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ABSTRACT 

LATOYA M. GRIFFIN: Interactions of Antiretroviral P rotease Inhibitors with 
Hepatic Transport Proteins: Mechanisms of Drug-indu ced Liver Injury 

 (Under the direction of Dr. Kim L. R. Brouwer) 
 

 Lopinavir and ritonavir are protease inhibitors available as a coformulation 

for the management of HIV infection.  However, liver enzyme elevations are 

associated with protease inhibitor use.  Inhibition of bile acid transport leading to 

cellular accumulation of bile acids is one proposed mechanism of drug-induced 

liver injury (DILI).  The global objective of this project was to investigate the 

influence of coadministered protease inhibitors on the hepatobiliary disposition of 

bile acids.  Canalicular excretion of bile acid transport is facilitated by the bile salt 

export pump (BSEP).  Impaired BSEP activity is a risk factor in the development 

of DILI.  Drugs that decrease BSEP function are considered liver liabilities from a 

drug development perspective.  Potent inhibitory activity of lopinavir and ritonavir 

in vitro has been demonstrated previously.  However, the combined effect of 

lopinavir and ritonavir on the hepatobiliary disposition of bile acids has not been 

determined.  Experiments were undertaken to determine the consequences of 

coadministered lopinavir and ritonavir on hepatocellular viability and bile acid 

transport.  Lopinavir, alone and combined with ritonavir, demonstrated minimal 

toxicity but inhibited the biliary excretion of taurocholate and chenodeoxycholate 

in sandwich-cultured rat hepatocytes (SCRH).  Studies in suspended rat 

hepatocytes revealed that neither lopinavir nor ritonavir altered the initial uptake 
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of either bile acid.  Contrary to expectations, 24-hour exposure to lopinavir and 

ritonavir significantly decreased measured endogenous bile acid concentrations 

in SCRH.  Lastly a genetic association study was carried out to explore the 

relationship between genetic variants in genes involved in bile acid transport or 

metabolism and risk of DILI.  A comparison of data from patients in the Drug-

induced Liver Injury Network to controls obtained from the British Birth Cohort 

revealed a significant association between the rs2919351 variant in OSTß and 

susceptibility to cholestatic and mixed liver injury.  This work demonstrates that 

10-minute lopinavir and ritonavir exposure, alone and combined, significantly 

impaired the biliary excretion of exogenously administered bile acids.  However, 

24-hour exposure to lopinavir and ritonavir evoked little toxicity in vitro.  The lack 

of toxicity may be due to protective mechanisms in normal-functioning 

hepatocytes, such as a decrease in both the synthesis and cellular retention of 

endogenous bile acids. 
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CHAPTER 1 

INTRODUCTION 

Membrane transport proteins facilitate the absorption, distribution and 

elimination of numerous xenobiotics and endogenous compounds in humans.  

Consequently, transporters may be important determinants of the pharmacokinetic 

disposition and ultimately, the efficacy and safety of therapeutic agents.  Many 

studies in knock-out rodent models and humans with loss-of-function genetic 

variants have demonstrated substantial changes in bioavailability, virologic 

resistance, and adverse drug reactions.  These findings highlight the significance of 

drug-transporter interactions.  Additionally, emerging studies in both humans and in 

vitro models (e.g. freshly isolated hepatocytes) support the hypothesis that impaired 

bile acid transport increases the risk of drug-induced liver injury (DILI).  

 1Liver toxicity is a common adverse event associated with the use of 

antiretroviral protease inhibitors (PIs).  Interestingly, the pharmacokinetic profile of 

PIs is highly variable, making it difficult to predict the risk of the development of 

hepatotoxicity in patients.  Inhibition of the bile salt efflux pump (BSEP) leading to 

the cellular accumulation of bile acids has been shown for PIs.    In an effort to better 

predict the risk of cholestasis, few clinical studies have attempted to characterize the 

                                                 
This chapter is published, in part, in Journal of Pharmaceutical Sciences. Griffin, L., Annaert P., 
Brouwer K.L. 2011 Sep;100(9):3636-54. 
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relationship between antiretroviral therapy and plasma concentrations of bile acids 

however, the link remains unclear.  Understanding the role of transport proteins in 

the overall disposition of drugs and/or bile acids is required to individualize drug 

therapy and improve health outcomes.  The first section of this chapter highlights 

clinically significant interactions of transporters with PIs.  The second and third 

sections discuss toxicity associated with PI therapy and regulation of bile acid 

synthesis and transport.  The final portion of this introductory chapter provides a 

brief overview of in vitro tools currently employed to evaluate interactions between 

drugs, endogenous compounds, and transport proteins. 

 

PART I. Influence of Drug Transport on Pharmacokine tics and Drug 

Interactions of HIV Protease Inhibitors 

Saquinavir was the first PI introduced to the U.S. market in 1995 for the 

treatment of HIV/AIDS.1 This class of life-saving antiretroviral agents has expanded 

to now include eight PIs that play an important role in the management of HIV 

infection.2 Currently, the most frequently prescribed HIV PIs include lopinavir, 

atazanavir, darunavir and fosamprenavir, each of which is typically used in 

combination with one or more Nucleoside Reverse Transcriptase Inhibitor (NRTI) in 

Highly Active Antiretroviral Therapy (HAART) regimens.3 In addition, more recent 

clinical data support the potential utility of HIV PI monotherapy in patients with 

prolonged viral suppression on HAART,4 further illustrating the unique efficacy 

profile of these antiretroviral agents. The spectacular improvements in treatment 

success and life expectancy in patients with HIV infection can be attributed, in part, 
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to the long-term suppression of HIV replication by antiretroviral regimens with 

acceptable side-effect profiles.5 HIV PIs currently are key components of first-line 

therapy in both treatment-naive and -experienced patients. A major challenge in 

antiretroviral pharmacotherapy is the potential for gradual development of viral 

resistance. The introduction of 2nd generation PIs such as darunavir, which require at 

least four concomitant mutations in the viral genome for resistance development, 

has provided clinicians with superior drugs to counter the development of 

resistance.6  

   Physicochemical properties of the HIV PIs are summarized in Table 1.1 . In 

general, HIV PIs are peptidomimetic, large molecular weight, and often poorly water 

soluble compounds.  Consistent with their physicochemical properties, HIV PIs tend 

to be highly protein bound and extensively metabolized by cytochrome P450 (CYP) 

3A4 (Table 1.8 ), with relatively short terminal elimination half-lives in plasma. Long-

term therapeutic success can be maintained only when minimum trough 

concentrations of the HIV PIs are achieved.4 Rapid elimination from plasma requires 

multiple daily doses of HIV PIs to maintain therapeutic concentrations, which 

complicates patient adherence to therapy. Ritonavir is a remarkably potent 

mechanism-based inhibitor of CYP3A4. Concomitant administration of a 

subtherapeutic dose (100-200 mg) of ritonavir as a pharmacokinetic booster 

(“enhancer”) together with HIV PIs increases exposure of lopinavir, atazanavir and 

darunavir several-fold.7  The use of ritonavir as a “boosting” agent was a major 

advance in HIV PI-based therapy,8,9 and has led to the development and marketing 

of once-daily dosage forms of HIV PIs, which has significantly increased patient 
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adherence. In addition, the clinical use of ritonavir-boosted HIV PIs has improved the 

side-effect and toxicity profile of HAART regimens.10 For example, the addition of 

ritonavir to atazanavir-based dosing regimens resulted in decreased incidence of 

lipoatrophy as compared to unboosted treatments.11 

Although the clinical strategy of using ritonavir as a boosting agent has 

enhanced the success of HIV PI-based antiretroviral regimens, it also has resulted in 

increased potential for drug-drug interactions (DDIs).12 Drugs metabolized by 

CYP3A4 exhibit much longer elimination half-lives in ritonavir-treated patients as 

compared to other patients. Additional levels of complexity with respect to DDI 

potential are encountered in patients co-infected with M. tuberculosis, an infection 

that is increasing in prevalence in resource-limited countries.13 Successful 

eradication of tuberculosis almost always requires administration of the very potent 

CYP3A4-inducer rifampicin, or the less potent but more expensive inducer rifabutin.  

These drugs reduce exposure to ritonavir-boosted HIV PIs.  

Hepatic metabolism is an important step in the systemic elimination of HIV 

PIs. Importantly, drug transporters also play a key role in the oral bioavailability, 

hepatobiliary elimination and distribution of HIV PIs to target (lymphocytes) and 

peripheral (brain) tissues. The recent approval of PIs for the treatment of hepatitis C 

has increased the number of patients who are exposed to this class of drugs, and 

emphasizes the importance of understanding factors that influence their 

pharmacokinetics and DDI potential. 
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The Impact of Transporters on Protease Inhibitor Ph armacokinetics/ 

Pharmacodynamics. Pharmacological and toxicological effects of PIs are 

determined by drug absorption and distribution which are influenced by transporter-

mediated processes.  Thus, identifying transport proteins that interact with PIs and 

understanding the magnitude of their contribution to overall drug disposition is 

critical.  Although PIs are known to inhibit active transport processes, data regarding 

the ability of PIs, themselves, to act as substrates for uptake proteins remains 

controversial.  Significant temperature-dependent uptake of ritonavir, saquinavir and 

nelfinavir into suspended rat hepatocytes, indicative of active uptake processes, has 

been reported.14  In addition to evidence provided by limited in vitro studies, the 

physicochemical properties of PIs (e.g., molecular size, protein binding, and 

lipophilicity) also should be considered.  Localization and orientation of membrane 

transporters in a generalized cell is illustrated in Figure 1.1 .  Transporters have 

been well characterized in the liver, kidney and, to a lesser extent, the brain and 

intestine.  Unfortunately, one challenge in the field is that the expression, localization 

and functional activity of transport proteins at target sites for viral transmission and 

sequestration, including the testicular system, female genital tract, lymphocytes and 

placenta are poorly characterized.  However, this lapse in scientific knowledge is 

appreciated and studies in this area are ongoing.  For an in depth discussion of the 

interactions between antiretroviral agents and transporters at these relevant organ 

systems see Kis et al. 2010.15   The following discussion serves as an overview of 

solute carrier (SLC) and ATP-binding cassette (ABC) membrane transport proteins 

involved in the uptake and efflux of PIs known to date.  
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 Impact of SLC Transporters on Protease Inhibitor 

Pharmacokinetics/Pharmacodynamics. Transporter-mediated uptake, largely 

governed by members of the SLC superfamily, may be rate limiting in the oral 

bioavailability and hepatobiliary clearance of drugs.  The most prominent transporter 

interactions with PIs involve the organic anion transporting polypeptides (OATPs) 

and organic cation transporters (OCTs); the clinical relevance of these interactions 

has been well documented. 

 

OATPs 

OATPs, which are expressed in numerous organs and tissues including the 

intestine, liver, kidney, and placenta, mediate the sodium-independent bidirectional 

transport of diverse substrates including bile acids, bilirubin and xenobiotics.16,17 

OATPs interact with several PIs in vitro.  OATP1A2, -1B1 and -1B3 expressed in 

Xenopus laevis oocytes mediate the uptake of lopinavir and saquinavir.18-20  

Darunavir transport via OATP1A2- and -1B1- also has been reported.19,20  Lopinavir, 

atazanavir, darunavir, ritonavir, and saquinavir inhibit OATP1B1- and -1B3-mediated 

CGamF accumulation in chinese hamster ovary (CHO) cells.  Inhibition of 

OATP2B1-mediated transport of estrone 3-sulfate by atazanavir, lopinavir, tipranavir, 

nelfinavir, indinavir, saquinavir, and ritonavir also has been shown in Caco-2 

cells.21,22 The clinical implications of these interactions are evident, for example, in 

the significant association between the OATP1B1 521T>C polymorphisms and 

elevated lopinavir plasma concentrations.19 Additionally, a recent pharmacogenetics 



 

7 
 

study revealed that variability in lopinavir clearance was impacted by both genetic 

variants in OATP1B1 and ritonavir plasma concentrations.23  

 

OCTs  

OCTs, which are located predominantly in the kidneys and liver, are 

electrogenic uniporters that primarily transport small cations in a sodium-

independent manner.  Transport of uncharged and anionic compounds such as 

prostaglandins by OCTs has been described.24 OCT1 and OCT3 are expressed at 

the sinusoidal membrane of liver tissue.  OCT1 is expressed exclusively in the liver 

while OCT3 has a broader range of tissue distribution.  Nelfinavir, ritonavir, indinavir, 

and saquinavir are reportedly potent inhibitors, but poor substrates, of OCT1- and 

OCT2-mediated transport.25,26  Though the contribution of OCTs to PI transport 

remains unclear, several nucleoside NRTIs are translocated by OCTs and often are 

coadministered with PIs, increasing the risk of DDIs. 

 

The Impact of ABC Transporters on Protease Inhibito r 

Pharmacokinetics/Pharmacodynamics. Members of the ABC transporter 

superfamily comprise one of the largest protein families with representatives in all 

living organisms.  The structure and function of ABC transporters are relatively 

conserved across species. ABC transporters facilitate the transmembrane 

movement of substrates by utilizing the energy generated by ATP hydrolysis.27 

Mounting evidence suggests that ABC transport proteins confer drug resistance and 

alter PI pharmacokinetics/pharmacodynamics by decreasing bioavailability, 



 

8 
 

promoting sequestration at sanctuary sites, and decreasing accumulation in target 

organs and tissues.28 This review focuses solely on ABC transporters clinically 

shown to impact the disposition of PIs.   

 

P-gp 

P-glycoprotein (P-gp; MDR1), which is expressed ubiquitously, protects cells 

from the accumulation of toxic drugs, metabolites, and endogenous compounds. P-

gp exhibits broad substrate specificity, including PIs. Expression of P-gp in the 

intestine, brain and blood-testis barrier alters oral bioavailability and intracellular 

concentrations of PIs in vivo.29-31 P-gp-mediated efflux of all currently marketed PIs 

has been demonstrated in several in vitro systems, including Caco-2 and MDCK-II 

cells.32-36  Ritonavir, lopinavir, and nelfinavir also inhibit P-gp-dependent efflux of 

calcein-AM in MDCK-II cells.37 In addition to inhibition of P-gp transport, saquinavir 

and darunavir induce P-gp mRNA expression and activity in vitro. Induction by 

darunavir increased cellular resistance, as measured by growth inhibition assays in 

LS-180 cell lines.38   

 

BCRP 

Breast cancer resistance protein (BCRP) is expressed in the liver, kidney, 

testis, GI tract and a many other tissues.  BCRP is responsible for the extrusion of a 

broad range of both endogenous and exogenous compounds.  Many PIs including 

lopinavir, nelfinavir, saquinavir, and ritonavir are effective inhibitors of BCRP-

mediated transport, but appear to be poor substrates in vitro.39-41  Although BCRP-
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mediated transport of PIs has not been elucidated, BCRP activity is known to alter 

systemic and tissue concentrations of a antiretrovirals and in particular, PIs.42 

Consequently, the likelihood of DDIs between PIs and BCRP substrates remains a 

concern. 

MRPs 

To date, there are nine members of the multi-drug resistance-associated 

protein (MRP) transporter family.  MRPs 1-5, all organic anion pumps, have been 

studied most extensively.  MRP1 and MRP2 have similar substrate specificities; 

however, localization and tissue distribution differ. MRP1 is expressed widely and 

located in the basolateral membrane, while MRP2 is localized on the apical 

membrane and its expression is restricted primarily to the liver, kidney, and intestine.  

MRP3 is expressed on the basolateral membrane of the liver, kidney and 

gastrointestinal tract.29,43 Common MRP1, MRP2, and MRP4 substrates include 

glutathione conjugates and anionic drugs. Bilirubin glucuronide is a substrate for 

both MRP2 and MRP3.44,45 MRP2-mediated transport of saquinavir, ritonavir, 

indinavir, and lopinavir has been shown in stably transfected human MDCK-II 

cells.32,46 Saquinavir, ritonavir, and atazanavir potently inhibit MRP2-mediated biliary 

efflux of CDF in human hepatocytes.47 In a panel of ABC transporter over-

expressing cell lines, atazanavir, lopinavir, and ritonavir inhibited MRP1 activity.39 

Furthermore, treatment with darunavir/ritonavir induced MRP1 protein expression in 

CD4 (+) T-cells from healthy human volunteers. MRP1-mediated efflux of 

carboxyfluorescein diacetate increased upon co-administration with efavirenz.48 The 

contribution of MRPs to the transport of PIs remains unclear. 
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Drug-drug Interactions Involving Transporters and H IV Protease 

Inhibitors.  Numerous in vitro and in vivo studies have demonstrated that most HIV 

PIs interact with both CYP3A4 and P-gp, either as a substrate, inhibitor or 

inducer.8,49,50 Given the dominant roles of these proteins in drug disposition, most 

clinical DDI studies have focused on the contribution of CYP3A4 and/or P-gp.8 In 

addition to the CYP3A4-mediated inhibition of PIs by ritonavir, a beneficial DDI that 

is utilized chemically in HAART regimens, synergistic effects have been observed 

with other combinations of HIV PIs.  Dam and co-workers suggested that the 

synergistic inhibition of HIV-1 by a combination of saquinavir with lopinavir or 

atazanavir could be explained, at least in part, by enhanced inhibition of efflux 

mechanisms from target cells.51 The complexity of HIV PI-based treatment 

regimens, often in combination with non-antiretroviral medication (e.g. anti-

tuberculosis drugs), increases the potential for clinically significant DDIs (see 

www.hiv-druginteractions.org for a summary of risks and severity of antiretroviral 

DDIs). Unfortunately, details regarding the underlying mechanisms responsible for 

these DDIs are lacking, but clearly extend far beyond the involvement of CYP3A4 

and P-gp. Clinically relevant changes in PI concentrations often may be the net 

result of multiple DDIs that have opposite effects (e.g. concomitant induction and 

inhibition); the outcome frequently depends on the exact dose and regimen (e.g. 

etravirine and darunavir/ritonavir in Table 1.2 ).52 Another reason for the lack of 

mechanistic information is that the relative roles of drug metabolizing enzymes and 

transporters in drug disposition and DDIs remain poorly understood. Tables 1.2 and 

1.3 provide a summary of clinically relevant DDIs involving HIV PIs and drug 
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transporters; specific DDIs involving HIV PIs as ‘perpetrator’ drugs (Table 1.2 ), and 

those mediated by HIV PIs as ‘victim’ drugs (Table 1.3 ), are discussed below.  

 

Mechanisms of HIV Protease Inhibitor DDIs: Drug Tra nsporter Inhibition. 

HIV PIs are both substrates and potent inhibitors of some SLC and ABC transport 

proteins, and typically behave as perpetrators when considering DDIs elicited by 

transporter inhibition.  In addition, when more than two HIV PIs are combined, 

different PIs can act as the perpetrator and victim. This is illustrated by the effect of 

atazanavir on the pharmacokinetics of saquinavir when coadministered with 

ritonavir.53 Saturation and/or inhibition of efflux transporters modulating HIV PI 

accumulation may explain this interaction.  

The most well documented DDIs with respect to transporter inhibition involve 

HIV PIs and the disposition of well-known P-gp substrates including digoxin, 

fexofenadine, and loperamide. For example, single or multiple dose regimens with 

indinavir/ritonavir increased fexofenadine plasma AUC up to 5- and 4.2-fold, 

respectively.54 The most pronounced effects on digoxin exposure were reported after 

300 mg bid ritonavir or 400/100 mg lopinavir/ritonavir in combination with 

intravenous or oral digoxin doses of 0.5 mg.55 Loperamide exposure was increased 

more than 3-fold in the presence of 600 mg ritonavir.56 Case reports of elevated 

tacrolimus or sirolimus concentrations when combined with ritonavir-boosted 

amprenavir or darunavir also support pronounced P-gp inhibition.57,58 HIV PIs 

appear to exhibit much less pronounced (up to 37% increase) effects on the plasma 

exposure of the NRTI and P-gp substrate tenofovir following co-administration of the 
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disoproxil fumarate prodrug of tenofovir.59 Minor increases in tenofovir plasma AUC 

values were observed, which were attributed to inhibition of P-gp mediated intestinal 

efflux of the prodrug.59,60 

Compared to ABC transporter-based DDIs, much less is known about the 

potential role of HIV PIs in DDIs associated with uptake transporters. Limited data 

suggest that hepatic uptake transporters of the SLC family (specifically OATP1B1 

and OATP1B3) are likely to play key roles in some DDIs involving HIV PIs. Shitara 

recently reviewed current clinical evidence demonstrating substantial alterations in 

the pharmacokinetics of OATP1B1 substrates (i.e. statins, repaglinide, and 

bosentan) in combination with the OATP1B1 inhibitor cyclosporin A. These data 

revealed increases in the AUC of atorvastatin of up to 9-fold.61 Pronounced 

increases in the AUC of the lipid-lowering drugs atorvastatin and rosuvastatin have 

been reported with coadministration of boosted lopinavir and tipranavir; OATP1B1 

inhibition has been suggested as a likely mechanism to explain this interaction.62  

Moderately decreased exposure to the NRTI elvucitabine when combined with a 

single 300 mg ritonavir dose may be attributed to ritonavir-mediated inhibition of 

intestinal uptake transporters.63 

Finally, it is noteworthy that even though pronounced species differences 

exist,47 several animal studies also support the role of transporters in mediating DDIs 

involving HIV PIs. For example, ritonavir enhanced darunavir absorption via P-gp 

inhibition in mouse in situ intestinal perfusions.64  
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Mechanisms of HIV Protease Inhibitor DDIs: Drug Tra nsporter Induction. 

Data obtained in various in vitro models have shown that HIV PIs show affinity for 

the pregnane X receptor (PXR), activation of which is clearly linked to regulation of 

drug metabolizing enzymes as well as drug transporter expression.65,66 Induction of 

drug metabolizing enzymes by HIV PIs is a common mechanism underlying clinically 

relevant PI-associated DDIs.67,68 Much less information is available with respect to 

the exact role of altered expression of drug transporters and changes in the 

pharmacokinetics of coadministered drugs relying on those drug transporters. 

Nevertheless, numerous examples in Table 1.6  illustrate that most drug transporters 

are susceptible to the inducing effects of HIV PIs. Clinically relevant DDIs that may 

be attributed, at least in part, to HIV PI-mediated up-regulation of P-gp activity are 

included in Table 1.2 . For example, there is a 2-3-fold decrease in loperamide 

exposure when combined with tipranavir/ritonavir (TPV/r).69 The latter PI 

combination also significantly reduced exposure to the P-gp substrate digoxin, 

presumably through induction of P-gp, following concomitant doses of TPV/r.70  It 

should be noted that the inducing effects of tipranavir predominate in contrast to 

ritonavir, which primarily inhibits P-gp when combined with loperamide or digoxin. 

The 25% reductions in fexofenadine Cmax and half-life when combined with nelfinavir 

for 1 week, may be explained by induction of intestinal P-gp and/or hepatic OATPs.71  

The reduced exposure to delaviridine also could be due to induction of P-gp by 

amprenavir.72 The NNRTI etravirine can be combined with several boosted PIs, 

including darunavir, lopinavir, and saquinavir;73 however, when combined with 

TPV/r, the plasma exposure of etravirine is decreased by 76%.  As etravirine is not a 
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P-gp, BCRP or MRP substrate,74,75 induction of uptake transporters (e.g. OATPs) by 

tipranavir and/or ritonavir (in addition to induction of drug metabolizing enzymes) 

may contribute to this interaction. 

Combined use of rifampicin, an anti-tuberculosis agent and potent inducer of 

drug metabolizing enzymes and transporters, with antiretroviral medication including 

HIV PIs is of high clinical relevance. As outlined in Table 1.3 , reductions in HIV PI 

exposure when combined with rifampicin range from 75% to 89%, even in the 

presence of ritonavir as a boosting agent. When different LPV/r regimens combined 

with rifampicin were evaluated by La Porte et al., LPV/r combinations with higher 

ritonavir dose levels (i.e. LPV/r 400/400 > LPV/r 800/200) appeared to provide better 

compensation for the inducing effects of rifampicin.76  This was especially reflected 

in the Cmin concentrations achieved with the LPV/r 400/400 dose regimen, which 

tended to be comparable to the Cmin concentrations achieved with the reference 

treatment of LPV/r 400/100 in the absence of rifampicin. Therefore, the use of 

rifabutin rather than rifampicin in the management of M. tuberculosis infection in HIV 

positive patients on antiretroviral therapy is highly recommended. 

 

Transporter-mediated Processes Underlying Toxicity of HIV PIs . Both 

endogenous and exogenous (e.g. drugs) compounds are substrates for transporters.  

Interference of drugs with endogenous substrate transport may constitute a 

mechanism of drug-mediated toxicity. For example, interference of certain drugs 

(e.g. bosentan, troglitazone) with hepatic bile salt transport has been implicated as 

one mechanism in the development of drug-induced cholestasis.77  Several HIV PIs 
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have been shown to interact with bile salt disposition in human and rat 

hepatocytes,78 and this may explain, at least in part, the hepatotoxicity observed in 

some patients taking HIV PIs.79 Rotger et al. quantified the effect of HIV PI-

containing antiretroviral therapy on the incidence of hyperbilirubinemia in 96 HIV-

infected patients. Atazanavir and indinavir (but not lopinavir, saquinavir, ritonavir, 

and nelfinavir) exhibited an increased incidence of elevated serum bilirubin 

concentrations.80 Inhibition of the bilirubin conjugating enzyme UGT1A1 by these PIs 

has been proposed as a potential mechanism underlying this interaction. However, 

in vitro data generated by Campbell et al.81 and Ye et al.47 also support potent 

inhibition of OATP1B3, the bilirubin-transporter, by indinavir and atazanavir. As 

noted in Table 1.7 , the altered lipid metabolism associated with HIV PI-based 

therapy may be caused by inhibition of transport of the endogenous substrate 

palmitate.82 

 

Influence of HIV Infection, Co-infection and Antire troviral Therapy on 

Transporters: Implications for Protease Inhibitor P harmacokinetics/ 

Pharmacodynamics. The effect of HIV infection on transporter expression and 

activity is not well understood.  Effects of diseases on P-gp mRNA expression and 

activity have been studied more extensively than other transport proteins. P-gp 

mRNA expression was decreased in leukocytes and PBMCs of SHIV infected 

macaques; changes in expression were more pronounced in animals receiving 

antiretroviral treatment that included indinavir.  However, indinavir decreased P-gp 

expression, making it difficult to determine whether the disease state or indinavir 
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itself were responsible for the observed effects;83 similar findings have been reported 

in humans.  Lucia and colleagues reported that P-gp function in peripheral blood 

lymphocytes, as measured by rhodamine-123 efflux, was decreased in HIV-infected 

patients.  Separate clinical studies in patients with HIV infection relative to healthy 

volunteers support these findings, although expression of MRP1 in PBMCs was not 

altered.84 Increased MRP-mediated efflux also has been reported in patients with 

primary HIV infection that strongly correlates with disease progression.85  In contrast, 

a time-dependent significant increase in P-gp expression in PBMCs from HIV+ 

individuals has been reported.86 

The influence of hepatitis C co-infection on transporter function, and the 

potential implications for antiretroviral therapy, has been the subject of recent 

investigations due to the increasing prevalence of co-infection.  MRP4 protein 

expression is induced in patients with cholestasis and animals with common bile 

duct ligation. These changes may facilitate compensatory MRP4-mediated 

basolateral efflux of endogenous compounds such as bile acids.87-90 MRP2 mRNA 

levels also are significantly decreased in human HCV-infected liver tissue relative to 

non-infected tissue.91 In addition, significant reductions in OCT1 and OATP1B1 

mRNA which correlated with hepatitis C progression also have been reported in 

humans.92   

MRP1 expression in total human lymphocytes is unaffected by atazanavir 

treatment, but increased in human brain microvascular endothelial cells (HBMECs).  

P-gp expression, however, was increased in both total lymphocytes and HBMECs.93 

In human PBMCs, efavirenz-mediated induction of MRP1 and MRP6 mRNA has 
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been reported.  Tenofovir also was associated with a reduction in P-gp, MRP1, 

MRP5, and MRP6 mRNA expression in humans.94  

Regulation of transporter expression by nuclear receptors such as PXR and 

CAR is now well-established.  For example, induction of P-gp and MRP1 by 

ritonavir, and P-gp by saquinavir, both PXR agonists, has been reported.95-97  

Although a reduction in MRP1 protein expression in PBMCs of healthy volunteers 

following administration of darunavir/ritonavir was observed, the clinically relevant 

consequences of these changes remain unclear.48 

Also, proinflammatory cytokines TNF-α, IL-1ß, and IL-6 are reportedly 

increased in HIV-infected patients and have been shown to modulate key 

transporters in vitro.98-100 For example, all three aforementioned cytokines decreased 

MRP2 mRNA and protein expression in sandwich-cultured human hepatocytes.  In 

the same study, IL-6 and IL-1ß BSEP mRNA expression was decreased while 

protein levels were increased.99  NTCP, OCT1, OCT2, OATP1B1, -1B3, and -2B1 

mRNA levels following 48-hour exposure to TNF-α or IL-6 were decreased. In 

addition, P-gp, MRP2, and BCRP mRNA were also reportedly decreased by IL-6. 

TNF-α also decreased BSEP mRNA and, conversely, increased BCRP and MRP3 

protein expression levels.100 Initiation of antiretroviral therapy is associated with a 

reduction in proinflammatory cytokine levels.101 Cervia and colleagues report 

significantly decreased TNF-α and a nonsignificant trend towards reduced IL-6 in 

HIV-infected children initiating or changing antiretroviral therapeutic regimens.98   

Evidence in the literature demonstrating a direct effect of HIV infection, co-

infection and HAART therapy on transporter phenotype and function remains limited 
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and controversial for a number of reasons.  The contribution of HIV infection, 

underlying symptoms, co-infection and antiretroviral therapy to pathophysiological 

changes are multifactorial and difficult to distinguish. In addition, appropriate models 

to investigate the intricate relationships are limited.  The effect of HIV infection and 

co-infection on transporter function is the subject of ongoing investigations.  

HIV PIs that interact with transport proteins are likely candidates for DDIs 

resulting in toxicity or the development of cellular resistance.  Consequently, 

chemotherapeutic agents that exhibit minimal interactions with transport proteins 

such as P-gp are preferred.102 Conversely, therapeutic agents that competitively 

inhibit transporters governing efflux may increase victim drug concentrations in 

relevant organs and tissues (e.g. lymphocytes), thereby enhancing efficacy and 

decreasing pill burden.   For example, Pluronic P85, an amphiphilic block copolymer 

and P-gp inhibitor, increases saquinavir and nelfinavir accumulation in MDCKII-

MDR1 cells.103 Modulation of transport function is particularly promising given the 

difficulty of antiretrovirals to penetrate sites of viral sequestration, such as the brain, 

which expresses a number of efflux transporters known to interact with PIs, including 

P-gp, BCRP, and MRPs.104-106 In addition to transporter interactions, HIV PIs may 

interact with cytochrome P450s, modify posttranscriptional regulation of nuclear 

receptors, and alter bile acid biosynthesis and metabolism.  Gender, genetic 

polymorphisms and lifestyle choices such as smoking and alcohol consumption also 

must be taken into consideration when trying to predict the likelihood of drug-

transporter interactions.  Toxicity and efficacy associated with these interactions is 

undoubtedly multifactorial and remains difficult to predict.  However clinicians, 



 

19 
 

scientists and regulatory agencies are becoming increasingly aware of the 

importance of understanding the dynamics of these relationships and are working 

together to ensure the emergence of safe and efficacious chemotherapeutic 

treatment options.  

 

PART II.  Hepatotoxicity Associated with Lopinavir and Ritonavir  

LPV is only marketed in combination with RTV as a fixed-dose co-formulation 

under the tradename Kaletra®.  LPV combined with RTV has become a front-line 

therapy in the treatment and management of HIV-1 infection.  Despite the success of 

antiretroviral treatment, PI-associated hepatotoxicity, defined as > 5 times the upper 

limit of normal ALT or AST levels, may necessitate discontinuation of therapy and, 

consequently, virologic failure.107  An accurate assessment of the incidence of PI-

related hepatotoxicity in humans is difficult to establish due to limitations in study 

designs including patient inclusion/exclusion criteria, comorbidities, concomitant 

medications, and limited follow up. Although the results of studies combining data 

from multiple cohorts and databases continue to emerge, inconsistent definitions of 

liver toxicity and variability in patient populations often consisting of co-infected 

patients on numerous non-ARV drugs confound the interpretation of data.108 

 Unfortunately, mechanisms of liver toxicity related to PI exposure are poorly 

understood.   The idiosyncratic nature of PI-induced hepatotoxicity makes prediction 

of adverse events in patients challenging.  Growing evidence suggests that several 

factors increase the risk of hepatotoxicity in PI-treated patients including hepatitis B 

or hepatitis C co-infection, baseline liver function tests, length of drug therapy, and 
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gender (females exhibit a higher incidence than males). In an open, prospective, 

observational study conducted by Meraviglia and colleagues, 9.1% of patients 

treated with LPV/r developed liver enzyme elevations within the first 115 + 85 days 

of initiating treatment.  Of these patients, ~75% and 25% exhibited grades 2 and > 3 

toxicity, respectively.109 In a one-year observational study conducted by Bongiovanni 

et al., hepatitis C co-infected patients treated with PI-containing HAART regimens 

exhibited a 7.4-fold greater risk of discontinuing LPV/r therapy due to drug-related 

adverse events, including liver toxicity.  Additionally, high dose RTV has been 

identified as a risk factor for patients on ARV therapy.110  RTV is now coadministered 

primarily at subtherapeutic doses in combination with other PIs to enhance their 

systemic concentrations.  Thus, clinical reports of liver toxicity directly associated 

with high dose RTV has decreased over the years. 

 The pathogenesis of PI-associated liver injury remains unclear.  One 

proposed mechanism is immune-mediated hypersensitivity in which the  immune 

system’s recognition of potential viral pathogens is restored following the successful 

initiation of HAART therapy, after which fulminant viral hepatitis ensues.111   Harrill et 

al. reports an association between polymorphisms in the CD44 gene and high serum 

ALT levels after acetaminophen exposure in two separate patient cohorts.  This 

gene encodes the CD44 antigen which is involved in an array of cellular functions 

including lymphocyte activation and tumor metastasis.  Thus, differences in genes 

associated with the innate immune response may contribute to the variability in 

pharmacologic and toxicologic responses to drugs.  



 

21 
 

The liver is the principal site of metabolism for PIs.  Another potential 

mechanism of PI-induced liver injury is that disturbances in metabolic pathways may 

cause an accumulation of parent compound and/or reactive metabolites, ultimately 

producing mitochondrial dysfunction.  A recent review by Tuijos and colleagues 

highlights mitochondrial toxicity, typified by the deposition and accumulation of fat in 

hepatocytes, associated with a number of drugs including amiodarone and 

valproate.112  The discovery that antiviral nucleoside analogs inhibit mitochondrial 

DNA polymerase gamma at physiological doses led to a black box warning 

regarding mitochondrial toxicity with the use of these compounds.113 

A final potential mechanism of toxicity, which this project explores, is the 

inhibition of bile acid transport leading to the hepatocellular retention of bile acids 

(i.e., cholestasis). Perturbation of BSEP, the biliary efflux transporter, has been 

suggested to be a mechanism of DILI for a number of drugs reported to cause 

cholestasis such as troglitazone and bosentan.77,114 Evidence supporting 

interference with bile salt transporters as a mechanism of DILI continues to emerge.  

Consequently, a number of in vitro methods and models, including sandwich-

cultured hepatocytes, are now employed to screen for drug interactions with BSEP 

to predict and decrease the risk of DILI in humans.115,116 

 

PART III.  Bile Acid Synthesis, Hepatic Transport, and Molecular Regulation 

A.  Bile Acid Synthesis. 

  Bile acids, the main constituents of bile, are essential for the secretion of 

cholesterol from the liver.  Additionally, bile acids play a major role in the molecular 

regulation of enzymes and transporters involved  in the metabolism and distribution 
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of endogenous and exogenous compounds.117 Bile acids are formed by the 

conversion of cholesterol in the liver via two pathways: the classical (or neutral) 

pathway and the alternative (or acidic) pathway.  The classical pathway is common 

to all mammals, and accounts for ~75% of the total bile-acid pool.   Cholesterol 7 α-

hydroxylase (CYP7A1) is the first, rate-limiting enzyme in the classical pathway 

whereas the alternative pathway is initiated by sterol 27-hydroxylase (CYP27A1).118  

In the alternative pathway oxysterol intermediates are generated by 25-

hydroxycholesterol 7-alpha-hydroxylase (CYP7B1).  Sterol 12α-hydroxylase 

(CYP8B1) catalyzes the hydroxylation at position 12 of the steroid nucleus, forming 

the primary bile acid, cholic acid (CA) in both pathways.  All 7α-hydroxylated sterols 

undergo a series of enzymatic steps ultimately ending in their conversion to primary 

bile acids.119,120 A detailed depiction of bile acid synthesis is presented in Figure 1.3 .   

CA and chenodeoxycholic (CDCA) acid are the main primary bile acids 

common to most species.  Primary bile acids are those formed in the liver via the 

synthetic pathways while secondary bile acids are formed by intestinal bacteria.  CA 

and CDCA are differentiated by the number and position of hydroxyl groups.121,122  

Cholic acid has 3 hydroxyl groups while chenodeoxycholic acid (identified in the 

domestic goose, hence the prefix “cheno”) has only 2 hydroxyl groups (thus, the 

term “deoxy”).  In humans, the most abundant pimary bile acids, in addition to CA 

and CDCA, are their respective secondary bile acids, deoxycholic acid (DCA) and 

lithocholic acid (LCA).   In rats, CDCA is also converted to muricholic acid.123  Most 

bile acids are conjugated predominantly to either glycine (in humans) or taurine (in 
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rats).117  A list of serum bile acids and their concentrations in rats is provided in 

Table 1.9 .   

 

B.  Hepatic Transport of Bile Acids 

Following synthesis in the liver, bile acids are secreted into the bile and stored 

in the gallbladder.  Gallbladder contractions transfer the stored bile into the small 

intestine.   Once in the intestine, biliary bile acids move from the duodenum to the 

jejunum, and then into the ileum.117   The liver maintains bile acid homeostasis via 

negative feedback regulatory mechanisms.  Approximately 95% of bile acids are 

reabsorbed in the ileum, while the remaining bile acids undergo bacterial 

metabolism, forming secondary bile acids.  The portal circulation carries primary and 

secondary bile acids back to the liver where they are taken up primarily by active 

transport processes, completing the enterohepatic recycling process.  Enterohepatic 

recirculation (illustrated in Figure 1.4 ) enables efficient reusage of bile acids, and 

allows bile acids to act as regulators of their own synthesis and transport.121,122   

The hepatocyte contains both basolateral (sinusoidal) and apical (canalicular) 

membrane domains. Bile acids are transported to and concentrated in the bile via 

active transport systems.124  Bile acids move from the portal circulation into 

sinusoidal blood and through fenestrae, or pore-like openings, into the space of 

Disse. Basolateral uptake of bile acids into the hepatocyte is the initial step in the 

hepatic elimination of bile acids.  Once disassociated from albumin, bile acids readily 

transverse the basolateral membrane via transport proteins, as detailed below.125   
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The canalicular membrane forms the border of the bile canaliculus and serves 

as the primary excretory route of bile acids.  Biliary constituents are secreted into the 

bile against a steep concentration gradient; thus, canalicular excretion is the rate-

limiting step in biliary elimination.126  The following section highlights the localization 

and function of key bile acid transport proteins and discusses potential clinical 

implications of genetic defects. 

 

Basolateral Transport Proteins 

 

Sodium-taurocholate cotransporting polypeptide (NTCP) mediates the 

sodium-dependent uptake of conjugated bile acids from the portal blood.   NTCP 

electrogenically transports sodium ions and bile acid molecules simultaneously with 

a stoichiometry of 2:1.127  NTCP preferentially transports taurine- and glycine-

conjugated bile acids relative to the unconjugated species.  Also, NTCP displays a 

higher affinity for conjugates of dihydroxy bile acids (chenodeoxycholate and 

deoxycholate) than for conjugates of trihydroxy bile acids (cholate).128  To date, no 

known genetic mutation in NTCP has been associated with liver disease. However, 

numerous studies have demonstrated that NTCP mRNA and/or protein expression is 

downregulated in cholestatic conditions such as progressive familial intrahepatic 

cholestasis (PFIC), biliary atresia, chronic hepatitis C, and late stage primary biliary 

cirrhosis.129-132  Although genetic variants in NTCP have been identified, most 

variants display transport activity comparable to wildtype NTCP with the exception of 
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the c.668T>C variant, which exhibits minimal taurocholate and cholate transport and 

a greater affinity for rosuvastatin.133,134 

  

Organic Anion Transporting Proteins (OATPs) comprise a family of 

multispecific organic anion transporters that are responsible for the sodium-

independent uptake of bile acids as well as a broad range of organic anions and 

cations.  OATP1A2 transports a number of endogenous and exogenous substrates 

including conjugated and unconjugated bile acids, bilirubin, dehydroepiandrosterone 

sulfate (DHEAS), estrogen conjugates, and the antihistamine fexofenadine; 

OATP1A2 appears to contribute only minimally to total bile acid uptake.135  While 

there is overlap between OATP1B1 and -1A2 substrate specificity, OATP1B1 is 

reportedly the most important OATP transporter involved in sodium-independent bile 

acid uptake in humans.  Interestingly, Xiang et al. reported significantly higher 

fasting plasma bile acid concentrations in individuals with OATP1B1 polymorphisms, 

supporting the premise that OATP1B1 plays a key role in overall bile acid uptake.136  

OATP1B3 also transports conjugated bile acids; however, the involvement of 

OATP1B3 in total bile acid transport remains unclear.   

Rodent Oatp1a1 substrates are similar to OATP1A2, including conjugated 

and unconjugated bile acids.  Oatp1a1 is the most important sodium-independent 

bile acid uptake transporter in rats.135 Two additional transporters, Oatp1a4 and -

1b2, have been demonstrated to play a lesser role in bile acid uptake, relative to 

Oatp1a1, in rat.135  
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Multidrug Resistance-associated Proteins (MRPs) are ATP-dependent 

efflux transporters.  MRP3 and MRP4 are located on the basolateral membrane of 

hepatocytes.   MRP3 predominantly transports glucoronidated substrates such as 

mono- and bisglucuronosyl bilirubin.  Although rat Mrp3 has been shown to transport 

bile acids, including taurocholic acid and glycocholic acid with high affinity, human 

MRP3 only transports glycocholic acid with low affinity.137-139 Conversely, MRP4 

mediates the transport of monoanionic bile acids in a glutathione-dependent 

manner.140,141  Thus, MRP4 may contribute to the basolateral efflux of glutathione 

and bile acids from the hepatocyte into blood or across the apical membrane of renal 

proximal tubules.  

Under normal physiological conditions, translocation of bile acids across the 

basolateral membrane is predominantly influx, but under cholestatic conditions, 

basolateral efflux of bile acids via MRP3 and MRP4 is upregulated.142  MRP4 

reportedly transports sulfated bile acids and is significantly induced in the livers of 

farsenoid x receptor (FXR) null mice.90  Additionally, Denk et al. demonstrated up-

regulation of Mrp4 in the liver and down-regulation in the kidney of bile duct ligated 

rats.87 

 Although hepatic MRP3 expression in human livers under “normal” 

conditions is modest, induction of MRP3 has been reported in patients with primary 

biliary sclerosis and in individuals with Dubin-Johnson syndrome, a rare disorder 

characterized by prolonged conjugated hyperbilirubinemia.143  Additionally, 

increased sulfated bile acids in the serum under cholestatic conditions, such as 

progressive familial intrahepatic cholestasis-2 and -3, support the premise that 
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MRP3 and MRP4 are induced as a hepatoprotective mechanism to prevent the 

intracellular accumulation of potentially toxic bile acids.130   

   

Apical Transport Proteins 

 

Bile Salt Export Pump (BSEP)  is the predominant canalicular transport 

protein responsible for the translocation of monovalent bile acids into the bile.124,126  

Modest levels of Bsep mRNA expression in the kidney, brain, and intestine of rats 

has been reported.  However, rodent Bsep is almost exclusively and homogenously 

expressed in the liver.144-146  In humans, high levels of BSEP mRNA were reported in 

both the testis and the liver.147  Low levels of Bsep also have been demonstrated in 

rat and human placenta during pregnancy.148 Studies in Sf9 and HEK293 cellular 

systems reveal that cholate as well as the taurine and glycine conjugates of cholate 

and chenodeoxycholate are transported by rat Bsep with high affinity (km values 

between 2 and 22 µM).  Similarly, human BSEP has been shown to transport 

taurocholate, glycocholate, and taurochenodeoxycholate.128 In humans, BSEP 

mutations have been associated with type 2 PFIC.149 Regulation of BSEP 

expression by bile acids via activation of FXR also has been reported.150  FXR-

mediated induction of BSEP is another hepatoprotective response to overcome 

cholestatic conditions.151  

Multidrug Resistance-associated Protein 2 (MRP2) , first identified in the 

apical membrane of human and rat hepatocytes, facilitates the canalicular excretion 

of various exogenous and endogenous compounds including sulfate conjugates, 
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glutathione conjugates, and some unconjugated drugs like ampicillin and 

irinotecan.45,152  MRP2 also mediates the efflux of conjugated bilirubin and bile acids 

as a hepatic detoxification mechanism.124 Several genetic polymorphisms in MRP2  

also have been associated with Dubin-Johnson syndrome.153 Stimulation of ATP-

dependent vesicular bile acid transport by E217ßG has been shown in MRP2-

expressing Sf9 vesicles.154 

 

C.  Molecular Regulation of Bile Acid Homeostasis 

 Bile acid synthesis, metabolism, and transport processes are tightly regulated 

by a number of feedforward and feedback mechanisms at both the gene 

transcription level and posttranscriptionally. Bile acids are natural detergents, and 

can elicit mitochondrial toxicity by increasing membrane permeability, oxygen free 

radicals, and lipid peroxidation.155  Conversely, bile acids themselves act as 

signaling molecules in the regulation of enzymes and transport proteins involved in 

the metabolism and transport of bile acids, thereby preventing cellular accumulation 

and damage.124 

 Several nuclear hormone receptors and other transcriptional factors are key 

in the molecular regulation of bile acid formation and transport.  Bile acids are 

activating ligands for FXR which, in concert with its heterodimer partner retinoid X 

receptor (RXR), is a transcription factor for several bile acid transporters, including 

BSEP.124  Drugs like rifampin as well as endogenous compounds including 

lithocholate reportedly act as ligands for pregnane X receptor (PXR) in rodents and 

steroid X receptor (SXR) in humans to upregulate Oatp2 and Mrp2, respectively. 
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Upregulation of CYP7A1 by activation of the liver X receptor (LXR), culminating in 

increased bile acid synthesis, has been demonstrated by oxysterols.124  

 Wagner and colleagues demonstrated that agonists of the constitutive 

androstane receptor (CAR) and PXR stimulate alternate bile acid detoxification and 

elimination pathways in common bile duct-ligated mice.  Alterations in these 

pathways included induction of efflux transporters Mrp2-4 and upregulation of 

sulfotransferase (SULT) 2A1, a key enzyme in bile acid sulfation, as well as uridine 

diphosphate (UDP)-glucuronosyltransferase 1A1, the enzyme responsible for 

bilirubin glucuronidation.  These modifications resulted in decreased bile acids and 

bilirubin levels in plasma.156,157   

 Drugs and bile acids that alter hepatobiliary transporters have been employed 

as therapeutic drug targets.  Ursodeoxycholic acid (UDCA), for example, induces the 

expression and function of multiple transporters and enzymes at numerous levels 

including Mrp2, Bsep, and CYP3A4.  As such, evidence in the literature supporting 

the use of UDCA to promote adaptive reponses to combat cholestasis continues to 

emerge.158,159  

  The association between cholestasis, a common phenotype in a number of 

disease states, and altered expression and function of key bile acid enzymes and 

transporters remains unclear.  The coordinated regulation of hepatic bile acid 

formation, metabolism, and transporter-mediated elimination is an intricate, 

multifactorial adaptive system designed to preserve the integrity of the liver.  

However, as data illustrating the effects of molecular changes on bile acid 
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homeostasis are unveiled, therapeutic options for the management of cholestasis 

will continue to increase. 

 

Part IV.  In vitro Model Systems to Investigate the Hepatobiliary Tra nsport of 

Drugs and Endogenous Compounds 

 The concept that key drug-transporter interactions can influence the overall 

disposition of compounds is gaining recognition in the field.  To date, in vitro models 

used to examine hepatic uptake and excretion are limited to transfected systems 

and cellular preparations from liver tissue.  Transfected systems are useful to 

evaluate interactions between drugs and specific transport proteins; however, it is 

difficult to determine the relative contribution of each protein to the overall disposition 

of a given substrate or inhibitor.  Additionally, the presence of endogenous 

transporters in transfected systems can make it difficult to accurately interpret 

experimental findings. 

Freshly isolated hepatocytes in suspension are often employed to evaluate 

drug-transporter interactions.  Limitations of this system, such as the rapid decline in 

cellular viability and an inability to distinguish between canalicular and basolateral 

efflux, confine the utility of this model to measuring short-term metabolism and 

characterizing initial hepatic uptake of substrates. Freshly plated hepatocytes in a 

gel entrapped design, i.e. sandwich-cultured hepatocytes, represent a diverse tool 

useful in evauating a number of physiological processes including hepatobiliary 

disposition of compounds, molecular regulation of transporters, and 

hepatotoxicity.160  Hepatocytes cultured in this configuration exhibit liver specific in 



 

31 
 

vivo properties such as cellular polarity, intact bile canalicular networks, and the 

formation and secretion of numerous endogenous substances including albumin, 

fibrinogen, urea, and bile acids.161  Additionally, studies demonstrating that calcium 

depletion disrupts tight junction networks of the bile canaliculi makes the model 

suitable for examining both the biliary excretion of compounds as well as the 

inhibitory potential of compounds on the biliary excretion of model substrates.162  

Sandwich-cultured hepatocytes are very useful to assess the CYP450 induction 

potential of compounds.  Studies performed using typical inducers demonstrate that 

sandwich-cultured hepatocytes retain induction responses similar to those observed 

in vivo.163   

In general, there are numerous powerful in vitro tools to investigate liver 

specific processes, each with advantages and disadvantages. The in vivo processes 

that govern drug disposition, efficacy, and toxicity are multifactorial.  Consequently, 

while there is currently no comprehensive in vitro model to accurately predict in vivo 

interplay between drugs, transporters and metabolic enzymes, the combined 

application of a variety of in vitro model systems provides valuable insight to 

identifying safe, effective drug candidates.   

 

Part V. Goals and Specific Aims 

 The global objective of this dissertation project was to develop a mechanistic 

understanding of how impaired bile acid transport proteins contribute to DILI.  

Particularly, the influence of combination antiretroviral PIs, LPV and RTV, on the 

hepatobiliary disposition of radiolabelled and endogenously formed bile acids was 
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investigated.  Recent literature demonstrated that individually, LPV and RTV are 

potent inhibitors of BSEP.  However, LPV is only available as a coformulation with 

RTV; their additive effect on BSEP remains unclear.  Thus, the combined effect of 

LPV and RTV on bile acid transport is a fundamental question that represents the 

cornerstone of the present work.  Several in vitro model systems, including freshly 

isolated suspended and sandwich-cultured hepatocytes were employed to conduct 

these investigations.  A secondary goal of this dissertation was to determine whether 

genetic variants in genes involved in bile acid transport or synthesis predispose 

patients to DILI.   

 

This dissertation addresses the following specific aims: 

SPECIFIC AIM 1: Elucidate the effects of LPV and RTV, alone and combined, on 

hepatocellular toxicity and hepatobiliary bile acid transport. 

Hypothesis: Coadministration of PIs increases the severity of inhibition of BA 

transport and, consequently, hepatocellular toxicity.  

Experimental Approach: 

• Following 24-hr exposure to LPV, RTV, and LPV/r, measure lactate 

dehydrogenase (LDH) and adenosine triphosphate (ATP) medium and 

cellular content as indicators of cellular apoptosis and viability. 

• Quantify the biliary excretion, biliary clearance, and cells + bile and cellular 

accumulation of model bile acids [3H]TCA and [14C]CDCA in sandwich-

cultured rat hepatocytes.  
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• Quantify the sodium-dependent and sodium-independent initial uptake rates 

of [3H]TCA and [14C]CDCA in freshly isolated suspended rat hepatocytes in 

the presence and absence of LPV, RTV, and LPV/r. 

SPECIFIC AIM 2:  Investigate the influence of LPV and RTV, alone and combined, 

on the hepatocellular disposition of endogenous bile acids.  

Hypothesis: Combination LPV and RTV exerts additive effects on bile acid 

transporters, causing cellular retention and accumulation of bile acids.  

Experimental Approach: 

• Quantify and compare the effects of LPV, RTV, and LPV/r on the cellular 

accumulation and biliary excretion of endogenously synthesized primary bile 

acids in cells, bile, and medium of day 4 sandwich-cultured rat hepatocytes. 

SPECIFIC AIM 3:  Determine whether genetic polymorphisms in key bile acid 

synthesis and transport genes are risk factors for DILI. 

Hypothesis: Functional genetic variants in genes that play a role in bile acid 

transport or synthesis increase the risk of DILI in humans.  Furthermore, variants in 

genes that act as compensatory mechanism(s) of BA excretion increase the risk of 

DILI.  

Experimental Approach: 

• Conduct a genetic association study using logistic regression analyses to 

determine whether the distribution of variants in bile acid metabolism and 

transport genes differ between patients from the Drug-induced Liver Injury 

Network (DILIN) and control subjects from the British Birth Cohort. 
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• Perform logistic regression analysis comparing distribution of genetic variants 

in DILIN patients who experienced toxicity due to BSEP inhibitors versus 

controls. 
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Figure 1.1  Schematic depicting the localization of SLC and ABC transport 
proteins involved in the translocation of protease inhibitors (PI) at sites of 
absorption (intestine), excretion (liver and kidney), and at target sites 
(central nervous system, lymphatic system, placenta, blood–testis barrier, 
and female genital tract). In general, PIs are transported (denoted by solid 
lines) into cells by proteins of the SLC family (e.g., OATPs and OCTs) and 
transported out of cells by proteins of the ABC family (e.g., P-gp, BCRP, 
and MRPs). The hepatic uptake and excretion of bile acids (BA), which are 
mediated by NTCP and BSEP, respectively, are inhibited (denoted by 
dashed lines) by PIs. The hepatic transport of bilirubin (bili), which is 
mediated by OATP1B1, is inhibited (denoted by dashed line) by PIs. PIs 
bind to pregnane X receptor (PXR), an orphan nuclear receptor, which 
forms a heterodimer with the retinoid X receptor (RXR) and mediates the 
induction of cytochrome P450 3A4 (CYP3A4). 
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Figure 1.2  Chemical Structures of Selected Protease Inhibitors 
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Figure 1.3  Classical (solid arrows) and Alternative (dashed arrows) Pathways of Bile 
Acid Synthesis. 
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Figure 1.4  Enterohepatic Circulation of Bile Acids 
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Table 1.1  Physicochemical properties and in vitro cellular accumulation ratios of HIV protease inhibitors 

 

aData obtained from Drugbank (http://www.drugbank.ca/drugs) 
bConflicting results reported 
cWhen coadministered with ritonavir (except nelfinavir); ritonavir: coadministered with saquinavir 
dFosamprenavir  

 Amprenavir 
(APV) 

[Fosamprenavir] 

Atazanavir 
(ATZ) 

Darunavir 
(DRV) 

Indinavir 
(IDV) 

Lopinavir 
(LPV) 

Nelfinavir 
(NLV) 

Ritonavir 
(RTV) 

Saquinavir 
(SQV) 

Tipranavir 
(TPV) 

pKa 1.9 a 
[6.28] 

4.3 14.2 6.2; 
5.9, 3.7 

1.6 6.0, 11.1  2.8  1.1, 7.1; 
7.0; 
5.5 b 

7.8 

Lipophilicity 
(Log P o/w) 
Log D (pH) 

1.7; 
3.3 or 4.2b 
[0.84] 

4.25; 
4.5 a 

1.8 a 0.9; 
2.9 a 

1.7 2.9;  
6 a 
4.0 (pH 7.4); 
4.1 (pH 6.0) 

1.2; 
5.2 
3.9 a 

1.9; 
4.1 
(mesylate); 
3.8  

6.9 a 

Solubility 
(µg/ml) 

Mesylate:  
Aq: 190 
pH 7.4: 60 
pH 6.8: 190 
[Calcium: Aq: 
700]d 

Aq: 4-5 
mg/mLa 
 
 
 
 

Ethanolate: 
Aq: 150 a 

Aq: 15 a 
Sulfate: 
Aq: > 100 
mg/ml 
pH 7.4: 70 
pH 4.8: 300 
pH 3.5: 60 
mg/ml 

Aq: very 
low 

Mesylate: 
Aq: 4500 
pH 7.4: very 
low 
pH 3.5: 500  
pH 2.6: 
4500 

Aq: 1 
pH 7.4: 
5.3 
pH 4: 
6.9 

Mesylate:  
Aq: 2220 
pH 7.4: 36 
pH 6.5: 73 

Aq: 
insoluble 

Intracellular 
Accumulation 
ratio’s (in 
vivo in 
blood)c 

3.2 1.2  0.29 1.55;  
0.7-2.1 

5.3 1.25;  
1.7;  
0.8-4.2  

3.64;  
4.9;  
1.5-6.7 

 

References 164-166 22,53,167  164-
166,168,169 

164,170 164-
166,170,171 

53,164-
166,170 

1,53,164-
166,170 
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Table 1.2  Summary of clinically relevant drug-drug interactions involving HIV protease inhibitors with evidence for a role 
of drug transporters in mediating the interactions: protease inhibitor as perpetrator drug. 

 
 

Transport 
Protein Victim Drug Protease 

Inhibitor Clinical Exposure Changes  In Vitro Studies 

MDR1 
 

Tenofovir 
(TFV) 

disoproxil 
fumarate 

(TDF) 

ATV/r, 
DRV/r, 
LPV/r, 
SQV/r 

Plasma TFV AUC 1.1-1.4 × ↑ 
in combination with ATV/r, 
DRV/r, LPV/r, SQV/r.59,172 

• Efflux Ratio (ER) of TDF across 
MDCK-MDR1 is 34 (control); ER is 
significantly reduced to 4.3 (NFV), 
4.4 (LPV, RTV); 16 (ATV); 22 
(SQV); 24 (APV);59 

• Limited interaction of HIV PI with 
transporters involved in TFV 
disposition in the kidney (hOAT1/3, 
MRP4).173 

Fexofenadine 
120 mg 

LPV/r 
RTV 

AUC 2.2 × ↑ (single RTV 
100) 

AUC 4.0 × ↑ (single LPV/r 
400/100) 

AUC 2.9 × ↑ (steady-state 
LPV/r 400/100)174 

 

• RTV IC50 = 5.4 µM for P-gp-
mediated fexofenadine transport 
across Caco-2175 

• LPV and RTV are P-gp inhibitors 
and inducers 

• RTV causes net induction (rather 
than inhibition) of P-gp in vivo in 
rats – based on CsA oral BA 176 

 
Fexofenadine 

60 mg 
RTV 

200 tid - 400 bid 

AUC 2.8 × ↑ (acute RTV) 
AUC 1.4 × ↑ (steady-state 

RTV)177 

Fexofenadine 
60 mg 

IDV/r 800/100 bid 

AUC 5.0 × ↑ (single dose 
IDV/r) 

AUC 4.2 × ↑ (steady-state 
IDV/r) 54 

Largest change for IDV may be 
explained by P-gp being an inhibitor 
but not an inducer 

40 
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Transport 
Protein  

Victim Drug  Protease 
Inhibitor  

Clinical Exposure Changes  In Vitro Studies  

MDR1 
 

Digoxin 0.4 
mg oral 

RTV200; 14d Plasma AUC 1.2 × ↑ 178 
 • RTV blocks P-gp activity (Table 1.4) 

• RTV (>5µM) enhances digoxin 
(0.1µM) accumulation in RBE4 
cells179 

Digoxin 0.5 
mg iv RTV300 bid 

Plasma AUC 1.9 × ↑, Vd 1.8 
× ↑, Clrenal 1.5 × ↓, Clnon-renal 2 

× ↓180 
Digoxin 

0.4mg qd 
DRV600/r100 bid Plasma AUC 1.4 × ↑ 181 

• DRV and RTV block P-gp (Table 
1.4) 

Digoxin 0.5 
mg (oral) 

SQV1,000/r100 
bid Plasma AUC 1.5 × ↑182 

• SQV (>10µM) and RTV (>5µM) 
enhance digoxin (0.1 µM) 
accumulation in RBE4 cells179 

Digoxin 0.25 
mg (oral) 

TPV/r 

Plasma AUC 1.9 × ↑ after 
first dose 

Plasma AUC unchanged and 
Cmax 1.5 × ↓ at steady-

state70 
See Tables1.4 and 1.6 
 Digoxin 0.5 

mg (oral) 
LPV400/r100 bid 

(14 d) Plasma AUC 1.8 × ↑55 

Loperamide TPV750(/r200) 
 

Plasma AUC 2-3 × ↓: in vivo 
intestinal P-gp induction, also 

in presence of RTV as 
inhibitor 69 

41 
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Transport 
Protein  

Victim Drug  Protease 
Inhibitor  

Clinical Exposure Changes  In Vitro Studies  

MDR1 
 

 RTV200 

Plasma AUC 2.2 × ↑: in vivo 
intestinal P-gp inhibition;69 no 

effect on brain PD 
(loperamide) 

See Table 1.4 
 

 RTV600 Plasma AUC 3.2 × ↑: in vivo 
intestinal P-gp inhibition56 

Delaveridine APV600 bid 
possibly partly due to 

intestinal P-gp induction72 See Table 1.6 

Tacrolimus 
Sirolimus APV/r 

Case report in HIV-infected 
patient indicates increased 
tacrolimus/sirolimus half-life 
and trough levels, attributed 

to CYP and/or P-gp inhibition 
by APV/r57 

See Table 1.4 
 

Tacrolimus DRV/r 

Case report: HIV-infected 
kidney-transplant patient 

required a tacrolimus dose 
equal to 3.5% of usual 

dose.58 

Sildenafil DRV/r 400/100 
bid 

Plasma AUC 4 × ↑: possibly 
due to P-gp inhibition (or 

OATP inhibition).183 

Ketoconazole 
200 bid 

DRV/r 
400/100 bid 

Plasma AUC 3.1 × ↑: 
possibly due to P-gp 
inhibition (or OATP 

inhibition)184 

42 
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Transport 
Protein  

Victim Drug  Protease 
Inhibitor  

Clinical Exposure Changes  In Vitro Studies  

MDR1 

Ketoconazole 
200 qd 

RTV 

Plasma AUC 3.4 × ↑: 
possibly due to P-gp 

inhibition (or OATP inhibition) 
185 

See Table 1.4 
 

Ketoconazole 
200 single 

dose 

LPV/r 
400/100 bid 

Plasma AUC 3.0 × ↑: 
possibly due to P-gp 
inhibition (or OATP 

inhibition)186 

Ketoconazole 
200 qd 

FPV/r 
700/100 bid 

Plasma AUC 2.7 × ↑: 
possibly due to P-gp 

inhibition (or OATP inhibition) 
187 

OATP/ 
BCRP 

Atorvastatin 

LPV/r 
TPV/r 

SQV/r (400/400 
bid) 

DRV/r (300/100 
bid) 

AUC 5.9 × ↑(LPV/r) 
AUC 9.4 × ↑(TPV/r)62 

AUC 3.4 ×↑(SQV/r) 188AUC 
4.0 × ↑ (DRV/r) 62,189 

• Atorvastatin is an OATP1B1 and 
BCRP substrate 190,191 

• HIV PI are OATP and BCRP 
inhibitors 41,192,193 

OATP1B1/ 
BCRP 

Rosuvastatin 
TPV/r 
LPV/r 
ATV/r 

AUC 1.4× ↑ (TPV/r)62 
AUC 2.1× ↑ (LPV/r); t1/2 not 

affected 172 
AUC 3.1× ↑ (APV/r) 194 

• Rosuvastatin is an OATP1B1 and 
BCRP substrate 190,191 

• LPV, TPV, ATV and RTV are OATP 
and BCRP inhibitors 41,192,193 

OATP1B1 
MRP2 

Pravastatin 
40 mg qd 

DRV/r 
600/100bid Plasma AUC 1.8 × ↑ 181 See Table 1.4195 
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Transport 
Protein  Victim Drug  

Protease 
Inhibitor  Clinical Exposure Changes  In Vitro Studies  

OATP/ 
MDR1 

Fexofenadine NLF 1250 bid 
(1wk) 

Fexofenadine Cmax 1.3 × ↓, 
t1/2 1.3 × ↓; possibly due to 
intestinal P-gp and hepatic 

OATP induction71 

See Table 1.6 

OATP2B1 Elvucitabine 
20 mg 

RTV 300 (single 
dose) 

Elvucitabine AUC 1.3 × ↓ and 
Cmax 1.7 ×  ↓; possibly due to 
inhibition of intestinal influx 

transporters 63 

See Table 1.4 for effect of RTV on 
OATP activity 

Uptake 
transporters 

Etravirine DRV/r 
(600/100 bid) 

100 bid: plasma AUC 1.6 ×  ↓ 
200 bid: plasma AUC 1.8 ×  

↑52,196 

Etravirine is not a substrate for P-gp, 
BCRP or MRP1-3.75 The role of uptake 
transporters has not been investigated. 

 Etravirine 
TPV/r 

(500/200 bid) Plasma AUC 4.2 ×  ↓ 73 See Table 1.6 
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Table 1.3  Summary of clinically relevant drug-drug interactions involving HIV protease inhibitors with evidence for a role 
of drug transporters in mediating the interactions: protease nhibitor as victim drug. 
 
Transport 
Protein  

Perpetrator Drug  
(Inhibitor/Inducer)  

Victim 
Protease 
Inhibitor 

Clinical Exposure changes  In Vitro Studies  

MDR1 
(ABCB1, 
P-gp) 

Rifampicin 
600 mg qd 

Most HIV PI Plasma AUC 5.6 × ↓ (APV) 
Plasma AUC significantly ↓ (ATV) 
Plasma AUC 9.1 ×  ↓ (IDV) 
Plasma AUC 5.6 ×  ↓ (NFV) 
Plasma AUC 2.9 ×  ↓ (RTV) 
Plasma AUC 6.3 × ↓ (SQV) 
 (possibly partly attributable to intestinal P-
gp induction)197  

HIV PI are (poor) P-gp 
substrates, but exact 
role of intestinal efflux 
transporters in their 
absorption unclear. 
31,39,198,199 

 Rifampicin 
600 mg qd 

LPV/r 
800/200 mg qd 
400/400 mg qd 

Plasma AUC 4 × ↓ (LPV/r)76  LPV is an ABCB1 (but 
not ABCC2) substrate36 

 Rifampicin 
600 mg qd 

ATV/r  
300/100 mg qd 

Plasma AUC 6.7 × ↓ (ATV) and 2.9 × ↓ 
(RTV) (possibly partly attributable to 
intestinal P-gp induction; evaluated in three 
patients only) 200 

ATV and RTV are (poor) 
P-gp substrates.39 

MDR1 
(ABCB1, 
P-gp) 

Rifabutin  APV 
IDV 
NFV 
SQV 

Inductive effects on HIV PI PK is less 
pronounced (1.2-1.7×↓) than for 
rifampicin.197,201  

cfr. above  

MDR1 
(ABCB1, 
P-gp) 

SJW, Ginkgo and 
other herbal 
medicines 

Several HIV PI Reduced exposure, potentially leading to 
therapy failure (exact contribution of efflux 
transporters versus drug metabolizing 
enzymes not clear)202  

see Table 1.5 illustrating 
that HIV PI are 
substrates for efflux 
transporters 
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Transport 
Protein 

Perpetrator Drug  
(Inhibitor/Inducer)  

Victim 
Protease 
Inhibitor 

Clinical Exposure changes  In Vitro Studies  

MDR1 
(ABCB1, 
P-gp) 

Ketoconazole 
200 bid 

DRV/r 400/100 
bid 
 

Plasma DRV AUC 1.4 × ↑203 DRV is a P-gp substrate, 
even though RTV co-
administration limits the 
role of P-gp. 64,204 

MDR1 
(ABCB1, 
P-gp) 

Ketoconazole 
200-400 qd 

SQV/r 400/400 
bid 

Plasma SQV AUC 1.4 ×  ↑205 Ketoconazole inhibits P-
gp-mediated SQV 
transport across Caco-2 
monolayers.206   

MDR1 
(ABCB1, 
P-gp) 

Etravirine FPV700/r100 
bid 
IDV800 tid 
TPV500/r200 
bid 
ATV400 qd 
SQV1200 
single 

Plasma APV AUC 1.7 ×  ↑  
Plasma IDV AUC 1.5 ×  ↓ 
Plasma TPV AUC 1.2 ×  ↑ 
Plasma ATV AUC 1.2 ×  ↓ 
Plasma SQV AUC 1.5 ×  ↓73 

Etravirine has been 
shown to be a potent 
BCRP inhibitor and 
inducer in vitro, however 
PI are not BCRP 
substrates;40   etravirine 
shows no significant P-
gp inhibition, but modest 
induction of P-gp and 
MRP3 75 

OATP1B  
(SLCO1B)  

Rifabutin 
150 mg qod 

DRV/r 
600/100 mg 
bid 

DRV plasma AUC 1.6 ×  ↑ 
RTV plasma AUC 1.7 ×  ↑  
Mechanism unknown but possibility of SLC 
inhibition has been suggested.184  

No data available on 
effect of rifabutin on 
OATP activity 
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Table 1.4  HIV protease inhibitors as inhibitors of ABC and SLC transporters. 

 
 
 

ABC SLC 

Protease 
Inhibitor 

Transporter  IC50* or 
Ki** (µM) 

System (Substrate)  Ref Transporter  IC50* or Ki** 
(µM) 

System  
(Substrate) 

Ref 

Amprenavir  P-gp 
 
BCRP 

23.1* 
 
181* 

BBMEC (rhodamine 123) 
 
MDCKII (Pheophorbide A) 

207 
 
41 

OATP1B1 
 
OATP1B3  

14.4*, 12.8** 
 
19.1*, 13.1** 

CHO (CGamF) 
 
CHO (CGamF) 

21 
 
21 

Atazanavir  P-gp 
 
BCRP 
 

67.8* 
 
69.1* 
 
 

MDCKII (Calcein-AM) 
 
MDCKII (Pheophorbide A) 
 
 

37 
 
41 
 

OATP1B1 
 
OATP1B3 
 
OATP2B1  

1.7*, 1,5** 
 
3*, 3** 
 
2.2* 
 
3.6* 

CHO (CGamF) 
 
CHO (CGamF) 
 
Caco-2 (E3S) 
 
MDCKII (E3S) 

21 
 
21 
 
22 
 
22 

Darunavir  P-gp 33* 
 
>100* 

Not reported 
 
MDCKII (Calcein-AM) 

208 
 
37 

OATP1B1 
 
OATP1B3 
 
OATP2B1  

3.5*, 3.1** 
 
4.8*, 3.3** 
 
29* 
 
26* 

CHO (CGamF) 
 
CHO (CGamF) 
 
Caco-2 (E3S) 
 
MDCKII (E3S) 

21 
 
21 
 
22 
 
22 

Indinavir  P-gp 54.6* 
 
>100* 

BBMEC (rhodamine 123) 
 
MDCKII (Calcein-AM) 

207 
 
37 

OATP1B1 
 
 
 
OATP1B3 
 
OATP2B1 
 
OCT1 
 

12.2*, 10.8** 
 
5.84* 
 
12.3*, 8.5** 
 
3.9*, 3** 
 
37.6* 
 
62* 

CHO (CGamF) 
 
HeLa 
 
CHO (CGamF) 
 
Caco-2 (E3S) 
 
HEK293 (MPP) 
 
HeLa  

21 
 
209 
 
21 
 
21 
 
25 
 
26 
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ABC  SLC 
Protease 
Inhibitor 

Transporter  IC50* or 
Ki** (µM) 

System (Substrate)  Ref Transporter  IC50* or Ki** 
(µM) 

System  
(Substrate) 

Ref 

Lopinavir  P-gp 
 
BCRP 

10.3* 
 
7.66* 

MDCKII (calcein-AM) 
 
MDCKII (Pheophorbide A) 

37 
 
41 

OATP1B1 
 
OATP1B3 
 
OATP2B1 

0.5*,0.5** 
 
2*, 1.4** 
 
1.7* 
 
0.72* 

CHO (CGamF) 
 
CHO (CGamF) 
 
Caco-2 (E3S) 
 
MDCKII (E3S) 

21 
 
21 
 
22 
 
22 

Nelfinavir  P-gp 
 
 
 
BCRP 

1.7* 
 
19.9* 
 
13.5* 
 
 
12.5* 

BBMEC (rhodamine 123) 
 
MDCKII (calcein-AM) 
 
MDCKII  
(Pheophorbide A) 
 
HEK293 (mitoxantrone) 

207 
 
37 
 
41 
 
 
40 

OATP1B1 
 
OATP2B1 
 
OCT1 
 
 
 
OCT2 

0.93* 
 
2.2* 
 
0.9* 
 
22* 
 
7* 
 
13* 

HeLa (E217ßG) 
 
Caco-2 (E3S) 
 
MDCKII (E3S) 
 
HeLa 
 
HEK293 (MPP) 
 
HEK293 (MPP) 

209 
 
22 
 
22 
 
26 
 
25 
 
25 

Ritonavir  
 
 
 
 
 
 

P-gp 
 
 
 
 
 
 
 
 
 
 
 
BCRP 
 

3.8* 
 
5* 
 
6.7* 
 
26.4* 
 
28.2* 
 
39.6* 
 
19.5* 

Caco-2 (digoxin) 
 
Caco-2 (digoxin) 
 
Caco-2 (rhodamine 123) 
 
BBMEC (rhodamine 123) 
 
MDCKII (digoxin) 
 
MDCKII (calcein-AM) 
 
HEK293 (mitoxantrone) 

106 
 
210 
 
211 
 
207 
 
212 
 
37 
 
40 

OATP1B1 
 
 
 
 
 
OATP1B3 
 
OATP2B1 
 
 
 
 

0.71* 
 
0.78** 
 
1.6*, 1.4** 
 
3.6*, 2.5** 
 
6.3*, 4.8** 
 
0.93* 
 
2.2* 
 

HeLa (E217ßG) 
 
HEK293 (pitavastatin)  
 
CHO (CGamF) 
 
CHO (CGamF) 
 
Caco-2 (E3S) 
 
Caco-2 (E3S) 
 
MDCKII (E3S) 
 

209 
 
213 
 
21 
 
21 
 
21 
 
22 
 
22 
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ABC  SLC 
Protease 
Inhibitor 

Transporter  IC50* or 
Ki** (µM) 

System (Substrate)  Ref Transporter  IC50* or Ki** 
(µM) 

System  
(Substrate) 

Ref 

     OATP1A2 
 
 
 
OCT1 

<10* 
 
5.2* 
 
14* 

HeLa (fexaofenadine) 
 
HeLa 
 
HEK (MPP) 

214 
 
26 
 
25 

      
 
OCT2 
 
MATE1 

25* 
 
13.9* 
 
15.4* 

HEK (MPP) 
 
HeLa 
 
HeLa (metformin) 

25 
 
215 
 
215 

Saquinavir  P-gp 
 
BCRP 

1.4* 
 
27.4* 
 
19.5* 

BBMEC (rhodamine 123) 
 
MDCKII (Pheophorbide A) 
 
HEK293 (mitoxantrone) 

207 
 
41 
 
40 

OATP1B1 
 
 
 
 
 
OATP1B3 
 
OATP1A2 
 
OATP2B1 
 
 
 
 
OCT1 
 

1.23* 
 
2.1*, 1.8** 
 
1.59** 
 
4.1*, 2.8** 
 
<10 
 
5.3*, 4** 
 
3.5* 
 
4.6* 
 
8.3* 
 
37* 

HeLa (E217ßG) 
 
CHO (CGamF) 
 
HEK293 (pitavastatin) 
 
CHO (CGamF) 
 
HeLa (Fexofenadine) 
 
Caco-2 (E3S) 
 
Caco-2 (E3S) 
 
MDCKII (E3S) 
 
HeLa 216 
 
HEK293 (MPP) 

209 
 
21 
 
213 
 
21 
 
214 
 
21 
 
22 
 
22 
 
26 
 
25 

Tipranavir      OATP2B1 0.77* 
 
0.88* 

Caco-2 (E3S) 
 
MDCKII (E3S) 

22 
 
22 

49 



 

50 
 

Table 1.5  HIV protease inhibitors as substrates of ABC and SLC transporters 

 
 
 
 
 
 
 
 

 

 ABC SLC 
Protease 
Inhibitor 

Transporter  Km* (µM) or  
ER (PI dose)** 

In vitro  
System 

Ref Transporter  Km* (µM) or  
ER (PI dose)**  

In vitro 
System 

Ref 

Amprenavir  P-gp 47* 
 
24.2 (10 µM)** 

High Five 
membranes 

MDCKII-MDR1 

207 
 
217 

    

Indinavir  P-gp 0.47* 
 
2.1* 

High Five 
membranes 
High Five 

membranes 

218 
 
207 

    

Nelfinavir  P-gp 3.6* High Five 
membranes 

 

207     

Ritonavir  P-gp 0.8* LLC-PK1 219     
Saquinavir  P-gp 1.4* 

 
14.5* 
 
15.4* 

High Five 
membranes 

LLC-PK1 
 

Caco-2 

207 
 
219 
 
220 

OATP1A2 36.4* Oocytes 18 

Tipranavir  P-gp 5.9 (8.1 µM)** Caco-2 69     
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Table 1.6  In vitro induction data with HIV protease inhibitors 

Transporter  HIV PI Model System (marker): Effect (conc)  Reference  
MDR1 APV T84 (0.1µM digoxin ER): ER doubled (10µM; 72h) 

T84 (mRNA): 5× ↑ (10µM; 72h) 
LS180 (mRNA): 17× ↑ (10µM; 96h) 

96,221 

 ATV LS180V (protein): 2.5× ↑ (30 µM, 3 d) 
LS180V (Rh123 uptake): 55%↓ (30 µM, 3 d)  
hCMEC/D3 cells (protein): 2.5× ↑ (10 µM; 3d)  
LS180 (mRNA): 5× ↑ (10µM; 96h) 

96,222,223 

 DRV LS180 (mRNA): 3.8× ↑ (10µM; 1wk) 34 
 IDV No significant P-gp induction 96,222,223 
 LPV LS-180V (protein/mRNA): 3× ↑ (30 µM 72h) 

LS-180V (Rh123 uptake): 50%↓ (30 µM 72h) 
LS180 (mRNA): 12× ↑ (10µM; 96h) 

96,222-224 

 NFV Cultured Hepatocytes (mRNA): 4-6× ↑ (10-25 µM) 
Cytotrophoblast culture (Rh123 uptake): 23% ↓ (3 
µg/ml; 24h) 
LS180 (mRNA): EC50 = 1.2 µM (96h); LS180 
(mRNA): 7× ↑ (10µM; 96h) 

67,96,225 

 
 
 
 
 
 

RTV Human hepatocytes (mRNA): 9-10× ↑ (10-25 µM)  
LS-180V cells (protein): 6× ↑ (1-100 µM; 3d) 
LS-180V (Rh123 uptake): 50%↓ (>10 µM; 3d) 
hCMEC/D3 cells (protein): 2× ↑ (10 µM; 3d)  
LS180 (mRNA): EC50 = 1.7 µM (96h); LS180 
(mRNA): 12× ↑ (10µM; 96h) 

67,96,97,223,226 
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Transporter  HIV PI Model System (marker): Effect (conc)  Reference  
 SQV LS180 (mRNA): 5.7× ↑ (10µM; 1wk) 

Cytotrophoblast culture (protein): 2× ↑ (1 µg/ml; 24h) 
Cytotrophoblast culture (Rh123 uptake): 18% ↓ (1 
µg/ml; 24h) 
LS180 (mRNA): 5× ↑ (10µM; 96h) 

34,96,225 

 TPV LS180 (mRNA): 10× ↑ (10µM; 96h) 96 
MRP1 RTV LS-180V cells (protein): 3× ↑ (1-100 µM; 3d) 

LS-180V (CBF uptake): 30% ↓ (30 µM; 3d) 
97 

 SQV LS180 (mRNA): 2.3× ↑ (10µM; 1wk) 34 
MRP2 NFV Human hepatocytes (mRNA): 2-4× ↑ (10-25 µM) 67 
 RTV Human hepatocytes (mRNA): 5-6× ↑ (10-25 µM) 67 
 SQV LS180 (mRNA): 4.5× ↑ (10µM; 1wk) 34 
MRP3 SQV LS180 (mRNA): 2× ↑ (10µM; 1wk) 34 
MRP4 SQV LS180 (mRNA): 1.8× ↑ (10µM; 1wk) 34 
MRP5 SQV LS180 (mRNA): 3.8× ↑ (10µM; 1wk) 34 
BCRP NFV Human hepatocytes (mRNA): < 2× ↑ (10-25 µM) 67 
 RTV Human hepatocytes (mRNA): 2-3× ↑ (10-25 µM) 67 
 SQV LS180 (mRNA): 4.1× ↑ (10µM; 1wk) 34 
OATP1B1 NFV Hepatocytes (mRNA): 2-3× ↑ (10-25 µM) 67 
 RTV Hepatocytes (mRNA): 2× ↑ (10-25 µM) 67 
 SQV LS180 (mRNA): 4.6× ↑ (10µM; 1wk) 34 
OATP1B3 NFV Human hepatocytes (mRNA): 2-5× ↑ (10-25 µM) 67 
 RTV Human hepatocytes (mRNA): 3-4× ↑ (10-25 µM) 67 
OATP2B1 DRV LS180 (mRNA): 1.9× ↑ (10µM; 1wk) 34 
 SQV LS180 (mRNA): 1.8× ↑ (10µM; 1wk) 34 
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Table 1.7  Clinically Relevant Examples of Transporter-mediated Interactions between HIV Protease Inhibitors and 
Endogenous Compounds.  
 
Endogenous 
Compound  

Transport Protein  Protease Inhibitor  In Vitro Studies  Clinical Relevance  

Bile salts NTCP 
BSEP 

RTV, SQV Inhibition of bile acid 
transport 78 

Increased serum bile 
acids; 
Increased hepatocyte 
bile acids; Increased 
risk for hepatotoxicity 

Palmitate CD36 and CPT1 fatty 
acid transporters 

LPV/r and DRV/r (not 
ATV/r) 

Inhibition of palmitate 
uptake in cultured 
skeletal muscle cells 
(myotubes)82  

Dyslipidaemia, insulin 
resistance 

Bilirubin OATP1B1 ATV, IDV Potent inhibition of 
OATP1B activity by 
HIV protease inhibitors 
causing increased 
incidence of 
hyperbilirubinemia and 
jaundice47,81 

Increased serum 
bilirubin levels 
associated with the 
use of specific 
protease inhibitors.80  
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Table1.8  Key Pharmacokinetic Parameters of the HIV Protease Inhibitors. 

 
 
 
 
 
 

Compound  Standard 
Dosing 
Level 

Metabolism 
and Elimination  

t1/2ß (h) Plasma 
Protein 
Binding 

(%) 

Ritonavir 
Boosting 
effect 

Oral 
Bioavailability 

(%); 
[unboosted] 

DME 
interactions 
(based on 

boosted use 
in the clinic) 

Refs 

Amprenavir 
(from 
fosamprenavir) 

700 mg 
b.i.d. /r 
100 mg  
b.i.d. 

hepatic 3A4, 
2D6 urine:14%; 
feces:75 % ; 
(unchanged:1% 
urine; ND in 
feces) 

7-12 90 Cmax 1.5 
× ⬆ 
AUC > 2 
× ⬆ 
Ctrough 4 × 
⬆ 

30-70 CYP3A 187,227 

Atazanavir 300 mg 
q.d. /r 100 
mg  q.d. 

hepatic 3A4; 
Non-linear (300-
600 mg), 79% 
bile/13% urine; 
UD % dose in 
bile 20%, in 
urine 7% 

6 (in HIV 
patients; 2 
× ↓ in 
healthy 
volunteers) 

86 Ctrough 5 × 
⬆ 
AUC 3 × 
⬆ 

68; pH 
dependent, 
AUC 1.7 × ⬆ 
with food 

CYP3A, 
UGT1A1 

227,228 

Darunavir 600-800 
mg b.i.d. /r 
100 mg 
b.i.d. 

Hepatic 
CYP3A4 Feces: 
79.5%; urine:  
13.9% 
Unchanged 
(unchanged: 
41.2% in feces;   
7.7 % in urine) 
 

15 95 
 

AUC 10 × 
⬆  

82 [37] Inh.: 
CYP3A4, 
CYP2D6 
Ind.: 
CYP2C9 
CYP2C19 
 

181,227,229 
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Compound  Standard 
Dosing 
Level 

Metabolism and 
Elimination 

t1/2ß (h) Plasma 
Protein 
Binding 

(%) 

Ritonavir 
Boosting 
effect 

Oral 
Bioavailability 

(%); 
[unboosted] 

DME 
interactions 
(based on 

boosted use 
in the clinic)  

Refs 

Indinavir 800 mg 
b.i.d. /r 
100 mg  
b.i.d. 

hepatic CYP3A4;  
19% and 83% 
recovered in 
urine and feces, 
respectively; Of 
this unchanged 
drugs accounted 
for 19.1% and 
9.4%  and in the 
urine and feces, 
respectively 

2 61 AUC 2 × ⬆  

Cmin > 4 × 
⬆  

60-65 CYP3A4 
Weak 2D6 
inhibitor 

227,230 

Lopinavir 400 mg 
b.i.d. /r 
100 mg 
b.i.d. 

hepatic CYP3A4 
10.4 % and 82% 
in urine and 
feces, 
respectively. Of 
this, 2.2 and 
19.8% appeared 
unchanged in the 
urine and feces 
respectively 

5-6 99 AUC 1.5 × 
⬆  

Cmin 2 × ⬆ 

CSS 15-20 
× ⬆ 

 

 

 

Not 
established 
(increased 
AUC and 
Cmax under 
fed conditions 
however) 

CYP3A4 186,227 
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Compound  Standard 
Dosing 
Level 

Metabolism and 
Elimination 

t1/2ß (h) Plasma 
Protein 
Binding 

(%) 

Rito navir 
Boosting 
effect 

Oral 
Bioavailability 

(%); 
[unboosted] 

DME 
interactions 
(based on 

boosted use 
in the clinic) 

Refs 

Nelfinavir 635 mg 
b.i.d. 

hepatic CYP3A4, 
2C19, 2D6, 2C9 
2% and 87% 
recovered in 
urine and feces, 
respectively.  Of 
this, 22% and 1 
% was 
unchanged in the 
urine and feces, 
respectively 

1.8-3.4 99 AUC 2.5 × ⬆  

Cmax 1.4 × ⬆ 

 

> 78 CYP3A 
CYP2C19 

227 

Ritonavir PI + 100 
mg b.i.d. 

hepatic CYP3A4 3-5 99  66-75  227 

Saquinavir 1 g b.i.d. 
/r 100 mg 
b.i.d. 

hepatic CYP3A4 13 98  < 20 (Soft 
Gelatin 
Capsule) 

 227 
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Table 1.9  Serum bile acid concentrations in the rat 

     Concentration (µM) 
Bile Acid Species Wang et al.231 Bai  et al.232 

GCA 0.1 + 0 0.12 + 0.07 

GCDCA 0.2 + 0.1 0.04 + 0.0 

GDCA 0.3 + 0.2 0.12 + 0.07 
CA 3.2 + 0.8 1.81 + 1.34 

UDCA 0.6+ 0.2 0.04 + 0 
GLCA 0.04 + 0 0.04 + 0.0 
CDCA 0.8 + 0.4 0.16 + 0.16 
DCA 0.6 + 0.1 0.04 + 0.0 
TCA 0.3 + 0.1 1.09 + 0.15 

TUDCA 0.1 + 0 0.04 + 0 
TCDCA 0.2 + 0.1 0.04 + 0 
TDCA 0.2 + 0.1 0.04 + 0 

Total Bile Acids 7.3 +  1.4 3.28 + 1.66 
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CHAPTER 2 
 

COMBINATION ANTIRETROVIRAL PROTEASTE INHIBITORS ALT ER 
EXOGENOUS AND ENDOGENOUS BILE ACID DISPOSITION IN S ANDWICH-

CULTURED RAT HEPATOCYTES  
 

Antiretroviral protease inhibitors (PIs) continue to be a mainstay in the treatment of 

HIV infection.  Despite their success, PIs have been associated with drug-induced 

liver injury (DILI) which is one of the most common adverse events leading to the 

discontinuation of PI-inclusive antiretroviral therapy.233,234  Liver injury occurred in 

1% to 9.5% of PI-treated patients in randomized clinical trials conducted prior to US 

Food and Drug Administration approval.235  Retrospective and prospective cohort 

studies report an overall incidence rate of hepatotoxicity associated with PI-inclusive 

drug therapy between 5% and 23%.   However, the PI dose and the definition of 

hepatotoxicity varied across studies.110  In particular, ritonavir (RTV)-containing 

regimens reportedly increased the risk of hepatotoxicity by 8.6-fold.234  RTV is now 

administered at subtherapeutic (and subtoxic) doses to enhance systemic 

concentrations of coadministered PIs.  One commonly prescribed PI combination is 

lopinavir and ritonavir (LPV/r).2  Reportedly, patients on highly active antiretroviral 

therapy (HAART) containing LPV/r who experienced liver failure had higher LPV/r 

plasma concentrations compared to patients with normal functioning livers.186 One 

proposed mechanism for DILI is that drugs and/or their metabolites impair the 

function of transport proteins responsible for the efflux of bile acids from 
                                                 
This chapter has been submitted for publication in Toxicological Sciences and is presented in the 
style of that journal. 
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the hepatocyte.115,116,236 Bile acids can cause cellular necrosis and apoptosis as a 

result of mitochondrial damage and disruption of cell membranes due to the 

detergent-like effects of these molecules.237   Interference with the efflux of bile acids 

from hepatocytes could cause intracellular accumulation of bile acids, leading to 

toxicity. 

The major transport protein responsible for biliary excretion of bile acids from 

the hepatocyte is the bile salt export pump (BSEP).  Recent studies have shown that 

many drugs implicated in DILI inhibit BSEP.238  PIs including LPV and RTV also 

have been shown to inhibit bile acid transport via BSEP,78,239 supporting the idea 

that intracellular accumulation of bile acids may be a mechanism for DILI observed 

in patients treated with this combination.238,239  If this is correct, we reasoned that the 

combination of LPV and RTV used in the clinic may have an additive or even 

synergistic effect on BSEP inhibition, resulting in an increased risk of DILI.   

To our knowledge, the effect of PI combinations on hepatocyte viability and 

bile acid uptake and/or efflux, has not been studied previously.  Therefore, we 

examined the effects of LPV, alone and combined with RTV, on hepatocyte viability, 

bile acid transport, and endogenous bile acid disposition in rat hepatocytes.   We 

hypothesized that each PI would cause hepatocellular accumulation of bile acids 

and toxicity, and that co-administration of RTV and LPV would have at least an 

additive effect on bile acid accumulation and toxicity.    
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MATERIALS AND METHODS 

Chemicals. [3H]Taurocholic acid (TCA, 5 Ci/mmol; purity > 97%) was 

purchased from Perkin Elmer (Waltham, MA). [14C]Chenodeoxycholic acid  (CDCA; 

50 mCi/mmol; purity > 97%) and [14C]inulin (2.8 mCi/g, purity > 97%) were 

purchased from American Radiolabeled Chemicals, Inc. (St. Louis, MO).  RTV was 

obtained initially from the National Institutes of Health AIDS Research and 

Reference Reagent Program, Division of AIDS, National Institute of Allergy and 

Infectious Diseases, National Institutes of Health. In addition, RTV, LPV and d4 TCA 

were purchased from Toronto Research Chemicals (Toronto, Ontario, Canada).  The 

d8 TCA was purchased from Martrex, Inc. (Minnetonka, MN).  All other deuterated 

bile acids were purchased from CDN Isotopes, Inc. (Pointe-Claire, Quebec, 

Canada).  The bile acids α- and ß-tauromuricholic acid (α/ß-TMCA) were purchased 

from Steraloids, Inc. (Newport, RI).  TCA, lactate dehydrogenase (LDH), adenosine 

triphosphate (ATP), Triton X-100, Hanks’ balanced salt solution (HBSS) premix, 

HBSS modified (with no calcium chloride, magnesium sulfate, phenol red and 

sodium bicarbonate) premix, dexamethasone, and collagenase (type IV) were 

purchased from Sigma-Aldrich (St. Louis, MO). Dimethyl sulfoxide (DMSO) was 

obtained from Fisher Scientific (Fairlawn, NJ).  GIBCO brand fetal bovine serum, 

recombinant human insulin, and Dulbecco’s modified Eagle’s medium (DMEM) were 

purchased from Invitrogen (Carlsbad, CA). Insulin, transferrin, and selenium (ITS) 

Universal Culture Supplement Premix and Matrigel™ Basement Membrane Matrix 

were obtained from BD Biosciences (Palo Alto, CA). The CellTiter-Glo® Luminescent 

Cell Viability Assay was purchased from Promega (Madison, WI).  LDH Cytotoxicity 
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Detection Kit was purchased from Roche Applied Sciences (Indianapolis, IN). All 

other chemicals and reagents were of analytical grade and were readily available 

from commercial sources. 

Hepatocyte Isolation and Culture in a Sandwich Configuration. 

Hepatocytes were isolated from male Wistar rats (270–300 g) obtained from Charles 

River Laboratories, Inc. (Raleigh, NC) using a two-step collagenase perfusion 

method previously described.163  Animals had free access to water and food before 

surgery and were allowed to acclimate for at least five days. All animal procedures 

complied with the guidelines of the Institutional Animal Care and Use Committee 

(University of North Carolina, Chapel Hill, NC). 

Hepatocytes were seeded at 1.75 x 106 cells/well on 6-well, or 0.35 x 106 

cells/well on 24-well, BioCoatTM collagen plates in DMEM containing 5% fetal bovine 

serum, 10 µM insulin, 1 µM dexamethasone, 2 mM L-glutamine, 1% MEM non-

essential amino acids, 100 units penicillin G sodium and 100 µg streptomycin 

sulfate.  Cells were incubated for 2 h at 37ºC in a humidified incubator (95% O2, 5% 

CO2) and allowed to attach to the collagen substratum, after which time the medium 

was aspirated to remove unattached cells, and replaced with fresh medium.  

Approximately 24 hours later cells were overlaid with BD MatrigelTM at a 

concentration of 0.25 mg/ml in ice-cold feeding medium (DMEM with 1% ITS, 0.1 µM 

dexamethasone, 2 mM L-glutamine, 1% MEM non-essential amino acids, 100 units 

penicillin G sodium and 100 µg/ml streptomycin sulfate). The culture medium was 

changed daily thereafter.  Rat hepatocytes were cultured for at least 3 days to allow 

for the formation of bile canalicular networks.  



 

62 
 

Cytotoxicity and Cell Viability Assays. Following 24-hour exposure to PIs, 

intracellular ATP levels were measured using the CellTiter-Glo® Luminescent Cell 

Viability Assay.  All reagents were allowed to equilibrate to room temperature prior to 

use. The CellTiter-Glo® Reagent was prepared by adding lyophilized CellTiter-Glo® 

substrate to CellTiter-Glo® buffer and mixing by vortex. Hepatocytes cultured in 24-

well plates were allowed to equilibrate for at least 30 min to reach room temperature 

before the assay was performed. Medium was aspirated from each well twice, and 

replaced with equal volumes of fresh feeding medium and CellTiter-Glo® reagent.  

Plates were placed on an orbital shaker for 2 min to induce cell lysis, and then 

incubated at room temperature for 10 min to allow the luminescent signal to 

stabilize. 

LDH leakage into sandwich-cultured rat hepatocyte (SCRH) medium was 

determined using the LDH Cytotoxicity Detection Kit.  Briefly, day 3 SCRH in 24-well 

plates were exposed to PIs for 24 hours, after which cell-free supernatant was 

collected and aliquots were placed in individual wells of a 96-well plate. The 

substrate mixture was added to the culture supernatant and incubated for 30 min.  

During this time, LDH released from hepatocytes into the supernatant reduced the 

tetrazolium salt 2-(4-iodophenyl)-3-(4- nitrophenyl)-5-phenyl-2H-tetrazolium chloride 

(INT) to formazan by a coupled enzymatic reaction. Following incubation, formazen 

formation was measured directly in the 96-well opaque-walled microplate by an 

ELISA absorbance plate reader. To directly compare assays, LDH data were 

converted to viability, and expressed as a percentage of control by subtracting the 
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degree of toxicity (%) from 100%.  Maximum cell death was represented by the 

values measured following complete cell lysis by 0.5% Triton X-100. 

Bile Acid ([3H]TCA and [14C]CDCA) Accumulation Studies in Sandwich-

Cultured Rat Hepatocytes. The model bile acid, TCA, and the unconjugated 

organic acid, CDCA, were used for transport studies. Day 4 SCRH seeded in 24-well 

plates were washed 3 times (20 sec per wash) and co-incubated for 10 min with 

Ca2+-containing (standard; cells + bile) or Ca2+-free (cells) HBSS buffer to maintain 

or disrupt tight junctions, respectively. Next hepatocytes were co-incubated for 10 

min with TCA (1 µM cold TCA plus trace [3H]TCA) or [14C]CDCA (1 µM cold CDCA 

plus 4 µM [14C]CDCA) in the presence or absence of individual or combined PIs in 

standard HBSS at 37ºC. Cells were then aspirated twice and uptake was terminated 

by rinsing wells with 2.0 ml of ice-cold standard HBSS. Following rinsing, cells were 

lysed with 0.1% Triton X-100 in phosphate-buffered saline, and placed on an orbital 

shaker for 20 min.  Aliquots of sample (500 µL) and dosing solution (100 µL) were 

collected for quantification of radioactivity by liquid scintillation counting. Another 500 

µl aliquot of sample was reserved for protein quantification using the Pierce BCA™ 

Protein Assay Kit (Thermo Scientific, Rockford, IL). To correct for nonspecific 

binding to the collagen substratum, [3H]TCA and [14C]CDCA accumulation in 

BioCoat™ plates without cells was subtracted from raw values. 

[3H]TCA and [14C]CDCA Initial Uptake in Suspended Rat Hepatocytes. 

The initial uptake of TCA (1 µM cold TCA plus trace [3H]TCA; 60 nCi/ml) and CDCA 

(0.5 µM cold CDCA plus 0.5 µM [14C]CDCA; 25 nCi/ml) in suspended rat 

hepatocytes was measured in the presence of vehicle (DMSO), LPV (10 µM) or RTV 
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(5 µM), alone and combined, using methods previously described.240 Uptake studies 

were performed in Na+-containing buffer to measure total uptake (Na+-dependent 

and Na+-independent), and Na+-free, choline-containing buffer (Na+-independent 

uptake only). Na+-dependent uptake was calculated by subtracting the Na+-

independent uptake from the total uptake). Briefly, cells were washed 2 times in ice-

cold buffer containing sodium chloride or choline chloride (137 mM NaCl or choline 

chloride, 0.8 mM MgSO4, 10 mM HEPES, 1.2 mM CaSO4, 0.86 mM K2HPO4, 0.14 

mM KH2PO4, and 5 mM glucose, pH 7.4). Cells were resuspended at 1.0 x 106 

cells/ml in the same buffer, kept on ice, and used immediately in experiments. 

Hepatocyte suspensions (4 ml; n = 3 livers, in triplicate) were preincubated in bottom 

inverted Erlenmeyer flasks at 37°C for 5 min; 0.1% DMS O or PIs were added 30 sec 

before, followed by [3H]TCA (1 µM unlabeled TCA plus trace [3H]TCA, 60 nCi/ml). At 

15, 30, and 45 sec, 200 µL samples of the cell suspension were collected and 

placed in a 0.4 ml polyethylene tube containing a top layer of silicone oil:mineral oil 

(82:18 [v/v], 100 µL) and a bottom layer of 3M KOH (50 µL), and immediately 

centrifuged. Radioactivity in the cell pellet and in the supernatant was measured by 

liquid scintillation counting. Adherent fluid volume was determined by incubating 

cells with [14C] inulin (60 nCi/ml) as reported by Baur et al.241  Uptake was 

normalized to protein concentrations for individual hepatocyte suspensions as 

determined by the BCA protein assay reagent kit. Cellular viability of the suspended 

hepatocytes (> 90%) was determined by trypan blue exclusion at the beginning and 

end of each experiment.    
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Accumulation of Endogenous Bile Acids in Cells + Bile, Cells, and 

Culture Medium of Sandwich-Cultured Rat Hepatocytes. Following 24 hour 

exposure to vehicle or PIs, 1 mL aliquots of medium were collected from day 4 

SCRH in 6-well format and stored at -80˚ C until analysis. The remaining culture 

medium was aspirated from all wells, and triplicate wells were rinsed with 1.5 ml/well 

of warmed HBSS containing calcium (cells + bile) or HBSS without calcium (cells 

alone).  Following rinses, wells were aspirated twice and another 1.5 ml of HBSS 

with or without calcium was added to the wells and cells were incubated at 37˚C for 

4 min. After incubation, the HBSS buffer was aspirated from all wells. Plates were 

sealed and stored at -80˚ C until analysis. 

LC-MS/MS Analysis. Culture medium and cell lysate samples were prepared 

for LC-MS/MS analysis as described previously 242.  Briefly, six endogenous 

conjugated bile acid species [taurocholic acid (TCA), glycoholic acid (GCA), 

taurochenodeoxycholic acid (TCDCA), glycochenodeoxycholic acid (GCDCA), and 

α/ß-tauromuricholic acid (α/ß TMCA)] were detected simultaneously; 10 µL of 

sample or calibration standards were injected onto a Shimadzu binary high-

performance liquid chromatography system (Columbia, MD).   Chromatographic 

conditions used were as follows: 60% 0.5 mM ammonium acetate:40% MeOH 

(solvent A) and 20% 0.5 mM ammonium acetate:80% MeOH (solvent B) at a flow 

rate of 50 µL/min.  The initial mobile phase was 70% solvent A:30% solvent B.  The 

gradient was increased rapidly to 100% of solvent B for 2-15 min, and then returned 

to initial conditions (solvent A) for 1 min.  The autosampler was maintained at 4°C 

and rinsed with 1500 µl of 50:50 (v/v) 50% methanol:50% water following aspiration. 
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Methanol (100%) was added at 10 µl/min as a post-column solvent. Tandem mass 

spectrometry used to quantify analytes was performed using a Thermo Electron 

TSQ Quantum Discovery MAX (Thermo Fisher Scientific) with an Ion Max ESI 

source in negative ion electrospray ionization mode using selected reaction 

monitoring. The concentration ranges of the standard curves for rat cell lysate and 

medium of each bile acid were 0.5-100 pmol/well and 0.5-50 pmol/100 µl of medium, 

respectively. For a detailed list of the transitions monitored at unit resolution, see 

Marion et al., 2011. 

When rat lysate and medium samples were analyzed initially, LC-MS/MS raw 

data were collected on α- and β-TMCA, but not processed. Both α- and β-TMCA 

have the same MS precursor and product negative ions as TCA, thus, their MS data 

were collected in the same analytical run as TCA. Once standards for α- and β-

TMCA became available, they were utilized to confirm the identity of the LC-MS/MS 

response in the TCA channel thought to be α/β-TMCA. Because of the 

chromatographic separation utilized here, TCA was well resolved from α- and β-

TMCA; however, α- and β-TMCA, which are stereoisomers, were measured 

collectively (designated α/β-TMCA). Utilizing recently generated standard curves for 

β-TMCA from rat lysate (10 – 2000 pmol/well) and media (1.0 – 500 pmol/100µL), 

the original raw data collected for α/β-TMCA, along with the data for the other bile 

acids, was processed. The new α/β-TMCA standard curves were not generated with 

a stable isotope equivalent but were corrected for endogenous α/β -MCA 

background. Similarly, the raw data for the glycine conjugates of α- and β-muricholic 
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acid were collected but not processed in the original analytical run. Unfortunately, 

standards for these glycine conjugates are currently not available. 

 

Data Analysis. Cells + bile and cellular concentrations of bile acids were 

calculated based on estimates of hepatocyte intracellular volume (6.83 µl/well) and 

number of cells/well.243  Medium concentrations were calculated based on a volume 

of 1.5 ml/well. For bile acid accumulation studies, the in vitro biliary excretion index 

(BEI; %), defined as the percentage of accumulated substrate residing within the bile 

canaliculi, was calculated using B-CLEAR® technology (Qualyst, Inc. Durham, NC) 

according to the following equation: BEI = [(Accumulationstandard buffer -

AccumulationCalcium-free buffer)/(Accumulationstandard buffer)] X 100%.162  The in vitro biliary 

clearance (Clbile) was calculated based on the following equation: Clbile= 

(Accumulationstandard buffer – AccumulationCalcium-free buffer) / (AUCmedium), where AUC 

represents the area under the substrate concentration-time profile in the incubation 

buffer.  Statistical analyses (one-way ANOVA and Bonferroni’s multiple comparison 

post test) were performed using GraphPadPrism 3.0. In all cases, p < 0.05 was 

considered statistically significant. 

 

RESULTS 

Assessment of Cellular Viability in Sandwich-cultured Rat Hepatocytes.  

Prior studies have shown that it takes 3 days for rat hepatocytes to regain polarity in 

sandwich culture.161,244,245 Because polarity is desirable to assess bile acid transport, 

we examined the effects of 24-hr RTV and LPV treatment, alone and combined, on 
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cellular viability and bile acid disposition between culture day 3 and day 4.  LDH 

release and cellular adenosine triphospate (ATP) content were measured after 

individual and combination treatment with LPV and RTV.  Alone, LPV and RTV 

demonstrated dose-dependent effects on cellular viability; the observed differences 

between the two treatments were not significant (Figure 2.1 ). Toxicity was not 

detected, or was minimal, at concentrations < 50 µM for each PI.  Since toxicity may 

affect metabolic and transport processes involved in bile acid disposition in the 

SCRH model, PI concentrations < 50 µM were used in subsequent studies.  Cellular 

viability following exposure to the combination of LPV (5-50 µM) and RTV (5 µM) 

was comparable to LPV alone (Table 2.1 ) and the trend towards increased toxicity 

at 50 µM LPV was not statistically significant.   

[3H]TCA and [14C]CDCA Accumulation in Sandwich-cultured Rat 

Hepatocytes. Accumulation of [3H]TCA (1 µM) or [14C]CDCA (5 µM) from the culture 

medium into cells + bile vs cells alone was measured  following 10-min co-incubation 

with vehicle (0.1% DMSO), RTV (5 µM), LPV (5-50 µM), or combined LPV and RTV 

(LPV/r). As shown in Figure 2, the mean accumulation of [3H]TCA in cells + bile was 

reduced  by both LPV and RTV when administered alone, and the reduction was 

significant for LPV.  A significant reduction relative to vehicle treatment also was 

observed for the combination treatment LPV/r (from 16.0 + 2.2 vehicle alone to 7.6 + 

1.2 pmol/mg protein). It appeared that co-administration of LPV with RTV resulted in 

additional reduction in cells + bile concentration of [3H]TCA compared to LPV 

treatment alone, but this decrease was not significant.  The hepatocyte (cell) 

concentration of [3H]TCA was not significantly increased by RTV or LPV alone 
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(Figure 2.2 ).  However, when RTV was combined with LPV, the hepatocyte 

concentration of [3H]TCA (7.7 + 0.1 pmol/mg protein) was significantly increased 

relative to the cellular concentrations observed with either vehicle or 5 µM LPV alone  

( 5.1 + 0.7 and  5.0 + 0.5 pmol/mg protein, respectively).  When the same 

experiment was repeated with [14C]CDCA, the treatments did not significantly alter 

the accumulation of [14C]CDCA species in cells + bile or cells alone (Figure 2.3 ).   

Biliary excretion of [3H]TCA and [14C]CDCA in Sandwich-cultured Rat 

Hepatocytes. 

The calculated Biliary Excretion Index (BEI; %) for [3H]TCA was reduced by both 

LPV and RTV alone, and further reduced by the combination treatment (Table 2.2 ).  

The calculated biliary clearance values (Clbile) followed a similar pattern, but the 

reductions caused by RTV and LPV were statistically significant relative to vehicle 

treatment.  Moreover, the reduction in Clbile observed with the combination of LPV 

and RTV was significantly greater than that observed with LPV alone, suggesting an 

additive effect on impaired biliary clearance.  Concentrations exceeding 10 µM of 

LPV virtually ablated the BEI of [3H]TCA, regardless of co-administration with RTV 

(data not shown).  

[14C]CDCA cellular concentrations in vehicle treated hepatocytes were 120-

fold greater compared to [3H]TCA, and the BEI of [14C]CDCA species was 3-fold 

lower than for [3H]TCA. Thus, changes in biliary clearance may not affect the cellular 

accumulation of [14C]CDCA to the same extent as that of [3H]TCA.  LPV, alone or in 

combination with RTV reduced the BEI and essentially abolished the Clbile of 

[14C]CDCA species (Table 2.2 ).   
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 [3H]TCA and [14C]CDCA Initial Uptake in Suspended Rat Hepatocytes. 

To determine whether inhibition of bile acid uptake contributed to the reduction in 

Clbile caused by the PIs, [3H]TCA and [14C]CDCA influx into hepatocytes was 

measured during the linear uptake time interval (15 to 45 sec) in suspended rat 

hepatocytes 115,246.  Initial uptake rates of [3H]TCA in Na+-containing and Na+-free 

buffer were 1.53 + 0.11 and 0.15 + 0.07 pmol/sec/mg protein, respectively (n=3; 

Figure 2.4 ).  LPV (10 µM), RTV (5 µM), and LPV/r had no effect on the initial uptake 

rates of [3H]TCA in Na+-containing, or Na+-free buffer compared to vehicle control.   

Similarly, LPV, RTV, and LPV/r had no effect on the initial uptake rates of [14C]CDCA 

in Na+-containing and Na+-free buffer of vehicle control hepatocytes (9.92 + 3.02 and 

6.73 + 2.19 pmol/sec/mg protein, respectively; n=3; Figure 2.5 ). 

Accumulation of Endogenous Bile Acids in Cells + Bile, Cells, and 

Medium of Sandwich-cultured Rat Hepatocytes.  TCA, GCA, TCDCA, GCDCA, 

and α/β-TMCA were measured in cells + bile, cells, and medium of SCRH.  Taurine-

conjugated bile acids accounted for the majority (approximately 99%) of bile acid 

species detected in vehicle-treated SCRH, consistent with data from in vitro rat 

studies published previously.247  Concentrations (µM) of each bile acid species in 

cells + bile, cells, and medium of vehicle-treated SCRH are listed in Table 2.3 . The 

α- and β-TMCA species comprised the majority of the total measured bile acid pool 

and appeared predominantly in the cells + bile and cells of SCRH.  The BEI value of 

endogenous TCA (49%) was in the same range as the BEI calculated following 

addition of 1 µM [3H]TCA (68%; Table 2 ). It is not possible to assess biliary 



 

71 
 

clearance of endogenously synthesized bile acids based on the current study 

design.   

Total endogenous bile acid (sum of TCA, GCA, TCDCA,  GCDCA and α/ß-

TMCA) accumulation in medium, cells, and bile of SCRH also was determined 

following 24-hr incubation with vehicle, LPV (5 or 50 µM), and RTV (5 µM), alone or 

combined. Surprisingly, all treatments, except 5 µM LPV, significantly decreased 

total bile acid accumulation compared to vehicle control by (Figure 2.6 ).  

Interestingly, this marked reduction in total measured bile acids occurred despite the 

observation that LPV yielded minimal apparent toxicity to SCRH at these 

concentrations (Figure 2.2 ). The addition of 5 µM RTV to 50 µM LPV did not further 

decrease endogenous bile acid accumulation relative to 50 µM LPV alone (Figures 

2.6-2.9).  Conversely, the addition of 5 µM RTV to low dose LPV (5 µM), significantly 

decreased both total bile acid accumulation (Figure 2.6 ) as well as TCDCA 

accumulation in cells + bile (Figure 2.8 ).  Similar trends were observed for the two 

principal bile acids measured, TCA and α/ß-TMCA (Figures 2.7 and 2.9 ).   

LPV (50 µM) reduced the amount of TCA in medium, cells + bile, and cells 

alone (Figure 2.7 ); the reductions were roughly proportional in each of these three 

compartments.  Similarly, TCDCA accumulation in cells + bile and cells alone was 

significantly decreased by 50 µM LPV; the addition of RTV did not appear to alter the 

effect of LPV alone (Figure 2.8 ).  Notably, the BEI of TCDCA was markedly 

decreased by RTV, alone or in combination with LPV (values at the top of Figure 

2.8).  No significant differences in the accumulation of TCDCA in the medium were 

noted.   
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 GCA accumulation in cells + bile was significantly decreased from control by 

5 µM LPV combined with 5 µM RTV (1.53 + 0.42 vs. 0.14 + 0.14 pmol/mg protein), 

and nearly abolished by exposure to high dose LPV, in the absence and presence of 

RTV.  GCDCA was essentially undetectable in cells + bile and cells of SCRH treated 

with 5 µM LPV combined with RTV, or with high dose LPV (50 µM), alone or 

combined with 5 µM RTV. Medium GCA and GCDCA were not statistically different 

following PI exposure relative to vehicle control values.  

 

DISCUSSION 

 Inhibition of BSEP-mediated biliary excretion of bile acids is a proposed 

mechanism of DILI.  Several PIs, including LPV and RTV, are inhibitors of BSEP in 

vitro and are associated with hepatotoxicity.  Moreover, HIV treatment regimens 

frequently combine RTV with other PIs to improve oral availability (boosting effect), 

and these regimens may have increased potential for liver toxicity.   The present 

work further characterizes the complex interactions between hepatocytes, PIs, and 

endogenous bile acids.  We hypothesized that addition of RTV to LPV would result 

in increased intracellular accumulation of bile acids and increased toxicity in SCRH. 

 Hepatocytes cultured in a sandwich configuration regain morphological 

properties similar to those observed in vivo, including the development of tight 

junctions, canalicular networks, and polarized transport.160  Additionally, SCRH 

exhibit toxicity when BSEP is inhibited.115,248,249  Thus, the SCRH model was 

selected as the most suitable system to evaluate the effect of the PIs, LPV and RTV, 

on cytotoxicity, bile acid transport and endogenous bile acid disposition.  
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Contrary to our hypothesis, the combination of RTV and LPV did not produce 

a detectable increase in toxicity relative to LPV alone (Table 2.1 ).  Nonetheless, 

exposure of SCRH to LPV coadministered with RTV further increased the cellular 

accumulation of TCA compared to LPV alone (Figure 2.2 ).  It is important to note 

that our transport inhibition studies were conducted after 10 min of PI exposure, 

whereas toxicity was assessed after 24 hour PI exposure. The lack of toxicity 

observed at 24 hr may indicate that normal functioning hepatocytes are capable of 

responding to cellular injury via hepatoprotective mechanisms that maintain 

hepatocyte health despite accumulation of bile acids.  Alternatively, feedback 

mechanisms could downregulate bile acid synthesis and/or upregulate bile acid 

efflux resulting in only a transient increase in intracellular bile acid concentrations.  

As expected from previous reports,78 RTV inhibited [3H]TCA Clbile and BEI.  

Exposure to LPV inhibited the Clbile of [3H]TCA, and addition of RTV resulted in 

further inhibition.  It should be noted that the marked additional reduction in [3H]TCA 

Clbile and BEI resulting from addition of RTV to LPV is consistent with additive effects 

of each drug and not a synergistic interaction.  Doubling the concentration of LPV (to 

10 µM) essentially ablated both Clbile and BEI for [3H]TCA.  This effect was similar to 

that observed when LPV (5 µM) was coadministered with RTV (5 µM). 

In contrast to the result with [3H]TCA, we were unable to detect any effect of 

LPV alone or in combination with RTV on the cellular content of [14C]CDCA species. 

This may suggest that the effects of PIs on bile acid transport are specific for certain 

bile acids.  Nonetheless, the effects of LPV and RTV on the calculated BEI and 

biliary clearance of [14C]CDCA species were similar to those observed with [3H]TCA. 
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Because the marked effects of the PIs on biliary excretion of [3H]TCA and 

[14C]CDCA species generally were not associated with similar increases in 

hepatocyte content of bile acids, it was possible that the PIs were differentially 

inhibiting basolateral uptake of bile acids.  Modulating the Na+-content of the buffer 

provides an accurate estimate of the contribution of the Na+-dependent transporter, 

Ntcp, and the sodium-independent organic anion transporting polypeptides (Oatps), 

to total uptake.  Basolateral uptake of TCA is governed primarily by Ntcp, and to a 

lesser extent by Oatps.237 Conversely, CDCA uptake is reportedly driven 

predominantly by Oatps, while Ntcp contributes to a lesser degree.242 Consistent 

with previous work, ~90% of the initial uptake rate of TCA into hepatocytes pre-

incubated with vehicle (0.1% DMSO) was Ntcp-mediated, while the remaining ~10% 

was driven by sodium-independent transporter-mediated processes (presumably 

Oatps). Conversely, ~69% of transporter-mediated [14C]CDCA uptake occurred in 

Na+-free buffer, consistent with the literature findings that Oatp transporters are 

primarily responsible for initial CDCA uptake.242,250  LPV and RTV, alone and 

combined, had no significant effect on the initial uptake of [3H]TCA or [14C]CDCA 

under Na+-containing and Na+-free conditions.  Based on these findings, we 

concluded that disruption of canalicular efflux is the primary mechanism responsible 

for the PI-mediated decrease in the biliary clearance of [3H]TCA and [14C]CDCA.      

Reported in this manuscript, for the first time, are the effects of PIs on the 

disposition of bile acids synthesized by SCRH.  While the bile acid pool is comprised 

of numerous bile acid species, the present study focused on the quantification of 

taurine- and glycine-conjugated cholic acid and chenodeoxycholic acid  due to their 
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potential cytotoxic effects.119,251,252  In addition, the aforementioned bile acids are 

common constituents of both human and rodent bile.  The rodent-specific α/ß-TMCA 

species also were quantified since they make up the majority of the bile acid pool in 

the rat. Secondary bile acids, i.e. those produced via intestinal metabolism, are not 

synthesized in the SCRH system; thus, these bile acid species were not 

quantified.120  BEI values for endogenous TCA were comparable to those estimated 

following addition of radiolabelled TCA.  However, very different results were 

obtained when we investigated the effects of the PIs on intracellular concentrations 

of endogenously synthesized TCA.  Contrary to our results with exogenous [3H]TCA 

administration and short-term PI exposure, RTV and LPV treatment (5 and 50 µm; 

24 hr) resulted in a significant reduction in hepatocyte concentrations of endogenous 

TCA and α/ß-TMCA.  Addition of RTV to high dose LPV (50 µM) appeared to have 

little additive effect. However, addition of RTV to low dose LPV (µM) significantly 

reduced the accumulation of endogenously synthesized total bile acids and TCDCA 

in SCRH (Figures 2.6 and 2.8 ). This observation may indicate that RTV inhibits LPV 

metabolism leading to increased cellular LPV concentrations, which may result in 

altered bile acid synthesis. These studies suggest that LPV and RTV may alter the 

synthesis and biliary excretion of individual bile acids differentially.  

Fresh medium was applied to the SCRH every 24 hours. Thus, the 

remarkable decrease in total measured bile acid content may be due to reduced bile 

acid synthesis.  Consistent with this conclusion, RTV (15-100 µM) exposure for 24 hr 

has been reported to disrupt cholesterol homeostasis and perturb bile acid synthesis 

in a concentration-dependent manner by decreasing the activity of cholesterol 7α 
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hydroxylase, the rate-limiting enzyme responsible for the catabolism of cholesterol to 

bile acids.253  Based on these findings, the observed decrease in total measured bile 

acids following PI exposure in SCRH probably involves regulatory feedback 

mechanisms that promptly reduce synthesis of bile acids as a protective mechanism.  

An important conclusion drawn from our studies is that it may be necessary to 

quantify hepatocellular concentrations of endogenous bile acids when establishing a 

relationship between drug-mediated inhibition of hepatic transporters and 

hepatotoxicity.   

An important question is how the effects of LPV and RTV on bile acid 

excretion from hepatocytes may relate to the hepatotoxicity observed in the clinic 

with these drugs.  At steady-state, LPV and RTV are 98-99% bound to plasma 

proteins, albumin, and AAG.  The average unbound fraction of LPV was 0.73% and 

ranged from 0.14-1.68%.254   Total and unbound LPV concentrations in HIV-infected 

patients ranged from 677 to 23,767 ng/ml (~1-38 µM) and 4.2 to 209.2 ng/ml (0.007-

0.33 µM), respectively.  PI concentrations selected for these studies exceeded 

reported unbound plasma concentrations by 10-fold or more.  However, pilot data 

indicated that intracellular LPV concentrations in SCRH were up to 20-fold greater 

than medium concentrations after co-administration with RTV (data not shown).   

In summary, we found that short term exposure of hepatocytes to LPV and 

RTV resulted in reduced biliary excretion and, consequently, intracellular 

accumulation of TCA. However, following 24 hr exposure to LPV and RTV, we were 

unable to demonstrate even additive toxicity, and we observed a marked reduction 

in hepatocyte accumulation of endogenous bile acids (sum total of TCA, GCA, 
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TCDCA, GCDCA and α/ß-TMCA), primarily attributed to decreased α/ß-TMCA.  

These observations do not necessarily refute a role for bile acid transport inhibition 

in the DILI observed in patients treated with PIs. This is because most patients 

treated with PIs do not develop hepatotoxicity.  We speculate that initial PI-mediated 

increases in cellular bile acid concentrations initiate a cascade of events that 

enables the hepatocytes to remain healthy in most patients.  This adaptive response 

includes mechanisms that result in a marked decrease in hepatocyte content of bile 

acids, most likely involving reduced synthesis.   We further speculate that this 

adaptive response may not occur in all patients treated with these drugs. If such 

deficiencies have a genetic basis, their identification could lead to a personalized 

medicine approach to avoid DILI in PI-containing regimens.   
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Table 2.1 Effect of 24-hour lopinavir exposure, in the presence or absence of 
ritonavir, on sandwich-cultured rat hepatocyte viability. 

 

 LPV LPV/r  

 Viability (% Control)  

Dose 

(µM) 

LDH 

assay 

ATP 

assay 

LDH 

assay 

ATP 

assay 

5 99 + 1 102 + 15 99 + 1 81 + 7 

10 100 + 1 105 + 7 99 + 1 80 + 7 

25 99 + 1 101 + 1 98 + 1 79 + 4 

50 98 + 2 81 + 22 88 + 8 68 + 25 

 
Notes. Day 3 sandwich-cultured rat hepatocytes were treated for 24 hr with lopinavir 
(LPV) in the absence or presence of ritonavir (LPV/r); mean ± SEM (n=3 livers in 
triplicate). 
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Table 2.2 Effect of lopinavir and ritonavir on the biliary excretion index and in vitro 
biliary clearance of [3H]taurocholic acid and [14C]chenodeoxycholic acid  in 
sandwich-cultured rat hepatocytes. 

 

 BEI (%) Clbile (ml/min/kg)  

 [3H]TCA [14C]CDCA [3H]TCA [14C]CDCA 

Vehicle  68 + 3 27 + 2 8.7 + 1.3 37.2 + 8.1 

5 µM RTV  21 + 15 3 + 3 2.5 + 2.1a 0 

5 µM LPV  49 + 11 4 + 4 4.4 + 1.7a 0 

5 µM LPV/r  9 + 5 1 + 1 0.61 + 0.35b 0 

 

Notes. Data from Figures 2 and 3 were used to calculate the biliary excretion index 
(BEI) and in vitro biliary clearance (Clbile), as described in the methods, in the 
absence or presence of RTV (LPV/r); mean ± SEM (n=3 livers in triplicate, analysis 
of variance followed by a Bonferroni post test; a, versus vehicle control; b versus 5 
µM LPV alone, p < 0.05). 
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Table 2.3 Bile acid concentrations (µM) in cells + bile, cells, and medium, and biliary 
excretion index values for each bile acid species, in day 4 sandwich-cultured rat 
hepatocytes. 

 

Species  Cells + bile  Cells  Medium  BEI (%) 

TCA  5.14 + 1.71 2.61 + 1.78 0.651 + 0.127 49 

GCA  0.20 + 0.06 0.13 + 0.08 0.07+ 0.03 35 

TCDCA  1.07 + 0.20 0.63 + 0.20 0.017 + 0.003 41 

GCDCA 0.12 + 0.08 0.07 + 0.04 0.004 + 0.003 42 

α/ß TMCA 168 ± 65 133  ± 72 1.59 ± 0.37 20 

Total  174 ± 67 137 ± 74 2.34 ± 0.412 

 
Notes. Data represent mean ± SEM (n=3 livers in triplicate). Calculations assume a 
hepatocyte volume of 6.83 µl/well.  The biliary excretion index (BEI) was calculated 
as described in the methods.  
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Figure 2.1 Effect of 24-hr exposure to LPV or RTV on hepatocyte viability in 
sandwich-cultured rat hepatocytes (SCRH).  Day 3 SCRH were treated with LPV 
(squares; 5-100 µM) or RTV (triangles; 5-100 µM) for 24 hours. Following 
incubation, LDH release (A) and cellular ATP (B) levels were measured.  Data are 
presented as mean + SEM (n =3).   

A      B 
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Figure 2.2  Effect of LPV and RTV, alone and combined, on taurocholic acid (TCA) 
accumulation in SCRH. [3H]TCA BEI and accumulation in cells + bile (black bars) 
and cells (white bars), in day 4 SCRH were determined following a 10-min co-
incubation with ritonavir (RTV, 5 µM) and lopinavir (LPV; 5 µM) alone or combined 
(LPV/r) (mean + SEM; n = 3 livers in triplicate; analysis of variance followed by a 
Bonferroni post test , * versus cells + bile vehicle control, # vs. 5 µM LPV alone; p < 
0.05). 
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Figure 2.3  Effect of LPV and RTV, alone and combined, on chenodeoxycholic acid  
(CDCA) accumulation in SCRH. [14C]CDCA BEI and accumulation in cells + bile 
(black bars) and cells (white bars), in day 4 SCRH were determined following a 10-
min co-incubation with ritonavir (RTV; 5 µM) and lopinavir (LPV; 5 µM) alone or 
combined (LPV/r) (mean + SEM; n = 3 livers in triplicate).  
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Figure 2.4  Effect of LPV and RTV, alone and combined, on the Na+-dependent and 
Na+-independent uptake of [3H]TCA into freshly isolated suspended rat hepatocytes. 
[3H]TCA accumulation in freshly isolated rat hepatocytes was determined following 
pre-incubation with LPV (10 µM; A) or RTV (5 µM; B), alone and in combination (C), 
in the absence or presence of sodium.  Closed and open circles represent vehicle 
treated cells in Na+-containing or Na+-free buffer, respectively. Closed and open 
triangles represent treated cells in Na+-containing or Na+-free buffer, respectively.  
Uptake into cells is reported as pmol/ mg protein (mean + SEM; n=3 livers in 
triplicate).  
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Figure 2.5 Effect of LPV and RTV, alone and combined, on the Na+-dependent and 
Na+-independent uptake of [14C]CDCA into freshly isolated suspended rat 
hepatocytes. [14C]CDCA accumulation in freshly isolated rat hepatocytes was 
determined following pre-incubation with LPV (10 µM; A) or RTV (5 µM; B) alone 
and in combination, in the absence or presence of sodium (C).  Closed and open 
circles represent vehicle treated cells in Na+-containing or Na+-free buffer, 
respectively. Closed and open triangles represent treated cells in Na+-containing or 
Na+-free buffer, respectively.  Uptake into cells is reported as pmol/ mg protein 
(mean + SEM; n=3 livers in triplicate). 
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Figure 2.6  Accumulation of total measured bile acids (sum of TCA, GCA, TCDCA,  
GCDCA, and α/ß-TMCA) in SCRH (cells, bile, and medium) following 24-h treatment 
with vehicle (0.1% DMSO), RTV (5 µM), and LPV (5 or 50 µM), alone or combined 
(mean + SEM; n=4 livers in triplicate; analysis of variance followed by a Bonferroni 
post test, *, versus vehicle control, p < 0.05). 
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Figure 2.7  Accumulation of TCA in cells + bile (solid bars), cells (open bars), and 
medium (hatched bars) and BEI values in SCRH following 24-h treatment with 
vehicle (0.1% DMSO), RTV (5 µM), and LPV (5 or 50 µM), alone or combined (mean 
+ SEM; n=4 livers in triplicate; analysis of variance followed by a Bonferroni post 
test, *, versus vehicle control, p < 0.05). 
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Figure 2.8  Accumulation of TCDCA in cells + bile (solid bars), cells (open bars), and 
medium (hatched bars) and BEI values in SCRH following 24-h treatment  with 
vehicle (0.1% DMSO), RTV (5 µM), and LPV (5 or 50 µM), alone or combined (mean 
+ SEM; n=4 livers in triplicate; analysis of variance followed by a Bonferroni post 
test, *, versus vehicle control; #, versus 5 µM LPV, p < 0.05) 
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Figure 2.9  Accumulation of α/ß-TMCA in cells + bile (solid bars), cells (open bars), 
and medium (hatched bars) and BEI values in SCRH following 24-h treatment  with 
vehicle (0.1% DMSO), RTV (5 µM), and LPV (5 or 50 µM), alone or combined (mean 
+ SEM; n=4 livers in triplicate; analysis of variance followed by a Bonferroni post 
test, *, versus vehicle control; #, versus 5 µM LPV, p < 0.05) 
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CHAPTER 3 

GENETIC VARIATION IN BILE ACID TRANSPORT AND SYNTHE SIS GENES: A 
POTENTIAL RISK FACTOR FOR DRUG-INDUCED LIVER INJURY  

 
 Drug-induced liver injury (DILI) is the leading cause of acute liver failure in the 

United States and is the most common adverse event leading to the withdrawal of 

drugs from the market.255-257  DILI is rare, which makes predicting hepatotoxic 

events associated with drug therapy challenging.  Impaired bile acid transport 

leading to the accumulation of bile acids known to cause mitochondrial damage and 

decreased membrane integrity is a proposed mechanism of DILI.77,114,258 The bile 

salt export pump (BSEP) is the primary transport protein responsible for the 

canalicular excretion of bile acids.126,128,259,260  Increasing evidence in the literature 

has established a correlation between inhibition of BSEP and cholestasis.124,159,258  

However, numerous studies demonstrate drug- and/or cholestasis-induced 

upregulation of alternate bile acid elimination pathways, and changes in the 

expression and activity of enzymes involved in bile acid synthesis.  These changes 

in feedback regulatory mechanisms may offer hepatoprotection against the cellular 

accumulation of bile acids.87,88,130,135,253    For example, a seven-fold increase in the 

protein expression of the multidrug resistance-associated protein (MRP) 4, which 

facilitates basolateral efflux of an array of compounds including bile acids, has been 

reported in cholestasis-induced bile duct ligated rats.87  
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Drugs can also indirectly affect bile acid synthesis and transport. Ritonavir, a 

potent inhibitor of BSEP, has been shown to significantly decrease cytochrome P450 

(CYP)7A1 mRNA and protein expression levels in primary rat hepatocytes.  CYP7A1 

is the rate-limiting enzyme responsible for the conversion of cholesterol to bile acids.  

In the same study, bile acid synthesis also was decreased following exposure to 

ritonavir.253   

 Bile acids are taken up from the systemic circulation into the hepatocyte 

largely by the sodium-dependent co-transporting polypeptide (NTCP).  NTCP is a 

member of the solute carrier (SLC) family, and is primarily responsible for the uptake 

of monovalent taurine- and glycine-conjugated bile acids.  Sulfated compounds, 

thyroid hormones and a few drugs are also substrates for NTCP.128  Organic anion 

transporting polypeptides (OATPs) mediate the sodium-independent basolateral 

uptake of bile acids.  Two liver-specific isoforms, OATP1B1 and -1B3 contribute to 

the influx of bile acids and endogenous compounds such as bilirubin.   While 

transporter affinity varies between bile acids species, the sodium-dependent uptake 

of bile acids is quantitatively more important in humans than the sodium-

independent uptake processes.128,242  

 Canalicular efflux, the rate-limiting step in hepatocellular transport of bile 

acids, is driven predominantly by BSEP and thus, this protein is the focus of the 

present study.128  The importance of BSEP in bile acid homeostasis has been 

demonstrated repeatedly in the literature.  Decreased mRNA and protein levels of 

BSEP in liver slices incubated with lipopolysaccarides from patients with 

inflammatory liver disease have been reported by Elfereink and colleagues.232  
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Administration of ursodeoxycholic acid, used to treat cholestasis, is associated with 

upregulation of BSEP in patients with gallstones.261  Genetic mutations in BSEP 

resulting in cholestatic diseases in humans also have been reported.  One of the 

most severe diseases associated with a polymorphism in BSEP is progressive 

familial intrahepatic cholestasis type 2 (PFIC2).  Clinical presentation often begins 

during childhood and usually progresses to severe cholestasis warranting liver 

transplantation.130,262,263 

 Other transporters located on the canalicular membrane play a minimal role in 

the efflux of some bile acids.  MRP2 excretes sulfated and glucuronidated bile acids 

as well as bilirubin into the bile, while p-glycoprotein (P-gp) transports taurine- and 

glycine-conjugated bile acids.120,137,264  However, these proteins are primarily 

responsible for the canalicular efflux of a diverse range of drugs, including 

compounds that interact with BSEP.    

Basolateral efflux transporters MRP3 and MRP4 are expressed at low levels 

in healthy hepatocytes.   While these proteins generally contribute to the basolateral 

efflux of numerous, structurally diverse drugs, MRP3- and MRP4-mediated bile acid 

transport has been shown.137,140,141  Furthermore, MRP3 and MRP4 may be 

upregulated during cholestasis as a hepatoprotective mechanism.  Increased renal 

excretion of bile acids in patients with chronic cholestasis corroborates this 

observation.139,265,266  The organic solute transporter (OST) α, combined with OSTß, 

transports bile acids in a sodium-independent fashion.  OSTα is modestly expressed 

in the human liver while OSTß liver expression is virtually undetectable.   While the 

independent function of each subunit has yet to be determined, it is clear that co-
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expression and assembly is required for trafficking of this protein to the plasma 

membrane.  The localization of proteins involved in hepatic bile acid transport is 

depicted in Figure 3.1.  

The mechanisms underlying DILI are complex and most likely involve a 

number of factors including, age, gender, duration of drug exposure, concomitant 

medications, and co-morbidities.  Several studies also suggest that genetic variants 

in specific transport proteins may alter the disposition of drugs and endogenous bile 

acids, thereby predisposing some individuals to drug-induced 

hepatotoxicity.130,149,153,267-269  In addition, genes involved in bile acid synthesis can 

indirectly influence bile acid transport.  Thus, deleterious genetic mutations in such 

genes may indirectly contribute to the risk of DILI.   Based on this rationale, we 

tested the hypothesis that single nucleotide polymorphisms (SNPs) in genes that 

play a role in bile acid transport and synthesis are predictive risk factors for DILI. 

Furthermore, multiple variants in genes that serve as alternate routes of bile acid 

excretion may have an additive effect on the risk of DILI.   

 

METHODS  

Study Subjects 

Polymorphisms in candidate genes selected based on literature review were 

used to conduct a SNP association analysis to elucidate the role of genetic variants 

in DILI.  After patients provided informed consent, DNA samples were obtained and 

prepared as reported previously.270,271 Cases (n=401) of European ancestry enrolled 

in the Drug-induced Liver Injury Network (DILIN)270 between August 2004 and April 
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2009 were included in the study.   Cases were genotyped at the Duke Center for 

Human Genome Variation using the Illumina Human1M-Duo BeadChip.  Genotype 

data from 2,346 controls from the 1958 British Birth Cohort supplied by the 

Wellcome Trust Case-Control Consortium 2 (www.wtccc.org.uk) were used for 

comparison.  Cases were categorized as hepatocellular, cholestatic or mixed using 

the R value as described by Danan et al.272  Severity of hepatic injury (ranging from 

mild to fatal) and causality scores also were determined.270  Characteristics of the 

DILIN patients included in the present study are listed in Table 3.1  

 

Selection and Analysis of Genetic Variants. 

In the present study, variants in genes implicated in bile acid metabolism and 

hepatobiliary transport were selected for analysis. The genetic variants were chosen 

from a subset of drug absorption, distribution, metabolism and elimination (ADME) 

genes for which genotyping data were previously generated in a genome-wide 

association analysis.270,271  The majority of the selected variants were located in 

exomic regions. Two variants were located at the 5’ or 3’ untranslated region, and 

seven variants were located in intronic regions.  Although some SNPs were selected 

based on reported functional consequences, to date, evidence demonstrating 

functional roles of genetic variants, particularly for drug transporters, is limited.   

Table 3.2  lists the SNPs and genes selected, their physiological function, associated 

phenotypes (where clinically reported), and genomic location.  

To evaluate potential associations of individual variants with DILI, genotypes 

were analyzed as wild-type versus variant carriers, where variant carriers were 
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either heterozygotes or homozygotes.  Logistic regression analyses were performed 

to evaluate the relationship between individual polymorphisms and DILI in wild-type 

and variant carriers.   Studies examining the influence of multiple MRP3 and MRP4 

variants on DILI cases involving drugs known to inhibit BSEP238 also were analyzed 

using logistic regression. All tests were carried out using the top 10 principal 

components emerging from the EIGENSTRAT analyses273 as covariates in the 

model.  Drugs reported to inhibit BSEP that were suspected of causing liver toxicity 

in the DILIN cases are listed in Table 3.3 . The outcome was dichotomized based on 

the absence or presence of DILI, and the number of variants present in MRP3 

and/or MRP4 was counted. The specified threshold for significance after multiple 

test correction was p < 0.001.  All hypotheses tested were determined a priori.  

 

RESULTS 

A total of 30 out of 36 selected variants were analyzed by logistic regression.  

Four variants were omitted from the analysis because they were present only in a 

small number of controls, which caused collinearity problems in the regression; 

these variants were found in MRP4 (rs11568668), OSTα (rs9849888) and OSTß 

(rs2919347 and rs4961295).  Additionally, CYP7A1 (rs8192875) and SREBF2 

(rs2229440) variants were only found in one individual.  Consequently, there was not 

sufficient data to perform logistic regression analysis for these variants.  Odds ratios, 

p-values and 95% confidence intervals for each comparison are listed in Table 3.4 .  

Quantile-quantile plots were constructed for each analysis to evaluate the 

distribution of each variant (Figures 3.2, 3.3 and 3.4 ).  Generally, the distribution of 
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p-values resulting from the set of tests performed were no different from those 

expected under the null hypothesis.  None of the individual variants assessed were 

significantly associated with an increased risk of DILI when controls were compared 

to all DILI cases, or when controls were compared to cholestatic cases.  However 

the association of the OSTß variant, rs2919351, was notable when controls were 

compared to all DILI cases and cholestatic DILI cases (odds ratios of 3.6 and 6.1, 

respectively).  The rs2919351 variant yielded a significantly increased odds ratio of 

10.1 (p<0.0015) when controls were compared to cholestatic and mixed DILI cases. 

This odds ratio was greater for mixed cases alone (17.6, p=3 X 10-4). It is important 

to note that this variant clearly deviates from the expected distribution for the 

cholestatic and mixed model (Figure 3.4 ). We next examined whether the 

association would strengthen with increased confidence in the diagnosis of DILI.  

Cases without causality scores and those with scores of “unlikely” and “possible” 

were omitted from the analysis.  We found that the odds ratio and strength of 

association were modestly decreased when the analysis was restricted to confirmed 

probable cases (Table 3.5 ).         

Because MRP3 and MRP4 may compensate for loss of BSEP activity in the 

setting of BSEP inhibition, we hypothesized that individuals carrying variants in 

MRP3 and/or MRP4 may be at increased risk of DILI due to BSEP inhibiting drugs, 

and that the risk may be additive with increasing burden of MRP3/4 variants.  Of the 

401 cases, approximately 12% of the indicated drugs have been reported to inhibit 

BSEP (Table 3.3 ).  Logistic regression analysis of 49 DILI cases due to known 
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BSEP inhibitors and 2,346 controls revealed no significant differences in risk of DILI, 

irrespective of DILI category.  

 

DISCUSSION  

Our hypothesis was that variations with functional consequences in genes 

involved in bile acid transport and synthesis may influence the risk of drug-induced 

hepatotoxicity.  The present study investigated the impact of genetic variants on the 

risk of DILI.  Additionally, the hypothesis that multiple variants in transporter genes 

that act as compensatory elimination routes (i.e. MRP3 and MRP4) have an additive 

effect on the risk of DILI was examined.  We found that the OSTß variant rs2919351 

was associated with cholestatic and mixed DILI, and that this association 

approached significance even after correction for multiple comparisons.  Moreover, 

this association achieved significance when only mixed DILI cases were examined. 

This observation suggests that this variant in OSTß may increase patient 

susceptibility to hepatotoxic events following drug exposure. Secondary analysis in 

which cases with less evidence of causality were omitted showed no differences in 

the variant contribution to DILI. The observation that the association was strongest 

with mixed rather than cholestatic DILI could be explained by the theory that DILI is 

a progressive adverse event in which hepatocellular death is preceded by 

cholestasis.  Thus, “mixed” DILI may, in fact, be the result of cholestasis and 

ultimately progression to hepatocellular liver injury. 

Since the phenotypic outcome of interest (DILI) is a rare event, population 

controls (rather than drug-treated controls) were chosen for comparison to DILI 
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patients. The present study was a retrospective, hypothesis-driven investigation that 

was exploratory in nature, and as such, there are obvious limitations. Firstly, only 

subjects of European descent were included in the analysis.  Although this restriction 

creates a population that is not representative of the general North American 

population, it does eliminate the risk of spurious findings due to population 

stratification.  Also, variants selected for interrogation were restricted to those 

genotyped or tagged on the Illumina 1Mduo BeadChip, which generally only 

contains polymorphisms with allelic frequencies of at least 5%.  As a result, we were 

unable to characterize the influence of more rare genetic variants on DILI. It is often 

assumed that variants that are apt to markedly affect transporter and enzyme 

function are likely to be deleterious and subject to purifying selection, and are 

therefore expected to be rare in the population. This concept has been 

demonstrated for transporter genes in particular.274,275  Studies clearly demonstrating 

a functional consequence of genetic variants on genes involved in drug and/or bile 

acid disposition, particularly those in transporter genes, are limited.  Thus, it is 

unclear whether some of the SNPs selected in the present study have a notable 

influence on the hepatic disposition of bile acids in humans.  A final limitation is that 

information regarding which drugs inhibit BSEP in humans is minimal.  Cases 

involving BSEP inhibitors were selected based on evidence in the literature.  

Consequently, compounds that inhibit BSEP but lack data supporting this interaction 

were not included in the BSEP-focused association analysis. 

In conclusion, a variant in the basolateral bile acid efflux transporter, OSTß 

significantly increased the risk of cholestatic and mixed DILI.  If confirmed in 
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additional cohorts, this finding supports our hypothesis that genetic variants in bile 

acid transporters and metabolic enzymes might contribute to the disposition of 

endogenous bile acids, thereby increasing the risk of DILI.  Further studies are 

warranted to understand the potential role of rare variants, characterize the 

functional consequences of individual variants, and examine the contribution of 

putatively functional variants to drug-induced hepatotoxicity. 
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 Figure 3.1 Illustration of hepatic transport proteins involved in bile 
acid transport in humans.  Basolateral uptake of bile acids is 
governed primarily by NTCP, and to a lesser extent by OATPs. 
Canalicular efflux of bile acids is facilitated by BSEP, which 
represents the rate-limiting step in the hepatocellular disposition 
of bile acids.  MRP3 and MRP4 are basolateral drug transporters 
that are capable of effluxing bile acids under cholestatic 
conditions.  The OSTα/OSTß heterodimer, while predominantly 
expressed in the intestine, contributes to the basolateral efflux of 
bile acids from hepatocytes.  P-gp and MRP2 are responsible for 
the canalicular efflux of an array of drugs and endogenous 
compounds (e.g., bilirubin). However, modest canalicular efflux of 
taurine- and glycine-conjugated (P-gp) as well as sulfated 
(MRP2) bile acids has been demonstrated. 
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Figure 3.2  Normal probability plot of all DILI cases. 

 

 
 



 

102 
 

 

 
Figure 3.3  Normal probability plot of cholestatic DILI cases. 
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Figure 3.4  Normal probability plot of cholestatic and mixed DILI cases. 
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Table 3.1  DILIN subject characteristics 
 

 

 

 

 

 

 

 

 

 

 

 
 
                      

 
N.D.: not determined

Variable   DILIN patients, N (%)  
Gender   

     Male  159 (40) 

     Female  241 (60) 

DILI Category  

     Cholestatic 82 (21) 

     Hepatocellular 158 (40) 

     Mixed  80 (20) 

     N.D. 60 (15) 

Severity   

     Mild  105 (26) 

Moderate  80 (20) 

     Moderate-hospitalized 47 (12) 

     Severe  20 (5) 

     Fatal  124 (31) 

     N.D. 24 (6) 
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Table 3.2  Genes and SNPs interrogated 

 
 

 

Gene Function 
dbSNP and 

location 
Associated Phenotype/  

Functional Evidence 
BSEP Canalicular efflux of bile 

acids. 
rs2287622a ↑risk of ICP269, CC, DC, BRIC267 
rs497692b PBC; Severe exon skipping267 
rs4148777b N.R. 

MRP2 Canalicular efflux of organic 
anions, including drugs and 
some endogenous 
compounds. 

rs2273697a ↓ affinity for LTC4, E23G, and E217G in Sf9 transfected cells 
↓ carbamazepine transport276,277 

rs8187707b N.R. 
rs8187710a ↑LPV accumulation in PBMCs of HIV-infected patients276 

MRP3 Basolateral efflux of organic 
anions, including drugs and 
endogenous compounds 
such as bile acid conjugates 
(under cholestatic 
conditions). 

rs4794175c N.R. 
rs11568605a N.R. 
rs4148416b N.R. 
rs11568591a N.R. 
rs2277624b N.R. 
rs11568589b N.R. 
rs1051640b N.R. 

MRP4 Basolateral efflux of drugs 
and endogenous compounds, 
including bile acids (under 
cholestatic conditions). 

rs3742106d N.R. 
rs3765534a ↓ surface membrane protein expression278; 

↑ sensitivity to 6-mercaptopurine toxicity278 
rs11568668a ↑ intracellular levels of azidothymidine and PMEA279 
rs11568658a ↑ intracellular levels of azidothymidine and PMEA279 

P-gp 
 
 
 
 

Canalicular efflux of drugs 
and some endogenous 
compounds (e.g. bilirubin).  

rs2235035c ↑ susceptibility to colorectal cancer280 
rs1128503b ↑ exposure and  ↓ clearance of doxorubicin281; 

↑ systemic tipifarnib exposure in cancer patients282 
rs1202168c Altered menopausal hormone replacement-associated colorectal 

cancer risk283 
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N.R.: not reported; CC: contraception-induced cholestasis; DC: drug-induced cholestasis; BRIC: benign recurrent extrahepatic 
cholestasis; PBMC: peripheral blood mononuclear cells; ICP: intrahepatic cholestasis of pregnancy; PFIC: progressive familial 
intrahepatic cholestasis; LTC4: cysteinyl leukotriene; E23G:Estradiol-3-glucuronide; E217G: Estradiol-17-beta-

Gene 
Function 

dbSNP and 
location 

Associated Phenotype/  
Functional Evidence 

P-gp 
 

Canalicular efflux of drugs 
and some endogenous 
compounds (e.g. bilirubin). 

rs3789243c ↑ drug resistance in epilepsy patients284 
rs3213619e ↓mRNA expression in colorectal cancer cells285; ↓tacrolimus 

systemic concentrations286 
OSTα Basolateral efflux of bile 

acids. 
 

rs11719281b N.R. 
rs1522394b N.R. 
rs939885a N.R. 
rs17852687b N.R. 
rs9849888a N.R. 

                                                                                        
OSTß 

Basolateral efflux of bile 
acids. 

rs2414870c N.R. 
rs2919347c N.R. 
rs34961295c N.R. 
rs2919351c N.R. 

CYP7A1 
 

Rate-limiting enzyme in the 
classical pathway of bile acid 
synthesis. 

rs8192875a N.R. 

CYP39A1 Enzyme involved in the 
conversion of cholesterol to 
bile acids. 

rs2277119a N.R. 

HSD3B7 
 

Enzyme involved in the 
conversion of cholesterol to 
bile acids. 
 

rs9938550a PFIC type 4287 

rs34212827a N.R. 

SREBF2 Transcription factor that 
regulates cholesterol 
homeostasis. 

rs2229440a 
 

N.R. 
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glucuronide; PMEA: para-methoxyethylam1phetamine; a: coding non-synonymous missense mutation; b: synonymous mutation; 
c:intron; d: 3 prime untranslated region; e: 5 prime untranslated region.  
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                   Table 3.3  List of BSEP Inhibitors Implicated in DILI cases 

Implicated Drug  # of Cases  

Amiodarone 3 

Amitriptyline Hydrochloride 1 

Ciprofloxacin 5 

Cylophosphamide 2 

Erythromycin 1 

Estradiol 1 

Fluconazole 2 

Fluoxetine 2 

Glipizide 1 

Isoniazid 16 

Metformin 2 

Methotrexate 2 

Metoprolol 1 

Nevirapine 2 

Ranitidine 2 

Simvastatin 4 

Tizanidine 1 

Verapamil 1 
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Table 3.4  Logistic Regression Analysis of Controls versus DILIN Cases 
  All Cases (n=401) Cholestatic (n=82) Cholestatic/mixed (n=162) 

  Odds 
Ratio  

p 
value 

95% 
Confidence 

Interval 

Odds 
Ratio  

p 
value 

95% 
Confidence 

Interval 

Odds 
Ratio  

p 
value 

95% 
Confidence 

Interval 
BSEP rs497692 1.1 0.210 0.940 1.325 1.2 0.337 0.840 1.664 1.2 0.161 0.930 1.546 

 rs2287622 0.9 0.431 0.783 1.110 0.9 0.396 0.601 1.223 0.9 0.591 0.721 1.205 
 rs4148777 1.4 0.098 0.940 2.074 1.4 0.325 0.698 2.963 1.2 0.632 0.634 2.119 

MRP2 rs2273697 0.8 0.013 0.599 0.942 0.8 0.379 0.535 1.269 0.8 0.182 0.579 1.109 
 rs8187707 1.2 0.388 0.825 1.641 1.2 0.608 0.609 2.337 1.1 0.754 0.648 1.820 
 rs8187710 1.2 0.428 0.814 1.625 1.2 0.575 0.618 2.377 1.0 0.897 0.610 1.756 

MRP3 rs4794175 1.1 0.488 0.817 1.526 1.2 0.644 0.619 2.171 1.4 0.152 0.890 2.118 
 rs11568605 0.1 0.028 0.011 0.773 N.A. 0.2 0.196 0.017 2.310 
 rs4148416 1.3 0.131 0.923 1.857 1.3 0.441 0.660 2.601 1.3 0.254 0.809 2.236 
 rs11568591 0.9 0.499 0.622 1.260 1.3 0.363 0.726 2.397 1.0 0.911 0.593 1.595 
 rs2277624 1.0 0.991 0.814 1.232 0.9 0.795 0.623 1.436 1.0 0.772 0.701 1.302 
 rs11568589 1.0 0.947 0.408 2.609 N.A. N.A. 
 rs1051640 1.0 0.703 0.763 1.200 0.8 0.333 0.491 1.272 0.9 0.659 0.664 1.296 

MRP4 
rs3742106 1.0 0.591 0.880 1.252 0.9 0.626 0.644 1.304 1.0 0.740 0.738 1.241 
rs3765534 0.8 0.674 0.328 2.057 1.2 0.854 0.259 5.111 0.5 0.420 0.120 2.419 
rs11568658 1.8 0.022 1.091 2.997 2.5 0.026 1.117 5.777 1.7 0.134 0.843 3.604 

P-gp rs2235035 1.0 0.957 0.830 1.193 0.8 0.189 0.560 1.122 0.9 0.476 0.697 1.183 
 rs1128503 1.1 0.297 0.923 1.299 1.1 0.541 0.793 1.557 1.3 0.060 0.990 1.644 
 rs1202168 1.1 0.222 0.938 1.319 1.1 0.423 0.819 1.609 1.3 0.051 0.999 1.658 
 rs3789243 1.0 0.689 0.818 1.142 0.9 0.467 0.634 1.232 0.8 0.113 0.640 1.048 
 rs3213619 1.3 0.196 0.869 1.987 0.4 0.211 0.128 1.576 1.3 0.447 0.688 2.334 

OSTα rs11719281 1.1 0.659 0.822 1.363 1.0 0.986 0.606 1.635 1.0 0.938 0.700 1.471 
 rs1522394 1.1 0.350 0.903 1.334 1.1 0.758 0.725 1.556 1.0 0.822 0.775 1.379 
 rs939885 1.0 0.899 0.835 1.171 1.0 0.979 0.720 1.402 1.1 0.367 0.874 1.439 
 rs17852687 1.2 0.089 0.978 1.374 1.3 0.171 0.905 1.759 1.1 0.528 0.845 1.389 
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  All Cases (n=401) Cholestatic (n=82) Cholestatic/mixed (n=162) 

  Odds 
Ratio  

p 
value 

95% 
Confidence 

Interval 

Odds 
Ratio  

p 
value 

95% 
Confidence 

Interval 

Odds 
Ratio  

p 
value 

95% 
Confidence 

Interval 
OSTß rs2414870 1.0 0.953 0.787 1.289 0.9 0.646 0.534 1.476 0.9 0.688 0.637 1.346 

 rs2919351 3.6 0.078 0.868 14.824 6.1 0.114 0.649 57.703 10.1 0.001 2.519 40.325 
CYP39A1 rs2277119 0.9 0.144 0.697 1.054 0.8 0.236 0.510 1.180 0.8 0.108 0.565 1.058 
HSD3B7 rs9938550 1.0 0.637 0.803 1.144 0.9 0.478 0.616 1.254 1.0 0.939 0.781 1.306 

 rs34212827 1.4 0.604 0.427 4.316 4.3 0.040 1.070 17.309 2.3 0.247 0.566 9.177 

N.A.: Not Applicable
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Table 3.5  Secondary Analysis of rs2919351: Influence of DILI Category and 
Causality                                                                                     

 
 

Odds 
Ratio 

 
 

p value 

95% 
Confidence 

Interval 
Control vs. mixed DILI a 17.6 0.000344 3.67 84.79 

Control vs. cholestatic + mixed DILI 10.1 0.001075 2.52 40.33 

Control vs. cholestatic + mixed DILI b 9.7 0.003000 2.19 42.64 
astatistically significant 
bcases restricted to those with causality scores > probable
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CHAPTER 4 

CONCLUSIONS AND FUTURE DIRECTIONS 

Drug-induced liver injury (DILI) is a rare but severe adverse event, often resulting in 

the withdrawal of otherwise effective drugs from the market.255,257  DILI accounts for 

at least 13% of US acute liver failure cases256 and the incidence of DILI reportedly 

ranges from one in 10,000 to one in 100,000 patients on medications.288 

Unfortunately, the number of DILI-inducing drugs that have known mechanisms of 

toxicity and/or exhibit dose-dependent toxicity is marginal.  Furthermore, not all 

drugs that elicit abnormal liver function tests cause patients to develop persistent 

hepatotoxicity.  Several examples in the literature provide evidence of adaptation, in 

which initial elevations in liver enzymes following initiation of drug therapy return to 

normal after continued drug exposure.289,290 The infrequency and irregularity of DILI 

further complicates our understanding of its pathophysiology, making it difficult to 

predict the risk of DILI in humans. Though mechanisms of DILI remain unclear, 

several hypotheses have been proposed, including the production of reactive 

metabolites, auto-immune responses, or cellular oxidative stress.  All of the 

aforementioned mechanisms are known to alter membrane permeability, resulting in 

perturbation of ATP synthesis.291   

Inhibition of bile acid transport culminating in hepatocellular retention and 

accumulation of bile acids (i.e. cholestasis) also has been proposed as a mechanism 
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of drug-induced liver injury.238,239,292  Mounting evidence in the literature 

demonstrates inhibition of the bile salt export pump (BSEP), the main canalicular 

efflux protein responsible for bile acid excretion, by a number of drugs is associated 

with cholestasis. Currently, potent inhibition of BSEP is considered a potential risk, 

often leading to the termination of a compound during the drug development 

process. One aim of this dissertation research was to utilize the sandwich-cultured 

rat hepatocyte (SCRH) model and freshly isolated suspended rat hepatocytes to 

determine the inhibitory effect of combination protease inhibitors on the hepatic 

transport of bile acids as a mechanism of toxicity (Chapter 2 ).  A second aim was to 

perform an association study using a candidate-gene approach to elucidate the 

contribution of genetic variants in key bile acid transport and metabolism genes to 

DILI (Chapter 3 ). 

 

Cellular Viability in Sandwich-Cultured Hepatocytes: Effects of Culture Day 

and Protease Inhibitors.   

In Aim 1, cellular viability assays were conducted to investigate the effect of 

days in culture on drug-mediated cytotoxicity in SCRH (Appendix A ), and to 

determine subtoxic protease inhibitor (PI) concentrations for use in subsequent 

studies (Chapter 2 ).  Lactate dehydrogenase (LDH) and adenosine triphosphate 

(ATP) assays were selected based on work published by Kemp et al. demonstrating 

that the LDH  assay is more sensitive than other conventional assays utilized in 

SCRH (MTT, alamar blue, and propidium iodide staining).248  Additionally, the 

nondestructive nature of the LDH assay allowed multiple studies to be performed on 
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a single sample set.  Quantification of cellular ATP content is also a standard 

approach to determine toxicity and was used to corroborate findings from the LDH 

assay. 

Based on the LDH assay, 24 hour exposure to 100 µM ritonavir (RTV) and 

lopinavir (LPV) yielded significantly lower toxicity on culture day 3 compared to 

culture day 1 (Table A.1 ).  Next, dose-response studies performed on culture day 3 

demonstrated that RTV and LPV were not toxic at concentrations less than or equal 

to 50 µM; toxicity in these studies was assessed by both LDH and ATP assays.  

Also, both assays revealed that LPV (5-50 µM) combined with RTV (5 µM) did not 

significantly decrease cellular viability compared to LPV alone. As a class, PIs are 

associated with a number of adverse reactions including the production of reactive 

oxygen species, elevated liver function tests, hyperbilirubinemia, jaundice and 

dyslipidemia.293  Based on evidence in the literature, we hypothesized that PIs used 

in combination might exhibit additive hepatotoxic effects compared to single agents.  

However, findings of toxicity studies carried out in SCRH did not support this 

hypothesis.   

In retrospect, determination of protein expression levels of genes implicated 

in the metabolism of LPV, RTV, and bile acids following 24 hour exposure over days 

in culture would have been helpful to interpret the results.  While studies 

characterizing the effects of various culture conditions (e.g. supplemental medium 

content) have been performed to optimize the model, the influence of sustained PI 

exposure on transporters and drug-metabolizing enzymes in sandwich-cultured 

hepatocytes remains unclear.  Understanding the impact of LPV and RTV on 
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metabolic enzymes and transport proteins in SCRH would help determine whether 

there was a shift in the formation of potentially toxic drug or bile acid intermediates 

and/or metabolites.  

  Also, a time-course study evaluating the toxicity of LPV and RTV over 24 

hours, and perhaps beyond, would have proven useful.  Because toxicity was 

evaluated at a single 24-hour time point, we are unable to comment on the effects of 

chronic drug exposure on cellular viability.  It remains unclear how 24-hr incubation 

in vitro corresponds to in vivo exposure.  Thus, it is difficult to extrapolate the present 

results to clinical circumstances.  Nevertheless, the findings of experiments outlined 

in this dissertation work demonstrated that SCRH did not succumb to toxicity using 

PI doses that were within and above the clinically relevant plasma concentrations 

reported in humans.   Recent published data demonstrated bile-acid dependent 

hepatotoxicity of BSEP inhibitors in sandwich-cultured rat hepatocytes.249  

Subsequent studies evaluating the effect of coadministered BSEP inhibitors and bile 

acids on DILI and hepatobiliary bile acid transport are necessary to further clarify the 

mechanisms by which bile acids induce DILI.  

 

Individual and Coadministered Protease Inhibitors Impaired Canalicular 

Excretion of Bile Acids but did not Affect Initial Uptake.  

The purpose of Aim 2 was to investigate the impact of RTV and LPV, alone 

and combined, on the hepatobiliary disposition of the bile acids taurocholate (TCA) 

and chenodeoxycholate (CDCA).  Previous work by McRae and colleagues showed 

that RTV inhibited Bsep-mediated [3H]TCA biliary excretion in SCRH, and to a lesser 
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extent, NTCP-mediated uptake.78  While a small number of studies examining the 

effect of LPV on the initial uptake of bile acid structural analogues have been 

performed, the influence of LPV on [3H]TCA and [14C]CDCA uptake and biliary efflux 

had not been elucidated.  Furthermore, the impact of coadministered PIs (as used 

clinically) on bile acid transport had not been investigated. 

 Studies measuring the effects of LPV and RTV, alone and combined, on 

[3H]TCA and [14C]CDCA accumulation in cells + bile and cells of SCRH were 

performed on culture day 4. Modulation of calcium content in the medium disrupts 

tight junctions causing release of the content of bile canalicular networks permitting 

the accurate determination of cellular substrate concentrations.160,162,245 Co-

incubation (10 min) with LPV, alone and combined with RTV (LPV/r), significantly 

decreased the accumulation of [3H]TCA in cells + bile.  LPV/r significantly increased 

the hepatocellular concentration of [3H]TCA.  While [14C]CDCA accumulation in cells 

+ bile and cells was not significantly altered by LPV and RTV, the biliary clearance of 

[14C]CDCA was ablated by LPV and RTV, alone and combined.  

Initial uptake studies using suspended rat hepatocytes were performed to 

characterize the effect of LPV and RTV on [3H]TCA and [14C]CDCA uptake. Freshly 

isolated suspended hepatocytes are ideal for measuring the initial uptake of 

compounds, however, the utility of suspended hepatocytes is limited due to the rapid 

decrease in cellular viability.  Manipulation of sodium content in the incubation buffer 

allows determination of the contribution of Na+-dependent (Ntcp-driven) and Na+-

independent (Oatp-mediated) transport processes to total uptake.240 Interestingly, 

these studies revealed that the initial uptake rates of [3H]TCA and [14C]CDCA were 
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not affected by LPV and/or RTV at clinically relevant concentrations, suggesting that 

the observed decrease in the biliary excretion of [3H]TCA and [14C]CDCA following 

PI exposure was not due to decreased bile acid uptake. 

 

Protease Inhibitors Decreased Total Endogenous Bile Acid Concentrations in 

Sandwich-cultured Rat Hepatocytes.   

The objective of Aim 3 was to evaluate the effect of LPV and RTV, alone and 

combined, on the accumulation of endogenous bile acids in cells + bile, cells, and 

medium of SCRH.  Hepatocytes were treated with LPV and RTV for 24 hours, 

beginning on day 3. Next, concentrations of endogenous bile acids [TCA, 

taurochenodeoxycholic acid (TCDCA), glycocholic acid (GCA), 

glycochenodeoxycholic acid (GCDCA), α- and ß-tauromuricholic acid (TMCA)] were 

measured on day 4 by high performance liquid chromatography and mass 

spectrometry. 

 The 10-minute accumulation studies in day 4 SCRH showed potent inhibition 

of [3H]TCA and [14C]CDCA biliary excretion due to LPV and RTV exposure.  

Therefore, culturing hepatocytes with LPV and RTV for 24 hours was expected to 

significantly inhibit the biliary clearance of endogenous bile acids, thereby increasing 

intracellular accumulation of bile acids.  Surprisingly, LPV and RTV treatment 

significantly decreased total bile acid accumulation (the sum of all measured bile 

acids) in cells + bile, cells, and medium of SCRH compared to vehicle control. One 

explanation for these findings is that PI treatment decreased bile acid synthesis.  

Although Zhou and colleagues reported that RTV inhibited CYP7A1, the rate-limiting 
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enzyme in the conversion of cholesterol to bile acids, in a concentration-dependent 

manner, the effect of LPV on bile acid biosynthesis has not been examined. 

Alternatively, the observed decrease in total bile acid accumulation may be 

attributed to increased metabolism of bile acids following PI exposure.  Subsequent 

studies are necessary to determine the impact of PIs on the formation and 

catabolism of endogenous bile acids in SCRH.  It is also plausible that 

compensatory efflux via the basolateral transporters (e.g., MRP3 and/or MRP4) 

played a role in decreased cellular concentrations of bile acids. While it is difficult to 

design and implement basolateral efflux studies in sandwich-cultured hepatocytes, 

future experiments should be conducted to measure the contribution of basolateral 

efflux transporters following PI exposure.  Whole-animal experiments using wild-type 

and Mrp2-deficient rats, in which both renal and hepatic mRNA and protein 

expression of basolateral efflux transporters (e.g. Mrp3 and Mrp4) are evaluated 

following short-term and chronic administration of LPV and RTV, would be novel and 

relevant.  Also, the correlation between drug and bile acid concentrations in the 

plasma and concentrations at target organs remain unclear. Concentrations of PIs, 

cholesterol, bilirubin, and bile acids also could be quantified from serum as well as 

renal and hepatic tissues harvested from these animals. These studies would help 

clarify the relationship between the concentrations of drug and endogenous 

compounds in the serum versus target organs and ultimately aid in better prediction 

of pharmacological outcomes. 
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Role of Genetic Variants in Drug-induced Liver Injury  

Increasing evidence in the literature suggests that single nucleotide 

polymorphisms (SNPs) that alter the function of key enzyme and transporter genes 

influence the pharmacokinetic profile of substrates, including drugs and endogenous 

compounds. Thus, the goal of Aim 4 was to determine the contribution of genetic 

variants in relevant bile acid metabolism and transport genes to the risk of DILI by 

performing an association analysis using a candidate-gene approach.  The 

investigated genes included two canalicular bile acid export transporters: bile salt 

export pump (BSEP) and multidrug resistance associated protein 2 (MRP2).  Using 

cases obtained from the Drug-induced Liver Injury Network (DILIN) and controls 

from the 1958 British Birth Cohort, patients who had experienced DILI were 

compared to controls to determine whether there was an increased risk of DILI in 

persons with SNPs in the genes of interest. 

  Importantly, the rs2919351 variant of OSTß yielded a significantly increased 

odds ratio of 10.1 (p<0.0015) when controls were compared to cholestatic and mixed 

DILI cases.  The odds ratio was notably greater for mixed cases alone (17.6, p=3 X 

10-4).  This novel and exciting finding suggests that a genetic variant in the 

basolateral efflux transporter OSTß may contribute to increased risk of DILI in 

humans.  Replication in a larger cohort is necessary to confirm this association. 

 

Future Directions 

 Throughout the course of this dissertation research, my major advisor often 

optimistically reminded me that “good science” generates more questions than it 
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answers.  The studies presented herein yielded exciting and, at times, unexpected, 

observations. Thus, there are a number of studies that would be logical next-steps in 

the future directions of this research program.  While this work addressed the impact 

of coadministered PIs on bile acid transport, management of HIV infection often 

involves multiple drugs from several classes with distinct mechanisms of action.  

Subsequent studies evaluating the influence of coadministered antiretroviral agents, 

using a cassette-dosing approach, on hepatotoxicity and bile acid disposition is 

warranted. Data generated from these studies would provide insight regarding the 

drug-bile acid interactions between antiretrovirals from numerous drug classes.  This 

knowledge is key to understanding the potential risks associated with highly active 

antiretroviral therapy at both the drug transport and metabolism level.   

Also, LPV and RTV are rapidly and extensively metabolized by CYP450 

enzymes; at least one RTV metabolite is pharmacologically active. Therefore, it 

would be useful to characterize the extent of LPV and RTV metabolism in rat and 

human hepatocytes relative to in vivo. These data would provide substantial 

information about the applicability and precision of in vitro model systems in the 

prediction of drug disposition in vivo, because it is costly and time prohibitive to 

perform extensive pharmacokinetic studies of this nature in humans.  To date, the 

ability of drug-transporter interactions to influence the pharmacokinetic disposition, 

and thus, efficacy, and safety profiles of drugs has only recently gained recognition.  

These studies would allow scientists to more accurately predict the physiological 

consequences of drug-transporter interactions, if any, observed in vitro. 
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 Although some preliminary data examining the effect of antiretrovirals on 

systemic bile acid concentrations in HIV-infected patients has been published, 

findings were inconclusive due to small sample sizes and high interindividual 

variability.79 Consequently, despite the association of PIs with disturbances in lipid 

homeostasis, the association between circulating bile acids and antiretroviral use 

remains unclear.  Future studies investigating the consequences of PIs on bile acid 

concentrations in plasma, urine, and bile from HIV-infected patients compared to 

healthy control subjects should be performed.  These data could be used to develop 

a pharmacokinetic model capable of predicting perturbations in bile acid disposition.  

This information would enable scientists to determine the risk of toxicity associated 

with bile acid disposition in humans.  Importantly, these studies could reveal the 

utility of serum bile acids as a biomarker for DILI, and might help elucidate the 

contribution of HIV-infection itself to alterations in bile acid disposition. 

 One limitation of the present work is that only six major bile acids were 

measured by HPLC-MS/MS.  Bile acid metabolism is complex and tightly controlled 

by several regulatory feedback mechanisms.261,294  Additional studies quantifying 

other bile acids, including more toxic bile acid species such as LCA, DCA, as well as 

sulfate and glucuronide conjugates of the major bile acids in both hepatocytes and in 

plasma after PI exposure should also be carried out.  These findings would be 

necessary to detect drug-mediated shifts in the composition of the bile acid pool. 

Such changes may signal either a hepatoprotective response or drug-induced 

changes in key proteins that regulate bile acid synthesis and/or excretion from the 

hepatocyte.  These comprehensive studies should be conducted in both human and 
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rodent models to delineate species differences because bile acid composition and 

the inhibitory potential of drugs on bile acid metabolism and transport reportedly 

differ across species. Identifying preclinical signals of hepatotoxicity would be an 

important contribution to the development of safer drugs. 

A novel and exciting finding of the current work is the observed decrease in 

bile acid concentrations following 24 hour PI co-incubation with SCRH (Chapter 2 ).  

Follow-up studies measuring bile acid concentrations over 24 hours, as opposed to 

a single end-point, would provide key information regarding the extent and time 

course of decreased bile acid formation or increased bile acid metabolism.  

Measurement of bile acid precursors, such as cholesterol and its intermediate 

metabolites, and bile acid metabolites would help determine where perturbations 

occur in the bile acid synthesis or catabolism cascade.  Also, quantifying protein 

and/or mRNA expression of key enzymes involved in the classical and alternate 

pathways of cholesterol metabolism, such as cholesterol 7-α hydroxylase (CYP7A1) 

and sterol 27-hydroxylase (CYP27A1) could help to determine whether induction or 

inhibition of metabolic enzymes contribute to the changes in bile acid concentrations.  

 The sandwich-cultured hepatocyte model is a relatively new tool to assess 

hepatic uptake and excretory processes of drugs and endogenous compounds. 

Consequently, additional research is needed to characterize bile acid disposition and 

elucidate new applications of this in vitro system.  For example, cholesterol and bile 

acid content over days in culture, and the effects of daily medium changes on these 

levels, have yet to be determined in sandwich-cultured hepatocytes.  Thus, 

interpretation of studies in SCRH exploring drug effects on endogenous bile acids is 
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limited.  Future work should include comprehensive studies describing the inherent 

characteristics of the sandwich-cultured hepatocyte system with respect to bile acid 

disposition, and how this in vitro model compares to the in vivo situation. 

 As discussed in Chapter 3, the genetic study detected a significant 

association between a single variant in OSTß and an increased risk of DILI.  

Subsequent studies clearly identifying functional consequences of genetic variants 

are required to accurately identify and assess the influence of variants on drug-

induced hepatotoxicity. Evidence correlating genetic polymorphisms with functional 

consequences is marginal.  This limitation confounds our understanding of 

interindividual variability in drug pharmacokinetics, and, consequently, efficacy and 

toxicity.  To date, resources that provide useful, accurate information regarding drug-

transporter interactions due to genetic variants are limited.  Initiatives to address this 

scientific need will develop as the field continues to evolve.   

 In conclusion, the present work has enhanced our understanding of the 

interactions between hepatic transport proteins and coadministered antiretroviral 

drugs, specifically LPV and RTV.  Additionally, this project illustrated the 

consequences of those interactions on bile acid disposition in an in vitro model, and 

highlighted the importance of employing a system capable of retaining in vivo like 

properties.  One key finding is that despite the short-term, potent inhibition of Bsep-

mediated bile acid transport, PIs such as LPV and RTV decrease bile acid 

accumulation when incubated for 24 hours with normal rat hepatocytes cultured in a 

sandwich configuration for 4 days.  This observation may explain the lack of toxicity 

that was observed in SCRH when incubated with clinically relevant concentrations of 
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PIs.  Lastly, the genetic study provided a framework for future hypothesis-driven 

association studies, particularly focused on transport proteins that play a role in the 

disposition of bile acids.  
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APPENDIX 

RAW DATA SUMMARY 

Figure 2.1  Sandwich-cultured rat hepatocyte viability (mean and SEM; % control) 
following 24-hr exposure to LPV or RTV.  Day 3 SCRH were treated with LPV or 
RTV (5-100 µM) for 24 hours. Following incubation, LDH release and cellular ATP 
(B) levels were measured.   
 

Viability (%) 

LDH 

  Lopinavir Ritonavir 

Dose (µM) N1 N2 N3 mean  SEM N1 N2 N3 mean  SEM 
5 98.9 98.1 99.5 98.8 0.4 99.8 100.9 99.6 100.1 0.4 

10 100.0 100.0 98.6 99.5 0.5 100.0 100.0 99.6 99.9 0.1 
25 100.0 99.4 98.1 99.2 0.6 100.0 100.0 99.7 99.9 0.1 
50 100.0 99.6 94.8 98.1 1.7 100.0 99.8 98.0 99.3 0.6 
75 93.8 94.8 87.7 92.1 2.2 96.1 93.9 96.5 95.5 0.8 

100 89.4 87.3 87.3 88.0 0.7 89.6 93.9 91.1 91.5 1.3 

ATP 

  Lopinavir Ritonavir 

Dose (µM) N1 N2 N3 mean  SEM N1 N2 N3 mean  SEM 
5 131.8 84.2 89.2 101.8 15.1 98.2 87.9 90.4 92.1 3.1 

10 117.5 103.6 94.6 105.2 6.6 98.7 71.7 87.4 85.9 7.8 
25 101.7 100.1 102.7 101.5 0.8 91.8 87.6 81.2 86.9 3.1 
50 81.9 118.3 43.8 81.3 21.5 98.8 75.6 83.8 86.0 6.8 
75 71.1 58.7 15.4 48.4 16.9 87.2 61.6 63.5 70.8 8.2 

100 59.1 57.2 10.7 42.3 15.9 67.8 53.9 39.3 53.6 8.2 
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Figure 2.2  Accumulation (mean and SEM; pmol/mg protein), BEI (%) and Clbile 
(ml/min/mg protein) of 3H[TCA] in cells + bile and cells of day 4 SCRH following a 
10-min co-incubation with vehicle control (0.1 % DMSO), RTV (5 µM), and LPV (5 
µM), alone or combined (LPV/r). 
 

  cells + bile cells 
  N1 N2 N3 Mean SEM N1 N2 N3 mean SEM 

Vehicle  15.9 19.8 12.3 16.00 2.17 6.0 5.7 3.7 5.13 0.72 
RTV 8.8 16.6 7.8 11.07 2.78 9.3 8.3 6.8 8.13 0.73 
LPV 8.3 14.1 9.3 10.57 1.79 6.0 4.7 4.4 5.03 0.49 

LPV/r 8.3 9.2 5.3 7.60 1.18 7.5 7.7 7.9 7.70 0.12 

    
  BEI (%) Cl bile (ml/min/kg) 

  N1 N2 N3 Mean SEM N1 N2 N3 mean SEM 
Vehicle  62.30 71.21 69.92 67.80 2.78 7.92 11.28 6.88 8.70 1.33 

RTV 0.00 50.00 12.82 20.93 15.00 0.00 6.64 0.80 2.47 2.08 
LPV 27.70 66.67 52.69 49.03 11.41 1.84 7.52 3.92 4.40 1.66 

LPV/r 9.60 16.30 0.00 8.63 4.73 0.64 1.20 0.00 0.60 0.35 
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Figure 2.3  Accumulation (mean and SEM; pmol/mg protein), BEI (%), and Clbile 
(ml/mink/kg) of [14C]CDCA in cells + bile and cells of day 4 SCRH following a 10-min 
co-incubation with vehicle control (0.1% DMSO), RTV (5 µM), and LPV (5 µM), alone 
or combined (LPV/r). 
 

  cells + bile cells 
  N1 N2 N3 mean SEM N1 N2 N3 Mean SEM 

Vehicle  1077.4 793.0 672.2 847.5 120.1 813.3 580.6 515.4 636.4 90.4 
RTV 1026.6 768.7 546.5 780.6 138.7 1115.3 693.3 592.4 800.3 160.2 
LPV 930.9 823.2 456.1 736.7 143.7 812.6 862.1 593.1 755.9 82.7 

LPV/r 1079.4 989.3 558.9 875.9 160.6 1252.7 995.3 542.3 930.1 207.6 

 
  BEI (%) Cl bile (ml/min/kg) 
  N1 N2 N3 mean SEM N1 N2 N3 Mean SEM 

Vehicle  30.6 26.8 23.3 26.9 2.1 26.4 21.2 15.7 37.2 8.1 
RTV 0.0 9.8 0.0 3.3 3.3 0.0 7.5 0.0 0.0 0.0 
LPV 12.7 0.0 0.0 4.2 4.2 11.8 0.0 0.0 0.0 0.0 

LPV/r 0.0 0.0 3.0 1.0 1.0 0.0 0.0 1.7 0.0 0.0 
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Figure 2.4 . Na+-dependent and Na+-independent uptake of [3H]TCA into freshly isolated suspended rat hepatocytes. 
[3H]TCA accumulation in freshly isolated rat hepatocytes was determined following pre-incubation with vehicle control 
(0.1% DMSO), LPV (10 µM; A) or RTV (5 µM; B), alone and in combination (C), in the presence or absence of sodium. 
 

Control 

  Na+-containing buffer Na+-free buffer 
Time (s)  N1 N2 N3 Mean SEM N1 N2 N3 mean SEM 

15 48.24 40.04 42.74 43.67 2.41 12.6 8.56 6.03 9.06 1.91 
30 78.36 66.15 58.39 67.63 5.81 22.37 11.7 5.86 13.31 4.83 
45 92.39 80.86 95.13 89.46 4.37 21.35 11.26 8.44 13.68 3.92 

rate  
(pmol/s/mg p) 1.472 1.361 1.746 1.53 0.04 0.29 0.09 0.08 0.15 0.07 

LPV 

  Na+-containing buffer Na+-free buffer 
Time (s)  N1 N2 N3 Mean SEM N1 N2 N3 mean SEM 

15 52.54 38.54 30.83 40.64 6.35 11.78 8.63 6.4 8.94 1.56 
30 78.16 43.46 114.3 78.64 20.45 8.15 12.15 9.89 10.06 1.16 
45 142.45 72.33 127.58 114.12 21.33 16.14 13.26 9.67 13.02 1.87 

rate  
(pmol/s/mg p) 2.997 1.126 3.225 2.45 0.05 0.15 0.15 0.11 0.14 0.04 

RTV 

  Na+-containing buffer Na+-free buffer 
Time (s)  N1 N2 N3 Mean SEM N1 N2 N3 mean SEM 

15 56.01 45.87 52.54 51.47 2.98 12 9.11 8.25 9.79 1.13 
30 90.37 61.94 101.98 84.76 11.89 15.69 10.77 11.59 12.68 1.52 
45 92.66 79.03 135.95 102.55 17.16 18.17 14.43 14.02 15.54 1.32 

rate  
(pmol/s/mg p) 1.222 1.105 2.78 1.70 0.30 0.21 0.18 0.19 0.19 0.00 

LPV/r 

  Na+-containing buffer Na+-free buffer 
Time (s)  N1 N2 N3 Mean SEM N1 N2 N3 mean SEM 

15 46.82 44.13 21.23 37.39 8.12 13.22 7.11 5.74 8.69 2.30 
30 79.69 84.95 74.58 79.74 2.99 16.06 10.83 8.78 11.89 2.17 
45 97.19 96.23 119.35 104.26 7.55 19.32 9.55 9.78 12.88 3.22 

rate (pmol/s/mg p)  1.679 1.737 3.271 2.23 0.34 0.2 0.08 0.13 0.14 0.04 
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Figure 2.5 . Na+-dependent and Na+-independent uptake of [14C]CDCA into freshly isolated suspended rat hepatocytes. 
[14C]CDCA accumulation in freshly isolated rat hepatocytes was determined following pre-incubation with vehicle control 
(0.1% DMSO), LPV (10 µM; A) or RTV (5 µM; B), alone and in combination (C), in the presence or absence of sodium. 
 

Control 

 Na+-containing buffer Na+-free buffer 
Time (s)  N1 N2 N3 Mean SEM N1 N2 N3 mean SEM 

15 374.1 377.5 154.4 302.0 73.8 137.9 248.8 171.3 186.0 32.9 
30 681.7 553.0 223.7 486.2 136.4 315.5 353.9 242.8 304.1 32.6 
45 821.9 679.4 288.6 596.6 159.4 458.2 440.7 264.6 387.9 61.8 

rate (pmol/s/mg p)  14.9 10.1 4.5 9.8 3.0 10.7 6.4 3.1 6.7 2.2 

LPV 

 Na+-containing buffer Na+-free buffer 
Time (s)  N1 N2 N3 Mean SEM N1 N2 N3 mean SEM 

15 471.1 419.0 186.7 359.0 87.4 284.2 195.2 175.1 218.2 33.5 
30 692.6 566.3 302.9 520.6 114.8 372.8 275.6 257.9 302.1 35.7 
45 755.7 642.9 358.4 585.7 118.2 535.0 320.1 310.7 388.6 73.2 

rate (pmol/s/mg p)  9.5 7.5 5.7 7.6 1.1 8.4 4.2 4.5 5.7 1.3 

 
 

RTV 

 Na+-containing buffer Na+-free buffer 
Time (s)  N1 N2 N3 Mean SEM N1 N2 N3 mean SEM 

15 387.4 342.2 189.2 306.3 60.0 332.9 190.4 158.2 227.2 53.7 
30 527.6 464.5 258.1 416.7 81.4 421.5 255.3 191.6 289.5 68.5 
45 597.3 488.6 315.8 467.2 82.0 568.4 298.8 291.5 386.2 91.1 

rate (pmol/s/mg p)  7.0 4.9 4.2 5.4 0.8 7.9 3.6 4.4 5.3 1.3 

LPV/r 

 Na+-containing buffer Na+-free buffer 
Time (s)  N1 N2 N3 Mean SEM N1 N2 N3 mean SEM 

15 627.9 407.5 199.2 411.5 123.8 404.7 204.4 142.1 250.4 79.2 
30 908.5 535.4 302.6 582.2 176.5 640.4 303.2 201.3 381.7 132.7 
45 1094.5 680.3 364.2 713.0 211.5 788.6 383.9 234.2 468.9 165.6 

rate (pmol/s/mg p)  15.6 9.1 5.5 10.0 2.9 12.8 6.0 3.1 7.3 2.9 
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Figure 2.6 Accumulation (pmol/mg protein) of total bile acids (TCA + GCA + TCDCA 
+ GCDCA + α/ß-TMCA) in SCRH (cells, bile, and medium) following 24-h treatment 
with vehicle (0.1% DMSO), RTV (5 µM), and LPV (5 or 50 µM), alone or combined.

 N1 N2 N3 N4 mean SEM 

Vehicle Control 5060 4169 5202 6432 5216 466 
5 µM RTV 3921 2642 3403 4362 3582 369 
5 µM LPV 4866 2605 4109 5162 4185 572 

5 µM LPV + 5 µM RTV 2175 2033 2125 2137 2118 30 
50 µM LPV 2666 1829 2477 2500 2368 185 

50 µM LPV + 5 µM RTV 2015 1409 1979 1669 1768 143 
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Figure 2.7  Accumulation (pmol/mg protein) of endogenous TCA in cells + bile, cells, 
and medium and BEI values in SCRH following 24-h treatment with vehicle (0.1% 
DMSO), RTV (5 µM), and LPV (5 or 50 µM), alone or combined 
 

cells + bile  

 
N1 N2 N3 N4 mean SEM 

Vehicle Control 38.17 12.87 74.45 30.48 38.99 12.95 
5 µM RTV 12.80 4.91 39.07 6.61 15.85 7.93 
5 µM LPV 21.70 3.85 45.24 13.39 21.04 8.85 
50 µM LPV 3.65 2.32 18.83 2.63 6.86 4.00 
5 µM LPV+ 
5 µM RTV 2.88 0.60 3.55 0.00 1.76 0.86 

50 µM LPV + 
5 µM RTV 1.06 0.80 6.72 0.92 2.37 1.45 

 
 
 
 
 

cells 

 
N1 N2 N3 N4 mean SEM 

Vehicle Control 6.19 3.39 60.19 9.50 19.82 13.51 
5 µM RTV 1.89 1.41 30.21 2.76 9.07 7.05 
5 µM LPV 3.49 1.69 31.13 5.65 10.49 6.93 
50 µM LPV 0.84 0.60 13.07 1.38 3.97 3.04 
5 µM LPV + 
5 µM RTV 0.60 0.20 3.83 0.30 1.23 0.87 

50 µM LPV + 
5 µM RTV 0.83 0.43 5.80 0.79 1.96 1.28 

medium 

 
N1 N2 N3 N4 mean SEM 

Vehicle Control 1039.90 512.79 1305.87 1482.57 1085.28 211.40 
5 µM RTV 1309.64 426.00 1062.36 1538.00 1084.00 239.87 
5 µM LPV 1049.84 269.00 1108.77 1225.00 913.15 217.78 
50 µM LPV 601.02 399.00 661.87 961.00 655.72 116.24 
5 µM LPV + 
5 µM RTV 365.12 124.00 310.55 252.00 262.92 51.75 

50 µM LPV + 
5 µM RTV 300.00 140.00 316.68 313.00 267.42 42.62 
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Figure 2.8  Accumulation (pmol/mg protein) of endogenous TCDCA in cells + bile, 
cells, and medium and BEI values in SCRH following 24-h treatment with vehicle 
(0.1% DMSO), RTV (5 µM), and LPV (5 or 50 µM), alone or combined 
 

cells + bile  

 N1 N2 N3 N4 mean SEM 
Vehicle Control 8.93 4.02 8.09 11.3 8.09 1.52 

5 µM RTV 1.33 1.20 2.34 1.39 1.57 0.26 
5 µM LPV 10.00 3.59 5.75 10.7 7.50 1.70 
50 µM LPV 0.96 0.00 1.34 1.05 0.84 0.29 
5 µM LPV + 
5 µM RTV 1.14 0.00 1.10 0.00 0.56 0.32 

50 µM LPV + 
5 µM RTV 0.00 0.95 0.93 0.00 0.47 0.27 

cells 

 
N1 N2 N3 N4 mean SEM 

Vehicle Control 3.12 2.89 9.30 3.81 4.78 1.52 
5 µM RTV 0.97 1.32 2.68 0.98 1.49 0.41 
5 µM LPV 3.49 2.89 5.94 4.31 4.16 0.66 
50 µM LPV 0.00 0.90 1.32 0.93 0.79 0.28 
5 µM LPV + 
5 µM RTV 0.00 0.61 1.21 0.00 0.46 0.29 

50 µM LPV + 
5 µM RTV 0.30 0.61 1.23 0.00 0.54 0.26 

medium 

 
N1 N2 N3 N4 mean SEM 

Vehicle Control 38.96 30.79 10.02 30.26 27.50 6.16 
5 µM RTV 12.50 19.69 1.44 10.82 11.11 3.75 
5 µM LPV 82.38 43.54 15.81 66.51 52.06 14.48 
50 µM LPV 13.08 14.94 0.00 10.86 9.72 3.35 
5 µM LPV + 
5 µM RTV 45.40 28.27 16.15 42.18 33.0 6.74 

50 µM LPV + 
5 µM RTV 33.32 44.48 14.68 73.04 41.38 12.21 
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Figure 2.9  Accumulation (pmol/mg protein) of endogenous α/ß-TMCA in cells + bile, 
cells, and medium and BEI values in SCRH following 24-h treatment with vehicle 
(0.1% DMSO), RTV (5 µM), and LPV (5 or 50 µM), alone or combined 
 

cells + bile  

 
N1 N2 N3 N4 mean SEM 

Vehicle Control 899 701 2756 740 1274 496 
5 µM RTV 348 307 1166 172 498 226 
5 µM LPV 404 246 1454 203 577 296 

50 µM LPV 194 153 782 100 307 159 
5 µM LPV + 
5 µM RTV 51 50 234 30 91 48 

50 µM LPV + 
5 µM RTV 52 27 248 27 89 53 

cells 

 
N1 N2 N3 N4 mean SEM 

Vehicle Control 478 503 2656 416 1013 548 
5 µM RTV 190 251 1160 122 431 245 
5 µM LPV 219 239 1318 142 480 280 

50 µM LPV 107 115 598 74 224 125 
5 µM LPV + 
5 µM RTV 38 50 239 23 88 51 

50 µM LPV + 
5 µM RTV 42 30 235 25 83 51 

medium 

 N1 N2 N3 N4 mean SEM 
Vehicle Control 2999 2827 938 3859 2656 615 

5 µM RTV 2173 1818 1074 2294 1840 275 
5 µM LPV 3257 2003 1409 3372 2510 480 

50 µM LPV 1560 1723 996 1701 1495 170 
5 µM LPV + 
5 µM RTV 1975 1305 1526 1302 1527 158 

50 µM LPV + 
5 µM RTV 1629 1185 1378 1215 1352 102 
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Table A.1 Toxicity (%) after 24 hour drug exposure.  LDH release was measured in 
sandwich-cultured rat hepatocytes after 24 hour incubation with 100 µM LPV, RTV, 
triclosan (TCS), or vehicle (0.1 DMSO) beginning on day 1, 2, or 3 in culture.  

  N  Day Toxicity (%) AVG SEM 

RTV 

1 day 1 37.010 60.16 12.21068 
2 day 1 78.470     
3 day 1 65.000     
1 day 2 14.720 20.24 9.149541 
2 day 2 7.891     
3 day 2 38.110     
1 day 3 1.500 6.39 2.477707 
2 day 3 9.530     
3 day 3 8.140     

LPV 

1 day 1 98.670 96.69 2.672719 
2 day 1 100.000     
3 day 1 91.400     
1 day 2 56.180 49.75 13.1825 
2 day 2 24.400     
3 day 2 68.680     
1 day 3 36.540 38.55 16.63488 
2 day 3 10.790     
3 day 3 68.310     

TCS 

1 day 1 95.900 97.30 1.350308 
2 day 1 100.000     
3 day 1 96.000     
1 day 2 90.210 88.66 1.348833 
2 day 2 89.790     
3 day 2 85.970     
1 day 3 83.660 72.48 9.886085 
2 day 3 52.770     
3 day 3 81.020     

Vehicle 

1 day 1 2.708 0.685 1.029 
2 day 1 0.000     
3 day 1 -0.652     
1 day 2 0.504 0.40 0.21065 
2 day 2 0.000     
3 day 2 0.709     
1 day 3 0.106 -0.026 0.258237 
2 day 3 0.341     
3 day 3 -0.524     
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