI were analyzed 

by estimating pairwise structural similarities with modeling set actives using Euclidean 

Distances and 903 Dragon descriptors. The bar-view is a key for coloring according to 

similarity/dissimilarity based on Euclidean distances where red color indicates most similar 

compounds while blue color denotes least similar compounds. Additionally, in this figure we 

colored all instances with distances above 20 with blue. 
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Table 4.9.  Nearest neighbor compounds from the active compounds in the dataset and the 

ten experimentally validated VS hits. 

Virtual screening hits 
a
Nearest neighbor from the modeling set 

 

1 

 

PubChem CID  54940 (66 % similarity) 

 

2 

 

PubChem CID  108029 (70 % similarity) 

 

3 

 

PubChem CID  5163 (49 % similarity) 
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4 

 

 

PubChem CID  5684 (88 % similarity) 

 

5 

 

PubChem CID  1001 (71 % similarity) 

 

6 

 

PubChem CID  125085 (90 % similarity) 

 

7 

 

PubChem CID  3250 (98 % similarity) 
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8 

 

PubChem CID  5202 (76 % similarity) 

 

9 

 

PubChem CID  15443 (79 % similarity) 

 

10 

 

PubChem CID  4418 (74 % similarity) 

a
Nearest neighbor from the modeling set compounds based on MACCS structural keys and 

Tanimoto distances.  
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We also think that agonist vs. antagonist models will be highly useful as more data 

about agonist compounds become available. The small number of known 5-HT2B agonists 

made it impossible at this stage to develop statistically significant models that could 

distinguish agonists from antagonists. Thus, the current study was limited to building binder 

vs. non-binder models. We will continue with our efforts to develop quantitative 5-HT2B 

agonist predictors as we accumulate more experimental data. 

 Conclusions  

QSAR models are becoming increasingly attractive as robust computational tools for 

virtual screening due to both their computational efficiency and success rates [reviewed in 

(Tropsha & Golbraikh 2007) as well as in a recent monograph (Varnek & Tropsha 2008)]. In 

this study, we have applied a combinatorial QSAR approach to a dataset of 800 compounds 

experimentally annotated as 5-HT2B receptor agonists, antagonists and inactives resulting in 

statistically validated and externally predictive models. Specifically, we have applied a 

combi-QSAR approach utilizing three different classification methods (kNN, CBA and 

DWD) and four different descriptor types (Dragon, MZ, MOE and SGs) to generate 

classification QSAR models to discriminate between 5-HT2B actives (agonists and 

antagonists) from inactives. Predictive models with classification accuracies as high as 0.80 

for actives vs. inactives, as estimated on external validation sets, were obtained.  

Classification models for actives vs. inactives were further validated by predicting an 

external validation set obtained after we completed the modeling studies. The high accuracy 

of prediction for the second external validation set proved that our models were indeed 

rigorous. Therefore, we posited that our studies afforded a robust computational tool to 
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predict potential 5-HT2B activity and consequently prioritize hits for testing in functional 5-

HT2B assays to predict valvulopathic side effects of drugs and drug candidates that act as 5-

HT2B agonists. We suggested that this computational predictor could be used to eliminate 

high risk compounds at the early stages of the drug development process. To illustrate this 

point, we have used this predictor retrospectively to evaluate the valvulopathic potential of 

two drugs withdrawn from the U.S. market for this reason, i.e., fenfluramine and 

dextrofenfluramine. Both drugs were not included in our modeling set and both were indeed 

predicted with high confidence as actives for binding to 5-HT2B receptors.  

Encouraged by our model validation results, we have applied these models for virtual 

screening of the 59000 compounds in WDI database. Our classification strategies identified 

122 potential 5-HT2B ligands. Ten structurally diverse VS hits were experimentally tested at 

PDSP. Nine compounds were experimentally confirmed as 5-HT2B ligands thereby 

demonstrating a very high success rate of 90%.  

The predictor developed in this report is similar in its potential use to other predictors 

of drug liability such as carcinogenicity and mutagenicity that are widely used in 

pharmaceutical industry. For instance, the TOPKAT program available in the Discovery 

Studio (Discovery Studio 2008), is a QSAR-based system that generates and validates 

accurate, rapid assessments of various types of chemical toxicity solely from a chemical's 

molecular structure. In contrast, our predictor is a unique specialized tool for the prediction 

of 5-HT2B activity and therefore prioritizing compounds for functional testing against 5-HT2B 

receptors to assess their valvulopathic potential. Therefore, this predictor can be used, along 

with other computational chemical health risk assessment tools, to evaluate compounds‘ 

safety at early stages of the drug development. It can be used as well to verify that all drugs 
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available on the market are free from possibly fatal valvulopathic risk. This predictor will be 

made publicly available at the ChemBench server established in the Laboratory for 

Molecular Modeling (chembench.mml.unc.edu).  We will also gladly apply this predictor to 

any compound library that may be of interest to any researcher. 

 

 

  



 

 

CHAPTER 5 

AN INTEGRATIVE CHEMOCENTRIC INFORMATICS APPROACH TO 

DRUG DISCOVERY BASED ON STRUCTURAL HYPOTHESIS FUSION: 

IDENTIFICATION AND EXPERIMENTAL VALIDATION OF SELECTIVE 

ESTROGEN RECEPTOR MODULATORS AS LIGANDS OF 5-

HYDROXYTRYPTAMINE-6 RECEPTORS 

 

Introduction 

Target-oriented drug discovery has become one of the most popular modern drug 

discovery approaches (Connor et al. 2010, Nicholson et al. 2004, Petak et al. 2010, 

Raamsdonk et al. 2001, Yang et al. 2010). Target-oriented approaches rely on established 

functional associations between activation or inhibition of a molecular target and a disease. 

Modern genomics approaches including gene expression profiling, genotyping, genome-wide 

association, and mutagenesis studies continue to serve as useful sources of novel hypotheses 

linking genes (proteins) and diseases and providing novel putative targets for drug discovery.  

Recently, functional genomics approaches have been increasingly augmented by 

chemical genomics (Brenner 2004, Darvas et al. 2004, Nislow & Giaever 2003, Salemme 

2003, Zheng & Chan 2002b, Zheng & Chan 2002a), i.e., large scale screening of chemical 

compound libraries in multiple biological assays (Campbell et al. 2010, Hamadeh et al. 2010, 

Kiessling & Splain 2010, Ogorevc et al. 2010, Wagner & Clemons 2009). Chemical 

genomics studies yield data indicating that both physical and functional interactions exist 
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between chemicals and their biological targets. Such data (either obtained in chemical 

genomics centers or collected and curated from published literature) is deposited in many 

public and private databases such as the NIMH Psychoactive Drug Screening Program 

(PDSP) (PDSP 2009), PubChem (PubChem 2009), ChEMBL (ChEMBL 2010), WOMBAT 

(Olah et al. 2007) and others (see Oprea and Tropsha (Oprea & Tropsha 2006) for a recent 

review).   

Various in silico techniques have been exploited for analyzing target-specific 

biological assay data. A recent publication by Kortagere and Ekins (Kortagere & Ekins 2010) 

could serves as a good summary of most common target-oriented computational drug 

discovery approaches including: (1) structure based virtual screening (docking and scoring) 

using either experimentally characterized (with X-ray or NMR) or predicted by homology 

modeling structure of the target protein, (2) chemical similarity searching using known active 

compounds as queries, (3) pharmacophore based modeling and virtual screening, (4) 

quantitative structure activity relationship (QSAR) modeling, and (5) network or pathway 

analysis.  

Data resulting from large-scale gene or protein expression or metabolite profiling 

(often collectively referred to as 'omics' approaches (Burgun & Bodenreider 2008, Kandpal et 

al. 2009, Polychronakos 2008, Vangala & Tonelli 2007) can be explored not only for specific 

target identification but also in the context of systems pharmacology to identify networks of 

genes (or proteins) that may collectively define a disease phenotype. For example, ‗omics‘ 

data can be used to ask what genes or proteins, or post-translationally modified states of 

proteins are over- (or under-) expressed in patients suffering from a particular disease.  These 

types of data can be found in a number of public repositories such as the Gene Expression 
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Omnibus (GEO) (Edgar et al. 2002, Barrett & Edgar 2006), GEOmetadb (Zhu et al. 2008b), 

the Human Metabolome Database (HMDB) (Wishart 2007, Wishart et al. 2009), Kinase 

SARfari (Kinase SARfari 2010), the Connectivity Map (cmap) (Lamb et al. 2006), the 

Comparative Toxicogenomics Database (CTD) (Davis et al. 2009), STITCH (Kuhn et al. 

2009, Kuhn et al. 2008), GenBank (Burks et al. 1991, Burks et al. 1990), and others.   

Insights into disease pathology and underlying mechanisms can be revealed by the 

disease ‗gene signature‘, i.e., those genes whose expression varies consistently between 

patients and healthy individuals (controls) (Palfreyman et al. 2002). Gene-expression 

profiling has been often applied to elucidate the mechanisms underlying the roles of 

biological pathway in a disease (DeRisi et al. 1997, Lamb et al. 2003), reveal arcane subtypes 

of a disease (Golub et al. 1999, Perou et al. 2000), and predict cancer prognosis (Pomeroy et 

al. 2002, van, V et al. 2002). At the same time, the treatment of cultured human cells with 

chemical compounds that target a disease can produce a drug related ‗gene signature‘, i.e., 

differential expression profile of genes in response to the chemical (Altar et al. 2009, Ogden 

et al. 2004, Palfreyman et al. 2002, Le-Niculescu et al. 2007). Recently, a group of scientists 

at the Broad Institute have established the Connectivity Map (cmap) database to catalog the 

biological responses of a large number of diverse chemicals in terms of their gene expression 

profiles (Lamb et al. 2006). It has been shown that examining the correlations between gene 

expression profiles characteristic of a disease and those modulated by drugs may lead to 

novel hypotheses linking chemicals to either etiology or treatments for a disease (Garman et 

al. 2008, Golub et al. 1999, Hassane et al. 2008, Hieronymus et al. 2006, Lamb et al. 2006, 

Riedel et al. 2008, Setlur et al. 2008, Zimmer et al. 2008, Zimmer et al. 2010).  
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The cmap database provides an unusual but intriguing example of what we shall call a 

chemocentric ‗omics‘ database and methodology for generating independent and novel drug 

discovery hypotheses.  Indeed, there exists a wealth of information buried in the biological 

literature and numerous specialized chemical databases (ChEMBL 2010, Daylight 2004, 

Olah et al. 2007, PDSP 2009, PubChem 2009) linking chemical compounds and biological 

data (such as targets, genes, experimental biological screening results; cf. Baker and 

Hemminger (Baker & Hemminger 2010).  The chemocentric exploration of these sources, 

either individually or in parallel opens up vast possibilities for formulating novel drug 

discovery hypotheses concerning the predicted biological or pharmacological activity of 

investigational chemical compounds or known drugs. The integration and cross-validation of 

such independent structural hypotheses can increase their level of confidence and can be 

referred to as structural hypothesis fusion.  

Herein, we describe a novel integrative chemocentric informatics approach to drug 

discovery that combines structural hypotheses generated from independent analysis of both 

traditional target-specific assay data and those resulting from large scale genomics and 

chemical genomics studies.  As a proof of concept, we have focused on the Alzheimer‘s 

disease as one of the most debilitating neurodegenerative diseases with complex etiology and 

polypharmacology.  We have considered and cross-examined two independent but 

complimentary approaches to the discovery of novel putative anti-Alzheimer‘s drugs. First, 

we have employed a traditional target-oriented cheminformatics approach to discovering 

anti-Alzheimer‘s agents. We have built QSAR models of ligands binding to 5-

hydroxytryptamine-6 receptor (5-HT6R), a potential target for the cognitive enhancement in 

Alzheimer‘s disease (Geldenhuys & Van der Schyf 2009); it has been shown that 5-HT6R 
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antagonists can improve memory and cognition in animal models of impaired cognition 

(Holenz et al. 2006). We have then used models developed with the rigorous predictive 

QSAR modeling workflow established and implemented in our laboratory (Tropsha 2010) 

for virtual screening (VS) of the WDI (Daylight 2004) and DrugBank (Wishart et al. 2006, 

Wishart et al. 2008) to identify putative cognition enhancing agents with potential utility as 

anti-Alzheimer‘s agents as compounds predicted to interact with 5-HT6R. Second, we have 

explored (chemo)genomic data available from the cmap project (Lamb et al. 2006) to link 

chemical compounds and the Alzheimer‘s disease without making explicit hypotheses about 

target-specific mechanisms of action, i.e., treating Alzheimer‘s disease as a complex 

polypharmacological disease.  

We then cross-examined and combined common hits regarded as structural 

hypotheses resulting from both approaches (i.e., hypothesis fusion) towards common 

integrated higher-confidence hypotheses supported by two independent lines of 

computationally-based evidence.  Thirteen common hits were tested in 5-HT6R binding 

assays at the PDSP and ten were confirmed experimentally as having activity. Unexpectedly, 

we found that the confirmed actives included several selective estrogen receptor modulators 

(SERMs) suggesting that they may be potential anti-Alzheimer‘s drugs as well. Indeed, we 

have identified clinical evidence in biomedical literature in support of this hypothesis.  We 

believe that approaches discussed in this study can be applied to a large variety of systems to 

identify novel drug-target-disease associations. 

Materials and Methods 

Integrative Chemocentric Informatics Approach  
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We have devised an integrative workflow focused on the discovery of new drug 

candidates and finding new uses for existing drugs by fusing predictions generated from 

different data types and methods. Currently, the workflow (Fig. 5.1) incorporates three major 

components: (1) a module for QSAR-based VS of chemical libraries to identify new ligands 

for target proteins, (2) a network-mining module to identify small molecule therapeutics for 

specific diseases without necessarily knowing the underlying target-specific mechanism; this 

module explicitly relies on cmap,
3
 an external online database 

(www.broadinstitute.org/cmap/) that links the effects of different drugs and diseases using 

gene expression profiles, and (3) ChemoText (Baker & Hemminger 2010), an in-house 

repository of relationships between chemicals, diseases, proteins, and biological processes. 

The first two modules have been employed extensively for studies reported herein. 

  

http://www.broadinstitute.org/cmap/
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Figure 5.1. Study design for the integrative informatics approach for drug discovery 

integrating network mining, text mining of biological literature, the analysis of disease gene 

signatures and efficient cheminformatics techniques, to discover novel drugs with desired 

polypharmacology. 
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We start our study with identifying established disease-target associations (e.g., 5-

HT6R is implicated in Alzheimer‘s disease). Then we mine the biological literature and 

specialized databases to extract structure activity datasets for ligands known to interact with 

the biological target of interest. Activity data could be either binding affinities (Ki values) or 

functional data (IC50 values for agonists and antagonists).  Binding and functional data could 

be either continuous (e.g., Ki and IC50 values) or categorical (e.g., binder vs. non-binder or 

agonist vs. antagonist) in nature. At this stage we use our QSAR-based VS module (see Fig. 

2; predictive QSAR workflow) to generate robust predictive QSAR models for experimental 

structure activity data that can be employed for VS of chemical libraries to derive new 

hypotheses about putative actives (binders, or agonists, or antagonists ). 

Simultaneously, we mine the biological literature for gene signatures associated with 

the disease and/or for all related protein targets implicated in the disease state. We use these 

disease related genes and proteins to query specialized databases to extract information about 

disease-protein (gene)-chemical connections.  For example, we use disease gene signatures to 

query the cmap for putative treatments, and we use related proteins to query ChemoText for 

related chemicals to establish new disease-protein (gene)-chemical connections. After a 

thorough analysis of all data, we select hit compounds that are expected to be novel 

treatments for the disease (cf. Fig. 5.1). 

Finally, we fuse hypotheses derived from the QSAR-based VS approach with those 

derived from text/network mining. Hypothesis fusion is based on structural identity between 

independently identified hits. The common structural hits are considered for further 

experimental validation. We assume that the level of confidence in structural hypotheses 

resulting from independent approaches to knowledge mining in chemocentric databases is 
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intrinsically higher than that in any computational hit generated in respective independent 

studies. 

Databases and Datasets 

The experimental data for Alzheimer‘s disease related target 5-HT6R were extracted 

from the PDSP Ki-DB available in the public domain. The complete 5-HT6R dataset included 

binding affinity data for 250 compounds. We used PubChem (PubChem 2009) to obtain all 

chemical structures for our datasets in SDF file format. After generating models we used the 

successful models for virtual screening of WDI and DrugBank.  

We also queried cmap database with disease Alzheimer‘s disease gene signature. 

Disease gene signatures were populated with Affymetrix U133A probe sets using NetAffx. 

All details about the databases and tools mentioned herein can be found in Chapter 2. 

Computational Methods 

(1) QSAR Modeling and QSAR-based Virtual Screening 

Preprocessing of the Dataset. We used a workflow for chemical data curation that 

was developed in our lab and published recently (Fourches et al. 2010) and discussed in 

details in Chapter 2.  Our analysis resulted in the detection and removal of 56 duplicate 

chemical entries leaving 194 unique normalized molecular structures. These 194 unique, 

organic compounds, including 102 binders and 94 non-binders (see Table S1 of Supporting 

Information) were used for binary QSAR studies.  We assigned the ‗activity‘ class for each 

compound based on its Ki value(s) obtained from the PDSP and according to PDSP 

specifications as reported at the PDSP website (http://pdsp.med.unc.edu/). Compounds with 

Ki values more than or equal to 10 µM were considered non-binders and assigned to class 0, 

http://pdsp.med.unc.edu/
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whereas compounds with Ki values less than 10 µM were considered binders and assigned to 

class 1.  

Dataset Division for Model Building and Validation. Following our predictive 

QSAR modeling workflow (Tropsha 2010), all QSAR models generated to classify 5-HT6R 

binders vs. non-binders were validated by predicting both test and external validation sets. 

The original dataset of 194 compounds (102 binders and 92 non-binders) was randomly split 

into 5 different subset of nearly equal size to allow for external 5-fold cross validation (CV) 

(Hawkins et al. 2003, Kohavi 1995). In this protocol, each subset including 20% of the 

original dataset was systematically employed as the external validations set while the 

remaining 80% of the compounds constituted the modeling set.  

Another level of internal validation was achieved by comparing model performance 

for training and test sets. This approach is always employed as a part of our predictive QSAR 

modeling workflow (Tropsha 2010, Tropsha & Golbraikh 2007) to emphasize the fact that 

training-set-only modeling is not sufficient to obtain reliable models that are externally 

predictive (Golbraikh & Tropsha 2002a). Thus, for each collection of descriptors, the 

modeling sets (each including 80% of the original dataset) were further partitioned into 

multiple chemically diverse training and test sets of different sizes using the Sphere 

Exclusion method implemented in our laboratory (Golbraikh & Tropsha 2002b). Only 

models that were highly predictive on the test sets were retained for the consensus prediction 

of the external validation sets. Finally, highly predictive models on both external sets were 

used in consensus fashion for virtual screening of external compound libraries.  The model 

building and validation approach is illustrated schematically in Figure 2. 
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QSAR Modeling. Two QSAR modeling approaches of different nature were used 

concurrently to generate classification models for 5-HT6R binders vs. non-binders (Fig. 5.2). 

The first approach relied on k-nearest neighbor (kNN) model optimization method combined 

with Dragon descriptors, and the second employed classification based on association (CBA) 

and subgraphs (SG) descriptors.  
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Figure 5.2. The workflow for QSAR model building, validation and virtual screening as 

applied to 5-HT6R dataset. 

 

  



162 

 

Molecular Descriptors. Both Dragon and SG descriptors were generated for dataset 

compounds. The final set of Dragon descriptors  used in this QSAR study included 331 descriptors. 

These descriptors were range-scaled so their values ranged from 0 to 1. For generating SG descriptors 

we used a support value of 15 %, and the defaults for the lower and upper size limits of the 

generated subgraphs were 2 and 1000 atoms consecutively. The average number of generated 

SG descriptors was about 400. These descriptors were then used for modeling 5-HT6R 

dataset with Classification Based on Association (CBA) method (Liu et al. 2001). All details 

about molecular decsriptors can be found in Chapter 2. 

Machine Learning Methods. In this study, we used variable selection classification 

kNN method with Dragon descriptors and the software implemented in our lab (Zheng & 

Tropsha 2000) to develop QSAR models for 5-HT6R binders vs. non-binders. We also used 

CBA with SG descriptors to build a classifier for 5-HT6R binders vs. non-binders. All 

computational details about these methods are discussed in Chapter 2. 

 Selection and Validation of QSAR Models 

As mentioned earlier, model validation is crucial for QSAR modeling. To evaluate the 

predictive power of a model, CCR (Eq. 1) values for the training, test, and external validation 

sets were calculated. We used sensitivity (SE) and specificity (SP) (refer to supplementary 

material) as well. SE and SP reflect the accuracy of predicting the compounds of binder 

(class 1) and non-binder (class 0) classes, respectively. We considered a QSAR model to have 

an acceptable predictive power, if both of the following conditions were satisfied:  

(i) CCR for the LOO cross-validation of the training and test sets 

(i.e., ) were at least 70% 

(ii) SE and SP for both training and test sets (i.e.,  ,  ,  , ) 

were at least 70%.  
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Applicability Domains. We applied AD in this study to avoid unreliable predictions. 

We defined the AD as a distance threshold DT between a compound under prediction and its 

nearest neighbors of the training set according to Equation 2.9. We set the default of Z at 0.5. 

We also defined a global AD in the entire descriptor space. In this case, the same formula 

(Eq. 2.9) was used, Z=0.5, k=1 and Euclidean distances were calculated using all descriptors. 

Thus, if the distances of the external compound from its k nearest neighbors (see above) in 

the training set within either the entire descriptor space or the selected descriptor space 

exceeded these thresholds, no prediction was made. In this study, applicability domain 

calculations were carried out using Dragon descriptors and kNN. 

 Robustness of QSAR Models. Y-randomization (randomization of response) is a 

widely used approach to validate the robustness of QSAR models (Wold & Eriksson 1995). It 

consists of rebuilding the models using randomized activities of the training set and 

subsequent assessment of model statistics. It is expected that models obtained for the training 

set with randomized activities should have significantly lower values of CCR for the training 

or the test set than the models built using training set with real activities, or at least these 

models should not satisfy some of the validation criteria mentioned above. If this condition is 

not satisfied, models built for this training set with real activities are not reliable and should 

be discarded.  

Consensus Prediction. Consensus prediction implies averaging the predictions for 

each compound by majority voting for classification QSAR models, using all models passing 

the validation criteria (e.g., CCRtrain and CCRtest above or equal to 0.70). Our experience 

suggests that consensus prediction provides the most stable and accurate solutions (Zhu et al. 

2008a).  In general, in order to determine the confidence in the obtained predictions we need 
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to define a consensus score. The consensus scores employed in this study take into account 

the total number of models used to predict a compound‘s activity, and the number of models 

that predicted the compound to belong to a specific class. In case of predicted binders 

(assigned to class 1), we accept predictions made with no less than half of the total 

acceptable models. Because we define two classes of compounds, i.e., class 1 (binders) and 

class 0 (non-binders), some models may predict a compound to belong to class 0 and others 

may predict it to belong to class 1. As a result, consensus scores (CS) between 0 and 1 will 

be obtained for each of the predicted compounds. As an additional measure of confidence 

(and an additional applicability domain criterion) we only accepted those predictions that had 

an average predicted value (consensus score) above 0.70 (for binders) or below 0.30 (for 

non-binders).  

Virtual Screening. To identify putative ligands, validated consensus kNN-Dragon 

models generated for 5-HT6R ligands were used for virtual screening of the 59000 molecules 

within both the WDI chemical library (Daylight 2004) and 1300 DrugBank compounds 

included in the cmap database. The identified hits (by consensus agreement between all 

accepted kNN-Dragon models) were then evaluated additionally using CBA-SG classifier 

when it was a need to reduce the size of the VS library generated with kNN-Dragon models.  

(2) Biological Network Mining 

Querying the cmap with Alzheimer’s Disease Gene Signatures. The cmap (Lamb 

et al. 2006) was used to discover unexpected connections between chemicals, genes and the 

Alzheimer‘s disease by generating a detailed map that links gene patterns associated with 

Alzheimer‘s to corresponding patterns produced by drug candidates and a variety of genetic 

perturbations included in the cmap database. The effects of different drugs and diseases are 
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described using ―genomic signatures" — the full complement of genes that are turned on and 

off by a particular drug or disease. We start by querying the online database (cmap: 

http://www.broadinstitute.org/cmap/) with Alzheimer‘s disease gene signatures. Then, a 

computer program, that uses sophisticated pattern-matching methods, matches the barcodes 

based on the patterns shared among Alzheimer‘s gene signature and drugs included in the 

cmap. 

Alzheimer’s Disease Gene Signatures. In order to query the cmap, a disease gene 

signature should exist. Two lists of genes are required to perform the query: a list of up-

regulated genes and a list of down-regulated genes characteristic of a disease. Query 

signatures can be obtained from two major sources: (1) biological literature: gene signatures 

of diseases can be extracted through the National Library of Medicine‘s PubMed system 

(http:// www.ncbi.nlm.nih.gov/pubmed), (2) GEO(Edgar et al. 2002, Barrett & Edgar 2006) 

database: a gene expression/molecular abundance repository supporting MIAME (Brazma et 

al. 2001) (Minimum Information About a Microarray Experiment) compliant data 

submissions, and a curated, online resource for gene expression data browsing, query and 

retrieval. For the purposes of this study, two independent reports of gene-expression changes 

in brain tissues from Alzheimer‘s patients were used to derive gene signatures (i.e., lists of 

genes up- and down- regulated in Alzheimer‘s disease) to query the cmap. Signature 1 (from 

hippocampus) consisted of 40 genes reported by Hata, R.  et al (Hata et al. 2001), and 

signature 2 (from cerebral cortex) consisted of 25 genes reported by Ricciarelli, R. et al 

(Ricciarelli et al. 2004). NetAffx was then used to map gene symbols and Unigene identifiers 

to populate gene signature lists with Affymetrix U133A probe sets to query the cmap. 

 

http://www.broadinstitute.org/cmap/
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(3) Hypothesis Fusion 

Data fusion is the process of combining multiple data in order to produce new 

information that improves the performance of the system (i.e., the in silico model or 

predictor). This fusion approach was first developed for applications in signal 

processing(Klien 1999) and later it was applied in VS efforts to enable better decisions as to 

which small number of molecules should go further for biological testing (Sukumar et al. 

2008, Whittle et al. 2006a, Whittle et al. 2006b). Herein, we cross-examined and fused 

structural hypotheses generated independently from both QSAR-based VS and biological 

network mining efforts to identify and accept common hits only. This step of merging 

hypotheses was based on structural identity comparisons. All chemical structures of cmap 

compounds were retrieved from DrugBank (Wishart et al. 2006, Wishart et al. 2008) using 

their DrugBank identifiers. Identical structures only were then accepted for further analysis. 

All chemical structures labeled as identical were also subjected to a manual curation step 

where structures and names of the chemical compounds were compared in different 

databases to make sure they both refer to the same chemical entity. Common hits were then 

considered for further experimental validation. 

Experimental Validation in Radiologand Binding Assays 

Final common hit compounds from QSAR-based VS and cmap negative connections 

with Alzheimer‘s were purchased and submitted to PDSP for experimental target validation. 

The experimental details are discussed in Chapter 2. 
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Results and Discussion 

QSAR Modeling of 5-HT6R Binders and Non-binders 

kNN with Dragon descriptors was employed to classify modeling set compounds into 

5-HT6R binders vs. non-binders. The five modeling sets derived from applying the external 

5-fold CV technique were divided into multiple training and test sets (28-40 divisions) using 

the Sphere Exclusion algorithm as described in Methods. Multiple QSAR models were 

generated independently for all training sets and applied to the test sets. Generally, we accept 

models with CCR values above or equal to 0.70 for both the training and test sets. However, 

because we were able to generate thousands of acceptable models, we used more 

conservative criteria (i.e., CCRtrain and CCRtest above or equal to 0.90) for model selection to 

predict external compounds. Results of Y-randomization tests confirmed that kNN-Dragon 

classification models with CCRtrain and CCRtest values above or equal to 0.90 were robust. 

None of the models with randomized class labels of the training set compounds had CCRtrain 

and CCRtest above 0.65 or CCRevs above 0.55 for any split.  

The CBA method was used to classify the dataset using SG descriptors. The dataset 

was initially divided, using external 5-fold cross validation technique, into modeling sets 

with about 155 compounds each and external validation sets containing about 39 compounds 

each. The modeling sets were then used to build the classifier in CBA(Liu et al. 2001) using 

an initial pool of about 400 SG descriptors. The classifier gave an average CCRtrain of 0.92 

(i.e., the average resulted from five different tests). Then, the external validation set 

consisting of 39 compounds was used to assess the robustness of the classifier. The average 

CCRtest was 0.78, which is not as high the CCR value for the training set, but is still 

statistically acceptable. 
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Clearly, kNN (mean CCRevs = 0.92) performed better than CBA (mean CCRevs 

equal to 0.78) on the external validation sets (see Fig. 5.3). Therefore, we chose to use 

kNN-Dragon models for VS of external drug libraries. Nevertheless, we maintained 

CBA-SG models as an additional filter to suggest smaller sets of compounds as 5-HT6R 

putative binders selected from the list of virtual hits obtained with kNN-Dragon models 

and therefore predicted by both models as putative binders. 
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Figure 5.3. Comparison of the QSAR approaches to classify 5-HT6R binders vs. non-binders 

based on CCRevs.  
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QSAR-Based Virtual Screening 

Since our models proved reasonably accurate based on external validation sets, we 

used the best models to mine two external databases of approved and potential drugs for 

putative 5-HT6R ligands. The use of AD assures reliable predictions by the models. Therefore, 

we used two types of ADs in the virtual screening of compound databases. First, we used a 

global AD that acted as a filter and ensured some level of global similarity between the 

predicted compounds and the compounds in the modeling set. Second, we defined a local AD 

for each of the individual classification models.  

We first screened the WDI database of about 59000 compounds (approved or 

investigational drugs) (Fig. 5.4). This original collection had many duplicates (i.e., many salt 

forms for the same chemical entity), and these duplicates were removed using MOE. We also 

removed all compounds included in our modeling and external validation sets. Dragon 

descriptors were generated for the remaining 46859 unique compounds in the database; of 

these, 9732 compounds were excluded because Dragon was unable to calculate at least one 

of the descriptors generated for the modeling set. The remaining 37127 compounds were then 

subjected to a global AD filter for the modeling set using a strict Z cutoff of 0.5 (which 

formally places the allowed pairwise distance threshold at the mean of all pairwise distance 

distribution for the training set plus one-half of the standard deviation). Then, all kNN-

Dragon models with CCRtrain and CCRtest above or equal to 0.70 were employed in consensus 

fashion to predict 1500 compounds remaining after several filtering steps, which resulted in 

the identification of the 600 predicted binders. In an effort to reduce the number of hits, we 

have generated SG descriptors for these 600 molecules and applied the CBA-SG classifier 

which filtered out half of these compounds, leaving 300 compounds as putative binders for 5-
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HT6R. None of these hits was tested in this manuscript since we explicitly focused on 

compounds from DrugBank that were employed in the cmap project.  These VS hits from 

WDI should be viewed as structural hypotheses awaiting the experimental confirmation; the 

report on these studies is reserved for separate future publication. 

Additionally, we screened 1300 DrugBank compounds included in the cmap database. 

Dragon descriptors were computed for 1273 unique compounds. These compounds were then 

subjected to a global AD filter for the modeling set using a strict Z cutoff of 0.5. 

Consequently, we placed the allowed pairwise distance threshold at the mean of all pairwise 

distance distribution for the training set plus one-half of the standard deviation which 

resulted in 577 predictions within the applicability domain. Next, validated consensus kNN-

Dragon models (i.e., all models with CCRtrain and CCRtest above or equal to 0.90) were used 

to predict these 577 compounds, resulting in the identification of 140 unique compounds 

predicted to be 5-HT6R binders. We did not apply the CBA-filter here because, for the 

subsequent integration with the cmap mining results, we wanted to explore a larger set of all 

140 compound hits (i.e., putative 5-HT6R binders) included in the cmap datasets predicted by 

kNN-Dragon models.  
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Figure  5.4. A representation for QSAR-based virtual screening steps of two chemical 

databases: the WDI and DrugBank compounds included in the cmap. 
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Searching the Connectivity Map for Potential Anti-Alzheimer’s Agents 

We used two gene signatures for the Alzheimer‘s disease (designated a S1 and S2) to 

query the cmap database in an attempt to link genes associated with the disease to potential 

therapeutic agents. These two signatures were based on two independent rank-ordered gene 

lists provided by two different Gene Set Enrichment Analysis (GSEA) studies (Hata et al. 

2001, Ricciarelli et al. 2004). The two disease signatures were compared with predefined 

signatures of therapeutic compounds included in the cmap and ranked according to a 

connectivity score (ranging from +1 to -1), representing relative similarity to the disease gene 

lists. The connectivity score itself is derived using a nonparametric, rank-based, pattern-

matching strategy based on the Kolmogorov-Smirnov statistic (Hollander & Wolfe 1999). 

Connectivity scores are calculated using the online tools available at the cmap 

(http://www.broadinstitute.org/cmap/).  All instances in the database are then ranked 

according to their connectivity scores; those at the top (+) are most strongly correlated to the 

query signature and looked at as disease causes, and those at the bottom (-) are most strongly 

anti-correlated and considered as possible therapeutics (see Fig. 4.5 for concept). 

  

http://www.broadinstitute.org/cmap/
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Figure 5.5. Querying the connectivity map with Alzheimer‘s disease gene signatures (S1 and 

S2).  
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The majority of chemicals included in the cmap database are represented by multiple 

independent replicates. Most compounds are profiled in three different cell lines, some at 

different concentrations.  These are called ‗instances‘ for the same chemical which are 

defined as ―a treatment and control pair and the list of probe sets ordered by their extent of 

differential expression between this treatment and control pair‖ (The connectivity map 2010). 

The instance is the basic unit of data and metadata in cmap. Instances of the same compound 

might have similar or dissimilar connectivity scores with the query signature. We have higher 

confidence in the derived connections when gene signatures are conserved across diverse cell 

types and experimental settings. However, Lamb and colleagues (Lamb et al. 2006, Lamb 

2007) indicated that the non-consistent scoring of different instances of the same chemical 

may represent either (1) a cellular-context dependent difference in activity, (2) a 

concentration-discriminated effect, or (3) poor reproducibility between replicates. Therefore, 

‗best‘ connections are those where multiple, autonomous instances of the same chemical 

have consistently high (or low) scores. However, inconsistently scoring compounds should 

not necessarily be dismissed since their significance as potential treatments for a disease can 

be boosted by additional evidence, such as predictions from QSAR models. 

In this study, we were interested in compounds whose chemogenomics profiles were 

negatively correlated with the Alzheimer‘s disease gene signatures. Hits with statistically 

significant, negative connectivity scores could be potential treatments for the Alzheimer‘s 

disease; however, the list of negatively correlated molecules might be long and must be 

analyzed carefully before suggesting hypotheses of possible mechanisms for controlling or 

mediating the disease. Examples of top negative connections with both signatures S1 and S2 
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are shown in Tables 5.1 and 5.2, respectively.  Although the two gene signatures (i.e., for the 

Alzheimer‘s disease) used to query the cmap shared no common genes, both queries resulted 

in a common list of negative connections which were given a higher confidence in our 

studies. All chemical structures for each chemical compound included in the cmap were 

obtained from the DrugBank and mapped based on the DrugBank identifiers provided by the 

cmap database.  
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Table 5.1. Top twenty negative connections from the cmap with S1. 

Compound Rank
a
 Cell Score Instance_ID 

Naproxen 6100 PC3 -1 7146 

Sulfacetamide 6099 MCF7 -0.990 1695 

Amprolium 6098 HL60 -0.930 1979 

Aminoglutethimide 6097 MCF7 -0.913 7463 

Ioxaglic acid 6096 HL60 -0.897 2966 

Dexpanthenol 6095 MCF7 -0.871 7455 

Suxibuzone 6094 MCF7 -0.870 7163 

Chlorphenesin 6093 HL60 -0.862 1432 

Metixene 6092 HL60 -0.853 2451 

Fulvestrant 6091 MCF7 -0.843 5565 

Seneciphylline 6090 MCF7 -0.841 2797 

Troglitazone 6089 MCF7 -0.839 6991 

Dicloxacillin 6088 HL60 -0.834 2445 

Phentolamine 6087 HL60 -0.831 2362 

Monocrotaline 6086 MCF7 -0.828 6771 

Lymecycline 6085 HL60 -0.823 2953 

Bezafibrate 6084 PC3 -0.815 6653 

6-Benzylaminopurine 6083 HL60 -0.812 2351 

Terbutaline 6082 MCF7 -0.811 3202 

Clorgiline 6081 MCF7 -0.805 3219 
a
The rank order is generated from estimating the connectivity scores 

of 6100 individual treatment instances with S1.  A rank order of 

6100 corresponds to the compound with the strongest negative 

connectivity S1, while a rank order of 1 corresponds to the 

compound with the strongest positive connectivity with S1. 
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Table 5.2. Top twenty negative connections from the cmap with S2 

Compound Rank
a
 Cell Score Instance_ID 

Trifluoperazine 6100 HL60 -1 2389 

Clomifene 6099 MCF7 -0.982 4994 

Ethotoin 6098 HL60 -0.977 2196 

Sulfafurazole 6097 HL60 -0.973 1603 

Quercetin 6096 MCF7 -0.964 4846 

Triflusal 6095 HL60 -0.925 1717 

Alfuzosin 6094 PC3 -0.903 4644 

Metitepine 6093 HL60 -0.890 1616 

Trioxysalen 6092 MCF7 -0.885 6216 

LY-294002 6091 MCF7 -0.883 258 

Tanespimycin 6090 HL60 -0.873 6184 

Spironolactone 6089 MCF7 -0.871 6255 

Nifurtimox 6088 MCF7 -0.859 4953 

Iobenguane 6087 HL60 -0.847 1729 

U0125 6086 PC3 -0.845 663 

Monorden 6085 MCF7 -0.841 5947 

Primidone 6084 PC3 -0.833 6723 

Calcium pantothenate 6083 MCF7 -0.828 4775 

Phthalylsulfathiazole 6082 HL60 -0.826 3033 

Ceforanide 6081 PC3 -0.824 6751 
a
The rank order is generated from estimating the connectivity scores 

of 6100 individual treatment instances with S2.  A rank order of 

6100 corresponds to the compound with the strongest negative 

connectivity S2, while a rank order of 1 corresponds to the 

compound with the strongest positive connectivity with S2.
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Hypothesis Generation: Integrating and Fusing Independent Hypotheses from QSAR-

Based VS and cmap Analysis 

We fused hypotheses produced from two different datasets and using two different 

computational methods (Fig. 5.1): (1) QSAR-based datamining of chemical databases in an 

effort to identify novel ligands for 5-HT6R, and (2) Network-mining using two signatures for 

Alzheimer‘s disease to query the cmap and identify possible anti-Alzheimer‘s therapeutics. 

Our procedure for hypothesis fusion was based on structural identity for chemical 

compounds derived from both approaches mentioned above. Compounds with negative 

connectivity scores, representing genes expressed in an opposite fashion to the imported 

Alzheimer‘s disease query—which implies their potential benefits to be candidate treatments, 

were compared with 5-HT6R hits predicted from QSAR-based VS.   

The primary goal for fusing hypotheses in this study was initially to overcome some 

of the inherent hit scoring problems in classification QSAR, and to achieve higher success 

rates in experimental testing of the VS hits. In other words; we often select for further 

experimental validation those QSAR hits with consensus scores above or equal to 0.90 (refer 

to consensus scores in methods). However, many novel scaffolds that are significantly 

different (i.e., structurally and therapeutically) from the training set compounds, might have 

lower consensus scores ranging from 0.50 to 0.90 despite the fact that they might be binders 

too. Thus, this process of fusing hypotheses derived independently from different types of 

data and using multiple prediction methods, allowed us to fish out these low-confidence 

QSAR hits (that yet could be highly important ligands) for further analysis. As a result, we 

posit that fusing independent hypotheses is likely to improve the overall success rates of in 

silico lead identification.  
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Additionally, our approach could be used to aid in the process of prioritizing 

connections from the cmap that might be difficult to call otherwise, especially as the size of 

the database continues to grow. In diseases like the Alzheimer‘s, with little knowledge about 

specific etiology, and the lack of drug gene signatures generated from neuronal cell lines, it is 

hard to decide a priori which negative connections are more important to be viewed as 

potential therapeutics. Thus, fusing hypotheses derived independently from cmap and QSAR 

should enable us to increase the confidence in recovered connections. 

Scoring and Fusing Structural Hypotheses to Identify Anti-Alzheimer’s Agents  

Our method for decision fusion was derived from a combination of voting and 

statistical metrics. In the first step, we used two different scoring functions to rank the 

computational hits generated independently from both QSAR and cmap. In the QSAR study, 

we used the kNN ‗consensus score‘ which takes into account the total number of models used 

to predict compound‘s activity, and the number of models that predicted the compound to 

belong to a specific class correctly. We considered all computational hits that had an average 

predicted value (i.e., consensus score) above or equal to 0.50 for further inspection. Our 

analysis resulted in 140 putative 5-HT6R binders among cmap compounds and with kNN 

consensus scores ranging from 0.50-1.00 (see Fig. 5.6). 
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Figure 5.6. The workflow for fusing hypotheses from QSAR modeling and cmap negative 

connections.   
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On the other hand, we used the connectivity scores (Lamb et al. 2006) to rank the hits 

resulted from querying the cmap with Alzheimer‘s disease gene signatures. Because we were 

interested in identifying novel treatments for Alzheimer‘s disease, we ranked hits with larger 

(-) connectivity scores at the top and gave them higher confidence. Such compounds were 

hypothesized to have higher chances to reverse the Alzheimer‘s gene signatures and therefore 

might have immense therapeutic value in Alzheimer‘s disease. We considered for further 

analysis all compounds that had at least one instance of negative connection with any of the 

two gene signatures used to query the cmap (S1 and S2) so that not to miss any important 

connections. Our analysis resulted in identifying 881 negative connectivity instances with S1 

and 861 instances with S2 (Fig. 5.6).   

Finally, we fused the hypotheses generated from both QSAR and cmap analyses and 

accepted common hits only. We identified 97 compounds that were both predicted to be 

active at 5-HT6R  and had at least one instance of negative connectivity with S1 and 106 

compounds that had at least one instance of negative connectivity with S2. Accepting only 

common hits among S1 and S2 resulted in 73 putative hits (see Fig. 5.6). At this stage we 

applied a manual curation where we inspected all available data for these 73 hits. Each of the 

73 common hits had three scores (kNN consensus score, cmap connectivity score with S1, 

and cmap connectivity score with S2) to be considered in the final decision to prioritize hits 

for further testing. Therefore, we estimated the average connectivity scores for all predicted 

hits across all treatment instances for each of the S1 and S2 hits. Then we excluded those 

compounds that had high positive connectivity scores in some treatment instances of the 

same compound. Finally, we retained 39 compounds that had acceptable negative average 

connectivity scores at least with one signature (see Fig. 5.6). We hypothesized that these 
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compounds could be looked at as putative 5-HT6R hits and potential cognitive enhancements. 

One of the final 39 hits, vinpocetine, worth special attention as there is new evidence that has 

just emerged indicating its potential role in the treatment of Parkinson's disease and 

Alzheimer‘s disease (Jeon et al. 2010, Medina 2010). Details on all these 39 VS hits are 

provided in Tables 5.3 and 5.4. 

Each of the 39 common hits had three scores (kNN consensus score, cmap 

connectivity score with S1, and cmap connectivity score with S2) to be considered in the 

final decision to prioritize hits for further experimental testing. We plotted the mean 

connectivity scores vs. kNN QSAR consensus scores generating separate plots for S1 and S2 

(see Fig. 5.7) to analyze these hits in further details.  
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Table 5.3. Final thirty nine computational hits from QSAR-based VS and cmap. 

cmap Name 
cmap 

Score 1 

cmap 

Score 2 

Num. kNN 

Models 

kNN 

CS 

kNN 

Pred 

CBA 

Pred 

Acepromazine -0.528 -0.496 441 0.93 B B 

Alimemazine -0.121 -0.117 438 1.00 B B 

Astemizole -0.349 -0.237 328 0.91 B B 

Bepridil -0.134 -0.409 393 0.89 B B 

Bromperidol -0.239 -0.213 428 0.83 B B 

Cetirizine -0.495 -0.327 421 0.92 B B 

Chlorprothixene -0.277 -0.298 442 0.90 B B 

Cinchocaine -0.004 -0.335 423 0.58 B B 

Cinnarizine -0.349 -0.149 414 0.98 B B 

Citalopram -0.003 -0.260 429 0.71 B NB 

1 (Clomiphene) -0.378 -0.265 409 0.91 B B 

2 (Clomipramine) -0.192 -0.310 437 0.96 B B 

Cloperastine -0.273 -0.353 443 0.88 B B 

3 (Clozpine) 0.093 -0.058 422 0.97 B B 

Diltiazem -0.128 -0.336 433 0.72 B NB 

4 (Doxepin) 0.027 -0.259 444 0.95 B B 

5 (Fendiline) -0.303 -0.228 393 0.84 B NB 

Flavoxate -0.127 -0.112 403 0.71 B NB 

6 (Fluspirilene) 0.055 -0.138 351 0.98 B B 

Imipramine -0.400 -0.214 427 0.96 B B 

Laudanosine -0.226 -0.174 411 0.78 B NB 

7 (LY-294002) -0.028 -0.078 428 0.71 B B 

Meclozine -0.365 -0.171 439 0.95 B B 

Mepacrine -0.236 -0.301 418 0.53 B B 

Methylergometrine -0.400 -0.509 441 0.98 B B 

Naftifine -0.198 -0.148 359 0.85 B B 

8 (Nortriptyline) 0.011 -0.354 433 0.93 B B 

Phenoxybenzamine -0.461 -0.309 444 0.79 B NB 

Piperidolate -0.168 -0.119 431 0.69 B NB 

9 (Prestwick-559) -0.247 -0.206 435 0.96 B B 

Prestwick-685 -0.086 -0.213 381 0.72 B B 

Promazine -0.210 -0.307 424 0.97 B B 

10 (Raloxifene) 0.047 -0.058 356 0.56 B NB 

11 (Tamoxifen) 0.300 -0.220 435 0.93 B B 

Telenzepine -0.419 -0.114 387 0.68 B B 

Terfenadine -0.183 -0.512 416 0.51 B NB 

Vanoxerine -0.450 -0.233 374 1.00 B NB 

Vinpocetine -0.177 -0.132 376 0.76 B B 

13 (Zuclopenthixol) -0.152 0.144 434 0.98 B B 
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Table 5.4. Therapeutic classes of the thirty nine final computational hits from QSAR-based 

VS and cmap. 

cmap Name Therapeutic Class/Use 

Acepromazine Antipsychotic 

Alimemazine Antipruritic, sedative, hypnotic and anti-emetic 

Astemizole Anti-Histamine 

Bepridil Calcium channel blocker once used to treat angina 

Bromperidol Neuroleptic, used as an antipsychotic in the treatment of 

schizophrenia 

Cetirizine Second-generation antihistamine 

Chlorprothixene Typical antipsychotic drug of the thioxanthene class 

Cinchocaine Local anesthetic 

Cinnarizine Antihistamine which is mainly used for the control of nausea and 

vomiting due to motion sickness 

Citalopram Antidepressant drug of the selective serotonin reuptake inhibitor 

(SSRI) class 

1 SERM 

2 Tricyclic antidepressant 

Cloperastine Cough suppressant. 

3 Atypical antipsychotics  

Diltiazem Calcium channel blocker 

4 Psychotropic agent with tricyclic antidepressant and anxiolytic 

properties 

5 Calcium channel blocker 

Flavoxate Anticholinergic with antimuscarinic effects 

6 Antipsychotic 

Imipramine Tricyclic antidepressant  

Laudanosine Benzyltetrahydroisoquinoline alkaloid. Interacts with GABA, 

opioid, and nicotinic acetylcholine receptors 

7 Morpholino derivative of quercetin. It is a potent inhibitor of 

phosphoinositide 3-kinase s (PI3Ks) 

Meclozine Antihistamine considered to be an antiemetic 

Mepacrine Antiprotozoal, antirheumatic and an intrapleural sclerosing agent. It 

is known to act as a histamine N-methyltransferase inhibitor 

Methylergometrine Psychedelic alkaloid 

Naftifine Allylamine antifungal drug 

8 Second-generation tricyclic antidepressant 

Phenoxybenzamine Non-specific, irreversible alpha antagonist 
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Piperidolate Antimuscarinic. 

9 Drug used in scientific research which acts as a moderately 

selective dopamine D3 receptor partial agonist. 

Prestwick-685 Not reported in the literature 

Promazine Antipsychotic 

10 SERM 

11  SERM 

Telenzepine Anticholinergic or sympatholytic 

Terfenadine Antihistamine formerly used for the treatment of allergic conditions 

Vanoxerine Piperazine derivative which is a potent and selective dopamine 

reuptake inhibitor (DRI) 

Vinpocetine Vinpocetine has been identified as a potent anti-inflammatory agent 

that might have a potential role in the treatment of Parkinson's 

disease and Alzheimer‘s disease (Jeon et al. 2010, Medina 2010) 

13 Typical antipsychotic drug 
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Figure 5.7.  Plots for kNN scores vs. cmap connectivity scores for 39 final common hits 

from QSAR-based VS and cmap for: (A) Alzheimer‘s disease signature S1, and (B) 

Alzheimer‘s disease signature S2. Squares: compounds predicted and validated as 5-HT6R 

binders having negative connectivity scores with Alzheimer‘s disease gene signatures; 

diamonds: compounds predicted and experimentally validated as 5-HT6R binders but having 

positive connectivity scores with one of the Alzheimer‘s disease gene signatures; triangles: 

compounds predicted as 5-HT6R binders having negative connectivity scores with 

Alzheimer‘s disease gene signatures but found non-binders in radioligand binding assays 

against 5-HT6R; circles: compounds predicted as 5-HT6R binders which have negative 

connectivity scores with Alzheimer‘s disease gene signatures but were not experimentally 

tested. 
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Additionally, another level of confidence was achieved (besides considering both 

kNN CS and cmap scores) by giving more emphasis to molecules that belonged to the same 

pharmacological or therapeutic group or had very high structural similarity to hits of higher 

confidence. This step permitted the retrieval of some compounds that had less significant 

negative connectivity scores with the disease (e.g., null connectivity or even low positive 

connectivity scores in few instances). We noticed that the 39 putative binders belonged to 

several major therapeutic groups (see Table 5.4): antipsychotics, antidepressants, anti-

histamines, selective estrogen receptor modulators (SERMs) and calcium channel blockers. 

Predicting antipsychotics, antidepressants and anti-histamines was not surprising as it is 

known that many of these compounds are active at 5-HT6R receptors (Roth et al. 1994) and 

because the modeling set of compounds in the QSAR study belonged to these classes of 

compounds. However, it was unexpected that SERMs are predicted to have activity at 5-

HT6R.  

Hypothesis Testing: Evaluation of Computational Hits at Human Cloned 5-HT6 

Receptors 

Common hits from QSAR-VS studies and cmap were taken forward for biological 

validation, in binding assays, for 5-HT6R.  As discussed above, we identified 39 chemicals, 

out of 59000 molecules included in the WDI (Daylight 2004), (and out of 1300 compounds 

included in the cmap),  as consensus hits and putative binders for 5-HT6R with higher 

chances of having potential therapeutic effects in Alzheimer‘s disease; none of these hits was 

included in the training set used to develop QSAR models. Then, we prioritized thirteen 

compounds for further experimental validation in 5-HT6R radioligand binding assays (Table 

5.5). Our final selection was based on different criteria: (1) we tested some compounds with 
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high consensus scores and stronger negative connectivity with Alzheimer‘s disease, (2) some 

compounds were selected because they belonged to the same therapeutic class as several 

other predicted hits and were not known before to bind to 5-HT6R such as selective estrogen 

receptor modulators (SERMs) (e.g., clomifene, tamoxifen and toremifene), (3) we tested 

some compounds with low kNN CS (e.g., raloxifene having kNN CS of 0.58) if other hits 

that belonged to the same therapeutic class had high consensus scores (e.g., tamoxifen and 

toremifene having kNN CS above to or equal 0.93 and clomiphene having a kNN CS of 

0.91), (4) we also tried to test predictions that had strong negative connectivity scores with 

one query signature but had much weaker negative connectivity with the second signature to 

see if there is one specific signature that was generating better results.  

We found that ten of these thirteen predicted actives were confirmed experimentally 

to inhibit 5-HT6R radioligand binding thereby achieving a success hit rate of 77 % in this 

proof-of-concept study (see Table 5.5).  
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Table 5.5. Experimental validation results for the thirteen computational hits predicted as 5-

HT6R ligands and had negative connections with Alzheimer‘s disease gene signatures. 

Cp. 

ID 
Compound 

PDSP ID 

CID
a
 

Score1
b
/Cell  

Score2
c
/Cell  

kNN 

CS
d
 

CBA 

Pred.
e
 

Ki 

(nM) 

1 

Clomifene  

13499 

1548953 

-0.602/ PC3 

-0.982/ 

MCF7 

 

0.91 B
f
 1,956.0 

2 

Clomipramine 

13494 

2801 

-0.768/PC3 

-0.814/MCF7 

 

0.96 B 112.0 

3 

Clozpine 

24842 

2818 

-0.590/PC3 

-0.652/MCF7 

 

0.97 B 17.0
g
 

4 

Doxepin  

13495 

667477 

 

-0.463/MCF7 

-0.777/HL60 

 

0.95 B 105.0 

5 

Fendiline 

14821 

3336 

-0.520/MCF7 

-0.683/HL60 

 

0.84 NB
h
 NB 

6  

Fluspirilene  

14815 

3396 

 

-0.493/MCF7 

-0.551/HL60 

 

0.98 B 1,188.0 
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7 

 
LY-294002  

13502 

3973 

 

-0.790/MCF7 

-0.883/MCF7 

 

0.69 B NB 

8 

Nortriptyline  

13503 

4543 

 

-0.555/PC3 

-0.586/MCF7 

 

0.96 B 214.0 

9 

Prestwick-559  

13498 

3038495 

-0.741/MCF7 

-0.619/HL60 

 

0.79 B NB 

10 

Raloxifene  

13505 

5035 

-0.626/HL60 

-0.619/HL60 

 

0.56 NB 750.0 

11 

Tamoxifen  

13506 

2733526 

0/MCF7 

-0.531/MCF7 

 

0.93 B 1,041.0 

12 

Toremifene
i
  

16514 

3005573 

N/A 

N/A 

0.93 B 4,125.0 

13 

 
 

Zuclopenthixol 

13510 

5311507 

-0.609/PC3 

-0.746/HL60 

 

0.98 B 169.0 
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Success Rate  

77 % for predictions  

with kNN CS ≥ 0.5 

Success Rate  

100% for predictions  

with kNN CS ≥ 0.9 

a
CID, PubChem compound ID;

 b
cmap score1, the highest negative connectivity score for 

this compound with S1 (or the smallest positive in case all other scores are positive); 
c
cmap score2, the highest negative connectivity score for this compound with S2 (or the 

smallest positive in case all other scores are positive); 
d
CS, consensus score; 

e
CBA pred., 

predicted binding to 5-HT6 receptors by CBA; 
f
B, binder; 

g
PDSP certified data; 

h
NB, non-

binder; 
i
Toremifene was not included in the cmap but was prioritized because 3 other 

related SERMs were hits from both cmap and QSAR-based VS. 
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One of these ten confirmed hits was clozapine, which is known to bind 5-HT6R but 

was not included in our training set. Binding affinity (Ki) values for the nine predicted hits 

were in the range 17 - 4125 nM, with six compounds having Ki values < 1 µM. These six 

highest affinity compounds were: clozapine (Ki=17 nM), doxepin (Ki=105 nM, Fig. 5.8 (A)), 

clomipramine (Ki=112 nM, Fig. 5.8 (B)), zuclopenthixol (Ki=169 nM, Fig. 5.8 (C)), 

nortriptyline (Ki=214 nM, Fig. 5.8 (D)) and raloxifene (Ki=750 nM, Fig. 5.8 (E)).  Of these, 

raloxifene was the most surprising. 
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Figure 5.8. Competition binding isotherms at 5-HT6R for several predicted actives: (A) 

clomipramine (2, red triangle) and chlorpromazine (square), and doxepin (4, blue triangle) 

and chlorpromazine (square); (B) nortiptyline (8, red triangle) and chlorpromazine (square), 

and raloxifene (10, blue triangle) and chlorpromazine (square); (C) zuclopenthixol (13, 

triangle) and chlorpromazine (square), versus [3H]LSD.  
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Among the tested compounds, we found that compounds having negative 

connectivity scores and kNN CS above 0.90 were all true actives at 5-HT6R achieving a 

success rate of 100%. We also found that lowering the threshold to 0.50 resulted in 3 false 

positives which decreased the success rate down to 77 %. It was strikingly important that we 

were able to prioritize a VS hit (i.e., raloxifene) with very low kNN CS of 0.56 and 

insignificant negative connectivity scores with Alzheimer‘s (see Table 5.5) and validate that 

this compound was a true binder of 5-HT6R and a potential therapeutic for Alzheimer‘s 

disease. This is a clear example on the importance of integrating and fusing independent 

hypotheses to increase the confidence of otherwise ‗desperate‘ computational hits. 

Mining of the biomedical literature using ChemoText identified possible 

neuroprotective, in addition to cognitive- and memory-enhancing effects for most of the 

computational hits (see Table 5.6), although there is no evidence that 5-HT6R –active 

compounds are neuroprotective. The list of all 39 compounds predicted by our integrative 

approach as putative 5-HT6R binders with possible anti-Alzheimer‘s effects is shown in 

Table 5. In addition, the top 100 VS hits (i.e., putative 5-HT6R ligands) from the WDI 

identified by the QSAR/VS approach are provided in the Supporting Information.  
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Table 5.6. The significance of the tested hits in relation to cognition, neuroprotection and 

anti-Alzheimer‘s effects. 

Compound Predicted Ki 
Significance to Alzheimer’s disease 

prevention/treatment 

1 Active 1956.0 Unknown 

2 Active 112.0 Neuroprotective (Hwang et al. 2008) 

3 Active 17.0 
Used in combination therapy for Alzheimer‘s (PFEIFER 

et al. 2009) 

4 Active 105.0 Unknown 

5 Active NB GABA receptor modulator (Ong & Kerr 2005, Ong et 

al. 2005) and may inhibit amyloid-beta protein 

oligomerization as other related antihypertensives (Zhao 

et al. 2009) 

6 Active 1188.0 Possible anti-Alzheimer‘s effects (Zhang et al. 2007) 

7 Active NB 
Can inhibit central sensitization and neuroinflammation 

(Horwood et al. 2006, Pezet et al. 2008) 

8 Active 214.0 
Possible anti-Alzheimer‘s effects (Doraiswamy et al. 

2003) 

9 Active NB Unknown 

10 Active 750.0 Possible anti-Alzheimer‘s effects (Yaffe et al. 2005) 

11 Active 1041.0 Neuroprotective (O'Neill et al. 2004) 

12 Active 4125.0 Unknown 

13 Active 169.0 Facilitates memory in rats (Khalifa 2003) 

 

  



199 

 

SERMs Identified as 5-HT6R Ligands 

 Several selective estrogen receptor modulators (SERMs) were predicted as 5-HT6R 

ligands and also had negative connections with the Alzheimer‘s disease gene signatures.  

Clomifene, raloxifene and tamoxifen had negative connections with Alzheimer‘s disease 

gene signatures in the cmap database (Lamb et al. 2006). Toremifene was not included in the 

cmap but was predicted as 5-HT6R binder by QSAR-based VS. Although anti-Alzheimer‘s 

effects of these drugs were observed previously and attributed to their modulation of estrogen 

receptors (ERs), the evidence about ER modulators or hormone replacement therapy in 

postmenopausal women to prevent or treat the Alzheimer‘s disease has been inconclusive 

and sometimes even contradictory (Asthana et al. 2009, Henderson 2009, Shumaker et al. 

2003). Although postmenopausal estrogen depletion is a known risk factor for Alzheimer‘s 

disease, estrogen-containing hormone therapy initiated during late postmenopausal period 

does not improve episodic memory (an important early symptom of Alzheimer's disease), 

leads to no improvement or adverse effect on overall cognitive performance and Alzheimer‘s 

disease in postmenopausal women (Pinkerton & Henderson 2005, Rapp et al. 2003, 

Shumaker et al. 2003), and it increases the risk of dementia (Henderson 2009, Shumaker et 

al. 2003). Be that as it may, there is still substantial evidence from both pre-clinical and 

human studies that ovarian steroids have significant effects on neuroregulatory pathways 

(Schmidt & Rubinow 2009, Benmansour et al. 2009, Frye 2009, Ledoux et al. 2009, Woolley 

2007b, Hart et al. 2007, Woolley 2007a, Woolley & Schwartzkroin 1998). However, critical 

gaps exist in our knowledge of both the effects on brain function of declining ovarian steroid 

secretion during reproductive aging, and the role of ovarian steroid hormone therapy in the 

prevention or treatment of brain diseases (Asthana et al. 2009). 
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Raloxifene Identified as a 5-HT6R Ligand and Agent with Potential Utility in 

Alzheimer’s Disease 

Raloxifene is a selective estrogen receptor modulator used to prevent or treat 

osteoporosis; recently it was also approved by the FDA as an anti-cancer drug for reducing 

the risk of invasive breast cancer in postmenopausal women (FDA 2007).  It was one of the 

low confidence QSAR-based VS hits because of the low structural similarity with modeling 

set compounds. Therefore, we would have avoided testing this compound if it had not been 

predicted from the cmap to have a decent negative connection with Alzheimer‘s disease. 

Another level of confidence was obtained from having other compounds that belonged to the 

same pharmacological group (SERMs) which were predicted as 5-HT6R actives with high 

confidence (i.e., consensus scores above 0.90) and had negative connections with 

Alzheimer‘s disease. This example highlights the value of the integrated informatics 

approach in increasing the hit rates of QSAR-based VS. Experimental testing had indeed 

confirmed that raloxifene binds to 5-HT6R with a Ki of 750 nM (Table 5.5, Fig. 5.8 (E)).  

Yaffe and coworkers examined the data from the Multiple Outcomes of Raloxifene 

Evaluation (MORE) trial and indicated that raloxifene given at a dose of 120 mg/day, but not 

60 mg/day, led to reduced risk of cognitive impairment in postmenopausal women. The 

maximum plasma concentration (Cmax) at such high doses indicated that administration of a 

single dose of 185 mg of raloxifene hydrochloride to four healthy volunteers resulted in a 

maximum plasma concentration (Cmax) of 12.5 μg/L (~26 nM) (Morello et al. 2003). 

We hypothesize that our studies identified raloxifene‘s putative cognition enhancing 

effects by suing QSAR-assisted analysis of cmap connectivity scores. In the same time cmap 

analysis helped in prioritizing  raloxifene, despite its very low kNN CS,  as 5-HT6R binder 
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which turned out to have a decent binding to a very important potential target for cognition 

enhancement. Although raloxifene was not considered before as an attractive CNS drug due 

to its pharmacodynamic profile, the current findings of the MORE study, and others 

(Littleton-Kearney et al. 2002) pointed out that raloxifene enters the brain in relevant 

quantities and exerts a measurable effects in humans. 

However, it is very possible that raloxifene‘s anticipated anti-Alzheimer‘s effects 

could be due to complex polypharmacological profile effecting several protein targets and 

signaling pathways involved in memory, cognition, inflammation, oxidative control and 

other important biological processes to Alzheimer‘s disease etiology, and not limited to its 

canonical targets (i.e. estrogen receptors). Future animal studies are required to validate the 

mechanism(s) of action for raloxifene‘s anti-Alzheimer‘s effects.  Currently,  raloxifene is in 

phase II clinical trials for Alzheimer‘s disease (NIA.NIH 2010).  

Predict and Validate Polypharmacology of SERMs 

 Our receptor family models suggested ploypharmacological effects for SERMs 

through their predicted activities against 5-HT, adrenergic alpha, dopaminergic, histamine, 

muscarinic, and Sigma receptors (see Table 5.7). However, a closer look at the chemical 

structures of these compounds revealed some level of chemical dissimilarity between 

raloxifene and the three other SERMs studied here (i.e., clomiphene ,tamoxifen and 

toremifene).  
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Table 5.7. Predicting polypharmacology of SERMs using receptor family-based QSAR 

models described in Chapter 3. 

Compound 
Serotonin Alpha Dopamine Muscarinic Histamine Sigma 

Pred
a
 Exp

b
 Pred Exp Pred Exp Pred Exp Pred Exp Pred Exp 

Clomiphene B
c
 B B B B B B B B B B B 

Raloxifene B B B B B B B B B B B B 

Tamoxifen B B B B B B B NB
d
 B B B B 

Toremifene B B B B B B B NB B B B B 

Success 

Rate 
100% 100% 100% 50% 100% 100% 

a
Pred, predicted binding using QSAR models; 

b
Exp, experimental result using secondary 

radioligand binding assays; 
c
B, binder; 

d
NB, non-binder. 
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Structural similarity evaluation based on MACCS structural keys and Tanimoto 

coefficients indicated that raloxifene‘s similarity to the other SERMs (clomiphene, tamoxifen 

and toremifene) is < 30%. This suggests this molecule might have some distict 

pharmacological profile and might interact with different molecular targets in a distinct 

manner (at least with some of these molecular targets). However, the structural similarity 

between the three other SERMs studied here is > 78% (see Table 5.8). Additionally, analysis 

of SERMs-protein interaction networks using STITCH (Kuhn et al. 2008) indicated that 

raloxifene has a different set of nearest neighbor proteins than the other SERMs (see Fig. 

5.9). This chemical and biological dissimilarity suggests that raloxifene might have a 

different polypharmacological profile that‘s not limited to its action on estrogen receptors. 
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Table 5.8.  Tanimoto similarities between SERMs based on MACCS structural keys. 

SERMs Clomiphene Tamoxifen Toremifene Raloxifene 

Clomiphene 

100.0 78.6 81.0 29.4 

Tamoxifen 

78.6 100.0 87.5 27.9 

Toremifene 

81.0 87.5 100.0 27.5 

Raloxifene 

29.4 27.9 27.5 100.0 
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Figure 5.9. Chemical protein interaction networks for SERMs. (A) Network centered at 

clomiphene, (B) Network centered at raloxifene, (C) Network centered at tamoxifen, and (D) 

Network centered at toremifene. 
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Additionally, we undertook a large screen of potential targets using the receptorome 

profiling approach (Armbruster and Roth, 2005). All tests were performed by our 

collaborators at PDSP. Secondary screening results indicated that raloxifene has nanomolar 

binding affinities to several GPCRs, ion channels and protein transporters. The highest 

binding affinities were towards adrenergic alpha2C receptors with a Ki of 61 nM, 5-HT2B 

receptors with Ki of 69 nM, kappa opioid receptors (KOR) with Ki of 186, and sigma 1 

receptors with Ki of 247 nM.  All binding affinity results are shown in Table 5.9.   

Clustering binding affinities of SERMs across a panel of molecular targets confirmed 

both QSAR and STITCH predictions that raloxifene‘s biological profile might more different 

that that for other SERMs. In figure 5.9 we can see that centering the STITCH network on 

clomiphene, will pull the rest of the three other SERMs but tamoxifen is closer to clomiphene 

than to raloxifene. Additionally, in figure 5.9 D, we can see that centering the network on 

toremifene identified tamoxifen as the nearest neighbor SERM. Binding profiles of SERMs 

to a panel of GPCRs and other related molecular targets (cf. Fig. 5.10) confirmed that 

clomiphene, tamoxifen and toremifene indeed cluster together, while raloxifene‘s binding 

affinity profile seemed a bit more different. Form this example we can foresee the great 

potential for combining the knowledge derived from both genomic and protein binding 

profiles with the knowledge derived from QSAR-based VS to identify unexpected 

connections between molecular targets and chemical compounds. 
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Table 5.9. Ki estimates for SERMs (i.e., clomiphene, raloxifene, tamoxifen and toremifene) 

at a large panel of cloned receptors. 

Receptor 

Ki for 
Clomiphene 

(PDSP 13499) 

Ki for 
Raloxifene 

(PDSP 13505) 

Ki for 
Tamoxifen 
(PDSP 678) 

Ki for 
Tamoxifen 

(PDSP 10572) 

Ki for 
Toremifene 

(PDSP 16514) 

5ht1a >10000 2330 3477 >10000 >10000 

5ht1b Primary < 50% 624 1618 7857 
Primary < 

50% 

5ht1d 2171 1222 N/A Primary < 50% 4431 

5ht1e Primary < 50% 1868 Primary < 50% Primary < 50% 
Primary < 

50% 

5ht2a 2281 1049 2596 2720 4520 

5ht2b 1210 69 N/A 1952 1916 

5ht2c Primary < 50% 1642 4282 5787 >10000 

5ht4 N/A 5050 N/A N/A N/A 

5ht5a 506 1219 2123 7821 1283 

5ht6 1956 750 931.1 1698 4125 

5ht7 6615 1220 1077 >10000 5428 

Alpha1A 4085 247.7 N/A N/A 
Primary < 

50% 

Alpha1B Primary < 50% 534.6 N/A N/A 
Primary < 

50% 

Alpha1D 1625 478.2 N/A Primary < 50% 1633 

Alpha2A 1440 1288.2 N/A 1211 622.8 

Alpha2B Primary < 50% 7556 N/A N/A 1105 

Alpha2C 1255 61 N/A Primary < 50% 1004 

D1 1252 1626 1508 657 1138 

D2 3543.0(AVE) 683 1682 5517 5122 

D3 1302 >10000 498 1740 514 

D4 6191 (AVE) 3023 7817 >10000 6209 

D5 2298 3803 >10000 >10000 4550 

DAT N/A 928 4328 2820 263 

H1 5853 5356 N/A Primary < 50% 
Primary < 

50% 

H2 1403 1436 N/A 1980 3067 

H3 550.1 3847 N/A N/A 1520 

H4 Primary < 50% 7072 N/A Primary < 50% 
Primary < 

50% 

M1 Primary < 50% >10,000 N/A Primary < 50% 
Primary < 

50% 

M2 Primary < 50% 2037 N/A Primary < 50% 
Primary < 

50% 

M3 4476 Primary < 50% N/A Primary < 50% Primary < 
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50% 

M4 N/A 1229 N/A Primary < 50% 
Primary < 

50% 

M5 6816 8127 N/A Primary < 50% 
Primary < 

50% 

Sigma 1 128 247.8 N/A 481 183 

Sigma 2 19 Primary < 50% N/A 331 377 
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Figure 5.10. The heatmap of binding affinities (Ki) for several SERMs (clomiphene, raloxifene, 

tamoxifen and toremifene), across a panel of GPCRs and other transmembrane molecular targets, 

analyzed by hierarchical clustering of the pairwise similarities in binding affinities using Euclidean 

distances. The bar-view is a key for coloring according to normalized descriptor frequency based on 

binding affinities where blue color indicates most potent binding affinities while red color denotes 

least potent binding affinities.  

 

 



 

 

Conclusions  

We have developed a novel integrative chemocentric informatics approach that could be 

used as a tool for generating and cross-validating drug discovery hypotheses. Our approach 

integrates different in silico strategies and different data types and sources to increase the 

confidence in the final hypotheses. The study design was composed of three major parts: (1) 

QSAR-based datamining of chemical libraries to identify new ligands for target proteins, (2) 

Network-mining to identify chemicals that could treat specific diseases; and (3) Hypothesis 

fusion between (1) and (3).  

This approach has been applied to study the 5-HT6R system in relation to cognition 

enhancement strategies which may be useful for Alzheimer‘s and similar diseases with 

impaired cognition (e.g., schizophrenia). Disease gene signatures for Alzheimer‘s disease 

have been used to query the cmap database to formulate testable hypotheses about potential 

treatments. Common compound hits from QSAR/VS studies against 5-HT6R and the cmap 

were tested in at 5-HT6R.  Our approach identified 39 drugs, as potential 5-HT6R antagonists, 

out of 59000 molecules included in the WDI. Thirteen hits with higher confidence level were 

tested in binding assays and ten compounds were confirmed as 5-HT6R ligands achieving a 

success rate of 77%. We noticed that this study design can be applied to many other protein 

targets and families of targets involved in the etiology of Alzheimer‘s disease.  

Herein, we hypothesized and proved that integrating results generated from the cmap 

with predictions generated from QSAR-based VS increased the confidence level in the 

computational hits generated from QSAR-based VS. It also increased our confidence in some 

cmap negative connections with Alzheimer‘s (i.e., raloxifene) that would have been 

neglected based on either their cmap weak scores or lower confidence predictions from 
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QSAR models. Therefore, we foresee this design as a promising tool to identify molecule-

molecular target-disease (phenotype) associations.  

  



 

 

CHAPTER 6 

FUTURE DIRECTIONS 

Summary 

In order to pursue a rational approach for the discovery of ‗magic shotguns‘ and to 

end our reliance on serendipity as the major driving force for discovering such compounds, 

both genomics-based physical screening and in silico receptoromics should come together in 

the interplay. Herein, we attempted for the first time to establish a compendium of 

computational predictors, completely based on 2D QSAR methods, could be used 

simultaneously for the identification of potential leads. Once leads are discovered, potential 

toxicities could be also predicted in a similar manner by virtually screening such compounds 

against anti-targets (e.g., 5-HT2B agonists) (Setola & Roth 2005). Later, after confirming 

activities against the predicted molecular targets, structure activity effects can be tweaked by 

medicinal chemists. 

In this study, we succeeded in accumulating a large number of computational 

predictors for several receptor families (5-HT, adrenergic, dopamine, histamine, muscarinic 

and sigma receptors) and subtypes (5-HT2A, 5-HT2B, 5-HT6, 5-HT7, adrenergic Alpha2A, 

adrenergic Alpha2B, adrenergic Alpha2C, D1, D2, D3, D4, and D5). Our classification models 

had high accuracies (CCRevs in the range 0.74 to 0.97) estimated on 



 

 

external validation sets. Continuous models using actual binding affinity data had lower 

accuracies however, with R
2
 ranging from 0.59-0.67. This might be partially due to some 

inconsistencies in binding data extracted from different sources and generated by different 

groups. It might be also indicative that binding data per se might not be as effective as 

activity data to generate highly predictive structure activity models. In other words, our 

experience with testing actives indicated that many compounds that have very good 

nanomolar binding affinities are totally inactive in functional assays. Therefore, using high-

quality functional data instead of binding data might be more appropriate to achieve our 

goals in predicting highly active compounds across several receptors of interest. 

Consequently, this might lead to a new era of successful QSAR modeling of 

polypharmacological effects. So far, we are still very short in high-quality activity data 

deposited in public repositories. 

One of the most important predictors generated in our studies was based on QSAR 

models of 5-HT2B receptor ligands that can be used for virtual screening to identify potential 

valvulopathic compounds. Our results indicated the reliability of our computational models 

as efficient predictors of compounds‘ affinity towards 5-HT2B receptors. We suggest that the 

computational models developed in this study could be used as drug liability predictors 

similar to commonly used predictors of other undesired side effects such as carcinogenicity, 

mutagenicity, PGP binding, or hERG binding. Our models can be used to flag compounds 

that are expected to bind to 5-HT2B receptors but they cannot distinguish agonists from 

antagonists.  Nevertheless, as demonstrated in this study, these putative 5-HT2B binders can 

be tested in functional assays for their potential to activate 5-HT2B receptors to further assess 

their valvulopathic potential.   
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We have also developed a novel integrative chemocentric informatics approach that 

could be used as a tool for generating and cross-validating drug discovery hypotheses. Our 

approach integrates different in silico strategies and different data types and sources to 

increase the confidence in the final hypotheses. The study design was composed of three 

major parts: (1) QSAR-based datamining of chemical libraries to identify new ligands for 

target proteins, (2) Network-mining to identify chemicals that could treat specific diseases; 

and (3) Hypothesis fusion between (1) and (3).  

This approach has been applied to study the 5-HT6R system in relation to cognition 

enhancement strategies which may be useful for Alzheimer‘s and similar diseases with 

impaired cognition (e.g., schizophrenia). Herein, we hypothesized and proved that integrating 

results generated from the cmap with predictions generated from QSAR-based VS increased 

the confidence level in the computational hits generated from QSAR-based VS. It also 

increased our confidence in some cmap negative connections with Alzheimer‘s (i.e., 

raloxifene) that would have been neglected based on either their cmap weak scores or lower 

confidence predictions from QSAR models. Therefore, we foresee this design as a promising 

tool to identify molecule-molecular target-disease (phenotype) associations. We also believe 

that our recent and future studies into integrated chemocentric informatics will provide new 

successful avenues for the development of novel multi-targeted therapeutics capable of 

treating and/or preventing complex diseases such as neurodegenerative diseases, cancer and 

diabetes. This approach could be extended to many similar receptor systems and many 

different diseases serving as a cost-effective in silico tool for the discovery of novel 

biologically active compounds acting via clinically relevant targets. 

In silico Receptoromics 
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All methods discussed above share potential pitfalls of any QSAR methodology such 

as over-fitting and potential danger associated with extrapolation.  However, with the 

continuing advancements in this field, on the level of machine learning methods and 

descriptor types, there is a great room for improving the expected outcome. Future work in 

this field will include experimenting with various types of descriptors as well as consider 

additional combinations of classification techniques in the context of combinatorial QSAR 

modeling.  

Experimental validation procedures should be designed carefully to study the 

possibilities and the limitations of family-based models, especially because we are dealing 

with closely related proteins (i.e., GPCRs). For example, common hits predicted to bind 

several families of GPCRs should be experimentally validated. We should be cautioned 

however, that even though the binding profile might look promising but the real therapeutic 

effects are related to the actual functional activities of these ligands on specific receptor 

subtypes within these families. At the same time, the higher is the predicted promiscuity 

level, the higher is the risk for having adverse effects in vivo and the higher possibility for 

complications in drug design efforts in general; trying to optimize a lead‘s activity on several 

molecular targets at the same time would be highly difficult. 

Additionally, to be able to make the best use of family-based models we should 

design the proper tools for: (1) calculation of the appropriate consensus scores across family-

based models, (2) estimating the hit rates in actual binding assays. Currently, we are 

calculating consensus scores separately from models generated for each family. Then we 

select for further experimental testing those hits that possess acceptable consensus scores in 

each case. It might be useful to find new ways to calculate one consensus score across all 
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families which will make it easier for us to perform activity profiling across families and to 

calculate corresponding hit rates. However, calculating hit rates for hits predicted to bind 

several families of GPCRs could be highly complicated. It should be kept in mind that 

although we predict a compound to be a ligand for a specific receptor family, but this 

prediction does not imply in any way that this compound will bind to several or all receptor 

subtypes in that specific family. This result is dictated by the nature of the datasets used for 

model building. We will find that some chemicals will bind one specific subtype and does 

not bind to any other subtypes in the same family and vice versa. 

Additionally, as more data becomes available where we have full matrices for large 

number of compounds tested in binding and functional assays against a panel of receptors, it 

will be highly useful to experiment with Multi-Task learning (MTL) methods; unlike the case 

with conventional QSAR calculations using Single Task Learning (STL), where the models 

are developed for a single property, Multi-task Learning (MTL) approaches train the models 

simultaneously for several related properties (i.e., binding profiles against several receptor 

families or subtypes). Such approach has the potential to predict polypharmacology against a 

multitude of receptor families and subtypes and/or subtype selectivity. MTL is expected to 

increase the predictive power of the QSAR models in comparison to STL models (Varnek et 

al. 2009), because ―what is learned for each task can help the other tasks learned better‖ 

(Caruana 1997). 

GPCRs are highly promiscuous targets, and the majority of GPCR ligands hit 

multiple GPCRs at the same time, therefore, it makes more sense to use modeling methods 

that could analyze the ligand binding profile to families and subtypes of GPCRs at once. This 

process will allow the model to take into account all the commonalities and differences that 
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exist between families of receptors and specific receptor subtypes. We foresee MTL as a 

promising approach to study both polypharmacology and selectivity of GPCR ligands; single 

task models are surely missing an important layer on information embedded in the ligands 

affinity to all other families of receptors or receptor subtypes. In MTL, the modeled property 

consists of all the binding affinities of compounds across different families of receptors. Such 

property can be coded in a bit string of zeros and ones (i.e., binding is encoded by 1 and non-

binding is encoded by 0). 

 One can use Associative Neural Networks (ASNN) (ASNN 2010, Tetko 2002) as a 

machine learning method to conduct MTL on polypharmacological datasets. This method 

represents a combination of an ensemble of feed-forward neural networks and the k-nearest 

neighbor technique. ASNN uses the correlation between ensemble binding responses as a 

measure of distance among the analyzed cases for the nearest neighbor technique. Using this 

method provides an improved prediction by the bias correction of the neural network 

ensemble. An associative neural network has a memory that can coincide with the training 

set. If new data becomes available, the network further improves its predictive ability and 

provides a reasonable approximation of the unknown function without a need to retrain the 

neural network ensemble. This feature of the method dramatically improves its predictive 

ability over traditional neural networks and k-nearest neighbor techniques. Another important 

feature of ASNN is the possibility to interpret neural network results by analysis of 

correlations between data cases in the space of models. 

Chemocentric Informatics Approach 

One of the major limitations of using our integrative approach effectively is the 

relatively small number of compounds contained in the cmap. Consequently, this will limit 
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our ability to identify novel hits; novel hits are better identified from larger libraries with a 

multitude of diverse compounds. But this resource is constantly growing, and it aims to cover 

all FDA approved drugs and other chemicals of clinical potential. However, we might be able 

to tackle this problem computationally; where the negative connections (with a disease state) 

having the highest confidence can be used a similarity probes to search chemical databases.  

There are also limitations that originate from the disease gene-signatures. It is 

common that patients having certain diseases or who are older than 50, are already taking 

some medications for different reasons. These medications might affect the quality of 

generated disease gene signatures so that changes in gene signatures might be more 

correlated to drugs rather than disease states (i.e. it might mask disease signatures in 

postmortem signatures from human brain) and consequently could affect the result we obtain 

from querying the cmap.  However, the amount of information contained in these genomic 

signatures is enormous. Therefore, the earnest analysis of all predicted negative and positive 

connections with a disease state and considering the wide range of connectivity scores (i.e. 

negative, positive and null) should be considered and studied carefully. Experiments should 

be also designed to test both positive and negative hypotheses. 

Another kind of analysis for cmap predictions depends on the specific scores for gene 

signature similarities (with the disease gene signature) in each of the cell lines used to 

generate the chemical‘s gene expression profiles. Herein, we raise the question whether 

specific cell types are more reliable than others in a disease state of interest? Do we have to 

analyze scores obtained from each cell line separately to derive hypotheses based on the 

differences between cell lines and what protein targets are over-expressed in which cell 

lines? Or shall we consider inconsistencies in connectivity scores among cell lines as an 
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evidence for non-reliable gene expression profiles and therefore should be neglected? So 

these are all important issues to keep in mind for further improvements on the way we 

analyze data from this important chemogenomic resource. It would be wise though to 

consider all possibilities, derive hypotheses, design appropriate tests and validate predictions 

and methods. Finally, fusing all generated hypotheses is expected to provide us with the most 

optimal solutions. 

Conclusion 

In conclusion, it is likely that our computational efforts described herein and other 

efforts by different groups to study polypharmacology in silico will eventually result in 

useful and reliable tools aimed at enriching chemical libraries in compounds that have 

affinities for more than a single desired molecular target. We also think that a combination of 

in silico methods will be more powerful than a single method alone as our expertise in the 

computational field has indicated time after time. 



 

 

Appendix I: 

Final VS Hits as 5-HT2B Actives 

WDI Compound Name 

No. of kNN 

Models 

Consensus 

Score 

VEIUTAMINE 104 1.00 

DROMIA 112 1.00 

BRL-56905 121 1.00 

CLAUSINE-E 123 0.99 

ARAPROFEN 112 0.99 

FURPROFEN 104 0.99 

ADRENOGLOMERULOTROPIN 122 0.98 

6-FLUOROMELATONIN 115 0.98 

HYDROXYTRYPTAMINE-

GLUTAMYL 

111 0.98 

LIQUIRITIGENIN 110 0.98 

PIDOBENZONE 123 0.98 

GALANGIN 103 0.97 

EMD-47020 102 0.97 

SYRIACUSIN-C 119 0.97 

MICROMINUTIN 117 0.97 

NPC-14692 113 0.96 

SALSALIC-ACID 124 0.96 

CP-123800 116 0.96 
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METHYLDOPA-RACEMIC 115 0.96 

SR-4452 114 0.96 

CEAROIN 111 0.95 

CL-08-A 109 0.95 

MNA-279 102 0.95 

2-HYDROXYESTRONE 102 0.95 

5-METHOXYTRYPTOLINE 115 0.95 

EMD-57283 111 0.95 

SALICYL-TYROSINE 110 0.95 

HYDROXYMESOCARB-BETA 108 0.94 

RHAPONTIGENIN 114 0.94 

AFFININE 108 0.94 

6-METHOXYMELLEIN 122 0.93 

R-53309 105 0.93 

BARCELONEIC-ACID-B 103 0.93 

17-ALPHA-ESTRADIOL-ACETATE 116 0.93 

RH-34 112 0.93 

LEK-8827 109 0.93 

PAXAMATE 122 0.93 

ACETYLCARANINE 106 0.92 

METHYLERGOMETRINE 118 0.92 

FEBRIFUGINE 117 0.92 

K-182 116 0.92 
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2-METHOXYESTRONE 113 0.92 

METHYLDOPA 107 0.92 

CGP-13698 114 0.91 

BW-826-C 101 0.91 

BE-6143 110 0.91 

AM-40 112 0.90 

BUTOLAME 110 0.90 

L-TYROSINE 104 0.89 

LAPACHONE-BETA 107 0.89 

TOFETRIDINE 124 0.89 

FUSAROCHROMANONE 103 0.88 

DOISYNESTROL 119 0.88 

METBUFEN 108 0.88 

H-195-60 122 0.88 

AMINOHIPPURATE-SODIUM 102 0.87 

SR-4895 100 0.87 

XANTHANOIC-ACID 123 0.87 

HEXACYPRONE 115 0.87 

BENZALBUTYRATE-SODIUM 115 0.87 

LY-248510 121 0.87 

BENZOYLNORECGONINE 110 0.86 

PYRIDAZOMYCIN 102 0.86 

VALLDEMOSSINE 115 0.86 
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CARFIMATE 107 0.86 

TL-404 121 0.86 

RO-03-9024 115 0.85 

4-BENZYLOXYPHENYLACETATE 121 0.85 

NB-355 119 0.85 

MENADIONE 102 0.84 

PIM-35 101 0.84 

TRANS-2-HYDROXYLOMUSTINE 106 0.84 

FLUTIMIDE 111 0.84 

661-U-88 117 0.84 

SENKYUNOLIDE-J 104 0.84 

ERYTHRININ-B 103 0.83 

LY-193326 120 0.83 

YM-992 120 0.83 

CARBESTROL 123 0.83 

RETICULATINE-A 103 0.83 

CLAVIROLIDE-D 102 0.82 

3-HYDROXYPRAZEPAM 110 0.82 

NSC-350102 114 0.82 

POLYMONINE 114 0.82 

C-883901 102 0.81 

PISIFERIC-ACID 107 0.81 

IMIDOCARB 100 0.81 
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NPC-15199 115 0.81 

ISO-BUTYLNAPHTHYLACETATE 121 0.80 

PROPIONYLPHENETIDINE 123 0.80 

RALGIN 121 0.79 

NPC-15667 119 0.79 

HYDROXYPHENYLGLYCINE 104 0.79 

BUTYLPHENAMIDE 112 0.79 

ARPHAMENINE-B 111 0.78 

METAMIVANE 123 0.78 

RICCARDIPHENOL-C 120 0.77 

WAY-122331 120 0.77 

TROXIPIDE 114 0.77 

BW-306-U 117 0.77 

MELINONINE-F 105 0.76 

GLYCOCITRINE-II 109 0.76 

AMICLENOMYCIN 104 0.76 

METHYLSALICYLATE 103 0.75 

L-4035 118 0.75 

BUTACETIN 113 0.74 

O-ACETYLPROPRANOLOL 116 0.74 

L-372460 114 0.74 

ETERSALATE 113 0.73 

FUCHSIN 100 0.73 
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4-HYDROXYDERRICIN 111 0.73 

FPL-13950 124 0.73 

KWD-2131 116 0.72 

K-7731 118 0.72 

CD-417 117 0.72 

MC-207110 106 0.72 

ENALAPRIL 109 0.72 

PHENOXYACETATE-METHYL-ESTER 107 0.71 

BENZASTATIN-B 114 0.70 

NSC-319848 107 0.70 

NSC-645306 100 0.70 

ASPERGILLAMIDE-A 100 0.70 
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Appendix II 

146 5-HT2B Actives Used in the Modeling Studies 

Cp. 

ID 

PubChe 

CID 

SMILES 

1 1001 NCCc1ccccc1 

2 1065 O(C)c1cc2c(nccc2C(O)C2N3CC(C(C2)CC3)C=C)cc1 

3 1150 [nH]1cc(c2c1cccc2)CCN 

4 1224 OC1(CC2N(CC1)CC1c3c2cccc3CCc2c1cccc2)C(C)(C)C 

5 1229 Ic1cc(OC)c(cc1OC)CC(N)C 

6 1243 Brc1cc2c(cc1O)C(CN(CC2)C)c1ccccc1 

7 1250 Oc1cc2c(N(C3N(CCC23C)C)C)cc1 

8 1355 Clc1cc(N2CCNCC2)ccc1 

9 1614 O1c2cc(ccc2OC1)CC(N)C 

10 1615 O1c2cc(ccc2OC1)CC(NC)C 

11 1832 O(C)c1cc2c([nH]cc2CCN(C)C)cc1 

12 2099 O=C1N(CCc2n(c3c(c12)cccc3)C)Cc1nc[nH]c1C 

13 2159 S(=O)(=O)(CC)c1cc(C(=O)NCC2N(CCC2)CC)c(OC)cc1N 

14 2160 N(CCC=C1c2c(CCc3c1cccc3)cccc2)(C)C 

15 2170 Clc1cc2c(Oc3c(N=C2N2CCNCC2)cccc3)cc1 

16 2196 O(C)c1ccc(cc1)C(=O)N1CCCC1=O 

17 2247 Fc1ccc(cc1)Cn1c2c(nc1NC1CCN(CC1)CCc1ccc(OC)cc1)cccc2 

18 2267 Clc1ccc(cc1)CC1=NN(C2CCCN(CC2)C)C(=O)c2c1cccc2 

19 2308 ClC12C(C3CC(C)C(O)(C(=O)CO)C3(CC1O)C)CCC1=CC(=O)C=CC12C 
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20 2318 FC(F)(F)c1cc(ccc1)CC(NCCOC(=O)c1ccccc1)C 

21 2326 O(CC(N1CCCCC1)C)c1ccccc1Cc1ccccc1 

22 2344 O(C(c1ccccc1)c1ccccc1)C1CC2N(C(C1)CC2)C 

23 2377 O(CCCCNC)c1ccccc1Cc1ccccc1 

24 2443 Brc1[nH]c2c3c1CC1N(CC(C=C1c3ccc2)C(=O)NC1(OC2(O)N(C(CC(C)C

)C(=O)N3C2CCC3)C1=O)C(C)C)C 

25 2477 O=C1N(CCCCN2CCN(CC2)c2ncccn2)C(=O)CC2(C1)CCCC2 

26 2512 O=C(N(CCCN(C)C)C(=O)NCC)C1CC2C(N(C1)CC=C)Cc1c3c2cccc3[nH

]c1 

27 2520 O(C)c1cc(ccc1OC)C(C(C)C)(CCCN(CCc1cc(OC)c(OC)cc1)C)C#N 

28 2585 O(CCNCC(O)COc1c2c3c([nH]c2ccc1)cccc3)c1ccccc1OC 

29 2726 Clc1cc2N(c3c(Sc2cc1)cccc3)CCCN(C)C 

30 2769 Clc1cc(C(=O)NC2CCN(CC2OC)CCCOc2ccc(F)cc2)c(OC)cc1N 

31 2771 Fc1ccc(cc1)C1(OCc2c1ccc(c2)C#N)CCCN(C)C 

32 2780 Clc1cc(C(=O)NC2CCN(CC2)Cc2ccccc2)c(OC)cc1N 

33 2781 Clc1ccc(cc1)C(OCCC1N(CCC1)C)(C)c1ccccc1 

34 2782 Clc1ccc(cc1)Cn1c2c(nc1CN1CCCC1)cccc2 

35 2801 Clc1cc2N(c3c(CCc2cc1)cccc3)CCCN(C)C 

36 2818 Clc1cc2NC(N3CCN(CC3)C)=C3C(=Nc2cc1)C=CC=C3 

37 2820 Clc1cc2NC(N3CCNCC3)=C3C(=Nc2cc1)C=CC=C3 

38 2866 OC1CCC2C(CC3N(C2)CCc2c3[nH]c3c2cccc3)C1C(OC)=O 

39 2895 N(CCC=C1c2c(C=Cc3c1cccc3)cccc2)(C)C 

40 2913 N1(CCC(CC1)=C1c2c(C=Cc3c1cccc3)cccc2)C 
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41 3065 O1C(NC(=O)C2CC3C(N(C2)C)Cc2c4c3cccc4[nH]c2)(C(C)C)C(=O)N2C(

Cc3ccccc3)C(=O)N3C(CCC3)C12O 

42 3066 O1C(NC(=O)C2CC3C(N(C2)C)Cc2c4c3cccc4[nH]c2)(C)C(=O)N2C(Cc3c

cccc3)C(=O)N3C(CCC3)C12O 

43 3117 S(SC(=S)N(CC)CC)C(=S)N(CC)CC 

44 3250 OCC(NC(=O)C1C=C2C(N(C1)C)Cc1c3c2cccc3[nH]c1)C 

45 3251 O1C(NC(=O)C2C=C3C(N(C2)C)Cc2c4c3cccc4[nH]c2)(C)C(=O)N2C(Cc

3ccccc3)C(=O)N3C(CCC3)C12O 

46 3341 Clc1c2c(cc(O)c1O)C(CNCC2)c1ccc(O)cc1 

47 3372 S1c2c(N(c3c1cccc3)CCCN1CCN(CC1)CCO)cc(cc2)C(F)(F)F 

48 3386 FC(F)(F)c1ccc(OC(CCNC)c2ccccc2)cc1 

49 3463 O(CCCC(C(O)=O)(C)C)c1cc(ccc1C)C 

50 3519 Clc1cccc(Cl)c1CC(=O)N=C(N)N 

51 3646 O1c2c(OC1)cc1c(CN(CC1)C)c2OC 

52 3675 N(N)CCc1ccccc1 

53 3689 Oc1ccc(cc1)C(O)C(N1CCC(CC1)Cc1ccccc1)C 

54 3827 s1c2c(cc1)C(c1c(CC2=O)cccc1)=C1CCN(CC1)C 

55 3878 Clc1c(cccc1Cl)-c1nnc(nc1N)N 

56 3938 O=C(NC1C=C2C(N(C1)C)Cc1c3c2cccc3[nH]c1)N(CC)CC 

57 3964 Clc1cc2c(Oc3c(N=C2N2CCN(CC2)C)cccc3)cc1 

58 4090 O(Cc1ccccc1)C(=O)NCC1CC2C(N(C1)C)Cc1c3c2cccc3n(c1)C 

59 4106 S1c2c(cc(SC)cc2)C(N2CCN(CC2)C)Cc2c1cccc2 

60 4140 OCC(NC(=O)C1C=C2C(N(C1)C)Cc1c3c2cccc3[nH]c1)CC 
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61 4184 N12C(c3c(Cc4c1cccc4)cccc3)CN(CC2)C 

62 4205 n1c2N3C(c4c(Cc2ccc1)cccc4)CN(CC3)C 

63 4296 FC(F)(F)c1cc(N2CCNCC2)ccc1 

64 4418 O(C)c1ccccc1N1CCN(CC1)CC(O)COc1c2c(ccc1)cccc2 

65 4449 Clc1cc(N2CCN(CC2)CCCN2N=C(N(CCOc3ccccc3)C2=O)CC)ccc1 

66 4475 Brc1cc(cnc1)C(OCC1CC2(OC)C(N(C1)C)Cc1c3c2cccc3n(c1)C)=O 

67 4543 N(CCC=C1c2c(CCc3c1cccc3)cccc2)C 

68 4585 S1C2=Nc3c(NC(N4CCN(CC4)C)=C2C=C1C)cccc3 

69 4595 O=C1c2c(n(c3c2cccc3)C)CCC1Cn1ccnc1C 

70 4636 Oc1c(C)c(CC=2NCCN=2)c(cc1C(C)(C)C)C 

71 4658 Ic1ccc(cc1)C(=O)N(CCN1CCN(CC1)c1ccccc1OC)c1ncccc1 

72 4691 Fc1ccc(cc1)C1CCNCC1COc1cc2OCOc2cc1 

73 4745 S(CC1CC2C(N(C1)CCC)Cc1c3c2cccc3[nH]c1)C 

74 4748 Clc1cc2N(c3c(Sc2cc1)cccc3)CCCN1CCN(CC1)CCO 

75 4847 Fc1ccc(cc1)C(=O)C1CCN(CC1)CCC=1C(=O)N2C(=NC=1C)C=CC=C2 

76 4893 o1cccc1C(=O)N1CCN(CC1)c1nc(N)c2cc(OC)c(OC)cc2n1 

77 4917 Clc1cc2N(c3c(Sc2cc1)cccc3)CCCN1CCN(CC1)C 

78 4927 S1c2c(N(c3c1cccc3)CC(N(C)C)C)cccc2 

79 5002 S1c2c(cccc2)C(=Nc2c1cccc2)N1CCN(CC1)CCOCCO 

80 5011 n1c2c(ccc1N1CCNCC1)cccc2 

81 5018 Clc1cc2c(cc1O)C(CN(CC2)C)c1ccccc1 

82 5073 Fc1cc2onc(c2cc1)C1CCN(CC1)CCC=1C(=O)N2C(=NC=1C)CCCC2 

83 5074 S1C=CN2C1=NC(C)=C(CCN1CCC(CC1)=C(c1ccc(F)cc1)c1ccc(F)cc1)C
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2=O 

84 5095 O=C1Nc2c(C1)c(ccc2)CCN(CCC)CCC 

85 5163 O=C(Nc1cccnc1)N1CCc2c1cc1c(n(cc1)C)c2 

86 5202 Oc1cc2c([nH]cc2CCN)cc1 

87 5406 O=C(NC1CC2C(N(C1)C)Cc1c3c2cccc3[nH]c1)N(CC)CC 

88 5452 S1c2c(N(c3c1cccc3)CCC1N(CCCC1)C)cc(SC)cc2 

89 5533 Clc1cc(N2CCN(CC2)CCCN2N=C3N(C=CC=C3)C2=O)ccc1 

90 5566 S1c2c(N(c3c1cccc3)CCCN1CCN(CC1)C)cc(cc2)C(F)(F)F 

91 5684 O(C)c1ccccc1N1CCN(CC1)CCN(C(=O)C1CCCCC1)c1ncccc1 

92 5709 N1CCN=C1Cc1c(cc(cc1C)C(C)(C)C)C 

93 5736 Clc1cc2c(Sc3c(C=C2OCCN(C)C)cccc3)cc1 

94 6018 O(C)c1cc2C3N(CC(CC(C)C)C(=O)C3)CCc2cc1OC 

95 7638 O(Cc1ccccc1)c1ccc(O)cc1 

96 8794 N#CCc1ccccc1 

97 15443 Fc1ccc(cc1)C(=O)CCCN1CCN(CC1)c1ncccc1 

98 15641 P(OCCCCCCCC)(OCCCCCCCC)(=O)c1ccccc1 

99 15897 FC(F)(F)c1cc(ccc1)CC(N)C 

100 16106 N=1c2c(Cc3c(cccc3)C=1N1CCN(CC1)C)cccc2 

101 16118 S(=O)(=[NH])(CCC(N)C(O)=O)C 

102 16414 Clc1cc2N(c3c(Sc2cc1)cc(O)cc3)CCCN(C)C 

103 21722 n1(c2CCCCCCc2c2c1cccc2)CCCN(C)C 

104 23897 O1CCN(CC1)CC1CCc2[nH]c(C)c(c2C1=O)CC 

105 27400 s1c2c(cc1)C(c1c(CC2)cccc1)=C1CCN(CC1)C 
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106 37586 Clc1[nH]c2c3c1CC1N(CC(CC1c3ccc2)CC#N)C 

107 49381 Fc1cc2N=C(N3CCN(CC3)C)c3c(Cc2cc1)cccc3 

108 54940 Brc1ccc(OC)c(C(=O)NCC2N(CCC2)CC)c1OC 

109 60149 Clc1cc2c(n(cc2C2CCN(CC2)CCN2CCNC2=O)-c2ccc(F)cc2)cc1 

110 60795 Clc1c(N2CCN(CC2)CCCCOc2cc3NC(=O)CCc3cc2)cccc1Cl 

111 60809 s1nc(C=2CN(CCC=2)C)c(OCCCCCC)n1 

112 65489 Clc1cc2NC(=O)N(c2cc1)CCCN1CCC(CC1)C(=O)c1ccc(F)cc1 

113 73333 Fc1ccc(cc1)C(CCCN1CCN(CC1)C(=O)NCC)c1ccc(F)cc1 

114 91613 [nH]1c(cnc1C)CCN 

115 99049 O1C(NC(=O)C2C=C3C(N(C2)C)Cc2c4c3cccc4[nH]c2)(C(C)C)C(=O)N2

C(CC(C)C)C(=O)N3C(CCC3)C12O 

116 107992 Clc1nc(N2CCNCC2)cnc1 

117 108029 O(C)c1cc2c([nH]cc2C=2CCNCC=2)cc1 

118 123932 S(Oc1ccc(cc1O)CCN)(O)(=O)=O 

119 125085 Fc1ccc(cc1)C(=O)CCCN1CCC2(N(CN(CCc3ccc(N)cc3)C2=O)c2ccccc2)

CC1 

120 131747 Clc1nc(N2CCC(N)CC2)ccc1 

121 132564 O1CCCc2c3c(n(cc3CCN)C)ccc12 

122 146224 Clc1cc(Cl)ccc1CNN\C=N/C(=O)c1nc(Cl)c(nc1N)N 

123 291264 O1C2C(CCC(=C3C2C(=CC3=O)C)C)C(C)C1=O 

124 589768 Oc1c2c([nH]cc2CC(N)C(O)=O)ccc1 

125 592735 O1C(NC(=O)C2CC3C(N(C2)C)Cc2c4c3cccc4[nH]c2)(C(C)C)C(=O)N2C(

C(CC)(C)C)C(=O)N3C(CCC3)C12O 
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126 627310 Brc1[nH]c2c3c1CC1N(CC(C=C1c3ccc2)C(=O)N(CC)CC)C 

127 667466 Clc1cc\2c(Sc3c(cccc3)/C/2=C\CCN(C)C)cc1 

128 667468 O1Cc2c(cccc2)\C(\c2c1cccc2)=C\CCN(C)C 

129 1548943 O(C)c1cc(ccc1O)CNC(=O)CCCC\C=C\C(C)C 

130 3065828 O(C)c1c(cccc1OC)C(=O)NC1CC2N(C(C1)CC2)Cc1ccccc1 

131 3408722 O(C)c1c2c(cccc2)c(cc1C(=O)NCC1N(CCC1)CCCC)C#N 

132 3906894 Clc1cc2NC(=O)C3N(CCNC3)c2cc1Cl 

133 4284720 s1cccc1COc1cc2c([nH]cc2CC(N)C)cc1 

134 5251926 S(=O)(=O)(NC1CC2C(N(C1)C)Cc1c3c2cccc3n(c1)C)N(C)C 

135 5281881 S1c2c(cc(cc2)C(F)(F)F)\C(\c2c1cccc2)=C/CCN1CCN(CC1)CCO 

136 5474706 O(C)C=1C=CC2=NC=3C(=C2C=1)CCNC=3C 

137 5487301 OCc1cc\2c(N=C/C/2=C\NN\C(=N\CCCCC)\N)cc1 

138 6422124 O(CCCc1[nH]cnc1)c1ccc(cc1)C(=O)C1CC1 

139 6446980 Clc1cc2C=C(N3CCN(CC3)C)c3c(cccc3)\C(\c2cc1)=C\C#N 

140 6510284 s1cc2c(c1)\C(\c1c(N=C2N2CCN(CC2)C)csc1)=C\C#N 

141 6713986 Clc1cc(CC)c(O)c(C(=O)NCC2N(CCC2)CC)c1OC 

142 9908697 OC1CCCC1NC(=O)C1CC2C(N(C1)C)Cc1c3c2cccc3n(c1)C(C)C 

143 13995788 O(C(=O)C1CC2C(N(C1)C)Cc1c3c2cccc3n(c1)C(C)C)C1CCC(OC)CC1 

144 14096625 s1nc(N2CCN(CC2)CCCCN2C(=O)C3C(CCCC3)C2=O)c2c1cccc2 

145 14665495 Ic1cc(C(=O)NCC2N(CCC2)CC)c(OC)c(OC)c1 

146 21982952 O=C(NC1CCCCC1)C1CC2C(N(C1)C)Cc1c3c2cccc3n(c1)C(C)C 
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Appendix III 

608 5-HT2B Inactives Used in the Modeling Studies 

Cp. 

ID 

PubChe 

CID 

SMILES 

147 89 Oc1cccc(C(=O)CC(N)C(O)=O)c1N 

148 143 O=C1N=C(NC=2NCC(N(C1=2)C=O)CNc1ccc(cc1)C(=O)NC(CCC(

O)=O)C(O)=O)N 

149 191 O1C(CO)C(O)C(O)C1n1c2ncnc(N)c2nc1 

150 199 N(CCCCN)=C(N)N 

151 204 O=C1NC(=O)NC1NC(=O)N 

152 225 OC1CC2CCC3C4CCC(=O)C4(CCC3C2(CC1)C)C 

153 235 O1C(C(O)CO)C(=O)C(O)=C1O 

154 253 S1CC2NC(=O)NC2C1CCCCC(O)=O 

155 275 O(N=C(N)N)CCC(N)C(O)=O 

156 288 OC(CC(=O)[O-])C[N+](C)(C)C 

157 298 ClC(Cl)C(=O)NC(C(O)c1ccc([N+](=O)[O-])cc1)CO 

158 408 O=C1N(C)C(CC1)c1cccnc1 

159 450 OC1CCC2C3C(CCC12C)c1c(cc(O)cc1)CC3 

160 554 O=C([O-])C1[N+](CCC1)(C)C 

161 653 O1c2c(cccc2)C(=O)C(CC=2C(=O)c3c(OC=2O)cccc3)=C1O 

162 815 O1C(CN)C(O)C(O)C(O)C1OC1C(O)C(OC2OC(CO)C(O)C(N)C2O)

C(N)CC1N 
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163 853 Ic1cc(cc(I)c1Oc1cc(I)c(O)c(I)c1)CC(N)C(O)=O 

164 861 Ic1cc(cc(I)c1Oc1cc(I)c(O)cc1)CC(N)C(O)=O 

165 925 P(OCC1OC([n+]2cc(ccc2)C(=O)N)C(O)C1O)(OP(OCC1OC(n2c3ncn

c(N)c3nc2)C(O)C1O)(O)=O)(=O)[O-] 

166 932 O1c2c(C(=O)CC1c1ccc(O)cc1)c(O)cc(O)c2 

167 1027 OC1CC2=CCC3C4CCC(C(=O)C)C4(CCC3C2(CC1)C)C 

168 1046 O=C(N)c1nccnc1 

169 1054 Oc1c(CO)c(cnc1C)CO 

170 1072 O=C1NC(=O)N=C2N(c3cc(C)c(cc3N=C12)C)CC(O)C(O)C(O)CO 

171 1130 s1c[n+](Cc2cnc(nc2N)C)c(C)c1CCO 

172 1203 O1c2c(CC(O)C1c1cc(O)c(O)cc1)c(O)cc(O)c2 

173 1207 N1C2Cc3c(cccc3)C1(c1c2cccc1)C 

174 1211 O1c2cc3C(N(CCc3cc2OC)C)Cc2ccc(Oc3c4C([N+](CCc4cc(OC)c3O

)(C)C)Cc3cc1c(O)cc3)cc2 

175 1258 O1C2C3[N+]([O-])(C(CC(OC(=O)C(CO)c4ccccc4)C3)C12)C 

176 1302 O(C)c1cc2c(cc(cc2)C(C(O)=O)C)cc1 

177 1691 O1C(C)C(O)C(N)CC1OC1CC(O)(Cc2c1c(O)c1c(C(=O)c3c(C1=O)c(

OC)ccc3)c2O)C(=O)CO 

178 1805 O1C(CO)C(O)C(O)C1N1C=NC(=NC1=O)N 

179 1892 O=C1N(C)C(=O)N(c2ncn(c12)CCO)C 

180 1978 O(CC(O)CNC(C)C)c1ccc(NC(=O)CCC)cc1C(=O)C 

181 1981 Clc1ccc(cc1)C(=O)n1c2c(cc(OC)cc2)c(CC(OCC(O)=O)=O)c1C 

182 1983 Oc1ccc(NC(=O)C)cc1 
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183 1986 s1c(nnc1S(=O)(=O)N)NC(=O)C 

184 1989 S(=O)(=O)(NC(=O)NC1CCCCC1)c1ccc(cc1)C(=O)C 

185 1990 O=C(NO)C 

186 1993 O(C(C[N+](C)(C)C)C)C(=O)C 

187 2012 O(C)C1C2(O)CC3C(C(OC(=O)C)(C4C5N(CC6(C(C35C(OC)CC6O)

C4OC)COC)CC)C1O)C2OC(=O)c1ccccc1 

188 2022 O=C1N=C(Nc2n(cnc12)COCCO)N 

189 2073 OC1N2C3C4C(CC2C2N(c5c(C2(C3)C4O)cccc5)C)C1CC 

190 2082 S(CCC)c1cc2[nH]c(nc2cc1)NC(OC)=O 

191 2083 Oc1ccc(cc1CO)C(O)CNC(C)(C)C 

192 2094 O=C1N=CN=C2NNC=C12 

193 2116 O1c2c(CCC1(CCCC(CCCC(CCCC(C)C)C)C)C)c(C)c(O)c(C)c2C 

194 2130 NC12CC3CC(C1)CC(C2)C3 

195 2142 O1C(CN)C(O)C(O)C(O)C1OC1C(O)C(OC2OC(CO)C(O)C(N)C2O)

C(NC(=O)C(O)CCN)CC1N 

196 2151 O=C1N(N(C)C(C)=C1N)c1ccccc1 

197 2153 O=C1N(C)C(=O)N(c2nc[nH]c12)C 

198 2157 Ic1cc(cc(I)c1OCCN(CC)CC)C(=O)c1c2c(oc1CCCC)cccc2 

199 2158 O1C2OC(OC2C(OCCCN(C)C)C1C(O)CO)(C)C 

200 2173 S1C2N(C(C(=O)[O-])C1(C)C)C(=O)C2NC(=O)C(N)c1ccccc1 

201 2178 [n+]1(ccccc1C)Cc1cnc(nc1N)CCC 

202 2199 O(C(=O)C)C1C(NCC1O)Cc1ccc(OC)cc1 

203 2202 Oc1c2c(Cc3c(C2=O)c(O)ccc3)ccc1 
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204 2206 O=C1N(N(C)C(=C1)C)c1ccccc1 

205 2227 N(CCCCN=C(N)N)=C(N)N 

206 2230 O(C(=O)C=1CN(CCC=1)C)C 

207 2240 O1C2OC3(OOC24C(CCC(C4CC3)C)C(C)C1=O)C 

208 2255 S(OC1C(OS(O)(=O)=O)C(OC(OC2CC3(C(CCC45C3CCC(C4)C(=C

)C5O)C(C2)C(O)=O)C)C1OC(=O)CC(C)C)CO)(O)(=O)=O 

209 2265 S(c1n(cnc1[N+](=O)[O-])C)c1ncnc2nc[nH]c12 

210 2271 S1C2N(C(C(O)=O)C1(C)C)C(=O)C2NC(=O)C(NC(=O)N1CCNC1=

O)c1ccccc1 

211 2282 S1C2N(C(C(OC(OC(OCC)=O)C)=O)C1(C)C)C(=O)C2NC(=O)C(N)

c1ccccc1 

212 2284 Clc1ccc(cc1)C(CC(O)=O)CN 

213 2315 S(=O)(=O)(N)c1cc2S(=O)(=O)NC(Nc2cc1C(F)(F)F)Cc1ccccc1 

214 2333 Brc1cc(cc(Br)c1O)C(=O)c1c2c(oc1CC)cccc2 

215 2337 O(C(=O)c1ccc(N)cc1)CC 

216 2343 Clc1cc2NC(=NS(=O)(=O)c2cc1S(=O)(=O)N)CSCc1ccccc1 

217 2353 O1c2c(OC1)cc-1c(CC[n+]3c-1cc1c(c3)c(OC)c(OC)cc1)c2 

218 2356 O1C2C(OC(=O)c3c2c(O)c(OC)c(O)c3)C(O)C(O)C1CO 

219 2366 n1ccccc1CCNC 

220 2371 OC1CCC2(C(CCC3(C2CCC2C4C(CCC23C)(CCC4C(C)=C)C(O)=O

)C)C1(C)C)C 

221 2376 O1C(c2c(c3OCOc3cc2)C1=O)C1N(CCc2c1cc1OCOc1c2)C 

222 2391 O(C(=O)C)c1ccc(cc1)C(c1ccc(OC(=O)C)cc1)c1ncccc1 
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223 2448 Brc1ccc(cc1)C1(O)CCN(CC1)CCCC(=O)c1ccc(F)cc1 

224 2462 O1C2(C(OC1CCC)CC1C3C(C4(C(=CC(=O)C=C4)CC3)C)C(O)CC1

2C)C(=O)CO 

225 2466 O(CCCC)c1ccc(cc1)CC(=O)NO 

226 2471 S(=O)(=O)(N)c1cc(cc(NCCCC)c1Oc1ccccc1)C(O)=O 

227 2478 S(OCCCCOS(=O)(=O)C)(=O)(=O)C 

228 2482 O(C(=O)c1ccc(N)cc1)CCCC 

229 2485 O1C(CN)C(O)C(O)C(N)C1OC1C(OC2OC(CO)C(O)C2O)C(O)C(NC

(=O)C(O)CCN)CC1N 

230 2550 SCC(C(=O)N1CCCC1C(O)=O)C 

231 2551 O(CC[N+](C)(C)C)C(=O)N 

232 2554 O=C(N)N1c2c(C=Cc3c1cccc3)cccc2 

233 2560 S1C2N(C(C(O)=O)C1(C)C)C(=O)C2NC(=O)C(C(O)=O)c1ccccc1 

234 2561 O(C(=O)CCC(O)=O)C1CCC2(C3C(CCC2C1(C)C)(C)C1(C(C2CC(C

CC2(CC1)C)(C(O)=O)C)=CC3=O)C)C 

235 2562 O(C(=O)C1(CCCC1)c1ccccc1)CCOCCN(CC)CC 

236 2564 Clc1ccc(cc1)C(OCCN(C)C)c1ncccc1 

237 2574 O=C(NCCc1[nH]cnc1)CCN 

238 2576 O(CC(CCC)(COC(=O)N)C)C(=O)NC(C)C 

239 2578 ClCCN(N=O)C(=O)NCCCl 

240 2609 ClC=1CSC2N(C(=O)C2NC(=O)C(N)c2ccccc2)C=1C(O)=O 

241 2610 S1C2N(C(=O)C2NC(=O)C(N)c2ccc(O)cc2)C(C(O)=O)=C(C1)C 

242 2615 S1C2N(C(=O)C2NC(=O)C(OC=O)c2ccccc2)C(C(O)=O)=C(C1)CSc1
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nnnn1C 

243 2617 s1c(nnc1SCC=1CSC2N(C(=O)C2NC(=O)Cn2nnnc2)C=1C(=O)[O-

])C 

244 2625 S1C2N(C(=O)C2(OC)NC(=O)CSCC#N)C(C(=O)[O-

])=C(C1)CSc1nnnn1C 

245 2630 S1C2N(C(=O)C2NC(=O)C(NC(=O)N2CCN(CC)C(=O)C2=O)c2ccc(

O)cc2)C(C(O)=O)=C(C1)CSc1nnnn1C 

246 2637 s1cccc1CC(=O)NC1(OC)C2SCC(COC(=O)N)=C(N2C1=O)C(=O)[O

-] 

247 2665 O(C)c1cc2C3N(CC(CC)C(C3)CC3NCCc4c3cc(OC)c(O)c4)CCc2cc1

OC 

248 2666 S1C2N(C(=O)C2NC(=O)C(N)c2ccccc2)C(C(O)=O)=C(C1)C 

249 2670 s1cccc1CC(=O)NC1C2SCC(COC(=O)C)=C(N2C1=O)C(=O)[O-] 

250 2672 S1C2N(C(=O)C2NC(=O)CSc2ccncc2)C(C(=O)[O-

])=C(C1)COC(=O)C 

251 2678 Clc1ccc(cc1)C(N1CCN(CC1)CCOCC(O)=O)c1ccccc1 

252 2717 Clc1ccc(cc1)C1S(=O)(=O)CCC(=O)N1C 

253 2719 Clc1cc2nccc(NC(CCCN(CC)CC)C)c2cc1 

254 2720 Clc1cc2NC=NS(=O)(=O)c2cc1S(=O)(=O)N 

255 2724 Clc1ccc(OCC(O)COC(=O)N)cc1 

256 2727 Clc1ccc(S(=O)(=O)NC(=O)NCCC)cc1 

257 2732 Clc1ccc(cc1S(=O)(=O)N)C1(O)NC(=O)c2c1cccc2 

258 2733 Clc1cc2NC(Oc2cc1)=O 
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259 2749 O=C1N(O)C(=CC(=C1)C)C1CCCCC1 

260 2757 OC(C1N2CC(C(C1)CC2)C=C)c1c2c(ncc1)cccc2 

261 2762 O1c2c(OC1)cc1N(N=C(C(O)=O)C(=O)c1c2)CC 

262 2764 Fc1cc2c(N(C=C(C(O)=O)C2=O)C2CC2)cc1N1CCNCC1 

263 2784 O(C(=O)C(O)(c1ccccc1)c1ccccc1)C1C2CC[N+](C1)(CC2)C 

264 2786 ClC(C(NC(=O)C1N(CC(C1)CCC)C)C1OC(SC)C(O)C(O)C1O)C 

265 2791 ClCC(=O)C1(OC(=O)CC)C2(CC(O)C3(F)C(C2CC1C)CCC1=CC(=

O)C=CC13C)C 

266 2794 Clc1ccc(N2C3=C\C(=N/C(C)C)\C(Nc4ccc(Cl)cc4)=CC3=Nc3c2cccc

3)cc1 

267 2797 Clc1ccc(OC(C(O)=O)(C)C)cc1 

268 2798 Clc1ccc(cc1)CCCC[N+](CCCCCCC)(CC)CC 

269 2812 Clc1ccccc1C(n1ccnc1)(c1ccccc1)c1ccccc1 

270 2813 Clc1ccccc1-c1noc(C)c1C(=O)NC1C2SC(C)(C)C(N2C1=O)C(=O)[O-

] 

271 2833 O(C)C1=CC=C2C(=CC1=O)C(NC(=O)C)CCc1c2c(OC)c(OC)c(OC)

c1 

272 2860 N(C)(C)C1CC2=CCC3C(CCC45C(CCC34)C(N(C5)C)C)C2(CC1)C 

273 2882 O1c2c(C(=O)C=C1C(O)=O)c(OCC(O)COc1c3c(OC(=CC3=O)C(O)=

O)ccc1)ccc2 

274 2900 O=C1C(CC(CC1C)C)C(O)CC1CC(=O)NC(=O)C1 

275 2907 ClCCN(P1(OCCCN1)=O)CCCl 

276 2949 o1ncc2CC3(C4C(C5CCC(O)(C#C)C5(CC4)C)CCC3=Cc12)C 



242 

 

277 2955 S(=O)(=O)(c1ccc(N)cc1)c1ccc(N)cc1 

278 2958 O1C(C)C(O)C(N)CC1OC1CC(O)(Cc2c1c(O)c1c(C(=O)c3c(C1=O)c(

OC)ccc3)c2O)C(=O)C 

279 2966 NC(=N)N1CCc2c(C1)cccc2 

280 2973 O=C(N(O)CCCCCNC(=O)CCC(=O)N(O)CCCCCN)CCC(=O)NCCC

CCN(O)C(=O)C 

281 2975 O=C1CC2C(C3CCC(C(CCC(O)=O)C)C13C)C(=O)CC1CC(=O)CCC

12C 

282 2993 [n+]1(c2c(cccc2)c(N)cc1C)CCCCCCCCCC[n+]1c2c(cccc2)c(N)cc1C 

283 2995 N(CCCN1c2c(CCc3c1cccc3)cccc2)C 

284 3003 FC12C(C3CC(C)C(O)(C(=O)CO)C3(CC1O)C)CCC1=CC(=O)C=CC

12C 

285 3008 O(C)c1cc2C34C(C(N(CC3)C)Cc2cc1)CCCC4 

286 3019 Clc1cc2S(=O)(=O)N=C(Nc2cc1)C 

287 3025 O(CCCC)c1nc2c(cccc2)c(c1)C(=O)NCCN(CC)CC 

288 3038 Clc1c(S(=O)(=O)N)cc(S(=O)(=O)N)cc1Cl 

289 3040 Clc1cccc(Cl)c1-

c1noc(C)c1C(=O)NC1C2SC(C)(C)C(N2C1=O)C(=O)[O-] 

290 3052 O=C(N(CC)CC)N1CCN(CC1)C 

291 3059 Fc1cc(F)ccc1-c1cc(C(O)=O)c(O)cc1 

292 3062 O1C(C)C(OC2OC(C)C(O)C(O)C2)C(O)CC1OC1C(OC(OC2CC3CC

C4C(CC(O)C5(C)C(CCC45O)C4=CC(OC4)=O)C3(CC2)C)CC1O)C 

293 3069 O1C(CO)C(O)C(O)C(NC)C1OC1C(O)(CO)C(OC1OC1C(N=C(N)N)
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C(O)C(N=C(N)N)C(O)C1O)C 

294 3076 S1c2c(N(CCN(C)C)C(=O)C(OC(=O)C)C1c1ccc(OC)cc1)cccc2 

295 3081 O1C(C)(C)C(=O)NC1=O 

296 3108 OCCN(CCO)c1nc(N2CCCCC2)c2nc(nc(N3CCCCC3)c2n1)N(CCO)

CCO 

297 3110 S(=O)(=O)([O-])CN(C)C=1C(=O)N(N(C)C=1C)c1ccccc1 

298 3114 O=C(N)C(CCN(C(C)C)C(C)C)(c1ccccc1)c1ncccc1 

299 3132 SCC(Cc1ccccc1)C(=O)NCC(O)=O 

300 3162 O(C(C)(c1ccccc1)c1ncccc1)CCN(C)C 

301 3168 Fc1ccc(cc1)C(=O)CCCN1CCC(N2c3c(NC2=O)cccc3)=CC1 

302 3169 OC(CN1CCN(CC1)c1ccccc1)CO 

303 3180 O(CCCC)c1ccc(cc1)C(=O)CCN1CCCCC1 

304 3182 O=C1N(C)C(=O)N(c2ncn(c12)CC(O)CO)C 

305 3195 O=C1n2c3C4N(CCCC4(C1)CC)CCc3c1c2cccc1 

306 3198 Clc1cc(Cl)ccc1C(OCc1ccc(Cl)cc1)Cn1ccnc1 

307 3202 Oc1cc([N+](CC)(C)C)ccc1 

308 3222 O(C(=O)C(NC(C(=O)N1CCCC1C(O)=O)C)CCc1ccccc1)CC 

309 3242 O(C)c1n(nc(c1)C)-c1nc(cc(OC)n1)C 

310 3247 Oc1cc2CC=C3C4CCC(=O)C4(CCC3c2cc1)C 

311 3255 O1C(CC)C(O)(C)C(O)C(C)C(=O)C(CC(O)(C)C(OC2OC(CC(N(C)C)

C2O)C)C(C)C(OC2OC(C)C(O)C(OC)(C2)C)C(C)C1=O)C 

312 3276 OCCNC(=O)Cn1ccnc1[N+](=O)[O-] 

313 3279 OCC(NCCNC(CC)CO)CC 
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314 3280 O(CC)c1cc(ccc1OCC)Cc1nccc2c1cc(OCC)c(OCC)c2 

315 3288 OC1(CCC2C3C(CCC12C)C1(C(=CC(=O)CC1)CC3)C)C#C 

316 3291 O=C1NC(=O)CC1(CC)C 

317 3308 O1CCc2c([nH]c3c2cccc3CC)C1(CC(O)=O)CC 

318 3310 O1C2C(OC(OC2)C)C(O)C(O)C1OC1C2C(C(c3c1cc1OCOc1c3)c1cc

(OC)c(O)c(OC)c1)C(OC2)=O 

319 3333 Clc1c(cccc1Cl)C1C(C(OCC)=O)=C(NC(C)=C1C(OC)=O)C 

320 3335 OC(=O)CCC(=O)c1ccc(cc1)-c1ccccc1 

321 3342 O(c1cc(ccc1)C(C(O)=O)C)c1ccccc1 

322 3343 Oc1cc(cc(O)c1)C(O)CNC(Cc1ccc(O)cc1)C 

323 3351 Clc1ccc(OCC(=O)N2CCN(CC2)Cc2cc3OCOc3cc2)cc1 

324 3354 O1c2c(cccc2C(OCCN2CCCCC2)=O)C(=O)C(C)=C1c1ccccc1 

325 3371 FC(F)(F)c1cc(Nc2ccccc2C(O)=O)ccc1 

326 3374 Fc1cc2c3N(C=C(C(O)=O)C2=O)C(CCc3c1)C 

327 3375 FC12C(C3CC(C)C(O)(C(=O)CO)C3(CC1O)C)CC(F)C1=CC(=O)C=

CC12C 

328 3379 FC1C2=CC(=O)C=CC2(C2C(C3CC4OC(OC4(C(=O)CO)C3(CC2O)

C)(C)C)C1)C 

329 3382 FC12C(C3CC4OC(OC4(C(=O)COC(=O)C)C3(CC1O)C)(C)C)CC(F)

C1=CC(=O)C=CC12C 

330 3384 FC12C(C3CCC(O)(C(=O)C)C3(CC1O)C)CC(C1=CC(=O)C=CC12C

)C 

331 3392 FC1C2=CC(=O)CCC2(C2C(C3CC4OC(OC4(C(=O)CO)C3(CC2O)C
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)(C)C)C1)C 

332 3405 O=C1N=C(Nc2ncc(nc12)CNc1ccc(cc1)C(=O)NC(CCC(O)=O)C(O)=

O)N 

333 3414 P(=O)([O-])([O-])C(=O)[O-] 

334 3418 P(Oc1ccccc1C(O)=O)(O)(O)=O 

335 3442 OC(=O)c1ncc(cc1)CCCC 

336 3446 OC(=O)CC1(CCCCC1)CN 

337 3449 O1c2c3C4(C1CC(O)C=C4)CCN(Cc3ccc2OC)C 

338 3454 O=C1N=C(Nc2n(cnc12)COC(CO)CO)N 

339 3467 O1C(OC2C(O)C(OC3OCC(O)(C)C(NC)C3O)C(N)CC2N)C(N)CCC1

C(NC)C 

340 3475 S(=O)(=O)(NC(=O)NN1CC2C(CCC2)C1)c1ccc(cc1)C 

341 3478 S(=O)(=O)(NC(=O)NC1CCCCC1)c1ccc(cc1)CCNC(=O)c1ncc(nc1)C 

342 3488 Clc1cc(C(=O)NCCc2ccc(S(=O)(=O)NC(=O)NC3CCCCC3)cc2)c(OC

)cc1 

343 3503 Oc1c(O)c(c2c(cc(C)c(-

c3c(cc4c(c(C=O)c(O)c(O)c4C(C)C)c3O)C)c2O)c1C(C)C)C=O 

344 3516 O(CC(O)CO)c1ccccc1OC 

345 3553 ClCC(=O)C12OC(OC1CC1C3CCC4=CC(=O)CCC4(C)C3(F)C(O)C

C12C)(C)C 

346 3561 IC#CCOc1cc(Cl)c(Cl)cc1Cl 

347 3573 O1CC(CCC12OC1C(C3(C(C4C(CC3=O)C3(C(CC(O)CC3)CC4)C)C

1)C)C2C)C 
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348 3590 OC(CCCC(N)C)(C)C 

349 3604 [N+](CCCCCC[N+](C)(C)C)(C)(C)C 

350 3606 Oc1ccc(cc1)C(C(CC)c1ccc(O)cc1)CC 

351 3607 NC1(CN(CN(C1)CC(CCCC)CC)CC(CCCC)CC)C 

352 3623 O(C(=O)C(O)c1ccccc1)C1CC2N(C(C1)CC2)C 

353 3637 n1ncc2c(cccc2)c1NN 

354 3639 Clc1cc2NCNS(=O)(=O)c2cc1S(=O)(=O)N 

355 3640 OC1(CCC2C3C(C4(C(=CC(=O)CC4)CC3)C)C(O)CC12C)C(=O)CO 

356 3647 S(=O)(=O)(N)c1cc2S(=O)(=O)NCNc2cc1C(F)(F)F 

357 3649 O(C)c1cc2c(nccc2C(O)C2N3CC(C(C2)CC3)CC)cc1 

358 3661 O(C(=O)C(CO)c1ccccc1)C1CC2N(C(C1)CC2)C 

359 3676 O=C(Nc1c(cccc1C)C)CN(CC)CC 

360 3677 N(C(Cc1ccccc1)(C)C)C 

361 3687 IC1=CN(C2OC(CO)C(O)C2)C(=O)NC1=O 

362 3698 O=C1NC=C(C=C1N)c1ccncc1 

363 3718 O=C1N(Cc2c1cccc2)c1ccc(cc1)C(C(O)=O)C 

364 3730 Ic1c(C(=O)NCC(O)CO)c(I)c(N(C(=O)C)CC(O)CO)c(I)c1C(=O)NCC

(O)CO 

365 3746 O(C(=O)C(CO)c1ccccc1)C1CC2[N+](C(C1)CC2)(C(C)C)C 

366 3748 O=C(NNC(C)C)c1ccncc1 

367 3760 Clc1cccc(Cl)c1COC(Cn1ccnc1)c1ccc(Cl)cc1Cl 

368 3762 Oc1cc(ccc1O)C(O)C(NC(C)C)CC 

369 3767 O=C(NN)c1ccncc1 
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370 3775 O=C(N)C(CC[N+](C(C)C)(C(C)C)C)(c1ccccc1)c1ccccc1 

371 3780 O1C2C(OCC2O[N+](=O)[O-])C(O[N+](=O)[O-])C1 

372 3783 O(CC(NC(C(O)c1ccc(O)cc1)C)C)c1ccccc1 

373 3823 Clc1cc(Cl)ccc1C1(OC(CO1)COc1ccc(N2CCN(CC2)C(=O)C)cc1)Cn

1ccnc1 

374 3825 OC(=O)C(C)c1cc(ccc1)C(=O)c1ccccc1 

375 3830 o1cccc1CNc1ncnc2nc[nH]c12 

376 3879 O1C(CO)C(O)C(O)C(O)C1OC1C(OC(OC2C(OC(OC3C(OC(OC4CC

5CCC6C(CC(O)C7(C)C(CCC67O)C6=CC(OC6)=O)C5(CC4)C)CC3

O)C)CC2O)C)CC1OC(=O)C)C 

377 3888 O1C(CC(C)C1C(C(=O)C(C(O)C(CCc1ccc(C)c(O)c1C(O)=O)C)C)C

C)(CC)C1OC(C)C(O)(CC1)CC 

378 3913 S1CCN2CC(N=C12)c1ccccc1 

379 3917 Oc1cc(ccc1O)C(O)C(N)C 

380 3928 S(C)C1OC(C(NC(=O)C2N(CC(C2)CCC)C)C(O)C)C(O)C(O)C1O 

381 3937 OC(=O)C1N(CCC1)C(=O)C(NC(CCc1ccccc1)C(O)=O)CCCCN 

382 3945 OC(CC1N(C)C(CCC1)CC(=O)c1ccccc1)c1ccccc1 

383 3948 Fc1c2N(C=C(C(O)=O)C(=O)c2cc(F)c1N1CC(NCC1)C)CC 

384 3955 Clc1ccc(cc1)C1(O)CCN(CC1)CCC(C(=O)N(C)C)(c1ccccc1)c1ccccc

1 

385 3962 O1C(CC(O)CC1=O)CCC1C2C(=CC(CC2OC(=O)C(CC)C)C)C=CC1

C 

386 3966 N12C(C3CC(C4N(C3)CCCC4)C1)CCCC2 
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387 3978 O1c2c(OC1)cc1c(C3C4N(CCC4=CC(O)C3O)C1)c2 

388 3998 S(=O)(=O)(N)c1ccc(cc1)CN 

389 4030 O(C(=O)Nc1[nH]c2cc(ccc2n1)C(=O)c1ccccc1)C 

390 4034 Clc1ccc(cc1)C(N1CCN(CC1)Cc1cc(ccc1)C)c1ccccc1 

391 4036 Clc1c(Nc2ccccc2C(=O)[O-])c(Cl)ccc1C 

392 4039 Clc1ccc(OCC(OCCN(C)C)=O)cc1 

393 4043 OC1C2C(C3CCC(C(=O)C)C3(C1)C)CC(C1=CC(=O)CCC12C)C 

394 4045 O(CC(=O)NCCN(CC)CC)c1ccc(OC)cc1 

395 4046 FC(F)(F)c1c2nc(cc(c2ccc1)C(O)C1NCCCC1)C(F)(F)F 

396 4053 ClCCN(CCCl)c1ccc(cc1)CC(N)C(O)=O 

397 4055 O=C1c2c(cccc2)C(=O)C=C1C 

398 4057 O(C(=O)C(O)(c1ccccc1)c1ccccc1)C1CCC[N+](C1)(C)C 

399 4059 O(CC(O)CO)c1ccccc1C 

400 4077 S(=O)(=O)([O-])CCS 

401 4078 S1c2c(N(c3c1cccc3)CCC1N(CCCC1)C)cc(S(=O)C)cc2 

402 4080 O(C)c1cc2CCC3C4CCC(O)(C#C)C4(CCC3c2cc1)C 

403 4086 Oc1cc(cc(O)c1)C(O)CNC(C)C 

404 4087 Oc1cc(ccc1)C(O)C(N)C 

405 4091 N(C(N=C(N)N)=N)(C)C 

406 4098 s1cccc1CN(CCN(C)C)c1ncccc1 

407 4100 S1\C(=N/C(=O)C)\N(N=C1S(=O)(=O)N)C 

408 4101 N12CN3CN(C1)CN(C2)C3 

409 4107 O(CC(O)COC(=O)N)c1ccccc1OC 
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410 4112 OC(=O)C(NC(=O)c1ccc(N(Cc2nc3c(nc(nc3N)N)nc2)C)cc1)CCC(O)

=O 

411 4114 O1c2c(C=CC1=O)cc1c(occ1)c2OC 

412 4122 s1cccc1C(=O)c1cc2[nH]c(nc2cc1)NC(OC)=O 

413 4138 Oc1cc(ccc1O)CC(N)(C(O)=O)C 

414 4139 S1C2=CC(=[N+](C)C)C=CC2=Nc2c1cc(N(C)C)cc2 

415 4140 OCC(NC(=O)C1C=C2C(N(C1)C)Cc1c3c2cccc3[nH]c1)CC 

416 4159 OC1(CCC2C3C(C4(C(=CC(=O)C=C4)C(C3)C)C)C(O)CC12C)C(=O

)CO 

417 4165 S(=O)(=O)(N)c1cc2S(=O)(=O)CCCc2cc1C 

418 4170 Clc1cc2NC(N(c3ccccc3C)C(=O)c2cc1S(=O)(=O)N)C 

419 4171 O(CC(O)CNC(C)C)c1ccc(cc1)CCOC 

420 4189 Clc1cc(Cl)ccc1C(OCc1ccc(Cl)cc1Cl)Cn1ccnc1 

421 4195 O(C)c1ccc(OC)cc1C(O)CNC(=O)CN 

422 4196 OC1(CCC2C3C(=C4C(=CC(=O)CC4)CC3)C(CC12C)c1ccc(N(C)C)c

c1)C#CC 

423 4201 ON1C(N)=CC(=NC1=N)N1CCCCC1 

424 4211 Clc1ccccc1C(C(Cl)Cl)c1ccc(Cl)cc1 

425 4212 Oc1c2c(C(=O)c3c(C2=O)c(NCCNCCO)ccc3NCCNCCO)c(O)cc1 

426 4240 ClC12C(C3CC(C)C(OC(=O)c4occc4)(C(=O)CCl)C3(CC1O)C)CCC1

=CC(=O)C=CC12C 

427 4243 O1C(C(CC(C)C1(O)CO)C)C1OC(C2(OC(CC2)C2(OC3(OC(C(C(OC

)C(C(O)=O)C)C)C(C)C(O)C3)CC2)C)CC)C(C1)C 
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428 4246 O1C2C3N(CC2)CC=C3COC(=O)C(O)(C)C(O)(C)C(C)C1=O 

429 4260 O(C(=O)C)c1cc(C(C)C)c(OCCN(C)C)cc1C 

430 4411 O(CC(O)CNC(C)(C)C)c1c2CC(O)C(O)Cc2ccc1 

431 4419 O1C2C34CCN(C(Cc5c3c1c(O)cc5)C4(O)CCC2O)CC1CCC1 

432 4425 O1C2C34CCN(C(Cc5c3c1c(O)cc5)C4(O)CCC2=O)CC=C 

433 4428 O1C2C34CCN(C(Cc5c3c1c(O)cc5)C4(O)CCC2=O)CC1CC1 

434 4436 N1CCN=C1Cc1c2c(ccc1)cccc2 

435 4441 O1C(CO)C(O)C(O)C(OC2OC(C)C(O)C(O)C2O)C1Oc1cc(O)c2c(OC

(CC2=O)c2ccc(O)cc2)c1 

436 4454 O1C(CN)C(O)C(O)C(N)C1OC1C(O)C(OC1CO)OC1C(OC2OC(CN)

C(O)C(O)C2N)C(N)CC(N)C1O 

437 4456 O(C(=O)N(C)C)c1cc([N+](C)(C)C)ccc1 

438 4474 O(C(=O)C=1C(C(C(OC)=O)=C(NC=1C)C)c1cc([N+](=O)[O-

])ccc1)CCN(Cc1ccccc1)C 

439 4477 Clc1cc([N+](=O)[O-])ccc1NC(=O)c1cc(Cl)ccc1O 

440 4487 O=C1N(N(C)C(C)=C1NC(=O)c1cccnc1)c1ccccc1 

441 4488 FC(F)(F)c1cc(Nc2ncccc2C(O)=O)ccc1 

442 4495 S(=O)(=O)(Nc1ccc([N+](=O)[O-])cc1Oc1ccccc1)C 

443 4528 Nc1c2c(ccc1)C(CN(C2)C)c1ccccc1 

444 4536 OC1(CCC2C3C(C4C(=CC(=O)CC4)CC3)CCC12C)C#C 

445 4537 OC1(CCC2C3C(C4=C(CC(=O)CC4)CC3)CCC12C)C#C 

446 4539 Fc1cc2c(N(C=C(C(O)=O)C2=O)CC)cc1N1CCNCC1 

447 4542 OC1(CCC2C3C(C4C(=CC(=O)CC4)CC3)CCC12CC)C#C 
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448 4544 O1C(c2c(c(OC)c(OC)cc2)C1=O)C1N(CCc2c1c(OC)c1OCOc1c2)C 

449 4583 Fc1cc2c3N(C=C(C(O)=O)C2=O)C(COc3c1N1CCN(CC1)C)C 

450 4587 O1C(C)C(C)C(O)C(C)C(=O)C2(OC2)CC(C)C(OC2OC(CC(N(C)C)C

2O)C)C(C)C(OC2OC(C)C(O)C(OC)C2)C(C)C1=O 

451 4594 S(=O)(Cc1ncc(C)c(OC)c1C)c1[nH]c2cc(OC)ccc2n1 

452 4605 O1C(C)C(O)C(O)C(O)C1OC1CC2(O)CCC3C(C2(CO)C(O)C1)C(O)

CC1(C)C(CCC13O)C1=CC(OC1)=O 

453 4621 OCCN(CC(=O)N(C(Cc1ccccc1)(C)C)C)CC(=O)N(C(Cc1ccccc1)(C)

C)C 

454 4628 O1c2c(OC1)cc1N(C=C(C(O)=O)C(=O)c1c2)CC 

455 4666 O1C2CC(O)C3(C(C(OC(=O)c4ccccc4)C4(O)CC(OC(=O)C(O)C(NC(

=O)c5ccccc5)c5ccccc5)C(=C(C4(C)C)C(OC(=O)C)C3=O)C)C2(OC(

=O)C)C1)C 

456 4678 OC(C(CO)(C)C)C(=O)NCCCO 

457 4680 O(C)c1cc(ccc1OC)Cc1nccc2c1cc(OC)c(OC)c2 

458 4688 N(Cc1ccccc1)(CC#C)C 

459 4689 O1C(CN)C(O)C(O)C(N)C1OC1C(O)C(OC1CO)OC1C(OC2OC(CO)

C(O)C(O)C2N)C(N)CC(N)C1O 

460 4735 O(CCCCCOc1ccc(cc1)C(N)=N)c1ccc(cc1)C(N)=N 

461 4740 O=C1N(CCCCC(=O)C)C(=O)N(c2ncn(c12)C)C 

462 4742 OC(C(NC(=O)C(NC(=O)C(NC(=O)CC(C)C)C(C)C)C(C)C)CC(C)C)

CC(=O)NC(C(=O)NC(C(O)CC(O)=O)CC(C)C)C 

463 4746 N1CCCCC1CC(C1CCCCC1)C1CCCCC1 
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464 4754 O(CC)c1ccc(NC(=O)C)cc1 

465 4758 S1C2N(C(C(=O)[O-])C1(C)C)C(=O)C2NC(=O)C(Oc1ccccc1)C 

466 4760 O=C1c2c(cccc2)C(=O)C1c1ccccc1 

467 4761 n1ccccc1C(CCN(C)C)c1ccccc1 

468 4806 s1ccnc1NS(=O)(=O)c1ccc(NC(=O)c2ccccc2C(O)=O)cc1 

469 4811 O(C(=O)NC)c1cc2c(N(C3N(CCC23C)C)C)cc1 

470 4814 O(C)c1ccc(cc1C(=O)NCc1cccnc1)C(=O)NCc1cccnc1 

471 4816 O1C2C3OC(=O)C45OC4CC(O)(C(C2C(C)=C)C1=O)C35C 

472 4819 O1CC(Cc2n(cnc2)C)C(CC)C1=O 

473 4828 O(CC(O)CNC(C)C)c1c2c([nH]cc2)ccc1 

474 4832 O(C(=O)C(O)(c1ccccc1)c1ccccc1)C1CCC[N+](C1)(CC)C 

475 4843 O=C1N(CCC1)CC(=O)N 

476 4848 O=C1Nc2cccnc2N(c2c1cccc2)C(=O)CN1CCN(CC1)C 

477 4855 O=C1c2c(nc(nc2)N2CCCC2)N(C=C1C(O)=O)CC 

478 4865 O1CC2C(C(c3c(cc4OCOc4c3)C2O)c2cc(OC)c(OC)c(OC)c2)C1=O 

479 4883 O(CC(O)CNC(C)C)c1ccc(NC(=O)C)cc1 

480 4886 O1CCN(CC1)CCCOc1ccc(OCCCC)cc1 

481 4894 OC1(CCC2C3C(C4(C(=CC(=O)C=C4)CC3)C)C(O)CC12C)C(=O)C

O 

482 4900 OC1(CCC2C3C(C4(C(=CC(=O)C=C4)CC3)C)C(=O)CC12C)C(=O)

CO 

483 4904 OC(CCN1CCCCC1)(c1ccccc1)c1ccccc1 

484 4906 O=C(Nc1ccccc1C)C(NCCC)C 
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485 4908 O(C)c1cc(NC(CCCN)C)c2ncccc2c1 

486 4911 S(=O)(=O)(N(CCC)CCC)c1ccc(cc1)C(O)=O 

487 4919 OC(CCN1CCCC1)(C1CCCCC1)c1ccccc1 

488 4920 O=C1CCC2(C3C(C4CCC(C(=O)C)C4(CC3)C)CCC2=C1)C 

489 4922 OC(=O)CCC(NC(=O)c1ccccc1)C(=O)N(CCC)CCC 

490 4934 O1c2c(cccc2)C(c2c1cccc2)C(OCC[N+](C(C)C)(C(C)C)C)=O 

491 4974 O1C23C(C4(O)C(C5C(C(O)C4OC(=O)C(CC)C)C(O)(C4N(CC(CC4)

C)C5)C)C2)C(OC(=O)C)C(OC(=O)C)C2C1(O)C(OC(=O)C(O)(CC)

C)CCC23C 

492 4984 O1C(CO)C(NC(=O)C(N)Cc2ccc(OC)cc2)C(O)C1n1c2ncnc(N(C)C)c

2nc1 

493 4993 Clc1ccc(cc1)-c1c(nc(nc1N)N)CC 

494 4994 O=C1C=CNC(=O)C1(CC)CC 

495 5037 O=C1N(N(C)C(C)=C1NC(C)C)c1ccccc1 

496 5052 O(C)C1C(C2C(CC1OC(=O)c1cc(OC)c(OC)c(OC)c1)CN1C(C2)c2[n

H]c3cc(OC)ccc3c2CC1)C(OC)=O 

497 5066 O1C(CN)C(O)C(O)C(N)C1OC1C(OC2OC(CO)C(O)C2O)C(O)C(N)

CC1N 

498 5070 s1c2cc(OC(F)(F)F)ccc2nc1N 

499 5102 O1c2c(CC1C(C)=C)c1OC3C(c4cc(OC)c(OC)cc4OC3)C(=O)c1cc2 

500 5184 O1C2C3N(C(CC(OC(=O)C(CO)c4ccccc4)C3)C12)C 

501 5195 N(C(Cc1ccccc1)C)(CC#C)C 

502 5198 ClCCN(N=O)C(=O)NC1CCC(CC1)C 
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503 5215 S(=O)(=O)(Nc1ncccn1)c1ccc(N)cc1 

504 5224 O1C(OC2C(O)C(OC3OCC(O)(C)C(NC)C3O)C(N)CC2N)C(N)CC=C

1CN 

505 5250 O1C2C(C(C)C13NCC(CC3)C)C1(C(C3C(CC1)C1(C(CC(O)CC1)=C

C3)C)C2)C 

506 5267 S(C(=O)C)C1C2C3CCC4(OC(=O)CC4)C3(CCC2C2(C(C1)=CC(=O)

CC2)C)C 

507 5275 O(C)c1ccc(cc1)-c1n[n+](CCCC(O)=O)c(N)cc1 

508 5297 O1C(CO)C(O)C(O)C(NC)C1OC1C(O)(C=O)C(OC1OC1C(N=C(N)N

)C(O)C(N=C(N)N)C(O)C1O)C 

509 5299 OC(C(NC(=O)N(N=O)C)C=O)C(O)C(O)CO 

510 5303 O1CC(=CC1=O)C1CCC2(O)C3C(CCC12C)C1(CCC(O)CC1(O)CC3

)C=O 

511 5315 s1ccnc1NS(=O)(=O)c1ccc(NC(=O)CCC(O)=O)cc1 

512 5318 Clc1cc(Cl)ccc1C(SCc1ccc(Cl)cc1)Cn1ccnc1 

513 5319 S(=O)(=O)(NC(=O)c1ccccc1)c1ccc(N)cc1 

514 5323 S(=O)(=O)(Nc1nc(OC)nc(OC)c1)c1ccc(N)cc1 

515 5324 S(=O)(=O)(N=C(N)N)c1ccc(N)cc1 

516 5325 S(=O)(=O)(Nc1nc(ccn1)C)c1ccc(N)cc1 

517 5326 S(=O)(=O)(Nc1ncc(OC)cn1)c1ccc(N)cc1 

518 5328 s1c(nnc1NS(=O)(=O)c1ccc(N)cc1)C 

519 5329 S(=O)(=O)(Nc1noc(c1)C)c1ccc(N)cc1 

520 5330 S(=O)(=O)(Nc1nnc(OC)cc1)c1ccc(N)cc1 
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521 5332 S(=O)(=O)(Nc1ncnc(OC)c1)c1ccc(N)cc1 

522 5333 S(=O)(=O)(N)c1ccc(N)cc1 

523 5335 S(=O)(=O)(Nc1n(ncc1)-c1ccccc1)c1ccc(N)cc1 

524 5336 S(=O)(=O)(Nc1ncccc1)c1ccc(N)cc1 

525 5340 s1ccnc1NS(=O)(=O)c1ccc(N)cc1 

526 5342 S(=O)(CCC1C(=O)N(N(C1=O)c1ccccc1)c1ccccc1)c1ccccc1 

527 5353 S(=O)(C)c1cc(OC)c(cc1)-c1[nH]c2cccnc2n1 

528 5354 S(C(C)C)c1ccc(cc1)C(O)C(NCCCCCCCC)C 

529 5355 S(=O)(=O)(N)c1cc(C(=O)NCC2N(CCC2)CC)c(OC)cc1 

530 5359 s1cccc1C(=O)c1ccc(cc1)C(C(O)=O)C 

531 5362 O=C1N(N(C(=O)C1(CCCC)COC(=O)CCC(O)=O)c1ccccc1)c1ccccc

1 

532 5367 O(C)C1C(C2C(CC1OC(=O)c1cc(OC)c(OC(OCC)=O)c(OC)c1)CN1C

(C2)c2[nH]c3cc(OC)ccc3c2CC1)C(OC)=O 

533 5387 s1cc2c(N(c3c(NC2=O)cccc3)C(=O)CN2CCN(CC2)C)c1C 

534 5401 O1CCCC1C(=O)N1CCN(CC1)c1nc(N)c2cc(OC)c(OC)cc2n1 

535 5403 Oc1cc(cc(O)c1)C(O)CNC(C)(C)C 

536 5404 Clc1cc(Cl)ccc1C1(OC(CO1)COc1ccc(N2CCN(CC2)C(C)C)cc1)Cn1n

cnc1 

537 5410 O(C(=O)CC)C1CCC2C3C(CCC12C)C1(C(=CC(=O)CC1)CC3)C 

538 5419 N1CCN=C1C1CCCc2c1cccc2 

539 5424 OC=1C(=O)C(O)=C(O)C(=O)C=1O 

540 5426 O=C1NC(=O)CCC1N1C(=O)c2c(cccc2)C1=O 
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541 5429 O=C1NC(=O)N(c2ncn(c12)C)C 

542 5430 s1cc(nc1)-c1[nH]c2c(n1)cccc2 

543 5433 ClC(Cl)C(=O)NC(C(O)c1ccc(S(=O)(=O)C)cc1)CO 

544 5468 s1c(ccc1C(C(O)=O)C)C(=O)c1ccccc1 

545 5472 Clc1ccccc1CN1CCc2sccc2C1 

546 5479 S(=O)(=O)(CCn1c(ncc1[N+](=O)[O-])C)CC 

547 5496 O1C(CO)C(O)C(N)C(O)C1OC1C(O)C(OC2OC(CN)C(O)CC2N)C(N

)CC1N 

548 5501 O(CC)C(=O)NNc1nncc2c1cccc2 

549 5503 S(=O)(=O)(NC(=O)NN1CCCCCC1)c1ccc(cc1)C 

550 5504 N1CCN=C1Cc1ccccc1 

551 5505 S(=O)(=O)(NC(=O)NCCCC)c1ccc(cc1)C 

552 5507 Clc1ccc(Nc2ccccc2C(O)=O)cc1C 

553 5508 O=C(c1ccc(cc1)C)c1n(C)c(cc1)CC(=O)[O-] 

554 5510 S=C(Oc1cc2c(cc1)cccc2)N(C)c1cc(ccc1)C 

555 5526 OC(=O)C1CCC(CC1)CN 

556 5530 NC1CC1c1ccccc1 

557 5534 N1(CCCC1)CC#CCN1CCCC1 

558 5544 FC12C(C3CC(O)C(O)(C(=O)CO)C3(CC1O)C)CCC1=CC(=O)C=CC

12C 

559 5546 n1c(N)c2nc(-c3ccccc3)c(nc2nc1N)N 

560 5560 Clc1cc2NC(NS(=O)(=O)c2cc1S(=O)(=O)N)C(Cl)Cl 

561 5571 OC(=O)c1ccc[n+](c1)C 
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562 5572 OC(CCN1CCCCC1)(C1CCCCC1)c1ccccc1 

563 5576 O1C(C)(C)C(=O)N(C)C1=O 

564 5577 O(C)c1c(OC)cc(cc1OC)C(=O)NCc1ccc(OCCN(C)C)cc1 

565 5585 O1c2c(cc3c(oc(c3)C)c2C)C(=CC1=O)C 

566 5593 OCC(C(=O)N(Cc1ccncc1)CC)c1ccccc1 

567 5635 O1C2C(C3N(CCC3=CC2OC)C)c2c(cc3OCOc3c2)C1=O 

568 5645 OC1C2C3CCC(C(CCC(O)=O)C)C3(CCC2C2(C(C1)CC(O)CC2)C)C 

569 5651 Clc1c2Oc3cc4C(NC(=O)C(NC(=O)C(NC(=O)C(NC)CC(C)C)C(O)c(

c1)cc2)CC(=O)N)C(=O)NC1c2cc(-

c5c(cc(O)cc5O)C(NC(=O)C(NC1=O)C(O)c1cc(Cl)c(Oc(c4)c3OC3O

C(CO)C(O)C(O)C3OC3OC(C)C(O)C(N)(C3)C)cc1)C(O)=O)c(O)cc2 

570 5665 OC(=O)CCC(N)C=C 

571 5666 O1CCNCC1COc1ccccc1OCC 

572 5668 OC1(n2c3C4N(CCCC4(C1)CC)CCc3c1c2cccc1)C(OC)=O 

573 5673 O(C(=O)C=1n2c3C4N(CCCC4(C=1)CC)CCc3c1c2cccc1)CC 

574 5707 S1CCCN=C1Nc1c(cccc1C)C 

575 5803 Ic1cc(cc(I)c1Oc1cc(I)c(O)cc1)CC(O)=O 

576 5850 [N+]1(CCCC1)(CCCCC[N+]1(CCCC1)C)C 

577 5853 ClC(Cl)(Cl)C(P(OC)(OC)=O)O 

578 5917 n12nnnc1CCCCC2 

579 6077 S1c2c(N(c3c1cccc3)CCCN(C)C)cc(cc2)C(=O)C 

580 6082 O(C)c1ccc(OC)cc1C(O)C(N)C 

581 6093 s1c([N+](=O)[O-])cnc1N1CCNC1=O 
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582 6103 Clc1cc2nc(oc2cc1)N 

583 6127 [N+]1(CCC(CC1)=C(c1ccccc1)c1ccccc1)(C)C 

584 6603 N1(C)C(CCCC1(C)C)(C)C 

585 6634 Clc1nnc(NS(=O)(=O)c2ccc(N)cc2)cc1 

586 6726 N1(CCN(CC1)C)C(c1ccccc1)c1ccccc1 

587 6834 Brc1ccc(cc1)C(CCN(C)C)c1ncccc1 

588 6890 [nH]1cc(c2c1cccc2)CN(C)C 

589 7534 O(C(=O)C(O)c1ccccc1)C1CC(N(C)C(C1)C)(C)C 

590 8249 N(=C(\N=C(N)N)/N)/CCc1ccccc1 

591 8513 O=C1c2c(cccc2N)C(=O)c2c1cccc2N 

592 8646 O=C1N=C(N=C2NNN=C12)N 

593 9052 O1c2c(cccc2)C(=O)C(C(CC(=O)C)c2ccc([N+](=O)[O-])cc2)=C1O 

594 9341 OC1C2N(CC1)CC=C2COC(=O)C(O)(C(C)C)C(OC)C 

595 9363 O(C)c1cc(ccc1O)C(=O)N(CC)CC 

596 9429 S1c2c(N(c3c1cccc3)CCCN1CCN(CC1)C)cc(S(=O)(=O)N(C)C)cc2 

597 9458 FC(F)(F)c1cc(OC(=O)C)c(cc1)C(O)=O 

598 9801 N(C(Cc1ccccc1)C)CCC(c1ccccc1)c1ccccc1 

599 9985 N1CCCCC1CCC 

600 10147 O1c2c3c(C4C(N(C3)C)c3c(CC4O)cc4OCOc4c3)ccc2OC1 

601 10302 O(C)c1cc2c(cc1OC)CCNC2C 

602 10428 O1CCC(O)(CC1=O)C 

603 10666 O(C)C=1C=CN(C)C(=O)C=1C#N 

604 10745 O(C(=O)c1ccccc1OC(=O)C)c1ccccc1C(O)=O 
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605 10767 O(C(=O)c1ccccc1)C(CC)(CN(C)C)C 

606 11066 O1c2c(OC1)cc1C=3N(CCc1c2)C(=O)c1c(C=3)ccc(OC)c1OC 

607 11096 O=C1CC2N(C(C1)CCC2)C 

608 11289 ClC(=C(c1ccc(OC)cc1)c1ccc(OC)cc1)c1ccc(OC)cc1 

609 12550 O1C(C)C(NC(=O)c2cccc(NC=O)c2O)C(OC(C)C(OC(=O)CC(C)C)C

(CCCCCC)C1=O)=O 

610 13729 S1C2N(C(=O)C2N)C(C(O)=O)=C(C1)COC(=O)C 

611 13738 o1nc(nc1CCN(CC)CC)-c1ccccc1 

612 14520 S1CCC(NC(=O)C)C1=O 

613 15548 O(C)c1cc(ccc1OC)CC1N(CCc2c1cc(OC)c(OC)c2)C 

614 16231 Clc1nc(C(=O)N=C(N)N)c(nc1N)N 

615 16363 Fc1ccc(cc1)C(=O)CCCN1CCC(N2c3c(NC2=O)cccc3)CC1 

616 18999 O(C)c1c(OC)c2C=3C(=CC(=O)C(O)=CC=3)C(N)CCc2cc1OC 

617 19009 O(C)c1c2c(ccc1OC)cc-1[n+](CCc3cc(OC)c(OC)cc-13)c2 

618 19659 S=C1N([O-])C=CC=C1 

619 20710 O(C(=O)C(CO)c1ccccc1)C1CC2[N+]([O-])(C(C1)CC2)C 

620 21100 O(C)c1cc(ccc1O)C(O)CNC 

621 21109 O(C)c1c(OC)c(OC)ccc1CN1CCNCC1 

622 22407 O=C1N2C(C3CC(C2)CNC3)=CC=C1 

623 22955 O(C)c1ccc2c(CN3C(C2)c2cc(O)c(OC)cc2CC3)c1O 

624 23307 O(C)c1cc2c(cc1OC)cc1[n+](ccc3cc(OC)c(OC)cc13)c2C 

625 23831 S(O)(=O)(=O)CCN1CCN(CC1)CCO 

626 28061 ClCC(O)Cn1c(ncc1[N+](=O)[O-])C 
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627 31072 S=C1N(C=CN1C)C(OCC)=O 

628 31729 Oc1ccc(cc1)C(O)C(NCCc1ccc(O)cc1)C 

629 37338 [N+](CCCc1[n+](c2cc(N)ccc2c2c1cc(N)cc2)-c1ccccc1)(CC)(CC)C 

630 40634 O1c2c(CCC1(C(O)=O)C)c(C)c(O)c(C)c2C 

631 42616 O=C1C(N2CC2)=C(NC(OCC)=O)C(=O)C(N2CC2)=C1NC(OCC)=O 

632 44097 S1C2N(C(=O)C2NC(=O)C(S(O)(=O)=O)c2ccccc2)C(C(=O)[O-

])=C(C1)C[n+]1ccc(cc1)C(=O)N 

633 48704 O(C)c1c2-c3c(CC4N(CCc(cc1OC)c24)C)ccc(OC)c3O 

634 54456 Oc1cc2c(cc1O)CCNC2C 

635 60793 O1C(CO)C(O)C(O)C(O)C1OC(C(O)C(O)C(O)=O)C(O)CO 

636 62389 [nH]1c2c(ncnc2NCc2ccccc2)nc1 

637 64961 [nH]1c2c(c3c1cncc3)cccc2 

638 67425 O(CCN(CC)CC)c1c(OCCN(CC)CC)cccc1OCCN(CC)CC 

639 68094 O=C1C=C2NC=3C(=C2C=C1)C=CNC=3C 

640 68843 N1C(CCCC1C)C 

641 69216 O=C1NC(=O)NC1C 

642 71655 O1CCN(CC1)C(N=C(N)N)=N 

643 71771 Clc1cccc(Cl)c1Nc1ccccc1CC(OCC(O)=O)=O 

644 91522 [nH]1c2c(CCNC2C)c2c1cccc2 

645 92118 O(C)C1C2C34C(N(CC2(CCC3O)COC)CC)C1(O)C1(O)C2C4CC(C2

OC)C(OC)C1 

646 96946 OC(CC1N(C)C(CCC1)CC(O)c1ccccc1)c1ccccc1 

647 97508 OC(=O)C(NC(=O)C)CC(O)=O 



261 

 

648 98889 OC=1C(=O)N(N(C)C=1C)c1ccccc1 

649 99114 O1C2C(C(C)C1=O)C(O)CC(=C1C2C(=CC1=O)C)C 

650 107751 S(C(=O)C)CC(Cc1ccccc1)C(=O)NCC(OCc1ccccc1)=O 

651 122642 P(OC1C(O)C(OC1n1c2ncnc(N)c2nc1)CO)(OCC1OC(n2c3ncnc(N)c3

nc2)C(OP(OCC2OC(n3c4ncnc(N)c4nc3)C(O)C2O)(O)=O)C1O)(O)=

O 

652 161120 O1C2C(O)(C34OC5OC(=O)C(O)C56C3(C(OC4=O)C(O)C6C(C)(C)

C)C2O)C(C)C1=O 

653 165537 O1C23C4(OC1)C1C(O)(C56C(C(CCC5OC)(CN(C26)CC)C)C3OC(=

O)C)CC(C1OC)C(OC)C4 

654 170157 O(C)C1C2CC3C(C(O)(C1)C1C4N(CC5(C(C34C(O)CC5)C1)C)CC)

C2O 

655 170344 OC(=O)CN(CC(=O)Nc1c(cccc1CC)CC)CC(O)=O 

656 179850 OC1CCCc2c1nc1c(cccc1)c2N 

657 180933 O=C1C=CC(=O)c2c1c1c(c3c(cc1)cccc3)cc2 

658 195165 O1CCN(CC1)CCNc1nnc-2c(c1)CCCc1c-2cccc1 

659 201400 O(C(=O)C1(CCC(c2c1cccc2)C(OC1CC2[N+](C(C1)CC2)(CC)C)=O)

c1ccccc1)C1CC2[N+](C(C1)CC2)(CC)C 

660 220774 OC1CCC2(C(CCC3(C2CC=C2C4C(C)C(CCC4(CCC23C)C(O)=O)C

)C)C1(C)C)C 

661 248507 O(C)c1c2-c3cc(OC)c(O)cc3CC3N(CCc(cc1O)c23)C 

662 251561 O1C=C(C2C(CN3C(C2)c2[nH]c4c(c2CC3)cccc4)C1C)C(OC)=O 

663 260807 O(Cc1ccccc1)c1c2[nH]cc(c2ccc1)CN(C)C 
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664 264115 N1C2N(CCC3(C24CCN(C3Nc2c4cccc2)C)c2c1cccc2)C 

665 267769 O1C23C(=CC1=O)C=CC(N1C2CCCC1)C3 

666 271325 Brc1cc(OC)c(OC)cc1CC1N(CCc2c1cc(OC)c(OC)c2)C 

667 274159 O1CC(=CC1=O)C1CCC2(O)C3C(CCC12C)C1(C(CC(O)CC1)CC3)

C 

668 279057 O1C2CC3C(C4N(CC3(C4C23c2c(NC3=O)cccc2)C=C)C)C1 

669 287691 S(C)C1=CC=C2C(=CC1=O)C(NC(=O)C)CCc1c2c(OC)c(OC)c(OC2

OC(CO)C(O)C(O)C2O)c1 

670 312827 O1C2C(C(C)C13NCC(CC3)C)C1(C(C3C(CC1)C1(C(CC(O)CC1)CC

3)C)C2)C 

671 342467 Ic1c(C(=O)NC2C(O)C(O)C(OC2O)CO)c(I)c(NC(=O)C)c(I)c1N(C(=

O)C)C 

672 413349 O1C(CN)C(O)C(O)C(N)C1OC1C(O)C(O)C(N)CC1N 

673 418931 O1C(C)C(C)C(OC(=O)C)C(C)C(=O)C2(OC2)CC(C)C(OC2OC(CC(

N(C)C)C2OC(=O)C)C)C(C)C(OC2OC(C)C(OC(=O)C)C(OC)C2)C(

C)C1=O 

674 420422 O(C)c1cc(ccc1OC)C(OC1CC2N(C(C1)CC2)C)=O 

675 439739 OC1C2C(C3CCC(C(=O)CO)C3(C1)C)CCC1=CC(=O)CCC12C 

676 442649 n1cc(ccc1)C1=NCCC1 

677 443007 O(C)c1cc(ccc1O)C(OC1CC2N(C(C1)CC2)C)=O 

678 446541 O1Cc2c(c(O)c(C\C=C(\CCC(O)=O)/C)c(OC)c2C)C1=O 

679 457906 OC1CC([N+](C1)(C)C)C(=O)[O-] 

680 500165 OC1CC2CCC3C4CCC(C(CCC(O)=O)C)C4(CCC3C2(CC1)C)C 
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681 521440 OC1(CCC2C3C(C4(C(=CC(=O)CC4)CC3)C)C(=O)CC12C)C(=O)C

O 

682 523975 O=C1N2C(=Nc3c1cccc3)CCCC2 

683 542212 O1C(CO)C(O)C(OC(C(O)=O)C)C(NC(=O)C)C1O 

684 580552 O1C2C(C3N(CCC3=CC2O)C)c2c(cc3OCOc3c2)C1=O 

685 630532 O1C2CC(=O)N3C4C5(C6[N+]([O-

])(CC(C(C24)C6)=CC1)CC5)c1c3cccc1 

686 630921 OC1CCC2C(CC3N(C2)CCc2c3[nH]c3c2cccc3)C1C(O)=O 

687 643764 O(C)c1c(OC)cc(cc1OC)\C=C/C(=O)N1CCC=CC1=O 

688 657298 S=C1NC(=CC(=O)N1)CCC 

689 657345 S(Cc1oc(cc1)CN(C)C)CCN\C(\NC)=C/[N+](=O)[O-] 

690 667493 S=C1NC(=CC(=O)N1)C 

691 688585 n1ccccc1/C(=C\CN1CCCC1)/c1ccc(cc1)C 

692 719408 s1ccnc1NC(=S)Nc1ccccc1 

693 1349907 S=C1NC=CN1C 

694 1548885 S(=O)(C)c1ccc(cc1)\C=C/1\c2c(cc(F)cc2)C(CC(O)=O)=C\1C 

695 1548912 O1c2cc(ccc2OC1)\C=C/C=C\C(=O)N1CCCCC1 

696 1548942 O(C)c1cc(ccc1O)CNC(=O)CCCC\C=C/C(C)C 

697 1548955 Cl\C(=C(\c1ccc(OCCN(CC)CC)cc1)/c1ccccc1)\c1ccccc1 

698 2761171 S=C(N)c1cc(ncc1)CC 

699 3032771 S(\C(=C(/N(Cc1cnc(nc1N)C)C=O)\C)\CCOP(O)(O)=O)C(=O)c1cccc

c1 

700 3133561 OC1C23C(C45C6CC2C4N(CC6(CCC5O)C)CC)CC(O)C(C3)C1=C 
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701 3634067 O=CC=1C2CC3[N+](CC2=CC)(CCC23C=1Nc1c2cccc1)C 

702 3649142 O=C1NC(CC(C)C)C(=O)NC(CCN)C(=O)NC(CCN)C(=O)NC(C(O)

C)C(=O)NCCC(NC(=O)C(NC(=O)C(NC(=O)C(NC(=O)CCCCC(CC

)C)CCN)C(O)C)CCN)C(=O)NC(CCN)C(=O)NC1CC(C)C 

703 3672427 [nH]1c2C3N(C4C5C(NCCC5)C3CC4)CCc2c2c1cccc2 

704 3787925 OC1(CCC2C3C(C4C(CC3)=CCCC4)CCC12C)C#C 

705 3851247 O=C1NC(CCCN)C(=O)NC(CC(C)C)C(=O)NC(Cc2ccccc2)C(=O)N2

C(CCC2)C(=O)NC(C(C)C)C(=O)NC(CCCN)C(=O)NC(CC(C)C)C(=

O)NC(Cc2ccccc2)C(=O)N2C(CCC2)C(=O)NC1C(C)C 

706 3915039 O1C2C(OC3OC(CC(=O)C13O)C)C(O)C([NH2+]C)C(O)C2[NH2+]C 

707 3996620 O=C1c2ccc(nc2N(C=C1C(=O)[O-])CC)C 

708 4320774 O(CCCC)c1cc(ccc1N)C(OCC[NH+](CC)CC)=O 

709 4359763 O1C23C4(OC1)C1C(C56C(C(CCC5OC)(CN(C26)CC)COC)C3O)CC

(C1OC)C(OC)C4 

710 4479096 O(CC(O)C[NH2+]C(C)(C)C)c1c2c(ccc1)C(=O)CCC2 

711 4486617 O1C2C3N(C(CC(OC(=O)C(=C)c4ccccc4)C3)C12)C 

712 4580358 O1C(CC)C(O)(C2OC(NC(C2C)C(CC(O)(C)C(OC2OC(CC(N(C)C)C

2O)C)C(C)C(OC2OC(C)C(O)C(OC)(C2)C)C(C)C1=O)C)COCCOC)

C 

713 4636599 S1C2N(C(C(=O)[O-

])C1(C)C)C(=O)C2NC(=O)c1c2c(ccc1OCC)cccc2 

714 4677798 O1C(CC(O)CC1=O)CCC1C2C(=CC(CC2OC(=O)C(CC)(C)C)C)C=

CC1C 
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715 4739621 S(=O)([O-])(=Nc1nc(cc(n1)C)C)c1ccc(N)cc1 

716 5053503 P(O)(=O)([O-])C(P(O)(=O)[O-])(O)C 

717 5171637 O1C23C(CCC4C1(O)C(OC(=O)c1cc(OC)c(OC)cc1)CCC24C)C1(O)

C(C2C(C(O)C1O)C(O)(C1N(CC(CC1)C)C2)C)C3 

718 5191579 OC(C(CO)(C)C)C(=O)NCCC(=O)[O-] 

719 5231296 Clc1cc(cc(Cl)c1N)C(O)C[NH2+]C(C)(C)C 

720 5280442 O1c2c(C(=O)C=C1c1ccc(OC)cc1)c(O)cc(O)c2 

721 5280443 O1c2c(C(=O)C=C1c1ccc(O)cc1)c(O)cc(O)c2 

722 5280445 O1c2c(C(=O)C=C1c1cc(O)c(O)cc1)c(O)cc(O)c2 

723 5280953 O(C)c1cc2[nH]c3c(c2cc1)ccnc3C 

724 5281404 [nH]1c2c(c3c1cccc3)ccnc2C 

725 5281672 O1c2c(C(=O)C(O)=C1c1cc(O)c(O)c(O)c1)c(O)cc(O)c2 

726 5312135 S1(=O)(=O)N(C)\C(=C(/O)\Nc2ncccc2)\C(=O)c2c1cccc2 

727 5312154 s1c2c(S(=O)(=O)N(C)\C(=C(/O)\Nc3ncccc3)\C2=O)cc1 

728 5351819 OC12C(CC3C(C1=O)=C(O)c1c(cccc1O)C3(O)C)C(N(C)C)C(=O)/C(

=C(\O)/NCN1CCCC1)/C2=O 

729 5353527 OC1C\C(=C/C=C\2/C3CCC(C(CCCC(C)C)C)C3(CCC/2)C)\C(CC1)

=C 

730 5353656 O=C1C=C2NC=3C(=C2C=C1)CCNC=3C 

731 5353779 OC12C(CC3C(C1=O)=C(O)c1c(C3)c(N(C)C)ccc1O)C(N(C)C)C(=O)

/C(=C(\O)/N)/C2=O 

732 5353864 O1C2C(CC\C(=C/CCC3(OC23)C)\C)C(=C)C1=O 

733 5353990 OC12C(CC3C(C1=O)=C(O)c1c(cccc1O)C3(O)C)C(N(C)C)C(=O)/C(
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=C(\O)/N)/C2=O 

734 5360959 S1(=O)(=O)N(C)\C(=C(/O)\Nc2noc(c2)C)\C(=O)c2c1cccc2 

735 5367858 Clc1c2c(C(O)=C3C(CC4C(O)(C(=O)\C(=C(/O)\N)\C(=O)C4N(C)C)

C3=O)C2O)c(O)cc1 

736 5367871 Clc1c2c(C(O)=C3C(CC4C(O)(C(=O)\C(=C(/O)\N)\C(=O)C4N(C)C)

C3=O)C2(O)C)c(O)cc1 

737 5368888 O1CC=2C3N(CCC3OC(=O)/C(/CC(=C)C(O)(C)C1=O)=C/C)CC=2 

738 5378180 O1C(C(O)C(O)C(O)C1CO)c1c2OC(=CC(=O)c2c(O)cc1O)c1ccc(O)c

c1 

739 5458656 Brc1ccc(cc1)\C(=C/CN(C)C)\c1cccnc1 

740 5462906 O1CC=2C3N(CCC3OC(=O)/C(/CC(C)C(O)(CO)C1=O)=C/C)CC=2 

741 5473483 O1c2c(N=C3C1=CC(N(CC)CC)C=C3)c(cc(O)c2O)C(=O)N 

742 5474986 O1C(C)C(OC2OC(C)C(OC(=O)CC(C)C)C(O)(C2)C)C(N(C)C)C(O)

C1OC1C(OC)C(OC(=O)C)CC(OC(C\C=C\C=C/C(O)C(CC1CC=O)C

)C)=O 

743 5791942 Fc1ccc(cc1)-c1c2c(n(C(C)C)c1\C=C\C(O)CC(O)CC(=O)[O-])cccc2 

744 5820787 O(C(=O)C)C/1CC2(C(CC(O)C3C2(CCC2C(C)C(O)CCC23C)C)\C\1

=C(\CCC=C(C)C)/C(=O)[O-])C 

745 6420076 N12C(=Nc3c(C1)cccc3)CCCC2 

746 6914279 s1ccc(C)c1\C=C/C1=NCCCN1C 

747 6914280 s1cccc1\C=C/C1=NCCCN1C 

748 6914283 Oc1cc(ccc1)\C=C/C1=NCCCN1C 

749 6921821 Clc1ccc(cc1)C(=O)c1n(C)c(cc1C)CC(=O)[O-] 
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750 9604989 S(=O)(=O)([O-])c1cc(S(=O)(=O)[O-

])c2c(c1N)C(=O)/C(=N/Nc1ccc(cc1OC)-

c1cc(OC)c(N\N=C\3/C=Cc4c(c(N)c(S(=O)(=O)[O-

])cc4S(=O)(=O)[O-])C/3=O)cc1)/C=C2 

751 10099444 O1C(=O)C(=CC1C)CCCCCCCCCCCCC(O)C1OC(CC1)C(O)CCCC

CCCCCCCC 

752 14506494 FC12C(C3CC(C)C(OC(=O)C)(C(=O)CO)C3(CC1O)C)CCC1=CC(=

O)C=CC12C 

753 16219826 OC1CC(=O)C(C\C=C/CCCC(O)=O)C1\C=C\C(O)CCCCC 

754 24848418 O(C)c1cc2[NH2+]C3=C(CCN=C3C)c2cc1 
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Appendix IV: 

5-HT2B External Set Compounds 

Cp. 

ID 

PubChem_

CID 

SMILES 

755 896 O(C)c1cc2c([nH]cc2CCNC(=O)C)cc1 

756 3194 [Se]1N(C(=O)c2c1cccc2)c1ccccc1 

757 3410 O(C)c1ccc(cc1)CC(NCC(O)c1cc(NC=O)c(O)cc1)C 

758 4452 Clc1cc(C(=O)NC2CCN(Cc3ccccc3)C2C)c(OC)cc1NC 

759 5454 S1c2c(cc(S(=O)(=O)N(C)C)cc2)C(c2c1cccc2)=CCCN1CCN(CC1)C 

760 5574 S1c2c(N(c3c1cccc3)CC(CN(C)C)C)cccc2 

761 12454 Clc1cc2c(Sc3c(cccc3)C2=CCCN2CCN(CC2)CCO)cc1 

762 60854 Clc1cc2NC(=O)Cc2cc1CCN1CCN(CC1)c1nsc2c1cccc2 

763 62875 Clc1cc2N(c3c(Sc2cc1)cccc3)CCCNC 

764 122295 Clc1c2c(CCN(CC2)C)c(OCC=C(C)C)cc1 

765 123836 O(C)c1cc2C3N(CC(CC(C)C)C(O)C3)CCc2cc1OC 

766 152151 S(Oc1cc2c([nH]cc2CCN)cc1)(O)(=O)=O 

767 5361110 Clc1cc(ccc1)C1=NCCN=C2N(NC(=C12)C)C 

768 9543513 O=C(N1CCC(CC1)CCCCNC(=O)CCc1cccnc1)c1ccccc1 

769 9952054 Ic1ccc(cc1)C1CC2N(C(CC2)C1C(OC)=O)C 

770 24901748 O(C)c1ccc(cc1)C(n1ccnc1)COCCCc1ccc(OC)cc1 
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Appendix V: 

Predictions on 5-HT2B Test Set Compounds for a Simple Model Generated Using the 

Number of Nitrogen Atoms, Number of Hydrophobic Groups, And LogP. 

Cp. ID Model Actual Class Predicted Class 

1 Simple Active Inactive 

5 Simple Active Active 

11 Simple Active Inactive 

15 Simple Active Inactive 

18 Simple Active Inactive 

21 Simple Active Inactive 

26 Simple Active Inactive 

27 Simple Active Inactive 

28 Simple Active Active 

33 Simple Active Inactive 

37 Simple Active Active 

44 Simple Active Active 

49 Simple Active Inactive 

59 Simple Active Inactive 

60 Simple Active Inactive 

64 Simple Active Active 

65 Simple Active Inactive 

72 Simple Active Inactive 
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73 Simple Active Active 

74 Simple Active Inactive 

82 Simple Active Active 

84 Simple Active Inactive 

85 Simple Active Inactive 

86 Simple Active Inactive 

106 Simple Active Inactive 

107 Simple Active Active 

124 Simple Active Inactive 

129 Simple Active Inactive 

134 Simple Active Active 

136 Simple Active Inactive 

151 Simple Inactive Inactive 

158 Simple Inactive Inactive 

163 Simple Inactive Inactive 

168 Simple Inactive Inactive 

170 Simple Inactive Inactive 

179 Simple Inactive Inactive 

188 Simple Inactive Active 

193 Simple Inactive Inactive 

195 Simple Inactive Inactive 

201 Simple Inactive Inactive 

203 Simple Inactive Inactive 
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208 Simple Inactive Active 

210 Simple Inactive Active 

218 Simple Inactive Inactive 

221 Simple Inactive Active 

223 Simple Inactive Inactive 

232 Simple Inactive Inactive 

233 Simple Inactive Inactive 

238 Simple Inactive Inactive 

250 Simple Inactive Inactive 

251 Simple Inactive Inactive 

254 Simple Inactive Inactive 

261 Simple Inactive Inactive 

266 Simple Inactive Inactive 

267 Simple Inactive Inactive 

268 Simple Inactive Inactive 

270 Simple Inactive Inactive 

274 Simple Inactive Inactive 

283 Simple Inactive Active 

287 Simple Inactive Active 

292 Simple Inactive Inactive 

293 Simple Inactive Inactive 

296 Simple Inactive Inactive 

300 Simple Inactive Inactive 
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304 Simple Inactive Active 

311 Simple Inactive No Prediction 

327 Simple Inactive Inactive 

345 Simple Inactive Inactive 

346 Simple Inactive Active 

354 Simple Inactive Inactive 

359 Simple Inactive Inactive 

364 Simple Inactive No Prediction 

369 Simple Inactive Inactive 

370 Simple Inactive Active 

374 Simple Inactive Inactive 

375 Simple Inactive Inactive 

380 Simple Inactive Inactive 

381 Simple Inactive Inactive 

385 Simple Inactive Inactive 

399 Simple Inactive Inactive 

408 Simple Inactive Inactive 

413 Simple Inactive Inactive 

414 Simple Inactive Active 

427 Simple Inactive Inactive 

431 Simple Inactive Inactive 

432 Simple Inactive Inactive 

440 Simple Inactive Inactive 
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441 Simple Inactive Inactive 

442 Simple Inactive Inactive 

443 Simple Inactive Inactive 

450 Simple Inactive No Prediction 

455 Simple Inactive Active 

457 Simple Inactive Active 

473 Simple Inactive Inactive 

478 Simple Inactive Inactive 

480 Simple Inactive Inactive 

488 Simple Inactive Inactive 

513 Simple Inactive Inactive 

520 Simple Inactive Inactive 

523 Simple Inactive Active 

526 Simple Inactive Inactive 

532 Simple Inactive Inactive 

538 Simple Inactive Inactive 

548 Simple Inactive Inactive 

555 Simple Inactive Inactive 

556 Simple Inactive Inactive 

562 Simple Inactive Inactive 

566 Simple Inactive Inactive 

568 Simple Inactive Inactive 

571 Simple Inactive Active 
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576 Simple Inactive Inactive 

577 Simple Inactive Inactive 

583 Simple Inactive Inactive 

584 Simple Inactive Inactive 

604 Simple Inactive Inactive 

605 Simple Inactive Inactive 

606 Simple Inactive Inactive 

610 Simple Inactive Inactive 

611 Simple Inactive Inactive 

618 Simple Inactive Inactive 

621 Simple Inactive Active 

626 Simple Inactive Inactive 

628 Simple Inactive Inactive 

629 Simple Inactive Inactive 

630 Simple Inactive Inactive 

638 Simple Inactive Inactive 

639 Simple Inactive Inactive 

654 Simple Inactive Inactive 

655 Simple Inactive Inactive 

657 Simple Inactive Inactive 

659 Simple Inactive Active 

672 Simple Inactive Inactive 

681 Simple Inactive Inactive 



275 

 

688 Simple Inactive Inactive 

698 Simple Inactive Inactive 

702 Simple Inactive Inactive 

703 Simple Inactive Active 

711 Simple Inactive Inactive 

717 Simple Inactive Active 

721 Simple Inactive Inactive 

723 Simple Inactive Inactive 

725 Simple Inactive Active 

733 Simple Inactive Inactive 

736 Simple Inactive Inactive 

737 Simple Inactive No Prediction 

741 Simple Inactive Active 

742 Simple Inactive Inactive 

751 Simple Inactive Inactive 

753 Simple Inactive Inactive 

754 Simple Inactive Inactive 

TP=9; FP= 20; TN=96; FN=21; CCRevs = 0.55 
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Appendix VI: 

The Purity Data for Ten Virtual Screening Compounds Tested In 5-HT2B Study 

Compd.* 

ID 
PDSP ID 

PubChem 

CID 

Purity 

% 
Method 

1 14809 43922 99% LC/MS Spectra 

2 14807 71928 96% LC/MS Spectra 

3 14806 114709 98% LC/MS Spectra 

4 14814 3038495 100% LC/MS Spectra 

5 14821 3336 96% LC/MS Spectra 

6 14815 1715104 100% LC/MS Spectra 

7 27769 4140 98% LC/MS Spectra 

8 14805 195658 99% LC/MS Spectra 

9 13513 9909648 70% LC/MS Spectra 

10 13505 15940170 98% LC/MS Spectra 

  *Compound IDs as reported in chapter 4. 
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Appendix VII: 

LC/MS Purity Spectra for Tested Virtual Screening Hits 
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LC/MS purity spectra for compound 1. 
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LC/MS purity spectra for compound 2.
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LC/MS purity spectra for compound 3. 
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LC/MS purity spectra for compound 4. 
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LC/MS purity spectra for compound 5. 
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LC/MS purity spectra for compound 6.
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LC/MS purity spectra for compound 8.
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LC/MS purity spectra for compound 9.
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LC/MS purity spectra for compound 10.
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