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ABSTRACT
Natalia A. Gouskova: Analysis of Complex Time-to-Event Data

(Under the direction of Jason P. Fine)

The number needed to treat (NNT) is a tool often used in clinical settings to illustrate

the effect of a treatment. It has been widely adopted in the communication of risks to both

clinicians and non-clinicians. We introduced a definition of the NNT for time to event data

with competing risks using the cumulative incidence function and suggest non-parametric

and semi-parametric inferential methods for right censored time to event data in presence of

competing risks.

In HIV-1 clinical trials the interest is often to compare how well treatments suppress the

HIV-1 RNA viral load. We propose an endpoint based on the probability of the viral load

being suppressed, and suggest that treatment differences be summarized using the mean

restricted time a patient spends in the state of viral suppression.

In the standard analysis of competing risks data, proportional hazards models for cause-

specific hazards are fit using the same time scale for all causes of failure. We propose

estimating cumulative incidence function by fitting regression models for the cause-specific

hazard functions using different time scales for each cause. We establish consistency and

asymptotic normality of the proposed estimator and assess its performance in simulations.

The method is illustrated with stage III colon cancer data obtained from the Surveillance,

Epidemiology, and End Results (SEER) program of National Cancer Institute.

In competing risks setup, sometimes it is not possible to obtain information about the

event type. We suggest a non-parametric method in which the probabilities of event types

are first estimated using local polynomial regression, and then these estimates are used to

estimate the cause-specific cumulative hazards and cumulative incidence functions. The

method is illustrated using the data on infections in patients from the United States Cystic

Fibrosis Foundation Patient Registry.
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Chapter 1. Literature Review

1.1 Introduction

The intent of this dissertation proposal is to address various problems related to analysis

of complex time-to-event data, such as competing risks data and multi-state models. The

proposed dissertation will consist of 4 parts. The first part provides a simple extension

of the definition of the number needed to treat to competing risks data. The second part

defines a new alternative endpoint for clinical trials where the outcome is the time spent by

a patient in some transient state, such as viral suppression in HIV clinical trials. The third

part proposes an estimator for cumulative incidence functions under the competing risks

setup, when a natural choice of time scales is different for different types of event. The final

fourth part is dedicated to estimation of cumulative incidence functions under competing

risks setup, when the information on the cause of failure is possibly missing.

1.2 Overview of Competing Risks Data

The difference between the classic time to event and competing risks settings is that instead

of considering only one type of event, we now recognize that a patient can experience events

of several types. One of them is the event of interest, but other events can happen too and

they can affect our event of interest. An example of such data can be the tamoxifen trial

described by Cummings et al (Cummings et al., 1993). In this trial data, we observe events

of two types, a relapse and a death prior to relapse, with a relapse being the event of interest.

Death before relapsing precludes a relapse from happening, and thus death prior to relapse

is said to be a competing risk with respect to relapse.

It is also possible that events of different types do not exclude one another, but can

happen one after another to the same patient. One of an examples of such events could be

suppression and then subsequent rebound of the HIV-1 RNA viral load. These are distinct

events of two different types and both of them can happen to the same patient. In this

particular example, the event of suppression always occurs first, and the event of rebound

always follows it. We can view this series of events as various states that the patient is

going through, with the initial state being the state prior to the occurrence of the first event

(suppression), the next state being the stage after the event of suppression but prior to the

event of rebound, and the final state being the state after the event of rebound has occurred.

A very clear classification of possible relationships between events was given by Pepe in

(Pepe, 1991).

1



Though the problem of dealing with competing risks data is a relatively old one, it

is fair to say that there is no consensus about which function to choose to describe the

probability of the event of interest. The two approaches most frequently used for this

purpose are the cumulative incidence estimator and the complement of the Kaplan-Meier

estimator (Kaplan and Meier, 1958). In our competing risks illustration above, the cu-

mulative incidence function for relapse is Frelapse(t) = Pr(T ≤ t ∧ event type = relapse)

and it is the probability of relapse in the existing conditions with competing risks present

(Kalbfleisch and Prentice, 1980). The Kaplan-Meier estimator Ŝrelapse(t) estimates the func-

tion Srelapse(t) = exp
{
−
∫ t

0
λrelapse(u)du

}
, where λrelapse(t) is the cause-specific hazard

function for relapse, formally defined below. Failures due to competing risks are treated

by this estimator as censoring. In our example, a patient who died prior to experiencing a

relapse would be considered censored.

Using the complement of the Kaplan-Meier estimator 1− Ŝ(t) still remains arguably the

most common way to quantify the probability of the event of interest, even though there is

much debate in literature about when it is appropriate. Some discussion on this topic and

further references can be found in (Pepe and Mori, 1993) and (Gooley et al., 1999). It could

be interpreted as the probability of the event of interest in a hypothetical situation when all

the competing risks are removed, assuming that the events are independent (Tsiatis, 1975).

That means that removing the mechanism which causes deaths prior to relapse would not

affect the mechanism which causes relapse and hence the probability of relapse.

In general, 1 − Ŝrelapse(t) is larger than the probability of the event of interest in the

settings when all competing risks operate (Gooley et al., 1999). The reason why the results

will be biased is that the Kaplan-Meier estimator treats patients who failed from competing

causes the same way it treats censored, even though patients who were censored and those

who failed from competing risks are very different on one particular respect. Patients who

were censored can still experience the event of interest after being censored. In our example,

if a patient was censored they still can experience a relapse in future, and we do take this

possibility into account when we compute the probability of relapse. Patients who failed from

a competing risk, however, cannot experience the event of interest any longer. A patient

who died prior to relapse will never have a relapse. When we treat them the same way as

we treat those who were censored and assume that they too have some non-zero probability

to experience a relapse in future, we end up overestimating the probability of relapse when

a competing risk of death prior to relapse is present. A formal yet very understandable

mathematical explanation of this fact is given by Gooley in (Gooley et al., 1999).

Let’s introduce some notation and formally describe the competing risks setup. Let ε
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denote the type of event, ε ∈ {1, ..., J}, T the time of event, and C – the censoring time.

Also, let Z be a p × 1 vector covariates, possibly time-dependent. The distribution of time

to the event of interest may depend on the covariates, so we may be interested in being able

to adjust for covariate values during estimation.

Suppose we have N patients, indexed by i = 1, . . . , N . The data we observe for the

i-th patient is (Xi, δi, εi,Zi), where Xi = min(Ti, Ci), δi = I(Xi = Ti), and εi – the event

type. The random variable εi is not observed if δi = 0. We assume that (Xi, δi, εi,Zi),, are

independent and identically distributed, and that the censoring mechanism is independent

of the mechanisms that cause events, conditionally on covariates values in Z.

We define the cumulative incidence function, or subdistribution, for an event of type j,

j = 1, ..., J , as Fj(t;Z) = Pr(T ≤ t, ε = j | Z), which is the probability an event of type j

occurs by the time t.

There are two types of hazard functions which we can use to describe the competing risks

data. One is the cause-specific hazards, defined as:

λ̃j(t;Z) = lim
∆t→0

1

∆t
Pr{t ≤ T ≤ t+ ∆t, ε = j | T ≥ t,Z}

(1.1)

This function can be viewed as an instantaneous rate of event type j given a patient being

at risk, with ‘being at risk’ defined as not having experienced any event by the time t.

A subdistributional hazard function λj(t;Z) for the event of type j is

λj(t;Z) = lim
∆t→0

1

∆t
Pr{t ≤ T ≤ t+ ∆t, ε = j | T ≥ t ∨ (T ≤ t ∧ ε 6= j),Z}

=
d
dt
Fj(t;Z)

1− Fj(t;Z)

Note that for the purpose of this second definition ‘being at risk’ defined as not having

experienced an event of type j. Thus a patient who has experienced a competing event of

type 2 still is considered to be at risk for an event of type 1.

The cumulative incidence function can be expressed via cause-specific hazard functions

as:

Fj(t; z0) =

t∫
0

S(u)λ̃j(t;Z))du}.

where S(u) is the overall survival function. Alternatively, it can be expressed via subdistri-
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butional hazard function as

Fj(t; z0) = 1− exp{−
t∫

0

λj(u; z0)du}.

1.2.1 Non-Parametric Methods

Let t1 ≤ t2 ≤ . . . ≤ tn be the ordered observed times when an event of any type occurred.

Let dij be the number of events of type j that occurred at time ti. Let yi be the number

of patients who are still at risk just prior to time ti, that is those who haven’t experienced

any event and haven’t been censored yet. Let S(t) = Pr(T ≥ t) denote the overall survival

function, which is the probability of surviving to the time t without experiencing an event

of any type. The non-parametric estimate of the cumulative incidence function is given by

the Aalen-Johansen estimator (Aalen and Johansen, 1978):

F̂1(t) =
∑
ti≤t

Ŝ(ti−)
di1
yi

where Ŝ(·) is the Kaplan-Meier estimator of the overall survival function.

There exist a number of estimators for the variance of F̂1(t). A comparison of their

empirical performance in small samples is given in (Braun and Yuan, 2007). The following

variance estimator is obtained by simplifying the Gray’s estimator (Gray, 1988) for the case

of competing events of two types:

V̂ ar(F̂1(t)) =
∑
ti≤t

{F̂1(t)− F̂1(ti)− Ŝ(ti)}2di1
y2
i

+
∑
ti≤t

{F̂1(t)− F̂1(ti)}2di2
y2
i

.

1.2.2 Semi-Parametric Methods

When it is desirable to look at the effect of covariates on the treatment effect, a semi-

parametric approach can be used. One can model either the cause-specific hazard functions,

or subdistributional hazards.

Cause-specific hazards can be estimated by fitting the standard Cox model to the time

of the event of interest and treating the competing events as censored observations.
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Fine and Gray in (Fine and Gray, 1999) developed the proportional subdistributional

hazards model which states that

λ1(t;Z) = λ10(t) exp{ZT (t)β0}

where λ10(t) is the baseline subdistributional hazard function and β0 is a p × 1 parameter

vector. If the covariate vector Z(t) = Z does not depend on time, the subdistributional

hazards are proportional for all values of t. In the general case, we allow for time × covariate

interactions, and hence for time-dependent covariates. The cumulative incidence F1(t;Z) can

then be expressed as

F1(t;Z) = 1− exp
[
−

t∫
0

λ10(s) exp{ZT (s)β0}ds
]
,

from which one can estimate the parameter vector β̂ using the modified score function from

the partial likelihood for F1(t;Z) (Fine and Gray, 1999), and the baseline integrated hazard

for subdistribution Λ̂10(t) by a modification of Breslow’s estimator (Breslow, 1972).

For a given value of a covariate vector Z = z0 we can compute the integrated hazard

Λ̂1(t; z0) =

t∫
0

exp{z0(s)β̂}dΛ̂10(s)

and the predicted cumulative incidence function as

F̂1(t; z0) = 1− exp{−Λ̂1(t; z0)}.

1.3 Number Needed to Treat for Time To Event Data with Competing Risks

The number of patients whose treatment, on average, increases favourable patient outcomes

by exactly one, is usually referred to as the “number needed to treat,” or NNT. Introduced by

Laupacis et al. (Laupacis et al., 1988) in 1988 for controlled clinical trials where the patient-

level outcome is binary (event or no event, with an event assumed everywhere in further

text to be a ‘bad’ outcome, such as death or a myocardial infarction), the NNT has become

popular as a convenient statistic to communicate treatment benefit. If the groups in a two-

group parallel-arm trial are labeled as Treatment (Trt) and Control (Ctl), with respective

probabilities πTrt, πCtl for an such an event, then NNT is the group size with one fewer
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expected event under Treatment than Control, defined formally by NNT (πCtl − πTrt) = 1

or, equivalently,

NNT =
1

πCtl − πTrt
.

The denominator is known to epidemiologists as the risk difference (RD), absolute risk (AR),

or absolute risk reduction (ARR) (Last, 1988; Cook and Sackett, 1995); succinctly, we write

NNT = ARR−1. The more efficient a treatment, the greater the ARR and the smaller the

NNT. This simplicity of interpretation facilitates use of NNT in communicating the practical

impact of a treatment effect on a scale more readily accessible to health care providers and

patients than either absolute or relative risk. The clinical trial-based definition of NNT may

be extended to communicate the potential benefits of a preventive behavior or public policy

change, by replacing control and treatment groups in the clinical trial setting with higher and

lower levels of a modifiable exposure in a field trial or observational study. Although caution

is clearly required when interpreting NNT from non-experimental data, in such contexts

ARR−1 may be interpreted as the “number needed to prevent” if the exposure is assumed

to be causal.

To estimate the NNT, one needs respective estimates π̂Trt, π̂Ctl of πTrt, πCtl, from which

a point estimate ÂRR = (π̂Ctl − π̂Trt) of ARR immediately follows, and a 100(1 − α)%

confidence interval (ARRL, ARRU) may be obtained using a number of methods (Connor

and Imrey, 2005). From these we obtain corresponding point estimate N̂NT = ÂRR
−1

and

100(1− α)% confidence interval (NNTL, NNTU) = (ARR−1
U , ARR−1

L ) for the NNT.

Some technical challenges in reporting and interpreting the NNT and its confidence in-

terval arise when the difference in the event rates between the groups is not statistically

significant. In this case the confidence interval for the absolute risk reduction contains zero

and its lower limit is negative. Therefore, the confidence interval for the NNT will contain

infinity and have a form (−∞;−a] ∪ [b;∞) for some a > 0, b > 0. The interpretation of

the negative part of this confidence interval may be the number of patients who need to be

treated in order to observe one event more in the treatment group compared to the control

group, which is sometimes referred to as “the number needed to harm” (or NNH), which nat-

urally arises when evaluating side effects of therapies (Altman, 1998). McQuay and Moore

in (McQuay and Moore, 1997) suggest that in such cases only the point estimate without the

confidence interval be reported. However, we will report such confidence intervals, because

they can convey information useful for decision-making in clinical settings.

The concepts above may be generalized from Bernoulli outcomes by considering the NNT

as a function NNT(t) of observation time t. When events occur with low constant hazards

(equivalently, incidence density rates) λTrt, λCtl relative to the period of observation, the
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person-time denominated constant NNT ∗ = (λCtl − λTrt)−1 can be used as an underlying

and simpler summary of treatment impact than the full NNT function. Under these circum-

stances, the survival functions are declining exponentials, with their complements πCtl, πTrt

thus respectively well-approximated for sufficiently low t by tλCtl, tλTrt; this yields the sim-

ple approximation NNT (t) ∼ NNT ∗/t. The hazards may be estimated in each group as

the ratio of total events to total person-time monitored. Confidence intervals for NNT ∗

may be formed based on the Poisson distribution if patients and time are both assumed

homogeneous, and on the negative binomial or other model to take patient heterogeneity

into account.

However, when hazard rates vary during the intervals in which patients are observed, the

ARR computed from the average incidence densities and the NNT taken as its inverse do

not accurately describe the trajectory of treatment or exposure impact over time, and may

be seriously misleading. For such time-to-event studies, which thus require survival analysis,

Altman and Andersen (Altman and Andersen, 1999) have defined the NNT in the clinical

trial context as a function of time:

NNT (t) =
1

STrt(t)− SCtl(t)

where STrt(t), SCtl(t) are the probabilities to survive without an event up to time t in the

treatment and control groups respectively. Often only a few given points in time would be of

practical interest. Altman and Andersen (Altman and Andersen, 1999) suggested methods

to obtain estimates and confidence intervals for the NNT(t) from published results of clinical

trials with time to event data when either non-parametric or semi-parametric analysis had

been performed. Obviously, if raw data are available, NNT(t) can be estimated easily using

the same methods.

There is little guidance in the literature on defining and computing NNT from time to

event data with competing risks, even though such a definition would be very useful. Koller

et al. (Koller et al., 2012) found problematic inattention to competing risk issues in 35

(70%) of 50 follow-up studies in patient populations susceptible to multiple risks reported

in high-impact medical journals from late 2007 to late 2010. The tamoxifen clinical trial

E1178 described in detail in (Cummings et al., 1993) and (Fine and Gray, 1999) exemplifies

studies for which a definition of NNT in a competing risk setting would be useful. The

goal of the trial was to establish efficacy of tamoxifen in reducing the probability of relapse

when administered as a post-operative treatment to breast cancer patients. Besides relapse

and relapse-related deaths, patients in the trial experienced deaths without relapse, such
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as death from myocardial infarction, complications of diabetes, other types of cancer etc.,

which makes tools developed for a competing risks setup most appropriate for analysis of

the trial data. However, if one wished to quantify the benefits of tamoxifen demonstrated by

this trial using NNT(t), one would face the problem that the NNT(t) defined for standard

time to event settings may not be appropriate and that no definition of NNT(t) for data

with competing risks exists. Chapter 2 of this dissertation suggests such a definition.

1.4 Endpoints for HIV Trials Measuring Viral Suppression and Multi-State

Models

A well-defined outcome is fundamental to the analysis of time to event data. However,

in some settings a clear definition of the event of interest is a challenge. An example of

such settings are prospective studies, including recent clinical trials evaluating the difference

between treatments or exposures which are intended to suppress the level of HIV-1 RNA

viral load (henceforth viral load) in people infected with HIV.

Infection with HIV is monitored by the number of copies of viral load present in circulating

plasma (Mellors et al., 1996). The level and change in viral load is an important indicator of

HIV disease progression. HIV research relies heavily on viral load levels for evaluating the

comparative efficacy and effectiveness of competing therapy regimens, and estimating the

prognosis of HIV-infected individuals (Egger et al., 2002; Cole et al., 2007; Riddler et al.,

2008). The relative performance of HIV treatments depends on the combination of how

quickly and to what extent the treatment suppresses viral load, and how well a treatment

maintains a suppressed viral load.

There is a history, when comparing HIV treatments, of constructing a single composite

event which combines all of the above aspects. For example, Gulick (Gulick et al., 2004;

Gulick et al., 2006) defined virologic failure as the first of two consecutive viral load as-

sessments greater than 200 copies/ml at or after week 16 from randomization. Using this

definition, patients who never suppress virus are defined as failures at 16 weeks. Moreover,

the dynamics of suppression and rebound before 16 weeks are hidden. A more recent example

of such a definition can be found in the paper by Riddler et al (Riddler et al., 2008) describing

the ACTG A5142 trial. The primary endpoint of the trial was chosen to be a virologic failure

defined as ”rebound or lack of suppression by m weeks”. While such endpoints facilitate the

application of standard methodology for right censored time to event data in an intent to

treat analysis, there are practical concerns which arise from the event definition. First, the

interpretation of the composite event is complicated and may be difficult to communicate

to clinicians. Second, when including ”lack of suppression by m weeks” in the definition, we
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arbitrarily (by the choice of m) redefine the time of event, which can have a notable impact

on results, as evidenced in the simulation studies further in this document, in Chapter 3,

Section 3.3.

To avoid the above mentioned problems, we suggest the use of a different endpoint

and different analysis methods based on non-parametric methods for multi-state models

developed by Pepe (Pepe, 1991). The methods have been developed for the situation when

each patient can experience not one but several distinct events of types j, j = 1, ..., J . The

event of each type can be experienced only once. The data from each patient has a form of

(Tji), where Tji is the time of event j for the i−th patient. For each of the event types we can

define estimators of individual cumulative incidence functions F̂j(t). For a smooth function

g of several such estimators, Pepe derives the asymptotic properties of the resulting quantity

and proposes a two-sample weighted test statistic for it. Using our illustration from the

Section 1.2, if the event of type 1 is the suppression of the viral load, and the event of type 2

is the rebound of the viral load, with F1(t), F2(t) being their cumulative incidence functions,

then we can define the probability that a patient’s viral load is suppressed at a given time t

as Prsuppr(t) = F1(t)−F2(t) = g(F1(t), F2(t)), with function g being g(a, b) = a− b. We can

obtain the standard error ŜE(P̂ rsuppr(t)), and, further, we can construct a test statistic, if

we have two groups of patients and wish to compare the probability of a patient’s viral load

being suppressed between these two groups.

1.5 On the Choice of Time Scales in Competing Risks Predictions

It is well recognized that in the presence of competing risks, standard survival analysis

methods for estimation of cause-specific failure probabilities may not be valid, with the

Kaplan-Meier estimator and predicted failure probabilities from the proportional hazards

regression model corresponding instead to pseudo-survival functions derived from the cause-

specific hazard functions (Prentice et al., 1978). To estimate the cumulative incidence of a

particular event type requires synthesizing the cause-specific hazard for the event of interest

with those for the competing events. Non-parametric and semi-parametric approaches to

estimation via the cause specific hazards have been studied (Aalen and Johansen, 1978; Lin,

1997; Cheng et al., 1998; Shen and Cheng, 1999; Scheike and Zhang, 2003), with a definitive

treatment of the theoretical issues provided by martingale arguments (Andersen et al., 1993).

Predicted cumulative incidence functions for event of type j can be computed as described
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in Cheng et al (Cheng et al., 1998) :

F̂j(t|z0)) =

t∫
0

Ŝ(u|z0)dΛ̂j(u|z0)

where

Ŝ(u|z0) = exp{−
J∑
j=1

Λ̂j(u|z0)},

Λ̂j(u|z0) = Λ̂0j(u)exp(β̂jz0),

Λ̂0j(u) =
n∑
i=1

δjiI(Xi ≤ u)
{ n∑
k=1

I(Xi ≤ Xk)exp(βjZk)
}−1

,

where δji = δiI(εi = j), and β̂j are regression parameter estimates from the Cox model.

In the regression analyses of the cause-specific hazard functions, it seems natural to model

death from disease on the time since diagnosis time scale and death from other causes, which

may occur both before and after disease diagnosis, on the age time scale. The choice of a

time scale has been discussed in literature for modelling data with only one cause of failure.

Korn et al (Korn et al., 1997), using the NHANES Followup Study as an example, argued

that for all-cause mortality a proper choice of time scale should be age rather than time

on study. They gave two conditions under which using time on study as the time scale

would still yield correct or close to correct estimates of regression parameters, even if the

true model was proportional on the age scale. The first condition was if the true baseline

hazard function was exponential, and the second was that age at enrolment to the study and

covariates of interest were independent. The authors mention that when the true time scale

is age and the baseline hazard function on the age time scale follows a Gompertz distribution

(Gompertz, 1825), then the proportional hazards model holds on both time scales. Thiebaut

and Benichou (Thiebaut and Benichou, 2004) confirmed these conclusions in simulations

and generated an example when both of the above conditions are violated and a choice of

a wrong time scale lead to substantial bias. The topic was further studied via simulations

by Pencina et al (Pencina et al., 2007) who also noted the importance of accounting for left

truncation when using age as a time scale in a situation when patients were observed only

after the time of their enrolment to the study.
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1.6 Competing Risks Data with Missing Cause of Failure

As it was described above in Section 1.2, an essential component of competing risks data is

the cause of each observed failure, denoted by εi. However, in practice the cause of failure

is often unknown, either at all or at the moment of data analysis. For example, in an on-

going cohort study with follow-up, the fact and date of death may be known from follow-up

calls or from obituaries, but the properly adjudicated cause of death for some patients may

become available with a significant lag time and thus be missing at the time of data analysis.

Alternatively, if an autopsy was not performed, it may be not possible to classify a death

as a cancer-related or a non-cancer death. There have been suggested numerous methods to

analyse competing risks data with possible missing cause of failure.

In 1982 Dinse (Dinse, 1982) provided a classification of incomplete competing risks data,

which along with the standard fully observed and fully censored observations allowed two

kinds of partially complete observations, with either observed time of failure and missing

type of failure, or with an observed type but censored time of failure. To analyse such

data, he suggested a non-parametric maximum likelihood estimator (NPMLE) obtained by

an EM algorithm, which reduced to a closed-form estimator in case the data contained no

observations with observed failure type and censored failure time. The estimated quantities

were the overall survival function and the time-dependent probabilities πj(tk) of having an

failure of a type j, given the fact of the failure in the time interval [tk, tk+1) (the time in

his analysis was discrete and thus there were more than one event in each interval). The

proposed estimator for πj(tk) was a proportion of failures of type j among all failures with

known type that had occurred during the time interval and did not involve any smoothing

which made the estimates ”extremely erratic”, though, interestingly, smoothing was used

for display purposes in figures. The missingnes of the cause of failure was assumed to be

independent of the type of failure. In a subsequent paper (Dinse, 1986), Dinse suggested

another EM algorithm, for the case when time of event is always observed but the probability

of the type of failure being observed depends on the type of failure.

Racine-Poon and Hoel (Racine-Poon and Hoel, 1984) considered non-parametric estima-

tion of net survival functions Sj(t) = exp(−
t∫

0

λj(u)du) for data with exactly two mutually

exclusive causes of failure where the cause of failure was determined only with some degree of

certainty. Unlike in the standard competing risks setup, their data consisted of pairs (Ti, Pi)

where Ti is the time of failure as usual, and Pi is the probability that the failure of subject

i occurred due to cause 1. Such probability was provided by an expert for each subject.

The hazard function for cause 1 is estimated as λ̂1(t) = π̂1(t)λ̂(t) where λ̂(t) is the usual
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estimator of the overall hazard function, and π̂1(Ti) was taken to be equal to Pi.

Miyakawa (Miyakawa, 1984) studied a fully parametric exponential model and a non-

parametric model, both under the MCAR assumption for the missing type of failure. For

the non-parametric case, he suggested yet another version of an EM algorithm. At each

estimation step, the probabilities of failure of type 1 were expressed as λ̂1(t)/[λ̂1(t) + λ̂2(t)]

where λ̂j(t), j = 1, 2, were obtained as a simplest local constant smoothers from the Kaplan-

Meyer-type estimates of the net survival functions.

Lo (Lo, 1991) regarded a competing cause of failure as censoring, with the censoring

indicator possibly missing, and suggested two NPMLE estimators for the case when the

probability of the censoring indicator to be observed was the same for all subjects and con-

stant over time. The first one used all observations, and the contribution to the likelihood

from the observations with the missing censoring indicator was weighted by the proportion

of uncensored events π(t). The estimates π̂(t) could be viewed as being smoothed over the

tail of the distribution of t. The second estimator introduced a simplest inverse probabil-

ity weighting scheme, where only the fully observed data was used in the Kaplan-Meyer

estimator, but contributions of all complete case observations were weighted by the inverse

probability of the censoring indicator being observed (which was assumed constant).

The topic has been extensively explored since. Goetghebeur and Ryan (Goetghebeur and

Ryan, 1990) proposed a modification of the logrank test for competing risks with missing

cause of failure, which was further developed by Dewanji (Dewanji, 1992). Semi-parametric

estimators were developed by Gijbels, Lin, and Ying (Gijbels et al., 1993), Goetghebeur and

Ryan in the 1995 paper (Goetghebeur and Ryan, 1995), Gao and Tsiatis (Gao and Tsiatis,

2005). Lu and Tsiatis (Lu and Tsiatis, 2001) suggested using multiple imputations for the

missing event type, based on a parametric model for the conditional probability of the event

of interest given that an event of any type has occurred. The problem of time-to-event data

without competing risks but with possibly missing censoring indicator was further studied

by McKeague and Subramanian (McKeague and Subramanian, 1998). Yet another version

of the problem was addressed by Craiu and Duchesne (Craiu and Duchesne, 2004) and Craiu

and Reiser (Craiu and Reiser, 2006). They considered competing risks data with masked

event types, that is for some subjects the event type could be determined only up to some

subset of all possible event types.

Most recently, for a somewhat similar problem of recurrent events with missing event

type, Lin et al (Lin et al., 2013) have developed a non-parametric estimator which uses

local polynomial regression to estimate the conditional probability of the event of interest.

This local estimate is then used to weight the contribution to the mean event rate from the
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events with missing type. A similar approach can be applied to the competing risks setup

for estimating the cause-specific hazards.
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Chapter 2. Number Needed to Treat for Time To Event Data with Competing

Risks

2.1 Introduction

The intent of this chapter is to propose methods to define the number needed to treat for

time to event data in presence of competing risks and to estimate it from the raw data using

both non-parametric and semi-parametric approaches. This is done in Section 2.2. The

methods are illustrated on the breast cancer data in Section 2.3 with some practical remarks

concluding in Section 2.4. The work has been published (Gouskova et al., 2014b).

2.2 Methods

We will use the notation introduced in the Chapter 1 above. For purposes of this chapter

it is sufficient to consider events of only two types, 1 and 2, with type 1 the event of

primary interest and type 2 the competing risk. If more than one competing risk is present,

then we can combine them all into one type of event without loss of generality. The non-

parametric and semi-parametric methods discussed below are not sensitive to the grouping

of the competing events.

Let us denote the cumulative incidence function for an event of type j for j = 1, 2 as

Fj(t;Z) = Pr(T ≤ t, ε = j | Z). In the sequel, we will let superscripts Trt and Ctl denote

the membership in the treatment and control groups respectively.

We define the NNT with respect to the event of type 1 as follows:

NNT1(t;Z) =
1

ARR1(t;Z)

where

ARR1(t;Z) = FCtl
1 (t;Z)− F Trt

1 (t;Z)

is the absolute risk reduction from the subdistribution.

To obtain a point estimate of NNT1(t;Z) we need estimates of FCtl
1 (t;Z) and F Trt

1 (t;Z),

which can be obtained by using various methods. We will discuss the details of using non-

parametric and semi-parametric methods in the corresponding sections below.

The confidence intervals for the NNT can be obtained by transforming the confidence

intervals for the ARR. As we have discussed earlier, when the confidence interval for the

ARR includes zero, the confidence interval for the NNT should include infinity and consist

of two parts. We will report such confidence intervals, because they can convey informa-
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tion useful for decision-making in clinical settings. Estimating the confidence interval for

the NNT is therefore a two-stage process. First, we estimate the ARR1(t;Z), obtain its

confidence interval and determine if the ARR is significantly greater than zero. Second,

if the ARR is significantly greater than zero, then the confidence interval for the NNT is

[1/ARRU(t); 1/ARRL(t)], where 0 < 1/ARRU(t) < 1/ARRL(t). If the ARR is not signifi-

cantly greater than zero, then we report two confidence intervals, [1/ARRU(t),∞) for the

NNT and [−1/ARRL(t),∞) for the NNH, where ARRU(t) > 0 and ARRL(t) < 0.

Under the non-parametric approach, the cumulative incidence function is estimated sep-

arately for the treatment and the control groups. Since we assume that all patients are

independent, the estimates of the cumulative incidence functions in the treatment and the

control groups are independent and the covariance between them is equal to zero. Hence the

variance of the ÂRR1(t) is

V ar(ÂRR1(t)) = V ar(F̂Ctl
1 (t)) + V ar(F̂ Trt

1 (t))

The 95% confidence interval for ÂRR1(t) is given by [ARRL(t);ARRU(t)] where

ARRL(t) = ÂRR1(t)−1.96·
√

(V̂ ar(ÂRR1(t)) and ARRU(t) = ÂRR1(t)+1.96·
√
V̂ ar(ÂRR1(t).

The point estimate and the confidence interval for the NNT can be computed now as de-

scribed above.

When it is desirable to look at the effect of covariates on the treatment effect, a semi-

parametric approach can be used. Any method allowing estimation of the cumulative in-

cidence function given covariate values can be used for the purpose of the definition of the

NNT.

For example, we can use the Fine and Gray model (Fine and Gray, 1999). When one of

the covariates, say z0p, is the treatment group assignment, 1 for the active treatment and

0 - for control, we can compute the cumulative incidence functions for the treatment and

control groups as

F̂ Trt
1 (t; z′0) = F̂1(t; z′0, z0p = 1)

F̂Ctl
1 (t; z′0) = F̂1(t; z′0, z0p = 0)

where z′0 = (z01, ..., z0,p−1)T is the vector of covariates other than treatment group. Having

those, we can compute the point estimate for the ARR(t; z′0) and NNT(t; z′0).

Computing the confidence intervals for the ARR(t; z′0) is more challenging for the semi-
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parametric than for the non-parametric approach, because in this case we use all of the

observations to estimate of both F Trt
1 (t; z′0) and FCtl

1 (t; z′0). Hence, the estimates of the

cumulative incidence functions F̂ Trt
1 (t; z′0) and F̂Ctl

1 (t; z′0) in the treatment and the control

groups are no longer independent. Therefore to compute the variance of the ARR(t; z′0) we

need the covariance between F̂ Trt
1 (t; z′0) and F̂Ctl

1 (t; z′0), for which no simple closed form is

known. This challenge is the same as for computing the confidence intervals for the number

needed to treat for classic time to event data without competing risks, described by Altman

and Andersen in (Altman and Andersen, 1999).

A practical solution is to obtain the variance of the ARR(t; z′0) via bootstrapping. To

do this, at each repetition of the bootstrapping process, we draw two bootstrap samples

independently, one from the treatment group and the other from the control group, combine

them into a single bootstrap sample, re-fit the model to the combined bootstrap sample and

compute the ARR estimate, and after repeating the procedure the desired number of times

compute the estimator of the variance of the ÂRR(t; z′0) from all of the bootstrap samples.

A more general direct regression model for the cumulative incidence function was sug-

gested by Fine (Fine, 2001). This includes alternatives to the proportional subdistribution

hazards model. Klein et al. (Klein et al., 2007) proposed fitting such models using a pseudo-

value approach. In particular, if we are interested in fitting such a model at a specific time

point t0 of interest, such as 5 years after the treatment, we let F̂1(t0) =
∑

ti≤t0 Ŝ(ti−)di1
yi

be

the non-parametric estimate of the cumulative incidence function from the whole sample as

defined in Section 3.1 above, and F̂
(j)
1 (t0) be the same estimate computed with the j − th

observation removed from the sample. Defining the pseudo-observations for the cumulative

incidence function as θ̂j = nF̂1(t0)− (n− 1)F̂
(j)
1 (t0), one may estimate the generalized linear

model E(θ̂j|Zj) proposed by Fine (Fine, 2001) using a generalized estimating equations ap-

proach. As an example, assuming a linear model for the cumulative incidence function with

an identity link and employing a working independence covariance matrix, the estimate of

the ARR reduces to ÂRR(t0; z′0) = −β̂p. The variance of β̂p and hence confidence intervals

for the ARR can be obtained as described in (Klein et al., 2007). The point estimate and

the confidence interval for the NNT as a function of time can now be computed as described

just prior to Section 3.1.

2.3 Tamoxifen Trial Example

To illustrate our methods, we use the breast cancer dataset from the tamoxifen trial E1178

briefly introduced earlier. In this trial, tamoxifen or placebo was administered daily for 2

years to patients who underwent mastectomy for potentially curable breast cancer within
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the 10-week period before entry into the trial. The data used in this example consist of the

observations on 167 eligible patients of the trial, 82 of whom were randomized to placebo

and 85 to tamoxifen treatment. The median observation period for these patients was 5.06

years (range from 0.14 to 15.95 years). Of the patients in the placebo group, 59 experienced

a recurrence of breast cancer and 19 died without relapse from other causes. In the active

treatment group, 42 had a relapse and 23 died without recurrence. The data available for

each patient also includes age at time of randomization (ranging from 65 to 84, with median

age 71), tumor size (from 3 to 170 mm, median 25), and the number of positive nodes

(from 1 to 34, median 3). The last relapse occurred in the control group at 13.16 years,

and the last non-relapse death - in the tamoxifen group at 15.7 years, as can be seen in the

non-parametric plots in Figure 2.1.

We computed the NNT based on these data using non-parametric and semi-parametric

approaches. The choice of a semi-parametric model and model diagnostics were discussed

in detail in (Fine and Gray, 1999). Here we will only mention briefly that the proportional

hazards model λ1(t;Z) = λ10(t) exp(β0Z) does not fit the data well, and a semi-parametric

model allowing the hazard ratio to be quadratic in time, λ1(t;Z) = λ10(t) exp(β0Z + β1Zt+

β2Zt
2), is a more appropriate choice.

Figure 2.1 shows different estimates of the probability of relapse and non-relapse death

by treatment group: the estimates of cumulative incidence functions obtained by using the

three models, non-parametric, semi-parametric with proportional subdistributional hazards,

and semi-parametric with the quadratic in time hazard ratio, along with the complements of

the Kaplan-Meier estimator for comparison. As one can see, the estimates of the cumulative

incidence functions for the non-relapse death are very close in both groups and don’t differ

much across the three analysis methods. The estimates are slightly higher in the tamoxifen

group. The estimated cumulative incidence functions for relapse differ noticeably between

the two treatment groups, with higher estimates in the control group.

Figure 2.2 shows the plot of the non-parametric estimates of the absolute risk reduction

and the NNT, both accompanied by pointwise 95% confidence regions. The ARR was not

significantly different than zero around 6 months and between 5.5 and 7.5 years (as seen on

the plot, the lower confidence limit is negative), therefore the pointwise confidence regions

for the NNT around 6 months and between 5.5 and 7.5 years consist of two parts and include

infinity. We plotted the negative part of confidence regions for the NNT in a separate panel,

as the number needed to harm (NNH).

Figure 2.3 contrasts the non-parametric estimate of the NNT function from Figure 2.2

with its counterparts from the semi-parametric proportional subdistributional hazards model
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Figure 2.1: Probability of relapse (top row) and non-relapse death (bottom row). Col-
umn 1: cumulative incidence, non-parametric model; Column 2: cumulative incidence,
semi-parametric proportional hazards; Column 3: cumulative incidence, semi-parametric
quadratic in time; Column 4: complement of the Kaplan-Meier estimator. (Solid line - con-
trol group, dashed line - tamoxifen group. Number at risk for tamoxifen group - above each
panels, for control group - below each panel.)
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Figure 2.2: Non-parametric estimates of the ARR (top), NNT (middle), and NNH (bottom)
with 95% pointwise confidence regions.
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in Section 3.2, and the time-quadratic generalization considered in (Fine and Gray, 1999)

and noted above. The non-parametric NNT function and its counterpart from the semi-

parametric model with quadratic in time hazard ratio behave very similarly, especially at

the early times between 0.5 and 4 years and in the tail after 8 years. The NNT function

from the semi-parametric proportional hazards subdistributional model without covariate ×
time interaction terms differs from these two models very noticeably early, overestimating

the NNT prior to 4 years, and does not reflect the non-parametric function’s local maximum

around 6-7 years. Beyond 10 years, however, all three estimates are very similar. For

example, at 12 years the non-parametric estimate is 4.69 with 95% confidence interval [2.78;

15.09], the estimate from proportional hazards model is 4.41 with 95% confidence interval

[2.73; 11.45], and the estimate from quadratic in time model is 4.70 with 95% confidence

interval [2.76; 15.72]. The more optimistic point estimate and upper confidence interval limit

from the proportional hazards model appear to reflect oversmoothing by the proportional

hazards model in the 5-10 year period, visible in Figure 2.1.
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Figure 2.3: Estimates of the NNT for non-parametric, semi-parametric proportional hazards,
and semi-parametric quadratic in time models.

In order to use the NNT estimates obtained from the results of this trial, we would first

choose a scientifically relevant time point or a few time points that would illustrate the

treatment effect best. For tamoxifen, the long-term benefit is perhaps of greatest interest.
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Hence, a single time point at 12 years after the beginning of the treatment might be an

appropriate choice, after which the rate of relapse is rather low. At 12 years after mastectomy,

the patients who received tamoxifen as a post-operative treatment experienced substantially

fewer breast cancer recurrences compared to those who were on placebo. The reduction

in the probability of relapse corresponds to one event of relapse in approximately every 5

patients treated, with a 95% confidence interval approximately 3 to 16.

It may also be useful to estimate the NNT for a specific subgroup of patients, e.g., based

on age and disease severity. To do this, we included age, tumor size, and the logarithm of

number of positive nodes, in addition to the treatment group, as time-independent covariates.

Age had no significant effect on the distribution of time to relapse. Figure 2.4 compares the

predicted NNT computed for an 80-year-old patient with the tumor size 20 mm and 1

positive node with the NNT for an 80-year-old patient with the tumor size 80 mm and 10

positive nodes. The non-parametric NNT computed from the data of all the patients is also

given as a reference. The estimated NNT is lower for a patient at a more severe stage of

disease, indicating greater treatment effect. This makes sense because one expects the relapse

probability for any given time from mastectomy to be lower, in both tamoxifen and control

groups, among patients initially treated at earlier vs. later stages of breast cancer. This lower

baseline risk at earlier disease stages limits the potential absolute tamoxifen benefit, and the

absolute impact of a constant relative benefit will be less pronounced than among patients

with diagnosis and surgery later in the disease course. The difference between subgroups is

greater in the short run and attenuates by 12 years.

We also performed an analysis similar to that described above, but with death prior to

relapse as the event of interest. Other than age, no covariates, including treatment group,

had any statistically significant effect on the distribution of the time to non-relapse death.

There was no significant difference in the probability of the non-relapse death between the

tamoxifen and placebo groups at any time point, regardless of which method was used

to compute the estimates. To ascertain the sensitivity of the analysis of these data to

treating death without relapse as a competing risk rather than as an independent censoring

mechanism, we computed the NNT(t) using the complement of the Kaplan-Meier estimators

instead of the cumulative incidence functions as estimates of the probabilities of relapse. For

these data, results changed little.

2.4 Practical Remarks

The NNT is a very useful tool for quantifying the efficacy of a treatment in a manner which

facilitates communication of risk to non-statisticians. With binary outcomes and time to
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Figure 2.4: Estimates of the NNT for subgroups with specific values of covariates.

event data without competing risks, there is generally a single event of interest and corre-

spondingly a single NNT may be used to summarize the effect of treatment. While it is

conceptually straightforward to extend NNT to time to event data with competing risks,

multiple NNTs may be needed to capture the overall effect of treatment on the different

events. That is, the NNT for a particular event of interest, by itself, may not be a suitable

tool for determining if the treatment in question is beneficial, particularly if the effect of

treatment on other events is harmful. In the breast cancer example where treatment influ-

enced only the cumulative incidence for the event of interest, the NNT for relapse may be

sufficient. However, in other applications, the treatment in question may have a desirable

effect on the event of interest but undesirable effects on events of other types. The benefits

of the treatment should always be weighted against its negative effects, which requires an

examination of the NNTs and, potentially, NNHs for different event types. The NNT for

the event of interest, being derived only from the subdistribution of the event of interest,

does not provide direct information about the effect of the treatment on the events of other

types.
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Chapter 3. Combining Times to Suppression and Rebound in HIV Studies

3.1 Introduction

The goal of this chapter is the development of an endpoint which is tailored to the objectives

of HIV-1 and similar studies and provides an intuitive summary of treatment differences.

As mentioned earlier in Chapter 1, Section 1.4, the endpoints currently used to assess

the suppression of the viral load in HIV studies may suffer from some problems. To avoid

these problems, we suggest using a different endpoint and different analysis methods based

on multi-state models (Pepe, 1991). These methods explicitly acknowledge the fact that we

have two distinct events, viral load suppression and rebound, with corresponding survival

functions SS(t) and SR(t) respectively. Our proposed endpoint is based on the probability of

being in suppression G(t), which is simply SR(t)− SS(t). We suggest an intuitive summary

of treatment efficacy based on a weighted integral of this difference over a specified time

interval of interest, say one year. With equal weights over time, this measure reduces to

the restricted mean time suppressed over the time interval. One may tailor the weights

to emphasize the timepoints of scientific interest, enabling a rigorous exploration of either

early or late suppression dynamics. This endpoint is well-defined and has a clear and simple

interpretation which may permit comparisons across trials and populations. The proposed

analysis accounts for the fact that a proportion of patients will never suppress their viral load

and allows investigators to simultaneously assess differences in both time to viral suppression

and time to viral rebound, emphasizing those timepoints relevant to treatment evaluation.

The proposed endpoint is described in Section 3.2. A simulation study assessing perfor-

mance of the proposed endpoint in comparison to endpoints based on composite events is

discussed in Section 3.3. The practical utility of the analysis is illustrated in a reanalysis

of ACTG A5142 in Section 3.4. A discussion concludes in Section 3.5. The work has been

accepted for publication (Gouskova et al., 2014a).

3.2 Methods

For patient i, let Ri be the treatment regimen assignment at time of randomization, with

the focus being an intent to treat analysis of treatment efficacy. The potential time at

which patient i has their viral load suppressed is denoted by T Si and the potential time at

which patient i has their viral load rebound is denoted by TRi . Let Ci denote the potential

censoring time for patient i, with the binary indicators δSi and δRi equal to 1 when T Si and TRi
are smaller than Ci, respectively, and 0 otherwise. Furthermore, define XS

i = min(T Si , Ci)
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and XR
i = min(TRi , Ci). In general, δSi ≥ δRi , because the time to rebound of viral load may

only occur subsequent to viral load suppression. For patient i, the observed data consists

of (XS
i , δ

S
i , X

R
i , δ

R
i , Ri). The main difficulty in conducting a time-to-event intent to treat

analysis using this data structure is that there is not an obvious single ”time to event” on

which to base the analysis.

Suppose for simplicity that there are two treatment groups, r = 1 and 2, and let SSr
and SRr denote the survival functions for T Si and TRi , respectively, in group r = 1, 2. The

endpoint we propose for viral suppression studies is the probability of being suppressed at

time t, Gr(t) = SRr (t) − SSr (t), r = 1, 2. This endpoint is defined without conditioning

on information observed post randomization and may be analyzed using intent to treat

methods. However, because the event probability is the difference of two survival functions

and is not itself a survival function for a single time to event, the Kaplan-Meier estimator

and logrank test are not applicable. Inferential methods for multi-state data must be used

in the development of non-parametric estimators and tests for treatment differences.

Following (Pepe, 1991), we employ the Kaplan-Meier estimates ŜSr (t), ŜRr (t), r = 1, 2, of

survival functions for time to viral suppression and time to viral rebound respectively. Note

that time to viral rebound defined as above is measured from randomization. The survival

function for time to viral rebound will be the marginal survival function, not conditional

on being suppressed. We can estimate the probability for a patient to be in the state of

suppression, within each treatment group separately, as

Ĝr(t) = ŜRr (t)− ŜSr (t) for r = 1, 2.

The variance estimator for Ĝr(t), r = 1, 2, is given by

V̂ ar(Ĝr(t)) =
1

n2
r

∑
i:Ri=r

[X̂ i
Gr

(t)]2

where nr is the number of subjects in group r,

X̂ i
Gr

(t) = nrŜ
S
r (t){

t∫
0

1

YS(u)
dN i

S −
t∫

0

Y i
S(u)

(YS(u))2
dNS(u)}−

− nrŜRr (t){
t∫

0

1

YR(u)
dN i

R −
t∫

0

Y i
R(u)

(YR(u))2
dNR(u)},

N i
S(u), N i

R(u) are the counting processes for the events of suppression and rebound re-
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spectively for a patient i, Y i
S(u) and Y i

R(u) are the at risk processes for suppression and

rebound respectively for a patient i, and

Yε(u) =
∑
i:Ri=r

Y i
ε (u) and Nε(u) =

∑
i:Ri=r

N i
ε(u) for ε ∈ {S,R}.

The probability of being in suppression Gr(t) for group r = 1, 2 varies over time, similarly

to a survival function, albeit not a monotonically decreasing function of t. As with standard

time to event analyses, simple summary measures are needed for quantifying differences

among treatment regimens. One should recognize that Gr(t) does not have a corresponding

hazard function and treatment differences cannot be summarized using hazard ratios, as

they might in separate analyses of SRr and SSr . We suggest summarizing using the weighted

restricted mean time a patient from group r will spend in suppression in the time interval

[0, t0], which is
∫ t0

0
Ŵ (u)Gr(u)du, where Ŵ (u) is an estimate of some appropriately chosen

weight function W (u) discussed below.

The analysis may be tailored to capture the information of greatest importance with a

careful choice of the weight function. When W (u) ≡ 1, the weighted integral estimates the

restricted mean time spent in viral suppression. For those interested in short term outcomes,

larger weights may be applied at early time points, and vice versa for long term outcomes.

For example, for those interested primarily in long term maintenance, zero weights may be

employed at time points before some predetermined cut-off for suppression, eg 24 weeks. On

the other hand, for those interested in population health where individuals with circulating

virus present a transmission risk, non-zero weights at early time points would be an important

consideration.

Following (Pepe, 1991), for the purpose of hypothesis testing one may compute a simple

Z type test statistic as the difference of the weighted averages in the two treatment arms.

The test statistic is:

WG =

√
n1n2

n1 + n2

t0∫
0

Ŵ (u){Ĝ1(u)− Ĝ2(u)}du.

Under the null hypothesis, the test statistic is asymptotically normal with zero mean and

its asymptotic variance can be estimated by

V̂ ar(WG) =
n1n2

n1 + n2

(V̂1 + V̂2)
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where

V̂r =
1

n2
r

∑
j:Rj=r

[ t0∫
0

Ŵ (u)X̂j
Gr
du
]2
, r = 1, 2.

Wald type confidence intervals for the weighted average time in suppression may be calculated

using the asymptotic normality of the estimator
∫ t0

0
Ŵ (u)Ĝr(u)du and its variance estimator

V̂r, r = 1, 2.

The choice of the weight function may also be directed towards improving the power

of the test statistic to detect treatment differences in the probability of suppression over

time. As suggested by Pepe and Fleming (1989), one may downweight at time points where

Ĝ1 − Ĝ2 is highly variable using the weight function:

Ŵse(u) = 1/ŜE[Ĝ1(u)− Ĝ2(u)],

where ŜE[Ĝ1(u) − Ĝ2(u)] =

√
V̂ ar(Ĝ1(t)) + V̂ ar(Ĝ2(t)). This may also be accomplished

using some function of the censoring distributions in the two groups (Pepe and Fleming,

1989), with weight:

Ŵcens(u) = [ŜC1 (t)× ŜC2 (t)]/[p1Ŝ
C
1 (t) + p2Ŝ

C
2 (t)],

where ŜCr (t) is the Kaplan-Meier estimator of the survival function of Ci, S
C
r (t), in group

r = 1, 2 and pr is the proportion of patients allocated to group r = 1, 2. The unity weight

assigns equal weight to all time points, while the second and third weights tend to assign

higher weight to earlier time points, where the estimation is typically less variable, potentially

resulting in increased power. In applications with focused scientific objectives, the choice of

the weight should be driven by those objectives and not by unguided power considerations.

If we have several strata j = 1, ..., J and wish to conduct a stratified analysis, we can

compute the above WG statistics separately within each stratum j and then let

SWG =

J∑
j=1

ωjWGj√
J∑
j=1

ω2
j

ˆV ar(WGj)

where WGj and ˆV ar(WGj) are the test statistic and its estimated variance within stratum

j = 1, ...J . The scalar ωj determines the relative weight given to stratum j = 1, ....J . Under

the null hypothesis of no difference between the groups, the SWG statistic is asympttically
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normal N(0, 1).

To perform power and sample size calculations for studies using the proposed endpoint,

one can use standard formulas for continuous normally distributed outcomes. The standard

deviation of the test statistic necessary for such computations can be obtained by re-analysis

of previously available similar data or via simulations. For example, for the test statistic

based on the unity weight, for a trial with two arms of equal size and assuming equal

variances in both arms, we can take the desired effect size ∆ to be a clinically relevant

difference in average time spent in suppression between the treatment and control arms (for

example, 4 weeks, if weeks is the chosen time scale). If the data from an earlier similar trial

is available, we can compute the WGprior statistic for the prior trial data and estimate its

standard error. Due to the scaling of WG by
√

n1n2

n1+n2
, the standard error ŜE(WGprior) is

an estimate of the true standard deviation of the time spent in suppression. Hence we can

use ∆ and ŜE(WGprior) as the effect size and the standard deviation in the standard sample

size formulas. The results of a small simulation study verifying this approach are provided

at the end of Section 3.3.

3.3 Simulation Results

We conducted a simulation study to compare performance of the proposed endpoint with

the virologic failure endpoint used in the A5142 trial and TLOVR. For each simulated pa-

tient we generated a treatment group assignment and then, conditionally on the treatment

assignment, times to suppression (T Si ), rebound (TRi ), and censoring (Ci). The time was on

the weeks scale, and the length of the observation period was chosen to be 80 weeks. We first

generated time from randomization to suppression, then time from suppression to rebound,

and then computed the time from randomization to rebound as the sum of the two above

times.

We employ 3 different simulation scenarios shown in Figure 3.1. In scenario 1 the treat-

ment group was the same as control in terms of suppression and had much later rebound, thus

maintaining suppression much longer than the control group. Under scenario 2, the treat-

ment group had faster suppression but also faster rebound. On average, in scenario 2, the

treatment group was suppressed longer. In scenario 3, the treatment group suppressed later

than in the control group, but maintained suppression longer. Thus, under scenario 3, the

treatment group had reduced probability of suppression in the beginning of the observation

period which reversed at later times.

We used the Weibull distribution for all time variables in the simulations, due to its

flexible shape, with the CDF function F (t) = 1−exp{−( t
β
)α} and the distribution parameters
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Figure 3.5: Simulations scenarios: CDF for time to suppression, CDF for time to rebound,
and probability to be in suppression, by treatment group.
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α and β as follows. Scenario 1: the treatment group - αS = 0.2, βS = 4000, αRcond = 4, βRcond =

120, the control group - αS = 0.2, βS = 4000, αRcond = 1.35, βRcond = 64. Scenario 2: the

treatment group - αS = 0.4, βS = 800, αRcond = 1, βRcond = 120, the control group - αS =

0.8, βS = 320, αRcond = 1, βRcond = 120. Scenario 3: the treatment group - αS = 1, βS =

8, αRcond = 2, βRcond = 240, the control group - αS = 0.1, βS = 0.0008, αRcond = 1, βRcond = 200.

The censoring distribution was the same in both treatment groups and across all scenarios,

with αcens = 1.5, βcens = 400. Treatment assigment was generated as a Bernoulli random

variable with success probability 0.5. We assessed several sample sizes between 250 and 2000

patients. All simulations were conducted using 1000 samples. For the proposed method, we

defined observed data as XS
i = min(T Si , Ci), X

R
i = min(TRi , Ci), δ

S
i = I(XS

i = T Si ) and

δRi = I(XR
i = TRi ). We computed the test statistic WG, with each of the three weight

functions described in Section 3.2.

To define virologic failure as in the A5142 trial or for the TLOVR-like endpoint, we first

chose a cut-off point γ0, non-suppression prior to which should be considered a failure. Then,

given the cut-off, we defined the observed data for the composite event in A5142 as:

Xcomp
i =

{
min(TRi , Ci), 0 < T Si ≤ γ0

min(γ0, Ci), γ0 < T Si ,

and

δcompi =

{
I(Xcomp

i = TRi ), 0 < T Si ≤ γ0

I(Xcomp
i = γ0), γ0 < T Si .

Similarly, the data for the TLOVR-like event were defined as:

XTLOV R
i =

{
min(TRi , Ci), 0 < T Si ≤ γ0

0, γ0 < T Si ,

and

δTLOV Ri =

{
I(XTLOV R

i = TRi ), 0 < T Si ≤ γ0

1, γ0 < T Si .

Using the composite endpoint from the A5142 protocol and TLOVR independently, we

separately performed two-sided logrank tests and then determined the direction of the dif-

ference by fitting the Cox model using treatment group as the sole covariate, to mimic the

29



intent to treat analysis from (Riddler et al., 2008). We looked at a range of possible cut-off

points in the definition of composite events for the A5142 and TLOVR endpoints.

The observed type I error rate was close to the nominal level for all three methods,

ranging from 0.041 to 0.057 for the proposed endpoint and from 0.040 to 0.060 for A5142

and TLOVR endpoints (not shown in tables). The results for power are summarized in Table

3.1. For the proposed method, the power to reject the null hypothesis was consistent for all

scenarios, for all choices of the weight function, and increased with sample size. However,

for the A5142 composite endpoint and for TLOVR, the power varied from being higher than

that for the proposed method to being almost zero, depending on the scenario and the choice

of the cut-off point γ0. For scenario 1, the power for both composite endpoints was much

higher than for the proposed method. For scenario 2, the power for A5142 and TLOVR

endpoints was sometimes worse than for the proposed method, depending on the chosen

value of the cut-off. The results for scenario 3 are the most interesting. If we look at which

treatment arm was selected under scenario 3, for some values of γ0, the A5142 and TLOVR

analyses always incorrectly selected the control arm. For a large sample size (2000 patients),

the null hypothesis was rejected in favor of the wrong treatment group 81% of the time using

the A5142 endpoint and 92% of the time using TLOVR. Such a reversal of results happened

because both composite endpoints from A5142 and TLOVR re-defined the time of event.

For some values of the cut-off γ0 (prior to 12 weeks in the scenario 3), the failures in the

treatment group were forced to happen earlier than in the control group.
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Table 3.1: Simulation results: Power to reject the null hypothesis, and the preferred treatment arm, by value of the cut-off
time point for the A5142 and TLOVR endpoints, and by weight fucntion for the proposed method.

Method

Scenario 1 A5142 trial TLOVR Proposed

Cut-off (weeks) Cut-off (weeks) Weight
Sample size 8 16 24 32 40 8 16 24 32 40 unity 1/se cens

125 power 0.58 0.70 0.79 0.86 0.90 0.53 0.57 0.62 0.62 0.64 0.39 0.39 0.36
250 power 0.89 0.95 0.98 0.99 1.00 0.85 0.91 0.92 0.93 0.92 0.67 0.67 0.64
500 power 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 0.92 0.92 0.89
1000 power 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99

Method

Scenario 2 A5142 trial TLOVR Proposed

Cut-off (weeks) Cut-off (weeks) Weight
Sample size 8 16 24 32 40 8 16 24 32 40 unity 1/se cens

125 power 0.30 0.19 0.14 0.11 0.06 0.35 0.26 0.21 0.19 0.15 0.31 0.35 0.32
250 power 0.50 0.36 0.22 0.15 0.10 0.57 0.48 0.33 0.30 0.23 0.57 0.63 0.59
500 power 0.79 0.61 0.43 0.26 0.15 0.85 0.76 0.68 0.55 0.43 0.85 0.89 0.86
1000 power 0.98 0.89 0.68 0.45 0.26 0.99 0.97 0.91 0.82 0.69 0.99 0.99 0.99

Method

Scenario 3 A5142 trial TLOVR Proposed

Cut-off (weeks) Cut-off (weeks) Weight
Sample size 8 10 12 14 16 8 10 12 14 16 unity 1/se cens

250 choose treatment 0.00 0.05 0.25 0.58 0.80 0.00 0.03 0.18 0.48 0.74 0.84 0.87 0.81
choose control 0.15 0.01 0.00 0.00 0.00 0.21 0.02 0.00 0.00 0.00 0.00 0.00 0.00

2000 choose treatment 0.00 0.10 0.94 1.00 1.00 0.00 0.03 0.81 1.00 1.00 1.00 1.00 1.00
choose control 0.81 0.10 0.00 0.00 0.00 0.92 0.02 0.00 0.00 0.00 0.00 0.00 0.00
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Table 3.2: Simulation results: Predicted vs. observed power.

Weight

Sample size Unity 1/SE Censoring
Observed Predicted Observed Predicted Observed Predicted

125 0.48 0.50 0.52 0.56 0.44 0.47
250 0.84 0.82 0.87 0.86 0.81 0.78
500 0.99 0.98 0.99 0.99 0.98 0.98

We also conducted a small simulation study to test the sample size computations for the

proposed endpoint. We generated 1000 samples from the known distributions under scenario

3 described above, assuming a known effect size. Based on each simulated sample, we esti-

mated standard deviations for our test statistics and computed predicted power based on the

observed standard deviations and hypothesized effect size (using SAS procedure POWER).

Then we compared the average predicted power with the power observed in 1000 simulations.

The results summarized in Table 3.2 generally exhibit good agreement between the observed

and predicted powers.

3.4 Re-analysis of the A5142 Trial

As an example, we re-analysed the ACTG A5142 trial using the virologic failure endpoint

from A5142 and the proposed method. The A5142 trial included 753 patients whose baseline

viral load was at least 2000 copies/ml. Patients were randomized to one of the three treat-

ment arms, efavirenz plus two NRTIs (efavirenz group), lopinavir–ritonavir plus two NRTIs

(lopinavir–ritonavir group), or lopinavir-ritonavir plus efavirenz (NRTI-sparing arm). The

median follow-up was 112 weeks, with the longest follow-up time being 157 weeks.

The definition of a virologic failure for A5142 ((Riddler et al., 2008), p.2097) was lack

of confirmed viral load suppression below 200 copies/ml or by log10 by 8 weeks; or lack of

confirmed viral suppression below 200 copies/ml by 32 weeks; or confirmed viral rebound.

The definition of viral rebound also varied depending on when the rebound occurred. Early

rebound (prior to 32 weeks) was defined as a viral load increase to over 1000 copies/ml

for patients whose viral load had suppressed below 200 copies/ml; or viral load increase by

log10 from the nadir value for patients whose viral load had never suppressed below 200

copies/ml. Late rebound (after 32 weeks) was defined as a viral load ≥ 200 copies/ml. 227

patients experienced virologic failure by the A5142 definition. The Kaplan-Meier estimators

for virologic failure are shown on the top panel of Figure 3.2.
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Figure 3.6: Top panel: Survival functions for virologic failure as defined in A5142 trial, by
treatment group. Bottom panel: Probability to be in suppression, by treatment group.
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Table 3.3: P-values comparing between treatment groups in the A5142 trial, original analysis
vs. proposed method. Endpoint 1: single threshold of 200 copies/ml in the definitions of
suppression and rebound. Endpoint 2: different definitions for early and late suppression
and rebound. P-values adjusted for multiple comparisons using the Bonferroni correction.

Method

Riddler et al Proposed, Endpoint 1 Proposed, Endpoint 2

Weight Weight
Comparison unity 1/se cens unity 1/se cens

EFAV vs LOP/RIT 0.006 0.037 0.023 0.019 0.197 0.185 0.178
EFAV vs NRTI 0.490 0.994 1.000 0.521 1.000 1.000 0.807
NRTI vs LOP/RIT 0.130 0.315 0.292 0.400 0.785 0.738 1.000

For the proposed approach, we defined two separate events, viral suppression and viral

rebound. We defined viral suppression as viral load being reduced to < 200 copies/ml for

two consecutive measurements 4 weeks or less apart. We defined viral rebound as viral load

being ≥ 200 copies/ml at two consecutive measurements 4 or less weeks apart. We had

667 patients in all treatment groups whose viral load was suppressed, and 129 patients who

experienced viral rebound. A plot of the estimated probability of being suppressed, over

time from randomization, by treatment group, is displayed on the bottom panel of Figure

3.2.

Next, we computed the test statistic WG, using the 3 different weight functions intro-

duced in Section 3.2. We integrated over the first 143 weeks of follow-up, capturing almost

all information in the dataset. For comparison, logrank tests were also calculated based on

the A5142 composite endpoint. Over the 143 week period after randomization, the analysis

showed that a patient from the efavirenz group was in a state of viral suppression for 12

weeks longer on average than a patient from the lopinavir-ritonavir group (95% CI=(3,21),

p-value after Bonferroni correction p = 0.032) and for 3 weeks longer than a patient from

the NRTI-sparing group (95% CI=(-3,13), p-value p = 0.783). Moreover, a patient from the

NRTI-sparing group was in the state of suppression for 5 weeks longer than a patient from

the lopinavir-ritonavir group (95% CI=(-2,16), p-value p = 0.365). The results of testing the

null hypothesis of no difference between the 3 treatment groups using WG are reported in

Table 3.3 as endpoint 1. Inferences are similar to those obtained from the original analysis.

Recognizing that there might have been clinical considerations for defining a separate

early viral suppression and viral rebound, we performed additional analyses mimicking the

definitions of viral suppression and viral rebound from the A5142 trial as closely as possible.
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We defined early viral suppression and viral rebound prior to 32 weeks as was done in the

A5142 trial. Under this definition, the number of patients in all treatment groups who

experienced viral suppression was 691, and who experienced viral rebound was 183. The

results of this supplementary analysis are also summarized in Table 3.3 as endpoint 2 and

are not statistically significant at 0.05 level, though the direction of the differences remained

the same.

We also performed sensitivity analysis to assess how much the results of the A5142 trial

depended on the choice of cut-off time of 8 weeks for early rebound and 32 weeks for late

rebound. Judging by the plot of the probability to be in suppression by treatment group, we

did not expect inference to change when we varied the cut-off times for early and late viral

rebound. This is because the best treatment group was uniformly better than the second

best treatment group both in terms of viral suppression and viral rebound, with the same

ordering holding for the second and third best treatment groups. We re-defined virologic

failure using cutoffs ranging from 5 to 15 weeks for early rebound and from 25 to 40 weeks

for late rebound. The results confirmed our expectations: the p-values for comparison of

the efavirenz and lopinavir-ritonavir groups remained significant and ranged from 0.0107

to 0.0306 (after a Bonferroni correction), all other comparisons were still not statistically

significant, and all the differences between the groups were in the same direction.

In summary, certain advantages of the proposed endpoint can be clearly seen in Figure

3.2, where the time-specific treatment differences are cleanly summarized via the probability

of being in suppression. The efavrienz group suppresses most rapidly and with higher prob-

ability and the suppression is maintained as effectively as in the NRTI-sparing arm. The

NRTI-sparing arm has comparable early suppression to that in the lopinavir group, but with

superior long term maintenance. Such information is not as readily gleaned from the plot of

the survival curves for the A5142 composite endpoint.

3.5 Discussion

DeGruttola (DeGruttola et al., 1998) were the first to discuss the use of HIV-1 RNA viral load

as an outcome measure in HIV trials, both as a repeatedly-assessed continuous biomarker

and as an indicator of treatment (virologic) failure. (Gilbert et al., 2000) expand on the

discussion of virologic failure and consider several competing definitions. (Ribaudo et al.,

2006) discussed design issues in HIV trials, concentrating the discussion of endpoints on

further refinements in virologic failure. To the best of our knowledge, no one has previously

suggested the combined endpoint we propose here.

In this chapter we implemented a novel approach to defining a time to event endpoint in
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HIV research that combines time to viral suppression and time to viral rebound into a single

measure, the probability of being suppressed over time. As demonstrated in the A5142

data analysis, this quantity precisely captures the interplay of suppression and rebound,

yielding a simple graphical representation of early and late suppression dynamics which may

be preferable to that for the existing composite endpoints. The integrated probability of

suppression can easily be adapted by choice of the weight function to target specific time

periods of interest. Employing unity weight provides a particularly attractive summary

which may be interpreted as the average number of weeks suppressed over the time period

of interest. If there is scientific justification to disregard a portion of the follow-up period,

the weights function can be set to zero for those times points.

The probability of suppression endpoint may also be useful in observational studies, albeit

with the necessary caveats about confounding. Further work is needed to appropriately

adjust for confounding factors in the analysis. Future research is planned into regression

modelling of the probability of suppression and the associated weighted average times in

suppression. However, the application of the proposed endpoint to observational studies

is beyond the scope of the current manuscript which deals with intent to treat analyses

in randomized HIV trials with HIV RNA measurements obtained on a specific predefined

schedule.
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Chapter 4. On the Choice of Time Scales in Competing Risks Predictions

4.1 Introduction

The purpose of this chapter is to introduce a semi-parametric estimator for cumulative

incidence functions which uses different time scales for different event types.

As an example, we consider the colon cancer population in the Surveillance, Epidemiology,

and End Results (SEER) database. The current colon cancer risk estimates provided by the

National Cancer Institute utilize proportional hazards models for the cause-specific hazards

for colon cancer and for other causes which adjust for patient specific risk factors. In chronic

disease registries like the SEER database, subjects are typically enrolled in the database at

the time of disease diagnosis. A primary objective may be to understand the impact of risk

factors on subsequent mortality both from the disease and from other causes. Proportional

hazards model on the time since diagnosis scale is usually a reasonable assumption when the

event is death from cancer. However, for death from other causes it may be not justified,

and assuming the model proportional on the calendar age scale may be more appropriate.

In this case the estimator from Cheng et al may produce biased estimates and prediction

based on it may be incorrect.

In Section 4.2 we propose semi-parametric methods which allow to analyze each event

time using its own time scale. The simulation results are provided in Section 4.3. The

brief summary of the data analysis is provided in Section 4.4. Asymptotic properties of the

estimator are provided in the Appendix.

4.2 Methods

Suppose we are interested in predicting the probability that a patient diagnosed with cancer

at some age D0 will die from cancer by some time t after the diagnosis. Suppose we have

two competing causes of death and hence events of two types, event 1 - death from cancer,

and event 2 - death from other causes. Suppose the data that we observe for each patient

i = 1, ..., n is (Di, Xi, δ1i, δ2i, Ui, Zi(Di)), where Di is age at which a patient is diagnosed

with cancer, Xi = min(Ti, Ci), Ti - time of event on time since diagnosis scale, Ci - censoring

time on time since diagnosis scale, δik for k = 1, 2 - event indicators for event of type k, and

Ui, Zi(Di) - covariate vectors. Covariates Ui are time-independent, such as gender, race etc,

while covariates Zi(Di) are time-dependent and measured at the time of diagnosis Di, such

as tumor size, comorbidity index etc. Since our interest is prediction which is supposed to

be made at the moment of diagnosis and we don’t want our prediction to depend on future
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values of covariates which they may take after the diagnosis, we fix the time-dependent

covariates at the moment of diagnosis and we assume that the models for events of both

types depend only on the covariate values measured at the time of diagnosis. Suppose we

only have data on patients who have been diagnosed prior to death or censoring. Then time

of event on the age scale is T agei = Di+Ti, and observed time is Xage
i = Di+Xi. We want to

predict the probability that a patient diagnosed at age D0 will experience an event of type 1

by time t after diagnosis, given covariate values U0, Z0(D0). Note that we can chose on which

time scale we want to work, time since diagnosis scale or calendar age scale. On calendar

age scale the observed data is (Di, X
age
i , δ1i, δ2i, Ui, Zi(Di)) and the data is left-truncated by

Di - age at diagnosis.

If the proportional hazards model holds for events of both types on the time since di-

agnosis scale, it makes sense to chose this scale. The cause-specific hazards for events of

both types on the time since diagnosis scale can be estimated using the Cox model, treating

events of other type as censoring. The model for cause-specific hazards will be the following:

λ1(t|Di, Ui, Zi(Di)) = λ01(t)exp(β1DDi + β1UUi + β1ZZi(Di))

λ2(t|Di, Ui, Zi(Di)) = λ02(t)exp(β2DDi + β2UUi + β2ZZi(Di))

where t > 0 is time since diagnosis. Age at diagnosis Di is typically included as a covariate

in the model for both types of event. Predicted cumulative incidence functions for events

k = 1, 2 can be computed as described in Cheng et al :

F̂k(t|D0, U0, Z0(D0)) =

t∫
0

Ŝ(u|D0, U0, Z0(D0))dΛ̂k(u|D0, U0, Z0(D0))

where

Ŝ(u|D0, U0, Z0(D0)) = exp{−
2∑

k=1

Λ̂k(u|D0, U0, Z0(D0))},

Λ̂k(u|D0, U0, Z0(D0)) = Λ̂0k(u)exp(β̂kDD0 + β̂kUU0 + β̂kZZ0(D0)),
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Λ̂0k(u) =
n∑
i=1

δkiI(Xi ≤ u)
{ n∑
j=1

I(Xi ≤ Xj)exp(βkDDj + βkUUj + βkZZj(Dj))
}−1

.

However, as mentioned above, it is possible that the models for events of different types

are not proportional on the same time scale. To deal with the case when the model for

event 1 is proportional on the time since diagnosis scale and the model for the event 2 is

proportional on the age scale but not on the time since diagnosis scale, we suggest to estimate

cause-specific hazards on two different time scales.

Let the true model for the cause-specific hazards for event 1 be on the time since diagnosis

scale as folows:

λtime1 (t|Di, Ui, Zi(Di)) = λ01(t)exp(β1DDi + β1UUi + β1ZZi(Di)),

where t > 0 is time since diagnosis. We can express the hazard function for event 1 on the

age scale as:

λage1 (a|Di, Ui, Zi(Di)) =

=

{
h1(a, Ui, {Zi(s), 0 < s < Di}), 0 < a < Di

λ01(a−Di)exp(β1DDi + β1UUi + β1ZZi(Di)), a ≥ Di.

where a > 0 is age.

Similarly, let the true model for the cause-specific hazard for event 2 on the age scale be:

λage2 (a|Di, Ui, Zi(Di)) =

=

{
h2(a, Ui, {Zi(s), 0 < s < Di}), 0 < a < Di

λ02(a)exp(β2DDi + β2UUi + β2ZZi(Di)), a ≥ Di

Then on the time since diagnosis scale:

λtime2 (t|Di, Ui, Zi(Di)) = λ02(Di + t)exp(β2DDi + β2UUi + β2ZZi(Di)).

In the expressions above, h1(.) and h2(.) are some unspecified non-negative functions

which may depend on the time-independent covariates Ui and on the history of time-
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dependent covariates up to the time of diagnosis, {Zi(s), 0 < s < Di}. The functions h1(.)

and h2(.) are not estimable from our data without making additional assumptions about the

joint distribution of D and T age, because we do not have survival data from the patients

prior to them being diagnosed. Therefore all the inference we can make will be conditional

on D < T age. Since our ultimate interest is making prediction for a patient who has been

diagnosed and is still alive, such conditional inference will be enough. Also, in order to be

able to make a valid prediction from the moment of diagnosis on, we assume that after the

time of diagnosis the models depend only on the values of covariates measured at the time

of diagnosis and do not depend on future values of time-dependent covariates. Note that

technically in general case λage2 (a|Di, Ui, Zi(Di)) may be not proportional on the age scale

on the whole age axis from 0 to ∞ since we do not specify the model prior to the point

Di. However, conditional on Di < T agei , the hazards for event 2 are proportional on the age

scale, and conditional inference is all that we are attempting to make.

The probabilities which we are interested to predict can be expressed as:

F1(t|D0, U0, Z0(D0)) = Pr(T ≤ t, δ1 = 1|D < T age, D0, U0, Z0(D0))

=

t∫
0

exp[−
u∫

0

{λtime1 (s|D0, U0, Z0(D0)) + λage2 (D0 + s|D0, U0, Z0(D0))}ds]×

× λtime1 (u|D0, U0, Z0(D0))du

and

F2(t|D0, U0, Z0(D0)) = Pr(D0 < T age ≤ D0 + t, δ2 = 1|D < T age, D0, U0, Z0(D0))

=

D0+t∫
D0

exp[−
D0+u∫
D0

{λtime1 (s−D0|D0, U0, Z0(D0)) + λage2 (s|D0, U0, Z0(D0))}ds]×

× λage2 (u|D0, U0, Z0(D0))du

We can estimate cause-specific hazards for events of types 1 and 2 on time since diagnosis

and calendar age scales respectively by fitting two Cox models, one on the time since diagnosis

scale and the other - on the calendar age scale, treating events of other types as censoring

and accounting for the left truncation on the age scale. The estimates for the cause-specific
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hazard functions will be:

λ̂time1 (Xi|D0, U0, Z0(D0)) = δ1iexp(β1UU0 + β1ZZ0(D0) + β1DD0)×{ n∑
j=1

I(Xi ≤ Xj)exp(β1UUj + β1ZZj(Dj) + β1DDj)
}−1

.

and

λ̂age2 (Xage
i |D0, U0, Z0(D0)) = δ2iexp(β2UU0 + β2ZZ0(D0) + β2DDj)×{ n∑

j=1

I(Dj ≤ Xage
i ≤ Xage

j )exp(β2UUj + β2ZZj(Dj) + β2DDj)
}−1

.

Then using the above we can estimate the probabilities of interest similar to Cheng et

al. as:

F̂1(t|D0, U0, Z0(D0)) =
∑
Xi≤t

exp[−
∑
Xj≤Xi

λ̂time1 (Xj|D0, U0, Z0(D0))

−
∑

D0≤Xage
j ≤D0+Xi

λ̂age2 (Xage
j |D0, U0, Z0(D0))]λ̂time1 (Xi|D0, U0, Z0(D0))

and

F̂2(t|D0, U0, Z0(D0))

=
∑

D0≤Xage
i ≤D0+t

exp[−
∑

0<Xj≤Xage
i −D0

λ̂time1 (Xj|D0, U0, Z0(D0))

−
∑

D0≤Xage
j ≤Xage

i

λ̂age2 (Xage
j |D0, U0, Z0(D0))]λ̂age2 (Xage

i |D0, U0, Z0(D0)).

The proposed estimators are asymptotically normal and have closed form variance esti-

mator. The formulas and the proofs are provided in the Appendix.

4.3 Simulations

To evaluate the performance of the proposed estimator we conducted the simulations exper-

iment. We generated the data described in the Section 4.2. The model for event of type 1

was proportional on the time since diagnosis scale. The model for event of type 2 was pro-

portional on the calendar age scale but not proportional on the time since diagnosis scale.
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The proposed estimator on two time scales was compared with the estimator from Cheng et

al which used the time since diagnosis scale for the events of both types, as described in the

Section 4.2 above.

The data were generated as follows. We used four covariates: age at diagnosis D, a

time-independent categorical covariate U , which can be, for example, gender, and two time-

dependent continuous covariates measured at the time of diagnosis, say, tumor size Z1(D)

to be included in the model for death from cancer (event 1), and comorbidity index Z2(D),

to be included in the model for death from other causes (event 2).

First, all the covariates were generated. Age at diagnosis D was generated as a normal

random variable, with mean µD and variance σ2
D. Gender U was generated as a Bernoulli

random variable with the success probability π. Tumor size Z1(D) was generated as a normal

random variable with the mean µ1 and variance σ2
1, and then rounded to an integer. Comor-

bidity index Z2(D) was generated as a normal random variable with the mean increasing

with age, µ2 = D/10 and variance σ2
2, and then rounded to an integer.

The cause-specific hazards on the age scale for events of type 1 and 2 were chosen as

follows:

λage1 (a|D,U, Z1(D)) =

{
0, 0 < a < D

α1exp(β1UU + β1Z1Z1(D) + β1DD), a ≥ D.

and

λage2 (a|D,Z2(D)) =

=

{
α21I(a < γ2) + α22I(a ≥ γ2), 0 < a < D

{α21I(a < γ2) + α22I(a ≥ γ2)}exp(β2Z2Z2(D) + β2DD), a ≥ D

After all the covariates were generated, the above hazard functions could be evaluated

and the overall survival function on the age scale could be computed as

Sage(a|D,U, Z1(D), Z2(D)) =

exp(−
a∫

0

[λage1 (s|D,U, Z1(D)) + λage2 (s|D,Z2(D))]ds).

Then we generated time of event T age on the calendar age scale as a random variable hav-

ing the survival function Sage(a|D,U,Z1(D), Z2(D)) and event indicators as binary random
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variables with probabilities of success:

Pr(δ1 = 1) =
λage1 (T age|D,U, Z1(D))

λage1 (T age|D,U,Z1(D)) + λage2 (T age|D,Z2(D))

and

Pr(δ2 = 1) = 1− Pr(δ1 = 1).

If D was less than T age then the observation was kept in the sample and T was defined as

T age −D. Time of censoring C was generated as a uniform random variable Uniform(γC),

where γC is chosen to achieve the desired proportion of censored observations, and then X

was set to be min(T,C). The procedure was repeated until we reached the desired number

of observations with D < T age.

All the simulations were performed with 1000 iterations. We looked at 2 sample sizes,

200 and 600, and two levels of censoring, about 10% and about 35%.

We report two scenarios here, Scenario 1 with the model for event 2 non-proportional on

the time since diagnosis scale, to demonstrate the advantages of using the proposed estimator

on two time scales vs. Cheng et al, and Scenario 2 with the model for event 2 proportional

on the time since diagnosis scale, to assess the loss of efficiency compared to Cheng et al

when estimating both hazards on the time since diagnosis scale is appropriate.

Common parameter values for both scenarios were: α1 = 0.03, β1U = 0.1, β1D = 0.01, β1Z1 =

0.01, γ2 = 40, β2D = 0.01, β2Z2 = 0.01, π = 0.5, µD = 50, σ2
D = 25, µ1 = 5, σ2

2 = 2, µ2 =

D/10, σ2
2 = 2. Values of covariates for which we made all the predictions were: U =

1, D = 30, Z1 = 5, Z2 = 3. For Scenario 1, the values of α21 and α22 were not equal,

α21 = 0.05, α22 = 0.5. For Scenario 2 they were equal to make the model for event 2 pro-

portional on the time since diagnosis scale, α21 = α22 = 0.1. The 10% and 35% levels of

censoring were achieved by setting γC to be 70 and 25 respectively for Scenario 1, and 60

and 30 for Scenario 2.

For both scenarios, the empirical variance of the estimates was close to the mean esti-

mated variance. Under Scenario 1, when the model for event 2 was not proportional on

the time since diagnosis scale, the proposed estimator on two time scales had small bias for

events of both type which improved with the increase of sample size, while Cheng et al. had

a very large systematic bias for event of type 2, and hence a significant bias for event of type

1. The coverage probability for the Cheng et al estimator under Scenario 1 was very poor,

while for the proposed estimator on two time scales it was close to nominal.

Another important observation was that under Scenario 1, with the increase of the sample

size the coverage probability for Cheng et al. estimator declined dramatically, due to the

43



fact that the systematic bias stayed the same and the variance of the estimates decreased

with the increase of sample size. Therefore the use of the Cheng et al when the model for

event of type 2 is not proportional on the time since diagnosis scale may lead to a very

undesirable situation when with the increase of the sample size the quality of prediction

becomes unacceptable instead of improving.

Under Scenario 2, when the model for cause 2 was proportional on the time since diagnosis

scale and hence the use of Cheng et al. was appropriate, we observed some loss of efficiency

by the estimator on two time scales due to left truncation on the age scale. The variance of

the proposed estimator on two time scales for event 1 was about 1.5 times larger than the

variance of the estimator from Cheng et al., and for event 2 it was about 3-5 times larger.

Such increase of the variance can be explained by the fact that when we estimate the hazard

functions on the age scale for event 2, due to left truncation we have fewer subjects at risk

for each event of type 2 than when we have when we work on the time since diagnosis scale.

Therefore the variability of the estimates increases compared to Cheng et al, and this is the

price one has to pay for eliminating the bias. The coverage probabilities for the proposed

estimator on two scales were slightly lower than nominal for sample size 200 and improved

to almost nominal level when sample size increased to 600.

The results are summarized in tables 4.1 and 4.2 below.
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Table 4.4: Scenario 1. Model for event 2 non-proportional on the time since diagnosis scale.

Two Time Scales Cheng et al.

Censored Event Time True Bias Emp.Var V̂ ar CP Bias Emp.Var V̂ ar CP

Sample size = 200
10% 5 0.178 −0.0024 0.00190 0.00194 0.95 −0.0237 0.00147 0.00148 0.89

10 0.278 −0.0019 0.00371 0.00372 0.95 −0.0619 0.00229 0.00229 0.75

2 5 0.264 −0.0073 0.00403 0.00420 0.96 0.1668 0.00174 0.00217 0.03
10 0.411 −0.0119 0.00437 0.00428 0.94 0.2168 0.00205 0.00253 0.01

Censored Event Time True Bias Emp.Var V̂ ar CP Bias Emp.Var V̂ ar CP

Sample size = 200
35% 1 5 0.178 −0.0018 0.00231 0.00226 0.94 −0.0228 0.00176 0.00171 0.89

10 0.278 −0.0021 0.00474 0.00450 0.95 −0.0599 0.00288 0.00274 0.78

2 5 0.264 −0.0086 0.00492 0.00557 0.96 0.1607 0.00228 0.00239 0.08
10 0.411 −0.0122 0.00510 0.00553 0.95 0.2080 0.00268 0.00304 0.04

Censored Event Time True Bias Emp.Var V̂ ar CP Bias Emp.Var V̂ ar CP

Sample size = 600
10% 1 5 0.178 0.0003 0.00068 0.00064 0.94 −0.0216 0.00051 0.00049 0.82

10 0.278 0.0009 0.00123 0.00124 0.95 −0.0598 0.00077 0.00076 0.45

2 5 0.264 −0.0045 0.00147 0.00143 0.94 0.1689 0.00062 0.00072 0.00
10 0.411 −0.0054 0.00152 0.00143 0.94 0.2207 0.00078 0.00083 0.00

Censored Event Time True Bias Emp.Var V̂ ar CP Bias Emp.Var V̂ ar CP

Sample size = 600
35% 1 5 0.178 −0.0003 0.00070 0.00075 0.95 −0.0218 0.00054 0.00056 0.86

10 0.278 0.0001 0.00141 0.00150 0.96 −0.0586 0.00088 0.00090 0.52

2 5 0.264 −0.0058 0.00183 0.00189 0.95 0.1632 0.00068 0.00079 0.00
10 0.411 −0.0073 0.00185 0.00185 0.94 0.2126 0.00090 0.00099 0.00
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Table 4.5: Scenario 2. Model for event 2 proportional on the time since diagnosis scale.

Two Time Scales Cheng et al.

Censored Event Time True Bias Emp.Var V̂ ar CP Bias Emp.Var V̂ ar CP

Sample size = 200
10% 1 5 0.153 0.0004 0.00230 0.00219 0.93 −0.0008 0.00200 0.00190 0.94

10 0.213 0.0018 0.00410 0.00384 0.93 −0.0018 0.00310 0.00297 0.95

2 5 0.453 −0.0278 0.01203 0.01157 0.94 −0.0013 0.00278 0.00271 0.95
10 0.631 −0.0416 0.00758 0.00836 0.92 −0.0049 0.00343 0.00324 0.94

Censored Event Time True Bias Emp.Var V̂ ar CP Bias Emp.Var V̂ ar CP

Sample size = 200
35% 1 5 0.153 −0.0027 0.00250 0.00235 0.92 −0.0045 0.00204 0.00202 0.94

10 0.213 −0.0030 0.00445 0.00416 0.94 −0.0076 0.00323 0.00322 0.95

2 5 0.453 −0.0351 0.01377 0.01319 0.93 −0.0024 0.00297 0.00294 0.94
10 0.631 −0.0485 0.00907 0.00962 0.91 −0.0033 0.00364 0.00359 0.94

Censored Event Time True Bias Emp.Var V̂ ar CP Bias Emp.Var V̂ ar CP

Sample size = 600
10% 1 5 0.153 −0.0007 0.00072 0.00070 0.95 −0.0013 0.00059 0.00061 0.95

10 0.213 0.0000 0.00128 0.00124 0.95 −0.0015 0.00092 0.00097 0.96

2 5 0.453 −0.0097 0.00415 0.00401 0.93 −0.0003 0.00079 0.00089 0.97
10 0.631 −0.0135 0.00250 0.00271 0.95 −0.0013 0.00095 0.00105 0.96

Censored Event Time True Bias Emp.Var V̂ ar CP Bias Emp.Var V̂ ar CP

Sample size = 600
35% 1 5 0.153 −0.0014 0.00075 0.00077 0.95 −0.0013 0.00065 0.00066 0.94

10 0.213 −0.0020 0.00133 0.00138 0.95 −0.0022 0.00103 0.00106 0.95

2 5 0.453 −0.0065 0.00451 0.00478 0.96 0.0009 0.00090 0.00095 0.96
10 0.631 −0.0122 0.00285 0.00315 0.96 −0.0004 0.00107 0.00116 0.96
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Table 4.6: Covariate Distribution in the analysis data set based on SEER Colon Cancer
Data.

Characteristic Mean(SD) or % Characteristic %

Age at diagnosis 77 (6.8) Site: proximal 62.3
distal 37.7

Race/ethnicity Non-Hispanic white 81.3
Hispanic 5.1 Substage III A 9.7
Non-Hispanic black 6.8 III B 60.6
AI/AN 0.3 III C 29.7
Asian/PI 6.6 Grade I/II 69.6

III/IV 30.4
Gender Male 43.1

Female 56.9 Comorbidity scores 0 60.1
0 < −1 30.5

Marital status Married 48.2 1 < −2.2 9.0
Single 51.8 ≥ 2.2 0.4

4.4 Real Data Example

We illustrated our inference procedure using stage III colon cancer data obtained from the

SEER program of National Cancer Institute. We analyzed data from patients diagnosed

with colon cancer between years 1994 and 2005, with age at diagnosis 66 years and older,

restricted to patients with stage III, surgery performed and from the 13 SEER registries

(except Alaska and the state of California). For our analysis we used data on the following

covariates: tumor site (distal vs proximal), substage, grade, marital status, race/ethnicity,

gender, age at diagnosis, comorbidity score, and year of diagnosis. The comorbidity scores

were computed from Medicare (part B) data for the year preceding the event of diagnosis.

This limited the analysis only to those patients who had Medicare data, hence the restriction

on age at diagnosis being 66 and older. Of the 14,657 patients, 5,685 patients (38.8%) died

from colon cancer, 3,123 patients (21.3%) died from other causes, and 5,849 patients (39.9%)

were censored. The maximum follow-up was 10 years. The descriptive statistics for the

sample are shown in Table 4.3.

We analyzed the data two ways, using time since diagnosis time scale for both event

types (standard analysis), and using time since diagnosis scale for cancer death and age

scale for death of other causes (proposed method). Under both approaches, we fitted a

proportional hazards model for cause-specific hazards. Only covariates significant on the

0.05 level were kept in the final models. For the death of cancer, the covariates were age
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at diagnosis, race, gender, marital status, year of diagnosis, and all three of cancer-related

covariates, tumor site, grade, and substage. For the death of other causes, the final set of

covariates on both time scales was age at diagnosis, gender, race, marital status, year of

diagnosis, comborbisity score, interaction between comobridity score and age at diagnosis,

and, somewhat surprisingly, tumor grade. We obtained regression coefficients from models

on both time scales, and then computed predicted cumulative incidence functions based on

both methods. The regression coefficients are reported in Table 4.4, and plots of cumulative

incidence functions for two specific combinations of covariate values are shown in Figure 4.1.
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Table 4.7: Regression coefficients for death of cancer and of other causes obtained by the standard and the proposed methods.

Death of colon cancer Death of other causes
Time since diagnosis scale Time since diagnosis scale Age scale

(both methods) (standard method) (proposed method)

Characteristic β̂ SE P-value β̂ SE P-value β̂ SE P-value

Site, distal vs proximal -0.084 0.029 0.003
Substage, III B vs III A 0.833 0.068 < .001
Substage, III C vs III A 1.416 0.069 < .001
Grade, III/IV vs I/II 0.261 0.029 < .001 0.12 0.039 0.002 0.119 0.04 0.003
Single vs married 0.129 0.03 < .001 0.302 0.041 < .001 0.294 0.041 < .001
Race (reference - non-Hispanic white)
Hispanic 0.114 0.06 0.058 -0.041 0.089 0.647 -0.026 0.089 0.773
Non-Hispanic black 0.232 0.051 < .001 0.219 0.068 0.001 0.236 0.068 0.001
AI/AN 0.447 0.251 0.074 0.501 0.318 0.116 0.447 0.319 0.161
API -0.207 0.059 < .001 -0.38 0.088 < .001 -0.376 0.088 < .001
Female vs male -0.108 0.029 < .001 -0.358 0.04 < .001 -0.355 0.04 < .001
Age at diagnosis 0.036 0.002 < .001 0.097 0.004 < .001 -0.018 0.009 0.035
Comorbidity 4.118 0.368 < .001 3.765 0.358 < .001
Year of diagnosis -0.024 0.004 < .001 -0.023 0.006 < .001 -0.029 0.006 < .001
Age at diagnosis x comorbidity -0.04 0.005 < .001 -0.035 0.005 < .001
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The results from both methods are very similar. We only have one set of coefficients

for the cancer death, because both approaches required fitting the same model on the same

time since diagnosis scale for death of cancer. For death from other causes we have two

sets of regression coefficients, one from the model on the time since diagnosis scale, and the

other from the model on the age scale. The point estimates and the standard errors are

almost identical. The only coefficient notably different between the two models is for age

at diagnosis. This could be expected, however, because of the different interpretation of the

effect of age in these two models. In the model on the time since diagnosis scale, age at

diagnosis captures all the age effect, while in the model on the age scale, age effect is mostly

accounted for by the baseline hazard.

Predicted cumulative incidence functions obtained by both methods turned out to be very

similar either. The top panel of Figure 4.1 shows plots of predicted probabilities of death

from cancer and from other causes over time for the first 10 years after cancer diagnosis for

a non-hispanic white man, married, diagnosed in 2005 with cancer with substage IIIB, grade

III/IV, proximal site, at age 76 years, which is close to the mean age at diagnosis in this

data set, and with a relatively low comorbidity score of 0.4. 10 years after the diagnosis,

this patient has about 40% probability to die of cancer, and about 35% probability to die of

other causes. There is virtually no difference between predictions obtained by the standard

methods and the proposed method.

The plots in the bottom panel of the Figure 4.1 are for the patient with the same covarate

values, but diagnosed at a younger age, 66 years, and with the high comorbidity score of

1.4. Even though this patient is much younger, he has a much higher probability to die of

other causes 10 years after the diagnosis, about 55%, due to the high comorbidity score. The

plots on the bottom panel demonstrate the most extreme difference between two different

prediction methods which we observed in this data. The predictions differ for this particular

set of covariates most likely due to the fact that the covariate values are very extreme: 66

years is the earliest possible age in the data set, essentially the left boundary, and 1.4 is a

very high comorbidity score, about the 90th percentile in this data.

The fact that the two methods produced similar results suggests that for our data the

model on the time since diagnosis scale for death from other causes might have been specified

correctly, and the distribution of time to death from other causes might be Gompertz or very

close to Gompertz. To verify this, we fitted a fully parametric Gompertz model for death

from other causes on the age scale scale. We then plotted the baseline hazard estimate

from the parametric model and compared it with the Breslow estimator for the baseline

hazard from the semi-parametric model (Figure 4.2). The estimates are close. This is quite
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Figure 4.7: Predicted cumulative incidence functions for death of cancer (left column) and
of other causes (right column), with 95% pointwise confidence intervals. Top panel shows
prediction for a patient diagnosed at 76 years with a comorbidity score 0.4; bottom panel
shows prediction for a patient diagnosed at 66 years with a comorbidity score 1.4.
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a natural result, if we recall that the Gompertz distribution was originally introduced to

describe all-cause mortality in adult human population (Gompertz, 1825).

Figure 4.8: Baseline hazard from the model for death from other causes on the age scale.
Breslow estimator from the semi-parametric model vs. Gompertz hazard from a fully para-
metric model.

4.5 Discussion

In theory, there may be situations where cause-specific hazard models for the two causes

are both correctly specified on the age scale. In such scenarios, one may modify the single

time scale methodology in Cheng et al. to obtain valid estimates of the cumulative incidence

functions fitting both cause-specific models using the left truncation approach on the age

scale. If the models for death from cancer and death from other causes are correctly specified

on both time scales, then the two time scales approach is also valid, as well as fitting both

models on the time since diagnosis scale. Which approach is preferred in this setting? One

issue is ease of interpretation. For cancer mortality arising in disease registries, it is easier to

interpret results on the time since diagnosis scale than on the age scale. In other applications,
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it is possible that the age scale may be more easily interpreted. Another issue is the efficiency

of the predictions. Simulation results (not shown) demonstrate that predictions based on

fitting the two cause-specific models on the age scale using left truncated methodology for

both events are generally less efficient than those based on the two time scale approach

when both approaches are valid (sometimes much less efficient). In a similar vein, the two

time scales approach may be less efficient than single time scale approach on the time since

diagnosis scale when both approaches are valid. In general, fitting models on the age scale

using left truncated methodology may will yield less efficient predictions than those based on

fitting models on the time since diagnosis scale where left truncation is not needed. Such loss

of efficiency may be quite large, particularly compared to the loss of efficiency in estimation

of the hazard ratio regression parameters, which tends to be modest. This occurs because of

the large loss in efficiency in estimating the baseline hazard function on the age scale versus

on the time since diagnosis scale. If the predictions are the primary focus, then one would

want to use methods which are most efficient amongst those methods which are valid.

4.6 Appendix

LetWi = (Ai, Z1i, Z2i(A)), w0 = (a0, z01, z02(a0))T , β1 = (β11, β12, β13)T and β2 = (β21, β22, β23)T .

Let λtime1 (t;w0) = λ01(t)exp(βT1 w0) and λage2 (a;w0) = λ02(a)exp(βT2 w0), where a = a0 + t.

Define the counting process notation N1i(t) = I(Xi ≤ t, δ1i = 1), N2i(t) = I(A ≤ Xage
i ≤

t, δ2i = 1), Y1i(u) = I(Xi ≥ u), and Y2i(u) = I(Xage
i ≥ u ≥ A). Let

Mki(t) = Nki(t)−
∫ t

0

Yki(u)exp(βTkWi)dΛ0k(u), k = 1, 2.

By the arguments similar to Andersen and Gill (1982) and Lin et al. (1994), for t ∈ [0, τ1],

τ1 < inf{t : Pr(X1 ≥ t) = 0}, n1/2{Λ̂time
1 (t;w0) − Λtime

1 (t;w0)} is asymptotically equivalent

to

G1(t;w0) = n−1/2

n∑
i=1

[ ∫ t

0

exp(βT1 w0)

S
(0)
1 (β1, u)

dM1i(u)

+ hT1 (t;w0)Ω−1
1

∫ ∞
0

{Wi − W̄1(β1, u)}dM1i(u)
]

(4.2)

and similarly, for a ∈ [a0, τ2], τ2 < inf{t : Pr(Xage
1 ≥ a ≥ A1) = 0}, n1/2[{Λ̂age

2 (a;w0) −
Λ̂age

2 (a0;w0)} − {Λage
2 (t;w0)− Λage

2 (a0;w0}] is asymptotically equivalent to
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G2(a;w0) = n−1/2

n∑
i=1

[ ∫ a

a0

exp(βT2 w0)

S
(0)
2 (β2, u)

dM2i(u)

+ (h2(a;w0)− h2(a0;w0))Ω−1
2

∫ ∞
0

{Wi − W̄2(β2, u)}dM2i(u)
]
, (4.3)

where S
(r)
k (β, t) = 1

n

∑n
i=1 Yki(t)exp(β

TWi)W
⊗r
i , s

(r)
k (β, t) = E(Srk(β, t)),

W̄k(β, t) =
S

(1)
k (β, t)

S
(0)
k (β, t)

, w̄k(β, t) =
s

(1)
k (β, t)

s
(0)
k (β, t)

,

Ωk =

∫ ∞
0

{s(2)
k (βk, u)

s
(0)
k (βk, u)

− w̄k(βk, u)⊗2s
(0)
k (βk, u)dΛ0k(u)

}
,

hk(t; z0) =

∫ t

0

{w0 − w̄k(βk, u)}exp(βTk w0)dΛ0k(u),

for r = 0, 1, 2 and following the convention that for a column vector v, v⊗0 = 1, v⊗1 = v,

and v⊗2 = vvT .

Using the consistency of Λ̂time
1 (u;w0), Taylor expansion and integration by parts as de-

54



scribed in Cheng et al (1998), (4.1) and (4.2), U1(t;w0) = n1/2{F̂1(t;w0)− F1(t;w0)} is

U1(t;w0) = n1/2
{ t∫

0

Ŝ1(u;w0)dΛ̂time
1 (u;w0)−

t∫
0

S1(u;w0)dΛtime
1 (u;w0)

}

= n1/2

t∫
0

S1(u;w0)d{Λ̂time
1 (u;w0)− Λtime

1 (u;w0)}

+ n1/2

t∫
0

{Ŝ1(u;w0)− S1(u;w0)}dΛ̂time
1 (u;w0)

≈
t∫

0

S1(u;w0)dG1(u;w0)−
t∫

0

S1(u;w0){G1(u;w0) +G2(a0 + u;w0)}dΛtime
1 (u;w0)

=

t∫
0

S1(u;w0)dG1(u;w0)−
t∫

0

{G1(u;w0) +G2(a0 + u;w0)}dF1(u;w0)

t∫
0

S1(u;w0)dG1(u;w0)−
t∫

0

{F1(t;w0)− F1(u;w0)}{dG1(u;w0) + dG2(a;w0)}

= n−1/2

n∑
i=1

I1i(t;w0), (4.4)

where

I1i(t;w0) =

t∫
0

[
S1(u;w0)− {F1(t;w0)− F1(u;w0)}

]exp(βT1 w0)

S
(0)
1 (β1, u)

dM1i(u)

+ {φ1(t;w0)− ψ11(t;w0)}TΩ−1
1

∞∫
0

{Wi − W̄1(β1, u)}dM1i(u)

−
t∫

0

{F1(t;w0)− F1(u;w0)} exp(βT2 w0)

S
(0)
2 (β2, a0 + u)

dM2i(a0 + u)

− ψT12(t;w0)Ω−1
2

∞∫
0

{Wi − W̄2(β2, u)}dM2i(u),

S1(u;w0) = exp
[
− Λtime

1 (u;w0)− {Λage
2 (a0 + u;w0)− Λage

2 (a0;w0)}
]
,
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φ1(t;w0) =

t∫
0

S1(u;w0){w0 − w̄1(β1, u)}exp(βT1 w0)dΛ01(u),

ψ11(t;w0) =

t∫
0

{F1(t;w0)− F (u;w0)}{w0 − w̄1(β1, u)}exp(βT1 w0)dΛ01(u),

and ψ12(t;w0) =

t∫
0

{F1(t;w0)− F1(u;w0)}{w0 − w̄2(β2, a0 + u)}exp(βT2 w0)dΛ02(a0 + u).

Mki(t), k = 1, 2 in (4.3) have different filtrations defined based on the chosen time scales

and the martingale theory holds for each of them but with respect to different filtrations.

Even though N1i and N2i cannot jump at the same time, Mki(t), k = 1, 2 with different

filtrations are not orthogonal martingales. I1i(t;w0) in (4.3) contains S
(r)
1 and S

(r)
2 , r = 0, 1, 2

which involve data on all n subjects. Hence, I1i(t;w0) are not i.i.d. In this case, we cannot use

the standard martingale theory (Andersen et al, 1993). However, using empirical processes

arguments, we can show that

n−1/2

n∑
i=1

I1i(t;w0) = n−1/2

n∑
i=1

Ĩ1i(t;w0) + op(1),

where Ĩ1i(t;w0) is I1i(t;w0) with S
(r)
1 and S

(r)
2 replaced by respective theoretical quantities,

s
(r)
1 and s

(r)
2 , r = (0, 1, 2). Thus, by the central limit theorem,

n−1/2

n∑
i=1

Ĩ1i(t;w0)→ N(0, E{Ĩ1i(t;w0)2}).

The variance V1(t;w0) = E{Ĩ1i(t;w0)2} is estimated by

V̂1(t;w0) = n−1

n∑
i=1

ˆ̃I1i(t;w0)2,

where ˆ̃I1i(t;w0) is Ĩ1i(t;w0) with all theoretical quantities replaced by their empirical coun-

terparts and Mki(t) replaced by M̂ki(t) = Nki(t) −
t∫

0

Yki(u)exp(β̂TkWi)dΛ0k(u) with Λ̂0k(t)

being the Breslow estimator for Λ0k.
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Using similar arguments, U2(a;w0) = n1/2{F̂2(a;w0)− F2(a;w0)} can be expressed as

U2(a;w0) = n1/2
{ a∫
a0

Ŝ2(s;w0)dΛ̂age
2 (s;w0)−

a∫
a0

S2(s;w0)dΛage
2 (s;w0)

}

= n1/2

a∫
a0

S2(s;w0)d{Λ̂age
2 (s;w0)− Λage

2 (s;w0)}

+ n1/2

a∫
a0

{Ŝ2(s;w0)− S2(s;w0)}dΛ̂age
2 (s;w0)

≈
a∫

a0

S2(a;w0)dG3(s;w0)−
a∫

a0

S2(s;w0){G1(s− a0;w0) +G3(s;w0)}dΛage
2 (s;w0)

=

a∫
a0

S2(s;w0)dG3(s;w0)−
a∫

a0

{G1(s− a0;w0) +G3(s;w0)}dF2(s;w0)

a∫
a0

S2(s;w0)dG2(s;w0)−
a∫

a0

{F2(a;w0)− F2(a;w0)}{dG1(s− a0;w0) + dG3(s;w0)}

= n−1/2

n∑
i=1

I2i(a;w0),

where

I2i(t;w0) =

a∫
a0

[
S2(s;w0)− {F2(a;w0)− F2(s;w0)}

]exp(βT2 w0)

S
(0)
2 (β2, u)

dM2i(u)

+ {φ2(a;w0)− ψ22(a;w0)}TΩ−1
2

∞∫
0

{Wi − W̄2(β2, u)}dM2i(u)

−
a∫

a0

{F2(a;w0)− F2(s;w0)} exp(βT1 w0)

S
(0)
1 (β1, s− a0)

dM1i(s− a0)

− ψT21(a;w0)Ω−1
1

∞∫
0

{Wi − W̄1(β1, u)}dM1i(u),
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G3(a;w0) = n−1/2

n∑
i=1

[ ∫ a

a0

exp(βT2 w0)

S
(0)
2 (β2, u)

dM2i(u)

+ h2(a;w0)Ω−1
2

∫ ∞
0

{Wi − W̄2(β2, u)}dM2i(u)
]
,

S2(s;w0) = exp
[
− Λtime

1 (s− a0;w0)− Λage
2 (s;w0)

]
,

φ2(a;w0) =

a∫
a0

S2(s;w0){w0 − w̄2(β2, s)}exp(βT2 w0)dΛ02(s),

ψ22(t;w0) =

a∫
a0

{F2(a;w0)− F2(s;w0)}{w0 − ¯(w)2(β2, s)}exp(βT1 w0)dΛ01(s),

and ψ21(a;w0) =

a∫
a0

{F2(a;w0)− F2(s;w0)}{w0 − w̄1(β1, s− a0)}exp(βT1 w0)dΛ01(s− a0).

Using empirical processes arguments, we can show that

n−1/2

n∑
i=1

I2i(a;w0) = n−1/2

n∑
i=1

Ĩ2k(a;w0) + op(1),

where Ĩ2i(a;w0) is I2i(a;w0) with S
(r)
1 and S

(r)
2 replaced by respective theoretical quanti-

ties, s
(r)
1 and s

(r)
2 , r = (0, 1, 2). Thus, by the central limit theorem,

n−1/2

n∑
i=1

Ĩ2i(a;w0)→ N(0, E{Ĩ2i(a;w0)2}).

The variance V2(t;w0) = E{Ĩ2i(a;w0)2} is estimated by

V̂2(a;w0) = n−1

n∑
i=1

ˆ̃I2i(a;w0)2,

where ˆ̃I2i(a;w0) is Ĩ2i(a;w0) with all theoretical quantities replaced by their empirical coun-

terparts and Mki(t) replaced by M̂ki(t).
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Chapter 5. Non-Parametric Estimation of Cumulative Incidence Functions for

Competing Risks data with Missing Cause of Failure

5.1 Introduction

When studying time-to-event data with more than one possible cause of failure, specifically

competing risks set-up, it is essential to be able to determine the cause of each observed

failure in order to classify the events. However, in practice sometimes such classification is

not possible, either at all or at the moment of data analysis, which results in possibly missing

event type. The missingness mechanism can be classified in the usual fashion as missing

completely at random (MCAR), missing at random (MAR), or missing not at random. In

the non-parametric framework for competing risks setup, the MAR assumption corresponds

to the missingness pattern of the event type possibly depending on the event time, but

not depending on the event type, which constitutes the unobserved data in these settings.

The MCAR assumption requires that the missingness pattern is also independent of event

time (Laan and McKeague, 1998). As described earlier in Chapter 1, Section 1.6, treating

observations with missing cause of failure as censored leads to underestimation of the hazard

functions, even if the event type is missing completely at random.

Numerous methods to account for events with missing cause of failure have been sug-

gested. In 1982 Dinse (Dinse, 1982) provided a classification of incomplete competing risks

data, which along with the standard fully observed and fully censored observations allowed

two kinds of partially complete observations, with either observed time of failure and missing

type of failure, or with an observed type but censored time of failure. To analyse such data,

he suggested a non-parametric maximum likelihood estimator (NPMLE) obtained by an EM

algorithm, which reduced to a closed-form estimator in case the data contained no obser-

vations with observed failure type and censored failure time. Later he further developed

his methods (Dinse, 1986) and considered cases of missingness patterns equivaluent both

to MCAR and MAR. Miyakawa (Miyakawa, 1984) studied a fully parametric exponential

model and a non-parametric model, both under the MCAR assumption for the missing type

of failure.

A closely related problem of univariate time-to-event data without competing risks but

with possibly missing at random censoring indicator was further studied by McKeague and

Subramanian (McKeague and Subramanian, 1998), van der Laan and McKeague (Laan and

McKeague, 1998), and Subramanian and Bean (Subramanian, 2006; Subramanian and Bean,

2008). Cook and Kosorok (Cook and Kosorok, 2004) considered a similar problem of time-

to-event data with incomplete event adjudication.
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One of the most cited in practice methods appears to be the methods by Lu and Tsiatis

(Lu and Tsiatis, 2001), who suggested to combine semi-parametric inference with multiple

imputations of the missing event type, based on a parametric model for the conditional

probability of the event of interest given that an event of any type has occurred. The multiple

imputations method was further developed by Lee et al for semi-parametric settings (Lee

et al., 2011) and in non-parametric settings (Lee et al., 2013).

Effraimidis and Dalh (Effraimidis and Dahl, 2013) recently developed a non-parametric

estimator for cumulative incidence functions with the inverse probability weighting scheme

which utilizes estimators of the probability of the event type being observed smoothed over

covariate values.

This chapter was motivated by the paper by Lin et al (Lin et al., 2013), who for the

recurrent events set-up have proposed a non-parametric rate proportion estimator for mean

event rates, which utilizes local polynomial regression over time to estimate probabilities of

events of specific types and then plugs these event probability estimates into the expression

for mean event rates. The advantage of this method is that it doesn’t require any model

specification for missingness pattern or event probabilities and works under the missing at

random (MAR) assumptions. The idea is related to presmoothed Nelson-Aalen, Kaplan-

Meier, and Aalen-Johansen estimators, described recently in literature (Cao et al., 2003;

Jacome and Cao, 2007; El-Nouty and Lancar, 2005). Using such smoothing techniques for

analysis of univariate survival data with censoring indicators missing at random have been

then proposed by Subramanian and Bean, who developed estimators for the integrated haz-

ard, the survival function, and the hazard rate function (Subramanian, 2006; Subramanian

and Bean, 2008). Wang, Dinse and Liu (Wang et al., 2012) suggested to use the same idea

for competing risks data with missing event type, however, they didn’t go further than esti-

mating the hazard rates λj(t). The goal of this chapter is to fully extend the approach to the

competing risks set-up and to propose estimators for cumulative cause-specific hazards and

cumulative incidence functions. Deriving the estimators themselves for cumulative quantities

is trivial and can be easily done by plugging in the known estimators for hazard rates into

the expression for the cause-specific cumulative hazard. However, deriving the finite sample

variance and the asypmtotic properties of the resulting estimators for cumulative hazards

and cumulative incidence functions is a much more technically challenging and interesting

part. Unlike the case of the hazard rates, the estimators of the cumulative quantities can

be shown to be
√
n-consistent under some conditions, even though they utilize the local

regression estimates which are known to have a slower than
√
n convergence rate.

Despite the multidude of papers on the topic, it turned out to be hard to find a direct
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comparator to the method which we are proposing in this paper for the competing risks setup.

Most methods that are applied in practice either are semi-parametric and concerned with

parameter estimates (Lu and Tsiatis, 2001; Gijbels et al., 2007; Cook and Kosorok, 2004),

or estimate different quantities such as 1-KM (Racine-Poon and Hoel, 1984), or assume the

probability of the event type being observed constant over time (Effraimidis and Dahl, 2013).

The second (alternative) estimator for survival data with missing censoring indicator in van

der Laan and McKeague’s paper (Laan and McKeague, 1998) seems very comparable in the

sense that it yeilds a non-parametric estimate of a subdistribution function. However, this

estimator treats censoring as a competing risk and assumes no further independent censoring

and hence can’t be used in our settings without modification, doing which is beyond the scope

of this chapter.

This chapter is organized as follows. Section 5.2 introduces the proposed estimator and

establishes its asymptotic properties. Section 5.3 contains some simulations results, and

Section 5.4 - real data analysis example.

5.2 Methods

Let us first introduce some notation. Let’s assume without the loss of generality that we

have J = 2 possible event types, indexed by j = 1, 2, and the event of interest is j = 1. The

data which we observe for the i− th patient, i = 1, ..., n, is (Xi, δi, Ri(Xi), δiεi), where Xi is

an observed time, δi is the censoring indicator, εi ∈ {1, 2} is the event type which is allowed

to be missing, and Ri(Xi) is the indicator of whether the event type was observed or not

(with Ri(Xi) = 1 if the event type is observed). Note that Ri(Xi) is not observed when Xi

is a censoring time. Let π(t) = Pr(Ri(Xi) = 1|Xi = t, δi = 1). We’ll use notation Ri(Xi)

to emphasize the fact that the probability of Ri(Xi) = 1 may depend on the event time Xi.

Let p1(t) = Pr(εi = 1|Xi = t, δi = 1) be the true conditional probability of event type being

1, given an event of any type was observed. Let Nji(t) be counting processes corresponding

to events with observed event type j = 1, 2, Nji(t) = I(Xi ≤ t, δi = 1, Ri(Xi) = 1, εi = j).

Let N0i(t) be the overall counting process which has jumps when any of the events occurs,

N0i(t) = I(Xi ≤ t, δi = 1). Note that Nji(t) only jump when an event with the observed

event type occurs, while the overall process N0i(t) jumps even if the event type is missing.

Let Yi(t) = I(Xi ≥ t), Y.(t) =
n∑
i=1

Yi(t), and y(t) = Pr(Y1(t)) = 1).

Let Λj(t) denote the true cause-specific cumulative hazard for cause j = 1, 2, and let
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Λ0(t) =
2∑
j=1

Λj(t) be the true overall cumulative hazard. Let’s define

Λ̂cc
1 (t) =

n∑
i=1

t∫
0

Y (u)−1Ri(u)dN1i(u) - complete case estimator for Λ1(t),

Λ̂0(t) =
n∑
i=1

t∫
0

Y (u)−1dN0i(u) - Nelson-Aalen estimator for Λ0(t),

Ŝ(t) - the Kaplan-Meier estimator of the overall survival function.

Note that all the quantities that we need to compute the last two estimators for the overall

cumulative hazard and the overall survival function are fully observed and hence there is no

need to account for missing event type to obtain them.

The idea of the proposed estimator for the cumulative incidence function is the following.

Using local polynomial regression (Fan and Gijbels, 1996), we can obtain a non-parametric

estimate p̂1(u) of the conditional probability p1(u) of an event of type 1 occuring at time u,

given an event of any type has occurred at time u. The estimate p̂1(u) is obtained only from

complete case observations, however, it will be asymptotically unbiased if the event type is

missing at random, that is π(u) depends on the event time but does not depend on the event

type. By the Bayes rule and the MAR assumption we have

p1(u) = Pr(εi = 1|Xi = u, δi = 1) =

=
Pr(Ri(Xi) = 1|Xi = u, δi = 1)Pr(εi = 1|Xi = u, δi = 1)

Pr(Ri(Xi) = 1|Xi = u, δi = 1)
=

=
Pr(Ri(Xi) = 1|Xi = u, δi = 1, εi = 1)Pr(εi = 1|Xi = u, δi = 1)

Pr(Ri(Xi) = 1|Xi = u, δi = 1)
=

=
Pr(Ri(Xi) = 1, εi = 1|Xi = u, δi = 1)

Pr(Ri(Xi) = 1|Xi = u, δi = 1)
=

= Pr(εi = 1|Xi = u, δi = 1, Ri(Xi) = 1),

where the latter can be correctly estimated from the complete case data only.

The local estimate of p1(t) for t in some neighborhood of t0 can be obtained by regressing

θ(t) = g(p1(t)) on (t − t0)r where g(.) is a link function and r = 1, ..., R with R being the

highest degree of the polynomials of time that we use. The idea comes from the fact that

for t ∈ (t0 − b, t0 + b) and for b > 0 - small, we can approximate θ(t) using Taylor series
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expansion as

θ(t) ≈
R∑
r=0

1

r!
θ(r)(t0)(t− t0)r =

R∑
r=0

βr(t0)(t− t0)r,

where the vector of regressions coefficients β(t0) can be etimated by minimizing the local

loglikelihood

l(β(t0)) =
n∑
i=1

∫ τ

0

Kb(u− t0)li(u, t0,β(t0)))Ri(u)dN0i(u)

where li(u, t0,β(t0))) is the contribution to the loglikelihood from the i − th observation

derived in the standard fashion, Kb(u − t0) = 1
b
K(u−t0

b
) is a kernel function, and b = bn -

bandwidth. The estimate of p1(t0) is then g−1(θ̂(t0)) = g−1(β̂0(t0)) where β0(t0) is the local

intercept. (See (Fan and Gijbels, 1996) for more detail).

In practice, polynomials of degrees higher than 0 and 1 are rarely used. From here on, we

will limit ourselves to the local constant fit (that is, degree 0), known as Nadaraya-Watson

estimator, due to the relative ease of proofs of the asymptotic properties of the resuting

estimators for the cumulative cause-specific hazard and incidence function. The Nadaraya-

Watson estimator has the following explicit form:

p̂1(u) =

1
n

n∑
j=1

Rj(Xj)Kb(u−Xj)I(εj = 1)

1
n

n∑
j=1

Rj(Xj)Kb(u−Xj)
.

where Kb(.) is the kernel function. Note that the summation is only over observations with

non-missing event type, that is those with Ri(Xi) = 1.

The proposed estimator for integrated cause-specific hazard is then

Λ̂1(t, p̂1(t)) =
n∑
i=1

t∫
0

Y (u)−1Ri(u)dN1i(u) +
n∑
i=1

t∫
0

Y (u)−1
(
1 − Ri(u)

)
p̂1(u)dN0i(u) (5.5)

In other words, events with missing event types contribute to both cause-specific hazards,

and the contribution of events with missing event type is distributed between the two cause-

specific hazards according to our estimate of the conditional probability of event of type 1

to occur.
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This leads to the proposed estimator for cumulative incidence function:

F̂1(t) =

t∫
0

Ŝ(u)dΛ̂1(u, p̂1(u)) =

=
n∑
i=1

t∫
0

Ŝ(u)Y (u)−1
[
Ri(u)dN1i(u) +

(
1−Ri(u)

)
p̂1(u)dN0i(u)

]
.

To derive the asymptotic properties of the proposed estimators, we will follow the ap-

proach used by Cao et al in (Cao et al., 2003) for presmoothed Nelson-Aalen and Kaplan-

Meier estimators. We will refer to Silverman’s and Mack and Silverman’s results for uniform

convergence rates of the Nadaraya-Watson and kernel density estimators, namely, to Lemma

1 and Theorem B in (Mack and Silverman, 1982). We will need the following assumptions:

A1. (Xi, δi, Ri, δiRiεi) are i.i.d.

A2. Censoring time is independent of failure time and failure type.

A3. The event type εi is missing at random, that is the indicator of the event type being

observed Ri(Xi) is independent of the event type εi.

A4. t ∈ [0, τ ] where τ is chosen so that y(τ) = Pr(Y1(τ) = 1) > 0.

A5. The density function fcc(t) for the distribution of event times with observed event

type (complete cases) is bounded and bounded away from zero on [0, τ ]. This implies that

both density of the event times f(u) and the conditional probability π(t) = Pr(Ri(Xi) =

1|Xi = t, δi = 1) of the event type being observed are bounded away from zero on [0, τ ].

A6. Densities fcc(u), f(u), the density h(u) of X1 = min(T1, C1) and the probability

p1(u) are twice differentiable with bounded second derivatives.

A7. The kernel K(.) is a symmetric function of bounded variation, twice differentiable

with the bounded second derivative. It has support on some interval [−L,L] for 0 < L <∞.

It satisfies
L∫
−L

K(s)ds = 1 and
L∫
−L

sK(s)ds = 0.

A8. The bandwidth sequence bn = Cn−α+op(n
−α), for some C > 0, with 1/4 < α < 1/2.

Theorem 1. Under the above assumptions, the estimator for cumulative cause-specific

hazard Λ̂1(t, p̂1(t)) defined by (5.1) is uniformly consistent on [0, τ ] and asymptotically normal

for t ∈ [0, τ ] with
√
n
(
Λ̂1(t, p̂1(t))− Λ1(t)

) d−→ N(0, E(G2
1(t)),
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where

G1(t) =

=

t∫
0

(
1−Ri(u)

)
y(u)−1[p1(u)dN0i(u)− Y1(u)dΛ1(u)]+

+

t∫
0

R1(u)y(u)−1[dN1i(u)− Y1(u)Λ1(u)]+

+ I(X1 ≤ t)R1(X1)fcc(X1)−1[I(ε1 = 1)− p1(X1)]
(
1− π(X1)

)
λ0(X1).

where fcc(u) is the density function for the times of complete case observations.

Theorem 2. Under the same assumptions as Theorem 1, the estimator for cumulative

incidence function F̂1(t) is uniformly consistent on [0, τ ] and asymptotically normal for t ∈
[0, τ ] with

√
n
(
F̂1(t)− F1(t)

) d−→ N(0, E(I2
1 (t)),

where

I1(t) =

=

t∫
0

(
1−R1(u)

)S(u)

y(u)
[p1(u)dN0i(u)− Y1(u)dΛ1(u)]+

+

t∫
0

R1(u)
S(u)

y(u)
[dN1i(u)− Y1(u)dΛ1(u)]+

+

t∫
0

R1(u)
S(u)

fcc(u)
Kb(u−X1)[I(ε1 = 1)− p1(u)]

(
1− π(u)

)
dΛ0(u)+

+

t∫
0

y(u)−1
{
F1(t)− F1(u)

}[
dN0i(u)− Y1(u)dΛ0(u)

]
.

For practical purposes, the estimates of fcc(u) and π(u) can be obtained as kernel esti-

mates in a similar fashion to the way we estimate p1(u).

The proofs of both Theorems are provided in the Appendix 1.
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Note that finite sample variance estimators for the cumulative cause-specific hazard and

cumulative incidence function can be obtained from 1
n2

n∑
j=1

G̃i,n(t) and 1
n2

n∑
j=1

Ĩi,n(t) respec-

tively by plugging in the empirical estimates instead of theoretical quantities into

G̃i,n(t) =

=

t∫
0

(
1−Ri(u)

)
y(u)−1[p1(u)dN0i(u)− Yi(u)dΛ1(u)]+

+

t∫
0

Ri(u)y(u)−1[dN1i(u)− Yi(u)Λ1(u)]+

+

t∫
0

Ri(u)fcc(u)−1Kb(u−Xi)[I(εi = 1)− p1(u)]
(
1− π(u)

)
dΛ0(u)

and

Ĩi,n(t) =

=

t∫
0

(
1−Ri(u)

)S(u)

y(u)
[p1(u)dN0i(u)− Yi(u)dΛ1(u)]+

+

t∫
0

Ri(u)
S(u)

y(u)
[dN1i(u)− Yi(u)dΛ1(u)]+

+

t∫
0

Ri(u)
S(u)

fcc(u)
Kb(u−Xi)[I(εi = 1)− p1(u)]

(
1− π(u)

)
dΛ0(u)+

+

t∫
0

y(u)−1
{
F1(t)− F1(u)

}[
dN0i(u)− Yi(u)dΛ0(u)

]
.

The derivation is a part of the proof and is provided in the Appendix 1. These estimators

were used in the simulations in tables 5.1-5.4.
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5.3 Simulation Results
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Table 5.8: Comparison of the proposed estimator of the cumulative incidence function with the complete case estimator and
the hypothetical full data estimator. Scenario 1 with time varying conditional probability of event 1.

Method

Full data Proposed Complete case

Time True Bias Emp.SE ŜE CP Bias Emp.SE ŜE CP Bias Emp.SE ŜE CP

Sample size = 200

0.10 0.095 0.0007 0.02120 0.02082 0.95 −0.0004 0.02131 0.02088 0.94 −0.0213 0.01917 0.01856 0.81
1.00 0.507 0.0012 0.03549 0.03774 0.96 −0.0026 0.04023 0.04245 0.97 −0.0669 0.04142 0.04169 0.61

Sample size = 500

0.10 0.095 0.0002 0.01268 0.01318 0.96 −0.0002 0.01289 0.01334 0.95 −0.0218 0.01091 0.01176 0.58
1.00 0.507 −0.0006 0.02368 0.02381 0.94 −0.0018 0.02591 0.02702 0.95 −0.0685 0.02552 0.02630 0.25

Sample size = 1,000

0.10 0.095 −0.0001 0.00924 0.00931 0.96 −0.0005 0.00948 0.00947 0.95 −0.0220 0.00840 0.00831 0.31
1.00 0.507 −0.0003 0.01684 0.01681 0.94 −0.0013 0.01874 0.01920 0.96 −0.0687 0.01819 0.01857 0.03

Sample size = 2,000

0.10 0.095 −0.0002 0.00668 0.00659 0.95 −0.0005 0.00678 0.00671 0.94 −0.0221 0.00593 0.00588 0.05
1.00 0.507 −0.0006 0.01203 0.01188 0.95 −0.0013 0.01330 0.01360 0.96 −0.0688 0.01327 0.01311 0.00

Sample size = 4,000

0.10 0.095 −0.0003 0.00464 0.00465 0.96 −0.0005 0.00476 0.00475 0.96 −0.0222 0.00409 0.00416 0.00
1.00 0.507 0.0000 0.00822 0.00840 0.95 0.0000 0.00910 0.00964 0.96 −0.0676 0.00918 0.00928 0.00
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Table 5.9: Comparison of the proposed estimator of the cumulative incidence function with the complete case estimator and
the hypothetical full data estimator. Scenario 2 with constant conditional probability of event 1.

Method

Full data Proposed Complete case

Time True Bias Emp.SE ŜE CP Bias Emp.SE ŜE CP Bias Emp.SE ŜE CP

Sample size = 200

0.10 0.086 0.0006 0.01971 0.01995 0.96 0.0008 0.02206 0.02323 0.96 −0.0179 0.01834 0.01815 0.84
1.00 0.317 0.0007 0.03486 0.03451 0.94 −0.0019 0.04005 0.04121 0.95 −0.0176 0.04045 0.03969 0.92

Sample size = 500

0.10 0.086 −0.0001 0.01204 0.01261 0.97 0.0003 0.01320 0.01498 0.97 −0.0182 0.01120 0.01152 0.71
1.00 0.317 0.0006 0.02065 0.02174 0.96 0.0002 0.02395 0.02590 0.96 −0.0173 0.02425 0.02498 0.90

Sample size = 1,000

0.10 0.086 0.0002 0.00869 0.00894 0.97 0.0001 0.00939 0.01073 0.97 −0.0185 0.00790 0.00814 0.41
1.00 0.317 −0.0005 0.01568 0.01533 0.94 −0.0015 0.01822 0.01848 0.97 −0.0199 0.01852 0.01755 0.77

Sample size = 2,000

0.10 0.086 0.0002 0.00660 0.00632 0.94 0.0001 0.00724 0.00765 0.96 −0.0186 0.00590 0.00575 0.14
1.00 0.317 0.0003 0.01101 0.01084 0.94 −0.0003 0.01242 0.01315 0.96 −0.0187 0.01232 0.01241 0.68

Sample size = 4,000

0.10 0.086 −0.0001 0.00430 0.00447 0.95 −0.0001 0.00480 0.00543 0.97 −0.0186 0.00404 0.00407 0.01
1.00 0.317 −0.0001 0.00783 0.00766 0.95 −0.0005 0.00874 0.00934 0.96 −0.0188 0.00874 0.00877 0.43
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Table 5.10: Simulations results comparing different variance estimators for the proposed method, for Scenario 1.

Variance estimation method

Point Estimate Infl. function Naive Bias corr. Local Var corr.

Sample size Time True Bias Emp.SE ŜE CP ŜE CP ŜE CP ŜE CP

0.10 0.095−0.0004 0.02131 0.02088 0.94 0.02029 0.93 0.02038 0.94 0.02059 0.94
200 0.50 0.367−0.0021 0.03686 0.03802 0.95 0.03308 0.92 0.03313 0.92 0.03608 0.95

1.00 0.507−0.0026 0.04023 0.04245 0.97 0.03379 0.91 0.03384 0.91 0.04169 0.96

0.10 0.095−0.0002 0.01289 0.01334 0.95 0.01295 0.94 0.01296 0.94 0.01310 0.95
500 0.50 0.367−0.0012 0.02428 0.02418 0.95 0.02098 0.92 0.02099 0.92 0.02275 0.93

1.00 0.507−0.0018 0.02591 0.02702 0.95 0.02142 0.90 0.02142 0.90 0.02630 0.95

0.10 0.095−0.0005 0.00948 0.00947 0.95 0.00916 0.94 0.00917 0.95 0.00925 0.95
1000 0.50 0.367−0.0009 0.01736 0.01714 0.95 0.01485 0.91 0.01486 0.91 0.01606 0.93

1.00 0.507−0.0013 0.01874 0.01920 0.96 0.01514 0.88 0.01515 0.88 0.01856 0.94

0.10 0.095−0.0005 0.00678 0.00671 0.94 0.00649 0.93 0.00649 0.93 0.00654 0.94
2000 0.50 0.367−0.0003 0.01186 0.01214 0.95 0.01051 0.91 0.01051 0.91 0.01134 0.93

1.00 0.507−0.0013 0.01330 0.01360 0.96 0.01072 0.88 0.01072 0.88 0.01308 0.95

0.10 0.095−0.0005 0.00476 0.00475 0.96 0.00459 0.95 0.00459 0.95 0.00463 0.95
4000 0.50 0.367 0.0000 0.00854 0.00859 0.95 0.00744 0.92 0.00744 0.92 0.00802 0.93

1.00 0.507 0.0000 0.00910 0.00964 0.96 0.00758 0.90 0.00758 0.90 0.00925 0.95
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Table 5.11: Simulations results comparing different variance estimators for the proposed method, for Scenario 2.

Variance estimation method

Point Estimate Infl. function Naive Bias corr. Local Var corr.

Sample size Time True Bias Emp.SE ŜE CP ŜE CP ŜE CP ŜE CP

0.10 0.086 0.0008 0.02206 0.02323 0.96 0.01804 0.90 0.01815 0.90 0.01885 0.92
200 0.50 0.259−0.0010 0.03695 0.03737 0.95 0.02797 0.86 0.02805 0.86 0.03197 0.90

1.00 0.317−0.0019 0.04005 0.04121 0.95 0.02963 0.85 0.02973 0.85 0.03611 0.92

0.10 0.086 0.0003 0.01320 0.01498 0.97 0.01147 0.93 0.01149 0.93 0.01185 0.93
500 0.50 0.259 0.0005 0.02122 0.02402 0.97 0.01777 0.90 0.01779 0.90 0.02008 0.93

1.00 0.317 0.0002 0.02395 0.02590 0.96 0.01885 0.87 0.01887 0.87 0.02276 0.93

0.10 0.086 0.0001 0.00939 0.01073 0.97 0.00811 0.91 0.00811 0.91 0.00835 0.92
1000 0.50 0.259−0.0008 0.01649 0.01712 0.96 0.01255 0.86 0.01255 0.86 0.01413 0.92

1.00 0.317−0.0015 0.01822 0.01848 0.97 0.01331 0.85 0.01332 0.85 0.01604 0.92

0.10 0.086 0.0001 0.00724 0.00765 0.96 0.00573 0.88 0.00574 0.87 0.00589 0.89
2000 0.50 0.259 0.0003 0.01140 0.01218 0.96 0.00889 0.87 0.00889 0.87 0.00997 0.90

1.00 0.317−0.0003 0.01242 0.01315 0.96 0.00944 0.86 0.00944 0.86 0.01132 0.92

0.10 0.086−0.0001 0.00480 0.00543 0.97 0.00405 0.89 0.00406 0.89 0.00416 0.91
4000 0.50 0.259−0.0004 0.00795 0.00864 0.97 0.00628 0.87 0.00628 0.87 0.00704 0.91

1.00 0.317−0.0005 0.00874 0.00934 0.96 0.00667 0.88 0.00668 0.88 0.00800 0.93
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To assess the performance of the proposed estimator F̂1(t) for the cumulative incidence

function, we conducted a simulation study, the results of which are shown in Tables 5.1-5.4.

We compared the proposed estimator with a hypothetical case of full data, when the event

types for all observations are known (unobservable in reality), and with the complete case

estimator. We generated competing risks data with 2 causes of failure. Event of type 1 was

the event of interest. Censoring was generated as a uniform random variable and was about

10% in both scenarios. The indicator Ri(Xi) of the event type being observed was generated

as a Bernoulli random variable with a time-dependent probability of sucess exp(1−0.1∗t+0.3Zi)
1+exp(1−0.1∗t+0.3Zi)

where Zi ∼ Bernoulli(0.5), which corresponded to the MAR assumption. Overall, about

25% of events had missing event type. We used the proposed method with the local constant

fit (polynomials of degree zero) and Epanechnikov kernel. In the results shown below, we

forced the bandwidth sequence go to zero at the rate of n−0.3. We also did smaller simulation

studies with bandwidth convergence rate ranging from −0.25 to −0.5, the results were very

similar (not shown). We computed estimates at several time points, at an early time, in the

middle, and in the tail of the distribution. We assessed the bias of the point estimate of

F1(t), and its empirical standard error, asymptotic standard error, and coverage probability

(using the log-log transformation).

We generated data from a range of scenarios, of which we here report two. Under scenario

1, the conditional probability of event 1 varied over time. The cause-specific hazards were

λ1(t) = 1 for the event 1, and λ2(t) = 2t for the event 2. Under scenario 2 both cause-specific

hazards were constant over time, λ1(t) = 1 and λ2(t) = 2, with the constant conditional

probability of event 1.

The simulation results show that the bias of the proposed estimator of F1(t) is very small,

on the same scale as the bias observed in the hypothetical case of having the full data. The

performance of the variance estimator was also very good. It slightly overestimated the

empirical variance, which some cases resulted in coverage probabilily of about 96-97%.

Since finding the correct variance estimator was the main difficulty of this research and

since we considered several potential variance estimators along the way, we did a more

detailed comparison of all the variance estimators which we considered. The description of

the rejected candidate variance estimators is provided in the Appendix 2. The results are

shown in Tables 5.3-5.4. We used the same scenarios 1 and 2 as in Tables 5.1 and 5.2. We

compared the variance estimator obtained from the influence function with the naive variance

estimator, the estimator with the bias correction, with the local variance correction, and also

the bootstrap variance estimator (not shown in tables). The bootstrap estimator as well as

the naive variance estimator both significantly underestimated the variance. The estimate
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with the bias correction was very slightly larger but didn’t correct the underestimation

too well. The estimator with the local variance correction was much closer to the truth.

However, all of the alternative estimators noticeably underestimated the true variance and

lead to coverage probabilities less than nominal. This confirmed that the variability of the

local estimates could not be ignored and deriving the influence function and a variance

estimator based on it were necessary.

5.4 Real Data Example

To illustrate the proposed method with a real data example, we used data from the paper

which motivated this research (Lin et al., 2013), also previously described by Lai et al

(Lai et al., 2004). This is patient data from the United States Cyctic Fibrosis Foundation

Patient Registry which contains information on P.aeruginosa infections for 6,823 patients,

collected between 1997 and 2007. The follow-up period ranged from 4 to 3,626 days, with

the average follow-up length of 997 days per patient. The recorded information for each

patient contained the type of infection: non-mucoid, mucoid, or both. In a number of cases,

the type of infection was not known, even though the fact of infection was determined, which

resulted in events with missing events category.

The original data contains information on recurrent infections and has multiple observa-

tions per patient. We analyzed time to the first infection for each patient, with the infection

type (non-mucoid, mucoid, or both) being the event type. Out of 6,823 patients, a non-

mucoidinfection occured first for 3,106 (45.5%) patients, mucoid infection for 263 (3.9%)

patients, infections of both types were present for 193 (2.9%) patients, and for 563 (8.3%)

patients the infection type was missing. Large proportion of patients were censored prior to

having any infection (2,668 or 39.1%). There were also 30 patients in the data set (0.4%)

who were deceased prior to having any infections. Even though technically death without

an infection constitutes a competing risk in these settings and ideally should be analyzed as

such, for our analysis we treated death same as censoring and did not view it as the 4th type

of event. Due to a very small number of such patients, we felt that combining death prior to

infection with censoring will have no effect on the analysis results for outcomes of interest,

which are in this case the infection types.

To better understand the data, we plotted, as functions of time, non-parametric estimates

of the probability of the infection type to be observed and the probabilities of developing an

infection of a specific type, given the fact of infection. The estimates were obtained using

local polynomial regression, alongside our main analyses which will be described below. The

plots are shown on the Figure 5.1. All probabilities varied somewhat over time, which made
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Figure 5.9: Top panel: Probability of the infection type being observed. Bottom panel:
Conditional probabilities of the first infection to have a specific type, given an infection of
some type has occured.
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the proposed method more preferable than methods which assume either the probability of

an event type being observed, or the probabilities of specific event types to be constant over

time.

We analyzed the data using the proposed method. We used complete-case data to obtain

local polynomial regression estimates of the conditional probabilities of an infection of a

specific type to occur given the fact of infection. We fitted local logistic model using first

degree polynomials of time as a predictor, with Epanechnikov kernel. The bandwidth was

selected using the AIC criteria. Then we used the estimates of these conditional probabilities

at the event times with missing event type to evaluate the contribution of the events with

missing type to each cause-specific hazard. We computed the cumulative incidence functions

for each of the three event types, along with their 95% confidence intervals. For comparison,

we performed the complete case analysis treating the events with missing event type as

censored. All analysis was done using R packages locfit and cmprsk, and SAS 9.3 software

(SAS Institute, Cary, NC). The results are plotted on the Figure 5.2.

The plots show that after a period of 10 years over 70% of patients will develop a non-

mucoid infection. The other two infection types are much more rare: the respective probabil-

ities of developing a mucoid infection is about 6% and an infection of both types - about 5%.

As one would expect, the complete case under-estimates the cumulative incidence functions

for all event types. The difference is very small and for mucoid infections and infections of

both types. For these infection types, both complete case and proposed method estimates

clearly lie within each other’s confidence limits. For the non-mucoid infection type, the esti-

mate from the proposed method being approximately the upper limit of the 95% confidence

interval of the complete case estimate. The results are consistent with the findings for the

recurrent events from the motivating Lin et al 2013 paper.

5.5 Discussion

The proposed method is easy to implement in practice, has a plug-in variance estimator can

be used in the wide range of settings, and despite a large amount of publications on the topic

does not have an immediate comparator, to the author’s best knowledge.

The idea of this estimator is related to presmoothed Nelson-Aalen and Kaplan-Meier

estimators. As mentioned in the Introduction, the use of smoothing techniques to account

for missing event types or censoring indicators in time-to-event data was suggested more than

once in literature. However, to the author’s best knowledge for the competing risks setup

with missing at random cause of failure these suggestions stopped at deriving the estimators

of the hazard rate functions, λj(t) (Wang et al., 2012). Somewhat different assumptions than
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Figure 5.10: Cumulative incidence functions and 95% CI by infection type, obtained by the
proposed method (red) compared to complete case analysis (blue). Top panel: non-mucoid
infections. Center panel: mucoid infection. Bottom panel: both infection types.
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used by Wang et al for hazard rates are required to show
√
n-consistency of presmoothed

estimators of the integrated hazards and cumulative incidence functions, and the asymptotic

representation of such cumulative estimators has a more complicated form.

All of the authors cited earlier in this chapter suggested fully presmoothed estimators,

that is, when the estimates of the conditional probability p1(u) are used at all observed

event time points, not only at the time points with missing event type. The fully pres-

moothed version of the proposed estimator and its variance should be easily obtained using

the same technique as in this paper. From the literature on the presmoothed Nelson-Aalen

and Kaplan-Meier estimators (Cao et al., 2003; Jacome and Cao, 2007), it may be beneficial

in terms of reducing the MSE, especially in the tail. It will be interesting to compare the

fully presmoothed version of the proposed estimator with the current one.

Another direction related to that, in which more work can be done, is bandwith selection.

There exists extensive literature on the topic which should be applicable to the proposed

estimator.

We used the local constant fit estimator to obtain p̂1(u). Other practical candidates are

the local linear estimator and local logistic regression. The former has better performance

than the local constant fit in terms of both bias and variance, especially the bias on the

boundaries. However, it has a disadvantage of being able to produce out-of-range values for

predicted probability, due to having to built-in constraints for the estimate to stay between 0

and 1. Based on the literature, local logistic regression would be the best option, however, the

theoretical derivations and proofs may be much more tedious. From the literature (Jacome

et al., 2008), all three estimators should be asymptotically equivalent as b→ 0. This is yet

another direction in which this work can be extended.

The assumptions that we used in this chapter are stronger than those suggested in the

motivating paper (Lin et al., 2013), specifically in the part which prescribes the convergence

rate for the bandwidth sequence. The proof which is provided in this chapter relies on these

assumptions. Note that the required range for α, 1/4 < α < 1/2 does not include the

”optimal” rate of n−1/5. It would be interesting to see if the proof can be modified so that

the assumptions can be weakened to match those in Lin et al. To the present moment, the

author didn’t see assumptions much weaker than A1-A8 in the literature.

5.6 Appendix 1

Proof of Theorem 1.
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Consistency. Let’s re-write

Λ̂1(t, p̂1(t))− Λ1(t) =

= Λ̂1(t, p̂1(t))− Λ1(t) + Λ̂1(t, p1(t))− Λ̂1(t, p1(t)) + Λ̂full
1 (t)− Λ̂full

1 (t)

where Λ̂1(t, p1(t)) denotes the result of substituting the true value p1(u) instead of its esti-

mate into the expression (5.1) for the cumulative cause-specific hazard, and Λ̂full
1 (t) is the

Nelson-Aalen estimator of the cumulative hazard for event 1 obtained from the hypothetical

unobservable full data. Plugging in explicit expressions for all the estimators and removing

the terms that cancel out, we have

Λ̂1(t, p̂1(t))− Λ1(t) =

n∑
i=1

t∫
0

(
1−Ri(u)

)
Y −1(u)[p̂1(u)− p1(u)]dN0i(u)+

n∑
i=1

t∫
0

(
1−Ri(u)

)
Y −1(u)[p1(u)− I(εi = 1)]dN0i(u)+

+

[ n∑
i=1

t∫
0

Y −1(u)I(εi = 1)dN0i(u)− Λ1(t)

]
. (5.6)

In the first term of (5.2), the part [p̂1(u)− p1(u)] converges to zero uniformly in u under

our assumptions, by the Theorem B from Mack and Silverman (Mack and Silverman, 1982),

which combined with consistency of the Nelson-Aalen estimator on [0, τ ] implies convergence

to zero of the first term. The third term also converges to zero due to the uniform consistency

of the Nelson-Aalen estimator.

To show consistency of the remaining second term, let’s consider counting processes

Nmiss
1i (u) = I(Xi ≤ u, δi = 1, εi = 1, and Ri(Xi) = 0) (this process is unobservable) and

Nmiss
0i (u) = I(Xi ≤ u, δi = 1, and Ri(Xi) = 0). Note that

dNmiss
1i (u) =

(
1−Ri(u)

)
I(εi = 1)dN1i(u)

and

dNmiss
0i (u) =

(
1−Ri(u)

)
dN0i(u).

Let’s denote by Λmiss
1 (u) and Λmiss

0 (u) the true cumulative hazards corresponding to these
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processes. Then under the MAR assumption and by the definition of p1(u) and π(u) it is

easy to show that

dΛmiss
1 (u) =

(
1− π(u)

)
p1(u)dΛ0(u) = p1(u)dΛmiss

0 (u).

Now the second term in (5.2) can be re-written as

n∑
i=1

t∫
0

(
1−Ri(u)

)
Y −1(u)[p1(u)− I(εi = 1)]dN0i(u) =

=
n∑
i=1

t∫
0

Y −1(u)[p1(u)dNmiss
0i (u)− dNmiss

1i (u)] =

=
n∑
i=1

t∫
0

Y −1(u)[p1(u)dNmiss
0i (u)− Yi(u)dΛmiss

1 (u) + Yi(u)dΛmiss
1 (u)− dNmiss

1i (u)] =

=
n∑
i=1

t∫
0

Y −1(u)[p1(u)dNmiss
0i (u)− Yi(u)p1(u)dΛmiss

0 (u) + Yi(u)dΛmiss
1 (u)− dNmiss

1i (u)] =

=
n∑
i=1

t∫
0

Y −1(u)p1(u)[dNmiss
0i (u)− Yi(u)dΛmiss

0 (u)]+

+
n∑
i=1

t∫
0

Y −1(u)[Yi(u)dΛmiss
1 (u)− dNmiss

1i (u)] =

=

t∫
0

p1(u)[dΛ̂miss
0 (u)− dΛmiss

0 (u)]−

− [Λ̂miss
1 (t)− Λmiss

1 (t)] =

= p1(t)[Λ̂miss
0 (t)− Λmiss

0 (t)]−
t∫

0

p′1(u)[Λ̂miss
0 (u)− Λmiss

0 (u)]du−

− [Λ̂miss
1 (t)− Λmiss

1 (t)],

(5.7)

where Λ̂miss
1 (u) and Λ̂miss

0 (u) denote the Nelson-Aalen estimators for the corresponding haz-

ards. Note that p′′1(u) exsists and is bounded on [0, τ ] by the assumptions. Hence p′1(u) is

uniformly bounded on [0, τ ] which combined with the uniform consistency of the Nelson-
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Aalen estimator implies that the whole expression (5.3) converges to zero for t ∈ [0, τ ]. This

concludes the consistency proof. Note that this proof also implies uniform consistency of

Λ̂1(t, p̂1(t)) on [0, τ ], since each term in (5.2) and (5.3) is uniformly consistent.

Asymptotic representation.

Λ̂1(t, p̂1(t))− Λ1(t) =

t∫
0

dΛ̂1(u, p̂1(u))−
t∫

0

dΛ1(u) =

=
n∑
i=1

t∫
0

Y (u)−1Ri(u)dN1i(u)−
t∫

0

π(u)dΛ1(u)+

+
n∑
i=1

t∫
0

Y (u)−1
(
1−Ri(u)

)
p̂1(u)dN0i(u)−

t∫
0

(
1− π(u)

)
dΛ1(t) =

=
n∑
i=1

t∫
0

Y (u)−1
[
Ri(u)dN1i(u)− Yi(u)π(u)dΛ1(u)

]
+

+
n∑
i=1

t∫
0

Y (u)−1
[(

1−Ri(u)
)
p̂1(u)dN0i(u)− Yi(u)

(
1− π(u)

)
dΛ1(u)

]
=

=
1

n

n∑
i=1

t∫
0

y(u)−1
[
Ri(u)dN1i(u)− Yi(u)π(u)dΛ1(u)

]
+

+
1

n

n∑
i=1

t∫
0

y(u)−1
[(

1−Ri(u)
)
p̂1(u)dN0i(u)− Yi(u)

(
1− π(u)

)
dΛ1(u)

]
=

+ op(n
−1/2).

(5.8)

The first term in (5.4) already has the form of the sum of the i.i.d random variables. It

is easy to see that they are zero mean, if we notice that Ri(u)dN1i(u) = dN obs
1i (u) is the

counting process with the corresponding hazard rate dΛobs
1 (u) = π(u)dΛ1(u). The second

term, however, contains p̂1(u) under the summation, with p̂1(u) being obtained from complete

case observations from the neighborhood of u = Xi. Since the convergence rate of p̂1(u) is

known to be slower than n−1/2 (Fan and Gijbels, 1996), we cannot use the standard arguments

to replace p̂1(u) with p1(u), and need some additional work on the second term.
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Let’s re-write the second term in (5.4) as follows:

1

n

n∑
i=1

t∫
0

y(u)−1[p̂1(u)
(
1−Ri(u)

)
dN0i(u)− Yi(u)

(
1− π(u)

)
dΛ1(u)] =

=
1

n

n∑
i=1

t∫
0

y(u)−1[p̂1(u)
(
1−Ri(u)

)
dN0i(u)− Yi(u)

(
1− π(u)

)
p1(u)dΛ0(u)] =

=
1

n

n∑
i=1

t∫
0

y(u)−1 ×
{
p̂1(u)

(
1−Ri(u)

)
dN0i(u)− Yi(u)

(
1− π(u)

)
p1(u)dΛ0(u)+

+ Yi(u)[p̂1(u)− p1(u)]
(
1− π(u)

)
dΛ0(u)− Yi(u)[p̂1(u)− p1(u)]

(
1− π(u)

)
dΛ0(u)+

+ p1(u)
(
1−Ri(u)

)
dN0i(u)− p1(u)

(
1−Ri(u)

)
dN0i(u)

}
=

=
1

n

n∑
i=1

t∫
0

y(u)−1p1(u)[dNmiss
0i (u)− Yi(u)dΛmiss

0 (u)]+

+
1

n

n∑
i=1

t∫
0

y(u)−1Yi(u)[p̂1(u)− p1(u)]dΛmiss
0 (u)+

1

n

n∑
i=1

t∫
0

y(u)−1[p̂1(u)− p1(u)]× [
(
1−Ri(u)

)
dN0i(u)− Yi(u)dΛmiss

0 (u)] (5.9)

The first term of (5.5) is the sum of the i.i.d zero mean random variables, using same

arguments as in (5.3).

For the second term of (5.5), note that

p̂1(u)− p1(u) =

1
n

n∑
j=1

Rj(Xj)Kb(u−Xj)[I(εj = 1)− p1(u)]

1
n

n∑
j=1

Rj(Xj)Kb(u−Xj)
.

where Kb(.) is the kernel function. Also note that

1

n

n∑
j=1

Rj(Xj)Kb(u−Xj) = f̂cc(u)

is a kernel estimator of the density of the event times of complete case observations.
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Using Taylor expansion,

p̂1(u)− p1(u) =

1
n

n∑
j=1

Rj(Xj)Kb(u−Xj)[I(εj = 1)− p1(u)]

f̂cc(u)
=

≈

1
n

n∑
j=1

Rj(Xj)Kb(u−Xj)[I(εj = 1)− p1(u)]

fcc(u)
−

−

1
n

n∑
j=1

Rj(Xj)Kb(u−Xj)[I(εj = 1)− p1(u)]

fcc(u)2
[f̂cc(u)− fcc(u)] =

=

1
n

n∑
j=1

Rj(Xj)Kb(u−Xj)[I(εj = 1)− p1(u)]

fcc(u)
−

−

1
n

n∑
j=1

Rj(Xj)Kb(u−Xj)[I(εj = 1)− p1(u)]

f̂cc(u)

f̂cc(u)

fcc(u)2
[f̂cc(u)− fcc(u)] =

=

1
n

n∑
j=1

Rj(Xj)Kb(u−Xj)[I(εj = 1)− p1(u)]

fcc(u)
−

− f̂cc(u)

fcc(u)2
[p̂1(u)− p1(u)]× [f̂cc(u)− fcc(u)].

(5.10)

Note that fcc(u) is bounded away from zero on [0, τ ], hence f−2
cc (u) is bounded. By

Lemma 1 and Theorem B from Mack and Silverman, both supu∈[0,τ ]|p̂1(u) − p1(u)| and

supu∈[0,τ ]|f̂cc(u)− Ef̂cc(u)| are Op

(
(nb)−1/2(log(1/b)1/2)

)
. From the theory of kernel estima-

tors (Fan and Gijbels, 1996), supu∈[0,τ ]|Ef̂cc(u) − fcc(u)| = Op(b
2). After some algebra and

under our assumptions, this implies that

supu∈[0,τ ]|p̂1(u)− p1(u)| × supu∈[0,τ ]|f̂cc(u)− fcc(u)| = op(n
−1/2).

Note that since we only use the complete case observations in the estimator p̂1(u), technically

all the convergence rates for kernel estimators in (5.6) are with respect to m, the number

of complete case observations in the sample. However, since we require the probability of

the event type being observed π(u) to be bounded away from zero, this means that n
m
< M

for some constant M <∞, and thus the convergence rates can be equivalently expressed in
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terms of n.

Using that and substituting (5.6) into (5.5), the second term of (5.5) can be re-written

as

1

n

n∑
i=1

t∫
0

y(u)−1Yi(u)[p̂1(u)− p1(u)]dΛmiss
0 (u) =

t∫
0

[p̂1(u)− p1(u)]dΛmiss
0 (u) + op(n

−1/2) =

=

t∫
0

1
n

n∑
j=1

Rj(Xj)Kb(u−Xj)[I(εj = 1)− p1(u)]

fcc(u)
dΛmiss

0 (u) + op(n
−1/2) =

=
1

n

n∑
j=1

Rj(Xj)

t∫
0

f−1
cc (u)Kb(u−Xj)[I(εj = 1)− p1(u)]dΛmiss

0 (u) + op(n
−1/2) =

=
1

n

n∑
i=1

Ri(Xi)

t∫
0

f−1
cc (u)Kb(u−Xi)[I(εi = 1)− p1(u)]

(
1− π(u)

)
dΛ0(u) + op(n

−1/2).

(5.11)

The third term of (5.5) can be shown to be op(n
−1/2).

1

n

n∑
i=1

t∫
0

y(u)−1[p̂1(u)− p1(u)]× [
(
1−Ri(u)

)
dN0i(u)− Yi(u)dΛmiss

0 (u)] =

=
1

n

n∑
i=1

t∫
0

y(u)−1[p̂1(u)−p1(u)]
(
1−Ri(u)

)
dN0i(u)−

t∫
0

[p̂1(u)−p1(u)]dΛmiss
0 (u)+op(n

−1/2) =

=
1

n2

n∑
i,j=1

t∫
0

y(u)−1f−1
cc (u)Rj(Xj)Kb(u−Xj)[I(εj = 1)− p1(u)]

(
1−Ri(u)

)
dN0i(u)−

− 1

n

n∑
i=1

t∫
0

Ri(Xi)f
−1
cc (u)Kb(u−Xi)[I(εi = 1)− p1(u)]dΛmiss

0 (u) + op(n
−1/2),

(5.12)
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using same arguments as in (5.6).

Define

v(Xi, Ri(Xi), δi, Xj, Rj(Xj), εj) =
Rj(Xj)Kb(Xi −Xj)(I(εj = 1)− p1(Xi))(1−Ri(Xi))δi

fcc(Xi)y(Xi)
.

Note that the diagonal elements v(Xi, Ri(Xi), δi, Xi, Ri(Xi), εi) = 0 because they always

involve Ri(Xi)(1−Ri(Xi)) ≡ 0. Therefore,

(5.8) =
1

n2

n∑
i,j=1,i 6=j

v(Xi, Ri(Xi), δi, Xj, Rj(Xj), εj)

− 1

n

n∑
i=1

t∫
0

f−1
cc (u)Kb(u−Xi)[I(εi = 1)− p1(u)]dΛmiss

0 (u) + op(n
−1/2).

To make the kernel symmetric, let

w(Xi, Ri(Xi), δi, εi, Xj, Rj(Xj), δj, εj) =

=
1

2
v(Xi, Ri(Xi), δi, Xj, Rj(Xj), εj) +

1

2
v(Xj, Rj(Xj), δj, Xi, Ri(Xi), εi),

and define

Un = Cn
k

∑
1≤i<j≤n

w(Xi, Ri(Xi), δi, εi, Xj, Rj(Xj), δj, εj).

Then

(5.8) = Un −
1

n

n∑
i=1

t∫
0

f−1
cc (u)Kb(u − Xi)[I(εi = 1) − p1(u)]dΛmiss

0 (u) + op(n
−1/2). (5.13)

To define the Hajek projections of Un, let

G(X1, R1(X1), δ1, ε1) = E(w(X1, R1(X1), δ1, ε1, X2, R2(X2), δ2, ε2)|X1, R1(X1), δ1, ε1) =

=
1

2
E(v(X1, R1(X1), δ1, X2, R2(X2), ε2)|X1, R1(X1), δ1)+

+
1

2
E(v(X2, R2(X2), δ2, X1, R1(X1), ε1)|X1, R1(X1), ε1).
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We can compute each part:

G1(x1, r1, d1) = E(v(X1, R1(X1), δ1, X2, R2(X2), ε2)|X1 = x1, R1(X1) = r1, δ1 = d1) =

E

(
R2(X2)Kb(x1 −X2)(I(ε2 = 1)− p1(x1))(1− r1)d1

fcc(x1)y(x1)
|X1 = x1, R1(X1) = r1, δ1 = d1

)
=

=
r1d1

fcc(x1)y(x1)

∫
Kb(x1 − u)(E(I(ε2 = 1)|T2 = u)− p1(x1))h(u)du =

=
r1d1

fcc(x1)y(x1)

∫
Kb(x1 − u)(p1(u)− p1(x1))h(u)du

where h(u) is the density of Xi = min(Ti, Ci), and

G2(x1, r1, e1) = E(v(X2, R2(X2), δ2, X1, R1(X1), ε1)|X1 = x1, R1(X1) = r1, ε1 = e1) =

E

(
r1Kb(X2 − x1)(I(e1 = 1)− p1(X2))(1−R2(X2))δ2

fcc(X2)y(X2)
|X1 = x1, R1(X1) = r1, ε1 = e1

)
=

=

∫
r1Kb(u−x1)

(I(ε1 = 1)− p1(u))

y(u)fcc(u)
E(I(R2(X2) = 0)|T2 = u and δ2 = 1)E(I(δ2 = 1)|X2 = u)h(u)du =

=

∫
r1Kb(u− x1)

(I(ε1 = 1)− p1(u))

y(u)fcc(u)

(
1− π(u)

)
Pr(δ2 = 1|X2 = u)h(u)du =

=

∫
r1Kb(u− x1)

(I(ε1 = 1)− p1(u))

fcc(u)

(
1− π(u)

)
dΛ0(u)du.

Using asymptotic properties of U-statistics (DasGupta, 2008),

Un = −θn +
1

n

n∑
i=1

G1(Xi, Ri(Xi), δi) +
1

n

n∑
i=1

G2(Xi, Ri(Xi), εi) + op(n
−1/2),

where

θn = E(w(Xi, Ri(Xi), δi, εi, Xj, Rj(Xj), δj, εj)) =

= (E(G(X1, R1(X1), δ1, ε1)).
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Plugging it into (5.9) and noticing that 1
n

n∑
i=1

G2(Xi, Ri(Xi), εi) cancels out,

(5.8) = −θn +
1

n

n∑
i=1

G1(Xi, Ri(Xi), δi) + op(n
−1/2).

Using the properties of the kernel function K(.) and the definition of Kb(s) = 1
b
K( s

b
), and

doing variable substitution when integrating expressions for G1(.) and G2(.), it is easy to

show that all the terms in the expression (5.8) are of the order Op(b
2). Since by assumtion

b = cn−α + op(n
−α) with α > 1/4, this means that (5.8) is op(n

−1/2).

Combining the above result with (5.4), (5.5) and (5.7), we obtain

Λ̂1(t, p̂1(t))− Λ1(t) =

=
n∑
i=1

t∫
0

y(u)−1p1(u)[
(
1−Ri(u)

)
dN0i(u)− Yi(u)

(
1− π(u)

)
dΛ0(u)]+

+
n∑
i=1

t∫
0

y(u)−1[Ri(u)dN1i(u)− Yi(u)π(u)dΛ1(u)]+

+
n∑
i=1

t∫
0

Ri(u)f−1
cc (u)Kb(u−Xi)[I(εi = 1)− p1(u)]

(
1− π(u)

)
dΛ0(u) + op(n

−1/2) =
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=
n∑
i=1

t∫
0

y(u)−1[p1(u)
(
1−Ri(u)

)
dN0i(u)]+

+
n∑
i=1

t∫
0

y(u)−1[Ri(u)dN1i(u)]−
t∫

0

(1− π(u) + π(u))dΛ1(u))+

+
n∑
i=1

t∫
0

Ri(u)f−1
cc (u)Kb(u−Xi)[I(εi = 1)− p1(u)]

(
1− π(u)

)
dΛ0(u) + op(n

−1/2) =

=
n∑
i=1

t∫
0

y(u)−1
(
1−Ri(u)

)
[p1(u)dN0i(u)− Yi(u)dΛ1(u)]+

+
n∑
i=1

t∫
0

y(u)−1Ri(u)[dN1i(u)− Yi(u)dΛ1(u)]+

+
n∑
i=1

t∫
0

Ri(u)f−1
cc (u)Kb(u−Xi)[I(εi = 1)− p1(u)]

(
1− π(u)

)
dΛ0(u) + op(n

−1/2) =

=
1

n

n∑
j=1

G̃i,n(t) + op(n
−1/2), (5.14)

where

G̃i,n(t) =

=

t∫
0

(
1−Ri(u)

)
y(u)−1[p1(u)dN0i(u)− Yi(u)dΛ1(u)]+

+

t∫
0

Ri(u)y(u)−1[dN1i(u)− Yi(u)dΛ1(u)]+

+

t∫
0

Ri(u)f−1
cc (u)Kb(u−Xi)[I(εi = 1)− p1(u)]

(
1− π(u)

)
dΛ0(u).

Note that G̃i,n(t) still depends implicitly on n through b = bn in Kb(.). Therefore we

need to make one more step and take the limit of G̃i,n(t) as bn → 0 when n→∞.

It is a known fact that Kb(u −Xi) → δ(u −Xi) as b → 0, where δ(s) - Dirac function.
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Also, it is known that
t∫

−∞

δ(u−Xi)g(u)du = I(Xi ≤ t)g(Xi)

and
t∫

−∞

Kb(u−Xi)g(u)du→ I(Xi ≤ t)g(Xi)

as b→ 0.

Define

F (b, t,Xi, ...) =

t∫
0

Kb(u−Xi)g(u, ...)du.

Let F (0, t, Xi, ...) = I(Xi ≤ t)g(Xi, ...).

If t < Xi− b then F (b, t,Xi, ...) = 0 by definition of Kb(.) and I(Xi ≤ t) = 0, so trivially

F (b, t,Xi, ...)− F (0, t, Xi, ...) = 0 = O(b2).

If Xi ∈ [b, t− b] then

F (b, t,Xi, ...) =

t∫
0

Kb(u−Xi)g(u, ...)du =

=

Xi+b∫
Xi−b

Kb(u−Xi)g(u, ...)du =

=

1∫
−1

K(s)g(Xi + sb, ...)ds

Then

∂

∂b
F (b, t,Xi, ...) =

1∫
−1

K(s)
∂

∂b
g(Xi + sb, ...)ds =

=

1∫
−1

sK(s)
∂

∂u
g(u, ...)|u=Xi+sbds
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and

∂2

∂b2
F (b, t,Xi, ...) =

1∫
−1

s2K(s)
∂2

∂u2
g(u, ...)|u=Xi+sbds

Note that the first derivative

∂

∂b
F (b, t,Xi, ...)|b=0 =

1∫
−1

sK(s)
∂

∂u
g(u, ...)|u=Xi

ds =

=
∂

∂u
g(u, ...)|u=Xi

1∫
−1

sK(s)ds = 0

by the choice of kernel.

Therefore, Taylor expansion of F (b, ...) at b = 0 to the second term:

|F (b, ...)− F (0, ...)| = |b
2

2
×

1∫
−1

s2K(s)
∂2

∂u2
g(u, ...)|u=Xi

ds| ≤

b2

2
× | ∂

2

∂u2
g(u, ...)|u=Xi

|
1∫

−1

s2K(s)ds ≤ Cb2

if g is such that the second derivative exists and bounded. In our case this is true because

the function g(.) is

g(u, r, r) = rfcc(u)−1[r − p1(u)](1− π(u))λ0(u)

where all functions of u are twice differentiable with bounded second derivatives, fcc(u)

bounded away from zero, p1(u), π(u) - probabilities, and r and e take values 0 or 1. Also

note that for a given e, [e− p1(u)] is either always positive or always negative.

There are somewhat more tedious cases when Xi is closer than b to t or to 0. But

recalling that our g(u, ...) is either always positive or always negative, those partial integrals

near boundaries will be smaller in absolute value than the integral over the full neighborhood

of the width b, and therefore are smaller than Cb2.
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Therefore,

F (b, t,Xi, ...)− F (0, t, Xi, ...) = O(b2)→ 0 as b→ 0

and the rate of convergence is b2 which is faster than n−1/2 under our assumptions.

Therefore,

G̃i,n(t) = Gi(t) + op(n
−1/2)

where

Gi(t) =

t∫
0

(
1−Ri(u)

)
y(u)−1[p1(u)dN0i(u)− Yi(u)dΛ1(u)]+

+

t∫
0

Ri(u)y(u)−1[dN1i(u)− Yi(u)Λ1(u)]+

+ I(Xi ≤ t)Ri(Xi)fcc(Xi)
−1[I(εi = 1)− p1(Xi)]

(
1− π(Xi)

)
λ0(Xi),

and the whole expression (5.10) becomes

Λ̂1(t, p̂1(t))− Λ1(t) =
1

n

n∑
j=1

Gi(t) + op(n
−1/2).

Normality. Gi(t) are zero-mean i.i.d. random variables, which by CLT implies that for

t ∈ [0, τ ]
√
n
(
Λ̂1(t, p̂1(t))− Λ1(t)

) d−→ N(0, E(G2
i (t))

and suggests the following estimator for the variance of Λ̂1(t, p̂1(t)):

V̂ ar
(
Λ̂1(t, p̂1(t))

)
=

1

n2

n∑
i=1

Ĝi(t)
2

where Ĝi(t) is obtained by substituting empirical counterparts instead of the theoretical

quantities in 5.8. Using the same arguments as for the consistency of the point estimate, it

can be shown that this variance estimator is consistent. �.

Proof of Theorem 2.

90



F̂1(t)− F1(t) =

t∫
0

Ŝ(u)dΛ̂1(u, p̂1(u))−
t∫

0

S(u)dΛ1(u)

=

t∫
0

S(u)[dΛ̂1(u, p̂1(u))− dΛ1(u)] +

t∫
0

[Ŝ(u)− S(u)]dΛ̂1(u, p̂1(u)) =

= S(t)[Λ̂1(t, p̂1(t))− Λ1(t)]−
t∫

0

[Λ̂1(u, p̂1(u))− Λ1(u)]dS(u)+

+

t∫
0

[Ŝ(u)− S(u)]dΛ̂1(u, p̂1(u)).

Consistency follows from the uniform consistency of Kaplan-Meier estimator and Theorem

1.

Using Taylor expansion and integration by parts,

F̂1(t)− F1(t) =

t∫
0

Ŝ(u)dΛ̂1(u, p̂1(u))−
t∫

0

S(u)dΛ1(u)

≈
t∫

0

S(u)[dΛ̂1(u, p̂1(u))− dΛ1(u)]−
t∫

0

S(u)[Λ̂0(u)− Λ0(u)]dΛ1(u) =

=

t∫
0

S(u)[dΛ̂1(u, p̂1(u))− dΛ1(u)] +

t∫
0

[Λ̂0(u)− Λ0(u)]dF1(u)

=

t∫
0

S(u)[dΛ̂1(u, p̂1(u))− dΛ1(u)]−
t∫

0

{
F1(t)− F1(u)

}
[dΛ̂0(u)− dΛ0(u)] (5.15)

Now the results can be obtained by re-tracing the steps from the proof of the Theorem 1.

Note that as mentioned in the Methods section earlier, the finite sample variance esti-

mators for the cumulative cause-specific hazard and the cumulative incidence function can

be obtained from 1
n2

n∑
j=1

G̃i,n(t) and 1
n2

n∑
j=1

Ĩi,n(t) respectively by plugging in the empirical

estimates instead of theoretical quantities into the expression for G̃i,n(t) and Ĩi,n(t). These

are the estimators that were used in simulations for this paper.
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5.7 Appendix 2

Alternative variance estimators.

We considered several potential variance estimators.

It was hypothecized in the motivating paper (Lin et al., 2013) that when the bandwidth

sequence converges at the optimal rate of n−1/5, then the second term in (5.5) has the

convergence rate n−3/5, which is faster than n−1/2 and hence this term can theoretically

be omitted for the variance estimation and the naive variance estimator which ignores the

variability of the local estimates,

V̂ arNAIV E(Λ̂1(t, p̂1(t))) = n−1

n∑
i=1

(G1i(t) +G2i(t))
2

can be used.

The second option we considered was the variance estimator with the bias correction,

as suggested by Lin et al. The corresponding estimators of the variance of the cumulative

incidence function F̂1(t) were obtained in a similar fashion to (Lin et al., 2013).

The third alternative version of the variance estimator for F̂1 which we considered was

the estimators with the ”local variance” correction:

V̂ arLOC VAR(F̂1(t, p̂1(u))) = n−1

n∑
i=1

ψ2
i (t, p̂1(u)) + n−1

n∑
i=1

νi(t, p̂1(u))

where

ψi(t, p̂1(u)) =

t∫
0

Ŝ(u)Y −1(s)dM1i(u, p̂1(u)) +

t∫
0

[F̂1(t)− F̂1(u)]dM0i(u),

dM1i(u, p̂1(u)) = Ri(Xi)dN1i(u) + (1−Ri(Xi))p̂1(u, p̂1(u))dN0i(u)− Yi(u)dΛ̂1(u, p̂1(u)),

dM0i(u) = dN0i(u)− Yi(u)dΛ̂0(u),

and

νi(t, p̂1(u)) = I(Xi ≤ t)(1−Ri(Xi))Ŝ
2(Xi)Y (Xi)

−2V̂ ar(p̂1(Xi))dN0i(Xi)

The variance of the local estimate, V̂ ar(p̂1(Xi)), is obtained using the theory for local poly-

nomial regression. For the local linear estimator this variance is σ2(Xi)
f(Xi)nh

∫∞
−∞K

2(u)du, where

σ2(u) is the variance of θ(u) and f(u) is the density of the CDF of the times of events

with observed event type (Fan and Gijbels, 1996; Loader, 1999). For practical purposes, its
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estimate is available from software packages, for example, R package locfit.
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