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Abstract

ARPITA GHOSH: Conditional Likelihood for Risk Estimation in Genome
Scans and Coefficient Shrinkage.

(Under the direction of Dr. Fred A. Wright and Dr. Fei Zou)

It is widely recognized that genome-wide association studies suffer from inflation of

the risk estimates (commonly known as the “winner’s curse” or “significance bias”) for

genetic variants, usually single nucleotide polymorphisms (SNP)s, identified as signif-

icant in the genome scan. To handle such significance bias, a number of investigators

have proposed using likelihoods that condition on the declared significance of the out-

come. We describe an approximate conditional likelihood approach that can be applied

using estimates of odds ratios and their standard errors provided by standard statis-

tical software. We also discuss extensions to the situation where, to supplement the

primary analysis, risk estimation is performed for multiple correlated phenotypes or

gene-environment interactions in the genome scan. The results have considerable im-

portance for the proper design of follow-up studies and risk characterization. Our con-

ditional likelihood approach also lends itself naturally to regression settings, in which

shrinkage of multiple coefficients is performed. We use our conditional likelihood to

propose a new regression penalty function, and demonstrate that it is competitive with

other penalized regression procedures in both low-dimensional and high-dimensional

settings.
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Chapter 1

Introduction

Over the past few years a large number of genotype-phenotype associations have been

reported in the genome-wide association study (GWAS) literature. However, many of

these reported associations have not been replicated (Hirschhorn et al. 2002; Lohmueller

et al. 2003). Among those associations that have been replicated, the estimated genetic

effect size in the replication sample has often been smaller than that observed in the

original GWAS (Todd et al. 2007; Yu et al. 2007; Levy et al. 2009). We investigate one

of the possible reasons behind these phenomena, namely that estimates of effect sizes

are upwardly-biased simply due to the fact that the genetic variants were selected for

having achieved statistical significance.

In a GWAS the objective is to identify genetic variants (SNPs) conferring disease

susceptibility. Once such a variant is detected, interest lies in quantifying the genetic

effect of that variant on the phenotype, based on the same data. For modern whole

genome scans, 100,000 to 1 million SNPs may be genotyped. To control family-wise er-

ror or false discovery rates, point-wise significance thresholds must be very conservative

(Zondervan and Cardon 2007; Todd et al. 2007; Scott et al. 2007), typically in the range

10−7−10−8. Using the same dataset for testing and estimation purposes, together with

the application of stringent thresholds, distorts the estimation process and produces



inflated estimates of effect sizes for significant SNPs. This phenomenon is commonly

known as the “winner’s curse” (Lohmueller et al. 2003; Zöllner and Pritchard 2007) or

“significance bias” (Ghosh et al. 2008). For example, in a GWAS of blood pressure

and hypertension for the CHARGE Consortium reported by Levy et al. (2009), effect

size estimates were reported for all thirty SNPS representing the ten most significant

loci for each of the three phenotypes systolic blood pressure, diastolic blood pressure,

and hypertension. Each of these estimates was higher in magnitude than the estimates

in a replication study reported by the Global BPgen Consortium, representing strong

empirical evidence for the significance bias phenomenon.

One implication of significance bias is that if the biased estimates are used for the

design of replication studies, these replication studies are likely to be underpowered.

In addition, the true standard errors of risk estimates can be greatly inflated by the

selection procedure. Also, standard confidence intervals for risk estimates can have

very poor coverage properties. Although significance bias has been investigated and

documented in detail, very few methods have been proposed for reducing or eliminating

it.

We have developed a conditional likelihood approach to reduce this bias, which ap-

plies in a variety of testing settings (Ghosh et al. 2008). Among the most attractive

settings is the analysis of case-control association studies, for which the number of tests

(SNPs) is very large, and for which the genetic risk effects are important, interpretable

quantities. Our approach is based on the estimate of the genetic effect and its standard

error as reported by standard statistical software. Thus it does not require access to

the original data and can be applied to published studies, and our method is far easier

to implement than competing approaches. We also provide a principled method to con-

struct confidence intervals for the genetic effect while acknowledging the conditioning

on statistical significance. We have evaluated the performance of the proposed method
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via extensive simulations for a range of genetic models, minor allele frequencies and

genetic effect sizes. Finally, we have applied it to published datasets to demonstrate

the relevance of our approach to modern whole genome scans.

As an extension to the problem of reducing significance bias for disease risk effect, we

have considered the situation where selection of a significant SNP is performed on the

basis of one trait, but we wish to perform inference on the risk effect of the significant

SNP for another trait (e.g. Type II diabetes and obesity). An immediate problem arises

in performing valid inference for the secondary phenotype for a (retrospective) case-

control design. If the secondary phenotype is associated with the disease status that

forms the basis for case-control comparison, then standard logistic or linear regression

applied to the secondary trait can produce severely biased estimates of the secondary

risk effects (Nagelkerke et al. 1995; Jiang et al. 2006; Lin and Zeng 2008).

While the secondary analysis for case-control association studies has been addressed

by many researchers in the GWAS literature (Jiang et al. 2006; Scott and Wild 2002;

Richardson et al. 2007; Scott and Wild 1991; Lee et al. 1997; Lin and Zeng 2008),

we describe a novel retrospective likelihood method to analyze binary or continuous

secondary phenotypes. The approach models the joint distribution of the disease and

secondary phenotypes such that the marginals for each phenotype respect the conven-

tional models. Specifically, we specify the joint distribution such that the marginal

distribution for the disease phenotype is logistic and that for the secondary phenotype

is logistic or linear for binary or continuous secondary phenotypes, respectively. The

approach has considerable appeal as an alternative analysis procedure for secondary

phenotypes.

Using our approach for secondary analysis, we next describe a general approach

to bias-correction that includes correction for a variety of secondary effects, including

risk effects for secondary phenotypes, as well as the estimation of gene-environment

3



interaction effects. Here bias correction is necessary if the the SNPs of interest have

undergone initial significance selection for the primary phenotype, and it is of interest

to perform inference for the secondary effects. We demonstrate that the significance

bias problem can be substantial for the secondary effects, and is closely related to the

correlation between the primary and secondary effect estimates. The problem of signif-

icance bias in the estimation of secondary effects has received relatively little attention

in the GWAS literature. To address this problem, we have developed an extension of

our conditional likelihood approach to a multivariate setting, where multiple effect co-

efficients are estimated simultaneously . For implementation of this method we require

the estimates of the effect sizes, their standard errors, and an estimate of the covariance

between them. For secondary phenotypes, we provide formulas to estimate the relevant

covariances, and the method can be implemented very easily. We have also developed

the method to handle the situation where gene effects, as well as environmental effects

and gene-environment interactions are all estimated simultaneously. In addition, we

have shown analytically that if we first fit a reduced model for disease risk on gene

only, and follow up with a full model only if the reduced model is declared significant,

then the effect size estimate for the gene-environment interaction obtained from the

full model is not asymptotically biased.

Finally, it is worth noting that the bias-correction procedure is intended to reduce

the mean-squared error of effect estimates, with significance thresholds that are es-

pecially useful when the proportion of true alternatives is low. Moreover, the effect

estimates that are not significant may be thought of as having been thresholded to

zero. In this manner, our conditional likelihood approach may be compared to the

shrinkage of coefficient estimates and thresholding that is applied in existing penalized

regression procedures. We demonstrate that our conditional likelihood can be used

to formulate a new penalty that can be used in a regression framework in situations

4



where the sample size is larger than the number of predictors. By implementing a

significance threshold as a tuning parameter for individual predictors, the procedure

can create a sparse set of predictors with non-zero coefficient estimates. In addition, we

describe a conditional regression procedure that can be used to obtain estimates for our

method when the number of predictors is larger than the sample size. When combined

with cross-validation, our procedure is an automatic variable selection and coefficient

shrinkage approach that is a competitive approach for prediction in high-dimensional

regression settings. We demonstrate via simulation that the procedure has good pre-

diction error properties in comparison to competing approaches, especially when the

proportion of nonzero coefficients is small.
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Chapter 2

Estimating Odds Ratios for Disease

Risk in Genome Scans

2.1 Introduction

In genetic studies, it is widely recognized that the control of genome-wide error requires

the use of stringent thresholds for significance testing. For genome-wide linkage scans,

standard LOD significance thresholds in the range 3.0 to 4.0 correspond to point-wise

p-values in the range 10−4–10−5, depending on the model and study design (Lander

and Kruglyak 1995). For modern genome-wide association studies (GWAS), 100,000

to 1 million SNP markers may be genotyped, and control of family-wise error or false

discovery rates typically requires point-wise significance thresholds in the range 10−7–

10−8 (Zondervan and Cardon 2007; Todd et al. 2007; Scott et al. 2007). The use of

such stringent thresholds is offset somewhat by the belief that GWAS offer greater

power than linkage studies for detecting complex disease genes (Risch and Merikan-

gas 1996). Nonetheless, the application of stringent thresholds distorts the inferential

process, producing estimates of disease risk effect sizes that may be, on average, far

greater in magnitude than the true effect (Lander and Kruglyak 1995; Zondervan and



Cardon 2007; Allison et al. 2002; Chanock et al. 2007; Garner 2007; Göring et al. 2001;

Hirschhorn et al. 2002; Ioannidis et al. 2001; Lohmueller et al. 2003; Siegmund 2002; Sun

and Bull 2005; Yu et al. 2007; Zöllner and Pritchard 2007). This phenomenon has been

described as a form of “winner’s curse” by Zöllner and Pritchard (2007) and others, or

as a form of regression to the mean (Yu et al. 2007), and has profound importance for

genome scans. Although the problem has been described as primarily an issue of bias,

we demonstrate below that the variance of risk estimates can also be greatly inflated

by the selection procedure. Moreover, standard confidence intervals for risk estimates

will have very poor coverage properties, although this issue seems to have received less

attention.

Consider a genome association scan for a complex disease in which 10 genomic

regions contain disease genes, and each region has a 20% chance of meeting genome-

wide significance. Assuming independence of regions, the genome scan has respectable

power 1 − (1 − 0.2)10 = 0.89 to achieve significance in at least one region. However,

a repeated genome scan of equal size will have power of only 0.2 for any one region,

and thus likely not result in “replication” of the first study. A follow-up study might

focus on a single significant region, using fewer markers and paying a lower penalty

for multiple comparisons. But if the results of the initial genome scan are used as a

guide, the follow-up study is likely to be underpowered, relying on an inflated estimate

of locus disease risk.

As a statistical phenomenon, the winner’s curse should not be confused with addi-

tional sources of bias, including variations due to genotyping technologies, or hetero-

geneity of patient populations from which samples are drawn (Lohmueller et al. 2003;

Balding 2006; Wang et al. 2005). The winner’s curse is investigated in detailed simula-

tions elsewhere (Garner 2007; Göring et al. 2001; Siegmund 2002; Sun and Bull 2005;

Yu et al. 2007; Zöllner and Pritchard 2007), including a recent paper by Garner (2007),
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who clarified that the bias can be understood largely through the behavior of Wald

statistics for log odds ratios.

Although the bias is simple to understand and to document, reducing or eliminat-

ing it may be nontrivial. Zöllner and Pritchard (2007), have described a likelihood

approach which requires maximization over numerous parameters, including genotype

frequencies and penetrance parameters, while conditioning on declared statistical sig-

nificance. Their procedure reduces the bias in risk estimation, but cannot be performed

using standard statistical software. Yu et al. (2007) have recently applied bootstrapping

to correct for significance bias Both of these bias correction approaches are technically

feasible for genome scans, but would be highly computationally intensive in that setting.

We describe our alternative approach for estimating genetic effects in terms of odds

ratios, which have numerous advantages that have made them standard for analysis

of case-control designs (Aschengrau and Seage 2003). A crucial advantage for case-

control studies is that the odds ratio (OR) may be estimated consistently, whether the

study design is prospective or retrospective (McCullagh and Nelder 1989), and the OR

has an interpretation distinct from nuisance parameters such as genotype frequencies.

Moreover, in logistic models the OR retains interpretability in the presence of covariates,

which is increasingly important for complex disease investigations.

In this paper we introduce a method to correct for significance bias in disease asso-

ciation studies, using an approximate conditional likelihood. The approach is directly

based on the OR estimate and its standard error as reported by standard statistical

software, and applies to dominant, recessive, or additive genetic models. No modifica-

tion is necessary when covariates such as population stratification variables have also

been fit in the model. The approach may even be applied to published results without

access to the original data. In addition, we develop a method to construct accurate

confidence intervals for the OR.

8



We illustrate the performance of our approach via extensive simulations of a disease

SNP analyzed by logistic regression. The simulations cover a range of models, disease

allele frequencies, and OR values. Compared to nave OR estimation, our approach pro-

vides greatly reduced bias and mean-squared error, particularly for the modest effect

sizes likely to be encountered in complex diseases. In addition, our confidence inter-

val procedure provides coverage that is accurate or slightly conservative. Performing

simulations for OR values near the null presents a challenge, because significant results

are very rare when applying genome-wide thresholds. We thus employ a screening ap-

proach in which a deterministic trend statistic is used to identify datasets potentially

significant in logistic regression.

2.2 Methods

We assume a genetic model with one parameter for the effect of disease genotype,

which includes recessive, dominant, and additive models. We use β = log(OR) to

denote the true loge odds ratio for disease risk conferred by a referent genotype, or for

the contribution of each allele in an additive model. A single locus test statistic for

disease association can be expressed as an estimate for β divided by an estimate for its

standard error,

z =
β̂

ŜE(β̂)
(2.1)

which is compared to the asymptotic null distribution N(0, 1). We will refer to β̂ and

ŜE(β̂) as näıve estimators, as they are obtained from standard statistical procedures

without acknowledging selection based on significance. For our problem, we wish to

estimate β only when the SNP is significant in two-sided testing, i.e., |z| > c for

a value c corresponding to genome-wide significance. By explicitly considering this

selection, below we obtain three new estimators and a confidence interval procedure.

9



Our approach offers marked improvements over β̂ and standard confidence intervals.

Our exposition includes mathematical and motivational details that we believe will

considerably demystify the problem, which has until now appeared more obscure and

complex than necessary. The performance of our new estimators is described in the

Simulations subsection 2.2.8.

2.2.1 Significance bias (the winner’s curse)

When logistic regression is used to test for genetic association, the Wald statistic for

genetic effect assumes the specific form of (2.1), with numerator and denominator

obtained from maximum likelihood and the information matrix (McCullagh and Nelder

1989; Agresti 2007; Cox and Snell 1989). However, the essence of our approach applies

to a wide variety of testing procedures, for which the key requirements typically hold:

(i) asymptotic normality of β̂, and (ii) consistency of the standard error estimate, so

that ŜE(β̂)/SE(β̂) → 1. Expressing the test statistic in the form (2.1) provides a

straightforward illustration of significance bias, and points the way toward corrected

estimation procedures. Related test statistics based on maximum likelihood ratios,

efficient scores, or directly based on contingency tables, are all asymptotically equivalent

to (2.1) for local departures from the null hypothesis H0 : β = 0 (Rao 1973), although

this asymptotic equivalence is not necessary to apply our approach. The remainder of

this subsection is similar to Garner (2007), but our explicit and expanded treatment

provides the grounds for later development.

For large samples, ŜE(β̂) does not vary markedly in repeated data realizations.

Thus the estimate β̂ and its statistical significance are highly correlated (Garner 2007)

and the problem can be restated as single-parameter estimation for a truncated normal

distribution. To see this, we define µ = β/ŜE(β̂), with Z
.∼ N(µ, 1). Our use of this

approximation follows from the standard result Z−µ = β̂−β
ŜE(β̂)

D→ N(0, 1) for increasing

10



sample size (Wald 1943). The statistical procedures to follow are developed entirely

this “µ version” of the problem, which has been greatly simplified by the variance

standardization.

Our näıve estimate of µ is µ̂ = z, and the expectation can be shown analytically to

be

Eµ(Z
∣∣|Z| > c) = µ+

φ(c− µ)− φ(c+ µ)

Φ(−c+ µ) + Φ(−c− µ)
, (2.2)

where φ and Φ are the density and cumulative distribution function of a standard

normal, respectively (see Appendix A). This is the two-sided rejection version of a

result given by Garner (2007). As we detail in Results (Section 2.3), the bias can be

substantial in realistic settings. In the special case of the null hypothesis µ = 0, it is

clear from (2.2) that the näıve estimate z is unbiased, because the two-sided testing

procedure is equally likely to falsely declare positive or negative risk (i.e., a protective

effect of the referent genotype). It is not clear that the lack of bias for näıve estimation

under the null has been fully appreciated (e.g., Figure 2 in Zöllner and Pritchard (2007)

does not display the exact null value). However, this lack of bias requires averaging

over rejections for both positive and negative z. In any significant dataset, µ̂ must be

less than −c or greater than c, and so will be far from the truth under the null. In

other words, the lack of bias under the null is offset by very large variance.

2.2.2 An approximate conditional likelihood

The approximating distribution of Z suggests a correspondingly approximate likelihood

for µ,

L(µ) = pµ(z) = φ(z − µ) (2.3)

The likelihood applies generally to a wide variety of testing procedures, eliminating any

nuisance parameters that have been included in the modeling, including stratification

11



variables, clinical covariates, or the effects of other SNP genotypes. It is easy to show

that the maximum likelihood estimate (MLE) is µ̂ = z. A standard approach to

likelihood testing for H0 : µ = 0 (Wald 1943) involves comparing the maximum log-

likelihood ratio LLR = −2ln(L(µ̂)/L(0)) to a χ2
1 density. It is also simple to show

that here LLR = z2, so in terms of both estimation and testing, the likelihood simply

recapitulates the initial equation (2.1). The advantage to (2.3), however, is that it

provides a simple and transparent approach to handle the conditioning. Acknowledging

the event that the SNP is declared statistically significant, we have the conditional

likelihood

Lc(µ) = pµ(z
∣∣|Z| > c) =

pµ(z)

Pµ(|Z| > c)
=

φ(z − µ)

Φ(−c+ µ) + Φ(−c− µ)
, (2.4)

Under (2.4), the relationship between numerator and denominator is such that, for a

given z, it is quite possible that the most likely value for µ is in the interval [−c, c],

even though z itself is conditioned to be outside that range.

Using this conditional approximate likelihood we now derive improved estimators

of µ. For any proposed value of µ, we can convert back to the desired log odds ratio

using β = µ ŜE(β̂), where ŜE(β̂) is obtained from standard approaches (i.e., does

not consider the significance selection). One remarkable feature of our approach is

that we can apply it to published summary results. To do so, we require only the

significance threshold c, β̂, and ŜE(β̂). The standard error, if not provided directly, can

be inferred from c, β̂, and any one of the following: z, the p-value, or an unconditional

OR confidence interval.
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2.2.3 The conditional MLE

Using the conditional likelihood, the maximum likelihood principle suggests the MLE

estimator,

µ̃1 = arg maxµ Lc(µ),

which can be obtained using numerical maximization for any z and c (hereafter “∼”

will signify estimates based on the conditional likelihood). Note that in this setting

the conditional maximum likelihood estimate provides no guarantee of unbiasedness

or efficiency, a fact that does not appear to have been considered by other investiga-

tors. We have already applied large-sample assumptions in constructing the conditional

likelihood (2.4), but as we show below, other estimators can provide reduced bias or

mean-squared error for certain ranges of µ, and therefore β.

Motivated by bias-reduction, one might attempt to directly correct the bias in µ̂ by

solving for µ in the equation Eµ(Z
∣∣|Z| > c) = z. Such an estimator has intuitive appeal,

representing the value of µ for which, after conditioning on significance, we would have

expected to observe z. Perhaps surprisingly, this “bias-correction” estimator in fact

turns out to be µ̃1. To see this, we take the derivative of the conditional likelihood with

respect to µ, for which the identity L′c(µ̃1) = 0 implies

z = µ̃1 +
φ(c− µ̃1)− φ(c+ µ̃1)

Φ(−c+ µ̃1) + Φ(−c− µ̃1)
, (2.5)

Comparing equation (2.3) to (2.5) implies that the bias-correction estimator and µ̃1 are

the same. Similar estimators have been examined in the context of sequential clinical

trials, in which effect parameters are estimated only after a stopping boundary has

been reached (Liu et al. 2004). Despite its secondary motivation as a bias-correction

estimator, the conditional MLE µ̃1 is not in fact unbiased, due to nonlinearity in the

bias of the näıve estimator µ̂. Moreover, in this setting the conditional MLE has no

13



special optimality properties, and other estimators may be reasonable. Nonetheless, we

will show that µ̃1 is markedly improved over the näıve estimator, both in terms of bias

and mean squared error.

2.2.4 The mean of the normalized conditional likelihood

The motivation to reduce mean-squared error (MSE) suggests another, perhaps less-

obvious estimator,

µ̃2 =

∫∞
−∞ µLc(µ)dµ∫∞
−∞ Lc(µ)dµ

, (2.6)

which is easily calculated numerically. µ̃2 is the mean of the random variable following

the distribution Lc(µ), normalized to be a proper density. µ̃2 has favorable MSE prop-

erties when averaged across a wide range of µ. This fact follows from an interpretation

of µ̃2 as a posterior mean in a Bayesian treatment of the problem with a flat prior on

µ (Leonard and Hsu 1999). However, µ̃2 is considered here as an entirely frequentist

estimate, with bias and error examined at each value of µ and judged accordingly. For

|z| near the boundary c, µ̃2 typically represents a less aggressive shrinkage toward 0

compared to µ̃1.

2.2.5 A compromise estimator

In the treatment below, we will see that the conditional likelihood is typically skewed,

and so µ̃1 and µ̃2 can differ appreciably for certain values of z. µ̃2 can show higher MSE

than µ̃1 for µ near zero, but is more favorable for µ away from zero, while the bias of

µ̃1 and µ̃2 can be of opposite signs for µ near the significance threshold c. Thus as a

practical compromise we also examine the estimator

µ̃3 = (µ̃1 + µ̃2)/2,
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which balances the strengths of µ̃1 vs. µ̃2.

2.2.6 Illustrations of the conditional likelihood

Figure 2.1 illustrates the conditional and unconditional likelihoods assuming an illus-

trative constant threshold c = 5.0. Panels (a)-(c) correspond to z = 5.2, 5.33, and 6.0,

respectively. For each panel, the unconditional likelihood is centered and maximized

at z (indicated by a dot on each plot). For panel (a), when z is only slightly above

the threshold, the conditional likelihood is in contrast shifted aggressively towards zero

(µ̃1 = 0.66, µ̃2 = 2.53, µ̃3 = 1.60). When z is well above the threshold (z=6.0, panel

(c)) this shift is much smaller (µ̃1 = 5.48, µ̃1 = 4.94, µ̃1 = 5.21). For an intermediate z

(panel (b)), the shift is intermediate. Note that our estimates are obtained here for the

µ version of the problem, and the conversion β = µŜE(β̂) must be performed before

the results are interpreted on the log-odds scale.

As desired, the conditional likelihood shows a clear shift toward zero. But why

is the shift so extreme, e.g., when z = 5.2? Such a z-value (which is equivalent to

µ̂) has already met genome-wide multiple-testing correction for statistical significance,

but a shrinkage from µ̂ = 5.2 to µ̃1 = 0.66 (for example) will effect a corresponding

proportional reduction in the log odds ratio. Thus it seems our proposed estimation

procedures can often adjust the estimated effect size to be practically insignificant. To

see why the result is reasonable, consider that the conditional likelihood, as a frequentist

construction, makes no judgment about the prior plausibility of various values of µ.

When presented with a value z for each µ, it considers only the chance that z would

have arisen, given that |z| > c.

Figure 2.2(d) presents the (truncated normal) conditional densities for z under µ =

0.66 and µ = 5.2. These µ values were chosen because they represent the conditional

and unconditional MLEs when z = 5.2. Note that these curves are conditional densities
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for z, not likelihoods. However, for a fixed value of z, the relative heights of the two

curves reflect the conditional likelihoods for the two competing values of µ. From the

curves we can see the value z = 5.2 is 2.77 times more likely to arise when µ = 0.66 than

when µ = 5.2. Expressed in another way, when µ values are truly of large magnitude,

then z tends to overshoot the threshold c by a greater amount than was observed here

for z = 5.2. Thus in this instance we would conclude that µ is not likely to be of large

magnitude.

Our three proposed estimators can be easily computed numerically, and simple R and

Excel programs to do so are available at our website www.bios.unc.edu/~fwright/

genomebias. Using the threshold c = 5 for illustration, we have calculated the con-

ditional expectations and MSEs for the three estimators, shown in Figure 2.2[(a)-(b)].

The three corrected estimators provide dramatically reduced bias compared to the näıve

estimator for much of the range of µ. For µ = 0, by symmetry all estimators are un-

biased. For |µ| considerably larger than c, all methods will give estimators near z and

will be nearly unbiased. The corrected estimators tend to under-correct for small µ

and over-correct for large µ. The conditional MLE µ̃1 can be viewed as a first-order

attempt to correct the bias, while the data z occupies the same range whether µ is

small or large. In a sense, the corrected estimate splits the difference between the two

extremes, leading to the observed pattern.

The MSE for µ̂ = z is extremely large for µ near zero, as predicted. MSEs for

the corrected estimators are considerably smaller in the range of small to moderate

µ. As described above, these estimators are easily converted to the corresponding

improved log(OR) estimators β̃1, β̃2, β̃3. Moreover, for large samples the bias and MSE

properties for µ will largely carry over to real data, essentially with a rescaling of the

axes to convert µ to β.
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Figure 2.1: Behavior of the unconditional and conditional likelihoods for µ.
Unconditional and conditional likelihoods of µ are presented for (a) z = 5.2, (b) z = 5.33
and (c) z = 6. The location of the observed z is indicated by a black dot on each plot.
The conditional likelihood changes considerably for small changes in z near c. For larger
z, the conditional likelihood approaches the unconditional likelihood. Likelihoods for
µ < −c are negligible and not shown. (d): Conditional densities of z for µ = 0.66 and
µ = 5.2, with the relative likelihoods highlighted for a fixed value z = 5.2.
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Figure 2.2: Estimators and confidence intervals for µ with significance thresh-
old c = 5.
(a) The expectation of näıve estimator µ̂ shows substantial bias and (b) very large
mean squared error for much of the range of µ, while the corrected estimators have
lower bias and MSE (c) Upper and lower confidence bounds for µ as a function of the
observed statistic z.
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2.2.7 Conditional confidence intervals

Proper interpretation of the corrected µ estimates requires an understanding of esti-

mation error, conditioned on statistical significance. Standard confidence interval (CI)

procedures fail in this setting. For example, after conditioning on significance, a stan-

dard 95% CI for µ cannot contain 0, for otherwise it would not have been significant.

Thus, when µ = 0 the standard CI procedure has zero conditional coverage probability.

Zöllner and Pritchard (2007) addressed this issue by using a standard maximum like-

lihood ratio approach applied to the conditional likelihood. In our setting, a 1− η CI

created in this manner would consist of all µ values such that 2ln(Lc(µ̃1)/Lc(µ)) ≤ q1−η,

where q1−η is the 1− η quantile of a χ2
1 density. However, we have shown via numerical

integration that in the µ version of the problem, the true coverage probability of this

CI procedure can exhibit markedly conservative or anticonservative departures from

1 − η, depending on the true µ. Approaches using the second derivative at lnLc(µ̃1)

to estimate the error variance also fail. The difficulty arises because the conditional

m.l.e is not normally distributed, nor is the shape of Lc(µ) approximately normal for a

realized dataset.

To create confidence intervals with correct conditional coverage, we return to the

original Neymanian concept of a confidence region (Rao 1973; Lehmann and Casella

1983), which can always be applied when the distribution of a test statistic is known

for each value of the unknown parameter. Let A(µ, 1 − η) be an acceptance region

depending on µ such that

Pµ
(
Z ∈ A(µ, 1− η)

∣∣|Z| > c
)

= 1− η .

Given an observed z, the confidence region consists of all values µ such that z ∈ A(µ, 1−

η). It is straightforward to show that this approach gives exact coverage probability
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1 − η for any µ. Among possible acceptance regions, we choose A(µ, 1 − η) as the

interval between the η/2 and 1−η/2 quantiles of the conditional density pµ(z
∣∣|Z| > c).

Note that, although we have presented three competing point estimates for µ, our

procedure yields only a single CI. Figure 2.2 (c) shows the upper and lower confidence

limits for our CI procedure for each z. Note that the limits are wider when |z| is

near c, reflecting less certainty about µ, and can even contain µ = 0. This does not

contradict the statistical significance - the intent of the procedure is to obtain correct

coverage for any µ (including µ = 0) after conditioning on significance. The conversion

of the confidence limits to the β scale is
(
µlowerŜE(β̂), µupperŜE(β̂)

)
. Although our

procedure is guaranteed correct conditional coverage in the idealized µ setting, our CI

for β relies on large-sample normality assumptions for β̂. Thus we investigate empirical

coverage of our procedure in the Results Section.

2.2.8 Simulations

To describe our simulations, we begin with basic notation for disease association stud-

ies. We let y denote the disease status (0=control, 1=case) for an individual, and

x denote the SNP genotype predictor value. For a bi-allelic SNP with major allele

A and minor allele a, x is defined as follows for genetic models with respect to a:

Recessive

g =


0, AA

0, Aa

1, aa

Additive

g =


0, AA

1, Aa

2, aa

Dominant

g =


0, AA

1, Aa

1, aa .
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We assume the logistic model for a randomly sampled individual in the population

log (P (Y = 1|x)/(1− P (Y = 1|x))) = α + βx,

for some α, and β is the log odds ratio for a unit increase in x. Rather than speci-

fying α directly, it is more interpretable to solve for α for a specified allele frequency

and disease prevalence π. The marginal frequency of x is denoted p(x), and is easily

calculated from Hardy-Weinberg assumptions. With fixed disease prevalence, the iden-

tity π =
∑

x
exp(α+βx)

1+exp(α+βx)
p(x) was used to calculate α. Finally, solving for the genotype

probabilities conditioned on case/control status yields

P (X = x|Y = 1) =
p(x)

π

exp(α + βx)

1 + exp(α + βx)

and P (X = x|Y = 0) =
p(x)

1− π
1

1 + exp(α + βx)
.

A standard result is that logistic modeling for β applies even when the data are sampled

retrospectively (McCullagh and Nelder 1989).

Each dataset was simulated and analyzed in R v.2.5.1. We will denote the total

sample size n = ncases + ncontrols, and ncases = ncontrols throughout. Most simulations

consisted of n = 1000. This sample size is relatively small for a genome scan, and

was intentionally chosen to emphasize any departures from normality or difficulties in

estimating SE(β̂). Larger sample sizes were also examined for several of the setups to

examine the effect of sample size on bias, MSE, and confidence coverage. We assumed a

disease prevalence of 0.01 throughout - the retrospective sampling is not very sensitive

to this specification. We examined β ranging from -0.7 (OR ≈ 0.5) to 0.7 (OR ≈ 2).

This range corresponds to biological plausibility for complex disease (Ioannidis et al.
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2001), and ensures that simulations span the range from low power to high power. For

simplicity, we used c = 5.0, corresponding to a single p-value of 5.7 × 10−7, near the

genome-wide threshold considered by others (Zondervan and Cardon 2007; Todd et al.

2007; Scott et al. 2007).

For recessive models we considered MAF values of 0.25 and 0.5 - lower values cre-

ated small expected cell counts that were problematic for sample sizes of 500 in each

group. For the additive and dominant models we considered minor allele frequency

(MAF) values of 0.05, 0.1, 0.25, and 0.5. A single setup consisted of the genetic model,

MAF, and β, and sufficient simulations were performed for each setup to obtain 1000

significant datasets. Setups with β = 0 required on the order of 109 − 1011 simulations

for this rarefied threshold. We sped up the analysis by first applying a chi-square test

(Cochran-Armitage trend test for the additive model) to the datasets, which can be

obtained without iterative maximization. The chi-square statistic was determined to

have a close correspondence to z2 obtained from the more computationally intensive

logistic regression, and a chi-square statistic ≥ 24 was determined to capture essentially

all datasets with z2 ≥ c2 = 25. Datasets meeting the chi-square criterion were analyzed

via logistic regression in R glm. For datasets achieving final significance as determined

by logistic regression, β̂ and ŜE(β̂) were used to obtain β̃1, β̃2, β̃3, and conditional

confidence intervals.

2.3 Results

In all scenarios described here, expectations and mean-squared errors are calculated

conditional on significance, i.e., |z| > c.
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2.3.1 Bias

The top row of Figure 2.3 plots the means for each of the näıve and corrected estima-

tors vs. β (with corresponding OR values) for all models, with MAF=0.25. The näıve

estimator shows very large bias, especially for moderate β. All of the corrected esti-

mators show dramatically reduced bias across most of the range examined. For each

model, the corrected estimates tend to under-correct for small (magnitude) β while

overcorrecting for large β. All of the methods become nearly unbiased for large β, as

they must, for the conditional and unconditional likelihoods are nearly identical when

|z| is well beyond c. In terms of bias, β̃1 performs best among the corrected estimates

for small . However, the over-correction of the conditional MLE can be substantial for

moderate to large β, especially for the recessive model. β̃2 shrinks the estimates toward

zero less dramatically, resulting in under-correction for a larger part of the range of β.

β̃3 strikes a balance between the other two corrected estimates, and has much improved

bias for moderate β under the recessive model. All estimators are effectively unbiased

for β = 0. A subtle asymmetry in the plots for positive and negative log(OR), most

evident in the recessive model, occurs because MAF< 0.5 and, for a fixed prevalence,

the logistic intercept α depends on β.

2.3.2 Mean squared error

The corresponding MSE values for the estimators are shown in the bottom row of

Figure 2.3. The näıve estimator β̂ exhibits extremely large MSE for most β values

examined. For β this is due to high variance, while for moderate β the näıve estimator

has low variance but high bias. The corrected estimators show dramatically improved

MSE for β in the interval [-0.3, 0.3] (OR ranging from 0.74 to 1.35) that encompasses

the bulk of significant associations thus far for complex diseases (Todd et al. 2007;

Scott et al. 2007). The MSEs of β̃1 and β̃2 are largely complementary. At β = 0 ,
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Figure 2.3: Expectations and mean squared errors for the three genetic mod-
els under MAF=0.25.
For the three models and MAF=0.25, the corrected estimators show greatly improved
performance for much of the range of β. Top row : expected values for the näıve and
conditional likelihood estimators vs. β. Bottom row : mean squared errors for the es-
timators. The y-axes for the MSE plots are rescaled to highlight details - the MSE is
considerably larger for the recessive model due to scarcity of the risk homozygotes.

the MSE(β̃1) is fairly low, while MSE(β̃2) peaks. For larger magnitude β, the roles

reverse. As expected, β̃3 exhibits a more even MSE across the range, and represents

a reasonable choice for stable error characteristics. For the additive and dominant

models, β̂ exhibits very low MSE for large β. This phenomenon is not as attractive as

it appears, essentially resulting from a boundary effect in which β̂ is nearly constant

because z is just barely significant. In particular, for β outside of the plotted range,

m.s.e( β̂) rises again to the var(β̂ ) value encountered in the unconditional setting.

The empirical bias and MSE observed in our simulations essentially follow the results

from the version of the estimation problem, with a rescaling of the axes to convert µ
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Figure 2.4: Mean squared errors of the estimators vs. β for MAF values
ranging from 0.05 to 0.5.
The additive model is assumed, with n = 1000. The MSEs drop for larger MAF, but
the relative performance of the estimators is maintained.

to β. Our empirical results for the remaining MAF values are plotted in Supplemental

Figure 2.6, and largely follow the results described for MAF=0.25. Figure 2.4 shows

a portion of these results for the additive model, in which the MSE is shown to drop

for all estimators as the MAF increases. This occurs because for small MAF the MSE

is largely driven by the heterozygote genotype counts, which increase with the MAF.

The key point of Figure 2.4 is that the relative advantages of the corrected estimators

are preserved across a wide range of MAF values.
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Figure 2.5: Estimates of the CI coverage probability plotted against β for the
three genetic models, MAF=0.25.
Black dots correspond to 95% CIs, grey dots to 90% CIs. The dashed curves represent
coverage of standard 95% CIs which do not acknowledge the significance selection. Top
row : n = 1000 (500 cases and 500 controls). Bottom row : n = 2000 (1000 cases and
1000 controls). Coverage is close to nominal, except for regions of over-coverage in the
recessive model due to small cell counts (note that the y-axis range begins at 0.7). For
all models, the coverage will approach the nominal value as the sample size increases
further.

2.3.3 Confidence coverage

Figure 2.5 presents the estimated coverage probabilities of 95% and 90% CIs with

MAF=0.25 for the three models. The top row shows the results for n = 1000. The

coverage is close to the nominal level for almost all the setups, except for conservative-

ness near β = 0 for the recessive model. The coverage of the näıve confidence intervals

is also depicted in the Figure, dropping dramatically out of the axis range to zero cov-

erage for β of small magnitude. For n = 2000, the coverage of the proposed procedure
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improves further, with a region of modest over-coverage for recessive models. Results

for other MAF values are similar, and are presented in Supplemental Figure 2.7.

2.3.4 Sample sizes, thresholds, and covariates

Our setup conditions represent a wide range of realistic scenarios, but cannot represent

all situations and complicating factors. Fortunately, the large-sample behavior of the

constructed approximate likelihood provides considerable robustness for our conclu-

sions. Supplemental Figure 2.8 shows the results of increasing sample size for several

realistic β values for the additive model when MAF=0.25. The bias and MSE for all the

estimators are reduced as the sample size increases. For each sample size, the corrected

estimators show superior bias and MSE compared to the näıve estimator.

In maximum likelihood settings, the distribution of the Wald test statistic is largely

driven by β/SE(β̂). This is also true for our conditional likelihood, because β/SE(β̂)

determines the non-centrality of the z-statistic. For a fixed ratio ncases : ncontrols,

the standard error is proportional to 1/
√
n. Thus, for the setups in Figure 2.3 and

Supplemental Figure 2.6, a doubling of the sample size to n = 2000 (for example, and

assuming cases and controls remain in the same ratio) would produce qualitatively

similar results, with perhaps a slight improvement for the corrected estimates as the

normality approximation improves. Moreover, we can make the results quantitatively

comparable by appropriate rescaling. For example, for any value β for n = 1000,

the comparable results for n = 2000 should correspond to β′ = β
√

2. Supplemental

Figure 2.9(a) demonstrates an empirical example of this effective rescaling equivalence

for the additive model, MAF=0.25. Thus the conclusions from our simulations extend

to larger sample sizes.

Similarly, variations on the threshold c do not have much impact. A value of c = 5.5

would be considered quite conservative for genome scans, corresponding to Bonferroni
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control of family-wise error at 0.05 for 1.3 million SNPs. Empirical investigation re-

quires many more simulations to achieve significance, but we find that the qualitative

behavior of the estimators is unchanged (Supplemental Figure 2.9(b))

Finally, we simulated an example in which the additive model is fit (MAF=0.25),

and the logistic regression includes an additional continuous covariate (distributed

N(0, 1), one fitted regression coefficient) and a discrete covariate (distributed Bino-

mial(2,0.05), two fitted coefficients). The covariates were independent of case-control

status and the test-locus genotype. The Wald statistic is relatively insensitive to in-

clusion of these extra parameters, and the relative change in degrees of freedom quite

minimal. Accordingly, the results for our corrected estimators are virtually unchanged

compared to the model without covariates (Supplemental Figure 2.9(c) - only β̃1 is

shown). Covariate considerations are increasingly important in genome scans, for ex-

ample to control for confounding population stratification.

2.3.5 Analyses of published datasets

Tables 2.1, 2.2, and 2.3 illustrate our re-analysis of three published genetic association

studies: an association study with a modest number of SNPs (Table 2.1), as well as

two GWAS (Tables 2.2 and 2.3), all of which had been analyzed using additive models.

We begin with a brief description of the three studies, followed by our re-analysis. In

Table 2.1, we present the analysis results of Yu et al. (2007) who re-examined the

lymphoma dataset described in Wang et al. (2005). They used 48 SNPs and a p-value

threshold of 0.1/48 ≈ 0.002. We report the standard OR results and the bootstrap bias-

corrected estimates produced by Yu et al. (2007), as well as the estimates from a larger

pooled analysis involving seven studies (Rothman et al. 2006). The SNPs rs1800629

and rs909253 were found to be significant, with ORs 1.54 and 1.40, respectively. In

Table 2.2 we list four significant SNPs reported by Todd et al. (2007) resulting from
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two Type 1 diabetes (T1D [MIM 222100]) GWAS studies, declaring SNPs as significant

if they have p-values less than 5× 10−7. We also display the results from a larger case-

control followup study conducted by Todd et al. (2007) to confirm their results. In

Table 2.3 we report the results of a GWAS by Scott Scott et al. (2007), who performed

numerous analyses of several Type 2 diabetes (T2D [MIM 125853]) datasets (FUSION,

DGI, and WTCCC/UKT2D). We consider here only the SNPs reported by the T2D

authors using the declared genome-wide significance threshold (p < 5 × 10−8) for the

combined analysis of all studies.

Using only the published odds ratios, p-values and stated significance thresholds, we

produced bias-corrected odds ratios for all of these studies. Our corrected β estimates

are exponentiated to obtain odds ratios: for example, ˜OR1 = exp(β̃1). For the two

lymphoma SNPs (Table 2.1), the p-values are slightly above the threshold, and our

bias-corrected estimates shrink the näıve OR estimates markedly. Our estimated values

match well with the bootstrap-corrected values obtained by Yu et al. (2007), as well as

the pooled analysis results from Rothman et al. (2006).

For the four T1D SNPs (Table 2.2), our analysis results in noticeably less extreme

OR estimates than that reported by Todd et al. (2007). The corrected ORs and CIs

for the most extreme SNP, rs17696736, are only slightly changed from the published

estimated of 1.37 because the result is so extreme (p = 7.27 × 10−14). However, the

followup study obtained a considerably lower value (OR=1.16), with the 95% CI not

overlapping the earlier estimates, suggesting possible heterogeneity in population sam-

pling. For the two least significant T1D SNPs among those considered, the corrected

ORs show a more substantial change. It is worth noting that the OR estimate corre-

sponding to the SNP rs12708716 was shrunk from 0.77 to about 0.82 by our, methods

while the estimated OR from the follow-up was 0.83. We also note that for the four

significant T1D SNPs, as well as an additional three SNPs approaching significance
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(Table 1 of Todd et al. (2007)), the followup study always gave a less extreme OR es-

timate than the initial studies. This result is strong empirical evidence for significance

bias, and that corrected OR approaches are needed.

Table 2.3 gives the results for the combined T2D studies. All of the p-values are con-

siderably beyond the significance threshold, and so the corrected estimates are nearly

unchanged from the original estimates. This phenomenon is hopeful, in the sense that

with very large studies OR estimates can be attained that will not be shrunk to irrele-

vance by corrected OR estimates.
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Table 2.3: Original vs. corrected odds ratio estimates for published genetic association
study III: GWAS of T2D, Scott et al. (2007) (9521 cases and 12183 controls)

aStandard OR values as reported
bCorrection method proposed in this manuscript

SNP P-value Reported ORa, Bias-corrected estimates Biasb-
(95% CI) corrected

ÕR1 ÕR2 ÕR3 (95% CI)

rs7903146 1.0x10−48 1.37 1.37 1.37 1.37 (1.31,1.43)
(1.31,1.43)

rs4402960 8.9x10−16 1.14 1.14 1.14 1.14 (1.10,1.18)
(1.11,1.18)

rs10811661 7.8x10−15 1.2 1.2 1.2 1.2 (1.14,1.26)
(1.14,1.25)

rs8050136 1.3x10−12 1.17 1.17 1.16 1.16 (1.10,1.22)
(1.12,1.22)

rs7754840 4.1x10−11 1.12 1.11 1.1 1.11 (1.05,1.16)
(1.08,1.16)

rs5219 6.7x10−11 1.14 1.13 1.12 1.12 (1.06,1.19)
(1.10,1.19)

rs1111875 5.7x10−10 1.13 1.11 1.1 1.1 (1.02,1.17)
(1.09,1.17)
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2.4 Discussion

We have presented an approach that greatly reduces significance bias for odds ratios in

genome association scans, and is much simpler than competing approaches. We favor

the use of β̃3 as a general-purpose estimator with fairly uniform MSE as a function of β.

However, all of the three corrected estimators have greatly superior performance to the

näıve estimator. Although developed for case-control applications, our methodology

is an effective blueprint to perform inference whenever a Wald-like statistic has been

used to declare significance. Thus the general approach can be used in numerous

other settings, including regression-based quantitative trait association analyses. Our

results are qualitatively similar to those of other investigators (Yu et al. 2007; Zöllner

and Pritchard 2007) (e.g., see bias curves similar to ours in Figure 2 of Zöllner and

Pritchard (2007)). Additional comparisons to these approaches should be performed in

future work, although comparison is complicated by differing genetic models. To our

knowledge, our approach is the only method that can perform bias correction based

only on published summary tables.

The widespread application of conditional likelihood estimators in genome scans

will no doubt be discouraging to genetic investigators, who may expend considerable

time and expense only to find that a significant SNP is estimated to have a very weak

effect. Nonetheless, we view this process as healthy and necessary for the genetics

community, and in particular to tamp down expectations that significant findings will

be easily replicated. The use of our estimators may also have an additional benefit of
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discouraging excessive massaging of data and trying various test procedures to achieve

genome-wide significance. If a SNP suddenly becomes significant after numerous data

manipulation procedures have been applied, its z-statistic is likely to be only slightly

above the threshold c. Thus, as we observed in the µ version of the problem, the

conditional likelihood estimator will be dramatically shrunk towards the null. Thus

the estimated SNP effect size will be very modest, as is appropriate here for a likely

spurious finding.

Our current approach does not explicitly consider multi-stage or other sequential

designs, in which SNPs meeting a loose standard of significance are used for further

testing in a follow-up sample. However, for multistage designs in which almost all

SNPs that will eventually be declared significant are carried forward to later stages, the

approach may be used directly. Also, our results technically hold for a SNP randomly

selected from those achieving the significance threshold, and thus an additional bias

may be anticipated for the most highly significant SNPs among a collection of significant

SNPs. Although we believe this second source of bias is much less than that produced

by significance selection, it is the subject of continuing investigation.

Our rejection-sampling scheme was feasible, but required a massive number of sim-

ulations to provide accurate results. Future work in this area may benefit from the

practical development of importance sampling or related computational techniques to

provide flexible and accurate simulations conditioned on significance.
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2.5 Web Resources

The URLs for data presented herein are as follows: Online Mendelian Inheritance

in Man (OMIM), http://www.ncbi.nlm.nih.gov/Omim/. R code and a simple Ex-

cel calculator to perform our method are available at www.bios.unc.edu/~fwright/

genomebias.

2.6 Supplemental Figures
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Figure 2.6: Expected values and mean squared errors for the estimators for
the three models.
MAF values are 0.05, 0.1, and 0.5 for additive and dominant models, and MAF=0.5
for recessive models.
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Figure 2.7: Estimates of the CI coverage probability plotted against β for the
three genetic models.
Various MAF values are shown (for recessive models, only MAF=0.5 is depicted).
Black dots correspond to 95% CIs, grey dots to 90% CIs. The dashed curves represent
coverage of standard 95% CIs which do not acknowledge the significance selection. First
page, n = 1000. Second page, n = 2000.
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 Figure 2.8: Expected values and the mean squared errors of the estimators
for the additive model with MAF=0.25.
The results are plotted against sample size, for β = 0, 0.18, and 0.34, corresponding to
OR values 1.0,1.2, and 1.4.

41



-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-0
.6

-0
.4

-0
.2

0
.0

0
.2

0
.4

0
.6

β

m
e
a
n

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-0
.6

-0
.4

-0
.2

0
.0

0
.2

0
.4

0
.6

β

m
e
a
n

β~
1

cov

β
~

1

 

 

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-0
.5

0
.0

0
.5

β

m
e
a
n

β^

β~
1

β~2

β
~

3

Figure 2.9: Properties of the corrected estimators extended to additional set-
tings.
Throughout this figure we use the additive model, MAF=0.25, and n = 1000 except
where noted. (a) Expectations of β̃1 vs. β (plotted points) for n = 1000, overlaid with
results for the same estimator vs. β

√
2 (dashed line) for n = 2000. The close correspon-

dence is a consequence of the unifying treatment in terms of µ. (b) Expectations of the
estimators for c = 5.5 show that the qualitative behavior is similar to the behavior for
c = 5.0. (c) Inclusion of both a discrete (2 degree-of-freedom) and a continuous (1 d.f.)
covariate in the logistic regression modeling has essentially no effect on the behavior of
our estimators.
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Chapter 3

Analysis of Secondary Phenotypes

in Case-control Studies

3.1 Introduction

Genome-wide association studies (GWAS) require a lot of investment in terms of effort,

time, and money. So it is only natural for investigators to want to make maximum use

of the data collected in the process of conducting a GWAS. Usually in GWAS the

primary research question is identification of SNPs influencing susceptibility to a trait

that is of interest. In the process, information on a host of other phenotypes, typically

correlated with the primary phenotype, is collected. Subsequent to the initial detection

of SNPs significant for the disease phenotype, researchers often want to analyze the

secondary phenotypes for efficient use of data and also to supplement the primary

analysis (Frayling et al. 2007; Weedon et al. 2008; Gudbjartsson et al. 2008; Lettre et al.

2008; Weedon et al. 2007; Sanna et al. 2008; Loos et al. 2008). In fact, data for the



analysis of a phenotype may come from several GWAS, for which data were originally

collected with different research objectives in mind. Because of its efficient design, data

for GWAS are usually case-control sampled. In such cases the data cannot be considered

as a random sample from the population and ignoring the the ascertainment on the

basis of the primary phenotype can produce biased estimate of the association between

a SNP and a secondary phenotype (Nagelkerke et al. 1995). For the appropriate analysis

of secondary phenotype we have to take into consideration the biased sampling.

There are several options for handling the secondary analysis for case-control data

(Jiang et al. 2006), such as a) ignore the sampling mechanism, b) analyze controls

only, c) analyze cases only, d) include the disease status as an explanatory variable,

e) apply weighted approach, or f) implement maximum likelihood methods. The first

method of analyzing the combined sample of cases and controls without accounting

for the ascertainment can lead to a severely biased estimate of the risk effect for the

secondary phenotype. For case-control data, prospective analysis ignoring the sampling

scheme yields valid estimate of the odds ratio for disease risk, but the same reasoning

does not hold for the secondary phenotype generally (Nagelkerke et al. 1995). Only

under very restrictive conditions, prospective analysis will give unbiased estimate of

the population measure of association between the SNP and the secondary phenotype.

Nagelkerke et al. (1995) suggest using only the controls for the secondary analysis. This

method is approximately valid if the disease is rare. If we analyze only the cases or

the controls, then we loose a lot of information. For methods b), c), and d), adjusting

for the disease status eliminates the possibility of bias induced by the case-control
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sampling mechanism, but the estimates that we derive from each of these methods

may be estimating quantities very different from the one that we are interested in.

For example, including the disease phenotype as a covariate is a convenient way of

incorporating the sampling mechanism in the analysis but not necessarily the true

model that we believe in. Monsees et al. (2009) have recently discussed in details the

situations under which the näıve analysis that ignores the ascertainment or the analysis

that includes disease status as a covariate are valid.

The standard survey approach or Horvitz-Thompson approach uses weights in-

versely proportional to the selection probabilities (Jiang et al. 2006; Scott and Wild

2002). Richardson et al. (2007) describe it as a stratum-weighted logistic regression for

a binary secondary phenotype and compare its merits with the usual practice of adjust-

ing for the disease status by including it in the regression as a covariate. It is, of course,

necessary to have knowledge of the sampling fractions for cases and controls, which we

do for nested case-control studies. But for population-based case-control studies, this

information is not readily available. Rather than focus on the absolute sampling frac-

tions, we can try to estimate from external information, such as the prevalence, the

ratio of the the sampling fractions which would be sufficient for the purpose of weighted

regression.

An alternative approach to secondary analysis is to use the retrospective likelihood

(Jiang et al. 2006; Scott and Wild 1997, 2001a, 1991; Lee et al. 1997; Lin and Zeng

2008) which conditions on the disease status. To work with the retrospective likelihood
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one needs to model the joint distribution of the primary and the secondary pheno-

types given the genotype and other covariates. The joint distribution can be factorized

further into the marginal distribution of the secondary phenotype and the conditional

distribution of the primary phenotype given the secondary phenotype. Our interest

lies in estimating the parameters of the marginal distribution of the secondary phe-

notype given the genotype and the covariates. As Jiang et al. (2006) have described,

we can either treat the conditional distribution of the primary phenotype given the

secondary phenotype non-parametrically or we can model it as a logistic regression.

Lin and Zeng (2008) have developed likelihood methods for analysis of both binary and

continuous secondary traits where they have modeled the the conditional distribution

of the primary phenotype given the secondary phenotype as a logistic regression. An

alternative way to specify the joint model is to parametrically model the marginals of

the primary and the secondary phenotypes and also build a parametric model for their

association given the genotype and the covariates. The distribution of the genotype

and the covariates is a nuisance parameter in the retrospective likelihood. It is difficult

to parameterize the covariate distribution and is usually treated non-parametrically.

We describe a method to analyze secondary phenotypes, both binary and continu-

ous, where we model the joint distribution of the phenotypes such that the marginals

for each phenotype respect the commonly used models for analyzing them separately.

Or in other words, we specify the joint distribution such that the marginal distribution

for the disease phenotype is always logistic and that for the secondary phenotype is

logistic or linear depending on whether it is binary or continuous respectively. We have
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allowed for inclusion of covariates in our models and have performed extensive simu-

lations to compare the performance of our proposed approach with the performances

of the näıve method of prospectively analyzing the combined sample of cases and con-

trols ignoring the biased sampling, case-only analysis, controls-only analysis, and the

weighted method.

3.2 Methods

Let D denote the disease phenotype (0=control, 1=case), Y the secondary phenotype,

and G the SNP genotype. Let Z denote the vector of covariates in the model, such

as gender, age, or environmental factors. The secondary phenotype, as well as the

covariates, may be either dichotomous or continuous. The data were sampled from

the population with respect to the disease status variable D. We are interested in the

association between the secondary phenotype Y and the SNP genotype G, adjusting

for the covariates Z. The appropriate likelihood that takes into account the case-

control sampling mechanism is the retrospective likelihood P (Y,G, Z|d). For case-

control sampled data (di, yi, gi, zi), i = 1, 2, . . . , n, the retrospective log-likelihood is
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l = logL

=
n∑
i=1

logP (Y = yi, G = gi,Z = zi|di)

=
n∑
i=1

logP (D = di, Y = yi|gi, zi;θ) +
n∑
i=1

logP (G = gi,Z = zi)

−
n∑
i=1

logP (D = di) .

For prospectively collected data, we can make inference about θ from
∑n

i=1 logP (D =

di, Y = yi|gi, zi;θ) and ignore P (G = g,Z = z). But, for case-control data, we cannot

ignore P (G = g,Z = z) since it is intertwined with θ in

P (D = d) =
∑
y

∑
g

∑
z

P (D = d, Y = y|g, z;θ)P (G = g,Z = z) .

The retrospective likelihood, therefore, is a function of θ, the parameter of interest,

and P (G = g,Z = z), the nuisance parameter. We assume that disease prevalence is

known approximately and incorporate that information in the likelihood. Under known

prevalence, say P (D = 1) = Π, we maximize

l =
n∑
i=1

logP (D = di, Y = yi|gi, zi;θ) +
n∑
i=1

logP (G = gi,Z = zi)
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with respect to (θ, P (G = g,Z = z))′ subject to the constraint

∑
y

∑
g

∑
z

P (D = 1, Y = y|g, z;θ)P (G = g,Z = z) = Π . (3.1)

We assume that G and Z are independent in the population. Since G is discrete and

can take at most three values, we treat the probability distribution of G, p(g), as

a nuisance parameter and maximize the likelihood with respect to it, subject to the

constraint
∑

g p(g) = 1. It is generally difficult and unreasonable to parameterize the

covariate distribution P (Z = z). If all the covariates are categorical and there are

tractable number of combinations of the levels of the covariates, then we can treat

them as nuisance parameters and maximize the likelihood with respect to them. For

illustration purpose, let us consider the situation where the genotype is coded as 0 or

1 with P (G = 1) = δ and we have a single binary covariate, Z, with probability of

success ψ. Then we maximize

l(θ, δ, ψ) =
n∑
i=1

logP (D = di, Y = yi|gi, zi;θ) + nG1 log δ

+(1− nG1) log (1− δ) + nZ1 logψ + (1− nZ1) log (1− ψ) , (3.2)

where nG1 =
n∑
i=1

gi and nZ1 =
n∑
i=1

zi ,

with respect to (θ, δ, ψ)′ subject to the constraint (3.1) to get the maximum likelihood

estimate of θ. The MLE is consistent and asymptotically normal and the covariance
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matrix of the MLE can be consistently estimated by the inverse of the observed informa-

tion matrix. This method becomes infeasible very quickly as the number of covariates

increases and it does not allow for continuous covariates. For continuous covariates we

can assume the profile likelihood approach (Lee et al. 1997; Wild 1991; Lin and Zeng

2008; Scott and Wild 2001b). Suppose Z is now a continuous covariate. We have n

parameters P (Z = zi) = pi, i = 1, . . . , n describing the distribution of Z. To get the

maximum likelihood estimate of θ we need to maximize

l(θ, δ, p1, . . . , pn) =
n∑
i=1

logP (D = di, Y = yi|gi, zi;θ)

+
n∑
i=1

logP (G = gi) +
n∑
i=1

log pi

with respect to (θ, δ, p1, . . . , pn)′ subject to the constraints
∑n

i=1 pi = 1 and

∑
y

1∑
g=0

n∑
i=1

P (D = 1, Y = y|g, zi;θ)P (G = g)pi = Π .

Using Lagrange multipliers, we maximize

l(θ, δ, pi, . . . , pn)

=
n∑
i=1

logP (D = di, Y = yi|gi, zi;θ)

+
n∑
i=1

logP (G = gi) +
n∑
i=1

log pi + λ1(
n∑
i=1

pi − 1)

+λ2

(∑
y

1∑
g=0

n∑
i=1

P (D = 1, Y = y|g, zi;θ)P (G = g)pi − Π

)
(3.3)
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with respect to (θ, δ, pi, i = 1, . . . , n)′. λ1 and λ2 are determined using the constraints.

Maximizing(3.3) with respect to pi we get,

1

pi
− λ1 − λ2

∑
y

1∑
g=0

P (D = 1, Y = y|g, zi;θ)P (G = g) = 0 . (3.4)

Multiplying the above equation by pi on both sides and then taking a sum over i we

get,

λ1 = n− λ2Π .

Substituting λ1 in (3.4), we have

pi =

(
n− λ2Π + λ2

∑
y

1∑
g=0

P (D = 1, Y = y|g, zi;θ)P (G = g)

)−1

.

Thus, the profile log-likelihood for (θ, δ)′ is

lprofile(θ, δ) =
n∑
i=1

logP (D = di, Y = yi|gi, zi;θ) +
n∑
i=1

logP (G = gi)

−
n∑
i=1

log

(
n− λ2Π + λ2

∑
y

1∑
g=0

P (D = 1, Y = y|g, zi;θ)P (G = g)

)
,

where λ2 is determined by

n∑
i=1

(
n− λ2Π + λ2

∑
y

1∑
g=0

P (D = 1, Y = y|g, zi;θ)P (G = g)

)−1

= 1 .

51



The estimates from the profile likelihood are consistent and asymptotically normal and

the covariance matrix can be consistently estimated by the inverse of the observed

information matrix obtained from the profile likelihood. We propose an alternative

approach that has been used in various contexts: the pseudo likelihood idea put forward

by Gong and Samaniego (1981) for parametric inference and later extended by Hu and

Lawless (1997) to a semiparametric setting. The idea involves maximizing the pseudo

likelihood Lp

(
θ, p(g), P̂ (Z = z)

)
, where P̂ (Z = z) is a nonparametric estimate of

P (Z = z). Under known prevalence the pseudo log-likelihood lp is

lp = logLp

(
θ, p(g), P̂ (Z = z)

)
=

n∑
i=1

logP (D = di, Y = yi|gi, zi;θ) +
n∑
i=1

logP (G = gi)

along with the constraint

∑
y

∑
g

∑
z

P (D = 1, Y = y|g, z;θ)P (G = g)P̂ (Z = z) = Π .

Noting that

P (Z = z) = P (Z = z|D = 1)P (D = 1) + P (Z = z|D = 0)P (D = 0) ,

we estimate P (Z = z) by

P̂ (Z = z) = P̂ (Z = z|D = 1) P̂ (D = 1) + P̂ (Z = z|D = 0)
(

1− P̂ (D = 1)
)
,
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where P̂ (Z = z|D = i) , i = 0, 1 are valid estimates being the empirical cumulative

distribution functions based on the controls and the cases respectively. For P̂ (D = 1)

we have to depend on external information. The pseudo maximum likelihood esti-

mate(MLE) is then obtained by maximizing the pseudo log-likelihood, lp,with respect

to the parameter of interest, θ, and the nuisance parameter, p(g). A rigorous devel-

opment of the the asymptotic properties of the pseudo MLE is complicated. Hu and

Lawless (1997) discuss the asymptotics for pseudo likelihood methods in the context

of response-related missing covariates. Following the same lines we plan to lay down

the details of the asymptotic theory for pseudo likelihood estimation in our situation.

We now discuss how to parameterize the joint distribution (D, Y |g, z) for binary and

continuous secondary phenotypes.

3.2.1 Binary secondary phenotype

There are several ways to parameterize the bivariate distribution (D, Y |g, z). For di-

chotomous Y we are interested in models for which the marginal distributions of D

and Y given g and z are both logistic. The bivariate logistic model, considered by

Palmgren (1989), is one such model that has been used before in this context (Jiang

et al. 2006; Lee et al. 1997) and is conceptually very simple. It is based on the fact

that the joint distribution of two binary variables can be specified in terms of their

marginal probabilities and their odds ratio. Thus, for a randomly sampled individual

in the population we specify the joint distribution of D and Y given g and z as:
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logit P (D = 1 | g, z) = α1 + β1g + γ1
′z

logit P (Y = 1 | g, z) = α2 + β2g + γ2
′z

logOR(D, Y | g) =
P (D = 1, Y = 1 | g, z)P (D = 0, Y = 0 | g, z)

P (D = 1, Y = 0 | g, z)P (D = 0, Y = 1 | g, z)
= α3 + β3g .

The pseudo log-likelihood is, therefore, a function of θ = (α1, β1,γ1, α2, β2,γ2, α3, β3)′,

the parameter of interest, and p(g), the nuisance parameter. With fixed disease preva-

lence, the identity

P (D = 1) =
∑
z

∑
g

exp(α1 + β1g + γ1
′z)

1 + exp(α1 + β1g + γ1
′z)
p(g)P̂ (Z = z) (3.5)

is used to compute α1 given (β1,γ1, α2, β2,γ2, α3, β3)′ and p(g). Thus, the retrospective

pseudo log-likelihood, under known prevalence, is

lp =
n∑
i=1

logP (D = di, Y = yi|gi, zi) +
n∑
i=1

logP (G = gi) ,

which is a function of θ = (β1,γ1, α2, β2,γ2, α3, β3,γ3)′, and p(g). We obtain the

pseudo MLE of θ by maximizing lp with respect to (θ, p(g))′. We can write down

the joint probabilities πij = P (D = i, Y = j|g, z) , i, j = 0, 1 in terms of the marginal
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probabilities πi. = P (D = i|g, z) and π.j = P (Y = j|g, z), and the odds ratio ψ =
π11π00

π10π01
,

π11 =


1
2
(ψ − 1)−1

{
a−

√
(a2 + b)

}
, ψ 6= 1

π1.π.1 , ψ = 1 ,

where a = 1 + (π1. + π.1)(ψ− 1) and b = −4ψ(ψ− 1)π1.π.1. The rest of the πijs can be

derived from π11 and the marginals.

3.2.2 Continuous secondary phenotype

For continuous Y , we consider joint models for (D, Y |g, z) such that the marginal

distribution of D given g and z follows a logistic regression model and the marginal

distribution of Y given g and z is normal, that is,

logit P (D = 1 | g, z) = α1 + β1g + γ1
′z

and Y | g, z ∼ N
(
α2 + β2g + γ2

′z, σ2
2

)
.

We introduce two levels of latency to come up with a joint model which satisfies the

above conditions. We assume that the disease status variable, D, is derived from

thresholding a latent continuous variable, U , whose marginal density given g and z is

logistic with location parameter µ1 = α1 + β1g + γ1
′z and scale parameter 1, that is,

p
U|G,Z(u | g, z) =

exp (−(u− µ1))

(1 + exp (−(u− µ1)))2
;−∞ < u <∞
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and D =


1, U ≥ 0

0, U < 0

.

⇒ P (D = 1 | g, z) =
exp (µ1)

1 + exp (µ1)
.

In order to connect U with Y we introduce another latent variable V . We assume that

U is derived by transforming a continuous variable, V , whose marginal distribution

given g and z is normal with mean µ1 and variance 1, and that (V, Y |g, z) follows

bivariate normal. The required transformation is U = µ1 + log Φ(V−µ1)
1−Φ(V−µ1)

. Thus, we

specify the following population model for the bivariate response (D, Y |g, z),

 V

Y

∣∣∣∣ g, z ∼ N


 µ1

µ2

 ,

 1 ρσ2

ρσ2 σ2
2


 , where

µ1 = α1 + β1g + γ1
′z , µ2 = α2 + β2g + γ2

′z , and ρ = α3 + β3g .

Let U = µ1 + log Φ(V−µ1)
1−Φ(V−µ1)

and D =


1, U ≥ 0

0, U < 0

.

Assuming disease prevalence to be known, the retrospective pseudo log-likelihood is a

function of θ = (β1,γ1, α2, β2,γ2, σ2, α3, β3)′, and p(g),

lp =
n∑
i=1

logP (D = di, Y = yi|gi, zi) +
n∑
i=1

logP (G = gi) ,
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where the identity

P (D = 1) =
∑
z

∑
g

exp(α1 + β1g + γ1
′z)

1 + exp(α1 + β1g + γ1
′z)
p(g)P̂ (Z = z) (3.6)

is used to compute α1 given θ and p(g). We obtain the pseudo MLE of θ by maximiz-

ing lp with respect to (θ, p(g))′. The joint probability of the primary and secondary

phenotypes given g and z can be expressed as

P (D = d, Y = y|g, z)

= P (Y = y|g, z)P (D = d|y, g, z)

=
1

σ2

φ

(
y − µ2

σ2

)
{dP (D = 1|y, g, z) + (1− d) (1− P (D = 1|y, g, z))} ,

P (D = 1|y, g, z) = Φ

 ρ
σ2

(y − µ2)− Φ−1
(

1
1+exp (µ1)

)
√

1− ρ2

 .

3.2.3 Simulation

We perform extensive simulations to compare the performance of our likelihood method

with 1) the näıve method that involves including the disease status variable as a covari-

ate in the regression for Y on g and z, 2) cases-only analysis, 3) controls-only analysis,

and 4) weighted regression. We are interested in estimating the effect of the genotype

on the secondary phenotype, adjusting for the covariates. So β2 is our main parameter

of interest and we judge the different estimators of β2 on the basis of bias and mean

squared error (MSE). We fix the sample size at 3000, 1500 cases and 1500 controls, for
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each dataset that we analyze. We consider a SNP with dominant mode of inheritance

for both primary and secondary phenotypes and a minor allele frequency of 0.25. The

population is assumed to be in Hardy-Weinberg equilibrium. We perform simulations

for both binary and continuous secondary phenotypes. We examine β1 and β2 across

the range -0.6 (OR=0.55) to 0.6 (OR=1.82). This grid corresponds to a biologically

plausible range of values for complex diseases and helps us understand how these pa-

rameters affect bias and variance of the estimates. The γ coefficients are drawn at

random from N(0, 1). α1 is derived such that the disease prevalence is 0.05. For the

binary secondary phenotype, a prevalence of 0.2 is used. For parameterizing the asso-

ciation between the primary and the secondary phenotypes given the genotype and the

covariates, we used α3 = log(9) and β3 = 0. For the continuous secondary phenotype,

we set α2 = 1, σ2 = 1, α3 = 0.6, and β3 = 0.

We present two sets of simulations. The first set corresponds to a single binary

covariate with probability of success 0.45. In the second set of simulations we add

another covariate, a continuous one which is normally distributed and independent of

the binary covariate. So each simulation setup is indexed by the number of covariates:

one or two, the nature of the secondary phenotype: binary or continuous, and the

pair (β1, β2), We replicated 1000 datasets for each simulation setup. For the first set

of simulations we parameterize the covariate distribution by the probability of success

of the binary covariate and maximize the likelihood with respect to it, as described in

Methods 3.2. In the second set of simulations we apply the pseudo likelihood approach.
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3.3 Results

Figures 3.1 and 3.2 present simulation results for a single binary covariate. Figure

3.1 corresponds to a binary secondary phenotype and Figure 3.2 is for a continuous

secondary phenotype. Figures 3.3 and 3.4 depict simulation results when we have two

covariates, one binary and the other continuous. For a binary secondary phenotype we

have Figure 3.3 and for the continuous case we have Figure 3.4.

3.3.1 One binary covariate

We have plotted the means and the MSEs of the estimators of β2 against β1 for different

values of β2. The first column of Figure 3.1 shows the means and the second column

depicts the MSEs. The different rows correspond to different values of β2. For each

plot the estimators are denoted by different plotting symbols and color: the magenta

crosses are for the retrospective likelihood, the black pluses correspond to the näıve

method, the red solid circles are for the case-only analysis, the green ones correspond

to the controls-only analysis, and the blue triangles are for the weighted method.

The first column of Figure 3.1 shows the means of the estimators of β2. The näıve

estimator shows very large bias. It overestimates for positive values of β1 and underesti-

mates for negative values of β1. There is almost no difference in bias for the estimators

derived by considering only the case or the control populations. Both these methods

have smaller bias than the näıve method but the direction of bias is opposite. The

weighted estimator and the MLE are effectively unbiased for all values of (β1, β2). All
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the methods become nearly unbiased when both β1 and β2 are zero, i.e., the SNP is not

associated with either phenotype. As we decrease the value of β2 from zero, the values

of β1 for which the biases in the näıve, the cases-only, and the controls-only estimators

are almost reduced to zero also decrease. Similarly, as β2 slides from zero in the positive

direction, the values of β1 for which the three estimators are unbiased also slides in the

positive direction, but it is difficult to predict which particular combination of β1 and

β2 would give us practically unbiased estimators for these three methods.

The second column of Figure 3.1 shows the MSEs of the estimators of β2. The näıve

estimator exhibits large MSE for most of the grid of (β1, β2) values. The MSE drops

remarkably when the näıve estimator is almost unbiased but it is difficult to characterize

the parameter values for which it happens. The cases-only analysis has lower MSE than

the controls-only analysis for the (β1, β2) values examined. The weighted estimator and

the MLE exhibit a even performance across the range of β1, the MLE having slightly

lower MSE throughout than the weighted estimator. Both of them have smaller MSE

than the näıve, the cases-only, and the controls-only estimators for most of the grid.
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Figure 3.1: Means and MSEs for binary secondary phenotype with one covariate
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When the secondary phenotype is continuous the bias and the MSE of the estimators

do not depend on the value of β2. So for Figure 3.2 we have only a single row of plots

displaying the means and the MSEs of the estimators plotted against β1. The left and

the right plots show the means and the MSEs respectively. From the left plot we see

that the estimator derived from the cases has extremely large bias while the controls-

only estimator is remarkably less biased. The bias for the näıve estimator lies between

those of the cases-only and the controls-only estimators but is opposite in direction.

The weighted estimator and the MLE are virtually unbiased. All the estimators are

nearly unbiased when β1 is zero, i.e., when the SNP is not associated with the disease.

The corresponding MSE values for the estimators suggest that the MLE has the lowest

MSE for almost all β1 values examined. The estimator derived from the case population

has the highest MSE, followed by the näıve estimator. The weighted estimator has a

low MSE throughout the β1 range, but it is slightly higher than that for the MLE. The

MSE of the estimator based on the control population is marginally higher than the

MSE for the weighted approach.
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Figure 3.2: Means and MSEs for continuous secondary phenotype with one covariate

3.3.2 One binary and one continuous covariate

Figures 3.3 and 3.4 display the means and the MSEs of the estimators obtained via

pseudo likelihood approach in the case where we have two covariates: one binary and

one continuous. Figure 3.3 shows how the means and the MSEs of the estimators change

according to the values of β1 and β2 when we have a binary secondary phenotype. The

plots in the first column of Figure 3.3 displaying the means of the estimators are

similar in pattern to the plots in the first column of Figure 3.1 where we had only

one covariate. However, the difference between the estimators obtained from the cases

and the controls separately is pronounced here: the case-only estimator is clearly more

biased than the controls-only estimator. The näıve estimator exhibits extremely large

bias. The pseudo MLE and the weighted estimator reduce bias significantly compared

to the näıve estimator and are nearly unbiased throughout the grid. The corresponding
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MSE plots are displayed in the second column of Figure 3.3. The pseudo MLE exhibits

a low MSE across the entire grid. Even though the weighted estimator has a even

performance across the β1 range, it has a higher MSE than pseudo MLE throughout.

The cases-only estimator has smaller MSE than the controls-only estimator for most

the the (β1, β2) values examined. The näıve estimator exhibits very large MSE values,

especially for large values of β1 and β2. MSE of the näıve estimator drops below all the

other estimators for a short range of β1 values for each value of β2. This is due to the

fact that the näıve estimator is very close to the true parameter value in this range,

but as mentioned before, it is difficult to characterize these (β1, β2) combinations where

the näıve estimator performs well.
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Figure 3.3: Means and MSEs for binary secondary phenotype with covariates
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Figure 3.4 displays the means and the MSEs of the estimators, when we have a

continuous secondary phenotype, plotted against β1. We see that adding a continuous

covariate and applying pseudo likelihood approach almost affected no change in the

means and the MSEs of the estimators and Figure 3.4 is almost the same as Figure 3.2.
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Figure 3.4: Means and MSEs for continuous secondary phenotype with covariates

3.4 Discussion

We have presented an approach for appropriate analysis of secondary phenotypes for

case-control data, the disease status being the primary phenotype. We have assumed

a retrospective likelihood approach to analyzing the data. Our method provides for

both binary and continuous secondary phenotypes. We have used the Palmgren model

(Palmgren 1989) to specify the joint distribution of the primary and the secondary

phenotypes when the secondary phenotype is binary. For the continuous case, we have
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suggested a novel bivariate model involving two latent variables. This joint model

is such that the marginals of the primary and the secondary phenotypes follow the

distributions that are conventionally used to analyze them separately. We have pro-

vision for including covariates, both binary and continuous, in the analysis. We have

discussed in detail how to handle the covariate distribution and have introduced the

pseudo likelihood approach for easier implementation of our method.

There are several ways of analyzing the secondary phenotype, a few of them are

ad hoc and the rest more formal, as pointed out by Jiang et al. (2006). The näıve

method of ignoring the sampling scheme, methods involving analyzing only the cases

or the controls, and the method that conditions on the disease status by including it in

the regression are generally considered as ad hoc and it is not definitely known under

which circumstances they will provide valid estimates of the association between the

genotype and the secondary phenotype. Lin and Zeng (2008) provide a detailed critique

of the standard methods. However, their theoretical conclusions are applicable for the

conditional model that they have assumed to be true. It is difficult to predict how any

of these methods would behave if we were to believe in any other population model for

the joint distribution of the primary and the secondary phenotypes.

The likelihood approach and the weighted approach have theoretical justifications.

The likelihood method involves the retrospective likelihood. We can work with the

retrospective likelihood in several ways depending on how we decide to model the

population and also how we parametrize it. Also, there are many options for handling

the covariate distribution. The weighted approach, on the other hand, is free of any
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modeling assumption. It is simple, fast, and easy to implement. But it is usually less

efficient than the likelihood method as we have also seen in our simulations. With only

two covariates in the model, it had higher MSE than the pseudo MLE. Moreover, with

the weighted method there is no way of exploring the relationship between the primary

and the secondary phenotypes. The likelihood method provides us with estimates and

standard errors of the parameters specifying that relationship.

Pseudo maximum likelihood estimation was first proposed by Gong and Samaniego

(1981) in the parametric set up. Later Hu and Lawless (1997) applied it for problems

with response-related missing covariates where they replaced an unknown distribution,

the nuisance parameter for the problem, in the likelihood with its empirical estimate.

For their problem they have presented in details the asymptotic theory and also es-

timates of the asymptotic variance of the pseudo MLE. The use of pseudo likelihood

estimation in our case would allow us a great amount of flexibility and would obviate

the need for explicitly dealing with the covariate distribution. It also makes the imple-

mentation very fast. But as a cost for this flexibility, the variance of the pseudo MLE

is not the inverse of the negative Hessian matrix as is usually the case for likelihood

methods or even profile likelihood methods. The variance of the pseudo MLE is com-

plicated because of the nuisance parameter and the uncertainly involved in estimating

it. Future work in the area of secondary analysis for case-control data would benefit

from the development of the asymptotic theory of pseudo MLE and estimate of the

asymptotic variance of the pseudo MLE for our problem.

It is important to understand the behavior of the different estimators to be able to
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predict whether in a particular situation they would provide valid estimates or not. We

need to develop theoretical properties of the estimators to be able to understand the

direction of their bias. It is also required to understand how the different parameters

such as prevalence, association between the genotype, and the primary and secondary

phenotypes, the association between the two phenotypes, or the MAF affect the bias

and the MSE of the estimators and would have important implications for future work

in this area.
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Chapter 4

Significance Bias for Secondary

Phenotypes and GXE Interaction

4.1 Introduction

The primary purpose of genome-wide association studies (GWAS) is identification of

SNPs influencing susceptibility to complex traits. Since, in modern whole genome scans,

usually hundreds of thousands of SNPs are genotyped, thresholds in the range 10−7 −

10−8 are generally used for point-wise significance (Todd et al. 2007; Zondervan and

Cardon 2007; Scott et al. 2007). Using the original data for estimation purpose coupled

with the application of stringent thresholds, distorts the estimation process, producing

inflated estimates of effect sizes. After detection, genetic effect of the significant SNPs

are estimated based on the same data. This phenomenon (commonly referred to as the

“winner’s curse” (Lohmueller et al. 2003; Zöllner and Pritchard 2007) or “significance

bias” (Ghosh et al. 2008)) has profound importance for estimation of genetic effects



and is well documented in the literature (Zöllner and Pritchard 2007; Ghosh et al. 2008;

Garner 2007; Göring et al. 2001; Siegmund 2002; Sun and Bull 2005; Yu et al. 2007).

A related problem arises for risk estimation of secondary effects, such as secondary

phenotypes or gene-environment interactions, when the secondary analysis is restricted

to SNPs that are found to be significant in the primary analysis. Such secondary bias

can be substantial but has received no attention so far in the GWAS literature. If

the biased results are used for the design of follow-up studies, they are likely to be

underpowered, relying on an inflated estimate of effect size. The variance of the risk

estimates may also be affected.

Most genetic studies gather information on a host of variables besides the disease

status, the primary phenotype. Subsequent to the initial detection of the SNPs sig-

nificant for the primary phenotype, estimation of the impact of these SNPs on other

correlated traits is of interest (Frayling et al. 2007). The well-known phenomenon of

significance bias which affects the estimation of the disease risk effect also distorts the

estimation of the effect of the significant SNP on correlated phenotypes. Also, the

sampling design followed is of critical importance in deciding the analysis procedure

for the secondary trait. GWAS commonly employs case-control design to collect data

on a range of qualitative and quantitative variables and usually standard logistic or

linear regressions, ignoring the case-control sampling mechanism, are applied for the

secondary analysis. It has been proved that only under very restrictive conditions,

these analyses methods would yield unbiased estimates of the population parameters of

interest (Nagelkerke et al. 1995). Hence, for the analysis of secondary traits, sampling
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bias (Nagelkerke et al. 1995; Lee et al. 1997; Lin and Zeng 2008) adds to the problem of

significance bias in case-control sampled data. We have presented a detailed discussion

of existing methods for secondary analysis of case-control data and have developed a

retrospective likelihood method in Chapter 3 that we use for analysis in this chapter.

Interplay of genes and environmental factors contribute to the susceptibility to com-

plex traits. After a SNP is identified, researchers are often interested in estimating the

gene-environment interaction effect. Since this estimation is performed conditional on

the fact that the SNP has been found significant for the disease phenotype, significance

bias can be a major concern for the estimation of gene-environment interaction effect.

Results exploring the phenomenon of significance bias for estimation of interaction

effect have received very little attention in the GWAS literature.

Significance bias for estimation of the primary effect, i.e., the disease risk effect, and

ways of reducing it or eliminating it has been investigated in detail in many publica-

tions (Garner 2007; Ghosh et al. 2008; Göring et al. 2001; Siegmund 2002; Sun and Bull

2005; Yu et al. 2007; Zöllner and Pritchard 2007). While the problem of significance

bias is well appreciated in the context of disease phenotype, it has not yet been ex-

plored for analyses of secondary effects, be it effect size for additional phenotypic trait

or gene-environment interaction. We have recently proposed a conditional likelihood

approach (Ghosh et al. 2008), based on the estimate of genetic effect and its standard

error, to correct for the bias in effect size estimation for disease risk in case-control

association studies. We propose an extension of the conditional likelihood approach to

the multivariate setting where multiple effect coefficients are simultaneously estimated.
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For implementing this method we need the näıve estimates of the primary and sec-

ondary effect sizes and an estimate of the covariance between the näıve estimates. We

provide formulas for estimating the covariances for different sampling scenarios. We

prove that, under certain conditions, estimation of the gene-environment interaction

effect conditional on the significance of the marginal effect of the SNP is not affected

by significance bias. However, after a SNP is found significant in a logistic regression

involving gene, environment, and their interaction, if we wish to estimate the inter-

action effect, the estimation may be distorted by significance bias. In that case, our

proposed method can be applied to provide bias-reduced estimates of the interaction

effect.

We illustrate the performance of our approach via extensive simulations. The sim-

ulations cover a biologically plausible range of disease effect sizes. We show results

for both prospective and retrospective sampling schemes. Compared to the näıve esti-

mation ignoring the selection based on significance, our approach provides remarkably

reduced bias and mean-squared error. The results have considerable importance for

the proper analysis of secondary effects, and in the design of follow-up studies.

4.2 Methods

We assume a genetic model for disease risk that includes among other covariates, a

single SNP with either recessive, dominant, or additive mode of inheritance. We use

β1 = log(OR1) to denote the primary effect: the true log odds ratio for disease risk
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conferred by a referent genotype or by each allele as in an additive model, adjusting for

other covariates in the model. A single locus test statistic for the primary effect can be

expressed as an estimate for β1 divided by an estimate for its standard error,

Z1 =
β̂1

ŜE(β̂1)
,

which is compared to its asymptotic null distribution N (0,1). Let β−1 =


β2

...

βp


denote the vector of true log odds ratios attributable to the secondary effects such as the

effects of the SNP on secondary phenotypes or the effect of SNP-environment interaction

on disease risk. Our goal is to estimate β−1 only when the SNP is significant for the

disease in two-sided testing, i.e., |z1| > c for a value c corresponding to genome-wide

significance. We will refer to β̂−1, obtained from standard statistical procedures without

acknowledging this selection of the SNP based on significance prior to estimation, as

the näıve estimator. We have recently reported an approximate conditional likelihood

approach to estimate β1 conditional on the SNP being significant for disease association

(Ghosh et al. 2008). We have shown that our method offers marked improvements over

the näıve estimation procedure. We extend the concept of explicitly considering the

selection in formulating the likelihood to the multivariate setting and propose three

new estimators.
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4.2.1 Significance bias

Estimation of β−1 can be restated as a mean-parameter estimation problem for trun-

cated multivariate normal distribution with known variance-covariance matrix. To see

how, we define β =

 β1

β−1

, β̂ =

 β̂1

β̂−1

, and Z =

 Z1

Z−1

where Z−1 =


Z2

...

Zp

with Zi = β̂i
ŜE(β̂i)

. β̂is and ŜE(β̂i)s are obtained from maximum likelihood and

the information matrix. From the standard result



β̂1−β1

ŜE(β̂1)

β̂2−β2

ŜE(β̂2)

...

β̂p−βp
ŜE(β̂p)


→D N (0,R) with increasing sample size,

where R = corr(β̂) =

 1 ρ
′

ρ R22

 , it follows that Z
.∼ N (µ,R) , µ =

 µ1

µ−1



where µ−1 =


µ2

...

µp

with µi = βi
ŜE(β̂i)

. A consistent estimate of R can be obtained

from the likelihood theory. For the ease of mathematical discourse, we assume that it
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is known. The conditional density of Z given |Z1| > c is:

pµ(z| |Z1| > c) =
pµ(z)

P (|Z1| > c)

=
Np(z;µ,R)

Φ(−c− µ1) + Φ(−c+ µ1)
,

where |z1| > c, −∞ < zi < ∞, i = 2, . . . , p, −∞ < µi < ∞, i = 1, . . . , p, and Φ is the

cumulative distribution function of a standard normal. The statistical exposition to

follow is based entirely on this “µ-version” of the problem. It is evident that, in the “µ-

version”, the problem boils down to estimation of µ from pµ(z| |Z1| > c): a truncated

multivariate normal density with mean µ and known variance-covariance matrix.

Our näıve estimate of µ based on pµ(z) is µ̂ = z, and the expectation can be shown

analytically to be (see Appendix B, section B1)

Eµ (Z| |Z1| > c) = µ+

 1

ρ

 φ(c− µ1)− φ(c+ µ1)

Φ(−c− µ1) + Φ(−c+ µ1)
, (4.1)

where φ is the density function of a standard normal. It is clear from (4.1) that the

bias incurred in näıve estimation of µ−1 is ρ times the bias in µ̂1, thus being the same

for different values of µ−1. Equation (4.1) illustrates the phenomenon of significance

bias and implies that in the special case of the null hypothesis µ1 = 0 being true, the

näıve estimates are unbiased.
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4.2.2 An approximate conditional likelihood

The approximate asymptotic distribution of Z, approximate since µ is not truly a

parameter, suggests the following approximate likelihood for µ,

L(µ) = pµ(z) = Np(z;µ,R) .

The above likelihood applies to a wide variety of settings, being free from any nuisance

parameters that may have been included in the model, such as other clinical covariates,

stratification variables, or the effects of other SNP genotypes. The maximum likelihood

estimate (MLE) from the above likelihood is µ̂ = z. By explicitly considering the fact

that the SNP has been found significant, we have the approximate conditional likelihood

Lc(µ) = pµ(z| |Z1| > c) =
Np(z;µ,R)

Φ(−c− µ1) + Φ(−c+ µ1)
.

We develop three improved estimators for µ based on this approximate conditional

likelihood. For any proposed µ̂ we can easily convert back to β̂ using β̂i = µ̂iŜE(β̂i).

Hence, for estimation of µ we require only the significance threshold c, β̂, and ˆV ar(β̂).

4.2.3 The conditional MLE

The conditional likelihood suggests, as one possible solution, the MLE, given by

µ̃(1) = arg maxµ Lc(µ) ,
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which can be obtained by maximizing the conditional likelihood with respect to µ1 and

µ−1 separately, and then solving for them simultaneously. Hereafter “∼” will signify

estimates based on the conditional likelihood.

∂

∂µ1

Lc(µ) = 0 ⇒ ∂

∂µ1

{
φ( z1−µc

σc
)

Φ(−c− µ1) + Φ(−c+ µ1)

}
= 0

⇒ z1 − µc
σ2
c

=
φ(−c+ µ1)− φ(c+ µ1)

Φ(−c− µ1) + Φ(−c+ µ1)
, (4.2)

where µc = µ1 + ρ
′
R−1

22 (z−1 − µ−1) and σ2
c = 1− ρ′R−1

22 ρ.

∂

∂µ−1

Lc(µ) = 0 ⇒ ∂

∂µ−1

Np−1

(
z−1; µ−1 + ρ(z1 − µ1),R22 − ρρ

′
)

= 0

⇒ z−1 = µ−1 + ρ(z1 − µ1) . (4.3)

Substituting (4.3) in (4.2) we have,

z1 − µ1 =
φ(c− µ1)− φ(c+ µ1)

Φ(−c− µ1) + Φ(−c+ µ1)
. (4.4)

We solve for µ1 from (4.4) and plug it in (4.3) to get µ̃
(1)
1 and µ̃

(1)
−1, respectively. Lc(µ)

lends itself to the above mathematical treatment because it can be expanded as

Lc(µ) =
Np−1(z−1;µ−1,R22)φ( z1−µc

σc
)

Φ(−c− µ1) + Φ(−c+ µ1)
, (4.5)

or as

Lc(µ) =
φ(z1 − µ1)Np−1

(
z−1;µ−1 + ρ(z1 − µ1),R22 − ρρ

′)
Φ(−c− µ1) + Φ(−c+ µ1)

. (4.6)
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(4.5) uses the conditional density of Z1 given Z−1 and (4.6) uses the conditional density

of Z−1 given Z1. The maximum likelihood estimator is not unbiased. This motivates

us to explore other probable estimators. The moments estimator obtained by solving

Eµ (Z| |Z1| > c) = z for µ is one such possibility. Such a “bias-correction” estimator

has intuitive appeal, representing the value µ for which the truncated multivariate

normal distribution would be expected to generate z. Surprisingly, the maximum like-

lihood estimator and the moments estimator are the same. Comparing and combining

Eµ (Z| |Z1| > c) = z, (4.1), (4.3), and (4.4), we arrive at the above conclusion.

4.2.4 The mean of the normalized conditional likelihood

The motivation to reduce mean squared error (MSE) suggests another estimator,

µ̃(2) =

∫
µLc(µ)dµ∫
Lc(µ)dµ

.

We can think of µ̃(2) as the mean of the random variable following the distribution

Lc(µ), normalized to be a proper density. However, the multivariate integration after

some simplification boils down to obtaining µ̃
(2)
1 as the mean of the random variable

following the distribution Lc(µ1) = φ(z1−µ1)
Φ(−c−µ1)+Φ(−c+µ1)

, normalized to be a proper density,

and then plugging it in z−1 − ρ(z1 − µ̃(2)
1 ) to get µ̃

(2)
−1 (see Appendix B, section B2).

Thus, 
µ̃

(2)
1 =

∫
µ1Lc(µ1)dµ1∫
Lc(µ1)dµ1

µ̃
(2)
−1 = z−1 − ρ(z1 − µ̃(2)

1 )

.
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4.2.5 A compromise estimator

The conditional likelihood Lc(µ) is typically skewed, as a result µ̃(1) and µ̃(2) may differ

appreciably for certain values of z. Thus, as a practical compromise we also examine

the estimator

µ̃(3) = (µ̃(1) + µ̃(2))/2 ,

which balances the strengths of µ̃(1) and µ̃(2).

4.2.6 Secondary phenotype

We performed several simulations to assess our proposed bias-correction method for

secondary phenotypes. To describe our simulations, we begin with the notation. Let d

denote the disease status (0=control, 1=case), y the secondary phenotype value, and

g the genotype predictor value for an individual. For a biallelic SNP with major allele

A and minor allele a, g is defined as follows for different genetic models with respect to a,

Recessive

g =


0, AA

0, Aa

1, aa

Additive

g =


0, AA

1, Aa

2, aa

Dominant

g =


0, AA

1, Aa

1, aa .

Logistic regression of D on g is used to test for disease association, and once the SNP

is found to be significant for the disease, effect of the SNP on the secondary phenotype

is of interest. For simulation purposes, we consider a binary secondary phenotype and
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assume a logistic model for the the conditional distribution of Y given g. The marginal

distribution of G is denoted by p(g), which, given the minor allele frequency, is deriv-

able from Hardy-Weinberg equilibrium. We jointly model the bivariate response (D, Y )

given g. There are several ways to parametrize the bivariate distribution (D, Y |g). We

consider only those models for which the marginal distributions of D and Y given g

are both logistic. The bivariate logistic model, considered by Palmgren (1989), is one

such model and is conceptually very simple. It is based on the fact that the joint distri-

bution of two binary variables can be specified in terms of their marginal probabilities

and their odds ratio. Thus, for a randomly sampled individual in the population we

specify the joint distribution of D and Y given g as:

logit P (D = 1 | g, z) = α1 + β1g + γ1
′z

logit P (Y = 1 | g, z) = α2 + β2g + γ2
′z

logOR(D, Y | g) =
P (D = 1, Y = 1 | g, z)P (D = 0, Y = 0 | g, z)

P (D = 1, Y = 0 | g, z)P (D = 0, Y = 1 | g, z)
= α3 + β3g .

For data collected prospectively, use of separate logistic regressions for D and Y

is “valid” in the sense that the estimates obtained from the analysis are consistent

estimates of the corresponding population parameters. For case-control data, a logistic

modeling for β1 applies. However, for the secondary analysis, ordinary logistic regres-

sion of Y on g to infer about β2 is not necessarily valid. For appropriate analyses of

the secondary phenotypes we refer to the retrospective likelihood method described in
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Chapter 3.

Each dataset was simulated and analyzed in R v.2.5.1. We considered a sample of

size n = ncases + ncontrols = 3000, and for retrospective sampling, we assumed ncases =

ncontrols = 1500. We assumed a disease prevalence of 0.18 and a MAF value of 0.25

throughout. We fixed β2 at 0.3, the bias-correction approach is not sensitive to this

specification, as is suggested by equation (4.1). We used c = 5.0 corresponding to a

p-value of 5.7x10−7, near the genome scan threshold considered by others (Scott et al.

2007; Todd et al. 2007; Zondervan and Cardon 2007). We simulated data only under the

dominant mode of inheritance. We fixed the prevalence for the secondary trait at 0.2

and examined β1 ranging from -0.7 (OR ≈0.5) to 0.7 (OR ≈ 2). This spans the range

of biologically plausible values for complex diseases. We used α3 = log 9 and β3 = 0.

For each value of β1 enough simulations were performed to guarantee 1000 significant

datasets. The null and near-null scenarios required massive simulation, on the order

of 1010 for some scenarios, to obtain sufficient number of rejections, i.e., significant

datasets. We initially vetted datasets using chi-square statistics before performing

logistic regression of D on g. Datasets meeting the criteria: chi-square statistic value

≥ 24.5 were used to capture datasets with z2
1 ≥ c2 = 25. Finally, datasets achieving

z2
1 ≥ c2 = 25 were analyzed to obtain the parameter estimates, standard errors, and an

estimate of the correlation between the parameter estimates. These estimates are then

used to calculate β̃
(1)
2 , β̃

(2)
2 , and β̃

(3)
2 . Analytical derivation for formulae used to obtain

covariance estimates are provided in Appendix B, section B3.
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4.2.7 Gene-environment interaction

Our bias correction approach can also be applied for estimation of gene-environment

interaction effect subsequent to finding the SNP significant. Let e denote the environ-

ment predictor value (0=not exposed, 1=exposed). We assume the following logistic

model for a randomly sampled individual in the population,

logit P (D = 1 | g, e) = β
(b)
0 + β

(b)
G g + β

(b)
E e+ β

(b)
GEge .

If we wish draw inference on β
(b)
GE conditional on the gene being significant in two-sided

testing, i.e., |zG| =
β̂

(b)
G )

ŜE(β̂
(b)
G )

> c, then parameter estimates of the genetic effect and

the gene-environment interaction effect, and an estimate of the correlation between the

two estimates, as provided by any standard statistical software, will be sufficient to

implement the bias-correction approach. For simulation purposes, we generated data

prospectively from the above model with βg ranging from -0.7 (OR ≈0.5) to 0.7 (OR

≈ 2). We fixed βe and βge at 0.3 and 0.2 respectively. We considered a biallelic SNP

with dominant effect on the disease phenotype. We fixed disease prevalence at 0.01, the

threshold c at 5, and considered a MAF of 0.25. We compared the näıve estimator of

the gene-environment interaction effect, β̂ge, with the conditional m.l.e. β̃ge. However,

the usual practice is to first fit a logistic model of D on g only, and if the gene is

found significant, then, a full model involving gene, environment, and their interaction

follows. We demonstrate analytically that, cov(β̂
(s)
G , β̂

(b)
GE) = 0, where β̂

(s)
G is the estimate

of the genetic effect obtained from fitting a logistic regression of D on g only. Detailed
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derivation is provided in the Appendix B, section B4. Hence, for prospective data, the

gene-environment interaction effect estimated from the full model subsequent to the

SNP being found significant for the disease in the gene-only model, is not affected by

significance bias.

4.3 Results

In all the simulation scenarios described here, expectations and MSEs are calculated

conditional on significance. All of them are plotted against β1 with corresponding odds

ratio values.

4.3.1 Secondary phenotype

Figures 4.1 and 4.2 display the simulation results for the secondary phenotype. Figure

4.1 plots the means of the the näıve and corrected estimators. The corresponding MSE

plots are shown in Figure 4.1.

Bias

The first column of Figure 4.1 plots the means for the näıve and corrected estimators

for β1. The näıve estimator shows very large bias, especially for small to moderate β1.

The corrected estimators show dramatically reduced bias for most β1 values examined,

although, they tend to undercorrect for small β1 and overcorrect for large β1. All

the estimators are nearly unbiased for large values of β1. β̃
(1)
1 performs best among
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the three corrected estimators for small β1, but shrinks aggressively for moderate to

large β1 resulting in overcorrection. β̃
(2)
1 shrinks much less dramatically resulting in

undercorrection. β̃
(3)
1 strikes a balance between the two. We notice that the magnitude

of bias in all the estimators is less for case-control data than that for data collected

prospectively. A possible explanation is that the standard error for data collected

prospectively would tend to be bigger than that for data collected retrospectively,

resulting in bigger bias. However rescaling of the axes demonstrates their inherent

similarity in the “µ−version”. The second column of Figure 1 plots the means for the

näıve and corrected estimators for β2. The bias results for β2 essentially follow the same

pattern as β1. Though less dramatic, the corrected estimators show greatly reduced bias

for much of the range of β1. The corrected estimators preserve their relative advantages

over one another. As before, β̃
(1)
2 reduces the bias appreciably for small β1, whereas,

β̃
(2)
2 would be preferred for moderate to large β1. β̃

(3)
2 exhibits a more even performance

across most of the range examined. The plots under the two sampling scenarios would

match up with a rescaling of the axes.
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Figure 4.1: First column: expected values for the näıve and the conditional likelihood
estimators of β1. Second column: expected values for the näıve and the conditional
likelihood estimators of β2.

Mean squared error

The first column of Figure 4.2 shows the MSE values for the estimators of β1. The

näıve estimator exhibits extremely large MSE for most of the range considered. The

corrected estimators offer marked improvement over the näıve estimator, especially for

small β1. The m.s.es of β̃
(1)
1 and β̃

(2)
1 are largely complementary, and β̃

(3)
1 performs

evenly across the range. The second column presents the corresponding plots for β2.

The MSE plots for β2 preserve the relative merits of the corrected estimators compared

to the näıve estimator. For small to moderate β1, the corrected estimators show major
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improvement over the näı estimator. At β1 = 0, the MSE of the näıve estimator is more

than twice the MSE for any of the corrected estimators, this is due to high variance of

the näıve estimator at β1 = 0. For moderate β1 the näıve estimator has low variance

but high bias, again resulting in higher MSE than that for corrected estimators. For all

the sampling scenarios, β̃
(3)
1 represents a reasonable choice for most β1 values examined

here.
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Figure 4.2: First column: mean squared errors for the näıve and the conditional like-
lihood estimators of β1. Second column: mean squared errors for the näıve and the
conditional likelihood estimators of β2.
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4.3.2 Gene-environment interaction

Figure 4.3 displays the simulation results for the gene-environment interaction effect.

The top row of Figure 4.3 plots the means for the the näıve estimator and the bias-

reduced estimator, β̃
(1)
2 , against βg (with corresponding OR values). The left plot

corresponds to the effect of the gene on disease risk, βg, and the right plot is for the

gene-environment interaction effect. The näıve estimators show extremely large bias

specially for moderate values of βg. β̃
(1)
2 reduces bias dramatically for most of the βg

values examined. Both the estimators are nearly unbiased for large βg values. β̃
(1)
2

tends to under-correct for small values of βg while over-correcting for large values of

βg. Both the näıve estimator and the conditional m.l.e. are practically unbiased at

βg = 0. The bias occurs in opposite direction for the gene effect and the interaction

effect. The corresponding MSE plots are shown in the bottom row of Figure 4.3. The

MSE plots for the gene effect and the interaction effect are very similar in pattern. The

näıve estimator shows extremely large MSE for most values of βg. β̃
(1)
2 has remarkably

improved MSE for most of the range considered.
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Figure 4.3: Top row: expected values for the näıve and the conditional likelihood
estimators of βg and βge. Bottom row: mean squared errors for the näıve and the
conditional likelihood estimators of βg and βge.
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4.4 Discussion

We have investigated significance bias for secondary effects and we have proposed an

approach to obtain corrected estimates with remarkably less bias and mean-squared er-

ror than the nä’ive estimates. We recommend β̃
(3)
2 since it exhibits an even performance

for all β1 values considered. However, all three corrected estimators show substantial

improvement over the näıve estimator. We have described a valid secondary analyses

method for case-control data. We have explored the nature of significance bias for gene-

environment interaction effect and have clarified conditions under which the estimate

of the interaction effect would not be affected by significance bias.

Secondary analyses are very common for GWAS where data are collected on a variety

of phenotypic traits, both quantitative and qualitative. For estimation of genetic effects

of a SNP significant for the disease on additional secondary phenotypes, significance

bias would produce biased estimates of effect sizes. The magnitude of bias would

depend on the correlation between the estimates of the disease risk effect and the effect

sizes of the significant SNP on the secondary phenotypes. For our particular simulation

setup the correlation was modest, hence the results were not as dramatic as those for

disease risk effect, β1. But even for such modest correlation, the MSEs for the corrected

estimators were a few times less than that for the näıve estimator, specially for small

disease risk effect sizes.

For genome scans data are usually collected retrospectively, being cost-effective

and an efficient use of resources. But case-control samples are not representative of the
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population, resulting in selection bias. The semiparametric approach of Lee et al. (1997)

is applicable only if the sampling fractions for the two stratum are known, which in

most cases are not. The likelihood approach by Lin and Zeng (2008) can be performed

for both binary and continuous secondary phenotype, but the joint modeling involves

a slightly restrictive model, referred to as “conditional” model (Lee et al. 1997), where

the odds ratio between the disease phenotype and the secondary phenotype given the

genotype is independent of the genotype. Also, the marginal distribution of D given g

is not logistic. The bivariate logistic model formulation is a fully-parametrized model

and lends itself to the common belief that the the marginal distribution of the disease

status variable given the genotype is logistic.

Inference on β2 is not complete without a confidence interval. Standard confidence

interval(CI) procedures, carried out without acknowledging the selection of the SNP

based on significance, perform very poorly in this setting. To see this, we revert to the

µ-version of the problem. After conditioning on significance, a standard 95% CI for

µ1 cannot contain 0. Thus, when the null hypothesis µ1 = 0 is true, the coverage of

standard CI for µ1 is 0, which in turn throws the standard CI preocedures for µ−1 off

balance. Let us consider the bivariate version of the problem,

 Z1

Z2

 ∼ N2


 µ1

µ2

 ,

 1 ρ

ρ 1


 .

We wish to find a 1 − η CI for µ2 taking into account that |z1| > c has been already

observed. The simplest CI for µ2 will be µ̃2± q1− η
2

√
1− ρ2 where µ̃2 = z2− ρ(z1− µ̃1),
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and q1− η
2

is the 1 − η
2

quantile of the standard normal distribution. Alternatively, we

can construct a profile likelihood for µ2, normalize it to be a proper density, then take

its η
2

and 1 − η
2

quantiles to be the upper and lower confidence limits for µ2. We can

also integrate the joint likelihood over µ1, normalize it to be a proper density, and then

take its η
2

and 1 − η
2

quantiles to be the upper and lower confidence limits for µ2. We

plan to apply these CI procedures to the simulation setup described earlier and judge

their performance. Although we believe that these procedures will perform well, a more

principled confidence interval construction for µ2 is worth investigating.

Our current simulations cover only the dominant mode of inheritance. For additive

model, the retrospective likelihood would involve two nuisance parameters and stability

of the estimates obtained from standard optimization techniques might be an issue.

Also, we have always considered models with only one parameter for the genetic effect.

Future work extending our approach to a more general setup would be important. It

would be interesting to investigate whether joint modeling of the correlated phenotypes

is better than the marginal logistic regression even when both yield valid estimates of

the population parameters of interest.
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Chapter 5

Variable Selection via a Conditional

Likelihood-based Penalty

5.1 Introduction

Consider the linear regression model

y = Xβ + ε (5.1)

where the response y is a nx1 vector and the design matrix X is of order nxp. So the

data consists of (yi,xi), i = 1, . . . , n where yi is the response and xi = (xi1, . . . , xip)
′ is

the vector of predictor values for the ith observation in the sample. Let εi, i = 1, . . . , n

be independently and identically distributed as N(0, σ2). We assume, without loss of

generality, that the predictors are standardized and the response is centered so that∑
i xij = 0,

∑
i x

2
ij = 1, j = 1, . . . , p, and

∑
i yi = 0.



In the linear regression setup, our goal is to find a linear model that provides a con-

cise description of how the predictors affect the response. The model selection problem

entails selecting variables that might best describe that relationship, and estimating

the coefficients corresponding to those variables. With the simultaneous advent of

high-speed computing and high-throughput technologies, most of the recent research

problems involve datasets with large number of predictors, especially high-dimensional

datasets with fewer observations than predictors. For example, a typical gene expression

data has tens of thousands of genes (predictors) and only a few hundred arrays (obser-

vations). High-dimensional data arise in various fields of scientific research including

computational biology, finance, biomedical imaging, satellite imagery, and many oth-

ers. High-dimensional datasets present a challenge to traditional methods of model

selection and underline the importance of model selection techniques.

We usually judge the usefulness of a predictive model on the basis of prediction ac-

curacy and interpretability. Prediction accuracy is a quantitative measure for assessing

model fit. We can calculate the expected prediction error, also known as test error or

generalization error (Hastie et al. 2001), of a regression fit Xβ̂ at X = x′0,

EPE(x0) = E
[
(x′0β + ε0 − x′0β̂)2

]
= σ2

ε +
[
E(x′0β̂)− x′0β

]2

+ E
[
x′0β̂ − E(x′0β̂)

]2

= σ2
ε +Bias2 + V ariance .

The first term is the irreducible error part and it cannot be avoided even if β was
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known. The second and the third components can be controlled and they make up

the mean squared error of x′0β̂. The second term is the squared bias: the amount

by which the average of the estimate differs from x′0β; the third term is the variance:

the expected squared deviation of x′0β̂ around its mean. We generally try to minimize

the mean squared error or expected prediction error for a model. Interpretability of a

model, on the other hand, is more qualitative in nature, and involves discerning which

variables play an important role in predicting the response.

Ordinary least squares (OLS) minimizes the residual sum of squares

n∑
i=1

(
yi −

p∑
j=1

βjxij

)2

.

It is intuitively appealing, but OLS fitting does not always provide a satisfactory model

in terms of prediction accuracy and interpretability. It produces best linear unbiased

estimators, but the variance of the predicted values is often high. The interpretability

of the model is also seriously hampered since OLS retains all the predictors. With too

many variables in the model, it is difficult to understand which variables are really

important in predicting the response. Moreover, in the high-dimensional setting, it is

not possible get an OLS solution, there being no unique solution to the system of linear

equations involving the coefficients.

Traditional approaches to model selection, such as best subset regression or stepwise

regression, retain a subset of the candidate predictors, eliminate the rest, and use

OLS to estimate the coefficients corresponding to the ones retained. Subset selection
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generally achieves better prediction accuracy than the full model by selecting a only

a subset of the candidate predictors. The selection of the subset of variables is based

on either best subset regression or forward/backward stepwise selection. Best subset

regression is generally considered impractical for p > 30. Backward selection can only

be used when N > p, while forward selection can always be used. Hybrid strategies

using both forward and backward moves in each step can also be used. The best subset

size or the best model among the sequence of models produced by each of the above

procedures is the tuning parameter and typically the model that minimizes an estimate

of the test error is chosen. Subset selection, though conceptually simple and produces

easily interpretable models, has serious drawbacks. It is a discrete process, i.e., either

makes a coefficient zero or inflates it. This inherent discreteness makes subset selection

extremely variable. It is not stable with respect to small perturbations in the data.

Ridge regression (Hoerl and Kennard 2000) ( Hoerl and Kennard, 1970), on the

other hand, retains all the predictors in the model and modifies how the coefficients

are estimated. The ridge estimate β̂ is defined by

β̂ = arg min


n∑
i=1

(
yi −

∑
j

βjxij

)2
 subject to

∑
j

β2
j ≤ t ,

where t is the tuning parameter. The above optimization problem can be equivalently

expressed as,

β̂ = arg min


n∑
i=1

(
yi −

∑
j

βjxij

)2

+ λ
∑
j

β2
j

 .
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There is one-to-one correspondence between t and λ. The tuning parameter is chosen

to minimize an estimate of the expected prediction error. Ridge regression achieves

better performance than OLS through a bias-variance trade-off. It is a continuous

process and the ridge estimates are stable, i.e., if we delete a single data point, the new

ridge estimates, for the same tuning parameter will be close to the old. However, ridge

estimates retain all the predictors in the model resulting in less interpretability. Ridge

regression can be used in the high-dimensional setting.

Methods which select subsets and shrink estimates simultaneously would be more

welcome as they would retain good features of both subset selection and ridge regression.

Breiman (1995) proposed the nonnegative garrote for better subset regression. His

procedure minimizes

n∑
i=1

(
yi −

∑
j

cjβ̂
0
jxij

)2

subject to cj >= 0,
∑
j

cj ≤ t ,

where β̂0
j are the OLS estimates and β̂j(t) = cj(t)β̂

0
j are the new estimates. The

nonnegative garrote starts with the OLS estimates and then as we tighten the garrote,

some of the coefficients are set to zero and the remaining ones are shrunk. Breiman

showed via simulations that nonnegative garrote outperforms subset selection and is

comparable to ridge regression unless the model has a large number of small effects.

In terms of stability, nonnegative garrote is intermediate between subset selection and

ridge regression. But it depends heavily on the OLS estimates, the nonnegative garrote

estimates are expected to suffer in situations where the OLS estimates perform poorly,
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and cannot be used when there are more predictors than samples.

Motivated by the idea of nonnegative garrote, Tibshirani (1996) proposed a new

technique called LASSO: least absolute shrinkage and selection operator. The LASSO

estimate β̂ is defined by

β̂ = arg min


n∑
i=1

(
yi −

∑
j

βjxij

)2
 subject to

∑
j

|βj| ≤ t .

LASSO can produce sparse solution. When there are a large number of candidate

predictors parsimony is an important issue. LASSO can be implemented in the high-

dimensional setting but it cannot select more variables than number of observations.

Frank and Friedman (1993) introduced bridge regression and Fu (1998) developed a

general approach to solve for bridge estimators. Bridge regression minimizes


n∑
i=1

(
yi −

∑
j

βjxij

)2
 subject to

∑
j

|βj|q ≤ t .

It includes subset selection (q = 0), LASSO (q = 1), and ridge regression (q = 2) as

special cases. Huang et al. (2008) studied the asymptotic properties of bridge estimators

for an increasing number of predictors.

Fan and Li (2001) proposed a non-convex penalty function, the smoothly clipped
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absolute deviation (SCAD) penalty. The SCAD penalty function is defined as follows:

pλ(|βj|) =


λ|βj|, |βj| ≤ λ

− |βj |
2−2aλ|βj |+λ2

2(a−1)
, λ < |βj| ≤ aλ

(a+1)λ2

2
, |βj| > aλ

,

where a and λ are the tuning parameters and are chosen such that they minimize an

estimate of the expected prediction error. They have shown via simulations that the

choice a ≈ 3.7 works quite well for various variable selection problems. In the context of

SCAD penalty they argued that a “good” penalty function should be unbiased, sparse,

and continuous in data and showed that SCAD penalty possesses all three desirable

properties. Fan and Peng (2004) discussed asymptotic properties of the non-concave

penalized likelihood estimator when the number of covariates increase to infinity with

the sample size. Zou and Li (2008) suggested one-step sparse estimates based on local

linear approximation (LLA) for maximizing the penalized likelihood for concave penalty

functions.

All the methods described above can be viewed as applying different penalty func-

tions to the OLS criterion and can be regarded as penalized least squares procedures.

A form of the penalized least squares objective function is

(y −Xβ)′(y −Xβ) +

p∑
j=1

pλ(|βj|) . (5.2)

Minimizing (5.2) with respect to β gives penalized least squares estimator of β. The
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penalty functions pλ(|βj|) do not have to be the same for all j and are allowed to

depend on λ. The L2 penalty function pλ(|βj|) = λ|βj|2 corresponds to ridge regression,

while the L1 penalty function pλ(|βj|) = λ|βj| to LASSO. The L0 or entropy penalty,

pλ(|βj|) = λI(|βj| 6= 0), corresponds to variable subset selection. Nonnegative garrote,

also, can be expressed as penalized least squares with additional sign constraints,

β̂ = arg min


n∑
i=1

(
yi −

∑
j

βjxij

)2

+ λ
∑
j

|βj|
|β̂0
j |

 subject to βjβ̂
0
j ≥ 0 ∀j.

When the columns of X are orthonormal, the penalized least squares problem boils

down to minimizing

(β̂0
j − βj)2 + pλ(|βj|)

for each j separately. This simplification allows us to study the estimator as a function

of the data. In this special case, the L1 penalty function yields

β̂j = sign(β̂0
j )(|β̂0

j | − γ)+ ,

where γ depends on λ. This is called ‘soft threshold’ estimator by Donoho and JOHN-

STONE (1994) and is typically used in the wavelet analysis. The ridge solution for

orthonormal X is,

β̂j =
1

1 + γ
β̂0
j .
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The nonnegative garrote estimate is

β̂j =

(
1− γ

β̂0
j

2

)+

β̂0
j .

The hard thresholding penalty function pλ(|βj|) = λ2− (|βj| − λ)2I(|βj| < λ) results in

the hard thresholding rule

β̂j = β̂0
j I(|β̂0

j | > γ) .

The hard thresholding rule is also derivable from the entropy penalty function. For

orthonormal X the resulting SCAD estimator is given by

β̂j =


sign(β̂0

j )(|β̂0
j | − γ)+, |βj| ≤ 2λ{

(a− 1)β̂0
j − sgn(β̂0

j )aλ
}
/(a− 2), 2λ < |βj| ≤ aλ

β̂0
j , |βj| > aλ

.

We have plotted these estimators as functions of the data in Figure (5.1). The hard

thresholding penalty, corresponding to plot (a), satisfies sparsity and unbiasedness, but

it is not continuous in data. Plot (b) shows that the ridge estimator is continuous, but

it is neither a thresholding rule nor is it unbiased for large values of the parameter.

The LASSO penalty corresponding to plot (d) suggests that LASSO satisfies sparsity

and continuity but not unbiasedness. The SCAD rule, as we had mentioned before,

satisfies all three properties and so does the nonnegative garrote.

The penalized least squares estimators are biased but their variance is smaller than

the OLS estimator, thus with a little sacrifice of bias we can achieve better performance
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on the average in terms of mean squared error or prediction error. Some of these penalty

functions restrict the coefficients in such a way that a number of them are reduced

to zero, thus effectively performing variable selection. The idea of applying penalty

functions to the OLS criterion can be extended to penalized likelihood to encompass

likelihood-based models. A form of the penalized log-likelihood is

n∑
i=1

li −
p∑
j=1

pλ(|βj|) ,

where li is the log-likelihood for yi. In the linear regression setup the penalized least

squares and the penalized likelihood estimators are exactly the same for type 1 penalty

functions defined by Zou and Li (2008), such as the bridge penalties or the logarithm

penalty.

The penalized likelihood estimators can be interpreted from a Bayesian point of

view. The penalty functions can be thought of as log-prior densities for the parame-

ters. Thus LASSO can be viewed as Bayes posterior mode under independent Laplace

priors and ridge estimate can be interpreted as mode of the posterior distribution with

independent Gaussian priors for the parameters. Since the posterior distribution is

Gaussian, the ridge estimator is also the posterior mean. The SCAD penalty corre-

sponds to an improper prior. Thus LASSO, ridge, and SCAD are all Bayes estimates

but with different prior distributions for the regression coefficients (Hastie et al. 2001;

Tibshirani 1996).

Efron et al. (2004) proposed least angle regression, and its LASSO and forward
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stagewise variations (LARS). Their paper describes a new model selection algorithm,

simple modifications of which give LASSO and forward stagewise regression. It has

revolutionized the way LASSO is implemented, implementation being a natural con-

cern for very large number of predictors. Although LASSO is a very appealing variable

selection tool, it has a few drawbacks. In high-dimensional scenario, LASSO does not

perform satisfactorily, it cannot choose more variables than number of samples. Also, if

there is a group of correlated variables among which the pairwise correlations are very

high, then LASSO tends to choose any one variable from the group. In the usual re-

gression setup, if the correlation between the predictors is high, ridge regression usually

outperforms LASSO. In an attempt to retain good features of both ridge regression and

LASSO, Zou and Hastie (2005) presented a new regularization and variable selection

method, the elastic net, which is particularly useful when there are more variables than

observations. The näıve elastic net criterion minimizes


n∑
i=1

(
yi −

∑
j

βjxij

)2
+ λ1

∑
j

|βj|+ λ2

∑
j

β2
j . (5.3)

(5.3) is equivalent to the minimizing


n∑
i=1

(
yi −

∑
j

βjxij

)2
 subject to (1−γ)

∑
j

|βj|+γ
∑
j

β2
j ≤ t , γ =

λ2

λ1 + λ2

∈ [0, 1] ,

where the elastic net penalty (1− γ)
∑

j |βj|+ γ
∑

j β
2
j is a convex combination of the

lasso and the ridge penalty. The näıve elastic net is a two-step procedure: ridge-type

shrinkage followed by lasso-type thresholding, double shrinkage does not help much
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with variance while introducing extra bias. The elastic net estimator is a rescaled

näıve elastic net estimator, that corrects for the double shrinkage and is defined as

β̂(elastic net) = (1 + λ2)β̂(näıve elastic net) .

Elastic net exhibits the attractive property of “grouping effect”: highly correlated pre-

dictors have the same regression coefficients. LASSO does not possess this property

(Zou and Hastie 2005).

With high-dimensional data, there are two different objectives: ensuring high predic-

tion accuracy and identifying the set of predictors with nonzero regression coefficients.

Identifying the true “sparse pattern”, referred to as variable selection consistency, is

particularly important when the true underlying model is sparse. LASSO variable se-

lection is not necessarily consistent. Hence, LASSO is not an oracle procedure (Fan

and Li 2001; Zou 2006). We call a procedure, δ, an oracle procedure (Fan and Li 2001;

Zou 2006) if β̂(δ) has the following properties asymptotically:

• identifies the right subset model,
{
j, β̂j 6= 0

}
= {j, βj 6= 0}

• has the optimal estimation rate,
√
n
(
β̂(δ)− β

)
→D N(0,Σ∗), where Σ∗ is the

covariance matrix knowing the true subset model.

Zou (2006) proposed a variation of lasso, adaptive LASSO, which minimizes

β̂ = arg min


n∑
i=1

(
yi −

∑
j

βjxij

)2

+ λ
∑
j

ŵj|βj|

 ,
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where ŵ = 1/|β̂|
γ
, γ > 0, and β̂ is a root-n consistent estimator of β. Adaptive LASSO

is fast, effective, and enjoys the oracle property. By incorporating data-dependent

weights adaptive LASSO manages to reduce the bias of LASSO. The weights make the

resulting estimator nearly unbiased when the true unknown parameter is large. Huang

et al. (2007) studied the asymptotic properties of adaptive LASSO for sparse high-

dimensional regression models when number of covariates increase with the sample

size. When the number of predictors exceeds the sample size they show that under

the partial orthogonality condition adaptive LASSO is an oracle procedure if marginal

regression is used to obtain the initial estimator.

Yuan and Lin (2006) studied a slightly different problem of selecting grouped vari-

ables (factors) for achieving better prediction accuracy in regression problems where

interest lies in finding important explanatory factors for the response variable. They

extended LASSO, LARS, and nonnegative garrote to group LASSO, group LARS, and

group nonnegative garrote for factor selection. Wang et al. (2007) developed group

SCAD regression in the same spirit. Candes and Tao (2007) proposed the Dantzig se-

lector. Wasserman et al. (2007) advocated a three-stage procedure: in the first stage a

set of candidate models: LASSO, marginal regression, and forward stepwise regression,

are fitted to the data, in the second stage one of them is selected by cross-validation, and

in the third stage hypothesis testing is used to eliminate some of the variables. The first

two stages are referred to as “screening” and the third one is the “cleaning” stage. Rad-

chenko and James (2008) described a modification to LASSO to prevent overshrinkage

of LASSO by using two tuning parameters, one for selecting variables and the other to
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control the amount of shrinkage. They call it VISA: Variable Inclusion and Shrinkage

Algorithms. Fan and Lv (2006) introduced the concept of sure independence screening

in ultrahigh-dimensional problems and described a sure screening method based on a

correlation learning, called the Sure Independence Screening (SIS). James et al. (2009)

explored the relationship between LASSO and Dantzig selector and described a new

algorithm, DASSO, which uses a LARS-type algorithm to compute the entire solution

path for the Dantzig selector. There are many other methods in the model selection

literature that have been proposed for simultaneous variable selection and coefficient

shrinkage.

We present a method that involves the two principal components of model selec-

tion: variable selection and estimation of the coefficients corresponding to the selected

variables. To select a variable, we test whether the regression coefficient corresponding

to that variable is zero or not, based on the observed test coefficient. Then we estimate

the regression coefficient based on a conditional likelihood that takes into account the

result of the testing of hypothesis. We incorporate the information of whether the vari-

able was found to be significant or not while constructing the conditional likelihood for

estimation. This idea is an application of the conditional likelihood approach (Ghosh

et al. 2008)) to overcoming the “winner’s curse” (Lohmueller et al. 2003; Zöllner and

Pritchard 2007), or “significance bias” (Ghosh et al. 2008)), in genome-wide associa-

tion studies. The conditional likelihood suggests a non-convex penalty function that

can be used in the penalized likelihood framework for coefficient shrinkage. Thus, our

proposed penalty function has a natural motivation based on the selection procedure
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involving the test coefficient. We call the resulting method Test Coefficient Shrinkage

or TCS.

With focus on ensuring high prediction accuracy, we describe a penalization tech-

nique based on the TCS penalty in the linear regression framework. We extend our

method to high-dimensional regression problems. We illustrate the performance of our

approach via extensive simulations. We use a real data example that has been widely

used in the model selection literature to compare the performances of different meth-

ods. We judge the performance of TCS and other popular methods such as LASSO,

ridge, and SCAD using simulations for both the usual scenario where we have more

observations than covariates and the high-dimensional setup with more predictors than

observations. The simulations cover a wide range of models.

5.2 Methods

Consider the linear regression model (5.1). Our goal is to find the best linear fit to the

data in terms of prediction error. With this objective in mind, we propose a shrinkage

method based on penalized likelihood. In the linear regression setup the penalized

log-likelihood assumes the form

lpenalized(β, σ
2) = −n log σ − 1

2σ2
(y −Xβ)′(y −Xβ)−

∑
j

pλ(|βj|) . (5.4)
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We suggest a novel penalty function, TCS penalty,

pλ(|βj|) = log [Φ(−λ− µj) + Φ(−λ+ µj)] ,

where we define µj =
βj

SE(β̂0
j )

,. The motivation for this penalty function stems from

accounting for the testing of a regression coefficient to select it. Let us consider the

situation where we have only one predictor x,

yi = βxi + εi, i = 1, . . . , n ,

and we assume that the error variance σ2 is known. Our goal is to build a model

for y. We first test whether x has any predictive ability, that is, we test the null

hypothesis H0 : β = 0 against the alternative H1 : β 6= 0 on the basis of the test

statistic Z = β̂0

SE(β̂0)
= β̂0

σ
. We reject H0 if the observed Z is greater in magnitude than

some prespecified quantity λ. If H0 : β = 0 is accepted, then we predict y using ȳ. If

we reject the null, we need an estimate for β to be able to predict y. We construct a

conditional likelihood for β which takes into account the fact that the null has been

rejected. We note that Z ∼ N(µ, 1), where µ = β
σ
. The conditional likelihood for µ is

Lc(µ) =
pµ(z)

P (|Z| > λ)

=
φ(z − µ)

Φ(−λ− µ) + Φ(−λ+ µ)
. (5.5)
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We maximize Lc(µ) with respect to µ to derive µ̃, the conditional maximum likelihood

estimate of µ. µ̃ may be regarded as a penalized likelihood estimator with the TCS

penalty log [Φ(−λ− µ) + Φ(−λ+ µ)] since

µ̃ = arg maxµ Lc(µ)

= arg maxµ {log φ(z − µ)− log [Φ(−λ− µ) + Φ(−λ+ µ)]} .

µ̃ can be easily converted to an estimate for β using the one-to one correspondence

β̃ = µ̃σ. We can alternatively think of β̃ as

β̃ =


0 , accept H0

µ̃σ , reject H0

. (5.6)

Thus β̃ is a thresholding rule shrinking the estimate β̂0 to zero if we accept the null

hypothesis and shrinking it to some non-zero value if the null is rejected, the amount

of shrinkage being determined by λ. Larger the value of λ, the greater is the shrinkage.

The rule β̃ is not continuous in the observed data β̂0. If we believe continuity of a

penalty function to be a desirable property as advocated by Fan and Li (2001), we can

make the rule β̃ continuous in β̂0 by defining β̃ as

β̃ = µ̃σ . (5.7)
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Thus, if we accept the null hypothesis, instead of shrinking the estimate β̂0 all the

way to zero, the new rule shrinks it to a value very close to zero. With this new

definition, β̃ loses its natural motivation as a test coefficient shrinkage and is no longer

a thresholding rule, thus not engaging in variable selection anymore. We can consider

β̃ as a shrinkage estimator of β. We plot the TCS estimator β̃ as a function of β̂0 using

both the thresholded definition (5.6) and the non-thresholded (5.7) one.
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Figure 5.1: Plots of shrinkage estimators as function of data for (a) hard thresholding
rule, (b) ridge, (c) nonnegative garrote, (d) LASSO, (e) SCAD, (f) thresholded TCS,
and (g) non-thresholded TCS where X is orthonormal, λ = 2, and a=3.7
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We use the TCS penalty function log [Φ(−λ− µ) + Φ(−λ+ µ)] in the penalized

likelihood framework to obtain shrinkage estimates of regression coefficients. There is

a Bayesian interpretation to our proposed TCS penalty.

log φ(z − µ)− log [Φ(−λ− µ) + Φ(−λ+ µ)]

can be thought of as log posterior density for µ, where the prior for µ is p(µ) ∝

1
[Φ(−λ−µ)+Φ(−λ+µ)]

. This results in considering µ̃ as Bayes posterior mode. Substituting

the TCS penalty in (5.4) we get

lpenalized(β, σ
2) = −n log σ − 1

2σ2
(y −Xβ)′(y −Xβ)

−
∑
j

log [Φ(−λ− µj) + Φ(−λ+ µj)] . (5.8)

To obtain penalized maximum likelihood estimate of β for a given λ, we maximize

(5.8) with respect to (β, σ2). We choose λ to minimize an estimate of the expected

prediction error.

5.2.1 High-dimensional setup

We would like to apply our method in the high-dimensional case. For p > n setup, the

direct application of the penalized likelihood with the TCS penalty is not feasible since

the penalty term involves standard error of OLS estimates, and OLS estimates are not

defined in the high-dimensional situation. But we can apply our penalty if we consider
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a subgroup of variables less than the number of observations where we can find OLS

estimates. In particular, if we regress on a single predictor then we can obtain shrinkage

estimate for the regression coefficient by applying our penalty. Any standard software

would give us β̂0 and ŜE(β̂0) from a univariate regression. We define Z = β̂0

ŜE(β̂0)
.

Using the well-known asymptotic result β̂0−β
ŜE(β̂0)

d→ N(0, 1), we have the approximate

asymptotic result Z
.∼ N(µ, 1), where µ = β

ŜE(β̂0)
is not exactly a parameter. We can

implement either the thresholded or the non-thresholded version of TCS penalty. The

thresholded estimate would be

β̃ =


0 , |z| ≤ λ

µ̃ŜE(β̂0) , |z| > λ

,

where µ̃ = arg maxµ
φ(z−µ)

Φ(−λ−µ)+Φ(−λ+µ)
. The non-thresholded estimate would be β̃ =

µ̃ŜE(β̂0).

We develop an iterative procedure where we apply this univariate regression idea

with residuals as the response variable. This idea is similar to the coordinate-wise

descent algorithms (Friedman et al. 2007) for convex optimization problems. At each

step of the iterative procedure we start with an initial estimator, update it one regression

coefficient at a time, and then repeat this process with the updated estimate as the

initial value for the next iteration. Let β̃
(k−1)

be the initial estimator of β at the kth step

of the procedure. We use the subscript −j to signify that the jth column or component

is left out. For the jth predictor we regress y −X−jβ̃−j on xj, get β̃ by shrinking β̂0,

and replace β̃
(k−1)
j by β̃. We then move on to the next predictor. After we are finished
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with all the predictors we have β̃
(k)

. We then start the (k + 1)th step with β̃
(k)

as the

initial estimator. Getting β̃ from β̂0 is very fast and the computation of the residuals

is also quick because only one component gets updated each time which makes the

whole iterative procedure very efficient. For the first step we define β̃
(0)

as a vector of

β̃’s obtained by shrinking the marginal regression coefficients. For a particular step of

the iteration we have to loop through all the predictors, one predictor at a time, but

we need to decide on a order in which to loop through the variables. We enter the

predictors in decreasing order of magnitude of the initial estimator for that iteration.

We decided on this order so as to eliminate any random element in the process and

end up with the same estimate of β every time we run the procedure for a particular

dataset. Also, we need a stopping rule for the iterative procedure. Tseng (1988) has

established that coordinate-wise algorithms for convex optimization problems converge

to their optimal solution under separability of the penalty function. For TCS penalty,

the iterative procedure does not enjoy such convergence properties since the penalty

function is not convex. So we continue the iteration for 50 steps and then choose the β̃

which gives the minimum training error in the last 10 steps. This strategy is based on

the empirical observation that the training and the test errors have similar paths over

the iteration steps which led us to believe that training error can serve as a stopping

rule criterion.
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5.2.2 Numerical examples

We apply our method to a data on prostrate cancer widely used in the variable selection

literature. The data comes from a study conducted by Stamey et al. (1989). The

dependent variable is lpsa: level of prostate specific antigen in blood serum. The

relevant covariates are a number of clinical measures in men about to receive a radical

prostatectomy: lcavol (log cancer volume), lweight (log prostate weight), age, lbph (log

of the amount of benign prostatic hyperplasia), svi (seminal vesicle invasion), lcp (log

of capsular penetration), gleason (Gleason score), and pgg45 (percent of Gleason scores

4 or 5). We first standardize the predictors to have 0 mean and unit variance. We

randomly split the data into a training set of size 67 and a test set of size 30. We

applied OLS, LASSO, ridge, SCAD, and TCS to compare how each method performs

in finding the best linear fit to the data. Every method, other than OLS, involves a

tuning parameter which is chosen to minimize an estimate of the prediction error based

on 10-fold cross-validation. We follow a “one-standard error” rule, in which the least

complex model is chosen whose estimated prediction error is one standard deviation

above the minimum estimated prediction error. This conservative approach follows

from the thought that prediction error is estimated with some error. The final chosen

model is then applied to the test set to assess its prediction error.

We use a simulation study to compare TCS with OLS, ridge, LASSO, and SCAD

in the usual n > p situation. We simulated 100 datasets consisting of n observations

from the model

ynx1 = Xnxpβpx1 + εnx1 , ε ∼ Nn(0, σ2In) ,
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where β = (3, 1.5, 0, 0, 2, 0, 0, 0)′. The columns of X and ε are standard normal. The

correlation between xi and xj is ρ|i−j| with ρ = 0.5. This numerical example is used

in several publicationsFan and Li (2001); Tibshirani (1996); Zou and Hastie (2005) to

discuss relative merits of different variable selection and shrinkage procedures. First

we choose σ = 3 and n = 40. Then we reduce σ to 1 and finally increase the sample

size to 60. We use 5-fold cross-validation to choose the complexity parameter. The

mean squared error of each procedure is compared relative to that of OLS. We use the

median of the relative mean squared errors over 100 datasets (MRMSE) to compare

performance of different methods. We have also compared the performance of an oracle

estimator to OLS.

To judge the performance our proposed method in the p > n situation, we simulate

data from the same linear model but with fewer observations than predictors. We set

n = 100, p = 1000, and σ = 1. The non-zero β’s constitute a random sample from

normal distribution with mean zero and variance σ2
β. We examine the performance

of TCS, both the thresholded and the non-thresholded versions, and compare it with

LASSO and ridge regression over a range of simulation setups, generated by varying

the number of non-zero predictors p1 from 5 to 1000 and σβ from 0.1 to 2. LASSO

is known to perform well in situations where we have a few big predictors and ridge

usually performs better than LASSO in cases where we have many small predictors.

Thus, in our simulation setup, we cover the two extreme situations of having very

few big predictors and many small ones. Through our numerical exercise we plan to

verify the empirical observations about LASSO and ridge regression and also hope to
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understand in which cases our method works better than either of the two or in which

cases it fails to perform well. For each simulation setup we compute the estimated test

error for all three methods over 100 replications and judge their relative performance

on the basis of the average test error. For each replication we have a training set of

size n to fit the model over a range of values of the tuning parameter, a validation set

of size n on the basis of which we decide on the value of the tuning parameter, and a

test set of size 10,000 to estimate the test error of the fitted model. We standardize

the covariates and center the response variable before analysis.

5.3 Results

Table 5.1 shows the results for the prostate cancer data for different variable selection

and shrinkage methods. We see that ridge regression reduces OLS test error only by

a small margin whereas LASSO offers remarkable improvement over OLS. Test error

for SCAD is slightly lower than that for LASSO. Our proposed penalty has the lowest

test error. If we compare the standard errors of the test error estimates for different

methods, TCS penalty has the smallest.

Table 5.2 shows the results for the simulations in the n > p setup. The median of the

relative mean squared errors over 100 datasets (MRMSE) are reported in Table 5.2.

When the noise level is high and sample size is small, i.e., σ = 3 and n = 40, LASSO

performs the best but deteriorates quickly as signal to noise ratio increases, i.e., as

we decrease σ or increase n. When the noise level is reduced, the proposed shrinkage
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Table 5.1: Estimated coefficients and test error results for prostate data

Term OLS Ridge LASSO SCAD TCS

Intercept 2.480 2.469 2.479 2.484 2.478
lcavol 0.680 0.322 0.552 0.803 0.800

lweight 0.305 0.206 0.192 0.144 0.044
age -0.141 -0.004 0.000 -0.005 0.000

lbph 0.210 0.135 0.035 0.039 0.024
svi 0.305 0.190 0.115 0.001 0.019
lcp -0.288 0.061 0.002 -0.002 -0.004

gleason -0.021 0.048 0.000 0.000 0.005
pgg45 0.267 0.109 0.003 0.000 0.021

Test Error 0.586 0.548 0.486 0.482 0.461
Std. Error 0.184 0.179 0.154 0.135 0.133

Table 5.2: Results for simulated numerical example in n > p scenario

MRMSE(%)
Method n=40, σ = 3 n=40, σ = 1 n=60, σ = 1

Oracle 41.49 62.70 68.23
Ridge 89.59 100.00 100.00

LASSO 81.18 86.34 85.72
SCAD 95.12 72.41 73.63

TCS 85.89 70.55 72.88

method has the lowest MRMSE and it performs as well as the oracle procedure as signal

to noise ratio increases. Ridge regression performs extremely poorly. Performance of

SCAD is comparable to our penalty function for high or moderate signal to noise ratio

but for high noise level and small sample size our shrinkage method clearly outperforms

SCAD. Table 5.2 suggests that the proposed penalty performs remarkably well and is

indeed a worthy competitor.

Table 5.3 shows the results for TCS, LASSO, and ridge for the simulation in the
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p > n situation. The different columns of the table are for the number of non-zero

predictors and the rows signify different values of σβ. For each cell corresponding to

a particular number of non-zero predictors and a value of σβ we have recorded the

average test error over 100 datasets for TCS, thresholded and non-thresholded versions

of it, LASSO, and ridge in increasing order of magnitude. We have color-coded the

different methods so that it is easy to visualize which method does best in a particular

situation. The non-thresholded TCS is coded in cyan blue and the thresholded TCS in

navy blue. LASSO is in red, ridge in green.

If we are interested in a particular method we can trace the corresponding color

across the grid and its positions in various cells, in terms of first, second, third, or

fourth, gives us its overall performance. For example, if we compare the red (LASSO)

and the green (ridge) paths we observe that in situations where we have fewer non-zero

predictors than samples LASSO does better than ridge, while ridge does better than

LASSO when the number of non-zero predictors is greater than the sample size. In

the latter situation, LASSO is at a disadvantage since it cannot choose more predictors

than number of observations. In the case where there are equal number of non-zero

predictors and observations, LASSO and ridge are very close, but LASSO does better

when the non-zero coefficients are big whereas ridge outperforms LASSO when the

non-zero coefficients are small in magnitude.

The first two columns of the table shows that thresholded TCS (navy blue) has

the smallest test error among all the methods when β is truly sparse. But it performs

poorly in situations where we have more non-zero predictors than samples. If we
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compare it with LASSO we find that thresholded TCS has smaller average test error in

very sparse situations but LASSO takes over as we increase the number of non-zero β’s

till we saturate β with all non-zero components. The difference in the performances of

thresholded TCS and LASSO narrows down as we decrease σβ.

The non-thresholded TCS never is the best choice other than for the situations

where σβ = 0.1 and number of non-zero variables is 50 and 100. But from this table

we can definitely conclude that it is the best choice in terms of overall performance. It

is almost always the second choice. In sparse situations it is practically the same as

thresholded TCS and significantly better than either LASSO or ridge. When we have

50 non-zero predictors, LASSO usually has the smallest test error, but non-thresholded

TCS is only second to it and as the β’s become smaller in size it approaches LASSO

and finally takes over for σβ = 0.1. In the situation where there are more non-zero

predictors than number of observations and ridge outperforms any other method, non-

thresholded TCS is close behind and performs remarkably better than LASSO. It is only

in the case where we have the same number of non-zero β’s as the number of samples

that non-thresholded TCS is unable to beat any of the two most popular methods, but

the difference between them decreases as we make the β’s smaller in magnitude and

finally non-thresholded TCS outperforms both LASSO and ridge.

renewcommand21.5
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Table 5.3: Simulation results for p > n

Number of non-zero predictors
σβ 5 10 50 100 500 1000

2

1.11 1.19 117.50 335.24 1699.79 3379.85
1.12 1.22 136.87 335.88 1843.06 3628.62
1.50 2.24 147.90 352.74 1969.42 4019.68

17.16 32.69 168.85 383.04 2014.58 4032.96

1 1.17 1.37 31.23 84.32 425.84 845.80
1.19 1.41 36.39 84.85 460.77 906.27
1.44 2.02 39.64 88.17 494.16 1004.66
5.14 9.03 43.06 96.15 511.40 1006.20

0.5 1.21 1.50 9.24 22.09 107.34 212.31
1.22 1.52 10.53 22.14 115.30 227.68
1.33 1.70 11.12 22.85 123.88 252.74
2.12 3.09 11.62 24.82 127.01 255.05

0.1 1.05 1.09 1.47 1.93 5.39 9.59
1.05 1.10 1.49 1.96 5.60 10.08
1.06 1.10 1.50 1.98 6.00 11.06
1.15 1.19 1.53 1.99 6.04 11.12

5.4 Discussion

We have presented a model selection approach that can be used in the high-dimensional

setting. Our approach can either behave like ridge regression and perform only coeffi-

cient shrinkage or it can perform variable selection and coefficient shrinkage simultane-

ously, depending on the problem that we are interested in. The method is based on the

novel penalty that we propose: the TCS penalty. The motivation for this penalty comes

from the testing of hypothesis of regression coefficients for selecting the corresponding

predictors in the model. We have used this penalty in a penalized likelihood framework
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in the n > p situation. In the high-dimensional setup we have used it individually on

each predictor and developed an iterative procedure. We have shown via numerical

examples that our proposed method performs remarkably well in the n > p situation.

In the p > n scenario, TCS has lower prediction error than the popular competing ap-

proaches, such as LASSO or ridge, when the true coefficient vector is extremely sparse,

a situation where LASSO is known to dominate. When we have a large number of

non-zero predictors, TCS performs significantly better than LASSO and is very close

to ridge regression in terms of prediction error.

In the high-dimensional setting, we have judged the performance of the estimators

in terms of prediction error. But the number of β-coefficients wrongly predicted as non-

zero, better known as false-positives, or the number of β-coefficients wrongly predicted

as zero, known as false-negatives, can serve as criteria for judging the performance of

these methods. Obviously, ridge and the non-thresholded version of TCS select all the

candidate predictors and these measures will not mean much in their cases. But they

might be informative for comparing the performance of LASSO with the thresholded

TCS.

In the usual n > p setting we have used the TCS penalty in the penalized likelihood

framework and implemented coefficient shrinkage, but the penalty is not a threshold-

ing one and as a result does not participate in variable selection. We can implement

a thresholded version of this by investigating each predictor individually as we did in

the high-dimensional case. But we would have to deviate from the penalized likelihood
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framework where we optimize a single objective function over all the coefficients simul-

taneously. For future work, we plan to modify the TCS penalty to be a thresholding

rule.

In the high-dimensional case we describe an iterative procedure that examines each

predictor separately. So, the method for the high-dimensional model is not an automatic

extension of the method in the n > p situation. For future work in this area it would be

important to build an unified algorithm that can applied to both the situations. Also, it

would be help us understand the method better if we are able to compare it with other

high-dimensional model selection techniques in the regression setup. In most cases, it

is difficult to so in the absence of published code. We plan to develop a code that we

could distribute for everybody to use, That would also help us understand how our

method performs in various situations and how does it compare with other techniques.
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Appendix A

E(Z
∣∣|Z| > c) = K−1

[∫ −c
−∞

zφ(z − µ)dz +

∫ ∞
c

zφ(z − µ)dz

]
,

where K = Φ(−c+ µ) + Φ(−c− µ)

= µ+K−1

[∫ −c−µ
−∞

xφ(x)dx+

∫ ∞
c−µ

xφ(x)dx

]
, x = z − µ

= µ+K−1

[
(2π)−1

∫ 1
2

(c+µ)2

∞
e−ydy + (2π)−1

∫ ∞
1
2

(c−µ)2
e−ydy

]
,

y =
1

2
x2

= µ+K−1
[
(2π)−1e−

1
2

(c−µ)2 − (2π)−1e−
1
2

(c+µ)2
]

= µ+
φ(c− µ)− φ(c+ µ)

K
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Appendix B

B1. Eµ (Z| |Z1| > c) = µ +

 1

ρ

 φ(c−µ1)−φ(c+µ1)
Φ(−c−µ1)+Φ(−c+µ1)

Eµ (Z| |Z1| > c) =

 Eµ (Z1||Z1| > c)

Eµ (Z−1| |Z1| > c)

 .

Now,

Eµ (Z1||Z1| > c)

=

∫
z−1

∫
|z1|>c

z1Lc(µ)dz1dz−1

=

∫
|z1|>c

z1
φ(z1 − µ1)

Φ(−c− µ1) + Φ(−c+ µ1)
X∫

z−1

Np−1

(
z−1;µ−1 + ρ(z1 − µ1), R22 − ρρ′

)
dz−1dz1

=

∫
|z1|>c

z1
φ(z1 − µ1)

Φ(−c− µ1) + Φ(−c+ µ1)
dz1

= µ1 +
φ(c− µ1)− φ(c+ µ1)

Φ(−c− µ1) + Φ(−c+ µ1)
(2.2) ,
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and

Eµ (Z−1| |Z1| > c)

=

∫
z−1

∫
|z1|>c

z−1Lc(µ)dz1dz−1

=

∫
|z1|>c

φ(z1 − µ1)

Φ(−c− µ1) + Φ(−c+ µ1)
X∫

z−1

z−1Np−1

(
z−1;µ−1 + ρ(z1 − µ1), R22 − ρρ′

)
dz−1dz1

= µ−1 + ρ

∫
|z1|>c

(z1 − µ1)
φ(z1 − µ1)

Φ(−c− µ1) + Φ(−c+ µ1)
dz1

= µ−1 + ρ
φ(c− µ1)− φ(c+ µ1)

Φ(−c− µ1) + Φ(−c+ µ1)
.

Hence

Eµ (Z| |Z1| > c) = µ+

 1

ρ

 φ(c− µ1)− φ(c+ µ1)

Φ(−c− µ1) + Φ(−c+ µ1)
.
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B2. Proof of


µ̃

(2)
1 =

∫
µ1Lc(µ1)dµ1∫
Lc(µ1)dµ1

µ̃
(2)
−1 = z−1 − ρ(z1 − µ̃(2)

1 )

:

µ̃
(2)
1 =

∫
µ1Lc(µ)dµ∫
Lc(µ)dµ

=

∫
µ1
µ1

φ(z1−µ1)
Φ(−c−µ1)+Φ(−c+µ1)

∫
µ−1

Np−1

(
z−1;µ−1 + ρ(z1 − µ1), R22 − ρρ′

)
dµ−1dµ1∫

µ1

φ(z1−µ1)
Φ(−c−µ1)+Φ(−c+µ1)

∫
µ−1

Np−1

(
z−1;µ−1 + ρ(z1 − µ1), R22 − ρρ′

)
dµ−1dµ1

=

∫
µ1
µ1Lc(µ1)

∫
µ−1

Np−1

(
µ−1; z−1 − ρ(z1 − µ1), R22 − ρρ′

)
dµ−1dµ1∫

µ1
Lc(µ1)

∫
µ−1

Np−1

(
µ−1; z−1 − ρ(z1 − µ1), R22 − ρρ′

)
dµ−1dµ1

=

∫
µ1
µ1Lc(µ1)dµ1∫

µ1
Lc(µ1)dµ1

,

and

µ̃
(2)
−1 =

∫
µ−1Lc(µ)dµ∫
Lc(µ)dµ

=

∫
µ1
Lc(µ1)

∫
µ−1

µ−1Np−1

(
z−1;µ−1 + ρ(z1 − µ1), R22 − ρρ′

)
dµ−1dµ1∫

µ1
Lc(µ1)dµ1

=

∫
µ1
Lc(µ1)

∫
µ−1

µ−1Np−1

(
µ−1; z−1 − ρ(z1 − µ1), R22 − ρρ′

)
dµ−1dµ1∫

µ1
Lc(µ1)dµ1

= z−1 − ρ(z1 − µ̃(2)
1 ) .
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B3. Formulae for estimates of covariances between

estimates of effect sizes for disease phenotype and

binary secondary phenotype for prospective and ret-

rospective study designs:

For data collected prospectively, we fit separate logistic regressions for D and Y ,

logit P (D = 1 | g) = α1 + β1g

logit P (Y = 1 | g) = α2 + β2g .

We need ˆcov(β̂1, β̂2) to perform the bias correction. We begin with some basic results.

Let l(θ) be any function of θ and l̇(θ̂) = ∂
∂θ
l(θ) |θ=θ̂ = 0. Using Taylor expansion of l̇(θ̂)

about the true parameter value θ,

l̇(θ) + (θ̂ − θ)l̈(θ∗) = 0 , where |θ − θ∗| < |θ − θ̂| .

Hence,

(θ̂ − θ) = −
{
l̈(θ∗)

}−1

l̇(θ) ,

or approximately,

(θ̂ − θ) = −
{
l̈(θ)
}−1

l̇(θ) .
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If l(θ) =
∑

log f(datai|θ) then (θ̂ − θ) is asymptotically equivalent to V ar(θ̂)l̇(θ),

where V ar(θ̂) = I(θ)−1, I(θ) being the Fisher information matrix. Applying this for

θ̂1 = (α̂1, β̂1)′ and θ̂2 = (α̂2, β̂2)′ we get

cov((θ̂1 − θ1), (θ̂2 − θ2)) = V ar(θ̂1)cov(l̇1(θ1), l̇2(θ2))V ar(θ̂2) ,

l̇1(θ1) =


∑{

di − exp(α1+β1gi)
1+exp(α1+β1gi)

}
∑{

digi − gi exp(α1+β1gi)
1+exp(α1+β1gi)

}
, and l̇2(θ2) =


∑{

yi − exp(α2+β2gi)
1+exp(α2+β2gi)

}
∑{

yigi − gi exp(α2+β2gi)
1+exp(α2+β2gi)

}
.

Therefore cov(l̇1(θ1), l̇2(θ2)) =


∑
cov(di, yi)

∑
gicov(di, yi)∑

gicov(di, yi)
∑
g2
i cov(di, yi)

. We finally define

ˆcov(θ̂1, θ̂2) as,

ˆcov(θ̂1, θ̂2) = ˆV ar(θ̂1) ˆcov(l̇1(θ1), l̇2(θ2)) ˆV ar(θ̂2) ,

where ˆcov(l̇1(θ1), l̇2(θ2)) = ˆcov(d, y)

 n
∑
gi∑

gi
∑
g2
i

. Thus ˆcov(β̂1, β̂2) would be the

(2,2)th element of the matrix ˆcov(θ̂1, θ̂2).

For case-control data we fit logistic regression for D, but for Y we have to con-

sider the retrospective likelihood. Since we perform the selection based on the ef-

fect size estimate obtained from the logistic regression of D on g, for the bias cor-

rection calculations we need an estimate of the covariance between β̂1 obtained from

fitting logit P (D = 1 | g) = α1 + β1g and β̂2 obtained from fitting the retrospec-

tive log-likelihood l =
∑

logP (Y = yi, G = gi|D = di). Let ψ = (α1, β1)′ and
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η = (β1, α2, β2, α3, β3, p(g))′. From earlier theoretical discussion we can conclude that

cov(ψ̂, η̂) = V ar(ψ̂)cov(ġ(ψ), l̇(η))V ar(η̂) ,

where g(ψ) =
∑

logP (D = di|G = gi). Then

ˆcov(ψ̂, η̂) = ˆV ar(ψ̂) ˆcov(ġ(ψ), l̇(η)) ˆV ar(η̂) .

Since any standard statistical software would provide us with ˆV ar(ψ̂) and ˆV ar(η̂) we

only need to get ˆcov(ġ(ψ), l̇(η)). We use

ˆcov(ġ(ψ), l̇(η)) =
n∑
i=1

ġi(ψ̂)l̇i(η̂)′

. Finally, we get cov(β̂1, β̂2) as the (2,3)th element of the matrix ˆcov(ψ̂, η̂).
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B4. Proof of cov(β̂
(s)
G , β̂

(b)
GE) = 0:

The log-likelihood for the full-model is,

l =
n∑
i=1

li

=
n∑
i=1

logP (D = di|G = gi, E = ei)

=
n∑
i=1

{
di(β

(b)
0 + β

(b)
G gi + β

(b)
E ei + β

(b)
GEgiei)

− ln(1 + exp(β
(b)
0 + β

(b)
G gi + β

(b)
E ei + β

(b)
GEgiei))

}
=

n∑
i=1

{diri (θ; gi, ei)− ln(1 + exp(ri (θ; gi, ei))}

=
n∑
i=1

{diri − ln(1 + exp(ri)} .

θ̂
(b)

is obtained by solving the likelihood equation l̇(θ) = ∂
∂θ
l = 0. From multivariate

Taylor expansion of the likelihood equation about the true parameter value θ it follows

that (
θ̂

(b)
− θ(b)

)
= −l̈(θ)

−1
l̇(θ) , where

l̇(θ) =
n∑
i=1

l̇i(θ) , l̇i(θ) =



di − exp(ri)
1+exp(ri)

gidi − gi exp(ri)
1+exp(ri)

eidi − ei exp(ri)
1+exp(ri)

gieidi − giei exp(ri)
1+exp(ri)


, and
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−l̈(θ) = −
n∑
i=1

l̈i(θ) =
n∑
i=1



ci gici eici gieici

gici g2
i ci gieici g2

i eici

eici eigici e2
i ci gie

2
i ci

eigici eig
2
i ci gie

2
i ci g2

i e
2
i ci


, where ci =

exp(ri)

(1 + exp(ri))2
.

Hence,

(
β̂

(b)
GE − β

(b)
GE

)
=

1∣∣∣−l̈(θ)
∣∣∣
(
b41

n∑
i=1

(
di −

exp(ri)

1 + exp(ri)

)

+b42

n∑
i=1

(
gidi −

gi exp(ri)

1 + exp(ri)

)
+b43

n∑
i=1

(
eidi −

ei exp(ri)

1 + exp(ri)

)

+b44

n∑
i=1

(
gieidi −

giei exp(ri)

1 + exp(ri)

))
,

where b41, b42, b43, and b44 are the elements of the 4th row of the conjugate matrix of

−l̈(θ). The analytical expressions for b41, b42, b43, and b44 are as follows:

b41 =
∑

gc
∑

e2c
∑

g2ec+
∑

g2c
∑

ec
∑

ge2c+ (
∑

gec)
3

−
∑

gc
∑

gec
∑

ge2c−
∑

g2c
∑

e2c
∑

gec−
∑

gec
∑

ec
∑

g2ec

b42 =
∑

c
∑

gec
∑

ge2c+
∑

gc
∑

e2c
∑

gec+ (
∑

ec)2
∑

g2ec

−
∑

c
∑

e2c
∑

g2ec−
∑

gc
∑

ec
∑

ge2c−
∑

ec(
∑

gec)
2
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b43 =
∑

c
∑

gec
∑

g2ec+ (
∑

gc)
2∑

ge2c+
∑

ec
∑

g2c
∑

gec

−
∑

c
∑

g2c
∑

ge2c−
∑

gc
∑

gec
2
−
∑

ec
∑

gc
∑

g2ec

b44 =
∑

c
∑

g2c
∑

e2c+ 2
∑

gc
∑

gec
∑

ec−
∑

c(
∑

gec)
2

−(
∑

gc)
2∑

e2c− (
∑

ec)
2∑

g2c

β̂
(s)
G is the estimate of the disease risk effect obtained from fitting a logistic regression

of D on g. Hence β̂
(s)
G is defined as

θ̂
(s)

=

 β̂
(s)
0

β̂
(s)
G

 = arg max
n∑
i=1

{
di(β

(s)
0 + β

(s)
G gi)− ln(1 + exp(β

(s)
0 + β

(s)
G gi))

}
.

Hence,

(
θ̂

(s)
− θ(s)

)
=

1

a1h1 − b2
1

 h1 −b1

−b1 a1



∑{

di −
exp(β

(s)
0 +β

(s)
G gi)

1+exp(β
(s)
0 +β

(s)
G gi)

}
∑{

digi −
gi exp(β

(s)
0 +β

(s)
G gi)

1+exp(β
(s)
0 +β

(s)
G gi)

}
 ,
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where a1 =
∑ exp(β

(s)
0 +β

(s)
G gi)

1+exp(β
(s)
0 +β

(s)
G gi)

, b1 =
∑ gi exp(β

(s)
0 +β

(s)
G gi)

1+exp(β
(s)
0 +β

(s)
G gi)

, and h1 =
∑ g2i exp(β

(s)
0 +β

(s)
G gi)

1+exp(β
(s)
0 +β

(s)
G gi)

.

This gives us

(
β̂

(s)
G − β

(s)
G

)
=

a1

a1h1 − b2
1

∑{
digi −

gi exp(β
(s)
0 + β

(s)
G gi)

1 + exp(β
(s)
0 + β

(s)
G gi)

}

− b1

a1h1 − b2
1

∑{
di −

exp(β
(s)
0 + β

(s)
G gi)

1 + exp(β
(s)
0 + β

(s)
G gi)

}
.

⇒

cov(β̂
(s)
G , β̂

(b)
GE)

=
1∣∣∣−l̈(θ)
∣∣∣ 1

a1h1 − b2
1

cov
(∑

(b41 + b42gi + b43ei + b44giei) di,
∑

(a1gi − b1) di

)
∝ cov

(∑
w

(b)
i di,

∑
w

(s)
i di

)
,

where w
(b)
i = (b41 + b42gi + b43ei + b44giei) , w

(s)
i = (a1gi − b1)

=
∑

w
(b)
i w

(s)
i V ar(di)

=
∑

w
(b)
i w

(s)
i ci .

Now,

∑
w

(b)
i w

(s)
i ci = a1

(
b41

∑
gici + b42

∑
g2
i ci + b43

∑
gieici + b44

∑
g2
i eici

)
−b1

(
b41

∑
ci + b42

∑
gici + b43

∑
eici + b44

∑
gieici

)
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It can be shown that

b41

∑
gici + b42

∑
g2
i ci + b43

∑
gieici + b44

∑
g2
i eici = 0 ,

and

b41

∑
ci + b42

∑
gici + b43

∑
eici + b44

∑
gieici = 0 .

This leads to the result cov(β̂
(s)
G , β̂

(b)
GE) = 0.
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