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ABSTRACT 
 

LUCIA SEMINARIO VIDAL: Mechanisms of ATP release in airway epithelial cells 
(Under the direction of Eduardo R. Lazarowski, Ph.D.) 

 

The mucociliary clearance (MCC) process that removes foreign particles and pathogens is 

the primary innate defense mechanism in the airways. Major components of MCC, i.e., ion 

transport, mucin secretion, and ciliary beat frequency, are regulated by extracellular ATP and 

adenosine, acting on cell surface purinergic receptors. Given the physiological importance of 

purinergic regulation of MCC activities, the objective of this dissertation was to elucidate 

signaling elements and pathways relevant for ATP release from airway epithelial cells.  

The protease-activated receptor (PAR) agonist thrombin elicited a rapid Ca2+-dependent 

release of ATP. In contrast, the P2Y2 receptor agonist UTP caused negligible ATP release, 

despite promoting a robust Ca2+ response. Thrombin-elicited ATP release was associated 

with Rho activation, was accompanied by enhanced cellular uptake of the hemichannel 

fluorescence probe propidium iodide in a Ca2+- and Rho kinase-dependent manner, and was 

inhibited by connexin/pannexin hemichannel blockers. These studies suggested that thrombin 

promotes ATP release from airway epithelial cells via Rho- and Ca2+-dependent activation of 

connexin/pannexin hemichannels.  

Similarly to thrombin, hypotonic challenge triggered ATP release, which was 

accompanied by RhoA activation, MLC phosphorylation, and dye uptake. ATP release and 

dye uptake in hypotonic challenge-stimulated cells were inhibited by transfecting cells with a 

dominant negative mutant of RhoA, and by inhibiting or knocking-down pannexin 1. 
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Transient receptor potential-4 (TRPV4) inhibitors reduced RhoA activation, dye uptake, and 

ATP release. Thus, hypotonic stress-induced ATP release occurs via Rho-dependent 

pannexin 1 hemichannel opening, and TRPV4 likely transduces osmotic stress into Rho-

mediated ATP release.  

In goblet cells, PAR agonists stimulated the concomitant release of mucins and ATP, 

which was dependent on intracellular Ca2+ mobilization and cytoskeletal reorganization.  

Mucin granules contained ATP, but levels of ADP and AMP within granules exceeded those 

of ATP. Direct release of ADP/AMP from mucin granules likely represents an important 

source of ASL adenosine, promoting A2b receptor-dependent ion/water secretion necessary 

for mucin hydration. 

In sum, this dissertation suggests a major mechanism for ATP release from non-mucous 

cells, i.e., Rho-dependent pannexin 1 opening. These studies also reveal that PARs promote 

Ca2+-regulated secretion of ATP/ADP/AMP-rich mucin granules from goblet cells.  
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1. Mucociliary clearance in health and disease 

The airway epithelium, with the combined function of mucin-secreting goblet cells and 

ciliated cells, is responsible for maintaining efficient mucociliary clearance (MCC), the 

primary innate defense mechanism against inhaled bacteria, viruses, and other noxious 

particles (1).  

Essential to MCC is the composition and hydration state of the airway surface liquid 

(ASL) that lines the airway epithelium. The ASL is composed of two distinct layers: a 

periciliary liquid (PCL) layer and a mucus layer (2-3).  The PCL layer is in close contact with 

the cells and provides a low viscosity solution where cilia beat, facilitating mucus transport 

towards the upper airways (4). The length of the outstretched cilia, i.e., 7 µM, defines PCL 

height. The mucus layer varies in height from 0.1 µM to 50 µM, and is composed of mucins, 

e.g., MUC5AC and MUC5B, secreted from goblet cells of the superficial epithelia and 

submucosal glands (5-6), and is responsible for trapping of inhaled particles. As discussed 

below, the hydration state of ASL reflects the balance between Cl− secretion and Na+ 

absorption activities (7). Cl- secretion is mediated primarily by the cyclic AMP (cAMP) 

regulated cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel and to 

some extent by a calcium-activated chloride channel (CaCC), while Na+ absorption is 

exclusively mediated by the epithelial sodium channel (ENaC).  

The mucus layer acts as a fluid reservoir, accepting or donating liquid to maintain 

apposition of the mucus layer inner surface with the tips of the cilia. Thus, when liquid is 

added to the airways luminal surface, mucus swells and clearance accelerates (8). Conversely, 

under conditions of relative dehydration, mucus donates water to preserve PCL layer 

hydration.  In chronic lung diseases, where the airway surfaces become severely dehydrated, 
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the ability of the mucus layer to donate water is exhausted. The PCL layer collapses, 

resulting in mucus adhesion and diminished MCC (7). Concentrated mucus plaques and plugs 

form, which lead to airway obstruction and serve as a niche for infection, contributing to the 

pathogenesis of chronic lung diseases, e.g., cystic fibrosis (CF), asthma, and chronic 

obstructive pulmonary disease (COPD) (9). 

Efficient MCC activities, i.e., ion transport, mucin secretion, and ciliary beat frequency, 

are crucial for maintaining healthy lungs. Therefore, it is necessary for these activities to be 

precisely regulated. This role is fulfilled, at least in part, by extracellular nucleosides (i.e., 

adenosine) and nucleotides (e.g., ATP) acting on cell surface purinergic receptors. 

2. Purinergic receptors in the airways 

Extracellular nucleosides/nucleotides accomplish autocrine and paracrine functions via 

activation of three widely distributed families of purinergic receptors: P2Y receptors (P2Y-

R), P2X receptors (P2X-R), and P1 receptors. P2Y-R are G protein-coupled receptors 

(GPCRs) activated by uridine and adenine nucleotides, and nucleotide sugars. Molecular 

cloning and functional studies have identified eight human P2Y-R subtypes: P2Y1, P2Y2, 

P2Y4, P2Y6, P2Y11, P2Y12, P2Y13,
 and P2Y14. P2X-Rs comprise seven species (P2X1 – 

P2X7) of ligand-gated ion channels selectively activated by ATP. ATP binding to P2X-R 

induces opening of the channel, allowing cations (e.g., calcium and sodium) to enter the cell. 

The P1 receptor family is constituted by four adenosine-activated GPCRs: A1, A2a, A2b, and 

A3 receptors.  The agonist selectivity and signaling properties of purinergic receptors are 

summarized in Table 1.1. As discussed below, A2b-R, P2Y2-R, and P2Y6-R are expressed on 

airway epithelial cells. 
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Purinergic signaling on the airway surfaces is modulated by the actions of a host of 

ectoenzymes that dephosphorylate or transphosphorylate nucleotides within the extracellular 

milieu, hence, terminating or modifying purinergic receptor stimulation. These ectoenzymes 

include ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases), nucleotide 

pyrophosphatases/phosphodiesterases (E-NPPs), alkaline phosphatases, 5’-nucleotidase (5’-

NT), and the nucleotide converting enzymes nucleoside diphosphokinase (NDPK) and 

adenylate kinase (AK) (10-16). E-NTPDases 1 and 3, as well as an unidentified E-NPP, 

dephosphorylate ATP. Once ATP is metabolized to AMP, the actions of 5’-NT and alkaline 

phosphatase result in adenosine formation. Adenosine levels are controlled by adenosine 

deaminase 1 (ADA1) and nucleoside transporters (14, 17). The reactions catalyzed by airway 

nucleotide/nucleoside metabolizing ectoenzymes are described in Table 1.2. 

A2b-R, P2Y2-R, and P2Y6-R are expressed on the apical surface of human airway 

epithelial cells (10, 18-22), suggesting that adenosine and adenine/uridine nucleotides are 

endogenous modulators of airway functions. Indeed, in vivo and in vitro studies indicate that 

adenosine, ATP, UTP, and UDP are present in physiologically relevant concentrations in 

ASL (11, 23-26). A2b-R promotes cAMP-regulated CFTR activity and increases ciliary beat 

frequency (27-28). P2Y2-R is the predominant nucleotide-sensing receptor in the airways and 

it is activated to a similar extent and equipotently by ATP and UTP (29).  P2Y2-R activation 

promotes mucin secretion, enhanced ciliary beat frequency, inhibition of ENaC, and 

activation of CaCC (9, 18, 21, 30-35). Ca2+-mediated CaCC responses also occur in response 

to P2Y6-R stimulation, but they are smaller than P2Y2-R-mediated responses, likely 

reflecting a less abundant expression of P2Y6-R relative to P2Y2-R (10, 29).  
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Of note, P2X4-R has been proposed to promote CaCC activities (36); however, the 

physiological relevance of P2X-R expression is not clear, since UTP and ATP exerted similar 

potency and efficacy in the regulation of ion transport and intracellular calcium mobilization 

(18). Furthermore, in P2Y2-R
-/- mouse airway epithelial cells residual ATP-mediated Ca2+-

responses were minor and not affected by removal of extracellular Ca2+, arguing against a 

major role of P2X-Rs in the control of CaCC activities in the airway epithelia (29, 37). 

Figure 1.1 illustrates a model that represents how ASL nucleosides and nucleotides regulate 

MCC activities. 

2.1. Purinergic regulation of ion transport 

The notion that purinergic receptors regulate airway epithelial ion transport, and hence the 

hydration state of ASL, derived from studies indicating that ATP, UTP and adenosine 

administered to the surface of human airway epithelial cells promoted Cl- secretion and 

inhibition of Na+ absorption (18-19, 38-39). These observations were further supported by in 

vivo measurements of nasal transepithelial potential differences in response to topical UTP or 

ATP (40-41).  

CFTR is the primary regulator of chloride secretion in airway epithelia. Defective CFTR 

activity leads to CF, the most common lethal genetic disease in Caucasian populations, which 

pathognomonic feature in the lung is ASL depletion. CFTR activity is controlled by 

extracellular adenosine. Adenosine levels within the ASL are in the 100-400 nM range, 

enough to promote A2b-R activation (25), thereby inducing formation of cAMP and activation 

of protein kinase A (PKA) (8, 22, 27-28, 41-42), leading to phosphorylation and activation of 

CFTR (43-44). The role of endogenous adenosine in ASL hydration regulation has been 

elucidated by studies in well-differentiated primary human bronchial epithelial (WD-HBE) 
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cell cultures showing that ASL volume is depleted in the presence of ADA or A2b-R 

antagonists. Indeed, PCL height on ADA-treated normal HBE cultures decreased from ~7 

µm to < 4 µm, indicating that normal cultures behave as CF cultures when A2b-R activation 

is impaired (7, 25). In addition to A2b-R/PKA-promoted CFTR phosphorylation and 

activation, P2Y2-R-induced protein kinase C (PKC) activation enhances CFTR activity. Two 

scenarios have been proposed for the effect of P2Y2-R on CFTR: (i) phosphorylation of 

CFTR by PKC facilitates subsequent PKA-mediated activation (45-46) and (ii) PKC 

enhances apical expression of CFTR due to inhibition of endocytosis (47). 

A CFTR-independent chloride channel, CaCC, is also present on the apical surface of 

airway epithelial cells, which is activated by Ca2+, hence, by P2Y2-R-activation. Recently, 

three independent groups identified TMEM16A, also known as Ano1, as a CaCC (48-50). 

Bioelectric measurements in mouse tracheas, which display low CFTR- and high CaCC-

activity relative to those of humans, indicated that TMEM16A CaCC-mediated Cl– secretion 

is necessary for ASL homeostasis (35). Specifically, newborn Tmem16a–/– mice displayed ~ 

60% diminished UTP-promoted CaCC activity compared to WT littermates. Furthermore, 

Tmem16a–/– mice tracheas exhibited intraluminal mucus accumulation, likely, secondary to 

diminished Cl– secretion and depleted ASL volume.  Thus, the importance of CaCC relies on 

the fact that it may serve to protect tissues with a defective CFTR, i.e., providing an 

alternative route for Cl– secretion.  

ENaC is the major contributor to sodium absorption in the airway epithelia. ENaC is 

constitutively activated by proteolytic cleavage, and it is inhibited by CFTR and P2Y2-R 

activation. The identity of the endogenous protease that cleaves ENaC on the airway 

epithelial cell surface has not been fully elucidated, but prostasin and other members of the 
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channel-activating protein (CAP) family are likely involved (51-53). ENaC is inhibited by 

CFTR. This concept derived from two main observations (i) CF airway epithelia absorb Na+ 

at two to three times the normal rate, and (ii) stimuli that raise intracellular cAMP further 

stimulate the already elevated rate of Na+ absorption in CF cells (54-55). However, the 

molecular basis of CFTR inhibition of ENaC remains to be elucidated. P2Y2-R stimulation 

promotes ENaC inhibition (56); this inhibition is not mediated by Ca2+-mobilization or PKC 

activation but requires depletion of phosphatidylinositol 4, 5-bisphosphate (PIP2) (34, 57). 

The notion that ENaC activity depends on PIP2 levels is supported by studies indicating that 

(i) ATP-promoted inhibition of Na+ absorption was suppressed by neomycin, which binds to 

PIP2 and inhibits PLC-catalyzed PIP2 hydrolysis and by inhibitors of PIP kinase (57) ; (ii) co-

expression of P2Y2-R and α,β,γ-ENaC in Xenopus oocytes resulted in ATP-promoted ENaC 

inhibition (57) ; (iii) PIP2 co-immunoprecipitated with the β-subunit of ENaC (57); and (iv) 

the open probability of ENaC increased by binding of PIP2 to its β-subunit (34). Additional 

support to the concept that P2Y2-R regulates ENaC activity through PIP2 depletion has been 

recently provided (58-61).  

2.2. Purinergic regulation of mucin secretion 

Secretory mucins are stored in granules localized at the apical sub-domain of airway 

epithelial goblet cells, ready for release via Ca2+-regulated exocytosis. Therefore, it has been 

suggested that mucin secretion can be stimulated by Ca2+-mobilizing GPCRs, e.g., 

leukotriene receptors, and PARs (62-64).  However, the major mucin secretagogues 

identified in the airways are ATP and UTP acting on P2Y2-R (30, 65-67). 

In addition to Ca2+-triggered mucin secretion, diacylglycerol (DAG) induces mucin 

granule exocytosis by two mechanisms (i) activating the priming protein Munc13-2 (68), and 
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(ii) activating protein kinase C (PKC) (31, 69-72). PKC is a key regulator of the 

myristoylated alanine-rich C kinase substrate (MARCKS), which binds to the membranes of 

the mucin granule (73) facilitating its recruitment and insertion to the plasma membrane via 

the contractile cytoskeleton (74-75).  

2.3. Purinergic regulation of ciliary beat frequency 

In normal airways, motile cilia are tightly packed on the surface of the epithelium, and 

hence, the room required for a single cilium to beat greatly exceeds the space between 

neighboring cilia. Therefore, a high degree of synchronization between beating cilia is 

required for efficient MCC. The rate of MCC is determined by the ciliary beat frequency 

(CBF), which is regulated by changing the phosphorylation state of the cilium components 

and/or intracellular Ca2+ concentrations (76-77). The strongest extracellular signals that raise 

CBF are extracellular ATP and adenosine, i.e., acting on P2Y2-R and A2b-R, respectively. 

P2Y2-R-promoted CBF is a calcium-dependent process. P2Y2-R stimulation induces a 

peak release of Ca2+ from inositol 1,4,5-triphosphate (InsP3)-sensitive stores and a sustained 

Ca2+ influx via plasma membrane Ca2+-channels (78-80). The raise in intracellular Ca2+ 

triggers an initial, rapid increase in CBF (81), and the sustained Ca2+ influx prolongs the 

elevation in CBF. It has been proposed that the initial response of CBF to rising Ca2+ is 

caused by a direct action of Ca2+ on the axoneme, i.e., a detergent-resistant cilium devoid of 

membranes.  

A2b-R-mediated changes in CBF rely on cAMP formation and PKA activation (21). 

Although the target for PKA phosphorylation that regulates CBF has not been identified, 

PKA-mediated phosphorylation of axonemal proteins (e.g., dynein light chain) may regulate 

CBF (82-85). 
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3. ATP release from airway epithelial cells 

Realization of the regulatory effects that extracellular nucleotides (18, 30, 39) and 

nucleosides (86) exert on MCC activities suggested that these molecules naturally occur 

within ASL. Initial evidence supporting this concept emerged from studies that measured 

ATP concentrations in the bathing media of airway epithelial cell cultures, using the highly 

sensitive luciferin/luciferase assay (87-88). These observations were verified in studies using 

samples derived from nasal turbinate lavages (11), bronchoalveolar lavages, breath 

condensates, and sputa (24), and in studies using primary cultures of WD-HBE cells grown 

on an air/liquid interface to maintain cilia and a pseudostratified epithelial structure, thereby 

providing an in vivo-like model (4, 24, 26, 89).  

The presence of ATP within ASL, coupled to the realization that ecto-ATPases convert 

released ATP to adenosine, suggests a link among nucleotide release, metabolism, and 

receptor activation, i.e., extracellular adenosine is an important regulator of MCC activities. 

A number of studies have tested this hypothesis. Huang et al., combining 

electrophysiological measurements with high performance liquid chromatography (HPLC) 

analysis (see below) of ASL purines in Calu-3 cells, a cell line that endogenously expresses 

CFTR and lacks ATP receptors, observed that (i) CFTR activity is sensitive to the adenosine-

degrading enzyme ADA and to inhibitors of the A2b-R, (ii) enhanced ATP release increases 

CFTR activity, and (iii) ATP-induced CFTR activity decreases in the presence of 5’NT 

inhibitors, suggesting that ATP release and metabolism is necessary for generating adenosine 

at the cell surface, which acts on A2b-R, regulating CFTR activity (27).  

These observations were further investigated in primary cultures of human bronchial 

epithelial cells. Lazarowski et al. noticed that extracellular ATP was metabolized within 
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seconds within the ASL, as measured by the degradation of exogenously added [γ-32P] ATP, 

and steady-state ATP levels were found in the 5-20 nM range (25). These concentrations are 

far below the EC50 value for P2Y2-R stimulation, and therefore, it is unlikely that ATP 

accumulating on resting airways will promote MCC activities via P2Y2-R activation. In this 

context, it was hypothesized that the concerted actions of NTPDases, which dephosphorylate 

ATP and ADP, and 5’NT, which dephosphorylates AMP, result in the formation of a 

sufficient amount of adenosine to promote MCC activities. This hypothesis was validated 

using the chloroacetaldehyde derivatization technique, a sensitive assay for the quantification 

of adenine-nucleotide and -nucleoside mass.  The chloroacetaldehyde derivatization 

technique consists in the quantitative conversion of the adenine ring of adenosine and its 

nucleotides into fluorescent 1, N6-etheno (ɛ)-adenine derivatives, i.e., ɛ-adenosine, ɛ-AMP, 

ɛ-ADP, and ɛ-ATP. (ɛ)-adenyl purines are separated by HPLC and readily quantified with 

nanomolar sensitivity. Using this technique, adenosine levels on resting cells were found in 

the 180-350 nM range high enough to promote A2b-R mediated MCC activities (25). 

Furthermore, this study and others demonstrated that adenosine removal or inhibition of 

adenosine receptors in WD-HBE cell cultures impaired ASL volume regulation (7, 25). 

Collectively, these studies indicate that constitutive release of ATP results in sufficient 

formation of adenosine formation to activate A2b-R. Thus, A2b-R is the major regulator of 

MCC activities in resting airways, whereas P2Y2-R is relatively inactive.  

The observations that (i) mechanical forces acting on epithelial cells promote robust ATP 

release (87-88), and (ii) the airways are continuously exposed to physiological mechanical 

stimuli, such as shear stress generated by airflow during tidal breathing, suggested that in 

vivo ATP may reach physiological concentrations within the ASL to promote P2Y2-R 
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mediated MCC activities. This hypothesis was tested by Tarran et al. recapitulating in vitro 

the shear stress associated with breathing (7). The authors observed that shear stress 

increased ATP release (~ 100 nM) onto the apical surface of the epithelium (but not to the 

basolateral side), which was sufficient to regulate ASL volume. ASL volume regulation was 

sensitive to the ATP metabolizing enzyme apyrase (ATP � ADP � AMP), suggesting that 

in vivo extracellular ATP is necessary for ASL homeostasis. 

Expression of the uridine nucleotide-activated P2Y2, and P2Y6 receptors on the airway 

epithelial cell surface suggested that extracellular UTP and its product of metabolism UDP, 

in addition to ATP and adenosine, are important extracellular signaling molecules within the 

ASL. To investigate whether UTP was released from airway epithelial cells, Lazarowski et 

al. developed a method based on the high selectivity of UDP-glucose pyrophosphorylase for 

UTP as a co-substrate for the conversion of glucose-1P to UDP-glucose (90). The authors 

observations’ that (i) a similar ratio of UTP to ATP was present in the cell bathing media 

relative to the cell content, and (ii) both ATP and UTP release was enhanced by mechanical 

perturbations, suggests the existence of a common mechanism/pathway for nucleotide release 

from airway epithelial cells. 

4. Mechanisms and pathways of nucleotide release 

While remarkable progress has been made in understanding how MCC functions are 

regulated by purinergic receptors, we have only recently begun to understand how ATP 

reaches the airway surface to accomplish extracellular signaling.  

In secretory cells, as in neurons and neuro-endocrine cells, Ca2+-regulated exocytosis of 

ATP containing granules/vesicles is a major mechanism involved in ATP release (91-93). In 
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cells of non-neuronal origin, such as endothelial or epithelial cells, there is not a clearly 

defined mechanism. 

 In airway epithelia, the complex cellular composition, i.e., ciliated cells and mucin 

secreting goblet cells, suggests that several mechanisms and pathways are involved in ATP 

release. Recent studies from our laboratory and others indicated the presence of three major 

scenarios for nucleotide release, i.e., (i) constitutive release from vesicles, (ii) Ca2+-regulated 

exocytosis of mucin granules, (iii) receptor- and mechanically-induced release from non-

mucous cells via connexons/pannexons [discussed below and in Chapters III-VI ].  

4.1. Constitutive release from vesicles  

In the airways, steady-state nucleotide concentrations reflect a balance between release 

and metabolism. Under resting conditions, ASL ATP concentrations are in the low 

nanomolar range. However, following addition of ecto-ATPase inhibitors, ASL ATP levels 

increase steadily at a rate of 300-500 fmol/min cm2 (25-26). This constant ATP 

accumulation, suggested that airway epithelial cells release ATP is constitutively, i.e., in the 

absence of external stimuli. 

 The fact that UDP-sugars participate in glycosylation reactions within the secretory 

pathway suggested that these molecules are released as cargo molecules during the export of 

glycoconjugates to the plasma membrane. This concept, coupled to the observation that in 

most cells constitutive ATP release is accompanied by the release of UDP-sugars, suggested 

that the secretory pathway participates in the constitutive release of nucleotides from non-

excitatory cells.  
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The vesicular origin of extracellular UDP-sugar species was assessed by correlating UDP-

N-acetylglucosamine (UDP-GlcNAc) transporter expression in the ER/Golgi with the cellular 

release of its cognate substrate, i.e., UDP-GlcNAc (94). Using a yeast model system that 

exhibits constitutive (but glucose-dependent) release of UDP-sugars and ATP, Sesma et al. 

demonstrated that yeast mutants that lack the ER/Golgi-resident UDP-GlcNAc transporter 

Yea4 displayed impaired UDP-GlcNAc release. Yea4-defficient cells complemented with 

Yea4 showed UDP-GlcNAc release rates similar to wild type cells. Furthermore, by 

overexpressing HFRC1, a human Golgi-resident UDP-GlcNAc/UMP translocator in human 

bronchial epithelial 16HBE14o- cells, the authors observed enhanced apical release of UDP-

GlcNAc, which correlated with enhanced expression of GlcNAc-containing glycans (94). 

The data strongly suggest that Golgi-derived vesicles contribute to the constitutive release of 

nucleotide-sugars from airway epithelial cells. Similar to UDP-sugar transporters, ATP/AMP 

antiporters translocate ATP to the ER and Golgi. Therefore, an appealing explanation for 

constitutive release of nucleotide-sugars and ATP is that it may reflect the continuous and 

exocytotic release of these cargo molecules during constitutive export of proteins and 

glycoconjugates to the apical plasma membrane. 

4.2. Ca2+-regulated exocytosis of mucin granules  

Evidence from our laboratory and others has recently emerged supporting the notion that 

Ca2+-dependent release of nucleotides from non-excitatory cells involves an exocytotic 

mechanism. Inhibition of vesicular trafficking between the ER and Golgi with brefeldin A, or 

depletion of ATP storage granules with bafilomycin A1, effectively diminished ATP release 

in response to various stimuli in numerous cell systems, including astrocytes, hepatocytes, 

epithelial, and endothelial cells (71, 95-98)  
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Relevant to airway epithelia, Kreda et al. identified subapical electron-translucent 

granules that resemble mucin granules of goblet cells in Calu-3 cells (99). Real-time confocal 

microscopic analyses revealed that these subapical granules were competent for Ca2+-

regulated exocytosis. Immunostaining and slot blot analysis indicated that the mucin 

MUC5AC was a major component in these granules. Ca2+-promoted mucin secretion was 

accompanied by enhanced ATP release into the apical bath. The kinetics of Ca2+-elicited 

ATP release and mucin-granule secretion were similar and affected by conditions that inhibit 

granule exocytosis, suggesting that nucleotides are stored within and released from mucin 

granules. Consistent with the possibility that a vesicular/granular ATP pool contributed to 

Ca2+-stimulated ATP release, bafilomycin A1 markedly impaired ionomycin-promoted ATP 

release from Calu-3 cells. These observations are in good agreement with a recently proposed 

mathematical model predicting that a vesicular pool of ADP/AMP/adenosine contributes to 

ASL adenosine levels (100). Based on these observations, Chapter IV  tests the hypothesis 

that ATP is released from mucin granules of airway epithelial goblet cells. A corollary of this 

hypothesis would be that ATP release, concomitantly with mucin secretion, is a mechanism 

by which mucin-secreting goblet cells produce paracrine signals for mucin hydration within 

ASL.  

4.3. Mechanically- and receptor-triggered nucleotide release from non-mucous cells 

via connexons/pannexons 

The airways are under continuous exposure to mechanical forces that promote MCC 

activities. During normal tidal breathing shear stress is imparted by airflow (101), and it 

varies little throughout the branching airway anatomy. Cyclic compressive (transmural) 

pressure also contributes to the overall magnitude of cellular shear stress. During each 
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breathing cycle, the pressure gradient fluctuates below and above atmospheric pressure 

(102). In addition, glands secrete their hypotonic content onto airway surfaces, promoting 

transient cell swelling (103). Shear stress, cyclic pressure, and hypotonic challenge have been 

replicated in vitro in order to study stress-regulated MCC activities. Shear, compressive, and 

hypotonic stresses promote robust, non- lytic ATP release from WD-HBE cells, which results 

in P2Y2-R mediated MCC activities (7, 26, 87-88, 104-105). 

In non-mucous lung epithelial cell lines and WD-HBE cell cultures, which consist mostly 

of ciliated cells, Ca2+-mobilizing agents, such as UTP and the calcium ionophore ionomycin, 

promote only minor nucleotide release, relative to ATP released in response to mechanical 

stimuli. For example, Tatur et al. observed that ionomycin- and hypotonicity-promoted ATP 

release from lung epithelial A549 cells shared similar kinetics; however, the concentration of 

extracellular ATP induced by ionomycin was only a fraction of that promoted by 

hypotonicity (106). Similarly, we observed that UTP and ionomycin promoted negligible 

ATP release compared to hypotonic challenge in WD-HBE and A549 cells, respectively. 

Collectively, the data suggest that signals in addition or alternative to Ca2+ are involved in 

hypotonic stress-induced ATP release.  

It is noteworthy to mention that different mechanical stimuli acting on airway epithelial 

cells share some features between them, but also differ in some aspects. For example, shear 

stress acts at the apical cell surface to deform cells in the direction of flow, transmural 

pressure tends to deform cells in all directions (107), and hypotonic challenge produces cell 

swelling-imparted membrane stretch. In addition, hypotonic stress dilutes the cytosolic 

contents (26, 108) and promotes compensatory ion transport. Thus, it is possible that stress-
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specific elements contribute to airway epithelial ATP release and, therefore, caution should 

be taken on generalizing conclusions from studies with one type of stress. 

Cell-swelling activated anion conductance channels 

Most cells react to cellular swelling with the activation of volume-sensitive anion 

channels (109), which, coupled to the fact that hypotonicity-induced cellular swelling 

promotes robust ATP release (110-114), lead to the proposal that a large electrochemical 

outwardly directed ATP gradient (cytosolic concentration of ATP is 3–10 mM, while the 

steady-state extracellular ATP is 5-20 nM) facilitates ATP release via volume-sensitive anion 

channels. 

Three discernible types of anion conductance are known to be activated by cellular 

swelling: (i) ClC-2 channels, (ii) the volume-sensitive organic osmolyte-anion channel 

(VSOAC; synonyms: VRAC, VSOR) (109), and (iii) a ‘maxi’ or large anion conductance. 

Although ClC channels are widely expressed in epithelia, analysis of the crystal structure and 

electrophysiological data from ClC channels clearly exclude permeation of the large organic 

ion ATP through these pores (115).  

Whereas the molecular nature of VSOAC remains undefined, it has been suggested that 

the maxi-anion conductance is identical to the mitochondrial voltage-dependent anion 

conductance (VDAC) channel and is also present at the plasma membrane (109). In contrast 

to ClC channels, the maxi-anion channel shows broad selective conductance, allowing 

different small organic anions and osmolytes to pass. Due to the net positive charge within 

the channel, anions such as ATP and ADP are favored (116-117). It has been proposed that 

VDAC is present in the plasma membrane as a specific splice variant (pl-VDAC-1) (118). 

Consistent with this theory, studies suggested that the maxi-anion conductance VDAC-like 



 17

channel is a plasma membrane ATP-conductive pore in mammary cancer cells (111) and in 

macula densa cells (119). Furthermore, hypotonicity-stimulated ATP release decreased in 

VDAC-1 knockout mouse tissue, and increased when pl-VDAC-1 was overexpressed in 

fibroblasts (114). Although these observations suggest a role of VDAC in ATP release, 

mechanically-induced ATP release continues to be present in the absence of pl-VDAC-1 

(114). Furthermore, genomic analysis indicated absence of a pl-VDAC splice variant in 

humans (120). Collectively, these studies indicate that it is unlikely that VDAC acts as an 

ATP release pathway in human airway epithelial cells. 

The hypothesis that pl-VDAC acts as a maxi-anion channel has been also argued by 

Sabirov et al. After deleting all known VDAC isoforms in mouse fibroblasts individually and 

collectively, the authors found that the maxi-anion channel activity remained unaltered (120). 

Furthermore, single-channel properties, such as anionic permeability and pore size, differed 

significantly between VDAC and the maxi-anion channel, indicating that they are unrelated 

proteins (121) Thus, while VDAC is unlikely to mediate ATP release, whether the maxi-

anion channel is an ATP release pathway in the airway epithelia remains to be defined. 

CFTR 

It was also suggested that the CFTR chloride channel either conducts ATP or modulates a 

related ATP-conductive pore (122-126). This concept derived in part from initial 

observations suggesting that the multi-drug resistance (MDR) P-glycoprotein, which like 

CFTR is a member of the ATP-binding cassette (ABC) family of transporters, functions as an 

ATP channel (127). Despite these initial observations, a number of studies consistently have 

failed to detect differences in extracellular ATP concentrations in normal and CFTR-

deficient epithelial tissues. For example, Reddy et al. found that ATP was not conducted 
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through CFTR in intact organs, polarized human lung cell lines, stably transfected 

mammalian cell lines, or planar lipid bilayers reconstituted with CFTR protein (128). Watt et 

al., carefully controlling for mechanically-induced ATP release, reported that ATP 

accumulation on the surface of resting normal human nasal epithelial cells was not affected 

after incubating the cells with agents that promoted elevation of intracellular cAMP and 

CFTR activation (87). Subsequently, Okada et al., using cell-attached luciferase to assess 

ATP release in situ, in real-time, demonstrated that ATP concentrations at the cell surface 

and ATP release rates were comparable in cell cultures from CF and normal donors, and that 

CFTR inhibition did not affect ATP release from hypotonically-stimulated WD-HBE cell 

cultures (26). Lastly, Lazarowski et al. demonstrated that not only ATP, but also ADP, AMP, 

and adenosine concentrations were similar in the ASL from normal and CF donors (25). In 

summary, current evidence indicates that CFTR is not involved in regulated ATP release 

from airway epithelial cells.  

Connexin and pannexin hemichannels 

Connexin and pannexin hemichannels have been proposed as ATP release pathways in a 

broad range of tissues and cell types. Pannexins and connexins share a similar structure of 

four transmembrane domains with the amino- and carboxy-termini residing on the 

cytoplasmic side, and two extracellular loops (129). Figure 1.2 illustrates the predicted 

amino acid sequence and transmembrane structure of pannexin 1. Six subunits form a 

hemichannel. Hemichannel assemblies composed of connexin subunits are known as 

connexons, whereas those composed of pannexins are called pannexons. Both homomeric 

and heteromeric connexons are expressed in different tissues. Similarly, homomeric 

pannexons are found in several cell types; however, naturally occurring heteromeric 
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pannexons have not been described (130). Depending on both subunit composition and cell 

type, connexons or pannexons may be predominantly trafficked to the plasma membrane or 

retained within intracellular membrane pools (131).  

 Some connexons (but not pannexons) are gated by external divalent cations. It has been 

postulated that Ca2+ induces a conformational change of connexons (132) via direct 

interaction with a site in the external portion of the pore (133). Furthermore, it has been 

proposed that the Ca2+ binding site that accounts for both pore occlusion and blockage of 

gating is formed by a ring of 12 aspartate residues (two per subunit, between the first and 

third cysteines of the second extracellular loop) (133). Therefore, lowering extracellular Ca2+ 

concentrations is a widely-used maneuver to increase the open state probability of the 

connexin hemichannel (134-139). Indeed, most experimentally obtained evidence indicating 

that connexins participate in ATP release relies heavily on the effect of extracellular Ca2+ 

concentrations (140-141). 

Connexin subunits are the building blocks of gap junctions formed at sites of direct cell-

cell contact. The apposed connexin hemichannels from adjacent cells readily dock together to 

form a transcellular gap junction channel. Consistent with their role in metabolic coupling, 

gap junction channels are permeable to cytosolic metabolites, including ATP. Thus, it has 

been speculated that connexons localize at the plasma membrane as non-junctional 

hemichannels and may form a regulated exit pathway for ATP. Indeed, using gap junction-

deficient cell lines, Cotrina et al. reported a 5- to 15-fold increase in ATP release after 

expressing different connexins (Cx43, Cx32, Cx26) and removing extracellular Ca2+, 

suggesting that connexins were involved in ATP release (140). Hofer et al., using confocal 

and electron microscopy studies, confirmed the presence of connexin hemichannels in 
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astrocytes. In addition, consistent with the notion that connexin hemichannels are permeable 

to small molecules, lowering extracellular Ca2+ allowed the uptake of small fluid phase 

fluorophores, which was blocked by antibodies against connexins (142). Arcuino et al. 

observed that lowering extracellular Ca2+ concentrations resulted in increased ATP release 

from HBE16o- and other cell lines, which was associated with the uptake of the small dye 

propidium iodide. In Cx43-expressing C6 glioma or astrocytoma cells, ATP release from a 

point source cell was imaged. Light emissions resulting from the addition of a 

luciferase/luciferin mixture to the cell culture were observed at the single-cell level in real 

time. Furthermore, entry of propidium iodide into the cells in the point-source of light 

emission was shown (141). Altogether, these results support the notion that connexin 

hemichannels can be stimulated to open, thus allowing ATP release.  

There are, however, several shortcomings in the hypothesis of connexin-mediated ATP 

release under physiological conditions. Most studies on connexin-mediated ATP release are 

based on protocols that remove or diminish extracellular divalent cations, to promote 

connexin hemichannel activation, a situation unlikely to be found under physiological 

[Ca2+]ex concentrations(140-142). In addition, very large, unphysiological depolarization 

protocols (> 80 mV) are necessary for the opening of most connexin hemichannels (143-

146). While connexons have been shown to be functionally present in the plasma membrane 

and, as predicted from their hypothetical structure, could allow the exit of ATP, unequivocal 

proof is lacking as to whether they may open and release ATP under physiological 

conditions.  

In contrast to connexons, plasma membrane pannexons do not readily assemble into the 

plaque-like ensembles that typify gap junctions (147-149). Although initial studies indicated 
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that functional gap junctions could be formed by overexpression of pannexin 1 in Xenopus 

oocytes or in human prostate carcinoma cells, no data available support an in vivo role for 

pannexin 1 as a component of physiologically relevant gap junction channels. On the 

contrary, studies overexpressing murine or rat pannexin 1 report that pannexin 1 is exported 

to the cell surface as a glycosylated protein, and that pannexin glycosylation prevents the 

docking between pannexons on adjacent cells (147, 149). In addition, immunohistochemical 

and electrophysiological studies indicate that pannexin 1 is highly expressed in cells that do 

not form gap junctions, such as erythrocytes (150). Thus, non-junctional pannexons comprise 

the predominant structural state and are presumed to be functional. 

Several properties associated with pannexin 1 make this protein an appealing candidate 

for an ATP-releasing channel in airway epithelial cells. Namely, pannexin 1 can be activated 

(i) by physiological membrane depolarizations (-20 mV to + 20 mV), allowing enhanced 

release of small molecules, including ATP (130, 151-152), (ii) at physiological [Ca2+]ex 

concentrations (151), and (iii) by mechanical perturbations, as indicated by studies in whole 

oocytes overexpressing pannexin 1 or excised membrane patches (152). These properties 

strongly suggest that pannexins may be physiologically relevant conductive pores for ATP 

release.  Studies in Chapter III and Chapter V provide further evidence that pannexin 1 

mediates ATP release from receptor- and mechanically-activated airway epithelial cells.  

Receptor-promoted ATP release 

While it is recognized that mechanical stimuli promote cellular ATP release without 

involving cell death or damage (26, 87, 105, 153), it is not known how mechanical stresses 

are transduced into biochemical signaling, and hence, delineating a systematic strategy for 
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identifying signaling elements regulating ATP release in response to mechanical stresses in 

airway epithelial cells has proven problematic.  

A few studies from our and other labs reported that Ca2+-mobilizing GPCR agonists 

promote ATP release from astrocytes, endothelial, MDCK, and other cell types (95, 154-

156). Thus, to identify mechanistic components upstream of ATP release from airway 

epithelial cells, our strategy was to investigate the effect of selected GPCR activation on ATP 

release. Initially, we performed a systematic screening of GPCR expression in WD-HBE cell 

cultures. We verified the expression of apical P2Y2-Rs and identified basolateral protease 

activated receptors (PARs), and demonstrated that PAR activation results in robust ATP 

release to ASL relative to P2Y2-R activation. In Chapter III , we discussed the nature of 

these observations and defined signaling elements downstream of PAR that participate in 

ATP release. 

5. Statement of purpose 

The series of studies included in this dissertation provide the first model of receptor-

promoted ATP release from airway epithelia. These studies also demonstrate that PAR-

elicited ATP release occurs via two mechanisms: 1) pannexin/connexin hemichannel opening 

from non-mucus secreting cells [discussed in Chapter III ], and 2) mucin granule secretion 

from goblet cells [discussed in detail in Chapter IV ]. In addition, compelling evidence is 

provided indicating that Rho GTPases, and consequently Rho kinase and myosin light chain 

kinase (MLCK) are key regulators of receptor-induced ATP release from WD-HBE cells.  

Based on our findings with receptor-activated WD-HBE cells, the role of pannexin 1 and 

RhoA signaling was assessed in mechanically-stimulated airway epithelia; these studies are 
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discussed in Chapter V. Figure 1.3 illustrates a model summarizing our current knowledge 

about ATP release mechanisms in the airway epithelia. 

For studying airway epithelial ATP release mechanisms, I have used a combination of 

techniques, including (1) tissue culture, (2) molecular biology, (3) radioisotopic- and HPLC-

based assays, (4) bioluminescent assays, (5) immunoblotting, and (6) confocal microscopy.  

The knowledge gained from this research has provided novel insights into purinergic 

regulation of airway epithelial cell functions and, ultimately, will provide new therapeutic 

targets to improve MCC in chronic lung diseases. 
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Table 1.1. Purinergic receptors, agonists, and signaling properties.  

 
 Agonist (human) Signaling pathways 

Adenosine receptors   

A1, A3 Adenosine Gi � ↓AC/↓cAMP 

A2a, A2b Adenosine Gs � AC/cAMP 

P2Y receptors   

P2Y1 ADP Gq/PLCβ � Ca2+/PKC 

P2Y2 ATP = UTP Gq/PLCβ � Ca2+/PKC 

P2Y4 UTP Gq/PLCβ � Ca2+/PKC 

P2Y6 UDP Gq/PLCβ � Ca2+/PKC 

P2Y11 ATP Gq/PLCβ � Ca2+/PKC 
Gs � AC/cAMP 

P2Y12 ADP Gi � ↓AC/↓cAMP 

P2Y13 ADP Gi � ↓AC/↓cAMP 

P2Y14 UDP-glucose Gi � ↓AC/↓cAMP 

P2X receptors   

P2X1-P2X7 ATP ATP-gated cation channel 
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Table 1.2. Nucleotide/nucleoside metabolizing ectoenzymes, substrates, and reactions in 
the human airways.  

 
Reaction Enzymes 

ATP � ADP + Pi NTPDase 1 
NTPDase 3 
Alkaline phosphatase 

ADP � AMP + Pi NTPDase 1 
NTPDase 3 
Alkaline phosphatase 

AMP � ADO + Pi 5’-NT 
Alkaline phosphatase 

ATP� AMP + PPi E-NPPs 
ATP +  NDP  � NTP + ADP NDPK 
ATP + AMP  � 2ADP AK 
ADO  � INO ADA1 
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Figure 1.1. Purinergic regulation of MCC activities. In the airways, P2Y2-R stimulation 
by extracellular ATP promotes Gq/PLCβ signaling, which results in DAG and InsP3 
formation, leading to the activation of PKC and Ca2+-mobilization, respectively. In ciliated 
cells, P2Y2-R activation results in activation of CaCC, inhibition of the epithelial sodium 
channel ENaC, and enhanced CBF. The P2Y2-R expressed on goblet cells promotes Ca2+-
regulated exocytosis of mucin granules. ATP metabolism results in adenosine (ADO) 
accumulation. A2b-R activation elicits the formation of cAMP and PKA-mediated 
phosphorylation and activation of CFTR. CFTR inhibits ENaC by mechanisms that are not 
well defined.  
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Figure 1.2. Predicted amino acid sequence and transmembrane domain structure of 
human pannexin 1. Red and grey circles indicate predicted sites for N-glycosylation and 
phosphorylation, respectively. 
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Figure 1.3. Model of ATP release mechanisms in airway epithelia. This dissertation 
provides new insights into the mechanisms of ATP release from airway epithelial cells, 
demonstrating that (i) pannexin 1 (Panx1) channels act as ATP release pathways or pathway 
regulators in non-secretory cells, (ii) Rho GTPases, Rho kinase, and myosin light chain 
kinase are key regulators of receptor- and mechanically-induced ATP release, and (i) mucin 
granules containing ATP, ADP and AMP are competent for Ca2+-regulated exocytosis.   
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1. Introduction 

Extracellular ATP plays important signaling roles by activating a score of broadly 

distributed cell surface purinergic receptors. ATP concentrations at the cell surface, and 

consequently the magnitude of purinergic receptor stimulation, reflect a well-controlled 

balance between rates of ATP release and extracellular metabolism.  

Given the physiological importance of purinergic signaling, there is an increased interest 

in assessing nucleotide concentrations on the surface of cells and tissues, and in 

understanding the mechanisms of cellular ATP release. Numerous approaches have been 

developed in recent years to assess extracellular levels of ATP and other nucleotides 

[reviewed in (157)]. Several factors complicate the accurate measurement of extracellular 

ATP concentrations. For example, it is difficult to assess ATP concentrations in the 

physiologically relevant unstirred film covering the cell surface. Moreover, robust ATP 

release occurs in response to mechanical stress; thus, experimental maneuvers (cell wash, 

sampling, transporting the cell dishes) often result in artifacts. Finally, rapid hydrolysis of 

released ATP may compromise the relevance of ATP measurements.  

In this chapter, it is discussed the use of the luciferin/luciferase-based reaction to measure 

extracellular ATP concentrations with high sensitivity. Protocols are adapted to assess ATP 

levels either in sampled extracellular fluids or in situ at the cell surface (Fig. 2.1). Although 

our focus is on studies of ATP release from epithelial cells, protocols described here are 

applicable to practically all cell types.    
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2. Measuring ATP concentrations in sampled fluids:  Off-line bioluminescence 

detection. 

This section describes a protocol that uses the luciferin/luciferase-based reaction (see Note 

1) to quantify ATP concentrations in samples obtained from cell culture conditioned media. 

Briefly, samples are collected gently to minimize unwanted mechanical release of ATP, heat-

inactivated to abolish ATPase activities potentially present in the extracellular solution, and 

transported to the dark chamber of a luminometer. The luciferase/luciferin cocktail is added 

by an automatic injector, and the resulting luminescence is recorded (Figure 2.1A).  

The methodology described here is applicable to ATP measurements in tissue extracts, 

biological fluids, bacterial cultures, in vitro enzymatic reactions, etc.  

2.1. Materials 

All reagents should be of the highest purity available, and maintained free of bacterial 

contamination to avoid ATP degradation. De-ionized water should be used, preferably HPLC 

grade water. Use of aerosol-protected tips is strongly recommended to avoid reagent cross-

contamination. 

2.1.1. Cell culture 

Experiments described in this section were performed with A549 cells (ATCC # CCL-

185) seeded on 24-well multiwell plastic plates (BD Falcon). Cells were grown on 

Dulbecco’s modified eagle’s medium (DMEM) with high glucose (Gibco), supplemented 

with 10% fetal bovine serum (FBS), 60 µg/ml (100 IU/ml) penicillin and 100 µg/ml 

streptomycin.  
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2.1.2. Reagents to stimulate ATP release  

In epithelial and endothelial cells, robust ATP release can be triggered by mechanical 

stimuli such as shear stress, stretch, compression, and hypotonicity-induced cell swelling (26, 

96, 105, 153). Reagents to stimulate ATP release by hypotonic stress-induced cell swelling 

are as follow: 

1) Hypotonic solution: 1.2 mM CaCl2, 1.8 mM MgCl2, and 25 mM 4-(2-hydroxyethyl)-1-

piperazine ethanesulfonic acid (HEPES), pH 7.4. Store at 4°C. 

2) Control (isotonic) solution: 154 mM NaCl (0.9% NaCl solution), 1.2 mM CaCl2, 1.8 mM 

MgCl2, and 25 mM HEPES, pH 7.4. Store at 4°C. 

2.1.3. Reagents to inhibit ATP metabolism 

Commonly used inhibitors of ecto-nucleotidase activities are β,γ-methyleneadenosine 5′-

triphosphate (β,γ-metATP), 6-N-N-diethyl-β,γ-dibromomethylene-D-ATP (ARL-67156), and 

2-phenyl-1,2-benzisoselenazol-3(2H)-one (ebselen) (26, 71, 95, 105, 156). Levamizole has 

been used to inhibit alkaline phosphatase activity present on epithelial cells (26). In A549 

cell cultures, we obtain maximal inhibition of ATP metabolism by using a cocktail 

containing 300 µM β,γ-metATP and 30 µM ebselen (See Fig. 2.3).  

1) Ebselen: 10 mM in dimethyl sulfoxide (DMSO), aliquoted, and stored at -20°C. 

2) β,γ-metATP: 100 mM in water, aliquoted, and stored at -20°C. 

2.1.4. Luminometry reagents 

Several commercial brands of luminometers are available. The protocol described below 

was adapted for a Berthold AutoLumat luminometer, which is configured to process 180 test 

tubes at a time (See Note 2). 
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1) 4X LUMI solution: 6.25 mM MgCl2, 0.63 mM ethylenedinitrilotetraacetic acid (EDTA), 

75 µM dithiothreitol (DTT), 1mg/ml bovine serum albumin (BSA), and 25 mM HEPES, 

pH 7.8. Filter and store sterile at 4° C. 

2) Luciferase from Photinus pyralis (Sigma, L9506) is dissolved at 0.5 mg/ml in 4X LUMI 

solution and stored in 30 µl aliquots at -20° C.  

3) Luciferin (BD PharMingen) is dissolved at 10 mg/ml in water and stored in 100 µl 

aliquots, protected from light, at -20° C. 

4) Hank's balanced salt solution (HBSS) supplemented with 1.2 mM CaCl2 and 1.8 mM 

MgCl2 (HBSS+). HBSS+ is filtered sterile and stored at 4° C. 25 mM HEPES, pH 7.4, is 

added freshly prior to experiments (See Note 3). 

5) Clear 5 ml polystyrene or glass test tubes (e.g., Sarstedt).  

6) ATP stock solution (e.g., 100 mM, GE Healthcare, 27-2056-01) stored at -20° C. 

2.2. Methods  

2.2.1. Preparation of samples  

1) Grow lung epithelial A549 cells in 24-well plastic plates (surface area of 2 cm2) until 

confluence (See Note 4).  

2) Rinse gently confluent cultures with HBSS+ twice to remove cell debris and serum 

components present in the medium. 

3) Pre-incubate cells in HBSS+ for 1 h at 37 °C and 5% CO2 in a tissue culture incubator. 

To minimize unwanted mechanically-induced ATP release during sampling, cell cultures 

should be covered sufficiently with media (e.g., 250 µl for one well of a 24-well plate). 
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4) Expose cell cultures to reagents and/or stimuli, as described in Fig. 2.3.  

5) Collect up to 100 µl of the cell bathing medium into 1.5-ml Eppendorf tubes placed on 

ice.  

6) Heat samples for 2 min at 98°C to inactivate potential nucleotidase activities. 

7) Store samples at -20°C until bioluminescence measurements. 

2.2.2. Quantification  of ATP  (Figs. 2.2 and 2.3) 

This protocol assumes the use of a LB953 AutoLumat luminometer (Berthold, Wildbad, 

Germany), but can be modified to other luminometers by following the manufacturer's 

instructions.  

1) Prepare the luciferin/luciferase cocktail freshly by adding one aliquot of luciferase and 

luciferin stock solutions (described in Materials) to 12.5 ml 4X LUMI solutions, at room 

temperature (RT), protected from light. Final luciferin and luciferase concentrations in 

4X LUMI are 265 µM and 1.2 µg/ml, respectively. 

2) Place the luciferin/luciferase solution in the injector port of the luminometer. Prime the 

injector line following the manufacturer's instructions. 

3) Prepare an ATP calibration curve (e.g., up to 1000 nM ATP, see Note 5) in the same 

solution/media used for incubations with cells. 

4) Add 30 µl of each sample to a 5 ml test tube containing 300 µl H2O (See Note 6). 

5) Transfer the test tubes to the dark chamber of the luminometer and proceed with the 

luciferin/luciferase injection and bioluminescence recording, i.e., arbitrary light units 

(ALUs), as instructed by the manufacturer.  
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6) Determine ATP concentration in the sample by intersecting sample ALU values with the 

calibration curve ALU values (See Notes 7 and 8). 

Notes 

1. Firefly luciferase catalyzes the following reaction:  

 D-luciferin + ATP + luciferase (L) � L(luciferyl-adenylate) + pyrophosphate  

 L(luciferyl-adenylate)  + O2 � L(oxyluciferin*; AMP) + CO2  

 L(oxyluciferin*; AMP) � L(oxyluciferin; AMP) + photon 

 L(oxyluciferin; AMP) � L + oxyluciferin + AMP 

2. Many luminometers are configured as micro-plate readers. Sample volume and luciferase-

luciferin cocktail should be modified to fit the volume of an individual well, following the 

manufacturer's instructions. 

3. Minimum essential medium (MEM), DMEM, or several other culture media (without 

serum) are equally effective as HBSS+ and could be used as an alternative in the sample 

preparation assay. Avoid using media supplemented with ATP, such as Medium 199. 

4. Seeding density of 1 x 105 A549 cells/well will provide confluent cultures at 24 h. 

5. Under the conditions described a linear ATP concentration: luminescence relationship is 

observed in the range of 0.1–1000 nM ATP. This ATP concentration range covers ATP 

concentrations detected in the bulk extracellular medium of most cell cultures. 

6. Media or other saline-based solutions (e.g., 0.9% NaCl or PBS) contain anions that 

interfere with the luciferase reaction [Fig. 2.2A and (158-159)], decreasing the sensitivity of 
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the assay. Therefore, we recommend using water as the diluting agent to achieve the highest 

sensitivity in the assay. 

7. The luciferase reaction is inhibited by components present in cell culture media, e.g., 

anions (Fig. 2.2B). Moreover, phosphatases and other components present in FBS-

supplemented and hormone-supplemented media (e.g., BEGM or SAGM, Lonza 

Walkersville, MD) affect ATP availability for the luciferase reaction. Albumin-bound ATP 

can be dissociated by heating the sample at 95°C for 2 min (Fig. 2.2B).  

8. All test drugs added to the cells should be tested for potential interference with luciferase 

activity [Fig. 2.3 and (159)]. 

3. Real-time, cell-surface measurement of extracellular ATP 

In this section, we will describe methods for real-time measurement of ATP by using cell 

surface-bound luciferase (Fig. 2.1C), and will compare this method with measurements 

obtained with soluble luciferase (Fig. 2.1B). The protocols below are designed for measuring 

luminal ATP concentrations on polarized epithelial cells; however, they are also applicable to 

measuring extracellular ATP concentrations of non-polarized cells grown on culture plates. 

Cell surface-binding luciferase can be engineered by fusing luciferase to cell surface binding 

constructs, e.g., Staphylococcus protein A (26, 156, 160), biotin, or lectins, and allows the 

assessment of ATP concentrations near the cell surface. Soluble luciferase assesses the 

average ATP concentrations in the medium (from the cell surface to the surface of the 

bathing solution) and, when used in a small volume, reflects near-cell surface ATP 

concentrations (Figs. 2.4 and 2.5). For real-time assessment of ATP concentrations, cultures 

(either non-polarized or polarized) are placed directly in the luminometer [e.g., TD-20/20 

(Turner Biosystems)].  
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3.1. Materials 

3.1.1. Cell culture 

Cells can be grown on plastic dishes (for non-polarized cells) or Transwells (for polarized 

cells) 3.5 cm or less in diameter. 

3.1.2. Luminometry reagents 

1) Luciferin (BD PharMingen)  

2) Luciferase (Sigma, L9506) 

3) Staphylococcus protein A-fused luciferase [SPA-luc; see Note 1 and (26) for purification 

protocols] 

4) Buffer: HBSS+ buffered with 10 mM HEPES (HBSS/HEPES). HBSS+ can be replaced 

with other nutrient-containing solutions (e.g., DMEM, MEM, F12).  

3.1.3. Luminometer 

Luminometer with a real-time measurement function, e.g., TD-20/20 (Turner, Sunnyvale, 

CA). 

3.2. Methods 

3.2.1. Attachment of Staphylococcus protein A-fused luciferase (SPA-luc) to cell 

surface (see Note 2) 

1) Wash the surface (apical, if polarized cells are used) of cell cultures with phosphate buffered 

saline (PBS), 3x. 
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2) Incubate the (apical) surface with 50 µl (for cultures of 12 mm diameter) of a blocking 

solution [PBS containing 1% BSA (PBS/BSA)] for 30 min on ice. If polarized cells are 

used, keep the basolateral surface immersed in medium. 

3) Replace the blocking solution with a solution containing the designated primary antibody 

(Note 3). For primary airway epithelial cells, use 50 µl of 10 µg/ml (i.e., 1:300) anti-keratan 

sulfate antibody (mouse IgG2b, Chemicon, Temecula, CA) in PBS/BSA. Incubate for 1 h 

on ice. 

4) Wash 3x with PBS. 

5) Incubate with 0.5 mg/ml purified SPA-luc (Note 1) for 1 h at 4˚C in the dark. SPA-luc will 

bind to the Fc domain of the antibody attached to the cells, as indicated in 1.3. 

6) Wash carefully 3x with PBS. Replenish the apical surface with ATP assay solution (e.g., 

HBSS/HEPES). Keep cultures in the dark at RT for 30 min to equilibrate the extracellular 

ATP concentrations. 

3.2.2. Measurement of cell surface ATP concentrations using SPA-luc 

1) Place a SPA-luc-bound cell culture in the Turner TD-20/20, add soluble luciferin (150 µM 

final, to the apical solution for polarized cultures) and close the lid. When a Transwell is 

used, place it in a chamber (or a dish) containing HBSS/HEPES to cover the basolateral side 

(Figs. 2.1B and 2.1C). Assays are typically performed at RT (Note 4).  

2) Record baseline luminescence (arbitrary light unit, ALU) every minute with 5-10 s 

integration time, according to manufacturer's instructions. Monitor ALU until baseline 

luminescence is achieved (see Note 5). Baseline luminescence is usually achieved within 5 

to 30 min and represents basal ATP concentrations (see Fig. 2.4). 
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3) To assess stimulated ATP release, add stimuli (e.g., pharmacological reagents, hypotonic 

challenge, etc.) and record the ALU. ALU integration time needs to be optimized, as well as 

the frequency of recording, for each experiment. For example, when airway epithelial cells 

are challenged with 33% hypotonicity, H2O (a half volume of the initial luminal volume) is 

added to the luminal solution at t = 0. The ALU is recorded for 5 min; every 0.2 s for the 

first minute, then every 10 s (with 4 s integration time) for the next 4 min. A typical time-

course of ATP concentrations is shown in Fig. 2.5.   

4) At the end of each assay, an ATP-luminescence relationship (calibration curve) is 

generated to calculate ATP concentrations. Known concentrations of ATP are added to 

the luminal liquid in a stepwise manner (e.g., 1 nM added twice, 10 nM added twice, then 

100 nM added twice - for the accuracy of the calibration curve, adding each 

concentration twice is recommended), and increases in ALUs recorded each time (see 

Note 6). 

3.2.3. Measurement of cell surface ATP concentrations using soluble luciferase  

1) Wash the surface of cultures with PBS, 3x. 

2) Add HBSS/HEPES (0.5-1 ml for non-polarized 3.5 cm cultures. Bilaterally for polarized 

cultures- 1 cc and 25-500 µl to luminal and serosal side, respectively, when 12 mm 

Transwell is used). Equilibrate the cultures in an incubator (37°C and 5% CO2) for 1 h. 

3) Add luciferase (~0.8 µg/cm2 culture surface) and luciferin (150 µM) to the luminal 

buffer, and start the measurement as described in Methods 3.2.2. 
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Notes 

1. SPA-luc fused to a hexa-histidine (6 x His) tag is purified over a Ni2+-chelating column. 

The 6 x His tag is cleaved by Tobacco-Etch virus (TEV) protease after purification. For the 

detailed purification protocols, see (26). 

2. The principle of SPA-luc attachment to cell surface is as follows. First, bind an antibody to 

cell-surface molecules; next, attach protein A (of SPA-luc) to the Fc domain of the antibody. 

It is important to choose an antibody that protein A is capable of binding; for example, 

protein A strongly binds to total IgG, IgG2a, IgG2b and Ig3, but exhibit weak or no binding to 

IgG1, which is the most common class of monoclonal antibodies.       

3. For primary human airway cells, lectins and monoclonal antibodies against keratan sulfate 

or MUC1 served as SPA-luc attachment molecules (26). For mouse Bac-1.2F5 macrophages, 

monoclonal antibodies against CD45.2 or H-2Kd major histocompatibility complex (MHC) 

class I; for human platelets, monoclonal antibodies against CD41 or anti-HLA-ABC served 

as SPA-luc attachment molecules (160). For cell types in which finding an endogenous 

antigen on the cell surface for sufficient antibody attachment is difficult, antigens can be 

over-expressed [e.g., CD14 (156)]. However, the effect of antigen over-expression on ATP 

release and metabolism needs to be addressed.  

4. Though it is ideal to perform ATP release assays at a physiological temperature (37ºC), 

luciferase activity is dramatically decreased above 30˚C (161). Being aware that some ATP 

release pathways (e.g. exocytosis) might be suppressed at low temperatures, assays can be 

carried out at RT. It is critical to maintain pH of the assay solution on cells (which contains 

luciferin and luciferase) at 7.0 to 7.4 (161) by including 25 mM HEPES (pH 7.4).  
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5. Experimental maneuvers, such as changing and adding luminal solutions and transferring 

Transwells, cause robust ATP release from cells. Baseline ATP concentrations are achieved 

after such artifactually released ATP is hydrolyzed by endogenous ecto-ATPases, usually within 

5 to 30 min of incubation. 

6. The sensitivity of luciferin-luciferase reactions may vary among assays; thus, an ATP-

ALU relationship should be generated for each assay. The end products of luciferin-

luciferase reaction (e.g., pyrophosphate, oxyluciferin) inhibit the luciferase reaction. 

However, when sufficient amounts of luciferin and luciferase are included at the beginning of 

the assay, the assay sensitivity is typically maintained for at least 30 min on cells. 
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Figure 2.1. Off-line and real-time approaches to measure extracellular ATP 
concentrations. Extracellular ATP concentrations can be measured by off-line luminometry 
of sampled extracellular fluids (A), or on-line luminometry using either soluble luciferase 
dissolved in medium covering the cells (B) or cell-surface attached luciferase (C). ATP 
concentrations detected by each method in different volumes are compared in Figs. 2.4 and 
2.5. 
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Figure 2.2. Quantification of ATP using luciferin/luciferase. (A) Anions greatly interfere 
with the luciferase reaction. Calibration curves of ATP were performed by adding 30 µl of 
the indicated ATP concentrations to a 5 ml test tube containing 300 µl H2O or 154 mM NaCl. 
Values are the mean ± SEM of two separate experiments, n = 3. * indicates significant 
difference (p < 0.05) against control (H2O). (B) Serum components decrease ATP detection. 
ATP was diluted at the indicated concentrations in H2O, HBSS+, MEM, or MEM 
supplemented with 10% FBS. A 30 µl aliquot was collected and added to a 5 ml test tube 
containing 300 µl of water. Values are the mean ± SEM of two separate experiments, n = 4. 
(C) Albumin and other serum components affect ATP detection. 100 nM ATP was prepared 
in MEM, MEM supplemented with 10% FBS, or MEM supplemented with 4 g/dl human 
albumin, and incubated at RT for 10 min. Samples were heated at 98 °C for 2 min (except 
non-heated controls) prior to ATP measurements.  
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Figure 2.3. Effect of pharmacological reagents on ATP detection. A, Luciferase activity is 
not affected by ATPase inhibitors, but decreases in the presence of some purinoceptor 
antagonists. Calibration curves of ATP were performed in HBSS+ alone, or supplemented 
with 300 µM β,γ-metATP, or 30 µM ebselen. Inset: 100 nM ATP was prepared in HBSS+ 
alone, or containing 100 µM pyridoxal-phosphate-6-azophenyl-2',4'-disulfonic acid 
(PPADS), 100 µM reactive blue 2 (RB2), or 100 µM suramin. Values are the mean ± SEM of 
three separate experiments, n = 3. B, Effect of ecto-ATPase inhibitors on ATP hydrolysis in 
A549 cells. Cells were incubated for the indicated times at 37°C with 300 µl HBSS+ 
containing 100 nM ATP (vehicle), 100 nM ATP and 300 µM β,γ-metATP, 100 nM ATP and 
30 µM ebselen, or 100 nM ATP and β,γ-metATP and ebselen. Samples were collected and 
luminescence recorded. Values are the mean ± SEM of two separate experiments, n = 4. C, 
Measurements of extracellular ATP concentrations are underestimated in the absence of 
ecto-ATPase inhibitors. A549 cells were incubated at 37°C for 5 min with 300 µl HBSS+ in 
the absence (control) or in the presence of 300 µM β,γ-metATP and 30 µM ebselen, and 
treated for 5 min with isotonic solution (Iso) or 33% hypotonic challenge (Hypo). Samples 
were collected and luminescence recorded.  Values are the mean ± SEM of 2 separate 
experiments, n = 6. 
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Figure 2.4. Basal ATP concentrations on the cell surface. ATP concentrations in varied 
luminal volumes on resting human bronchial cells were measured by off-line luminometry 
(as in Fig. 2.1A, grey triangle), or by real-time measurement with luciferase dissolved in bulk 
(as in Fig. 2.1B, open circle), and attached to the cell surface (as in Fig. 2.1 C, solid 
diamond). Values are mean ± SEM of 4 Transwells/subject established from 3 different 
subjects. No major differences in basal ATP concentrations were observed with these 
approaches. 
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Figure 2.5. Hypotonicity-induced ATP release. Primary human bronchial epithelial 
cultures were exposed to luminal 33% hypotonic challenge at t = 0. ATP concentrations were 
measured by off-line luminometry (A), real-time luminometry with soluble luciferase (B), 
and real-time luminometry with cell surface-attached luciferase (C). Varied luminal volumes 
were applied on 12 mm Transwells, as indicated. D: Summary data illustrating peak ATP 
concentrations as measured by soluble luciferase (open circle) and cell-attached luciferase 
(solid diamond) in varied luminal volumes. In A-C, values are mean ± SEM of 3-4 
Transwells/subject established from 3 different subjects. In diluted solutions (100-500 µl), 
ATP concentrations measured at the cell surface (C) are higher than those measured in bulk 
(B) or by sampling (A). However, ATP concentrations in small volumes (25-50 µl) were 
similar between cell-attached luciferase detection and soluble luciferase detection (D).  
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Thrombin promotes release of ATP from lung epithelial cells through coordinated 
activation of Rho- and Ca2+-dependent signaling pathways  
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epithelial cells through coordinated activation of Rho- and Ca2+-dependent signaling 
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1. Introduction 

Nucleotides and nucleosides within the airway surface liquid regulate mucociliary 

clearance activities, the primary innate defense mechanism that removes foreign particles and 

pathogens from the airways (7, 25, 32, 105). ATP activates the Gq-coupled P2Y2 receptor 

(P2Y2-R) present on the airway epithelial cell surface, promoting mucin secretion and ciliary 

beat frequency,  and inhibiting the epithelial Na+ channel (21, 32, 45, 56-57, 61, 162). In 

addition, ATP induces activation of CaCC, via P2Y2-R and, possibly, the ATP-gated ion 

channel P2X4-R (18, 29, 163). Adenosine, generated from the hydrolysis of ATP in airway 

surface liquid, activates the Gs-coupled A2b-R, promoting cyclic AMP-regulated CFTR Cl- 

channel activity (164) and increasing cilia beat frequency (21). In the distal lung, ATP and/or 

adenosine (mainly via P2Y2-R and A2b-R, respectively) stimulate type II cell surfactant 

secretion (165), regulate alveolar ion transport and fluid clearance (166), and contribute to 

alveolar remodeling and inflammation (167-168). While it is recognized that ATP and 

adenosine are naturally occurring extracellular signals that regulate key physiological 

components of lung function (15, 25), the origin of these signals in the extracellular milieu is 

poorly understood. 

Lung epithelia exhibit a complex cellular composition, and thus, several mechanisms and 

pathways likely are involved in the release of nucleotides into the airways and 

bronchoalveolar space. Circumstantial evidence supports the involvement of both secretory 

pathways and plasma membrane channels or transporters in the cellular release of nucleotides 

from non-excitatory tissues. However, unambiguous evidence for either vesicular or 

conductive/transport mechanisms in the airways and in most non-neural tissues is lacking. 

Moreover, the regulatory processes involved in ATP release is largely unknown (169). 
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While most studies with airway- or alveolar-derived epithelial cells have relied on the use 

of mechanical and/or osmotic stimuli to promote ATP release, biochemical signals regulating 

ATP release are less well-defined. Recent data suggest that ATP release in hypotonically-

swollen lung epithelial A549 cells depends on the availability of intracellular Ca2+ (106, 153, 

170). However, Ca2+-mobilizing agents (e.g., ionomycin, UTP) promoted only minor release 

of ATP from these cells, relative to hypotonic shock (106, 170), suggesting that signals in 

addition to Ca2+ are required up-stream of ATP release. This conclusion was not restricted to 

epithelial cells. For example, studies from our laboratory and those of others reported that 

Ca2+ is necessary but not sufficient to impart maximal ATP release from 1321N1 human 

astrocytoma cells (95, 156). In these cells, the serine-protease thrombin promoted robust 

Ca2+-dependent nucleotide release via protease-activated receptor-1 (PAR1), and recent 

evidence indicates that Rho signaling was involved in this response (171).  

Since thrombin receptors are expressed in lung epithelial cells (172), we reasoned that 

PAR activation might physiologically mediate regulated ATP release from these cells. In the 

present study, we demonstrated that thrombin promotes robust release of ATP from A549 

lung epithelial cells via PAR3 activation. We also investigated signaling mechanisms and 

pathways involved in thrombin-evoked ATP release from A549 cells as well as from 

physiologically relevant primary cultures of WD-HBE cells.  

2. Methods 

Reagents- Human α-thrombin was purchased from Enzyme Research Laboratories (South 

Bend, IN). 2-Phenyl-1,2-benzisoselenazol-3(2H)-one (ebselen), β,γ-methylene ATP (β,γ-

metATP), arachidonylethanolamide (anandamide), flufenamic acid, carbenoxolone, and 

luciferase from Photinus pyralis were obtained from Sigma (St. Louis, MO). Fura-2 
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acetoxymethyl-ester (Fura 2-AM), 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic 

acid-acetoxymethyl-ester (BAPTA-AM) and thapsigargin were purchased from Molecular 

Probes (Eugene, OR). Luciferin was obtained from BD PharMingen (Franklin Lakes, NJ). 

The Rho Activation Assay Biochem Kit was purchased from Cytoskeleton (Denver, CO). 

Propidium iodide was purchased from Invitrogen Corp. Carlsbad, CA.The PAR1-activating 

peptide TFLLRNPNDK-amide and the PAR4-activating peptide AYPGKF-amide, 

respectively (hereafter referred to as PAR1-AP and PAR4-AP, respectively) were 

synthesized at the UNC Microprotein Sequencing and Peptide Synthesis Facility. myo-

[3H]Inositol (20 Ci/mmol) was obtained from Amersham Pharmacia Biotech (Piscataway, 

NJ). Other chemicals were from sources reported previously (25, 95).  

Cell culture- A549 lung epithelial cells were obtained from the UNC Tissue Culture 

Facility and grown to confluence in Dulbecco’s modified Eagle’s medium (DMEM) 

supplemented with 10 % calf serum (HyClone, Ogden, UT), 60 µg/ml (100 IU/ml) penicillin 

and 100 µg/ml streptomycin (Gibco). Cells were grown on 35-mm plastic dishes for real-

time ATP measurements and on 24-well plastic plates for off-line ATP assays, cyclic AMP 

formation, and inositol phosphate measurements. RhoA pulldown assays and confocal 

microscopy studies were performed with cells grown on 100-mm Falcon plastic dishes and 8-

well Lab-Tek II glass chamber slides (Nalge Nunc Int., Naperville, IL), respectively. Since a 

gradual decline in thrombin-promoted responses was noted with passages, A549 cells were 

used within passages 3 to 14. Polarized cultures of WD-HBE cells (provided by the UNC 

Cystic Fibrosis Center Center Tissue Culture Core Lab) were grown on 12-mm Transwell 

supports (Costar) and maintained at an air–liquid interface that mimics the in vivo 

environment of the airway epithelia, as previously described (25-26). 
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Measurement of ATP release and hydrolysis- A549 ells were washed twice with HBSS 

supplemented with 1.6 mM CaCl2, 1.6 mM MgCl2, and 25 mM HEPES pH 7.4 (HBSS+),  

and incubated for 1 hour at 37˚C in HBSS+. For real-time ATP measurements in thin film 

(Fig. 3.1B), cultures were transferred to a Turner TD-20/20 luminometer (Turner 

Biosystems, Sunnyvale, CA). Luciferase (15-30 x 106 light units mg-1) and luciferin (60 µM) 

were added and luminescence monitored, as previously described (26). Off-line ATP 

measurements were performed via a LB953 AutoLumat luminometer (Berthold), as 

previously described (173). Calibration curves using known concentrations of ATP were 

generated at the end of each experiment. None of the reagents used during ATP release 

measurements interfered with the luciferase reaction. To assess ATP hydrolysis, 100 nM 

ATP was added to cells in the absence or presence of 30 µM ebselen and 300 µM βγ-

metATP, two previously characterized ATP hydrolysis inhibitors (26, 173-175). Samples 

were collected at various times, and the resulting ATP concentration measured as indicated 

above. WD-HBE cells were rinsed and incubated with 300 µl mucosal and 500 µl basolateral 

HBSS, and ATP release was measured off-line, as described above. 

Inositol phosphate formation- A549 cells were labeled overnight in inositol-free DMEM 

containing 2 µCi/ml myo-[3H]inositol (S.A., 20 Ci/mmol). WD-HBE cells were labeled for 

three days in 500 µl basolateral and 100 µl mucosal medium containing 10 µCi/ml myo-

[3H]inositol.  At the time of assay, 10 mM LiCl was added to the cells for 10 min, followed 

by 20 min incubation in the presence of drugs. Incubations were terminated by the addition 

of 0.75 ml 50 mM formic acid and 0.25 ml 150 mM ammonium hydroxide. [3H]Inositol 

phosphates were separated on Dowex anion exchange columns and quantified as previously 

described (157).  
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Calcium mobilization- A549 cells grown on glass coverslips were loaded with Fura 2-

AM for 30 min. Cells were washed, mounted on a platform of a fluorometer-coupled 

microscope, and fluorescence from 30–40 cells was acquired alternately at 340 and 380 nm. 

Other details were as previously described (26).  

Cyclic AMP quantification - Cells were rinsed, pre-incubated for 10 min in HBSS 

containing 200 µM 3-isobutyl-1-methylxanthine (IBMX), and subsequently challenged for 

an additional 10 min with 30 µM forskolin and the indicated concentration of thrombin.  The 

conversion of ATP to cyclic AMP was quantified by HPLC analysis of 1,N6-ethenoadenine 

derivatives, as previously described (25).  

RT-PCR analysis- Total RNA was prepared using the RNeasy Mini Kit (Qiagen, Inc., 

Valencia, CA) and reverse-transcribed using SuperScript III reverse transcriptase (RT; 

Invitrogen Corporation, Carlsbad, CA). RT-PCR was performed using the following cycling 

conditions: 4 min/94°C, 1 min/72°C, 45 s/94°C, 1 min/55°C, and 1 min/72°C; 36 cycles. 

PAR1 (GenBank M62424), PAR2 (GenBank U34038), PAR3 (GenBank U92972), PAR4 

(GenBank AF080214) primers were 5’-CAGTTTGGGTCTGAATTGTGTCG-3’, 5’-

TGCACGAGCTTATGCTGCTGAC-3’, 5’-TGGATGAGTTTTCTGCATCTGTCC-3’, 5’-

CGTGATGTTCAGGGCAGGAATG-3’, 5’-TCCCCTTTTCTGCCTTGGAAG-3’, 5’- 

AAACTGTTGCCCACACCAGTCCAC-3’, 5’-AACCTCTATGGTGCCTACGTGC-3’, 5’-

CCAAGCCCAGCTAATTTTTG-3’, respectively. Amplified products were sequenced at the 

UNC Genome Analysis Facility.  

Semi-quantitative PCR was performed in a Lightcycler PCR machine® thermal cycler (10 

min/95ºC; 5 s/55ºC, 8 s/72ºC; 45 cycles), using the Lightcycler Fast start DNA master 

SYBER Green I kit (Roche Applied Science, Indianapolis, IN).  Melting curve analysis was 
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performed by heating the reactions from 65ºC to 95ºC at 0.11ºC intervals, and a fluorescence 

threshold (Ct) was determined using the LightCycler Software (version 4.0). Ct values were 

adjusted for differences in amplification efficiencies. Glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) served as a housekeeping gene for normalization between samples, 

and was included in each cycling run. The melting temperature of the PCR product for each 

reaction was monitored to ensure that only a single product of the correct size was amplified. 

Primer pairs for PAR3 were as above. Primers for GAPDH were 5’-

GAAGTTGAAGGTCGGAGTCA-3’, and 5’-GATCTCGCTCCTGGAAGATG-3’. The 

average crossover point was determined using the Roche software. The relative expression 

levels of PAR3 were calculated from the efficiency of the PCR reaction and the crossing 

point, and normalized to the expression of the reference gene, as previously described (94). 

Overexpression of PAR3 and dominant negative mutants of RhoGEF and RhoA-

A549 cells were transfected with pcDNA3.1 empty vector, pmaxFP-Green-C GFP-

expressing vector, or vector containing the desired insert, using FuGENE HD (Roche). 

pcDNA3.1 vectors expressing p115RGS and RhoA(T19N), and pBJ1 vector expressing HA-

tagged PAR3, were kindly provided by Dr. T. K. Harden (176-177) and Dr. S. R. Coughlin 

(178), respectively. A transfection efficiency of 70-80% was achieved, as assessed with the 

GFP-expressing pmaxFP-Green-C vector.  

Small interference RNA (siRNA)- Oligonucleotides targeting human PAR3 and 

scrambled control (5’-GGCATTCTTTGGATTCTTA-3’ and 5’-

GTGAGTTCGTTCTCTATTA-3’, respectively) were purchased from Dharmacon, Inc. A549 

cells were transfected with 1 µg oligonucleotide, using the Amaxa Nucleofector Device™ 

and Cell Line Nucleofector® Kit T (Amaxa Biosystems, Gaithersburg, MD), following the 
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manufacturer’s instructions. Transfected cells were grown in serum-supplemented DMEM 

for at least 24 h, prior to assays.  

Site-directed mutagenesis of PAR3- The QuikChange II XL® Site-directed Mutagenesis 

Kit (Stratagene, La Jolla, CA) was used to generate a PAR3 mutant isoform (PAR3⊗) 

resistant to siRNA oligonucleotide knockdown. The sequence 5’-

GGCATTCTTTGGATTCTTA-3’ was mutated to 5’-GGCATTTTTTGGGTTCTTA-3’. 

Nucleotide changes and sequence integrity of the expression vector were confirmed by 

sequencing. A549 cells were co-transfected with a pBJ1 expression vector bearing PAR3⊗ 

(100 ng) and the indicated siRNA oligonucleotide, using the Amaxa system, as described 

above.  

RhoA pulldown assay- Measurements of GTP-bound RhoA were performed using the 

Rho Activation Assay Biochem Kit (Rhoketin assay), according to the manufacturer’s 

instructions. Cell lysates and pulldowns were resolved by sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to polyvinyldifluoride 

membranes. RhoA was detected by Western blot, using monoclonal anti-RhoA antibody 

(1:500) provided by the manufacturer and IRdye®800 conjugated affinity purified goat anti-

mouse IgG (Rockland Immunochemicals, Philadelphia, PA). Immunoblots were revealed and 

quantified using the Odissey® Infrared Imaging System (LI-COR Biosciences, Lincoln, NE).  

MLC phosphorylation-  Proteins were resolved by SDS-PAGE and duplicated 

membranes were separately blotted with anti-phospho-MLC(Ser19) antibody (1:500) or anti-

MLC (1:1000) antibodies (Cell Signaling Technology Inc. Danvers, MA) by goat anti-rabbit 

Alexa Fluor®680 secondary antibody (Invitrogen, Eugene, Oregon). Blots were quantified as 

indicated above.  
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Uptake of propidium iodide- Cells were rinsed and challenged with agonist for 5 min, in 

the presence of 20 µM propidium iodide. At the end of the incubation, the bathing solution 

was replaced with HBSS+ containing 4% paraformaldehyde.  Confocal images of nuclear 

staining and differential interference contrast (DIC) were acquired in a Leica SP5 confocal 

microscope, using a 561 nm laser and a 20x Leica lens (Leica, Germany). The number of 

nuclei stained with propidium iodide was calculated using Adobe Photoshop. 

Data Analysis- Differences between means were determined by unpaired Student’s t-test 

and were considered significant when p < 0.05.  

3. Results 

Thrombin promotes ATP release from A549 cells. The paucity of pharmacological 

approaches to trigger regulated nucleotide release poses a problem for studying the 

mechanism of ATP release from lung epithelial cells. Quantification of ATP release is further 

complicated by the presence of cell surface ecto-ATPases that rapidly hydrolyze released 

ATP. By implementing a protocol that quantifies ATP release in real-time in a thin film near 

the cell surface (26), we investigated the action of GPCR agonists on ATP release from lung 

epithelial cells. 

Our initial screening revealed that the serine protease thrombin promoted robust ATP 

release from lung carcinoma A549 cells (Fig. 3.1). However, thrombin-evoked ATP release 

was evident only when ATP hydrolysis was inhibited. Specifically, in the absence of drugs, 

ATP levels on resting cells stabilized around ~9 ± 2 nM and reached a level of 12 ± 4 nM 

after the addition of thrombin (30 nM, 10 min). In contrast, in the presence of ecto-ATPase 

inhibitors [30 µM ebselen and 300 µM β,γ-metATP (26)], extracellular ATP levels on resting 

cells increased modestly to 22 ± 7 nM in 10 min, likely reflecting constitutive nucleotide 
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release (26, 156, 173). Addition of thrombin in the presence of ebselen and β,γ-metATP 

resulted in robust increase of extracellular ATP, which reached a concentration of 113 ± 15 

nM after 10 min (Fig. 3.1A). Based on these results, subsequent measurements of agonist-

promoted ATP release were performed in the presence of 30 µM ebselen and 300 µM β,γ-

metATP. 

PAR3 mediates thrombin-promoted ATP release in A549 cells. Thrombin and other 

serine-proteases activate a family of four G-protein-coupled receptors, referred as to 

protease-activated receptors (PAR1-PAR4). Thrombin activates PAR1, PAR3, and PAR4. 

The remaining member of the PAR family, PAR2, is activated by trysin and other proteases 

but not by thrombin [reviewed in (179-180)]. To gain an insight into the PAR subtype(s) 

present in A549 cells, RT-PCR studies were conducted. Figure 3.1B illustrates that PAR3 

but not PAR1, PAR2, or PAR4 transcripts could be amplified from A549 cells.  

PARs are activated by proteolytic cleavage of the amino-terminal exodomain of the 

receptor. This cleavage generates a new amino terminus that functions as a tethered ligand, 

which binds to the body of the receptor and promotes signaling (179-180). Synthetic peptides 

representing the newly formed amino-terminus selectively activate PAR1, PAR2, and PAR4, 

independent of receptor cleavage. Human PAR3 is not activated by PAR3-mimicking 

peptides, which suggests that PAR3 activation requires proteolytic cleavage at the amino 

terminal exodomain (178). Figure 3.1C shows that thrombin, but not PAR1- and PAR4-

activating peptides (PAR1-AP and PAR4-AP, respectively), elicited ATP release in a 

concentration-dependent manner. Enhanced ATP release was readily observed in response to 

1 nM thrombin and was maximal with 30 nM thrombin (EC50 = 7 nM).   
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Since activation of thrombin receptors results in phospholipase C activation (178, 181-

182), we investigated the effect of thrombin and PAR-APs on inositol phosphate formation, 

using [3H]inositol-labeled A549 cells. Figure 3.1D shows that thrombin promoted 

[3H]inositol phosphate formation with a potency (EC50 = 6.3 nM) similar to that observed for 

ATP release. PAR1-AP or PAR4-AP promoted negligible [3H]inositol phosphate formation 

(Fig. 3.1D). Altogether, the data in Figure 3.1 suggest that PAR3 in the only thrombin 

receptor present in A549 cells. 

To more definitively assess the involvement of PAR3 in thrombin-elicited ATP release, 

the effect of PAR3 overexpression/suppression was examined. Overexpression of PAR3 

conferred enhanced thrombin-elicited ATP release and inositol phosphate formation to A549 

cells, relative to vector-transfected cells (Fig. 3.2). Gain in thrombin-promoted ATP release 

was noted in cells transfected with as low as 10 ng PAR3 cDNA/well and was robust with 

100-300 ng cDNA/well (Fig. 3.2A). The potency of thrombin in eliciting ATP release and 

inositol phosphate formation increased by ~5 fold (EC50 = 1.1 nM) and ~7 fold (EC50 = 1.2 

nM), respectively, in cells transfected with 100 ng PAR3 cDNA, relative to vector-

transfected cells (Fig. 3.2B and C).  

The contribution of PAR3 to ATP release from A549 cells was directly examined by 

targeting the endogenous PAR3 via siRNA. Transfection of A549 cells with a PAR3-

selective (but not its scramble) siRNA oligonucleotide resulted in ~60% decrease of PAR3 

transcripts, as judged by quantitative PCR (Fig. 3.3A). This manipulation also resulted in 

~50% inhibition of thrombin-evoked inositol phosphate formation (Fig. 3.3B) and ATP 

release (Fig. 3.3C). The PAR3 siRNA approach had no effect on GPCR (other than PAR3)-

mediated signaling, since UTP-evoked inositol phosphate formation was unaffected in PAR3 
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siRNA-transfected cells (vehicle, 1155 ± 178 cpm; UTP 5430 ± 177 cpm; PAR siRNA-

transfected cells: vehicle, 1195 ± 164, UTP 5869 ± 257; mean ± SD, n = 4). To verify that 

the siRNA approach did not knock down downstream effectors of PAR3, cells were co-

transfected with PAR3⊗, a PAR3 cDNA mutant resistant to the PAR3 siRNA 

oligonucleotide. PAR3⊗-mediated ATP release was not affected by PAR3 siRNA (Fig. 

3.3D). Altogether, these results indicate that PAR3 is the major contributor to thrombin-

evoked ATP release in A549 cells. 

Ca2+ is necessary but not sufficient for agonist-evoked ATP release. Cytosolic Ca2+ is 

an important regulator of ATP release in many cells. For example, in excitatory tissues,  ATP 

is released from ATP storage granules via Ca2+-regulated exocytosis (157). Ca2+-dependent 

ATP release has been also reported in cells lacking specialized ATP storage granules (71, 99, 

106, 153, 170). Pre-incubation of A549 cells with 10 µM BAPTA-AM or 1 µM thapsigargin 

resulted in major inhibition of thrombin-promoted ATP release (Fig. 3.4A), suggesting that 

Ca2+ is required for ATP release from thrombin-stimulated A549 cells. 

Since thrombin-elicited ATP release requires a Ca2+-dependent step, we asked whether 

Ca2+-mobilizing receptors other than PARs (e.g., P2Y2-R) promote ATP release from these 

cells. Incubation of A549 cells with 100 µM UTP resulted in enhanced extracellular ATP 

concentrations, but the effect of UTP on ATP levels was modest, relative to thrombin (Fig. 

3.4B). To investigate whether differences in UTP- vs. thrombin-elicited second messenger 

signaling have accounted for the observed differences in agonist-promoted ATP release, 

UTP-promoted phosphoinositide breakdown was examined. UTP promoted inositol 

phosphate formation responses that were greater than thrombin responses. Nucleotide-evoked 

inositol phosphate formation, with potency order UTP = ATP >> ADP, UDP, was consistent 



 59

with P2Y2 receptor expression (Fig. 3.4C). RT-PCR analysis confirmed the expression of 

P2Y2 receptor transcripts in A549 cells (not shown). Importantly, UTP promoted Ca2+ 

mobilization responses in Fura 2-loaded A549 cells that were similar or greater in magnitude 

than thrombin (Fig. 3.4D). Altogether, the results suggest that receptor-promoted 

Gq/phospholipase-β activation/Ca2+ mobilization alone was not sufficient to elicit ATP 

release from A549 cells.  

Thrombin-induced ATP release is independent of Gi activation. It has been 

established that PAR1 interacts with Gq, Gi and G12/13 families of G proteins (179, 183). 

Unlike PAR1, the G protein coupling of PAR3 is poorly defined. The fact that thrombin 

promotes phosphoinositide breakdown in a PAR3-dependent manner in A549 cells (Figs. 3.2 

and 3.3), as well as in PAR3-transfected COS-7 cells (178), suggests that PAR3 couples to 

Gq. However, as mentioned above, signaling in addition to Gq/phospholipase C/Ca2+ is likely 

involved in thrombin-evoked ATP release from A549 cells. To assess Gi activation in 

thrombin-stimulated A549 cells, thrombin-promoted inhibition of cyclic AMP formation was 

examined. Addition of 30 µM forskolin (in the presence of the phosphodiesterase inhibitor 

IBMX) markedly enhanced cyclic AMP formation in A549 cells (control, 8 ± 2 pmoles/well; 

forskolin, 103 ± 6 pmoles/well), which was inhibited (27% maximal inhibition) by thrombin, 

in a dose-dependent manner (Fig. 3.5A). Pertussis toxin, which ADP-ribosylates and inhibits 

Gαi proteins, reversed the inhibitory effect of thrombin on forskolin-elicited cyclic AMP 

formation (Fig. 3.5A). Pertussis toxin failed to inhibit thrombin-promoted ATP release (Fig. 

3.5B). Thus, while these results illustrated the presence of a Gi-coupled thrombin receptor in 

A549 cells, ATP release was not regulated by Gi activation. Consistent with these results, 

pre-incubation of cells with the PI 3-kinase inhibitor wortmannin (200 nM/15 min) had no 
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effect on thrombin-elicited ATP release (Fig. 3.5B). Thus, PI 3-kinase, known to be activated 

by β/γ subunits of Gi proteins downstream of PAR activation (184), was not involved in 

thrombin-promoted ATP release in A549 cells. 

Thrombin promotes ATP release via G12/13-mediated RhoGEF/RhoA activation. Rho 

GTPases are well-known downstream effectors of G12/13, via Gα12/13 activation of guanine 

nucleotide exchange factors (GEF) of Rho (RhoGEF) [reviewed in (185)]. Addition of 

thrombin to A549 cells caused a rapid and robust activation of RhoA, measured by the RhoA 

pulldown assay. RhoA activation was observed as early as 30 s post-thrombin addition and 

was robust after 90 s (Fig. 3.6A). Thrombin-elicited RhoA activation increased considerably 

in cells transfected with PAR3 (Fig. 3.6A) and was reduced by PAR3 siRNA (Fig. 3.6B).  

To examine the possibility that PAR3-elicited ATP release involved activation of 

G12/13/RhoGEF/Rho, A549 cells were transfected with dominant negative mutants of 

RhoGEF and RhoA. Transfection of A549 cells with p115RGS, a G12/13-inhibitory protein 

derived from the RGS domain of p115-RhoGEF (177), impaired thrombin-promoted ATP 

release (Fig. 3.7A). Similarly, transfection of cells with the RhoA mutant RhoA(T19N), 

which tightly binds to RhoGEF but does not promote downstream effector activation (186), 

markedly inhibited thrombin-elicited ATP release (Fig. 3.7A). Control experiments indicated 

that thrombin-promoted inositol phosphate formation was not significantly affected by 

p115RGS or RhoA(T19N) transfections (Table 3.1).  

ROCKs are important effectors of Rho (187). Pre-incubation of A549 cells with the 

ROCK inhibitor Y27632 resulted in dose-dependent inhibition of thrombin-promoted ATP 

release, with maximal inhibition observed with 1 µM Y27632 (Fig. 3.7B and D). H1152, a 

more potent and selective ROCK inhibitor than Y27632 (188), also reduced ATP release in 
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response to thrombin (Fig. 3.7B). ROCK activation is known to promote MLC 

phosphorylation, e.g., by phosphorylating and inactivating MLC phosphatase (189). 

Consistent with the possibility that MLC is an effector of ROCK upstream of ATP release, 

thrombin-promoted MLC phosphorylation was observed and was inhibited by 100 nM 

H1152 (Fig. 3.7C). Further, ML-7 (1 µM), an inhibitor of the Ca2+/calmodulin-dependent 

MLCK (190), reduced MLC phosphorylation (Fig. 3.7C) and impaired ATP release (Fig. 

3.7D) in thrombin-stimulated A549 cells. None of these inhibitors affected the ability of 

thrombin to promote inositol phosphate formation (Table 3.1). 

Altogether, the data indicate that Rho activation is necessary for PAR3-promoted ATP 

release in A549 cells. The data also suggest that Rho actions are mediated, at least in part, by 

ROCK activation, likely facilitating MLC phosphorylation by MLCK. 

ATP release requires the coordinated action of Ca2+- and Rho-dependent pathways. 

Since P2Y2-R stimulation has been linked to RhoA activation in endothelial cells (191), we 

asked whether UTP promotes RhoA activation in A549 cells and, if so, whether such 

activation differed from that of thrombin. Figure 3.8A shows that incubation of A549 cells 

with 100 µM UTP resulted in RhoA activation that was similar in magnitude to thrombin. 

However, unlike the rapid effect of thrombin, UTP-promoted RhoA activation was observed 

only after 15 min. Thus, while thrombin promoted RhoA activation and Ca2+ mobilization 

(Figs. 3.4, 3.6, and 3.8) with overlapping time-frames (30-90 s), UTP-induced RhoA 

activation was dissociated in time from Ca2+ responses (Fig. 3.4 and 3.8).  

We hypothesized that Rho activation and Ca2+ mobilization must be temporally 

coordinated to promote ATP release. To assess this hypothesis, cells were pre-incubated for 

15 min with 100 µM UTP (to achieve robust RhoA activation), followed by a 5 min 



 62

challenge with the Ca2+ ionophore ionomycin. As a control, cells were pre-incubated with 

vehicle. Figure 3.8B illustrates that addition of ionomycin (either alone or in combination 

with UTP) to untreated cells resulted in negligible ATP release. In contrast, addition of 

ionomycin to cells that were pre-incubated for 15 min with UTP resulted in robust release of 

ATP (Fig. 3.8B). The simplest interpretation of these results is that maximal ATP release 

requires synchronized activation of Rho and Ca2+ signaling.    

Thrombin promotes opening of connexin-like hemichannels in a Ca2+ and ROCK-

dependent manner. Connexin and pannexin hemichannels have been proposed as a 

electrodiffusive pathway for the release of ATP under various experimental conditions (192-

193). Connexin (but not pannexin) hemichannels close at millimolar extracellular Ca2+ 

([Ca2+]ex) and open when [Ca2+]ex is lowered. Exposure to lowered extracellular divalent ion 

conditions is a well-known procedure to potentiate or trigger the opening of connexin 

hemichannels, leading to ATP release (194-195). In addition, both pannexins and connexins 

have been reported to release ATP at physiologically relevant [Ca2+]ex  (192-193).  

While investigating the role of calcium in PAR-stimulated responses, we observed that 

removal of [Ca2+]ex resulted in enhanced ATP release from resting and thrombin-stimulated 

A549 cells (Fig. 3.9A), suggesting that connexin hemichannels are present on the A549 cell 

surface. This observation led us to investigate the possibility that hemichannels were 

involved in the release of ATP from thrombin-stimulated A549 cells, under normal [Ca2+]ex 

conditions. Figure 3.9B illustrates that thrombin-induced ATP release, assessed in the 

presence of 1.6 mM [Ca2+]ex, was markedly inhibited by non selective-connexin/pannexin 

inhibitors (100 µM anandamide, 100 µM flufenamic acid, and 10 µM carbenoxolone). 
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Control experiments indicated that none of the hemichannel inhibitors affected thrombin-

evoked inositol phosphate formation (Table 3.1). 

To further assess the possibility that thrombin promoted connexin/pannexin hemichannel 

opening, the uptake of the hemichannel-permeable reporter dye propidium iodide was 

investigated. Propidium iodide displays low intrinsic fluorescence, but its fluorescence 

increases 20- to 30- fold upon binding to nucleic acids. Under resting conditions, a small 

population (<4%) of A549 cell nuclei were labeled with propidium iodide, but dye uptake 

increased markedly (3-4 fold) following a 5 min incubation of the cells with 30 nM thrombin 

(Fig. 3.9C). Unlike propidium iodide, which has a relatively small molecular weight (668.4 

Da), the endocytosis marker fluorescein Dextran (3000-10000 Da) was not taken up by 

thrombin-stimulated A549 cells (not shown). Consistent with connexin/pannexin 

hemichannel involvement in agonist-promoted dye uptake, carbenoxolone inhibited the effect 

of thrombin on nucleus-associated fluorescence (Fig. 3.9D). Particularly relevant to our 

present study was the observation that thrombin-induced dye uptake was markedly inhibited 

by ROCK (Y26632 and H1152) or MLCK inhibitors (ML-7), and BAPTA-AM (Fig. 3.9D). 

Unlike thrombin, UTP (100 µM) and ATP (1 mM) promoted no changes in dye uptake (Fig. 

3.9D), indicating that P2Y2-R activation did not suffice to induce hemichannel opening. 

Moreover, lack of effect of 1 mM ATP on propidium iodide uptake argues against the 

possibility that the pore forming P2X7-R (196) is expressed in these cells. Altogether, the 

data suggest that thrombin promoted Ca2+- and Rho-regulated ATP release via 

connexin/pannexin hemichannels in A549 cells. 

Thrombin promotes mucosal ATP release from primary cultures of WD-HBE cells. 

Having identified mechanistic components involved in ATP release in A549 cells, we asked 
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whether observations made with these cells apply to physiologically relevant airway 

epithelia. Therefore, we examined the effect of thrombin on ATP release from polarized 

cultures of WD-HBE cells.  Addition of 30 nM thrombin to the mucosal compartment had no 

effect on ATP release (not shown). In contrast, thrombin added to the basolateral 

compartment of WD-HBE cultures resulted in a robust release of ATP through the apical (but 

not basolateral) surface (Fig. 3.10A). The data are in agreement with previous observations 

indicating that (i) ATP release occurs through elements that segregate to the apical domain 

after cell polarization (25, 94), and (ii) PARs are expressed at the basolateral membrane of 

polarized lung epithelial cells (33, 197-198). The identity of the PAR evoking ATP release in 

WD-HBE cells remains to be elucidated. As in A549 cells, the effect of thrombin on ATP 

release was markedly reduced in WD-HBE cells that were pre-incubated with the ROCK 

inhibitor H1152, the MLCK inhibitor ML-7, or the connexin/pannexin hemichannel blocker 

carbenoxolone (Fig. 3.10B). Unlike thrombin, mucosal UTP caused no ATP release from 

WD-HBE cells (Fig. 3.10A), despite the well-established presence of P2Y2 receptors on 

these cells [(10, 199) and see Fig. 3.10C].   

Regardless the lack of effect of UTP on ATP release (Fig. 3.10A), the presence of 

phospholipase C-activating P2Y2 receptors on the apical surface of WD-HBE cells (10, 199) 

suggests that ATP released onto the thin liquid film covering the mucosal airway epithelial 

cell surface contributed, at least in part, to PAR-evoked signaling. To test this possibility, the 

effect of the ATPase enzyme apyrase on thrombin-elicited [3H]inositol phosphate formation 

was assessed.  To minimize dilution of released ATP, the mucosal surface liquid volume was 

reduced to 100 µl/well (83 µl/cm2 culture). Inclusion of 5 U apyrase in this thin airway 

surface liquid resulted in small (21%) but reproducible decrease of [3H]inositol phosphate 
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formation in response to basolateral addition of thrombin (Fig. 3.10C). As expected, 

(mucosal) UTP promoted [3H]inositol phosphate formation, which was nearly abolished in 

the presence of apyrase (Fig. 3.10C) 

4. Discussion 

By examining the effects of PAR and P2Y-R agonists, we demonstrated that Rho/Rho 

kinases, in concert with cytosolic Ca2+, are important regulators of ATP release. We also 

demonstrated that connexin/pannexin hemichannels are likely effectors of Rho/ROCK and 

Ca2+ signaling pathways that mediate ATP release from lung epithelial cells. An additional 

novel finding was that thrombin actions on A549 cells are mediated by PAR3, a poorly 

characterized thrombin receptor subtype.  

Our data, indicating that BAPTA and thapsigargin impaired ATP release from thrombin-

stimulated A549 cells, are consistent with the notion that Ca2+ mobilization is necessary for 

ATP release. However, ATP release in response to Ca2+-mobilizing agents (e.g., UTP, 

ionomycin) represented a minor fraction relative to that observed with thrombin stimulation 

(Fig. 3.4). Thrombin-promoted ATP release decreased in cells transfected with dominant 

negative mutants of p115-RhoGEF and RhoA as well as in cells exposed to ROCK inhibitors 

(Fig. 3.7). Thus, Rho GTPases are key regulators of PAR-elicited ATP release. Importantly, 

Rho activation itself promoted no ATP release when temporarily dissociated from Ca2+ 

mobilization. Therefore, Rho signaling is an obligatory partner of Ca2+ mobilization 

upstream of ATP release in A549 cells.  

Our present results are also consistent with previous studies implicating Rho as modulator 

of ATP release. Ito and coworkers reported that Y26632 impaired lysophosphatidic acid 

(LPA)- and/or hypotonic challenge-promoted ATP release in human umbilical vein and 
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bovine aortic endothelial cells (200-201). In a recent report, Blum et al. reported that 

inactivation of RhoGTPases with Clostridium botulinum C3 exoenzyme impaired thrombin- 

and LPA-promoted Ca2+-dependent ATP release from 1321N1 astrocytoma cells (171). 

However, Y26632 and ML-7 had no effect on ATP release in these cells, suggesting that Rho 

regulation of ATP release in 1321N1 astrocytoma cells occurred independently of ROCK and 

MLC phosphorylation. Unlike 1321N1 cells, Y26632, H1152, and ML-7 impaired thrombin-

evoked ATP release in A549 cells. While Rho activation may utilize downstream effectors in 

addition to ROCK (202), our results suggest that ROCK is an important regulator of ATP 

release from A549 cells. Moreover, our data suggest that Ca2+- and Rho/ROCK-dependent 

ATP release from thrombin-stimulated A549 cells occurs via connexin or pannexin 

hemichannels, a pathway that appeared not competent for ATP release in 1321N1 

astrocytoma cells (171). Specifically, in A549 cells: (i) thrombin-promoted ATP release was 

inhibited by connexin/pannexin inhibitors, (ii) thrombin promoted the uptake of propidium 

iodide, an indicator of non-selective pore opening, which was inhibited by 

connexin/pannexin inhibitors, and (iii) thrombin-elicited dye uptake was inhibited by ROCK 

and MLCK inhibitors and by BAPTA-AM.  

Our study did not address the identity of the putative hemichannel involved in ATP 

release. Based on the effect of [Ca2+]ex, connexin hemichannels likely are expressed at the 

plasma membrane of A549 cells. However, whether a connexin or pannexin hemichannel 

was responsible for the release of ATP in physiologically relevant [Ca2+]ex, as well as the 

mechanism potentially involved in hemichannel activation, remain to be investigated.  

A surprising finding in our study was that thrombin actions in A549 cells could not be 

associated with PAR1. While we have recently reported that the PAR1 peptide 
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TFLLRNPNDK promoted nucleotide release and inositol phosphate formation in 1321N1 

human astrocytoma cells (95), TFLLRNPNDK failed to promote these responses in A549 

cells. Moreover, A549 cells used in the current study do not express PAR1 transcripts (Fig. 

3.1). Our data also suggest that PAR4 is not expressed in A549 cells (Fig. 3.1). The finding 

that thrombin actions on A549 cells were not mediated by PAR1 or PAR4 was striking since 

the ability of PAR3 (the other member of the thrombin receptor family) to generate 

intracellular signaling has been questioned (178). The finding that murine PAR3 functions as 

a cofactor for proteolytic activation of PAR4 in platelets has reinforced the assumption that 

PAR3 does not signal by itself. However, this observation may also reflect cell type and 

species specific functions for distinct PARs [reviewed in (183)]. Expression of human PAR3 

(but not empty vector) in COS-7 cells resulted in thrombin-evoked inositol phosphate 

formation (178), likely via Gq-mediated phospholipase C activation. In addition, co-

expression of Gα16 (a G protein endogenously expressed in hematopoietic cells that 

promiscuously transduces GPCR activation into phospholipase C activation) also conferred 

enhanced and potent thrombin-promoted inositol phosphate formation to PAR3-transfected 

COS-7 cells  (178).  

Unlike other PARs, evidence that natively-expressed PAR3 promotes cellular responses 

by its own is scarce. For example, Ostrowska and Reiser recently reported that thrombin, but 

not a PAR1 peptide, promoted IL-8 secretion from both lung epithelial and astrocytoma cells, 

and that silencing PAR1 and PAR3 simultaneously (but not PAR1 alone) resulted in reduced 

IL-8 production in astrocytoma cells. The authors suggested thrombin actions were mediated 

by PAR3 (203). McLaughlin et al. reported that thrombin-elicited transendothelial electrical 

resistance (TER) was mediated in part by PAR3, which (together with PAR1) is 
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endogenously expressed in human endothelial cells. PAR3 suppression resulted in ~50% 

reduction of TER, while PAR1 suppression completely reduced TER in response to 

thrombin. Based on bioluminescent resonance energy transfer-2 (BRET2) measurements, the 

authors  concluded that PAR3 dimerizes with and regulates PAR1 signaling (204).  Our data, 

illustrating that (i) PAR1-AP and PAR4-AP fail to promote cellular responses in A549 cells, 

(ii) PAR3 is the only PAR transcript present in these cells, and (iii) PAR3 siRNA decreased 

thrombin-evoked responses, indicate that PAR3 is the major thrombin receptor functionally 

present in these cells. Moreover, the observation that PAR3 over-expression enhanced 

thrombin-elicited inositol phosphate formation, RhoA activation, and ATP release, strongly 

suggest that PAR3 is capable of triggering signaling.  

Collectively, our results demonstrate that thrombin actions on A549 cells are mediated by 

PAR3-promoted Ca2+ mobilization and Rho activation, and that these signaling cascades 

must be temporally coordinated to allow ATP release via connexin/pannexin hemichannel 

opening. 

Key observations obtained with A549 cells were expanded to physiologically relevant 

primary cultures of WD-HBE cells. In these cultures, basolateral addition of thrombin 

resulted in robust mucosal ATP release, which was inhibited by ROCK and MLCK inhibitors 

as well as by connexin/pannexin hemichannel blockers (Fig. 3.10A and B). In addition, 

measurements of [3H]inositol phosphate formation in thrombin-stimulated WD-HBE cells 

suggested a previously unnoticed autocrine action of released ATP, i.e., as a contributor to 

PAR-evoked signalling (Fig. 3.10C). In summary, our study is the first to demonstrate the 

occurrence of robust ATP release in GPCR agonist-stimulated human airway epithelial cells 
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and to implicate the participation of ROCK and MLCK as potential upstream effectors of 

ATP release via connexin/pannexin hemichannels.   
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Table 3.1. Thrombin-promoted inositol phosphate formation is not affected by Ca2+, 
Rho, or connexin/pannexin inhibitors. myo-[3H]inositol-labeled A549 cells were 
challenged for 20 min with 30 nM thrombin, and the resulting inositol phosphates were 
quantified as indicated in Experimental Procedures. Transfections and pre-incubations with 
pharmacological inhibitors were as described in Methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Inhibitor Mean ± SD  

(cpm) 

n 

Control - 1638 ± 296 8 

Thrombin - 3187 ± 516 8 

Thrombin P115-RGS 3516 ± 251 4 

Thrombin RhoA(T19N) 2680  ± 82 4 

Thrombin 1 µM H1152 3536 ± 496 8 

Thrombin 10 µM Y27632 3269 ± 202 8 

Thrombin 1 µM ML-7 2924 ± 227 4 

Thrombin 100 µM Anandamide 3361 ± 235 4 

Thrombin 100 µM Flufenamic Acid 3076 ± 467 4 

Thrombin 10 µM Carbenoxolone 3316 ± 289 8 
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Figure 3.1. Thrombin-promoted ATP release and inositol phosphate formation in a 
PAR1- and PAR4-independnet manner. A, extracellular ATP concentrations were 
measured on real-time, in the absence or presence of 30 µM ebselen and 300 µM β,γ-
metATP (added at t = 0), as described in Methods. Thrombin (30 nM) was added at t = 10 
min. Values are the mean ± SEM of eight independent measurements. B, PAR mRNA 
expression in A549 cells was determined by RT-PCR analysis. Plasmids expressing the 
indicated PAR were used as positive controls (Ctrl). Results are representative of nine 
independent A549 cell RNA preparations. C, cells were stimulated for 5 min with thrombin, 
PAR1-AP, or PAR4-AP, and extracellular ATP measured off-line, as described in Methods. 
Values are the mean ± SEM of three independent measurements performed in sextuplicate. 
D, myo-[3H]inositol-labeled cells were incubated for 20 min with the indicated agonist, and 
the resulting [3H]inositol phosphates were separated and quantified, as described in Methods. 
Results are from three independent experiments performed with quadruplicate samples.  
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Figure 3.2. PAR3 overexpression enhances thrombin-elicited ATP release and inositol 
phosphate formation in A549 cells. A, cells were transfected with the indicated amount of 
cDNA. Forty eight hours post transfection, cells were pre-incubated with ebselen and β,γ-
metATP as in Figure 3.1 and incubated for 5 min with 30 nM thrombin or vehicle. B and C, 
cells transfected with 100 ng PAR3 cDNA were stimulated for 5 min (B) or 20 min (C) with 
the indicated concentration of thrombin, and ATP release and inositol phosphate formation 
were measured as described in Figure 3.1C and D, respectively. The data represent the mean 
± SEM of at least three independent experiments performed in quadruplicate.  
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Figure 3.3. PAR3 mediates thrombin-elicited ATP release and inositol phosphate 
formation in A549 cells. A, PAR siRNA reduces PAR3 mRNA expression. B, effect of 
PAR3 siRNA on thrombin (30 nM)-promoted inositol phosphate formation. C, ATP release 
was measured in cells transfected with either PAR3 siRNA or its scramble oligonucleotide. 
D, cells transfected as above were co-transfected with empty-vector or siRNA-resistant 
PAR3⊗ cDNA. ATP was measured off-line, 5 min after the addition of vehicle or 30 nM 
thrombin, in the presence of 30 µM ebselen and 300 µM β,γ-metATP. The data represent the 
mean ± SEM of three separate experiments performed in triplicate; p < 0.05.  
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Figure 3.4. Ca2+is necessary but not sufficient by itself for agonist-evoked ATP release. 
A, cells were pre-incubated for 20 min with vehicle (Ctrl), 1 µM tapsigargin (Tg), or 10 µM 
BAPTA-AM (BAPTA) and ATP concentrations were measured off-line, 5 min following the 
addition of vehicle or 30 nM thrombin. Ebselen (30 µM) and β,γ-metATP (300 µM) were 
added to cells 5-10 min prior addition of vehicle/thrombin.  The data represent the mean ± 
SEM of at least six separate experiments performed in quadruplicate. B, cells were incubated 
with vehicle, 30 nM thrombin, or 100 µM UTP, and ATP concentrations were measured as 
above. C, myo-[3H]inositol-labeled cells were incubated for 20 min with the indicated drugs, 
and the resulting [3H]inositol phosphates were separated and quantified as in Figure 3.1D. 
Results are from four independent experiments performed with quadruplicate samples. D, 
cells were loaded with Fura 2-AM for 30 min, and stimulated with 30 nM thrombin or 100 
µM UTP. Fluorescence from ~40 cells was acquired as described in Methods. Representative 
tracings are illustrated; similar results were obtained in six independent experiments.  
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Figure 3.5. Thrombin-promoted ATP release is independent of Gi activation. A, cyclic 
AMP (cAMP) was measured in cells pre-incubated 18 h with 50 ng/ml pertussis toxin (PTX) 
or vehicle, and stimulated for 5 min with 30 µM forskolin and the indicated concentrations of 
thrombin. Values are the mean ± SEM of two independent experiments performed in 
triplicate. B, cells were preincubated with vehicle, PTX (50 ng/ml, 18 h) or wortmannin 
(Wortm, 200 nM, 15 min), and incubated for 5 min with 30 nM thrombin or vehicle. Values 
are the mean ± SEM of four independent experiments performed in quadruplicate.  
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Figure 3.6. PAR3 promotes RhoA activation. A, total RhoA and RhoA-GTP were 
measured in A549 cells transfected with 100 ng empty vector or PAR3 cDNA, as in Figure 
3.2.  RhoA activation was visualized by the pulldown assay (left), as described in 
Experimental Procedures. RhoA activation is expressed as fold increase over control (vector, 
t = 0); values are the mean ± SEM of ten independent experiments (right). B, PAR3 siRNA 
reduced thrombin (30 nM, 5 min)-promoted RhoA activation. The Western blot (left) is 
representative of four experiments performed under similar conditions. Values (right) are 
expressed as fold increase over vehicle in scramble-transfected cells (mean ± difference to 
mean, n = 4).  
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Figure 3.7. Thrombin-elicited ATP release is mediated by G12/13/RhoA/ROCK.  A, ATP 
release was quantified in P115-RGS-, or RhoA(T19N)- transfected cells, after 5 min 
incubation with 30 nM thrombin or vehicle. Values are the mean ± SEM of four independent 
experiments performed in quadruplicate. B, cells were pre-incubated for 1 h with the 
indicated concentrations of H1152 or Y27632, and ATP release was measured after 5 min 
incubation with 30 nM thrombin or vehicle. The data are plotted as the percent of stimulation 
observed with 30 nM thrombin, in the absence of inhibitors. Values the mean ± SEM from 
five separate experiments performed in quadruplicate. C, the effect of 100 nM H1152 or 1 
µM ML-7 on thrombin-promoted MLC phosphorylation is illustrated by a Western blot (top). 
Quantification of p-MLC is indicated in the bottom; mean ± SD, n= 3.  D, effect of 1 µM 
ML-7 on thrombin-promoted ATP release. Values are the mean ± SD from at least three 
independent experiments performed in quadruplicate. (*) indicates significant inhibition of 
thrombin responses, p < 0.05. ATP measurements were performed in the presence of ebselen 
and β,γ-metATP as indicated in previous Figures. 
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Figure 3.8. RhoA-activation and Ca2+ mobilization act in concert to promote ATP 
release. A, RhoA activation was measured and quantified in A549 cells stimulated for the 
indicated times with 30 nM thrombin or 100 µM UTP. The results (fold increase relative to 
untreated cells) represent the mean ± SEM of five separate experiments. B, ATP release was 
measured in cells pre-incubated with vehicle or 100 µM UTP for 15 min, and challenged for 
additional 5 min with the indicated drugs. The data represent the mean ± SEM of three 
separate experiments performed in quadruplicate. Ebselen and β,γ-metATP were added as 
indicated in previous Figures. 
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Figure 3.9.  Involvement of connexin/pannexin hemichannels in thrombin-promoted 
ATP release from A549 cells. A, cells were pre-incubated for 2 min in EGTA/Ca2+-buffered 
solutions and extracellular ATP measured after an additional 5 min incubation with vehicle 
or 30 nM thrombin. The data represent the mean ± SEM of three separate experiments 
performed in quadruplicate. B, changes in ATP concentrations were measured in cells pre-
incubated for 15 min with 100 µM anandamide, 100 µM flufenamic acid (FFA), or 10 µM 
carbenoxolone (CBX), and challenged for 5 min with vehicle or 30 nM thrombin. Values 
represent the mean ± SEM of at least six separate experiments performed in quadruplicate. C, 
uptake of cells propidium iodide (PI) was assessed after 5 min incubation with vehicle or 30 
nM thrombin. The images represent an overlay of propidium iodide (red)-associated nuclear 
fluorescence and DIC. D, A549 cells were pre-incubated with vehicle or with 10 µM 
carbenoxolone (CBX, 15 min), 10 µM Y27632 (45 min), 1 µM H1152 (45 min), 10 µM 
BAPTA-AM (20 min), or with 1 µM ML-7 (45 min), and challenged for 5 min with no 
agonist (Ctrl), 30 nM thrombin, 100 µM UTP, or 1 mM ATP in the presence of propidium 
iodide. Cells were fixed and images taken and analyzed by confocal microscopy. Dye uptake 
is expressed as the percent of nuclei displaying red fluorescence. The data are the mean ± 
SEM, n = 4. Similar results were obtained in at least three separate experiments performed in 
quadruplicate. Bar, 100 µm. (*). p < 0.05. 
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Figure 3.10. Thrombin-promoted ATP release and inositol phosphate formation in WD-
HBE cells. A, WD-HBE cells were incubated for 5 min with 30 nM thrombin (basolateral), 
100 µM UTP (apical), or vehicle; ATP released to the apical or basolateral (BL) medium was 
quantified, as indicated in Methods. B, WD-HBE cells were pre-incubated bilaterally (1 h) 
with 1 µM H1152, 10 µM ML-7 or1 µM CBX, and apical ATP release was measured after 5 
min incubation with 30 nM thrombin (basolateral addition) or vehicle. C, [3H]inositol-labeled 
WD-HBE cells were incubated for 20 min in the presence of vehicle, 30 nM thrombin 
(basolateral addition), 100 µM UTP (apical addition), and in the absence or presence of 5 
U/ml apyrase (apical addition). The resulting [3H]inositol phosphates were quantified as 
indicated in Methods. The data (mean ± SD) represent the net increase in counts above 
background, and they are representative of two separate experiments with independent 
cultures performed each with quadruplicate samples. (*) indicates significant difference 
between apyrase-treated vs. non-treated cultures, p < 0.01. 
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Receptor-promoted exocytosis of airway epithelial mucin granules containing a 

spectrum of adenine nucleotides 
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1. Introduction 

The airway MCC system is crucial for innate lung defense. The major components of 

MCC are ciliary beating, mucin secretion and electrolyte / fluid transport. The balance 

amongst these components ensures the rapid removal of inhaled foreign materials. Failure in 

this balance may lead to airway obstructive and inflammatory diseases. For example, cystic 

fibrosis results from aberrant ion transport activities and impaired hydration of ASL, mucus 

accumulation, and ultimately chronic obstructive pulmonary disease (205). Thus, a key 

physiological component of lung defense involves mucin hydration and clearance.  

However, mucin secretion and ASL hydration / clearance functions reside in distinct cell 

types, i.e., goblet and ciliated cells, respectively, and thus, coordination of these activities is 

required for effective mucus clearance. A body of evidence suggests that ATP release from 

airway epithelial cells provides a mechanism for the control of MCC functions [reviewed in 

(206)]. Extracellular ATP and its metabolite adenosine activate subsets of purinergic 

receptors expressed on the mucosal surface of airway epithelial cells. The predominant 

nucleotide-sensing receptor in the airways is the Gq-coupled P2Y2 receptor, which is 

activated by ATP and UTP. P2Y2 receptor activation promotes mucin secretion and ciliary 

beating, inhibition of the epithelial Na+ channel ENaC, and activation of CFTR and the Ca2+-

activated Cl- channel. Extracellular ATP hydrolysis results in formation of adenosine, which 

activates the Gs-coupled A2b receptor, promoting cyclic AMP-regulated CFTR Cl- channel 

activity and thus, fluid secretion (206). Functional and biochemical evidence suggest that 

adenosine / A2b receptor is the major regulator of CFTR activity in airway epithelium (25). 

ATP and adenosine are naturally occurring components of ASL (25), but the cellular 

pathways that yield these extracellular molecules are poorly defined.  
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Given the complex cellular composition of airway epithelia, multiple mechanisms and 

pathways likely participate in the release of nucleotides into ASL. Nucleotide release from 

airway epithelial cells has been proposed to occur via different mechanisms: (i) tonic release 

from vesicles via a constitutive pathway in non-mucous cells (94); (ii) a conductive 

mechanism likely involving pannexin hemichannels, potentially localised within ciliated cells 

[(207) and Chapter III ]; and (iii) ATP release associated with Ca2+-regulated exocytosis 

(153). 

We recently demonstrated that ATP release from goblet cell-like Calu-3 cells was 

associated with Ca2+-promoted mucin secretion (71). An attractive hypothesis derived from 

this observation is that mucin granules store ATP, and likely, other purine nucleotides. 

Relevant to this hypothesis, a recent mathematical model of nucleotide regulation in the ASL 

predicts the release of AMP and ADP accompanying ATP from a vesicular pool (100).  

Thus, a mix of nucleotides released upon mucin granule exocytosis could provide paracrine 

signalling to ciliated cells to increase ion and water secretion to support mucin hydration and 

ultimately mucus clearance. However, the contribution of mucin granule exocytosis to ASL 

nucleotides has awaited quantification of nucleotide concentration within mucin granules.  

Recently, we discovered that the serine protease thrombin elicited robust ATP release 

from WD-HBE cell cultures [discussed in Chapter III ]. Thrombin-promoted ATP release 

was mediated via activation of cognate G-protein coupled PARs. The family of PARs 

includes four members (PAR1, PAR2, PAR3, and PAR4). Thrombin is the physiological 

activator of PAR1, PAR3, and PAR4; however, other proteases can cleave these receptors 

and may contribute to their function in vivo (208). PAR2 is activated by multiple serine 

proteases including trypsin and tryptase, but not by thrombin (208). Relevant to our studies, 
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activation of PARs has been described to induce mucin secretion from gastrointestinal and 

airway epithelial cells (209-210). Thus, PAR activation of airway goblet cells may provide a 

useful model to investigate the potential coordination between ATP release and mucin 

secretion.  

In the present study, we used WD-HBE and airway goblet-like Calu-3 cells to investigate 

(i) whether PAR agonist-elicited mucin exocytotic secretion is associated with enhanced 

nucleotide release, and (ii) whether mucin granules purified from airway goblet cells contain 

ATP and possibly other adenyl nucleotide species.  

2. Methods 

Reagents - Bafilomycin A1, cytochalasin D, ionomycin, H-1152, ML7, and Y27632 were 

purchased from Calbiochem (San Diego, CA). 2-Phenyl-1,2-benzisoselenazol-3(2H)-one 

(ebselen), β, γ -methylene ATP, luciferase from Photinus pyralis, Percoll®, and quinacrine 

were purchased from Sigma (St Louis, MO).  BAPTA AM, Fluorescently-labelled 

phalloidin, Fura-2 AM, and antibodies against cytochrome oxidase subunit III and IV and 

ATP-synthase α-subunit were purchased from Molecular Probes (Eugene, OR). [3H]ATP (20 

Ci / mmol) was purchased from Amersham Biosciences (Piscataway, NJ). MUC5AC and 

MUC1 antibodies were purchased from LabVision (Fremont, CA). VAMP-8 antibodies were 

from Abcam (USA) and Synaptic Systems (Germany). Luciferin and antibodies against GM 

130, p230 antibodies, protein disulfide isomerase, and LAMP-1 were from BD Biosciences 

Pharmingen (San Jose, CA). Secondary antibodies were from Jackson ImmunoResearch Labs 

(West Grove, PA) and LI-COR (Lincoln, NE). Human alpha-thrombin was purchased from 

Enzyme Research Laboratories (South Bend, IN). The PAR1-activating peptide 

TFLLRNPNDK and the PAR2-activating peptide SLIGKV were synthesized at Tufts 
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University Peptide Synthesis Core Facility. Other chemicals were of the highest purity 

available and from sources previously reported.  

Cell culture – Airway epithelial Calu-3 cells are derived from pleural effusion associated 

with human lung adenocarcinoma (211). Unless otherwise indicated, Calu-3 cells were 

grown on 12-mm Transwell supports and maintained at air-liquid interface for at least two 

weeks, as described previously (71). Well-differentiated human bronchial epithelial cells 

were grown on collagen-coated 12-mm Transwell supports and maintained at air-liquid 

interface for at least four weeks, as described previously (212). Human tissue specimens for 

cell culture production and mRNA expression analyses were collected according to the 

guidelines of the Institutional Review Board for Protection of Human Rights at the 

University of North Carolina at Chapel Hill. 

RT-PCR Analysis –Total RNA was prepared using the RNeasy Mini Kit (Qiagen) and 

reverse-transcribed using Super- Script III reverse transcriptase (RT, Invitrogen). RT-PCR 

analyses were performed at the UNC-CH Cystic Fibrosis Center Molecular Biology Core 

Lab using standardized protocols. Amplified PCR products were identified by sequence 

analysis at the UNC-CH DNA sequencing facility. Primers used to amplify human PAR1, 

PAR2, PAR3, and PAR4 were prepared according to Chapter III. A fragment between bp 71 

and 339 of human VAMP-8 was amplified with forward primer (F) 5’-

AGGTGGAGGAAATGATCGTG and reverse primer (R) 5’-

TGGCAAAGAGCACAATGAAG.  

Quantification of ATP with the luciferin-luciferase assay – To measure ATP release, 

WD-HBE and Calu-3 cell cultures were rinsed and pre-incubated in 0.4 ml basolateral, 0.25 

ml mucosal Hank’s Balanced Salt Solution with 20 mM HEPES and 1.6 mM Ca2+ and 1.8 
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mM Mg2+ (HBSS). ATP hydrolysis inhibitors (30 µM ebselen and 300 µM β, γ -methylene 

ATP) were added for 5 min prior to stimuli. At the end of the incubation, aliquots of the 

extracellular baths were removed, and heated to 95oC to inactivate nucleotidases, as 

described in Chapter III . The luciferin-luciferase reaction mix was added to tubes and 

luminescence recorded in an Auto-Lumat LB953 luminometer (173). An ATP standard curve 

was performed in parallel. None of the reagents used during ATP release measurements 

interfered with the luciferase reaction.  

Mucin secretion - MUC5AC release by WD-HBE and Calu-3 cells was determined by 

immuno-slot blot analysis of the extracellular media, as previously described (71). Slot blots 

were scanned and quantified in a LI-COR Odyssey system (Lincoln, NE). 

Intracellular calcium measurements - Calu-3 cells grown on glass coverslips were 

loaded with Fura-2 AM for 15-30 min. Cells were washed, mounted on a platform of a 

fluorometer-coupled Nikon microscope, and fluorescence from 30–40 cells was acquired 

alternately at 340 and 380 nm. Other details were as previously described in Chapter III. 

Immunofluorescence and confocal microscopy  – Cell cultures were fixed in 4% 

paraformaldehyde, permeabilized in 0.1 % Triton X-100 for 10 min, and subjected to 

immunofluorescence staining and confocal microscopic analysis, as previously described 

(71). 

Quinacrine associated granule fluorescence – Calu-3 cell secretory granules were pre-

labelled with 10 µM quinacrine, as previously described (71). Cells were mounted on the 

stage of the confocal microscope and real-time recording was performed every 10 and 30 s in 

the xy axes.   The fluorescence intensity of all the pixels contained within granules of 1-2 µm 

diameter were measured at each time point, normalized to basal values (time = 0), and 
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averaged using Leica software. To confirm the cellular location of quinacrine-loaded 

granules, y-stacks were generated at the end of each experiment.  

Mucin granule isolation – Calu-3 cells were grown in four 75 cm2 culture flasks for at 

least 10 days. Cells were detached using Varsene solution. In some experiments, cells were 

loaded with quinacrine for 15 min prior to detaching from the flask. Cells were pelleted at 

500 x g and re-suspended in 4 ml of ice-cold lysis buffer (PIPES 20 mM pH=6.8, 130 mM K 

glutamate, 3 mM MgCl2, 0.1 mM CaCl2, and 3 mM EGTA). Cells were disrupted by 

cavitation (800-1000 psi, 30 min on ice). Lysate was centrifuged for 3 min at 500 x g and the 

supernatant pelleted at 5000 rpm for 3 min. The resulting pellet was resuspended in isotonic 

50% Percoll® suspension prepared in lysis buffer and centrifuged at 4°C for 20 min at 30000 

rpm using a TLS 55 rotor (TL100 ultracentrifuge, Beckman, USA). The first 0.5 ml of each 

gradient were collected, mixed with 1.5 ml isotonic 50% Percoll® suspension, and submitted 

to a second ultra-centrifugation for 30 min at the same speed. Twenty fractions (100-µl each) 

were collected and stored at -80oC for further analyses. In experiments using quinacrine-

loaded cells, fraction aliquots were examined under the fluorescence microscope to visualise 

granule-associated fluorescence. The fractions of the second gradient were analysed for 

nucleotide concentration and by immuno-slot blot (71), using antibodies against cellular 

markers MUC5AC and VAMP-8 (mucin granules), MUC1 (plasma membrane), GM 130 and 

p230 (Golgi), protein disulfide isomerase (PDI, endoplasmic reticulum), LAMP-1 

(lysosome), and mitochondrial cytochrome oxidase subunits III / IV and ATP-synthase α-

subunit. 

Quantification of adenyl purines via etheno-derivatization and HPLC analysis – Cell 

cultures were rinsed and incubated as above, except that ATP hydrolysis inhibitors were 
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omitted due to interference with the detection of etheno-derivatives. To quantify adenyl 

species within isolated mucin granules, purified granules were disrupted with ice-cold 5% 

trichloroacetic acid followed by ethyl ether extraction, as previously described (173). 

Samples were derivatised with chloroacetaldehyde and the resulting fluorescent etheno-

species analyzed by HLPC, as previously described (25).   

ATP hydrolysis - Isolated mucin granules (2 µg protein) were re-suspended in ice-cold 

100 µl HEPES-buffered HBSS (pH 7.4) containing 0.1 µCi [3H]ATP (100 µM). Reactions 

were initiated by transferring the tubes to a 37oC water bath followed by the immediate 

addition of either vehicle or 0.1% triton X-100. At the end of the incubation, samples were 

heated (2 min at 95oC) to inactivate ATPase activities. The resulting [3H]-species were 

separated by HPLC, as previously described (173). 

Statistics – Student’s paired t-test was performed using Excel 2003; p < 0.01 was 

accepted to indicate statistical significance. 

3. Results 

PAR agonists elicit release of ATP associated with mucins in WD-HBE cells. In 

Chapter III , we indicated that basolateral, but not mucosal, addition of the serine protease 

thrombin resulted in enhanced mucosal ATP release from WD-HBE cultures. Since cellular 

responses to thrombin and other serine proteases are mediated by members of the family of 

PARs, we investigated whether PAR stimulation in WD-HBE cells elicited mucin secretion 

coordinate with ATP release. Expression of PARs was verified in WD-HBE cells by RT-

PCR analysis. PAR1, PAR2, and PAR3, but not PAR4 transcripts were amplified in WD-

HBE cultures (Fig. 4.1A). Thrombin (50 nM, 5 min), a physiological agonist for PAR1 and 

PAR3 (208) promoted both mucin secretion (Fig. 4.1B) and ATP release (Fig. 4.1C) into the 
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apical bath of WD-HBE cultures. Activation of PARs by their cognate proteases involves 

proteolytic cleavage of the amino-terminal exodomain of the receptor, generating a new 

amino terminus that functions as a tethered ligand (208). Synthetic peptides, mimicking the 

tethered ligand, can selectively activate PAR1 and PAR2 independently of receptor cleavage. 

Human PAR3 is not activated by PAR3 mimicking peptides (208). Basolateral incubation of 

WD-HBE cells for 5 min with PAR1 and PAR2 activating peptides (PAR1-AP and PAR2-

AP, respectively) resulted in enhanced mucosal mucin secretion and ATP release (Fig. 4.1B, 

C). PAR activation did not elicit mucin or ATP release into the basolateral bath (not shown). 

PARs promote Ca2+-dependent mucin secretion from Calu-3 cells. Goblet cells are 

sparsely expressed in WD-HBE cell cultures, making purification of goblet cell granules 

difficult. Therefore, airway goblet-like Calu-3 cells (71) were utilized as a cell model to 

investigate the contribution of mucin granule exocytosis to ATP release. Based on a previous 

study suggesting the presence of Ca2+-mobilizing PARs in Calu-3 cells (198), the expression 

of PAR transcripts in these cells was examined by RT-PCR. As illustrated in Figure 4.2A, 

transcripts for PAR1, PAR2, and PAR3, but not for PAR4, could be amplified in these cells.  

Consistent with the concept that all PARs couple to Gq and phospholipase C activation 

(208), Calu-3 cells loaded with Fura-2 AM displayed increased intracellular Ca2+ 

mobilization in response to thrombin (50 nM), PAR1-AP (100 µM), or PAR2-AP (100 µM) 

(Fig. 4.2B). As shown in Figure 4.2C, thrombin-evoked Ca2+ mobilization was negligible in 

PAR1-AP-pretreated cells, suggesting that desensitization of PAR1 prevented Calu-3 cells 

from responding to thrombin.  Control experiments indicated that PAR2-AP-evoked 

responses were not affected by PAR1-AP pre-treatment (Fig. 4.2C). Although the data 

cannot rule out a contribution of PAR3 to thrombin-evoked responses, the nearly identical 
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efficacies of thrombin and PAR1-AP and the PAR1-AP desensitization effect on thrombin in 

eliciting Ca2+ mobilization suggest that PAR1 is the major thrombin receptor expressed in 

Calu-3 cells. Our results suggest that PAR2 is also robustly expressed in these cells.  

The secreted mucin MUC5AC is highly expressed in Calu-3 cells as revealed by 

fluorescence microscopy analyses that identified ~ 1-µm diameter MUC5AC-

immunoreactive granules in 30-40% of Calu-3 cell cultures (71). Having verified that Calu-3 

cells express Ca2+-mobilizing PARs, we asked whether activation of these receptors resulted 

in enhanced mucin secretion. Incubation of the cells with thrombin, PAR1-AP, or PAR2-AP 

(5 min) resulted in marked (~70%) loss of MUC5AC intracellular immunoreactive granules 

(Fig. 4.3A and B), suggesting that PAR agonists elicited mucin granule secretion from these 

cells. To further verify the effect of PARs on mucin secretion, polarized monolayers of Calu-

3 cells were stimulated basolaterally with PAR agonists and the MUC5AC content in the 

extracellular solution assessed by immuno-slot blot analysis. Incubation of cells with 

thrombin, PAR1-AP, or PAR2-AP resulted in enhanced secretion of MUC5AC into the 

apical extracellular solution (Fig. 4.3C). Similarly to previous observations with ionomycin-

stimulated Calu-3 cells (71), negligible mucin secretion to the basolateral solution was 

observed in PAR-stimulated Calu-3 cells (not shown). Thus, PAR-elicited mucin secretion 

reflects an exocytotic process associated with the apical plasma membrane of Calu-3 cells.  

It has been well-established that receptor-mediated mucin secretion reflects a Ca2+-

dependent process (32). Incubation of Calu-3 cells with BAPTA AM to chelate intracellular 

Ca2+ impaired thrombin-induced mucin secretion, as assessed by the fluorescence 

microscopy observation of MUC5AC-immunostained cells (Fig. 4.4A) and immuno-slot blot 

analysis of Calu-3 cell apical secretions (Fig. 4.4B). Consistent with the notion that actin 
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cytoskeleton remodelling is required for mucin granule exocytosis (32, 71), thrombin-

promoted mucin secretion was inhibited by cytochalasin D (which disrupts the actin 

cytoskeleton), ML7 (a myosin light chain kinase inhibitor), and H1152, an inhibitor of Rho 

kinase, a known upstream effector of myosin light change kinase and actin cytoskeleton 

remodeling during exocytosis (32) (Fig. 4.4A and B). PAR1-AP- and PAR2-AP-stimulated 

cells also displayed reduced MUC5AC secretion when pre-incubated with the Rho kinase 

inhibitor H1152 (Fig. 4.4A and B). Moreover, changes in the organization of actin 

cytoskeleton were observed in PAR-stimulated Calu-3 cells labeled with fluorescent 

phalloidin as previously described in thrombin-stimulated non-epithelial cells (95) (not 

shown).  

PAR-promoted mucin secretion is associated with enhanced release of ATP.  

Incubation of Calu-3 cells with PAR agonists resulted in enhanced release of ATP into the 

mucosal (but not basolateral) compartment (Fig. 4.5). Maneuvers that affected mucin granule 

exocytosis in Calu-3 cells, such as chelating intracellular Ca2+ (BAPTA-AM), inhibiting Rho 

kinase (HH152) and myosin light chain kinase (ML7), or disruption of  the actin cytoskeleton 

(cytochalasin D), reduced, although did not abolish, ATP release in thrombin-stimulated 

Calu-3 cells (Fig. 4.5). Bafilomycin A1, an inhibitor of the vesicular H+ / ATPase that loads 

ATP into specialized granules in secretory cells (213), also partially inhibited (~ 30% 

inhibition) ATP release from thrombin-stimulated Calu-3 cells (Fig. 4.5).  Altogether, our 

results are consistent with the hypothesis that a vesicular / granular component, e.g., mucin 

granules, contributed at least in part to ATP release from PAR-stimulated Calu-3 cells. 

Isolated mucin granules contain adenine nucleotides. These results, together with our 

previous observation that Ca2+-regulated mucin granule secretion is accompanied by 
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enhanced ATP release (71), suggest that mucin granules are a source of exocytotic ATP 

release. To more definitively assess this possibility, we utilized a strategy that takes 

advantage of the fluorescent dye quinacrine that labels Calu-3 cell granules (71) to isolate 

mucin granules from these cells. A representative image of quinacrine-labelled Calu-3 cells 

displaying strong granular fluorescence is shown in Figure 4.6A. Stimulation of the cells 

with thrombin, PAR1-AP, or PAR2-AP resulted in loss of granules containing quinacrine 

fluorescence (Fig. 4.6B). 

Next, we subjected quinacrine-labelled Calu-3 cells to sub-cellular fractionation and 

fluorescently labelled granules were isolated using two consecutive continuous Percoll® 

gradients. Quinacrine-labelled granules (1-2 µm diameter) were concentrated within a 

fraction (Fig. 4.7A) that was also enriched in MUC5AC (Fig. 4.7B and C).  

VAMP-8 has been proposed as the R-SNARE in goblet cell granule exocytosis (32) based 

on its broad participation in exocrine secretion (214). Therefore, we investigated whether 

VAMP-8 is associated with airway epithelial mucin granule secretion and, hence, could serve 

as an additional marker for granule purification. RT-PCR analysis indicated that VAMP-8 

transcripts were present in native airway epithelial tissues and in Calu-3 and WD-HBE cell 

cultures (not shown). Importantly, VAMP-8 immunoreactivity co-localised with MUC5AC 

in the mucin granule fraction (i.e., fraction 4, Fig. 4.7C), and in granules of intact Calu-3 

cells (Fig. 4.7D, left panel). Addition of thrombin to Calu-3 cell cultures resulted in 

decreased VAMP-8 immunoreactivity, which re-distributed to a diffused intracellular pattern, 

concomitantly with the loss of MUC5AC granule staining (Fig. 4.7D, right panel). 

Collectively, these data suggest VAMP-8 should be a valid marker for mucin granule 

isolation. 
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The MUC5AC / VAMP-8-containing fraction exhibited negligible amounts of MUC1 

(plasma membrane marker), GM 130 and p230 (Golgi markers), protein disulfide isomerase 

(endoplasmic reticulum marker), LAMP-1 (lysosomal marker), or mitochondrial markers 

cytochrome oxidase subunit III / IV and ATP-synthase α-subunit (Fig. 4.7C). Thus, we 

conclude by these independent markers, MUC5AC and VAMP-8, that we had purified a 

mucin granule population. 

We next measured the adenyl nucleotide content of the various fractions. ATP was 

concentrated in the same fraction as MUC5AC and VAMP-8 (i.e., fraction 4, Fig. 4.8A).  

ATP levels within isolated mucin granules were 0.003 - 0.01 fmoles / cell or 500-900 pmoles 

/ mg protein, and represented < 2 % of the total cellular ATP content.  

In addition, ATP metabolites were abundant in the MUC5AC / VAMP-8- enriched 

fraction (Fig. 4.8A). Indeed, in isolated mucin granules, ADP and AMP were the prevalent 

species (approximately 60% and 30%, respectively), while ATP and adenosine comprised ~ 

10 % and ~ 2 % of total purines, respectively (Fig. 4.8B). This pattern of nucleotide 

distribution within mucin granules clearly contrasted with that observed in the whole cell 

lysate, where ATP represented the dominant (~ 70 %) adenyl species (Fig. 4.8B). These data 

suggest that an ATP hydrolyzing activity was present in the lumen of the mucin granule. 

Using [3H]ATP as radiotracer, an ATPase activity was revealed in mucin granules 

permeabilized with Triton X-100 (150 ± 16 nmol ATP / min / mg protein, n = 2).  

ADP and AMP accompanied ATP release from PAR-stimulated cells. The relatively 

high levels of ADP and AMP, relative to ATP, in mucin granules (Fig. 4.8B) suggest that 

these nucleotide species are co-released with ATP and mucins. To examine this possibility 

directly, the adenyl purine content of Calu-3 cell surface liquid was assessed by etheno-
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derivatization. A marked increase in ADP, AMP, and ATP accumulation was observed in 

mucosal samples from cells stimulated with thrombin (50 nM, 5 min), relative to control cells 

(Fig. 4.9). The net increase in ATP concentration (28 ± 3 nM) measured with this assay was 

~50% lower than that observed using the luciferase assay (57 ± 5 nM, Fig. 4.5). This 

difference is consistent with the fact that β,γ-met-ATP and ebselen, which efficiently block 

extracellular ATP hydrolysis on airway epithelia [as illustrated in Chapters II and III ], were 

included in the luciferase assay but not in the derivatization protocol, due to interference of 

the blockers in the detection of etheno-species. Importantly, the net increase in mass of ATP, 

ADP, and AMP combined following thrombin addition (95 ± 11 nM, Fig. 4.9) substantially 

exceeded the mass of ATP release detected in the presence of ATPase inhibitors (57 ± 5 nM, 

Fig. 4.5). The most likely interpretation of these data is that mucin granule release of ADP / 

AMP contributed, at least in part, to the accumulation of these species in Calu-3 cell surface 

liquid. 

4. Discussion 

Gel-forming mucins, the principal polymeric species of the airway mucus, are condensed 

inside specialized granules and released from cells via Ca2+-regulated exocytotic mechanisms 

(215-216). Mucin release requires synchronized secretion of ions / water for mucin 

dispersion into the ASL, but these transport activities are not expressed on goblet cells (215). 

Thus, the mechanisms by which electrolyte transport and mucin secretion activities are 

synchronized are poorly understood. Given that mucin secretion is accompanied by enhanced 

nucleotide release (71) and that ASL nucleotides and nucleosides regulate airway epithelial 

electrolyte transport activities (71, 206), we hypothesized that mucin granules themselves are 

the source of coordinately released nucleotides. We tested this hypothesis by (i) 
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characterizing the contribution of receptor-mediated mucin secretion to nucleotide release, 

and (ii) quantifying the nucleotide content within isolated mucin granules.  

Our results demonstrate that primary cultures of WD-HBE cells and immortalized Calu-3 

cells express functional PAR1 and PAR2, which upon activation, promote Ca2+-dependent 

mucin secretion and ATP release onto the apical surface. The observation that thrombin-

promoted ATP release was partially inhibited by maneuvers that deplete ATP from vesicular 

compartments (e.g., bafilomycin A1) suggests that thrombin-elicited ATP release was 

mediated, at least in part, by an exocytotic mechanism (Fig. 4.5). Moreover, ATP release was 

reduced under conditions that inhibited mucin exocytosis (i.e., intracellular calcium chelating 

with BAPTA AM, actin cytoskeleton disruption with cytochalasin D, and inhibition of Rho 

and myosin light chain kinases with H1152 and ML7, respectively; Fig. 4.5), also consistent 

with a mucin granule secretion contribution to ATP release.  

Previously, the presence of ATP in the mucin granules had been hypothesized based on 

the premise that mucin molecule packaging and granule integrity are energy dependent 

processes (217). Direct testing of this hypothesis has been challenging because the scant 

numbers of goblet cells within normal airway epithelia and granule fragility has hampered 

the isolation of intact mucin granules. Taking advantage of Calu-3 cell cultures that comprise 

up to 40% goblet-like mucin granule expressing cells (71), we were able to obtain a sub-

cellular fraction highly enriched with mucin granules. Employing a cell cavitation method 

and applying two successive continuous Percoll® gradients, mucin granules were isolated 

devoid of measurable amounts of other cellular components. Importantly, a population of 

isolated mucin granules were intact, since ATP was enriched in the mucin granule-containing 

fraction (Fig. 4.8A). Moreover, AMP and to a greater extent ADP were more abundant than 
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ATP in this fraction (Fig. 4.8B), strongly suggesting that a spectrum of adenyl nucleotides 

(rather than ATP alone) are released from mucin granules during mucin exocytosis.  

It could be argued that the relative high content of ADP / AMP observed in the mucin 

granule may be due to an artifact consequent to granule isolation, e.g., a phosphatase activity 

associated with the cytosol-facing side of the granule membrane could have rapidly 

hydrolyzed ATP upon disruption of the mucin granule. This possibility seems unlikely since, 

for nucleotide measurements, mucin granules were disrupted in the presence of 

trichloroacetic acid, which rapidly inactivates enzyme activities. Thus, the relative high 

content of ADP / AMP relative to ATP in the lumen of granules suggests the presence of 

metabolic activities, e.g., energy-dependent and / or phosphorylation reactions, inside the 

granule. Supporting this notion, an activity capable of hydrolyzing exogenous [3H]ATP with 

a rate of 150 ± 16 nmol ATP / min x mg protein was detected in isolated granules following 

granule permeabilisation with Triton X-100. Thus, ATP, ADP, and AMP likely co-exist 

within intact mucin granules. While mucin granule isolation was performed at 4°C, a 

condition that minimizes ATPase activities, the relative abundance of adenyl species within 

isolated mucin granules in living cells remains to be determined. Nevertheless, the net 

increase in mass of ADP / AMP in secretions from PAR-stimulated cells (Fig. 4.9) surpassed 

that predicted from the hydrolysis of ATP released alone (Fig. 4.5). Thus, the data strongly 

suggest that an intracellular pool contributed to ADP and AMP release. This conclusion is 

consistent with the predictions of a recently described mathematical model of nucleotide 

regulation in ASL. According to this model, AMP and ADP are predicted to be released from 

airway epithelia via an exocytotic mechanism (100). 
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Our results suggest that mucin granules release ADP / AMP in preference to ATP.  Such a 

pattern of nucleotide release from goblet cells offers a potential physiological advantage to 

the airway of selectively activating ion / water transport activities on neighboring ciliated 

cells, while minimizing autocrine feedback on mucin secretion from goblet cells (see a 

proposed model of ASL nucleotide regulation in Figure 4.10). Specifically, released ADP 

and AMP can be rapidly hydrolyzed to produce adenosine, which selectively promotes liquid 

secretion via an A2b receptor / CFTR-mediated mechanism on ciliated cells (7, 25). In 

contrast, adenosine receptors are not expressed in goblet cells, and this feature, plus the 

relatively low levels of ATP release, prevent autocrine stimulation of further mucin release 

from goblet cells. Such a mechanism maximises the capacity to hydrate mucins in normal 

airways, but allows fine control of mucin secretion.  

It is worth noting that non-exocytotic mechanisms likely also contribute to ATP release in 

airway epithelia. In Chapter III  we demonstrate that thrombin promotes robust release of 

ATP from WD-HBE cells, which are largely dominated by non-mucous cells, as well as from 

lung epithelial A549 cells, which are devoid of mucin granules. ATP release from these cells 

was partially inhibited by inhibitors of connexin/pannexin hemichannels, suggesting the 

involvement of conductive mechanisms. A prediction in this scenario is that conductive 

nucleotide release e.g., from non-mucous cells, would reflect cytosolic nucleotide 

concentrations, i.e., ATP would be the predominant released species. Our observation that 

significant amounts of AMP and ADP are stored within and released from mucin granules in 

thrombin-stimulated Calu-3 cells is predicted to reduce the contribution of the cytosolic pool 

to nucleotide release in goblet cell metaplasic airway epithelia.  
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An additional contribution of our study was the identification of VAMP-8 as the vesicle 

SNARE protein associated with MUC5AC granules in airway epithelial goblet cells (Fig. 

4.7). Although investigation on the contribution of VAMP-8 to mucin secretion is beyond the 

scope of the current study, the fact that VAMP-8 immunostaining re-distributed upon 

agonist-stimulated MUC5AC secretion (Fig. 4.7D) provides the first experimental evidence 

of a functional role for VAMP-8 in goblet cell granule exocytosis, as previously speculated 

(32). 

Thrombin was utilized as a tool to initiate agonist-mediated ATP release in our studies. 

However, thrombin has been reported to be present in the airways of patients with bronchial 

asthma and allergic rhinitis (218-219) and to stimulate mucin secretion through PAR1 

activation in airway epithelial cells(219). PAR2  is not activated by thrombin but is activated 

by trypsin, tryptase, catepsin G, and proteinase 3, and its expression is up regulated in 

respiratory epithelium subsequent to inflammation in asthma and COPD (218). Activation of 

PAR2 has been linked to mucin secretion in gastrointestinal epithelial cells (220-221) but, 

according to one study, PAR2 promotes only modest mucin secretory responses in airway 

epithelial cells (210). Our data, however, suggest that, like PAR1, PAR2 promotes robust 

mucin secretion (and ATP release) in two airway epithelial cell models. Because chronic 

airway inflammation is accompanied by goblet cell metaplasia (32), a thrombin and/or 

trypsin-like PAR-dependent mucin and ATP secretagogue activity may be a significant 

feature of chronic lung diseases. 

In summary, our results demonstrated that mucin granules are an important source of 

releasable ATP, ADP, and AMP, providing paracrine signaling to ciliated cells for mucin 

hydration. By releasing predominantly ADP and AMP, mucin granules have the capacity to 
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minimize autocrine stimulation of mucin release, while favoring adenosine formation, 

selectively activating ion / water secretion from ciliated cells. Lastly, the observation that 

both PAR1 and PAR2 agonists elicited robust mucin secretion from polarized monolayers of 

goblet-like Calu-3 cells suggests that similar processes may be a feature of chronic muco-

obstructive lung diseases.  
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Figure 4.1. PAR agonists stimulate mucin and ATP release from WD-HBE cells. A, RT-
PCR analysis indicating that PAR1, PAR2, and PAR3 (but not PAR4) transcripts were 
amplified in WD-HBE cells; RT, reverse transcriptase.  B, C, WD-HBE cultures were 
incubated basolaterally with vehicle, 50 nM thrombin, 100 µM PAR1-AP, or 100 µM PAR2-
AP for 5 min at 37° C. The apical bath was analyzed for mucin content by immuno-slot blot 
(B) and ATP content by the luciferin-luciferase assay (C). Experiments were performed in 
quadruplicate with cultures from three different donors. The results are expressed as the 
mean ± SEM (*, p < 0.01).  
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Figure 4.2. Calu-3 cells express PARs. A, RT-PCR analysis indicating that PAR1, PAR2, 
and PAR3 (but not PAR4) transcripts were expressed in Calu-3 cells.  B, C, Intracellular 
calcium mobilization was assessed in Calu-3 cells loaded with Fura-2. Cells were challenged 
with 50 nM thrombin, 100 µM PAR1-AP, or 100 µM PAR2-AP added independently (B) or 
consecutively (C). The tracings are representative of three independent experiments 
performed in duplicate. 
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Figure 4.3. PAR agonists stimulate mucin release from Calu-3 cells. Calu-3 cells were 
challenged with vehicle, 50 nM thrombin, 100 µM PAR1-AP, or 100 µM PAR2-AP for 5 
min at 37°C. A, Mucin granule content was determined by immunostaining with a MUC5AC 
antibody followed by confocal microscopy analysis (bar = 100 µm). B, Quantification of 
MUC5AC immunostaining in Calu-3 cultures. C, Mucin release in the lumenal bath was 
assessed by slot blot as in Figure 4.1. The results of a representative experiment are 
illustrated, and the data are expressed in arbitrary units and are the mean ± SEM (n = 4; *, P< 
0.01). Similar results were obtained in three independent experiments. 
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Figure 4.4. PAR-stimulated mucin release is Ca2+ and cytoskeleton dependent. Calu-3 
cells were pre-incubated for 30 min at 37 °C with either vehicle, 10 µM BAPTA AM, 5 µM 
cytochalasin D, 100 nM H1152, 10 µM Y27632, or 1 µM ML7.  Cells were challenged with 
vehicle, 50 nM thrombin, 100 µM PAR1-AP, or 100 µM PAR2-AP for 5 min at 37°C. A, 
Mucin granule content was quantified by immunostaining as in Figure 4.3. B, Mucin release 
in the apical bath was assessed by slot blot as in Figure 4.1. Experiments were performed 
three times, each condition in quadruplicate. The results of a representative experiment are 
illustrated and data are expressed as percentage of control (mean ± SEM; *, p< 0.01 vs. 
control).   
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Figure 4.5. PAR-stimulated ATP release involves a vesicular, Ca2+-, and cytoskeleton- 
dependent mechanism. Calu-3 cells were pre-incubated with inhibitors as in Figure 4.4, or 
with 4 µM Bafilomycin A1 for 30 min at 37 °C. Mucosal ATP release following the addition 
of the indicated PAR agonists (5 min at 37°C) was assessed using the luciferin-luciferase 
assay in the presence of blockers of ecto-nucleotidases. Experiments were performed in 
quadruplicate with three independent cultures. The results of a representative experiment are 
illustrated, and the data are expressed as the difference between PAR agonist and basal 
values (basal ATP values, 15 ± 5 nM), (mean ± SEM; *, p < 0.01 compared to thrombin 
stimulation; #, p < 0.01 compared to PAR1-AP and PAR2-AP stimulation).   
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Figure 4.6. PAR agonists stimulate secretion of quinacrine-labelled granules. Calu-3 cell 
mucin granules were loaded with quinacrine (10 µM, 20 min at 37°C). Cells were mounted in 
a confocal microscope and real-time images of the DIC /  Nomarski illumination (grey) and 
fluorescence (green) channels acquired every 30 s (see Methods). Cells were challenged with 
vehicle (control), 50 nM thrombin, 100 µM PAR1-AP, or 100 µM PAR2-AP. A, Overlay of 
the DIC and fluorescence confocal images of quinacrine-labelled Calu-3 cells in control 
conditions; bar = 10 um. B, Representation of the change in fluorescence intensity associated 
with 1 µm-granules after 5 min incubation with vehicle or PAR agonists (n = 3; mean ± 
SEM; *, p < 0.01). 
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Figure 4.7. Isolation of mucin granules from Calu-3 cells. Mucin granules were isolated 
from Calu-3 cells using two consecutive Percoll® gradients as described in Methods; the 
results of a representative isolation experiment are illustrated. A, Confocal microscopy image 
(DIC / fluorescence channel overlay) of an isolated mucin granule from Calu-3 cultures 
labelled with quinacrine. B, Image of the immuno-slot blot for MUC5AC representing the 
first eight fractions of the second gradient. C, The profile of organelle distribution in the 
second gradient fractions was assessed by immuno-slot blot using specific antibodies that 
recognize the indicated cellular markers. The quantification of the densitometry data for each 
organelle marker is expressed as % of the total lysate content. D, Localization of VAMP-8 
and MUC5AC was assessed by immunostaining under resting (control; left panels) or 
thrombin-stimulated (50 nM, 5 min at 37° C; right panels) conditions in Calu-3 cells; bar = 
10 µm.  
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Figure 4.8. Isolated mucin granules contain ATP and other nucleotides. A, 
Quantification of the amounts of ATP and total adenyl purine in each of the fractions 
collected in the second gradient was performed by etheno-derivatization and HPLC analysis. 
Data are expressed as the concentration of ATP (left axis) and total adenine-containing 
species (right axis); note that left and right axes represent different concentration ranges. B, 
Quantification of the content of adenyl purine species (ATP, ADP, AMP, and adenosine) in 
the total cell lysate and isolated mucin granule fraction (i.e. fraction 4) was performed by 
etheno-derivatization and HPLC analysis. Data are the average of four independent granule 
isolations and represent the percentage distribution of each species with respect to the total 
adenyl purine content in the fraction (mean ± SEM). Note: the total adenyl purine mass in the 
mucin granule fraction represented < 5 % of the cell lysate content.   
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Figure 4.9. Nucleotide composition of Calu-3 cell secretions. Calu-3 cells were stimulated 
with thrombin (50 nM, 5 min at 37°C) and the apical bath was collected and analyzed for 
adenyl purines as above. The results of a representative experiment are illustrated, and data 
are expressed as the mean ± SEM; * , p< 0.01 compared to non-stimulated (basal) levels. 
Similar results were obtained in two independent experiments performed in quadruplicate. 
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Figure 4.10. Model of adenyl nucleotide regulation in ASL. The schematics represent a 
ciliated and goblet cell of the airway surface epithelium. Mucin exocytosis from goblet cells 
is accompanied by release of adenyl nucleotides present in mucin granules as co-cargo 
molecules. ADP is the prevalent species followed by AMP and ATP. In ASL, ADP and AMP 
(and ATP) are rapidly metabolised by ecto-nucleotidases into adenosine. Adenyl purines 
have autocrine and paracrine regulatory activities on epithelial cells. For example, adenosine 
stimulates the A2b receptor on ciliated cells. CFTR, which is expressed in ciliated cells, is 
activated by A2b receptor-promoted cAMP formation. Thus, chloride secretion is increased 
and sodium absorption is reduced (by CFTR-mediated inhibition of ENaC), which generates 
the driving gradient for water secretion necessary to disperse newly secreted mucins into the 
ASL. ATP released from mucin granules stimulates P2Y2 receptors on goblet cells for further 
mucin secretion, and on ciliated cells resulting in activation of TMEM16A or CaCC, 
activation of CFTR, and inhibition of ENaC. 
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Rho-dependent pannexin 1-mediated ATP release from airway epithelia 
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1. Introduction 

The MCC process that removes foreign particles and pathogens from the airways is the 

primary innate defense mechanism in the lung (222). Nucleotides and nucleosides within the 

ASL regulate key components of MCC via activation of epithelial cell surface purinergic 

receptors (206, 223). ATP activates the Gq-coupled P2Y2-R that promotes mucin secretion 

and ciliary beat frequency, and regulates electrolyte transport and ASL volume production by 

inhibiting sodium absorption (21, 32, 45, 56-57, 61, 162) and promoting CaCC activity (18, 

29, 35, 48-49, 163). Adenosine, generated from the hydrolysis of ATP, activates the Gs-

coupled A2b-R that promotes cyclic AMP-regulated CFTR Cl- channel activity (164) and 

increases CBF (21). While ATP and adenosine are naturally occurring signaling molecules in 

ASL (7, 11, 25-27), the mechanisms of airway epithelial ATP release are poorly understood. 

The lung epithelia exhibit a complex cellular composition, and thus, several mechanisms 

and pathways likely are involved in the release of nucleotides into the airways. Studies with 

goblet-like cell models indicate that ATP and other nucleotides are released concomitantly 

with MUC5AC, a secretory mucin, during Ca2+-regulated exocytosis of mucin granules (71). 

Thus, mucin secreting granules may constitute an important source of ASL ATP, providing a 

pathway for paracrine signaling to ciliated cells, i.e., for mucus hydration and clearance. A 

vesicular mechanism of nucleotide release may also operate in non-mucous cells. For 

example, by selectively manipulating the levels of expression of Golgi-resident nucleotide-

sugar transporters in 16HBE14o- cells, a cell line that mimics aspects of ciliated epithelia, 

Sesma et al. demonstrated that the Golgi lumen is an important source of extracellular UDP-

sugar constitutively released from cells (94).  Although not formally demonstrated, a similar 

mechanism may apply for the constitutive release of ATP.  
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Mechanical forces during tidal breathing and coughing and cell swelling during hypotonic 

gland secretions are ubiquitous stimuli imparting robust ATP release from the airways, but 

the mechanism involved in mechanically-promoted airway epithelial ATP release are not 

well-defined (7, 26, 87, 105, 224). Recently, Ransford et al. reported that ATP release from 

hypotonically-swollen WD-HBE cell cultures was nearly 60% inhibited by non-selective 

hemichannel blockers or by knocking down pannexin 1, via shRNA (207). Thus, pannexin 1 

is a candidate ATP release pathway in hypotonically swollen WD-HBE cells. However, 

regulatory signaling elements transducing hypotonic/mechanical stress into ATP release have 

not been identified.  

In Chapter III , we described that activation of G protein-coupled PAR resulted in 

enhanced release of ATP from WD-HBE cells, which was attenuated by non-selective 

inhibitors of connexins/pannexin hemichannels. PAR-elicited ATP release reflected a Rho-

dependent mechanism, suggesting a link between Rho activation and hemichannel opening. 

In the present study we tested the hypothesis that ATP release from mechanically stimulated 

airway epithelial cells involves a Rho-regulated opening of pannexin 1-hemichannels. 

2. Methods 

Reagents-  2-Phenyl-1,2-benzisoselenazol-3(2H)-one (ebselen), β,γ-methylene ATP (β,γ-

metATP), carbenoxolone, flufenamic acid, and luciferase from Photinus pyralis were 

obtained from Sigma (St. Louis, MO. Luciferin was obtained from BD PharMingen (Franklin 

Lakes, NJ). The Rho Activation Assay Biochem Kit was purchased from Cytoskeleton 

(Denver, CO). ML-7 and H1152 were purchased from Calbiochem. HC67047 was a kind gift 

from Dr. David Clapham (Hydra Biosciences). The pannexin 1 blocking peptide 

WRQAAFVDSY (10Panx1) (196), and its scrambled version, (ScrPanx1) SADYRVAFWQ, 
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generated using the online software at Genscript 

(http://www.genscript.com/scrambled_library.html) were synthesized at the UNC 

Microprotein Sequencing and Peptide Synthesis Facility. Other chemicals were from sources 

previously reported (25, 71). 

Cell culture and incubations- Primary cultures of WD-HBE cells were provided by the 

Cystic Fibrosis/Pulmonary Research and Treatment Center Tissue Procurement and Cell 

Culture Core at UNC. WD-HBE cells were grown on 12-mm Transwell supports (Costar) 

and maintained at air–liquid interface, as previously described (25, 225). A549 lung 

epithelial cells were grown to confluence on plastic dishes as described in Chapter III . Cells 

were rinsed twice with HBSS supplemented with 1.6 mM CaCl2, 1.8 mM MgCl2, and 25 mM 

HEPES pH 7.4 (HBSS+) and pre-incubated as indicated below in the corresponding assay 

sections. Hypotonic challenge was applied by gently replacing one third of the volume of the 

extracellular solution with a HEPES-buffered (pH 7.4) solution containing 1.8 mM MgCl2 

and 1.6 mM CaCl2, thus reducing the solution tonicity to 200 mOsm, as previously described 

(26). A saline-based (isotonic) solution containing the above additions was used for volume 

replacement in control cultures.  

For experiments involving phasic motion-promoted shear stress, WD-HBE cultures were 

placed on the platform of an in-house designed device, which was subjected to rotational 

go/stop cycles (28 cycles/min) inside a humidified incubator (7). The change in velocity 

caused by this phasic motion was similar to changes seen during in vivo inspiration during 

normal tidal breathing, as previously described (7).  

Measurement of ATP release- ATP concentrations in WD-HBE and A549 cells were 

quantified off-line via a LB953 AutoLumat luminometer (Berthold), as described in Chapter 
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III.  Calibration curves using known concentrations of ATP were generated at the end of each 

experiment. None of the reagents used during ATP release measurements interfered with the 

luciferase reaction.  

RT-PCR analysis- Total RNA was prepared using the RNeasy Mini Kit (Qiagen, Inc., 

Valencia, CA) and reverse-transcribed using SuperScript III reverse transcriptase (RT; 

Invitrogen Corporation, Carlsbad, CA). RT-PCR was performed using the following cycling 

conditions: 4 min/94°C, 1 min/72°C, 45 s/94°C, 1 min/55°C, and 1 min/72°C; 36 cycles. 

Amplified products were sequenced at the UNC Genome Analysis Facility. Primer 

compositions are indicated in Table 5.1.  

Semi-quantitative RT-PCR was performed in a Lightcycler PCR machine® thermal cycler 

(10 min/95ºC; 5 s/55ºC, 8 s/72ºC; 45 cycles), as described in Chapter III . GAPDH served as 

a housekeeping gene for normalization between samples, and was included in each cycling 

run. The melting temperature of the PCR product for each reaction was monitored to ensure 

that only a single product of the correct size was amplified. Primers for GAPDH were: 

forward, 5’-GAAGTTGAAGGTCGGAGTCA-3’, and reverse, 5’-

GATCTCGCTCCTGGAAGATG-3’. Other primer pairs are indicated in Table 5.1.  

Uptake of propidium iodide- WD-HBE cells were rinsed and challenged for 5 min in the 

presence of 20 µM propidium iodide (added apically). At the end of the incubation, the 

bathing solution was replaced with HBSS+ containing 4% paraformaldehyde.  Acquisition of 

confocal images and quantification of nuclei staining were performed as described in Chapter 

III. 

siRNA- Oligonucleotides targeting human pannexin 1 (5’-

GCATCAAATCAGGGATCCT-3’) and its scrambled control (5’-
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GCTTGACCCACGGTATAA-3’), were purchased from Dharmacon Inc. A549 cells were 

transfected with 1 µg oligonucleotide using the Amaxa Nucleofector Device™ and Cell Line 

Nucleofector® Kit T (Amaxa Biosystems, Gaithersburg, MD), following the manufacturer 

instructions. Assays were performed 48 h after transfections.  

Overexpression of dominant negative mutants of RhoGEF and RhoA- pcDNA3.1 

vectors encoding p115RGS and RhoA(T19N) were kindly provided by Dr. T. K. Harden 

(176-177). A549 cells were transfected with empty vector or vector containing the desired 

insert using the Amaxa Nucleofector Device™.  

RhoA pulldown assay- Measurements of GTP-bound RhoA were performed using the 

Rho Activation Assay Biochem Kit, following to the manufacturer instructions, as described 

in Chapter III .  

MLC phosphorylation- Proteins were resolved by SDS-PAGE and duplicated 

membranes were separately blotted with anti-phospho-MLC(Ser19) antibody (1:500) or anti-

MLC (1:1000) antibodies (Cell Signaling Technology Inc. Danvers, MA) followed by goat 

anti-rabbit Alexa Fluor®680 secondary antibody (Invitrogen, Eugene, Oregon). Immunoblots 

were revealed and quantified as described in Chapter III . 

Cell volume regulation- Changes in cell height were measured to estimate cell volume 

changes, as described previously (26). In brief, WD-HBE cells were loaded with 5 µM 

calcein-AM (Molecular Probes, Eugene, Oregon) for 30 min at 37 °C. The apical surface of 

cultures was equilibrated for 10 min with 33 µl HBSS+ and the osmolarity of the solution 

was reduced to 200 mOsm, as indicate above.  Xz-scanning images were obtained every 

second for initial 15 s, then every 5 s for next 75 s. 
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Data Analysis- Differences between means were determined by unpaired Student’s t-test 

and were considered significant when p < 0.05.  

3. Results 

Hypotonic stress promotes pannexin 1-mediated dye uptake and ATP release. 

Connexins and pannexins form non-junctional hemichannels and they have been proposed to 

release ATP in receptor- and hypotonic shock-stimulated airway epithelial cells [(207) and 

Chapter III ]. However, whether connexin/pannexin hemichannels form functional pores at 

the WD-HBE cell surface and, if so, how are they regulated, is not well-understood.  

As an initial test for the expression of functional hemichannels on WD-HBE cells, the 

uptake of the hemichannel-permeable reporter dye propidium iodide was investigated. 

Propidium iodide displays low intrinsic fluorescence, but its fluorescence increases 20- to 30- 

fold upon binding to nucleic acids. Under resting conditions, a small number of HBE cells 

displayed nuclear labeling with propidium iodide, but nuclear fluorescence increased sharply 

upon exposure of the cells to hypotonic challenge (Fig. 5.1A and B). The time-course of 

propidium iodide uptake following the hypotonic challenge was nearly identical to that of 

ATP release (Fig. 5.1B). Both propidium iodide uptake (Fig. 5.1C) and ATP release (Fig. 

5.1D) were markedly impaired in the presence of 10 µM carbenoxolone, a licorice root 

derivative that preferentially albeit not selectively inhibits pannexin hemichannels over 

connexin hemichannels and volume regulated anion channels (226-228). Control experiments 

indicated that carbenoxolone did not affect hypotonicity-induced cell swelling (Fig. 5.4A). 

Consistent with the notion that released ATP promotes regulatory volume decrease (RVD) in 

hyponically-swollen WD-HBE cells (26), carbenoxolone delayed RVD (Fig. 5.4B). 

Flufenamic acid, a potent inhibitor of connexin hemichannels (229) that displays low affinity 
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towards pannexin 1 (226) had no significant effect on ATP release and propidium iodide 

uptake in WD-HBE cells ( Fig 5.1C and D). The potential involvement of pannexin 1 in 

ATP release and dye uptake was further tested by assessing the effect of the pannexin 1-

selective blocking peptide 10Panx1.  10Panx1 (30 µM), but not its scrambled control, 

completely blocked the uptake of propidium iodide in hypotonically-challenged WD-HBE 

cells (Fig. 5.1C). ATP release was in parallel inhibited by 10Panx1 (Fig. 5.1D).  These results 

strongly suggest that pannexin 1 is an important mediator of ATP release from WD-HBE 

cells. It is worth noting, however, that inhibition of ATP release by 10Panx1 (50-60%) was 

less robust than the nearly 100% inhibition observed on dye uptake (compare Figs. 5.1C and 

5.1D), suggesting that mechanisms additional to hemichannel opening contribute to ATP 

release in these cells.  

RT-PCR analysis confirmed the expression of pannexin 1 in WD-HBE cells (Fig. 5.2A). 

Sequencing analysis of the product of the PCR reaction indicated the insertion of GGT ATG 

AAC ATA 66 bp upstream of the termination codon of pannexin 1, suggesting that the 426 

amino acid-long pannexin 1b [Gene Bank NP_056183.2 (230)] is the major pannexin 1 sub-

variant expressed in WD-HBE cells. Brain-specific pannexin 2 (230) and pannexin 3 could 

not be amplified in these cultures (Fig. 5.2A).  

Experiments illustrated also in Figure 5.2 indicated the presence of pannexin 1 transcripts 

in lung carcinoma A549 cells (Fig. 5.2B). Like WD-HBE cells, A549 cells displayed 

enhanced propidium iodide uptake (Fig. 5.2C) and ATP release (Fig. 5.2D) in response to 

hypotonic challenge, which were inhibited by carbenoxolone and 10Panx1. Also similar to 

WD-HBE cells, 10Panx1 nearly completely blocked dye uptake while robustly, but not 

completely, impaired ATP release.  
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Unlike WD-HBE cells, A549 cells can be efficiently transfected with cDNA expression 

vectors and siRNA oligonucleotides [as described in Chapter III ]. Thus, we took advantage 

of these cells to further assess, via siRNA, the involvement of pannexin 1 in ATP release and 

dye uptake. A549 cells transfected with pannexin 1 siRNA olygonucleotides (but not its 

scrambled version) exhibited a ~50% reduction of pannexin 1 transcript levels (Fig. 5.3A). 

The siRNA approach was selective for pannexin 1 since it did not affect the expression of 

connexin 43 transcripts (Fig. 5.3A). Pannexin 1 siRNA-transfected cells exhibited ~50% 

reduced hypotonic challenge-promoted ATP release (Fig. 5.3B) and propidium iodide uptake 

(Fig. 5.3C).  

Collectively, the data in Figures 5.1-5.3 strongly suggest that pannexin 1 mediates the 

uptake of propidium iodide and contributes to the release of ATP in hypotonic stress-

stimulated airway epithelial cells.   

Rho GTPases regulate ATP release from hypotonically stimulated airway epithelial 

cells.  Based on our studies in Chapter III  suggesting that Rho GTPases are important 

regulators of ATP release in cells stimulated with the serine protease thrombin, we examined 

the possibility that Rho signaling is involved in ATP release from hypotonic-stress stimulated 

WD-HBE cells. Therefore, the effects of inhibitors of ROCK and ROCK downstream 

effectors were investigated in WD-HBE cell cultures subjected to hypotonicity-induced cell 

swelling (26). Hypotonic challenge-promoted ATP release was reduced in the presence the 

ROCK inhibitor H1152 (Fig. 5.5). The regulatory domain of MLC is a major downstream 

effector of ROCK. By phosphorylating and inactivating MLC phosphatase, ROCK facilitates 

MLC phosphorylation by MLCK (187). Consistent with the possibility that MLC 

phosphorylation was involved in ATP release from hypotonicity-stimulated WD-HBE cells, 
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the MLCK inhibitor ML-7 markedly reduced ATP release from these cells (Fig. 5.5A). ML-7 

and H1152 had no effect on hypotonic stress-elicited cell swelling (Fig. 5.3C). These results 

suggest that hypotonic stress promoted Rho/ROCK activation and enhanced MLC 

phosphorylation upstream of ATP release.  

To directly verify that hypotonic stress induces Rho activation and MLC phosphorylation 

in WD-HBE cells, RhoA-GTP and MLC phosphorylation were measured by the pulldown 

assay and phospho-MLC (Ser19) immunoblot, respectively. As illustrated in Figure 5.5B 

and C, hypotonic stress enhanced RhoA activation and MLC phosphorylation, respectively, 

relative to control cells. Consistent with the notion that ROCK and MLCK act on MLC 

(187), H1152 and ML-7 reduced MLC phosphorylation in hypotonicity challenged WD-HBE 

cells (Fig. 5.5C).  

While the above-described experiments indicated that RhoA was activated in response to 

hypotonic challenge, evidence that Rho activation is involved in ATP release relies on 

pharmacological inhibitors with less than ideal selectivity. To more conclusively assess the 

involvement of Rho in ATP release, the effect of a dominant negative mutant of RhoA, 

RhoA(T19N), which tightly binds to Rho-GEF but does not promote downstream effector 

activation, was examined. A549 lung epithelial cells transiently transfected with 

RhoA(T19N) cDNA.  Transfected cells displayed reduced hypotonic shock-evoked ATP 

release, relative to empty vector-trasnfected cells (Fig. 5.6A). Unlike RhoA(T19N), cell 

transfection with p115-RGS, which inhibits the coupling between Gα12/13 and p115-RhoGEF 

in response to GPCR activation [see Chapter III]  had no effect on hypotonic shock-

promoted ATP release (Fig. 5.6A). As expected, RhoA activation and MLC phosphorylation 

were impaired in cells transfected with RhoA(T19N) (Figs. 5.6B).  
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Rho signaling regulates dye uptake in airway epithelial cells. Having determined that 

ATP release from hypotonic stress-stimulated cells (i) reflects a Rho-dependent process 

(Figs. 5.5 and 5.6) and (ii) is associated with pannexin 1 activation (Figs. 5.1 - 5.3), the 

potential link between Rho signaling and hemichannel opening was examined. Both the Rho 

kinase inhibitor H1152 and the MLCK inhibitor ML-7 caused a nearly complete inhibition of 

hypotonic challenge-promoted propidium iodide uptake in WD-HBE cells (Fig. 5.7A and B). 

Moreover, transfection of A549 cells with RhoA(T19N) markedly reduced the uptake of 

propidium iodide in these cells (Fig. 5.7C).  

Shear stress promotes airway epithelial ATP release in a Rho kinase-, MLCK-, and 

pannexin 1-dependent manner.  Hypotonic shock was utilized above as a tool to initiate 

cell swelling-mediated ATP release. In addition to cell swelling triggered in vivo by 

hypotonic gland secretions (103), the airways are continuously exposed to shear stress during 

tidal breathing and coughing, which impart ATP release-dependent MCC activities (7). 

However, how shear stress elicits ATP release is not known. A hypothesis derived from our 

studies in Chapter III  and current observations (Figs. 5.1-5.7) is that Rho GTPases and 

pannexin hemichannels are upstream regulators and effectors, respectively, of ATP release. 

Therefore, we examined the effects of pannexin 1 blockers and Rho kinase/MLCK inhibitors 

in the release of ATP from shear stress-stimulated WD-HBE cell cultures.  Using a specially-

designed device, WD-HBE cell cultures were subjected to acceleration/deceleration cycles to 

deliver phasic shear stress over the apical cell membrane with profiles similar to airflow-

induced shear stress (7). Consistent with an involvement of Rho signaling, shear stress-

induced ATP release was partially inhibited by H1152 and ML-7 (Fig. 5.8). Moreover, shear 
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stress-elicited ATP release was also reduced in the presence of carbenoxolone or the 

pannexin 1 blocking peptide 10Panx1 (but not its scrambled control peptide) (Fig. 5.8).  

TRPV4 as a potential effector upstream of ATP release. The transient receptor 

potential vanilloid (TRPV) 4 channel is a broadly expressed cation channel that acts as a 

sensor of various physical stimuli such as heat, osmotic stress, shear stress, and stretch (231-

233). Particularly relevant to our study, it has been recently reported that TRPV4 mediated 

ATP release in response to osmotic stress in the thick ascending limb of the renal medulla 

(234) and in stretch-stimulated urothelia (235). Since TRPV4 is abundantly expressed in the 

airways, we hypothesized that TRPV4 transduces mechanical stimuli into Rho/pannexin 1-

mediated ATP release in airway epithelia. An initial assessment of this hypothesis indicated 

that ruthenium red (10 µM), a non-selective inhibitor of TRP channels, markedly inhibited 

hypotonic stress-promoted ATP release in WD-HBE cells (data not shown). Consequently, 

the effect of the highly selective TRPV4 inhibitor HC67047 was examined. As depicted in 

Figure 5.9, pre-incubation of the cells for 30 min in the presence of 10 µM HC67047 

markedly impaired ATP release (Fig. 5.9A) and dye uptake (Fig. 5.9B and C) in 

hypotonicity-challenged WD-HBE cells. Control experiments indicated that HC67047 did 

not affect hypotonic-stress-elicited cell swelling (Fig. 5.4C), indicating that the target of the 

TRPV4 inhibitor was located downstream to the cell volume change and plasma membrane 

stretching triggered by the osmotic challenge. Lastly, HC67047 completely impaired 

hypotonic stress-promoted RhoA-GTP formation, but had no effect on the Rho response to 

thrombin activation of PARs (Fig. 5.9D). 
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4. Discussion 

A key physiological component of lung function involves the complex and not well-

defined mechanism that controls MCC activities. Nucleotides (e.g., ATP) and nucleosides 

(i.e., adenosine) are present in physiologically relevant concentrations in ASL both in vivo 

and in vitro. Compelling evidence suggests that these molecules acting on epithelial cell 

surface purinergic receptors are major regulators of electrolyte transport, cilia beating, and 

mucin secretion (206). However, the mechanisms that control the release of nucleotides into 

ASL are incompletely understood.  

We now demonstrate that WD-HBE cells display hypotonic stress-promoted uptake of the 

hemichannel probe propidium iodide with kinetics overlapping that of ATP release. We 

further show that the non-selective hemichannel inhibitor carbenoxolone, the pannexin 1-

selective blocking peptide 10Panx1, and pannexin 1 siRNA markedly decreased dye uptake, 

in addition to reducing ATP release. Thus, pannexin 1 is functionally expressed at the airway 

epithelial plasma membrane, i.e. as an ATP (and dye) permeable channel. However, the 

major finding of the current study is that the pannexin 1-associated activities are controlled 

by Rho GTPases and their downstream effectors.  Specifically, we demonstrated that 

hypotonic stress elicited MLC phosphorylation in a Rho kinase-dependent manner and that 

inhibition of MCL phosphorylation (with the Rho kinase inhibitor H1152 or the MLC kinase 

inhibitor ML-7) decreased ATP release and impaired dye uptake (Fig.5.5A and 5.7A). 

Furthermore, our results show that hypotonic stress promotes RhoA activation in airway 

epithelial cells (Fig 5.5) and that selective inhibition of RhoA activation (using a RhoA 

dominant negative mutant) resulted in impaired MLC phosphorylation, dye uptake, and ATP 

release (Fig. 5.6 and 5.7). Taken together, these results strongly suggest that RhoA/Rho 
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kinase activation (and subsequent MLC phosphorylation) is an early step upstream of 

pannexin 1-mediated ATP release in hypotonic stress-stimulated epithelia. We have not 

addressed the mechanism by which Rho contributed to pannexin 1-mediated ATP release. 

However, given the actions exerted by Rho/Rho kinase on cytoskeleton components [e.g., 

regulating MLC phosphorylation and actin polymerization (189)], one speculation is that 

Rho-promoted membrane-cytoskeletal rearrangements facilitates pannexin 1 interaction with 

regulators.  

Our study provides new clues as to the potential mechanism by which hypotonic challenge 

resulted in Rho activation. We demonstrated that TRP channel inhibitors markedly reduce 

ATP release from WD-HBE cells. We also demonstrated that the highly selective TRPV4 

inhibitor HC67047 not only reduced hypotonic stress-triggered ATP release but impaired dye 

uptake and Rho activation (Fig. 5.9). The most compelling interpretation of these results is 

that TRPV4, which is a mechano- and osmo-sensor Ca2+ (and Mg2+) channel abundantly 

expressed in the airways, transduces hypotonic cell swelling (and likely shear stress) into 

Rho activation. Although we have not investigated the signaling that links TRPV4 with Rho, 

Ca2+-elicted RhoGEF activation likely is involved. This hypothesis is in part based on a 

recent study illustrating that TRPC6 (a distant relative of TRPV4) contributes to RhoA 

activation in endothelial cells via Ca2+-dependent protein kinase C activation and subsequent 

phosphorylation and inhibition of GDP dissociation inhibitor-1 (GDI-1) and phosphorylation 

and activation of p115RhoGEF (236). In this regard, however, our data suggest that the 

Gα12/13/p115-RhoGEF pathway, a major mechanism for Rho activation in PAR-stimulated 

cells [discussed in Chapter III ], is not involved in hypotonic stress-elicited Rho activation. 

Specifically, thrombin-promoted RhoA activation was not affected by the TRPV4 inhibitor 
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(Fig. 5.9B), and transfection of cells with p115-RGS, a dominant negative mutant of 

p115RhoGEF, resulted in inhibition of thrombin-promoted ATP release without affecting 

hypotonic stress-evoked ATP release (Fig. 5.6A). Whether hypotonic stress/TRPV4/Ca2+ 

activates p115-RhoGEF (or other RhoGEF) independently of Gα12/13, remains to be 

elucidated.  

The airways are continuously exposed to mechanical forces, e.g. shear stress imparted by 

airflow during tidal breathing and coughing, which promote MCC functions via ATP release 

(7, 105). Our data demonstrate mechanical shear stress-promoted ATP release that was 

diminished by inhibitors of Rho kinase, MLC kinase, and pannexin 1. Although the 

mechanism of shear stress-promoted ATP release remains less extensively investigated than 

hypotonic stress- or receptor-promoted nucleotide release, our results suggest that common 

signaling pathways and effectors operate in response to these physiologically relevant 

stimuli.  

It is worth nothing, however, that pathways in addition to pannexin 1 likely contribute to 

ATP release in WD-HBE cells. Indeed, our results in Figures 5.1, 5.5, and 5.7 indicate that 

residual ATP release activity is evident under conditions in which dye uptake has been 

completely or nearly completely abrogated by 10Panx1 or H1152. While these results suggest 

that connexins do not contribute to the residual ATP release, volume-regulated channels, 

maxi-anion channels (121), and vesicle exocytosis (94, 170) are potential mechanisms for 

pannexin1-independent nucleotide release.   

In sum, we have shown that pannexin1 is an important contributor to ATP release in 

hypotonic stress- and shear stress-stimulated airway epithelia. Our data also indicate that 

hypotonic stress induces Rho activation upstream of pannexin hemichannel opening, and that 
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TRPV4 channels likely transduce hypo-osmotic stress into RhoA-promoted pannexin 1-

mediated ATP release.  
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Table 5.1. Primers used for standard PCR amplification of pannexins (Panx) and 
connexin 43 (Conx 43). Sequences are indicated in the 5’�3’ order.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Panx 1 forward GAGGTATCTGAAAGCCACTTCAAGTACCC 

Panx 1 reverse  TATGGTACCGCGCAAGAAGAATCCAGAAGTC 

Panx 2, forward ACCAAGAACTTCGCAGAGGA 

Panx 2 reverse CCACGTTGTCGTACATGAGG 

Panx 3 forward AGCTCCGATCTGCTGTTCAT 

Panx 3 reverse AGGGTTCTAAGCCAGCCAAT 

Conx 43 forward GGGTTAAGGGAAAGAGCGACC 

Conx 43 reverse CCCCATTCGATTTTGTTCTGC 
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Figure 5.1. Hypotonicity-induced dye uptake and ATP release in WD-HBE cells. A, 
uptake of propidium iodide was assessed on real-time in response to a 33% hypotonic stress, 
as described in Methods. The images represent propidium iodide-associated nuclear 
fluorescence; bar, 100 µm. B, time-course of hypotonic stress-promoted ATP release and 
propidium iodide uptake. Results are expressed as the percent of nuclei displaying 
fluorescence. Similar results were obtained in at least three separate experiments performed 
in quadruplicate. C and D, WD-HBE cells were pre-incubated for 15 min with vehicle or 
with 10 µM carbenoxolone (CBX), 100 µM flufenamic acid (FFA), 100 µM 10Panx1 or its 
scrambled control (srcPanx1), and challenged for 5 min with isotonic solution (Iso), or 
hypotonic solution (Hypo) containing the indicated drugs. The results are the mean ± SEM, n 
= 4.  Dye uptake (C) and ATP release (D) were assessed as above. (*) indicates significant 
inhibition of hypotonic responses, p < 0.01. 
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Figure 5.2. Hypotonicity-induced dye uptake and ATP release in A549 cells. A, pannexin 
1, 2 and 3 mRNA expression in WD-HBE cells was determined by RT-PCR analysis, using 
primers listed in Table 5.1. Results are representative of six independent WD-HBE cell RNA 
preparations. As positive controls (Panx-Ctrls) we used pcDNA3.1 expressing human 
pannexin 1 (Panx 1), brain (Panx 2), and skin (Panx 3). B, expression of pannexin transcripts 
in A549 cells was assessed by RT-PCR as above in panel A. C,  uptake of propidium iodide 
was assessed after 5 min incubation in isotonic (Iso) or hypotonic (Hypo) solution, as 
described in Figure 5.1C. Values are the mean ± SEM. Similar results were obtained in at 
least three separate experiments performed in quadruplicate. (*), p < 0.01. D, cells were pre-
incubated with vehicle or with the indicated concentrations of carbenoxolone (CBX, 15 min), 
25 min with either 10Panx1 or ScrPanx1, and challenged for 5 min with isotonic or hypotonic 
solution containing the indicated drugs. ATP concentrations were measured and analyzed as 
described in Figure 5.1D. Values are the mean ± SEM of six independent experiments 
performed sextuplicate.  
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Figure 5.3. Pannexin 1 mediates hypotonicity-induced ATP release. A, pannexin 1 
siRNA reduces pannexin 1 (Panx1), but not connexin 43 (Cx43), mRNA expression (mean ± 
SEM, n = 4). B, ATP release was measured in A549 cells transfected with either pannexin 1 
siRNA (Panx1-siRNA), its scramble oligonucleotide (scr-siRNA), or vehicle (control), and 
incubated for 5 min in isotonic (Iso) or hypotonic (Hypo) solutions. The data represent the 
mean ± SEM of three separate experiments performed in triplicate. C, cells transfected as 
above were challenged for 5 min with isotonic (Iso) or hypotonic (Hypo) solutions 
containing propidium iodide. Cells were fixed, and dye uptake was measured as described in 
Figure 5.1C. The data represent the mean ± SEM of at least three independent experiments 
performed in quadruplicate. (*), p < 0.01. 
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Figure 5.4. Effect of reagents on hypotonicity-induced cell swelling. A, calcein-labeled 
WD-HBE cells were preincubated for 15 min with 10 µM carbenoxolone (CBX). 
Representative xz images of cells upon isotonic/hypotonic challenge. B, time-course of the 
effect of carbenoxolone on hypotonicity-elicited cell swelling and RVD. The data represent 
the mean ± SEM of three independent experiments performed in triplicate. (*), p < 0.05. C, 
Quantification of cell height in swelling and RVD phases in cells incubated in the presence 
of vehicle (Ctrl), 1 µM H1552 (45 min pre-incubation), 1 µM ML-7 (45 min pre-incubation), 
10 µM carbenoxolone (CBX), 10 µM HC67047 (30 min pre-incubation), and challenged 
with hypotonic solution containing the indicated drugs. (*) indicates significant inhibition of 
RVD, p < 0.05, (mean ± SEM, n = 4). 
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Figure 5.5. Hypotonicity-induced ATP release is associated with Rho activation and 
MLC phosphorylation. A, WD-HBE cells were pre-incubated for 45 min with 1 µM H1152 
or 1 µM ML-7, and ATP release was measured after a 5 min incubation in hypotonic solution 
(Hypo) or isotonic control (Iso). B, total RhoA and RhoA-GTP were measured in cells 
incubated for 5 min in the presence of 5 U/ml apyrase with isotonic (Iso) or hypotonic 
solution (Hypo). RhoA activation is expressed as fold increase over control (right panel); 
values are the mean ± SEM of seven independent experiments. C, effect of 1 µM H1152 or 1 
µM ML-7 on hypotonicity-promoted MLC phosphorylation. Quantification of p-MLC is 
indicated on the right panel; mean ± SD, n = 4.   
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Figure 5.6. RhoA activation mediates ATP release in response to hypotonic stress.  A549 
cells were transfected with empty vector, p115-RGS, or RhoA(T19N). A, hypotoncity-
elicited ATP release was assessed 48 h post transfection. Values are the mean ± SEM of 
three independent experiments performed in quadruplicate. B and C, RhoA activation and 
MLCp in response to hypotonic stress were measured in cells transfected as above. Values 
are expressed as fold increase over isotonic in empty vector-transfected cells (mean ± SEM, 
n = 4).  
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Figure 5.7. RhoA activation is required for  propidium iodide uptake. A and B, WD-
HBE cells were pre-incubated for 45 min with vehicle, 1 µM H1152, or 1 µM ML-7, and 
incubated for 5 min with isotonic (Iso) or hypotonic (Hypo) solution in the presence of 
propidium iodide. The data are the mean ± SEM, n = 4. Bar, 100 µm. (*), p < 0.01. C, A549 
cells transfected with an empty vector or RhoA(T19N) were incubated for 5 min in isotonic 
(Iso) or hypotonic (Hypo) solution, and propidium iodide uptake measured, as described 
above. The results represent the mean ± SEM of four separate experiments performed in 
triplicate, (*), p < 0.05. 
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Figure 5.8. Pannexin 1, Rho kinase and MLC kinase contribute to shear stress-induced 
ATP release. A, ATP concentrations were measured in cells under static conditions or 
subjected to shear stress for 25 min in the presence of vehicle (Ctrl), 1 µM H1552 (20 min 
pre-incubation), 1 µM ML-7 (20 min pre-incubation), 10 µM carbenoxolone (CBX), 30 µM 
10Panx1, or 30 µM ScrPanx1. Values represent the mean ± SEM of at least six separate 
experiments performed in quadruplicate. (*) indicates significant inhibition of shear-stress 
responses, p < 0.05. 
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Figure 5.9. Hypotonic challenge-induced Rho activation and pannexin 1 mediated ATP 
release is sensitive to TRPV4 inhibition. A, WD-HBE cells were pre-incubated for 30 min 
with vehicle or 10 µM HC67047 followed by a 5 min hypotonic challenge, and ATP release 
was measured as indicated in Methods. B, RhoA activation was measured in cells pre-
incubated as above and challenged for 5 min (in the presence of apyrase) with isotonic (Iso) 
or hypotonic (Hypo) solution, or 30 nM basolateral thrombin (Thr). C, were preincubated 
with HC67047 as above and propidium iodide uptake was assessed as described in Figure 
5.1C. The data are the mean ± SEM, n = 4. (*), p < 0.05. 

 

 

 

 

 

 

 

 

 

 

A                                                               B

10

15

20

25

30

0

5

Ctrl      Ctrl

Hypo

HC67047

P
I u

pt
ak

e 
(%

 o
f n

uc
le

i)

Total 
RhoA

RhoA-
GTP        

Ctrl                   HC67047

Iso Hypo  Thr Iso Hypo  Thr

Iso Hypo 

Ctrl                       HC67047

C                                                               

0

5

10

15

Ctrl HC 67047

A
T

P
 (F

ol
d 

in
cr

ea
se

)

*

Iso
Hypo

A                                                               B

10

15

20

25

30

0

5

Ctrl      Ctrl

Hypo

HC67047

P
I u

pt
ak

e 
(%

 o
f n

uc
le

i)

Total 
RhoA

RhoA-
GTP        

Ctrl                   HC67047

Iso Hypo  Thr Iso Hypo  Thr

Iso Hypo 

Ctrl                       HC67047

C                                                               

0

5

10

15

Ctrl HC 67047

A
T

P
 (F

ol
d 

in
cr

ea
se

)

*

Iso
Hypo



 
 
 

 
 

CHAPTER VI 
 

 
 
 
 

General Discussion 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 137

1. Overview of results 

ATP and adenosine within the ASL bathing the airway epithelia regulate key components 

of the MCC mechanisms that protect the lung against foreign particles and pathogens. 

However, it is not completely understood how these molecules are generated in the ASL. The 

work within this dissertation has unveiled a major mechanism responsible for ATP release in 

ciliated cell-dominated human airway epithelia. It demonstrates that pannexin 1 acts as an 

ATP release pathway, and that Rho GTPases are key regulators of ATP release upstream of 

pannexin 1. An additional important contribution of the present work is the identification and 

characterization of signaling initiated by activation of PARs localized at the basolateral 

surface of WD-HBE cells. PAR studies not only were crucial on our findings on Rho-

dependent pannexin-1 mediated ATP release from ciliated epithelia, but greatly contribute to 

identify a major pathway for ATP release from goblet cells, i.e., mucin granule secretion. 

Collectively, these findings greatly improved the current understanding of nucleotide-

mediated regulation of airway epithelial cell functions, and provide new avenues for 

therapeutic strategies that will aid individuals with chronic lung diseases characterized by 

deficient MCC, such as CF. 

2. Signaling elements involved in ATP release 

The airway epithelia are continuously exposed to physical forces that impart ATP release-

regulated MCC activities. In WD-HBE cell cultures, stimuli that mimic these forces, i.e., 

shear stress, cyclic compressive stress, and hypotonic challenge-promoted cell swelling, 

induce robust ATP release (7, 26, 105). However, it is not known how mechanical stresses 

are transduced into biochemical signaling, and hence, delineating a systematic strategy for 

identifying signaling elements regulating ATP release in airway epithelial cells has proven 
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problematic. Furthermore, a major limitation in studies of the mechanisms that regulate ATP 

release from airway epithelial cells is the paucity of pharmacological tools to promote 

nucleotide release in these cells. Previously, few studies from our and other labs reported that 

Ca2+-mobilizing GPCRs (e.g., P2Y-R and PAR) promote ATP release from astrocytoma and 

endothelial (95, 154-156). Based on these studies, we reasoned that investigating the effect of 

GPCR activation on ATP release from airway epithelial cells would provide a strategy to 

identify mechanistic elements upstream of ATP release.  

Our observations described in Chapter III  are the first that demonstrate the occurrence of 

robust ATP release in GPCR-stimulated lung epithelial cells, including physiologically 

relevant cultures of WD-HBE cells. Using a highly sensitive luciferin-luciferase assay for 

ATP quantification in real-time (described in detail in Chapter II ), we observed that the 

PAR agonist thrombin elicited rapid and robust release of ATP from lung epithelial A549 

cells in a Ca2+-dependent manner. In contrast, the P2Y2-R agonist UTP caused negligible 

ATP release, despite promoting robust Ca2+-responses. Therefore, signals in addition to Ca2+ 

participate in receptor-promoted ATP release. PAR-induced ATP release was associated with 

activation of Rho GTPases, and was diminished in cells transfected with dominant negative 

mutants of Rho A and p115-Rho GEF. The involvement of Rho in ATP release was further 

supported by the observation that ATP release from thrombin-stimulated A549 and WD-

HBE cells decreased in the presence of ROCK inhibitors. Thus, thrombin-induced ATP 

release involves activation of the G12/13/RhoA/ROCK signaling pathway. ROCK activation is 

known to promote phosphorylation of the myosin regulatory light chain. Consistent with this 

concept, we found that MLC is an effector of ROCK upstream of ATP release.  
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Based on the observations with PAR-stimulated cells, the involvement of Rho/ROCK and 

MLC in hypotonic stress-induced ATP release was investigated. We demonstrated that 

hypotonicity-promoted ATP release from WD-HBE cells was accompanied by activation of 

RhoA and enhanced phosphorylation of MLC. Inhibition of ROCK and MLCK diminished 

hypotonic challenge-induced ATP release. Furthermore, hypotonicity-induced ATP release 

was impaired in airway epithelial cells transfected with the RhoA dominant negative mutant 

(RhoAT19N).  

Altogether, these results strongly suggest that activation of RhoA/ROCK and MLCK are 

necessary for ATP release in both receptor- and mechanically-stimulated WD-HBE cells. 

Although we have not investigated signaling downstream of MLC phosphorylation, it is 

possible that Rho/ROCK activation and MLC phosphorylation promote cytoskeletal 

rearrangement leading to insertion or activation of an ATP channel, e.g., pannexin 1 (see 

further below). 

3. Pathways for regulated ATP release from airway epithelial cells 

ATP release has been proposed to occur either via (i) cytosolic ATP release through 

channels or transporters, or (ii) exocytotic release of ATP-enriched vesicles. However, 

unambiguous assessment of the contribution of conductive or exocytotic ATP release in 

airway epithelial cells has remained elusive. 

The work presented in this dissertation provides a quantitative and molecular 

understanding of the contribution of conductive and exocytotic pathways in the release of 

nucleotides from ciliated and goblet epithelial cells, respectively.  
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Connexin hemichannels, and more recently pannexin hemichannels, have been proposed 

as pathways for ATP release in several cell types (141, 150, 152, 195, 237). In airway 

epithelial cells, circumstantial evidence suggests that connexin hemichannels have contribute 

to ATP release under low extracellular Ca2+
 (141, 238), a situation unlikely to be found under 

physiological conditions. While connexins have been shown to be functionally expressed as 

plasma membrane hemichannels and may allow the exit of ATP, it remains to be 

demonstrated whether they may open and release ATP under physiological [Ca2+]ex 

concentrations, i.e., ~ 2 mM. In contrast to connexins, pannexins are exported to the cell 

surface as glycosylated proteins, and therefore, it is unlikely for pannexons to form gap 

junctions (147, 239). Thus, pannexons in the non-junctional plasma membrane are predicted 

to comprise the predominant structural state (240). Pannexons open under physiological 

extracellular calcium concentrations and at resting membrane potentials in response to 

mechanical stress, thus, pannexons are appealing candidates for ATP-releasing channels.  

In our studies of PAR-induced ATP release from WD-HBE cell cultures, we found that 

non-selective blockers of connexin/pannexin hemichannels diminished both ATP release and 

the uptake of the hemichannel-permeable dye propidium iodide, suggesting that ATP release 

from thrombin-stimulated cells occurs via hemichannels. We expanded these observations to 

illustrate that ATP release from hypotonically- and shear stress-stimulated WD-HBE cells 

was reduced in the presence of hemichannel inhibitors. Confocal microscopy studies verified 

that hypotonicity-induced ATP release was associated with the rapid uptake of the 

hemichannel-permeable reporter dye propidium iodide, which was inhibited by 

carbenoxolone, a potent and selective pannexin 1 inhibitor. RT-PCR analysis of WD-HBE 

cells revealed the expression of pannexin 1, but not pannexin 2 or 3. A pannexin 1-selective 
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blocking peptide (but not its scrambled control) nearly completely abolished hypotonicity-

induced propidium iodide uptake, and diminished ATP release from WD-HBE cells. 

Moreover, siRNA against pannexin 1 diminished hypotonicity-evoked responses. Highly 

relevant to these observations, propidium iodide uptake was inhibited by ROCK and MLCK 

inhibitors, and by transfecting cells with RhoAT19N. Collectively, our data suggest that 

pannexin 1 acts as an ATP release pathway in hypotonically-stimulated WD-HBE cells, 

which consist mostly of non-mucus cells, and that hemichannel opening is regulated by 

RhoA/ROCK/MLCK.  

It is noteworthy to mention that the pannexin 1-selective blocking peptide abolished the 

uptake of propidium iodide induced by hypotonic challenge, but only partially diminished 

ATP release, suggesting that additional mechanisms are involved in the release of ATP from 

WD-HBE cells. Based on published studies, it is possible that this residual ATP release 

occurs via maxi-anion channels (121), VSOAC channels (228), or vesicles (94). 

While investigating PAR-promoted ATP release we found that goblet-like airway 

epithelial Calu-3 cells, express PAR1, PAR2, and PAR3. Since Calu-3 cells do not express 

Ca2+-mobilizing P2Y or muscarinic receptors, we hypothesized that PAR activation would 

provide a physiological approach to promote Ca2+-regulated mucin secretion. Confocal 

studies illustrated that incubation of cells with thrombin, PAR1-AP, and PAR2-AP resulted 

in loss of MUC5AC immunoreactive granules. In addition, extracellular solutions were 

analyzed by slot blot and showed enhanced secretion of MUC5AC. Noteworthy, PAR-

induced mucin secretion was accompanied by ATP release. HPLC analysis detected a 

marked increase relative to control in ADP, AMP, and adenosine, in addition to ATP, in 

samples stimulated with thrombin. MUC5AC-containing granules were isolated and showed 
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to contain ATP, ADP, and AMP. In sum, isolated mucin granules contain a significant pool 

of adenine nucleotides susceptible to release upon agonist-promoted mucin secretion. These 

findings are in good agreement with a mathematical model predicting that ADP and AMP 

within vesicles are an important source of ASL adenosine (100). 

4. Protease activated receptors in the airway epithelia 

The protease thrombin not only cleaves fibrinogen and other soluble protein substrates, 

but also triggers a host of responses in platelets, endothelial, epithelial, and other cells trough 

the cleavage of cell surface receptors, PARs. PARs are GPCRs that convert an extracellular 

proteolytic cleavage event into a signaling cascade: PARs carry a thethered ligand, which 

remains occult until an NH2-terminal fragment of the receptor is proteolytically removed. 

Four PARs have been cloned and characterized (241). PAR 1, 3, and 4 are targets for 

thrombin. In contrast, PAR2 is resistant to thrombin but is activated by trypsin and other 

proteases (241-242). 

Several studies have reported that PARs are expressed, at least at the mRNA level, in 

various cell types of the respiratory tract, including epithelial cells, endothelial cells, alveolar 

cells, smooth muscle cells, mast cells, and alveolar macrophages (218). In addition to 

thrombin and trypsin, proteases that may be present in the respiratory tract and activate PARs 

include mast cell tryptase (which activates PAR2), mast cell chymase (that activates PAR1) 

and neutrophil cathepsin G (activating PAR2 and PAR4), and exogenous enzymes such as 

the house dust mite Der p1 (which activates PAR2)(218).  

Our studies have defined for the first time a physiological role for PAR3. We showed that 

thrombin activation of PAR3 promotes Ca2+-mobilization, RhoA activation, and ATP release 

from A549 cells. RT-PCR analysis identified transcripts for the previously poorly 
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characterized PAR3, but not for other PARs in A549 cells. Transfection of cells with human 

PAR3 cDNA increased thrombin-induced RhoA activation, inositol phosphate formation, 

and ATP release. Conversely, siRNA against PAR3 diminished thrombin-evoked responses.  

Collectively, these data indicate that (i) PAR3 is capable of triggering signaling, and (i) 

PAR3 mediates thrombin actions in A549 cells. Furthermore, our studies indicated that 

activation of PAR1, PAR2, and possibly PAR3 promote ATP release and mucin secretion 

from Calu-3 cells. In sum, our studies demonstrate that serine proteases acting via basolateral 

PAR1, PAR2, and/or PAR3 in airway epithelial cells act as potent and robust stimuli for ATP 

release.  

It has been reported that PAR expression is up-regulated during chronic inflammatory 

diseases, such as asthma and COPD (218), which are characterized by goblet cell metaplasia 

and mucus plug formation (32). Thus, a corollary of our findings is that PAR-dependent 

mucin (and ATP) secretagogue activity may contribute to the pathogenesis of these diseases. 

5. Future Directions 

This dissertation research has shed new light on mechanisms that participate in regulated 

ATP release from airway epithelial cells, i.e., Rho/ROCK/MLCK, and provides compelling 

evidence for a role of pannexin 1 as an ATP release pathway. While this research provides 

essential basic knowledge regarding these pathways in health, it remains to be investigated 

whether increased or diminished activity of these pathways participates in the maintenance of 

chronic lung diseases, e.g., COPD, asthma, and CF.  

Our studies suggest that an osmotically/mechanically activated sensor transduces cell 

swelling into Rho activation. Based on recent literature suggesting that TRPV4 mediates 

osmotic stress-induced ATP release in urethelial and renal epithelial cells (234-235), and our 
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observations that pharmacological inhibitors of TRPV4 diminished hypotonic stress-induced 

RhoA activation (and ATP release), we propose that TRPV4 fulfills such a role. Future 

studies should define, unambiguously, the involvement of TRPV4 in hypotonic challenge- 

and shear stress-promoted ATP release from airway epithelial cells.  

How activation of TRP channels results in Rho activation is not known. Rho GTPases are 

regulated by: (1) GEFs, which replace GDP with GTP thereby activating Rho proteins; (2) 

GTPase-activating proteins, which inactive Rho by by converting Rho-GTP to inactive Rho-

GDP; and (3) guanine nucleotide dissociation inhibitors, which sequester Rho-GDP from 

GEF.  It has been recently proposed that Rho GTPases act downstream of GEFs as second 

messengers of osmotic stress (243-244). Our findings indicated that PAR-stimulated ATP 

release requires Gα12/13/p115RhoGEF activation upstream of RhoA, however, transfection of 

cells with a p115RGS did not affect hypotonic stress-induced ATP release, suggesting that 

Gα12/13 is not activated by hypotonic challenge. It remains to be investigated whether 

p115RhoGEF or other GEFs transduce TRPV4 activation into Rho-dependent ATP release. 

It has been also reported that hypertonic stress induces the phosphorylation of the actin-

binding ezrin-moesin-radixin (EMR) proteins (244), which act as upstream activators of Rho 

by sequestering Rho GDI (245). On speculative grounds and based on the fact that TRPC4 

and TRP5 are associated with EMR proteins (246-247), hypotonic challenge may promote 

TRPV4-mediated ERM-phosphorylation resulting in Rho activation.  

The discovery of pannexin 1 as a major contributor to ATP release from airway epithelial 

cells opens several potential lines of investigation.  For example, proteomic analysis of 

pannexin 1 immunoprecipitates should identify partners of pannexin 1. Eventually, these 
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studies would lead to elucidate the role of cytoskeleteal components and other effectors in 

Rho/ROCK/MLCK-regulated pannexin 1-mediated ATP release.  

Since ASL ATP and adenosine are important molecules in health and disease, the role of 

pannexin 1 under these conditions grants further investigation. For example, ATP and 

adenosine are key players in the asthma inflammatory cascade (248-249). A recent study 

showed that intranasal administration of carbenoxolone attenuated several asthma features in 

a mouse asthma model (250), and suggested that pannexin 1-mediated ATP release is an 

important contributor to these features. Generating a pannexin 1 (-/-) mice would be a major 

step in assessing this hypothesis. 

The therapeutic potential of enhanced ATP release into the ASL has been studied in 

diseases characterized by ASL volume dehydration, such as CF. Phase II clinical trials of 

aerosolized non-hydrolysable nucleotides delivered to the airways of patients with mild CF 

lung disease indicate a significant improvement in lung function (251-252). However, in 

most patients with CF lung disease, aerosolized nucleotides have to permeate trough the 

dehydrated and compact mucus layer, and reach the airway cell surface to activate P2Y2-Rs. 

In this scenario, enhancing endogenous ATP release seems an advantageous alternative. 

Based on our findings with pannexin 1, future studies should test in CF/COPD mouse models 

whether overexpression of pannexin 1 in the airway epithelium reverses the obstructive lung 

phenotype.   
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