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ABSTRACT 
 

CHRISTINE C. TOMLINSON:  The First Open-Reading Frames of Kaposi’s Sarcoma-
associated Herpesvirus and Rhesus Monkey Rhadinovirus and their Contributions to the 

Viral Life-Cycle 
 (Under the direction of Blossom Damania) 

 

 Kaposi’s sarcoma-associated herpesvirus (KSHV) is the etiologic agent of 

Kaposi’s sarcoma, primary effusion lymphoma, and multicentric Castleman’s Disease. 

The simian homologue of KSHV, rhesus monkey rhadinovirus (RRV), is highly related 

to KSHV.  The first open reading frames of KSHV and RRV encode for proteins K1 and 

R1, respectively.  Although only 17% similar at the amino acid level, K1 and R1 function 

similarly, scoring positively in a number of cellular transformation assays and encoding 

an immunoreceptor –tyrosine-based activation motif (ITAM).  Both proteins are capable 

of activating B lymphocyte signal transduction and interacting with the major B cell 

kinase, Syk. 

 Expression of K1 in B lymphocytes was found to activate the PI3K/Akt pathway 

and inhibit PTEN, leading to the inhibition of FKHR transcription factors, key regulators 

of cell cycle progression and apoptosis.  K1 expression inhibited apoptosis induced by 

FKHR proteins and the FasL/Fas receptor pathway.  Expression of K1 promotes cell 

survival pathways and contributes to KSHV pathogenesis by preventing virally infected 

cells from undergoing premature apoptosis. 
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 Recent evidence suggests that receptor signaling not only occurs at the cell 

membrane, but from intracellular compartments.  K1 was found to internalize in a 

clathrin-dependent manner, trafficking from the early endosome to the recycling 

endosome.  By blocking signaling of PI3K or Syk, the rate of K1 internalization was 

diminished. Additionally, blocking clathrin-mediated endocytosis inhibited downstream 

signaling by K1 to Akt. The above phenomena are dependent on a functional ITAM of 

K1.  This suggests that K1 signaling is strongly associated with internalization.  In B-

cells, K1 co-internalizes with the BCR, suggesting that K1 scavenges the BCR from the 

surface. 

In order to discern what role R1 plays in the virus life-cycle, the R1 ORF was 

deleted from the RRV genome, by insertion of a GFP expression cassette. By PCR and 

Southern blot analysis, this virus is identical to the wild-type virus, except for insertion of 

the transgene.  This virus will be used to analyze the contribution of R1 to lytic 

replication, establishment of latency, and reactivation from latency.  Additionally, this 

virus can be used to observe the role R1 plays in the development of disease in vivo. 
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“We don’t receive wisdom; we must discover it for ourselves after a journey that no one 
can take for us or spare us”. 

 
-Marcel Proust 
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Kaposi’s Sarcoma 

In 1872, a Hungarian dermatologist described skin lesions that he observed in five 

elderly male patients, which he initially named "idiopathic multiple pigmented sarcoma" 

(117).  Dr. Moritz Kaposi summarized the disease as follows: “Nodules the size of peas 

or hazelnuts, brown-red to blue-red in color. They are either isolated or form groups; in 

the latter case, the central nodules of a plaque retrogress and generate a pitted, dark-

pigmented depression. They usually appear on the feet, then on the hands. As the disease 

progresses, isolated nodules and groups of nodules appear on the arms, legs, face and 

trunk. Finally, identical nodules appear on the mucous linings of the larynx, trachea, 

stomach, intestines and liver. The disease is rapidly lethal, with death within two or three 

years” (80, 81). This disease was later named Kaposi’s sarcoma (KS). 

It is now known that KS is a spindle-cell tumor of endothelial cell lineage. KS has 

a variable clinical course ranging from minimal mucocutaneous disease to extensive 

organ involvement.  KS has been classified into four clinical groups: 

Classic KS: Typically occurs in elderly men of Mediterranean and Eastern European 

background. Classic KS usually has a protracted and indolent course. Common 

complications include venous stasis and lymphedema. As many as 30% of patients with 

classic KS subsequently may develop a second malignancy (54). 

Epidemic AIDS-related KS: Occurs in patients with advanced HIV infection, and is the 

most common presentation of KS. In the United States, KS serves as an AIDS-defining 

illness in 10-15% of HIV-infected homosexual men. In Africa and developing regions, 

epidemic AIDS-related KS is common in heterosexual adults and occurs less often in 
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children. AIDS-related KS is the most clinically aggressive form of KS and remains the 

most commonly diagnosed AIDS-associated cancer in the United States (19). 

Iatrogenic KS: Characteristically occurs following solid-organ transplantation or in 

patients receiving immunosuppressive therapy. However, individuals with congenital 

immunodeficient states are not at increased risk for developing KS. The average time to 

development of KS following transplantation is 30 months (122). 

Endemic African KS: Occurs in younger African men who are HIV seronegative and is 

most typical in sub-Saharan Africa. Striking regional variations in frequency are seen 

with most cases in the central African region (155). The endemic subtype occurs most 

frequently in young children and can present with prominent lymph-node involvement 

(150). Adults with endemic KS can present with typical skin nodules and plaques, which 

usually cover extensive areas of skin. 

Kaposi’s Sarcoma-Associated Herpesvirus 

Epidemiological evidence suggested that KS, particularly epidemic KS, was being 

transmitted by an infectious agent (7).  Over 20 agents have been suspected to be 

involved in KS development, including cytomegalovirus (CMV) and HIV.  In 1994, 

Chang and Moore first described the finding of herpesvirus-like genomic sequences in 

KS lesions from AIDS patients.  Using representational difference analysis, they were 

able to isolate two small fragments from a novel viral genome (39).  They termed this 

virus Kaposi’s Sarcoma-Associated Herpesvirus (KSHV).  Although these fragments 

represented less than 1% of the entire viral genome, within two years the entire virus had 

been sequenced (140).  
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KSHV-related diseases 

Since the initial discovery of KSHV, also called human herpesvirus 8 (HHV-8), it 

has been found that all forms of epidemiological KS lesions, regardless of their source or 

clinical subtype, are infected with KSHV (25).  Along with KS, KSHV is associated with 

several other proliferative diseases. These include primary effusion lymphoma (PEL) and 

multicentric Castleman’s disease (MCD). 

Primary Effusion Lymphoma 

PEL, also known as body-cavity based lymphoma, is a diffuse-large B-cell lymphoma, 

and occurs as malignant effusions in visceral cavities (pleural, peritoneal and pericardial), 

usually without any visible mass.  It appears that most PELs are also infected with 

Epstein-Barr virus (EBV), although dual infection is not a requirement (36).  Majority of 

afflicted patients are homosexual men who are HIV positive. Once PEL develops, most 

patients are resistant to conventional chemotherapy and die of their disease within months 

(36). Cell lines established from PEL, unlike KS tumor explants, stably maintain viral 

episomes at high copy number (50–150 copies per cell) and are the source of virus for 

most virologic and serologic studies. 

Multicentric Castleman’s Disease 

Castleman’s disease is a rare atypical lymphoproliferative disorder classified according to 

the histopathologic findings of the affected lymph nodes as hyaline–vascular, plasma-cell 

type, or a mixed type. MCD is a systemic form of the plasma cell variant with patients 

exhibiting generalized peripheral lymphadenopathy, hepatosplenomegaly, frequent 

fevers, and night sweats (123). Only a subset of plasmablasts in MCD tumors are KSHV-

infected and the proportion of lytically infected cells is higher than other KSHV-related 
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diseases (83).  Dysregulated IL-6 production is what leads to the characteristic clinical 

and histologic manifestations (30).  KSHV encodes a homologue of cellular IL-6, known 

as viral-IL-6 (vIL-6).  Expression of vIL-6 is upregulated in KSHV-associated MCD, and 

has been shown to correlate with disease progression (118). KSHV-related MCD is 

clinically severe, with most patients dying within 2 years (118). 

The Herpesvirus Life-Cycle 

The Herpesviridae family is a large group of viruses, which contain double-

stranded DNA genomes. Biological characteristics, such as clinical manifestation, site of 

replication and site of latency have been used to classify three major subfamilies, 

Alphaherpesvirinae, Betaherpesvirinae and Gammaherpesvirinae within the family 

Herpesviridae (Figure 1) (47). The family name is taken from the Greek verb, herpein, 

meaning "to creep." The name refers to the fact that the members of this family often 

cause latent, recurring infections which progress slowly (137). The archetypal 

herpesvirus, Herpes simplex virus type 1 (HSV-1) is a member of the alpha 

herpesviruses.  HSV-1 establishes a life-long latent infection in neural root ganglia and 

reactivates in innervated epithelial cells, typically of the oral mucosa.  This subfamily 

also includes HSV-2 and Varicella-Zoster virus, the causative agent of chicken pox and 

shingles (137).  The Beta herpes subfamily includes Human cytomegalovirus (HCMV), 

HHV-6 and HHV-7. HCMV has a long replicative cycle and grows very slowly in 

culture.  Members of the beta family have a very restricted host range and can cause 

disease in organ transplant patients and young children.  KSHV is a member of the 

gamma-herpesvirus subfamily.  The gamma herpesviruses are further divided into two  

 



6 

HHV6 

HHV7 

HCMV 

HSV1 
HSV2 

VZV 

MHV68 

HVS

KSHV 

RRV 

EHV2 

EBV

100 amino acid changes

100

89

82

100

100

100

100

GAMMA HERPESVIRUSES 

ALPHA HERPESVIRUSES 

BETA HERPESVIRUSES 

Lymphocryptovirus

Rhadinovirus

Figure 1.  Phylogenetic tree depicting the Herpesvirus Family. This is an unrooted 
phylogram based on the sequence of the viral DNA polymerase gene by parsimony 
analysis using the neighbor-joining method. The scale of the number of amino acid 
changes is shown on the lower-left. (Taken with permission from Damania and Jung 
(47).) 
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classes: gamma-1 or lymphocryptovirus, which includes EBV, and gamma-2 or 

rhadinovirus, to which KSHV belongs.  Viruses in the gamma herpesvirus subfamily 

typically infect T or B lymphocytes and are tightly associated with neoplastic disease.  

This group of viruses has more sequence similarity to each other than to any other 

members of the herpesviridae family 

Herpesvirus infection of host cells begins with attachment of the virus to the 

cellular surface receptors via glycoproteins located on the envelope of the virion.  

Although the cellular receptors and glycoproteins involved for each virus is unique, the 

overall order of infection and replication is very similar across the subfamilies. For 

KSHV, the virus initially binds heparin sulfate via gB and K8.1A glycoprotein. gB then 

binds the host cell surface α3β1 integrin, and utilizes α3β1 integrin as one of the cellular  

receptors for entry into the human endothelial and fibroblast target cells (1). A recent 

study has also shown that KSHV utilizes the transporter protein xCT for entry into 

adherent cells, but not to B cells (79).  Once internalized, the virus uncoats and linear 

viral DNA circularizes as it is transported to the nucleus.   Transcription of viral genes, 

replication of viral DNA and assembly of new capsids take place in the nucleus.   

Viral Replication 

All herpesviruses have two classes of replication: lytic and latent.  During lytic 

replication, viral DNA is replicated by a viral-encoded polymerase and encapsidated into 

infectious virions.  In the course of latent replication, the viral DNA is maintained in an 

episomal state, allowing for it to be replicated in tandem with host chromosomal DNA, 

using host cell replication machinery.  Lytic replication is a highly ordered transcriptional 

cascade in which a viral transactivator gene acts as a master regulator to turn on other 
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genes. For KSHV, that master gene is encoded by open reading frame 50 (ORF50), 

known as the replication and transcription activator (RTA) protein.  RTA binds directly 

to a 16-bp core sequence found in many KSHV promoters, known as the RTA responsive 

element (RRE) (31). 

KSHV Lytic Replication 

Transcription typically occurs in three waves, termed immediate early (IE), early 

(E) and late (L).  This ordered cascade is necessary, due to the large number of ORFs 

encoded by KSHV.  Co-ordination of gene transcription ensures that specific proteins are 

available for each stage of replication.  IE transcription begins with just a few genes that 

then transactivate other viral promoters. E genes are typically enzymes that are involved 

in replication of viral genes, such as DNA polymerase, primase and helicase.  KSHV 

DNA replication is also highly ordered, initiating from a lytic origin (ori-Lyt) within the 

viral genome.  Two functional ori-Lyts have been identified in the KSHV genome. Six 

core replication proteins and two regulatory proteins, namely, RTA and K8, are necessary 

and sufficient for KSHV ori-Lyt-dependent DNA replication (9). RTA binds to a 

consensus RRE in ori-Lyt, and K8 associates with the ori-Lyt DNA through interaction 

with C/EBP α molecules bound on a cluster of C/EBP binding motifs (9).  Replication of 

viral DNA and lytic replication are tightly coupled via the role of RTA. As the master 

transactivator of KSHV lytic gene expression, RTA is also required for replication of the 

viral genome (163). 

L gene expression begins after DNA replication has begun. Proper KSHV late 

gene expression is dependent upon virus lytic replication in cis (38).  Genes expressed in 

the L phase of transcription consist of viral structural genes and those involved in the 
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assembly of viral capsids (115).  Finally, the tegument and envelope are acquired as the 

virion buds out through the nuclear membrane or endoplasmic reticulum. Virions are 

transported to the cell membrane via the Golgi complex, and the host cell dies as mature 

virions are released.  

KSHV Latency 

Only a subset of genes are transcribed during latency. For KSHV, these genes 

include the latency-associated nuclear antigen (LANA) locus that directs the transcription 

of three latent genes from one promoter, coding for LANA, a viral cyclin (vCyclin), and a 

viral FLICE inhibitory protein (vFLIP) (55, 131).  Other latent genes include the kaposin 

locus (141), the K15 gene (148) and in some cell-types one of the viral interferon 

regulatory factor homologues (vIRF) (136).  The KSHV microRNAs are also expressed 

during latency (33).  The restriction of gene expression during  latency  contributes to the 

ability of the virus to escape immune surveillance and establish a persistent infection (28, 

29).  The few latent KSHV proteins expressed deregulate various cellular pathways in 

order to increase the proliferation and survival of infected cells.  LANA, encoded by 

ORF73, is perhaps the most important protein found in latently infected cells.  LANA has 

been shown to have multiple functions, one of which is to physically tether the viral 

genome to the host chromosome (13).  This ensures that the viral genome will be 

replicated and segregated to daughter cells during mitosis (86, 125, 149). In addition, 

LANA associates with various cellular proteins including p53, pRb, and GSK3β, 

stimulating pathways involved in cell survival and proliferation and contributing to the 

oncogenic process in KSHV-associated malignancies (67, 69, 130, 132). 
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Reactivation from Latency 

 Although latency allows KSHV to persist within an infected cell, lytic 

reactivation of the virus is critical to ensure the propagation of the virus.  Additionally, 

expression of viral cytokine homologues function as paracrine factors in stimulating cell 

growth and proliferation (11, 12, 37). Impaired cellular immunity plays a critical role in 

allowing KSHV replication, but the physiological stimuli that induce lytic gene 

expression from a latent state are poorly understood. Chemical agents such as phorbol 

esters or N-butyrate can reactivate KSHV in vitro (100, 131, 143), and proinflammatory 

cytokines have similar, though weaker effects (29, 99, 110). It has also been shown that 

hypoxic conditions can reactivate KSHV by stimulating the transcription of ORF50 (32, 

49, 72).  It is possible that hypoxia is a major contributor to KSHV reactivation in vivo. 

Classic KS, which appears in the apparent absence of immunosuppression, occurs 

predominantly on the lower extremities, a common site of poor circulation in the elderly.  

Additionally, many solid tumors have areas of hypoxia; this could contribute to lytic 

reactivation in a sub-set of infected cells.  There is also preliminary data suggesting that 

some environmental factors may contribute to viral reactivation. The “oncoweed” 

hypothesis suggests that natural products may contribute to increased reactivation, 

enhancing transmission of KSHV in KS endemic areas and accelerating progression to 

KS disease in individuals latently infected with KSHV (164). 

The KSHV genome 

The KSHV genome is approximately 140-150 kilobases. Like all herpesviruses, it 

is a double-stranded DNA molecule that replicates in the nucleus as a closed circular 

episome during latency but is linear during virion packaging and replication.  The  
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Figure 2. KSHV genome map. Viral genes transcribed early upon reactivation are 
indicated in yellow, those transcribed during intermediate kinetics in orange, and 
those transcribed during late kinetics in red. Latently expressed genes are in green. 
Genes that encode proteins involved in immune evasion are indicated in red font. 
(Adapted with permission from Coscoy, 2007 (44).) 
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genome is composed of a unique-long region, flanked by the 20-35 kb terminal repeat 

region composed of 801-base pair, high G+C content, terminal repeat units (140).   Over 

80 ORFs have been identified in the unique long region (Figure 2), although not all have 

an identified function to date.  Structural genes and highly conserved genes involved in 

lytic replication tend to cluster in regions centrally located in the genome.  Genes located 

more centrally tend to undergo much less recombination, whereas the genes located 

towards the ends show much more sequence variability.  In fact, one of these terminal 

proteins, K1, has been used to define KSHV isolates into subgroups, detailed below. 

 Like other gammaherpesviruses, KSHV encodes many ORFs that function to 

modify the host environment to its advantage. Some of these ORFs have homology to 

other gammaherpesviruses, while some are unique to KSHV and others have homology 

to cellular genes.  Whether this is due to mimicry or piracy of cellular genes is not 

known.  Either way, KSHV has modified these genes to its advantage. Expression of 

these different proteins results in down modulation of the immune response, disruption of 

the cell cycle, changes in nucleotide biosynthesis and subversion of cellular signaling and 

proliferation pathways.   KSHV encodes homologues of human cyclin D (vCYC) (98), 

FLICE inhibitory protein (vFLIP) (16), G protein-coupled receptor (vGPCR) (156), 

chemokine homologs (vMIPs) (106), homologue of IL-6 (112), proteins with similarity to 

interferon (IFN) regulatory factors (vIRFs) (111) and a bcl-2 homologue (40).   

The K1 Open Reading Frame of KSHV  

In addition to cellular homologues, KSHV also encodes several genes that are 

unique to the virus.  Among these genes is K1, located at the far left end of the KSHV 

genome, immediately adjacent to the terminal repeats.  Identified in 1997, K1 was 
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predicted to have 289 amino acids and function as a Type I transmembrane protein (90).  

K1 has since been shown to be 46 kiloDaltons, with a predicted signal peptide sequence 

at the amino terminus, an extracellular domain, a transmembrane domain, and a short 

cytoplasmic tail at the carboxyl terminus (Figure 3) (127, 171). Although the sequence of 

K1 from different KSHV isolates is highly variable, there are domains that are highly 

conserved (96, 171).  This includes several glycosylation sites and cysteine residues 

located in the extracellular domain, and two Src-homology-2 (SH2) binding motifs in the 

cytoplasmic tail of K1. These two SH2 binding motifs have been shown to constitute a 

functional immune-receptor tyrosine-based activation motif ( ITAM) in that they and the 

surrounding sequences are spaced in a fashion consistent with that of the ITAM 

consensus sequence, (D/E)X7(D/E)X2YX2LX7–10YX2L/I.  Studies have shown that the 

ITAM of K1 can induce nuclear factor activated T-cells (NFAT), nuclear factor-κB (NF-

κB), calcium mobilization, and phosphorylation of cellular tyrosine residues, all of which 

are indicative of lymphocyte activation (91, 95, 142) (Figure 3). ITAMs are also found in 

other signaling molecules associated with immune cells, such as immunoglobulin α and β 

(Igα, β), CD3γ, FcεRIγ, and several viral proteins such as gp30 of bovine leukemia virus, 

LMP2A of EBV and Nef of SIV (14, 34, 59, 64, 108, 109). Unlike ITAM-based signaling 

of cellular proteins, K1 signaling occurs constitutively, mediated by oligomerization via 

conserved disulfide bonds in the extracellular domains (91, 95, 96). K1 has been shown 

to be expressed in KS lesions, primary effusion lymphoma cells, and multicentric 

Castleman's disease (26, 90, 93, 142).  Thought to be an early gene, K1 is predominantly 

expressed during lytic infection and its transcription is upregulated following TPA 

treatment and is resistant to phosphonoformic acid (PFA), an inhibitor of viral DNA  
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Figure 3.The KSHV K1 signaling protein. A schematic diagram of the KSHV K1 
protein. The K1 protein has an extracellular domain, transmembrane domain, and a 
cytoplasmic tail. The cytoplasmic tail contains an immunoreceptor tyrosine-based 
activation motif (ITAM). K1 signaling induces activity of NF-κB and NFAT and 
results in B-lymphocyte activation. 
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synthesis (90).  Analysis of KSHV’s transcriptional program has indicated that K1 

expression is upregulated during the lytic cycle (78, 84, 121, 144)  However, it has been 

shown that K1 expression is not limited to the lytic cycle. K1 transcripts have been 

detected at low levels in latently infected PEL cells (62, 90, 142).  Recently, Verma et al 

have shown that LANA binds to the K1 promoter, limiting K1 expression during latency.  

RTA reverses the LANA-mediated repression of the K1 promoter, resulting in K1 

upregulation during the latent/lytic switch. Signaling by K1 contributes to the 

enhancement of lytic replication (158). 

K1 has been shown to interact with multiple cellular proteins containing SH2 

domains, including Lyn, Syk, p85, PLCγ2, RasGAP, Vav and Grb2 through the 

phosphorylated SH2 binding motifs that constitute the ITAM (94).  Furthermore, K1 

expression has also been shown to promote the production and secretion of vascular 

endothelial growth factor (VEGF) in both epithelial and endothelial cells and to increase 

matrix metalloproteinase-9 (MMP-9) expression in endothelial cells. These properties of 

K1 are dependent on the SH2 binding motifs in the K1 cytoplasmic tail (162).  

Transgenic K1 mice develop tumors with features similar to spindle-cell sarcomas and 

malignant plasmablastic lymphoma.  Moreover, lymphocytes isolated from these 

transgenic mice show constitutive activation of NF-κB and Oct-2, and enhanced Lyn 

activity (128, 129). 

K1 has also been shown to modulate the expression of the B-cell receptor (BCR).  

The amino-terminal domain of K1 interacts with the μ chain of the BCR-complex, 

inhibiting the intracellular transport of BCR by retaining BCR-complexes in the 

endoplasmic reticulum.  This results in decreased surface expression of BCR (92). 
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KSHV epidemiology 

The exact mode of transmission of KSHV is not completely understood and 

appears to be quite complex. Early hypotheses were that transmission was through a 

sexual route. One study found that men with homosexual behaviors showed a 38% 

prevalence of KSHV as compared to 0% of men with no such activity. The increased 

prevalence correlated with the presence of sexually transmitted diseases (STD) and the 

number of male sexual partners. Co-infection of HIV and KSHV predicted a 50% 

probability for developing KS within 10 years (105). However, transmission from male 

genital secretions, specifically semen, was found to be unlikely due to the low prevalence 

of detectable KSHV in semen samples obtained from either HIV+ or HIV- persons (76). 

In 1997, Vieira et al found that KSHV was transmitted in salivary secretions (159). 

Similarly Blackbourn et al found that KSHV was present in both salivary and nasal 

secretions (23).  In 2000, Pauk et al. also reported that KSHV DNA was found most 

frequently and with increased viral burdens in saliva (120). Sexual practices that include 

oral sex could therefore increase the possibility of transmission.  That being said, 

transmission between heterosexual couples is fairly infrequent (151).  This is thought to 

be due mainly to the poor infectivity of KSHV (27, 71), which results in less than 10% 

seropositivity in the general population outside of KS endemic areas (10). Also 

contributing to the low-levels of KSHV seropositivity are  genetic susceptibility (3, 126) 

and environmental risk factors (164). 

In KS endemic areas, the peak age of acquisition is 6-10 years, which suggests 

that the length of exposure, as well as repeated exposure are factors that contribute to 

sero-conversion. Evidence from many studies suggest that KSHV transmission occurs 
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from mother to child, but this route is horizontal, through saliva, rather than vertical (101, 

104). A high level of KSHV DNA  in the mother’s saliva is the most significant risk for a 

child to contract KSHV (50, 102). 

Studies based on immunofluorescence, Western blot and enzyme-linked 

immunosorbent assays to detect antibodies against latent and lytic genes, have 

demonstrated that KSHV is not ubiquitous throughout the general population as are the 

majority of other human gammaherpesvirus, including EBV. The seroprevalence of 

KSHV tends to be lowest in Asia, with 0.2% of blood donors in Japan testing positive, 

compared to 1–3% in the USA. However, this percentage is significantly higher (28%) in 

certain regions of Italy (68, 135). In areas highly endemic to KS, the range of 

seroprevalence of KSHV has been reported in some cases to be greater than 50% (146). 

The K1 gene of KSHV has been used to identify different clades and sub-groups 

of KSHV.  K1 is located at the extreme left-end of the viral genome.  This gene has been 

shown to have as much as 40% amino-acid sequence variability, resulting from a 

nucleotide substitution rate of up to 85% (73). The high variability has been suggested to 

be due to either recombination between different viral clades or due to selective pressure 

by the host immune-system.  It has been found that within K1 there are epitopes for HLA 

class I-restricted T cells (CTLs), suggesting that CTL-driven evolution has contributed to 

the sequence variability of K1 (154). 

Based upon sequences of K1 from isolates, KSHV was originally designated into 

four subgroups, A, B, C and D, with 13 different clades (171).  B subtypes were found 

almost exclusively in KS patients from Africa, whereas the rare D subtypes were found 

only in KS patients of Pacific Island heritage. C subtypes were found predominantly in 
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classic KS and in iatrogenic and AIDS KS in the Middle East and Asia, whereas U.S. 

AIDS KS samples were primarily A1, A4, and C3 variants.  More recent studies have 

further divided the virus into six subtypes: A, B, C, D, E, and Z, with more than 24 

clades. These data further support a strong association between the KSHV subtype and 

the geographic origin of the infected host. Subtypes A and C are prevalent in Europe, the 

U.S.A., and northern Asia. Subtypes B and A5 predominate in Africa and the D variant is 

found in the Pacific. Subtype E has been discovered in Brazilian Amerindians and a 

unique subtype Z was found in Zambia (58).  A gene encoded at the far right hand side of 

KSHV, K15, has also been used to genotype viral strains. It has been found that there are 

two distinct alleles for K15, M and P, which also show geographic distribution (127).  

Whether a particular viral genotype can be associated with the development or 

progression of KS (or any of the other KSHV-associated diseases) or a particular 

epidemiologic form of KS has not yet been determined. Genotyping of numerous, 

geographically distinct AIDS populations has shown no clear correlation between a 

particular K1 or K15 variant and pathogenesis of KS, PEL, or MCD (73, 77, 88, 170). 

Model systems of KSHV infection 

There are a number of KSHV in vitro tissue culture models that have been 

developed thus far.  The first such models were derived from patient PEL cells.  These B-

cell lines harbor  KSHV as an episome in 100% of cells even after extensive passage in 

tissue culture (8, 24, 35, 70, 74, 82). About half of these cell lines also harbor the EBV 

genome.  In PEL cells, the KSHV genome remains predominantly latent, but lytic 

replication can be induced by chemical induction or ectopic expression of ORF50 (99, 

134). However, induced reactivation is not complete. Only about 20% of the cells 
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undergo lytic reactivation, making the study of the KSHV lytic cycle difficult, as there is 

an 80% background of latency to contend with. While the majority of PEL cells are 

latent, there is a background of ~5% spontaneous lytic reactivation, making the study of 

true latency difficult.  PEL lines can also not help us elucidate the mechanisms of how 

KSHV induces transformation because transformation precedes the establishment of the 

cell line in vitro.  Primary B-cells and some established B-cell lines have been shown to 

be infected by KSHV in vitro, but infection does not lead to prolonged maintenance of 

the viral genome or transformation (15, 22, 116).  This is in contrast to endothelial cells 

which have been shown to be transformed by KSHV infection in vitro (6, 65). 

Many labs have strived to define model systems in which to study KSHV lytic 

replication and de novo infection.  Endothelial and epithelial cells have been shown to be 

targets of lytic replication in vivo. In KS lesions, spindle cells harbor the KSHV genome, 

but all cell lines developed from KS lesions rapidly lose the viral genome after serial 

passage in vitro (4, 5, 17, 97, 152).  Endothelial cells (ECs) are thought to be the 

precursors of spindle cells in KS.  Many EC-based in vitro systems have been described 

and differ slightly, with respect to parental tissue and manner of immortalization, but all 

have yielded valuable information regarding KSHV biology and pathogenesis. These 

include the induction of KS markers, a spindle cell phenotype, and transformation (6, 65). 

Both primary EC (43, 65, 75, 84, 127, 160) and immortalized EC (87, 89, 113, 157) 

infection models have been developed. However, the majority of these systems fail to 

support sustained lytic propagation of KSHV, and latency becomes the predominant state 

of infection.  Eventually, most of these cells lose the KSHV episome. More recent studies 

suggest that infection of more specific EC lineage, particularly lymphatic ECs, results in 
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long-term maintenance of the viral episome and may be a more relevant model for future 

studies (160). 

Much of the studies of KSHV have entailed the individual cloning and 

characterization of viral gene products without viral infection.  This type of analysis has 

proved useful in defining mechanisms of individual gene products of KSHV, but does not 

shed light on the particular gene as it relates to other viral gene products and to the virus 

itself.  This has changed with the recent cloning of the KSHV genome into a bacterial 

artificial chromosome (BAC) (168).  This system allows for the manipulation of the viral 

genome, either individual genes or multiple genes and attainment of pure recombinant 

viruses.  A number of recombinant viruses have been made with this system (85, 166, 

167, 169).  However, the limitations of in vitro culture systems described above still 

apply, so examination of properties of the recombinant viruses is still limited.  Therefore, 

the creation of applicable in vivo model systems is crucial.   

The majority of animal model systems for KSHV have focused on over-

expression of single viral oncogenes in transgenic systems including, K13 (42), LANA 

(63) and K1 (129) or the in vivo growth of malignant cell lines, for which it is difficult to 

evaluate de novo viral tropism and gene expression . These studies have used xenografts 

of  BCBL-1 cells in NOD/SCID mice (45, 124) BCP-1 cells in NOD/SCID mice (24), 

and PEL cells embedded in matrigel injected into C.B.17 SCID mice (153). 

There have also been studies that have described KSHV gene expression within 

human cells, including a xenotransplantation model optimized for the study of HIV-1 

infection (41), another that supported propagation of human PBMC (56), and a third that 

employed direct viral infection of implanted human skin (66). 
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One of the most recent studies evaluated long-term KSHV infection within an 

immunocompromised animal host.  Parsons et al injected NOD/SCID mice intravenously 

with purified virus, which resulted in latent infection of leukocyte populations relevant to 

KSHV pathogenesis and low levels of spontaneous lytic reactivation that resulted in virus 

production.  They also found that engraftment of human hematopoietic tissue into 

NOD/SCID mice prior to KSHV infection allowed for a KSHV-specific immune 

response. Infection of the chimeric mice was attenuated following treatment with 

systemic antiviral therapy (119). 

In another study, An et al injected long-term infected telomerase-immortalized 

human umbilical-vein endothelial cells (TIVE) into nude mice. The tumors had many 

features that define KS tumors, including expression of high levels of LANA and 

lymphatic endothelial specific antigens found in KS. Furthermore, host genes, like those 

encoding IL-6, vascular endothelial growth factor, and basic fibroblast growth factor were 

also up-regulated (6). 

Recent work done by Mutlu et al used the KSHV BAC (KSHVBac36) to transfect 

normal mouse bone marrow endothelial-lineage cells (mECs). This resulted in an 

angiogenic phenotype of the mECs and KS-like tumors that were dependent on 

maintenance of the KSHV genome (114).  However, Bac36 transfection of mECs led to a 

nonproductive infection, further highlighting the limitations of KSHV models, in 

particular for studying viral entry and viral replication. 

The development of these small animal models has certainly shed light on some 

aspects of KSHV biology, but mice are not small furry humans.  Species differences in 

anatomy, metabolism, physiology or pharmacology are an issue, underlaid by further 
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species-specific genetic variations. To more closely examine the pathology of KSHV in 

humans, the development of non-human primate models will prove useful.  At least one 

study has examined KSHV infection in rhesus monkeys, with or without co-infection of 

simian immunodeficiency virus (SIV) (133). It was found that a low-level of DNA 

replication occurred, but there was no disease progression, showing that the rhesus 

monkey is not a suitable animal model for KSHV. 

Other Model Viruses 

 A number of closely related viruses to KSHV have been studied, with the hope of 

making parallel comparisons.  These viruses naturally infect species other than humans. 

One such herpesvirus, herpesvirus saimiri (HVS), was isolated in the late 1960’s from 

squirrel monkeys (107).  This virus has served as a model for oncogenic herpesviruses.  

Although this virus does not cause disease in its natural host, it induces fatal acute T-cell 

lymphoma in other monkey species after experimental infection.  

 A mouse gammaherpesvirus has also been widely studied, murine 

gammaherpesvirus 68 (MHV-68). Isolated in 1990 (60), this virus originally served as a 

model for EBV.  Like HVS, it undergoes lytic replication in tissue culture.  Because 

MHV-68 naturally infects mice, it has served as an in vivo model of pathogenesis, 

allowing for the study of individual genes and their contribution to infection.  But, MHV-

68 is only partially related to KSHV at the genomic level, making for limited 

comparisons.  

Macaque Rhadinoviruses 

 Investigators have identified a number of gamma-herpesviruses in macaque 

species. Rhesus Monkey Rhadinovirus (RRV) is by far the most studied and is detailed 
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below. In addition to RRV, two other rhadinoviruses have been identified.  Initially found 

in tissue from macaques with simian retroperitoneal fibromatosis (RF), which is a rare 

vascular tumor that is similar to KS, these two new herpesviruses were designated as RF-

associated herpesvirus (RFHV). The viruses, RFHVMn and RHFVMm were found in tissue 

from both Macaca nemestrina and Macaca mulatta species, respectively (139).  

Subsequent sequence analysis of these isolates revealed they are even more closely 

related to KSHV than RRV (139, 145). However, only about 7 kilobases from these 

viruses has been isolated.  These viruses have never been found in live animals, and the 

limited availability of preserved RF tissue have prevented the isolation and further 

characterization of RFHVMn and RHFVMm (138). 

Rhesus Monkey Rhadinovirus 

The Discovery of Rhesus Monkey Rhadinovirus 

 In 1997, investigators at the New England Primate Research Center (NEPRC) 

noted that co-culturing of PBMCs from healthy rhesus monkeys with primary rhesus 

fibroblasts (RhF) led to cytopathic effect (CPE) in the fibroblasts.  From these cells, the 

investigators were able to isolate a novel herpesvirus they designated rhesus monkey 

rhadinovirus (RRV), strain H26-95 (51).  Almost simultaneously, investigators at the 

Oregon Regional Primate Research Center (ORPRC) isolated and sequenced a different 

strain of RRV, 17577, from SIV-infected macaques that had developed a 

lymphoproliferative disorder. They subsequently found that healthy animals in the same 

colony also harbored RRV-17577 (18).  Sequence analysis of the two separate isolates 

demonstrated that the two strains were highly homologous, and at the time, were the most 
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closely related herpesvirus to KSHV.  RRV and KSHV share nearly all of the same 

genes, with almost identical genomic organization and co-linear genomes (Figure 4). 

In vivo and in vitro RRV infection 

In captive rhesus macaques, RRV infection appears to be quite high, as many as 

90% of animals are seropositive (18, 147).  Infection rates among wild monkeys have not 

been documented.  Experimental infection of naïve monkeys results in a transient 

lymphadenopathy and febrile illness lasting approximately 12 weeks. Antibody responses 

to RRV remain consistently high and virus can be isolated from peripheral blood.  RRV 

DNA can be detected in lymph nodes, oral mucosa, skin and PBMCs and appears to 

preferentially infect CD20 positive B-cells (103, 165).  It has also been found that some 

animals develop arteriopathy that resembles vascular endothelial lesions observed in KS 

patients.  When co-infected with SIV, rhesus monkeys display an attenuated antibody 

response and a shorter mean survival time when compared to animals infected with SIV 

alone (103).  In one study, co-infection with RRV and SIV led to a lymphoproliferative 

disorder similar to MCD and B-cell hyperplasia (165). 

 In vitro, RRV can be propagated by lytic infection of rhesus fibroblasts (RhF).  

This is a 100% lytic system, and high titer virus can be produced (53).  This is in the 

context of de novo infection, allowing for analysis of viral replication using traditional 

plaque assay.  Viral titers can also be determined using real-time quantitative PCR to 

measure viral genome copies (53).  Latent/persistent systems of infection for RRV have 

also been developed, using transformed and immortalized B-cells (20, 52).  Using either  
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Figure 4. Alignment of RRV and KSHV genomes.  ORFs are colored according the 
code at the bottom of the figure. Arrowheads indicate the 5’ to 3’ direction of coding 
region. Numbers designate each ORF and those preceded by K and R indicates 
uniqueness to KSHV and RRV, respectively.  Lines connecting two ORFs designate 
spliced genes, and TR indicates terminal repeats. ORF size is approximated. (From 
Alexander et al(2))  
 



26 

TPA or RRV-ORF50, these cells can be induced to undergo lytic replication (52). 

Transcriptional mapping of RRV genes expressed during de novo lytic replication has 

been performed and the transcriptional program of RRV was found to closely resemble 

that of KSHV (57), further validating RRV as a model system for KSHV. 

Genetic Manipulation of RRV 

 The ability of RRV to replicate in rhesus fibroblasts allows for the study of the 

contribution of individual open reading frames to overall viral replication. In order to do 

this, genetic manipulation of the viral genome is vital.  The conventional means to do this 

is through homologous recombination in eukaryotic cells, which allows for the 

introduction of specific mutations in the viral genome.  This method has been used to 

create a GFP-expressing RRV recombinant virus (53). In addition, there have been two 

recently described systems that allows for genetic manipulation of RRV:  (i) creation of a 

bacterial-artificial chromosome (BAC) containing the RRV 17577 genome (61) and (ii) a 

set of overlapping cosmids incorporating the H26-95 genome (21).  Using BAC-derived 

RRV, Estep et al infected SIV-positive rhesus macaques, which resulted in the induction 

of B cell hyperplasia, persistent lymphadenopathy, and persistent infection of RRV (61).  

By way of the cosmid system, Bilello and colleagues generated GFP- and secreted-

engineered alkaline phosphatase (SEAP-) expressing RRV. With these viruses, they 

developed several assays to monitor RRV infection, neutralization, and replication. Sera 

from RRV-positive monkeys, but not RRV-negative monkeys, were consistently able to 

neutralize RRV infectivity when assayed by the production of SEAP activity or by the 

ability to express GFP (21).  With the advent of these systems, genetic manipulation and 

characterization of individual ORFs of RRV will be greatly enhanced.  Further 
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investigations into the mechanisms of replication and pathogenesis of RRV will help with 

our understanding of KSHV biology. 

The R1 Open Reading Frame of RRV 

 Since the initial discovery of RRV, many of the KSHV homologous ORFs have 

been analyzed outside the context of the virus. This includes the K1 homologue, R1.  

Like K1, R1 is also encoded by the first ORF.  The initial characterization of R1 showed 

sequence motifs and an organization of structural features similar to K1.  R1 and K1 have 

approximately 27% amino acid identity in their extracellular domains, resembling those 

of the Ig receptor superfamily. R1 and K1 differ significantly in the length of their 

cytoplasmic domains. Unlike K1, which encodes two SH2-domain binding sites, R1 

encodes for thirteen such sites, five of which fit the spacing pattern for an ITAM.  R1 was 

shown to transform rodent fibroblasts and these cells induce multi-focal tumors in nude 

mice. R1 was also able to substitute for the STP oncogene of HVS to immortalize T 

lymphocytes to interleukin-2-independent growth (48). 

 Further characterization of R1 demonstrated that the cytoplasmic domain of R1 is 

capable of transducing signals that elicit B-lymphocyte activation events.  This included 

induction of calcium release, induction of NFAT transcription factor, and 

phosphorylation of cellular tyrosine residues.  R1 was also shown to interact with the 

major B-cell kinase, Syk, causing the phosphorylation of R1 itself (46). 

OBJECTIVES 

 Expression of the K1 protein has been found in all KSHV-associated 

malignancies, albeit to different levels.  This suggests that K1 plays an important role in 

KSHV pathogenesis.  Although K1 itself has not been shown to transform primary B- or 
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endothelial cells in vitro, it has been shown to immortalize primary human endothelial 

cells (161) and deregulate normal signaling pathways in B and endothelial cells. The goal 

of this study was to characterize K1 signal transduction and expression and to 

functionally characterize R1, the RRV homologue of K1.  

1) Analyze K1 signal transduction in B-lymphocytes. 

This study aims to determine K1’s ability to activate the PI3K signal transduction 

pathway in B-lymphocytes. We also analyzed the role of K1 in Fas-mediated 

apoptosis. 

2) Determine if signaling by K1 is regulated by endocytosis. 

There is currently no information about the regulation of surface expression of 

K1. The aim of this project was to determine whether K1 is internalized from the 

surface of cells and whether the signaling function of K1 can influence its 

internalization. We also looked at K1 internalization in B-lymphocytes and how 

this relates to BCR surface expression. 

3) Functional analysis of R1 in the RRV life-cycle. 

The RRV homologue of K1 was identified in 1999 (48). This ORF, termed R1, 

has been shown to be functionally analogous to K1 as determined by signal 

transduction and activation of cellular transcription factors.  In this study, we have 

deleted R1 from the RRV genome and analyzed the properties of the RRVΔR1 

recombinant virus in the context of both lytic infection and the establishment of 

latency.   
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ABSTRACT 

Kaposi’s sarcoma-associated herpesvirus (KSHV) has been implicated in 

Kaposi’s sarcoma, as well as primary effusion lymphoma and multicentric Castleman’s 

disease. The K1 protein of KSHV has been shown to induce cellular transformation, foci 

formation, and to deregulate B-lymphocyte signaling pathways by functionally 

mimicking the activated B-cell receptor complex.  Here we show that expression of K1 in 

B-lymphocytes targets the phosphatidylinositol-3 kinase pathway leading to the 

activation of the Akt kinase and inhibition of the phosphatase, PTEN.  We also 

demonstrate that activation of Akt by the K1 protein leads to the phosphorylation and 

inhibition of the forkhead (FKHR) transcription factor family, which are key regulators 

of cell cycle progression and apoptosis.  We demonstrate that K1 can inhibit apoptosis 

induced by the FKHR protein and by stimulation of the Fas receptor. Our observations 

suggest that the K1 viral protein promotes cell survival pathways, and may contribute to 

KSHV pathogenesis by preventing virally infected cells from undergoing apoptosis 

prematurely. 
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INTRODUCTION 

Kaposi’s sarcoma-associated herpesvirus (KSHV/HHV-8) is a gammaherpesvirus 

that was first identified in Kaposi’s sarcoma (KS) biopsies (13).  KSHV has since been 

found in all epidemiological forms of KS. Viral DNA has been consistently isolated in 

AIDS-associated KS as well as HIV-negative classic and transplant-associated KS (20).  

KSHV has also been associated with lymphoproliferative diseases, such as pleural 

effusion lymphomas (PELs) and multicentric Castleman’s disease (MCD) (51), both of 

which are B-cell in origin.   However, the molecular mechanism by which KSHV induces 

malignancy in its host remains to be resolved.  

At the far left-end of its genome, KSHV encodes a 46 kD transmembrane 

glycoprotein called K1.  This position is equivalent to that of the herpesvirus saimiri 

(HVS) transforming protein (STP) and the R1 gene of rhesus monkey rhadinovirus 

(RRV) (15).  K1 expression has previously been shown to deregulate cell growth, 

inducing foci-formation and morphologic changes in Rat-1 fibroblasts (34).  Additionally 

K1 can functionally substitute for STP of HVS in transforming common marmoset T 

lymphocytes to IL-2 independent growth (34).  Furthermore, transgenic K1 mice develop 

tumors with features of spindle-cell sarcomatoid tumors and malignant plasmablastic 

lymphomas (42). 

K1 is structurally similar to the B cell receptor (BCR).   The cytoplasmic tail 

contains an immunoreceptor tyrosine-based activation motif (ITAM), which has been 

shown to be capable of activating signaling pathways (30, 33) similar to those activated 

by the BCR complex in B-lymphocytes.  However, unlike BCR, it is thought that K1 is 

constitutively active through oligomerization via conserved, extracellular cysteine 
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residues (30).  Activation of K1 leads to phosphorylation of the ITAM, and recruitment 

of the major B cell kinase, syk.  This initiates a signaling cascade in K1-expressing B 

cells (30, 33).  Additionally, the cytoplasmic tail of the K1 protein has been shown to 

induce the phosphorylation of several different signaling molecules including syk, vav, 

cbl, and the p85 subunit of phosphatidyl-inositol-3'-OH-kinase (PI3K) leading to 

lymphocyte activation as measured by calcium mobilization, phosphorylation of tyrosine 

residues, and up-regulation of the NFAT and AP-1 transcription factors (33).   K1 has 

also been shown to inhibit intracellular transport of BCR complexes, and to have effects 

on viral lytic reactivation/replication (29, 31, 32).  Furthermore, lymphocytes isolated 

from transgenic mice expressing K1 showed constitutive activation of NF-κB and Oct-2, 

as well as enhanced Lyn kinase activity (42). 

   The PI3K/Akt pathway is one of the key signaling pathways activated upon 

engagement of the BCR complex. PI3Ks are heterodimeric enzymes consisting of a 

regulatory subunit, p85 and a catalytic subunit, p110 (10).  Consequent to BCR 

activation, p85 is recruited to the BCR-Syk complex, followed by the recruitment of the 

p110 subunit (4, 50).  This results in activation of PI3K and phosphorylation of the lipid-

membrane associated moiety phosphatidylinositol 4,5-bisphosphate (PIP2) to yield 

phosphatidylinositol 3,4,5-triphosphate (PIP3). The Akt kinase specifically binds PIP3 

through its pleckstrin homology (PH) domain, and this event recruits Akt to the plasma 

membrane (2, 21, 55).   The PTEN phosphatase has previously been shown to be a 

negative regulator of this pathway (52, 58).  PTEN catalyzes dephosphorylation at the D3 

position of PIP3, serving to counter the effects of PI3K, and resulting in an inhibition of 

Akt.  Conversely, PTEN is itself inactivated by phosphorylation, leading to the activation 
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of Akt kinase (56, 57).  Active Akt kinase promotes cellular survival mechanisms, by 

directly phosphorylating and inactivating pro-apoptotic factors such as BAD and caspase-

9  (9, 16, 18). Additionally, Akt phosphorylates a family of transcription factors known as 

the forkhead transcription factors (FKHR)(7, 27, 54). Members of this family include 

FKHR, FKHRL1 and AFX.  The net result of phosphorylation of the downstream targets 

of Akt is cell survival via inactivation of the FKHR family, GSK-3β, Caspase-9 and Bad 

(9, 14, 16, 18). 

 At the present time, the exact mechanism by which the KSHV K1 viral protein 

transforms cells and activates B cell signaling pathways remains to be elucidated.  Given 

the fact that K1 elicits B cell signaling events and that the cytoplasmic tail of K1 can 

induce the phosphorylation of a number of different kinases, including the p85 sub-unit 

of PI3K (33), we attempted to dissect the downstream effects of K1 signaling.  Here we 

show that K1 up-regulates the PI3K pathway in B-lymphocytes, resulting in the 

phosphorylation of Akt and PTEN. Further, this event appears to be significantly 

dependent on an intact K1 ITAM motif. Activation of Akt leads to an increase in 

phosphorylation of FKHR transcription factors. Phosphorylation of FKHR family 

members promotes their nuclear exclusion and inhibits their transcriptional activation 

properties (7, 27, 54). FKHR family members modulate transcription of several classes of 

genes involved in cell-cycle regulation, including p27Kip (36, 38), p130 (28), and cyclin-

D1 (46), as well as genes that promote cell death, including Bim (19) and Fas ligand (7).  

We present data demonstrating that expression of the K1 viral protein in B-lymphocytes 

enhances cell survival signals and protects cells from FKHR- and Fas- mediated 

apoptosis.  
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MATERIAL & METHODS 

Plasmid constructs: EF-K1 was constructed as previously described (30). The CD8 

signal peptide and Flag M2 epitope was fused in frame to the amino-terminal end of the 

K1 open reading frame.  Three K1 mutants,  EF-K1YY/FF, EF-K1Y282F and EF-K1ITAM- 

mutants were created using QuikChange Site-Directed Mutagenesis Kit from Stratagene. 

The tyrosines at positions 270, 271(EF-K1YY/FF, EF-K1ITAM-) and 282 (EF-K1Y282F, EF-

K1ITAM-) from EF-K1 were changed to phenylalanine and verified by sequencing.  pGL2-

3xIRS, pcDNA3-FKHR, pcDNA3-GFP-FKHR and pcDNA3-GFP-FKHRAAA have been 

previously described elsewhere (38).  pCDNA3-Bcl-2 was a gift from Dr. John Reed. 

Cell lines, cell culture and transfections: BJAB cells, a human B-cell line that is 

KSHV- and EBV-negative, were maintained in RPMI 1640 medium supplemented with 

10% Calf Serum, penicillin and streptomycin.  40 μg of EF-K1 plasmid or empty vector 

were electroporated in serum-free media into BJABs at 300V and 950μF. 24 hours post-

electroporation, cells were rinsed in PBS and transferred to serum-free media for an 

additional 48 hours.  For luciferase assays, 293 cells were transfected with 1μg of 

pcDNA3-GFP-FKHR or pcDNA3-GFP-FKHRAAA plus 2μg of pCDEF3-K1 or empty 

vector using GenePorter 2 reagent (Gene Therapy Systems) as directed by the 

manufacturer.  Cells were harvested 48 hours post electroporation and luciferase assays 

were performed as previously described (6).  BJAB cells were electroporated with 5 or 10  

μg EF-K1 or empty vector EF, and 5 μg  pCDNA3-FKHR or pCDNA3. A similar 

procedure was performed for transfection of BCBL-1 cells with the GenePorter 2 reagent.   

Cell fractionation: BJAB cells were electroporated and incubated as described above.  

72 hours post-electroporation, cells were harvested and fractionated into cytoplasmic and 
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nuclear lysates using OptiPrep (Nycomed Pharma) as described by the manufacturer with 

the following modifications: harvested cells were rinsed in PBS, pelleted and 

resuspended in 350uL cold buffer A (10mM HEPES [pH 7.8], 10mM KCl, 0.1mM 

EDTA, 0.1mM EGTA, 1mM DTT, 1mM PMSF, Complete Protease Inhibitor Cocktail 

and Phosphatase Inhibitor Cocktail [Sigma]) and incubated on ice for 15 min prior to the 

addition of 40μL 10%  NP40.  Samples were vortexed, centrifuged and cytoplasmic 

supernatants were reserved.  Pelleted nuclei were rinsed in homogenization buffer 

(0.25M Sucrose, 25mM KCl, 5mM MgCl2, 20mM Tris [pH 7.8], phosphatase and 

protease inhibitors) and were resuspended in a final volume of 400 μL in homogenization 

buffer. Nuclei were isolated by underlying with 600 μL 30% OptiPrep and 800 μL 35% 

OptiPrep and centrifuged @ 10,000 rpm for 20 minutes.  Isolated nuclei were rinsed in 

homogenization buffer, pelleted and lysed in NE buffer (20mM Tris [pH 8.0] 420mM 

NaCl, 1.5mM MgCl2, 0.2mM EDTA, 25% Glycerol, 0.5mM PMSF, protease and 

phosphatase Inhibitors) Lysates were incubated on ice for10 min and centrifuged to pellet 

debris.  Supernatants were reserved as nuclear lysates. 

Immunoblotting and Immunofluorescence: 72 hours post-transfection, cells were 

harvested and lysed in RIPA buffer containing phosphatase inhibitor cocktail and 

protease inhibitors. For K1 expression, cells were freeze/thawed 3 times.  Protein 

concentrations were determined by Bradford Assay. 80μg of protein were loaded per lane 

and resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) 

and transferred to nitrocellulose.   Each blot was stained with Ponceau S to ensure that 

equivalent amounts of protein samples were loaded. Primary antibodies were used at 

1:1000 and secondary antibodies were used at 1:2000.  K1 expression was verified using 
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HRP-conjugated anti-Flag M2 (Sigma).  Anti-Akt, anti-phospho-Akt (T308), anti-

phospho-Akt (S473), anti-PTEN, anti-phospho-PTEN, anti-FKHR, anti-phospho-FKHR 

(S256), anti- phospho-PDK1, anti-phospho-GSK3β, anti-phospho-Bad and HRP 

conjugated anti-mouse and anti-rabbit antibodies were all purchased from Cell Signaling 

technologies.  Anti- PI3K (p85) antibody and the anti-phosphotyrosine-HRP conjugated 

antibody (4G10) were obtained from Upstate Biotechnology.  Anti- Caspase 9 antibody 

was a gift from M. Deshmukh. Immunoblotting detection was performed using the ECL 

plus kit (Amersham).   

 For Immunofluorescence assays, 293 cells were transfected as above, rinsed with 

TBS and fixed at room temp in methanol:acetone (1:1), rinsed with TBS and incubated 

for one hour with anti-FLAG M2-Cy3 (Sigma) at room temperature. Cells were rinsed 

with TBS and viewed using fluorescence Leica Axiovert microscope. 

Apoptosis Assay: FKHR mediated apoptosis: 293 cells were transfected with the 

indicated amounts of EF-K1 or EF vector, 3 μg of pCDNA3-FKHR and 1 μg β-

galactosidase expression vector using Superfect (Qiagen). Cells were harvested and 

analyzed 72 hours post-transfection.  Fas-mediated apoptosis: 293, BJAB and BCBL-1 

cells were transfected with the indicated amounts of EF-K1 and EF.  Superfect (Qiagen) 

was used for transfection of 293 cells, electroporation was used for transfection of BJAB 

cells and Geneporter 2 reagent was used for transfection of BCBL-1 cells.  48 hours post 

transfection 1.0 mg/ml of anti-Fas antibody (Upstate Biotechnology) was added in 1% 

FBS and cells were harvested 24 hours later.  Apoptosis was analyzed using ApoAlert 

Caspase-3 Colorimetric Assay Kit from Clontech.  Transfection efficiency was 

normalized to β-gal expression (Galacto-Star, Tropix). 
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TUNEL Assay.  Flow Cytometry:  BJAB cells were electroporated with 20 micrograms 

of EF or EF-K1 expression plasmid. 48 hours post-electroporation, anti-Fas was added at 

1μg/ml in RPMI with 1% FBS and incubated for 24 hours.  Cells were then stained for 

TUNEL using the In Situ Cell Death Detection Kit (Roche) as directed by the 

manufacturer.  Briefly, cells were fixed in 2% paraformaldehyde and permeabilized with 

0.1% TritonX-100 in 0.1% sodium citrate and incubated with the TUNEL reaction 

mixture for one hour.  Cells were rinsed and analyzed by FACScan (Becton-Dickinson) 

and data acquired using Cytomation, Inc.  

RESULTS 

K1 activates the Akt signaling pathway. The KSHV K1 protein has previously been 

shown to induce the phosphorylation of the p85 subunit of PI3K (33).  BJAB cells were 

transfected with EF or EF-K1 expression plasmids. Cells were harvested and cell lysates 

were subjected to immunoprecipation using an anti-p85 antibody to pull down PI3K. 

Immunoprecipitates were run on SDS-PAGE and a western blot was performed using an 

anti-pTyr-HRP antibody. As shown in Fig 1A, we observed an increase in the 

phosphorylation of the p85 sub-unit of PI3K in K1-expressing cells as previously 

described (33). 

To understand the functional consequence of this induction, we analyzed the 

effects of K1 expression on downstream effectors in the PI3K pathway. We transfected 

BJAB B cells with either an EF-K1 expression plasmid or the empty vector, EF. Equal 

amounts of total protein per sample were subjected to SDS-PAGE and Western blot 

analyses were performed.  Each blot was also stained with Ponceau S to ensure that 

equivalent amounts of protein samples were loaded and transferred.  As shown in Fig.1B, 
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EF and EF-K1 transfected cells have equal amounts of the p85 subunit of PI3K and total 

amounts of PTEN.  However, only the K1-expressing cells show a significant increase in 

amounts of phospho-PTEN on Serine 380, as measured by the phospho-specific anti-

PTEN antibody.  Phosphorylation of PTEN at Serine 380 is known to inhibit it from 

actively dephosphorylating PIP3. It has been shown that this inhibition allows for an 

increase in PIP3, which recruits Akt to the membrane, where it can be activated by the 

phosphoinositide-dependent kinase 1 (PDK1) kinase (2, 21).  Interestingly, although we 

observed no increase in the phosphorylation of PDK1 itself, we did see an increase in 

phosphorylation of Akt on residues Serine 473 (S473) and Threonine 308 (T208) in K1-

expressing cells (Fig. 1B).   It has been widely reported that phosphorylation of Akt 

correlates with its activation (21, 26).  Hence, expression of K1 in B cells resulted in the 

activation of Akt while the total levels of this kinase remained unchanged (Fig. 1B).  

Upon dual phosphorylation, Akt has been previously demonstrated to become fully 

activated, detach from the plasma membrane and phosphorylate target substrates such as 

Bad, forkhead transcription factors (FKHR), glycogen synthase kinase-3 β (GSK-3β) and 

Caspase-9 (7, 9, 14, 16, 18, 27, 38). 

Expression of K1 results in the phosphorylation of the FKHR transcription factor 

family.Since K1 activated the Akt kinase in B cells, we investigated effects on the 

downstream targets of Akt.  As shown in Fig. 2, of the four Akt targets we analyzed, only 

the phosphorylation of FKHR is increased in K1-expressing cells.   We have seen similar 

effects of K1 expression on FKHR in 293 cells (data not shown). Finally, there was a 

very marginal increase in the phosphorylation of the pro-apoptotic protein, Bad (Fig. 2). 

To determine if the changes in protein expression and phosphorylation states in K1- 
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Figure 1.  K1 activates the Akt pathway in B cells. A. BJAB cells were transfected 
with EF or EF-K1 expression plasmids as indicated.  Cells were harvested and lysed 
and subjected to immunoprecipitation with an anti-p85 antibody to pull down PI3K.  
A western blot analysis was performed on the immunoprecipitate reactions using an 
anti phospho-Tyr-HRP antibody to detect the phosphorylated p85 sub-unit of PI3K.  
B. BJAB cells were transfected with empty vector (EF) or a K1 expression vector (EF-
K1). Equal amounts of proteins were separated by SDS-PAGE, transferred to 
nitrocellulose, and probed with the indicated antibodies.   Ponceau S staining was used 
to evaluate equivalent loading of the samples.  K1 expression was determined by 
probing with an anti-FLAG antibody. 
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expressing B cells are directly attributable to activation of Akt by PI3K, we inhibited PI3K 

activation by using the specific chemical inhibitor LY294002.  BJAB cells were transfected as 

described above, and LY294002 was added to the culture for a period of 12 hours as previously 

reported (40).  Upon exposure to LY294002, phosphorylation of Akt at Serine 473 is completely 

eliminated while phosphorylation of Akt at Thr 308 is inhibited slightly.   It has been shown that 

the phosphorylation of Akt at S473 is much more sensitive to PI3K inhibition by LY294002 than 

the T308 residue (35) which may account for the different phosphorylation states of the two 

residues in this experiment.  Phosphorylation of Akt re-appears after an additional 12 hours 

(Fig.2, 24 hr panel), and this is most likely due to the drug losing its effect.  There is no inhibition 

of PTEN phosphorylation. We also see a slight inhibition of FKHR phosphorylation after twelve 

hours of exposure to LY294002 in K1-expressing cells and similar to Akt, this is reversed at 24 

hours.  The total levels of FKHR remain unaffected by the presence of LY294002. Curiously, 

LY294002 does not affect the phosphorylation of Bad.  However, it has been shown that there are 

other kinases in addition to Akt that are capable of phosphorylating Bad (61). 

 Activation of the PI3K/Akt pathway and phosphorylation of FKHR by a panel of 

K1 mutants. A lot of importance has been given to the presence of the immunoreceptor 

tyrosine based activation motif or ITAM, present in the cytoplasmic tail of K1. Despite 

significant variation in K1 sequences from different KSHV isolates around the world, 

more than 60 K1 isolates sequenced to date show that the ITAM motif in the K1 

cytoplasmic domain is always conserved (64).  It has been demonstrated that the K1 

ITAM is capable of activating signaling pathways (30, 33) similar to those activated by 

the BCR complex in B-lymphocytes.  In order to investigate whether the K1 ITAM motif 

was responsible for activating the Akt signaling cascade described above, we analyzed 

three mutants of K1 in which the tyrosine residues in the ITAM were individually or 

dually mutated to phenylalanine.  These mutants were cloned into the same EF vector as 
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Figure 2.  Activation of Akt by K1 is inhibited by LY294002.  EF or EF-K1 
transfected BJAB cells were incubated for 12 or 24 hours in the presence of 10μM 
LY294002.  Lysates were subjected to Western blot analysis and probed with the 
indicated antibodies. 
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 wild-type K1, and were named EF-K1Y282F, EF-K1 YY/FF and EF-K1 ITAM- respectively. 

We next determined whether these tyrosine-altering mutations in the K1 cytoplasmic tail 

were capable of activating the Akt pathway in BJAB B cells. Cells were electroporated 

with the aforementioned expression plasmids and western blots were performed to 

analyze the phosphorylation status of PTEN, Akt and FKHR.  As shown in Fig. 3, all 

three K1 mutants, K1Y282F, K1 YY/FF and K1 ITAM- , were unable to phosphorylate PTEN 

and thus unable to inactivate PTEN as compared to wild-type K1.  In addition, analysis of 

the phosphorylation and activation state of Akt suggested that wild-type K1 and to some 

extent, the K1 YY/FF mutant could still activate Akt as measured by phosphorylation of 

T308, but the K1Y282F and K1 ITAM- mutants could not activate this kinase.  Lee et al. had 

previously shown that the K1YY/FF mutant could weakly induce cellular tyrosine 

phosphorylation, although it was at a much reduced level as compared to wild-type K1 

(33). The same pattern was seen when we looked at the FKHR  transcription factor (Fig. 

3).  Wild-type K1 and to some degree, the K1 YY/FF mutant could still induce inactivation 

of FKHR as measured by phosphorylation of FKHR, but the K1Y282F and K1 ITAM- 

mutants could not inactivate FKHR (Fig. 3).   

Expression of K1 results in the cytoplasmic sequestration of  FKHR. Direct 

phosphorylation of FKHR by Akt has been previously shown to result in cytoplasmic 

retention and inactivation of forkhead transcription family members (5, 38, 54).  We 

attempted to determine the cytoplasmic versus nuclear localization of FKHR in response 

to K1 expression. As we were limited by the rounded morphology of B cells, we 

analyzed localization of FKHR in K1-expressing 293 cells, which have a flatter 

morphology and a more demarcated nuclear and cytoplasmic compartment as compared 
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Figure 3.  Activation of the PI3K/Akt pathway by K1 mutants. BJAB cells were 
electroporated with the indicated expression plasmids.  Cells were harvested as 
previously described. Equal amounts of proteins were separated by SDS-PAGE, 
transferred to nitrocellulose, and probed with the indicated antibodies.   The individual 
panels from top to bottom represent western blot performed using an anti-pPTEN, anti-
pAKT (T308) and anti-pFKHR antibody, respectively. Ponceau S staining was used to 
evaluate equivalent loading of the samples.  K1 expression was determined by probing 
with an anti-FLAG antibody. 
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 to B cells.  293 cells were co-transfected with either empty vector EF, or EF-K1 plasmid, 

as well as a FKHR-Green Fluorescent Protein (GFP) fusion protein expression plasmid 

(38, 54.).   In Fig. 4, panels a and b depict the localization of FKHR-GFP in the presence 

of empty vector, EF.  The FKHR-GFP protein resides in both the cytoplasm and the 

nucleus, with the majority of the protein in the nucleus.  This correlates with what has 

been previously shown for this protein (38).  Since FKHR in the nucleus activates 

transcription of pro-apoptotic genes, these cells also appear to be undergoing apoptosis as 

is evident from their morphology. However, in cells where FKHR-GFP was co-expressed 

with K1 (Fig.4, panels c, d, e, f), the FKHR-GFP protein was predominantly excluded 

from the nucleus (see arrow in Fig. 4 panels d, e, f).  This was true for the majority of 

cells expressing both FKHR-GFP and the K1 protein.   This conclusion is strengthened 

by the observation that the adjacent cell, which does not express K1, has FKHR–GFP 

localized to both the nucleus and cytoplasm and appears to be undergoing apoptosis.  To 

determine if the localization of FKHR is dependent on the phosphorylation of FKHR by 

Akt, a mutant FKHR (FKHRAAA) lacking the three Akt phospho-acceptor sites 

Threonine24A, Serine256A, and Serine319A (38, 54) was co-transfected along with the 

EF-K1 expression vector  (Fig. 4, panels g, h, i, j). The FKHRAAA –GFP protein was 

predominantly localized in the nucleus, regardless of whether or not the cell was also 

expressing K1 (Fig. 4, panels g, h, i, j), thus corroborating our observation that K1’s 

effects on FKHR are dependent on Akt phosphorylation of the three aforementioned 

phospho-acceptor sites. Finally, we also analyzed the ability of the K1 mutant, K1 ITAM-, 

and found that it was unable to sequester the FKHR-GFP fusion protein in the cytoplasm 

of the cell (Fig. 4, panels, k,l,m,n).  Thus suggesting that FKHR phosphorylation and 
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Figure 4.  K1 promotes cytoplasmic localization of FKHR.  a. 293 cells were 
transfected with empty-vector (EF) and FKHR-GFP. Transfected cells were fixed and 
examined under bright-field microscopy. b. Panel represents the same cells as in panel a, 
that were examined for expression and distribution of FKHR-GFP (green) under 
immunofluorescence microscopy in empty vector (EF) and FKHR-GFP co-transfected 
cells. Cells expressing FKHR-GFP appear to be undergoing apoptosis based on their 
rounded morphology.  c. Cells were transfected with EF-K1 and FKHR-GFP expression 
plasmids.  d.  Panel represents the same cells as in panel c, which were fixed and 
examined for expression and distribution of FKHR-GFP (green) e. The same cells as 
depicted in panels c and d, were stained for expression of K1 (red) and are shown under 
immunofluorescence microscopy. f.  A merged image of the same cells shown in panels 
c, d, and e.  Yellow represents the co-localization of K1 (red) and FKHR-GFP (green).   
The white arrow indicates a cell that is co-expressing K1 and FKHR-GFP.  The adjacent 
cell to its left expresses FKHR-GFP but is not expressing K1 and appears to be 
undergoing apoptosis. g. Cells were transfected with EF-K1 and the mutant FKHRAAA-
GFP expression plasmids.  h.  The same cells shown in panel g, were analyzed for 
expression and distribution of FKHRAAA-GFP (green).  Based on their morphology, these 
cells appear to be undergoing apoptosis i. Cells were examined for expression of K1 
(shown in red) under immunofluorescence microscopy. j. A merged image of the same 
cells shown in panels g, h, and i.  Yellow represents the co-localization of FKHRAAA-
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GFP (green) and K1 (red).   k. Cells were transfected with FKHR-GFP and the EF-
K1ITAM- expression plasmids.  Transfected cells were fixed and examined under bright-
field microscopy.  l.  The same cells shown in panel k were analyzed for expression and 
distribution of FKHR-GFP (green).  m. Cells were examined for expression of the 
K1ITAM- mutant (shown in red) n. A merged image of the same cells shown in panels k, l, 
and m.  Yellow represents the co-localization of FKHR-GFP (green) and the K1ITAM- 
mutant (red). 
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 localization in K1 expressing cells is dependent on the ITAM motif. 

To confirm the localization of endogenous FKHR in B cells in response to K1 

expression, we transfected BJAB cells with either EF vector or the EF-K1 expression 

plasmid. Seventy-two hours post-transfection, cells were harvested and lysed.  Cell 

lysates were subjected to a nuclear and cytoplasmic fractionation scheme as described in 

the Methods section and Western blot analyses were performed (Fig. 5).  The fractions 

were analyzed for both total FKHR and phosphorylated FKHR.  The amount of phospho-

FKHR present in the nucleus of K1-expressing cells was lower compared to the empty 

vector transfected cells (Fig. 5, left panel).  This is further supported by the observation 

that K1 expression results in an increase in phospho-FKHR protein in the corresponding 

cytoplasmic fraction of K1-expressing cells as compared to empty vector controls (Fig. 5, 

middle panel).  Taken together, our data suggest that the majority of FKHR in K1-

expressing cells is phosphorylated on residue S256, resulting in the cytoplasmic retention 

of FKHR and thereby causing an inhibition of its transcriptional activity (7, 24, 27).  

GRP78, a cytoplasmic protein, was used as a marker to assess the purity of the nuclear 

and cytoplasmic fractions.    

K1 represses FKHR-responsive promoters and can inhibit both FKHR- and 

Fas-mediated apoptosis.  The localization and phosphorylation of FKHR suggests that 

the transcriptional function of FKHR may be inhibited in K1-expressing cells.  The 

observation that FKHR was being retained in the cytoplasm by expression of K1 in B 

lymphocytes prompted us to investigate whether K1 could prevent the activation of the 

FKHR family-responsive promoters.  FKHR has been shown to activate transcription 

from a minimal promoter element contained within the insulin like growth factor binding 
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Figure 5.  Phospho-FKHR is retained in the cytoplasm of K1-expressing B cells.   
BJAB cells were transfected with EF or EF-K1 and whole cell extract (W.C.E.) was 
fractionated into a nuclear and a cytoplasmic fraction. Equal amounts of cytoplasmic and 
nuclear fraction from each sample were subjected to Western blot analysis with the 
indicated antibodies.  The left panel is the nuclear fraction.  Middle panel is the 
cytoplasmic fraction and the right panel is whole cell extract. GRP78, a cytoplasmic 
protein, was used as a marker to assess the purity of the nuclear and cytoplasmic 
fractions.  The arrows point to the FKHR-specific band. 
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 protein-1 (IGFBP-1), known as the insulin response sequence (IRS), and a Forkhead-

responsive element (FHRE) within the FasL promoter (7, 24, 54).  Cells were co-

transfected with varying amounts of EF-K1 or EF empty vector and a luciferase reporter 

plasmid FHRE-Luc that contains three Forkhead-responsive elements upstream of 

luciferase.  A β-gal expression vector was used to control for transfection efficiency.  K1 

repressed the FHRE-Luciferase promoter three-fold (Fig. 6a).  These three Forkhead-

responsive elements are naturally present in the FasL promoter itself (7, 38) and are 

activated upon Fas receptor ligation. We next performed the identical experiment 

described in 6a, but stimulated the transfected cells with an anti-Fas receptor antibody to 

simulate the Fas receptor-dependent death pathway (Fig. 6b).  K1 inhibited the FHRE-

Luciferase promoter 4-fold in the presence of Fas-receptor engagement (Fig. 6b) 

suggesting that the K1 protein can protect against Fas-induced activation of pathways 

leading to cell death.  Cells were also co-transfected with varying amounts of EF-K1 or 

EF empty vector and a different FKHR-responsive reporter plasmid, 3XIRS-luciferase, 

which is comprised of three insulin-response elements upstream of the luciferase reporter 

gene (7, 24, 27).  Again, K1 repressed the 3XIRS-Luciferase promoter three-fold (Fig. 

6c).   

The Forkhead family of transcription factors has been implicated in cell survival 

through regulation of several pro-apoptotic genes, eg. FasL and Bim.  Our observation 

that expression of K1 modulated FKHR expression and localization, as well as its 

transcriptional activity on the FHRE-Luciferase promoter lead us to investigate whether 

K1 could increase cell survival under conditions of apoptotic stimuli, such as over- 

expression of FKHR, as well as engagement of the Fas-receptor through FasL or anti-Fas 
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Figure 6.  K1 represses forkhead-regulated promoters and protects cells from 
FKHR-mediated apoptosis.  a. 293 cells were transfected with 0, 2 or 3 μg of EF-K1 
or EF empty vector and 3ug of a 3XFHRE-luciferase plasmid. A β-gal construct was 
also co-transfected to normalize for transfection efficiency.   48 hrs post-transfection, 
cells were lysed and assayed for luciferase expression. Luciferase activity in the 
absence of K1 was set at 100% activity and relative luciferase activity in the presence 
of different amounts of the K1 expression plasmid was calculated as a percentage of 
this luciferase activity. Error bars represent the variation from the mean. b. Cells were 
transfected similar to panel a, except anti-Fas antibody was used to stimulate apoptosis 
and the FHRE-Luciferase promoter. Luciferase activity in the absence of K1 and 
presence of anti-Fas antibody was set at 100% activity and relative luciferase activity 
in the presence of different amounts of the K1 expression plasmid was calculated as a 
percentage of this luciferase activity. Error bars represent the variation from the mean.  
c. 293 cells were transfected with 0, 2 or 3 μg of EF-K1 or EF empty vector and 3ug 
of a 3XIRS-luciferase plasmid. Luciferase activity in the absence of K1 was set at 
100% activity and relative luciferase activity in the presence of different amounts of 
the K1 expression plasmid was calculated as a percentage of this luciferase activity. 
Error bars represent the variation from the mean.  d. Cells were transfected with 0, 1, 
2, or 3 μg of EF-K1 or EF empty vector and pCDNA3-FKHR. 48 hrs post-
transfection, cells were lysed and assayed for caspase-3 activity. Caspase-3 activity in 
the absence of K1 was set at 100% activity and relative caspase-3 activity in the 
presence of different amounts of the K1 expression plasmid was calculated as a 
percentage of this caspase-3 activity. Error bars represent the variation from the mean.  
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 receptor antibody.  

   Caspase-3 is a downstream effector of both receptor-dependent and receptor-

independent apoptotic stimuli and its activation has served as a marker for cells 

undergoing apoptosis as has been widely reported in the literature (41).  We analyzed 

caspase-3 activity in EF versus EF-K1 expressing cells that were co-transfected with a 

pCDNA3-FKHR expression plasmid to induce FKHR-mediated apoptosis in these cells. 

We observed that expression of K1 in these cells resulted in a ~30% decrease in caspase-

3 activity (Fig. 6d) thus indicating that K1 is able to thwart FKHR-mediated apoptosis. 

To determine whether K1 could inhibit Fas-mediated apoptosis, we transfected cells with 

EF, or EF-K1 vectors, pcDNA3 or pcDNA3-Bcl-2 vectors and 48 hours post-transfection 

stimulated these cells with anti-Fas receptor antibody.  We observed that K1 expression 

resulted in a 50% decrease in caspase-3 activity induced by engagement of the Fas 

receptor as compared to cells transfected with EF vector alone (Fig. 7a).  BJAB cells 

transfected with Bcl-2 showed an ~60% decrease in caspase-3 activity which corresponds 

well with published literature which demonstrated that Bcl-2 antagonizes Fas-receptior 

induced apoptosis in B lymphocytes (1).  Finally, in order to determine whether K1 could 

protect from Fas-mediated apoptosis in KSHV-positive B cells, we repeated this 

experiment in BCBL-1 cells.  We observed that expression of K1 in BCBL-1 cells 

resulted in a ~40% decrease in caspase-3 activity induced by engagement of the Fas 

receptor, while Bcl-2 resulted in a ~60% decrease in caspase-3 activity (Fig. 7b), again 

suggesting that K1 is able to inhibit Fas-death receptor dependent apoptosis. The K1ITAM-

mutant was also tested in the caspase-3 cell death assays described above and only 

showed a 10% decrease in protection against Fas-mediated apoptosis (data not shown). 
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We also performed a TUNEL assay on BJAB cells transfected with either EF vector or 

EF-K1 expression plasmid (Fig. 7c). Cells were incubated with anti-Fas antibody for 24 

hours to induce Fas-receptor dependent apoptosis and a terminal deoxynucleotidyl 

transferase (TdT) mediated dUTP nick end labeling (TUNEL) assay was used to measure 

DNA fragmentation.  BJAB cells were transfected with the EF or EF-K1 expression 

plasmid. 14.86% of cells transfected with EF vector alone were FITC or TUNEL-positive  

while only 7.5% of cells transfected with EF-K1 plasmid were FITC or TUNEL-positive 

by flow cytometry confirming our findings that K1 is able to protect against Fas-

mediated apoptosis. 

 In order to confirm our findings, we also performed an in situ terminal 

deoxynucleotidyl transferase (TdT) mediated dUTP nick end labeling (TUNEL) assay to 

measure DNA fragmentation.  We found that 15% of cells expressing wild-type K1 

stained positive for DNA fragmentation while 39% of cells expressing the K1ITAM- 

mutant protein stained positive by TUNEL.  Thus, we conclude that wild-type K1 is able 

to protect cells from Fas-mediated apoptosis.  

DISCUSSION   

The KSHV K1 protein has been shown to have transforming potential by a wide variety 

transgenic animals and in nude mice injected with K1-expressing cells, and the ability of  

K1 to substitute for the STP oncogene in HVS to immortalize T cells to IL-2 independent 

growth and induce lymphomas in common marmosets (34, 42).  Although K1 mRNA is 

induced upon lytic reactivation, its expression in latent cells cannot be definitively ruled 

out.  K1 mRNA has been shown to be transcribed in KS lesions and in KSHV-infected B 

lymphoma cell lines, although in the latter case this may be a result of lytic K1 
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Figure 7. K1 protects cells from Fas-mediated apoptosis.  a. KSHV-negative BJAB 
B cells were transfected with 0, 5 or 10 μg of EF-K1 or EF empty vector, or pcDNA3 
or pcDNA3-Bcl-2 expression plasmid by electroporation.  48 hrs post-transfection, 
cells were stimulated with 1μg/ml anti-Fas antibody for 24 hours.  Cells were lysed 
and assayed for caspase-3 activity. Caspase-3 activity in the absence of K1 was set at 
100% activity and relative caspase-3 activity in the presence of different amounts of 
the K1 expression plasmid was calculated as a percentage of this caspase-3 activity. 
Error bars represent the variation from the mean. b. KSHV-positive BCBL-1 cells 
were transfected with 0, 2 or 4 μg of EF-K1 or EF  vector, or pcDNA3 or pcDNA3-
Bcl-2 expression plasmid using GenePorter 2 reagent.  48 hrs post-transfection, cells 
were stimulated with 1μg/ml anti-Fas antibody for 24 hours.  Cells were lysed and 
assayed for caspase-3 activity. Caspase-3 activity in the absence of K1 was set at 
100% activity and relative caspase-3 activity in the presence of different amounts of 
the K1 expression plasmid was calculated as a percentage of this caspase-3 activity. 
Error bars represent the variation from the mean. c. BJAB cells were transfected with 
the EF or EF-K1 expression plasmid. Cells were treated with anti-Fas antibody to 
simulate Fas-receptor dependent apoptosis. 24 hours later a TUNEL assay was 
performed.  Cells were stained for fragmented DNA by enzymatically labeling the 
nicked ends with FITC-conjugated-dUTP and assayed by flow cytometry.  14.86% of 
cells transfected with EF vector alone were FITC or TUNEL-positive while only 7.5% 
of cell transfected with EF-K1 plasmid were FITC or TUNEL-positive. 
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 expression in the 3-5% of cells that undergo spontaneous reactivation (6, 45).  

Regardless of whether K1 is expressed during latency, the expression of K1 during the 

KSHV lytic cycle may contribute to the paracrine stimulation that is thought to sustain 

proliferation in most KSHV-associated malignancies (12, 23, 45).  It is possible that K1, 

similar to the KSHV vGPCR protein (12), activates expression of a number of cytokines 

and growth factors needed for expansion of KSHV-associated neoplasms.   Hence, 

understanding  K1’s signaling properties is important to the understanding of  KSHV 

pathogenesis. 

The KSHV K1 protein bears a marked structural resemblance to members of the 

immunoreceptor super-family.  Functional analysis of the K1 protein in B cells has 

demonstrated that K1 can elicit B lymphocyte signaling events.  For K1 mediated 

activation, there is a requirement for the major B cell kinase, syk.  In addition, K1 has 

been shown to induce the phosphorylation of several signaling molecules including the 

p85 sub-unit of PI3K.  Given the fact that the PI3K pathway is linked not only to cell 

activation events but also to cell survival, our analysis here indicates that K1 is able to 

modulate the PI3K pathway by eliciting cell activation and survival responses.  

In B lymphocytes, the Akt kinase is a downstream target of activated PI3K.  

Activation of Akt itself plays an important role in B-cell survival, proliferation and 

differentiation (40).  Here we demonstrate that K1 expression leads to activation of Akt.  

When expressed in B-lymphocytes, K1 activates Akt by inducing phosphorylation at two 

separate residues, Thr308 and Ser473.  Interestingly, K1 simultaneously appears to target 

the phosphatase, PTEN, which is a negative regulator of the Akt pathway. Expression of 

K1 results in increased PTEN phosphorylation, which is indicative of its inactivation. 



72 

Thus, K1 appears to activate Akt by a two-pronged approach that involves 

phosphorylation of the kinase itself as well as its regulatory phosphatase, PTEN.    In 

addition, Akt activation by K1 was inhibited by the PI3K-specific inhibitor, LY294002, 

confirming that K1 modulates Akt via the PI3K pathway.   

 As a key regulator of cell survival events, Akt targets a number of different 

cytoplasmic proteins including GSK3β, Caspase-9, Bad and the FKHR family of 

transcription factors.  As is widely reported, phosphorylation of these proteins by Akt 

generally results in their inactivation and inability to activate pro-apoptotic pathways.  

While K1 expression in B lymphocytes did not change phosphorylation of GSK3β, or 

Caspase-9, it resulted in the marked phosphorylation of FKHR transcription factors and 

altered their cellular localization.   Curiously, the marginal inhibition of FKHR 

phosphorylation levels by LY294002 suggests that although K1 targets Akt, its affect on 

FKHR may be mediated by other kinases besides Akt. Indeed, it is known that serum-and 

glucocorticoid-inducible kinase (SGK) can also phosphorylate FKHR family members 

(8).   A panel of K1 mutants in which the tyrosine residues in the ITAM were 

individually or dually mutated to phenylalanine (K1Y282F, K1 YY/FF and K1 ITAM-) were 

unable or very much reduced in their ability to activate Akt or inactivate PTEN and 

FKHR, suggesting that activation of this pathway is dependent upon the ITAM present in 

the K1 cytoplasmic tail to a significant extent. 

A wide variety of reports have shown that the Akt kinase controls sub-cellular 

localization of the members of the FKHR family via phosphorylation. Phosphorylation of 

FKHR results in the preferential sequestration of these proteins in the cytoplasm, thus 

preventing them from activating their target genes such as FasL and Bim.  The exact 
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mechanism for how this occurs has yet to be investigated.  Phosphorylation may cause 

FKHR to interact with 14-3-3 proteins, resulting in nuclear export and cytoplasmic 

sequestration.  It has also been observed that a decrease in DNA binding results when 

FKHR is phosphorylated on Ser 256 which is located in the FKHR DNA-binding domain 

(62). Similar to other laboratories, we observed that upon transient transfection of a 

FKHR-GFP expression plasmid into cells, FKHR localized mainly to the nucleus. 

However upon K1 co-expression in these cells, the FKHR protein was re-directed to the 

cytoplasm.  This localization was dependent on phosphorylation since a FKHRAAA-GFP 

mutant in which all three Akt phospho-acceptor sites were mutated to alanine 

accumulated in the nucleus, regardless of K1 co-expression.   This observation was 

further supported by the fact that B-lymphocytes expressing K1 showed a decrease in the 

levels of phospho-FKHR in the nuclear fraction accompanied by a concomitant increase 

in phospho-FKHR in the cytoplasmic fraction.  Interestingly, although we saw a specific 

effect of K1 expression on the FKHR family, we did not see an affect on other 

downstream targets of Akt such as GSK-3β and Caspase-9.  This suggests that these 

targets may be regulated by counteractive signals which prevent their phosphorylation 

and it is possible that they may be targets of other KSHV viral proteins such as the 

latency associated nuclear antigen (LANA) (22). 

The biological significance of FKHR retention in the cytoplasm of K1-expressing 

cells was established by analyzing the functional targets of FKHR.   One important target 

of the forkhead family of transcription factors is the Fas ligand.  Specifically, FKHRL1 

mediates the transcription of FasL in response to apoptotic stimuli.  This activation is 

mediated through binding of FKHRL1 to the three Forkhead responsive elements 
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(FHRE) in the FasL promoter.  Secreted FasL binds to the Fas receptor on the surface of 

the cell and establishes a positive feedback loop resulting in cell death.  We observed that 

K1 protects cells from both FKHR-mediated apoptosis and Fas-mediated apoptosis, as 

analyzed by several different apoptosis assays.   

Signaling through the BCR can disrupt the Fas pathway and inhibit apoptosis in 

both primary and established B cell lines (11, 44). Hinshaw et al. (25) have shown that 

this protection is mediated upstream of caspase activation.  Although Fas-mediated 

apoptosis has been well studied, FKHR-induced apoptosis is not completely understood. 

While we did observe that K1 protected cells from FKHR-induced apoptosis, it was to a 

lesser extent than that seen with Fas-mediated apoptosis.  FKHR can transactivate several 

pro-apoptotic genes but has also been shown to repress gene transcription (43).  In 

addition, the FKHR family can regulate genes directly, by binding to their promoters, or 

indirectly through interactions with other cellular factors (48, 63). Importantly a FKHR 

mutant unable to bind DNA to induce cell death, could still induce cell-cycle arrest.  

Hence, although K1 prevents FKHR from translocating to the nucleus, it may not 

preclude FKHR’s ability to interact with other cellular proteins, and although K1 may be 

able to repress the FKHR-regulated arm of the Fas-FasL apoptotic pathway, it may not be 

effective at preventing other types of apoptosis that are regulated by various members of 

the FKHR family.  Conversely, although K1 can prevent FKHR from activating FasL 

transcription, it is possible that it can inhibit other arms of the Fas-FasL pathway as well, 

and may explain why K1 protects cells from Fas-mediated apoptosis more effectively. 

Our data indicate that the K1 protein can activate the Akt pathway in B 

lymphocytes and that this activation event is mediated by PI3K.  This is consistent with 
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recent reports indicating that Akt is a target for other transforming viral gene products, 

simian virus 40 (SV40) large and small t antigens, and Epstein-Barr virus (EBV) LMP1 

and LMP2A proteins (17, 47, 53, 59, 60).  Similar to K1, the KSHV vGPCR protein has 

also been shown to tranform cells and target the Akt kinase (3, 37, 39, 49).  Although 

these reports describe Akt as a target, ours is the first to report the FKHR family of 

transcription factors as the downstream target effectors of a viral transforming protein.  

Given the role of the FKHR family in activating expression of the pro-apoptotic FasL and 

Bim-1 genes, and repressing cyclin D1 expression, the FKHR family seem likely 

candidates for inactivation by viruses to prevent infected cells from undergoing 

apoptosis. 

 In summary, we suggest that the role of the KSHV K1 protein in the viral  

lifecycle is to protect KSHV-infected cells from undergoing premature apoptosis by 

initiating cell survival signals.  Thus, K1’s ability to enhance B cell survival may play an 

important role in the KSHV viral lifecycle. 
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ABSTRACT 

Kaposi’s Sarcoma-associated Herpesvirus (KSHV) is a member of the gammaherpesvirus 

family. KSHV is the etiologic agent of Kaposi’s sarcoma (KS), primary effusion 

lymphoma (PEL) and multicentric Castleman’s disease (MCD). The first open reading 

frame of the KSHV genome encodes a type 1 transmembrane glycoprotein named K1.   

K1 is structurally similar to the B-cell receptor (BCR) and its cytoplasmic tail contains an 

immunoreceptor tyrosine-based activation motif (ITAM) that can activate Syk kinase and 

the PI3K/Akt pathway. Recent evidence suggests that receptor signaling not only occurs 

at the cell membrane, but from intracellular compartments as well. We have found that 

K1 is internalized in a clathrin-dependent manner, and efficient internalization is coupled 

to its signaling function.  Once internalized, K1 traffics from the early endosome to the 

recycling endosome. Interestingly, blocking K1’s activation of Syk and PI3K prevents 

K1 from internalizing.  We have also found that blocking clathrin-mediated endocytosis 

prevents downstream signaling by K1.  These results strongly suggest that internalization 

of K1 is intimately associated with normal signaling.  When K1 internalization was 

examined in B-lymphocytes, we found that K1 co-internalized with the BCR.  

Altogether, these results suggest that K1’s signaling function is tightly coupled to its 

internalization. 
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INTRODUCTION 

Kaposi’s sarcoma-associated herpesvirus (KSHV/HHV-8) is a gammaherpesvirus 

that was first identified in KS biopsies (5).  KSHV has since been found in all 

epidemiological forms of KS (14). Viral DNA has been consistently isolated in AIDS-

associated KS and almost all European/Mediterranean KS (9, 11, 26).  KSHV has also 

been associated with lymphoproliferative diseases, such as PEL and MCD (42), both of 

which are B-cell in origin.   The exact mechanism by which KSHV induces 

transformation has not yet been completely dissected.   

The far left-end of the KSHV genome encodes a 46 Kilodalton (KDa) 

transmembrane glycoprotein called K1.  This position is equivalent to that of the saimiri 

transformation protein (STP) of herpesvirus saimiri (HVS) (29) and the R1 oncogene of 

rhesus monkey rhadinovirus (RRV) (10). K1 is expressed in KS lesions, primary effusion 

lymphoma cells, and multicentric Castleman's disease (1, 16, 20, 35).  K1 is structurally 

similar to the BCR. The cytoplasmic tail contains an immunoreceptor tyrosine-based 

activation motif (ITAM), which has been shown to be capable of activating a signal 

profile (18, 22) similar to that activated by the BCR in B-lymphocytes (34).  The ITAM 

is essentially comprised of two SH2 binding motifs.  Unlike BCR, K1 is constitutively 

active, possibly due to oligomerization via conserved, extracellular cysteine residues 

(18).    K1 has been shown to interact with multiple cellular proteins containing SH2 

domains, including Lyn, Syk, p85, PLCγ2, RasGAP, Vav and Grb2. This interaction is 

thought to occur through the phosphorylated SH2 binding motifs that constitute the 

ITAM in the C-terminus of K1 (21).  Furthermore,  K1 expression has also been shown to 

promote the production and secretion of vascular endothelial growth factor (VEGF) in 
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both epithelial and endothelial cells and to increase matrix metalloproteinase-9 (MMP-9) 

expression in endothelial cells, all of which is dependent on the SH2 binding motifs in the 

K1 cytoplasmic tail (48).  Transgenic K1 mice develop tumors with features similar to 

spindle-cell sarcomatoid and malignant plasmablastic lymphoma.  Moreover, 

lymphocytes isolated from these transgenic mice showed constitutive activation of NF-

κB and Oct-2, and enhanced Lyn activity (32, 33). Additionally, our lab has previously 

shown that K1 activates the PI3K/Akt pathway in both B-cells and endothelial cells, 

protecting cells from apoptosis (43, 47).  

Activation of cell surface receptors by specific ligands often results in 

internalization via clathrin dependent and independent pathways, and internalization of 

receptors is considered an important mechanism by which cells control the intensity and 

duration of signal transduction. Recent findings indicate that internalization of receptors 

can allow signal propagation and amplification due to the high order of regulation of the 

endosome, using the compartmentalized organization of the endocytic pathway, going 

beyond the conventional role of receptor/cargo degradation.  Some receptors, such as 

EGF or FGF, can maintain their signaling activities from within intracellular 

compartments (3, 39).   

In this study, we show that K1 is internalized via clathrin-mediated endocytosis, 

and that K1’s ability to signal is coupled to its internalization.  We further demonstrate 

that blocking downstream signaling by K1 prevents its internalization, and that blocking 

internalization prevents K1 activation of the PI3K/Akt pathway. 
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MATERIALS AND METHODS 

Reagents and Antibodies.  LY294002 and Amantadine were purchased from Sigma 

Chemicals (St. Louis, MO). Piceatannol was purchased from Calbiochem (La Jolla, CA) 

Anti-FLAG M1 and M2-Cy3 antibodies were purchased from Sigma Chemicals. Anti-

Clathrin-HC antibody was purchased from Santa Cruz Biotech.  anti-TfR-Alexa 647, 

anti-IgM-Alexa 647, and anti-Rabbit Alexa-647  were purchased from Molecular Probes, 

Invitrogen (Carlsbad, CA). Goat anti-mouse IgG, goat anti-mouse HRP and 1-step ABTS 

were purchased from Pierce (Rockford, IL) anti-Akt (S473), anti-Akt, and anti-Rabbit 

HRP were purchased from Cell Signaling (Danvers, MA).  Anti-EEA1-FITC was 

purchased from BD Pharmingen (Franklin Lakes, NJ). 

cDNAs, cell lines and transfections.  pEF-K1WT, pEF K1ITAM- have been previously 

described (43). pEF-K1ΔC was constructed by deleting the C-terminus of K1 (Figure 1). A 

cDNA encoding the clathrin hub fragment that contained an amino-terminal T7 epitope 

(MASMTGGQQMG) was provided by J Trejo (University of North Carolina). Rab-11 

GFP was a kind gift from Stephen S. G. Ferguson, University of Western Ontario. 

 HeLa cells stably expressing the tetracycline-regulatable chimeric transcription 

factor (tetR-VP16),generously provided by J Trejo (University of North Carolina), were 

cultured in DMEM supplemented with 10% fetal bovine serum, 4.5 mg/ml glucose, 

100 units/ml penicillin, 100 µg/ml streptomycin, 100 µg/ml G418.  Cells were plated at 

1.5 x 105 or 2.5 x 105 cells per well of 12-, or 6-well plates, respectively, and grown 

overnight. Cells were then transiently transfected with a total of 0.8 or 2.0 µg per well of 

12- or 6-well plates, respectively, of plasmids encoding FLAG-tagged K1 wild-type or 
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mutants and either pcDNA vector, or GFP-fusion constructs using LipofectAMINE 

Reagent (Invitrogen) according to the manufacturer's instructions.  

 DG-75 cells, a human B-cell line that is KSHV- and EBV-negative (19), were 

maintained in RPMI 1640 medium supplemented with 10% FBS, penicillin and 

streptomycin.  40 ug of pEF-K1 wild-type, mutants or empty vector were electroporated 

in serum free media into 8 x 106 DG-75s at 300V and 950μF.  

Internalization Assay. To follow internalized receptors, HeLa cells transiently 

expressing similar amounts of FLAG-K1 wild type or mutants were incubated with the 

calcium-dependent M1 anti-FLAG antibody for 1 h at 4°C. Under these conditions only 

receptors present on the cell surface bind antibody. Cells were washed and incubated for 

various times at 37°C. Surface-bound antibody was then removed by three washes with 

PBS (Ca2+- and Mg2+-free) containing 0.04% EDTA for 5 minutes at 4°C. Cells were 

then lysed in Triton lysis buffer (50 mM Tris-HCl, pH 7.4, 100 mM NaCl, 5 mM EDTA, 

3% BSA, and 1% Triton X-100). Sandwich enzyme-linked immunosorbant assay 

(ELISA) was used in which anti-FLAG antibody was allowed to bind to immobilized 

goat anti-mouse antibody and was detected by free goat anti-mouse antibody coupled to 

HRP. The 96-well plates (Greiner Bio-one, Catalog# 655061) were coated with 1 µg/well 

goat anti-mouse antibody (Pierce) in 0.1 ml of PBS overnight at 4 °C. Each well was next 

incubated with 0.2 ml of 3% BSA in PBS for 3 h to block nonspecific binding. Lysates 

were applied to the plates, which were then incubated for 3 h at room temperature and 

then washed 3x in PBS. Each well was incubated for 1 h with 0.5 µg of HRP-coupled 

goat anti-mouse antibody in 0.1 ml of PBS containing 3% BSA. After five washes in 

PBS, 0.2 ml of HRP substrate was added, and incubated in One Step ABTS solution 
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(Pierce), which contains the substrate for HRP. HRP activity was determined by 

measuring A of this solution at 405 nm using Fluostar-Optima microplate 

spectrophotometer (BMG Laboratories.) 

Cell Surface Biotinylation and Endocytosis Assay. Transfected HeLa cells grown on 

100mm tissue culture plates were incubated with 1.5 mg/ml of sulfosuccinimidyl 2-

(biotinamido) ethyl-dithioproprionate (sulfo-NHS-SS-biotin; Pierce Chemical Company) 

at 4° C for 1 hour, and washed with 15mm glycine in PBS to quench any free sulfo-NHS-

SS-biotin. This was followed by several washes with PBS. To measure cell surface 

biotinylated proteins, cells were then lysed in 0.5 ml of RIPA buffer (20 mm Tris-HCl pH 

7.4, with 150 mm NaCl, 0.1% SDS, 1% Triton X-100, 1% deoxycholate, 5 mm EDTA) 

containing protease inhibitors. To measure internalized biotinylated proteins, PBS was 

replaced with complete DMEM medium at 37° C for 10 and 30 minutes. Cells were 

incubated in two 30-minute washes of glutathione stripping solution (60 mm glutathione 

and 0.83 mm NaCl, with 0.83 mm NaOH and 1% BSA) at 4° C, which removed all cell 

surface biotin groups. Remaining biotinylated proteins were sequestered inside cells by 

endocytosis and were therefore protected from glutathione stripping. Cell extracts were 

centrifuged to remove cell debris and obtain a detergent soluble supernatant, which was 

incubated with streptavidin beads (Sigma Chemical Company) to collect bound, 

biotinylated proteins. These samples were then analyzed by SDS-PAGE and 

immunoblotted to identify K1-FLAG-fusion proteins. 

Immunofluorescence confocal microscopy.  HeLa cells plated on Collagen-coated glass 

bottom dishes (MatTek, Ashland, MA) or DG-75 cells in suspension were preincubated 

with rabbit polyclonal anti-FLAG-Cy3 antibody for 1 h at 4°C to label the surface 
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molecules, washed, and then left untreated or treated for various times at 37°C. Cells 

were fixed and processed for confocal microscopy.  Briefly, cells were fixed in 2% 

paraformaldehyde and permeabilized with 100% methanol. Cells were blocked with 5% 

normal goat serum. Co-localization of K1 with sub-cellular structures was assessed by 

incubating permeabilized cells with antibody for 1 h at 25°C, followed by species-

specific fluorophore-conjugated secondary antibodies, and then imaged using an 

Olympus FV500 Confocal Laser Scanning Microscope.  

Amantadine and hypertonic treatments.  Clathrin pit–mediated endocytosis was 

inhibited using amantadine (2mM Amantadine in DMEM with 1% BSA) or hypertonic 

medium (20% sucrose in DMEM with 1% BSA) for 30 minutes as described previously 

(13, 31) and assayed as indicated in the specific sections. 

Western blot assays. To detect Akt phosphorylation, transfected HeLa cells were serum 

starved for 48 hours; cells were harvested and lysed in RIPA buffer containing protease 

and phosphatase inhibitors.  One hundred µg of each protein sample were subjected to 

SDS-PAGE and transferred to a nitrocellulose membrane and probed with anti-Akt-

Ser473 (Cell Signal). After detection, membranes were stripped and re-probed using Akt 

(total) antibody (Cell Signal). 

RESULTS 

Rate of K1 Internalization.  In order to determine how surface expression of K1 is 

regulated, we first compared internalization rates of wild-type K1, a K1ITAM- mutant in 

which both tyrosines present in the two SH2 binding motifs have been mutated to 

phenlyalanines (43), and a mutant of K1 in which the entire carboxyl terminus has been 

deleted, K1ΔC  (Figure 1A).  HeLa cells were transiently transfected with either FLAG-
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tagged K1WT, FLAG-tagged K1ITAM- or FLAG-tagged K1ΔC for 48 hours and then labeled 

with the calcium-dependent M1-FLAG antibody for 1 hr at 4°C. Cells were washed to 

remove unbound antibody and incubated at 37 °C for various time points.  After 

incubation, the remaining surface bound calcium-sensitive M1-FLAG antibody was 

stripped using an EDTA/PBS solution.  Cells were lysed and the amount of internalized 

M1-FLAG was quantified by a FLAG ELISA.   For K1WT, after 10 minutes at 37 °C, 

~40% of the receptor had been internalized, appearing to reach a steady-state of 

internalization.  There was a slight increase in internalized K1 to ~60% after 80 minutes 

at 37 °C (Figure 1B).  For the K1ITAM- mutant, ~20% of receptor had been internalized by 

10 minutes, and this appeared to be a steady-state level. After 10 minutes, approximately 

10% of K1ΔC surface receptor had been internalized, reaching ~20% internalization after 

80 minutes at 37 °C (Figure 1B.) These results suggest that elements in the C-terminus of 

K1 are involved in internalization.  Thus, wild type-K1 internalizes most efficiently, its 

rate of internalization increasing over time. 

To confirm that K1 internalization is not dependent on antibody crosslinking, cell 

surface biotinylation and internalization of K1 and mutants was analyzed. We used a 

biotin endocytosis assay that employed the disulfide-linked NHS-SS-biotin, which 

permits cleavage of any biotin from the cell surface after the 37°C endocytosis step with 

glutathione (2, 4, 30, 49). Internalization of biotinylated glycoprotein protects the biotin 

from cleavage. Biotinylated proteins were then immunoprecipitated with streptavidin 

conjugated beads and subject to SDS-PAGE analysis. Membranes were then probed with 
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Figure 1.  Internalization of K1 in HeLa Cells. (A) Diagram of the amino acids in 
the C-terminus of K1 and mutants. The ITAM is highlighted. (B) Transfected cells 
were surface labeled with M1 anti-FLAG antibody at 4oC for 1 h, washed and 
incubated for times indicated at 37oC. Antibody remaining on the surface was stripped 
off and cells were lysed.  Internalized antibody was quantified by ELISA. The data are 
expressed as a percentage of the initial amount of antibody bound to the cell surface at 
0 minutes at 4oC. 
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Figure 1.cont’d. (C) Endocytosis of K1 in a biotin endocytosis assay. HeLa cells 
were transfected with K1 and mutant expression plasmids as indicated above each gel. 
The samples were processed for the biotinylation endocytosis assay as described in the 
methods section.  Biotinylated proteins were internalized by transferring the cells to 
37° C for 10 and 30 minutes. The + and – symbols indicate  glutathione (GSH) 
treatment. Cells were then lysed and all biotinylated proteins immunoprecipitated 
using streptavidin beads. FLAG-K1 was detected in cell surface and intracellular 
pools by immunoblotting.  (D) Same samples as in C, representing 1% of input sample 
before immunoprecipitation. 
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 antibody specific to the N-terminal FLAG epitopes on each construct.  The 0 min-  lane 

shows total cell surface biotinylation of K1 proteins before the glutathione cleavage step. 

The 0 min+ lane indicates that the cells were not returned to 37°C and were instead 

immediately treated with glutathione; the absence of K1-specific bands demonstrated that 

the cleavage step removed all remaining cell surface biotin to an undetectable level. For 

the 10 min+ and 30 min+, cells were incubated at 37°C for the indicated time before the 

cleavage step. Thus, if K1were internalized, a band would be detectable in these lanes. As 

can be seen in Figure 1C, K1WT internalization is detectable by 10 minutes after 

incubation at 37°C, and continues at 30 minutes at 37°C.  However, for the two mutants, 

K1ITAM- and K1ΔC, no specific bands appear at the times tested, indicating that neither of 

these two mutants were protected from cleavage by glutathione, and were therefore not 

endocytosed. The banding pattern seen for the K1 constructs is typical, showing a major 

band at 46KDa, and larger bands running at 100, 150, and 200KDa, most likely due to 

oligomerization through extracellular disulfide bonds (17, 18, 23), indicated by arrows.  

The asterisk denotes non-specific bands. Input levels of biotinylated proteins are also 

shown (Figure 1D).  Before immunoprecipitations were performed, a fraction of the 

lysate from each sample was removed and subjected to SDS-PAGE analysis.  Membranes 

were probed with same antibody as in Figure 1C. 

Confocal microscopy analysis of HeLa cells transiently transfected with the WT 

and mutant K1 constructs support our ELISA data.  Cells transfected with FLAG-tagged 

K1WT, FLAG-tagged K1ITAM- or FLAG-tagged K1ΔC were labeled with an anti-FLAG-

Cy3 antibody, washed, and incubated for various times at 37°C.  After incubation, cells 

were fixed and analyzed by confocal microscopy. After 20 minutes incubation, K1WT 
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Figure 2. Confocal analysis of K1 internalization.  Cellular localization of K1 after 
surface labeling of K1-FLAG constructs.  Cells were labeled with anti-FLAG-Cy3 at 
4oC for 1h, and then transferred to 37oC for times indicated. Cells were fixed and 
analyzed by confocal microscopy. K1 expression constructs used are described in 
Figure 1. 
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localized predominantly to endocytic-like structures (Figure 2). In contrast, K1ITAM- and 

K1ΔC mutants were maintained predominantly at the surface at both 20 minutes and 60 

minutes suggesting that their internalization is severely compromised. 

   We next determined whether K1 was recycled after being endocytosed.  EEA1 

served as a marker of early endosomes, and Rab11 was used as a marker for recycling 

endosomes. HeLa cells were labeled for K1 surface expression as described above and 

incubated for 20 minutes at 37°C.  Permeablized cells were labeled with anti-EEA1-

FITC. EEA1, is a Rab5 effector protein associated with the cytoplasmic side of early 

endosomes (6).  As can be seen in Figure 3A, wild-type K1 co-localizes with EEA1, 

indicating K1 traffics to the early endosome.  While the majority of K1ITAM- and K1ΔC  

remains on the surface of the cells, what little does internalize, appears to co-localize with 

EEA1.  We also analyzed K1 trafficking without pre-labeling with a Flag antibody. 

Transfected HeLa cells were placed on ice for 10 min, and then moved to 37°C for 20 

minutes.  Cells were permeablized and stained with anti-FLAG-Cy3 and anti-EEA1-

FITC antibodies, and analyzed by confocal microscopy.  Similar to pre-labeled cells, 

wild-type K1 appears to co-localize with EEA1 (Figure 3B), with little or no co-

localization of EEA1 with K1ITAM- and K1ΔC. 

We also co-expressed K1 with Rab11-GFP.  Rab11 has been shown to coordinate 

traffic through the recycling endosome (45).  Our confocal analysis revealed that K1WT 

appears to traffic to the recycling endosome, as indicated by co-localization with Rab-11-

GFP after incubating at 37°C for 90 minutes.  Conversely, K1ITAM- and K1ΔC do not 

appear to co-localize with Rab-11 (Figure 3C). K1 trafficking to the recycling endosome 

was examined without pre-labeling, as well.  As can be seen in figure 3D, K1WT co- 
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Figure 3. Sub-cellular trafficking of K1. (A) K1 expressing HeLa cells were 
incubated with anti-FLAG-CY3 for 1h at 4oC. Bound receptors were allowed to 
internalize for 20 minutes at 37oC and subsequently labeled with FITC-labeled anti-
EEA1 antibody. (B) K1 expressing HeLa cells were fixed, permeablized and labeled 
with anti-FLAG-CY3 and FITC-labeled anti-EEA1 antibody. 
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Figure 3 cont’d (C) HeLa cells were co-transfected with K1 expression vectors and a 
Rab11-GFP expression vector. Cells were surface labeled with anti-FLAG-CY4 for 1h 
at 4oC. Cells were incubated at 37oC for 90 minutes. Cells were fixed and imaged by 
confocal microscopy. (D) HeLa cells co-transfected with K1 constructs and Rab11-
GFP were fixed, permeablized and labeled with anti-FLAG-CY3 and analyzed by 
confocal microscopy. 
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 localizes with Rab11 in contrast to the two K1 mutants.  

K1 is internalized in a clathrin-dependent manner. We next investigated whether K1 

is internalized through a clathrin-dependent pathway.  We first analyzed co-localization 

of WT K1 and the clathrin heavy-chain.  WT FLAG-K1 transfected HeLa cells were 

incubated with anti-FLAG-Cy3 at 4°C, so that only K1 on the cell surface is labeled.  

Cells were placed at 37°C for 5 minutes, fixed, permeabilized, and labeled with anti-

Clathrin-FITC antibody, which stains the clathrin heavy chain. Cells were examined by 

confocal microscopy. As can be seen in Figure 4A, K1 appears to co-localize with 

clathrin. We next looked at the effect of a dominant-negative clathrin hub. Hub is the C-

terminal third of the clathrin heavy chain (25) and has been shown to act as a dominant-

negative clathrin inhibitor by competing for light chain binding (24).  Cells were 

transiently transfected as above with the addition of an expression vector encoding the 

clathrin hub fragment with an amino-terminal T7-epitope.  Cells were labeled with an 

anti-FLAG-Cy3 at 4°C and moved to 37°C for 20 minutes.  Cells were then fixed and 

permeabilized. Cells expressing the clathrin hub mutant were identified by co-staining for 

the T7 epitope. Antibody to the T7 epitope labeled the entire cytoplasm as previously 

described (44). We found that cells which express the clathrin hub showed decreased 

internalization of K1, with K1 primarily localized to the cytoplasmic membrane after 20 

minutes at 37°C (Figure 4B); further supporting the hypothesis that K1 is internalized in 

a clathrin-dependent manner. 

We next examined the effect of clathrin inhibitors on K1 internalization. 

Amantadine is a drug that inhibits clathrin-coated pit invagination at the plasma  



  101

  

B 

Figure 4. K1 is internalized in a clathrin-dependent manner.  (A) Co-localization 
of K1WT with Clathrin-HC. K1 expressing cells were surface labeled with anti-FLAG-
Cy3 for 1h at 4oC. After incubation at 37oC for 5 minutes, cells were fixed and 
immunostained for clathrin-HC. Bound antibodies were visualized with the use of 
secondary antibody conjugated to FITC. The boxed region indicates magnified area. 
(B) HeLa cells were co-transfected with K1 and T7-Hub. Cells were labeled with an 
anti-FLAG-Cy3 at 4°C and incubated at 37oC for 20 minutes, then processed as 
described. Cells expressing the clathrin hub mutant were identified by co-staining for 
the T7 epitope.  
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Figure 5. Amantadine inhibits K1 internalization. (A) Transfected HeLa cells were 
surface labeled with M1 anti-FLAG, and surface receptors were allowed to internalize 
for 20 minutes in the presence or absence of drug.  Amount of internalized antibody 
was quantified by ELISA. The data are expressed as a ratio of the initial amount of 
antibody bound to the cell surface at 0 minutes at 4oC, to the amount of antibody 
bound in the presence of drug. (B) K1 expressing cells were surface labeled with anti-
FLAG-Cy3 and anti-TfR-Alexa647 for 1h at 4oC. Surface receptors were allowed to 
internalize at 37oC for 20 minutes in the presence of the drug. Cells were fixed and 
analyzed by confocal microscopy. 
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membrane (31).  Cells transiently transfected with either FLAG-tagged K1WT, FLAG-

tagged K1ITAM- or FLAG-tagged K1ΔC were stained as described above and incubated in 

the presence or absence of amantadine for 20 minutes at 37°C. Cells were then assayed 

for internalized K1 protein via ELISA. In wild-type K1 cells, internalization was 

substantially inhibited by amantadine (Figure 5A), while both mutants were less affected 

by clathrin inhibition.  Conversely, K1 internalization was not inhibited by the caveolin 

inhibitor, filipin (data not shown). Shown in Figure 5B is confocal data supporting 

inhibition of K1 internalization by amantadine.  K1 expressing cells were stained as 

described above. As a positive control, we also labeled the transferrin receptor (TfR) 

using anti-TfR Alexa 647 antibody (Molecular Probes).  The transferrin receptor has been 

well studied and constitutively cycles between the plasma membrane, early endosomes, 

and recycling endosomes, and has serves as a classic system for the study of clathrin-

mediated endocytosis (8).  Amantadine prevented the majority of K1 protein from 

internalizing, as well as preventing TfR internalization (Figure 5B). 

K1 endocytosis and signaling are coupled. Recent work has shown regulation of 

receptor signaling as a function of receptor internalization. Subcellular localization can 

determine which effector molecules couple to activated receptors and the relative 

strengths of different signaling pathways.  To that end, we wanted to determine if known 

signaling molecules activated by K1 are co-internalized and/or co-localized 

intracellularly.  We examined whether K1 co-localized with the p85 subunit of PI3K.  

Cells were labeled as above and incubated at 37°C for 5 minutes.  Cells were 

immediately placed on ice, rinsed with cold PBS and fixed.  After permeabilization, cells 

were incubated with anti-p85 antibodies and examined by confocal microscopy.   K1WT 
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Figure 6. Intracellular distribution of K1 and PI3K. (A) K1WT transfected HeLa 
cells were surface labeled with anti-FLAG Cy3 incubated at 37 oC for 5 minutes, 
immediately placed on ice and fixed. (B) K1WT transfected HeLa cells were fixed, 
permeabilized and stained with anti-FLAG-Cy3 and anti-p85 primary antibody 
followed by a FITC-conjugated secondary antibody. Cells were analyzed by confocal 
microscopy.  
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and the p85 subunit of PI3K appear to co-localize in discrete punctate-like structures 

(Figure 6A).  This suggests that K1 is endocytosed either with PI3K, or the two are 

brought together rapidly after K1 internalization.  We also analyzed K1 co-localization 

with p85, without pre-labeling K1 surface molecules. Transfected HeLa cells were placed 

on ice for 10 min, then moved to 37°C for 5 minutes. Cells were permeablized and 

stained for FLAG-K1 and p85. As can be seen in Figure 6C, K1 and p85 show 

considerable co-localization, further supporting the interaction of K1 and PI3K 

intracellularly. 

To further delineate the relationship between signaling and internalization, we 

utilized specific chemical inhibitors of kinases activated by K1 such as PI3K and Syk, 

and determined their affect on K1 internalization, by both ELISA and confocal 

microscopy.   LY294002 is an inhibitor of PI3K and piceatannol is a Syk kinase inhibitor.  

HeLa cells were transfected with K1 and K1 mutant expression vectors, and processed as 

above.  Additionally, cell-surface expressed TfR was labeled using anti-TfR Alexa 647 

antibody for confocal studies.   LY294002 was added during subsequent 37°C 

incubations.  As determined by ELISA, LY294002 inhibited wild-type K1 internalization 

by over two-fold after 20 minutes, but had little or no effect on the K1ITAM- or K1ΔC 

proteins (Figure 7A).  This is further corroborated by confocal data showing little or no 

wild-type K1 internalization when cells were treated with LY294002 (Figure 7B). In 

contrast, the TfR is internalized in an efficient manner.   

K1 has also been shown to activate Syk kinase (21).  We next tested whether 

piceatannol, an inhibitor of Syk kinase, affected K1 endocytosis. We found that 

piceatannol also inhibits K1 internalization, although not to the same extent as seen with 
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Figure 7. Inhibition of K1 internalization by LY294002.  (A) K1 internalization 
was measured in the presence or absence of LY294002. Amount of internalized 
receptor was quantified by ELISA. The data are expressed as a ratio of the initial 
amount of antibody bound to the cell surface at 0 minutes at 4oC,  to the amount of 
antibody bound in the presence of drug, after incubating cells at 37oC for 20 minutes. 
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LY294002 (Figure 8A) resulting in approximately 50% decrease after cells were 

incubated for 20 minutes at 37oC in the presence of the drug.  Confocal data also 

supported this, showing that the majority of K1 remains on the surface in the presence of 

piceatannol (Figure 8B). The two K1 mutants, K1ITAM- or K1ΔC, were retained on the 

surface, regardless of drug treatment. It is noted that the staining pattern of K1 surface 

expression in piceatannol treated cells is qualitatively different than in other confocal 

experiments.  It is possibly that piceatannol disrupts the trafficking of K1 to the cell 

surface. It has been shown that treatment of cells with piceatannol interrupts exocytosis 

of molecules (27, 28, 38), which could explain the differential staining pattern.  This 

phenomenon is currently under investigation.  

Inhibition of endocytosis prevents signaling by K1.  To examine whether K1 

endocytosis and trafficking are important for controlling the signaling pathways and 

cellular responses to K1, we inhibited endocytosis by treating cells with amantadine or 

hypertonic media.  Hypertonic media has been shown to inhibit clathrin-mediated 

endocytosis (13).  HeLa cells were transiently transfected as above. 24 hours post-

transfection, cells were serum starved for an additional 24 hours.  Cells were pretreated 

for 30 minutes in fresh media containing 2mM amantadine or 20% sucrose.  Cells were 

harvested and lysates were separated by SDS/PAGE, blotted to membranes, and probed 

with anti-phospho-Akt (S473).  As shown in Figure 9, expression of WT K1 increased 

Akt phosphorylation in these cells, while the K1ITAM- and K1ΔC did not induce Akt 

phosphorylation. Treatment with the endocytosis inhibitors, amantadine and sucrose, 

dramatically decreased Akt phosphorylation in wild-type K1 expressing cells (Figure 9). 
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Figure 8. Treatment of cells with piceatannol inhibits K1 internalization. (A) 
Cells were incubated in the presence of 15ug/mL piceatannol.  Amount of internalized 
receptor was quantified by ELISA. The data are expressed as a fraction of the initial 
amount of antibody bound to the cell surface at 0 minutes at 4oC. (B) Confocal 
microscopy analysis of K1 internalization in the presence of piceatannol. 
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Figure 9. Inhibition of clathrin-mediated endocytosis prevents K1 signaling.  K1 
expressing cells were treated with amantadine or hypertonic media to inhibit clathrin. 
Equal amounts of total cellular protein were immunoblotted with antibodies to Akt. 
The membranes were first probed with phospho-specific antibody to Akt S473(top 
panel), stripped and probed with antibody that recognizes total Akt levels. 
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K1 internalization in B-cells.  We next analyzed K1 internalization in DG75 B-cells, 

which are KSHV negative.  Since KSHV infects B lymphocytes, we wanted to determine 

if K1 co-internalized with the B cell receptor (BCR). Cells were electroporated with K1 

and mutant expression vectors as described in the Methods section.  24 hours post-

transfection, cells were surface labeled for K1 using anti-FLAG Cy3 antibody and IgM 

using anti-IgM Alexa 647 antibody.  After rinsing away unbound antibody, cells were 

incubated at 37°C for indicated times, fixed and analyzed by confocal microscopy. As 

can be seen in Figure 10A, K1 and IgM co-localize and internalize together. Interestingly, 

after 30 minutes at 37°C,  the K1ITAM- and K1ΔC  mutants (Figure 10B and C) remain 

bound together with BCR on the surface of the cells and do not internalize in contrast to 

wild-type K1 and IgM which have been completely internalized at 30 minutes.  By 60 

minutes, the majority of K1ΔC and IgM remain on the surface but the majority of K1ITAM- 

and IgM were internalized.  These results show that K1WT co-internalizes with the BCR.  

DISCUSSION 

It is well established that K1 is expressed on the surface of cells and activates signaling 

pathways, including the PI3K/Akt pathway, through its C-terminal SH2 binding motifs 

that encode the ITAM (18, 22, 43). In order to further elucidate the mechanism of K1 

signaling, we have examined how its signaling function at the plasma membrane is 

regulated. In this study we demonstrate that for K1, endocytosis is contingent upon 

signaling. The two mutants, K1ITAM- and K1ΔC, show decreased internalization as 

compared to wild-type K1. This suggests that elements in the C-terminus of K1 are 

required for efficient internalization. Inhibiting K1 activation of PI3K and Syk kinase 
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Figure 10. K1 co-internalizes with IgM.  DG-75 cells were transfected with K1WT 
(panel A), K1ITAM- (panel B), or K1ΔC (panel C) expression vectors. 24 hours post-
transfection, cells were surface labeled with anti-FLAG-Cy3 (red) and anti-IgM-647 
(blue) antibodies at 4oC for 30 minutes.  Cells were transferred to 37oC for times 
indicated, fixed and viewed by confocal microscopy. Co-localization is indicated by 
magenta color. 
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using LY294002 and piceatannol, respectively, resulted in decreased endocytosis of 

K1WT, with little effect on the two mutants tested, further supporting the role of signaling 

in the control of K1 surface expression. We have also observed the reciprocal result; 

inhibiting internalization prevents efficient down-stream signaling by K1. 

 In order to determine the mechanisms controlling K1 internalization, we analyzed 

the trafficking pattern of surface labeled K1WT and mutants. Perturbing clathrin-

dependent endocytosis markedly decreased the rate at which K1 was internalized. We 

could inhibit K1 internalization by using a dominant-negative clathrin, Hub, further 

supporting our data that K1 is internalized via clathrin.  Following internalization, K1 

was present in both early endosomes since it co-localized with EEA1, and in recycling 

endosomes since it co-localized with Rab11. Like K1, other viral glycoproteins such as 

the Us28 glycoprotein of CMV (12) show ligand-independent constitutive internalization 

and recycling. Constitutive recycling may provide a convenient method for the cell to 

regulate surface receptor numbers. If a rapid decrease in surface receptors is needed, the 

internalization rate could be increased and/or recycling decreased, and vice versa.   

 In addition to receptor down-regulation, internalization of receptor subunits also 

serves to modulate receptor signaling pathways. Our lab has previously shown that K1 

can activate Akt via a PI3K-dependent pathway (43). Here we demonstrate that the ability 

of K1 to activate Akt kinase was suppressed in cells in which endocytosis had been 

inhibited (Figure 9).  The suppression of down-stream signaling has been shown for 

cellular receptors as well. Using an internalization defective cell line it was shown that 

EGFR-mediated tyrosine phosphorylation and mitogen-activated protein kinase activation 

were both attenuated in internalization  defective cells (46).  Further, correct trafficking of 
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EGFR is required to establish specific signaling pathways. Membrane trafficking 

regulates the signal transduction events of EGFR. There is also evidence that receptor 

tyrosine kinases signal from endosomes.  It has been demonstrated that the internalized 

EGFR can still signal (7).  EGFR remains bound to EGF within the endosomal 

compartment; EGF-stimulated EGFRs preserve their dimerization and their kinase 

activity within endosomes (41, 50). Receptor signaling from endosomes might allow for 

spatial and temporal regulation of signal transduction. Signal transduction could be 

compartmentalized at the plasma membrane and on endosomes. Compartmentalization 

would provide high flexibility to an otherwise limited number of signaling cascades to 

transduce specific signals from multiple signaling cues. There is, in fact, accumulating 

evidence that signaling from endosomes could be used as a means to compartmentalize 

signal transduction (37, 40). 

 The co-localization of K1 and the p85 subunit of PI3K are consistent with models 

of PI3K function, in which PI3K, a principally cytoplasmic protein, is recruited to 

membranes quantitatively in response to receptor activation. In cells in which endocytosis 

is inhibited, the p85 subunit of PI3K is hypophosphorylated (46). The endosomes are 

highly enriched for PI3K activity.  It has been found that when the PDGF receptor is 

stimulated, the receptor is found in isolated-clathrin coated pits. The kinase activity 

remains associated with receptors as they internalize into endosomes and move from the 

plasma membrane to the TGN (15). 

 Lee at al. (21) have shown that K1 interacts with different signaling proteins 

through its C-terminal tyrosine residues with different affinities. It is easy to imagine that 

this differential phosphorylation of the tyrosine residues, in differing locations in the cell 
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i.e. plasma membrane versus endocytic vesicles, allows for K1 to interact with various 

cellular proteins.  Indeed, several receptors can transmit signals from endocytic 

compartments, and these signals can be qualitatively different from those initiated at the 

plasma membrane. For example, TrkA promotes NGF-mediated cell survival at the cell 

surface, whereas it induces differentiation when internalized (51).  Internalization could 

couple activation with down-regulation, which allows for precise temporal control of 

signaling by limiting the lifetime of the activated signaling components.  

 The fact that K1 co-internalizes with the BCR in B-cells suggests a 

physiologically important role for K1 internalization.  It is plausible that K1 may function 

to scavenge the BCR from the surface of newly infected B-cells, and we are currently 

investigating whether this is the case.  

 In summary, the data presented in this report demonstrate that K1 internalization 

occurs through a clathrin-mediated endocytic pathway.  K1 protein expressed at the 

surface is constitutively active and recruits PI3K to the membrane. Activation of PI3K 

results in internalization of K1 via clathrin.  Once internalized, K1 continues to transduce 

signals, inducing the activation of Akt and downstream-signals. Inhibiting either clathrin-

dependent internalization or activation of PI3K, prevents efficient endocytosis and 

signaling by K1.The signaling of K1 at the plasma membrane is regulated by both 

surface-expression modulation and compartmentalized signaling.  This is yet an 

additional means for KSHV to control cellular signaling pathways. 
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ABSTRACT 

Rhesus Monkey Rhadinovirus (RRV) serves as an in vitro and an in vivo model for 

Kaposi’s Sarcoma-associated Herpesvirus (KSHV/HHV-8).  RRV can be grown to high 

titers on rhesus fibroblasts and the availability of the RRV lytic system facilitates analysis 

of viral replication and the contribution of individual open-reading frames to viral fitness.    

At the left end of the RRV genome is a distinct open reading frame designated R1 whose 

position is equivalent to that of the saimiri transforming protein (STP) of herpesvirus 

saimiri (HVS) and the K1 protein of KSHV. The cytoplasmic tail of R1 contains motifs 

capable of binding to the SH2 domains of protein kinases similar to K1. Like K1, R1 has 

previously shown to be capable of activating B lymphocyte signaling and interacting with 

the major B cell kinase, Syk. Using a recently available genetic system consisting of a set 

of overlapping cosmid spanning the entire RRV genome, we deleted the R1 ORF from 

the RRV genome, replacing the R1 ORF with a Green Fluorescent Protein (GFP) 

expression cassette. We have analyzed the integrity of the viral genome and performed 

preliminary analysis of the replication kinetics and the ability of the recombinant virus to 

establish latency.  Creation of this virus gives us a powerful tool to analyze the role of R1 

in the RRV life-cycle. 
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INTRODUCTION 

Kaposi’s sarcoma-associated herpesvirus (KSHV) is the etiologic agent of 

Kaposi’s sarcoma, primary effusion lymphoma (PEL) and multicentric Castleman’s 

disease (MCD) (7, 8, 29). A related simian virus, rhesus monkey rhadinovirus (RRV) was 

isolated from rhesus macaques at the New England Primate Regional Center, deemed 

RRV H26-95 (11). Sequence analysis revealed that genomes of KSHV and RRV26-95 

are co-linear, with the majority of coding genes in the same genomic locations and in the 

same orientation.  The two viruses are more similar to each other than any other 

herpesvirus (1).  An RRV isolate, RRV 17577, has also been identified by the Oregon 

Primate Research Center (27). 

 RRV serves as both an in vitro and in vivo model for KSHV. Majority of the open 

reading frames (ORFs) involved in KSHV pathogenesis are also encoded by RRV. 

Studies of many of the RRV ORFs have shown that they function similarly to their 

KSHV homologues.  In vivo, it has been shown that experimental infection of rhesus 

macaques with RRV results in a lympadenopathy, similar to MCD (24). In the context of 

a dual infection with simian immunodeficiency virus (SIV), the animals developed 

lymphoproliferative disorders and B-cell hyperplasias (36).  Given the similarities in their 

ORFs and associated diseases, RRV can serve as a model to study the contribution of 

individual ORFs to KSHV-related diseases. 

The first open reading frames of KSHV and RRV encode proteins called K1 and 

R1, respectively (10, 20, 23).  R1 shows limited sequence homology to K1 in its 

extracellular domain. The amino-terminal extracellular domains of both K1 and R1 

closely resemble those of the members of the immunoglobulin receptor superfamily (10, 
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23). Similar to K1, R1 has been shown to transform rodent fibroblasts and to functionally 

replace the Saimiri Transforming Protein C (STP) of Herpesvirus Saimiri (HVS) in 

immortalizing common marmoset peripheral blood mononuclear cells to IL-2-

independent growth in vitro. Injection of R1-expressing rodent fibroblasts into nude mice 

resulted in the formation of multifocal and disseminated tumors in these mice (10). While 

the extracellular domains of R1 and K1 structurally resemble each other, the cytoplasmic 

tail of R1 is significantly longer than that of K1 and contains several potential SH2 

binding motifs which function as immune-receptor tyrosine-based activation motifs 

(ITAMs) (9).  Like K1, R1 is capable of activating B lymphocyte signal transduction as 

evidenced by tyrosine phosphorylation of cellular proteins, mobilization of calcium from 

intracellular stores and activation of the transcription factor NFAT (9). 

 The ability of RRV to replicate in rhesus fibroblasts allows for the study of the 

contribution of individual open reading frames to overall viral replication. In order to do 

this, genetic manipulation of the viral genome is crucial.  The conventional means to do 

this is through homologous recombination in eukaryotic cells, which allows for the 

introduction of specific mutations in the viral genome.  Although this is possible with 

RRV, it is often laborious.  Additionally, it can be difficult to isolate recombinant viruses 

away from wild-type virus.  However, there have been two recently described systems 

that allow for genetic manipulation of RRV:  (i) creation of a bacterial-artificial 

chromosome (BAC) containing the RRV 17577 genome (17) and (ii) a set of overlapping 

cosmids incorporating the RRV H26-95 genome (5).  Our lab has been involved with 

making the overlapping cosmid system using RRV H26-95 (5) and we chose this system 

to make a recombinant RRV that is deleted for R1.  
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 The cosmid system was developed by Bilello et al (5). Overlapping cosmid clones 

were generated that encompass the entire 130 kb genome of RRV H26-95, including the 

terminal repeat regions required for viral replication.  They showed that the cloned RRV 

that was produced by co-transfection of overlapping cosmids spanning the entire RRV 

H26-95 genome replicated with growth kinetics and to titers similar to those of the 

parental, uncloned, wild-type RRV H26-95.  We have utilized this genetic system to 

generate an R1-null GFP expressing recombinant virus to determine the role of R1 in the 

viral life cycle. 

MATERIAL AND METHODS 

Cell culture. Rhesus Fibroblasts (RhF’s) were immortalized as previously described 

(13). RhF’s, 293, 293Ts, and 293-RRV-GFP cells were maintained at 37°C and 5% CO2 

in Dulbecco’s modified eagle medium H with Gluta-max supplemented with 10% fetal 

bovine serum. BJAB and BJAB-RRV-GFP cells were maintained in RPMI 1640 

supplemented with 10% fetal bovine serum. Human umbilical vein endothelial cells 

(HUVECs) immortalized with hTERT, previously described (34), were cultured in sterile 

endothelial growth medium with 10% FBS. Construction of RRV-GFPCC  and RRV-J has 

been previously described (5). 

For stably expressing R1 constructs in RhF’s, 3.0 μg DNA was transfected into 

RhF’s using the Amaxa Nucleofection system as described by the manufacturer (program 

U-23). Following transfection, cells were recovered in complete media for 48 h. Cells 

were then maintained in complete media plus 1mg/mL G418 for approximately two 

weeks.  Cells were analyzed for recombinant gene expression by western blot.  
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Establishment of latently and persistently infected cell lines. BJAB, 293 cells or 

HUVECs, were infected with RRVΔR1-GFPCC or RRV-GFPCC at a multiplicity of 

infection (MOI) of >1 in the presence of 4 μg of Polybrene/ml (Sigma Chemical 

Company) for 1 h. The virus inoculum was removed, and cells were resuspended in 

appropriate complete media. Cells were passaged without selection and monitored for 

fluorescence. 

Plasmids. R1WT and cytoplasmic deletions were obtained by PCR using BamHI and XbaI 

containing primers, using pFJ-R1 expression plasmid (previously described(10)), as 

template.  R1 constructs were subcloned into the pCDEF3 vector. All R1 constructs 

contain a C-terminal AU1 tag.   

Cosmid construction. Construction of the RRV H26-95 cosmid library has been 

previously described (5). Briefly, the cosmid vector, pSCos/ICeuI, used to make libraries 

was derived from pSuperCos 1 (Stratagene, La Jolla, CA), with a modified aptomer 

containing ICeuI-BamHI-ICeuI sites.  Cosmid libraries were constructed from purified 

RRV DNA according to the instructions of the SuperCos 1 Cosmid Vector Kit 

(Stratagene).  

 To generate RRVΔR1-GFPCC, a portion of the R1 ORF was amplified from the 

ah28ΔA/H cosmid with primers:  5’-CAGCTGGGATCCACTAGTAGTAACACATAGT 

ATTTC-3’ and 5'-CAGCTGGAATTCATTTAAATGATTGTACTCATTGTG-3'.  

Amplified product was cut with BamHI and EcoR1 and ligated into pSP72 vector at same 

sites ( R1-RRVpSP72).  Site directed mutagensis was performed to insert a SmaI site in 

the R1 ORF using primers: 5'-CACCACATCCCGGGGATACCTACTTGC-3' and 5'-

GCAAGTAGGTATCCCCGGGATGTGGTG-3' using QuikChange site-directed 
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mutagenesis kit (Stratagene) as directed by manufacturer. Mutation was verified by DNA 

sequencing (R1-SpeI-SmaI pSP72).  An EGFP expression cassette was inserted into the 

generated SmaI site by amplifying  the CMV promtor, EGFP and polyA region from 

EGFPN-1 vector (Clontech) using primers 5'-GGATATCGTAATCAATTAC 

GGGGTCAT-3' and 5'-TGGATATCACCACAACTAGAATGCAGTG-3' (ΔR1/GFP 

pSP72).  ΔR1/GFP-pSP72 was then cut with SpeI and SwaI and ligated into the same 

sites in cosmid AH28Δa/h to generate ah28ΔA/H- ΔR1-GFP.  

Reconstitution of recombinant viruses.   Prior to transfection, cosmids were digested 

overnight with the ICeuI homing endonuclease, removing the RRV H26-95 sequence 

from the pSuperCos-1 backbone vector. The cosmid DNA was precipitated by adding 3 

volumes of 5% 3 M sodium acetate–95% ethanol and incubating for 1 h at -20°C. The 

DNA was then pelleted by centrifugation for 10 min at maximum speed in a 

microcentrifuge. The pellets were washed in 70% ethanol, dried, and rehydrated in 

distilled water. One day post-seeding, 293T cells (4.5 x 105 cells/well in six-well plates) 

were transfected with a combination of digested overlapping cosmids, ah28ΔA/H- ΔR1-

GFP, #15A, #1, #37 and ah34 (Figure 1) (0.4 μg of each cosmid) using Transfectin 

reagent (Bio-Rad Laboratories, Hercules, CA) following a scaled down procedure. At 5 

days post-transfection, media was harvested and centrifuged at 2000 rpm for 10 minutes 

to remove debris.  The media from the three identical cosmid transfections were 

combined and stored at 4C.  

To amplify recombinant stocks generated in 293T cells, RhF’s were split and 24 

hours later were inoculated with the entire culture supernatant from the 293T 

transfections. Seven days later, the infected cells were split 1:3 and monitored daily for 
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the appearance of GFP and/or viral plaques.  Cultures were maintained for 2 weeks 

before clarified culture media was harvested.  Fresh RhF’s were inoculated with 

supernatant from the first passage described above, and maintained without splitting until 

complete lysis of the RhF monolayer. 

Revertant virus creation.   To generate revertant (marker rescue) virus, cosmid 

AH28Δa/h was digested o/n with ICeuI and precipitated as above. Approximately 0.5 μg 

DNA was transfected into RhF’s using the Amaxa Nucleofection system as described by 

the manufacturer (program U-23). Following transfection, cells were recovered in 

complete media for 24 h. RRVΔR1-GFPCC recombinant virus was used to infect the 

transfected RhF’s at an MOI greater than 1.  After complete CPE, clarified supernatants 

were harvested and replated on fresh RhF monolayers.  GFP-negative plaques were 

picked and replated a minimum of 3 times, then allowed to incubate until complete lysis 

was observed.  17 different revertant viral supernatants were harvested and viral DNA 

purified using DNeasy kit (Qiagen). 

Analysis of viral integrity: Virus was harvested from cell-free media from virus infected 

cells by centrifugation at 15,000 rpm for 3 h. Virus pellet was resuspended in PBS and 

treated with proteinase K for 2 h at 56°C. Viral DNA was extracted by phenol chloroform 

method.  

Viral DNA was subject to PCR analysis with the following primers: R1 flanking 

primers: 5'-CCGTTGTGGTTACAATACACCTG-3' and 5'-TGAACCACCGCACGG 

AGC-3', R1 internal primers: 5'-GGGGGTACCCTTCAACCTGTATCGGTGGAGC-3' 

and 5'-TTGATGATTCAGAGTTCTCGTTGC-3' and GFP internal primers: 5'-CCTGG 

TCGAGCTGGACGG-3' and 5'-GATCGCGCTTCTCGTTGGG-3'. 
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For Southern blot analysis, viral DNA was digested with NotI. Digestions were 

electrophoresed through 1% low-melt agarose (NuSieve) 1xTBE and transferred to a 

nylon membrane (Hybond N+) by capillary action. Following UV cross-linking, 

membranes were pre-hybridized in QuikHyb solution (Stratagene) at 65°C for 15 min. 

Probes were generated from RRV-DHFR and GFP by random prime method using 32P-

dCTP (Roche). Probes were denatured at 95°C for 3 min and added to pre-hybridization 

solution. Hybridization was carried out for 16 h at 65°C. Probe solution was removed and 

membranes were washed twice for 15 min with 2xSSC 0.1% SDS at room temperature 

and once for 30 min at 60°C with 0.1xSSC 0.1% SDS. Membranes were exposed and 

read on a PhosphorImager Scanner (Molecular Dynamics).  

Plaque assays.  2x105 RhF’s were plated in 12-well plates. 10-fold serial dilutions of 

virus-infected cell supernatants were made in DMEM-H supplemented with 2% bovine 

calf serum (BCS). Each sample dilution was performed in triplicate. Two hundred 

microliters of each dilution were overlayed on each well of 12-well dishes and incubated 

at 37°C for 1 h with redistribution of inoculum every 15 min. Inoculum was removed and 

cells were overlayed with 1.5 ml of DMEM plus 1.5% methyl- cellulose (Sigma M0512), 

and 2% BCS. Plaque assays were incubated 7 days at 37°C and 5% CO2. Overlay media 

was aspirated and staining solution (0.8% crystal violet (Sigma C3886), 50% ethanol) 

was added to each well and incubated 10 min. Plaques were counted using 10x 

magnification. 

Quantitative real-time PCR. At the indicated time post-infection (p.i.), viral DNA was 

isolated from 200μl of cell-free culture supernatant from each sample using the DNeasy 

Kit (QIAGEN, Valencia, CA) according to the manufacturer’s protocol. Ten-fold serial 
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dilutions (ranging from 1 to 106 plasmid copies/reaction) of pcDNA3-RRVOrf50 were 

used in each assay to generate a standard curve for genome copy number. SYBR® Green 

Real-time PCR using the ABI PRISM® 7900 Sequence Detection System (Applied 

Biosystems Inc: Foster City, CA) was used to quantify viral DNA. Primers for 

amplification of an 81-bp amplicon internal to the Orf50 sequence were 5’- 

GTGGAAAGCGGTGTCACAGA-3’ and 5’-TGCGGCGGCCAAAAT-3’. Reactions 

were run in 384-well format with the following conditions: 95°C for 15 min, followed by 

95°C for 15 s, 60°C for 1 min repeated for 40 cycles.  

Western blot analysis.  Cells were harvested and lysed in RIPA buffer containing 

protease inhibitors. Cells were freeze/thawed 3 times.  Protein concentrations were 

determined by Bradford Assay. 80μg of protein were loaded per lane and resolved by 

sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and transferred 

to nitrocellulose. Membranes were probed with monoclonal mouse anti-AU1 (Covance) 

and anti-mouse HRP (Jackson ImmunoResearch). Immunoblot detection was performed 

using SuperSignal Pico West chemiluminescent reagent (Pierce Biotechnology). 

RESULTS 

Construction of R1 deletion virus.  In order to discern the role of R1 in the RRV 

lifecycle, we set out to delete the R1 open reading frame (ORF) from the H26-95 

genome.  We took advantage of the recent advent of a cosmid derived genetic system 

developed by Bilello et al (5).  Using cosmid ah28/ΔAH, a GFP expression cassette was 

inserted into the R1 ORF at a newly generated SmaI site, located approximately 100bp 

downstream from the R1 start site, interrupting the R1 ORF (Figure 1A).  ah28ΔA/H- 
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ΔR1-GFP was co-transfected with cosmids #15A, 1, 37 and ah34 (Figure 1B) into 293Ts 

and amplified in RhF’s as described above. 

Analysis of RRVΔR1-GFPCC genome integrity. Purified viral DNA from RRVΔR1-

GFPCC and wild-type H26-95 were subject to PCR analysis to ensure proper placement of 

the GFP insertion.  Primers were designed to amplify regions within the GFP ORF, 

within the R1 ORF and flanking the R1 ORF.  Included as controls are the ah28ΔA/H- 

ΔR1-GFP cosmid and the ah28ΔA/H parental cosmid. As can be seen in Figure 2, lanes 2 

and 6 show amplification of the GFP region showing a band of 517nt, which have as 

template RRVΔR1-GFPCC and ah28ΔA/H-ΔR1-GFP, respectively. The R1 internal 

primers have amplified bands of 2322nt for RRVΔR1-GFPCC and ah28ΔA/H-ΔR1-GFP, 

and 712nt for H26-95 and ah28ΔA/H cosmid (lanes 3 and 7).  R1 flanking primers have 

amplified bands of 3415nt for RRV ΔR1-GFPCC and ah28ΔA/H- ΔR1-GFP and 1786nt 

for H26-95 and ah28ΔA/H cosmid. 

 Following PCR analysis, the viral DNA was subjected to restriction digest. 10μg 

of each viral DNA prep was digested with NotI or HindIII for 3 hours at 37oC.  Digested 

DNA was subjected to electrophoresis through 1% agarose, stained with ethidium 

bromide.  As can be seen in figure 3B, the restriction fragment profile of RRVΔR1-

GFPCC DNA with NotI has a band of altered mobility of 6498bp and 2003bp, as 

compared to wild type H26-95, which is due to the insertion of a NotI site downstream of 

the GFP ORF (Figure 3A).  H26-95 has no such site, rather the band at 7757bp results 

from the 5’TR to the first NotI site in the genome. The HindIII fragment profile of RRV 

ΔR1-GFPCC is mirrored by that of H26-95, as they have similar cut sites (Figure 3C).  
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Figure 1.  Construction of RRVΔR1-GFPCC. A. Insertion of GFP expression 
cassettes into the RRV ah28ΔA/H cosmid. A SmaI site was introduced into the R1 
ORF, within ah28ΔA/H cosmid by site-directed mutagenesis. A cassette containing 
CMV-GFP and flanked by EcoRV restriction sites was cloned into the SmaI site of 
ah28ΔA/H to generate ah28ΔA/HΔR1-GFP.  The size of the CMV-GFP cassettes is 
1619bp. B. Schematic representation of the cosmids used to make RRVΔR1-GFPCC. 
The gray bars indicate the extent and location of each cosmid insert within the 
parental RRV26-95 genome (top black bar). Each cosmid insert was cloned into the 
pSuperCos 1 vector following the addition of an ICeuI homing endonuclease linker. 
 

A 
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 To verify that the insertion of exogenous sequences occurred only at the desired 

location, we performed Southern hybridization analysis of the NotI digested DNA gel. 

Probe A was generated which was complementary to the RRV DHFR ORF.  As expected 

the DHFR probe hybridized to the 6498bp fragment of RRVΔR1-GFPCC and to the 

7757bp fragment of H26-95.  Probe B is complimentary to the GFP ORF. Figure 3B 

depicts the Southern blot performed on the samples using Probe B and shows that the 

GFP cassette in the RRVΔR1-GFPCC recombinant virus was inserted in the correct site 

and, as expected, was absent in H26-95 RRV DNA. 

Construction of a revertant virus of RRVΔR1-GFPCC. A revertant virus was 

constructed using RRVΔR1-GFPCC and cosmid ah28ΔA/H, as a control for the possible 

introduction of any mutations that occurred during the construction and isolation of 

RRVΔR1-GFPCC. This revertant virus would be expected to exhibit wild-type growth 

properties, as long as no other discernable mutations were introduced during 

recombination of the cosmids.  Cosmid ah28ΔA/H was linearized with ICeu-I homing 

endonuclease overnight and precipitated as described above and transfected into RhF’s.  

24-hours post-transfection cells were infected with RRVΔR1-GFPCC. Virus progeny were 

screened for isolates that no longer expressed GFP. PCR analysis of two revertants were 

identical to that of H26-95 (Figure 2). One isolate, designated rRRV-2.3.1, was further 

analyzed by restriction digest and Southern Blot.  As expected, the revertant exhibited the 

same hybridization profile as wild-type H26-95 DNA (Fig. 3B and C). 

Characterization of recombinant RRVs in vitro. We next determined if the replication 

kinetics differed between the recombinant RRVs generated by co-transfection of 

overlapping cosmids, including RRVΔR1-GFPCC, rescue virus rRRV-2.3.1,  RRV- 
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Figure 2. PCR analysis of recombinant viruses. A. Schematic representation of the 
location of priming sites for templates containing GFP expression cassette (top) and 
those that do not (bottom). B. PCR-amplification was performed using oligos that 
prime within the GFP cassette (left), within the R1 ORF (middle) or flanking the R1 
ORF (right).  Templates used are as follows: Lane1: NTC lane 2: RRVΔR1GFPcc 
DNA lane 3: H26-95 DNA lane 4: rRRV 2.3.1 DNA lane 5: rRRV DNA 4.1.1 lane 6: 
ΔR1 ah28ΔA/H cosmid lane 7: ah28ΔA/h cosmid. 

A 
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Figure 3. Restriction digest and Southern blot analysis of recombinant viruses. A. 
Diagram of the 5’ end of RRVΔR1-GFPCC (top) and H26-95 genomes, depicting NotI 
restriction sites and location of probe hybridization sites. B. NotI digest (left) and 
Southern blot of RRVΔR1-GFPCC (lane 1), H26-95 (lane 2) and rescue RRV 2.3.1 
(lane 3) genomes probed with RRV DHFR (middle) and GFP (right). 

A 

B 
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Figure 3 cont’d.  C. Restriction digest analysis of recombinant viruses.  Hind III 
digest of RRVΔR1-GFPCC (lane 1), H26-95 (lane 2) and rescue RRV 2.3.1 (lane 3). 
 

C 
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GFPCC, a wild-type cosmid derived H26-95 virus expressing GFP, and RRV-J, a wild-

type H26-95 (with no trans-genes) made via the cosmid system (5). One day post-

seeding, triplicate cultures of RhFs were infected at 0.1 PFU/ cell with RRVΔR1-GFPCC, 

RRV-J, RRV-GFPCC or rRRV-2.3.1. At each time point, viral supernatants were collected 

and stored at -80oC. Viral DNA was isolated from each sample and analyzed for RRV 

genome copies by real-time PCR. Measurement of viral genome copy number by this 

method was previously shown to correlate strongly with infectious titer using wild-type 

RRV that did not have gene deletions (14).  Preliminary data suggests that the growth rate 

at each time point was not significantly different between RRVΔR1-GFPCC and RRV-

GFPCC (Figure 4) in terms of viral genomes. However, plaque assays may show a 

difference in viral infectious units.  rRRV-2.3.1 shows slightly increased growth rate, 

especially when compared to the other wild-type virus, RRV-J.  This experiment has only 

been done once at this MOI. Future experiments planned include, repeating this identical 

experiment, as well as performing this experiment at other MOI’s, performing plaque 

assays with viral supernatants and analyzing the integrity of the RRV-J genome.  There is 

a slight difference in the kinetics of RRV-J and rRRV-2.3.1. Theoretically, these viruses 

should replicate with similar kinetics. Therefore, confirmation of RRV-J genome by this 

laboratory is crucial. 

Establishment of R1-expressing stable cell-lines. In order to determine the contribution 

of R1 to RRV lytic replication, we have established a panel of RhF cell lines expressing 

different deletion mutants of R1 (Figure 5).  The many tyrosine residues in the R1 

cytoplasmic tail have been analyzed (9), and appear to encode several SH2 binding 



140 

Figure 4. RRV one-step growth curves. Equivalent numbers of rhesus fibroblast 
cells were infected with RRVΔR1-GFPCC (black diamonds), RRV-GFPCC (grey 
squares), rRRV 2.3.1(grey triangles) or RRV-J (grey x’s) at an MOI of 0.1 and cell-
free supernatants were harvested at indicated points post-infection and quantitated by 
real-time PCR. 
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 motifs.  It has been shown that five of the thirteen tyrosine residues of R1 are present 

within YXXL sequences. YXXL sequence elements have been shown to bind the  

major B-cell kinase, Syk (19, 21, 28). The third and fourth and the fourth and fifth YXXL 

motifs resemble ITAMs in that they and the surrounding sequences are spaced in a 

fashion consistent with that of the ITAM consensus sequence, (D/E)X7(D/E)X2YX2LX7–

10YX2L/I.  The cytoplasmic deletion mutations were selected based on the types of SH2 

binding motifs present in the R1 cytoplasmic domain, as previously described (9). 

Deletion mutants were cloned from the pFJ-R1 expression (10) and inserted into the 

pCDEF3 plasmid. Each construct also contains a 3’ AU1 epitope.  Stable cells were 

developed by transfecting each construct into RhF and selecting for 2 weeks in G418 

containing media.  In order to ensure expression of each construct, cellular lysates were 

subject to western blot analysis. Membranes were probed with anti-AU1 antibody.  

Shown in Figure 5 is a representative blot.  Constucts R1, R1-D3 and R1-D4 were readily 

detectable.  R1-D1 and R1-D2 were detected using a darker exposure (arrows). 

 These cell lines will allow us to study how the different domains in the C-

terminus of R1 may affect lytic replication.  By infecting these cells with RRVΔR1- 

GFPCC and wild-type viruses, we can analyze whether exogenous expression of wild-type 

and mutant R1 proteins affect viral replication. 

Latent cell-lines.  In addition to studying the role of R1 in lytic infection, we would also 

like to analyze its role in latent infection and reactivation from latency.  To that end, we 

have generated several cell-lines in which the virus is latently infected.  Our lab has 

previously shown that RRV latently infects 293 and BJAB cells (12).   We have recently 

generated 293 and BJAB cells infected with RRVΔR1-GFPCC and RRV-GFPCC (Figure  
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Figure 5. R1 expressing stable RhF cells. A.Panel of R1 expression plasmids. 
Schematic diagram of wild-type and R1 c-terminal deletion proteins. The shaded box 
represents the extracellular domain; the open box labeled T.M. indicates the 
transmembrane domain; and the open box represents the cytoplasmic tail. YXXX, 
tyrosine residues and their surrounding sequences. B. Western blot analysis of R1 
expressing RhFs. R1 constructs were stably transfected into RhF cells and selected in 
the presence of 1mg/mL G418. Expression of R1 constructs was analyzed by Western 
blot. Membranes were probed with anti-AU1 antibody and detected with anti-mouse 
HRP antibody. 

A 

B 



143 

6A and B). By monitoring GFP expression over time, we can analyze the ability of the 

viruses to establish a latent infection.  These cells can also be used to 

 evaluate the ability of the viruses to undergo reactivation.   

 In addition to the latent cell lines, we have created an endothelial infected cell line 

that appears to be undergoing a persistent infection by both RRVΔR1-GFPCC and RRV-

GFPCC.  We have found that HUVECs appear to be persistently infected, that is, lytic 

replication followed by a period of latency (Figure 6C). To further elucidate if this is true 

it is necessary in the future to culture the infected cells for a longer period of time. At 

various time points (normally when the cells are nearly confluent and ready to split), the 

culture supernatants will be assessed for infectious virus and intracellular-RRV-RNA 

levels.  In addition, we will analyze the ability of these endothelial cells to form tubules 

using a matrigel-tubule assay to model angiogenesis in vitro (6).  

DISCUSSION 

 RRV serves as a model for KSHV, both in vivo and in vitro (4, 24, 36). KSHV 

cannot establish a robust and persistent infection in mice or macques (15, 26) and hence, 

RRV serves as a good model to study KSHV pathogenesis in the host. With the recent 

advent of genetic systems for RRV, it is now easier to study the contribution of individual 

ORFs in the development of RRV-associated disease and also provide important insight 

into the function of homologous ORFs in KSHV and their potential roles in diseases 

associated with KSHV infection in humans.  In this manuscript we have described the 

construction of a recombinant RRV deleted for the R1 ORF. We have taken advantage of 

an overlapping set of cosmids developed by Bilello et al (5).  When developing the 

cosmid set they found that the RRV cosmids were too large (>46 kbp including terminal  
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Figure 6. Latently infected cell lines. A. 293 cells infected with RRVΔR1-GFPCC 
(top) and RRV-GFPCC (bottom).  Image taken 14 days post-infection. B. BJAB cells 
infected with RRVΔR1-GFPCC (top) and RRV-GFPCC (bottom).  Image taken 15 days 
post-infection.   
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Figure 6 cont’d. Latently infected cell lines. C. HUVECs infected with RRVΔR1-
GFPCC (top) and RRV-GFPCC (bottom).  Image taken 15 days post-infection. 

C 
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repeat regions) for routine genetic manipulation. To that end, they generated a sub- 

cosmid clone by truncation of the existing ah28 cosmid, allowing for insertion of a  

reporter gene upstream of the R1 promoter.  We have utilized this sub-cosmid clone, 

ah28ΔA/H, for manipulation of the R1 ORF.  We generated a unique SmaI site in the R1 

ORF in which we subcloned a GFP expression cassette.  Via PCR, restriction digest and 

Southern blot analysis we have confirmed the placement and integrity of RRVΔR1-

GFPCC.  This recombinant appears to be identical to the wild type RRVH26-95 genome, 

except for the insertion of the GFP expression cassette.  We have also generated a rescue 

virus, in which the GFP expression cassette was removed via traditional homologous 

recombination between the RRVΔR1-GFPCC and ah28ΔA/H cosmid. 

 Characterization of the resultant RRVΔR1-GFPCC and revertant viruses in rhesus 

fibroblasts demonstrated that these recombinant viruses were replication competent, and 

replicated in rhesus fibroblasts with growth kinetics as measured by viral genome titers 

that were similar to those of wild-type viruses. Future studies will determine if this is true 

at multiple MOIs, as determined by both plaque assay and real time PCR.  We will also 

determine how a panel of R1 mutants may complement the viral replicative capacity of 

RRVΔR1-GFPCC and other recombinant viruses on stable R1 expressing RhFs. 

In the context of KSHV it was found that most adherent cell lines (TIME, SLK, 

HFF, 3T3, CV-1, 293, and HeLa cells), irrespective of species of origin or tissue lineage, 

are permissive for viral entry and the establishment of latency (3). Other than RhF cells, 

this has proven true for RRV, as well. We have found that RRV efficiently infects 293s 

BJABs and HUVECs.   Following KSHV infection, DMVEC (Dermal endothelial cells 

immortalized with the E6 and E7 genes of HPV type 16) shape changed from a classical 
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cobblestone to a spindle shaped morphology (25). We have not observed this 

phenomenon in our RRV infected HUVEC cells.    An et al found that for telomerase-

immortalized human umbilical vein endothelial (TIVE) cells, the majority of cells lose 

the KSHV DNA over time.  However, a small subset of KSHV infected cells were able to 

maintain the viral episome for >10 months (2). These long-term cells were able to form 

tumors in nude mice.  It will prove interesting to determine if our RRV-GFPcc HUVEC 

cells also form tumors in nude mice and how they may differ from our RRVΔR1-GFPCC 

HUVEC cells.  Perhaps R1 will prove to be important for the development and 

maintenance of tumors over time in a xenograft model. 

 Unlike KSHV, we have found that RRV efficiently infects lymphocyte cells lines, 

both BJABs and DG-75s (data not shown). This can serve as an attractive model to study 

RRV in a more relevant, latently infected cell line.  Mansfield et al found that in vivo, 

RRV H26-95 preferentially infected CD20+ B lymphocytes (24).  Studies analyzing 

latency and reactivation will be important and may help determine what role R1 may play 

in the viral lifecycle. 

 It is possible that R1 does not play a role in lytic replication, establishment of 

latency or reactivation in in vitro models.  Instead, R1 may function more as an 

immunoregulatory protein and will be important in an in vivo model.  It has been shown 

that K1 of KSHV functions to down-regulate the surface expression of the B-cell receptor 

(BCR) (22).  Activation of the BCR initiates multiple intracellular signals that often lead 

to apoptosis. Inhibition of BCR-mediated signaling by the down-regulation of its surface 

expression or modulation of BCR signal transduction may provide a long-term survival 

advantage in vivo. Additionally, we and others have shown that K1 can function as an 
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anti-apoptotic protein, protecting cells from Fas-mediated apoptosis (31, 35).  Published 

data has shown that R1 activates B-cell signaling pathways similarly to K1 (9). Whether 

R1 affects BCR expression has not yet been determined.  However, we have seen that R1 

activates the Akt pathway, (Figure 7), similarly to K1 (31, 33, 35), which can control Fas-

mediated apoptosis (30, 32); further suggesting that R1 has a similar phenotype to K1 in 

vitro. 

It will prove interesting to analyze experimental infection of rhesus macaques 

with RRVΔR1-GFPCC as compared to wild-type viruses, with and with-out co-infection 

with SIV.  It has been shown in the context of SIV co-infection, that experimental 

infection with wild-type RRV, results in B cell hyperplasia, persistent lymphadenopathy, 

and persistent infection in macaques (18, 24, 36).  Studies involving a related gamma-

herpesvirus, HVS, deleted for the left-hand terminal membrane protein, STP or Tip, 

resulted in replication-competent deletion mutant  that were shown to not be required for 

viral replication or persistence but were essential for growth transformation of primary T 

cells in culture and for disease induction in vivo (16). RRVΔR1-GFPCC may prove to have 

an interesting phenotype in vivo, perhaps in the context of the development of B-cell 

hyperplasia, since R1 deregulates signal transduction in B-cells (9). Thus, R1 may be 

important for the development of RRV-associated disease in vivo. 

 In summary, we have developed a recombinant RRV, in which the R1 ORF has 

been interrupted with a GFP expression cassette.  Determining the contribution of 

individual ORFs using an RRV genetic system is a logical way to surmise the role of 

homologous ORFs of KSHV to viral pathogenesis.   This virus, RRVΔR1-GFPCC, will be 

used as a model to study the role of R1 in the viral life-cycle, both in vitro and in vivo. 
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Figure 7.  R1 activates the Akt pathway. 293 cells were transiently transfected with 
empty vector (EF), R1WT, or R1-D2, which is a c-terminal deletion mutant.  Cells 
were serum starved for 48hours, lysed and run on SDS-PAGE (each lane loaded with 
80ug protein).  Membranes were probed with the following antibodies: phospho-
PDK1, phospho-Akt Thr308, phospho-Akt Ser473, phospho-FKHR Ser256, phospho-
Bad ,phosphor-GSK3β (all from Cell Signal Technologies), and anti-Au1–HRP 
(Bethyl Laboratories). 
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General Conclusions 

 The gene products of oncogenic DNA viruses can alter multiple cellular pathways 

and operate at various points in the signaling cascades promoting cell growth and 

proliferation.  Since its discovery 13 years ago, much effort has been devoted to the study 

of KSHV. KSHV is now consistently detected in all forms of Kaposi’s sarcoma (KS), 

primary effusion lymphomas, and multicentric Castleman’s disease (1).  KSHV encodes 

numerous proteins that deregulate cellular signaling pathways, to aid in viral infection, 

replication and life-long persistence in the host. Expression of these proteins contributes 

to the onset of KSHV-associated diseases. 

 Once such protein, K1 is the subject of this dissertation.  Encoded by the first 

ORF of KSHV, K1 is one of the most variable proteins in the KSHV genome.  K1 has 

been shown to deregulate lymphocyte signaling, transform cells and down-modulate 

BCR expression (14, 16, 24). K1 expression has been found in all KSHV-related 

neoplasms, although the percentage levels of K1 gene expression varies by tumor type.  

K1 has been shown to be highly expressed during KSHV lytic replication (4, 13).  In 

latent cells, K1 RNA is expressed at lower levels (4).  Interestingly, Bowser et al (4) have 

shown that the native K1 promoter is active in many different cell lines in the absence of 

the KSHV Orf50/RTA protein and that RTA can activate the K1 promoter through three 

RTA responsive elements in the K1 promoter.  This raises the possibility that in latent 

cells, K1 expression may be regulated by environmental stimuli such as cytokines or 

growth factors. 

 We and others (16, 37) have shown that K1  increases the phosphorylation and 

activation of the p85 subunit of PI3K. The work presented in chapter 2 details our 
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investigation into the consequences of this interaction; mainly what affects K1 has on 

down-stream signaling by PI3K, particularly in B-lymphocytes.  K1 expression in BJAB 

B-cells was found to induce the activation of Akt, indicated by phosphorylation of Akt on 

two residues, Thr308 and Ser473.  The ITAM of K1 was found to be required for this 

activation, as mutation of the tyrosines in the ITAM abrogated phosphorylation of Akt. 

Akt functions to phosphorylate many down-stream targets involved in both cell survival 

and cell cycle regulation.  When cellular targets of Akt in K1-expressing cells were 

examined, only one target, Forkhead transcription factor (FKHR), was found to be 

affected, evidenced by an increase in phosphorylation. This phosphorylation is indicative 

of FKHR’s inactivation by Akt (3, 22, 36). The changes seen in the Akt pathway in K1 

expressing cells were found to be prevented when cells were treated with LY294002, a 

PI3K inhibitor (18).  This suggests that K1 activates Akt through PI3K. 

FKHR, also known as FOXO, is in the winged-helix family of transcription 

factors. In the absence of cellular stimulation, FOXOs are localized in the nucleus, where 

they activate transcription of target genes. However, upon activation of Akt by growth or 

survival factors, FOXO proteins are phosphorylated by Akt at specific sites, eliciting their 

re-localization from the nucleus to the cytoplasm. Phosphorylated FOXOs bind to 14-3-3 

proteins in the nucleus immediately before re-localizing to the cytoplasm, where they 

remain sequestered to 14-3-3 proteins (3, 5, 12). A number of pro-apoptotic proteins such 

as Fas ligand (FasL), Bim, TRAIL, and the insulin-like growth factor-binding protein 

(IGFBP)-1, are transcriptionally regulated by members of the FOXO subfamily (5, 8, 11, 

36). FOXO factors also regulate G1 cell-cycle progression by modulating expression of 

the cyclin dependent kinase inhibitor p27Kip1 and D-type cyclins (19, 22, 26, 27).  
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Cytoplasmic sequestration of FOXOs prevents transcriptional activity, resulting in cell-

cycle progression and inhibition of apoptosis. 

 The apparent inhibition of FKHR in K1-expressing cells led us to analyze 

FKHR’s sub-cellular localization.  In both epithelial and B-cells, expression of K1 led to 

an increase in cytoplasmic localization of FKHR as shown by both immuno-fluorescence 

and cellular fractionation assays.  This led us to analyze the transcriptional activity of 

FKHR.  Utilizing two different FKHR promoter recognition elements, it was shown that 

K1 expression leads to a repression of luciferase activity driven by FKHR promoter 

elements.   

 Because FOXO’s are intimately involved in apoptosis, we next sought to analyze 

how K1 expression influences apoptosis.  Over-expression of FKHR results in nuclear 

accumulation and apoptosis.  When apoptosis was induced by over-expression of FKHR, 

K1 expression resulted in only a limited protection, as measured by Caspase-3 activity.  

However, when apoptosis was induced by engagement of the Fas Receptor, K1 

expression resulted in ~50% protection from apoptosis.  As one of the FKHR responsive 

promoter elements was from the FasL promoter, this was not surprising. Typically, 

FKHRL1 (FOXO3a) mediates the transcription of FasL in response to apoptotic stimuli.  

This activation is mediated through binding of FKHRL1 to the three Forkhead responsive 

elements (FHRE) in the FasL promoter.  Secreted FasL binds to the Fas receptor on the 

surface of the cell and establishes a positive feedback loop resulting in cell death (Figure 

1).  Interestingly, after the data in Chapter 2 was published, another lab found that K1 

expression protects cells from Fas-mediated apoptosis, suppresses formation of the death-
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inducing signaling complex (DISC) and blocks caspase 8 activity, but did not suppress 

apoptosis induced by TRAIL or irradiation (40).  

We also found that K1 protected PEL cells latently infected with KSHV from 

Fas-mediated apoptosis. In PEL cell culture lines, K1 expression is found in a small 

percentage of cells.  By over-expressing K1 in PEL cells, there is an increase in 

protection of apoptosis, suggesting that K1 can modulate cell-signals to protect virus 

infected cells from apoptosis. 

It is interesting that of the Akt targets analyzed, only FKHR was modified by K1. 

We used the BJAB cell line, which is a highly transformed Burkitt’s lymphoma cell line 

(20). It is possible that the other targets analyzed have reached a saturation point of 

activation/inhibition by Akt, before the introduction of K1.  Indeed, when K1 expression 

was investigated in primary HUVECs, all Akt targets analyzed had increased 

phosphorylation (39).  This suggests that if K1 expression was analyzed in primary B-

cells, or at least, a less transformed B-cell line, other Akt targets might also be modified. 

K1 is not the only ORF of KSHV to target the PI3K pathway. The viral G-protein 

coupled receptor (vGPCR) also modulates this pathway (21, 30), inducing Akt activation, 

both in vitro and in vivo. Other groups have shown the importance of the PI3K/Akt 

pathway in the context of KSHV-related diseases.   This pathway is constitutively 

activated in several PEL cell lines.  Uddin et al demonstrated that inhibition of PI3K by 

LY294002 resulted in decreased phosphorylation of basal levels of Akt, GSK3, and 

FKHR and induced apoptosis in most PEL cell (38).  Additionally, one of the targets of 

Akt, mTOR, has been indicated as a potential target for KSHV-related diseases (29).  It 

has also been revealed that PI3K plays a role in entry of KSHV into target cells (23, 25).  
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All of these studies indicate the significance of PI3K signaling to virus survival. 

Manipulation of the PI3K pathway gives the virus extensive control over many cellular 

functions. There are a multitude of molecules in the PI3K pathway and discerning the 

targets of KSHV modulation will lead to a better understanding of viral pathogenesis.  

In chapter 3, we analyzed control of cell-surface expression of K1. As there was 

no information on how K1 surface expression is controlled, we first determined that K1 is 

endocytosed in a clathrin-dependent manner.  We found that the ITAM is required for 

internalization, as both a K1ITAM- mutant and a C-terminal deletion mutant, are both 

internalized at a slower rate as determined by ELISA.  The ELISA measures 

internalization after pre-labeling the cell surface with antibody. There is a possibility that 

the antibody cross-linking of K1 induces endocytosis and hence we also performed an 

endocytosis assay that was not based on antibody binding to K1.  Interestingly, when 

internalization was measured without antibody pre-labeling, but rather labeling cell 

surface molecules with biotin, we found that neither the ITAM- mutant nor the C-

terminal deletion mutant were internalized at all, further supporting our hypothesis that 

the ITAM is critical for internalization.  K1 internalization analyzed by confocal 

microscopy gave similar results.   

The exact residues involved in internalization of K1 are currently being pursued. 

For example, the first SH2 binding domain of the ITAM also encodes for a predicted 

tyrosine-based endocytic motif (YXXL). K1 also has several conserved lysines in its C-

terminus.  Ubiquitin conjugation to lysine residues is a common modification that signals 

receptor internalization and degradation. K1 has been shown to induce the 

phosphorylation of c-Cbl, an E3-ubiquitin ligase. Cbl proteins facilitate the ubiquitination 
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of activated tyrosine kinases and other signaling proteins. A monoubiquitin tag promotes 

sorting of activated receptors and associated proteins into internal vesicles of the 

multivesicular body, facilitating their lysosomal degradation, whereas a polyubiquitin tag 

promotes proteasomal degradation (reviewed in (35)). Whether or not K1 undergoes 

ubiquitin modification, either mono- or poly- is currently being investigated. The role of 

Cbl in K1 signaling and internalization also remains to be revealed. 

K1 appears to be internalized in a conventional clathrin-mediated route.  Once 

internalized, K1 traffics to the early endosome. From the early endosome, K1WT appears to 

traffic to the recycling-endosome, whereas K1ITAM- and K1ΔC do not. This is interesting as it has 

been shown that other viral glycoproteins such as Us28 of CMV, (10), ORF74 of KSHV (2) are 

constitutively internalized and recycled.  Constitutive recycling may provide a convenient 

method to regulate surface receptor numbers. If a rapid decrease in surface receptors is needed, 

the internalization rate could be increased and/or recycling decreased and vice versa.  Recycling 

promotes immediate cellular internalization without the need for recruitment of the necessary 

internalization machinery. The receptors can then be more quickly transported to the appropriate 

intracellular location where signaling occurs.  One speculation is that viral proteins need to be 

regulated to prevent chronic hyper-stimulation of signaling pathways that are not beneficial for 

viral replication and infection. Mammalian cells have evolved numerous mechanisms to prevent 

aberrant chronic activation of signaling pathways. By engaging cell regulatory machinery, K1 

may be able to signal only to moderate levels, thus potentially avoiding recognition by cell 

defense machinery. By blocking down-stream signaling of K1 with chemical inhibitors, the 

internalization rate of K1 was impeded, suggesting the formation of a feed-back loop between 

signaling and internalization. 
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 It is also possible that internalization functions to compartmentalize signaling 

pathways, by bringing appropriate signaling molecules within close-proximity, allowing 

for efficient signal transduction.  This idea is supported by the fact that by blocking 

internalization of K1, K1 was unable to activate Akt. This is also reinforced by the 

intracellular co-localization of K1 and the p85 subunit of PI3K. By inhibiting K1 from 

internalizing, the ability of K1 to efficiently interact with the molecules required to 

propagate signal transduction is disrupted (Figure 1). This is plausible, as it has been 

shown that some cellular receptors require correct internalization and trafficking in order 

to transmit accurate signals. Extensive studies involving the epidermal growth factor 

receptor (EGFR) have shown the need for compartmentalization for efficient signal 

transduction (28, 31, 32). 

 We also analyzed K1 internalization in B lymphocytes, as it relates to the B-cell 

Receptor (BCR).  K1 inhibits BCR assembly in the endoplasmic reticulum, resulting in a 

decrease in surface expression of the BCR (14).  We were interested in exploring whether 

K1 protein expressed at the plasma membrane interacted with surface BCR and the 

consequence of such an interaction. By confocal microscopy, we were able to see that K1 

and the BCR internalize together, into vesicle-like structures.  The two mutants of K1, 

which internalize at a much slower rate, appear to retain the BCR on the surface. It is 

likely that the amino-terminal portion or transmembrane domain of K1 binds BCR since 

the C-terminal deletion mutant of K1 can still interact with BCR.  This suggests another 

physiological function of K1, which is to scavenge BCR from the surface of B-cells, 

allowing for additional modulation of BCR signaling function. 
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Figure 1.  Model of K1 signaling and endocytosis.   K1 is constitutively active on 
the surface of cells via oligomerization of extracellular cysteine residues.  K1 
activation results in the recruitment of the p85 subunit of PI3K to the plasma 
membrane.  PI3K activation results in the activation and phosphorylation of Akt, 
which in turn phosphorylates FKHR.  Phosphorylation of FKHR causes it to bind to 
14-3-3, preventing it from translocating to the nucleus.  Upon dephosphorylation, 
FKHR moves to the nucleus and up-regulates the transcription of Fas ligand, which 
binds to the Fas receptor on the cell surface, creating a positive feed-back loop, 
resulting in apoptosis.  Therefore, by activating the Akt pathway, apoptosis is inhibited 
in K1 expressing cells.  Activation of K1 causes it to be internalized in a clathrin-
dependent manner. Internalization of  K1 can be prevented by inhibiting K1 signaling 
with LY294002 and piceatannol. Once internalized, K1 traffics from the early 
endosome to the recycling endosome. Trafficking through the recycling endosome 
allows K1 to be expressed on the surface again, without de novo transcription and 
translation. 
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Whether or not K1 actually modulates the internalization of the BCR remains to be 

elucidated.  It has been shown that internalization and trafficking to endosomes is not 

required to amplify BCR signaling, reflecting the dual function of the BCR for both 

signaling and antigen delivery. Evidence suggests that the BCR remains on the surface to 

signal, as inhibiting internalization of the BCR actually increases down-stream signaling 

(34).  Internalization may functions to dampen signaling and target antigens for 

processing for presentation.  K1 has not been shown to target to lipid rafts, and does not 

associate with caveolin, suggesting that by internalizing with BCR, K1 prevents BCR 

signaling.  Normally, cross-linking the BCR accelerates trafficking through the endocytic 

pathway to specialized late endosomal compartments rich in MHC class II (MIIC) (33). 

Whether K1 influences the lysosomal degradation of BCR, or the ability of BCR to 

interact with MIIC is not known and further studies are needed in order to further define 

the final destination of K1/BCR complexes. The multifaceted interaction of BCR sorting, 

interaction with MIIC and subsequent antigen presentation will make determination of 

K1 effects difficult; nonetheless such experiments will give insight into additional means 

by which KSHV modulates the host immune response.   

 In chapter four, we turned to a model system for KSHV, Rhesus Monkey Rhadinovirus 

(RRV).   The RRV R1 gene is a homolog of K1.  We wanted to determine K1’s role in the viral 

lifecycle in vivo.  Since KSHV does not infect mice or macaques, the only available model 

system to study K1’s role in viral pathogenesis is the RRV system.  Hence, we decided to delete 

R1 from RRV and examine the properties of the RRVΔR1 recombinant virus.  In order to delete 

R1 from the RRV genome, we utilized a set of overlapping cosmids encompassing the RRV 
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genome. We inserted a GFP-expression cassette into the R1 ORF of cosmid ah28ΔA/H thereby 

interrupting the R1 ORF. 

 We have analyzed this virus, RRVΔR1-GFPCC, for genome integrity.  By PCR and 

Southern blot, RRVΔR1-GFPCC appears to be identical to wild-type RRV H26-95, except for the 

insertion of the transgene.  We next analyzed the virus for replication in a one-step growth curve.  

We compared RRVΔR1-GFPCC growth to several other viruses: (i) RRV-GFPCC, a GFP-

expressing RRV also made using the cosmid system, (ii) rRRV-2.3.1, a revertant virus of 

RRVΔR1-GFPCC in which the GFP expression cassette has been removed, and (iii) RRV-J, a 

wild-type RRV H26-95 derived from the cosmid system.  Preliminary data using real-time PCR 

based viral load assays showed no significant differences in growth between RRVΔR1-GFPCC 

and RRV-GFPCC. However, there does appear to be an approximate one-log difference between 

the two wild-type viruses, RRV-J and rRRV-2.3.1.  Technically these two viruses should be the 

same.  Thus it may be necessary to further analyze the genomic integrity of both viruses.  

Confirmation of replication by plaque assay, which measures infectious virus, will also be 

performed. A plaque assay measure infectious virus while the real time PCR viral load assay 

measures genome copy numbers. Thus, it is possible that there will be a difference between WT 

RRV and RRVΔR1-GFPCC infectious titers as measured by plaque assay although the genome 

copy numbers between these two viruses may be unchanged.  This would suggest that R1 may 

play a role in efficient packaging of infectious virion progeny. 

 The above experiment was performed at an MOI=0.1.  We will also analyze these viruses 

at differing MOI’s.  In data not shown, we did see an approximate one fold increase in 

replication of RRVΔR1-GFPCC over RRV-GFPCC, as measured by both real-time PCR and 
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plaque assay, at an MOI=1.0. Comparing this to the other control viruses will need to be 

performed, as RRV-GFPCC may not be the appropriate comparison.   

For K1, there are contrasting reports as to its effect on lytic replication.  Lagunoff  et al 

found that expression of K1 in BCBL-1 cells augments lytic replication (13).  Conversely, Lee et 

al found that expression of K1 in the same cells resulted in a dramatic decrease in lytic 

replication (15).  However, these two groups induced lytic replication by different means.  

Lagunoff used exogenous expression of RTA and Lee used TPA.  Interestingly, Lagunoff found 

that ITAM mutants of K1 blocked lytic replication; this block could be overcome with TPA, 

suggesting that signaling pathways activated by TPA could compensate for the lack of signaling 

by K1 ITAM mutants.  They did not however, show what effect TPA had when used in 

conjunction with wild-type K1 expression.  It is likely that the signaling pathways activated by 

TPA are similar to that of K1. K1 could be depleting the intracellular pools of signaling 

molecules used in TPA signal transduction. Lee also found that full-length, wild-type K1 

required antibody cross-linking in order to suppress TPA-mediated lytic replication.  Antibody 

cross-linking could result in an increase in K1 signaling transduction.  This supports a role for 

K1 signaling competing for signaling molecules needed for TPA signal transduction.  RTA and 

TPA induce lytic reactivation by different means.  TPA induces the activation of several 

signaling pathways, including PKCγ and ERK, which leads to activation of AP-1, a transcription 

factor that is required for RTA promoter activation (6).  In support of this hypothesis, it has been 

shown that K1 expression leads to a decrease in RTA expression (15). 

 Determining the effect that R1 has on de novo lytic replication will shed light on the role 

of K1 in KSHV.  We have also created a panel of RhF stable cell lines expressing different R1 
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C-terminal mutants.  Using these complementing cell lines and our RRVΔR1-GFPCC virus, we 

will analyze the function of the different domains of the R1 C-terminus in RRV lytic replication. 

 In addition to determining the role R1 plays in lytic replication, we will also analyze the 

role R1 plays in the establishment of latency and reactivation from latency.  We have generated a 

number of different cell lines infected with RRVΔR1-GFPCC and RRV-GFPCC. Using these cells, 

we are able to analyze infection, based on GFP expression.  We will also be able to assess 

reactivation, by both TPA and RRV-RTA expression and analyze virus progeny by both real 

time PCR and plaque assay. 

 These viruses also give us a means to analyze the contribution of R1 to disease in 

vivo.  It has been shown in the context of SIV co-infection, that experimental infection 

with wild-type RRV, results in B cell hyperplasia, persistent lymphadenopathy, and 

persistent infection in macaques (9, 17, 41). As R1 has been shown to deregulate signal 

transduction in B-cells (7), R1 may play an important role in the development of disease 

in vivo, perhaps in the context of the development of B-cell hyperplasia. 

K1 and R1 play a specific role in the complex interaction between virus and cell. 

Deregulation of cellular signaling pathways involved in the infection process and 

replication of virus likely contribute to pathogenesis and viral oncogenesis. By interfering 

with signaling cascades, KSHV can manipulate not only its own gene expression, but 

also host gene expression to create a permissive environment for virus infection.  By 

determining how K1 and R1 function in the viral life-cycle, we may shed light on future 

treatments, not only for KSHV-related diseases, but other neoplasms, as well. 
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