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Abstract

Jason H. Winnike: The Metabolomics of Acetaminophen Toxicity Observed in Human 
Biofluids and Cultured Primary Human Hepatocytes 
(Under the direction of Jeffrey M. Macdonald, Ph.D.) 

 The mechanisms of acetaminophen toxicity are well-established.  However, the use of 

metabolomics to identify small molecule (< 1 kD) biomarkers of acetaminophen toxicity in 

human biofluids is novel.  This research establishes the first pharmaco-metabolomic study of 

acetaminophen in a population of humans.  This method makes use of multivariate statistical 

techniques to elucidate changes in the metabolome before clinical manifestation of 

acetaminophen toxicity.  Furthermore, prior to this experimental analysis, another study was 

performed which demonstrated that the human metabolome normalized within 2 days of a 

standardized diet in an inpatient hospital setting.   

 The use of 13C-labeled nutrient tracers to identify off-target enzyme (> 10 kD) 

inactivation in primary human hepatocyte cultures is original.  By tracking the metabolism of 

13C tracers, a metabolomic surrogate of enzyme inactivation due to acetaminophen toxicity 

was discovered.  The enzyme inactivation is likely via arylation by the cytochrome P450 bio-

activated acetaminophen metabolic product N-acetyl-para-quinonimine.  Furthermore, it was 

observed that the human hepatocytes appeared to be in a stressed metabolic state, due to the 

lack of glycolysis or glutaminolysis, even in the presence of high insulin and glucose 

concentrations.  This metabolism was compared to that of primary rat hepatocyte cultures, 

which did not exhibit these features, likely due to absence of stress inducing hormones prior 
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to hepatocyte isolation.  This has yet to be described in the literature, likely because this is 

the first report of the use of 13C-labeled nutrients in primary human hepatocyte cultures.   
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1 Introduction

 In order to suitably familiarize the reader with the material presented in this 

dissertation, the first chapter provides an appropriate introduction to the background for a 

few of the main subjects addressed.  This dissertation is divided into three main parts.  

Chapter 1 is the introduction, providing background information relevant to the research 

presented in the following parts.  The following section comprises three chapters, with the 

motivation of them originating from trying to better understand the effects, nontoxic and 

toxic, of acetaminophen in humans.  Chapters 2 and 3 of the dissertation are on the subject of 

multivariate statistical metabolomics and Chapter 4 involves stable isotope metabolomics.  

Chapter 5 is a concluding chapter which discusses the pitfalls as well as future directions for 

the research.  Finally, there are two appendices detailing work done creating stable isotope 

rat hepatocyte cultures which did not fit into any of the other chapters.  The first multivariate 

statistical metabolomic experiment investigates the capacity for normalization of the human 

urinary and blood metabolome in a controlled clinical setting in order to determine the 

suitability of the study design for a metabolomic study.  Next, the effects (hepatotoxic and 

otherwise) of acetaminophen on the human urinary metabolome were examined to create 

multivariate statistical models to predict and describe future manifestations of hepatotoxicity.   

 The work presented in the dissertation then shifts to take a stable isotope 

metabolomic-based approach for the study of acetaminophen toxicity in fresh and 

cryopreserved cultured primary human hepatocytes in an attempt to better understand the 

changes in metabolism caused by the acetaminophen.  It involves tracking hepatocyte 
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metabolism by supplying them 13C enriched media precursor metabolites substituted for their 

“normal” 12C counterpart in media containing acetaminophen.  Additionally, the peculiar 

metabolic phenotype of the human hepatocytes was compared to primary rat hepatocyte 

metabolism, again assayed via the tracking of metabolic products from 13C-enriched 

metabolite precursors.  Following this is a short section summarizing the totality of this 

dissertation with a description of potential future directions the results of this research have 

uncovered.  Finally, information regarding the creation of a primary rat hepatocyte culture 

system which utilizes stable isotope enriched media formulations is presented in two 

appendices.   

 

1.1 Nuclear Magnetic Resonance (NMR) Spectroscopy 

1.1.1 History 

 The first publication of the observation of proton magnetic resonance occurred in 

1946 by Felix Bloch and Edward Mills Purcell [1].  The first experiments were continuous 

wave (CW) NMR.  In CW-NMR the frequency response of a system is probed by either 

modulating the strength of the magnetic field (which changes the resonant frequency of a 

given proton) or by modulating the frequency of the radiofrequency (RF) signals.  These 

experiments suffered from poor signal-to-noise (S/N) ratios and took a long time.  Fourier 

transform NMR (FT-NMR) solved these problems to an extent by irradiating the system with 

an RF signal containing all the frequencies of interest and recording the system response.  

FT-NMR also allowed for an increase in the S/N ratio by enabling one to repetitively acquire 

data opposed to the non-repetitive nature of CW-NMR.  The frequency response of the 

system is obtained by a process known at Fourier transformation (FT).   
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1.1.2 The NMR Phenomenon 

 Atomic nuclei have a property called nuclear spin.  This spin is quantized by a 

nuclear spin quantum number, I, which is greater than or equal to zero and is a multiple of ½ 

[1].  It is this property of nuclear spin which makes nuclear magnetic resonance possible.  

When in the presence of a large external magnetic field, nuclei with a nonzero value line up 

parallel or antiparallel to the magnetic field.  A small population excess of nuclei, 

approximately 1 nucleus per 1000000 at 1.5 T for example, align parallel to the field.  The 

population difference increases with increasing magnetic field.  The NMR spectroscopist 

relies on this excess to generate an NMR spectrum.  The sensitivity of an NMR spectrometer 

is a measure of the minimum number of spins detectable.  Thus, as the magnetic field 

increases (or temperature decreases), the population difference between the two energy states 

increases, increasing the sensitivity.  However, NMR is not especially sensitive when 

compared to other methods such as mass spectrometry.   

 

 

Figure 1-1- The many spins on the left can be simplified to the vector model on the right due to the slight excess 
of (~1,000,001 to 1,000,000 at 1.5 T) that line up with the field rather than against the field.   
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 The spinning nuclei can be modeled with classical mechanics and can be compared to 

a spinning toy top.  The Earth’s gravitational field would model the applied magnetic field.  

When one spins the top, it rotates as well as precesses; this behavior is similar to that of a 

nucleus in an external magnetic field.  The spinning nucleus possesses angular momentum P 

as well as a gyromagnetic ratio γ, which is constant for any given isotope.  The angular 

momentum and gyromagnetic ratio are used in the following equation to define the magnetic 

moment: 

 μ = γP 

 

 

Figure 1-2- A nucleus with magnetic moment μ, lines up with and precesses about a static magnetic field B0. 
 

1.2 The 1H NMR Experiment 

 One of the simplest experiments one can do in NMR spectroscopy is to irradiate the 

sample for a few milliseconds with a radiofrequency (RF) pulse and observe the effects for a 
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few seconds after the irradiation.  This would be repeated a number of times.  There is a 

delay of usually a few seconds before repeat irradiation to allow the system to return to 

equilibrium.  The irradiation pulse, also known as the acquisition or P1 (or 90° if applicable) 

pulse, irradiates the sample in the transverse plane (the x-y plane in Figure 1-1).  According 

to the right-hand rule of electromagnetism, the vector model of the spins (the picture on the 

right side of Figure 1-1) will absorb energy from the applied RF pulse of a frequency specific 

to the chemical environment the nucleus is in, it’s resonant frequency, and will experience 

torque towards the transverse plane.   

 In a B0 field of 9.4 T, protons precess, or resonate, about the B0 field at a frequency of 

approximately 400 MHz.  Thus a spectrometer with a 9.4 T magnet is frequently referred to 

as a 400, a 14.1 T magnet is frequently referred to as a 600, and a 16.4 T magnet is frequently 

referred to as a 700.  If one were to visualize vector models of protons in the presence of a B0 

magnetic field from the perspective of a specific proton, that is the proton no longer spins but 

it is the outside world that is now spinning (known as the rotating frame of reference), one 

would get a picture similar to the picture in Figure 1-1.  Since there are slightly more protons 

aligned with the magnetic field, all of the individual protons in equal chemical environments 

could be simplified to a single resultant vector, the picture on the right side of Figure 1-1.  

Now, still in the rotating frame of reference of a specific proton, if an RF pulse at a certain 

frequency were emitted along the +x axis for a specific amount of time, the resultant proton 

vector would be in the +y axis after irradiation (it would go farther around if the irradiation 

were longer and/or more powerful and less far if the irradiation were shorter and/or less 

powerful).  The vector would then travel from the high energy state of being aligned with the 

+y axis back to the low energy state of being aligned with the +z axis in a few seconds, 
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releasing energy in the RF frequency range.  This energy induces current flow in metal coils 

inside the NMR probe which are extremely close to the sample.  The current is recorded and 

is called a free induction decay (FID).  NMR spectroscopists are usually not interested in the 

FID, per se.  What is most interesting is the frequency domain spectrum of the time domain 

FID.  The FID is transformed into the frequency domain using the fast Fourier transform 

(FT).  Because of this, NMR spectroscopy is often referred to as Fourier Transform- Nuclear 

Magnetic Resonance Spectroscopy (FT-NMR).  The signal for ethanol is shown in both the 

time domain (FID) and in the frequency domain in Figure 1-3.  It is apparent from the FID 

that the signal consists mainly of two different frequencies due to its periodic nature.   

 It can be seen by examining the spectrum of ethanol in D2O in Figure 1-3 that the two 

signals, one from the CH3 protons and the other from the CH2 protons, are a quartet and a 

triplet.  Protons bonded to atoms adjacent to another atom containing protons (that is protons 

3 bonds away from other protons) split each other’s peak according to the n+1 rule.  That is, 

a signal which is split by n protons results in n+1 peaks.  In addition, peak area is 

proportional to the number of protons generating the peak.  In the case of ethanol, the CH3 

proton peak is split by the CH2 protons resulting in a triplet of relative area 3.  The CH2 

protons will be split by the CH3 protons resulting in a quartet of relative area 2.  The OH 

protons are not visible and do not cause splitting in this case because they disassociate from 

ethanol in the presence of D2O.  All of the above, in addition to the fact that NMR is 

nondestructive, makes NMR a powerful tool in substrate identification and quantification.   
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Figure 1-3- The free induction decay (FID) and corresponding Fourier transform (FT) of ethanol (CH3CH2OH) 
in deuterium oxide (D2O). 
 

1.2.1 Spectral Processing 

 After acquisition, there are a number of things that are done to the FID and the 

spectrum coming from the FID after Fourier transformation to enhance the quality of the 

data.  One of the first things is to zero fill the FID.  This appends a series of extra data points 

with a magnitude of 0 to the end of the FID.  This enhances the digital resolution of the 
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resulting spectrum thus enhancing the lineshape of the signals in the spectra.  The abrupt 

change in the magnitude in the FID at the spot where zero filling begins has adverse effects 

in the frequency domain resulting in sinc wiggles at the base of peaks.  To counter this 

problem, an exponentially decaying window function is applied to the FID so that it decays 

more smoothly.  Additionally, this window function serves to increase the S/N (at the 

expense of resolution) by attenuating the noise at the end of the FID.   

 FIDs are then Fourier transformed to observe them in the frequency domain.  One of 

the first problems observable in the spectra are phase problems due to the fact that there are 

two orthogonal signal receivers.  Some peaks may be in phase, 180° out of phase 

(characterized by an upside down peak), 90° out of phase (characterized by a peak shape of 

one side of the peak going up with the other side going down), or anywhere between 0° - 

360°.  Traditionally, phasing was done manually.  Currently automatic phasing routines are 

regularly employed when analyzing numerous spectra.  The spectra are then generally 

baseline corrected to flatten rolling baselines which makes peaks easier to identify and 

quantify.   

 The spectra must then be referenced.  This is commonly done with trimethylsilyl 

propionic acid (TSP) or dimethyl-silapentane-sulfonic acid (DSS) in aqueous samples and 

tetramethylsilane (TMS) in organic samples.  TSP is assigned the position in the spectra at 0 

ppm.  Since each spectrum consists of thousands of points, NMR spectra are frequently split 

along the x-axis if multivariate statistical analyses are being performed, to make the analysis 

and interpretation easier.  The value of each bin is defined by the integral value of the 

spectrum occupying the bin area.  Commonly, the area from 0 – 10 ppm, with the exception 

of the H2O and urea peaks in urine, is binned with a bin size of 0.04 ppm.  This results in 
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about 200 bins.  Unbinned spectra are usually used to determine concentrations of identified 

compounds in the sample if multivariate statistical analyses are not being conducted.  

Individual peaks are generally integrated or a peak fitting routine is employed for this type of 

measurement.   

 

1.3 Metabolomics- Multivariate Statistics 

1.3.1 Principal Component Analysis (PCA) 

 Principal component analysis, also known as the Karhunen-Loève transform, is a 

method in which multivariate, multidimensional data is simplified by choosing new 

orthogonal axes that maximize variance about the new axes.  It is a method of data or 

dimension reduction.  The axis describing principal component 1 (PC 1) is the dimension in 

the cluster of data which has the most variance.  PC 2 is the next axis, orthogonal to PC 1, 

which encompasses the most remaining variance.  The same goes for PC 3, PC 4, PC 5, etc.  

Figure 1-4 shows the result of PCA on trivial hypothetical data.  Examining the figure, one 

can see that neither the x nor the y axes capture the spread of the data as well as the PC 1 

axis.   

 To apply PCA on NMR data, the relatively continuous spectra must be made discrete 

by dividing spectra into pieces (bins) along the x-axis and integrating each piece.  This 

changes spectra into histograms.  One could take 100 NMR spectra consisting of 200 bins 

and express them all in 1 graph as single points in 200 dimensional space.  This is purely a 

mathematical expression, as 200 dimensions cannot be visualized.  Each of the 200 

dimensions represents 1 bin and the distance along a given dimension represents the integral 
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value for that particular bin.  PCA can be performed on data represented in this manner 

simplifying it making it possible to visualize most of the data.   

 

 

Figure 1-4- Simulated principal component analysis performed on two dimensional data recorded on x and y 
axes. 
 

 To perform PCA, the first step is to subtract the average value of a variable from each 

of the variables (for variable i in sample s): 

 

 Vis = Vis – V i  for all Vis 

 

Next, the covariance matrix across all variables for all samples is calculated: 
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Where covV1V2 would be the covariance between variable 1 and variable 2 for all samples 

and would be calculated by the following formula: 

 

 covV1V2 = [(V11 - V 1)…(V2n - V 2)]/n 

 

Next, the eigenvalues and eigenvectors of the covariance matrix are calculated.  The 

eigenvalues and their corresponding eigenvectors are sorted in decreasing order such that 

PC1 has the highest eigenvalue and thus contains the most variance of the data.  Now the 

eigenvectors define the principal component and their associated eigenvalues represent how 

much variance the individual eigenvectors contain.  To identify significant components, a 

scree test can be performed.  This is a subjective test where the point of maximum inflection 

in the plot of eigenvalues versus PC number is identified.  Principal components to the left of 

this point are then deemed significant and components to the right of this point are deemed 

insignificant.   

 One important piece of information obtained from PCA are the loadings plots of the 

principal components.  The loadings plots from Figure 1-4 are shown in Figure 1-5.  

Loadings plots are generated by taking the unit vector representing a given PC and 

decomposing it to the component vectors.  In the case of NMR spectra, this allows one to 
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determine how much each bin contributes to a given principal component.  One can thus 

draw conclusions such as- bin X is the largest peak in the loadings plot for PC 1 and is 

therefore the largest contributor to the variance of the data set.  The peak in bin X comes 

from metabolite Y and so this metabolite is a large contributor to the bin.  Since this bin is 

one of the most significant contributors to PC1 then metabolite Y is one of the most 

significant metabolites describing this component.  This is the method in which PCA can be 

used to identify potential biomarkers in biofluids.   

 

 

Figure 1-5- Loadings plots from Figure 1-4.   
 

 One use of PCA would be to perform the analysis on all of the samples from different 

time points of an experiment.  An expectation of this would be that the points would track 

along a certain trajectory through time, possibly in response to some stimulus.  Or, one could 

perform PCA on predose and postdose samples from an experiment.  In these cases, loading 

plots for significant principal components could be used to determine biomarkers indicative 

of a temporal or dose dependant metabolic response, respectively.  The metabolite(s) located 

in the bins with the largest peaks in the loadings plots could then be identified and graphed 

over time to determine metabolic response to the experimental stimulus.  Another way to get 
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similar data to draw conclusions would be to perform biased analyses, such as orthogonal 

partial least squares discriminant analysis, described in the next section.   

 

1.3.2 Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA) 

 To discuss OPLS-DA, one should first start with PLS-DA.  PLS-DA is a multivariate 

statistical method which is somewhat similar to PCA.  However, unlike PCA, which finds 

orthogonal dimensions in the data which capture maximal variance, PLS-DA finds 

orthogonal dimensions in the data which best describe class separation (or discrimination) 

using a partial least squares method.  The results for PCA and PLS-DA are presented in 

similar ways, with scores plots and loadings plots.  However, since this analysis is biased, 

care must be taken to not over fit the data.  This is always a potential problem with using 

guided analyses consisting of data with more variables than samples, which is frequently the 

case with metabolomic analyses since NMR spectra from biofluids frequently contain 

hundreds of peaks.  One method to check for over-fitting would be to perform cross 

validation, which is not something which is necessary with PCA since it is unbiased.   

 OPLS-DA is similar to PLS-DA.  However, OPLS-DA defines dimensions in the 

data, orthogonal to the two dimensions defining class separation, which capture maximal 

remaining variance.  Presumably, these dimensions contain data unrelated to class separation 

and can thus be removed.  Generally, this also makes class separation in the scores plot look 

better and subsequent removal of more orthogonal dimensions causes the class separation in 

the scores plot to further improve.  However, the data remains the same, so care must be 

taken to not over fit the data through removal of too many orthogonal dimensions and 

therefore, only 1 dimension is generally removed.   
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1.4 Acetaminophen 

1.4.1 History 

 Acetaminophen (paracetamol, N-acetyl-para-aminophenol, APAP) is a common 

antipyretic and analgesic that is used worldwide and is known to be, for the most part, very 

safe.  Acetaminophen was first synthesized in 1873; however, it was not medically used for 

another two decades [2].  At the time, acetanilide and phenacetin were popular antipyretic 

drugs.  These two drugs were determined to have toxic side effects.  Acetaminophen was 

discovered to be a metabolite of acetanilide and phenacetin, having the antipyretic and 

analgesic effects without the toxic side effects.  In 1955, Acetaminophen first went on sale in 

the United States under the name Tylenol.  The following year acetaminophen went on sale 

in the United Kingdom under the name Panadol.   

 

1.4.2 Analgesia & Antipyresis 

 Arachidonic acid, a 20 carbon polyunsaturated fatty acid, is present in the cell 

membrane [3].  It is metabolized to prostanoids by cyclooxyegenase (COX) enzymes.  There 

are two known forms of the COX enzyme: COX-1 and COX-2.  COX-1 is constitutively 

expressed in normal tissues.  COX-1 expression plays a role in maintaining homeostatic 

pathways [4].  COX-2 is induced by cytokines in inflammatory cells at localized sites of 

injury [2].  When present in the cell, COX-2 catalyzes the formation of prostaglandins from 

arachidonic acid.  Prostaglandins formed from COX-2 increase the sensitivity of nociceptors 

thus lowering the threshold for pain.  Because acetaminophen does not have much of an 

effect outside of the CNS some think that there may be a third cyclooxygenase isoform, 
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COX-3, present only in the central nervous system (CNS), upon which acetaminophen acts 

[5].  Other pain relief drugs such as aspirin and ibuprofen are able to do this in the periphery 

and therefore, they have anti inflammatory properties.  Aspirin, and to a lesser extent 

ibuprofen, also have gastrointestinal consequences due to COX-1 inhibition in the stomach.  

The appeal of acetaminophen is very much due to its lack of gastrointestinal toxicity due to 

its selective COX-2 inhibition.   

 

Arachidonic Acid

Prostaglandins

COX-1 COX-2

Prostaglandins

-GI Tract

-Platelet

-Kidney

-Most Tissues

-Inflammatory Cells (Peripheral Sensitization)

    -Sites of inflammation & tissue damage

-CNS (Central Sensitization)

    -Sensitization of afferent neurons

-Kidney

-Cancer  

Figure 1-6- Arachidonic acid pathway. 
 

 Acetaminophen is often considered to be in a family of drugs known as non-steroidal 

anti-inflammatory drugs (NSAIDs) because of its analgesic and antipyretic properties.  

Acetaminophen does not however, have any anti inflammatory properties and is thus not an 

NSAID.  While the mechanism of action is not entirely clear, it is believed that 

acetaminophen interferes with the synthesis of prostaglandins in the CNS possibly by 

inhibiting the action of COX thus increasing the threshold for pain.   
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 Acetaminophen is also known to be an effective antipyretic.  The hypothalamus is the 

part of the brain where body temperature is regulated.  Inhibition of prostaglandin synthesis 

in the hypothalamus is likely the cause of the antipyretic effects of acetaminophen seen in the 

febrile patient.   

 

1.4.3 Pharmacokinetics 

 

 

Figure 1-7- Metabolism and elimination of acetaminophen (APAP).  UGT = UDP-glucuronosyltransferase, 
SULT = sulfotransferase, GSH = glutathione, GST = glutathione s-transferase. 
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 Acetaminophen is rapidly and almost completely absorbed in the gastrointestinal tract 

[6].  Peak blood concentration is attained 30 - 60 minutes after ingestion and the half-life in 

blood is approximately 2 hours [6].  In the adult, approximately 90% of the acetaminophen is 

excreted in the urine within 24 hours as the glucoronide (50 - 60%), sulfate (30 - 40%) or 

cysteine (3 - 10%) metabolite [7, 8].  Small amounts of the drug (larger amounts for 

alcoholics or those taking super therapeutic doses) are metabolized by the cytochrome P450 

system (P450).   

 

1.4.4 Cytochrome P450 

 The liver is the primary detoxifying organ.  A robust mechanism for detoxification is 

necessary due to the number of toxins and toxicants that the body has the potential to be 

exposed to.  There are two phases of drug metabolism, phase I and phase II, with phase I 

metabolism frequently, but not always, preceding phase II metabolism.  Phase I metabolism 

generally oxidizes, reduces, hydrolyzes, cyclizes, or decyclizes a xenobiotic to increase 

polarity of the molecule.  One of the main mediators of oxidation is the cytochrome P450 set 

of enzymes.  Intermediate metabolites of a drug can be created in this step.  While generally, 

the purpose of phase I metabolism is to polarize a xenobiotic to facilitate excretion or phase 

II conjugation, sometimes xenobiotics are activated, inactivated, or metabolized to toxic 

compounds.  Phase II metabolism is a conjugation reaction where the xenobiotic is usually 

bound to glucuronide, sulfonate, amino acids, methylated, or acetylated [9].  The phase II 

conjugated xenobiotic is generally, but not always, inactivated and more readily excreted in 

the urine then the parent drug.   
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 Cytochromes P450 are located in the endoplasmic reticulum or inner membrane of 

the mitochondria of hepatocytes [10, 11].  About 60 different isoforms have been identified 

in man [12].  These isoforms are grouped into families according to genetic homology.  

Several P450 isoforms are involved in the synthesis of steroid hormones and bile acids, and 

the metabolism of retinoic acid and fatty acids, including prostaglandins and eicosanoids.  

Approximately 15 isoforms of P450 are involved in the metabolism of various xenobiotics 

[12].  The majority of xenobiotics that interact with P450 produce changes in the chemical 

resulting in easier urinary elimination.  However, this system is not perfect.  In the case of 

acetaminophen, a small amount is metabolized by P450 to yield the highly unstable and toxic 

intermediate N-acetyl-para-benzoquinone imine (NAPQI).  NAPQI will oxidize and 

conjugate to cysteine groups on proteins [13] as well as DNA and other cellular 

macromolecules if the concentration of the antioxidant glutathione becomes too low.  In 

addition, NAPQI appears to target mitochondria causing mitochondrial damage.  It has been 

demonstrated with knockout mice that CYP2E1 and to a lesser extent CYP1A2 are the main 

P450 isoforms responsible for NAPQI formation from acetaminophen [12].   

 Unlike many other P450 subfamilies, the CYP2E subfamily consists of a single 

isoform, CYP2E1 which is constitutively expressed in many tissues- hepatic and extra-

hepatic.  Ethanol is a major inducer of CYP2E1 expression with low levels of ethanol 

increasing protein stability and high levels of ethanol inducing CYP2E1 mRNA transcription 

[14-16].  This is the mechanism by which ethanol induces acetaminophen hepatotoxicity.  

This induction in addition to the poor nutritional status of many alcoholics can make 

acetaminophen especially dangerous with hepatotoxicity and liver failure occurring even at 

therapeutic acetaminophen doses.  Additionally, acetone and acetal are also known CYP2E1 
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inducers.  Induction of CYP2E1 and metabolism of acetone and acetal are important for the 

gluconeogenic salvage pathway, which is activated in periods of glucose starvation [10].   

 In addition to acetaminophen, there are many other substrates for CYP2E1 including 

nitrosamines, the solvents toluene, benzene, carbon tetrachloride, and ethylene glycol and the 

anesthetics halothane, isoflurane, and enflurane.  The above mentioned solvents and ethylene 

glycol are also inducers of CYP2E1 [10].   

 The human CYP1A isoform family consists of CYP1A1 and CYP1A2.  While 

CYP1A1 is mainly expressed extra-hepatically, CYP1A2 is expressed almost exclusively in 

the liver and is inducible on exposure to cigarette smoke and consumption of charbroiled 

foods and cruciferous vegetables [10, 17].  Insulin, in diabetics, and the barbiturate 

phenobarbital are also inducers.  Induction of CYP1A2 (and also CYP1A1) is initiated by the 

cytosolic aryl hydrocarbon (Ah) receptor.  A ligand-bound Ah receptor is translocated into 

the nucleus upon association with the aryl hydrocarbon nuclear translocator protein (ARNT).  

This complex is then able to bind to the xenobiotic response element (XRE) in the promoter 

region of the CYP1A gene thus initiating transcription.  Ah receptor knock-out mice have 

lost the ability for CYP1A induction [10].  Additionally, human CYP1A2 protein levels have 

been shown to vary > 40-fold [10].   

 CYP1A2 metabolizes nitrosamines and arylamines.  In addition to the 

aforementioned acetaminophen, the NSAID naproxen is also a substrate of CYP1A2.  

Additionally, caffeine, phenacetin, and theophylline, are also substrates of CYP1A2 which 

have been used to assay for CYP1A2 activity [10].  Due to the nature of P450 isoforms, there 

many more known substrates, inhibitors, and inducers of CYP1A2.   
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1.4.5 Toxicity 

 Therapeutic doses of ~1 – 4 g/day of acetaminophen are generally considered safe.  

Taken in doses greater than 150 mg/kg/24 hr (>7.5 g - 10 g), acetaminophen is a well-

recognized cause of hepatotoxicity [18, 19].  Acetaminophen poisoning is the number one 

cause of acute liver failure in the United States as well as United Kingdom [19, 20].  About 

20% of untreated patients with acetaminophen poisoning will develop severe hepatic injury.  

This is defined by an aspartate aminotransferase (AST) level above 1000 U/L [19].  Both 

AST and alanine aminotransferase (ALT) levels in the blood are good indicators of liver 

fitness.  AST and ALT are two enzymes present in hepatocytes at high concentrations which 

is leaked into the bloodstream upon liver injury due to hepatocyte necrosis.  Therefore, an 

increase in hepatocyte death due to toxic insult should cause ALT and AST levels in the 

blood to rise.  Increases in ALT and AST levels are commonly caused by chronic events such 

as hepatitis and alcoholism as well as acute events such as poisoning [21].   

 The small amount of NAPQI formed from therapeutic doses of acetaminophen by the 

P450 system usually conjugates with reduced glutathione (GSH).  Generally, this is 

metabolized to mercapturic acid and eliminated [6].  For there to be toxicity to the liver, 

NAPQI must be present at a concentration above the concentration of glutathione.  This can 

either be due to high levels of NAPQI or low levels of glutathione.  High levels of NAPQI 

formation can happen in an overdose and glutathione depletion can occur because of 

malnourishment or alcoholism.  Excess NAPQI can cause hepatocytes to undergo oxidative 

stress because NAPQI is unstable and highly reactive.  The NAPQI binds to thiol residues of 

proteins when glutathione concentrations are too low, this is discussed in further detail in 
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Section 1.4.6 of this dissertation.  This oxidative stress can lead to cell death and necrosis of 

regions of the liver.   
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Figure 1-8- In vivo production of glutathione. 
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 Hepatic necrosis is first evident in zone III hepatocytes.  This is because periportal 

hepatocytes (zone I hepatocytes) do not express cytochromes P450.  This is fortunate for the 

mild to moderate overdose victim as the damaged liver may be able to repopulate the dead 

hepatocytes in zone III.  Massive overdoses however can lead to total liver failure.   

 Early symptoms of acetaminophen poisoning include nausea, abdominal pain, and 

liver tenderness.  Many patients do not experience any of these symptoms [20].  Within 24 

hours of overdose, the patient may become jaundiced; hepatic enzyme blood concentration 

may also increase in this time [20].   

 The treatment of choice for acetaminophen overdose is administration of n-acetyl 

cysteine (NAC) [2, 6, 9, 13, 19, 20].  NAC is chosen over glutathione or cysteine because 

glutathione and cysteine cannot easily enter hepatocytes.  NAC is the n-acetylated form of 

cysteine and both serves as a source of cysteine for glutathione production as well as a 

substitute for glutathione for conjugating with NAPQI [20].  As an antidote, NAC is most 

effective if administered within 8 hours of overdose, however clinical evidence has 

demonstrated that NAC administration from 24h to 72h after overdose is beneficial [20].   

 

 

Figure 1-9- The liver lobule [22].   
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1.4.6 Protein Targets of Acetaminophen 

 The reactive intermediate of acetaminophen, NAPQI, is highly unstable and usually 

quickly reacts with glutathione.  When there is more NAPQI then glutathione, the NAPQI 

starts to bind with cellular macromolecules.  As mentioned in the previous section, P450 is 

located in the endoplasmic reticulum and the inner membrane of the mitochondria.  Thus, 

this is where the majority of NAPQI will be produced in the hepatocytes.  Since NAPQI is 

highly unstable and reactive, proteins present in the ER and mitochondria are likely to be the 

ones arylated by NAPQI.  However, it is worth noting that the ER is a large organelle which 

is intertwined and has contact sites with virtually all of the cellular organelles including the 

nuclear membrane, mitochondria, peroxisomes, the Golgi apparatus, and the plasma 

membrane [23].  Some of these proteins arylated by NAPQI have been identified as being 

Glutamine Synthetase, Lamin A, Selenium-Binding Protein, Glutamate Dehydrogenase, 

Aldehyde Dehydrogenase, N10-Formyl Tetrahydrofolate Dehydrogenase, and Carbamyl 

Phosphate Synthetase I [24].   

 Some potential consequences manifested as changes in metabolite concentrations due 

to acetaminophen toxicity can be identified.  Since glutamine synthetase catalyzes the 

reaction creating glutamine from glutamate and ammonia and glutamate dehydrogenase 

catalyzes the reaction deaminating glutamate to form α-ketoglutarate and ammonia, 

acetaminophen toxicity would likely cause a decreased utilization of glutamate, a buildup of 

ammonia, and thus a decreased utilization of glutamine (into TCA).  This decreased 

utilization of glutamine may be mitigated by a decreased production of glutamine from 

glutamate.   
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Table 1-1- List of protein targets of NAPQI.[13, 24-26] 

 

 The mitochondrial enzyme carbamoyl phosphate synthetase I catalyzes the transfer of 

an ammonia from glutamine to a phosphorylated bicarbonate resulting in carbamate and 

glutamate (the carbamate is subsequently phosphorylated to create carbamoyl phosphate for 

entry into the urea cycle).  Inhibition of this enzyme would lead to an increase of ammonia, 

which has been reported in rats [27] and mice [28].  Ammonia inhibits the catalysis of 

glutamine to glutamate via glutaminase [29, 30].  In a fed state in organisms and in cell 

culture, glutamate entering the TCA cycle is derived primarily from glutamine and not 

proteolysis.  Therefore, one would expect an increase in the glutamine:glutamate ratio with 

increasing NAPQI due to the decreased utilization of glutamine via carbamoyl phosphate and 

glutaminase.  13C-glutamine replacement in culture media is an ideal means to test this 

hypothesis.   

Mass
(kDa)

Fraction Protein Reaction/Function

29 Cytoskeleton Tropomyosin 5 Actin-binding protein, muscle contraction
32 Cytosol 3-Hydroxyanthraniliate 3,4-dioxygenase 3-hydroxyanthranilate + O2 <-> 2-amino-3-carboxymuconate semialdehyde
16 Cytosol Aryl sulfotransferase A phenol + 3'-phosphoadenylyl sulfate <-> an aryl sulfate + adenosine 3',5'-bisphosphate

29 Cytosol Carbonic anhydrase III CO2 + H2O <-> HCO3
- + H+

32 Cytosol Glycine N-methyltransferase SAM + Gly <-> SAH + sarcosine
45 Cytosol Methionine adenosyl transferase Met + ATP -> SAM
100 Cytosol N-10 Formyl THF dehydrogenase Folic acid metabolism
28 Cytosol Proteasome subunit C8 Subunit of a proteasome, protein degradation
55 - 58 Cytosol Selenium (acetaminophen) binding protein Antioxidant?
40 Cytosol Sorbitol dehydrogenase precursor sorbitol -> fructose (reaction enzyme precursor)
22 Cytosol (Macrophages) Osteoblast-specific factor 3 Osteoblast recruitment, attachment, and spreading
29 Cytosol, Microsomes Thioether S-methyltransferase SAM + dimethyl sulfide <-> SAH + thimethylsulfonium
22 Cytosol, Mitochondria Glutathione peroxidase Peroxidase, protects from oxidative damage
23 Cytosol, mitochondria Glutathione transferase π Catalyze GSH conjugation
44 Microsomes Glutamine synthetase Glu + NH3 -> Gln
59 Mitochondria ATP synthetase α-subunit Subunit of ATP synthase (ADP + Pi -> ATP)
50 Mitochondria Glutamate dehydrogenase Glu -> αkG + NH3

28 Mitochondria Housekeeping protein Housekeeping protein
54 - 56 Mitochondria, Cytosol Aldehyde dehydrogenase RCHO -> RCOOH
36 Mitochondria, Peroxisome 2,4-Dienoyl-CoA reductase β-oxidation (of unsaturated fatty enoyl-CoA esters)
32 Not known Pyrophosphatase RPO4-PO4 -> RPO4 + PO4

74 - 75 Nucleus Lamin-A Constituent of nuclear lamina, membrane
35 Peroxisomes Urate oxidase Uric acid -> 5-hydroxyisourate (Enzyme lost in humans?)
46 Ribosomes Protein synthesis initiation factor 4A Involved in binding mRNA to ribosome
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 As far as the other proteins, lamin A is a constituent of the nuclear lamina which is a 

2D matrix of proteins located next to the inner nuclear membrane.  Since it is not an enzyme, 

acetaminophen binding should not have a significant effect on metabolite concentrations.  

However, the nuclear lamina is associated with the inner face of the nuclear membrane while 

the outer face is continuous with the ER.  Thus, lamin A is positioned close to the organelle 

where NAPQI is likely to be formed, the ER.  Selenium-binding protein is a protein of 

uncertain function.  It is hypothesized to play a protective role as an antioxidant in the case of 

glutathione depletion due to its high concentration in the liver and the fact that it is highly 

nucleophilic [24].   

 Aldehyde dehydrogenase has many isoforms and the substrates for some of them are 

unknown.  Substrates which could potentially be significant to metabolism (in the sense that 

they are not vitamins but endogenous metabolites which play key roles in metabolic 

pathways) are glutamate semialdehyde and methylmalonate semialdehyde.  The isoform that 

metabolizes glutamate semialdehyde (ALDH4A1) catalyzes the second step of the proline 

degradation pathway, converting 5-carboxylate to glutamate.  Inhibition of this enzyme could 

lead to a decrease in glutamate, further supporting the hypothesis that NAPQI exposure 

would lead to an increase in the glutamine:glutamate ratio.  The isoform that metabolizes 

methylmalonate semialdehyde catalyzes the conversion of malonate semialdehyde and 

methylmalonate semialdehyde to acetyl- and propionyl-CoA.  Inhibition of this enzyme 

could lead to a decrease in substrates for the TCA cycle.   

 Finally, N10-formyl tetrahydrofolate dehydrogenase catalyzes the formation of 

tetrahydrofolate from N-10-formyl tetrahydrofolate.  This is an essential part of folic acid 

(vitamin B9) metabolism.  N10-formyl tetrahydrofolate catalyzes the formation of 
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tetrahydrofolate from 10-formyltetrahydrofolate [31].  Tetrahydrofolate is then methylated 

using glycine, serine, or formaldehyde as a methyl donor to form methylene-tetrahydrofolate 

[32].   

 It can be seen that many of the proteins which are arylated by NAPQI seem to be a 

consequence of their cellular location and/or due to their having moieties which can be 

oxidized by NAPQI.  P450 is heavily localized in the ER as well as the mitochondrial 

membrane [10, 11].  The ER is significantly involved with different cellular organelles, 

which helps to explain the cellular locations of proteins arylated by NAPQI.   

 

1.5 Metabolism 

 An overall metabolic scheme which takes place in hepatocytes can be seen in Figure 

1-10.  The cellular locations of gluconeogenesis, glycolysis, glycogenolysis, glycogenesis, 

the urea cycle, the citric acid cycle (tricarboxylic acid, TCA, or Krebs cycle), and oxidative 

phosphorylation can be seen.   

 

1.5.1 Glycolysis 

 Glycolysis is the process where 6 carbon glucose is broken down to two 3 carbon 

pyruvate molecules.  This process generates energy in the form of ATP and NADH as well as 

the creation of substrates (via pyruvate) for the TCA cycle.   

 The series of reactions involved in glycolysis can be seen below in Figure 1-11.  The 

first reaction involves the addition of a phosphate group, catalyzed by a hexokinase 

(glucokinase in hepatocytes), on the glucose to create glucose 6-phosphate.  This first 

reaction of glycolysis is also the first reaction in glycogenesis.  This branching off for 
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glycogenesis can also be seen in Figure 1-11 (glucose 6-phosphate to glucose 1-phosphate).  

Glucokinase production is induced by sterol regulatory element binding protein (SREBP) 

which is released by insulin binding to insulin receptors [33, 34].  Glucokinase is inhibited by 

glucokinase regulatory protein (GKRP) when glucose and ATP levels are low [33, 34].  This 

scheme is a key regulatory mechanism of the first step of glycolysis and glycogen production 

in hepatocytes.   

 

 

Figure 1-10- Metabolic scheme occurring in hepatocytes. 
 

 The glucose 6-phosphate then becomes isomerized to fructose 6-phosphate, which 

becomes phosphorylated to form fructose 1,6-phosphate.  This phosphorylation, by 

phosphofructokinase I (PFK-1) is the key regulatory mechanism for glycolysis.  PFK-1 is 
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inhibited by ATP, citrate, fructose 1,6-bisphosphate, and glucagon.  It is activated mainly by 

fructose 2,6-bisphosphate, the product of phosphofructokinase II (PFK-2); additionally, PFK-

1 is activated by AMP [29, 30].  The 6-carbon glucose 1,6-bisphosphate then becomes split 

into two 3 carbon molecules, glyceraldehydes 3-phosphate (GADP) and dihydroxyacetone 

phosphate (DHAP).  The DHAP phosphate then isomerizes to yield 2 GADP molecules.  

However, glycerol production or degradation exits or enters this scheme at DHAP (DHAP to 

glycerol 3-phosphate), respectively.  This can be seen in Figure 1-11.  The GADP then 

becomes phosphorylated, dephosphorylated, isomerized, and dehydrated to form 

phosphoenol pyruvate (PEP).  The PEP is then dephosphorylated to form pyruvate.  Pyruvate 

can then enter the TCA cycle via acetyl CoA or directly in an anaplerotic reaction catalyzed 

by pyruvate carboxylase (PC).  The TCA cycle is discussed in more detail in the following 

section.   

 

 

Figure 1-11- Glycolysis (figure created with ARM: Metabolic Map Viewer by M. Arita) [35, 36].   
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1.5.2 Tricarboxylic Acid (TCA) Cycle 

 The TCA cycle is the series of chemical reactions which is central to energy 

production in cells which utilize oxygen for cellular respiration (aerobic respiration).  

Although the TCA cycle does not use oxygen directly, it is coupled to oxidative 

phosphorylation, which does utilize oxygen.  This occurs in the mitochondrial matrix of 

eukaryotic cells.  Carbohydrates, fats, and proteins provide the substrates for the TCA cycle- 

a process called anaplerosis [30, 37].  Additionally, the TCA cycle (or parts of it) can be used 

to provide substrates for carbohydrates, fats, and proteins- a process known as cataplerosis 

[30, 37].  Figure 1-12 shows the molecules involved in the TCA cycle.  Additionally, Figure 

1-10 shows the involvement of the TCA cycle in the overall (hepatocellular) metabolism 

scheme.   

 Briefly, 4-carbon oxaloacetate becomes acetylated by acetyl-CoA to form the 6-

carbon citrate.  The citrate is then dehydrated to form cis-aconitate and then rehydrated to 

form isocitrate.  These 2 reactions basically move an –OH from the 3 carbon to the 2 carbon.  

The 6-carbon isocitrate is then decarboxylated forming 5-carbon α-ketoglutarate and CO2.  

This results in the formation of an NADH from NAD+.  The 5-carbon α-ketoglutarate is then 

decarboxylated and binds to CoA to form 4-carbon (not including the CoA) succinyl-CoA 

and CO2.  This also results in the formation of another NADH from NAD+.  The CoA is then 

cleaved resulting in the formation of symmetrical succinate and an ATP or GTP.  Succinate 

is then oxidized to form fumarate which is hydrated to form malate.  The malate is then 

oxidized to form oxaloacetate.  This reaction also results in the formation of a third NADH 

from NAD+.  The ATP and GTP formed are used as energy and protein phosphorylation 

sources.  The NADH created are used in oxidative phosphorylation to create ATP molecules 
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from ADP.  Thus, the TCA cycle does not result in much energy production directly; it is the 

coupling with oxidative phosphorylation which results in the large amount of energy 

produced compared to anerobic metabolism only.   

 

 

Figure 1-12- The TCA cycle.  The two carbon molecules from acetyl-CoA are tracked with plus signs (+).  
Symmetricity of succinate and fumarate lead to scrambling of the carbon molecules at malate and oxaloacetate. 
 

1.5.3 Regulation of Glucose Metabolism 

 Glucose is the main sugar metabolized for the energy needs of the hepatocyte.  

Metabolism of glucose and its key regulatory proteins can be seen in Figure 1-13.  The first 

step for glucose utilization is phosphorylation to glucose 6-phosphate by glucokinase.  This 

allows the sugar to enter glycolysis or form UDP-glucose to allow glycogen or UDP-

glucuronic acid synthesis.  This enzyme is activated by glucose, ATP, and insulin and 

inhibited by low glucose concentration, fructose 6-phosphate, and glucagon.  Thus, in typical 
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cell culture conditions consisting of high glucose and high insulin, one would expect 

phosphorylation of glucose to glucose 6-phosphate allowing glucose to be exposed to the 

enzymes regulating glycogenesis and glycolysis.   

 Glycolysis is regulated by the enzyme phosphofructokinase I (PFK-1).  This enzyme 

generally has the opposite activity of phosphoenolpyruvate carboxykinase (PEPCK), the 

enzyme which regulates gluconeogenesis.  This regulatory mechanism ensures that the futile 

cycle of glucose production and degradation is avoided as this is energetically unfavorable 

for survival of the organism.  PFK-1 is mainly regulated by adenosine monophosphate 

(AMP) and fructose 2,6-bisphosphate, which is the product of fructose 6-phosphate and 

phosphofructokinase II (PFK-2).  Thus, the regulation of PFK-1 mirrors the regulation of 

PFK-2.  PFK-2 is activated by insulin and fructose 6-phosphate and inhibited by ATP, 

citrate, fructose 1,6-bisphosphate, and glucagon [38].  Thus, glycolysis is inhibited when 

there is plenty of energy and TCA cycle activity and activated by low energy (AMP) [38].   

 As mentioned earlier, the activity of PEPCK is generally opposite that of PFK-1.  

PEPCK is activated by glucagon and cortisol and inhibited by insulin.  However, the activity 

is mainly regulated by insulin, where its absence activates the enzyme and its presence 

inhibits it.  Thus, in the general cell culture system in high insulin conditions, one would 

expect this enzyme to be generally inactive.  In whole organism studies of human biofluids 

however, this will depend on the time of the last meal, urination, and blood sampling.   

 Glycogen synthesis and degradation are regulated by glycogen synthase and glycogen 

phosphorylase, respectively.  Like PFK-1 and PEPCK, the synthesis and degradation of 

glycogen generally have an inverse relationship so that futile cycles are avoided.  Glycogen 

synthase is activated by glucose 6-phosphate and insulin and glycogen phosphorylase is 
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activated by AMP, epinepherine, and glucagon.  Thus, glycogen is synthesized in the fed 

state and broken down to supply glucose in the fasted state.   

 

 

Figure 1-13- Regulation of glucose phosphorylation, glycolysis, and gluconeogenesis in the hepatocyte.  Double 
sided arrows indicate reversible reactions while double arrows indicate multiple steps.  Key enzymes are in 
yellow and the activators and inhibitors of the enzymes can be seen in green and red, respectively.  The 
activators and inhibitors listed work directly or indirectly on the enzyme [29, 30, 37, 38].   
 

1.6 Hepatocyte Cell Culture 

 The culture of primary hepatocytes was a common laboratory practice since at least 

the 1960s [39-41].  Use of hepatocyte cultures is invaluable for elucidating metabolic 

responses of an organism to a xenobiotic.  While whole body responses are also important, it 

can be difficult to deconvolute the data generated from these experiments to determine liver-

specific responses.  Additionally, scaling up whole animal experiments generally involves 

the addition of many more animals, eliciting ethical concerns.  Since multiple plates of 

Glucokinase, Phosphofructokinase 1, 
& PEPCK Regulation

Glucose

Glucose 6‐phosphate

Fructose 6‐phosphate

Fructose 1,6‐bisphosphate

G3P

Glucose 1‐phosphate UDP‐glucose

Glycogen

UDP‐GA

Glycerol

DHAP

PEPPyruvate

PPP

Glucokinase

PFK‐1

Oxaloacetate

Glucose
ATP

Insulin

Fructose 2,6‐bisphos.
AMP
Insulin
ATP

Citrate
Fructose 1,6‐bisphos.

Glucagon

Low glucose
Fructose 6‐phos.

Glucagon

PEPCK

Glucagon
Cortisol
INSULIN



33 
 

hepatocytes can be created from one animal, this problem with scaling up is somewhat 

mitigated.  More importantly, stringent experimental controls can be placed on cultured cells 

which would be impossible with living animals or whole organ perfusions.  Additionally, cell 

cultures can be kept viable for a much longer period of time than whole liver perfusions, but 

not as long as an intact animal.  Thus, animal hepatocyte cultures are an important tool which 

can be used to elucidate the effects of different drugs which can be used to complement data 

generated from whole body, whole organ, and cellular fraction (such as mitochondria) 

experiments.   

 Hepatocyte culture also allows for the experimental use of human hepatocytes, which 

is mainly possible by salvaging noncancerous liver tissue from liver resections or the use of 

livers not suitable for transplantation.  These tissues, once considered waste, are now being 

used as an invaluable tool to researchers allowing for ethical data generation of human 

metabolism.   

 

1.6.1 History of Rat and Human Hepatocyte Culture 

 Modern-day monolayer hepatocyte culture was born in 1969 when Berry and Friend 

developed a perfused liver digestion procedure at the University of California at San 

Francisco that resulted in 50% viable hepatocytes from rat liver [42].  Since that time, nearly 

9,000 studies have been published in peer-reviewed journals with the word “hepatocyte” in 

the title (PubMed search results).  Through the early 1970’s, the isolation procedure was 

optimized to obtain greater than 95% viability [43].  In the late 1970’s, primary rat 

hepatocytes, as well as a slew of other species, were cultured on glass or plastic.  It was 

quickly discovered that the hepatocytes dedifferentiate and in the late 1970’s a plethora of 
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publications on the effects of hormones, such as insulin and glucagon, and various nutrient 

concentrations were established.  This genre of hepatocyte publication peaked in the early 

1980’s with a couple hundred publications per year on the topics of media factors as well as 

insoluble factors (such as extracellular matrix) [44] as well as co-cultures [45] and their 

effects on hepatocyte differentiation.  Finally, in the mid 1990’s the field of tissue 

engineering was born, also with interest in hepatocyte culture methods being applied to 3D 

culture systems [46, 47].  Many of the studies examining the basic effects of culture media 

and matrix components, and their effects on the metabolome were performed in the late 

1970’s and not reevaluated for human hepatocyte culture after it was first performed in 1981 

[48], likely due to the difficulty and high cost in obtaining human hepatocytes.  The 

hepatocyte culture field was dominated in the 1980’s and 1990’s with research in growth 

factors, made possible by new molecular biology techniques.   

 

1.6.2 Dedifferentiation of Hepatocytes in 2D Culture and Media Formulations 

Concocted to Attenuate or Reverse this Dedifferentiation 

 One major problem with cultured hepatocytes is the dedifferentiation that occurs after 

isolation.  Without intervention, hepatocytes in 2D culture typically lose expression of genes 

for albumin, P450, phase II enzymes (UDP-GT, GST), urea production, start expression of α-

fetoprotein, and assume a simple fibroblast like morphology [49-52].  Alpha-fetoprotein is 

the fetal counterpart of albumin which is minimally expressed in mature hepatocytes.  Thus it 

can be used as a marker of both differentiation and dedifferentiation.  High expression of α-

fetoprotein is indicative of an immature hepatocyte phenotype, low expression of the protein 
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is indicative of a mature phenotype, and no expression of the protein is indicative of neither a 

mature or immature hepatocyte phenotype.   

 Understandably, researchers have attempted to stop, slow down, attenuate, or 

otherwise reverse this process of dedifferentiation for hepatocytes [52-58].  Many soluble 

and insoluble factors have been tested to maintain differentiation, since hepatocytes that have 

dedifferentiated (and thus no longer act like hepatocytes) are of little use in understanding 

hepatocyte or liver response to an experimental treatment such as xenobiotic metabolism.   

 Since it is effective in promoting cell growth and division, serum is frequently added 

to media for use with cell culture in the form of fetal calf or bovine serum (FCS or FBS, 

respectively).  While hepatocytes exposed to serum can readily grow and divide, 

dedifferentiation is also facilitated, presumably due to the various and somewhat 

uncategorized hormones present in the serum.  It is thought that one or more of the hormones 

promotes dedifferentiation.  Thus, it is generally agreed that serum-free media is best for the 

experimentation phase of experiments using cultured hepatocytes [59].  That being said, 

serum-containing media can, and frequently is used after plating to facilitate cell growth and 

division [60].  Once attached or confluent, hepatocytes are typically switched to a serum-free 

hormonally-defined medium prior to experimentation [61].   

 Additions of high concentrations of amino acids have been shown to facilitate 

hepatocytes staying in a differentiated state [62, 63].  Additionally, xenobiotics, such as 

dexamethasone, phenobarbital, and dimethylsulfoxide have also been shown to induce P450 

[51, 56, 64, 65], with dexamethasone having multiple effects on maintaining hepatocyte 

proteins such as the insulin/glucagon receptors [66] and transporters [67].  Thus, these 

compounds are frequently added to cell culture medium or are already present in media 
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frequently used for hepatocyte culture.  Additionally, phenol red, the near-ubiquitous pH 

indicator present in many media formulations has been shown to be metabolized by 

hepatocytes [68, 69].  The metabolism that occurs is the phase II reaction of glucuronidation.  

However, it is unclear at this time the effects phenol red has on cultured hepatocytes.  

Reasonable hypotheses would include the decreased capacity for glucuronidation due to the 

consumption of UDP-GA via conjugation with phenol red or the induction of UDP-GA and 

UGT production due to the presence of phenol red.  If either the former or latter are true, 

phenol red could also be thought of as a chemical which helps keep cultured hepatocytes 

differentiated by either increasing the capacity for glucuronidation, with glucuronidation 

being a normal process occurring in hepatocytes, or by decreasing the capacity for 

glucuronidation, likely potentiating potential toxic effects of a xenobiotic.   

 Hepatocytes are generally applied to coated (usually collagen or matrigel) culture 

plates.  After the hepatocytes are applied to the plates and have attached, they are either left 

uncoated for experimentation or they are coated with another layer of collagen or matrigel.  

The latter are known as sandwich cultures and have been shown to keep the hepatocytes 

differentiated and morphologically hepatocytic when cultured longer than a day or two [60, 

64, 70].  Thus, sandwich cultures may be best for long term hepatocyte cultures.  For cultures 

of a few days or less, sandwich cultures do not provide a substantial benefit over monolayer 

cultures.  In fact, it appears that monolayer hepatocyte cultures are morphologically better 

than their sandwich counterparts for short-term experimentation [60].  This is due to the 

limited movement potential for sandwich cultured hepatocytes.  Monolayer cultured 

hepatocytes are quickly able to spread out and form cellular connections with neighboring 

cells.  This is something that takes longer to occur in sandwich cultures.  These cellular 
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connections lead to the formation of bile cannicular structures between hepatocytes.  In 

longer term cultures, the bile cannalicular structures disappear in monolayer culture while 

they are better preserved in sandwich cultures.  This is an important consideration for 

membrane-bound hepato-proteins and must be considered on an experiment-to-experiment 

basis.   

 

1.6.3 Cryopreservation of Hepatocytes 

 Use of human hepatocytes has been hindered by the sporadic and unpredictable 

availability and oftentimes low numbers of viable cells.  Thus, cryopreservation of human 

hepatocytes would be a desirable way of keeping a more steady supply of hepatocytes 

available for experimentation.  Viability of hepatocytes is poor if no cryoprotectants are 

added to the cell mixture due to compromised cell membrane integrity caused by expanding 

ice crystals.  A traditional cryoprotectant solution consisted of the addition of 20% DMSO to 

the culture medium to protect the cells from freezing damage [71, 72].  However, other 

cryoprotectants have been developed that have been shown to be more effective.  In the early 

1990s, a vitrification solution consisting of DMSO, acetamide, propylene glycol, and 

polyethylene glycol was shown to cryopreserve rat hepatocytes better for a week than DMSO 

[71, 72].  Recently, HyperThermosol and CryoStor solutions have been developed which 

have been shown to be significantly better than the older cryopreservation solutions at 

maintaining viability and differentiation during hypothermic and ultra low temperature 

storage of hepatocytes and other cells and tissues [73, 74].   

 Viability of cryopreserved hepatocytes is generally lower than fresh hepatocytes.  

However, quantification of this difference can be difficult due to the different species, 



38 
 

isolation procedures, cryopreservation procedures, and cryopreservation lengths.  That being 

said, viabilities of cryopreserved cells tend to be 50% or less [71].  Additionally, there are 

generally significant to no decreases in P450 activity in cryopreserved hepatocytes, 

depending on the P450 isoform, cryopreservation procedures, and culture media, it again can 

be difficult to quantify the decrease in phase I oxidation.  Generally, decreases in P450 

activity, glutathione content, and other phase I and phase II proteins are on the order of 0 – 

50% [65, 72-74].   

 

1.7 Metabolomics- Stable Isotopes 

 13C is a non-radioactive isotope of carbon and is naturally present at approximately 

1.1% of all carbons.  Thus, administration of metabolites enriched with nearly 100% 13C 

allows for the locational tracking of these metabolites as well as the locational tracking and 

production of downstream metabolites.  13C enriched metabolites can be differentiated from 

the “normal” 12C metabolites when samples are measured with NMR spectroscopic or mass 

spectrometric (MS) technologies.  Additionally, administration of deuterated compounds 

(non-radioactive hydrogen atoms with a molecular weight of 2), such as water (written as 

2H2O or D2O), allows one to assay the origins and flux of different gluconeogenic substrates 

[75-79].   

 

1.7.1 Previous Isotope Tracking Experiments 

 Fluxomics has not yet been achieved experimentally even in 2D culture systems, so 

most of the metabolic fluxes are derived in silico using metabolic control analysis [80-85], or 

metabolic flux analysis [86-89] and limited experimental data.  Although comprehensive, 
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these models depend on isotopomeric analyses of compounds found at branch points in the 

metabolic network.  All existing flux models used for hepatocyte cultures have assumptions, 

with some of the assumptions being more sound than others, based on the normal whole 

animal biochemistry [90, 91].  The primary assumption is that the cells are in the fed state 

due to the nearly four orders of magnitude higher insulin concentration and four-fold 

elevated glucose concentrations compared to the whole animal plasma concentration in the 

fed state.  The switch from fed to fasted triggers the metabolism of pyruvate from pyruvate 

dehydrogenase to pyruvatye carboxylase, due to conversion of fatty acids to acyl-CoA and 

then to acetyl-CoA.  Additionally, fluxes through certain pathways, such as pyruvate 

carboxylase (anaplerosis) are assumed to be zero.  The reason for these assumptions lies in 

the type of analyses historically used in these flux studies, wherein either 14CO2 is used as a 

measure of TCA cycle flux using chromatography and scintillation counters [90, 92-98] or 

single metabolites are used with 13C isotopomer analysis by mass spectrometry [89, 91, 99-

101] or NMR [75-79, 102-107].  Previous chromatographic separation and radioactive 

quantification analyses of downstream 14C metabolites were unable to obtain a global 

analysis.  Due to the need to analyze what could be separated by chromatographic methods it 

is necessary to focus output on just control of alanine metabolism [96] or purine metabolism 

[98], for example.  However, NMR spectroscopy is not without its own disadvantages.  The 

major disadvantage of NMR is poor sensitivity.  Thus, minor metabolic pathways of low 

concentrations can be missed making tracer studies of low isotopic enrichment difficult.  

However, use of the high nutrient concentrations found in culture media with high degree 

incorporation is ideal for NMR studies since it is innately quantitative and unbiased.   
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 Since at least the 1950’s, 14C and 3H (tritium) isotopes have been used to track 

metabolism, usually the fate of 14C glucose or 14C acetate [108-110].  Incorporation into 

glycogen, lipids, ketone bodies, or CO2, is generally what was measured in these early 

analyses.  These 14C analyses have stood the test of time as they are still employed to this 

day.   

 

1.7.1.1 14C Studies in Rat and Human Hepatocyte 2D Monolayer Cultures 

 Shortly after the rat hepatocyte mono-layer culture conditions were established, 14C 

metabolic tracer studies were performed using the recently discovered HPLC to fractionate 

metabolites, scintillation counting to quantify metabolites of nutrients, and tracer 

mathematics to model the mass balance of metabolites.  These 14C studies utilized 14C-

glucose [111-113], U-14C, 5-2H-fructose and U-14C, 2-2H-glyceraldehyde [114], amino acids 

[115], valine (for protein synthesis) [116], 14C-labeled puines (for nucleotide metabolism) 

[117], 14C-acetate (for lipogenesis) [118].  In the late 1970’s, the effects of glucagon and 

insulin on 14C-glucose metabolism [119, 120] and β-oxidation using small chain fatty acids 

(C4 and C8) [121] (C18, C20, C22) [122] were examined.  The earliest metabolism studies 

used 14C tracers to obtain concentrations with the newly developed, higher through-put, 

HPLC methods just developed rather than the slower thin layer chromatography used in the 

1950’s and 1960’s.  An early pioneer of hepatocyte culture, Monte Bissel, published the first 

metabolomic analysis of media components using paper chromatography and a low 

concentration of 14C-glucose (5.5 mM) in 1979 [119], after publishing the first drug studies 

with the cells [123].  The first 14C-labeled acetaminophen study was published in the late 

1970’s [124].   
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Figure 1-14- Creation of CO2 in the TCA cycle can be seen.  The first cycle through the TCA cycle can be seen 
in the top part of the figure and the second cycle through the TCA cycle can be seen in the bottom part.  Thus, 
the top part starts at acetyl-CoA and the bottom part starts at oxaloacetate.   
 

 One researcher that has still makes great use of this radioactive labeling technique is 

M. L. Yarmush at Harvard University.  His analyses, termed Metabolic Flux Analysis 
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(MFA), make use of cultured hepatocytes whose metabolites are measured with 

commercially available assay kits.  Additionally, 14C acetate was supplied in the media to the 

hepatocytes to measure TCA flux.  If 1,2-14C acetate is given to hepatocytes, eventually, 

14CO2 will be created via metabolism through the TCA cycle.  The places in the TCA cycle 

where CO2 is created can be seen in Figure 1-11.  Figure 1-14 shows the origins of the 

carbon atoms forming the CO2 created in the TCA cycle.  It can be seen in the figure that it 

takes 2 cycles through the TCA cycle for the labeled CO2 to be created.   

 Using this flux data in addition to static measurements of other key metabolites, 

Yarmush calculates flux rates for the reactions in the metabolic pathways involved in TCA 

cycle, urea cycle, pentose phosphate pathway, gluconeogenesis, TG and cholesterol ester 

oxidation, β-oxidation, amino acid oxidation, ketone body synthesis, glycogen synthesis, and 

albumin synthesis.  In all, flux rates for 74 reactions are calculated [93].  While sophisticated 

and complex, there are quite a few items of concern.  First is that the analysis is performed 

with static metabolite concentration measurements coupled with 2 active measurements 

(liberation of 14CO2 from 14C acetate, and O2 consumption).   

 Second, derivation of the rates of 74 reactions with only 2 active measurements and a 

handful of static measurements leaves much open to question.  To get around this, 10 

assumptions were made, which is another concern.  Specifically, the assumptions that flux 

through pyruvate dehydrogenase is zero, fatty acid synthesis and flux through glycolytic 

enzymes were set to zero, equal fluxes into pentose phosphate production and glycogen 

production (because these fluxes were not measured), a single pool of metabolites (therefore 

the rates represent an average flux, of mitochondrial and cytosolic proteins for instance), the 

rates of change of the extracellular metabolite pools are assumed to be constant between the 



43 
 

24 hour media changes, and the rate of accumulation of triglycerides was assumed to be 

constant over the 7 day experiment.  The reason for these assumptions is due to the method 

of analysis, which is generation and analysis of 14CO2.  Since there are multiple entry and 

exit points for 14C-glucose or 14C-acetate, use of the multiple entries and exits, in addition to 

recycling, would lead to a scrambling of the 14C-label, affecting the interpretation of the data.  

This is something which could occur not only with the TCA cycle, but also with the 

interconnectivity of glycolysis with the pentose phosphate pathway, glycerol metabolism, 

and fatty acid metabolism.   

 The third point of concern is the results themselves.  The 74 flux rates, which are 

positive or negative, depending on the direction of the reaction, were calculated for 3 

different experimental conditions- hepatocytes exposed to plasma; plasma and amino acids; 

and plasma, amino acids, and hormones.  Approximately 38% of the 222 flux rates (some of 

which were measured and others of which were derived) had standard deviations of greater 

magnitude than the flux rates themselves.  This means that the direction that these reactions 

occur is not even certain.  It would seem that these overly ambitious experiments made too 

few measurements, had too many assumptions, and inadequate results.   

 

1.7.1.2 13C NMR and MS Studies in 2D Rat Hepatocyte Cultures 

 While these studies can be well suited for short term non human studies, the 

radioactivity of 14C and tritium makes their utilization in human experimentation ethically 

impossible.  Thus, with the decades of modernization of NMR spectroscopy and mass 

spectrometry (MS) starting in the 1950’s, isotope tracking with 13C compounds became 

possible.  Two main improvements to isotopic tracking with 13C over 14C are the non-
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ionising, non-radioactive nature of 13C as well as the positional labeling information 

available through NMR spectroscopy.   

 The first 13C study of hepatocytes used NMR spectroscopic isotopomeric analysis to 

analyze metabolic scrambling of the 13C label (isotopomeric analysis is a term created by the 

Shulman group at Yale) [103, 125].  These initial studies examined gluconeogenesis in 2D 

rat hepatocyte cultures [102, 125].  Later, they compared 13C to 14C tracers and found no 

difference other than the effects of the relatively poor sensitivity of NMR.  Later this group 

would move to examination of mass isotopomers [126, 127].  Mass spectrometry was 

initially used by Desage and others [128] and they have discovered some limitations 

compared to the isotopomer method, inherent in 13C NMR [129].  W. J. Malaisse and others 

published many studies on basic metabolism and the effects of various drugs or factors using 

13C tracers and NMR spectroscopy through the 1990’s and early 2000’s [105-107, 130-137].  

The more recent 13C NMR and MS isotopomeric studies have applied metabolic flux analysis 

which resulted in a comprehensive mass balance output of the two-state rat hepatocyte model 

where the mass balances of treated cells was compared to those in control conditions [101, 

138, 139].   

 One group that has been working with and refining stable isotopic tracking 

experiments is A.D. Sherry and C.R. Malloy at the University of Texas Southwestern 

Medical Center.  Their publications on this subject started in the mid 1980’s with 

experiments examining the fate of various 13C compounds involved in the TCA cycle [140-

142].  In the mid 1990’s, many of their experiments centered on the examination of the 

different glucose isotopomers formed from U-13C propionate as well as the dilution of 1,6-
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13C glucose [143].  The 1,6-13C glucose is used to measure glucose carbon skeleton turnover 

by measuring its dilution.   

 

 

Figure 1-15- Metabolism of propionate through the TCA cycle to PEP.  The individual carbon atoms of 
propionic acid can be tracked.  Since succinate is symmetric, scrambling can occur so the 3 tracked atoms will 
either be blue, red, and green dots or blue, red, and green circles.[35, 36]   
 

 Tracking the U-13C propionate shown in Figure 1-15, one can see that the propionate 

enters the TCA cycle at succinyl-CoA and exits at oxaloacetate.  This results in the labeling 

of PEP where half of it will be 1,2,3-13C and the other half will be 2,3-13C.  Gluconeogenesis 

from these 2 isotopomers will result in the formation of 1,2,3-13C (and 4,5,6-13C) and 1,2-13C 

(and 5,6-13C) glucose.  This can be seen if tracking backwards in Figure 1-11.  Glycolysis 
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from glucose to PEP and gluconeogenesis from PEP to glucose involve the same 

intermediates, though not all of the same enzymes are used because they are not all 

reversible.  Further examination of Figure 1-11 reveals that gluconeogenesis involving 2-13C 

pyruvate will result in the formation of 2-13C or 5-13C glucose and gluconeogenesis involving 

1-13C pyruvate will result in the formation of 3-13C or 4-13C glucose.  Additionally, 

glycolysis and gluconeogenesis of 1,6-13C glucose will result in the formation of 1-13C (and 

6-13C) glucose.  This isotopic labeling of glucose can thus be used to determine flux through 

the TCA cycle for gluconeogenesis (from the propionate) as well as glucose carbon skeleton 

turnover (from the dilution of 1,6-13C glucose).   

 

1.7.1.3 13C NMR and MS Studies in Human Hepatocytes 

 Surprisingly, 13C NMR studies with human hepatocytes have not (to the best of this 

author’s knowledge) been performed since primary human hepatocyte cell culture was first 

conducted in 1981 [48].  They have only recently been performed with immortalized human 

hepatocyte cell lines [99, 144, 145], but not with primary 2D human hepatocyte culture.  This 

is likely due to their sporadic availability, high price, the absence of validated protocols, and 

the difficulties of extrapolation of in vitro data to the in vivo situation due to differences in 

genetics and epigenetics inherent in humans [146-148].  Thus, the interest has mainly been in 

metabolism of drugs by P450 [149-152] and bioartificial liver support systems [153].   
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2 The Effects of a Prolonged Standardized Diet on the Normalization of the Human 

Metabolome 

2.1 Introduction 

 Metabolomic studies employing multivariate statistics generally utilize the analytical 

technologies of nuclear magnetic resonance (NMR) spectroscopy or mass spectrometry (MS) 

to measure the low mass metabolic compounds in biological fluids such as urine or serum 

[154, 155] so that the global metabolic state of an organism can be profiled [156].  The 

studies then generally use multivariate statistical methods to identify the metabolic changes 

that result from a particular challenge an organism.  These methods have been successfully 

applied to explain the metabolic alterations resulting from disease states or xenobiotic 

interventions [157-159], but the applications to nutrition have only recently begun to emerge 

[160, 161].   

 Many metabolomic studies employ animal models and toxic or otherwise lethal doses 

of different xenobiotics, frequently in fasted animals.  Understandably, the metabolic changes 

in these animals can be quite dramatic and therefore easy to see.  However, one challenge in 

performing non toxic or therapeutic xenobiotic interventions in humans is to detect the 

potentially subtle perturbations in the metabolome due to the experimental intervention 

through the variability inherent between people.  The problem is particularly great when 

working with human subjects due to the large variability inherent between humans and the 

ethical necessity for non toxic or minimally toxic experimental intervention.  Several 

metabolomics studies have examined cohorts of healthy human subjects to assess the 
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variability which can be influenced by genetics, environment, xenobiotics, et cetera [162, 

163].  In general, these studies found that inter-subject variation was more significant than 

intra-subject variation- that is, variation of samples between different subjects was found to 

be greater than the variation of samples from the same subject.  This understandable 

phenomenon indicates that each person has a distinct metabolic phenotype also known as 

their metabotype [164].  Other studies have looked at the effects of culturally driven dietary 

influences [165, 166] or specific dietary interventions to assess the extent that diet modulates 

the metabolome [167-169].  In one study, urine samples from 22 subjects without dietary 

restriction were collected over a three month period [170].  A standard principal component 

analysis (PCA) of the data indicated some weak clustering of each subject, but a more 

advanced statistical modeling was used to identify specific features of the NMR spectra that 

could be used to identify each individual.  This result supports the idea that each person 

possesses an individual metabotype which is quite heavily masked by inherent variability.   

 In order to conduct the most informative metabolomics analyses, it would be best to 

be able to pick out the subtle perturbations resulting from the experimental intervention and 

ignore the other features.  Standardization of diet, environment, and activity could be used to 

possibly standardize the metabolome.  In this study, the question of how much normalization 

of the human metabolome can be achieved with a prolonged dietary standardization is 

addressed.  Ten subjects were admitted to a clinical research center for two weeks and given 

a standardized whole food diet.  The protocol included daily, early morning fasted serum 

collections as well as 24 hour pooled urine collections.  The results of this study will help 

inform the design of future studies in order to indicate the highest degree of metabolomic 

normalization a clinical setting is able to reasonably provide.  Additionally, work presented 
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in this chapter can be used to determine whether or not the clinical study design of the two 

week acetaminophen study presented in the next chapter (Chapter 3) of this dissertation is 

valid for a metabolomics analysis.   

 

2.2 Methods 

2.2.1 Study Design 

 This project was approved by the University of North Carolina Institutional Review 

Board and all participants were consented accordingly and provided with written consent 

forms.  This study involved 65 subjects who were inpatients at the University of North 

Carolina General Clinical Research Center.  Daily urine and serum samples were collected 

from 10 subjects of this group for the two week period and a single serum sample was 

collected at a follow-up visit two weeks after the end of the initial study.  The remaining 

subjects were subjected to a shorter three day dietary intervention study.   

 The two week cohort consisted of seven male and three female subjects.  Average 

subject age was 25.2 with a range from 18 – 42 and average BMI was 25.8 with a range of 

19.9 – 32.4.  The three day cohort consisted of 55 different subjects.  There were 23 females 

and 32 males.  Average subject age was 31 with a range of 18 to 58 and average BMI was 

25.8 ranging from 19.1 to 39.6.  Subjects refrained from alcohol consumption, medications, 

vitamins, supplements, or herbs with the exception of birth control pills or antidepressants for 

at least two weeks prior to admission.  Further exclusion criteria included history of 

abnormal liver enzymes levels, chronic alcohol abuse, chronic liver disease or history of 

acetaminophen use over the three months prior to screening.   
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2.2.2 Standardized Diet 

 Subjects received a constant macronutrient diet composed of common foods for 

breakfast, lunch, dinner, and bedtime snack rotated on a two-day cycle.  Meals were provided 

at consistent times each day.  Thirty-five calories/kg body weight was provided based on 

actual body weight if BMI was less than 30 or adjusted body weight for obesity if BMI was 

greater than 30.  The macronutrient breakdown was 15% protein, 30% fat, and 55% 

carbohydrate.  Diets were adjusted to maintain body weight by increasing total calories by 

300 Cal if weight dropped 1 kg and decreased by 200 Cal if weight increased by 1 kg.  No 

other foods were allowed, with the exception that subjects could consume water, caffeine 

free diet soda, and decaffeinated black coffee and tea ad libitum.   

 

2.2.3 Sample Collection 

 Daily morning fasted blood samples were drawn at 8:00 a.m. and 24 hour urines were 

collected and frozen at -80 °C throughout the study.  Subjects returned two weeks after 

discharge for a follow-up visit and fasting blood sample.  All samples from days 4 and 11 

were collected separately for use in pharmacokinetic analyses and were not available for use 

with this study. 

 

2.2.4 Sample Preparation 

 Frozen serum and urine samples were thawed overnight at 4 °C.  Aliquots of 540 μL 

of serum were added to 5 mm NMR tubes containing 60 μL of a D2O solution containing 

26.5 mM formate for a chemical shift reference and 0.2% NaN3 to inhibit bacterial growth.  

Aliquots of 540 μL of urine were added to 5 mm NMR tubes containing 60 μL of a 924 mM 
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phosphate buffered D2O solution at pH = 6.14 containing 4.6 mM TSP for a chemical shift 

reference, 92 mM imidazole for a pH reference and 0.2% NaN3 to inhibit bacterial growth.   

 

2.2.5 1H NMR Spectroscopy 

 All NMR spectroscopy was performed on a Varian INOVA spectrometer (Varian 

Inc., Palo Alto, CA) operating at 399.80 MHz and 25 °C.  A Carr-Purcell-Meiboom-Gill 

(CPMG) pulse sequence was used to collect the spectra.  Serum samples were collected with 

a pre-acquisition delay of 2.5 s, including 2.0 s solvent presaturation, a 90° pulse followed by 

a 100 ms CPMG delay time.  FID acquisition occurred over 2.56 s with a sweep width of 

4389.8 Hz and 16384 points.  Urine samples were collected with a recycle delay of 4.1 s, 

including 4.0 s H2O presaturation.  A 20 ms CPMG delay time was used to narrow the 

residual water peak.  A sweep width of 6388 Hz was digitized with 16360 points leading to 

an acquisition time of 2.56 s.  A total of 256 transients were collected for both serum and 

urine samples.   

 

2.2.6 Spectral Processing 

 Processing of all NMR spectra was done in ACD/1D NMR Manager 8.0 (Advanced 

Chemistry Development, Inc., Toronto).  Linear prediction of the first two points, 0.3 Hz 

exponential line broadening, and zero filling to 32768 points were applied to each spectrum.  

After Fourier transformation each spectrum was manually phased and baseline correction 

was applied.  The chemical shifts of the serum spectra were referenced to the formate peak at 

8.47 ppm and the urine spectra were referenced to the TSP peak at 0.00 ppm.  Regions of the 

spectra upfield of 0.00 ppm and downfield of 10.00 ppm were removed from the analysis as 
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they contained only noise.  The region around the residual water peak from 4.50 – 5.10 ppm 

was also excluded from the analysis.  The urine and serum spectra were then processed as 

separate groups.   

 The spectra were integrated using the Intelligent Bucketing method in the ACD 

software with bin sizes of 0.02 – 0.06 ppm.  To reduce the negative impact of noise, the bins 

containing only noise were excluded.  These bins were identified by considering the range of 

values for a given bin across all spectra.  The bins were sorted by increasing bin range and a 

threshold was determined such that bins with a range less than the threshold were considered 

noise.   

 

2.2.7 Multivariate Statistical Analysis 

 The NMR data were imported into SimcaP (version 11.5, Umetrics, Umeå, Sweden).  

The data were mean centered and scaled to Pareto variance (1/√sd).  Principal component 

analysis (PCA) was then performed on the resulting data.  The resulting two-dimensional 

scores plots map out each of the samples on axes that account for the major sources of 

variance in the data.  In this way, similar samples will cluster near one another while 

disparate samples will be farther apart.   

 

2.3 Results 

 Typical urine and serum spectra are shown in Figure 2-1 along with some metabolite 

assignments.   
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Figure 2-1- Representative spectra from urine (top) and serum (bottom). 
 

2.3.1 Serum 

 PCA scores plots for the serum data are shown in Figure 2-2.  The first two principal 

components explain over 80% of the variation in the data.  The figure shows that, in general, 

each subject is loosely clustered in a particular region and that these clusters have significant 
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overlap.  Interestingly, five of the subjects possess one or two points that are outliers from the 

main group.  These subjects are highlighted in Figure 2-2 with ellipses around the main 

group and an arrow pointing either two or from the main group to the outlier.  In all cases the 

outliers are from either the first day or the two week follow-up visit.  The samples from the 

first day were acquired after an overnight fast as were the follow-up visits.  The fact that all 

the other days cluster in the same region suggests that a single day provides all of the 

normalization possible in human serum with dietary standardization.  After the first day, the 

subjects remain in the same general region of the PCA plot for the remainder of the study.  

The span of this space is the result of the intra-subject variation inherent between human 

subjects.   

 Within each of the clusters, the trajectory of the days across the two weeks was 

examined for any trends.  The samples for each of these subjects were examined to see if a 

consistent metabolic trajectory could be seen over the two week period.  It was clear that 

aside from the first and last points, no trend is observed.  One might have expected that with 

extended dietary standardization, the metabolome of each of the subjects would tend to 

normalize and thus move toward the same region of the PCA scores plot, but this is not the 

case and the trajectory does not appear to move with any order.   
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Figure 2-2- PCA scores plot of the serum samples.  All samples are shown on the top, with day 1 or day 13 
samples shown outside of the circles.  Trajectories for selected subjects are shown on the bottom. 
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2.3.2 Urine 

 The PCA scores plot of the urine data is shown in Figure 2-3.  In this model, all of the 

samples from one subject were outliers from all of the other samples from the rest of the 

subjects due to the presence of glucose in the urine.  Since this abnormal occurrence is 

indicative of diabetes or glucose intolerance, the samples from this subject were excluded 

from further analysis.  The spectra from two additional samples were also excluded due to 

poor quality.  Since all urine samples were pooled 24 hour collections and this type of 

collection was not possible for the two week follow-up, urine samples from the two week 

follow-up were not used.  In general, the scores plot shows less overlap between the subjects 

indicating a higher degree of inter-subject variation.  The more diffuse subject groupings 

indicate that intra-subject variation is higher in the urine samples than in the serum.  There 

were only 2 subjects which demonstrated day 1 samples that were outliers from the main 

group.   

 Since the previous data suggest that any metabolomic standardization due to 

controlled diet occurs within one day, urine samples from 55 subjects with only three days of 

dietary standardization were also examined.  Additionally, a large amount of potential 

standardization is likely to occur in the first three days of diet standardization than three days 

later in the diet standardization study.  Serum samples for all subjects were not available for 

this part of the study.  It was thought that by increasing the number of samples, the more 

subtle changes in the metabolome may be detectable and thus some faint normalization 

effects of the three days of dietary standardization would be revealed.  The PCA scores plot 

for this data is shown in Figure 2-4.  It is clear that there is no significant separation of the 

samples from days one, two or three.  A supervised partial least squares model for this data 
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was constructed (data not shown) and the results confirmed that there is no statistically valid 

separation of the days.   

 

 

Figure 2-3- PCA scores plot of the urine samples.  All samples are shown on the top, with day 1 or day 13 
samples shown outside of the circles.  Trajectories for selected subjects are shown on the bottom. 
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Figure 2-4- PCA scores plot of urine samples from days 1 - 3 for 65 subjects. 
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in our study and not the other two.  First, by extending the length of time that the diet was 

standardized, we were able to obtain a clearer picture of each person’s metabolic space and 

therefore the outlier days are more distinct.  Second, the more stringent dietary and 

environmental controls of an inpatient study may allow the observation of these subtle 

effects.   

 In the studies by Walsh and Lenz, detectable normalization of the urinary 

metabolome was observed after an acute dietary standardization, yet only minor 

standardization was observed in our study [167, 168].  This does not refute the other studies 

since we collected pooled 24 hour urine samples, whereas the other studies analyzed the 

much more variable samples from first void, morning, and evening collections.  It is 

reasonable that acute dietary effects are more distinct in these time focused samplings.  

Essentially, these effects are averaged or diluted out by our 24 hour collections.  The fact that 

the extended dietary standardization showed very little additional normalizing effect on the 

urinary metabolome shows that, as with serum, the normalizing effect of the diet is 

essentially complete after 24 hours.   

 To our knowledge this study provides the highest degree of dietary and environmental 

control in a human metabolomics trial to date.  This study was carried out using global 

NMR-based profiling and therefore the inherent sensitivity limitations of NMR must be 

considered.  It is possible that some low concentration components such as vitamins or 

minerals could be detected using analytical methods other than NMR.  In future 

metabolomics studies, it appears that an inpatient, standardized diet lasting one to two days 

should be sufficient to provide all of the normalization that can be achieved in the human 

metabolome.  These results, when applied to the study design of the two week 
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acetaminophen study presented in the next chapter of this dissertation (Chapter 3) indicate 

that the clinical design of the study is valid for a metabolomics analysis.  Therefore, the 

subjects will be metabolomically standardized and thus, the effects of acetaminophen 

administration will not be convoluted with the effects of dietary standardization.   
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3 Early Prediction of Acetaminophen-Induced Hepatotoxicity with 

Pharmacometabolomics 

3.1 Introduction 

 Acetaminophen overdose is the primary cause of acute liver failure in the United 

States and the United Kingdom [19, 20].  This contrasts with the generally safe attitude many 

have towards the drug.  Drug-induced liver injury (DILI) is the major adverse event that 

leads to regulatory actions on drugs, including failure to receive marketing approval, 

restricted clinical indications, and withdrawal from the marketplace [171].  It is not always 

possible to identify the susceptible patients due to the sometimes idiosyncratic nature of 

DILI, many patients who could take the drug safely may be denied treatment [172].  While 

genetic factors are sometimes the reason for DILI from certain drugs, frequently they don’t 

fully explain the DILI [173].  This reflects the importance of non-genetic factors influencing 

susceptibility to DILI.  Age, environment, nutrition, and other factors may play significant 

roles as discussed in the previous chapter (Chapter 2) of this dissertation and elsewhere [160, 

161].   

 In a recent study, rats were given a single toxic-threshold dose of acetaminophen.  

Using NMR-based metabolomics, it was found that the pattern of endogenous metabolites in 

urine collected 48 to 24 hours prior to dosing could distinguish which animals would go on to 

develop severe DILI [174].  These authors proposed the term “pharmaco-metabonomics” 

which they defined as “the prediction of the outcome of a drug or xenobiotic intervention in 

an individual based on a mathematical model of pre-intervention metabolite signatures”.  
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Additional support for the pharmaco-metabonomic approach was reported in another rodent 

study in which the pre-dose urinary metabolomes could be used to predict which rats would 

develop diabetes after administration of a xenobiotic inducer of diabetes [175].  Finally, an 

article recently came out using a systems biological approach to characterize the differences 

in response as well as homeostatic differences between humans that experience 

hepatotoxicity and those that do not when given the drug ximelagatran [176].   

 A major goal in the application of pharmaco-metabolomics is to predict susceptibility 

of humans to adverse drug reactions.  Among the challenges for this goal are to see the 

metabolic differences between responders and non-responders while only supplying the 

patients with therapeutic doses.  This presents a two-fold problem.  Generally, therapeutic 

doses do not elicit the usual more extreme metabolic responses of toxic sub-lethal or lethal 

doses.  Additionally, effects from non toxic experimental interventions can be difficult to see 

in humans (see the previous chapter for more information on this).  In this study, we have 

examined the potential of pharmaco-metabolomics to predict the outcomes of recurrent 

therapeutic dosing with acetaminophen in a human trial.   

 There are large inter-individual differences in susceptibility to acetaminophen-

induced liver injury.  It has recently been shown that about one in three healthy adult 

volunteers receiving the maximum recommended daily doses of acetaminophen (4 g/day) 

will develop mild liver injury as evidenced by elevations in serum alanine aminotransferase 

(ALT), aspartate aminotransferase, and α-glutathione-s-transferase [177].  Thus, human 

acetaminophen administration presents the ideal opportunity to test the idea of 

pharmacometabolomics in humans.   
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3.2 Methods 

3.2.1 Clinical Trials 

 This study was composed of a cohort of 71 healthy adult males and females, aged 18-

58 that were admitted inpatient for 14 days to the General Clinical Research Center at the 

University of North Carolina Hospitals.  A genetic analysis of these subjects has been 

reported and this manuscript contains a more complete description of the protocol [178].  

After three days on a controlled whole food diet, 58 subjects received 4 g (1 g, qid) daily for 

seven days and 13 subjects were placebos.  Urine was continuously collected each day and 

pooled in 24 hour collections for metabolomics analysis (except for days 4 and 11 when 

urine was pooled in several collections for pharmacokinetic analyses).  Serum was also 

obtained each morning for standard liver chemistry tests, including ALT.   

 

3.2.2 Sample Preparation 

 Urine samples were removed from -80 °C storage and allowed to thaw at 4 °C 

overnight.  Samples were vortexed to redissolve any precipitates due to freezing.  Since the 

pH of urine can be variable, 540 µL of urine was added to NMR tubes containing 60 µL of a 

900 mM phosphate buffer (pH = 6.2) solution in deuterium oxide (D2O).  In addition to the 

phosphate buffer, the D2O solution contained 90 mM imidazole for pH reference, 4.6 mM 

trimethylsilyl-propionic acid (TSP) for concentration and chemical shift reference and 0.2% 

NaN3 to act as a preservative.   
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3.2.3 NMR Spectroscopy 

 NMR experiments were performed on a 9.8 T Oxford magnet (Oxford Instruments, 

Plc, United Kingdom) controlled by a Varian Inova console (Varian Inc., Palo Alto, CA).  

The spectra were collected with a pulse sequence consisting of a 100 ms d1 delay, 4.0 s of 

presaturation, 20 ms CPMG delay, 90° pulse, and 2.6 s of acquisition.  The free induction 

decay (FID) was acquired over a sweep width of 6387.7 Hz with 32720 complex points.   

 

3.2.4 Data Processing and Analysis 

 The NMR data was processed with ACD NMR Processor, version 11 (Advanced 

Chemistry Development, Toronto, Canada).  The FIDs were zero filled to 32768 real points 

and a 0.5 Hz exponential decay window was applied to the FIDs before Fourier 

transformation.  The resulting spectra were then manually phased by a single person and 

baseline corrected with a 6th degree polynomial.  All spectra were referenced such that the 

TSP peak was set to 0.00 ppm.  Areas upfield of -0.20 and downfield of 10.00 ppm were 

omitted from further analysis.  In addition, 4.60 – 6.30 ppm was excluded from analysis due 

to the residual water and urea peaks being in this area.  The resulting areas of the spectra 

were binned using the Intelligent Bucketing routine with buckets ranging in width from 0.02 

– 0.06 ppm in the ACD software.  This routine uses an algorithm to place bin boundaries at 

areas of consensus local minima to avoid splitting peaks into more than 1 bin.  The bins were 

then integrated to find the area under the spectra.  Each bin integral represents the 

concentration of the metabolite or metabolites which have peaks in that bin.   

 The resulting integrals were exported and bins containing imidazole and TSP were 

excluded from further analysis.  The resulting bins were normalized such that the sum of all 
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remaining integral values was assigned a value of 100.  This was done to remove variance in 

the data resulting from urine dilution.  Finally, the bins were sorted by average bin value.  A 

threshold was found below which, bins only contained noise.  These bins were excluded from 

further analysis and resulted in the loss of approximately 0.5% of total integral value per 

spectrum.  The remaining 137 bins were then exported to Simca-P version 11.5 (Umetrics, 

Umea, Sweden) for multivariate analysis.   

 

3.2.5 Multivariate Statistical Analysis 

 PCA analysis was performed on the samples to determine outliers which were 

excluded from further analyses.  This resulted in slightly differing numbers of samples in 

each of the models.  OPLS-DA models were generated using the Simca-P software.  Cross-

validation statistics for the OPLS-DA models were generated by the software using a leave 

one-subject-out cross-validation data procedure.  The model statistics for the OPLS-DA 

models are: day 9 – 10- R2X = 0.471, R2Y = 0.526, Q2 = 0.452; day 5 – 6 R2X = 0.432, R2Y 

= 0.544, Q2 = 0.451; and day 2 – 3 R2X = 0.227, R2Y = 0.560, Q2 = 0.240.  The cross 

validation results for the three models are, 73.5%, 71.0% and 65.2% respectively.   

 

3.3 Results 

 Figure 3-1 shows the ALT levels of the subjects over the two week study.  Subjects 

who experienced peak ALT elevations greater than 2.0X their baseline level were considered 

“responders” (n=17) and those with levels less than 1.5X their baseline were considered 

“non-responders” (n=18).  The intermediate responders (n=15), with ALT levels between 
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1.5X and 2.0X baseline, were not included in these analysis, in order to maximize differences 

between the responder and non-responder phenotype.   

 

 

Figure 3-1- ALT levels for the responders (left) and non-responders (right). 
 

 The hypothesis of this study is that the human urinary metabolome contains sufficient 

information to discriminate the responders from the non-responders.  As an initial test of this 

hypothesis, principal component analysis (PCA) was performed on binned NMR spectra 

obtained from all urine samples collected from days 5 through 10, which are all dosing days, 

on all of the responders and non responders.  The PCA scores plot in Figure 3-2 shows each 

of the samples plotted on the two most significant axes.  It can be seen that there is a clear 
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Figure 3-2- PCA scores plot for all responders (black) and non-responders (white) for days 5 - 10. 
 

 Next, a series of orthogonal partial least squares-discriminant analysis (OPLS-DA) 

models [179] were created using the data obtained at different time points during the study.  

Initially, samples from days 9 and 10 were analyzed, because the ALT levels of all of the 

responders had risen by this time and it seemed likely that there would be maximal 

discrimination between the two groups.  Figure 3-3 displays the results of the OPLS-DA 

analysis for days 9 and 10, showing an appreciable separation of the two groups.  The model 

statistics, R2X, R2Y and Q2 indicate that the model is robust and not the result of statistical 

over-fitting.  The R2 values describe how well the models fit the NMR data (X data) and the 
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 Figure 3-3 shows the OPLS-DA loadings coefficients which highlight the spectral 

bins that are most significantly different between the groups.  The magnitude of the 

coefficients is related to the importance of that bin to the group separation and the error bars 

are the 90% confidence intervals derived from cross validation.  Metabolite assignments for 

these bins are annotated on the plot.  It is seen that a mixture of both endogenous and 

exogenous metabolites are important for the model discriminating the responders from non-

responders.   

 The next step in the analysis was to determine if the urinary metabolome could 

distinguish the responders from non-responders after acetaminophen dosing, but prior to any 

rise in ALT levels.  In this way, pharmaco-metabolomics is being used to monitor the initial 

perturbations in the metabolome after dosing has begun but before the evoked phenotype- 

rise in ALT.  Samples from days 5 and 6 were analyzed and the OPLS-DA model is shown in 

Figure 3-3.  As with the days 9 and 10 data, significant separation of the responders and non-

responders is observed.  The cross validation statistic of 71.0% correct sample classification 

is very similar to those for the model from days 9 and 10.   

 Finally, the metabolome present in urine obtained prior to dosing was examined to 

determine whether it contained enough information to discriminate the responders from non-

responders.  For this analysis, samples from days 2 and 3 of the study (the final pre-dosing 

days) were modeled.  The validation statistics indicated a much less robust model with a Q2 

value of 0.240.  The cross-validation procedure yielded a prediction accuracy of 65.2%, 

indicating that the pre-dose samples do not contain significant information to distinguish 

responders from non-responders.   
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Table 3-1- Confusion matrices for the day 9 – 10 (top), 5 – 6 (middle), and 2 – 3 (bottom) OPLS-DA models.   
 

 We next compared the early-intervention pharmaco-metabonomic model obtained 

from days 5 and 6 with the model from days 9 and 10 to determine if the same or different 

metabolic perturbations led to the discrimination.  To address this, a shared and unique 

structures (SUS) plot [180] was created, Figure 3-4.  In this figure, the model components 

that are most highly correlated to the responder/ non-responder status from days 5 and 6 are 

plotted against those of days 9 and 10.  Since the points lie predominantly along the diagonal, 

the significant components of each of the two models were quite similar.  It is seen that the 

predictive bins contain acetaminophen metabolites as well as endogenous metabolites.  It is 

of note that the cysteine and mercapturate conjugates of acetaminophen tended to be higher 

in the urine of responders than non-responders.  This is consistent with expectation since 

these are the major derivatives of N-acetyl paraquinone imine (NAPQI), the known 

hepatotoxic metabolite and thus responders tended to make more NAPQI than the non-

responders.   

Days 9 - 10 Predicted
Actual Responder Non-responder

Responder 10 5
Non-responder 4 14

Accuracy 72.7% p = 0.010
Days 5 - 6 Predicted

Actual Responder Non-responder
Responder 12 5

Non-responder 4 14
Accuracy 74.3% p = 0.004

Days 2 - 3 Predicted
Actual Responder Non-responder

Responder 9 7
Non-responder 6 12

Accuracy 61.7% p = 0.179
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 To determine if the prediction of the responders and non-responders was mainly 

driven by the acetaminophen metabolites, models for both days 5 and 6 and days 9 and 10 

were created using quantitative measurements of the parent acetaminophen together with all 

measured acetaminophen metabolites- the glucuronide, sulfate, cysteine, and mercapturate 

conjugates, (data not shown).  The separation between the groups is much less clear and the 

Q2 values of 0.09 for days 9 and 10 and 0.16 days 5 and 6 are much weaker and indicative of 

no significant predictive capacity.  Models generated using only the endogenous components, 

excluding all acetaminophen metabolites, were similar in appearance to those created with all 

of the data and the cross validation and predictive capacity calculations were also very 

similar (data not shown).  Given the fact that the number of bins corresponding to 

acetaminophen metabolites is less than 10% of the total number of bins used in the model, it 

is not surprising that the model did not change appreciably, but the fact that the 

acetaminophen metabolites were significant in the OPLS-DA loadings coefficients plots 

indicates that the combination of endogenous and exogenous metabolites is important for the 

prediction of the responder/non-responder status of a subject.  Additionally, the fact that the 

removal of the acetaminophen (and conjugates) bins did not negatively impact the model, as 

well as the fact that the acetaminophen (and conjugates) are elevated and lowered in the 

expected groups (responder or non-responder) is an indication that the information contained 

in the acetaminophen (and conjugates) bins is redundant or linked, directly or indirectly, with 

other endogenous bins.   
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Figure 3-4- Shared and unique structures (SUS) plot generated from the first component of the day 9 - 10 and 
day 5 - 6 OPLS-DA loadings plots.  The location of the bins along the bottom left to the top right diagonal 
indicate similar model characteristics between the day 9 – 10 and 5 – 6 models.   
 

3.4 Discussion 

 A significant amount of research on acetaminophen-induced liver injury has been 

conducted, but most of it involves toxic doses in animal models or clinical examinations of 

accidental or deliberate human overdoses [181-190].  Although an extensive identification of 

specific metabolic perturbations was not possible in this study, several of the identified 

metabolites are consistent with previous studies.  Elevated levels of the cysteine and n-acetyl 

cysteine (mercapturate) conjugates of acetaminophen were observed in the responders.  This 

is consistent with the increased formation of the toxic intermediate, NAPQI, in those 

subjects.  The cysteine and mercapturic acid conjugates are breakdown products of the 

glutathione conjugated acetaminophen [191, 192].  Several amino acids including glycine, 
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alanine, and histidine were found to be elevated in the responders at both days 5 – 6 and 9 - 

10.  Glycine is a precursor of glutathione, which is required to detoxify NAPQI.  A 

perturbation in the synthesis of glutathione in the responders may lead to less efficient 

utilization of glycine and thus more excreted in the urine.  Additionally, glycine has been 

hypothesized to have hepatoprotective effects not involving glutathione synthesis by 

attenuating fatty acid β-oxidation interference related hepatotoxicity [193].   

 Two possible mechanisms which could account for the high amounts of glycine in the 

responders involve creatine synthesis and glutathione conjugate degradation.  In humans, 

approximately half of stored creatine originates from food and half is synthesized [194].  The 

first step in the synthesis of creatine, the rate limiting step, involves the transfer of an 

amidino group from arginine to glycine forming guanidinoacetate (and ornithine).  This is 

catalyzed by arginine-glycine amidinotransferase (AGAT).  Next, the guanidinoacetate is 

methylated by the methyl donor s-adenosyl methionine (SAM) forming creatine (and SAH, 

s-adenosyl homocysteine).  This reaction is catalyzed by guanidinoacetate methyltransferase 

(GAMT).  Thus, one would expect a negative correlation between glycine and creatine, 

which is what we see in this case.  The responders have higher glycine and the non-

responders have higher creatine/creatinine.   

 Glutathione is used to conjugate and detoxify, in a phase II reaction, the NAPQI 

created in a phase I reaction by P450.  Higher levels, or increased production of, glutathione 

could be a mechanism to mediate the NAPQI toxicity.  The first step in glutathione synthesis 

involves the formation of γ-glutamylcysteine from glutamate and cysteine via the enzyme γ-

glutamylcysteine synthetase.  This is the rate limiting step in glutathione production.  Next, 

glycine is added to the c-terminus of the cysteine via the enzyme glutathione synthase.  Since 
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cysteine is the rate limiting amino acid in glutathione, up regulation of cysteine synthesis 

may allow for up regulation of glutathione synthesis which may allow for greater 

detoxification of NAPQI.   

 Cysteine synthesis involves the formation of cystathione from homocysteine and 

serine via the enzyme cystathionine β-synthase.  Next, the cystathione is cleaved to yield α-

ketobutyrate and cysteine via the enzyme cystathionine γ-lyase.   

 To create the homocysteine necessary for cysteine synthesis, SAM is demethylated to 

create SAH which has the adenosine hydrolyzed to create homocysteine.  A methyl acceptor 

is necessary to create the SAH from SAM and one such acceptor is guanidinoacetate.  

Methylation of guanidinoacetate forms creatine.  Guanidinoacetate is formed form glycine 

(and arginine).  This is one mechanism linking glycine with creatine and APAP-mercapturate 

(via GSH via cysteine synthesis).  It is postulated that the upregulated cysteine synthesis 

allows for better detoxification of NAPQI and therefore less (or no) hepatotoxicity from 

APAP.  One of the byproducts of the cysteine synthesis would be depleted glycine and 

increased creatine.  This is observed in the non-responders and has been demonstrated before 

[195, 196].   

 Another possible mechanism for the increased glycine seen in the responders involves 

the fact that glutathione conjugates are generally not excreted in the urine.  The γ-glutamate-

cysteine bond is broken by γ-glutamyltransferase (GGT), located on the surface of 

hepatocytes and at the surface of brush border cells on the proximal tubules of the kidney 

[192], and the glutamate is released.  In humans, unlike rodents, the specific activity of GGT 

is higher in the liver than the kidney [192].  This would lead to the formation of APAP-Cys-

Gly from APAP-GSH as the APAP-GSH leaves the hepatocyte into circulation.  The brush 
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border membranes of the kidney are also rich in cysteinylglycine dipeptidase.  This is the 

enzyme which cleaves glycine from cysteine-glycine conjugated molecules.  The resulting 

APAP-Cys is either excreted or absorbed by the brush border cells and acetylated on the 

nitrogen of the cysteine by the intracellular enzyme, n-acetyltransferase.  This forms the n-

acetyl-cysteine conjugate, also known as the mercapturic acid conjugate.  The cleavage of the 

glycine in the proximal tubule is a likely candidate for the increased glycine excreted in the 

urine of the responders.   

 Several bins contained metabolites that are often attributed to gut flora, including 

TMAO, betaine, and hippurate, which tended to be present in lower levels in the responder 

group.  Differences in the pre-dose profile of TMAO and betaine were also observed in the 

original pharmaco-metabonomic paper in rats by Clayton, et al [174].  Perhaps the gut flora 

has an effect on absorption of acetaminophen or enterohepatic circulation of the drug.  These 

effects may attenuate or intensify acetaminophen toxicity and these flora-specific metabolites 

may be a way to evaluate these effects.  Unfortunately, further development of this 

hypothesis is beyond the scope of this study.   

 To our knowledge, this represents the first application of the pharmaco-metabolomics 

concept in the study of an adverse drug reaction in humans.  As noted in the original 

description [174], the success of the pharmaco-metabolomic approach would be expected to 

vary based on the particular drug, dosage and metabolic perturbation imposed by the 

treatment.  We were unable to detect patterns in the pre-dose urine metabolome that would 

significantly separate responders from non-responders, although this might have been 

possible had a larger number of subjects been studied, or had the study been conducted with 

an animal model.  However, significant separation was achieved once the subjects began 
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treatment with acetaminophen and before DILI occurred.  In this study the endogenous 

changes including possible perturbations in glutathione synthesis could only be observed 

once the acetaminophen dosing begun.   

 Since serious DILI is often a delayed phenomenon, occurring weeks to months after 

starting therapy [171], this early intervention pharmaco-metabolomic approach, if confirmed 

in studies of other medications, could represent a practical method to identify susceptible 

patients soon after starting drug treatment but before they are at risk of developing DILI.   
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4 Stable Isotope Resolved Metabolomics of Acetaminophen Toxicity Reveals an 

Apparent Stressed Phenotype Exhibited in Primary Human Hepatocytes

4.1 Introduction 

 Some experiments are well suited for multivariate statistical examinations, such as the 

one described in Chapter 3 of this dissertation.  However, these multivariate statistical 

analyses do have their limitations.  The main limitation is the fact that metabolite 

measurements are all static and derived from the central compartment (i.e. blood or urine) 

and metabolic effects of the experimental intervention are surmised based on known 

mechanisms.  Thus, it may not possible to determine specific anomalous mechanisms 

resulting in the increase or decrease of the observed metabolites.   

 Changes in the concentration of a metabolite can be due to increased or decreased 

production or consumption of that metabolite.  These things cannot be conclusively 

determined with concentration alone.  Additionally, shifts in metabolism- where a compound 

is being produced from a different pathway or compound, cannot be determined with 

concentration alone.  This is especially important when there are multiple branch points in a 

metabolic pathway, like with the multiple entry and exit points of the TCA cycle.  These 

points provide sources of energy from different pathways, such as glycolysis, glutaminolysis, 

and fatty acid β-oxidation.  Understanding shifts in metabolism, as well as in the 

transcriptome and proteome, are important parts of fully understanding the effects that 

different xenobiotics have on an organism or cell type.  In consideration of these deficiencies 
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in human metabolomic studies of biofluids, this study focuses on the metabolomic aspects of 

acute acetaminophen exposure and toxicity to human hepatocytes.   

 It was seen in the previous chapter of this dissertation (Chapter 3) that there were 

significant elevations in lactate, alanine, and acetate in the responders compared to the non-

responders.  These are the metabolites out of the entire cohort which have a significant 

liver/energy relationship.  Additionally, data from whole human studies can be difficult to 

deconvolute due to multiple organ interactions, temporal effects, and the heterogeneity of the 

human population.  Therefore, the use of stable isotope enriched glucose and octanoic acid 

media formulations with cultured human hepatocytes may allow for metabolic analysis of the 

pathways pertinent to the three significant metabolites identified in the previous chapter.  

Lactate and alanine are the end-products of glycolysis via glucose catabolism, and acetate is 

the end-product of fatty acid (i.e., octanoic acid) catabolism via β-oxidation.  This 13C 

fluxomic method has recently been called stable isotope resolved metabolomics (SIRM) 

[197].   

 The experiments presented in this chapter were conducted with fresh primary human 

hepatocytes, cryopreserved primary human hepatocytes, and fresh primary rat hepatocytes.  

Initial experiments were conducted with fresh human hepatocytes to determine the sub-toxic 

to minimally toxic effects of acetaminophen on human hepatocytes.  It was initially intended 

to be a similar exposure concentration to the acetaminophen dose given to the humans in the 

previous study described in Chapter 3.  This was conducted in an attempt to generate more 

data to complement the experiment and subsequent analysis.  Previous experiments have 

shown the 24 hour LD50 of acetaminophen in cultured primary human hepatocytes to be 28.2 

mM [198].  Thus, exposing human hepatocytes to 1 and 10 mM acetaminophen for 2 hours 
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should elicit sub-toxic or minimally toxic effects what will be detected as shifts in substrate 

utilization in the metabolome.   

 The first experiments with the fresh hepatocytes involved dosing them with 1 or 10 

mM acetaminophen in DMEM + 10% FBS containing either U-13C glucose (which can assay 

for lactate and alanine) or U-13C octanoic acid (which can assay for acetate).  The addition of 

these two compounds was intended to probe the metabolic origins of the biomarkers found in 

the human study described in the previous chapter.  The paradigm of acetaminophen toxicity 

is that the TCA cycle is inhibited due to oxidative stress related inhibition of oxidative 

phosporylation resulting in a lower ATP:ADP ratio [187-189].  It is thus hypothesized that 

this uncoupling of oxidative phosphorylation leads to a high NADH:NAD+ ratio which leads 

to a decrease in TCA cycle activity and a compensatory increase in anaerobic glycolysis to 

correct the redox state as well as produce ATP [199].  This increase in glycolysis will likely 

result in accumulation of the anaerobic glycolytic end products of lactate and alanine, derived 

from glucose [188].  In fact, an increase anaerobic respiration due to acetaminophen toxicity 

has also been demonstrated [199], and an early term defined the phenomenon as “chemical 

hypoxia” [188].  Additionally, arguments can be made for an increase in acetate or a decrease 

in acetate due to the uncoupling of oxidative phosphorylation and the TCA cycle.  An 

increase, which was observed in the experiment in Chapter 3, could be due to a buildup of 

acetate caused by it being less utilized as a result of the impairment in TCA cycle activity.  

Or acetate could decrease if the impairment in TCA cycle activity causes fatty acid β-

oxidation to decrease.   

 In addition to glycolysis, it is hypothesized that acetaminophen toxicity will have an 

inhibitory effect on glutamate (and therefore glutamine- found in the culture media) entry 
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into the TCA cycle due not only to the decrease in TCA cycle activity, but also because the 

reactive intermediate of acetaminophen, n-acetyl-p-benzo-quinone imine (NAPQI), has been 

shown to bind to glutamate dehydrogenase and glutamine synthetase (see Table 1.1 in 

Chapter 1.4.6 of this dissertation).  Thus, it is hypothesized that due to acetaminophen 

toxicity, there will be decreased glutamine utilization for the TCA cycle.  Thus, it is 

hypothesized that upon exposure to acetaminophen, there will be a shift towards the creation 

of 13C-labeled metabolites of the U-13C glucose-derived glycolytic end products of lactate or 

alanine (see Figure 1-11) and a decrease in U-13C glutamine entry into the TCA cycle (see 

Figure 1-12).   

 As will be discussed in further detail in the results section, it was determined that the 

cultured human hepatocytes do not metabolize glucose to a significant degree, even in the 

presence of high concentrations of glucose and insulin.  This unexpected non-utilization of 

media glucose led to another set of experiments to compare the basal metabolism of rat 

hepatocytes with the human hepatocytes.  Many of the human hepatocyte cultures were from 

liver resections.  The human stress response to injury and surgery (the surgical trauma in 

addition to exposure to certain anesthesia) has been documented to induce a considerable 

stress response [200, 201].   

 In light of these studies showing the effects on metabolism of surgery and anesthesia, 

an experiment to determine whether or not the block in glycolysis observed in the human 

hepatocytes could be overcome by depletion of ATP via mitochondrial oxidative stress by 

the use of hepatotoxic administration of acetaminophen.  Cryopreserved human hepatocytes 

were used to test the effect of a higher dose of acetaminophen over a two-fold longer period 
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of exposure to ensure toxic inhibitory effects on the TCA cycle and ultimately up-regulate 

glycolysis and the metabolism of glucose (U-13C glucose in this case).   

 

4.2 Methods 

4.2.1 Human Hepatocyte Isolation and Cultures 

 Primary fresh human hepatocytes were isolated from living donors, plated, and 

cultured for one to two days to allow attachment.   They were then shipped to the authors via 

overnight delivery.  After they were received, they the hepatocytes were cultured for another 

day to allow for media acclimation prior to experimentation.  Six 6-well plates were received 

five times for five different experiments.  The 1 male and 5 female subjects ranged in age 

from 24 – 71 and were not steatotic.   

 Primary cryopreserved human hepatocytes were isolated from an approximately 18 

month old male and cryopreserved using standard hepatocyte cryopreservation procedures.  

After thawing, the hepatocytes were cultured in a DMEM-based media supplemented with 

FBS and cultured for 1 day to allow attachment.  They were then acclimated to the new 

media for 12 hours.   

 

4.2.2 Rat Hepatocyte Isolation and Cultures 

 All animals were humanely treated and housed in accordance with the guidelines set 

by the Institutional Animal Care and Use Committee (IACUC) of the University of North 

Carolina (protocol 08-130.0A).  Male Sprague Dawley rats (Charles River, Frederick, MD) 

were housed in a 12-h light-dark cycle and allowed water and food ad libitum.  The rats were 

anesthetized for surgery with pentobarbital (0.5 μg/g body weight), and the hepatocytes were 
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isolated following collagenase perfusion of the liver.  After isolation, the hepatocytes were 

incubated at 37 °C in Krebs-Ringer-HEPES (KRH) (116 mM NaCl, 5 mM KCl, 1mM 

KH2PO4, 2.5 mM MgSO4, 2.5 mM CaCl2, 25 mM HEPES, 1% BSA, pH 7.4) for 10 min.  

While at 37 °C, the cells were gently mixed every 2 min.  The hepatocytes were then allowed 

to settle for 15 min on ice and the top layer was removed.  Then, the cells were washed in 

KRH and spun and pelleted at 50 x g three times.  After the last spin, the hepatocytes were 

re-suspended in KRH and cell number and viability was assessed by trypan blue exclusion.  

Hepatocyte viability was 85% or greater.  The hepatocytes were plated into 14 cm collagen 

coated plates (BD PharMingen, San Diego, CA) at a density of 20 x 106 cells/plate and 

incubated at 37 °C in 5% CO2 for 24 h at 37 °C in 5% CO2 prior to experimentation.   

 

4.2.3 Hepatocyte Treatments 

 Upon reception of the fresh hepatocytes, media was changed to a high glucose (25 

mM) DMEM media containing 10% FBS, 4 mg/L insulin, 100 nM water-soluble 

dexamethasone, and penicillin-streptomycin.  The fresh hepatocytes were allowed to 

acclimate to the new media (and shipping effects) for 24 hours in a 37 °C, 5% CO2 incubator.  

Each experiment had a control, a vehicle control (0.1% DMSO), a low dose (1 mM) 

acetaminophen treatment, and a high dose (10 mM) acetaminophen treatment.  The 3 

experimental conditions each used six wells of one 6-well plate.  Thus, each of the conditions 

was performed in a pooled sextuplet.  For each experiment, the fresh hepatocytes were 

exposed to media containing U-13C glucose instead of the regular 12C glucose for 2 hours, or 

media supplemented with 1 mM U-13C octanoic acid for 2 hours.   
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 Upon reception of the cryopreserved human hepatocytes, the media was changed to 

high glucose serum free DMEM containing 4 mg/L insulin, 100 nM water-soluble 

dexamethasone, and penicillin-streptomycin.  The cryopreserved hepatocytes were allowed 

to acclimate to the new media for 8 hours in a 37 °C, 5% CO2 incubator.  All experiments 

were performed in a pooled triplicate with 3 wells of a 6 well plate being pooled.  

Experimental conditions were used to examine vehicle control (0.1% DMSO), exposure to a 

low dose of acetaminophen (10 mM), and exposure to a high dose of acetaminophen (40 

mM).  For each experiment, the hepatocytes were exposed to media containing either U-13C 

glucose or U-13C glutamine substituted for the regular 12C glucose or glutamine.   

 With the intent on eliciting a response due to acetaminophen toxicity, higher doses of 

acetaminophen were used in the cryopreserved human hepatocytes (10 mM and 40 mM vs. 1 

mM and 10 mM).  Additionally, the cryopreserved hepatocytes were exposed to 

acetaminophen for 4 hours instead of the 2 hours that the fresh hepatocytes were exposed.  

Finally, the cryopreserved hepatocytes were given a hormonally-defined serum-free medium, 

instead of a serum containing medium, like the fresh hepatocytes were given, since it has 

been shown that the presence of serum in media promotes down regulation of P450 and 

hepatocyte dedifferentiation [59, 60].   

 After the rat hepatocytes were isolated, they were given a media formulation 

consisting of high glucose (25 mM) DMEM media containing 10% FBS, 4 mg/L insulin, 100 

nM water-soluble dexamethasone, and penicillin-streptomycin.  The hepatocytes were 

allowed to adhere to 100 mm plates for 24 hours in a 37 °C, 5% CO2 incubator.  For each 

experiment, consisting of 4 – 5 replicates, the hepatocytes were exposed to media containing 

U-13C glucose instead of the regular 12C glucose, U-13C glutamine instead of the regular 12C 
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glutamine for 2 hours, or media supplemented with 1 mM U-13C octanoic acid for 2 hours.  

These conditions were tested with both insulin and glucagon separately.   

 

4.2.4 Metabolite Isolation 

 Metabolites from the human hepatocytes were extracted with a modified cold 

methanol extraction procedure [202-207].  First, wells were washed 2 times with 2 mL of ice 

cold phosphate buffered saline (PBS).  Next, 500 µL of methanol-water (65:35), stored in dry 

ice, was added to the wells.  The cells and liquid were then scraped from the wells and 

removed.  The wells were then rinsed with another 500 µL of ice-cold methanol-water 

(35:65).  The cells and liquid was again removed and kept.  The samples were then shaken 

and frozen in liquid N2.  Once thawed, the samples were vortexed and frozen again in liquid 

N2.  The mixture was then centrifuged to separate the pellet from the methanol-water 

solution, which was drawn off and kept.  One mL of ice cold methanol-water (this time at 

50:50) was added to the pellet which was then vortexed to separate the pellet from the bottom 

of the tube (due to the centrifugation) and frozen in liquid N2.  Once thawed, the samples 

were again centrifuged to separate the pellet from the methanol-water which was drawn off 

and added to the initial extraction.  The extractions were then dried overnight in a room-

temperature speed vac.   

 Metabolites from rat hepatocytes were extracted by a slightly modified Folch method 

[208] .  First, plates were washed 2 times with 12 mL of cold PBS.  Next, 5 mL of ice-cold 

methanol was added to the plates.  The cells were then scraped from the plates and removed.  

The plates were then rinsed with another 5 mL of ice cold methanol and scraped again.  The 

methanol was again removed and kept.  Ten mL of ice cold water and 13 mL of chloroform 
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was added to the methanol-cell mixture.  After the samples were mixed, they were allowed to 

separate into aqueous and organic phases overnight at 4 °C.  Samples were then centrifuged 

at 500 x g for 15 minutes and the two phases were separated and dried under vacuum.   

 

4.2.5 NMR Sample Preparation 

 The aqueous extract samples from the human hepatocytes were removed from -80 °C 

storage and reconstituted with 240 µL deuterated water containing trimethylsilyl propionic 

acid (TSP) which serves as a concentration and chemical shift reference and 0.02% NaN3 to 

act as a preservative.  Fresh hepatocyte extracts were reconstituted as pooled sextuplets and 

the cryopreserved extracts were reconstituted as pooled triplicates.   

 Media samples from both the human and rat hepatocytes were mixed 5:1 with D2O 

(200 µL media with 40 µL D2O) containing TSP and 0.2% NaN3.  Organic extract samples 

were reconstituted with 240 µL of a 50% deuterated methanol, 50% deuterated chloroform 

solution containing 0.05% trimethylsilane (TMS) which serves as a concentration and 

chemical shift reference.   

 Aqueous extract samples from the rat hepatocytes were removed from -80 °C storage 

and reconstituted with 240 µL deuterated water containing 1.0 mM trimethylsilyl propionic 

acid (TSP) which serves as a concentration and chemical shift reference and 0.02% NaN3 to 

act as a preservative.  Organic extract samples were reconstituted with 240 µL of a 50% 

deuterated methanol, 50% deuterated chloroform solution containing 0.05% trimethylsilane 

(TMS) which serves as a concentration and chemical shift reference.   
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4.2.6 NMR Spectroscopy 

 Aqueous cell extract and cell media NMR experiments for the human hepatocytes 

were performed on a 17.1 T Oxford magnet (Oxford Instruments, Plc, United Kingdom) 

controlled by a Varian Inova console (Varian Inc., Palo Alto, CA).  The spectra were 

collected with a pulse sequence consisting of a 100 ms d1 delay, 2.0 s of presaturation, 

acquisition pulse at the Ernst angle, and 3.64 s of acquisition.  The free induction decay 

(FID) was acquired over a sweep width of 8999.9 Hz with 64k complex points.   

 NMR spectroscopy of organic cell extracts from the rat hepatocytes was performed 

on the same spectrometer as above.  The spectra were collected with a pulse sequence 

consisting of 2 ms d1 delay, acquisition pulse at the Ernst angle, and 3.64 s of acquisition.  

The FID was acquired over a sweep with of 8999.9 Hz with 64k complex points.   

 

4.2.7 Data Processing and Analysis 

 The NMR data was processed with ACD NMR Processor, version 11 (Advanced 

Chemistry Development, Toronto, Canada).  The FIDs were zero filled to 64k real points and 

a 0.5 Hz exponential decay window was applied to the FIDs before Fourier transformation.  

The resulting spectra were then manually phased and baseline corrected by a single person.  

All spectra were referenced such that the TSP peak was set to 0.00 ppm.  Metabolite 

concentrations were calculated by either integrating or fitting peaks of interest and comparing 

those peak areas to the area of the TSP peak.   
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4.2.8 Statistics 

 The concentrations and fractional enrichments were shown as mean ± standard error 

of the mean and were compared for significance using an unpaired Student’s t-test with p < 

0.05.  Microsoft Excel 2007 (Redmond, WA) and GraphPad Software, Inc. (La Jolla, CA) 

were used for all statistical calculations.   

 

4.3 Results 

 Representative spectra of hepatocyte extract showing fractional enrichment of 

aspartate, alanine, lactate, fumarate, and glycogen from U-13C glucose is shown in Figure 4-

1.  From the respective 1H spectra displayed in this figure, the metabolic products of the 

media glucose (as well as octanoic acid and glutamine, though not shown) can be easily seen 

and discriminated from the other metabolites not created from the media glucose, as well as 

the 13C satellite peaks used to calculate the fractional enrichment.   

 The time to reach 13C isotopic steady state was determined using by observing the 

change in fractional enrichment of lactate over time as well as other metabolites of relatively 

slower turnover rate.  This can be seen in Figure A-1 in Appendix A.  Additionally, the 

isotopomeric scrambling scheme of U-13C pyruvate derived from U-13C glucose and forming 

the isotopomers represented by the respective peaks in the 1H spectra shown in Figure 4-1 is 

shown in Figure A-2 in Appendix A.  More details on this are in Appendix A.   
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Figure 4-1- Comparison of representative primary human hepatocyte (bottom spectra) and primary rat 
hepatocyte (top spectra) extracts from hepatocytes given 13C glucose enriched media.  Asp = aspartate, Ala = 
alanine, Lac = lactate, Fum = fumarate, Glyco = glycogen, and Gluc = glucose.  13C metabolites are marked 
with an asterisk (*).  It can be seen that there is production of lactate, alanine, glycogen, aspartate and fumarate 
in the rat hepatocytes, but not in the human hepatocytes.   
 

 The most striking observation is the fact that human hepatocytes do not metabolize 

media glucose or glutamine for energy needs to any detectable level over the 2 hour (fresh 

hepatocytes) or 4 hour (cryopreserved hepatocytes) exposure period.  This is evident due to 

the lack of metabolic products of the media 13C glucose in fresh and cryopreserved human 

hepatocytes as well as media 13C glutamine in cryopreserved human hepatocytes in the 

intracellular extracts or media.   

 While the U-13C glucose and U-13C glutamine do not seem to be metabolized for 

energy to a significant degree in the fresh human hepatocytes, the free fatty acid, octanoic 
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acid is metabolized (via fatty acid β-oxidation) to the ketone bodies acetate and β-

hydroxybutyrate as well as the TCA cycle intermediate fumarate.  Thus, it appears that the 

human hepatocytes are in a fasted or even a stressed metabolic state due to the presence of 

fatty acid β-oxidation, and the lack of glycolysis and glutaminolysis for energy needs even in 

the presence of high media glucose and insulin concentrations.   

 Examination of metabolism in cultured primary rat hepatocytes was conducted to 

determine if they metabolize glucose, octanoic acid, and glutamine to the same extent as 

human hepatocytes.  Since the human hepatocytes appeared to be in a fasted or stressed state, 

rat hepatocytes were cultured under the same conditions to compare the metabolism to the 

human hepatocytes.  Thus, high glucose DMEM formulations containing insulin and the 

different 13C-enriched compounds substituted for the normal 12C compounds were tested in 

rat hepatocytes.  When the rat hepatocytes were incubated with DMEM containing U-13C-

glucose, U-13C-glutamine, and U-13C-octanoic acid, fractional enrichment of acetate, 

acetoacetate, aspartate, alanine, fumarate, glycogen, and β-hydroxybutyrate (β-HB) was 

detected.  The fractional enrichments of the above mentioned metabolites are observed as 13C 

satellite peaks, which can be seen in the 1H NMR spectra shown in Figure 4-1.  From the 

detection of the 13C fractional enrichment in the rat cellular extracts it is concluded that they 

metabolized the media glucose, while the lack of detectable 13C fractional enrichment in the 

human hepatocytes demonstrates that they do not consume media glucose.  Aerobic 

metabolism of glucose, glutamine, and octanoic acid as well as anaerobic metabolism of 

glucose, ketosis of octanoic acid, and glycogen synthesis from glucose is all observed.  Thus, 

the rat hepatocytes rely on sugars, amino acids, and free fatty acids (FFA) as substrates for 

aerobic energy production.   
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 It is quite apparent upon examination of Figure 4-1 that the utilization of media 

glucose is quite different between the two species.  Two main regulators of glycolysis are the 

enzymes glucokinase (hexokinase IV) and phosphofructokinase 1 (PFK-1).  Glucokinase 

phosphorylates glucose allowing it to enter the first step of both glycolysis and UDP-glucose 
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synthesis, from which glycogen and UDP-glucuronic acid are synthesized.  Thus, it is likely 

that the block in metabolism is either with glucokinase or PFK-1 or both.   

 With the intent to examine the hepatocytes under starved conditions, experiments 

were conducted as above with glucagon substituted for insulin to determine if this induced 

starved phenotype in the rat hepatocytes is similar to what is observed in the human 

hepatocytes.  These results are shown in Figure 4-2.  Aerobic and anaerobic metabolism of 

glucose was observed to decrease with glucagon by noting the decrease in fractional 

enrichments of fumarate and aspartate, and alanine and lactate, respectively.  Additionally, a 

small decrease in intracellular glucose fractional enrichment and a large decrease in glycogen 

fractional enrichment are observed with glucagon supplemented media.  Glutaminolysis to 

provide TCA cycle intermediates was shown to increase when glucagon is added to the 

media.  This is apparent by noting the increase in fumarate and aspartate fractional 

enrichment.   

 Addition of octanoic acid to the media gives the hepatocytes a source of free fatty 

acids to metabolize.  It is apparent that the both the human and rat hepatocytes readily 

metabolize the octanoic acid to the TCA cycle intermediate of fumarate as well as the ketone 

bodies of acetate and β-hydroxybutyrate.  The availability of higher concentrations of rat 

hepatocytes (and also likely the greater metabolic rate) makes it possible to see fractional 

enrichment of aspartate and acetoacetate in the rat cultures.  When the insulin in the media 

was switched to glucagon to simulate a starved phenotype in the rat hepatocyte cultures, 

there was not a significant increase in the fractional enrichment of downstream metabolites 

of the octanoic acid, as one would expect [30, 209].  This is likely due to the hepatocytes 

being in a state of maximal fatty acid β-oxidation, regardless of insulin, glucagon, or glucose 
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exposure, or because of the significant water and lipid solubility of the octanoic acid 

allowing easy passage through cell membranes.  Thus, the hepatocytes exhibit an affinity for 

fatty acid β-oxidation regardless of whether they are in insulinic or glucagonic conditions.   

 

 

 

Figure 4-3- Intracellular acetaminophen conjugates present in primary fresh (top) and cryopreserved (bottom) 
human hepatocytes.  Values are expressed as percentage of total acetaminophen, conjugated or uncongugated 
and the error bars are the standard errors of the measurements.  APAP = unconjugated acetaminophen, APAP-
Gluc = acetaminophen-glucuronide conjugate, APAP-Sul = acetaminophen-sulfate conjugate, APAP-GSH = 
acetaminophen-glutathione conjugate.  Star indicates p < 0.05 
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 When both the fresh and cryopreserved human hepatocytes were given 1, 10, and 40 

mM acetaminophen, the parent drug, the glucuronide, sulfate, and glutathione conjugates 

were detected in the intracellular extracts.  The ratios of the intracellular acetaminophen 

conjugates for both the fresh and cryopreserved hepatocytes can be seen in Figure 4-3.  In the 

fresh human hepatocytes, one can see a decrease in the sulfate conjugate and increases in the 

glucuronide and glutathione conjugates going from a low dose (1 mM) to a high dose (10 

mM) of acetaminophen.  This is as expected as it fits the paradigm of sulfation and 

glucuronidation.  The sulfation pathway is high affinity and low capacity while the 

glucuronidation pathway is the opposite.  It appears that the sulfation pathway becomes 

overwhelmed and consequently, there is an increase in glucuronidation.  Additionally, 

glutathione conjugate formation is P450- and glutathione-dependant.  As the concentration of 

acetaminophen in the media is increased, one would expect the concentration of the 

glutathione conjugate to increase.  For more information on this mechanism, see Chapter 1, 

Section 1.4.5 of this dissertation.   

 

  

Figure 4-4- 13C Fractional enrichment of glucuronide (via U-13C glucose) in the acetaminophen-glucuronide 
conjugate for fresh primary human hepatocytes (left) and cryopreserved human hepatocytes (right).  Error bars 
are standard error of the mean.   
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 There is a slightly different response than expected from the cryopreserved 

hepatocytes.  Generally, there is a higher degree of glucuronidation, lower sulfation, and 

lower glutathione conjugation in the cryopreserved hepatocytes, the trends going from low to 

high dose acetaminophen stay the same with the exception of the acetaminophen-glucuronide 

conjugate.  There was a minor decrease in the glucuronide conjugate, a moderate decrease in 

the sulfate conjugate, and a minor increase in the glutathione conjugate.  Thus, it is likely that 

at this higher dose and longer exposure, the glucuronidation pathway is becoming 

overwhelmed as well.  The concentration of both the parent acetaminophen and the 

glutathione conjugates are observed to increase with increasing doses in both the fresh and 

cryopreserved hepatocytes.  This is as expected since higher acetaminophen concentrations 

allow for more of the parent compound to enter the hepatocytes making more of it available 

to be metabolized by P450.  This oxidation of acetaminophen creates NAPQI which directly 

binds glutathione.   

 

 

Figure 4-5- Fractional enrichments of acetate, fumarate, and β-hydroxybutyrate in fresh primary human 
hepatocytes given media supplemented with U-13C octanoic acid.  Error bars indicate standard error of the 
mean.  Star indicates p < 0.05.   
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Figure 4-6- Relative alanine and lactate concentrations in the fresh and cryopreserved human hepatocytes (top), 
alanine and lactate concentrations in the cryporeserved human hepatocytes (middle), and alanine and lactate 
fractional enrichments in the cryopreserved human hepatocytes (bottom).  All fractional enrichments are from 
media U-13C glucose, alanine measurements are intracellular, and lactate measurements are from the media.  
Since all the 13C alanine is seen in the cell extracts, which are pooled triplicates, there are no error bars for the 
fractional enrichment chart.  Error bars indicate standard error of the mean.  Star indicates p < 0.05.   
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 While it was stated earlier that metabolism of glucose for energy was not detected in 

the human hepatocytes, glucose was metabolized in the presence of acetaminophen (not in an 

energy-production pathway though).  Figure 4-4 shows the fractional enrichments of the 

glucuronide moiety of the acetaminophen-glucuronide conjugate.  The fractional enrichment 

is due to the creation of UDP-glucuronide from the media U-13C glucose.  It is thus apparent 

that glucokinase is active since glucose must be phosphorylated to glucose 6-phosphate to 

eventually create the UDP-glucuronic acid, which is used to glucuronidate acetaminophen.  

The fractional enrichments trend downwards as the acetaminophen dose increases (Figure 4-

4).   

 Figure 4-5 shows the decrease in fractional enrichment, upon acetaminophen dosing, 

of acetate and fumarate created from media U-13C octanoic acid.  Noting the fumarate 

fractional enrichment, it can be concluded that TCA activity trends downwards with 

increasing acetaminophen dose.  With a decrease in TCA activity, one would expect 

decreases in the supply of TCA intermediates, which is observed with the decrease in acetate 

fractional enrichment.  This 13C acetate is created through fatty acid β-oxidation of octanoic 

acid, and therefore, β-oxidation decreases with increasing acetaminophen dose.   

 When the cryopreserved hepatocytes given the U-13C glucose enriched media were 

exposed to toxic concentrations of acetaminophen (at 10 and 40 mM), evidence of glucose 

metabolism to supply energy is observed.  Figure 4-6 shows that alanine becomes 

fractionally enriched at both acetaminophen doses and lactate becomes fractionally enriched 

at the high acetaminophen dose.  As the acetaminophen dose increases, the total amount of 

alanine (12C plus 13C alanine), 13C alanine, and fractional enrichment of alanine all increase.  
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However, the total amount of lactate decreases with increasing dose, while fractional 

enrichment of lactate is only observed at (and thus increases with) the highest acetaminophen 

dose.  It is worth noting that all of the measured alanine is intracellular alanine and the vast 

majority of the lactate (>99.8%) is extracellular, which is not unexpected.  Thus, the 

measured alanine may be more of a result of a dynamic pool of alanine while the lactate may 

be a less dynamic pool, in the sense that it is created, excreted into a significantly larger pool 

(the media), and less likely to be remetabolized.   

 

4.4 Discussion 

 One of the most striking results from this analysis is the serendipitous discovery using 

1H NMR spectroscopy, of no detectable metabolic products of the media 13C glucose in the 

human hepatocytes until high concentrations of acetaminophen were added to the media.  

Specifically, there was no detectable 13C fractional enrichment of lactate, alanine, fumarate, 

aspartate, or glycogen produced in the media or cell extract from the U-13C glucose or U-13C 

glutamine in the media.  Thus, media glucose and glutamine were not used as an anaerobic or 

aerobic energy substrate nor was it used as an energy storage substrate via glycogen at the 

detection level of the 1H NMR spectra obtained at 16.4 T.  To the best of this author’s 

knowledge, this non-utilization of glucose and glutamine in human hepatocyte cultures has 

not been reported in the scientific literature.   
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4.4.1 NMR Sensitivity and Calculation of 13C Fractional Enrichment and 

Concentration between Samples from Humans and Rats 

 NMR spectroscopy benefits from the inherent quantitative and unbiased nature of 

analysis, ease in data interpretation, chemical and structure identification, and spectral 

reproducibility.  However, NMR is not as sensitive of an analytical method as others, such as 

mass spectrometry or HPLC.  Thus, to increase the NMR sensitivity per unit time, 1D 1H 

NMR spectroscopy was performed instead of the more complex, higher information content 

analyses of 2D NMR spectroscopy carried out by others working in the field of stable isotope 

metabolomics [197, 210].  Additionally, it would not have been entirely necessary to perform 

2D analyses because any gains from the enhanced resolution would have been negated by 

decreased sensitivity, unless an extraordinary amount of time was spent on data acquisition.  

This would have been especially problematic with the cryopreserved and fresh human 

hepatocyte extract samples due to the small sample sizes compared to the rat hepatocyte 

samples, comprising ~3 x 106 and ~6 x 106 hepatocytes versus ~20 x 106 hepatocytes, 

respectively.  This results in an approximately 11 and 44 fold longer acquisition time for the 

fresh and cryopreserved human hepatocyte extracts than the rat hepatocyte extracts, 

respectively, to obtain the same signal to noise ratio.   

 

4.4.2 The Observed Metabolic State of the Rat Hepatocytes 

 Figure 4-2 shows the change in metabolism the rat hepatocytes undergo when they go 

from the fed (insulin) to the fasted (glucagon) state.  These results demonstrate that the 

normal biochemical effects of insulin and glucagon were observed.  In addition, the cells 

appear to heavily utilize β-oxidation as an energy source, as supported by the 13C 
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incorporation from octanoic acid into the TCA intermediate, fumarate, and the TCA 

anapleurotic product, aspartate, as well as the ketone bodies excreted into the media- acetate, 

β-hydroxybutyrate, and acetoacetate.  The extensive metabolism of U-13C octanoic acid 

suggests that the rat hepatocytes are primed for fatty acid β-oxidation, which is indicative of 

a starved metabolic state.  However, it is also likely that the amphipathicity of the molecule is 

the cause of the high metabolic rate of octanoic acid.  Octanoic acid has significant water and 

lipid solubility and thus can passively diffuse across cell membranes without it being 

necessary to be transported via acyl-carnitine transferase thus enhancing β-oxidation-derived 

acetate into the TCA cycle [211], which is likely the reason for its metabolism not being 

modulated by the hormones of insulin and glucagon [212].   

 

4.4.3 The Observed Stressed Phenotype in the Human Hepatocytes Compared to Rat 

Hepatocytes 

 There are similarities and striking differences when comparing the phenotypes 

present in the human hepatocytes given media supplemented with insulin and rat hepatocytes 

in the induced starved state (media supplemented with glucagon).  While the human 

hepatocytes did not metabolize media glucose or glutamine, they were seen to metabolize 

octanoic acid.  When switched from insulin to glucagon, the rat hepatocytes had a large 

decrease in aerobic and anaerobic metabolism of glucose and glycogen synthesis and saw no 

change in octanoic acid metabolism, while there was an increase in the aerobic metabolism 

of glutamine (Figure 4-2).  The decreased glucose metabolism and increased glutamine 

metabolism seen in the glucagon-induced starved metabolic phenotype of the rat hepatocytes 

do not quite match the absence of glucose and glutamine metabolism seen in the human 
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hepatocytes.  Thus, it is likely that the human hepatocytes are in a metabolic state past the 

starved state; it appears that they are in a stressed metabolic state.   

 As mentioned in the Introduction (Chapter 1), the human stress response to injury and 

surgery (the surgical trauma in addition to exposure to certain anesthesia) has been 

documented to induce a considerable stress response [200, 201].  This response results 

mainly in the release of the hormones epinephrine, cortisol, and glucagon [200].  The 

combination of the three hormones results in an insulin resistant, starved metabolic state, 

which is manifested by glucose intolerance, a negative nitrogen balance, glycogenolysis, 

gluconeogenesis, increased alanine production, and increased fatty acid β-oxidation [201, 

213].  While hypothesized to be a natural response to allow injured animals to survive by 

catabolizing their fuel reserves, it has been argued that this response is no longer necessary 

with modern surgical and convalescent methods [213].  In fact, patients can become 

hypoglycemic upon anesthesia and surgery, necessitating the use of a dextrose/saline 

infusion.  Working on this hypothesis, other researchers have conducted research to prevent 

the response due to the anesthetic and surgery instead of treating the symptoms (prophylactic 

vs. curative care) [200].   

 This stress response well describes the phenotype that is being seen with the human 

hepatocytes.  The human hepatocytes appear to be in a more than just in the starved 

metabolic state, they appear to be in the insulin resistant, glucose intolerant state.  The lack of 

glutamine metabolism could be explained by inhibition of glutaminolysis due to the negative 

nitrogen balance since ammonia is an inhibitor of glutaminase and glutamate dehydrogenase.  

Inhibition of these enzymes would inhibit glutamine metabolism.  This stress hormone 

exposure may drive the metabolic state of the resulting human hepatocyte cultures and thus, 
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rat hepatocyte cultures may allow for the examination of an unstressed hepatocyte phenotype 

for comparison.   

 

4.4.4 A Comparison of Acetaminophen Metabolite Distribution in Human 

Hepatocytes and In Vivo Human Biofluids 

 The ratios of the acetaminophen conjugates in the fresh hepatocytes (Figure 4-3) are 

not unexpected as it matches the known paradigm of sulfation being a low capacity, high 

affinity process and glucuronidation being a high capacity, low affinity process.  This has 

also been demonstrated in previous acetaminophen studies with rat [214-221] and human 

hepatocyte cultures [222, 223].  Additionally, an increase in the parent acetaminophen and 

the glutathione conjugate as media acetaminophen concentration is increased is expected due 

to the greater amount of acetaminophen present to undergo phase I metabolism via P450.  

However, the ratios of the acetaminophen conjugates for the cryopreserved hepatocytes are 

somewhat surprising.  The slight decrease in the glucuronide conjugate may be due to the 

glucuronidation pathways becoming overwhelmed, leading to the decrease in the glucuronide 

conjugate fraction seen with the increasing acetaminophen concentration.   

 Acetaminophen metabolites were not seen in the media due to either the 

acetaminophen not being released into the media or the amount released not being 

measurable above the background (noise as well as other metabolites, including 

acetaminophen).  Since all of the acetaminophen was intracellular, the breakdown 

metabolites of acetaminophen-glutathione were not seen.  Glutathione conjugates are 

typically excreted from hepatocytes into the bile cannuliculi where glutamate is cleaved from 

the glutathione tripeptide by the cannicular membrane bound γ-glutamyl transpeptidase 
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creating the cysteine-glycine dipeptide conjugate and free glutamate [192].  This conjugate 

makes it from general circulation to the proximal tubule of the kidney where the glycine is 

cleaved by membrane bound cysteinyl-glycine dipeptidase as it is taken into brush border 

cells creating the cysteine conjugate and free glycine.  Inside the brush border cells the 

cysteine of the amino acid is acetylated creating the n-acetyl cysteine, or mercapturic acid 

conjugate which is excreted [192].  Thus, in this 2D hepatocyte culture system, the cysteine 

or n-acetyl cysteine conjugates are not seen.   

 It can be seen that the cryopreserved human hepatocytes have a significantly higher 

fraction of intracellular acetaminophen as the glutathione conjugate than the fresh 

hepatocytes in comparing the 10 mM acetaminophen dose.  Figure 4-3 shows that 10.3% and 

11.5% of the acetaminophen in the cryopreserved hepatocytes exposed to 10 mM and 40 mM 

acetaminophen is in the form of the glutathione conjugate.  This is greater than the 1.1% and 

2.1% acetaminophen-glutathione found in the fresh hepatocytes exposed to 1 mM and 10 

mM acetaminophen.   

 Generally, the fresh primary human hepatocytes were isolated and then incubated for 

24 – 48 hours.  They were then shipped overnight for use.  Thus, the hepatocytes were 48 – 

72 hours old before they were received.  After the hepatocytes are given approximately 24 

hours to acclimate to the new environment and recover from shipping, experiments would 

take place.  This would be approximately 72 – 96 hours after isolation.  Cryopreserved 

hepatocytes were received for experimentation less than 48 hours after isolation, not counting 

the amount of time they were cryopreserved.  This minimization of time is one way in which 

dedifferentiation is attenuated.  Additionally, serum, which has been shown to induce 

dedifferentiation [59, 60, 224], was removed from the cryopreserved hepatocyte media 12 
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hours prior to the end of experimentation.  One could expect greater toxic effects of 

acetaminophen with more differentiated hepatocytes, which is seen in the cryopreserved 

hepatocytes.  Although the donor of the cryopreserved hepatocytes was a child (~18 months), 

all phase II enzymes are present at birth and will change with age [225], however, it was 

demonstrated that the cryopreserved hepatocytes possessed significant P450 activity 

(CYP2E1 and/or CYP1A2), as well as intact glucuronidation and sulfation pathways.   

 

4.4.5 Fractional Enrichment of Acetaminophen-Glucuronide and Its Relationship 

with Glycolysis 

 Evidence that the glucuronidation pathway becomes overwhelmed in the human 

hepatocytes at high acetaminophen doses may be seen in Figure 4-4.  At first glance, the data 

in this figure may seem to be unexpected.  It shows that the fractional enrichment of 

acetaminophen-glucuronide, indicative of the amount of UDP-glucuronic acid produced from 

media glucose, trends downwards as the acetaminophen concentration increases.  Since the 

starting fractional enrichment (the fractional enrichment at the lowest acetaminophen 

concentrations) is around 60%, and the hepatocytes are not exposed to media containing U-

13C glucose until the time that they are also exposed to acetaminophen, the conclusion can be 

made that up-regulation of production of UDP-glucuronic acid is fast, and it relies mainly on 

media glucose as the principal substrate.  Thus, since the fractional enrichment of 

acetaminophen-glucuronide trends downwards with increasing dose, the subsequent increase 

in up-regulation of UDP-glucuronic acid production must also rely on substrates other than 

glucose.  We are hypothesizing that it is a consequence of the increase in glycolysis, evident 

by the increased production of 13C alanine and 13C lactate which can be seen in Figure 4-6.  
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Hence, glucose is being redirected from UDP-glucuronic acid production for 

glucuronidation, to glycolysis for energy production.  This is to compensate for the decreased 

oxidative phosphorylation and TCA cycle activity.   

 This fractional enrichment of acetaminophen-glucuronide also provides support for 

glycogen synthesis.  Acetaminophen-glucuronide excretion in urine and measurement of 

glycogenesis was first reported in dogs in 1995 [226], then later in humans in 2001 [75].  The 

pathways for both glycogen and UDP-glucuronic acid synthesis from glucose are nearly the 

same.  Glucose becomes phosphorylated to glucose 6-phosphate (which is also the first step 

in glycolysis), glucose 6-phosphate becomes converted to glucose 1-phosphate which then 

becomes attached to uridine diphosphate (UDP) to create UDP-glucose.  This UDP-glucose 

is used to create UDP-glucuronic acid by the enzyme UDP-glucose 6-phosphate 

dehydrogenase, which converts the hydroxyl moiety on the 6 carbon of the glucose to a 

carboxylic acid.   However, UDP-glucose is the form of glucose directly used for glycogen 

synthesis.  In fact, acetaminophen has previously been shown to stimulate glycogen synthesis 

by increasing UDP-glucose [227].  Most importantly, the method of acetaminophen-

glucuronidation in combination with 13C nutrient administration probes the glucose 6-

phosphate pool.   

 It has been previously reported that glucokinase activity in human hepatocytes is 

approximately 20 fold lower than rat hepatocytes [228].  The data presented here showing 

greater than 50% fractional enrichment of acetaminophen-glucuronide from media U-13C 

glucose indicates > 50% fractional enrichment of UDP-glucuronic acid, and working 

backwards, > 50% fractional enrichment of glucose 6-phosphate.  This indicates significant 

glucokinase activity in humans.  Additionally, it shows that the block in glucose metabolism 
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in human hepatocyte metabolism is controlled by phosphofructokinase-1 (PFK-1) and PFK-

2, and not glucokinase (see Figure 1-13).  The release in the block is likely due to the 

decrease in the ATP/ADP ratio due to acetaminophen toxicity allowing PFK-2, and thus, 

PFK-1 activity since ATP inhibits both proteins (see Chapter 1.5.1 for more on this).   

 

4.4.6 Fatty Acid Metabolism in Rat and Human Hepatocytes and the Effects of 

Acetaminophen 

 It is evident upon examining Figure 4-5, that cultured human hepatocytes have a high 

affinity for fatty acid β-oxidation of octanoic acid, and that the mitochondrial aerobic 

metabolism system is in working order even though they do not metabolize glucose or 

glutamine.  When the hepatocytes are given U-13C octanoic acid supplemented media, 

approximately 50% of the acetate and fumarate present in the cell extracts was the 13C 

analog.  Thus, approximately half of the ketone bodies and anapleurotic substrates for the 

TCA cycle come from the supplied octanoic acid.  It appears that the cultured human 

hepatocytes are in a metabolic state primed for fatty acid β-oxidation, and not glycolysis or 

glutaminolysis, even in a high glucose, high insulin environment.   

 When the U-13C octanoic acid supplemented hepatocytes are given acetaminophen, it 

can be seen in the same figure (4-5) that the fractional enrichments of both acetate and 

fumarate decrease.  This is likely due to a decrease in oxidative phosphorylation and 

compensatory decreases in the TCA cycle and fatty acid β-oxidation as a consequence of the 

acetaminophen dose.  Evidence supporting a decrease in oxidative phosphorylation in 

humans due to acetaminophen administration has been described previously [187-189, 199].  

Impairment in oxidative phosphorylation would lead to an uncoupling of the TCA cycle due 
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to the redox state of the cell shifting towards NADH as a result of its production in the TCA 

cycle and its buildup by not being oxidized to NAD+ by the uncoupled oxidative 

phosphorylation.   

 

4.4.7 Enzyme Inhibition Due to Acetaminophen Toxicity 

 Inhibition of oxidative phosphorylation would lead to a condition similar to what is 

seen in bacterial fermentation or increased anaerobic metabolism due to heavy exercise.  

With acetaminophen toxicity however, the TCA cycle and oxidative phosphorylation activity 

is decreased due to protein arylation instead of low [O2].  Therefore an increase of the 

anaerobic products of alanine and lactate from media glucose, to regenerate NAD+ in 

addition to ATP, upon increased acetaminophen supplementation is expected and in fact 

observed (Figure 4-6).   

 The total concentration (13C + 12C) of intracellular alanine as well as the 13C alanine, 

indicative of alanine produced from all sources and alanine produced from media glucose 

only, respectively, increased in the cryopreserved hepatocytes as they were exposed to 

increasing toxic acetaminophen concentrations.  Additionally, the intracellular concentration 

of alanine in the fresh hepatocytes (13C alanine was not observed) increased with increasing 

acetaminophen dose.  The increase in the 13C alanine concentration is indicative of an 

increase in glycolysis, and the increase in total alanine concentration is indicative of an 

increase in alanine transaminase (ALT, the enzyme which catalyzes the formation of alanine 

from pyruvate) activity.   

 The total concentration of extracellular lactate in the cryopreserved hepatocytes, on 

the other hand, decreases with increasing toxic acetaminophen concentration.  However, the 
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13C lactate can only be seen in the media at the highest acetaminophen concentration and thus 

increases (from zero) with increasing acetaminophen concentration.  The increase in 13C 

lactate indicates that there is an increase in glycolysis and the decrease in total lactate could 

indicate that there is a decrease in lactate dehydrogenase (LDH) activity.  Additional 

evidence for a decrease in LDH comes from the fractional enrichments of lactate and alanine.  

Upon exposure to 40 mM acetaminophen for 4 hours, alanine is 18.8% fractionally enriched 

and lactate is 9.0% fractionally enriched.  Since both of these metabolites are created from 

pyruvate, they should have similar fractional enrichments, if the activity of ALT and LDH 

does not change over the 4 hour exposure.  However, the lower fractional enrichment of 

lactate than alanine indicates that LDH also decreases (or decreases more than ALT) with 

acetaminophen toxicity.   

 The literature has contradictory information regarding cellular LDH activity after 

toxic acetaminophen exposure.  Although it is well known that acetaminophen produces 

chemical hypoxia and a lactate/pyruvate ratio increase, total lactate often does not increase at 

higher acetaminophen doses [229, 230].  In fact, one study showed lower LDH activity 

(released into the media) due to the interaction of NAPQI with cell proteins in hepatocytes 

exposed to acetaminophen [230].   

 Examination of the literature as well as the data generated here brings up the prospect 

of LDH arylation by NAPQI.  This has not been reported in the literature, however an earlier 

study found an approximately 130 kD protein in the cytosol [231-233] and also the 

mitochondria [28] which was arylated.  This is the same mass as LDH, bringing up the 

possibility of LDH arylation.   
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4.5 Conclusions 

 Cultured human hepatocytes do not rely on media glucose or glutamine for energy, 

however they do readily metabolize octanoic acid, even in the presence of high glucose and 

insulin.  Rat hepatocytes do metabolize the three metabolites in the presence of both insulin 

or glucagon, exhibiting the fed and fasted phenotypes, respectively.  The human hepatocytes 

were not in the fed or fasted phenotype, they displayed a stressed phenotype.   

 When acetaminophen was added to the culture medium, human hepatocytes formed 

the sulfate, glucuronide, and glutathione conjugates from the parent drug.  Media glucose 

was heavily utilized to create the UDP-glucuronic acid used for acetaminophen 

glucuronidation.  Acetaminophen toxicity demonstrated that the block in glycolysis was 

caused by PFK-1 and not glucokinase.  Additionally, the block in glycolysis was released, 

and inhibitions in LDH, the TCA cycle, and fatty acid β-oxidation were demonstrated with 

acetaminophen toxicity.   
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5 Conclusions and Perspectives, Pitfalls, and Future Directions

5.1 Conclusions and Perspectives 

 Most rigorous experiments utilize a top-down or a bottom-up approach, with the 

former involving the breaking down of a system through successive experiments.  The latter 

involves the piecing together of small systems through successive experiments.  For a more 

complete understanding of the effects of acetaminophen, its global effects were examined as 

well as its liver-specific effects.  Thus, this dissertation was conducted in a top-down 

approach with the effects of acetaminophen examined in human subjects first.  This was 

followed by an examination of acetaminophen on cultured human hepatocytes.  This top-

down approach has resulted in the creation of a pharmacometabolomic early intervention 

model which has identified biomarkers predictive of acetaminophen hepatotoxicity.  

Furthermore, the hepatotoxic effects of acetaminophen on hepatocyte energy metabolism 

pathways have been better elucidated and confirms existing paradigms of toxic mechanisms.  

Through the efforts put forth in this research, additional discoveries were made, namely the 

time and degree of human urinary and blood metabolome normalization due to controlled 

diet as well as the discovery of the apparent stressed metabolic state of human hepatocytes in 

culture.  It is likely that this latter serendipitous discovery in human hepatocytes is the most 

important scientific finding of this dissertation.  The stressed phenotype non-utilization of 

media glucose seen in Chapter 4 has the potential to impact many areas of research 

including- hepatocyte cryopreservation, extracorporeal liver bioreactors, and liver 

transplantation.   
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 The use of cryopreserved human hepatocytes has become a popular alternative to 

fresh human hepatocytes due to the sporadic availability of human hepatocytes.  By using 

cryopreserved hepatocytes, researchers are able to utilize a steady supply of fully 

characterized (i.e. P450 activity) hepatocytes at the time and amount of their choosing, which 

is quite difficult or even impossible to do with fresh human hepatocytes.  The process of 

hepatocyte cryopreservation, understandably, can be quite detrimental to hepatocyte viability.  

Perhaps the addition of a short chain fatty acid, such as octanoic acid, will improve 

hepatocyte viability by increasing metabolism of substrates for energy allowing the stressed 

hepatocytes to remain viable long enough to recover from the stresses of isolation and 

cryopreservation.  This same idea could be applied to the fields of extracorporeal liver 

bioreactors and liver transplantation.  Perhaps the administration of octanoic acid and 

glucagon supplemented medium or high glucose medium after isolation will allow 

hepatocytes to better utilize fatty acid β-oxidation for energy as well as utilize the fatty acids 

as a substrate for gluconeogenesis and glycogenesis.  This could help the human hepatocytes 

increase, or at least retain, their glycogen content, which was seen to be quite low in the 

human compared to the rat hepatocytes.  Furthermore, although not measured, it is likely that 

the lipid and free fatty acid content of the hepatocytes was quite low due to their utilization 

for energy.  Administration of octanoic acid could help to attenuate the depletion of 

endogenous lipids and free fatty acids reserving them for membranes and extracellular 

matrix, improving attachment and viability.   
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5.2 Pitfalls 

 As with most studies, there are ways in which these studies could have benefited with 

different study designs.  One thing that could have helped all three of the experiments 

discussed in Chapters 2 – 4 would have been larger sample sizes.  However, this comes at a 

price, as added cost and time.  The pharmacometabolomics study in Chapter 3 would most 

benefit from larger sample numbers, however, this would be extremely cost prohibitive due 

to the two week inpatient hospital requirement.  The analyses in this section of the 

dissertation suffered most from poor statistical significance, largely due to the nature of 

human diversity as well as the relatively minor xenobiotic influence of therapeutic doses of 

acetaminophen.  Furthermore, the analysis as a whole would likely have benefited greatly if a 

higher field NMR spectrometer were used to analyze the urine samples.  This would have 

resulted in spectra of substantially higher resolution and sensitivity.  It would be expected 

that higher quality spectra would have resulted in higher quality statistical analyses.  In 

addition, mass spectrometric analysis of the urine samples would have made it possible to 

assay for the low concentration metabolites, potentially uncovering the effects of 

acetaminophen on many more metabolites not measured by NMR spectroscopy, making it 

possible to analyze additional metabolic pathways.  Finally, administration of 13C enriched 

compounds would have allowed for a superior analysis of metabolic pathways.  For more 

information on the advantages of using 13C compounds, see sections 1.7 and 4.1.   

 There were a few drawbacks with the hepatocyte culture experiments described in 

Chapter 4.  A relatively easily remedied drawback of this chapter is the number of samples 

(human subjects) used.  There were only primary human hepatocyte cultures from two 

subjects exposed to the U-13C octanoic acid media formulation.  This experiment should be 
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repeated a third time to increase statistical significance.  Also, the cryopreserved human 

hepatocyte experiments were only performed with hepatocytes from one subject.  This 

should be repeated two more times to allow for statistical examination of some of the results.   

 A major drawback of the experimental procedure of Chapter 4 involves the manner in 

which the replicates for the rat hepatocyte culture experiments were performed.  To the 

chagrin of this author, the experiments were replicated such that there were approximately 4 

– 5 replicates per experimental intervention and media formulation (such as U-13C glucose 

DMEM with insulin) where the replicates were plates of cultured hepatocytes isolated from 

the same rat.  This resulted in extremely consistent measurements within replicates (i.e. small 

error bars), but necessitated the use of fractional enrichments instead of absolute 

concentrations.  This was due to the inability to reliably normalize data between hepatocyte 

cultures isolated from different animals for the number of viable hepatocytes on each culture 

plate.  Being able to accurately track absolute production rather than relative production (via 

fractional enrichment) would have allowed for better metabolic pathway analysis.  Another 

method which would have facilitated improved metabolic pathway analysis would have been 

to utilize positional-labeled 13C substrates instead of uniformly-labeled 13C substrates 

(isotopologues versus isotopomers).  This would have allowed for improved atomic tracking 

and improved elucidation of specific entry points into the TCA cycle, such as at oxaloacetate 

or citrate (via pyruvate carboxylase or pyruvate dehydrogenase, respectively) as well as 

determination of TCA cycling.  For a better explanation of this, see Figure A-2.   

 Finally, the integration of transcriptomics and proteomics techniques to the analysis 

would have permitted an enhanced understanding of what was happening in the hepatocyte 
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culture system through the use of a systems biology approach.  This integration of the three 

‘omics technologies will be discussed in further detail in the next section.   

 

5.3 Future Directions 

 The diet standardization study in Chapter 2 was somewhat surprising that only a 

single day was required to normalize the urine.  Future work could be performed in a larger 

metabolomic examination of the effects of different diets, such as region- or ethnicity-

specific diets or vegetarianism, for example.  An important part of metabolomics is the 

measurement of changes in the metabolome, and so metabolome standardization is quite 

important.  As far as the two week acetaminophen study discussed in Chapter 3, serum 

samples were collected.  Analysis of the serum samples has begun.  Once finished, this 

should complete the multivariate statistical metabolomic analyses for this study.   

 There are quite a few directions to be taken with the experiments in Chapter 4.  The 

rat hepatocyte experiments should be tested with xenobiotics which have potential to 

challenge the metabolome, such as acetaminophen.  This could act as a validation of the 

method.  Then, the importance of stable isotope metabolomics for drug toxicity testing may 

be shown to be an integral part of the analysis, much like the other ‘omic technologies of 

proteomics and transcriptomics.  Furthermore, additional 13C or 15N enriched compounds 

could be administered to the hepatocytes to track other metabolite changes.  For instance, 15N 

enriched ammonia could be added to the media to better observe the urea cycle and energy 

state of the cell via the ATP:ADP ratio, respectively.  Other 13C compounds could also be 

used to probe other metabolic pathways, such as propionate to observe anaplerosis and 

gluconeogenesis.  With the easy availability and low cost of rat hepatocytes for 
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experimentation, multiple proofs of concept experiments could be conducted for method 

validation using rat hepatocytes.  Once refined, the methods can be translated for use with 

human hepatocytes.  Finally, 31P studies, using an NMR-compatible bioreactor could be 

conducted to determine the effects of acetaminophen toxicity on hepatocellular bioenergetics 

and pH.   

 Additionally, acetaminophen administration to the rat hepatocytes could allow for the 

examination of hepatocyte response to the toxic effects of hepatocytes in the fasted or fed 

state, instead of the apparent stressed-fasted state of the human hepatocytes.  Evidence 

describing impairment in glutaminolysis due to acetaminophen toxicity was described in 

Chapter 4.  Since the rat hepatocytes exhibited significant glutamine entry into the TCA 

cycle while in the fed or fasted states, this protein arylation impairment of glutamine-related 

enzymes could be tested.  This was attempted with the human hepatocytes, but was not 

possible due to the undetectable amount of glutaminolysis, presumably due to the ammonia-

induced inhibition of glutamine dehydrogenase presumably due to the stress-induced 

negative nitrogen balance.  However, the discovery of a decreased lactate concentration due 

to acetaminophen toxicity uncovered some contrasting data in the literature regarding LDH 

and possible arylation by NAPQI.  Thus, standard proteomic analysis of protein adducts 

could be utilized to determine the degree of LDH (and other proteins) arylation by NAPQI.   

 The serendipitous discovery of this apparent stressed phenotype exhibited by the 

human hepatocytes deserves further investigation.  Perhaps the administration of epinephrine, 

cortisol, and glucagon to rats prior to hepatocyte isolation or addition of the above 

compounds to media formulations given to rat hepatocyte cultures could be conducted in an 
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attempt to replicate the metabolic state of the cultured human hepatocytes in cultured rat 

hepatocytes.   

 The underlying caveat of ‘omics analyses (transcriptomics, proteomics, and 

metabolomics) is that in genetic disorders, disease states, age, or exposure to toxicants there 

is a shift in the relative mass balance (transcripts, proteins, and metabolites) from that of 

“normal”.  This fingerprint can serve as a phenotype of that particular state.  The interaction 

between the transcriptome, proteome, and metabolome can be seen in Figure 5-1.  For 

transcriptomics, that shift is evaluated by measuring changes in mRNA transcripts of the 

different genes.  For proteomics, that shift is evaluated by measuring changes in protein 

concentrations in addition to post translational modifications.  Changes in production or 

degradation of mRNA or proteins are not what are important, per se.  What is important are 

the concentrations of the transcripts or proteins as it is the concentrations that have the 

biggest downstream effects.  This is because the transcripts or proteins themselves are 

generally not metabolized or transformed to something else, like metabolites are.  Thus, 

concentrations of metabolites are not suitable by themselves to fully explain changes in 

metabolism.   

 An experiment conducted using all three of the ‘omics technologies to determine the 

specific signaling pathways involving the activations and inactivations of the enzymes 

involved in glycogen synthesis and PFK-1-mediated glycolysis should be conducted to 

conclusively determine the exact mechanisms keeping cultured human hepatocytes stuck in 

the stressed state.  In doing so, one could identify ways to attenuate or inhibit this 

phenomenon, thus creating hepatocyte culture conditions where the hepatocytes display a 

more natural, in vivo phenotype rather than the stressed phenotype.   
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Figure 5-1- Diagram showing the various ‘omics sciences (left) and the TCA cycle (right) with some of the 
metabolites that feed into it.  The switch from fed to fasted states can be seen in the figure as well as some of 
the 13C compounds that are used in the experiment (grey italics).   
 

 Thorough analyses probing the mechanistic underpinnings of the efficacy or toxicity 

of xenobiotics should consist of a combination of the ‘omics technologies.  Thus, the effects 

of acetaminophen (or of any xenobiotic for that matter) should fully be probed using all of 

the 3 ‘omics technologies- transcriptomics, proteomics, and metabolomics.  These analyses 

could be done in a way where two of the techniques anchor, or validate, another technique.  

For instance, experiments such as those conducted in Section 4 of this dissertation could be 

conducted.  The results of those experiments could show some potential perturbations in 

metabolism.  Then proteomic and transcriptomics methods could be conducted such that 

proteins and transcripts involved in those metabolic changes are examined to see if they 

validate the metabolomic results.  Or perhaps, transcriptomic experiments could be 

conducted such that statistical methods are used to identify the potential up or down 

regulated genes upon exposure to acetaminophen.  Then, proteomic or metabolomic methods 
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could be used to interrogate the pathways involving the up or down regulated genes.  These 

types of thorough integrated, anchoring ‘omics analyses should be conducted to fully explain 

the effects of xenobiotic interventions or disease state examinations.   

 To summarize, the major conclusions from each of these studies is- (1) just one day 

of dietary standardization is required to normalize the human urinary and blood metabolome, 

which has the potential to reduce the cost of future metabolomic studies; (2) one of the first 

examples of pharmaco-metabolomics in humans was presented; (3) the discovery of the 

stressed phenotype in cultured (and possibly isolated) human hepatocytes may lead to the 

discovery of media additives which may inhibit this phenotype, possibly increasing liver 

transplant survivability and hepatocyte cryopreservation viability.   
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Appendix A- Creation of a Stable Isotope Metabolomic Model Applied to Rat 

Hepatocyte Cultures 

 It was shown previously (Section 4 of this dissertation) that human and rat 

hepatocytes can be given media supplemented with 13C metabolites which can be used to 

track production of different metabolites involved in the TCA cycle.  Additionally, shifts in 

energy and phase II metabolism can be seen.  This method can easily be added to existing 

cell culture experiments and can be combined with standard proteomic or transcriptomic 

experiments to make a more complete assay of hepatocyte response to xenobiotic 

intervention.  This is due to the integration of all three ‘omics sciences- metabolomics, 

proteomics, and transcriptomics, thus allowing these complementary technologies to anchor 

each other.  However, there were some problematic issues that came up with the 

implementation of this method in human hepatocytes.  Primarily, human hepatocytes are 

expensive, they can be difficult to obtain, and they can be difficult to culture- especially 

cryopreserved hepatocytes.  Additionally, it was difficult to get much (or any) fractional 

enrichment of downstream metabolites from glucose.  Thus, it is now necessary to refine and 

implement a minimal-assumption stable-isotope metabolomic model for use with cheap and 

easy to obtain primary rat hepatocytes.  Experiments were performed to determine which 

media components are metabolized for short-term energy needs, which as a consequence 

would allow for the tracking of metabolic changes due to the presence of the downstream 

metabolic products of stable isotope enriched media.   

 The cell culture system is ideal for the demonstration of this global analysis, which 

becomes increasingly complex as one adds the various cell types comprising tissues, and the 

various tissues of intact organisms.  Primary rat hepatocyte cultures were used in this study 
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since they have been a validated model of toxicity testing since the early 1980’s [234-236], 

and liver is the metabolic hub of the body through which most metabolites and xenobiotics 

must pass.  Metabolite tracking studies using 13C isotopomers have been performed with 

transformed cells using 13C-labeled nutrients and found that glycolysis and glutaminolysis 

are the primary carbon source [237].  Surprisingly, similar studies using stable isotopes have 

not been performed to fully characterize primary liver cultures, despite decades of 

development [197, 238, 239].  Perhaps the overriding problem is that primary hepatocyte 

cultures undergo a complex change in phenotype during the isolation and plating process that 

affects metabolism [52, 240, 241].  Surprisingly, this dedifferentiation process has not been 

fully characterized using 13C or 14C nutrients.  The dedifferentiation process and steps taken 

to halt or reverse it are explained in Section 1.6.1 of this dissertation.   

 To demonstrate this minimal-assumption stable-isotope metabolomic model method, 

rat hepatocytes were cultured in media containing various 13C-labeled nutrients at the same 

concentration as in the respective 12C basal media.  In addition, the effects of a free fatty acid 

was investigated whereby octanoic acid was included in the media formulation to induce β-

oxidation [242, 243], and observe its effects on glycolysis and gluconeogenesis [211, 244], 

ketone body production, lipogenesis [94], mitochondrial hyperpolarization [245-247].  The 

goal of this method is to stream-line NMR analysis to create a high information output 

describing metabolic perturbations so that increased through-put preclinical metabolomic 

analyses of xenobiotics can be performed.   

 To do this, rat hepatocytes were isolated, cultured, and exposed to media 

supplemented with U-13C glucose, U-13C glutamine, or U-13C octanoic acid.  Media and cell 
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extracts were examined by NMR spectroscopy to determine the downstream metabolites 

created from these 13C metabolites.   

 In order to determine whether a dynamic approach to quantify flux [98, 248] would 

be possible, and what temporal resolution would be required, hepatocytes were exposed to U-

13C glucose enriched media for a variable amount of time, from 15 minutes to 8 hours.  

Isotopomers of lactate were examined to see how total fractional enrichment and fractional 

enrichment of the different isotopomers change over time.  The results of the analysis of this 

media can be seen in Figure A-1.  Within minutes, lactate, a glycolytic end-product, reached 

isotopic 13C fractional enrichment steady-state, with the ratio of 12C/13C isotopomers not 

changing after 15 minutes.  However, an exposure period long enough to reach 13C fractional 

enrichment steady-state for TCA cycle intermediates (fumarate, aspartate), gluconeogensis 

(APAP-glucuronide, glucose), fatty acid ß-oxidation (aceate, acetoacetate, β-

hydroxybutyrate), pentose phosphate pathway (NDP-ribose), and urea cycle (arginine), must 

be chosen.  Therefore, the results of previous rat hepatocyte 14C/13C tracer studies were 

considered [111-114, 119-122, 125-137, 139].  Glycogen synthesis can reach steady state by 

1 - 48 hours after plating depending on the stress state [125-137].  In fact, longer time course 

studies over the course of 48 hours showed that glycogen content increased over 48 hours 

(Appendix 2, Figure A-1), and were likely not in metabolic or 13C isotopic steady state over 

the 2 hour 13C exposure period.  Protein synthesis can range from 20 minutes for insulin to 

weeks [32, 116, 117], while fatty acids have a similar range depending on whether they are 

involved in signaling (phosphatidylinositol) or part of the nuclear membrane [117, 123, 138].  

Therefore, 2 hours was chosen for the 13C dosing period and since the turn over rates of 

glycogen, lipid, protein, and polynucleotide pools are significantly longer than their 
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monomer pool, such as UDP-13C-glucose, amino acids, acetate, and ribose, respectively, 

these monomer can be used to sample intermediary metabolism as supported by decades of 

14C and 13C research in rat hepatocyte and perfused organ studies [111-139].   

 The lactate isotopomers are formed by metabolism of U-13C glucose-derived pyruvate 

via the TCA cycle [249].  They can be used to determine the amount of TCA flux through 

PDH and PC as demonstrated in Figure A-2.  Isotopomeric analysis is a powerful method for 

quantifying flux [210, 248, 250, 251].  The dynamic method requires multiple time points 

and therefore requires nearly an order-of-magnitude more effort, although it is more robust 

than the static method since actual flux rates for the various metabolic pathways can be 

obtained.  The static method for quantification of fractional enrichment of metabolites 

comprising the various metabolic pathways has been used extensively and focuses on the 

objective of this method- to be high through-put [248, 252].  Although isotopomeric analysis 

is possible with this method, absolute fractional enrichments were obtained to streamline 

analysis with the intent of up scaling so that they can be attached to other experiments to 

provide better mechanistic information regarding cell metabolism.   

 To determine the effect of glucose and glutamine concentration on net flux, DMEM 

formulations containing insulin and three concentrations of U-13C-glucose (2.5, 12.5 and 25 

mM) were substituted for the normal 12C glucose and tested at 24 h after plating.  For 

reference, low glucose DMEM is approximately 5.5 mM and high glucose DMEM is 

approximately 25 mM.  It was discovered that at 12.5 mM glucose and below, no glycogen 

was synthesized.  This is the highest amount of glucose found in the normal range of serum 

which should induce the insulinic response of glycogen synthesis in vivo.  It was not until the 

hepatocytes were given high glucose (25 mM) media that glycogen was synthesized (Figure 
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A-4).  The most glycogen was synthesized with normal glutamine concentrations (4 mM) 

found in DMEM (data not shown).  Since a normal metabolic response was desired, a high 

glucose medium with normal glutamine concentration was used for the experiments, even 

though higher levels of lactate and alanine were formed with this formulation (data not 

shown).  In the body, the liver is involved in the Cori cycle, converting lactate and alanine to 

glucose via gluconeogenesis.  However, in the high glucose medium, lactate accumulated 

intracellularly as well as in the media.  The excess lactate during this period could serve as an 

energy source for the brain or muscles, but the static nature of the media in 2D cultures 

allows metabolites transported out of the cell to accumulate.   

 

 

Figure A-1- Short time course study describing the amounts of normal lactate and 13C enriched lactate produced 
upon incubation with DMEM containing 13C glucose substituted for regular glucose.  12C lactate (black 
diamonds), 3-13C lactate (gray squares), and 2,3-13C lactate (black dots) can all be seen.   
 

 The lipid fractions were analyzed for significant changes and none were detected over 

the 48 h (data not shown).  Representative lipid fraction spectra can be seen in Figure A-3.  

Additionally the lipid fraction was analyzed for incorporation of the 13C label and glucose 
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was the only substrate that formed the glycerol backbone of lipids, however, the fractional 

enrichment was minor compared to the entire lipid pool since there were no 13C satellite 

peaks found in the 1H NMR spectra of the chloroform extracts (data not shown).  Although 

the lipids showed very little incorporation, lipogenesis may be important for future studies 

and this method could be used to analyze this fraction in more detail as previous 13C NMR 

methods have described [253].   

 

 

Figure A-2- Labeling patterns of lactate and TCA cycle intermediates.  White circles are unlabeled and black 
and gray circles are labeled.  Half black half white circles indicate that a symmetrical molecule has been labeled 
which makes half of the downstream metabolites labeled one way (1,2-13C oxaloacetate for instance) and half 
another (3,4-13C oxaloacetate).   
 

 Many preliminary studies were performed to correlate this 13C method with the many 

previous 14C and 13C studies on the optimization culture media for rat hepatocytes primarily 

performed in the late 1970’s. Several early studies varied the concentration of glucose and 

monitored the effects of glucagon and insulin on 14C-glucose metabolism 14C-glucose [111-

113, 119, 120], amino acids [115], and the effect of fatty acids  [121] [122].  Basically, it was 
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concluded that 25 mM glucose and 500 - 1000X insulin concentration best mimicked the fed 

state [111-113, 119, 120].  Similar results on glucose concentration as previously reported 

[111-113, 119, 120] were discovered using 2.5, 5, 12, and 25 13C-glucose with 1000X 

insulin.  At 12 mM there was a switch to a fasted metabolic phenotype with no glycogen 

synthesized and little lactate (Figure A-4).  At 2.5 mM, the rat hepatocyte cultures died by 48 

hrs, and at 5 mM, they were in a starved phenotype, similar to the 1979 results of Monte 

Bissel [119, 120].   

 

 

Figure A-3- Chloroform extract (lipid) fraction from representative cell extracts at 2 h (bottom), 24 h (middle), 
and 48 h (top).   
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Figure A-4- Spectra from rat hepatocytes exposed to DMEM containing 25 mM (red), 12.5 mM (pink), and 2.5 
mM (blue) glucose for 2 hours.  It can be seen that lactate and alanine production does not occur at the low 
concentration glucose medium and the glycogen production only occurs in the high concentration glucose 
medium.   
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Appendix B- Temporal Effects on Cultured Rat Hepatocytes 

 Additional longer-term time course studies were done to examine the changes 

hepatocyte metabolism undergoes over the first 48 hours after plating.  Hepatocytes were 

exposed to DMEM containing insulin and 13C glucose substituted for regular glucose for 2 

hours at 2, 24, and 48 hours after plating.  These results can be seen in Figure B-1.  Due to 

the method in which this data was collected, absolute production rates (instead of fractional 

enrichments) were able to be obtained.  There were increases in production of (from 13C 

glucose) and total concentration of aspartate, fumarate, lactate, intracellular glucose (uptake, 

not production), and glycogen; and an increase in alanine production.  Total concentrations 

of the ketone bodies- acetate, acetoacetate, and β-hydroxybutyrate remain relatively steady 

over the 48 hours.  These studies indicated that 24 hours was the earliest point that studies 

should be performed.  In order achieve the increased through-put goal of the method, as well 

as minimizing dedifferentiation of the hepatocytes, the 24 hour time point may be a good 

time point for experimentation.   

 A general increase in metabolism (aerobic and anaerobic) was seen when the 

incubation period for the hepatocytes was increased from 2 to 24 to 48 hours.  When 

designing experiments involving hepatocytes, however, one must also keep in mind the 

dedifferentiation (or transdifferentiation) that hepatocytes undergo with time after isolation 

and plating.  Thus, one should strike a balance between metabolic activity and 

dedifferentiation or culture their hepatocytes in media formulations conducive to hepatocyte 

differentiation.  These aspects are discussed in detail in the introduction section of this 

dissertation.   
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Figure B-1- Graphs describing the change in metabolites 2, 24, and 48 hours after plating upon exposure to 
DMEM containing 13C glucose and insulin for 2 hours.  The graphs show both 13C enriched (black) and total 
amounts (12C + 13C, grey lines) of metabolites standardized per milligram protein.  The error bars indicate 
standard error of the mean.  The black star indicates p < 0.05 between all three 13C time points, the grey star 
indicates p < 0.05 between all three 12C time points, and the grey cross indicates p < 0.05 between the first and 
third 12C time points.   
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