
Effects of Human Anti-Spike Protein Receptor Binding Domain
Antibodies on Severe Acute Respiratory Syndrome Coronavirus
Neutralization Escape and Fitness

Jianhua Sui,a* Meagan Deming,b Barry Rockx,b* Robert C. Liddington,c Quan Karen Zhu,a Ralph S. Baric,b Wayne A. Marascoa

Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute; Department of Medicine, Harvard Medical School, Boston Massachusetts, USAa; Departments
of Epidemiology and Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USAb; Infectious and Inflammatory Disease Center,
Stanford-Burnham Medical Research Institute, La Jolla, California, USAc

ABSTRACT

The receptor binding domain (RBD) of the spike (S) glycoprotein of severe acute respiratory syndrome coronavirus (SARS-CoV)
is a major target of protective immunity in vivo. Although a large number of neutralizing antibodies (nAbs) have been devel-
oped, it remains unclear if a single RBD-targeting nAb or two in combination can prevent neutralization escape and, if not, at-
tenuate viral virulence in vivo. In this study, we used a large panel of human nAbs against an epitope that overlaps the interface
between the RBD and its receptor, angiotensin-converting enzyme 2 (ACE2), to assess their cross-neutralization activities
against a panel of human and zoonotic SARS-CoVs and neutralization escape mutants. We also investigated the neutralization
escape profiles of these nAbs and evaluated their effects on receptor binding and virus fitness in vitro and in mice. We found that
some nAbs had great potency and breadth in neutralizing multiple viral strains, including neutralization escape viruses derived
from other nAbs; however, no single nAb or combination of two blocked neutralization escape. Interestingly, in mice the neu-
tralization escape mutant viruses showed either attenuation (Urbani background) or increased virulence (GD03 background)
consistent with the different binding affinities between their RBDs and the mouse ACE2. We conclude that using either single
nAbs or dual nAb combinations to target a SARS-CoV RBD epitope that shows plasticity may have limitations for preventing
neutralization escape during in vivo immunotherapy. However, RBD-directed nAbs may be useful for providing broad neutral-
ization and prevention of escape variants when combined with other nAbs that target a second conserved epitope with less plas-
ticity and more structural constraint.

IMPORTANCE

The emergence of severe acute respiratory syndrome coronavirus (SARS-CoV) in 2002 and Middle East respiratory syndrome
coronavirus (MERS-CoV) in 2012 has resulted in severe human respiratory disease with high death rates. Their zoonotic origins
highlight the likelihood of reemergence or further evolution into novel human coronavirus pathogens. Broadly neutralizing an-
tibodies (nAbs) that prevent infection of related viruses represent an important immunostrategy for combating coronavirus in-
fections; however, for this strategy to succeed, it is essential to uncover nAb-mediated escape pathways and to pioneer strategies
that prevent escape. Here, we used SARS-CoV as a research model and examined the escape pathways of broad nAbs that target
the receptor binding domain (RBD) of the virus. We found that neither single nAbs nor two nAbs in combination blocked es-
cape. Our results suggest that targeting conserved regions with less plasticity and more structural constraint rather than the
SARS-CoV RBD-like region(s) should have broader utility for antibody-based immunotherapy.

Coronaviruses are important human RNA viruses, as exempli-
fied by the global outbreak of the severe acute respiratory

syndrome (SARS) coronavirus (SARS-CoV) infection in 2002 to
�2004 and the recently emerged Middle East respiratory syn-
drome coronavirus (MERS-CoV) in 2012 (1). Both viruses cause
severe respiratory tract infection with a high mortality rate (2–5).
A wide range of other coronaviruses have also been detected in
bats, including SARS-like CoVs, suggesting that they are likely the
animal reservoir precursor strains that crossed the species barrier
and caused the SARS human epidemic (6–11). Some SARS-like
CoVs that are circulating in bats are capable of using human re-
ceptors for docking and entry (12) and/or may replicate or recom-
bine with other CoV strains to potentiate cross-species transmis-
sion and emerge as new, highly virulent human pathogens (13).
Therefore, SARS-CoV and the antigenically distinct SARS-CoV-
like bat CoV remain poised for reemergence and represent valu-
able research models for development of better prevention and

treatment strategies against highly heterogeneous zoonotic vi-
ruses, including the MERS-CoV. For therapeutic antibody and
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vaccine design, it is critically important to develop or elicit broadly
cross-reactive neutralizing antibodies (nAbs) that neutralize a
broad range of antigenically disparate viruses that share similar
pathogenic outcomes in vivo. In parallel, it is also essential to un-
cover nAb-selected virus escape mutation pathways and to pio-
neer strategies that either prevent escape or drive virus evolution
down deleterious pathways that attenuate virus virulence.

The characteristic surface spike (S) protein of SARS-CoV is the
major target for vaccines and therapeutic antibodies (14). Numer-
ous SARS S-protein-specific neutralizing antibodies have been re-
ported (15–27). The majority of these nAbs recognize epitopes
within the receptor binding domain (RBD) that also bind the
angiotensin-converting enzyme 2 (ACE2) receptor (15–18, 21–24,
27, 28). Evidence also suggests that the RBD encodes one of the
important neutralizing epitope clusters in vivo (29–32). nAbs
against S2 were seen during natural human infection with SARS-
CoV, but there is a paucity of information on their epitopes and
potencies (33). Human nAbs developed as potential therapeutics
for the prophylaxis and treatment of SARS mainly targeted the
RBD (18, 22–24, 27). Studies have been conducted to assess anti-
RBD nAbs for their breadth of protection against all relevant
strains of SARS-CoV and neutralization escape variants (34, 35).
Some antibodies were broadly active in neutralizing multiple viral
strains; however, all nAbs tested, including strain-specific or
broadly reactive nAbs, selected for escape mutants. It remains un-
clear whether there exists an escape-resistant epitope on the RBD
or if the RBD is generally not an ideal target for development of
escape-resistant broadly neutralizing Abs against the SARS-CoV
or any potential novel emerging CoVs.

We previously developed a strain-specific human nAb, 80R,
that targets a conformation-sensitive neutralizing epitope located
between amino acids (aa) 426 and 492 of the RBD of S glycopro-
tein (22, 36, 37). 80R is specific against the 2002-2003 SARS-CoV
strains, including 2003 early phase (GZ02), middle-phase
(CUHK-W1), and late-phase (Urbani and Tor2) epidemic strains
(38). It cannot neutralize the 2003-2004 human epidemic strain
GD03 or civet (HC/SZ/61/03) or raccoon dog (A031G) 2004
strains due to a single-amino-acid substitution (D480G) in their
RBDs, which is also a 80R neutralization escape mutant. To extend
the neutralization activity of 80R, a panel of human nAbs (11A,
cs5, cs84, fm6, and fm39) were previously developed by de novo
phage display library selection with GD03-RBD (11A), light-chain
shuffling of 80R (cs5 and cs84), or focused mutagenesis of 80R
(fm6 and fm39) (38). These 80R derivative nAbs showed broader
neutralization activity than parental 80R in viral neutralization
assays. Fm6 is the most promising nAb, neutralizing a broad range
of viruses, including 2002-2003 strain Tor2, 2003-2004 strain
GD03, and 80R’s escape mutant (38). In this study, we tested if
these nAbs, which convergently target the same or a similar neu-
tralizing epitope within the RBD, alone or in combination can
prevent or attenuate viral escape. We first examined if the 80R-
derived nAbs with broader neutralizing activity can more effec-
tively neutralize a wide range of natural viral strains as well as
80R’s neutralization escape variants that also occurred naturally
and next analyzed virological outcome following focused anti-
body pressure on the neutralization epitope—whether 80R deriv-
atives alone or in combination with 80R can block neutralization
escape pathway(s) or force the virus to evolve down an attenua-
tion pathway(s). We showed that some 80R derivative nAbs had
great potency and breadth in neutralizing multiple viral strains,

including neutralization escape mutant viruses derived from
many other nAbs; however, none of them effectively closed escape
mutation pathways or significantly attenuated virus pathogenesis
in vivo. Importantly, a combination of two nAbs against this RBD
epitope could also not prevent neutralization escape. We next de-
veloped two new RBD-directed nAbs that can neutralize these
escape mutant viruses; however, they again selected novel neutral-
ization escape mutants. These results suggest this particular
epitope targeted by 80R and its derivatives is structurally flexible
and is unlikely to be resistant to neutralization escape in vivo.
Ideally, to prevent nAb-mediated virus evolution, a more con-
served epitope with more sophisticated function and/or structural
constraint should be targeted. Alternatively, a divergent combina-
tion approach of targeting the RBD-ACE2 interface epitope and a
second different epitope may be more effective in providing broad
neutralization and prevention of escape variants.

MATERIALS AND METHODS
Viruses and cells. The generation and characterization of each of the
recombinant infectious clones (icSARS, icGD03, and icGD03-MA) have
been described previously (39, 40). All work was performed in a class II
biological safety cabinet in a biosafety level 3 laboratory containing redun-
dant exhaust fans. Personnel were equipped with powered air-purifying
respirators with high-efficiency particulate air and organic vapor filters
(3M, St. Paul, MN), wore Tyvek suits (DuPont, Research Triangle Park,
NC), and were double gloved. Vero E6 cells were grown in minimal es-
sential medium (MEM) (Invitrogen, Carlsbad, CA) supplemented with
10% Fetal clone II (HyClone, South Logan, UT) and gentamicin-kanamy-
cin (UNC Tissue Culture Facility). Viruses were propagated on Vero E6
cells in Eagle’s MEM supplemented with 10% Fetal cIone II (HyClone,
South Logan, UT) and 1� antibiotic-antimycotic (Gibco, Grand Island,
NY) at 37°C in a humidified CO2 incubator; and the virus was cryopre-
served at �80°C until use. The viral titers of the stocks were determined
on Vero E6 cells by plaque assay as described elsewhere (41, 42).

In vitro virus growth. Cultures of Vero E6 cells were infected with
wild-type (WT) or escape mutant viruses at an approximate multiplicity
of infection (MOI) of 1 for 1 h, and the monolayer was washed twice with
2 ml of phosphate-buffered saline (PBS) and then overlaid with complete
medium. At 3, 8, 12, and 24 h postinfection, supernatant was clarified by
centrifugation at 1,600 rpm for 10 min, aliquoted, and frozen at �80°C.
Virus stocks were titrated on Vero E6 cells by plaque assay as previously
described (41, 42).

Generation of antibodies by phage display library selection and pro-
duction of phage Abs and MAbs. The generation of new antibodies for
fm6 escape mutant Urbani Y436H was performed as described previously
(38). Phage Abs (in the scFv form [i.e., single-chain antibody variable
region]) for individual clones were produced for the pseudotyped virus
neutralization assay by the same method for making the phage library
(43). Phage particles were concentrated 25� (2 � 1013 to 6 � 1013) by
using polyethylene glycol (PEG)-NaCl precipitation, dissolved in PBS,
and filter sterilized before use. Human monoclonal antibodies (MAbs) (in
human IgG1s) were produced as described previously (22). In brief, the
VH and VL gene fragments of the selected scFvs were separately subcloned
into human IgG1 kappa light-chain or lambda light-chain expression vec-
tor TCAE5 (44). Human IgG1s were expressed in 293F cells (Invitrogen)
or 293T cells by transient transfection and purified by protein A-Sephar-
ose affinity chromatography.

Neutralization assay with S-protein-pseudotyped lentivirus. S-pro-
tein-pseudotyped lentivirus was produced by cotransfection of 293T cells
with four plasmids: S-protein-expressing plasmid, plasmid pCMV�R8.2
encoding HIV-1 Gag-Pol, and plasmid pHIV-Luc encoding the firefly
luciferase reporter gene under the control of the HIV-1 long terminal
repeat (LTR), as described elsewhere (37, 38, 45). For the neutralization
assay, testing phage-Abs at different dilutions were incubated with an
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adequate amount of S-protein-pseudotyped viruses for 30 min at room
temperature and then added to a 96-well plate with 1 � 104 hACE2-
expressing 293T cells/well. Thirty-six to 48 h later, infection efficiency was
quantified by measuring the luciferase activity in the cell lysate with an
EG&G Berthold Microplate luminometer LB 96V.

Neutralization assay with icSARS-CoV or escape mutants. Neutral-
izing titers were determined by either a microneutralization assay or a
plaque reduction neutralization titer assay (42). For the microneutraliza-
tion assay, nAbs were serially diluted 2-fold and incubated with 100 PFU
of the different SARS-CoV infectious clone (icSARS-CoV) strains for 1 h
at 37°C. The virus and antibodies were then added to a 96-well plate with
5 � 103 Vero E6 cells/well and 5 wells per antibody dilution. Wells were
checked for cytopathic effect (CPE) at 4 to 5 days postinfection, and the
50% neutralization titer was determined as the nAb concentration at
which at least 50% of wells showed no CPE. For the plaque reduction
neutralization titer assay, nAbs were serially diluted 2-fold and incubated
with 100 PFU of the different icSARS-CoV strains for 1 h at 37°C. The
virus and antibodies were then added to a 6-well plate with 5 �105 Vero
E6 cells/well in duplicate. After a 1-h incubation at 37°C, cells were over-
laid with 3 ml of 0.8% agarose in medium. Plates were incubated for 2 days
at 37°C and then stained with neutral red for 3 h, and plaques were
counted. The percentage of plaque reduction was calculated as [1 � (no.
of plaques with antibody/no. of plaques without antibody)] � 100. All
assays were performed in five replicates.

Expression and purification of RBD of SARS-CoV mutants and
ACE2 proteins for SPR analysis. Protein expression and purification for
surface plasmon resonance (SPR) analysis were performed as follows.
Plasmids encoding the RBD (residues 318 to 510) fused C terminally with
an Fc tag of human IgG1 were constructed as described elsewhere (46, 47).
RBD-Fc fusion proteins were produced by transfection of 293F cells (In-
vitrogen) and purified by protein A-Sepharose affinity chromatography.
Soluble human ACE2 (hACE2) protein corresponding to its N-terminal
extracellular domain (aa 18 to 740) (48) was kindly provided by Fang Li at
the University of Minnesota Medical School. For mouse ACE2 (mACE2)
protein, its N-terminal extracellular domain (aa 19 to 615) was cloned in
pcDNA3.1 and fused at the C-terminal portion with a His6-tagged pro-
tein, and the protein was produced by transfection of 293F cells and pu-
rified by immobilized-metal affinity chromatography (IMAC).

SPR analysis. Binding of Abs to different RBDs was analyzed on a
Biacore T100 (Biacore) at 25°C, as described previously (38, 49). Anti-
human IgG Fc antibody (Biacore) was covalently coated onto a CM5
sensor chip by amine coupling using the coupling kit (Biacore). Abs were
captured onto anti-human IgG Fc surfaces at the flow rate of 10 �l/min in
HBS buffer (Biacore). ACE2 soluble protein was injected over each flow
cell at the flow rate of 30 �l/min in HBS buffer at different concentration
ranges, depending on the binding affinity for each Ab. The highest con-
centration tested for mouse ACE2 reached 20 �M. A buffer injection
served as a negative control. Upon completion of each association and
dissociation cycle, surfaces were regenerated with 3 M MgCl2 solution.
The association rates (Ka), dissociation rate constants (Kd), and affinity
constants (KD) were calculated using Biacore T100 evaluation software.
The goodness of each fit was based on the agreement between experimen-
tal data and the calculated fits, where the �2 values were below 1.0. Surface
densities of Abs were optimized to minimize mass transfer. All Ka, Kd, and
KD values reported here represent the means and standard errors of at
least two experiments.

Escape mutant analysis. Neutralization-resistant SARS-CoV mutants
were generated as described elsewhere (34). In brief, 1 � 106 PFU of
icUrbani, icGD03, or icGD03-MA were preincubated with 30 �g of nAb
in 100 �l of medium at 37°C for 1 h and then inoculated onto 106 Vero E6
cells in the presence of the respective Ab at the same concentration. The
development of cytopathic effect was monitored over 72 h, and progeny
viruses were harvested. nAb treatment was repeated for 2 additional pas-
sages, passage 3 viruses were plaque purified in the presence of Ab, and
neutralization-resistant viruses were isolated. Experiments were per-

formed in duplicate, and the S glycoprotein gene of individual plaques
from each experiment was sequenced as described elsewhere (15). The
neutralization titers of wild-type and MAb-resistant viruses were deter-
mined as described elsewhere (34, 42).

Animal studies. Female BALB/c mice, young (10 weeks old; Jackson
Laboratory, Bar Harbor, ME) or aged (12 months old; Harlan Labs, Indi-
anapolis, IN), were acclimated for 1 week after shipping. All mice were
housed under sterile conditions in individually ventilated HEPA-filtered
Sealsafe cages using the SlimLine system (Tecniplast, Exton, PA). Exper-
imental protocols were reviewed and approved by the Institutional Ani-
mal Care and Use Committee at the University of North Carolina, Chapel
Hill. For prophylactic passive antibody protection studies, aged mice were
injected intraperitoneally with 250 �g of MAb (80R, Fm6, or PBS) in 400
�l PBS 24 h prior to infection. For all viral challenges, mice were anesthe-
tized with a mixture of ketamine (1.3 mg/mouse) and xylazine (0.38 mg/
mouse) administered intraperitoneally in a 50-�l volume and then intra-
nasally inoculated with 105 PFU of icUrbani, icGD03, icGD03-MA, fm6
escape mutant (fm6-Esc), fm39-Esc, cs5-Esc, Y12-Esc, or Y112A-Esc. Af-
ter challenge, morbidity (weight) and mortality were assessed daily. On
day 4 postinfection, mice were euthanized with isoflurane, and one-quar-
ter of each mouse lung was taken to determine the viral titer.

Lung viral titers. Lung tissue samples were weighed and stored in 1 ml
PBS at �80°C until the time of titration. Tissue was thawed and homog-
enized with glass beads at 60 s at 6,000 rpm in a MagnaLyser (Roche). The
solution was centrifuged at 13,000 rpm under aerosol containment in a
tabletop centrifuge for 5 min, the clarified supernatant was serially diluted
in PBS, and 200-�l volumes of the dilutions were placed onto monolayers
of Vero E6 cells in six-well plates. Following 1 h of incubation at 37°C, the
cells were overlaid with 0.8% agarose-containing medium. Two days later,
the plates were stained with neutral red, and the plaques were counted.

Statistical analysis. Statistically significant differences were analyzed
by t test or analysis of variance (ANOVA) using GraphPad software.

RESULTS
Cross-neutralization activities of 80R’s derivative human nAbs.
In this study, we tested the neutralization activity of a group of
nAbs against a broader panel of wild-type SARS-CoVs and
SARS-like-CoVs than that previously tested, including seven
available human representative epidemic and zoonotic strains
(Fig. 1A). Consistent with previous findings, 11A only neutral-
ized GD03 virus infection. All of the 80R derivatives showed
cross-neutralization activity against multiple strains. fm6 dem-
onstrated the greatest cross-strain neutralization activity with
effective antibody concentration ranging from 0.02 to 1 �g/ml
(Fig. 1B). In addition, 80R and its derivatives were tested
against seven additional escape mutant viruses of the 2002-
2003 Urbani strain (35), selected by a panel of human nAbs
derived from memory B cells of SARS-CoV-infected patients
(24). As shown in Fig. 1C, they differentially neutralized all of
the mutant viruses tested, with fm6 showing the best overall
neutralization potency and breadth. fm6 was further evaluated
and compared with 80R for its prophylactic effect in protecting
against SARS-CoV challenge in an aged-mouse model. Twelve-
month-old BALB/c mice that received fm6 at 12.5 mg/kg intra-
peritoneally 24 h prior to infection with Urbani or GD03 were
protected against significant weight loss. For both the Urbani
and GD03 viral challenge groups, all five mice in each fm6-
treated group had a more than 3-log reduction in viral titers in
their lungs on day 4 after infection to below the assay limit. In
contrast, animals that received PBS or 80R were not protected
against weight loss or viral load in lungs after challenge with
both viruses (Fig. 2). The superiority of fm6 in aged mice dem-
onstrates that it is more potent than 80R and would protect the
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most vulnerable aged populations from life-threatening dis-
ease. 80R has been previously shown to significantly reduce
virus titers in lungs of young mice that were infected with Ur-
bani virus (37). SARS-CoV is more virulent in aged than in
young mice, as evidenced by increased virus titers, more severe
disease outcomes, and higher mortality rates in aged popula-

tions, similarly to what has been reported for humans (50).
This increased virulence may be responsible for the different
effects of 80R seen in aged and young mice. On the other hand,
the lung titer was examined on day 2 post-viral infection in the
previously published study (37), whereas it was examined on
day 4 postinfection in this study. We therefore cannot rule out

FIG 1 Neutralization of human and animal SARS-CoVs and neutralization escape mutants by a panel of nAbs. (A) Amino-acid differences in the RBDs of human
and animal SARS-CoVs. (B) Neutralization of viruses listed in panel A by 80R, its derivative antibodies, and 11A (GD03 specific and not a derivative of 80R) in
a microneutralization assay. The 50% neutralization titer was defined as the Ab dilution at which at least 50% of wells showed no CPE. The Ab concentration in
the stock solution used for dilution was 20 �g/ml. (C) Neutralization efficacy against wild-type (WT) and neutralization escape mutants generated in a previously
reported study (34) by the same panel of nAbs tested in panel B. The neutralization assay was performed similarly to that in panel B.
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the possibility that an 80R escape mutant virus may have rap-
idly emerged during this 2-day window, which may also ac-
count for the inability of 80R to protect aged mice from infec-
tion.

Neutralization escape mutants from 80R derivatives. To test
if SARS-CoV could escape from neutralization by the 80R deriv-
atives, in vitro neutralization escape studies were performed with
the Urbani isolate under the selection of 80R and its derivatives,
cs5, cs84, fm6, and fm39, which have the amino acid differences in
light-chain complementarity-determining regions (LCDRs) (38).
Escape mutants were isolated from all nAbs, and all mutants con-
tained single-amino-acid changes within the RBD (Fig. 3A).
Consistent with our previous report, the 80R escape mutants had
aspartic acid-to-glycine or -alanine (D480G or D480A) substitu-
tions (38). Two neutralization escape isolates of cs5 had amino
acid changes at two different sites: one had an N479I mutation,
and the other had a D480Y mutation. The single-amino-acid
changes associated with neutralization escape from cs84, fm6, and
fm39 were D480Y, Y436H, and N479T, respectively. Of note, 80R
escape mutant Urbani-D480G virus was no longer able to escape
the neutralization of fm6: no mutant was generated in three inde-
pendent experiments (data not shown), indicating that once the
virus undergoes its primary escape (D480G under the selection of
80R), further evolution is heavily restricted and limits the virus’s
ability to evolve secondary escape mutations across this region
(e.g.Y436H or another pathway).

Generation of new nAbs Y12 and Y112A to neutralize fm6’s
escape mutant Y436H. As shown in Fig. 3B, fm6 can cross-neu-
tralize all of the escape mutant viruses, except for the N479T mu-
tant selected by fm39, and thus represents the most broadly

neutralizing and potent nAb in the panel. Despite its broad neu-
tralization potency, the occurrence of the Y436H escape mutant
following selection with fm6 led us to identify new nAbs that could
have even broader activity, including blockade of the Y436H es-
cape pathway. We took a similar approach to that used before (38)
for generating nAbs against the Y436H mutant. Purified RBD (aa
318 to 510) of Tor2 (a strain identical to Urbani across the RBD)
containing the Y436H mutant was prepared for Ab-phage library
panning. Two combined nonimmune human antibody-phage
display libraries and a light-chain-shuffled 80R-vk-cs library (38)
were panned against the Y436H-RBD protein either coated on
immunotubes or covalently coupled to magnetic beads, sepa-
rately. Using a neutralization assay with Tor-Y436H-pseudotyped
virus, two nAbs (Y12 and 22) were identified from the nonim-
mune antibody libraries, and eight nAbs (55, 61, 95, 100, 109,
Y112A, 113, and 132) were isolated from the 80R-vk-cs library.
Sequence comparison of these antibodies is shown in Fig. 3C.
These 10 antibodies were further analyzed for cross-neutralization
activity against four more pseudotyped viruses. As shown in Fig.
3D, 2 of the 10 antibodies, Y12 and Y112A, efficiently neutralized
all strains tested, including human strains (Tor2 and GD03) and
those containing the 80R (D480A or D480G) and the Fm6
(Y436H) escape mutations. Plaque reduction assay confirmed the
broad neutralization activities of Y12 and Y112A against wild-type
human strains Urbani and GD03, 80R neutralization-escape mu-
tant virus (Urbani-D480G), and fm6 escape mutant (Urbani-
Y436H) as well as a mouse-adapted strain, GD03-MA virus, which
carries the GD03 S glycoprotein with a Y436H mutation in the
RBD (Fig. 4). Y112A and Y12 similarly neutralized Urbani-

FIG 2 Prophylactic treatment of SARS-CoV infections in 12-month-old BALB/c mice by 80R and fm6 nAbs. Body weights of mice infected with icGD03 or
icUrbani were measured daily after passive administration of 12.5 mg/kg (�250 �g/mouse) nAbs. Lung tissues of mice infected with icGD03 or icUrbani were
harvested on day 4 postinfection and assayed for infectious virus by a plaque assay using Vero E6 cells. Error bars indicate standard deviations (n � 5). *, P 	 0.01,
**, P 	 0.001, and ***, P 	 0.0001, compared with the PBS group.
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Y436H, but Y112A was more potent in neutralizing the Urbani,
GD03, and Urbani-D480G viruses.

Neutralization escape mutants of Y12, Y112A, and the com-
bination of 80R and fm6. We next examined the escape profiles
from Y12 and Y112A of a number of viral strains, including escape
mutants of 80R and fm6. As shown in Fig. 5A, some of the mutants
were previously seen following selection with other 80R derivative
antibodies. As fm6, Y12, and Y112A alone failed to prevent viral
escape mutations, we next asked if a convergent combination im-
munotherapy (CCI) approach, in which two nAbs that are di-
rected against the same or a similar epitope, can prevent neutral-
ization escape or seriously impact viral fitness. The observation
that the icUrbani-D480G mutant virus selected by 80R was no
longer able to escape the neutralization of fm6 indicates that the
virus could only undergo one round of mutation when the viruses
were sequentially targeted by 80R and then fm6. We therefore
tested if the same evolutionary limitations exist when both of
them are combined and used simultaneously. The result showed
that the combination did not prevent the emergence of viral es-
cape mutants: rather, a resistant virus carrying the N479T muta-
tion was selected (Fig. 5A). Urbani-N479T is also an escape mu-
tant of nAb fm39, which neither 80R nor fm6 alone neutralized

(Fig. 3A and B). Taken together, 80R and all of its derivatives are
selecting for slightly variant escape profiles across the 80R
epitope. These escape mutations occur at 5 positions along the
interface between 80R and the RBD, which are either directly ad-
jacent to or the key contact residues for binding with hACE2 in the
RBD (Fig. 5B).

Effect of escape mutations on human ACE2 receptor binding
and in vitro viral growth. In order to test if the escape mutants
generated from the above studies alter virus entry and fitness, we
determined binding affinity and kinetics between the RBDs of
these escape mutants and soluble extracellular domain of human
ACE2 (hACE2). Although most of the mutations occurred at po-
sitions at the RBD-hACE2 interface (48), they did not appreciably
change the binding affinity (KD) and kinetics (Kon and Koff) to
hACE2, except Y12’s escape mutation (Y442S), which had an �
6-fold-slower Koff and an �5-fold-increased affinity (Fig. 5C).
Replication of all viruses in Vero E6 cells (expressing monkey
ACE2) was delayed early in infection, as shown by a 1- to 2-log
reduction in titer at 8 h after infection compared with wild-type
icUrbani. However, all viruses reached comparable peak titers of
between 106 and 107 PFU/ml by 24 h after infection (Fig. 5D). The
monkey ACE2 of Vero E6 (GenBank accession no. AY996037.1)

FIG 3 Neutralization escape mutants of 80R derivatives and generation of new antibodies to neutralize escape mutants. (A) Sequence comparison of 80R
derivative nAbs in their light-chain complementarity-determining regions (LCDR1 to -3) (38) and their escape mutations in the RBD. (B) Cross-neutralization
of escape mutant viruses listed in panel A by fm6. The neutralization assay was performed similarly to that in Fig. 1. 80R was included as a control. (C) Sequence
comparison of human monoclonal Abs against the fm6 escape mutant Urbani-Y436H in their LCDRs. A dot indicates the same residue as that of 80R. These Abs
were isolated from selection of nonimmune phage display antibody library (Abs 12 and 22) and 80R-cs Ab-phage display libraries (all other Abs) (38) using
Tor2-Y436H-S1 protein coupled onto magnetic beads or the immunotube as the panning targets. (D) Neutralization of S protein of SARS-CoV-pseudotyped
lentiviruses with antibodies listed in panel C. Ab Y12 and Y112A (highlighted in blue) have broadly neutralization activity against all five viruses tested.

Sui et al.

13774 jvi.asm.org Journal of Virology

http://www.ncbi.nlm.nih.gov/nuccore?term=AY996037.1
http://jvi.asm.org


has 94.5% amino acid sequence identity to hACE2, and they have
identical sequences among the 18 amino acids that make contact
with SARS-CoV RBD (48). Thus, the viral replication kinetics in
Vero E6 likely represents that which occurs in human host cells.
The results show that the escape mutants grow with delayed kinet-
ics but with equal peak titers in Vero E6 cells in vitro, indicating a
likely similar viral replication pattern in human hACE2-express-
ing host cells.

Effect of escape mutations within the Urbani background on
in vivo virus growth. In vivo pathogenesis study of some of these
escape mutants in 12-month-old mice showed that cs5-N479I and
fm39-N479T mutant viruses were attenuated. Mice infected with
these two viruses showed significantly less weight loss (less than
5%) than those infected with wild-type Urbani virus (Fig. 5E). In
addition, cs5-N479I mutant virus had a significant reduction in
viral titer in the lungs. It is known that infection of murine cells
with SARS-CoVs is inefficient, primarily due to very weak binding
between RBDs and mACE2 (51). Indeed, by Biacore analysis, we
found that the binding affinity of the wild-type Urbani virus RBD
to mACE2 was very low (estimated to be lower than 20 �M, hun-

dreds of folds less than that to hACE2), while the kinetics and
affinities of all other mutants were not measureable (data not
shown). These data are consistent with the possibility that the
N479I and N479T mutations resulted in a further loss of binding
affinity to mACE2.

Effect of escape mutations within GD03 background on in
vivo virus growth in a mouse model. A series of neutralization
escape mutants of Y12 and Y112A were also generated on the
background of GD03 and GD03-Y436H viruses (Fig. 6A), the lat-
ter containing the same Y436H mutation in the RBD as the highly
pathogenic MA15 strain (52), which is a mouse-adapted lethal
SARS-CoV in young mice. Two escape mutations of GD03 virus,
P462L and N479I, selected by Y12 and Y112A, respectively, had
minimal effect on kinetics or binding affinity to hACE2. In con-
trast, two escape mutations from GD03-Y436H virus, Y442L and
S487T, selected by Y12 and Y112A, respectively, increased the
binding affinity to hACE2 about 4-fold compared with GD03-
Y436H or wild-type GD03. Both the GD03-Y436H Y442L and
GD03-Y436H S487T mutant viruses showed increased in vivo
growth in young mice, with a more than 2-log increase in viral titer

FIG 4 Broadly neutralizating activity of nAbs fm6 and Y112A. Neutralization titers against five different SARS-CoVs or escape mutants were determined in a
plaque reduction neutralization assay. Abs were serially diluted 2-fold as indicated, and 100 PFU of the different icSARS-CoV strains was used (see Materials and
Methods). At the end of the assay, plaques were stained and counted for calculation of plaque reduction efficiency. Each value shown represents the average of
duplicate samples. GD03-MA is a mouse-adapted strain encoding the 2004 human GD03 S protein with Y436H mutation in the RBD (39).
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in the lungs by day 4 after infection, compared with GD03-Y436H
(Fig. 6B). In addition, mice infected with these two mutants
showed more body weight loss: in particular, mice infected with
the Y12 escape mutant lost up to 15% of their weight by day 4 after
infection, significantly higher than mice infected with GD03-
Y436H (Fig. 6B). In agreement with the greater in vivo weight loss
of the Y12-Y442L escape mutant, its binding affinity to mouse

ACE2 was weak (KD, �400 nM), making it the only RBD with
measurable affinity to mouse ACE2 among the many others tested
under the same conditions (Fig. 6A).

DISCUSSION

The RBDs of coronaviruses typically vary in length and sequence,
consistent with their structural and functional flexibility in bind-

FIG 5 Effects of escape mutations within the Urbani background on the binding to ACE2 and viral growth in vitro and in vivo. (A) List of all critical amino acid
changes associated with escape mutation. (B) The locations of the amino acids listed in panel A are shown in the cocrystal structure of the SARS-CoV RBD (blue)
and its receptor, human ACE2 (yellow) (PDB code 2AJF). (C) Binding affinity and kinetics measurement of the RBD of the escape mutations listed in panel A to
human ACE2. Binding kinetics were evaluated using a 1:1 Langmuir binding model. Each Ka, Kd, and KD value represents the mean and standard error of two
independent experiments run on Biacore. (D) In vitro growth characteristics of neutralization escape mutant SARS-CoV. Cultures of Vero E6 cells were infected
in duplicate with icUrbani WT and neutralization escape mutants as indicated at a multiplicity of infection (MOI) of 1, as described in Materials and Methods.
Virus titers at different time points were determined by a plaque assay using Vero E6 cells. A dotted line indicates the lowest detectable virus titer. (E) Escape
mutants of cs5, cs39, and fm6 in aged mice (12 months old). (Left) Weight loss. All mice were inoculated with 105 PFU of viruses as indicated. Body weights of
infected mice were measured on a daily basis (5 mice per group). Weight changes are expressed as the mean percent changes for infected animals relative to the
initial weights at day 0. *, P 	 0.05, and **, P 	 0.01, compared with the icUrbani WT, by two-way analysis of variance. (Right) Lung titers. Lung tissues were
harvested from infected mice on day 4 after infection and were assayed for virus titer by a plaque assay using Vero E6 cells. A dotted line indicates the lowest
detectable virus titer.
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ing to different receptors. In this study, with a large panel of nAbs
against the RBD of SARS-CoVs, we aimed to test if the RBD is a
susceptible region to escape mutations in general, whether a sin-
gle- or double-RBD-targeting nAb can prevent escape mutations,
and if not, whether the escape mutants are attenuated or more
virulent. We first examined the nAbs we previously identified for
their cross-neutralization activities against a full panel of human
and animal SARS-CoV isolates and escape mutants of other RBD-
targeting nAbs. We found that fm6 is the most potent nAb with
the broadest neutralization activity in vitro (Fig. 1, 3, and 4) and
protected 12-month-old mice from infection by the virulent epi-
demic SARS-CoV human strain Urbani and the less virulent hu-
man strain GD03 (Fig. 2). However, a neutralization escape mu-
tation, Y436H, developed when the Urbani virus was placed under
the selection of fm6. Two new nAbs, Y12 and Y112A, were devel-
oped against the Y436H mutant. Both of these nAbs also showed
broadly neutralizing activities to other viral strains (Fig. 3C and D
and Fig. 4); however, they did not block the emergence of new
escape mutants to these nAbs. Detailed analysis of all of the nAb
escape mutants of strain Urbani showed that they selected for
slightly variant escape profiles along the interface between ACE2
and the RBD (Fig. 5A and B). Although these mutations are at
positions either adjacent to or including the key contact residues
for binding to the hACE2 receptor, most did not appreciably affect
binding. The exception, Y442S, resulted in an increased binding
affinity. In addition, these mutations affected virus growth in vitro

in monkey ACE2-expressing Vero E6 cells at 8 h postinfection, but
peak titers were not significantly different from those of the wild-
type icUrbani strain (Fig. 5D).

Neutralization escape mutations can result in attenuation or
increased virulence. Neutralization mutants for nAb cs5 and
fm39, Urbani-N479I and Urbani-N479T, respectively, showed
significant attenuation in 12-month-old mice. The fm6 neutral-
ization escape mutation, Y436H, is associated with the adaptation
of a mouse adapted MA15 virus (52). Of the six mutations of the
MA15 genome that confer lethality in young mice, only the Y436H
mutation is in the S protein. However, the fm6 escape mutant,
Urbani-Y436H, showed no adaptation benefit but rather a slight
attenuation in aged mice, which is in agreement with a recent
report that the Y436H mutation is necessary but not sufficient in
contributing to the adaptation (50). Although structural model-
ing suggests that the Y436H change may increase binding with
D38 of mouse ACE2 via electrostatic interaction (50), this was not
confirmed in our Biacore studies. The binding of RBDs of the wild
type and the escape mutants with mouse ACE2 was very weak (KD,

20 �M), except for the escape mutant that contains a double
mutation of Y436H and Y442L in the RBD of GD03 virus. This
double mutation dramatically increased the binding affinity of
RBD to mouse ACE2, reaching 400 nM, which is the only mutant
with measurable binding affinity to mACE2 by Biacore. Indeed,
10-week-old mice infected with this mutant virus exhibited up to
15% weight loss, demonstrating that this mutant is significantly

FIG 6 Effect of escape mutations within the GD03 background on the binding to ACE2 and in vivo virus growth in mouse model. (A) A table lists escape mutants
generated with icGD03 or icGD03-MA (Y436H) viruses for nAb Y12 and Y112A and the binding kinetics of the RBD of these escape mutants with human ACE2
and mouse ACE2 (mACE2). (B) Escape mutants of Y12 and Y112A in young mice (10 weeks old). The experiment was performed similarly to that in Fig. 5E.
(Left) Virus titer in lungs. Lung tissues were harvested from infected mice on day 4 after infection for virus titer analysis. Error bars denote standard deviations.
*, P 	 0.05, and ***, P 	 0.0001, compared with the GD03-MA strain. A dotted line indicates the lowest detectable virus titer. (Right) Weight loss. Body weights
of infected mice were monitored at different time points (5 mice per group). Weight changes are expressed as the mean percent changes for infected animals
relative to the initial weights at day 0.
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more virulent than GD03-MA virus, which contains a single
Y436H mutation in the RBD of GD03 (Fig. 6B). Importantly, the
Y442L change has also been reported to be associated with in-
creased virulence of a mouse-adapted MA20 virus on the back-
ground of Urbani (50). These results support that the Y442L
change mediates higher-affinity mouse ACE2 binding and likely
contributes to the increased virulence in mice. For binding to
human ACE2, this Y442L change and the S487T mutation in the
same background virus (GD03-Y436H) also increased binding
affinity �4-fold compared with that of the wild-type GD03 or
GD03-Y436H background strain. The S487T mutation has been
previously noted to be important for adaption of SARS-CoV from
civets to humans (53).

80R and all of its derivative nAbs selected for slightly variant
escape mutants along the interface of ACE2 and RBD, confirming
that they all recognize a very similar epitope. These nAbs provided
a unique tool set to test if a convergent combination immunother-
apy (CCI) approach in which two or more nAbs that are directed
against the same or a similar epitope can prevent neutralization
escape or attenuate the escaping virus. With two nAbs (80R and
fm6), different results were obtained, depending on if they were
used sequentially or simultaneously. When 80R was used first, and
after its escape mutant Urbani-D480G was developed, no further
escape mutant could be selected following fm6 neutralization.
However, the same evolutionary constraint did not exist when
both nAbs were used simultaneously; the virus took a new escape
pathway (N479T, a mutation that did not change hACE2 binding)
to escape the neutralization of 80R and fm6. Although this result
suggests that CCI against this particular RBD epitope may be pos-
sible, it may not be optimal for treating SARS-CoV. Rani et al. (54)
reported an 80R-derived antibody with a 270-fold-increased af-
finity, SK4, that showed greater neutralization potency as well as
reduced susceptibility to escape mutations; however, it remains to
be tested if RBD-directed nAbs with superior affinity could im-
prove the CCI strategy.

On the other hand, a divergent combination immunotherapy
(DCI) approach of using a combination of nAbs targeting differ-
ent neutralizing epitopes is likely to be superior over CCI to pro-
vide broader protection and reduce or eliminate the possibility of
generating escape variants. Fm6 cross-neutralized escape mutant
viruses generated for other broadly nAbs (Fig. 1B), including the
T332I mutant of nAb S109.8. This nAb recognizes an epitope in
the RBD that is distinct from fm6 and does not interfere with the
binding with ACE receptor (35). Thus, fm6 may be a good candi-
date for divergent combination with S109.8 in preventing escape
and providing neutralization against a broader range of viruses. In
addition and in contrast to the N-terminal RBD, the C-terminal
S2 domain of spike protein is highly conserved and contains the
functional elements required for membrane fusion, which usually
places strong evolutionary constraints on the sequence (55). It has
been demonstrated that nAbs targeting the conserved stem region
of the hemagglutinin (HA) of influenza A and B viruses possess
broad neutralizing activity and are highly resistant to neutraliza-
tion escape compared to nAbs that target the highly variable HA’s
globular head, which is responsible for sialic acid receptor binding
(56). Similarly, the S2 domain of SARS-CoV may be an ideal target
for developing nAbs with greater breadth, potency of neutraliza-
tion, and resistance to neutralization escape. Such S2-directed
nAbs can be used alone or as part of a DCI approach.

In summary, our results show that using either single nAbs or

dual nAb combinations to target a SARS-CoV RBD epitope that
shows plasticity may have limitations for preventing nAb-medi-
ated evolution during in vivo immunotherapy. However, RBD-
directed nAbs may be particularly useful for providing broad neu-
tralization and prevention of escape variants when combined with
other nAbs that target a second conserved epitope with less plas-
ticity and more structural constraint. In addition, our iterative
approach to broaden the activity of a nAb based on its neutraliza-
tion escape profile remains valid as a strategy to enhance their
breadth and potency and as part of an investigation to prioritize
the targetable epitopes that are not all equal in their ability to
undergo neutralization escape. The recently emerged MERS-CoV
provides a timely opportunity to apply these principles.
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