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ABSTRACT 
 

SARAH CARR: The influence of vertical migratory behaviors on the transport of marine 
organisms 

(Under the direction of Dr. Richard A. Luettich, Jr.) 
 

Many marine organisms are dispersed by water currents for all or part of their lives or 

utilize water currents to migrate between habitats as juveniles or adults.  This transport is an 

important determinant of the distribution of marine populations and can be significantly 

influenced by organisms’ vertical migratory behaviors (VMBs).  The importance of VMBs to 

transport is now widely recognized, but there have been relatively few attempts to give 

detailed descriptions of them or quantify their influence.   

This dissertation describes and quantifies the influence of ebb-tide transport (ETT), a 

VMB in which crabs ascend into the water column during ebb tides, on the spawning 

migration of female blue crabs Callinectes sapidus, near Beaufort Inlet, North Carolina.  

Ovigerous female crabs were tracked with ultrasonic telemetry.  A detailed behavioral model 

was developed from this study as well as other field and laboratory studies and was coupled 

to a hydrodynamic model of the Beaufort Inlet region.  The total distances that crabs traveled 

during ebb tides ranged from 10 – 40 % of the distances that passive particles would have 

traveled under the same conditions. 

This dissertation also describes and quantifies the influence of diel vertical migration 

(DVM), a common VMB in which organisms reside in near-surface waters at night and at 

deeper depths during the day, on the transport of zooplankton in a coastal region with strong 
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seasonal upwelling.  Simple behavioral models of zooplankton DVM were coupled to a 

hydrodynamic model of the Monterey Bay region of California.  DVM reduced transport 

away from the region by as much as 8 km d-1 relative to passive transport near the surface. 

A synthesis of the existing literature supports the assumptions that selective tidal-stream 

transport behaviors such as ETT enable directed migrations in estuarine and coastal regions 

while DVM and ontogenetic vertical migrations generally retain organisms near their starting 

locations.  The synthesis also demonstrated that quantification of the influence of VMBs on 

transport must be carried out for specific behaviors at specific locations because organisms’ 

characteristic VMBs and hydrography vary widely between marine environments. 
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Chapter 1.  Introduction 
 
1.1 Vertical migratory behaviors in the marine environment 

Transport by oceanic currents is an important determinant of the distribution of marine 

populations because many marine organisms are planktonic throughout their lives 

(holoplankton) or during a dispersive larval stage (meroplankton; Roughgarden et al., 1988; 

Cowen et al., 2000).  In addition, many nektonic organisms use water currents to migrate 

between habitats as juveniles or adults (Arnold and Holford, 1995).  Understanding transport 

processes and their variability in the marine environment, particularly the level of self-

recruitment in a population and the connectivity between populations, is critical to the 

effective management of marine fisheries resources.  These processes help determine 

appropriate boundaries for fisheries management units (Strathmann et al., 2002; Warner and 

Cowen, 2002), potential sites for restoration efforts (Peterson et al., 1996), and the potential 

utility of and proper design (e.g. size, location) for marine protected areas (Stockhausen et 

al., 2000; Gaines et al., 2003; Palumbi, 2003). 

Vertical migratory behaviors (VMBs) are often cited as important influences on the 

horizontal transport of marine organisms (Wroblewski and Hofmann, 1989; Werner et al., 

1993, 2001; Gaines et al., 2003; Shanks et al. 2003).  Vertical current velocities in the marine 

environment are typically much smaller than horizontal current velocities (<< 1 %), and 

many organisms that are unable to swim effectively against strong horizontal currents can 

control their vertical position in the water column.  Vertical migratory speeds between 1 - 70 
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m h-1 have been observed in most marine invertebrate and vertebrate taxa, including 

poriferans, cnidarians, ctenophores, chaetognaths, nematodes, annelids, mollusks (including 

gastropods, bivalves, and cephalopods), arthropods (including euphausiids, copepods, 

cirripeds, and decapod crustaceans such as shrimp and crabs), bryozoans, and echinoderms 

(including asteroids and ophiuroids; Mileikovsky, 1973; Chia et al., 1984).  Depending on 

current velocities in a region, organisms that traverse relatively small vertical distances, on 

the order of 10 - 1000 m, in the water column could theoretically alter their horizontal 

transport by distances on the order of 10 - 100 km. 

VMBs influence an organism’s transport when an organism is able to maintain a given 

position on the bottom or in regions where there is vertical current shear in the water column.  

Vertical current shear occurs in most marine environments due to the presence of wind-

driven surface Ekman layers, benthic boundary layers, and thermal and salinity stratification.  

Shear is often much stronger (and the potential influence of VMBs on transport much higher) 

in coastal environments, however, due to coastlines, shallow depths, and freshwater runoff 

from land.  The exact influence of VMBs on transport is a function of how long an organism 

spends at different depths (i.e. its near-surface depth, depth of migration, and migratory 

timing and speed) and the relative current velocities at those depths. 

There are three main types of VMB: selective tidal-stream transport, diel vertical 

migration, and ontogenetic vertical migration.  Selective tidal-stream transport (STST) is a 

behavior in which organisms ascend into the water column during one tidal phase and remain 

at or near the bottom during the opposing tidal phase.  STST allows planktonic organisms to 

make unidirectional migrations in regions with strong oscillatory tidal currents, decreases the 

energetic costs of migration for nektonic organisms, and gives directional cues to migrating 
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organisms (Forward and Tankersley, 2001).  STST behaviors are generally linked to semi-

diurnal tides (generally the M2 tide), but diel vertical migrations in regions with strong 

diurnal tides (such as the K1 tide) may be de facto STST behaviors depending on the phase of 

the tide relative to the day-night cycle (Hill, 1991; Forward and Tankersley, 2001). 

While tides occur in all marine environments to some degree, STST occurs primarily in 

estuarine and coastal regions (Forward and Tankersley, 2001).  Tidal currents in these 

regions are generally much stronger than in open-ocean environments because the relatively 

shallow depths and reflection from and funneling by coastlines increases tidal amplitudes.  In 

channelized areas, such as straits, river mouths, or narrow estuaries, tidal currents are 

rectilinear (i.e. flowing back and forth in a straight line), therefore STST behaviors lead 

primarily to onshore-offshore (up- and down-estuary) transport.  The two variants of STST in 

these regions are ebb-tide transport (ETT), which results in net seaward transport, and flood-

tide transport (FTT), which results in net landward transport.  ETT has been observed in 

numerous crustacean, molluscan, and fish species and is often used for rapid larval dispersal 

from an estuarine or nearshore region (Forward and Tankersley, 2001).  FTT has been 

observed in numerous crustacean, molluscan, polychaete, and fish species and is often used 

for larval retention in or entry into an estuarine region (Forward and Tankersley, 2001).  In 

less confined regions, such as continental shelves, tidal currents are rotary (i.e. velocity 

vectors trace out an ellipse), so STST leads to transport in a particular compass direction.  

ETT, FTT, and STST in rotary currents are all used by juveniles and adults for directed 

migrations to nursery, reproductive, and feeding areas (Arnold and Holford, 1995). 

While STST behaviors are based on temporal fluctuations in current speed and direction, 

the presence of vertical current shear or an organism’s ability to maintain a given position on 
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the bottom is critical to achieving net transport.  Organisms that are strong swimmers can 

move to the bottom and maintain themselves there to avoid transport during the unfavorable 

tidal phase.  These organisms can achieve purely unidirectional transport and may be able to 

further augment their migratory speed by swimming downstream during the favorable tidal 

phase or swimming or walking upstream during the unfavorable tidal phase.  Organisms that 

remain in the water column during both tidal phases must migrate to depths with slower 

currents during the unfavorable tidal phase to achieve significant net transport.  These 

organisms generally have much slower net migratory speeds because of the back-and-forth 

transport. 

Diel vertical migration (DVM) is a behavior in which organisms migrate between 

surface waters and deeper depths with diel periodicity.  There are three main variants to this 

behavior:  1) nocturnal DVM in which organisms ascend into surface waters during the night 

and descend during the day, 2) reverse DVM in which organisms ascend into surface waters 

during the day and descend at night, and 3) twilight DVM in which organisms ascend to the 

surface at dawn and dusk and descend in between these periods (Forward, 1988).  Nocturnal 

DVM is by far the most common variant and has been observed in most marine taxa and 

almost all marine environments.  In terms of biomass, DVM is the largest animal migration 

on earth (Hays, 2003).  It enables zooplankters to feed in relatively productive surface waters 

during the night and avoid visual predators and intense solar radiation during the day (Haney, 

1988; Hays, 2003).  While STST behaviors appear to exist solely to influence transport, the 

influence of DVM behaviors on transport may be largely incidental because DVM imparts 

other advantages to organisms such as increased foraging opportunities and reduced 

vulnerability to predation (Hill, 1998). 
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Ontogenetic vertical migration (OVM) is a behavior in which an organism’s mean depth 

changes as the organism develops.  Common OVM behaviors include ascents or descents by 

eggs because of changes in buoyancy (Werner et al., 1993), ascents or descents to preferred 

depths by larvae as their swimming capacity increases (Cowen, 2002), and seasonal 

migrations of long-lived zooplankters such as copepods to cold, deep water to slow 

metabolism and survive periods of food scarcity (Bartsch and Coombs, 1997; Hannah et al., 

1998; Mullon et al., 2003; Stenevik et al., 2003).  OVMs are very common in most marine 

environments, and, as with DVM, the influence of OVM on transport may be largely 

incidental to the ecological benefits it provides. 

Other types of VMBs have also been observed.  Hybrids of the above behaviors, such as 

STST ascents into the water column during nocturnal periods only and increases in DVM 

amplitudes as organisms develop, are common.  VMBs have also been observed in response 

to short-term, less routine physical phenomena, such as rapid vertical movements of 

thermoclines or haloclines (Garland et al., 2002).  VMBs are also not static over time.  Many 

organisms use different VMB behaviors in different environments (e.g. DVM on the 

continental shelf and STST near and in estuaries; Forward et al., 2003), and the details of an 

organism’s VMB (e.g. timing, speed, and depth of migration) may vary over time due to 

intrinsic factors such as age, reproductive condition, and hunger state and environmental 

factors such as cloud cover, seasonal changes in the photoperiod, and the presence of 

predators (Haney 1988; Bollens et al., 1994). 

 

1.2 Determining the influence of VMBs on transport 
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Determining the transport of passive and vertically-migrating organisms in the marine 

environment is extremely difficult.  The limited visibility in the marine environment and the 

small size of many marine organisms means the transport of organisms can only be directly 

observed for distances on the order of 10s of meters or less (e.g. Olson, 1985; Stoner, 1992).  

As a result, a variety of other methods, such as mark-recapture, telemetry, autonomous 

drifters, and hydrodynamic model simulations, are used (Freire and Gonzalez-Gurriaran, 

1998). 

Marking an organism, releasing it into the marine environment, then recapturing it later 

(mark-recapture) is used to determine the net transport of organisms between release and 

recapture.  Marks can be artificial tags such as stains, dyes, or physical attachments.  

Organisms released from identifiable sources such as isolated islands or reefs, newly-

established populations of introduced species, or regions with unique geochemical signatures 

or genetic characteristics can also be considered marked for the purpose of mark-recapture 

studies.  Mark-recapture is one of the oldest methods of determining the transport of 

organisms and has been widely used to track a variety of invertebrates and vertebrates, 

including larval stages.  Mark-recapture studies can be difficult, however, because many 

artificial tags have detrimental effects on organisms (e.g. impede their foraging or make them 

more vulnerable to predators) or are shed when an organism molts, natural tags are rarely 

unique, and the probability of recovering marked individuals is extremely low (Levin, 1990; 

Jones et al., 1999; Thorrold et al., 2002; Freire and Gonzalez-Gurriaran, 1998).  Mark-

recapture studies also do not provide detailed information about organism trajectories or 

VMBs (e.g. migratory timing, speed, and depth of migration). 
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Tagged organisms with transmitters that telemeter their position can provide detailed 

information about trajectories because the organisms can be tracked by boat or have 

sequential locations recorded by fixed receiving stations.  Ultrasonic transmitters are 

generally used in the marine environment because they have a much greater range in 

saltwater than radio or satellite transmitters.  If organisms remain at or periodically move to 

the surface of the water column, radio or satellite positioning and telemetry can be used to 

transmit their position to remote observers for the period of time that they are at the surface.  

Incorporating pressure transducers into or using them simultaneously with transmitters also 

makes the telemetry or storage of VMBs possible.  Transmitters and pressure transducers are 

rapidly being miniaturized (Wolcott, 1995), but telemetry is still limited to relatively large, 

hard-bodied organisms that can carry a transmitter and/or transducer.  Moreover, tracking 

organisms or setting up arrays of receiving stations is often impractical, costly, and/or time-

consuming.  These difficulties notwithstanding, telemetry is an extremely promising method 

for determining the transport of passive and vertically-migrating organisms and will yield a 

tremendous amount of invaluable data in the future.  Excellent reviews of the use of 

telemetry for determining the transport of organisms in the marine environment have been 

written by Stasko and Pincock (1977), Wolcott (1995), and Freire and Gonzalez-Gurriaran 

(1998). 

Another technology that is also developing rapidly and is extremely promising is the use 

of autonomous drifters to simulate the trajectories of organisms.  The tracking of subsurface 

drifters is constrained by many of the same factors as tracking live organisms, namely the 

difficulty of determining and transmitting position underwater.  Drifters that mimic the VMB 

of organisms have been developed (DeRobertis and Ohman, 1999).  These drifters can be 
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programmed to surface periodically and take advantage of radio or satellite positioning and 

telemetry to determine and transmit their position, but they are still too large to realistically 

simulate the trajectories of larvae or small organisms.  The miniaturization of both passive 

and vertically-migrating drifters should occur rapidly, however, and make deployment of 

autonomous drifters extremely useful for determining detailed trajectories of both passive 

and vertically-migrating organisms.  Autonomous drifters have the advantages that they are 

less vulnerable to injury than live organisms, more readily made identifiable, and more easily 

recaptured because of the potential for adding transmitters that will telemeter a drifter’s 

position when it grounds or surfaces.  They have the disadvantage that they do not fully 

recreate the VMBs of organisms. 

Due to the difficulties of determining the transport of passive and vertically-migrating 

organisms in the field, many researchers use hydrodynamic models to simulate organism 

trajectories.  Hydrodynamic models solve simplified forms of the Navier-Stokes equations, 

the equations governing fluid flow, to simulate current velocities and sea surface height 

(Giske et al., 2001).  Models may also include algorithms to simulate other parameters, such 

as salinity, temperature, light, nutrients, and organism abundance.  The trajectories of passive 

organisms can be simulated by Lagrangian particle-tracking algorithms driven by current 

velocity output from hydrodynamic models.  The trajectories of vertically-migrating 

organisms can be simulated by incorporating a behavioral algorithm determining the depth of 

an organism at any given time into Lagrangian particle-tracking algorithms.  Behavioral 

algorithms can range from very simple functions in which simulated organisms swim up and 

down at fixed times to complex functions in which an organism’s depth depends on their 

developmental stage and other intrinsic parameters, as well as model parameters such as 
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temperature, salinity, light, nutrients, chlorophyll, turbulence, and prey or predator 

abundance (Giske et al., 2001; Werner et al., 2001; Gentleman, 2002).  Hydrodynamic 

models have a significant advantage over field methods for determining organism transport 

because the trajectories of both passive and vertically-migrating organisms can be simulated 

under a wide variety of hydrographic conditions with relative ease.  The ability to do 

numerous simulations is critical because even minor changes in starting location (horizontal 

or vertical) or time can lead to significant differences in the net transport of an organism. 

While hydrodynamic models provide the most detailed descriptions of current fields 

available, they may be inaccurate because of the simplification, parameterization, and 

discretization necessary to solve the governing equations and algorithms as well as 

inaccuracies in forcing data.  In addition, computational time and memory limitations make it 

impossible for hydrodynamic models to resolve processes at all of the temporal and spatial 

scales that may be important to an organisms transport (Giske et al., 2001).  The development 

of hydrodynamic models capable of resolving the small temporal and spatial scales critical to 

the circulation of coastal and estuarine regions is relatively recent; therefore there are 

relatively few examples of coupling behavioral algorithms with hydrodynamic models to 

predict the transport of vertically-migrating organisms in these regions (Wroblewski and 

Hofmann, 1989; Werner et al., 2001; Largier, 2003). 

 

1.3 Organization of this dissertation 

This dissertation describes and quantifies the influence of two common VMBs, STST and 

DVM, on transport in the marine environment.  Chapter 2 describes the ETT migration of 

female blue crabs (Callinectes sapidus Rathbun) from low salinity estuarine regions to high 
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salinity regions near the ocean to release larvae.  In order to determine the relationship of 

ebb-tide vertical migrations to local currents and the influence of these vertical migrations on 

the horizontal transport of blue crabs in the estuary, ovigerous females with mature embryos 

(~ 1 - 3 days from hatching) were tracked near Beaufort Inlet, North Carolina (USA), in July 

and August 2001 and 2002.  Crabs were tagged and tracked using ultrasonic telemetry, and 

currents near the crabs were measured simultaneously with a shipboard acoustic Doppler 

current profiler.  In Chapter 3, a detailed behavioral model of female blue crab ETT is 

developed from the results of Chapter 2, as well as other previous laboratory and field 

studies, and is coupled to a hydrodynamic model of the Beaufort Inlet region of North 

Carolina.  This coupled model is then used to simulate the trajectories of migratory female 

crabs in the region and determine spatial patterns in migratory success, migratory speeds, the 

residence times of crabs in different regions of the estuary, and potential larval release 

locations.  Chapter 4 describes the influence of DVM on zooplankton transport, the level of 

recruitment of locally-produced propagules (self-recruitment), and sources of recruits in the 

upwelling region near Monterey Bay, California, by simulating the trajectories of fixed-depth 

and vertically-migrating organisms with a drifter-tracking algorithm driven by velocity fields 

from a three-dimensional hydrodynamic model.  Chapter 5 synthesizes the existing literature, 

including the new work included in this dissertation, to determine the extent to available 

studies support the commonly-held belief that VMBs have a significant influence on 

transport in the marine environment. 
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Chapter 2.  Observations of the ovigerous blue crab Callinectes sapidus ebb-tide 
transport spawning migration 
 
Reprinted from “Carr SD, Tankersley RA, Hench JL, Forward RB, Luettich RA (2004) 

Movement patterns and trajectories of ovigerous blue crabs Callinectes sapidus during 
the spawning migration. Estuarine, Coastal and Shelf Science 60:567-579” with 
permission from Elsevier. 

 
Abstract 

Female blue crabs (Callinectes sapidus Rathbun) migrate from low salinity estuarine 

regions to high salinity regions near the ocean to release larvae.  During this migration, 

ovigerous females use ebb-tide transport, a vertical migratory behavior in which they ascend 

into the water column during ebb tides, to move seaward to larval release areas.  In order to 

determine the relationship of ebb-tide vertical migrations to local currents and the influence 

of these vertical migrations on the horizontal transport of blue crabs in the estuary, ovigerous 

females with mature embryos (~ 1 - 3 days from hatching) were tracked near Beaufort Inlet, 

North Carolina (USA), in July and August 2001 and 2002.  Crabs were tagged and tracked 

using ultrasonic telemetry, and currents near the crabs were measured simultaneously with a 

shipboard acoustic Doppler current profiler. 

During the two seasons, eight crabs were successfully tracked for periods ranging from 

3.9 – 37.0 h and for distances ranging from 1.9 – 10.6 km.  All crabs migrated seaward 

during the tracking periods.  Crabs moved episodically during all tidal phases with periods of 

movement on the order of minutes to an hour.  They moved with local currents in terms of 

both speed and direction during ebb tides, consistent with ebb-tide transport, and moved 
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down-estuary (seaward) in opposition to local currents during flood tides.  The percentage of 

time that crabs were active was higher during night ebb tides than during day ebb tides or 

flood tides and increased with increasing ebb-tide current speed.  Mean migratory speeds 

were 0.11, 0.04, 0.08 and 0.02 m s-1 during night ebb, night flood, day ebb and day flood 

tides respectively, and net migratory speeds were on the order of 5 km day-1.  Due to the 

episodic nature of the crabs’ movements, the total distances that crabs traveled during ebb 

tides ranged from 10 – 40 % of the distances that passive particles could have traveled under 

the same conditions. 

 

2.1 Introduction 

The blue crab Callinectes sapidus has a complex life history in which it utilizes both 

oceanic and estuarine habitats (reviewed in Van Engel, 1958 and Millikin and Williams, 

1984).  Mating generally occurs in the lower salinity regions of estuaries from spring to fall.  

After mating, females migrate down-estuary to higher salinity regions, often overwintering 

en route (Turner et al., 2003).  They generally extrude eggs during the summer months and 

carry them as a mass under their abdomens for a ~ 2 week development period (Sandoz and 

Rogers, 1944; Millikin and Williams, 1984).  Females release larvae near estuary mouths 

during nighttime and morning ebb tides, and larvae are transported offshore (Provenzano et 

al., 1983; Epifanio et al., 1984; Natunewicz et al., 2001).  Offshore larval development may 

be important for avoiding low-salinity osmotic stress and estuarine predators (Sandoz and 

Rogers, 1944; Morgan, 1990).  Wind events transport megalopae (post-larvae) back to 

coastal regions (Epifanio and Garvine, 2001). 
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During the spawning migration, ovigerous female blue crabs use ebb-tide transport (ETT) 

to move seaward to coastal larval release areas (Tankersley et al., 1998; Forward et al., 

2003a).  Organisms using ETT migrate vertically into the water column during ebb tides and 

are transported seaward as passive or semi-passive particles (reviewed in Forward and 

Tankersley, 2001).  They generally minimize transport during flood tides by remaining at or 

near the bottom.  Adult blue crabs are strong swimmers capable of speeds  > 1 m s-1 (Spirito, 

1972) and long distance migrations of 500 km (Tagatz, 1968), but ETT may enable ovigerous 

crabs to migrate more rapidly and efficiently in near-coastal areas where currents can exceed 

1 m s-1.  ETT also provides a means of orienting towards suitable larval release areas in the 

lower estuary and coastal ocean. 

Other studies of ETT by ovigerous blue crabs have focused on the timing of vertical 

migrations into the water column with respect to tidal and diel phases.  In a survey of blue 

crabs migrating at the surface of a North Carolina estuary, Tankersley et al. (1998) observed 

a relatively large number of ovigerous females with mature embryos (< 4 days prior to larval 

release) migrating via passive transport during night ebb tides and relatively few ovigerous 

crabs migrating during night flood tides or the day.  In a laboratory experiment in constant 

low-level light conditions, Forward et al. (2003a) demonstrated that ebb-tide vertical 

migrations by ovigerous crabs with mature embryos are based on an endogenous circatidal 

rhythm in vertical swimming and occur at times corresponding to consecutive local ebb tides.  

Vertical swimming episodes in laboratory tanks were brief (< 3 min), and swimming activity 

levels varied widely among crabs.  In a field study of female blue crabs tethered in a North 

Carolina estuary, Hench et al. (2004) observed that crabs migrated vertically during all stages 

of egg development but sojourns into the water column were most frequent in the ~ 3 days 
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prior to larval release.  Most vertical migratory activity occurred when hydrostatic pressure in 

the estuary was decreasing, suggesting that this environmental cue may be the zeitgeiber 

(“timegiver”) for the endogenous circatidal rhythm.  The frequency of vertical ascents was 

highest during times of maximum ebb currents and when hydrostatic pressure was decreasing 

most rapidly.  Some of the tethered crabs were active during night and day ebb tides, while 

others were only active during night ebb tides.  As with Forward et al. (2003a), vertical 

migratory episodes were brief (< 1 min), and the frequency of vertical migrations varied 

widely among crabs. 

The goals of the present study were three-fold: 1) to characterize horizontal and vertical 

movement patterns of ovigerous blue crabs during the spawning migration, 2) to determine 

the relationship of ETT vertical migrations by free-ranging ovigerous crabs to local currents, 

and 3) to determine the influence of ETT vertical migrations on the horizontal transport of 

ovigerous crabs during the spawning migration.  Free-ranging ovigerous females were 

tracked using ultrasonic telemetry, and currents near the crabs were measured with a 

shipboard current meter.  By measuring crab and current velocities simultaneously, the 

difference between active horizontal movements (walking or swimming) could be 

distinguished from passive horizontal transport by local currents.  Similar tracking methods 

have been used for striped marlin (Tetrapturus audax; Brill et al., 1993) and American eels 

(Anguilla rostrata; Parker and McCleave, 1997), but the simultaneous measurement of both 

organism and current velocities at high-resolutions is still rare in tracking and migration 

studies.  I am unaware of any comparable prior studies for invertebrate migrations.  Previous 

estimates of travel speeds for ovigerous blue crabs during the spawning migration have been 

derived from low-resolution mark-recapture studies (reviewed in Millikin and Williams, 
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1984; Turner et al., 2003).  This study provides the most detailed description of the ovigerous 

blue crab spawning migration to date and allows for estimates of temporal variability in 

migratory speeds, as well as average migratory speeds. 

 

2.2 Materials and methods 

Ultrasonic tracking experiments were conducted near Beaufort Inlet, North Carolina, in 

July and August, 2001 and 2002.  Beaufort Inlet is a high-energy tidal inlet that connects the 

complex, shallow estuarine system of Bogue Sound, the Newport River Estuary, the North 

River Estuary and Back Sound to Onslow Bay and the South Atlantic Bight (Fig. 2.1).  

Circulation near the inlet is dominated by semi-diurnal tides, and peak ebb currents speeds 

are > 1 m s-1 near the inlet throat (Logan, 1995; Luettich et al., 1999).  Tidal currents are 

slower inside the estuarine system due to bottom friction and increases in cross-sectional 

area, and there is a ~ 2 h phase lag between the time of high tide at the inlet and the time of 

high tide in the upper sub-estuaries (Luettich et al., 1999).  Due to low freshwater input, 

shallow depths and strong tidal currents, the water column near Beaufort Inlet is generally 

well-mixed with little stratification (Klavans, 1983; Luettich et al., 1999). 
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Fig. 2.1. Location of tracking study area: (a) South Atlantic Bight and (b) Beaufort Inlet 
region.  Crab collection sites are marked by hexagons ( ), and ADCP mooring sites are 
marked by diamonds (♦). 
 
 

Female blue crabs (12 – 17 cm carapace width) with mature embryos (~ 1 - 3 days from 

hatching) were dipnetted while migrating in surface waters of the lower Newport River 

Estuary (2001) and the Port of Morehead City turning basin (2002) (Fig. 2.1b).  Embryo 

stage was determined at the time of collection by examining a small sample of eggs with a 

dissecting microscope.  Mature embryos have well-developed eyes and little yolk, giving egg 

masses with mature embryos a characteristic brown-black color (DeVries et al., 1983). 

Ultrasonic transmitting tags (2001: Sonotronics CT-82-3, 10 g in water, 18 mm x 67 mm; 

2002: VEMCO V16, 11 g in water, 16 mm x 58 mm) were attached to the crabs’ dorsal 

carapaces by wrapping wire around the crabs’ lateral spines.  Similar telemetry tags have 

been used to study a range of crab behaviors, such as movement patterns, foraging and 

agonistic activity (Hines et al., 1995; Clark et al., 1999; Turner et al., 2003; reviews in 

Wolcott, 1995 and Freire and González-Gurriarán, 1998).  In laboratory tests, these tags do 

not appear to interfere with normal activities, such as burial, walking and swimming (Hines 

et al., 1995).  Tagging does not have a significant effect on the mean number of vertical 

migrations, ascent rates or descent rates of ovigerous blue crabs but does decrease the 
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duration of vertical migratory episodes (Hench et al., 2004).  The results in this study should 

therefore be considered conservative estimates of true migratory speeds. 

Tagged crabs were kept in buckets of water from the collection sites and transported by 

boat to one of three starting sites: the Radio Island Channel (2001), the Shackleford Channel 

(2001) or Bogue Sound (2002) (Fig. 2.1b).  Tracking began 30 - 60 min after crabs were 

collected and continued for up to 37 h or until the signal from the tagged crab was lost.  

Crabs were tracked from the 8-m RV Parker, which was equipped with a differential Global 

Positioning System (Northstar 951XD receiver) and a boom-mounted acoustic Doppler 

current profiler (Hench et al., 2000; RD Instruments Workhorse Monitor ADCP, 1200 kHz, 

0.5 m bins, 1.34 s sample interval) that also measured water depth.  Ultrasonic signals from 

the tags were received with a Sonotronics DH-4 directional hydrophone with USR-96 

receiver (in 2001) and a VEMCO VH-10 directional hydrophone with VR-60 receiver (in 

2002).  The hydrophones were mounted on PVC (in 2001) and stainless steel (in 2002) pipes 

that were held overboard (in 2001) and mounted to the side of the boat (in 2002) so that the 

hydrophones were below the bottom of the boat hull.  During tracking, the hydrophones were 

rotated by hand to determine the direction of the crab relative to the boat. 

Although signal strength varied due to local bathymetry, current strength and direction 

and water column stratification, strong signals were received at 1 - 20 min intervals and 

indicated that crabs were < 100 m from the boat.  The maximum range for a strong signal 

was determined by independent tests of the ultrasonic telemetry equipment in the lower 

Newport River Estuary.  The boat position was recorded when strong signals were received, 

and these positions (fixes) were used for the analysis of crab movement.  Crab speeds were 

calculated by dividing the spatial distances that crabs traveled by the time intervals between 
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fixes.  Current velocities from the ADCP were depth averaged and time averaged for the 40 s 

bracketing the time of each fix. 

Independent current meters were moored in the Radio Island Channel in the summer of 

2001 (1200 kHz RD Instruments Workhorse ADCP, 0.5 m bins, 3.33 s sampling interval, 

180 samples per average) and in Bogue Sound in the summer of 2002 (1200 kHz RD 

Instruments Workhorse ADCP, 0.5 m bins, 2.50 s sampling interval, 360 samples per 

average) (Fig. 2.1b).  Current measurements from the moorings were depth averaged and 

used to determine tidal current phase (i.e. ebb tide or flood tide) when shipboard ADCP 

measurements were not available.  The times of local sunset and sunrise were used as the 

beginnings and ends of night periods. 

Analysis of variance (ANOVA) and Fisher’s protected least significant difference 

(PLSD) post-hoc test at the 5 % significance level were conducted on mean crab speeds 

during the four tidal-diel phases using StatView (SAS Institute Inc., v. 5.0).  Mean angles (± 

95 % CI) for angular data were calculated using Oriana (Kovach Computing Services, v. 

1.01). 

 

2.3 Results 

2.3.1 Crab trajectories 

Eight crabs were successfully tracked during the 2001 and 2002 spawning seasons.  

Tracking durations ranged from 3.9 – 37.0 h with a mean of 21.4 h, and tracking distances 

ranged from 1.9 – 10.6 km with a mean of 4.8 km (Table 1).  All crabs migrated seaward 

during the tracking periods regardless of their starting location or whether their relocation 

from capture area to tracking starting location changed the direction (compass bearing) to 
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Beaufort Inlet (Fig. 2.2a).  Crabs 1, 2 and 3 were tracked from the Radio Island Channel, 

Crab 4 from the Shackleford Channel, and Crabs 5, 6, 7 and 8 in Bogue Sound (Fig. 2.2b).  

Crabs 1, 2, 3 and 6 were tracked to the inlet strait, while Crab 4 was tracked to ~ 4 km 

offshore (Fig. 2.2b).  Tracking ended for Crabs 1, 2, 3 and 7 because the tag signal was lost 

and for Crabs 4, 5, 6 and 8 because of adverse weather or time constraints. 

 

Crab No. Starting Location Starting 
Date 

Starting 
Time 

Tracking 
Duration 

Tracking 
Distance 

1 Radio Island Channel 7/17/01 21:31 3.9 h 2.2 km 
2 Radio Island Channel 7/18/01 22:08 15.9 h 2.4 km 
3 Radio Island Channel 7/20/01 00:08 4.9 h 2.1 km 
4 Shackleford Channel 8/01/01 22:05 37.0 h 7.4 km 
5 Bogue Sound 7/08/02 22:22 14.3 h 1.9 km 
6 Bogue Sound 7/17/02 22:05 30.6 h 10.6 km 
7 Bogue Sound 8/04/02 21:53 34.9 h 5.5 km 
8 Bogue Sound 8/07/02 22:51 29.4 h 5.9 km 

 
Table 1.1. Starting locations, dates and times of tracks and tracking durations and distances. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 23

 
 
Fig. 2.2a. Eight (8) crab tracks and bathymetry (gray shading) near Beaufort Inlet, North 
Carolina.  Tracks start in the estuary and move towards the inlet.  Starting locations are 
marked by hexagons ( ), and subsequent fixes are marked by circles (●). 
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Fig. 2.2b.  Crab tracks near Beaufort Inlet, North Carolina.  Tracks start in the estuary and 
move towards the inlet.  Starting locations are marked by hexagons ( ).  Fixes are marked as 
night ebb (■), night flood (●), day ebb (□) and day flood (○) tides.  Solid lines are tracks 
during ebb tides, and dashed lines are tracks during flood tides. 
 
 



 25

 
 
Fig. 2.2b cont. 



 26

Crab movements during the tracking periods were highly discontinuous.  Crabs tended to 

move rapidly for periods from several minutes to an hour and remain stationary for periods 

from several minutes to hours (Fig. 2.3).  Some time was required to relocate crabs after 

periods of movement because the range of the hydrophones was limited.  Therefore, some of 

the crab speeds shown are means of times when crabs were moving and times when they 

were stationary and underestimate instantaneous crab speeds.  Shipboard ADCP 

measurements were not collected at the ends of the tracks for Crabs 2 and 5 because the crabs 

moved into shallow areas that were inaccessible to the tracking vessel.  Movements during 

these periods were classified as ebb-tide or flood-tide based on the tidal current phase at the 

moored current meters, but these periods were not used when direct comparisons between 

crab and current vectors were made since local current vectors were not available.  The local 

currents at the end of Crab 4’s track were very weak (< 0.1 m s-1) because the crab had 

migrated offshore, away from the strong tidal influence of the inlet and estuary. 
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Fig. 2.3. Time series of crab speed (small, dark gray bars) and current speed (-.-.).  Positive 
speeds indicate flood tides/up-estuary movement, and negative speeds indicate ebb 
tides/down-estuary movement.  Bar width indicates the time between fixes and period over 
which mean speed is computed.  Night and day periods are indicated by the large light gray 
and white sections respectively. 
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2.3.2 Relationship of crab movements to local currents 

Crabs moved during all tidal and diel phases, but there were distinct differences in 

movement patterns during different periods.  Crab movements were overwhelmingly in the 

same direction as local currents during ebb tides and against local currents during flood tides 

(Fig. 2.3), resulting in seaward movement during both ebb and flood tides (Fig. 2.2b).  Crab 

vectors were consistently aligned with current vectors (< 30° difference) during ebb tides and 

with the down-estuary flow direction (180° from the shipboard ADCP current vectors) 

during flood tides (Fig. 2.4a).  When directional data were pooled among the eight crabs and 

weighted by the time that each fix represented so that every minute of tracking was 

represented by a single data point, the mean difference (± 95 % CI) between the crab and 

current vectors during ebb tides was 1° (± 2°) (Fig. 2.4b).  The mean difference (± 95 % CI) 

between the crab and current vectors during flood tides was 187° (± 3°) (Fig. 2.4b).  The 

close alignment between crab and current vectors during ebb tides is consistent with passive 

transport, and the close alignment between crab vectors and the down-estuary flow direction 

during flood tides raises the possibility that crabs may be using flood-tide currents to orient 

seaward during these periods. 
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Fig. 2.4a. Crab vectors (black) and current vectors (gray) between fixes during ebb and flood 
tides. 
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Fig. 2.4b. Histograms of angular difference between crab and current directions during ebb 
and flood tides.  Mean angular differences (± 95 % CI) are indicated. 
 

There were also distinct differences in crab speeds relative to local current speeds during 

ebb and flood tides.  During some ebb tides, the temporal resolution of tracking was 

sufficient to show crabs moving at approximately the same speeds as local currents, 

indicating passive transport.  Close correspondence between crab and current speeds was 

seen during the second night ebb of the track of Crab 4 and both night and day ebb tides of 

the tracks of Crabs 6 and 8 (Fig. 2.3).  Movements against local currents during flood tides, 

on the other hand, were frequently on the order of 0.25 m s-1 regardless of current speed (Fig. 

2.3).  These movements suggested down-estuary walking or directed swimming by crabs 

during flood tides. 
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Crabs also tended to be more active during ebb tides than during flood tides and during 

the night than during the day.  Figs. 2.5a-b show histograms of crab speed relative to current 

speed for different tidal-diel phases.  To create these histograms, the crab speed at every fix 

was divided by current speed at the fix.  These percentages were weighted by the amounts of 

time represented by the fixes so that every minute of tracking was represented by a single 

data point.  Percentages were then grouped by value and tidal-diel phase.  Since some of the 

calculated crab speeds are mean speeds between fixes and not necessarily instantaneous 

speeds, the figures provide lower bounds for the percentage of time that a crab was stationary 

and for the crab speeds as percentages of current speeds.  As a whole, crabs were more active 

during night ebb tides (~ 50 % of the time) (Fig. 2.5b) than during flood tides or day ebb 

tides (< 20 % of the time) (Fig. 2.5b), but activity levels among individual crabs varied 

widely (Fig. 2.5a).  Crabs 6 and 8 were equally or more active during day ebb tides than 

night ebb tides, and Crabs 2, 4, 6 and 8 were frequently active during flood tides. 
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Fig. 2.5a. Relationship between crab speed and local current speed during night ebb (NE), 
night flood (NF), day ebb (DE) and day flood (DF) periods. 
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Fig. 2.5b. Relationship between crab speed and local current speed during night ebb, night 
flood, day ebb and day flood periods (data from all crabs combined). 
 
 

Crab activity was related to current speed as well as tidal-diel phase.  Crabs were more 

active when ebb-tide current speeds were high than when ebb-tide current speeds were low or 

during flood tides (Fig. 2.6).  Tracking periods were divided into 0.25 m s-1 velocity bins (-

1.00 - 1.00 m s-1), and the percentages of time that crabs were active when the local current 

velocity corresponded to each bin were calculated.  On average, crabs were active from 45 – 
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75 % of the time when local currents were ebbing with speeds > 0.25 m s-1 and < 15 % of the 

time when currents were flooding > 0.25 m s-1. 

 

 
 
Fig. 2.6. Mean (± 95 % CI) percentage of time that crabs were active as a function of local 
current velocity.  Positive current velocities are flood tides, and negative current velocities 
are ebb tides. 
 
 
2.3.3 Horizontal transport 

Mean crab speeds were significantly different during the four tidal-diel phases (ANOVA, 

F3,24 = 4.49, P < 0.05) (Fig. 2.7).  The speeds of individual crabs during tidal-diel phases 

were calculated by dividing the total distance that each crab traveled during a tidal-diel phase 

by the total time the crab was tracked during that tidal-diel phase.  Mean crab speeds (± 95 % 

CI) during night ebb, night flood, day ebb and day flood tides were 0.11 m s-1 ± 0.04 m s-1 (n 

= 8), 0.04 m s-1 ± 0.03 m s-1 (n = 8), 0.08 m s-1 ± 0.08 m s-1 (n = 6) and 0.02 m s-1 ± 0.02 m s-1 

(n = 6) respectively (Fig. 2.7).  Mean crab speed during night ebb tides was significantly 
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higher than mean crab speeds during night flood tides (Fisher’s PLSD, P < 0.01) and day 

flood tides (Fisher’s PLSD, P < 0.01).  There were no significant differences (Fisher’s PLSD, 

P > 0.05) between night and day ebb tides or between day ebb tides and night and day flood 

tides.  The high variability in mean speed during day ebb tides was due to relatively high 

activity levels in some crabs (Crabs 6 and 8) and relatively low activity levels in others 

(Crabs 4 and 7).  When individual crabs were active during the day, their day activity levels 

were comparable to their night activity levels. 

 

         
 
Fig. 2.7. Mean (± 95 % CI) crab speed during night ebb, night flood, day ebb and day flood 
tides. 
 
 

The crabs’ net migratory speeds varied from 3.2 – 13.5 km day-1 with a mean of 6.5 km 

day-1, but these results were highly dependent on the proportion of tracking time in different 

tidal-diel phases.  For example, Crabs 1 and 3 were tracked primarily during night ebb tides 
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and had the fastest net migratory speeds (13.5 and 10.3 km day-1 respectively).  The net 

migratory speeds of crabs tracked for > 24 h ranged from 3.8 – 8.3 km day-1 with a mean of 

5.4 km day-1.  This corresponds extremely well to a net migratory speed estimate of 5.4 km 

day-1 derived from averaging the mean migratory speeds for the four tidal-diel phases (Fig. 

2.7).   

During ebb tides, crabs traveled 10 - 40 % of the down-estuary distances that passive 

particles would have traveled (Fig. 2.8).  Passive transport distances during ebb tides were 

calculated by multiplying the local current speeds at each fix by the times that the fixes 

represented and summing the results.  Differences in total transport distances during ebb tides 

were due primarily to the relatively long periods of time that crabs were stationary during 

tracking.  Migration during flood tides was an important contributor (> 20 %) to the total 

distance traveled by Crabs 2, 4, 6 and 8 but was not for Crabs 5 and 7.  (Crabs 1 and 3 were 

not tracked long enough during flood tides to be considered.) 
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Fig. 2.8. Comparison of distances traveled down-estuary by crabs (C1 - C8) and the down-
estuary travel distances predicted for passive particles (P1 – P8).  The predicted distances for 
day ebb tides for Crabs 2 and 5 are not shown because shipboard ADCP data were not 
available for those periods.  Missing ADCP data is denoted by an asterisk (∗). 
 
 
2.4 Discussion 

Previous studies have shown that ovigerous blue crabs with mature embryos (< 4 days 

prior to larval release) use ebb-tide transport (ETT) to migrate seaward to larval release areas 

(Tankersley et al., 1998; Forward et al., 2003a).  This ultrasonic tracking study was the first 

to examine this behavior in free-ranging crabs and to show the influence of ETT on the 

horizontal transport of crabs in an estuary.  The results are consistent with ETT since crabs 

moved with the local currents during ebb tides and against them during flood tides and 
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frequently moved at speeds close to the local current speeds during ebb tides (Fig. 2.3).  

While some of the periods in which crab speeds were greater than or less than ebb-tide 

current speeds may represent active horizontal swimming or down-estuary walking 

respectively, we believe that crabs were passively transported during most of these periods 

and that there would be closer correspondence between crab and local current speeds during 

ebb tides if greater temporal resolution of crab location had been possible.  It is also possible 

that passive transport in the lower (upper) water column may have resulted in crab speeds 

that were less (greater) than depth-averaged local current speeds.  Currents in the lower water 

column are generally slower than depth-averaged currents because of bottom friction.  It was 

not possible to test this hypothesis since the exact vertical position of crabs in the water 

column could not be determined. 

This study provides details about several important aspects of the ovigerous blue crab 

spawning migration, including the discontinuity of movements by free-ranging migratory 

crabs in the field.  Crab movements were highly episodic with periods of rapid movement, on 

the order of minutes to an hour, followed by periods when crabs were stationary, on the order 

of minutes to hours (Fig. 2.3).   These movements correspond to the episodic “swimming 

bouts” observed by Forward et al. (2003a) in laboratory tank experiments and by Hench et al. 

(2004) in estuarine tethering experiments.  They may be more sustained in free-ranging 

crabs, however, due to the lack of a possible tethering artifact and the presence of strong tidal 

currents and appropriate environmental cues in the field.   High levels of turbulent kinetic 

energy have been shown to sustain swimming in blue crab megalopae during flood-tide 

transport (Forward et al., 2003b).  The stationary periods between movements may be rest 

periods for the negatively-buoyant crabs and may provide a means for crabs to sense changes 
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in environmental conditions (e.g. hydrostatic pressure) that they are not able to sense in a 

Lagrangian reference frame.  The lack of movement by crabs during large portions of the 

tracking periods resulted in migratory paths that were considerably shorter than (< 40 %) the 

paths predicted for organisms with continuous ETT behaviors. 

Although crabs did not move continuously during ebb tides, they moved more frequently 

when ebb-tide current speeds were high (Fig. 2.6) and transport would be most efficient.  

Crabs are negatively buoyant and must expend energy to remain in the water column.  

Therefore, vertical migrations into the water column when currents are strongest will result in 

faster horizontal transport and will most likely be more energetically efficient than vertical 

migrations at other times.  Hench et al. (2004) also observed increased ovigerous blue crab 

vertical migratory activity during times of maximum ebb currents.  It is not certain whether 

the proximal cause of this behavior is environmental cues, such as turbulence or changes in 

hydrostatic pressure, or whether peaks in the endogenous circatidal activity rhythm (Forward 

et al., 2003a) correspond to the times of maximum ebb currents in the estuary.  

Another important result from the tracking study was the down-estuary migration of 

crabs during flood tides.  Other studies of the ovigerous blue crab spawning migration, 

involving observation from a fixed platform (Tankersley et al., 1998), activity in laboratory 

tanks (Forward et al., 2003a) and tethering crabs (Hench et al., 2004), have been stationary in 

nature and have not provided data on horizontal migratory behaviors such as walking or 

swimming against local currents during flood tides.  The down-estuary/offshore movements 

during flood tides in the field cannot be attributed to passive horizontal transport via vertical 

migration and must involve active horizontal swimming or walking.  While all the crabs, 

except Crab 2, moved farther during ebb tides than during flood tides, down-estuary walking 
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or swimming during flood tides was an important contributor to the total seaward migration 

(> 20 %) of half of the crabs during the tracking periods.  This behavior may be especially 

important to migrating crabs when they are in the upper reaches of the estuary where currents 

are relatively weak.  In these areas, vertical migrations into the water column during ebb 

tides will be relatively inefficient at transporting crabs to suitable larval release areas, but 

regular seaward movements during flood tides will enable crabs to move to more tidally-

energetic regions where rapid ETT is possible.   

The close alignment between crab movements during flood tides and the down-

estuary/offshore direction (Fig. 2.4b) suggests that ovigerous female blue crabs are able to 

actively orient down-estuary/offshore.  Blue crabs are known to use sun-compass orientation 

to orient offshore in the intertidal zone (Nishimoto and Hernkind, 1982) and positive 

rheotaxis for foraging (Weissburg and Zimmer-Faust, 1994), but it is not clear which, if 

either, of these orientation abilities is involved in down-estuary/offshore movements during 

flood tides.  This observation warrants further investigation. 

Another important observation from the tracking study is the high variability in crab 

behavior during the day.  Of the four crabs tracked through a complete 24 hour-period, two 

were extremely active during the day, while the other two remained relatively stationary 

during the day.  Water depth is a major influence on light penetration in the water column, 

but there was no apparent relationship between crab activity and water depth during the 

tracking periods (results not shown).  Hench et al. (2004) found that crabs tethered 

simultaneously in the same environmental conditions often had very different activity levels 

during day ebb tides.  Since all crabs presumably have a circatidal rhythm in vertical 

migratory activity (Forward et al., 2003a), these results suggest light suppresses vertical 
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migratory activity under field conditions (Tankersley et al., 1998) but thresholds for 

suppression vary among individuals. 

The speeds that ovigerous crabs travel down-estuary and offshore using ETT will be 

important determinants of where larval release occurs and whether larvae will be successful 

at exiting the estuary and reaching suitable offshore development areas.  Migratory speeds in 

the estuary will depend on starting location and the current regime in the estuary, the 

relationship of the tidal and diel cycles during the migratory period, and other factors, such as 

the phase of the spring-neap cycle.  The mean speeds presented here (Fig. 2.7) are 

representative of migratory speeds in the lower estuary where currents are relatively strong 

(maximum speeds of ~ 1 m s-1) and demonstrate that crabs can migrate rapidly (on the order 

of 5 km day-1) using ETT.  While these transport rates are probably greater than transport 

rates in the upper estuary where currents are slower, they suggest that the ETT behavior 

observed in this study will allow crabs from most of the estuarine system north of Beaufort 

Inlet to reach the lower estuary within  ~ 4 days.  Currently, very little is known about the 

exact locations of larval release in the Beaufort Inlet region. 

This tracking study provides the first estimates of migratory speeds for ovigerous blue 

crabs, information that is crucial for the effective management of blue crab spawning stock.  

The results of this study will also be used to verify a coupled biological-physical model of 

the migration that can then be used to conduct further investigations of migratory pathways 

and speeds in the estuary and likely larval release locations.  This study poses several 

questions which require further investigation, including the determination of which, if any, 

environmental cues help to control the ETT behavior, crab mechanisms for navigating during 
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the spawning migration, and the variability of crab behavior during the spawning migration 

among different estuaries with different physical environments. 
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Chapter 3.  Spatial patterns in the ovigerous blue crab Callinectes sapidus ebb-tide 
transport spawning migration 
 
Reprinted from “Carr SD, Hench JL, Luettich RA, Forward RB, Tankersley RA (2005) 

Spatial patterns in the ovigerous Callinectes sapidus spawning migration: results form a 
coupled behavioral-physical model. Marine Ecology Progress Series 294:213-226” with 
permission from Inter-Research. 

 
Abstract 

Ovigerous blue crabs Callinectes sapidus use ebb-tide transport (ETT), a vertical 

migratory behavior in which crabs ascend into the water column during ebb tides, to migrate 

from estuarine adult habitats to coastal larval release locations.  In this study, we develop a 

detailed behavioral model of ovigerous blue crab ETT from previous laboratory and field 

studies and couple this model to a hydrodynamic model of the Beaufort Inlet region of North 

Carolina.  We simulate the trajectories of migratory ovigerous crabs in the region and 

determine spatial patterns in migratory success, migratory speeds, the residence times of 

crabs in different regions of the estuary, and potential larval release locations. 

Highly active crabs can start their migration from almost anywhere in the estuary and 

reach suitable larval release locations within a typical 4-day migratory period, whereas crabs 

with lower activity levels can only reach suitable larval release locations if they start their 

migration in the lower-mid estuary.  Migratory speeds in the estuary range from < 1 to > 8 

km day-1.  Crabs with lower activity levels are resident in the mid-upper estuary for relatively 

long periods of time, whereas highly active crabs are resident in the lower estuary and coastal 

ocean for most of the migratory period.  Larval release is predicted to occur throughout the 
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estuary and in the coastal ocean within ~ 5 km of Beaufort Inlet.  Fisheries managers can use 

these spatial patterns to determine management strategies (e.g. spatial closures to fishing) 

that will protect migratory blue crab spawning stock in tidal regions effectively. 

 

3.1 Introduction 

Many estuarine and marine species, such as the blue crab Callinectes sapidus, make long-

distance migrations between habitats and regions.  For many of these species, even ones as 

heavily-exploited and well-studied as the blue crab, spatial and temporal migratory patterns 

are not well understood (Giske et al., 2001; Pelletier, 2001; Miller, 2003).  Historically, the 

primary sources of information on migratory patterns have been mark-and-recapture studies 

and observations of spatial and temporal changes in abundance by fishermen and scientists 

(Millikin and Williams, 1984; Pelletier, 2001).  These studies have been unable to address 

many questions about modes of migration, migratory speeds, residence times in different 

regions, and the influence of hydrographic processes on migratory success.  With the recent 

development of miniaturized ultrasonic transmitters (Wolcott, 1995; Freire and González-

Gurriarán, 1998), gathering high-resolution data on migratory trajectories is possible.  It is 

still prohibitively costly and time-intensive to track large numbers of individuals for long 

periods of time, however.  One way to expand the knowledge gained from limited field 

sampling is to couple the observed migratory patterns of organisms that utilize water currents 

to migrate with hydrodynamic models.  With these coupled behavioral-physical models, the 

transport of organisms can be simulated from a wide variety of locations under a variety of 

hydrographic conditions (e.g. Rothlisberg et al., 1983; Werner et al., 1993; Hare et al., 1999; 

reviewed in Giske et al., 2001; and Werner et al., 2001).  The spatial and temporal migratory 



 48

patterns derived from these modeling studies can be used to determine effective means of 

managing exploited migratory stocks. 

In this study, we use a coupled behavioral-physical model to examine spatial patterns in 

the ovigerous blue crab spawning migration in the shallow, tidally-driven estuarine system 

behind Beaufort Inlet, North Carolina (Fig. 3.1a).  This system is typical of many estuary-

inlet systems along the Atlantic and Gulf coasts of the United States and consists of four sub-

estuaries, Bogue Sound, the Newport River Estuary, the North River Estuary, and Back 

Sound, connected to the coastal ocean by Beaufort Inlet (Fig. 3.1b).  In these systems, adult 

blue crabs mate in the upper regions of the estuaries, and inseminated females migrate to the 

lower regions of the estuaries and coastal ocean to oviposit and release larvae (reviewed in 

Van Engel, 1958 and Millikin and Williams, 1984).  In the final phase of this migration, 

ovigerous crabs with mature embryos use ebb-tide transport (ETT), a vertical migratory 

behavior in which organisms ascend into the water column during ebb tides and remain at or 

near the bottom during flood tides, to migrate seaward (Tankersley et al., 1998; Forward et 

al., 2003; Carr et al., 2004; Hench et al., 2004).  This behavior may decrease the energetic 

costs of migration in areas with strong tidal currents (Weihs, 1978; Metcalfe et al., 1990) and 

provide a means of orienting towards coastal areas suitable for larval release (Forward and 

Tankersley, 2001).  Females release larvae during morning ebb tides, and larvae are 

transported offshore in near-surface waters (Provenzano, 1983; Epifanio et al., 1984).  

Offshore larval development is advantageous because it reduces exposure to predators 

(Morgan, 1990) and harmful low-salinity conditions (Sandoz and Rogers, 1944; Costlow and 

Bookout, 1959).  Female blue crabs are capable of producing multiple egg clutches from 

stored sperm, and they may continue to use ETT to migrate seaward (Hench et al., 2004) or 
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return to estuarine areas after releasing a clutch of larvae (Tagatz, 1968; Tankersley et al., 

1998).  Our model improves on previous hydrodynamic modeling studies of circatidal 

vertical migratory behaviors (e.g. Arnold and Cook, 1984; Rothlisberg et al., 1996; Condie et 

al., 1999; DiBacco et al., 2001) by basing migratory behavior on high-resolution empirical 

data rather than relatively idealized behaviors. 

 
 
Fig. 3.1. Study location: (a) South Atlantic Bight and (b) Beaufort Inlet region of North 
Carolina. 
 
 
3.2 Materials and methods 

3.2.1 Behavioral model 

Ovigerous blue crabs migrate seaward by episodically ascending into the water column 

during ebb tides for passive transport down-estuary (Tankersley et al., 1998; Forward et al., 

2003; Carr et al., 2004; Hench et al., 2004) and episodically walking or swimming against 

local currents (down-estuary) at ~ 0.25 m s-1 during flood tides (Carr et al., 2004).  Ebb-tide 

vertical ascents and flood-tide walking/swimming episodes are on the order of minutes 

(Forward et al., 2003; Carr et al., 2004), and periods in between migratory episodes range 

from minutes to hours (Forward et al., 2003; Carr et al., 2004; Hench et al., 2004).  Since 
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crab movements are episodic, crabs travel less than half the distances that passive particles 

would travel during ebb tides (Carr et al., 2004). 

Ovigerous blue crab ETT is based on an endogenous circatidal activity rhythm (Forward 

et al., 2003).  Migratory episodes are most frequent during mid-ebb when current speeds are 

highest (Carr et al., 2004; Hench et al., 2004) and more frequent during the night than during 

the day (Tankersley et al., 1998; Carr et al., 2004; Hench et al., 2004).  Migratory behavior 

and the duration of migratory activity vary widely among individual crabs (Forward et al., 

2003; Carr et al., 2004; Hench et al., 2004) but are highest during the ~ 4 days prior to larval 

release (Forward et al., 2003; Hench et al., 2004).  Larval release occurs near the beginning 

of morning ebb tides (Provenzano, 1983; Epifanio et al., 1984; Ziegler, 2002), and there are 

fortnightly peaks in the number of crabs migrating that correspond to times when slack 

before ebb (SBE) occurs around sunrise (RA Tankersley, Pers. obs.). 

 

3.2.2 Hydrodynamic model 

The depth-integrated version of the numerical hydrodynamic model ADCIRC (Luettich 

et al., 1992) was used to compute tidal velocity fields for the region near Beaufort Inlet, 

North Carolina.  ADCIRC uses a finite element method to solve the fully nonlinear equations 

of motion on domains discretized into linear triangular elements of varying sizes.  This 

method of discretization permits increased resolution in regions with complex bathymetry, 

such as Beaufort Inlet.  Circulation in the estuarine system is dominated by the M2 semi-

diurnal tide (Klavans, 1983) and can be described with a depth-integrated model because 

strong tidal currents effectively mix the water column and depths within the system are 

typically less than Ekman depths for the region (Klavans, 1983; Luettich et al., 1999).  Wind 
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forcing is episodically important, and wind-driven currents from routine wind events are on 

the order of 0.1 m s-1 in the sub-estuaries (Logan, 1995).  These flows are generally of 

secondary importance to tidal circulation in most of the estuary and were not included in the 

present model. 

A complete description of the model setup is provided in Hench and Luettich (2003).  

The model domain encompassed the estuarine system behind Beaufort Inlet, eastern Onslow 

Bay and the offshore region east of Cape Lookout Bight (Fig. 3.1).  Element dimensions 

ranged from < 25 m in the estuary and coastal ocean near Beaufort Inlet to > 2 km offshore 

(Fig. 3.2a).  Model bathymetry was derived from high-resolution surveys by the National 

Oceanic and Atmospheric Administration and the University of North Carolina at Chapel 

Hill (Hench and Luettich, 2003).  The estuary is generally shallow, < 3 m, except for a few 

narrow navigable channels of ~ 5 - 15 m depth (Fig. 3.2b).  For runs with mean tidal 

conditions, the model was forced at its open boundaries with elevations of the M2, M4, and 

M6 tidal constituents and a steady residual component derived from the larger domain 

described in Luettich et al. (1999).  When spring and neap tide conditions were simulated, the 

S2 tidal constituent, whose velocity amplitude is ~ 17 % of the M2 velocity amplitude 

(Klavans, 1983), was added.  Maximum current speeds are ~ 1 m s-1 in the lower estuary and 

decrease with distance up the estuary due to damping by bottom friction and widening of the 

sub-estuaries (Fig. 3.2c).  Both model velocity amplitude and phase corresponded well to 

previous observational data gathered for the region (Klavans et al., 1983; Luettich et al., 

1999). 
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Fig. 3.2. Hydrodynamic model: (a) grid, (b) bathymetry, and (c) maximum ebb current 
speeds for the Beaufort Inlet region. 
 
 
3.2.3 Coupling of behavioral and hydrodynamic models 

The behavioral model was coupled to the hydrodynamic model by incorporating 

algorithms of the migratory behavior of ovigerous blue crabs into a particle-tracking 
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algorithm (DROG2D; Baptista et al., 1984; Foreman et al., 1992) driven by velocity fields 

from the hydrodynamic model.  If simulated crabs encountered a land boundary, they were 

tracked along the boundary using the velocity component parallel to the boundary until 

ambient velocities transported them away from the boundary.  Simulated crabs were tracked 

using a 2-min time step. 

The behavioral algorithms consisted of migratory episodes of fixed duration whose 

characteristics and frequency were functions of tidal (time relative to SBE) and diel 

(night:day) phase.  When actively migrating during ebb tides, simulated crabs were 

transported by model currents as passive Lagrangian particles (Tankersley et al., 1998; Carr 

et al., 2004).  When actively migrating during flood tides, simulated crabs were tracked 

directly against local currents (down-estuary) at a constant speed of 0.25 m s-1 (Carr et al., 

2004).  Simulated crabs were stationary when they were not actively migrating (Carr et al., 

2004). 

Individual migratory episodes lasted 6 min, the median duration of observed migratory 

episodes (Forward et al., 2003; Carr et al., 2004).  To capture the variability in the frequency 

of migratory episodes over the course of the tidal and diel cycles, the tidal cycle was broken 

up into half hour bins relative to SBE (e.g. 0.5 – 1.0 h after SBE), and the diel cycle was 

broken up into night (10 h) and day (14 h) periods.  The mean number and standard deviation 

(SD) of migratory episodes for each half hour bin for night and day periods were derived 

from a field study of the frequency of vertical ascents by ovigerous blue crabs tethered in 

Bogue Sound (Hench et al., 2004).  To capture some of the variability in crab activity levels 

during the ovigerous spawning migration, two behavioral algorithms representative of lower 

and higher activity crabs were created from the mean and the mean + 2 SD of migratory 
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episodes for each half hour bin (Fig. 3.3).  These algorithms were not intended to represent 

the extremes of crab behavior but rather to show differences in spatial patterns arising from 

typical variability in crab behavior.  Simulated crabs remained stationary for 2 min in 

between consecutive migratory episodes and after they had completed the designated number 

of migratory episodes in each half hour bin. 

 

 
 
Fig. 3.3. Number of migratory episodes per half hour bin relative to slack before ebb (SBE) 
for the two behavioral algorithms.  Numbers were derived from Hench et al. (2004) and were 
rounded to the nearest whole number for use in the behavioral algorithms.  The mean + 2 SD 
of migratory episodes from 2 – 3 h after SBE from Hench et al. (2004) was 5, but the use of 6 
min migratory episodes with 2 min inactive periods in between limited the maximum number 
of ascents per half hour in the model to 4. 
 
 
3.2.4 Model simulations 
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For general model simulations, crabs started from a grid (uniform 500-m spacing) of 579 

locations in the estuary (Fig. 3.4) at sunrise and were tracked for 4 days, the approximate 

duration of ovigerous blue crab ETT (Forward et al., 2003; Hench et al., 2004).  Unless 

otherwise noted, simulations were run for migratory periods when SBE occurred around 

sunrise on the last day of migration and with mean tidal conditions (no S2 tidal constituent).  

Larval release locations were defined as crab locations at the end of the 4-day migratory 

period.  

 

 
 
Fig. 3.4. Starting locations of simulated ovigerous blue crabs and blue crab larvae. 
 
 
Comparison of observed and simulated crab trajectories- To evaluate model performance, 

we compared simulated crab trajectories and mean migratory speeds (± 95 % CI) to the 

results of a tracking study of ovigerous blue crabs conducted in the Beaufort Inlet region 

during the 2001 and 2002 spawning seasons (Carr et al., 2004).  In that study, eight ovigerous 

blue crabs were tracked by ultrasonic telemetry for durations and distances ranging from 4 – 

37 h and 2 – 11 km.  For the comparisons, simulated crabs were tracked from the same eight 

starting points, started at the same phase in the tidal and diel cycles, and tracked for the same 
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duration as observed crabs.  Paired t-tests (α = 0.05) were conducted on overall crab speeds 

(the total distance each crab traveled divided by the total tracking duration for that crab) and 

crab speeds during the four tidal-diel phases (the distance each crab traveled during a tidal-

diel phase divided by the tracking time in that tidal-diel phase for that crab) using the 

MATLAB Statistics Toolbox (The MathWorks Inc., v. 3). 

 

Error estimations- To get a first order estimate of how much of the difference between the 

observed and simulated crab trajectories could be attributed to errors in the hydrodynamic 

model, we compared current velocity measurements made at locations along the observed 

crab trajectories near Beaufort Inlet (Carr et al., 2004) to hydrodynamic model output at the 

same times and locations.  The eight migratory ovigerous crabs from Carr et al. (2004) were 

tracked for a total of 171 h, and 948 current velocity measurements were made at 1 – 20 min 

intervals during this time (Carr et al., 2004).  Measurements were made with a boom-

mounted acoustic Doppler current profiler (RD Instruments Workhorse Monitor ADCP, 1200 

kHz, 0.5 m bins, 1.34 s sample interval; Carr et al., 2004).  ADCP current velocities were 

depth averaged for comparison with the depth-averaged hydrodynamic model output. 

 

Initial larval transport- To determine where migratory ovigerous blue crabs need to release 

larvae to promote rapid offshore transport, we simulated the trajectories of passive 

Lagrangian particles from starting locations throughout the estuary (Fig. 3.4) at 1 hr after 

SBE, the approximate time of larval release (Provenzano, 1983; Epifanio et al., 1984; 

Ziegler, 2002; Hench et al., 2004).  If simulated larvae reached the coastal ocean during the 
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first ebb tide following release, the release location was considered a suitable larval release 

location. 

 

Sensitivity of migratory success to the tidal-diel and spring-neap cycles- A particular tidal 

phase (e.g. SBE) occurs around sunrise every ~ 15 d (assuming a semi-diurnal tide), and we 

refer to this cycle as the tidal-diel cycle.  To test the sensitivity of migratory success to phase 

in the tidal-diel cycle, simulations were started at four different times, when SBE, mid-ebb, 

slack before flood (SBF), and mid-flood at the center of Beaufort Inlet occurred around 

sunrise on the last day of migration.  Phase of the tidal-diel cycle affected the relative 

proportions of migratory periods that occurred during night ebb, night flood, day ebb, and 

day flood.  When SBE, mid-ebb, SBF, and mid-flood occurred around sunrise on the last day 

of migration, the percentages of time that were night ebb in the 4-day migratory periods were 

16, 18, 26, and 23 %, respectively.  To determine the sensitivity of migratory success to the 

spring-neap cycle, the S2 semi-diurnal tidal constituent was added to the model.  Model 

simulations were conducted for 4-day periods when the M2 and S2 current velocities were 

approximately in phase (spring tides) and out of phase (neap tides). 

 

3.3 Results 

3.3.1 Comparison of observed and simulated crab trajectories 

The trajectories of the simulated crabs matched the trajectories of the ovigerous crabs 

observed during the 2001 - 2002 ultrasonic telemetry tracking study closely in terms of 

migratory routes and total distances traveled (Fig. 3.5).  The trajectories of simulated crabs 

with the low activity behavior matched the observed trajectories of Crabs 2, 5, 7, and 8 best 
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and were - 50, + 34, - 13, and - 8 % of the distances traveled by the corresponding observed 

crabs (Fig. 3.5).  The trajectories of simulated crabs with the high activity behavior matched 

the observed trajectories of Crabs 1, 3, 4, and 6 best and were + 11, - 36, - 29, and - 34 % of 

the distances traveled by the corresponding observed crabs (Fig. 3.5). 

The mean overall migratory speed of the simulated crabs with the low activity behavior 

was significantly lower than the mean overall migratory speed of observed crabs (paired t-

test, P = 0.04), but there was no significant difference between the mean overall migratory 

speed of the simulated crabs with the high activity behavior and the mean overall migratory 

speed of observed crabs (paired t-test, P > 0.05; Fig. 3.6).  For comparison, the mean overall 

migratory speed of organisms with a continuous ETT behavior was also determined and was 

significantly higher than the mean overall migratory speed of observed crabs (paired t-test, P 

< 0.01) and ~ 2 times as high (Fig. 3.6).  When observed and simulated crab trajectories were 

broken down into night ebb, night flood, day ebb, and day flood periods, there were no 

significant differences between the mean migratory speeds of observed crabs and the mean 

migratory speeds of simulated crabs with either the low or high activity behaviors during 

these periods (paired t-tests, P > 0.05; Fig. 3.6).  The mean migratory speeds of organisms 

with a continuous ETT behavior were significantly higher than the mean migratory speeds of 

observed crabs during night and day ebb periods (paired t-tests, P < 0.01) and were ~ 3 times 

as high (Fig. 3.6). 
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Fig. 3.5. Comparison of trajectories of observed migratory ovigerous blue crabs (from Carr et 
al., 2004) and simulated crabs with low and high activity behaviors. 



 60

 
 

 
 
Fig. 3.6. Comparison of mean (± 95 % CI) overall and night ebb, night flood, day ebb, and 
day flood speeds of observed migratory ovigerous blue crabs (from Carr et al., 2004) and 
simulated crabs with the low activity behavior, the high activity behavior, and a continuous 
ebb-tide transport behavior. 
 
 
3.3.2 Error estimations 

The modeled current speeds were within 0.1 m s-1 of the observed current speeds ~ 41 % 

of the time and within 0.2 m s-1 of the observed current speeds ~ 69 % of the time (Fig. 3.7).  

Errors in the hydrodynamic model were relatively evenly divided between overestimations 

and underestimations of observed currents speeds (Fig. 3.7).  There were relatively few 

instances of the model predicting the wrong tidal phase (i.e. results falling in the upper left 

and lower right quadrants of Fig. 3.7).  The mean difference between the absolute values of 

the observed and modeled current velocities was 0.16 m s-1, and the mean difference between 

the raw values (allowing positive and negative values for underestimations and 
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overestimations respectively) of the observed and modeled current velocities was + 0.01 m s-

1. 

 

 
 
Fig. 3.7. Comparison of observed and modeled current velocities along the observed 
trajectories of migratory ovigerous blue crabs (from Carr et al., 2004).  Ebb and flood current 
speeds are negative and positive respectively. 
 
 

The simulated crabs with low and high activity behaviors were passively transported by 

hydrodynamic model currents for ~ 8 and 23 % of the total simulation time respectively.  

Since the hydrodynamic model errors had an approximately zero mean, it is unlikely that 

they were a source of systematic error in the simulated crab trajectories.  Nevertheless, we 

estimated a reasonable upper limit of possible hydrodynamic model error in the simulated 

crab trajectories by assuming an error of 0.05 m s-1 at all times that the crabs were passively 

transported.  With this value, we calculated that hydrodynamic error could account for 6 – 30 

% (mean of 14 %) of the distances that the simulated crabs traveled and 4 - 81 % (mean of 33 

%) of the differences between the distances that observed and simulated crabs traveled (Fig. 

3.5). 
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3.3.3 Suitable larval release locations 

Simulated larvae that were released within ~ 8 km of Beaufort Inlet in Bogue and Back 

Sounds and ~ 5 km of Beaufort Inlet in the Newport River Estuary reached the coastal ocean 

during the first ebb tide following release (Fig. 3.8). 

 

 
 
Fig. 3.8. Starting locations of blue crab larvae that reached the coastal ocean during the first 
ebb tide following release (suitable larval release locations). 
 
 
3.3.4 Migratory success 

With the low activity behavior, only simulated crabs within ~ 12 km of Beaufort Inlet 

reached suitable larval release locations (locations from which larvae will reach the coastal 

ocean during the first ebb tide following release; Fig. 3.8) during the 4-day migratory period 

(Fig. 3.9a).  With the high activity behavior, crabs from starting locations throughout the 

estuary, with the exception of the uppermost Newport and North River estuaries, reached 

suitable larval release locations within the 4-day migratory period (Fig. 3.9b).  For both 

behaviors, crabs that started their migration close to Beaufort Inlet generally reached suitable 

larval release locations sooner than those that started farther up the estuary (Fig. 3.9).  
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Approximately twice as many high activity crabs as low activity crabs reached suitable larval 

release locations within the 4-day migratory period (Fig. 3.9). 

 

 
 

 
 
Fig. 3.9. Starting locations of simulated crabs with low and high activity behaviors that 
reached suitable larval release locations during the 4-day migratory period.  Model days are 
the 24-h periods from sunrise to sunrise. 
 
 
3.3.5 Sensitivity of migratory success to the tidal-diel and spring-neap cycles 

There was ≤ 6 % difference in the cumulative percentage of simulated crabs that reached 

suitable larval release locations during the 4-day migratory period between the four times of 

migration (i.e. when SBE, mid-ebb, SBF, and mid-flood occurred around sunrise on the last 

day of migration; Fig. 3.10a).  With the low activity behavior, slightly more crabs that 

migrated when SBF or mid-flood occurred around sunrise on the last day of migration 

reached suitable larval release locations within the 4-day migratory period (Fig. 3.10a).  The 

daily increase in the percentage of low activity crabs that reached suitable larval release 

locations was approximately linear during the 4-day migratory period, with increases of 5 – 9 
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% per day (Fig. 3.10a).  The daily increase in the percentage of high activity crabs that 

reached suitable larval release locations was more asymptotic, with increases of 18 – 24 % 

from Day 1 to Day 2 and increases of only 4 – 10 % from Day 3 to Day 4 because most crabs 

(> 70 %) had reached suitable larval release locations by the end of Day 3 (Fig. 3.10a).  For 

both low and high activity behaviors, there was ≤ 6 % difference in the cumulative 

percentage of simulated crabs that reached suitable larval release locations during the 4-day 

migratory period between spring and neap tides (Fig. 3.10b). 

 

 
 
Fig. 3.10. Cumulative percentage of simulated crabs that reached suitable larval release 
locations during the 4-day migratory period for low and high activity behaviors: (a) when 
slack before ebb (SBE), mid-ebb (ME), slack before flood (SBF), and mid-flood (MF) 
occurred around sunrise on the last day of migration under mean tidal conditions and (b) 
during spring tides, mean tidal conditions, and neap tides when SBE occurred around sunrise 
on the last day of migration.  Nineteen percent (19 %) of the crabs start the migration in 
suitable larval release locations. 
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3.3.6 Migratory speed 

The migratory speed of each simulated crab was calculated by dividing the total distance 

that the crab traveled in the estuary during the 4-day migratory period by the total time that 

the crab was in the estuary.  The migratory speed in the estuary over the 4-day migratory 

period for simulated crabs with the low activity behavior was < 0.5 km day-1 for crabs 

starting their migration in the mid-upper Newport and North River estuaries and increased to 

~ 2 km day-1 for crabs starting their migration in the lower estuary (Fig. 3.11a).  The 

migratory speed in the estuary over the 4-day migratory period for crabs with the high 

activity behavior was < 2 km day-1 for crabs starting their migration in the uppermost 

Newport and North River estuaries and increased to > 8 km day-1 for crabs starting their 

migration in lower-mid Bogue and Back Sounds (Fig. 3.11b). 

 

 
 

                                                          
 
Fig. 3.11. Mean migratory speeds in the estuary for simulated crabs with low and high 
activity behaviors.  The speed at a given location is the speed of a crab starting from that 
location. 
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3.3.7 Migratory residence times 

We defined a migratory residence time as the amount of time a simulated crab spent in a 

given grid cell (both while moving and while stationary) during the ovigerous spawning 

migration.  Cumulative migratory residence times (the migratory residence times of all the 

crabs combined) were calculated by matching the location of every simulated crab at every 

timestep during the 4-day migratory period to the closest node in the grid of starting locations 

and summing the time that was spent at each grid node (Fig. 3.4).  The values for cumulative 

migratory residence times are dependent on the number of crab trajectories simulated, 

therefore we emphasize that the spatial patterns in cumulative migratory residence times, 

rather than the numeric values, are the important result.  The cumulative migratory residence 

time of crabs with the low activity behavior was moderate to high (40 - 120 h) throughout 

most of the estuary and very high (> 120 h) within ~ 4 km of Beaufort Inlet in the lower 

estuary and coastal ocean (Fig. 3.12a).  The cumulative migratory residence time of crabs 

with the high activity behavior was moderate (40 – 80 h) in lower-mid Bogue and Back 

Sounds and throughout the Newport and North River estuaries and very high (> 120 h) in the 

lower estuary and coastal ocean within ~ 5 km of Beaufort Inlet (Fig. 3.12b). 
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Fig. 3.12. Cumulative migratory residence times during the 4-day migratory period for 
simulated crabs with low and high activity behaviors. 
 
 
3.3.8 Larval release locations 

As with the values for cumulative migratory residence times, the densities of larval 

release locations are dependent on the number of crab trajectories simulated, and we 

emphasize that the spatial patterns in larval release locations, rather than the numeric values, 

are the important result.  For simulated crabs with the low activity behavior, there were low 

to moderate densities (0 – 2 releases per 0.25 km2) throughout most of the estuary and high to 

very high densities (2 – > 4 releases per 0.25 km2) within ~ 4 km of Beaufort Inlet in the 

lower estuary and coastal ocean (Fig. 3.13a).  High activity crabs released larvae 

predominantly in the lower estuary and coastal ocean within ~ 5 km of Beaufort Inlet (Fig. 

3.13b). 
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Fig. 3.13. Larval release locations for simulated crabs with low and high activity behaviors. 
 
 
3.4 Discussion 

Ovigerous blue crabs use ebb-tide transport (ETT) to migrate from adult estuarine 

habitats to coastal larval release areas.  We developed detailed algorithms of this behavior 

from empirical data (Tankersley et al., 1998; Forward et al., 2003; Carr et al., 2004; Hench et 

al., 2004) and coupled these algorithms to a particle-tracking algorithm driven by velocity 

fields from a hydrodynamic model of the region to simulate the trajectories of migratory 

crabs and determine spatial migratory patterns.  Modeling crab behavior with an idealized 

behavioral algorithm, such as continuous ETT, would not have been appropriate because it 

would have overestimated the mean migratory speed of the crabs and portrayed temporal 

patterns in migratory activity inaccurately (Fig. 3.6).  We used two behavioral algorithms, 

low and high activity, to capture some of the variability in ovigerous blue crab ETT.  It is 

unlikely that activity levels in the crab population are strictly bimodal, however, and these 
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results should be considered representative low and high values for a continuum of ovigerous 

blue crab behaviors. 

The trajectories and mean speeds of simulated crabs matched the trajectories and mean 

speeds of observed crabs reasonably well (Figs. 3.5, 3.6).  It was not expected that the 

trajectories of simulated crabs (Fig. 3.5) would match the trajectories of observed crabs 

exactly since mean values of the behavioral algorithm parameters were used to create the low 

and high activity behaviors.  Nonetheless, improvements could be made to both the physical 

and behavioral components of the coupled model.  We estimated that hydrodynamic model 

error could account for an average of 33 % of the differences between the distances that 

observed and simulated crabs traveled and lead to an average of 14 % error in simulated 

trajectory length.  The two most likely sources of the differences between modeled and 

observed currents are inaccurate bathymetry and a lack of wind forcing in the model.  We 

hope to add wind forcing to subsequent versions of the model to determine possible effects of 

strong winds and storm events on the ovigerous blue crab spawning migration.  The addition 

of wind forcing will require the use of a three-dimensional hydrodynamic model and the 

addition of migratory vertical level(s) to the suite of behavioral algorithm parameters.  

Ovigerous females have been observed migrating at the surface of the water column 

(Tankersley et al., 1998; Hench et al., 2004), but additional study is required to determine if 

females are also migrating below the surface. 

To improve the design of the behavioral model and the parameterization of the behavioral 

algorithm, further study of the timing and frequency of migratory episodes, the duration of 

migratory episodes, and the characteristic range of flood-tide walking/swimming speeds is 

needed.  In the present behavioral algorithms, the low activity behavior, derived from the 
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mean number of migratory episodes per half hour bin from Hench et al. (2004), appears to 

underestimate mean crab activity (Figs. 3.5, 3.6).  It is likely that tagging and/or tethering 

effects in the Hench et al. (2004) study resulted in a decrease in the mean number of 

migratory episodes per half hour relative to natural levels.  Despite this uncertainty, these 

data are the best estimates of the timing of migratory episodes available and allowed us to 

capture migratory trajectories and temporal patterns in migratory episodes in a realistic 

manner. 

The location of larval release is important because it is one of the primary determinants 

of whether larvae will be successfully transported to offshore developmental areas.  Larvae 

released in the lower estuary and coastal ocean are the most likely to be transported far 

enough offshore to escape the tidal influence of the inlet and estuary (Kapolnai et al., 1996).  

We used larval transport to the coastal ocean during the first ebb tide following release (Fig. 

3.8) as a metric for a suitable larval release location because larvae that reach the coastal 

ocean quickly will spend less time exposed to estuarine predators (Morgan, 1990) and 

harmful low-salinity conditions (Sandoz and Rogers, 1944).  The issue of the larval transport 

from the estuary merits a more complete description than is given here but is outside the 

scope of this study.  Larval transport outside of the estuary is strongly influenced by wind-

driven currents (Luettich et al., 1999), and our depth-averaged hydrodynamic model is 

inappropriate for further examination of this topic. 

Migratory success, the ability of migratory ovigerous crabs to reach suitable larval 

release locations, is highly sensitive to crab behavior and starting location in the estuary and 

relatively insensitive to normal variability in estuarine velocities (i.e. the tidal-diel and 

spring-neap cycles; Figs. 3.9, 3.10).  High activity crabs can start their migration from almost 
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anywhere in the estuary and reach suitable larval release locations within the 4-day migratory 

period, whereas crabs with lower activity levels can only reach suitable larval release 

locations if they start their migration in the lower-mid estuary.  The insensitivity of migratory 

success to fortnightly cycles in circulation suggests that the observed fortnightly peaks in 

migratory activity (RA Tankersley, Pers. obs.) exist because these periods are optimal for 

larval transport rather than adult migration. 

Many simulated crabs starting their migration in the upper Newport and North River 

estuaries did not reach suitable larval release locations with either activity level (Fig. 3.9) 

because they were migrating in regions where ebb current speeds are relatively weak (< 0.2 

m s-1; Fig. 3.2c).  Many estuaries along the Atlantic and Gulf coasts have similar regions with 

minimal tidal influence, and much of blue crab mating activity occurs in these areas 

(Churchill, 1921; Van Engel, 1958).  The inability of crabs from these regions to reach 

suitable larval release locations during the ovigerous spawning migration demonstrates the 

importance of a down-estuary migratory phase prior to oviposition (Tankersley et al., 1998) 

and the likelihood that crabs may use other behaviors (e.g. walking along the bottom or 

directed swimming) to migrate (Turner et al. 2003, Carr et al. 2004).  A pre-oviposition, 

down-estuary migration by mature female blue crabs has been observed in the Chesapeake 

Bay (Churchill, 1921; Van Engel, 1958; Turner et al., 2003) and the Pamlico Sound (Medici, 

2004) but is not well documented for the Beaufort Inlet region (Judy and Dudley, 1970). 

The migratory speed of high activity crabs is much higher than that of low activity crabs 

(Fig. 3.11) because high activity crabs are more active (Fig. 3.3) and migrate more 

“efficiently” than low activity crabs.  High activity crabs are more efficient (i.e. travel farther 

per time spent actively migrating) because they travel farther down the estuary to areas with 
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higher current speeds.  Down-estuary walking/swimming at 0.25 m s-1 during flood tides also 

affects the migratory efficiency of the high activity behavior, although the effect varies with 

location.  Down-estuary walking/swimming at 0.25 m s-1 increases migratory efficiency in 

the upper estuary and offshore where maximum ebb current speeds are < 0.25 m s-1, and it 

enables crabs from the microtidal Newport and North River estuaries to reach areas with 

stronger currents during the 4-day migratory period.  This behavior decreases potential 

migratory efficiency in regions close to Beaufort Inlet where ebb current speeds are generally 

> 0.25 m s-1 (Fig. 3.2c) because it would be more efficient to increase passive transport 

during ebb tides in these regions than walk or swim down-estuary during flood tides. 

Since crabs with lower activity levels migrate slowly through the estuary, they will reside 

in the mid-upper sub-estuaries for relatively long periods of time (Fig. 3.12a) and are 

predicted to release larvae throughout the estuary (Fig. 3.13a).  Highly active crabs, on the 

other hand, migrate to the lower estuary and coastal ocean quickly and therefore reside in 

these regions for a greater proportion of the migratory period (Fig. 3.12b).  They are 

predicted to release larvae primarily in the coastal ocean within ~ 5 km of Beaufort Inlet (Fig. 

3.13b).  While these are the best estimates of migratory residence times and larval release 

locations to date, actual migratory residence times and the distribution of larval release 

locations will depend on local blue crab population dynamics, including initial starting 

locations and distribution of behaviors.  Very little is known about either of these parameters 

for the Beaufort Inlet region or for most Atlantic and Gulf coast estuaries, and further study 

of these factors is necessary to improve model predictions.  In addition, this analysis shows 

spatial patterns for a limited migratory period.  Crabs can migrate throughout the summer 

spawning season and may return to the estuary (Tagatz, 1968; Tankersley et al., 1998) or 
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migrate farther offshore after larval release (Hench et al., 2004).  Therefore spatial patterns in 

migratory residence times and larval release locations may shift during the spawning season.  

The concentration of larval release locations in the coastal ocean near Beaufort Inlet is 

probably realistic, however.  Maximum ebb current speeds decrease rapidly to < 0.20 m s-1 

within ~ 3 km of the inlet in the coastal ocean (Fig. 3.2c), and crabs would need to actively 

walk or swim offshore or use wind-driven currents to make additional rapid progress away 

from the estuary. 

Recent studies have found a significant positive relationship between spawning stock 

abundance and recruitment in estuarine blue crab populations and suggest that maintaining a 

critical level of spawning stock (mature females) may be essential to maintaining viable blue 

crab populations (Lipcius and Stockhausen, 2002; Eggleston et al., 2004).  To protect 

spawning stock from fishing losses during their migration to and/or residence in spawning 

areas, spawning sanctuaries, where crabbing is prohibited or restricted, have been created in 

North Carolina (Henry and McKenna, 1998) and Virginia (Seitz et al., 2001; Lipcius et al., 

2001; Lipcius et al., 2003).  In North Carolina, five relatively small sanctuaries, 18 – 35 km2 

each, have been established around inlets in Pamlico and Core Sounds (Henry and McKenna, 

1998), while in the Chesapeake Bay, a large migration corridor/spawning sanctuary complex, 

~ 2400 km2, has been created (Virginia Marine Resources Commission Regulation 4 VAC 

20-752-10 et seq. as adopted July 23, 2003).  While the results of this study are specific to 

the Beaufort Inlet region, they suggest that the five small spawning sanctuaries around other 

North Carolina inlets (~ 4 – 6 km in the ebb-tide alongstream direction) may not provide 

long-term protection for migratory ovigerous crabs because crabs may be able to migrate 

through the sanctuaries quickly and may spend considerable amounts of time landward and 
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seaward of the sanctuaries (Figs. 3.11, 3.12; see also Medici, 2004).  Consequently, larger 

sanctuaries and protected migration corridors may be needed to meet management goals.  

Fisheries managers can use spatially-explicit results such as those determined in this study to 

estimate what level of protection (percentage of cumulative crab residence time) a sanctuary 

will provide to migratory ovigerous crabs.  Areas that are suitable for larval release and 

where larval release occurs frequently (Figs. 3.8, 3.13) should also be considered for 

protection because they may be important source regions for blue crab populations. 

The present model provides the first spatially-comprehensive estimates of ovigerous blue 

crab migratory success, migratory speeds, migratory residence times, and larval release 

locations in the Beaufort Inlet region.  The hydrodynamics of this region are typical of many 

estuary-inlet systems of the Atlantic and Gulf coasts of the United States, and the migratory 

patterns determined in this study are likely to be similar for comparable systems.  This 

information is vital to understanding how blue crabs transition from estuarine adult habitats 

to offshore larval developmental areas and for designing spawning sanctuaries that protect 

migratory blue crabs effectively. 
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Chapter 4.  The influence of diel vertical migration on zooplankton transport and 
recruitment in an upwelling region 
 
Abstract 

Diel vertical migration (DVM) is a common zooplankton behavior in which organisms 

reside in surface or near-surface waters at night and at deeper depths during the day.  In many 

upwelling regions, DVM reduces the transport of organisms away from the region.  It is 

unclear, however, what role DVM plays in recruitment (the arrival of larvae or juveniles to 

locations where they will become reproducing adults) to upwelling regions.   In this study, 

we determine the influence of DVM on zooplankton transport, the level of recruitment of 

locally-produced propagules (self-recruitment), and sources of recruits in the upwelling 

region near Monterey Bay, California, by simulating the trajectories of fixed-depth and 

vertically-migrating organisms with a drifter-tracking algorithm driven by velocity fields 

from a three-dimensional hydrodynamic model.  We found that DVM into subsurface 

poleward and onshore currents during the day does not fully compensate for equatorward and 

offshore transport in the surface Ekman layer at night and does not retain zooplankton in the 

Monterey Bay region.  DVM also tends to decrease the ability of zooplankton to return to the 

region after being transported away and shift source regions for recruits closer to the Bay.  

While DVM does not appear to substantially increase the potential for self-recruitment to the 

region, our results suggest that other mechanisms, such as transport during non-upwelling 

periods, continuous transport below the surface, increases in mean transport depth over time 
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(ontogenetic vertical migration), or seasonal changes in hydrography, may still enable 

relatively high levels of self-recruitment to this highly advective region. 

 

4.1 Introduction 

Nocturnal diel vertical migration (DVM) is a common zooplankton behavior in which 

organisms reside in surface or near-surface waters at night and at deeper depths during the 

day.  This behavior enables zooplankton to feed in relatively productive surface waters at 

night and avoid visual predators and intense solar radiation during the day (Haney, 1988).  In 

eastern boundary upwelling regions, there are often equatorward and offshore currents at the 

surface and poleward and onshore currents at deeper depths.  Consequently, relatively small 

vertical migrations (on the order of 10 to 100 m) can reduce the alongshore and cross-shore 

transport of organisms relative to passive or fixed-depth transport at the surface (Brockmann, 

1979; Wroblewski, 1982; Bucklin et al., 1989; Botsford et al., 1994; Batchelder et al., 2002).  

This reduction in transport away from highly productive upwelling regions may increase 

food availability for zooplankton (Wroblewski, 1982) and lead to reduced losses to 

starvation, faster growth rates, increased fecundity, and increased population sizes (Rumsey 

and Franks, 1999). 

It is unclear, however, how much of a role DVM plays in determining recruitment (the 

arrival of larvae or juveniles to locations where they will become reproducing adults) to 

holoplanktonic or meroplanktonic populations in eastern boundary upwelling regions.  

Understanding recruitment patterns, such as the percentage of recruits that are locally-

produced (self-recruits), is critical to managing marine populations effectively because they 

determine stock-recruitment relationships, vulnerability to fishing pressure and habitat 
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modification, and the efficacy of marine reserves (Strathmann et al., 2002).  It is frequently 

hypothesized that DVM enables self-recruitment to populations in upwelling regions by 

retaining organisms in a region.  In a 1998 review of the subject, Peterson suggested that 

DVM is not sufficient to retain organisms in narrow upwelling regions over shallow shelves 

(e.g. the Oregon coast).  He instead proposed that ontogenetic vertical migration (OVM), 

generally an increase in an organism’s mean depth as it develops, is the key to retaining 

organisms in narrow upwelling regions. 

In this study, we examine the influence of DVM on zooplankton transport and 

recruitment in a relatively deep (> 100 m), broad (on the order of 100 km) upwelling region 

with high mesoscale variability, the Monterey Bay region of central California.  We simulate 

the trajectories of fixed-depth and vertically-migrating organisms in the region with a drifter-

tracking algorithm driven by velocity fields from a three-dimensional (3D) hydrodynamic 

model.  With this model, we seek to understand how regional populations are retained in this 

highly advective upwelling system and address the following questions: 1) What influence 

does DVM have on the zooplankton transport in the region?  2) What influence does DVM 

have on zooplankton self-recruitment to the Bay?  3) What influence does DVM have on the 

source of zooplankton recruits to the Bay?  Although we do not model OVM explicitly, our 

results for fixed-depth organisms transported at deeper depths (> 50 m) indicate what 

influence OVM may have on zooplankton transport in the region and whether the proposal of 

Peterson (1998) that OVM rather than DVM is the key to retaining zooplankton populations 

in upwelling regions is applicable to a broad, deep upwelling system such as the central 

California coast.   
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DVM in the Monterey Bay region- Almost all of the dominant taxa in the Monterey Bay 

zooplankton community (e.g. copepods, euphausiids, crab larvae, cladocerans, polychaetes, 

chaetognaths, siphonophores, ctenophores, larvaceans, and bryozoan larvae) are vertical 

migrators, although their DVM behaviors are generally not well described.  The exceptions 

are the crustacean macrozooplankton which are typically very strong vertical migrators.  

Euphausiids in the region migrate from the surface at night to 100 - 600 m depth during the 

day (Brinton, 1967; Brinton, 1976; Youngbluth, 1976), copepods from the upper 50 m at 

night to 50 - 350 m depth during the day (Frost, 1988; Dagg et al., 1989; Ohman et al., 1998; 

Hays et al., 2001), and crab zoeae and megalopae from the surface at night to < 80 m depth 

during the day (Shanks, 1986; Hobbs and Botsford, 1992). 

 

Hydrography of the Monterey Bay region- The influence of DVM on zooplankton transport 

and recruitment in the Monterey Bay region is likely to vary considerably during the year 

because of strong hydrographic seasonality.  During the spring and summer upwelling 

season, southeastward winds drive strong southward and offshore (westward) currents at the 

surface (< 30 m; Rosenfeld et al., 1994; Pennington and Chavez, 2000).  The offshore flow of 

water causes the upwelling of deep, nutrient-rich waters into the photic zone and stimulates 

high levels of primary and secondary production (Chavez et al., 2002).  During the winter, a 

northward current, the Davidson Current, develops at the surface from shore to ~ 100 km 

offshore (Collins et al., 2000; Pennington and Chavez, 2000).  The fall oceanic season is 

transitional between the spring-summer upwelling and winter Davidson seasons with reduced 

upwelling.  Throughout the year, the California Undercurrent flows northward from 100 - 

250 m deep from shore to ~ 150 km offshore (Collins et al., 2000; Collins et al., 2003).  At 



 83

intraseasonal time scales (on the order of 10 d), regional circulation is modified by wind 

fluctuations, such as upwelling relaxation events, and mesoscale features, such as eddies and 

jets, that result from the instability of the seasonally-varying mean currents (Marchesiello et 

al., 2003).  At interannual time scales, regional circulation is modified by El Niño events 

which reduce the upwelling of nutrient-rich waters during the spring and summer and 

prolong and increase northward flow at the surface during the winter (Chavez et al., 2002; 

Collins et al., 2002). 

 

Study motivation- The hydrography and biogeochemistry of the Monterey Bay region of 

California have been studied extensively (reviewed by Collins et al., 2003), and much 

attention is now directed at gaining a greater understanding of regional zooplankton 

population dynamics (e.g. Marinovic et al., 2002).  The goal of our study is to determine the 

influence of DVM on zooplankton transport and recruitment in the Monterey Bay region.  

There have been very few coupled behavioral-hydrodynamic modeling studies of the 

influence of DVM on zooplankton transport in eastern boundary upwelling regions (see 

Brockmann, 1979; Wroblewski, 1982; Batchelder et al., 2002), and the only work we are 

aware of along the California coast has been extremely preliminary (i.e. simulation of a very 

limited number of drifters under specific conditions; see Bucklin, 1989; Botsford, 1994).  We 

are expanding upon previous work by using a fully 3D hydrodynamic model which renders 

realistic seasonally-varying mean velocity fields with realistic mesoscale activity and 

examining a range of starting times and nighttime near-surface depths.  Since we use 

climatological atmospheric and oceanic fields to force the hydrodynamic model, we are 

unable to capture some intraseasonal and interannual processes, such as upwelling relaxation 
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and El Niño events, that may be important to zooplankton advection and dispersion in the 

region.  Nonetheless, given the importance of advection and dispersion processes associated 

solely with the seasonally-varying mean circulation and accompanying mesoscale activity 

along the central Californian coast, this study is an important advance in understanding 

zooplankton transport and recruitment in the region. 

 

4.2 Materials and methods 

4.2.1 Hydrodynamic model and oceanic and atmospheric forcing 

We use the three-dimensional (3D) numerical hydrodynamic model ROMS (Regional 

Oceanic Modeling System; Shchepetkin and McWilliams, 2003; Shchepetkin and 

McWilliams, 2005) to determine velocity fields for the Monterey Bay region.  Our model 

configuration uses a downscaling grid-nesting capability (Penven et al., 2006) to embed a 2.5 

km resolution domain (extending from Pt. Conception in southern California to Heceta Bank 

in central Oregon) in a 7.5 km resolution domain encompassing the entire California Current 

System (25°N to 48°N; Fig. 4.1).  The large-scale domain has adaptive open boundary 

conditions (Marchesiello et al., 2003) derived from Levitus climatology.  We use 32 vertical 

(sigma) levels.  The sigma levels are concentrated in the upper water column to enable good 

vertical resolution (≥ 3 m) of near-surface currents.  A minimum depth of 10 m depth is 

imposed in nearshore areas for numerical reasons. 
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Fig. 4.1. Model domain and simulated sea surface temperature along the U.S. West Coast. 
 
 

Wind speed decreases rapidly near coastlines, and the form of this decrease has a 

substantial influence on the strength and nature of upwelling (Capet et al, 2004).  There is 

currently a lack of observational data on atmospheric processes in nearshore regions, and, as 

a result, different wind products are still being studied to determine how well they reproduce 

ocean dynamics in upwelling regions (Capet et al., 2004).  We use a surface wind field 

climatology derived from QuikSCAT satellite scatterometer data (Liu et al, 1998; Weissman 

and Graber, 1999) to force ROMS.  QuikSCAT wind fields in the nearshore region (i.e. 25 – 

50 km from shore) are contaminated by land and are therefore completed by objective 

analysis.  The resulting wind fields lack observed small-scale coastal features (Winant et al., 

1988).  To determine if this effect has a significant influence on our results, we performed 
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additional model simulations forcing ROMS with surface wind fields from the high-

resolution atmospheric model COAMPS (Kindle et al., 2002) modified to reduce the likely 

unrealistic nearshore dropoff in wind velocities (Capet et al., 2004).  We found the results 

presented here to be robust with regard to the wind forcing field. 

ROMS is skilled at rendering mesoscale features (e.g. eddies, fronts, and filaments) 

whose structure and intensity are comparable to observations (Marchesiello et al., 2003), as 

well as realistic mean velocity fields, for the California Current system.  A snapshot of sea 

surface temperature during the upwelling season demonstrates the ability of our ROMS 

configuration to reproduce realistic upwelling jets, including the southward jet frequently 

observed across the mouth of Monterey Bay and the offshore jet frequently observed off of 

Point Sur (southern tip of Monterey Bay, Fig. 4.1; Rosenfeld et al., 1994; Collins et al., 

2003).  Mean cross-shore velocities in the Monterey Bay region during the late upwelling 

season (May 15 – August 15; spatial average between 35.5 - 37.7 °N and temporal average of 

3 years) show strong offshore flow in the surface Ekman layer and weak return flow at 

deeper depths (Fig. 4.2). 
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Fig. 4.2. Simulated mean cross-shore velocities in the Monterey Bay region during the late 
upwelling season (May 15 – August 15; spatial average between 35.5 - 37.7 °N and temporal 
average of 3 years).  Positive and negative values represent eastward and westward transport 
respectively, and top and bottom panels have different vertical axes.  Since velocities are 
alongshore and temporal means, they do not necessarily represent the instantaneous flows 
that transport drifters. 
 
 
4.2.2 Drifter tracking 

We use a Lagrangian drifter-tracking code to simulate zooplankton (drifter) trajectories 

from stored ROMS velocity fields.  The code uses a fourth-order accurate Adams-Bashford-

Moulton predictor-corrector scheme to integrate dx dt u x tr r r/ ( , )=  over time given the initial 

condition r rx t x( )0 0=  and a series ruroms  of stored 3D ROMS velocity fields.  The right-hand 

side is estimated through a linear interpolation in time and space of the discrete ruroms  fields.  

ruroms  fields are daily averages calculated during ROMS simulations.  We verified that using 

stored ROMS velocity fields yields qualitatively and quantitatively similar results to 
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analogous “online” experiments in which velocity fields fluctuate with the model time step 

(400 s) on a subset of simulations.  Results are robust with respect to stored or “online” 

forcing because there is no high frequency variability, e.g. tides and sea breezes, in the 

ROMS velocity fields. 

Using the Lagrangian drifter-tracking code, we simulate the trajectories of drifters from a 

grid of starting locations in Monterey Bay located just offshore of the 100-m depth contour 

(Fig. 4.3).  All drifters are started at least 5 km from shore because the model does not 

resolve nearshore processes well.  Two types of behaviors are simulated: 1) fixed-depth 

behaviors in which drifters remain at the same depth night and day and 2) diel vertical 

migration (DVM) behaviors in which drifters jump from nighttime near-surface depths to 

deeper daytime depths and vice versa at 0600 and 1800 respectively.  Fixed-depth drifters (N 

= 250) are started from 25 horizontal locations at 10 depths (1, 5, 10, 15, 20, 30, 40, 50, 75, 

and 100 m).  DVM drifters (N = 200) are started from 25 horizontal locations at 8 depths (1, 

5, 10, 15, 20, 30, 40, and 50 m; Fig. 4.3) and have vertical migration amplitudes of 20 and 50 

m (Fig. 4.4).  Neither fixed-depth nor DVM drifters are advected by ROMS vertical velocity 

fields.  DVM drifters perform partial vertical migrations in regions where the full extent is 

not possible (< 100 m).  The drifter-tracking algorithm is run with a timestep of 5 min, and 

drifters’ horizontal and vertical positions are recorded once daily unless noted otherwise.  We 

did not account for sub-gridscale dispersion (typically modeled as a random walk) in this 

study, but it should be of secondary importance because vertical migratory velocities are 

typically larger than rms vertical velocities associated with upper ocean turbulence and, 

mesoscale stirring, the primary mesoscale horizontal dispersion process, is adequately 

resolved (Richardson, 1926). 
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Fig. 4.3. Model domain along the central California coast.  Black circles on map are drifter 
starting locations, and dashed line on map represents Monterey Bay for data analysis 
purposes.  The diagram in the upper left of the map shows the array of drifter starting 
locations for shallow fixed-depth and all DVM drifters in Monterey Bay. 
 
 

 
 
Fig. 4.4. Vertical position of sample fixed-depth, DVM20, and DVM50 drifters with a 
starting depth of 5 m depth (plotted at 1 h intervals). 
 
 
4.2.3 Influence of DVM on zooplankton transport  
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To determine the influence of DVM on the mean alongshore (~ north-south) and cross-

shore (~ east-west) transport of zooplankton in the Monterey Bay region, drifters are started 

every 5 d for 3 years and tracked for 20 d each.  The life spans of holoplanktonic species and 

larval durations of meroplanktonic species vary considerably (< 1 d to > 90 d; Grantham et 

al., 2003; Shanks et al., 2003; Siegel et al., 2003).  We use 20-d trajectories because they 

would represent the entire pelagic transport of many species and the initial pelagic transport 

of longer-lived species (Grantham et al., 2003; Siegel et al., 2003).  For each drifter, we use 

its entire 20-d trajectory or its entire trajectory until it reached an oceanic boundary of the 

model domain to calculate its mean north-south and east-west transport and determine its 

final location.  Loss of drifters through oceanic boundaries was uncommon (~ 10 % of fixed-

depth drifters at 1 m depth, ~ 0.2 % of all other drifters).  Mean cross-shore and alongshore 

transport are calculated by averaging results from the three simulation years and rotating the 

north-south and east-west transport vectors 30° counterclockwise. 

To determine the spatial distributions of drifters after 20 d of transport, we place a grid 

with nodes spaced 10 km apart latitudinally and longitudinally over the model domain and 

match the final location of drifter from the three simulation years to the nearest grid node.  

Drifter final locations are grouped into the four characteristic hydrographic seasons in the 

Monterey Bay region: early upwelling (February 15 – May 15), late upwelling (May 15 – 

August 15), oceanic (August 15 – November 15), and Davidson (November 15 – February 

15). 

 

4.2.4 Influence of DVM on self-recruitment 
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To determine the influence of DVM on self-recruitment to Monterey Bay, drifters are 

started every 5 d for 2 years and tracked for up to 360 d each.  Longer trajectories (i.e. > 20 

d) are applicable to organisms with relatively long larval durations, such as many crab and 

fish species, or long-lived holoplanktonic organisms, such as euphausiids (Brinton, 1976; 

Grantham et al., 2003; Shanks et al., 2003).  A box is defined around Monterey Bay (Fig. 

4.3), and drifters are considered recruits to the Bay as long as they remain in the box or when 

they return to the box after ≥ 30 d outside of it.  It is assumed that being in the box represents 

successful recruitment for holoplanktonic organisms and increased potential for transport to 

shore and recruitment for meroplanktonic organisms.  Drifters must exit the box for ≥ 30 d to 

be considered “returns” to Monterey Bay because drifters that are outside of the box for < 30 

d generally remain very close to the Bay.  Return rates are calculated by dividing the number 

of drifter that return to the Bay by the number of drifters that actually leave the Bay.  Mean 

time that drifters remain in Monterey Bay and percentage of drifters returning to Monterey 

Bay are calculated by averaging results of the two simulation years. 

 

4.2.5 Influence of DVM on the source of recruits 

To determine the source of recruits to Monterey Bay, we start drifters from the Monterey 

Bay starting locations (Fig. 4.3) and run the drifter-tracking algorithm backwards in time for 

20 d.  Otherwise, analyses correspond to those described in Section 4.2 Materials and 

methods under Influence of DVM on Zooplankton Transport. 

 

4.3 Results 

4.3.1 Influence of DVM on zooplankton transport 
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Mean transport of fixed-depth drifters- There are strong seasonal patterns in the mean 

transport of fixed-depth drifters started in Monterey Bay (Fig. 4.5) that correspond to the 

characteristic hydrographic seasons in the region.  During the upwelling seasons (mid-

February – mid-August), the wind-driven Ekman layer drives near-surface drifters (1 – 15 m 

depth) rapidly to the south and west of the Bay (Fig. 4.5).  Early in the upwelling season 

(mid-February – mid-June), there is weak southward and westward transport below the 

Ekman layer, while later in the season (mid-June – mid-August), the California Undercurrent 

strengthens and drives deeper drifters (≥ 50 m depth) rapidly to the north (Fig. 4.5).  During 

the oceanic and Davidson seasons (mid-August – mid-February), sporadic upwelling 

interspersed with weak northward flow results in relatively weak southward and westward 

transport near the surface and northward and westward transport below (Fig. 4.5).  There is 

no strong mean eastward transport at any time or depth because drifters are started close to 

the California coast. 
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Fig. 4.5. Top: Mean cross-shore and alongshore transport of drifters over 20-d period.  
Positive values represent eastward and northward transport, and negative values represent 
westward and southward transport.  Bottom: Absolute difference in mean cross-shore and 
alongshore transport of fixed-depth and DVM drifters over 20-d period. 
 
 
Mean transport of DVM drifters- During periods of active upwelling during the upwelling 

and oceanic seasons (mid-February – mid-November), DVM drifters migrating from the 

surface Ekman layer (1 – 15 m depth) at night to weaker or opposing undercurrents during 

the day have zig-zag trajectories that are shorter than or in a different direction than 

trajectories for analogous fixed-depth drifters (Fig. 4.6).  This means that DVM can 

substantially reduce the transport away from the Bay of drifters at the surface at night (Figs. 

4.5, 4.7).  The DVM behaviors simulated generally do not substantially influence the mean 

transport and final location of drifters with a nighttime depth below the surface Ekman layer 
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(Figs. 4.5, 4.8), however, because there is less vertical current shear deeper in the water 

column. 

 

 
 
Fig. 4.6. Trajectories of drifters started at the surface (1 m depth) over 20-d period (1 h 
position intervals). 
 
 

 
 

 



 95

 
Fig. 4.7. Distribution of drifters started at the surface (1 m depth) after 20 d of transport. 
 
 

 
 

 
 
Fig. 4.8. Distribution of drifters started at 20 m depth after 20 d of transport. 
 
 
4.3.2 Influence of DVM on self-recruitment 

Retention of drifters- Fixed-depth drifters transported below ~ 30 m depth tend to remain in 

Monterey Bay much longer than drifters transported at lesser depths (Fig. 4.9) because they 

are not subject to strong southward and westward Ekman layer currents near the surface.  The 

exception is drifters transported at ≥ 50 m depth during the late upwelling season (mid-May – 

mid-August) and drifters transported at ≥ 10 m depth during the Davidson season (mid-

November – mid-February; Fig. 4.9).  These drifters are transported out of the Bay relatively 

quickly by northward undercurrents. 
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Fig. 4.9. Top: Mean time that drifters remain in Monterey Bay.  Bottom: Difference between 
the mean time that fixed-depth and DVM drifters remain in Monterey Bay. 
 
 

DVM has relatively little influence on the time that drifters transported above ~ 20 m 

depth remain in Monterey Bay (Fig. 4.9) because these drifters are still transported rapidly 

out of the Bay.  For drifters transported below 20 m depth during the early upwelling season 

and the first half of the late upwelling season (mid-February – early June) and drifters 

transported around 15 - 30 m depth during the oceanic season (mid-August – mid-

November), DVM generally increases the time that they remain in Monterey Bay (Fig. 4.9) 

because they are migrating from southward currents at night to northward currents during the 

day.  During the late upwelling, oceanic, and Davidson seasons (mid-June – early February), 

DVM tends to decrease the time that the deepest drifters remain in Monterey Bay (Fig. 4.9) 
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because these drifters are in northward undercurrents throughout the diel cycle with some 

migrating into stronger northward undercurrents during the day. 

 

Return of drifters- During the upwelling and oceanic seasons (mid-February – mid-

November), return rates are relatively low (< 10 %) for fixed-depth drifters transported near 

the surface or at deeper depths (Fig. 4.10) because these drifters are transported rapidly away 

from the Bay in the surface Ekman layer or northward undercurrents.  Return rates are high 

(≥ 60 %) for fixed-depth drifters transported from 20 - 40 m depth during the upwelling and 

oceanic seasons and for fixed-depth drifters transported in the upper 50 m of the water 

column during the Davidson season (Fig. 4.10) because there is a seasonal reversal of 

currents at these depths and drifters are generally transported back to the Bay in the season 

after they exit the Bay (Fig. 4.11).  Fixed-depth drifters that return to Monterey Bay during 

the Davidson and early upwelling seasons are generally transported to the south of Monterey 

Bay before returning (Fig. 4.12).  In contrast, fixed-depth drifters that return to Monterey Bay 

during the late upwelling and oceanic seasons have widely variable trajectories and may be 

transported to the north, south, or west of the Bay before returning (Fig. 4.12).  Return rates 

for fixed-depth and DVM20 drifters started during the upwelling seasons, particularly the 

late upwelling season, may be artificially low because many of these drifters exit the model 

grid through the southern boundary (Fig. 4.7).  It is doubtful, however, that many of these 

drifters would return to Monterey Bay in subsequent seasons after such substantial southward 

transport. 
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Fig. 4.10. Top: Percentage of drifters exiting Monterey Bay for ≥ 30 d that returns to the Bay.  
Bottom: Difference between the percentages of fixed-depth and DVM drifters exiting 
Monterey Bay for ≥ 30 d that return to the Bay. 
 
 

 
 
Fig. 4.11. Season of return for fixed-depth and DVM drifters started at 30 m depth (the depth 
with the highest average return rate) that exit the Bay for ≥ 30 d then return. 
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Fig. 4.12. Top: Trajectories of fixed-depth drifters started at 30 m depth that exit Monterey 
Bay for ≥ 30 d then return to the Bay (1 d position intervals).  Starting locations are shown by 
black dots, and reentry locations are shown by black triangles.  Bottom:  Trajectories of 
analogous DVM drifters started at the same locations and times.  Starting locations are 
shown by black dots, and ending locations are shown by black triangles.  DVM decreases 
return rates for drifters with a nighttime depth below 20 – 30 m therefore fewer of the 
analogous DVM drifters return to the Bay. 
 
 
 DVM tends to increase return rates for drifters with a nighttime depth above 20 – 30 m 

(Fig. 4.10) because their migration to deeper waters during the day reduces transport away 

from the region and increases their exposure to seasonal reversal in currents.  DVM tends to 

decrease return rates for drifters with a nighttime depth below 20 – 30 m (Fig. 4.10) because 
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their migration to deeper waters during the day increases their exposure to strong northward 

undercurrents and decreases their exposure to seasonal reversals in currents (Fig. 4.12). 

 

4.3.3 Influence of DVM on the source of recruits 

Source of fixed-depth recruits- As with the mean transport of fixed-depth drifters started in 

Monterey Bay, there are strong seasonal patterns in the source of recruits to Monterey Bay 

(Fig. 4.13).  During the upwelling and oceanic seasons (mid-February – mid-November), the 

source of fixed-depth recruits in the upper water column (1 - ~ 30 m depth) is to the 

northwest (Fig. 4.13) because recruits are transported to the Bay by wind-driven southward 

surface currents.  The source of fixed-depth recruits to the Bay is farthest north during the 

upwelling seasons (mid-February – mid-August), particularly the early upwelling season 

when the coastal upwelling jet is strongest, and ranges from north of San Francisco Bay to 

Monterey Bay (Fig. 4.14).  During the Davidson season (mid-November – mid-February) 

and below ~ 30 m depth during the upwelling and oceanic seasons, the source of fixed-depth 

recruits to the Bay is generally to the southeast (Fig. 4.13) because recruits are transported to 

the Bay by northward undercurrents.  The main source of recruits to the Bay is farthest south 

during the late upwelling and oceanic seasons and ranges from north of Morro Bay to 

Monterey Bay (Fig. 4.15).  Drifters do not tend to recruit to Monterey Bay from very far 

offshore because there is little onshore transport in the region at the depths simulated (Figs. 

4.13, 4.14, 4.15). 
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Fig. 4.13. Top: Origin of drifters that recruit to Monterey Bay after 20 d of transport.  
Positive values represent sources to the east and north, and negative values represent sources 
to the west and south.  Bottom: Absolute difference between origin of fixed-depth and DVM 
drifters that recruit to Monterey Bay after 20 d of transport.  Starting times correspond to 
when drifters leave their source location. 
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Fig. 4.14. Starting locations of drifters started at 15 m depth that recruit to Monterey Bay 
after 20 d of transport.  Seasons correspond to when drifters leave their source location. 
 
 

 
 

 
 
Fig. 4.15. Starting locations of drifters started at 50 m depth that recruit to Monterey Bay 
after 20 d of transport.  Seasons correspond to when drifters leave their source location. 
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Source of DVM recruits- During the upwelling and oceanic seasons (mid-February – mid-

November), DVM shifts the main source of recruits in the upper water column (≤ 30 – 50 m 

depth) farther south and closer to Monterey Bay (Figs. 4.14, 4.15) because migration 

between the southward, wind-driven Ekman layer and northward undercurrents results in 

slower net southward transport from source regions.  Below 30 – 50 m depth, DVM does not 

tend to have a strong influence on source regions for recruits to Monterey Bay (Fig. 4.15) 

because there is generally less vertical current shear at this level in the water column. 

 

4.4 Discussion 

A fundamental question in marine ecology is how populations in highly advective 

regions, such as upwelling regions, are retained.  Is it possible for these populations to be 

self-sustaining or are they necessarily dependent on a constant supply of recruits from 

upstream regions?  It has been hypothesized that zooplankton vertical migration into 

subsurface poleward and onshore currents during the day compensates for equatorward and 

offshore transport by surface currents at night and enables retention in upwelling regions 

(Peterson, 1998).  In this study, we test this hypothesis in the Monterey Bay region of central 

California using a fully three-dimensional (3D) hydrodynamic model coupled to simple diel 

vertical migration (DVM) behavioral models.  We found that under the conditions we 

simulated (seasonally-varying mean circulation with accompanying mesoscale activity), 

vertical migration out of the surface Ekman layer during the day decreases transport away 

from the region but does not fully compensate for nighttime transport and does not lead to 

nearshore retention (Figs. 4.5, 4.7, 4.9).  DVM has little effect on the transport of 
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zooplankton with deeper nighttime depths or during non-upwelling periods (Figs. 4.5, 4.7, 

4.8).  It does tend to increase zooplankton retention time in the region (Fig. 4.9). 

These results contrast with those of Batchelder et al. (2002) who found that DVM retains 

copepods nearshore in an Oregon upwelling region.  The difference in results arises because 

Batchelder et al. (2002) used a two-dimensional (2D) hydrodynamic-ecosystem model in 

which offshore upwelling flow at the surface was balanced by strong onshore return flow in a 

relatively thin benthic boundary layer.  Simulated copepods using DVM were programmed to 

migrate into this return flow during the day, therefore their daytime onshore transport 

compensated for nighttime offshore transport and retained them nearshore (Batchelder et al., 

2002).  In our 3D model, the presence of alongshore pressure gradients means onshore return 

flow is spread more evenly throughout the interior rather than being restricted to a bottom 

boundary layer (Marchesiello et al., 2000; Fig. 4.2).  Onshore return flow below the surface 

is weak relative to offshore Ekman transport at the surface even though onshore and offshore 

transport are roughly balanced (i.e. strong offshore transport in the upper 20 m roughly 

balances weak return transport in the lower water column; Fig. 4.2).  As a result, onshore 

transport of vertically-migrating zooplankton during the day does not compensate for their 

offshore transport near the surface at night (Fig. 4.5).  Initial results for other regions along 

the central California coast indicate that full compensation between nighttime and daytime 

transport of vertically migrating zooplankton near the surface at night does not occur in these 

regions either but there is generally more compensation than in Monterey Bay (X.J. Capet, 

UCLA, USA, Pers. Comm.).  Greater compensation is also likely on shallow shelves, such as 

the U.S. East Coast, in which subsurface return flow will be concentrated into a relatively 

thin vertical layer. 
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Despite the lack of retention for vertically-migrating zooplankton near the surface at 

night in our study, retention is likely to be an important self-recruitment mechanism for 

marine populations in upwelling regions.  Our model does not resolve small-scale temporal 

or spatial recruitment mechanisms, such as upwelling relaxation events (Wing et al., 2003) or 

upwelling shadows (Graham and Largier, 1997), that may retain organisms in the Monterey 

Bay region.  In addition, transport during the non-upwelling Davidson season decreases 

zooplankton transport away from the region (Figs. 4.5, 4.7, 4.8), and continuous transport 

below the surface Ekman layer can lead to relatively long retention times in the region (Fig. 

4.9).  Both of these transport characteristics have been observed for larval and juvenile fish in 

upwelling regions (Peterson, 1998; Sponaugle et al., 2002).  Fixed-depth transport during the 

Davidson season or below the surface Ekman layer have the advantage that they eliminate 

the considerable metabolic costs of vertical migration but the disadvantage that organisms 

will not be transported during peak annual productivity or in highly productive surface 

waters. 

The use of a fully 3D model also allows us to explore the implications of realistic 

alongshore transport on zooplankton transport and recruitment in the Monterey Bay region.  

Upwelling jets in the region are so strong (often > 20 cm s-1) that even zooplankton that 

migrate out of the jets during the day have strong net southward transport (Fig. 4.6) and 

alongshore transport away from the region often exceeds offshore transport (Figs. 4.5, 4.7, 

4.8).  Despite strong advection away from the region, we found that seasonal changes in 

hydrography could enable relatively high levels of self-recruitment to the region by allowing 

zooplankton to return to Monterey Bay after transport away (Fig. 4.10, 12).  The influence of 
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DVM on return to the region is complex but tends to decrease the potential for this means of 

self-recruitment to Monterey Bay (Fig. 4.10). 

The influence of ontogenetic vertical migration (OVM) on self-recruitment to the 

Monterey Bay region will depend on the amount of time that organisms spend at different 

depths.  If organisms spend relatively little time at the surface, it is likely they can be retained 

in the Bay (Figs. 4.8, 4.9) or returned to the region via seasonal changes in hydrography 

(Figs. 4.10, 4.12).  These observations support the proposal of Peterson (1998) that OVM 

rather than DVM could be the key to retaining zooplankton populations in upwelling regions.  

In contrast, if organisms spend a considerable amount of time near the surface during the 

upwelling or oceanic seasons, they will be transported away from the region and are unlikely 

to be able to recruit to the Bay (Figs. 4.5, 4.7, 4.9, 4.10). 

Determining self-recruitment levels for marine populations is critical to managing them 

effectively because self-recruitment levels can determine the vulnerability of local 

populations to local changes in fishing pressure or habitat modifications.  While it is unlikely 

that zooplankton populations in Monterey Bay are reproductively isolated from alongshore or 

offshore organisms of the same species, our results suggest the potential for high levels of 

self-recruitment in the Monterey Bay region for both fixed-depth and vertically-migrating 

zooplankton with a nighttime depth below 20 – 30 m (Figs. 4.9, 4.10).  The potential for high 

levels of self-recruitment is surprising for such a highly advective upwelling region but adds 

to a growing body of evidence that self-recruitment in marine populations is more common 

than previously believed (Warner and Cowen, 2002).  Actual self-recruitment levels will vary 

according to larval duration.  Organisms with shorter (longer) larval durations are more (less) 

likely to be retained in the region (Fig. 4.9).  Organisms with relatively long larval durations 
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(>> 20 d), such as the Dungeness crab Cancer magister with a larval duration of ~ 4 months 

(Botsford et al., 1994), may be able to take advantage of seasonal reversals in currents to 

return to starting regions (Fig. 4.11). 

In addition to determining the influence of DVM on zooplankton transport and self-

recruitment in the region, we also determine source regions for recruits to Monterey Bay.  

Knowing the location of source regions for recruits is important for managing marine 

resources because habitat alterations and fishing effort in source regions will affect marine 

stocks in Monterey Bay.  Adult migrations to source regions to spawn are another means of 

enabling self-recruitment to a region and have been observed for fish in upwelling regions 

(Peterson, 1998; Sponaugle et al., 2002).  We found that DVM shifts source regions for 

recruits closer to the Bay during upwelling periods but has little effect during non-upwelling 

periods (Fig. 4.13).  While these are the first descriptions of source regions for recruits to 

Monterey Bay to date, actual recruitment levels to Monterey Bay will depend on population 

distributions and densities in these source regions. 

Determining source regions for recruits is also critical for predicting the likelihood of the 

spread of marine invasive species via alongshore currents.  San Francisco Bay is one of the 

most highly invaded estuaries in the world (Cohen and Carlton, 1998).  Our results show that 

there is seasonal transport of near-surface fixed-depth and vertically-migrating zooplankton 

from San Francisco Bay to Monterey Bay (Fig. 4.14).  This suggests that invasive species in 

San Francisco Bay could routinely reach Monterey Bay.  Transport via alongshore currents 

has been proposed for the observed spread of the invasive European green crab Carcinus 

maenas along the California coast north of San Francisco (Grosholz and Ruiz, 1995).  Green 

crabs were first observed in San Francisco Bay in 1989 and 1990, spread to Monterey Bay by 
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1993, and are now found as far south as Morro Bay (Grosholz and Ruiz, 1995; Wasson et al., 

2001).  DVM should decrease the likelihood, or at least the rate, of spread of invasive species 

via alongshore currents because vertically-migrating organisms tend to remain closer to their 

starting points (Figs. 4.14, 4.15).  Our results are partially a function of the 20-d larval 

duration simulated.  Source regions are likely to be more (or less) expansive for longer (or 

shorter) larval durations. 

Models inherently involve the simplifications of complex biological systems, and our 

models of DVM consist of Lagrangian drifters that made vertical jumps in the water column 

at fixed times of the day (Fig. 4.4).  They do not account for many intrinsic (e.g. age, hunger 

state, reproductive condition, swimming capability) and environmental factors (e.g. cloud 

cover, seasonal changes in photoperiod and light intensity, presence of predators) that can 

influence the depth and timing of an organism’s migration.  For a few organisms (e.g. 

Euphausia pacifica, Metridia pacifica), the influence of many of these factors on their 

vertical migratory behavior is known, and more sophisticated biological models can be 

created (Eiane and Parisi, 2001; reviewed in Werner et al., 2001).  However, the vertical 

migratory behaviors of most organisms are still poorly described.  This study provides a first-

order estimate of the influence of DVM on transport and recruitment if basic descriptions of 

nighttime and daytime vertical distributions are available. 

 

Conclusions- While DVM behaviors may not exist solely for their influence on transport, 

they are potentially important determinants of the spatial dynamics of marine populations.  In 

this study, we use a fully three-dimensional (3D) hydrodynamic model to determine the 

influence of DVM on zooplankton transport and recruitment in an upwelling region.  We 
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found that zooplankton vertical migration into subsurface poleward and onshore currents 

during the day does not fully compensate for equatorward and offshore transport in the 

surface Ekman layer at night and, therefore, does not enable retention in the Monterey Bay 

region as has been hypothesized for other upwelling regions.  DVM also tends to decrease 

the ability of zooplankton to return to the region after transport away.  While DVM does not 

appear to substantially increase the potential for self-recruitment to the region, our results 

suggest that other mechanisms, such as transport during non-upwelling periods, continuous 

transport below the surface, return to the region via seasonal changes in hydrography, and 

ontogenetic vertical migration, may still enable relatively high levels of self-recruitment to 

this highly advective region.  In addition, we offer the first description to date of potential 

source regions for recruits to Monterey Bay.  Coastal resource managers in the region can use 

the transport and recruitment patterns determined in this study for assessing the potential for 

self-recruiting populations, predicting recruitment levels for exploited marine species, 

designing and assessing marine protected areas, and predicting the natural dispersal of 

invasive species (Botsford, 2001; Strathmann et al., 2002). 
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Chapter 5. Do they really matter?:  The influence of vertical migratory behaviors on 
transport in the marine environment 
 
5.1 Introduction 

This chapter synthesizes the existing literature, including the new work included in this 

dissertation, to determine the extent to which the results of realistic and quantitative studies 

support the commonly-held belief that VMBs have a significant influence on transport in the 

marine environment.  Since there are not currently any field studies comparing the transport 

of fixed-depth and vertically-migrating drifters from the same starting locations at the same 

time, this review is limited to studies that have used 2D or 3D hydrodynamic models to 

simulate and compare the trajectories of organisms that are passive or have a fixed depth near 

the surface with the trajectories of organisms that migrate vertically from near the surface to 

deeper depths.  Only results from 2D and 3D models are included because theoretical or 

relatively simple models (e.g. 1D progressive vector models) of the influence of VMBs on 

transport can provide tremendous insight into relevant processes but cannot describe 

transport in spatially heterogeneous environments (e.g. deGraaf, 2004).  Important 

contributions have been made by a number of studies that incorporated VMB into modeling 

studies of organismal transport but did not also consider passive or fixed-depth behaviors.  

These studies have not been explicitly included in this review (e.g. Bartsch et al., 1989; 

Hermann et al., 1996; Rothlisberg et al., 1996; Condie et al., 1999; Hare et al., 1999).  

 

5.2 Synthesis of relevant studies 
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5.2.1 Selective tidal-stream transport (STST) 

Despite the potential importance of VMBs to the transport of marine organisms, there 

have been relatively few attempts to describe their influence on transport rates and 

trajectories, particularly for STST behaviors.  (See compilation of studies in Table 1.)  

Although the small number of STST studies limits the scope of conclusions that can be 

drawn, the studies generally support the assumptions that FTT enables retention in tidal 

estuaries and embayments (Jacobsen et al., 1990), ETT enables down-estuary transport and 

export from tidal estuaries and embayments (DiBacco et al., 2001; Carr et al., 2005), and 

STST enables directed migrations on continental shelves (Arnold and Holford, 1995; deGraaf 

et al., 2004).  Directed transport is likely to be critical to the maintenance of many marine 

populations because it enables successful migrations to nursery, reproductive, and feeding 

areas (e.g. deGraaf et al., 2004; Carr et al., 2005). 
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Study Organisms Location Model Results Other 
 
Flood-Tide Transport 
Jacobse
n et al. 
(1990) 

Oyster larvae Delaware 
Bay 

3D FTT retained 
larvae in bay 
and enabled 
return near 
natal beds. 

STST increases potential for self-
recruitment in population. 

Jenkins 
et al. 
(1999) 

Fish 
postlarvae 

Port 
Phillip Bay 

3D  Addition of behaviors observed at 
the mouth of the bay did not 
improve/decreased predictive 
capability of the model, possibly 
because behaviors do not occur 
throughout the bay. 

 
Ebb-Tide Transport 
DiBacco 
et al. 
(2001) 

Crab larvae San Diego 
Bay 

2Da ETT 
substantially 
decreased 
retention in 
bay. 

Larval export is reduced when ETT 
larvae migrate lower in but do not 
leave the water column during flood 
tides. 

Carr et 
al. 
(2005) 

Adult crabs Beaufort 
Inlet 
estuarine 
system, 
North 
Carolina 

2Da ETT led to 
down-estuary 
transport and 
export from 
estuary. 

Study used detailed ETT behaviors 
developed from field and laboratory 
experiments and validated modeled 
trajectories with observed 
trajectories.  Transport with observed 
behaviors is substantially less than 
transport with idealized behaviors 
because crabs do not migrate 
continuously during ebb tides. 

 
Selective Tidal-Stream Transport 
Arnold 
and 
Holford 
(1995)b 

Adult fish Southern 
North Sea 
and 
English 
Channel 

2Da STST enabled 
migration away 
from spawning 
grounds. 

 

deGraaf 
et al. 
(2004) 

Fish larvae Southern 
North Sea 

2Da STST directed 
transport 
towards coast. 

STST increases success at reaching 
coastal nursery areas.  Analogous 1D 
model fail to predict this effect.  

 
Table 5.1.  Influence of STST behaviors in estuarine and continental shelf environments with 
semi-diurnal currents. aDepth-averaged. bUpdate to Arnold and Cook (1984). 
 
 
5.2.2 Diel vertical migration (DVM) 

The vast majority of studies of the influence of VMBs on transport have examined DVM.  

(See compilation of studies in Table 2.)  This behavior is widespread in marine environments 

and has been studied more extensively than STST and OVM.  With a few notable exceptions, 
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DVM tends to increase the retention of organisms near their starting locations relative to 

continuous transport near the surface.  Organisms tend to be retained in regions dominated by 

M2 semi-diurnal currents because DVM reduces the time that organisms spend in the water 

column (e.g. Luettich et al., 1998; Culberson, 2004), regions dominated by estuarine 

circulation because organisms migrate between seaward currents at the surface and landward 

currents at deeper depths (e.g. Larson et al., 2003), and regions dominated by wind-driven 

surface currents (surface Ekman layers) because organisms are migrating between strong 

wind-driven currents at the surface and weaker and/or opposing currents at deeper depths 

(e.g. Batchelder et al., 2002; Carr et al., 2005). 

While STST behaviors have undoubtedly developed because of their influence on 

transport, a preponderance of DVM studies demonstrate that these behaviors are also often 

linked to migratory or recruitment success and are probably critical to the maintenance of 

many marine populations (e.g. Griffin et al., 2001; Carr et al., In review; Emsley et al., 

2005).  Retention near parental habitat by DVM may be particularly important to marine 

populations because parental habitat is likely to be suitable for offspring.  Retention (as 

opposed to random dispersal) may increase developmental and recruitment success 

(Strathmann et al., 2002).  A particularly important example of the benefits of retention is 

coastal upwelling regions where the retention of organisms in productive nearshore waters 

likely increases food availability for organisms and leads to reduced losses to starvation, 

faster growth rates, increased fecundity, and increased population sizes (Wroblewski, 1982; 

Rumsey and Franks, 1999). 

DVM does not necessarily retain organisms near their starting locations, however.  In 

regions with a strong S2 semi-diurnal tide in which organisms spend periods <> 12 h at the 
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surface or in regions with strong diurnal tides, DVM can actually act as a STST behavior and 

can increase the transport of organisms away from their starting locations (e.g. Rothlisberg et 

al., 1983; Hill, 1994; Smith et al., 2001; Sentchev and Korotenko, 2004).  Since DVM which 

has a period of 24 h and the S2 tide which has a period of 12 h are phase-locked, DVM 

organisms in a given region are transported by currents during roughly the same phase of the 

S2 tide every night.  The relative phases of DVM and the S2 tide in that region will determine 

the magnitude and direction of net transport.  DVM can also lead to directed transport over 

relatively long periods of time in regions with strong diurnal tides.  The length of time that 

the interaction between DVM and a tide will result in net horizontal transport is equal to half 

the beat period between DVM and the tide in question.  The closer the tidal period is to 24 h, 

the longer the period of time over which net horizontal transport in a given direction is 

possible, e.g. 85 d in the K1 tide but only 7 d in the M2 tide (reviewed in Hill, 1998).  As with 

DVM-S2 tide interactions, the relative phases of DVM and a diurnal tide determine the 

magnitude and direction of net transport.  For a full review of DVM-tidal interactions, see 

Hill (1991, 1994, 1998).  And in cases where organisms do not move to the bottom during 

one phase of their daily migration or regions which do not have consistent strong vertical 

current shear, DVM may not have a significant influence on transport (e.g. Gallego et al., 

1999) or may not have sufficient influence to enable self-recruitment to the region (e.g. Carr 

et al., In review). 
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Study Organisms Location Model Results Other 

Interaction with semi-diurnal tides 
Hill (1994) Idealized 

organisms 
Northwest 
European 
continental 
shelf 

2Da DVM interacted with 
the S2 semi-diurnal 
tide to produce 
regions with net 
horizontal transport. 

The relative phases of 
DVM and the S2 tide 
determine whether regions 
are convergent or divergent. 

Arnold and 
Holford 
(1995)b 

Adult fish Southern 
North Sea 
and English 
Channel 

2Da DVM retained fish on 
spawning grounds. 

 

Luettich et 
al. (1998) 

Fish larvae Beaufort 
Inlet, North 
Carolina 

2Da DVM slowed larval 
migration through the 
inlet. 

 

Culberson 
et al. (2004) 

Fish larvae San 
Francisco 
Bay 

3D DVM slowed larval 
migration and 
increased entrainment 
in the water 
diversion. 

Water diversions in the 
estuary may entrain larvae 
and have a negative effect 
on larval recruitment.   

Sentchev 
and 
Korotenko 
(2004) 

Fish larvae Eastern 
English 
Channel 

3D DVM interacted with 
the S2 semi-diurnal 
tide to slow the 
transport of larvae to 
the north. 

DVM decreases larval 
recruitment to the English 
coast. 

 
Interaction with diurnal tides 
Rothlisberg 
et al. (1983) 

Shrimp 
larvae 

Gulf of 
Carpenteria 

3D DVM interacted with 
diurnal tides to 
produce net 
horizontal transport 
and increase transport 
towards estuarine 
nursery areas during 
the main reproductive 
season. 

Migration to the bottom 
during day increases 
horizontal advection.  DVM 
increases range of effective 
spawning population (i.e. 
adults whose young will 
reach nursery grounds) 
during the main 
reproductive season. 

Smith et al. 
(2001) 

Adult 
euphausiids 
and 
copepods 

Juan de 
Fuca region 

3D DVM interacted with 
diurnal tides to 
produce net 
horizontal transport 
but the direction of 
transport varied 
seasonally. 

Addition of behavior helps 
explain observed 
zooplankton distributions. 

 
Interaction with estuarine circulation/buoyancy-driven currents 
Hinckley et 
al. (1996) 

Fish eggs 
and larvae 

Shelikof 
Strait and 
western 
Gulf of 
Alaska 

3D The influence of 
DVM on transport 
was not described in 
detail. 

DVM into cold sub-surface 
waters delays the transition 
from non-feeding to 
feeding larval stage and 
metamorphosis from larvae 
to juvenile. 

Larson et al. 
(2003) 

Idealized 
organisms 

Juan de 
Fuca region 

3D DVM increased 
retention in the strait.  

The Juan de Fuca Strait has 
been recommended as a 
ballast water discharge site 
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because of the assumption 
that seaward transport at the 
surface would transport 
potentially invasive species 
away from coastal habitats 
where they could reproduce 
and establish populations.  
This assumption that is 
incorrect for DVM 
organisms. 

Emsley et 
al. (2005) 

Adult 
euphausiids 
and 
copepods 
and fish 
larvae 

Irish Sea 3D DVM increased 
retention in the sea 
through entrainment 
in a buoyancy-driven 
gyre. 

DVM increases potential 
for self-recruitment in 
population. 

 
Interaction with wind-driven surface Ekman layers 
Wroblewski 
(1982) 

Adult 
copepods 

California 
Current 
System 

2Dc, 
3Dd 

DVM increased 
nearshore residence 
time and decreased 
alongshore transport. 

 

Bucklin et 
al. (1989) 

Adult 
copepods 

California 
Current 
System 

3D DVM decreased 
offshore transport 
and increased 
residence time in an 
upwelling jet. 

 

Werner et 
al. (1993) 

Fish larvae Georges 
Bank 

3D DVM had little 
influence on transport 
relative to passive or 
fixed-depth transport 
near the organism’s 
mean depth.   

 

Botsford et 
al. (1994) 

Crab larvae 
and 
megalopae 

California 
Current 
System 

3De DVM reduced 
offshore and 
alongshore transport.  

 

Hannah et 
al. (1998) 

Adult 
copepods 

Gulf of 
Maine and 
Georges 
Bank 

3D DVM slowed 
transport to the bank. 

 

Gallego et 
al. (1999) 

Copepodites North Sea 3D DVM did not have a 
major effect on larval 
recruitment.   

 

Jenkins et 
al. (1999) 

Fish 
postlarvae 

Port Phillip 
Bay 

3D DVM increased 
westward wind-
driven transport 
relative to the 
transport of passive 
organisms dispersed 
throughout the water 
column. 

Addition of behaviors 
observed at the mouth of 
the bay did not 
improve/decreased 
predictive capability of the 
model, possibly because 
behaviors do not occur 
throughout the bay. 

Jenkins et 
al. (2000) 

Fish 
postlarvae 

Southeast 
coast of 
Australia 

3Df DVM moved 
spawning sites 
offshore. 

Field observations suggest 
that the spawning locations 
predicted for passive larvae 
are more likely to be 
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Table 5.2.  Influence of DVM behaviors on transport in different environments.  
Environments characterized by multiple influences (e.g. semi-diurnal tides and buoyancy-
driven currents) categorized by influence with greatest interaction with VMB.  All results are 
relative to the transport of passive or fixed-depth particles near the surface unless specified 
otherwise.  aDepth-averaged.  bUpdate to Arnold and Cook (1984).  cAlongshore-averaged.  
dUniform alongshore topography.  eModel included southward wind forcing but no surface 
Ekman layer.  fStudy used reverse simulation, i.e. tracking organisms from their ending to 
their starting locations by running the model backwards in time. 
 

 

 

accurate, possibly because 
DVM only develops in the 
more advanced larval 
stages.   

Griffin et al. 
(2001) 

Lobster 
larvae 

Leeuwin 
Current 
System 

3D DVM increased 
larval retention near 
Australia west coast.   

DVM likely increases 
recruitment to the fishery. 

Batchelder 
et al. (2002) 

Adult 
copepods 

Idealized 
region 
similar to  
California 
Current 
System 

2D c DVM retained 
copepods nearshore. 

Nearshore retention enables 
copepods to exploit food 
resources in productive 
upwelling regions. 

Murphy et 
al. (2004) 

Adult 
euphausiids 

Scotia Sea 3D DVM decreased 
northward and 
increased eastward 
transport.  DVM and 
mean-field flow 
trajectories were 
similar. 

 

Hinrichsen 
et al. (2005) 

Fish larvae Baltic Sea 3D DVM increased 
retention in deep 
basins and decreased 
mixing between 
basins. 

DVM increases potential 
for self-recruitment in 
population and may allow 
genetic heterogeneity 
between regional 
populations. 

Carr et al. 
(In review) 

Idealized 
zooplankton 

California 
Current 
System 

3D DVM reduced 
offshore and 
alongshore transport 
during spring-
summer upwelling 
but did not enable 
nearshore retention. 

3D model results differ 
from previous 2D results 
because return currents 
below the surface are 
substantially weaker than 
offshore currents in the 
surface Ekman layer, 
therefore onshore transport 
during the day does not 
fully compensate for 
offshore transport at night. 
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5.2.3 Ontogenetic vertical migration (OVM) 

There have been very few studies of the influence of OVM on transport because most 

OVM studies do not compare the long-term trajectories of vertically-migrating organisms 

with analogous passive or fixed-depth trajectories (e.g. Slagstad and Tande, 1996; Pederson 

et al., 2001).  (See compilation of studies in Table 3.)  Although the small number of OVM 

studies limits the scope of conclusions that can be drawn, the existing studies lead to 

conclusions similar to those for DVM, namely that OVM tends to increase the retention of 

organisms near their starting location relative to continuous transport near the surface.  

Retention occurs in estuarine circulation because seaward flow near the surface is roughly 

balanced by landward flow deeper (e.g. Jacobsen et al., 1990) and regions dominated by 

wind-driven surface currents because organisms are migrating between strong wind-driven 

currents at the surface and weaker and/or opposing currents at deeper depths (e.g. Stenevik et 

al., 2003; Paris and Cowen, 2002).  Continuous transport below the surface may also increase 

retention near starting locations and potentially increase self-recruitment levels but has the 

disadvantage that organisms will not spend as much time in highly productive surface waters 

(e.g. Werner et al., 1993; Tremblay et al., 1994). 
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Table 5.3.  Influence of OVM behaviors on transport in different environments.  
Environments characterized by multiple influences (e.g. semi-diurnal tides and buoyancy-
driven currents) categorized by influence with greatest interaction with VMB.  All results are 

Study Organisms Location Model Results Other 
 
Interaction with estuarine circulation/buoyancy-driven currents 
Jacobsen 
et al. 
(1990) 

Oyster 
larvae 

Delawar
e Bay 

3D OVM descents increased 
retention in the bay.  
Relatively fast descents 
enabled return near natal 
beds. 

OVM increases potential for 
self-recruitment in population. 

 
Interaction with wind-driven surface Ekman layers 
Werner et 
al. (1993) 

Fish larvae Georges 
Bank 

3D OVM from near-surface to 
deeper depths decreased 
retention on bank relative 
to continual passive or 
fixed-depth transport 
below the surface. 

 

Tremblay 
et al. 
(1994) 

Scallop 
larvae 

Georges 
Bank 

3D Deeper OVM ascent 
termination depths 
decreased transport from 
starting locations. 

Deeper OVM ascent 
termination depths increase 
likelihood of self-recruitment 
in scallop populations. 

Mullon et 
al. (2003) 

Fish eggs 
and larvae 

Southern 
Benguela 
Current 
System 

3D Eggs that were too 
buoyant were advected 
offshore.  Eggs that were 
too dense were transported 
too slowly to reach 
nursery areas within a 
suitable developmental 
window.  

OVM occurs because egg 
buoyancy changes in the first 
six days of transport.   
Ascent/descent of eggs to 
appropriate depths is 
necessary for successful 
transport to inshore nursery 
areas. 

Stenevik 
et al. 
(2003) 

Fish larvae Northern 
Benguela 
Current 
System 

3D OVM to deeper depths 
increased retention 
nearshore. 

OVM is assumed to be an 
adaptation to regional 
circulation to decrease larval 
mortality rates.   

Paris and 
Cowen 
(2004) 

Fish larvae Coral 
reef off 
west 
coast of 
Barbados 

2Da OVM to deeper depths 
increased retention of 
larvae near the reef. 

OVM increases potential for 
self-recruitment in population. 

 
Interaction with large-scale circulation patterns 
Bryant et 
al. (1998) 

Adult 
copepods 

Eastern 
North 
Atlantic 

3D Seasonal vertical 
migration from deep water 
in winter to shallow water 
in spring enabled return to 
some regions after a year. 

OVM appears to enable some 
regions to have self-recruiting 
populations, i.e. copepods 
return to their origination 
locations after a year.   In 
simulations without a deep 
overwintering phase, there 
was no long-term persistence 
of copepods originating in the 
Norwegian Sea. 
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relative to the transport of passive or fixed-depth particles near the surface unless specified 
otherwise. aDepth-averaged. 
 

5.3 Management implications 

This synthesis has a number of important implications for the management of coastal and 

marine resources.  First and foremost, it demonstrates that VMBs can and do have a 

significant influence on the transport of organisms in marine environments (results 

summarized in Table 4) and need to be considered when sponsoring or evaluating research 

on transport in marine environments.  Unfortunately, determining the influence of a VMB on 

transport in a credible manner is not trivial.  The variability in organism behavior (e.g. 

variability in typical migratory depths and periods; Rothlisberg, 1983; DiBacco et al., 2001; 

Carr et al., 2005) and spatial and temporal variability of marine currents mean that the 

influence of VMBs on transport must be quantified for a specific behavior at a specific 

location.  A few behaviors have been studied extensively in a few regions (e.g. DVM and 

OVM on Georges Bank, STST and DVM in the North Sea, and DVM along the California 

coast), but some regions (e.g. the South American coast) have received almost no study 

whatsoever.  Modeling studies of idealized behaviors can provide useful first-order estimates 

of the influence of VMBs on the transport in a region (e.g. Hill 1994; Carr et al., In review) 

but eventually need to be validated for specific locations because the transport predicted for 

idealized VMBs or VMBs observed in other locations can differ significantly from actual 

transport (Jenkins et al., 1999; Carr et al., 2005).  Ironically, field observations (e.g. Hench et 

al., 2004; Carr et al, 2004) have the greatest potential to advance modeling efforts because 

these observations are desperately needed to parameterize VMBs in models and validate 

model predictions. 
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Behavior Environment Influence on Transport References 
FTT Estuary or semi-enclosed 

bay with semi-diurnal tides 
Increased retention near 
starting locations 

Jacobsen et al., 1990 

 
ETT Estuary or semi-enclosed 

bay with semi-diurnal tides 
Down-estuary transport and 
export from estuary 

DiBacco et al., 2001; Carr et al., 
2005 

 
STST Continental shelf with semi-

diurnal tides 
Directed transport Arnold and Holford, 1995; 

deGraaf et al., 2004 
 
DVM Continental shelf or other 

coastal region with S2 semi-
diurnal tide 

Directed transport or 
retention depending on 
relative phases of DVM and 
tide 

Hill, 1994; Sentchev and 
Korotenko, 2004 

 Estuary, continental shelf, 
or other coastal region with 
M2 semi-diurnal tide 

Increased retention near 
starting locations 

Arnold and Holford, 1995; 
Luettich et al., 1998; Culberson 
et al., 2004 

 Continental shelf or other 
coastal region with diurnal 
tide 

Directed transport or 
retention depending on 
relative phases of DVM and 
tide 

Rothlisberg et al., 1983; Smith et 
al., 2001 

 Estuary, continental shelf, 
or other coastal region with 
estuarine 
circulation/buoyancy-driven 
currents 

Increased retention near 
starting locations 

Larson et al., 2003; Emsley et 
al., 2005 

 Continental shelf or other 
coastal region with wind-
driven surface Ekman layers 

Increased retention near 
starting locations 

Wroblewski, 1982,;Bucklin et 
al., 1989; Botsford et al., 1994; 
Hannah et al., 1998; Griffin et 
al., 2001; Batchelder et al., 
2002; Murphy et al., 2004; 
Hinrichsen et al., 2005; Carr et 
al., 2005 

  Little influence on transport Gallego et al., 1999 
 
OVM Estuary Increased retention near 

starting locations 
Jacobsen et al., 1990 

 Continental shelf or other 
coastal region with wind-
driven surface Ekman layers 

Increased retention near 
starting locations 

Stenevik et al., 2003; Paris and 
Cowen, 2004 

 
Table 5.4.  Summary of influence of VMBs on transport in marine environments.  
Environments characterized by multiple influences, e.g. semi-diurnal tides and buoyancy-
driven currents categorized by influence with greatest interaction with VMB.  All results are 
relative to the transport of passive or fixed-depth particles near the surface.  
 

Secondly, this synthesis demonstrates that coastal and marine resource managers need to 

account for the interactions between VMBs and currents before undertaking activities which 

affect current flow (e.g. building jetties, water diversions, or dredging) or zoning marine 
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areas for living marine resources (e.g. siting ballast water disposal or marine protected areas).  

For example, Culberson et al. (2004) showed that water diversions in the Suisin Marsh of 

San Francisco Bay may entrain relatively large numbers of DVM larvae and have a negative 

effect on larval recruitment, and Larson et al. (2003) showed that potentially invasive species 

might actually be retained near coastal habitats in a recommended ballast water discharge 

area because of the interaction of DVM and local circulation.  Carr et al. (2005) 

demonstrated that spawning sanctuaries for migratory female blue crabs in North Carolina 

inlets are likely to be too small because crabs will migrate quickly through the inlets using 

ETT.  And finally, many of the studies (e.g. Rothlisberg et al., 1983; Hinrichsen et al., 2005; 

Carr et al., In review) demonstrated that including VMBs in modeling studies will enable 

fisheries scientists and managers to assess the connectivity patterns and self-recruitment 

levels for fished stocks more accurately. 

 Modeling studies which integrate organismal behavior and development may also be able 

to help coastal and marine resource managers predict the effects of global climate change on 

living marine resources and the human activities that depend on them.  Recent studies have 

shown that changes in global temperature, and consequently oceanic temperatures and 

currents, are changing the geographic range, phenology (timing of seasonal activities such as 

migrations or spawning), and developmental rates of marine organisms, as well as, 

interactions between marine species (Beaugrand et al., 2002; Walther et al., 2002; Edwards 

and Richardson, 2004; Sims et al., 2004; Hays et al., 2005).  Retention near parental habitat 

and adaptation to local conditions have previously been assumed to benefit marine 

populations (Strathmann et al., 2002).  If VMBs are closely-timed adaptations to local 

conditions to promote retention, migratory, and/or recruitment success and organisms using 
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VMBs are unable to adapt these behaviors to their environments at the same rate that the 

environments themselves are changing, these behaviors may become a liability for the 

survival of marine populations (Walther et al., 2002). 
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