
Mining Emerging Massive Scientific Sequence Data

using Block-wise Decomposition Methods

Qi Zhang

A dissertation submitted to the faculty of the University of North Carolina at Chapel
Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in
the Department of Computer Science.

Chapel Hill
2009

Approved by:

Wei Wang, Advisor

Leonard McMillan, Co-principal Reader

Jan Prins, Co-principal Reader

Fernando Pardo Manuel de Villena,
Reader

David Threadgill, Reader

c© 2009

Qi Zhang

ALL RIGHTS RESERVED

ii

Abstract
Qi Zhang: Mining Emerging Massive Scientific Sequence Data using

Block-wise Decomposition Methods.
(Under the direction of Wei Wang.)

I present efficient data mining algorithms for knowledge discovery on two types of emerging

large-scale sequence-based scientific datasets: 1) static sequence data generated from SNP

diversity arrays for genomic studies, and 2) dynamic sequence data collected in streaming and

sensor network systems for environmental studies. The massive, noisy nature of the SNP arrays

and the distributive, online nature of sensor network data pose challenging issues for knowledge

discovery such as scalability, robustness, and efficiency. Despite the different characteristics of

the SNP arrays and streaming sensor data, when viewed as sequences of ordered observations,

both can be efficiently mined using algorithms based on block-wise decomposition methods.

I present models and mining algorithms for inferring the genetic variation structure in

genome-wide Single-Nucleotide Polymorphism (SNP) arrays. Genome-wide SNP arrays pro-

vide a comprehensive view of genome variation and serve as powerful resources for genetic and

biomedical studies. Understanding the patterns of genetic variation in a population of individ-

uals plays an important role in solving many genetics problems such as genealogy reconstruc-

tion and gene association studies. In this thesis, I propose data mining models and algorithms

to efficiently infer genetic variation structure from the massive SNP panels of recombinant

sequences resulting from meiotic recombination. I introduced the Minimum Segmentation

Problem (MSP) to infer the segmentation structure of a single recombinant strain, as well as

the Minimum Mosaic Problem (MMP) to infer the mosaic structure on a panel of recombi-

nant strains. Both MSP and MMP estimate the ancestral polymorphism patterns exhibited in

recombinant strains which provides important inputs for the subsequent association analysis.

Efficient dynamic programming and graph algorithms based on block-wise decomposition are

proposed which can solve MSP and MMP on genome-wide large-scale panels.

I present efficient algorithms for mining massive streaming and sensor network data for

observational sciences such as ecology and environmental studies. I proposed efficient algo-

iii

rithms using block-wise synopsis construction to capture the data distribution online for the

dynamic sequence data collected in the sensor network and streaming systems including clus-

tering analysis and order-statistics computation, which is critical for real-time monitoring,

anomaly detection, and other domain specific analysis.

iv

v

Acknowledgements

I would like to gratefully and sincerely thank my advisor Dr. Wei Wang for her guidance

and support throughout the course of my Ph.D. study. I’d also express my gratitude to Dr.

Leonard McMillan for his feedback and collaboration on several of my research projects since

my second year. I’m also thankful to Dr. Fernando Pardo Manuel de Villena and Dr. David

Threadgill for inspiring me and providing me the opportunity to explore the exciting area

of Computational Genetics. My thanks also go to Dr. Jan Prins, who provided me helpful

feedback and discussions on my dissertation and accomplishment of my Ph.D.

The research projects reported in this dissertation involved the efforts of several current or

previous students of Data Mining and CompGen groups at UNC. I appreciate their help and

support. I’m especially thankful to Dr. Jinze Liu and Yi Liu. Jinze has been a senior to me

in the group when I joined and given me many useful advices. I have collaborated on several

projects with both Jinze and Yi, including the projects for my dissertation. I would also like to

thank Feng Pan, Li Guan, Liangjun Zhang, and many other UNC CS graduate students. I’m

thankful for having received enormous help and support from my friends at UNC, especially

Hao Wu, Liang Cai, and Yang Liu.

I am grateful to my parents and family for their love, encouragement and support.

vi

Table of Contents

List of Tables . xi

List of Figures . xii

List of Abbreviations . 1

List of Symbols . 1

1 Introduction . 1

1.1 Mining Genomic Data . 1

1.1.1 Genome-Wide SNP Arrays . 2

1.1.2 Inferring Genetic Variation Patterns 4

1.2 Mining Environmental and Ecological Data 10

1.2.1 Streaming and Sensor Data . 10

1.2.2 Challenges with Mining Streaming and Sensor Data 12

1.2.3 Capturing Data Distribution - Clustering and Order Statistics
Computation . 13

1.3 Thesis Statement . 15

1.4 New Results . 15

1.4.1 Mining Genome Data . 16

1.5 Mining Environmental and Ecological Data 17

1.6 Organization . 19

2 Inferring Segmentation Structure of Recombinant Genotype Sequences 20

2.1 Introduction . 20

vii

2.2 Related Work . 21

2.3 The Minimum Segmentation Problem . 22

2.4 Solutions for Genotype Input . 25

2.4.1 Enforcing the Constraints and Modeling Noise 30

2.5 Experimental Results . 35

2.5.1 Datasets . 35

2.5.2 Segmentation Results . 37

2.5.3 Running Time . 38

2.5.4 Constraint on Segment Number Difference 39

2.5.5 Error Tolerance . 40

3 Inferring Genome-wide Mosaic Structure 42

3.1 Introduction . 42

3.2 Related Work . 43

3.3 Problem Formulation . 44

3.4 Inferring the Local Mosaic . 46

3.4.1 Maximal Intervals . 46

3.4.2 Finding Local Breakpoints . 46

3.5 Finding Minimum Mosaic - A Graph Problem 50

3.6 Experimental Studies . 53

3.6.1 Kreitman’s ADH Data . 53

3.6.2 Running Time and Scalability Analysis 55

4 Clustering Distributed Data Streams 58

4.1 Introduction . 58

4.2 Related Work . 60

4.2.1 Distributed Clustering . 60

viii

4.2.2 Approximate In-network Aggregation 61

4.2.3 Clustering Single Stream . 61

4.2.4 Coreset and Streaming k-median 62

4.3 Preliminaries and Background . 62

4.3.1 Problem Definition . 62

4.3.2 Local Summary Structure . 63

4.3.3 Topology Dependence . 64

4.4 Algorithm . 65

4.4.1 Topology-oblivious Algorithm . 66

4.4.2 Height-aware algorithm . 72

4.4.3 Path-aware algorithm . 74

4.5 Experiments and Analysis . 76

4.5.1 Benchmark Data . 76

4.5.2 Results and Analysis . 77

5 Fast Algorithms for Approximate Order-Statistics Computation in
Data Streams . 83

5.1 Introduction . 83

5.2 Related Work . 84

5.3 Approximate Quantile Computation . 86

5.3.1 Algorithms . 86

5.3.2 Implementation and Resuts . 95

5.4 Approximate Baised-Quantile Computation 99

5.4.1 Preliminary . 99

5.4.2 Algorithms . 100

5.4.3 Implementation and Results . 112

ix

6 Conclusions . 117

6.1 Mining Genomic Datasets . 117

6.1.1 Inferring Segmentation Structure of Recombinant Genotype Se-
quences . 118

6.1.2 Inferring Genome-wide Mosaic Structure 119

6.2 Mining Streaming and Sensor Network Environmental Datasets 120

6.2.1 Clustering Distributed Data Streams 120

6.2.2 Fast Algorithms for Approximate Order-Statistics Computation
in Data Streams . 121

Bibliography . 123

x

List of Tables

2.1 Effect of Enforcing the Constraint on the Segment Number Difference . . 40

3.1 The result on genome-wide 51-strain mouse dataset 57

5.1 This table shows the memory size requirements of the Generalized algo-
rithm (with unknown size) for large data streams with an error of 0.001.
Each tuple consists of a data value, and its minimum and maximum rank
in the stream, totally 12 bytes. Observe that the block size is less than a
MB and fits in the L2 cache of most CPUs. Therefore, the sorting will be
in-memory and can be conducted very fast. Also, the maximum memory
requirement for the algorithm is a few MB even for handling streams of
1 peta data. 92

5.2 This table shows the properties of the different biased quantile (BQ) and
uniform quantile (UQ) algorithms. All the algorithms do not make as-
sumptions on stream sizes or input data ranges except CKMS06 which
requires knowledge of input data ranges. Moreover, all the biased quan-
tile algorithms except CKMS05 specify pruning operations to add error
on existing summaries and can be applied to sensor networks. Our bi-
ased quantile algorithm is both general and applicable to sensor networks.
Moreover, it achieves higher performance in terms of quantiles per second
(qps) than prior BQ algorithms running on similar hardware. ∗ Perfor-
mance numbers of CKMS05 and CKMS06 are obtained from [3,4]. 116

xi

List of Figures

1.1 Illustration of 3 SNP sites in a panel of DNA sequences from four strains 3

1.2 Recombination event during meiosis . 4

1.3 Point mutation (base “C” changed to “A”) 4

1.4 The Collaborative Cross breeding funnel (courtesy of Prof. Leonard
Mcmillan). S, T, U, V, W, X, Y, and Z denote the 8 founders. The
breeding funnel consists of 2 generations of crosses (G1 and G2), followed
by 20 generations of inbreeding (G2:F1 - G2:F20) 5

1.5 Illustration of a mosaic structure on a SNP panel. Gray and blue cells
in (a) represent majority and minority alleles, respectively. The black
vertical bars in (b) represent the recombination breakpoints that result
in a mosaic structure. 9

1.6 Illustration of a wireless sensor network. The edges with arrows between
sensor nodes represent the routing structure. 11

2.1 An example subregions. F1-F4 are four founder sequences. G is the
genotype sequence to be segmented. There are 15 sites in all sequences,
where site 10 is the only heterozygous site. R1 : [1, 9] and R2 : [11, 15]
are the homozygous regions. ∆1-∆5 are the maximal shared intervals in
R1. ∆6 and ∆7 are the maximal shared intervals in R2. r1 − r8 are the
subregions for the entire sequence, out of which r6 is the heterozygous
subregions, and the remaining are the homozygous subregions. 28

2.2 The Collaborative Cross breeding funnel. S, T, U, V, W, X, Y, and Z
denote the 8 founders. The breeding funnel consists of 2 generations of
crosses (G1 and G2), followed by 20 generations of inbreeding (G2:F1 -
G2:F20) . 36

2.3 The 8 founder strains chosen for the Collaborative Cross breeding funnel
shown in Fig. 2.2 . 37

2.4 The segmentation result of the proposed algorithm on a G2:F1 animal
OR65f18 from Collaborative Cross. The colors of different segments rep-
resent different founders shown in Fig. 2.3. 37

xii

2.5 The segmentation result of the proposed algorithm on a Pre-CC animal
13m72 from Collaborative Cross. The colors of different segments repre-
sent different founders shown in Fig. 2.3. 38

2.6 Running time with varying parameters. 39

2.7 Segmentation results on data with noise. 41

3.1 Neighboring blocks BL, BR fall inside overlapping/adjacent maximal in-
tervals IL, IR respectively. The dots in the shaded region represent in-
compatible SNP pairs of IL and IR. 47

3.2 Neighboring blocks BL, BR contain different subsets of the incompatible
SNP pairs. The dots represent the incompatible SNP pairs contained in
the overlapping maximal intervals IL and IR. The dots inside the shaded
triangle are contained in the neighboring block pair BL and BR. 50

3.3 Three block pairs form a node. Block pair 1, 2, and 3 are the left, middle,
and right block pair of the node respectively. The breakpoint range of the
node is the intersection of the end range of block pair 1, the breakpoint
range of block pair 2, and the start range of block pair 3. The vertical
stripes correspond to the start range, breakpoint range, and end range of
a block. The marked haplotypes in the stripes are the haplotypes which
have breakpoints in the corresponding region. 52

3.4 Comparison of Minimum Mosaic and Hapbound/SHRUB results on ADH
data. (a): the Minimum Mosaic result; (b): the result inferred from
the ARG in (c); (c): the ARG computed using SHRUB(Song and Hein
(2005)). The bars in (a) and (b) represent the breakpoints. The dots in
(c) represents the recombination events. 54

3.5 Comparison of the running times of MinMosaic and Hapbound over vary-
ing number of SNPs (in log scale). The datasets used are from Chr19 of
51-strain dataset and 74-strain dataset. The number of SNPs included
varies from 1000 to 4000. 56

4.1 EH summary at a site: This figure highlights the multi-level structure
of EH-summary. The incoming data is buffered in equi-sized blocks B1,
B2,. . . ,Bj , . . ., each of size O(k

εd). The coreset C1
j is computed for each

block Bj and sent to level l = 1. At each level l > 0, whenever two
coresets C l

j, C
l
j+1 come in, they are merged and another coreset C l+1

(j+1)/2

on C l
j

⋃
C l

j+1 is computed and sent to level l + 1. There are at most

log N
k/εd levels. 67

xiii

4.2 Error accumulation of Height-aware and Path-aware algorithms. This fig-
ure compares the different strategies of assigning additive approximation
factors at each site of the tree for height-aware and path-aware algorithms.
Height-aware algorithm assigns the additive error uniformly to ε

2h
, where

h is the height of the tree. Path-aware algorithm assigns the additive
error uniformly inside each sub-path, but differently for different sub-paths. 75

4.3 Performance of the algorithms as a function of the total stream size:
The overall communications among the sensor network nodes perform k-
median clustering are measured using real and synthetic data. The NYSE
data consists up to 28K records and the synthetic data consists up to 9
million data values. The approximation error threshold is set to 0.05. For
real data, all three algorithms are tested on a 5-node system. For synthetic
data, the algorithms are tested on a 10-node system. Figs. 4.3(a) and
4.3(b) demonstrate the overall data communication of the algorithms as a
function of input data size. Figs. 4.3(c) and 4.3(d) demonstrate the max
per node data communication of the algorithms as a function of input
data size. The experiments demonstrate a significant reduction in the
overall and max per node communication. 80

4.4 Performance of the algorithms as a function of the number of sites. The
data communication of the algorithms is measured as a function of the
number of sites on NYSE and synthetic data. 81

4.5 Performance of the algorithms as a function of approximation error: The
overall communication of the algorithm decreases as the error increases.
Figs. 4.5(a) and 4.5(b) highlight the overall data communication as the
error increases. Figs. 4.5(c) and 4.5(d) demonstrate the max per node
data communication as the error increases. Approximate clustering is
performed on NYSE data with 30K data records and synthetic data with
5 million observations. As the error tolerance increases, it can be ob-
served that both the height-aware and path-aware algorithms perform
better than the topology-oblivious algorithm and can further reduce the
communication by additional 10− 30%. 82

5.1 Multi-level summary S: This figure highlights the multi-level structure
of the ε-summary S = {s0, s1, . . . , sL}. The incoming data is divided
into equi-sized blocks of size b and blocks are grouped into disjoint bags,
B0, B1, . . . , Bl, . . . , BL with Bl for level l. B0 contains the most recent
block, B1 contains the older two blocks, and BL consists of the oldest 2L

blocks. At each level, sl is maintained as the εl-summary for Bl. The
total number of levels L is no more than log N

b
. 87

xiv

5.2 Sorted Data: The sorted and reverse sorted input data are used to mea-
sure the best possible performance of the summary construction time us-
ing the algorithm and GK01. Fig. 5.2(a) shows the computational time
as a function of the stream size on a log-scale for a fixed epsilon of 0.001.
It is observed that the sorted and reverse sorted computation time curves
for GK01 are almost overlapping due to the log-scale presentation and
small difference between them (average 1.16% difference). Same reason
for the sorted and reverse sorted curves for the algorithm, and the average
difference between them is 2.1%. It is also observed that the performance
of the algorithm is almost linear and the computational performance is
almost two orders of magnitude faster than GK01. Fig. 5.2(b) shows
the computational time as a function of the error. It is observed that
the higher performance of the algorithm which is 60 − 300× faster than
GK01. Moreover, GK01 has a significant performance overhead as the
error becomes smaller. 97

5.3 Random Data: The random input data is used to measure the perfor-
mance of the summary construction time using the algorithm and GK01.
Fig. 5.3(a) shows the computational time as a function of the stream size
on a log-scale for a fixed epsilon of 0.001. It is observed that the perfor-
mance of the algorithm is almost linear. Furthermore, the log-scale plot
indicates that the algorithm is almost two orders of magnitude faster than
GK01. Fig. 5.3(b) shows the computational time as a function of the er-
ror. It is observed that the algorithm is almost constant whereas GK01
has a significant performance overhead as the error becomes smaller. . . 98

5.4 Sorted Data: The sorted and reverse sorted input data are used to mea-
sure the best possible performance of the summary construction time us-
ing our biased quantile algorithm and uniform quantile algorithms ZW07,
GK01 using the same error 0.001. This log-scale plot indicates that our
algorithm achieves up to 75x higher performance compared to GK01 and
comparable performance to ZW07. Fig. 5.4(b) indicates the performance
of the our biased quantile algorithm and the uniform quantile algorithms
on a 10M stream size. 113

5.5 Random Data: The performance of the summary construction time using
our biased quantile algorithm and GK01 over random data. Fig. 5.5(a)
shows the computational time as a function of the stream size on a log-
scale for a fixed epsilon of 0.001. It is observed that our algorithm is able
to compute 1.4-1.6M quantiles per second. In practice, our algorithm is
over 30x faster than prior biased quantile algorithms. 115

xv

Chapter 1

Introduction

The recent proliferation of high throughput technologies has catalyzed the transforma-

tion of traditional science to data-driven science. The unprecedented growth of scientific

datasets leads to the phenomenon of data rich but information poor, demanding for rev-

olutionary knowledge discovery techniques to assist and accelerate scientific discovery.

In this thesis, I present explorative and descriptive modeling with efficient data

mining algorithm design for knowledge discovery on two types of emerging large-scale

sequence-based scientific datasets: 1) static sequence data generated from SNP diversity

arrays for genomic studies, and 2) dynamic sequence data collected in a streaming

and sensor network for environmental studies. Both types of datasets are large-scale,

containing hundreds of millions of observations. Mining useful patterns, trends, and even

anomalies from these datasets can provide valuable insights to the scientific discoveries.

The massive, noisy, or distributive, online nature of many datasets poses challenging

issues for mining algorithm design such as scalability, robustness, and efficiency.

1.1 Mining Genomic Data

The high-throughput power of modern sequencing facilities generate massive amounts

of whole-genome datasets. The Human Genome Project alone sequenced the 3 billion

DNA base pairs in the human genome. As part of the Human Genome Project, a

high-quality draft of the mouse genome was produced and analyzed in 2002 by the

Mouse Genome Sequencing Consortium. The amount of whole-genome data is growing

at an unprecedented rate, with over 1000 whole-genome datasets currently completed or

under construction. This new wealth of information is quickly outstripping our ability

for analysis in genetic studies, such as recombination detection and association mapping.

1.1.1 Genome-Wide SNP Arrays

Genetic variation plays an important role in determining people’s disease susceptibilities

and responses to drugs and vaccines. Genome-wide Single-Nucleotide Polymorphism

(SNP) arrays provide a comprehensive view of genome variation and serve as powerful

resources for genetic and biomedical studies.

Markers for Genetic Variation – SNP

The genetic information of a living organism is encoded in DNA sequences. A DNA

sequence consists of the sequence of nucleotide bases (adenine (A), cytosine(C), gua-

nine(G) or thymine(T)) in a DNA strand. For any two humans, 99.9% of their DNA

sequences are identical. Of the remaining sites that are polymorphic between two peo-

ple, 80% are single-nucleotide polymorphism (SNP) sites (Fig. 1.1), where there are at

least two alleles occur in the observed population with a frequency above 1%. Genome-

wide SNP arrays represent one of the most comprehensive tools for measuring genetic

variation. A map of more than 3.1 million SNPs over the human genome has been

generated through The International Hapmap Project. For the mouse genome, NIEHS

and Perlegen Sciences have generated a genome-wide map of 8.27 million SNPs over 15

commonly used strains of inbred laboratory mice.

The sequence of SNPs on a chromosome is referred to as a haplotype sequence. Most

of the SNPs are biallelic, with only two alleles at any site across the population. The

allele with higher frequency is called the majority allele, the other is called the minority

2

Figure 1.1: Illustration of 3 SNP sites in a panel of DNA sequences from four strains

allele. For diploid animals such as human and mouse, each chromosome has two copies,

and each copy corresponds to a haplotype sequence. The combination of the alleles at a

SNP site is referred to as a genotype. The current technology for obtaining the genotype

sequence is called genotyping, which determines for each locus, whether the genotype is

homozygous for the majority allele (both haplotypes have majority allele), homozygous

for the minority allele (both haplotypes have minority allele), or heterozygous (the two

haplotypes have different alleles).

Sources of Genetic Variation – Recombination and Mutation

The two major molecular events shaping genetic variation current populations are re-

combination and mutation.

• Recombination

During meiosis in sexual organisms, two homologous chromosomes cross over and

exchange genetic material (Fig. 1.2). Recombination leads to offsprings with

different combinations of genetic variants from their parents.

• Mutation

Mutations are changes to the nucleotide sequence of the genetic material of an

organism. The most common type of mutation is point mutation, which is the

replacement of a single nucleotide base with another nucleotide base (Fig. 1.3).

Other types of mutations include insertions, deletions, duplications, etc.

3

Figure 1.2: Recombination event during meiosis

Figure 1.3: Point mutation (base “C” changed to “A”)

1.1.2 Inferring Genetic Variation Patterns

Patterns of genetic variation in a population are the product of mutation and recom-

bination events that have occurred over many generations from the ancestors of the

population. Understanding genetic variation patterns plays an important role in solving

many genetic problems such as reconstructing genealogies and gene association studies.

Inferring Segmentation Structure of a Single Recombinant Strain

Current animal resources for genetics research are often derived by mating a small set

of founders. The meiotic recombination events during the mating in each generation

result in a fragmental structure in the derived recombinant strains. During the process

of generating these model organisms, mutations rarely happen and are considered as

4

Figure 1.4: The Collaborative Cross breeding funnel (courtesy of Prof. Leonard Mcmil-
lan). S, T, U, V, W, X, Y, and Z denote the 8 founders. The breeding funnel consists of
2 generations of crosses (G1 and G2), followed by 20 generations of inbreeding (G2:F1
- G2:F20)

noise.

An example genetic model system is the Collaborative Cross (CC), a large panel of

1000 recombinant inbred (RI) mouse strains generated from a funnel breeding scheme

initiated with a set of 8 founders. (Fig. 2.2). The founder set was selected to maximize

diversity among laboratory mouse strains. Each founder strain is inbred, and thus

isogenic (homozygous at every allele). The genomes of each founder strain are shown

in a different color (Fig. 2.2), and the resulting inbred CC strain is a mosaic of these

genomes resulting from 2 crosses (G1 and G2), followed by 20 generations of inbreeding.

The CC strains are infinitely reproducible, inbred lines which capture and randomize

5

nearly 90% of the known variation in laboratory mice, providing unparalleled power for

disease association studies. As shown in Fig. 2.2, the CC strains (G2:F20) and the pre-

CC strains (G2:F1-G2:F19) are composed of segments from the 8 founder sequences. The

segmentation structure identifies the ancestral origin of each region on a recombinant

strain, which is important input for subsequent association studies.

In this thesis, I investigate the problem of inferring the segmentation structure for the

recombinant strains given a small set of founder sequences. The challenges for solving

this problem are three fold:

• Genotype input

Compared with DNA sequence, genotypes are less expensive to obtain experi-

mentally. Algorithms with genotype input are thus more desirable. However,

for genotype sequence, the exact allele combinations at heterozygous sites cannot

be directly derived. To infer the two plausible haplotypes given the genotypes,

phasing algorithms are usually applied, which are known to be computationally

intensive.

• Biological constraints

Biologically relevant constraints are critical in defining the biologically feasible

solutions for the segmentation problem. For example, in the Collaborative Cross,

a specific breeding scheme (the order of the 8 founder strains coming into the

funnel) defines the set of possible founder pairs for the genotype at each locus.

Moreover, since each autosome undergoes one recombination event on average

during each meiosis, the number of segments on the two associated haplotypes of

the genotype is expected to be comparable. Without considering these biological

constraints, the algorithm may generate spurious solutions.

• Noise in the data

6

Noise is common in biological datasets. There are both biological and technical

sources of noise in genotyping, which include point mutations, gene conversions,

and genotyping errors. In addition, there may be missing values in the data. Noise

and missing values need to be properly modeled to make the algorithm robust for

running on real biological datasets.

Previous studies have focused on similar but different models.

• Combinatorial analysis of founder set reconstruction problem

In (Ukkonen (2002)) and (Wu and Gusfield (2007)), combinatorial approaches are

employed to solve the founder set reconstruction problem with a given set of sample

haplotype sequences that are evolved from a small set of founders. Different from

these models, I study the “inverse” problem where the set of founder sequences are

already known, and compute the segmentation structure for genotype sequences of

the recombinant strains given the founder sequences. The problem is important for

analyzing the ancestral polymorphism presented in experimental model resources

for subsequent gene association studies. A real motivating study is analyzing the

segmentation structure for pre-CC strains in Collaborative Cross.

• Probabilistic inference of SNP origin

Mott (Mott et al. (2000)) et al. proposed an HMM-based algorithm for inferring

the probability of each founder pair as the origin for each genotype at a SNP

site, assuming the founder sequences are known beforehand. Different from the

HMM-based algorithm, I study the problem of explicitly deriving all the possible

segmentation structures with certain biological meaningful optimization criterion.

• Other related problems

Other related work on analyzing the genetic variation structure of genome se-

quences include identifying haplotype blocks (Dally et al. (2001); Gabriel et al.

7

(2002); Schwartz et al. (2003)), computing phylogenies (Gusfield (2002); Gusfield

et al. (2004)).

Inferring Mosaic Structure of a Recombinant Strain Panel

Genetic recombination is an important process in shaping the arrangement of polymor-

phisms within populations. “Recombination breakpoints” in a given set of genomes of a

population disrupt the linkage disequilibrium (LD) existing in the genomes and divide

the genomes into haplotype blocks, resulting in a mosaic structure (Fig. 1.5). Without

prior knowledge of the founder sequences, this mosaic structure can only be inferred

through the estimation of recombination breakpoints. Recombination breakpoints rep-

resent the locations where the crossovers have occurred, either during the generation of

the haplotype itself, or in previous generations (carried over from ancestors).

Under the infinite site model (which assumes at most 1 mutation at each site),

the recombination breakpoint can be inferred using the Four Gamete Test (FGT). The

FGT states that the number of different allele combinations between any two sites can at

most be 3 if no visible recombinations have happened in between. Two SNPs are called

incompatible if all 4 allele combinations exist. In this thesis, I investigate the problem

of inferring the genome-wide mosaic structure consisting of the set of the recombination

breakpoints which explain the SNP incompatibilities using FGT.

The challenges of inferring the genome-wide mosaic structure comes from the sheer

scale of the data. For a SNP panel of tens of strains over hundreds of thousands of

SNPs (a typical size for a mouse chromosome), the number of possible sets of recombi-

nation breakpoints would grow exponentially in the size of the panel. Solving large-scale

combinatorial problem requires efficient algorithm design.

Many algorithms have been developed for several related problems, such as esti-

mation of recombination rate (Hudson and Kaplan (1985); Myers and Griffiths (2003);

Song et al. (2005)), inferring haplotype block structure (Gabriel et al. (2002); Patil et al.

8

(a) A SNP panel

(b) The mosaic structure on the SNP panel in (a) result-
ing from historical recombinations

Figure 1.5: Illustration of a mosaic structure on a SNP panel. Gray and blue cells in
(a) represent majority and minority alleles, respectively. The black vertical bars in (b)
represent the recombination breakpoints that result in a mosaic structure.

(2001)), recombination detection (Posada (2002); G.F. (1998); Hein (1990, 1993); N.C.

and Holmes (1997); Holmes et al. (1999); Lole et al. (1999); Martin and Rybicki (2000);

Drouin et al. (1999); Jakobsen et al. (1997); Maynard and Smith (1998); Stephens (1985);

Worobey (2001)), and others. Different from these related problems, the mosaic model

captures the possible locations of the breakpoints on each haplotype in the population

which can explain the SNP incompatibility resulting from recombinations. Inferring

such a finer scale mosaic structure is important for many genetics problems such as gene

association studies.

9

1.2 Mining Environmental and Ecological Data

With recent advances in sensor technology, large-scale wireless sensor networks are de-

ployed for observing the natural environments, monitoring habitat and wild popula-

tions, offering environmental and ecology scientists access to enormous volumes of data

collected from physically-dispersed locations in a continuous fashion. Some of the ex-

perimental systems deployed include Berkeley’s habitat modeling at Great Duck Island

(Szewczyk et al. (2004)), FLOODNET project1 which provides a flood warning in the

UK, and SECOAS project2 which monitors coastal erosion around small islands in-

tended as wind-farms. The large-scale, distributive and online nature of sensor network

and stream data presents new computational challenges for data mining tasks such as

mining the distribution of the data, mining frequent patterns or temporally drifting,

evolving, periodic patterns, and anomaly detection. Adding to the challenges are strin-

gent system constraints including limited size of memory, battery, and processing power

of the sensor nodes. In this thesis, I investigate several related problems to discover

the data distribution online for sensor network and stream systems. These problems in-

clude clustering analysis and order-statistics computation, which is critical for real-time

monitoring, anomaly detection, and domain specific analysis.

1.2.1 Streaming and Sensor Data

The recent advances in sensor technologies enables environmental and ecological data

collection at an unprecedent scale and rate. A wireless sensor network is composed

of spatially distributed sensors which are battery-powered mini computers that can

monitor the environmental measurements such as temperature, sound, light, pressure,

motion or pollutants at different locations (Fig. 1.6). A typical sensor node includes

1http://envisense.org/floodnet.htm

2http://envisense.org/secoas.htm

10

an antenna and a radio frequency (RF) transceiver to allow communication between

sensors, a CPU, a memory unit, a power source such as battery, and a sensor unit which

collects environmental measurements.

Figure 1.6: Illustration of a wireless sensor network. The edges with arrows between
sensor nodes represent the routing structure.

Sensors communicate with each other using multi-hop connections. The data is

transmitted towards a special kind of node called a base station (or sink). A base

station links the sensor network to the Internet for further browsing and processing at

the client side. Base stations usually have enhanced capabilities over the sensor nodes

to provide more complex data analysis.

Streaming sensor data and its characteristics

Observations and measurements are collected at each sensor node continuously as data

streams – the ordered sequence of sensor readings. Different from static datasets, data

streams present several unique characteristics:

• Data streams are real-time, and possibly high-speed.

The sensors collect and transmit the readings in real-time. Depending on the

applications, the readings may arrive at high speed.

11

• Data streams are potentially unbounded in size.

Once deployed, the sensors continuously collect the measurements which result in

massive amount of data over time.

• Data streams cannot be explicitly stored.

Due to the limited memory at each sensor, the massive-scale of raw readings in

data streams cannot be completely stored for further retrieval and processing.

Additionally, for sensor network systems,

• Multiple data streams are collected in a distributed fashion.

The distributed data streams are organized according to the routing topology of

the sensor network. The data are eventually collected at the sink.

1.2.2 Challenges with Mining Streaming and Sensor Data

The unique characteristics of streaming and sensor network data lead to a number of

computational and data mining challenges:

• The sheer volume of the data streams and the limited memory make it impossible

to store the entire data stream or even scan the data multiple times. The data

mining algorithms are thus required to be single pass, or a few passes.

• The continuous, real-time nature of the data streams requires data mining algo-

rithms to be continuous, incremental, and on-the-fly.

In addition, the system constraints of sensor network pose extra computational chal-

lenges for data mining algorithm design:

• Sensor nodes are inherently resource-constrainted. They have limited storage ca-

pacity, battery, and processing power. The sensors are sometimes deployed in

12

hazardous environment which are inaccessible after deployment. The major drain

on the sensor’s battery is data transmission, which determines the lifetime of the

sensor node. Therefore, the data mining algorithms are required to be resource-

aware.

• The wireless sensor networks are essentially distributed data stream systems. Due

to the limited power, it is not affordable to transmit all local streams of raw sensor

readings towards the sinks for centralized processing. As a result, the data mining

algorithms need to be distributed across the sensor nodes.

1.2.3 Capturing Data Distribution - Clustering and Order Statis-

tics Computation

In this thesis, I present several algorithms to discover the data distribution online and

continuously for streaming and sensor network systems including clustering analysis and

order-statistics computation.

Clustering Distributed Data Streams

Clustering, a useful tool in data analysis, is the problem of finding a partition of a dataset

so that, under a given distance metric, similar items are grouped together. Clustering

the data collected in distributed data streams systems such as a sensor network provides

a good estimation of the underlying data distribution.

Clustering over distributed streams is a challenging task. Difficulties lie in various

issues:

• Communication

Distributed stream system continuously produces large volume of data, which

imposes prohibitive communication load if all the data are transferred to the sink

for centralized computation. In-network aggregation (Madden et al. (2002)) is

13

one of the techniques (Olston et al. (2003); Madden et al. (2002); Silberstein et al.

(2006); Willett et al. (2004)) that push processing operators down into the network

to reduce data transmission. It computes a local summary at each site and merges

and summarizes further at each internal site towards the root. However, this

approach cannot be immediately adopted to solve the clustering problem, since

clustering is usually a holistic computation (Madden et al. (2002)) which cannot

be readily decomposed into computations on data partitions.

• Clustering Quality

Accuracy is usually traded for reduced communication through sketching or syn-

opsis construction. However, it is necessary to provide approximate distributed

clustering with a guaranteed bounded error.

• Topology

The topology of the underlying routing network is an important factor that in-

fluences the performance of the distributed clustering algorithm. The topology

sensitivity of the algorithm determines the adaptability of the algorithm given

different knowledge about the routing topology.

Order Statistics Computation on High-Speed Data Streams

In addition to clustering analysis, order statistics is also one of the fundamental tools to

capture the distribution of the dataset, by associating the rank and value of the data.

As a popular order statistics, quantiles have found wide application in database and

scientific computing. Different from quantile computation on static datasets, streaming

quantile computation is required to be single-pass, space efficient and continuous.

Many algorithms have been proposed for computing approximate quantiles over the

entire stream history (Manku et al. (1998); Greenwald and Khanna (2001)) or over a slid-

ing window (Lin et al. (2004); Arasu and Manku (2004)); with uniform error (Manku

14

et al. (1998); Greenwald and Khanna (2001)) or with biased error (Cormode et al.

(2005, 2006)). The best reported storage bound for approximate quantile computation

is O(1/ε log(εN)) (Greenwald and Khanna (2001)), where N is the size of the stream,

and ε is the approximation bound. However, most of these algorithms focus on reducing

the space requirement at the expense of the computational cost, which is important for

processing high-speed data streams with satisfactory real-time performance. In addi-

tion to single-pass and continuous computation, the requirements for efficient quantile

computation algorithms over high-speed data streams are:

• The algorithm should have a lowe per element computation cost as well as low

storage bound.

• In order to guarantee the precision of the result, the algorithm should ensure

random or deterministic error bound for the quantile computation.

• The algorithm should be able to handle stream size which is not known a priori.

1.3 Thesis Statement

Efficient algorithms can be designed for mining massive sequence-based scientific datasets

from emerging biological and environmental applications such as genomic datasets and

streaming and sensor datasets using block-based decomposition methods.

1.4 New Results

This section highlights the key results presented in this thesis. The results in solving

the two mining problems for genome data and two mining problems for streaming and

sensor network data are summarized below.

15

1.4.1 Mining Genome Data

Inferring Segmentation Structure of a Single Recombinant Strain

• Model I propose the Minimum Segmentation Model to infer the origins of haplo-

type segments in a recombinant strain (genotype sequence) given a set of known

founders (haplotype sequences). Each segment on a recombinant strain is at-

tributable to one of the founders. The minimum segmentation can be used for

inferring the relationship among recombinant sequences to identify the genetic ba-

sis of traits, which is important for disease association studies. The basic model is

also extended to handle noise and support additional biologically-motivated con-

straints. The biological constraints include the funnel breeding scheme and the

requirement of comparable number of segments on both haplotypes. These con-

straints guarantee the biological validity of the solutions as well as significantly

reduce the search space. Furthermore, noise (point mutations, gene conversions,

and genotyping errors) and missing values, as common to all biological datasets,

are incorporated to improve the robustness of the model.

• Algorithm I propose efficient dynamic programming algorithm to solve the Min-

imum Segmentation problem in polynomial time based on block-wise decomposi-

tion of the sequences. The algorithm has a time complexity of O(LN + P 4) and

a space complexity of O(PN2), where L is the number of SNPs, N is the number

of founders, and P is the number of blocks.

• Performance The proposed algorithms permits genome wide analysis on real

mouse genome datasets (Collaborative Cross), and generates feasible biological

solutions on CC (preCC and G2F1 strains). The proposed algorithm can also

handle noise and missing values properly on these strains.

16

Inferring Mosaic Structure of a Recombinant Strain Panel

• Model I propose the Minimum Mosaic Model to capture the minimum number

of recombination breakpoints required for generating a set of genome sequences

(in haplotypes). This mosaic structure provides a good estimation of the rate

and possible locations of the recombination events, which is useful for inferring

haplotype block structures and genealogical history.

• Algorithm I proposed an efficient graph-based algorithm for computing the min-

imum mosaic structure for a given set of haplotype sequences. The strains in the

SNP arrays are divided into blocks. For any two neighboring haplotype blocks,

the local breakpoints are inferred according to the Four-Gamete Test (FGT). Pos-

sible local breakpoint sets (as graph nodes) are connected to form a combinatorial

search space for minimum solution.

• Performance The proposed algorithm permits genome-wide analysis. The ex-

periments on CGD mouse genome datasets with 51 mouse strains over total 7.8M

SNPs demonstrates the good performance of the algorithm (less than half an hour

for each chromosome).

1.5 Mining Environmental and Ecological Data

Clustering Distributed Data Streams

• Model I define the problem of approximate k-Median Clustering over data arriving

at a distributed data stream system such as a sensor network.

• Algorithm I propose a suite of resource-aware algorithms for continuously com-

puting (1 + ε)-approximate k-median clustering over distributed data streams un-

der three different topology settings: topology-oblivious, height-aware, and path-

aware. I incorporated the in-network aggregation techniques to avoid the raw

17

data transmission between sites, which is the main drain on the sensor’s battery.

Efficient summary structures are designed to reduce data transmission as well as

guarantee bounded-error solution. The summary structure is constructed by di-

viding the in coming streams into fixed-size blocks. The algorithms reduce the

maximum per node transmission to polylogN (opposed to N for transmitting the

raw data).

• Performance The algorithms demonstrate the scalability of the algorithms with

respect to the data volume, approximation factor, and the number of sites. All

three algorithms can greatly reduce the total as well as per node transmission,

especially with larger-scale data.

Order Statistics Computation on High-Speed Data Streams

• Model I solve the problem of approximate quantile and biased-quantile for high-

speed data streams.

• Algorithm I propose a fast algorithm for computing approximate quantiles in high

speed data streams with deterministic error bounds. The algorithm uses simple

block-wise merge and sample operations. Overall, the proposed algorithm achieves

a per-element update computational cost of O(log(1/ε log(εN))) for approximation

factor ε and stream size N (N is not know beforehand). In addition, I proposed

an efficient algorithm for computing approximate biased quantiles in large data

streams. The algorithm is based on a novel piece-wise uniform sampling technique

which computes decomposable biased quantile summaries on fixed size blocks of

the incoming data stream. The algorithm is computationally efficient, does not

assume prior knowledge of the stream sizes or the range of data values in the

streams, and is applicable to distributed data stream system. In practice, the

algorithm is able to efficiently maintain summaries over large data streams with

18

over tens of millions of observations.

• Performance Experiments demonstrate that the algorithms are able to efficiently

maintain summaries over large data streams with over tens of millions of observa-

tions.

1.6 Organization

The rest of the thesis is organized as follows:

• Chapter 2 presents the Minimum Segmentation model and algorithms for solving

the problem of inferring segmentation structure of a single recombinant strain.

• Chapter 3 presents the Minimum Mosaic model and algorithms for solving the

problem of inferring mosaic structure of a recombinant strain panel.

• Chapter 4 presents the algorithms for approximate K-Median clustering for sen-

sor network data.

• Chapter 5 presents the algorithms for approximate quantiles and biased-quantiles

computation high-speed data streams.

• Chapter 6 concludes with the major results of the thesis and discusses problem

areas for future research.

19

Chapter 2

Inferring Segmentation Structure of

Recombinant Genotype Sequences

2.1 Introduction

Recombination plays an important role in shaping the genetic variations present in

current-day populations. Understanding the genetic variations and the genetic basis of

traits is crucial for disease association studies. We assume an evolution model (previously

proposed and studied in (Ukkonen (2002); Wu and Gusfield (2007))) where a population

is evolved from a small number of founder sequences. A real-world biological scenario is

the Collaborative Cross (CC). The CC (Churchill et al. (2004); Threadgill et al. (2002))

is a large panel of 1000 recombinant inbred (RI) mouse strains that were generated

from a funnel breeding scheme initiated with a set of 8 founder strains followed by 20

generations of inbreeding. These 8 genetically diverse founder strains capture nearly

90% of the known variations present in the laboratory mouse. The resulting RI strains

have a population structure that randomizes the known genetic variation, which provide

unparallel power for disease association studies.

Given a set of founder haplotype sequences and a randomization of these haplotypes

during interbreeding, a sequence in a derived line from a population of lines like the

CC is composed of segments from the founders. It is of great interest to identify and

label these segments according to their contributing founder. Although the segmenta-

tion for a haplotype sequence may be straightforward to compute, in many cases the

sequence to be segmented is a genotype sequence for which the two haplotypes are not

completely distinct and they may have different segmentations. For example, the mice

generated during the intermediate generations in the CC funnel are genotyped to obtain

the genotype sequences each of which contains two different haplotypes in each line.

I study the segmentation problem of genotype sequences with the optimization for the

minimum number of segments contained in the two associated haplotypes. Furthermore,

I extend this basic model to include additional biologically-motivated constraints as well

as noise. Since each autosome undergoes, on average, one recombination per meiosis, it

is expected that the number of founder switches per haplotype at a given generation of

breeding are comparable. Moreover, noise may exist in the founder sequences as well

as the genotype sequence to be segmented. Sources of the noise are both technical and

biological. They include point mutations, gene conversions, genotyping errors, etc. In

addition to noise, missing genotyping values are also very common in these datasets.

2.2 Related Work

Similar but different models were studied in (Ukkonen (2002); Wu and Gusfield (2007);

Mott et al. (2000)). Ukkonen (Ukkonen (2002)) first proposed the founder set recon-

struction problem under the assumption that the sample set is evolved from a small

set of founders. A dynamic programming algorithm was proposed which computes a

minimum number of founders with a given set of sample haplotype sequences, where a

segmentation of all the sequences in the sample set can be derived which contains the

minimum number of founder switches. Wu and Gusfield (Wu and Gusfield (2007)) pro-

posed improved polynomial time algorithms for haplotype as well as genotype sample

sequences for the special case where there are only two founders. Different from these

21

models, the genotype sequence segmentation problem studied in this thesis assumes that

the set of founder sequences are already known, and the main focus is on inferring the

segmentation structure for genotype sequences, with the consideration of biologically-

relevant constraints and noise present in the data. The genotype sequence segmentation

problem is very important for studying the ancestral polymorphism structure in experi-

mental recombinant strains such as PreCC strains (strains from intermediate generations

in the CC funnel which are not fully inbred).

Besides the combinatorial analysis of founder set reconstruction problem presented

in (Ukkonen (2002)) and (Wu and Gusfield (2007)), another line of related work focuses

on probabilistic inference of SNP origins. Mott (Mott et al. (2000)) et al. proposed an

HMM-based algorithm for inferring the probability of each founder pair as the origin

for each locus, assuming the founder sequences are known beforehand. The founder

origin probability distribution is computed for outbred animal stocks as input for subse-

quent quantitative trait loci (QTL) mapping. Different from locus-based founder origin

estimation in (Mott et al. (2000)), the genotype sequence segmentation problem explic-

itly derives all the possible segmentation structures with certain biological meaningful

optimization criterion.

Other related work of analyzing the genetic variation structure of the genome se-

quences include identifying haplotype blocks (Dally et al. (2001); Gabriel et al. (2002);

Schwartz et al. (2003)), computing the phylogenies (Gusfield (2002); Gusfield et al.

(2004)), etc.

2.3 The Minimum Segmentation Problem

Assume that we have a set of founding haplotypes FS = {F1, . . . , Fn, . . . , FN}. Each

haplotype sequence is of length L: Fn = fn
1 fn

l . . . fn
L , where fn

l ∈ {0, 1}. Given an

input sequence from a population which is derived exclusively from the founder set FS,

22

the problem is to find a possible segmentation of the sequence, where each segment is

inherited from the corresponding region of one of the founders. I first explain the simple

case where the input sequence is a haplotype, and then investigate the more interesting

case where the input is a genotype sequence.

Given a haplotype sequence, H = h1 . . . hL, (hl ∈ {0, 1}), a segment of H is denoted

as Hk = hsk
hsk+1hsk+Lk−1, where sk is the starting position of Hk, and Lk is the length

of Hk. A segmentation of H divides the entire sequence into an ordered list of disjoint

segments Seg(H) = {H1, . . . , Hk, . . . , HK}, where each segment Hk is identical to the

corresponding region of one of the founders and K is the number of segments in Seg(H).

In other words, for each segment Hk = hsk
hsk+1hsk+Lk−1, there exists a founder Fn =

fn
1 fn

l . . . fn
L such that hsk+li = fn

sk+li
, for li = 0, 1, . . . , Lk − 1. Furthermore, a minimum

segmentation is defined as the segmentation which contains the minimum number of

segments. The minimum segmentation is denoted as MinSeg(H) = {H1, . . . , HKmin
},

where Kmin = |MinSeg(H)| is the number of segments in MinSeg(H).

If the input is a genotype sequence, it represents two copies of different haplotype

sequences, Ha and Hb. Assume that the genotype sequence is G = g1 . . . gL, where

gl ∈ {0, 1, 2}. A site l is homozygous if gl = 0 (ha
l = hb

l = 0) or gl = 1 (ha
l =

hb
l = 1); a site l is heterozygous if Ha and Hb take different alleles, in which case,

gl = 2. The process of determining whether ha
l = 0, hb

l = 1 or ha
l = 1, hb

l = 0 for a

heterozygous site l is called phasing. The procedure of determining the two haplotype

sequences from the genotype sequence by phasing all the heterozygous sites is called

Haplotype Inference. For the genotype input case, a segmentation Seg(G) consists of

segmentations for both haplotype sequences: Sega(Ha) and Segb(Hb). The number of

segments in Seg(G) is the sum of the numbers of segments in Sega(Ha) and Segb(Hb):

|Seg(G)| = |Sega(Ha)| + |Segb(Hb)|. The minimum segmentation is the segmentation

which contains the minimum total number of segments: |MinSeg(G)| = min{|Seg(G)|}.
Let MinSeg(G) = {Seg∗

a(Ha), Seg∗
b (Hb)}.

23

I develop efficient algorithms for the minimum segmentation problem especially for

the genotype input case. In addition to the basic models, there are other issues which

need to be considered, such as genotyping errors, point mutations, missing values, the

balance of the number of segments in both haplotypes, etc. I will explain later how

these biological constraints and noise are modeled in the solutions.

Solutions for Haplotype Input: Computing the minimum segmentation for the

haplotype input sequence is relatively easy and has been discussed in previous studies

(Wu and Gusfield (2007); Ukkonen (2002)). A simple greedy algorithm can be applied

to compute a minimum segmentation solution by scanning from left to right. Assume

that the current site is i (initially it is site 1), and we have a minimum segmentation

solution for the part of the input sequence from site 1 to site i. Starting from site i,

we try to find the segment shared by the input sequence and one of the founders which

extends furthest to the right. This greedy algorithm generates one of the minimum

segmentation solutions.

A graph-based dynamic programming algorithm can be used to compute all minimum

segmentation solutions given the input haplotype sequence and the founder set. At a

high level, all maximal shared intervals are first computed between the input sequence

and each founder sequence. The maximal shared interval between the input sequence

and founder n is a region where the input sequence is exactly the same as founder n.

Each shared interval is considered as a node and two intervals are connected with an

edge if they overlap. In this way, a minimum segmentation solution corresponds to a

shortest path from a node starting at the first site to a node ending at the last site. The

complete set of the shortest paths can be computed, which are all possible minimum

segmentation solutions.

24

2.4 Solutions for Genotype Input

The greedy algorithm and the graph-based algorithm for segmenting haplotype input

sequences cannot be easily applied on genotype input. The major issue is that the exact

sequences of the two haplotypes are not known due to the multiple possible allele pairs

at heterozygous sites. Second, the minimum segmentation solution for the genotype

may not consist of the minimum segmentation solutions for each haplotype sequence.

In the following discussion, I describe two dynamic programming algorithms for

solving the minimum segmentation problem for genotype input sequences. The first

algorithm considers each site separately, the second algorithm considers a region of sites

simultaneously, and is thus more efficient.

Site-based Dynamic Programming Algorithm: For each site l, the possible founders

for the two haplotype sequences Ha and Hb are considered. If site l is a homozy-

gous site, assuming gl = 0 (without loss of generality), we have ha
l = hb

l = 0. Let

ofa,l be the original founder where ha
l was inherited from at site l. Then ofa,l must

be one of the founders which also take 0 at site l: ofa,l ∈ {Fn|fn
l = 0}. Similarly,

we have the founder where hb
l was inherited from as: of b,l ∈ {Fn|fn

l = 0}. Let

fpl = 〈ofa,l, of b,l〉 denote the possible founder pair at site l, we have the set of all

possible founder pairs as FP l = {fpl|fpl ∈ {Fn|fn
l = 0} × {Fn|fn

l = 0}}. If site

l is a heterozygous site where gl = 2, there are two possibilities: ha
l = 1 ∧ hb

l = 0

or ha
l = 0 ∧ hb

l = 1. Therefore, the possible founder pairs for heterozygous site l is

FP l = {fpl|fpl ∈ {Fn|fn
l = 0} × {Fn|fn

l = 1} ∪ {Fn|fn
l = 1} × {Fn|fn

l = 0}}. The

founder pair set FP l is computed for each site l.

Assigning a founder pair from FP l to each site l generates a segmentation of the

input genotype sequence. The number of segments of both haplotypes (of the geno-

type) are the total number of founder switches between founder pairs of every consec-

utive sites plus 2. Consider two neighboring sites l and l + 1. If the corresponding

founder pairs are fpl
ql

= 〈ofa,l
ql

, of b,l
ql
〉 (1 ≤ ql ≤ |FP l|) and fpl+1

ql+1
= 〈ofa,l

ql+1
, of b,l

ql+1
〉

25

(1 ≤ ql+1 ≤ |FP l+1|), the number of founder switches between these two founder pairs

FounderSwitch(fpl
ql
, fpl+1

ql+1
) can be computed as:

FounderSwitch(fpl
ql
, fpl+1

ql+1
) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 : if ofa,l
ql = ofa,l+1

ql+1 ∧ of b,l
ql = of b,l+1

ql+1

1 : if ofa,l
ql = ofa,l+1

ql+1 ∧ of b,l
ql �= of b,l+1

ql+1 or

ofa,l
ql �= ofa,l+1

ql+1 ∧ of b,l
ql = of b,l+1

ql+1

2 : if ofa,l
ql �= ofa,l+1

ql+1 ∧ of b,l
ql �= of b,l+1

ql+1

(2.1)

Let Kmin(g1 . . . gl−1|fpl
ql
) be the minimum number of segments in any segmentation

solution over the subsequence g1 . . . gl which at site l takes the founder pair fpl
ql
. The

minimum number of segments over the entire genotype sequence Kmin(g1 . . . gL) can be

computed as:

Kmin(g1 . . . gL) = minfpL
qL

∈FP L{Kmin(g1 . . . gL−1|fpL
qL

)} (2.2)

The main recurrence of the dynamic programming algorithm is as follows:

Kmin(g1 . . . gl−1|fpl
ql
) = minfpl−1

ql−1
∈FP l−1{Kmin(g1 . . . gl−2|fpl−1

ql−1
)+

FounderSwitch(fpl−1
ql−1

, fpl
ql
)}

(2.3)

And initially,

Kmin(Φ|fp1
q1

) = 2, ∀fp1
q1
∈ FP 1 (2.4)

The solutions for this dynamic programming problem can be easily computed by

populating a table T of L rows where row l has at most |FP l| entries. The entry

T (l, ql), 1 ≤ ql ≤ |FP l| is filled with Kmin(g1 . . . gl−1|fpl
ql
) during the computation. Row

26

1 is initialized according to Eq.(4), and row i + 1 is computed after row i. During the

computation of T (l, ql) according to Eq.(3), backtracking pointers from entry T (l, ql) to

any T (l − 1, ql−1) are preserved where the minimum values are obtained. In this way,

all the minimum segmentation solutions can be obtained.

There are at most N2 founder pairs for each site l, i.e., |FP l| ≤ N2,∀l. Therefore, the

populated table is of size O(LN2). It takes constant time to compute FounderSwitch

(fpl
ql
, fpl+1

ql+1
), then filling out a single entry in the table takes O(N2) time. Therefore, the

computational complexity for the entire algorithm is O(LN4). The space complexity

is O(LN2). For very long sequences and a small number of founders, i.e., L
 N4,

the algorithm has linear time and space complexity in terms of the length of the input

sequence. If multiple backtrack pointers are kept for each entry while populating the

table, all the minimum segmentation solutions can be obtained.

Region-based Dynamic Programming Algorithm: For very long sequences, a

more efficient algorithm is proposed which considers a subregion of the entire sequence

instead of one site at a time.

First consider the homozygous regions, which are the regions of homozygous sites

between any two consecutive heterozygous sites. Within a homozygous region, both

copies of the haplotype sequences are the same and the exact allele at each site can

be inferred. Fig. 2.1 illustrates an example of a set of four founders (F1 − F4) and

a genotype input sequence G to be segmented. The length of each founder and the

genotype sequence is 15, with 14 homozygous sites and 1 heterozygous site (site 10).

The homozygous regions are R1 = [1, 9] and R2 = [11, 15]. For each homozygous region,

all the maximal shared intervals between each founder and the haplotype sequences are

computed. A maximal shared interval ∆i is an interval over which a haplotype and a

founder shares the same allele at each site and the region cannot be extended further

on either side. Each maximum shared interval is represented as a triple, for example,

∆i : (Ii, Ha, Fn) is a maximal shared interval between haplotype Ha and founder Fn over

27

Figure 2.1: An example subregions. F1-F4 are four founder sequences. G is the genotype
sequence to be segmented. There are 15 sites in all sequences, where site 10 is the only
heterozygous site. R1 : [1, 9] and R2 : [11, 15] are the homozygous regions. ∆1-∆5 are
the maximal shared intervals in R1. ∆6 and ∆7 are the maximal shared intervals in R2.
r1 − r8 are the subregions for the entire sequence, out of which r6 is the heterozygous
subregions, and the remaining are the homozygous subregions.

interval Ii. Since both haplotypes are the same, a maximal shared interval for haplotype

Ha is also a maximal shared interval for haplotype Hb, therefore, the maximal shared

interval for the homozygous regions can also be represented as ∆i : (Ii, ∗, Fn). In Fig.

2.1, ∆1 − ∆5 are the maximal shared intervals within region R1 for both haplotype

sequences. Each homozygous region Rj is then divided into a set of subregions using

the two end points of all maximal shared intervals inside Rj. For example, in Fig. 2.1,

R1 is divided into subregions r1, r2, r3, r4, and r5. If each heterozygous site is considered

as a 1-site subregion (e.g. r6 in Fig. 2.1), together with all the subregions for the

homozygous regions, {rp} represents a complete set of subregions which cover the entire

sequence (e.g., r1 − r8 in Fig. 2.1).

For each homozygous subregion rp, let fprp = 〈ofa,rp , of b,rp〉 be a possible founder

pair for subregion rp. The set of possible founder pairs is FP rp = {〈ofa,rp , of b,rp〉|
∃∆i1 = (Ii1 , ∗, ofa,rp), ∆i2 = (Ii2 , ∗, of b,rp), where Ii1 ⊇ rp, Ii2 ⊇ rp}. For example, the

founder pair for the subregion r2 in Fig. 2.1 could be 〈F1, F1〉, or 〈F1, F2〉, or 〈F2, F1〉,

28

or 〈F2, F2〉. For each heterozygous subregion which is composed of a heterozygous site

l, since hl
a and hl

b take different alleles, any possible founder pair should consist of

a founder taking allele 1 and a founder taking allele 0. For example, in Fig. 2.1,

the possible founder pairs for r6 are 〈F1, F2〉, 〈F2, F1〉, 〈F2, F3〉, 〈F2, F3〉, 〈F2, F4〉, and

〈F4, F2〉.
Instead of considering each site, each subregion is considered as a unit in the dynamic

programming solution. Assign fp
rp
qp = 〈ofa,rp

qp , of
b,rp
qp 〉 to be the founder pair for subregion

rp, where 1 ≤ qp ≤ |FP rp|, and fp
rp+1
qp+1 = 〈ofa,rp

qp+1 , of
b,rp
qp+1〉 to be the founder pair for

subregion rp+1, where 1 ≤ qp+1 ≤ |FP rp+1|. Similarly, the number of founder switches

between fp
rp
qp , fp

rp+1
qp+1 is counted as:

FounderSwitch(fp
rp
qp , fp

rp+1
qp+1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 : if of
a,rp
qp = of

a,rp+1
qp+1 ∧ of

b,rp
qp = of

b,rp+1
qp+1

1 : if of
a,rp
qp = of

a,rp+1
qp+1 ∧ of

b,rp
qp �= of

b,rp+1
qp+1

of
a,rp
qp �= of

a,rp+1
qp+1 ∧ of

b,rp
qp = of

b,rp+1
qp+1

2 : if of
a,rp
qp �= of

a,rp+1
qp+1 ∧ of

b,rp
qp �= of

b,rp+1
qp+1

(2.5)

Let Kmin(r1 . . . rp−1|fp
rp
qp) be the minimum number of segments in any segmentation

solution over the subsequence covered by r1 . . . rp which takes the founder pair fp
rp
qp at

subregion rp. The minimum number of segments over the entire genotype sequence

Kmin(r1 . . . rP) where rP is the last subregion can be computed as:

Kmin(r1 . . . rP) = minfp
rP
qP

∈FP rP {Kmin(r1 . . . rP−1|fprP
qP

)} (2.6)

The main recurrence of the dynamic-programming algorithm is as follows:

Kmin(r1 . . . rp−1|fp
rp
qp) = min

fp
rp−1
qp−1

∈FP p−1{Kmin(r1 . . . rp−2|fp
rp−1
qp−1)+

FounderSwitch(fp
rp−1
qp−1 , fp

rp
qp)}

(2.7)

And initially,

Kmin(Φ|fpr1
q1

) = 2, ∀fpr1
q1
∈ FP r1 (2.8)

29

This dynamic programming problem can also be solved by populating a table T which

contains P rows where row p has at most |FP rp| entries. Entry T (p, qp), 1 ≤ qp ≤ FP rp is

filled with Kmin(r1 . . . rp−1|fp
rp
qp) during the computation. There are at most N2 founder

pairs for each subregion rp, i.e., |FP rp| ≤ N2. The populated table is of size O(PN2).

The computation of all the maximal shared intervals is O(LN), and filling out each entry

in the table costs O(N2). Thus the computational complexity of region-based dynamic

programming algorithm is O(LN + PN4). Compared with the site-based algorithm

which has a time complexity of O(LN4), if P is much smaller than L, the running time

can be greatly reduced, especially for large L.

2.4.1 Enforcing the Constraints and Modeling Noise

Comparable Number of Founder Switches on Both Haplotypes: During meio-

sis autosomes undergo one recombination per chromosome on average. Thus, during

the development of an recombinant inbred-line (RIL), one expects that the number of

founder switches per haplotype at each generation to be comparable.

During each mating in the evolving history, each of the two haplotypes may be gen-

erated by a new recombination. Therefore, it is expected that for the given genotype to

be segmented, the number of segments for the two haplotype sequences are comparable.

For a segmentation Seg(G) of genotype sequence G, which is composed of a seg-

mentation Sega(Ha) on haplotype Ha and a segmentation Segb(Hb) on haplotype Hb,

an extra constraint is enforced on the minimum segmentation as follows: the differ-

ence of the numbers of the segments in the two haplotypes is no more than a threshold

α: ||Sega(Ha)| − |Segb(Hb)|| < α, where α is a nonnegative integer. The definition of

the minimum segmentation for G is then modified as: |MinSeg(G)| = min{|Seg(G)|},
where MinSeg(G) = {Seg∗

a(Ha), Seg∗
b (Hb)} and ||Seg∗

a(Ha)| − |Seg∗
b (Hb)|| < α.

To compute the minimum segmentation solution with constraints, I propose an effi-

30

cient heuristic that prunes out solutions that do not satisfy the constraint before they

are fully computed during the table population process. This greatly reduces the com-

putation, especially when there are a lot of minimum segmentation solutions that do

not satisfy the constraint. I will explain how it works with the region-based algorithm.

Assume that we have a founder set {F 1, . . . , FN}, and a genotype sequence G. For any

minimum segmentation solution MinSeg(G) = {Seg∗
a(Ha), Seg∗

b (Hb)}, the following

lemma holds:

Lemma 2.4.1. For any homozygous region R on G, and any minimum segmentation

solution {Seg∗
a(Ha), Seg∗

b (Hb)}, let the set of segments in Seg∗
a(Ha) which completely fall

inside R be Seg∗
a(Ha) ∩ R, and the set of segments in Seg∗

b (Hb) which completely fall

inside R be Seg∗
b (Hb) ∩ R, then we have

||Seg∗a(Ha) ∩R| − |Seg∗b (Hb) ∩R|| ≤ 2 (2.9)

Proof. Consider a homozygous region R between two heterozygous sites l and l′. Let Sa

be the segment in Seg∗
a(Ha) containing site l, Sb be the segment in Seg∗

b (Hb) containing

site l, S ′
a be the segment in Seg∗

a(Ha) containing site l′, and S ′
b be the segment in

Seg∗
b (Hb) containing site l′, as shown in Fig. 2. Let the region covered by the segments

in Seg∗
a(Ha)∩R be Ra, the region covered by the segments in Seg∗

b (Hb)∩R be Rb, and

the common region be Rc = Ra ∩ Rb (see Fig. 2).

First we take a look at cases when Rc is not empty (Fig. 2(a),(b),(c)). Let Kmin(Rc)

be the minimum number of segments which can cover Rc on one haplotype (both hap-

lotypes are the same over Rc), we have

Kmin(Rc) ≤ |Seg∗
a(Ha) ∩R| ≤ Kmin(Rc) + 2, (2.10)

and

Kmin(Rc) ≤ |Seg∗
b (Hb) ∩R| ≤ Kmin(Rc) + 2 (2.11)

31

The left inequalities in (10) and (11) are obvious. The right inequalities, |Seg∗
a(Ha)∩

R| ≤ Kmin(Rc) + 2 and |Seg∗
b (Hb) ∩ R| ≤ Kmin(Rc) + 2, can be proved as follows. Fig.

2(a),(b) and (c) show the three different cases when Rc is not empty. Let us first take a

look at the case in Fig. 2(a), where Rb = Rc ⊂ Ra. The remaining part in Ra which is

not in Rc can be covered using two segments: S1
remain from the same founder as Sb, and

S2
remain from the same founder as S ′

b. The above observation implies that there exists a

set with no more than Kmin(Rc)+2 segments covering Ra. Therefore, |Seg∗
a(Ha)∩R| ≤

Kmin(Rc)+2. Similarly, we have |Seg∗
b (Hb)∩R| = Kmin(Rc) < Kmin(Rc)+2. A similar

case is in Fig. 2(b) where Rc ⊂ Ra and Rc ⊂ Rb. We have |Seg∗
a(Ha)∩R| ≤ Kmin(Rc)+1,

and |Seg∗
b (Hb) ∩R| ≤ Kmin(Rc) + 1. In Fig. 2(c), we have |Seg∗

a(Ha) ∩R| = Kmin(Rc),

and |Seg∗
a(Ha) ∩R| = Kmin(Rc).

Lemma 2.4.2. For a genotype sequence G containing Z heterozygous sites, any of its

minimum segmentation {Seg∗
a(Ha), Seg∗

b (Hb)} satisfies:

||Seg∗a(Ha)| − |Seg∗b (Hb)|| ≤ 3Z + 1 (2.12)

Proof. According to Lemma 1, we know that the number of segments in Seg∗
a(Ha) which

completely fall inside homozygous regions and the number of segments in Seg∗
b (Hb) which

completely fall inside homozygous regions can at most differ by 2(Z +1). The remaining

segments are those which cover the heterozygous sites. The number of such segments in

Seg∗
a(Ha) and Seg∗

b (Hb) can differ by at most Z − 1. Together, the difference between

the number of segments in Seg∗
a(Ha) and Seg∗

b (Hb) can be at most 3Z + 1.

Lemma 2 can be used in the dynamic programming algorithm during the pro-

cess of populating the table. Assume currently the entry T (p, qp) is to be filled, i.e.,

Kmin(r1 . . . rp−1|fp
rp
qp) is computed according to Eq.(2.7), which is the minimum seg-

mentation for the subsequence from r1 to rp with fp
rp
qp as the founder pair for rp. In

32

addition to computing the minimum segmentation, the difference between the number of

segments over two haplotypes in the minimum segmentation is also calculated, δ(p, qp) =

||Seg∗
a(Ha[r1, rp])| − |Seg∗

b (Hb[r1, rp])||. Let the number of heterozygous sites in the re-

maining part of the sequence be Z([rp+1, rP]). Then if δ(p, qp)− (3Z([rp+1, rP])+1) > α,

according to Lemma 2, we know that the corresponding solution will not be able

to generate a minimum segmentation solution for the entire sequence where the dif-

ference between the number of segments on both haplotypes is less than α. If the

minimum segmentation solution considered is from T (p − 1, qp−1) to T (p, qp), then if

δ(p, qp)− (3Z([rp+1, rP]) + 1) > α, the backtrack pointer from T (p, qp) to T (p− 1, qp−1)

will not be added.

Modeling Point Mutations, Genotyping Errors and Gene Conversions: There

are both biological and technical resources of noise in genotyping, which include point

mutations and gene conversions, and genotyping errors. These potential noise sources

in the data are considered in the segmentation algorithms.

A point mutation or genotyping error can be treated as a single site mismatch that

falls within a shared interval between a copy of haplotype sequence and a founder se-

quence. A gene conversion can be treated as a short sequence of mismatches that fall

within a shared interval between a copy of haplotype sequence and a founder sequence.

In the following, I explain how these noise sources are modeled in the region-based dy-

namic programming algorithm. First consider the point mutation, gene conversion, and

genotyping error that happen inside a homogeneous range. During the computation of

maximal shared intervals between sequence G and each founder Fn over a homozygous

region R, assume that we have two maximal intervals ∆1, ∆2 between G and Fn which

are over the intervals I1 = [b1, e1] and I2 = [b2, e2]. We know that I1 and I2 are not

overlapping or touching. Let I1 be the interval on the left, i.e., e1 < b2−1. If e1 = b2−2,

then there is a single mismatch at site e1 +1 within the combined region [b1, e2]. Assume

that both I1 and I2 are of enough length, then this single mismatch may be a point mu-

33

tation or genotyping error. Therefore, we create another shared interval ∆3 between G

and Fn over the single-site interval I3 = [e1 + 1, e1 + 1]. This interval has a probability

of β < 1 to be a shared interval between G and Fn. β is defined as the probability of

a single mismatch inside a shared interval being a point mutation or genotyping error.

Similarly, if e1 < b2 − 2 but b2 − 1− e1 < gc, which means the gap between interval I1

and I2 is shorter than a maximal possible length gc of a typical gene conversion, then

this short sequence of mismatches may be a gene conversion, assuming both I1 and I2

are of enough length. We create another shared interval ∆4 between G and Fn over

the short interval I4 = [e1 + 1, b2 − 1]. This interval has a probability of γ < 1 to be a

shared interval between G and Fn. γ is defined as the probability of a short sequence

of mismatches inside a shared interval being a gene conversion. The point mutation

and genotyping error that happens at a heterozygous site can be processed in a similar

manner, where we check whether the heterozygous site is a single mismatch falling into

a shared interval, i.e. the shared interval to the left of the heterozygous site and to the

right of the heterozygous site are from the same founder. The maximal shared intervals

computed without considering noise are of probability 1. By modeling the noise using

intervals with probability less than 1, the minimum segmentation solution can be com-

puted with desired noise tolerance θ < 1. When entry T (p, qp) in the table is to be filled,

the accumulated probability is computed which is the multiplication of the probabilities

of the intervals in the founder pairs on the minimum segmentations solution so far. Only

the solution with the accumulated probability no less than θ are kept.

Modeling Missing Values: Besides noise and incorrect values, there can also be

missing values in the data. Assume that the missing value is in founder Fn, at site l,

and the value at the same site on the sequence G is not missing. If l is a homozygous

site, fn
l is filled out using gl. If l is a heterozygous site, fn

l is considered to be either 0 or

1 when the founder pairs are calculated for this heterozygous site. If the missing value

is on G at site l, it is considered to be either 0 or 1, which means this site can be in a

34

maximal shared interval with any of the founder, no matter whether the founder has a

missing value at the same site or not. In this way, the minimum segmentation solution

can be generated with the smallest possible number of segments. The missing values in

both founders and genotype sequences are filled with values in each solution (it may be

filled with different values for different minimum segmentation solutions).

2.5 Experimental Results

The performance of the region-based dynamic programming algorithm is evaluated on

the real and simulated data. As presented earlier, the region-based algorithm has less

computational complexity than the site-based algorithm. I only demonstrate the results

on region-based algorithm.

2.5.1 Datasets

Real Data

The real data consists of G2:F1 strains and Pre-CC strains from the Collaborative Cross

project (Fig. 2.2). The Pre-CC strains are from generations G2:F5 to G2:F14. The 8

founders strains (Fig. 2.3) are chosen to maximize the genetic diversity in the resulting

CC strains.

Synthetic Data

The set of the founder sequences {Fn} and the genotype sequence G (corresponding two

haplotype sequences Ha, Hb) are generated so that: (a) The set of founders are generated

randomly, except that, at each site, there is at least a founder taking 0 and at least a

founder taking 1, (b) The number of the heterozygous sites in G is h rate × L where

h rate is a parameter representing the occurrence rate of the heterozygous sites, L is the

total number of sites, and (c) Ha and Hb are generated by randomly patching up n seg

35

Figure 2.2: The Collaborative Cross breeding funnel. S, T, U, V, W, X, Y, and Z denote
the 8 founders. The breeding funnel consists of 2 generations of crosses (G1 and G2),
followed by 20 generations of inbreeding (G2:F1 - G2:F20)

random segments from the founders. Note that, the segmentation during the generation

provides a lower bound on the number of segments in the minimum segmentation. The

computed minimum segmentation may not have the same number of segments on both

haplotypes.

The experiments are performed on an Intel Core 2 Duo 1.6GHz machine with 3GB

memory.

36

Figure 2.3: The 8 founder strains chosen for the Collaborative Cross breeding funnel
shown in Fig. 2.2

2.5.2 Segmentation Results

The segmentation results on a G2:F1 animal (OR65f18) and a Pre-CC animal (13m72)

are shown in Fig. 2.4 and Fig. 2.5, respectively.

Figure 2.4: The segmentation result of the proposed algorithm on a G2:F1 animal
OR65f18 from Collaborative Cross. The colors of different segments represent different
founders shown in Fig. 2.3.

There are only limited number of segments on all 19 chromosomes of either G2:F1

mouse OR65f18 or Pre-CC mouse 13m72, which is consistent with the fact that there

are only a few recombination events (mostly 1 or 2) during each mating. Furthermore,

37

Figure 2.5: The segmentation result of the proposed algorithm on a Pre-CC animal
13m72 from Collaborative Cross. The colors of different segments represent different
founders shown in Fig. 2.3.

the chromosomes of Pre-CC animal 13m72 are divided into finer fragmental structure,

compared with those of the G2:F1 animal OR65f18. This is due to the fact that 13m72

has gone through more generations of breeding. The purpose of the inbreeding gener-

ations is to achieve the homozygosity in the final CC strains to guarantee the ability

of reproductivity. By comparing Fig. 2.4 and Fig. 2.5, it can be observed that the

Pre-CC animal 13m72 exhibits more homozygosity as expected compared to the G2:F1

animal OR65f18, as most of the segments on both haplotypes along the same subregion

of 13m72 are of the same color (from the same founder thus identical).

2.5.3 Running Time

The running time performance is evaluated by varying two parameters: the number of

founders (N) and the number of sites (L).

Fig. 2.6(a) highlights the running time by varying the number of founders from 2

38

(a) Time vs. N (b) Time vs. L

Figure 2.6: Running time with varying parameters.

to 10. Other parameters are fixed to be L = 1000, n seg = 30, h rate = 0.01. The

complexity of the algorithm is O(LN +PN4), which is demonstrated by the superlinear

increase in the running time with increasing N . Fig. 2.6(b) shows the running time

with varying number of sites. All datasets contain 6 founders. n seg for 10, 100, 1000,

5000, and 10000-site datasets are chosen to be 3, 8, 30, 150, 300, respectively. h rate is

0.01 for all the datasets except for the 10-site set where the h rate is set to be 0.1 to

guarantee 1 heterozygous site. It can be observed that the running time is linear to the

number of sites L, and super liner to the number of founders N .

2.5.4 Constraint on Segment Number Difference

Table 2.1 shows the results on three datasets where constraints on the segment number

difference on both haplotypes are applied. As shown in the table, enforcing these con-

straints greatly reduces the number of minimum segmentation solutions generated. For

dataset #1, there are 28 minimum segmentation solutions where both haplotypes take

the same number of segments. However, the number of solutions increases to 40 when

the number of segments over the two haplotypes can differ by 1. Similarly, for dataset

#2, the number of solutions increased 5 times. A similar trend is observed for dataset

#3.

39

dataset #1 #2 #3
parameters N = 4, L = 20 N = 2, L = 50 N = 6, L = 20

n seg = 4, h = 0.1 n seg = 8, h = 0.05 n seg = 6, h = 0.05
α 0 1 0 1 2 0 1

solutions 28 40 92 276 460 6 356

Table 2.1: Effect of Enforcing the Constraint on the Segment Number Difference

2.5.5 Error Tolerance

The algorithms are tested on simulated data with point mutations, genotyping errors,

and missing values. Fig. 2.7 shows two example segmentation results. In Fig. 2.7(a),

the dataset contains four founders {F1, F2, F3, F4} each of which has 20 sites. The two

copies of the haplotypes Ha and Hb, and the corresponding genotype G is shown in

the figure as the ground truth. A random site is chosen to take a genotyping error.

The resulting genotype G′ has a genotyping error (1 is mistaken as 0) at site 16. The

segmentation solution on G′ is shown at the bottom of Fig. 2.7(a). Although F1 does

not match G at site 16, F1 is still chosen as the founder in Sega and Segb, since site 16

is a single mismatch inside a long shared interval with F1. Fig. 2.7(b) shows the result

on a dataset with missing values. Two random sites (site 6 and site 10) are chosen to

be the sites with missing values. As shown at the bottom of the figure, the algorithm

still generates the correct minimum segmentation with the values at both sites filled in.

Fig. 2.7 is better to be viewed in color.

40

(a) Data with genotyping error

(b) Data with missing values

Figure 2.7: Segmentation results on data with noise.

41

Chapter 3

Inferring Genome-wide Mosaic Structure

3.1 Introduction

Ancestral genetic recombination events play a critical role in shaping extant genomes.

Characterizing the patterns of recombination (e.g. the recombination locations and

rates), is a crucial step for reconstructing evolutionary histories, performing disease

association mapping, and solving other population genetics problems.

During meiosis in diploid organisms, the two homologous chromosomes recombine

and undergo a reduction division to form a haploid gamete, which contributes half of the

genetic content to its offspring. This mixing of genomes leads to a mosaic chromosome

(haplotype) structure composed of segments from each grandparent. The boundaries be-

tween the segments of each haplotype are referred to as the recombination breakpoints.

Recombination breakpoints represent locations where the crossovers have occurred, ei-

ther during the generation of the haplotype itself, or in previous generations.

The main goal is to infer the possible mosaic structures of a given set of related

haplotypes. This is accomplished by finding a set of recombination breakpoints that

divide the haplotypes into compatible blocks according to the Four-Gamete Test (FGT)

(Hudson and Kaplan (1985)). The FGT states that, under the infinite-sites assumption

(Hudson and Kaplan (1985)), all pairs of polymorphisms should co-occur in only three

out of their four possible configurations. Thus, when four configurations are observed

in a pair of markers, it implies that either a recombination or a homoplastic event

has occurred between them. I propose an efficient algorithm to solve the “Minimum

Mosaic Problem”, which finds the mosaic with the minimum number of breakpoints.

The algorithm is suitable for genome-wide study.

3.2 Related Work

Algorithms have been developed for several related problems.

• Estimation of recombination rate

Hudson and Kaplan (Hudson and Kaplan (1985)) proposed a lower bound (HK

bound) of the minimum recombination events estimated using the FGT (Hudson

and Kaplan (1985)). Their algorithm computes a minimum set of non-overlapping

intervals where all pairs of SNPs in an interval are compatible according to the

FGT. This number of intervals, less one, is the HK bound. Myers and Griffiths

(Myers and Griffiths (2003)) proposed a tighter bound, RecMin. However, it is

only computationally tractable to find the optimal RecMin in relatively small

datasets. Different from RecMin or SHRUB, the problem studied in this thesis

focuses on the mosaic structure of a set of sample sequences without explicitly

computing the evolutionary history, assuming that the genomic structures of the

sample sequences are of more interest. However, the breakpoints on the sample

sequences may reflect possible recombination events that happened in previous

generations.

• Inferring haplotype block structure

In addition to estimating lower bounds on the number of recombinations, algo-

rithms have also been proposed for partitioning haplotypes into blocks. There are

43

two common approaches. The first employs statistical linkage disequilibrium (LD)

measures (Gabriel et al. (2002)) that assigns blocks to regions with high pairwise

LD and with relatively low pairwise LD between blocks. The second class of ap-

proaches uses diversity-based methods (Patil et al. (2001)) that assigns blocks to

regions of low sequence diversity.

• Recombination detection

A plethora of methods have been developed for detecting the recombinations in

the data. A comprehensive review was given in (Posada (2002)), which classifies

the methods into four categories: a) distance methods, which search for inversions

along the alignment of the distance patterns among sequences (G.F. (1998)); b)

phylogenetic methods, which test whether phylogenies from different parts (usually

adjacent sliding windows) of the genome result in discordant topologies (Hein

(1990, 1993); N.C. and Holmes (1997); Holmes et al. (1999); Lole et al. (1999);

Martin and Rybicki (2000)); c) compatibility methods, which is based on site-

by-site analysis of the compatibility when the evolutionary history of two sites

is congruent with the same tree (Drouin et al. (1999); Jakobsen et al. (1997));

d) substitution distribution methods, which detect recombination by examining

the sequences either for a significant clustering of substitutions or for a fit to an

expected statistical distribution (Maynard and Smith (1998); Stephens (1985);

Worobey (2001)).

3.3 Problem Formulation

Suppose that we have a set of n haplotypes over m SNPs, represented by a binary data

matrix D = [dij]i=1..n,j=1..m. Row i in D corresponds to a haplotype hi, and column j in

D corresponds to a SNP sj. Matrix entry dij is either 0 or 1, representing the majority

allele or minority allele at SNP sj respectively. Only crossover recombination events are

44

considered, and gene conversion and homoplasy are ignored (assuming they do not have

a significant role).

Over any pair of SNPs sj and sj′ , a haplotype takes one of four possible gametes

00, 01, 10, 11 (the combination of alleles at sj and sj′). The set of haplotypes taking

00, 01, 10, or 11 at SNP pair (sj, sj′) is denoted as HapSetj,j
′

00 , HapSetj,j
′

01 , HapSetj,j
′

10 ,

HapSetj,j
′

11 respectively. If all four sets are nonempty, according to the FGT (Hudson

and Kaplan (1985)), a historical recombination event must have occurred between sj

and sj′ . In this case, we say that the SNP pair (sj, sj′) is incompatible. A recombination

breakpoint is represented as a tuple (hi, sb), where the breakpoint locates on haplotype hi

between SNPs sb and sb+1. It is possible that multiple haplotypes may have breakpoints

at the same location since they may “inherit” the breakpoint from a common ancestor

sequence.

A compatible block of SNPs is defined as a continuous set of SNPs such that any

two SNPs inside the block are compatible. Two SNP blocks are incompatible with each

other if there exist two incompatible SNPs, one from each block.

A complete set of breakpoints creates a haplotype mosaic structure over the set

of genome sequences. A Mosaic M over a SNP data matrix D is defined as a set of

recombination breakpoints M = {(hi, sb)}, i ∈ [1, n], b ∈ [1,m]. The set of distinct1

locations of breakpoints sb in M divides the entire range of SNPs [s1, sm] into blocks

that satisfy: 1) each block is a compatible block, 2) any two neighboring blocks are

incompatible, and 3) any two neighboring blocks (assume the boundary is between sb and

sb+1) would become compatible if the set of haplotypes that have breakpoints between sb

and sb+1 are excluded. I develop an efficient algorithm for computing Minimum Mosaic

(denoted as Mmin) – the mosaic structure that contains the least number of breakpoints.

This problem is referred to as the Minimum Mosaic Problem.

1Multiple breakpoints can correspond to the same sb

45

3.4 Inferring the Local Mosaic

3.4.1 Maximal Intervals

An interval I = [sb, se] is a set of consecutive SNPs which are compatible with each

other starting from sb and ending at se. An interval I is a maximal interval if and

only if there is no other interval I ′, I ′ �= I, I ′ = [s′b, s
′
e], which contains I: s′b ≤ sb, and

s′e ≥ se. The complete set of maximal intervals can be computed in O(mn) time (Moore

et al. (2008)), assuming that the compatibility test of any two SNPs using FGT takes

O(1) time (Moore et al. (2008)).

3.4.2 Finding Local Breakpoints

Maximal intervals are useful for inferring the local mosaic structure. The set of dis-

tinct breakpoint locations sb in a mosaic M = {(hi, sb)} divide the entire SNP range

[s1, sm] into compatible blocks, where neighboring blocks are incompatible. The set of

breakpoints in M is the union of the set of breakpoints on the boundary of each pair of

neighboring blocks. First consider the breakpoints on the boundary of a pair of neigh-

boring blocks. It can be observed that, every pair of neighboring blocks in M fall inside

a pair of overlapping or adjacent maximal intervals, as stated in the following Lemma:

Lemma 3.4.1. For any pair of neighboring blocks (BL, BR) deduced by a mosaic, there

exists a pair of overlapping or adjacent maximal intervals (IL, IR), where BL completely

falls inside IL (BL ⊆ IL) but not IR (BL\IR �= φ), and BR completely falls inside IR

(BR ⊆ IR) but not IL (BR\IL �= φ). (IL, IR) is referred to as (BL, BR)’s containing

interval pair; and (BL, BR) as (IL, IR)’s contained block pair (Fig. 1).

Proof. Firstly, BL and BR cannot be contained in the same maximal interval. Assume

there exists a maximal interval which contains both of them, then they must be com-

patible with each other. If they are compatible with each other, we can remove the

46

(a) IL and IR are overlapping (b) IL and IR are adjacent

Figure 3.1: Neighboring blocks BL, BR fall inside overlapping/adjacent maximal inter-
vals IL, IR respectively. The dots in the shaded region represent incompatible SNP pairs
of IL and IR.

breakpoint(s) defining the boundary of BL and BR from the mosaic, and the merged

block BL

⋃
BR is still a compatible block, therefore there exists a smaller mosaic, which

contradicts the fact that the original mosaic is not redundant. Since both BL and BR are

compatible blocks, there must be maximal intervals IL, IR which completely contain BL,

BR respectively, and we know that IL �= IR. Since BL and BR are neighboring blocks,

IL and IR are either overlapping (Fig. 1(a)) or touching each other (Fig. 1(b)). Since

both BL and BR are two compatible blocks which are incompatible with each other,

there exist two maximal intervals IL, IR which completely contain BL, BR respectively.

Since BL and BR are neighboring blocks, IL and IR can either overlap (Fig. 1(a)) or be

adjacent to each other (Fig. 1(b)).

Since both BL and BR are compatible blocks, there exist two maximal intervals

IL, IR which completely contain BL, BR respectively. We know that BL and BR are

incompatible. Therefore, they cannot be contained in the same maximal interval: IL �=
IR, BL\IR �= φ, BR\IL �= φ. Since BL and BR are neighboring blocks, IL and IR can

either overlap (Fig. 1(a)) or be adjacent to each other (Fig. 1(b)).

There might be multiple containing interval pairs for (BL, BR), and there might be

multiple contained block pair for (IL, IR), too.

47

For each pair of overlapping or adjacent intervals (IL, IR), there exists a set of in-

compatible SNP pairs SNPPair(IL, IR) = {(sl, sr)}, where l < r, sl and sr are in-

compatible, and sl ∈ IL\IR, sr ∈ IR\IL. For example, in Fig. 1(a) and 1(b), each

dot represents an incompatible SNP pair. Let (BL, BR) be a contained block pair of

the interval pair (IL, IR). The incompatible SNP pairs contained in (BL, BR) are de-

noted as SNPPair(BL, BR) = {(sl, sr)}, where l < r, sl and sr are incompatible, and

sl, sr ∈ BL ∪ BR. Apparently, SNPPair(BL, BR) is a subset of SNPPair(IL, IR). The

incompatible SNP pairs in SNPPair(BL, BR) determine the minimum number of the

breakpoints on the boundary of BL and BR, as well as the corresponding set of hap-

lotypes having these breakpoints. Given an interval pair, several candidate block pairs

may be derived, each of which corresponds to a different SNPPair(BL, BR). Fig. 2(a)-

2(d) show four different candidate block pairs derived from the same interval pair. The

exact set of incompatible SNP pairs in SNPPair(BL, BR) depends on the positions of

BL and BR, i.e., the leftmost SNP of BL, and the rightmost SNP of BR. Formally,

the start range Rs, the end range Re of a block pair (BL, BR) are defined as the ranges

where SNPPair(BL, BR) remains unchanged if the leftmost SNP of BL changes within

Rs and the rightmost SNP of BR changes within Re. Moreover, the breakpoint range

Rb of (BL, BR) is defined as the range where the boundary of BL and BR falls into. The

breakpoint range is the overlapping region of IL and IR (if IL and IR overlap), or the

boundary of IL and IR (if IL and IR are adjacent to each other). For example, in Fig.

2(a), SNPPair(BL, BR) contains only one incompatible SNP pair (sq, sr). The start

range Rs(BL, BR) is (sp, sq], the end range Re(BL, BR) is [sr, ss), and the breakpoint

range Rb(BL, BR) is IL ∩ IR. In Fig. 2(b), SNPPair(BL, BR) contains two incompatible

SNP pairs (sq, sr) and (sp, sr). The start range Rs(BL, BR) is [s∗, sp] (s∗ denotes the left-

most SNP of interval IL), and the end range Re(BL, BR) is [sr, ss), and the breakpoint

range Rb(BL, BR) is IL ∩ IR.

Any contained block pair (BL, BR) of any overlapping/adjacent maximal interval

48

pair (IL, IR) can be a possible neighboring block pair inside a mosaic M . A subset

of these block pairs constitute a mosaic. Specifically, for any neighboring block pair

(BL, BR) which is inside a Minimum Mosaic Mmin, we have the following Lemma:

Lemma 3.4.2. Let (BL, BR) be a neighboring block pair in a Minimum Mosaic Mmin,

and Breakpoints(BL, BR) be the set of breakpoints on the boundary of BL and BR in

Mmin, and HapSet(Breakpoints(BL, BR)) be the set of haplotypes having breakpoints in

Breakpoints(BL, BR). Then Breakpoints(BL, BR) is the smallest number of breakpoints

which satisfies:

∀(sl, sr) ∈ SNPPair(BL, BR)

(∃gl,r ∈ {00, 01, 10, 11}, HapSet(Breakpoints(BL, BR)) ⊇ HapSetl,rgl,r)
(3.1)

Proof. Equation 5.3.2 requires HapSet(Breakpoints(BL, BR)) to be a superset of at

least one of HapSetl,r00 , HapSetl,r01 ,HapSetl,r10 , HapSetl,r11 for any incompatible SNP pair

(sl, sr) in SNPPair(BL, BR). This guarantees that all incompatible SNP pairs in

SNPPair(BL, BR) would have been compatible if the haplotypes in

HapSet(Breakpoints(BL, BR)) are excluded. According to the Mosaic definition, Equa-

tion 5.3.2 holds for any neighboring block pair (BL, BR) in any mosaic. Moreover, if

(BL, BR) is a neighboring block pair in a Minimum Mosaic, Breakpoints(BL, BR) is the

set of smallest number of breakpoints satisfying Equation 5.3.2.

It is easy to compute Breakpoints(BL, BR) if SNPPair(BL, BR) only contains one

pair of incompatible SNPs (as shown in Fig. 2(a)). The smallest set of HapSetl,r00 ,

HapSetl,r01 , HapSetl,r10 and HapSetl,r11 can be chosen to be Breakpoints(BL, BR). If

SNPPair(BL, BR) contains more than one pair of incompatible SNPs (as shown in

Fig. 2(b), 2(c), and 2(d)), the smallest set of haplotypes needs to be found which

is a superset of at least one of HapSetl,r00 , HapSetl,r01 , HapSetl,r10 and HapSetl,r11 , for

each pair of incompatible SNPs (sl, sr). The computation complexity is O(4k), where

49

(a) (b)

(c) (d)

Figure 3.2: Neighboring blocks BL, BR contain different subsets of the incompatible
SNP pairs. The dots represent the incompatible SNP pairs contained in the overlapping
maximal intervals IL and IR. The dots inside the shaded triangle are contained in the
neighboring block pair BL and BR.

k = |Breakpoints(BL, BR)|. In practice, k is small. Moreover, many incompatible SNP

pairs are caused by a small number of SNP patterns, which enables further reduction in

computation.

3.5 Finding Minimum Mosaic - A Graph Problem

The set of all possible block pairs {(BL, BR)} of all overlapping/adjacent maximal in-

terval pairs are the building blocks of a mosaic. These block pairs can be used to

50

construct a graph as follows. A node nd in this graph represents the combination of

three block pairs BP1 = (BL1 , BR1), BP2 = (BL2 , BR2), BP3 = (BL3 , BR3) that satisfy

the following constraints: 1) the breakpoint range of BP1 overlaps with the start range

of BP2: Rb(BP1) ∩ Rs(BP2) �= φ; 2) the end range of BP1, the breakpoint range of

BP2, and the start range of BP3 overlap: Re(BP1) ∩ Rb(BP2) ∩ Rs(BP3) �= φ; 3) the

end range of BP2 overlaps with the breakpoint range of BP3: Re(BP2) ∩Rb(BP3) �= φ.

As shown in Fig. 3, BP1, BP2, and BP3 are the left block pair, middle block pair,

and right block pair of nd, respectively. The breakpoint range of nd is the intersection

of the end range of BP1, the breakpoint range of BP2, and the start range of BP3:

Rb(nd) = Re(BP1) ∩ Rb(BP2) ∩ Rs(BP3). The set of breakpoints associated with nd is

the same as Breakpoints(BP2), denoted as Breakpoints(nd). The weight of the node

is the number of breakpoints in Breakpoints(nd), weight(nd) = |Breakpoints(nd)|.
Two special kinds of nodes – starting nodes and ending nodes are also created to

model the two ends of a chromosome. All block pairs with start range beginning from

the first SNP s1 are identified which are referred to as starting block pairs. A starting

node nds is created for every combination of a starting block pair BPs and another

block pair BP satisfying 1) the breakpoint range of BPs overlaps with the start range of

BP : Rb(BPs)∩Rs(BP) �= φ, and 2) the end range of BPs overlaps with the breakpoint

range of BP : Re(BPs)∩Rb(BP) �= φ. BPs is the middle block pair of the starting node

nds, BP is the right block pair of nds. There is no left block pair for nds. The set of

breakpoints associated with nds is the same as Breakpoints(BPs): Breakpoints(nds) =

Breakpoints(BPs). The weight of nds is weight(nds) = |Breakpoints(nds)|. Similarly,

a set of ending nodes {nde} are computed associated with the set of ending block pairs

{BPe}.
After all nodes are generated, they are connected with directed edges according to

the following rule. For nodes nd1 and nd2, if nd1’s middle block pair is the same as nd2’s

left block pair and nd1’s right block pair is the same as nd2’s middle block pair, an edge

51

Figure 3.3: Three block pairs form a node. Block pair 1, 2, and 3 are the left, middle,
and right block pair of the node respectively. The breakpoint range of the node is
the intersection of the end range of block pair 1, the breakpoint range of block pair 2,
and the start range of block pair 3. The vertical stripes correspond to the start range,
breakpoint range, and end range of a block. The marked haplotypes in the stripes are
the haplotypes which have breakpoints in the corresponding region.

is added from nd1 to nd2. The nodes and edges form a directed graph. A Minimum

Mosaic corresponds to a shortest path from any starting node to any ending node in

this graph. The weight of the path is the sum of all node weights on the path. The set

of breakpoints {Breakpoints(nd)} associated with all nodes on the shortest path is the

Minimum Mosaic solution. Any shortest path algorithm can be applied to compute the

solution. The details of the complete algorithm is described in Algorithm

Theorem 3.5.1. Mmin computed by Algorithm 1 is a Minimum Mosaic.

Proof. According to Lemma 4.1, Steps 1-7 generate all possible neighboring block pairs

which can appear in a mosaic. According to Lemma 4.2, Step 5 computes the number of

breakpoints which can be between a block pair bp, if bp appears in a Minimum Mosaic.

The shortest path algorithm guarantees the minimum total number of breakpoints of

sequences of neighboring block pairs from a starting block pair to an ending block

pair.

52

Algorithm 3.1 CompMinMosaic
Input Dn×m: The SNP data matrix of n haplotypes and m SNPs
Output Mmin: a Minimum Mosaic of D

Compute the set of maximal intervals ISet

Initialize the set of neighboring block pairs BSet ← φ
for any pair of overlapping/adjacent maximal intervals IL, IR ∈ ISet do

Compute the set of contained block pairs ContainedBP (IL, IR);
For each block pair bp ∈ ContainedBP (IL, IR), compute Breakpoints(bp) accord-
ing to Lemma 4.2.
BSet ← BSet ∪ ContainedBP (IL, IR)

end for
Create nodes using the block pairs in BSet, add edges between nodes, generate graph
G
Compute the shortest path in G, set Mmin to be the union of the set of breakpoints
associated with the nodes on the shortest path.

3.6 Experimental Studies

The algorithm is implemented in C++ and all experiments were performed on a machine

with an Intel Core2 Duo processor of 1.60GHz and 3GB RAM.

3.6.1 Kreitman’s ADH Data

The alcohol dehydrogenase (ADH) data of Kreitman (Kreitman (1983)) consists of 11

haplotypes with over 43 polymorphic sites of the ADH locus of fruit fly, Drosophila

melanogaster. The haplotypes were sampled from 5 geographically distinct populations:

Washington, Florida, Africa, France, and Japan (Song and Hein (2005)). The minimum

mosaic solution detected 7 breakpoints shown in Fig. 4(a). The exact locations of 6

out of 7 breakpoints can be estimated: H1 : (S3, S4), H5 : (S3, S4), H5 : (S16, S17),

H5 : (S35, S36), H6 : (S35, S36), H6 : (S36, S37). For the remaining breakpoint on H1,

its location can be either (S12, S13), or (S13, S14), or (S14, S15), or (S15, S16) with equal

probability.

Note that 7 is the lower and upper bounds of the minimum number of recombinations,

estimated by HapBound and SHRUB, respectively (Song et al. (2005)). Therefore, 7 is

53

(a) (b)

(c)

Figure 3.4: Comparison of Minimum Mosaic and Hapbound/SHRUB results on ADH
data. (a): the Minimum Mosaic result; (b): the result inferred from the ARG in (c);
(c): the ARG computed using SHRUB(Song and Hein (2005)). The bars in (a) and (b)
represent the breakpoints. The dots in (c) represents the recombination events.

the exact number of minimum number of recombination events for the ADH data. The

corresponding ARG generated by SHRUB is shown in Fig. 4(c). The breakpoints in the

ARG are illustrated in a SNP matrix in Fig. 4(b). By comparing Fig. 4(a) and 4(b),

it can be observed that almost the same set of breakpoints are inferred by the proposed

algorithm and SHRUB.

54

3.6.2 Running Time and Scalability Analysis

The performance of the proposed algorithm is tested on two genome-wide SNP datasets

from mouse. Both sets represent a combination of experimental and imputed genotypes

(Szatkiewicz et al. (2008)) in two overlapping sets of laboratory inbred strains available

from the Center of Genome Dynamics at the Jackson’s Laboratory 2 The 51-strain

dataset contains 51 inbred mouse strains with 7,870,134 SNPs3. The 74-strain dataset

contains 74 inbred mouse strains with 7,989,200 SNPs4.

Fig. 5 shows the running time comparison of Hapbound and the proposed algorithm

using the first w SNPs from Chromosome 19 of both datasets where w varies from 1000

to 4000. The proposed algorithm is 250x - 7000x faster than Hapbound on 74-strain

dataset, and 350x - 4000x faster on 51-strain dataset.

The proposed algorithm is efficient enough to finish on all chromosomes (Chr 1-19

and Chr X). Results from the 51-strain dataset are shown in Table 1. Genome-wide,

the number of breakpoints in the Minimum Mosaic varies between 15253 (Chr X) and

266006 (Chr 1), and the number of derived blocks in the Minimum Mosaic varies between

9888 (Chr X) and 68261 (Chr 1). The average number of breakpoints per neighboring

block pair is 2.2.

2http://cgd.jax.org/ImputedSNPData/imputedSNPs.htm

3The 51-strain dataset includes Chr 1-19 and Chr X, with 51 mouse strains: X129S1.SvImJ,
X129S4.SvJae, X129X1.SvJ A.J, AKR.J, BALB.cByJ, BTBR.T....tf.J, BUB.BnJ, C3H.HeJ,
C57BL.6J, C57BLKS.J, C57BR.cdJ, C57L.J, C58.J, CAST.EiJ, CBA.J, CE.J, CZECHII.EiJ,
DBA.1J, DBA.2J, DDK.Pas, FVB.NJ, I.LnJ, JF1.Ms, KK.HLJ, LG.J, LP.J, MA.MyJ,
MAI.Pas, MOLF.EiJ, MSM.Ms, NOD.LtJ, NON.LtJ, NZB.BlNJ, NZO.HlLtJ, NZW.LacJ,
O20, PERA.EiJ, PL.J, PWD.Ph, PWK.PhJ, Qsi5, RIIIS.J, SEA.GnJ, SEG.Pas, SJL.J, SM.J,
SPRET.EiJ, ST.bJ, SWR.J, and WSB.EiJ.

4The 74-strain dataset includes all strains in the 51-strain dataset and 23 additional strains:
BALB.cJ, BPH.2J, BPL.1J, BPN.3J, C57BL.10J, CALB.RK, DDY.JCLSIDSEYFRKJ,
EL.SUZ 2, HTG.GOSFSN, ILS, IS.CAMRK, ISS, LEWES.EI, MOLG.DN, MRL.MpJ,
NOR.LTJ, P.J, PERC.EI, RF.J, SKIVE.EI, SOD1.EI, TALLYHO.JNGJ, and ZALENDE.EiJ.

55

http://cgd.jax.org/ImputedSNPData/imputedSNPs.htm

(a) 51-strain Dataset

(b) 74-strain Dataset

Figure 3.5: Comparison of the running times of MinMosaic and Hapbound over varying
number of SNPs (in log scale). The datasets used are from Chr19 of 51-strain dataset
and 74-strain dataset. The number of SNPs included varies from 1000 to 4000.

56

Chr # of SNP # of breakpoints # of blocks Runtime (min)
1 694809 266006 68261 6.87
2 524667 210797 47793 11.27
3 509892 113715 52487 8.90
4 476425 100702 43776 7.84
5 496888 110157 49938 33.98
6 509547 97740 49562 6.42
7 405733 94973 46884 38.83
8 444910 87659 45796 37.10
9 361571 86755 40189 3.89
10 399126 64806 35764 3.21
11 259028 65092 27575 23.52
12 396114 89243 42159 1.30
13 399930 75323 39914 3.03
14 345783 67304 34089 2.54
15 337461 78181 35776 4.08
16 305078 57257 28449 1.14
17 266421 73542 31517 0.75
18 291266 69546 31271 8.61
19 222031 49276 22839 1.46
X 223456 15253 9888 0.96

Table 3.1: The result on genome-wide 51-strain mouse dataset

57

Chapter 4

Clustering Distributed Data Streams

4.1 Introduction

Distributed data stream applications perform continuous, on-the-fly computations over

geographically dispersed data streams, such as environmental and ecological sensor net-

work systems monitoring flood and volcano eruption, or monitoring habitat and wild

populations. Various tasks of continuous query and monitoring in distributed setting

have been developed, including database queries (Cherniack et al. (2003); Ahmad and

etintemel (2004); Olston et al. (2003); Cormode et al. (2005)), monitoring simple statis-

tics (Babcock and Olston (2003); Keralapura et al. (2006); Sharfman et al. (2006)),

event detection (Aggarwal (2005); Aggarwal et al. (2003); Zhu and Shasha (2003)), etc.

The problem being addressed in this work is clustering over distributed data streams,

particularly, the continuous k-median clustering in a distributed stream environment.

Consider a set of distributed sites, which push the data towards the base site peri-

odically. Each such period is referred to as an update epoch. Assume that all the sites

communicate according to a routing tree rooted at the base site. The goal is to perform

clustering on the data collected from all the sites. The clustering result is continuously

updated at the root for each update epoch. Assume that the epoch is long enough so

that all the data of one epoch is able to arrive at the root before next epoch ends.

Clustering over distributed streams is a challenging task. Difficulties lie in various

issues: 1) Communication. Distributed stream system continuously produces large vol-

ume of data, which imposes prohibitive communication load if all data are transferred

to the root for centralized computation. In-network aggregation (Madden et al. (2002))

is one of the techniques (Olston et al. (2003); Madden et al. (2002); Silberstein et al.

(2006); Willett et al. (2004)) that push processing operators down into the network

to reduce data transmission. It computes a local summary at each site and merges

and summarizes further at each internal site towards the root. However, this approach

cannot be immediately adopted to solve the problem of k-median clustering. The k-

median clustering is known as a holistic computation (Madden et al. (2002)), which

cannot be readily decomposed into computations on data partitions. More specifically,

the k-median clustering of the entire dataset cannot be accurately computed from the

k-median centers of individual partitions. In order to get the exact answer, all data

need to be transmitted to a central site before the k-median clustering is performed.

2) Latency. Another approach to solve the k-median problem is to treat it as an iter-

ative optimization problem. For each iteration, statistics (Forman and Zhang (2001))

need to be computed and transmitted back and forth between the root and each site.

The induced latency is unbearable for stream-based applications. 3) Clustering quality.

Clustering quality is another concern when trading accuracy for reduced communica-

tion. In this case, it is necessary that the error of the k-median solution is bounded.

The bounded approximate in-network aggregation also raises new issues such as error

propagation and topology sensitivity.

The approximate in-network aggregation schemes are employed for (1+ε)-approximate

k-median clustering over distributed data streams. A suite of algorithms for both

topology-insensitive and network-aware cases are proposed, with the following major

contributions:

• For topology-insensitive case, a multi-level structure of ε-kernel of k-median (ε-

59

coreset (Har-Peled and Mazumdar (2004))) is constructed as the local summary.

The size of the multi-level summary is proved to be a polylog function of the data

volume and it is shown to guarantee a (1 + ε)-approximate clustering. Efficient

algorithms are proposed for constructing and merging local summaries.

• For network-aware cases, the height-aware and path-aware algorithms are pro-

posed which utilize the topology information to achieve aggressive reduction of

data communication.

• Experiments are performed on both synthetic and real data sets to demonstrate

the performance of the algorithms in terms of communication reduction, clustering

quality and scalability.

4.2 Related Work

Little work has been reported for distributed stream clustering. In this section, a brief re-

view is given on distributed clustering, approximate in-network aggregation, and stream

clustering. In addition, an introduction is given on coreset, which is the ε-kernel for

k-median clustering.

4.2.1 Distributed Clustering

Distributed clustering needs to address the problem of balancing between communication

and precision. Forman and Zhang (Forman and Zhang (2001)) proposed a technique

to exactly compute several iterative center-based data clustering algorithms including

k-means for distributed database applications. It sends sufficient statistics instead of

the raw data to a central site. However, this approach involves each site in every

iteration of k-means and transfers data back and forth, which is infeasible for stream

applications. Januzaj et al. (Januzaj et al. (2003)) proposed a distributed density-based

60

clustering algorithm. The algorithm clusters the data locally at each site and computes

the aggregation (representatives for local clusters) for the local site. All aggregations are

sent to the global server site where the global clustering is carried out. Their algorithm

considers the flat two-tier topology instead of tree topology, and it does not provide a

bound of the clustering quality.

4.2.2 Approximate In-network Aggregation

Bounded-error approximation is a desired property to have when trading accuracy for

communication requirement. Cosdine et al. (Considine et al. (2004)) proposed an

approximate in-network aggregation scheme for sensor databases. They provided an

algorithm for approximate duplicate-sensitive aggregates across distributed datasets,

such as SUM. Their algorithm employs small duplicate-insensitive sketches for SUM

which is generalized from similar technique for approximating COUNT. Greenwald et

al. (Greenwald and Khanna (2004)) proposed an algorithm for power-preserving com-

putation of order statistics such as quantile. They proposed a scheme of computing

ε-approximate quantile over the sensor network routing tree, where each sensor trans-

mits only O(log2 n/ε) data points opposed to the worst case of Ω(n).

4.2.3 Clustering Single Stream

A lot of work has been reported for clustering over a single stream (Aggarwal et al. (2003,

2004); O’Callaghan et al. (2002); Har-Peled and Mazumdar (2004); Guha et al. (2000)).

They developed continuous online clustering algorithms with small space-requirement.

Guha et al. (Guha et al. (2000)) proposed a constant factor approximation algorithms

for k-Median clustering on a single data stream. Their algorithm requires O(nε) space

with an approximation factor of 2O(1
ε
). Aggarwal et al. (Aggarwal et al. (2003)) proposed

an algorithm which considers both online statistical data collection, and offline analysis,

compared with the one-pass clustering algorithms.

61

4.2.4 Coreset and Streaming k-median

A coreset is a small subset of points that approximates the original set with respect to

some tasks (such as k-median, k-means, etc) (Har-Peled and Kushal (2005)). Several

coreset construction algorithms have been proposed for k-median and k-means clustering

(Har-Peled and Kushal (2005); Har-Peled and Mazumdar (2004); Frahling and Sohler

(2005)). In (Frahling and Sohler (2005)), a coreset construction algorithm for streaming

(1 + ε)-approximate k-median and k-means is proposed. The coreset is computed using

a QuadTree, and its space requirement is polylog in size of the data stream and the

range of the data values. Har-Peled and Mazumdar (Har-Peled and Mazumdar (2004))

proposed another coreset construction algorithm for (1 + ε)-approximate k-median and

k-means, where the coreset takes polylog space. These two coreset-based streaming k-

median algorithms achieve a better space-bound than Guha’s algorithm (Guha et al.

(2000)) mentioned earlier. All of these algorithms consider the clustering over a single

stream, not the stream clustering problem in a distributed setting.

4.3 Preliminaries and Background

4.3.1 Problem Definition

Let d(p, c) denote the Euclidean distance between any two points p and c in Rd. The goal

of k-median clustering is to find a set C of k points representing the k cluster centers in

Rd, which minimize the k-median cost of dataset P . Here the k-median cost is defined as

Cost(P,C) =
∑

p∈P d(p, C), where d(p, C) = minc∈C d(p, c). If P is a weighted dataset

with pi ∈ P of weight wi, then the weighted k-median of P is defined as the cluster

center set C which minimizes Cost(P,C) =
∑

pi∈P wid(pi, C).

Definition 4.3.1. (1 + ε)-approximate k-median of dataset P . Let C denote the

k-median center set. Then C ′ is defined as a (1 + ε)-approximate k-median center set if

62

Cost(P,C ′) ≤ (1 + ε)Cost(P,C).

Consider a set of sites {Si} which communicate according to a routing tree1. Suppose

that during each update epoch e, site Si receives a stream of data Pi|e. There are two

problems to be considered: (1) how to compute the (1+ε)-approximate k-median on the

set of data
⋃

i(Pi|e∗), where e∗ is the latest update epoch; and (2) how to compute the

(1+ε)-approximate k-median on all data received in past epochs. In fact, the solutions to

both problems are similar except that the root may perform some additional operations

to solve the second problem. Therefore, only the first problem will be discussed and the

proposed algorithms can be modified to solve the second problem.

The first problem is defined as below:

Definition 4.3.2. (1+ ε)-approximate k-median over distributed stream set

{Si} during epoch e. The (1 + ε)-approximate clustering of distributed stream set

{Si} during epoch e is defined as the (1 + ε)-approximate k-median over all the data

received at all the sites during epoch e, which is
⋃

i(Pi|e).

In the following discussion, Pi or P will be used to represent streams, assuming that

the streams considered are during one epoch.

4.3.2 Local Summary Structure

The algorithms employ approximate in-network aggregation schemes. Basically, each

site computes a local summary and sends it to its parent. For internal nodes, the local

summary is merged with the summaries received from children and another local sum-

mary operation is performed on the merged set before the summary is sent to the parent.

When all summaries reach the root, a k-median clustering procedure is performed at

the root to get the (1 + ε)-approximate clustering of the whole data.

1Each site is a node in the routing tree. In the following discussion, the terms site and node are used
interchangeably.

63

An important element of the algorithm is the summary structure. A desirable sum-

mary structure SM should satisfy the following properties:

• Property I: distributive (or decomposable): The summary of a set P can

be computed from the summaries of its partitions. For example, SM(P) = f(SM

(P1), SM(P2)), where P = P1

⋃
P2 and f is the function to combine the partition

summaries.

• Property II: compact: the summary should have a much smaller size than the

original data.

• Property III: error bound: the summary should deliver a k-median solution

with bounded error. A k-median solution on the summary should be a (1 + ε)-

approximate k-median of the original data. Here ε is the approximation factor

associated with the summary.

• Property IV: error-accumulation: the summary of the summary of dataset P

should still be a summary of P , only with a looser approximation factor due to

error accumulation. Formally, SMε1(SMε2(P)) = SMg(ε1,ε2)(P), where g(ε1, ε2) is

a function to accumulate the error which satisfies g(ε1, ε2) ≥ ε1 and g(ε1, ε2) ≥ ε2.

The summary structure and the algorithms for constructing and merging this type

of summaries are presented in Section 4.

4.3.3 Topology Dependence

The amount of accumulated error of in-network aggregation is determined by the number

of merges, compressions and propagations of the local summaries occurring at each

node in the network. Therefore, the approximation factor of the summary is highly

dependent on the network topology. Three algorithms are proposed that utilize the

topology knowledge at different levels.

64

• Topology-oblivious algorithm A topology-oblivious algorithm is proposed which

does not assume any prior knowledge of the tree topologies. The algorithm com-

putes a local summary structure of size O(k
εd log3 N

√
log N) which maintains the

same error bound at each node. In this topology-oblivious algorithm, only the

merging operation performs at the internal node.

• Height-aware algorithm Assume that the height of the topology tree is known

beforehand. An improved algorithm is proposed which reduces communication

compared with the topology-oblivious algorithm.

• Path-aware algorithm The height of the subtrees in a tree topology may vary

significantly. Given the same approximation bound, the communication load at

each node uniformly determined by the height of the entire tree may not be op-

timal. The path-aware algorithm adaptively computes the communication load

for each node according to the height of its subtree. This approach minimizes

the communication per node while still ensuring the same overall additive error

bound. The algorithm is well-suited for reducing communication for unbalanced

tree topologies.

4.4 Algorithm

This section provides the detailed explanation of the algorithms for computing (1 + ε)-

approximate k-median over the distributed stream considering the different cases of

topology dependency. The sensors are considered to be organized into routing trees.

Specifically, details will be given on the design of local summary structure at each

node, the construction and merging algorithms for summaries, and the error propagation

schemes for the network-aware cases. In addition, formal proof will be provided on the

error bound for the clustering result and the bound for max per node transmission.

65

4.4.1 Topology-oblivious Algorithm

This algorithm is designed for the scenario where the tree structure is unknown, i.e.,

the size and the height of the routing tree is unknown. The algorithm computes (1 +

ε)-approximate k-median clustering with reduced maximum per-node transmission of

O(k
εd log3 N

√
log N).

The algorithm follows the in-network aggregation scheme. The key component is the

construction and merging of summary structure.

Local Summary at Each Node

A level-wise structure of k-median’s ε-coreset is used as the local summary at each site.

The ε-coreset is an ε-kernel defined on a point set P for certain geometric problems

(Agarwal et al. (2005)). For k-median problem, the ε-coreset C is defined as follows:

Definition 4.4.1. ε-coreset of dataset P Let P be a weighted set of n points in

Rd. A weighted point set C is an ε-coreset in Rd for the k-median problem, if for every

set Ctr of k centers:

(1− ε)Cost(P,Ctr) ≤ Cost(C,Ctr) ≤ (1 + ε)Cost(P,Ctr)

Here C is usually a much smaller set than P , and each point p ∈ P is uniquely

represented by a point c ∈ C, where c’s weight is defined as the number of points in P

it represents.

The ε-coreset is a good candidate for the local summary since it satisfies all require-

ments of the summary: 1) coreset is distributive. If C1 and C2 are the ε-coresets for two

disjoint sets of points P1 and P2 respectively, then C1

⋃
C2 is an ε-coreset for P1

⋃
P2.

2) coreset only has size O(k
εd logN), where N is the size of P , and d is the dimensionality

of the data point. 3) A (1 + ε)-approximate k-median solution of P can be obtained

by computing the exact k-median solution on its ε-coreset. 4) The ε1-coreset of the

66

ε2-coreset of P is an (ε1 + ε2)-coreset of P , which means

Coresetε1(Coresetε1(P)) = Coresetε1+ε2(P)

Figure 4.1: EH summary at a site: This figure highlights the multi-level structure of
EH-summary. The incoming data is buffered in equi-sized blocks B1, B2,. . . ,Bj , . . ., each
of size O(k

εd). The coreset C1
j is computed for each block Bj and sent to level l = 1. At

each level l > 0, whenever two coresets C l
j, C

l
j+1 come in, they are merged and another

coreset C l+1
(j+1)/2 on C l

j

⋃
C l

j+1 is computed and sent to level l + 1. There are at most

log N
k/εd levels.

EH-Summary

At each site, an EH-summary is computed which is a multi-level structure of coresets

over the stream. EH-summary is constructed in the similar fashion to that of building an

online exponential histogram. Assume that the stream arriving at a site is P . Whenever

a block of B data points comes, a coreset computation is performed and the points in

the coreset are appended to the stream one level above. Fig.4.1 illustrates the process

of the algorithm. Bj represents the jth block of the original stream data P . Whenever

block Bj is filled up and the coreset C1
j of Bj is computed, C1

j is added to the stream

at level l = 1. For all levels l ≥ 1, whenever two coresets C l
j, C

l
j+1 come in, they are

merged and another coreset C l+1
(j+1)/2 is computed on top of the merged set and sent to

level l + 1. This process propagates until at level L, where there is only one coreset.

Here block size is set to B = O(k
εd) . Let Pl denote the stream at level l, PSet denote

67

the set of streams at all levels. The algorithm is shown as below:

Algorithm 4.1 CompEHSummary(P , ε)
Input P : the original data stream; ε: the required error bound

1: P0 ← P , P Set← {P0}
2: Arrange P0 into blocks B1, . . . , Bj , . . . of equal size B
3: P1 ← Φ
4: Compute ∆ε1-coreset C1

j on each block Bj, add C1
j into P1

5: P Set = P Set
⋃{P1}

6: l=1
7: while Pl contains more than one coreset, Pl = {C l

j}, j = 1, . . . , Jl, Jl > 1 do
8: if ¬(Pl+1 ∈ P Set) then
9: Pl+1 ← Φ, P Set = P Set

⋃{Pl+1}
10: end if
11: Merge C l

j and C l
j+1, where j = 1, 3, . . ., and j < Jl

12: Compute ∆εl+1-coreset C l+1
(j+1)/2 on each C l

j

⋃
C l

j+1, and add C l+1
(j+1)/2 into Pl+1

13: l← l + 1
14: end while

The algorithm generates a set of streams at different levels P Set = {Pl}, l =

0, 1, . . . , L, where P0 is the original data stream P . The computation propagates from

the lowest level P0, towards higher levels Pl, l > 0 until at level L, there are less than

two coresets. At any level l, ∆εl+1 = 1
(l+1)

√
l+1

ε
3
-coresets are computed and sent to level

l + 1.

Note that in Fig.4.1, a coreset C l
j at level l represents a sequence of 2l−1 consecutive

blocks in the original stream {B(j−1)2l−1+1, . . . , Bj2l−1}, with an approximation factor

of
∑l

1 ∆εi. For example, coresset C3
1 at level 3 covers the blocks {B1, B2, B3, B4}, C2

3

at level 2 covers the blocks {B5, B6} in P . The union of the original data blocks in P

covered by C l
j is denoted as CoverInterval(C l

j). The following lemma can be derived:

Lemma 4.4.1. Each C l
j is an εl-coreset of CoverInterval(C l

j) where εl = ε− 2
3
√

l
ε.

According to the distributive and error accumulation properties of coreset, C l
j is an

68

εl-coreset of CoverInterval(C l
j), where

εl =
l∑
1

∆εi

=
l∑
1

1

i
√

i

ε

3

≤ ε

3
+

ε

3

∫ l

1

dx

x
√

x

= ε− 2

3
√

l
ε.

(4.1)

Consider any coreset C l
j at level l. If C l+1

�j/2� ∈ Pl+1, we have CoverInterval(C l
j) ⊂

CoverInterval(C l+1
�j/2�), since C l+1

�j/2� is a coreset computed on either C l
j

⋃
C l

j+1 or C l
j−1

⋃
C l

j.

Formally, we claim that C l
j is an obsolete coreset if C l+1

�j/2� ∈ Pl+1, and an active coreset

otherwise. In Fig.4.1, for example, the only three active coresets are C3
1 , C2

3 , and C1
7 .

All the remaining coresets are obsolete coresets. Note that there could be at most one

active coreset at each level.

Therefore, the EH-summary is defined as follows:

Definition 4.4.2. EH-summary. An EH-summary of a stream P is the set of active

coresets at all levels (generated by Algorithm 1). EHSummary(P) = {C̃0, C̃ l1 , . . . , C̃ lk , . . . ,

C̃ lK}, where C̃ lk is the active coreset at level lk, C̃0 is the newest block in the original

stream which is not full, and lK is the maximum level L generated by Algorithm 1.

The EH-summary covers the whole data stream P . Each C̃ lk in the EH-summary

covers a disjoint subset of consecutive complete blocks in P , specifically, C̃ lk is an (ε−
2

3
√

lk
ε)-coreset of CoverInterval(C̃ lk) (Lemma 4.1). We have

CoverInterval(C̃ lk1)
⋂

CoverInterval(C̃ lk2) = Φ,

69

and

(
⋃
lk

CoverInterval(C̃ lk))
⋃

C̃0 = P.

In Fig.4.1, for example, the EH-summary is {B8, C
1
7 , C

2
3 , C

3
1}. C3

1 at level 3 covers the

blocks B1, B2, B3, and B4. C2
3 covers B5 and B6. C1

7 covers B7. Together with B8, they

cover the whole data stream.

Lemma 4.4.2. The union of coresets (
⋃

lk
C̃ lk)

⋃
C̃0 in EH-summary EH = {C̃0, C̃ l1 , ...,

C̃ lk , ...C̃ lK}, lK = L, is an (ε− 2
3
√

L
ε)-coreset of P .

According to Lemma 4.1, each C̃ lk is an (ε− 2
3
√

lk
ε)-coreset of CoverInterval(C̃ lk).

Since ε− 2
3
√

L
ε = max(ε− 2

3
√

lk
ε), each C̃ lk is also an (ε− 2

3
√

L
ε)-coreset of CoverInterval(C̃ lk).

Therefore, according to distributive property, (
⋃

lk
C̃ lk)

⋃
C̃0 is an (ε− 2

3
√

L
ε)-coreset of

CoverInterval(C̃ lk)
⋃

C̃0 = P .

Merging EH-Summary at Intermediate Nodes

For any internal node, the local EH-summary needs to be combined with any EH-

summary it receives from its children. Consider two EH-summaries EH = {C̃0, C̃ l1 , ..., C̃ lk ,

..., C̃ lK}, EH∗ = {C̃0
∗ , C̃

l1∗ , ..., C̃ lk∗ , ..., C̃ lK∗
∗ }. Denote the combined EH-summary as

EHall. Intuitively, the combination of EH and EH∗ can proceed as follows: 1) At

level 0, combine C̃0 and C̃0
∗ , denote it as C̃0

all. If |C̃0
all| > B, arrange C̃0

all into blocks Bc

and Br, where Bc is a complete block of size B, and Br is the remaining part. Compute

an ∆ε1-coreset ∆C̃1
all over Bc, and send it to level 1. Set C̃0

all to be Br and add it to

EHall. 2) For any level l ≥ 1, start from level 1. a) If both EH and EH∗ contain

coresets on level l, merge the two coresets, compute another coreset ∆C̃ l+1 on top of it,

and send to level l +1. Additionally, if there is a non-empty ∆C̃ l sent by the level l− 1,

add ∆C̃ l into EHall as the coreset at level l. b) If only one of EH and EH∗ contains

coreset on level l, assume it is EH with C̃ l. If there is a non-empty ∆C̃ l sent by the

lower level, another coreset ∆C̃ l+1 is computed on top of C̃ l
⋃

∆C̃ l and sent to next

70

level. Otherwise, C̃ l is added into EHall as the coreset at level l. c) Finally, if neither

EH nor EH∗ contains coreset on level l, and there is a non-empty ∆C̃ l sent by the

lower level, ∆C̃ l is added into EHall as the coreset at level l. The algorithm is shown

in Algorithm. 2.

Compute k-Median at the Root

At the root node, we have an EH-summary for all the data during the last epoch e,

Pe. Let the EH-summary at the root be EHroot = {C̃0, C̃ l1 , . . . , C̃ lk , . . . , C̃ lK}, where

(
⋃

l C̃
lk)

⋃
C̃0 is an εL-coreset of Pe, and εL < ε, according to Lemma 4.2. Therefore, a

(1 + ε)-approximate k-median of Pe can be computed by computing the exact k-median

on (
⋃

l C̃
lk)

⋃
C̃0, using the algorithm in (Har-Peled and Mazumdar (2004)).

The process above describes how to compute the (1+ε)-approximate k-median clus-

tering for only one update epoch. To continuously maintain the k-median clustering

on data received in all previous epochs, an EH-summary needs to be maintained at

the root that covers all previous epochs. Let EHpast
root denote the EH-summary for all

past epochs. EHpast
root can be incrementally updated by merging with the EH-summary

EHroot for epoch e, using Algorithm 2. EHpast
root ← Merge(EHpast

root , EHroot). This sum-

mary is efficient, with guaranteed approximation and can be incrementally maintained.

Performing the exact k-median clustering on this summary will always produce a (1+ε)-

approximate k-median clustering.

Overall Analysis

The transmission cost for the topology-oblivious algorithm can be derived as follows. For

each site, the EH-summary is transferred instead of the original stream data. Assume

that the EH-summary is EH = {C̃0, C̃ l1 , . . . , C̃ lk , . . . , C̃ lK}. The size of EH depends

on the size of coreset C̃ lk at each level lk, and the number of levels. The size of any C̃ lk is

no more than O(k
εd
lk

log N) = O(klk
√

lk
εd log N), which is bounded by O(k

εd log2 N
√

log N),

71

since lk < log N . Totally, there are no more than log N levels. Therefore, the EH-

summary size is O(k
εd log3 N

√
log N). Overall, the communication for all the sites is no

more than the number of sites times the max per node transmission bound.

4.4.2 Height-aware algorithm

This section consider the case when the height of the tree h is known. A height-aware

algorithm is proposed to further reduce the transmission size. The basic idea of the

algorithm is to compute a coreset on top of the EH-summary and use it as the local

summary for transmission. Each internal node computes another coreset after merging

all the coresets from the children with the local coreset. Both local coreset computation

and coreset combination are incorporated into the algorithm shown below:

Theorem 4.4.3. The coreset CT computed at the root node using Algorithm 3 is an

ε-coreset of the data received over all streams.

At any node, let EH = {C̃0, C̃ l1 , . . . , C̃ lk , . . . , C̃ lK} be the EH-summary after the

first step of Algorithm 3. According to Lemma 4.2, (
⋃

lk
C̃ lk)

⋃
C̃0 is an (ε

2
− ε

3
√

L
)-

coreset of P , since εL =
∑L

1
1

l
√

l
ε
6
≤ ε

2
− ε

3
√

L
. In Step 2, a 1

3
√

L
ε-coreset CEH on EH is

computed, which makes CEH an ε
2
-coreset of P . Whenever we move up from a node to

its parent in the tree, the combination of coresets in Steps 3 and 4 increases the error of

coreset by ε
2h

. Since the total height is h, the final coreset CT at root will be a ε-coreset

of P (ε
2
+ ε

2h
h = ε). In this algorithm, only the height of the tree h is required. Sites do

not know their locations in the tree.

Overall Analysis The transmission cost for the height-aware algorithm can be derived

as follows. For each site, a single coreset CT (Algorithm 3, Step 4) is computed and

transferred instead of an EH-summary as in topology-oblivious algorithm. CT is an

ε-coreset of CU , where |CU | < N , thus |CT | = O(k
εd/2h

log N). Therefore, the max per

node transmission for height-aware algorithm is O(kh
εd log N), which is smaller compared

72

Algorithm 4.2 CombineEHSummary(EH,EH∗)
1: EHall ← Φ, l← 0
2: C̃0

all ← C̃0
⋃

C̃0∗
3: if |C̃0

all| > B then
4: Divide C̃0

all into block Bc of size B and set the remaining part to be C̃0
all. Add C̃0

all into
EHall

5: Compute ∆ε1-coreset ∆C̃1
all over Blk

6: else
7: Add C̃0

all into EHall

8: ∆C̃1
all = Φ

9: end if
10: for l = 1 to L do
11: ∆C̃ l+1 = Φ
12: if C̃ l ∈ EH and C̃ l∗ ∈ EH∗ then
13: Compute ∆C̃ l+1

all as the ∆εl+1-coreset over C̃ l
⋃

C̃ l∗
14: if ∆C̃ l

all �= Φ then
15: C̃ l

all ← ∆C̃ l
all, add C̃ l

all into EHall.
16: end if
17: else
18: if ∆C̃ l

all �= Φ then
19: if C̃ l ∈ EH then
20: Compute ∆C l+1

all as the ∆εl+1-coreset over C̃ l
⋃

∆C̃ l
all

21: else
22: if C̃ l∗ ∈ EH then
23: Compute ∆C l+1

all as the ∆εl+1-coreset over C̃ l∗
⋃

∆C̃ l
all

24: else
25: C̃ l

all ← ∆C̃ l
all, add C̃ l

all into EHall

26: end if
27: end if
28: else
29: if C̃ l ∈ EH then
30: C̃ l

all ← C̃ l, add C̃ l
all into EHall

31: else
32: if C̃ l∗ ∈ EH then
33: C̃ l

all ← C̃ l∗, add C̃ l
all into EHall

34: end if
35: end if
36: end if
37: end if
38: end for

73

Algorithm 4.3 CombineCoresetHW(P , h)

1: Compute the local EH-summary EH = {C̃0, C̃ l1 , . . . , C̃ lk , . . . , C̃ lK} using Algorithm 1,
with ∆εl = 1

l
√

l
ε
6

2: Compute a 1
3
√

lK
ε-coreset CEH on (

⋃
lk

C̃ lk)
⋃

C̃0

3: Take the union of CEH with all the coresets Cj
EH received from the child nodes CU =

CEH
⋃

(
⋃

j Cj
EH)

4: Compute an ε
2h -coreset CT on CU

5: Return CT as the final coreset for transmission

with the topology-oblivious case considering small h. However, the prior knowledge of

the height of the tree is required.

4.4.3 Path-aware algorithm

In height-aware algorithm, the additive approximation factor ε
2h

is uniformly assigned

to each site. Assume that each site is aware of the height of the subtree rooted at

itself. This information can be obtained during the routing process. With the extra

information about the topology, a path-aware algorithm is proposed which assigns ap-

proximation factor uniformly along each path. The path-aware algorithm further reduces

data transmission compared with height-aware algorithm.

In the height-aware algorithm, each site computes an ε
2
-coreset of the local data,

merges all coresets from the children, and computes another ε
2h

-coreset on top of it.

It works well for balanced tree. However, for unbalanced tree, the transmission of the

sites on a shorter path in the tree can be further reduced. For example, in Fig.2(a),

the height of the tree is 5, so that the additive approximation factor at each site is ε
10

,

which is determined by the longest path in the tree (path 9 → 5 → 4 → 3 → 2 → 1).

However, for shorter path such as 7→ 6→ 1, the additive approximation factor can be

taken as 2ε
5

instead of ε
10

without affecting the final approximation factor ε at the root.

This approach saves communication because the coreset size is inversely proportional to

the approximation factor. Therefore, the additive error on each path can be determined

separately. In the following discussion, a top-down algorithm is proposed for assigning

74

(a)Height-aware (b)Path-aware

Figure 4.2: Error accumulation of Height-aware and Path-aware algorithms. This figure
compares the different strategies of assigning additive approximation factors at each
site of the tree for height-aware and path-aware algorithms. Height-aware algorithm
assigns the additive error uniformly to ε

2h
, where h is the height of the tree. Path-aware

algorithm assigns the additive error uniformly inside each sub-path, but differently for
different sub-paths.

additive approximation factor ∆ε in a piecewise fashion along each path, assuming that

each node knows the height of the subtree rooted at itself.

The algorithm proceeds as follows. Initially, AssignEps (root, ε
2
) is invoked and

the algorithm runs recursively and traverses the tree to assign the proper additive ap-

proximation factor for each site. In Fig.2(b), for example, the algorithm starts with

AssignEps(S1, ε/2), and set the additive error at root to be ε/10 (height of the tree

h = 5). Two children of S1 are S2 and S6, where height(S2) = 4, and height(S6) = 1.

Therefore, the additive approximation factor at S2 is assigned to be εSC2 = ε/10. Simi-

larly, the additive approximation factor at S6 is εSC6 = 2ε/5. Note that εSC6 is assigned

to be ε/10 in height-aware algorithm. S8 is also assigned ε/5 instead of ε/10.

After the additive error assignment phrase, the remaining part of the path-aware

algorithm is the same as that of the height-aware algorithm.

75

Algorithm 4.4 AssignEps(Si,εi)
Input Si: current site; εi: the maximum possible approximation factor of the coreset
sent by Si’s children
1: if Si is leaf then
2: return
3: end if
4: if Si is root then
5: εSi = εi/h, where h is the height of the entire routing tree
6: εi = εi − εSi

7: end if
8: for each site in Si’s children set {SCj} do
9: if SCj is a leaf then

10: Assign the additive approximation factor of SCj to be εSCj = εi

11: else
12: Assign the additive approximation factor of SCj to be εSCj = εi

height(SCj)
, where

height(SCj) is the height of the subtree rooted at SCj .
13: end if
14: AssignEps(SCj ,εi − εSCj)
15: end for

4.5 Experiments and Analysis

The algorithms are simulated using different tree topologies with up to 50 nodes. The

routing tree is generated by placing the sites on a 100× 100 grid. It is assumed that the

sites can communicate with other sites within a distance of 5. Based on this assumption,

a site graph is generated and the distances between the sites are used as the weights of

the site graph edges. A spanning tree algorithm is then applied to generate the routing

tree.

4.5.1 Benchmark Data

The algorithms are tested on both real and synthetic datasets with up to millions of

data points. Specifically, the algorithms are tested on the following two data sets:

• New York stock exchange (NYSE) data: An archived dataset representing

data volumes at the end of each day in the New York stock exchange2. The data

2http://www.nyse.com/marketinfo/datalib/1022221393023.html

76

volume information is collected at the stock exchange over a hundred years. The

overall dataset has over 30K observations. The trading data volume can vary

significantly from day to day.

• Synthetic data: The synthetic data is generated using a weighted combination of

normalized distributions at a given set of centers. 15 centers are randomly chosen

in the user-specified data range. The algorithms are tested on up to 2 million

observations.

4.5.2 Results and Analysis

The experiments are conducted in different configurations and analyzed the data trans-

mission as a function of the total stream data size, the approximation bound in k-median

computation, and the number of sites. The experimental results are presented and com-

pared with the theoretical bounds of the algorithms.

Stream Data Size

The max per node transmission is asymptotically bounded by a polylog function of

total stream size N . For topology-Oblivious algorithm, the max per node bound is

Boundmax = O(k
εd log3 N

√
log N); for height-aware algorithm, the max per node bound

is Bound′
max = O(kh

εd log N). Thus, the total data transmission size is asymptotically

bounded by the number of sites times Boundmax. The advantage of the algorithms is

more prominent for large data volume.

Fig.3 shows the overall and max per node transmission for synthetic and real data

with varying per-epoch data volume of the input streams. For the experiments on both

real data and synthetic data, the parameters used are k = 10, ε = 0.05. For real data, all

three proposed algorithms are tested on a simulated stream system of 5 nodes, with total

stream size varying between 20K and 28K. For synthetic data, all three algorithms are

77

tested on a simulated stream system of 10 nodes, with total stream size varying between

1M and 9M .

Figs. 4.3(a) and 4.3(b) demonstrate the overall communication load of all three

algorithms. In 4.3(a) and 4.3(b) it can be observed that the total communication of

topology oblivious algorithm is more than height-aware algorithm, and height-aware

algorithm is more than path-aware algorithm. All three algorithms are well below the

corresponding theoretical bounds for total data transmission. Figs. 4.3(c) and 4.3(d)

highlight the maximum per node data transmission of the algorithms on the real and

synthetic data. The plots also indicate a polylog relationship between data transmission

and total stream size. In addition, height-aware algorithm and path-aware algorithm

have much smaller max per node transmission than topology-oblivious algorithm. In

the experiments, a significant reduction can be observed in both the total and max per

node data transmission, and more reduction for larger stream size. We noticed that the

max per node transmission of path-aware algorithm is only a small fraction (≈ 20%) of

the overall stream size for real data (see Fig. 4.3(c)) and (≈ 2%) for synthetic data (see

Fig. 4.3(d)).

Number of Sites

The total transmission and max per node transmission are evaluated by varying the

number of sites. The total data transmission is asymptotically linear to the number

of sites. Figs. 4.4(a) and 4.4(b) highlight the total data transmission as a function

of the number of sites for both NYSE dataset and synthetic dataset. The total input

stream size is fixed to 30K for the real data and 5M for the synthetic data. It can

be observed that the total data transmission by all three algorithms are below the

theoretical bound. The graphs indicate that the height-aware algorithm performs better

than the topology-oblivious algorithm, and the path-aware algorithm performs better

than the height-aware algorithm. Figs. 4.4(c) and 4.4(d) highlight the maximum per

78

node data transmission as a function of the number of sites in the network. The height-

aware and path-aware algorithms slowly increases with larger number of sites due to the

increases of the height of the tree. The topology-oblivious algorithm does not exhibit

increasing tendency with the change of the number of sites. The ups and downs of the

topology-oblivious curve are due to the different distribution of the total stream data in

different tree topologies (with increasing sensor numbers). The graphs demonstrate the

scalability of the algorithms in terms of the number of sites.

Approximation Error

The data transmission is expected to reduce when a larger approximation error is al-

lowed. Using the same datasets, the experiments demonstrate that the total transmis-

sion in all three algorithms declines slowly as the approximation error increases on both

synthetic and real data, as shown in Figs. 4.5(a) and 4.5(b). Figs. 4.5(c) and 4.5(d)

highlight the maximum per node data transmission as a function of the approximation

error, which also decreases slowly with larger approximation error. It can be observed

that the path-aware algorithm can reduce the total data transmission and the maximum

data transmission per node by additional 30%.

79

(a) Overall communication on real data (b) Overall communication on synthetic data

(c) Maximum per node communication on real
data

(d) Maximum per node communication on syn-
thetic data

Figure 4.3: Performance of the algorithms as a function of the total stream size: The
overall communications among the sensor network nodes perform k-median clustering
are measured using real and synthetic data. The NYSE data consists up to 28K records
and the synthetic data consists up to 9 million data values. The approximation error
threshold is set to 0.05. For real data, all three algorithms are tested on a 5-node
system. For synthetic data, the algorithms are tested on a 10-node system. Figs.
4.3(a) and 4.3(b) demonstrate the overall data communication of the algorithms as a
function of input data size. Figs. 4.3(c) and 4.3(d) demonstrate the max per node data
communication of the algorithms as a function of input data size. The experiments
demonstrate a significant reduction in the overall and max per node communication.

80

(a) Normalized overall communication on real
data

(b) Normalized overall communication per node
on synthetic data

(c) Normalized maximum per node communica-
tion on real data

(d) Normalized maximum per node communica-
tion on synthetic data

Figure 4.4: Performance of the algorithms as a function of the number of sites. The
data communication of the algorithms is measured as a function of the number of sites
on NYSE and synthetic data.

81

(a) Overall communication on real data (b) Overall communication on synthetic data

(c) Maximum per node communication on real
data

(d) Maximum per node communication on syn-
thetic data

Figure 4.5: Performance of the algorithms as a function of approximation error: The
overall communication of the algorithm decreases as the error increases. Figs. 4.5(a)
and 4.5(b) highlight the overall data communication as the error increases. Figs. 4.5(c)
and 4.5(d) demonstrate the max per node data communication as the error increases.
Approximate clustering is performed on NYSE data with 30K data records and synthetic
data with 5 million observations. As the error tolerance increases, it can be observed
that both the height-aware and path-aware algorithms perform better than the topology-
oblivious algorithm and can further reduce the communication by additional 10− 30%.

82

Chapter 5

Fast Algorithms for Approximate

Order-Statistics Computation in Data

Streams

5.1 Introduction

Order-statistics such as quantiles and biased-quantiles capture the underlying distribu-

tion of the datasets. Computing exact quantiles or biased-quantiles on large datasets or

unlimited data streams requires either huge memory or disk-based sorting. It is proven

that at least O(N
1
p) storage is needed for exact median (0.5 quantile) computation in p

passes for a dataset of size N (Munro and Paterson (1980)). Recently, researchers have

studied the problem of computing approximate quantiles with guaranteed error bound

to improve both memory and speed performance (Manku et al. (1998, 1999); Greenwald

and Khanna (2001, 2004); Arasu and Manku (2004); Lin et al. (2004); Cormode et al.

(2005, 2006)).

Streaming quantile or biased-quantile computation faces several chanllenges. Data

streams are transient and can arrive at a high speed. Different from static datasets

with fixed size, the streams are usually with unbounded size. Streaming computations

therefore require single pass algorithms with small space requirement which can handle

arbitrary sized streams. In order to guarantee the precision of the result, the algorithm

should ensure random or deterministic error bound for the quantile computation. Many

algorithms were developed for computing approximate quantiles over the entire stream

history (Manku et al. (1998); Greenwald and Khanna (2001)) or over a sliding window

(Lin et al. (2004); Arasu and Manku (2004)); with uniform error (Manku et al. (1998);

Greenwald and Khanna (2001)) or with biased error (Cormode et al. (2005, 2006)).

However, most of these algorithms focus on reducing the space requirement and can

trade off the computational cost, which is one of the important concerns for high-speed

data streams. In this thesis, fast algorithms are presented for computing approximate

quantiles and biased-quantiles over data streams.

5.2 Related Work

Quantile computation has been studied extensively in the database literature. At a

broad level, they can be classified as exact algorithms and approximate algorithms.

Exact Algorithms: Several algorithms are proposed for computing exact quantiles

efficiently. There is also considerable work on deriving the lower and upper bounds

of number of comparisons needed for finding exact quantiles. Mike Paterson (Pater-

son (1997)) reviewed the history of the theoretical results on this aspect. The current

upper bound is 2.9423N comparisons, and the lower bound is (2 + α)N , where α is

the order of 2−40. Munro and Paterson (Munro and Paterson (1980)) also showed that

algorithms which compute the exact φ-quantile of a sequence of N data elements in p

passes, will need Ω(N1/p) space. For single pass requirement of stream applications, this

requires Ω(N) space. Therefore, approximation algorithms that require sublinear-space

are needed for online quantile computations on large data streams.

Approximate Algorithms: Approximate algorithms are either deterministic with

guaranteed error or randomized with guaranteed error of certain probability. These al-

84

gorithms can further be classified as uniform, biased or targetted quantile algorithms.

Moreover, based on the underlying model, they can be further classified as quantile com-

putations on entire stream history, sliding windows and distributed stream algorithms.

Jain and Chlamatac (Jain and Chlamtac (1985)), Agrawal and Swami (Agrawal and

Swami (1995)) have proposed algorithms to compute uniform quantiles in a single pass.

However, both of these two algorithms have no apriori guarantees on error. Manku et al.

(Manku et al. (1998)) proposed a single pass algorithm for computing ε-approximate uni-

form quantile summary. Their algorithm requires prior knowledge of N . The space com-

plexity of their algorithm is O(1
ε
log2 εN). Manku et al. (Manku et al. (1999)) also pre-

sented a randomized uniform quantile approximation algorithm which does not require

prior knowledge of N . The space requirement is 1
ε
(log2(1

ε
) + log2 log(1

δ
)) with a failure

probability of δ. Greenwald et al. (Greenwald and Khanna (2001)) improved Manku’s

(Manku et al. (1999)) algorithm to achieve a storage bound of O(1
ε
log εN). Their algo-

rithm can deterministically compute an ε-approximate quantile summary without the

prior knowledge of N . Lin et al. (Lin et al. (2004)) presented algorithms to compute

uniform quantiles over sliding windows. Arasu and Manku (Arasu and Manku (2004))

improved the space bound using a novel exponential histogram-based data structure.

In addition to exact and approximate algorithms for quantile computation, recent

work has also studied biased quantile computation in data streams and quantile com-

putation in sensor network systems.

Biased Quantile Computation in Streams: Cormode et al. (Cormode et al.

(2005)) first studied the problem of biased quantiles computation in data streams. They

proposed an algorithm with poly-log space complexity based on (Greenwald and Khanna

(2001)). However, it is shown in (Zhang et al. (2006)) that the space requirement of their

algorithm can grow linearly with the input size with carefully crafted data. Cormode et

al. (Cormode et al. (2006)) presented a better algorithm with an improved space bound

of O(logU
ε

log εN) and amortized update time complexity of O(log log U) where U is the

85

size of the universe where data element is chosen from and N is the size of the data

stream.

Quantile Computation in Sensor Network: Recent work has also focussed on

approximate quantile computation algorithms in distributed streams and sensor net-

works. Greenwald et al. (Greenwald and Khanna (2004)) proposed an algorithm for

computing ε-approximate quantiles distributely for sensor network applications. Their

algorithm guarantees that the summary structure at each sensor is of size O(log2 n/ε).

Shrivastava et al. (Shrivastava et al. (2004)) presented an algorithm to compute medians

and other quantiles in sensor networks using a space complexity of O(1
ε
log(U)) where

U is the size of the universe.

5.3 Approximate Quantile Computation

5.3.1 Algorithms

This section describes the algorithms for fast computation of approximate quantiles on

large high-speed data streams. The data structures and algorithms are presented for

both fixed-sized (with known size) and arbitrary-sized (with unknown size) streams.

Furthermore, the analysis of computational complexity and the memory requirements

are given for the algorithms.

Let N denote the total number of values of the data stream and n denote the number

of values in the data stream seen so far. Given a user-defined error ε and any rank

r ∈ [1, n], an ε-approximate quantile is an element in the data stream whose rank r′
is within [r − εn, r + εn]. A summary structure is maintained to continuously answer

ε-approximate quantile queries.

86

Fixed Size Streams

First consider the case where N is given in advance. The solution for fixed size streams

will be generalized for streams with unknown N in the following subsection. In practice,

the former algorithm can be used for applications such as summarizing large databases

that do not fit in main memory. The latter algorithm is useful for continuous streams

whose size can not be predicted beforehand. The summary structure as well as the

construction algorithm for the summary structure are described as below.

Multi-level Quantile Summary A multi-level ε-summary S of the stream is main-

Figure 5.1: Multi-level summary S: This figure highlights the multi-level structure of
the ε-summary S = {s0, s1, . . . , sL}. The incoming data is divided into equi-sized blocks
of size b and blocks are grouped into disjoint bags, B0, B1, . . . , Bl, . . . , BL with Bl for
level l. B0 contains the most recent block, B1 contains the older two blocks, and BL

consists of the oldest 2L blocks. At each level, sl is maintained as the εl-summary for
Bl. The total number of levels L is no more than log N

b

.

tained as data elements are coming in. An ε-summary is a sketch of the stream which

can provide ε-approximate answer for quantile query of any rank r ≤ n. A multi-level

summary structure S = {s0, ..., sl, ..., sL} is maintained, where sl is the summary at

level l and L is the total number of levels (see Fig.1). Basically, the incoming stream

is divided into blocks of size b (b = � log εN
ε
�). Each level l covers a disjoint bag Bi of

consecutive blocks in the stream, and all levels together
⋃

Bi cover the whole stream.

Specifically, B0 always contains the most recent block (whether it is complete or not),

B1 contains the older two blocks, and BL consists of the oldest 2L blocks. Each sl is an

εl-summary of Bi, where εl ≤ ε.

The multi-level summary construction and maintainance is performed as follows.

87

Initially, all levels are empty. Whenever a data element in the stream arrives, the

update procedure is performed as follows.

1. Insert the element into s0.

2. If s0 is not full (|s0| < b), stop and the update procedure is done for the current

element. If s0 becomes full (|s0| = b), the size of s0 is reduced by computing a

sketch sc of size � b
2
� + 1 on s0. This sketch computation operation is referred to

as COMPRESS, which will be described in detail in later discussion. Consider s0 as

an ε0-summary of B0 where ε0 = 0, the COMPRESS operation guarantees that sc is

an (ε0 + 1
b
)-summary. After COMPRESS operation, sc is sent to level 1.

3. If s1 is empty, s1 is set to be sc and the update procedure is done. Otherwise, s1 is

merged with sc which is sent by level 0 and empty s0. These operations are referred

to as MERGE on s1, sc and EMPTY on s0. Generally, the MERGE(sl+1, sc) operation

merges sl+1 with the sketch sc by performing a merge sort. The EMPTY(sl) opera-

tion empties sl after MERGE operation is finished. Finally, COMPRESS is performed

on the result of MERGE, and the resulting sketch sc is sent to level 2.

4. If s2 is empty, s2 is set to be sc and the update procedure is done. Otherwise, the

operations s2 =MERGE(s2, sc), sc =COMPRESS(s2), EMPTY(s1) are performed in the

given order, and new sc is sent to level 3.

5. Step 4 is repeatedly performed for si, i = 3, . . . , L until level L is reached where

sL is empty.

The pseudo code of the entire update procedure whenever an element e comes is

shown in Algorithm 1. The detail of operations COMPRESS, MERGE will be given in the

following sections.

Assume that s is an ε-summary of stream B. For each element e in s, rmax(e) and

rmin(e) are maintained which represent the maximum and minimum possible ranks

88

Algorithm 5.1 Update(e,S,ε)
Input e: current data element to be inserted, S: current summary structure S =
{s0, . . . , sl, . . . , sL}, ε: required approximation factor of S

1: insert e into s0

2: if |s0| = b then
3: sort s0

4: sc ← compress(s0,
1
b
)

5: empty(s0)
6: else
7: exit
8: end if
9: for l = 1 to L do

10: if |sl| = 0 then
11: sl ← sc

12: break
13: else
14: sc = compress(merge(sl, sc),

1
b
)

15: empty(sl)
16: end if
17: end for

of e in B, respectively. Therefore, the ε-approximate quantile query of any rank r

can be answered by returning the value e which satisfies: rmax(e) ≤ r + ε|B| and

rmin(e) ≥ r − ε|B|. Initially, rmin(e) = rmax(e) = rank(e). rmin(e), rmax(e) are

updated during the COMPRESS and MERGE operations.

COMPRESS(s, 1
b
): The COMPRESS operation takes at most � b

2
�+1 values from s, which

are: quantile(s, 1), quantile(s, �2|B|
b
�), quantile(s, �22|B|

b
�), . . .,quantile(s, �i2|B|

b
�),. . .,

quantile(s, |B|), where quantile(s, r) queries summary s for quantile of rank r. Ac-

cording to (Greenwald and Khanna (2004)), the result of COMPRESS(s, 1
b
) is an (ε + 1

b
)-

summary, assuming s is an ε-summary.

MERGE(s, s′): The MERGE operation combines s and s′ by performing a merge-sort on

s and s′. According to (Greenwald and Khanna (2004)), if s is an ε-summary of B and

s′ is an ε′-summary of B′, the result of MERGE(s, s′) is an ε-summary of B
⋃

B′ where

ε = max(ε, ε′).

Lemma 5.3.1. The number of levels in the summary structure is less than log(εN).

89

Proof. In the entire summary structure construction, s0 becomes full at most N
b

times,

sl becomes full N
2lb

times and the highest level sL becomes full at most once. Therefore,

L ≤ log(
N

b
) < log(εN)− log(log(εN)) < log(εN) (5.1)

.

Lemma 5.3.2. Each level in the summary maintains an error less than ε.

Proof. During the construction process of S, the error at each level εl depends on the

COMPRESS and MERGE operations. Intially, ε0 = 0. At each level, COMPRESS(sl,
1
b
) oper-

ation generates a new sketch sc with error εl + 1
b

and added to level l + 1, and MERGE

does not increase the error. Therefore, the error of the summary in sl+1 is given by

εl+1 = εl +
1

b
= ε0 +

l + 1

b
=

l + 1

b
(5.2)

From equations 5.2 and 5.1, it is easy to verify that

εl =
l

b
<

log(εN)
log(εN)

ε

= ε (5.3)

To answer a query of any rank r using S, s0 is first sorted and the summaries at

all levels {sl} are merged using the MERGE operation, denote it as MERGE(S). Then

the ε-approximate quantile for any rank r is the element e in MERGE(S) which satisfies:

rmin(e) ≥ r − εN and rmax(e) ≤ r + εN .

Theorem 5.3.3. For multi-level summary S, MERGE(S) is an ε-approximate summary

of the entire stream.

Proof. MERGE operation on all sl generates a summary for
⋃

Bl with approximation

factor εU = max(ε1, ε2, . . . , εL). According to Lemma 2, εU < ε. Since the union of

90

all the Bl is the entire stream, MERGE(S) is an ε-approximate summary of the entire

stream.

Performance Analysis The summary structure maintains at most b + 3 elements

in each level (after MERGE operation) and there are L levels in the summary structure.

Therefore, the storage requirement for constructing the summary is bounded by (b+3)L

= O(1
ε
log2(εN)). The storage requirement for the algorithm is higher than the best

storage bound proposed by Greenwald and Khanna (Greenwald and Khanna (2001)),

which is O(1
ε
log(εN)). However, The goal behind the algorithm is to achieve faster

computational time with reasonable storage. In practice, the memory size requirements

for the algorithm can be a small fraction of the RAM on most PCs even for peta-byte-

sized datasets (see table 5.2).

Theorem 5.3.4. The average update cost of the algorithm is O(log(1
ε
log(εN))).

Proof. At level 0, for each block, a sort and a COMPRESS operation are performed. The

cost of sort per block is b log b, COMPRESS per block is b
2
. Totally, there are N

b
blocks, so

the total cost at level 0 is: N log b+ N
2
. At each level Li, i > 0, a COMPRESS and a MERGE

operation are performed. Each COMPRESS costs b, since a linear scan is required to batch

query all the values needed (refer to COMPRESS operation). Each MERGE costs b with a

merge sort. In fact, the computation cost of MERGE also includes the updates of rmin

and rmax (will be discussed in Sec 3.3), which can be done in linear time. Thus the cost

of a MERGE adds up to 2b. Therefore, the total expected cost of computing the summary

structure is N log b + N
2

+
∑i=L

i=1
N
2ib

3b = O(N log(1
ε
log(εN)). The average update time

per element is O(log(1
ε
log(εN))).

In practice, for a fixed ε, the average per element computation cost of the algorithm

is given by O(log log N) and the overall computation is almost linear in performance.

The algorithm proposed by Greenwald and Khanna (Greenwald and Khanna (2001)) has

91

Stream size (N) Maximum Block Size (Bytes) Bound of Number of Tuples Bound of Summary Size (Bytes)

106 191.2KB 161K 1.9MB
109 420.4KB 717K 8.6MB
1012 669.6KB 1.67M 20MB
1015 908.8KB 3.03M 36.4MB

Table 5.1: This table shows the memory size requirements of the Generalized algorithm
(with unknown size) for large data streams with an error of 0.001. Each tuple consists
of a data value, and its minimum and maximum rank in the stream, totally 12 bytes.
Observe that the block size is less than a MB and fits in the L2 cache of most CPUs.
Therefore, the sorting will be in-memory and can be conducted very fast. Also, the
maximum memory requirement for the algorithm is a few MB even for handling streams
of 1 peta data.

a best case computation time (per element) of O(log s), and worst computation time

(per element) of O(s) where s is 1
ε
log(εN). The comparison of the performance will be

demonstrated in the experiment section.

The majority of the computation in the summary construction is dominated by the

sort operations on blocks. Although sorting is computationally intensive, it is fast on

small blocks which fit in the CPU L2 caches. Table 5.2 shows a comparison of the block

size, memory requirement as a function of stream size N with error bound 0.001 using

the generalized streaming algorithm in the next section. In practice, the size of the

blocks in the algorithm is smaller than the CPU cache size even for peta-byte-sized data

streams.

Generalized Streaming Algorithm

The algorithm for fixed size streams can be generalized to compute approximate quan-

tiles in streams without prior knowledge of size N . The basic idea of the algorithm is

as follows. The input stream P is partitioned into disjoint sub-streams P0, P1, . . . , Pm

with increasing size. Specifically, sub-stream Pi has size 2i

ε
and covers the elements

whose location is in the interval [2
i−1
ε

, 2i+1−1
ε

). By partitioning the incoming stream

into sub-streams with known size, a multi-level summary Si can be constructed on each

sub-stream Pi using the algorithm for fixed size streams. The summary construction

92

Algorithm 5.2 gUpdate(e,S, ε, SC)

Input e: current data element, S: current summary structure, S = {S0, S1, . . . , Sk−1}
(sub-streams P0, . . . , Pk−1 have completely arrived), ε: required approximation factor of
S, SC : the fixed size multi-level summary corresponding to the current sub-stream Pk,
SC = {s0, s1, . . . , sL}
1: if e is the last element of Pk then
2: Apply merge on all the levels of SC : sall = merge(SC) = merge(s0, s1, . . . , sL)
3: Sk = compress(sall,

ε
2
)

4: S = S
⋃{Sk}

5: SC ← φ
6: else
7: update SC : SC = Update(e, SC , ε

2
)

8: end if

algorithm is as follows.

1. For the latest sub-stream Pk which has not completed, a multi-level ε′-summary

SC is computed using Algorithm 1 by performing Update(e, SC , ε′) whenever an

element comes. Here ε′ = ε
2
.

2. Once the last element of sub-stream Pk arrives, an ε
2
-summary on MERGE(SC) is

computed, which is the merged set of all levels in SC . The resulting summary

Sk =COMPRESS(MERGE(SC), ε
2
) is an ε-summary of Pk and it consists of 2

ε
elements.

3. The ordered set of the summaries of all complete sub-streams so far S = {S0, S1, . . .

, Sk−1} is the current multi-level ε-summary of the entire stream except the incom-

plete sub-stream Pk.

The pseudo code for the update algorithm for stream with unknown size is shown

in Algorithm 2. Initially, S = φ. Whenever an element comes, gUpdate is performed to

update the summary structure S.

To answer a query of any rank r using S, if SC is not empty, Sk is first computed for

the incomplete sub-stream Pk: Sk = compress(merge(SC), ε
2
), then all the ε-summaries

S0, S1, . . . , Sk−1 in S are merged together with Sk using MERGE operation, the final

summary is the ε-summary for P .

93

Performance Analysis The analysis storage complexity as well as computational

complexity of the algorithm is given as below.

Theorem 5.3.5. The space requirement of Algorithm 2 is O(1
ε
log2(εn)).

Proof. At any point of time, assume that the number of data elements arriving so far

is n. According to Algorithm 1, a multi-level ε-approximate summary SC is computed

and maintained for the current sub-stream Pk. For each of the previous sub-streams

Pi, i = 1, . . . , k − 1 which are complete, ε-summary Si of size 2
ε

is maintained. Since

k ≤ �log(εn + 1)�, totally O(1
ε
log εn) space is required. According to the space bound

for fixed size streams, O(1
ε
log2(εn)) space is required for computing the summary SC

for the current sub-stream. Therefore, the space requirement for the entire algorithm at

any point of time is O(1
ε
log2(εn)).

Theorem 5.3.6. The average update cost of Algorithm 2 is O(log(1
ε
log εn)).

Proof. According to Theorem 2, the computational complexity of each sub-stream Pi, i =

0, 1, . . . , �log(εn + 1)� is O(ni log(1
ε′ log(ε′ni))) where ni = |Pi| = 2i

ε
, Σni = n, ε′ = ε

2
. Af-

ter each sub-stream Pi is complete, an additional MERGE and COMPRESS operation are

performed each of cost O(1
ε′ log2(ε′ni)) to construct Si.

Given the above observations, the total computational cost of the algorithm is

i=�log(εn+1)�∑
i=0

(
2i

ε
log(

2(i− 1)

ε
) +

2

ε
(i− 1)2) (5.4)

.

Simplifying equation 5.23, the total computational cost of the algorithm is

O(n log(1
ε
log(εn))), the average updating time per element is O(log(1

ε
log(εn))), which

is O(log log n) if ε is fixed.

94

Update rmin(e) and rmax(e)

For both fixed size stream and arbitrary size stream, to answer the quantile query, rmin

and rmax values of each element e in the summary need to be updated properly.

rmin(e) and rmax(e) are updated during COMPRESS and MERGE operations as follows

(as in (Greenwald and Khanna (2004))):

Rank update in MERGE: Let S ′ = x1, x2, . . . , xa and S ′′ = y1, y2, . . . , yb be two quantile

summaries. Let S = z1, z2, . . . , za+b = MERGE(S ′, S ′′). Assume zi corresponds to some

element xr in Q′. Let ys be the largest element in S ′′ that is smaller than xr (ys is

undefined if no such element), and let yt be the smallest element in S ′′ that is larger

than xr (yt is undefined if no such element). Then

rminS(zi) =

⎧⎪⎨
⎪⎩

rminS′(xr) if ys undefined

rminS′(xr) + rminS′′(ys) otherwise

rminS(zi) =

⎧⎪⎨
⎪⎩

rmaxS′(xr) + rmaxS′′(ys) if yt undefined

rmaxS′(xr) + rmaxS′′(yt) − 1 otherwise

Rank update in COMPRESS: Assume COMPRESS(S ′) = S, for any element e ∈ S, define

rminS(e) = rminS′(e) and rmaxS(e) = rmaxS′(e).

5.3.2 Implementation and Resuts

The algorithms are implemented in C++ on an Intel 1.8 GHz Pentium PC with 2GB

main memory. The algorithm is tested against a C++ implementation of the algorithm

in (Greenwald and Khanna (2001)) (refer to as GK01 in the remaining discussion) from

the authors.

95

Results

The performance of GK01 and the algorithm are measured on different datasets. Specif-

ically, the computational performance is studied as a function of the size of the incoming

stream, the error and input data distribution. In all experiments, the stream size are

not known beforehand, and data type is float which takes 4 bytes.

Sorted Input The algorithms are tested using an input stream with either sorted

or reverse sorted data. Fig. 5.2(a) shows the performance of GK01 and the algorithm as

the input data stream size varies from 106 to 107 with a guaranteed error bound of 0.001.

For these experiments, as the data stream size increases, the block size in the largest

sub-stream varies from 191.2K to 270.9K. In practice, the algorithm is able to compute

the summary on a stream of size 107(40MB) using less than 2MB RAM. The algorithm

is able to achieve a 200 − 300× speedup over GK01. Note that the sorted and reverse

sorted curves for GK01 are almost overlapping due to the log-scale presentation and

small difference between them (average 1.16% difference). Same reason for the sorted

and reverse sorted curves for the algorithm, and the average difference between them is

2.1%.

The performance of the algorithm and GK01 are also measured by varying the error

bound from 10−3 to 10−2 on sorted and reverse sorted streams. Fig. 5.2(b) shows the

performance of the algorithm and GK01 on an input stream of 107 data elements. It

is observed that the performance of the algorithm is almost constant even when the

approximation accuracy of quantiles increases by 10×. Note that the performance of

GK01 is around 60× slower for large error and around 300× slower for higher precision

quantiles compared with the algorithm.

Random Input In order to measure the average case performance, the performance

of our algorithm and GK01 are evaluated on random data. Fig. 5.3(a) shows the

performance of GK01 and our algorithm as the input data stream size varies from 106

to 107 with error bound of 0.001. As the data size increases, the time taken by our

96

(a) Summary construction time vs stream
size

(b) Summary construction time vs error

Figure 5.2: Sorted Data: The sorted and reverse sorted input data are used to measure
the best possible performance of the summary construction time using the algorithm
and GK01. Fig. 5.2(a) shows the computational time as a function of the stream size
on a log-scale for a fixed epsilon of 0.001. It is observed that the sorted and reverse
sorted computation time curves for GK01 are almost overlapping due to the log-scale
presentation and small difference between them (average 1.16% difference). Same reason
for the sorted and reverse sorted curves for the algorithm, and the average difference
between them is 2.1%. It is also observed that the performance of the algorithm is
almost linear and the computational performance is almost two orders of magnitude
faster than GK01. Fig. 5.2(b) shows the computational time as a function of the error.
It is observed that the higher performance of the algorithm which is 60−300× faster than
GK01. Moreover, GK01 has a significant performance overhead as the error becomes
smaller.

algorithm increases almost linearly as the computational requirement of our algorithm

is O(n log log n). It is observed that our algorithm is able to achieve about 200− 300×
speedup over GK01.

In Fig. 5.3(b), the performance of the algorithms are evaluated on a data stream size

of 107 by varying the error bound from 10−2 to 10−3. It is observed that the performance

of our algorithm degrades by less than 10% while computing a summary with 10× higher

accuracy. This graph indicates that the performance of our algorithm is sub-linear to

the inverse of the error bound. In comparison, the performance of GK01 algorithm

degrades by over 500% as the accuracy of the computed summary increases by 10×.

In practice, the computational time increase for computing a higher accuracy summary

97

(a) Summary construction time vs stream
size

(b) Summary construction time vs error

Figure 5.3: Random Data: The random input data is used to measure the performance
of the summary construction time using the algorithm and GK01. Fig. 5.3(a) shows
the computational time as a function of the stream size on a log-scale for a fixed epsilon
of 0.001. It is observed that the performance of the algorithm is almost linear. Further-
more, the log-scale plot indicates that the algorithm is almost two orders of magnitude
faster than GK01. Fig. 5.3(b) shows the computational time as a function of the error.
It is observed that the algorithm is almost constant whereas GK01 has a significant
performance overhead as the error becomes smaller.

using our algorithm is significantly lower than that using GK01.

Analysis

The worst-case storage requirement for our algorithm is O(1
ε
log2(εN)). It is comparable

to the storage requirement of MRL (Manku et al. (1998)) and higher than GK01. Al-

though the storage requirement is comparatively high, for many practical applications,

the storage used by our algorithm is small enough to manage. For example, a stream

with 100 million values and error bound 0.001 has a worst-case storage requirement

of 5MB and practical on most PCs. Although our algorithm has a higher storage re-

quirement than GK01, our algorithm can construct the summary upto two orders of

magnitude faster than GK01. In terms of the computational cost, our algorithm has an

expected cost of O(n log(1
ε
log(εN))). Therefore, for a fixed error bound, the algorithm

has an almost linear increase in computational time in n. Our algorithm also has a

98

near-logarithmic increase in time as error bound decreases. Therefore, our algorithm is

able to handle higher accuracy, large data streams efficiently.

5.4 Approximate Baised-Quantile Computation

5.4.1 Preliminary

The concept of biased quantiles is first proposed in Cormode et al. (2005) to best capture

the skewed distribution of the quantiles based on their rank. Biased quantiles can be

further classified as low-biased quantiles and high-biased quantiles based on whether

the bias is towards the lower ranked quantiles or higher ranked quantiles respectively.

Low-biased quantiles can be defined as follows and the higher-biased quantiles can be

defined symmetrically Cormode et al. (2005).

Definition 5.4.1. Let P be a sorted list of n data elements. Let φ be a parameter in

the range 0 < φ < 1. The low-biased quantiles of P are the set of values P [�φjn�] for

j = 1, . . . , log1/φ n.

Exact computation of biased quantiles requires linear space. In order to reduce the

space requirement to a sublinear function in stream size and to perform computations

on streams using a single pass algorithm, Cormode et al. Cormode et al. (2005) defined

approximate biased quantiles where the user specifies an error threshold ε where 0 ≤
ε ≤ 1.

Definition 5.4.2. The approximate low-biased quantiles of a sorted list P of n elements,

is a set of values {qj}, qj ∈ P , and j = 1, . . . , log1/φ N , which satisfy

(1− ε)φjn ≤ r(qj) ≤ (1 + ε)φjn (5.5)

where r(qj) is the rank of qj in P .

99

Usually, only the top k biased quantiles are queried.

Considering φjn as the rank in P , the more general problem is for any r ∈ {1, 2, . . . , n},
return an ε-approximate biased quantile q which satisfies

(1− ε)r ≤ r(q) ≤ (1 + ε)r (5.6)

Different from the uniform error for approximate uniform quantiles, approximate low-

biased quantiles have biased error bound based on their ranks. This notion of biased

error guarantees more accuracy for lower-ranked elements.

5.4.2 Algorithms

For stream P , a biased quantile summary is maintained online to answer the approx-

imate biased quantile query at any point of time. This section describes the biased

quantile summary structure and property, and the algorithm for computing and main-

taining the biased quantile summary for arbitrary sized stream P . The algorithm uses

a similar approach to that of Greenwald and Khanna (2004). But the biased quan-

tile problem poses extra difficulty in designing decomposable summary structure and

essentially requires siginificantly new approaches and insights.

Biased Quantile Summary

An ε-approximate biased quantile summary is a much smaller subset of the original data

stream which is able to answer any biased quantile query of rank r over the stream within

an error of no more than εr. Assume at current time point, n elements have arrived for

data stream P . An ε-approximate biased quantile summary Q = {q1, . . . , qi, . . . , qm}
for P is an ordered set where qi ∈ P , q1 ≤ . . . ≤ qi ≤ . . . ≤ qm. For each qi, two values

rmaxQ(qi) and rminQ(qi) are maintained which represent the maximum and minimum

possible ranks of qi in sorted P . In addition, the smallest and the largest elements in P

100

are both included in Q, and rmaxQ(q1) = rminQ(q1) = 1, rmaxQ(qm) = rminQ(qm) =

n. Finally, Q satisfies the sufficient condition given in the following Lemma which

guarantees that Q is able to answer any ε-approximate biased quantile query.

Lemma 5.4.1. Q is able to answer any ε-approximate biased quantile query if: rmaxQ(qi+1)−
rminQ(qi) ≤ 2εr(qi), where 1 ≤ i < m

Proof. Assume summary Q satisfies the sufficient condition. We will prove that for

any rank r ∈ {1, 2, . . . , n}, an ε-approximate biased quantile qi can be computed which

satisfies (1− ε)r ≤ r(qi) and r(qi) ≤ (1 + ε)r.

If n ≥ r ≥ n
1+ε

, qm which has rank n in P is the answer, since n ≤ (1 + ε)r and

n > (1− ε)r. If r < n
1+ε

, the ε-approximate quantile for r can be obtained by searching

in Q for qj with smallest j such that rmax(qj) > (1 + ε)r. The proof is as follows.

According to the choice of qj, we have

rmaxQ(qj) > (1 + ε)r ≥ rmaxQ(qj−1) (5.7)

According to the sufficient condition, we have

rmaxQ(qj)− rminQ(qj−1) ≤ 2εr(qj−1) (5.8)

From equation 5.7 and 5.8, we have

rminQ(qj−1) > (1 + ε)r − 2εr(qj−1) (5.9)

Since r(qj−1) ≥ rminQ(qj−1) and using equation 5.9,

r(qj−1) > (1 + ε)r − 2εr(qj−1)

101

Therefore,

r <
1 + 2ε

1 + ε
r(qj−1) (5.10)

Also since r(qj−1) ≤ rmaxQ(qj−1) ≤ (1 + ε)r, we have

r ≥ r(qj−1)

1 + ε
(5.11)

Combining equations 5.10 and 5.11, we obtain

r(qj−1)

1 + ε
≤ r <

1 + 2ε

1 + ε
r(qj−1) (5.12)

and

εr(qj−1)

1 + ε
≤ εr <

1 + 2ε

1 + ε
εr(qj−1) (5.13)

Using equations 5.12 and 5.13, we obtain

r − εr <
1 + 2ε

1 + ε
r(qj−1)− εr(qj−1)

1 + ε
= r(qj−1) (5.14)

Since r(qj−1) ≤ rmaxQ(qj−1) ≤ r + εr, we have

r − εr < r(qj−1) ≤ r + εr

qj−1 is the ε-approximate biased quantile for rank r.

Computing Biased Quantile Summary

In the following discussions, a simple non-uniform sampling technique is presented for

computing biased quantile summary for a static dataset. Using this as a building block,

our algorithm computes the biased quantile summary online for a stream with known

size. The fixed-size stream algorithm is then extended to perform summary computation

on arbitrary sized streams and analyze the space and time cost.

102

Summary Computation for Static Dataset For static dataset S of n elements,

a simple non-uniform sampling technique can be used for computing the biased quantile

summary.

1. Sort S, for each s ∈ S, set rmin(s) = rmax(s) = r(s), where r(s) is the rank of s

in S.

2. For elements of ranks in [n
2
, n], sample the elements with sampling rate εn, i.e.,

taking the values of rank n
2
, n

2
+ εn, n

2
+ 2εn, . . . , n.

3. For elements of ranks in [n
4
, n

2
), sample the elements with sampling rate εn

2
, i.e.,

taking the values of rank n
4
, n

4
+ εn

2
, n

4
+ 2 εn

2
,

4. Repeatedly perform the sampling for elements whose ranks are in range [n
2i ,

n
2i−1)

with sampling rate εn
2i−1 , i = 3, . . . , log n until at some i, every element in [n

2i ,
n

2i−1)

needs to be sampled.

Lemma 5.4.2. Let Q = {q1, q2, . . . , qm} (qi ≤ qi+1) be the biased quantile summary

obtained using the above algorithm, then Q is an ε-approximate biased quantile summary

for S.

Proof. We prove that Q satisfies the sufficient condition in Lemma 5.4.1, i.e., for any j,

1 ≤ j < m, rmax(qj+1)− rmin(qj) ≤ 2εr(qj).

Consider any qj, qj+1 ∈ Q, there must be an interval I = [n
2i ,

n
2i−1), where r(qj), r(qj+1) ∈

I, or r(qj) is the last element sampled in I and r(qj+1) is n
2i−1 . In any case, we have

rmax(qj+1)− rmin(qj) = r(qj+1)− r(qj) ≤ εn

2i−1
≤ 2εr(qj) (5.15)

Lemma 5.4.3. The size of Q is O(log n
ε

)

103

Proof. For each interval, at most � 1
2ε
� elements are sampled. There are no more than

log n intervals.

Summary Computation for Streams with Known Size As the stream data

is continuously arriving, the summary needs to be computed and maintained online.

First consider the case that the size of the data stream P is known, say n. At a

high-level, the algorithm works as follows. The incoming stream is divided into small

blocks of fixed size. For each block, a biased quantile summary is computed using the

algorithm in Sec 5.4.2. As blocks come in, an exponential histogram of biased quantile

summaries is constructed which covers the entire stream arrived so far. Two operations

are used during the online summary computation. The Merge and Prune operations

are introduced on biased quantile summaries as well as their properties in terms of error

accumulation. These operations and properties are the main building blocks for the

online summary computation algorithms.

Merge Operation The Merge operation combines the biased quantile summaries of

two streams to generate a new biased quantile summary on the combined stream. Let

Q1 = {q1
1, q

1
2, . . . , q

1
m1
} be an ε1-approximate biased quantile summary of stream P1, and

Q2 = {q2
1, q

2
2, . . . , q

2
m2
} be an ε2-approximate biased quantile summary of stream P2. The

two quantile summaries Q1 and Q2 are merged by merging the elements in Q1 and Q2

and updating the rmax and rmin of each element. The update method of rmax and

rmin is similar to the method proposed in Greenwald and Khanna (2004) and is given

below:

Let Q = Merge(Q1, Q2), where Q = {q1, q2, . . . , qm1+m2}. Assume qi corresponds to

q1
j in Q1 (or q2

j′ in Q2 which will be a similar case). Let q2
k be the largest element in Q2

which is smaller than q1
j , and let q2

l be the smallest element in Q2 which is larger than q1
j

(if q1
j or q2

l does not exist then treat them as undefined), then the rank of qi is updated

as follows:

104

rminQ(qi) =

⎧⎪⎨
⎪⎩

rminQ1(q
1
j) if q2

k undefined

rminQ1(q
1
j) + rminQ2(q

2
k) otherwise

rminQ(qi) =

⎧⎪⎨
⎪⎩

rmaxQ1(q
1
j) + rmaxQ2(q

2
k) if q2

l undefined

rmaxQ1(q
1
j) + rmaxQ2(q

2
l)− 1 otherwise

Greenwald and Khanna Greenwald and Khanna (2004) proved that the Merge oper-

ation on uniform quantile summaries Q1 and Q2 with approximation factors ε1 and ε2

results in a new uniform quantile summary Q with approximation factor max{ε1, ε2}.
It can be proved that the same property holds for biased quantile summaries.

Lemma 5.4.4. Let Q1 be an ε1-approximate biased quantile summary for P1, and let Q2

be an ε2-approximate biased quantile summary for P2. Then Merge(Q1, Q2) produces

an ε-approximate biased quantile summary Q for P = P1

⋃
P2 where ε = max{ε1, ε2}.

Proof. Based on Lemma 5.4.1, it is sufficient to prove that for any qi, qi+1 in Q,

rmaxQ(qi+1) − rminQ(qi) ≤ 2ε(rQ(qi)), where rQ(qi) is the rank of qi in P . First,

consider the case when qi and qi+1 are from the same summary, say Q1. Let q1
j , q1

j+1 be

the corresponding elements of qi and qi+1 in Q1. Assume q2
k be the largest element in

Q2 that is smaller than q1
j and let q2

l be the smallest element in Q2 that is larger than

q1
j+1. If q2

k and q2
l are both defined, we have

rmaxQ(qi+1)− rminQ(qi)

≤ [rmaxQ1(q
1
j+1) + rmaxQ2(q

2
l)− 1]− [rminQ1(q

1
j) + rminQ2(q

2
k)]

≤ [rmaxQ1(q
1
j+1)− rminQ1(q

1
j)] + [rmaxQ2(q

2
l)− rminQ2(q

2
k)− 1]

≤ 2ε1rQ1(q
1
j) + 2ε2rQ2(q

2
k)− 1

≤ 2εrQ(qi)

105

Similar analysis can be applied for the case where q2
k or q2

l are undefined.

If qi and qi+1 come from different summaries, assume qi corresponds to q1
j in Q1 and

qi+1 corresponds to q2
l in Q2. In addition, q1

j+1 is the smallest element in Q1 that is

larger than q2
l , and q2

l−1 is the largest element in Q2 that is smaller than q1
j . If both q1

j+1

and q2
l−1 are defined, we have the following derivation:

rmaxQ(qi+1)− rminQ(qi)

≤ [rmaxQ2(q
2
l) + rmaxQ1(q

1
j+1)− 1]− [rminQ1(q

1
j) + rminQ2(q

2
l−1)]

≤ [rmaxQ2(q
2
l)− rminQ2(q

2
l−1)] + [rmaxQ1(q

1
j+1)− rminQ1(q

1
j)− 1]

≤ 2ε2rQ2(q
2
l−1) + 2ε1rQ1(q

1
j)− 1

≤ 2εrQ(qi)

Similar analysis can be applied for the case where q1
j+1 and q2

l−1 are undefined.

Prune Operation The pruning operation takes as input an ε′-approximate quantile

summary Q′ and a parameter B, and returns a new summary Q such that Q is an

(ε′ + 3/B)-approximate quantile summary for P .

First consider the case when ε′ > 0. We partition all possible ranks [1, n] into

log(ε′n) partitions: [1, 1/ε′), [1/ε′, 2/ε′),. . ., [2
i−1

ε′ , 2i

ε′),. . ., [2
log(ε′n)−1

ε′ , n]. For each interval,

we query for B quantiles. For instance, in interval i, ranks are between [2
i−1

ε′ , 2i

ε′), and

we query Q′ for quantiles of ranks 2i−1

ε′ + j2i−1

ε′B , j = 0, . . . , B − 1. If the interval size is

less than B, then we simply sample all the ranks in that interval. We also make sure

that rank n is queried. For each element q ∈ Q, we set rminQ(q) = rminQ′(q) and

rmaxQ(q) = rmaxQ′(q).

Assume that qj, qj+1 are quantiles obtained by querying two consecutive ranks r1,

r2 from Q′. According to the pruning process, we know that r2 − r1 = 2i−1

ε′B for some i.

W.l.o.g. assume that r1 = 2i−1

ε′ + l2i−1

ε′B and r2 = 2i−1

ε′ + (l+1)2i−1

ε′B where l ∈ [0, . . . , B − 1].

106

According to Lemma 5.4.1, we know that

rminQ(qj) = rminQ′(qj) ≥ rmaxQ′(q′j+1)− 2ε′r(qj) (5.16)

where q′j+1 is the element next to qj in Q′.

According to the choice of qj, we have

rmaxQ′(q′j+1) > (1 + ε′)r1 (5.17)

From Equation 5.16 and 5.17, we have

rminQ(qj) > (1 + ε′)r1 − 2ε′r(qj) (5.18)

Since rmaxQ(qj+1) = rmaxQ′(qj+1) ≤ (1 + ε′)r2, from Equation 5.18 we have

rmaxQ(qj+1)− rminQ(qj) < (1 + ε′)(r2 − r1) + 2ε′r(qj) (5.19)

Since r(qj) ≥ rminQ(qj), from Equation 5.18, we have

r1 <
1 + 2ε′

1 + ε′
r(qj) (5.20)

Since r1 = 2i−1

ε′ + l2i−1

ε′B , from Equation 5.20 we have

r2 − r1 =
2i−1

ε′B
<

1 + 2ε′

1 + ε′
r(qj)

B + l
<

1 + 2ε′

B
r(qj) <

3

B
r(qj) (5.21)

From Equation 5.19 and 5.21 we have

rmaxQ(qj+1)− rminQ(qj)

<
3(1 + ε′)

B
r(qj) + 2ε′r(qj) < 2(ε′ +

3

B
)r(qj)

107

Therefore, the summary Q obtained after Prune operation is also a biased quantile

summary (Lemma 5.4.1), and with an additional approximation factor of 3
B

.

Now let us consider the case when ε′ is 0. This is a special case where Prune operation

described above does not apply. Instead the algorithm in Sec 5.4.2 is used to compute

the initial biased quantile summary with error.

Online Computation of Biased Quantile Summary The stream P is divided into

blocks {Blk0, Blk1, . . . , Blk�log n
b
�} of size b = 3 log2(εn)

ε
, where Blk0 denotes the most

recent block (could be incomplete), n is the size of the stream which is known a priori,

and ε is the desired error bound. For each block, the local biased quantile summary

is comptued using the algorithm in Sec 5.4.2. As blocks come in, the exponential his-

togram of biased quantile summaries is computed Summary EH = {Q0, . . . , Ql, . . . ,

QL}, where Q0 is Blk0, Q1 is the summary which covers Blk1, Q2 is the summary which

covers Blk2

⋃
Blk3, Q3 is the summary which covers Blk4

⋃
Blk5

⋃
Blk6

⋃
Blk7, and

QL is the summary which covers the oldest 2L blocks. The detailed update procedure

whenever a new element comes in is described below:

1. Insert the element into Q0.

2. If Q0 is not full (|Q0| < b), stop and the update procedure is done for the current

element. If Q0 becomes full (|Q0| = b), the biased quantile summary Q of Q0 is

computed using the algorithm in Sec 5.4.2. Send Q to level 1, empty Q0.

3. If Q1 is empty, Q1 is set to be Q and the update procedure is done. Otherwise,

the operations Q1 =Merge(Q1, Q), Q =Prune(Q1), Empty(Q1) are performed in

the given order, and send new Q to level 2

4. Repeatedly perform step 3 for Qi, i = 2, . . . , L until a level L is reached where QL

is empty.

The pseudo code of the entire update procedure whenever an element e comes is

shown in Algorithm 1.

108

Algorithm 5.3 bQUpdate(e,Summary EH,ε)
Input e: current data element to be inserted, Summary EH: current exponential
histogram of biased quantile summaries: Summary EH = {Q0, . . . , Ql, . . . , QL}, ε:
required approximation factor
1: Insert e into Q0

2: if |Q0| = b(b = 3 log2(εn)
ε

) then
3: Compute the biased quantile Q of Q0 using the algorithm in Sec 5.4.2, with

approximation factor ε
log(εn)

4: empty(Q0)
5: else
6: exit
7: end if
8: for l = 1 to L do
9: if |Ql| = 0 then

10: Ql ← Q
11: break
12: else
13: Q = Merge(Ql, Q)

14: Q = Prune(Q), with B = 3 log(εn)
ε

15: empty(sl)
16: end if
17: end for

Lemma 5.4.5. The number of levels L in Summary EH is less than log(εn)

Proof. There are n
b

blocks at level 0, therefore, L ≤ log(n
b
) ≤ log n

3 log(εn)
ε

< log(εn)

Lemma 5.4.6. Consider Summary EH = {Q0, . . . , Ql, . . . , QL}, then Merge(Q1, . . . ,

Ql, . . . , QL) is an ε-approximate biased quantile summary for the entire stream.

Proof. First prove that Ql is an ε-approximate quantile summary for the blocks covered

by Ql. Q1 is an ε/ log(εn)-approximate summary. The Prune operation at each level

increases the error by 3
B

= ε/ log(εn). Therefore, Ql is an lε/ log(εn)-approximate sum-

mary. Since l ≤ L < log(εn), Ql is an ε-approximate summary. Secondly, all the Qls

cover the entire stream. According to Merge operation, Merge(Q1, . . . , Ql, . . . , QL) is

an ε-approximate biased quantile summary for the entire stream.

Summary Computation for Stream with Unknown Size The algorithm de-

scribed in the last section can be extended to compute approximate quantiles in streams

109

without prior knowledge of the size. At a high-level, the input stream P is partitioned

into disjoint sub-streams P0, P1, . . . , Pm with increasing size. Specifically, sub-stream

Pi has size 2i

ε
and covers the elements whose location is in the interval [2

i−1
ε

, 2i+1−1
ε

).

The biased quantile summary is comptued for each sub-stream with known size using

Algorithm 1, and then Merge operation is applied to obtain the summary for the entire

stream. The summary construction algorithm is as follows.

1. For the latest sub-stream Pk whose summary is currently being constructed, an ε′-

exponential histogram of summaries Summary EH is computed using Algorithm

1 by performing bQUpdate (e, Summary EH, ε′) whenever an element e comes.

Here ε′ = ε
2
.

2. Once the last element of sub-stream Pk arrives, an ε
2
-summary is computed on

Merge(Q1, . . . , Ql, . . . , QL) by a Prune operation with B = 6
ε
. The resulting sum-

mary Qk =Prune(Merge(Q1, . . . , Ql, . . . , QL), ε
2
) is an ε-summary of Pk.

3. The ordered set of the summaries of all complete sub-streams so far Q = {Q0, Q1, . . . , Qk−1}
is the current multi-level ε-summary of the entire stream except the most recent

incomplete sub-stream Pk.

The pseudo code for the update algorithm for stream with unknown size is shown in

Algorithm 2. Initially, Q = φ. Whenever an element comes, gbQUpdate is performed to

update the summary structure Q.

To answer a query of any rank r using Q, if Summary EH is not empty, first

compute Qk for the incomplete sub-stream Pk: Qk = Prune(Merge(Summary EH)),

then merge all the ε-summaries Q0, Q1, . . . , Qk−1 in Q together with Qk using Merge

operation, the final summary is the ε-summary for entire P .

Analysis

The summary structure maintains log(εn) sub-stream summaries. Each sub-stream

except the last one maintains at most O(log(εn)
ε

) elements, totally it takes log2(εn)
ε

. The last

110

Algorithm 5.4 gbQUpdate(e,Q, ε, Summary EH)

Input e: current data element, Q: current summary structure, Q = {Q0, Q1, . . . , Qk−1}
(sub-streams P0, . . . , Pk−1 have completely arrived), ε: required approximation factor
of Q, Summary EH: the fixed size multi-level summary corresponding to the current
sub-stream Pk, Summary EH = {Q0, Q1, . . . , QL}
1: if e is the last element of Pk then
2: Apply Merge on all the Ql in Summary EH: Qall = merge(Summary EH) =

Merge(Q0, Q1, . . . , QL)
3: Qk = compress(Qall,

ε
2
)

4: Q = Q
⋃{Qk}

5: Summary EH ← φ
6: else
7: update SummaryEH: SummaryEH = bQUpdate(e, Summary EH, ε

2
)

8: end if

stream maintains an exponential histogram of summaries which has a space requirement

of O(log3(εn)
ε

). Therefore, the algorithm has a space requirement of O(log3(εn)
ε

).

Theorem 5.4.7. The amortized update time of the summary at each node is O(log(1
ε
log(εn))

Proof. First consider at a single sub-stream, Pi of size ni. At level 0, for each block,

sorting is performed which costs b log b per block, where b = 3 log2(ε′ni)
ε′ . Also for each

block, the algorithm in Sec 5.4.2 is performed which requires a linear scan of cost b.

There are ni/b blocks. Totally at level 0, the cost is bounded by O(ni log log(εni)
ε

). At

level l > 0, there are ni

2l−1b
blocks. For every two blocks, a merge and a pruning operation

are performed, each of which takes linear time to scan the two block summaries which

have size of O(b). Therefore, the cost for all levels except level 0 is

log(ni/b)∑
l=1

ni

2lb
2b =

log(ni/b)∑
l=1

ni

2l−1
(5.22)

which is O(ni)

Therefore, the total cost for computing the summary for the sub-stream is O(ni log log(ε′ni)
ε′).

After each sub-stream is complete, an additional Merge and Prune operation are

performed each of cost O(1
ε′ log2(ε′ni)). Given the above observations, the total compu-

111

tational cost of the algorithm is

i=�log(εn+1)�∑
i=0

(
2i

ε
log(

2(i− 1)

ε
) +

2

ε
(i− 1)2) (5.23)

Simplifying equation the above equation, the total computational cost of the algorithm

is O(n log(1
ε
log(εn))), the average updating time per element is O(log(1

ε
log(εn))), which

is O(log log n) if ε is fixed.

Distributed Streams

The algorithm is applicable to compute approximate biased quantile summaries in dis-

tributed networks. In Greenwald and Khanna (2004), Greenwald and Khanna proposed

merge and prune operations to maintain decomposable summaries in sensor networks.

Although the merge and prune operations are more involved than the ones described

in Greenwald and Khanna (2004), their overall algorithm for maintaining approximate

uniform quantile summaries in sensor networks can be directly extended to biased quan-

tiles by replacing their operations with the operations. In addition, the algorithm can

also take advantage of the transmission reduction optimizations presented in Greenwald

and Khanna (2004).

5.4.3 Implementation and Results

The algorithm is implemented in C++ on a Windows XP PC with 1.8GHz Intel Pen-

tium processor and 2GB RAM. The algorithm is compared with two uniform quantile

implementations obtained from the authors of GK01 Greenwald and Khanna (2001) and

ZW07 Zhang and Wang (2007) respectively. Both of these implementations are general

and do not make assumptions on stream size or on the range of data distribution. In par-

ticular, ZW07 uses similar optimizations as our approach to achieve high performance

in uniform quantiles. Although ZW07 and GK01 only compute uniform quantile, their

112

(a) Summary construction time vs stream
size

(b) Summary construction time vs error

Figure 5.4: Sorted Data: The sorted and reverse sorted input data are used to measure
the best possible performance of the summary construction time using our biased quan-
tile algorithm and uniform quantile algorithms ZW07, GK01 using the same error 0.001.
This log-scale plot indicates that our algorithm achieves up to 75x higher performance
compared to GK01 and comparable performance to ZW07. Fig. 5.4(b) indicates the
performance of the our biased quantile algorithm and the uniform quantile algorithms
on a 10M stream size.

performance at the same error can provide an upper bound on the performance for re-

lated biased quantile algorithms such as Cormode et al. (2005) which uses the similar

technique as GK01.

Results

The most time consuming portion of our algorithm is the sorting of the blocks at level

0. As the sort performance is dependent on the order of input data, the algorithms are

tested on both sorted input data and random input data. The performance are measured

by varying the error and the size of the incoming data stream. In the experiments, the

prior knowledge of stream length is not required. 32-bit floating point is used as data

type for the input stream to ensure that the data distribution range is large.

Sorted Input The performance of our algorithm, ZW07 and GK01 are compared

using sorted and reverse sorted data. The performance of the merge and prune opera-

tions remain nearly the same since the input data to both merge and prune operations

113

is sorted. Therefore, sorted nature of input data does not affect their performance.

However, the performance of sort routine on the block at level 0 is mainly dependent on

the input data order. Fig. 5.4(a) demonstrates the performance of our biased quantile

algorithm as a function of sorted stream data size using an error of 0.001. Observe that

our biased quantile algorithm is comparable to the performance of an optimized uniform

quantile computation algorithm (ZW07) at the same error and is around 55-75x faster

than GK01 at the same error. Moreover, our algorithm is able to compute over 3.2M

quantiles per second on large streams consisting of tens of millions of elements.

Fig. 5.4(b) highlights the performance of our algorithm on a stream with ten million

elements as the error increases from 0.001 to 0.01 using a log-scale plot. As the error

increases from 0.001 to 0.01, the performance of the algorithm improves from 3.2M to 4M

quantiles per second. Note that the performance of GK01 improves as error increases.

In general, the performance of biased quantile routines are expected to be slower than

uniform quantile algorithms for the same error since biased quantile summaries are larger

than uniform quantile summaries. The performance of our biased quantile algorithm is

16-75x faster than GK01 at same error and is comparable to ZW07.

Random Input The performance of the algorithm is also measured using random

input data by varying the input data size and the error. Fig. 5.5(a) shows the perfor-

mance of our algorithm as a function of stream size using an error of 0.001. In comparison

to the performance of our algorithm on sorted data, our algorithm on random data is

around 2x slower. This is mainly due to the slower performance of the sort routine on

random data than sorted data. In practice, our algorithm is able to achieve around

1.4M quantiles per second on random data of size 10M with error 0.001. In terms of

the space requirement, our algorithm uses 1.6MB to 4.4MB to construct the summary

as the stream size varies from 1M to 10M elements. Fig. 5.5(b) shows the performance

of our algorithm as a function of error. The error is varied from 0.001 to 0.01 on an

input stream with 10M elements. As the error increases, the storage requirement for our

114

(a) Summary construction time vs stream
size

(b) Summary construction time vs error

Figure 5.5: Random Data: The performance of the summary construction time using
our biased quantile algorithm and GK01 over random data. Fig. 5.5(a) shows the
computational time as a function of the stream size on a log-scale for a fixed epsilon of
0.001. It is observed that our algorithm is able to compute 1.4-1.6M quantiles per second.
In practice, our algorithm is over 30x faster than prior biased quantile algorithms.

algorithm reduces from 4.4MB to 1.5MB. Moreover, the performance of our algorithm

improves from 1.4-1.6M quantiles per second as error increases from 0.001 to 0.01.

Table 5.2 shows the performance comparison of our algorithm with prior uniform

quantile and biased quantile algorithms. In practice, our algorithm achieves signifi-

cant performance improvement over prior biased quantile algorithms and comparable

performance to uniform quantile algorithms.

Analysis

Our algorithm extends the framework developed for uniform quantiles to biased quan-

tiles with poly-log storage requirement. The computational cost to maintain the biased

quantile summary is proportion to the error and stream size. Overall, it has an average

computational cost of O(log log εn
ε

) per element. The generality and high performance

of our algorithm results in a tradeoff in space requirement as compared to prior bi-

ased quantile algorithms. Therefore, our algorithm is more suited for applications with

distributed, high-speed data streams.

115

Algorithm General Additive Performance
Our BQ yes yes 1.4M qps

CKMS05(BQ) yes no 0.1M qps∗

CKMS06(BQ) no yes 1M qps∗

ZW07(UQ) yes yes 3M qps
GK01/GK04UQ yes yes 0.04M qps (GK01)

Table 5.2: This table shows the properties of the different biased quantile (BQ) and
uniform quantile (UQ) algorithms. All the algorithms do not make assumptions on
stream sizes or input data ranges except CKMS06 which requires knowledge of input
data ranges. Moreover, all the biased quantile algorithms except CKMS05 specify prun-
ing operations to add error on existing summaries and can be applied to sensor networks.
Our biased quantile algorithm is both general and applicable to sensor networks. More-
over, it achieves higher performance in terms of quantiles per second (qps) than prior
BQ algorithms running on similar hardware. ∗ Performance numbers of CKMS05 and
CKMS06 are obtained from [3,4].

116

Chapter 6

Conclusions

In this thesis, I have designed efficient algorithms for mining two types of emerging

massive sequence-based scientific datasets: static sequences from genomic datasets for

biological research and dynamic sequences from streaming and sensor datasets for en-

vironmental and ecological research. The algorithms utilize block-wise decomposition

to “divide” the long sequences into blocks to “conquer” the challenges posed by the

large-scale, noisy, or distributive, online sequence-based datasets. I have applied these

algorithms on real and synthetic datasets to demonstrate the effectiveness and efficiency

of the algorithms. I have also compared the performance of some of the algorithms to

prior state-of-the-art algorithms. In some cases, the approaches speed up the process

substantially.

In the following sections, I summarize the algorithms and describe avenues for future

investigation.

6.1 Mining Genomic Datasets

Genome-wide single-nucleotide polymorphism (SNP) arrays provide a comprehensive

view of genome variation and serve as powerful resources for genetic and biomedical

studies. In this thesis, I studied the problem of inferring the genetic variation patterns

of recombinant strains using the SNP panels obtained from the strains. This problem

plays an important role in solving many genetics problems such as reconstructing the

genealogy and gene association studies. Particularly, I investigated two problems as

summarized below.

6.1.1 Inferring Segmentation Structure of Recombinant Geno-

type Sequences

Summary

I studied the problem of inferring the fragmental structure of recombinant strains given a

set of founder sequences. This is a critical problem of understanding the ancestral struc-

ture of strains from experimental genetic resources, which are usually derived through

generations of breeding starting with a set of isogeneic founder animals. Particularly,

solving this problem can help analyzing the genome variation structure exhibited in

Pre-CC strains in the Collaborative Cross project.

I proposed the Minimum Segmentation model, which captures the set of the min-

imum number of segments for a recombinant strain given a set of founder haplotype

sequences, where each segment is attributable to one of the founders. I consider seg-

menting genotype sequences instead of haplotype sequences. Genotype sequence is more

difficult to handle algorithmically due to the heterozygous sites but less expensive to

obtain experimentally. I proposed block-based dynamic programming algorithms which

run in polynomial time. The algorithms can effectively handle the biologically relevant

constraints as well as the noise in the data such as genotyping errors, point mutations,

missing values, etc. The experimental results on real and synthetic data demonstrate

good performance of the algorithms.

118

Future Work

Many research opportunities lie ahead. There may be multiple minimum segmentation

solutions to the same piece of data. It is highly desirable to summarize the patterns

and compute the set of representative solutions. In addition, combinatorial optimization

solutions are subject to the limitations of incapability of providing probabilistic analy-

sis. Projects are also underway for deriving the probabilistic inference of the ancestral

structure of the strains.

6.1.2 Inferring Genome-wide Mosaic Structure

Summary

Meiotic recombination events during the evolutionary process result in a mosaic struc-

ture over the genome. Inferring such a fine-scale mosaic structure is important for

many genetics problems such as gene association studies. I proposed the Minimum Mo-

saic model that captures a minimum number of breakpoints to generate the haplotypes

within extant populations. The resulting blocks are compatible where no recombinations

can be inferred within a block according to the FGT. I proposed a novel graph algo-

rithm constructed on blocks of sequences to compute the minimum mosaic structure of

genomes. The experimental results on real NIESH mouse strains datasets demonstrate

that the efficiency of the algorithm on genome-wide analysis.

Future Work

There are many promising directions for further investigation. Genome-wide mosaic

structure describes the genetic variation resulting from the meiotic recombination events.

It is also important to consider the reverse problem, namely, reconstructing the revo-

lutionary history and the founder set given the Minimum Mosaic. The reconstructed

revolutionary history can provide an estimation of the upper bound on the number of

119

recombination events given the inferred set of founder sequences. The problem can be

optimized for either the minimum number of recombination events or the minimum

number of founder sequences. Besides the recombination considered in this thesis, gene-

conversion is an important and more common form of recombination. It would be

interesting to develop more robust models which also incorporates gene conversion in

the mosaic inference.

6.2 Mining Streaming and Sensor Network Environ-

mental Datasets

Resent hardware advances enabled the collection of enormous scientific observations in

the form of streaming or sensor network datasets. In this thesis, I focus on an important

problem of analyzing such large-scale, online, or distrusted datasets. Particularly, I stud-

ied clustering and Order-statistics computation over data streams, which are important

analysis for capturing data distribution of datasets.

6.2.1 Clustering Distributed Data Streams

Summary

Clustering over distributed data streams faces many challenges such as limited battery,

distributed processing, and online processing, etc. Efficient resource-aware algorithms

which provide approximation solution with bounded error are highly desirable for these

applications. I present algorithms for approximate k-median clustering over distributed

data streams in three different routing topology settings: topology-oblivious, height-

aware, and path-aware. The algorithms maintain efficient summary structure at each

node by dividing the incoming streams into blocks and updating the summary using

effecient compress and merge operators. The algorithms reduce the max per node data

120

transmission to polylog(N). The topology oblivious algorithm runs without any prior

knowledge of the routing topology and the distribution of the stream data. The perfor-

mance of the topology oblivious algorithm can be further improved if the height of the

routing tree is given(height-aware algorithm), or if the routing path of each node to the

root is known (path-aware algorithm). In practice, the methods significantly reduce the

data transmission requirements on both synthetic and real datasets to a small fraction

of the overall volume of the streams and are also well below the theoretical bounds.

Future Work

There are many promising avenues for future work. It is desirable to improve the

algorithms with better storage bound. The algorithms can also be extended to perform

sliding window computations in sensor network model. Furthermore, the techniques

proposed can be used for computing higher order primitives for spatial computations,

as well as other distributed mining applications.

6.2.2 Fast Algorithms for Approximate Order-Statistics Com-

putation in Data Streams

Summary

I presented fast algorithms for computing approximate quantiles and biased-quantiles

for streams.

The algorithms for approximate quantile computation are based on simple block-wise

merge and sort operations which significantly reduces the update cost performed for each

incoming element in stream. In order to handle unknown size of the stream, the incoming

streams are divided into sub-streams of exponentially increasing sizes. Summaries are

constructed efficiently using limited space on the sub-streams. For both fixed sized

and arbitrary sized streams, the algorithm has an average update time complexity of

121

O(log 1
ε
log εN). I also analyzed the performance of prior algorithms. I evaluated the

algorithms on different data sizes and compared them with optimal implementations of

prior algorithms. In practice, the algorithm can achieve up to 300× improvement in

performance. Moreover, the algorithm exhibits almost linear performance with respect

to stream size and performs well on large data streams.

In addition, I presented a novel approximate biased quantile algorithm for handling

large, high-speed data streams. The algorithm maintains a decomposable summary

structure to deterministically answer approximate biased quantile queries. Efficient

sampling and merge operations are used to maintain the summary structure. In practice,

the algorithm requires poly-log space to maintain the summary and has an update cost

of log log n where n is the current stream size. The algorithm is also applicable to

sensor networks and is able to achieve significant performance improvement over prior

algorithms.

Future Work

There are many interesting problems for future investigation. The algorithms can be

extended for fast computation of quantiles and biased quantiles over sliding windows.

It is also interesting to design generalized framework for incremental streaming compu-

tation using the techniques of block-wise merge and compression algorithms, for either

single data stream or distributed data streams.

122

Bibliography

Agarwal, P. K., Har-Peled, S., and Varadarajan, K. R. (2005). Geometric approximation
via coresets. 66

Aggarwal, C. (2005). On abnormality detection in spuriously populated data streams.
In Proceedings of ACM SIAM Conference on Data Mining. 58

Aggarwal, C. C., Han, J., Wang, J., and Yu, P. S. (2003). A framework for clustering
evolving data streams. In Proceedings of 29th VLDB Conference. 58, 61

Aggarwal, C. C., Han, J., Wang, J., and Yu, P. S. (2004). A framework for projected
clustering of high dimensional data streams. In Proceedings of 30th VLDB Conference.
61

Agrawal, R. and Swami, A. (1995). A one-pass space-efficient algorithm for finding
quantiles. 85

Ahmad, Y. and etintemel, U. (2004). Network-aware query processing for stream-based
applications. In Proceedings of VLDB. 58

Arasu, A. and Manku, G. S. (2004). Approximate counts and quantiles over sliding
windows. In Proc. of ACM Symposium on Principles of Database Systems (PODS),
pages 286–296. 14, 83, 84, 85

Babcock, B. and Olston, C. (2003). Distributed top-k monitoring. In Proceedings of
ACM SIGMOD International Conference on Management of Data. 58

Cherniack, M., Balakrishnan, H., Balazinska, M., Carney, D., Cetintemel, U., Xing, Y.,
and Zdonik, S. (2003). Scalable distributed stream processing. In Proceedings of First
Biennial Conference on Innovative Data Systems Research(CIDR 2003). 58

Churchill, G. A., Airey, D. C., Allayee, H., Angel, J. M., Attie, A. D., Beatty, J., Beavis,
W. D., Belknap, J. K., Bennett, B., Berrettini, W., Bleich, A., Bogue, M., Broman,
K. W., Buck, K. J., Buckler, E., Burmeister, M., Chesler, E. J., Cheverud, J. M.,
Clapcote, S., Cook, M. N., Cox, R. D., Crabbe, J. C., Crusio, W. E., Darvasi, A.,
Deschepper, C. F., Doerge, R. W., Farber, C. R., Forejt, J., Gaile, D., Garlow, S. J.,
Geiger, H., Gershenfeld, H., Gordon, T., Gu, J., Gu, W., d. H. G., Hayes, N. L.,
Heller, C., Himmelbauer, H., Hitzemann, R., Hunter, K., Hsu, H. C., Iraqi, F. A.,
Ivandic, B., Jacob, H. J., Jansen, R. C., Jepsen, K. J., Johnson, D. K., Johnson, T. E.,
Kempermann, G., Kendziorski, C., Kotb, M., Kooy, R. F., Llamas, B., Lammert, F.,
Lassalle, J. M., Lowenstein, P. R., Lu, L., Lusis, A., Manly, K. F., Marcucio, R.,
Matthews, D., Medrano, J. F., Miller, D. R., Mittleman, G., Mock, B. A., Mogil,
J. S., Montagutelli, X., Morahan, G., Morris, D. G., Mott, R., Nadeau, J. H., Nagase,
H., Nowakowski, R. S., O’Hara, B. F., Osadchuk, A. V., Page, G. P., Paigen, B.,

123

Paigen, K., Palmer, A. A., Pan, H. J., Peltonen-Palotie, L., Peirce, J., Pomp, D.,
Pravenec, M., Prows, D. R., Qi, Z., Reeves, R. H., Roder, J., Rosen, G. D., Schadt,
E. E., Schalkwyk, L. C., Seltzer, Z., Shimomura, K., Shou, S., Sillanp, M. J., Siracusa,
L. D., Snoeck, H. W., Spearow, J. L., Svenson, K., Tarantino, L. M., Threadgill, D.,
Toth, L. A., Valdar, W., de Villena, F. P., Warden, C., Whatley, S., Williams, R. W.,
Wiltshire, T., Yi, N., Zhang, D., Zhang, M., Zou, F., and Consortium., C. T. (2004).
High-resolution haplotype structure in the human genome. Nat. Genet., pages 1133–
1137. 20

Considine, J., Li, F., Kollios, G., and Byers, J. (2004). Approximate aggregation tech-
niques for sensor databases. In Proceedings of the International Conference on Data
Engineering (ICDE04). 61

Cormode, G., Korn, F., Muthukrishnan, S., and Srivastava, D. (2005). Effective com-
putation of biased quantiles over data streams. In Proc. of International Conference
on Data Engineering, pages 20–32. 15, 58, 83, 84, 85, 99, 113

Cormode, G., Korn, F., Muthukrishnan, S., and Srivastava, D. (2006). Space- and time-
efficient deterministic algorithms for biased quantiles over data streams. In Proc. of
the ACM Symposium on Principles of Database Systems, pages 263–272. 15, 83, 84,
85

Dally, M., Rioux, J., Schaffner, S., Hudson, T., and Lander, E. (2001). High-resolution
haplotype structure in the human genome. Nat. Genet., pages 229–232. 7, 22

Drouin, G., Prat, F., Ell, M., and Clark, G. (1999). Detecting and characterizing gene
conversions between multigene family members. Mol. Biol. Evol, pages 1369–1390. 9,
44

Forman, G. and Zhang, B. (2001). Distributed data clustering can be efficient and exact.
In ACM KDD Explorations special issue on Scalable Data Mining Algorithms. 59, 60

Frahling, G. and Sohler, C. (2005). Coresets in dynamic geometric data streams. In
Proc. 37th ACM Symposium on Theory of Computing, pages 209–217. 62

Gabriel, S., Schaffner, S., Nguyen, H., Moore, J., Roy, J., Blumenstiel, B., Higgins, J.,
DeFelice, M., Lochner, A., Faggart, M., Liu-Cordero, S., Rotimi, C., Adeyemo, A.,
Cooper, R., Ward, R., Lander, E., Daly, M., and Altshuler, D. (2002). The structure
of haplotype blocks in the human genome. Science, pages 2225–2229. 7, 8, 22, 44

G.F., W. (1998). Phylogenetic profiles: a graphical method for detecting genetic recom-
bination in homologous sequences. Mol. Biol. Evol, pages 326–335. 9, 44

Greenwald, M. B. and Khanna, S. (2001). Space-efficient online computation of quantile
summaries. In Proc. of ACM SIGMOD Record, pages 58–66. 14, 15, 83, 84, 85, 91,
95, 112

Greenwald, M. B. and Khanna, S. (2004). Power-conserving computation of order-
statistics over sensor networks. In PODS. 61, 83, 86, 89, 95, 100, 104, 105, 112

124

Guha, S., Mishra, N., Motwani, R., and O’Callaghan, L. (2000). Clustering data streams.
In Proceedings of the 41st Annual Symposium on Foundations of Computer Science,
pages 359–366. 61, 62

Gusfield, D. (2002). Haplotyping as perfect phylogeny: conceptual framework and effi-
cient solutions. In Proc. of RECOMB, pages 166–175. 8, 22

Gusfield, D., Eddhu, S., and Langley, C. (2004). Optimal, efficient reconstruction of
phylogenetic networks with constrained recombination. J. Bioinf. Comput. Biol.,
pages 173–213. 8, 22

Har-Peled, S. and Kushal, A. (2005). Smaller coresets for k-median and k-means cluster-
ing. In Proceedings of the 21st annual symposium on computational geometry, pages
126–134. 62

Har-Peled, S. and Mazumdar, S. (2004). Coresets for k-means and k-median clustering
and their applications. In ACM Symposium on Theory of Computing. 60, 61, 62, 71

Hein, J. (1990). Reconstructing evolution of sequences subject to recombination using
parsimony. Math. Biosci, pages 185–200. 9, 44

Hein, J. (1993). A heuristic method to reconstruct the history of sequences subject to
recombination. J. Mol. Evol, pages 396–405. 9, 44

Holmes, E. C., Worobey, M., and Rambaut, A. (1999). Phylogenetic evidence for re-
combination in dengue virus. Mol. Biol. Evol, page 405. 9, 44

Hudson, R. and Kaplan, N. (1985). Statistical properties of the number of the recombi-
nation events in the history of a sample of dna sequences. Genetics, pages 147–164.
8, 42, 43, 45

Jain, R. and Chlamtac, I. (1985). The p2 algorithm for dynamic calculation for quan-
tiles and histograms without storing observations. Communications of the ACM,
28(10):1076–1085. 85

Jakobsen, I. B., Wilson, S. E., and Easteal, S. (1997). The partition matrix: exploring
variable phylogenetic signals along nucleotide sequences alignments. Mol. Biol. Evol.,
pages 474–484. 9, 44

Januzaj, E., Kriegel, H., and Pfeifle, M. (2003). Towards effective and efficient dis-
tributed clustering. In Workshop on Clustering Large Data Sets (ICDM2003). 60

Keralapura, R., Cormode, G., and Ramamirtham, J. (2006). Communication-efficient
distributed monitoring of thresholded counts. In Proceedings of ACM SIGMOD In-
ternational Conference on Management of Data. 58

Kreitman, M. (1983). Nucleotide polymorphism at the alcohol dehydrogenase locus of
drosophila melanogaster. Nature, pages 412–417. 53

125

Lin, X., Lu, H., Xu, J., and Yu, J. X. (2004). Continuously maintaining quantile
summaries of the most recent n elements over a data stream. In Proc. of of the 20th
International Conference on Data Engineering, page 362. 14, 83, 84, 85

Lole, K. S., Bollinger, R. C., Paranjape, R. S., Gadkari, D., Kulkarni, S. S., Novak,
N. G., Ingersoll, R., Sheppard, H. W., and Ray, S. C. (1999). Statistical properties of
the number of the recombination events in the history of a sample of dna sequences.
J. Virol, pages 152–160. 9, 44

Madden, S., Franklin, M. J., Hellerstein, J., and Hong, W. (2002). Tag: a tiny aggrega-
tion service for ad-hoc sensor networks. In Proc. of the 5th Symp. Operating Systems
Design and Implementation(OSDI 02). 13, 14, 59

Manku, G. S., Rajagopalan, S., and Lindsay, B. G. (1998). Approximate medians and
other quantiles in one pass and with limited memory. In Proc. of ACM SIGMOD
Record, pages 426–435. 14, 83, 84, 85, 98

Manku, G. S., Rajagopalan, S., and Lindsay, B. G. (1999). Random sampling techniques
for space efficient online computation of order statistics of large datasets. ACM SIG-
MOD, pages 251–262. 83, 85

Martin, D. and Rybicki, E. (2000). Rdp: detection of recombination amongst aligned
sequences. Bioinformatics, pages 562–563. 9, 44

Maynard, S. J. and Smith, N. H. (1998). Detecting recombination from gene trees. Mol.
Biol. Evol., pages 590–599. 9, 44

Moore, K., Zhang, Q., McMillan, L., Wang, W., and de Villena, F. P. (2008). Genome-
wide compatible snp intervals and their properties. In UNC Tech Report. 46

Mott, R., Talbot, C. J., Turri, M. G., Collins, A. C., and Flint, J. (2000). A new method
for fine-mapping quantitative trait loci in outbred animal stocks. Proc. Natl. Acad.
Sci., pages 12649–12654. 7, 21, 22

Munro, J. I. and Paterson, M. (1980). Selection and sorting with limited storage. The-
oretical Computer Science, 12:315–323. 83, 84

Myers, S. R. and Griffiths, R. C. (2003). Bounds on the minimum number of recombi-
nation events in a sample history. Genetics, pages 375–394. 8, 43

N.C., G. and Holmes, E. (1997). A likelihood method for the detection of selection and
recombination using nucleotide sequences. Mol. Biol. Evol, pages 239–247. 9, 44

O’Callaghan, L., Mishra, N., Meyerson, A., and Guha, S. (2002). Streaming data algo-
rithms for high-quality clustering. In Proceedings of IEEE International Conference
on Data Engineering. 61

Olston, C., Jiang, J., and Widom, J. (2003). Adaptive filters for continuous queries over
distributed data streams. In Proc. of ACM SIGMOD International Conference on
Management of Data 2003, pages 563–574. 14, 58, 59

126

Paterson, M. (1997). Progress in selection. Scandinavian Workshop on Algorithm The-
ory. 84

Patil, N., Berno, A., Hinds, D., Barrett, W., Doshi, J., Hacker, C., Kautzer, C., Lee,
D., Marjoribanks, C., McDonough, D., Nguyen, B., Norris, M., Sheehan, J., Shen, N.,
Stern, D., Stokowski, R., Thomas, D., Trulson, M., Vyas, K., Frazer, K., Fodor, S.,
and Cox, D. (2001). Blocks of limited haplotype diversity revealed by high-resolution
scanning of human chromosome 21. Science, page 5547. 8, 44

Posada, D. (2002). Evaluation of methods for detecting recombination from data se-
quences: empirical data. Mol. Biol. Evol., pages 1198–1212. 9, 44

Schwartz, R., Halldorson, B., Bafna, V., Clark, A., and Istrail, S. (2003). Robustness of
inference of haplotyp block structure. J. Comput. Biol., pages 13–19. 8, 22

Sharfman, I., Schuster, A., and Keren, D. (2006). A geometric approach to monitoring
threshold functions over distributed data streams. In Proceedings of ACM SIGMOD
International Conference on Management of Data. 58

Shrivastava, N., Buragohain, C., Agrawal, D., and Suri, S. (2004). Medians and beyond:
new aggregation techniques for sensor networks. In SenSys ’04: Proceedings of the
2nd international conference on Embedded networked sensor systems, pages 239–249,
New York, NY, USA. ACM Press. 86

Silberstein, A., Braynard, R., and Yang, J. (2006). Constraint chaining: On energy
effcient continuous monitoring in sensor networks. In Proc. of ACM SIGMOD Inter-
national Conference on Management of Data 2006, pages 157–168. 14, 59

Song, Y. and Hein, J. (2005). Constructing minimal ancestral recombination graphs. J.
Comput. Biol., pages 147–169. xiii, 53, 54

Song, Y. S., Wu, Y., and Gusfield, D. (2005). Efficient computation of close lower
and upper bounds on the minimum number of recombinations in biological sequence
evolution. Bioinformatics, pages i413–i422. 8, 53

Stephens, J. C. (1985). Statistical methods of dna sequence analysis: detection of
intragenic recombination or gene conversion. Mol. Biol. Evol, pages 539–556. 9, 44

Szatkiewicz, J., Beane, G., Ding, Y., Hutchins, L., de Villena, F., and Churchill, G.
(2008). An imputed genotype resource for the laboratory mouse. Mamm. Genome,
page 199. 55

Szewczyk, R., Polastre, J., Mainwaring, A., and Culler, D. (2004). Lessons from a
sensor network expedition. In Proc. of the 1st European Workshop on Wireless Sensor
Networks (EWSN ’04), pages 307–322. 10

Threadgill, D. W., Hunter, K. W., and Williams, R. W. (2002). Genetic dissection
of complex and quantitative traits: from fantasy to reality via a community effort.
Mamm. Genome, pages 175–178. 20

127

Ukkonen, E. (2002). Finding founder sequences from a set of recombinants. In Proc. of
WABI, pages 277–286. 7, 20, 21, 22, 24

Willett, R. M., Martin, A. M., and Nowak, R. D. (2004). Adaptive sampling for wireless
sensor networks. In Proc. of ISIT04. 14, 59

Worobey, M. (2001). A novel approach to detecting and measuring recombination: new
insights into evolution in viruses, bacteria, and mitochondria. Mol. Biol. Evol, pages
1425–1434. 9, 44

Wu, Y. and Gusfield, D. (2007). Improved algorithms for inferring the minimum mosaic
of a set of recombinants. In Proc. of CPM, pages 150–161. 7, 20, 21, 22, 24

Zhang, Q. and Wang, W. (2007). A fast algorithm for approximate quantiles in high
speed data streams. In Proceedings of the 19th International Conference on Scientific
and Statistical Database Management (SSDBM). 112

Zhang, Y., Lin, X., Xu, J., Korn, F., and Wang, W. (2006). Space-efficient relative error
order sketch over data streams. 85

Zhu, Y. and Shasha, D. (2003). Efficient elastic burst detection in data streams. In Pro-
ceedings of the ninth ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 336–345. 58

128

