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Abstract
Feng Pan: Efficient Algorithms in Analyzing Genomic Data.

(Under the direction of Wei Wang.)

With the development of high-throughput and low-cost genotyping technologies, immense

data can be cheaply and efficiently produced for various genetic studies. A typical dataset may

contain hundreds of samples with millions of genotypes/haplotypes. In order to prevent data

analysis from becoming a bottleneck, there is an evident need for fast and efficient analysis

methods.

My thesis focuses on two interesting and important genetic analyzing problems.

• Genome-wide Association mapping. The goal of genome wide association mapping is

to identify genes or narrow regions in the genome which have significant statistical

correlations to the given phenotypes. The discovery of these genes offers the potential

for increased understanding of biological processes affecting phenotypes such as body

weight and blood pressure.

• Sample selection for maximal Genetic Diversity. Given a large set of samples, it is

usually more efficient to first conduct experiments on a small subset. Then the following

question arises: What subset to use? There are many experimental scenarios where

the ultimate objective is to maintain, or at least maximize, the genetic diversity within

relatively small breeding populations.

In my thesis, I developed the following efficient and effective algorithms to address these

problems.

• Phylogeny-based Genom-wide association mapping:

– TreeQA: The algorithm uses local perfect phylogeny tree in genome wide analysis

for genotype/phenotype association mapping. Samples are partitioned according

to the sub-trees they belong to. The association between a tree and the phenotype

is measured by some statistic tests.
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– TreeQA+: TreeQA+ inherits all the advantages of TreeQA. Moreover, it improves

TreeQA by incorporating sample correlations into the association study.

• Sample selection for maximal genetic diversity:

– Sample Selection in biallelic SNP Data: Samples are selected based on their genetic

diversity among a set of SNPs. Given a set of samples, the algorithms search for

the minimum subset that retains all diversity (or a high percentage of diversity).

– Representative Sample Selection in Non-Biallelic Data: For more general data

(non-biallelic), information-theoretic measurements such as entropy and mutual

information are used to measure the diversity of a sample subset. Samples are

selected to maximize the original information retained.
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Chapter 1

Introduction

Genetics is the study of inheritance and variation in living organisms. A central dogma

of modern genetics is that DNA is a template for making RNA which encodes the linear

structure of proteins. Thus, biological data such as genomic data and proteomic data

are frequently used in modern genetic analysis. In the early years of genetic study,

getting sufficient data was the bottle neck of the analysis. Because of the high-cost and

low-efficiency of sequencing technologies, scientists only have limited data, e.g. sparse

genetic maps. Such data constrain the power of the various genomic analysis. Recently,

with the development of high-throughput and low-cost sequencing technologies, immense

biological data can now be cheaply and efficiently produced for various genetic studies.

A few example datasets are shown in Figure 1.1.

• In Figure 1.1 (a), a protein structural data contains the 3D information for hun-

dreds of amino acid.

• In Figure 1.1 (b), a microarray gene expression data contains thousands of gene

expression measurements from different organisms or under different environments.

• In Figure 1.1 (c), a SNP (Single Nucleotide Polymorphism) data contains millions

of SNP markers.



(a)

(b)

(c)

Figure 1.1: Examples of immense biological data

These data are broadly used in biological analysis such as Quantitative Traits Loci

Analysis (QTL), Gene Regulatory Network, and Protein Family Analysis.

While the immense genomic data are improving the power of various biological anal-

ysis, they are also posing great computational challenges to the analysis studies. In

QTL mapping, single marker analysis method (Pe’er et al. (2006); Akey et al. (2001))

is fast and frequently used. In a genomic dataset containing millions of markers, one

scan of the single marker analysis method already takes hours to finish. Other com-

plex methods such as haplotype-based mapping (McClurg et al. (2006); Onkamo et al.

(2002); Wang and Paigen (2005)) and phylogeny-based mapping (Zollner and Pritchard

(2005); Mailund et al. (2006); Sevon et al. (2006)) are far more time-consuming. For

example, an epistasis test examines all pairs of markers in a genomic data. To run such

a test on a genomic data containing 106 markers, the total number of tests is O(1012).

And considering the permutation tests (Fisher (1935)) which are required to calculate
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the significant threshold, the total number of tests can be further increased by a factor

of 103 or even more.

Therefore, there is an urgent need to improve the efficiency and scalability of genetic

study. The goal of my thesis is to develop efficient analysis methods for various applica-

tions in genetics. My thesis focuses on two interesting and important genetic analyzing

problems as following:

1. Phylogeny-based Genome-Wide Association Mapping: The goal of genome

wide association (GWA) mapping in modern genetics is to identify genes or nar-

row regions in the genome that contribute to genetically complex traits such as

morphology or diseases. Among the existing methods, phylogeny-based associa-

tion mapping methods (Zollner and Pritchard (2005); Mailund et al. (2006); Sevon

et al. (2006)) show obvious advantages over single marker-based methods (Pe’er

et al. (2006); Akey et al. (2001)) and haplotype-based methods (McClurg et al.

(2006); Onkamo et al. (2002); Wang and Paigen (2005)) because they incorpo-

rate information about the evolutionary history of the genome into the analysis.

However, both the phylogeny inference and the more complex model indicted by

the phylogeny cause the existing phylogeny-based methods to be far more time-

consuming than single marker and haplotype-based methods. Methods such as

TreeLD (Zollner and Pritchard (2005)) can take hours to analyze a small dataset

containing tens of samples and markers. Thus, efficient algorithms are in need for

genome-wide scale analysis.

2. Maximum-diversity Sample Selection: The problem of selecting a sample

subset sufficient to preserve genetic diversity, as measured by retaining a specific

set of genetic markers, arises in the design of recombinant inbred lines (RIL).

RIL panels derived from more than two parental strains, such as the Collabora-

tive Cross(Threadgill et al. (2002); Churchill et al. (2004)), present a particular

challenge as to which progenitor strains to include in order to maximize SNP re-

3



tention. A similar problem occurs when staging association studies across an RIL

panel regarding how to order experiments in such a way that the most informa-

tion is obtained. The problem of finding the sample subset having the greatest

diversity is NP-complete. Given n samples, the problem has a searching space of

size O(2n). A typical SNP dataset can contain hundreds of samples which makes

it infeasible to perform a manual search. Efficient algorithms which are optimized

in runtime by heuristic searching are needed to handle the problem on real data.

In fact, the sample selection problem is closely related to the genome-wide association

mapping problem. Genetic (allele) diversity is an important aspect to consider when

designing association mapping studies. Sample selection could take place in the following

two stages of GWA:

• Design of breeding program: In many cases, association mapping is conducted on

a population bred from a small set of samples. Usually, the number of available

samples is larger than the number of samples needed to start a breeding program.

A subset of samples which has the maximal genetic diversity is usually preferred

over a random subset.

• Pre-processing of association mapping: A large set of samples cause computation

problems such as the huge number of permutation tests. By selecting a subset of

the samples based on their genetic diversity, association mapping can be conducted

more efficiently with no significant loss in analysis capability. It also alleviates to

some extent the bias caused by population distribution.

While both GWA and sample selection can be conducted on various types of bio-

logical datasets, my thesis focuses on the analysis of the genomic data. To be more

specific, the genomic data used in my thesis are mostly SNP data produced by isogenic

mouse strains. In the isogenic strains, the two copies of each chromosome are identical.

Thus, a sample chromosome can be represented by a single string. In these data, Single

4



Figure 1.2: An example SNP data and its corresponding binary matrix

Nucleotide Polymorphisms (SNPs) are used as genetic markers. A SNP is a single nu-

cleotide in the genome which differs between individuals of a species (or between paired

chromosomes in an individual). The variants of a SNP are called alleles. Previous work

(Ideraabdullah et al. (2004)) has shown that over 99% of SNPs in mouse isogenic strains

are biallelic (i.e., have two alleles), which allows us to represent allele diversity as a

binary matrix. Figure 1.2 shows an example SNP data consisting of 10 sample chro-

mosomes {s1, s2, ..., s10} and 10 SNPs {m1, m2, ..., m10}, and its corresponding binary

matrix.

A real SNP dataset may consist of millions of markers and hundreds of sample

chromosomes. In the methods developed in my thesis, various strategies are used to

tackle the computation challenges arising in the two problems, i.e., GWA and sample

selection. The following sections summarize my contributions.
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1.1 Efficient Phylogeny-based Genome-wide Associ-

ation Mapping Algorithms

Previous studies (Zollner and Pritchard (2005); Mailund et al. (2006); Sevon et al.

(2006)) have shown that phylogeny-based association mapping methods outperform

single-marker and haplotype-based methods. However, those phylogeny-based meth-

ods (Zollner and Pritchard (2005); Mailund et al. (2006); Sevon et al. (2006)) are

time-consuming and unable to handle real SNP data. In my thesis, I developed two

efficient phylogeny-based association mapping methods, TreeQA (Pan et al. (2009))

and TreeQA+. Instead of utilizing maximum-parsimony phylogeny or other types of

phylogenies (which takes a long time to be inferred from genomic data), TreeQA and

TreeQA+ examine the association between the inferred local perfect phylogenetic trees

and the phenotype. A perfect phylogenetic tree (Fernandez-Baca (2001)) demonstrates

the genetic relationship among a set of haplotypes. For any given set of haplotypes, a

unique perfect phylogenetic tree exists if and only if the haplotypes are from a compat-

ible region.

Given a SNP data and a phenotype, both TreeQA and TreeQA+ algorithms take

three steps:

1. Identify maximum compatible regions in the SNP data: A compatible region con-

sists of a set of consecutive SNP markers which are all pair-wise compatible by the

4-gamet rule (Hudson and Kaplan (1985)). All genetic variances in a compatible

region are introduced by mutations, not from recombination or homoplasy. Each

compatible region is maximized on both sides so that it contains as much genetic

information as possible.

2. Infer perfect phylogenetic tree for each maximum compatible region: A linear-time

algorithm is used to infer local perfect phylogenetic trees for each region (Agarwala
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Figure 1.3: Example of maximal compatible regions and perfect phylogenetic trees

et al. (1995)). A piece of SNP data, the identified maximal compatible regions

and their corresponding perfect phylogenetic trees are shown in Figure 1.3.

3. Examine the association between each tree and the phenotype: By removing com-

binations of edges of the tree, both TreeQA and TreeQA+ enumerate all partitions

indicated by each tree, but use different statistical models and methods to examine

the association between each partition and the phenotype.

In Step 3 of the above framework, genetic relationships among the samples are incor-

porated into the association analysis by examining all the partitions of samples indicated

by the perfect phylogenetic trees. TreeQA and TreeQA+ utilize different models and

tests to examine the partitions:

• TreeQA utilizes F-test and permutation test to calculate the significance of the

association between each partition and the phenotype. Moreover, TreeQA is able

to detect and remove outliers indicated by the tree topology and search for asso-

ciations in sample subspaces.
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• TreeQA+ improves TreeQA by utilizing the Brownian motion and maximum like-

lihood model to incorporate sample correlations induced by trees. The correlations

violate the sample independence assumption and can bias the significance of the

association. Ignoring the correlations may cause spurious association to be de-

tected.

Even though both TreeQA and TreeQA+ utilize a linear-time tree inference algo-

rithm, they are still facing the computational challenges caused by test calculation and

permutation test. Several efficiency optimizations are developed in the two algorithms.

In particular, for TreeQA:

1. Identical partitions indicated by different trees are stored and retrieved in a prefix

tree. The association score of a partition is only calculated once.

2. The intermediate computations in permutation tests are maximally reused by re-

designing the calculation.

And for TreeQA+:

1. The number of permutations conducted in each permutation test is varied based

on the current best association.

2. The calculation in the maximum likelihood model is optimized to avoid repeated

calculations.

In my thesis, extensive experiments are conducted on both synthetic and real SNP

data. The results show that TreeQA and TreeQA+ are more robust and effective than

single marker and haplotype-based methods, and are more efficient than the previous

phylogeny-based methods such as TreeLD (Zollner and Pritchard (2005)).

I further extended TreeQA and developed the TreeNL algorithm which is applied to

correlation clustering in high dimensional data. In quantitative data of any domains,

the TreeNL method is used to detect sample subspaces where a subset of features are
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correlated with each other, e.g., a target feature has dependency on other features. This

extended application differs from TreeQA in the following three aspects.

1. Hierarchy clustering algorithms are used to generate the tree structures represent-

ing sample relationships.

2. All feature subsets are considered in the association test, instead of only consid-

ering consecutive features.

3. Every feature is considered as a potential target feature (which may have depen-

dency on other features).

In my thesis, I applied TreeNL on real consensus data and found interesting corre-

lated feature subsets.

1.2 Sample Selection based on Genetic Diversity

Sample selection is closely related to the genome-wide association mapping problem. In

my thesis, the maximum-diversity sample selection is formalized as: select a minimum

sample subset which can at least retain ρ percent of the genetic diversity. In the studies,

the genetic diversity is measured by the sample variation retained on the set of genetic

markers. In a biallelic SNP dataset, the genetic diversity is measured as the percentage

of SNP markers of which both alleles occur in the selected samples. In non-biallelic

genomic data, the diversity is measured by information-theoretic measurements such as

mutual information (Guiasu (1977)).

In my thesis, I first developed algorithms to tackle the sample selection problem on

biallelic SNP data. In this case, the problem of maximum-diversity sample selection is

proved to be NP-complete via reduction from the Set Cover problem (Cormen et al.

(2001)). The reduction is sufficiently tight so that greedy approximations to Set Cover

directly apply to maximizing diversity. There is a well known greedy algorithm for the

9



Set Cover problem (Cormen et al. (2001)). It chooses the subset that maximizes the

increase in coverage in each step until all the elements are covered. Therefore, I developed

the PGDS (Pan et al. (2007)) algorithm which takes a similar greedy searching scheme.

PGDS chooses the sample that maximizes the increase in the diversity retained in each

step. The PGDS algorithm is different from the general Set Cover algorithm in two

aspects:

1. PGDS is restarted with each sample and it picks the smallest subset from the n

subsets generated, where n is the number of samples. Because a greedy algorithm

cannot pick the best first sample based on diversity since every single sample

provides zero diversity.

2. The PGDS algorithm may stop once the genetic diversity retained in the selected

sample subset exceeds the minimum threshold.

The PGDS algorithm is efficient on real SNP data as demonstrated in my thesis.

However, it does not guarantee the optimal solution. Therefore, I also developed an

exhaustive-searching algorithm in my thesis, KρDS (Pan et al. (2007)), which is guar-

anteed to get the optimal solution efficiently in biallelic SNP data. KρDS uses PGDS

as its pre-processing step. With the size of the possible minimum subset, K, reported

by PGDS, KρDS searches all possible combinations of samples up to size K in an enu-

meration tree. By imposing an order on the samples, the KρDS algorithm is able to

perform a systematic search by enumerating all combinations, i.e., no combination is

missed or revisited. Because of the exhaustive search scheme, KρDS guarantees to find

the optimal solution. In the worst case, the KρDS algorithm has a searching space of

size O(2n) and takes exponential time. In order to accelerate the search, the KρDS

algorithm uses several pruning strategies to prune the searching space as follows:

• Dynamically Limit the Size of the Minimum Sample Subset: As mentioned above,

KρDS only searches all sample subsets up to size K which is reported by PGDS.
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During the search, the value of K is also updated to be the size of the smallest sub-

set found so far (i.e.retains the minimum percentage of diversity). All remaining

sample subsets of larger sizes can be pruned from the enumeration tree without

further examination.

• Order Samples by Pair-wise Diversity: The runtime of KρDS depends on how deep

it searches into the enumeration tree. KρDS can use less time to find the optimal

solution if it can find a qualified subset in the earlier stages of the enumeration.

Therefore, KρDS orders the samples at each level of the enumeration according

to their pair-wise diversity so that it has a larger chance to find a qualified subset

in the early stages.

• Estimate a Branch Upper Bound on Diversity: During the enumeration, KρDS

estimates the maximal diversity that can be found in the sample subsets in the

current branch. An easy way to get a maximal diversity of a branch is to calculate

the diversity of the sample subset consisting of all the samples which will be

enumerated in that branch. Obviously, all the other sample subsets in the branch

can only achieve lower diversities than this particular subset. Therefore, if the

maximal diversity is less than the threshold ρ, KρDS can safely prune the branch.

• Refine the Branch Upper Bound on Diversity: The maximal diversity of a branch

is overestimated when it is calculated using all the samples in the branch. With

the knowledge of the size of the current minimum subset, K, KρDS can refine the

upper bound to be the maximal diversity of any K-sample subsets in the current

branch.

The experimental results in my thesis show that using these four pruning strategies

together can dramatically speed up the KρDS algorithm. And the 4th strategy is the

most efficient one.
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Both KρDS and PGDS only work on biallelic SNP data. For non-biallelic data, I de-

veloped an information-theoretic sample selection algorithm, REP (Pan et al. (2005a)),

to search maximal diversity subsets. Mutual information (Guiasu (1977)) is used to

measure the diversity retained in a sample subset. The REP algorithm takes a greedy

scheme. In each step, it chooses the sample that can maximize the increase in mutual

information until the percentage of mutual information retained exceeds a minimum

threshold. Because of the monotonicity property of mutual information of a growing

sample subset, the REP algorithm can always find a sample that increases the mutual

information in each step. Therefore, the algorithm is guaranteed to terminate in finite

steps. Due to the greedy searching scheme, REP does not guarantee the optimal solu-

tion. However, experiments in my thesis demonstrate that the sample subsets selected

by REP are near optimal.

1.3 Thesis Statement

Efficient and effective algorithms can be developed for the following two analysis tasks

on large genomic data.

• Phylogeny-based genome-wide association mapping: I developed the TreeQA and

TreeQA+ algorithms which are efficient Phylogeny-based GWA methods. I also

extended the idea to general data mining tasks and developed the TreeNL algo-

rithm.

• Maximum-diversity sample selection: I developed efficient algorithms for both

biallelic data (the KρDS and PGDS algorithms) and non-biallelic data (the REP

algorithm).
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1.4 Thesis Outline

The thesis is organized as follows:

• The TreeQA algorithm is presented in Chapter 2.

• The TreeQA+ algorithm is presented in Chapter 3.

• The extended TreeQA algorithm, TreeNL, and its application in correlation clus-

tering are discussed in Chapter 4.

• The algorithms for maximum-diversity sample selection on biallelic SNP data are

presented in Chapter 5.

• The REP algorithm for maximum-diversity sample selection on non-biallelic data

is presented in Chapter 6.

• Chapter 7 concludes my thesis work and outlines the future work.
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Chapter 2

TreeQA: Phylogeny-based Genome-wide

Association Mapping

2.1 Introduction

Genome wide association (GWA) mapping locates genes or narrows regions in the

genome that have significant statistical connections to phenotypes of interest. The

discovery of these genes and regions offers the potential to increase understanding of

biological processes controlling manifestation of phenotypes.

The most frequent genetic variants are single nucleotide polymorphisms (SNPs), in

which a single nucleotide in the genome differs between individuals within a species.

With the development of low-cost genotyping technologies, extensive SNP data can be

cheaply and efficiently produced, which further increases the computational complexity

of GWA mapping. Thus, there is an evident need for fast and effective GWA mapping

methods.

Existing methods of association mapping look for similarities among samples (chro-

mosomes, haplotypes, etc.) that are correlated with the phenotypes. If strong associ-

ations are present, the variance of the phenotype within groups of similar samples is

substantially smaller than the variance over all samples.

For example, in single marker-based (Pe’er et al. (2006); Akey et al. (2001)) and



haplotype-based association mapping (Wang and Paigen (2005); Toivonen et al. (2000);

Waldron et al. (2005)), samples are grouped according to their genetic variation at a

single marker or a set of markers. For case/control phenotypes, markers that can divide

samples into (almost) pure classes are reported. Though these methods employ differ-

ent strategies for grouping samples, the derived groups are evaluated without further

consideration of the intergroup similarities or alternate groupings.

In observation of this, tree-based association methods (Mailund et al. (2006); Sevon

et al. (2006); Zollner and Pritchard (2005)) utilize phylogenies constructed over the

samples. The phylogeny tree is a rich yet compact representation of genetic similarities of

the samples. It provides sensible groupings of samples at multiple resolutions. However,

the existing methods either handle only case/control phenotypes (Mailund et al. (2006);

Sevon et al. (2006)) or do not scale to GWA mapping (Zollner and Pritchard (2005)).

In this chapter, we introduce TreeQA, a tree-based quantitative GWA mapping al-

gorithm. TreeQA utilizes local perfect phylogeny trees constructed in genomic regions

exhibiting no evidence of historical recombination by the 4-gamete test (Hudson and

Kaplan (1985)). Given a perfect phylogeny, TreeQA evaluates all implied groupings and

finds the strongest associations to the phenotype. Furthermore, TreeQA can identify

and remove outliers during association analysis.

A brute-force implementation consists of a double loop: for every phylogeny tree,

and for every grouping represented by the tree, we conduct a separate ANOVA test

to measure its association to the phenotype, and keep track of the best groupings and

trees. This approach is inefficient and prone to multiple test errors (Miller (1981)). Both

the number of trees and number of groupings per tree can be very large1. This large

number of possible groupings requires many ANOVA tests, which is not only expensive

computationally, but also gives rise to spurious associations2. Thus, permutation tests

1For example, the number of trees can exceed tens of thousands in a chromosome-wide association
study. And there are up to 22n−2 groupings that can be generated from a tree of n samples.

2With ε error rate, the risk of reporting at least one spurious association from x tests is 1− (1− ε)x.
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are necessary to ensure the statistical significance of the discovered associations, which

will further increase the computational burden.

TreeQA exploits the following properties:

1. Groupings generated from the same tree obey a partial order, thus allowing reuse

of intermediate computations.

2. A grouping may be derived from different trees, but only need to be evaluated

once.

3. Different phenotype permutations may share a substantial number of common

computations that need to be computed only once. Thus, TreeQA employs two

prefix-tree structures (Cormen et al. (2001)) to organize all observed sample sub-

sets and groupings to facilitate the caching and retrieval of reusable computations

and guide the enumeration and evaluation of groupings.

As a result, TreeQA is able to handle quantitative GWA mapping very efficiently

and is more effective and robust in association mapping than previous methods.

2.2 Related Work

Single-marker association mapping (Pe’er et al. (2006); Akey et al. (2001)) considers the

sample groupings induced independently by each single marker. Statistical tests such

as χ2 and F-tests are used to measure the association between the phenotype and each

grouping. These methods are computationally efficient, however, they do not utilize the

additional information content carried by haplotypes over single markers.

To address this shortcoming, haplotype-based methods have been developed. HAM

(McClurg et al. (2006)) considers combinations of three consecutive SNPs along the

genome. QHPM (Onkamo et al. (2002)) uses frequent pattern mining methods to find
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haplotype patterns in the data, upon which sample groupings are created and evalu-

ated. HapMiner (Wang and Paigen (2005)) clusters samples using consecutive subsets

of markers, and then assess the phenotype’s association strength.

The utility of local phylogenies in association mapping has been recently explored

in TreeLD (Zollner and Pritchard (2005)), Blossoc (Mailund et al. (2006)), and TreeDT

(Sevon et al. (2006)). These methods use trees to represent sample similarities. Their

approach is to exhaustively examine all possible groupings implied by the given phy-

logenies without explicitly excluding any outliers. Both Blossoc and TreeDT assume

simple categorical (binary) phenotypes. TreeLD handles quantitative phenotypes but is

not scalable to GWA analysis.

Some other work (Larribea et al. (2002); Morris et al. (2002); Minichiello and Durbin

(2006)) uses a global phylogeny structure, e.g., ancestral recombination graph, over all

markers in association mapping. However, because of the high computational cost of

global phylogeny construction, these methods are not scalable to genome-wide analysis.

2.3 Preliminaries

We use a binary matrix H = S×M to represent a SNP dataset, where S = {s1, s2, ..., sn}
is the set of samples, and M = {m1, m2, ..., mz} is the SNP marker set. Each sample

is represented by a binary vector, in which ’0’ represents the majority alleles and ’1’

represents the minority alleles. We use f(si) to denote the phenotype value of a sample

si and F (S ′) to denote the phenotype values of samples in a subset S ′. An example

matrix H containing 10 samples and 10 SNP markers with phenotype is shown in Fig.

2.1(a).

Definition 2.3.1. Compatible region: A consecutive region of the genome is called a

compatible region iff any pair of markers in that region are compatible by the 4-gamete

test (Hudson and Kaplan (1985)). That is, among the 4 possible haplotypes formed by
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m1 m2 m3 m4 m5 m6 m7 m8 m9 m10   f(s)
s1 1  0  1  0  0  0  0  0  0  0    109
s2  1  0  0  0  1  0  0  0  1  0    97
s3 1  0  0  0  1  0  0  0  0  0    86
s4 0  0  0  0  0  0  0  0  0  0    108
s5 1  0  1  0  0  0  0  0  0  0    85
s6 0  0  0  0  0  0  0  0  0  0    56
s7 0  0  0  0  0  1  0  1  0  0    78

s8 0  1  0  1  0  1  1  0  1  1    79
s9 0  1  0  1  0  1  1  0  1  0    61
s10 0  0  0  0  0  1  0  1  0  0    54

(a) SNP data & phenotype

(b) Tree T 
1,8

s4(108)

s6(56)

s1(109)

s5(85)

s2(97)

s3(86)

s7(78)
s10(54)

s8(79)
s9(61)

e1

e2 e3

e4 e5 e6 e7

Figure 2.1: Example: a SNP dataset and a perfect phylogeny tree

the two markers, at most three of them occur.

A compatible region is a genomic region exhibiting no evidence of historical recom-

bination. In Fig. 2.1(a), the region from markers m1 to m8 is a compatible region. We

use Cu,v to denote a compatible region from markers mu to mv.

Definition 2.3.2. Maximal Compatible region: A compatible region is a maximal

compatible region iff it can not be extended on either side to include more SNPs and

remains compatible.

Definition 2.3.3. Perfect Phylogeny Tree: A phylogeny tree for a set of samples

is perfect if the phylogeny avoids homoplasy. Every SNP is introduced by a mutation

and is represented by an edge of the tree. Given a genomic region, a perfect phylogeny

exists iff the region is a compatible region.

We use Tu,v to denote the perfect phylogeny tree of compatible region Cu,v. Given
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C1,8 in Fig. 2.1(a), its tree T1,8 is shown in Fig. 2.1(b). All samples are at the leaf

nodes. Samples having identical haplotypes in the region share the same leaf node in

the tree, e.g., s1 and s5. Each internal node represents a hypothetical common ancestor

of a subset of samples. Each edge uniquely corresponds to a SNP (or a historical

mutation). Interested readers may refer to paper (Agarwala et al. (1995)) for inferring

perfect phylogenies from a set of SNPs.

Let E(Tu,v) = {e1, e2, ..., ep} denote the set of edges in Tu,v. The removal of each edge

partitions the samples into two subsets denoted by S(0)(ei) and S(1)(ei). Given a tree Tu,v,

we can generate 2|E(Tu,v)| sample subsets by removing each edge separately. We denote

this set of sample subsets by S(E)(Tu,v), S(E)(Tu,v) = {S(j)(ei)|j = {0, 1}, ei ∈ E(Tu,v)}.

Definition 2.3.4. A grouping of a sample subset S ′, G(S ′), is formed by a set of disjoint

subsets of S ′, G(S ′) = {S ′
1, S

′
2, ..., S

′
k}, S ′

i ⊂ S ′, S ′
i ∩ S ′

j = ∅, ⋃k
i=1 S ′

i = S ′. Given a tree

Tu,v, we say a grouping G(S ′) follows Tu,v iff ∀S ′
i ∈ G(S ′), S ′

i ∈ S(E)(Tu,v).

For example, grouping G(S ′) = {{s1, s5, s2, s3}, {s8, s9, s7, s10}} follows the tree in

Fig. 2.1(b), while grouping G(S ′) = {{s1, s2}, {s8, s4}} does not.

Definition 2.3.5. Given a sample subset S ′, G1(S
′) is called a parent-grouping of G2(S

′)

(G2(S
′) called a child-grouping of G1(S

′)) iff ∀S ′
i ∈ G1(S

′)

∃S ′
j ∈ G2(S

′), s.t.S ′
i = S ′

j. OR ∃{S ′
jq
|S ′

jq
∈ G2(S

′), q = 1, ..., u}, s.t.S ′
i =

u⋃

q=1

S ′
jq

A child-grouping represents a finer partition of its parent-grouping on the same set

of samples. For example, grouping {{s1, s5, s2, s3}, {s4, s6}} is the parent-grouping of

{{s1, s5}, {s2, s3}, {s4, s6}}. We summarize the notations in Table 4.1.

Association between a Compatible Region and a Phenotype

We use the one-way ANOVA test with permutations to measure the association between

a grouping of samples and a quantitative phenotype. To accelerate the execution, we
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Table 2.1: Summary of Notations
S, si, S ′

i the sample set, a sample, a subset of samples
M , mi the marker set, a marker
H a binary matrix representing the data
Cu,v a compatible interval of H
f(si) phenotype value of sample si

F (S ′
i) the set of phenotype values of the samples in S ′

i

Gi(S
′) a grouping of a sample subsets S’

Tu,v the perfect phylogeny tree of Cu,v

E(Tu,v) the edge set of Tu,v

T ′
u,v(ei, sj) the subtree rooted at node sj after removing edge ei

S(E)(Tu,v) the set of sample subsets implied in tree Tu,v (leaf-sets)

re-derive the formula of the ANOVA test.

Given a grouping G(S ′) = {S ′
1, ..., S

′
k}, for every S ′

i ∈ G(S ′), we calculate

SQ(S ′
i) =

∑

sj∈S′
i

f(sj)
2, SM(S ′

i) =
∑

sj∈S′
i

f(sj) (2.1)

SSEi = SQ(S ′
i) − SM(S ′

i)
2/|S ′

i|, SSBi = SM(S ′
i)

2/|S ′
i| (2.2)

Combining all subsets together, we have MM = 1
|S′|

∑k
i=1 SM(S ′

i) and

MSE =
1

|S ′| − k

k∑

i=1

SSEi, MSB =
1

k − 1
(

k∑

i=1

SSBi − |S ′| · MM 2) (2.3)

We obtain a base score for grouping G(S ′)

�0(G(S ′)) =
MSB

MSE
(2.4)

A higher score indicates a stronger association between the grouping and the pheno-

type. Given the tree and the data in Fig. 2.1 and the following two groupings: G(S ′
1) =

{{s2, s3}, {s4, s6}, {s8, s9}}, G(S ′
2) = {{s2, s3}, {s8, s9}}, the scores are �0(G(S ′

1)) =

0.44, �0(G(S ′
2)) = 4.16. Thus, grouping G(S ′

2) has a stronger association with the
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phenotype than grouping G(S ′
1).

To correct the multiple test errors, we apply a permutation test on G(S ′) to calculate

a significance score. To permute the phenotype, the phenotype values in F (S ′) are

randomly re-assigned to samples in S ′. Then we calculate an �-score using the permuted

phenotype following Eqs. 5.1 to 3.13.

Assume that we conduct nPerm random permutations in total, for each permutation,

we get score �j(j = 1...nPerm). Among the nPerm �-scores, let p be the number of

scores which are greater than or equal to the base score �0(G(S ′)), i.e., p = |{�j|�j ≥
�0(G(S ′)), j ∈ 1...nPerm}|. Then the significant score (P score) of G(S ′) is

P (G(S ′)) = log10

(
nPerm

p

)

(2.5)

A higher P score indicates that the association between grouping G(S ′) and the

phenotype is more significant.

Definition 2.3.6. The association between a compatible region and a phe-

notype: For a compatible region Cu,v, the highest P score achieved by any grouping

following Tu,v is regarded as the P score of Cu,v. The P score represents the association

between the compatible region and the phenotype,

P (Cu,v) = max{P (Gj(S
′))|∀Gj(S

′) follows Tu,v, S
′ ⊆ S}. (2.6)

Problem Definition: Given a SNP data and a quantitative phenotype, calculate the

P -score of every maximal compatible region and report the most significant ones.

2.4 TreeQA Algorithm

TreeQA takes two major steps:

1. Identify maximal compatible regions in the genome and construct the perfect phy-
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logenies of the regions.

2. Compute the association between each compatible region and the phenotype.

2.4.1 Maximal Compatible Region and Phylogeny Construc-

tion

TreeQA scans the SNP markers in a left to right order. In order to find the maximal

compatible regions, it continuously extends the current region by adding the next marker

until the new marker is incompatible with some markers in the region. And it maximizes

the overlap between two consecutive regions. Assume that the current compatible region

is Cu,v, and marker mv+1 is incompatible with markers mi1 , ..., mik , u ≤ i1 < ... < ik ≤ v,

then TreeQA starts the next compatible region at marker mik+1. For each maximal

compatible region, TreeQA utilizes the inferring algorithm Agarwala et al. (1995) to

construct a local perfect phylogeny tree. Both procedures have linear time complexity

with respect to the number of markers and the number of samples.

2.4.2 Association Computing

In the second step, TreeQA takes as input a quantitative phenotype and a set of local

perfect phylogenies. It considers all possible groupings following the phylogenies and

systematically explores the search space of these groupings in a carefully designed order

such that intermediate computations can be maximally reused.

According to Definition 2.3.4, any grouping of a sample subset3 that follows a tree

Tu,v can be created from non-overlapping subsets in S(E)(Tu,v). By utilizing the lex-

icographical order4 of subsets in S(E)(Tu,v), TreeQA can enumerate and evaluate all

combinations of non-overlapping subsets systematically.

3Considering groupings of a sample subset allows TreeQA to exclude potential outliers from the
ANOVA test.

4Any other ways of defining a total order of the subsets would also work.
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TreeQA enumerates all groupings via a depth-first recursive procedure. TreeQA ex-

tends the current grouping by including a new sample subset which does not overlap

with any subsets in the current grouping. The association of each new grouping to the

phenotype via a permutation test is computed. The P score of the corresponding max-

imal compatible region is updated accordingly. The enumeration continues recursively

for each newly extended grouping.

Consider the tree in Figure 2.1. There are 14 sample subsets in S(E)(T1,8). Assume

that the subsets have the following order,

se1 = {s1, s5}, se2 = S − se1, se3 = {s2, s3}, se4 = S − se3, se5 = {s4, s6}

se6 = S − se5, se7 = {s8, s9}, se8 = S − se7, se9 = {s7, s10}, se10 = S − se9

se11 = {s1, s5, s2, s3}, se12 = S − se11, se13 = {s8, s9, s7, s10}, se14 = S − se13

TreeQA first generates a grouping containing se1 only. Among the remaining sample

subsets, {se2, se3, se5, se7, se9, se12, se13} do not overlap with se1. In the next step, a

grouping {se1, se2} is formed by adding se2 into the current grouping and its P score

is calculated. P (C1,8) is updated accordingly. Since all other sample subsets overlap

with se1 or se2. Thus, no new grouping can be extended from {se1, se2}. Then, TreeQA

examines the next grouping extended from {se1}, {se1, se3}, and all groupings extended

from it. After examining all groupings containing se1, TreeQA will start from the

grouping {se2} and extend it recursively to generate all groupings containing se2 but

not se1. This process continues until all distinct groupings are enumerated.

The pseudocode code of TreeQA is in Fig. 2.2.

2.4.3 Effective Permutation

We found that more than 90% of the execution time of TreeQA is spent in permutation

tests. Given a grouping G(S ′), a permutation test is conducted in two steps: 1) ran-
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Figure 2.2: The TreeQA Algorithm
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domly re-assigning the phenotype values in F (S ′) to samples in S ′; 2) calculating the

corresponding � score by Eq. 3.13.

Given a subset S ′, both steps take O(|S ′|) time. TreeQA exploits maximal reusability

of intermediate computation shared by permutation through the following two optimiza-

tions:

1) inTree: Common computation units shared by permutation tests of parent/child-

groupings in a tree.

2) amgTree: Common computation units shared by permutation tests on groupings

following multiple trees.

We use two global prefix-tree structures (Cormen et al. (2001)), Treegrouping and

Treesubset to organize groupings and sample subsets examined thus far respectively to

enable effective permutation tests.

inTree: Effective permutation tests within a tree

A pair of parent/child-groupings always involve the same set of samples. Let S ′ denote

a set of samples. For the permutation tests of the parent/child groupings of S ′, instead

of re-assigning the phenotype values in F (S ′) independently for each grouping, they can

share the same set of random permutations of F (S ′).

For example, given the example in Fig. 2.1 and a pair of parent/child-groupings,

G1(S
′) = {{s1, s5, s2, s3}, {s8, s9, s7, s10}} and G2(S

′) = {{s1, s5}, {s2, s3}, {s8, s9, s7, s10}},
their �0 scores are: �0(G1(S

′)) = 9.79 and �0(G2(S
′)) = 4.32. Assume that after a ran-

dom permutation, the new phenotype values for the samples are: f(s1) = 85, f(s2) = 79,

f(s3) = 109, f(s5) = 61, f(s7) = 86, f(s8) = 97, f(s9) = 78, f(s10) = 54. Using this new

assignment, we can calculate the new � scores for both groupings: �(G1(S
′)) = 0.12 and

�(G2(S
′)) = 0.7. By reusing the phenotype permutation between G1(S

′) and G2(S
′),

we save O(|S ′|) runtime in each permutation.

A child-grouping represents a finer partition of sample subsets in its parent-grouping.
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We say a grouping is at the finest level if it does not have any child-groupings. For

example, given the tree in Fig. 2.1(b) and the two groupings G1(S
′) and G2(S

′) used

above, grouping

G3(S
′) = {{s1, s5}, {s2, s3}, {s8, s9}, {s7, s10}}

is the child-grouping of both G1(S
′) and G2(S

′) and is at the finest level while G2(S
′)

is a finer partition of G1(S
′).

We use a global prefix-tree Treegrouping to index all groupings and maintain the

parent/child relationship through auxiliary links (from a child-grouping to its parent-

groupings). For each permutation of the phenotype, the � scores of a finest grouping

and all of its parent-groupings are calculated together. We examine the finest grouping

immediately followed by the examination of its parent groupings for maximum compu-

tation reuse. If a finest child-grouping has n parent-groupings, we save O(n|S ′|) time in

each permutation.

Given a tree Ti, each grouping Gj(S
′) is inserted into or retrieved from Treegrouping

after Step 2 in Enumerate(). If Gj(S
′) exists in Treegrouping and the P score is already

calculated which means Gj(S
′) has been examined, amgTree is used and the subroutine

jumps to Step 9 (discussion about amgTree is in Section 2.4.3). If grouping Gj(S
′) is

new, we insert Gj(S
′) into Treegrouping and generate its child-groupings recursively till

the finest level, say Gl(S
′).

If Gl(S
′) exists in Treegrouping (that is, it was examined before), we insert the new

leaf node of Gj(S
′) to the linked list headed by the leaf node of Gl(S

′). If Gl(S
′) is

not in Treegrouping (that is, this is the first time it is examined), we insert Gl(S
′) into

the tree first, create a linked list headed by the new leaf node of Gl(S
′), and insert the

leaf node of Gj(S
′) in the linked list. Since a parent-grouping may be inserted into tree

Treegrouping before its child-groupings and a child-grouping could have multiple parent-

groupings, the calculation of P score (from Steps 3 to 8) are deferred until all groupings

in Ti are enumerated and inserted into Treegrouping.
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Figure 2.3: A fragment of the Treegrouping tree after enumerating the tree in Figure 2.1

For example, given the tree in Figure 2.1, after enumerating all groupings, a frag-

ment of Treegrouping is shown in Figure 2.3. Parent/child-groupings are in linked lists

represented by dotted arrows, of which the finest groupings (such as {se1, se3, se7}) are

at the head.

amgTree: Effective permutation among trees

The same grouping occurs repeatedly in different trees. We only need to compute its P

score at its first occurrence. We use Treegrouping to store and retrieve the P score of all

examined groupings. If the grouping formed by TreeQA can be found in Treegrouping, its

P score is directly used. Otherwise, its P score is calculated and stored in Treegrouping.

Based on our experiments on real data, using amgTree alone can reduce 40%−50% of

the execution time. When using inTree and amgTree together, we can reduce 70%−80%

of the execution time.

2.4.4 Reuse of Intermediate Computation of Statistical Tests

For any sample subset S ′, SQ(S ′) and SM(S ′) calculated using the original phenotype

values (with no permutation) may be reused in any grouping containing S ′ and all its

parent-groupings. We denote them by SQ0(S
′) and SM0(S

′) respectively in the following
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discussion.

We employ a global prefix-tree Treesubset to keep track of all sample subsets in any

groupings examined thus far. Three values are stored at the leaf node corresponding to

the subset S ′: (subset ID, SQ0(S
′), SM0(S

′)).

For example, given the 10 samples and their phenotype values in Fig. 2.1(a), we

calculate the base score �0 of grouping G1(S
′) = {{s1, s5}, {s2, s3}, {s7, s10}}.

SQ0(S
′
11

) = 19106, SQ0(S
′
12

) = 16805, SQ0(S
′
13

) = 9000.

SM0(S
′
11

) = 194, SM0(S
′
12

) = 183, SM0(S
′
13

) = 132.

�0(G1(S
′)) = 547.17/212.17 = 2.58.

The SQ0 and SM0 values of the three subsets are then stored in Treesubset. Given

a parent-grouping of G1(S
′), G2(S

′) = {{s1, s5, s2, s3}, {s7, s10}}, we can retrieve the

values of SQ0 and SM0 and use them to calculate �0(G2(S
′)),

SQ0(S
′
21

) = SQ0(S
′
11

) + SQ0(S
′
12

) = 35911, SQ0(S
′
22

) = SQ0(S
′
13

).

SM0(S
′
21

) = SM0(S
′
11

) + SM0(S
′
12

) = 377, SM0(S
′
22

) = SM0(S
′
13

).

�0(G2(S
′)) = 1064.08/166.69 = 6.38.

The reuse of SQ0(S
′) and SM0(S

′) between parent/child groupings may work in

conjunction with the inTree effective permutation. Besides, SQ0(S
′) and SM0(S

′) can

also be reused by any groupings that contain the subset S ′.
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2.5 Experimental Results

We compare TreeQA with the following algorithms:

1. SMA, our implementation of the Single Marker Association algorithm (Pe’er et al.

(2006); Akey et al. (2001)).

2. HAM, our implementation of the Haplotype Association Mapping algorithm (Mc-

Clurg et al. (2006)) that slides a 3-SNP window through the genome

3. HapMiner (Wang and Paigen (2005)), downloaded from the website5.

4. TreeLD (Zollner and Pritchard (2005)), downloaded from the website6.

Both SMA and HAM use the one-way ANOVA test for fair comparison.

QHPM (Onkamo et al. (2002)) is not used for comparison because it is not scalable

to large data sets. Blossoc (Mailund et al. (2006)) and TreeDT (Sevon et al. (2006)) are

not used because they require categorical phenotypes.

2.5.1 Experiments on Simulated Data

We use Coasim (Mailund et al. (2005)) to simulate 1000 sequences with scaled recombi-

nation rate ρ = 400 that corresponds roughly to 10 cM. 10,000 SNP markers are placed

uniformly at random over the sequences.

SNP markers on the sequences are randomly selected as causative loci with one,

two and three causative mutations. The first SNP is always selected randomly from all

SNPs. In the cases of two and three mutations, the second and third causative SNPs

are selected from compatible SNPs that are located less than 10 SNPs away from the

first SNP. Phenotype values are sampled from four Gaussian distributions: N1(140, 35),

5http://vorlon.case.edu/ jxl175/HapMiner.html

6http://pritch.bsd.uchicago.edu/treeld.html
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N2(90, 35), N3(50, 40), and N4(10, 35). The one-mutation case uses N1 and N3. The

two-mutation case uses N1, N2 and N3. The three-mutation case uses all four Gaussian

distributions. After assigning the phenotype values, all causative SNPs are removed

from the data and we randomly select 100 sequences for our experiments.

SMA, HAM and HapMiner output the top one scoring locus as a point estimation of

the causative locus, while TreeQA outputs the top one compatible region. We compare

the effectiveness of the algorithms by measuring the distance (in cM) from the top one

scoring locus or the center of the top one region to the causative SNP (or the average

distance to every causative SNP). We call the distance the Prediction error.

Since HapMiner can not finish processing 10,000 SNP markers in a reasonable time,

we only use the first 1,000 markers of each sequence when applying HapMiner on the

simulated data.

The comparison of SMA, HAM, HapMiner and TreeQA is shown in Figure 3.5. The

x-axis represents the prediction error (distance) to the causative locus and the y-axis

represents the percentage of causative loci which are found in distance less than x. In

all three cases, the estimated loci by TreeQA are closer to the causative loci than those

by SMA, HAM and HapMiner.

The TreeLD algorithm uses local phylogenies and analyzes quantitative phenotypes.

However, TreeLD can only process a very small amount of data in reasonable time.

Therefore, we select 36 samples and 20 SNP markers from the simulated data for perfor-

mance comparison. A one-mutation causative locus is selected from the 20 SNPs. For

TreeQA, instead of generating maximal compatible regions as discussed in Sec. 3.2, a

compatible region is generated around each SNP and contains up to five SNPs. TreeLD

takes about two hours to analyze this small data while TreeQA finishes in seconds. Fig-

ure 2.5 plots the results from TreeLD and TreeQA. The x-axis represents the simulated

positions in the genome and the y-axis represents the scores of the SNPs. The vertical

line demonstrates the causative locus. Both methods detects a peak near the causative
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Figure 2.4: Comparison of SMA, HAM, HapMiner and TreeQA on the simulated data
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Figure 2.5: Comparison of TreeLD and TreeQA on the simulated data

locus while TreeLD identifies one spurious peak.

2.5.2 Experiments on Mouse Genotype Data

We used a set of mouse genotypes that combines experimental and imputed data7 (Sza-

tkiewicz et al. (2008)) from the Jackson Laboratory, consisting of 74 samples. The

dataset contains over 7 million SNP markers distributed over all 20 chromosomes. We

removed wild derived mouse inbred strains since they are quantitatively and qualitatively

different than other laboratory inbred strains and we only used in our experiments the

remaining 55 samples that have a share set of common ancestral relationships (Yang

et al. (2007)).

We used high density lipoprotein cholesterol (HDL-C) levels in blood as the test

phenotype, downloaded from the Mouse Phenome Database8. Several HDL-C datasets

are available, each of which was collected under different conditions, and are thus treated

as separate phenotypes. Some candidate genes that may play a role in regulating HDL-C

levels are reported in (Wang and Paigen (2002)).

7http://cgd.jax.org/ImputedSNPData/imputedSNPs.htm

8http://phenome.jax.org/pub-cgi/phenome/mpdcgi?rtn=meas/catlister/req=Cblood+lipids
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We apply SMA, HAM and TreeQA on the data and examine how close they can

identify the top peak near the locus of those candidate genes.

SMA

(base)

TreeQA

(base)

HAM

(base)

SMA

(base)

HAM

(base)

TreeQA

(base)

Figure 2.6: Compare SMA, HAM and TreeQA on the mouse genotype data

TreeQA detects top peaks near the locations for over 10 of the candidate genesWang

and Paigen (2002), including Ppara, Abcb4 and Rxrb. The top peaks reported by SMA

and HAM are often far from the locations of these genes. Two of the results are shown

in Figure 2.6.
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129S1/SvImJ(63.8)
BTBRT<+>tf/J(72.9)
C58/J(65.4)
LP/J(50.2)
MA/MyJ(75.8)
NZB/BlNJ(100)
NZW/LacJ(90.9)
RF/J(77.6)

KK/HLJ(89.3)

A/J(45.3), AKR/J(44.9), BALB/cByJ(56.8), C3H/HeJ(75.8), C57BL/10J(44.6),
C57BL/6J(49.7), C57BLKS/J(36.7), C57BR/cdJ(67.8), CL/J(39.5), CBA/J(49.4),
DBA/1J(39.6), DBA/2J(43.3), I/LnJ(42.4), NON/LtJ(72.2), PL/J(51.7), RIIIS/
J(40.2), SEA/GnJ(52), SJL/J(40.6), SWR/J(46.8)

FVB/NJ(94.7)
NOD/LtJ(54.6)

BUB/BnJ(63.4)
SM/J(48)

Figure 2.7: The perfect phylogeny at the peak point found by TreeQA in Figure 2.6

The perfect phylogeny corresponding to the peak point (compatible region from

8799298 to 8801558 (base)) found by TreeQA around Abcb4 in Figure 2.6 is plotted

in Fig. 2.7. The phenotype values of the samples are in parentheses. Samples with

unknown phenotype values are omitted from the tree. The subtree on the right contains

samples having high phenotype values while the subtree at the bottom contains samples

having low values. Other subtrees are considered as outliers and are excluded from the

grouping. SMA and HAM fail to identify the locus because they only examine sample

groupings that can be generated from single SNPs or 3-SNP windows, which are a small

subset of the groupings examined by TreeQA.

TreeQA takes about 10 minutes to analyze each chromosome which contains around

40000 SNPs on average. SMA and HAM take slightly less time than TreeQA. Both

HapMiner and TreeLD are unable to finish in reasonable time.
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2.6 Conclusion

In chapter, we present a tree-based quantitative GWA mapping algorithm, TreeQA.

TreeQA utilizes local perfect phylogenies in detecting associations. Perfect phylogenies

provide sensible groupings of samples at multiple resolutions. TreeQA explores the space

of all possible groupings implied by the perfect phylogenies in a carefully designed order

so that intermediate computations can be maximally reused. Our experimental results

on both simulated and real data show that TreeQA can efficiently conduct quantitative

GWA analysis and is more effective than the previous methods.
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Chapter 3

TreeQA+: Improving the Power of

Phylogeny-based Genome-wide Association

Mapping

3.1 Introduction

In Chapter 2, I discussed the TreeQA algorithm which is a phylogeny-based genome-

wide association mapping method. The experimental results on both synthetic and

real data demonstrates that TreeQA outperforms single marker-based and haplotype-

based methods. TreeQA also outperforms the previous phylogeny-based methods such

as TreeLD, Blossoc and TreeDT (Zollner and Pritchard (2005); Mailund et al. (2006);

Sevon et al. (2006); Larribea et al. (2002); Morris et al. (2002); Minichiello and Durbin

(2006)) in terms of runtime and the ability to handle quantitative traits.

However, both TreeQA and other phylogeny-based methods do not consider the

sample correlations implied by the tree topologies in the analysis. Ignoring sample

correlations can bias the significance of the associations and lead to spurious signals.

For example, three phylogeny trees are plotted in Fig. 4.1. At the leaf nodes,

we use ”s1, s2, ...” to represent the samples. The phenotype values are shown in the

parentheses. Let’s consider the partition created by removing the edge in the middle. We
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Figure 3.1: The sample correlations affect the significance of the association.

get partitions, {{s1, s2}, {s3, s6}}, {{s1, s2}, {s3, s4, s5, s6}} and {{s1, s2}, {s3, s4, s5, s6}}
from the three trees. The mean phenotype values of the left group and right group in

these partitions are, {35, 30}, {35, 20} and {35, 20}. If all samples are assumed to be

independent as in the previous methods, the associations between the partitions and the

phenotype would be equally strong in trees (b) and (c), and weak in tree (a). However,

since s3, s4 and s5 are far more closely related to each other than to the remaining

samples (indicated by the short branches between them) in tree (b), it is erroneous to

treat them as independent samples in tree (b). In fact, the associations between the

partitions and the phenotype should be similarly weak in trees (a) and (b), and relatively

strong in tree (c).

Therefore, it is critical to take into account the sample correlations implied by the

topology properly in association study. However, this is not a trivial task, especially

when we assess the association of the partitions such as {{s1, s2},{s3, s4, s5}, {s6}} (cre-

ated by removing multiple edges).

In this chapter, we introduce TreeQA+, a quantitative GWA mapping algorithm
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which incorporates the sample correlations modelled by local perfect phylogeny trees. As

a phylogeny-based method, TreeQA+ inherits all advantages of TreeQA by examining all

groupings induced by a perfect phylogeny (constructed in genomic regions exhibiting no

evidence of historical recombination by the 4-gamete test(Hudson and Kaplan (1985))).

In addition, TreeQA+ is more effective and robust than TreeQA by incorporating

sample correlations. TreeQA+ adopts the model of Brownian motion (Nelson (1967))

which was previously used to study phylogeny (Edwards and Cavalli-Sforza (1964);

Felsenstein (1981)): for any two nodes (samples or hypothetical ancestors) in the phy-

logeny, if there is no causative mutation happened during the evolution from one node

to the other, the difference between the phenotype values of the two nodes should fol-

low a normal distribution with mean 0 and variance proportional to the sum of edge

lengthes between them. Thus, any significant deviation from this estimation suggests

the existence of some causative mutations during the evolution.

In TreeQA+, a grouping also consists of several non-overlapping subtrees created

by removing edges from a perfect phylogeny tree. TreeQA+ utilizes Felsenstein’s tree

pruning method (Felsenstein (1981)) to estimate the phenotype values of hypothetical

ancestors (intermediate nodes) in each subtree. Then the estimated phenotype values

at the two adjacent nodes of each removed edge are examined under the assumption

of Brownian motion. A significant deviation between the two nodes implies a strong

association between the grouping and the phenotype. For each phylogeny, TreeQA+

finds the strongest association between its induced groupings and the phenotype.

A brute-force implementation of TreeQA+ is computationally expensive. TreeQA+

faces the same computational challenge as TreeQA.

• Both the number of trees and number of groupings per tree can be very large1 in

a GWA mapping.

1For example, the number of trees can exceed tens of thousands in a chromosome-wide association
study. And there are up to 22n−2 groupings that can be generated from a tree of n samples.
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• Permutation tests are necessary to ensure the statistical significance of the discov-

ered associations, which further increase the computational burden.

Since different statistical methods are used, the optimizations developed in TreeQA

can not be used in TreeQA+. However, the same strategy applies, i.e., maximize the

reuse of intermediate computations. A few new optimizations are developed and make

TreeQA+ very efficient and effective in GWA mapping, as demonstrated by extensive

experiments on both simulated datasets and inbred mouse strains.

3.2 TreeQA+ Method

3.2.1 Preliminaries

In this chapter, we use the same set of designations and definitions (e.g., maximum

compatible interval and grouping induced by a tree) as in Chapter 2. Fig. 4.2 shows

an example matrix H containing 12 SNP markers, one phenotype for 7 samples and a

perfect phylogenetic tree. We use this example matrix and tree as the running example

in this section.

The removal of each edge partitions the tree Tu,v into two subtrees. We use T ′
u,v(ei, sj)

to denote the subtree rooted at node sj (which is adjacent to edge ei) after removing edge

ei. For example, if we remove edge e1 in Fig. 4.2(b), we get two subtrees, T ′
1,11(e1, s

′
10)

and T ′
1,11(e1, s

′
8). And we use Tu,v − T ′

u,v(ei, sj) to represent the remaining part of the

tree Tu,v after excluding subtree T ′
u,v(ei, sj) and edge ei. For example, T ′

1,11(e1, s
′
10) =

T1,11 − T ′
1,11(e1, s

′
8).

3.2.2 Association Test Incorporating Sample Correlations

A grouping (generated by removing some edges in the phylogeny tree) partitions sam-

ples into several subsets. The previous method TreeQA (Pan et al. (2009)) tests the
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Figure 3.2: A SNP dataset and a perfect phylogeny tree.

association between the partition and the phenotype values by comparing the means

and variances of the partitions using a t-test or f-test. However, as discussed in Section

3.1, this approach ignores the sample correlations in each subset.

In contrast, TreeQA+ incorporates sample correlations into the association test.

Given a grouping, TreeQA+ estimates the expected phenotype value of the root node

of each subtree from the phenotype values of the leaf nodes and the topology of the

subtree by utilizing Felsenstein’s tree pruning algorithm (Felsenstein (1981)). Then the

association between the grouping and the phenotype is measured by examining the dif-

ferences between these estimated phenotype values separated by the removed edges in

a Brownian motion (Nelson (1967) model).

Brownian motion (Nelson (1967)) has been used (Felsenstein (1981)) to model phe-

notype evolution in a population. For example, sample s2 evolves from hypothetical

sample s′10 in the perfect phylogeny tree in Fig. 4.2(b). If markers m2 and m3 (corre-
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sponding to e3) do not contain causative mutations of the phenotype, then the difference

between the phenotype values, f(s2) and f(s′10), is normally distributed with mean 0,

and variance proportional to l(e3), i.e., (f(s2)− f(s′10)) ∼ N(0, k · l(e3)), where k is the

ratio between the variance and edge length. Note that the variance is an indicator of

the range of estimation error.

s
1 s

3
s
2 s

t

s’0
e1 e

2 e
3

et
...

Figure 3.3: An exmaple subtree with t branches.

With this model, we can estimate the phenotype values of any hypothetical samples

(intermediate nodes) using the maximum likelihood method proposed in the Felsenstein’s

tree pruning algorithm (Felsenstein (1981)). Given a subtree as shown in Fig. 3.3, the

expected phenotype value of the root node and the estimation error (variance) are,

f(s′0) =

∑t
i=1 f(si)/(k · l(ei))
∑t

i=1 1/(k · l(ei))
, v(s′0) =

1
∑t

i=1 1/(k · l(ei))
(3.1)

This estimation based on maximum likelihood was only proved for two-branch cases

in (Felsenstein (1981)). However, it is easy to prove the correctness for t branches

(Equation 4.5).

Given a phylogeny tree shown in Fig. 3.3, assume that we have the phenotype values

of samples s1 to st and the lengths of edges e1 to et. We can estimate the phenotype

value of s′0 using a maximum likelihood model with Brownian motion (Nelson (1967)).

In the Brownian motion model, the phenotype difference between two nodes con-

nected by an edge follows a normal distribution with mean 0 and variance proportional
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to the length of the edge. Let k be the ratio between the variance and edge length. For

each sample si, i = 1, 2..., t, its phenotype value follows the following normal distribu-

tion,

f(si) ∼ N(f(s′0), k · l(ei)), i = 1, 2, ..., t (3.2)

Therefore, given the tree in Fig. 3.3, the probability that the samples have the

observed phenotype values is,

L =

t∏

i=1

1
√

2πk · l(ei)
exp[−(f(si) − f(s′0))

2

2k · l(ei)
] (3.3)

The log likelihood is

ln L = −
t∑

i=1

(
1

2
ln (2πk · l(ei)) +

(f(si) − f(s′0))
2

2k · l(ei)
) (3.4)

If we differentiate ln L with respect to f(s′0), we obtain

d

d(f(s′0))
lnL = −

t∑

i=1

f(s′0) − f(si)

k · l(ei)
(3.5)

In order to get the maximum likelihood estimation of f(s′0), we equate Equation 3.5

to zero and obtain,

f(s′0) =

∑t
i=1 f(si)/(k · l(ei))
∑t

i=1 1/(k · l(ei))
=

∑t
i=1 f(si)/l(ei)
∑t

i=1 1/l(ei)
(3.6)

As suggested in (Felsenstein (1981)), the estimation error (variance) of Equation 3.6

may be calculated as

v(s′0) =
1

∑t
i=1 1/(k · l(ei))

(3.7)

In the example in Fig. 4.2(b), we obtain a grouping consisting of two subtrees

T ′
1,11(e1, s

′
10) and T ′

1,11(e1, s
′
8) by removing edge e1. We can assume either s′8 evolved
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from s′10 or s′10 evolved from s′8. It does not affect the following equations.

In subtree T ′
1,11(e1, s

′
10), the expected phenotype value of node s′10 and the estimation

error (variance) are

f(s′10) =
f(s1)/(k1 · l(e2)) + f(s7)/(k1 · l(e9)) + f(s2)/(k1 · l(e3))

1/(k1 · l(e2)) + 1/(k1 · l(e9)) + 1/(k1 · l(e3))
(3.8)

v(s′10) =
1

1/(k1 · l(e2)) + 1/(k1 · l(e9)) + 1/(k1 · l(e3))
(3.9)

In subtree T ′
1,11(e1, s

′
8), we need to apply Felsenstein’s method recursively for node

s′8. We first estimate the expected phenotype value and variance of s′9,

f(s′9) =
f(s5)/(k2 · l(e7)) + f(s6)/(k2 · l(e8))

1/(k2 · l(e7)) + 1/(k2 · l(e8))
, v(s′9) =

1

1/(k2 · l(e7)) + 1/(k2 · l(e8))

(3.10)

Then we estimate the expected phenotype value and variance of s′8 using the estimation

of f(s′9),

f(s′8) =
f(s3)/(k2 · l(e4)) + f(s4)/(k2 · l(e5)) + f(s′9)/(k2 · l(e6) + v(s′9))

1/(k2 · l(e4)) + 1/(k2 · l(e5)) + 1/(k2 · l(e6) + v(s′9))
(3.11)

v(s′8) =
1

1/(k2 · l(e4)) + 1/(k2 · l(e5)) + 1/(k2 · l(e6) + v(s′9))
(3.12)

Note that because f(s′9) is an estimated value, its estimation error (variance) v(s′9)

propagates to s′8 in the estimation of f(s′8) and v(s′8). Note that in Equations 5.1 and

5.4, k1 and k2 are cancelled out from the numerator and denominator when estimating

the phenotype values. And in Equation 5.6, k2 is also cancelled out after we replace

v(s′9) by Equation 5.4.

Under the model of Brownian motion (Nelson (1967)), the difference between the

phenotype values of s′10 and s′8 follows a normal distribution with mean 0 and variance

proportional to the length of e1, (f(s′8)−f(s′10)) ∼ N(0, k · l(e1)). However, since f(s′10)

and f(s′8) are estimated values with error (variance) v(s′10) and v(s′8), we need to use
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the cumulative variance when we compare f(s′8) and f(s′10). Since f(s′10) and f(s′8)

are estimated independently from two subtrees, if edge e1 does not correspond to any

causative mutation of the phenotype, we should have,

(f(s′8) − f(s′10)) ∼ N(0, k · l(e1) + v(s′10) + v(s′8)). (3.13)

If the difference between f(s′8) and f(s′10) deviates significantly from 0 given the

variance, it is possible that some causative mutation happened on edge e1 during the

evolution which causes |(f(s′8) − f(s′10)| to be abnormal. Therefore, we can calculate

the probability to measure the association between the grouping and phenotype, i.e.,

the probability that a causative mutation happened at the markers corresponding to the

edge separating the groups (subtrees),

P (X ≥ |f(s′8) − f(s′10)|) =
2

σ
√

2π

∫ −|f(s′8)−f(s′10)|

−∞
exp(−(u − 0)2

2σ2
)du (3.14)

where σ2 = k · l(e1) + v(s′10) + v(s′8) is the variance in Equation 3.13. A low proba-

bility P (X ≥ |f(s′8) − f(s′10)|) indicates a strong association between the grouping and

phenotype.

Under the model of Brownain motion, the variances are proportional to the edge

lengths. However, the ratios between the variances and edge lengths may be different

in different subtrees. In Equations 5.2, 3.12, and 3.13, we assume that the ratio is a

constant within each subtree if there is no causative mutation. We use the average ratio

in each subtree as its estimated ratio. Let D(si, sj) denote the sum of edge lengths from

node si to sj in the tree. Then the estimated values of k1 and k2 are,

k1 =
(f(s1) − f(s′10))

2 + (f(s7) − f(s′10))
2 + (f(s2) − f(s′10))

2

D(s1, s′10) + D(s7, s′10) + D(s2, s′10)
(3.15)

k2 =
(f(s3) − f(s′8))

2 + (f(s4) − f(s′8))
2 + (f(s5) − f(s′8))

2 + (f(s6) − f(s′8))
2

D(s3, s
′
8) + D(s4, s

′
8) + D(s5, s

′
8) + D(s6, s

′
8)

(3.16)
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And the ratio on edge e1 that connects the two subtrees is estimated by the average

ratios of the two subtrees, i.e., k = (k1 + k2)/2. Note that the expected values of f(s′10)

and f(s′8) do not depend on k1 and k2 in Equations 5.1 and 5.6. Only the variances are

influenced by the values of k1 and k2.

The sample correlation implied by the tree topology is incorporated into the cal-

culation of the probability in Equation 3.14. Therefore, TreeQA+ can avoid the bias

caused by sample correlations in association analysis. For example, given the three trees

with branch lengths labelled in Fig. 4.1, let’s revisit the grouping formed by removing

the middle edge. The groupings have probability scores P = 0.841, P = 0.829, and

P = 0.479 in trees (a), (b), and (c) respectively. The high probability scores for trees

(a) and (b) suggest that the associations are weak in both trees. The lower probability

score for tree (c) indicates a stronger association between the grouping in tree (c) and

the phenotype. Note that, by taking into account the sample correlations, the grouping

in tree (b) no longer shows strong association with the phenotype.

Figure 3.4: General case groupings.
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General Case.

The above procedure can also be applied to the general case where we have more than

two subtrees in a grouping. In Fig. 3.4, we have a grouping formed by four subtrees,

T ′(e1, si1), T ′(e2, si2), T ′(e3, si3) and T ′(e4, si4). The procedure is:(a) We estimate the

phenotype values, f(si1),f(si2), f(si3) and f(si4), using subtrees (1) to (4) in Fig. 3.4

respectively by Equation 4.5 (applying recursively if necessary); (b) We use the remain-

ing subtree (subtree (5) in Fig. 3.4) to estimate f(sj1),f(sj2), f(sj3) and f(sj4) in the

same way by treating each of sj1, sj2 , sj3, and sj4 as the root respectively; (c) The ratios,

ki, of the subtrees are estimated using Equations 3.15 and 3.16; (d) Then we calculate

probability,

P =
4∏

q=1

P (X ≥ |f(siq) − f(s′jq
)|) (3.17)

A low probability indicates a strong association between the grouping and phenotype.

Since we may have a large number of trees and a large number of groupings induced

by each tree in a GWA mapping, we apply a permutation test on each grouping

to determine whether the association between the grouping and phenotype is indeed

significant statistically.

1. We calculate a base P0 probability on the given grouping by Equation 5.3.

2. We permute the phenotype values of the samples in all subtrees in the grouping

(e.g. subtrees (1) to (4) in Fig. 3.4) N times. We calculate a probability Pi for

each permutation by Equation 5.3.

3. Let n be the number of times when Pi is less than P0. The finial significance

score of the grouping is,

S =
n

N
(3.18)
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3.2.3 Algorithm Implementation and Optimizations

Same as TreeQA, TreeQA+ takes two major steps:

1. We identify maximal compatible regions in the genome and construct the perfect

phylogenies of the regions.

2. For each phylogeny tree, we enumerate all induced groupings and compute the

significance score of the association between each grouping and the phenotype

using Equations 5.3 and 3.18. The most significant score for each tree is reported.

TreeQA+ uses the same procedure to identify maximal compatible regions as de-

scribed in Chapter 2. However, TreeQA+ enumerates groupings and examines associa-

tion in a different way.

As we discussed in Section 2.3, a grouping is formed by a set of non-overlapping

subtrees, T ′
u,v(ei, sj). Given a local perfect phylogeny, TreeQA+ enumerates all implied

groupings by enumerating all combinations of non-overlapping subtrees via a recursive

procedure. In order to explore the search space systematically, we first order all subtrees

T ′
u,v(ei, sj) of Tu,v. Each subtree T ′

u,v(ei, sj) can be uniquely identified by the removed

edge ei and the root node sj . If we define a total order of the edges and nodes, we can gen-

erate a total order of the subtrees, i.e., T ′
u,v(ei1 , sj1) < T ′

u,v(ei2 , sj2) if ei1 < ei2 and sj1 <

sj2. For example, given the tree in Fig. 4.2(b), we define the order of edges and nodes

as e1 < e2 < ... < e9 and s1 < s2 < ... < s′9 < s′10. Then the subtrees have the following

order, T ′
1,11(e1, s

′
8), T

′
1,11(e1, s

′
10), T

′
1,11(e2, s1), T

′
1,11(e2, s

′
10),T

′
1,11(e3, s2), T

′
1,11(e3, s

′
10),

T ′
1,11(e4, s3), T

′
1,11(e4, s

′
8)...

With an ordered list of subtrees, we can use any standard subset enumeration

method (Loughry et al. (2002)) to enumerate all combinations of subtrees. Combi-

nations containing overlapping subtrees are excluded during the enumeration to enforce

the non-overlapping constraint. For example, with the above list of subtrees, if we enu-

merate the subtrees in lexicographical order, TreeQA+ examines the combinations of
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subtrees in the following order: {T ′
1,11(e1, s

′
8), T

′
1,11(e1, s

′
10)}, {T ′

1,11(e1, s
′
8), T

′
1,11(e2, s1)},

{T ′
1,11(e1, s

′
8), T

′
1,11(e2, s1), T

′
1,11(e3, s2)}.... Combination {T ′

1,11(e1, s
′
8), T

′
1,11(e1, s

′
10), T

′
1,11(e2, s1)}

would have been the second one in the lexicographical order but is excluded because

T ′
1,11(e1, s

′
10) and T ′

1,11(e2, s1) overlap. This procedure continues until all combinations of

non-overlapping subtrees are explored. In practice, subtrees containing too few samples

may be excluded from the list of subtrees because of their lack of statistical significance.

For each grouping, TreeQA+ computes the significance score of its association with

the phenotype via a permutation test and using Equations 3.14, 5.3 and 3.18. In the

end, TreeQA+ reports the most significant score of the tree.

In GWA mapping, we can have a large number of trees and groupings. We maximize

the reuse of intermediate computations to make TreeQA+ efficient in GWA mapping.

1. The Felsenstein’s tree pruning method (Felsenstein (1981)) is used to estimate

the phenotype values at the root node of every subtree. Instead of invoking this

method for each subtree separately, TreeQA+ re-designs the method implementa-

tion such that the estimated phenotype values of the root nodes of all subtrees are

calculated through two scans of the tree only.

2. In TreeQA+, we apply a permutation test on each induced grouping. We ran-

domly permute the phenotype values of leaf nodes in the subtrees in the grouping.

However, the phenotype values in the remaining part of the tree retain the same.

Therefore, any computation on the remaining part of the tree can be reused in the

permutation test of the grouping. For example, given the grouping in Fig. 3.4, we

only permute the phenotype values in subtrees, T (e1, si1), T (e2, si2), T (e3, si3) and

T (e4, si4). The phenotype values in the remaining part of the tree (subtree (5) in

Fig. 3.4) retain the same. Thus, the estimated phenotype values of the nodes sj1,

sj2, sj3 and sj4 do not change and can be reused in the entire permutation test of

the grouping.
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3.3 Experimental Results

We compare TreeQA+ with other algorithms representing single-marker, haplotype, and

local phylogeny-based association mapping methods on both simulated data and inbred

mouse strains:

1. SMA, our implementation of the Single Marker Association algorithm (Pe’er et al.

(2006); Akey et al. (2001)).

2. HAM, our implementation of the Haplotype Association Mapping algorithm (Mc-

Clurg et al. (2006)) that slides a 3-SNP window through the genome.

3. HapMiner (Wang and Paigen (2005)).

4. TreeLD (Zollner and Pritchard (2005)).

5. our previous method TreeQA Pan et al. (2009).

SMA and HAM use one-way ANOVA test with permutation test. We do not compare

with QHPM (Onkamo et al. (2002)), Blossoc (Mailund et al. (2006)) and TreeDT (Sevon

et al. (2006)) because QHPM is not scalable to large data, while Blossoc and TreeDT

only handle categorical phenotypes.

3.3.1 Experiments on Simulated Data

We use Coasim (Mailund et al. (2005)) to simulate 1000 sequences and 10,000 SNP

markers with scaled recombination rate ρ = 400 that corresponds to 10 cM roughly.

The SNP markers are placed uniformly at random over the sequences.

We randomly select SNP markers to be the causative loci with one, two and three

causative mutations. Causative SNPs are added in the same way as described in Chapter

2.
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SMA, HAM and HapMiner output the top one scoring locus as a point estimation of

the causative locus, while TreeQA and TreeQA+ output the top one compatible region.

We measure the distance (in cM) from the top one scoring locus or the center of the

top one region to the causative SNP (or the average distance to every causative SNP)

to compare the effectiveness of the algorithms. We call this distance the Prediction

error. HapMiner is unable to process 10,000 markers in reasonable time. Thus, we only

use the first 1,000 markers of each sequence in the experiments of HapMiner.

The comparison of SMA, HAM, HapMiner, TreeQA and TreeQA+ is shown in Fig.

3.5 (a). The x-axis represents the prediction error to the causative locus and the y-axis

represents the percentage of causative loci which are found with prediction error less than

x. In all three cases, TreeQA+ outperforms TreeQA and all other algorithms. TreeQA+

has smaller prediction error than TreeQA because sample correlations are incorporated

into TreeQA+.

TreeLD is a phylogeny-based method which is very time-consuming. We build a

smaller dataset using 36 samples and 20 SNPs from the simulated data for performance

comparison. A one-mutation causative locus is selected. Because of the small number

of SNPs in the data, TreeQA and TreeQA+ generate a compatible region around each

SNP which contains up to five SNPs. TreeLD takes two hours to analyze this small

dataset while both TreeQA and TreeQA+ finish in seconds. In Fig. 2.5 (b), the x-axis

represents the SNP positions in the genome and the y-axis represents the significance

scores. The vertical line indicates the causative locus. The peak detected by TreeQA+

is closer to the causative locus than those of TreeQA and TreeLD. TreeLD also identifies

another spurious peak.
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3.3.2 Experiments on Mouse Genotype Data

We used a set of mouse genotypes which combines real and imputed data2 Szatkiewicz

et al. (2008) (NCBI Build 36) from the Jackson Laboratory. It consists of 55 samples

that have common ancestral relationships Yang et al. (2007) and over 7 million SNP

markers distributed over 20 chromosomes.

The high density lipoprotein cholesterol (HDL-C) levels in blood are used as the test

phenotypes, downloaded from the Mouse Phenome Database3. Several HDL-C datasets

are available, each of which was collected under different conditions, and is thus treated

as a separate phenotype. Some candidate genes that may play a role in regulating

HDL-C levels are reported in (Wang and Paigen (2002)).

We apply SMA, HAM, TreeQA and TreeQA+ on the data and examine the distance

of the top peak reported by each algorithm to the loci of those candidate genes. Both

TreeQA and TreeQA+ detect top peaks near the loci for over 10 of the candidate genes

(Wang and Paigen (2002)) while the top peaks reported by SMA and HAM are often

far from the loci of any genes. Moreover, some candidates genes are only detected by

TreeQA+, such as abcb11 (in Fig. 3.6(a)) and lipg. And for some candidate genes such

as apoc2 and apoe (in Fig. 3.6(b)), the peaks detected by TreeQA+ are more significant

and closer to the loci than the peaks of TreeQA. Due to space limitation, the results

of SMA are omitted in Fig. 3.6 because they are always worse than or similar to the

results of HAM.

Fig. 3.7 plots the perfect phylogenies at the two peak points (compatible regions

from 18875865 to 18880075 and from 16194875 to 16195002 (base)) found by TreeQA+

and TreeQA in Fig. 3.6(b). Branch lengthes of the two trees are in the same scale. The

phenotype values of the samples are in parentheses. Samples with unknown phenotype

values are omitted from the tree. The peak detected by TreeQA deviates away from

2http://cgd.jax.org/ImputedSNPData/imputedSNPs.htm

3http://phenome.jax.org/pub-cgi/phenome/mpdcgi?rtn=meas/catlister/req=Cblood+lipids

51



the apoe/apoc2 loci because the sample correlations represented in the phylogeny at the

peak location are very high. Ignoring sample correlations misleads TreeQA to report a

spurious association. HAM (and also SMA) fail to identify the locus because they only

examine sample groupings generated from single SNPs or 3-SNP windows, which do not

include the grouping created by removing two edges in Fig. 3.7(a).

TreeQA+ takes about 10 minutes to analyze each chromosome (containing around

40000 SNPs on average) which is similar to the runtime of TreeQA. SMA and HAM

take slightly less time. All these methods use 100000 permutations in the permutation

tests.

3.4 Discussion

In this chapter, we present the TreeQA+ method, a local phylogeny-based GWA map-

ping method which incorporates sample correlations. The model of Brownian motion

Nelson (1967) and the Felsenstein’s tree pruning method Felsenstein (1981) are utilized

in TreeQA+ to incorporate sample correlations. By careful algorithm design and imple-

mentation, we reduce the high computational cost of TreeQA+ and make it efficient for

genom-wide analysis. We demonstrate that:

1. TreeQA+ outperforms single-maker and haplotype-based methods because it ex-

amines all groupings induced by the phylogeny trees instead of only groupings

generated from single SNPs or 3-SNP windows.

2. TreeQA+ avoids the detection of spurious peaks in other phylogeny-based methods

such as TreeQA by taking into account sample correlations.

3. TreeQA+ has comparable runtime performance to other efficient GWA mapping

methods.
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Therefore, TreeQA+ is supreme to all previous methods in GWA mapping, in terms

of accuracy, efficiency and robustness.
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Figure 3.5: Comparison of SMA, HAM, HapMiner, TreeLD, TreeQA and TreeQA+ on
the simulated data.
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Figure 3.6: Compare HAM, TreeQA and TreeQA+ on the mouse genotype data
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129S1/SvImJ(63.8)
BTBR_T<+>_tf/J(72.9)
KK/HLJ(89.3)
NOD/LtJ(54.6)
NZW/LacJ(90.9)

C3H/HeJ(75.8) FVB/NJ(94.7)

DAB/2J(42.3)

A/J(45.3),AKR/J(44.9),BALB/cByJ(56.8),BUB/
BnJ(44.1),C57BL/10J(44.6),C57BL/6J(49.7),C57BLKS/
J(36.7),C57BR/cdJ(67.8),C57L/J(39.5),C58/J(65.4),DBA/
1J(39.6),I/LnJ(42.4),MA/MyJ(75.8),NON/LtJ(54.6),PL/
J(51.7),RIIIS/J(40.2),SEA/GnJ(52),SM/J(48),SWR/J(46.8)

CBA/J(49.4)
LP/J(50.2)

NZB/B1NJ(100)
RF/J(77.6)
SJL/J(40.6)

129S1/SvImJ(63.8),BTBR_T<+>_tf/J(72.9),C3H/
HeJ(75.8),CBA/J(49.4),FVB/NJ(94.7),KK/
HLJ(89.3),LP/J(50.2),NZB/BlNJ(100),NZW/
LacJ(90.9),PL/J(51.7),RF/J(77.6)

DBA/2J(42.3)

C57BL/10J(44.6),C57BLKS/J(36.7),DBA/
1J(39.6),MA/MyJ(75.8),NOD/LtJ(54.6),SEA/
GnJ(52),SJL/J(40.6),SM/J(48)

A/J(45.3),AKR/J(44.9),BALB/cByJ(56.8),BUB/BnJ(44.1),C57BL/
6J(49.7),C57BR/cdJ(67.8),C57L/J(39.5),C58/J(65.4),I/LnJ(42.4),NON/
LtJ(54.6),RIIIS/J(40.2),SWR/J(46.8)

Figure 3.7: The two phylogenies at the peaks found by TreeQA and TreeQA+ respec-
tively in Figure 3.6(b)
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Chapter 4

TreeNL: Expand TreeQA to

Association/Correlation Analysis in Data

Mining

4.1 Introduction

In Chapters 2 and 3, I discussed the phylogeny-based genome-wide association mapping

methods, TreeQA and TreeQA+. The idea of TreeQA can be expanded and applied to

correlation clustering in high dimensional data.

In recent years, high dimensional data arise frequently in various applications such

as text mining, business data analyzing and bio-informatics. High dimensionality poses

challenges to classical data analyzing algorithms such as clustering. Instead of forming

clusters in the full feature space, the correlation among a set of data objects may only be

identified in a feature subspace. Moreover, objects in different clusters can be correlated

in different feature subspaces. Therefore, the problem of detecting correlation clusters

in the subspaces of high dimensional data has gained increasing interests.

Several algorithms (Böhm et al. (2004); Aggarwal and Yu (2000); Achtert et al.

(2006); Zhang et al. (2008)) have been proposed to detect clusters of data objects which

are linearly correlated in feature subspace. ORCLUS (Aggarwal and Yu (2000)) and 4C



(Aggarwal and Yu (2000)) both use the concept of micro-clusters to detect correlated

feature subspaces. They first partition objects into micro-clusters using k-means based or

density-based clustering approach. Then micro-clusters which have similar orientations

are merged to form larger clusters. The CARE (Zhang et al. (2008)) algorithm uses

a different strategy. It explicitly explores the feature subspaces, and finds the set of

objects that are linearly correlated in each feature subset.

As discussed in (Tung et al. (2005)), features may exhibit nonlinear correlations in

real data such as physical data and gene expression data. Therefore, CURLER (Tung

et al. (2005)) was proposed to identify nonlinear correlation clusters. CURLER utilizes

an EM (expectation maximization) based fuzzy clustering algorithm to form micro-

clusters of objects. It then adopts an interactive top-down approach to find nonlinear

correlation clusters.

Except for CARE, the algorithms discussed above (ORCLUS, 4C, CURLER) all

generate a strict partition of the data objects, that is, objects are not allowed to be

shared by multiple correlation clusters. However, cases have been observed in real data

where data objects could behave differently in multiple feature subspaces. For example,

in CARE (Zhang et al. (2008)), subsets of biological samples were found to have different

linear correlations in multiple gene subsets.

An example data is presented in Figure 4.1. The data matrix contains 300 objects

and 7 features. There are three correlation clusters in the data, clusters 1, 2 and 3. The

objects in cluster 1 and 2 have linear correlations in feature subsets {1, 2, 3} and {5, 6, 7}
respectively. And the objects in cluster 3 have a non-linear correlation in feature subset

{3, 4, 5}. There is no intersection of objects between clusters 1 and 3. But cluster 2

shares some common objects with each of them.

Algorithms like ORCLUS (Aggarwal and Yu (2000)) and 4C (Böhm et al. (2004))

are able to find cluster 1 in Figure 4.1. CURLER (Tung et al. (2005)) is able to find

both clusters 1 and 3. However, all of them will miss cluster 2 because of the overlap-
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Figure 4.1: Example Data

ping of data objects between these clusters. While CARE (Zhang et al. (2008)) allows

arbitrary overlapping between clusters, it is not able to find cluster 3 which is a non-

linear correlation cluster. Furthermore, CARE is not designed for detecting correlation

clusters containing a small number of objects. CARE misses cluster 2 according to our

experiments in Section 6.5.

In this chapter, we address these problems and develop a nonlinear correlation clus-

tering algorithm which expands the TreeQA algorithm. The algorithm allows arbitrary

overlapping between clusters. A brute-force method is to explicitly enumerate all com-

binations of feature subsets and data object subsets and check for possible correlation

in each combination. However, this method poses two computational challenges.

1. Enumerating all possible subsets of data objects is computationally infeasible.

Datasets generated in user recommendation systems, web log and other applica-

tions can easily contain thousands or millions of data objects.

2. Checking the correlation in each combination is also expensive. Even though we

can utilize methods like micro-clusters and PCA (principle component analysis)
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(Böhm et al. (2004); Tung et al. (2005)), the procedure will still be very time

consuming considering the total number of combinations.

In this chapter, we introduce a nonlinear correlation clustering algorithm, TreeNL,

to meet these challenges. TreeNL enumerates feature subspaces. By doing so, clusters

of data objects which have linear/nonlinear correlations in each feature subset can be

detected independently. Therefore, data objects are allowed to participate multiple

correlation clusters. TreeNL utilizes tree hierarchies of data objects and BIC (Bayesian

information criterion) to detect correlation in each feature subspace.

1. For each feature subset, TreeNL organizes the data objects into a tree hierarchy

according to their similarities in the feature subspace. Each node in the tree rep-

resents a subset of data objects. The tree hierarchy provides both effectiveness

and efficiency in correlation detection: 1) The tree hierarchy captures the distri-

bution of the objects in the feature subspace and hence is able to reveal non-linear

correlations in the feature subspace; 2) The tree hierarchy provides a multi-level

resolution to examine the data objects. Instead of enumerating all possible sub-

sets of data objects, TreeNL enumerates all possible groupings of objects implied

by the tree hierarchy. By controlling the minimum size of the clusters, TreeNL

ensures the statistical significance of the detected correlation clusters and is able

to explore the object subspaces efficiently.

2. Instead of using PCA and expensive matrix operations, TreeNL adopts BIC (Bayesian

information criterion) to measure correlation between features. The fast calcula-

tion of BIC enables TreeNL to handle large datasets efficiently.

We conducted extensive experiments on both real and synthetic datasets. The re-

sults demonstrate that TreeNL can accurately and efficiently find nonlinear correlation

clusters with arbitrary overlapping.
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4.2 Related Work

The problem of finding correlation clusters has been extensively studied.

ORCLUS (Aggarwal and Yu (2000)) is a partition-based linear correlation algorithm.

It adopts a similar procedure as the traditional k-means clustering algorithm. Instead

of calculating the Euclidian distance from each object to its cluster centroid in the full

feature space, ORCLUS measures the distance in the feature subspace corresponding to

each cluster. By doing so, ORCLUS can find linear correlation clusters in arbitrarily

oriented feature subspaces.

4C (Böhm et al. (2004)) is a combination of density-based clustering algorithm (DB-

SCAN) and principle component analysis (PCA). It adopts a novel correlation similarity

measurement which considers the orientation of the feature subspace. Linear correla-

tion clusters are formed by first identifying core data objects in dense areas. Then the

clusters are expended via the reachability between the data objects.

CARE (Zhang et al. (2008)) detects correlation clusters by explicitly exploring fea-

ture subspaces. For each combination of features, it adopts PCA to identify the weak

eigenvectors of the feature subspace. The existence of these weak eigenvectors indicates

the correlation between the features and also provides quantitative information on the

linear dependencies between the correlated features (Achtert et al. (2006)). For each

feature subset, CARE uses heuristics to remove a few data objects to refine the weak

eigenvectors instead of explicitly exploring all the object subsets. Thus, in order to

identify correlated feature subsets, CARE requires that a large portion of data objects

support the linear dependencies. Consequently, CARE is not suitable for detecting

minor correlation clusters in the dataset.

CURLER (Tung et al. (2005)) aims at finding nonlinear correlation clusters. It

first utilizes an EM-based fuzzy clustering algorithm to partition the data objects into

tiny clusters, i.e., micro-clusters. Then CURLER merges these micro-clusters according

to the co-sharing level and forms nonlinear correlation clusters. The EM-based fuzzy
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clustering algorithm enables CURLER to assign each data object to multiple micro-

clusters with different probabilities. However, after the micro-clusters are merged into

larger clusters, each data object is assigned to a unique cluster according to the object’s

highest membership probability.

Except for CARE, the algorithms reviewed above (ORCLUS, 4C and CURLER) do

not allow objects be shared by multiple correlation clusters, and thus produce a strict

partition of the data objects.

Algorithms (Aggarwal et al. (1999); Agrawal et al. (1998); Hinneburg and Keim

(1999); Liu and Wang (2003); Procopiuc et al. (2002)) were proposed to find clusters in

axis-parallel feature subspaces. These algorithms are not able to find local, arbitrarily

oriented correlation clusters.

4.3 Preliminaries

In this section, we introduce our notations (Table 4.1).

Let H = S × F be a data matrix consisting of n data objects in m-dimension. S

represents the data object set (samples), S = {s1, s2, ..., sn}. F represents the feature

set, F = {f1, f2, ..., fm}1. Given a data object si, fj(si) represents its value on feature

fj . An example data matrix of 8 objects and 5 features is shown in Figure 4.2.

4.3.1 Tree Hierarchy

TreeNL utilizes tree hierarchies to organize all data objects in feature subspaces. Given

a feature subset F ′, F ′ ⊆ F , we denote its corresponding tree as T F ′
. TreeNL uses a

threshold, gmin, to control the minimum number of objects at each node of the tree.

1In this chapter, H is representing any general datasets, not only binary SNP data. Therefore, we
use F to represent the feature set. It is not as Chapter 2 that we use M to represent the marker set
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Figure 4.2: An example 8 × 5 data matrix

Definition 4.3.1. Tree Hierarchy: Given a feature subset F ′ and gmin, the corre-

sponding tree T F ′2 consists of a set of tree nodes RF ′
= {rF ′

0 , rF ′
1 , ..., rF ′

w }. rF ′
0 is the root

node of tree T F ′
. Each node rF ′

i represents a data object subset, S(rF ′
i ).

• ∀S(rF ′
i ), |S(rF ′

i )| ≥ gmin.

• Given any two leaf nodes rF ′
i and rF ′

j , their object subsets are disjoint, S(rF ′
i ) ∩

S(rF ′
j ) = ∅.

• Given an intermediate node rF ′
i , S(rF ′

i ) =
⋃

j S(rF ′
j ), where {rF ′

j } are the leaf nodes

in the subtree of rF ′
i .

• S(rF ′
0 ) = S.

In general, different trees may be constructed for a given feature subset. In this

chapter, given F ′, we use T F ′
to represent the tree hierarchy constructed by TreeNL via

hierarchical clustering. Given the example data in Figure 4.2, three trees, T {f1}, T {f2}

and T {f4,f5} constructed by TreeNL with gmin = 1 are plotted in Figure 4.3.

2In Chapter 2, trees are represented by Tu,v because they are inferred from compatible regions
Cu,v. In this chapter, trees are constructed on feature subsets F ′, thus, we use T F ′

to represent the
corresponding tree
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Figure 4.3: Trees T {f1}, T {f2} and T {f4,f5} of the data matrix in Figure 4.2, with gmin = 1

In Figure 4.3, we only give the object subsets represented by the leaf nodes. Since

gmin = 1, there is only one object in each subset. The intermediate node r
{f1}
4 in tree

T {f1} represents object subset {s4, s5, s7, s8}.
We usually set gmin to be much larger than 1. Therefore, TreeNL adopts a top-

down hierarchical clustering approach to generate tree T F ′
for a given feature subset F ′

instead of using a bottom-up approach. Tree T F ′
organizes data objects according to

their similarities in feature subspace F ′. We may use Euclidian distance or any other

similarity/distance functions. Data objects which are close to each other in feature

subspace F ′ are grouped into the same subtree of T F ′
. Details of the tree construction

algorithm are discussed in Section 4.5.

4.3.2 Groupings of Objects Indicated by a Tree

TreeNL partitions (clusters) data objects into subsets implied by the tree hierarchy. In

Chapter 2, we defined the groupings indicated by a tree. In this section, we define this
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concept more formally. Given a tree T F ′
, a grouping indicated by T F ′

consists of a set

of disjoint data object subsets which are represented by tree nodes of T F ′
.

Definition 4.3.2. Grouping of Objects Indicated by a Tree Hierarchy: Let

GF ′
i denote a grouping of objects indicated by tree T F ′

, F ′ ⊆ F . GF ′
i = { S(rF ′

j ), j =

{1, ..., l}|∀u, v ∈ {1, ..., l}, S(rF ′
u ) ∩ S(rF ′

v ) = ∅}.

In the rest of this paper, we use term ’grouping’ to denote ’grouping of data objects’

unless noted otherwise. Note that a grouping may consist of only a subset of the data

objects. For example, given tree T {f1} in Figure 4.3, the following groupings are indicated

by T {f1}:

• G
{f1}
1 = {S(rf1

3 ), S(rf1
5 )} = {{s2, s3}, {s4, s5}}.

• G
{f1}
2 ={S(rf1

1 ), S(rf1

2 )}={{s1, s2, s3}, {s4, s5, s6, s7, s8}}

And the following groupings are not indicated by T {f1}:

• {{s1, s6}, {s4, s7}}.

• {{s1, s2}, {s3}, {s5, s7}}.

The definition of parent-child groupings (Definition 2.3.5, Chapter 2) also applies.

In this chapter, we call a child-grouping a finer grouping of its parent-grouping.

For example, given G
{f1}
3 = {{s1, s2, s3}, {s4, s5, s7, s8}}, both

1. G
{f1}
4 = {{s1, s2, s3}, {s4, s5}, {s7, s8}}

2. G
{f1}
5 = {{s1}, {s2, s3}, {s4, s5}, {s7, s8}}

are its child-groupings. However, grouping

1. G
{f1}
6 = {{s2, s3}, {s4, s5, s7, s8}}

2. G
{f1}
7 = {{s1, s2, s3}, {s6}, {s4, s5}, {s7, s8}}

are not child-groupings of P
{f1}
3 .
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Table 4.1: Notation Summary
H data matrix, H = S × F
S, si the data object set, a data object
S ′,S ′

i a subset of data objects
F , fi the feature set, a feature
F ′,F ′

i a subset of features
fj(si) value of object si on feature fj

T F ′
tree hierarchy on feature subset F ′

RF ′
, rF ′

i tree node(s) of T F ′

S(rF ′
i ) object subset represented by node rF ′

i

GF ′
i a grouping of objects implied by T F ′

4.4 Correlations and Problem Definition

In this section, we study the correlation among trees, groupings and features. We also

provide a formal problem definition.

4.4.1 Correlation between a Grouping and a Feature

Given a grouping GF ′
i indicated by T F ′

and a feature fj ,fj ∈ F − F ′, if GF ′
i is correlated

with fj, objects in the same object subset of the partition tend to have similar fj values

while objects from different object subsets tend to have different fj values. We use the

data matrix in Figure 4.2 as an example. Given feature f3 and two groupings indicated

by trees T {f1} and T {f2} in Figure 4.3

• G
{f1}
8 = {{s2, s3}, {s4, s5}, {s7, s8}}

• G
{f2}
1 = {{s2, s5}, {s6, s8}, {s3, s4}}

Their feature values of f3 are plotted in Figure 4.4, using different markers to repre-

sent objects in different subsets of a grouping. As we can see, grouping G
{f1}
8 is more

correlated with f3 than G
{f2}
1 .

We use normalized RSS (residue squared sum of error) and BIC (Bayesian informa-

tion criterion) to measure the correlation between a grouping and a feature.

66



Figure 4.4: Correlation: feature f3 and groupings G
{f1}
8 ,P

{f2}
1

Given a grouping GF ′
i = {S ′

1, S
′
2, ..., S

′
u}, S ′ =

⋃u
l=1 S ′

l and a feature fj , we calculate

the total variance SST, variance between object subsets SSB, and variance inside object

subsets SSE as follows

M(S ′
l) =

1

|S ′
l|

∑

sk∈S′
l

fj(sk), MM =
1

|S ′|
∑

sk∈S′
fj(sk) (4.1)

SSB =
u∑

l=1

|S ′
l|(M(S ′

l) − MM)2 (4.2)

SSE =

u∑

l=1

∑

sk∈S′
l

(fj(sk) − M(S ′
l))

2 (4.3)

SST =
∑

sk∈S′
(fj(sk) − MM)2 = SSE + SSB (4.4)

Then we get the normalized RSS

RSS(GF ′
i , fj) =

SSE

SST
=

SSE

SSE + SSB
(4.5)

For example, given the two partitions and feature in Figure 4.4, their RSS scores are

• RSS(G
{f1}
8 , f3) = 3.57

28.93
= 0.12

• RSS(G
{f2}
1 , f3) = 33.14

34.14
= 0.97
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As we can see, a lower RSS value implies a stronger correlation.

Property 4.4.1. Monotonicity of RSS: Given two partitions GF ′
i and GF ′

j , if GF ′
j is

a child (finer) partition of GF ′
i , for any feature fu (fu ∈ F − F ′), we have RSS(GF ′

i , fu) ≥
RSS(GF ′

j , fu).

Proof : Because GF ′
j is a child (finer) partition of GF ′

i , GF ′
i and GF ′

j contain the same

subset of objects. Therefore, we have

SST (GF ′
i , fu) = SST (GF ′

j , fu)

For each subset S ′
il

in P F ′
i

• If ∃S ′
jt
∈ P F ′

j , such that S ′
il

= S ′
jt
, then

∑

sk∈S′
il

(fu(sk) − M(S ′
il
))2 =

∑

sk∈S′
jt

(fu(sk) − M(S ′
jt
))2

• If S ′
il

is partitioned into {S ′
j1

, S ′
j2

, ..., S ′
jw
} in GF ′

j , then

∑

sk∈S′
il

(fu(sk) − M(S ′
il
))2 =

w∑

x=1

∑

sk∈S′
jx

(fu(sk) − M(S ′
jx

))2

+
w∑

x=1

|S ′
jx
|(M(S ′

jx
) − M(S ′

il
))2

Thus,
∑

sk∈S′
il

(fu(sk) − M(S ′
il
))2 ≥

w∑

x=1

∑

sk∈S′
jx

(fu(sk) − M(S ′
jx

))2

Therefore, according to Equation 4.3, we have

SSE(GF ′
i , fu) ≥ SSE(GF ′

j , fu)
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Since RSS = SSE
SST

, we get

RSS(GF ′
i , fu) ≥ RSS(GF ′

j , fu)

According to Property 4.4.1, if we measure correlation using RSS only, we will find

that the finest groupings always have the lowest RSS score and hence the strongest

correlation. To correct this bias of favoring finest groupings, we normalize the score

by the number of subsets in the grouping since a finer grouping must contain a larger

number of object subsets.

We utilize BIC (Bayesian information criterion) (Schwarz (1978)) to define the corre-

lation between a grouping and a feature, taking into account RSS, the number of subsets

and also the total number of objects in the grouping.

Definition 4.4.1. BIC Correlation between a Grouping and a Feature: Given

grouping GF ′
i and feature fj ,fj ∈ F − F ′, the correlation between them is defined as

C(GF ′
i , fj) = log(RSS(GF ′

i , fj)) + u · log(|S ′|)
|S ′| (4.6)

in which, u is the number of object subsets in the grouping and |S ′| is total number of

objects in the grouping.

A lower C(GF ′
i , fj) value indicates a stronger correlation between grouping GF ′

i and

feature fj. For example, the correlation scores in Figure 4.4 are

• C(G
{f1}
8 , f3) = log(0.12) + 3 · log(6)

6
= −1.76

• C(G
{f2}
1 , f3) = log(0.97) + 3 · log(6)

6
= 1.25

The correlation score between G
{f1}
8 and f3 is much lower than the score between

G
{f2}
1 and f3, which indicates that the correlation between G

{f1}
8 and f3 is much stronger.
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The incorporation of u (the number of subsets in a grouping) into Equation 4.6 avoids

the cases where finest groupings always have the lowest score. When two groupings

have similar RSS scores, the BIC correlation favors the one containing smaller number

of object subsets. Given two groupings which we used as examples before,

• G
{f1}
8 = {{s2, s3}, {s4, s5}, {s7, s8}}

• G
{f1}
6 = {{s2, s3}, {s4, s5, s7, s8}}

G
{f1}
8 is a finer grouping of G

{f1}
6 . Their RSS values are similar

• RSS(G
{f1}
8 , f3) = 0.12

• RSS(G
{f1}
6 , f3) = 0.13

However, since G
{f1}
6 contains fewer subsets, its BIC correlation score is lower than

that of G
{f1}
8 .

• C(G
{f1}
8 , f3) = −1.76

• C(G
{f1}
6 , f3) = −2.08

The incorporation of |S ′| (the total number of objects (samples) in a partition) into

Equation 4.6 is easy to see. A correlation supported by a large number of objects is

always better than a correlation supported by a smaller number of objects.

As we discussed in Section 4.3, each tree hierarchy T F ′
can imply a set of groupings

{GF ′}. Similar to TreeQA, we define the correlation between tree T F ′
and feature fi,

fi ∈ F − F ′ as the strongest correlation achieved by a grouping of {P F ′} and feature fi.

Definition 4.4.2. Correlation between a Tree and a Feature: Given tree T F ′
and

feature fi, fi ∈ F − F ′, the correlation between them is

C(T F ′
, fi) = min{C(GF ′

j , fi)|GF ′
j ∈ {GF ′}} (4.7)
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4.4.2 Correlation Cluster

In TreeNL, a tree hierarchy T F ′
is constructed for each feature subset F ′. We use

C(T F ′
, fi) to represent the correlation between feature subset F ′ and feature fi.

Definition 4.4.3. Correlation between a Feature Subset and a Feature: Given

a feature subset F ′ and a feature fi, fi ∈ F − F ′, the correlation between them is

C(F ′, fi) = C(T F ′
, fi) (4.8)

The set of objects contained in the partition which achieves the strongest correlation

with fi is called the support object (sample) subset of C(F ′, fi) and is denoted by

D(F ′, fi).

For example, given a feature subset {f1} and a feature f3 in Figure 4.2, TreeNL

constructs a tree hierarchy on feature subset {f1} which is plotted in Figure 4.3. After

examining all groupings implied by T {f1}, pgrouping {{s2, s3}, {s4, s5, s7, s8}} is found

to achieve the lowest BIC correlation score −2.08. Therefore, C({f1}, f3) = −2.08 and

D({f1}, f3) = {s2, s3, s4, s5, s7, s8}.
If we want to know the correlation between features in a given feature subset F ′,

(how closely are the features in F ′ related with each other?), we can select any feature fi

from F ′ and calculate the correlation between fi and the rest of the features (F ′−{fi}).

Definition 4.4.4. Correlation of a Feature Subset: Given a feature subset F ′, the

correlation of F ′ is

C(F ′) = min{C(F ′ − {fi}, fi)|fi ∈ F ′} (4.9)

And the support object subset corresponding to the strongest correlation is consid-

ered as the support object (sample) subset of C(F ′), which is denoted by D(F ′).
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Definition 4.4.5. Correlation Cluster: Given a feature subset F ′, its support object

(sample) subset D(F ′) forms a correlation cluster. The correlation score of F ′, C(F ′),

indicates the quality of the correlation cluster.

4.4.3 Problem Definition

Given a data matrix H = S × F , find the top-K correlation clusters (i.e., correlation

feature subsets and their corresponding support object subsets).

4.5 TreeNL Algorithm

We present the TreeNL algorithm in this section. Given a data matrix H = S × F ,

TreeNL outputs the K most significant correlation clusters (correlated feature subset

and the corresponding support object subset) allowing arbitrary overlapping between

clusters.

We set 3 input parameters to the TreeNL algorithm.

• K: the number of most significant clusters to output.

• fsetmax: the maximum size of feature subsets examined by TreeNL.

• gmin: the minimum size of an object subset represented by a node in the tree

hierarchy.

TreeNL computes the BIC correlation score for each enumerated feature subset.

Most of the subsets have no or weak correlations. The top-K output provides a way to

identify significant correlation clusters. Alternatively, one may set a threshold on the

BIC correlation score which can be easily incorporated in TreeNL.

For datasets containing hundreds of features, an exhaustive search of all subsets of

features is time-consuming and unnecessary. The correlation of a large feature subset
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Figure 4.5: The TreeNL Algorithm

may often be explained by its smaller subsets. fsetmax defines the maximum size of the

feature subsets examined by TreeNL. We usually set this parameter to 4 or 5.

gmin is used to ensure that each object (sample) subset contains sufficient objects so

that the correlation calculated between groupings and features are statistically signifi-

cant. It also controls the size of the tree hierarchies to make enumeration efficient. We
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usually set this number to be at least 1% of the total number of data objects.

Given a data matrix, TreeNL enumerates all subsets of features up to size fsetmax.

For each feature subset F ′, TreeNL selects a feature fj from F ′ one at a time. TreeNL

constructs a tree hierarchy T F ′−{fj} to organize all data objects according to their sim-

ilarities (e.g., Euclidian distance in feature subspace F ′ − {fj}). Each node in tree

T F ′−{fj} represents an object subset containing at least gmin objects. TreeNL then

enumerates all groupings indicated by the tree hierarchy and calculate the BIC correla-

tion C(P F ′−{fj}, fj). According to Definitions 4.4.2 and 4.4.3, the strongest correlation

achieved by the groupings is considered as the correlation between F ′ − {fj} and fj.

After selecting every feature from F ′, TreeNL gets the correlation of the subset F ′ and

its corresponding support object subset (cluster). In the end, TreeNL outputs the K

most significant correlation clusters (or reports the correlation score of each cluster).

Figure 4.5 shows the pseudocode of the basic implementation of TreeNL. We will

discuss the improvements later in this section.

In the Main Routine, an order is imposed on the features in F in Step 1 so that

TreeNL can systematically enumerate the feature subset. The EnumerateFeature

routine is called in Step 4.

In EnumerateFeature, a new feature subset flist is generated in Step 2. From

Step 3 to Step 7, in each loop, a feature fj ∈ flist is removed. The tree hierarchy

is constructed on flist − {fj} in Step 4. The tree nodes of T flist−{fj} are sorted in a

breadth-first order in Step 5 so that all partitions implied by T flist−{fj} can be generated

by enumerating the tree node subsets systematically in EnumeratePartition. Routine

EnumeratePartition is called in Step 7 to get the correlation between tree T flist−{fj}

and feature fj . In Step 9, the correlation of feature subset flist is calculated according

to Definition 4.4.4. The corresponding support object subset is stored in Step 10 and

the top-K correlation cluster QK is updated in Step 11. If the number of features in

flist is less than fsetmax, EnumerateFeature is recursively called in Step 14.
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In EnumeratePartition, a new tree node subset P list is generated in Step 2 in

each loop. The corresponding grouping G = {S(rj)|rj ∈ P list} is generated and vali-

dated in Steps 3 and 4. If G is not a valid grouping, (e.g., there is overlapping between

the object subsets represented by the nodes in P list) EnumeratePartition returns

directly in Step 5 with the best correlation found so far. Otherwise, the correlation

between the grouping and the feature is calculated in Step 6. In Step 7, the current best

correlation is compared with the result from Step 6 and is updated accordingly. Enu-

meratePartition is recursively called in Step 9. At the end of EnumeratePartition,

the best correlation is returned.

4.5.1 Tree Hierarchy Construction

Both top-down and bottom-up hierarchical clustering approaches are able to construct

a tree hierarchy. TreeNL requires that each node in the tree must represent at least

gmin objects. Usually we set gmin to be at least 1% of the total number of objects. A

top-down approach is more efficient than a bottom-up approach, because a bottom-up

approach constructs a tree from leaf nodes representing single objects.

TreeNL utilizes a k-means based top-down hierarchical clustering approach to con-

struct tree hierarchy. Starting from the root node which represents the entire set of data

objects, routine TreeConstruct continuously partitions the subset of data object at

each node into two disjoint subsets. The two new subsets are then represented by the left

and right child-nodes of the current node. The partition continues until the number of

objects in the subset is less than gmin. TreeConstruct uses 2-means clustering to par-

tition each subset of objects into two subsets. Note that any other top-down hierarchical

clustering approaches can also be used in TreeNL to construct tree hierarchy.

The pseudocode code of routine TreeConstruct is in Figure 4.6. In the main

routine, the root node of the tree rF ′
0 is initialized in Steps 1 and 2. Subroutine Partition

is called in Step 3. In Partition, two random seeds are selected from the input object
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Figure 4.6: Routine TreeConstruct

subset S(rF ′
i ). From Step 2 to Step 6, k-means clustering is used to partition S(rF ′

i ) into

two disjoint subsets S ′
1 and S ′

2. If the size of either subset is less than gmin, the partition

stops and the routine returns directly in Step 9. Otherwise, the left and right child-nodes

of rF ′
i are initialized in Step 10. Each child-node represents one of the subsets. And

routine TreeConstruct is recursively called in Steps 12 and 13 for the left and right

child-nodes respectively.

4.5.2 A Faster Enumeration

In routine EnumerateFeature (Figure 4.5), given a feature subset flist, a tree hierar-

chy is constructed for each flist−{fj} subset. We found that the same tree is actually

repeatedly constructed in different flist subsets. For example, if two feature subsets
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{s1, s2, s3} and {s1, s2, s4} are both enumerated, tree T {s1,s2} are constructed in both of

them.

In order to avoid this repeated tree construction, we re-design the routine. During

the enumeration of features, given a feature subset flist, we construct tree T flist and

calculate the correlation between T flist and each fj , fj ∈ F − flist. By doing so, we

ensure that for any feature subset F ′, tree T F ′
is constructed only once. However, this

method causes another problem. The correlation of a feature subset F ′ depends on all

C(F ′−{fi}, fi), fi ∈ F ′. With the new method, we need to keep an entry for each subset

F ′ to record the best C(F ′−{fi}, fi) achieved so far. Then for any feature subset F ′, its

correlation C(F ′) can be known after the entire enumeration. In our implementation,

we use a hash list to organize the best record entry for each subset F ′.

Figure 4.7: Re-designed Routine EnumerateFeature+

The pseudocode code of the new EnumerateFeature+ routine is in Figure 4.7.

From Step 2 to Step 4, tree T flist is constructed for subset flist. From Step 5 to Step 8,

the correlation between T flist and each feature not included in flist is calculated. The

corresponding best record entries are also updated accordingly. Note that in Step 10,

the stop condition changes a little bit because the feature subset flist ∪ {fj} (instead
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of flist) is checked in Steps 7 and 8.

4.5.3 Other Improvements

On each node rF ′
j of tree T F ′

, we store the corresponding object subset S(rF ′
j ). This

object subset is used in two places during the procedure.

• Overlapping check: In Steps 3 and 4 of routine EnumeratePartition (Figure

4.5), these object subsets are used to generate a grouping GF ′
and are used in its

validation to check if there is any overlapping between these object subsets.

• Correlation calculation: In Step 6 of routine EnumeratePartition (Figure 4.5),

these object subsets are used to calculate the correlation score between a grouping

and a feature.

In fact, we don’t need these S(rF ′
j ) subsets to be physically stored at each node except

for the leaf nodes.

Given two nodes in tree T F ′
, their corresponding object subsets overlap if and only if

one of the nodes is a child-node of the other one. Therefore, instead of validating group-

ing GF ′
in Step 4 of EnumeratePartition, we can check the parent-child relationship

between ri and each node in Pcurlist in Step 2 of EnumeratePartition and add ri

to Pcurlist only when there is no such relationship between them. The relationship

checking can be efficiently done using the tree hierarchy with some additional pointers

between nodes.

Given a feature fi, for the correlation calculation, we only need to store the number

of objects in S(rF ′
j ) and the following two values for each node rF ′

j

SQ(S(rF ′
j )) =

∑

st∈S(rF ′
j )

fi(st)
2 (4.10)

SM(S(rF ′
j )) =

∑

st∈S(rF ′
j )

fi(st) (4.11)
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To calculate the RSS of a grouping GF ′
= {S(rF ′

j )|j = 1...w} and the feature fi, for

each included subset (node), we calculate

SSEj = SQ(S(rF ′
j )) − SM(S(rF ′

j ))2/|S(rF ′
j )| (4.12)

SSBj = SM(S(rF ′
j ))2/|S(rF ′

j )| (4.13)

Then we combine them together and get

N =

w∑

j=1

|S(rF ′
j )|, MM =

1

N

w∑

j=1

SM(S(rF ′
j )) (4.14)

SSB =

w∑

j=1

SSBj − N · MM 2, SSE =

w∑

j=1

SSEi (4.15)

RSS =
SSE

SSE + SSB
(4.16)

The correlation C(GF ′
, fi) can be easily computed after we get the RSS.

Therefore, except for the leaf nodes, we do not need to physically store S(rF ′
j ) for

the nodes. And the operations (overlapping check and correlation calculation) can be

done more efficiently.

4.6 Experiments

In this section, we present experiment results on both synthetic and real data to demon-

strate the efficiency and effectiveness of our TreeNL algorithm. The experiments are

performed on a 2.4 GHz PC with 1G memory running WindowsXP system.
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Datasets

• Synthetic dataset: We generated a set of synthetic data with different sizes. Both

linear and nonlinear correlation clusters are embedded in the data matrix.

• NBA statistics dataset: The data was downloaded from the ESPN web page3.

Each data object is an NBA player. Each player is characterized by 28 features

(statistics), such as ”number of blocks”, ”number of points”, etc...

• Mouse gene expression dataset: The dataset was provided by the School of Public

Health at UNC. The dataset contains the expression values of 101 genes in 42

mouse samples.

Algorithms

• CURLER (Tung et al. (2005)): a nonlinear correlation clustering algorithm which

outputs a strict partition of data objects.

• CARE (Zhang et al. (2008)): a linear correlation clustering algorithm which allows

arbitrary overlapping between clusters.

• TreeNL: basic implementation of TreeNL.

• TreeNL+: TreeNL with re-designed EnumerateFeature+ routine and other im-

provements discussed in Section 4.5. Note that TreeNL+ outputs the same clus-

tering results as TreeNL, except that TreeNL+ is faster.

Parameter Setting

In the experiments, we use the default parameter settings of CURLER and CARE

according to (Tung et al. (2005); Zhang et al. (2008)), except that we vary the number

3http://sports.espn.go.com/nba/teams/stats?team=Bos year=2007 season=2
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of micro-clusters which are generated in CURLER to get the best output of CURLER.

In this section, we use term ’CURLERt’ in the captions of the corresponding figures to

denote that CURLER generated t micro-clusters on the dataset.

For TreeNL, we vary gmin and fsetmax in the following ranges in different experi-

ments,

• gmin: vary from 2% to 5% of the total number of objects.

• fsetmax: vary from 2 to 5.

Parameter K is user-defined and is used only when TreeNL outputs the most signif-

icant clusters.

4.6.1 Synthetic Data: Effectiveness

We generated three synthetic data for this set of experiments.

• Syndata1: A 400 × 6 data matrix. Two nonlinear helix correlation clusters are

embedded to resemble the synthetic data used in CURLER (Tung et al. (2005)).

The clusters and nonlinear dependencies are listed in Table 4.2.

• Syndata2: A 100×100 data matrix. Two linear correlation clusters are embedded

to resemble the synthetic data used in CARE (Zhang et al. (2008)). The clusters

and linear dependencies are listed in Table 4.2.

• Syndata3: A 300 × 7 data matrix. This dataset has been used as the example in

Figure 4.1. Two linear correlation clusters and one nonlinear correlation cluster

are embedded. The three clusters overlap with each other on both features and

objects. The clusters and linear/nonlinear dependencies are listed in Table 4.2.
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Table 4.2: Correlation Clusters Embedded in Syndata1,2 and 3
Syndata1

Cluster Point Subset Feature Dependency
1 {s1, ...., s200} f1 = 2 · t, f2 = 1.2 · sin(t),

f3 = 1.2 · cos(t), t ∈ [0, 6π]
2 {s201, ...., s400} f4 = u, f5 = 2 · sin(u),

f6 = 2 · cos(u), u ∈ [0, 6π]

Syndata2
Cluster Point Subset Feature Dependency
1 {s1, ...s60} f10 = f8 + f9

2 {s41, ...s100} f50 = f48 + f49,

Syndata3
Cluster Point Subset Feature Dependency
1 {s1, ...s100} f2 = f1 + 0.5 · f3

2 {s61, ...s160} f7 = f5 + f6,
3 {s120, ...s219} f4 = 2 · f3 · f5,

Syndata1

Since both embedded correlations are nonlinear, CARE found no clusters on Syndata1.

The output of CURLER is a visualization of the clusters called NNCO plot (Tung

et al. (2005)). The NNCO plot on Syndata1 is shown in Figure 4.8(a). The x-axis

denotes the micro-clusters which are ordered according to the cluster merging procedure

of CURLER. The y-axis denotes the co-sharing level of micro-clusters. In general, a

cluster will be represented by a hill shape in the NNCO plot. The bars below the co-

sharing plot represent the orientations of the micro-clusters. For micro-clusters in the

same cluster, their orientations are similar and therefore, a block (or a pattern) in the

corresponding bars can be observed graphically. Interested readers may refer to (Tung

et al. (2005)) for details. Note that in the caption of Figure 4.8, term ’CURLER400’

denotes that CURLER generated 400 micro-clusters on this dataset.

We can observe two hills in Figure 4.8(a), one from micro-clusters 1 to 200 and the

other from micro-clusters 201 to 400. These two hills clearly indicate the existence of

the two embedded nonlinear (helix) clusters.
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Figure 4.8: Outputs of CURLER400 and TreeNL on Syndata1

For TreeNL, we set gmin = 10 and fsetmax = 3. And instead of outputting the top-

K clusters (feature subsets), we output the correlation score for all enumerated clusters

(feature subsets) for fair comparison.

Figure 4.8(b) plots the output of TreeNL on Syndata1, that is, the −C(F ′) score of

each enumerated feature subset. The x-axis denotes the feature subsets in lexicographic

order. The y-axis denotes the −C(F ′) score. Note that a higher point in the figure

indicates a stronger correlation.

We can observe two peak points in Figure 4.8(b). The left peak represents feature

subset {f1, f2, f3} which corresponds to cluster 1, and the right peak represents feature

subset {f4, f5, f6} which corresponds to cluster 2. For each peak, there are two other

points to the left which also indicate strong correlation. These points represent feature

subsets {f1, f2}, {f1, f3}, {f4, f5} and {f4, f6} respectively. According to the dependency

functions in Table 4.2, the correlations between these features are obvious.

On Syndata1, both CURLER and TreeNL found the embedded correlations while

CARE failed.
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Syndata2

CARE successfully detects the two embedded linear correlations and provides the quan-

titative information of the dependencies,

• f8 + 1.02 · f9 − 0.98 · f10 = 0

• f48 + 0.99 · f49 − 0.97 · f50 = 0

(a) CURLER (b) TreeNL

cluster 1
cluster 2

Figure 4.9: Outputs of CURLER100 and TreeNL on Syndata2

The NNCO plot of CURLER is shown in Figure 4.9(a). There are no obvious hills

which can indicate the two embedded clusters. Both the high intrinsic dimensionality

of the data (94% of the features are random noise) and the overlapping of data objects

between the two clusters prevent CURLER from finding the clusters.

For TreeNL, we still use gmin = 10 and fsetmax = 3. Figure 4.9(b) plots the output

of TreeNL on Syndata2. The two top points in Figure 4.9(b) represent feature subsets

{f8, f9, f10} and {f48, f49, f50} which correspond to the two embedded clusters.

On Syndata2, both CARE and TreeNL found the embedded correlations while

CURLER failed.
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Syndata3

CARE didn’t find the nonlinear correlation cluster. Since all three correlated feature

subsets are supported by a minority of data objects (30%), CARE found only one linear

correlation

• f1 − 0.97 · f2 + 0.51 · f3 = 0

If we relax the parameters of CARE, e.g., lowering the minimum support threshold,

the second correlation will then be found together with many other weakly correlated

and spurious clusters.

Figure 4.10: Outputs of CURLER100 and TreeNL on Syndata3

The NNCO plot of CURLER is shown in Figure 4.10(a). There are two small hills

plotted in Figure 4.10(a). The micro-clusters corresponding to these hills contain parts

of the objects in clusters 1 and 3. Because of the substantial overlapping between the

embedded clusters, CURLER didn’t find cluster 2 (see Table 4.2) and only found parts

of clusters 1 and 3.

For TreeNL, we use the same setting, gmin = 10 and fsetmax = 3. Figure 4.10(b)

plots the output of TreeNL on Syndata3. The top three points represent feature subsets

85



{f1, f2, f3}, {f3, f4, f5} and {f5, f6, f7} which correspond to the three embedded clus-

ters. The data objects in each cluster returned by TreeNL are plotted in Figure 4.11.

Compared with the embedded clusters shown in Figure 4.1, we can see that TreeNL can

discover both linear and nonlinear correlations very accurately.

Figure 4.11: Clusters of objects found by TreeNL on Syndata3

On Syndata3, TreeNL found all three embedded clusters while CARE and CURLER

only found some of them.

4.6.2 NBA Data: Effectiveness

In this section, we present the experiment results on a real data: NBA dataset. The

dataset was collected for 200 players from the game season in 2007. For each player

in the dataset, 28 statistics are used as features. The dataset contains both linear and

nonlinear correlations.

For TreeNL, we set its parameters as gmin = 10 and fsetmax = 3. The score for each

enumerated feature subset (cluster) is plotted in Figure 4.12(b). The top-5 correlation

clusters in Figure 4.12(b) correspond to the following 5 correlated feature subsets:

1. ’number of defense rebounds’, ’number of offense rebounds’, ’total number of re-

bounds’.
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(a) CURLER (b) TreeNL

Figure 4.12: Outputs of CURLER200 and TreeNL on the NBA dataset

2. ’3-point field goal made’(3PM), ’3-point attempted’(3PA), ’3-point made percent-

age’ (3PM/3PA).

3. ’free throw made’(FTM), ’free throw attempted’(FTA), ’free throw percentage’(FTM/FTA).

4. ’game played’, ’2-point made percentage’, ’free throw percentage’.

5. ’number of assist’(AST), ’number of turnover’(TO), ’AST/TO’.

The correlations of feature subsets 1, 2, 3 and 5 are obvious. The correlation of

subset 4 implies that a subset of players (a cluster) who are good at 2-point shooting

and free throw get more chance to play games. Due to space limitation, we only plot

the correlation clusters corresponding to subsets 1 and 2 in Figure 4.13.

The NNCO plot of CURLER is shown in Figure 4.12(a). From the figure, we can

recognize 4 clusters. According to the bars, the two on the right correspond to feature

subsets 1 and 3 respectively; while the two clusters on the left are hard to interpret.

CURLER didn’t find other correlated clusters because of the substantial overlapping of

objects between the clusters. The statistics of a player can have different dependencies

in different feature subsets.
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Feature subset 1 Feature subset 2

Figure 4.13: Correlation clusters corresponding to correlated feature subsets 1 and 2

Out of the 5 correlation clusters found by TreeNL, CARE found two of them (subsets

1 and 4) which are linear correlations. CARE also found other linear correlation clusters

in the NBA data. Those correlation clusters were also found by TreeNL (though not in

the top-5) with relatively high −C(F ′) scores.

4.6.3 Mouse Gene Expression Data: Effectiveness

In this section, we apply the algorithms on the mouse gene expression data. This data

contain 101 gene expression values of 42 mouse samples. Correlation clusters found in

this dataset overlap with each other for both genes and samples, that is, a gene can

participate in different correlated gene subsets, and a mouse sample can also occur in

different correlation clusters in different gene subsets. This dataset was used in CARE

(Zhang et al. (2008)) and several linearly correlated gene subsets were reported.

We set TreeNL’s parameters as gmin = 4 and fsetmax = 4. The scores of all enumer-

ated feature (gene) subsets (clusters) are plotted in Figure 4.14(b).

Among the top-5 correlated subsets in Figure 4.14(b), the following two have been

reported by CARE,
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(a) CURLER (b) TreeNL

Figure 4.14: Outputs of CURLER42 and TreeNL on the Mouse Gene Expression dataset

• { Nrg4, Myh7, Hist1h2bk, Arntl }

• { Oazin, Ctse, Mgst3 }

The other three correlated gene subsets (clusters) were not found by CARE be-

cause their corresponding correlation clusters contain less than 20 mouse samples. Even

though we can relax the parameters of CARE, these three clusters will be overwhelmed

by many other weakly correlated and spurious clusters. We show the three subsets in

Table 4.3 with the gene IDs and GO (gene ontology) annotations. As we can see in the

table, genes in each subset have consistent annotations.

We also plot the corresponding correlation clusters (support samples subsets) of gene

subsets 1, 2 and 3 (in Table 4.3) in Figure 4.15.

The NNCO plot of CURLER is shown in Figure 4.14(a). Since the clusters in this

dataset have substantial overlapping, it is hard to interpret any clusters from the NNCO

plot.

89



Table 4.3: Correlated Gene Subsets
Subset Gene IDs GO annotations
1 Prc1 cytokinesis

Lcp2 cytokine secretion
G1p2 response to virus
lfi27 response to virus

2 Ldb3 intracellular part
Sec61g intracellular part
Exosc4 intracellular part
BC048403 N/A

3 Ptk6 membrane
Gucy2g integral to membrane
Clec2g integral to membrane
H2-Q2 integral to membrane

Figure 4.15: Correlation clusters of samples correspond to gene subsets in Table 4.3

4.6.4 Synthetic Data: Efficiency

We generated a set of synthetic data of different sizes to test the scalability of TreeNL

and compare it with CARE and CURLER. Unless otherwise noted, we set the number

of micro-clusters in CURLER to be 300 and set the maximum size of feature subset

(same as our fsetmax) in CARE to be 4 as default in this set of experiments. And the

default setting of TreeNL (TreeNL+) is,

• gmin: 5% of the data objects

• fsetmax: 4
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In Figure 4.16(a), we compare the runtime of CURLER, CARE, TreeNL and TreeNL+

on a set of datasets containing 8000 ∼ 12000 objects. Each object has 40 features. Note

that, for TreeNL and TreeNL+, gmin is always 5% of the number of objects in the

datasets. As we can see, their runtimes are comparable except for TreeNL. CURLER

does not allow overlapping between clusters which makes it the fastest algorithm. CARE

allows overlapping but only handles linear correlation clusters. Thus CARE is also

slightly faster than TreeNL+. The runtime of CURLER and CARE increases almost

linearly with the number of objects. TreeNL+’s runtime becomes slightly super-linear

when the number of objects is large. The improvements enable TreeNL+ to run in

comparable speed to CARE and CURLER and much faster than the basic TreeNL.
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Figure 4.16: Runtime comparison of CURLER300, CARE, TreeNL and TreeNL+ on
datasets of various sizes

In Figure 4.16(b), we compare the runtime of the four algorithms on a set of datasets

containing 10 ∼ 50 features. All the datasets have 10000 objects. The runtimes are

comparable among CURLER, CARE and TreeNL+. CURLER’s runtime still increases

linearly with the number of features. CARE, TreeNL and TreeNL+ have quadratic

increase in runtime because they enumerate the feature subspaces. The improvements

make TreeNL+ much faster than TreeNL.

We also vary two of the input parameters of TreeNL, fsetmax and gmin on a 10000×30

synthetic data. In Figure 4.17(a), we plot the runtimes of TreeNL and TreeNL+ when
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varying fsetmax from 2 to 5. Since CARE has the same input parameter, its runtime is

also shown in Figure 4.17(a). All three algorithms have quadratic increase in runtime

with the increase of fsetmax. TreeNL+ and CARE have similar runtime and are much

faster than the basic TreeNL.
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Figure 4.17: Runtimes of TreeNL and TreeNL+ when varying fsetmax and gmin

We vary gmin from 300 (3%) to 500 (5%) on the same 10000×30 data. The runtimes

are plotted in Figure 4.17(b). With smaller gmin, TreeNL and TreeNL+ examine larger

tree hierarchies and more implied partitions. Thus, the runtimes of TreeNL+ and TreeNL

have slightly super-linear increase when gmin decreases.

4.7 Conclusion

In this chapter, we extend the idea of TreeQA and propose a tree-based nonlinear cor-

relation clustering algorithm, TreeNL. TreeNL enumerates the feature subspaces and

utilizes tree hierarchies to calculate the correlation. The enumeration of feature sub-

spaces provides the flexibility such that data objects are allowed to support multiple

correlated feature subsets. And the tree hierarchy provides efficiency and effectiveness:

1. A tree hierarchy captures the distribution of the objects in the feature subspace

and hence is able to reveal non-linear correlation clusters.
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2. A tree hierarchy provides a multi-level resolution to examine the data objects.

We also define a novel correlation score using BIC (Bayesian information criterion)

to avoid expensive operations such as computing matrix covariance and SVD. Our ex-

periment results show that, compared with previous algorithms such as CURLER (Tung

et al. (2005)) and CARE (Zhang et al. (2008)), TreeNL is more effective in detecting

both linear and nonlinear correlation clusters with arbitrary overlapping. By efficient

algorithm design and implementation, the runtime performance of TreeNL+ is also com-

parable with that of CARE and CURLER.

93



Chapter 5

Sample Selection in Biallelic Data for

Maximum Diversity

5.1 Introduction

In Chapters 2 - 4, I discussed the phylogeny-based genome-wide association mapping

methods and their application in correlation clustering. From this chapter, I will focus

on the second part of my thesis: maximum-diversity sample selection on both biallelic

and non-biallelic data.

As mentioned in Chapter 1, the sample selection problem is closely related to the

genome-wide association mapping problem. Genetic (allele) diversity is an important

consideration when designing association mapping studies. The problem also accrues in

other application domains such as customer review analysis and text mining.

A set’s diversity cover can be viewed as a variation of the classical set cover problem

where at least one example including and omitting each set element is required. Fur-

thermore, it is useful to relax the requirement of a strict cover by specifying a minimal

diversity threshold (usually specified as a percentage) that is to be retained by the se-

lected subset. The implications and motivation for finding diversity subsets also varies

between application domains.



Genetic Diversity

There are many experimental scenarios where the ultimate objective is to maintain,

or at least maximize, genetic diversity within relatively small breeding populations.

Examples include the design of breeding programs for livestock, the captive breeding

of endangered species, and the construction of recombinant inbred lines for genetic

mapping in animals and plants. Allele diversity is also an important consideration when

designing association studies. In the case of genetic mapping in mice, there are several

existing RIL panels (Williams et al. (2001)) with greater than 50 lines whose genotypes

are known. Economics might dictate performing a pilot study across only a subset of

the available lines (Xu et al. (2005); Jin et al. (2004)). The following question arises:

What subset preserves that greatest diversity among a set of selected markers?

Low-cost genotyping technologies provide an important tool for measuring diver-

sity at a biomolecular level in terms of Single Nucleotide Polymorphisms (SNPs). The

knowledge of a SNP’s presence, frequency, and location is leveraged in a wide range of

experimental designs. By definition, a SNP must be present in a minimum frequency in

a population (typically 5% in human studies). We consider a SNP to be lost if it is not

represented within a population sample, and our goal is to minimize this loss.

It has been previously shown in (Ideraabdullah et al. (2004)) that over 99% of SNPs

are biallelic, which enables us to represent alleles as a binary matrix. The approach to

handle non-biallelic data will be discussed in Chapter 6.

Previously, pairwise phylogenetic distances were used to identify maximum genetic

diversity subsets (Hartmann and Steel (2006); Steel (2005)). When applied to SNPs,

this approach only considers the number of inconsistencies between column pairs in the

allele diversity matrix, which is less information than the full matrix that our method

considers.

Besides SNPs, gene expression values in other microarray data can also be used as a

measurement for genetic diversity with proper discretization. And it is a similar problem
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to select a subset of the samples that preserves the greatest diversity among the genes.

Customer Diversity

In e-commerce, vendors often need to solicit customer opinions on the objects (e.g., prod-

ucts and/or services) they provide. This feedback is valuable for profiling customers,

analyzing product preferences, and building recommendation systems. There is a prac-

tical limit on the number of objects that can be listed in a questionnaire. In fact, objects

should be selected carefully to maximize information for subsequent analysis. That is,

they should be a small number of informative (and unbiased) representatives of all avail-

able objects of interest. Intuitively, we want the selected objects to be non-redundant

and cover the full range of customer’s opinions (i.e., including both positive and negative

ratings). The goodness of a selection can be measured by its customer-rating diversity

coverage.

A small number of selected objects is also preferred for certain data modeling tasks,

such as classification. We will show in the experiment section that subsets of objects,

which cover large diversity, can be used to build better (more accurate and simpler)

classifiers than the full object set.

The problem of finding an optimal diversity cover is NP-Complete. An interesting

variant of this problem is to find an optimal diversity subset of a given size or smaller

that achieves at least a given level of diversity. In this paper, we present practical

algorithms for finding such optimal diversity subsets.

Our algorithm has two phases. In the first phase, a greedy approach is used to find an

initial solution and establish an achievable bound in terms of subset size and coverage.

Then in the second phase, an exhaustive search for all optimal subsets is systematically

performed which is seeded with parameters derived from the initial greedy solution. We

then employ pruning strategies to enable an efficient search for the globally optimal

solution. Extensive experiments on real datasets from three applications demonstrate
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the effectiveness and efficiency of our algorithm.

5.2 Related Work

Many algorithms have been designed to establish a summary of a data matrix such that

the maximum diversity is retained.

Co-clustering algorithms which cluster rows and columns of a data matrix simulta-

neously based on information theory are presented in (Chakrabarti et al. (2004); Dhillon

et al. (2003b)). Dhillon (Dhillon et al. (2003b)) generates a flat partition of the data

matrix into row and column clusters that maximizes the mutual information. The al-

gorithm proposed by Chakrabarti (Chakrabarti et al. (2004)) partitions the rows and

columns such that the sum of the entropy in each cluster is minimized. The sub-matrix

generated by combining the rows and columns in each cluster found by these algorithms

can be considered as a summary of the original data.

Feature selection has been used extensively in the classification literature (Dash and

Liu (1997)). Given a class label for each row in the data matrix, the features that can

maximize the classification accuracy are selected. Regardless of the diversity retention,

the feature selection algorithms only select the most relevant features. These algorithms

are based on heuristic methods and are not guaranteed to find an optimal solution.

The greedy solutions to the Set Cover problem and its variations are studied in

(Hochbaum and Pathria (1998)). These algorithms find greedy solutions which maximize

the coverage over the elements at each step. Greedy solutions are only guaranteed to be

within a specific ratio of the optimal solution.

5.3 Preliminaries

In this section, we develop notations that will be used in this chapter and we provide

formal problem definitions.
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5.3.1 Diversity Cover (DC)

We use the same set of designations for data matrix, sample and marker as defined in

Chapter 2. We assume that the data matrix H is binary. In a SNP data, ”0” and ”1”

represent different alleles of a SNP marker mi. While in the review data, H(i, j) = 1

represents that reviewer mi ranks object sj positively and H(i, j) = 0 represents that

reviewer mi ranks object sj negatively.

An example of matrix H is shown in Table 5.1.

Table 5.1: A Sample-Marker Matrix
s1 s2 s3 s4 s5 s6

m1 0 1 1 1 0 0
m2 1 1 0 0 0 1
m3 0 1 1 1 0 0
m4 1 0 1 0 1 0
m5 1 0 0 0 1 1
m6 0 0 0 1 0 0
m7 0 0 0 0 1 0
m8 0 0 0 0 0 1

Given a subset of samples, S ′
j ⊆ S, the diversity of marker mi is covered by S ′

j if and

only if there are two samples in S ′
j , sl and sk , such that H(i, l) = 1 and H(i, k) = 0.

For the sample subset S ′
j, the total fraction of the covered markers is called the diversity

coverage of S ′
j, denoted as C(S ′

j), 0 ≤ C(S ′
j) ≤ 1. For example, given the matrix in

Table 5.1, the sample subset {s4, s5} has diversity coverage 0.75, C({s4, s5}) = 0.75.

Obviously, for any single sample, its coverage is 0. It is generally reasonable to assume

that the coverage of the entire sample set is 1, C(S) = 1.

Now we define the Diversity Cover problem.

Diversity Cover (DC) Problem: Given a sample set S, a marker set M and a

sample-marker matrix H , find the minimum subset D, D ⊆ S such that Coverage(D) =

1.

For example, given the sample-marker matrix in Table 5.1, the minimum subset that

covers all the markers is {s4, s5, s6}.
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5.3.2 Diversity Cover is NP-Complete

We show DC is NP-complete via a reduction from set cover (Cormen et al. (2001)).

Given a collection of subsets, S, from the finite universal set, U , a set cover solution

is the smallest group of subsets from S that covers all of U . Consider the following

matrix construction for set cover. We associate each row with an element in U and each

column with a subset in S. Each 1 in the matrix indicates an element’s membership in

a corresponding subset. Thus, set cover corresponds to finding the smallest subset of

columns that provide a 1 in every row.

Suppose that we augment a set cover problem matrix with an additional row (ele-

ment) and column (subset) with all 0 entries except for a single 1 at the intersection of

the new row and column. This forces a DC solution to choose this newly added column.

Moreover, if we ignore this added column, the remaining subsets are a solution to the

original set cover problem. On the other hand, if given a solution to the original set cover

problem, one can just add the last row to get a DC solution. Thus, DC is NP-complete.

5.3.3 Parameterized Diversity Cover (PDC)

In the Diversity Cover (DC) problem, we want to find the minimum subset that covers

all markers. However, in some cases users are willing to lose the coverage of a few

markers in order to find a smaller subset, e.g., in some SNP data, almost all the samples

must be included to cover all the SNPs because of the large number of singleton SNPs

(i.e., SNPs in which the rarer allele is present in a single strain). Therefore, we modify

the DC problem by allowing a ”minimum coverage ratio”, ρ, rather than a full cover.

Now we want to find the minimum subsets that covers no less than ρ.

Parameterized Diversity Cover (PDC) Problem: Given a sample set S, a

marker set M and a sample-marker matrix H , find the minimum subset D (or subsets),

D ⊆ S such that Coverage(D) ≥ ρ.

We can see that the DC problem is a special case of the PDC problem when the
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minimum coverage ρ is set to 1.

5.3.4 Upper Bound of Subset Coverage

Given a sample subset, D, D ⊆ S, the upper bound of its coverage can be calculated

using the coverage of its subsets.

Property 5.3.1. Given sample subset D = {s1, s2, ..., sk}, k ≥ 3, the upper bound of

C(D) is:

C(D) ≤ C(D − {sk}) + C(D − {sk−1}) + C({sk−1, sk})
2

(5.1)

Proof : Let D′={s1, s2, ..., sk−2}, D=D′ ⋃{sk−1}
⋃{sk}. Let X be the marker set

covered by D′ ⋃{sk−1}, Y be the marker set covered by {sk−1}
⋃{sk} and Z be the

marker set covered by D′ ⋃{sk}:

C(D′ ⋃{sk−1}) = |X|/|M |, C({sk−1}
⋃

{sk}) = |Y |/|M |,

C(D′ ⋃{sk}) = |Z|/|M |.

Let W be the marker set covered by D . We have

W = X
⋃

Y
⋃

Z

For any marker ml in Z, either it is already covered by D′ or it is only covered when

sample sk is considered together with D′. In the first case, ml also belongs to X since

markers in X are covered by D′ ⋃{sk−1}. In the second case, all the samples in D′ have

the same value on marker ml and sample sk has the opposite value on ml. If sample

sk−1 has the same value on ml as sk, ml is also covered by D′ ⋃{sk−1} and belongs to X.

Or if sk−1 has the opposite value on ml compared to sk, ml is covered by {sk−1}
⋃{sk}

and belongs to Y . Therefore we have

100



Z ⊆ X
⋃

Y (5.2)

W = X
⋃

Y

C(D) = (|X| + |Y | − |X
⋂

Y |)/|M | (5.3)

For any marker ml in X − Y which is covered by D′ ⋃{sk−1} but not by {sk−1, sk},
we know that ml is either covered by D′ alone or by D′ together with {sk−1} and we

know that sk has the same value as sk−1 on ml. Therefore, in either case, ml is also

covered by D′ ⋃{sk} and belongs to Z. Similarly, for any marker ml in Y −X which is

covered by {sk−1, sk} but not D′ ⋃{sk−1}, we know that samples in D′ have the same

value as sk−1 on ml while sample sk has the opposite value to sk−1 on ml. Therefore,

ml is also covered by D′ ⋃{sk} and belongs to Z. We can get

X − Y ⊆ Z, Y − X ⊆ Z (5.4)

Since (X − Y )
⋂

(Y − X) = ∅, we have

|Z| ≥ |X| − |X
⋂

Y | + |Y | − |X
⋂

Y | (5.5)

According to Equations 5.3 and 5.5,

C(D) =
|X| + |Y | − |X ⋂

Y |
|M | ≤ |X| + |Y | + |Z|

2|M |
Therefore,

C(D) ≤ C(D − {sk}) + C(D − {sk−1}) + C({sk−1, sk})
2

When the subset D contains only 3 samples, the upper bound in Equation 5.1 be-

comes the exact value of C(D).

Property 5.3.2. Given the pair-wise diversity coverage of three samples, si, sj and sk,
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the coverage of set {si, sj, sk} is known.

C({si, sj , sk}) =
C({si, sj}) + C({si, sk}) + C({sj, sk})

2
(5.6)

The proof is similar and is omitted for brevity. Obviously, by using Equations 5.1

and 5.6 recursively, we can establish an upper bound of subset coverage using only the

pair-wise coverages.

Theorem 5.3.3. Given a sample subset D = {s1, s2, ..., sk}, we can calculate the upper

bound of C(D) using only the pair-wise coverage C({si, sj}), si, sj ∈ D according to

Equations 5.1 and 5.6.

For example, the upper bound of C({s1, s2, s3, s4}) is

C({s1, s2, s3, s4}) ≤ [2C({s1, s2})+2C({s3, s4})+C({s1, s3})+C({s2, s3})+C({s1, s4})+C({s2, s4})]/4

Note that for a sample subset D, we can get several coverage upper bounds based

on Theorem 5.3.3 by exchanging the order of the samples in D. We discuss the details

of calculating a diversity upper bound using Theorem 5.3.3 in Section 5.4.2.

5.4 Algorithms

In this section, we present our Exhaustive Subset Enumeration (ESE ) algorithm that

solves the Parameterized Diversity Problem. Our algorithm guarantees to find all the

minimum sample subsets that have diversity coverage no less than ρ. The ESE algorithm

has two phases. In the first phase, a greedy algorithm, Parameterized Greedy Diversity

Subset (PGDS ), is used to find an initial sample subset SG that has C(SG) ≥ ρ. Then

in the second phase, we present an optimal K-ρ Diversity Subset (KρDS) algorithm to

exhaustively search for all sample subsets with sizes K and smaller and with coverages
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no less than ρ. The initial sample subset SG and several pruning strategies are used to

reduce the searching space. The pseudocode of the ESE algorithm is shown in Figure

5.1.

Input:

• Sample Set S, Marker Set M , Sample-Marker Matrix H

• Minimum Diversity Coverage ρ

Output: A set of minimum sample subsets, I. ∀S′ ∈ I, C(S′) ≥ ρ Method:

1. SG=PGDS (ρ, S, M , H).

2. K=|SG|.
3. I=KρDS(K,ρ, S, M , H).

Figure 5.1: The ESE Algorithm

5.4.1 Parameterized Greedy Diversity Subset Algorithm

In Section 5.3, we proved that Diversity Cover is NP-complete and can be mapped

to Set Cover. There is a well known greedy algorithm for the Set Cover problem. It

chooses the subset that maximizes the increase in coverage in each step until all the

elements are covered. The greedy algorithm can achieve an approximation ratio of

H(z), H(z) =
∑z

k=1
1
k
≤ ln z + 1 and z = |M | Cormen et al. (2001).

In the first phase of ESE, we design a similar algorithm, Parameterized Greedy

Diversity Subset (PGDS ), to find greedy approximations to the Parameterized Diversity

Cover problem. The PGDS algorithm also chooses the sample that maximizes the

increase in the diversity coverage in each step. There are two differences in the PGDS

algorithm compared with the greedy approach of the Set Cover problem.

1. The PGDS algorithm cannot pick the best first sample based on coverage because

every single sample has zero coverage. Therefore, PGDS is restarted with each

sample and we pick the smallest subset from the n generated subsets, where n is

the number of samples.
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2. The PGDS algorithm stops once the coverage of the sample subset exceeds the

minimum threshold ρ.

The details of the PGDS algorithm are shown in Figure 5.2. The algorithm considers

each sample in step 2, and the minimum subset among all the S ′ is reported as SG. The

time complexity of PGDS is O(kn2) where k = |SG|.
Input:

• Sample Set S, Marker Set M , Sample-Marker Matrix H

• Minimum Coverage ρ

Output: sample subset SG having C(S′) ≥ ρ

Method:

1. SG = {}.
2. for all si ∈ S, i = 1 . . . n.

3. S′ = {si}, R = S − S′, c = 0.

4. while c < ρ

5. S′ = S′ ⋃{sl}, which

C(S′ ⋃{sl}) = Maxsj∈R(C(S′ ⋃{sj})).

6. R = R − {sl}, c = C(S′).

7. if |S′| < |SG|
8. SG = S′.

Figure 5.2: The PGDS Algorithm

For example, if we are given the matrix in Table 5.1 and set ρ = 1, the subset found

by PGDS is SG = {s1, s4, s5, s6} which is larger than the optimal minimum subset

{s4, s5, s6}.

5.4.2 Optimal K-ρ Diversity Subset Algorithm

In the first phase of the ESE algorithm, the PGDS algorithm finds an initial subset SG

satisfying C(SG) ≥ ρ. It establishes an upper bound on the size of the optimal subsets

in I, i.e., any subset S ′ which has C(S ′) ≥ ρ should have size smaller than or equal to

subset SG. Let K=|SG|, the exhaustive enumeration need to be performed only on the
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Figure 5.3: Enumeration Tree of the Matrix in Table 5.1

subsets having size no larger than K. The exhaustive enumeration can take exponential

time in principle. However, with efficient pruning strategies, our enumeration algorithm,

KρDS, performs much better in practice, finding the optimal subsets quickly.

The KρDS algorithm searches all possible combinations of samples up to size K in

an enumeration tree. Figure 5.3 illustrates part of the enumeration tree of the matrix

in Table 5.1 and represents our search when we do not apply any pruning strategies.

Each node in the tree stores a sample subset S ′ and the corresponding C(S ′). The root

represents the empty set. For each child node, the sample subset has one more sample

than its parent node.

The KρDS algorithm performs a depth-first search (Cormen et al. (2001)) on the

enumeration tree. By imposing an order on the samples, the algorithm is able to

perform a systematic search by enumerating all combinations, i.e., no combination is

missed or revisited. Without loss of generality, let’s assume the order is s1, s2, . . . , sn.

For example, the depth-first search order on the enumeration tree in Figure 5.3 is

{s1, s1s2, s1s2s3, s1s2s3s4, s1s2s3s4s5, s1s2s3s4s5s6, s1s2s3s4s6, s1s2s3s5, s1s2s3s5s6, s1s2s3s6, . . .}.

Among all the subsets that achieve the coverage threshold ρ, only the minimum
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sample subsets are reported. For example, if we set ρ = 0.8, only the nodes {s1, s2, s3}
and {s4, s5, s6}, which are below the dashed line in Figure 5.3, satisfy the ρ-threshold

and subset-size constraints. Note that among all the nodes below the line, only those

on the boundary need to be examined since nodes below the boundary have subsets of

larger size. Details of the basic KρDS algorithm are shown in Figure 5.4.

Input:

• Sample Set S, Marker Set M , Sample-Marker Matrix H

• Minimum Coverage ρ, Maximum Size K, K = |SG|
Output: A set of minimum sample subset, I,

∀S′ ∈ I, C(S′) ≥ ρ, |S′| ≤ K

Method:

1. Initialize.

• Candidate minimum sample subset list, cList=∅.
• Current sample subset, cSample=∅.
• Remaining sample subset, rSample=S.

2. Enumerate(cSample, rSample).

3. I=the minimum subsets in cList.

Subroutine: Enumerate(cSample’, rSample’ )
Method:

1. if |cSample’ | ≥ K

2. return.

3. for each si ∈ rSample’

4. if C(cSample’
⋃ {si})≥ ρ

5. Insert set cSample’
⋃ {si} into cList .

6. else

7. cSample”=cSample’
⋃ {si}.

8. rSample”=rSample’ - {si}.
9. Enumerate(cSample”, rSample”).

10. rSample’=rSample’ - {si}.
Figure 5.4: The KρDS Algorithm

The enumeration tree is dynamically materialized according to a depth-first searching

order. At each node, the coverage of the corresponding sample subset S ′ is calculated
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based on the sub-matrix H ′ = M ′ × S ′, where M ′ is the set of markers that are not

covered by the sample set in the parent node. The use of the dynamically generated

sub-matrix can efficiently reduce the runtime of the KρDS algorithm.

In the worst case, the KρDS algorithm takes exponential time. In order to accelerate

the search, we use several pruning strategies to reduce the search space.

Pruning Strategy 1: Dynamically Limit the Size of the Minimum Sample

Subset

In the first phase of ESE, the greedy algorithm PGDS provides an upper bound of the

size of the minimum sample subset. When the KρDS algorithm searches the enumera-

tion tree, it does not need to check any node of more than K samples.

The size of the minimum sample subsets can also be updated dynamically during

enumeration. It is possible that K may be larger than the minimum size. The value of K

is updated to be the size of the smallest subset S ′, satisfying C(S ′) ≥ ρ, found so far. All

remaining nodes representing larger subsets can be pruned from the enumeration tree

without further examination. For example, if K is 9 and the algorithm finds a subset of

8 samples that can satisfy the threshold ρ, K is revised to 8 and any subsequent subsets

of more than 8 samples are pruned from the enumeration tree.

Pruning strategy 1 is applied at step 5 of subroutine Enumerate() in Figure 5.4.

When cSample’
⋃ {si} is inserted into cList, its size is compared with that of the smallest

subset in cList. If cSample’
⋃ {si} is smaller, K can be updated accordingly and all

the subsets in cList having larger size can be dumped.

Pruning Strategy 2: Order Samples by Pair-wise Coverage

For each node, we can estimate the increase in coverage for each sample from rSample′

based on its pair-wise coverage with every sample in cSample′. For example, in Fig-

ure 5.3, consider node cSample′ = {s1, s2}, rSample′ = {s3, s4, s5, s6}. We know that
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the pair-wise coverages are:

• s3: C({s1, s3}) = 0.5, C({s2, s3}) = 0.25

• s4: C({s1, s4}) = 0.75, C({s2, s4}) = 0.25

• s5: C({s1, s5}) = 0.25, C({s2, s5}) = 0.75

• s6: C({s1, s6}) = 0.25, C({s2, s6}) = 0.5

For each sample in rSample′, we use the sum of its pair-wise coverage with each

sample in cSample′ as its score. This score is an (optimal) estimate of the additional

coverage this sample can bring.

Score(s3) = 0.75, Score(s4) = 1, Score(s5) = 1, Score(s6) = 0.75

We sort, in descending order, the samples in rSample′ based on their scores so that

in the sub-tree of node cSample′ = {s1, s2}, sample s4 and s5 will be added first followed

by s3 and s6. We can see that subsets having larger coverage are searched first in this

case.

The sample sorting is conducted at each node dynamically. The pair-wise coverage

of all samples can be calculated in advance and retrieved to compute the scores. At the

root of the enumeration tree, the samples are initially sorted according to their order

selected by the PGDS algorithm.

Pruning strategy 2 can be used before step 3 of subroutine Enumerate() in Fig-

ure 5.4. Samples in rSample’ are sorted accordingly.

In some cases where the estimated size of minimum subsets, K, by PGDS is equal

to or close to their actual size, pruning strategy 2 itself cannot reduce the search space

dramatically. However, when combined with the following pruning strategy, it always

delivers a substantial improvement in efficiency.
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Pruning Strategy 3: Estimate a Branch Upper Bound on Coverage

The coverage of sample subsets generally increases monotonically when adding new sam-

ples. For each node in the enumeration tree, we can calculate an upper bound,

C(cSample′
⋃

rSample′), on the coverage of any sample subsets represented in the

subtree. Any subsets represented in the branch must have coverage no larger than

that value. We call it the branch-upper-bound. For example, consider node {s1, s3, s5}
in Figure 5.3, cSample′ = {s1, s3, s5} and rSample′ = {s6}. The upper bound is

C({s1, s3, s5, s6}), which is 0.825. If the branch-upper-bound of the subtree is less than

the minimum coverage threshold ρ, we can safely prune the subtree.

It is inefficient to calculate the upper bound at each node independently by adding

up the samples in cSample′ and rSample′. However, we can calculate it simultaneously

with the depth-first search by tracking the samples that are absent in the subtree under

each node.

Given a node with its cSample′ and rSample′ = {si1, si2 , ..., siq}, its left-most child

node has the same branch-upper-bound. Let cSample′′1 and rSample′′1 be the current and

remaining samples at the left-most child node. We have

cSample′′1
⋃

rSample′′1 = (cSample′
⋃

{si1})
⋃

(rSample′ − {si1})

= cSample′
⋃

rSample′

where si1 is the first sample in rSample′.

For the jth child nodes (1 < j ≤ q) of the current node, we have

cSample′′j
⋃

rSample′′j = (cSample′′j−1

⋃
rSample′′j−1) − {sij−1

}

Therefore, we can calculate the branch-upper-bound of a node according to the upper

bound of its parent node or its siblings. The branch-upper-bound at the root node is 1
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since every sample appears in some nodes. When we proceed along a branch, this value

decreases as more samples are absent in the sub-tree. For example, if we know that the

upper bound at node {s1, s3} in Figure 5.3 is 1,

• for its child node {s1, s3, s4}, the upper bound is still 1 because {s1, s3, s4} is the

left-most child node of {s1, s3}.

• for {s1, s3, s5}, sample s4 is absent, its upper bound becomes 0.875.

• for {s1, s3, s6}, sample s4 and s5 are absent. Its branch upper bound on coverage

becomes 0.75.

Pruning strategy 3 can be used before step 4 of subroutine Enumerate() in Fig-

ure 5.4. If the upper bound on branch coverage is less than ρ, the subroutine can stop

and return to its previous level.

As mentioned earlier, pruning strategy 2 can improve the efficiency of pruning strat-

egy 3. After we sort the succeeding samples at each node in the tree, the last several

branches are likely to be pruned by strategy 3 because they contain only those samples

that have the least increase in coverage. Our experiments on real datasets suggest that

using pruning strategies 1 and 3 together reduces the runtime of the KρDS algorithm

by 70%−80%. Combining pruning strategies 1, 2 and 3 can reduce the runtime by more

than 95%.

Pruning Strategy 4: Refine the Branch Upper Bound on Coverage

In pruning strategy 3, we estimate the branch-upper-bound using the current sample

subset and all its succeeding samples in rSample’. This upper bound is loose because in

many cases, we cannot include all the succeeding samples into the current subset. For

example, if the current node represents a subset of p samples and there are q succeeding

samples in rSample’, we can at most include a subset of K − p samples from rSample’
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during the search in the subtree under the current node. If we can calculate the maxi-

mum increase in coverage after adding any subset of K − p samples from rSample’, we

get a tighter upper bound than the one in pruning strategy 3.

Suppose that the current sample subset is cSample = {si1 , si2, ..., sip} and the suc-

ceeding samples are rSample = {sj1, sj2, ..., sjq}. cSample covers the marker subset Ma,

Ma ⊂ M , and the uncovered marker subset is Mb, Mb = M − Ma. Since marker set

Mb is uncovered by cSample, all the samples in cSample have the same value on each

marker in Mb. Therefore, we can use a dummy sample sj0 to represent the diversity of

cSample on Mb. When adding a subset of samples from rSample, S ′, into the current

subset cSample, the increase of coverage is the coverage of S ′ ⋃{sj0} on Mb. We can

calculate the pair-wise coverage on Mb between any two samples in {sj0, sj1, sj2, ..., sjq}.
Let the set of pair-wise coverage be Cpair = {c1, c2, ..., cm|m = (q + 1)q/2}. Note that

coverage is still calculated based on |M |, so that the total coverage on M can be cal-

culated by adding the coverage on Mb (increase of coverage) and the coverage on Ma

(current coverage) together.

In order to know the maximum increase in coverage after adding any subset of K−p

samples from rSample’, we need to calculate the upper bound of the coverage of any

(K − p) samples from rSample together with sj0 on Mb. However, in order to make

the problem easier, we loosen the requirement and calculate the upper bound of the

coverage of any K − p + 1 samples of rSample’
⋃{sj0} on Mb.

According to Theorem 5.3.3 in Section 5.3, by recursively applying Equation 5.1, we

can get the upper bound of the coverage of any u samples using their pair-wise coverage.

The upper bound should be in the following form

Cmax ≤
(u−1)u/2∑

i=1

ai · C(sj, sk), a1 ≥ a2 ≥ a3... (5.7)

Now we have q+1 samples in total and we know the set of all their pair-wise coverage

Cpair, we can calculate the upper bound of the coverage of any subset of K−p+1 samples
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by replacing C(sj, sk) in Equation 5.7 with the (K−p)(K−p+1)
2

largest pair-wise coverage

in Cpair. If the pair-wise coverage in Cpair are sorted in descending order, the upper

bound of increasing coverage after adding K − p samples into cSample is

�C ≤
(K−p)(K−p+1)/2∑

i=1

ai · ci, ci ∈ Cpair (5.8)

Let C be the current coverage, C = |Ma|
|M | . If C + �C is still less than ρ, the KρDS

algorithm does not need to search the subtree under the current node because there is

no sample subset in the subtree that is not larger than K in size and with coverage not

less than ρ.

Equation 5.8 provides a tighter upper bound than the one in pruning strategy 3

especially when there are large number of samples in the data. However, in order to

get the upper bound, pair-wise coverage on Mb between {sj0, sj1, sj2, ..., sjq} must be

computed. Note that the coefficients ai in Equations 5.7 and 5.8 are constants and

can be calculated for each size of sample sets in advance. The computation and the

pruning can be inserted before step 7 of subroutine Enumerate() in Figure 5.4. We

can see that pruning strategies 3 and 4 are used in different places in the algorithm. In

fact, these two strategies can be used together though strategy 4 provides tighter upper

bound. Pruning strategy 3 is much faster than strategy 4 and, therefore, it is used as

the pre-pruning step before pruning with strategy 4.

Though calculating the pair-wise coverage of {sj0, sj1, ..., sjq} at each node takes time,

we demonstrate in our experiments that the extra time used for coverage calculation is

negligible compared with the runtime saved by pruning branches using pruning strategy

4. Also, as a side product, the actual increase in coverage for adding each sample from

rSample′ into cSample′ is known during the pair-wise coverage calculation. There-

fore, in pruning strategy 2, instead of ordering the samples by the estimated score, the

algorithm can now order the samples in rSample′ by their actual increase in coverage.
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5.5 Experiments

In this section, we present results on synthetic and real data to show the efficiency of

our algorithms and the effectiveness of the selected sample subsets. One real dataset is

a SNP panel from recombinant inbred mouse strains. The other two real datasets are

of customer review type.

Data

• Perlegen data1: The Perlegen dataset contains genotypes from 15 commonly used

laboratory mouse strains2, {129S1/SvImJ, A/J, AKR/J, BALB/cByJ, BTBR T+

tf/J, C3H/HeJ, CAST/EiJ, DBA/2J, FVB/NJ, KK/HlJ, MOLF/EiJ, NOD/LtJ,

NZW/LacJ, PWD/PhJ, WSB/EiJ} and a reference strain (C57BL/6J). These 16

strains account for over 85% of all inbred strains used in biomedical research.

The dataset contains 8, 322, 543 SNPs in total. The dataset is imputed using the

method described in (Roberts et al. (2007)).

• Congressional Voting Records data3: The voting dataset includes votes from 435

Congressmen on 16 key votes. The votes can be ’yes’ or ’no’ and are denoted by

1 and 0. The 435 congressmen are classified into two groups, 267 democrats and

168 republicans.

• Jester data4Goldberg et al. (2001): The Jester dataset contains 4.1 Million ratings

(-10.00 to +10.00) of 100 jokes from 73,421 users. We discretize the data by

replacing positive ratings by 1 and negative ratings by 0. Since none of the 73,421

users completes the review for all the 100 jokes, we use jokes that were reviewed

1http://mouse.perlegen.com/mouse/index.html

2We regard each mouse strain as a sample.
3http://www.ics.uci.edu/ mlearn/MLSummary.html

4http://www.ieor.berkeley.edu/ goldberg/jester-data/
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by more than 70% of the users and then select users who reviewed all these jokes.

Thus, the dataset we use contains 46,268 users and 30 jokes without missing values.

• Synthetic data: The synthetic data is randomly generated. The dataset is a

binary matrix consisting of 40, 000 rows and 100 columns. We consider the rows

as markers and columns as samples.

The synthetic dataset is mainly used to demonstrate the efficiency of our algorithms.

And the three real datasets are mainly used to demonstrate the effectiveness of the

selected sample subsets.

Except as otherwise noted, we use all the four pruning strategies collectively in

the experiments because this combination provides the best runtime performance. The

algorithms are implemented in MATLAB, and all experiments are conducted on a PC

with CPU P4 3GHz, 1G RAM and 80G HDD.

5.5.1 Efficiency Analysis

In this section, we demonstrate the efficiency of the PGDS and the KρDS algorithm

using the synthetic data and some of the real datasets.

Scalability

For the synthetic data, we vary the number of rows, the number of columns and the

minimum coverage ρ respectively. The default values for these settings are: number of

rows=40k, number of columns=80 and minimum coverage ρ=0.965. While we are vary-

ing one of the settings, the other two use the default values. The runtime performance

of PGDS and KρDS is shown in Figure 5.5. The runtime of both algorithms increases

linearly when the number of rows increases in Figure 5.5(a). And the runtime increases

quadratically when the number of columns and ρ increase for both algorithms as shown

in Figure 5.5(b) and (c).
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Figure 5.5: Scalability: Runtime on Synthetic Data

For the real datasets, we only vary the minimum coverage ρ setting and use all the

rows and columns. Both PGDS and KρDS can finish searching the Voting data in 1

second. Therefore, we only show the runtime performance on Perlegen and Jester data

in Figure 5.6.

(a) Perlegen Data (b) Jester Data
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Figure 5.6: Scalability: Runtime on Real Data

The runtime performance on the Jester data is similar to that of the synthetic data

for both algorithms. For Perlegen data, KρDS can even be faster than PGDS because of

the pruning strategies. Also, the runtime of KρDS begins to drop when ρ is larger than

0.985. The reason is that the entire searching space becomes smaller when ρ > 0.985.

The minimum subsets have size larger than 9 when ρ > 0.985 and causes the shrinking

of the entire searching space because a subset of 10 samples or more contains more than

half of the samples in the data.

Note that the total runtime of the ESE algorithm is the sum of the runtime of PGDS

and KρDS.
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Comparison of Subsets Found by PGDS and KρDS

As we discussed in Section 5.4, the sample subsets found by PGDS may not be the

optimal subset, i.e., either there exists a smaller subset that can achieve the minimum

coverage ρ or there exists a subset with the same size but has larger coverage. Thus,

in this section, we compare the subsets found by PGDS and KρDS. In the first part

of the experiments, we vary minimum coverage ρ and compare the size of the minimum

subsets found by both algorithms. Then we use the set of sizes of the minimum subsets

found by KρDS in the first part, and compare the optimal coverage that is achieved by

the two algorithms for each of the subset size. The results are shown in Figure 5.7.

(a) Synthetic Data (b) Synthetic Data

(c) Perlegen Data (d) Perlegen Data

(e) Jester Data (f) Jester Data
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Figure 5.7: Comparison of Subsets

As we can see, on the synthetic dataset, PGDS finds a larger subset when ρ becomes
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large. And for subsets of size 8 and 10, the true optimal subset found by KρDS has

larger coverage than the subset found by PGDS. However, as shown in Figure 5.7(c-f),

PGDS always find the same optimal subset as KρDS on the real datasets. The result

on the Voting data is the same as the Perlegen and Jester data and is omitted.

Efficiency of Pruning Strategies

In this section, we compare the efficiency of the pruning strategies discussed in Sec-

tion 5.4. We vary the minimum coverage parameter ρ and compare the runtime perfor-

mance on Perlegen and Jester data. The synthetic data is not used because it is too

large for KρDS to search without any one of the pruning strategies. And the Voting

data is too small to be used to show the difference.

(a) Perlegen Data (b) Jester Data
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Figure 5.8: Efficiency of Pruning Strategies

Figure 5.8(a) shows the results on the Perlegen data. We observe that pruning

strategies (1,2,3) and pruning strategies (1,2,3,4) give the best performance, which is

orders of magnitude faster than other strategy combinations. The reason that pruning

strategy 4 does not improve the performance significantly when used in combination

with strategies 1,2 and 3 is that the Perlegen dataset only contains 16 samples. This

is sufficiently small that the two upper bounds from strategies 3 and 4 are close to

each other. Using only pruning strategies 1 and 2 (sorting) just slightly reduces the

runtime. This is because sorting only helps the KρDS algorithm find minimum subsets

faster, but cannot reduce the search space by pruning sub-trees. Using only pruning
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strategies 1 and 3 saves about 70% − 80% of the runtime of enumerating with strategy

1 only. Without sorting, strain subsets offering good coverage are randomly distributed

in the enumeration tree. Strain sorting helps to bring these branches together in the

enumeration tree so that effective pruning can be achieved.

On the Jester data, the KρDS algorithm can finish the tasks in reasonable time only

with pruning strategies (1,2,3) or pruning strategies (1,2,3,4). And for pruning strategies

(1,2,3), it also can not afford a minimum coverage ρ larger than 0.96. As we can see,

pruning strategies (1,2,3,4) are orders of magnitude faster than pruning strategies (1,2,3).

As we discussed in Section 5.4, pruning strategy 4 has a large advantage over pruning

strategy 3 when the number of samples becomes large.

5.5.2 Effectiveness Analysis

In this section, we apply our algorithm on the three real datasets and demonstrate the

effectiveness by analyzing the selected sample subsets.

Perlegen Data

The Perlegen dataset has 16 samples and more than 8M SNPs. As we discussed in

Section 5.1, in the design of recombinant inbred lines, an important measurement for a

set of lines (samples) is its diversity coverage on the SNPs. A subset of 8 strains was

hand selected for the Collaborative Cross (Churchill et al. (2004)) by biologists based

on the phylogenetic relationships assumed for strains. We compare this subset with the

best 8-strain subsets found by the ESE algorithm in Table 5.2.

As we can see, the ESE subset achieves higher coverage than the Collaborative

Cross subset. Four strains are common to both subsets: 129S1/SvImJ, CAST/EiJ,

PWD/PhJ and WSB/EiJ. Aside from 129S1/SvImJ, all strains are wild-derived

from the three major Mus musculus subspecies. We plot the distribution of the diversity

coverage of random set of 8 samples in Figure 5.9. The coverage of the Collaborative
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Table 5.2: Perlegen Data: Comparing the 8-strain subsets of the Collaborative Cross
with the maximum diversity solution found by ESE

Coverage
Collaborative 129S1/SvImJ, CAST/EiJ, PWD/PhJ, WSB/EiJ, 0.8926
Cross Subset NZW/LacJ, C57BL/6J, NOD/LtJ, A/J
ESE Subset 129S1/SvImJ, CAST/EiJ, PWD/PhJ, WSB/EiJ, 0.9575

KK/HlJ, DBA/2J, MOLF/EiJ, FVB/NJ

Cross subset, 0.8926, is labelled by the red dotted line in the figure. The Collaborative

Cross subset has coverage larger than more than 70% of the randomly selected 8-sample

subsets while the ESE subset is obviously the one has the largest coverage.

Figure 5.9: Perlegen Data: Distribution of Diversity Coverage of 8-sample Subsets

Voting Data

The Voting data includes votes of the 435 Congressmen on 16 key votes. We consider

the congressmen as markers and the key votes as samples. Our ESE algorithm finds

two sample subsets that consist of 5 samples and have diversity coverage = 1, i.e., all

the markers (congressmen) are covered. The two subsets are listed in Table 5.3.

Table 5.3: Voting Data: Subsets of 5 Samples found by ESE that have coverage = 1
Subset 1 handicapped-infants, physician-fee-freeze

religious-groups-in-school, mx-missile, duty-free-exports
Subset 2 physician-fee-freeze, el-salvador-aid

anti-satellite-test-ban, mx-missile, synfuels-corporation-cutback
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As we discussed in Section 5.1, these subsets can be used to generate simpler yet

more accurate classification models. We use Weka 5, which is a data mining software

in Java, to build different classifiers based on all the 16 samples and the two 5-sample

subsets. Classification accuracy is calculated by using 10-fold cross-validation. The

accuracy of the classifiers are listed in Table 5.4.

Table 5.4: Voting Data: Accuracy of Classifiers based on full set and subsets
Classifiers Full Sample Set Subset 1 Subset 2 Random Subset

RandomTree 92.8% 95.4% 95.17% 86.66%
PART 95.4% 95.17% 95.86% 86.89%

NaiveBayes 90.11% 94.25% 93.33% 86.66%
KStar 92.87% 94.25% 93.56% 86.66%

BFTree 95.4% 95.17% 95.86% 87.12%
NBTree 95.4% 95.4% 95.86% 86.66%

SMO(SVM) 95.86% 95.63% 95.63% 87.12%

As shown in Table 5.4, except for SMO(SVM), the highest accuracy always occurs

in one of the subsets found by ESE for all the other classifiers. As expected, the

randomly selected subset which also consists of 5 samples always has the lowest accuracy.

Moreover, the decision trees built by NBTree on Subsets 1 and 2 are much simpler than

that of the full sample set because of the smaller number of samples. The trees are

omitted here for space restriction.

Jester Data

We discussed in Section 5.1 that subsets of samples can also be helpful in designing

customer review study. By applying our ESE algorithm on the Jester data, we get

many sample (joke) subsets that are small and cover most markers (reviewers). Given

the minimum coverage ρ, the number of qualified sample subsets and their sizes are

listed in Table 5.5. The sample (jokes) subsets in Table 5.5 suggest that reviewers’

ratings on a small number of objects are sufficient to retain most diversity.

5http://www.cs.waikato.ac.nz/ml/weka/
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Table 5.5: Jester Data: Number of qualified sample subsets and their sizes for given ρ
ρ size number of qualified subsets

0.9 5 122
0.95 8 73
0.97 10 34

According to the experiment results we presented in this section, we demonstrated

that our algorithms are both efficient and effective.

5.6 Conclusion

In this chapter, we introduced the Parameterized Diversity Cover problem: given a

sample-marker dataset and a minimum coverage threshold ρ, find the minimum sample

subset that achieves coverage ρ. We propose an efficient exhaustive subset enumeration

algorithm (ESE ) which can find the optimal solution. The algorithm has two stages:

(1) a greedy approach, PGDS, is used to first find an approximate solution for minimum

subset with coverage no less than ρ; (2) an enumeration algorithm, KρDS, then searches

for the optimal solution in the enumeration tree using several pruning strategies. We

have evaluated the performance on three real datasets.
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Chapter 6

Representative Sample Selection in

Non-biallelic Data for Maximum Diversity

6.1 Introduction

In Chapter 5, we presented the PDGS and KρDS algorithms that can find the minimum

subsets which retain at least ρ% of the diversity in biallelic data. The coverage property

of the biallelic data reduces the searching space of the KρDS algorithm and speeds up

the algorithm significantly.

Given a non-biallelic data, we face the following challenges:

• We can not define the diversity in non-biallelic data by simple coverage (as defined

in Chapter 5).

• The exhaustive searching scheme no longer works because the coverage property

(Property 5.3.1, Chapter 5) does not apply in non-biallelic data.

In non-biallelic data, we designate the selected maximum-diversity samples as the

Representative Set. A good representative set should capture the most information

from the original dataset compared to other subsets of the same size. Also, it should have

low redundancy. Algorithms such as Maximum Coverage (S.Hochbaum and Pathria



(1998)) can generate a subset that captures original information from a dataset, but

may only work well in a balanced dataset, where the number of transactions from each

class is similar. However, the maximum coverage approach does not generate good

representative sets that take into consideration low redundancy. Good performance of

the maximum coverage approach depends on an appropriate choice of similarity function

and similarity threshold.

General cluster algorithms address the problem to some extent, especially representative-

based clustering algorithms such as the k-medoid clustering (Kannan et al. (2000)).

However, as we will show in the experiment section, generating a representative set in

advance can help the processing of representative-based clustering algorithms.

In this chapter, we model the diversity in non-biallelic data using information-

theoretic measures, mutual information and relative entropy (Cover and Thomas (1991);

Hastie et al. (2001)). To meet the expectation that the representative set should cap-

ture the most information and avoid redundancy, we design an objective function and

a greedy algorithm, REP, to make the optimal choice at each step when selecting a

new representative. We also design a simplified version of the greedy algorithm which

employs heuristics to achieve much better performance.

6.2 Related Work

LIMBO (Andritsos et al. (2003)) is an hierarchical clustering algorithm based on Infor-

mation Bottleneck framework. It produces a compact summary model of the data in the

first and then employs Agglomerative Information Bottleneck(AIB) algorithm to work

on the summarized data. By summarizing the data, LIMBO can handle larger dataset

than AIB can.

In (Slonim and Tishby (2000)), a two-phase clustering algorithm is designed for

document clustering. The algorithm first performs clustering on words, and then on
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documents, using the generated word clusters. Its runtime complexity is around O(mn2),

where m is the number of required clusters and n is the size of dataset. While our method

takes only O(mn).

Storyline (Kumar et al. (2004)) is an approach for clustering web pages using graphic

theorem. It builds a bipartite document-term graph and figures out each dense sub-

bipartite graph which is actually a set of closely related pages and terms and can be

summarized into a cluster. One problem with this method is that though it can cluster

web pages into groups, it may not find a proper representative for each group.

Max Coverage (S.Hochbaum and Pathria (1998)) can handle the problem we studied

in this chapter by selecting samples which are similar to most of the samples in the

dataset. However Max Coverage cannot capture original information as much as REP

since it only considers coverage while omitting redundancy.

In (Basu et al. (2004)), a semi-supervised clustering method based on information

theory performs clustering using predefined constraints. However, to get better per-

formance, the algorithm tends to require more constraints which may be difficult to

generate manually.

In (Dhillon et al. (2003a)), a word clustering algorithm replaces the classical feature

selection method on document-words datasets. In (Dhillon et al. (2003a)), words are

clustered in a supervised way. Instead of using mutual information between words and

documents, it maintains mutual information between words and classes.

6.3 Preliminary

We present some information-theoretic measurements in this section. Since we have two

requirements for a good representative: high coverage and low redundancy, we employ

two information-theoretic measurements. We use mutual information to measure the

coverage of the representatives; good representatives that capture most information
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in the original dataset should have a large mutual information value with respect to

the features of the dataset. We will use relative entropy to measure the redundancy

between the representatives. A high relative entropy between representatives infers a

low redundancy. Therefore, as we will see in the next section, our objective function

will consist of two parts which are equally important. We will define terms and provide

examples related to mutual relative entropy and mutual information in this section.

A non-biallelic data matrix is represented by H = S × F , in which S represents the

sample set and F represents the feature set1.

f1 f2 f3 f4 f5

e1 1 1 1 1 0
e2 0 2 2 2 0
e3 1 0 0 1 1
e4 0 0 3 3 3
e5 1 0 0 0 1

(a) Example Data

f1 f2 f3 f4 f5

e1 0.25 0.25 0.25 0.25 0
e2 0 0.33 0.33 0.33 0
e3 0.33 0 0 0.33 0.33
e4 0 0 0.33 0.33 0.33
e5 0.5 0 0 0 0.5

(b) Distribution Matrix

Figure 6.1: Example Data

Given an example data in Figure 6.1(a), by normalizing each row in the matrix, we

can view a sample as a distribution in the feature domain. Figure 6.1(b) shows the

distribution matrix after normalizing the data in Figure 6.1(a).

We define two random variables, B and A, in the sample domain and feature domain

respectively. Giving equal weight to each sample si ∈ S, we define:

p(B = si) =
1

|S| , si ∈ S

According to the distribution table, we obtain the conditional probability P (A|B).

For example, P (A = f1|B = s1) = 0.25. For convenience, we use P (f1|s1) to represent

P (A = f1|B = s1). For each subset Si of S, we define the probability distribution

1M is used in Chapter 5 to represent the biallelic marker (feature) set. While in this chapter, H
represents more general non-biallelic data. Therefore, we use F to represent the feature set. (F is used
to represent the feature set in Chapter 4 for the same reason.)
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function in the following way:

P (Si) =
|Si|
|S| , Si ⊆ S

P (A|Si) =
∑

s∈Si

P (s)

P (Si)
P (A|s) =

1

|Si|
∑

s∈Si

P (A|s)

For two sample subsets, the relative entropy can be used to measure the difference.

It is defined on the two corresponding probability distributions.

Definition 6.3.1. Relative entropy between sample subsets: Given two element

subsets Si and Sj ⊆ S, the relative entropy between them is the relative entropy or

Kullback-Leibler divergence between their distributions in the feature domain:

DKL[Si||Sj] = DKL[P (A|Si)||P (A|Sj)] =
∑

f∈F P (f |Si)log
P (f |Si)
P (f |Sj)

To avoid the problem of indefinite value when P (f |Si) or P (f |Sj) equals 0, we will

use a real number close to 0 to replace 0 in implementation such as 10−10. In the

discussion below, we will also use the relative entropy between two samples where single

sample is considered as a degeneracy of sample subset.

A representative is a typical sample of the set S. REP aims to find a small repre-

sentative set R from a huge collection of samples. We give a general definition of the

representative set as follows:

Definition 6.3.2. Samples related to Representative: Given a representative r, a

sample s is related to r if DKL(r||s) < (minsi∈S−{r}DKL(r||si)) ∗ tmax, where tmax ≥ 1,

that is, the relative entropy between r and s is within a certain range of the minimal

relative entropy between r and all other samples in S. tmax is a parameter used to

control the range. We use L(r) to denote the set of samples related to r. When tmax < 1,

L(r) = {r}.

In principle, a sample may be related to several representatives which will make

the problem complicated and make trouble on the random variable W which we will
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define later. Therefore, we make some modification on Definition 6.3.2 to resolve this

issue. We generate representatives one by one, so that when we pick samples related

to a new representative, we only consider those samples that are not related to any

previously chosen representatives. By doing so, each sample will be related to at most

one representative. Similar approach was used in some max coverage approaches.

Definition 6.3.3. Representative Set

A representative set R is a subset of S. For each representative ri ∈ R, we can get

its related element set L(ri), L(ri) ⊆ S. Given a representative set R = {r1, r2, ..rn},
S = L(r1)∪L(r2)∪ ..∪L(rn)∪ Sθ. Sθ contains all the samples which are not related to

any representative in R.

In Definition 6.3.3, Sθ contains all the samples not related to any representative. For

convenience in explaining REP, we consider Sθ the related set of a special representative

rθ that does not exist in the dataset, L(rθ) = Sθ.

We define a random variable W over the representative set and rθ. Given a repre-

sentative set R = {r1, r2, ..rn},

P (W = ri) =
|L(ri)|
|S| , P (W = rθ) =

|Sθ|
|S|

P (A|W = ri) =
1

|L(ri)|
∑

s∈L(ri)

P (A|s)

P (A|W = rθ) =
1

|Sθ|
∑

s∈Sθ

P (A|s)

For convenience, we will use P (f1|r1) to represent P (A = f1|W = r1) later.

Mutual information is a measure of the relationship between two random variables.

We can use mutual information between random variables W and A, I(W, A) = H(A)−
H(A|W ), to measure the information captured when representing the original dataset

with the representative set R. Intuitively, I(W, A) measures how much variation in the
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feature domain A is captured by a representative set. The higher, the better. Given

two representative sets R1 and R2, R1 = {r1, r2, .., rn}, R2 = R1 ∪ {rn+1}, and their

corresponding S1θ = L(r1θ) and S2θ = L(r2θ), we get L(r2θ) = L(r1θ) − L(rn+1). Using

this equality, we can calculate the difference between I(W1, A) and I(W2, A):

ΔI(W2, W1) = I(W2, A) − I(W1, A) = H(A|W1) − H(A|W2)

= |L(r2θ)|
|S| DKL[p(A|r2θ)||p(A|r1θ)] + |L(rn+1)|

|S| DKL[p(A|rn+1)||p(A|r1θ)]

Since relative entropy is always positive, we know that R2 retains more information

than R1.

Property 6.3.1. (Monotonicity) Given a representative set R, if we generate a new

representative set R′ by adding a new representative to R, we can always have I(W ′, A) ≥
I(W, A). W is the random variable defined over R and {rθ}. W ′ is the random variable

defined over R′ and {r′θ}.

Table 6.1: Notations
S the entire sample set, S = {s1, s2...sn}
s, si single sample, s, si ∈ S
Si subset of S, Si ⊆ S
F the entire feature set, F = {f1, f2...fm}
f, fi single feature, f, fi ∈ F
R the representative set, R ⊆ S
r, ri single representative, r, ri ∈ R
L(ri) set of elements related to representative ri

L(ri) ⊆ S
SΘ set of elements not related to any

representative in R, SΘ ⊆ S
rΘ the virtual representative for SΘ, L(rΘ) = SΘ

B random variable over domain of S
A random variable over domain of F
W random variable over domain of R ∪ {rΘ}
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6.3.1 Objective Function & Problem Definition

Property 6.3.1 suggests that we may use a greedy algorithm to successively pick repre-

sentatives that offer the highest mutual information. Starting from an empty set R = ∅,
each time we add a new representative to R which can increase the mutual information

most – meaning it can capture more original information than any of the remaining

non-representative elements. At the same time, we should also minimize the redun-

dancy between the new representative and existing representatives. We measure the

redundancy between two representatives by their relative entropy. High relative entropy

infers big difference between the probability distribution of the two representatives and

thereby small redundancy. Combining these two factors, we define our objective function

as follows:

f(rnew, R) = ΔI(Wnew, W ) + minr∈R(DKL(rnew||r))

The formal definition of our problem is as follows.

Problem Definition: Given a dataset which consists of samples S = {s1, s2, ..., sn},
and an empty representative set R, add k representatives into R one by one such that

at each step, the objective function f(ri, R) can be maximized.

6.4 Algorithms

In this section, we will first describe the greedy algorithm, REP, which generates the

representative set. And then, we will give a simplified version of REP.

6.4.1 The REP Algorithm

REP utilizes a greedy scheme to select new representatives at each step which can

maximize the objective function f until it gets the required number of representatives.
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A formal description of REP is given in Algorithm 6.1. As we can see, the greedy

algorithm is simple and easy to implement.

Algorithm 6.1 Greedy Algorithm: REP
Input: Dataset H = S × F , Size of representative set, k.
Output: Representative Set R

1: R = {}
2: while |R| < k do
3: for all si ∈ Sθ do
4: calculate f(si, R)
5: end for
6: R = R ∪ {s} if f(s,R) = maxsi∈Sθ

(f(si, R))
7: update Sθ

8: end while

6.4.2 Simplified REP

The REP algorithm in the previous section has a computational complexity of O(k|S|),
where k is the number of representatives, and |S| is the size of the sample set. When

the dataset grows, it becomes time-consuming to generate the representative set. In

applications in which response time is crucial, such as web search, we need to generate

the representative set much faster.

As we look through Algorithm 6.1, we can find that the cause for the complexity is

that at each iteration, we consider each remaining sample in the set as a candidate for

the next representative. So if we can narrow the candidate set, we can expect a faster

performance. According to our objective function in Section 6.3.1, a good representative

maximizes information gain and dissimilarity with other representatives. While it may

be difficult to estimate information gain in advance, it is easy to find samples dissimilar

to the representatives already found. Since we have calculated the relative entropy

between each pair of samples as part of preprocessing, we can use those results to find

a set of samples which are most dissimilar to each representative very quickly. We can

build the candidate set by taking the union of these dissimilar sets. Similar to Definition

6.3.2, we can define a dissimilar set for each representative.
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Algorithm 6.2 Simplified REP Algorithm
Input: Dataset H = S × F , Size of representative set, k.
Output: Representative Set R

1: R = {}
2: Candidate = {}
3: while |R| < k do
4: for each rj ∈ R do
5: Candidate = Candidate

⋃
D(ri)

6: end for
7: Candidate = Candidate − ⋃

ri∈R L(ri)
8: for all si ∈ Candidate do
9: calculate f(si, R)

10: end for
11: R = R ∪ {s} if f(s,R) = maxsi∈Candidate(f(si, R))
12: end while

Definition 6.4.1. Dissimilar set of a representative

A sample s belongs to the dissimilar set of a representative r if and only if DKL(r||s) >

(maxsi∈E−{r}DKL(r||si)) ∗ tmin, tmin < 1. We denote the dissimilar set of representative

r as D(r). Parameter tmin is used to control the size of the dissimilar set. A smaller

tmin will result in a larger dissimilar set for a representative.

Definition 6.4.2. Candidate set for next representative

Given a set of generated representatives R = {r1, r2, . . . , , rk}, the candidate set for the

next representative is: Candidate = ∪i=1..kD(ri)

In fact, the candidate set can be defined in a more general way. With a pre-defined

integer x, the candidate set consists of samples which are contained in at least x dissim-

ilar set of representatives. If x = 1, candidate set is the union of the dissimilar sets as

we defined in Definition 6.4.2. And if x is the number of representatives, the candidate

set is the intersection of the dissimilar sets. In our algorithm, we will use x = 1.

The simplified REP algorithm is described in detail in Algorithm 6.2. We can expect

the algorithm to be faster and less optimal when the parameter tmin increases. As we

will see in the experiment section, tmin = 0.9 is a proper value.
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6.5 Applications and Experiments

In this section, we verify the effectiveness of the representative set. We apply the REP

algorithm to different kinds of real-life datasets including the Mushroom dataset and

the 20 Newsgroup dataset. All the experiments are conducted on a PC with PIV 1.6G

CPU, 512M main memory and 30G hard drive. The algorithms are implemented in C.

Algorithms

We compare the performance of our algorithm against two others, MaxCover and

RandomPick.

MaxCover is a greedy approach for Maximum k-coverage in (S.Hochbaum and Pathria

(1998)). This approach assumes that every sample in the dataset has a coverage set

which consists of samples similar to it. In our implementation, we define the coverage

set of a sample in the same way as Definition 6.3.2.

Definition 6.5.1. Coverage set of a sample

The coverage set of sample s, C(s), is defined as C(s) = {si|DKL(s||si) < (minsi∈E−{s}DKL(s||si))∗
cmax}, cmax ≥ 1. cmax is a similarity threshold that is analogous to tmax.

In the RandomPick method, we randomly pick a subset of the dataset as represen-

tatives. The average performance of 10 runs is reported for each experiment.

Measurements

We use two measurements in experiments: coverage and accuracy. Coverage mea-

sures the percentage of classes that are covered by the representative set. A class is

covered if and only if at least one of the representative belongs to that class. Let C(R)

be the distinct number of class labels covered by representative set R and |C| be the

total number of classes in the dataset, then coverage is defined as:

coverage =
C(R)

|C|

Besides the coverage measurement, we want to design a more rigid task to show the
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effectiveness of our representative set. Therefore we design a clustering algorithm using

the representative set. Given a representative set, we obtain the class label of each rep-

resentative2. Each remaining sample is assigned to the class of its closest representative.

The description of the algorithm follows:

Algorithm 6.3 Clustering Based on Representative Set
Input: Dataset H = S × F
Output: Clustering of the dataset

1: Generate representative set R, |R| = k, k << |S|
2: retrieve label for each representative in R
3: for all s ∈ S do
4: calculate DKL(ri||s), for ∀ri ∈ R
5: assign s to representative r if

DKL(r||s) = minri∈R(DKL(ri||s))
6: end for

We argue here that a good set of representatives would have the same class label as

those samples that are being covered by them. Let C(S) be the number of samples that

have the same class label as their nearest representative. Then clustering accuracy is

given in the form of:

clustering accuracy =
C(S)

|S|

For convenience, we will denote this measurement as accuracy in later discussions.

6.5.1 Mushroom Dataset

We use the Mushroom dataset from UCI machine learning archive. It contains 8124

elements and 22 categorical attributes. The elements are in two classes.

We vary the number of representatives from 2 to 10 and compare the coverage. We

set the similarity threshold tmax and cmax to 4. The result is in Figure 6.2(a). Both

REP and MaxCover cover the two classes when enough representatives are generated.

However, REP does it faster than MaxCover and RandomPick.

2Both datasets in our experiments have class labels.
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|R| REP MaxCover RandomPick
2 100% 50% 70%
3 100% 100% 95%
4 100% 100% 90%
5 100% 100% 100%
10 100% 100% 100%

(a) Representative Coverage

|R| REP MaxCover RandomPick
2 67.9% 51.7% 48.3%
4 75.1% 71.0% 63.5%
8 89.0% 89.2% 79.3%
20 96.3% 96.4% 90.7%
30 100% 96.3% 93.7%

(b) Clustering Accuracy

Figure 6.2: Mushroom dataset, tmax = 4, cmax = 4

We also compare the clustering accuracy achieved by the three methods in Figure

6.2(b). As we can see, the REP algorithm gives the best performance. MaxCover is

better than RandomPick, however, since it does not consider the redundancy of the

samples selected, it still performs worse than the representative set method.

Though MaxCover and REP are comparable in terms of coverage and accuracy, the

reliable performance of MaxCover depends on a well-defined similarity threshold while

the representative set method is much less sensitive to it. Small adjustment of cmax may

result in poor performance, as shown in Figure 6.3(a) and 6.3(b). MaxCover fails to pick

any samples from the second class until the 10th representative and gets poor accuracy.

|R| REP MaxCover
2 100% 50%
5 100% 50%
10 100% 100%

(a) Representative Coverage

|R| REP MaxCover
8 89.0% 51.8%
20 98.5% 86.5%
30 100% 89.3%
(b) Clustering Accuracy

Figure 6.3: Mushroom dataset, tmax = 3,cmax = 3

Comparisons with other clustering algorithms

Several other algorithms have been applied on the Mushroom dataset. One of them is

the SUMMARY algorithm (Wang and Karypis (2004)). This method summarizes the

dataset by clustering it into several groups. When SUMMARY has 30 clusters generated,

it achieves accuracy of 99.6%. And it does not get 100% accuracy until more than 400

clusters are generated. As we can see in Table 6.2, our REP algorithm can capture the
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information of the original dataset more efficiently and quicker than SUMMARY can.

Table 6.2: Clustering Accuracy on Mushroom Dataset, Compared with SUMMARY,
tmax=4

REP SUMMARY
|R| accuracy � clusters accuracy
30 100% 30 99.6%
50 100% 140 99.93%
... ... 298 99.99%
... ... 438 100%

In comparison with unsupervised clustering methods such as LIMBO (Andritsos

et al. (2003)), REP also performs better. In (Andritsos et al. (2003)), the reported

accuracy on the Mushroom dataset is about 91%. While in REP, specialists only need

to check around 30 elements among 8000 elements to achieve the perfect result. The

cost of manual processing is small relative to the improvement in accuracy.

Comparison of REP with its simplified version

In this section, we compare the performance of REP with that of its simplified version

on the Mushroom dataset. Note that REP is a special case when parameter tmin is set

to 0 in the simplified version. Therefore, we denote REP as a simplified version with

tmin = 0 in this section.

First, we compare their runtime on the dataset. The preprocessing takes about 290

seconds and we exclude that from the figure below since the results are repeatedly used in

different runs. As we can see in Figure 6.4, the simplified REP offers bigger performance

improvement as tmin increases. The two curves of tmin = 0 and tmin = 0.85 are close

to each other and exhibit similar trend while the curve of tmin = 0.9 is far below them.

The curve of tmin = 0.9 even converges to a constant value after 40 representatives

are identified when tmax = 4. This can be explained by looking into the number of

candidates generated in each iteration. In Figure 6.5, we plot the number of candidates

in each iteration. The curves of tmin = 0 and tmin = 0.85 are always close to each other
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while that of tmin = 0.9 is lower. On curve tmin = 0.9 when tmax = 4, the number of

candidates drops dramatically in the last several iterations, which brings down the slope

of the runtime growth and makes it logarithmic in Figure 6.4.

Figure 6.4: Runtime of different tmin

Figure 6.5: Number of candidates of different tmin

Besides runtime, we also compare the accuracy of the clustering algorithm based on

the representative sets generated under different tmin values. As we can see from Figure

6.6, when tmin = 0.85, the performance is the same as tmin = 0 while at tmin = 0.9, the

performance degrades slightly but is still much better than MaxCov, SUMMARY and

LIMBO. This result confirms our discussion in Section 6.2.
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|R| tmin = 0 tmin = 0.85 tmin = 0.9
10 89.2% 89.2% 79.6%
20 96.3% 96.3% 96.3%
30 100% 100% 98.9%
40 100% 100% 99.9%
50 100% 100% 99.9%

(a) Clustering Accuracy, tmax = 4

|R| tmin = 0 tmin = 0.85 tmin = 0.9
10 89.2% 89.1% 79.1%
20 98.5% 98.5% 98.3%
30 100% 100% 98.8%
40 100% 100% 99.9%
50 100% 100% 99.9%

(b) Clustering Accuracy, tmax = 3

Figure 6.6: Different tmin on Mushroom Dataset

6.5.2 20 Newsgroup Dataset

The 20 Newsgroup dataset is a document-words dataset. It consists of 20,000 newsgroup

articles from 20 different newsgroups. Since there are more than 30,000 distinct words

in all the articles, we conduct a scoring processing which is mentioned in (Slonim and

Tishby (2000)). The top 2000 words with the highest score are selected as features.

We use three subsets of the entire 20 Newsgroup dataset to test our algorithm. Two

of the subsets contain articles from two and three newsgroups respectively. Since we

get similar results as the Mushroom dataset on these two subsets, we won’t present the

detailed results of them in this chapter. Interested readers can refer to technical report

(Pan et al. (2005b)).

The third subset is the mini 20 newsgroup dataset which is a reduced version of

the full 20 newsgroup dataset. It consists of the same set of 20 newsgroup topics, but

each topic contains only 100 articles. We want to test the performance of the three

algorithms with respect to the complexity of the data. In this case, the number of

newsgroups included in the dataset is a good indicator of the data complexity. Because

of the different characteristics of the samples in this mini 20 newsgroup dataset, we will
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set tmax < 1 and cmax = 1.1 in all the following experiments in this section.

First, we compare the methods on the mini 20 newsgroup data. The results are in

Figure 6.7(a) and 6.7(b). As we can see, in both accuracy and coverage, REP outper-

forms the other two methods.

Coverage
|R| REP MaxCover RandomPick
20 70% 55% 65%
40 85% 80% 88.5%
60 100% 90% 92%
80 100% 95% 100%
100 100% 100% 99%

(a) Representative Coverage

Accuracy
|R| REP MaxCover RandomPick
20 23.8% 12.5% 18.3%
40 32.5% 21.2% 21.7%
60 37.5% 26.1% 27.2%
80 38.8% 30.3% 28.8%
100 41.6% 32.6% 29.0%

(b) Clustering Accuracy

Figure 6.7: Mini 20 newsgroup, tmax < 1, cmax = 1.1

In order to show the change of performance by dataset containing different number

of topics(classes), we start with a subset of the mini 20 Newsgroup consisting of 2 topics

and add two topics into the dataset each time until it includes all 20 topics. For each of

these dataset, we generate 60 representatives to study the accuracy and coverage. The

changes of performance are shown in Figure 6.8.

Figure 6.8: Performance of 60 representatives

All three methods exhibit degrade accuracy when more topics are added into the

dataset. However REP is always better than the other two. The accuracy of MaxCover

and RandomPick get close when number of topics is large because each sample is similar
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to a set of other samples and the size of the similar set has a small deviation when there

are large number of topics in the dataset. The choice made by MaxCover is then close

to random.

For coverage, our algorithm maintains the same performance while other two methods

fail to cover all topics when the number of topics increases. The MaxCover method has

a big drop on coverage when 8 topics are included. This is because of the characteristic

of the 8-topic subsets, i.e., several similar topics are included. And while 2 more topics

are added in, the characteristic of the new subset changes.

Comparison of REP and its simplified version

As in the previous section, we will compare the runtime performance of our algorithms

by varying parameter tmin.

We set tmin to 0, 0.85 and 0.95 to show its effects. As we can see in Figure 6.9(a),

when we set tmin to 0.95, runtime drops dramatically. That is because when tmin = 0.95,

the size of the candidate set for each iteration is small, which can been seen in Figure

6.9(b).

(a) Runtime (b) Number of Candidates

Figure 6.9: Performance of different tmin

Besides runtime, we also compare the goodness of the representative sets generated

under different tmin by the clustering algorithm. We present the accuracy in Table 6.3.
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Table 6.3: Accuracy of different tmin

|R| tmin = 0 tmin = 0.85 tmin = 0.95
20 23.8% 23.8% 23.1%
40 32.5% 32.5% 31.5%
60 37.5% 37.5% 33.3%
80 38.8% 38.8% 34.5%
100 41.6% 41.6% 38.2%

When tmin is set to 0.85, the simplified REP achieves the same accuracy as the

original REP. And when tmin is set to 0.95, its accuracy is slightly worse than the

original algorithm, however, the results are still better than that of the MaxCov and

RandomPick methods as in Figure 6.7(b). The slight degrade in accuracy brings the

significant improvement in runtime as shown in Figure 6.9(a).

In all the experiments above, our representative set method always outperforms

MaxCover and RandomPick. This shows the effectiveness of our representative sets.

6.6 Conclusion

In this chapter, we have defined a maximum-diversity subset, the representative set,

in non-biallelic data. A representative set is a small subset of the original dataset,

captures most original information compared to other subsets of the same size and has a

low redundancy. We first design a greedy algorithm, REP, to generate the representative

set. Then we build a simplified version based on the greedy algorithm for faster and

better performance. Our experiments show that the representative set attains the desired

characteristics and captures information more efficiently than other methods.
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Chapter 7

Discussion

With the development of high-throughput and low-cost sequencing technologies, there

has been an urgent need to develop highly efficient and scalable analysis methods for

various genetic studies. In my thesis, I developed algorithms for the following two genetic

analysis tasks on large genomic data:

• Genome-wide Association Mapping Study (GWA).

• Maximum-diversity Sample Selection.

Genome-wide association mapping aims to find the correlation between a target

phenotype and the genetic markers. While many statistical models/tests have been

developed for examining the correlation, the problem is still non-trivial due to its high-

computational cost. Because of the complexity of the biological and environmental

factors which regulate the phenotype, many existing methods (Zollner and Pritchard

(2005); Mailund et al. (2006); Sevon et al. (2006)) use complex models which have

higher statistical power but lower runtime efficiency. In my thesis, I developed two

phylogeny-based methods, TreeQA and TreeQA+, for genome-wide association map-

ping. Both methods infer the phylogenies of the samples and incorporate the phyloge-

nies into the association analysis. As demonstrated in the experiments, TreeQA and

TreeQA+ are more effective in association mapping than the previous single-marker



and haplotype-based methods (Pe’er et al. (2006); Akey et al. (2001); McClurg et al.

(2006); Onkamo et al. (2002); Wang and Paigen (2005)) because of incorporating phy-

logenies into the model. On the other hand, I developed several efficiency optimizations

in TreeQA and TreeQA+ so that they can handle genome-wide analysis efficiently. The

scalability experiments show that TreeQA, TreeQA+ and the previous single-marker

and haplotype-based methods have comparable runtime performance. I also developed

the TreeNL algorithm which extends the idea of TreeQA and is applied to correlation

clustering problems.

The second part of my thesis focuses on the maximum-diversity sample selection

problem. Sample selection is closely related to genome-wide association mapping. Sam-

ple selection can be used to design the breeding program which produces the data for

GWA. It can also be used to pre-process the genomic data and make GWA more ef-

ficient. In my thesis, I developed the PGDS and KρDS algorithms to do sample

selection in biallelic SNP data. The problem is NP-complete. The PGDS algorithm

takes a greedy searching scheme which is fast but does not guarantee an optimal so-

lution. And the KρDS algorithm searches for the optimal solution exhaustively. It

utilizes several pruning techniques to speedup the process. Genomic data can also be

non-biallelic. I developed the REP algorithm to select samples in non-biallelic data.

The REP algorithm also uses greedy searching but reports the near optimal solutions

in most cases.

Experimental results in my thesis show that these algorithms tackle the GWA and

sample selection problems efficiently and effectively. In the following sections, I discuss

how these algorithms can be improved in the future work.
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7.1 Genome-Wide Association Mapping

In Chapters 2 and 3, the phylogeny-based association mapping methods (TreeQA and

TreeQA+) have only been applied to data produced by isogenic mouse strains. In fact,

association mapping can also be conducted on other types of data, e.g., congenic strains

and outbred strains. These datasets have very different characteristics from the isogenic

strain data. Thus, they pose two problems for applying phylogeny-based genome-wide

association mapping:

1. How do we infer phylogenetic trees from the various datasets? If we can only infer

imperfect or near perfect phylogenetic trees (Sridhar et al. (2006); Satya et al.

(2006)) from the data, how can we examine the association using these trees?

2. Can we combine the analysis results from the various datasets? Or can we run

analysis simultaneously on the heterogeneous datasets?

I address the two problems in the following two sections respectively.

7.1.1 Phylogeny-based Association Mapping in the Various Bi-

ological Data

TreeQA and TreeQA+ infer perfect phylogenies from phased SNP data which are bial-

lelic, such that each marker only has two alleles among the samples. However, other

biological data can be ternary or just non-biallelic so that the perfect phylogeny inference

method can not be applied. For example,

• In the unphased SNP data, each marker has up to three alleles. In this case,

the compatible intervals (as defined in Chapter 2) may not exist because of the

unphased genotypes. In (Ding et al. (2008)), an entropy-minimizing method is
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used to infer the phase of the data at first and then local phylogenies are built

from the inferred haplotypes.

• In the microsatellite genotype data, each marker can have more alleles than the

phased/unphased SNP data. Perfect phylogenies may not exist. Other types of

phylogenies such as near perfect phylogeny (Satya et al. (2006)) and imperfect

phylogeny (Sridhar et al. (2006)) have been proposed for such kind of data.

More complicated structures, such as ancestral recombinant graph, can also been

inferred and represent the evolutionary history among a set of samples.

Once these phylogenies (i.e., perfect/imperfect/near perfect or ancestral graph) are

inferred for the various datasets, statistical models must be properly selected for examin-

ing the correlations in order to ensure the significance of any findings. For example, each

partition indicated by an imperfect phylogeny should have different weight/confidence.

While in the ancestral graph, the definition of partition also needs to be revised accord-

ingly.

Another common challenge in analyzing the biological data is to deal with the exis-

tence of missing data and noise. There are two potential ways to tackle the problem: 1)

Develop noise-tolerant association mapping methods which can automatically detect and

remove outliers caused by missing/error data in the analysis; 2) Develop methods that

integrate association mapping with inference of missing data under reliable statistical

models such as maximum likelihood or maximum parsimony.

7.1.2 Association Mapping on Heterogenous Biological Data

Given the various biological data, combining the results can improve the robustness

of the analysis. For example, if an association between a marker and a phenotype is

repeatedly observed in different datasets, the association should be significant. There

are two possible ways to combine the analysis:
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• Post-process: Each dataset is analyzed independently. A post-processing algo-

rithm is then used to analyze all the results, e.g., identifying repeated associations.

• Simultaneous-process: The analysis is integrated. An algorithm is used to detect

associations in the multiple datasets simultaneously.

For example, in eQTL (expression quantitative trait loci) analysis, the SNP data

(i.e., the genetic marker data) and the gene expression data are used together to detect

the regulation between nucleotides and genes. More complex association models are

required to analyze SNP data and gene expression data simultaneously. For example, in

eQTL, the association may be between: 1) a single marker and a single gene expression;

2) a set of markers and a single gene expression; 3) a set of markers and a set of gene

expressions.

The complex models and larger number of datasets pose a bigger computational

challenge to association mapping analysis. Feasible solutions to the problems can be

developed by either using approximation algorithms or incorporating highly efficient

heuristics.

7.1.3 Complex Correlation Detection

The TreeQA and TreeQA+ algorithm are developed for the purpose of genome-wide

association mapping. The idea is then extended in the TreeNL algorithm. The TreeNL

algorithm is applied to the correlation clustering problem. As demonstrated in the

experiments, TreeNL is able to find linearly correlated features effectively. However, even

though a few non-linear correlations have been detected by TreeNL in the experiments,

the non-linear correlations are hard to be detected in general.

In fact, there has been evidence showing that it is common in the high-dimensional

data that the features have non-linear correlations. The analysis is more prone to

spurious findings than in the case of linear correlations for the following two reasons:
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• More data objects are required to confirm the existence of a complex correlation.

• Non-linear correlations are hard to be described and examined in regular statistical

models.

Besides improving TreeNL by modifying its statistical model and test, other possible

ways to improve non-linear correlation mining include:

1. Detect correlations/associations supported by a large amount of data objects with

high density.

2. Allow users/experts to define a target model and only detect correlations/associations

which follow the model.

The first approach is easier to implement but may sacrifice some detection power.

The second approach provides more flexibility for complex correlation/association min-

ing in different applications. But it requires more follow-up studies to solve key problems

such as how to define a target model and how to use the model to effectively prune the

searching space.

7.2 Maximum-diversity Sample Selection

In the diversity cover problem discussed in Chapter 5, each marker (i.e., feature) is given

an equal weight. The problem can be extended to allowing a weight to be associated

with each marker. The weight can be assigned to reflect the importance of each marker

and may be dynamically adjusted. The weight of each uncovered marker is 1 before

any sample is selected, and is assigned to the lowest dissimilarity of this marker to any

covered marker1. The goal of this weighted diversity cover problem is to select samples

such that the total weight of all markers is maximized.

1A marker is weighted 0 if it is identical to a covered marker and is weighted 1 if it is completely
independent of any covered marker.
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Also we can continue to investigate and evaluate alternative approaches that may

offer further performance gains. An alternative greedy strategy for PGDS is to start from

the full set of samples and remove the sample that minimizes the decrease in diversity

in each subsequent step until no sample can be further removed without violating the

minimal diversity requirement. Note that a similar strategy can also be employed in the

KρDS algorithm which enumerates the sample subsets that can be removed without

losing more than 1 − ρ diversity. In some cases where a minimum subset of diversity

coverage ρ contains more than half of the samples, these alternative strategies can have

a better runtime performance because they require a smaller search space.

The REP algorithm presented in Chapter 6 utilizes ”mutual information” and ”rela-

tive entropy” to selected maximum-diversity samples in the non-biallelic cases. Actually,

there are other alternative measurements such as ”total information” and ”Pearson cor-

relation”. These alternative measurements may improve the effectiveness of the REP

algorithm for datasets in different applications. And it can be interesting to compare

the performance of these different measurements on different datasets.

Though the greedy solutions found by REP approximate the optimal solutions very

well according to the experiments, the optimal solution is still preferred in many cases.

If we can find a tight lower bound and upper bound properties of the mutual information

measurements (or other alterative measurements), an exhaustive enumerating procedure

similar to the KρDS algorithm should also be feasible in the non-biallelic datasets.

In conclusion, in my thesis, I developed algorithms for important genetic analysis

tasks such as genome-wide association mapping and maximum-diversity sample selec-

tion. As demonstrated by the extensive experiments, my algorithms are both efficient

and effective in analyzing the genomic data.
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