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ABSTRACT 

KATHARINE ROSE TYSON: A family of tick (Ixodes scapularis) salivary proteins that 
inhibit complement 

(Under the direction of Aravinda de Silva) 

 

 Ixodes scapularis, the blacklegged tick, is an ectoparasitic bloodsucking arthropod 

that transmits multiple pathogens, including Borrelia burgdorferi, the agent of Lyme disease.  

I. scapularis ticks secrete numerous salivary anti-hemostatic, anti-inflammatory, and 

immunosuppressive compounds into the host to inhibit host responses that could interfere 

with feeding.  I. scapularis anti-complement protein (Isac) specifically inhibits the alternative 

complement pathway by destabilizing the C3 convertase.  Here, we report on the 

identification of several tick proteins that are paralogues of Isac and members of the Isac-like 

protein (ILP) family, which contains at least 49 unique proteins.  In this work we have 

characterized the biochemical and functional activities of multiple ILPs, their mechanisms of 

complement inhibition, and their roles in facilitating tick feeding. 

 We expressed recombinant ILPs (rILPs) that possessed several N- and O-linked 

glycans and inhibited the alternative complement pathway by destabilizing C3 convertases, 

similar to Isac.  rILPs specifically bound properdin, a positive regulator of the alternative 

complement pathway, causing its removal from C3 convertases and accelerating decay of the 

convertases.  This mechanism of complement regulation is distinct from any characterized 

negative regulators of the alternative complement pathway, which mediate decay 

acceleration by interacting with Bb or C3b. 
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 As I. scapularis ticks likely co-express multiple ILPs during tick feeding, we 

evaluated various properties of individual ILPs that possibly justify their co-expression.  

When multiple rILPs were added together, no synergistic effects were observed, indicating 

the proteins acted individually.  Individual rILPs also inhibited the alternative complement 

pathway from different animal hosts comparably, indicating rILPs did not display host 

specificity.  We believe that individual I. scapularis ILPs likely display antigenic variation, 

justifying their co-expression during tick feeding.  

 Expression of the ILP gene family is likely essential for successful tick feeding as 

ILPs suppress host innate immune responses.  RNAi mediated gene silencing of the ILP 

genes and the generation of antibodies against rILPs in immunized mice had no effect on 

successful I. scapularis nymphal tick feeding.  However, RNAi may have not revealed a 

phenotype because of redundancy in the ILP genes. Similarly, ILP specific antibodies may 

have showed no phenotype because of antigenic variation between different ILPs and 

redundancy in ILP functions.   
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CHAPTER 1 
 

Background and Significance 

 

1.1 Introduction

Ticks are obligate parasitic blood-sucking arthropods that feed on a wide variety of 

vertebrate hosts including mammals, birds, reptiles and some amphibians (22, 138).  Ticks 

are distributed on virtually every continent, excluding Antarctica, where they are persistent 

pests of livestock and wildlife (63, 137).  Tick infestations of livestock can cause severe toxic 

conditions, including tick paralysis, toxicoses, allergic reactions, and severe blood loss, 

which can lead to major economic losses in several countries.  In addition to causing several 

severe pathogenic conditions, ticks are also important vectors of numerous viral, bacterial, 

and protozoan pathogens that cause various diseases in animals and humans including 

babesiosis, ehrlichiosis, tularemia, Rocky Mountain spotted fever, tick-borne encephalitis, 

Crimean-Congo hemorrhagic fever, and Lyme disease, the most prevalent vector-borne 

disease in the United States and Europe (22, 137, 138).   

Approximately 850 species of ticks exist worldwide, which are separated into two 

major families, the Ixodidae (hard ticks) and the Argasidae (soft ticks) (6, 22, 42, 137).  A 

third family exists, the Nuttaliellidae, containing only a single species.  The life cycle of ticks 

consists of three developmental stages (instars), the larva, nymph, and adult (138).  Larval 

ticks have 3 pairs of legs like insects, while nymphal and adult ticks possess 4 pairs of legs, 

resembling arachnids, which are comprised of ticks, mites, spiders, and scorpions (93, 137, 



138).  Tick mouthparts consist of three main appendages: the chelicerae, which are toothed 

organs used for cutting, ripping, and tearing skin; the palps, which are sensory organs used 

for host attachment; and the hypostome, which is the barbed mouthpart inserted into the skin 

during feeding (Fig 1.1A) (137, 138).  Ixodidae, or hard ticks, possess a tough, sclerotized 

plate, the scutum, on their dorsal body surface, which acts as an attachment site for many 

vital muscle groups (Fig 1.1B) (42, 137, 138).  Argasidae, or soft ticks, lack a scutum but 

possess a tough leathery cuticle that is highly folded, allowing ample growth during feeding 

(Fig 1.1B).  Due to their feeding and molting characteristics, ixodid and argasid ticks both 

exhibit long life spans, lasting several years.  Even though they share many common 

features, drastic differences exist between argasid and ixodid ticks. 

Argasidae 

 Argasid ticks can be subdivided into four main genera, Argas, Carios, Ornithodoros, 

and Otobius, where Argas, Ornithodoros, and Otobius ticks are important medical and 

veterinary pathogen transmission vectors (22, 63).  As mentioned previously, argasid ticks 

lack a scutum, containing only a tough, leathery cuticle with many folds, giving rise to the 

term “soft ticks” (42, 137, 138).   The mouthparts of argasid nymphs and adults are found at 

the anterior end of the body, but are covered by the body and cannot be seen from the dorsal 

view (Fig 1.1B).  Argasid ticks are typically found in environments very close to their hosts, 

such as bird nests, bat caves, burrows and dens of various animals, or dilapidated huts and 

cabins of humans (99, 138).  When ready to feed, argasid ticks attach to hosts by cutting into 

the skin with their chelicerae and inserting their barbed hypostome (6, 42, 93, 99, 137, 138).  

Once attached, they begin to secrete saliva into the host and suck blood from the host.  

Argasids only feed for short periods of time, usually several minutes.  As they feed, their 
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highly folded body cuticle stretches to accommodate the incoming host blood meal, which is 

approximately 5-10 times their body weight.  In order to maximize blood consumption, the 

tick concentrates the blood as it feeds by secreting a colorless fluid consisting of water and 

salts extracted from the blood from pores in the body.  

Argasid ticks typically have a multi-host life-cycle (22, 42, 93, 99, 137, 138).  Larvae 

emerge from eggs and attach to a host, feed to repletion, drop off, and molt into nymphs.  

Nymphs then feed on the same or a different host, drop off, and molt.  Nymphs usually feed 

several times on multiple hosts and undergo 3 to 5 molts before becoming adults.  Once 

adults, females may mate before or after feeding away from a host.  After feeding to 

repletion, adult females drop off the host and lay several hundreds of eggs.  Argasid females, 

like nymphs, are also capable of feeding numerous times and laying multiple batches of eggs 

several times during their lifetime.    

Ixodidae  

 Ixodid ticks, which account for approximately 80% of all tick species worldwide, are 

subdivided into seven genera including Amblyomma, Dermacentor, Haemaphysalis, 

Hyalomma, Ixodes, Rhipicephalus, and Boophilus (63).  Ixodid tick species within each of 

the seven genera are important medical or veterinary pathogen transmission vectors (22).  

Ixodid ticks possess a scutum, or a tough, sclerotized plate, on their dorsal surface giving 

them the name “hard ticks” (6, 42, 137, 138)  In adult males, the scutum covers the entire 

dorsal body surface, while it only covers a portion of the dorsal body surface in nymphs and 

adult females.  As ixodid ticks are sensitive to environment humidity and temperature 

conditions, most of the body in nymphs and adult females, excluding the scutum, is covered 

by a waxy, tough, dense cuticle that prevents desiccation (138).  The mouthparts of ixodid 
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ticks are very similar to argasid ticks and located at the anterior end of the body.  However, 

unlike argasids, the body does not cover the mouthparts in ixodids and can be readily seen 

from the dorsal view (Fig 1.1B) (6, 42, 137, 138).  Ixodid ticks are usually found in brushy, 

wooded, or weedy areas populated by medium or large sized mammals (42, 138). 

 The life-cycle and feeding characteristics of ixodid ticks are different from argasid 

ticks.  Ixodid ticks display a two- or three-host life-cycle, as opposed to argasid ticks, which 

display a multi-host life-cycle (6, 42, 93, 137, 138).  Larvae emerge from eggs and attach to 

small animals for their first blood meal.  After feeding for several days to repletion, larvae 

drop off the host and molt into nymphs.  In some ixodid species, larvae remain on the host 

after feeding and molt into nymphs.  Nymphs then either seek a new host to feed or feed 

from the same host if the larvae remained on the host after the initial feeding.  After the 

second feeding, the nymphs drop off the host and molt into either female or male adults.  

Adult ixodid ticks attach to a new host and begin feeding, and mating typically occurs during 

feeding.  After feeding to repletion, the mated female adult drops off the host, lay thousands 

of eggs, and dies.  When larvae emerge from the eggs, the cycle repeats itself.  Unlike 

argasid ticks, ixodid ticks only ingest three blood meals and molt three times in their lifetime.  

Since ixodid ticks do not undergo multiple nymphal molts like argasid ticks, the ixodid life-

cycle is typically shorter, usually 1-2 years depending on environmental humidity and 

temperature conditions, than the argasid tick life-cycle.            

Feeding Characteristics of Ixodid Ticks 

 Ixodid ticks exhibit unique feeding characteristics, distinguishing them from argasid 

ticks and other blood feeding arthropods including flies, fleas, mosquitoes, and mites.  Unlike 
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most blood sucking arthropods, ixodid ticks feed for several days on a single host, consuming 

large quantities of blood.   

The majority of ixodid tick species find suitable hosts using a strategy termed 

“questing” (6, 22, 42, 137, 138), which consists of climbing blades of grass, weeds, or bushes 

and waiting for a host to brush against them.  While questing, ticks remain hydrated by 

moving from their perch to the humid environment of the leafy ground cover and secreting a 

hygroscopic, salty saliva solution onto their hypostomes that adsorbs water from the 

surrounding atmosphere.  Once rehydrated, the ticks climb back up the vegetation and 

continue waiting for a host.  Ixodid and argasid ticks sense approaching hosts by several 

factors including shadows, vibrations, and odors.  Ticks are especially attracted to carbon 

dioxide, which is found in host breath, and ammonia, which is found in host urine.  When 

they finally sense a host, ticks stretch out their forelegs and cling to the hair or clothing of the 

host.  Some species of ixodid ticks, in particular species of Hyalomma, actively hunt their 

hosts (22, 138).  These ixodid ticks bury themselves in sand or dirt, preventing desiccation.  

When they sense a nearby host, they emerge from the ground and run towards the host. 

Upon finding an appropriate host, ticks use the sensory organs in their palps to locate 

an attachment site (137, 138).  Once an attachment site is found, the chelicerae of the tick 

begin slicing into the skin in an outward motion, creating a small hole (6, 42, 99, 137, 138).  

The tick then inserts the barbed hypostome into the hole and secretes a proteinaceous cement 

compound.  The cement covers the hypostome and host skin, acting as an adhesive to anchor 

the hypostome in place.  Since argasid ticks only feed for a few hours rather than several 

days, they do not secrete any cement upon attachment.  In ixodid ticks, the process of 

attachment may take hours to days, but once firmly attached, the ticks are hard to remove. 
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After the tick is firmly cemented in place, blood feeding begins from a pool created 

by tissue and blood vessel damage during attachment (6, 93, 99, 138).  For the first few days, 

feeding proceeds slowly as new cuticle is synthesized to allow expansion of the ixodid tick 

with the incoming blood meal.  Once the new cuticle has been synthesized, feeding proceeds 

rapidly and the tick may increase its weight 10 (larvae and nymphs) to 100 (adult mated 

females) times its prefed weight (93, 99, 137, 138).  Since adult ixodid males are covered by 

the rigid scutum and cannot expand easily, they usually do not ingest large amounts of blood 

when feeding.  Feeding is discontinuous, characterized by periods of blood sucking 

alternating with periods of tick salivation (99, 138).  In order to maximize blood 

consumption, portions of ixodid tick salivary glands function as water secreting 

compartments that remove excess water and salts to concentrate the blood meal (93, 99, 137, 

138).  When the tick is replete, it will drop off the host and either molt (larvae or nymphs) or 

lay eggs (adult mated females).  

 

1.2 Host Responses to Tick Feeding     

 Ticks acquire a meal by sucking blood from a pool created during attachment, when 

the mouthparts cut into the skin, lacerating numerous small blood vessels and causing tissue 

destruction at the feeding site (93, 99, 145).  The host is normally capable of detecting and 

repairing wounds through the processes of hemostasis and inflammation.  Hemostatic 

responses prevent blood loss, potentially making the acquisition of a blood meal difficult for 

the tick (93, 120, 133, 145).  Inflammation results in redness, swelling, and irritation at the 

feeding site, allowing the host to sense the presence of the tick, which potentially leads to 

host grooming and tick removal (99, 120, 133).  In order to counteract the hemostatic and 
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inflammatory responses of the host, ticks produce multiple anti-hemostatic and anti-

inflammatory mediators that are secreted into the host through the saliva during feeding.  

In addition to hemostatic and inflammatory responses, other host immune responses 

may also be triggered during tick attachment and feeding.  Host immune responses likely 

mediate recognition of multiple tick antigens, eventually resulting in rejection of the feeding 

tick (120).  Tick rejection is normally characterized by a reduction in fed tick weights, altered 

feeding times, a reduction in the viability and number of ova produced, impaired molting, 

and death of the feeding tick (120, 133, 162).  In addition to secreting anti-hemostatic and 

anti-inflammatory mediators, ticks also secrete immunosuppressive molecules in their saliva 

to prevent host immune recognition and rejection (93, 99, 120, 133).   

                 

1.3 Anti-Hemostatic Tick Salivary Components 

 Hemostasis, a host response generated during tissue injury, prevents blood loss from 

damaged tissues through platelet aggregation, vasoconstriction, and blood coagulation (7, 16, 

93, 120, 133, 145).  In order to obtain a complete blood meal successfully by avoiding host 

hemostatic responses, many blood sucking arthropods, including mosquitoes, flies, lice, fleas, 

mites, and ticks, secret salivary anti-hemostatic components into the host during feeding (7, 

16, 17, 41, 120, 141).  Argasid, and in particular ixodid ticks, which feed on a host for 

periods of several days, secrete a wide variety of anti-hemostatic molecules including platelet 

aggregation inhibitors, vasodilators, and anti-coagulants, which all aid the tick in overcoming 

host hemostasis.   
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Platelet Aggregation Inhibitors 

Tissue damage leads to the exposure of various agonists, including adenosine 

diphosphate (ADP) and collagen, which cause platelet aggregation.  In order to prevent 

platelet aggregation, many blood feeding arthropods secrete salivary apyrases, which are 

enzymes that hydrolyze adenosine triphosphate (ATP) and ADP into adenosine 

monophosphate (AMP) and inorganic phosphate.  Eliminating ADP potentially prevents 

activation and aggregation of platelets (16, 93, 99, 133).  Apyrase activity has been identified 

in the saliva or SGE of the soft ticks Ornithodoros savignyi, Ornithodoros moubata, and 

Argas monolakensis, as well as the hard tick, Ixodes scapularis (Table 1.1) (88, 89, 93, 99, 

118, 120, 121).  O. moubata also expresses moubatin and tick adhesion inhibitor (TAI), 

salivary gland proteins that specifically inhibit collagen induced platelet aggregation or 

adhesion, respectively (Table 1.1) (67, 70, 156).   

Once platelets are activated by various agonists, they express glycoprotein IIbIIIa 

(GPIIbIIIa) on their surfaces.  This integrin binds fibrinogen or von Willebrand’s factor, 

resulting in platelet cross-linking and aggregation (7, 93, 145).  In addition to apyrases, ticks 

have also developed salivary components that block GPIIbIIIa, preventing fibrinogen binding 

and platelet aggregation.  Dermacentor variabilis, O. moubata, O. savignyi, and A. 

monolakensis, produce salivary gland proteins that bind GPIIbIIIa, inhibiting fibrinogen 

binding or displacing bound fibrinogen from the receptor (Table 1.1) (66, 88, 91, 92, 155).  

These activities either prevent platelet aggregation or cause aggregated platelets to 

disaggregate.  I. scapularis saliva is also capable of causing platelet disaggregation through 

the proteolysis of fibrinogen (30).  The presence of multiple platelet aggregation inhibitors in 

a variety of ticks indicates the necessity to inhibit this host response during feeding. 
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Vasodilators 

 Many blood feeding arthropods employ a variety of strategies to promote 

vasodilation, which counteracts vasoconstriction induced by platelet aggregation and 

increases the rate of blood flow to the feeding site (16).  In order to maintain blood flow 

during their extended feeding periods, ixodid ticks produce and secret numerous salivary 

prostaglandins.  As argasid ticks feed for much shorter periods, prostaglandins have not been 

detected in their saliva.  Ixodid salivary prostaglandins are lipid molecules that promote 

smooth muscle relaxation, causing vasodilation (7, 12).  Prostaglandin E2 has been identified 

in the saliva of many ixodid ticks including, Boophilus microplus, Haemaphysalis 

longicornis, Amblyomma americanum, Ixodes holocyclus, and I. scapularis (Table 1.1) (3, 

13, 23, 57, 119, 130).  In addition, I. scapularis also produces prostaglandin I2, while A. 

americanum produces prostaglandin F2 (3, 119, 122) .  Besides their primary functions in 

vasodilation, prostaglandins also display immunosuppressive effects and prevent platelet 

aggregation (12, 130). 

 Tissue damage and platelet activation and aggregation lead to elevated levels of Ca2+, 

which potentially triggers vasoconstriction (7).  Several ixodid tick species secrete salivary 

calreticulins, which bind Ca2+, potentially preventing vasoconstriction (Table 1.1) (29, 37, 

59, 128, 163).  Similar to prostaglandins, calreticulins may also display anticoagulant and 

immunosuppressive functions in addition to vasodilatory activities as Ca2+ is required for a 

variety of host cell responses (14, 16, 59).            

Anticoagulants 

 Blood coagulation is initiated through two different pathways, either the intrinsic or 

the extrinsic pathway (16, 93, 145).  Both pathways converge at the step of factor X (FX) 
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activation into FXa.  FXa activates prothrombin into thrombin, which then cleaves fibrinogen 

into fibrin.  Fibrin then polymerizes, ultimately resulting in clot formation, which prevents 

blood loss from damaged tissues.  Numerous blood feeding arthropods, including argasid and 

ixodid ticks, secrete anticoagulants into the host during feeding, inhibiting blood coagulation.  

Interestingly, single ixodid tick species typically express several anticoagulants, as opposed 

to argasid ticks, likely because of their prolonged feeding times.  Most tick salivary 

anticoagulants inhibit either FXa or thrombin.  Several species of Ixodes, Hyalomma, 

Rhipicephalus and Ornithodoros ticks secrete various salivary proteins that directly bind 

FXa, preventing it from activating prothrombin (Table 1.1) (5, 39, 55, 64, 86, 100, 101, 157).  

Additionally, species of Ixodes, Boophilus, Haemaphysalis, Hyalomma, Amblyomma, and 

Ornithodoros also secrete salivary proteins that directly bind thrombin, preventing it from 

cleaving fibrinogen (Table 1.1) (5, 19, 49, 50, 54, 58, 72, 88, 90, 97, 103, 148, 165, 166).  

Ticks also produce salivary components that inhibit blood coagulation prior to the activation 

of FX.  I. scapularis, Dermacentor  andersoni, and O. savignyi secrete salivary proteins that 

inhibit the extrinsic, or tissue factor pathway, and H. longicornis secretes an intrinsic 

pathway inhibitor (24, 31, 32, 43, 69).  Presumably, inhibition of blood coagulation by 

various secreted salivary components is essential for successful argasid or ixodid tick 

feeding.    

   

1.4 Anti-Inflammatory Tick Salivary Components  

 Tissue damage, platelet activation and aggregation, and activation of blood 

coagulation all trigger the induction of inflammation, a host response resulting in pain, itch, 

redness, and irritation at the site of tissue damage (120).  Inflammation can lead to host 
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grooming, resulting in removal of a feeding tick (145).  In order to obtain a blood meal 

without premature host removal during their extended feeding periods, ixodid ticks secrete an 

array of anti-inflammatory proteins including histamine-binding proteins, kininases, and 

anaphylatoxin inhibitors.  

Histamine-binding proteins  

 Histamine and serotonin are essential mediators of inflammation that cause itching 

sensations, edema, and erythema by increasing vascular permeability (99, 133, 145).  As 

ixodid ticks feed for several days, they have developed histamine-binding proteins (HBPs) to 

inhibit the activities of histamine and serotonin and prevent inflammation during feeding.  

Rhipicephalus sanguineus SGE inhibit the activity of histamine, and Rhipicephalus 

appendiculatus was found to express three salivary HBPs (18, 107).  Homologues of these 

proteins have been identified in I. scapularis and A. americanum (Table 1.2) (11, 147).  

Additionally, Dermacentor reticulatus, secretes a salivary protein that binds both histamine 

and serotonin (Table 1.2) (129).  These proteins are likely essential for successful tick 

feeding as RNAi knockdown of A. americanum HBPs prevented successful tick feeding (4).  

Bradykinin Inhibitors  

Another important mediator of inflammation is bradykinin, which is generated during 

activation of the intrinsic coagulation cascade.  Bradykinin acts similarly to histamine, 

promoting pain, itch, and edema by increasing vascular permeability (99, 133, 147).  I. 

scapularis secretes a carboxypeptidase that degrades bradykinin, while B. microplus secretes 

a serine protease inhibitor that inhibits kallikrein, preventing the formation of bradykinin 

(Table 1.2) (123, 140).  Recently Ribeiro et al. demonstrated that sialostatin L and sialostatin 

L2 from I. scapularis saliva bind and inhibit cathepsin L, a protease implicated in kinin 
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generation, preventing inflammation (75, 76).  Sialostatin L and sialostatin L2 also display 

immunosuppressive functions.      

Anaphylatoxin Inhibitors     

 Anaphylatoxins are inflammatory mediators released during complement activation 

that induce vascular permeability, cause histamine release, and recruit inflammatory cells to 

sites of tissue damage (96, 145, 150, 151).  Ixodes ricinus and I. scapularis secrete salivary 

proteins that inhibit the alternative complement pathway, preventing the production of 

anaphylatoxins (Table 1.2) (20, 116, 124, 143, 146).  O. moubata also produces a 

complement inhibitor that binds C5, preventing its cleavage into the anaphylatoxin C5a 

(Table 1.2) (127).  By preventing the generation of anaphylatoxins, ticks inhibit the induction 

of inflammation allowing them to feed successfully. 

 

1.5 Immunosuppressive Tick Salivary Components               

 The host innate and adaptive immune responses are likely activated when blood 

sucking arthropods attach and begin feeding.  These immune responses can lead to the 

induction of inflammation and the activation and production of various components that 

result in host immune recognition and rejection.  Numerous blood sucking arthropods have 

evolved various salivary components to inhibit host innate and adaptive immune responses.  

As ixodid ticks uniquely feed on hosts for longer periods than most blood sucking 

arthropods, they have developed large families of salivary proteins that inhibit multiple host 

innate and adaptive immune mechanisms. 
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Inhibitors of endothelial cell adhesion molecule expression 

 During tissue damage or antigen stimulation, activated macrophages release cytokines 

that promote endothelial cells to express various surface adhesion molecules.  These 

molecules allow circulating leukocytes to attach to endothelial cells and eventually traverse 

the blood vessel wall, migrating to sites of tissue damage.  SGE from D. andersoni and I. 

scapularis significantly reduce the expression of several endothelial cell adhesion molecules 

in vitro and in vivo (Table 1.3) (87, 94).  In addition, expression of adhesion molecules on 

leukocytes is also reduced by I. scapularis saliva in vitro (95).  Expression of leukocyte 

adhesion molecules by endothelial cells and leukocytes is likely down-regulated during tick 

feeding, potentially preventing the initiation of innate immune responses and inflammation.    

Inhibitors natural killer cells, neutrophils, and macrophages 

 Activated natural killer (NK) cells are important lymphocytes in innate immunity as 

they are cytotoxic cells and release interferon-γ (IFN-γ), a cytokine that activates 

macrophages (1, 7, 14).  Neutrophils are polymorphonuclear leukocytes (PMN) that are 

activated during tissue damage and phagocytose invading organisms or cellular debris, 

inducing the production of reactive oxygen intermediates (ROIs) and releasing various 

granular constituents, including lysozyme.  Macrophages are phagocytic cells important in 

innate and adaptive immunity.  In innate immunity, macrophages function to phagocytose 

and kill invading microorganisms and secrete proinflammatory cytokines.     

When SGE of D. reticulatus, Amblyomma variegatum, Haemaphysalis inermis, and I. 

ricinus were incubated with natural killer cells, the activity of the cells was substantially 

decreased (Table 1.3) (73, 79, 80).  I. scapularis saliva also inhibited the activity of 

neutrophils, preventing the phagocytosis of Borrelia burgdorferi (95, 125).  SGE of I. 
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ricinus, R. sanguineus, and D. andersoni inhibited the killing of intracellular parasites and 

Borrelia afzelii, a causative agent of Lyme disease in Europe, by activated macrophages in 

vitro (27, 81, 114).  These inhibitory activities possibly prevent the activation of detrimental 

innate immune responses allowing successful tick feeding and facilitating efficient pathogen 

transmission.  

Antioxidants   

 ROIs generated by activated neutrophils and macrophages promote inflammation, 

tissue damage, and killing of invading microorganisms (1).  Even though ixodid ticks have 

rigid, sclerotized mouthparts that are likely not sensitive to ROIs, antioxidants, which inhibit 

the activities of ROIs, have been detected in the SGE of I. scapularis and H. longicornis 

(Table 1.3) (21, 142).  These antioxidants potentially aid the tick during extended feeding 

periods by preventing inflammation and activation of innate immune responses and by 

possibly protecting tick gut tissue. 

Cytokine and chemokine regulators 

 Cytokines and chemokines are vital for the initiation and development of innate and 

adaptive immune responses.  Cytokines mediate various inflammatory responses and 

stimulate the activation and proliferation of lymphocytes and effector cells, i.e. macrophages, 

while chemokines are chemoattractants for circulating neutrophils, basophils, lymphocytes, 

and monocytes, recruiting them to sites of tissue damage and inflammation (14, 99).  Since 

they are likely exposed to various immune components during their extended feeding 

periods, ixodid ticks have developed multiple strategies to inhibit the effects of cytokines and 

chemokines that include limiting their production and directly binding them to prevent their 

functions.   
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Multiple components in the saliva or SGE of I. ricinus, I. scapularis, Ixodes pacificus, 

D. andersoni, R. appendiculatus, and R. sanguineus reduce the expression and secretion of 

various proinflammatory cytokines, including IFN-γ, tumor necrosis factor-α (TNF-α), 

interleukin-1 (IL-1), and IL-6, thereby limiting the activation of inflammation and cell 

mediated immunity (TH1 immune responses) (Table 1.3) (27, 28, 36, 44, 74, 77, 78, 85, 98, 

111, 113, 131, 132).  Interestingly, the production of immunosuppressive cytokines, such as 

IL-4 and IL-10, is usually unchanged or enhanced by the saliva or SGE from these same tick 

species.  The production of IL-4 and IL-10 induces a TH2, or antibody-dependent, immune 

response.  In addition to producing factors that inhibit cytokines important for innate 

immunity, I. scapularis saliva also affects adaptive immunity by preventing secretion of IL-

2, a cytokine important for T-cell and B-cell proliferation from activated T-cells, and by 

expressing a salivary protein that directly binds IL-2 (40, 144).  Besides limiting the 

production and action of cytokines, components in saliva and SGE from A. variegatum, D. 

reticulatus, H. inermis, I. ricinus, R. appendiculatus, and R. sanguineus also bind and inhibit 

the activity of multiple chemokines, preventing the recruitment of immune cells to sites of 

tissue damage (Table 1.3) (33, 45, 46, 149).  

Inhibition of antigen presenting cells 

 Dendritic cells (DCs) and macrophages are important antigen presenting cells (APCs) 

in adaptive immunity that stimulate antigen specific T-cells through antigen presentation.  

DCs and macrophages normally reside in peripheral tissues in an inactive state.  Upon 

antigen or cytokine stimulation, activated DCs and macrophages engulf antigens and migrate 

to draining lymph nodes where they present antigens to CD4+ T-cells.  Saliva of R. 

 15



sanguineus inhibited the activation and migration of DCs in vitro, while I. scapularis saliva 

prevented CD4+ antigen T-cell stimulation in vitro (15, 106, 130).  

Inhibition of T-cell and B-cell proliferation  

 T- and B-cell activation is essential for the generation of adaptive immune responses, 

specifically cell-mediated immunity and antibody responses.  APCs present antigens to CD4+ 

T-cells through MHC class II complexes, causing activation, proliferation, and differentiation 

of the T-cells.  Upon activation, CD4+ T-cells secrete multiple cytokines and stimulate B-cell 

proliferation and maturation, which results in the generation of antibody secreting plasma 

cells (1).  I. scapularis saliva contains a protein, Salp15, which inhibits the activation of 

CD4+ T-cells by directly binding the CD4 coreceptor and inhibiting signaling pathways, 

resulting in a reduction of IL-2 production and inhibition of T-cell activation and 

proliferation (Table 1.3) (8, 38, 65).  Recently, Salp15 homologues have been identified in I. 

ricinus and I. pacificus, and recombinant Iris, an immunosuppressive protein from I. ricinus, 

was found to inhibit T-cell proliferation in vitro (53, 85).  D. andersoni and R. 

appendiculatus saliva also contains components that inhibits T-cell activation and 

proliferation in vitro (Table 1.3) (2, 9, 10, 27).     

B-cell proliferation, which eventually leads to the generation of antibody secreting 

plasma cells, is also inhibited by ixodid tick saliva.  Since IL-2 secreted by CD4+ T cells is 

important for B-cell proliferation, the IL-2 inhibitory activities of I. scapularis saliva likely 

inhibit B-cell proliferation (8, 40).  Proteins isolated from the saliva of I. ricinus and 

Hyalomma asiaticum inhibited lipopolysaccharide (LPS)-induced proliferation of B-cells in 

vitro (47, 164).  Furthermore, D. andersoni and R. sanguineus ticks reduced antibody 

responses in tick infested animals, suggesting salivary secretions from these ticks suppress 
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antibody production, possibly through inhibition of B-cell activation and proliferation (56, 

161).  Interestingly, B. microplus saliva altered the isotype of antibodies produced in 

susceptible hosts (68).  Ticks successfully avoid immune recognition by limiting T-cell and 

B-cell responses.  In addition, inhibition of adaptive immune responses also potentially 

facilitates the transmission of multiple pathogens.    

Immunoglobulin binding proteins 

 Besides limiting the activation and proliferation of B-cells, which ultimately prevents 

the production of antigen specific antibodies, ixodid also secrete salivary proteins that 

directly bind immunoglobulins.  Immunoglobulin binding proteins were detected in the 

hemolymph and SGE of R. appendiculatus, A. variegatum, and Ixodes hexagonus (Table 1.3) 

(152-154).  These proteins are speculated to be an important defense mechanism of the tick, 

allowing excretion host antibodies that may be detrimental to tick midgut tissues from the 

tick during feeding through the tick saliva.  

 

1.6 Host Complement Pathways 

 Activation of the complement pathways is an important host innate immune response 

generated during tick feeding.  Complement activation results in the production of 

anaphylatoxins, C3a and C5a, phagocytosis of opsonized invading organisms, and formation 

of the MAC in the outer surface of invading microbes leading to lysis of the organism (96, 

150, 151).  As the mouthparts of ticks are large, tough, rigid, sclerotized structures, they are 

unlikely to be affected by opsonization and MAC complexes.  However, MAC complexes 

generated from host complement activation may form in the membranes of tick midgut cells 

during ingestion of a blood meal, potentially disrupting feeding and causing lethality.  
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Anaphylatoxins are important for the recruitment of inflammatory mediators to sites of tissue 

injury and subsequent immune responses, potentially causing detrimental effects on feeding 

ticks.  Complement activation occurs through three different pathways, the MBL pathway, 

the classical pathway, and the alternative pathway (96, 150, 151).  Activation of the 

alternative complement pathway likely mediates tick rejection (160), either through the 

induction of inflammation or immune responses, as ixodid ticks specifically produce salivary 

components that inhibit this pathway (116).     

Classical and Mannose-Binding Lectin Complement Pathways 

The classical complement pathway is activated when IgG or IgM bind specific 

epitopes on the surfaces of invading organisms (Fig 1.2) (96, 150, 151).  C1q, a multimeric 

protein with globular head domains and a collagenous stalk, then binds the Fc protein of IgG 

or IgM.  Two molecules of C1r and C1s in the presence of Ca2+ subsequently bind C1q 

between the globular head domains.  After autoactivation, C1r cleaves and activates C1s, and 

C1s consequently cleaves C4 into C4a and C4b.  C4b covalently binds to amino or hydroxyl 

groups on activating surfaces through an exposed thioester group.  In the presence of Mg2+, 

C2 then binds to C4b and is cleaved by an adjacent C1s into C2b and C2a.  C2a remains 

bound to C4b, forming the classical pathway C3 convertase (C4b2a).  The C3 convertase 

then cleaves C3 into C3b and C3a (Fig 1.2). 

The MBL pathway is initiated when MBL, a multimeric molecule with globular 

domains and a collagenous stalk resembling C1q, binds mannose and N-acetyl glucosamine 

residues on the surfaces of invading microorganisms (Fig 1.2) (35, 96, 150, 151).  After 

attaching to surfaces, MBL-associated serine protease-1 (MASP-1) and MASP-2 interact 

with MBL.  Upon autoactivation, MASP-2 cleaves C4 and C2, generating the classical 
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pathway C3 convertase (C4b2a).  The classical and MBL complement pathways converge 

with the alternative complement pathway at the step of C3 cleavage by the C3 convertase 

(Fig 1.2).  

Alternative Complement Pathway     

 The alternative complement pathway is initiated when C3b covalently binds hydroxyl 

and amino groups on activating surfaces through an exposed thioester group (96, 109, 150, 

151) (Figure 1.3).  C3b is generated by the cleavage of C3 into C3a and C3b.  C3 is a large 

protein, composed of two chains, α and β, held together by a disulfide bond.  When C3 is 

cleaved, a small portion of the α-chain (C3a) is removed, leaving the remaining α-chain 

fragment bound to the β-chain (C3b).  Once C3b is covalently attached to a surface, fB then 

binds C3b in an Mg2+ dependent manner (Fig 1.2).  fD cleaves bound fB, releasing Ba and 

generating the alternative pathway C3 convertase (C3bBb).  The C3 convertase, either C4b2a 

or C3bBb, cleaves additional molecules of C3 into C3b and C3a, amplifying the complement 

cascades.  C3b then covalently binds more surfaces, forming more C3 convertases or causing 

opsonization.  C3b also binds to C3 convertases to form C5 convertases (C3bBbC3b or 

C4bC2a3b).   

Small of amounts of C3 are constantly hydrolyzed in biological fluids.  In order to 

generate C3b for alternative pathway initiation, hydrolyzed C3 (C3(H2O)), which 

functionally resembles C3b, binds fB in solution (96, 110).  fB is then cleaved by fD and the 

resulting complex, C3(H2O)Bb, cleaves C3, producing C3b that covalently attaches to 

activating surfaces.  Activation of the classical and MBL pathways also leads to the 

generation of C3b, which initiates the alternative pathway.     
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The late steps of complement activation result in the formation of the MAC.  C5 

convertases assembled from the classical, MBL, or alternative pathways cleave C5 into C5a 

and C5b (Fig 1.2) (96, 150, 151).  C5b, which is still attached to the C5 convertase, then 

binds C6.  Upon binding C6, C5 undergoes a conformational change exposing a membrane 

and C7 binding site.  When C7 binds to C5b, the resulting complex, C5b67, is released and 

associates with membranes.  C8 then binds C7, causing the complex, C5b-8, to insert into the 

membrane and form a small pore.  Multiple C9 molecules then bind the complex causing the 

formation of a large pore, the MAC, and lysis of the cell.  

Regulators of the Alternative Complement Pathway 

 The alternative complement pathway is both positively and negatively regulated by 

various factors.  Properdin is the only characterized natural positive regulator of the 

alternative pathway.  Properdin is a soluble plasma protein that directly binds both C3b, 

which increases its affinity for fB, and C3bBb, increasing its half-life more than ten-fold (26, 

51, 96).  Recent evidence has also demonstrated that properdin binds activating surfaces 

independently of C3b, thereby acting as a platform to recruit C3b and fB to the activating 

surface and initiate assembly of the C3 convertase (139).  Kimura et al. have established that 

serum from properdin deficient (properdin-/-) mice is incapable of alternative pathway 

complement activation in response to bacterial LPS or lipooligosaccharide (LOS) (71).  

Furthermore, Crry-deficient erythrocytes, which are susceptible to the alternative 

complement pathway in vivo, were not cleared when injected into properdin-/- mice.  The 

findings of these studies support an essential role for properdin in the initiation of the 

alternative complement pathway, in addition to its established role in C3 convertase 

stabilization. 
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 Several negative regulators of the alternative complement pathway are characterized, 

including fH, DAF, complement receptor 1 (CR1), and membrane cofactor protein (MCP) 

(96).  fH, a soluble plasma protein, directly interacts with C3b to cause displacement of Bb in 

the C3 convertase, resulting in destabilization and decay of the C3 convertase (108, 126, 158, 

159, 167).  fH also acts a cofactor for the serine protease fI, which cleaves C3b resulting in 

the formation of inactive C3b (iC3b) (Fig 1.3) (108, 126, 158, 159, 167).  Interestingly, when 

bound to C3b, properdin protects C3b from fH/fI mediated cleavage (96).  fH binding to C3b 

is primarily determined by the surface to which C3b is bound.  Deposition of “tickover” C3b 

is constantly occurring on host cell surfaces, but complement is not activated because 

negatively charged host cell surfaces rich in sialic acid promote binding of fH to C3b rather 

than fB (Fig 1.3).  Therefore, C3b is degraded when bound to host cell surfaces.  If C3b binds 

to the surface of invading microbes, which are deficient in sialic acid and are not negatively 

charged, fB favorably binds C3b rather than fH, promoting activation of the alternative 

complement pathway (96, 150).  

 DAF, a membrane anchored protein found on most cells including endothelial cells, 

erythrocytes, and leukocytes, protects the cells from the destructive effects of complement 

activation by directly binding the C3 convertase and accelerating its dissociation (34, 48, 52, 

102, 108).  CR1, a membrane anchored protein found on erythrocytes, monocytes, 

macrophages, lymphocytes, neutrophils, and eosinophils, acts as a decay accelerating factor, 

similar to DAF, and mediates fI degradation of C3b, similar to fH (25, 108, 126).  MCP, a 

membrane anchored protein found on circulating cells including platelets, granulocytes, 

lymphocytes, NK cells and monocytes, specifically binds C3b and acts as a cofactor for fI 

mediated degradation of C3b, similar to fH (96, 134, 135).  These negative regulators of the 
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alternative complement pathway serve important roles in protecting host cells from damage 

generated by inappropriate complement activation. 

 

1.7 Anti-complement Tick Salivary Proteins 

 Activation of the alternative complement pathway is an important host innate immune 

response triggered during tick feeding.  Ixodid and argasid ticks have evolved various 

mechanisms to inhibit complement activation, preventing the recruitment of inflammatory 

mediators and the induction of an inflammatory response.  I. scapularis saliva was originally 

found to specifically inhibit the alternative complement pathway as measured in vitro by the 

lysis of rabbit erythrocytes in the presence of NHS (116).  Additionally, Ribeiro also 

determined that C3b deposition on activating surfaces and C3a release were inhibited in the 

presence of I. scapularis saliva.  Several years later, Valenzuela et al. purified and 

characterized Isac from pooled SGE, which inhibited the alternative complement pathway 

(146).  Recombinant Isac (rIsac) expressed in transformed monkey kidney cells (COS-7) 

inhibited the alternative complement pathway by preventing the assembly of C3 convertases 

(C3bBb) on activating surfaces and dissociating preformed C3 convertases.  In addition to 

the anti-complement activity present in I. scapularis saliva, Lawrie et al. demonstrated that 

other ixodid tick saliva, specifically I. ricinus, I. hexagonus, and I. uriae saliva, also inhibited 

the alternative complement pathway (83).  I. ricinus SGE prevented the deposition of C3b on 

activator surfaces, the generation of C3a, and the cleavage of fB, suggesting inhibition of C3 

convertase formation (83, 84).  Recently, Daix et al. identified and expressed two members 

of a large family of anti-complement proteins in I. ricinus that share homology to Isac (20).  
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These proteins, Irac-1 and Irac-2, inhibit the alternative complement pathway by preventing 

the formation of C3 convertases and dissociating preformed convertases, similar to Isac. 

 Das et al. identified I. scapularis Isac homologues, Salp20 and Salp9, by screening a 

tick salivary gland cDNA library with serum from tick immune guinea pigs.  Salp20 and 

Salp9 have predicted masses of 20 kDa and 9 kDa, respectively, and share 83% and 50% 

identity to Isac at the amino acid level (21).  Together with Isac, Salp20 and Salp9 potentially 

comprise a family of I. scapularis anti-complement proteins, the ILP family.  In support of 

this observation, Soares et al. and Ribeiro et al. have identified several other potential 

members of this family that share sequence homology with Isac (117, 136).   

 The argasid tick, O. moubata, also expresses a salivary lipocalin, OmCI, which 

inhibits the classical and alternative complement pathways as measured by erythrocyte lysis 

(104, 127).  Recombinant OmCI produced in yeast cells contained N-linked glycosylations 

and prevented the generation of C5a in the presence of C5 convertases.  Nunn et al. further 

demonstrated that OmCI directly bound C5 preventing its cleavage by the C5 convertase.  

OmCI shares no homology with ILP family members or characterized regulators of 

complement. 

 

1.8 Saliva Activated Transmission of Pathogens  

 Not only do the anti-hemostatic, anti-inflammatory, and immunosuppressive 

components of tick saliva facilitate the tick during feeding, but they may also mediate saliva 

activated transmission (SAT) of various pathogens.  SAT is defined as the promotion of tick-

borne pathogen transmission through the action of tick salivary components on the host 

(105).  As the tick is salivating during feeding, it is secreting its anti-hemostatic, anti-
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inflammatory, and immunosuppressive components into the host and creating an 

immunosuppressed environment in which the pathogen enters.  Several tick-borne viruses 

and bacteria, including various species of Borrelia, have been shown to display enhanced 

infectivity in the presence of tick SGE (60-62, 82, 112).  In fact, I. scapularis Salp15 directly 

binds outer surface protein C (OspC) of B. burgdorferi, enhancing transmission of the 

pathogen to a murine host (115).  Currently, researchers are trying to characterize various 

tick salivary components with the goal of ultimately developing anti-tick vaccines that target 

different salivary components, potentially preventing successful tick feeding and pathogen 

transmission.     

 

1.9 Overview of thesis 

 A large family of I. scapularis salivary proteins related to Isac, the ILP family, which 

includes Salp20, has been discovered.  The function of additional related ILP family 

members and the necessity for such a large family of proteins during tick feeding are 

currently unknown.  As Salp20 and other ILP family members share substantial homology 

with Isac, it is likely they also display anti-complement activity.  Since ticks produce 

multiple members of this family, individual proteins likely display either structural or 

functional variability.  In order to address these possibilities, we have expressed several 

members of the ILP family and determined their functions.  In Chapter 2, we describe the 

expression and characterization of Salp20, which shares significant amino acid identity with 

Isac.  We also examine the potential role of this protein in the protection of various Borrelia 

species, suggesting a role for this salivary protein in pathogen transmission.  In Chapter 3, we 

determine the specific mechanism of complement inhibition used by Salp20.  We next 
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determine the functional activities and mechanisms of complement inhibition for additional 

ILP members in Chapter 4, with the goal of elucidating any differences that may exist 

between these family members.  We attempt to determine the purpose of producing multiple 

ILP family members.  Finally, in Chapter 5, we examine the necessity and importance of ILP 

family members during tick feeding.  We discuss the significance of these studies and the 

future goals of this project in Chapter 6.         
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Figure 1.1 Mouthparts and depictions of ticks.  A. Ventral and dorsal views of the 
mouthparts of Ixodes scapularis, containing the palps (P), chelicerae (C), and hypostome (H), 
are pictured.  B. Illustrations of representative “soft” and “hard” ticks are depicted.  Figure 
adapted from (137) and (42).       
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Table 1.1 Anti-hemostatic tick salivary proteins. 
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Table 1.2 Anti-inflammatory tick salivary proteins. 
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Table 1.3 Immunosuppressive tick salivary proteins. 
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Figure 1.2 The classical, alternative, MBL complement pathways.  The classical pathway is 
initiated when C1q binds surface bound IgG or IgM.  C1s and C1r then bind C1q, and C1s 
cleaves C4 into C4a and C4b.  C4b covalently binds an activating surface, allowing C2 to 
bind.  C2 is then cleaved by C1s, resulting in the formation of the C3 convertase, C4b2a.  
The MBL pathway is initiated when MBL binds carbohydrate residues on activating 
surfaces.  MASP-1 and MASP-2 then bind MBL, and MASP-2 cleaves C4 and C2 to form 
the C3 convertase, C4b2a.  The alternative pathway is initiated when C3b covalently binds 
activating surfaces.  Factor B then binds C3b and is cleaved by fD, resulting in the formation 
of the C3 convertase, C3bBb, which is stabilized by properdin.  The C3 convertase cleaves 
additional C3 molecules that opsonize surfaces, generate additional convertases, or bind C3 
convertases to produce C5 convertases.  C5 convertases cleave C5, which initiates activation 
of the late steps of complement and ultimately leads to the formation of MACs in the cell 
membrane.  Figure taken from (150) with permission from publisher.  
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Figure 1.3 Regulatory activities of fH and fI in the presence of bound C3b.  C3 is cleaved, 
generating C3b, which contains an exposed thioester group.  This thioester allows C3b to 
bind covalently to the surfaces of either host cells or invading microbes.  If C3b binds to host 
cell surfaces, which are typically negatively charged due to the presence of sialic acid, fH 
preferably binds to C3b.  fH then acts as a cofactor for fI mediated degradation of C3b into 
inactive C3b (iC3b) and C3f.  If C3b binds to microbial surfaces, which are typically not 
negatively charged due to a lack of sialic acids, fB preferably binds C3b.  fB is subsequently 
cleaved by fD, releasing Ba and leaving Bb bound to C3b, or the C3 convertase.  The C3 
convertase is stabilized by properdin and cleaves additional C3 molecules into C3b and C3a.  
C3b then binds more sites on the activating surface or binds the C3 convertase to form a C5 
convertase.  Figure taken from (150) with permission from the publisher.
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2.1 Abstract 

 Ixodes ticks are vectors of several pathogens including B. burgdorferi.  Tick saliva 

contains numerous molecules that facilitate blood feeding without host immune recognition 

and rejection.  We have expressed, purified, and characterized Salp20, a potential inhibitor of 

the alternative complement pathway that shares homology with the Isac protein family.  

When analyzed by SDS-PAGE and size exclusion chromatography, Salp20 was 

approximately 48 kDa, more than double its predicted mass, primarily due N- and O-linked 

glycosylations.  Recombinant Salp20 inhibited the alternative complement pathway by 

dissociating the C3 convertase, and partially protected a serum sensitive species of Borrelia 

from lysis by NHS.  We propose that Salp20 facilitates tick feeding and possibly protects 

tick-borne pathogens from complement components.

 



2.2 Introduction 

 The deer tick, I. scapularis, transmits several pathogens including Anaplasma 

phagocytophilum, Babesia microti, and B. burgdorferi, the causative agent of Lyme disease 

and most prevalent vector-borne pathogen in the United States and Europe (3, 36).  I. 

scapularis ticks typically feed on their natural hosts for several days without rejection by the 

host immune system due to several anti-hemostatic, vasodilatory, and immunosuppressive 

components present in their saliva (4, 7, 14, 35, 36). Salivary proteins capable of eliminating 

host pain and irritation at the feeding site include histamine binding proteins, apryases, 

prostaglandins, and kininases (16, 19, 22, 29).  In addition, tick saliva also impairs natural 

killer cell activity, reduces circulating and localized antibodies, suppresses T-cell 

proliferation, and decreases the production of Th1 cytokines (6, 7, 9, 21, 28, 36).  Ixodes sp. 

salivary gland extracts and saliva inhibit the alternative pathway of complement and prevent 

the production of anaphylatoxins (7, 11, 12, 19, 23, 36). 

An I. scapularis salivary protein, Isac, with a predicted mass of 18 kDa, inhibits the 

alternative pathway of complement by dissociating the components of the C3 convertase and 

preventing the deposition of C3b onto surfaces, similar to fH and factor H-like protein 1 (8, 

13, 28, 33).  The alternative pathway of complement is activated when C3b binds covalently 

through its reactive thioester to activating surfaces (5, 13, 24, 31, 32).  Surface bound C3b 

binds fB, which is then cleaved by fD, producing the cleavage products Bb and Ba.  Bb 

remains bound to C3b, while Ba is released.  The surface bound C3bBb complex, or C3 

convertase, cleaves additional C3 components producing more C3b that either binds to 

activating surfaces or to the C3 convertase, forming the C5 convertase.  The C5 convertase 

then initializes the formation of the MAC.   
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The alternative complement pathway can be initiated by metastable C3(H2O), a 

naturally occurring hydrolyzed C3 molecule.  C3(H2O) resembles C3b and binds fB in 

solution, allowing fB to then be cleaved by fD.  The resulting fluid-phase convertase, 

C3(H2O)Bb, then cleaves C3, releasing C3b that deposits onto surfaces activating the 

complement cascade (13, 17, 24).   

Invading microbes coated with C3b are either eventually lysed by the development of 

the MAC or phagocytosed by macrophages and neutrophils.  In addition to mediating lysis 

and opsonization of invading pathogens, the alternative complement cascade also leads to the 

production of anaphylatoxins, which are proinflammatory mediators that recruit neutrophils 

and monocytes to the site of complement activation (5, 13, 31, 32).   

Inhibition of the alternative complement pathway by I. scapularis is important for 

preventing host inflammation and immune recognition at the feeding site, allowing the tick to 

feed successfully to repletion.  In addition, inhibition of the alternative complement pathway 

by tick saliva during feeding potentially allows the successful transmission of pathogens 

throughout the feeding period of 5 days.   

Two other I. scapularis salivary proteins, Salp9 and Salp20, sharing homology with 

Isac were identified from a nymphal I. scapularis salivary gland cDNA library (4).  Salp9 is a 

protein with 50% similarity to Isac and a predicted mass of 8.8 kDa.  Salp20 is a protein with 

83% similarity to Isac and a predicted mass of 20.4 kDa.  These three salivary proteins, 

Salp9, Salp20, and Isac, are included in a large family of related I. scapularis salivary 

anticomplement proteins recently identified by Soares et al. (25) and Ribeiro et al. (20).  

Interestingly, when RNAi was used to silence isac in I. scapularis nymphs, tick feeding was 
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delayed and the average weight of engorged ticks was reduced, indicating the importance of 

anticomplement proteins for successful tick feeding (25).   

The goal of the current study was to identify the properties and characterize the 

functions of Salp20, which shares homology with the I. scapularis salivary anti-complement 

protein Isac.  We identified additional members of the Isac protein family that share 

homology with both Salp20 and Isac.  We demonstrated that recombinant Salp20 purified 

from the media of insect cells inhibits the alternative complement pathway by dissociating 

the components of the C3 convertase and preventing the cleavage of C3 and the deposition of 

C3b onto cell surfaces.  Additionally, we established that Salp20 protects serum sensitive 

strains of Borrelia from complement mediated lysis indicating that tick transmitted 

pathogens potentially benefit from the activity of Salp20 and related protein family members. 

 

2.3 Materials and Methods 

Ticks and tick saliva 

Ixodes scapularis ticks were raised as previously described by Sonenshine (26).  Tick 

saliva was produced following a modified protocol from Tatchell et al. (27).  Briefly, adult 

ticks were allowed to feed on New Zealand White rabbits for 5 days.  The ticks were 

removed and attached to glass slides with adhesive tape.  Capillaries were placed over the 

mouthparts, and ~1-2 µL of pilocarpine (25 mg/ml) and dopamine (25 mg/ml) in 95% 

ethanol were applied on the dorsum of the ticks. The ticks were allowed to salivate into the 

capillaries ~2 hrs. at 27oC in humidity chambers.  
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Cell lines and media 

 Adherent cultures of High Five cells (Invitrogen, Carlsbad, CA), derived from the 

cabbage looper, Trichoplusia ni, were seeded and maintained according to the instructions of 

the manufacturer.  The cells were grown in Express Five Serum free media (SFM) (Gibco, 

Carlsbad, CA) supplemented with L-glutamine (18 mM) (Gibco, Carlsbad, CA), penicillin 

(100 U/ml), streptomycin (100 µg/ml), and fungizone (0.25 µg/ml) (Gibco, Carlsbad, CA) at 

28oC.  

 Borrelia burgdorferi B31C1 and Borrelia garinii (ATCC, Manassas, VA) were 

grown and maintained in complete BSK-II media at 33oC as described by Ohnishi et al. (15).   

PCR from I. scapularis bacteriophage libraries 

   In order to construct the cDNA library from 48 hr fed nymphs, total RNA was first 

extracted from ~300 fed I. scapularis nymphs using the ToTALLY RNA extraction kit 

(Ambion, Austin, TX) according to the instructions of the manufacturer.  Isolation and 

purification of mRNA from total RNA was performed using the poly(A)Pure mRNA 

Purification Kit (Ambion, Austin, TX). The cDNA library from 48 hr fed nymphal ticks was 

subsequently constructed in the phagemid vector, pBK-CMV, using the ZAP Express cDNA 

Synthesis and ZAP Express cDNA Gigapack III Gold Cloning Kit (Stratagene, La Jolla, CA).  

The average size of an insert in the phagemid vector was approximately 1.8 kilobases (kb).  

The titer of the resulting phage library was 2.0 x109 plaque forming units (pfu)/ml with a 

complexity of 1.0 x 106 clones.  The method used to generate the cDNA library generated 

from fed nymph salivary glands has been described previously (4).   

 Products were PCR amplified from each of the bacteriophage libraries directly using 

the following primer sets: KS20F – 5` CCAGCCATGAGGACTGCGCT 3` and S20R – 5` 
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TCAGGAAATTGCCTCGAAT TGAGT 3`, and IsacF – 5` CACTGAGGTTC 

AGAGCAAG 3` and IsacR – 5` GTATCAGAACTGTGCTTGCAC 3`.  The Salp20 primers, 

KS20F and S20R, anneal to the 5` and 3` ends of the salp20 open reading frame (ORF), 

while the Isac primers, IsacF and IsacR, anneal upstream and downstream of the isac ORF, 

respectively.  After amplification, the PCR products were cloned into pCR2.1 TOPO 

following the instructions of the manufacturer (Invitrogen, Carlsbad, CA). Plasmids 

containing the PCR products were purified using the QIAprep Mini-Prep Kit (Qiagen, 

Valencia, CA) and then transformed into chemically competent E. coli TOP 10 cells.  

Transformants were selected and screened by restriction digests of plasmid DNA and PCR 

analysis using M13F and M13R primers (Invitrogen, Carlsbad, CA), which anneal outside of 

the multiple cloning region of pCR2.1 TOPO.  To determine the identity of the PCR 

products, plasmids containing inserts of the correct size were sequenced using the M13 

primers at the UNC-Chapel Hill Genome Analysis Facility.      

Expression and purification of recombinant Salp20 in High Five cells 

 To express Salp20 in High Five cells, we used an approach similar to Alarcon-

Chaidez et al. (1).  Salp20 was first PCR amplified from the pBlue vector using the following 

primers: KS20F – 5` CCAGCCATGAGGACTGCGCT 3`, and S20RNS – 5` 

GGAAATTGCCTCGAATGAGTCTC 3`.  The 5` primer contained a Kozak sequence to 

allow for efficient protein expression from the cloning vector, while the 3` primer lacked a 

stop codon to allow the fusion of a V5-epitope and 6X-histidine (His) tag to the C-terminus 

of the protein.  Once amplified, the PCR product was cloned into the expression pIB/V5-His-

TOPO (Invitrogen), which contains both ampicillin and blasticidin resistance genes allowing 

for selection in E. coli and High Five cells, generating the construct pIB-S20NS.  
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Constitutive expression of Salp20-V5-His (S20NS) was controlled by the Orgyia 

pseudotsugata baculovirus promoter, OpIE2.  The resulting construct, pIB-S20NS, was 

purified using the QIAfilter Plasmid Midi Kit (Qiagen, Valencia, CA) and transfected into 

High Five cells following the manufacturer’s protocol.  As a positive control for protein 

expression and purification, High Five cells were also transfected with pIB-CAT (Invitrogen, 

Carlsbad, CA), the pIB/V5-His vector containing chloramphenicol acetyltransferase (CAT).  

Stably transfected cells were selected and maintained by the addition of blasticidin (10 

µg/ml) to the cell culture media. 

 For protein purification, adherent cultures of stably transfected cells were grown to 

90% confluency in T-175 flasks.  Cells were then collected and seeded into 500 ml of culture 

media in 3L Fernbach flasks (Corning, Corning, NY) at a density of 5 x 105 cells/ml.  

Cultures were grown at 28oC with gentle agitation until reaching a density of 2-3 x 106 

cells/ml in 1L.  The media was then collected and centrifuged to remove all cells and debris.  

After centrifugation, the media was dialyzed 24 hrs. at 4oC against Ni-NTA Wash Buffer (50 

mM NaH2PO4, 300 mM NaCl, pH 8.0).  Throughout dialysis, the buffer was changed three 

times.  After dialysis, the media was loaded onto a 500 µL column of Ni2+-Nitriloacetic acid 

(Ni-NTA, Qiagen, Valencia, CA) agarose.  After all media passed through the column, the 

column was washed two times with 4 column volumes of Ni-NTA Wash Buffer, and eluted 

four times with ½ the column volume of Ni-NTA Elution Buffer (50 mM NaH2PO4, 300 

mM NaCl, 500 mM imidazole, pH 8.0).  All elutions were pooled and dialyzed 24 hrs. at 4oC 

against phosphate buffered saline (PBS) with two buffer changes.  After dialysis, the elution 

sample was concentrated using Amicon Ultra-15 YM-10 centrifugal filter devices (10 kDa 

MWCO, Millipore, Billerica, MA).  Protein concentrations and purity were determined by 
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Bradford analysis and SDS-PAGE, respectively.  The final concentration of protein was 50-

100 µg/ml.  Purified protein was stored at -20oC until needed.   

SDS-PAGE and Immunoblot or Lectin Blot Analysis 

 For SDS-PAGE, all samples were electrophoresed under reducing conditions by 

either 10% SDS-PAGE or 4-12% SDS-PAGE.  Gels were then stained using SimplyBlue 

SafeStain (Invitrogen, Carlsbad, CA) following the instructions of the manufacturer.  For 

immunoblots, following separation by SDS-PAGE under reducing conditions, samples were 

transferred to nitrocellulose membranes by semi-dry transfer at 380 mA for 60 min.  

Membranes were then blocked with 1X Tris-buffered saline (TBS), 2% milk for 12-16 hrs at 

4oC.  Mouse anti-V5 monoclonal antibody (Invitrogen, Carlsbad, CA) was diluted 1:5000 in 

1X TBS, 2% milk and incubated with membranes for 1 hr at room temperature.  Membranes 

were next incubated with alkaline phosphatase (AP) conjugated goat anti-mouse antibody 

(Sigma, St. Louis, MO) diluted 1:1000 in 1X TBS, 2% milk for 45 min at room temperature.  

For C3a blots, rabbit anti-human C3a antibody (CompTech, Tyler, TX) was diluted 1:1000, 

and secondary AP-conjugated goat anti-rabbit IgG (Sigma) was diluted 1:1000 in 1X TBS, 

2% milk.  For C3 blots, goat anti-human C3 antibody (CompTech, Tyler, TX) was diluted 

1:1000, and AP-conjugated rabbit anti-goat IgG (Sigma, St. Louis, MO) was diluted 1:25000 

following the same procedures as described.  Incubation times were the same as described 

previously.  Bound antibody was detected directly on the membranes using the phosphatase 

substrate, 5-bromo-4-chloro-3-indolyl-phosphate/nitroblue tetrazolium (BCIP/NBT) (KPL).  

For lectin blots, blots were subjected to the DIG Glycan Differentiation Kit (Roche, 

Indianapolis, IN) following the instructions of the manufacturer.  Briefly, blots were blocked 

and incubated with digoxigenin (DIG)-labeled lectins at various dilutions.  Blots were then 
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washed and incubated with AP-conjugated sheep anti-DIG Fab fragments.  Bands were then 

visualized with diluted NBT/X-phosphate staining solution.     

Deglycosylations with Peptide N-Glycosidase F (PNGase F) and 

trifluoromethanesulfonic acid (TFMS) 

 To remove N-linked glycans from S20NS, approximately 0.5 µg of purified S20NS 

from insect cells was digested with 30 U/µL of PNGase F (New England Biolabs, Ipswich, 

MA) following the instructions provided by the manufacturer.  Briefly, protein was denatured 

in 1X Glycoprotein Denaturing Buffer (0.5% SDS, 1% β-mercaptoethanol) (New England 

Biolabs, Ipswich, MA) for 10 min at 100oC.  The denatured protein was then incubated with 

PNGase F in 1X G7 Buffer (50 mM sodium phosphate, pH 7.5, New England Biolabs, 

Ipswich, MA) and 1% NP-40 for 24 hr at 37oC.  The deglycosylated protein was then 

analyzed by SDS-PAGE and immunoblots. 

 To remove N- and O-linked glycans from S20NS, 2 µg of S20NS were treated with 

the Glycoprofile IV Chemical Deglycosylation Kit containing TFMS according to the 

manufacturer’s instructions (Sigma, St. Louis, MO). 

Rabbit Erythrocyte Lysis Assays 

 RbEs (CompTech, Tyler, TX) were washed three times with 5 volumes of alternative 

pathway (AP) Buffer (5 mM MgCl2, 5 mM EGTA in gelatin veronal buffer (GVB), 

CompTech, Tyler, TX), and resuspended to a final concentration of 2.0 x 108 cells/ml in AP 

buffer.  Prior to performing the alternative pathway assays, the dilution of NHS (CompTech, 

Tyler, TX) resulting in 80-90% lysis of the RbEs was determined and used for experimental 

assays.  Experimental and control proteins were serially diluted in PBS and added to NHS in 

AP buffer.  For some experiments, equal amounts of C5 depleted (C5-/-) human serum 
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(CompTech, Tyler, TX) were used instead of NHS.  The volume of protein sample used for 

each reaction remained constant, keeping concentrations of divalent cations and chelators 

invariable.  The final volume of the mixture was 25 µl.  This mixture was then incubated 

with 25 µl of washed, resuspended RbEs (2 x 108 cells/ml) in disposable borosilicate glass 

culture tubes for 30 min at 37oC.  Control reactions contained RbEs (2 x 108 cells/ml) 

incubated with only NHS in AP buffer or AP buffer alone. After incubation, 75 µl of N-

saline (0.15 M NaCl) was added to each tube.  The tubes were then centrifuged at 1000 g for 

5 min to pellet all remaining intact RbEs.  Supernatants were collected and loaded into 96-

well plates.  The O.D. of the supernatants was measured at a λ of 405 nm. 

Human C3 or fB deposition ELISAs  

To determine if Salp20 inhibited the deposition of human C3 or fB onto surfaces, we 

performed deposition ELISAs using agarose coated plates following a modified protocol of 

Ribeiro and Valenzuela et al. (19, 28).  In the presence of polysaccharides, C3 is activated 

and covalently attaches to the sugars (30).  Factor B then noncovalently binds bound C3b.  

Since agarose is made of primarily galactose, C3 is activated in the presence of agarose and 

attaches covalently to agarose surfaces (19, 28).  Briefly, 96-well plates were coated with 100 

µl of 0.1% agarose in water.  The agarose in the plates was dried for 48 hrs at 37oC.  Once 

dry, 50 µl of AP buffer containing a 1:4 dilution of NHS, and either S20NS or CAT at 

various concentrations was added to the wells and incubated at 37oC for 30 min.  In some 

reactions, S20NS or CAT was added 30 min after the addition of NHS and the wells were 

incubated an additional 20 min at 37oC.  Control wells lacked NHS or contained 25 mM 

EDTA and NHS.  After incubation with NHS, the plates were washed 3 times, 5 min each on 

an orbital shaker, with 200 µl/well of 1X TBS containing 10 mg/ml bovine serum albumin 
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(BSA) and 2 mM MgCl2+.  After washing, 100 µl of a 1:1000 dilution of goat α-human C3 

antibody (CompTech, Tyler, TX) or goat α-human fB antibody (CompTech, Tyler, TX) in 

1X TBS, 10mg/ml BSA, 2mM MgCl2+ was added to each well and the plate was incubated 1 

hr at 37oC.  The plate was then washed 3 times as previously described, and 100 µl of either a 

1:5000 or 1:1000 dilution of an AP-conjugated rabbit α-goat IgG (Sigma, St. Louis, MO) 

was added to each well.  The plate was incubated 45 min at 37oC.  Following the incubation, 

the plate was washed 2 times, 5 min each, with 200 µl/well of 1X TBS, 10 mg/ml BSA.  The 

plate was next washed once with 1X TBS, 10 mg/ml BSA, 0.1% Tween followed by an 

additional wash with N-saline.  After washing, 100 µl of Sigma Fast p-Nitrophenyl 

phosphate (PNPP, Sigma, St. Louis, MO) was added to each well and the plate was incubated 

at room temperature for 15 min.  After incubation, the O.D. was measured at a λ of 405 nm.    

Bactericidal Assays 

 Bactericidal assays were performed following a modified protocol of Brooks et al (2).  

Briefly, B. burgdorferi (serum resistant) and B. garinii (serum sensitive) were grown in BSK-

II media at 33oC to a density of 1-5 x 107 cells/ml.  Cells were collected and washed 2 times 

with serum free BSK-II.  Cells were then resuspended at a density of 1 x 107 cells/ml in 

serum-free BSK-II containing either 20% NHS, 20% heat-inactivated NHS (HI NHS), 

S20NS (10 µg/ml), CAT (10 µg/ml), or 1X PBS.  The bacteria were then incubated at 33oC 

for 1 hour in the presence of NHS, HI NHS, or NHS and S20NS or various controls.  After 

incubation, live bacteria were counted by dark field microscopy.  Spirochetes were 

considered live if they were moving and maintained their morphology and refractiveness.  

The lower detection limit of the assay was 5 x 104 cells/ml.   
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2.4 Results 

Isac and Salp20 are members of a large family of proteins 

 Soares et al. (25) and Ribeiro et al. (20) have identified multiple cDNA clones from 

adult and nymphal cDNA libraries that share homology with Isac and Salp20.  In this study, 

we have discovered an additional 15 unique clones related to Isac and Salp20, increasing the 

size of the Isac protein family.  In order to identify members of this family, we PCR 

amplified products using two primer sets, S20F & S20R and IsacF & Isac R, from two 

different cDNA libraries, one generated from the salivary glands of fed I. scapularis nymphs 

and the other from whole fed I. scapularis nymphs.  We sequenced the PCR products and 

identified 15 unique clones sharing homology with Isac and Salp20 (Fig 2.1).  The translated 

amino acid sequences of each of the isolated clones ranged from 69-95% sequence similarity 

to Isac and Salp20.  Twelve of the 15 unique clones contained a 5-10 amino acid deletion at 

positions 134 through 146 (Fig 2.1).  Additionally, S20Lclone 5 contained a frameshift 

mutation at position 171 altering the location of the stop codon by 3 amino acids.  In all of 

the clones identified, a putative secretion signal was present, four cysteines in the mature 

protein were conserved, and four of the seven N-linked glycosylation sites found in Isac and 

Salp20 were maintained (Fig 2.1).  

Production and purification of Salp20 from E. coli and High Five cells 

In order to determine if other members of the Isac protein family shared the 

complement inhibitory properties of Isac, we expressed recombinant Salp20 in insect cells 

for use in functional assays.  For insect cell expression, a V5 epitope and 6X-histidine tag 

were fused to the C-terminus of Salp20, which was expressed with its native putative N-

terminal secretion signal.  Insect cells were stably transfected with pIB-S20NS vector to 
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produce recombinant Salp20-V5-His (S20NS).  To evaluate expression of S20NS, cell 

lysates and media were collected and analyzed by Western blot analysis using a monoclonal 

antibody directed against the V5-epitope tag (Fig 2.2).  As seen in the blot, S20NS is present 

as a smear in the media of the transfected cells due to its native secretion signal.  Some 

S20NS is also found in the cell lysates.   

To purify S20NS from cell media, we subjected media from stably transfected cells to 

immobilized-metal affinity chromatography.  All fractions were collected and analyzed by 

SDS-PAGE (Fig 2.3).  Roughly 50-100 µg of S20NS was purified from 1 liter of cell media.  

Unexpectedly, S20NS was approximately 48 kDa, much larger than the expected size of 24 

kDa, which is the mass of Salp20 containing the C-terminal V5-epitope and 6X-histidine tags 

(4 kDa) (Fig 2.3).  Size exclusion chromatography also indicated that the mass of the protein 

was approximately 48 kDa (data not shown).  In order to confirm the identity of S20NS, the 

purified protein sample was analyzed by mass spectroscopy at the UNC-Duke Michael 

Hooker Proteomics Center.  By mass spectroscopy, we attained 30% peptide coverage of 

S20NS, with the majority of the peptides corresponding to only S20NS (data not shown).  

Glycosylation Status of S20NS 

 We believed S20NS was approximately 48 kDa rather than 24 kDa due to post-

translational modifications, including N-linked and O-linked glycosylations.  Sequence 

analysis of S20NS reveals 7 potential N-linked glycosylation sites based on the consensus 

sequence Asn-X-Ser/Thr (Fig 2.1) and 8-14 O-linked glycosylation sites within the C-

terminus (20) as predicted by NetOGlyc 3.1 server, indicating the protein could display a 

large mass due to presence of carbohydrates.  In addition, when analyzed by Western blots, 

S20NS appears as a smear possibly representing differentially glycosylated forms of the 
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protein (Fig 2.2).  To determine if N-linked sugars were responsible for the size increase of 

S20NS, we digested S20NS with PNGase F, a glycosidase that removes N-linked 

carbohydrates.  After digestion with PNGase F, S20NS shifted from 48 kDa to approximately 

38 kDa (Fig 2.4A), indicating S20NS contained N-linked glycosylations.  However, the 

protein did not shift to the expected size of 24 kDa.  In addition, mass spectroscopy of 

S20NS treated with PNGase F indicated the addition of N-linked carbohydrates at 2 potential 

sites. 

 In order to determine if S20NS contained O-linked glycosylations in addition to N-

linked glycosylations, we treated S20NS with trifluoromethanesulfonic acid (TFMS), which 

removes N- and O-linked glycans without destroying the peptide backbone.  After TFMS 

treatment, S20NS shifted from 48 kDa to approximately 30 kDa (Fig 2.4A), indicating both 

N- and O-linked glycosylations were primarily responsible for the size shift of S20NS.  The 

smear below 30 kDa after S20NS was treated with TFMS is most likely the result of protein 

degradation (Fig 2.4A).   

To confirm S20NS contained both N- and O-linked glycans, we subjected S20NS and 

S20NS digested with PNGase F or treated with TFMS to lectin blotting using the lectin 

Glanthus nivalis agglutinin (GNA), which recognizes terminal mannose residues.  GNA 

recognized S20NS and S20NS treated with PNGase F (Fig 2.4B), indicating PNGase F 

partially removed N-linked carbohydrates, leaving O- and some N-linked sugars on S20NS.  

After TFMS treatment, S20NS was no longer recognized by GNA (Fig 2.4B), suggesting all 

carbohydrates, both N- and O-linked had been removed.        

 60



Alternative Complement Pathway Assays with S20NS 

Small quantities of I. scapularis saliva are capable of inhibiting the alternative 

pathway of complement (Fig 2.5A).  Valenzuela et al. (28) demonstrated that Isac, a tick 

salivary protein with 83% amino acid sequence similarity to Salp20, inhibited the alternative 

complement pathway.  To determine if S20NS inhibited the alternative complement pathway, 

we incubated RbEs with NHS and S20NS in the presence of Mg2+.  After incubation, we 

removed any whole cells or cellular debris by centrifugation.  We then calculated the percent 

lysis of the RbEs by measuring the optical density of the supernatants.  As little as 0.625 

µg/ml of S20NS inhibited the alternative complement pathway by approximately 70% (Fig 

2.5B), indicating S20NS functions similarly to Isac.  Interestingly, the percent inhibition by 

S20NS did not increase beyond 70% with increasing concentrations of S20NS.  Cell culture 

media from chloramphenicol acetyltransferase-V5-His (CAT) expressing High Five cells that 

was subjected to the same purification procedures as S20NS media and E. coli expressed 

Salp20 did not inhibit RbE lysis at any concentration (Fig 2.5B and data not shown, 

respectively), indicating that only S20NS produced in insect cells had anti-complement 

activity.  S20NS did not inhibit the classical complement pathway (data not shown), 

consistent with Isac, tick saliva, and salivary gland extracts (11, 34). 

Effect of S20NS on the cleavage and activation of C3 

 Since S20NS inhibited the alternative complement pathway, we next wanted to 

determine the step of the alternative pathway that was blocked by S20NS.  Activation of the 

alternative pathway begins with the covalent attachment of C3b to activating surfaces (13, 

24, 31, 32).  fB then binds surface bound C3b, allowing cleavage of fB into Bb and Ba by fD.  

The surface bound C3bBb complex, C3 convertase, then cleaves additional C3, allowing 
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amplification of the pathway by the deposition of more C3b onto surfaces.  In order to 

examine the cleavage state of C3 in the presence of S20NS, we analyzed supernatants and 

erythrocyte cell pellets from RbE lysis assays by immunoblots. We performed the RbE lysis 

assays with C5 (C5-/-) depleted human serum to allow deposition of C3b on cell surfaces but 

prevent complete lysis of the erythrocytes by the membrane attack complex.  Supernatants 

and cell pellets were subjected to Western blot analysis to determine if C3 was cleaved into 

C3a and C3b, and if C3b deposition occurred on RbE surfaces.  At a concentration of 10 

µg/ml, S20NS significantly reduced the production of C3a from the cleavage of C3 when 

compared to reactions containing only PBS as indicated by the lower band (Fig 2.6A).  When 

present in lower concentrations, S20NS had little effect on C3 cleavage.  In the blots, the 

upper band represents the α-chain of C3 and the middle bands represent the α-chain of 

iC3(H2O) and an α-chain degradation product of C3 (~ 45 kDa).    

C3 and C3b are composed of two chains, the α- and β-chains (13).  When activated, 

the α-chain of C3 covalently attaches to a surface through its reactive thioester.  The β-chain 

of C3 remains attached to the covalently bound α-chain by a disulfide bond.  In the blot 

shown, S20NS (10 µg/ml) prevented the covalent attachment of the C3b to RbE surfaces 

when compared to pellets from reactions containing only PBS, as indicated by the upper 

arrow representing covalently attached C3b α-chains  (C3 α`-chains) and the middle arrow 

representing C3b β-chains. (Fig 2.6B).  Under the reducing conditions of SDS-PAGE, the β-

chain dissociates from the α-chain of C3b.  The lower arrow indicates C3b α-chain 

degradation products.  Purified CAT protein containing the C-terminal V5 epitope and 6X-

His tag (CAT) had no effect on the cleavage of C3 or the deposition of C3b at equivalent 

concentrations.  No protein was detected in the reaction containing NHS and PBS because no 
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cell pellet formed due to presence of all complement components, including C5, in NHS 

causing complete lysis of the erythrocytes.   

To further determine how S20NS was acting to prevent C3a production and C3b 

deposition, we performed C3 and fB deposition ELISAs following the protocol of 

Valenzuela et al. (28).  In this system, C3 is activated in the presence of Mg2+ and agarose 

and covalently deposits to agarose coated wells of a 96-well plate (28, 30).  Factor B then 

noncovalently attaches to agarose-bound C3b, forming the C3 convertase.  S20NS (10 

µg/ml) inhibited the deposition of both C3b and fB when added immediately with NHS to the 

agarose coated wells (Fig 2.7A and 2.7B, respectively).  However, when added 30 min after 

the addition of NHS, S20NS (10 µg/ml) did not displace covalently bound C3b from the 

agarose (Fig 2.7A).  Interestingly, S20NS (10 µg/ml) displaced fB from covalently bound 

C3b when added 30 min after the addition of NHS (Fig 2.7B). These data indicate S20NS 

works similarly to Isac, dissociating fB from covalently bound C3b and disrupting the 

activity of the C3 convertase. 

Borreliacidal Assays with S20NS 

 Recently, Kyckova et al. have demonstrated I. ricinus salivary gland extracts protect 

B. afzelii from complement mediated lysis in vitro (10).  Since S20NS is an I. scapularis 

salivary protein secreted into a host during feeding and pathogen transmission, the 

anticomplement activity of S20NS could potentially protect vector transmitted pathogens 

from complement mediated killing.  To address this hypothesis, we performed bactericidal 

assays with NHS, S20NS (10 µg/ml), and a serum sensitive species of Borrelia.  In the 

presence of 20% NHS, S20NS protected Borrelia garinii, a serum sensitive species of 

Borrelia causing Lyme disease in Europe, from complement mediated killing by 
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approximately 70% (Fig 2.8).  B. burgdorferi, a serum resistant species of Borrelia, was 

unaffected by NHS in presence or absence of S20NS.  

         

2.5 Discussion  

In the current study, we identified additional members of the ILP family previously 

characterized by Soares et al. (25) and Ribeiro et al.(20).  All family members identified 

except Salp9 possess putative secretion signals, contain 4 conserved cysteines in the mature 

protein, and retain at least four of the seven N-linked glycosylation sites.  An individual tick 

may express many or all of these genes, with expression patterns that change over time or in 

different tissues.  Alternatively, proteins encoded by genes of this family with potentially 

similar functions within an individual tick may display antigenic variation, which may be 

needed to escape host immune responses during prolonged feeding periods.  However, since 

the family members were isolated from cDNA libraries generated from hundreds of nymphal 

ticks, variation in the sequences may be a result of genetic variation between individual ticks, 

rather than each tick possessing several family members.   

 In this work, we also successfully produced and purified Salp20 from E. coli and 

High Five insect cells.  Only the protein produced in insect cells had functional activity.  

Furthermore, the insect expressed protein had an approximate molecular weight of 48 kDa, 

unlike the expected molecular weight of 24 kDa.  N- and O-linked glycosylations were 

primarily responsible for the increased molecular mass.   S20NS may contain other post-

translational modifications since removal of all carbohydrates shifted the protein to 

approximately 30 kDa, rather than 24 kDa.  Interestingly, other members of this salivary 

protein family also appear to have increased masses as Isac was approximately 45 kDa, even 
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though the predicted size was only 18.5 kDa (29) and additional family members identified 

in this study have larger masses than predicted when expressed in High Five cells (data not 

shown). 

 We found S20NS inhibited the alternative pathway of complement but not the 

classical pathway.  The protein inhibited the alternative pathway by preventing the cleavage 

of C3 into C3a and C3b, thereby preventing the deposition of C3b onto RbE surfaces.  

Further investigation demonstrated S20NS dissociated fB from covalently bound C3b, 

disrupting the C3 convertase.  This mechanism of inhibition is similar to fH and the 

mechanism previously demonstrated for Isac (28). 

Inhibition of the alternative pathway by a family of I. scapularis complement 

inhibitors including both Isac and Salp20 potentially allows successful feeding of the tick by 

limiting the production of an inflammatory response at the site of tick feeding.  In fact, 

Soares et al. (25) reported that RNAi mediated silencing of Salp20 in ticks interfered with 

successful tick feeding.  In addition to allowing for successful tick feeding, inhibition of the 

alternative complement cascade by I. scapularis salivary proteins may also allow successful 

pathogen transmission from an infected tick.  Ramamoorthi et al. (18) have demonstrated 

Salp15, an I. scapularis salivary protein, binds B. burgdorferi surfaces and significantly 

enhances its transmission to a host during tick feeding.  In this work, we have demonstrated 

that serum sensitive species of Borrelia survive killing by human complement components in 

the presence of recombinant Salp20, indicating this family of proteins potentially facilitates 

efficient pathogen transmission during tick feeding.     

At this time, we are interested in determining the importance and necessity of the 

large family of salivary proteins that possibly inhibit host complement.  We are currently 
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investigating whether other family members block the alternative complement pathway in a 

manner similar to both Isac and Salp20.  Furthermore, we are interested in determining if any 

of these family members display antigenic variation or posses other activities that may be 

essential for successful tick feeding and/or pathogen transmission.   
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Figure 2.1 Amino acid alignment of Salp20, Isac, and cDNA clones related to both Salp20 
and Isac. Clones identified by PCR analysis from whole tick and salivary gland cDNA 
libraries were aligned with Salp20, Isac, and cDNA clones previously identified by Soares et 
al. (25).  Boxed light gray residues indicate conserved amino acids in all clones, and dark 
gray boxed residues indicate conservation among some of the clones.  The putative secretion 
signals of Salp20, Isac, and all cDNA clones are boxed.  Potential N-linked glycosylation 
sites are marked by arrows and cysteines conserved in the mature proteins of all clones are 
indicated asterisks.       
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Figure 2.2 Expression of Salp20 in High Five (Trichoplusia ni) cells.  Western blot analysis 
of either media or cell lysates from cultures of High Five cells stably transfected with pIB-
CAT (CAT) (~ 34 kDa), pIB-S20NS (S20NS) (~ 48 kDa).  Blots were probed with mouse α-
V5 IgG (1:5000), washed, and subsequently probed with AP-conjugated goat α-mouse IgG 
(1:1000).  
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Figure 2.3 Purification of S20NS from transfected High Five cell media.  Media from 
transfected High five cells was dialyzed and then subjected to immobilized metal affinity 
chromatography.  Fractions were collected and subjected to SDS-PAGE analysis followed by 
Simply Blue Staining.  F.T. – flow through, W1 – wash 1, E1 – elution 1.    
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Figure 2.4 Deglycosylations and lectin blotting of S20NS.  For deglycosylations, S20NS was 
either digested with PNGase F overnight at 37oC or treated with TFMS for 3 hrs at 4oC.  The 
glycosylated and deglycosylated proteins were subjected to 10% SDS-PAGE and Western 
blot analysis with a monoclonal mouse anti-V5 antibody (1:5000) (A) or lectin blot analysis 
with DIG-labeled GNA (1:1000) and AP-conjugated anti-DIG sheep Fab fragments (1:1000) 
(B).   
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Figure 2.5 RbE Lysis Assays with I. scapularis saliva (A) or S20NS (B).  Various amounts 
of tick saliva (A) or various concentrations of S20NS or a negative control protein, 
glutathione-S-transferase (GST), (B) were incubated with RbEs and NHS (1:4) in the 
presence of Mg2+ for 30 min at 37oC.  The O.D. of supernatants from pelleted cells after lysis 
had occurred was measured and the percent lysis was calculated.  The RbE lysis assay with 
S20NS (B) is a representative experiment of 10 different experiments giving similar results.  
The error bars for each assay depict the standard deviation of the mean O.D. value of 
triplicates.   
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Figure 2.6 Activation of C3 and deposition of C3b on RbE surfaces during RbE lysis assays 
using C5 depleted human serum.  (A) Supernatants from RbE lysis assays using C5-/- human 
serum were collected and subjected to Western blot analysis with rabbit α-human C3a 
antibody (1:1000) and AP-conjugated goat α-rabbit IgG (1:1000).  C3a (10 kDa), C3 α-
chains (~ 110 kDa), iC3(H2O ) α-chains (~ 77 kDa), and C3 α-chain degradation products (~ 
45 kDa) are all indicated by the arrows.  (B) Pellets from the lysis assays were collected, 
washed, resuspended, and subjected to Western blot analysis using goat α-human C3 
antibody (1:1000) and AP-conjugated rabbit α-goat IgG (1:25000). Covalently attached C3 
α-chains (α`), C3 β-chains (~ 76 kDa), and α-chain degradation products (~ 45 kDa) are 
indicated by the arrows.  As a positive control for activation of the alternative pathway and 
lysis of the RbEs, NHS was used instead of C5-/- human serum in both (A) and (B). 
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Figure 2.7 Deposition of human C3 (A) or Factor B (B) in the presence of recombinant 
S20NS.  NHS (1:4) in AP Buffer was added to agarose coated wells and either S20NS or 
CAT (10 µg/ml) were added to the wells of a 96-well plate either immediately with NHS (0 
min) or 30 min after NHS (30 min).  (A) Plates were washed and incubated with a primary 
goat α-human C3 antibody (1:1000) and a secondary rabbit α-goat AP conjugated antibody 
(1:1000).  (B) Plates were washed and incubated with a primary goat α-human fB antibody 
(1:5000) and a secondary rabbit α-goat IgG AP conjugated antibody (1:1000).  Each graph 
depicts a single experiment performed in triplicate that is representative of 4 experiments 
with similar results.  The error bars represent the standard deviation of the mean O.D value.  
The asterisks represent statistically significant differences between negative controls (0 
µg/ml) and S20NS samples (10 µg/ml) at each timepoint where p<0.05. 
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Figure 2.8 Borreliacidal assays in the presence of S20NS.  B. burgdorferi (serum resistant) 
or B. garinii (serum sensitive) at a density of 1 x 107 cells/ml were incubated with 20% NHS 
for 1 hour at 33oC in the absence or presence of 10 µg/ml of S20NS or CAT.  As a negative 
control for killing, cells were also incubated with 20% heat inactivated NHS (HI NHS).  
After incubation, live cells were counted by dark field microscopy and cell densities were 
determined.  The lower detection limit of the assay was 5 x 104 cells/ml.  The results depict a 
single experiment performed in duplicate that represents 3 experiments with similar results.  
The error bars represent the standard deviation of the mean cell density.  The asterisk 
represents statistically significant difference between the NHS and S20NS+NHS groups 
where p<0.06.
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3.1 Abstract 

Ixodes scapularis Salp20 is a member of the ILP family that inhibits the alternative 

complement pathway.  In this study, we demonstrate that the target of Salp20 is properdin.  

Properdin is a natural, positive regulator of the alternative pathway that binds to the C3 

convertase, stabilizing the molecule. Salp20 directly bound to and displaced properdin from 

the C3 convertase.  Displacement of properdin accelerated the decay of the C3 convertase, 

leading to inhibition of the alternative pathway.   S20NS is distinct from known decay 

accelerating factors, such as DAF, CR1, and fH, which directly interact with either C3b or 

Bb.  

 



3.2 Introduction

Ixodes ticks are efficient vectors of various pathogens, including B. burgdorferi, the 

causative agent of Lyme disease (1, 2).  Tick saliva contains multiple proteins that modulate 

host immunity and hemostasis, which facilitate blood feeding and pathogen transmission (3).  

One property of tick saliva is inhibition of the alternative complement pathway (4-6).  Isac, 

Salp20, Irac-1, and Irac-2 are members of a large family of homologous proteins, referred to 

as the ILP family, that specifically inhibit the alternative pathway by dissociating the 

components of the C3 convertase, C3b and Bb (7-11).  While preventing the activation of the 

alternative pathway, Salp20 also protects B. garinii from complement mediated killing by 

NHS (10), suggesting these anti-complement proteins facilitate tick feeding as well as 

pathogen transmission and survival.  

 In this work, we have characterized the specific mechanism by which Salp20 inhibits 

the alternative pathway.  We demonstrate that Salp20 directly binds to properdin, a positive 

regulator of the alternative pathway.  Salp20 displaces properdin from the C3 convertase, 

thus accelerating the decay of the alternative pathway C3 convertase.   

 

3.3 Materials and Methods 

Recombinant proteins, purified proteins, and antibodies 

 S20NS and CAT were expressed and purified from stably transfected High Five cells 

as described previously (10).  Recombinant protein purity was determined by SDS-PAGE, 

while purified protein concentrations were determined by Bradford analysis.  Purified human 

complement components – C3b (cat no. A114), fB (cat no. A135), fD (cat no. A136), and 

properdin (cat no. A139) – and antibodies directed against the complement components – 
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goat α-human C3 (cat no. A213), goat α-human fB (cat no. A235), and goat α-human 

properdin (cat no. A239) were obtained from CompTech (Tyler, TX).  Mouse α-His IgG was 

obtained from Qiagen and mouse α-V5 IgG was obtained from Invitrogen (Carlsbad, CA).       

Assays to measure the decay of C3 convertases  

To measure the decay of C3 convertases formed from complement components in NHS  in 

the presence of S20NS, ELISAs were performed as described previously (9, 10).  Briefly, 

microtiter plates were coated with 0.1% agarose for 48 h at 37oC.  To form C3 convertases in 

the wells, the agarose coated wells were then incubated with NHS in AP Buffer (gelatin 

veronal buffer with Mg2+ and Ca2+ [GVB++, CompTech, Tyler, TX], 5 mM EGTA, 5 mM 

MgCl2) for 1 h at 37oC.  The plate bound convertases were subsequently washed and 

incubated with various concentrations of S20NS for 30 min at 37oC.  After incubation, the 

wells were washed with Wash buffer (TBS, 10 mg/ml BSA, 2 mM MgCl2), and any 

remaining plate-bound Bb or properdin were detected by standard ELISA methods using 

either a primary goat α-human fB Ab or a goat α-human properdin Ab, followed by a 

secondary AP-conjugated rabbit α-goat IgG.  OD405 values were determined and percent 

deposition was calculated using the following equation: ((OD405 sample – OD405 NHS with 

25mM EDTA)/(OD405 sample without S20NS or CAT – OD405 NHS with 25mM EDTA)) x 

100. 

To measure the decay of C3 convertases formed from purified components in the 

presence of S20NS, we performed an ELISA adapted from Hourcade et al. (12).  Microtiter 

plate wells were coated with 250 ng/well of C3b in PBS for 12 h at 4oC.  After coating, the 

wells were washed with PBS and then blocked for 15 min at 23oC with Binding buffer (PBS, 

75 mM NaCl, 5mM NiCl2, 4% BSA, 0.05% Tween-20).  To form the C3 convertase, fB (400 
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ng/well) and fD (25 ng/well) in Binding buffer were added to the wells and incubated at 37oC 

for 2 h.  The wells were subsequently washed with PBS and then incubated with various 

concentrations of S20NS, CAT, or fH in Binding buffer for 30 min at 37oC.  The wells were 

washed with TBST (TBS, 0.2% Tween-20), and the OD405 was determined for any remaining 

Bb by ELISA using specific antibodies.  Percent deposition was calculated using the 

following equation: ((OD405 sample – OD405 C3b coated wells)/(OD405 sample without 

S20NS or CAT – OD405 C3b coated wells)) x 100. 

In some assays, properdin was included in the formation of the C3 convertase from 

purified complement components.  After coating the wells with C3b, fB (50 ng/well), fD (25 

ng/well), and properdin (50 ng/well) in Mg2+ Binding buffer (PBS, 75 mM NaCl, 10 mM 

MgCl2, 4% BSA, 0.05% Tween) were incubated in the wells for 2 h at 37oC.  Plate bound Bb 

and properdin were detected by standard ELISAs.  In these assays, the concentration of fB 

was lower than in the assays lacking properdin because properdin stabilized the C3 

convertase more efficiently than the substitution of Mg2+ with Ni2+ in the assays lacking 

properdin.  Since the convertase was stabilized more efficiently, less fB was needed to 

achieve equivalent OD405 readings for fB deposition between the two assays.  Percent 

deposition was calculated as described above.  To form C3b-properdin (C3bP) complexes, 

plates were coated with C3b as described above and properdin (50 ng/well) was subsequently 

added.  Bound properdin was detected as described.   

Cofactor activity assays  

 To investigate the cofactor activity of S20NS during fI mediated degradation of C3b, 

cofactor activity assays were performed following a modified protocol of McRae et al. (13).  

Briefly, 200 ng of C3b was incubated with various concentrations of S20NS, fH, or CAT and 

 81



400 ng of fI in reaction buffer (10 mM Tris-Cl pH 7.5, 150 mM NaCl) for 30 min at 37oC.  

After incubation, C3b degradation products were analyzed by immunoblots using a primary 

goat α-C3 Ab and a secondary AP-conjugated rabbit α-goat IgG.  

To determine if S20NS degraded C3b in the presence of fH, 200 ng of C3b were 

incubated with 400 ng of either S20NS or fI and 1 µg of fH in reaction buffer for 30 min at 

37oC.  C3b degradation products were then detected by immunoblotting. 

Assays to detect Salp20 binding to properdin 

 To detect direct binding of S20NS to properdin, we performed immunoprecipitations 

and analyzed the precipitates by immunoblot.  S20NS (150 ng) was incubated with properdin 

(450 ng) at 37oC for 30 min in Binding buffer (PBS, 75 mM NaCl, 10 mM MgCl2, 0.05% 

Tween) and then added to blocked Protein-A sephadex beads (Sigma, St. Louis, MO) coated 

with 1 µg of mouse α-V5 IgG for 1 hour at 37oC.  The sephadex beads were washed and 

resuspended in non-reducing SDS-PAGE loading dye.  Samples were subjected to SDS-

PAGE and immunoblotting with antibodies specific for either S20NS or properdin. 

As an alternative method to detect S20NS binding to properdin, microtiter plate wells 

were first coated with 100 ng/well of S20NS, CAT, or C3b for 12 h at 4oC.  The wells were 

then blocked and incubated with 100 ng/well properdin for 1 h at 37oC.  After incubation, the 

wells were washed.  To detect plate bound properdin, the wells were incubated with a 

primary goat α-properdin Ab and a secondary AP-conjugated rabbit α-goat IgG.  

Saturation Binding Assays 

  To determine the relative binding affinity of properdin for either S20NS or C3b, we 

performed a solid-phase binding assay.  Microtiter plates were coated with a saturating 

amount of either S20NS (10 ng/well) or C3b (10 ng/well) for 12 hrs at 4oC in 0.1M 
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Carbonate Binding Buffer, pH 9.2.  After coating, the wells were blocked with Binding 

buffer for 1 hr at 37oC and then incubated with increasing concentrations of properdin in 

Binding buffer (PBS, 75 mM NaCl, 10 mM MgCl2, 0.05% Tween) at 37oC for 1 hr  The 

wells were then washed with TBST, and bound properdin was detected by an ELISA using a 

primary goat α-human properdin Ab and a secondary AP-conjugated rabbit α-goat Ab.  

Development of the substrate was stopped after 3 min by the addition of 3M NaOH.  The 

OD405 was determined and plotted, and relative Kd values were calculated using GraphPad 

Prism 4 (GraphPad Software).          

 

3.4 Results  

S20NS specifically inhibits the alternative complement pathway by dissociating the C3 

convertase   

 Isac and related tick salivary proteins, including S20NS, specifically inhibit the 

alternative complement pathway by dissociating the components of the C3 convertase (5, 9-

11).  In the current study, the mechanism of inhibition of the alternative pathway by S20NS 

was confirmed by performing an agarose based ELISA as described previously (9).  In this 

assay, C3 present in NHS is activated by agarose coated microtiter plates.  C3 activation 

leads to the formation of an active convertase on the agarose consisting of covalently bound 

C3b and Bb (9).  When increasing concentrations of S20NS were incubated with preformed 

covalently bound C3 convertases, the amount of bound Bb was reduced (IC50 of S20NS = 0.8 

µg/ml) (Fig 3.1).  Equal concentrations of purified recombinant CAT protein, a negative 

control protein expressed from the same expression vector as S20NS in High Five cells, did 

not disrupt the C3 convertase. Previous studies have demonstrated that covalently attached 
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C3b is unaffected in the presence of S20NS (10).  Together, these results indicate that S20NS 

inhibits the alternative complement pathway by specifically dissociating Bb from the C3 

convertase, similar to the activity of Isac and related family members (9-11).  Since the IC50 

of S20NS = 0.8 µg/ml, we chose to use concentrations of either 1 or 2 µg/ml of S20NS for 

subsequent experiments.       

S20NS is a unique regulator of the alternative pathway  

Since S20NS and Isac inhibit the alternative pathway by dissociating Bb from the C3 

convertase, it has been hypothesized that Salp20 and Isac act in a manner similar to fH, a 

natural negative regulator of the alternative pathway (9).  Human fH is a serum glycoprotein 

that directly binds C3b, displacing Bb and causing decay acceleration of the C3 convertase 

(14, 15).  In addition, fH also acts as a cofactor for fI mediated degradation of C3b (14, 16, 

17).  To determine if S20NS acted by the same mechanism as fH, we performed ELISAs to 

measure the decay of C3 convertases in the presence of S20NS or fH.  In these assays, we 

formed C3 convertases in the wells of microtiter plates from purified complement 

components (C3b, fB, and fD) and then incubated S20NS or various control proteins with the 

convertases.  After the incubation, we detected any remaining bound Bb in the convertases 

by ELISA.  The C3 convertases formed from purified components were disrupted by fH as 

indicated by the reduction in the amount of deposited Bb (Fig 3.2A).  Surprisingly, however, 

S20NS displayed no effect (Fig 3.2A).  These results indicate that in this assay S20NS does 

not share similar activity to fH.  Moreover, these results also demonstrate that S20NS 

dissociates C3 convertases formed from NHS (Fig 3.1) but not convertases formed from 

purified complement components (Fig 3.2A). 
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Experiments were also performed to determine if S20NS acted as a cofactor for fI 

mediated degradation of C3b, similar to fH.  S20NS was mixed with purified fI and the 

mixture was then added to purified C3b.  Degradation products of the C3b α-chain (C3b α`-

chain), 67 and 43 kDa fragments, were detected by immunoblots with specific Abs.  Various 

concentrations of either S20NS or CAT were incapable of mediating fI degradation of C3b, 

unlike fH, which when incubated in the presence of fI, resulted in the degradation of C3b 

(Fig 3.2B).   

Since S20NS did not act as a cofactor for fI mediated C3b degradation like fH, 

experiments were done to test if S20NS functioned similarly to fI and degraded C3b in the 

presence of fH.  When S20NS was mixed with fH and then incubated with C3b, we observed 

no degradation of C3b, whereas fI incubated with fH and C3b resulted in C3b degradation 

(Fig 3.2C).  Together, these results demonstrate that S20NS disrupts the C3 convertase by a 

mechanism that is different from both fH and fI.                      

S20NS inhibits the alternative pathway by displacing properdin from the C3 convertase 

 S20NS dissociated the components of the C3 convertase when the convertase was 

formed from NHS (Fig 3.1) but not from purified complement components (Fig 3.2A).  The 

discrepancy in the activity of S20NS between the two assays is likely due to differences in 

the composition of the convertases formed from either NHS, which potentially contain C3b, 

Bb, and properdin, or from purified complement components, which contain only C3b and 

Bb.  Properdin is a positive regulator of the alternative pathway that binds and stabilizes the 

C3 convertase, significantly increasing its half life (18, 19). To determine if the inhibitory 

activity of S20NS was potentially mediated through properdin, we formed C3 convertases 

from purified complement components in the presence of properdin and then incubated 
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S20NS or control proteins with the convertases.  When S20NS was incubated with C3 

convertases containing properdin, approximately 90% of Bb was displaced (Fig 3.3), in 

contrast to its effect on convertases lacking properdin (Fig 3.2A).  Factor H displaced Bb 

from C3 convertases formed in either the presence or absence of properdin (Fig 3.2A and Fig 

3.3).   

After establishing that S20NS was only active against convertases containing 

properdin, experiments were done to determine if S20NS displaced properdin from the C3 

convertase.  S20NS displaced properdin from C3 convertases formed from purified 

components (Fig 3.4A) as well as from convertases formed from NHS (Fig 3.4B).  In 

addition, S20NS also displaced properdin from complexes containing only C3bP, 

demonstrating the specificity of S20NS for properdin (Fig 3.4C).  Unlike S20NS, fH did not 

displace properdin from C3 convertases (Fig 3.4A) or from C3bP complexes (Fig 3.4C). 

Together, these results demonstrate that S20NS uniquely accelerates the decay of C3 

convertases by specifically displacing properdin from the convertase. 

S20NS binds properdin 

To determine if S20NS directly interacted with properdin to dissociate the C3 

convertase, S20NS and properdin were incubated together and S20NS was next 

immunoprecipitated using an antibody that bound to its C-terminal V5-epitope tag.  The 

precipitates were then immunoblotted for either S20NS or properdin with specific Abs.  In 

the immunoblots, we detected S20NS as well as properdin in the precipitates (Figure 3.5A), 

indicating that S20NS directly bound to properdin.   

The interaction between Salp20 and properdin was also confirmed by ELISA.  

Microtiter plate wells were coated with S20NS and then incubated with properdin.  After 
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incubation, bound properdin was detected with specific Abs.  In wells coated with either 

S20NS or C3b, we detected specific binding of properdin when compared to the negative 

control, CAT (Fig 3.5B). 

In addition to studying the direct interaction between S20NS and properdin, we also 

calculated the relative binding affinity of properdin for either S20NS or C3b by performing 

solid-phase saturation binding assays.  In these assays, microtiter plates were coated with 

equal amounts of either S20NS or C3b.  Increasing concentrations of properdin were then 

added to the wells, and bound properdin was detected with specific antibodies.  Properdin 

binding to S20NS saturated at a lower concentration than properdin binding to C3b (Fig 

3.5C).  The relative Kd of properdin binding to S20NS = 0.669 nM where the relative Kd of 

properdin binding to C3b > 85 nM.  These results indicate properdin binds to S20NS with an 

affinity that is >100 fold higher than its affinity for C3b.        

 

3.5 Discussion 

In this study, we have demonstrated that S20NS is only active against C3 convertases 

containing properdin.  The simplest mechanism consistent with our data is that S20NS 

directly interacts with properdin, causing its dissociation from the C3 convertase and the 

subsequent decay acceleration of the convertase.  This model is supported by the 

observations that 1) properdin directly bound to Salp20 with a relative affinity that was at 

least 100 fold higher than the affinity of properdin for C3b and 2) Salp20 treatment reduced 

the levels of properdin on preformed C3 convertases and C3bP complexes.   We cannot 

completely rule out alternative models such as properdin facilitating necessary contacts 

between Salp20 and C3bBb, allowing S20NS to bind the convertase directly and cause decay 
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acceleration.  However, as we have not found any S20NS physically associated with the 

inactivated convertase (data not shown), we favor the model in which Salp20 acts by directly 

displacing properdin from the convertase.   

All of our studies were performed with insect cell expressed recombinant S20NS, 

which we believe functions almost identically to native Salp20 expressed in tick saliva.  

Valenzuela et al. have demonstrated that native Isac, purified directly from tick salivary 

gland extracts, inhibited the alternative complement pathway, likely by dissociating the C3 

convertase (9).  This result supports the idea that the activity S20NS closely mimics the 

activity of native Salp20.   

Our proposed model for S20NS mediated displacement of properdin from the C3 

convertase is consistent with the previous studies (5).  Lawrie et al. determined that I. ricinus 

salivary gland extracts (SGE) inhibited the activity of C3 convertases formed from NHS on 

erythrocyte surfaces, but had no effect on C3 convertases formed from purified complement 

components.  In addition, when cobra venom factor (CVF) was used as an activator of 

complement in the presence of NHS, I. ricinus SGE displayed no inhibitory activity against 

the CVFBb convertase.  Since properdin was absent in the pure component and CVF assays, 

these negative results could be explained by our model where the active inhibitory 

component in tick SGE, in particular, S20NS or related ILP family members, acts through 

properdin.    

The decay accelerating activity of S20NS is unique and distinct from any of the 

characterized alternative pathway decay accelerating factors, DAF, CR1, and fH, which 

directly interact with C3bBb or C3b to destabilize the C3 convertase (15, 20-25).  S20NS 

displaced properdin from C3 convertases and C3bP complexes, whereas fH did not displace 
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properdin in our assays. In a previous study, Hourcade used surface plasmon resonance to 

demonstrate that fH binding to C3 convertases results in the decay of C3 convertases and the 

dissociation of properdin (18).  We may not have observed properdin dissociation following 

fH treatment because C3 complexes formed in our ELISAs differ from the convertases 

formed in the surface plasmon resonance study.  Specifically, the C3 convertase complexes 

formed in our assays are likely to contain both complete C3 convertases and C3bP 

complexes.  The properdin displaced by S20NS in our assays might be mainly derived from 

C3bP complexes, which are not affected by fH.   

Even though properdin is not an active component of the C3 convertase, it is essential 

for the stabilization and full activity of the convertase (19, 26).  Gupta-Bansal et al. and 

Perdikoulis et al. have demonstrated that Abs directed against properdin are capable of 

inhibiting the alternative pathway (26, 27).  Recent studies have also shown that properdin is 

capable of binding to cell surfaces and initiating the alternative pathway by providing a 

platform for the assembly of the C3 convertase (28).  Since properdin is vital for effective 

complement activation, it is an attractive target for inactivation by pathogens or blood 

feeding organisms.  One example of a virulence factor that targets properdin is streptococcal 

pyrogenic exotoxin B, which acts to degrade properdin, allowing the pathogenic group A 

streptococci to resist opsonophagocytosis mediated by complement (29).    

Salp20 is a member of the ILP family, containing at least 49 members (7, 8, 10, 11).  

In addition to Salp20, several members of this family, specifically Isac, Irac-1, Irac-2, 

S20Lclone 12, and S20Lclone 2, inhibit the alternative pathway by decay acceleration of the 

C3 convertase (9-11) (data not shown).  It is likely that these proteins also interact with 

properdin.   
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Properdin is composed of short N- and C-terminal regions separated by  6 TSRs (30), 

which make up the majority of the protein. We propose that Salp20 and other ILP family 

members specifically bind the TSRs of properdin to cause its displacement from the C3 

convertase.  The TSRs found in properdin and several other proteins primarily bind sulfated 

glycoconjugates and glycosaminoglycans (GAGs) (31, 32).  Interestingly, S20NS contains 

multiple N- and O-linked glycans that make up almost half the molecular weight of the 

mature protein (10).  These carbohydrate modifications may potentially be sulfated 

glycoconjugates and GAGs, allowing S20NS to resemble the sulfated glycoconjugates and 

bind the TSRs of properdin.   

In addition to properdin, TSRs are found in other complement proteins, cell adhesion 

molecules, and proteases, many of which regulate host hemostasis and innate immunity (33).  

In addition to their roles in complement inhibition, we speculate different ILP family 

members may target different TSR containing proteins to alter host hemostasis and innate 

immunity, facilitating tick feeding.  ILP family members may prove to be useful for 

developing anti-tick vaccines as well as novel therapies for complement mediated diseases. 
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Figure 3.1 S20NS inhibits the alternative complement pathway by dissociating the C3 
convertase.  C3 convertases were preformed on agarose surfaces from complement 
components in NHS.  Ten-fold dilutions of S20NS or CAT were then added to the preformed 
convertases and the amount of remaining Bb was determined by ELISA.  The error bars 
represent 2 standard deviations from the mean where N=6. 
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Figure 3.2 S20NS does not dissociate the C3 convertase by a mechanism similar to fH or fI.  
A, C3 convertases were preformed in microtiter plate wells from purified complement 
components (C3b, fB, and fD) and washed.  S20NS (1 µg/ml), fH (1 µg/ml), CAT (1 µg/ml, 
negative control), or buffer alone (0 µg/ml) were then added to the preformed convertases 
and the amount of remaining bound Bb was determined by ELISA.  The error bars represent 
2 standard deviations from the mean where N=6.  The asterisk indicates statistical 
significance (p=0.008) between the 0 µg/ml and 1 µg/ml samples of fH as measured by a 
student t-test.  B, Various concentrations of S20NS or fH were incubated with C3b in the 
presence of fI, and C3b degradation products, represented by the 67 and 43 kDa bands, were 
visualized by Western blots using a polyclonal goat α-hC3 Ab.  C, S20NS or fI were 
incubated with C3b in the presence of fH.  C3b degradation products were visualized by 
Western blots as described in Fig 2B. M, marker.        
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Figure 3.3 S20NS dissociates the C3 convertase only in the presence of properdin.  C3 
convertases were formed from purified components (C3b, fB, and fD) in the presence of 
properdin and then washed.  S20NS (1 µg/ml), fH (1 µg/ml), or buffer (0 µg/ml) were added 
to the preformed convertases and the amount of remaining bound Bb was determined by 
ELISA.  The error bars represent 2 standard deviations from the mean where N=6.  The 
asterisks indicate statistical significance between the 0 µg/ml and 1 µg/ml samples as 
measured by a student’s t-test where p<0.001. 
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Figure 3.4  S20NS dissociates properdin from the C3 convertase.  A, C3 convertases were 
formed from purified complement components as described in Fig 3.  S20NS (2 µg/ml), fH 
(2 µg/ml) or buffer (0 µg/ml) were then incubated with the preformed convertases, and 
bound properdin was detected by ELISA.  B, C3 convertases were formed from complement 
components in NHS as described in Fig 1.  S20NS (2 µg/ml), CAT (2 µg/ml, negative 
control), or buffer (0 µg/ml) were then incubated with the preformed convertases and bound 
properdin was detected by ELISA.  C, C3bP complexes were formed from purified C3b and 
properdin.  S20NS (2 µg/ml), fH (2 µg/ml) or buffer (0 µg/ml) were then incubated with the 
complexes, and bound properdin was detected by ELISA.  The error bars represent 2 
standard deviations from the mean where N=6.  The asterisks indicate statistical significance 
between the 0 µg/ml and 2 µg/ml samples of S20NS as measured by a student’s t-test where 
p<0.001. 
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Figure 3.5  S20NS binds properdin.  A, S20NS (S), properdin (P), or S20NS previously 
incubated with properdin (S+P) were immunoprecipitated (IP) with a monoclonal α-V5 Ab 
against an epitope tag on S20NS.  Immunoprecipitates were then analyzed by Western Blots 
using specific Abs directed against properdin (α-fP) or S20NS (α-His).  B, Microtiter plate 
wells were coated with S20NS, CAT (negative control), or C3b (positive control).  The wells 
were washed, blocked, and then incubated with properdin.  Bound properdin was detected by 
ELISA.  The error bars represent 2 standard deviations from the mean where N=6.  C, 
Microtiter plate wells were coated with either S20NS or C3b.  Increasing concentrations of 
properdin were then added to the wells, and bound properdin was detected by ELISA.  The 
data depict a single experiment performed in triplicate that is representative of 3 independent 
experiments.  The error bars represent the standard error from the mean.
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4.1 Abstract 

 I. scapularis ticks secrete numerous anti-hemostatic, anti-inflammatory, and 

immunosuppressive proteins during feeding.  Isac and Salp20, two I. scapularis salivary 

anti-complement proteins, are members of a large family of paralogous tick proteins 

designated the ILP family.  Salp20 specifically binds properdin, resulting in C3 

convertase destabilization.  In this study, we examined the functions of two ILP family 

members, S20Lclone 12 and S20Lclone 2, which share 95% and 67% amino acid identity 

with Salp20, respectively.  Recombinant S20Lclone 12 (S20L12) and S20Lclone 2 

(S20L2) inhibited the alternative complement pathway by specifically binding properdin 

with similar affinities, identical to Salp20.  When mixed together, recombinant Salp20 

 



(S20NS), S20L12 and S20L2 displayed no synergistic inhibitory effects beyond the activity 

of the individual proteins.  Furthermore, S20NS, S20L12, S20L2 similarly inhibited the 

alternative complement pathway of various host animals, indicating different ILP family 

members do not display host specificity.  Finally, we determined that S20NS, S20L12, and 

S20L2 specifically interacted with properdin and no other TSR-containing proteins. 

 

4.2 Introduction 

 I. scapularis, commonly known as the blacklegged tick, is an exclusively blood 

sucking ectoparasite that feeds on a host for several days to weeks (28).  In order to avoid 

host recognition and rejection, I. scapularis ticks secrete numerous pharmacologically active 

components in their saliva during feeding, which block host hemostasis, inflammation, and 

immune recognition (3, 4, 16, 24, 33, 38).  Recently, multiple groups have determined that 

many of the anti-hemostatic, anti-inflammatory, and immunosuppressive components in 

ixodid tick saliva, including I. scapularis saliva, are members of large families of related 

proteins (7, 10, 12, 17, 19, 23, 27, 35).  Daix et al. demonstrated that I. ricinus anti-

complement proteins, Irac-1 and Irac-2, are both expressed within the salivary glands of an 

individual tick, indicating that multiple members of different tick salivary protein families 

are likely co-expressed within individual feeding ticks (7).  

 Salp20 is an anti-complement protein secreted in I. scapularis saliva that inhibits the 

alternative complement pathway by directly binding properdin, which causes decay 

acceleration of the C3 convertase (32) (Chapter 3).  Salp20 and its homologue, Isac, are both 

members of the ILP family of anti-complement salivary proteins.  Currently, the ILP family 

is comprised of approximately 49 unique members, sharing between 64% and 95% amino 
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acid identity to either Isac or Salp20 (23, 27, 32).  At this time, only Salp20 and Isac have 

been demonstrated to be complement inhibitors and the functions of other ILP family 

members are unknown.   

 In addition to the anti-complement ILP family members identified in I. scapularis, 

Daix et al. and Couvreur et al. have also identified multiple I. ricinus proteins that share 

homology with Isac and Salp20 (6, 7).  Recombinant Irac-1 and Irac-2, two I. ricinus Isac 

homologues, were found to inhibit the alternative complement pathway by preventing C3 

convertase assembly and by dissociating Bb from C3b in the C3 convertase, similar to Isac 

and Salp20 (7).  This evidence further supports the idea that related ILP family members 

likely share functional similarities.    

 Two I. scapularis ILP family members that were identified in the studies described in 

Chapter 1, S20Lclone 12 and S20Lclone 2, share approximately 95% and 67% amino acid 

identity with Salp20, respectively.  In this chapter, we express recombinant S20Lclone 12 

and S20Lclone 2 and examine their functions in relation to S20NS.  We also attempt to 

characterize any differences that may exist between S20Lclone 12, S20Lclone 2, and S20NS 

in an effort to understand why ticks produce so many different proteins that are closely 

related. 

 

4.3 Materials and Methods 

Cell lines and media 

 Adherent cultures of High Five cells (Invitrogen, Carlsbad, CA), derived from the 

cabbage looper, Trichoplusia ni, were seeded and maintained according to the instructions of 

the manufacturer.  The cells were grown in Express Five Serum free media (SFM) (Gibco, 
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Carlsbad, CA) supplemented with L-glutamine (18 mM) (Gibco, Carlsbad, CA), penicillin 

(100 U/ml), streptomycin (100 µg/ml), and fungizone (0.25 µg/ml) (Gibco, Carlsbad, CA) at 

28oC.   

Expression and purification of S20Lclone 12 and S20Lclone 2 in High Five cells  

 To express recombinant S20Lclone 12 and S20Lclone 2 in High Five cells, we used 

an approach similar to Alarcon-Chaidez et al. (2).  S20Lclone 12 was first PCR amplified 

from the pCR 2.1 TOPO vector using the following primers: KS20F – 5` 

CCAGCCATGAGGACTGCGCT 3` and S20RNS – 5` 

GGAAATTGCCTCGAATGAGTCTC 3`, while S20Lclone 2 was amplified using the 

following primers: SLC13F – 5` GCTCAGTTATGAGGACTGTGCTG 3` and SLC13RNS – 

5` GGGGACGGCCACAGGCTCAA 3`.  The 5` primers contained Kozak sequences to 

allow for efficient protein expression from the cloning vector, while the 3` primers lacked 

stop codons to allow the fusion of a V5-epitope and 6X-His tag to the C-terminus of the 

proteins.  Once amplified, the PCR products were cloned into the expression vector pIB/V5-

His-TOPO (Invitrogen), which contains both ampicillin and blasticidin resistance genes 

allowing for selection in E. coli and High Five cells, generating the constructs pIB-

S20Lclone 12 and pIB-S20Lclone 2.  Constitutive expression of S20Lclone12-V5-His 

(S20L12) and S20Lclone 2-V5-His (S20L2) was controlled by the Orgyia pseudotsugata 

baculovirus promoter, OpIE2.  The resulting constructs, pIB-S20L12 and pIB-S20L2, were 

purified using the QIAfilter Plasmid Midi Kit (Qiagen, Valencia, CA) and transfected into 

High Five cells following the manufacturer’s protocol.  As a positive control for protein 

expression and purification, High Five cells were also transfected with pIB-CAT (Invitrogen, 

Carlsbad, CA), the pIB/V5-His vector containing chloramphenicol acetyltransferase (CAT).  
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Stably transfected cells were selected and maintained by the addition of blasticidin (10 

µg/ml) to the cell culture media. 

 For protein purification, adherent cultures of stably transfected cells were grown to 

90% confluency in T-175 flasks.  Cells were then collected and seeded into 500 ml of culture 

media in 3L Fernbach flasks (Corning, Corning, NY) at a density of 5 x 105 cells/ml.  

Cultures were grown at 28oC with gentle agitation until reaching a density of 2-3 x 106 

cells/ml in 1L.  The media was then collected and centrifuged to remove all cells and debris.  

After centrifugation, the media was concentrated and buffer exchanged against Ni-NTA 

Wash Buffer (50 mM NaH2PO4, 300 mM NaCl, pH 8.0) using Hydrosart filters (Sartorius, 

Edgewood, NY) in the Vivaflow 200 (Sartorius, Edgewood, NY).  After the concentration 

and buffer exchange, the media was loaded onto a 500 µL column of Ni2+-Nitriloacetic acid 

(Ni-NTA, Qiagen, Valencia, CA) agarose.  After all media passed through the column, the 

column was washed two times with 4 column volumes of Ni-NTA Wash Buffer and eluted 

five times with ½ the column volume of Ni-NTA Elution Buffer (50 mM NaH2PO4, 300 mM 

NaCl, 500 mM imidazole, pH 8.0).  All elutions were pooled and dialyzed 24 hrs at 4oC 

against 1X PBS with two buffer changes.  After dialysis, the elution sample was concentrated 

using Amicon Ultra-15 YM-10 centrifugal filter devices (10 kDa MWCO, Millipore, 

Billerica, MA).  Protein concentrations and purity were determined by Bradford analysis and 

SDS-PAGE, respectively.  The final concentration of protein was 50-100 µg/ml.  Purified 

protein was stored at -20oC until needed. 

SDS-PAGE and immunoblot analysis 

 For SDS-PAGE, all samples were electrophoresed under reducing conditions by 

either 10% SDS-PAGE or 4-12% SDS-PAGE.  Gels were then stained using SimplyBlue 
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SafeStain (Invitrogen, Carlsbad, CA) following the instructions of the manufacturer.  For 

immunoblots, following separation by SDS-PAGE under reducing conditions, samples were 

transferred to nitrocellulose membranes by semi-dry transfer at 380 mA for 60 min.  

Membranes were then blocked with 1X Tris-buffered saline (TBS), 2% milk for 12-16 hrs. at 

4oC.  Mouse anti-V5 monoclonal antibody (Invitrogen, Carlsbad, CA) was diluted 1:5000 in 

1X TBS, 2% milk and incubated with membranes for 1 hr at room temperature.  Membranes 

were next incubated with alkaline phosphatase (AP) conjugated goat anti-mouse antibody 

(Sigma, St. Louis, MO) diluted 1:1000 in 1X TBS, 2% milk for 45 min at room temperature.  

For C3a blots, rabbit anti-human C3a antibody (CompTech, Tyler, TX) was diluted 1:1000, 

and secondary AP-conjugated goat anti-rabbit IgG (Sigma) was diluted 1:1000 in 1X TBS, 

2% milk.  Bound antibody was detected directly on the membranes using the phosphatase 

substrate, 5-bromo-4-chloro-3-indolyl-phosphate/nitroblue tetrazolium (BCIP/NBT) (KPL).   

Deglycosylations with PNGase F and TFMS 

 To remove N-linked glycans from S20L12 and S20L2, approximately 0.5 µg of 

purified protein from insect cells was digested with 30 U/µL of PNGase F (New England 

Biolabs, Ipswich, MA) following the instructions provided by the manufacturer.  Briefly, 

protein was denatured in 1X Glycoprotein Denaturing Buffer (0.5% SDS, 1% β-

mercaptoethanol) (New England Biolabs, Ipswich, MA) for 10 min at 100oC.  The denatured 

protein was then incubated with PNGase F in 1X G7 Buffer (50 mM sodium phosphate, pH 

7.5, New England Biolabs, Ipswich, MA) and 1% NP-40 for 24 hr at 37oC.  The 

deglycosylated protein was then analyzed by SDS-PAGE and immunoblots. 
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 To remove N- and O-linked glycans from S20L12 and S20L2, 2 µg of protein were 

treated with the Glycoprofile IV Chemical Deglycosylation Kit containing TFMS according 

to the manufacturer’s instructions (Sigma, St. Louis, MO). 

Erythrocyte lysis assays 

 In order to test the alternative pathway, RbEs (CompTech, Tyler, TX) were washed 

three times with 5 volumes of AP Buffer (5 mM MgCl2, 5 mM EGTA in gelatin veronal 

buffer (GVB), CompTech, Tyler, TX), and resuspended to a final concentration of 2.0 x 108 

cells/ml in AP buffer.  Prior to performing the alternative pathway assays, the dilution of 

NHS (CompTech, Tyler, TX), normal mouse serum (NMS) (courtesy of C. Elkins, UNC-

Chapel Hill), or normal pig serum (NPS) (courtesy of T. Kawula, UNC-Chapel Hill) 

resulting in 80-90% lysis of the RbEs was determined and used for experimental assays.  

Experimental and control proteins were serially diluted in 1X PBS and added to NHS in AP 

buffer.  The volume of protein sample used for each reaction remained constant, keeping 

concentrations of divalent cations and chelators invariable.  The final volume of the mixture 

was 25 µL.  This mixture was then incubated with 25µL of washed, resuspended RbEs (2 x 

108 cells/ml) in disposable borosilicate glass culture tubes for 30 min at 37oC.  Control 

reactions contained RbEs (2 x 108 cells/ml) incubated with only NHS, NMS, or NPS in AP 

buffer or AP buffer alone. After incubation, 75 µL of N-saline was added to each tube.  The 

tubes were then centrifuged at 1000 g for 5 min to pellet all remaining intact RbEs.  

Supernatants were collected and loaded into 96-well plates.  The O.D. of the supernatants 

was measured at a λ of 405 nm.  In order to test the classical pathway, assays were performed 

as described for the alternative pathway using antibody-sensitized sheep erythrocytes (SEs) 
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(CompTech, Tyler, TX) and GVB++ (GVB with Ca2+ and Mg2+) (CompTech, Tyler, TX) 

instead of RbEs and AP Buffer.   

Human C3 or fB deposition ELISAs  

To determine if S20L12 or S20L2 inhibited the deposition of human C3 or fB onto 

surfaces, we performed deposition ELISAs using agarose coated plates following a modified 

protocol of Ribeiro and Valenzuela et al. (22, 34).  In the presence of polysaccharides, C3 is 

activated and covalently attaches to the sugars (36).  fB then noncovalently binds bound C3b.  

Since agarose is made of primarily galactose, C3 is activated in the presence of agarose and 

attaches covalently to agarose surfaces (22, 34).  Briefly, 96-well plates were coated with 100 

µL of 0.1% agarose in water.  The agarose in the plates was dried for 48 hrs at 37oC.  Once 

dry, 50 µL of AP buffer containing a 1:4 dilution of NHS and S20NS, S20L12, S20L2, or 

CAT at various concentrations were added to the wells and incubated at 37oC for 30 min.  In 

some reactions, S20NS, S20L12, S20L2, or CAT were added 30 min after the addition of 

NHS and the wells were incubated an additional 20 min at 37oC.  Control wells lacked NHS 

or contained 25 mM EDTA and NHS.  After incubation with NHS, the plates were washed 3 

times, 5 min each on an orbital shaker, with 200 µL/well of 1X TBS containing 10 mg/ml 

bovine BSA and 2 mM MgCl2.  After washing, 100 µL of a 1:1000 dilution of goat α-human 

C3 antibody (CompTech, Tyler, TX) or goat α-human fB antibody (CompTech, Tyler, TX) 

in 1X TBS, 10 mg/ml BSA, 2mM MgCl2+ was added to each well and the plate was 

incubated 1 hr at 37oC.  The plate was then washed 3 times as previously described, and 100 

µL of either a 1:5000 or 1:1000 dilution of an AP-conjugated rabbit α-goat IgG (Sigma, St. 

Louis, MO) was added to each well.  The plate was incubated 45 min at 37oC.  Following the 

incubation, the plate was washed 2 times, 5 min each, with 200 µL/well of 1X TBS, 10 
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mg/ml BSA.  The plate was next washed once with 1X TBS, 10 mg/ml BSA, 0.1% Tween 

followed by an additional wash with N-saline.  After washing, 100 µL of Sigma Fast PNPP 

(Sigma, St. Louis, MO) was added to each well and the plate was incubated at room 

temperature for 15 min.  After incubation, the O.D. was measured at a λ of 405 nm.    

Assays to detect S20L12 and S20L2 binding to properdin, TSP-1, or ADAMTS-13 

To detect direct binding of S20L12 and S20L2 to properdin, we performed 

immunoprecipitations and analyzed the precipitates by immunoblot.  S20L12 or S20L2 (150 

ng) were incubated with properdin (450 ng) at 37oC for 30 min in Binding buffer (PBS, 75 

mM NaCl, 10 mM MgCl2, 0.05% Tween) and then added to blocked Protein-A sephadex 

beads (Sigma) coated with 1 µg of mouse α-V5 IgG for 1 hour at 37oC.  The sephadex beads 

were washed and resuspended in non-reducing SDS-PAGE loading dye.  Samples were 

subjected to SDS-PAGE and immunoblotting with antibodies specific for either S20NS or 

properdin. 

As an alternative method to detect S20NS, S20L12, or S20L2 binding to properdin, 

microtiter plate wells were first coated with 100 ng/well of S20NS, S20L12, S20L2, CAT, or 

C3b for 12 h at 4oC.  The wells were then blocked and incubated with 100 ng/well properdin 

for 1 h at 37oC.  After incubation, the wells were washed.  To detect plate bound properdin, 

the wells were incubated with a primary goat α-properdin Ab and a secondary AP-

conjugated rabbit α-goat IgG. 

To detect S20NS, S20L12, or S20L2 binding to thrombospondin-1 (TSP-1), a 

disintegrin and metalloproteinase with a thrombospondin type I motif member 13 

(ADAMTS-13), or properdin, microtiter plates were first coated with 100 ng/well of TSP-1, 

ADAMTS-13, or properdin in 0.1 M Carbonate Buffer for 12 h at 4oC.  Wells were then 
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blocked with Binding buffer for 15 min at 23oC.  After blocking, 1 µg/ml of S20NS, S20L12, 

or S20L2 in Binding buffer were incubated in the wells for 1 hr at 37oC.  After the 

incubation, the wells were washed with TBST and bound protein was detected by standard 

ELISAs using a primary monoclonal mouse α-V5 IgG and a secondary AP-conjugated goat 

α-mouse IgG antibody.      

Saturation Binding Assays 

  To determine the relative binding affinity of properdin for S20NS, S20L12, S20L2, or 

C3b we performed a solid-phase binding assay.  Microtiter plates were coated with a 

saturating amount of S20NS, S20L12, S20L2, or C3b (10 ng/well) for 12 hrs at 4oC in 0.1M 

Carbonate Binding Buffer, pH 9.2.  After coating, the wells were blocked with Binding 

buffer (PBS, 75 mM NaCl, 10 mM MgCl2, 4% BSA, 0.05% Tween) for 1 hr at 37oC and then 

incubated with increasing concentrations of properdin in Binding buffer (PBS, 75 mM NaCl, 

10 mM MgCl2, 0.05% Tween) at 37oC for 1 hr  The wells were then washed with TBST, and 

bound properdin was detected by an ELISA using a primary goat α-human properdin Ab and 

a secondary AP-conjugated rabbit α-goat Ab.  Development of the substrate was stopped 

after 3 min by the addition of 3M NaOH.  The OD405 was determined and plotted, and 

relative Kd and Bmax values were calculated using GraphPad Prism 4 (GraphPad Software). 

 

4.4 Results 

Expression and characterization of S20L12 and S20L2 

 To examine the functional activities of additional ILP family members, we expressed 

two ILP members, S20Lclone 12 and S20Lclone 2, in an insect cell expression system.  

S20Lclone 12 shares 95% amino acid identity with Salp20 and possesses a putative secretion 
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signal, 7 N-linked glycosylation sites, several potential C-terminal O-linked glycosylation 

sites, and 4 conserved cysteines in the mature protein (Fig 4.1A).  S20Lclone 2 shares only 

65% amino acid identity with Salp20 but also possesses a putative secretion signal and 4 

conserved cysteines in the mature protein.  However, unlike Salp20 and S20Lclone 12, 

S20Lclone 2 only contains 5 potential N-linked glycosylation sites and displays multiple 

amino acid deletions at positions 116, 129-134, and 167-168, possibly resulting in fewer C-

terminal O-linked glycosylation sites (Fig 4.1A).         

     Recombinant S20L12 (S20Lclone 12 containing C-terminal V5 epitope and 6X-

histidine tag) and S20L2 (S20Lclone 2 containing C-terminal V5 epitope and 6X-histidine 

tag) were produced in insect cells similarly to S20NS as described in Chapter 2.  S20L12 and 

S20L2 were both efficiently expressed and secreted from stably transfected insect cells, as 

both proteins were found primarily in the culture media by Western blot (Fig 4.2B).  

Interestingly, similar to S20NS, S20L12 and S20L2 appeared to be ~ 50 kDa and 48 kDa, 

respectively, much larger than their predicted sizes of 24 kDa and 23 kDa, respectively.  In 

addition, S20L12 and S20L2 migrated as smears by Western blot, indicating the presence of 

differentially post-translationally modified forms of the proteins.  Since S20NS appeared as a 

smear by Western blot and displayed a size discrepancy between predicted and observed 

sizes primarily because of the addition of N- and O-linked glycosylations (32), we expected 

S20L12 and S20L2 likely contained carbohydrate modifications.   

 To determine if S20L12 and S20L2 contained N- and O-linked glycosylations, we 

digested the proteins with PNGase F, a glycosidase that removes N-linked carbohydrates, or 

treated them with TFMS, an acid that removes N- and O-linked carbohydrates without 

destroying the peptide backbone.  After incubations with PNGase F, S20L12 shifted from ~ 
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50 kDa to ~ 45 kDa, while S20L2 shifted from ~ 48 kDa to ~ 40 kDa, indicating the presence 

of N-linked glycans on both proteins (Fig 4.1C).  After TFMS treatment, S20L12 shifted 

from ~ 50 kDa to ~ 34 kDa, while S20L2 shifted from ~ 48 kDa to ~ 34 kDa, indicating the 

presence of N- and O-linked glycans on both proteins (Fig 4.1C).  Together, these results 

suggest that S20L12 and S20L2 both contain N- and O-linked glycosylations, similar to 

S20NS.   

Inhibition of the alternative complement pathway by S20L12 and S20L2 

To determine if S20L12 and S20L2 inhibited the alternative complement pathway, we 

performed RbE lysis assays as described in Chapter 2.  S20L12 and S20L2 (1 µg/ml) 

inhibited approximately 50% RbE lysis by NHS, similar to the activity of S20NS (Fig 4.2A).  

Comparable to S20NS, S20L12 and S20L2 were also incapable of completely blocking RbE 

lysis by NHS (Fig 4.2A) (32).  If S20NS, S20L12, and S20L2 are secreted in tick saliva 

simultaneously during feeding, then they may display synergistic effects, completing 

blocking host complement components.  To determine if ILP family members acted 

synergistically, S20L12, S20L2, and S20NS were mixed and incubated with NHS in the 

presence of RbEs.  When mixed together, the ILPs displayed an IC50 of 0.687 µg/ml, similar 

to the IC50 of individual ILPs.  These results suggest that ILP family members likely do not 

exhibit synergistic effects when secreted into a host during tick feeding. 

Experiments were done to test if S20L12 and S20L2 inhibited the classical 

complement pathway.  To test inhibition in the classical pathway, antibody sensitized 

erythrocytes (SEs) were incubated with NHS in the presence of S20L12 or S20L2 and Mg2+ 

and Ca2+.  After incubation, whole cells and cellular debris were pelleted by centrifugation.  

We then calculated the percent lysis of the SEs by measuring the optical density of the 
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supernatants.  S20L12 and S20L2 did not inhibit the classical pathway, consistent with the 

activity of tick saliva, Isac, and S20NS (15, 22, 34, 37) (Fig 4.2B).  

Dissociation of the C3 convertase by S20L12 and S20L2 

 Since S20NS inhibited the alternative complement pathway by preventing assembly 

and causing dissociation of the C3 convertase (32), we wanted to determine if S20L12 and 

S20L2 also inhibited the alternative pathway by a similar mechanism. To examine the effects 

of S20L12 and S20L2 on the C3 convertase, we formed C3 convertases using the agarose-

based ELISA described in Chapter 2.  In this assay, C3 is activated in the presence of agarose 

and Mg2+, covalently attaching to the agarose.  fB then binds to covalently bound C3b and is 

cleaved by fD, resulting in the formation of surface-bound C3 convertases (C3bBb).  Bound 

complement components are then detected by standard ELISAs with specific antibodies.  

S20L12 and S20L2 prevented the deposition of C3b and fB when added simultaneously with 

NHS to agarose coated microtiter wells (Fig 4.3A & B).  When S20L12 and S20L2 were 

added 30 min after NHS, they did not displace covalently bound C3b (Fig 4.3A & B).  

However, when added 30 min after NHS, S20L12 and S20L2 dissociated fB from C3b (Fig 

4.3A & B).  These activities are indistinguishable from the activities of both Isac and S20NS 

(32, 34), indicating that multiple ILP family members inhibit the alternative complement 

pathway by destabilizing the C3 convertase.  

S20L12 and S20L2 bind properdin       

 S20NS inhibits the alternative complement pathway by specifically binding 

properdin, a positive regulator of the C3 convertase (Chapter 3).  S20NS displaces properdin 

from the C3 convertase, promoting decay acceleration of the convertase.  Since S20L12 and 

S20L2 dissociate the C3 convertase similar to S20NS, we wanted to further establish if 
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S20L12 and S20L2 directly interacted with properdin.  In order to detect a direct interaction 

between S20L12 and S20L2 and properdin, we incubated S20L12 and S20L2 with properdin, 

immunoprecipitated S20L12 or S20L2 with an antibody directed against the C-terminal V5-

epitope tag, and analyzed the precipitates for the presence of properdin by Western blots.  

Both S20L12 and S20L2 directly interacted with properdin, similar to S20NS, as properdin 

was detected in precipitates only in the presence of S20L12 or S20L2 (Fig 4.4A).  To 

confirm this interaction, we also preformed binding ELISAs.  Microtiter plate wells were 

coated with S20NS, S20L12, S20L2, CAT (negative control), and C3b (positive control) and 

then incubated with properdin.  Bound properdin was detected by standard ELISAs with 

specific antibodies.  Properdin directly bound S20L12 and S20L2, similar to S20NS and C3b 

(Fig 4.4B).  These results confirm a direct interaction between properdin and multiple ILP 

family members, specifically S20NS, S20L12, and S20L2.   

Relative binding affinities of properdin for different ILP family members     

 Based on our studies, S20NS, S20L12, and S20L2 inhibited the alternative 

complement pathway by directly binding properdin and accelerating decay of the C3 

convertase.  As these ILP family members are likely expressed simultaneously during tick 

feeding, we wanted to determine any differences between them, justifying the necessity for 

their co-expression.  In order to identify differences between ILP family members, we first 

examined the possibility that different ILP family members exhibit different binding 

affinities for human properdin.  As S20L2 contains several C-terminal amino acid deletions, 

it may display a lower binding affinity for properdin (Fig 4.1A).  In order to determine 

relative binding affinities of ILP family members, we performed solid-phase saturation 

binding assays.  Microtiter wells were coated with properdin and then incubated with 
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dilutions of S20NS, S20L12, and S20L2.  After incubation, the wells were washed and bound 

ILP family members were detected with an antibody directed against the C-terminal V5-

epitope tag.  The binding affinities of properdin for S20NS, S20L12, or S20L2 were similar, 

as the relative calculated dissociation constants (Kd) were 1.129, 0.8566, and 1.027 nM, 

respectively (Fig 4.5).  Furthermore, the maximum numbers of binding sites (Bmax), as 

indicated by the OD405 value where saturation occurs, were also comparable between S20NS, 

S20L12, and S20L2 (Fig 4.5).  These results indicate that multiple ILP family members bind 

properdin with similar affinities.  Therefore, ILP family members may display other 

functional differences.   

Inhibition of the alternative complement pathway in various hosts by ILP family 

members      

I. scapularis feeds on a wide range of hosts including various small and large 

mammals, birds, and even reptiles (9, 29).  To feed successfully without host recognition and 

rejection, the tick must suppress hemostatic, inflammatory, and immune responses, including 

complement activation.  In order to block the alternative complement pathway in numerous 

hosts by binding properdin, which contains amino acid variations between different hosts 

(18), the tick may produce multiple ILP family members that could preferentially bind 

properdin from specific hosts.  To test this possibility, we performed erythrocyte lysis assays 

using serum collected from three animal hosts (mice, pigs, and humans) and evaluated the 

complement inhibitory activity of S20NS, S20L12, and S20L2.  In the presence of NHS and 

NPS, 1 µg/ml of S20NS, S20L12, and S20L2 displayed maximum inhibition of RbE lysis 

(Fig 4.6A & C).  In the presence of NMS, 1 µg/ml of S20NS and S20L12 and 5 µg/ml S20L2 

displayed maximum inhibition of RbE lysis (Fig 4.6B), suggesting S20NS and S20L12 may 
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preferentially inhibit complement components in NMS over S20L2.  However, when tested 

repeatedly, these variations in inhibition of RbE lysis were not consistent.   These results 

demonstrate that different ILP family members display no significant differences in their 

inhibitory activities against the alternative complement pathways from various hosts. 

Binding of ILP family members to TSR containing proteins  

 The majority of properdin, ~ 80%, is composed of 6 TSRs, which are flanked by short 

N- and C-terminal sequences (18).  TSRs are approximately 60 amino acids and are found in 

a variety of proteins where they facilitate protein-protein interactions (1, 31).  In properdin, 

the TSRs are necessary for binding C3b or the C3 convertase (11, 21).  TSP-1, a protein 

involved in platelet aggregation, inflammation, and angiogenesis during wound healing, and 

ADAMTS-13, a metalloproteinase that cleaves von Willebrand’s factor, both contain 

multiple TSRs (5, 14, 25).  As several ILP family members are likely expressed during tick 

feeding, they may serve additional roles besides complement inhibition.  By binding the 

TSRs of properdin and other TSR-containing proteins, such as TSP-1 and ADAMTS-13, ILP 

family members may display multiple functions, potentially inhibiting the alternative 

complement pathway, platelet aggregation, and inflammation.  In order to test this 

possibility, we performed binding ELISAs with ILP family members and various TSR-

containing proteins.  Microtiter wells were coated TSP-1, ADAMTS-13, or properdin and 

then incubated with S20NS, S20L12, S20L2, and CAT (negative control).  Bound ILP family 

members were detected by ELISA with specific antibodies.  S20NS, S20L12, and S20L2 

specifically interacted with only properdin (Fig 4.7), indicating ILP family members likely 

only interact with properdin and not other TSR-containing proteins.  
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4.5 Discussion    

 In this study, we addressed the functions of additional ILP family members, 

S20Lclone 12 and S20Lclone 2.  We successfully expressed and purified recombinant 

S20L12 and S20L2 from insect cells.  Like S20NS, S20L12 and S20L2 possessed both N- 

and O-linked glycosylations, resulting in much larger sizes than predicted.  Additionally, 

S20L12 and S20L2 inhibited the alternative complement pathway by directly interacting with 

properdin.  Properdin bound S20NS, S20L12, and S20L2 with similar affinities, suggesting 

that multiple ILP family members share similar complement inhibitory activities.  

 A family of salivary anti-complement proteins has also been identified in I. ricinus 

ticks, which are closely related to I. scapularis.  Daix et al. identified and expressed Irac-1 

and Irac-2, which both inhibit the alternative complement pathway by destabilizing the C3 

convertase.  In addition, Daix et al. determined that Irac-1 and Irac-2 are co-expressed in a 

single tick during feeding by IFA of individual salivary gland pairs from adult engorged 

females with monoclonal antibodies directed against either Irac-1 or Irac-2 (7).  Couvreur et 

al. identified additional I. ricinus anti-complement proteins related to Irac-1 and Irac-2 and 

determined that they were also co-expressed in unfed and fed larval, nymphal, and adult ticks 

(6).  Based on these observations, it is likely that Salp20, Isac, S20L12, and S20L2 are co-

expressed in I. scapularis ticks during feeding.  We next wanted to determine the reason for 

ticks to co-express multiple ILP family members with identical functions during feeding.   

 Several possibilities exist to explain why the tick would need to co-express a large 

family of anti-complement proteins with the same functions.  One possibility is that ILP 

family members potentially display synergistic inhibitory effects when co-expressed during 

feeding, completely blocking host complement activation.  In this study, we examined this 
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possibility by performing erythrocyte lysis assays in the presence of a mixture of S20NS, 

S20L12, and S20L2.  This mixture of ILP proteins displayed no synergistic inhibitory effects 

when compared to the inhibitory effects of individual ILP family members.   

 Another reason to co-express multiple ILP family members is that different family 

members may display host specificity, preferentially binding properdin from specific animal 

hosts.  This is a plausible possibility as ixodid ticks, especially I. scapularis, feed on a wide 

variety of hosts including mammals, birds, and reptiles (9, 29).  In this study, we tested this 

possibility by performing lysis assays in the presence of S20NS, S20L12, and S20L2 with 

NHS, NMS, or NPS.  We detected no significant differences in the inhibitory activities of the 

ILP family members between the different animal serum samples.  Since we only tested three 

different serum sources, it is possible that different ILPs display host specificity between 

other animal sources.  However, Couvreur et al. and Schroeder et al. have demonstrated that 

I. ricinus anti-complement proteins display similar inhibitory activities against sera from 

several animals, birds, and reptiles, suggesting I. ricinus and potentially I. scapularis ILPs do 

not display host specificity (6, 26). 

 A third possibility justifying the co-expression of multiple ILP family members 

during tick feeding is that the ILP family members are potentially multifunctional.  Since the 

ILP family members directly interact with properdin, and properdin is primarily composed of 

TSRs, then the ILP family members may potentially interact with other TSR-containing 

proteins and inhibit additional host hemostatic, inflammatory and immune responses.  In 

order to test this possibility, we incubated S20NS, S20L12, and S20L2 with various TSR-

containing proteins including TSP-1, ADAMTS-13, and properdin.  The ILP family members 

specifically interacted with only properdin, indicating ILP family members most likely do 

 117



not bind other TSR-containing proteins.  However, numerous proteins involved in various 

cellular responses including platelet aggregation, angiogenesis, cell matrix remodeling, and 

neuronal development contain TSRs.  Since we only examined the interactions of S20NS, 

S20L12, and S20L2 with TSP-1 and ADAMTS-13, the possibility still exists that ILP family 

members may directly interact with other TSR-containing proteins.  Furthermore, the ILP 

family members may serve additional functions important for tick physiology.  Daix et al. 

and Couvreur et al. determined that I. ricinus anti-complement proteins are constituitively co-

expressed in unfed ticks, possibly suggesting they may serve important roles in the tick when 

it is not feeding (6, 7).  

 In this study, we determined that ILP family members do not display synergy or host 

specificity, and they do not bind additional TSR-containing proteins. Other possibilities still 

exist to explain the co-expression of multiple ILPs in the tick, including: 1) differential 

expression of ILP family members during different life stages of the tick 2) differential target 

recognition between ILP family members and 3) antigenic variation between different ILP 

family members.  It is not likely that specific ILPs are expressed during specific life stages 

since the ILP family members examined in this study, Salp20, S20Lclone 12, and S20Lclone 

2, are co-expressed during the nymphal life stage of the tick (8, 32).  Furthermore, Couvreur 

at al. have demonstrated that multiple I. ricinus anti-complement proteins are co-expressed 

during all life stages of the tick (6). 

 Various ILP family members may be co-expressed during tick feeding because 

different family members potentially bind different domains within the target protein, 

properdin.  Properdin is primarily composed of 6 TSRs, which are flanked by short N- and C-

terminal regions (18).  In plasma, properdin typically exists as dimers, trimers, or tetramers, 
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with tetramers and trimers being the most active forms of the protein (20).  TSR-6 of 

properdin facilitates polymerization, while TSR-5 mediates C3b interactions (11, 21).  

Different ILP family members may bind different domains of properdin, blocking its 

polymerization or its interaction with C3b, which would ultimately result in C3 convertase 

decay acceleration.  Spitzer et al. have also demonstrated that properdin binds surfaces 

independently of C3b, acting as a platform to initiate convertase formation and complement 

activation (30).  The domains mediating the interaction of properdin with activating surfaces 

are currently unknown, but various ILP family members may also bind these domains, 

blocking the interaction of properdin with activating surfaces and preventing activation of the 

alternative complement pathway.  We are currently examining the domains of properdin that 

are necessary for binding S20NS, S20L12, and S20L2.   

 There is a high probability that various ILP family members display antigenic 

variation.  Since I. scapularis ticks feed for several days on a host and repeatedly feed on the 

same host, the host has ample time to mount immune responses, including the generation of 

neutralizing antibodies, against various tick salivary proteins.  Therefore, the tick may need 

to produce multiple proteins with identical functions that are antigenically variable in order 

evade host immune responses and prevent complement activation.  In support of this theory, 

Couvreur et al. have recently established that antibodies generated against a specific I. 

ricinus anti-complement protein, IxAC-B1, only detect and neutralize the activity of IxAC-

B1 and none of the other I. ricinus anticomplement proteins (6).  Additionally, Kotsyfakis et 

al. have demonstrated that two I. scapularis salivary sialostatins, which bind and inhibit host 

cathepsins, also display antigenic variation (13).  Based on these findings, Isac, Salp20, 

S20Lclone 12, and S20Lclone 2 also likely display antigenic variation.  At this time, we are 
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investigating this possibility.  Characterization of the functions, properties, and differences of 

various ILP family members will provide further insight into the mechanisms of salivary 

proteins important for tick feeding and aid in the development of anti-tick vaccines. 

 

4.6 Contributions   

 In this work, I designed and performed the experiments.  Holly Patterson, a lab 

technician under my direction, produced and purified of recombinant insect proteins used in 

this study, including S20NS, S20L12, and S20L2.  Aravinda de Silva assisted with the design 

of experiments.   
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Figure 4.1 Alignment, expression, and deglycosylation of S20L12 and S20L2. A. Amino 
acid alignment of Isac, Salp20, S20Lclone 2, and S20Lclone 12.  Putative secretion signals 
are boxed, potential N-linked glycosylation sites are marked with arrows, and conserved 
cysteines are marked with asterisks.  Yellow highlighted amino acids indicate conservation 
among all 4 sequences while blue highlighted amino acids indicated conservation among 2 or 
3 sequences. B. Western blot using a mouse monoclonal α-V5 antibody of culture media 
from stably transfected insect cells expressing CAT (~34 kDa), S20L12 (~ 50 kDa), S20L2 
(~ 48 kDa), or S20NS (~ 50 kDa). C. SDS-PAGE of RNaseB (positive control for 
deglycosylation with TFMS), S20NS, S20L12, and S20L2 treated with either PNGaseF or 
TFMS.  Arrows indicate native and deglycosylated proteins.      

 121



 

Figure 4.2 Inhibition of the alternative complement pathway by S20L12 and S20L2. RbEs 
(A) or SEs (B) were incubated with increasing concentrations S20NS, S20L12, S20L2, CAT, 
or a mixture of ILP family members in the presence of NHS.  After lysis occurred, cells and 
cell debris were pelleted, and the O.D.405 of the supernatants was determined and the percent 
lysis was calculated.  The error bars represent the standard error of the mean % lysis where 
N=3. 
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Fig 4.3 Deposition of C3 or fB in the presence of S20L12 and S20L2.  S20NS, S20L12, 
S20L2, or CAT (1 µg/ml) were added to the agarose wells of a 96-well plate either 
immediately with NHS (0 min) or 30 min after NHS (30 min).  The wells were washed and 
plate bound C3 (A) or fB (B) were detected with specific antibodies.  The error bars 
represent the standard error of the mean O.D. value where N=3. 
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Fig 4.4 S20L12 and S20L2 directly bind properdin.  A. S20L12 (L12), S20L2 (L2), 
properdin (P), or S20L12 and S20L2 previously incubated with properdin (L12+P and L2+P, 
respectively) were immunoprecipitated (IP) with a monoclonal α-V5 Ab against the C-
terminal epitope tags on S20L12 and S20L2.  Immunoprecipitates were then analyzed by 
Western Blots using specific Abs directed against properdin (α-fP) or S20L12 and S20L2 (α-
His).  B. Microtiter plate wells were coated with S20NS, S20L12, S20L2, CAT (negative 
control), or C3b (positive control).  The wells were washed, blocked, and then incubated with 
properdin.  Bound properdin was detected by ELISA.  The error bars represent the standard 
error of the mean where N=3.   
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Fig 4.5 Saturation binding curves and relative binding affinities of properdin for ILP family 
members.  Microtiter plate wells were coated with S20NS, S20L12, or S20L2.  Increasing 
concentrations of properdin were then added to the wells, and bound properdin was detected 
by ELISA.  The error bars represent the standard error of the mean where N=9.    
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Fig 4.6 Inhibition of complement from various mammalian hosts by ILP family members.  
RbEs were incubated with NHS (A), NMS (B), or NPS (C) in presence of Mg2+ and 
increasing concentrations of S20NS, S20L12, S20L2, or CAT.  After lysis, whole cells and 
cell debris were pelleted by centrifugation.  The O.D.405 of the supernatants was determined 
and the % lysis calculated.  The error bars represent the standard error of the mean where 
N=3.   
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Fig 4.7 Binding of ILP family members to different TSR-containing proteins.  Microtiter 
wells were coated with TSP-1, ADAMTS-13, or properdin.  The wells were then blocked and 
incubated with S20NS (1 µg/ml), S20L12 (1 µg/ml), S20L2 (1 µg/ml), or CAT (1 µg/ml).  
Bound S20NS, S20L12, S20L2, or CAT was detected with a mouse monoclonal α-V5 
antibody.  The error bars represent the standard error of the mean where N=3. 
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5.1 Abstract 

 I. scapularis ticks secrete numerous salivary proteins that inhibit host hemostasis, 

inflammation, and immunity.  A large family of I. scapularis salivary anti-complement 

proteins, the ILP family, inhibits the alternative complement pathway, preventing the 

generation of multiple anaphylatoxins and the lysis of tick cells by complement.  Several 

members of the ILP family specifically inhibit complement activation by directly binding the 

positive regulator of the alternative complement pathway, properdin.  This interaction 

prevents the assembly of C3 convertases and causes the dissociation of pre-assembled 

convertases.  Currently, it is unknown if the activities of ILP family members are required for 

tick feeding.  In this work, we have evaluated the importance of salp20 and related ILP 

family member gene expression during tick feeding through gene silencing by RNAi.  

Microinjection of siRNAs into nymphal ticks, regardless of the target gene specificity, 

 



resulted in reduced tick attachment.  As an alternative approach to evaluate the importance of 

the ILP family during tick feeding, we also immunized mice with recombinant insect 

expressed ILPs and then fed ticks on the immunized mice.  Nymphal I. scapularis ticks fed 

successfully and efficiently on mice with antibodies directed against multiple salivary ILPs. 

 

5.2 Introduction 

 Members of the ILP family, which includes Isac, Salp20, S20Lclone 12, S20Lclone 

2, Irac-1, Irac-2, and IxACs, inhibit the alternative complement pathway, preventing various 

host responses that could be detrimental to the tick (2, 3, 10, 11).   Salp20, S20Lclone12, 

S20Lclone 2, Irac-1, Irac-2, and multiple IxACs specifically bind properdin, preventing C3 

convertase formation and causing decay acceleration of preformed convertases (2, 3, 10) 

(Chapter 3).  Recent work suggests that multiple ILP family members are co-expressed and 

secreted into a host during tick feeding (2, 3).  These family members likely display antigenic 

variation, allowing them to evade host immune recognition, which ultimately permits the tick 

to effectively inhibit the alternative complement pathway and feed successfully (2).  

However, it is currently unclear if the ILP family is required for tick feeding. 

 RNAi is an effective tool that has been used successfully to knockdown the 

expression of various tick salivary proteins, including histamine-binding proteins, Salp14, 

Salp15, and Isac (1, 4, 6-8).  Using RNAi, we examined the role of Salp20 and additional ILP 

family members during tick feeding.  We first silenced salp20 and ILP family member genes 

in nymphal ticks by microinjection of siRNAs corresponding to conserved regions among the 

ILP family members.  We then evaluated any differences between mock-treated and siRNA-

injected ticks during attachment and feeding.  In addition to RNAi, we also immunized mice 
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with S20NS, S20L12, and S20L2 individually or in combination to generate antibody 

responses against the ILPs.  After immunization, we fed ticks on the immunized and mock-

treated mice and observed any differences in tick attachment and feeding.  

 

5.3 Materials and Methods       

Mice and Ticks 

 BALB/c mice, 4-6 weeks old, were purchased from Charles River Laboratories 

(Wilmington, MA).  Nymphal I. scapularis ticks used for RNAi experiments were provided 

courtesy of E. Fikrig (Yale Univeristy, New Haven, CT).  Mock-treated and siRNA-injected 

nymphal ticks were placed on BALB/c mice and allowed to feed for 60 hrs.  Ticks were then 

removed and dissected to obtain salivary glands and guts.  Nymphal I. scapularis ticks that 

were fed on immunized mice were raised as previously described by Sonenshine (9).  

Nymphal ticks were placed on immunized BALB/c mice and allowed to feed to repletion.  

Replete ticks that had fallen off the mice were then collected and weighed.    

RNA interference    

 RNAi experiments in I. scapaularis nymphs were performed following a modified 

protocol of Narasimhan et al. (4).  Duplex siRNAs corresponding to conserved regions 

among ILP family members and duplex nonsense siRNAs (Table 5.1) were synthesized 

(Invitrogen, Carlsbad, CA).  dsRNA corresponding to full-length salp20 was provided 

courtesy of E. Fikrig (Yale University, New Haven, CT).  Groups of 25 nymphal ticks were 

injected with approximately 4.6 nl of a mixture of siRNAs (~1 x 1015 molecules/µl) or 2.3 nl 

of dsRNA (~1 x 1010 molecules/µl) in the ventral torso of the idiosoma using a 

micromanipulator (Narishige, Tokyo) connected to a Nanojet II microinjector (Drummond 
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Scientific, Broomall, PA).  The needles attached to the micromanipulator were 3.5 inch 

capillaries (Drummond Scientific, Broomall, PA) drawn to a fine point with a micropipette 

puller (Sutter Instruments, Novato, CA).  Mock- treated ticks were injected with 2.3 nl of 

buffer (10 mM Tris-HCl, pH 8.0, 20mM NaCl, 1 mM EDTA).  After the injections, nymphal 

ticks were allowed to rest 3-4 hrs at 23oC in a humidity chamber.  The ticks were then placed 

BALB/c mice and allowed to feed for 60 hrs.  After feeding, the ticks were removed and 

dissected to obtain salivary glands and guts.   

RT-PCR to confirm gene silencing 

 In order to validate successful silencing of salp20 with siRNAs and dsRNA, we 

preformed RT-PCR on RNA extracted from the dissected salivary glands and guts of 

dsRNA-treated ticks.  Five pairs of salivary glands or 3 guts from siRNA, dsRNA, or mock 

treated fed ticks were dissected and placed in 150 µl of Trizol (Invitrogen, Carlsbad, CA).  

Glands were subsequently homogenized and RNA was extracted following the 

manufacturer’s directions.  Contaminating DNA was eliminated from purified RNA samples 

using the TURBO DNA-free kit (Ambion, Austin, TX) according to the protocol of the 

manufacturer.  cDNA was then generated from DNA-free RNA using the iScript cDNA 

synthesis kit (Bio-Rad, Hercules, CA) and the following primer sets: salp20F and salp20R, 

which were provided by E. Fikrig (Yale University, New Haven, CT), and β-actin F – 5`-

GATGACCCAGATCATGTTCG-3` and β-actin R – 5`-GCCGATGGTGATCACCTG-3`.  

PCR products were the analyzed by agarose gel electrophoresis for the presence of salp20 

and actin.   
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Immunizations with S20NS, S20L12, and S20L2 

 BALB/c mice were immunized subcutaneously with 10 µg of S20NS, S20L12, and 

S20L2 either individually or in combination in a 100 µl emulsion of PBS and Freund’s 

complete adjuvant (Sigma, St. Louis, MO).  Mice were then boosted subcutaneously 2 and 4 

weeks after the initial immunization with 10 µg of S20NS, S20L12, and S20L2 individually 

or in combination in 100 µl of PBS and Freund’s incomplete.  Mice were bled 1 week after 

the initial immunization and each boost by tail bleeds.  Serum was purified from the collected 

blood using microtainer serum separators (Becton Dickinson, Franklin Lakes, NJ) following 

the manufacturer’s instructions.  Nymphal ticks were placed on the mice 2 weeks after the 

final boost and allowed to feed to repletion.  Replete ticks were then collected and weighed.        

Western blot analysis for antibody detection and specificity 

 For Western blot analysis, ~100 ng of recombinant purified S20NS, S20L12, S20L2, 

and CAT, and 25 µl of culture media from insect cells expressing recombinant Salp20 

without the C-terminal V5-epitope and 6X-His tags (S20S) were electrophoresed under 

reducing conditions by 10% SDS-PAGE.  Samples were then transferred to nitrocellulose 

membranes by semi-dry transfer at 380 mA for 60 min.  Membranes were blocked with 1X 

Tris-buffered saline, 0.2% Tween-20 (TBST), 5% milk for 12-16 hrs at 4oC.  Mouse anti-V5 

monoclonal antibody (Invitrogen, Carlsbad, CA) or mouse sera from immunized mice were 

diluted 1:5000 and 1:100, respectively, in TBST and incubated with the membranes for 1 hr 

at room temperature.  Membranes were next incubated with horseradish peroxidase (HRP)-

conjugated goat anti-mouse antibody (Sigma, St. Louis, MO) diluted 1:10000 in TBST for 45 

min at room temperature.  Bound antibody was detected by chemiluminescence using the 
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ECL Plus detection kit (Amersham Biosciences (GE Healthcare), Buckinghamshire, UK) 

following the manufacturer’s instructions.   

ELISAs for antibody detection and specificity 

 For ELISAs, microtiter plates were coated with 100 ng/well S20NS, S20L12, S20L2, 

or CAT in 0.1 M Carbonate Buffer for 12 hrs at 4oC.  After coating, the wells were blocked 

for 1 hr at 37oC with 1X TBS, 0.1% BSA.  Sera from immunized mice were diluted 1:50 in 

1X TBS, 0.1% BSA and incubated in the blocked wells 1 hr at 37oC.  The wells were washed 

with TBST and subsequently incubated with an AP-conjugated goat anti-mouse antibody 

diluted 1:1000 in 1X TBS, 0.1% BSA.  Wells were washed and bound antibodies were 

detected by measuring the O.D.405 after the addition of PNPP (Sigma, St. Louis, MO).  

 

5.4 Results 

RNA interference in nymphal I. scapularis ticks 

 In order to assess the importance and necessity of Salp20 and other ILP family 

members during tick feeding, we silenced salp20 expression, and potentially other ILP 

family member gene expression, with siRNAs and fed siRNA-treated ticks on naïve mice.  

Three siRNAs were generated corresponding to conserved regions among the ILP family 

members (Table 5.1).  Since these siRNAs were conserved among different family members, 

they would likely silence multiple ILP genes.  Groups of 30 nymphal ticks were 

microinjected with either buffer (mock) or a mixture of the three siRNAs (salp20 siRNAs), 

allowed to rest, and then placed on naïve mice to feed.  All of the mock-injected ticks 

attached to the mice and fed normally.  Surprisingly, only 11 of the 30 salp20 siRNA-

injected ticks successfully attached to mice.  After feeding for 5 days, salivary glands and 
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guts were dissected from the fed nymphal ticks.  RNA was extracted from the salivary glands 

and guts and subjected to RT-PCR to determine the expression levels of salp20 and actin.  

Two groups of pooled salivary gland pairs and pooled guts from mock-injected ticks 

expressed both salp20 and actin, while two groups of pooled salivary gland pairs from 

salp20 siRNA-injected ticks expressed only actin and not salp20 (Fig 5.1).  Interestingly, 

salp20 and actin expression were detected in the guts of salp20 siRNA-injected ticks.  These 

results suggest that silencing of salp20 expression, and potentially other ILP family 

members, by RNAi reduces the ability of I. scapularis nymphs to successfully attach to a 

host.   

 In order to establish the lack of attachment we observed in the previous experiment 

was the result of salp20 siRNA specificity, we repeated the experiment and injected 4 groups 

of 15 ticks with buffer (mock), full-length salp20 dsRNA (salp20 dsRNA), salp20 siRNAs, 

or nonsense siRNAs (Table 5.1).  When the injected nymphal ticks were placed on mice, 

mock-injected and salp20 dsRNA-injected ticks attached successfully (Table 5.2).  However, 

the salp20 siRNA-injected and the nonsense siRNA-injected ticks failed to attach (Table 

5.2), indicating the presence of siRNA, regardless of target specificity, results in reduced I. 

scapularis attachment rates.   

Mouse immunizations with recombinant S20NS, S20L12, and S20L2 

 As an alternative approach for evaluating the importance and necessity of the ILP 

family during tick feeding and to examine the antigenic properties of ILP members, we 

immunized mice with recombinant S20NS, S20L12, and S20L2 either individually or in 

combination and subsequently fed nymphal ticks on the immunized mice.  Mice immunized 

with S20NS, S20L12, and S20L2 individually or in combination developed robust antibody 
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responses against the immunizing recombinant proteins and additional ILP family members.  

Antibodies in sera from mice immunized with a combination of S20NS, S20L12, and S20L2 

reacted against all three recombinant proteins when compared to pre-immune sera, while 

antibodies in sera from mice immunized with S20NS, S20L12, or S20L2 individually reacted 

against the recombinant protein used for the immunizations and additional ILP family 

members when compared to pre-immune sera (Fig 5.2A and data not shown).  Since all of 

the mice were immunized with recombinant proteins containing C-terminal V5-epitope and 

6X-His tags, antibodies may have developed against the tags resulting in cross-reactivity.  In 

support of this possibility all immunized mouse sera reacted weakly with CAT, which 

contains the C-terminal epitope tags (Fig 5.2A).  However, antibodies specific for the 

recombinant proteins without the tags were apparent as serum from a mouse immunized with 

S20NS detected a doublet by Western blot analysis in a sample containing culture media 

from insect cells expressing Salp20 without the C-terminal tags (S20S) (Fig 5.2B).  

Additionally, the proportion of antibodies specific for the V5-epitope and 6X-His tags was 

likely minimal since serum from the mouse immunized with S20NS barely detected CAT 

(Fig 5.2B). 

 After we determined immunized mice developed antibody responses against the 

recombinant ILPs, we placed nymphal I. scapularis ticks on the immunized mice.  All ticks 

attached and fed successfully to repletion on all immunized mice.  Fully engorged ticks that 

fed on immunized mice displayed no significant average weight differences from engorged 

ticks that fed on PBS-injected (mock) mice (Fig 5.3).  These results suggest that the antibody 

responses generated against the recombinant ILPs do not prevent successful I. scapularis 

attachment and feeding.  
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5.5 Discussion      

 In this study, we assessed the importance and necessity of Salp20 and related ILP 

family members during tick feeding by first performing RNAi assays.  For these assays, we 

microinjected nymphal ticks with siRNAs corresponding to conserved regions among the 

ILP family members and silenced salp20 expression, and possibly other ILP gene expression. 

Surprisingly, we were unable to detect differences in the number of ticks successfully 

attaching to mice when salp20 siRNA-injected ticks were compared to ticks that were 

microinjected with nonsense siRNAs.  These results indicate that the presence of siRNAs 

alone within ticks affects the ability of the tick to successfully attach to a host.  One 

explanation for this observed result is that high concentrations of siRNAs were injected into 

the ticks, perhaps resulting in abnormal tick behaviors.  In order to detect specific effects of 

silencing salp20 and related ILP gene expression, these experiments should be repeated with 

multiple dilutions of siRNAs to determine the tick attachment and feeding abilities at the 

appropriate concentration of siRNA that causes efficient specific gene silencing without 

displaying nonspecific side effects.   

 Our approach to silence salp20 and other related ILP family member genes with 

siRNAs was unique in that all successful RNAi studies in ticks thus far have typically been 

performed with full-length dsRNAs corresponding to the target gene, as opposed to siRNAs 

(1, 4, 6-8).  The stability and longevity of siRNAs within ticks is unknown.    Silencing of 

salp20 expression by microinjection of full-length salp20 dsRNA in nymphal I. scapularis 

ticks also had no effect on tick attachment, feeding times, or fed weights (personal 

communication, N. Ramamoorthi). Since salp20 dsRNA potentially silenced only salp20 

expression, other ILP genes may have been expressed resulting in no observed effects during 
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tick attachment and feeding.  Even though we successfully silenced salp20 expression with 

both siRNAs and dsRNA, we may observe more consistent and definitive results in tick 

attachment and feeding if we perform these studies using multiple full-length dsRNAs 

corresponding to several ILP family members.    

 Soares et al. demonstrated that capillary feeding of isac dsRNA effectively silenced 

isac expression and led to reduced nymphal tick weights during feeding, resulting in 

ineffective pathogen transmission (8).  However, in their approach, Soares et al. prefed 

nymphal ticks 72 hr before feeding them isac dsRNA.  During that 72 hrs, the ticks 

successfully attached and cemented themselves in place, making their removal extremely 

difficult.  In fact, during removal from the host, tick mouthparts are often damaged, which 

ultimately prevents further successful feeding and may even lead to premature death.  In their 

studies, Soares et al. may have damaged tick mouthparts during removal from the host, 

resulting in reduced tick weights when the ticks were allowed to feed again after isac dsRNA 

administration.  Furthermore, as Soares et al. administered only isac dsRNA to nymphal 

ticks, they may not have effectively silenced the entire ILP family.  More pronounced 

differences in feeding times and weights may be apparent between mock-treated and dsRNA-

treated ticks if the entire ILP family is effectively silenced. 

 Besides RNAi, we also developed specific antibodies against ILP family members to 

determine the importance of the ILP family during tick feeding and to additionally assess the 

antigenicity of various family members.  When mice were immunized with S20NS, S20L12, 

and S20L2 individually or in combination, they developed robust antibody responses against 

the ILPs.  However, these antibody responses did not prevent successful tick feeding as 

comparable numbers of fed nymphal ticks from all immunized mice and PBS-injected 
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(mock) mice displayed similar average weights.  One explanation for this result is that if the 

ILP family members indeed display antigenic variation, the antibodies generated in the 

immunized mice may have neutralized specific ILPs but not all family members secreted in 

tick saliva during feeding, allowing the ticks to feed successfully.  Couvreur et al. have 

demonstrated that antibodies in the serum from a mouse immunized with a single 

recombinant I. ricinus ILP detected and neutralized the activity of only the immunizing 

protein and not related family members, suggesting antigenic variation between family 

members (3).  In addition, Daix et al. determined that monoclonal antibodies directed against 

Irac-1 were only capable of recognizing Irac-1, and not Irac-2.  Likewise, Irac-2 monoclonal 

antibodies only recognized Irac-2, and not Irac-1 (3).  In the studies described here, 

antibodies from mice immunized with individual ILPs, S20NS, S20L12, and S20L2, were 

able to recognize all recombinant ILP proteins, suggesting antigenic variation may not be a 

likely possibility.  However, all of the recombinant ILP proteins possessed V5-epitope and 

6X-His tags, possibly resulting in the generation of cross-reactive anti-V5 and anti-His 

antibodies.  We did observe some cross-reactive anti-V5 and anti-His antibodies as sera from 

all immunized mice were capable of reacting with CAT, which is not an ILP but contains C-

terminal V5-epitope and 6X-His tags.  In order to draw conclusions about the antigenicity of 

various ILP family members and the necessity and importance of the ILP family during tick 

feeding, we must generate either monoclonal antibodies against specific family members or 

polyclonal sera lacking antibodies against the C-terminal tags present on all recombinant 

ILPs.   

 Besides difficulties with the antibody responses, we also may not have observed any 

differences in average fed tick weights between ticks that fed on mock-treated and 
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immunized mice because the ticks used for this study were nymphal ticks.  Narasimhan et al. 

demonstrated that silencing salp14 expression in adult I. scapularis ticks resulted in 

pronounced differences in fed tick weights between dsRNA-injected ticks and mock-treated 

ticks (4).  However, when Pedra et al. repeated these studies in nymphal ticks, no differences 

in fed tick weights were observed between salp14 dsRNA-injected and mock-treated ticks, 

indicating the feeding characteristics and tick rejection mechanisms are different between 

adults and nymphs (5).  Nymphal ticks are very small, making weight determinations 

difficult.  In addition, female and male nymphs appear identical, but females usually 

consume much larger blood meals than males (9).  In our studies, it is highly likely that male 

and female nymphs were distributed unevenly between feeding groups.  Therefore, 

significant differences in fed tick weights between dsRNA-injected and mock-treated and 

between ticks feeding on immunized versus mock-treated mice may be hard to distinguish.  

Both the RNAi and immunization experiments may provide clearer results if performed with 

adult I. scapularis ticks.  Once these experiments are eventually optimized, and if we are able 

to determine the ILP family is vital for successful tick feeding, various family members may 

be attractive targets for anti-tick vaccines.   

 

5.6 Contributions  

 In this work, I designed and performed all of the experiments with the following 

exceptions.  Nandhini Ramamoorthi, a postdoctoral fellow in the laboratory of Erol Fikrig, 

aided me in the design of the RNAi studies and assisted me with the microinjections of ticks 

with dsRNA and RT-PCR of dissected tick tissues.  Nandhini Ramamoorthi also provided 

full-length salp20 dsRNA as a control in the RNAi experiments.  Erol Fikrig provided 
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nymphal ticks and laboratory space for me to perform the RNAi studies, and Aravinda de 

Silva helped with the design of the experiments. 
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siRNA Name Sequence 
Salp20_siRNA_157 5`-GCACAGUAUAGGAAUUCAA-3` 

Salp20_siRNA_157R 5`-UUGAAUUCCUAUACUGUGC-3` 
Salp20_siRNA_117 5`-CUACGAACGUCAAUAUAGA-3` 

Salp20_siRNA_117R 5`-UCUAUAUUGACGUUCGUAG-3` 
Salp20_siRNA_156 5`-GGCACAGUAUAGGAAUUCA-3` 

Salp20_siRNA_156R 5`-UGAAUUCCUAUACUGUGCC-3` 
nonsense_siRNA_157_rev 5`-AACUUAAGGAUAUGACACG-3` 

nonsense_siRNA_157R_rev 5`-CGUGUCAUAUCCUUAAGUU-3` 
nonsense_siRNA_117_rev 5`-AGAUAUAACUGCAAGCAUC-3` 

nonsense_siRNA_117R_rev 5`-GAUGCUUGCAGUUAUAUCU-3` 
nonsense_siRNA_156_rev 5`-ACUUAAGGAUAUGACACGG-3` 

nonsense_siRNA_156R_rev 5`-CCGUGUCAUAUCCUUAAGU-3` 
 
Table 5.1 siRNAs used for RNA interference in nymphal I. scapularis ticks. 
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Fig 5.1 RT-PCR of RNA from the salivary glands and guts of mock- and salp20-siRNA 
injected I. scapularis nymphs.  RNA was extracted from two groups (1 & 2) of 5 pairs of 
salivary glands (SG) and 3 guts (Gut) of nymphal buffer-injected (mock-treated) or salp20-
siRNA injected (salp20 siRNA) I. scapularis ticks that fed on mice for 5 days.  The RNA 
was subjected to RT-PCR with salp20- and actin-specific primers.   
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Treatment # attached/total number injected 

Mock 15/15 
salp20 dsRNA 13/15 
salp20 siRNAs 0/15 

nonsense siRNAs 0/15 
 
Table 5.2 Numbers of nymphal I. scapularis ticks that attached to mice after dsRNA 
microinjections. 
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Fig 5.2 Antibody responses and specificities from mice immunized with recombinant ILP 
proteins. A. Microtiter plates were coated with S20NS, S20L12, and S20L2 and then 
incubated with immune mouse sera (diluted 1:100) from mice that were immunized and 
boosted subcutaneously with 10 µg of recombinant insect-derived S20NS, S20L12, and 
S20L2 individually (S20NS IMS, S20L12 IMS, S20L2 IMS) or in combination (combo #1 
IMS, combo #2 IMS).  Bound antibodies were detected by ELISA with a secondary AP-
conjugated goat α-mouse IgG. B. Approximately 100 ng of S20NS, S20L12, S20L2, CAT, 
and 25 µl of culture media from stably transfected insect cells expressing S20S were probed 
with immune serum from a mouse immunized with S20NS (1:100) or with a monoclonal 
mouse α-V5 antibody (1:5000) and a secondary HRP-conjugated goat α-mouse IgG.     
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Fig 5.3 Weights of nymphal I. scapularis ticks fed on mice immunized with recombinant ILP 
proteins.  Groups of engorged nymphal I. scapularis ticks that fed on mice immunized with 
S20NS, S20L12, and S20L2 individually (S20NS, S20L12, S20L2) or in combination 
(combo #1, combo#2) were weighed.  Nymphal ticks that fed on mice injected with PBS 
(Mock) were also weighed.  Average tick weights in each group are represented by the 
horizontal line. 
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CHAPTER 6 
 

Discussion 
 
 

 Hematophagus ectoparasitic arthropods, including ticks, are major pest of animals 

and humans, and transmit numerous bacterial, viral, and protozoan pathogens that cause 

devastating diseases.  Arthropod control strategies typically involve the use of insecticides, 

which present many disadvantages including environmental pollution, human health risks, 

and the development of insecticide resistant arthropods.  I. scapularis, the blacklegged tick, 

is an extensively studied arthropod since it transmits a variety of pathogens, including the 

causative agent of Lyme disease.  Elucidating proteins and mechanisms that are important for 

successful blood feeding in I. scapularis will provide further insight into the feeding process 

of the tick, and potentially other blood feeding arthropods. The future characterization of 

proteins and mechanisms important for successful arthropod blood feeding may aid in the 

development of alternative strategies to control arthropods and pathogen transmission.     

 

6.1 Characterization of I. scapularis anti-complement proteins 

 I. scapularis and I. ricinus ticks express a large family of anti-complement proteins, 

the ILP family, that specifically inhibit the alternative complement pathway (2, 3, 23, 26, 28).  

ILPs uniquely interact with properdin, a positive regulator of the C3 convertase, displacing it 

from the convertase, which ultimately leads to decay acceleration of the C3 convertase (2) 

(Chapter 3) (Fig 6.1).  In the future, we plan on further characterizing the interaction between 

 



ILPs and properdin.  Properdin is primarily composed of 6 TSRs flanked by short N- and C-

terminal regions (7, 16).  These TSRs are important for mediating the interaction of 

properdin with Bb, C3b, and the C3 convertase, and for binding surfaces (10, 13, 21).  

Specifically, the TSRs have been shown to interact with sulfated glycoconjugates and 

glycosaminglycans (8, 13).  The possibility exists that the numerous N- and O-linked 

carbohydrates of ILPs mediate their interactions with properdin.  In support of this 

possibility, we were unable to detect a direct interaction between an E. coli expressed 

glutathione S-transferase (GST)-Salp20 fusion protein that lacked post-translational 

modifications (data not shown).  However, the lack of interaction between properdin and 

GST-Salp20 may be the result of the large GST tag, ~ 25 kDa, which possibly prevents the 

appropriate folding and activity of Salp20.  Future studies are aimed at evaluating the 

properdin binding capabilities of insect derived recombinant ILPs lacking N- and O-linked 

glycans that will be generated either through various enzymatic deglycosylations or through 

protein production in the presence of glycosylation inhibitors.      

 

 6.2 Determination of the purpose of ILP family production 

 Couvreur et al. and Daix et al. demonstrated that multiple ILPs are coexpressed 

during tick feeding (2, 3).  Since individual ILPs typically displayed partial inhibition of the 

alternative complement pathway (Chapter 4), we believed multiple ILPs acted synergistically 

when coexpressed during tick feeding, resulting in complete inhibition of the alternative 

pathway.  However, when mixed together, multiple I. scapularis ILPs displayed partial 

inhibition of the alternative complement pathway, similar to activity observed with individual 

ILPs (Chapter 4).  As an alternative possibility justifying ILP coexpression, individual ILPs 
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may potentially display host specificity as both I. scapularis and I. ricinus feed on numerous 

animal hosts.  Yet, we detected no differences in the inhibitory activity of individual I. 

scapularis ILPs when incubated with various host animal serum sources (Chapter 4), 

comparable to the results obtained with I. ricinus ILPs in similar experiments (2, 25).  

Another alternative possibility explaining ILP coexpression is that different ILPs display 

multiple functions besides complement inhibition by potentially interacting with other TSR-

containing proteins in addition to properdin.  In these studies, we demonstrated that different 

ILPs specifically interact with only properdin and not other TSR-containing proteins.  

However, as only two other proteins containing TSRs, ADAMTS-13 and TSP-1, were 

assayed, ILPs may still be capable of displaying multiple functions, unrelated to ADAMTS-

13 and TSP-1, that facilitate blood feeding in hosts.   

 Since ILPs potentially contain numerous N- and O-linked carbohydrate residues, 

these proteins may also be capable of inhibiting the mannose-binding lectin complement 

pathway.  The MBL pathway is initiated when MBL binds high density terminal mannose 

residues on activating surfaces, resulting in the recruitment and activation of MASPs (6, 15, 

24, 30, 31).  The carbohydrate residues present on different ILPs may bind MBL, preventing 

it from recognizing sugars on activating tick surfaces.  We are currently interested in 

determining if different ILPs bind MBL and possibly prevent activation of the MBL 

complement pathway in addition to inhibition of the alternative complement pathway.    

 Couvreur et al. have recently demonstrated that individual I. ricinus ILPs display 

antigenic variation, which potentially explains ILP coexpression during tick feeding (2).  As 

I. ricinus ticks, like I. scapularis ticks, feed on a host for several days, the host has ample 

time to develop to immune responses, including antibody responses, against tick salivary 
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proteins.  Furthermore, I. ricinus and I. scapularis ticks may repeatedly feed on the same 

hosts as the ticks live within the vicinity of their animal hosts.  After an initial exposure to 

tick salivary antigens, the animal host may develop antibodies against the antigens, 

preventing a second successful tick feeding.  In order to circumvent these antibody responses 

and feed successfully without rejection, the tick may produce antigenically variable salivary 

proteins.  Future studies are directed at evaluating the antigenic variability of the different I. 

scapularis ILPs.   

 Besides the possibility that ILPs are antigenically variable, ILPs may also display 

slight variations in their functions.  Even though S20L12, S20L2, and S20NS bind properdin 

with similar affinities, they may bind different domains of the protein.  Within properdin, 

TSR-5 mediates the C3b interaction while TSR-6 facilitates polymerization, resulting in the 

formation of active properdin tetramers, trimers, and dimers (10, 19, 21).  It is possible that 

different ILPs bind different TSRs of properdin, preventing its interaction with C3b or its 

polymerization, both of which would result in functional inactivation.  Determining the 

specific domains of properdin that are bound by different ILPs will provide further insight 

into the functions and purpose of multiple ILP family members.  Regardless of the outcomes 

of our future studies, characterizing differences that exist between ILP family members will 

hopefully elucidate the overall function of the I. scapularis anti-complement protein family 

and other various immunosuppressive tick salivary protein families.  Regardless of the 

outcomes of our future studies, characterizing differences that exist between ILP family 

members will hopefully elucidate the overall function of the I. scapularis anti-complement 

protein family and other various immunosuppressive tick salivary protein families. 
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6.3 Importance of the ILP family during tick feeding and pathogen transmission  

 As I. scapularis produces multiple anti-complement proteins with identical functions 

that are likely coexpressed during tick feeding, the ILPs are probably vitally important for 

successful tick feeding.  Soares et al. have demonstrated that silencing of isac by RNAi 

results in reduced I. scapularis fed nymphal tick weights and inefficient pathogen 

transmission (26).  However, the results of Soares et al. are not definitive as several variables 

that existed in the execution of the experiments, unrelated to the effects of RNAi, may have 

caused the observed reduced tick weights.  Therefore, a thorough evaluation of the necessity 

and importance of the ILP family during tick feeding is still needed.   

 Microinjection of salp20-specific siRNAs, as well as nonspecific siRNAs, into 

nymphal I. scapularis ticks resulted in reduced tick attachment, while the microinjection of 

full-length salp20 dsRNA had no effect on tick feeding.  Additionally, the generation of 

antibodies directed against specific ILPs had no effect on I. scapularis nymphal tick feeding 

(Chapter 5).  These results suggest that the ILP family is potentially not necessary for 

successful nymphal tick feeding.  However, as these experiments were not properly 

optimized, no definitive conclusions should be drawn.  In the future, the optimal 

composition, delivery method, and concentration of salp20-specific siRNAs or full-length 

dsRNAs that effectively silence ILP gene expression during tick feeding need to be 

determined.  Once those variables are established, these RNAi studies in I. scapularis may 

provide more definitive results.  Immunization studies may also be more definitive if mice 

are immunized with more than three recombinant proteins, potentially generating antibodies 

against most, if not all, of the ILP family members.  If we successfully optimize these studies 

and still observe no significant effects on nymphal tick feeding, we should then pursue these 
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studies in I. scapularis adults as currently, effects on tick feeding times and fed tick weights 

by RNAi mediated gene silencing have primarily been observed with adult ticks.   

 In addition to their possible roles for successful tick feeding, ILP family members 

may also be vital for efficient transmission of B. burgdorferi.  Ramamoorthi et al. recently 

demonstrated that RNAi mediated silencing of salp15, and inhibitor of T-cell proliferation 

and IL-2 production, had no effect on successful nymphal tick feeding but prevented the 

efficient transmission of B. burgdorferi to a murine host (22).  Sukumaran et al. also recently 

determined that RNAi mediated silencing of salp16, an I. scapularis salivary protein with 

unknown functions, prevents the successful migration of Anaplasma phagocytophilum, the 

causative agent of human anaplasmosis, from the tick gut to the salivary glands during 

feeding and tick infection (27).  Since S20NS prevented complement-mediated killing of 

serum sensitive B. garnii spirochetes by NHS in vitro (Chapter 2), S20NS, and other ILPs, 

may aid in successful pathogen transmission in vivo by preventing complement activation.  

Future studies are aimed at testing this possibility. 

 

6.4 The I. scapularis genome project and ILPs 

The goal of the I. scapularis Genome Project, a collaborative effort between the 

international community of tick researchers and two genome sequencing centers, is to 

perform whole genome shotgun sequencing of I. scapularis to approximately six-fold 

coverage of the genome (11).  Compared to sequenced fly genomes, I. scapularis has a larger 

genome (2.1 x 103 Mbp), which is uniquely organized into 27% highly repetitive, 39% 

moderately repetitive and 34% unique DNA (29).  Currently, more than 18 million trace 

reads, representing approximately five-fold coverage of the genome, have been deposited at 
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the National Center for Biotechnology Information (NCBI) trace archive (18).  In addition, 

20 Ixodes BAC clones, 370,000 BAC-end reads, and more than 80,000 ESTs have also been 

sequenced.  By mid-2008, sequencing, assembly, and annotation of six-fold coverage of the 

Ixodes genome are expected.  The complete I. scapularis genome will provide valuable 

information about the origination and regulation of different ILP family members and likely 

help with the identification and of other salivary protein gene families. 

 

6.5 Development of an anti-tick vaccine  

 As ticks are continual pests of humans, pets, and livestock, transmit numerous 

pathogens to animals, and cause devastating effects in livestock populations, numerous 

efforts have been employed to control tick feeding and pathogen transmission.  Current tick 

control strategies involve the use of acaricides, but acaricides present multiple disadvantages 

such as food contamination, environmental pollution, human health risks, and the emergence 

of acaricide-resistant ticks (4, 5, 17).  Vaccination strategies directed against specific tick-

transmitted pathogens are somewhat impractical as ticks transmit such a wide variety of 

pathogens.  Therefore, vaccines directed against various tick antigens that potentially prevent 

successful tick feeding and pathogen transmission present an attractive alternative to the 

current tick control strategies.  The feasibility of anti-tick vaccines is supported by the 

development of TickGARD, a vaccine based on the recombinant concealed B. microplus tick 

gut protein, Bm86, which induces strong antibody responses in immunized cattle, resulting in 

reduced survival of feeding B. microplus adults (32).  However, as Bm86 is a concealed 

antigen, repeated immunizations must be administered to induce effective tick blocking 

antibody titers.  Labuda et al. have recently demonstrated that vaccination of mice with a 
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recombinant R. appendiculatus protein identified in the midgut and salivary glands, 64TRP, 

protects mice from tick-borne encephalitis virus infections as well as prevents ticks from 

acquiring the virus from infected mice during feeding, indicating the plausibility of the use of 

tick antigens as pathogen-transmission blocking vaccines (14).   

 Exposed tick salivary antigens are attractive anti-tick vaccine candidates since 

repeated tick feedings on immunized animals would boost the immune responses generated 

by initial immunizations, eliminating the need for repeated immunizations.  Furthermore, the 

generation of immune responses directed against various immunosuppressive tick salivary 

proteins would potentially prevent successful tick feeding and block pathogen transmission.  

The ILP family may be useful in the development of anti-tick and pathogen transmission 

blocking vaccines as members are exposed in the host during feeding.  However, if the 

different ILP family members display antigenic variation, and moreover, if members of other 

immunosuppressive tick salivary protein families also display antigenic variation, the 

development of a multivalent anti-tick vaccine directed against numerous exposed salivary 

antigens will be necessary.   

     

6.6 Use of ILPs as therapeutic agents in complement mediated diseases 

 Inappropriate activation or uncontrolled regulation of the complement cascades leads 

to the development of numerous inflammatory and autoimmune diseases (24).  Multiple 

groups have demonstrated with the use of fB and fD deficient mice that the alternative 

complement pathway is involved in the development of several diseases including 

rheumatoid arthritis, lupus nephritis, ischemia-reperfusion injury, anti-phospholipid 
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syndrome, experimental allergic encephalomyelitis, and pulmonary disease (12).  Currently, 

numerous efforts are directed at developing effective complement-specific therapies.   

 The ILPs are potentially appealing complement-specific therapeutics as they are small 

proteins that are likely to be stable in vivo since they are naturally secreted into hosts by 

ticks.  Furthermore, since the ILPs specifically inhibit the alternative complement pathway 

by binding properdin, the classical and MBL pathways would still be functional in ILP 

treated individuals, which would provide partial complement-mediated immunity against 

invading microorganisms.  The use of tick proteins as therapeutics seems very feasible as 

Paveglio et al. have recently established that I. scapularis Salp15 prevents the development 

of experimental murine asthma (20).  In addition, Hepburn et al. demonstrated that O. 

moubata OmCI, an inhibitor of the complement pathway that directly binds C5, prevents the 

development of the experimental autoimmune myasthenia gravis, a neuromuscular disorder, 

in rats (9).  We are currently investigating the potential of S20NS as a therapeutic agent that 

inhibits the development of alternative pathway complement-mediated diseases in vivo.   
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Fig 6.1 Proposed model of ILP (S20NS) complement inhibitory activity.  The C3 convertase 
(C3bBb) is stabilized by properdin, which binds the convertase and significantly increases its 
half-life.  During tick feeding, ILP proteins (S20NS) secreted into the host in tick saliva 
directly interact with properdin, removing it from the C3 convertase.  Once properdin is 
removed, the C3 convertase rapidly decays and surface bound exposed C3b is available for fI 
mediated degradation.  Figure adapted from (1). 
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