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ABSTRACT 

MICHELLE CLAIRE BRODEUR: Consumers mitigate effects of heat stress and nutrient 
enrichment on eelgrass (Zostera marina L.) communities at its southern range limit 

(Under the direction of F. Joel Fodrie) 
 

At the southern end of its range, eelgrass (Zostera marina) meadows in North Carolina 

are vulnerable to multiple stressors. These include eutrophication, which can promote the 

overgrowth of algal epiphytes, and heat stress that causes significant seasonal die-offs during the 

summer. To quantify the relative influences of these ecosystem stressors on eelgrass biomass, we 

conducted a mesocosm experiment investigating interactive effects of heat stress (+1.5°C) and 

nutrient loading (+10µM NH4NO3/1µM KH2PO4) on an amphipod-eelgrass system. Additionally, 

we manipulated consumer pressure from an abundant omnivorous fish (pinfish, Lagodon 

rhomboides) to understand how top-down pressure interacted with bottom-up nutrient additions 

and warming. Pinfish consumed nearly all amphipods, which had no effect on epibiont load, but 

pinfish prevented macroalgal accumulation and mitigated eelgrass loss due to heat stress. 

Notably, when pinfish were absent from mesocosms, macroalgal biomass was high even though 

grazers were allowed to reach high densities >600 individuals per 18-L mesocosm and warming 

caused an 80% reduction in eelgrass aboveground biomass. Macroalgal biomass was also 

positively correlated with water temperature and had a significant correlation with eelgrass 

aboveground biomass. Although nutrient concentrations were similar to nutrient pulses from 

local storm events, nutrient enrichment only increased epibiont load when combined with 

warming, and we observed no discernible interactive effects on aboveground biomass. We 

conclude that omnivorous consumers can play an important role in preventing macroalgal 
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accumulation from exacerbating heat stress effects, although continued warming may cause 

significant regional habitat loss regardless of consumer presence as eelgrass reaches extreme 

physiological limits. 
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INTRODUCTION 

Across marine systems, the interactive effects of multiple stressors are frequently 

more severe than the predicted cumulative effects when each stressor is considered 

independently (Crain et al. 2008). However, the magnitude and type of interaction 

(additive, agonistic, or synergistic) is dependent on which community or trophic levels 

are being examined in addition to the unique stressor combination (e.g., warming, 

eutrophication, salinity, habitat loss, acidification, etc.). In particular, individuals at the 

southern edge of a given species’ range are already near the species’ thermal tolerance 

and interactions between warming and anthropogenic stressors may accelerate local 

extinctions (Harley et al. 2006, Carilli et al. 2010). The resulting ecosystem effects may 

be most dramatic when a foundation species becomes locally extinct because individuals 

that rely on habitat forming species will be displaced or go extinct (Doney et al. 2012). 

Eelgrass, Zostera marina, is a foundation species that is widely distributed across 

estuaries the northern hemisphere and between 33°N and 65°N along the Western 

Atlantic (Thayer et al. 1984, Green & Short 2003). Coastal ecosystems are being affected 

by climate-driven range shifts, eutrophication (due to agriculture, silvaculture and/or 

coastal development), and loss of top consumers (caused by overfishing), all of which 

may have negative effects on eelgrass biomass and distribution (Orth et al. 2006, Ralph et 

al. 2006). Considering the key ecosystem services seagrass meadows provide (Larkum et 

al. 2006) and that seagrass cover has declined over global scales in recent decades 
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(Waycott et al. 2009, Anton et al. 2011), it is important to understand the potential 

synergistic effects of these multiple stressors on eelgrass meadows. 

At its southern range limit, the optimal temperature for eelgrass growth is 22°C 

(Penhale 1977, Lee et al. 2007) and since water temperatures are above 25°C for most of 

July and August (Kenworthy 1981, Thayer et al. 1984), heat stress drives the near 

complete loss of aboveground biomass in many eelgrass meadows (Thayer et al. 1984). 

When water temperature exceeds the thermal optimum, photosynthetic rates decline and 

respiration rates increase, which reduces net photosynthesis, inhibits leaf growth and 

eventually causes mortality (Marsh et al. 1986). Seagrass at higher temperatures also 

need more light to maintain a positive carbon balance (Lee et al. 2007).With increasing 

durations of water temperature exceeding 30°C due to warming in the mid-Atlantic, 

models of eelgrass meadows indicate that seasonal declines in eelgrass cover will be 

magnified (Carr et al. 2012) and it will exacerbate the loss of essential nursery habitat for 

fish and crustaceans (Micheli et al. 2008).  

Simultaneously, nutrient enrichment, another major stressor that works through 

bottom-up pathways, has been found to reduce eelgrass cover (Valiela et al. 1997, 

Hughes et al. 2004, Lotze et al. 2006, Burkholder et al. 2007, Waycott et al. 2009). 

Although a slight increase in nutrients can initially increase the biomass of eelgrass 

meadows in nutrient limited systems, further enrichment (especially water column 

enrichment) increases the biomass of algal epiphytes, reduces light penetration to the 

blades and ultimately reduces eelgrass biomass (Burkholder et al. 2007). However, if 

present, herbivorous mesograzers such as amphipods can control epiphyte growth, 
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mitigating these negative effects of nutrient enrichment through top-down control 

(Hughes et al. 2004, Spivak et al. 2009, Blake & Duffy 2010, 2012, Myers & Heck 2013).  

Multiple stressors have been shown to alter the balance between bottom-up and 

top-down control and can have interactive effects on habitat forming species and 

associated fauna (Crain et al. 2008). Seagrass systems, including eelgrass meadows at the 

southern extent of its range, are a good model for exploring interactive effects of 

environmental stressors and top-down mitigation of bottom-up impacts because the 

effects of individual stressor on eelgrass biomass and food web interactions within 

eelgrass systems have already been established (Hughes et al. 2004). Burkholder et al. 

(1992) examined the varying seasonal effects of eutrophication on eelgrass in 

experimental mesocosms in North Carolina, and found that even low levels of nitrate 

enrichment (3.5 µM NO3
--N) promoted the decline of eelgrass. Also, Burkholder et al 

(1992) found that this loss was more pronounced in the summer months when water 

temperatures were highest. Further work indicated that increasing the average 

temperature by 3-4°C intensified the effects of water-column nitrate inhibition on 

eelgrass growth (Touchette & Burkholder 2002), suggesting that the effects of increasing 

temperature interact with nutrient enrichment. These studies are valuable for 

understanding the physiological effects of nutrient enrichment and warming within 

seagrass systems, but do not incorporate biological interactions (i.e. trophic top-down 

control).   

Top-down regulation also plays an important role in structuring eelgrass 

ecosystems. Several mesocosm studies have investigated whether increases in blue crab 

density reduce herbivore densities and have negative cascading effects on seagrass 
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biomass (Duffy et al. 2005, Canuel et al. 2007, Douglass et al. 2007). Previous work has 

found that crab presence can reduce amphipod abundance through consumption (Spivak 

et al. 2009) or suppress amphipod grazing (Duffy et al. 2005), both of which increase 

epiphyte biomass. However, there were no cascading effects of grazer abundance or 

changes in grazer behavior on eelgrass biomass. Pinfish (Lagodon rhomboides) are 

another secondary consumer that are extremely prevalent in seagrass habitats during 

summer months (>80% of fishes in North Carolina seagrass trawl surveys; Baillie et al. 

2014). Juvenile pinfish diet consists predominantly of amphipods, and pinfish are thought 

to drive dramatic, seasonal amphipod declines. In deed, as pinfish and other juveniles 

recruit to nursery eelgrass meadows, amphipod densities decline dramatically and remain 

low throughout the summer months (Nelson 1979). Since pinfish become omnivorous 

and consume algal epiphytes as juveniles grow larger (Stoner 1979), they may also have 

a positive effect on seagrass biomass and productivity (Heck et al. 2000). The high 

densities pinfish, and other omnivorous secondary consumers, may play a critical role in 

controlling epiphyte loads when amphipods are at very low densities in eelgrass meadows 

in the summer months.  

Extensive research has been conducted on the independent effects of nutrient 

enrichment, temperature, and food-web interactions on eelgrass, but there remains an 

opportunity to explore the cumulative effects of all three factors, particularly in 

explaining the future geographic distribution of this foundation species. To investigate 

the effects of top-down (secondary consumer pressure), bottom-up (nutrient enrichment) 

and abiotic stressors (warming) we asked: (1) How do heat stress and nutrient loading 

affect eelgrass biomass? (2) How do the effects of heat stress and nutrient loading change 
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with the removal of a secondary consumer pressure? And, (3) are there any interactive or 

reciprocal effects between secondary consumer pressure and stressors in eelgrass 

meadows? We expected elevated water temperatures to enhance heat stress and nutrient 

enrichment to increase epiphytic shading of the blades (both are processes that reduce 

aboveground biomass). Also, we anticipated that removing the secondary consumer 

would release grazers from top-down control and in turn reduce epiphytic cover and 

shading. This would in our predictions, mitigate the effects of nutrient enrichment on 

eelgrass and prevent nutrient enrichment from exacerbating extreme heat stress effects.  

 

METHODS 

We conducted a three-factor mesocosm experiment to explore how elevated 

temperature and nutrient loading affect eelgrass meadows, and whether removing 

secondary consumer pressure influences the direction or magnitude of these effects. To 

mimic natural eelgrass systems, we included a diverse community of amphipods found in 

local eelgrass meadows as our grazers, and manipulated the presence of a regionally 

dominant secondary consumer, pinfish. Temperature (ambient, +1.5°C), nutrient loading 

(ambient, +10µM NH4NO3/1µM KH2PO4) and consumer pressure (grazers + secondary 

consumers, grazers only) were crossed in a fully orthogonal design with six replicates.  

We collected eelgrass cores (~26-cm diameter) from a monospecific eelgrass 

meadow in Middle Marsh, Back Sound, North Carolina in late July 2010. Cores were 

transplanted into 18-L experimental mesocosms in an outdoor flowing seawater system at 

the University of North Carolina at Chapel Hill’s Institute of Marine Sciences in 

Morehead City, NC. We rinsed cores with fresh water, wiped blades to remove all mobile 
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invertebrates and macroalgae, and counted shoot density (29.2 ± 1.3 shoots µ ± SE) 

before placing eelgrass mesocosms in a continuous-flow, sand-filtered seawater system to 

prevent outside colonization of small invertebrates. A community of 50 amphipods, 

collected from water table cultures that mimic local eelgrass grazer communities 

(predominately Gammarus spp. and Ampithoe spp.; Nelson 1979), were added to each 

mesocosm.  

To understand how warming will affect eelgrass biomass and its associated 

community, we conducted this experiment from August 10th through September 21, 

2010, when seasonal temperatures and physiological heat stress are at peak levels. 

Heaters were added to mesocosms to obtain elevated temperatures and mock heaters were 

used in treatments with ambient water temperature to maintain consistent habitat 

complexity. Water temperature of mesocosms and adjacent Bogue Sound was monitored 

three times daily with a hand-held thermometer to quantify difference between heated 

and ambient water treatments and to ensure that ambient mesocosm water matched water 

temperature at the same depth in the adjacent Sound. 

Mesocosm nutrient concentrations were enriched by an additional 10µM NH4NO3 

and 1µM KH2PO4 (20:1 N:P) every three days to mimic storm nutrient pulses. These 

concentrations represent nutrient measurements following stormwater runoff events from 

long-term monitoring of coastal streams in the area (Piehler, unpublished data). Because 

our system experiences elevated nutrients following storm events opposed to a constant 

supply of elevated nutrients, we chose to use a pulse design for water column nutrient 

enrichment instead of slow release fertilizer. NH4NO3 and KH2PO4 were dissolved in 

mesocosm water and the concentrated solution was added to the mesocosms to increase 
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the nutrient concentration by 10µM NH4NO3 and 1µM KH2PO4. Water flow was shut off 

for 30 minutes immediately following the additions to allow nutrients to mix in the water 

column.  

Finally, we added one pinfish (52 ± 1.1 mm standard length, 3.7 ± 0.2 g) to half of 

the mesocosms and ran the experiment for six weeks. This allowed time for amphipod 

abundance to approach carrying capacities representative of in situ conditions (Duffy & 

Harvilicz 2001) and for eelgrass to respond to heat stress in late summer.  At the end of 

the experiment, we removed the pinfish and re-measured each individual’s standard 

length and weight to quantify growth throughout the experiment. Amphipods were 

filtered from the water, sorted from eelgrass blades, and enumerated to quantify final 

densities.  

To determine how elevated temperature, nutrient pulses, and pinfish presence 

affected eelgrass biomass; eelgrass was uprooted, shaken to gently remove grazers, and 

rinsed through a 0.5-mm sieve. We sorted eelgrass into above- and belowground portions 

after scraping each blade to remove all epibionts growing on blades. We also separated 

all macroalgae that accumulated at the top of the mesocosm, spun it to remove excess 

water before measuring wet weight. All portions of the eelgrass were then dried in an 

oven at 60°C for three days and weighed. Finally, we homogenized all above- and 

belowground portions the eelgrass from each mesocosm into a fine powder for C:N 

analysis to understand the effects of nutrient enrichment on nitrogen and carbon content 

of eelgrass.   

We analyzed pinfish growth (change in standard length and weight) and final 

amphipod density, epibiont load, macroalgal biomass, aboveground biomass, and 
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belowground biomass using Generalized Linear Models (GLM) in JMP 10.0. These 

analyses tested for the fully crossed effects of water temperature, nutrient enrichment, 

and pinfish presence, in addition to a block effect (mesocosm position on water table) on 

our independent variables with significance set at an alpha <0.05. Three pinfish were lost 

at an unknown time during the experiment, thus we excluded these mesocosms from the 

analyses. Pinfish growth, amphipod density (Box-Cox power transformed), aboveground 

and belowground biomass met the assumptions of normal distribution therefore we used 

an identity link function for each GLM. Macroalgal biomass fit the Poisson distribution 

with a log link function. When the water table block effect was significant (macroalgal, 

aboveground, and belowground biomass) we determined if there were any interactive 

effects of block and our manipulated factors. However, there was never an interaction 

between water table block and temperature, nutrient, or consumer manipulation. Finally, 

we ran correlations to understand the relationships between macroalgae, average 

mesocosm temperature, and aboveground biomass. 

 

RESULTS 

Mesocosm water quality 

Throughout the six-week experiment, the water temperature in control mesocosms 

did not differ from Bogue Sound water (average control mesocosm and Bogue Sound 

temperature difference: 0.1 ± 0.9°C SE). Water temperature ranged from 22.8°C to 

36.6°C in ambient treatment mesocosms and 25.2°C to 39.7°C in heated mesocosms 

across the whole experiment (Fig. 1). The difference between ambient and heated 

temperature treatments varied according to time of day. In the morning the water 
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temperatures were on average 1.7 ± 0.1°C warmer in the +1.5°C treatment and by only 

0.8 ± 0.1°C warmer in the evening. Salinity averaged 33.7 PSU, but Hurricane Earl 

affected our experiment when it impacted eastern North Carolina on September 2, 2010, 

which resulted in large fresh water influx and power outage (less than three hours) that 

disrupted our water flow. Although this led to a system-wide decrease in water 

temperature, heated temperature treatments remained higher than control temperatures 

following the storm and we did not observe any mass mortality of eelgrass, amphipods, 

pinfish or macroalgae.  

Secondary Consumer 

To understand how secondary consumer pressure, nutrients and warming may 

interact and affect eelgrass biomass we first examined if there were any effects of the two 

stressors on pinfish. Although there were no differences in growth measured as change in 

standard length (final standard length 57.8 ± 0.8 mm, growth 1.5 ± 0.2 mm), nutrient 

enrichment significantly increased the growth measured in weight of pinfish (χ² = 3.95, p 

= 0.047; Table 1) from 1.19 ± 0.21 g in ambient nutrient treatments to 1.76 ± 0.27 g in 

nutrient enrichment treatments (Fig. 2A). Increased water temperature had no effect on 

growth (standard length or weight).  

Grazer Density 

Removing secondary consumer pressure released amphipods from top-down 

control. Pinfish consumed nearly all amphipods when present (4.0 ± 1.5 amphipods 

remaining at the experiment’s end), but with no secondary consumer present, amphipod 

densities reached 607.5 ± 113.0 amphipods per mesocosm (χ² = 93.11, p < 0.001; Fig. 
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2B). Nutrient enrichment (χ² = 1.16, p = 0.281) and warming (χ² = 0.09, p = 0.759) had 

no effect on final amphipod density.  

Epibiont Load 

We expected the increase in amphipod densities due to pinfish removal to reduce 

the epibiont load, but pinfish presence, had no effect on epibiont load (χ² = 2.54, p = 

0.111). However, nutrient enrichment and temperature had an interactive effect on 

epibiont load (χ² = 7.75, p = 0.005, Fig. 2C). When mesocosms did not receive nutrient 

enrichment, increasing water temperature had no effect on epibiont load (0.515 ± 0.090 in 

ambient treatment), but under nutrient loading conditions warming increased epibiont 

load to 0.888 ± 0.237 (Fig. 2C). Epibiont community composition was not quantified, but 

we observed no obvious trends across treatments. Epiphytes consisted predominantly of 

fleshy algae (both turf microalgae and Ulva intestinalis), however some calcareous algae 

were also present.  

Macroalgal Biomass 

Although removing pinfish and releasing amphipods from top-down control did 

not increase epibionts, removing pinfish did cause an increase in the macroalgae, Ulva 

intestinalis, which overgrew seagrass in mesocosms (Fig. 2D). Macroalgae was almost 

completely absent (0.03 ± 0.02 wet g) when pinfish were present, but biomass reached 

34.11 ± 10.10 wet g when pinfish were removed (χ² = 1010.11, p < 0.001; Fig. 2D). 

Additionally, macroalgal biomass was positively correlated (significant at alpha < 0.10) 

with the average mesocosm water temperature (ρ = 0.258, p < 0.087). 
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Eelgrass Biomass & Nutrient Content 

There was a significant interaction between water temperature and pinfish 

presence on aboveground eelgrass biomass (χ² = 11.22, p = 0.001; Fig 2E), with the loss 

of pinfish exacerbating effects of heat stress on aboveground biomass (Fig. 2E). 

Increased water temperature had no significant effect on aboveground biomass when 

pinfish were present, but significantly reduced biomass from 0.24 ± 0.089 g when pinfish 

were present to 0.08 ± 0.035 g when pinfish were absent. Aboveground biomass was also 

negatively correlated with macroalgal biomass (ρ  = -0.365, p = 0.014). There were no 

significant differences in belowground biomass across treatments.  

Although we did not find an effect of nutrients on final epibiont load, macroalgal 

biomass, or eelgrass biomass, nutrient enrichment significantly increased the nutrient 

content of the eelgrass blades (Fig 3A; Table 3), decreasing the C:N ratio from 24.03 to 

21.75 (χ² = 4.32, p = 0.038). This was due to an increase in nitrogen content (χ² = 4.01, p 

= 0.045; Table 2) in the blades from 1.85 ± 0.10% to 2.06 ± 0.07% N.  

 

Discussion 

In this study water temperature was the key factor in controlling eelgrass biomass 

(Fig. 4). Elevating water temperature by approximately 1.5°C (averaged over a diel 

cycle) magnified seasonal heat stress and led to a significantly greater loss of eelgrass 

biomass than in ambient temperature treatments. Nutrient enrichment alone did not cause 

an increase in epibiont or macroalgal biomasses as expected, but did increase the nutrient 

content of the eelgrass blades and interactively, with warming, increased epibiont loads. 

Changes in blade nutrient content did not result in discernible effects propagating up the 
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food chain though amphipod density. Dramatic differences in grazer densities caused by 

pinfish consumption had no effect on epibiont or macroalgal biomass, however we did 

find that pinfish played a critical role in eelgrass systems by directly preventing 

macroalgal accumulation. Pinfish consumed almost all macroalgae in the mesocosms, 

and when pinfish were absent, macroalgae proliferated and presumably further reduced 

eelgrass biomass through shading (Sand-Jensen 1977). Our results suggest that warming 

could reduce seasonal eelgrass habitat through heat stress, which would be compounded 

by an increase in macroalgae. However, as our study demonstrated, there is also potential 

for secondary consumers to mitigate macroalgal accumulation through top-down pressure.  

We conducted this experiment when abiotic stress was greatest at the end of the 

growing season where, at the southern limit of the range, eelgrass meadows annually die-

off in the summer (Kenworthy 1981, Thayer et al. 1984). Since all treatments were 

undergoing heat stress, low eelgrass biomass may have prevented us from seeing clear 

interactions between stressors because heat-stress dominated the response of 

aboveground biomass. However, since a small increase in water temperature enhanced 

the decline of eelgrass biomass dramatically, it is likely warming will continue to cause 

declines, shift the growing season earlier, and eventually move the species range 

poleward. Recent studies have found that for every 1°C increase results in a 5-6 day 

forward shift in the eelgrass growing season (Clausen et al. 2014). Some eelgrass 

meadows at the southern range limit have already experienced a reduction in biomass in 

the last 20-30 years as temperatures have increased by 1.4°C and water quality has been 

degraded between 1984 and 2005 (Micheli et al. 2008). Shoal grass, Halodule wrightii, a 

tropical species with its northern range limit also in North Carolina, may be able to 
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survive in warmer summers, but there has been no change in density in the last few 

decades and it has not begun to colonize eelgrass barrens (Micheli et al. 2008). Continued 

eutrophication of coastal estuaries may facilitate shoal grass colonization of old eelgrass 

meadows as was seen in former turtle grass meadows following bird guano enrichment in 

southern Florida (Fourqurean et al. 1995). Ruppia maritima (widgeon grass) may also do 

well under eutrophication because it has a physiological mechanism to prevent excessive 

nitrate uptake and grows well in enriched systems (Burkholder et al. 1994). However, 

even if shoal or widgeon grass are able to colonize eelgrass meadows, there will be 

significant shifts in the nursery value of seagrass meadows in North Carolina because 

these grasses support a different community of fishes and crustaceans in relation to 

eelgrass (Micheli et al. 2008, Baillie et al. 2014).  

Increased temperatures have also been shown to strengthen herbivore-algae 

interactions (O'Connor 2009) because metabolic rates of consumers increase at a greater 

rate than that of primary producers and result in a trophic skew defined by increased 

consumer:producer biomass (López-Urrutia et al. 2006, Carr & Bruno 2013). However, 

the balance between herbivores and primary producers in response to increased 

temperatures can be dependent on absolute temperature and nutrient supply. For instance, 

recent work has found that top-down interactions only strengthen until temperatures 

reach an organisms thermal optimum where predator metabolism is greatest, after which 

metabolic rates and therefore interaction rates weaken (Englund et al. 2011). Furthermore, 

experimental work has shown that increasing temperatures only shift phytoplankton-

zooplankton systems toward greater relative abundance of consumers in eutrophic 

environments (O'Connor et al. 2009). When examining our pinfish-amphipod-epibiont 
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system, we also observed an interaction between warming and nutrients, however, found 

that warming increased epibiont load under eutrophic conditions opposed to strengthen 

the top-down interaction. Additionally, because temperatures were above optimum (30-

33°C for pinfish; Muncy 1984) reduced metabolic rates may have weakened the top-

down interaction and resulted in greater epibiont loads (Englund et al. 2011).  

Unlike the dramatic effects of warming, we only found moderate effects of 

nutrient enrichment on the eelgrass community. We expected nutrient loading to 

exacerbate the effects of heat stress on aboveground biomass through algal overgrowth or 

nitrate induced carbon limitation. Burkholder et al. (1992) documented 75-95% shoot 

mortality relative to un-enriched controls when under pulsed nitrate enrichment, and as 

there were no differences in epiphyte load between treatments, they attributed die-off to 

nitrate toxicity that was exacerbated by heat stress. We did not see any effects of nutrient 

toxicity compounding heat stress, but rather nutrient enrichment had positive effects on 

eelgrass nutrient content, increasing the nitrogen content in the blades. The pulse design 

of our experiment, reflecting measured nutrient concentrations from local stormwater 

runoff events, prevented eelgrass blades from constantly having to reduce nitrate and 

maintain carbon stores in the blades as in previous experiments that used a press design 

and a higher nutrient concentrations (Burkholder et al. 1992, 1994).  

Across marine systems, positive effects of grazing in reducing nuisance 

macroalgae can be equal in magnitude to the negative effects of water column nutrient 

enrichment on seagrass biomass (Hughes et al. 2004). In both eelgrass mesocosms and 

field experiments, epiphyte loads have rapidly responded to water column nutrient 

enrichment, but amphipods have been found to control fast epiphyte growth, which 
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prevents nutrient loading from reducing eelgrass biomass (Neckles et al. 1993, Douglass 

et al. 2007, Spivak et al. 2009). Unfortunately, we did not successfully quantify epibiont 

loads early in the experiment (2-4 weeks), so we do not know if nutrient enrichment 

caused high initial epiphyte loads before consumers grazed down epiphytes (as found 

previously). The limited response in epibiont load may also be caused by having a full 

community of grazers that has been found to increases stability in response to stressors 

such as nutrients and warming (Spivak 2009, Blake & Duffy 2010, 2012, Alsterberg et al. 

2013). Additionally, our system was more complex than previous work because there 

were multiple consumers (pinfish, amphipods) feeding on multiple resources (epibionts, 

macroalgae, etc.). Spreading consumption across multiple consumers may have also 

limited differences in final epibiont load across treatments and prevented epibionts from 

shading and reducing eelgrass aboveground biomass.  

Previous studies have found that omnivorous pinfish dampen trophic cascades 

because they consume both mesograzers and macroalgae (Bruno & O'Connor 2005). We 

collected pinfish that were representative of the sizes present in the sounds in July when 

the experiment began. The average pinfish length (52 ± 1.1 mm) was within the 

omnivorous size class, where 30% of their diet likely consists of epiphytes in addition to 

mesograzers (Stoner 1979), however, their diet is also determined by the relative 

abundance of macrophytes (Stoner 1979). Instead of having large effects on epibionts 

through cascading effects of amphipod reduction, pinfish had the strongest impact on 

eelgrass by consuming the macroalgae growing on top of the eelgrass in the mesocosms 

(Hughes et al. 2004, Heck & Valentine 2007). Continued nutrient enrichment (Hauxwell 

et al. 2003) and warming (Blake & Duffy 2012) will favor ephemeral and epiphytic algae 
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over eelgrass biomass. Large ephemeral algal mats are present within eelgrass meadows 

and amphipod densities are high in spring and early summer before juvenile fishes (>80% 

pinfish in eelgrass meadows) arrive, after which amphipod density and macroalgal 

biomass quickly decline and remain low until pinfish have migrated out of coastal sounds 

in winter. Our study suggests that pinfish may play an important, possibly 

underappreciated, role in controlling macroalgal accumulation because even at high 

densities, amphipods in our experiment were unable to graze as much macroalgae as a 

single omnivorous pinfish.  

Conducting a mesocosm experiment may have produced some artifacts that must 

be considered when making any extrapolations to natural eelgrass meadows. For instance, 

mesocosms may have exacerbated the quantity of macroalgae beyond what could feasibly 

accumulate in situ. In eelgrass meadows, macroalgae would be swept away by tidal 

currents, while lower flushing rates, higher temperatures, and increased attachment area 

may have facilitated macroalgal accumulation in our experimental mesocosms. Although 

laboratory measurements of light attenuation found that macroalgae reduced light 

penetration and presumably reduced photosynthesis, light levels at the highest macroalgal 

biomass were above 25% of ambient light and, therefore, did not completely prevent 

eelgrass photosynthesis (Fig. 5). We do note that pinfish are very abundant in North 

Carolina eelgrass meadows where macroalgal accumulation is rare in the summer, and 

therefore the macroalgae we observed in pinfish-absent treatments may simply highlight 

that in the field, this consumer provides strong top-down control, consistent in space and 

time, against macroscopic producers such as Ulva.  We are also confident that macroalgal 

consumption by pinfish was not simply an artifact of starvation, as mesocosms contained 
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ample epibiont biomass available for grazing and we did not see any evidence of pinfish 

bites on eelgrass. These observations suggest a preference for macroalgae by omnivorous 

pinfish in our mesocosm trials. 

Among top-down control, nutrient enrichment, and warming, our mesocosm 

results imply that warming is the primary factor controlling eelgrass biomass at its 

southern limit. Continued warming may cause die-backs to occur earlier, persist longer, 

and ultimately result in a local loss of essential nursery habitat. We also found that top-

down control can reduce algal overgrowth of eelgrass by consuming macroalgae, 

preventing macroalgal shading from exacerbating heat stress. Future studies should test 

these findings in situ and further quantify how warming may affect the timing of the 

seasonal die-off and the corresponding negative effects on eelgrass communities due to 

loss of the foundation species. 
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Table 1. Analysis of response of community and ecosystem properties to the individual and interactive effects of consumer presence 

(Pin), nutrient enrichment (Nut), and warming (Temp) using generalized linear models (d.f. = 1 for treatments and d.f = 2 for block for 

all analyses). Significant treatment effects at alpha <0.05 are indicated in bold.  

 

Factors 
Pinfish Amphipod Biomass 

Weight Length Density Epibiont Macroalgae Aboveground Belowground 
χ² P χ² P χ² P χ² P χ² P χ² P χ² P 

Pin     93.11 <0.001 2.54 0.111 1010.11 <0.001 1.63 0.201 0.00 0.953 
Nut 3.95 0.047 1.37 0.243 1.16 0.281 2.56 0.110 0.00 0.999 0.07 0.794 0.01 0.926 
Pin*Nut     0.87 0.352 0.17 0.681 0.00 1.000 0.81 0.369 0.50 0.478 
Temp 2.12 0.145 0.94 0.331 0.09 0.759 0.08 0.773 0.00 1.000 11.22 0.001 0.12 0.728 
Pin*Temp     2.42 0.120 0.09 0.764 0.00 0.999 7.49 0.006 0.19 0.659 
Nut*Temp 2.22 0.136 0.84 0.358 1.10 0.294 7.75 0.005 0.64 0.424 0.14 0.707 0.12 0.725 
Pin*Nut* Temp     0.11 0.743 2.89 0.089 0.57 0.452 0.00 0.988 3.75 0.053 
Block 5.32 0.070 1.79 0.409 1.16 0.561 0.95 0.623 992.47 <0.001 22.95 <0.001 11.42 0.003 
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Table 2. Nutrient content (µ ± 1 SE) of eelgrass measured as percent carbon and nitrogen of aboveground biomass averaged within 

each treatment.  

  Aboveground Belowground 
Treatment %C St Err %N St Err %C St Err %N St Err 
Ambient 37.76 0.21 1.85 0.10 31.15 0.90 0.93 0.02 
Ambient, Pinfish 37.51 0.31 1.93 0.07 30.74 1.29 0.93 0.03 
+1.5°C 37.25 0.16 1.88 0.09 30.77 1.61 0.81 0.04 
+1.5°C, Pinfish 36.90 0.38 1.76 0.06 32.11 0.61 0.81 0.05 
Nutrients 38.23 0.22 2.06 0.07 30.37 1.41 0.88 0.03 
Nutrients, Pinfish 37.73 0.21 2.08 0.11 31.31 0.86 0.88 0.08 
+1.5°C Nutrients 36.59 1.25 1.89 0.08 30.63 0.87 0.91 0.07 
+1.5°C, Nutrients, Pinfish 37.77 0.14 1.91 0.03 32.82 1.42 0.84 0.01 
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Table 3. Analysis of the response of above- and belowground eelgrass carbon and nitrogen content to the individual and interactive 

effects of consumer presence (Pin), nutrient enrichment (Nut), and warming (Temp) using a generalized linear model. Significant 

treatment effects at alpha <0.050 are indicated in bold and d.f. = 1 for all treatments and d.f = 2 for block analyses.  

 

Factors 
Aboveground Belowground 

C:N % Carbon % Nitrogen C:N % Carbon % Nitrogen 
χ² P χ² P χ² P χ² P χ² P χ² P 

Pin 0.21 0.645 0.00 0.971 0.21 0.646 3.39 0.066 1.87 0.172 0.61 0.434 
Nut 4.32 0.038 0.49 0.483 4.01 0.045 0.00 0.999 0.01 0.914 0.02 0.882 
Pin*Nut 0.01 0.934 1.19 0.276 0.07 0.790 0.89 0.347 0.77 0.380 0.21 0.645 
Temp 2.07 0.150 5.94 0.015 4.37 0.037 6.64 0.010 1.41 0.235 3.99 0.046 
Pin*Temp 2.19 0.139 1.85 0.174 1.23 0.268 1.33 0.248 1.35 0.245 0.37 0.541 
Nut*Temp 0.84 0.360 0.35 0.552 1.19 0.275 3.51 0.061 0.01 0.935 3.74 0.053 
Pin*Nut* Temp 0.33 0.565 2.53 0.112 0.48 0.486 0.02 0.896 0.07 0.786 0.59 0.442 
Block 2.39 0.303 0.96 0.617 2.85 0.240 7.93 0.019 6.30 0.043 20.62 <0.001 
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Figure 1. Average daily temperature of heated +1.5°C and ambient water treatments 

across the duration of the experiment. Hurricane symbol represents the arrival of 

Hurricane Earl on September 2, 2011.  
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Figure 2. Final (A) pinfish growth, (B) amphipod density, (C) epibiont load, (D) 

macroalgae biomass, and (E) aboveground biomass at the end of the six-week mesocosm 

trial (µ ± 1 SE) in mesocsoms with pinfish (black), without a pinfish (gray), or pooled 

pinfish treatments (white) under ambient temperature and nutrients (Ambient), elevated 

water temperature (+1.5°C), elevated nutrients (+Nutrients) or both elevated temperature 

and nutrients (+1.5°C, +Nutrients). Values were pooled when a factor was not significant 

at alpha 0.05.   
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Figure 3. Nutrient content of (A) above- and (B) belowground eelgrass at the end of the 

six-week mesocosm trial (µ ± 1 SE) with (black) or without a pinfish (gray) under 

ambient temperature and nutrients (ambient), elevated water temperature (+1.5°C), 

elevated nutrients (+Nutrients) or both elevated temperature and nutrients (+1.5°C, 

+Nutrients).  
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Figure 4. Effects of secondary consumers, increased temperature, and nutrient 

enrichment on an eelgrass community. Pinfish removal released both (1a) amphipods and 

(1b) macroalgae from consumer control. Increases in amphipod density had no cascading 

effects on eelgrass biomass, while increases in macroalgal biomass was correlated with 

lower aboveground biomass (p < 0.1). The quantity of macroalgal biomass that 

!
!
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accumulated when pinfish were absent was correlated with individual mesocosm average 

water temperature (p < 0.05). (3) Increased water temperature reduced aboveground 

biomass, but heat stress and biomass reduction was greatest when pinfish were absent. (4) 

Pulsed nutrient enrichments increased epibiont load only when temperature was elevated 

and had no discernable cascading effects on eelgrass biomass. Nutrient enrichment also 

(5a) decreased the C:N ratio of eelgrass blades and (5b) increased pinfish biomass. Solid 

black lines represent significant effects at alpha < 0.05, gray lines represent correlations, 

and dotted lines represent indirect effects.  
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Figure 5. The relationship of PAR (µE m-2s-1) and irradiance with increasing macroalgal 

biomass (wet g) in experimental mesocosms measured in July 2014.   
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