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ABSTRACT

Manuchehr Aminian: The role of cross sectional geometry in the passive
tracer problem
(Under the direction of Roberto Camassa and Richard McLaughlin)

This dissertation is concerned with how the longitudinal moments (mean, variance, skewness)
of a tracer distribution undergoing an advective-diffusive process in Poiseiulle flow depend in a
nontrivial way upon the cross section of the pipe.

The main focus of this dissertation is on the distribution’s skewness, which is the simplest statistic
to describe upstream/downstream asymmetry in the tracer distribution. The results of both analysis
and numerics show that the distribution’s skewness depends significantly on the cross section of the
pipe. Typically, cross sections with an exaggerated aspect ratio (e.g., thin ellipses or rectangles)
result in negative skewess in the distribution, that is, having a sharp front and a long tail upstream.
The opposite is true for nearly circular or square cross sections, with a long tail downstream and the
bulk of the distribution upstream. As a result, there are “golden" aspect ratios for each class of cross
section — critical aspect ratios which maintain the initial symmetry through the advective timescale —
and other critical aspect ratios which symmetrize the distribution at a faster rate than any other

aspect ratio on diffusive timescales.
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CHAPTER 1

Introduction

The study of passive tracers under the influence of laminar fluid flow was first brought to the
limelight by G.I. Taylor, whose paper in 1953 [1] demonstrated with experiment and theory how
the effective diffusivity, as measured by the rate of growth of mean squared displacement of tracer
relative to its mean, is much more rapid than would be expected due to draw molecular diffusion
when put under the influence of laminar pipe flow. The fundamental result is that the enhancement
of diffusivity is proportional to R?U?/k, where R is the pipe radius, U is the characteristic speed of
the fluid flow, and x the molecular diffusivity.

Dynamically, the tracer is asymptotically Gaussian at both very short times and very long times,
as measured relative to the diffusive timescale tq oc R?/k. However, he observed that at intermediate
times the distribution of tracer was highly non-Gaussian.

Since then, many others have studied this result. One main tool came from Aris [2], who showed
that the tracer T', whose evolution is modeled by the advection diffusion equation, can more readily be
studied by the evolution of its longitudinal (flow-wise) moments, which themselves obey a hierarchy
of driven diffusion equations. He, along with many others [3, 4, 5|, derived results, both exact and
asymptotic in time, for the case of the circular pipe and infinite parallel plate (“channel") flow. In
another vein, the long time effective diffusivity was studied for a pipe of general rectangular or
elliptical cross section [2, 6].

More recently, the problem has been revisited with the tools of homogenization theory, which
have been used to derive more detailed predictions in the channel and circular pipe cases with
arbitrary point source release |7, 8|, and in the case of pulsatile (time-oscillatory) flows [9].

The problem in shallow rectangular and rectangular-like channels has received renewed interest
in the past decade due to the advent of “lab-on-a-chip" devices, which have promise to greatly boost
the efficiency and reduce the cost of many clinical trials. The channels in these devices are etched

out with a device, which allows free control of the cross section. This naturally leads to the question



of the influence of the cross section on the distribution of the tracer. Several papers have addressed
this, but are usually only interested in effective diffusivity [10, 11, 12, 13]. Attention has also been
paid in the arena of blood flow and drug delivery [14], despite the necessary assumptions of laminar,
Newtonian fluid flow being dubious for blood.

However, very little attention has been paid since the early papers of Aris 2|, Chatwin [3], and
Barton [5] towards the asymmetry induced by the fluid flow. In the two simplest cases of circular
pipe and infinite channel, it turns out that the tracer exhibits opposite signs of the skewness (the
centered, normalized third moment) when examining the cross-sectional average.

In other words, despite the flow solutions being mathematically similar, they produce opposite
asymmetries in the distribution! This was in fact the original motivation for this dissertation work.

Following from this original question, we were motivated to examine how the skewness behaves
for different classes of cross sections to see if we could connect the purely positive skewness of the
circular cross section to the purely negative skewness in the channel. To do this, we first examined
the family of rectangular and elliptical cross sections, establishing both short time and long time *
asymptotics of the Aris moment equations. This revealed that the short time skewness is in fact
zero for all ellipses, and sign-indefinite for the rectangles, with a “golden" aspect ratio (the ratio
of short to long sides) of A ~ 0.53335 which has similar statistical behavior to the ellipses. We
followed through with the long time analysis to demonsrate that both the rectangles and ellipses
have sign-indefinite skewness at long time, separated by an aspect ratio A &~ 0.49. We wrote a Monte
Carlo method, which shows strong agreement across a wide range of benchmarks, yielding additional
support to our results. Finally, we considered a number of extensions to other cross sections which
permitted analysis and/or simulation, such as the equilateral triangle, the class of regular polygons,
and perturbations of the ellipses, which exhibit a wide range of behaviors.

In broad strokes, the main results of this dissertation work are that the longitudinal skewness of
a passive tracer in a laminar fluid flow has strong dependence on the shape of the cross section of
the pipe. Depending on the application of interest, this permits a degree of control in how the tracer

is delivered to its final destination.

!This is measured relative to the generalized diffusive timescale a®/k, with a the short transverse length scale



CHAPTER 2

Notation and Setup

In this chapter, we derive the partial differential equation for the fluid velocity in a generic
domain and give the solution in a few classes of domains. We also introduce the advection diffusion

equation for the tracer.

Derivation of the model equations
First we derive the partial differential equations for the fluid flow. In general, the Navier-Stokes

equations describes the evolution of the fluid velocity field u = (u, v, w) in space and time:

3}
p <£ +u- Vu> = —Vp + uV?uy, (2.1)

with density p, pressure field p, and dynamic viscosity p. Nondimensionalizing the variables as
x=ax,u=Uu,t=(a/U)t, p= (uU/a)p', with characteristic length and velocity scales a and U

respectively, and using a constant density p = pg results in the nondimensionalized form

ou’ / 1.1 11 2! 1
Re @‘FU'VU =—-Vp +Viu
(2.2)

V'-u' =0.

The coefficient Re = ppalU/u is the Reynolds number. We assume Re < 1 and work with the reduced

equations (dropping primes)

Vu = Vp,
(2.3)
V- -u=0.

We work with an infinitely long pipe extending in the x direction, with some fixed cross section in
the transverse directions. With this setup, assume a constant pressure gradient in the x direction

only, that is, Vp = (ps, 0,0). Additionally there is a no-slip boundary condition on the walls of the



pipe, that is, u = 0 on the boundaries. Explicitly we have

V2u = ps, ulog =0, (2.4a)
Vi =0, wvlpg =0, (2.4b)
Viw =0, wlpg =0, with (2.4c)

Up + vy +w, = 0. (2.4d)

It is a fact that Laplace’s equation with zero boundary conditions only has the zero solution, so
v =w = 0. Incompressibility gives us that u, = 0, so that u = u(y, z). We need only to solve

o | o

873;2 * 022 =ps, ulpo =0, p, constant. (2.5)

We note that, while the equations are nondimensional here, an almost identical derivation holds for
the dimensional flow, with an extra factor of 1/u multiplying the pressure gradient. The justification
for dropping the inertial terms in the Navier-Stokes equations comes down to a Reynolds-number-like
argument, where one would assume inertial effects are negligible compared to the viscous and pressure
effects. Functionally the two forms are essentially the same, and we may use the dimensional or
nondimensional form as appropriate.

Flow solution in the infinite channel

Working in dimensional variables with a cross section of infinite parallel plates (a “channel")
Q={(y,z): —a<y<a}, (2.6)

the boundary conditions for the flow problem

u 9 _ps

ot = s =0 20

imply there is no z dependence, so we have an ordinary differential equation for u(y):



which has the solution

a’pa >
uly) =~ (1 - (y/a)?). (2.9
i
We set U = —a®p,/p and include an extra factor of 2 in nondimensional form (for convenience) to
get a nondimensional flow
u(y) =1—-y> (2.10)

Flow solution in the circular pipe

Working in dimensional variables with a circular cross section
Q={(y.2): y* +2* <a’}, (2.11)

the flow problem is easiest solved using polar coordinates (y,z) — (r,0). Additionally assuming a
radially symmetric solution u(r) (justified after the fact by uniqueness of solution to the PDE) the

problem reduces to an ODE for u(r):

10 ou\  pz B
e (rﬁr> ==, u(a)=0. (2.12)

This has a functionally similar solution to the parallel plate case:

2 2
w= _a4iw (1—(r/a)?) = _G4Z”f (1—(y/a)? — (z/a)?) . (2.13)
Letting U = —a?p, /p and multiplying by a factor of two gives the nondimensional flow
1 2 1 2 2
uzi(l—r)zi(l—y —z%). (2.14)

Flow solution in the rectangular pipe

In this case, the dimensional domain is

Q={(y,2): —a<y<a, —=b<z<b}. (2.15)



The flow problem does not reduce as much as in the previous cases:

Pu  O%u P

873/2 + @ = ;, u|y=ia = U‘z::tb =0. (2'16)

In this case, the solution can be written either as an eigenfunction expansion in the form

u(y, z) = Z U cos((m — 1/2)wy/a) cos((n — 1/2)7z/b) (2.17)

m,n=1

or in a single series, as a correction of the channel flow. The rough interpretation here is that the
channel flow u.(y) is the limit of the rectangular case if we send the far walls to infinity, that is,

b — oo. This form of the solution is
u(y, z) = uc(y) + Z e cos((k —1/2)my/a) cosh((k — 1/2)wz/a). (2.18)
k=1

This second form is more convenient in nearly all cases, so we derive the formulae for the coefficients cy.
First, the Poisson equation itself is satisfied, since the PDE is linear, u.(y) satisfies the equation, and
the terms in the summation cos((k — 1/2)my/a) cosh((k — 1/2)wz/a) are harmonic. The boundary
conditions at y = 4a are satisfied independently by every term in the expression. Requiring
ul,=4p = 0,

0=uc(y) + Z ck cos((k —1/2)my/a) cosh((k — 1/2)wb/a). (2.19)
k=1

For convenience define ¢, = cos((k — 1/2)my/a. Multiplying both sides by ¢;, integrating over
[—a, a], and using the smoothness of the solution to allow the exchange of integration and summation

leads to the formula for the coefficients:

o

[ wetwosay = [ 033" ccoshi(h— 1/2)m/a)on (2.20a)
—a ¢ k=1
_ / ’ ue(y)djdy =Y ey cosh((k — 1/2)mb/a) ' drdidy (2.20b)
—a k—1 —a
— % uc(y)g; d .
ffaa ;;y()ij v_ cjcosh((j —1/2)mb/a) (2.20c¢)
== 0P 2(-1)) . (2.20d)

i ™ — 1/2)% cosh((j — 1/2)wb]a)



The form of the coeflicient gives rapidly converging series, especially for small aspect ratios A =
a/b < 1 even without the factor of (j — 1/2)73.
To analyze the behavior for large aspect ratios, let ( = z/b, « = (j — 1/2)mwb/a. Then the aspect

ratio dependence in the sum is written as

cosh(a()
cosh(a) ’ ThEest (220

and for o — oo (i.e., sending the inverse aspect ratio b/a — oo) this converges pointwise to zero for
¢ € (—1,1) and to one for ¢ = +1. (This can be shown with standard analysis techniques.)

Multiplying by two and setting U = —a?p,u gives the nondimensional form (A = a/b)

u(y,z) =1—y> + Z ¢ cos((k —1/2)my) cosh((k — 1/2)wz/N),
k=1 (2.22)
A(=1)*
m3(k —1/2)3 cosh((k — 1/2)7/N\)

Cl —

Flow in elliptical pipes

With an elliptical cross section, the domain is defined as

NI
= (y’z)'a2+b271 . (2.23)

The flow solution will take the form

u="k (1-(y/a)*— (2/b)?), (2.24)

which enforces the boundary conditions. To find the scaling, substitute into the PDE and solve:

—a?p,
k:l(—2/a2—2/b2):% - Mp 2(1+Ea/b)2)' (2.25)

Multiplying by two and setting U = —a?p, /u yields the nondimensional form for arbitrary aspect

ratio A = a/b:
1
1+ A2

u(y,z) = (1—y?—A\22%). (2.26)



Advection diffusion equation

A general tracer density T'(x,t) can possibly influence the fluid flow, and would enter the Navier-
Stokes equations through additional forcing terms. A key assumption behind this field is that the
tracer is passive: that is, it has no affect on the fluid flow itself, and is only advected along by it.
This allows us to separately solve for the fluid flow u, then use this to analyze the tracer distribution.

If we also assume a simple molecular diffusion, one can derive the advection diffusion equation

oT
5 Tw VT = KV2T. (2.27)

In our case with steady laminar flow u = u(y, z)i, this reduces to

or ar
a2t u(y, z)% =kV-T. (2.28)

A reasonable assumption in the case of pipe flow is that no tracer exits the pipe; this are no-flux, or
Neumann, boundary conditions. If we consider an arbitrary point on the boundary of the pipe, the

directional derivative of T  in the direction perpendicular to the boundary must be zero:
DyT =n-VT =0. (2.29)

In the case of the channel, circular pipe, and rectangular this boundary condition is:

T
or =0 (Channel)
8y y==a
T
or =0 (Circular pipe)
or r=a
oT oT (2.30)
- = — =0 (Rectangular pipe)
8y8%_‘::ta 82"2 z==b
Yy Z .. .
g L2 =0 (Elliptical pipe
CL2 (9y b2 32’ (y,2)€09 ( )

The boundary conditions for the elliptical case can be handled similar to the circular pipe, but
require using elliptical coordinates. This will be explored in depth in chapter 3, where we analyze

the long time asymptotics of the Aris equations.



CHAPTER 3

Asymptotics of the Aris equations

The Aris equations.
To rigorously describe and predict the phenomenon of effective diffusivity in pipe flow, Aris
showed in [2] that found that one could write down a recursive system of partial differential equations

for the xz-moments of the tracer T'. Define the moments

* 2" (z,y, 2, t)dx
To(y, 2, 1) = f—‘g‘; @y zbde (3.1)
f_OOT(:U,y,z,t)dx

The equations are derived by taking the advection-diffusion equation, multiplying by z”, and

integrating (similarly for the initial condition). For n = 0,

1 or or
/ N + u(y, z)% = kV2T | dx (3.2a)
oT, >~ T >~ 92T o*Ty  0*Ty . .
6—;) + u(y, 2) /OO %dx =K e dx + 8y20 + 8;:20’ giving (3.2b)
ﬁ - KZVLT(L TO(?J; 270) - fO(ya Z), % 00 - O? (32C)

where Vi is the Laplacian in the transverse directions y and z. Averaging through the cross section

and applying the boundary conditions with the divergence theorem gives a conservation equation:

1 T 1
Q|/Q 87750 = HV%_TO dA, ’Q|/Q TO(Z/,Z,O) = fO(Z/,Z)] dA (3.3&)
1
Q



A similar argument can be done to arrive at the equation for 77, using an integration by parts along

the way:

oTy

W B HViTI = U(y, Z)TO(y7 Zat)a Tl(y7 2, O) = fl(y’ Z)’

ory|
o 0. (3.4)

o0

In the special case of an initial distribution uniform in the cross section (a function of z only),

To(y, z,t) = const. and the T equation simplifies to (setting To(y, z,t) = 1)

oTy

5 ;{ViTl =u(y, 2), T1(y,2,0) = fi(y, 2),

T
Onl . (3.5)
on |5,

The n-th moment equation can be derived generally by the same arguments, arriving at

oT,,
o nViTn =nu(y,2)Th—1+nn—1)T,_2, Tn(y,2,0) = fu(y, 2),

o,
on

=0, (3.6)
0N

for any n = 0,1,.... Generically denoting the average (g) = [, gdA/|Q|, the equations for the

cross-sectionally averaged moments M,, (again taking advantage of the divergence theorem) are

dMn
dt

=rn(n—1)Mp_2+n(uT, 1), M (y,2,0) = (fn). (3.7)

Explicitly, the first few full moments equations for the case of cross-sectionally uniform initial data

are (with Mo =1)

0Ty

5 " KV2T =u (3.8a)
T

aa; — KV Ty = 2k + 2uT} (3.8b)
T

aat?’ — kV2 Ty = 6kTy + 3ulb, (3.8¢)

and without loss of generality assuming (u(y, z)) = 0 (by working in the reference frame of the mean

velocity) and My = 1 the corresponding cross-sectionally averaged moments analagous to Barton’s

10



[5] equations are

oMy

5 = 0, (3.9a)
8/8\:2 = 2k + 2(uT}), (3.9b)
8?)\:3 = 6k M1 + 3(uT). (3.9¢)

We often nondimensionalize using the timescale t = (a?/k)t', x = ax’, u = Un/, in which case the
Aris equations written above are modified by dropping x and inserting a factor of the Péclet number

wherever u is seen.

Short time asymptotics of the Aris equations.

Exact moments without diffusion.

When we work with advection-diffusion in the limit of large Péclet number, there is a range
of timescales in which the behavior is essentially advective alone. This can be seen by nondimen-
sionalizing the advection diffusion equation as x = ax’, t = (a/U)t', u = Uu/, which results in the

equation
oT or 1

oT
oL 1t N
Ot/+u(y’z)8x’ Pe

A/Ta T(X/> O) = f(xl)7 @

=0, (3.10)
o0’

with Pe = Ua/k the Péclet number. In the infinite Péclet limit, the right hand side drops out, and

this reduces to an advection equation

reor ot / _ / 8£ _
W—i—u(y,z) 0, T(x',0) = f(x), A =0, (3.11)

ot or _
8.’13/ N o

If we neglect the boundary conditions, the advection equation can be solved with method of

characteristics

T t) = f(x—u'(y,2)t1). (3.12)

Now we would like to compute the z moments of this distribution. Change variables to the local

11



coordinate £ = 2’ — u/(y/, 2')t/, drop primes, and calculate the n-th pointwise moment:

mo(y,z,t):/ T(x,t)dx,

1 0o
mn(y7 2, t) = % / :Enf(x - U(y, Z)tl)d.%'
1

= /oo(f +u(y, 2)t)" f(&,y, 2)dE (3.13)

-y (n> (utyri Joe 8 FE 1, 2)E

. mo

In words, due to pure advection, the pointwise moments m;(y, z,t) are carried by linear combinations
of the moments of the initial conditions. Additionally, the n-th moment only depends on the intial
moments up to and including itself.

Pointwise statistics of a passive tracer with advection alone.

Denote my(y, z,0) = my|o. Then for the first few moments we have

mﬂ(y7zvt) = m0’07
my y7zut = mi|o + ut,
w:%1) | (3.14)
mQ(ya 2 t) = m2’0 + 2(Ut) m1|0 + (Ut)27
ma(y, 2,t) = malo + 3(ut) malo + 3(ut)*milo + (ut)®.

Define the pointwise central moments

1 oo
pn(y, 2, t) = / (x — )" dz, n>1. (3.15)
mo J_oo

12



The second and third central moments can then be computed:

1 [e.e]
Ho = / (x —m1)*T(x,y, z,t)dx = mg — 2m3 +m? = my — m? (3.16a)

mo J—co
= malo + 2(ut)mylo + (ut)? — [milo + ut]2 (3.16b)
= TTL2|0 - m1|(2) (3160)
= p2(y, 2,0), (3.16d)

and
1 &0 3 3
py = (x —mq1)°T(x,y, z,t)de = m3g — 3myimg + 2my (3.17a)
0J-00

= |:m3‘0 + 3(ut) malo + 3(ut)2m1]o + (ut)ﬂ (3.17b)

3
-3 [ml\o + ut] [mg\o + 2(ut)mq|o + (ut)Q] +2 [mlyo - ut}
= malo — 3m1lomalo + 2ma [} (3.17c)

= us(y, z,0). (3.17d)

The pointwise skewness is then

mslo — 3malomalo + 2m |3

Sk(yaz)t) = )3/2

= Sk(y, z,0). (3.18)
(m2|0 —malg

In short, this says that the pointwise central statistics of the initial condition do not change in the
absence of diffusion. This is perhaps unsurprising, since the diffusionless system can be interpreted
as an infinite system of independent constant coefficient advection equations, which for each (y, z)
only shifts the initial distribution at a constant rate u(y, z)t. The story is not as simple for the
distribution after averaging in the cross section, which we show below.
Averaged statistics of a passive tracer with pure advection.

Denote angle brackets (-) the average in y and z in the cross section:

 Jauly,z)dA

(9(y,2)) = [ 1dA (3.19)

13



Then we can look at the behavior of the cross-sectionally averaged distribution in a similar manner:

My (t) = 1 /00 2™ {(f(x — ut,y, 2))dx (3.20)

mo —00

Exchanging the order of integration and taking the total mass my = 1 gives

oy = </OO 2 — ut,y,z)> = (mn) (3.21)

= <(ut)" + Jzz:l <]> (ut)"Im;(y, z, 0)> (3.22)
= () +3 ( j> ()™ my). (3.23)

The first few moments of the averaged, diffusionless tracer distribution are

my = (ut) + T7L1|0, (3.24&)
Mg = ((ut)?) + (ut ma o) + Malo, (3.24D)
ms = <(ut)3> + 3((ut)2 milo) + 3(ut malo) + mslo, (3.24c¢)

and the corresponding central statistics f,, are

[o = Mo — m% = <u2>t2 + (ut m1\0> + T?L2|0 — <ut>2 — 2<ut>m1|0 — m1|§

= () = @?|¢ + [{wmalo) + 2(uymalo — 2umalo]t + [malo — 3], (3.25a)
fis = M3 — 3mimy + 2m
= [(®) = 3(u) () +20u)*|# + [3uPmalo) = 3(umrlo — 3u){wmalo) + 3(u) o ¢
+ [3umslo) — 3wmalo)malo — 3{uyinelo + 3wy ] + |mslo — 3malomalo + 2ma3).

(3.25b)
The resulting skewness can be examined at short and long times. For ¢ < 1, we get

m3|0 — 3m1|0m2|0 + 2m1|8

Sk(t) ~ o

+O(t) = Sk(0) + O(t), t—0, (3.26)

(m2|0 - ml%)

14



perturbing off the skewness of the initial condition. For ¢ > 1, the t? and ¢> terms dominate the

second and third central moments respectively, giving a constant, generally non-zero result

(uP) — 3(u?)(u) + 2(u)?
((u2) — (u)2)*?

Sk(t) ~ FO1)t), t— oo, (3.27)

and if we take (u) = 0 by working in a reference frame of the average velocity, this simplifies to

3
Sk(t) ~ <1f;‘>3>/2 +O(1/t), t— oo (3.28)
This quantity depends only on the flow, which in turn is given by the solution to the Poisson problem,
which is a function of the cross sectional geometry of the pipe. We have termed this the geometric
skewness as a result. While this derivation was as an infinite time limit, in reality it is seen on
advective timescales, which will be much shorter than the diffusive timescale if Pe > 1.
If we assume the initial condition f(z,y,z) is uniform in the cross section, symmetric about

2

x = 0, with variance o2, we get m1|o = milo = 0, Malo = m2|o = 02, and m3|o = m3|o = 0. Taking

this with (u) = 0 greatly simplifies the central moments and skewness:

fa(t) = (WhHt? + o2, (3.29a)

fis(t) = (u’)t?, (3.29b)
(u?)t?

Sk(t) = (3.29¢)

(02 + (u2)r2)**

Dividing the numerator and denominator of the skewness by t> gives

Sk(t) = () (3.30)

Then the onset to geometric skewness will occur at on a timescale when

o2/t < (WP, or t>a/\/(u?). (3.31)

This is essentially the time needed for the flow to overcome the characteristic width o of the initial

condition.

15



Short time asymptotics with diffusion.

Now we introduce a generic process discussed in [15] to calculate the short time behavior for
the moments in the presence of diffusion. The method is based on modifying a two term series in
time for T}, to asymptotically obey the averaged moments equations for M,,. In this context, the
equations for M,, can be thought of as a net conservation equation for 7;,. In this section, we work
with a strip initial condition §(z) unless stated otherwise.

Given the exact formulae for the moments in the channel, and the equivalent Poisson summed
version, we have done a study of the behavior on short timescales to inform the type of correction
necessary.

The Poisson summation shows the structure of the pointwise moment T} (y, t) at short time can
be interpreted as a lattice of scaled heat kernels G(z — zy, t), with lattice {xy, = 2k — 1, k € Z}.
With this in mind, a formal approach to the short time for general cross section can be formed.

We demonstrate this in the channel and will generalize to generic domain after. We would like a

short time approximation for the problem

on  o? 0Ty

W - TszI = u(y), Ty N = 07 Tl(y,()) = U (332)
y==1

Start with a generic time expansion of the first moment T} (y, t) and seek appropriate coefficients:

2

Ti(y,t) ~ ai1(y)t + a2(?/)%- (3.33)

Substitution into the Aris equation and matching in powers of ¢ gives
82

ar=u, az=-—gaUu= const. (3-34>

However, this solution violates the conservation of f_ll Tidy required of the full solution:

1 6T1 1 82 1 d 1
it e a 2
Lot o /_1Udy dt J_, (art =+ ast?/2) dy
d( [, 1dA) o | 1 92
At A Bl - hereas = ———w)t)d 3.35
dt L‘)y 1] 0 v /1(u+( 6y2u)) Y (3:3)
d( [~ Ty o

16



We seek a term k(y) to add which corrects the conservation requirement, but preserves the short

time dynamics, which are primarily advective:

t2 1

2 ),
1 L 52 ou
[ kdy= [ Souay=[

While any choice of k(y) satisfying the integral requirement will restore conservation, analysis of

2
E(y) + (—§y2u> dy =0 (3.36)

1

. } (3.37)

the channel solution reveals boundary layers which evolve characteristically like heat kernels for
t > 0, and in the limit £ — 0, form a sequence converging to delta functions. Therefore, one choice

of correction in this small, but positive time regime would be

_(y=17)? _ (w+1h)?
4t

e It e
VAt

E(y,t) =Gy —17,0) + Gy +17,1) = ¢ (3.38)

+c
VAt 2

For t <« 1, each heat kernel integrates to 1 up to exponentially small corrections. Let k(y) =

limy_,+ ];(ya t), SO

1 oul!
kydy:cl+02:[— } 3.39
| k) 5. (339
An appropriate choice is then setting
ou ou
L= =1, cg=—- = |, 3.40
1= Gyl 2 |, (3.40)
and if u = 1/3 — y?, this gives ¢; = ¢ = —2. Finally, we can verify the modified quadratic term
obeys conservation at short time (using —V?u = 2):
t2 1 t2 1 82 "
— dy = — i ——u—2 —17,t 17,t)| d 41
5 71az(y) y=5 lim 1[ 97" (Gly—17,0) + Gy +17,1) | dy (3.41a)
2
=5 [(1—-(=1))(2)—2[1+1]]=0. (3.41b)
The formal asymptotics at ¢ = 0 are
0? t2
Ty ~ u(y)t + “at 206y —17) +6(y+11)) 7 (3.42)

17



but they may be extended to 0 < ¢t < 1 by replacing the delta functions with the heat kernels

appropriately. In a generic domain, similar arguments lead to the asymptotic

2
Ti(y, z,t) ~ u(y, 2)t + [~ Vu + k(y, 2)] % (3.43)

The generic correction here can be found starting with the divergence theorem when integrating
—V2u:
/ —VZudA = / —Vu-nds (3.44)
Q S

Observe that for any g(y, z), with Q a bounded domain and S is boundary,

/S oy, =) ds = /Q oy, ) [ /S 6(y—y/)(5(z—z’)dy'dz’] dA, (3.45)

so that the boundary integral can be written as an area integral using delta functions laid on the

boundary:

/ ~VZudA = / —Vu - nds—/ gz [/53/ y)5(z—z)dy/dz] dA
Q

suggesting the general correction term

ou N
= —_ — . 4
+/58n5(y y')dy (3.47)

The same idea is carried forward and applied to the higher moments equations: beginning with a
general two-term expansion in time, analyzing the conservation principle for the equation, and adding
similar boundary terms where needed to correct. Denoting £(u) the nondimensional Laplacian ! , so

that typically for us £(u) = —2, and @ the lab-frame flow (with @|sq = 0), the following short time

We leave the term L(u) generic for the purposes of comparison to other formulae in the literature. There is an
unfortunate zoo of conventions used for both the flow formulae and prototypical domain, which make comparison
and cross-validation more difficult.
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asymptotics are derived:

My ~0, (3.48)
Ma ~ 2t + Pe?(u®)t? + éPeQE(u) (u)t3, (3.49)
Ms ~ Ped(ud)3 + %Pe?’ﬁ(u)((ff) @), (3.50)

My ~ 1262 + 12Pe2(u2)¢® + [Pe (u) + 4Pe2L(u) <a>}t4

+ [%Pe L))+ éPe4£(u)<ﬂ>3 - gPe4(u2\Vu]2)]t5. (3.51)

In particular, for the skewness, we substitute to obtain short time behavior

P’ [(u?)£* + L(u) (i) — 2!
(26 + Pe2(u2)i2 + 1Pe2L(u)(a)t?) >

Sk(t) ~ (3.52)

For Pe > 1 and taking the leading order short time terms once again gives geometric skewness:

) ) U3 t3 US
iyl SH) = s = (359

We can additionally predict the onset of nonzero skewness. Differentiation of the generic skewness

formula gives
_ 2Mo M3 — 3M3 My
M3/

Sk(t) : (3.54)

so that we need to solve 2M2M3 — 3M3M2 = 0. Substitution of the asymptotic formulae gives a

rootfinding problem

cst® 4 cot? — %[clt +¢] =0, (3.55)
with coefficients
co = 36(u?) (3.56a)
c1 = 30L(u)((a%) — 2(a)?), (3.56D)
ca = 6L(u)((u’) (@) — (u®) ((@®) — 2(@)?), (3.56¢)
e = L(u)(@)((@®) — 2(a)?). (3.56d)
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Applying perturbative rootfinding techniques gives a prediction for the critical point

t* ~ Pe "1\/co/co as Pe — oo. (3.57)

This prediction for the timescale is shown in conjunction with the geometric skewness using large
X’s in figure 3.2. There appears to be good agreement, though a careful study across aspect ratios
and time scales has not been done.

Comparison of short time asymptotics and simulation.

In figure 3.2 we compare the results of the short time analysis developed in this chapter to Monte
Carlo simulation. The left panel sweeps over a range of aspect ratios, with a fixed Péclet value of
Pe = 10*. The simulations (dotted) and the asymptotics (3.52) (solid) show excellent agreement
at short time. Combining the geometric skewness value with the prediction for the critical point
(3.57) are overlaid as large crosses. The effect of nonzero variance o2 > 0 in the initial condition is
investigated in the inset panel, where the characteristic width is chosen as o &~ 0.115. A delay of
the onset of nonzero skewness indicated in (3.31) is consistent, since in nondimensional terms, we
have |u| o< Pe, predicting a timescale ¢ > 0.115/Pe ~ 1075 past which geometric skewness will be
seen. This is in contrast to the delta initial data, which generically sees the onset of skewness at a
nondimensional timescale ¢ o< Pe =2 [8].

The geometric skewness as a function of the aspect ratio for the rectangles is shown in the center
panel, and horizontal lines are drawn connecting this skewness to the corresponding short time
behavior in the presence of diffusion for the same aspect ratios. Computing the aspect ratio with
zero geometric skewness was done using a numerical rootfinding method applied to (u(y, z; \)3),
giving the value A\ = 0.53335 which was used for the simulations.

In the right panel we plot the corresponding set of simulations in the class of ellipses. Interestingly,
the short time behavior is symmetric independent of the aspect ratio. This is seen numerically,
as well as via direct computation showing (u®) = 0 independent of aspect ratio. Because of this,
our formal short time asymptotics do not give any useful information about the skewness, while

in the rectangles we have information at times up to t oc Pe 1.

It is also noteworthy that the
circular pipe (yellow) has a larger positive skewness than the corresponding square. One might

postulate the circular cross section in fact produces the largest positive skewness of any cross section.
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Figure 3.1: Flow profiles for the rectangular (solid colors) and elliptical duct (white lines) of aspect
ratio A = 0.4, scaled to match the peak velocity.

Our observations from the square, and other geometries such as regular polygons and “racetracks"
discussed in chapter 6 lend evidence to this, but it is still an open question to prove mathematically.

Another fundamental question is about the connection, or lack thereof, of the rectangles and
ellipses in the limit of aspect ratio A — 0. While both geometries converge to the infinite strip for
A — 0 in a pointwise sense, only in the rectangles does a sequence of aspect ratios approaching
zero (such as in the figure) produce a sequence of functions Sk(t; ) which appear to converge to
the channel’s skewness evolution. Similar questions about the effective diffusivity have been asked
in the literature [6, 12, 11, 9]. To our knowledge, explanations have mostly been descriptive. The
argument is essentially that the Poiseuille flow in the rectangle is nearly uniform with respect to z
in the interior, with boundary layers at the far walls z = £1/), whereas in the ellipses, the flow has
no boundary layer structure regardless of aspect ratio. We have illustrated this idea in figure 3.1,
where we overlay contour maps of the rectangle and ellipse for aspect ratio A = 0.4. The rectangular
flow has boundary layers present due to the high curvature of the walls, while the elliptical contours
have no obvious boundary layer structure, as the sliced flow u(zp,y) or u(z,yo) along along lines
z = zg and y = gy are parabolic, whereas the same is not true for the rectangle. We explore this
further in chapter 6 where we introduce a new parameter to smoothly interpolate between ellipses
and approximate rectangles to demonstrate this phenomenon is not merely a property of smoothness

of the boundary (e.g., the boundary being continuous versus continuously differentiable).
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Figure 3.2: Evolution of skewness for the rectangles (left panel) and ellipses (right panel) of varying
aspect ratio. Geometric skewness is plotted (center panel) as a function of aspect ratio, with aspect
ratios corresponding to the simulations indicated. Simulations done using a finite width initial
condition ¢ ~ 0.115 in the rectangles (inset) are done with the same aspect ratios. In all cases,
Pe = 10%.

Long time asymptotics of the Aris equations.
The intuitive approach to finding the steady state of a driven diffusion problem is to simply

remove the time derivative and solve the corresponding time-independent elliptic boundary value

(-7 sz =g 2 ~o (359

on |5,

problem:

This is the approach originally used by Taylor [1], in spirit. It has been more rigorously developed
since then through long time expansions of the moments equations [3, 5, 4] and more recently under
the umbrella of homogenization theory [8, 9], to derive the effective diffusivity.

This approach comes with a caveat: the average of the driver needs to be zero, otherwise the
problem is inconsistent. This can be seen by integrating both sides of the PDE over 2 and using the

divergence theorem:

- / V2 f(y, 2) dA = / g(y.2)dA, but (3.59)
Q Q

2 _[of . _
/QV f(y,z)dA—/Cands—O, (3.60)

Where C' is the boundary, and the Neumann boundary conditions cause the integral to vanish.
Physically speaking, the integrated driving term represents a net increase/decrease in the quantity

f in the diffusion equation, and the integrated quantity Of/0n represents the net flux into or

22



out of the domain. For example, if fQ 9(y,z)dA > 0, and we impose zero Neumann boundary
conditions, the solution to the diffusion equation would grow without bound, so there would be no
(time-independent) steady state.

Nevertheless, it is straightforward to generalize the steady state idea if we have (g) # 0. If we

use the following ansatz

f(yv Z) - fO(ya Z) + tfl(?/: Z) (361)

for the long time behavior of the driven diffusion problem, substitute, and collect in factors of t, we

get two sub-problems

)
Vo= ~fily2) + 9l ) o~ (3.62)
Q
~V2f; =0, %’2 =0 (3.63)
Q

Solvability of the first problem (3.62) requires that (f1) = (g). Combining this with the fact that the
only solutions to (3.63) are f; = const. implies that f; = (g). Thus, the problem (3.62) is just the
inconsistent problem (3.58) with the driver modified to be mean-zero. The long time asymptotics

take the form

fy,2,t) ~ foly, 2) + (g(y, 2))t. (3.64)

Because of the nature of the Aris equations, successive substitution of these long time asymp-
totics 1), will produce drivers with increasingly higher order dependence on polynomials in t. To
demonstrate, for T1(y, z, 7), the driver is u(y, z), which we take to be mean zero. The exact solution

in any domain is formally

Ti(y,z,7) = Pe g(y,z) + che*"itqbk(y,z), (3.65)
k=1

where ¢(y, z) is the solution of the Poisson problem with u(y,z) as the driver, ¢(y, z) are the
normalized Laplacian eigenfunctions with Neumann boundaries with corresponding eigenvalues —0%7

and the coefficients ¢ are chosen to satisfy the initial condition f(y, 2):

cp = / [fl(y, z) — Pe gl(y,z)]¢k(y,z)dA. (3.66)
Q
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Note the intial data is solely encoded in the set of coefficients ci; the loss of information of
the initial data typical to diffusive processes comes in the corresponding exponential decay term.
We should not expect this initial data to last through to the long time analysis except possibly in
correction terms.

Substitution of this solution into the 75 problem gives

<§t — V2> Ty =2+ 2Peu(y,2)T1 =2+ 2Peu[Pe 9(y,z) + che_(’l%%k(y, z)} (3.67)
k=1

The exponentially decaying term produces a term with time dependence te_"l%t, which is subdominant
to any polynomial terms in ¢. The long time problem is produced by using the long time asymptotics

for T3 in the driver:

0

(m - v2> Ty = 2+ 2Peu(y, 2)g(y. 2), (3.68)

which is again a Poisson problem with a driver which does not integrate to zero. The long time
asymptotics of T will include a linear ¢ term, which will result in a linear-time driver for T3.
Long time asymptotics of with a polynomial time driver.

Taking the discussion above into account, we derive the solution of the problem with a general
driver with time dependence that is polynomial, then apply it to our problems as necessary. We
write the long time (neglecting initial data) diffusion problem with a driver which is polynomial in

time as

M of
CELSHURTED ST (I (3.69)
m=0
This can be solved by the ansatz
M+1
f(yv Z,t) - Z fm(y7 Z)tm' (37())
m=0
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Substituting and collecting in powers of ¢ gives a set of Poisson equations with Neumann boundary

conditions:
—V2 a4y, 2) =0

_v2fM(y7 Z) = aM(ya Z) - (M + 1)fM+1(y7 Z)
~V2 a1 2) = ano1(9,2) — Mfar(y, 2) (3.71)

~V2fo(y,2) = ao(y, 2) — fi(y, ).
The undetermined constant in the solution of each problem (except the last, for fp) is chosen
to enforce the solvability condition (a,,—1 — mfy) = 0. The leading order term in the solution,
far1tM+L has a constant solution, with fas1 = (ans)/(M + 1), while generically the rest of the
fm are nontrivial functions of space. If it happens that (ap;) = 0, then fa;41 drops out, and the
leading order polynomial is one degree lower and does have spatial variation. It happens that this is
the case when calculating 73. Also note the degree in ¢ cannot drop further unless aps(y, 2) = 0.
Long time behavior of the Aris equations.
Now we successively find the long time asymptotics for the first three moments. The long time
T1 problem is
oTy

— 2 = B =
(0y — V)11 = Peu(y, 2), an | 0. (3.72)

Since we choose work in coordinates where (u) = 0, the long time asymptotics have no time

dependence:

Ti(y,z,t) ~ Pegi(y,z), t— o0 (3.73)

Where g; solves (3.72) without the factor of Pe. The long time 75 problem is
(0, — V2)Ty ~ 2+ 2Pe 2uly, )1 (1, 2) (3.74)
and applying the procedure from section 3.3.1, the corresponding long time behavior is

Ty ~ Pe?gy + (2 + 2Pe 2 (ugy))t, (3.75)
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where the function go(y, 2) is the solution to the problem

9921 _ o, (g =0 (3.76)

—V2gy = 2(ug1 — (ugi)), =
on |5,

We highlight that this formula contains the dimensionless effective diffusivity xeg = 1 + Pe?{ugi).
Thus the pointwise variance is asymptotically uniform in the cross section for ¢ — oo, but will have
nontrivial cross sectional structure on intermediate timescales depending on the competition of the
terms go(y, z) and (ug)t.

Substitution of this 75 solution into the T35 problem gives

(0 — V?)T3 = 6T} + 3PeuT)
(3.77)
= 6Pe g1 + 3Pe>3ugs + 6Pe kegut

with solution (recall —V?2g; = u)
T3 ~ —V~2|6Pe g, + 3Pe’[ugs — <ugg>]} + [3Pe3<ugg> + 6Pe meﬂgl}t (3.78)

Collecting only the leading order terms of the solutions (3.73, 3.75, 3.78) and substituting into the

numerator and denominator of the skewness gives:

Ts — 31T, + 213 = [3Pe3<ugg> + 6Pe Keff g1 — 3[2/%&] [Pe gl]]t = 3Pe3(ugy)t,
(3.79)

Ty —T2 = [2%5}1&.
This gives the overall leading order behavior of the skewness, which is uniform throughout the cross
section despite the individual moments possessing dependence on the cross-sectional location at long

time:

3 3
Sk(y, 2.1) ~ Sk(t) = o102 /2 :%7@932 12 (3.80)
(2/4;85) (2<ugl>)

In addition, in the large Péclet limit we get a scaling prediction only dependent on (ug;) and (ugs),
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which shows a universality of the dynamics of the skewness at large Péclet;

Sk(t) ~ (2§Z;ﬁ§32/2t_1/2. (3.81)

In summary, obtaining the leading order behavior of the skewness requires solving the problems

—Vu(y,z) =2, wulpq = const., (u)=0 (3.82)
2 _ on _ _
-V gl(y7 Z) - U(y, Z)? . =0, <gl> =0, (383)
on |5
992

—0, (3.84)
oN

~V?g2(y, 2) = 2(ug1 — (ugn)), In

calculating the cross sectional averages (ug;) and (ugs), and substituting these into (3.80). Note
that g2(y, z) is only determined up to a constant through this process, but it is not an issue as the
constant washes out when taking the averages.
Exact calculation of long time asymptotics in the channel.

The long time problems can be handled explicitly, as the problem is one-dimensional and the

flow is polynomial. The flow is u = 1/3 — 32. With this, the problem

0?2 dg1
———g1=u, — =0, (g1)=0 (3.85)
0y? Y =t
has the solution
1/1 4
anly) = ¢ <30 -y + y2) (3.86)

which yields the diffusive enhancement (ug;) = 8/945, which agrees with [2, 5, 6, 8, 11] after
differences in convention with the prototype domain and flow are taken into account. The driver for

the next problem is
Yo Tyt 1Ty 17

6 18 90 1890 (3.87)

giving the solution for go

—29 1792 17y? 6 8
_ _ 11y v _W Ly (3.88)
226800 3780 1080 540 = 336

92(y)
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The coefficient for the numerator is

64
(ug2) = = f57775 (3:89)
giving the large Péclet asymptotic for the skewness,
21
Sk(t) ~ — @t-l/? (3.90)

Exact calculation of long time asymptotics in any ellipse.
Here we work in dimensional coordinates to avoid ambiguities which arise from different different
nondimensionalizations used in the literature. The long-time problems in the ellipses can be solved

exactly using a transformation to elliptical coordinates

y = ccos(&) cosh(n), z = csin(§) sinh(n), (3.91)

with n € [0,27) the “angular" coordinate, £ € [0,&,] the “radial" coordinate, and parameters
¢ = Vb2 —a? and & = tanh~!(a/b) specifying the shape of the ellipse with semi-axes b > a > 0.

The Laplacian is transformed from rectangular to elliptical coordinates as

H? 9?2 1 H? H?
5+ 93 7Ew oe o) (392
with Jacobian
b2 — a2
J (& n) = —5—(cosh(2€) — cos(2n)). (3.93)
The flow solution
—a’p, 1 1y 22
o= e G %) (394)

can be written in elliptical coordinates with direct substitution. After multiplying through the

Jacobian and expanding the right hand side in a cos(2kn) basis, the long time moment problems to
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be solved take the generic form

0? 0?
(852 + > gm(&€,m) Z¢2k ) cos(2kn) (3.95a)

gm(&,0) = gm(§, 2m), =0. (3.95b)

9 o=,

Importantly, the right hand side is a finite sum in cosines (e.g., K = 2 for the first moment), so

there is a related finite-sum separation of variables solution for g,,(&,n):

Zm cos(2kn). (3.96)

The subproblem for each 79 requires solving an ODE

Yo (€) — (2k)*72k(€) = dax (), (3.97a)

Yar (&) = Y2x(0) = 0. (3.97b)

The new boundary condition at £ = 0 comes in as a smoothness requirement; any other boundary
condition at & = 0 would result in nondifferentiable corners in the solution.

To see this, we look at dg,, /0y approaching the interfocal line segment £ = 0. Since the original
problem is a well-posed Poisson problem with analytic forcing and boundary, derivatives of all orders
exist in the interior; in particular dg,,/dy at (y,z) = (0, z) is well defined for any z lying between
the foci. The corresponding point in elliptic coordinates is located at both (£,17) = (0,74) and
(0,m7—), with ny € (0,7) and - = 27w — n4. The differential mapping can be inverted to get an
expression for dg,,/dy in terms of g, /9§ and Jg,,/In:

gm

= ! Ccos sin ag—m sin Cos %
B jm)< (©)sin(n) 222 +sin(€)cos(n) 877), (3.98)
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with J the Jacobian, and evaluating at n; and substituting the generic solution,

OGm 2sin Ogm,
01 = (=t 2oy 90 (3:99)
K
=C(ny) Z D () cos(2hns ), (3.100)
k=
whereas evaluating at n_ gives
gm 2 , Agm
By O = = oz (Sm( g Om- >> (3.101)
= = a;)Q(SliIi(z-gi(zn+)) (Z 8g§k(0) cos(2k77_)) (3.102)
k=0
_ = 02k
=—C(ny)> —g(O) cos(2kn,). (3.103)
k=0
- 889;(0,7”). (3.104)

The two expressions must be equal to avoid a derivative jump. Subtracting the two and taking

an inner product with cos(2mn4.) gives, for each k,

0 = 20(n) 22 (0), (3.105)

and since C(ny) # 0, consistency requires each of the subproblems have an additional Neumann
condition at £ = 0.

The full formulae for the drivers and solutions for g; and gy are detailed in the appendix. After
collecting the full equations, the dimensional quantity (ug;), related to the effective diffusivity,

evaluates to

p2 [a*b*(5a* + 14a?b* + 5b)
(ugr) =

ik 2304(a? + b?)3
(3.106)

_abp2 [ BAT+ 14N +5
2k 2304 02(1 + A2)3

This formula agrees with formulae in the the literature for effective diffusivity in the elliptical pipe

[2, 6], after taking into account differences in conventions.
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Similarly, (ugs), which affects the sign of the long time skewness, evaluates to

—p3 [—ab°(5a* — 224202 + 5b*
{ugz) =

p3K2 138240(a? + b?)3

(3.107)

~ar%pd [—(5A —22)% +5)
k2| 138240 M (1 + A2)3

This is sign indefinite. The root of this equation lying in [0, 1] has the exact value

A =/(11 — 4V6) /5 ~ 0.49031. (3.108)

For A < A\*, the long time decay is negative, and it is positive for A > A*. The other roots are at
A = —\* and their reciprocals A = £1/A*, which is a reassuring result from a physical point of view.

Put together, this gives a resulting large Péclet nondimensional prediction

—3v2(5 — 2222 + 5)\%)
3/2
5\ (5+14>\2+5>\4>

Sk(t; \) = (3.109)

1422

In the case of the circular pipe, the nondimensional, large Péclet skewness then decays as

Sk(t;1) ~ ,/%t—m. (3.110)

Calculation of long time coefficients in the rectangular duct.

In the rectangular duct, the flow cannot, to our knowledge, be expressed in closed form. We
begin with an analytical approach to calculate g; and (ug;), which we can compare to previous
results on effective diffusivity. Then we will opt to use a finite element solver to follow through
to the prediction for go and the coefficient (ugs). This finite element approach will also allow us

another check against our exact long time predictions, where we have them.

Analytical approach. With the single-series formula for the flow, it is straightforward to calculate
g1 and the diffusive enhancement (ug;) as in [6]. Because of the varied choices of nondimensionaliza-
tion in the literature, we choose to work in dimensional coordinates here. Once we have derived a

formula, we can validate against previous results (e.g., [6], or more recently [11]|) and investigate the
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behavior of the diffusivity in various limiting scenarios.

For convenience, we rewrite the dimensional, mean-zero formulas here:

u(y, z) = ue(y) + Y cx[ cos((k — 1/2)wy/a) cosh((k — 1/2)mz/a) — 4], (3.111a)
k=1
—a?p, 2
fe = up <:1)> - ZZ) ’ (3.111b)
_ —ad’ps 2(—1)k
BT T Bk — 1/2)3 cosh((k — 1/2)mb/a)’ (3.111c)
B, = (=1 \sinh((k — 1/2)7/)) Bt

m2(k —1/2)2

It is convenient for the purposes of solving the Poisson problem to convert the single series a(y, z) =

u(y, z) — uc(y) into a traditional Fourier series. Using the usual inner product techniques, the end

result is
~ _a2pw I
= . E U cos(mmy/a) cos(nmz/b), (3.112a)
— _1ymtn = _
P 16(a/b)(—1) tanh((k — 1/2)7b/a) (3.112b)

(L4 Omo + 0no) £= [k —1/2][(k — 1/2)? = m?][(k — 1/2)? + (a/b)?n?]

=1

where the primed sum is over all m,n > 0 and (m,n) # (0,0). The analagous dimensional form for

the g1(y, z) problem is:

0
—kViu(y, 2) =u(y,2),  5-gilea =0, (91) =0. (3.113)

With u. a polynomial, @ expressed as a cosine series, and linearity of the problem, the solution can

be calculated termwise:

g1 = gcl(y) + gl(yv Z)? (3'114)

with

_—atpe (T (y/a)? | (y/a)*
Je = Uk (1% 6 T > ’ (3:115)
—CL4 T / ﬂmn
g= 2 Z 5 cos(mmy/a) cos(nmz/b). (3.116)

pr L (m2 + (a/b)?n?)
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The diffusive enhancement is of the form

Kenh. = K+ (ug1). (3.117)
The full average expands out,
(ugr) = (ucger) + (ucg) + (Uger) + (@gn), (3.118)
with terms
abp? 8
go) = L 11
(uege) 2 015 (3.119a)
a%p2 S —2(—1) g
cd - = 3.119b
<u gl> FLQH WZZI (m7r)4 ( )
N a’ps —2(=1)Umo
c 3.119
<Ug 1> /1/2:“? — (mﬂ_)4 ( C)
. a 14+ 60 + 0
(ag) = p Z 0 + 010) i (3.119d)

42 (m?2 + a/b)2n2)

Numerically calculating these series, we see agreement with [6, 11| when modifying the pressure

gradient so that the average lab-frame velocity is constant amongst all aspect ratios.

Numerical approach. Because the rectangular ducts ultimately require series truncation and
evaluation at some point, we have additionally written code to solve the Poisson problems for u,
g1, and go (3.82 — 3.84) and calculate the averages (ug;) and (ugs) using a black box finite element
solver. We used Mathematica 10, which has a finite element package which can be imported via the
command «NDSolve‘FEM‘, which includes the procedures ToElementMesh to construct a mesh on a
specified domain and NDSolveValue to solve the problem with specified boundary conditions and
parameters. The analytical tools of Mathematica combined with these procedures allows one to, in
principle, work with any geometry they can define mathematically.

For the purpose of finding the “golden" aspect ratios A* in both the rectangle and ellipse, we
have written two routines, one for each class of geometry, whose input is the aspect ratio and whose

output is the numerical value of (ugs). The main routine successively solves the problems for u, g,
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and go as described above, then outputs the numerical value for (ugs). The approximate A\* is then
found by hooking this routine into a numerical rootfinder. We have done convergence studies to
ensure the convergence of the digits \* =~ 0.49038 in the rectangle. In the ellipse, we have found
A* &~ 0.49031, which agrees with the exact prediction of equation (A.14).

We have also compared the the predictions using the finite element solver in the rectangles with
Monte Carlo simulation in figure 5.7, found in chapter 5 on our Monte Carlo approach. In the

3/2 represents a y intercept, which sees good

log-log plots, the computed coefficient 3(uga)/(2{ug1))
agreement with the Monte Carlo past the first (nondimensional) diffusive timescale ¢t = 1, except
for very small aspect ratios, when the long time theory is not yet close to being valid (this occurs

strictly for ¢ oc 1/A?).
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CHAPTER 4

Poisson summation of channel formulae

Motivation
The exact solution of the first three moments equations for the tracer problem in the infinite

channel contain many sums of the form

oo _1 n
E (=1) e (nm)*t cos(nmy), for p even, and
(4.1)

(
= (_1 —(nm)%t
E n )pe sin(nmy), for p odd,
T

for p=0,1,...,12. These don’t have closed-form expressions (except at t = 0 and ¢ — 00), so we
can only hope to truncate the series and evaluate numerically. However, for ¢ small, the number
of terms necessary for convergence to within a chosen £ may be large for small p. Since this is an
alternating series, supposing we truncate the term to NV — 1 terms and fix y and ¢, a rough estimate

for the error is

_N\N
g‘( D) e*(N”)%cos(Nﬂy)

i—NZ_l (_1)ne*(”ﬂ)2tcos(mr )
=) ’

N
—
|
=
2
S
o~

= Nap©

For t sufficiently small, use the first order Taylor expansion of the exponential to try to get a

bound on N to achieve € accuracy:

1

o (N7)%t) = ¢

(4.3)
(emP)NP 4 (7?t)N? — 1 = 0.

We have, a rootfinding problem for N. If we can neglect the NP term (under the correct
assumptions on en? relative to the other terms) then we have a basic requirement that we need to

keep at least N = 7/+/t terms to achieve this accuracy. For instance, if t = 1076, N ~ 3.1 x 10?
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terms are necessary. The issue becomes more complicated when we need to also start worrying about
finite precision arithmetic and Péclet number dependence. For example, we have observed that finite
precision issues occur where the series solution diverges for small ¢ independent of increasingly large
N, whereas a two-term Taylor expansion does not see this issue.

With this idea in mind, it is useful to construct an equivalent formulas, for ¢ < 1 using Poisson
summation. By its nature, the Poisson summation converges exponentially fast for ¢ < 1 (compared
with exponentially fast convergence for ¢ > 1 in the original series), which allows us to keep only a
few terms of the sum to accurately resolve the moments.

Derivation of the seed identity

The first goal here is to use the Poisson summation formula to rewrite the sum

(—1)”(3_”27r2'5 cos(nmy). (4.4)

n=1

The basic Poisson summation result (c.f. [16], section 3.1.5) relates an infinite sum with summand

function f to its Fourier-transformed pair f:
o0 oo
Y fy= Y f2rm), (4.5)
n=-—oo m=—oo

with the Fourier transform pair defined as:

fio = [ e f (),
[ (4.6)
f@) =5 [ .

:% .

To use this, first, rewrite the Poisson formula (4.5) in terms of singly-infinite sums:

D fm)+ f(=n) = = f(0) + f(0) + D f(2mm) + f(—2mm), (4.7)
m=1

n=1
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then rewrite the summand (4.4) in a compatible form:

) inmTy —inmy
(*1)"6_71271—215 cos(nmy) = e <e—|—2e> (4.8a)
1 inm —n?m2t 'mfr 1 717177 —n2n2t —inm
= —e"e Y4 - € e e "y (4.8b)
1 1
— —e 7r2t€7,n(7ry+ﬂ') 4= 2 e 7r2te—1n(7ry+7r) (480)
_ le—n 7r2tez(7ry+7r)n + % -n 7r2te—z(7ry+7r)n (4.8d)
= f(n) + f(—n), (4.8¢)
where the function is
L _ n? ian _ : 2
f(n):§e M with v =7, a=mny+ . (4.9)

Note (4.8b) uses the fact that ™ = e~"™ for n € Z. So, the original summand can be written as

the left-hand side in (4.7). We just need to find the Fourier transform of f(n):

f(k) _ / ezk:cf(x)dx _ / eikxle_’ynQemnde

—00 —00 2

1 T (kl—oz)Q
= — —e vy .
2V

We have f(0) = 1/2 and f(0) = %\/71‘/’)/6_0‘2/(47), so substitution yields the formula:

o L o _ (27rm+a)2 _ (727rm+a)2
Z(—l) cos(mry —= —|— \/7 b \/7 [Z e o +te 4 , (4.11)
m=1

n=1

(4.10)

or rewritten explicitly with v = 7%t and o = 7wy + ,

S (y+1)2 (QM-&-y-&-l)2 _ (=2m4y+1)?
Z(—l)"e cos(mry —= + +e at .

(1.12)

Observe the terms on the right are in fact one dimensional heat kernels. Defining

Gy, t) = (4.13)
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Figure 4.1: Comparison of the original summation to the expression recast via Poisson summation in
(4.12). Top row: both original and Poisson versions truncated to 100 terms for times ¢ = 1076, ..., 1073
on the y-interval [—1,1]. Bottom row: demonstration of the terms needed for convergence scaling
like Npax ~ v/t in the boundary layer. Here, t = 1077, and Ny is varied from 10 to 10%.

the sum can be written in the much simpler form

[e.9]

1 oo
(—1)"6_"%% cos(nmy) = ) + Z G(y+2m+1,t). (4.14)

n=1 m=—00

This will be a “seed" identity which we build up from, as similar formulas when multiplying the
summand on the left by by (nm)™P, for positive integer p, can be derived by taking integrals and
derivatives of this expression.

Expressing in terms of a lattice of heat kernels also gives us the interpretation of the sum as
the solution of the homogeneous diffusion equation on the real line, whose initial condition is a
lattice of Dirac delta functions 6(y + 2m + 1). It can also be interpreted as a solution to the
Neumann problem on the interval [—1, 1] using the method of images, but the initial condition here,
—1/2+6(y + 1)+ 6(y — 1), has to be interpreted loosely.

To put some faith in this formula, figure 4.1 compares the left and right-hand side expressions for
various times and truncation indices Npax on the left hand series, evaluating on the y interval [—1, 1].

Only the £1 images are kept on the right hand side. The top row fixes Nyax = 100 and varies ¢

to demonstrate the usefulness of the re-summation for t < 1. The bottom row fixes ¢t = 10~7 and
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Figure 4.2: Behavior of (4.14) when keeping a small number of images at small to intermediate time.
The effect of the extra images is not seen until order one time.

demonstrates the need for Nyax &~ 10* terms in the original sum before the substantial oscillations
near the boundary can be removed.

As mentioned, only the terms G(y + 1,t) and G(y — 1,t) need be kept for substantial accuracy
for ¢t <« 1. This is reminiscent of the formal short time asymptotics we had developed for 17 for the
channel problem:

)
Ty ~ut + (=14 2G(y, —1) + 2G(y, 1)) 7 (4.15)
However, it turns out the true nature of the short time behavior for 77 is slightly different. This will
establish rigorously later.

To demonstrate the need to keep only the +1 images in resolving the dynamics on [—1,1], in
figure 4.2 we look at the effect of including any of the additional images in (4.14) outside of [—1, 1]
No visible effect can be seen until order one time. This can be shown explicitly. For instance, for the

image centered at y = 3, the greatest contribution is felt at y = 1, to the tune of

Gy —3,t) = \/Le_l/t, (4.16)

47t

which is exponentially small for ¢ small. Images farther out will have significantly smaller contribution

(decaying as the square of the distance to the nearest boundary) until order one time.
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Poisson summation of T;

With the basic identity (4.14) established, the next step is to bootstrap this to calculate sums of

the form:
o0 ne (nﬂ_)Q
Z(—l) ()P cos(nmy), p even, (4.17)
n=1

until we can write down an equivalent form for 77 (y,t), the first moment in the infinite channel
problem. Odd values of p, which only occur with sine terms, will be addressed later. The method of
attack is to repeatedly integrate both sides of (4.14) with respect to ¢, which we detail for the p = 2
case below, then summarize for p = 4, after which we compare the results to T1(y, t), and analyze at
a few approximations.

The p = 2 case

Integrating the left-hand side of (4.12) and exchanging the order of integration and sum gives

i(—l)n [/Ot e Sds] cos(nmy) i [ *n27r2; - _(7”1”7)2] cos(nmy) (4.18a)
i <y —~ ;) - i(—l)”e(;;t cos(ny). (4.18b)

The polynomial part of (4.18b) can be verified by finding its Fourier expansion on [—1, 1]. Integrating

the right-hand side requires integrating the heat kernel in time (replacing t with s understood):

/Ot G(y,s)ds = /Ot iﬂseﬁds (4.19a)
— /jvm (w(ﬁﬁ) e’ (;'ﬁf dw) (with w = |y|/V/4s) (4.19b)

\|/yL y/fli e " dw (4.19¢)

N \|/gz/l|7r [16w2 |y|/f B Q/ywﬂ eww] -

= \\/[;e—hff \|yf| S e_dew (4-196)

= %Gy, t) — f]y\ Erfc (\%) , (4.19f)

where Erfc(z) = % fxoo e~**ds is the complementary error function. Note that the use of absolute

value in the transformation (4.19b) is necessary so that the lower limit s = 0 always corresponds
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with w = 400 rather than w = —oo. Splitting into cases of y < 0 and y > 0 would yield the same

result. As the erfc term will continue to show up, define

19l )
Er(y,t) = Erfc | — | . 4.20
(.0) = Bxte (2L (4.20
Then (4.14) integrates to
t 1 e

—= 2 1,t)d

/0 2+mz_:ooG(y+ m+1,t)ds
- (4.21)

1 > 1
=—5t+ > 2tG(y+2m+1,t) — Sy 2m e+ 1 Br(y + 2m + 1.1).

m=—0Q

As we move forward, we will always be dealing with expressions with the sums of various images
on the lattice 2Z — 1. We also will be mainly looking at approximating the full sum by only keeping

the £1 terms. With this in mind, we denote a primed sum as the full sum, excluding the +1 terms:

’ [e.@]
> fim)= [ Y. fem+1)| = f(=1) = f(1)
e (4.22)
= f(=2m—1)+ f(2m +1).
m=1
Collecting everything to this point, we have the identity
i(—l)"e_n%% (nmy) = Y-t +E—2tG( +1,t) — 2tG(y — 1,t)
— (TL7T)2 COs nty) = 4 Yy 3 2 Yy ) Yy )
(4.23)

1 1
+ §\y+ 11Er(y+1,t) + 5|y —1|Er(y —1,t)

' 1
+) 0 —2G(y+m,t)+ 5 v+ m|Er(y +m.1).

A first attempt at approximating would involve dropping Z/ and the Er terms. This would give the

expression:

—n272t

Z(_we(m)Q cos(ny) ~ i <y2 - ;) + 5 - 2G(y, 1) ~ %G, 1). (4.24)
n=1

In figure 4.3 we compare these two to the original summation. There seems to be agreement on small
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ooo Poisson full
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Figure 4.3: Evaluation of the left and right-hand sides of (4.23) and (4.24) with Nyay = 10* for the
original summation. The effect of neglecting the Er(-) terms is seen by t = 1072,

timescales, but the approximation fails relatively quickly, since the Er(-) terms become significant
when their arguments become order 1. For example, for Er(y — 1,t), the argument of the Erfc
becomes order 1 at % ~ 1t~ (y—1)2/4. This idea of dropping Erfc terms is addressed further
in section 4.3.4.
The p = 4 case

Now repeat for p = 4. Integrate both sides of (4.23) in time. The left side integrates to:

0 . t e—n27r23 B & o _e—n27r2t 1
7;(—1) </0 st) cos(nmy) = nzl( 1) ( () + (mr)4> cos(nmy) .
1 4 7 > e nimt .
= (3/2 —y? 4 30> — Z(—l)” () cos(nmy).

n=1

The polynomial terms in the right-hand side integrate to:

1, 1 s 1 1 t2
- _ - Cds == (42— = )t+ = 4.26
/04<y 3>+2S 4<y 3>+4’ (4.26)

and the functional form of the images in (4.23) are seen integrate to:
' 1 _p® (1)
; —2s5G(y, s) + §\y|Er(y, s)ds =Py ' (y,t)G(y,t) + Py ' (y,t) Er(y,t), (4.27)
with 73£4) and 732(4) being the “polynomials"
1
Py t) = —5(lyPt +4), (4.282)

1
P (y, 1) = ﬁ(lyl?’ +6lylt). (4.28b)
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Figure 4.4: Evaluation of the left and right-hand sides of (4.30) with Nyax = 10* for the original
summation (black), no extra images as in (4.31) (green), and two extra images kept (red).

Define the “composite" image Z(9:
W (y,t) = - [Py, DGy, 1) + P (5. ) Er(y, )] (4.29)

Collecting all terms, With Z(* (y, t) defined as in (4.27), the full summation is written as

S —n272¢ 4 2
e 1 [y 5 7 t( 5 1 t

1) - [Z _ R . N I
(=1) (nm)? cos(nmy) = —5; <2 vt 30) 4 <y 3) 4

n=1 (4.30)
+IW(y - 1,) + IOy + 1,6) + > TW(y+m,t).
As before, this can be truncated to the &1 images, giving the approximation
s —n2r2t 4 2
e 1 [y 7 t 1 t
—1\" ~___ |2 _ 2 A 2 -\ _ v
n:l( V Ty costnmy) ~ =5 (2 v 30> 1 (y 3) 1 (431)

+IW(y—1,8) + ZW(y +1,1).

We compare the left and right sides of (4.30) in figure 4.4. This shows good agreement until order
one time. Additionally, including one extra pair of images I(4)(y + 3,t) corrects the behavior at
t=1.
Poisson summation for the first moment in the channel

Before continuing on to higher p, we use the formulae we have to rewrite the exact pointwise

tracer mean T given in [15]. The pointwise mean of the tracer distribution in the channel from a
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strip initial condition (neglecting the Péclet number) has the solution

1/y* 2 7 - = —(nm)%t
Ti(y,t) = 5 <2 —y° + 30> +4nz::1 e 1€ cos(nmy). (4.32)

)

If we multiply (4.30) by four and move the first term to the left, we get the generic expression T}
(with Pe = 1 and the images defined in (4.29)):

1 o0
Ti(y,t) = <3 - y2> t—t24+ Y AZW(y+2m+1,1). (4.33)

m=—0oQ

To get asymptotic short time behavior, keep only the +1 images as in (4.31), the result of which is:
1
Ti(y,t) ~ (3 - y2> t—12 —4ZW(y+1,t) —4ZW (y — 1,1). (4.34)

If we are looking to compare to our formal asymptotics, we drop the Er terms from the images Z(4).

After substituting 771(4), this can be reduced to

1 4
Ti(y,t) = <3 — y2> t—t2 4 3 “(y + 1%t + 47| Gy + 1,t) + [(y — 1)°t + 4¢*] G(y — 1,t)}.
(4.35)
This is noticeably different than our “boundary-delta" approach, only contains t2G(y,t) terms. A

first sanity check for this formula is to see in what way this violates “mass" conservation:

L 4
[ (G-) e 3l per a6 s 10 + - 17+ 4260 - 1.0]dy

4 1 de1/t43/2 4 1
=224+ 2 |2PEref ( — ) - ——— | + —(4®)Exef [ — 4.36
Py tr<\/%> Nz +3(”r<ﬁ> (430
1 16
— _2 Ef - t2—7 71/tt3/2
{ b <\/E>} 3ﬁ6 ’

which is asymptotic to 6t2, since e~'/* — 0 and Erf(1/v/t) — 1 exponentially fast for t — 0.
Unlike our boundary delta approximation, this does not satisfy the conservation law f_ll Cidy — 0
exponentially fast as t — 0. To this point we haven’t fully looked at the importance of including

Erfc terms, either. Both of these ideas will be addressed in section 4.3.4 below.

44



Verifying conserved quantities

The last question of the O(t?) violation of “mass" conservation when truncating the Poisson sum
version of T to raises the question of conservation for all of the identities developed so far. If the
identities hold, they should behave identically, but how the truncation of the Poisson sum behaves
needs to be addressed. To evaluate the full summations, it will be necessary to evaluate expressions

of the form

1 00
/1 > fly+2m+1)dy, (4.37)

m=—00
for f being images of some kind centered on the lattice 2Z — 1. Assuming exchanging the sum and

integral is valid, and changing variables for each integral lets us write

1 00 1
/ Y fly+2m+ldy= Y / fly +2m+1)dy
“lm=—o00 m=—o0” 1 (4.38)

-/ Z F(y)dy.

Geometrically, the idea is that the area of the right tail of G(y + 1,t), say, is accounted for by the
contribution of the images fil Gy + 3,t)dy, fil G(y + 5,t)dy, and so on. Similarly, the left tail of
G(y — 1,t) is accounted for by the images at y = 3, y = 5, and so on.

This is convenient for us since it lets us sidestep the need to calculate infinite sums that may or
may not have closed solutions when tackled directly. For example, for the seed formula (4.14), the

left hand side integrates to zero termwise due to the cosines, and the right hand side integrates to

Zero, since
1 1 o
/ —5—1— Gy+2m+1,y)dy
-1 m=—0o0
1 (o ¢]
=-2x5+ (/ G(y,yo)dy> (4.39)
=—-14+1=0.

For the p = 2 case, with (4.23), the left side integrates to zero as usual, and the right side integrates
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t=10""6 t=10"3 t=10"1 t =10°
| [, (4.34) dy 0* 0* 1.8 % 10~0 | 5.5 x 102
| [, (4.35) dy| | 6.0x 1072 [ 6.0 x 1076 | 6.0 x 1072 | 3.6 x 10°

Table 4.1: Absolute error of the “mass" for the truncated Poisson summations (4.34), and the
truncation when dropping Er(-) terms, (4.35) evaluated at different times. Dropping the Er terms
is seen to violate the total mass condition in a quadratic fashion.

o0

to zero since:
1
> —2G(y+2m+1,t) + Slv+2m +1|Br(y +2m+1,1)| dy

/1 Lo 1\t
La\Y T3) T 2
m=—oQ

t o 1
=0+2x 5 —i—/ —2tG(y,t) + §|y]Er(y,t)dy

—0o0

=t—24t=0.
(4.40)

Finally, the p = 4 case (4.30) integrates to zero:

Voroyt o, 7 1/, 1 t2
/_1‘24<2‘y +30)‘4(y ‘3>t‘4
- [ Z PH(y+2m+1,0G(y+2m+1,8) + Ps (y +2m + 1,0)Er(y + 2m + 1,t) | dy
_ AR ey (4)
=0+0-2x -+ Py (y, )G (y,t) + Py (y, 1) Er(y, t)dy

1
= —§t2 + 2% — th = 0.
(4.41)

Now let’s return to the question of approximating 7 at short time. In contrast to (4.35), we now
keep the Er terms centered at +1 as in (4.34). Table 4.3.4 compares the two approximations by
looking at their integrals’ rate of separation from zero. The 0* terms are those which are zero up to
hundreds of digits, and the asymptotic behavior of 6t2 previously calculated is apparent for (4.35).
Considering this along with the evidence in the error of the pointwise solution seen in figure 4.3,
it seems necessary to keep Er terms. What this suggests for the formal short time asymptotics in
a generic domain is unclear. But what is clear that there is not a direct correspondence between
the formal method and the Poisson resummation, except in the presence of heat kernels. It may be
possible to more carefully analyze the short time behavior of 73£4) (y,t)G(y,t) and 73§4) (y,t)Er(y,t)

to get a better picture, but this has not been explored yet.
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Summary

In this section we have built up the identities needed to write the separation-of-variables solution
for T1(y,t), in terms of a lattice sum of functions Z(*(y,t) defined in equation (4.29). Work has
been done to validate the identities directly, and various truncations of the lattice sum have been

analyzed. Specifically, we have

n,—(nm)?t

e Used the Poisson summation formula to rewrite the sum » (—1)"e cos(nmy) in terms of

what turn out to be 1D heat kernels on a lattice (equation 4.14).

e Bootstrapped this result to obtain identities for the sums z:(—l)"(mr)*i”.e*("”)21t cos(nmy) for
p = 2 (equation 4.23) and p = 4 (equation 4.30). Essentially, this process is done by recursively

integrating the p — 2 identity in time and rearranging the resulting expressions.

e Validated these results by comparing partial sums over a range of timescales, both as functions

of y, and analytically demonstrating preservation of “mass."

e Applied the p = 4 formula (4.30) to get an equivalent expression for 77, the first moment of the
tracer problem in the channel. In this case, truncating the Poisson summation and dropping Er
terms gives a similar, but distinct, expression to the “boundary delta" methodology. Specifically,
equation (4.35) does not satisfy mass conservation asymptotically at the same rate in t as the
“boundary delta" method does, which shows that Er terms are necessary if an exponential

rate of mass is desired of the truncated Poisson sum as ¢ — 0.

Poisson summation of the second moment in the channel
In this section, we would like to develop the necessary identities to write down an expression for
Ts, the second moment of tracer in the channel problem. For this, we’ll need to solve the p = 6 case,

then derive similar formulas involving sines for odd p:

3

Z ((;jr;p e (nm)*t sin(nmy). (4.42)
n=1

In short, these odd cases can be found by differentiating with respect to y. For the p = 1 formula,
we can differentiating the p = 2 expression. The p = 5 case required in 75 will be found using the

p = 6 case.
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The p =6 case

From the p = 4 case (4.30), we repeat the same process. Integrating the left hand side in time
gives:

S o [Lem = o _onin2t 1 -
S ([ o = S0 (i e
1 ?JG 4 7y2 31 © N e—n27r2t (443)
~ 988 (5 DA 105> - ;(—1) ()0 cos(nmy).

The polynomial terms on the right integrate to:

t 1 4 1 2
o 24\ 2 30) 4 3 4
) ) , (4.44)
_ by e TN _E e L)
T\ Y T3) %\ T3 '

The images individually integrate to:

t
/0 POy, )Gy, 5) + PV (y, ) Er(y, s)ds = P\ (y,)G(y, t) + P (y, ) Er(y, t) = TO)(y, 1),

(4.45)
with the “polynomials" 7756) and 7356):
1
P, 1) = — 5 ('t + 181y + 326%),
) (4.46)
6
Py ) = 515 (P + 201yt + 60[y[£2).
240
Then the fully constructed solution is:
o0 —n2r2t 6 2 4
e 1 [y 4 1y 31 t (y 5 7
1" -~ (2 _ o2 IR A L
()" e cos(nmy) = 555 <5 Vs T s) Taa o TV T g
n=1
. (4.47)
A (E I S IOy +2m+1,t

m=—00

The results are compared in figure 4.5. Moving forward, the notation will become even more bulky.

Noticing a pattern in the polynomial terms, we define polynomials ¢'®) based on the recursion

1
8yyq(k+2) = q(k)7 ayq(kJrQ)’:I:l = 07 / q(k+2)dy = 07 (4'48)
—1
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Figure 4.5: Evaluation of the left and right-hand sides of (4.47) with Nyax = 10* for the original
summation (black), only the +1 images (green), and the £1, £3 images (red). As with previous
cases, only two images are needed until order one time.

beginning with ¢(© = —1 /2. This gives us the polynomials

4 =—(y* —1/3)/4, (4.492)

au=—(y*/2 —y> +7/30)/24, (4.49b)

which can be used to simplify the p = 6 (and further) formulas:

o0 2.2 o0
enﬂt 2 t3

1y _ (. @, @ | o (6)
(-1 ()0 cos(nmy) <q +aUt Y 5 g 6)+ > IOy +2m+1,1).

n=1 m=—00

(4.50)

The p =5 case
Once the p = 6 identity is found, the p = 5 identity can be found by differentiating the expression

termwise in y.

—n2m2t

_ (‘)ay <Z(_1)ne(mr)6 cos(mry)) _ (4.51a)

n=1
) t2 t3 S 9
S IO (5 R G @2 4 02 _ 2\ 76 9 1
y[ (q +q Ut a7 5 g 6) +m;m< ay) (y +2m+1,1),
giving
o0 e—n27r2t 2 o
n : _ (5 3 1 5
n:1(—1) ()7 sin(nmy) = ¢ + ¢®t + ¢ )5 + m_z_:oof( )y +2m + 1, 1), (4.52)
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with images

IO (y,t) = P (y, )G (y, 1) + P (y, ) Er(y, 1), (4.53)

¢ 1
PO, 1) = 210t +42), PP (y,t) = — 5 Sisn() (122 + 1267 + %) . (4.54)

12

The p = 8 case

We continue from the p = 6 case (4.47). Integrating the left hand side in time gives:

> t g—nr?s o0 —n2n2t
n € n| —€ 1
nzz:l(_l) </0 (”7T)6d8> costnm) = nz:l(_l) ( (nm)8 * (n7r)8> costnmy)
L3y 6 Ty 31y IECANRS o—nnlt
8640 (28 vt 110 ; 5~ cos(nmy) (4.55)
g S
Z 5 cos(nmy).

The polynomial terms on the right integrate to:

t
/ < 6 1 gDy 4 @5 ¢ q<o>> ds
2
0

(4.56)
©,, @t ot ot
:—<q t+q §+q g'i‘q 24>
The images individually integrate to:
NG (6) () (8)
/0 Pl (y7 S)G(ya S) + PZ (y7 S)ET(y, 3>d8 = 7)1 (y7 t>G(y7 t) + PQ (y7 t)ET(% t)? (457)
with the polynomials 77( ) and 772(8):
1

PO (y,1) = —m(384t4 + 3486%|y|? + 4062|y|* + t]y|®) (4.58a)
P (y, 1) = ) ——(8408%|y| + 4202 |y + 42t[y|® + [y|"). (4.58b)
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The composite image is defined as
I®(y,1) = — (PP (4, 0)G w, 1) + P (9,0 Br(y,1) ). (4.59)

Putting all together we get.

S e ® . ©,,. ot of ot
nzz:l(—l) (n)? cos(nmy) = ¢\Y + ¢Vt + ¢ 5+q g—i-q o1

. (4.60)
+ > I®y+2m+1,1).

m=—0oQ

The p =7 case
As with the p = 5 case, we obtain the identity for p = 7 by differentiating the p = 8 formula

(4.60) with respect to y. The end result is

0 —n272t 2 3 0
€ ~ N NG PR ) LA ¢V L (7)
nZI( D" Ty sinlnmy) = a0+ 40t + 405+ ¢V +m;OOI (y+2m+1,t), (4.61)
with polynomials ¢(?) = —0/0y (q(p“)), and images
Iy, 1) = POy, )Gy, 1) + P (y. 1) Er(y, 1), (4.62a)
t
POy, 1) = %(132752 +28ty% + ¢, (4.62b)
1

P (y, 1) = — a0 Sien(y) (12067 + 1808y + 30ty + ). (4.62¢)

Expression for T»
The expression for the second moment 75 in [15], setting the tracer’s initial variance o = 0 and

Péclet number Pe = 1, is

To(y,t) =2t + Qi(y, t;n) + Y _ Qaly, t;n) cos(nmy) + Qs(y, t; n) sin(nmy). (4.63)

n=1
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Figure 4.6: Evaluation of (4.64) with Npay = 10% for the original summation (black), and the Poisson
summation equivalents keeping only the 1 images (green circles), and the first forty images centered
around [—1,1] (red stars). Green circles not shown in the final panel.

The coefficients Qo and Qs need to be unpacked, as they contain various powers of nw. We get an

expression

To(y,t) = Fiy,t) + > Fa(y,t) ((;;Ze‘(’””gt cos(nmy) + F3(y,1) ((_1)”@‘(”“>2t cos(nmy)
n=1

(4.64)

( 1)n —(nm)2t

— : (_1)n —(nm)?t
()7 e sin(nmy) + F5(y, t)

e

sin(nmy),

+ > Faly,t)
n=1

with the coefficients

=92t —41 40t — 10202 4 929405 8

F + 226800( 3 + 3840 020y° + 3570y 9404° 4 6751°),
34

Fp=g —dt+ 2%,  F3=—128, (4.65)
4 3

]:4:§( —y), ]:5:—4y.

In this form, the derived identities (4.52, 4.47, 4.61, 4.60) can be substituted directly. In figure 4.6
we compare the results. Towards the interest of capturing behavior into the diffusive timescale, we
replace the panel at ¢ = 10~2 with one at t = 10. We need to use forty images at y = +1, £3, ..., £39
to obtain good agreement at ¢ = 10. Keeping only the images at y = +1 is only satisfactory until
t=10"1
Third moment in the channel and comparison for centered statistics

At this point, the procedure should be clear. We give the formulae for p = 9 through 12, as are
needed to calculate T5. Once we have these, we can construct the Poisson summation versions of the

the variance and skewness. For brevity, we provide the explicit formulae for the image functions z(®)
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here, but the forms of the polynomials ¢(?) are given later in section 4.6.

For p = 10, we obtain

2

n2n2 5
- mt (10-2k)( t* (10)(
E ———— cos(nmy) g ¢’ k‘ + E 7zt (y +2m + 1,t),

k=0

m=—0oQ

with the images

700 (y, 1) = PO (y, )Gy, t) + PSO (y, ) Er(y, 1),

4—181440(6144t5%—7800t4y24—1380t3y44770t2y64%ty8%

= 725760

For p = 12, we obtain
00 272t
m=—o00

n=1

with the images

202y, 1) = — (P2 (1, )Gy, 1) + PY2 (1. ) Er(y. 1))

122880t 4 202320t%y? + 48720t*y* + 3752t3y5 + 108t%y® + ty'°
19958400

(15120t |y| + 100803 |y|> 4 1512¢%|y|® + 72t|y|” + |y|*).

6 k e
e
Z(—l)"W cos(nmy) Zq (12-2k)( k' + Z T2 (y 4 2m + 1, 1),
k=0 '

79833600

Differentiating these equations in y gives the formula for p = 9:

0 efn27r2t tk
Z(—l)” ()7 sin(nmy) Zq (9=2k) ( k" + Z IO (y +2m + 1,t),
n=1 nm m=—00

IO (y,t) = P (y, )Gy, 1) + PS (y, ) Er(y. 1),
9) ty 3 2 92

P (y,t) = 20160(2232t + 740t%y* + b4ty + %),

_Slgn( )
80640

93

332640t |y| + 277200t |y|> + 55440¢3|y|° + 3960¢2|y|7 + 110¢t|y|? + |y|'!

(1680t* + 3360t>y> + 840ty* + 56ty° + ¢°),

(4.66)

(4.67a)

(4.67b)

(4.67¢)

(4.68)

(4.69a)

(4.69D)

(4.69¢)

(4.70a)

(4.70b)

(4.70c¢)

(4.70d)



and similarly for p = 11:

0 —n2r2t 5 tk 0
_ nei (11-2k)( (11)
nz:l( 1) ()1l sin(nmy) kz k! + m;ool (y+2m+1,t), (4.71a)
11
700 (y,1) = — (P 5, 0G(. 1) + PY (9,0 Br(y.1)) (4.71b)
(11) 46320t°y + 21120t*y® 4 2352t3y° + 88t2y" + ty” L7l
4 Sign(y) [30240t5 + 75600t%y? + 25200t3y* + 2520t2y% + 90ty + ylo]
Py (y,t) = (4.71d)

7257600 ’

As with T3, the formula for T3 in [15] needs to be unpacked to compare to the Poisson sum. The

end result is, with 02 = 0 and Pe = 1,

—(nm)?t —(nm)?t o
( gO ya + Z Z ng yv (n;)c;sk(nﬂ-y) + g2/€+1 (ya t) c (nW)SQI]iE?ﬂ-y) (472)

n=1k=2
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with coeflicients

1
Go = 35t(7— 30y* + 15y*)
4076777 8447y T3yt S 1348

~ 13621608000 4989600 _ 907200 1200 12096

211y y'? N 244t 8ty* 4ty
453600 14784 155925 945 = 945’

Gy = 24t,
g5207
1, 2, 14 8
= P —
Ge Y +3y 3V~ b
28 8
Gr = =2y + 4y’ + -y + 2ty — 2y,
691 s 9., 23, )
[ — — - — 1 _
gS 20+3t +2y+4y 31t 3ty>
Gy = 44y — T6y> + 6ty,
3705 231 ,
=2 = 231¢
Gio 2 5 Y + )
Gi11 = 231y,
Gro = 14640,
Gz = 0.

(4.73a)
(4.73)
(4.73¢)
(4.73d)
(4.73¢)
(4.73f)
(4.73g)
(4.73h)
(4.73i)
(4.73))

(4.73K)

Now that we have expressions for the first three moments in (4.33), (4.64), and (4.72), we can

calculate variance and skewness. Figure 4.7 shows a detailed picture of the variance and skewness

evolution. In the variance, boundary layers form on the wall at early timescales. The peaks in the

variance grow and migrate towards the center in time. On later timescales this structure remains,

and increases at a linear rate consistent with the effective diffusivity independent of y. Interestingly,

the centerline sees minimum variance for all time. The noise at ¢ = 1076 in both the original and

Poisson sum versions is presumed to be due to critical numerical cancellations. There is not much

that can be done about this with the original sum, but it may be possible with the Poisson sum to

simplify the expression for the variance by re-collecting the expression in terms of G(y + 2m + 1,¢)

and Er(y + 2m + 1,t) and looking for any cancellations a priori.

For the skewness in figure 4.7, we have re-introduced the Péclet number into the formulae and set
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T
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Figure 4.7: Evaluation of the channel variance (top rows) and skewness (bottom rows) with
Nmax = 10* for the original summation (black), and the Poisson summation equivalents keeping
only the +1 images (green circles), and the first forty images centered around [—1,1] (red stars).
The line Sk = 0 (dashed) is included for reference. Green circles not shown in the final panel. The
variance uses Pe = 1, while the skewness uses Pe = 10 to emphasize Poisson sum’s resolution of the

fine scale structure.
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Pe = 103 to match the fine scale structure we see in simulations elsewhere. In this case, the numerical
issues are even more apparent. We have verified that this issue is independent of (nonzero) Péclet
number, again suggesting an issue of numerical cancellation issues in forming the skewness. Despite
this problem, it is clear starting at t = 1072 that a boundary layer has formed due to diffusive
pumping which affects the third centered moment (the numerator of the skewness) to dominate the
variance. Fine scale structure is resolved in intermediate timescales, and the long time asymptotic
behavior being independent of y is apparent at ¢t = 10.
Summary of identities

This section summarizes all the identities developed in a table for easier access, in addition to

restating the notation used. The identities for p even were derived recursively using the expression:

= (_1)n —(nm)?t = _/t = (_1)n —(nm)?s
nz:l (mr)p+26 cos(nmy) Z cos(mry) ; Z (nw)pe cos(nmy)ds, (4.74)

and beginning the recursion at p = 0 by replacing the last sum via Poisson summation formula

(4.14). The end result is generically a polynomial in y and ¢ plus a lattice sum of images ).

8

e}

e (nm)? b cos(nmy) = P(p)( y,t) + Z I (y +2m +1,1),
= e (4.75)

w0 = (—1)? <7J£7’) (y,t)G(y,t) + 732(p) (y,t)Er(y,t)) ;

where the leading (—1)? in Z() is due to the subtraction in (4.74). The two basic “image functions"

are the one dimensional heat kernel G, and a function related to its integral, Er,

1 v

\/mefﬂ, Er(y,t) = Erfc<\|/$27>, (4.76)

G(y,t) =

and Pép) (y, 1), Pl(p) (y,t), and P(p)( ,t) are three “polynomials" indexed by the power p of the
()

denominator (nm)?P in the original summand. The coefficients P;"’ (y,t) and Pép ) (y,t) are found by

applying the time integral while disregarding any leading coefficients:

t
/0 P (y.5)G(y. ) + P (y. 5) Er(y, s)ds, (4.77)

and collecting the resulting expression in terms of G and Er.
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The case of p odd (with sines instead of cosines) can be handled by differentiating the p + 1 case

in y and negating:

_aay (Z (il;)llzzl 6_(717T)2t Cos(nﬂ'@/)) = Z ((;73:: e—(mr)2t Sin(mry) (4_78)

n=1 n=1

which gives functionally similar formulas for p odd, with P[()p ), pr ), and PQ(p ) as negative derivatives

of their p + 1 counterparts:

o _1 n 00
Z ((nﬂ;p 6_(n7r)2t sin(nmy) = ép) (y,t) + Z 7(P) (y 4 2m +1,1), (4.79a)
n=1 Me—— 00

10 (y, 1) = PP (. )G (y. 1) + P (y. ) Br(y. 1). (4.79b)

The leading polynomials P(()p ), for p even, can be solved recursively as

t
P(()2k+2) (y,t) — q(2k) (y) o / P(SQk) (y7 S)dS, for k = ]_, 2, ceey
0

(4.80)
P (w,t) =¥ = -1/2,
and the expression ¢(*#) (y) is the time-independent series in (4.74),
(20) () — (_1)k+1 — (=" 181
() = ()Y i cos(nmy). (4.81)
n=1

The ¢2%) themselves are found in closed form by solving a recursive set of Poisson problems with

Neumann boundary conditions and a zero-mean constraint:
(2k+2) _ _(2k) (2k+2) ! (2k+2)
0 12) = , Dy g2t ’ =0, / 2 dy = 0. 4.82
yy4d q yd 4 » q Y ( )

This is equivalent due to the uniqueness of solution of this class of problem. Essentially, the series
expression is a eigenfunction solution of the problem. The fact that the drivers are polynomials
and the problem is one dimensional implies that the system of problems stays within the space of
polynomials (since solving the problem only requires integrating in y twice.)

It may be possible to obtain similar recursive formulae for the leading polynomials Pl(p ) and
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q®(y)

~1/2

y/2
(—y*+1/3)/4

(
(—y*+2y* —7/15) /48

(6y° — 20y° + 14y) /1440

(31/21 — 7y* + 5y* — y®) /1440

(24y” — 168y° + 392y> — 248y) /241920
(

(

(

(

— 3y® + 28y° — 98y* + 124y? — 127/5) /241920

10y — 120y" + 588y° — 1240y° + 762y) /7257600

— y10 + 15y% — 98y + 310y* — 381y? + 2555/33) /7257600

12" — 220y + 1848y" — 8184y° + 16764y> — 10220y) /958003200

12 | (—y'? 4 22y'0 — 231y® + 1364y° — 4191y* + 5110y — 1414477/1365) /958003200

OO || |U W (IN~|O

—_
(es)

—_
—_

Table 4.2: Polynomials ¢®), p = 0,1, ..., 12 necessary for Poisson summation of the solutions for the
first three moments in the channel.
772(p ), aside from integrating the individual images in time and collecting in terms of the functions
G and Er. There is obviously some structure in the problem, due to the similarity in the leading
polynomials across values of p. This is a future direction to explore.

For reference we have tabulated in Table 4.6 the functions ¢(»). The polynomials Pl(p ) and Pép )
have been defined in the earlier subsections for the values of p as needed to calculate the channel

skewness, and following the procedure described in this subsection is enough to derive expressions

for other values of p as needed.
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CHAPTER 5

Monte Carlo simulation

This chapter discusses our use of a Monte Carlo method to numerically solve the advection-
diffusion equation and obtain statistics of the tracer T'(x,1).

We have opted to use Fortran 90 for the numerical simulations because of its well-known speed
and efficiency for scientific computation (though in principle any another compiled language could
be used). The appendix contains the full source code necessary to compile and run these simulations,
aside from two external software packages used.

The first external software used is for the Mersenne Twister pseudorandom number generator,
introduced by Matsumoto and Nishimura [17]|, and implemented in Fortran by Nishimura, available
at [18]. The second is a version of the HDF5 software [19]|, which is a file format that allows one
to store large amounts of data, along with metadata (such as problem parameters) in a single file.

Tools to read from HDF files exist in most major high level programming languages.

Brownian motions and their connection to advection-diffusion problems
In one dimension, a Brownian motion B(t) with drift and variance parameters p and o2 is a

random function defined through the following properties:

B(t) — B(0) ~ N (ut, o*t) (5.1a)
B(ty) — B(t1) = B(ts — t1) — B(0) (with to > #;) (5.1b)
B(t) = pt + oW (t), (5.1c)

where N (ut, 0?t) is a Gaussian distribution with mean pt and variance o2, W (t) is “simple" Brownian

motion with 4 =0, ¢ = 1. One can form a probability density function:

. Pla<B@)<z+ Az
pla) = fom, FEEEE IS o2
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Using this definition and the properties of Brownian motion, it can be shown [20, 21] that p(x,t)
satisfies the one-dimensional free space advection-diffusion equation
Op op o2 0%
A THA. = 5 a2
ot ox 2 Ox
p(z,0) = o(x), (5.3b)

(5.3a)

where we assume without loss of generality B(0) = 0, and d(z) is the Dirac delta distribution. This
suggests that a Monte Carlo method for solving the advection diffusion equation (5.3) is to generate
a large number of independent sample paths of a Brownian motion and use the law of large numbers
to approximate the probability density.

It is convenient to understand the Brownian motion with drift and variance parameters as the
solution to a stochastic differential equation (SDE). This term is a misnomer, as Brownian motions

are generically nondifferentiable for all ¢. This can be seen directly from the difference quotient:

B(t+h)— B(t) _ B(h)~ B(0) _ uh+W(h)

h - h h
o Yaw) 1
—/i‘f‘T —,U‘f‘W(l)ﬁ;

(5.4a)

(5.4b)

so that the quotient diverges when sending h — 0. If we wish to generate sample paths on a sequence
of t values {ty = 0,t1,...,t,}, we can again use the properties of Brownian motion to write the
difference equation

Xlo) =0, (5.5)

X(tr) — X(tp—1) = p(ty — tg—1) + o [W(tg) — W(tg-1)], k=1,..,n.

This is essentially the Euler-Maruyama timestepping scheme for SDEs [22], the generalization of the
forward Euler method in ordinary differential equations. It is possible to regard SDEs in a more
abstract setting and derive higher-order timestepping schemes, but for our purposes it is enough to
use the above formulation.

In the standard notation for SDEs, this is written in shorthand as

dX (t) = pdt + odW (t). (5.6)
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This idea can be extended in a relatively straightforward way to handle other initial and boundary
conditions; if for instance we required the solution to the PDE in the bounded domain [—a, a] with

some non-point source initial condition f(z):

dp op % 0%p

ot T lar T 2 ez (5.7a)
op
a(IZ r==4a

the corresponding sample path would pull the initial condition from the PDF f(z) (without loss
of generality [, f(x)dz = 1), that is, X(0) ~ f(x), and impose “reflective” boundary conditions at
x = +a, the analogue of Neumann boundary conditions.! Specifically, if a sample path were to exit
the domain [—a, a], it would reflect back into the domain in an elastic way — preserving the sampled
distance | X (tx) — X (tx—1)| before imposing the boundary condition, and reflecting inwards from the
tangent plane at the boundary at the same angle relative to the local surface normal vector.

The theory follows through if we move to two spatial dimensions. For example, the free space
two-dimensional advection-diffusion with constant advection vector y = i + pj and isotropic

diffusion s has the form

ot =
p(z,y,0) = 6(x)d(y), (5.8b)
and the SDE analogue is
dX (t) = prdt + V2kdW, (1), (5.9a)
dY (t) = padt + V2kdWs(t), (5.9b)
X(0)=Y(0) =0, (5.9¢)

with W7 and W5 being independent simple Brownian motions. In this case, the X and Y equations

IThe analogue of Dirichlet boundary condition is known as an “absorbing” boundary condition.
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are independent and the diffusion could be handled as two one-dimensional equations in succession.
With a variable coefficient advection term, as in the tracer problem in three dimensions, with initial

data f(z) = d(z) (say), the corresponding set of equations is

dX (t) = u(Y (t), Z(t))dt + vV2kdW1(t), (5.10a)
dY (t) = V2kdWs(t), (5.10b)
dZ(t) = V2rdWs(t), (5.10¢)
X(0) =0, (Y, 2) ~ U(S), (5.10d)

where U() denotes a uniform random distribution in the cross section.? Again, W5 and W3 are
independent except when needing to respect reflecting boundary conditions.
Implementation of the Monte Carlo method

In the subsections below, we detail all the aspects of the implementation of the Monte Carlo
method for our problem.

In the numerics the nondimensional equations are used, so that the domains are bounded
in (y,2) € [-1,1] x [-1/A,1/A]. Time is nondimensionalized relative to the diffusive timescale

t = (a®/k)7. In this setup the SDE takes the vector form

dX(t) = Peu(Y (), Z(t))idt + V2dW (), (5.11)

with Pe the Péclet number, a specified initial condition f(z,y, z), and reflecting boundary conditions
on 2.

Implementing this is broken down into several parts: specifying the initial condition f(z,y, 2),
(pre)calculating the flow u(y, z), implementing Brownian motion and enforcing reflective boundary
conditions dW, and calculating the various statistics of the particle ensemble X(t).

Specifying the initial conditions

To compare with theory and experiment, we usually consider a few special cases of initial data:

*However, in practice, we may opt to initialize (Y, Z) in a regular grid in the cross section instead of using a random
initial condition.
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1. “Strip" initial data, f(z,y,2) = 0(x),
2. Gaussian initial data in o alone; with mean zero and some variance o2: f(z,y, 2) = G(x;02);
3. Point source initial data, f(z,y,2) = 0(x)d(y — y0)d(z — 20).

Specifically working towards replicating experiment, we also want to be able to diffuse any initial
condition before turning on the flow. To cover all cases, we allow one to specify the following in the

code in regards to the initial condition:

The approximate number of particles n. desired for the lattice in the cross section €;

The width of the lattice in the x direction (only considered if n, > 1);

The number of lattice strips to place in the z direction, ng;

The initial position (yo, 20) (only considered if n, = 1);

The amount of nondimensional time 7qi¢ to diffuse the initial condition formed above (without

advection).

If n. = 1, a point source initial condition is assumed. Otherwise, the numbers p = [v/n.\| and
q = [/ne/\] (with floor |-] and ceiling [-] functions) are the chosen as the number of discretization
points in the y and z directions respectively, so that both the resulting lattice is approximately
uniformly spaced in y and z, and the total number of particles is still pg &~ n.. For elliptical domains,
n. is scaled up within the code by the ratio of the area of the rectangle and inscribed ellipse, and
points outside the ellipse are thrown out, so that the original value of n. is approximately preserved.

The following parameter settings give desired initial conditions:
1. For a strip f = d(x), one would choose any n., set n, = 1, and 7g;¢ = 0.

2. For a Gaussian initial condition with variance o2, form the strip initial condition above, and

chose Tqiff = 0%/2, using the fact that the heat kernel G(z, 7) satisfies 0% = [ 22G(z, 7)dz = 27;

3. For a point source f = §(z)d(y — yo)d(z — 20), set n. = 1, choose any n, and (yo, 20), and

Tdiff = 0.
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We have also implemented the ability to import an arbitrary initial condition from a file in HDF
format. This is useful if we wish to replicate experimental initial conditions, or create more exotic
initial conditions in a high-level programming language; for instance, Python or Matlab/Octave.
Calculation of the flow

In the case of the infinite channel and any elliptical pipe, the mean-zero flow is calculated directly

during the simulation whenever needed, as they are polynomial, and inexpensive to evaluate:

ue(y) = % -y (5.12)
u(y,z) = 1_:)\2 (; . )\2z2> . (5.13)
In the rectangular duct, it is inefficient to directly evaluate the truncated sum
N
u(y, z) = uc(y) + Z ar(A) [ cos((k — 1/2)my) cosh((k — 1/2)mz) — bi(N)] (5.14)
k=1

on the fly, as it requires N evaluations of (hyperbolic) cosine. Instead, we precompute the flow on a
fine grid (y; 5, 2;,j). Then, on any timestep, given a position (y, ), the indices 4, j for the surrounding
rectangle [y; j, Yit+1,5] ¥ [2ij, 2ij+1] are found, and bilinear interpolation is used to approximate the
flow value u(y, 2).

The choice of a fine grid for the precomputed flow can be modified internally; both a uniform grid
and one which uses Chebyshev nodes have been implemented. The uniform grid has the advantage
that lookups can be done fast by using integer division. Using Chebyshev nodes requires a slower
binary search due to non-uniform spacing, but fewer total grid points are necessary to resolve the
boundary layer of the flow for small aspect ratios A, so it may be advantageous in some cases.
Implementation of diffusion and enforcing boundary conditions

At the heart of any Monte Carlo is the generation of pseudorandom numbers, and thus a
pseudorandom number generator. We use a Fortran module from [18] that implements the Mersenne
Twister, a well known, high quality uniform random number generator [17] (the details of which are
outside the scope of this dissertation).

Simulating Brownian motion, however, requires normally distributed random numbers with

arbitrary mean and variance; X ~ N(u,0?). Using basic properties of normal random variables,

65



we can let Y ~ N(0,1) and defining X = p + oY gives us the needed distribution to the random
variable. Therefore, we need to only generate samples from the standard normal distribution. To do
this, we implement Marsaglia’s polar variant [23] of the Box-Muller method. These methods take
pairs of independently distributed uniform random numbers (v1,v2) and applies a transformation
which produces independently distributed normal random numbers (w1, ws2). We briefly compare

the two algorithms.

Algorithm 1 Box-Muller method.
Let unif(a, b) be a uniform random number generator U(a, b).
Set v; = unif(0, 1), vy = unif(0, 1).
Set R = \/—2log(v1).
Set w1 = Rcos(2mv2), we = Rsin(2mvs).
Output (wq, w2).

Algorithm 2 Marsaglia’s polar variant of the Box-Muller method.

Let unif(a, b) be a uniform random number generator U(a, b).
Set v1 =1, vy = 1, ¢ = v + v3.
while ¢ > 1 do
Set v; = unif(—1,1), vy = unif(-1,1)
Set ¢ = v? + v3.
end while
Set s = \/—2log(q)/q
Set w1 = v18, wy = vaS.
Output (w1, w2).

Marsaglia’s polar variant avoids an evaluation of sine and cosine, but because of the rejection
method needed to produce a uniform random pair (v1,v2) in the unit disk, it requires 4/m ~ 1.27
times the number of calls to the uniform random number generator. Empirically, the polar variant is
faster, though conceivably the opposite could be true if the uniform generator is very slow. Other
algorithms exist which may provide further speedup, but the polar variant is sufficient for our
purposes.

Imposing reflective boundary conditions is more involved. Generally, if the diffusion dW ()
would push a path out of the domain, one needs to appropriately reflect it back in the domain to
accurately capture the dynamics. Briefly, one needs to find the location of the intersection, calculate
the local normal vector, reflect the component of the vector exiting the domain back in, and possibly

repeat. This is described in algorithm 5.2.3. An illustration of this process is provided in figure 5.1.
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Algorithm 3 Enforcing reflective boundary conditions for a particle trajectory.
(y1,21) < (Yi(tk), Zi(tk))

(yo, 20) < (Yi(tp—1), Zi(tk—1))
while u(y;,21) < 0 do

(Find the first point of intersection.)

Let f(s) = yo + s(y1 — yo)

Let g(s) = 20 + s(z1 — 20)

so < min{s : (f(s),g(s)) € 99, s € [0,1]}
(Y0, 20) = (f(s0), 9(s0))

(Reflect across the tangent line of the boundary.)
v 4 n(yo, 20)

w < (Y1 — Yo, 21 — 20)

W 4 w — 2proj,w

(Update the final point.)

(y1,21) < (Y0, 20) + w
end while

(Yi(tk), Zi(tr)) < (y1,21)

In general, this process will result in a nontrivial spatial coupling between the random processes
Wy and W3, but the analytical form of this coupling is generally unimportant.

Simplifications are possible in the rectangular and channel cases. In the channel case, if we have
a particle exiting the domain in the positive direction y; > 1, reflect it by calculating y; < 2 — yy; if
exiting the domain on the negative direction y; < —1, calculate yo < —2 — y; (see figure 5.1 for a
schematic).

In the rectangular case, the algorithm simplifies in a similar way because of the “separable" nature
of the domain. However, extra care needs to be taken to corner cases, where multiple reflections
may be necessary in a single timestep. For example, if y; > 1 and z; > 1/, then the calculation of
the first boundary crossing, sg, is not immediate. One needs to find the first of the two intersections
as described in algorithm 5.2.3, that is, taking {s: f(s) = 1} and {s : g(s) = 1/A\} and applying the
reflection at location with the smallest value of s.

In the elliptical case, more effort is required with every aspect of the calculation. The main

feature here is that the interior and exterior of the domain can be partitioned based on the sign of
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Figure 5.1: Illustration of a reflecting boundary condition in one dimension (left panel) and two
dimensions in the case of the duct near the corner (right panel). The exterior of the domain is
indicated with hatches. The channel reflections have a simple formula for preserving the total
distance traveled. The rectangle requires dealing with corner cases, where one needs to find the
minimum of intersection times {sg, s1} (green circles) and multiple reflections. The right panel
illustrates that the domain can be implicitly defined where a function u(y, z) > 0.

the lab-frame flow (with zero Dirichlet boundary conditions) (see right panel of figure 5.1):

Q={(y,2) :u(y,z) >0}, R2\Q={(y,2):uly,z) <0}, 0Q={(y,2):u(y,z)=0}. (5.15)

Therefore, calculating the point of intersection of an exiting path (yo, z0) — (y1,21) in the ellipse

involves solving
1

1+ A2

u(f(s),9(s)) = (1 f2(s) = N?g*(5)) = 0 (5.16)

for s, which when simplified is a quadratic which takes the form
ps? —2¢s —r =0, (5.17)

with coefficients
p=(y1 —40)* + N(21 — 20)%,

q=1y5 + N2 — yoyr — Nz021, (5.18)
r=1-—y2 - X222,

and has the solutions

2
s=94 <q> o (5.19)
p P

Because of the convexity of the domain, only one of the solutions for s will lie in [0, 1], so there is no
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room for ambiguity. Both solutions are checked and the one in the interval is taken.

A similar method is used when we deal with more general domains whose boundary can be
implicitly described as a level set u(y, z) = 0 for a prescribed flow function u, or when dealing with a
general polygonal domains, but other complications arise there. This is described in detail in chapter
6.

Calculation of statistics
The nature of Monte Carlo allows one to approximate the statistics of the distribution by binning

the particles in the appropriate way.
e To approximate fQ T(x,7)dA for a fixed 7, first choose the number of bins ny, then:

1. Find the minimum and maximum values Zp,in and Tmax of the ensemble of particles {X;};
2. Create a uniform grid of n+1 points from Zpiy t0 Tmax With spacing h = (Zmax — Tmin) /1
3. Count the number of particles {X;} in each bin [z;_1, z;], denote it ¢;;

4. Normalize the values ¢; so that hZfi 1 ¢ = 1, or more generally, use a numerical

integration procedure to normalize to integral to one.

5. For analysis, save the array {¢;, i = 1,...,n}, and the corresponding array of bin centers

{bi, i=1,...,n}, with b; = (z;—1 + x;)/2.

If a binning procedure is available in the environment (for example, hist in Matlab/Octave,
or numpy.histogram or matplotlib.hist in Python) then one should use that instead of the
manual version described above. Otherwise, binning with uniform bins boils down to a linear

mapping of the position X; to the appropriate bin j.

e To approximate the centered statistics of the cross-sectionally averaged distribution,

I —/m UQ T(x, T)dA:| de, = /(m—ul)k [/Q T(X,T)dA] dz, (5.20)

one in fact only needs to calculate the discrete statistics without regards to Y; or Z;:

1 1
~ § : A ~ § : A k
Hn1 =~ N < - Xu i =~ N < I(XZ ml) . (5.21)
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Technically speaking these are biased estimators for the statistics. Unbiased estimators for the

statistics (e.g., dividing by N — 1 instead of N for the variance) can be used if desired, but

since N is typically larger than 10, it is relatively unimportant.
e Approximating pointwise statistics

[ 2T (x,t)dx
| T(x,t)dz’

[ 2T (x,t)dx

by, 2, t) = m7

p(y, z,t) =

is more involved. Our approach is to:

(5.22)

1. Create a two dimensional uniform grid containing the cross sectional domain with ng, + 1

and np, + 1 points in the y and z directions respectively;

2. Define a linear mapping I : R? — {1,...,npynp.} (e.g., row-major or column-major
counting) to assign each point a bin number j based on its cross-sectional coordinate
(Ys, Zi);

. For each bin j, collect the all particles in that bin, S; = {i : I(Y;, Z;) = j}, and calculate

the discrete z-statistics of that set:

1 1
M~ gy > Xi, kg~ Al ) (Xi —may); (5.23)
| ]|i€Sj ’ ]|i€sj'

. For analysis, save the locations of the bins as needed to map py; to the corresponding

grid location.

We are not aware of any procedures which would allow you to do this in high-level environments.

The collection of bins is done in two steps. First, the list of indexed coordinates is sorted

according to their index (their bin number) | and a count is done of the number of particles

in each bin. Then, using the bin counts, the contiguous subsets of the list can be immediately

passed into the moments subroutine, and the statistics are assigned to the appropriate bin.

3The sorting can be done efficiently, since the elements to sort over (the bin index) are integer valued.
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Validation and convergence of numerics

In the case of the infinite channel, there are exact formulae [15] for the first three longitudinal
moments of both the pointwise and the cross-sectionally averaged distribution which we can use
to benchmark our code. In the circular pipe, there are exact formulae for the first two pointwise
moments, and for the first three cross-sectionally averaged moments.

Validation in the infinite channel

We first benchmark the code on the channel case.

In figure 5.3.1, we plot numerics (colors) to exact results (black) for a few sample cases. In the
left panel, we work with N = 10% particles and compare the skewness between the numerics and
exact formula for a few values of the Péclet number. In the right panels, we visualize the pointwise
mean, variance, and skewness, the y coordinate in the ordinate direction, for Pe = 10* and t = 1072,
The pointwise statistics are approximated by using 100 bins in the cross section interval [—1,1]. We
see good “eyeball norm" agreement in these cases.

For a more rigorous error analysis, we perform a study on the absolute error |Sk(t) — Skexact(t)]
in figure 5.3.1. We sweep over the parameter space in number of particles N = 103,10%, ..., 108,
and Péclet number Pe = 102,104, 10°, with an initially growing, but ultimately hard bound on the
timestep, At < 1073, The left panel includes the results for all (N, Pe), with the error independent
of Pe and generally decreasing in N. The right panel measures maxy,{|Sk(t;) — Skexact(ti)|} for
each pair (N, Pe), and plots this error as a function of N. A decay rate of N~ is seen, which is
expected with Monte Carlo methods.

The caveat to the expected decay in the above study is the anomalous growth in the error for
104 <t < 107! which is seen independent of increasing N. This is also seen in the right panel, with
a stagnation in the error for N = 108. This can be explained as a result of the maximum timestep
At being slightly too large to resolve the intermediate time dynamics. In figure 5.3.1 we study the
same time-varying error as before, but now fixing N = 107 and Pe = 10, and varying the maximum
timestep Atmax = 1071,1072,...,107°.

Validation in the circular pipe

Next we move on to benchmarking against the circular pipe case. In this case there are formulae

for only the first two longitudinal moments of the fully distribution, and the first three for the

cross-sectionally averaged distribution. The same parameter sweep is performed. However, there
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Figure 5.2: Left panel: Time evolution of the numerical (shades of red) and exact skewness (black) of
the averaged distribution in the channel for Péclet values Pe = 102,10%, 105 and number of particles
N = 10%. Right panels, clockwise from top left: snapshots of the numerical and exact pointwise
mean, variance, and skewness for Pe = 10%, at ¢ = 1072. Dashed black lines indicate the zero line of

the mean, variance, and skewness.
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Figure 5.3: Analyzing convergence of numerics with increasing N. Left panel: absolute error in the
averaged skewness |Sk(t) — Skexact (t)| in the channel for Péclet values Pe = 102,104, 10% and numbers
of particles N = 103, ...,10%. Right panel: the corresponding average error of |Sk(t;) — Skexact ()] is
plotted versus the number of particles, with a power law fit. The expected scaling of error as 1/ VN
is generally observed.
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Figure 5.4: Analyzing convergence of numerics with N = 107 and Pe = 10* fixed, with decreasing
Atmax. Ten simulations are run for each Atpax, and the range of errors is shown. The error behaves
nonrandomly for Atya, > 1074, growing at an approximately linear rate in time until the hard cap
is hit. The error then decays as both the numerics and exact solution begin decaying to zero around
t~1072
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Figure 5.5: Time evolution of the numerical (shades of red) and exact (black) skewness in the circular
pipe for Péclet values Pe = 102,10%,10% and number of particles N = 10°. General agreement is
seen across a range of Péclet values, except at short time, where the exact formulae have numerical
cancellation issues, and a deviation near 7 ~ 1073,

are 100 bins in each direction, and the grid contains “inactive" bins that lie outside the unit disk,
so there are approximately 100?7/4 total bins in this case. Hence, we should see similar errors
compared to the channel with a factor of \/m ~ 88 more particles.

Figure 5.3.2 compares the exact formulae from [5] with the numerical results across a range of
Péclet values and time scales, with N = 10% particles. The numerical canellation issues are seen
at the shortest times with the exact formulae. The numerics also deviate slightly at the onset of
skewness for large Péclet near 7 ~ 10~3, which is seen in figure 5.3.2 to be analagous to the channel’s
error behavior with Atyax = 1073, and should be cured if this value is taken one or two orders of
magnitude smaller.

The mean errors are again plotted, after excluding the region 7 < 104 with divergence issues in
the exact formulae. Similar issues are seen as with the channel with the choice of Atyax = 1073,
which degrades the rate of convergence for large N. Nevertheless, for small to moderate N, the

expected convergence rate N~/2 (illustrated with the red line) is observed.
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Figure 5.6: Analyzing convergence of numerics in the circular pipe with increasing N. Left panel:
absolute error in the averaged skewness |Sk(t) — Skexact(t)| in the pipe for Péclet values Pe =
102,10, 105 and numbers of particles N = 103, ..., 108. Right panel: the corresponding average error
of |Sk(t;) — Skexact(ti)] is plotted versus the number of particles, with a power law fit. The expected
scaling of error as 1/ VN is generally observed.

Validation through long time asymptotics

Some validation can be done in domains without formulas for the full evolution of the tracer
moments.

In chapter 3, the generic long time (past the diffusive timescale) asymptotics for the first three
moments in any domain. For the variance, this is the relaxation to diffusivity enhanced by a term
proportional to a domain-dependent constant times the square of the Péclet number. The coefficient
can be calculated in closed form in the channel and circular pipe. There is also an exact formula
for any ellipse, and the rectangle can be expressed as a double sum. Some care must be taken for
the choice of parameters, or the limiting behavior for small aspect ratio can give several different
behaviors.

For the skewness, we have shown there is typically a t~%/2 decay, whose coefficient depends
on the solution of a sequence of elliptic PDEs relating to the flow u(y, z). In the infinite channel,
circular pipe, and ellipse, these coeflicients again have closed form solution. For the rectangular
domain we have opted to use a built-in finite element package in Mathematica to numerically solve
the PDEs necessary to calculate the coefficient, and obtained convergence up to the point necessary
to benchmark against the Monte Carlo code.

In figure 5.7 we try to validate the numerics by matching the expected long time behavior. The
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Figure 5.7: Behavior of the skewness Sk in the numerics for various geometries. Top row: skewness
evolution for ellipses (left) and rectanges (right) of varying aspect ratio with Pe = 10%. Bottom row:
log-log plot of |Sk| versus time for the ellipses (left) and rectangles (right).
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ellipses and rectangles are simulated with Pe = 10* and varying aspect ratios A\. The bottom row
shows the long time behavior of the absolute-value skewness in a log-log plot to verify the expected
asymptotic is followed. In the bottom left panel, the predicted asymptotic decay rates (dashed)
generally agree strongly with the numerics. The first exception is the cases A = 0.01, whose final
diffusive timescale is at t = 10%, which is when the asymptotics are valid. The other exception is
A = A* = 0.49031, at which the coefficient (ugs) vanishes, and the leading order asymptotic behavior
is instead t~3/2, for which we don’t have a prediction. The bottom right shows the similar behavior
in the rectangles, though the coefficient (ugs) is computed in Mathematica as described above.
Results in the rectangular and elliptical domains

The general results for the skewness of the cross-sectionally averaged tracer in the rectangular
domains are seen in the right column of figure 5.7. The averages of 100 runs of 10° particles are
shown, with Pe = 10*. The simulations demonstrate agreement with the short time theory of section
3.2 at 7 ~ 1074, and the long time skewness predictions of section 3.3 can be seen in the bottom
right. There is a wealth of nontrivial behavior on intermediate timescales for which we have no
theory. For example, there is a positive influence on the skewness at roughly 7 ~ 10~! independent of
the aspect ratio. Intermediate aspect ratios exhibit sign changes in the skewness, as a result. There
is a narrow band of aspect ratios which have negative short time skewness and positive long time
skewness. Lastly, despite the good matching between the channel (A = 0) and most “channel-like"
(A = 0.01) on short times, the skewness separates strongly past the diffusive time 7 = 1. There
is an expectation that the statistics for A < 1 approach the channel statistics, but examining the
simulations, the nature of this convergence is not be trivial.

In figure 5.8 we display the numerical results for the pointwise skewness Sk(y, z, 7) for a range of
times and aspect ratios, spanning from 7 ~ 1073 to 7 = 2.5, and A = 0.2, A = \* ~ 0.49, and \ = 1.
The same color scale is used amongst all panels for consistency, with red positive, blue negative, and
white zero skewness.

There is interesting fine spatial structure in the skewness at short times which we have no theory
for. The intuition in the infinite channel case is with the idea of diffusive pumping. The tracer
initially bends according to the flow profile, and due to the finite extent of the domain, the tracer
distribution near the walls will naturally have a strong peak behind the mean flow line, with a long

forward tail due to lateral diffusion from the center. Similarly, in the center, the tracer will have a
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Figure 5.8: Snapshots of the pointwise skewness in the ellipses and rectangles. Aspect ratios A = 0.2,
A= X* and A\ =1 are used, for times 7 = 0.0014, 0.008, 0.046, 0.44, and 2.5. Nontrivial

strong peak ahead of the mean flow line, with a long backward tail due to lateral diffusion from the
walls. Somewhere in the interior, these effects balance out to result in points of zero skewness. This
is observed in the exact solution and numerics for the channel (see figure 5.3.1, bottom right panel).

In the rectangles and ellipses, this same behavior is generally observed, but because of the added
dimension, the zero-skewness contours assume take a nontrivial shape. What governs their particular
shape, specifically for A # 1, is unclear. Even for the infinite channel case, we have no theory in
regards to the behavior of the implicit function Sk(y,t) = 0 in (¢,y) space.

At the longest time, the predicted spatial independence Sk(y, z,t) ~ Sk(t) is observed for A = 1,
and beginning to be observed for the other aspect ratios. The deviation from constant is explained
by the fact that the final diffusive timescale 7 = 1/A% must be reached for the long time theory to
be valid; this is at 7 =~ 4 for A = A* and 7 = 25 for A = 0.2.
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CHAPTER 6

Numerics and asymptotics in other domains

Introduction

In this section we discuss a few other classes of domains which have been studied. First, we
extend the elliptical domains by introducing a second parameter independent of the aspect ratio.
This allows us, to a moderate degree, interpolate cross sections from an ellipse of a given aspect
ratio to the analagous rectangle. Using Mathematica, we have numerically calculate the geometric
skewness and demonstrated it can be continuously changed from the circle value (zero) to square-like
domains, where it is positive. We have also extended the Monte Carlo code for the ellipses to handle
this case, though the calculations are somewhat trickier.

Next, we examine the equilateral triangle cross section, where there is a polynomial formula
for the flow, which results in a positive value for the short time skewness, and a negative value for
the long time skewness. In this case, the Monte Carlo code has been extended to handle a general
convex, polygonal boundary.

Finally, we address the cases of the regular n-gons, for n = 3,4, ...; the equilateral triangle, the
square, and so on. Except for n = 3, a closed form formula for the flow is not known, so we only
examine the asymptotics numerically.

Racetrack cross sections

" as we have termed them, are an extension of the elliptical cross sections. The

The “racetracks,
method is to implicitly perturb the boundary by modifying the flow directly. Since there is a formula
for the flow, the Monte Carlo code has be extended.

Derivation of the flow

The flow solution u(y, z) is the solution of the Poisson problem V?u = const. with specified

domain boundary conditions.

In general, the usual approach to the Poisson problem is to begin with a specified domain and

boundary conditions, then seek the solution. The idea for this section is to instead begin with
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a solution to the Poisson equation, then modify it with some choice of harmonic function. The
boundary will then be implicitly defined as the zero level set of this new function, which automatically
satisfies Dirichlet boundary conditions, and the domain will be the interior of this boundary.

Our approach is to use an ellipse flow solution and modify it with a harmonic polynomial. Putting

aside overall multiplicative constants, the new (non-dimensional) flow solution can be written as
— 2 2,2
u(y, Z) =1- C1 (y + Gz ) - C3P(y7 Z) (61>

with harmonic polynomial P(y,z) and coefficients ¢1, ¢, and ¢3. Due to the Cauchy-Riemann
equations, the only polynomials of two variables which are harmonic are combinations of the real
and imaginary parts of complex polynomials f(w) = w™ = (y + iz)"™. The simplest polynomial of

this class with four-fold symmetry is
P(y,z) =Re[(y + iz)4] =yt —6y%2? + 2N (6.2)

Using this P(y, z), we are left with specifying the undetermined constants. We impose the conditions

u(1,0) = u(0,1/)\) = 0 to maintain the aspect ratio. !

4
u(1,0) =1—c—c3=0 c1 :1_77)‘
(0) = 1=Xe; (6.3)
0,1/A) =1-9%2 % =0 1o =)
u(0,1/2) =1-* -5 = G =l-a="7ms

o

|

The count is two equations and three coefficients, leaving us co = s to use as a shape parameter.

Collecting everything, the flow is

1- M 2 2.2 (N = 5% 4 2.2 4
u(y’Z;S):l_(l—)\%?> (y +sz)—<_s> (y* —6y“z° + 2%), (6.4)

! An alternate choice is to set u(0,1/\) = u(1,1/)\) = 0, so that the far boundary and corner are pinned down and the
long walls can vary more freely, but we do not investigate this here.
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Figure 6.1: Illustration of the racetrack for the choices of parameter pairs shown. Note that for
s < A it is common for the domain to be come non-convex, as can be seen with (A, s) = (0.5,0.35).
The hatched regions indicate the exterior of the domain, and red and blue indicate regions where
u > 0 and u < 0 respectively.

and by construction, this choice of u satisfies the Poisson problem

Au = const., ulaaes) = 0,
(6.5)

Qs) ={(y,2) : uly, zs) = 0.
The domains for a few choices of parameter pairs (A, s) are shown in figure (6.2.1). Due to the
nature of the harmonic perturbation, there are regions disconnected from the main region with
u > 0. For this reason it is not quite enough to define the domain as the set where u(y, z) > 0, but
rather as the path-connected component where u(y, z) > 0. For particular values of s (depending
on M), the four “probes" on the exterior come towards the corners of the domain, which can make
the numerics difficult, as the timestep needs to be sufficiently small to avoid “jumping" into the

nonphysical domain. There are a few observations to be made:
1. Problem (6.5) reduces to the ellipse when s = \.

2. It is not clear that the implicitly defined domain (s) is bounded for all pairs (A,s). If
the harmonic component (whose level sets are unbounded) is large relative to the elliptical
component, we expect the level sets of their sum to be unbounded. For example, this happens

in the regime A = 1 and s < A.
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Algorithm 4 To enforce reflective boundary conditions for a boundary implicitly by the flow.
for i = 1,2, ..., nparticles dO

(1. 21) & (Vilta)s Z:(1r))

(Y0, z0) + (Yi(tr-1), Zi(tx—1))

while u(y1,21) <0 do
(Find the first point of intersection with a rootfinder.)
Let f(s) = yo + s(y1 — yo)
Let g(s) = z0 + s(z1 — 20)
so < min{s : u(f(s),g(s)) =0, s € [0,1]}
(Yo, 20) = (f(s0), 9(s0))

(Reflect across the tangent line of the boundary.)
v+ Vu(yo, 20)

w < (Y1 — Yo, 21 — 20)

W = w — 2proj,w

(Save the new position)
(y1,21) < (y0,20) + w
end while
end for

Monte Carlo simulation for the racetrack

As before, the Monte Carlo simulation relies on taking sample paths of the stochastic differential

equation

dX(t) =Peu(Y(t), Z(t))dt + dW1(t),

dY(t) = dWa(t), (6.6)

dZ(t) = dWs(t).
The flow is a polynomial by construction, so it can be evaluated directly. The boundary is defined
implicitly by u(y, z) = 0, and, except for a measure-zero set of parameters (\,s), there exists a region
for which v < 0 in the exterior surrounding the domain. This gives us a way to detect boundary
crossings, and allows us to use a similar algorithm (detailed below) to perform reflections off the
boundary.

With the polynomial form of the flow, the exact gradient Vu is calculated beforehand and
evaluated in its own subroutine. Finding the solution(s) of u(f(s),g(s)) = 0 require a numerical
rootfinder for general u(y, z).

While the flow formula is well behaved for any (A, s) (except for A = s as a removable discontinuity),

the domain shape varies noticeably depending on the pair chosen. First, one must restrict to s < A,
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otherwise the domain will not be as expected, as the “pinning" of the domain to (y, z) = (1,0) and
(0,1/X) will occur on branches of the exterior hyperbolae instead of the main racetrack. Secondly,
for sufficiently small s and moderate A, the domain can become unbounded. This corresponds to the
“probes" illustrated in the center panel of figure 6.2.1 touching the racetrack.

We do not have a predictive criteria for the curve s = f(\) for which this will occur. One may
make an attempt by parameterizing the boundary in polar coordinates. This does have a simple
expression, but the angle 6 where the corner occurs depends on both A and s. We have resorted
to a trial and error method; sampling the lower triangle s < A and throwing out simulations with
anomalously large values of skewness which result from unbounded domains.

A summarized result of a parameter sweep in (), s) space for the racetracks is shown in figure
6.2.2. A uniform colormap is used, where blue and red correspond to negative and positive skewness,
respectively, and white zero skewness, with an approximate zero level curve drawn in black. Only
the subset of parameter values with bounded domain and s < X\ are shown. At ¢t = 0.015, the
after effects of geometric skewness are seen; the ellipses (on the line A = s) are all positive, while
the rectangular-like shapes (bottom curved boundary) are separated between positive and negative
values between A = 0.4 and A = 0.5. Approaching the diffusive timescales, the behavior becomes
nearly independent of the shape parameter, providing evidence that the “golden" long time aspect

ratio of A* = 0.49 is observed across this class of geometries.
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Figure 6.2: Averaged skewness over a range of parameter pairs (), s) which satisfy a convexity
criterion at (y,z) = (1,0), plotted at nondimensional times (from left to right) ¢t ~ 0.015, 0.97,
and 6.28. Positive (negative) skewness is red (blue), with white being zero. An approximate zero
skewness contour is overlaid in black. Long time behavior is seen to be nearly independent of the
shape parameter.

Triangular cross section

The flow in the equilateral triangle is one of only a few cross setions which has a closed form
expression. Additionally, since the boundary is the intersection of three half-planes (i.e., a convex
polygon) it is possible to modify the Monte Carlo code to efficiently apply reflecting boundary
conditions.

As with the channel, the exact short and long time asymptotics can be calculated, and agree
with the simulations, as will be shown below.
Calculation of the flow

In the case of a cross section which is an equilateral triangle, there is an exact formula for the

flow:

uly,2) = 1o (a+)(20 + VB2 — )20 — V32 —y), (67

where @ is now the distance from the centroid (fixed at (0,0)) to the nearest boundaries (or
alternatively, the radius of the inscribed circle), and not the length of one of the sides (which is 2v/3).
It is straightforward to check that this is equivalent to the definition of a in the infinite channel,

rectangles, and ellipses.
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Each term in the product is in fact one of the three boundaries:

y=—a, y=2a+V3z, y=2a—+3z (6.8)

which verifies the Dirichlet boundary conditions are satisfied. and the Laplacian can be calculated
directly to be —2.
Calculation of asymptotics

Since the flow is a polynomial, the short and long time asymptotics can be calculated exactly.

The end result for geometric skewness is

(u®) 1/19250 112
(u2)3/2 (3/700)3/2 5267 018 (6.9)

which predicts positive short time skewness. The coefficient of the long time, large Péclet skewness

needs to be calculated numerically with a finite element package; the result is weak and negative:

3(ugz)

The comparison of the short and long time asymptotics is shown and discussed in section 6.3.3.
Modification of Monte Carlo code

The Monte Carlo code is roughly a modification between the infinite channel and rectangular
cases. It is like the channel in that the flow can be evaluated directly, while it is like the rectangle in
that there are two cross-sectional directions.

However, it is not quite as trivial to apply boundary conditions as in the channel or rectangle
(where only subtractions are needed). Our approach is to describe the triangle as an intersection of

the three half-planes ¢;(y, z) > 0, where each /¢; is essentially one of the boundaries written above:

b(y,z) =a+y, (6.11a)
lo(y, 2) = 2a — y + V32, (6.11b)
l3(y,2) = 2a —y — V3z. (6.11c)
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or for a generic linear boundary,

Uy, z) = co+ a1y + 22, (6.12)

with specified coefficients ¢y, ¢1, co. Typically one needs to construct £(y, z) from a piece of the
boundary specified in another way; for instance, y = —a. There is a freedom of the overall sign, i.e.,
¢y = £(a+y). The sign is fixed by the convention that a ¢(y, z) should be positive for (y, z) in the
domain. We fix (0,0) in the domain, so requiring ¢1(0,0) > 0 means we take the positive sign.
The problem of a reflection about one half plane is effectively the same as the generalization
used in the racetrack, but because the boundaries are linear, the implementation is much simpler.
For instance, if we had only the half-space advection diffusion problem with boundary ¢ = 0, after
seeing a particle go from (yo, 2z0) — (y1,21) with £(y1, 21) < 0 (hence, exiting the domain), the main

steps are to

1. Calculate the time of intersection by solving

£(yo + s(y1 — yo), 20 + s(z1 — z0)) = 0. (6.13)

In contrast to the racetrack, this now has an exact solution for arbitrary coefficients:

B co + c190 + €220 B (3o, 20)
s = - (6.14)
c1(yo —y1) +ea(z0 —21)  c(yo — y1) + ca(z0 — 21)

2. Find the normal direction at the intersection point. Again, this has an exact solution, but it is

also position independent: V¢ = (¢, c2).

3. Apply the appropriate reflection about the tangent plane, preserving the distance |(y1 —yo, 21 —

2’0>‘.

When moving to multiple linear boundaries, one needs to check the formula (6.14) for all ¢;, take
the smallest positive value of s and the appropriate ¢, reflect about the line ¢; = 0, and repeat until
li(y1,21) > 0 for all i. An illustration of this is shown in figure 6.3.3. The basic demonstration is
done in the equilateral triangle on the left panel. Colors are used to visualize the start (red) and end
(blue) of a path. To show how this can be generalized, the center and left panels implement the

rectangle and an non-regular octagon. The main algorithm is identical; one only needs to specify
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Figure 6.3: Demonstration of the reflection algorithm for some convex polygons. An extremely long
trajectory is taken, then the reflection algorithm is applied iteratively until the final position (y1, 21)
is in the domain. The number of reflections is illustrated in the changing color. Left: equilateral
triangle with eight reflections. Center: Reflection in a rectangle A = 1/2 whose initial outward
trajectory has a rational slope. Right: demonstration in a non-regular octagon of the same aspect
ratio.
additional planes ¢;. In the rectangle, using a trajectory with a rational slope is known to form a
periodic paths. In the octagon, it appears two “phases" occur, with the majority of the trajectory
time being rectangular, and transitions between phases occuring when the trajectory encounters one
of the four sloped walls. Though not shown here, the total distance traveled prior to (as the length
of the line segment), and after applying the reflections (as the sum of lengths of line segments), has
been tracked in these tests and verified to be conserved, giving additional support to their validity.

The main barrier to implementing the Monte Carlo in a general convex polygon is calculation of
the flow, which would most likely be numerical in nature. If this is implemented, it would prove to be
a very flexible tool to repeat the skewness program, as we could approximate any convex? boundary
using an appropriate polygon. This is one promising route towards dealing with the general question
of the skewness.
Asymptotics in the regular polygons

The result of section 6.3.3 that the long time skewness is negative raises an interesting question
as to the other general polygons. One may postulate that there may be an even/odd symmetry
involved in the sign of the long time skewness, depending on whether n is even or odd in the n-gon

(this turns out not to be the case).

2Non-convex domains cannot be handled with this method, as the domain can no longer be described as an intersection
of half-planes.
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Figure 6.4: Results in the triangular geometry. Left: schematic of the flow profile, with y = 0 and
z = 0 lines. Center: skewness in fifty simulations (black) and short time (red) and long time (blue)
asymptotics, with Pe = 10%. Right: the same simulations and long time asymptotics with log-scaled
axes.

Figure 6.5: Visualization of the numerically computed flow profile in the regular n-gons for n = 5, 3,
and 8 respectively. Curvature of the level sets is more influential for n small, but is almost immediately
washed out for n large.
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n 3 4 5 6 7 8 20 100 00
SY 0.185 | 0.0813 | 0.042 | 0.024 | 0.0149 | 0.0097 | 3.97 x 10~* | 8.6 x 10~ 0
LT coeff | -0.035 | 0.139 | 0.194 | 0.215 | 0.225 | 0.231 0.243 0.245 0.245

Table 6.1: Geometric skewness and the long time coefficient 3(ugs)/(2(ug;))?/? calculated numerically
for the regular n-gons. The coefficients monotonically approach the circle (n = oo) value, disproving
the conjecture that there may be an even/odd parity in the behavior of the skewness in the regular
polygons.

To answer this question, we have utilized Mathematica’s finite element package to construct the
regular n-gons and numerically calculate the geometric skewness and the long time coefficient for
increasing n. The regular polygons are constructed by inscribing them in the unit circle. That is,

their vertices are located at

(yi, zi) = (cos(imy/n),sin(imy/n)), with i =0,...,n — 1. (6.15)

We visualize the flows for a few values of n in figure 6.3.3. The flow is solved on an underlying
triangular mesh, and the results are smoothly interpolated using the contour mapping program
in Mathematica. For n = 3 and n = 5, curvature of the level sets of the flow extend into the
inter significantly, but for n = 8, the contours are almost immediately circular. This is one way of
understanding the approach of the flow profile (and thus the asymptotic coefficients) to the circular
values.

The numerically calculated coefficients are tabulated in table 6.3.4. The triangular result differs
from the result calculated in section 6.3.3 as the value of a, the radius of the inscribed circle, is
different when constructing the n-gons as described above. While the value of a will grow with
increasing n (limiting to 1 as n — o0), the value will not affect the sign of the coefficients, which is
what is important.

In both the geometric skewness SY and the long time decay coefficient, we see a uniform approach
towards the circle’s values. Therefore, there seems to be no even/odd parity in this class of problems.

Instead, the presence of skewness seems to be induced by large curvature near the walls.

89



APPENDIX A

Solutions to asymptotics in the ellipse.

The elliptical problems necessary to calculate the long time asymptotics can be solved by

transforming into elliptical coordinates. However, the solutions are lengthy trigonometric polynomials.

This chapter details the solutions of these problems.

Explicit solution of the ¢;(£,n) problem in the ellipse

The ¢1(y, z) problem (3.83) can be expressed in elliptical coordinates as (absorbing length

components into the ¢):

2 2
KC’ 8)m@m:_mpﬂj%@+@@mwm+m@wmm,

oe2 " g
991

g1 (57 O) =0 (ga 27T)a

Setting ¢ = b — a? and d? = b? + a?, the functions are

—c242 4
Po(§) = iGd cosh(2¢) + %6 cosh
2d2 6
92(6) = 5~ jam cosh(46),

—c* P cosh(2
o) = 5+ T

and the subproblems take the forms
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(A.1b)

(A.2a)
(A.2Db)

(A.2c)

(A.3)



with homogeneous Neumann boundary conditions at 0 and &,. The solutions are

5¢t +4d*  Ad? ct
= — h(2 —— cosh(4
0(€) = Zoi = — © cosh(26) 4+ cosh(4¢),
22 A 6
- - 4+ — h(2 h(4
’72(5) 64 + 48 Cos ( 5) 192d2 COoS < é.)
e ® cosh(4
74(8) = 355 ~ Togqz 0P (%) + Zgggm cosh(dd).

and the solution is

91(6,m) = 7 [10(6) +12(€) cos(2n) + (€] cos(d) .

The dimensional value of (ug;) is (with aspect ratio A = a/b)

p2 [a'b*(5a* + 14a?b? + 5b%)
(ugr) =

w2k 2304(a? + b?)3

_abp2 [ BAT+14M% +5
2k 2304 02(1 + \2)3

Solution of the g,(£,n) problem in the ellipse

The g2(y, z) problem (3.84) can be expressed in elliptical coordinates as

02 0?
K <8£2 + 3772> 92(&§,m) = —2J [ugr — (ugi)] Z@zk cos(2kn),

92(€70) = 92(57 27T)7 (&)7 ) =0,

f
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with functions (defining for compactness ¢? = b — a?, d> = b? + a®, A = ab)

—2304A45¢2 — 3008445 — 10324210 — 105¢14
Po(§) = cosh(2¢) (A.10a)

737286
c* (320A% + 232A4%¢* + 35¢°)
+ 1228844
b (480A% 4 304A2%¢* + 4568
- ( ¢ <) cosh(6¢) +
245766

cosh(4¢)

® (1242 + 5c*)
12288

cosh(8¢)

2304 A45¢% + 3008 A%c5 + 10324210 + 1051

$2(§) = 5 (A.10b)
73728d

7842 8 !0 (56A4% + 15¢*)

C
_ h(4€) + - cosh(6¢) —
2048 COSP(48) + 527 cosh(6) 245760

cosh(8¢)

—c* (32041 + 23242¢* + 35¢%) 7842
_ h(2 Al
94(8) 122831 + Soag <osh(2) (A-10c)
10 12

C
— m COSh(Gf) + m COSh(Sf)

8 (480A% + 30442¢* + 45¢8) (B
= — ——cosh(2 Al

10 14

__c
245760

cosh(8¢)

—c® (1242 +5¢%) !9 (5642 + 15¢4)
1228844 245766

12 Cl4
— m COSh(4§) + m COSh(Gé.).

¢g(€) = cosh(2¢) (A.10e)

The subproblems take the forms

(&) = ¢o(),
(&) —42(8) = d2(8),
74 (€) = 1674() = ¢a(8), (A.11)
76 (§) — 3676(&) = d6(),
V5 (§) — 643(&) = #s(8),
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with homogeneous Neumann boundary conditions at 0 and &,. The solutions are

—9 4A62_ A46_1 2A210_1 14
Y0(€) = const. + 0ad e 30082946912d603 ¢ 0o cosh(2¢) (A.12a)
c*(320A% + 232A42¢* + 35¢8)
h(4
1966084 cosh(4¢)
6 (480A% + 304A4%¢* 4 4568
L ( ‘ <) cosh(6¢) +
884736d°

3 (12A2 + 504)

786432t Cosh(3)

—2304A5¢%2 — 3008445 — 10324210 — 105014
— A.12
A (1376A4 + T72A%4 + 10508) 78 d?
h(2¢) — h(4
+ 184320d% cosh(28) — 5 176 Cosh(4¢)
B h(6¢) cto (56A2 + 1504)
12288 1474560

cosh(8¢)

_l’_

c* (32047 + 232A4%¢* + 35¢%) 7842
_ = h(2 A2
() 1966084" 24576 (%) (A.120)
® (3042 + 7c¢t) cto
h(4¢) —
I T2y R e A YT V2

12

C
To6608q% o (8¢)

cosh(6¢) +

—cf (480A% + 304A%¢* + 45¢8 8
a ‘ <) + cosh(2¢) (A.12d)

6(8) = 884736 12288
10 12 (4442 4+ 9c) 1
= h(4 h(6¢) —
215762 M) T 5s0asa (1647 + 3ot “0) ~ Ggimsa

cosh(8¢)

8 (1242 + 5¢ 10 (5642 + 15¢
al +5¢) +15¢%) cosh(2¢) (A.12e)

78(8) = 786432d* B 1474560d6
12 14 16 136A2 +15 4
al ) cosh(8¢)

C
—C cosh(4€) — —— cosh(6
* Toa60sat M) ~ Gegiasas (68 + 557536008 84T 1 o)

and the full solution is

5 [ 4
92(&,m) = % [Z Yok (§) COS(%U)] : (A.13)
k=0

The key quantity needed for constructing the long time asymptotics for the skewness is (ugs) which

evaluates to
—p3 [—ab%(5a* — 22a2b? + 5b%
(uge) =
p3 k2 138240(a? + b?)3
(A.14)
_ a'%p3 [ —(5)* — 2202 +5)
w3k? | 138240 A\ (1 + A2)3
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The prefactor in this expression is equivalent to axPe 3, which when non-dimensioqnalized, agrees with
the formula in the main body. The root of this equation lying in [0,1] is A = \* = /(11 — 4/6)/5 ~
0.49031. (The other roots are at A = —A* and their reciprocals A = £1/\*, which is a reassuring

result from a physical point of view.)
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APPENDIX B

Source code for Monte Carlo simulations.

Necessary packages and compilers
What follows below is the entirety of the source code for the Fortran implementation of Monte
Carlo in all the classes of geometries discussed in the main body of the dissertation. A couple

packages are needed:

1. An installation of the HDF5 package, along with its compiler h6fc, a wrapper for the popular

compilers gfortran or ifort

2. The Mersenne Twister Fortran module mtmod. £, freely available online [18] (and also included

in the source code below).

3. To read and visualize the outputs (in HDF format), we have opted to use Python, with
the packages h5py (for reading), and numpy and matplotlib for the necessary mathematical
operations and graphics. It is possible to use other high level languages (such as Matlab),
which have similar capabilities (and in the case of Matlab, has an HDF reader built-in).

To compile, one should either use the included makefile, or more generically run a command of the
form (for example, for the channel code)

h5fc $(folderl)/*.f90 $(folder2)/*.f90 ... -o channel_mc $(COMPILERFLAGS)

with suggested compiler flags being (for gfortran) -fbackslash, -fbounds-check, -funroll-loops,
and an optimization flag such as -02 (or -03). A single parameter file format is used across all the
Monte Carlo codes. A template of this is included below, and the options are described in greater
detail the main body of the dissertation. Often it is the case that a large number of simulations
should be run at once with the same set of parameters (except the seed for the random number
generator). Included is a Python script for automating this process for an LSF cluster. If one only
wishes to run a single simulation, it can be run by typing (for example, in the channel)

./channel_mc parameters_mc.txt

and if all is well, the program will give feedback as to the inputted simulation parameters, and

expected time to completion.
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This section contains necessary auxilliary files in the main directory: the makefile, the parameter
file, and the batch submit script written in Python which automates submitting many jobs at once
to a LSF cluster.

./makefile

# Makefile for geometric skewness code.

HOME = $(shell pwd)

UTILS = $(HOME)/utils

COMPS = $(HOME)/computation
MONTE = $(HOME) /monte

MODS = $(HOME) /modules

FC = hbfc
#FC = gfortran

# Compiler flags. fbackslash allows for ’backspacing’ in writes,
# letting you have a dynamic progress bar (for instance).
OTHER2 = -fbackslash -fbounds-check -funroll-loops -03

OTHER = $(OTHER2)

# Uncomment to enable profiling

#0THER = $(OTHER2) -pg

CLEANUP = rm -f ./*.0 ./*.mod

# exe names, object names.
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EXES = channel_mc duct_mc ellipse_mc triangle_mc racetrack_mc

channel_mc: $(MONTE)/channel_mc.f90
$(FC) $(MODS)/*.£f90 $(UTILS)/*.£f90 $(COMPS)/*.f90 -o $0 $(MONTE)/$0@.£f90 $(OTHER)
$ (CLEANUP)

duct_mc: $(MONTE)/duct_mc.f90
$(FC) $(MODS)/*.f90 $(UTILS)/*.f90 $(COMPS)/*.f90 -0 $0© $(MONTE)/$0.f90 $(OTHER)
$ (CLEANUP)

ellipse_mc: $(MONTE)/ellipse_mc.£f90
$(FC) $(MODS)/*.£f90 $(UTILS)/*.£f90 $(COMPS)/*.f90 -o $@ $(MONTE)/$@.f90 $(OTHER)
$ (CLEANUP)

triangle_mc: $(MONTE)/triangle_mc.£90
$(FC) $(MODS)/*.f90 $(UTILS)/*.f90 $(COMPS)/*.£f90 -o $@ $(MONTE)/$@.£90 $(OTHER)
$ (CLEANUP)

racetrack_mc: $(MONTE)/racetrack_mc.f90
$(FC) $(MODS)/*.£f90 $(UTILS)/*.£f90 $(COMPS)/*.f90 -o $@ $(MONTE)/$0@.f90 $(OTHER)
$ (CLEANUP)

clean:
rm -f $(EXES) ./*.o0 ./*.mod

./parameters_mc.txt

! Do NOT modify the spacing of this file;
! the parameters are read in by line number in the code. Modifying this will screw things up.

! Parameters relating to setting the initial condition

0.5d0 ! Aspect ratio (ignored in channel)

0.4d0 ! Shape parameter (for racetrack only)

1.0d4 ! Peclet

100000 ! Number of walkers in transverse direction in initial condition discretiz
1 ! Number of points in the z direction

0.0d0 ! Longitudinal width of initial condition (relative to width 2 in channel)
0.0d0 ! Initial y position (only for nGates=1)

5.0d0 ! Inttial 2z position

.false. ! Whether or not to save particle postition histories

121 ! Number of bins to use in the short direction for ptwise stats

.false. ! Save 2d histogram looking into the y direction. probably slow.

0.0d0 ! Amount of time to let the wnitial condition diffuse before turning on the
.false. ! Whether to read the initial condition in from an hbd file. This will ignore all
IC_beta_reverse_rect.hb ! Name of the hb& file with the full initzal condition.
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! Parameters relating to the timestepping
!

expo ! tstep_type, determining the target times. One of ’‘unif’, ’expo’, ’supplied’
1.0d-8 ! tmin, the first nonzero time.

1.0d-4 ! Mazimum internal timestep allowed. (if bigger than target time’s dt, is ok)
1.0d-1 ! Tfinal

81 ! ntt, number of target time points (including zero)

tsteps_sample.hb ! If tstep_type ts ’supplied’, reads times from this file and ignores t
fill ! The seed for the RNG; 1f not an integer, then one 1s generated by bat

./batch_submit.py

# Script to exzecute a single execute locally.
#

import subprocess,os

# Parameters specifying the number of runs,
# and location and names for output files.

S
execute = "local" # 1f "local" then run directly, sequentially.
# "bsub" submits jobs to Kure/Killdevil.
n=1 # number of trials to run.
fname_prefix = "c_" # prefiz name (appended with numbers on output.)
parent = "./" # parent folder (should contain folders out/ and err/ if on a cluster)
sim_folder = "" # simulation folder
exe_loc = "./channel_mc" # Name of the ezecutable (which geometry?)
# oo _______

# More bsub options

memoryreq = 0.1 # in GB
queue = "week"
# oo __

folder = parent+sim_folder
file_prefix = folder+fname_prefix
out_suffix = ’.h5’
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def process_parameter_file(time_loc,i):

# Looks at the parameter file, checks 1f the line

# specifying the RNG seed is filled in with an

# integer. If 1t 1s, leave 1it. If not, replace the line

# with a seed based on the operating system RNG

# (eg, /dev/urandom.) Python handles this part automatically.

tfile
lines

open(time_loc,’r’)
tfile.readlines()

# If thing 1s not an integer, replace the line

# with a random seed.

sidx = 31 # Line which should hold the seed.

seed = lines[sidx].split()

try:
int (seed)

except:
intl = int(os.urandom(10).encode(’hex’),16)
int2 = i*int(os.urandom(10) .encode(’hex’),16)

# Bitwise XOR. Why? I don’t know. Just because.
int3 = intl7int2

lines[sidx] = str(int3)[-8:-1]+’ \n’
# end try
tfile.close()

tfile = open(time_loc,’w’)
tfile.writelines(lines)
tfile.close()

# end def
# Creating simulation initialization files.
for i in range(n):
# Make a four-digit index (0000 through 9999)

stridx = str(i).zfill(4)

param_loc = folder+"parameters_mc_"+fname_prefix+stridx+".txt"
out_loc = file_prefix+stridx

# Copy the parameter files to the appropriate place, and
# generate seeds 1f necessary.

copy_commandl = ["cp","parameters_mc.txt",param_loc]

subprocess.call (copy_commandl)
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process_parameter_file(param_loc,i)
# end 1f

# Running simulations after the files are created.
for i in range(n):

stridx = str(i).zfill(4)

param_loc = folder+"parameters_mc_"+fname_prefix+stridx+".txt"
out_loc = file_prefix+stridx+out_suffix

exe_command = [exe_loc,param_loc,out_loc]

if (execute=="bsub"):

bsub_prefix = ["bsub","-n","1","-0",parent+"out/"+"out."+stridx,"-e",parent+"err/"+"er
if (queue == "week"):
more = ["-q",queue]
else:
more = ["-M",str(int(memoryreq)),"-q",queue]
# end 1f

command = bsub_prefix + more + exe_command
else:

command = exe_command
# end 1f

subprocess.call (command)

# end for

./monte/
./monte/channel_mc.f90

program channel_mc
! Program to do Monte Carlo in a channel.

use HDF5

use mtmod

use mod_time

use mod_duration_estimator
use mod_readbuff
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implicit none

integer, parameter :: 164 = selected_int_kind(18)

integer (kind=1i64) tr me_n

integer :: nt,kt,ny,nGates,nTot,nr,funit,idx,1

double precision :: t,Tfinal,tmin,dtmax,kscale,Pe,mcvar,dz,told

! Internal variables for checking if we’re at a target time during the timestepping.
double precision 11 next_tt
integer prott_idx

! Type of geometry.

character(len=1024) 1. geometry

double precision ;1 t_warmup

! i/o

character(len=1024) :: param_file,&
other_file,filename,tstep_type,ic_fi

character(len=1024) 1 out_msg

! For compatibility only.

double precision :: aratio,q
! RNG stuff.
integer (i64) 1 mt_seed

! Posttions, posttion/statistic historties. Some of these are not used by channel,
! but are for compatibility with the 2/3d code.

double precision ira ! Channel wtdth.

double precision 11 y0,20 ! Initial conditions (point sot
double precision, dimension(:), allocatable 0 XY ! Positton arrays

double precision, dimension(:,:), allocatable .. Xbuffer,Ybuffer

integer (kind=164) :: buffer_len,bk,inext,rem

double precision, dimension(:), allocatable :: means,vars,skews,kurts,t_hist

double precision, dimension(:,:), allocatable :: hist_centers,hist_heights

double precision :: xOwidth

integer :: xOn

! Moments through slices and distributions

double precision, dimension(:,:), allocatable :: means_sl,vars_sl,skews_sl,kurts_sl
integer :: nbins,bin_count,nhb,nby

double precision 1 dby

! HDF

integer :: rank,hberror

character(len=1024) :: fname2,descr
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character(len=1024) :: dsetname

! HDF wariables.

integer(hid_t) :: file_id

integer(hid_t) :: dset_id_X,dset_id_Y,dset_id_Z,&
dset_id_Sk,dset_id_t

integer(hid_t) :: dspace_id_X,dspace_id_Y,dspace_id_Z,&

dspace_id_Sk,dspace_id_t

integer(hsize_t), dimension(2) :: data_dims

logical :: save_hist,save_hist2d,use_external_ic
logical check_ic_channel

! Addvection/diffusion functions!
external :: impose_reflective_BC_rect, u_channel

! Internal parameters that you might want to change at some point.

! Length of the buffer before writing to disk.

! Only relevant <f saving the entire position history.

! Run time ts bottlenecked by this to a severe degree, so in general

! this should be made as large as possible while still fitting in memory.
parameter (buffer_len = 100)

! Scale of the channel: [-a,a]. Not much reason to use anything other than 1.0d0.
parameter (a=1.0d0)
parameter (geometry = "channel")

! Number of bins when looking at the cross-sectionally averaged distribution.
parameter (nhb = 400)

! Number of spattal dimensions for random walks!
! nd=2 for channel, nd=3 for duct/pipe.
integer, parameter :: nd=2

! Read all parameters from file.

call get_command_argument(l,param _file)
call get_command_argument (2,time_file)

call get_command_argument(2,filename)

! NOTE - save_hist2d ts mot tmplemented as of 11 Nov 2016.
! Only put here for compatibilzty.
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call read_inputs_mc(param_file,aratio,q,Pe,nGates,x0On,xOwidth,y0,z0,save_hist,nbins,&
save_hist2d,t_warmup,use_external_ic,ic_file,tstep_type,&
dt,dtmax,Tfinal,ntt,other_file,mt_seed)

if (filename=="") then
out_msg = ’missing_args’
call channel_mc_messages(out_msg)
go to 1234

end if

! Assign the number of bins in each direction.
if (nbins .eq. 0) then

nby = 0

dby = 0.0d0
else

nby = nbins

dby = 2.0d0*a/nby
end if

! Based on the input, generate the array target_times, (times to save output)

! and get information for the internal array t_hist.
!

call generate_target_times(dt,tstep_type,Tfinal,other_file)

! Get the wvalue of nt before allocating arrays.
call correct_tstep_info(ntt,nt,target_times,dtmax)

! Intttalize the Mersenne Twister RNG with seed read in from the
! input files.

call sgrnd(mt_seed)

! Get the total number of simulations
ny = nGates
nTot = nGates*xOn

! Correct nTot <f we are using an external file.
if (use_external_ic) then
dsetname = "nTot"
call hdf_read_1d_darray(i,ic_file,dsetname)
nTot = int(readbuff_double(1))
deallocate(readbuff_double)
else
! Recalculate nGates and nTot based on the wvalues for ny and nz.
nGates = ny
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nTot = nGates*xOn
end if

! Allocate arrays.
!

!I' Time
allocate(t_hist(nt))

! Positions
allocate (X(nTot),Y(nTot))

! Channel-averaged stats
allocate(means(ntt) ,vars(ntt) ,skews(ntt) ,kurts(ntt))

! Stats on slices
if (.not. (nbins .eq. 0)) then
allocate(means_sl(ntt,nbins) ,vars_sl(ntt,nbins),skews_sl(ntt,nbins) ,kurts_sl(ntt,nbins
end if
! Cross-sectionally averaged distribution

allocate(hist_centers(ntt,nhb) ,hist_heights(ntt,nhb))

! Generate initial conditions and internal timestepping.
!

call set_initial_conds_channel_mc(ny,nGates,xOn,nTot,X,Y,y0,a,x0Owidth,t_warmup,use_external
if (.not. check_ic_channel(nTot,Y,a)) then
write(*,*) "Part of the initial condition lies outside the domain. Exiting."
go to 1234
end if
call generate_internal_timestepping(ntt,nt,target_times,t_hist,dtmax)
call print_parameters(aratio,q,Pe,nGates,nTot,y0,z0,save_hist,&
t_hist,dtmax,nt,ntt,mt_seed,geometry,use_external_ic)
! Initialize HDF with appropriate dataset, etc.
fname2 = trim(filename)

call hdf_create_file(fname?2)

! e need to open the hb file after hdf_create_file
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! because the interface is "global" amongst all files
! containing the hdfb5 module.

call hb5open_f (h5error)

if (save_hist) then
! Set up dataspaces in the hdf file for:
!X, Y.
!

! Allocate memory for the memory buffers here, too.

allocate(Xbuffer (buffer_len,nTot))
allocate(Ybuffer(buffer_len,nTot))

call hbfopen_f (fname2, H5F_ACC_RDWR_F, file_id, hberror)

data_dims(1) = ntt
data_dims(2) nTot
rank = 2

dsetname = "X"

call hbscreate_simple_f(rank, data_dims, dspace_id_X, hberror)

call hbdcreate_f(file_id, dsetname, H5T_NATIVE_DOUBLE, dspace_id_X, &
dset_id_X, hberror)

dsetname = "Y"

call hbscreate_simple_f (rank, data_dims, dspace_id_Y, hberror)

call hbdcreate_f(file_id, dsetname, H5T_NATIVE_DOUBLE, dspace_id_Y, &
dset_id_Y, hberror)

end if
! Save a history of time per iteration for predicting time to completzion.
mde_ntt = nt-1

allocate(mde_dts(mde_ntt))

inext = 1
tt_idx = 1

call accumulate_moments_1d(tt_idx,ntt,nTot,X,Y,a,means,vars,skews,&
kurts,nby,means_sl,vars_sl,skews_sl,kurts_sl)

call make_histogram(nTot,X,nhb,hist_centers(tt_idx,1:nhb),hist_heights(tt_idx,1:nhb))

tt_idx = 2
next_tt = target_times(tt_idx)
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! Prepare the buffer to save position histories if requested.
bk = 0
if (save_hist) then
call buffer_op_channel (bk,nTot,buffer_len,Xbuffer,Ybuffer,&

X,Y,ntt,inext,dset_id_X,dset_id_Y)
end if

! Start the timestepping.

out_msg = ’simul_start’
call channel_mc_messages (out_msg)

do kt=2,nt

call system_clock(mde_t1,count_rate) ! Time for progress.

! Push forward time.
t = t_hist(kt)
dt = t_hist(kt) - t_hist(kt-1)

!

! Primary timestep
!

call apply_advdiffi_chan(nTot,X,Y,Pe,dt,a, &
u_channel, impose_reflective_BC_rect)

! If we’re at a target time,
calculate and save moments (and positions, if requested),
! then increment ti_idzr and update next_tt.

if ( t .eq. next_tt ) then

call accumulate_moments_1d(tt_idx,ntt,nTot,X,Y,a,means,vars,skews,&
kurts,nby,means_sl,vars_sl,skews_sl,kurts_sl)

! Update the histogram centers and heights.

call make_histogram(nTot,X,nhb,hist_centers(tt_idx,1:nhb),hist_heights(tt_idx,1:xn
! Write history <1f requested.

Need to buffer writes to the hard drive so that we don’t lock up the

computation with file opens/closes. Ideally the buffer should be as
large as possible while fitting into RAM; modify the relevant parameter
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! (buffer_len) hard coded in this program to play around with this.
!

if (save_hist) then
call buffer_op_channel (bk,nTot,buffer_len,&
Xbuffer,Ybuffer,X,Y,ntt,inext,dset_id_X,dset_id_Y)

end if

)

! Update the target time and array indez.
!

if (next_tt .1t. Tfinal) then
tt_idx = tt_idx + 1
next_tt = target_times(tt_idx)
end if
end if

! Display percentage progress. The last argument as .true. should be used with gfortra
! (or any other compiler that supports "\b"), or .false. with ifort.

call system_clock(mde_t2,count_rate) ! Time in milliseconds

mde_ntc = kt-1
mde_dts(mde_ntc) = (mde_t2-mde_t1)/dble(count_rate) ! Time 4n seconds

call progress_meter (kt,nt,.true.)

end do

out_msg = ’simul_done’
call channel_mc_messages (out_msg)

if (save_hist) then
! Write the remainder of the buffer, then close the file.

rem = ntt-inext+1

if (rem .gt. 0) then
call hdf_write_to_open_2d_darray(ntt,nTot,inext,rem,Xbuffer(l:rem,1:nTot) ,dset_id
call hdf_write_to_open_2d_darray(ntt,nTot,inext,rem,Ybuffer(l:rem,1:nTot) ,dset_id

end if

call hb5dclose_f(dset_id_X,h5error)

call hbdclose_f(dset_id_Y,hberror)

call hb5fclose_f(file_id,hberror)
end if

! Because of the nature of hdf5 mod for fortran,
! we close the interface here, since it gets
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! re-opened in the calls below.
call hbclose_f (hberror)

! Save all the remaining arrays. It’s a lot of fluff so 21t’s been
! given tts own subroutine.

call save_the_rest_channel (fname2,geometry,ntt,target_times,means,vars,skews,kurts,&

nby,means_sl,vars_sl,skews_sl,kurts_sl,nhb,hist_centers,hist_heights,&
Pe,nTot,mt_seed,dtmax,t_warmup)

deallocate(X,Y)

deallocate(means,vars, skews,kurts,target_times)

if (.not. (nbins .eq. 0)) then
deallocate(means_sl,vars_sl,skews_sl,kurts_sl)

end if

deallocate(hist_centers,hist_heights)
deallocate(t_hist)

if (save_hist) then
deallocate (Xbuffer,Ybuffer)

end if

out_msg = ’done’
call channel_mc_messages (out_msg)

write(k,*) ""
1234 continue

end program channel_mc

./monte/duct_mc.£90

program duct_mc
! Program to do Monte Carlo in a duct.

use HDF5

use mtmod

use mod_time

use mod_duration_estimator
use mod_ductflow
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use mod_readbuff
implicit none

! Array sizes, parameters, local wvars

integer, parameter :: 164 = selected_int_kind(18)
integer |

integer :: nGates,nTot

integer :: mc_n,nt,kt,&

ny,nz,nr,tt_idx

double precision :: Tfinal,dt,dtmax,Pe,mcvar,aratio,q,next
double precision ;1 t,uval,told
integer(i64) :: mt_seed

! Positions, postition/statistic histories

double precision :: a,b,bin_lo,bin_hi,dby,dbz,y0,z0,t_warn
double precision, dimension(:), allocatable :: X,Y,Z

double precision, dimension(:,:), allocatable :: Xbuffer,Ybuffer,Zbuffer

integer :: buffer_len,bk,inext,rem

double precision, dimension(:), allocatable :: means,vars,skews,kurts,t_hist,X_bin
double precision, dimension(:,:), allocatable :: hist_centers,hist_heights

double precision, dimension(:,:,:), allocatable :: means_sl,vars_sl,skews_sl,kurts_sl
double precision, dimension(:,:), allocatable oW

integer :: nd,bin_count,kb, jb,n_bins,nbx,nby,nbz,
double precision :: xOwidth

integer :: xOn

I Stuff for 2d histogram looking into the short direction.
double precision, dimension(:,:,:), allocatable :: hist2d
double precision, dimension(:,:), allocatable :: hist2dcx, hist2dcy ! bin centers.

! Type of geometry, only used for filenames and things.

character(len=1024) 1 geometry

! 3/0

character(len=1024) :: param_file,&
other_file,filename,tstep_type,ic_fi

character(len=1024) 1 out_msg

109



character(len=1024) :: arrayname,descr
! HDF

integer :: rank,hberror
character(len=1024) :: fname?2
character(len=1024) :: dsetname

! HDF wvariables.

integer(hid_t) i file_id

integer(hid_t) :: dset_id_X,dset_id_Y,dset_id_Z
integer(hid_t) :: dspace_id_X,dspace_id_Y,dspace_id_Z
integer(hsize_t), dimension(2) :: data_dims

! Flags to save position histories and read IC from a file.
logical :: save_hist,save_hist2d,use_external_ic
logical check_ic_duct

! Advection/diffusion functions!
external :: impose_reflective_BC_rect, u_duct_precomp

! Internal parameters that you might want to change at some point.

! Number of physical dimensions. No reason to change this.
parameter (nd=3)

parameter (geometry = "duct")

! Length of the buffer before writing to disk.

! Only relevant tf saving the entire position history.

! Run time is bottlenecked by this to a severe degree, so in general

! this should be made as large as possible while still fitting in memory.

! Some quick numbers; 5e3 buffer size with lej walks
! requires about 1GB RAM. So, you should choose the parameters
! so that it works out.

! RAN = kt*buffer*walks
P => buffer = RAM/(k*walks)
! k = RAM/(buffertwalks)

! In our example kt = 1/(5%10%%7).
!

parameter (buffer_len = 51)
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! Number of bins when looking at the cross-sectionally averaged distribution.
parameter (nhb = 400)

! Read all parameters from file.
call get_command_argument(l,param _file)
call get_command_argument(2,filename)

call read_inputs_mc(param_file,aratio,q,Pe,nGates,xOn,xOwidth,y0,z0,save_hist,n_bins,save_h
use_external_ic,ic_file,tstep_type,dt,dtmax,Tfinal,ntt,other_file,

if (filename=="") then
out_msg = ’missing_args’
call duct_mc_messages(out_msg,nz)
go to 1234

end if

! Set dimensions of the thing.
1.0d0
a/aratio

[o Y]
o

! Assign the number of bins in each direction for ptwise stats.
if (n_bins .eq. 0) then

nby = 0

nbz = 0

0.0d0
0.0d40

dby
dbz

else

n_bins
ceiling(n_bins/aratio) !/ Could also make this the same as nby.

nby
nbz

dby = (2.0d0*a)/nby
dbz = (2.0d0%b) /nbz

end if

nbx = nby

!

! Generate the target times; times at which output is saved.
! Internal timestepping 1s created after.

!

call generate_target_times(dt,tstep_type,Tfinal,other_file)
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! Get the wvalue of nt before allocating arrays.
call correct_tstep_info(ntt,nt,target_times,dtmax)

! Intttalize the Mersenne Twister RNG with seed read in from the
! input files.

call sgrnd(mt_seed)

! Based on the specified number of discretization points,
! calculate the appropriate number of points to seed in

! each direction so that they are approzimately uniformly
! spaced.

if (nGates .gt. 1) then

ny = floor(dsqrt(nGates*aratio))+1
nz = floor(dsqrt(nGates/aratio))+1
else
ny = 1
nz = 1
end if

!I' If resolution s an tssue, extit.
if ( (ny .1t. 7) .and. (nGates .gt. 1) ) then

out_msg = ’resolution’
call duct_mc_messages(out_msg,nz)
go to 1234

end if

! Correct nTot ©f we are using an external file.
if (use_external_ic) then
dsetname = "nTot"
call hdf_read_1d_darray(i,ic_file,dsetname)
nTot = int(readbuff_double(1))
deallocate(readbuff_double)
else
! Recalculate nGates and nTot based on the wvalues for ny and nz.
nGates = ny*nz
nTot = nGates*xOn
end if

! Allocate arrays.
!

I Internal time
allocate(t_hist(nt))
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! Positions
allocate (X(nTot), Y(nTot), Z(nTot))

! Cross-sectionally averaged stats.
allocate(means(ntt), vars(ntt), skews(ntt),kurts(ntt))

! Pointwise stats
if (.not. (n_bins .eq. 0)) then
allocate(means_sl(ntt,nby,nbz),vars_sl(ntt,nby,nbz),&
skews_sl(ntt,nby,nbz) ,kurts_sl(ntt,nby,nbz))
end if

! If the 2d histogram (looking in the short direction) is desired,
! allocate.
if (save_hist2d) then
allocate(hist2d(ntt,nbx,nby))
allocate(hist2dcx(ntt,nbx))
allocate(hist2dcy(ntt,nby))
end if

! Temporary vector used for binning purposes.
allocate(X_bin(nTot))

! Cross-sectionally averaged distribution.
allocate(hist_centers(ntt,nhb) ,hist_heights(ntt,nhb))

! Precalculation of the flow.
allocate(ya(ui), za(uj), u_precomp(ui,uj))
! Generate initial conditions and internal timestepping.

!

call set_initial_conds_duct_mc(ny,nz,nGates,xOn,nTot,X,Y,Z, &
y0,z0,a,b,x0width,t_warmup,use_external_ic,ic_file)

if (.not. check_ic_duct(nTot,Y,Z,a,b)) then
write(*,*) "Part of the initial condition lies outside the domain. Exiting."

go to 1234
end if

call generate_internal_timestepping(ntt,nt,target_times,t_hist,dtmax)

call print_parameters(aratio,q,Pe,nGates,nTot,y0,z0,save_hist,&
t_hist,dtmax,nt,ntt,mt_seed,geometry,use_external_ic)
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! Initialize HDF with appropriate dataset, etc.
fname2 = trim(filename)
call hdf_create_file(fname2)

! e need to open the hb file after hdf_create_file
! because the interface is "global" amongst all files
! containing the hdf5 module.

call hbopen_f (hberror)

if (save_hist) then
! Set up dataspaces in the hdf file for:
X, Y, Z.
!

! Allocate memory for the memory buffers here, too.

allocate(Xbuffer(buffer_len,nTot))
allocate(Ybuffer (buffer_len,nTot))
allocate(Zbuffer (buffer_len,nTot))

call hbfopen_f(fname2, HS5F_ACC_RDWR_F, file_id, hberror)
data_dims(1) = ntt

data_dims(2) nTot
rank = 2

dsetname = "X"

call hbscreate_simple_f(rank, data_dims, dspace_id_X, hberror)

call hbdcreate_f(file_id, dsetname, H5T_NATIVE_DOUBLE, dspace_id_X, &
dset_id_X, hberror)

dsetname = "Y"

call hbscreate_simple_f (rank, data_dims, dspace_id_Y, hberror)

call hbdcreate_f(file_id, dsetname, H5T_NATIVE_DOUBLE, dspace_id_Y, &
dset_id_Y, hberror)

dsetname = "Z"

call hbscreate_simple_f (rank, data_dims, dspace_id_Z, hberror)

call hbdcreate_f(file_id, dsetname, H5T_NATIVE_DOUBLE, dspace_id_Z, &
dset_id_Z, hberror)

end if
! Save a history of time per iteration for predicting time to completion.

mde_ntt = nt-1
allocate(mde_dts(mde_ntt))
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! Precompute values of u on a grid.
! The actual values and arrays are defined in the module mod_ductflow
! and only accessed internally.

write(*," (A25)",advance="no") "Precomputing u values... "
call precompute_uvals_ss(a,b,aratio)
write(*x,"(A5)") " done."

! Calculate the statistics of the initial condition.
!

inext = 1
tt_idx = 1

call accumulate_moments_2d(tt_idx,ntt,nTot,X,Y,Z,-a,a,-b,b,means,vars,skews,&
kurts,nby,nbz,means_sl,vars_sl,skews_sl,kurts_sl)

call make_histogram(nTot,X,nhb,hist_centers(tt_idx,1:nhb),hist_heights(tt_idx,1:nhb))
if (save_hist2d) then
call make_histogram2d(nTot,X,Y,nbx,nby,hist2dcx(tt_idx,1:nbx),&
hist2dcy(tt_idx,1:nby), hist2d(tt_idx,1:nbx,1:nby))

end if

tt_idx = 2
next_tt = target_times(tt_idx)

if (save_hist) then
call buffer_op_duct (bk,nTot,buffer_len,Xbuffer,Ybuffer,Zbuffer,&
X,Y,Z,ntt,inext,dset_id_X,dset_id_Y,dset_id_Z)
end if

! Start the timestepping.

out_msg = ’simul_start’
call duct_mc_messages(out_msg,nz)

do kt=2,nt
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call system_clock(mde_t1,count_rate) ! Time for progress.
! Push forward time.

t = t_hist(kt)

dt = t_hist(kt) - t_hist(kt-1)

!

! Primary timestep
]

call apply_advdiffil_duct(nTot,X,Y,Z,Pe,dt,a,b, &
u_duct_precomp, impose_reflective_BC_rect)

! Check 2f we’re at a target time. If we are,
! and calculate and save moments (and positions, if requested),
! then increment ti_idxr and update next_tt.

if ( t .eq. next_tt ) then

call accumulate_moments_2d(tt_idx,ntt,nTot,X,Y,Z,-a,a,-b,b,means,vars,skews,&
kurts,nby,nbz,means_sl,vars_sl,skews_sl,kurts_sl)

call make_histogram(nTot,X,nhb,hist_centers(tt_idx,1:nhb),hist_heights(tt_idx,1:xn

if (save_hist2d) then
call make_histogram2d(nTot,X,Y,nbx,nby,hist2dcx(tt_idx,1:nbx),&
hist2dcy(tt_idx,1:nby), hist2d(tt_idx,1:nbx,1:nby))
end if

! Write history <f requested.

! Need to buffer writes to the hard drive so that we don’t lock up the

! computation with file opens/closes. Ideally the buffer should be as

! large as possible while fitting into RAM; modify the relevant parameter
! at the end of the wvartable definitions.

if (save_hist) then
call buffer_op_duct (bk,nTot,buffer_len,Xbuffer,Ybuffer,Zbuffer,&
X,Y,Z,ntt,inext,dset_id_X,dset_id_Y,dset_id_Z)
end if

!

! Update the target time and array indez.
!

if (next_tt .lt. Tfinal) then
tt_idx = tt_idx + 1
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next_tt = target_times(tt_idx)
end if
end if

! Display percentage progress. The last argument as .true. should be used with gfortra
! (or any other compiler that supports "\b"), or .false. with ifort.

call system_clock(mde_t2,count_rate) ! Time in milliseconds

mde_ntc = kt-1
mde_dts(mde_ntc) = (mde_t2-mde_t1)/dble(count_rate) ! Time in seconds

call progress_meter(kt,nt,.true.)

end do

if (save_hist) then
! Write the remainder of the buffer, then close the file.

rem = ntt-inext+1

if (rem .gt. 0) then
call hdf_write_to_open_2d_darray(ntt,nTot,inext,rem,Xbuffer(l:rem,1:nTot) ,dset_id
call hdf_write_to_open_2d_darray(ntt,nTot,inext,rem,Ybuffer(l:rem,1:nTot) ,dset_id
call hdf_write_to_open_2d_darray(ntt,nTot,inext,rem,Zbuffer(l:rem,1:nTot) ,dset_id
end if

call hbdclose_f(dset_id_X,hberror)

call hb5dclose_f(dset_id_Y,h5error)

call hbdclose_f(dset_id_Z,hberror)

call hb5fclose_f(file_id,hb5error)
end if

! For now, with the hist2d stuff, save tt here rather than in "save the rest'.

! Because of the nature of hdf5 mod for fortran,
! we close the interface here, since it gets

! re-opened in the calls below.

call hbclose_f (hberror)

if (save_hist2d) then
arrayname = "hist2dcx"
descr = "Array tracking bin centers in the x direction for hist2d"

call hdf_add_2d_darray_to_file(ntt,nbx,hist2dcx,fname2,arrayname,descr)

arrayname = "hist2dcy"
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descr = "Array tracking bin centers in the y direction for hist2d"
call hdf_add_2d_darray_to_file(ntt,nby,hist2dcy,fname2,arrayname,descr)

arrayname = "hist2d"

descr = "Array tracking the density for hist2d"

call hdf_add_3d_darray_to_file(ntt,nbx,nby,hist2d,fname2,arrayname,descr)
end if

! Save all the remaining arrays. It’s a lot of fluff so 21t’s been
! given tts own subroutine.

call save_the_rest_duct(fname2,geometry,ntt,target_times,means,vars,skews,kurts,nby,nbz,&
means_sl,vars_sl,skews_sl,kurts_sl,nhb,hist_centers,hist_heights,&
Pe,nTot,mt_seed,aratio,q,dtmax,t_warmup)

deallocate(X,Y,Z)

deallocate(means,vars,skews,kurts,target_times)
if (.not. (n_bins .eq. 0)) then
deallocate(means_sl,vars_sl,skews_sl,kurts_sl)
end if
deallocate(hist_centers,hist_heights)
deallocate(t_hist)
deallocate(ya,za,u_precomp)
if (save_hist) then
deallocate (Xbuffer,Ybuffer,Zbuffer)
end if

if (save_hist2d) then
deallocate(hist2d,hist2dcx,hist2dcy)

end if

out_msg = ’done’

call duct_mc_messages(out_msg,nz)

1234 continue

end program duct_mc

./monte/ellipse_mc.£90

program ellipse_mc
! Program to do Monte Carlo in an ellipse.

use HDF5
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use mtmod
use mod_time
use mod_duration_estimator

implicit none

! Array sizes, parameters, local wvars

integer, parameter
integer

integer

double precision
double precision

integer(i64)

integer

! Positions, position/statistic histories

integer
double precision
double precision

double precision
integer

i64 = selected_int_kind(18)

:: nGates

:: nTot,nt,kt,ny,nz,tt_idx

:: Tfinal,dt,dtmax,Pe,aratio,q,next_tt
N

;. mt_seed

;. maxrefl

:: n_bins,nbx,nby,nbz,nhb
:: a,b,dby,dbz,t_warmup
11 y0,z0

;1 xOwidth
:: x0On

! Stuff for 2d histogram looking into the short direction.
double precision, dimension(:,:,:), allocatable
:), allocatable

double precision, dimension(:

double precision, dimension(:
double precision, dimension(:
integer

double precision, dimension(:

double precision, dimension(:
double precision, dimension(:

3

)

3

)

B

3

b

allocatable

1), allocatable

H

allocatable

:,:), allocatable
:), allocatable

:: hist2d
:: hist2dcx, hist2dcy ! bin centers.

:: X,Y,Z

:: Xbuffer,Ybuffer,Zbuffer

:: buffer_len,bk,inext,rem

:: means,vars,skews,kurts,t_hist

:: means_sl,vars_sl,skews_sl,kurts_sl
: hist_centers,hist_heights

! Type of geometry, only used to modify the output header.

character (len=1024)

! 3/0
character(len=1024)

character(len=1024)
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:: param_file,other_file,&

filename,tstep_type,ic_file

11 out_msg



character(len=1024) :: arrayname,descr

! HDF

integer :: rank,hberror
character(len=1024) :: fname?2
character(len=1024) :: dsetname

! HDF wvariables.

integer(hid_t) 1 file_id

integer(hid_t) :: dset_id_X,dset_id_Y,dset_id_Z
integer(hid_t) :: dspace_id_X,dspace_id_Y,dspace_id_Z
integer(hsize_t), dimension(2) :: data_dims

! For saving position histories and read IC from a file.
logical :: save_hist,save_hist2d,use_external_ic

! References to functions that go in arguments.
external :: impose_reflective_BC_ellipse, u_ellipse

! Parameters.
]

parameter (geometry = "ellipse")
! Buffer length, to reduce the number of writes

! onto the HDF files.
! Make this as large as possible to fit in RAM!

! 5%10%*3 buff * 10%*4 walks => “1GB RAM

!

! RAM = kt*buffertwalks

o => buffer = RAM/(k*walks)
! k = RAM/(buffer*walks)

! In our exzample kt = 1/(5%10%%7).
!

parameter (buffer_len = 20)

! Number of bins when looking at the cross-sectionally averaged distribution.
parameter (nhb = 400)

! Mazimum reflections applied before giving up and stopping the point on the boundary.
parameter (maxrefl = 10)
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! Read all parameters from file.
call get_command_argument(l,param_file)
call get_command_argument(2,filename)

call read_inputs_mc(param_file,aratio,q,Pe,nGates,xOn,xOwidth,y0,z0,save_hist,n_bins,save_h
use_external_ic,ic_file,tstep_type,dt,dtmax,Tfinal,ntt,other_file,

if (filename=="") then
out_msg = ’missing_args’
call duct_mc_messages (out_msg,nz)
go to 1234

end if

! Set the dimensions of the thing.
1.0d0
a/aratio

[ Y]
o

! Assign the number of bins in each direction for ptwise stats.
if (n_bins .eq. 0) then

nby = 0
nbz = 0
dby = 0.0d0
dbz = 0.0d0
else
nby = n_bins
nbz = ceiling(n_bins/aratio) ! Could also make this the same as nby.
dby = (2.0d0%a) /nby
dbz = (2.0d0%*b)/nbz
end if
nbx = nby

! Generate the target times; times at which output is saved.

! Internal timestepping ts created after.
!

call generate_target_times(dt,tstep_type,Tfinal,other_file)

! Get the wvalue of nt before allocating arrays.
call correct_tstep_info(ntt,nt,target_times,dtmax)

! Initialize the Mersenne Twister RNG with seed read in from the
! input files.

call sgrnd(mt_seed)
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if (nGates .gt. 1) then
! Need to adjust this to make the spacing
! uniform taking into account the aspect ratio.

ny = floor(dsqrt(dble(nGates)*aratio))+1

nz = floor(dsqrt(dble(nGates)/aratio))+1
!

! Because of the rejection method used to generate uniform points,

! each of ny,nz needs to be scaled up appropriately so that

! the number of points that are actually simulated is genuinely

! "nGates, as input from the user’s file.

]

! The factor ts the ratio of the circle to its circumscribing square.
ny = floor(ny/dsqrt(datan(1.0d0)))+1

nz = floor(nz/dsqrt(datan(1.0d0)))+1
else

ny = 1

nz = 1
end if

! If resolution ts an issue, extit.
if ( (ny .lt. 7) .and. (nGates .gt. 1) ) then

out_msg = ’resolution’
call duct_mc_messages(out_msg,nz)
go to 1234

end if

! Calculate nGates and nTot (total number of particles).

! In the ellipse this ©s done with two "sweeps."

! The number of points should be approzimately ~(pi/4)*ny*nz.
! Sweep the grid and update the wvalues for nGates and nTot,

! then allocate memory for X,Y,Z, then fill in the wvalues.

call get_pts_in_ellipse(ny,nz,x0n,a,b,nGates,nTot)

I Internal time
allocate(t_hist(nt))

! Posttions
allocate(X(nTot), Y(nTot), Z(nTot))

! Channel-averaged stats
allocate(means(ntt), vars(ntt), skews(ntt),kurts(ntt))

! Stats on Y slices (integrated across Z)

if (.not. (n_bins .eq. 0)) then
allocate(means_sl(ntt,nby,nbz),vars_sl(ntt,nby,nbz),&
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skews_sl(ntt,nby,nbz) ,kurts_sl(ntt,nby,nbz))
end if

! If the 2d histogram (looking in the short direction) is desired,
! allocate.
if (save_hist2d) then
allocate(hist2d(ntt,nbx,nby))
allocate(hist2dcx(ntt,nbx))
allocate(hist2dcy(ntt,nby))
end if

! Cross-sectionally averaged distribution
allocate(hist_centers(ntt,nhb) ,hist_heights(ntt,nhb))

! Initialize HDF with appropriate dataset, etc.
fname2 = trim(filename)
call hdf_create_file(fname2)

! e need to open the hb file after hdf_create_file
! because the interface is "global" amongst all files
! containing the hdfb5 module.

call h5open_f (hberror)

if (save_hist) then
! Set up dataspaces in the hdf file for:
X, Y, Z.
!

! Allocate memory for the memory buffers here, too.

allocate (Xbuffer(buffer_len,nTot))
allocate(Ybuffer(buffer_len,nTot))
allocate(Zbuffer(buffer_len,nTot))

call hbfopen_f (fname2, HS5F_ACC_RDWR_F, file_id, hberror)
data_dims(1) = ntt

data_dims(2) nTot
rank = 2

dsetname = "X"

call hbscreate_simple_f(rank, data_dims, dspace_id_X, hberror)

call hbdcreate_f(file_id, dsetname, H5T_NATIVE_DOUBLE, dspace_id_X, &
dset_id_X, hberror)

dsetname = "Y"
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call hbscreate_simple_f(rank, data_dims, dspace_id_Y, hberror)

call hbdcreate_f(file_id, dsetname, H5T_NATIVE_DOUBLE, dspace_id_Y, &
dset_id_Y, hberror)

dsetname = "Z"

call hbscreate_simple_f(rank, data_dims, dspace_id_Z, hberror)

call hbdcreate_f(file_id, dsetname, H5T_NATIVE DOUBLE, dspace_id_Z, &
dset_id_Z, hberror)

! Set initial conditions and internal timestepping.
/

call set_initial_conds_ellipse_mc(ny,nz,x0On,a,b,nGates,nTot,X,Y,Z, &
y0,z0,x0width,t_warmup)

call generate_internal_timestepping(ntt,nt,target_times,t_hist,dtmax)

call print_parameters(aratio,q,Pe,nGates,nTot,y0,z0,save_hist,&
t_hist,dtmax,nt,ntt,mt_seed,geometry,use_external_ic)

! Save a history of time per iteration for predicting time to completion.
mde_ntt = nt-1
allocate(mde_dts(mde_ntt))

! Calculate the statistics of the initial condition.
!

inext = 1
tt_idx = 1

call accumulate_moments_2d(tt_idx,ntt,nTot,X,Y,Z,-a,a,-b,b,means,vars,skews,&
kurts,nby,nbz,means_sl,vars_sl,skews_sl,kurts_sl)

call make_histogram(nTot,X,nhb,hist_centers(tt_idx,1:nhb),hist_heights(tt_idx,1:nhb))
if (save_hist2d) then
call make_histogram2d(nTot,X,Y,nbx,nby,hist2dcx(tt_idx,1:nbx),&
hist2dcy(tt_idx,1:nby), hist2d(tt_idx,1:nbx,1:nby))

end if

tt_idx = 2
next_tt = target_times(tt_idx)
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! Prepare the buffer to save position histories if requested.
! The subroutine is geometiry independent once the initial conditions are set,
! so there’s no need to make a "buffer_op_ellipse” subroutine.

bk = 0

if (save_hist) then
call buffer_op_duct (bk,nTot,buffer_len,Xbuffer,Ybuffer,Zbuffer,&

X,Y,Z,ntt,inext,dset_id_X,dset_id_Y,dset_id_Z)
end if

! Start the timestepping.

out_msg = ’simul_start’
call duct_mc_messages(out_msg,nz)

do kt=2,nt

call system_clock(mde_t1,count_rate) ! Time for progress.

! Push forward time.
t = t_hist(kt)
dt = t_hist(kt) - t_hist(kt-1)

call apply_advdiffi_ellipse(nTot,X,Y,Z,Pe,dt,a,b, &
u_ellipse,impose_reflective_BC_ellipse,maxrefl)

! Check 1f we’re at a target time. If we are,
! and calculate and save moments (and positions, if requested),

! then increment ti_idxr and update next_tt.
!

if (t .eq. next_tt) then

call accumulate_moments_2d(tt_idx,ntt,nTot,X,Y,Z,-a,a,-b,b,means,vars,skews,&
kurts,nby,nbz,means_sl,vars_sl,skews_sl,kurts_sl)

call make_histogram(nTot,X,nhb,hist_centers(tt_idx,1:nhb),hist_heights(tt_idx,1:xm

if (save_hist2d) then
call make_histogram2d(nTot,X,Y,nbx,nby,hist2dcx(tt_idx,1:nbx),&

hist2dcy(tt_idx,1:nby), hist2d(tt_idx,1:nbx,1:nby))
end if

)

! Write history ©f requested.
!
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! Need to buffer writes to the hard drive so that we don’t lock up the

! computation with file opens/closes. Ideally the buffer should be as

! large as possible while fitting into RAM; modify the relevant parameter
! at the end of the vartable definitions.

if (save_hist) then
call buffer_op_duct (bk,nTot,buffer_len,Xbuffer,Ybuffer,Zbuffer,&
X,Y,Z,ntt,inext,dset_id_X,dset_id_Y,dset_id_Z)
end if

!

! Update the target time and array indez.
!

if (next_tt .lt. Tfinal) then
tt_idx = tt_idx + 1
next_tt = target_times(tt_idx)
end if

end if

! Display percentage progress. The last argument as .true. should be used with gfortra
! (or any other compiler that supports "\b"), or .false. with ifort.

call system_clock(mde_t2,count_rate) ! Ttme in milliseconds

mde_ntc = kt-1
mde_dts(mde_ntc) = (mde_t2-mde_t1)/dble(count_rate) ! Time in seconds

call progress_meter (kt,nt, .true.)
end do
out_msg = ’simul_done’
call duct_mc_messages(out_msg,nz)
if (save_hist) then
! Write the remainder of the buffer, then close the file.
rem = ntt-inext+1
if (rem .gt. 0) then
call hdf_write_to_open_2d_darray(ntt,nTot,inext,rem,Xbuffer(l:rem,1:nTot) ,dset_id
call hdf_write_to_open_2d_darray(ntt,nTot,inext,rem,Ybuffer(l:rem,1:nTot) ,dset_id

call hdf_write_to_open_2d_darray(ntt,nTot,inext,rem,Zbuffer(l:rem,1:nTot) ,dset_id
end if
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call hb5dclose_f (dset_id_X,hberror)

call h5dclose_f(dset_id_Y,h5error)

call hb5dclose_f (dset_id_Z,h5error)

call hb5fclose_f(file_id,hb5error)
end if

! Because of the nature of hdf5 mod for fortran,
! we close the interface here, since it gets
! re-opened in the calls below.

call hbclose_f (hSerror)

if (save_hist2d) then
write(*,*) nbx,nby,shape(hist2dcx),shape(hist2dcy),shape(hist2d)
arrayname = "hist2dcx"
descr = "Array tracking bin centers in the x direction for hist2d"
call hdf_add_2d_darray_to_file(ntt,nbx,hist2dcx,fname2,arrayname,descr)

arrayname = "hist2dcy"
descr = "Array tracking bin centers in the y direction for hist2d"
call hdf_add_2d_darray_to_file(ntt,nby,hist2dcy,fname2,arrayname,descr)

arrayname = "hist2d"

descr = "Array tracking the density for hist2d"

call hdf_add_3d_darray_to_file(ntt,nbx,nby,hist2d,fname2,arrayname,descr)
end if

! Save all the remaining arrays. It’s a lot of fluff so it’s been

! given tts own subroutine.
!

! The ellipse and duct implementations are identical again here, so no use making another &
call save_the_rest_duct(fname2,geometry,ntt,target_times,means,vars,skews,kurts,nby,nbz,&

means_sl,vars_sl,skews_sl,kurts_sl,nhb,hist_centers,hist_heights,?&
Pe,nTot,mt_seed,aratio,q,dtmax,t_warmup)

deallocate(X,Y,Z)

deallocate(means,vars,skews,kurts,target_times)

if (.not. (n_bins .eq. 0)) then
deallocate(means_sl,vars_sl,skews_sl,kurts_sl)

end if

deallocate(hist_centers,hist_heights)
deallocate(t_hist)
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if (save_hist) then
deallocate (Xbuffer,Ybuffer,Zbuffer)
end if

if (save_hist2d) then
deallocate(hist2d,hist2dcx,hist2dcy)

end if

out_msg = ’done’
call duct_mc_messages(out_msg,nz)

1234 continue

end program ellipse_mc

./monte/racetrack_mc.f90

program racetrack_mc
! Program to do Monte Carlo in a Tacetrack.

use HDF5

use mtmod

use mod_time

use mod_duration_estimator

implicit none

! Array sizes, parameters, local wvars

integer, parameter :: 164 = selected_int_kind(18)

integer :: nGates

integer :: nTot,nt,kt,ny,nz,tt_idx

double precision :: Tfinal,dt,dtmax,Pe,aratio,q,next_tt
double precision R

integer(i64) :: mt_seed

integer :: maxrefl

! Positions, position/statistic histories

integer :: n_bins,nbx,nby,nbz,nhb

double precision :: a,b,dby,dbz,t_warmup

double precision 11 y0,z0

double precision :: xOwidth ! Longitudinal width of wnttuc
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integer :: xOn ! number of discretization po1

! Stuff for 2d histogram Zookzng wnto the short direction.

double precision, dimension(:,:,:), allocatable :: hist2d

double precision, dlmen31on(.,:), allocatable :: hist2dcx, hist2dcy ! bin centers.
double precision, dimension(:), allocatable 0 X,Y,Z

double precision, dimension(:,:), allocatable .. Xbuffer,Ybuffer,Zbuffer

integer :: buffer_len,bk,inext,rem

double precision, dimension(:), allocatable :: means,vars,skews,kurts,t_hist
double precision, dimension(:,:,:), allocatable :: means_sl,vars_sl,skews_sl,kurts_sl
double precision, dimension(:,:), allocatable :: hist_centers,hist_heights

I Type o eometry, only used to modi the output header.
yp g Y Y ) P

character(len=1024) 1 geometry

! 3/0

character(len=1024) :: param_file,other_file,ic_file,filename
character(len=1024) 11 out_msg

character(len=1024) :: arrayname,descr

! HDF

integer :: rank,hberror

character(len=1024) :: fname?2

character(len=1024) :: dsetname

! HDF wariables.

integer(hid_t) 1 file_id

integer(hid_t) :: dset_id_X,dset_id_Y,dset_id_Z
integer(hid_t) :: dspace_id_X,dspace_id_Y,dspace_id_Z
integer(hsize_t), dimension(2) :: data_dims

! For saving position histories.
logical :: save_hist,save_hist2d,use_external_ic

! References to functions that go in arguments.
external :: impose_reflective_BC_racetrack, u_racetrack

! Parameters.
!

parameter (geometry = "racetrack")
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! Buffer length, to reduce the number of writes
! onto the HDF files.
! Make this as large as possible to fit in RAM!

I 5x10%*3 buff * 10**4 walks => "1GB RAM

! RAM = kt*buffer*walks
P => buffer = RAM/(k*walks)
! k = RAM/(buffertwalks)

! In our example kt = 1/(5%10%%7).
!

parameter (buffer_len = 20)

! Number of bins when looking at the cross-sectionally averaged distribution.
parameter (nhb = 400)

! Mazimum reflections applied before giving up and stopping the point on the boundary.
parameter (maxrefl = 10)

! Read all parameters from file.
call get_command_argument(l,param_file)
call get_command_argument(2,filename)

call read_inputs_mc(param_file,aratio,q,Pe,nGates,xOn,xOwidth,y0,z0,save_hist,&
n_bins,save_hist2d,t_warmup,use_external_ic,ic_file,tstep_type,&
dt,dtmax,Tfinal,ntt,other_file,mt_seed)

if (filename=="") then
out_msg = ’missing_args’
call duct_mc_messages(out_msg,nz)
go to 1234

end if

! Set the region for collecting pointwise statistics.
1.5d0
a/aratio

[o 2N Y]
o

! Assign the number of bins in each direction for ptwise stats.
if (n_bins .eq. 0) then

nby = 0
nbz = 0
dby = 0.0d0
dbz = 0.0d0

else
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nby = n_bins

nbz = ceiling(n_bins/aratio) ! Could also make this the same as nby.
dby = (2.0d0*a)/nby
dbz = (2.0d0%*b) /nbz

end if

! For stats integrated through the z direction

nbx = nby

!

! Generate the target times; times at which output s saved.

! Internal timestepping i1s created after.
!

call generate_target_times(dt,tstep_type,Tfinal,other_file)

! Get the wvalue of nt before allocating arrays.
call correct_tstep_info(ntt,nt,target_times,dtmax)

! Initialize the Mersenne Twister RNG with seed read in from the
! input files.

call sgrnd(mt_seed)

! Calculate ny,nz,nGates and nTot (total number of particles).
! In the racetrack, NEED TO DO EVERYTHING IN THIS SUBROUTINE:

! 1. Get an approxzimatation for the area to choose appropriate ny,nz,
! so that the remaining in the interior is approxzimately the

! tnput nGates.

! 2. Use boundary distance function bdistfun_rt(y,z,aratio,q)

! to accept/reject points on the new grid.

nTot = nGates*x0n

! Internal time
allocate(t_hist(nt))

! Positions
allocate (X(nTot), Y(nTot), Z(nTot))

! Channel-averaged stats
allocate(means(ntt), vars(ntt), skews(ntt),kurts(ntt))

! Stats on Y slices (integrated across Z)
if (.not. (n_bins .eq. 0)) then
allocate(means_sl(ntt,nby,nbz),vars_sl(ntt,nby,nbz) ,&
skews_sl(ntt,nby,nbz) ,kurts_sl(ntt,nby,nbz))
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end if

! If the 2d histogram (looking in the short direction) is desired,
! allocate.
if (save_hist2d) then
allocate(hist2d(ntt,nbx,nby))
allocate(hist2dcx(ntt,nbx))
allocate(hist2dcy (ntt,nby))
end if

! Cross-sectionally averaged distribution
allocate(hist_centers(ntt,nhb) ,hist_heights(ntt,nhb))

! Initialize HDF with appropriate dataset, etc.
fname2 = trim(filename)
call hdf_create_file(fname2)

! We need to open the hb file after hdf_create_file
! because the interface is "global" amongst all files
! containing the hdfb5 module.

call hbopen_f (h5error)

if (save_hist) then
! Set up dataspaces in the hdf file for:
X, v, Z.
!

! Allocate memory for the memory buffers here, too.
allocate(Xbuffer (buffer_len,nTot))

allocate(Ybuffer(buffer_len,nTot))
allocate(Zbuffer (buffer_len,nTot))

call hbfopen_f(fname2, HS5F_ACC_RDWR_F, file_id, hberror)

data_dims (1) ntt
data_dims(2) = nTot
rank = 2

dsetname = "X"

call hbscreate_simple_f (rank, data_dims, dspace_id_X, hberror)

call hbdcreate_f(file_id, dsetname, H5T_NATIVE DOUBLE, dspace_id_X, &
dset_id_X, hberror)

dsetname = "Y"

call hbscreate_simple_f (rank, data_dims, dspace_id_Y, hberror)
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call hbdcreate_f(file_id, dsetname, H5T_NATIVE_DOUBLE, dspace_id_Y, &
dset_id_Y, hberror)

dsetname = "Z"

call hbscreate_simple_f(rank, data_dims, dspace_id_Z, hberror)

call hbdcreate_f(file_id, dsetname, H5T_NATIVE_DOUBLE, dspace_id_Z, &
dset_id_Z, hberror)

end if

! Set initial conditions and internal timestepping.
/

call set_initial_conds_racetrack_mc(xOn,aratio,q,nGates,nTot,X,Y,Z, &
y0,z0,x0width,t_warmup)

call generate_internal_timestepping(ntt,nt,target_times,t_hist,dtmax)

call print_parameters(aratio,q,Pe,nGates,nTot,y0,z0,save_hist,&
t_hist,dtmax,nt,ntt,mt_seed,geometry,use_external_ic)

! Save a history of time per iteration for predicting time to completion.
mde_ntt = nt-1
allocate(mde_dts(mde_ntt))

! Calculate the statistics of the initial condition.
!

inext = 1
tt_idx = 1

call accumulate_moments_2d(tt_idx,ntt,nTot,X,Y,Z,-a,a,-b,b,means,vars,skews,&
kurts,nby,nbz,means_sl,vars_sl,skews_sl,kurts_sl)

call make_histogram(nTot,X,nhb,hist_centers(tt_idx,1:nhb),hist_heights(tt_idx,1:nhb))
if (save_hist2d) then
call make_histogram2d(nTot,X,Y,nbx,nby,hist2dcx(tt_idx,1:nbx),&
hist2dcy(tt_idx,1:nby), hist2d(tt_idx,1:nbx,1:nby))

end if

tt_idx = 2
next_tt = target_times(tt_idx)
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! Prepare the buffer to save position histories if requested.
! The subroutine is geometiry independent once the initial conditions are set,
! so there’s no need to make a "buffer_op_ellipse” subroutine.

bk = 0

if (save_hist) then
call buffer_op_duct (bk,nTot,buffer_len,Xbuffer,Ybuffer,Zbuffer,&

X,Y,Z,ntt,inext,dset_id_X,dset_id_Y,dset_id_Z)
end if

! Start the timestepping.

out_msg = ’simul_start’
call duct_mc_messages(out_msg,nz)

do kt=2,nt
call system_clock(mde_t1,count_rate) ! Time for progress.
! Push forward time.

t = t_hist(kt)
dt = t_hist(kt) - t_hist(kt-1)

call apply_advdiffi_racetrack(nTot,X,Y,Z,Pe,dt,aratio,q, &
u_racetrack,impose_reflective_BC_racetrack,maxrefl)

! Check ©1f we’re at a target time. If we are,
! and calculate and save moments (and positions, if requested),
! then increment ti_idxr and update next_tt.

if (¢t .eq. next_tt) then

call accumulate_moments_2d(tt_idx,ntt,nTot,X,Y,Z,-a,a,-b,b,means,vars,skews,&
kurts,nby,nbz,means_sl,vars_sl,skews_sl,kurts_sl)

call make_histogram(nTot,X,nhb,hist_centers(tt_idx,1:nhb),hist_heights(tt_idx,1:n

if (save_hist2d) then
call make_histogram2d(nTot,X,Y,nbx,nby,hist2dcx(tt_idx,1:nbx),&

hist2dcy(tt_idx,1:nby), hist2d(tt_idx,1:nbx,1:nby))
end if

!

! Write history <1f requested.
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!

! Need to buffer writes to the hard drive so that we don’t lock up the

! computation with file opens/closes. Ideally the buffer should be as

! large as posstible while fitting into RAM; modify the relevant parameter

! at the end of the wvartable definitions.
!

if (save_hist) then
call buffer_op_duct (bk,nTot,buffer_len,Xbuffer,Ybuffer,Zbuffer,&
X,Y,Z,ntt,inext,dset_id_X,dset_id_Y,dset_id_Z)
end if

)

! Update the target time and array indec.
!

if (next_tt .1t. Tfinal) then
tt_idx = tt_idx + 1
next_tt = target_times(tt_idx)
end if

end if

! Display percentage progress. The last argument as .true. should be used with gfortra
! (or any other compiler that supports "\b"), or .false. with ifort.

call system_clock(mde_t2,count_rate) ! Time in milliseconds

mde_ntc = kt-1
mde_dts(mde_ntc) = (mde_t2-mde_t1)/dble(count_rate) ! Time in seconds

call progress_meter (kt,nt,.true.)
end do
out_msg = ’simul_done’
call duct_mc_messages(out_msg,nz)
if (save_hist) then
! Write the remainder of the buffer, then close the file.
rem = ntt-inext+1
if (rem .gt. 0) then
call hdf_write_to_open_2d_darray(ntt,nTot,inext,rem,Xbuffer(l:rem,1:nTot) ,dset_id
call hdf_write_to_open_2d_darray(ntt,nTot,inext,rem,Ybuffer(l:rem,1:nTot) ,dset_id

call hdf_write_to_open_2d_darray(ntt,nTot,inext,rem,Zbuffer(l:rem,1:nTot) ,dset_id
end if
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call hb5dclose_f(dset_id_X,h5error)

call hb5dclose_f (dset_id_Y,hberror)

call hb5dclose_f(dset_id_Z,h5error)

call hbfclose_f(file_id,hberror)
end if

! Because of the nature of hdf5 mod for fortran,
! we close the interface here, since 1t gets
! re-opened in the calls below.

call hbclose_f (hberror)

if (save_hist2d) then
write(*,*) nbx,nby,shape(hist2dcx),shape(hist2dcy),shape(hist2d)
arrayname = "hist2dcx"
descr = "Array tracking bin centers in the x direction for hist2d"
call hdf_add_2d_darray_to_file(ntt,nbx,hist2dcx,fname2,arrayname,descr)

arrayname = "hist2dcy"
descr = "Array tracking bin centers in the y direction for hist2d"
call hdf_add_2d_darray_to_file(ntt,nby,hist2dcy,fname2,arrayname,descr)

arrayname = "hist2d"

descr = "Array tracking the density for hist2d"

call hdf_add_3d_darray_to_file(ntt,nbx,nby,hist2d,fname2,arrayname,descr)
end if

! Save all the remaining arrays. It’s a lot of fluff so 1t’s been

! given tts own subroutine.
!
!

call save_the_rest_duct(fname2,geometry,ntt,target_times,means,vars,skews,kurts,nby,nbz,&
means_sl,vars_sl,skews_sl,kurts_sl,nhb,hist_centers,hist_heights,&
Pe,nTot,mt_seed,aratio,q,dtmax,t_warmup)
deallocate(X,Y,Z)
deallocate(means,vars,skews,kurts,target_times)
if (.not. (n_bins .eq. 0)) then
deallocate(means_sl,vars_sl,skews_sl,kurts_sl)

end if

deallocate(hist_centers,hist_heights)
deallocate(t_hist)
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if (save_hist) then
deallocate (Xbuffer,Ybuffer,Zbuffer)
end if

if (save_hist2d) then
deallocate(hist2d,hist2dcx,hist2dcy)
end if

out_msg = ’done’
call duct_mc_messages(out_msg,nz)

1234 continue

end

program racetrack_mc

./monte/triangle_mc.£90

program triangle_mc
! Program to do Monte Carlo 2n a triangle.

use
use
use
use
use

HDF5

mtmod

mod_time
mod_duration_estimator
mod_triangle_bdry

implicit none

! Array sizes, parameters, local wvars
integer, parameter

integer
integer
double precision
double precision

integer (i64)

! Postitions, posttion/statistic histories
integer

double precision

double precision

double precision
integer
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i64 = selected_int_kind(18)

:: nGates

:: nTot,nt ,kt,ny,nz,tt_idx

:: Tfinal,dt,dtmax,Pe,aratio,q,next_tt
ot

:: mt_seed

:: n_bins,nbx,nby,nbz,nhb
:: a,b,dby,dbz,t_warmup
11 y0,z0

:: xOwidth
: x0On



I Stuff for 2d histogram looking into the short direction.

double precision, dimension(:,:,:), allocatable :: hist2d

double precision, dimension(:,:), allocatable :: hist2dcx, hist2dcy ! bin centers.
double precision, dimension(:), allocatable 0 X,Y,Z

double precision, dimension(:,:), allocatable .. Xbuffer,Ybuffer,Zbuffer

integer :: buffer_len,bk,inext,rem

double precision, dimension(:), allocatable :: means,vars,skews,kurts,t_hist
double precision, dimension(:,:,:), allocatable :: means_sl,vars_sl,skews_sl,kurts_sl
double precision, dimension(:,:), allocatable :: hist_centers,hist_heights

! Type of geometry, only used to modify the output header.

character(len=1024) 11 geometry
! i/0
character(len=1024) :: param_file,other_file,&

filename,tstep_type,ic_file

character(len=1024) 1 out_msg
character(len=1024) :: arrayname,descr
! HDF

integer :: rank,hberror
character(len=1024) :: fname2
character(len=1024) :: dsetname

! HDF wariables.

integer(hid_t) :: file_id

integer(hid_t) :: dset_id_X,dset_id_Y,dset_id_Z
integer(hid_t) :: dspace_id_X,dspace_id_Y,dspace_id_Z
integer(hsize_t), dimension(2) :: data_dims

! Flags to save postition histories and read IC from a file.
logical :: save_hist,save_hist2d,use_external_ic
logical check_ic_duct

! References to functions that go in arguments.
external :: impose_reflective_BC_polygon, u_triangle

! Parameters.
!

parameter (geometry = "triangle")
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!
!

Buffer length,
onto the HDF files.
Make this as large as possible to fit in RAM!

to reduce the number of writes

5x¥10%*3 buff * 10**4 walks => "1GB RAM

RAM = ktx*buffer*walks
.............. => buffer = RAM/(k*walks)

k = RAM/(buffertwalks)

In our exzample kt = 1/(5%10%%7).

parameter (buffer_len = 20)

! Number of bins when looking at the cross-sectionally averaged distribution.
parameter (nhb = 400)

! Read all parameters from file.
call get_command_argument(l,param_file)
call get_command_argument(2,filename)

call read_inputs_mc(param_file,aratio,q,Pe,nGates,xOn,xOwidth,y0,z0,save_hist,&

n_bins,save_hist2d,t_warmup,use_external_ic,ic_file,tstep_type,&
dt,dtmax,Tfinal,ntt,other_file,mt_seed)

! Ignore whatever was input and replace.

aratio = 1.0d0

if (filename=="") then
out_msg = ’missing_args’
call duct_mc_messages(out_msg,nz)
go to 1234

end if

! Set the dimenstions of the thing.

a

1.0d0

! Assign the number of bins in each direction for ptwise statis.
if (n_bins .eq. 0) then

nby
nbz

dby
dbz

0
0

0.0d0
0.0d0
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else
nby = n_bins
nbz = nby

dby = (2.0d0*a)/nby
dbz = dby
end if

! For stats integrated through the z direction
nbx = nby
!

! Generate the target times; times at which output ts saved.

! Internal timestepping is created after.
!

call generate_target_times(dt,tstep_type,Tfinal,other_file)

! Get the value of nt before allocating arrays.
call correct_tstep_info(ntt,nt,target_times,dtmax)

! Initialize the Mersenne Twister RNG with seed read in from the
! input files.

call sgrnd(mt_seed)

if (nGates .gt. 1) then
! Because of the rejection method used to gemnerate uniform points,
! each of ny,nz needs to be scaled up appropriately so that
! the number of points that are actually simulated is genuinely

! "nGates, as wnput from the user’s file.

! The factor is the ratio of the triangle to its circumscribing square.

nGates = nGates * (12.0d0/dsqrt(27.0d0))

ny = floor(dsqrt(dble(nGates)))+1
nz = floor(dsqrt(dble(nGates)))+1
else
ny = 1
nz = 1
end if

I' If resolution s an issue, extt.
if ( (ny .1t. 7) .and. (nGates .gt. 1) ) then
out_msg = ’resolution’
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call duct_mc_messages (out_msg,nz)
go to 1234
end if

! Calculate nGates and nTot (total number of particles).

! In the triangle this ts done with two "sweeps."

! The number of points should be approzimately ~(pi/4)*ny*nz.
! Sweep the grid and update the wvalues for nGates and nTlot,

! then allocate memory for X,Y,Z, then fill in the walues.

call get_pts_in_triangle(ny,nz,xOn,a,nGates,nTot,nl,lls)

I Internal time
allocate(t_hist(nt))

! Posttions
allocate(X(nTot), Y(nTot), Z(nTot))

! Channel-averaged stats
allocate(means(ntt), vars(ntt), skews(ntt),kurts(ntt))

! Stats on Y slices (integrated across Z)
if (.not. (n_bins .eq. 0)) then
allocate(means_sl(ntt,nby,nbz),vars_sl(ntt,nby,nbz),&
skews_sl(ntt,nby,nbz) ,kurts_sl(ntt,nby,nbz))
end if

! If the 2d histogram (looking in the short direction) is desired,
! allocate.
if (save_hist2d) then
allocate(hist2d(ntt,nbx,nby))
allocate(hist2dcx(ntt,nbx))
allocate(hist2dcy(ntt,nby))
end if

! Cross-sectionally averaged distribution
allocate(hist_centers(ntt,nhb) ,hist_heights(ntt,nhb))

} Initialize HDF with appropriate dataset, etc.
fname2 = trim(filename)

call hdf_create_file(fname2)

! e need to open the hb file after hdf_create_file

! because the interface ts "global" amongst all files
! containing the hdfb module.
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call hbopen_f (hberror)

if (save_hist) then
! Set up dataspaces in the hdf file for:
X, Y, Z.
!

! Allocate memory for the memory buffers here, too.
allocate (Xbuffer (buffer_len,nTot))
allocate(Ybuffer (buffer_len,nTot))
allocate(Zbuffer (buffer_len,nTot))

call hbfopen_f (fname2, H5F_ACC_RDWR_F, file_id, hberror)

data_dims(1) = ntt
data_dims(2) = nTot
rank = 2

dsetname = "X"

call hbscreate_simple_f(rank, data_dims, dspace_id_X, hberror)

call hbdcreate_f(file_id, dsetname, H5T_NATIVE_DOUBLE, dspace_id_X, &
dset_id_X, hberror)

dsetname = "Y"

call hbscreate_simple_f(rank, data_dims, dspace_id_Y, hberror)

call hbdcreate_f(file_id, dsetname, HS5T_NATIVE_DOUBLE, dspace_id_Y, &
dset_id_Y, hberror)

dsetname = "Z"

call hbscreate_simple_f(rank, data_dims, dspace_id_Z, hberror)

call hbdcreate_f(file_id, dsetname, H5T_NATIVE DOUBLE, dspace_id_Z, &
dset_id_Z, hbSerror)

end if

! Set inttial conditions and internal timestepping.
!

call set_initial_conds_triangle mc(ny,nz,x0On,a,nGates,nTot,X,Y,Z, &
y0,20,x0Owidth,t_warmup,use_external_ic,ic_file,nl,1ls)

call generate_internal_timestepping(ntt,nt,target_times,t_hist,dtmax)

call print_parameters(aratio,q,Pe,nGates,nTot,y0,z0,save_hist,&
t_hist,dtmax,nt,ntt,mt_seed,geometry,use_external_ic)
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! Save a history of time per iteration for predicting time to completion.
mde_ntt = nt-1
allocate(mde_dts(mde_ntt))

! Calculate the statistics of the initial condition.
!

inext = 1
tt_idx = 1

call accumulate_moments_2d(tt_idx,ntt,nTot,X,Y,Z, &
-1.0d0,-1.0d0+2*a*dsqrt(3.0d0) , -a*dsqrt(3.0d0) ,a*dsqrt(3.0d0), &
means,vars, skews,kurts,nby,nbz,means_sl,vars_sl,skews_sl,kurts_sl)
call make_histogram(nTot,X,nhb,hist_centers(tt_idx,1:nhb),hist_heights(tt_idx,1:nhb))
if (save_hist2d) then
call make_histogram2d(nTot,X,Y,nbx,nby,hist2dcx(tt_idx,1:nbx),&
hist2dcy(tt_idx,1:nby), hist2d(tt_idx,1:nbx,1:nby))
end if
tt_idx = 2

next_tt = target_times(tt_idx)

! Prepare the buffer to save postition histories 1f requested.
! The subroutine is geomeiry independent once the initial conditions are set,
! so there’s no need to make a "buffer_op_ellipse" subroutine.
bk = 0
if (save_hist) then
call buffer_op_duct (bk,nTot,buffer_len,Xbuffer,Ybuffer,Zbuffer,&
X,Y,Z,ntt,inext,dset_id_X,dset_id_Y,dset_id_Z)
end if

! Start the timestepping.

out_msg = ’simul_start’
call duct_mc_messages(out_msg,nz)

do kt=2,nt
call system_clock(mde_t1,count_rate) ! Time for progress.

! Push forward time.
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t = t_hist(kt)
dt = t_hist(kt) - t_hist(kt-1)

call apply_advdiffi_triangle(nTot,X,Y,Z,Pe,dt,a, &
u_triangle,impose_reflective_BC_polygon,nl,1lls)

]
! Check ©1f we’re at a target time. If we are,
! and calculate and save moments (and positions, if requested),

! then increment ti_idxr and update next_tt.
]

if (¢t .eq. next_tt) then

call accumulate_moments_2d(tt_idx,ntt,nTot,X,Y,Z, &
-1.0d0,-1.0d0+a*3.0d0, -a*dsqrt(3.0d0) ,a*dsqrt(3.0d0), &
means,vars, skews,kurts,nby,nbz,means_sl,vars_sl,skews_sl,kurts_sl)

call make_histogram(nTot,X,nhb,hist_centers(tt_idx,1:nhb),hist_heights(tt_idx,1:xm

if (save_hist2d) then
call make_histogram2d(nTot,X,Y,nbx,nby,hist2dcx(tt_idx,1:nbx),&
hist2dcy(tt_idx,1:nby), hist2d(tt_idx,1:nbx,1:nby))
end if

! Write history ©f requested.

! Need to buffer writes to the hard drive so that we don’t lock up the

! computation with file opens/closes. Ideally the buffer should be as

! large as possible while fitting into RAM; modify the relevant parameter
! at the end of the wvartable definitions.

if (save_hist) then
call buffer_op_duct (bk,nTot,buffer_len,Xbuffer,Ybuffer,Zbuffer,&
X,Y,Z,ntt,inext,dset_id_X,dset_id_Y,dset_id_Z)
end if

)

! Update the target time and array indez.
!

if (next_tt .1lt. Tfinal) then
tt_idx = tt_idx + 1
next_tt = target_times(tt_idx)
end if

end if
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! Display percentage progress. The last argument as .true. should be used with gfortra
! (or any other compiler that supports "\b"), or .false. with ifort.

call system_clock(mde_t2,count_rate) ! Time in milliseconds

mde_ntc = kt-1
mde_dts(mde_ntc) = (mde_t2-mde_t1)/dble(count_rate) ! Time in seconds

call progress_meter (kt,nt, .true.)
end do

out_msg = ’simul_done’
call duct_mc_messages(out_msg,nz)

if (save_hist) then
! Write the remainder of the buffer, then close the file.

rem = ntt-inext+1

if (rem .gt. 0) then
call hdf_write_to_open_2d_darray(ntt,nTot,inext,rem,Xbuffer(l:rem,1:nTot) ,dset_id
call hdf_write_to_open_2d_darray(ntt,nTot,inext,rem,Ybuffer(l:rem,1:nTot) ,dset_id
call hdf_write_to_open_2d_darray(ntt,nTot,inext,rem,Zbuffer(l:rem,1:nTot) ,dset_id
end if

call hb5dclose_f(dset_id_X,hberror)

call hbdclose_f(dset_id_Y,hberror)

call hb5dclose_f(dset_id_Z,h5error)

call hbfclose_f(file_id,hb5error)
end if

! Because of the nature of hdf5 mod for fortran,
! we close the interface here, since 1t gets
! re-opened in the calls below.

call hbclose_f (hbSerror)

if (save_hist2d) then
write(*,*) nbx,nby,shape(hist2dcx),shape(hist2dcy),shape(hist2d)
arrayname = "hist2dcx"
descr = "Array tracking bin centers in the x direction for hist2d4"
call hdf_add_2d_darray_to_file(ntt,nbx,hist2dcx,fname2,arrayname,descr)

arrayname = "hist2dcy"
descr = "Array tracking bin centers in the y direction for hist2d"
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call hdf_add_2d_darray_to_file(ntt,nby,hist2dcy,fname2,arrayname,descr)

arrayname = "hist2d"

descr = "Array tracking the density for hist2d"

call hdf_add_3d_darray_to_file(ntt,nbx,nby,hist2d,fname2,arrayname,descr)
end if

! Save all the remaining arrays. It’s a lot of fluff so it’s been

! given 7ts own subroutine.
!

call save_the_rest_duct(fname2,geometry,ntt,target_times,means,vars,skews,kurts,nby,nbz,&

means_sl,vars_sl,skews_sl,kurts_sl,nhb,hist_centers,hist_heights,&
Pe,nTot,mt_seed,aratio,q,dtmax,t_warmup)

deallocate(X,Y,Z)

deallocate(means,vars, skews,kurts,target_times)

if (.not. (n_bins .eq. 0)) then
deallocate(means_sl,vars_sl,skews_sl,kurts_sl)

end if

deallocate(hist_centers,hist_heights)
deallocate(t_hist)

if (save_hist) then
deallocate (Xbuffer,Ybuffer,Zbuffer)

end if

out_msg = ’done’
call duct_mc_messages(out_msg,nz)

1234 continue

end program triangle_mc
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./utils/
./utils/buffer_op_channel.f90
subroutine buffer_op_channel(bk,nTot,buffer_len,Xbuffer,Ybuffer,&
X,Y,tsteps,inext,dset_id_X,dset_id_Y)

! The basic buffered write operation.

use HDF5
implicit none

integer, intent(in) :: nTot,tsteps,buffer
integer, intent(inout) :: bk,inext
integer(hid_t), intent(inout) :: dset_id_X,dset_id_
double precision, dimension(l:nTot), intent(in) 0 XY

double precision, dimension(l:buffer_len,1:nTot), intent(inout) :: Xbuffer,Ybuffer

! We need to reshape X and Y to put them in the buffer; it doesn’t
! care about nRounds.

! If we really do, each round will be packed in blocks size ng;

! the first from indices 1,...,nGates, the second round nGates+l,..,2*%nGates, etc.
bk = bk + 1

Xbuffer(bk,:) = X

Ybuffer(bk,:) =Y

!I' If we’ve hit the end of the buffer, write it to the appropriate

! location in the h5 file, and "reset” the buffer (by setting bk=0).

if (bk .eq. buffer_len) then
call hdf_write_to_open_2d_darray(tsteps,nTot,inext,buffer_len,Xbuffer,dset_id_X)
call hdf_write_to_open_2d_darray(tsteps,nTot,inext,buffer_len,Ybuffer,dset_id_Y)
bk = 0

inext = inext + buffer_len
end if

end subroutine buffer_op_channel
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./utils/buffer_op_duct.f90

subroutine buffer_op_duct (bk,nTot,buffer_len,Xbuffer,Ybuffer,Zbuffer,&
X,Y,Z,tsteps,inext,dset_id_X,dset_id_Y,dset_id_Z)

! The basic buffered write operation.

! Saves the most recent buffer_len timesteps in an array

! before writing to the .h5 file (otherwise file t/o dominates computation time).

use HDF5
implicit none

integer, intent(in) :: nTot,tsteps,buffer_len
integer, intent(inout) :: bk,inext
integer(hid_t), intent(inout) :: dset_id_X,dset_id_Y,dse
double precision, dimension(l:nTot), intent(in) 0 X,Y,Z

double precision, dimension(l:buffer_len,1:nTot), intent(inout) :: Xbuffer,Ybuffer,Zbuffer
bk = bk + 1

Xbuffer(bk,:) = X

Ybuffer(bk,:) =Y

Zbuffer(bk,:) = Z

! If we’ve hit the end of the buffer, write it to the appropriate

! location in the h5 file, and "reset"” the buffer (by setting bk=0).

if (bk .eq. buffer_len) then
call hdf_write_to_open_2d_darray(tsteps,nTot,inext,buffer_len,Xbuffer,dset_id_X)
call hdf_write_to_open_2d_darray(tsteps,nTot,inext,buffer_len,Ybuffer,dset_id_Y)
call hdf_write_to_open_2d_darray(tsteps,nTot,inext,buffer_len,Zbuffer,dset_id_Z)

bk = 0
inext = inext + buffer_len

end if

end subroutine buffer_op_duct

./utils/channel_mc_messages.f90
subroutine channel_mc_messages (msg)
! Is this bad practice?
implicit none

character(len=1024), intent(in) 11 msg

character(len=1024) :: missing_args,simul_start,simul_done,done
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parameter (missing_args = ’missing_args’)
parameter(simul_start = ’simul_start?’)
parameter (simul_done = ’simul_done’)
parameter (done = ’done’)

if (msg .eq. missing_args) then
write(*,*) "You must specify the name of an output file in the third argument. Exiting
else if (msg .eq. simul_start) then
write(*," (A14)",advance="no") "Simulating... "
write(*,"(I3,A1)",advance="no") 0,"%"
else if (msg .eq. simul_done) then
write(x,"(A8)") "\b\b\b done."
write(*,"(A19)",advance="no") "Writing to file... "
else if (msg .eq. done) then
write(k,*) " done."
end if

end subroutine channel_mc_messages

./utils/check_ic_channel.f90

logical function check_ic_channel(nTot,Y,a)
! Checks that the initial data is contained within the cross section.
implicit none

integer, intent(in) :: nTot
double precision, dimension(nTot), intent(in) 0 Y

double precision, intent(in) iroa

integer i

double precision :: ymin,ymax
ymin = minval(Y)

ymax = maxval(Y)

if ((ymin .1t. -a) .or. (ymax .gt. a)) then

check_ic_channel = .false.

write(*,*) ymin,ymax,a
else

check_ic_channel = .true.
end if

end function check_ic_channel
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./utils/check_ic_duct.f90

logical function check_ic_duct(nTot,Y,Z,a,b)
! Checks that the initial data is contained within the cross section.
implicit none

integer, intent(in) :: nTot

double precision, dimension(nTot), intent(in) 1 Y,Z

double precision, intent(in) i1 a,b

integer |

double precision :: ymin,ymax,zmin,zmax

ymin = minval(Y)
ymax = maxval(Y)
zmin = minval(Z)
zmax = maxval(Z)

if ((ymin .1t. -a) .or. (ymax .gt. a) .or. (zmin .1lt. -b) .or. (zmax .gt.

check_ic_duct = .false.

write(*,*) ymin,ymax,a

write(*,*) zmin,zmax,b
else

check_ic_duct = .true.
end if

end function check_ic_duct

./utils/correct_tstep_info.£90

subroutine correct_tstep_info(ntt,nt,target_times,dtmax)
! This %5 a ’dry run’ version of generate_internal_timestepping, which
! calculates the internal time array size, nt.

! ntt 1s the number of target time points which will be saved to file.
! Essentzally, the target times will grow exponentially, and the internal

! timestepping will prevent timesteps from exceeding dtmazx.

! The resulting nt 1s an _upper bound_ for the number of
! internal timesteps needed.

implicit none

integer, intent(in) 1 ontt
integer, intent(inout) i:ont
double precision, intent(in) :: dtmax
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double precision, dimension(l:ntt), intent(in) 11 target_times

double precision
integer

idx = 0
do i=2,ntt
tcurr = target_times(i-1)
tnext = target_times(i)
do while (tcurr .lt. tnext)
idx = idx + 1
tcurr = tcurr + dtmax
end do
end do

idx = idx + 1
nt = idx

end subroutine correct_tstep_info

./utils/duct_mc_messages.f90
subroutine duct_mc_messages(msg,ny)
! Is this bad practice?

implicit none

character(len=1024), intent(in)
integer, intent(in)

character(len=1024)

dist,tnext,tcurr
k,tt_idx,idx,i

! msg
t1ony

:: missing_args,resolution,&

simul_start,simul_done,done

parameter(missing_args = ’missing_args’)
parameter (resolution = ’resolution’)
parameter (simul_start = ’simul_start’)
parameter (simul_done = ’simul_done’)
parameter (done = ’done’)

if (msg .eq. missing_args) then

write(*,*) "You must specify the name of an output file in the third argument.
else if (msg .eq. resolution) then

write(k,*x) "

write(*,*) "You need to specify a larger number of points to accurately"
write(*,*) "resolve the y direction for your aspect ratio. Current rule"
write(*,*) "of thumb is that you need nGates > 7/sqrt(aratio)."

Exiting



write (k,*)
write(*,*) "Currently, ny=",ny,"."
write (*,*)
write(*,*) "Exiting."
write(x,*) "
else if (msg .eq. simul_start) then
write(*,"(A14)",advance="no") "Simulating... "
write(*,"(I3,A1)",advance="no") 0,"%"
else if (msg .eq. simul_done) then
write(x,"(A8)") "\b\b\bdone."
write(*," (A19)",advance="no") "Writing to file... "
else if (msg .eq. done) then
write(x,"(A5)") " done."
end if

end subroutine duct_mc_messages

./utils/findcond.f90

subroutine findcond(n,b,q,aptr)

! Given a boolean array b, dimension(n),
! outputs an array aptr where the

! first q elements are integer pointers
! to the elements of b which are .true.

implicit none

integer, intent(in) it n
logical, dimension(n), intent(in) :: b
integer, intent(out) it q
integer, dimension(n), intent(out) :: aptr
integer |
Q=0
do i=1,n
if (b(i)) then
q = q*fl
aptr(q) = i
end if
end do

end subroutine findcond
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./utils/generate_internal_timestepping.f90

subroutine generate_internal_timestepping(ntt,nt,target_times,t_hist,dtmax)
!/

! Generate the array of internal time values based on dtmaxr and target_times.
]

implicit none

integer, intent(in) 1 ontt

integer, intent(inout) i:ont

double precision, dimension(l:ntt), intent(in) 11 target_times
double precision, dimension(l:nt), intent(inout) :: t_hist
double precision, intent(in) :: dtmax
integer 1 odidx,i

double precision 11 tcurr,tnext
idx = 0

do i=2,ntt

tcurr = target_times(i-1)

tnext = target_times(i)

do while (tcurr .lt. tnext)
idx = idx + 1
t_hist(idx) = tcurr
tcurr = tcurr + dtmax

end do

end do

idx = idx + 1
t_hist(idx) = target_times(ntt)

end subroutine generate_internal_timestepping

./utils/generate_target_times.f90

subroutine generate_target_times(tmin,tstep_type,Tfinal,other_file)
! From the input options, fill in an array

! target_times which will be the times on which

! output data s saved.

use mod_readbuff ! For passing an unallocated array between here and the subroutine
! hdf_read_1d_darray().

use mod_time ! For time-related variables and arrays.

implicit none
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double precision, intent(inout) :: Tfinal

double precision, intent(in) 1t tmin
character(len=1024), intent(in) :: tstep_type,other_file
character(len=1024) :: expo,unif,supplied,stt
integer 1rott_idx

double precision :: kscale,dt

logical :: flag

parameter (expo=’expo’ ,unif=’unif’,supplied="supplied",stt="target_times")

if (tstep_type .eq. unif) then

else

else

! Untform timestepping using the specified tmin and tfinal with
! ntt timesteps.

allocate(target_times(ntt))

target_times(1) = 0.0d0

dt = (Tfinal-tmin)/dble(ntt-1)
! Generate the target times
do tt_idx=2,ntt
target_times(tt_idx) = tmin + dt*(tt_idx-1)
end do

if (tstep_type .eq. expo) then
! Exzponential timestepping,; these are untformly spaced in a log scale.
! This 1s the usual setting for our purposes.

allocate(target_times(ntt))
target_times(1) = 0.0d0

target_times(2) = tmin
kscale = dble(Tfinal/tmin)**(1.0d0/dble(ntt-2))

do tt_idx=3,ntt-1
target_times(tt_idx) = kscalextarget_times(tt_idx-1)
end do
target_times(ntt) = Tfinal
if (tstep_type .eq. supplied) then
! User has supplied their own timesteps in the specified hd file.

! Override all other settings and use them.

call hdf_read_1d_darray(ntt,other_file,stt)
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flag = (.not. (readbuff_double(l) .eq. 0.0d0))
if (flag) then

ntt = ntt + 1
end if

allocate(target_times(ntt))
if (flag) then
target_times(1) = 0.0d0
target_times(2:ntt) = readbuff_double
else

target_times = readbuff_double
end if

Tfinal = target_times(ntt)
deallocate(readbuff_double)

else

write(*,*) "Unrecognized tstep_type. Use either ’’unif’’, ’’expo’’, or ’’supplied’’."

end if
Tfinal = target_times(ntt)

end subroutine generate_target_times

./utils/get_pts_in_ellipse.f90

subroutine get_pts_in_ellipse(ny,nz,x0On,a,b,nGates,nTot)

! In the ellipse, the technique to set the initial condition is to proceed with
! uniform spacing as if we were in the rectangle, then exclude points that lie

! outside the circle. This leaves an issue of not knowing exactly how many

! points will be remaining. This function is a trimmed down version of the

! set_ainitial_conditions_ellipse where only the *number* of points in the domain

! 25 counted.

! Could probably be done in a single call <if I was clever. But this isn’t a bottleneck

! 2n computations.
implicit none
integer, intent(in)

double precision, intent(in)
integer, intent(out)

integer
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:: a,b
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double precision :: hy,hz,dist

! Sample points in the circumscribing square; throw out any that
! lie outside the circle.

hy = 2.0d0*a/dble (ny-1)
hz = 2.0d0*b/dble(nz-1)
idx = 0

if (nGates .gt. 1) then
do iz=0,nz-1
do iy=0,ny-1
dist = ((-a + iy*hy)*x2)/(a**2) + ((-b + izxhz)**2)/(b**2)

if (dist .le. 1.0d0) then
idx = idx + 1
end if
end do
end do

nGates = idx

else
! Nothing gets changed.
nGates = 1

end if

nTot = nGates*x0On

end subroutine get_pts_in_ellipse

./utils/get_pts_in_triangle.f90

subroutine get_pts_in_triangle(ny,nz,x0On,a,nGates,nTot,nl,11s)

! In the triangle, the technique to set the initial condition is to proceed with
! untform spacing as 1f we were in the rectangle, then exclude points that lie

! outside the triangle. This leaves an tssue of not knowing exactly how many

! points will be remaining. This function ts a trimmed down version of the

! set_ainitial_conditions_triangle where only the *number* of points in the domain
! 125 counted.

! Could probably be done in a single call if I was clever. But this isn’t a bottleneck
! in computations.

implicit none

integer, intent(in) :: ny,nz,x0n,nl
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double precision, intent(in) tra

double precision, dimension(nl,3), intent(in) i1 1ls
integer, intent(out) :: nGates,nTot
integer 11 idx,iy, iz
double precision :: hy,hz,rl,rb
double precision, dimension(3) 1 tempv
double precision, dimension(nl) :: bvals

! Sample points in the circumscribing square; throw out any that
! lie outside the triangle.

rl
rb

-a*xdsqrt (3.0d0)
-1.0d40

hz = 2.0d0*a*dsqrt(3.0d0)/(nz-1)
hy = 2.0d0*a*dsqrt(3.0d0)/(ny-1)
idx = 0

if (nGates .gt. 1) then
do iz=0,nz-1

do iy=0,ny-1
tempv (1) = 1.0d0
tempv(2) = rb + iy*hy
tempv(3) = rl + izxhz

call matvec(nl,3,1ls,tempv,bvals)

if (all(bvals .ge. 0.0d0)) then
idx = idx + 1
end if
end do
end do

nGates = idx

else
! Nothing gets changed.
nGates = 1

end if

nTot = nGates*xOn

! write(*,*) nTot
end subroutine get_pts_in_triangle
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./utils/get_racetrack_area.f90

subroutine get_racetrack_area(q,aratio,area)
! Calculates the area in the racetrack with the given parameters.

! Simple Monte Carlo method with Tejection.

use mtmod

implicit none
double precision, intent(in)
double precision, intent(out)

integer, parameter

integer
double precision

double precision bdistfun_rt

yl = -1.3d0
yr = 1.3d0

zl = yl/aratio
zr = yr/aratio

my = yr-yl
mz zr-z1

area_rec = my*mz

do i=1,ntot
! Uniform random
y = yl + my*grnd()
z = z1 + mz*grnd()

I

if (bdistfun_rt(y,z,aratio,q)
nin = nin + 1
end if
end do

area = area_rec*dble(nin)/ntot

end subroutine get_racetrack_area

:: q,aratio
11 area

;. ntot = 10%%9
:: nin,i
:: area_rec,yl,yr,zl,zr,my,mz,y,z

.ge.
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./utils/hdf _add_1d_darray_to_file.f90

subroutine hdf_add_1d_darray_to_file(m,A,filename,arrayname,description)
! Given an hdf file already created, takes an array with

! dimensions m,n and writes 1t to the hdf file.

]

! Baby steps. Test 1t with the dump_uduct_flow code.

use hdfb
implicit none

! Inputs

integer tm

double precision, dimension(m) ir A

character(len=1024) :: filename,arrayname,attrname
character(len=1024) :: description

! HDF wariables.

integer(hid_t) :: file_id,dset_id,dspace_id, &
attr_id,aspace_id,atype_id

integer(hsize_t), dimension(1) :: adims

integer :: rank,error

integer :: arank

integer (HSIZE_T), dimension(1) :: data_dims

integer(size_t) :: attrlen

! Misc.

parameter (rank=1) ! Dimension of array.

parameter(arank=1) ! Rank of attribute (size of attribute array?)

parameter(adims=(/1/)) ! Size of array of hdf attributes. For our purposes,
! only using 1.

parameter (attrname="Description")

! Do some preliminary work
data_dims(1) = m

! Initialize interface, open the file.
call hbopen_f (error)
call hbfopen_f(filename, H5F_ACC_RDWR_F, file_id, error)

! Create the dataset and dataspace and all that.
call hbscreate_simple_f(rank, data_dims, dspace_id, error)
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call hbdcreate_f(file_id, arrayname, HS5T_NATIVE_DOUBLE, dspace_id, &
dset_id, error)

! Write array.
call hbdwrite_f(dset_id, HS5T_NATIVE_DOUBLE, A, data_dims, error)

! Write the text description for the array.
! Turns out this requires making the datatype and whatnot.

description = trim(description)
attrlen = len_trim(description)

call hbscreate_simple_f (arank, adims, aspace_id, error)

call hbscreate_simple_f (arank, adims, aspace_id, error)

call hbtcopy_f (HST_NATIVE_CHARACTER, atype_id, error)

call hbtset_size_f(atype_id, attrlen, error)

call hbacreate_f(dset_id, attrname, atype_id, aspace_id, attr_id, error)

! The write happens here.
call hbawrite_f(attr_id, atype_id, description, adims, error)
call hbaclose_f(attr_id, error)

! Close the dataset, file, and hdf interface.
call h5dclose_f(dset_id, error)

call hbfclose_f(file_id, error)

call hb5close_f (error)

! EXIT

end subroutine hdf_add_ld_darray_to_file

./utils/hdf_add_2d_darray_to_file.f90

subroutine hdf_add_2d_darray_to_file(m,n,A,filename,arrayname,description)
! Given an hdf file already created, takes an array with

! dimensions m,n and writes 1t to the hdf file.
]

! Baby steps. Test 1t with the dump_uduct_flow code.

use hdfb
implicit none
! Inputs

integer ::m,n
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double precision, dimension(m,n) i A
character(len=1024) :: filename,arrayname,attrname
character(len=1024) :: description

! HDF wariables.

integer(hid_t) :: file_id,dset_id,dspace_id, &
attr_id,aspace_id,atype_id

integer(hsize_t), dimension(1) :: adims

integer :: rank,error

integer :: arank

integer (HSIZE_T), dimension(2) :: data_dims

integer(size_t) 1 attrlen

! Misc.

parameter (rank=2) ! Dimension of array.

parameter (arank=1) ! Rank of attribute (size of attribute array?)

parameter(adims=(/1/)) ! Size of array of hdf attributes. For our purposes,

! only using 1.
parameter (attrname="Description")

! Do some preliminary work
data_dims(1) = m
data_dims(2) = n

! Initialize interface, open the file.
call hbopen_f (error)
call hbfopen_f (filename, HS5F_ACC_RDWR_F, file_id, error)

! Create the dataset and dataspace and all that.

call hbscreate_simple_f (rank, data_dims, dspace_id, error)

call hbdcreate_f(file_id, arrayname, H5T_NATIVE_DOUBLE, dspace_id, &
dset_id, error)

! Write array.
call hbdwrite_f(dset_id, H5T_NATIVE_DOUBLE, A, data_dims, error)

! Write the text description for the array.

! Turns out this requires making the datatype and whatnot.
description = trim(description)

attrlen = len_trim(description)

call hbscreate_simple_f (arank, adims, aspace_id, error)
call hbscreate_simple_f (arank, adims, aspace_id, error)
call h5tcopy_f (H5T_NATIVE_CHARACTER, atype_id, error)
call hbtset_size_f(atype_id, attrlen, error)
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call hbacreate_f(dset_id, attrname, atype_id, aspace_id, attr_id, error)

! The write happens here.
call hbawrite_f(attr_id, atype_id, description, adims, error)
call hbaclose_f(attr_id, error)

! Close the dataset, file, and hdf interface.
call hbdclose_f(dset_id, error)

call hb5fclose_f(file_id, error)

call hb5close_f (error)

end subroutine hdf_add_2d_darray_to_file

./utils/hdf _add_3d_darray_to_file.f90

subroutine hdf_add_3d_darray_to_file(m,n,p,A,filename,arrayname,description)
! Given an hdf file already created, takes an array with

! dimensions m,n,p and writes it to the hdf file.
!

! Baby steps. Test it with the dump_uduct_flow code.

use hdfb
implicit none

! Inputs

integer, intent(in) :: m,n,p

double precision, dimension(m,n,p), intent(in) i A
character(len=1024), intent(in) :: filename,arrayname
character(len=1024), intent(in) :: description

! HDF wariables.

integer (hid_t) :: file_id,dset_id,dspace_id, &
attr_id,aspace_id,atype_id

integer(hsize_t), dimension(1) :: adims

integer :: rank,error

integer :: arank

integer (HSIZE_T), dimension(3) :: data_dims

integer(size_t) :: attrlen

! Misc.

character(len=1024) :: attrname

parameter (rank=3) ! Dimenstion of array.

parameter(arank=1) ! Rank of attribute (size of attribute array?)

parameter(adims=(/1/)) ! Size of array of hdf attributes. For our purposes,
! only using 1.

parameter (attrname="Description")
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! Do some preliminary work
data_dims(1) = m

data_dims(2)
data_dims(3)

n
p

! Initialize interface, open the file.
call hbopen_f (error)
call hbfopen_f (filename, HS5F_ACC_RDWR_F, file_id, error)

! Create the dataset and dataspace and all that.

call hbscreate_simple_f(rank, data_dims, dspace_id, error)

call hbdcreate_f(file_id, arrayname, H5T_NATIVE_DOUBLE, dspace_id, &
dset_id, error)

! Write array.
call hbdwrite_f(dset_id, HS5T_NATIVE_DOUBLE, A, data_dims, error)

! Write the text description for the array.
! Turns out this requires making the datatype and whatnot.

attrlen = len_trim(trim(description))

call hbscreate_simple_f (arank, adims, aspace_id, error)

call hbscreate_simple_f (arank, adims, aspace_id, error)

call hb5tcopy_f (HS5T_NATIVE_CHARACTER, atype_id, error)

call hbtset_size_f(atype_id, attrlen, error)

call hbacreate_f(dset_id, attrname, atype_id, aspace_id, attr_id, error)

! The write happens here.

call hbawrite_f(attr_id, atype_id, description, adims, error)
call hbaclose_f(attr_id, error)

! Close the dataset, file, and hdf interface.

call h5dclose_f(dset_id, error)

call hbfclose_f(file_id, error)

call h5close_f (error)

end subroutine hdf_add_3d_darray_to_file

./utils/hdf_create_file.f90

subroutine hdf_create_file(filename)
! Creates a blank h5 file with the given filename.

USE HDF5 ! This module contains all necessary modules
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IMPLICIT NONE

CHARACTER (LEN=1024) :: filename
INTEGER (HID_T) ;0 file_id ! File tdentifier
INTEGER :: error ! Error flag

!

! Initialize FORTRAN interface.
!

CALL hbopen_f (error)

)

! Create a new file using default properties.

)

CALL hbfcreate_f(filename, HS5F_ACC_TRUNC_F, file_id, error)

)

! Terminate access to the file.
!

CALL hb5fclose_f(file_id, error)

!

! Close FORTRAN anterface.
!

CALL hb5close_f (error)

end subroutine hdf_create_file

./utils/hdf_read_1d_darray.f90

subroutine hdf_read_1d_darray(m,filename,dsetname)

! Read a 1d double array from an hbd file under the corresponding
! dsetname into a temporary buffer from the module mod_readbuff.

use mod_readbuff
use hdf5
implicit none

integer (HSIZE_T), intent(out)
character(len=1024), intent(in)

! double precision, dimension(m), intent (out)
! HDF wariables.

integer(hid_t)
integer
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integer (HSIZE_T), dimension(1) :: dims,maxdims

! Intttalize the hdf interface.
call hbopen_f (hdferror)

! Open the file.
call hbfopen_f(filename, H5F_ACC_RDONLY_F, file_id, hdferror)
call hbdopen_f(file_id, dsetname, dset_id, hdferror)

! Read the file, figuring out the dimensions, allocating,
! then copying over the array.

! Getting the dataspace ID
call hbdget_space_f(dset_id, dspace_id, hdferror)
call hbsget_simple_extent_ndims_f (dspace_id, rank, hdferror)

! Getting dims from dataspace
call hbsget_simple_extent_dims_f (dspace_id, dims, maxdims, hdferror)

m = dims(1)

allocate(readbuff_double (m))

! Reading array of size dims.

call hbdread_f(dset_id, H5T_NATIVE_DOUBLE, readbuff_double, dims, hdferror, h5S_ALL_F, dspa

! Close the dataset, file, and hdf interface.
call hbsclose_f(dspace_id, hdferror)

call hbdclose_f(dset_id, hdferror)

call hb5fclose_f(file_id, hdferror)

call hb5close_f (hdferror)

end subroutine hdf_read_ld_darray

./utils/hdf _write_to_open_2d_darray.f90

subroutine hdf_write_to_open_2d_darray(m,n,i,nrow,array,dset_id)
! As the name suggests; given an opened dataset <d,

! modifies the %-th through (t+nrow-1) row of <t.
!

! The hb5 dataset is assumed to have total dimension (m,n).
!

! Does no error checking whatsoever. Don’t be dumbd!

use hdfb
implicit none
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! Inputs

integer :: m,n,i,nrow
double precision, dimension(l:nrow,1:n) ;1 array
INTEGER (HID_T) 11 dset_id ! Dataset identifier

! HDF things

INTEGER(HID_T) :: dataspace ! Dataspace tidentifier
INTEGER(HID_T) :: memspace ! memspace tidentifier
integer :: error,rank

integer(hsize_t), dimension(2) :: offset,stride,block,steps,dimsm

rank=2

offset = (/i-1,0/) ! Which element to start at. HDF counts from zero.
stride = (/1,1/) ! Write sequential elements

block = (/1,1/) ! No blocks.

steps = (/nrow,n/) ! How many times to ’repeat the pattern’

! in each direction.
! In thts case, the size of the array.

dimsm=(/nrow,n/) ! Dimenstons of subset to write to dataset.

)

! Get dataset’s dataspace tdentifier and select subset.
!
if (i+nrow-1 .gt. m) then
write(*,*) "Warning: possibly writing past the end of a HDF dataset."
end if

CALL hbdget_space_f(dset_id, dataspace, error)

CALL hb5sselect_hyperslab_f (dataspace, H5S_SELECT_SET_F, &
offset, steps, error, stride, block)

!

! Create memory dataspace.
!

CALL hbscreate_simple_f (rank, dimsm, memspace, error)

!

! rite subset to dataset
!

CALL hbdwrite_f(dset_id, H5T_NATIVE_DOUBLE, array, dimsm, error, &
memspace, dataspace)
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end subroutine hdf_write_to_open_2d_darray

./utils/interp_meshes.f90

subroutine padded_cheb_nodes(n,x,x0,xf)

! Fills array =, length n, with the n-2 Chebyshev nodes
! on the interval (z0,zf), with the first and

! last nodes as z0,zf padded on.

implicit none

! In

integer ::on,i
double precision :: x0,xf
! In/out

double precision, dimension(n) D <

! Internal
double precision iopl

parameter(pi = 4.0d0*datan(1.0d0))

x(1) = x0
do i=2,n-1
x(1) = 0.5d0*(x0+xf) + 0.5d0*(xf-x0)*dcos(dble(2x(n-i)-1)/dble(2*(n-2))*pi)
end do
x(n) = xf

end subroutine padded_cheb_nodes

subroutine uniform_nodes(n,x,x0,xf)

! Fills array =, length n, with the uniformly distributed nodes
! on the interval (z0,zf).

implicit none

! In

integer i:on,i
double precision :: x0,xf
! In/out

double precision, dimension(n) R <
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! Internal
double precision 1rodx

! Uniform nodes.
dx = (xf-x0)/(n-1)

do i=1,n
x(i) = x0 + (i-1)*dx
end do

end subroutine uniform_nodes

./utils/linear_interp_2d.£90

double precision function linear_interp_Qd(um,un,u,x,y,xO,yO)
! Bilinear tnterpolation in 2d, with the accompanying index-locator
! function.

! Given an m-by-n array of "exact" u wvalues, rectangular domain

! defined on a grid with = and y values, and interpolation point

! z0, y0, returns the approzimate u(xz0,y0) value using a 4-point bilinear
! interpolation.

implicit none
! Input wars

integer :: um,un
double precision, dimension(um,un) :: u
double precision, dimension(um) DX
double precision, dimension(un) Ty
double precision :: x0,y0

! Internal vars

double precision :: ul,u2,u3,u4,p,q
integer gLk
double precision :: one

parameter (one = 1.0d0)

! Functions
integer locate,locate2

! If on a uniform grid, should use locate2 instead to reduce
! the lookup cost.
if (.true.) then
j = locate2(um,x(1),x(um),x0)
k = locate2(un,y(1),y(un),y0)
else
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j = locate(um,x,x0)
k = locate(un,y,y0)
end if
ul = u(j,k)
u2 = u(j+1,k)
u3 = u(j+1,k+1)
ud = u(j,k+1)

(x0 - x(3) )/Cx(G+1) - x(3) )
(yo - y(k) )/(C y(k+t1) - y(k) )

%
q

linear_interp_2d = (one-p)*(one-q)*ul + p*(one-q)*u2 + &
p*q*u3 + (one-p)*q*ud

end function linear_interp_2d

integer function locate(n,x,x0)

! Given 1d double prectsion array T dimension n,
! monotonically increasing or decreasing,

! and double precistion z0, locate the index

! 7 which satisfies z(j) <= z0 <= z(j+1).

! This %s mot tdiot-proof; 1if z0 lies outside
! the domain of = then you’re SOL.

! Adapted from "Numerical Recipes." The basic idea

! behaves like bisection; the endpoints of the array
! serve as the positive/negative bounds of the

! "function" x-x0, then the bounds are iteratively

! refined until we reach a bound of (/j,5+1/).

! Should converge in log_2(n) steps.

implicit none
! Input wars

integer i n
double precision, dimension(n) D ¢
double precision 11 x0

! Internal
integer 20 jl,ju,jm
logical :: xisincr
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! Upper/lower limits on the containing index
jl1 =0
ju = n+l

xisincr = ( x(n) .gt. x(1) )

do while (ju-jl .gt. 1)

jm = (ju+tjl)/2 ! Compute a midpoint of tdx bound

! Choose the next bound depending on whether
! the array T s monotone increasing or decreasing.
if ( xisincr .eqv. ( x0 .gt. x(jm) ) ) then

jl = jm
else

ju = jm
end if

end do

! Return lower index bound.

! This will only appear <1f there is a double reflection
! that would be necessary in the code with MC, where

! 71=0 since z0 < min(z).

! Should not occur with proper simulation, though;

! dt should be chosen small enough relative to Peclet
! that probability of a Brownian motion that large is
! vanishingly small.

locate = max(jl,1)

end function locate

integer function locate2(n,x1,xr,x0)

!
!
!
!
!
!
!
!

I THINK WE CAN DO BETTEH!
https://www.youtube. com/watch?v=NTpptLoUEkS

Assuming the array T %S a uniform mesh, we can get the
precise index with some modular arithmetic. zl and zr are

the lower and upper bounds of the array.

Also assumes arrays start counting at 1.

implicit none

! Input
double precision o x1,xr,x0
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integer it n
! Internal
double precision :th

h = (xr-x1)/(n-2)

! Add one because indexring starts at 1.
locate2 = floor( ((x0-x1) - dmod(x0-x1,h)) / h ) + 1

end function locate2

./utils/make_filename_direct.f90
subroutine make_filename(mMax, nMax, flow_type, suffix, output_file)

Makes a succinct filename describing the max summation indices,
! problem type, flow type.

! PROBLEM TYPE MUST BE 4 CHARACTERS LONG FOR NOW ("root" or "evwal")

implicit none

! Inputs
integer :: mMax, nMax, sm, sn
character(len=1024) :: flow_type, suffix, templ, output_file

! Thts 25 a "general” implementation, unless you want to sum to more than 10%*10
! on every single index. (The "I1" in the fortran format descriptor assumes

! a 1-digit integer, which is sm and sn, the number of digits in the

! truncation indices M and N.

sm = floor(loglO(dble(mMax)))+1 ! Count the number of digits in nMax.
sn = floor(loglO(dble(nMax)))+1 ! Count the number of digits in nMax.

! Create the formatting stiring with this number of digits.
write(templ,"(A5,I1,A5,11,A13)") "(A1,I",sm,",A1,I",sn," ,A5,AL1, A4, A4)"

! Write the max index on the first line, then the array in columns

! on the following lines.

write(output_file,templ) trim("m"),mMax,trim("n"),nMax,trim(flow_type),"_",trim(suffix),tri

end subroutine make_filename

./utils/make_histogram.f90

subroutine make_histogram(n,X,nhb,centers,heights)
! Bins the array X with specified bin centers. This subroutine uses
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! equally spaced bins.

! In:

!

! n

! X(n) - array of particle positions to bin across the second

! dimension, then averaged across the first dimension.
! nhb - number of histogram bins

]

! In/out:

!

! centers(nhb), heights(nhb) - centers and heights of the bins. Normalized
! to be a probability density.

implicit none

integer, intent(in) :: n,nhb

double precision, dimension(n), intent(in) S ¢

double precision, dimension(nhb), intent (out) :: centers,heights
integer, dimension(n) 1o Xidx

double precision :: xmin,xmax,db
integer ]

! Set up the binning.
xmin = minval (X)
xmax = maxval (X)

if (xmin .eq. xmax) then
xmin = xmin - 1.0d0
xmax = xmax + 1.0d0
end if

db = (xmax-xmin)/nhb

do j=1,nhb
centers(j) = xmin + (j-0.5d0)*db
heights(j) = 0.0d0

end do

call uniform_bins_idx(n,X,xmin,xmax,nhb,Xidx)

do j=1,n
heights(Xidx(j)) = heights(Xidx(j)) + 1.0d0
end do
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end subroutine make_histogram

subroutine make_histogram2d(n,X,Y,nhb,nby,hcx,hcy,heights)

Bins the pair of arrays X,Y in two dimensions, with nhb bins in the
T direction and nby bins in the y direction. hcx and hcy track

the locations of bin *centers*, not boundaries. heights is the count,
non-normalized.

!
!
!
!
!

./utils/make_histogram2d.f90

implicit none

integer, intent(in)

double precision, dimension(n), intent(in)

double precision, dimension(nhb), intent(out)
double precision, dimension(nby), intent(out)
double precision, dimension(nhb,nby), intent (out)

integer, dimension(n)
double precision
integer

! Set up the binning.
xmin = minval (X)
xmax = maxval (X)

if (xmin .eq. xmax) then
xmin = xmin - 1.0d0
xmax = xmax + 1.0d0
end if

ymin = -1.0d0

ymax = 1.0d0
dbx = (xmax-xmin)/nhb
dby = (ymax-ymin)/nby
do j=1,nhb
hex(j) = xmin + (j-0.5d0)*dbx
end do
do j=1,nby
hcy(j) = ymin + (j-0.5d0)*dby
end do
do i=1,nhb
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do j=1,nby
heights(i,j) = 0.0d0
end do
end do

call uniform_bins_idx(n,X,xmin,xmax,nhb,Xidx)
call uniform_bins_idx(n,Y,ymin,ymax,nby,Yidx)

do j=1,n
heights(Xidx(j),Yidx(j)) = heights(Xidx(j),Yidx(j)) + 1.0d0
end do

end subroutine make_histogram2d

./utils/my_normal_rng.f90

subroutine my_normal_rng(na,array,mean,variance)

! Populates array size n with normally distributed
! random variables with given mean and variance.

! Done by generating pairs of untform random [0,1]
! with Fortran’s built-in function, then doing

! the Boz-Muller transform to get iid normal wvars.

! The Mersenne Twister ts assumed already initialized/seeded
! 2n a parent function.

use mtmod ! Mersenne Twister module

implicit none

integer, intent(in) 11 na

double precision, dimension(l:na), intent(inout) :: array

double precision, intent(in) :: mean,variance

double precision :: stdev,modulus,modsq,mult,twopi
double precision, dimension(1:2) 11 pair

logical :: nisodd,good

integer :: krng,nac

parameter( twopi = 6.283185307179586d0 )
stdev = dsqrt(variance)

nac=na
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nisodd = (mod(nac,2) .eq. 1)
if (nisodd) then

nac=nac-1
end if

! Testing "Numerical Recipes" wversion, avoiding calculating
! cosine and sine with a wvariation on Boz-Muller.

do krng=1,nac,?2

! Grab pairs of points until you get a pair
! that lies in the unit ball.

good = .false.

do while (.not. good)

pair(1) = grnd()

pair(2) = grnd()

pair = 2.0d0O*pair - 1.0d0
modsq = pair(l)#**2 + pair(2)**2

! Logical evaluation
good = (modsq .1t. 1.0d0)
end do

! Then, apply the formula.

mult = dsqrt(-2.0d0*dlog(modsq)/modsq)
array(krng) = mean + stdevxmult+*pair(1)
array(krng+1) = mean + stdev*mult*pair(2)

end do
! Handle the last point with a normal Boxz-Muller if necessary.

if (nisodd) then
nac = nac+1

pair(1) = grnd()
pair(2) = grnd()
modulus = dsqrt(-2.0d0 * dlog(pair(1)))

array(nac) = mean + stdev*modulus*dcos(twopi*pair(2))
end if

end subroutine my_normal_rng
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./utils/print_parameters.f90

subroutine print_parameters(aratio,q,Pe,nGates,nTot,y0,z0,save_hist,&
t_hist,dtmax,nt,ntt,mt_seed,geometry,use_external_ic)

! Spit out a nice header with all the simulation settings.

implicit none

integer, parameter :: 164 = selected_int_kind(18)
double precision, intent(in) :: aratio,q,Pe,y0,z0,dtmax
integer, intent(in) :: nGates,nTot,nt,ntt

logical, intent(in) :: save_hist,use_external_ic
double precision, dimension(l:nt), intent(in) :: t_hist

integer(kind=i64), intent(in) :: mt_seed
character(len=1024), intent(in) 1 geometry

character(len=15) :: num2str
character(len=1024), parameter :: racetrack = "racetrack"
character(len=1024), parameter :: channel = "channel"

write(k,*x) ""
write(*,"(80A)") REPEAT("=",80)
write(k,*x) ""

write (*," (A10,A7)") "Geometry: ",trim(geometry)
write(x,*x) "

! Display differently for point source and untform.
if (use_external_ic) then
write(*,"(A28)") "Initial data read from file."
write(k,*x) ""
else
if (nGates .eq. 1) then
write(*,"(A50)") "Point source initial data."
write(x,*x) ""

! Display point source different for channel and pipe/duct.
if (geometry .eq. "channel") then
write(*," (A60,ES10.3)") "Starting coordinate: ",y0

else
write(*," (A60,A1,ES10.3,A3,ES10.3,A2)") "Starting coordinates: ","(",y0," ,
end if
else
write(*,"(A50)") "Uniform initial data."
end if

end if
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write(k,*x) ""

write(*," (A50,ES10.3)") "Peclet: ", Pe

if (.not. (geometry .eq. channel)) then
write(*,"(A50,ES10.3)") "Aspect ratio: ",aratio
write(k,*x) "

end if

if (geometry .eq. racetrack) then
write(*,"(A50,ES10.3)") "Shape parameter: ",q

end if

write(x,*) ""

write (num2str," (I15)") nTot
write(*," (A50,A15)") "Number of particles: ", adjustl(num2str)

write(*," (A50,A1,ES10.3,A3,ES10.3,A2)") "Time interval: ","(", t_hist(1), " , ", t_hist(nt)

write(num2str,"(I15)") ntt
write(*," (A50,A15)") "Number of requested timesteps: ",adjustl(num2str)

write(num2str,"(I15)") nt
write(*," (A50,A15)") "Number of internal timesteps: ",adjustl(num2str)
write(*," (A50,ES10.3)") "Largest internal timestep: ",dtmax
write(k,*x) ""
if (save_hist) then
write(*," (A40)") "Saving position histories to file."
write (k,*x) ""

end if

write(num2str," (I15)") mt_seed
write(*," (A40,A15)") "Mersenne Twister seed: ", adjustl(num2str)

1234 continue
write(x,*x) "

write(x," (80A)") REPEAT("=",80)
write(k,*x) ""

end subroutine print_parameters
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./utils/progress_meter.f90

subroutine progress_meter(k,n,in_place)
! Displays a simple percentage progress meter,
! assuming this ts placed inside a do loop, k=1,...,n.

use mod_duration_estimator

implicit none
integer, intent(in) :: k,n
logical, intent(in) :: in_place

mde_pttc = predict_completion(mde_ntt,mde_ntc,mde_dts)

call mde_pretty_print_time(mde_pttc,mde_pttc_pretty,mde_time_unit)

if (in_place) then

else

! Use the gfortran functionality to shift the cursor
! to the left, to have a "dynamic" percentage.
! Does not work with ifort, which s what the case below handles.
if (k .eq. 2) then

write(*,"(A27)",advance="no") " Time remaining:
end if

if (mod(k*100,n) .1lt. 100) then
write(*," (A27)",advance="no") "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\t
write(*,"(A4)",advance="no") "\b\b\b\b"
write(*,"(I3,A1,A3,A16,F5.1,A3)",advance="no") floor(dble(k)/dble(n)*100.0d0),"%"

" ","Time remaining: ",mde_pttc_pretty,mde_time_unit

else
write(*,"(A8)",advance="no") "\b\b\b\b\b\b\b\b"
write(*,"(F5.1,A3)",advance="no") mde_pttc_pretty,mde_time_unit

end if

if (mod(k*100,n) .1lt. 100) then
write(*,"(I3,A1,A3,A16,F5.1,A3)") floor(dble(k)/dble(n)*100.0d0),"%",&
" ","Time remaining: ",mde_pttc_pretty,mde_time_unit

end if

end if

end subroutine progress_meter
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./utils/read_inputs_direct.f90
subroutine read_inputs_direct(input_file,nAratios,aratios,mMax,nMax,flow_type)
implicit none

I Internal vars

integer :: funit
! Inputs
character (len=1024) :: input_file

! Imputs/outputs

integer :: nAratios,mMax,nMax
double precision, dimension(1:1024) :: aratios
character(len=1024) :: flow_type

funit = 53 ! Arbitrary
open(funit,file=input_file)
read(funit,*) nAratios
read(funit,*) aratios(l:nAratios)
read(funit,*) mMax
read (funit,*) nMax
read(funit,*) flow_type

close(funit)

end subroutine read_inputs_direct

./utils/read_inputs_mc.f90
subroutine read_inputs_mc(param_file,aratio,q,Pe,nGates,xOn,xOwidth,y0,z0,save_hist,&
n_bins,save_hist2d,t_warmup,use_external_ic,ic_file,&

tstep_type,dt,dtmax,Tfinal,tsteps,other_file,mt_seed)

! Reads the parameter input file spectified on the calling of the program, which
! sets all of the problem and timestepping parameters.

implicit none

integer, parameter :: 164 = selected_int_kind(18)
character(len=1024), intent(in) :: param_file
character(len=1024), intent (out) :: tstep_type, other_file, ic_file
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double precision, intent(out) :: aratio, q, Pe, yO, z0, dt, dtmax, Tfinal, xOwidth

logical, intent(out) :: save_hist, save_hist2d, use_external_ic
integer, intent(out) :: nGates, tsteps, xOn, n_bins
integer(i64), intent(out) :: mt_seed

double precision, intent(out) :: t_warmup

I Internal

integer ;0 funit,i
character(len=1) :: dummy
funit=55

! Initial condition/problem parameters.

open(funit,file=param_file)
! Siz enitial lines to skip

do i=1,6
read(funit,*) dummy
end do
read(funit,*) aratio ! 4spect ratio (ignored in channel)
read(funit,*) q ! Shape parameter (for racetrack)
read(funit,*) Pe ! Peclet mumber
read(funit,*) nGates ! Number of discr. points to use in the transverse direction.
read(funit,*) xOn ! Number of discr. points to use in the longitudinal directic
! Total number of points will be (roughly) nGates*xzOn.
! Memory requirement is then to leading order 3*nGates*zOn*8
read(funit,*) xOwidth ! IC characteristic width (relative to short side length 2)
read(funit,*) yO ! If nGates=1, specify initial y position for point source 7€
read(funit,*) z0 ! If nGates=1, specify initial z position for point source re
read(funit,*) save_hist !/ Flag to save full particle position histories.
read (funit,*) n_bins ! Num. of bins to use in the short direction for ptwise stat?

! If zero, not saved. Computationally expensive.
read(funit,*) save_hist2d ! Flag to save 2d histogram data.

read (funit,*) t_warmup ! After setting the initial condition with the given
! parameters above, allow 2t to diffuse with no
! flow for mondimensional time t_warmup.
! Used for setting a plug IC which ts Gaussian in T, OT
! diffusing a point source injection.
! No statistics are collected during this time.

read (funit,*) use_external_ic ! Look at an external h5 file for the initial condn
read(funit,*) ic_file ! Name of hb5 file to look at.

! Five lines to skip between the initial condition and timestepping
do i=1,5
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read(funit,*) dummy
end do

! Timestepping parameters.

! Bastically, you spectify the values of time you want data to be saved,
! and the internal timesteps will be chosen as min(t_{n}-t,dtmaz).

read (funit,*) tstep_type !

read(funit,*) dt !
read(funit,*) dtmax !
read(funit,*) Tfinal !

read(funit,*) tsteps !
read(funit,*) other_file !

read(funit,*) mt_seed !
close(funit)

end subroutine read_inputs_mc

./utils/save_the_rest_channel.f90

‘unif’, ’expo’, or ’supplied’

Timestep to save statistics for ’unif’, initial time for ’e

Mazimum internal timestep
Final time

Total number of timesteps to save.

If tstep_type .eq. ’supplied’,
containing the specified times.

the name of the hbd file

Seed for the RNG. Usually filled in with a random

seed by batch_submit.py.

subroutine save_the_rest_channel (fname,geometry,ntt,target_times,means,vars,skews,kurts,n_bins,&
means_sl,vars_sl,skews_sl,kurts_sl,nhb,hist_centers,hist_heights,&
Pe,nGates,x0n,x0Owidth,mt_seed)
! Saves the remainder of the calculated data (moments, problem parameters, solver settings,

! etc) in the h5 file.

implicit none
integer, parameter

character(len=1024), intent(in)
character(len=1024)
integer, intent(in)

double precision, dimension(l:ntt), intent(in)
double precision, dimension(l:ntt,l:n_bins), intent(in)
double precision, dimension(l:ntt,l:nhb), intent(in)

double precision, intent(in)
integer(i64), intent(in)

character(len=1024)
channel = "channel"
duct = "duct"

ellipse = "ellipse"

i64 = selected_int_kind(18)

:: fname,geometry
:: dsetname, descr
:: ntt, n_bins, nGates, xOn, nh

:: target_times,means,vars,skew
:: means_sl,vars_sl,skews_sl,ku
:: hist_centers,hist_heights

:: Pe, xOwidth

:: mt_seed

:: channel,duct,ellipse
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dsetname = "geometry"
descr = "Problem geometry: Channel=0, Duct=1, Ellipse=2, Other=3"
if (geometry .eq. channel) then

call hdf_add_1d_darray_to_file(1,0,fname,dsetname,descr)
else if (geometry .eq. duct) then

call hdf_add_1d_darray_to_file(l,1,fname,dsetname,descr)
else if (geometry .eq. ellipse) then

call hdf_add_1d_darray_to_file(l,2,fname,dsetname,descr)
end if

dsetname = "Time"
descr = "Nondimensionalized time, t = \\frac{H"2}{\\kappal} t’"
call hdf_add_1d_darray_to_file(ntt,target_times,fname,dsetname,descr)

dsetname = "Avgd_Mean"
descr = "Cross-section averaged mean for Nwalkers particles, in X direction."
call hdf_add_1d_darray_to_file(ntt,means,fname,dsetname,descr)

dsetname = "Avgd_Variance"
descr = "Cross-section averaged variance for Nwalkers particles, in X direction."
call hdf_add_1d_darray_to_file(ntt,vars,fname,dsetname,descr)

dsetname = "Avgd_Skewness"
descr = "Cross-section averaged skewness for Nwalkers particles, in X direction."
call hdf_add_1d_darray_to_file(ntt,skews,fname,dsetname,descr)

dsetname = "Avgd_Kurtosis"
descr = "Cross-section averaged kurtosis for Nwalkers particles, in X direction."
call hdf_add_1d_darray_to_file(ntt,kurts,fname,dsetname,descr)

if (.not. (n_bins .eq. 0)) then
dsetname = "nBins"
descr = "Number of bins used to calculate statistics across slices."
call hdf_add_1d_darray_to_file(l,dble(n_bins),fname,dsetname,descr)
dsetname = "Mean"
descr = "Mean on slices for Nwalkers particles, in X direction."
call hdf_add_2d_darray_to_file(ntt,n_bins,means_sl,fname,dsetname,descr)
dsetname = "Variance"
descr = "Variance on slices for Nwalkers particles, in X direction."

call hdf_add_2d_darray_to_file(ntt,n_bins,Vars_sl,fname,dsetname,descr)

dsetname = "Skewness"
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descr = "Skewness on slices for Nwalkers particles, in X direction."
call hdf_add_2d_darray_to_file(ntt,n_bins,skews_sl,fname,dsetname,descr)

dsetname = "Kurtosis"
descr = "Kurtosis on slices for Nwalkers particles, in X direction."
call hdf_add_2d_darray_to_file(ntt,n_bins,kurts_sl,fname,dsetname,descr)

end if
dsetname = "Hist_centers"
descr = "Bin centers for the cross-sectionally averaged distribution."

call hdf_add_2d_darray_to_file(ntt,nhb,hist_centers,fname,dsetname,descr)

dsetname = "Hist_heights"
descr = "Bin heights for the cross-sectionally averaged distribution (normalized to PDF)."
call hdf_add_2d_darray_to_file(ntt,nhb,hist_heights,fname,dsetname,descr)

dsetname = "Peclet"
descr = "Peclet number."
call hdf_add_1d_darray_to_file(1,Pe,fname,dsetname,descr)

dsetname = "xOwidth"
descr = "Initial conditionn longitudinal width."
call hdf_add_1d_darray_to_file(1,xOwidth,fname,dsetname,descr)

dsetname = "nGates"
descr = "Number of random walkers used in this trial."
call hdf_add_1d_darray_to_file(l,dble(nGates),fname,dsetname,descr)

dsetname = "mt_seed"
descr = "Integer seed used in the Mersenne Twister (RNG)."
call hdf_add_1d_darray_to_file(l,dble(mt_seed),fname,dsetname,descr)

dsetname = "timesteps"
descr = "Number of timesteps."
call hdf_add_1d_darray_to_file(l,dble(ntt),fname,dsetname,descr)

dsetname = "xOn"

descr = "Number of discretization points discretizing the longitudinal IC."
call hdf_add_1d_darray_to_file(1l,dble(xOn),fname,dsetname,descr)

dsetname = "nhb"

descr = "Number of bins used for the cross-sectionally averaged distribution."

call hdf_add_1d_darray_to_file(1l,dble(nhb),fname,dsetname,descr)

end subroutine save_the_rest_channel
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./utils/save_the_rest_duct.f90

subroutine save_the_rest_duct(fname,geometry,ntt,t_hist,means,vars,skews,kurts,nby,nbz,&
means_sl,vars_sl,skews_sl,kurts_sl,nhb,hist_centers,hist_heights,&
Pe,nTot,mt_seed,aratio,q,dtmax,t_warmup)

! Saves the remainder of the calculated data (moments, problem parameters, solver settings,

! etc) in the h5 file.

implicit none

integer, parameter :: 164 = selected_int_kind(18)
character(len=1024), intent(in) :: fname,geometry
character(len=1024) :: dsetname, descr
integer, intent(in) :: ntt, nby, nbz, nhb, nTc
double precision, dimension(l:ntt), intent(in) :: t_hist,means,vars,&
skews,kurts
double precision, dimension(l:ntt,l:nby,1:nbz), intent(in) :: means_sl,vars_sl,&
skews_sl,kurts_sl
double precision, dimension(l:ntt,1:nhb), intent(in) :: hist_centers,hist_heigh
double precision, intent(in) :: Pe,aratio,q,dtmax,t_war
integer(i64), intent(in) 1 mt_seed
character(len=1024) :: channel,duct,ellipse
channel = "channel"

duct = "duct"
ellipse = "ellipse"

dsetname = "geometry"
descr = "Problem geometry: Channel=0, Duct=1, Ellipse=2, Other=3"
if (geometry .eq. channel) then

call hdf_add_1d_darray_to_file(1,0,fname,dsetname,descr)
else if (geometry .eq. duct) then

call hdf_add_1d_darray_to_file(1l,1,fname,dsetname,descr)
else if (geometry .eq. ellipse) then

call hdf_add_1d_darray_to_file(1,2,fname,dsetname,descr)

end if
dsetname = "Time"
descr = "Nondimensionalized time, t = a~2/kappa t’"

call hdf_add_1d_darray_to_file(ntt,t_hist,fname,dsetname,descr)
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dsetname = "Avgd_Mean"
descr = "Cross-section averaged mean for nTot particles, in X direction."
call hdf_add_1d_darray_to_file(ntt,means,fname,dsetname,descr)

dsetname = "Avgd_Variance"
descr = "Cross-section averaged variance for nTot particles, in X direction."
call hdf_add_1d_darray_to_file(ntt,vars,fname,dsetname,descr)

dsetname = "Avgd_Skewness"
descr = "Cross-section averaged skewness for nTot particles, in X direction."
call hdf_add_1d_darray_to_file(ntt,skews,fname,dsetname,descr)

dsetname = "Avgd_Kurtosis"
descr = "Cross-section averaged skewness for nTot particles, in X direction."
call hdf_add_1d_darray_to_file(ntt,kurts,fname,dsetname,descr)

if (.not. (nby .eq. 0)) then

dsetname = "nBinsY"
descr = "Number of bins used in Y direction to calculate pointwise statistics."
call hdf_add_1d_darray_to_file(l,dble(nby),fname,dsetname,descr)

dsetname = "nBinsZ"
descr = "Number of bins used in Z direction to calculate pointwise statistics."
call hdf_add_1d_darray_to_file(l,dble(nbz),fname,dsetname,descr)

dsetname = "Mean"
descr = "Pointwise mean in the X direction."
call hdf_add_3d_darray_to_file(ntt,nby,nbz,means_sl,fname,dsetname,descr)

dsetname = "Variance"
descr = "Pointwise variance in the X direction."
call hdf_add_3d_darray_to_file(ntt,nby,nbz,vars_sl,fname,dsetname,descr)

dsetname = "Skewness"
descr = "Pointwise skewness in the X direction."
call hdf_add_3d_darray_to_file(ntt,nby,nbz,skews_sl,fname,dsetname,descr)

dsetname = "Kurtosis"
descr = "Pointwise kurtosis in the X direction."
call hdf_add_3d_darray_to_file(ntt,nby,nbz,kurts_sl,fname,dsetname,descr)

end if
dsetname = "Hist_centers"
descr = "Bin centers for the cross-sectionally averaged distribution."

call hdf_add_2d_darray_to_file(ntt,nhb,hist_centers,fname,dsetname,descr)
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dsetname = "Hist_heights"
descr = "Bin heights for the cross-sectionally averaged distribution."
call hdf_add_2d_darray_to_file(ntt,nhb,hist_heights,fname,dsetname,descr)

dsetname = "Peclet"
descr = "Peclet number."
call hdf_add_1d_darray_to_file(l,Pe,fname,dsetname,descr)

dsetname = "aratio"
descr = "Aspect ratio of the domain."
call hdf_add_1d_darray_to_file(l,aratio,fname,dsetname,descr)

dsetname = "q"
descr = "Shape parameter (only relevant for racetrack)."
call hdf_add_1d_darray_to_file(l,q,fname,dsetname,descr)

dsetname = "nTot"
descr = "Number of particles used."
call hdf_add_1d_darray_to_file(l,dble(nTot),fname,dsetname,descr)

dsetname = "mt_seed"
descr = "Integer seed used in the Mersenne Twister (RNG)."
call hdf_add_1d_darray_to_file(l,dble(mt_seed),fname,dsetname,descr)

dsetname = "timesteps"
descr = "Number of large timesteps."
call hdf_add_1d_darray_to_file(l,dble(ntt),fname,dsetname,descr)

dsetname = "dtmax"
descr = "Maximum internal timestep."
call hdf_add_1d_darray_to_file(1,dtmax,fname,dsetname,descr)

dsetname = "t_warmup"

descr = "Duration initial condition was let sit before turning on the flow."
call hdf_add_ld_darray_to_file(1,t_warmup,fname,dsetname,descr)

dsetname = "nhb"

descr = "Number of bins used for the cross-sectionally averaged distribution."

call hdf_add_1d_darray_to_file(l,dble(nhb),fname,dsetname,descr)

end subroutine save_the_rest_duct

./utils/set_initial_conds_channel_mc.f90
subroutine set_initial_conds_channel_mc(ny,nGates,xOn,nTot,X,Y,y0,a,&

xOwidth,t_warmup,use_external_ic,ic_file)
! The purpose of the subroutine ts in the name.
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/

! y0 refers to point-source initial condition at location yO0.

use mtmod
use mod_readbuff

implicit none

integer, intent(in) :: ny,nGates,xOn,nTot
double precision, dimension(nTot), intent(inout) 0 XY

double precision, intent(in) :: y0,a,x0Owidth,t_warmup
logical, intent(in) :: use_external_ic
character(len=1024), intent(in) 11 ic_file

! Internal

integer 11 idx,1i,j,k,nsteps
double precision 10 xl,yl,dx,dy,dtw
character(len=1024) :: dsetname

parameter (nsteps=10)
! Addvection/diffusion functions!
external :: impose_reflective_BC_rect, u_dummy

if (.not. use_external_ic) then
! Construct the initial condition from the parameters specified.
if (xOn .gt. 1) then
dx = xOwidth/(xOn-1)

x1 = -xOwidth/2
else

dx = 0.0d0

x1 = 0.0d0
end if

if (nGates .gt. 1) then
dy = 2.0d0*a/(ny-1)

yl = -a
else
dy = 0.0d0
yl =yo0
end if
idx = 0
do j=0,ny-1
do k=0,x0n-1
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idx = idx + 1
X(idx) = x1 + kxdx
Y(idx) = yl + j*dy

end do
end do

else
! Skip all this and read the z,y,z initial data in from the file.
dsetname = "X"
call hdf_read_1d_darray(nTot,ic_file,dsetname)
X = readbuff_double
deallocate(readbuff_double)

dsetname = "Y"

call hdf_read_1d_darray(nTot,ic_file,dsetname)
Y = readbuff_double
deallocate(readbuff_double)

end if

! Diffuse the initial condition by calling the advection diffusion operator
! with Pe = 0.

if (t_warmup .gt. 0.0d0) then
dtw = t_warmup/nsteps

do i=1,nsteps
call apply_advdiffl_chan(nTot,X,Y,0.0d0,dtw,a, &
u_dummy, impose_reflective_BC_rect)
end do
end if

end subroutine set_initial_conds_channel_mc

./utils/set_initial_conds_duct_mc.f90

subroutine set_initial_conds_duct_mc(ny,nz,nGates,xOn,nTot,X,Y,Z,y0,2z0,a,b,&

xOwidth,t_warmup,use_external_ic,ic_file)

! The purpose of the subroutine ts in the name.

! y0,z0 refers to point-source inittal condition at location (y0,2z0).

use mtmod

use mod_readbuff
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implicit none

integer, intent(in) :: ny,nz,nGates,xOn,nTot
double precision, dimension(nTot), intent(inout) 0 X,Y,Z

double precision, intent(in) :: y0,z0,a,b,x0width,t_warmup
logical, intent(in) :: use_external_ic
character(len=1024), intent(in) 11 ic_file

I Internal

integer :: 1idx,1i,j,k,nsteps
double precision i x1,yl,z1,dx,dy,dz,dtw
character(len=1024) :: dsetname

parameter (nsteps=10)

! Advection/diffusion functions!
external :: impose_reflective_BC_rect, u_dummy

if (.not. use_external_ic) then
! Construct the initial condition from the parameters specified.
if (xOn .gt. 1) then
dx = xOwidth/(xOn-1)

x1 = -xOwidth/2
else

dx = 0.0d0

x1 = 0.0d0
end if

if (nGates .gt. 1) then

dy = 2.0d0*a/(ny-1)
yl = -a
dz = 2.0d40%*b/(nz-1)
zl = -b
else
dy = 0.0d0
yl = y0
dz = 0.0d0
zl = z0
end if
idx = 0
do i=0,nz-1
do j=0,ny-1

do k=0,x0n-1
idx = idx + 1
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X(idx) = x1 + kxdx
Y(idx) = yl + jxdy
Z(idx) = zl + ixdz
end do
end do

end do

else
! Skip all this and read the x,y,2z initial data in from the file.
dsetname = "X"
call hdf_read_1d_darray(nTot,ic_file,dsetname)
X = readbuff_double
deallocate(readbuff_double)

dsetname = "Y"

call hdf_read_1d_darray(nTot,ic_file,dsetname)
Y = readbuff_double
deallocate(readbuff_double)

dsetname = "Z"

call hdf_read_1d_darray(nTot,ic_file,dsetname)
Z = readbuff_double
deallocate(readbuff_double)

end if

! Diffuse the initial condition by calling the advection diffuston operator
! with Pe = 0.

if (t_warmup .gt. 0.0d0) then
dtw = t_warmup/nsteps
do i=1,nsteps
call apply_advdiffl_duct(nTot,X,Y,Z,0.0dO,dtw,a,b, &
u_dummy, impose_reflective_BC_rect)
end do

end if

end subroutine set_initial_conds_duct_mc

./utils/set_initial_conds_ellipse_mc.f90

subroutine set_initial_conds_ellipse_mc(ny,nz,xOn,a,b,nGates,nTot,X,Y,Z,y0,20,x0width,t_warmup)
! Given all the data, specify the initial conditions in the arrays X,Y,Z.

implicit none
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double precision, intent(in) :: y0,z0,a,b,x0Owidth,t_warmup
integer, intent(in) :: ny,nz,x0On,nGates,nTot
double precision, dimension(nTot), intent(out) 0 X,Y,Z

I Internal

integer 1 idx,ix,iy,1iz

double precision :: dist,dx,dy,dz,x1,yl,z1l
integer :: nsteps,i

double precision 1 dtw

parameter (nsteps=10)

! Addvection/diffusion functions!
external :: impose_reflective_BC_ellipse, u_ellipse

if (xOn .gt. 1) then
dx = xOwidth/dble(xOn-1)

x1 = -xOwidth/2
else

dx = 0.0d0

x1 = 0.0d0
end if

if (nGates .gt. 1) then

yl = -a
dy = 2.0d0*a/(ny-1)
zl = -b
dz = 2.0d0*b/(nz-1)
else
yl = yO
dy = 0.0d0
zl = z0
dz = 0.0d0
end if
idx = 0
do iz=0,nz-1
do iy=0,ny-1

dist = ((yl + iy*dy)=**2)/(a**2) + ((z1 + iz*xdz)**2)/(b**2)
if (dist .le. 1.0d0) then
do ix=0,x0n-1

idx = idx + 1

X(idx) = x1 + ix*dx
Y(idx) = yl + iy*dy
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Z(idx) = zl + iz*dz

end do
end if
end do
end do

! Diffuse the initial condition by calling the advection diffusion operator
! with Pe = 0.
if (.true.) then

if (t_warmup .gt. 0.0d0) then

dtw = t_warmup/nsteps
do i=1,nsteps
call apply_advdiffl_ellipse(nTot,X,Y,Z,0.0d0,dtw,a,b, &
u_ellipse,impose_reflective_BC_ellipse,floor (10*dtw))

end do

end if

else
call apply_advdiffl_ellipse(nTot,X,Y,Z,0.0d0,t_warmup,a,b, &
u_ellipse,impose_reflective_BC_ellipse,floor(10*dtw))

end if

end subroutine set_initial_conds_ellipse_mc

./utils/set_initial_conds_racetrack_mc.f90

subroutine set_initial_conds_racetrack_mc(xOn,aratio,q,nGates,nTot,X,Y,Z,y0,z0,x0Owidth,t_warmup)
! Given all the data, specify the initial conditions in the arrays X,V,Z.

use mtmod

implicit none

double precision, intent(in) :: y0,z0,aratio,q,xOwidth,t_war
integer, intent(in) :: x0On,nGates,nTot
double precision, dimension(nTot), intent(out) :: X,Y,Z

I Internal

integer 1 oidx,ix,iy,iz

double precision :: dist,dx,dy,dz,x1,yl,zl,yw,zu
integer :: nsteps,i,]j

double precision 11 dtw
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! Advection/diffusion functions!
external :: impose_reflective_BC_racetrack, u_racetrack

double precision bdistfun_rt
parameter (nsteps=10)

! For the moment, do things differently: Just do random placings with a
! rejection method in the transverse coordinates.
if (xOwidth .eq. 0.0d0) then
xl = 0.0d0
dx = 0.0d0
else
xl = -xOwidth/2.0d0
dx = xOwidth/(xOn-1)
end if

if (nGates .le. 1) then
idx = 0
do i=0,x0n-1
do j=1,nGates
idx = idx + 1

X(idx) = x1 + dxx*i
Y(idx) = yO
Z(idx) = z0
end do
end do
else

yl = -1.3d0

yw = -2*yl

zl = -1.3d0/aratio

zZw = -2xz1

idx = 0

do i=0,x0On-1

do j=1,nGates
idx = idx + 1

X(idx) = x1 + dx*i
Y(idx) = yl + ywkgrnd()
Z(idx) = zl + zw*grnd()

do while (bdistfun_rt(Y(idx),Z(idx),aratio,q) .lt. 0.0d0)
Y(idx) = yl + yw*grnd()
Z(idx) = zl + zw*grnd()

193



end do
end do
end do
end if
! Diffuse the initial condition by calling the advection diffustion operator
! with Pe = 0.
if (t_warmup .gt. 0.0d0) then
dtw = t_warmup/nsteps
do i=1,nsteps
call apply_advdiffl_ellipse(nTot,X,Y,Z,0.0d0,dtw,aratio,q, &
u_racetrack,impose_reflective_BC_racetrack,floor (10*dtw))
end do

end if

end subroutine set_initial_conds_racetrack_mc

./utils/set_initial_conds_triangle_mc.£90
subroutine set_initial_conds_triangle_mc(ny,nz,x0On,a,nGates,nTot,X,Y,Z,y0,z0,x0Owidth,t_warmup,&
use_external_ic,ic_file,nl,1lls)

! Given all the data, specify the initial conditions in the arrays X,Y,Z.

luse mtmod
use mod_readbuff

implicit none

double precision, intent(in) :: y0,z0,a,x0width, t_warmup
integer, intent(in) :: ny,nz,xOn,nGates,nTot,nl
double precision, dimension(nl,3), intent(in) i 1l1s

logical, intent(in) :: use_external_ic
character(len=1024), intent(in) 11 ic_file

double precision, dimension(nTot), intent(out) 0 X,Y,Z

I Internal

integer 1 idx,ix,iy,iz

double precision :: dist,dx,dy,dz,x1,yl,z1
integer :: nsteps,i

double precision 1 dtw

double precision, dimension(3) 11 tempv
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double precision, dimension(nl) :: bvals
character(len=1024) :: dsetname

logical cond
double precision 11 ozr,yr

parameter (nsteps=10)
! Advection/diffusion functions!

external :: impose_reflective_BC_polygon, u_triangle

if (.not. use_external_ic) then
if (xOn .gt. 1) then
dx = xOwidth/dble(x0On-1)

x1 = -xOwidth/2
else

dx = 0.0d0

x1 = 0.0d0
end if

if (nGates .gt. 1) then
y1 = -1.0d0
dy = ax2.0d0*dsqrt(3.0d0)/(ny-1)
zl = -axdsqrt(3.0d0)
dz = a*2.0d0*dsqrt(3.0d0)/(nz-1)

yr = -1.0d0 + a*2.0d0*dsqrt(3.0d0)
zr = axdsqrt(3.040)

else
yl = yO
dy = 0.0d0
zl = z0
dz = 0.0d0
end if
idx = 0
do iz=0,nz-1
do iy=0,ny-1
tempv(1l) = 1.0d40
tempv(2) = yl + iy*dy
tempv(3) = zl + izxdz

call matvec(nl,3,1ls,tempv,bvals)
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if (all(bvals .ge. 0.0d0)) then
do ix=0,x0n-1

idx = idx + 1

X(idx) = x1 + ix*dx
Y(idx) = tempv(2)
Z(idx) = tempv(3)
end do
end if
end do
end do
else
! Skip all this and read the z,y,z initial data in from the file.
dsetname = "X"

call hdf_read_1d_darray(nTot,ic_file,dsetname)
X = readbuff_double
deallocate(readbuff_double)

dsetname = "Y"

call hdf_read_1d_darray(nTot,ic_file,dsetname)
Y = readbuff_double
deallocate(readbuff_double)

dsetname = "Z"

call hdf_read_1d_darray(nTot,ic_file,dsetname)
Z = readbuff_double
deallocate(readbuff_double)

end if

! Diffuse the initial condition by calling the advection diffusion operator
! with Pe = 0.

if (t_warmup .gt. 0.0d0) then
dtw = t_warmup/nsteps
do i=1,nsteps
call apply_advdiffl_triangle(nTot,X,Y,Z,0.0d0,dtw,a, &
u_triangle,impose_reflective_BC_polygon,nl,1lls)
end do

end if

end subroutine set_initial_conds_triangle_mc
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./utils/solve_quadratic_eqn.f90

subroutine solve_quadratic_eqn(a,b,c,tl,t2)
! Solves the quadratic equation

I axt*x¥2 + bxt + ¢ .eq. 0.
]

! The two solutions get saved in tl1 and t2.
!

! The solutions are assumed real.

implicit none

double precision, intent(in) :: a,b,c
double precision, intent(out) :: t1,t2
double precision 11 discr

discr = b**2 - 4.0d0*a*c

t1
t2

(-b - dsqrt(discr))/(2.0d0*a)
(-b + dsqrt(discr))/(2.0d0%*a)

end subroutine solve_quadratic_eqn

./utils/sortpairs.f90

subroutine sortpairs(nTot,X,Xdup,bin_idxs,nbins)

! Given a pair of arrays X, Xdup (double), bin_tidxs (integer),
! sorts (buckets) the bin_idzs and carries along the associated

! Xdup value. bin_idzs is known to have integer wvalues from 1 to nbins.

! This %5 a "partial" sorting technically, since we don’t need
! the Xdup wvalues to be sorted in any way.

! Accomplished by doing a first pass of bin_idzrs to see

! how many of each integer there are, then a second pass of
! copying over the contents of X into Xdup in an appropriate order.

implicit none

integer, intent(in) :: nTot,nbins
double precision, dimension(nTot), intent(in) D ¢

double precision, dimension(nTot), intent(out) :: Xdup
integer, dimension(nTot), intent(out) :: bin_idxs
integer, dimension(nTot) :: bin_idxs2

197



integer, dimension(nbins) :: binTots,binCurr
integer, dimension(nbins+1) :: binCum
integer 11 i,idx,ptr

do i=1,nbins
binTots(i) = 0O
end do

!

! Do a count of the number of things in each bin.
!

do i=1,nTot

ptr = bin_idxs(i)

binTots(ptr) = binTots(ptr) + 1
end do

! Generate a cumulative count as pointers.

! Makes it easy to reference the start and end elements

! of the subset.

!

binCum(1) = 1

do i=2,nbins+1
binCum(i) = binCum(i-1) + binTots(i-1)
binCurr(i-1) = binCum(i-1)

end do

bin_idxs2 = bin_idxs
!
! Now do a second loop, placing values of X into Xdup

! and updating the pointer binCurr along the way.
!

do i=1,nTot
idx = bin_idxs2(i)

ptr = binCurr(idx)
binCurr(idx) = binCurr(idx) + 1

Xdup (ptr) = X(1)
bin_idxs(ptr) = bin_idxs2(i)
end do

end subroutine sortpairs
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./utils/uniform_bins_idx.£90

subroutine uniform_bins_idx(nx,X,xmin,xmax,nb,Xidx)

! Given a double array X of size nx, and lower and upper
! bounds zmin and zmaxz and number of bins nb,

! output an integer array Xidxr corresponding to

! the bin number assignment, assuming untformly spaced bins.

! In other words, maps the elements ’linearly’ to the integers
! 0,1,...,nb-1.

implicit none

integer, intent(in) :: nx,nb
double precision, intent(in), dimension(nx) :: X

double precision, intent(in) :: xmin,xmax
integer, intent(out), dimension(nx) i Xidx
double precision :: width

width = xmax-xmin
Xidx = floor(((nb-1)/width)*(X - xmin))+1

end subroutine uniform_bins_idx

./utils/vector_ops.f90

! Scripts for basic operations with vectors and pairs of wvectors;

! dot products, lengths,

! applying orthogonal projections, projections orthogonal,

! and reflections. These all MODIFY the first input, so be careful.

double precision function dot_prod(n,u,v)

! Why am I not using BLAS or similar for this? Laziness.
implicit none
integer ::on,i
double precision, dimension(n) Tiou,v

dot_prod=0.0d0

do i=1,n
dot_prod = dot_prod + u(i)*v(i)
end do

end function dot_prod
!
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!

!

double precision function norm(n,u)
implicit none
integer i n
double precision, dimension(n) trou

double precision dot_prod

norm = dsqrt(dot_prod(n,u,u))
end function norm

subroutine normalize(n,u)
! Normalizes 2d vector u.
implicit none
integer in
double precision, dimension(n)
double precision 118

double precision norm

s = norm(n,u)
u = u/s

end subroutine normalize

subroutine orth_proj(n,v,u)
! Projects v onto u (u not necessartly unit).
! v 15 changed on output.
implicit none
integer, intent(in)
double precision, dimension(n), intent(in)
double precision, dimension(n), intent(inout)

double precision dot_prod
v = dot_prod(n,u,v)/dot_prod(n,u,u)*u
end subroutine orth_proj

subroutine proj_orth(n,v,u)
! The projection of v orthogonal to u,
! w not necessarily unit.
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implicit none

integer, intent(in) R |
double precision, dimension(n), intent(in)
double precision, dimension(n), intent(inout)
double precision, dimension(n)

temp = v
call orth_proj(n,temp,u)
v = v - temp

end subroutine proj_orth

subroutine reflect(n,v,u)

! Reflects v across hyperplane defined by wvector wu.
! If u ts the normal to a surface, %t should be the
! _OUTWARD NORMAL_. w does mot need to be unit.

implicit none

integer, intent(in)

double precision, dimension(n), intent(in)
double precision, dimension(n), intent(inout)
double precision, dimension(n)

temp = v
call orth_proj(n,temp,u)
v = v - 2.0d0*temp

end subroutine reflect

./utils/walkers_in_bin_1d.£90

:: temp

1 temp

subroutine walkers_in_bin_1d(nGates,X,Y,bin_lo,bin_hi,X_bin,bin_count)
Takes arrays X,Z, collects all indices bin_lo < Z(i) < bin_hi

!

and saves them sequentially in X_bin.

The actual number of relevant values in X_bin

1s unknown a priort, but at most nGates. Hence we keep track of
the actual number of X positions in a bin with bin_count.

implicit none

integer, intent(in)
double precision, dimension(nGates), intent(in)
double precision, intent(in)

double precision, dimension(nGates), intent(out)
integer, intent(inout)

201

:: nGates
0 X,Y
: bin_lo,bin_hi

: X_bin
:: bin_count



integer R |

bin_count=0
do i=1,nGates
if ((bin_lo < Y(i)) .and. (Y(i) < bin_hi)) then
bin_count = bin_count + 1
X_bin(bin_count) = X(i)
end if
end do

end subroutine walkers_in_bin_1d

./utils/walkers_in_bin_2d.£90
subroutine walkers_in_bin_2d(nTot,X,Y,Z,yl,yh,z1l,zh,X_bin,bin_count)

! Takes arrays X,Y,Z, collects all indices satisfying
'yl <= Y(t) < yh and

! 21 <= Z(1) < zh,

! and saves them sequentially in X_bin(1:bin_count).

! The actual number of relevant wvalues in X_bin

! 125 unknown a priori, but at most nGates. Hence we keep track of
! the actual number of X positions in a bin with bin_count.

implicit none

integer, intent(in) :: nTot

double precision, dimension(nTot), intent(in) 0 X,Y,Z
double precision, intent(in) :: yl,yh,z1l,zh
double precision, dimension(nTot), intent(out) :: X_bin
integer, intent(out) :: bin_count

I Internal
integer |

bin_count=0

do i=1,nTot
if ((y1 <= Y(i)) .and. (Y(i) < yh) .and. (zl <= Z(i)) .and. (Z(i) < zh)) then
bin_count = bin_count + 1
X_bin(bin_count) = X(i)
end if

end do
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end subroutine walkers_in_bin_2d

./utils/write_outputs_direct.f90
subroutine write_outputs(output_combo,nAratios,nTerms,flow_type,output_file)
implicit none

I Internal vars

integer :: funit,i
character(len=1024) :: output_file

! Inputs

integer :: nAratios,nTerms
double precision, dimension(l:nAratios,1:2) :: output_combo
character(len=1024) :: flow_type

! Make a filename. Messier than I’d like. Eh.
funit = 53 ! Arbitrary
open(funit,file=output_file)
! Write solution parameters.
write(funit,*) nTerms
write(funit,*) trim(flow_type)
write(funit,*) nAratios ! Or, more generally, the number of lines below this one
do i=1,nAratios
write(funit," (ES26.17,ES26.17)") output_combo(i,1),output_combo(i,?2)
end do

close(funit)

end subroutine write_outputs

./utils/write_outputs_mc.£90
subroutine write_outputs_mc(Ntrials,Pe,aratio,dt,nArray,nVars,array,filename)
! Not to be confused with the similarly named function when

! doing the exact calculation in inviscid setting.

implicit none

integer :: Ntrials,nArray,nVars
double precision :: Pe,aratio,dt
double precision, dimension(l:nArray,1:nVars) ;. array
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character(len=1024)
integer

funit = 53
open(funit,file=filename)

write(funit,*) Ntrials
write(funit,*) Pe
write(funit,*) aratio
write(funit,*) dt
write(funit,*) nArray

do k=0,nArray-1
write(funit,*) kxdt, array(k+1,1:
end do

close(funit)

end subroutine write_outputs_mc

./utils/zeroout.f90

subroutine zeroout(n,x)

! Zeroes the elements of =z.

implicit none
integer, intent(in)
double precision, dimension(n), intent(out)
integer

do i=1,n
x(i) = 0.0d0
end do
end subroutine zeroout
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./computation/
./computation/Alpha_eval.f90
double precision function Alpha_eval(i,m,p)
implicit none

! Input wvariables
integer :: i,m,p

! Internal wvariables

double precision, parameter :: half = 0.5d0

double precision, parameter  :: twooverpi = half/datan(1.0d0)
Alpha_eval = twooverpi*(i-half)#*(m-half)*(p-half)*(-1)**(i+tm+p) &

/dble( (i-m-p+half)*(i+m-p-half)*(i-m+p-half)*(i+m+p-3*h
end function Alpha_eval

./computation/Beta_tilde.f90
double precision function Beta_tilde(k,l,m,aratio)

implicit none

integer o k,1,m
double precision :: aratio
double precision :: pi,twooverpi, q, exp_q

parameter (pi=datan(1.0d0))
parameter (twooverpi = 2.0d0/pi)

q = -pi/aratio

exp_q = dexp(q)

if ( (k .eq. m-1) .or. (k .eq. 1-m) .or. (k .eq. 1l+m) ) then
Beta_tilde = 0.0d0

else
Beta_tilde = -2.0d0/q * ( &

(exp_g**m - exp_qg**(k+1))/(k+1-m) &
+ (exp_g**1 - exp_g**(k+m))/(k-1+m) &
+ (exp_g**(1+m) - exp_g*¥k)/(k-1-m) &
+ (1.0d0 - exp_g**(k+1l+m))/(k+1l+m) &
)

end if
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end function Beta_tilde

./computation/accumulate_moments_1d.f90

subroutine accumulate_moments_1d(tt_idx,ntt,nTot,X,Y,a,means,vars,skews,&
kurts,nby,means_sl,vars_sl,skews_sl,kurts_sl)

! 4 subroutine to be used in the main loop of the Monte Carlo code.

! Calculates the moments for a specific time.

! This version s for 1d (channel) geometry.

implicit none

! Input arguments

integer, intent(in) :: tt_idx,ntt,nTot,nby
double precision, dimension(nTot), intent(in) 0 XY

double precision, intent(in) troa

double precision, dimension(untt), intent(inout) :: means,vars,skews,kurts
double precision, dimension(ntt,nby), intent(inout) :: means_sl,vars_sl,&

skews_sl,kurts_sl

I Internal
integer :: kb,bin_count,fi,li,idx,nbins
double precision :: bin_lo,bin_hi

!

! Array to hold X values located in a certain bin, for a fized round.

! The array size here ts really just an upper bound.

double precision, dimension(nTot) :: Xsorted
integer, dimension(nTot) :: Yidx,bin_idxs

nbins = nby

! Set values to zero just in case they’re not already.
means (tt_idx) = 0.0d40

vars(tt_idx) = 0.0d0

skews (tt_idx) = 0.0d0

kurts(tt_idx) = 0.0d0

do kb=1,nby
means_sl(tt_idx,kb) = 0.0d40
vars_sl(tt_idx,kb) = 0.0d0
skews_sl(tt_idx,kb) = 0.0d0
kurts_sl(tt_idx,kb) = 0.0d0
end do
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)

! Calculate all the moments.
!
call moments(nTot,X,means(tt_idx),vars(tt_idx),skews(tt_idx) ,kurts(tt_idx))
if (nby .gt. 0) then
! Start by binning in Y.
! Enumerate the array of bins from 1,...,nby.
call uniform_bins_idx(nTot,Y,-a,a,nby,Yidx)
bin_idxs = Yidx
! Now sort the list of X positions based on their bin index.
call sortpairs(nTot,X,Xsorted,bin_idxs,nbins)
! Finally, loop over the y and z bin indezes, calculating the moments for

! the corresponding subset of X values (which now are grouped together
! in the array Xsorted).

fi =0 ! First index of active subset
11 =0 ! Last index of active subset
do kb=1,nby

idx = kb

I Get the bounds on the active subset,

! assuming bin_tdzs has been sorted already.
fi = 1i+1

li = fi

do while ( (bin_idxs(1li) .eq. idx) )
1i = 1i + 1

if (1i .eq. (uTot+1)) then
! If the lower index has passed the stize of
! the array, break out. We also should be at the last
! endex tf we land in here.
! Otherwise something went badly wrong.

go to 10
end if
end do
10 continue
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1i = 1i-1 ! Necessary to decrement because of the bookkeeping.

! Calculate the moments of this subset of particles!

call moments(li-fi+1,Xsorted(fi:1i) ,means_sl(tt_idx,kb),vars_sl(tt_idx,kb),&
skews_sl(tt_idx,kb) ,kurts_sl(tt_idx,kb))

! If we’ve ezhausted the entries of bin_idzs (t.e., there are more

! bins but they’re empty), break out of the double loop.

if (1i .eq. nTot) then

go to 20
end if

end do

end if

20 continue

end subroutine accumulate_moments_1d

./computation/accumulate_moments_2d.£90

subroutine accumulate_moments_2d(tt_idx,ntt,nTot,X,Y,Z,yl,yr,zl,zr ,means,vars,skews,&
kurts,nby,nbz,means_sl,vars_sl,skews_sl,kurts_sl)

! 4 subroutine to be used in the main loop of the Monte Carlo code.
! Calculates the moments for a specific time.

! This version is for 2d (duct/ellipse) geometry.

implicit none

! Input arguments

integer, intent(in) :: tt_idx,ntt,nTot,nby,nbz
double precision, dimension(nTot), intent(in) :: X,Y,Z

double precision, intent(in) i yl,yr,zl,zr

double precision, dimension(ntt), intent(inout) :: means,vars,skews,kurts
double precision, dimension(ntt,nby,nbz), intent(inout) :: means_sl,vars_sl,&

skews_sl,kurts_sl
I Internal

integer :: kb, jb,fi,1i,idx,nbins,i
double precision, dimension(nTot) :: Xsorted
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integer, dimension(nTot) :: Yidx,Zidx,bin_idxs
double precision bdistfun_rt
nbins = nby*nbz

! Set walues to zero just in case they’re not already.
! They will also default to in the situation where
! the bins are empty and they aren’t handled in the loops below.
means (tt_idx) = 0.0d0
vars(tt_idx) = 0.0d0
skews (tt_idx) = 0.0d0
kurts(tt_idx) = 0.0d0
do kb=1,nby
do jb=1,nbz
means_sl(tt_idx,kb,jb) = 0.0d0
vars_sl(tt_idx,kb,jb) = 0.0d0
skews_s1(tt_idx,kb,jb) = 0.0d0
kurts_sl(tt_idx,kb,jb) = 0.0d40
end do
end do

!

! Calculate all the moments.
!

call moments(nTot,X,means(tt_idx),vars(tt_idx),skews(tt_idx) ,kurts(tt_idx))

!

! Nezt, moments across (y,z) bins.
!

if (nby .gt. 0) then
! Start by binning independently in YV and Z.
! Enumerate the array of bins from 1,...,nby*nbz in the usual way.
call uniform_bins_idx(nTot,Y,yl,yr,nby,Yidx)
call uniform_bins_idx(nTot,Z,zl,zr,nbz,Zidx)

bin_idxs = Yidx + (nby-1)*(Zidx-1) + 1
do i=1,nTot
if ((bin_idxs(i) .lt. 1) .or. (bin_idxs(i) .gt. nby#*nbz)) then
write (k,*)
write(*,*) "DANGER DANGER WILL ROBINSON"
write(*k,*) i,Y(i),Z(i),bdistfun_rt(Y(i),Z(i),0.5d0,0.2d0)
write(*,*) bin_idxs(i) ,nby*nbz
write(k,*) minval(bin_idxs) ,maxval(bin_idxs)
end if
end do
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! Now sort the list of X positions based on their bin index.
call sortpairs(nTot,X,Xsorted,bin_idxs,nbins)

! Finally, loop over the y and 2z bin indezes, calculating the moments for
! the corresponding subset of X walues (which now are grouped together

! in the array Xsorted).

fi
1i

do

=0 ! First index of active subset
=0 ! Last index of active subset
jb=1,nbz

do kb=1,nby

idx = (kb-1) + (nby-1)*(jb-1) + 1

! Get the bounds on the active subset,

! assuming bin_idzs has been sorted already.
fi = 1i+1

1i = fi

do while ( (bin_idxs(1i) .eq. idx) )
1i = 1i + 1

if (1i .eq. (nTot+1)) then
! If the lower index has passed the size of
! the array, break out. We also should be at the last
! 7ndex <f we land in here.
! Otherwise something went badly wrong.

go to 10
end if
end do
continue

1i = 1i-1 ! Necessary to decrement because of the bookkeeping.

! Calculate the moments of this subset of particles!

call moments(li-fi+1,Xsorted(fi:1i),means_sl(tt_idx,kb,jb),&
vars_sl(tt_idx,kb,jb),&
skews_s1(tt_idx,kb,jb) ,kurts_sl(tt_idx,kb, jb))

! If we’ve ezhausted the entries of bin_idzs (i.e., there are more
! bins but they’re empty), break out of the double loop.
if (1i .eq. nTot) then
go to 20
end if
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end do
end do

end if

20 continue

end subroutine accumulate_moments_2d

./computation/apply_advdiffl_chan.f90

subroutine apply_advdiffl_chan(n,xv,yv,Pe,dt,a,flow,reflector)
! Does the bastic advection dirffustion operation in the channel.

! This <s what has been used up to this point (11 May 2016);
! essentially what’s been done isan operator splitting where
! advection operator is done first, then diffusion operator.

! drrays X,Y (dimension n)

! scalars Pe, dt, a,

! double preciston function flow,
! subroutine reflector.

implicit none

! Inputs/outputs

integer, intent(in) i n
double precision, dimension(n), intent(inout) 1lOXV,yV
double precision, intent(in) :: Pe,dt,a

I Internal

double precision, dimension(2,n) W
double precision 11 mcvar
integer |

! Interface necessary for the passed function and subroutine;
! only specifies the number and type of arguments.
interface
double precision function flow(p,q,r)
double precision :: p,q,T
end function flow

subroutine reflector(p,q,r)
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double precision :: p,q,T
end subroutine reflector
end interface

! Generate the proper white noise in advance.
mcvar = 2.0d0*xdt

call my_normal_rng(n,W(1,1:n),0.0d0,mcvar)
call my_normal_rng(n,W(2,1:n),0.0d0,mcvar)

do i=1,n
! Advection, then diffusion.
xv(i) = xv(i) + Pexflow(yv(i),-a,a)*dt + W(1,1i)
yv(E) = yv(i) + W(2,1)
call reflector(yv(i),-a,a)
end do

end subroutine apply_advdiffl_chan

./computation/apply_advdiffl_duct.f90

subroutine apply_advdiffl_duct(n,xv,yv,zv,Pe,dt,a,b, &
flow,reflector)
! Does the basic advection diffusion operation in the duct.

! This ts what has been used up to this point (11 May 2016);
! essentially what’s been done ©s an operator splitting where
! advection operator is done first, then diffusion operator.
! Arrays X,Y,Z (dimension n)

! scalars Pe, dt, a, b

! double precision function flow,

! subroutine reflector.

use mod_ductflow

implicit none

! Inputs/outputs

integer, intent(in) it n
double precision, dimension(n), intent(inout) 1lOXV,yV,ZV
double precision, intent(in) :: Pe,dt,a,b

! Internal
double precision, dimension(3,n) r W
double precision 11 mcvar
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integer

! Interface necessary for the passed function and subroutine;
! only specifies the number and type of arguments.
interface
double precision function flow(p,q)
double precision :: p,q
end function flow

subroutine reflector(p,q,r)
double precision :: p,q,T
end subroutine reflector
end interface

! Generate the proper white noise in advance.
mcvar = 2.0d0*xdt

call my_normal_rng(n,W(1,1:n),0.0d0,mcvar)
call my_normal_rng(n,W(2,1:n),0.0d0,mcvar)
call my_normal_rng(n,W(3,1:n),0.0d0,mcvar)

do i=1,n
! Advection, then diffuston.

xv(i) = xv(i) + Pexflow(yv(i),zv(i))*dt + W(l,i)
yv(i) = yv(i) + W(2,1)
zv(i) = zv(i) + W(3,1)

! Call the generic reflection subroutine passed in.
call reflector(yv(i),-a,a)
call reflector(zv(i),-b,b)

end do

end subroutine apply_advdiffl_duct

./computation/apply_advdiffl_ellipse.f90

subroutine apply_advdiffl_ellipse(nTot,xv,yv,zv,Pe,dt,a,b, &
flow,reflector,maxrefl)

! Does the basic advection diffusion operation in the ellipse.
! This %s what has been used up to this point (11 May 2016);
essentrally what’s been done 1s an operator splitting where

! advection operator is done first, then diffusion operator.

! Arrays X,Y,Z (dimension n)
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! scalars Pe, dt, a, b

! double precision function flow,
! subroutine reflector.

use mtmod

implicit none

! Imputs/outputs

integer, intent(in) :: nTot,maxrefl
double precision, dimension(nTot), intent(inout) tlOXV,yV,2ZV
double precision, intent(in) :: Pe,dt,a,b

! Internal

double precision, dimension(3,nTot) Tt W
double precision :: mcvar,yprev,zprev
integer |

! Interface necessary for the passed function and subroutine;
! only specifies the number and type of arguments.
interface
double precision function flow(al,a2,a3,a4)
implicit none
double precision :: al,a2,a3,ad
end function flow

subroutine reflector(al,a2,a3,a4,ab,a6,a7)
implicit none

double precision, intent(out) :: al,a2
double precision, intent(in) :: a3,a4,ab,a6
integer, intent(in) 1roaf

end subroutine reflector
end interface

! Generate the proper white noise in advance.

! Note in the ellipse that the wvariance of the white notse is the

! same in all directions because the nondimensionalization s ’tsotropic’.
mcvar = 2.0d0xdt

call my_normal_rng(nTot,W(l,1:nTot),0.0d0,mcvar)
call my_normal_rng(nTot,W(2,1:nTot),0.0d0,mcvar)
call my_normal_rng(nTot,W(3,1:nTot),0.0d0,mcvar)

do i=1,nTot
! Advection, then diffusion.
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xv (i) xv(i) + Pexflow(yv(i),zv(i),a,b)*dt + W(l,1i)
yprev = yv(i)

zprev = zv(i)

yv(i) = yv(i) + W(2,1)

zv (i) zv(i) + W(3,1)

call reflector(yv(i),zv(i),yprev,zprev,a,b,maxrefl)
end do

end subroutine apply_advdiffl_ellipse

./computation/apply_advdiffl_racetrack.f90

subroutine apply_advdiffl_racetrack(nTot,xv,yv,zv,Pe,dt,aratio,q, &
flow,reflector,maxrefl)

! Does the bastic advection dirffusion operation in the racetrack.
! This is what has been used up to this point (11 May 2016);
! essentially what’s been done ts an operator splitting where

! advection operator is done first, then diffusion operator.

! drrays X,Y,Z (dimension n)
! scalars Pe, dt, a, b

! double prectsion function flow,
! subroutine reflector.

use mtmod

implicit none

! Imputs/outputs

integer, intent(in) :: nTot,maxrefl
double precision, dimension(nTot), intent(inout) tlOXV,yV,2ZV
double precision, intent(in) :: Pe,dt,aratio,q

I Internal

double precision, dimension(3,nTot) Tt W
double precision :: mcvar,yprev,zprev,yl,zl
integer i

double precision bdistfun_rt

! Interface necessary for the passed function and subroutine;
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! only specifies the number and type of arguments.
interface
double precision function flow(al,a2,a3,a4)
implicit none
double precision :: al,a2,a3,a4
end function flow

subroutine reflector(al,a2,a3,a4,a5,a6,a7,a8,a9)
implicit none

double precision, intent(out) :: al,a2
double precision, intent(in) :: a3,a4,ab,a6,a7,a8
integer, intent(in) i a9

end subroutine reflector
end interface

! Generate the proper white noise in advance.

! Note in the ellipse that the wvartance of the white noise 1s the

! same in all directions because the nondimensionalization is ’tsotropic’.
mcvar = 2.0d0*dt

call my_normal_rng(nTot,W(1,1:nTot),0.0d0,mcvar)
call my_normal_rng(nTot,W(2,1:nTot),0.0d0,mcvar)
call my_normal_rng(nTot,W(3,1:nTot),0.0d0,mcvar)

do i=1,nTot
! Advection, then diffuston.
xv(i) = xv(i) + Pexflow(yv(i),zv(i),aratio,q)*dt + W(1,1)

yprev = yv(i)
zprev = zv(i)
yl = yv(i) + W(2,1)
z1l = zv(i) + W(3,1)

call reflector(yv(i),zv(i),yl,zl,yprev,zprev,aratio,q,maxrefl)
if (bdistfun_rt(yv(i),zv(i),aratio,q) .1t. 0.0d0) then
write(*,*) yv(i),zv(i),bdistfun_rt(yv(i),zv(i),aratio,q)
end if
end do

end subroutine apply_advdiffl_racetrack

./computation/apply_advdiffl_triangle.f90

subroutine apply_advdiffl_triangle(nTot,xv,yv,zv,Pe,dt,a, &
flow,reflector,nl,lls)
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! Does the basic advection diffusion operation in the triangle.
! This is what has been used up to this point (11 May 2016);
! essentially what’s been done ts an operator splitting where

! advection operator ts done first, then diffusion operator.

! Arrays X,Y,Z (dimension n)
! scalars Pe, dt, a

! double precision function flow,
! subroutine reflector.

use mtmod

implicit none

! Inputs/outputs

integer, intent(in) :: nTot
double precision, dimension(nTot), intent(inout) tlOXV,yV,ZV
double precision, intent(in) :: Pe,dt,a
integer, intent(in) :: nl
double precision, dimension(nl,3), intent(in) 11 1l1s

! Internal

double precision, dimension(3,nTot) Tt W
double precision :: mcvar,yprev,zprev
integer |

! Interface necessary for the passed function and subroutine;
! only specifies the number of arguments and their type.
interface
double precision function flow(al,a2,a3)
implicit none
double precision :: al,a2,a3
end function flow

subroutine reflector(al,a2,a3,a4,ab,ab)
implicit none

double precision, intent(inout) ;1 al,a2
double precision, intent(in) 11 a3,ad
integer, intent(in) HE- 1)
double precision, dimension(a5,3), intent(in) :: a6

end subroutine reflector
end interface

! Generate the proper white noise in advance.
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! Note in the ellipse that the wvariance of the white notse is the
! same in all directions because the nondimensionalization is ’tsotropic’.
mcvar = 2.0d0*dt

call my_normal_rng(nTot,W(1,1:nTot),0.0d0,mcvar)
call my_normal_rng(nTot,W(2,1:nTot),0.0d0,mcvar)
call my_normal_rng(nTot,W(3,1:nTot),0.0d0,mcvar)

do i=1,nTot
! Advection, then diffusion.
xv(i) = xv(i) + Pexflow(yv(i),zv(i),a)*dt + W(1,1i)

yprev = yv(i)
zprev = zv(i)
yv(i) = yv(i) + W(2,1)
zv(i) = zv(i) + W(3,1)

call reflector(yv(i),zv(i),yprev,zprev,nl,1lls)
end do

end subroutine apply_advdiffl_triangle

./computation/apply_advdiff2_chan.f90

subroutine apply_advdiff2_chan(n,xv,yv,Pe,dt,a,flow,reflector)
! Does the basic advection diffusion operation in the channel.

! This ts what has been used up to this point (11 May 2016);
! essentially what’s been done tsan operator splitting where
! advection operator is done first, then diffusion operator.

! Arrays X,Y (dimension n)

! scalars Pe, dt, a,

! double precision function flow,
! subroutine reflector.

implicit none

! Inputs/outputs

integer, intent(in) it n
double precision, dimension(n), intent(inout) 11XV, yV
double precision, intent(in) :: Pe,dt,a

! Internal
double precision, dimension(2,n) W
double precision :: mcvar,dthalf
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integer |

! Interface necessary for the passed function and subroutine;
! only specifies the number and type of arguments.
interface
double precision function flow(p,q,r)
double precision :: p,q,Tr
end function flow

subroutine reflector(p,q,r)
double precision :: p,q,T
end subroutine reflector
end interface

! Generate the proper white noise in advance.
mcvar = 2.0d0x*dt
dthalf = dt/2.0d0

call my_normal_rng(n,W(1,1:n),0.0d0,mcvar)
call my_normal_rng(n,W(2,1:n),0.0d0,mcvar)

do i=1,n
! Half advection, diffusion, half advection.
xv(i) = xv(i) + Pexflow(yv(i),-a,a)*dthalf

xv(i) = xv(i) + W(1,1)
yv(i) = yv(i) + W(2,1)
call reflector(yv(i),-a,a)

xv(i) = xv(i) + Pexflow(yv(i),-a,a)*dthalf
end do

end subroutine apply_advdiff2_chan

./computation/asymp_st_channel_moments.f90
! Functions for the short-time asymptotics of the moments in the channel.

double precision function asymp_st_channel_m2(Pe,t)
implicit none
! Be careful; we’ve done a pre-division where the Peclet number

! cancels on numerator and denominator when calculating skewness.

!

! The result here will NOT be correct 1f we only seek m2.

double precision it Pe,t
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double precision, parameter  :: rtpi = dsqrt(4.0d0xdatan(1.0d0))

asymp_st_channel_m2 = 2.0d0*t + Pex*2*((4.0d0/45.0d0)*t**2 - (4.0d0/9.0d0)*t**3 &
+(128.0d0/ (105.0d0*rtpi)) *t**3.5d0 - (1.0d0/3.0d0)*t+*4)

end function asymp_st_channel_m2

double precision function asymp_st_channel_m3(Pe,t)

implicit none

! Be careful; we’ve done a pre-step where the Peclet number

! cancels on numerator and denominator when calculating skewness.

!
! The result here will NOT be correct 1f we only seek m3.
double precision :: Pe,t
double precision, parameter  :: rtpi = dsqrt(4.0d0*datan(1.0d0))
asymp_st_channel_m3 = Pex**3%((-16.0d0/945.0d0) *t**3 + (16.0d0/45.0d0)*xt**4 &
-(256.0d0/(105.0d0*rtpi) ) *t**4.5d0 + (5.0d0/2.0d0)*t**5 &

-(14464.0d0/(3465.0d0*rtpi) ) *t*x5.5d0 + (14.0d0/15.0d0)*t**6)

end function asymp_st_channel_m3

./computation/impose_reflective_BC_ellipse.f90

subroutine impose_reflective_BC_ellipse(yf,zf,y0,z0,a,b,maxrefl)

! Impose reflective boundaries for the ellipse.

! (yf,zf) is the position after taking a step (corrected on output),
! (y0,20) is the previous position.

implicit none

double precision, intent(in) :: y0,20,a,b

double precision, intent(inout) i yf,zf

integer, intent(in) :: maxrefl

double precision :: distsq

double precision, dimension(2) :: vl,nhat

integer :: nrefl,mmr

logical :: goodsol

double precision :: s,yc,zc,yold,zold
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! Idiot-proofing
mmr = max(maxrefl,4)

distsq = (yf/a)**2 + (zf/b)**2

nrefl = 0
yold = yO
zold = z0

do while ( (distsq .gt. 1.0d0) .and. (nrefl .1t. mmr) )
! Find the point
call ell_refl_ssols(yold,yf,zold,zf,a,b,s,goodsol)

if (goodsol) then
! Find the coordinates of intersection.
yc = yold + s*(yf-yold)
zc = zold + s*(zf-zold)

! Construct the wector going out of the domain.
vi(1l) = yf-yc
v1i(2) = zf-zc

I Construct the outward normal wvector.
nhat (1) = 2.0d0*yc/ (a**2)

nhat (2) 2.0d0*zc/ (b**2)

call normalize(2,nhat)

call reflect(2,v1,nhat)

! Get new point an update the old point 21f i1t’s needed.
yold = yc
zold = zc

yf = yc + vi1(1)
zf = zc + v1(2)

else
! Send the thing back to where @t started. Ugly, but 2t works.
yf = yO
zf = z0

end if

! Update the distance of the new point and the number of reflections.
distsq = (yf/a)**2 + (zf/b)**2
nrefl = nrefl + 1

end do
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! Last line of defense.
if ((nrefl .eq. mmr) .and. (distsq .gt. 1.0d0)) then

yf = yc
zf = zc
end if

end subroutine impose_reflective_BC_ellipse

subroutine ell_refl_ssols(y0,yf,z0,zf,a,b,sol,flag)
implicit none

double precision, intent(in) :: y0,yf,z0,zf,a,b

double precision, intent(out) :: sol

logical, intent(out) 1 flag

double precision :: discrim,denom,soll,sol2,numterml ,numterm?2

double precision ell_refl_discrim
discrim = ell_refl_discrim(y0,yf,z0,zf,a,b)

if (discrim .1t. 0) then

soll = 0.040
sol2 = 0.04d0
flag = .false.

else

denom = b**2x(yf-y0)**2 + a**2*(zf-z0)**2
b#*2xy0* (yO-yf) + a**2*z0*(z0-zf)
a*b*dsqrt (discrim)

numterml
numterm?2

soll = (numterml + numterm2)/denom
s0l2 = (numterml - numterm?2)/denom

flag .false.

if ((soll .ge. 0.0d0) .and. (soll .le. 1.0d0)) then
sol = soll
flag = .true.

end if

if ((sol2 .ge. 0.0d0) .and. (sol2 .le. 1.0d0)) then
if (flag) then
! Both solutions are in [0,1]!
! This seems to happen when the point is on the
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! boundary. Take the larger time.
sol = max(soll,sol2)
flag = .true.

else
! 411 2s well, only one solution.
sol = sol2
flag = .true.
end if
end if

end if

end subroutine ell_refl_ssols

double precision function ell_refl discrim(y0,yf,z0,zf,a,b)

implicit none
double precision, intent(in) :: yO,yf,z0,zf,a,b

ell_refl_discrim= bx**2%(yf-y0)**2 + a**x2x(zf-z0)**2 - (yf*z0 - yO*zf)**2

end function ell_refl_discrim

./computation/impose_reflective_BC_polygon.f90

subroutine impose_reflective_BC_polygon(ply,plz,pOy,pOz,nl,1ls)
! Imposes reflective boundary

! conditions for the Monte Carlo simulation

! for a general (convezx) polygonal geometry.

! The boundaries are specified as a set of
! linear equations; the interior 1s described

! as when all of them are positive.

! Boundary points are where any of them are zero.

! Inputs:

!

! double precision, :: pOy,p0z
! integer coonl

! double precision, dimension(nl,3) :rlls

! Input/output:
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!
! double preciston, dimension(2) :ropl
!

!use mod_triangle_bdry

implicit none

double precision, intent(in) :: pOy,pO0z
double precision, intent(inout) 1 ply,plz
integer, intent(in) ::nl
double precision, dimension(nl,3), intent(in) 11 1ls
double precision, dimension(2) :: pb,mp,p0,pl
double precision, dimension(3) :: tempv,line
double precision, dimension(nl) :: bvals
logical, dimension(nl) :: bcond
integer, dimension(nl) :: bidxs

! double preciston, dimenston(nl) :: ctimes
integer :: nbi,bidx,i,minidx
double precision :: minct,ct

double precision crosstime

p0(1) = pOy
p0(2) = pOz
p1(1) = ply
p1(2) = piz
mp(1) = ply
mp(2) = plz
tempv(1l) = 1.0d40
tempv(2) = mp(1)
tempv(3) = mp(2)

call matvec(nl,3,1lls,tempv,bvals)
bcond = (bvals .1lt. 0.0d0)

! Loop until there are nmo boundary crossings.
do while (any(bcond))
! Find which boundaries have been crossed.
call findcond(nl,bcond,nbi,bidxs)

! Find the time of crossing on each crossed
! boundary. Take the boundary crossed first.

line = 11s(bidxs(1),:)
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minct = crosstime(pb,mp,line)

bidx = bidxs(1)
do i=2,nbi
line = 11ls(bidxs(i),:)
ct = crosstime(pb,mp,line)
if (ct .1t. minct) then
minct = ct
bidx = bidxs(i)
end if
end do

! Reflect across this boundary.
line = 1ls(bidx,:)
call reflector(pb,mp,line)

tempv(2) = mp(1)
tempv(3) = mp(2)

! Re-evaluate the new position.
call matvec(nl,3,1ls,tempv,bvals)
bcond = (bvals .1t. 0.0dO0)

end do
ply = tempv(2)
plz = tempv(3)

end subroutine impose_reflective_BC_polygon

double precision function crosstime(p,q,1)
! Calculates the time of intersection through line 1
! in a parameterized path going from point p to q.
implicit none
double precision, dimension(2), intent(in) R e
double precision, dimension(3), intent(in) 01

crosstime = -(1(1) + 1(2)*p(1) + 1(3)*p(2))/(1(2)*(q(1)-p(1))+1(3)*(q(2)-p(2)))
end function crosstime

subroutine reflector(p0,pl,1)
!

! Reflects the particle that would have gone from p0 to pl
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! across the line 1. Should not end up in this subroutine
! unless this actually happens.

! On output, the points are changed to

! p0: point of intersection with 1
! pl: position after reflection; pl = pO0+v for a wvector w.

implicit none

double precision, dimension(2), intent(inout) :: pO,pl
double precision, dimension(3), intent(in) 1

double precision, dimension(2) :: gradl,pb,v
double precision -

double precision crosstime

gradl(1)
gradl(2)

1(2)
1(3)

! Find the time and location of intersection, take the component
! of the vector that’s outside the domain

s = crosstime(p0,pl,1)

pb = p0 + s*(pl-p0)

v = pl - pb

! Reflect this wvector component across the plane
call reflect(2,v,gradl)

! Update pl based on this reflection.
pl =pb +v
po0 = pb

end subroutine reflector

./computation/impose_reflective_BC_racetrack.f90

subroutine impose_reflective_BC_racetrack(yout,zout,yl,z1,y0,z0,aratio,q,maxrefl)
! Impose reflective boundaries for the racetrack.

! (yf,zf) is the position after taking a step,

! (y0,20) is the previous position.

implicit none

double precision, intent(in) :: y0,z0,aratio,q
double precision, intent(in) iroyl,zl

double precision, intent(out) :: yout,zout
integer, intent(in) :: maxrefl
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double precision :: bdf,1

double precision, dimension(2) :: vl,nhat

integer :: nrefl,mmr

logical :: flag

double precision :: s,yc,zc,yold,zold,yf,zf

double precision bdistfun_rt
1 = aratio

! Idiot-proofing
mnr = max(maxrefl,4)

bdf = bdistfun_rt(yl,zl,aratio,q)
nrefl = 0

yold = yO

zold = z0

yf = y1

zf = z1

flag = ((bdf .1t. 0.0d0) .and. (nrefl .1t. mmr))
do while ( flag )

! Find the point of intersection.

! Parameterize the line comnecting (y0,20) to (yf,zf),

! calculate a double s indicating point of intersection.

! Essenttally a 1D calculation, should be able to do

! a couple iterations of Newton’s method to capture.

call calc_intersection_pt_rt(yold,zold,yf,zf,aratio,q,s,.false.)

! Find the coordinates of intersection.

yc = yold + s*(yf-yold)

zc = zold + s*(zf-zold)

! Construct the component of the vector going out of the domain.
vi(1l) = yf-yc

v1(2) = zf-zc

! Construct the outward normal vector

call bdistfun_rt_grad(yc,zc,aratio,q,nhat)

call reflect(2,v1,nhat)
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! Get new point an update the old point <if it’s needed.

yold
zold

yf =
zf =

=yc
= ZC

yc + vi(1)
zc + v1(2)

! Update the distance of the new point and the number of reflections.

bdf =

bdistfun_rt(yf,zf,aratio,q)

nrefl = nrefl + 1

flag

end do

= ((bdf .1t. 0.0d0) .and. (nrefl .1t. mmr))

! Last line of defense.
if (bdf .1t. 0.0d0) then
write(k,*) bdf

end if

if ((nrefl .eq. mmr) .and. (bdf .1t. 0.0d0)) then

! write(*,*) "moo"
yout = yO
zout = z0
end if
yout = yf
zout = zf

end subroutine

impose_reflective_BC_racetrack

subroutine calc_intersection_pt_rt(y0,z0,yf,zf,aratio,q,s,diagnose)
! Calculates the intersection with the boundary

! assuming the starting and ending points are in the interior

! and exterior, appropriately.

!

! Essentially does a few iterations of bisection followed by
! a few tterations of Newton’s method.

!
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implicit none
double precision, intent(in)
double precision, intent(out)
logical, intent(in)

integer, parameter
integer, parameter

double precision, parameter
double precision, parameter

double precision
double precision
double precision
integer
logical

: y0,z0,yf,zf,aratio,q

S

: diagnose

:: nbi=10 ! Number of bisection iterations
:: mnni=5 ! Maxz number of Newton iterations

:: reltol = 1.0d-4 ! Relative tolerance for cw.
:: abstol

1.0d-8 ! Absolute tolerance for cuw.

1o tol

:: yl,yr,zl,zr,yc,zc,sl,sr,sc
:: vl,vr,vc

:: nni,i

11 flag

double precision bdistfun_rt,dderiv_rt

nni = 0
sl = 0.0d0
sr = 1.0d0
sc = 0.5d0
yl = y0
zl = z0
yr = yf
zr = zf

call lininterp_rt(yl,yr,sl,sr,sc,yc)
call lininterp_rt(zl,zr,sl,sr,sc,zc)

vl = bdistfun_rt(yl,zl,aratio,q)
vr = bdistfun_rt(yr,zr,aratio,q)
vc = bdistfun_rt(yc,zc,aratio,q)

tol = min(reltol*(dabs(vl)+dabs(vr)),abstol)

if (diagnose) then
write(k,*x) "
end if

do i=1,nbi
! Bisection tteration
if (ve*vl .1t. 0.0d0) then
if (diagnose) then

229



write(*,*) "replace right end point"
write(*,*) sl,sc,sr
write(*,*) vl,vc,vr

end if

vr = vC
Sr = sc
yr = yc
Zr = ZzC

sc = (sl + sr)/2.0d0

else

if (diagnose) then
write(*,*) "replace left end point"
write(*,*) sl,sc,sr
write(*,*) vl,vc,vr

end if

vl = vc

sl = sc

yl = yc

zl = zc

sc = (sl + sr)/2.0d0
end if

call lininterp_rt(yl,yr,sl,sr,sc,yc)
call lininterp_rt(zl,zr,sl,sr,sc,zc)
vc = bdistfun_rt(yc,zc,aratio,q)

write(*,*) dabs(vc),tol,yc, zc,sc
if (diagnose) then
write(*,*) i,sc,vc,tol
end if
end do

if (diagnose) then
write(*,*) "end bisection, begin newton"
end if

flag = ((dabs(vc) .gt. tol) .and. (nni .le. mnni))
do while (flag)
I Newton iteration.
sc = sc - bdistfun_rt(yc,zc,aratio,q)/dderiv_rt(y0,yf,z0,zf,aratio,q,sc)

call lininterp_rt(yl,yr,sl,sr,sc,yc)
call lininterp_rt(zl,zr,sl,sr,sc,zc)
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vc = bdistfun_rt(yc,zc,aratio,q)

nni = nni + 1
if (diagnose) then
write(*,*) nni,sc,vc,tol

end if
! write(*,*) dabs(vc),tol,yc,zc,sc
flag = ((dabs(vc) .gt. tol) .and. (nni .le. mnni))
end do

if (diagnose) then
write(*,*) "end newton"
end if

! The rootfinder is having some difficulty with the non-convexr domains.
! If we get a solution outside of [0,1], hard limit <t.

s = max(sc,0.0d0)

s = min(s,1.0d0)

end subroutine calc_intersection_pt_rt

subroutine lininterp_rt(zl,zr,sl,sr,sc,zc)
! Linear wnterpolation.
implicit none

double precision, intent(in) :: zl,zr,sl,sr,sc
double precision, intent(out) :: zc
double precision trom

m = (zr-zl)/(sr-sl)
zc = z1 + m*(sc-sl)
end subroutine lininterp_rt
!
!
!
double precision function dderiv_rt(y0,yf,z0,zf,aratio,q,s)
! Directional derivative for use in Newton’s method above.
! Keep tn mind y0,yf,20,zf are parameters here; the
! derivative is essentially in the direction of the
! vector from (y0,z0) to (yf,zf), evaluated at the
! point s.

! The formula was calculated in mathematica.

implicit none
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double precision, intent(in) :: yO,yf,z0,zf,aratio,q,s

double precision rox,l

1 = aratio

x = 0.0d0

x = x + (2%x(yO*x(-y0O + yf) + g**2*%z0*(-z0 + zf) + 2*L*k*2kq**2* &

& (yOx*4 - yOx*3xyf + 3*y0xyf+z0x*2 + z0**3x(z20 - zf) + 3xy0**2*xz0*(-2%z0 + zf)) + &
& Lwkdx (-2%y0**4 + 2xy0**3*yf - yO*(yf + 6*xyf*z0*x2) + z0*(q**2 - 2*z0*x2)*(z0 - zf) +
& yO*k*2+ (1 + 12%z0%*2 - 6%z0%zf)))) /(-1 + Lx*k2kq**2)

x = x + (2%sx((yO - yf)**x2 + qx*2%(20 - zf)**2 - &

& Bx Lk 2xq*x2% (yO**2 - z0x(yf + z0 - zf) - yOx(yf - 2*%z0 + zf))* &

& (yOo**2 + yOx(-yf - 2*%z0 + zf) + zO*(yf - z0 + zf)) + &

& Lkkdk (6y0*xd - 12*y0*x3*yf - yE*x2%(1 + 6%z0%*2) + 2xy0*xyf* (1 + 6%z0%(3*xz0 - 2*zf))
& (g**2 - 6%z0%*%2)*(20 - zf)*x2 + yO**2% (-1 + 6*kyf**2 - 6% (6*z0%*2 - 6%z0*zf + zf*+
& (-1 + Lx*x2xq**2)

x = x + (12%1k*2% (-1 + q)*(1 + q)*s**2* (yOx*4 - 3*ky0*x3*xyf + z0* (-3xyf**2 + (20 - zf)*x2)*(
& 3xky0* 2k (yE**2 - 2%z0**2 + 3xz0xzf - zf**2) - yOxyf*(yf**2 - 3% (3*%z0**2 - 4xz0*xzf +
& (-1 + Lx*x2xq**2)

X = X+ (AkLkx2% (Lk*2 - qkx2)*ks*k*3% (yOx*4 - 4dxy0*x3xyf + yf*x4d - 4dxyOxyf*(yf**2 - 3x(z0 - z
& Exyf**x2% (20 - zf)**2 + &

& (z0 - zf)**4 + 6xy0**2x(yf + z0 - zf)*(yf - 20 + z£))) /(-1 + L**2xq*x2)

dderiv_rt = x
end function dderiv_rt

./computation/impose_reflective_BC_rect.f90
subroutine impose_reflective_BC_rect(z,lower,upper)

! Imposes reflective boundary

! conditions for the Monte Carlo simulation on channel
! geometry (or duct, if applied in each direction)

! For now, thts assumes there 1s no double reflecting.
! This relies on a small enough dt that the likelihood

! 25 outlandishly small.

implicit none
double precision z,lower,upper,residue

do while ((z>upper) .or. (z<lower))

if (z > upper) then
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residue = z-upper
z = upper - residue

else if (z < lower) then

residue = lower-z
z = lower + residue

end if
end do

end subroutine impose_reflective_BC_rect

./computation/matvec.£90

subroutine matvec(m,n,A,u,v)
)

! 4 simple matriz-vector multiplication subroutine.
!

! Inputs:

!

! m,n: integers

! A: double precision array, dimension(m,n)
! u: double prectision array, dimension(n)

! Outputs:
! v: double precision array, dimension(m)
implicit none

integer, intent(in)

double precision, dimension(m,n), intent(in)

double precision, dimension(n), intent(in)

double precision, dimension(m), intent(out)

integer

do i=1,m
v(i) = 0.0d0
do j=1,n

v(i) = v(d) + A(i,j)*u(j)
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end do
end do

end subroutine matvec

./computation/moments.£90

subroutine moments(n,x,mean,var,skew,kurt)
! Combination function to compute the mean, variance,
! skewness, kurtosis of an array .

! Adapted from Numerical Recipes.
implicit none

! In/out

integer, intent(in)

double precision, dimension(l:n), intent(in)
double precision, intent(out)

! Internal
integer A |
double precision :: temp

! Handle degenerate cases.
if (n .eq. 0) then
mean = 0.0d0

var = 0.0d0
skew = 0.0dO
kurt = 0.0d0

else if (n .eq. 1) then
mean = x(1)

var = 0.0d0
skew = 0.0dO
kurt = 0.0d40

else

! Usual algorithm, butld the mean, then
! build the centralized statistics based off of
mean = 0.0d0
do i=1,n
mean = mean + x(i)
end do
mean = mean/n

var = 0.0d0
skew = 0.0dO
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kurt = 0.0d0
do i=1,n

temp = x(i) - mean

var = var + temp**2

skew = skew + temp**3

kurt = kurt + temp**4
end do

var = var/dble(n-1)
skew = skew/(n*(var*+*1.5d0))
kurt = kurt/(n*x(var**2)) - 3.0d0

end if

if (var .eq. 0.0d0) then

skew = 0.0dO
kurt = 0.0d0
end if

end subroutine moments

./computation/precalculate_Alpha.f90
subroutine precalculate_Alpha(Alpha,alphaMax)
implicit none

! Input wvariables
integer :: alphaMax

! Input/output wvariables
double precision, dimension(l:alphaMax,1:alphaMax,1:alphaMax) :: Alpha

! Internal variables
integer :: i,m,p

! Functions
double precision Alpha_eval

! This loop could possibly be optimized further, but 2t will probably never
! be a bottleneck, so 21t’s a low priority.
do i=1,alphaMax
do m=1,alphaMax
do p=1,alphaMax
Alpha(i,m,p) = Alpha_eval(i,m,p)
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end do
end do
end do

end subroutine precalculate_Alpha

./computation/precompute_uvals.f90

subroutine precompute_uvals(ui,uj,u,ya,za,nTerms,idxlist,uij_vals)

! Precomputing array u, ya, and za, for use in bilinear interpolation
! to optimize function calls in the Monte Carlo iteration.

! Assumes we are working on the square [-1,1]z[-1,1].

implicit none

I Input

integer :: ui,uj,nTerms
integer, dimension(nTerms) :: idxlist
double precision, dimension(nTerms) :: uij_vals

! Input/Output

double precision, dimension(ui,uj) trou
double precision, dimension(ui) 1roya
double precision, dimension(uj) 1oza

! Internal
integer - |

! Functions
double precision u_duct

! First construct the y,z arrays.
if (.false.) then
call uniform_nodes(ui,ya,-1.0d0,1.0d0)
call uniform_nodes(uj,za,-1.0d0,1.0d0)
else
! Chebyshev nodes. Be aware you need to use the general
! index locator for linear interpolation <1f you use this,
! which wtll slow down function evaluations.
call padded_cheb_nodes(ui,ya,-1.0d0,1.0d0)
call padded_cheb_nodes(uj,za,-1.0d0,1.0d0)
end if

! Now compute the corresponding u values.
do i=1,ui
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do j=1,uj
u(i,j) = u_duct(ya(i),za(j),nTerms,idxlist,uij_vals)
end do
end do

end subroutine precompute_uvals

./computation/precompute_uvals_ss.f90

subroutine precompute_uvals_ss(a,b,aratio)

! Precomputing array u, ya, and za, for use in bilinear interpolation
! to optimize function calls in the Monte Carlo iteration.

! Assumes we are working on the square [-1,1]z[-1,1].

use mod_ductflow
implicit none
! Input
double precision, intent(in) :: a,b,aratio

I Internal

integer A A

double precision, dimension(ui) 1: yatta
double precision, dimension(uj) ;1 zatta
double precision, dimension(ui,uj) :: udumb

! Functions
double precision u_duct_ss

! First construct the y,z arrays.
if (.true.) then
call uniform_nodes(ui,yatta,-a,a)
call uniform_nodes(uj,zatta,-b,b)
else
! Chebyshev nodes. Be aware you need to use the general
! 2ndex locator for linear interpolation 1f you use this,
! which will slow down function evaluations.
call padded_cheb_nodes(ui,ya,-a,a)
call padded_cheb_nodes(uj,za,-b,b)

end if
ya = yatta
za = zatta
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! Now compute the corresponding u values.

do i=1,ui
do j=1,uj
udumb (i, j) = u_duct_ss(ya(i),za(j),nTerms,aratio)
end do
end do

u_precomp = udumb

end subroutine precompute_uvals_ss

./computation/racetrack_bdist.f90

double precision function bdistfun_rt(y,z,aratio,q)
! Boundary distance function for the racetrack.

! If positive, in the interior, 1f negative, 1in

! the exterior, zero on the boundary.

!

! Essenttally the Dirichlet flow solution.

implicit none
double precision 11 y,z,aratio,q,1

1 = aratio
bdistfun_rt = (y**4 - Gky*k*2%z**2 + zr*k4)xLxk2k (1#*2-q**2)

! The q**2*xz**2 here 1s not a typo
bdistfun_rt = bdistfun_rt + (y**2 + qx*2%z**2)*(1.0d0-1**4)

bdistfun_rt

bdistfun_rt*(-1.0d0)/(1.0d0-g**2x1**2)
bdistfun_rt = bdistfun_rt + 1.0d40
end function bdistfun_rt

subroutine bdistfun_rt_grad(y,z,aratio,q,vec)
! Outward unit normal gradient for the racetrack.

! Partial in y, them partial in z.
]

implicit none

double precision, intent(in) :: y,z,aratio,q
double precision i1
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double precision, dimension(2), intent(out) :: vec

1 = aratio

vec(l) = (-2%y* (-1 + 2kLsk2kqk2x (y**2 - 3kz*k*2) + Lkxdk (1 - 2xy**2 + G*kzx*2))) &
&/ (-1 + L1#*x2xq**2)
vec(2) = (2kzx (2xLxkdx (=3ky**2 + z#x2) + qF*2% (1 - Lx*k4 + G*Lk*2ky**2 - 2%1*k+2%z**2))) &

&/ (-1 + L1#x2xq**2)
call normalize(2,vec)

end subroutine bdistfun_rt_grad

./computation/u_channel.f90
double precision function u_channel(y,a,b)

! Calculate the channel flow wvelocity, the channel is in the interval
! a,b. This flow s guaranteed to be integral zero on [a,b] and

! second derivative (Laplacian) -1.

implicit none
double precision y,a,b

u_channel = 0.5d0*( (y - a)*(b - y) - 1.0d0/6.0d0*(b-a)**2 )
! Multiply by a factor of two for Laplacian -2.
u_channel = 2.0d0*u_channel

end function u_channel

./computation/u_duct.£90

double precision function u_duct(y,z,nTerms,idxlist,uij_vals)
! Calculate the approximate value of the flow u(y,z), with precalculated

! Fourter coeffictents Amn_vals on indices 2dxlist.
!

! This 1s the zero-average flow.

implicit none

double precision 1! y,z,pi,pisq,half
integer :: k,i,j,nTerms
integer, dimension(l:nTerms,1:2) ;1 idxlist

double precision, dimension(1:nTerms) 1 uij_vals

parameter (pi = 4.0d0x*datan(1.0d0))
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parameter (pisq
parameter (half

pix*2)
0.5d0)

!I' Sum over index set.

u_duct = 0.0d0

do k=1,nTerms
i idxlist (k, 1)
j = idxlist(k,2)

u_duct = u_duct + uij_vals(k)*( dcos((i-half)*pix*y)+*dcos((j-half)*pixz) &
- (-1)**(i+j)/(pisqg*(i-half)*(j-half)) )
end do

!
! Eztra factor of two to make the Laplactan -2.
!

u_duct = 2.0d0*u_duct

end function u_duct

./computation/u_duct_precomp.f90
double precision function u_duct_precomp(y,z)
! Calculate the approzimate value of the flow u(y,z),
! having already precomputed the flow on a fine grid.
! Essenttally this ts a wrapper function for linear_interp_2d.
! 411 the arrays are held in the module mod_ductflow.
use mod_ductflow

implicit none

double precision, intent(in) :: y,z
double precision linear_interp_2d

u_duct_precomp = linear_interp_2d(ui, uj, u_precomp, ya, za, y, z)

end function u_duct_precomp

./computation/u_duct_ss.f90
double precision function u_duct_ss(y,z,nTerms,aratio)

! Calculate the approzimate value of the flow u(y,z),
! using a single-series solution
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! whose Laplactan ts guaranteed -2 for any number of terms,
! but boundary conditions at the far walls are only met approxrimately.

! However, the degree of this is relatively insignificant, even
! for a reasonable number of terms, and there s

! great added benefit when later moving to calculate the

! moments of the flow.

implicit none

double precision, intent(in) 11 y,z,aratio

integer, intent(in) :: nTerms

integer t ok

double precision i1 q,yterm,zterm,betak
double precision :: pi,absz

parameter(pi = 4.0d0*datan(1.0d0))
u_duct_ss = 0.0d0
absz = dabs(z)
do k = 1,nTerms
q = (k-0.5d0)*pi
! The original equation needs to be shuffled around for it
! to be numertcally stable; cosh(qz)/cosh(q/aratio) is apparently ill-behaved.
yterm = 4.0d0x*(-1)*x*k/(q**3)*dcos(q*y)

zterm = (dexp(-g*(1.0d0/aratio + z)) + dexp(q*(-1.0d0/aratio + z)) )
zterm/(1.0d0 + dexp(-2.0d0*q/aratio))

zterm

betak

-4.0d0*aratio*dtanh(q/aratio) /(g**5)
u_duct_ss = u_duct_ss + yterm*zterm - betak

end do

u_duct_ss = u_duct_ss + ( 1.040/3.0d0 - y**2 )

end function u_duct_ss
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./computation/u_dummy.£90

double precision function u_dummy(y,z)
! Dummy flow to be used when the flow ts mot important.

implicit none
double precision L y,z

u_dummy = 0.0d0

end function u_dummy

./computation/u_ellipse.f90

double precision function u_ellipse(y,z,a,b)
! Calculate the pipe flow weloctty.

implicit none
double precision il y,z,a,b
double precision 11 c,aratio
aratio = a/b
c = 0.5d0/(1.0d0 + aratio**2)

u_ellipse = c*(0.5d0 - (y/a)**2 - (z/b)**2)

! Factor of two to make the Laplacian -2.
u_ellipse = u_ellipsex*2.0d0

end function u_ellipse

./computation/u_racetrack.f90

double precision function u_racetrack(y,z,aratio,q)
! Calculate the racetrack flow velocity.

implicit none
double precision 1! y,z,aratio,q,1

1 = aratio
u_racetrack = (y**4 - Gxyx*2xzx*2 + zxkd)*kLkx2k (1x*2-q**2)

! The q**2*z*x*2 here 1s not a typo.
u_racetrack = u_racetrack + (y**2 + g*2kz*x2)%(1.0d0-1%*4)
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u_racetrack = u_racetrack*(-1.0d0)/(1.0d0-g**2*1**2)

! This ts actually the lab-frame flow, but the central

! statistics are calculated, the sample mean is subtracted
! of f anyways.

u_racetrack = u_racetrack + 1.0d0

! Appropriate factor to make the Laplacian -2.
u_racetrack = u_racetrack*(1.0d0+qg**2)*(1.0d0-1%*4)/(1.0d0-q**2xL**2)

end function u_racetrack

./computation/u_triangle.f90

double precision function u_triangle(y,z,a)
! Calculate the pipe flow veloctty.

implicit none
double precision 1 y,z,a,rt3

rt3 = dsqrt(3.0d40)

u_triangle = 1.0d0/(12.0d0%*a)* (a+y)*(2*katrt3*z-y)*(2*xa-rt3*z-y)
u_triangle = u_triangle - 3.0d0/20.0d0*a**2

! Factor of two to make the Laplacian -2.
u_triangle = u_triangle*2.0d0

end function u_triangle
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./modules/
./modules/mod_ductflow.f90

module mod_ductflow
! For arrays relevant to calculate the duct flow.

integer :: ui,uj,nTerms
double precision, dimension(:), allocatable 1 oya,za
double precision, dimension(:,:), allocatable {1 u_precomp

! Gridsize for the precalculation of the flow.

! 256 in both directions corresponds to spatial step 70.004,

! for untform grid size.

I "Need" 10 points in the boundary layer to be fair,

! so this can resolve boundary layer fairly up to aratio = 0.04.

! With non-uniform mesh (currently being used) this isn’t as

! much of a problem, but I haven’t attempted any analysts.

256)
256)

parameter (ui
parameter (uj

!

! Total number of terms to use in the series when

! precalculating u. Don’t need much using the single series formulation.
!

parameter (nTerms = 256)

end module mod_ductflow

./modules/mod_duration_estimator.f90

module mod_duration_estimator
! For estimating how much longer the full program will
! take to complete based on history of timesteps.

integer :: count_rate ! Count used in system_clock
integer :: mde_ntt,mde_ntc

double precision, allocatable, dimension(:) :: mde_dts

double precision :: mde_pttc,mde_pttc_pretty
character(len=3) :: mde_time_unit
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integer :: mde_t1,mde_t2

contains

double precision function predict_completion(mde_ntt,mde_ntc,mde_dts)
! Based on the total number of timesteps and number of timesteps

! completed, and a filled history mde_dts(1:mde_ntc),

! predict how much time <s remaining assuming time per timestep s

! relatively consistent.

integer :: mde_ntt,mde_ntc
double precision, dimension(l:mde_ntt) :: mde_dts

predict_completion = sum(mde_dts(l:mde_ntc)) * (mde_ntt-mde_ntc)/mde_ntc
end function predict_completion

subroutine mde_pretty_print_time(pttc,pretty_val,time_unit)

! Converts pttc into the smallest "standard" time units so that it is bounded by 100.

! tnput ptitc ts assumed in units of seconds. The time units going out
! are also output ("sec”,"min","hrs","dys", "yrs")

double precision, intent(in) :: pttc
double precision, intent(out) :: pretty_val
character(len=3) :: time_unit

pretty_val = pttc

! Seconds

if (pretty_val .1lt. 60.0d0) then
time_unit = "sec"
go to 10

end if

I Minutes

pretty_val = pretty_val/60.0d0
if (pretty_val .1lt. 60.0d0) then

time_unit = "min"
go to 10

end if

! Hours

pretty_val = pretty_val/60.0d0
if (pretty_val .1lt. 24.0d0) then

time_unit = "hrs"
go to 10
end if
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! Days

pretty_val = pretty_val/24.0d0

if (pretty_val .1lt. 365.25d0) then
time_unit = "day"
go to 10

end if

! Years

pretty_val = pretty_val/365.25d0

time_unit = "yrs"

10 continue
end subroutine mde_pretty_print_time

end module mod_duration_estimator

./modules/mod_readbuff.f90
module mod_readbuff

double precision, dimension(:), allocatable :: readbuff_double

end module mod_readbuff

./modules/mod_time.f90

module mod_time
! For storing time-related arrays and parameters.

double precision, dimension(:), allocatable :: target_times
integer ;1 ntt

end module mod_time

./modules/mod_triangle_bdry.f90

module mod_triangle_bdry
! Defining the triangle boundary.

integer, parameter :: nl =3

double precision, dimension(nl,3), parameter :: lls=reshape( (/ 1.0d0, 1.0d0, 1.0d0, &
-0.5d0, -0.5d0, 1.0d0, &
dsqrt(3.0d0)/2.0d0, -dsqrt(3.0d0)/2.0d0, 0.0d0 /) , (/nl,3/) )

end module mod_triangle_bdry
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./modules/mtfort90.£90

!' 4 C-program for MT19937: Real number version

! genrand() generates one pseudorandom real number (double)
! which is untformly distributed on [0,1]-interval, for each
! call. sgenrand(seed) set initial wvalues to the working area
! of 624 words. Before genrand(), sgenrand(seed) must be

! called once. (seed ts any 32-bit integer except for 0).

! Integer generator ts obtained by modifying two lines.

! Coded by Takuji Nishimura, considering the suggestions by
! Topher Cooper and Marc Rieffel wn July-Aug. 1997.

! This library is free software; you can redistribute it and/or
! modify i1t under the terms of the GNU Library General Public

! License as published by the Free Software Foundation; either

! version 2 of the License, or (at your option) any later

! version.

! This library ts distributed in the hope that 2t will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

! See the GNU Library General Public License for more details.

! You should have recetved a copy of the GNU Library General

! Public License along with this library; if not, write to the

! Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
! 02111-1307 USA

! Copyright (C) 1997 Makoto Matsumoto and Takuji Nishimura.
! When you use this, send an email to: matumoto@math.keio.ac.jp
! with an appropriate reference to your work.

R332 13 I I I O O T O I T I IIIITIIITIIIIIT

! Fortran translation by Hirosht: Takano. Jan. 13, 1999.

! genrand() -> double precision function grnd()
! sgenrand(seed) -> subroutine sgrnd(seed)
! integer seed

! This program uses the following mnon-standard intrinsics.

! dshft(i,n): If n>0, shifts bits in % by n postitions to left.

! If n<0, shifts bits in 7 by n positions to right.

! dand (<,7): Performs logical AND on corresponding bits of < and j.
! ior (i,7): Performs tinclusive OR on corresponding bits of 7 and j.
! ieor (i,j7): Performs exzclusive OR on corresponding bits of 4 and j.

Dok ok K ok ok K Kok ok KKKk KK KKK KKK KKK KKK KKK KKK K KKK KKK KKK KKK KKK KKK

! Fortran verstion rewritten as an F90 module and mt state saving and getting
! subroutines added by Richard Woloshyn. (rwww@triumf.ca). June 30, 1999
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module mtmod
! Default seed

integer(8), parameter :: defaultsd = 4357
! Period parameters

integer, parameter :: N = 624, N1 = N + 1

! the array for the state wector
integer(8), save, dimension(0:N-1) :: mt
integer, save ::mti = N1

! Jverload procedures for saving and getting mt state
interface mtsave
module procedure mtsavef
module procedure mtsaveu
end interface
interface mtget
module procedure mtgetf
module procedure mtgetu
end interface

contains
I'Initralrzation subroutine

subroutine sgrnd(seed)
implicit none

! setting initial seeds to mt[N] using
! the generator Line 25 of Table 1 in
! [KNUTH 1981, The Art of Computer Programming
! Vol. 2 (2nd Ed.), pp102]
!
integer(8), intent(in) :: seed

mt (0) = iand(seed,-1)
do mti=1,N-1

mt(mti) = iand (69069 * mt(mti-1),-1)
enddo

return
end subroutine sgrnd

!Random number generator
real(8) function grnd()

implicit integer(a-z)

! Period parameters
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!

integer, parameter :: M = 397, MATA = -1727483681
constant vector a

integer, parameter :: LMASK = 2147483647
least significant T bits
integer, parameter :: UMASK = -LMASK - 1

most significant w-r bits
Tempering parameters
integer, parameter :: TMASKB= -1658038656, TMASKC= -272236544

dimension mag01(0:1)
data mag01/0, MATA/
save magO1l
mag01(xz) = ¢ * MATA for z=0,1

TSHFTU(y)=ishft(y,-11)
TSHFTS (y)=ishft (y,7)

TSHFTT (y)=ishft (y, 15)
TSHFTL (y)=ishft (y,-18)

if(mti.ge.N) then
generate N words at one time
if (mti.eq.N+1) then
1f sgrnd() has not been called,
call sgrnd( defaultsd )
a default initial seed ©s used
endif

do kk=0,N-M-1

y=ior (iand(mt (kk) ,UMASK) ,iand (mt (kk+1) ,LMASK))

mt (kk)=ieor (ieor (mt (kk+M) ,ishft(y,-1)) ,mag01(iand(y,1)))
enddo
do kk=N-M,N-2

y=ior (iand(mt (kk) ,UMASK) ,iand (mt (kk+1) ,LMASK))

mt (kk)=ieor (ieor (mt (kk+(M-N)),ishft(y,-1)) ,mag01(iand(y,1)))
enddo
y=ior(iand (mt (N-1) ,UMASK),iand(mt(0),LMASK))
mt (N-1)=ieor (ieor(mt(M-1),ishft(y,-1)) ,mag0l(iand(y,1)))

mti = 0
endif
y=mt (mti)

mti = mti + 1

y=ieor (y,TSHFTU(y))
y=ieor(y,iand (TSHFTS(y) ,TMASKB))
y=ieor(y,iand (TSHFTT(y),TMASKC))
y=ieor (y,TSHFTL(y))

if(y .1t. 0) then
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grnd=(dble(y)+2.0d0**32)/(2.0d0**32-1.0d0)
else

grnd=dble(y)/(2.0d0%*32-1.0d0)
endif

return
end function grnd

!State saving subroutines.
! Usage: call mtsave( file_name, format_character )

! or call mtsave( unit_number, format_character )
! where  format_character = ’u’ or ’U’ will save in unformatted form, otherwise
! state information will be written in formatted form.

subroutine mtsavef( fname, forma )
!NOTE: Thtis subroutine APPENDS to the end of the file "fname".

character(*), intent(in) :: fname
character, intent(in) :: forma

select case (forma)
case(’u’,’U?)
open(unit=10,file=trim(fname) , status=’UNKNOWN’ ,form=’UNFORMATTED’, &
position=’APPEND’)
write(10)mti
write(10)mt

case default

open(unit=10,file=trim(fname) ,status=’UNKNOWN’ ,form=’FORMATTED’, &
position=’APPEND’)

write(10,*)mti

write(10,*)mt

end select
close(10)

return
end subroutine mtsavef

subroutine mtsaveu( unum, forma )

integer, intent(in) 11 ounum
character, intent(in) :: forma

select case (forma)
case(’u’,’U?)
write (unum)mti
write (unum)mt
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case default
write (unum, *)mti
write (unum, *)mt

end select

return
end subroutine mtsaveu

!State getting subroutines.
! Usage: call mtget( file_name, format_character )

! or call mtget( unit_number, format_character )
! where  format_character = ’u’ or ’U’ will read in unformatted form, otherwise
B state information will be read in formatted form.

subroutine mtgetf( fname, forma )

character(*), intent(in) :: fname
character, intent(in) :: forma

select case (forma)
case(’u’,’U?)
open(unit=10,file=trim(fname) ,status=’0LD’,form=’UNFORMATTED’)
read(10)mti
read(10)mt

case default

open(unit=10,file=trim(fname) ,status=’0LD’,form=’FORMATTED’)
read(10,*)mti

read(10,*)mt

end select
close(10)

return
end subroutine mtgetf

subroutine mtgetu( unum, forma )

integer, intent(in) ! unum
character, intent(in) :: forma

select case (forma)
case(’u’,’U?)
read (unum)mti

read (unum)mt

case default
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read (unum, *)mti
read (unum, *)mt

end select

return
end subroutine mtgetu

end module mtmod
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