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Abstract

SARAH E. SHELTON: Mechanistic Modeling of Cancer Tumor Growth
Using a Porous Media Approach.

(Under the direction of William G. Gray.)

Cancer is a disease affecting millions of people each year; and researchers and clini-

cians are still looking for more effective ways to prevent, detect, and treat it. Recently,

mathematical modeling has emerged as a way to understand the process of tumor

growth. This work involves the development of a set of equations to mechanistically

represent a tumor at the macroscale, using a porous media approach. Model compo-

nents include 3 solid tissue phases (host, viable tumor, and necrotic tumor) and 2 fluid

phases (blood and extracellular fluid) that supply the cellular phases with nutrients re-

quired for growth. Growth and death processes are represented by mass transfer terms

which are dependent on local nutrient concentrations. Selected constitutive relations

are discussed and the form of the model adheres to the thermodynamically constrained

averaging theory approach.
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Chapter 1

Background

1.1 Cancer

Cancer is an incredibly complex disease, both in terms of its causes and effects on the

body. A number of genetic, biochemical and physiologic processes are involved in the

development of cancer, a process called carcinogenesis or oncogenesis. Clinically, can-

cer is so deadly because the cells have acquired the ability to proliferate (divide) at an

abnormally high rate, invade into surrounding tissue, and travel to distant sites in the

body and form new colonies of malignant cells (metastasis). Hanahan and Weinberg

have astutely summarized the characteristics common to malignant tumors as the 6

“Hallmarks of Cancer” in their landmark paper published in 2000 [38], and their recent

revision [39]. The six hallmarks of cancer include a variety of mechanisms that were

first observed in studies of genetic alterations. However, these hallmarks implicate a

number of biological pathways in which gene expression and the cell cycle can be in-

fluenced by the tumor microenvironment. Therefore, the hallmarks of cancer are not

only of interest to geneticists, but also to modelers able to simulate the microenviron-

mental conditions and thereby predict some aspects of tumor growth and development.

Furthermore, mechanical-chemical conditions may play important roles in determining



tumor morphology, invasion, and metastasis; and mathematical modeling can bring a

great deal of insight into these aspects. Over the years, the search for chemothera-

peutics that target some of the pathways commonly altered in cancer has produced a

number of novel drugs, but the efficacy of these drugs often is limited by their inefficient

transfer to the tumor cells. Currently, more research is being devoted to understand

the influence of the microenvironment on the tumor, and its ramifications on tumor

progression and chemotherapeutic delivery.

The six hallmarks are common among all malignant tumors, see figure 1.1 . These

characteristics were categorized as the most important cellular and genetic alterations

in malignancy. They do not have to arise in a certain order, but some orders are more

likely than others. For example, angiogenesis is normally induced before invasion and

metastasis are able to begin. These six traits give cancer cells a selective advantage

over normal cells which are restricted to normal tissue function and by fully-functional

cell cycle controls.

Figure 1.1: Hanahan and Weinberg’s hallmarks of cancer. [39]

Hanahan and Weinberg’s six hallmarks of cancer are [38, 39]:

Resisting cell death: Apoptosis (programmed cell death) is a normal cell activity

that can be triggered when a cell is damaged. Malignant cells have acquired the
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ability to avoid signaling for apoptosis or are able to ignore the apoptotic triggers.

Sustaining proliferative signaling: Proliferation in normal cells is controlled by the

careful production and release of growth factors and other signals. Malignant cells

may make excessive pro-proliferative signals and avoid normal negative-feedback

loops.

Evading growth suppressors: The genetics of normal cells include genes called tu-

mor suppressors that function to prevent the excessive growth that causes tumor

formation. One or more of these growth controls are inactivated cancer cells.

Inducing angiogenesis: Malignant cells have triggered the growth of new blood ves-

sels to supply their growth with nutrients and oxygen.

Enabling replicative immortality: Normal cells have finite lifespans that are lim-

ited to a certain number of cycles of growth and division. Cancer cells must

overcome this finite lifespan and become “immortal” to replicate sufficient times

to form a malignant neoplasm.

Activating invasion and metastasis: In order for cancer cells to invade and col-

onize distant organs (metastasize), the cells must escape the limitations that

normally keep cells restricted to their tissue of origin.

Acquiring the traits that define the hallmarks of cancer depends upon genetic al-

teration, usually by mutation. However the natural rate of mutation is slow because

the cell has so many checks and double-checks to prevent and correct alterations in

the genetic code. Furthermore, additional cellular systems normally recognize mistakes

that are unable to be repaired and prevent the cell from replicating the damaged DNA

and dividing into new cells. Therefore, genetic (including chromosomal) instability is

another key concept in cancer because a single mutation is generally not considered to
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be sufficient in the development of cancer. However, genetic instability can increase the

rate of mutation and thus can increase the chance that a cell that has acquired a few

of the hallmarks will acquire the remaining traits. However, since so many aspects of

normal cell function must be perturbed for a cell to become malignant, cancer develops

over many years. The natural rate of mutation is so slow that it is not statistically likely

that enough cancer-causing mutations will occur in a lifetime without an increase in

genetic instability that increases the rate of mutation. The time scale of carcinogenesis

in humans is on the order of decades, which is one reason why cancer is a disease of

the aged population.

Cancer progression can be broken into sequential steps based on the physical and

genetic alterations that accumulate over time. If we think of the genetic (also epigenetic

and proteomic) changes that are important in cancer, the development of cancer can be

broken into three stages: initiation, promotion, and progression. Initiation occurs when

a cell is exposed to some genotoxic agent. If the cell suffers heritable damage, that it

is not able to repair, it has the potential to become cancerous. Promotion refers to the

proliferative stimulation of the damaged cell or cells. Without promotion, the damaged

cells would remain quiescent and eventually apoptose, without passing on their genetic

damage to any daughter cells. Initiation and promotion can occur simultaneously, such

as from a single agent that induces both genetic damage and cellular proliferation.

They can also occur sequentially with promotion following initiation, but not in re-

verse, because it is necessary to replicate damaged DNA in order to develop cancer. If

promotion occurs without any initiation event, then a benign tumor may form from

the excessive growth, but it will not have the genetic alterations necessary to become

malignant without further initiation and promotion events. Progression occurs as the

abnormal cells grow, divide, and develop further genetic alterations eventually becom-

ing a neoplasm, known more commonly as a tumor. Over time, tumor cells with more
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mutations may gain a selective advantage, and so the phenotype of the cancer seems

to get more aggressive over time [46].

Malignant neoplasms do not spontaneously arise from normal cells, but come from

benign predecessors that have acquired new abilities to divide, invade, and metastasize.

A number of terms exist to categorize the severity of abnormal growth. These terms

refer to the physical, cellular abnormalities that are visible under a microscope. First,

hyperplasia comes from the Greek meaning excessive growth and refers to an increase

in cell number. Some cycles of hyperplasia are normal in certain tissues, but the term

can also apply to abnormal increases in cell proliferation. Alternatively, dysplasia is

abnormal growth, meaning that the cells are physically distinct from normal cells.

These cellular abnormalities include alterations in cell shape and size, ratios of nucleus

to cytoplasm, etc. A later stage of growth is called neoplasia, which is synonymous

with tumor and means “new growth”. A neoplasm may be benign, pre-cancerous, or

malignant. In fact, many cancers progress through these steps sequentially. However

exceptions exist, such as some benign tumors that never progress to malignant variants.

An intracompartmental neoplasia is confined to its normal tissue compartment and may

become malignant if it invades surrounding tissue compartments and then will be able

to metastasize to other locations in the body as well [45]. Indeed, the “capacity to

invade locally and to metastasize remains of greatest clinical significance, and is still

the fundamental definition of malignancy” [57].

Other than invasion and metastasis, cancer is characterized by uncontrolled growth.

Mutations can change the cellular growth rate in a number of ways that are seen in

the hallmarks of cancer, and each mutation can have a specific influence on cellular

activities and the cell cycle. Normally, the cell cycle (see Figure 1.2) is tightly controlled

by intra- and extracellular signals. In general, the cell cycle consists of division of one

cell into two (mitosis), the first stage of growth (gap 1), replication of DNA (synthesis),
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the second growth stage during which the cell has duplicate copies of DNA (gap 2).

Then the cell divides again, and the cycle restarts. There is also a phase outside the

proliferative cycle (G0).

Figure 1.2: Phases of the cell cycle.

During gap 1 the cell grows in size and prepares to move to the next phase. From

gap 1, the cell can continue on the proliferative track and enter the S phase or can exit

the proliferative cycle and transition to the G0 phase. Cells in gap 0 are quiescent or

senescent and do not continue on the cell cycle unless they receive a signal to proliferate.

The cells in G0 may be terminally differentiated or may have become senescent in

response to unrepairable DNA damage or other cellular damage. If a cell from G0

receives a proliferative stimulus, it may return to the cycle and reenter the G1 phase

again. Cells that pass the gap 1 checkpoint move on to the S phase and make copies

of their DNA, which is called DNA synthesis or replication. After DNA synthesis, cells

move on to the gap 2 phase. At this point they contain duplicate copies of DNA and

are preparing to begin mitosis. There is another cell cycle checkpoint in gap 2, before

cells proceed to the M phase and start the cycle again. A number of cell cycle control

molecules such as cyclins, cyclin dependent kinases, DNA damage sensors, and tumor
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suppressor genes determine if cells move from one phase to the next.

In cancer cells, some of this cellular machinery is damaged, deactivated, or overac-

tive, causing the cell to continuously cycle from one phase to the next, without regard to

normal cell cycle controls. This permanent cell cycling results in increased proliferation

and enhances genetic instability and abnormality as cells with significant DNA damage

are allowed to continue growing and dividing instead of being forced to apoptose or

into a state of senescence as occurs in normal cells.

From a modeling perspective, cancer can be broken into two distinct types: avascular

and vascular. Avascular tumors are small neoplasms, limited to 1-2 mm in size [40]

[42], that do not contain their own blood supply. In general, avascular tumors are

spheroidal in shape and contain large necrotic cores surrounded by a quiescent region

and a thin rim of proliferating cells on the surface. They derive their nutrition from the

diffusion of nutrients from the nearby vasculature of healthy tissue. Avascular tumors

are limited in size because of insufficient delivery of nutrients and may develop necrotic

regions where the tumor tissue is beyond the reach of diffusing nutrients and oxygen.

Tumor cells must be within 200 µm of a vessel to be viable [40] and hypoxia is usually

designated at a shorter distance, such as 120 µm from vasculature [8]. Avascular tumors

are largely undetectable and asymptomatic. However, avascular tumors readily become

more dangerous vascular tumors through the process of angiogenesis.

Angiogenesis is the creation of new capillaries from existing vasculature. One may

imagine the process as a tree (the existing vasculature) growing new branches (the new

vessels). Angiogenesis is such an important feature of malignancy that it is one of the

hallmarks of cancer [38], [39], see Figure 1.1. Angiogenesis is influenced by a number of

biochemical signaling molecules, the archetypal one being vascular endothelial growth

factor (VEGF). VEGF and other other pro-angiogenic molecules are produced when

tissues are exposed to hypoxia or become necrotic, making angiogenesis a reaction to
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the hypoxia and necrosis experienced by avascular tumors as they reach their size limit.

Neovasculature, the new network of blood vessels, is very different in tumors than

the mature vasculature of healthy tissues. The new vasculature is immature and mor-

phologically distinct from normal vasculature in multiple ways. Tumor neovasculature

is “leakier”, meaning that it is more permeable and allows more and larger molecules

to extravasate. There is evidence that tumor vasculature has altered cell-surface pro-

tein expression that may be therapeutically targetable [46]. It also grows chaotically,

leading to the formation of highly tortuous vessels and many dead-end vessels.

A vascular tumor is one that has “switched on” angiogenesis, thus increasing its

supply of oxygen and nutrients. Therefore, vascular tumors can grow to much larger

sizes than avascular tumors because they are able to increase their nutrient supply to

meet the metabolic needs of increasing numbers of tumor cells. The incorporation of

vasculature into tumor tissue also presents the opportunity for metastasis through the

circulatory system if tumor cells cross the vessel wall and enter into the blood stream.

It is of great importance to be able to model vasculature tumors because it is this type

of tumor that is of clinical significance and greater danger to the patient.

1.2 Tumor Modeling Approaches

Over the last decade, an increasing amount of interest and research devoted to math-

ematical modeling of tumor growth has developed. A number of review papers have

cataloged the evolution of these models. See the following selection of reviews for an

excellent overview.

Araujo and McElwain (2004) A history of the study of solid tumour growth: The

contribution of mathematical modelling. [3]

Quaranta et al. (2005) Mathematical modeling of cancer: The future of prognosis
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and treatment. [62]

Roose et al. (2007) Mathematical models of avascular tumor growth. [64]

Lowengrub et al. (2010) Nonlinear modelling of cancer: bridging the gap between

cells and tumours. [50]

Deisboeck et al. (2010) Multiscale cancer modeling. [19]

In general, tumor models can be divided into three categories: discrete, continuum

and hybrid. Since tumor growth inherently involves the actions (growth, death, move-

ment) of individual cells, the most intuitive type of model is a discrete model that treats

each cell individually. In a discrete model the interactions between cells are modeled

explicitly. However, this approach becomes unworkable when overwhelmed by the sheer

number of cells needed to form a tumor and the surrounding tissue. Small tumors, vis-

ible with X-rays, have on the order of 108 cells, and palpable tumors have at least 109

cells [45]. While a discrete model may have utility in studying the growth of small,

nascent tumors and some other cell-specific cancer processes, such as cell-cell adhesion

and motility, metastasis, and angiogenesis, it is impractical for modeling tumors of this

size and complexity that are of clinical interest.

Continuum models, on the other hand, do not treat cells individually, but as av-

eraged populations. Continuum tumor models are based on the fields of continuum

mechanics and on porous media or mixture theory, which will be discussed more fully

in the following section. Hybrid models are a varied group that incorporate differ-

ent aspects of discrete and continuum models, depending on the problem of interest.

Hybrid models are sometimes misleadingly referred to as multiscale models because

they incorporate the small scale interactions of individuals cells and larger tissue-scale

effects as well. In this case, the description as “multiscale” does not imply mathemat-

ical connection of scales through the use of rigorous averaging theorems as it does for
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the thermodynamically constrained averaging theory approach. See Figure 1.3 for a

comparison of discrete and continuum tumor models.

Figure 1.3: Comparison of discrete and continuum approaches to tumor modeling.

1.3 Continuum, Multiphase Models

Multiphase, porous medium models are conceptually based in continuum mechanics,

meaning that interactions among different portions of the mass are accounted for in an
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average sense. The field of continuum mechanics has been applied, in an environmen-

tal context, to single phase systems, such as rivers and lakes, but also to multiphase

systems, for example oil and gas flow through a rock matrix. Multiphase models are

based on the fundamental conservation laws of mass, momentum, and energy, and

employ a number of different methods to supplement the conservation equations with

constitutive relations to close the system of equations.

The smallest scale at which the continuum hypothesis holds is called the microscale

or pore scale. At the microscale, a single (continuum) point contains a large number of

molecules such that properties like density, temperature, and pressure of a phase are all

defined. A single point contains only one phase, so at every location in the domain, the

type and state of the phase occupying that location is known. It is at the microscale

that well-known, classical conservation equations and thermodynamic expressions are

written. However, many problems of interest are too large to solve at the microscale,

or the microscale equations require variables (such as velocities) at a resolution that is

too small to be observed or measured. Thus, many multiphase, porous media models

are formulated at a larger scale, called the macroscale [56].

The macroscale depends on the concept of the representative elementary volume,

or REV, a volume large enough to include all phases present and such that values

of averages are independent of the size of the REV. The volume must also be much

smaller than the length scale of the entire system (known as the megascale), so that

quantities such as gradients are meaningful. Thermodynamically constrained averaging

theory (TCAT) uses averaging theorems to formally and consistently convert microscale

equations to the larger macroscale. These averaging theorems convert averages of

microscale derivatives into derivatives of macroscale averages and are similar to the

well known transport and divergence theorems [32].
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Model formulation begins with identifying the system entities that must be ex-

plicitly modeled and then deriving the conservation equations for those entities. Multi-

phase systems must account for entities including interfaces (intersection of two phases),

common curves (intersection of three phases), and common points (intersection of four

phases) in addition to the standard phase equations. There are also averaging theorems

for translating these different entities and different equations from one length scale to

another [31].

Additional information is needed to reach a system of equations that is solvable,

and this process is known as closure. Closure can be obtained by a variety of methods

including simplification of the conservation equations and the addition of approximation

equations. The TCAT approach produces conservation equations at the macroscale

by formally averaging microscale equations up to the larger scale. This provides the

appropriate conservation equations for mass, momentum, and energy that must be

supplemented by expressions that describe reaction rates, growth and death rates,

mass transfer across permeable interfaces, and mechanical parameters characteristic of

the solids and fluids. The balance of entropy and thermodynamic equations are also

employed to constrain the system of equations. These supplemental expressions are

called constitutive relations and lead to a well-defined and complete set of equations

that can be solved to describe tumor evolution. The complete set of equations must be

solved numerically to model various scenarios of tumor growth impacted by nutrient

supply, proposed therapies, and variability of parameters.

The multiphase approach can be applied to tumors to account for the behavior of

fluids and tissue in an average sense. At the macroscale, the averaging length scale

would be large enough to encompass millions of cells but small enough that variability

of properties across the tumor would be simulated. This averaged approach eliminates

the need to know the exact locations of each phase, interface, and flow path, thus
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increasing the size of the region that can be modeled.

1.4 A Brief History of Cancer Tumor Models

Early models of solid tumor growth focused on understanding the growth rate of cancer.

Tumors tend to follow a Gompertzian growth pattern in which growth begins slowly,

speeds up rapidly, and then decays as the population reaches a plateau. The Gompertz

equation was developed to describe human mortality, but was applied to tumor growth

curves by A.E. Casey in 1934 [12]. It is distinct from a logistic growth equation because

it is not symmetric [69]. In Gompertzian growth, the initial increase in growth rate is

nearly exponential and occurs more rapidly than the subsequent decline. Gompertzian

tumor growth remains a popular equation for expressing the growth rate over the

lifetime of in vivo and in vitro tumors [37], [5].

Many of the early tumor models considered spherical morphologies for the simplicity

inherent in one-dimensional calculations. These models did not distinguish themselves

as representing avascular or vascular tumors, but simply as a conglomeration of cancer

cells. Beginning in the 1960’s, these early models are best described as population

models that track cell number. Researchers were looking for answers to how and why

different tumors grow at different rates and why a single tumor grows at different rates

over its lifetime. In 1966 Burton modeled proliferation based on oxygen distribution

in a spherical tumor and found that the ratio of the radii of the low-oxygen inner

core to the well-oxygenated rim supported the exponential retardation phase of the

Gompertzian growth curve [10]. This result led Burton to conclude that tumor growth

is a diffusion problem. Since Burton, and others after him, used diffusion from the

exterior as the only source of nutrients, their models are conceptually equivalent, albeit

less computationally sophisticated, to later avascular tumor models. Burton’s work

echoes an earlier mathematical model by Thomlinson and Gray [68] relating diffusion
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to tumor heterogeneity measured histologically.

Subsequent models inspired by the simplicity of Burton’s model sought to explore

other hypotheses related to growth controls. Some examined cellular death due to

apoptosis, necrosis, or both. Other early researchers sought to understand the late-stage

growth retardation as the result of a temporally variable mitotic rate. The year 1972

saw Greenspan separate the cellular phase into proliferative, quiescent, and necrotic

compartments [36]. Also during the 1970’s Liotta and Saidel expanded upon Burton’s

diffusion model and other population models to examine invasion and metastasis [47].

They based tumor expansion on diffusion equations and coupled the proliferation of

malignant tumor cells and vascular endothelial cells using Michaelis-Menten reaction

kinetics [25]. Their model assumed the tumor was growing in an infinite region of host

tissue, such that tissue compression was assumed negligible. Additionally, Liotta et al.

developed a stochastic model predicting the probability of the formation of metastases

[49].

Early multiphase tumor models emerged in the late 1990’s. These early multiphase

models tended to include two phases, a cellular phase and a water phase surrounding

and “bathing” the cells in nutrients. Please et al.’s “A new approach to modelling the

formation of necrotic regions in tumours” [61] is a good example of an early multiphase

model, inspired by earlier population models . They incorporated cells and extracellular

water as incompressible phases. Oxygen concentration regulated cellular proliferation,

and necrosis was triggered by intracellular pressure above that of the water phase. Their

model exhibited exponential growth that transitioned to linear growth, mimicking the

form of the Gompertzian growth curve. Later versions of models based on a similar

system description also included other mechanisms such as necrosis, hydrodynamic

drag, viscid cellular phase, attraction and repulsion between individual cells.
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During the 1990’s, more modelers and experimentalists started investigating me-

chanical effects on the growth of tumors. In 1997 Helmlinger et al. demonstrated in

vitro that solid stress has an inhibitory effect on tumor growth [41]. They cultured

avascular tumors on agarose gels of varying stiffness and noticed that stiffer substrates

resulted in smaller tumors. After a few years, avascular tumor models began incorporat-

ing mechanical stress. Jones et al. [44] developed a model that tracked the mechanical

stress that developed due to tumor growth. They did not, however, make the cellular

proliferation rate dependent upon local stress. They observed that the cells near the

boundary, which are highly proliferative, are under compression and the cells near the

center of the tumor, which tend to be necrotic or quiescent, are under tension.

Ward and King published a series of well-known studies of avascular tumor growth in

the late 1990’s and early 2000’s [70–74]. In their model, cellular proliferation increases

volume and cell death decreases volume. They based their proliferation equation on

earlier examples that had used the Michaelis-Menten form, and they used the concen-

tration of a “generic nutrient” to sustain proliferation. Ward and King were interested

specifically in the velocity field that develops due to cellular rearrangement induced

by proliferation and necrosis. The long-time numerical solutions showed either steady

state or linear growth, depending on model parameters.

In 2002 Breward et al. developed a two-phase continuum model of avascular tumor

growth based on conservation of mass and momentum with oxygen dependent growth

and death terms. In the model, tumor volume increased in order to reduce pressure

within the tumor. The cellular phases were represented as viscous fluids with viscosity

depending on the degree of differentiation of the cells. More differentiated cells were

described as more viscous and poorly differentiated cells as less viscous. Interestingly,

they observed that their simulations of well-differentiated (viscous) tumors grew more

slowly than their poorly-differentiated (less viscous) counterparts. A year later, the
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same three researchers improved upon their model by adding blood vessels as a third

phase.

The 2003 model by Breward et al. does not take vessel morphology (tortuosity,

diameter, or blood flow rate) into account, but calculates mass transfer from the vessel

from the age of the vessel. Younger vessels are assumed to be more fenestrated, or more

“leaky”, with a higher rate of mass transfer than more mature vessels. The model also

allows for vessel collapse due to excess pressure. Angiogenesis is followed explicitly and

is dependent upon the volume fractions of the tumor cells and the blood vessels. The

angiogenic growth rate is highest where the tumor volume fraction is small, meaning

that the rate of angiogenesis is highest at the boundary of the tumor and decreases

toward the center. The local oxygen concentrations are not calculated using a diffusion

equation, but instead are based on the number of blood vessels in the region and their

maturity. Cellular growth and death are based on functions of the blood vessel volume

fraction, stratified by age. The phases were treated as viscous fluids, and conservation

of momentum utilized Darcy-style drag terms. This model exhibited high and rising

interstitial and oncotic pressure, both of which had been observed experimentally by

other researchers [9], [67], [48].

Also during 2003 Byrne and Preziosi published a multiphase model using mixture

theory [11]. This model contains a solid cellular phase and an extracellular fluid phase.

A novel feature is the dependence of the proliferation rate upon cellular stress, rather

than on nutrient concentration alone. Thus, the steady-state tumor size may be reached

because of nutrient deficiency or because of excess mechanical stress. Some of their

assumptions, which are used widely in tumor modeling, include incompressibility of

the phases, slow flow such that inertial forces are neglected, and a fully saturated,

homogeneous porous medium. The constitutive form of the conservation of momentum

equation took the form of an extension of Darcy’s law for a deformable porous medium.
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Darcy’s law, and generalizations of it, are the most common form of closure for the

momentum equation.

Darcy’s law for a deformable porous material according to Byrne and Preziosi [11]:

εl
(
vl − vc

)
= − k

µ̂ (1− γ)
∇P (1.1)

In this equation, l stands for the liquid phase and c stands for the cellular phase. The

constant k is the permeability coefficient and µ̂ is the viscosity. The constant γ is a

correction term to generalize Darcy’s law to deformable porous media. It is a dimen-

sionless parameter based on the inter-phase mass transfer and an arbitrary constant

that they note will be extremely small because the momentum transfer associated with

phase change (which will be denoted as vα
κ→α
M here) will be negligible compared to the

effects of drag.

Since 2000, there have been a many publications of hybrid models focusing on

different aspects of tumor growth, development and invasion. A number of of these

models have come out of the collaborations between Anderson [1, 4, 26–28, 53, 54, 62,

63], Chaplain [2, 13–15, 53, 54, 59, 63], Cristini [7, 16–19, 21–23, 50, 53, 60, 65, 66, 75–

77], Frieboes [7, 16, 21–24, 50, 60, 65, 66, 75], Lowengrub [17, 18, 23, 24, 50–53, 75, 76],

Macklin [24, 50–53], and Wise [7, 18, 23, 24, 50, 75–77].

Many of these models are based on mixture theory and contain diffuse interfaces

to replace the narrow transition layers that arise at the tumor/host interface due to

differential adhesive forces among the cell species. If the diffuse interlayer thickness

can be considered negligible, the system reduces to the classical sharp interface model.

“Computer simulation of glioma growth and morphology” by Frieboes et al. (2007)

[24] is one such representative model. Conservation equations for mass, momentum,

and energy were employed to describe the movement of macroscale units they named

“functional collective cell-migration units” (FCCMU’s). Being grounded in mixture
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theory instead of porous media, they do not have the construct of a macroscale REV,

so they had the need to create a macroscale unit of volume. Some of their model

parameters were informed by histology measurements, but they did not undertake

experiments to determine all constitutive parameters. A few parameters determined

experimentally were the glioma mitotic rate (1 day−1), apoptotic rate (0.32 day−1),

and the diffusion penetration distance (100µm, previously measured in [17]). They

based the rate of nutrient release from to the vasculature on the age of the vasculature

and the solid pressure in the tissue. The simulations show cyclic patterns of growth

associated with the build up of pressure, followed by necrosis and pressure relief. They

also found that the tumor boundary moves at 50-100µm/week, leading to the growth

of tumor mass equivalent to a sphere with a 5cm diameter in one year.

The model of Wise et al., (2008) [75] is based on Frieboes et al. (2007) [24] and

is formed of fourth order reaction-diffusion equations and constitutive laws for fluxes

and velocities (generalized Fick’s law and generalized Darcy’s law). The energy equa-

tions takes adhesion and thermodynamics into account. The model assumes phases

of constant density, fully saturated porous media, and treats the tumors as viscous,

intertia-less fluids. The model incorporates two species of tumor tissue (a viable tumor

cell phase and a dead tumor cell phase) and the other phases in contact with the tumor

(a water phase and a host tissue phase). This mixture theory model is a diffuse inter-

face model that accounts only for an interface at the boundary of the tumor where it is

in contact with the healthy tissue. The numerical solution uses an adaptive, non-linear

multigrid, finite difference method in two or three spatial dimensions.

The model of Oden et al., (2010) [58] considers solid phases undergoing large elas-

tic deformations and compressible, non-Newtonian, viscous fluids. Thermal effects

and heat transfer are also accounted for in the model. Again, a diffuse interface,

Cahn-Hilliard-type equation is employed in accounting for interactions between phases.
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Oden’s model includes a number of inconsistencies that he seems to have inherited from

similar models. For example, there is confusion between phases and constituents of

phases (which are called species here). There are also inconsistencies in his equations,

such as a illogical flux, the validity of which Oden himself questions in the text, but

he keeps it because it was inherited from previously published models. These types of

artificial terms have been added over the years of tumor model development because

the mathematics have been developed on an ad hoc basis. In the next chapters, this

confusion will be avoided as equations are carefully derived to represent the different

phases in the system.

1.5 Thermodynamically Constrained Averaging The-

ory (TCAT)

Thermodynamically constrained averaging theory provides a rigorous yet flexible method

for developing multiphase, continuum models at any scale of interest. Many natural

and engineered systems are characteristically multiphase, meaning that two or more

fluid and solid phases occupy a shared domain. Some examples of systems where mul-

tiphase modeling is useful are groundwater flow, fuel cells, and petroleum reservoirs.

More recently, biological tissues have been added to this list. These systems share the

need for model development at the macroscale in order to represent a system of relevant

size.

Other multiphase models posit conservation equations directly at the macroscale,

which does not ensure any meaningful connection to the microscale. However, when

using the TCAT approach macroscale variables are precisely defined by the averag-

ing theorems. With consistent, rigorous, and precisely defined variables, there is no

chance of inconsistent variable definitions among equations. Another benefit is that
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the macroscale variables maintain a clear connection to their microscale counterparts.

Models that postulate conservation or constitutive equations directly at the macroscale

run the risk of inaccurately accounting for the microscale physics or naming variables

with no clear definition or physical meaning. Clear variable definitions, which are inher-

ent to TCAT, are vital to the ability to observe and experimentally measure macroscale

parameters.

After derivation of the appropriate conservation equations, the model still contains

more variables than equations and thus must be closed through the formulation of

constitutive relations. Many existing models reach closure through ad hoc selection or

formulation of equations, but TCAT employs thermodynamics to close the system of

equations instead. An entropy inequality and thermodynamic expression are developed

and averaged to the macroscale to supplement the conservation equations. It is impor-

tant to note that the field of thermodynamics involves systems that are at equilibrium,

but we are dealing with dynamic systems undergoing changes in space and time. There-

fore, the classical irreversible thermodynamics (CIT) approach has been used in TCAT

because it includes the concept of local equilibrium which assumes that the system can

be broken down into subsystems that can be considered to be at equilibrium [32].

Another benefit of TCAT is that model development proceeds systematically, and

closure approximations are inserted near the end of the formulation. Therefore, there

is an obvious path back to the exact (unclosed) system if closure approximations are

deemed to be insufficient and need to be re-hypothesized. Other models that are for-

mulated without this systematic procedure may not be modified as easily or logically.

The TCAT approach consists of the following steps (Gray and Miller, 2005)[32]:

• an entropy inequality (EI) expression for the entire system of concern is generated;

• an appropriate set of mass, momentum, and energy conservation equations is
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formulated at the desired scale for all relevant entities (volumes, areas, common

curves, and common points) based upon clearly defined averages of microscale

quantities;

• an appropriate microscale thermodynamic theory is averaged up to the desired

scale, and differential forms of internal energy dependence for spatial and tempo-

ral derivatives are generated;

• the EI is augmented using the products of Lagrange multipliers with conservation

equations and with differential, consistent-scale thermodynamic equations;

• the set of Lagrange multipliers is determined to select the combination of con-

servation equations that describes the physics of interest and to eliminate time

derivatives from the augmented EI producing the constrained EI;

• geometric identities and approximations are applied to the constrained EI to

eliminate additional remaining time derivatives as needed;

• the resultant simplified EI is used to guide the formulation of general forms of

closure approximations consistent with the second law of thermodynamics;

• microscale and macroscale modeling and experimentation are used to advance

appropriate forms of closure relations.

Readers with more interest in TCAT are directed to a series of papers by Gray and

Miller [29, 30, 32–35, 43, 55, 56].
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Chapter 2

Model Description

2.1 The Model Domain

The domain of this model consists of five phases: two fluid and three solid. One fluid

phase is intravascular fluid, or blood, and the second is the interstitial fluid. Throughout

this document the blood phase will be denoted by the letter b and interstitial fluid will

be denoted by the letter f . Blood flows through the vasculature (arteries, arterioles,

capillaries, venules, and veins) that supply the tissues in the domain region. The cells

that make up the vascular walls are not included in the model, only the volume of blood

occupying the luminal space of the blood vessels. The vasculature can be thought of

as network of pliable, permeable pipes that stay fixed in space. Through the process

of angiogenesis, new vasculature grows by branching off existing vasculature, initiated

by biochemical signaling molecules such as vascular endothelial growth factor (VEGF).

Blood itself is a mixture of plasma, red blood cells, white blood cells, platelets, etc.,

but here it will be treated as a single fluid that contains a dissolved chemical species

i. Plasma makes up about 55% of blood volume and the cellular components make up

the remaining 45% [53]. Blood is a non-Newtonian, shear thinning fluid meaning that

its dynamic viscosity is high at small shear stress and decreases as velocity increases



[20].

The blood vessels exist to supply all the metabolic needs of the cells of the body

and assist the lymphatic system in removing waste products. The somatic cells grow

in densely packed arrangements, surrounded by fluid and extra-cellular matrix. The

extravascular (outside the blood vessels) fluid is often called interstitial fluid or extra-

cellular fluid and it occupies space (the pore space) called the interstitium or interstitial

space. The interstitial fluid allows dissolved species to travel between the vasculature

and the cells, and provides a medium for intercellular signaling molecules to travel

between nearby cells. The interstitial fluid is very different from the blood in compo-

sition. The interstitial fluid is composed primarily of water and is often assumed to be

incompressible and/or inviscid.

The cells maintain tissue integrity by cell to cell contact, and the extracellular matrix

acts as a scaffolding system to give the tissue more structure and rigidity. In this model,

the cellular and extracellular matrix components of the tissue will be treated as a single

solid phase. Three solid tissues of this model are named depending on the type of cell

each phase is made of: normal host tissue (h); viable tumor tissue able to proliferate

(p); or necrotic tumor tissue (n).

Figure 2.1 shows the phases included in this model, but is not meant to represent

the shape or organization of the domain. It is meant as an aid in visualizing the fluid

phases and solid phases occupying shared regions in space. As seen in this figure,

the intravascular phase appears as a network surrounded by interstitial fluid. Each

of the solid phases can be described as porous media and are interspersed with the

fluid phases. Normal host tissue is distinct from the tumor tissue, genetically and

morphologically. Normal cells cannot become cancer cells and vice versa. The tumor

grows by clonal expansion and regions of necrosis occur where tumor cells are at a

sufficient distance from vasculature that they do not receive sufficient nutrition. The
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Figure 2.1: Phases represented in this model.

necrotic phase grows by the conversion of viable tumor solid to necrotic solid due to

nutrient or oxygen deprivation. The functional form of this nutrient dependency will be

discussed in Chapter 4. Figure 2.1 is a crude rendering of the model phases and is not

drawn to scale. It represents just one of many possible tumor morphologies. Avascular

tumors tend to grow spherically, but the vascular blood phase does not occupy the

domain shared by the tumor tissue in this type of tumor. The necrotic core develops

because the tumor receives its nutrition via diffusion from the outside in, and once the

tumor radius is larger than the diffusion distance (200 µm on average [40]) necrosis

occurs beyond this distance from the outer rim.

Vascular tumors are those that have initiated angiogenesis to grow new capillary

vessels, originating from the pre-existing vasculature in the normal tissue and branching

toward the tumor. Eventually the new capillaries perfuse the tumor tissue, supplying
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it with nutrients so that it can grow larger than the maximum size of an avascular

tumor. Vascular tumors have initiated the growth of their own blood vessels, but the

rate of proliferation often outstrips the rate of new blood vessel growth (angiogenesis),

such that necroses develop in regions beyond the diffusion limited distance from any

vasculature.

2.2 Initial Hypotheses and Assumptions

The process of specifying constitutive equations to close a mathematical model involves

the careful formulation of a number of assumptions to mold the problem into a tractable

set of equations. It is these assumptions that are made at the late stage of model

formulation that often involve the greatest conceptual leaps and gross simplifications.

It is important to take note of all assumptions made during the process of formulating

the model so that the validity of the assumptions can be weighed if the model results

do not behave as expected. It is in this stage that TCAT excels because the exact

equations are kept as long as possible and assumptions implied by closure relations

are explicitly discussed. However there is another set of assumptions or hypotheses

that are equally important but often overlooked. These assumptions are those that

are necessary to develop the model from the beginning- the conceptual framework that

guides the manner in which the mathematical equations are formulated.

First, this model is multiphase in nature. Multiphase models are based upon the

theory of continua with multiple interacting components called phases. Phases can be

solid or fluid (including liquid and gas) and can be composed of a single constituent or

multiple constituents called species. Conservation laws can be written for phases and

for the individual species contained therein. The sum over all species must equal the

phase equation. Not only can we write equations for three-dimensional phases, but also

for lower dimensional regions, such as interfaces (two-dimensional) and common curves
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(one-dimensional). All of these regions are collectively called entities. A macroscale

point may contain any number of entities, depending on the system of interest.

Since this is a macroscale model, we are making the assumption that a represen-

tative elementary volume (REV) exists and that the separation of length scales allows

deterministic (exact) macroscale modeling using the averaging operators detailed at

length in the following chapter. The clinical counterpart of the REV is the voxel, or

volumetric pixel. A voxel is the smallest unit of resolution in a medical image, such as

one created using magnetic resonance imaging (MRI). A voxel is a three-dimensional

point in space that is associated with one or more measurements, such as signal inten-

sity. Because of the resolution of the imaging modalities like MRI, the physical space

represented by a single voxel incorporates a great number of cells, making the value

associated with the voxel a volume average over all the cells and other components in

the location of the voxel. The size of a voxel and an REV may not correspond, but

the usefulness of information offered by a voxel in a tumor image implies that volume

averaged quantites are useful in describing tumor morphology. Hence, it is also reason-

able to assume that a macroscale model that make use of an REV will also be able to

provide useful infomation.

Furthermore this model utilizes classical irreversible thermodynamics (CIT) to rep-

resent the thermodynamics of the system. Thermodynamic relations are needed to

constrain the model using the TCAT approach and the current formulation of TCAT

employs CIT, but is flexible and could be revised to reflect an alternative theory of

thermodynamics. The remaining assumptions will be discussed, as needed, during the

derivations that follow.
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Chapter 3

Derivation of General Equations

3.1 Introduction to Conservation Equations

Mechanistic models are based upon the universal physical laws of conservation of mass,

momentum, and energy. These are extensive quantities, meaning that they are addi-

tive, in contrast to intesive properties such as temperature and pressure, which do not

combine additively. What will be done here is to introduce the most general form of

the equations and then gradually work towards more specific formulations. First, the

conceptual form of the conservation equation:

0 = (Accumulation Rate) + (Net Outward Advection)− (Body Sources)

− (Non-Advective Surface Sources)− (Generation Rate) . (3.1)

Since continuum mechanics uses differential equations to write conservation equa-

tions equation (3.1) is a rate equation. In this conceptual equation, accumulation

represents the amount of the quantity (mass, momentum, energy) that is gained or lost

over a set period of time. Advection refers to the the rate at which material crosses

the boundary of the domain of interest due to the mean rate of the entity velocity.

Since the conservation equations arbitrarily define advection as being in the outward



direction, a positive value denotes material that leaves the domain and and negative

value refers to material that enters the domain. Body sources act on the entire material

in the domain, not solely on the boundary. On the other hand, non-advective surface

sources are sources that act on the boundary. The rate of generation term accounts

for material created within the domain. (A negative generation term would therefore

account for material destroyed within the domain). Therefore, we can write conserva-

tion equations for single species that interact with one another, or for an entire phase,

which may be composed of any number of species.

With these concepts in place, one can express the general conservation equation in

mathematical form. The most general mathematical form of the equation we will call

the “integral” form for obvious reasons. It can be written in vector form and non-vector

form.

Non-Vector General Integral Conservation Equation:

0 =
d

dt

∫
Ω

f dr +

∫
Γ

f (v −w) ·n dr−
∫
Ω

fB dr−
∫
Γ

fN dr−
∫
Ω

fG dr (3.2)

Vector General Integral Conservation Equation

0 =
d

dt

∫
Ω

f dr +

∫
Γ

f (v −w) ·n dr−
∫
Ω

fB dr−
∫
Γ

fN dr−
∫
Ω

fG dr (3.3)

In these general equations, the capital omega (Ω) stands for the entire domain

and the capital gamma (Γ) stands for the boundary of the domain. The script r, as

in dr, stands for the region and can be used to denote a volume, surface, or curve.

Note that the accumulation, body source, and generation terms are integrated over the

domain, while the advective and non-advective surface sources are integrated over the

boundary of the domain. A boldface font indicates vector quantities. In the second
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term of the equation, v and w are both vector quantities of velocity. The velocity of

the material in question is v, while the velocity of the boundary of the domain is w.

Therefore the domain is allowed to translate and only a difference in velocity between

the material and the domain in the direction perpendicular to the boundary (hence the

·n) accounts for advective flux. The subscripts B, N, and G stand for Body sources,

Non-advective surface sources, and Generation, respectively. These terms must be

specified individually, based on the problem at hand.

One can also write the integral or megascale form of the general conservation equa-

tion for a species within a phase. The letter i is used to represent the species of interest,

within the phase α.

General Integral Conservation Equation for a Species in a Phase:

0 =
d

dt

∫
Ω

fiα dr +

∫
Γ

fiα (viα −wα) ·nα dr−
∫
Ω

fBiα dr−
∫
Γ

fNiα dr−
∫
Ω

fGiα dr (3.4)

To go to the next level of specificity, one can use a variety of derivative forms using

theorems like the well known divergence and transport theorems.

Divergence Theorem: ∫
Ω

∇·f dr =

∫
Γ

n·f dr (3.5)

Transport Theorem:

d

dt

∫
Ω

f dr =

∫
Ω

∂f

∂t
dr +

∫
Γ

(w·n) f dr (3.6)

It is useful to note that these are not the only theorems that can be used to localize

the integral form of the equation to the microscale. There exist other theorems for
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localization which can convert the integral equation to equations of reduced dimen-

sionality, where the equation is averaged over one or two dimension and varies along

the remaining dimensions. Thus, it may be useful to state that the transport and

divergence theorems are used to localize the integral/megascale form of the equation

to the microscale that varies in three dimensions. Now that the terms microscale and

megascale have been introduced, a discussion of length scales is warranted.

3.2 Translating Length Scales

By utilizing the divergence theorem (3.5) and transport theorem (3.6) on equation

(3.4), we get the microscale point form of the species conservation equation:

∂fiα
∂t

+∇· (fiαviα)− fBiα −∇·fNiα − fGiα = 0 (3.7)

The microscale equations are the classical form of the conservation equations in contin-

uum mechanics. However, since it is often desirable to produce models at the macroscale

TCAT employs a number of averaging theorems. These averaging theorems are listed

in Miller and Gray (2005), [56]. The averaging operator has the following definition.

〈Pi〉Ωj ,Ωk,w =

∫
Ωj

wP1 dr∫
Ωk

w dr
(3.8)

The angle brackets on the left side of equation (3.8) is called the averaging operator

and will be used frequently in subsequent derivations. The averaging operator always

has two or three subscripts following it. The first indicates the domain over which the

property P is averaged; this is in the numerator of the right hand side of the equation.

The second subscript is the averaging domain in the denominator of the right hand
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side. The third and final subscript is an optional weight applied to the numerator and

denominator. If the third subscript of an averaging operator is absent then the weight

is one. For clarity, microscale quantities will be represented with a subscript phase

qualifier. Macroscale variable receive a superscript. The superscript can be unadorned

to signify an intrinsic average, topped with a single over-line to denote a mass-averaged

quantity, or can receive a double over-line to indicate that the macroscale quantity has

a unique definition that must be provided.

Intrinsic Average: 〈fα〉Ωα,Ωα =

∫
Ωα

fα dr∫
Ωα

dr
= fα (3.9)

Mass Average: 〈fα〉Ωα,Ωα,ρα =

∫
Ωα

ραfα dr∫
Ωα

ρα dr
= fα (3.10)

In the following derivation, phases will be indicated by a single Greek letter, such as

α. The letter kappa (κ) will be reserved to denote a set of interfaces connected to a

particular phase.

3.3 Mass

The microscale conservation of mass equation for the generic phase α consists of two

terms: the accumulation term and the net outward flux of mass from phase α to other

entities.

Mα =
∂ρα
∂t

+∇·(vαρα) = 0 (3.11)

The microscale form of the equation (Mα) can be manipulated to find the macroscale

form of the equation (Mα) by employing the averaging operators discussed in section
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3.2.

Mα = 〈Mα〉Ωα,Ω = 0 (3.12)

Mα =

〈
∂ρα
∂t

+∇·(vαρα)

〉
Ωα,Ω

(3.13)

The averaging operator may be split across sums of terms.

Mα =

〈
∂ρα
∂t

〉
Ωα,Ω

+ 〈∇·(vαρα)〉Ωα,Ω (3.14)

To evaluate the first term, the intrinsic average of microscale mass density, we need the

three dimensional transport averaging theorem, T[3,(3,0),0]:

〈
∂fα
∂t

〉
Ωα,Ω

=
∂

∂t
〈fα〉Ωα,Ω −

∑
κ∈Icα

〈nα·vκfα〉Ωκ,Ω (3.15)

Thus, the derivative of the microscale density is averaged according to theorem

T[3,(3,0),0)].

〈
∂ρα
∂t

〉
Ωα,Ω

=
∂

∂t
〈ρα〉Ωα,Ω −

∑
κ∈Icα

〈nα·vκρα〉Ωκ,Ω (3.16)

Leading to:

〈
∂ρα
∂t

〉
Ωα,Ω

=
∂(εαρα)

∂t
−
∑
κ∈Icα

〈nα·vκρα〉Ωκ,Ω (3.17)

Since the second term of (3.11) contains a divergence within an averaging operator,
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one needs to use the three dimensional divergence averaging theorem, (D[3,(3,0),0]):

〈∇·fα〉Ωα,Ω = ∇·〈fα〉Ωα,Ω +
∑
κ∈Icα

〈nα·fα〉Ωκ,Ω (3.18)

Applying this theorem to the divergence term of the mass equation, one gets the fol-

lowing.

〈∇· (vαρα)〉Ωα,Ω = ∇·〈vαρα〉Ωα,Ω +
∑
κ∈Icα

〈nα·vαρα〉Ωκ,Ω (3.19)

Now evaluate the averaging operator of the first term on the right side of (3.19).

∇·〈vαρα〉Ωα,Ω = ∇·
(
〈vα〉Ωα,Ωα,ρα〈ρα〉Ωα,Ωα〈1〉Ωα,Ω

)
= ∇·

(
vαραεα

)
(3.20)

Now combine the terms from (3.11) and (3.19) left in the averaging operator:

∑
κ∈Icα

〈nα·vαρα〉Ωκ,Ω −
∑
κ∈Icα

〈nα·vκρα〉Ωκ,Ω =
∑
κ∈Icα

〈ραnα· (vα − vκ)〉Ωκ,Ω (3.21)

The mass transfer between the κ interface and the α phase is defined as follows:

κ→α
M = 〈ραnα· (vκ − vα)〉Ωκ,Ω (3.22)

This gets substituted for the interface terms.

∑
κ∈Icα

〈ραnα· (vα − vκ)〉Ωκ,Ω = −
κ→α
M (3.23)
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Now recombine all macroscale quantities to form the equation for macroscale conser-

vation of mass for a phase.

Mα =
∂(εαρα)

∂t
+∇·

(
vαραεα

)
−

κ→α
M = 0 (3.24)

3.4 Momentum

The microscale conservation of momentum equation for a phase can be written as:

Pα =
∂(ραvα)

∂t
+∇· (ραvαvα)−∇·tα − ραgα = 0 (3.25)

From left to right, these terms represent the accumulation, net outward flux, non-

advective surface sources, and body sources of momentum. The variables ρα and vα

were introduced as density and velocity in the derivation of mass section, and this equa-

tion also includes tα, which is the stress tensor, and gα which is the gravity vector. The

macroscale conservation equation of momentum equation can be derived by applying

the averging operator to the microscale equation, expressed as:

Pα = 〈Pα〉Ωα,Ω (3.26)

The averaging operator can be applied to each term individually.

〈Pα〉Ωα,Ω =

〈
∂(ραvα)

∂t

〉
Ωα,Ω

+ 〈∇· (ραvαvα)〉Ωα,Ω

− 〈∇·tα〉Ωα,Ω − 〈ραgα〉Ωα,Ω = 0 (3.27)

Beginning with the first term in equation (3.27) this derivation will evaluate the av-

eraging operator. Since there is a partial derivative term within the averaging operator,
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one will need to apply the vector form of theorem T[3,(3,0),0].

T[3,(3,0),0]:

〈
∂fα
∂t

〉
Ωα,Ω

=
∂

∂t
〈fα〉Ωα,Ω −

∑
κ∈Icα

〈nα·vκfα〉Ωκ,Ω (3.28)

Applying T[3,(3,0),0] to the derivative term gives:

〈
∂(ραvα)

∂t

〉
Ωα,Ω

=
∂

∂t
〈ραvα〉Ωα,Ω −

∑
κ∈Icα

〈nα·vκραvα〉Ωκ,Ω (3.29)

The term 〈ραvα〉Ωα,Ω can be evaluated as:

〈ραvα〉Ωα,Ω = 〈1〉Ωα,Ω〈ρα〉Ωα,Ωα〈vα〉Ωα,Ωα,ρα = εαραvα (3.30)

Therefore the derivative term term may be written as:

〈
∂(ραvα)

∂t

〉
Ωα,Ω

=
∂(εαραvα)

∂t
−
∑
κ∈Icα

〈nα·vκραvα〉Ωκ,Ω (3.31)

Next is the evaluation of the second term of equation (3.27). Since there is a divergence

operator within the averaging operator, apply theorem D[3,(3,0),0]:

〈∇·fα〉Ωα,Ω = ∇·〈fα〉Ωα,Ω +
∑
κ∈Icα

〈nα·fα〉Ωκ,Ω (3.32)

Applying this theorem to the divergence term leads to:

〈∇· (ραvαvα)〉Ωα,Ω = ∇·〈ραvαvα〉Ωα,Ω +
∑
κ∈Icα

〈nα·ραvαvα〉Ωκ,Ω (3.33)

The product of velocities cannot be assessed conveniently. Instead, add and subtract
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the macroscale velocity (vα).

〈ραvαvα〉Ωα,Ω =
〈
ρα
[
vα + (vα − vα))(vα + (vα − vα)

]〉
Ωα,Ω

=
〈
ραv

αvα + ρα(vα − vα)(vα − vα)
〉

Ωα,Ω
(3.34)

The averaging operator can be applied to the first part of Equation(3.34):

〈1〉Ωα,Ω〈ρα〉Ωα,Ωαv
αvα = εαραvαvα (3.35)

Thus the definition of 〈ραvαvα〉Ωα,Ω can be written as:

〈ραvαvα〉Ωα,Ω = ∇·
(
εαραvαvα

)
+∇·

〈
ρα(vα − vα)(vα − vα)

〉
Ωα,Ω

(3.36)

Therefore the second term of (3.27) term may be written as:

〈∇· (ραvαvα)〉Ωα,Ω = ∇·
(
εαραvαvα

)
+∇·

〈
ρα(vα − vα)(vα − vα)

〉
Ωα,Ω

+
∑
κ∈Icα

〈nα·ραvαvα〉Ωκ,Ω (3.37)

The third term in Equation (3.27) also contains a divergence within the averaging

operator, so one needs to apply theorem D[3,(3,0),0]

− 〈∇·tα〉Ωα,Ω = −∇·〈tα〉Ωα,Ω −
∑
κ∈Icα

〈nα·tα〉Ωκ,Ω (3.38)

The second term in equation (3.37) can be added to this equation.

−
〈
∇·tα

〉
Ωα,Ω

+∇·
〈
ρα(vα − vα)(vα − vα)

〉
Ωα,Ω

=

−∇·〈tα〉Ωα,Ω +∇·
〈
ρα(vα − vα)(vα − vα)

〉
Ωα,Ω
−
∑
κ∈Icα

〈nα·tα〉Ωκ,Ω (3.39)
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The macroscale stress tensor is defined as tα = 〈tα − ρα(vα − vα)(vα − vα)〉Ωα,Ωα .

Therefore:

−∇·〈tα〉Ωα,Ω +∇·
〈
ρα(vα − vα)(vα − vα)

〉
Ωα,Ω

= −∇·
(
εαtα

)
(3.40)

Thus, the terms remaining from averaging the third (non-advective surface source) term

of eq. (3.27) are as follows.

−〈∇·tα〉Ωα,Ω +∇·
〈
ρα(vα − vα)(vα − vα)

〉
Ωα,Ω

= −∇·
(
εαtα

)
−
∑
κ∈Icα

〈nα·tα〉Ωκ,Ω (3.41)

The fourth term of equation (3.27) can be evaluated as:

〈ραgα〉Ωα,Ω = 〈1〉Ωα,Ω〈ρα〉Ωα,Ωα〈gα〉Ωα,Ωα = εαραgα (3.42)

Combining all the terms, the macroscale conservation of momentum equation for a

phase can be expressed as:

∂(εαραvα)

∂t
+∇·

(
εαραvαvα

)
−∇·(εαtα)− εαραgα

−
∑
κ∈Icα

〈nα·vκραvα〉Ωκ,Ω +
∑
κ∈Icα

〈nα·ραvαvα〉Ωκ,Ω −
∑
κ∈Icα

〈nα·tα〉Ωκ,Ω = 0 (3.43)

or

∂(εαραvα)

∂t
+∇·

(
εαραvαvα

)
−∇·(εαtα)− εαραgα

−
∑
κ∈Icα

〈nα·(vκραvα − ραvαvα + tα)〉Ωκ,Ω = 0 (3.44)

Expanding the boundary term of the macroscale conservation of momentum equation
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for a phase by substituting in vα + (vα − vα) for two of the vα terms gives:

∑
κ∈Icα

〈nα·(vκραvα − ραvαvα + tα)〉Ωκ,Ω =

∑
κ∈Icα

〈
nα·(vκρα(vα + (vα − vα))− ρα(vα + (vα − vα))vα + tα)

〉
Ωκ,Ω

(3.45)

Further expansion gives:

∑
κ∈Icα

〈nα·(vκραvα − ραvαvα + tα)〉Ωκ,Ω =

∑
κ∈Icα

〈
nα·(vκραvα + vκρα(vα − vα)− ραvαvα + ρα(vα − vα)vα + tα)

〉
Ωκ,Ω

(3.46)

Combining like terms and simplifying yields:

∑
κ∈Icα

〈nα·(vκραvα − ραvαvα + tα)〉Ωκ,Ω =

∑
κ∈Icα

〈
nα·(ρα(vκ − vα)vα + ρα(vα − vα)(vκ − vα) + tα)

〉
Ωκ,Ω

(3.47)

By definition:

κ→α
M = 〈nα·ρα(vκ − vα)〉Ωκ,Ω (3.48)

The interphase momentum transfer due to mechanical effects can also be defined, as

follows.

κ→α
T =

〈
nα·(ρα(vα − vα)(vκ − vα) + tα)

〉
Ωκ,Ω

(3.49)

Substituting these definitions into the boundary term defined by (3.47) one obtains the
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following.

∑
κ∈Icα

〈nα·(vκραvα − ραvαvα + tα)〉Ωκ,Ω =
∑
κ∈Icα

(
vα

κ→α
M +

κ→α
T

)
(3.50)

Therefore the macroscale conservation of momentum equation for a phase may be

expressed as:

∂(εαραvα)

∂t
+∇·

(
εαραvαvα

)
−∇·(εαtα)− εαραgα −

∑
κ∈Icα

(
vα

κ→α
M +

κ→α
T

)
= 0 (3.51)

3.5 Total Energy

The microscale conservation of energy equation for a phase containing one species can

be written as:

Eα =
∂ETα
∂t

+∇· (ETαvα − qα − tα·vα)− hα − ρα
∂ψα
∂t

= 0 (3.52)

where ETα is the total energy and is given by:

ETα =
1

2
ραvα·vα + ραψα + Eα (3.53)

Eα is the internal energy and ψα is the gravitational potential. The macroscale energy

can be obtained by averaging the microscale equation

Eα = 〈Eα〉Ωα,Ω (3.54)

Begin by applying the averaging operator to each term of the microscale equation.

〈Eα〉Ωα,Ω =

〈
∂ETα
∂t

〉
Ωα,Ω
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+ 〈∇· (ETαvα − qα − tα·vα)〉Ωα,Ω −
〈
hα + ρα

∂ψα
∂t

〉
Ωα,Ω

= 0 (3.55)

Beginning with the first term in equation (3.55) the averaging operator will be eval-

uated. Since there is a partial derivative term within the averaging operator, apply

theorem (T[3,(3,0),0]).

〈
∂

∂t

(
1

2
ραvα·vα + ραψα + Eα

)〉
Ωα,Ω

=

∂

∂t

〈
1

2
ραvα·vα + ραψα + Eα

〉
Ωα,Ω

−
∑
κ∈Icα

〈nα·vκETα〉Ωκ,Ω (3.56)

The averaging for the internal energy and the gravitational potential can be evaluated

as:

〈Eα〉Ωα,Ω = Eα (3.57)

〈ραψα〉Ωα,Ω = εαραψα (3.58)

The kinetic energy term can be evaluated by adding and subtracting vα:

〈
1

2
ραvα·vα

〉
Ωα,Ω

=

〈
1

2
ρα
[
vα +

(
vα − vα

)]
·
[
vα +

(
vα − vα

)]〉
Ωα,Ω

(3.59)

Expanding the term on the right gives:

〈
1

2
ρα
[
vα +

(
vα − vα

)]
·
[
vα +

(
vα − vα

)]〉
Ωα,Ω

=

〈
1

2
ραv

α·vα
〉

Ωα,Ω

+
〈
ρα
[
vα·(vα − vα)

]〉
Ωα,Ω

+

〈
1

2
ρα(vα − vα)·(vα − vα)

〉
Ωα,Ω

(3.60)
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The product of macroscale velocity term is easiest to evaluate.

〈
1

2
ραv

α·vα
〉

Ωα,Ω

=
1

2
ραεαvα·vα (3.61)

The second term on the right side of (3.60) evaluates to zero.

〈
ρα
[
vα·(vα − vα)

]〉
Ωα,Ω

= 0 (3.62)

The third term on the right side of (3.60) can be defined as kinetic energy due to

microscale variations in velocity.

〈ρα
2

(vα − vα)·(vα − vα)
〉

Ωα,Ω
= ραεαKα

E (3.63)

Now substituting the evaluated terms back into (3.55)

〈Eα〉Ωα,Ω =
∂

∂t

(
1

2
ραεαvα·vα + ραεαψα + Eα + ραεαKα

E

)
−
∑
κ∈Icα

〈nα·vκETα〉Ωκ,Ω + 〈∇· (ETαvα − qα − tα·vα)〉Ωα,Ω

−
〈
hα + ρα

∂ψα
∂t

〉
Ωα,Ω

= 0 (3.64)

Note that,

Eα
T =

1

2
ραεαvα·vα + ραεαψα + Eα + ραεαKα

E (3.65)

Evaluate the divergence terms of (3.64) by applying the averging theorem D[3,(3,0),0]

〈∇· (ETαvα − qα − tα·vα)〉Ωα,Ω

= ∇·〈ETαvα − qα − tα·vα〉Ωα,Ω
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+
∑
κ∈Icα

〈nα·(ETαvα − qα − tα·vα)〉Ωκ,Ω (3.66)

Looking at the terms inside the averaging operator, there are products of microscale

variables that cannot be directly evaluated, therefore requiring use of expansions similar

to that used for the kinetic energy term in the partial derivative.

∇·〈ETαvα − qα − tα·vα〉Ωα,Ω

= ∇·
〈[

Eα
T

ραεα
+

(
ETα
ρα
− Eα

T

ραεα

)]
ρα
[
vα +

(
vα − vα

)]〉
Ωα,Ω

−∇·
〈
qα + tα·[vα + (vα − vα)]

〉
Ωα,Ω

(3.67)

The energy terms can be distributed through and each term separated.

∇·〈ETαvα − qα − tα·vα〉Ωα,Ω =

∇·
〈
Eα
T

ραεα
ραv

α

〉
Ωα,Ω

+∇·
〈
Eα
T

ραεα
ρα
(
vα − vα

)〉
Ωα,Ω

+∇·
〈(

ETα
ρα
− Eα

T

ραεα

)
ραv

α

〉
Ωα,Ω

+∇·
〈(

ETα
ρα
− Eα

T

ραεα

)
ρα
(
vα − vα

)〉
Ωα,Ω

−∇·
〈
qα + tα·[vα + (vα − vα)]

〉
Ωα,Ω

(3.68)

Evaluate terms in (3.68) as follows, noting that macroscale variables can be taken out

of averaging operators.

∇·
〈
Eα
T

ραεα
ραv

α

〉
Ωα,Ω

= ∇·
(
Eα
Tvα

ραεα
〈ρα〉Ωα,Ω

)
= ∇·

(
Eα
Tvα

)
(3.69)

∇·
〈
Eα
T

ραεα
ρα
(
vα − vα

)〉
Ωα,Ω

= ∇·
(
Eα
T

ραεα
〈ραvα〉Ωα,Ω

)
−∇·

(
Eα
Tvα

ραεα
〈ρα〉Ωα,Ω

)
(3.70)
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This term evaluates to zero because the averaged microscale velocity and the macroscale

velocity cancel.

∇·
〈
Eα
T

ραεα
ρα
(
vα − vα

)〉
Ωα,Ω

= ∇·
(
Eα
Tvα

)
−∇·

(
Eα
Tvα

)
= 0 (3.71)

Following the same procedure as above, the third term on the right side of (3.68) also

evaluates to zero.

∇·
〈(

ETα
ρα
− Eα

T

ραεα

)
ραv

α

〉
Ωα,Ω

= 0 (3.72)

Therefore, after evaluation, equation (3.68) becomes the following.

∇·〈ETαvα − qα − tα·vα〉Ωα,Ω = ∇·
(
Eα
Tvα

)
+∇·

〈(
ETα
ρα
− Eα

T

ραεα

)
ρα
(
vα − vα

)〉
Ωα,Ω

−∇·
〈
qα + tα·[vα + (vα − vα)]

〉
Ωα,Ω

(3.73)

Substitute the definitions of ETα and Eα
T into the second term on the right side of (3.73)

to obtain:

∇·
〈(

ETα
ρα
− Eα

T

ραεα

)
ρα
(
vα − vα

)〉
Ωα,Ω

= ∇·
〈(

Eα
ρα

+
vα·vα

2
+ ψα

)
ρα
(
vα − vα

)〉
Ωα,Ω

−∇·
〈(

Eα

εαρα
+

vα·vα

2
+Kα

E + ψα

)
ρα
(
vα − vα

)〉
Ωα,Ω

(3.74)
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The same technique of adding and subtracting macroscale quantities will be used to

expand the microscale velocities.

∇·
〈(

ETα
ρα
− Eα

T

ραεα

)
ρα
(
vα − vα

)〉
Ωα,Ω

= ∇·
〈(

Eα
ρα

+
[vα + (vα − vα)]·[vα + (vα − vα)]

2
+ ψα

)
ρα
(
vα − vα

)〉
Ωα,Ω

−∇·
〈(

Eα

εαρα
+

vα·vα

2
+Kα

E + ψα

)
ρα
(
vα − vα

)〉
Ωα,Ω

(3.75)

Expand the product of velocity to separate the terms.

∇·
〈(

ETα
ρα
− Eα

T

ραεα

)
ρα
(
vα − vα

)〉
Ωα,Ω

= ∇·
〈(

Eα
ρα

+
vα·vα

2
+ vα·(vα − vα) +

(vα − vα)·(vα − vα)

2
+ ψα

)
ρα
(
vα − vα

)〉
Ωα,Ω

−∇·
〈(

Eα

εαρα
+

vα·vα

2
+Kα

E + ψα

)
ρα
(
vα − vα

)〉
Ωα,Ω

(3.76)

The vα·vα
2

terms cancel.

∇·
〈(

ETα
ρα
− Eα

T

ραεα

)
ρα
(
vα − vα

)〉
Ωα,Ω

= ∇·
〈(

Eα
ρα

+ vα·(vα − vα) +
(vα − vα)·(vα − vα)

2
+ ψα

)
ρα
(
vα − vα

)〉
Ωα,Ω

−∇·
〈(

Eα

εαρα
+Kα

E + ψα

)
ρα
(
vα − vα

)〉
Ωα,Ω

(3.77)

Substitute (3.77) into (3.73).

∇·〈ETαvα − qα − tα·vα〉Ωα,Ω = ∇·
(
Eα
Tvα

)
+∇·

〈(
Eα
ρα

+ vα·(vα − vα) +
(vα − vα)·(vα − vα)

2
+ ψα

)
ρα
(
vα − vα

)〉
Ωα,Ω
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−∇·
〈(

Eα

εαρα
+Kα

E + ψα

)
ρα
(
vα − vα

)〉
Ωα,Ω

−∇·
〈
qα + tα·[vα + (vα − vα)]

〉
Ωα,Ω

(3.78)

Rearrange (3.78) to isolate the macroscale form of the stress tensor,

tα = 〈tα − ρα (vα − vα) (vα − vα)〉Ωα,Ωα .

∇·〈ETαvα − qα − tα·vα〉Ωα,Ω = ∇·
(
Eα
Tvα

)
−∇·

〈[
tα − ρα(vα − vα)(vα − vα)

]
·vα
〉

Ωα,Ω

−∇·
〈
qα + tα·(vα − vα)

〉
Ωα,Ω

+∇·
〈(

Eα
ρα
− Eα

εαρα
−Kα

E

)
ρα(vα − vα)

〉
Ωα,Ω

+∇·
〈

(vα − vα)·(vα − vα)

2
ρα
(
vα − vα

)〉
Ωα,Ω

+∇·
〈
ρα
(
ψα − ψα

) (
vα − vα

)〉
Ωα,Ω

(3.79)

Define the macroscale heat flux vector.

qα =
〈
qα + tα·(vα − vα)

〉
Ωα,Ωα

+

〈(
Eα
ρα
− Eα

εαρα
−Kα

E

)
ρα(vα − vα)

〉
Ωα,Ωα

+

〈
(vα − vα)·(vα − vα)

2
ρα
(
vα − vα

)〉
Ωα,Ωα

(3.80)

Applying these definitions to (3.79) yields

∇·〈ETαvα − qα − tα·vα〉Ωα,Ω = ∇·
(
Eα
Tvα − εαtα·vα − εαqα

)
+∇·

〈
ρα
(
ψα − ψα

) (
vα − vα

)〉
Ωα,Ω

(3.81)
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Substituting (3.81) plus the boundary terms into (3.64) gives

〈Eα〉Ωα,Ω =
∂Eα

T

∂t
+∇·

(
Eα
Tvα − εαtαvα − εαqα

)
−
∑
κ∈Icα

〈nα·vκETα〉Ωκ,Ω

+
∑
κ∈Icα

〈nα·(ETαvα − qα − tα·vα)〉Ωκ,Ω −
〈
hα + ρα

∂ψα
∂t

〉
Ωα,Ω

+∇·
〈
ρα
(
ψα − ψα

) (
vα − vα

)〉
Ωα,Ω

(3.82)

Define:

εαhα = 〈hα〉Ωα,Ω (3.83)

To obtain:

〈Eα〉Ωα,Ω =
∂Eα

T

∂t
+∇·

(
Eα
Tvα − εαtαvα − εαqα

)
−
∑
κ∈Icα

〈nα·vκETα〉Ωκ,Ω

+
∑
κ∈Icα

〈nα·(ETαvα − qα − tα·vα)〉Ωκ,Ω − ε
αhα −

〈
ρα
∂ψα
∂t

〉
Ωα,Ω

+∇·
〈
ρα
(
ψα − ψα

) (
vα − vα

)〉
Ωα,Ω

(3.84)

The boundary terms can be combined.

∑
κ∈Icα

〈nα· [ETα(vα − vκ)− qα − tα·vα]〉Ωκ,Ω (3.85)

Expand using the method used previously, with the macroscale quantities averaged

over the interface: vκα and Eκ
Tα.

∑
κ∈Icα

〈nα· [ETα(vα − vκ)− qα − tα·vα]〉Ωκ,Ω =
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∑
κ∈Icα

〈
nα·

[
Eκ
Tα

εαρκα
+

(
ETα
ρα
− Eκ

Tα

εκρκα

)] [
ρα(vα − vκ)− qα − tα·

(
vκα + vα − vκα

)]〉
Ωκ,Ω

(3.86)

Define a mass exchange term between the κ interface and the α phase.

κ→α
M = 〈nα·ρα(vκ − vα)〉Ωκ,Ω (3.87)

and substitute into (3.86).

∑
κ∈Icα

〈nα· [ETα(vα − vκ)− qα − tα·vα]〉Ωκ,Ω =

−
∑
κ∈Icα

Eκ
Tα

εκρκα

κ→α
M

+
∑
κ∈Icα

〈
nα·

(
ETα
ρα
− Eκ

Tα

εκρκα

)
ρα (vα − vκ)− qα − tα·

[
vκα +

(
vα − vκα

)]〉
Ωκ,Ω

(3.88)

Use the interface average of total energy in the expansion of the boundary terms.

Eκ
Tα is derived as follows:

Eκ
Tα = 〈ETα〉Ωκ,Ω (3.89)

=

〈
Eα +

1

2
ραvα·vα + ραψα

〉
Ωκ,Ω

(3.90)

= Eκ
α +

〈
1

2
ραvα·vα

〉
Ωκ,Ω

+ εκρκαψ
κ
α (3.91)

= Eκ
α +

〈
1

2
ρα
(
vκα + vα − vκα

)
·
(
vκα + vα − vκα

)〉
Ωκ,Ω

+ εκρκαψ
κ
α (3.92)

= Eκ
α + εκρκαψ

κ
α +

〈
1

2
ραv

κ
α·vκα

〉
Ωκ,Ω

+
〈
ραv

κ
α·
(
vα − vκα

)〉
Ωκ,Ω

+

〈
1

2
ρα
(
vα − vκα

)
·
(
vα − vκα

)〉
Ωκ,Ω

(3.93)
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= Eκ
α + εαρκαψ

κ
α + ρκαε

κvκα·vκα
2

+
〈
ραv

κ
α·
(
vα − vκα

)〉
Ωκ,Ω

+

〈
1

2
ρα
(
vα − vκα

)
·
(
vα − vκα

)〉
Ωκ,Ω

(3.94)

The term 〈ραvκα· (vα − vκα)〉Ωκ,Ω drops out as shown below:

〈
ραv

κ
α·
(
vα − vκα

)〉
Ωκ,Ω

= vκα·
〈
ρα
(
vα − vκα

)〉
Ωκ,Ω

(3.95)

= vκα·〈ραvα〉Ωκ,Ω − vκα·vκα〈ρα〉Ωκ,Ω (3.96)

= vκα·vκαρκαεκ − vκα·vκαρκαεκ (3.97)

= 0 (3.98)

The term
〈

1
2
ρα (vα − vκα) · (vα − vκα)

〉
Ωκ,Ω

is defined as,

〈
1

2
ρα
(
vα − vκα

)
·
(
vα − vκα

)〉
Ωκ,Ω

= ρκαε
κKκ

Eα (3.99)

Thus leaving the following definition of Eκ
Tα:

Eκ
Tα = Eκ

α +
1

2
ρκαε

κvκα·vκα + εκρκαψ
κ
α + εκρκαK

κ
Eα (3.100)

The definitions for the micro- and macroscale total energies, ETα and Eκ
Tα, can be

substituted:

∑
κ∈Icα

〈nα· [ETα(vα − vκ)− qα − tα·vα]〉Ωκ,Ω = −
∑
κ∈Icα

Eκ
Tα

εκρκα

κ→α
M

+
∑
κ∈Icα

〈
nα·

[(
Eα
ρα

+
vα·vα

2
+ ψα

)
ρα (vα − vκ)

]〉
Ωκ,Ω

−
∑
κ∈Icα

〈
nα·

[(
Eκ
α

εκρκα
+

vκα·vκα
2

+ ψκ +Kκ
Eα

)
ρα (vα − vκ)

]〉
Ωκ,Ω
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−
∑
κ∈Icα

〈
nα·

[
qα + tα·

(
vκα + vα − vκα

)]〉
Ωκ,Ω

(3.101)

Further expand the microscale velocity dot product vα·vα
2

by adding and subtracting

vκα.

∑
κ∈Icα

〈nα· [ETα(vα − vκ)− qα − tα·vα]〉Ωκ,Ω = −
∑
κ∈Icα

Eκ
Tα

εκρκα

κ→α
M

+
∑
κ∈Icα

〈
nα·

[(
Eα
ρα

+
(vκα + vα − vκα) · (vκα + vα − vκα)

2
+ ψα

)
ρα (vα − vκ)

]〉
Ωκ,Ω

−
∑
κ∈Icα

〈
nα·

[(
Eκ
α

εκρκα
+

vκα·vκα
2

+ ψκ +Kκ
Eα

)
ρα (vα − vκ)

]〉
Ωκ,Ω

−
∑
κ∈Icα

〈
nα·

[
qα + tα·

(
vκα + vα − vκα

)]〉
Ωκ,Ω

(3.102)

Rearrange.

∑
κ∈Icα

〈nα· [ETα (vα − vκ)− qα − tα·vα]〉Ωκ,Ω = −
∑
κ∈Icα

Eκ
Tα

εκρκα

κ→α
M

+
∑
κ∈Icα

〈
nα·

[(
Eα
ρα

+ ψα +
vκα·vκα

2
+ vκα·

(
vα − vκα

))
ρα (vα − vκ)

]〉
Ωκ,Ω

+
∑
κ∈Icα

〈
nα·

[(
(vα − vκα) · (vα − vκα)

2

)
ρα (vα − vκ)

]〉
Ωκ,Ω

−
∑
κ∈Icα

〈
nα·

[(
Eκ
α

εκρκα
+

vκα·vκα
2

+Kκ
Eα + ψκα

)
ρα (vα − vκ)

]〉
Ωκ,Ω

−
∑
κ∈Icα

〈
nα·

[
qα + tα·

(
vκα + vα − vκα

)]〉
Ωκ,Ω

(3.103)

The vκα·vκα
2

terms cancel, leaving:

∑
κ∈Icα

〈nα· [ETα (vα − vκ)− qα − tα·vα]〉Ωκ,Ω =
∑
κ∈Icα

Eκ
Tα

εκρκα

κ→α
M
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+
∑
κ∈Icα

〈
nα·

[(
Eα
ρα

+ ψα + vκα·
(
vα − vκα

))
ρα (vα − vκ)

]〉
Ωκ,Ω

+
∑
κ∈Icα

〈
nα·

[(
(vα − vκα) · (vα − vκα)

2

)
ρα (vα − vκ)

]〉
Ωκ,Ω

−
∑
κ∈Icα

〈
nα·

[(
Eκ
α

εκρκα
+Kκ

Eα + ψκα

)
ρα (vα − vκ)

]〉
Ωκ,Ω

−
∑
κ∈Icα

〈
nα·

[
qα + tα·

(
vκα + vα − vκα

)]〉
Ωκ,Ω

(3.104)

Group terms dotted with the macroscale velocity vκα and remember the term for the

transfer of momentum from the κ interface to the α phase.

κ→α
T =

〈
nα·

[
ρα
(
vα − vκα

)
(vκ − vα) + tα

]〉
Ωκ,Ω

(3.105)

Subsitituting this definition into the above, we obtain

∑
κ∈Icα

〈nα· [ETα (vα − vκ)− qα − tα·vα]〉Ωκ,Ω = −
∑
κ∈Icα

Eκ
Tα

κ→α
M −

∑
κ∈Icα

vκα·
κ→α
T

+
∑
κ∈Icα

〈
nα·

[(
Eα
ρα

+ ψα +
(vα − vκα) · (vα − vκα)

2

)
ρα (vα − vκ)

]〉
Ωκ,Ω

−
∑
κ∈Icα

〈
nα·

[(
Eκ
α

εκρκα
+ ψκα +Kκ

Eα

)
ρα (vα − vκ)

]〉
Ωκ,Ω

−
∑
κ∈Icα

〈
nα·

[
qα + tα·

[
(vα − vκα)

]]〉
Ωκ,Ω

(3.106)

Define a heat transfer term.

κ→α
Q =〈

nα·
[(

Eα
ρα
− Eκ

α

εκρκα
+

(vα − vκα) · (vα − vκα)

2
−Kκ

Eα

)
ρα (vα − vκ)

]〉
Ωκ,Ω

−
〈
nα·

[
qα + tα·

(
vα − vκα

)]〉
Ωκ,Ω

(3.107)
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Now substituting this into (3.106) gives:

∑
κ∈Icα

〈nα· [ETα(vα − vκ)− qα − tα·vα]〉Ωκ,Ω

=
∑
κ∈Icα

[
Eκ
Tα

εαρκα

κ→α
M + vκα·

κ→α
T +

κ→α
Q

]

+
∑
κ∈Icα

〈
nαρα·

(
ψα − ψκα

)
(vα − vκ)

〉
Ωκ,Ω

(3.108)

Reassemble the various parts of the macroscale total energy equation [(3.84), (3.108)]

to obtain:

Eα =
∂Eα

T

∂t
+∇·

(
Eα
Tvα − εαtα·vα − εαqα

)
− εαhα −

〈
ρα
∂ψα
∂t

〉
Ωα,Ω

−
∑
κ∈Icα

[
Eκ
Tα

εαρκα

κ→α
M + vκα·

κ→α
T +

κ→α
Q

]

+
∑
κ∈Icα

〈
nαρα·

(
ψα − ψκα

)
(vα − vκ)

〉
Ωκ,Ω

+∇·
〈
ρα
(
ψα − ψα

) (
vα − vα

)〉
Ωα,Ω

= 0 (3.109)

Or with the total energy expanded,

Eα =
∂
(
Eα + 1

2
εαραvα·vα + εαραψα + εαραKα

E

)
∂t

+∇·
[(
Eα +

1

2
εαραvα·vα + εαραψα + εαραKα

E

)
vα − εαtα·vα − εαqα

]
− εαhα −

〈
ρα
∂ψα
∂t

〉
Ωα,Ω

−
∑
κ∈Icα

[(
1

2
vκα·vκα + ψκα +

Eκ
α

εκρκα
+Kκ

Eα

)
κ→α
M + vκα

κ→α
T +

κ→α
Q

]

+
∑
κ∈Icα

〈
nαρα·

(
ψα − ψκα

)
(vα − vκ)

〉
Ωκ,Ω
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+∇·
〈
ρα
(
ψα − ψα

) (
vα − vα

)〉
Ωα,Ω

= 0 (3.110)

3.6 Entropy

Microscale balance of entropy for a phase.

∂ηα
∂t

+∇·(vαηα)− bα −∇·ϕα = Λα (3.111)

Average the microscale balance of entropy equation by applying the averaging operator

to each term.

〈
∂ηα
∂t

〉
Ωα,Ω

+ 〈∇·(vαηα)〉Ωα,Ω − 〈bα〉Ωα,Ω − 〈∇·ϕα〉Ωα,Ω = 〈Λα〉Ωα,Ω (3.112)

For ease in manipulation, each term will be evaluated separately.

Use T[3,(3,0),0] to remove the derivative from the averaging operator from the first

term of (3.112).

〈
∂ηα
∂t

〉
Ωα,Ω

=
∂

∂t
〈ηα〉Ωα,Ω −

∑
κ∈Icα

〈nα·vκηα〉Ωκ,Ω (3.113)

=
∂ηα

∂t
−
∑
κ∈Icα

〈nα·vκηα〉Ωκ,Ω (3.114)

(3.115)

The boundary term in averaging operator form for manipulation later.

Use D[3,(3,0),0] to remove the divergence from inside the averaging operator in the
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second term of (3.112).

〈∇· (vαηα)〉Ωα,Ω = ∇·〈vαηα〉Ωα,Ω +
∑
κ∈Icα

〈nα·vαηα〉Ωκ,Ω (3.116)

Since the average of velocity and entropy per volume cannot be evaluated directly, it

is manipulated further by adding and subtracting vα.

∇·〈vαηα〉Ωα,Ω = ∇·〈ηα[vα + (vα − vα)]〉Ωα,Ω (3.117)

∇·〈vαηα〉Ωα,Ω +∇·〈ηα(vα − vα)〉Ωα,Ω = ∇·vαηα +∇·〈ηα(vα − vα)〉Ωα,Ω (3.118)

Leave the second term of (3.116) to be combined with other boundary terms.

The third term of (3.112) can be evaluated directly.

−〈b〉Ωα,Ω = −εαbα (3.119)

For the fourth term of (3.112), theorem D[3,(3,0),0] is needed again.

−〈∇·ϕα〉Ωα,Ω = −∇·〈ϕα〉Ωα,Ω −
∑
κ∈Icα

〈nα·ϕα〉Ωκ,Ω (3.120)

Add the boundary term from (3.116) to ϕα, according to the definition:

ϕα = 〈ϕα〉Ωα,Ωα −
∑
κ∈Icα

〈nα·vαηα〉Ωα,Ωα (3.121)

Therefore

−〈∇·ϕα〉Ωα,Ω +
∑
κ∈Icα

〈nα·vαηα〉Ωα,Ωα = −∇·ϕα −
∑
κ∈Icα

〈nαϕα〉Ωκ,Ω (3.122)
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The macroscale generation of entropy term has a unique definition.

〈Λα〉Ωα,Ω = Λα (3.123)

There are a number of boundary terms that remain in averaging operators. These can

be combined.

∑
κ∈Icα

〈nα·vκηα〉Ωκ,Ω +
∑
κ∈Icα

〈nα·vαηα〉Ωκ,Ω −
∑
κ∈Icα

〈nα·ϕα〉Ωκ,Ω (3.124)

Combine them into one term and rearrange.

−
∑
κ∈Icα

〈nα· [ϕα − ηα (vα − vκ)]〉Ωκ,Ω (3.125)

By definition, this term accounts for inter-phase transfer of entropy due to mass transfer,
κ→α
Mη , and in the absence of mass transfer,

κ→α
Φ .

κ→α
Mη +

κ→α
Φ =

ηα

εαρα

κ→α
M +

κ→α
Φ = 〈nα· [ϕα + ηα (vκ − vα)]〉Ωκ,Ω (3.126)

By reassembling all the averaged terms, one gets the macroscale entropy inequality for

a phase.

∂ηα

∂t
+∇·vαηα − εαbα −∇·εαφ−

∑
κ∈Icα

(
κ→α
Mη +

κ→α
Φ

)
= Λα (3.127)

For a single phase, the generation of entropy may be positive or negative. However,

if one sums the balance of entropy equation over all phases, then the generation term

must be greater than or equal to zero because of the second law of thermodynamics.
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3.7 Thermodynamics

In TCAT, classical irreversible thermodynamics (CIT) are used to constrain the set

of mass, momentum, energy, and entropy equations. A macroscale thermodynamical

equation is derived from the microscale using averaging operators, in the same manner

as the conservation equations. The thermodynamic equation relates the derivative of

internal energy to the other equations. With a full set of mass, momentum, energy,

entropy, and thermodynamical equations at the macroscale, one can develop equilibrium

conditions and relate forces and fluxes to close the system. See [32] and the references

therein for more information.

Solid and fluid phases will be handled separately. Starting with the fluid phase, the

intensive form of the internal energy function is a function of entropy per volume and

mass per volume.

E = E(η, ρ) (3.128)

The first differential of eq. (3.128) for a single-species, single fluid phase yields:

dEw = θw dηw + µw dρw (3.129)

The definitions of θw and µw are:

θw =

(
∂Ew
∂ηw

)
ρw

(3.130)

µw =

(
∂Ew
∂ρw

)
ηw

(3.131)

Further standard mathematical manipulation of eq. (3.128) leads to the Euler form of
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the thermodynamic equation:

Ew = ηwθw + µwρw − pw (3.132)

which can be differentiated:

dEw = θw dηw + ηw dθw − dpw + µw dρw + ρw dµw (3.133)

Use of eqn (3.129) in eqn (3.133) reduces this equation to:

0 = ηw dθw − dpw + ρw dµw (3.134)

Equation (3.134) is the microscale Gibbs-Duhem equation.

Average the microscale thermodynamic equation, eq. (3.132), to the macroscale:

Ew = ηwθw + ρwεwµw − εwpw (3.135)

Take the material derivative of eq. (3.135) to obtain.

DwEw

Dt
= θw

Dwηw

Dt
+ ηw

Dwθw

Dt
+ µw

Dw (ρwεw)

Dt

+ ρwεw
Dwµw

Dt
+ pw

Dwεw

Dt
+ εw

Dwpw

Dt
(3.136)

After some manipulation using the standard averaging approach, we obtain the follow-

ing relation:

T w =
DwEw

Dt
− θwDwηw

Dt
− µwDw (ρwεw)

Dt
+ pw

Dwεw

Dt
(3.137)

+

〈
ηw

Dw
(
θw − θw

)
Dt

+ ρw
Dw (µw − µw)

Dt
− Dwpw − pw

Dt

〉
Ωw,Ω

= 0 (3.138)
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For a solid phase, one must use a slightly different form of the internal energy

relation since the internal energy of a solid phase depends not on the volume but

rather on the strain tensor acting on a volume. At the megascale, one can define the

functional thermodynamical relationship as:

Es = Es (Ss, V0Cs,Ms) (3.139)

Now introduce Green’s deformation tensor Cs, which can be described as the solid

deformation in reference coordinates xs (Xs, t). V0 is the solid volume.

Cs =
∂xs
∂Xs

· ∂xs
∂Xs

(3.140)

The stress tensor can now be defined as:

σs =
∂Es

∂ (V0Cs)Ss,Ms

(3.141)

The following expressions can be found for the energy per volume, the differential of

the energy and for the Gibbs-Duhem equation for a solid,

Es = θsηs + µsρs + σs:
Cs
js

(3.142)

dEs = θs dηs + µs dρs + σs: d

(
Cs
js

)
(3.143)

0 = ηs dθs + ρs dµs +
Cs
js

: dσs (3.144)

where js is the microscale solid phase Jacobian.
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Define the macroscale energy of the solid phase as the average energy Es per aver-

aging volume (REV):

Es = 〈Es〉Ωs,Ω =

〈
θsηs + µsρs + σs:

Cs
js

〉
Ωs,Ω

(3.145)

Several macroscale averages of microscale quantities can be defined:

ηs = 〈ηs〉Ωs,Ω (3.146)

εsρs = 〈ρs〉Ωs,Ω (3.147)

εs
Cs

js
=

〈
Cs
js

〉
Ωps,Ω

(3.148)

Add and subtract the macroscale quantities into (3.145), to obtain:

Es = µsεsρs + θsεs + εsσs:
Cs

js
+
〈[(

µs − µs
)
ρs +

(
θs − θs

)
ηs

]〉
Ωs,Ω

+

〈
(σs − σs) :

Cs
js

〉
Ωs,Ω

(3.149)

The definitions of macroscale quantities µs, θs, and σs are defined such that the re-

maining 3 integral quantities are equal to zero. Thus, one may write:

Es = µsεsρs + θsηs + εsσs:
Cs

js
(3.150)

The differential of 3.150 can be written:

dEs = µs d (εsρs) + θs dηs + σs: d

(
εs
Cs

js

)
+ εsρs dµs + ηs dθs + εs

Cs

js
: dσs (3.151)
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This can also be expressed as a material derivative.

DsEs

Dt
− θsDsηs

Dt
− µsDs (εsρs)

Dt
+

〈
ρs

Ds (µs − µs)
Dt

〉
Ωs,Ω

+

〈
ηs

Ds
(
θs − θs

)
Dt

〉
Ωs,Ω

+

〈
Cs
js

:
Ds (σs − σs)

Dt

〉
Ωs,Ω

− σs:D
s

Dt

(
εs
Cs

js

)
= 0 (3.152)

After some manipulation, one can arrive at the form of solid phase, macroscale

thermodynamics used in the TCAT entropy inequalities.

T s =
DsEs

Dt
− θsDsηs

Dt
− µsDs (εsρs)

Dt
+ ps

Dsεs

Dt

+

〈
ηs

Ds(θs − θs)
Dt

+ ρs
Ds(µs − µs)

Dt

〉
Ωs,Ω

−
〈(

Cs
js

:σs

)
(vws − vs) ·ns

〉
Ωws,Ω

−
〈

ns·
[

2

js
σs: (∇Xx∇Xx) ·

(
vs − vs

)]〉
Ωws,Ω

+

〈{
∇·
[

2

js
σ: (∇Xx∇Xx)

]
−∇σs:

Cs
js

}
·
(
vs − vs

)〉
Ωs,Ω

+ εsσs:
Cs

js
I:ds −

〈
2

js
σs: (∇Xx∇Xx)

〉
Ωs,Ω

:ds

−∇·
〈[

2

js
: (∇Xx∇Xx)− σs:

Cs
js

I

]
·
(
vs − vs

)〉
Ωs,Ω

= 0 (3.153)

3.8 Conclusion

To model systems of significant size, macroscale conservation equation are necessary due

to limitations in computing power that prevent the solution of microscale equations for

large domains. However, many models do not use rigorously derived macroscale equa-

tions. Such macroscale equations tend to be modeled after the microscale forms with

ambiguous terms added to take account for sub-scale processes. Without a rigorous
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averaging procedure, there is no guarantee that the equations account for all possible

terms. Formal and consistent definitions for macroscale quantities are also lacking.

Though it may seem that the averaging process is complicated and creates many new

terms that must be dealt with, formal averaging is essential to the careful formation

of a macroscale model. The modeler may later choose to neglect terms in an averaged

macroscale equation, thus reducing it to a form equivalent to conservation equations

posited directly at the macroscale. The benefit of this approach is that such simplifi-

cations are done with full knowledge of what terms have been neglected so that they

can be reexamined if the model fails to describe the system as expected. This math-

ematical transparency that averaged macroscale equations have is a stark contrast to

their vague, informal counterparts. The entirety of this chapter has been devoted to

understanding how microscale conservations equations are averaged to the macroscale.

In the following chapter, each equation will be specified to represent the phases relevant

to this model, referring back to the macroscale forms derived here.
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Chapter 4

Equation Specification &

Additional Hypotheses

This chapter will take the macroscale equations developed in chapter 3 and specify them

for the phases included in this model. Explicit constitutive relations will be included

for some equations, or discussed generally for others. The full closure procedure as used

in the thermodynamically constrained averaging theory approach is not included here.

The process of developing entropy inequalities is beyond the scope of this work, but

some insights gained from this process and seen previously in the TCAT series of papers

will be included in the discussion that follows. This chapter is divided into five sections:

one each for mass, momentum, energy, entropy, and thermodynamic equations. The

subsections are divided by phase (p, n, h, f , and b), or into broader categories of general

solid and general fluid phases with subheadings for the individual phases. The goal of

this chapter is to present the foundational equations for a simple yet carefully derived

macroscale model of tumor growth.



4.1 Mass

General macroscale conservation of mass for a phase, derived in section 3.3.

Mα =
∂(ραεα)

∂t
+∇·

(
ραεαvα

)
−
∑
κ∈Icα

κ→α
M = 0 (4.1)

General macroscale conservation of mass for a species (i) within a phase:

∂(εαραωiα)

∂t
+∇·

(
εαραωiαviα

)
− εαriα −

∑
κ∈Icα

iκ→iα
M = 0 (4.2)

4.1.1 Viable Tumor Tissue: p

The mass conservation equation for the viable, proliferative tumor solid phase includes

accumulation, advection, and interphase mass transfer with the necrotic tumor solid

phase and the interstitial fluid phase.

∂(ρpεp)

∂t
+∇·

(
ρpεpvp

)
+

p→n
M −

f→p
M = 0 (4.3)

The term
f→p
M accounts for the transfer of mass from the fluid phase to the prolifer-

ative tumor tissue, which is equivalent to net production of tumor mass since the cells

derive the nutrition they need from the surrounding fluid. This growth is dependent

on a variety of nutrients and growth signals, but for this model there will be a single

species (i), of key importance. The conceptual form of the species dependence in this

model is based on glucose as the growth-limiting species. However, one could specify

the constants in the constitutive equations in terms of a different nutrient thought to

limit growth. One could also model the growth as dependent on multiple speciesl.

The growth rate, and thus mass transfer from the interstitial fluid phase to the viable

tumor phase, can be approximated using the Monod growth model. Mathematically,
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the Monod growth equation is similar to the equation for Michaelis-Menten kinetics

that has been observed and used by other researchers ([70], [71], [25], [47]). However,

the Michaelis-Menten equation is meant to represent reaction kinetics of an enzyme

mediated reaction of a species within a phase. Since the desire here is to model cell

population growth as a function of mass transfer, the conceptual basis of the Michaelis-

Menten equation would have to be stretched to allow for the representation of growth

due to mass transfer. Traditionally, the Monod growth and Michaelis-Menten equations

are used to describe reactions within a phase, but in tumor modeling they are adapted

to account for mass transfer.

By using the Monod growth equation, we are modeling the growth of cells as a

mass transfer driven by the cellular growth rate as determined by the local nutrient

concentration. The amount of mass transferred from the fluid phase to the prolifera-

tive tumor phase depends on the nutrient concentration at that point and population

(mass) of the the proliferative cells. The nutrient concentration determines whether

or not the cells undergo mitosis, which is the mechanism of growth of the proliferative

tumor tissue solid phase. For a maximum nutrient concentration, when the cells are

not nutrient-limited, we can assume that the existing mass of the p phase in the REV

doubles after some number of hours by assuming that every cell doubles and becomes

two cells with equal mass.

General Monod Growth Equation:

µ∗obs = µ∗maxY

(
Cs

Ks + Cs

)
(4.4)

The Monod growth equation bases an observed growth rate (µ∗obs) on a maximum

growth rate (µ∗max), the substrate concentration (Cs) and the Monod constant (Ks).
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The coefficient Y represents the yield of cellular mass due to mass of substrate con-

sumed. Its units are mass per mass. The phases and species of interest in this model

can specified:

µ∗p = µ∗maxY

(
εfρfωif

Ks + εfρfωif

)
(4.5)

In a porous medium system, the substrate concentration is expressed as the product

of the volume fraction of phase f (εf ), density of phase f (ρf ), and mass fraction of

species i within phase f (ωif ). The observed proliferation rate is denoted µp. In order

to translate this equation for the proliferative growth rate into a mass transfer term,

the growth rate must be multiplied by the existing mass of proliferative cells in the

REV to find the mass of new cells. Thus no growth, and no mass transfer, will occur

if there is no mass of viable cells or if the concentration of nutrient i is zero (ωif = 0).

f→p
M = εpρpµ∗p (4.6)

= εpρpµ∗maxY

(
εfρfωif

Ks + εfρfωif

)
(4.7)

This term represents the amount of mass that leaves the interstitial fluid phase (f) and

is absorbed by the cells of the viable tumor phase (p) which then divide and create new

cells. This model does not track the number of cells in the tumor, but instead the mass

of the cells. However, one can calculate the approximate number of viable cells in the

tumor by dividing the total mass of the p phase of the tumor by the average mass of a

single cell.

The opposing mechanism to growth is cell death, which in this model is the creation

of a necrotic region. The amount of mass becoming necrotic is represented by the other

mass transfer term:
p→n
M . The mass transfer from the viable tumor phase to the necrotic

64



tumor phase accounts for cell death due to necrosis, where Rd is the necrotic death rate.

p→n
M = εpρpRd (4.8)

There is no term to account for cell death due to apoptosis because cancer cells tend to

have a variety of mechanisms to avoid apoptosis. Evasion of apoptosis is such a common

feature of cancer that it is was recognized as one of Hanahan and Weinberg’s “Hallmarks

of Cancer” [38, 39]. The mass transfer from viable to necrotic tissue accounts for non-

apoptotic cell death that will be modeled as nutrient dependent. Essentially, tissue that

does not receive enough nutrients (species i) from the interstitial fluid phase will starve

and necrose. Necrosis can be described as cell death due to trauma, rather than part

of the cell cycle. The critical nutrient concentration will be denoted as Ccrit, and above

this threshold concentration the necrotic death rate (Rd) is zero. Below the threshold,

the rate of death is proportional to the nutrient deficit.

Rd = 0, when Cif ≥ Ccrit (4.9)

Rd = Kd

(
Ccrit − Cif

)
, when Cif ≤ Ccrit (4.10)

Or,

Rd = 0, when ωif ≥ ωifcrit (4.11)

Rd = Kd

(
εfρfωifcrit − εfρfωif

)
, when ωif ≤ ωifcrit (4.12)

The mass conservation equation for the viable tumor tissue phase is complete after

incorporating the constitutive equations for mass transfer due to growth and death.

∂(ρpεp)

∂t
+∇·

(
ρpεpvp

)
+ εpρpRd − εpρpµ∗maxY

(
εfρfωif

Ks + εfρfωif

)
= 0 (4.13)
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The constants Kd, µmax, Y , Ks, and ωifcrit must be determined experimentally.

4.1.2 Necrotic Tumor Tissue: n

The conservation of mass equation for the necrotic tissue phase includes accumulation,

advection, and mass transfer from the proliferative phase to the necrotic phase.

∂(ρnεn)

∂t
+∇·

(
ρnεnvn

)
−

p→n
M = 0 (4.14)

In this equation,
p→n
M is a mass transfer term that accounts for the transfer of mass from

the viable tumor cell phase to the necrotic tissue solid phase. (The direction of mass

transfer is implied by the arrow). This is equal and opposite to the necrosis term in

the viable tumor tissue equation.

∂(ρnεn)

∂t
+∇·

(
ρnεnvn

)
− εpρpRd = 0 (4.15)

4.1.3 Host Tissue: h

Normal tissue has different morphology and physical properties than the tumor, and

does not experience uncontrolled growth. The cells in this phase are not necessar-

ily healthy because they may be experienced stress from the presence of the tumor.

This phase can be called normal because the cells are non-cancerous. That is, they

do not contain the genetic alterations of malignant cells and react normally to inter-

/intracellular signals. For this model, the normal cells are assumed to be in homeostasis,

meaning that there is no net proliferation and that number of cells and amount of mass

is not dependent on nutrient transport. (This hypothesis is a very broad generalization,

biologically speaking, but makes for a much simpler model.) The following equation is
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for conservation of mass of the normal tissue.

∂
(
εhρh

)
∂t

+∇·
(
εhρhvh

)
= 0 (4.16)

There are no mass transfer terms in this conservation equation because of the assump-

tion of homeostasis. This assumes that the growth and death rates of the normal tissue

phase are equal, and eliminates the need to account for nutrient transfer and growth,

or necrosis as was done in the tumor phase. This assumption is also similar to stating

that the tumor and normal tissue are supplied by different vasculature, which is largely

true once the tumor initiates angiogenesis. It is important to note that normal cells

surrounding the tumor may have a negative net growth rate (indicating death) because

of decreased pH or other microenvironmental factors, but this facet of tumor/host

interaction is neglected here for simplicity.

4.1.4 Extravascular/Interstitial Fluid: f

The conservation of mass equation for the interstitial fluid phase includes terms for ac-

cumulation, advection, mass transfer to the proliferative tumor phase and mass transfer

from the blood phase.

∂
(
ρfεf

)
∂t

+∇·
(
ρfεfvf

)
+

f→p
M −

b→f
M = 0 (4.17)

The transfer of mass from the f to the p phase supplies the cells with nutrients required

for growth, so
f→p
M indicates growth, as discussed earlier. The nutrients in the interstitial

fluid phase originate from the blood in the vasculature, accounted for by the
b→f
M term.

The mass transfer term from the interstitial fluid phase to the proliferative tumor phase
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is equal and opposite to the mass transfer seen in equation (4.3).

∂
(
ρfεf

)
∂t

+∇·
(
ρfεfvf

)
+ εpρpµ∗maxY

(
εfρfωif

Ks + εfρfωif

)
−

b→f
M = 0 (4.18)

One can also write a conservation of mass of species i in phase f by utilizing the species

mass fraction, ωif . Terms included in the conservation equation are accumulation, flux

(advective and diffusive), and transfer of species i to the p phase and from the blood

(b) phase.

∂
(
ρfεfωif

)
∂t

+∇·
(
ρfεfωifvif

)
+

if→p
M −

ib→if
M = 0 (4.19)

Since the phase equation has a term for mass transfer due to growth (
f→p
M ), the mass

of i transferred must be a fraction of the total mass transfer from the fluid phase.

This scaling factor relating the mass of species i and total mass transferred to the

proliferative phase is the yield coefficient (Y ) seen previously in the Monod growth

equation.

if→p
M =

f→p
M

Y
(4.20)

if→p
M =

1

Y
εpρpµ∗maxY

(
εfρfωif

Ks + εfρfωif

)
(4.21)

The yield coefficients cancel.

if→p
M = εpρpµ∗max

(
εfρfωif

Ks + εfρfωif

)
(4.22)

Therefore, the conservation equation can be written as follows when one incorporates

(4.20) and separate the species velocity into the sum of the phase velocity and the the
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diffusive velocity (vif = vf + uif ).

∂
(
ρfεfωif

)
∂t

+∇·
[
ρfεfωif

(
vf + uif

)]
+εpρpµ∗max

(
εfρfωif

Ks + εfρfωif

)
−
ib→if
M = 0 (4.23)

Approximate the diffusive velocity using Fick’s Law: ρfωifuif = −Difρf∇ωif .

∂
(
ρfεfωif

)
∂t

+∇·
[
ρfεfωifvf

]
−∇·

(
εfρfDif∇ωif

)
+εpρpµ∗max

(
εfρfωif

Ks + εfρfωif

)
−

ib→if
M = 0 (4.24)

Additional closure will be needed for
ib→if
M , the extravasation of species i.

4.1.5 Intravascular Fluid (Blood): b

The mass conservation equation for the b phase includes accumulation, advection, and

mass transfer.

∂
(
ρbεb

)
∂t

+∇·
(
ρbεbvb

)
+

b→f
M = 0 (4.25)

The mass transfer term (
b→f
M ) accounts for mass transferred from the blood, through

the vessel walls, to the interstitial fluid. The species mass transfer and phase mass

transfer are related by the same yield coefficient seen earlier.

b→f
M = Y

ib→if
M (4.26)

Therefore, the phase mass conservation equation can be rewritten using the yield co-

effiecient and the species form of the mass transfer term,
ib→if
M .

∂
(
ρbεb

)
∂t

+∇·
(
ρbεbvb

)
+ Y

ib→if
M = 0 (4.27)
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The species mass transfer term is seen without the yield coefficient in the mass con-

servation equation of species i in the b phase. The constitutive form of
ib→if
M should

be based on the surface area of the vessel (i.e. vessel radius) and other parameters.

Such parameters that may influence extravasation of the nutrient species include nu-

trient concentration (passive diffusion), active transport by the epithelial cells of the

vessel walls, blood flow rate, intravascular and extravascular pressure. However, most

previous models have neglected these factors due to their complexity.

∂
(
ρbεbωib

)
∂t

+∇·
(
ρbεbωibvib

)
+

ib→if
M = 0 (4.28)

Incorporate Fick’s Law to approximate the diffusive velocity, and this is the final form

of the conservation of mass for species i in the b phase.

∂
(
ρbεbωib

)
∂t

+∇·
(
ρbεbvb

)
−∇·

(
ρbεbDib∇ωib

)
+

ib→if
M = 0 (4.29)

The approximations made for Fick’s law and the mass transfer equations that repre-

sent growth and death are part of the constitutive relations needed to close the model.

However, additional closure is needed to mathematically represent the transfer of mass

from the blood phase to the interstitial fluid phase.

4.2 Momentum

General macroscale conservation of momentum for a phase, derived in section 3.4.

Pα =
∂(ραεαvα)

∂t
+∇·

(
ραεαvαvα

)
−∇·

(
εαtα

)
− ραεαgα −

∑
κ∈Icα

[
vα

κ→α
M +

κ→α
T

]
= 0

(4.30)
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Like mass,the momentum conservation equation has terms for accumulation and ad-

vection. However, it also includes momentum from body sources that act on the entire

volume (ραεαgα) and from non-flux sources (∇·(εαtα)) that act on the surface. The

inter-phase transfer terms include momentum gained due to mass transfer (vα
κ→α
M ) and

momentum gained due to mechanical interaction (
κ→α
T ).

4.2.1 Solid phases: p, n, h

In this model, it will be assumed that the solid phases have the same velocity, which

will be denoted as vs, the macroscale solid phase velocity. This assumption is common

to many of the continuum models discussed in chapter 1.

vp = vn = vh = vs (4.31)

We can write a general momentum equation that applies to the three solid phases using

the solid phase velocity vs and leaving other quantities as general phase α that can

stand for p, n, or h.

∂(ραεαvs)

∂t
+∇·

(
ραεαvsvs

)
−∇·

(
εαtα

)
− ραεαgα −

∑
κ∈Icα

[
vα

κ→α
M +

κ→α
T

]
= 0 (4.32)

In biological systems, hygro-thermal phenomena are slow, so inertial forces can be ne-

glected. This means that the first two terms, accumulation and advection, are removed

from the equation.

−∇·
(
εαtα

)
− ραεαgα −

∑
κ∈Icα

[
vα

κ→α
M +

κ→α
T

]
= 0 (4.33)
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Also assume that momentum due to mass transfer is negligible. Neglect inertial terms

to get the following.

−∇·
(
εαtα

)
− ραεαgα −

∑
κ∈Icα

κ→α
T = 0 (4.34)

The analysis of multiple solid phases is not included here. However, from closure

relations developed in TCAT, it is known that

tα = tα, When α is a solid. (4.35)

Incorporate tα.

−∇· (εαts)− ραεαgα −
∑
κ∈Icα

κ→α
T = 0 (4.36)

This equation can be specified to each of the solid phases.

Viable Tumor Tissue: p

−∇· (εptp)− ρpεpgp −
∑
κ∈Icp

κ→p
T = 0 (4.37)

Necrotic Tumor Tissue: n

−∇· (εntn)− ρnεngn −
∑
κ∈Icn

κ→n
T = 0 (4.38)

Host Tissue: h

−∇·
(
εhth

)
− ρhεhgh −

∑
κ∈Ich

κ→h
T = 0 (4.39)

The form of the momentum equation for the solid phases still needs closure approx-

imations for the stress tensor and for the transfer of momentum term. The constitutive

form of the solid phase stress tensor will depend on the type of deformation that is as-

sumed. The simplest choice is an incompressible solid phase, but most modern tumor
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models are representing the solid phases as elastic or viscoelastic solids. These consti-

tutive forms vary based on the mathematical form that represents the deformation of

the solid. Solid stress can be separated into normal stress, also called pressure, and

tangential stress which can stretch, twist, and bend the solid out of shape. Solid me-

chanics are considerably more complex than fluid mechanics because of the dependence

on the original configuration of the solid, which is not important in fluid mechanics.

The momentum transfer term,
κ→s
T , must also be specified for each phase. It rep-

resents the transfer of momentum between phases that is not due to the exchange of

mass. Since the κ qualifier stands for the interfaces that are connected to the phase, this

model must consider three general types of interfaces: solid-solid, solid-fluid, and fluid-

fluid. The solid-solid momentum transfer terms can be neglected because the solids are

moving with one velocity, vs. The fluid-fluid term will also be neglected because the

blood phase and interstitial phase are separated by the blood vessel walls. Therefore no

momentum can transfer without exchange of mass between the fluids because they are

not in direct contact. However, the solid-fluid interface can transfer momentum and

constitutive relations are necessary to close the model. As the fluid flows in contact

with the solid, it may transfer momentum due to friction, and this should be accounted

for in the model.

4.2.2 Fluid Phases: f , b

The general conservation of momentum for the fluid phase will be denoted using the

letter w as a qualifier. Later the w will be specified as either f or b.

∂(ρwεwvw)

∂t
+∇·

(
ρwεwvwvw

)
−∇·

(
εwtw

)
−ρwεwgw−

∑
κ∈Icw

[
vw

κ→w
M +

κ→w
T

]
= 0 (4.40)
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Neglect inertial (accumulation and advection) terms.

∂(ρwεwvw)

∂t
+∇·

(
ρfεwvwvw

)
≈ 0 (4.41)

This leaves the following simplified momentum equation.

−∇·
(
εwtw

)
− εwρwgw −

∑
κ∈Icw

[
vw

κ→w
M +

κ→w
T

]
= 0 (4.42)

The momentum due to mass transfer (vw
κ→w
M ) is small because only species i and other

nutrients are transported between phases and one may assume that the system is dilute.

Therefore this term can be neglected.

−∇·
(
εwtw

)
− εwρwgw −

∑
κ∈Icw

κ→w
T = 0 (4.43)

The TCAT method of closure involves arranging terms into force-flux pairs. According

to thermodynamics, at equilibrium the forces and fluxes are zero. This relationship

between forces and fluxes at equilibrium can help guide closure. From TCAT the

flux-force term including
κ→w
T is as follows.

− 1

θw

(
εwρwgw + εwρw∇

(
ψw + µw

)
−∇ (εwpw) +

∑
κ∈Icw

κ→w
T

)
·
(
vw − vs

)
= 0 (4.44)

In this equation, θw stands for the temperature of the w phase, ψw is the gravitational

potential, µw is the chemical potential, pw is the fluid pressure, and vs is the velocity

of the solid phase

To further simplify
κ→w
T , assume the system has uniform composition and isothermal

conditions. By assuming uniform composition, −∇ψ = g, and those terms cancel. The

isothermal assumption means that εwρw∇µw = εw∇pw. Therefore, the force-flux pair
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reduces to the following.

(
−pw∇εw +

∑
κ∈Icw

κ→w
T

)
·
(
vw − vs

)
= 0 (4.45)

Because this is a force-flux relation, it can be generalized as follows, giving the form

seen in Darcy’s law. ∑
κ∈Icw

κ→w
T = pw∇εw −Kw·

(
vw − vs

)
(4.46)

Where Kw is the hydraulic conductivity of solid phase to the w phase.

The stress tensor can also be simplified by examining the force-flux pairs, to lead

to the following simplification.

tf = −pf I (4.47)

Therefore,

−∇·
(
εwtw

)
= ∇ (εwpw) (4.48)

Incorporating these simplifications gives the following momentum equation.

∇ (εwpw)− εwρwgw −
[
pw∇εw −Kw·

(
vw − vs

)]
= 0 (4.49)

Combine the pressure terms to get the following equation for conservation of momentum

for a general fluid phase in its simplest form.

−εwρwgw + εw∇pw + Kw·
(
vw − vs

)
= 0 (4.50)

This equation applies to the f and b phases in this model and can be written for each

one.
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Interstitial fluid: f

−εfρfgf + εf∇pf + Kf ·
(
vf − vs

)
= 0 (4.51)

Blood: b

−εbρbgb + εb∇pb + Kb·
(
vb − vs

)
= 0 (4.52)

The hydraulic conductivity parameter, K, depends on both the fluid and the solid

porous material through which it is flowing. The properties of the solid media that

influence flow are important in determining the hydraulic conductivity of the cellular

solid phases include the cell size distribution, shape of the cells, tortuosity of passages,

specific surface area, and porosity (the sum of the fluid volume fractions). It also

depends on the density and viscosity of the fluid.[6]

4.3 Energy

This model assumes an isothermal system since the solid tissues and fluids stay at

normal body temperature for all intents and purposes. Any temperature changes that

occur naturally will be small and occur gradually compared with the time scale of flow

and nutrient transfer. For an isothermal system, it is not necessary to define and close

the energy equation. However, the goal of this work is to be transferable to situations

outside the simplifications assumed here. For example, thermal ablation is one ther-

apeutic treatment designed to eliminate tumors by using heat to kill the malignant

cells. Therefore, it might be of interest to model heat transfer in a tumor using the

model system detailed in this document. The remainder of this section develops general

energy equations for each phase and will discuss a few likely simplifications after all

equations have been presented.
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General macroscale conservation of total energy for a phase, derived in section 3.5:

Eα =
∂

∂t

(
Eα +

1

2
εαραvα·vα + εαραψα + εαραKα

E

)
+∇·

[(
Eα +

1

2
εαραvα·vα + εαραψα + εαραKα

E

)
vα
]

−∇·
(
εαtα·vα + εαqα

)
− εαhα −

〈
ρα
∂ψα
∂t

〉
Ωα,Ω

−
∑
κ∈Icα

[(
1

2
vκα·vκα + ψκα +

Eκ
α

εκρκα
+Kκ

Eα

)
κ→α
M + vκα·

κ→α
T +

κ→α
Q

]

+
∑
κ∈Icα

〈
nαρα·

(
ψα − ψκα

)
(vα − vκ)

〉
Ωκ,Ω

+∇·
〈
ρα
(
ψα − ψα

) (
vα − vα

)〉
Ωα,Ω

= 0 (4.53)

4.3.1 Viable Tumor Tissue: p

General conservation of energy, specified for the p phase:

∂

∂t

(
Ep +

1

2
εpρpvp·vp + εpρpψp + εpρpKp

E

)
+∇·

[(
Ep +

1

2
εpρpvp·vp + εpρpψp + εpρpKp

E

)
vp
]

−∇·
(
εptp·vp + εpqp

)
− εphp −

〈
ρp
∂ψp
∂t

〉
Ωp,Ω

−
∑
κ∈Icp

[(
1

2
vκp·vκp + ψκp +

Eκ
p

εκρκp
+Kκ

Ep

)
κ→p
M + vκp·

κ→p
T +

κ→p
Q

]

+
∑
κ∈Icp

〈
npρp·

(
ψp − ψκp

)
(vp − vκ)

〉
Ωκ,Ω

+∇·
〈
ρp
(
ψp − ψp

) (
vp − vp

)〉
Ωp,Ω

= 0 (4.54)
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Input the solid velocity (vs and vs) for the velocity of the p phase.

∂

∂t

(
Ep +

1

2
εpρpvs·vs + εpρpψp + εpρpKp

E

)
+∇·

[(
Ep +

1

2
εpρpvs·vs + εpρpψp + εpρpKp

E

)
vs
]

−∇·
(
εptp·vs + εpqp

)
− εphp −

〈
ρp
∂ψp
∂t

〉
Ωp,Ω

−
∑
κ∈Icp

[(
1

2
vκs ·vκs + ψκp +

Eκ
p

εκρκp
+Kκ

Ep

)
κ→p
M + vκs ·

κ→p
T +

κ→p
Q

]

+
∑
κ∈Icp

〈
npρp·

(
ψp − ψκp

)
(vs − vκ)

〉
Ωκ,Ω

+∇·
〈
ρp
(
ψp − ψp

) (
vs − vs

)〉
Ωp,Ω

= 0 (4.55)

Two mass transfer terms involving the p phase have been defined. Recall:

n→p
M = −εpρpRd (4.56)

f→p
M = εpρpµ∗maxY

(
εfρfωif

Ks + εfρfωif

)
(4.57)

Input these definitions into the energy equation and substitute the constitutive form of

the solid stress tensor (tp = tp).

∂

∂t

(
Ep +

1

2
εpρpvs·vs + εpρpψp + εpρpKp

E

)
+∇·

[(
Ep +

1

2
εpρpvs·vs + εpρpψp + εpρpKp

E

)
vs
]

−∇·
(
εptp·vs + εpqp

)
− εphp −

〈
ρp
∂ψp
∂t

〉
Ωp,Ω

−

(
1

2
vfps ·vfps + ψfpp +

Efp
p

εfpρfpp
+Kfp

Ep

)(
εpρpµ∗maxY

(
εfρfωif

Ks + εfρfωif

))

+

(
1

2
vnps ·vnps + ψnpp +

Enp
p

εnpρnpp
+Knp

Ep

)
(εpρpRd)
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−
∑
κ∈Icp

[
vκs ·

κ→p
T +

κ→p
Q

]
+
∑
κ∈Icp

〈
npρp·

(
ψp − ψκp

)
(vs − vκ)

〉
Ωκ,Ω

= 0 (4.58)

4.3.2 Necrotic Tumor Tissue: n

The conservation of total energy equation, specified for the necrotic tumor phase:

∂

∂t

(
En +

1

2
εnρnvn·vn + εnρnψn + εnρnKn

E

)
+∇·

[(
En +

1

2
εnρnvn·vn + εnρnψn + εnρnKn

E

)
vn
]

−∇·
(
εntn·vn + εnqn

)
− εnhn −

〈
ρn
∂ψn
∂t

〉
Ωn,Ω

−
∑
κ∈Icn

[(
1

2
vκn·vκn + ψκn +

Eκ
n

εκρκn
+Kκ

En

)
κ→n
M + vκn·

κ→n
T +

κ→n
Q

]

+
∑
κ∈Icn

〈
nnρn·

(
ψn − ψκn

)
(vn − vκ)

〉
Ωκ,Ω

+∇·
〈
ρn
(
ψn − ψn

) (
vn − vn

)〉
Ωn,Ω

= 0 (4.59)

Substitute vs for vn.

∂

∂t

(
En +

1

2
εnρnvs·vs + εnρnψn + εnρnKn

E

)
+∇·

[(
En +

1

2
εnρnvs·vs + εnρnψn + εnρnKn

E

)
vs
]

−∇·
(
εntn·vs + εnqn

)
− εnhn −

〈
ρn
∂ψn
∂t

〉
Ωn,Ω

−
∑
κ∈Icn

[(
1

2
vκs ·vκs + ψκn +

Eκ
n

εκρκn
+Kκ

En

)
κ→n
M + vκs ·

κ→n
T +

κ→n
Q

]

+
∑
κ∈Icn

〈
nnρn·

(
ψn − ψκn

)
(vs − vκ)

〉
Ωκ,Ω

+∇·
〈
ρn
(
ψn − ψn

) (
vs − vs

)〉
Ωn,Ω

= 0 (4.60)
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Insert the constitutive relations for mass transfer

(
p→n
M = εpρpRd

)
and the stress tensor(

tn = tn
)

.

∂

∂t

(
En +

1

2
εnρnvs·vs + εnρnψn + εnρnKn

E

)
+∇·

[(
Ep +

1

2
εpρpvs·vs + εpρpψp + εpρpKp

E

)
vs
]

−∇·
(
εntn·vn + εnqn

)
− εnhn −

〈
ρn
∂ψn
∂t

〉
Ωn,Ω

−

(
1

2
vnps ·vnps + ψnpn +

Enp
p

εnpρnpn
+Knp

En

)
(εpρpRd)

−
∑
κ∈Icn

[
vκn·

κ→n
T +

κ→n
Q

]
+
∑
κ∈Icn

〈
nnρn·

(
ψn − ψκn

)
(vs − vκ)

〉
Ωκ,Ω

= 0 (4.61)

4.3.3 Host Tissue: h

General conservation of mass for phase h:

∂

∂t

(
Eh +

1

2
εhρhvh·vh + εhρhψh + εhρhKh

E

)
+∇·

[(
Eh +

1

2
εhρhvh·vh + εhρhψh + εhρhKh

E

)
vh
]

−∇·
(
εhth·vh + εhqh

)
− εhhh −

〈
ρh
∂ψh
∂t

〉
Ωh,Ω

−
∑
κ∈Ich

[(
1

2
vκh·vκh + ψκh +

Eκ
h

εκρκh
+Kκ

Eh

)
κ→h
M + vκh·

κ→h
T +

κ→h
Q

]

+
∑
κ∈Ich

〈
nhρh·

(
ψh − ψκh

)
(vh − vκ)

〉
Ωκ,Ω

+∇·
〈
ρh

(
ψh − ψh

)(
vh − vh

)〉
Ωh,Ω

= 0 (4.62)
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Substitute the solid velocity for the velocity of the host tissue phase.

∂

∂t

(
Eh +

1

2
εhρhvs·vs + εhρhψh + εhρhKh

E

)
+∇·

[(
Eh +

1

2
εhρhvs·vs + εhρhψh + εhρhKh

E

)
vs
]

−∇·
(
εhth·vs + εhqh

)
− εhhh −

〈
ρh
∂ψh
∂t

〉
Ωh,Ω

−
∑
κ∈Ich

[(
1

2
vκs ·vκs + ψκh +

Eκ
h

εκρκh
+Kκ

Eh

)
κ→h
M + vκs ·

κ→h
T +

κ→h
Q

]

+
∑
κ∈Ich

〈
nhρh·

(
ψh − ψκh

)
(vs − vκ)

〉
Ωκ,Ω

+∇·
〈
ρh

(
ψh − ψh

) (
vs − vs

)〉
Ωh,Ω

= 0 (4.63)

There are no mass transfers to or from the host tissue phase, so that term can be

dropped. Also substitute th for th.

∂

∂t

(
Eh +

1

2
εhρhvs·vs + εhρhψh + εhρhKh

E

)
+∇·

[(
Eh +

1

2
εhρhvs·vs + εhρhψh + εhρhKh

E

)
vs
]

−∇·
(
εhth·vs + εhqh

)
− εhhh −

〈
ρh
∂ψh
∂t

〉
Ωh,Ω

−
∑
κ∈Ich

[
vκh·

κ→h
T +

κ→h
Q

]
+
∑
κ∈Ich

〈
nhρh·

(
ψh − ψκh

)
(vh − vκ)

〉
Ωκ,Ω

= 0 (4.64)

4.3.4 Interstitial Fluid: f

General conservation of total energy for the f phase.

∂

∂t

(
Ef +

1

2
εfρfvf ·vf + εfρfψf + εfρfKf

E

)
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+∇·
[(
Ef +

1

2
εfρfvf ·vf + εfρfψf + εfρfKf

E

)
vf
]

−∇·
(
εftf ·vf + εfqf

)
− εfhf −

〈
ρf
∂ψf
∂t

〉
Ωf ,Ω

−
∑
κ∈Icf

[(
1

2
vκf ·vκf + ψκf +

Eκ
f

εκρκf
+Kκ

Ef

)
κ→f
M + vκf ·

κ→f
T +

κ→f
Q

]

+
∑
κ∈Icf

〈
nfρf ·

(
ψf − ψκf

)
(vf − vκ)

〉
Ωκ,Ω

+∇·
〈
ρf

(
ψf − ψf

)(
vf − vf

)〉
Ωf ,Ω

= 0 (4.65)

Recall that the constitutive form of the stress tensor is tf = −pf I. This can be put

into the stress tensor divergence term.

−∇·
(
εftf ·vf

)
= ∇·

(
εfpf I·vf

)
(4.66)

= ∇·
(
εfpfvf

)
(4.67)

One can also use the constitutive form of
κ→f
T .

∑
κ∈Icw

κ→w
T = pw∇εw −K·

(
vw − vs

)
(4.68)

∑
κ∈Icf

vκf
κ→f
T = vκf ·

[
pf∇εf −K·

(
vf − vs

)]
(4.69)

Insert these simplifications into the equation.

∂

∂t

(
Ef +

1

2
εfρfvf ·vf + εfρfψf + εfρfKf

E

)
+∇·

[(
Ef +

1

2
εfρfvf ·vf + εfρfψf + εfρfKf

E

)
vf
]

−∇·
(
εfpfvf + εfqf

)
− εfhf −

〈
ρf
∂ψf
∂t

〉
Ωf ,Ω
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−
∑
κ∈Icf

[(
1

2
vκf ·vκf + ψκf +

Efκ

εκρκf
+Kκ

Ef

)
κ→f
M

]

−
∑
κ∈Icf

(
vfsf ·

[
pf∇εf −K·

(
vf − vs

)]
+

κ→f
Q

)
+
∑
κ∈Icf

〈
nfρf ·

(
ψf − ψκf

)
(vf − vκ)

〉
Ωκ,Ω

+∇·
〈
ρf

(
ψf − ψf

)(
vf − vf

)〉
Ωb,Ω

= 0 (4.70)

Also input the previously established mass transfer terms:
b→f
M and

p→f
M .

b→f
M = Y

ib→if
M (4.71)

p→f
M = −

f→p
M = −εpρpµ∗maxY

(
εfρfωif

Ks + εfρfωif

)
(4.72)

∂

∂t

(
Ef +

1

2
εfρfvf ·vf + εfρfψf + εfρfKf

E

)
+∇·

[(
Ef +

1

2
εfρfvf ·vf + εfρfψf + εfρfKf

E

)
vf
]

−∇·
(
εfpfvf + εfqf

)
− εfhf −

〈
ρf
∂ψf
∂t

〉
Ωf ,Ω

+
∑
κ∈Icf

[(
1

2
vκf ·vκf + ψκf +

Efκ

εκρκf
+Kκ

Ef

)
εpρpµ∗maxY

(
εfρfωif

Ks + εfρfωif

)]

−
∑
κ∈Icf

[(
1

2
vκf ·vκf + ψκf +

Efκ

εκρκf
+Kκ

Ef

)(
Y
ib→if
M

)]

−
∑
κ∈Icf

(
vfsf ·

[
pf∇εf −K·

(
vf − vs

)]
+

κ→f
Q

)
+
∑
κ∈Icf

〈
nfρf ·

(
ψf − ψκf

)
(vf − vκ)

〉
Ωκ,Ω

+∇·
〈
ρf

(
ψf − ψf

)(
vf − vf

)〉
Ωb,Ω

= 0 (4.73)
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4.3.5 Blood: b

General conservation of total energy for the b phase.

∂

∂t

(
Eb +

1

2
εbρbvb·vb + εbρbψb + εbρbKb

E

)
+∇·

[(
Eb +

1

2
εbρbvb·vb + εbρbψb + εbρbKb

E

)
vb
]

−∇·
(
εbtb·vb + εbqb

)
− εbhb −

〈
ρb
∂ψb
∂t

〉
Ωb,Ω

−
∑
κ∈Icb

[(
1

2
vκb ·vκb + ψκb +

Eκ
b

εκρκb
+Kκ

Eb

)
κ→b
M + vκb ·

κ→b
T +

κ→b
Q

]

+
∑
κ∈Icb

〈
nbρb·

(
ψb − ψκb

)
(vb − vκ)

〉
Ωκ,Ω

+∇·
〈
ρb

(
ψb − ψb

)(
vb − vb

)〉
Ωb,Ω

= 0 (4.74)

The constitutive form of the stress tensor
(
tb = −pbI

)
can be put into the stress tensor

divergence term.

−∇·
(
εbtb·vb

)
= ∇·

(
εbpbvb

)
(4.75)

The constitutive form of
κ→b
T can also be used.

∑
κ∈Icb

vκf
κ→b
T = vκb ·

[
pb∇εb −K·

(
vb − vs

)]
(4.76)

Insert these simplifications into the equation.

∂

∂t

(
Eb +

1

2
εbρbvb·vb + εbρbψb + εbρbKb

E

)
+∇·

[(
Eb +

1

2
εbρbvb·vb + εbρbψb + εbρbKb

E

)
vb
]

−∇·
(
εbpbvb + εbqb

)
− εbhb −

〈
ρb
∂ψb
∂t

〉
Ωb,Ω
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−
∑
κ∈Icb

[(
1

2
vκb ·vκb + ψκb +

Eκ
b

εκρκb
+Kκ

Eb

)
κ→b
M

]

−
∑
κ∈Icb

(
vbsb ·

[
pb∇εb −K·

(
vb − vs

)]
+

κ→b
Q

)
+
∑
κ∈Icb

〈
nbρb·

(
ψb − ψκb

)
(vb − vκ)

〉
Ωκ,Ω

+∇·
〈
ρb

(
ψb − ψb

)(
vb − vb

)〉
Ωb,Ω

= 0 (4.77)

Finally, specify the mass transfer term as −Y
ib→if
M .

∂

∂t

(
Eb +

1

2
εbρbvb·vb + εbρbψb + εbρbKb

E

)
+∇·

[(
Eb +

1

2
εbρbvb·vb + εbρbψb + εbρbKb

E

)
vb
]

−∇·
(
εbpbvb + εbqb

)
− εbhb −

〈
ρb
∂ψb
∂t

〉
Ωb,Ω

+

[(
1

2
vbfb ·v

bf
b + ψbfb +

Ebf
b

εbfρbfb
+Kbf

Eb

)
Y
ib→if
M

]

−
∑
κ∈Icb

(
vbsb ·

[
pb∇εb −K·

(
vb − vs

)]
+

κ→b
Q

)
+
∑
κ∈Icb

〈
nbρb·

(
ψb − ψκb

)
(vb − vκ)

〉
Ωκ,Ω

+∇·
〈
ρb

(
ψb − ψb

)(
vb − vb

)〉
Ωb,Ω

= 0 (4.78)

It is likely that, for the solid phase equations (equations (4.58), (4.61), (4.64)) the

kinetic energy terms will be negligible compared to the potential and internal energy

terms. Therefore, the terms including kinetic energy, 1
2
εsρsvs·vs and εsρsKp

E, could

be neglected. Another term likely to be small is energy transferred due to transfer of

momentum

(
vss

κ→s
T

)
so this term could also be neglected. Additionally, the last two

terms where averaging operators remain are often assumed to be very small and are

not included either the solid phases or fluid phases.
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4.4 Entropy

Entropy is integral to the TCAT approach because it is used to constrain the conserva-

tion equations. Consider the general macroscale balance of entropy for a phase, derived

in section 3.6.

Sα =
∂ηα

∂t
+∇·

(
ηαvα

)
−∇·

(
εαϕα

)
− εαbα

−
∑
κ∈Icα

(
κ→α
M

ηα

εαρα
+

κ→α
Φ

)
= Λα (4.79)

The balance of entropy equation includes terms for rate of accumulation
(
∂ηα

∂t

)
, ad-

vection
(
∇·
(
ηαvα

))
, non-advective entropy flux

(
∇·
(
εαϕα

))
, body sources (εαbα),

inter-phase transfer

(∑
κ∈Icα

(
κ→α
M ηα

εαρα
+

κ→α
Φ

))
, and generation

(
Λα
)

.

4.4.1 Viable Tumor Tissue: p

The balance of entropy equation for the p phase.

∂ηp

∂t
+∇·

(
ηpvp

)
−∇·

(
εpϕp

)
− εpbp

−
∑
κ∈Icp

(
κ→p
M

ηp

εpρp
+

κ→p
Φ

)
= Λp (4.80)

The phases that transfer mass with the p phase are the n and f phases. Recall the

definitions of the two mass transfer terms:

n→p
M = −εpρpRd (4.81)

f→p
M = εpρpµ∗maxY

(
εfρfωif

Ks + εfρfωif

)
(4.82)
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Therefore the entropy transfer terms can be rewritten as follows.

−
∑
κ∈Icp

(
κ→p
M

ηp

εpρp
+

κ→p
Φ

)
=−

(
ηp

εpρp

)(
n→p
M +

f→p
M

)
−
∑
κ∈Icp

κ→p
Φ

=−

[
εpρpµ∗maxY

(
εfρfωif

Ks + εfρfωif

)](
ηα

εαρα

)

+ εpρpRd

(
ηα

εαρα

)
−
∑
κ∈Icp

κ→p
Φ (4.83)

Using these definitions for the mass transfer terms, one can rewrite the balance of

entropy equation for the viable tumor tissue phase.

∂ηp

∂t
+∇·

(
ηpvp

)
−∇·

(
εpϕp

)
− εpbp

−

[
εpρpµ∗maxY

(
εfρfωif

Ks + εfρfωif

)](
ηα

εαρα

)

+εpρpRd

(
ηα

εαρα

)
−
∑
κ∈Icp

κ→p
Φ = Λα (4.84)

And substitute the solid velocity, vs, for vp.

∂ηp

∂t
+∇·

(
ηpvs

)
−∇·

(
εpϕp

)
− εpbp

−

[
εpρpµ∗maxY

(
εfρfωif

Ks + εfρfωif

)](
ηα

εαρα

)

+εpρpRd

(
ηα

εαρα

)
−
∑
κ∈Icp

κ→p
Φ = Λα (4.85)

4.4.2 Necrotic Tumor Tissue: n

The balance of entropy equation for the n phase.

∂ηn

∂t
+∇·

(
ηnvn

)
−∇·

(
εnϕn

)
− εnbn
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−
∑
κ∈Icn

(
κ→n
M

ηn

εnρn
+

κ→n
Φ

)
= Λn (4.86)

The only phase that transfers mass to the n phase is p:

p→n
M = −

n→p
M = εpρpRd (4.87)

Substitute this definition and the solid phase velocity into the equation.

∂ηn

∂t
+∇·

(
ηnvs

)
−∇·

(
εnϕn

)
− εnbn

−εpρpRd

(
ηα

εαρα

)
−
∑
κ∈Icp

κ→p
Φ = Λn (4.88)

4.4.3 Host Tissue: h

The balance of entropy equation for the h phase.

∂ηh

∂t
+∇·

(
ηhvh

)
−∇·

(
εhϕh

)
− εhbh

−
∑
κ∈Ich

(
κ→h
M

ηh

εhρh
+

κ→h
Φ

)
= Λh (4.89)

There are no transfer of mass terms including the h phase so the entropy due to mass

transfer term can be dropped out of the equation.

∂ηh

∂t
+∇·

(
ηhvh

)
−∇·

(
εhϕh

)
− εhbh −

∑
κ∈Ich

κ→h
Φ = Λh (4.90)

Substitute vs for vh.

∂ηh

∂t
+∇·

(
ηhvs

)
−∇·

(
εhϕh

)
− εhbh −

∑
κ∈Ich

κ→h
Φ = Λh (4.91)
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4.4.4 Interstitial Fluid: f

The balance of entropy equation for the f phase.

∂ηf

∂t
+∇·

(
ηfvf

)
−∇·

(
εfϕf

)
− εfbf

−
∑
κ∈Icf

(
κ→f
M

ηf

εfρf
+

κ→f
Φ

)
= Λf (4.92)

Inter-phase mass transfers involving the interstitial fluid phase include
p→f
M and

b→f
M .

p→f
M = −

f→p
M = −εpρpµ∗maxY

(
εfρfωif

Ks + εfρfωif

)
(4.93)

b→f
M = Y

ib→if
M (4.94)

Substitute these definitions into the balance of entropy equation.

∂ηf

∂t
+∇·

(
ηfvf

)
−∇·

(
εfϕf

)
− εfbf

+

[
εpρpµ∗maxY

(
εfρfωif

Ks + εfρfωif

)](
ηf

εfρf

)

−Y
ib→if
M

(
ηf

εfρf

)
−
∑
κ∈Icf

κ→b
Φ = Λf (4.95)

4.4.5 Blood: b

The balance of entropy equation for the b phase.

∂ηb

∂t
+∇·

(
ηbvb

)
−∇·

(
εbϕb

)
− εbbb

−
∑
κ∈Icb

(
κ→b
M

ηb

εbρb
+

κ→b
Φ

)
= Λb (4.96)
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The balance of entropy equation for the b phase must include mass transfer between

the b and f phases,
f→b
M .

f→b
M = −Y

ib→if
M (4.97)

This definition can be inserted for the mass transfer term.

∂ηb

∂t
+∇·

(
ηbvb

)
−∇·

(
εbϕb

)
− εbbb

+Y
ib→if
M

ηb

εbρb
−
∑
κ∈Icb

κ→b
Φ = Λb (4.98)

The sum of the entropy equations over all the phases results in the total generation of

entropy term to be greater than or equal to zero, in accordance with the the second law

of thermodynamics. Therefore the entropy inequality can be added to the conservation

of mass, momentum, and energy equations resulting in a single equation containing all

the model variables, that is greater than or equal to zero. This is the constraint provided

by the entropy equation. However, thermodynamic expressions are also required to tie

everything together in the TCAT method.

4.5 Thermodynamics

The general forms of macroscale thermodynamic equations were derived in section 3.7.

This section is divided into subsections of general solid and general fluid phases be-

cause they have different thermodynamic forms. Full closure of the thermodynamic

equations is not part of this project, but these equations are included because of their

use in the TCAT closure procedure using a constrained entropy inequality. Thermody-

namic equations are used because the entropy equation used to constrain the system of

equations does not share variables with the other conservation equations. Therefore,
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thermodynamics are used to link the conservation equations and balance of entropy to-

gether. Therefore, the purpose of this section is to present macroscale thermodynamic

equations for each phase as a reference for creating a constrained entropy inequality.

4.5.1 Solid phases: p, n, h

General solid phase classical irreversible thermodynamic expression (using s as the

general qualifier for the solid phase, and w as the general qualifier for the fluid phase).

T s =
DsEs

Dt
− θsDsηs

Dt
− µsDs (εsρs)

Dt
+ ps

Dsεs

Dt

+

〈
ηs

Ds(θs − θs)
Dt

+ ρs
Ds(µs − µs)

Dt

〉
Ωs,Ω

−
〈(

Cs
js

:σs

)
(vws − vs) ·ns

〉
Ωws,Ω

−
〈

ns·
[

2

js
σs: (∇Xx∇Xx) ·

(
vs − vs

)]〉
Ωws,Ω

+

〈{
∇·
[

2

js
σ: (∇Xx∇Xx)

]
−∇σs:

Cs
js

}
·
(
vs − vs

)〉
Ωs,Ω

+ εsσs:
Cs

js
I:ds −

〈
2

js
σs: (∇Xx∇Xx)

〉
Ωs,Ω

:ds

−∇·
〈[

2

js
: (∇Xx∇Xx)− σs:

Cs
js

I

]
·
(
vs − vs

)〉
Ωs,Ω

= 0 (4.99)

Because it has already been assumed that the solid phases move with the same

velocity, the material derivatives, rate of strain tensors, and velocities will be left as

referenced the the generic solid phase s.

Proliferative Tumor Tissue: p

DsEp

Dt
− θpDsηp

Dt
− µpDs (εpρp)

Dt
+ pp

Dsεp

Dt
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+

〈
ηp

Ds(θp − θp)
Dt

+ ρp
Ds(µp − µp)

Dt

〉
Ωp,Ω

−
〈(

Cp
jp

:σp

)
(vwp − vs) ·np

〉
Ωwp,Ω

−
〈

np·
[

2

jp
σp: (∇Xx∇Xx) ·

(
vs − vs

)]〉
Ωwp,Ω

+

〈{
∇·
[

2

jp
σp: (∇Xx∇Xx)

]
−∇σp:

Cp
jp

}
·
(
vs − vs

)〉
Ωp,Ω

+ εpσp:
Cp

jp
I:ds −

〈
2

jp
σp: (∇Xx∇Xx)

〉
Ωp,Ω

:ds

−∇·
〈[

2

jp
: (∇Xx∇Xx)− σp:

Cp

jp
I

]
·
(
vs − vs

)〉
Ωp,Ω

= 0 (4.100)

Necrotic Tissue: n

DsEn

Dt
− θnDsηn

Dt
− µnDs (εnρn)

Dt
+ pn

Dsεn

Dt

+

〈
ηn

Ds(θn − θn)

Dt
+ ρs

Ds(µn − µn)

Dt

〉
Ωn,Ω

−
〈(

Cn
jn

:σn

)
(vwn − vs) ·nn

〉
Ωwn,Ω

−
〈

nn·
[

2

jn
σn: (∇Xx∇Xx) ·

(
vs − vs

)]〉
Ωwn,Ω

+

〈{
∇·
[

2

jn
σn: (∇Xx∇Xx)

]
−∇σn:

Cn
jn

}
·
(
vs − vs

)〉
Ωn,Ω

+ εnσn:
Cn

jn
I:ds −

〈
2

jn
σn: (∇Xx∇Xx)

〉
Ωn,Ω

:ds

−∇·
〈[

2

jn
: (∇Xx∇Xx)− σn:

Cn
jn

I

]
·
(
vs − vs

)〉
Ωs,Ω

= 0 (4.101)

Host Tissue: h

DsEh

Dt
− θhDsηh

Dt
− µh

Ds
(
εhρh

)
Dt

+ ph
Dsεh

Dt
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+

〈
ηh

Ds(θh − θh)
Dt

+ ρh
Ds(µh − µh)

Dt

〉
Ωh,Ω

−
〈(

Ch
jh

:σh

)
(vwh − vs) ·nh

〉
Ωwh,Ω

−
〈

nh·
[

2

jh
σh: (∇Xx∇Xx) ·

(
vs − vs

)]〉
Ωwh,Ω

+

〈{
∇·
[

2

jh
σh: (∇Xx∇Xx)

]
−∇σh:

Ch
jh

}
·
(
vs − vs

)〉
Ωh,Ω

+ εhσh:
Ch

jh
I:ds −

〈
2

jh
σh: (∇Xx∇Xx)

〉
Ωh,Ω

:ds

−∇·
〈[

2

jh
: (∇Xx∇Xx)− σh:

Ch

jh
I

]
·
(
vs − vs

)〉
Ωh,Ω

= 0 (4.102)

4.5.2 Fluid Phases: f , b

General fluid phase thermodynamic expression using the material derivative.

T w =
DwEw

Dt
− θwDwηw

Dt
− µwDw (εwρw)

Dt
+ pw

Dwεw

Dt

+

〈
ηw

Dw(θw − θw)

Dt
+ ρw

Dw (µw − µw)

Dt
− Dw (pw − pw)

Dt

〉
Ωw,Ω

= 0 (4.103)

Interstitial Fluid: f

DfEf

Dt
− θf Dfηf

Dt
− µf

Df
(
εfρf

)
Dt

+ pw
Dfεf

Dt

+

〈
ηf

Df (θf − θf )
Dt

+ ρf
Df

(
µf − µf

)
Dt

−
Df
(
pf − pf

)
Dt

〉
Ωf ,Ω

= 0 (4.104)

Blood: b

DbEb

Dt
− θbD

bηb

Dt
− µb

Db
(
εbρb

)
Dt

+ pb
Dbεb

Dt
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+

〈
ηb

Db(θb − θb)
Dt

+ ρb
Db

(
µb − µb

)
Dt

−
Db
(
pb − pb

)
Dt

〉
Ωb,Ω

= 0 (4.105)

These preceding five thermodynamic equations, (4.100), (4.101), (4.102), (4.104), and

(4.105), are those which would be combined with the mass, momentum, energy, and

entropy equations to form a constrained entropy inequality.

4.6 Concluding Remarks

This document has covered a wide range of topics, all the way from cancer biology

to macroscale conservation equations. It is the author’s wish to have connected these

topics in a way that is approachable to readers from the field of cancer biology or from

engineering. The level of detail and use of specific terminology is likely to be formidable

to readers from both sides, but was designed to introduce both “camps” to their oppo-

site fields. Meaningful biological modeling is only possible if researchers from different

disciplines and backgrounds can come together, learn to speak one another’s language,

and begin to understand the important tenants of both areas of study. Specifically, this

document is designed to present the important discoveries made about the biology of

cancer, growth mechanisms, genetic mutation, and biological interactions to an scien-

tific, yet uninitiated reader- the engineer. It also aims to to describe to the biologist

how the engineers conceptualize the physical regions, the simplifications that must oc-

cur to render a biological system amenable to modeling, and the mathematics involved

in developing such a model.

Further motivation is for the advancement of current continuum tumor modeling.

Existing models are flawed in a number of ways and are generally vague and inconsistent

in their mathematical representations of the macroscale. This document presents a

simple, yet complete, form of a tumor model that includes all the system descriptions
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and equations needed to graduate to a more complicated model. More importantly, all

macroscale equations were derived using a rigorous, formal averaging theory to translate

the microscale to the macroscale in a complete and transparent manner. Furthermore,

any closure relations imposed on the macroscale equations included clear statements of

the assumptions made.

Another benefit of this type of model development is its flexibility. The model

presented in this chapter could be extended to include multiple species such as glucose,

oxygen, and a variety of growth factors. It could also be altered to include additional

dependencies regarding necrosis like pressure-induced necrosis, or the release of pro-

inflammatory and similar biochemical signals due to necrosis. Hypoxia, pH, and oncotic

pressure are other microenvironmental conditions of interest that could be the focus of

the model. One improvement to the model which would greatly increase its realism is

the incorporation of angiogenesis as a systematic increase in the volume fraction of the

blood phase. Constitutive relations will have to be developed carefully in collaboration

with biologists to produce meaningful equations. The model could also be used to test

treatment therapies including the transport of chemotherapeutics, which is already an

area of study in cancer modeling. Lifting the assumption of isothermal conditions

would also allow treatment by thermal ablation to be modeled. Though the lay-person

often assumes the only value of a model is its “predictiveness”, this project does not

include any numerical simulations. Instead the focus is on carefully developing an

understanding of the biology of cancer and the mathematical equations to describe it.

The author encourages the audience to value this journey undertaken to connect the

two, and not simply the destination.
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